Chapter 7
The Shell

7.1 Introduction 7-1

7.2 Basic Concepts 7-1
7.2.1 HowShells AreCreated 7-1
7.2.2 Commands 7-2
7.2.3 Howthe ShellFinds Commands 7-2
7.2.4 Generation of ArgumentLists 7-3
7.2.5 Quoting Mechanisms 7-4

7.3 Redirecting Input and Output 7-5
7.3.1 Standard Inputand Output 7-5
7.3.2 Diagnostic and Other Outputs 7-6
7.3.3 Command Lines and Pipelines 7-7
7.3.4 Command Substitution 7-8

7.4 Shell Variables 7-9
7.4.1 Positional Parameters 7-10
7.4.2 User-Defined Variables 7-10
7.4.3 Predefined Special Variables 7-13

7.5 TheShellState 7-14
7.5.1 ChangingDirectories 7-14
7.5.2 The .profileFile 7-15
7.5.3 ExecutionFlags 7-15

76 A Command’'sEnvironment 7-15

7.7 Invoking the Shell 7-16

7.8 Passing Argumentsto Shell Procedures 7-17
7.9 Controlling the Flow of Control 7-19

7.9.1 Usingtheif Statement 7-20
7.9.2 Usingthecase Statement 7-22

7.9.3 Conditional Looping: while and until 7-22

7.9.4 Looping Over aList: for 7-23

7.9.5 Loop Control: break and continue 7-24

7.9.6 End-of-File andexit 7-25

7.9.7 Command Grouping: Parentheses and Braces -
7-25

7.9.8 Input/OutputRedirection and Control
Commands 7-26

7.9.9 Transfer to Another File and Back: The Dot (.)
Command 7-27

7.9.10 Interrupt Handling: trap 7-27

7.10 Special Shell Commands 7-29
7.11 Creation and Organization of Shell Procedures 7-31
7.12 More About Execution Flags 7-32

7.13 Supporting Commands and Features 7-33
7.13.1 Conditional Evaluation: test 7-33
7.13.2 Echoing Arguments 7-35
7.13.3 Expression Evaluation: expr 7-35
7.13.4 Trueand False 7-36
7.13.5 In-Line Input Documents 7-36
7.13.6 Input / Output Redirection Using File

Descriptors 7-37
7.13.7 Conditional Substitution 7-37
7.13.8 InvocationFlags 7-39

7.14 Effective and Efficient Shell Programming 7-39
7.14.1 Number of Processes Generated 7-40
7.14.2 Number of Data Bytes Accessed 7-41
7.14.3 Shortening Directory Searches 7-42
7.14.4 Directory-Search Order and the PATH

Variable 7-42
7.14.5 Good Ways to Set Up Directories 7-43

7.15 ShellProcedure Examples 7-43

7.16 Shell Grammar 7-52

The Shell

7.1 Introduction

When users log into XENIX, they communicate with the shell command
interpreter, sh. This interpreter is a XENIX program that supports a very
powerful command language. Each invocation of this interpreter is called a
shell; and each shell has one function: to read and execute commands from its
standard input.

Because the shell gives the user a high-level language in which to communicate
with the operating system, XENIX can perform tasks unheard of in less
sophisticated operating systems. Commands that would normally have to be
written in a traditional programming language can be written with just a few
lines in a shell procedure. In other operating systems, commands are executed
in strict sequence. With XENIX and the shell, commandscan be:

Combined to form new commands

Passed positional parameters

Added or renamed by the user

Executed within loops or executed conditionally

Created for local execution without fear of name conflict with other
user commands

e Executed in the background without interrupting a session at a
terminal

Furthermore, commands can “redirect” command input from one source to
another and redirect command output to a file, terminal, printer, or to another
command. This provides flexibility in tailoring a task for a particular purpose.

7.2 Basic Concepts

The shell itself (i.e., the program that reads your commands when you login or
that isinvoked with the sh command)is a program written in the C language; it
isnot part of the operating system proper, but an ordinary user program.

7.2.1 How Shells Are Created

In XENIX, a process is an executing entity complete with instructions, data,
input, and output. All processes have lives of their own, and may even start (or
“fork”) new processes. Thus, at any given moment several processes may be
executing, some of which are *‘children’” of other processes.

Users log into the operating system and are assigned a “shell” from which they
execute. This shell is a personal copy of the shell command interpreter that is
reading commands from the keyboard: in this context, the shell is simply
another process. .

In the XENIX multitasking environment, files may be created in one phase and
then sent off to be processed in the “background.” This allows the user to

7-1

XENIX User's Guide
continue working while programs are running.

7.2.2 Commands

The most common way of using the shell is by typing simple commands at your
keyboard. A simple command is any sequence of arguments separated by
spaces or tabs. The first argument (numbered zero) specifies the name of the
command to be executed. Any remaining arguments, with afew exceptions, are
passed as arguments to that command. For example, the following command
line might be typed to request printing of the files allan, barry, and calvin:

Ipr allan barry calvin

If the first argument of a command names a file that is ezecutable (as indicated
by an appropriate set of permission bits associated with that file) and is actually
a compiled program, the shell, as parent, creates a child process that
immediately executes that program. If the file is marked as being executable,
but is not a compiled program, it is assumed to be a shell procedure, i.e., a file of
ordinary text containing shell command lines. In this case, the shell spawns
another instance of itself (a subshell) to read the file and execute the commands
insideit.

From the user’'s viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implementation
hasbeen used, rather than requiring the user to do so. This provides uniformity
of invocation. '

7.2.3 How the Shell Finds Commands

The shell normally searches for commands in three distinct locations in the file
system. The shell attempts to use the command name as given; if this fails, it
prepends the string /bin to the name. If the latter is unsuccessful, it prepends
Juer/bin to the command name. The effect is to search, in order, the current
directory, then the directory /bin, and finally, fuer/bin. For example, the pr
and man commands are actually the files /bin/pr and [uer/bin/man,
respectively. A more complex pathname may be given, either to locate a file"
relative to the user's current directory, or to access a command with an
absolute pathname. If a given command name begins with a slash (/) (e.g.,
Jbin/sortor [emd), the prepending is not performed. Instead, a single attempt
ismade to execute the command asnamed.

This mechanism gives the user a convenient way to execute public commands
and commands in or near the current directory, as well as the ability to execute
any accessible command, regardless of its location in the file structure. Because
the current directory is usually searched first, anyone can possess 3 private
version of a public command without aflecting other users. Similarly, the
creation of a new public command does not affect a user who already has a
private command with the same name. The particular sequence of directories

7-2

The Shell

searched may be changed by resetting the shell PATH variable. (Shell variables
are discussed later in this chapter).

7.2.4 Generation of Argument Lists

The arguments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantage of this
similarity in names, the shell lets the user specify patterns that match the
filenames in a directory. If a pattern is matched by one or more filenames in a
directory, then those filenames are automatically generated by the shell as
arguments to the command.

Most characters in such a pattern match themselves, but there are also XENIX
special characters that may be included in a pattern. These special characters
are: the star (+), which matches any string, including the null string; the
question mark (?), which matches any one character; and any sequence of
characters enclosed within brackets ([and]), which matches any one of the
enclosed characters. Inside brackets, a pair of characters separated by a dash
(-) matches any character within the range of that pair. Thus [a—de] is
equivalent to [abcde].

Examples of metacharacter usage:

. (Matches all names sn the current directory)
stemp* {Matches all names containing ®temp”)

[a-f]* (Matches all names beginning with” a” through™f’)
*c (Matches all names ending in".c")

[usr/bin/? {Matchee all single-character names in [usr/bin)

This pattern-matching capability saves typing and, more importantly, makes
it possible to organize information in large collections of files that are named in
astructured fashion, using common characters or extensions to identify related
files.

Pattern matching has some restrictions. If the first character of a filename isa
period {.), it can be matched only by an argument that literally begins with a
period. If a pattern does not match any filenames, then the pattern itself is
printed out as the result of the match.

Note that directory names should not contain any of the following characters:

st []

If these characters are used, then infinite recursion may occur during pattern
matching attempts.

XENIX User's Guide

7.2.5 Quoting Mechanisms

The characters <,>,*,?,L and G have special meanings to the shell. Toremove
the special meaning of these characters requires some form of quoting. Thisis
done by using single quotation marks () or double quotation marks (") to
surround a string. A backslash (\) before a single character provides this
function. (Back quotation marks (*) are used only for command substitution in
the shelland do not hide the special meaningsof any characters.)

All characters within single quotation marks are taken literally. Thus
echostuff=="echo $? §#; Is ¢ | wc’

resultsin the string
echo $? $+; 1s ¢ | we

being assigned to the variable echostuff, but it does not result in any other
commands being executed.

Within double quotation marks, the special meaning of certain characters does
persist, while all other characters are taken literally. The characters that
retain their special meaning are the dollar sign ($), the backslash (\), the single
quotation mark (°), and the double quotation mark (") itself. Thus, within
double quotation marks, variables are expanded and command substitution
takes place (both topics are discussed in later sections). However, any
commands in a command substitution are unaffected by double quotation
marks, so that characters such asstar (#) retain their special meaning.

To hide the special meaning of the dollar sign ($) and single and double
quotation marks within double quotation marks, precede these characters with
abackslash (\). Outside of double quotation marks, preceding a character with
a backslash is equivalent to placing single quotation marks around that
character. A backslash (\) followed by a newline causes that newline to be
ignored and is equivalent to a space. The backslash-newline pair is therefore
useful in allowing continuation of long command lines.

Some examplesof quoting are shown below:

| Input Shell interpre _]
. The back quotation mark (')
o’ The double quotation mark ()
“‘echo one*’ | the one word ” ‘echo one*
"\"" The double quotation mark (")
" “echo one*” | the one word "one”
" illegal (expects another *)
one two the two words "one” & "two”
"one two” the one word "one two”
‘one two’ the one word "one two”
‘one ¢ two’ the one word "one ¢ two”
"one ¢ two” the one word "one * two”
‘echo one’ the one word "one”

The Shell

7.3 Redirecting Input and Output

In general, most commands do not know or care whether their input or output
is coming from or going to a terminal or a file. Thus, a command can be used
conveniently either at a terminal or in a pipeline. A few commands vary their
actions depending on the nature of their input or output, either for efficiency,
or to avoid useless actions (such as attempting random accessI/O on a terminal

or apipe).

7.3.1 Standard Input and Output

When a command begins execution, it usually expects that three files are
already open: a ‘‘standard input”. a *‘standard output”. and a “diagnostic
output”, {also called “‘standard error”). A number called a file descriptor is
associated with each of these files. By convention, file descriptor 0 is associated
with the standard input, file descriptor 1 with the standard output, and file
descriptor 2 with the diagnostic output. A child process normally inheritsthese
files from its parent; all three files are initially connected to the terminal (0 to
the keyboard, 1 and 2 to the terminal screen). The shell permits the files to be
redirected elsewhere before controlis passed to an invoked command.

An argument to the shell of the form “ < file” or ** > file” opens the specified file
as the standard input or output (in the case of output, destroying the previous
contents of file, if any). An argument of the form “> > file” directs the
standard output to the end of file, thus providing a way to append data to the
file without destroying its existing contents. In either of the two output cases,

7-5

XENIX User’s Guide

the shell creates file if it does not already exist. Thus
>output

alone on a line creates a zero-length file. The following appends to file log the
list of users who are currently logged on:

who >> log

Such redirection arguments are only subject to variable and command
substitution; neither blank interpretation nor pattern matching of filenames
occurs after these substitutions. This meansthat

echo ‘this is a test” > s.gal

produces a one-line file named #.gal. Similarly, an error message is produced by
the following command, unlessyou have a file with the name *‘?”;

cat < ?

So remember, special characters are not expanded in redirection arguments.
The reason this is so is that redirection arguments are scanned by the shell
before patternrecognition and expansion takesplace.

7.3.2 Diagnostic and Other Outputs

Diagnostic output from XENIX commands is normally directed to the file
associated with file descriptor 2. (There is often a need for an error output file
that is different from standard output so that error messages do not get lost
down pipelines.) You can redirect this error output to a file by immediately
prepending the number of the file descriptor (2 in this case) to either output
redirection symbol (> or >>). The following line appends error messages
from the cc command to the file nramed ERRORS:

cc testfile.c 2> >ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number will be
passed as an argument to the command.

This method may be generalized to allow redirection of output associated with
any of the first ten file descriptors (numbered 0-9). For instance, if emd puts
output on file descriptor 9, then the following line will direct that output to the
file savedata:

cmd 9 >savedata

A command often generates standard output and error output, and might even
have some other output, perhaps a data file. In this case, one can redirect

7-6

The Shell

independently all the different outputs. Suppose, for example, that emddirects
its standard output to file descriptor 1, its error output to file descriptor 2, and
builds a data file on file descriptor 9. The following would direct each of these
three outputsto adifferent file:

cmd >standard 2>error 9>data

7.3.3 Command Lines and Pipelines

A sequence of commands separated by the vertical bar (|) makes up a pipeline.
In a pipeline consisting of more than one command, each command isrun asa
separate process connected to its neighborsby pipes, that is, the output of each
command (except the last one) becomes the input of the next command in line.

A filteris a command that reads its standard input, transforms it in some way,
then writes it asits standard output. A pipeline normally consistsof a series of
filters. Although the processes in a pipeline are permitted to execute in parallel,
each program needs to read the output of its predecessor. Many commands
operate on individual lines of text, reading a line, processing it, writing it out,
and looping back for more input. Some must read large amounts of data before
producing output; sort isan example of the extreme case that requiresallinput
to be read before any output is produced.

The following is an example of a typical pipeline:
nrofl -mm text | ol | Ipr

Nroffis a text formatter available in the XENIX Text Processing System whose
output may contain reverse line motions, col converts these motions to aform
that can be printed on a terminal lacking reverse-motion capability, and lpr
does the actual printing. The flag —mm indicates one of the commonly used
formatting options, and teztis the name of the file to be formatted.

The following examples illustrate the variety of eflects that can be obtained by
combining a few commands in the ways described above. It may be helpful to
try these at a terminal:

L) who
Prints the list of logged-in users on the terminal screen.

e who>>log
Appendsthe list of logged-in users to the end of file log.

e who|wec -l
Prints the number of logged-in users. (The argument to we is
pronounced “minusell”.)

XENIX User's Guide

e wholpr
Prints a paginated list of logged-in users.

e who|sort
Prints an alphabetized list of logged-in users.

o who|grepbob
Prints the list of logged-in users whose login names contain the string
bob.

e who|grepbob|sort|pr
Prints an alphabetized, paginated list of logged-in users whose login
names contain the string bob.

o { date;who|wc-1; } >>log
Appends (to file log) the current date followed by the count of logged-
in users. Be sure to place a space after the left brace and a semicolon
before the right brace.

e who|sed—e s/ .+// ’|sort|uniq-d
Prints only the login names of all users who are logged in more than
once. Note the use of sed as a filter to remove characters trailing the
login name from each line. (The ‘*.#”’ in the sed command is preceded
by a space.)

The who command does not by stself provide options to yield all these
results—they are obtained by combining who with other commands. Note
that who just serves as the data source in these examples. As an exercise,
replace “who|" with “< /etc/passwd” in the above examples to see how a file
can be used as a data source in the same way. Notice that redirection
arguments may appear anywhere on the command line, even at the start. This
means that

<infile >outfile sort|pr
isthe same as

sort|pr <infile >outfile

7.3.4 Command Substitution

Any command line can be placed within back quotation marks (*...") so that
the output of the command replaces the quoted command line itself. This
concept is known as command substitution. The command or commands
enclosed between back quotation marks are first executed by the shell and then
their output replaces the whole expression, back quotation marks and all. This
feature is often used to assign to shell variables. (Shell variables are described
in the next section.) For example,

7-8

The Shell

todayme‘date’
assigns the string representing the current date to the variable “today”; for
example “Tue Nov 27 16:01:09 EST 1982”. The following command saves the
number of logged-in usersin the shell variable users :

userss="who | we -1'
Any command that writes to the standard output can be enclosed in back
quotation marks. Back quotation marks may be nested, but the inside sets
must be escaped with backslashes(\). For example:

logmsg=="echo Your login directory is \'pwd\"*
will display the line “your login directory is name of login directory”. Shell
variables can also be given values indirectly by using the read and line
commands. The read command takes a line from the standard input {usually
your terminal) and assigns consecutive words on that line to any varisbles
named.
For example,

read first init last
takesan input line of the form

G. A Snyder
and has the same effect as typing:

first==G. init==A. last==Snyder
The read command assignsany excess “words” to the last variable.
The line command reads a line of input from the standard input and then

echoesit to the standard output.

7.4 Shell Variables

The shell has several mechanisms for creating variables. A variable is a name
representing a string value. Certain variables are referred to as posstional
parametere; these are the variables that are normally set only on the command
line. Other shell variables are simply names to which the user or the shell itself
may assign string values.

XENIX User’s Guide

7.4.1 Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position sero on the
command line is assigned to the positional parameter $0. The first command
argument is called $1, and so on. The shift command may be used to access
arguments in positions numbered higher than nine. For example, the following
shell script might be used to cycle through command line switches and then
process all succeeding files:

while test $1°
do case $1 in
-a) A==aoption ; shift ;;
-b) B==boption ; shift ;;
~¢) C==coption ; shift ;;
-+) echo "bad option” ; exit 1 ;;
+) process rest of files
esac
done

One canexplicitly force valuesinto these positional parameters by using the set
command. For example,

set abe def ghi

assigns the string “abc’’ to the first positional parameter, $1, the string “‘def” to
$2, and the string “ghi” to $3. Note that $0 may not be assigned a value in this
way—it always refers to the name of the shell procedure; or in the login shell, to
the name of the shell.

7.4.2 User-Defined Variables

The shell also recognizes alphanumeric variables to which string values may be
assigned. Asimple assignment has the syntax:

name==string

Thereafter, $name will yield the value string. A name is a sequence of letters,
digits, and underscores that begins with a letter or an underscore. No spaces
surround the equal sign (=) in an assignment statement. Note that positional
parameters may not appear on the left side of an assignment statement; they
canonly be set as described in the previoussection.

More than one assignment may appear in an assignment statement, but

beware: the shell performes the assignments from right to left. Thus, the
following command line results in the variable “A’’ acquiring the value “‘abe’:

7-10

The Shell

Am=$B Buabc

The following are examples of simple assignments. Double quotation marks
around the right-hand side allow spaces, tabs, semicolons, and newlines to be
included in a string, while also allowing variable substitution (also known as
‘“parameter substitution”) to occur. This means that references to positional
parameters and other variable names that are prefixed by a dollar sign ($) are
replaced by the corresponding values, if any. Single quotation marks inhibit
variable substitution:

MAIL = /usr /mail/gas
echovarm"echo $1 $2 $3 $4”

starssmessss
asterisksm='$stars’

In the above example, the variable “echovar’ has as its value the string
consisting of the values of the first four positional parameters, separated by
spaces, plus the string “echo”. No quotation marks are needed around the
string of asterisks being assigned to stare because pattern matching (expansion
of star, the question mark, and brackets) does not apply in this context. Note
that the value of $asterisksis the literal string “‘$stars”, not the string ‘‘sesss”,
because the single quotation marks inhibit substitution.

In assignments, spaces are not re-interpreted after variable substitution, so
that the following example results in $ first and $secondhaving the same value:

first=="a string with embedded spaces”
secondm==$first

In accessing the values of variables, you may enclose the variable name in
braces {...} to delimit the variable name from any following string. In
particular, if the character immediately following the name is a letter, digit, or
underscore, then the braces are required. For example, examine the following
input:

a=="This is a string*
echo "${a}ent test of variables.”

Here, the echo command prints:
This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for ‘‘$aent’ and
print:

test of variables.

7-11

XENIX User's Guide

The following variables are maintained by the shell. Some of them are set by
the shell, and allof them can be reset by the user:

HOME Initialized by the login program to the name of the user’s login

IFS

PATH

PS1

712

directory, that is, the directory that becomes the current
directory upon completion of a login; ed without arguments
switches to the SHOME directory. Using this variable helps keep
full pathnames out of shell procedures. This is of great benefit
when pathnames are changed, either to balance disk loads or to
reflect administrative changes.

The variable that specifies which characters are internal field
separatore. These are the characters the shell uses during blank
interpretation. (If you want to parse some delimiter-separated
data easily, you can set IF'S to include that delimiter.) The shell
initially sets IFS toinclude the blank, tab, and newline characters.

The pathname of a file where your mail is deposited. If MAIL is
set, then the shell checks to see if anything has been added to the
file it names and announces the arrival of new mail each time you
return to command level (e.g., by leaving the editor). MAIL must
be set by the user and “exported’”. (The export command is
discussed later in this chapter.) (The presence of mail in the
standard mail file is also announced at login, regardless of whether

MAIL is set.)

The variable that specifies the search path used by the shell in
finding commands. Its value is an ordered list of directory
pathnames separated by colons. The shell initializes PATH to the
list :/bsn:/ usr/bin where a null argument appears in front of the
first colon. A null anywhere in the path list represents the current
directory. On some systems, a search of the current directory is
not the default and the PATH variable is initialized instead to
Jbin:fusr/bin. If you wish to search your current directory last,
rather than first, use:

PATH==/bin:/usr /bin::

Here, the two colons together represent a colon followed by a null,
followed by a colon, thus naming the current directory. You could
possess a personal directory of commands (say, $HOME/ bin) and
cause it to be searched before the other three directories by using;:

PATH=$HOME/bin::/bin:/usr /bin
“PATH” isnormally set in your .profile file.
The variable that specifies what string is to be used as the primary

prompt string. If the shell is interactive, it prompts with the value
of PS1 when it expects input. The default value of PS1is“$ ” (a

PS2

The Shell

dollar sign ($) followed by a blank).

The variable that specifies the secondary prompt string. If the
shell expects more input when it encounters a newline in its input,
it prompts with the value of PS2. The default value for this
variableis*‘> ' (agreater-than symbolfollowed by a space).

In general, you should be sure to export all of the above variables so that their
values are passed to all shells created from your login. Use export at the end of
your .profile file. Anexample of an export statement follows:

export HOME IFS MAIL PATH PS1 PS2

7.4.3 Predefined Special Variables

Several variables have special meanings; the following are set onlyby the shell:

$#

Records the number of arguments passed to the shell, not counting
the name of the shell procedure itself. For instance, $# yields the
number of the highest set positional parameter. Thus

shemdabe

automatically sets $# to 3. One of its primary usesis in checking for
the presence of the required number of arguments:

if test $# -1t 2
then

fi

echo two or more args required ’; exit

Contains the exit status of the last command executed (also referred
to as “return code”, “exit code”, or “value”). Its value is a decimal
string. Most XENIX commands return sero to indicate successful
completion. The shell itself returns the current value of §? asits exit
status.

The process number of the current process. Because process
numbers are unique among all existing processes, this string is often
used to generate unique names for temporary files. XENIX provides
no mechanism for the automatic creation and deletion of temporary
files; a file exists until it is explicitly removed. Temporary files are
generally undesirable objects; the XENIX pipe mechanism is far
superior for many applications. However, the need for uniquely-
named temporary files does occasionally occur.

The following example illustrates the recommended practice of
creating temporary files; note that the directories /usrand /usr/tmp

7-13

XENIX User's Guide

are cleared out if the system is rebooted.

use current process id

to form unique temp file

te:np-=Jusr/temp/$$

Is > $temp

commands here, some of which use $temp

rm $temp

clean up at end

$! The process number of the last process run in the background (using

the ampersand (&)). This is a string containing from one to five
digits.

$- Astring consisting of names of execution flags currently turnedon in
the shell. For example, $— might have the value “xv” if you are
tracing your output.

7.5 The Shell State

The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of
execution, and the current working directory.

The state of a shell may be altered in various ways. These include changing the
working directory with the cd command, setting several flags, and by reading
commands from the special file, .profile, in your login directory.

7.5.1 Changing Directories

The c¢d command changes the current directory to the one specified as its
argumciit. This can and should be used to change to a convenient place in the
directory structure. Note that cd isoften placed within parentheses to cause a
subshell to change to a different directory and execute some commands without
affecting the original shell.

For example, the first sequence below copies the file /etc/passwd to
[uer/you/passwd; the second example first changes directory to /ete and then
copiesthe file:

cp [etc/passwd fusrfyou/bin/passwd
{cd Jete ; cp passwd fusr/you/passwd)

Note the use of parentheses. Both command lines have the same effect.

7-14

The Shell

7.5.2 The .profile File

The file named . profile is read each time you log in to XENIX. It isnormally used
to execute special one-time-only commands and to set and export variables to
all later shells. Only after commands are read and executed from .profile, does
the shell read commands from the standard input—usually the terminal.

7.56.3 Execution Flags

The set command lets you alter the behavior of the shell by setting certain shell
flags. In particular, the —x and —v flags may be useful when invoking the shell
as a command from the terminal. The flags-x and-v may be set by typing:

set —xv

The same flags may be turned offby typing:
set +xv

These two flags have the following meaning:

~v Input lines are printéd as they are read by the shell. This flag is
particularly useful for isolating syntax errors. The commands on
eachinputline are executed after that input line is printed.

-x Commands and their arguments are printed as they are executed.
(Shell control commands, such as for, while, etc., are not printed,
however.) Note that —-x causes a trace of only those commands that
are actually executed, whereas —v prints each line of input until a
syntax error is detected.

The set command is also used to set these and other flags within shell
procedures.

7.6 A Command’s Environment

All variables and their associated values that are known to a command at the
beginning of its execution make up its environment. This environment
includes variables that the command inherits from its parent process and
variables specified as keyword paremeters on the command line that invokes
the command.

The variables that a shell passes to its child processes are those that have been
named as arguments to the export command. The export command places
the named variablesin the environmentsof both the shell andall itsfuture child
processes.

7-15

XENIX User's Guide

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line. Such
variables are placed in the environment of the procedure being invoked. For
example:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. If it is
invoked as:

a=keyl b=key2 keycommand
then the resulting output is:
keyl key2

Keyword parameters are not counted as arguments to the procedure and do not
affect $#.

A procedure may access the value of any variable in its environment. However,
if changes are made to the value of a variable, these changes are not reflected in
the environment; they are local to the procedure in question. In order for these
changes to be placed in the environment that the procedure passes to its child
processes, the variable must be named as an argument to the export command
within that procedure. To obtain a list of variables that have been made
exportable from the current shell, type:
export

You will also get a list of variables that have been made readonly. To get alist
of name-value pairsin the current environment, type either

printenv
or

env

7.7 Invoking the Shell

The shell is a command and may be invoked in the same way as any other
command:

shproc|arg...} A new instance of the shell is explicitly invoked to
read proe. Arguments, if any, can be
manipulated.

7-16

sh-v proc [aryg...]

proc|arg...]

The Shell

This is equivalent to putting *‘set -v’' at the
beginning of proc. It can be used in the same way
for the -x,—e, —u, and —-n flags. .

If proc is an executable file, and is not a compiled
executable program, the effect is similar to that
of:

sh proc args

An advantage of this form is that variables that
have been exported in the shell will still be
exported from proc when this form is used
(because the shell only forks to read commands
from proc). Thus any changes made within proc
to the values of exported variables will be passed
on to subsequent commands invoked from proc.

7.8 Passing Arguments to Shell Procedures

When a command line is scanned, any character sequence of the form $n is
replaced by the ath argument to the shell, counting the name of the shell
procedure itsell as $0. This notation permits direct reference to the procedure
name and to as many as nine positional parameters. Additional arguments can
be processed using the shift command or by using a for loop.

The shift command shifts arguments to the left; i.e., the value of $1 is thrown
away, $2 replaces $1, $3 replaces $2, and so on. The highest-numbered
positional parameter becomes unset ($0 is never shifted). For example, in the
shell procedure ripple below, echo writesits arguments to the standard output.

ripple command

#
while test $# = 0
do

echo $1 $2 $3 $4 $5 $6 $7 $8 $9

shift
done

Lines that begin with anumber sign (#) are comments. The looping command,
while, is discussed in Section 7.9.3 of this chapter. If the procedure were

invoked with
rippleab ¢

it would print:

7-17

XENIX User's Guide

abe
be
¢

The special shell variable “star” ($¢) causes substitution of all positional
parameters except $0. Thus, the echo line in the ripple example above could be
written more compactly as:

echo $+

These two echo commands are not equivalent: the first prints at most nine
positional parameters; the second prints all of the current positional
parameters. The shell star variable ($+) is more concise and less error-prone.
One obvious application is in passing an arbitrary number of arguments to a
command: For example

we $*
counts the words of each of the filesnamed on the command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of the input.
Variables are replaced by their values and then command substitution (via
back quotation marks) is attempted. I/O redirection arguments are detected,
acted upon, and deleted from the command line. Next, the shell scans the
resulting command line for internal field separators, that is, for any characters
specified by IFS to break the command line into distinct arguments; ezplicst
null arguments (specified by "” or °‘) are retained, while implicit null
arguments resulting from evaluation of variables that are null or not set are
removed. Then filename generation occurs with all metacharacters being
expanded. Theresulting command line is then executed by the shell.

Sometimes, command lines are built inside a shell procedure. In this case, it is
sometimes useful to have the shell rescan the command line after all the initial
substitutions and expansions have been performed. The special command eval
is available for this purpose. Eval takes a command line as its argument and
simply rescans the line, performing any variable or command substitutions
that are specified. Consider the following (simplified) situation:

command==who
output="| we -1
eval $command $output
Thissegment of code resultsin the execution of the command line

who | we -1

The output of eval cannot be redirected. However, uses of eval can be nested,
so that a command line can be evaluated several times.

7-18

The Shell

7.9 Controlling the Flow of Control

The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures. Before
describing these structures, a few termsneed to be defined.

A simple command is any single irreducible command specified by the name of
an executable file. I/O redirection arguments can appear in a simple command
line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands
described below. A pipeline is a sequence of one or more commands separated
by vertical bars (]). In a pipeline, the standard output of each command but
the last is connected (by a ptpc) to the standard input of the next command.
Each command in a pipeline is run separately; the shell waits for the last
command to finish. The exit status of a pipeline is nonzero if the exit status of
either the first or last processinthe pipeline is nonzero.

A command list is a sequence of one or more pipelines separated by a semicolon
(;), an ampersand (&), an “and-if”’ symbol (& &), or an “or-if”’ (]|) symbol, and
optionally terminated by a semicolon or an ampersand. A semicolon causes
sequential execution of the previous pipeline. This means that the shell waits
for the pipeline to finish before reading the next pipeline. On the other hand,
the ampersand (&) causes asynchronous background execution of the
preceding pipeline. Thus, both sequential and background execution are
allowed. A background pipeline continues execution until it terminates
voluntarily, or until its processes are killed.

Other uses of the ampersand include off-line printing, background
compilation, and generation of jobs to be sent to other computers. For
example, if you type

nohup cc prog.c&

you may continue working while the C compiler runs in the background. A
command line ending with an ampersand is immune to interrupts or quits that
you might generate by typing INTERRUPT or QUIT. It is also immune to
logouts with CNTRL-D. However, CNTRL-D will abort the command if you are
operating over a dial-up line. In this case, it is wise to make the command
immune to hang-ups (i.e., logouts) as well. The nohup command is used for
this purpose. In the above example without nohup, if you log out from a dial-
up line while cc is still executing, cc will be killed and your output will
disappear.

The ampersand operator should be used with restraint, especially on heavily-
loaded systems. Other users will not consider you a good citizenif you start up
a large number of background processes without a compelling reason for doing
so.

7-19

XENIX User’s Guide

The and-if and or-if (&& and ||) operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating command
lines (but both are lower than the ampersand (&) and the vertical bar (|}). In
the command line

cmdl || emd2
the first command, emdl, is executed and its exit status examined. Only if

emd1fails (i.e., has a nonzero exit status) is cmd2executed. Thus, thisisa more
terse notation for:

if cmdl

test §7 1= 0
then

cmd2
fi

The and-if operator (& &) operator yields a complementary test. For example,
in the following command line

emdl && cmd?2
the second command is executed only if the first succeeds (and has a zero exit
status). In the sequence below, each command is executed in order until one
fails:

cmdl && cmd2 && ¢cmd3 &£& ... &£& cmdn

A simple command in a pipeline may be replaced by a command list enclosed in
either parentheses or braces. The output of all the commands so enclosed is
combined into one stream that becomes the input to the next command in the
pipeline. The following line formats and prints two separate documents:

{ nroff -mm textl; nroffl -mm text2; } | lpr
Note that a space is needed after the left brace and that a semicolon should
appear.before the right brace.
7.9.1 Using the if Statement

The shell provides structured conditional capability with the if command. The
simplest if command hasthe following form:

if command-list
then command-list

fi

The command list following the if isexecuted and if the last commandin the list
has a zero exit status, then the command list that follows then is executed. The

7-20

The Shell

word fl indicatesthe end of the if command.

To cause an alternative set of commands to be executed when thereis anonzero
exitstatus, an else clause can be given with the following structure:

if command-list
then command-list
else command-list

fi

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement (See Section 7.9.2) is better for large numbers of
tests. For example:

if test -f "$1”

is $1 a file?

then pr $1

elif test -d "$§1”

else, is $1 a directory?
then (cd $1; pr *)

else echo $1 is neither a file nor a directory

fi

The above example is executed as follows: if the value of the first positional
parameter is a filename {-f), then print that file; if not, then check to see if it is
the name of a directory (-d). If so, change to that directory (cd) and print all the
files there (pr#). Otherwise, echo the error message.

The if command may be nested (but be sure to end each one with a fi). The
newlinesin the above examples of if may be replaced by semicolons.

The exit status of the if command is the exit status of the last command
executed in any then clause or else clause. If no such command was executed,
if returns a sero exit status.

Note that an alternate notation for the test command uses brackets to enclose
the expression being tested. For example, the previous example might have
been written as follows:

if [-£781")

is §1 a file?

then pr $1

elif [-d"$1"]

* else, is $1 a directory?
then (cd $1; pr)

else echo $1 is neither a file nor a directory

fi

Note that a space after the left bracket and one before the right bracket are
essentialin thisform of the syntax.

7-21

XENIX User's Guide

7.9.2 Using the case Statement

A multiple test conditional is provided by the case command. The basic
format of the case statement is:

case string in
pattern) command-list ;;

pattern) command-list ;;
esac

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generation. If a match is found,
the command list following the matched pattern is executed; the double
semicolon (;;) serves as a break out of the case and is required after each
command list except the last. Note that only one pattern is ever matched, and
that matches are attempted in order, so that if a star (+) is the first patternina
case, noother patterns are looked at.

More than one pattern may be associated with a given command list by
specifying alternate patternsseparated by vertical bars(|).

case $i in
*.c) cc $i
+.h | +.sh) "
: do nothing
*) echo "$i of unknown type”
esac ”

In the above example, no action is taken for the second set of patterns because
the null, colon (:) command is specified. The star (¢)is used as a default pattern,
because it matches any word.

The exit status of case is the exit status of the last command executed in the
case command. If no commands are executed, then case has a zero exit status.
7.9.3 Conditional Looping: while and until
A while command has the general form:

while command-list

do

command-list
done

7-22

The Shell

The commands in the first command-list are executed, and if the exit status of
the last command in that list is zero, then the commands in the second
command-list are executed. This sequence is repeated aslong as the exit status
of the first command-list is zero. A loop can be executed as long as the first
command-list returns a nonzero exit status by replacing while with until.

Any newline in the above example may be replaced by a semicolon. The exit
status of a while (or until) command is the exit status of the last command
executed in the second command-list. If no such command is executed, while
(or until) hasa zero exit status.

7.9.4 Looping Over a List: for

Often, one wishes to perform some set of operations for each file in a set of files,
or execute some command once for each of several arguments. The for
command can be used to accomplish this. The for command has the format:

for variable in word-list
do

command-list
done

Here word-liet is a list of strings separated by blanks. The commands in the
command-lset are executed once for each word in the word-list. Variable takes
on asits value each word from the word list, in turn. The word list is fixed after
it is evaluated the first time. For example, the following for loop causes each of
the C source files zec.c, emd.c, and word.c in the current directory to be
compared with a file of the same name in the directory [uer/erc/cmd/sh:

for CFILE in xec cmd word
do diff ${CFILE}.c /usr/src/cmd/sh/${CFILE}.c
done

Note that the first occurrence of CFILE immediately after the word for has no
preceding dollar sign, since the name of the variable is wanted and not its value.

You can omit the “in word-list” part of a for command; this causes the
current set of positional parameters to be used in place of word-list. This is
useful when writing a command that performs the same set of commands for
each of an unknown number of arguments. Create a file named ecko2 that
contains the following shell script:

for word
do echo $word$word

done

Give echofexecute status:

7-23

XENIX User’'s Guide

chmod +x echo2
Now type the following command:
echo2 ma pa bo fi yo no so ta
The output from this command is:

mama
papa
bobo
fifi
yoyo
nono
S80S0
tata

7.9.5 Loop Control: break and continue

The break command can be used to terminate execution of a while or a for
loop. Continue requests the execution of the next iteration of the loop. These
commandsare effective only when they appear between do and done.

The break command terminates execution of the smallest (i.e., innermost)
enclosing loop, causing execution to resume after the nearest following
unmatched done. Exit from nlevelsisobtained by break a.

The continue command causes execution to resume at the nearest enclosing
for, while, or until statement, i.e., the one that begins the innermost loop
containing the continue. You can also specify an argument nto continue and
execution will resume at the ath enclosing loop:

7-24

The Shell

This procedure is interactive.
"Break” and "continue” commands are used
to allow the user to control data entry.
while true sloop forever
do echo "Please enter data”

read response

case "$response” in

"done”) break

no more data

e
”

") & just a carriage return,
keep on going
continue
"

*) # process the data here
H]

esac

done

7.9.8 End-of-File and exit

When the shell reaches the end-of-file in a shell procedure, it terminates
execution, returning to its parent the exit status of the last command executed
prior to the end-of-file. The top level shell is terminated by typing a CNTRL-D
which is the same as logging out.

The exit command simply reads to the end-of-file and returns, setting the exit
status to the value of its argument, if any. Thus, a procedure can be terminated
normally by placing ‘‘exit 0"’ at the end of the file.

7.9.7 Command Grouping: Parentheses and Braces
There are two methods for grouping commands in the shell: parentheses and
braces. Parentheses cause the shell to create a subshell that reads the enclosed
commands. Both the right and left parentheses are recognised wherever they
appear in a command line—they can appear as literal parentheses only when
enclosed in quotation marks. For example, if you type

garble(stuff)

the shell prints an error message. Quoted lines, such as

garble” ("stufl”)"
s*garble(stuff)”

are interpreted correctly. Other quoting mechanisms are discussed in section
7.2.3.2, *‘Quoting Mechanisms".

7-25

XENIX User's Guide

This capability of creating a subshell by grouping commands is useful when
performing operations without aflecting the values of variables in the current
shell, or when temporarily changing the working directory and executing
commands in the new directory without having to return to the current
directory.

The current environment is passed to the subshell and variables that are
exportedin the current shell are also exported in the subshell. Thus

CURRENTDIR="pwd"; cd /usr/docs/otherdir;
nohup nroff doc.n | lpr& ; cd $CURRENTDIR

and
(cd fusr/docs/otherdir; nohup nroff doc.n | Ipr&)

accomplish the same result: a copy of [usr/docs/otherdir/doc.n is sent to the
lineprinter. (Note that nroff is a command available in the XENIX Text
Processing System.) However, the second example automatically putsyou back
in your original working directory. In the second example above, blanks or
newlines surrounding the parentheses are allowed but not necessary. When
entering a command line at your terminal, the shell will prompt with the value
of the shell variable PS2 if an end parenthesis is expected.

Braces ({ and }) may also be used to group commands together. Both the left
and the right brace are recognized onlyif they appear as the first (unquoted)
word of a command. The opening brace may be followed by a newline (in which
case the shell prompts for more input). Unlike parentheses, no subshell is
created for braces: the enclosed commands are simply read by the shell. The
braces are convenient when you wish to use the (sequential) output of several
commandsasinput to one commarid.

The exit status of a set of commands grouped by either parenthesesor bracesis
the exit statusof the last enclosed executed command.

7.9.8 Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recognizes the
control commands (other than parentheses) described above. However, each
command in a pipeline is run as a separate process in order to direct input toor
output from each command. Also, when redirection of input or output is
specified explicitly to a control command, a separate process is spawned to
execute that command. Thus, when if, while, until, case, and for are used in
a pipeline consisting of more than one command, the shell forks and a subshell
runs the control command. Thishas two implications:

1. Any changes made to variables within the control command are not
effective once that control command finishes (this is similar to the

7-26

The Shell

effect of using parentheses to group commands).
2. Control commands run slightly slower when redirected, because of
the additional overhead of creating a shell for the control command.
7.9.9 Transfer to Another File and Back: The Dot (.) Command
A command line of the form
. proc
causes the shell to read commands from proc without spawning a new process.
Changes made to variables in proc are in eflect after the dot command finishes.
This is a good way to gather a number of shell variable initializations into one
file. A common use of this command is to reinitialize the top level shell by

reading the . profile file with:

.profile

7.9.10 Interrupt Handling: trap

Shell procedures can use the trap command to disable a signal (cause it to be
ignored), or redefine itsaction. Theform of the trap command is:

trap arg signal-list
Here argis a string to be interpreted as a command list and signal-list consists

of one or more signal numbers as described in signal(S))in the XENIX Reference
Manual. The most important of these signals follow:

Number Signal

00 KILL (CNTRL-U)

01 HANGUP

02 INTERRUPT character

03 QUIT

09 KILL (cannot be caught or ignored)

11 segmentation violation {cannot be caught or ignored)
15 software termination signal

The commands in arg are scanned at least once, when the shell first encounters
the trap command. Because of this, it is usually wise to use single rather than
double quotation marks to surround these commands. The former inhibit
immediate command and variable substitution. This becomes important, for
instance, when one wishes to remove temporary files and the names of those
files have not yet been determined when the trap command is first read by the
shell. The following procedure will print the name of the current directory in

7-27

XENIX User's Guide

the file errdirect when it is interrupted, thus giving the user information as to
how much of the job was done:

trap ‘echo ‘pwd’ >errdirect’ 23 15
for i in /bin fusr/bin Jusr/gas/bin
do

ed $i
commands to be executed in directory $i here
done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the directory
from which the procedure was first executed:

(trap "echo ‘pwd" Derrdirect” 2 3 15)

A ssignal 11 can never be trapped, because the shell itself needs to catch it to deal
with memory allocation. Zero is interpreted by the trap command as a signal
generated by exiting from a shell. This occurseither with an exit command, or
by “falling through” to the end of a procedure. If arg is not specified, then the
action taken upon receipt of any of the signals in the signal list is reset to the
default system action. If argis an explicit null string (““or ””), then the signals
in the signal list are ignored by the shell.

The trap command is most frequently used to make sure that temporary files
are removed upon termination of a procedure. The preceding example would
be written more typically as follows:

temp==$HOME/temp/$$
trap ‘rm $temp; trap 0; exit’ 0123 15
Is > $temp

commands that use $temp here

In thisexample, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or 15 (kill} is
received by the shell procedure, or whenever the shell procedure is about to
exit, the commands enclosed between the single quotation marks are executed.
The exit command must be included, or else the shell continues reading
commands where it left off when the signal was received. The ‘‘trap 0” in the
above procedure turns off the original traps 1, 2, 3, and 15 on exits from the
shell, so that the exit command does not reactivate the execution of the trap
commands.

Sometimes the shell continues reading commands after executing trap
commands. The following procedure takes each directory in the current
directory, changes to that directory, prompts with its name, and executes
commands typed at the terminal until an end-of-file (ONTRL-D) or an interrupt
is received. An end-of-file causes the read command to return a nonzero exit
status, and thus the while loop terminates and the next directory cycle is
initiated. An interruptisignored while executing the requested commands, but
causes termination of the procedure when it is waiting for input:

7-28

The Shell

d="pwd’
for i in*
do if test —d $d/8i
then cd $d/$i
while echo "$i:”
trap exit 2
read x
do trap : 2
ignore interrupts
eval $x
done

done

Several traps may be in effect at the same time: if multiple signals are received
simultaneously, they are serviced in numerically ascending order. To
determine which trapsare currently set, type:

trap

It is important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received by
the shell, it is passed on to whatever child processes are currently executing.
When these (synchronous) processes terminate, normally or abnormally, the
shell polls any traps that happen to be set and executes the appropriate trap
commands. This process is straightforward, except in the case of traps set at
the command (outermost, or login) level. In this case, it is possible that no child
process is running, so before the shell polls the traps, it waits for the
termination of the first processspawned afterthe signal wasreceived.

When a signal isredefined in a shell script, this does not redefine the signal for
programs invoked by that script; the signal is merely passed along. A disabled
signal is not passed.

For internal commands, the shell normally polls traps on completion of the
command. An exception to this rule is made for the read command, for which
traps are serviced immediately, so that read can be interrupted while waiting
for input.

7.10 Special Shell Commands

There are several special commandsthat are internal to the shell, some of which
have already been mentioned. The shell does not fork to execute these
commands, so no additional processes are spawned. These commands should
be used whenever possible, because they are, in general, faster and more
efficient than other XENIX commands. The trade-off for this effitiency is that
redirection of input and output is not allowed for most of these special
commands.

7-29

XENIX User's Guide

Several of the special commands have already been described because they
affect the flow of control. They are dot (.), break, continue, exit, and trap.
The set command is also a special command. Descriptions of the remaining
special commands are given here:

The null command. This command does nothing and
can be used to insert comments in shell procedures.
Its exit status is zero (true). Its utility as a comment
character haslargely been supplanted by the number
sign (#) which can be used to insert comments to the
end-of-line. Beware: any arguments to the null
command are parsed for syntactic correctness; when
in doubt, quote such arguments. Parameter
substitution takes place, just asin other commands.

cd arg Make arg the current directory. If arg is not a valid
directory, or the user is not authorized to accessit, a
nonzero exit status is returned. Specifying cd with
no arg is equivalent to typing “cd $HOME” which
takesyou to your home directory.

exec arg... If arg is a command, then the shell executes the
command without forking and returning to the
current shell. This effectively a “‘goto’’ and no new
process is created. Input and output redirection
arguments are allowed on the command line. If only
input and output redirection arguments appear,
then the input and output of the shell itself are
modified accordingly.

newgrp aryg... The newgrp command is executed, replacing the
shell. Newgrp in turn creates a new shell, Beware:
only environment variables will be known in the shell
created by the newgrp command. Any variables
that were exported will no longer be marked assuch.

read var... One line (up to a newline) is read from the standard
input and the first word is assigned to the first
variable, the second word to the second variable, and
so on. All words left over are assigned to the last
variable. The exit status of read is sero unless an
end-of-fileisread.

readonly var... The specified variables are made readonly so that
no subsequent assignments may be made to them. If
no arguments are given, a list of all readonly and of
all exported variablesisgiven.

times The accumulated user and system times for
processesrun from the current shell are printed.

7-30

The Shell

umask nan The user file creation mask is set to nnn. If san is
omitted, then the current value of the mask is
printed. This bit-mask is used to set the default
permissions when creating files. For example, an
octal umask of 137 corresponds to the following bit-
mask and permission settings for a newly created file:

User user oup | other
Octal 1 3 7
bit-mask 001 | 011 111
permissions | rw- r-- —

See umaek{C) in the XENIX Reference Manudl for
information on the value of nnn.

wait The shell waits for all currently active child processes
to terminate. The exit status of wait is always zero.
7.11 Creation and Organization of Shell Procedures
A shell procedure can be created in two simple steps. The first is building an
ordinary text file. The second is changing the mode of the file to make it
ezecutable, thuspermitting it to be invoked by
proc args
rather than
sh proc args
The second step may be omitted for a procedure to be used once or twice and
then discarded, but is recommended for frequently-used ones. To set up a
simple procedure, first create a file named maslall with the following contents:
LETTER=$1
shift
foriin $*
do mail $i <SLETTER
done
Next type:
chmod +x mailall

The new command might then be invoked from within the current directory by
typing:

7-31

XENIX User's Guide

mailall letter joe bob

Here letter is the name of the file containing the message you want to send, and
joe and bob are people you want to send the message to. Note that shell
procedures must always be at least readable, so that the shell itself can read
commands from the file.

If mailall were thus created in a directory whose name appears in the user’s
PATH variable, the user could change working directories and still invoke the
maslall command.

Shell procedures may be created dynamically. A procedure may generate a file
of commands, invoke another instance of the shell to execute that file, and then
remove it. An alternate approach is that of using the dot command (.) to make
the current shell read commands from the new file, allowing use of existing shell
variables and avoiding the spawning of an additional process for another shell.

Many users prefer writing shell procedures to writing C programs. Thisistrue
for several reasons:

1. Ashell procedure is easy to create and maintain because itisonly a file
of ordinary text.

2. Ashell procedure has no corresponding object program that must be
generated and maintained.

3. Ashell procedure is easy to create quickly, use a few times, and then
remove.

4. Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source-
language form, they are generally easy to find, understand, and
modify.

By convention, directories that contain only commands and shell procedures
are named bsn. This name is derived from the word “binary”, and is used
because compiled and executable programs are often called “binaries” to
distinguish them from program source files. Most groups of users sharing
common interests have one or more bin directories set up to hold common
procedures. Some users have their PATH variable list several such directories.
Although you can have a number of such directories, it is unwise to go
overboard: it may become difficult to keep track of your environment and
efliciency may suffer.

7.12 More About Execution Flags

There are several execution flags available in the shell that can be useful in shell
procedures:

7-32

The Shell

-e This flag causes the shell to exit immediately if any command that it
executes exits with a nonzero exit status. This flag is useful for shell
procedures composed of simple command lines; it is not intended for
use in conjunction with other conditional constructs.

-u This flag causes unset variables to be considered errors when
substituting variable values. This flag can be used to effect a global
check on variables, rather than using conditional substitution to
check each variable.

-t This flag causes the shell to exit after reading and executing the
commands on the remainder of the current input line. This flag is
typically used by C programs which call the shell to execute a single
command.

-n Thisisa ““don’t execute’’ flag. On occasion, one may want tocheck a
procedure for syntax errors, but not execute the commands in the
procedure. Using “set-nv” at the beginning of a file will accomplish
this.

-k This flag causes all arguments of the form varables=value to be
treated as keyword parameters. When this flag is not set, only such
arguments that appear before the command name are treated as
keyword parameters.

7.13 Supporting Commands and Features

Shell procedures can make use of any XENIX command. The commands
described in this section are either used especially frequently in shell
procedures, or are explicitly designed for such use.

7.13.1 Conditional Evaluation: test

The test command evaluates the expression specified by its arguments and, if
the expression is true, test returns a zero exit status. Otherwise, a nonsero
(false) exit status isreturned. Test also returns a nonzeroexit statusif it hasno
arguments. Often it is convenient to use the test command as the first
command in the command list following anif or a while. Shell variables used
in test expressions should be enclosed in double quotation marks if there is any
chance of their being null or not set.

The square brackets may be used asan aliasto test, so that

| ezpression]

hasthesame effect as:

7-33

XENIX User's Guide

test ezpression

Note that the spaces before and after the ezpreesionin brackets are essential.

The following is a partial list of the options that can be used to construct a
conditional expression:

-r file
~w file
~x file
-s file
-d file
~{ file
-z8l
-nsl

-t fildes

8l== g2
8ll= g8
sl

nl —eq n?2

True if the named file existsand isreadable by the user.

True if the named file exists and is writable by the user.

True if the named file exists and is executable by the user.
True if the named file exists and has a size greater than zero.
True if the named file is a directory.

True if the named file is an ordinary file. .

Trueif the length of string s1is zero.

Trueif the length of the string #1isnonsero.

True if the open file whose file descriptor number is fildes is
associated with a terminal device, If fildesis not specified, file
descriptor 1is used by default.

Trueil strings s1and s2areidentical.

Trueif strings s and s2are notidentical.

Trueif e1is not the null string.

True if the integers n and n2 are algebraically equal; other
algebraic comparisons are indicated by ~ne (not equal), —gt

(greater than), —ge (greater than or equal to), -1t (less than),
and -le (less than or equal to).

These may be combined with the following operators:

!
-3

-0

(ezpr)

7-34

Unary negation operator.
Binary logical AND operator.

Binary logical OR operator; it has lower precedence than the
logical AND operator (-a).

Parentheses for grouping; they must be escaped to remove
their significance to the shell. In the absence of parentheses,
evaluation proceeds from left toright.

The Shell
Note that all options, operators, filenames, etc. are separate arguments to test.

7.13.2 Echoing Arguments
The echo command has the following syntax:

echo [optione] [arge]
Echo copies its arguments to the standard output, each followed by a single
space, except for the last argument, which is normally followed by a newline.
Often, it is used to prompt the user for input, to issue diagnostics in shell
procedures, or to add a few lines to an output stream in the middle of a pipeline.

Another use is to verify the argument list generation process before issuing a
command that doessomething drastic. The command

Is
isoften replaced by
echo *
because the latter isfaster and prints fewer lines of output.
The —n option to echo removes the newline from the end of the echoed line.
Thus, the following two commands prompt for input and then allow typing on

the same line as the prompt:

echo —n ‘enter name:”’
read name

The echo command also recognizes several escape sequences described in
echo(C)inthe XENIX Reference Manual.

7.13.3 Expression Evaluation: expr

The expr command provides arithmetic and logical operations on integers and
some pattern-matching facilities on its arguments. It evaluates a single
expression and writes the result on the standard output; expr can be used
inside grave accents to set a variable. Some typical examples follow:

increment $A
A=='expr $a + 1"

put third through last characters of
$1 into substring

substring=="expr "$1” : ".\(.#\) **

¢+ obtain length of $1

’

'

’

c="'expr "$1” :

7-35

XENIX User’s Guide

The most common uses of expr are in counting iterations of a loop and in using
its pattern-matching capatility to pick apart strings.

7.13.4 True and False

The true and false commands perform the functions of exiting with zero and
nonsero exit status, respectively. The true and false commands are often used
toimplement unconditional loops. For example, you might type:

while true
do echo forever
done

This willecho “‘forever’’ on the screen until an INTERRUPT is typed.

7.13.5 In-Line Input Documents
Upon seeing 3 command line of the form
command < < eofstring

where eofstring is any arbitrary string, the shell will take the subsequent lines
as the standard input of command until a line is read consisting only of
eofstring. (By appending a minus (~) to the input redirection symbol (< <),
leading spaces and tabs are deleted from each line of the input document before
the shell passesthe line to command.)

The shell creates a temporary file containing the input document and performs
variable and command substitution on its contents before passing it to the
command. Pattern matching on filenames is performed on the arguments of
command lines in command substitutions. In order to prohibit all
substitutions, you may quote any character of eofstring:

command << \eofstring

The in-line input document feature is especially useful for small amounts of
input data, where it is more convenient to place the datain the shell procedure
than to keep it in a separate file. For instance, you could type:

cat < <-xx
This message will be printed on the
terminal with leading tabs and spaces
removed.

xx

This in-line input document feature is most useful in shell procedures. Note
that in-line input documents may not appear within grave accente.

7-36

The Shell

7.13.8 Input/Output Redirection Using File Descriptors

We mentioned above that a command occasionally directs output to some file
associated with a file descriptor other than 1 or 2. In languages such as C, one
can associate output with any file descriptor by using the wnite(S) system call
(see the XENIX Reference Manual. The shell provides its own mechanism for
creating an output file associated with a particular file descriptor. By typing

141> &1d2

where fd1 and fd2 are valid file descriptors, one can direct output that would
normally be associated with file descriptor fd! to the file associated with fd2.
The default value for fd and fd2is 1. If, at run time, no file is associated with
Jd2, then the redirection is void. The most common use of this mechanism is
that of directing standard error output to the same file as standard output.
Thisis accomplished by typing:

command 2> &1

If you wanted to redirect both standard output and standard error output to
the same file, you would type:

command 1>file 2> &1

The order here is significant: first, file descriptor 1 is associated with file; then
file descriptor 2 is associated with the same file as is currently associated with
file descriptor 1. If the order of the redirections were reversed, standard error
output would go to the terminal, and standard output would go to file, because
at the time of the error output redirection, file descriptor 1 still would have
been associated with the terminal.

This mechanism can also be generalized to the redirection of standard input.
You could type

fda< &fdb

to cause both file descriptors fda and fdb to be associated with the same input
file. If fda or fdb is not specified, file descriptor 0 is assumed. Such input
redirection is useful for a command that uses two or more input sources.

7.13.7 Conditional Substitution

Normally, the shell replaces occurrences of $variable by the string value
assigned to variable, if any. However, there exists a special notation to allow
conditional substitution, dependent upon whether the variable is set or not
null. By definition, a variable is set if it has ever been assigned a value. The
value of a variable can be the null string, which may be assigned to a variablein
anyone of the following ways:

7-37

XENIX User's Guide

A==
bedm=""
efg=""

set "

The first three examples assign null to each of the corresponding shell variables.
The last example sets the first and second positional parameters to null. The
following conditional expressions depend upon whether a variable is set and not
null. Note that the meaning of braces in these expressions differs from their
meaning when used in grouping shell commands. Parameter as used below
refers to either a digit or a variable name.

${variable:—string}

${veriable:==string}

${variable:?string}

${variable:+string}

If variable is set and is nonnull, then substitute the
value $variable in place of this expression.
Otherwise, replace the expression with string. Note
that the value of variable is not changed by the
evaluation of thisexpression.

If variable is set and is nonnull, then substitute the
value $variable in place of this expression.
Otherwise, set veriable to string, and then
substitute the value $variable in place of this
expression. Positional parameters may not be
assigned valuesin this fashion.

If variable is set and is nonnull, then substitute the
value of vdriable for the expression. Otherwise,
print a message of the form

variable: string
and exit from the current shell. (If the shell is the
login shell, it is not exited.) If string is omitted in
thisform, then the message

variable: parameter null or not set
is printed instead.
If variable is set and is nonnull, then substitute
string for this expression. Other wise, substitute the

null string. Note that the value of variable is not
altered by the evaluation of thisexpression.

These expressions may also be used without the colon. In this variation, the
shell does not check whether the variable is null or not; it only checks whether
the variable hasever been set.

The two examples below illustrate the use of this facility:

7-38

The Shell

1. Thisexample performs an explicit assignment to the PATH variable:
“PATH” =${PATH:- ":/bin:/usr /bin }

This says, if PATH has ever been set and is not null, then keep its
current value; otherwise, setit to the string *“: /bin: /usr /bin".

2. Thisexample automatically assigns the HOME variable a value:
cd ${HOME:="/usr/gas }

If HOME is set, and is not null, then change directory toit. Otherwise
set HOME to the given value and change directory toit.

7.13.8 Invocation Flags

There are four flags that may be specified on the command line when invoking
the shell. These flagsmay not be turned on with the set command:

-i If this flag is specified, or if the shell’s input and output are both
attached to a terminal, the shell is snteractive. In such a shell,
INTERRUPT (signal 2) is caught and ignored, and TERMINATE
(signal 15) and QUIT (signal 3) are ignored.

-8 If this flag is specified or if no input/output redirection arguments
are given, the shell reads commands from standard input. Shell
output is written to file descriptor 2. The shell you get upon logging
into the system has the —s flag turned on.

—~c¢ When this flag is turned on, the shell reads commands from the first
string following the flag. Remaining arguments are ignored. Double
quotation marks should be used to enclose a multiword string, in
order to allow for variable substitution.

7.14 Effective and Efficient Shell Programming

This section outlines strategies for writing efficient shell procedures, ones that
do not waste resources in accomplishing their purposes. The primary reason
for choosing a shell procedure to perform a specific function is to achieve a
desired result at a minimum human cost. Emphasis should always be placed on
simplicity, clarity, and readability, but efliciency can also be gained through
awareness of a few design strategies. In many cases, an effective redesign of an
existing procedure improves its efficiency by reducing its size, and often
increases its comprehensibility. In any case, you should not worry about
optimizing shell procedures unless they are intolerably slow or are known to
consume an inordinate amount of a system’sresources.

7-39

XENIX User’s Guide

The same kind of iteration cycle should be applied to shell procedures as to
other programs: write code, measure it, and optimize only the few important
parts. The user should become familiar with the time command, which can be
used to measure both entire procedures and parts thereof. Its use is strongly
recommended; human intuition is notoriously unreliable when used to estimate
timings of programs, even when the style of programming is a familiar one.
Each timing test should be run several times, because the results are easily
disturbed by variations in system load.

7.14.1 Number of Processes Generated

When large numbers of short commands are executed, the actual execution
time of the commands may well be dominated by the overhead of creating
processes. The procedures that incur significant amounts of such overhead are
those that perform much looping and those that generate command sequences
to be interpreted by another shell.

If you are worried about efliciency, it is important to know which commands
are currently built into the shell, and which are not. Here is the alphabetical list
of those that are built in:

break case cd continue eval
exec exit export for if
newgrp read readonly set shift
test times trap umask until
wait while . : {}

Parentheses, (), are built into the shell, but commands enclosed within them
are executed as a child process, i.e., the shell does a fork, but no exec. Any
command not in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes
generated by ashell procedure. In the bulk of observed procedures, the number
of processes created (not necessarily simultaneously) can be described by:

processes == (k*n) + ¢
where kand ¢ are constants, and n may be the number of procedure arguments,
the number of lines in some input file, the number of entries in some directory,
or some other obvious quantity. Efficiency improvements are most commonly
gained by reducing the value of k, sometimes to zero.

Any procedure whose complexity measure includes n £ terms or higher powers
of nislikely to be intolerably expensive.

As an example, here is an analysis of a procedure named split, whose text is
given below:

7-40

The Shell

split
trap Tm temp$$; trap 0; exit’ 0123 15
start1=0 start2=0
b= JA-Za-2]°
cat > temp$$
read stdin into temp file
save original lengths of $1, $2
if test —s "$1”
then startl="wc -1 < $1°
fi
if test ~s "$2"
then start2="wc -] < $2°
fi
grep "$b” temp$$ > > $1
lines with letters onto $1
grep -v "$b” temp$$ | grep 10-9]° >> 82
lines with only numbers onto $2
total=""wc -1 < temp$$"”
endl=""wc -1 < $1"
end2=""wc -1 < $2""
lost=""expr $total - \($end1 - $start1\) \
- \($end2 - $start2\)™
echo "$total read, $lost thrown away”

For each iteration of the loop, there is one expr plus either an echo or another
expr. One additional echo is executed at the end. If nisthe number of lines of
input, the number of processesis2*n + 1.

Some types of procedures should not be written using the shell. For example, if
one or more processes are generated for each character in some file, it is a good
indication that the procedure should be rewrittenin C. Shell procedures should
not be used to scan or build filesa character at atime.

7.14.2 Number of Data Bytes Accessed

It is worthwhile considering any action that reduces the number of bytes read
or written. This may be important for those procedures whose time is spent
passing data around among a few processes, rather than in creating large
numbers of short processes. Some filters shrink their output, others usually
increase it. It always pays to put the shrinkers first when the order is
irrelevant. For instance, the second of the following examples is likely to be
faster because the input to sort will be much smaller:

sort file | grep pattern
grep pattern file | sort

7-41

NELINLA UITE 3 Juluc

7.14.3 Shortening Directory Searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames.
Judicious use of cd, the change directory command, can help shorten long
pathnames and thus reduce the number of directory searches needed. As an
exercise, try the following commands:

Is -1 fusr/bin/* > /dev/null
cd fusr/bin; Is -1 + > /dev/null

The second command will run faster because of the fewer directory searches.

7.14.4 Directory-Search Order and the PATH Variable

The PATH variable is a convenient mechanism for allowing organization and
sharing of procedures. However, it must be used in a sensible fashion, or the
result may be a great increase in system overhead.

The process of finding a command involves reading every directory included in
every pathname that precedes the needed pathname in the current PATH
variable. As an example, consider the effect of invoking nroff (i..,
Juer/bin/nroff) when the value of PATH is ““:/bin:/usr /bin". The sequence of
directoriesread is:

/.

/bin

/

[usr
/[usr/bin

Thisis a total of six directories. A long path list assigned to PATH can increase
thisnumber significantly.

The vast majority of command executions are of commandsfound in /bin and,
to a somewhat lesser extent, in /usr/bin. Careless PATH setup may lead toa
great deal of unnecessary searching. The following four examples are ordered
from worst to best with respect to the efficiency of command searches:

:/usr/john/bin:/usr/localbin: /bin: fusr /bin
:/bin:/usr/john/bin: fusr /localbin: /usr /bin
:/bin:/usr/bin: /usr/john fbin: fusr flocalbin
/bin::/usr/bin:/usr/john /bin: fusr [localbin

The first one above should be avoided. The others are acceptable and the

choice among them is dictated by the rate of change in the set of commands
keptin /binand fusr/bin.

7-42

The Shell

A procedure that is expensive because it invokes many short-lived commands
may often be speeded up by setting the PATH variable inside the procedure so
that the fewest possible directories are searched in an optimum order.

7.14.5 Good Ways to Set Up Directories

It is wise to avoid directories that are larger than necessary. You should be
aware of several special sizes. A directory that contains entries for up to 30 files
(plus the required . and ..) fits in a single disk block and can be searched very
efficiently. One that has up to 286 entries is still a small directory; anything
larger is usually a disaster when used as a working directory. It is especially
important to keep login directories small, preferably one block at most. Note
that, as a rule, directories never shrink. This is very important to understand,
because if your directory ever exceeds either the 30 or 286 thresholds, searches
will be inefficient; furthermore, even if you delete files so that the number of
files is less than either threshold, the system will still continue to treat the
directory inefficiently.

7.16 Shell Procedure Examples

The power of the XENIX shell command language is most readily seen by
examining how XENIX’s many labor-saving utilities can be combined to
perform powerful and useful commands with very little programming effort.
This section gives examples of procedures that do just that. By studying these
examples, you will gain insight into the techniques and shortcuts that can be
used in programming shell procedures (also called “scripts”). Note the use of
the number sign (#) to introduce comments into shell procedures.

It isintended that the following steps be carried out for each procedure:

1. Placethe procedurein a file with the indicated name.
2. Givethe file execute permission with the chmod command.

3. Move the file to adirectory in which commands are kept, such asyour
own bin directory.

4. Make sure that the path of the dfn directory is specified in the PATH
variable foundin.profile.

5. Executethe named command.

7-43

XENIX User's Guide
BINUNIQ

Is /bin fusr/bin | sort | uniq -d

This procedure determines which files are in both /bin and fuer/bsn. It is done
because filesin /bin will “override’ those in /usr/bin during most searches and
duplicates need to be weeded out. If the /usr/bin file is obsolete, then space is
being wasted; if the /bin file is outdated by a corresponding entry in [ver/bin
then the wrong version is being run and, again, space is being wasted. This is
also a good demonstration of ““sort | unig” to find matches and duplications.

COPYPAIRS

Usage: copypairs filel file2 ...
Copies filel to file2, file3 to file4, ...
while test "$2” !=""
do
cp 81 82
shift; shift
done
if test "$17 1=""
then echo "$0: odd number of arguments”
fi

This procedure illustrates the use of a while loop to process a list of positional
parameters that are somehow related to one another. Here a while loop is
much better than a for loop, because you can adjust the positional parameters
with the shift command to handle related arguments.

7-44

The Shell

COPYTO

Usage: copyto dir file ...
Copies argument files to "dir”,
making sure that at least
two arguments exist, that "dir” is a directory,
and that each additional argument
is a readable file.
if test $# -1t 2
then echo "$0: usage: copyto directory file ..."
elif test ! -d $1
then echo "$0: $1 is not a directory”;
else dir=$1; shift
for eachfile
do cp $eachfile $dir

R

done

fi

This procedure uses an if command with several parts to screen out improper
usage. The for loop at the end of the procedure loops over all of the arguments
to copyto but the first; the original $1 is shifted off.

DISTINCT1

* Usage: distinctl

Reads standard input and reports list of

alphanumeric strings that differ only in case,
giving lowercase form of each.

tr —cs “A-Za-20-9 °* "\012 Jsort -u | \

tr ‘A-Z "’ "a-z | sort | uniq -d

This procedure is an example of the kind of process that is created by the left-
to-right construction of a long pipeline. Note the use of the backslash at the end
of the first line as the line continuation character. It may not be immediately
obvious how this command works. You may wish to consult tr{C), sort{C), and
unig(C) in the XENIX Reference Manual if you are completely unfamiliar with
these commands. The tr command translates all charactersexcept letters and
digits into newline characters, and then squeezes out repeated newline
characters. This leaves each string (in this case, any contiguous sequence of
letters and digits) on a separate line. The sort command sorts the lines and
emits only one line from any sequence of one or more repeated lines. The next
tr converts everything to lowercase, so that identifiers differing only in case
become identical. The output is sorted again to bring such duplicates together.
The “uniq-d” prints {once) only those linesthat occur more than once, yielding
the desired list.

7-45

XENIX User’s Guide

The process of building such a pipeline relies on the fact that pipes and files can
usually be interchanged. The first line below is equivalent to the last two lines,
assuming that sufficient disk space is available:

¢mdl | emd2 | emd3

emdl > templ; < templ emd2 > temp2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from left to
right, each command is executed taking its input from the previous file and
putting its output in the next file. The final output is then examined to make
sure that it contains the expected result. The goal is to create a series of
transformations that will convert theinput to the desired output.

Although pipelines can give a concise notation for complex processes, you
should exercise some restraint, since such practice often yields
incomprehensible code.

DRAFT

Usage: draft file(s)
Print manual pages for Diablo printer.
for i in $=
do nrofl -man $i | Ipr
done

Users often write this kind of procedure for convenience in dealing with

commands that require the use of distinct flags that cannot be given default
values that are reasonable for all (or even most) users.

7-48

The Shell
EDFIND

Usage: edfind file arg
¥ Finds the last occurrence in " file” of a line
whose beginning matches "arg”, then prints
3 lines (the one before, the line itself,
and the one after)
ed - $1 <<-EOF
1°82?
’v+p
q
EOF

Thisillustrates the practice of using ed in-line input scripts into which the shell
can substitute the valuesof variables.

EDLAST

Usage: edlast file
Prints the last line of file,
then deletes that line.

ed - 81 <<-\!
$p
$d
w
q
!
echo done

This procedure illustrates taking input from within the file itself up to the
exclamation point (!). Variable substitution is prohibited within the input text
because of the backslash.

7-47

XENIX User's Guide

FSPLIT

B e e

Usage: fsplit filel file2

Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to filel, appending any line containing digits but
no letters to file2, and by throwing the rest away.

count==0 gone==0
while read next

do

done

count=""expr $count + 1"
case "$next” in
s[AZas]e)
echo "$next” >> $1;;
*[0-9]+)

*)

€esac

echo "$next” >> $2;;

gone==""expr $gone + 1'”

echo "$count lines read, $gone thrown away”

Each iteration of the loop reads a line from the input and analyzesit. The loop
terminates only when read encounters an end-of-file. Note the use of the expr

command.

Don’t use the shell to read a line at a time unless you must—it can be an
extremely slow process.

The Shell
LISTFIELDS

grep $+ | tr ":" "\012"
This procedure lists lines containing any desired entry that is given to it as an
argument. It places any field that begins with a colon on a newline. Thus, if
given the following input

joe newman: 13509 NE 78th St: Redmond, Wa 98062
listfields will produce this: ‘

joe newman

13509 NE 78th St

Redmond, Wa 98062

Note the use of the tr command to transpose colons to linefeeds.

MKFILES

Usage: mkfiles pref [quantity]
Makes " quantity” files, named prefl, pref2, ...

Default is 5 as determined on following line.
quantity==${2-5}
i=1
while test "$i" -le "$quantity”
do
> $18i
jum”‘expr $i + 1"
done

The mkfiles procedure uses output redirection to create sero-length files. The
expr command is used for counting iterations of the while loop.

7-49

XENIX User's Guide
NULL

Usage: null files
Create each of the named files as an empty file.
for each file
do
>$eachfile
done

This procedure uses the fact that output redirection creates the (empty) output
fileif a file does not already exist.

PHONE

Usage: phone initials ...
Prints the phone numbers of the
people with the given initials.

echo ‘inits ext home ’
grep " "$1" < <-END
jik 1234 999-2345
Ibj 2234 583-2245
hst 3342 988-1010
jqa 4587 555-1234
END '

This procedure is an example of using an in-line input script to maintain a small
data base. :

7-50

‘The Shell

TEXTFILE

if test "$1” == "—g"

then
Return condition code
shift
if test —3 " '$0 $+'” # check return value
then
exit 1
else
exit 0
fi
fi

if test $4 -1t 1

then echo "$0: Usage: $0 [s] file .." 1> &2
exit 0

fi

file $s | fgrep “text’|sed s/: /]’

To determine which files in a directory contain only textual information,
teztfile filters argument lists to other commands. For example, the following
command line will print all the text files in the current directory:

pr “textfile ¢* | Ipr

This procedure also uses an —s flag which silently tests whether any of the files
in the argument list is a text file.

WRITEMAIL

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise,. mails it to user.
echo "$1” | { write *$2" || mail "$2" ;}
This procedure illustrates the use of command grouping. The message specified

by $1 is piped to both the write command and, if write fails, to the mail
command.

LS

XENIX User's Guide

7.16 Shell Grammar

item.

word
snput-output
naeme == value

simple-command: sitem

command:

pipeline:

andor:

command-list:

input-output:

Sfile:

case-part.

pattern:

else-part:

7-52

simple-command item

simple-command

{ command-list)

{ command-list }

for name do command-list done

for name in word do command-liet done
while command-list do command-list done
until command-list do command-lsst done
case word in case-part esac

if command-list then command-list else-part i

command
pipeline | command

pipeline
andor && pipeline
andor || pipeline

andor

command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file
<< word
>> word

word
& digst
& -

pattern) command-list ;;

word
pattern | word

elif command-list then command-list else-part
else command-list

empty:
word:

name’

digit:

The Shell

empty

a sequence of nonblank characters

e sequence of letters, digits, or underscores
starting with a letter

0123456789

7-53

XENIX User's Guide

Metacharacters and Reserved Words

a. Syntactic

| Pipe symbol

&& And-if symbol

I Or-if symbol

3 Command separator

3 Case delimiter

& Background commands

() Command grouping
Input redirection

<< Input from a here document
Output creation

< Output append

Comment to end of line

b. Patterns

* Match any ;:hara.cter(s) including none

? Match any single character

[---] Match any of enclosed characters

¢. Substitution
${...} Substitute shell variable

. .

Substitute command output

7-54

The Shell

d. Quoting
\ Quote next character as literal with no special meaning
L Quote enclosed characters excepting the back quotation
marks ()
"Lt Quote enclosed charactersexcepting: $ '\ ”

e. Reserved words

if esac
then for
else while
elif until
fi do
case done
in {}

7-55

Chapter 8

BC:

A Calculator

8.1 Introduction 8-1

8.2 Demonstration 8-1

8.3 Tasks
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7

83
Computing with Integers 83
Specifying Input and Output Bases 8-5
Scaling Quantities 86
Using Functions 87
Using Subscripted Variables 8-8
Using Control Statements: if, while and for
Using Other Language Features 8-12

8.4 LanguageReference 8-14

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9

Tokens 8-14

Expressions 8-14

Function Calls 8-15

Unary Operators 8-16
Multiplicative Operators 8-16
Additive Operators 8-17
Assignment Operators 8-17
Relational Operators 8-18
Storage Classes 8-18

8.4.10 Statements 8-19

89

BC: A Calculator

8.1 Introduction

BC is a program that can be used as an arbitrary precision arithmetic
calculator. BC’s output is interpreted and executed by a collection of routines
which can input, output, and do arithmetic on indefinitely large integersandon
scaled fixed-point numbers. Although you can write substantial programs with
BC, it is often used as an interactive tool for performing calculator-like
computations. The language supports a complete set of control structures and
functions that can be defined and saved for later execution. The syntax of BC
has been deliberately selected to agree with the C language; those who are
familiar with C will find few surprises. A small collection of library functions is
also available, including sin, cos, arctan, log, exponential, and Bessel functions
of integer order.

Common uses for BC are:
— Computation with large integers.
— Computations accurate to many decimal places.

— Conversions of numbers from one base to another base.
There is a scaling provision that permits the use of decimal point notation.
Provision is made for input and output in bases other than decimal. Numbers
can be converted from decimal to octal simply by setting the output base equal
to8.
The actual limit on the number of digits that can be handled depends on the
amount of storage available on the machine, so manipulation of numbers with
many hundreds of digitsis possible.
8.2 Demonstration
Thisdemonstration is designed to show you:

— Howtogetintoand outof BC.

— Howto perform simple computations.

— How expressions are formed and evaluated.

— Howto assign valuesto registers.
A normal session with BC begins by invoking the program with the command:

be

Toexit BC type

81

XENIX User's Guide

quit

or press CNTRL-D. Once you have entered BC, you can use it very much like a
normal calculator. As with the XENIX shell, commands are read as command-
lines, so each line that you type must be terminated by a RETURN. Throughout
this chapter, the RETURN is implied at the end of each command line. Within
BC, normal processing of other keys, such as BKSP and INTERRUPT, also
works.

For example, type the simple integer 5:
5

Output is immediately echoed on the next line to the standard output, which is
normally the terminal screen:

5
Here ‘5" isa simple numeric expression. However, if you type the expression
5#5.25

{where the star (*) is the multiplication operator) a computation is executed
and the result printed on the next line:

26.25

What has happened here is that the line “5¢5.25” has been evaluated, i.e., the
expression has been reduced to its most elementary form, which is the number
26.25. The process of evaluation normally involves some type of computation
such as multiplication, division, addition, or subtraction. For example, all four
of these operations are involved in the following expression:

(105)+50-(50/2)
When this expression is evaluated, the subexpressions within parentheses are
evaluated first, just as they would be with simple algebra, so that an
intermediate step in the evaluation is *“50450-25" which ultimately reduces to
the number “75".
The simple addition

10.45+5.5555555
produces the output:

16.0055555

Note how precision isretained in the above result.

82

BC: A Calculator

The two-part multiplication
(8+9)e7

produces the answer:
504

The last part of this demonstration shows you how to store values in special
alphabetic registers. For example, type:

a==100 ; b=5
What happens here is that the registers “a” and “‘b” are assigned the values 100
and 5, respectively. The semicolonisused here to place multiple BC statements
on a single line, just as it is used in the XENIX shell. This command line
produces no output because assignment statements are not considered
expressions. However, the registers ‘‘a” and “b” can now be used in
expressions. Thusyou can now type

ath; a+b
to produce:

500
105

To exit BC, remember to type
quit
or pressCNTRL-D.

This ends the demonstration. Following sections describe use of BC in more
detail. The final section of thischapter isa BC language reference.

8.3 Tasks

This section describes how to perform common BC tasks. Mastery of these
tasks should turnyou into a competent BC user.

8.3.1 Computing with Integers

The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, if you type

142857 + 285714

83

XENIX User’s Guide

and pressRETURN, BC respondsimmediately with the line:
428571

Other operators also can be used. The complete list includes:
+ -+ / %

They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers
produces an integer result truncated toward zero. Division by zero producesan
error message.

Any term in an expression can be prefixed with a minussign toindicate that it is
tobe negated (thisis the ““unary” minussign). For example, the expression

7+-3
isinterpreted to mean that -3 isto be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in FORTRAN, with exponentiation (") performed first,
then multiplication (s), divisicn (/), modulo (%), and finally, addition (+), and
subtraction (-). The contents of parentheses are evaluated before expressions
outside the parentheses All of the above operations are performed from left to
right, except exponentlatlon, which is performed from right to left. Thus the
following two expressions

a"b"c and a"(b"¢)
are equivalent, asare the two expressions:
asbsc and (asb)sc

BC shares with FORTRAN and C the convention that a/bs¢ is equivalent to
(a/b)se.

Internal storage registers to hold numbers have single lowercase letter names.
The value of an expression can be assigned to a register in the usual way, thus
the statement

x=x+3
has the effect of increasing by 3 the value of the contents of the register named
“x". When, as in this case, the outermost operator is the assignment operator
(=), then the assignment is performed but the result is not printed. There are
26 available named storage registers, one for each letter of the alphabet.

There is also 3 built-in square root function whose result is truncated to an
integer (See also Section 8.5, “Scaling”). For example, the lines

8-4

BC: A Calculator
x == sqrt(191)
x
produce the printed result

13

8.3.2 Specifying Input and Output Bases

There are special internal quantities in BC, called sbase and obase. Jbase is
initially set to 10, and determines the base used for interpreting numbers that
areread by BC. For example, the lines

ibase = 8
11

produce the output line
9

and you are all set up to do octal to decimal conversions. However, beware of
trying to change the input base back to decimal by typing:

ibase == 10

Because the number 10 is interpreted as octal, thisstatement hasnoeffect. For
those who deal in hexadecimal notation, the characters A-F are permitted in
numbers (no matter what base is in effect) and are interpreted as digits having
values 10-15, respectively. These characters must be uppercase and not
lowercase. The statement

ibase = A
changes you back to decimal input base no matter what the current input base
is. Negative and large positive input bases are permitted; however no
mechanism has been provided for the input of arbitrary numbers in bases less
than 1 and greater than 16.

Obase is used as the base for output numbers. The value of obaee is initially set
to a decimal 10. The lines

obase = 16
1000

produce the output line:

3E8

85

XENIX User's Guide

This is interpreted as a three-digit hexadecimal number. Very large output
bases are permitted. For example, large numbers can be output in groups of
five digits by setting obase to 100000. Even strange output bases, such as
negative bases,and 1and 0, are handled correctly.

Very large numbers are split across lines with seventy characters per line. A
split line that continues on the next line ends with a backslash (\). Decimal
output conversion is fast, but output of very large numbers (i.e., more than 100
digits) with other basesis rather slow.

Remember that rbase and obase do not aflect the course of internal
computation or the evaluation of expressions; they only affect input and output
conversion.

8.3.3 Scaling Quantities

A special internal quantity called scale is used to determine the scale of
calculated quantities. Numbers can have up to 89 decimal digits after the
decimal point. This fractional part is retained in further computations. We
refer to the number of digits after the decimal point of a number as itsscale.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result hasa scale determined by the following rules:

Addition, subtraction
The scale of the result is the larger of the scales of the two
operands, There is never any truncation of the result.

Multiplication ~ The scale of the result is never less than the maximum of the
two scales of the operands, never more than the sum of the
scales of the operands, and subject to those two restrictions,
the scale of the result is set equal to the contents of the
internal quantity, scale.

Division The scale of a quotient is the contents of the internal
quantity, scale.
Modulo The scale of a remainder is the sum of the scales of the

quotient and the divisor.

Exponentiation The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer.

Square Root The scale of a square root is set to the maximum of the scale
of the argument and the contents of scale.

All of the internal operations are actually carried out in terms of integers, with
digits being discarded when necessary. In every case where digits are discarded

8-6

BC: A Calculator

truncation is performed without rounding.

The contents of scale must be no greater than 99 and no less than 0. It isinitially
set to 0.

The internal quantities scale, ibase, and base can be used in expressions just
like other variables. Theline

scale == scale + 1
increases the value of scale by one, and the line

scale
causes the current value of ecale to be printed.
The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when sbase or obaee are not equal to 10.
The internal computations (which are still conducted in decimal, regardless of
the bases) are performed to the specified number of decimal digits, never
hexadecimal or octalor any other kind of digits.
8.3.4 Using Functions
The name of a function is a singie lowercase letter. Function names are
permitted to use the same letters as simple variable names. Twenty-six
different defined functions are permitted in addition to the twenty-six variable
names. The line

define a{x){
begins the definition of a function with one argument. This line must be
followed by one or more statements, which make up the body of the function,
ending with aright brace (}). Return of control from a function occurs when a
return statement is executed or when the end of the function is reached. The

return statement can take either of the two forms:

return
return(x)

In the first case, the returned value of the function is 0; in the second, it is the
value of the expression in parentheses.

Variables used in functions can be declared as automatic by s statement of the
form

auto x,y,z

There can be only one auto statement in a function and it must be the first

87

XENIX User's Guide

statement in the definition. These automatic variables are allocated space and
initialized to zero on entry to the function and thrown away on return. The
values of any variables with the same names outside the function are not
disturbed. Functions can be called recursively and the automatic variables at
each calllevel are protected. The parametersnamed in afunction definition are
treated in the same way as the automatic variables of that function, with the
single exception that they are given a value on entry to the function. An
example of a function definition follows:

define a(x,y){
auto 3z
3 = x*y
return(z)

}

The value of this function, when called, will be the product of its two
arguments.

A function is called by the appearance of its name, followed by a string of
arguments enclosed in parentheses and separated by commas. The result is
unpredictable if the wrong number of argumentsisused.
If the function ““a” isdefined asshown above, then the line
a(7,3.14)
would print the result:
21.98
Similarly, the line
x = a(a(3,4),5)
would cause the value of “‘x” to become 60.
Functions can require no arguments, but still perform some useful operation or

return a useful result. Such functions are defined and called using parentheses
with nothing between them. For example:

b()

calls the function named b.

8.3.5 Using Subscripted Variables
A single Jowercase letter variable name followed by an expression in bracketsis

called a subscripted variable and indicates an array element. The variable
name is the name of the array and the expression in brackets is called the

8-8

BC: A Calculator

subscript. Only one-dimensional arrays are permitted in BC. The names of
arrays are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts
must be greater than or equal to zero and less than or equal to 2047,

Subscripted variables can be freely used in expressions, in function callsand in
return statements.

An array name can be used as an argument to a function, asin:

fal])

Array names can also be declared as automaticin a function definition with the
use of empty brackets:

define f(a]])
auto af]

When an array name is so used, the entire contents of the array are copied for
the use of the function, then thrown away on exit from the function. Array
names that refer to whole arrays cannot be used in any other context.

8.3.8 Using Control Statements: if, while and for

The if, while, and for statements are used to alter the flow within programsor
to cause iteration. The range of each of these statements is a following
statement or compound statement consisting of a collection of statements
enclosedin braces. They are written as follows:

if (relation) statement
while (relation) statement
for (ezpreessionl; relation; ezpressionf)statement
if (relation) { statemente}
while (relation) { statements }
for (ezpreesionlt; relation; ezpression?) { statements }
Arelation in one of the control statements is an expression of the form
ezpreesion! rel-op ezpreesion?
where the two expressions are related by one of the six relational operators:
Note that a double equal sign (====) stands for ‘‘equal to’’ and an exclamation-

equal sign (=) stands for “not equal to”. The meaning of the remaining
relational operatorsis their normal arithmetic and logical meaning.

89

XENIX User’s Guide

Beware of using a single equal sign (=) instead of the double equal sign (m===) in
a relational. Both of these symbols are legal, so you will not get a diagnostic
message. However, the operation will not perform the intended comparison.

The if statement causes execution of its range if and only if the relation is true.
Then control passes to the next statement in the sequence.

The while statement causes repeated execution of its range as long as the
relation is true. The relation is tested before each execution of its range and if
the relation is false, control passes to the next statement beyond the range of
the while statement.

The for statement begins by executing ezpressionl. Then the relation is tested
and, if true, the statements in the range of the for statement are executed.
Then ezpression2is executed. The relation is tested, and so on. The typical use
of the for statement is for a controlled iteration, asin the statement

for(i=1; i <=10; i==i+1) i
which will print the integers from 1 to 10.
The following are some examples of the use of the control statements:

define f(n}{
auto i, x
x=a]
for(i==1; i <==n; i==i+ 1) x==xsi
return(x)

The line
f(a)

prints “‘a’ factorial if “a’ is a positive integer.

The following is the definition of a function that computes values of the
binomial coefficient (*‘m" and ““n” are assumed to be positive integers):

define b(n,m){
auto x, j
xwm=]
for(ja=1; j<=m; j=j+1) x=x¢(n-j+1)/j
return(x)

8-10

BC: A Calculator

The following function computes values of the exponential function by
summing the appropriate series without regard to possible truncation errors:

scale == 20
define ¢(x){
autoa, b, ¢, d, n

a=]

b1

cm]

d=0

na=]

while(l===1}{

A = asx

b = b*n
cm=c +afb
n=n+1
if(ca=md) return{c)
dec

8-11

XENIX User's Guide

8.3.7 Using Other Language Features

Some language features that every user should know about are listed below.

812

Normally, statements are typed one to a line. It is also permissible to
type several statementson alineif they are separated by semicolons.

If an assignment statement is placed in parentheses, it then has a
value and can be used anywhere that an expression can. For example,
the line

{x=y+17)

not only makes the indicated assignment, but also prints the resulting
value.

The following is an example of a use of the value of an assignment
statement even when it is not placedin parentheses:

x == afix=it1]

This causes a value to be assigned to “x” and also increments *“i”
before it is used as a subscript.

The following constructions work in BC in exactly the same manner
asthey doin the Clanguage:

Construction | Equivalent
x=y=2 x e=(y==z)
X =4y X = X+y
X =-y X = X-y

X E 1] y X == x‘l
x==/y x = xfy

x =%y x = x%y
x m=" y X == x"y
x++ (x==x+1)-1
X—= {x==x-1)+1
++x x = x+1
[—=X X == x-1

Even if you don’t intend to use these constructions, if you type one
inadvertently, something legal but unexpected may happen. Be
aware that in some of these constructions spaces are significant.
There is a real difference between “x==-y’’ and “x= -y”. The first
replaces“‘x” by “x-y’’ and the second by **~y”.

BC: A Calculator

The comment convention is identical to the C comment convention.
Comments begin with ‘*/+” and end with “s/*.
There isalibrary of math functions that can be obtained by typing

be -1
when you invoke BC. This command loads the library functions sine,
cosine, arctangent, natural logarithm, exponential, and Bessel
functions of integer order. These are named “'s”, “c”, “a”, “I”, “e",
and “j(n,x)”, respectively. Thislibrary sets scale to 20 by default.
Ifyou type

be file ...
BC will read and execute the named file or files before accepting

commands from the keyboard. In this way, you can load your own
programs and function definitions.

813

XENIX User's Guide

8.4 Language Reference

This section is a comprehensive reference to the BC language. It contains a
more concise description of the features mentioned in earlier sections.

8.4.1 Tokens

Tokens are keywords, identifiers, constants, operators, and separators. Token
separators can be blanks, tabs or comments. Newline characters or semicolons
separate statements.

Comments

Identifiers

Keywords

Constants

Comments are introduced by the characters “/+” and are
terminated by “#/”.

There are three kinds of identifiers: ordinary identifiers,
array identifiers and function identifiers. All three types
consist of single lowercase letters. Array identifiers are
followed by square brackets, enclosing an optional expression
describing a subscript. Arrays are singly diménsioned and
can contain up to 2048 elements. Indexing begins at 0 so an
array can be indexed from 0@ to 2047. Subscripts are
truncated to integers. Function identifiers are followed by
parentheses, enclosing optional arguments. The three types
of identifiers do not conflict; a program can have a variable
named “x’’, an array named ‘‘x”, and a function named ‘‘x”,
all of which are separate and distinct.

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants are arbitrarily long numbers with an optional
decimal point. The hexadecimal digits A-F are also
recognized asdigits with decimal values 10-15, respectively.

8.4.2 Expressions

Allexpressions can be evaluated to a value. The value of an expression is always
printed unless the main operator is an assignment. The precedence of
expressions (i.e., the order in which they are evaluated) is asfollows:

8-14

BC: A Calculator

Function calls

Unary operators
Multiplicative operators
Additive operators
Assignment operators

Relational operators

There are several types of expressions:

Named expressions
Named expressions are places where values are stored. Simply stated,
named expressions are legal on the left side of an assignment. The value
of anamed expression is the value storedin the place named.

sdentifiers
Simple identifiers are named expressions. They have an initial
value of zero.

array-nemefezpression)
Array elements are named expressions. They have an initial value
of zero.

ecale, ibase and obase
The internal registers scale, 1base, and obase are all named
expressions. Scale is the number of digits after the decimal point to
beretained in arithmetic operations and has an initial value of sero.
Ibaee and obase are the input and output number radixes
respectively. Both ibase and obase have initial valuesof 10.

Constants
Constants are primitive expressions that evaluate to themselves.

Parenthetic Expressions
An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter normal operator precedence.

Function Calls
Function calls are expressions that return values. They are discussed in
section 8.10.3.

8.4.3 Function Calls

A function call consists of a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. The

815

XENIX User's Guide

syntax is asfollows:
function-name ([ezpression | , ezpression ...]])

A whole array passed as an argument is specified by the array name followed by
empty square brackets. All function arguments are passed by value. As a
result, changes made to the formal parameters have no effect on the actual
arguments. If the function terminates by executing a return statement, the
value of the function is the value of the expression in the parentheses of the
return statement, or 0 if no expression is provided or if there is no return
statement. Three built-in functions are listed below:

sqrt (ezpr) The result is the square root of the expression and is
truncated in the least significant decimal place. The scale of
the result is the scale of the expression or the value of scale,
whichever islarger.

length(ezpr) The result is the total number of significant decimal digits in
the expression. The scale of the result is zero.

scale(ezpr) The result is the scale of the expression. The scale of the
resultiszero.

8.4.4 Unary Operators

The unary operators bind right toleft.

-ezpr The result is the negative of the expression.

++named_ezpr The named expression is incremented by one. The result is
the value of the named expression after incrementing.

—named_ezpr The named expression is decremented by one. The result is
the value of the named expression after decrementing.

named_ezpr++ The named expression is incremented by one. The result is
the value of the named expression before incrementing.

named_ezpr— The named expression is decremented by one. The result is
the value of the named expression before decrementing.

8.4.6 Multiplicative Operators
The multiplicative operators (s, /, and %) bind from left to right.
ezprsezpr The result is the product of the two expressions. If “a’” and

“b” are the scales of the two expressions, then the scale of the
resultis:

8-16

BC: A Calculator

min { a+b, max (scale,a,b))

ezprfezpr The result is the quotient of the two expressions. The scale of
the result is the value of scale.

expr%expr The modulo operator (%) produces the remainder of the
division of the two expressions. More precisely, a%b is
a-a/bsb. The scale of the result is the sum of the scale of the
divisor and the value of scale.

ezpr_ezpr The exponentiation operator binds right to left. The resultis
the first expression raised to the power of the second
expression. The second expression must be an integer. If ““a”
is the scale of the left expression and “‘b” is the absolute value
of the right expression, then the scale of the result is:

min (asb, max (scale,a))

8.4.6 Additive Operators
The additive operators bind left to right.

ezpr+ezpr The result is the sum of the two expressions. The scale of the
result isthe maximum of the scales of the expressions.

ezpr-ezpr The result is the difference of the two expressions. The scale
of the result is the maximum of the scales of the expressions.

8.4.7 Assignment Operators

The assignment operators listed below assign values to the named expression
on the left side.

named_ezpra=ezpr
This expression results in assigning the value of the expression on
the right to the named expression on the left.

named_ezpr==+ezpr
The result of this expression
named_czpra=named_czpr+ezpr.

wee

s equivalent to

named_ezpr=—ezpr
The result of this expression
named_ezpr=named_czpr—czpr.

e

s equivalent to

named_ezpr==sezpr
The result of this expression

-

s equivalent to

817

XENIX User’s Guide

named_czpre=named_czpreezpr.

named_ezpr==z[ezpr
The result of this expression is equivalent to
named_czpr=named_ezpr/ezpr.

named_ezpra=TZezpr
The result of this expression is equivalent to
named_ezpr==named_czpr%ezpr.
named_ezpr="cezpr
The result of this expression is equivalent to
named_czpr==named_czpr” czpr.
8.4.8 Relational Operators
Unlike all other operators, the relational operators are only valid as the object
of an if or while statement, or inside a for statement. These operators are
listed below:
ezpr< ezpr
ezpr>ezpr
ezpr< =ezpr
ezpr> =ezpr

ezpr===ezpr

ezprl=czpr

8.4.9 Storage Classes

There are only two storage classes in BC: global and automatic (local). Only
identifiers that are to be local to a function need to be declared with the auto
command. The arguments to a function are local to the function. All other
identifiersare assumed to be global and available to all functions.

All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from
the function. They, therefore, do not retain values between function calls.
Note that auto arrays are specified by the array namer, followed by empty
square brackets.

Automatic variables in BC do not work the same way asin C. On entry to a

function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until return is made from the

8-18

BC: A Calculator
function, reference to these namesrefersonly to the new values.

8.4.10 Statements

Statements must be separated by a semicolon or a newline. Except where
altered by control statements, execution is sequential. There are four typesof
staternents: expression statements, compound statements, quoted string
statements, and built-in statements. Each kind of statement is discussed
below:

Expression statements
When a statement is an expression, unless the main operator
is an assignment, the value of the expression is printed,
followed by a newline character.

Compound statements
Statements can be grouped together and used when one
statement is expected by surrounding them with curly braces

({and }).

Quoted string statements
For example

" string”

prints the string inside the quotation marks.
Built-in statements

Built-in statements include auto, break, define, for, if,
quit, return, and while.
The syntax for each built-in statement isgiven below:
Auto statement
The auto statement causes the values of the identifiers to be
pushed down. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by following
the array name by empty square brackets. The auto
statement must be the first statement in a function definition.
Syntax of the auto statement is:

auto identifier |, identifier]

Break statement

The break statement causes termination of a for or while
statement. Syntax for the break statement is:

819

XENIX User's Guide

8-20

break
Define statement

The define statement defines a function; parameters to the
function can be ordinary identifiers or array names. Array
names must be followed by empty square brackets. The
syntax of the define statementis:

define ([parameter [, parameter ...]]){ statements}
For statement
The for statement is the same as:

first-ezpression
while(relation) {
statement
last-czpression

}

All three expressions must be present. Syntax of the for
statement is:

for (ezpression; relation;ezpression) statement
If statement

The statement is executed if the relation is true. The syntax
is as follows:)

if (relation) statement
Quit statement

The quit statement stops execution of a BC program and
returns control to XENIX when it is first encountered.
Because it is not treated as an executable statement, it cannot
be used in a function definition or in an if, for, or while
statement. Note that enteringa CNTRL-D at the keyboard is
the same as typing “quit’”’. The syntax of the quit statement
is as follows:

qust
Return statement
The return statement terminates a function, pops its auto

variables off the stack, and specifies the result of the function.
The result of the function is the result of the expression in

BC: A Calculator
parentheses. The first form is equivalent to “return{0)”. The
syntax of the return statement is as follows:

returaezpr)
While statement
The statement is executed while the relation is true. The test
occurs before each execution of the statement. The syntax of

the while statement is as follows:

while (relation) statement

8-21

Chapter 9
Building a Uucp System

9.1

9.2

9.3

9.4

9.5
9.6
9.7
9.8

9.9

9.10

Introduction 1

Uucp —Systemto SystemFileCopy 1

9.2.1
9.2.2
9.2.3
9.24

CopyingFilestoaLocal Destination 3
ReceivingFiles fromOtherSystems 3
SendingFilestoRemoteSystems 3
CopyingFilesBetweenSystems 4

Uux — SystemToSystemExecution 4

Uucico — CopyIn,CopyOut 5

94.1
9.4.2
943
9.4.4
9.4.5

ScanningForWork 6
CallingaRemoteSystem 6
Selecting LineProtocol 7
ProcessingWortk 7
TerminatingaConversation 8

Uuxqt— UucpCommand Execution 8

Uulog — UucpLoglnquiry 9

Uuclean — UucpSpool DirectoryCleanup 9

Security

9

InstallingaUucpSystem 10

99.1
9.9.2

Modifyingthe/etc/systemidFile 10
CreatingthcRequiredFiles 11

Maintainingthe System 13

9.10.1
9.10.2
9.10.3
9.10.4
9.10.5

SEQF — sequencecheckfile 14
T™M —temporarydatafiles 14
LOG —logentryfiles 14

STST —systemstatusfiles 15
LCK —lockfiles 15

9.10.6 CreatingShellFiles 15
9.10.7 Definingl oginEntries 16
9.10.8 SettingFileModes 16

Building & Uucp System

9.1 Introduction

The uucp system is a series of programs designed to permit communication between
XENIX systems using dial—up communication lines. Uucp provides file transfer and
remote commard exccution through a batch~type operation. Files are created ina
spool directory for processing by the uucp dacmons. There are threetypes of fikksused
fortheexecutionof work:

Datafiles Containdata for transfertoremote systems
Work files Containdirections for filctransfersbetween systems
Execution files Contain dircctions for XENIX command executions which

involvethe resourcesof one or more systems.

The uucp system consists of four primary and two secondary programs. The primary
programsarc:

uucp Thisprogram creates work and gathers data files in the spool directory for
the transmissionof files.

uux Thisprogram creates work files, execute filesand gathers data filesfor the
remote execution of XENIX commands.

uucico Thisprogram executesthe work files for data transmission.

uuxqt This program executes the execution files for XENIX command

execution.

The secondary programs are:

uulog This program updates the log file with new entries and reports on the
statusofuucprequests.

uuclean Thisprogramremovesold files from the spool directory.

This chapter describes the operation of each program, the installation of the system,
the security aspects of the system, the files required for execution, and the
administrationofthe system.

For hardwircd communications between XENIX systems, use the Micnet nstwork
described inthe XENIX Operations Guide .

9.2 Uucp — System to System File Copy

The uucp program is the user’s primary interface with the system. The uucp program
wasdesignedto look like the cpcommand. The syntaxis

uucp [opn‘on] ... source ... destination

where source and destination may containthe prefix system—name! which indicates
the system onwhich thefile or filesreside or where they will be copied.

XENIX User’s Guide

Theoptions interpreted by uucp are:

-d Make directorics when necessary forcopying the file.
-c Don’tcopy source filestothe spool directory, but use the specified source
whenthe actual transfertakes place.

—~gletter Putlerterinasthe grade in the name of the work file. (Thiscanbeusedto
) changetheorderof work for apanticularmachine.)

-m Send mail oncompletionof the work.

The following options areused primarily for debugging:

-r Queue the jobbut do not gart uucicoprogram.
—sdir Usedirectory dir for the spool directory.
—xmum Uscnumasthelevelofdebuggingoutput.

The destination may be a directory name, in which case the file name istaken from the
last part of the source’s name. The source name may contain special shell characters
such as **7%}"*. If a source argument has a system— name! prefix for aremote system,
the file name expansion will be done onthe remote sy stem.
The command

uucp *c¢ usgWfusr/dan
will set up the transfer of all files whose names end with .c tothe /usr/dan dircctory on
theusgmachine.
The source and/or destination names may alsocontaina user prefix. Thistransiates
to the login directory on the specified system. For names with partial pathnames, the
cumrent directory is prepended to the file name. File names with ““../"* are not
permitted.
Thecommand

uucp usg'dan/*.h dan
will set up the transfer of files whose names end with .4 in dan’s login directory on
systemusgtodan'slocal login directory.

For each source file, the program will check the source and destination filename s and
the system —pant of cach toclassify the work into onc of five types:

1. Copysourcetodestinationonlocal system.
Receive files fromother systems.

2

3. Sendfilestoaremote systems.

4. Sendfilesfromremote sysiemsto anotherremote systam.
5

Receive files from remote systems when the source contains special shell
charactersasmentionedabove.

Building a Uncp System

Afierthe work hasbeen setupinthe spool directory, the uncico program is startedtotry
to contact the othermachine toexecute the work (unlessthe —roption was specified).

9.2.1 Copying Files to a Local Destination

A cpcommand isusedtodotype 1 work. The —dandthe —moptionsare nothonored
inthiscase.

9.2.2 Receiving Files from Other Systems

Faor type 2 work, a onc line work file is created for each file requested and put in the
spool directory with the following ficlds, cach scparated by ablank.

i1 R

[2] The full pathname of the source or a uscr/pathname. The user pan
willbe expandedontheremote system.

i3] The full pathname of the destination file. Ifthe user notationisused, it -
will be immediately expanded tobe the login directory forthe user.

4] Theuser'slogin name.

Is] A “~** followed by an option list. (Only the —m and —d options will
appearinthislist.)

9.2.3 Sending Files to Remote Systems

Fortype 3 work, a work file is created for each dsource file and the source file is copied
into a data file in the spool directory. (A —c option on the uucp program will prevent
the data file from being made. In this case, the file will be transmitted from the
indicated source.) Theficldsof cach entry are givenbelow.

1 s

2] Thefullpathnameof the source file.

3] The fullpathnameofthe destinationor user/filename.

[4] Theuser’slogin name.

Is] A**—"*followedby anoptionlist.

[6] The name of the data file inthe spool directory.

(7 Thefile modebitsofthe source file inoctalprint format (. g. 0666).

XENIX User's Guide

9.2.4 Copying Files Between Systems

Fortype 4 and S work, uucp generates a uucp command line and sends it tothe remote
machinc; the remote uucicoexecutesthe command line.

9.3 Uux — System To System Execution

The uux command is used to set up the execution of a XENIX command where the
exccution machine and/or some of the files are remote. The syntax of the vux
commandis

uux [= || option] ... command—string

where command— string is made up of onc or more arguments. All special shell
characters such as *‘<>1*"" must be quoted either by quoting the entire command
string or quoting the character asa separate argument. Withinthe commandstring, the
command and file names may contain a system —name! prefix. Allarguments which
do not contain a *‘!”* will not be treated as files. (They will not be copicd to the
execution machine.) The — option is used to indicate that the standard input for the
given command shouldbe inherited from the standard input of the uux command. The
options, essentially for debugging, are:

-r Donot stantuncico or uuxgrafierqueuingthe job

—xnum Uscnumasthelevelof debugging output.
The command
pr abc | uux - usg'lpr

will setup the output of *‘prabe”* as standard input to an lpr commandtobe executed on
systemusg.

Uux generates an execute file which contains the names of the files required for
execution (including standard input), the user’s login name, the destination of the
standard output, and the command to be executed. This file is cither put in the spool
directory for local execution or sent to the remote system using a gencrated send
command (type3 above).

For required files which are not on the execution machine, uux will generate receive
command files (type 2 above). These command—files will be put on the execution
machine and executed by the sucico program. (This will work only ifthe local system
has permission to put files in the remote spoal directory as controlled by the remote
USERFILE.)

Theexecute file willbe processed by the uuxgr program onthe executionmachine. Itis
made up of several lincs, each of which contains an identification characterand onc or
more arguments. The order of the lines inthe file is not relevant and some of the lines
may notbe present. Each lineisdescribedbelow.

User Line
U user system
where the userand system are the requester’sloginname and system.

Building a Uucp Systein

Required File Line
F filename real—name

where the filename is the generated name of a file for the execute machine and real—
name is the last pant of the actual file name (contains no path information) Zero or
morcof these lines may be present inthe execute file. The uuxgt program will check for
theexistence of allrequiredfiles be fore the command is executed.

Standard InputLine
1 filename

The standard input is either specified by a ‘<’ in the command — string or inherited
from the standard input of the ux command if the — option isused. 1fa standard input
is not specified, /devinull isused.

Standard OutputLine
O filename system—name

The standard output is specified by a **>** withinthe command—string. 1fa standard
output is not specificd, /devimull is used. (Note that the use of ““>>"" is not
implemented.)

Command Line
C command [arguments]

The argumerus are those specified in the command string. The standard input and
standard output will not appcar on this linc. All required files will be moved to the
executiondirectory (a subdirectory of the spool directory) and the XENIX command is
exccuted using the Shell specified in the uucp. Aheader file. Inaddition, a shell PATH
statement is prepended tothe command line as specified inthe uuxgsprogram.

Afterexccution, the standard output is copied or set uptobe senttothe proper place.
9.4 Uucico — Copy In, Copy Out

The uucicoprogram will perform the following major functions:
— Scanthe spool directory for work.
— Placcacalltoarcmotce system.
— Negotiatealine protocoltobe used.
— Exccuteallrequests fromboth systems.

— Log workrequestsand work completions.

Uucicomay be started by a system dacmon, by one of the uucp , uux , uuxqe , oruucico
programs, by the user (this is usually for testing), or by aremote system. (Theuucico
program should be specified as the shell field in the /etc/passwd file for the uucp
logins.)

When started by method a dacmon, a program, or the user, the program is considered
tobe in MASTER mode. Inthis mode, a connection will be made to aremote system. If

9-5

XENIX User’s Guide

started by arenicte system. the programis consideredtobe inSLA VEmode.

The MASTER mode will operate inone oftwo ways. 1fnosystemname is specificd (the

—soptionnot specified) the program will scanthe spool directory for systemstocall. 1f
a system name is specified, that system will be called, and work will only be done for
that system.

The uucico programis gencrally started by another program. There are severaloptions
used for execution:

- Stan the program in MASTER mode. This is used when uucico is started
by aprogramorcronshell.

—ssys Do work only for system sys. If —s is specificd, a call to the specified
system will be made even if there is no work for system sys in the spool
directory. This is useful for polling systems which do not have the
hardwaretoinitiate a connection.

The following opcrions arc used primarily for debugging:
—ddir Use directory dir for the spool directory.

—xmum Uscrumasthelevelof debugging output.
The next part of this section will describe the major steps within the uucicoprogram.

9.4.1 Scanning For Work

The namesofthe workrelated files inthe spool directory have format
type . system—name grade number

where type may be “‘C"" for copy command file, ““D*’ for data file, X"’ for exccute
file, system—name is the remote system, grade is a character, and nunber is a four
digit, padded sequence number.

Thefile
C.res45n0031
is awork file forafile transferbetweenthe local machine andthe res45 machine.

The scan for work is done by looking through the spool directory for work files (files
with prefix C.). A list is made of all systems to be called. Uucico will then call each
system and process all work files.

9.4.2 Calling a Remote System

The callis made using information from several files which reside inthe uucp program
directory. Atthe start of the call process, a lock is set to forbid multiple conversations
betweenthe sametwosystems.

The system name is found inthe L.sys file. The informationcontained for each system
is;

Building & Uuscp System

i1 System name

12} Timestocallthe system (days— of —weck andtimes—of —day)

3] Device ordevicetypetobeused forcall

[4] line speed

s phone number if fickd [3] is **ACU"" or the device name (same as ficld [3])
ifnot

[6] Logininformation (multiple fields)

Thetime ficldis checked against the present timetosee if the call shouldbe made.

The phone number may comtain abbreviations (e.g. mh, py, boston) which get
translated intodial sequencesusingthe L—dialcodesfile.

The L—devicesfile is scanned using device type and line speedficlds fromthe L. sysfile
to find an available device for the call. The program will try all devices which satisfy
these fields until the call is made, or no more devices can be tried. If a device is
successfully opened, a lock file is created so that another copy of uucico will not try to
use it. If the call is complete, the login information n the last field of L.sys is used to
login.

The conversation between the two uucico programs begins with a handshake started
by the SLAVE system. The SLAVE sends amessageto let the MASTER know it isready
to receive the system identification and conversation sequence mumber. The response
from the MASTER is verified by the SLAVE and if acceptable, protocol sclection
begins. The SLAVE can also reply with a call-back required message in which case,
the current conversationistcrminated.

9.4.3 Selecting Line Protocol

Theremote system sends amessage
Pproto—list)
where proto—list is a string of characters, cach representing aline protocol.
The calling program checks the protocol list for a letier corresponding to an available
line protocol and returns auseprotocolmessage. The message hasthe form
Ucode

where code is cither a one character protocol letter or **N*” which means there is no
commonprotocol.

9.4.4 Processing Work

The initial role of MASTER or SLAVE forthe work processing is themode in which each
program stants. (The MASTER has been specified by the —rl option.) The MASTER
program does a work search similar to the one used in the section *“Scanning For
Work"* above.

XENIX User’s Guide

There are five messages used during the work processing, each specified by the first
characterofthemessage. They are;

Sendafile

Recciveafile

Copy complete

Executec auucpcommand

= X O »® @«

Hangup

The MASTER will send R, S, or X messages until all work from the spool directory is
complete, at which point an H message is sert. The SLAVE will reply with the first
letter of the request and cither the letter “Y*’ or ““N°* for yes or no. For example, the
message “‘SY"' indicatesthat it isokaytosendafile.

The send and receive replies are based on permission to access the requested
file/directory using the USERFILE and read/write permissions of the file/directory.
After each file is copied into the spool directory of the receiving system, a copy—
complete message is sent by the receiver of the file. The message *‘CY™" willbe sent if
the file has successfully been moved from the temporary spool file to the actual
destination. Otherwise, a ““CN’" mcssage is semt. (ln the case of “CN’’, the
transferred file will be inthe spool directory with a name beginning with ““TM".) The
requestsandresults are logged onboth sy stems.

The hangup response is determined by the SLAVE program by a work scan of the spool
directory. if work for the remote system exists in the SLAVE's spool directory, an
‘‘HN’* message is sent and the programs switch roles. If no work exists, an ““HY"*
responseissent.

9.4.5 Terminating a Conversation

Whena‘‘HY"* messageisreccived by the MASTER it isechoedback tothe SLAVE and
the protocols are turned off. Each program sends a final *‘O0’" messageto the other.

The original SLAVE program will clean up and terminate. The MASTER will proceed
to call other systcms and process work as long as possible or terminate if a —s option
was specified.

9.5 Uuxqt — Uucp Command Execution

The uuxqger program is used to process exccute files gencrated by uux. The wexge
program may be started by either the uucico or uux programs. The program scansthe
spool directory for execute files (prefix X.). Each one is checked to see if all the
required files are available andif so, the commandline orsend line isexecuted.

Theexecute fileisdescribed in the section *‘Uux — SystemtoSystem Copy** above.
Theexecutionisaccomplished by executingthe shellcommand

sh —¢
with the command line after appropriate standard input and standard output have been

9-8

Building 2 Uucp Sysiem

opened. if a standard output is specified, the programn will create a send command or
copy the output file as appropriate.

9.6 Uulog — Uucp Log Inquiry

The uucp programs create individual log files for cach program invocation.

Periodically, mulog may be executed to append these files to the system logfile. This
method of logging was chosen to minimize file locking of the logfile during program
execution.

The uulog program merges the individual log files and outputs specified log entries.
The output request is specified by the use of the following options:
—8sys Print entrics where sys isthe remote system name

—uuser Primentricsforuseruser.

The intersection of lines satisfying the two options is output. A null sysor usermeans
all system names orusersrespectively.

9.7 Uuclean — Uucp Spool Directory Cleanup

This program is typically startcd by the dacmon, once aday. Its function istoremove
files from the spool directory which are more than three days old. These are usually
files for work which can not be completed.

Theoptionsavailableare:
—ddir Thedirectory tobe scannedisdir.

-m Send mail to the owner of cach file being removed. (Note that most files
put into the spool directory will be owned by the owner of the uucp
programs since the sctuid bit will be set on these programs. The mail will
therefore most oftengoto the owner of the uucp programs.)

—nhows Changetheagingtime from72hourstohourshours.

—ppre Examine files with prefix pre for deletion. (Upto 10 file prefixesmay be
specified.)

-~ xnum Use num asthe level of debugging output desired.
9.8 Security

The uucp system, left unrestricted, will ket any outside user execute any commands
and copy in/out any file which isreadable/writable by the uucp loginuser. Itisuptothe
individual sites to be aware of this and apply the protections that they fecl are
necessary.

There arc scveral security featurcs available aside from the normal file mode
protections. Thesemust be set upby the installer of the uucp system.

XENIX User’s Guide

Thelogin for uucpdoes not get a standard shell. Instead, theuucicoprogramis stanted.
Therefore, the only work that canbe done is through uucico.

A path check is done on file names that are to be sent or received. The USERFILE
suppliesthe information forthese checks. The USERFILE canalsobe set up torequire
call—back for certain login—ids. See the section ‘‘Required Files'” below in this
chapier.

A conversation sequence count can be set up so that the called system can be more
confident that the caller is whohe saysheis.

The uuxqr program comes with a list of commands that it will execute. A PATH shell
statement is prepended to the command line as specified in the uuxgs program. The
installer may modifythelist orremove therestrictions asdesired.

The L.sys file should be owned by uucp and have mode 0400 to protect the phone
numbers and login information for remote sites. (The uucp, uucico, uux , and uucqt
shouldbe also owned by uucpand have the setuidbit set.)

9.9 Installing a Uucp System

The uucp system provided with the XENIX Software Development System is already
configured for operation on your computer. Toinstall the system, you must edit a few
files to provide information about your local site. The following sections provide an
overview of the filesto be edited and the information required.

During execution of the uucp programs, the uucp system uses files fromthe following
three directories:

program (/usr/libluucp) This is the dxrectory used for the exccutable system

programsandthe system files.

spool (/usrispoolluucp) This is the spool directory used during uucp
execution.

xqtdir (usr/spoolfuucpl XQTDIR) Thisdirectory isused during executionof
execute files. :

The names given in parentheses above are the default values for the directories. The
names lib, program , xqdir , and spool will be used inthe following text to represent
theappropriate directory names.

9.9.1 Modifying the /etc/systemid File

You must choose a unique site name for each computer to be directly connected to a
uucp line and add the site nametothe /erc/systemid file of the cosresponding computer
by using aXENIX text editor. The/etc/systemid file canactually containtwonames: the
uucp site name, which must appear on the first line of the file, and a Micnet machine
name, which must appear on the next line. However, youmay decide tohave boththe
uucp site name and Micnet machine nametobe the same, in whichcase, only one name
is required. For a description of the file, see systemid (M) in the XENIX Reference
Manual .

9-10

Building a Uucp System

9.9.2 Creating the Required Files

There are four files which are required for execution, all of which chould reside inthe
program directory. To preparethe uucp system for execution, you must add your own

site specific informationtothese files by editing the files with a XENIX text editor. The
field scparator for all filesis a space unless otherwise specified.

L—devices

This file contains entries for the call—unit devices and hardwired connections which
arctobe used by uucp. The specialdevice files are assumedtobeinthe/devdirectory.
The format forcachentry is

line call—unit speed
where line is the device for the line (c.g. cul0), call—unit is the automatic call unit
associated with line (¢.g. cua0), Hardwired lineshave a number **0** inthis ficld, and
speedistheline speed.
Theline

cul0 cual 300

defines a system which hasdevice ““cul0’’ wired to a call —unit *“cua0’* foruse at 300
baud.

L—dialcodes

This file contains entries with locationabbreviationsusedinthe L.sys filke (¢.g. py, mh,
boston). Theentry format is

abb dial-seq .
where abb is the abbreviation, and dial—seq is the dial sequence to call that location.
Theline

PY 165—
causcstheentry py7777wobe expandedto 165-7777.
USERFILE
This filecontainsuseraccessibility information. It specifics

— Thefilesthat canbe accessedby a normal user of the local machine
— Thefilesthat canbe accessed from aremote computer
— Theloginnameused by a particularremote coinputer

— Whether a remote computer should be called back in order to confirm its
identity
Eachline inthe file hasthe following format
login,sys I ¢ | pathname [pathname]

where loginisthe login name for auser or the remote computer, sys is the system name
for a remote computer, ¢ is the optional call—back required flag, and pathname is a
pathname prefix that is acceptable foruser .

XENIX User's Guxde

1t is assumed that the login name used by a remote computer to call into a local
computer 1s not the same as the login name of a normal user of that local machine.
Howe ver, scveral remote computers may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each
call. This name identifiesthe calling machinetothe called machine.

When the program is obeying a command stored on the local machine, MASTER
mode, the pathnames allowed are those given forthe first line inthe USERFILE thathas
alogin name that matches the login name of the user whoentered the command. If no
such line is found, thefirst line with a redlloginname isused.

When the program is responding to acommand from aremote machine, SLAVE mode,
the pathnames allowed are those given for the first line in the file that has the system
name that matches the system name of the remote machine. 1fnosuchline is found, the
first one with a null system nameisused.

When a remote computer logs in, the login name that it uses must appear in the
USERFILE . There may be several lines with the same login name but one of them
mustcither have the name of the remote system or must contain a null system name.

If a line is found that has the appropriate login and remote system names and also
containsa‘‘c’*, the remote machine is called back before any transactionstake place.

Theline
u,m /ust/xyz
allows machine “‘m’* to login with name ‘‘u’* and request the transfer of files whose

Y

names start with *‘/usr/xyz’’.
Theline
dan, /usr/dan

allows the ordinary user ‘‘dan’’ to issuc commands for files whose name starts with
“‘fusr/dan’".

Thelines
u,m /ust/xyz fusr/spool
u, /usr/spool

allow any remote machincto login with name *‘u’°, but if its system name isnot *‘m"’,
ixcanqnlyaskwuansfctﬁkswhosenamesstmwith“/ux/ml".

Thelines

root, /
, lusr

allow any user to transfer files beginning with ‘*/usr’” but the user with login *‘root”’
cantransferany file.

L.sys

Each entry in this file represents one system which can be called by the local uucp
programs. The ficldsare describedbelow.

system name The name of the remote system.

9-12

device

speed
phone

Building a Uucp System

This is a string which indicates the days—of —week and times—of —day
when the system should be called (¢.g. MoTuTh0800—-1730). The day
portionmay bea list containing some of

Su Mo Tu We Th Fr Sa
oritmay be ‘‘“Wk'’ forany week—day or *‘Any’’ for any day. The time

should be a range of times (¢.g. 0800—1230). If no time portion is
specificd, any time of day isassumedto be ok forthe call.

Thisiscither ‘‘ACU"’ orthe hardwired device tobe used for the call. For
thehardwiredcase, the last part of the special file name isused(e.g. ity0).

Thisisthe line speed for the call (e.g. 300).

The phone number ismade up of an optional alphabetic abbreviation and
a numeric part. The abbreviation is onc which appears in the L—
dialcodes file (e.g. mh5900, boston995—-9980). For the hardwired
devices, this field contains the same string asused forthe device field.

The login information is given as a serics of fields and subficlds in the
format

expect send | expect send | ...
where expect is the string expected to be read and send is the string tobe

sent whenthe expected string is received. The expect fieldmay be made
upofsubficldsof the form

expect | —send—expectl | ...

where send is sent if the prior expect is not successfully read and expect]
is the next expected string.

There arc two special names available to be sent during the login
sequence. The string ‘‘EOT"" sends an EOT character and the string
“BREAK"’ trics to send a BREAK character. (The BREAK character is
simulated using line speed changes and mll characters and may not work
onalidevicesand/or systems.)

Atypicalentry intheL . sysfileis
sys Any ACU 300 mh7654 login uucp ssword: word
The expect algorithm looks at the last part of the string as illustrated in the password

field.

9.10

Maintaining the System

This section indicates some cvents and files which must be maintained for the uucp
system. You may do some maintenance with shell command files, initiating the files
with crontab entries. Others will require mamial modification. Some sample shell
files are giventowardtheend of this section.

9-13

XENIX User’s Guide

9.10.1 SEQF - sequence check file

Thisfile is setup inthe program directory and containsanentry forecachremote system
with which you agree to perform conversation sequence checks. The initial entry is
just the system name of the remote system. The first conversation will add twoitemsto
the line, the conversation count, and the date/time of the most resent conversation.
These items will be updated with each conversation. If a sequence check fails, the
entry willhavetobe adjusted.

Use ofthis feature is not recommend.
9.10.2 TM — temporary data files

These files are created inthe spool directory while files are being copied from a remote
machine. Theirnameshavethe form

where pid isa process—id and did is a sequential three digit number starting at zero for
each invocationof uucicoand incremented for cach file received.

After the entire remote file is received, the TM file is moved/copied to the requested
destination. If processing isabnormally terminated orthe move/copy fails, the file will
remainin the spool directory. .

The keftoverfiles should be periodically removed,; the uuclean program isuseful inthis
regard. The command

uuclean —pTM .
removesall TM filesolderthanthree days. »

9.10.3 LOG - log entry files

During exccution of programs, individual LOG files are created inthe spool directory
with information about queued requests, calls to remote systems, excoution of uux
commands and file copy results. These files should becombined intothe LOGFILE by
using the uulog program. This program will put the new LOG files at the beginning of
the existing LOGFILE . Thecommand

uulog

performs the merge. Options are available to print some or all the log entrics after the
files aremerged. The LOGFILE shouldbe removed periodically since it iscopiedeach
time new LOG entries areputintothe file.

The LOG files are created initially with mode 0222. Ifthe program which creates the
fileterminates normally, it changesthemodeto0666. Aborted runs may leavethe files
with mode 0222 and the uulog program will not read or remove them. To remove

them, cither use rm , uuclean, or change the mode 100666 and let tulog merge them
withthe LOGFILE .

9-14

Building a Uucp System

9.10.4 STST — system status files

These files are created in the spool directory by the uucico program. They contain
information of failures such as login, dialup or sequence check and will contain a
talking status whentomachinesare conversing. The form of the file name is

STST.sys
where sys isthe remote sysiemname.
For ordinary failures (dialup, login), the file will prevent repeated tries for about one

hour. For sequence check failures, the file must be removed befare any future attempts
toconverse withthat remote system.

Ifthefile is left ductoanaborted run, it may contain atalking status. Inthiscase, thefile
must beremoved before aconversationisattempted.

9.10.5 LCK -~ lock files

Lock files are created for each device in use (¢.g. automatic calling unit) and cach
system conversing. This prevents duplicate conversations and multiple attempts to
uscthe samedevices. The formofthe lock file name is

LCK..str

where stris cither a device or system name. The files may be left inthe spool directory
if runs abost. They will be ignored (reused) afier atime of about 24 hours. When runs
abortand calls are desired before the time limit, the lock files shouldbe removed.

9.10.6 Creating Shell Files

The uucp program will spool work and attempt to start the kucico program, but the
starting of uucico will sometimes fail. (No devices available, login failures etc.).
Therefore, the uucico program should be periodically started. The command to start
uucico can be put in a shell file with a command to merge LOG files and tarted by a
crontabentry onanhourly basis. The file could containthe commands

program /uulog
program /uucico —rl
Notethat the —r1 optionisrequired tostart the uucicoprogram inMASTER mode.

Another shell file may be set up on adaily basis to remove TM, ST, and LCK filesand
C. or D. files for work which can not be accomplished for reasons like bad phone
number, loginchangesetc. A shell file containing commands like

program /uuclecan —pTM —pC. —pD.
program /uuclcan —pST —pLCK —nl2

canbeused. Note the —n12 option causes the ST and LCK files older than 12 hours to
bedeleted. Theabsence ofthe —noption willuse athree day time limit.

9-15

XENIX User’s Guide

9.10.7 Defining Login Entries

One or more logins should be set up for uucp . Each of the /erc/passwd entries should
have programiuucico as the shell to be executed (where program is the directory
containing uucico). The login directory is not used, but if the system has a special
directory for use by the users for sending or receiving file, it should as the login entry.
The various logins are used in conjunction with the USERFILE to restrict file access.
Specifyingthe shell argument limitsthe loginto the usc of uucicoonly.

9.10.8 Setting File Modes

It is suggested that the owner and file modes of various programs and files be set as
follows.

The programs uucp , uux , uucico, and uuxqt should be owned by the uucp login with
the setuid bit set and only execute permissions (¢.g. mode 04111). This will prevent
outsiders from modifying the programsto get at a standard shell for the uucplogins.

The L.sys, SQFILE, and USERFILE files which are put in the program directory
shouldbe ownedby the uucploginand set withmode 0400.

9-16

Chapter 10

The C-—Shell

10.1 Introduction 1

10.2 InvokingtheC—shell 1

10.3 UsingShell Variables 2

104 UsingtheC—ShellHistoryList 3
10.5 Using Aliases 5

10.6 RedirectinglnputandOutput 6
10.7 Creating Backgroundand ForegroundJobs 7
10.8 UsingBuilt—InCommands 8

10.9 CreatingCommandScripts 9
10.10 Usingtheargv Variable 9

10.11 Substituting Shell Variables 10
10.12 Using Expressions 11

10.13 UsingtheC—Shell: ASampleScript 12
10.14 Using Other Control Structures 15
10.15 SupplyinglnputtoCommands 15
10.16 Catchinginterrupts 16

10.17 Using OtherFeatures 16

10.18 Startingal.oopataTerminal 17

10.19 UsingBraceswith Arguments 17
10.20 SubstitutingCommands 18

10.21 Special Characters 18

The C-Shell

10.1 Introduction

The C~shell program, csh, is a command language interpreter for XENIX system
users. The C—shell, like the standard XENIX shell sh, is an interface between you and
the XENIX commands and programs. It translates command lines typed at a terminal
intocorresponding system actions, gives you accesstoinformation, such as your login
name, home directory, and mailbox, and lets you construct of shell procedures for
automating systemtasks.

This chapter explains how to use the C—shell. It also explains the syntax and function
of C—shell commandsand features, and showshowlousetlicse featuresiocreate shell
procedures. The C—shell is fully described in csh(CP) in the XENIX Reference
Manual .

10.2 Invoking the C—shell

You can invoke the C— shell from another shell by using the csh command. Toinvoke
the C—shell, type:

csh

at the standard shell’s command line. You can also direct the system to invoke the
C—shell for you when you log in. If you have giventhe C—shell as your Jogin shell in
your/etc/passwdtileentry, the system automatically startsthe shell whenyou log in.

After the system starts the C—shell, the shell searches your home directory for the
command files .cshre and .login. If the shell finds the files, it executesthe commands
containedin them, thendisplaysthe C~shell prompt.

The .cshre file typically contains the commands you wish to execute each time you
start a C—shell, and the .login file contains the commands you wish to execute afier
logging into the system. For example, the following is the contents of a typical .login
file:

set ignoreeof

set mail=(/ust/spool/mail/bill)

set time=1S§)

set history=10

mail

This file conmains several setcommands. The setcommand isexecuted directly by the

C—shell; there is no corresponding XENIX program for this command. Set sets the

C—shell variable *‘ignorecof” which shields the C—shell from logging out if
CNTRL-D ishit. Instead of CNTRL ~D, the logout command is used to log out of the

system. By setting the ‘‘mail’" variable, the C—shell is notified that it is to watch for
incoming mailand notify you if new mail arrives.

Next the C—shell variable “‘time®’ is set to 15 causing the C—shell to automatically
print out statistics lines for commands that execute for at least 15 seconds of CPUtime.

The variable ‘“*history®’ is set to 10 indicating that the C—shell will remembes the last
10commandstyped initshistory list, (described later).

Finally, the XENIX mail program isinvoked.

When the C~shell finishes processing the .login file, it begins rcading commands
from theterminal, prompting for each with:

10—-1

XENIX User’s Guide

%
Whenyou log out (by giving the logout command) the C—shell prints
logout

and exccutes commands from the file .logour ifit exists in your home directory: Afier
that, the C—shellterminates and XENIX logs you off the sy stem.

10.3 Using Shell Variables

The C—shell maintains a set of variables. For example, in the above discussion, the
variables *‘history®* and *‘time’* had the values 10 and 15. Each C—shell variablchas
as its value an array of zero or more strings. C—shell variablesmay be assigned values
by the set command, which has se veral forms, the most useful of which is:

sct name=vahie

C-—shell variables may be used to store values that are to be used later in commands
through a substitution mechanism. The C—shell variables most commonly
referenced are, however, those that the C—shell itself refers to. By changing the
valuesofthese variables you candirectly affect the behavior of the C—shell.

One of the most important variablesis *‘path’”. This variable containsalistof directory
names. When youtype acommand name at yourterminal, the C— shellexaminesecach

named directory inturn, untilit finds anexecutable file whose name correspondstothe
name you typed. The set command with no arguments displays the values of all

variables currently defined in the C~shell. The following example shows a typical
default values:

argv 0
home /usw/bill
path (. /bin Just/bin)

prompt %
shell Min/csh
status O

This output indicates that the variable ‘‘path’* begins with the current directory
indicated by dot (.), then/bin, and/usr/bin. Yourown localcommandsmay beinthe
current directory. Normal XENIX commandsreside in/binand/usribin.

Sometimes a number of locally developed programsreside inthe directory /usr/local .
If you want all C—shells that you invoke to have access to these new programs, place
the command

set path=(. /bin /usr/bin Aust/local)

inthe .cshre file in your home directory. Try doingthis, thenre—executing you . login
with the commandsource.login. Type

set
to see that the value assignedto *‘path’" haschanged.

You should be aware that when you log in the C—shell examines each directory that
you insertinto your path and determines which commands are contained there, except
for the current directory which the C—shell treats specially, This means that if
commands are added to a directory in your search path after you have stanted the C—

10-2

The C-Shelk

shell, they will not necessarily be found. 1f you wish touse acommand which hasbeen
addedafter you have loggedin, you should give the command

rchash

to the C—shell. Rebash causes the shell to recompute its internal table of command
locations, sothatit will find the newly added command. Sincethe C—shellhasto look
in the current directory on each command anyway, placing it at the end of the path
specificationusually work < best andreduces overhead.

Other useful built in variables are “‘home’* which shows your home directory, and
‘“‘ignoreeof”” which can be set in your .login file totell the C—shell not to exit when it
receives an end—of--file from aterminal. The variable ‘‘ignoreeof”’ is one of several
variables whose value the C—shell does not care about; the C—shellisonly concerned
with whether these variables are set or unset. Thus, to set *‘ignorecof”” you simply

type
set ignoreeof
andtounsetittype
unset ignorecof
Some other useful built—in C—shell variables are ‘‘noclobber’” and ‘‘mail’*. The
syntax
>filename

which redirects the standard output of a command just as in the regular shell,
overwrites and destroys the previous contents of the named file. Inthis way, you may
accidentally overwrite a file which is valuable. If you prefer that the C—shell not
overwrite files inthis way you can

set noclobber

inyour .loginfile. typing
date > now

causesancrror message if the file now already exists. Youcantype
date >! now

if you really want to overwrite the contents of now. The *‘>1"" is a special syntax
indicating that overwriting or *‘clobbering’’ the file is ok. (The space between the
exclamation point (!) and the word ‘‘now"’ is critical here, as *‘!now™* would be an
invocation of the history mechanism, described below, and have a totally different
effect.)

10.4 Using the C—Shell History List

The C~shell can maimain a history list into which it places the text of previous
commands. Jt is possible to use a notation that reuses commands, or words from
commands, in forming new commands. This mechanism can be used to repeat
previous commandsorto correct minor typing mistakesincommands.

The following figure gives a sample session involving typical usage of the history
mechanismofthe C—shell. Boldface indicatesuserinput:

10-3

XEN1X User’s Guide

% cat bug.c
main()

1
’ printfChello);

1
% cc!$
cc bug.c
"bug.c”, line 4: newline in string or char constant
"bug.c”, line S: syntax emror
% ed 13
ed bug.c
29
4/ &lp
printf("hello”);
w
30
q
% !c
cc bug.c
% a.out
hello%® e
ed bug.c
30
4so/lo\n/p
peintf("hello\n”);
w
32
q
% 1c —o bug
cc bug.c —o bug
% size s.out bug
a.out: 2784 +364 +1028 = 4176b = 0x1050b
bug: 2784 +364 +1028 = 4176b = 0x1050b
%ls —11*
Is —1 a.out bug
—rwxr—xr—x 1 bill 3932 Dec 19 09:41 2.0ut
—rwxr—xr—x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% pr bug.c | Ipt
Ipt: Command not found.
% ‘Iptlpr
: bug.c | ipr

In this example, we have a very simple C program that has a bug or two in the file
bug.c, which we cat out on our terminal. We then try to run the C compiler on it,
referring to the file again as **!$’°, meaning the last argument to the previous
command. Here the exclamation mark (!) is the history mechanism invocation
metacharacter, and the dollar sign ($) stands for the last argument, by analogy to the
dollar sign in the editor which stands for the end—of—line. The C—shell echoedthe
command, as it would have beentyped without use of the history mechanism, and then

10-4

The C—-Shell

exccuted the command. The compilation yieldederror diagnostics, so we now editthe
file we were trying to compile, fix the bug, and run the C compiler again, this time
referring tothis command sunply as **1c*”, which repeats the last commandthat started
with the letter “‘c”’. If there were other commands beginning with the ketter *‘c’’
executed recently, we could have said ““!cc’* or even *“!cc:p’” which prints the last
command starting with *‘cc’* without executing it, sothat you cancheck to see whether
yourcally want toexecute agivencommand.

After this recompilation, we ran the resuhting a.out file, and then noting that there still
was abug, ranthe editor again. After fixing the program we ran the C compileragain,
but tacked onto the command an extra *‘—~o bug’* telling the compiler to place the
resultant binary inthe file bug ratherthan a.ows. In general, the history mechanisms
may be used anywhere inthe formation of new commands, and other characters may
be placed before and afterthe substituted commands.

We then ran the size command to see how large the binary program images we have
created were, and then we ran an *‘Is —1'* command with the same argument list,
denotingthe argument list:

!t
Finally, we ranthe program bugto sec that its output is indecd correct.

Tomake a listing of the program, we ranthe pr command onthe file bug.c. Inorderto

print the listing at a lincprinter we pipedthe outputtolpr, but misspelleditas “Ipt*’. To
correct this we used a C—shell substitute, placing the old text and new text between
caret (") characters. This is similartothe substitute command inthe editor. Finally, we
repeatedthe same command with

"
and sentitsoutput tothe lincprinter.

There are other mechanisms available for repeating commands. The history
command prints out a numbered list of previous commands. You can then refer to
these commands by number. There is a way to refer to a previous command by
searching for a string which appeared in it, and there are other, less useful, ways to
select arguments to include in a new command. A complete description of all these
mechanismsisgivenincsh(CP)theXENIX Reference Manual .

10.5 Using Aliases

The C~shell has an alias mechanism that can be used to make transformations on
commands immediately after they are input. This mechanism can be used 10 simplify
the commands you type, to supply default arguments to commands, or to perform
transformations on commands and their arguments. The alias facility is similarto a
macro facility. Some of the features obtained by aliasing can be obtained by using
C—shell command files, but these take place in another instance of the C—shell and
cannot directly affect the current C—shell’s environment or involve commands such
ascd whichmust be done inthe current C—shell.

For example, suppose there is a new version of the mail program on the system called
newmail that you wish to use instead of the standard mail program mail. If you place
the C—shell command

10-5

XENIX User’s Guide

alias mail newmail
inyour .cshre file, the C—shell will transform an input line of the form

mail bill
intoacallonnewmail . Supposeyou wishthe commandlstoalways showssizesoffiles,
thatis, to alwaysuse the —soption. Inthiscase, youcanusethe aliascommandtodo

~ aliaslsls -3

oreven

alas dir Is —s
creating a new command nameddir. If wethentype

dir bill
the C—shelltranslatesthisto

Is —s fusr/bill
Note that the tilde () is a special C—shell symbol that represents the user’s home
directory.
Thus the alias command can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It
isalso possible to define aliases that contain multiple commands or pipelines, showing
where the arguments to the original command are to be substituted using the facilities
ofthehistory mechanism. Thusthe definition

aliascd "cd\!* ; Is’

specifics an Is command afier each ¢d command. We enclosed the entire alias
definition in single quotation marks (*) to prevent more substitutions from occurring
and to prevent the semicolon (;) from being recognized as a metacharacter. The
exclamationmark (!) isescaped with abackslash (\) to prevent it from being interpreted
whenthealias commandistypedin. The ‘‘\!*** here substitutestheentireargument list
to the prealiasing cd command; no error is given if there are no arguments. The
semicolon separating commands is used here to indicate that one command is to be
done andthenthe next. Similarly the following example defines acommandthat looks
upits first argument inthe passwordfile.

alias whois ‘grep \!* /etc/passwd’
The C—shell currently reads the .cshre file each time it starts up. If you place a large
number of aliasesthere, C—shells will tend to starnt slowly. You should try to limit the
number of aliases you have to areasonable number (10 or 15 isreasonable). Too many

aliases causes delays and makes the system scem sluggish when you exccute
commands from withinan editor orother programs.

10.6 Redirecting Input and Output

1n addition to the standard output, commands also have a diagnostic output that is
nonmally directedtothe terminal even whenthe standard output isredirectedtoafileor
apipe. Itis occasionally useful to direct the diagnostic output along with the standard
output. Forinstance, if you wanttoredirect the output of a long running command into
afile and wishtohave arecord of any error diagnostic it produces you cantype

10-6

The C--Shelt

command > & file

The ‘> &' here tellsthe C—shell to route both the diagnostic output and the standard
outputintofile. Similarly youcangive the command

command | & lpr

to route both standard and diagnostic output through the pipe to the lincprinter. The
form

command >&! file
isuscdwhen *‘noclobber®* is set and file alrcady exists.
Finally, uscthe form

command >> file

to append output to the end of an existing file. 1f ‘‘noclobber’’ is set, then an error
resultsif file does not exist, otherwisethe C—shellcreatesfile . The form

command >>! file
letsyouappendtoafileevenifitdoesnot existand *‘noclobber’ is set.

10.7 Creating Background and Foreground Jobs

When one or more commands are typed together as a pipeline or as a sequence of

commands separated by semicolons, a single job is created by the C—shell consisting

of thesec commands together as aunit. Single commands without pipes or semicolons

createthe simplest jobs. Usually, every linetypedtothe C—shellcreatesajob. Eachof
the following linescreatesajob:

son < data

Is —s ! sort —n| head -5

mail harold
1fthe ampersandmetacharacter (&) is typed at the end of the commands, thenthe job is
started as a background job. This means that the C—shell does not wait for the job to
finish, but instead, immediately prompts for another command. The job runs in the
background at the same time that normal jobs, called foreground jobs, continue to be
readandexecuted by the C—shell. Thus

du > usage &

runs the du program, which reports on the disk usage of your working directory, puts
the output into the file usage and returns immediately with a prompt for the next
command without waiting for duto finish. The di program continues executing inthe
background untilit finishes, eventhough you cantype and execute more commands in
themeantime. Background jobs are unaffected by any signals from the keyboard such
asthe INTERRUPT or QUIT signals.

The kill command terminates a background job immediately. Nommally, this is done
by specifying the process number of the job you want killed. Process numbers canbe
found withthe pscommand.

10-7

XENIX User’s Guide

10.8 Using Built—In Commands

This sectionexplainshowtousesome of the built—inC—shell commands.

The alias command described above is used to assign new aliases and to display
existing aliases. If given no arguments, alias prints the list of current aliascs. It may
also be given onc argument, such as to show the current alias for a given string of
characters. Forexample

alias Is
printsthe current alias for the string *“1s*".
The history command displays the contents of the history list. The numbers given
with the history events can be used to reference previous events that are difficult to
reference contextually. There is also a C—shell variable named ‘‘prompi’’. By
placing an exclamation point (!) in its value the C— shell will substitute the number of
the current command inthe history list. Youcanusethis numbertorefertoacommand
inahistory substitution. Forexample, you couldtype:

set prompt="\! % °
Notethat the exclamationmark (!Yhad tobe escaped even withinbackslashes.
Thelogoutcommand isuscdtoterminate alogin C—shellthathas “‘ignoreeof”* set.

The rehash command causes the C—shelltorecompute atable of command locations.
This is necessary if you add a command to a directory inthe cusrent C—shell’ssearch
path and want theC—shellto find it, since otherwise the hashing algorithm maytell the
C-shellthat the command wasn’t inthat directory whenthe hash table was computed.

The repeat command is used to repeat a command several times. Thus to make §
copiesofthefileone inthe file fiveyou couldtype:

repeat S cat one >> five
The setenvcommandcanbe usedto set variablesintheenvironment. Thus
setenv TERM adm3a

sets the value of the environment variable *“TERM'’ to ““adm3a’’. The program env
existstoprint out the environment. Forexample, itsoutput mightlook like this:
HOME=usthill
SHELL=/bin/csh
PATH=/usr/ucb:/bin:/ust/bin:/usr/local
TERM=adm3a
USER=bill
The source command is used to force the currers C—shell to read commands from a
file. Thus

source .cshrc

canbe used after editing ina change tothe . cshre file that you wish totake effect before
the next time you login.

The time command isused to cause a command to be timed no matter how much CPU
time ittakes. Thus

10-8

The C—Shel

time cp /ewc/rc fust/all/re
displays:

0.0u 0.1s 0:01 8%
Similarly

time wc /etc/re fuseillre
displays:

52 178 1347 /etc/rc

52 178 1347 jusehillirc

104 356 2694 total
0.1u 0.1s 0:00 13%

Thisindicates that the cp command used a negligible amount of user time (u) and about
1/10th of a second system time (s); the clapsed lime was 1 second (0:01). The word
count command we used 0.1 seconds of user time and 0.1 seconds of system time in
kess than a second of elapsed time. The percentage ‘‘13%'” indicates that over the
period when it was active the we command used an average of 13 percent of the
available CPU cycles ofthe machine.

The unalias and unset commands are used to remove aliases and variable definitions
fromthe C—zhell.

10.9 Creating Command Scripts

1t is possible to place commands in files and to cause C—shells to be inveked to read
and execute commands from these files, which are called C—shell scripts. This
section describesthe C— shell featuresthat are useful whencreating C—shell scripts.

10.10 Using the argv Variable

A cshcommand script may beinterpreted by saying
csh script argument ...)

where script is the name of the file containing a group of C~shell commands and
argument is a sequence of command arguments. The C—shell placesthese arguments
in the variable ‘‘argv’’ and then begins to read commands from scripr. These
parameters are then available through the same mechanisms that are usedtoreference
any other C—shell variables.

If you make the file scripr executable by doing
chmod 755 script

or
chmod +x script

and then place a C—shell commens at the beginning of the C—shell script (i.c., begin
the file with a number sign (#)) then/bin/csh will automatically be invoked toexecute
scriptwhenyoutype

XENIX User’s Guide

script
ifthe file does not begin with a number sign (#) thenthe standard shell /bin/sh will be
usedtoexccuteit.

10.11 Substituting Shell Variables

After each input line is broken into words and history substitutions are done on it, the

" input line is parsed into distinct commands. Before each command is executed a

mechanism know as variable substitution is performed on these words. Keyed by the

dollarsign (3), this substitutionreplaces the namesof variables by their values. Thus
echo Sargv

whenplacedinacommand script would cause the current value of the variable ‘“argv’*
to be echoed to the cutput of the C—shell script. It is an error for “‘argv”’ to be unset at
thispoint. .
A number of notations are provided for accessing components and attributes of
variables. Thenotation

$name

expands to 1 if name is sct or to O if name is not set. It is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other
forms of referencetoundefined variables cause errors.

The notation
$#name

expandstothe number of elements inthe variable ‘‘name*’. Toillustrate, examinethe
followingterminal session (input isin boldface):

% set argv=(a b ¢)
1

% echo $#argv

3

% unset argv

% echo $2argv

0

% echo Sargv
Undefined variable: argv.
%

itisalsopossibletoaccessthecomponents of a variable thathas several values. Thus

Sargv{1]
givesthe firstcomponentof ‘‘argv’’ orinthe example above “‘a’*. Similarly

Sargy{$#argy]

wouldgive‘‘c’’,and

Sargy1-2]
wouldgive:

10-10

The C--Shel

ab

Orher notationsuseful inC— shell scriptsare
Sn

where nisaninteger Thisis shorthand for
Sargy| n |

the n'th parameterand
s*

which isa shorthand for
Sargv

The form
$$

expands to the process nmumber of the current C—shell. Since this process number is
unique in the system, it is often used in the gencration of unique temporary filenames.
The form

<

is quite special and is replaced by the next line of input read from the C—shell’s
standard input (not the script it is reading). This is uscful for writing C—shell scripts
that are interactive, reading commands from the terminal, or even writing 2 C—shell
script that actsasa filter, reading lines fromitsinput file. Thus, the sequence

echo —n 'yes or no?"
set a=(3<)

writesout the prompt
yes or no?

without a newline andthenreadsthe answer intothe variable “‘a”’. Inthiscase ““$#a"’
isOif cither ablank linc or CNTRL—Dis typed.

One minor difference between *“$n” and ““Sargvin|** should be noted here. The form
$argvin |' will yieldanerrorif nis not inthe range 1 —$#argv while *‘$n’* will never
yicld an out—of—range subscript error. This is for compatibility with the way older
shellshandle parameters.

Another important point isthat it isneveranerrortogive a subrange of the form *‘n—"";
if there are less than ‘‘n’’ components of the given variable then no words are
substituted. A range of the form ‘‘m—n"* likewise returns an empty vector without
giving an error when “‘m’” exceeds the number of clements of the given variable,
provided the subscripi “‘n’*isinrange.

10.12 Using Expressions

To construct uscful C—shell scripts, the C—shellmust be able to evaluate expressions
basedonthe values of variables. 1nfact, allthe arithmetic operationsof the C language
are available in the C—shell with the same precedence that they have in C. In
particular, the operations *‘==""and *!="" compare stringsand the operators * ‘& & '*
and ‘I 1'’ implement the logical AND and OR operations. The special operators **="""

1011

XENIX User's Guide

and ‘‘!”"" are similarto ‘*==""and “*!="" except that the string on the right side can
have pattern matching characters (like *, 2 or| and]). These operators test whether the
stringonthe left matchesthe patternontheright.

The C—shelalsoallowsfileenquiriesof the form
—? filename

where question mark (?) is replaced by a number of single characters. For example,
the expression primitive

—e filename

tellswhether filename exists. Other primitivestest for read, write and execute accessto
the file, whetheritisadirectory, or if thasnonzerolength.

1t is possible to test whether a command terminates normally, by using a primitive of
the form
{ command !

which returns 1 if the command exits normally with exit status 0, or 0 if the command
terminates abnormally or with exit status nonzero. 1f more detailed information about
the execution status of a command is required, it can be executed and the ‘“status™
variable examined in the next command. Since ‘‘$status’’ is set by every command,
itsvalueisalwayschanging.

For the full list of expression components, see cs(CP). in the XENIX Reference
Manual .

10.13 Using the C—Shell: A Sample Script

A sample C—shell script follows that uses the expression mechanism of the C—shell
and some of its control structures:

10-12

The C:--Shell

#

Copyc copies those C programs in the specified list
1o the directory “/backup if they differ from the files
already in “backup

#
set noglob
forcach i (Sargv)
if (3i " *.c) continuc # not a .c file so do nothing
if (! —r “Mackupsi:t) then
echo $i:t not in backup... not cp\'ed
continue
endif
cmp —s $i “backup/$ict # 1o sct $status
if ($status != 0) then
echo new backup of $i
cp $i “backup/$i:t
endif
end

This script uses the foreach command. The command executes the other commands
between the foreach and the matching end. for each of the values given between
parentheses with the named variable **i** which is set to successive values inthe list.
Within this loop we may use the command break to stop executing the loop and
continue to prematurely terminate oneiterationand begin the next. Afier theforeach
looptheiteration variable (/inthiscase) hasthe valuc atthe last iteration.

The “‘noglob’* variable is sct to prevent filename expansion of the members of
““argv’’. This is a good idea, in general, if the arguments to a C—shell script are
filenames which have already beenexpandedorifthe argumentsmay containfilename
expansion metacharacters. It is also possible to quote each use of a **$’" variable
expansion, butthisisharder andlessreliable.

The othercontrolconstruct isa statement of the form
if (expression) then
command
endif

The placement of the keywords in this statement is not flexible due to the current
implementation of the C—shell. The following two formats are not acceptable to the
C—shell:

if (expression) # Won't work!
then
command

endif
and

10-13

XENIX User’s Guide

if (expression) then command endif # Won't work
The C—shell doeshave another formof the if statement:

if (expression) command
which canbe written

if (expression) \
command

" Here we have escaped the newline for the sake of appearance. The command must not
involve ““1*°, “&"* or **;"* and must not be another control command. The second
form requiresthe final backslash (\) to immediately precede the end —of —line.

The more general i statements above also admit a sequence of else— if pairs followed
by asingle elseandan endif, for example:

if (expression) then

commands
else if (expression) then

commands
else

commands
endif

Another important mechanism used in C—shell scripts is the colon (:) modifier. We
can use the modifier :r here to extract the roat of a filename or :e to extract the
extension. Thusifthe variable *‘i** hasthe value /mne/foo.barthen

echo $i Sicr Sice
produces
/mnt/foo.bar /mnt/foo bar

This example shows how the :r modifier strips off the trailing *“.bar’" and the :e
modifier leaves only the ‘““bar’’. Other modificrs take off the last component of a
pathname leaving the head :h or all but the last component of a pathname leaving the
tail ;t. These modifiers are fully described inthe csh(CP) entry inthe XENIX Reference
Manual . It is also possible to use the command substitution mechanism to perform
modifications on stringstothenreenterthe C— shell environment. Since each usageof
this mechanism involves the creation of a new process, it is much more expensive to
use than the coloa (:) modification mechanism. It is also important to note that the
current implementation of the C— shell limits the number of colon modifiersona *‘$"*
substitutionto 1. Thus

% ccho $i $ih:t
produces
/afic /a/bt
and does notdo what you mightexpect.

Finally, we note that the number sign character (#) lexically introduces a C~sheil
comment in C— shell scripts (but not from the terminal). All subsequent characterson
the input line after a number sign are discarded by the C—shell. This charactercanbe
quoted using ™" or "argument word.

10-14

The C~-Sbelk

10.14 Using Other Control Structures

The C—shell also has control structures while and switch similar tothose of C. These
take the forms
while (expression)
commands
end
and

switch (word)

case strl:
commands
breaksw

commands
breaksw

defauh:
commands
breaksw

endsw

For details see the manual section foresh(CP). Cprogrammers should notethat weuse
breaksw to exit from a switch while break exits a while or foreach loop. A common
mistake tomake in C— shell scriptsistousc break ratherthan breakswin switches.
Finally, theC—shell allows agotostatement, with labels looking like they do inC:

foop:
commands

goto loop
10.15 Supplying Input to Commands

Commands run from C—shell scripts receive by default the standard input of the C—
shell which is running the script. It allows C—shell scripts to fully participate in
pipelines, butmandates extra notationfor commandsthat are totake inline data.

Thus we need a metanotation for supplying inlinc data to commands in C—shell
scripts. Forexample, consider this script which runsthe editorto delete leading blanks
fromthe linesineachargument file:

1015

XENIX User’s Guide

deblank — — remove leading blanks
foreach i (Sargv)

ed — $i << ' EOF

1,85 Jo

w

q
'EOF
end

The notation
<< 'EOF

means that the standard input for the ed comunand is to come from the text in the C—
shell script file up to the next line consisting of exactly EOF. The fact that the EOF is
enclosed in single quotation marks (), i.c., it is quoted, causes the C—shell to not
perform variable substitution on the intervening lincs. In general, if any pan of the
word following the ‘< <** which the C—shell usestoterminate the text tobe givento
the command is quoted then these substitutions will not be performed. In this case
since we used the form ““1,$°" in our editor script we needed to insure that this dollar
sign was not variable substituted. We could also have insured this by preceding the
dollarsign ($) withabackslash(\),i.e.:

s o

Quoting the EOF terminator isamorereliable way of achicvingthe same thing.
10.16 Catching Interrupts

1f our C— shell script creates temporary ﬁ!cs; we may wishtocatch intermuptions of the
C—shell script sothat wecancleanup these files. Wecanthendo
onintr label

where label is a label in our program. If an interrupt is received the C—shell willdoa
‘“‘goto label’* and we canremove the temporary files, thendo anexit command (which
is built in to the C—shell) to exit from the C—shell script. If we wish to exit with
NONZEro Status we can write '

exit (1)
toexit withstatus 1.

10.17 Using Other Features

There are other features of the C— shell useful to writers of C—shell procedures. The
verbose and echo options and the related —v and —x command line options can be
used to help trace the actions of the C—shell. The —noption causesthe C—shell only
toread commands and nottoexecute themand may sometimesbe ofuse.

One other thing to note isthat the C—shell will not execute C—shell scripts that donot
begin with the number sign character (#), that is C— shell scripts that do not be gin with
acomment.

There isalso another quotation mechanism using the double quotation mark (7), which
allows only some of the expansion mechanisms we have so far discussed to occuron

10-16

The C—Shell

the quoted string and servesto make this string into a single word asthe single quote (*)
docs

10.18 Starting a Loop at a Terminal

1t is occasionally useful to use the foreach control structure at the terminal to aid in
performing a number of similar commands. For instance, if there were three shells in
usc onaparticular system, /bin/sh ,/bin/nsh, and/bin/c sh, you could count the number
of personsusing cach shellby using the following commands:

grep —c csh$ /etc/passwd
grep —c nsh$ /etc/passwd
grep —c —v sh$ /etc/passwd

Since these commands are very similar wecanuse foreach to simplify them:

$ foreach i (csh$’ 'nsh$’ *—v sh$’)
? grep —c $i /etc/passwd
?end

Note here that the C—shell prompts for input with *‘? ** when reading the body of the
foop. Thisoccursonly whenthe foreachcommandisenteredinteractively.

Also useful with loops are variables that contain lists of filenames or other words. For
example, examinethe following terminal session:

% set a=(‘ks)

% echo $a

csh.n csh.mm

% Is

csh.n

csh.rm

% echo $#a

2

The set command here gave the vanable “‘a’* a list of all the filenames in the current
directory as value. We can then iterate over these names to perform any chosen
function.

The output of acommand withinback quotationmarks (*) is convertedby the C—shell
to a list of words. You can also place the quoted string within double quotation marks
(")totake each (nonempty) line asacomponent of the variable. This preventsthe lines
from being split into words at blanks and tabs. A modifier :x exists which can be used
later to expand each component of the variable into another variable by splitting the
original varizble into separate words at embedded blank s and tabs.

10.19 Using Braces with Arguments

Another form of filename expansion involves the characters, **!"* and **!”’. These
characters specify that the contained strings, separated by commas (,) arc to be
consecutively substituted intothecontaining charactersand the resultsexpanded ke fito
right. Thus

A'strl,str2,...strniB

10-17

XENIX User’s Guide

cxpandsto
AstriB Asu2B ... AstmB

This expansion occurs before the other filename expansions, and may be applicd

recursively (i.¢., nested). The results of each expanded string are sorted separately,
lefi to right order being preserved. The resulting filenames are not required to exist if
no otherexpansionmechanisms arc used. This meansthat thismechanism canbeused

to generate arguments which are not filenames, but which have common parts.

Atypicaluse of this would be
mkdir 7*hdrs,retrofit,csh}

to make subdirectories hdrs, retrofitand cshinyourhome directory. Thismechanism
is most useful whenthe commonprefix is longer thaninthisexample:

chown root /usi/demo/'filel, file2,...)
10.20 Substituting Commands

A command enclosed in accent symbols (*) is replaced, just before filenames are
expanded, by the output from that command. Thus, itispossibletodo

set pwd="pwd*
to save the current directory in the variable *‘pwd”* ortodo
vi ‘grep =1 TRACE *.c¢*

to run the editor vi supplying as arguments those files whose names end in .c which
have the string “TRACE’" in them. Command expansion also occurs in input
redirected with * < <'* and within quotationmarks (”). Referto csh(CP) inthe XENIX
Reference Manual formore information.

10.21 Special Characters

Thefollowingtable liststhe special charactersof csh and the XENIX system. A number
of these characters also have special meaning in expressions. See the csh manual
section foracomplete list.

Syntactic metacharacters

H Separatescommandsto beexecuted sequentially
i Separatescommands in apipeline

() Bracketsexpressionsand variable values

& Followscommandstobe executed without waiting forcompletion
Filename metacharacters
/ Separatescomponentsofafile’spathname

10-13

The C- Shell

Separatesroot partsofa filename from extensions
? Expansioncharactermatching any single character
* Expansioncharactermatching any sequence of characters
[| Expansionsequencematchingany single character fromasetof characters

- Used atthe beginning of afilename toindicate home directorics

i Usedto specify groupsof arguments with commonpans

Quotation metacharacters

\ Preventsmeta—meaning of following single character

* Preventsmeta—meaning of a group of characters
Like*, butallows variable and command expansion

Input/output metacharacters

< Indicatesredirectedinput

> Indicatesredirccted output

Expansion/SubstitutionMetacharacters

s Indicates variable substitution

! Indicateshistory substitution
Precedes substitutionmodifiers

Used inspecial formsofhistory substitution

¢ Indicates command substitution
Other Metacharacters
Beginsscratch filenames; indicates C—shellcomments

- Prefixesoption(flag) argume ntsto commands

10-19

Chapter 11
Using The Visual Shell

11.1 Whatisthe VisualShell? 1

11.2 GettingStarted withthe VisualShell 1
11.2.1 Enteringthe VisualShell 1
11.2.2 GettingHelp 2
11.2.3 Leavingthe VisualShell 2

11.3 The Visual ShellScreen 2
11.3.1 StatusLine 2
11.3.2 MessageLine 2
11.33 MainMenu 2
11.34 CommandOptionMenu 3
11.35 ProgramOutput 3
11.3.6 ViewWindow 3

114 VisualShellReference 5
11.4.1 VisualShell DefaultMenu 5
114.2 Options 6
1143 Prim 7
1144 Quit 8
1145 Run 8
11.4.6 View 8
11.4.7 Window 8
1148 Pipes 9
1149 Count 9
11.4.10 Get 9
11.4.11 Head 9
114.12 More 9
114.13 Run 10
11.4.14 Sort 10
11.4.15 Tail 10

Using The Visual Sheil

11.1 What is the Visual Shell?

The Visual Shell vsh is a menu—driven XENIX shell. This chapter describes the use
and behavior of the vsh. This chapter assumes that the reader is familiar with some
“general XENIX concepts, specifically the structure of XENIX filesystems and the nature
of a XENIX ‘command’. No familiarity with any other shell, however, is assumed. 1f
you are a first—time user of the Visual Shell, please completely read the narrative
sectionsof thischapter.

A ‘shell’ is a program which passes a command to an operating system, and displays
the result of running the command. The XENIX shells can also create ‘pipelines’ for
passing the output of one command to another command or ‘redirect’ the output into a
file.

The other XENIX shells available are sh and csh. Thesc shells are called
‘command-— line ariented’ shells. This means that the user enters commands one line
at atime. The sh and csh shells are full computer languages which require study and
some programming knowledge to use effectively. These command—line shells are
powerful and cfficient.

The vshis a ‘menu—oricnied’ shell. In a menu—oriented shell, the user is giventhe
available commands, or some of the available commands. The user can run the
command, by selecting fromthememu.

The Visual Shell is a good shell for users who may not want to master a programming
languageright away just touse XENLX or a specfic XENLX application. All Visual Shell
users should additionally become familiar with some command—line shellusage.

Users familiar with command—line shells are in for a pleasant surprise if theytry the
Visual Shell. Experienced users will appreciate the cfficiency and versatility of the
Visual Shell. The distinction is very much akin to the difference between a line—
oricntedtext editor and a full — screeneditor.

A menu shell canbe used effectively with very little study. Onthe other hand, amenu
shell can also restrict the user from using the operating system in creative, possibly
more efficient ways. The Microsoft Visual Shell strikes a balance in thisregard. The
Visual Shell isdesignedtodoall of the thingsthat the command - line shellscando.

11.2 Getting Started with the Visual Shell

This section describes how to enter, obtainhelp about, and leave the visual shell. This
sectionalsodescribes what you will see onthe screen while running the visual shell and
howthemems work.

Note the following convention for specifying keystrokes. CTRL refers to the CTRL

shift key. CTRL ~Cmeans pressing the CTRL and ‘c’ keysat the sametime. ALT refers
to the ALT shift key. ALT-H means pressing the ALT and ‘H’ keys at the same time.

Nate the irrelevance of case inentering Menu Selectioncharacters. Forinstance, press
either ‘Q’ or *q’ torunthe *‘Quit’’ command from the mainmenu.

11.2.1 Entering the Visual Shell

11-1

XENIX Operations Guide

Log into XENIX If you are not sure how to log in, consult the Operations Guide or
have someone knowlegeable about XENIX help you. When you have a shell prompt
(typically ‘$’ or ‘%), the operating system is waiting for a command. Enter the
command:

vsh

and pressRETURN.
11.2.2 Getting Help

If at anytime you are not sure what to do, either run the ‘‘Help’* Menu Selection or
press ALT—H. Refer to the reference section of this chapter for information about the
Helpcommand.

11.2.3 Leaving the Visual Shell

To exit the Visual Shell select the Quit command from the main menu. The simplest
way to do this is to simply press ‘q’ or ‘Q’. 1n response to the prompt *‘Type Y to
confirm”’, enter ‘y’ or ‘Y’. 1f you don’t want toexit the Visual Shell yet (perhaps you
pressed ‘q’ by mistake), enter any other character but ‘y’ or ‘Y'. If you have invoked
the visual shell from another shell, as described above, you will need to log out from
XENIX by entering CTRL—D or ‘logout’ and pressing RETURN. ifthe Visual Shell is
yourdcfault shell, you willautomatically be logged out.

11.3 The Visual Shell Screen -

11.3.1 Status Line

The bottom line on the screen is called the ‘status line’. The status line displays the
name of the current working directory, notifies you if you have mail, and gives the
date, time and the name of the operating system.

11.3.2. Message Line

The line above the ‘status line’ is calledthe ‘message line®. The message line displays
special output from XENIX commands, such aserrorreports.

11.3.3 Main Menu

The next section of the screen above the message line is the ‘mainmenu’. The main
menu displays aselectionofuseful XENIX commands.

The currently selected menu command is highlighted on the screen. To sclect any
command, press the SPACE BAR. The next highlighted command is selected. The
BACKSPACE key will move to the previous command. Move through the menu until

11-2

Using The Visual Shell

youhave found the commandyou want. Torunthe currently selected command, press
RETURN.

You may also enter the first lctter of a command to select that command. If you enter
the first letter of the command, you donotneedtopressRETURN.

1fyou enteraletter which docs not correspond toa menu selection, the message
Not a valid option
willbe displayed. Try another option.

11.3.4 Command Option Menu

When you have sclected a command, the mainmenu will be replaced with a command
option menu. The command option menu givesthe options available with the specific
command. You must fill in the options with appropriate responses.

1f you wish to return to the main menu without running the command, press CTRL~C,
{(cancel). If you want torunthe command with the selected options pressRETURN.

The following keystrokesallow editing of optionresponses.

CTRL-],CTRL-A,or‘tab’ Movetonextfieldinoptionsmenu.

CTRL-YorDEL Deletecharacterundercursor.

CTRL-L Move cursortocharaciertoright of current position
incurrentoptionficld.

CIRL~K Move cursorto charactertoleft of current position
incurrent option ficld.

CTRL-P Move cursorto word in current fieldtorightofthe
current word.

CTRL—-O Movecursorto wordincurrent ficldtoleft of the
current word.

11.3.5 Program Output

While running a command, commands given and output (unless redirected) will be
displayed above the menu and below the view window. The output scrolls up: moves
from bottom totop. Lines scrolling offthetop of theoutput window disappear.

Visual Shell command lines are listed with each argument preceded by the number in
the argument list enclosed in parentheses. The command is named in the output
window by the menu command. Hence, if you run the command /binls with the
argument — R, the output window will display the command line as follows:

Run (1) Mbin/ls (2) —R
To change the command linc format to reflect the actual XENIX command line
gencratedby the Visual Shell, use the Options Outputmenu command.
11.3.6 View Window

A mem of currently accessible files and directories can be displayed at the top of the

-3

XENIX Operations Guide

screen in alphabetical order, feft to right, top to bottom. Note that this display is the
same as that obtained using the view command. This will be referred to asthe ‘view
window’ inthis chapter. 1f the directory list is larger thanthe current window size, you
may scroll through using the key commands givenbelow. To reset the window size,

uscthe ‘Window" mainmenu command.

The currently selecteditemishighlighted inthe view window. Use the arrowkeys and
other key commands given at the end of this section to move the highlight around the
window.

If adirectory is being listed, subdirectories are shownenclosed in square brackets. To
view a subdirectory, press ‘=" while the directory is highlighted. To return to the
previous directory after viewing a subdirectory, press *—°. The parent directory of the
current directory is shown as {..|". The current directory is shownas . |'. Exccutabic
files are preceded by an asterisk. The last modification date of the currently selected
item is given at the right margin of the last line of the window. The name of the item in
vicw inthe current window is givenin the upperright —handcomer of the window.

The view window may also display contents of files. Highlight a file, and press ‘=",
You may scroll through the file using the key commands given below. While viewing
afile, thehighlighted areacoversone line.

1fyou press =" whileanexecutable file ishighlighted, that file willbe run.

If the Visual Shell requires a file or directory name, the cun'enxly selected View
Window item can be automatically entered inthe relevent option field by pressing any
directional movement key following sclection of the command. This method saves
keystrokes and reduces the chance of making typing mistakes. On the other hand, if
you wish to explicitly erter a file or directory in an option ficld, type in the name afier
selectingthecommand.

Usethesekeystrokestoselect files fromthe view window:

WINDOWMOTIONKEYS
CTRL-Q Moveto start (first item alphabetically) of view window.
CTRL~-Z Movetoend(last item alphabetically) of view window.

CTRL-RCTRL-E Scroll view windowup.
CTRL-RCIRL-S Scroll view window down.
= View indicated item, cither file or directory.
Ifno view window ispresent, the current working directory
isdisplayed.
- Return window display toparent directosy of
currertly listeddirectory.
Ifviewingafile, exit from viewing that file.
Last view window isreturnedto.

11-4

Using The Visval Shef)

DIRECTIONALMOVEMENTKEYS
ARROWUPOrCTRL-E: Movehighhghtupin view window.
ARROWDOWNOrCTRL-X: Movchighlightdownin view window.
ARROWLEFT orCTRL -S: Move highlight left in view window.
ARROWRIGHTorCTRL-D: Movehighlightrightinview window.

Movement beyond the left or right margin will proceedto the nextitem onthe previous
or next line unless at the edge of the view window. Movement beyond the top or
bottom edge of the current window will scroll the view window up or down if there are
more itemsinthat direction in the view window.

Nate that there are two ways tomove thehighlight around. Eitheruse the keypad arow
keys ortheclusterof four keysonthe farleft of thekeyboard ‘e’, ‘x’, ‘s’, and ‘d’ shified
withCTRL.

While viewing a file, the directional movement keys forup and left move thehighlight
up, andthe keys for down and right move the highlighted line down.

11.4 Visual Shell Reference

11.4.1 Visual Shell Default Memu

This section describes the default Visual Shell menu commands and options. The
menuoptionsare displayed at the bottomof the screen above the statusline.

To invoke a command, move the highlight forwards through the main menu using the
space bar or the tab key, or backwards using the backspace key. Or simply press the
first letter of the command.

Most commands require entering options. Move the cursor to the field using the
SPACE BAR, TAB key or BACKSPACE key, and type your response. To edit the
options, refer to the key commands listed above in the section in this chapier labelled
‘‘Command Option Menu™*. To select an item from a View Window listing for
insertionina field, refertothe sectioninthischapter labelled ** View Window™*.

Note that some options have ‘switches’ with predefined (default) selections. The
currently sclected switch setting is highlighted. The default is the parenthesized
setting. Forinstance, inthe switch:

Recursive: (yes) no

the defauht is recursive. Tochange a switch, sclect the ficld and press the SPACE BAR
orBACKSPACE.

Copy

The Copy command can copy files and directorics. Tocopy afile, select * ‘File’” from

the options, to copy adirectory, select *‘Directory”’. A sub—menu willappear. Enter
the file or directory you wish copied in the from: ficld. Enter the file or directory you

wish copied tothe to: field. Note that if the item in the ro: field atready exists, it will be
overwritten, sobe careful.

The Copy Directory sub—menu has a switch ‘‘recursive’”. 1fthis switch issettoyes,
all sub— directories and their contents below the specified directory will be copied.

-3

XENIX Operations Guide

Delete

The Delete command can remove files and directories. 1n the DELETE name: field
enter the name of the file or directory you want to remove. Note that once the file or
directory is deleted, the contents are gone forever uniess you have another copy, sobe
careful.

Edit

The Edit command invokes the full—screen editor vi. The current directory will be
displayed inthe output window. Enter in the option field EDIT filename: the name of
the fileyou wishtoeditusing vi.

To learn vi, consult the document ‘*vi: a Screen Editor®” inthe XENIX User's Guide,
and the vi(C) manual page in the XENIX Reference. A vi reference card is also
available.

Help

The Help command (also available by pressing ALT ~H at any time), can give on—line
help regarding many aspects of Visual Shell use. The view window will display the
help file. Use the menu to select the topic you need help with. For instance, move the
highlight to ‘Keyboard’ using the SPACE BAR and press RETURN to view the help file
starting at the ‘Keyboard’ section. The ‘Next’ and ‘Previous’ fields in the menu will
scroll through the the help file from the present location one screen at a time. Your
work will remain undisturbed. To retum from Help, press CIRL~C or select the
‘Resume’ menu option.

Mail
The Mail command enters the XENIX mail system. There are two options: “‘Send”’

and ‘‘Read’’ For more information about mail, refer to the section of the XENIX Users
Guidetitled*‘Mail’’ orrefertothe mail(C)manualpage.

Name
The Name commandrenames anexisting file ordirectory. Therearetwoficlds, From:

and To:. Enter the name of the file or directory you want to rename in From: and the
newnameinZo:

11.42 Options

The Options Main Menu Selection provides four sub—menus. These sub—menusrun
commands which typically are used infrequently or which have irrevocableresults.

DirectoryOption
The Directory commandhastwo sub—menus, Make and Usage.

Make Directory Option This command creates a new disectory named what you
enterinthe name: field.

UsageDirectory Option Counts the number of diskblocks inthe directories specified
inthe name: ficld. The format is the same as the XENIX command Is —s. Refertothe
manual pagels(C).

11-6

Using The Visual Shell

FileSystem Option

FileSystem has the five sub—menus: Create, FilesCheck, SpaceFree, Mount and
Unmount.

Create FileSystem Option Create FileSystem makes a XENIX filesystem. The
Create command performs radical system maintenance and may have imrcvocable
effects. Care isadvised whenusing Create FileSystem.

The functionality is the same as mkfs(C). Consult the mkfs(C) manuat page before
running Create FileSystem. Create FileSystem will prompt you for device, block size,
gap number and block number. Refer to the XENIX Operations Guide chapter on

*“Using File Systems™’. The section **Creating & File System”* also explains this
command.

FilesCheck FileSystem Option FilesCheck checks the consistency of a XENIX
filesystem and attempts repair if damage is detected. The FilesCheck command
performs radical system maintcnance and may have irrevocable effects. Care is
advised whenusing FilesCheck.

The functionality is the same as fsck(C). Consuk the fsck(C) manual page before
running FilesCheck. FilesCheck will prompt you forthe device to check.

OutputOption

The Output Option command has one switch, commands like: VShell XENIX'® . The
default is VShell. IF VShell is set, the vsh form of commands given appear in the
upward scrolling output window. 1f XENIX is specified, the XENIX command linc
which vshgenerated will be shown instead.

Permissions Option

The Permissions Option command allows changing the access permissions on files
and directories. The functionality isthe same asthe chmod(C) command. Consuk the
chmod manualpageif you do not understand the concept of XENIX permissions.

In the name: ficld enter the name of the file or directory you wish to aker the
permissionson. Youmay only alter the permissions on files and directorics you own.
Thereare fourswitches, who: ,read: ,write: ,andexecute: .

The who: switch has four settings, All, Me, Group and Others. Allisthe defaul. All
refers to yourself, those with the same group id as yourself and others. Me refers to
yourself. Grouprefersandall others with your group id. Othersreferstothose outside
your group.

Theread, write and execute switches have twosettings, yesandno. The defauh isyes
forMe, and no for Groupand Others . This grants the giventype of permissionto those
specified in the who: switch. No takes away the giventype of permission from those
specifiedinthe who: switch.

1143 Print

The Print command puts a file or filesin the queue for your lincprinter. Inthe filename:
option ficl, enterthe file or files you wanttoprint.

1n-7

XENIX Operations Guide

11.4.4 Quit

The Quit command exits the Visual Shell. The only option is Enter Y 1o confirm: .
Enter'Y' or 'y’ if yourcally wanttoquit. Any otherkey cancelsthequit.

11.4.5 Run

The Run command executes a program or shell script. The name: option takes the
name of an exccutable file. Inthe parameters: option field enter flags to pass to the
executable file. The owrput: option can specify a file to redirect output to or another
program to send the output to. Enter a vertical bar *i° in the output field to use the pipe
menu.

It is also possible to run an executable file by highlighting the name of the file inthe
View Window and pressing ‘=".

11.4.6 View

The View command allows you to inspect without akering the contents of files and
directorics. View is also available at any time for an item highlighted in the View
Window by pressing ‘=". See the section above labelled ‘View Window* for the
detailsofusing View.

To alter the height and characteristics of the View Window, use the ‘Window’ menu
option. Seethe sectionbelow labelled *“Window*'.

If you have invoked View from the menu, enter the name of the file or directory you
wishto view inthe VIEW name:. ficld, or select fram a directory view window.

To return from any View action tothe previously displayed View Window, press the
minuskey ‘—°.
If you View a non—cxecutable binary file, non—ascti characters are displayed as the
character‘@".

11.4.7 Window

The Window command altersthe height and redraw characteristics of the Visual Shell
View Window.
The
WINDOW redraw: Yes (No)
switchturnsonor offredraw of the view window afterrunning acommand.

The heightinlines: field changes the number of lines displayed in the view window.
The minimum window height is | lines. The default window height is 5 lines. The
maximum window heightis 1 S lines.

»

Using The Visual Shdcll

11.48 Pipes

XENIX allows output from one program to be passed to another program or tobe put in

afile. Thisiscalled *piping’ or ‘pipelining’. Ifthcoutputisplacedinafileitis saidtobe
‘redirected’. Pipingissuppontedinthe Visual Shellthrough the pipemenu.

The Pipe menu is invoked by entering a vertical bar ‘I° character in any option ficld
named outpus: . For instance, the Run main menu and the Pipe menu itself have an

output: field. The available Pipe menu commands are Count, Get, Head, More, Run,

Sortand Tail. Each Pipe menu sub—command alsohas an outpu: field, which allows

construction of pipelinesof arbitrary length.

11.4.9 Count

Count counts words, lines and characters in the input pipe. The default is all of the
above. There is a switch for cach type of item to count. The Count Pipe Menu option
corresponds to the XENIX command we. Consult the manual page we(C) for the
functionality.

11.4.10 Get

Get looks for patterns in the input pipe. The pattern may be verbatim, or you may
specify a ‘‘regular expression’ to look for. Regular expressions may contain
‘wildcard’ characters which represent sets of strings. Consubt the manual page
grep(C) forthe available wildcard characters.

The first Get switch is Unmatched (Yes) No . 1f you specify Yes (the default), all lines
containing the given pattern will be output. If Unmatched is set to off, all lines nat
containingthe givenpattern will beoutput.

The second Get switch is ignore case: which suppresses the case while looking for the
regularexpression. Thedefaultisoff.

The third Get switch is line numbers: , which reports the line in the input stream which
the regular expression was matched on. Thedefaultison.

11.4.11 Head

Head prints a specified number of lines of the input stream starting from the first line.
The lines: fieldmay be set to specify the number of lines at the head of the input stream
toprint. Thedefault is$ lines.

The Head Pipe Menu option corresponds to the XENIX command head. Consukt the
manual page bead(C) for the functionality.
11.4.12 More

More allows viewing an input stream onc screenat atime. The More Pipe Menu option
invokes the XENIX command more. Consult the manual page more(C) for the
functionality.

11-9

XEN1IX Opcrations Guide

11.4.13 Run

The Run Pipe Menu option allows the specification of any command not in the Pipe
menu. The functionality isthe same asthe Visual SheliMainMenu Optioa *‘Run’’.

11.414 Sort

The XENIX sort utility can be invoked through the Sort Pipe menu option. The input
stream is sorted.

The first Sort switch is order: < >. Select *>*, the default, to sort in ascending order.
Select ‘<’tosont indescending order.

The second Sort switch suppressesthe case of charactersinthe sort. Thedefaultisoff.
Thethird Sort switch sortsthe input stream assuming an initial numeric ficldinthe input
stream. 1f this switch is off, initial numbers will be sorted in ascii order, which means
that a line beginning with ‘10° will be output before the line beginning with ‘2°. The
defaultisoff.

The fourth Sort switch sortsthe input stream indictionary order, rather than asciiorder.

The Sont Pipe Menu option corresponds to the XENIX command sort. Consuht the
manual page sort(C) for the functionality.

11418 Tal

Tail prints a specified number of lines of the input stream up to the end of the stream.
The lines: field may be sct to specify the number of lines to print. The default is 15
lines.

The Tail Pipe Menu option corresponds to the XENIX command tail. Consult the
manual page tail(C) forthe functionality.

11-10

Appendix A
Ed

A.l Introduction A-1
A.2 Demonstration A-1

A.3 Basic Concepts A-2
A.3.1 TheEditingBuffer A-2
A.32 Commands A-2
A.33 LineNumbers A-2

A4 Tasks A-2
A.4.1 Entering and Exiting The Editor A-3
A.4.2 Appending Text:a A-3
A.43 WritingOutaFileew A-4
A.4.4 Leaving TheEditor:q A-5
A.4.5 Editing ANewFile:e A-6
A.4.6 ChangingtheFileto WriteQutto:f A-6
A.47 ReadinginaFile:r A-7
A.4.8 DisplayingLinesOn The Screen:p A-8
A.49 Displaying The CurrentLine:dot(.) A-10
A.4.10 Deleting Lines:d A-12
A.4.11 Performing Text Substitutions:s A-13
A.4.12 Searching . A-15
A.4.13 Changing and Inserting Text:candi A-19
A.4.14 MovingLines:m A-20
A.4.15 Performing Global Commands: gandv A-22
A.4.16 Displaying Tabs and Control Characters:1 A-24
A.4.17 Undoing Commands:u A-25
A.4.18 Marking Your SpotinaFile:k A-25
A.4.19 TransferringLines:t A-26
A.4.20 Escaping to the Shell:! A-26

A.5 Context and Regular Expressions A-27
A5.1 Period:(.) A-28
A.5.2 Backslash: \ A-30

A.5.3 DollarSign:$ A-32

A.5.4 Caret:” A-33

Ab55 Star:* A-33

A.5.6 Brackets:[and] A-36

A.5.7 Ampersand:& A-37

A.5.8 Substituting NewLines A-38
A.5.9 JoiningLines A-39

A.5.10 RearrangingaLine: \(and\) A-39

A.6 Speeding Up Editing A-40
A.6.1 Semicolon:; A-42
A.6.2 Interruptingthe Editor A-44

A.7 Cutting and Pasting with the Editor A-44
A.7.1 Inserting OneFileInto Another A-44
A.7.2 Writing OutPartofaFile A-45

A.8 Editing Scripts A-46

A.9 Summary of Commands A-47

Ed

A.1 Introduction

Ed is a text editor used to create and modify text. The text is normally a
document, a program, or data for a program, thus edis a truly general purpose
program. Note that the line editor ez, available with other XENIX packages is
very similar to ed, and therefore this chapter can be used as anintroduction to
ezaswellasto ed.

A.2 Demonstration

This section leads you through a simple session with ed, giving you feel for
how it is used and how it works. To begin the demonstration, invoke ed by

typing:
ed

This invokes the editor and begins your editing session. An asterisk ‘s
prompts for commands to be entered. Initially, you are editing a temporary file
that you can later copy to any file that you name. This temporary file is called
the “‘editing buffer,” because it acts as a buffer between the text you enter and
the file that you will eventually write out your changes to. Typically, the first
thing you will want to do with an empty buffer is add text to it. For example,
after the prompt, type:

3

this is line 1

this is line 2

this is line 3

this is line 4

CNTRL-D

This “appends” four lines of text to the buffer. To view these lines on your
screen, type,

1,4p

where the *‘1,4” specifies a line number range and the p command “prints’ the
specified lineson the screen.

Now type
%p
toview line number two. Next type just

P

This prints out the current line on the screen, which happens to be line number

A-1

XENIX User's Guide
two. By default, most edcommandsoperate ononly the currentline.

A.3 Basic Concepts

This section illustrates some of the basic concepts that you need to understand
toeffectively use ed.

A.3.1 The Editing Buffer

Each time you invoke ed, an area in the memory of the computer is allocated on
which you will perform all of your editing operations. This area is called the
“editing buffer””. When you edit a file, the file is copied into this buffer where
you will work on the copy of the original file. Only when you write out your file
doyouaffect the original copy of the file.

A.3.2 Commands

Commands are entered by typing them at your keyboard. Like normal XENIX
commands, entry of a command isended by typing a NEWLINE. After you type
NEWLINE the command is carried out. In the following examples, we will
presume that entry of each command is completed by typing a NEWLINE,
although this will not be explicitly shown in our examples. Most commandsare
single characters that can be preceded by the specification of aline number or a
line number range. By default, most ecommands operate on the “current line”,
described below in the section on “Line Numbers’”. Many commands take
filename or string arguments that are used by the command when it is
executed.

A.3.3 Line Numbers

Any time you execute a command that changes the number of lines in the
editing buffer, ed immediately renumbers the lines. At all times, every line in
the editing buffer has a line number. Many editing commands will take either
single line numbers or line number ranges as prefixing arguments. These
arguments will normally specify the actual lines in the editing buffer that are to
be aflected by the given command. By default, a special line number called
‘““dot’’ specifies the currentline.

A.4 Tasks

This section discusses the tasks you perform in everyday editing. Frequently
used and essential tasks are discussed near the beginning of this section.
Seldom-used and special-purpose commands are discussed later.

Ed

A.4.1 Entering and Exiting The Editor
The simplest way to invoke edisto type:
ed
The most common way, however, is to type:
ed filename
where filename is the name of a new or existing file.

Toexit the editor, all you need to doistype:

q

If you have not yet written out the changesyou have made to your file, edwarns
you that you will lose these changes by printing the message:

?

If you still want to quit, type another q. In most cases you will want to exit by
typing:

w
q

so that you first write out your changes and only then exit the editor.

A.4.2 Appending Text: a

Suppose that you want to create some text starting from scratch. This section
shows you how to put text in a file, just to get started. Later we’ll talk about
how to changeit.

When you first invoke ed, it is like working with a blank piece of paper—there
is no text or information present. These must be supplied by the person using
ed, usually by typing in the text, or by readingitin from a file. We will start by
typing in some text and discuss how to read files later.

In ed terminology, the text being worked on is said to be *‘kept in a buffer”.
Think of the buffer as a workspace, or simply as a place where the information
that you are going to be editing is kept. In effect, the buffer is the piece of paper
on which you will write things, make changes, and finally file away.

You tell edwhat to do to your text by typing instructions called *commands”.

Most commands consist of a single letter, each typed on a separate line. Ed
prompts with an asterisk (). This prompting can be turned on and off with the

A3

XENIX User's Guide

prompt command, P.

The first command we will discuss is append (a) written as the letter “a” on a
line by itself. It means “‘append (or add) text lines to the buffer, as they are
typedin.” Appending is like writing new material on a piece of paper.

To enter lines of text into the buffer, just type an “a”, followed by aRETURN,
followed by the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

To stop appending, type a line that contains only a period. The period (.) tells
ed that you have finished appending. (You can also use CNTRL-D, but we will
use the period throughout this discussion.) If edseems to be ignoring you, type
an extra line with just a period (.) on it. You may find you've added some
garbage lines to your text, which you will have to take out later.

After appendingiscompleted, the buffer contains the following three lines:

Now is the time
for all good men
to come to the aid of their party.

Theaand. aren’tthere, because they are not text.

To add more text to what you already have, type another a command and
continue typing your text.

If you make an error in the commands you type to ed, it will tell you by
displaying the message:

?
error message

A.4.3 Writing Out a File: w

You will probably want to save your text for later use. To write out the
contents of the buffer into a file, use the write (w) command followed by the
name of the file that you want to write to. This copies the contents of the buffer
to the specified file, destroying any previous contents of the file. For example,
tosave the text in a file named tezt, type:

w text

Ed

Leave a space between w and the filename. Ed responds by printing the
number of characters it has written out. For instance, edmight respond with

68

(Remember that blanks and the newline character at the end of each line are
included in the character count.) Writing out a file just makes a copy of the
text—the buffer’s contents are not disturbed, so you can go on adding text toit.
If you invoked ed with the command “ed filename’’, then by default a w
command by itself will write the buffer out to filename.

Thisis an important point. Edat all times works on a copy of a file, not the file
itself. No change in the contents of a file takes place until you give a w
command. Writing out the text to a file from time to time asit is being created
is a good idea. If the system crashes or if you make some horrible mistake, you
will lose all the text in the buffer, but any text that was written out to a file is
relatively safe.

A.4.4 Leaving The Editor: q

To terminate a session with ed, save the text you're working on by writing it to
afile using the w command, then type:

q

The system responds with the XENIX prompt character. If you try to quit
without writing out the file ed will print

?
At that point, write out the text if you want to save it; if not, typing another
*q"” will get you out of the editor.
Exercise
Enter edand create some text by typing:
a
... text ...
Write it out by typing:
w filename

Thenleave edby typing:

XENIX User’s Guide

q

Next, use the cat command to display the file on your terminal screen to see
that everything hasworked.

A.4.5 Editing A New File: e

A common way to get text into your editing buffer is to read it in from a file.
This is what you do to edit text that you have saved with the w commandina
previous session. The edit (e) command places the entire contents of a file in
the buffer. If you had saved the three lines ‘‘Now is the time”, ete., witha w
command in an earlier session, the edcommand

e text
would place the entire contents of the file teztinto the buffer and respond with
68

which is the number of charactersin tezt. If anything is alreadyin the buffer, it
18 deleted first.

If you use the e command to read a file into the buffer, then you don’t need to
use a filename after a subsequent w command. Edremembers the last filename
used in an e command, and w will write to this file. Thus, a good way to operate
is this: ’

ed

e file

[editing scesion)
w

q

This way, you can type w from time to time and be secure in the knowledge that
if you typed the filename right in the beginning, you are writing out to the
proper file each time.

A.4.6 Changing the File to Write Out to: f

You can find out the last file written to at any time using the file (f) command.
Just type f without a filename. You can also change the name of the

remembered filename with f. Thusa useful sequenceis

ed precious
f junk

which gets a copy of the file named precious, then uses f to save the text in the
file junk. The original file will be preserved as precsous.

A-8

A.4.7 Reading in a File: r

Sometimes you want to read a file into the buffer without destroying what is
already there. This function is useful for combining files. This is done with the
read (r) command. The command

r text

reads the file tezt into your editing buffer and adds it to the end of whatever is
already in the buffer. For example, pretend that you have performed a read
after an edit:

e text
r text

The buffer now contains two copies of tezt (i.e., six lines):

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, after the reading operation is complete r prints
the number of charactersread in.
Exercise

Experiment with the e command by reading and printing various files. You
may get the error message

Tname
cannot open input file

where name is the name of a nonexistent file. This means that the file doesn’t
exist, typically because you spelled the filename wrong, or perhaps because you
do not have permission to read from or write to that file. Try alternately
reading and appending to see how they work. Verify that the command

ed file.text
isequivalent to

ed
e file.text

XENIX User’s Guide

A.4.8 Displaying Lines On The Screen: p
Use the “print”(p) command to print the contents of the editing buffer (or
parts of it) on the terminal screen. Specify the lines where you want printing to

begin and where you want it to end, separated by a comma and followed by the
letter “p”. Thus, to print the first two lines of the buffer (that is, lines 1 through

2) type:
1,2p
Edrespondswith:

Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use “‘1,3p” as
above if you knew there were exactly 3 lines in the buffer. But you will rarely

know how many lines there are, so ed provides a shorthand symbol for the line
number of the last line in the buffer—the dollar sign($). Use it this way:

1,8p
This will print all the lines in the buffer (from line 1 to the last line). If you want
to stop the printing before it is finished, press the INTERRUPT key. Ed then
displays

?
interrupt

and waits for the next command.

To print the lastline of the buffer, use:
$

You can print any single line by typing theline number, followed by a p. Thus
Ip

produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you can print any single line by
typing just the line number; there's no need to type the letter p. If youtype

Ed

$
edprints the last line of the bufler.
You can also use § in combinationslike
$-1.$p

which prints the last two lines of the buffer. This helps when you want to see
how far you are in your typing.

The next step is to use address arithmetic to combine the line numbers like dot

(.) and dollar sign ($) with plus (+) and minus (). (Note that ‘“dot is
shorthand for the current line, and is discussed in a later section.} Thus

$1

prints the next to last line of the current file (that is, one line before the line $).
For example, to recall how far you were in a previous editing session

$-5¢p

prints the last six lines. (Be sure you understand why it’s six, not five.) If there
aren’t six linesin the file, you'll get an error message.

The command
-3,.+3p

printsfrom three lines before the current line {line dot) to three lines after. The
plus(+) can be omitted:

~3,.3p
isidentical in meaning,.

Another area in which you cansave typing effort in specifying linesis to use plus
and minus asline numbers by themselves. For example

by itself is a command to move back one line in the file. In fact, you can string
several minus signs together to move back that many lines. For example

moves back threelines, as does

-3

A-¢

XENIX User’s Guide

Thus
-3,+3p
isalsoidentical to

?.-3p+3p

A.4.9 Displaying The Current Line: dot (.)
Suppose your editing buffer still contains the following six lines:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

If you type

1,3p
eddisplays

Now is the time

for all good men

to come to the aid of their party.
Try typing:

P
Thisprints

to come to the aid of their party.
which is the third line of the buffer. In fact, it is the last (most recent) line that
you have done anything with. You can repeat this p command without line
numbers, and edwill continue to print line 3.
This happens because ed maintains a record of the last line that you did
anything to (in this case, line 3, which you just printed) so that it can be used
instead of an explicit line number. The line most recently acted onisreferred to
with a period (.) and is called “dot’’. Dot is aline number in the same way that

dollar ($) is; it means ‘‘the current line”, or loosely, ‘‘the line you most recently
did something to”. You can use it in several ways. One possibility is to type:

A-10

.$p

This will print all the lines from (and including) the current line clear to theend
of the buffer. In our example these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p command
sets dot to the number of the last line printed. In the example above, p sets dot
to6.
Dot isoften used in combinations like this one:

+1
Or equivalently:

+1p

This means “print the next line”” and is one way of stepping slowly through the
editing buffer. You can also type

-1

This means “print the line before the current line”. This enables you to go
backwards through the file if you wish. Another useful command is something
like

~3,-1p
which prints the previous three lines.

Don’t forget that all of these change the value of dot. You can find out what dot
is at any time by typing:

Ed responds by printing the value of dot. Essentially, p can be preceded by
zero, one, or two line numbers. If noline number isgiven, edprintsthe “current
line”, the line that dot refers to. If one line number is given (with or without the
letter p), ed prints that line (and dot is set vhere}; and if two line numbers are
given, edprints all the lines in that range (and sets dot to the last line printed).

A-11

XENIX User's Guide

If two line numbers are specified, the first cannot be bigger than the second.
Pressing RETURN once causes printing of the next line. It is equivalent to:
+1p

Try it. Next, try typing a minussign (-) by itself; it is equivalent to typing

~1p

Exercise

Create some text using the a command and experiment with the p command.
You will find, for example, that you can’t print line 0 or aline beyond the end of
the buffer, and that attempts to print lines in reverse order using *‘3,1p” do not
work.

A.4.10 Deleting Lines: d

Suppose you want to get rid of the three extra linesin the buffer. Use the delete
(d) command. Its action is similar to that of p, except that d deletes lines
instead of printing them. The lines to be deleted are specified for d exactly as
they are for p. Thus, the command

4,$d

deleteslines 4 through theend. There are now three linesleft in our example, as
you can check by typing:

1,$p

Notice that $ now isline 3! Dot is set to the next line after the last line deleted,
unless the last line deleted is the last line in the buffer. In that case, dot is set to

Exercise

Experiment with the a, e, r, w, p, and d commands until you are sure that you
know what they do, and until you understand how dot (.), dollar ($), and line
numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a appends
lines after the line number that you specify (rather than after dot); that r reads
in a file after the line number you specify (not necessarily at the end of the
buffer); and that w writes out exactly the lines you specify, not the whole buffer.
These variations are sometimes useful. For instance, you can insert a file at the

A-12

Ed

beginning of a buffer by typing
Or filename
and you can enter lines at the beginning of the buffer by typing:
0a
[input tezt here]
Notice that typing
W

isvery different from typing

w
since the former writes out only a single line and the latter writes out the whole
file.
A.4.11 Performing Text Substitutions: s
One of the most important ed commandsis the substitute (8) command. Thisis
the command that is used to change individual words or letters within a line or

group of lines. It is the command used to correct spelling mistakes and typing
errors.

Suppose that, due to a typingerror, line 1 says:
Now is th time

The letter ‘‘e’’ has been left off of the word “the”. You can usesto fix thisupas
follows:

1s/th/the/

This substitutes for the characters ‘““th”, the characters *“the’’, in line 1. To
verify that the substitution has worked, type

P
toget
Now is the time

which is what you wanted. Notice that dot must be the line where the
substitution took place, since the p command printed that line. Dot is always

A-13

XENIX User'’s Guide

set this way with the s command.
The syntax for the substitute command follows:
[starting-line,ending-line]s/ pattern/ replacement/ cmde

Whatever string of charactersis between the first pair of slashesisreplaced by
whatever is between the second pair, in all the lines between starting-line and
ending-line. Only the first occurrence on each line is changed, however.
Changing everyoccurrence is discussed later in this section. The rules for line
numbers are the same as those for p, except that dot is set to the last line
changed. (If no substitution takes place, dot is not changed. This causes
printing of the error message:

?
search string not found

Thus, you can type

1,$s/speling/spelling/
and correct the first spelling mistake on each line in the text.
If no line numbers are given, the s command assumes we mean *“make the
substitution on line dot”, so it changes things only on the current line. This
leads to the very common sequence

s/something/something else/p
which makes a correction on the current line, then prints it to make sure the
correction worked out right. If it didn’t, you can try again. (Notice that thepis
on the same line as the s command. With few exceptions, p can follow any
command; noother multicommand lines are legal.)
It is also legal to type

s/string//
which means ‘‘change the first string of characters to nothing” or, in other
words, remove them. This is useful for deleting extra words in a line or
removingextra letters from words. For instance, if you had

Nowxx is the time
you could type

s/xx//p

to get

A-14

Now is the time

Notice that two adjacent slashes mean “no characters’, not a space. Theressa
difference.

Exercise

Experiment with the substitute command. See what happens if you substitute
awordon aline withseveral occurrencesof that word. For example, type:

a
the other side of the coin

.s/the/on the/p
Thisresultsin:
on the other side of the coin

A substitute command changes only the firet occurrence of the first string. You
can change all occurrences by adding a g (for “global”) to the s command, like
this:

of] I

Try using characters other than slashes to delimit the two sets of characters in
the s command-—anything should work except spaces or tabs.

A.4.12 Searching

Now that you've mastered the substitute command, you can move on to
mastering another important concept: context searching.

Suppose youhave the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains the word *‘their”, so that you
can change it to the word *‘the”. With only three lines in the buffer, it’s pretty
easy to keep track of which line the word *their” is on. But if the buffer
contained several hundred lines, and you’d been making changes, deleting and
rearranging lines, and so on, you would no longer really know what this line
number would be. Context searching is simply a method of specifying the
desired line, regardless of its number, by specifying a textual pattern contained
in the line.

A-15

XENIX User’s Guide

The way to say “search for a line that contains this particular string of
characters’ is to type:

/string of characters we want to find/

For example, the edcommand
[their/

is a context search sufficient to find the desired line—it will locate the next
occurrence of the characters between the slashes (i.e., “their’’). Note that you
do not need to type the final slash. The above search command is the same as

typing:
[their

The search command sets dot to the line on which the pattern is found and
printsit for verification:

to come to the aid of their party.
“Next occurrence’ means that ed starts looking for the string at line “.+1”,
searches to the end of the buffer, then continues at line 1 and searches to line
dot. (That is, the search “*wrapsaround” from $ to 1.) It scans all the linesin the

buffer until it either finds the desired line or gets back to dot. If the given string
of characterscan’t befoundin any line, edprintsthe error message:

?
search string not found

Otherwise, ed prints the line it found. You can also search backwards in a file
for searchstringsby using question marksinstead of slashes. For example

?thing?
searches backwardsin the file for the word “thing” as does
?thing

Thisis especially handy when you realize that the string you wantisbackwards
from the current line.

The slash and question mark are the only characters you can use to delimit a

context search, though you can use any character in a substitute command. If
you get unexpected resultsusing any of the characters

L8 e\ &

read Section A.5, “Context and Regular Expressions”.

A-16

Ed

You can do both the search for the desired line and a substitution at the same
time, like this:

/their/s/their /the/p
Thisyields:
to come to the aid of the party.

The above command contains three separate actions. The first is a context
search for the desired line, the second is the substitution, and the third is the
printing of the line.

The expression *ftheir /” is a context search expression. In their simplest form,
all context search expressions are like this—a string of characters surrounded
by slashes. Context searches are interchangeable with line numbers, so they
can be used by themselves to find and print a desired line, or asline numbers for
some other command, like s. They were used both ways in the previous
examples.

Suppose the buffer contains the three familiar lines
Now is the time
for all good men
to come to the aid of their party.
The edline numbers
[/Now/+1
[good/
[party/-1

are all context search expressions, and they all refer to the same line (line 2). To
make a change in line 2, you could type

[Now/+1s/good /bad/
or

/good/s/good /bad/

or

/party/-1s/good/bad/

A-17

XENIX User's Guide

The choice is dictated only by convenience. For instance, you could print all
three lines by ty ping

[/Now/,/party/p
/Now/,/Now/+2p

or any similar combination. The first combination is better if you don’t know
how many linesare involved.

The basic rule is that a context search expression is the same as a line number,
soit can be used wherever aline number is needed.

Suppose yousearch for
/horrible thing/
and when the line is printed you discover that it isn’t the “horrible thing” that

you wanted, so it is necessary to repeat the search. Youdon't have to retype the
search, because the construction

/!

is a shorthand expression for “the previous thing that was searched for”,
whatever it was. This can be repeated.as many times asnecessary. You can also
go backwards, since

7”

searches for the same thing, but in the reverse direction.

You can also use / / as the left side of a substitute command, to mean ‘“the most
recent pattern”. For example, examine:

/horrible thing/

Ed printsthe line containing " horrible thing”.

s//good/p

This changes “horrible thing” to “good”. To go backwards and change
“horrible thing" to “good”, type:

??s//good/

A-18

Ed

Exercise

Experiment with context searching. Scan through a body of text with several
occurrences of the same string of characters using the same context search.

Try using context searches asline numbers for the substitute, print, and delete
commands. {Context searches can also be used with the r, w, and a
commands.)

Try context searching using ?tezt? instead of /tezt/. This scans lines in the
bufler in reverse order instead of normal order, which is sometimes useful if you
go too far while looking for a string of characters. It's an easy way to back up in
the file you're editing.

Ifyou get unexpected results with any of the characters
L8 e\ &

read Section A 4, “Context and Regular Expressions”.

A.4.13 Changing and Inserting Text: c and i

This section discusses the change (c) command, which is used to change or
replace one or more lines, and the insert (i) command, which is used for
inserting one or more lines.

The ¢ command is used to replace a number of lines with different lines that you
type at the terminal. For example, to change lines “.+1” through “$” to
somethingelse, type:

+1,8¢
type the lines of tezt you want here ...

The lines you type between the ¢ command and the dot (.) will replace the
originally addressed lines. This is useful in replacing a line or several lines that
haveerrorsinthem.

If only one line is specified in the ¢ command, then only that line is replaced.
(You can type in as many replacement lines as you like.) Notice the use of a
period toend the input. This works just like the period in the append command
and must appear by itself on a new line. If no line number is given, the current
line specified by dot isreplaced. The value of dot is set to the last line you typed
in. Note that the terminating period and the line referenced by dot are
completely different: the first is used simply to terminate a command, the
second points at a specific line of text.

A-19

XENIX User’s Guide

The i command issimilar to the append command. For example

/string/i
type the lines to be inserted here ...

inserts the given text before the next line that contains “string’. The text
between i and the terminating period is ineerted before the specified line. If no
line number is specified, dot isused. Dot isset to the last line inserted.

Exercise

The ¢ command is like a combination of delete followed by insert. Experiment
to verify that

start,endd

i
[tezt]

is almost the same as
start,endc
[te=t]
These are not preciselythe same if the last line gets deleted.

Experiment with a and i to see that they are similar, but not the same. Observe
that

line-numbera
[tezt]

appends after the given line, while
line-numberi

[tezt]

inserts before it. If no line number is given, i inserts before line dot, while a
appendsafter line dot.

A.4.14 Moving Lines: m

The move (m) command lets you move a group of lines from one place to
another in the buffer. Suppose you want to put the first three lines of the buffer

A-20

Ed

at the end instead. You coulddoit by typing
1,3w temp
$r temp
1,3d

where tempis the name of a temporary file. However, you can do it more easily
with the m command:

1,3m$
This willmove lines 1 through 3 to the end of the file.
The general caseis
start-line,end-linemafter-this-line

There is a third line to be specified: the place where the moved text gets put. Of
course, the lines to be moved can be specified by context searches. If you had

First paragraph
end of first paragraph.
Second paragraph
end of second paragraph.
you could reverse the two paragraphslike this:
/Second/,fend of second/m/First /-1

Notice the -1. The moved text goes after the line mentioned. Dot getsset to the
last line moved. Your file will now look like this:

Second paragraph

end of second paragraph

First paragraph

end of first paragraph
As another example of a frequent operation, you can reverse the order of two
adjacent lines by moving the first line after the second line. Suppose that you
are positioned at the first line. Then

m+

moves line dot to one line after the current line dot. If you are positioned on the
second line,

me-

moves line dot to one line after the current line dot.

A-21

XENIX User’s Guide

The m command is more succinct than writing, deleting and rereading. The
main difficulty with the m command is that if you use patterns to specify both
the lines you are moving and the target, you have to take care to specify them
properly, or you may not move the lines you want. The result of a bad m
command can be a mess. Doing the job onestep at a time makes it easier for you
to verify at each step that you accomplished what you wanted. It is also a good
idea to issue a w command before doing anything complicated; then if you
make a mistake, it’s easy to back up to where you were.

For more information on moving text, see Section A 4.18, “Marking Your Spot
inaFile:k™.

A.4.15 Performing Global Commands: g and v

The “‘global”’ commands g and v are used to execute one or more editing
commands on all lines that either contain (g) or don't contain (v) a specified
pattern.

For example, the command

g/XENIX/p

prints all lines that contain the word “XENIX"’. The pattern that goes between
the slashes can be anything that could be used in a line search or in a substitute
command; exactly the same rules and limitationsapply.

For example,

8/"\./p
prints all the troff formatting commands in a file (lines that begin with *.”).
(For an explanation of the use of the caret () and the backslash (\) see Section
A5, “Context and Regular Expressions”.
The v command is identical to g, except that it operates on those lines that do
not contain an occurrence of the pattern. (Mnemonically, the “v” can be

thoughtof as part of the word “inverse”.

For example

v/*\-/p

Ed

prints all the lines that don’t begin with a period (i.e., the actual text lines). .

Any command can follow g or v. For example, the following command deletes
all lines that begin with**.”’:

g/"\./d

This command deletes all empty lines:

g/°$/d

Probably the most useful command that can follow a global command is the
substitute command. For example, we could change the word “Xenix” to
“XENIX" every where, and verify that it really worked, with

g/Xenix/s/ /[XENIX/gp

Notice that we used // in the substitute command to mean “‘the previous
pattern”, in this case, “Xenix”. The p command executes on each line that
matches the pattern, not just on those in which a substitution took place.

The global command makes two passes over the file. On the first pass, all lines
that match the pattern are marked. On the second pass, each marked line is
examined in turn, dot is set to that line, and the command executed. This
means that it is possible for the command that follows a g or v command to use
addresses, set dot, and so on, quite freely. For example:

8/"\P/+

prints the line that follows each *“.P” command (the signal for a new paragraph
in some formatting packages). Remember that plus (+) means ‘‘one line past
dot”. And

g/topic/?"\.H?p

searches for each line that contains the word “topic”, scans backwards until it
finds a line that begins with a “.H” (a heading) and prints it, thus showing the
headings under which “topic” ismentioned. Finally

g/"\EQ/+,/"\.EN/-p

prints all the lines that lie between lines beginning with *“ EQ” and “.EN”
formatting commands.

The g and v commands can also be preceded by line numbers, in which case the
linessearched are only those in the range specified.

It is possible to give more than one command under the control of a global

command. For example, suppose the task is to change “x” to *y”’ and ““a” to
“b’’ on all lines that contain *‘thing”’. Then

A-23

XENIX User’s Guide
g/thing/s/x/y/\
s/a/b/

is sufficient. The backslash (\) signals the g command that the set of
commands continues on the next line; the g command terminates on the first
line that does not end with a backslash.

Note that you cannot use a substitute command to insert a new line withina g
command. Watch out for this.

The command
g/x/s//y/\
s/a/b/

does not work asyou might expect. The remembered pattern is the last pattern
that was actually executed, so sometimes it will be **x” (as expected), and
sometimesit will be “a’ (notexpected). You must spell it out, like this:

&/x/s/x/y/\
_ s/afb/

It is also possible to execute a, ¢ and i commands as part of a global command.
As with other multiline constructions, add a backslash at the end of each line
except the last. Thus, to add an “.nf”’ and “.sp”’ command before each “.EQ"”
line, type:

g/"\-EQ/i\

.nf\

.Sp
There is no need for a final line containing a period (.) to terminate the i
command, unless there are further commands to be executed under the global
command.

A.4.16 Displaying Tabs and Control Characters:]

Edprovides two commands for printing the contentsof the text you are editing.
Youshould already be familiar with p, in combinations like

1,$p
to print all the linesyou are editing, or
sfabc/def/p
to change “abc” to ‘““def” on the current line. Less familiar is the “list” (1)

command which gives slightly more information than p. In particular, I makes
visible characters that are normally invisible, such as tabs and backspaces. If

A-24

Ed

you list a line that contains some of these, I prints each tab as ““>” and each
backspace as ““‘<”. This makes it much easier to correct the sort of typing
mistake that inserts extra spaces adjacent to tabs, or inserts a backspace
followed by a space.

The 1 command also “folds” long lines for printing. Any line that exceeds 72
characters is printed on multiple lines; each printed line except the last is
terminated by a backslash (), so you can tell it was folded. This is usefu! for
printing lineslonger than the width of your terminal screen.

Occasionally, the I command will print a string of numbers preceded by a
backslash, such as \07 or \16. These combinations are used to make visible
characters that normally don’t print, like form feed, vertical tab, or bell. Each
backslash-number combination represents a single ASCII character. Note that
numbers are octal and not decimal. When you see such characters, be wary:
they may have surprising meanings when printed on some terminals. Often
their presence indicates anerror in typing, because they are rarely used.

A.4.17 Undoing Commands: u

Occasionally you will make a substitution in a line, only to realize too late that
it was a mistake. The undo (u) command, letsyou ‘“undo’ the last substitution.
Thus the last line that was substituted can be restored to its previous state by

typing:
u

This command does not work with the g and v commands.

A.4.18 Marking Your Spot in a File: k

The mark command, k, provides a facility for marking a line with a particular
name, so that you can later reference it by name, regardless of its actual line
number. This can be handy for moving lines and keeping track of them as they
move. For example

kx

marks the current line with the name ““x”. If a line number precedes the k, that
line is marked. (The mark name must be a single lowercase letter.} You can
refer to the marked line with the notation:

’

X

Note the use of the single quotation mark (°) here. Marks are very useful for
moving things around. Find the first line of the block to be moved and then
mark it with:

XENIX User's Guide

ka

Then find the last line and mark it with
kb

Go to at the place where the text isto be inserted and type:
‘s, ‘bm.

Aline can have only one mark name associated with it at any given time.

A.4.19 Transferring Lines: t

We mentioned earlier the idea of saving lines that are hard to type or used
often, to cut down on typing time. Ed provides another command, called ¢ (for
transfer) for making a copy of a group of one or more lines at any point. Thisis
often easier than writing and reading.

The t command is identical to the m command, except that instead of moving
linesit simply duplicates them at the place younamed. Thus

1,$:$
duplicates theentire contentsthat you are editing.
A common use for t is to create a series of lines that differ only slightly. For
example, you can type
a
Now is the time for all good men to come to the aid of their party.
t. {make a copy]
8/men/women/ change it a bit]
t. make third copy]
s/Now is/yesterday was/ [change it a bit]
Your file will look like this:
Now is the time for all good men to come to the aid of their party.

Now is the time for all good women to come to the aid of their party.
Yesterday was the time for all good women to come to the aid of their party.

A.4.20 Escaping to the Shell: !

Sometimes it is convenient to temporarily escape from the editor to execute a
XENIX command without leaving the editor. The shell escape (!) command,

A-26

provides a way to do this.
If you type
lcommand

your current editing state is suspended, and the XENIX command you asked for
isexecuted. When the command finishes, ed will signal you by printing another
exclamation (!); at that point you can resume editing.

A.5 Context and Regular Expressions

You may have noticed that things don’t work right when you use characters
such asthe period (.), the asterisk (+), and the dollar sign ($) in context searches
and with the substitute command. The reason is rather complex, although the
solution to the problem is simple. Ed treats these characters as special. For
instance, in a context search or the first string of the substitute command, the
period { .) means “any character”, not a period, so

/xy/

means a line with an ““x”, any character,and a *‘y”", not just a line with an*x”, a
period, and a “y”. A complete list of the special characters that can cause
trouble follows:

I N A N

The next few subsections discuss how to use these characters to describe
patterns of text in search and substitute commands. These patterns are called
“regular expressions’’, and occur in several other important XENIX commands
and utilities, including grep{C), se &(C) (See the XENIX Reference Manual).

Recall that a trailing g after a substitute command causes all occurrences to be
changed. With

s/this/that/
and

s/this/that/g
the first command replaces the first ““this” on the line with ““that”. If there is
more than one “this” on the line, the second form with the trailing g changes all
of them.
Either form of the s command can be followed by p or 1 to print or list the

contents of the line. For example, all of the following are legal and mean
slightly different things:

A-27

XENIX User's Guide

s/this/that/p
s/this/that/]
s/this/that/gp
s/this/that/gl
Make sure you know what the differences are.

Of course, any s command can be preceded by one or two line numbers to
specify that the substitution is to take place on a group of lines. Thus

1,$s/mispell/misspell/

changes the first occurrence of “mispell” to “misspell” in each line of the file.
But

1,$s/mispell/misspell/g

changes every occurrence in each line (and this is more likely to be what you
wanted).

If you add a p or] to the end of any of these substitute commands, only the last

line changed is printed, not all the lines. We will talk later about how to print
all the lines that were modified.

A.5.1 Period: (.)
The first metacharacter that we will discussis the period (.). On theleft side of

a substitute command, or in a search, a period stands for anysingle character.
Thus the search

/xy/
finds any line where “x”’ and *‘y”’ occur separated by a single character, asin
x+y
x-y
Xy
xzy

andsoon.

Since a period matches a single character, it gives you a way to deal with funny
charactersprinted by 1. Suppose you have aline that appearsas

th\07is

when printed with the I command, and that you want to get rid of the \07,
which representsan ASCII bell character.

A-28

Ed

The most obvioussolution is to try

s/\07//

but this will fail. Another solution is to retype the entire line. This is
guaranteed, and is actually quite a reasonable tactic if the line in questionisn’t
too big. But for a very long line, retyping is not the best solution. This is where
the metacharacter *.” comes in handy. Since \07 really represents a single
character, if we type

s/th.is/this/

the job is done. The period matches the mysterious character between the “h”
and the “i”", whateveritis.

Since the period matches any single character, the command

s/

converts the first character on a line into a comma (,), which very often is not
what you intended. The special meaning of the period can be removed by
preceding it with a backslash.

As is true of many characters in ed, the period (.) has several meanings,
dependingon its context. Thisline showsall three:

s/./-

The first period is the line number of the line we are editing, which is called
“dot”. The second period is a metacharacter that matches any single character
on that line. The third period is the only one that really is an honest, literal
period. (Remember that a period is also used to terminate input from the a and
i commands.) On the right side of a substitution, the period (.) is not special. If
you apply this command to the line

Now is the time.
the result is
.ow is the time.

which is probably not what you intended. To change the period at the end of
the sentence to a comma, type

s/\-/./

The special meaning of the period can be removed by preceding it with a
backslash.

A-29

XENIX User’s Guide

A.5.2 Backslash: \

Since a period means “any character”, the question naturally arises: what do
you do when you really want a period? For example, how do you convert the
line

Now is the time.
into

Now is the time?
The backslash (|) turns off any special meaning that the next character might
have; in particular, ““\.” converts the “.” from a “match anything’’ into a

literal period, so you can use it to replace the period in *“Now is the time."” like
this:

s/\]-/*/
The pair of characters ““\.” is considered by ed to be a single real period.

The backslash can also be used when searching for lines that contain a special
character. Suppose you are looking for aline that contains

.DE
at thestart of aline. The search
/-.DE/
isn’t adequate, for it will find lineslike
JADE
FADE
MADE

because the ‘‘.” matches the letter ““A” on each of the lines in question. But if
you type

/\\DE/
only lines that contain “.DE” are found.
The backslash can be used to turn off special meanings for characters other

than the period. For example, consider finding a line that contains a backslash.
The search

N

Ed

won’t work, because the backslash (\) isn’t a literal backslash, but instead
means that the second slash (/) no longer delimits the search. By preceding a
backslash with another backslash, you cansearch for aliteral backslash:

A\Y;

You cansearch for a forward slash (/) with

N/

The backslash turns off the special meaning of the slash immediately following
so that it doesn’t terminate the slash-slash construction prematurely.

A miscellaneous note about backslashes and special characters: youcan use any
character to delimit the pieces of an s command; there is nothing sacred about

slashes. {But you must use slashes for context searching.) For instance, in 2 line
that containsseveral slashes already, such as

[/exec [[sys.fort.go [/ ete...
you could use a colon as the delimiter. To delete all the slashes, type
s:/:g
The result is:
exec sys.fort.go etc...
When you are adding text with a or i or ¢, the backslash hasno special meaning,
and you should only put in one backslash for each one you want.
Exercise
Find two substitute commands, each of which converts the line
W=\\y
into the line
\x\y

Here are several solutions; you should verify that each works:

s/\\\.//
/

s/x../x/

s/.y/y/

A-31

XENIX User's Guide

A.5.3 Dollar Sign: $
The dollar sign ‘$”, standsfor “the end of the line”. Supposeyou have the line
Now is the

and you want to add the word “time” to the end. Use the dollar sign (3) like
this:

s/$/ time/ .

to get
Now is the time

A space is needed before ‘‘time”’ in the substitute command, or you will get:
Now is thetime

You can replace the second comma in the following line with a period without
altering the first.

Now is the time, for all good men,
The command needed is:

s/.$/./
toget

Now is the time, for all good men.

The dollar sign ($) here provides context to make specific which comma we
mean. Withoutit thes command would operate on the first comma to produce:

Now is the time. for all good men,
To convert:

Now is the time.
into

Now is the time?

as we did earlier, we can use:

s/.$/t/

A-32

Ed

Like the period (.), the dollar sign ($) has multiple meanings depending on
context. In the following line

$s/$/%/
the first “$’’ refers to the last line of the file, the second refers to the end of that
line, and the third is a literal dollar sign to be added to that line.
A.5.4 Caret: "

The caret (") stands for the beginning of the line. For example, suppose you
are looking for a line that begins with ‘‘the”. If you simply type

[the/

you will probably find several lines that contain ‘““the” in the middle before
arriving at the one you want. But with

/ the/
you narrow the context, and thusarrive at the desired line more easily.

The other use of the caret (*) enables you to insert something at the beginning
of aline. For example

s/*//
placesaspace at the beginning of the current line.

Metacharacters can be combined. To search for a line that contains only the
characters

P

you can use the command

/°\P$/

A.5.5 Star: =
Suppose you have a line that looks like this:
text x y text
where “‘text” stands for lots of text, and there are an indeterminate number of

spaces between the “x’’ and the *‘y”’. Suppose the job istoreplace all the spaces
between “x” and “y’’ with a single space. The line is too long to retype, and

A-33

XENIX User’s Guide

there are too many spaces to count.
This is where the metacharacter “star” (#) comes in handy. A character

followed by a star stands for as many consecutive occurrences of that character
aspossible. Torefer to all the spaces at once, type:

s/x sy/xy/

The ** # means “‘as many spaces as possible”. Thus “x sy” meansan “x”, as
many spaces as possible, thena *‘y”.

The star can be used with any character, not just a space. If the original
example was

text X——m————m y text
then all minussigns () can be replaced by asingle space with the command:
s/x-+y/x y/

Finally, suppose that the line was:

If you blindly type

s/xsy/xy/
The result is unpredictable. If there are no other x's or y's on the line, the
substitution will work, but not necessarily. The period matches any single
character so the ‘‘.#”’ matches as many single characters as possible, and unless
you are careful, it can remove more of the line than you expected. For example,
if the line was like this

X text X......... y text y
then typing

s/x.sy/xy/

takes everything from the first ““x” to the last “‘y”, which, in this example, is
undoubtedly more thanyou wanted.

The solution is to turn off the special meaning of the period (.) with the
backslash (\}):

s/x\-*y/x y/

Now the substitution works, for ““\.*’’ means ‘‘as many periods as possible”.

A-34

Ed

There are times when the pattern ‘.#” is exactly what you want. For example,
to change

Now is the time for all good men
into

Now is the time.
use “.s” to remove everything after the “for’”:

s/ for.s/./
There are a couple of additional pitfalls associated with the star (). Most
notable is the fact that ‘‘as many as possible’ means zeroor more. Thefact that
zero is a legitimate possibility is sometimes rather surprising. For example, if
our line contained

xy text x y text

where the squaresrepresent spaces, and we said

s/x *y/x y/

the first ““xy” matches this pattern, for it consists of an “x”’, zero spaces, and a

‘“y”". Theresult is that the substitute acts on the first “xy”, and does not touch
the later one that actually containssome intervening spaces.
The way around thisisto specify a pattern like

/x e/

which says an ‘‘x”, aspace, then as many more spaces as possible, thena “y”, in
other words, one or more spaces.

The other pitfall associated with the star () again relates to the fact that zerois

a legitimate number of occurrences of something followed by a star. The
command

s/x*/y/g

when applied to the line
abedefl

produces
yaybycydyeyfy

which is almost certainly not what was intended. The reason for this is that

A-35

XENIX User's Guide

zero is a legitimate number of matches, and there are no x’s at the beginning of
the line (so that gets converted into a “y”’), nor between the “a” and the *‘b” (so
that gets converted intoa ““y”"), and so on. If you don’t want zero matches, use

s/xxs/y/g

since *xx*"’ isone or more x’s.

A.5.8 Brackets: [and]

Suppose that you want to delete any numbers that appear at the beginning of
all linesof a file. You might try aseriesof commandslike

18s/"1s//
1.8s/°2¢//
18s/°3+//

and so on, but this is clearly going to take forever if the numbers are at all long.
Unless you want to repeat the commands over and over until finally all the
numbers are gone, you must get all the digitson one pass. Thatisthe purpose of
the brackets.

The construction
[0123456789]

matches any single digit—the whole thing is called a *‘character class”. Witha
character class, the job is easy. The pattern *[0123456789]+" matches zero or
more digits (an entire number), so

1,$s/°[0123456789]+//
deletesall digits from the beginning of all lines.

Any characters can appear within a character class, and there are only three
special characters (*,], and -) inside the brackets; even the backslash doesn’t
have a special meaning. To search for special characters, for example, you can
type:

/NS 1/

It’s a nuisance to have to spell out the digits, so you can abbreviate them as
[0-8]; similarly, [a-z] standsfor the lowercase letters, and [A-Z] for uppercase.

Within [], the ““["’ is not special. To geta “]” (or a “~') into a character class,
make it the first character.

You can also specify a class that means “none of the following characters”.
Thisisdone by beginning the class witha caret(*). For example

A-36

Ed

["0-9]

stands for “any character ezcept a digit”’. Thus, you might find the first line
that doesn’t begin with a tab or space with a search like:

/"1 (space)(tab)]/

Within a character class, the caret has a special meaning only if it occursat the
beginning. Just to convince yourself, verify that

/'
findsaline that doesn’t begin with a caret.
A.5.7 Ampersand: &
To save typing, the ampersand (&) can be used in substitutions to signify the
string of text that was found on the left side of a substitute command. Suppose
you have theline

Now is the time
and you want to make it:

Now is the best time
You can type:

s/the/the best/
It’s unnecessary to repeat the word “the”. The ampersand (&) eliminates this
repetition. On the right side of a substjtution, the ampersand means “whatever
was just matched”, so you cantype

s/the/& best/
and the ampersand will stand for “the”. Thisisn’t much of asavingif the thing
matched is just ‘‘the”, but if the match is very long, or if it is something like
“.+” which matches a lot of text, you can save some tedious typing. There is

also much less chance of making a typing error in the replacement text. For
example, to put parenthesesin aline, regardless of its length, type:

s/+/(&)/
The ampersand canoccur more than once on the right side. For example

s/the/& best and & worst/

makes

A-37

XENIX User's Guide

Now is the best and the worst time
and

sf.¢/&? &/
converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand use the backslash to turn off the special meaning.
For example

s/ampersand/\&/
converts the word into the symbol. The ampersandisnot special on the left side
of asubstitute command, only on the right side.
A.5.8 Substituting New Lines
Ed providesa facility for splitting a single line into two or more shorter lines by
“substituting in a newline”. For example, suppose a line. has become
unmanageably long because of editing. If it lookslike

text xy text

you can break it between the “x” and the ‘‘y" like this:

s/xy/x\
y/

This is actually a single command, although it is typed on two lines. Because
the backslash (\) turns off special meanings, a backslash at the end of a line
makes the newline there no longer special.
You can in fact make a single line into several lines with this same mechanism.
As an example, consider italicizing the word *“very” in a long line by splitting
‘““very” onto a separate line, and preceding it with the formatting command
“.I”. Assume the line in question lookslike this:

text a very big text
The command

s/ very [\
I\

very\
/ y

A-38

Ed
converts the line into four shorter lines, preceding the word ‘‘very’’ with the
line ““.I1”, and eliminating the spaces around the ‘‘very’’ at the same time.

When a new line is substituted in a string, dot isleft at the last line created.

A.5.9 Joining Lines

Lines may be joined together, with the j command. Assume that you are given
the lines:

Now is
the time

Suppose that dot is set to the first line. Then the command
J

joins them together to produce:
Now is the time

No blanks are added, which is why a blank was shown at the beginning of the
second line.

All by itself, a j command joins the lines signified by dot and dot™+ "1, but any
contiguous set of lines can be joined. Just specify the starting and ending line
numbers. For example,

L,$jp

joins allthe linesin a file into one big line and printsiit.

A.5.10 Rearranging a Line: \(and \)

Recall that ‘& is shorthand for whatever was matched by the left side of an s
command. In much the same way, you can capture separate pieces of what was
matched. The only difference is that you have to specify on the left side just
what pieces you're interested in.

Suppose that youhave a file of lines that consist of names in the form

Smith, A. B.
Jones, C.

andsoon, and you want the initials to precede the name, asin:

A-39

XENIX User's Guide

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and
error-prone.

The alternative is to “tag’ the pieces of the pattern (in this case, the last name,
and the initials), then rearrange the pieces. On the left side of a substitution, if
part of the pattern isenclosed between \(and \), whatever matched that partis
remembered, and available for use on the right side. On the right side, the
symbol, “\1"", refers to whatever matched the first \(...\) pair; “\2”, to the
second \(...\), andsoon.

The command

L8s/"\([-+I\), *\(-*V\2\1/

although hard to read, does the job. The first \(...\) matches the last name,
which is any string up to the comma; this is referred to on the right side with
“\1". The second \{...\} is whatever follows the comma and any spaces, and is
referred toas*'\2".

With any editing sequence this complicated, it’s unwise to simply run it and
hope. The global commands g and v provide a way for you to print exactly
those lines which were affected by the substitute command, and thus verify
that it did what youwanted in all cases.

A.8 Speeding Up Editing

One of the most effective ways to speed up your editing is knowing what lines
will be affected by acommand if you don't specify the lines it is to act on, and on
what line you will be positioned (i.e., the value of dot) when a command finishes.
If you can edit without specifying unnecessary line numbers, you can save a lot
of typing.

For example, if you issue a search command like

[thing/

you are left pointing at the next line that contains “thing”. Then no addressis
required with commands like s to make a substitution on that line, or p to print
it, or 1 to list it, or d to delete it, or a to append text after it, or ¢ to change it, or i
toinsert text before it.

What happens if there is no occurrence of ““thing’’? Dot is unchanged. Thisis
also true if the cursor was on the only occurrence of *‘thing’’ when you issued
the command. The same rules hold for searches that use ?...1; the only
difference isthe direction in which you search.

A-40

Ed

The delete command, d, leaves dot pointing at the line that followed the last
deleted line. When the line dollar ($) gets deleted, however, dot points at the
newline §.

The line-changing commands a, ¢, and i, by default, all affect the current line.
If you give no line number with them, a appends text after the current line, ¢
changes the current line, and i inserts text before the current line.

The a, c, and i commands behave identically in one respect — when you stop
appending, changing or inserting, dot points at the last line entered. This is
exactly what you want when typing and editing on the fly. For example, you
can type

a
text
botch (minor error)

s/ botch/correct/ (fix botched line)
a

more text

without specifying any line number for the substitute command or for the
second append command. Or you can type:

a
text
horrible botch (major error)

c (replace entire line)
fixed up line

Experiment to determine what happens if you add no lines with an a, ¢, or i
command.

The r command reads a file into the text being edited, at the end if you give no
address, or after the specified line if you do. In either case, dot points at the last
line readin. Remember that you can even type

Or

toread a file in at the beginning of the text. (You can also type Oaor Iitostart
adding text at the beginning.)

The w command writes out the entire file. If you precede the command by one
line number, that line is written out. ITyou precede it by two line numbers, that
range of lines is written out. The w command does not change dot: the current
line remains the same, regardlessof what lines are written out. Thisistrueeven
if you type something like

A-41

XENIX User's Guide

] \-AB/,/"\.AE/w abstract
which involves a context search.

(Since the w command is so easy to use, you should save what you are editing
regularly as you go along just in case the system crashes, or in case you
accidentally delete what you're editing.)

The general rule is simple: you are left sitting on the last line changed; if there
were no changes, then dot is unchanged. To illustrate, suppose that there are
three linesin the buffer, and the line given by dot isthe middle one:

x1
x2
x3

Then the command

-+s/x/y/p

prints the third line, which is the last one changed. But if the three lines had
been

and the same command had been issued while dot pointed at the second line,
only the first line would be changed and printed, and that is where dot would be
set.

A.8.1 Semicolon: ;

Searches with /.../ and ?...? start at the current line and move forward or
backward, respectively, until they either find the pattern or get back to the
current line. Sometimes this is not what you want. Suppose, for example, that
the buffer containslineslike this:

A-42

Ed

ab

be

Starting atline 1, you would expect the command

/3/1/b/P

to print all the lines from the “ab” to the *bc” inclusive. This is not what
happens. Both searches (for “‘a” and for **b”) start from the same point, and
thus they both find the line that contains “ab’”. As a result, a single line is
printed. Worse, if there had been a line with a “‘b” in it before the ‘“ab” line,
then the print command would be in error, since the second line number would
be less than the first, and it isillegal to try to print linesin reverse order.

This is because the comma separator for line numbers doesn’t set dot as each
address is processed; each search starts from the same place. In ed, the
semicolon (;) can be used just like the comma, with the single difference that use
of a semicolon forces dot to be set at the time the semicolon is encountered, as
the line numbers are being evaluated. In effect, the semicolon “moves” dot.
Thus, in our example above, the command

/3/:/b/p

prints the range of lines from ““ab” to *‘b¢”’, because after the “a” is found, dot
is set to thatline, and then “b”’ is searched for, starting beyond that line.

This property is most often useful in a very simple situation. Suppose you want
to find the secondoccurrence of *“thing”. You could type

/thing/
"o

but this prints the first occurrence as well as the second, and is a nuisance when
you know very well that it is only the second one you're interested in. The
solutionisto type:

/thing/;//

Thissays ‘‘find the first occurrence of “thing”, set dot to that line, then find the
second occurrence and print only that”.

A-43

XENIX User’s Guide

Closely related issearching for the second to last occurrence of something, asin:
?something?;??

Finally, bear in mind that if you want to find the first occurrence of something
in a file, starting at an arbitrary place within the file, it is not sufficient to ty pe

1;/thing/

because if “‘thing’ occursonline 1it won't be found. The command
0;/thing/

will work because it starts the search at line 1. This is one of the few places
where 0is a legal line number.

A.8.2 Interrupting the Editor

Asa final note on what dot gets set to, you should be aware that if you press the
INTERRUPT key while ed isexecuting a command, your file isrestored, asmuch
as possible, to what it wasbefore the command began. Naturally, some changes
are irrevocable — if you are reading in or writing out a file, making
substitutions, or deleting lines. These will be stopped in some unpredictable
state in the middle (which is why it usually unwise to stop them). Dot may or
may not be changed.

If you are using the print command, dot is not changed until the printing is
done. Thus, if you decide to print until you see an interesting line, and then
press INTERRUPT, to stop the command, dot will not not be set to that line or
evennear it. Dot isleft where it was when the p command wasstarted.
A.7 Cutting and Pasting with the Editor
This section describes how to manipulate pieces of files, individual lines or
groupsof lines.
A.7.1 Inserting One File Into Another
Suppose you have a file called memo, and you want the file called table to be
inserted just after a reference to Table 1. That is, in memosomewhere is a line
that says

Table 1 shows that ...

and the data contained in table has to go there.

A-4

Ed

To put table into the correct place in the file edit memo, find “Table 1", and add
the file table right there:

ed memo
/Table 1/

response from ed
.r table

The critical line is the last one. The r command reads a file; here you asked for
it to be read in right after line dot. Anr command, without any address, adds
lines at the end, soitisthe sameas“$r”.

A.7.2 Writing Out Part of a File

The other side of the coin is writing out part of the document you're editing.
For example, you may want to split the table from the previous example out
into a separate file so it can be formatted and tested separately. Suppose that in
the file being edited we have

.TS
[lots of stuff]
.TE

which is the way a table is set up for the tbl program. Toisolate the tableina
separate file called table, first find the start of the table (the *“.TS’ line}, then
write out the interesting part. For example, first type:

/\.T8/
This prints out the found line:
.TS
Next type
o/ \.TE/w table
and the job is done. If you are confident, you can do it all at once with
/'\.TS/;/"\.TE/w table
The point is that the w command can write out a group of lines, instead of the
whole file. In fact, you can write out a single line if you like; just give one line

number instead of two. If you have just typed a horribly complicated line and
you know that it (or somethinglike it} is going to be needed later, then save it—

A-45

XENIX User's Guide

don’tretypeit. For example, in the editor, type:

a
lots of stuff
horrible line

w temp
a
more stuff

.r temp
3
more stufl

A.8 Editing Scripts

If a fairly complicated set of editing operations is to be done on a whole set of
files, the easiest thing to do isto make up a “script”, i.e., a file that contains the
operations you want to perform, then apply this script to each file in turn.

For example, suppose you want to change every ‘Xenix" to *“XENIX" and every
“USA” to ““America’’ in a large number of files. Put the followinglinesinto the
file seript:

s/Xenis/s/ /XENIX/g
g/USA/s//America/g

w
q

Now you can type:

ed - filel <script
ed - file2 <script

This causes ed to take its commands from the prepared file script. Notice that
the whole job has to be planned in advance, and that by using the XENIX shell
command interpreter, you can cycle through a set of files automatically. The
dash (-) suppresses unwanted messages from ed.

When preparing editing scripts, you may need to place a period as the only
character on a line to indicate termination of input from an a or i command.
This is difficult to do in ed, because the period you type will terminate input
rather than be inserted in the file. Using a backslash to escape the period won’t
work either. One solution is to create the script using a character such as the
at-sign (@) to indicate end of input. Then, later, use the following command to
replace the at-sign with a period:

A-46

Ed

s/°@s$/./

A.9 Summary of Commands

This following is a list of all ed commands. The general form of ed commands s
the command name, preceded by one or two optional line numbers and, in the
caseof e, f, r, and w, followed by a filename. Only one command is allowed per
line, but a p command may follow any other command (excepte, f,r, w,and q).

a

e

Appends, i.e., adds lines to the buffer (at line dot, unless a different
line is specified). Appending continues until a period is typed on a new
line. The value of dot isset to the last line appended.

Changes the specified lines to the new text which follows. The new
lines are terminated by a period on anew line, as with a. If no lines are
specified, replace line dot. Dot is set to the last line changed.

Deletes the lines specified. If none are specified, deletesline dot. Dot is
set to the first undeleted line following the deleted lines unless dollar
{$) is deleted, in which case dot is set to dollar.

Edits a new file. Any previous contentsof the buffer are thrown away,
so issue a w command first.

Prints the remembered filename. If a name follows f, then the
remembered nameisset toit. -

The command g/ string /commands executes commande on those
linesthat contain string, which can be any context search expression.

Inserts lines before specified line (or dot) until a single period is typed
on anew line. Dot is set to the lastline inserted.

Lists lines, making visible nonprinting ASCII characters and tabs.
Otherwise similar to p.

Moves lines specified to after the line named after m. Dot is set to the
last line moved.

Prints specified lines. If none are specified, print the line specified by
dot. A single line number is equivalent to a line-numberp command.
Asingle RETURN prints*'.+1", the nextline.

Quits ed. Your work is not saved unless you first give a w command.
Giveit twiceinarow toabort edit.

Readsa file into buffer (at end unless specified elsewhere.) Dot isset to
the last line read.

A-47

XENIX User's Guide

u

w

The command “‘s/string!/string2/" substitutes the pattern matched
by etringl with the string specified by string2in the specified lines. If
no lines are specified, the substitution takes place only on the line
specified by dot. Dot is set to the last line in which a substitution took
place, which means that if no substitution takes place, dot remsins
unchanged. The s command changes only the first occurrence of
stringl on a line; to change multiple occurrences on a line, type a g
after the final slash.

Transfers specified lines to the line named after t. Dot isset to the last
line moved.

The command v/etring/commande executes commandson those lines
that do” not contain string.

Undoes the last substitute command.

Writes out the editing buffer to a file. Dot remainsunchanged.

.= Printsvalue of dot. (Anequal sign by itself printsthe value of $.)

tcommand

The line lemd-line causes emd-line to be executed as a XENIX
command.

[string/

Context search. Searches for next line which contains this string of
characters and printsit. Dot is set to the line where string was found.
The search startsat .+1, wraps around from $ to 1, and continues to
dot, il necessary.

Patring?

A-48

Context search in reverse direction. Starts search at .-1,scansto 1,
wrapsaroundto$.

Index

«b option
mail 6-31

-¢c option
mail 6-31

-r option
mail 6-31

-u option
mail 6~31

! command See escape command
&)

$! variable, process
number T7-14

$# variable, argument
recording 7-13

$$ variable, process
number 7-=13

$- variable, execution
flags T7-14

$? variable, command exit
status 7-13

"' See Quotation marks,
single ('')

(o), write command message
end U4=29

(o0), write command message
end 4-29

% See Asterisk (%)

-~ See Dash (-)

-a operator T7-34

-a option
function 3-10

-c option, shell
invocation 7-39

-e option, shell
procedure T7-33
-f option, mail 6-31
-f option, mail 6-9
-i option
mail 6-30
mail 6-31
mail 6-39
mail 6-9
shell invocation 7-39
-k option, shell
procedure 7-33
=1 option
function 3-9
-m option, mail 6-32
«n option
echo command 7-35
shell procedure 7-33
-0 operator T34
-r option 3-9
=R option, recursive
listing 4-12
-s option
mail, subject
specification 4-28
mail, subject
specification 6-31
shell invocation T=-39
-t option, shell
procedure T-33
-u option, shell
procedure 7-33
-v option, input line
printing 7-15

XENIX User's Guide

-v option
function 3-10

-x option, command

printing 7-15

. command See Dot command

(.)
. command

vi 5=3

vi use See Vi
« See Period (.)
.profile file

description, use 7=-15
PATH variable setting 7-12

variable export 7-13

/ command See Vi
/ See Slash (/)
/bin directory

/usr/bin duplicate
determination T-lYy

command search
contents 3-5
contents 7-32

name derivation 7-32

/dev directory
contents 35

/dev/console directory

contents 3-5

7-2

/dev/tty directory

contents 3-5

/ete/termcap file U=3

/1ib directory
contents 35
/tmp directory
contents 35
/usr directory
contents 3-5

4-25

/usr/bin directory

/bin duplicate
determination T-44
command search 7<2
contents 3-5

0 command See Vi

?

command See Colon command
()

See Greater-than sign
>>)
See Question mark (?)
character, permission
change 4-18
command
appending See Ed
ed use See Ed
mail 6-13
mail 6-20
mail 6-34

Absolute pathname See

Pathname

Account, new user 2=1
Addition See BC

Addition See Calculation
Alias command See a

command

Alphabetizing See sort

command

Ampersand (&)

and-if operator symbol See
And-if operator (&&)
background command 3-9
background process 4-24
background process T7-19
background process T-54

command list 7-19
ed use See Ed
interrupt, quit
immunity 7-19
jobs to other
computers 7-19
metacharacter See Ed
off-line printing 7-19
use restraint 7-19
And-if operator (&&)
command list 7-19
description, use 7-20
designated 7-54
Append
ed procedure See Ed
output append symbol See
Output
Appending files 4-7
Appending See Output
Argument
filename 7-3
list creation 7-3
mail commands 6-8
number checking, $#
variable 7-13
processing 7-17
redirection argument
location 7-8
shell argument passing 7=~
17
substitution sequence 7-18

switch See Switch
test command argument 7-35

Arithmetic
See also BC

expr command effect 7-35
askce option See Mail
asksubject option See Mail
Asterisk (%)

BC

comment convention 8-
13

comment convention 8-
14

multiplication operator
symbol 8=2
multiplication operator
symbol 8-4

directory name, use
avoidance 7~3
filename wildcard 3-7
filename, use
avoidance 3-4
mail

character matching. 6-T7

message saved, header
notation 6-16
message saved, header
notation 6-18
metacharacter 7-3
metacharacter 7-54
pattern matching
functions 3-T7
pattern matching See
metacharacter
special shell variable 7=~
18
at command 4§-22
At sign (6), mail 6-30
At sign (€), mail 6-39
atrm command 4-23

XENIX User's Guide

auto command, BC £-18
autombox option See Mail
autoprint option See Mail
b command See Vi
Background process 4-24
$! variable 7-14
ampersand (&) operator 4-
24
ampersand (&) operator 7-
19
ampersand (&) operator T-
54
CNTRL-D immunity 7-19
dial-up line
CNTRL-D effect T7-19
nohup command 7-19
INTERRUPT immunity 7-19
logout immunity 7-19
QIT immunity 7-19
use restraint 7-19
Backslash (\)
escape character 2-4
Backslash (\)
BC
comment convention 8-
13
Backslash (\)
BC
comment convention 8-
14
Backslash (\)
BC
line continuation
notation 8-6
Backslash (\)
ed See Ed
Backslash (\)
erasing 2-4

1-4

Backslash (\)
line continuation
notation 7-45
Backslash (\)
metacharacter escape T-lU
Backslash (\)
quoting 7-55
BACKSPACE key
erasure function 2-U
inserting as text 2-4
mail 6=-11
mail 6=6
Batch processing See
Command
bel command, BC 8-13
bec command
BC
file reading,
execution 8-13
invocation §-1
calculation 4-30
BC
addition operator
evaluation order 8-15
left to right binding
8-4
scale 8-17
scale 8«6
symbol (+) 8-l
additive operators
See also Specific
Operator
left to right binding
8-17
alphabetic register See
storage register
arctan function
availability 81

loading procedure 8-13

array
auto array 8-18
characteristics 8-14
identifier 8-14
identifier B8-19
name 8-9
named expression 8-15
one-dimensional 8-9
assignment operator
designated, use 8-17
evaluation order 8-15
positioning effect 8-l

symbol (=) 8-4
assignment statement §-12

asterisk (#%)
comment convention 8-
13
comment convention 8-
14
multiplication operator

symbol 8-2
multiplication operator
symbol 8-4

auto command 8-18
auto statement
built-in statement 8-
19 .
auto, keyword 8-14
backslash (\)
comment convention 8-
13
backslash (\)
comment convention 8-
14

backslash (\)
line continuation
notation 8-6
bases 8-5
be -1 command 8-13
bc command
file reading,
execution 8-13
invocation 8-1
Bessel function
availability 8-1
loading procedure 8-13

BKSP key 8-2
braces ({})
compound statement
enclosure §-19
function body
enclosure 87
brackets ([])
array identifier 8-14

auto array 8-18
subscripted variable
8-9
break statement
built-in statement 8-
19
break, keyword 8-14
built-in statement B8-19
caret ("), exponentiation
operator symbol 8-4
command See bc command
comment convention 8-13
comment convention 8-14
compound statement 8-19
constant
composition 8-14

XENIX User's Guide

defined 8-15
construction

diagram 8-12

space significance 8-

12
control statements 8-9
cos function

availability 8-1

loading procedure 8-13

define statement
built-in statement 8-
19
description, use 8«20
define, keyword B8-14
demonstration run 81
description 81
division operator
left to right binding
8=-16
left to right binding
8-
scale 8-17
scale 8-6
symbol (/) 8-4
equal sign (=)
assignment operator
symbol 8-4
relational operator
8-18
relational operator
8-9
equivalent constructions
diagram 8-12
evaluation sequence 8«2
exclamation point (!)
relational operator
8-18

relational operator

8-9
exit 8-1
exit 8-3

exponential function
avajilability 8«1
loading procedure 8-13

exponentiation operator
right to left binding
8-17
right to left binding
8-4
scale 8«17
scale 8-6
symbol (%) 8-4
expression
enclosure 8«15
evaluation order 8-14
named expression 8=15
" statement 8-19
for statement
break statement effect
8-19
built-in statement 8-
19
description, use 8-9
format 8-20
range execution 8-10
relational operator
8-18
for, keyword 8=14
function call
defined 8-15
description 8-15
evaluation order 8~15
procedure 8=8

syntax 8-=16

function
argument absence 8-8
array 8-9
calling See function
call
definition procedure
8-7

form 8=7
identifier 8-14
name 87

parameters 8-8

return statement See
return statement
termination, return
statement 8-=20
variable automatic 8-=7

global storage class 8-18

greater=-than sign (
>), relational
operator 8~18
>), relational
operator 8-9

hexadecimal digit

ibase 85

obase 8-6

value 8-14
ibase

decimal input setting
8-5

defined 8-15

initial setting 85
keyword B8-14

named expression 8-15
setting 8-5

variable 87
identifier

array See array

auto statement effect

8-19

description 8-14

global 8-18

local 8-18
named expression 8-15
value 8-18

if statement
built-in statement 8-
19
description, use 8-9
format 8-20
range execution 8-10
relational operator
8-18
if, keyword 8-14
INTERRUPT key 8-2
introduction 8-1
invocation 8-1
keywords designated 8-14
language features 8-12
length
built-in function 8-16

keyword 8-14
less-than sign (),
relational operator 8-18
less-than sign (<),
relational operator 8-9
line continuation
notation B8-6
local storage class 8-18
log function

availability 8-1

XENIX User's Guide

loading procedure 8-13

math function library See

bel command
minus sign (=)
subtraction operator
symbol 8-i
unary operator symbol
8-16
unary operator symbol
8-4
modulo operator
left to right binding
8-16 .
left to right binding
84
scale 8-17
scale 8-6
symbol (%) 8-
nultiplication operator

evaluation order 8-15

left to right binding
8-16
left to right binding

8-4
scale 8-16
scale 8«6

symbol (%) 8-2
symbol (%) 8-4
multiplicative operators
See also Specific
Operator
left to right binding
8-16
named expression 8-15
negative number, unary
minus sign () 8«4

obase
conversion speed 8«6
defined 8-15
description 8«5
hexadecimal notation
8-6
initial setting 8-5
keyword 8-14
named expression 8=15
variable 8-7
operator
See also Specific
Operator
designated, use 8-4
parentheses (())
expression enclosure
8-15
function identifier
argument enclosure 8-
14
percentage sign (%),
modulo operator symbol
8-l
plus sign (+)
addition operator
symbol 8-4
unary operator symbol
8-16
program flow alteration
8-9
quit command 8-1
quit command 8-3
quit statement
BC exit 8-20
built-in statement 8-
19
quit, keyword 8-14

quoted string statement
8-19
register See storage
register
relational operator
designated 8-18
designated 8-9
evaluation order 8-15
RETURN key 8-2
return statement
built-in statement 8-
19
description 8-20
form 8-T7
return, keyword 8-14
scale command B8-7
scale
addition operator 8-17

addition operator 86
arctan function 8-13
Bessel function 8-13
built-in function 8=16

command See scale
command

cos function 8-13
decimal digit value

8-7

defined 8-15
description 8-6
division operator 8-17

division operator 8-6
exponential function
8-13

exponentiation

operator 8-17

exponentiation

operator §8=6

initial setting 8=-7
keyword 8-14

length function 8-16
length maximum 8-6
log function 8-13
modulo operator 8-17
modulo operator 8-6
multiplication

operator B8-16
multiplication

operator 8-6

named expression 8-15
sin function 8-13
aguare root effect 8-
1

square root effect 8-6

subtraction operator
8-17
subtraction operator
8-6
value printing
procedure 8-7
variable 8-7
semicolon (;), statement
separation 8-19
semicolon (;), statement
separation 8-3
sin function
availability 8-1
loading procedure 8-13

slash (/), division
operator symbol 8-
space significance 8-12

XENIX User's Guide

square root
built-in function 8-16

keyword 8-14

result as integer 8<5

scale procedure 8-6

sqrt keyword 8-14
statement

See also Specific

Statement

entry procedure 8-12
execution sequence 8-
19
separation methods 8-
19
types designated 8-19
storage classes 8-18
storage register 8-4
subseript
fractions discarded
8-9
truncation 8-14
value limits 8-9 .
subscripted variable
array See array
description 8-9
subscript See
subscript
subtraction operator
left to right binding
8-4
scale 8-17
scale 8-6
symbol (=) 84
syntax 8-1
token composition 8-14
truncation use when 8=7

1-10

unary operator
designated 8-16
evaluation order 8-15
left to right binding

8-16

symbol (-) 8-4
variable

automatic 8-18

automatic 8-T

name 8-7

subscripted See
subscripted variable
while statement
break statement effect
8-19
built-in statement 8-
19
description, use 89
execution 8-21
range execution 8-10
‘relational operator
8-18
while, keyword 8-14
Bessel function See BC
Binary file See File
Binary logical and

operator T-=34
Binary logical or
operator T-34

BINUNIQ shell procedure 7-
yy

BKSP key
BC 8-2
command-line buffer
editing 3-9

BKSP
vi cursor movement 5-17

Block special device 4-16
Bourne shell
TERM variable 5-50
terminal type 5=50
Braces ({})
BC
compound statement
enclosure 8-19
function body
enclosure 8-T
command grouping T-25
pipeline, command list
enclosure 7=20
variable
conditional
substitution T7-=38
enclosure T7-11
Braces command ({}) 7-40
Brackets ([])
BC
array identifier 814
auto array 8-18
subscripted variable
8-9
directory name, use
avoidance T-3
ed metacharacter See Ed
filename, use
avoidance 3-4
metacharacter 7-3
metacharacter 7=54
pattern matching See
metacharacter
pattern-matching
functions 3-8
test command, use in lieu
of 7-33

break command
for command control 7-24
loop control 7-24
shell built-in command 7-
40
special shell command 7-30

while command control T7-24

Buffer See Ed
Buffers See Vi 5«23
¢ command See Ed

C language
BC

comment convention
similarity 8-13
syntax agreement B8-1
shell language 7-1
C shell
TERM variable 5-50
terminal type setting 5-50

cal command 4-29
Calculation
See also BC
example 430
Calculator functions See
BC
calendar command #4-30
Calendar reminder
service 6«32
Caret ()
BC, exponentiation
operator symbol 8-4
ed use See Ed
mail, first message
specification 6-15

1=-11

XENIX User's Guide

mail, first message
specification 6-34
mail, first message
specification 6=-7
case command
description, use 7=22
exit status 7-22
redirection 7=26
shell built-in command T~
40
Case delimiter symbol
(33) 7-54
Case significance 2-2
Case-part 7-52
cat command
ed See Ed
file
combining U7
contents display 2-3
Cat
command U7
cd arg command 7-30
ed command Ud-15
directory change 3-5
directory change 7-14
mail 6-22
mail 6-34
parentheses use 7-14
time consumption
minimization 7-42
Changing password 4-2
Changing terminal types &-3
Character class See Ed
Character counting 4-22
Character special
device U4-16
chmod command 4-17

112

chmod command 4-19
directory permission
change 3=2
file permission change 3-1

chron option See Mail
CNTRL-D
background process
immunity 7-19
BC exit 8-2
BC exit 8-3
end-of-file 42
logging out 2-5
mail 4-28
message sending 6-10
message sending 6-3
reply message
termination 6-12
reply message
termination 6-19
shell exit 6-21
shell exit 7-25
vi scroll 5-20
CNTRL-F
vi scroll 5«20
CNTRL-G
vi See Vi 5-11
CNTRL-H, mail 6-6
CNTRL-Q, output
resumption 4-U
CNTRL-S, output
stopping 44
CNTRL-U
command-line buffer
editing 3-9
inserting as text 2-4
kill character 2-4

line kill 4-4
mail, line killing 6-11
mail, line killing 6-6
vi scroll 5-20

Co command See Vi

Colon (3)
command See Colon command
()
mail

command escape 6-26
network mail 6-13

PATH variable use 7-12
variable conditional
substitution 7-38
vi use See Vi

Colon command (:)
description 7-30
shell built-in command 7-
40
special shell command 7-30

Command line
ampersand (&) effect 3-9
buffer defined 3-9
defined 3-8
entry 4l
erasure U-4
execution 7-18
interpretation 3-9
multiple commands
entry 3=9
options
See also Specific
Option
designated 7-39
pipeline, use in 7-20
rescan 7-18

RETURN key effect 4l
scanning sequence 7-18
substitution 7-8
Command list
case command,
execution 7=22
defined 7-19
for command, execution 7-
23
grammar T=52
Command
See also Specific Command

background submittal 3-9
batch processing See
background submittal
dash (=) use 3-4
defined 7-19
delimiter See Ed
directory See /bin
directory
directory See Directory
ed commands See Ed
enclosure in parentheses
(()), effect 7=U0
environment 7-15
execution 3-8
execution 7=2

RETURN key required 2-2

sequence 424
time T7-40
exit status See Exit
status
grammar 7=52
grouping
exit status 7-26

XENIX User's Guide

parentheses (())
use T=54
procedure 7-25
WRITEMAIL shell
procedure 7-51
keyword parameter 7-15
line See Command line
list See Command list
lowercase letters 3-9
mail commands summary 6-33

multiple commands
entry 3-9
multiple commands
entry 7-8
name error 2-2
output substitution
symbol T-54
private command name 7-2
program invocation 3-8
public command name 7«2
RETURN key required 2-2
search
PATH variable 7=12
process T7T-U2
separation symbol (;) 7-54

shell, built-in commands
designated T7-40
simple command

defined 7-19

defined 7-2

grammar 7-52
slash (/) beginning,
effect T=2
special shell commands See
Shell

1-14

special shell commands See
Specific Special Command
substitution
back quotation marks
) T-4
double quotation marks
(\0
procedure T7-8

redirection
argument 7<6
syntax 3-9

typing error
correction 2-4
vi commands See Vi

Commands

at 4-22
atrm 4-23
cal 4-29
cat 4-7

cd 4-15
copy 4-14
cp U4-8
date 4-29
diff 4-19
diff3 4=20
echo 4-20
find 49
head U4-6
kill 4=26
le 4-11

1n 4210
lpr 4.27
mkdir 4-13
more 45
mv 4=8
passwd U-2
ps 4=24

pwd 4-14

rm 4-9

rmdir 4-13

sort 4-20

stty 44

tail 4-6

we U4-22
Communication See Mail
Comparing files 4-19
compose escapes 6-1
Compose escapes See Mail
Concatenate See cat

command
Console 2-2
continue command

for command control 7-24

shell built-in command 7~

40

special shell command 7-30

until command control T-24
while command control 7-24

Control characters
filename use
restrictions 3-4

Control command
See also Specific Control
Command
redirection 7=26

Copy command 4-14

Copying a directory 414

Copying files 4-8

Copying See cp command

COPYPAIRS shell
procedure T7-44

COPYTO shell procedure 7-i45
Counting, we command 4=~22
cp command 4«8
CR key See RETURN key
Creating a directory 4-13
Creating a file 4«5
Current directory
change 3-5 .
procedure U-14
description 4-14
printing 4-11
shorthand name 3-6
user residence 3«6
Current line
See Vi
Cursor movement
vi See Vi
Cutting and pasting
procedure See Ed
D command See Vi
d command
ed use See Ed
mail, message deletion See
Mail)
d$ command See Vi
d0 command See Vi
Dash (~), permission
denial notation 4-16
ordinary file notation u-
16
Dash (=)
command option use 34
filename, use
avoidance 3-4
switch use 3-9
date command 2-2
Date command 4-29

1=-15

XENIX User's Guide

dd command See Vi
Delete buffer See Vi
Deleting a file U=9
Deletion See d command
Deletion
vi procedure See Vi
Delimiter See Ed
Demonstration 2-1
Device special file See
Special file
Device
filename 3-4
filenamerequired 3-4
pathname 3-4
Diagnostic output See
Output
Dial-up line See Background
process
Diff command 4-19
diff3 4-20
Digit grammar 7-52
Directory
/bin See /bin directory
/dev See /dev directory
/1ib See /1ib directory
/tmp directory 4-25
/tmp See /tmp directory
/tty See /tty directory
/usr See /usr directory
access permission See
Permission
changing 4-14
command See ¢d command
composition 3-2
copying u-14
creating U4-13
current directory See
Current directory

1=-16

description 3-2
diagram 3-3
file See File
filename
required 3-4
unique to directory 3-4

listing 4-12

columns U-11
logging in result 3-2
long listing 412
name, metacharacter
avoidance 7-3
nesting 3-2
parent directory See
Parent directory
pathname required 3-4
permission notation 4-16
permission See Permission

protection 3-2
recursive listing 4-12
removing 4-13
renaming 4-13
search permission See
Permission
search
optimum order T7-42
PATH variable 7-42
sequence change 7=3
size effect 7-43
time consumption T7-42
size consideration 7-43
user control 3-2
working directory See
Current directory
Displaying a file U5

DISTINCT1 shell
procedure T-45
Division See BC
Division See Calculation
Dollar sign ($)
ed use See Ed
mail, final message
specification 6-15
mail, final message
specification 6-34
mail, final message
specification 6-7
positional parameter
prefix T7=10
positional parameter
prefix T=11
PS1 variable default
value 7-13
variable prefix 7=-11
vi See Vi

Dot (.)
command See Dot command
(.)
ed use See Ed

mail, current message
specification 6-15
mail, current message
specification 6-7
vi use See Vi

Dot command (.)
description, use 7-27

shell built-in command 7-

40
shell procedure
alternate 7-32

special shell command T7=-30

Dot option See Mail
Double quotation marks See
Quotation marks, double
(\O
dp command See Mail
DRAFT shell procedure 7-46
dw command See Vi
dw command See Vi 5227
e command
ed use See Ed
mail 6-34
mail 6-7
mailR 6-21
echo command 2-3
echo command 4-20
-n option effect 7-35
description, use 7-35
mail 6-34
syntax 7-35
Ed
a command
append A-3
append A-48
backslash (\)
characteristics A-32
dot (.) setting A-U1
dot (.) setting A-48
global combination A-24

input termination A-30

input termination A-lU
abortion, q command A-U8
address arithmetic A-9
ampersand (&)

literal A-38

metacharacter A-38

substitution A-38

1-17

XENIX User's Guide

append See a command
asterisk (®),
metacharacter A-27
asterisk (%),
metacharacter A-34
at sign (@), script A-A47
backslash (\)
a command A-32
backslash (\)
¢ command A-32
backslash (\)
g command A=24
backslash (\)
i command A-32
backslash (\)
line folding A-25
backslash (\)
literal A-31
backslash (\)
metacharacter A-27
backslash (\)
metacharacter A-30
backslash (\)
metacharacter
escape A-30
backslash (\)
metacharacter
escape A-31
backslash (\)
metacharacter
escape A-38
backslash (\)
metacharacter
escape A-39
backslash (\)
multiline
construction A-24

1-18

backslash (\)

number string A-25
backslash (\)

v command A-24
backspace printing A-25
brackets ([])

character class A-37

metacharacter A-27

metacharacter A-36
buffer

description A-4

writing to file See w

command
¢ command

backslash (\)

characteristics A-32

dot (.) setting A-20

dot (.) setting A-i41

dot (.) setting A-48

global combination A-2U

input termination A-20
line change A-19
line change A-48
caret (°)
character class A-37
line beginning
notation A-33
metacharacter A-27
metacharacter A-33
cat command A-6
change command See ¢
command
character class A-37
character
deletion at line
beginning A-36

command
See also Specific
Command
combinations A-24
delimiter character A-
31
description A=l
editing command See e
command
form A-U48
INTERRUPT key
effect A-U5
listing A-48
multicommand line
restrictions A-15
summary A-48

context search See search

current line See dot (.)
cutting and pasting
move command See m
command
procedures A-Ui5
d command
deletion A-12
deletion A-48
dot (.) setting A-41
dot (.) setting A-48
deletion See d command
delimiter
character choice A-31
description A-1
dollar sign ($)
last line notation A-12

last line notation A-33

last line notation A-8
line end notation A-32
line end notation A-33
metacharacter A-27
metacharacter A-32
multiple functions A-33

dot (.)
current line
notation A-9
description A-11
determination A-41
search setting A-16
search setting A-49
substitution
setting A-14
symbol (.) A-11
symbol (.) A-30
value determination A-
12
value determination A-
49

duplication See t command

e command A-4§
e command A-6
edit See e command
entry A=3
equals sign (=)
dot value printing

(t=) A-12
dot value printing
(.=) A-49

last line value
printing A-49
escape command (!) A=27
escape command (!) A-49

1-19

XENIX User's Guide

exclamation point (1),
- escape command A-27
exit See q command
f command A-U48
f command A-7
file
insertion into another
file A-45
writing out A-U5
filename
change A-7
recovery A-7
remembered filename
printing A-48
remembered filename
printing A-7
folding A-25
g command
a command
combination A-24
backslash (\) use A-24
¢ command
combination A-=24
command
combinations A-23
command
combinations A-24
dot (.) setting A-23
i command
combination A-24
line number
specifications A-24
multiline
construction A-24
s command
combination A-23
s command
combination A-49

1=-20

search, command
execution A-22
search, command
execution A-48
substitution A-15
substitution A-28
trailing g A-28

global command See g
command

global command See v
command

greater-than sign (>), tab

notation
A-25

grep command A-28
hyphen (=), character
class A-37

i

command

backslash (\)
characteristics A-32
dot (.) setting A-20
dot (.) setting A-41
dot (.) setting A-48
global combination A-24

input termination A-30
insertion A-19
insertion A-48

in-line input scripts 7-47

input

termination A-20
termination A-30
termination A=l

insert command See i
command
INTERRUPT key

command execution

effect A-U5
dot (.) setting A-45
print stopping A-8
introduction A-1
invocation A-3
j command, line
joining A-39
k command, line
marking A-25
1 command
folding A-25
line listing A-25
line listing A-U48
nondisplay character
printing A-25
number string A-25
s command
combination A-28
less~than sign ()
backspace notation A-25

line beginning
character deletion A-36

notation A-33
line end
notation A-32
line number
0 as line number A-lly
combinations A-9
summary A-48
line
beginning See line
beginning
break See splitting
folding A=25
joining A-39

marking A-26
moving See m command
number See line number

rearrangement A-U0
splitting A-39
writing out A-46
list See 1 command
m command
dot (.) setting A-22
dot (.) setting A-48
line moving A-21
line moving A-48
warning A-22
mail system See Mail
marking See k command
metacharacter
ampersand (&) A-38
asterisk (%) A-27
asterisk (%) A-34
backslash (\) A=27
backslash (\) A-30
brackets ([]) A-27
brackets ([]) A-36
caret (%) A-27
caret (%) A-33
character class A-37
combination A-34
dollar sign ($) A=27
dollar sign ($) A-32
escape A-31
escape A-38
period (.) A=27
period (.) A-=29
search A-37
slash (/) A-=27
star (%) A-27

1-21

XENIX User's Guide

star (%) A-34
minus sign (-), address
arithmetic A-9
move

command See m command

line marking A-26
multicommand line
restrictions A-15
new line

substitution A=39
nondisplay character
printing A-25
p command

dot (.) setting A-45

multicommand line A=15

printing A-48

printing A-8

s command

combination A-28
pattern search See search

period (.)
a command input
termination A-30
a command input
termination A-4
¢ command input
termination A-20
character
substitution A-29
dot symbol See Dot (.)

i command input
termination A-30
literal A-30
metacharacter A-27

1=22

metacharacter A-29
s command, effect A-29
script problems A-U7
search problems A=27
troff command
prefix A-23
plus sign (+), address
arithmetic A-9
print
command See p command

line folding A-25
RETURN key effect A-12
stopping A-8
q command
abortion use A-48
quit session A-U48
quit session A<5
W command
combination A-U48
question mark (?)
exit warning A-3
search error message
(?) A-16
search repetition
(??) A-18
search, reverse
direction (? ?) A-17
search, reverse
direction (? ?) A-49
write warning A<5
quit See q command
quotation marks, single
(")
line marking A-26
r command
dot (.) setting A-42

dot (.) setting A-48
file insertion A-45
positioning without
address A-45
read file A48
read file A-7
reading See r command
regular expression
description A-28
metacharacter list A-27

RETURN key, printing A-U48

s command
ampersand (&) A-38
character matech A-29
description, use A-13
description, use A-l9
dot (.) setting A-~-14
dot (.) setting A-41
dot (.) setting A-49
g command :
combination A-15
g command
combination A-23
g command
combination A-49
1 command
combination A-28
line number A-28
new line A-39
p command
combination A-28
search combination A-17

text removal A-15
trailing g A-28
undoing A-25

v command
combination A-23

script A-U7
search

dot (.) setting A-lU9
error message (?) A-16
forward search (/

/) A-16
forward search (/
/) A-U9

global search See g
command

global search See v
command
metacharacter
problems A-27

next occurrence
description A-16
procedure A-16
repetition (//),
(?2?) A-18

reverse direction (?
?) A-17

separator A-U3
substitution
combination A-17

sed command A-28
semicolon (3)

dot (.) setting A-Ul
search separator A-43

shell

escape See escape
command (1)

slash (/)

delimiter A-31
literal A-31
metacharacter A-27

1-23

XENIX User's Guide

search forward (/ undo See u command

/) A=16 v command
search forward (/ a command
/) A=49 combination A-=24
search repetition backslash (\) use A-2Y4
(//7) A-18 ¢ command
special character See combination A-24°
metacharacter command

spelling correction See s
command
star (%),
metacharacter A-27
star (%),
metacharacter A-34
substitution
command See s command

t command
dot (.) setting A-U9
transfer line A-26
transfer line A-U49

tab printing A-25

tbl command A-ld6

termination See q command

text
removal See s command

saving A-S
transfer See t command
troff command printing A-
23
typing error correction
See s command
u command

undo A-25

undo A-49

1-24

combinations A-23
command

combinations A-24
dot (.) setting A-23
global search,
substitute A-22
global search,
substitute A-49

i command

combination A-24
line number
specifications A-24
8 command

combination A<23
command

description, use A-5
dot (.) setting A-42
dot (.) setting A-U49
e command

combination A-48
file write out A.l5
frequent use
advantages A-lU2

line write out A-l6
write out A-45

write out A-49

write out A-5

write out

command See w command

warning A-5

EDFIND shell procedure 7-U7

Editor See Ed
EDITOR string, mail 6-29
EDITOR string, mail 6-39

EDLAST shell procedure T7-U7

egrep See grep command
elif clause See if command
else clause See if command
Else-part grammar 7-52
Empty grammar 7<52
ENTER key See RETURN key
Equal sign (=) '
BC
assignment operator
symbol 8-l
relational operator
8-18
relational operator
8-9
ed use See Ed
mail, message number
printing 6-16
mail, message number
printing 6-34
variable
conditional
substitution 7-38
string value
assignment 7-10
errdirect file 7-28
Error output
redirection T7-37
ESCAPE key
vi See Vi
Escape string, mail 6-29
Escape string, mail 6-39

eval command
command line rescan T-18
shell built-in command 7-
40

Ex, ed similarity A-1

Exclamation point (!)
BC, relational operator
8-18
BC, relational operator
8-9
ed use See Ed
mail
network mail 6-13
shell command
execution 6-21
shell command
execution 6<25
shell command
execution 634
unary negation
operator 7«34
vi See Vi
exec arg command 7-30
exec command T-40
Exit code See $7? variable
exit command
shell built-in command 7-
40
shell exit 7=25
special shell command 7-30

Exit status
$? variable 7-13
case command T=22
cd arg command 7-30
colon command (:) 7-30
command grouping 7-26

1-25

XENIX User's Guide

false command 7=36
if command 7-21
read command 7-30
true command T-36
until command 7-23
wait command 7-=31
while command 7-23
Exponentiation See BC
Exponentiation See
Calculation
export command
shell built-in command T-
40
variable
example T=13
listing 7-16
setting 7-15
expr command 7-=35
command, mail 6=12
command, mail 6«20
command, mail 6=35
command
ed use See Ed
mail 6-11
mail 6-12
mail 6-19
mail 6-35
false command 7-36
fgrep See grep command
fi command
if command end 7-21
mail 6-35
File descriptor
description, use 7=5
redirection 7=37
redirection 7-6
File permission
changing 4-17

oo

1=26

File permissions,
listing 4-12
File system
defined 3=3
diagram 3-4
organization 3-3
File
access
control 3-1
last access time 3-1
permission See
Permission
addition See creation
alphabetizing See sort
appending U4-7
attributes 3-1
binary file 3-1
combining 4-7
composition 3-1
copying 4-8
creating 4-5
with vi 5«2
creation
MKFILES shell
procedure 7-U49
permission See
Permission
time 3-1
write permission
control 3=2
defined 3-1
deleting 4-9
deletion
write permission
control 3-2
descriptor See File
descriptor

directory See Directory
displaying 4-5
displaying 4-b
displaying 4-7

editing See Vi

filename See Filename
grammar 7«52

inode number See Inode
number

linking 4-10

listing 3-2

mail system files See
Mail

manipulation Y-l
modification time 3-1
moving 47

moving 4-8

name See Filename
paginating 4-27
pathname required 3-4
pathname, printing 4-14
pattern search See Ed
pattern search See grep
command

pattern search See Pattern
matching facility
permission See Permission

permissions 4-15

pipe interchange T-U6
printing See Lineprinter
protection 3-1

removal 4-9

renaming 4-8

scratch file directory 3-6

shell procedure
creation 7=31

size in bytes 3-1
sorting U-20
special file See Special
file
temporary file See
Temporary file
textual contents
determination T-51
types designated 3-1
variable file creation See
Variable
Filename
srgument 7-3
asterisk (%) wildcard 3-7
characters use
restrictions 3-4
description 3-4
ed See Ed
example designated 3-6
long listing 4-12
question mark (?)
representation 3-8
required 3-1
required 3-4
unique to directory 3-4
Files
comparing 4-19
Filter
description 7-T
order consideration T-U1
find command U4-9
Finding a file 4-9
finger command U4-25
Flag See Option
fmt command, mail 6=25
for command
break command effect T-24

127

XENIX User's Guide

continue command
effect T-24
description, use 7-23
redirection 7-26
shell built-in command 7-
40
for loop, argument
processing 7-17
Foreground process #4-24
fork command 7-40
FSPLIT shell procedure T7-48
Full pathname See Pathname
g command See Ed
G command
vi See Vi
Global
ed use See Ed
variable check 7=-33
goto command
See G command 5-=5
Greater-than sign (

Y>BC, relational
operator 8«18
)}>BC, relational
operator 8-9
)>file combination 4-7
)>output
redirection 3=-11
)>PS2 variable default
value 7-13
)>redirection
symbol 2-3
)>redirection
symbol 7-54

grep command 4-21
ed See Ed

1-28

Group permission See
Permission
h command
mail 6-16
mail 6-35
mail 6-9
vi use See Vi
H flag, mail 6-17
head command 4-6
headers command See Mail
ho command See Mail
Home directory 4-15
HOME variable
conditional
substitution 7-39
description 7=12
i command See Ed
if command
COPYTO shell procedure 7=
45
description, use 7=20
exit status 7-21
fi command required 7-21
multiple testing
procedure T-21
nesting 7-21
redirection 7-26
shell built-in command 7~
40
test command 7-33
IFS variable 7-12
ignore option See Mail
ignorecase option See
Vi 536
In-line input document See
Input
Inode number
defined 3-2

link See Link
1s command 3-2
required for file 3-1
required for file 3-2
Input
ed See Ed
grammar 7«52
in=line input
document T7-36
EDFIND shell
procedure T=47
keyboard origin 3-10
redirection See
Redirection
standard input file 7-5
termination 4.2
Insert mode See Vi
Insertion See Ed
Internal field separator
shell scanning
sequence T=-18
specificaiton by IFS
variable T-12
INTERRUPT key
background process
immunity 7-19
BC 8-2
command-line buffer
cancellation 3-9
ed use See Ed
foreground process
killing U424
logging in, nonsense
character removal 2-1
mail
askee switeh 6-27
message abortion 6-11

message abortion 6-28
program stopping 2-5
Interrupt
handling methods 7-27
key See INTERRUPT key
Invocation flag See Option
Item grammar 7-52
J command See Ed
j command
vi use See Vi
k command See Ed
k command
vi use See Vi
Keyword parameter
-k option effect 7-33
description 7-=15
Kill character See CNTRL-U
kill command 4-2U
kill command 4=26
Killing a process 4-24
1 command 4§-12
ed use See Ed
mail 6-19
mail 6-35
vi use See Vi
lc command A4-~11
listing 2-3
Less-than sign ()
BC, relational operator
8-18
BC, relational operator
8-9
redirection symbol 7-54
Less=than symbol (<)
input redirection 3«12
line command
shell variable value
assignment T7-9

1-29

XENIX User's Guide

Line~oriented commands See
Vi 5-12
Line
beginning See Ed
counting See we command
writing out See Ed
linenumber option See Vi
Lineprinter
command See lpr command
file printing 4-27
queue information 4-26
queue information 4-27
Link
command See 1ln command
defined 3~2
description 4-10
long listing U412
Linking files 4-10
list command
mail 6-35
list option See Vi
LISTFIELDS shell
procedure T7-U49
Listing directory
contents 4-11
Listing See 1 command
Listing See lc command
ln command 4-10
Logging in 41
nonsense character -
removal 2-1
procedure 2-1
prompt character 2-1
resetting terminal
charchteristics 2-4
type-ahead not allowed 2-4

1-30

Logging out
background process
immunity 7-19
procedure 2-5
procedure 4.2
shell termination 7-25
Login directory
defined T-12
‘new user 2«1
Login message 2-1
Login
procedure 4-1
Looping
break command T-24
continue command 7-24
control T-24
expr command 7-36
false command 7-36
for command 7-23
iteration counting
procedure 7-36
time consumption 7-40
true command 7-36
unconditional loop
implementation 7-36
until command 7-23
while command 7-22
while loop 7-U4
1pr command
file printing 4-27
mail
-m option 6-32
message printing 6-19
message printing 6-35
pipe 4-27
pr command combination 4-
27

1s command
echo #* use in lieu of 7-35

function 3-2
inode number use 3-2
m command
ed See Ed
mail 6-19
mail 6-35
M flag See Mail
magic option See Vi
mail command See Mail
MAIL variable T7-12
Mail
-b option 6-31
-c option 6=31
-R option 6-31
-u option 6-31
-f option 6-31
-f option 6=9
-1 option 6-30
-i option 6-31
-i option 6-39
-i option 6-9
-m option 6=32
-8 option U428
-s option 6-31
.mailre file
alias contents 6-20
distribution list
creation 6-13
example 6=27
options setting 6-13
set command 6-20
unset command 6=20
? command See help command
(?)

a command See alias
accumulation 6-32
Alias 6=34
alias
a command 6-13
a command 6-20
a command 6«34
display 6-13
network mail 6-13
personal 6-13
personal 6-27
R command 6-13
system-wide 6-27
askee option 6-13
askee option 6-27
askee option 6-39
asksubject option 6-27
asksubject option 6-39
asterisk (%)
character matching 6-7

message saved, header
notation 6-16
message saved, header
notation 6-18
at sign (€), ignore switch
echo 6=30
at sign (@), ignore switch
echo 6-~39
autombox option
description, use 6-30
description, use 6=39
effect 6-18
H flag 6-17
ho command 6-19
autoprint option 6-28
autoprint option 6-39

1=31

XENIX User's Guide

BACKSPACE key 6-11
BACKSPACE key 6-6
Bec field See blind carbon
copy field
blind carbon copy field
description 6-5
editing 6-23
editing 6-24
escape See becc escape

box See Mailbox
carbon copy field
additions prompt 6-13
blind See blind carbon
copy field
deseription 6<5
display 6-4
editing 6-24
escape See c¢ escape
escape See cc escape
option See askce
option
R command effect 6-12
caret ("), first message
specification 6«15
caret (%), first message
specification 6-34
caret ("), first message
specification 6-7
cc field See carbon copy
field '
cd command 6-22
cd command 6-34
chron option 6-28
chron option 6-39
CNTRL-D
message reply 6-12

message reply 6-19

message sending 6-10
CNTRL-H, backspace 6=6
CNTRL-U, line killing 6-11

CNTRL-U, line killing 6-6
colon (3)
escape See command
escape (3)
network mail 6-13
command escape (&) 6-26
command escape (:) 6-37
command line options 6-31
command mode
description, use 6-7
help command 6«14
options setting 6«13
command
See also Specific
Command
descriptions 6-14
escape See command
escape (2)
invocation 6-14
mail command See mail
command
summary 6-33
syntax 6-8
compose escape (!) 6-37
compose escape (}) 6-37
compose escapes
See also Specific
Escape
compose mode exit 6-6
edit mode entry 6-7
heading escapes 6-23
listing 6-11

listing 6-2
m command 6-19
reply 6-19
summary 6-37
tilde () component 6~
1"
compose mode
compose escapes See
compose escapes
description, use 6-6
edit mode entry 6-7
entry from command
mode 6-11
entry from shell 6-11
tilde escapes See
compose escapes
concepts 6-4
d command U-28
d command 6-11
d command 6-17
d command 6-34
d command 6-4
d command 6-7
dead.letter file
escape See d escape
nosave switch
effect 6-28
undelivered message
receipt 6-10
deletion See message
distribution 1list
creation 6-12
dollar sign ($), final
message specification 6-15

dollar sign ($), final
message specification 6-34

dollar sign ($), final
message specification 6-7
dot (.), current message
specification 6-15
dot (.), current message
specification 6-7
dot option 6-28
dot option 6-39
dp command 6-17
dp command 6-34
e command 6-21
e command 6-34
echo command 6-34
editor escape See e
escape
editor escape See v
escape
EDITOR string 6«29
EDITOR string 6-39
entry 6-9
equal sign (=), message
number printing 6-16
equal sign (=), message
number printing 6-34
escape string 6-29
escape string 6-39
exclamation point (1)
network mail 6-13
shell command
execution 6-21
shell command
execution 6-25
shell command
execution 6«34
exit
q command U4-28
qQ command 6-17

1-33

XENIX User's Guide

command 6-36
command 6-4
command 6-9
command 6-18
command 6-=34
f command 6-11

f command 6-=12

f command 6-19

F command 6-20

f command 6-35

fi command 6=35
file switch See -f option

% X .0 .00

files designated 6-33
forwarding

messages not

deleted 6-17

procedure See F

command

command 6-16

command 6-35

command 6-9

flag, message saving 6~

n>ro>>

17

header
characteristics 6-16
command See h command

defined 6-8
display 6=3
display 6-8

display 6-9
listing 6-35
windows 6-16
windows 6-8
heading
compose escapes 6«23
composition 6<5

1-34

help command (?) 6-14
help command (?) 6-3
help escape (?) 6=11
help escape (?) 6-22
help escape (?) 6-37
ho command
description 6-19
H flag 6-17
message saving 6-=35
hold command See ho
command
ignore switch See -i
option
INTERRUPT key
message abortion 6-11
message abortion 6-28
recipient 1ist 6-27
introduction 6-1
invocation, -i option 6-9
1 command 6-19
1 command 6-35
line killing 6-11
line killing 6-6
list command 6-35
lpr command
-m option 6-=32
message printing 6-19
message printing 6-35
m command 6-19
m command 6-35
M flag, message saving 6-
17
mail command
command mode entry 6-7

command mode entry 6-9
compose mode entry 6-11

help 6-3
message reading 6-10
message reading 6-3
message sending 6<2
message sending 6-35
mail escapes See M
escape
mailbox See Mailbox
mb command 6-18
mb command 6-35
mbox command See mb
command
mchron option 6-=39
message number
command 6-16
command 6-34
message printing 6-10
printing 6-16
printing 6-34
types 6-7
message-list
argument, multiple
messages 6=12
composition 6-7
full message-list
description 6-8
message
abortion 6-11
abortion 6-28
abortion 6<9
advancement 6-10
advancement 6-34
body 6-6
composition 6«5
deletion 4-28
deletion 6-11
deletion 6-17

deletion 6-34

deletion 6-U

deletion 6«7

deletion undoing 6-17

description 6-5

display #u-28

editing 6-11

editing 6-21

editing 6-31

editing 634

file inclusion 6-24

forwarding See

forwarding

header See header

heading See heading

insertion into new

message 6-25

list See message-list

listing 6-3

number See message

number

printing See printing

range description 6-7

reading 6-10

reading 6-3

reading into file 6-9

reply See reply

saving See saving

sending See sending

size 6-21

size 6-36

specification 6-12

undeletion 6-11
metacharacters 6-15
metacharacters 6-7
metoo option 6-28
metoo option 6=39

1=35

XENIX User's Guide

minus sign (-), message
advancement 6-34
network mail 6-13

noisy phone line 6-9
nosave option 6=-28
nosave option 6-39

number command See message

number
options
See also Specific
Option
command line
options 6-31
setting 6-13
‘summary 6-39
switch option
setting 6-20
organization 6-32
p command

message printing 6-14
message printing 6-36

message printing 6-4
message printing 67
syntax 6-8
page option 6-29
period (.), dot use See
dot (.)
phone line noise 6-=9
plus sign (+), message
advancement 6-34
printing
command See lpr
command
command See p command
escape See p escape
lineprinter See lpr
command

1-36

procedure 6-10
procedure 6-7

top five lines See t
command

programs designated 6-33

prompt U-28

prompt 6«3

q command
exit 4-28
exit 6-17
exit 6-36
exit 6-4
exit 6-=9

message abortion 6-28

question mark (?)

command summary
printing 6-34

compose escape help See
help escape (?)

help command 6-14

quiet option 6-28
quiet option 6-40

R

r

command

alias effect 6-13
command

compose mode entry 6-11

message reply 6-11
command
message reply 6-12
command
message reply 6-19
message reply 6-36

read escape See d escape

read escape See r escape

reading 4-28
recipient list, name
addition 6-23
record string 6-29
record string 6-40
reminder service 4-30
reminder service 6-32
Reply command See R
command
return receipt request
field 6-5
s command
flag 6-16
message saving 6-18
message saving 6-36
system mailbox, message
deletion 6-17
saving
asterisk (%)
notation 6-18
automatic 6-17
command See s command
flag 6-16
ho command 6-35
M flag 6-17
message display 6-4
s command 6-18
s command 6-36
system mailbox 6-9
w command 6-18
w command 6-37
se command See set
command
sending 4-27
cancellation
impossible 6-3
multiple recipients 6-
10

network mail 6-13
procedure 6-10
to self 6-2
session abortion 6-11
set command
description, use 6~20
description, use 6-36
option control 6-39
set options defined 6-27
sh command 6-21
sh command 6-36
shell commands 6-21
shell escape (1) 6-25
shell escape () 6-25
SHELL string 6-29
SHELL string 6-U0
si command 6-21
si command 6-36
so command 6-22
so command 6-36
source command See So
command
special characters See
metacharacters
startup file 6-27
string option
setting 6-20
summary 6-39
subject escape See s
escape
subject field 6-U
subject field 6-5
subject switch See =-s
option)
subject switch See
asksubject option
switch See Option

1-37

XENIX User's Guide

system composition 6-33
system mailbox, message
retention 6-9
t command
message top
printing 6-12
message top
printing 6-16
message top
printing 6<36
toplines option 6-16
tilde escapes See compose
escapes
tilde quote escape
() 6-26
tilde quote escape
() 6=37
to field
mandatory 6-5
R command effect 6«12
top command See t command

toplines option 6-40

toplines string 6-30

u command 6-11

u command 6-17

u command 6-36

u command 6-T7

undeletion See u command

unset command
description, use 6=20
description, use 6=37
option control 6-39

v command 6-21

v command 6-37

v command 6-7

variable See MAIL

variable

1-38

vertical bar (}) escape
See shell escape (})
VISUAL string 6-29
VISUAL string 6-40
w command

message write out 6-18

message write out 6-37
system mailbox, message
deletion 6-17
write escape See w
escape
write out See w command
x command
exit 6-18
exit 6-34
session abortion 6-11
you have mail message 2-1
! See shell escape (!)
¢ See command escape
C2)
? See help escape (?)
b escape 6-23
bce escape 6-38
¢ escape 6-23
cc escape 6-38
d escape 6-24
dead escape 6-38
e escape 6«23
editor escape 6-38
h escape 6-24
headers escape 6-38
M escape 6-25
message escape 6-38
p escape 6-22
print escape 6-38
quit escape 6-38

r escape 6-24
read escape 6-38
s escape 6-23
subject escape 6-38
t escape 6-23
to escape 6-38
v escape 6-23
visual escape 6-38
w escape 6-25
write escape 6-38
| See shell escape (})
See tilde quote escape
«)
Mailbox
cleaning out 6-32
command 6-18
reading in 6-9
system mailbox 6-5
user mailbox
filename 65
message saving
notation 6-17
Make directory See mkdir
command
Marking See Ed
mb command See Mail
mbox command See Mail
mchron option
mail 6-39
mesg option See Vi
Metacharacter
asterisk (%) 7-54
brackets ([]) 7-54
directory name use
avoidance 7-3
escape T-4
list designated 7-54

mail 6-15
mail 6-7
question mark (2) 7-54
redirection
restriction 76
metoo option See Mail
Minus sign (=)
BC
subtraction operator
symbol 8-4
unary operator symbol
8-16
unary operator symbol
84
mail, message
advancement 6-34
redirection effect 7-36
subtraction operator
symbol 8-4
variable conditional
substitution 7-38
mkdir command 4-13
MKFILES shell procedure 7=~
49
more command U<5
Move See mv command
Multiple way branch See case
command
Multiplication See BC
mv command 47
mv command U4-8
directory moving 4-13
n command See Vi
Name grammar 7-52
Name special file U4-16
Named pipe Md-16
newgrp command
description 7-30

1-39

XENIX User's Guide

shell built-in command 7-
40
special shell command 7-30

Newline substitution See
Ed

next command See Vi

nohup command 7-19

nosave option See Mail

nu command See Vi 524

Null command See Colon
command (:)

NULL shell procedure 750

Number sign (#), comment
symbol 7-54

Operator See BC

Option
See also Specific Option
configuration 3-9
DRAFT shell procedure 7-U6

544

grouping 3-9

invocation flags 7«39

mail options See Mail

multiple options
grouping See grouping

separate listing 3-10
position 3-9
tracing, $- variable 7-14
Options
terminal 44
vi options See Vi
Or-if operator (}})
command list 7-19
description, use 7-20
designated 7-54

1=40

Ordinary file See File
Output
append symbol (
>>) 715
>>) T7-54
appending
procedure 3-11
symbol (O>>>) 3-11
control 44
creation symbol (
>) T-54
diagnostic output file 7-5

error redirection 7=37
grammar 7-52
redirection 2-3
redirection 4-7
redirection See
Redirection
resumption U-4
standard error file See
diagnostic output file
standard output file 7-5
terminal screen
destination 3-10
to file 2-3
p command
ed use See Ed
mail
message printing 6-14
message printing 6-36
message printing 6-4
message printing 6-7
syntax 6-8
page option See Mail
Parent directory
description 3-6

shorthand name 3=6
Parentheses (())
BC
expression enclosure
8-15
function identifier
argument enclosure 8-
11U
command grouping 7-25
command grouping T-40
command grouping 7-54
pipeline, command list
enclosure 7-20
test command operator 7-34

passwd command 42
Password
changing 42
logging in 2-1
new user 2-1
PATH variable
conditional
substitution 7-39
description 7=12
directory search
effect T7-U2
sequence change 7-3
Pathname
absolute pathname

example 3-5
required 3-U
slash (/)

significance 3-5

unique to system 3-4
defined 3-5
full pathname See absolute
pathname

relative pathname
defined 3-5
example designated 3-6
structure 3-5
Pattern matching facility
cancellation 3-8
case command T-22
characters 3-7
description 3-6
expr command argument
effect 7-35
grep command 4-21
limitations 7-3
metacharacter See
Metacharacter
redirection
restriction 7-6
shell function 7-3
variable assignment, not
applicable T=11
Pattern
grammar 7-52
metacharacter 7-54
Percentage sign (%), BC
modulo operator symbol
8-4
Period (.)
ed use See Ed
filename use 34
pattern matching facility
restrictions 7=3
vi See Vi
working directory
change 4-15
Permission types 4-16
Permission
block special device
notation 4-16

1-41

XENIX User's Guide

change 3=2

denial notation 4-16

directory permission
assignment 3«2

change 3«2
change 4-17
combinations

designated 4-17

file creation, deletion

notation U-16

file listing

notation 4«16
notation #4-16

search notation 4-16

search permission 4-19

write permission 3-2
execute notation U4-16
file permission

change 3-1

denial notation U-16

execute permission U4-16

file creation; deletion

notation U4-16

file listing

notation U-16

file protection 3-1

notation 4-16

read notation U4-16

required 3-1

write notation 4-16
listing 4-15
notation 4-16
read notation 4-16
search notation 4-16
symbols designated 4=-16
user class
specification 4-18

1-42

write notation 4-16

PHONE shell procedure 7-50
PID

$! variable 7-14

$$ variable 7-13
process identification
number 4§-24

process identification
number 4-26

Pipe

compose escapes See Mail
file interchange 7-U46
function 3-12

1pr command 4-27
procedure 3-12

symbol (}) 3-12

symbol (i) T-54

Pipeline

command list 7-20
defined 3-12

defined 7-19
description T-7
DISTINCT1 shell
procedure 745

filter 7-7

grammar T7-52

notation designated 7-7
procedure T=7

Plus sign (+)

BC
addition operator
symbol 8-l
unary operator symbol
8-16
mail, message
advancement 6-10
mail, message
advancement 6-34

variable conditional
substitution 7-38
Positional parameter
description 7-10

direct access 7-17

null value assignment 7-38

number yield, $#

variable 7-13

parameter substitution 7-
1

positioning 7-10

prefix ($) 7-11

setting 7-10

variable assignment
statement positioning 7-10

pr command 4-27

Print working directory See
pwd command

Printing .
command See lpr command
command See p command
command See pr command

ed See Ed

mail See Mail

Process identification

number See PID

Process

background See Background
process

defined 7-1

foreground See Foreground
process

number See PID

status

status 4-=26

Program stopping 2-5
Prompt character 2-1
Prompt character 4-1
ps command 424

ps command U-26

PS1 variable 7-12
PS2 variable T7-13
pwd command 4-11

pwd command #4-14

q command
ed exit See Ed
mail
exit 4-28
exit 6-17
exit 6-36
exit 64
exit 6-9
message abortion 6-28
q! See Vi

Question mark (?)
directory name, use
avoidance 7-3
ed use See Ed
filename, use
avoidance 3-4
mail

command summary
printing 6-34
compose escape
listing 6-11
compose escape
listing 6<2
compose escape
listing 6-22
help command 6-14
help command 6-3
metacharacter 7-3

1-43

XENIX User's Guide

metacharacter 7-54

pattern matching See

metacharacter

pattern-matching

functions 3-8

single character

representation 3-8

variable conditional

substitution 7-38
quiet option See Mail
quit command

See also q command

BC exit 8-t

BC exit 8-3

QUIT key, background process

immunity T7-19
Quit See q command
Quotation marks, back ()
command line
substitution 7-8
command substitution T7-4
command substitution 7-=9
quoting 7-55
Quotation marks, double (\0
Quotation marks, double (\0
Quotation marks, double (\O
Quotation marks, double (\0O
Quotation marks, double (\O
Quotation marks, double (\0
Quotation marks, single ('')
filename, use
avoidance 3-U
grep command 4-21
metacharacter escape 7-4
pattern matching
cancellation 3-8
trap command 7=27

1-44

variable substitution
inhibition 7-11

Quoting
backslash (\) use 7=55
metacharacter escape T-4
quotation marks, back (*%)
use 7-55
quotation marks, double
(7-55

r character, read permission
notation 4-16

R command See Mail

r command
ed use See Ed
mail use See Mail

read command
exit status 7-30
shell built-in command 7~
40
special shell command 7-30

Read command
vi See Vi
Read See r command
Read-ahead 2-4
readonly command
description 7«30
shell built-in command 7~
40
special shell command 7-30

Record string See Mail
Redirection
argument location 7-8
case command 7-26
ed arg command 7-30
control command 7-26

diagnostic output 7=6

file descriptor T7-37

for command 7-26

if command 7-26

input redirection
‘procedure 3-12
symbol (<) 3-12

minus sign (=) effect 7-36

output redirection 4-7
symbol (>>) 3-11
pattern matching use
restriction 7-6
simple command line,
appearance 7-19
special character use
restriction 7-6
special shell command,
restriction 7-29
symbol (<) 7-54

symbol (
>) 2-3
>) T7-54

until command 7-26

while command 7-26
Reference Manual

directory removal

information 4-13

linking information 4-10

sort command

information 4-21

stty information 4-4
Regular expressions See Ed
Relative pathname See

Pathname
Reminder service

automatic 4-30

mail 6-32
Remove directory See rmdir
command
Remove See rm command
Removing a directory 4-13
Renaming a file U4-8
Repeat command
see Vi 5242
reply command See Mail
Report option See Vi
Reserved word listing T7-55
Return code See $?
variable
RETURN key
BC 8-2
command execution 2-2
command execution 4-4
command-line buffer
submittal 3-9
mail, message display 4-28

rm command 2-3
rm command U4-9
rmdir command 4-13
s command
ed use See Ed
mail 6-16
mail 6-17
mail 6-18
mail 6-36
scale command 8-7
Scale See BC
Screen See Scrolling
screen
Screen See Terminal screen
Screen-oriented commands See
Vi 5-12

1-45

XENIX User's Guide

Seripts See Ed
Scripts See Shell
Scrolling commands
more 4«5
Serolling screen
stopping 4-4
Scrolling, control 4.4
se command See set command
Search permission See
Permission
Search See Ed
Search strings
example designated 3-10
Searching for a file 4-9
Searching See / command
Searching See Vi
Searching
vi procedure See Vi
sed command See Ed
Semaphore 4-16
Semicolon (3)
BC, statement separation
8-19 .
BC, statement separation
8-3
case command break T7-22
case delimiter symbol 7-54

command list 7-19
command separation 3-9
command separator
symbol 7-54
ed use See Ed
set all See Vi
set command
mail
description, use 6«20

1-46

description, use 6-36
option control 6-39
name-value pair
listing 7-16
positional parameters
setting 7-10
shell built-in command 7~
40
shell flag setting 7-15
special shell command 7-30

sh command

description 7-1

mail 6-21

mail 6-34

mail 6-36

shell invocation 7-16
Shell command

executing while in vi 5-14

SHELL string 6-29
SHELL string 6-40
Shell

-e option 7=33

-k option T7-=33

-n option 7-33

-t option 7-33

-u option 7-33

-v option 7=15

-x option 7-15

argument passing 7-17

command interpretation 3-9

command
search procedure 7-2
special command See
special command

compose escapes See Mail
conditional capability 7-
20
creation
procedure T-1
description 7-1
echo command 4-20
entry, mail mode
source 6-21
escape
ed procedure See Ed
mail procedure See
Mail
execution
flag See option
sequence T7-18
termination 725
exit
-e option T7-33
-t option T7-33
mail mode return 6-21
procedure 7-25
function 7-1
grammar 7-52
in-line input document
handling 7-36
interactive 7-39
interruption procedure 7-
27
invocation
option T7-39
procedure T-16
mail
invocation 6<6
shell commands 6-21
option
See also Specific
Option

designated, use T7-=32
setting 7-15
pattern matching facility
See Pattern matching
facility
positional parameter See
Positional parameter
procedure
See also Specific Shell
Procedure
advantages over C
programs 7T-32
byte access reduction
consideration T7-41
creation 7-31
description 7«2
directory 7-32
efficiency analysis 7~
40
efficiency
awareness T-U0
examples designated 7-
43
filter order
consideration T7-41
option See option
scripts designation 7-
43
time command T7-U0
writing strategies 7-39

redirection ability 7-5
scripts See procedure
special command
See also Specific
Special Command
designated T7-29

1-47

XENIX User's Guide

redirection
restriction 7-29

special shell variable 7-
18
state 7-14
string See SHELL string
TERM variable See TERM
variable
variable See Variable

shift command
argument processing 7-17
shell built-in command 7-
40

si command See Mail

Simple command See Command

Single quotation marks See
Quotation marks, single
(")

Slash (/)
absolute pathname
significance 3-5
BC, division operator
symbol 8-i
command prepending
suppression 7-2
ed use See Ed
pathname significance 3-5
search command See Vi

so command See Mail

sort command U4-20

Special character See
Metacharacter

Special character
ed use See Ed
pattern matching
facility 7-3

Special characters
designated 3-7

1-48

pattern matching 3-6
Special file
description 3-2
Sshared data file U4-16
Standard error file See
Output
Standard error output See
Error output
Standard input file See
Input
Standard output file See
Output
Star (%)
See also Asterisk (%)
ed metacharacter See Ed
Status
command See ps command
information procedures U-
25
String option See Mail
String variable 7-10
String
searching for See Search
stty command 44
terminal setting 2-4
Subdirectory u-15
Subshell, directory
change T7-14
Substitution command See s
command
Subtraction See BC
Subtraction See
Calculation
Switch See Option
Switch
defined 3-9
regulations See Option

System
basic concepts 3-1
characteristics 1-1
composition 1-1
mailbox See Mailbox
tree-structured directory
system 3-2
t command
ed use See Ed
mail 6-12
mail 6-16
mail 6-36
Table command See Ed
Tabs
ed See Ed
tail command U4-6
tbl command See Ed
Temporary file
directory (/tmp) 4=25
kill command warning 4-25
trap command, removal 7-28

use recommendation 7-13
term option See Vi
TERM variable, changing 4-3
Terminal screen
output See Output
scrolling screen See
Scrolling screen
Terminal
changing 4-3
name designation 2.2
options setting 4-U
strange behavior
remedy 2-4
writing to See write
command

Terminals
supported 4-3
terse option See Vi
test command
argument 7-35
brackets ([]) use in lieu
of 7=33
description, use 7-33
operators 7-34
options T-3i4
shell built-in command 7-
40
Text editor
ed See Ed
ex See Ex
vi See Vi
TEXTFILE shell
procedure 7=51
then clause See if command
Tilde escape See Mail
time command 7-40
Top command See t command
Toplines option See Mail
Toplines string See Mail
Transfer command See t
command
trap command
description, use 7-27
implementation method 7-29

multiple traps 7-29
special shell command 7-30

temporary file removal 7-
28

troff See Ed

true command 7-36

1-49

XENIX User's Guide

tty, terminal system
name 2<2
Type-ahead 2-4
Type-ahead U4
Typing error correction 2«3
u command See vi 5-U0
u command
ed use See Ed
mail 6-17
mail 6-36
mail 6=7
vi See Vi
ugo, permission
classification 4-18
umask command
description 7-31
directory permission
change 3-2
shell built-in command 7-
4o
special shell command 7=31

Undo command See u command
Undo command See Vi
undo command See Vi 5<40
unset command See Mail
until command
continue command
effect T=24
description, use 7-23
exit status T7-23
redirection 7-26
shell built-in command 7-
40
User classes 4-17
User
addition 2-1

1-50

classification 4-18

mail See Mail

mailbox See Mailbox
permission See Permission

v command -
ed use See Ed
mail 6-21
mail 6-37
mail 6-7
Value See $? variable
Variable
$! variadble 7-14
$# variable 7-13
$$ variable 7-13
$- variable 7-14
$? variable 7-13
assignment
line command 7-9
string value 7-10
BC variable See BC
command environment
composition 7=15
conditional
substitution 7=37
description 7-9
double quotation marks
(7-11
enclosure T-11
execution sequence 7«10
expansion T-4
export T-13
expr command 7-35
file creation 7-27
global check 7-33
HOME See HOME variable
IFS See IFS variable

keyword parameter 7-15
listing procedure 7-16
MAIL See MAIL variable
name defined 7-10

null value assignment
procedure 7=37

PATH See PATH variable
positional parameter See
Positional parameter
prefix ($) 7-11

PS1 See PS1 variable
PS2 See PS2 variable

set variable defined 7-37

special variable 7-13
string value
assignment 7-10
substitution
-u option effect T7=33
double quotation marks
(7-11
notation 7-54
redirection
argument 7=6
single quotation marks
(**")y 7-1
space
interpretation 7-11
test command 7-33
types designated 7-12

Vertical bar (})

mail escape 6-25
or=-if operator symbol
(i) 7-19

pipe symbol 3-12
pipeline notation 7-T

Vi, mail

compose escape, v 6-38

editing 6-21

entry from command
mode 6-7

entry from compose
mode 6-7

VISUAL string 640

vi

. command See dot (.)
command
. command
See dot (.) command
.exrc file 5-54
.login file
terminal type setting
use 5«50
.profile file

terminal type
setting 5-50
/ command
searching 5-9
0 command
cur sor movement 5«5
tq! 5-16
:x 5=-16

:x command 5-U2
appending text
A 5221
See also inserting
text
args command 5-45
b command, cursor
movement 5-5
breaking lines 5-26
buffers
delete 5-33
delete See delete
buffer

1=51

XENIX User's Guide

naming 5«23
selecting 5-23
C command 5-30
C shell
prompt 5«50
TERM variable 5-50
terminai type
setting 5=50
canceling changes 5-43
caret ("), pattern
matching 5-39
caret ("), pattern
matching 5-40
cc command 5-31
CNTRL-B
scrolling 5<5
CNTRL-D
scrolling 65«5
subshell exit 5-U8
CNTRL-F
scrolling 5-5
CNTRL-G
file status
information 5-11
file status
information 5<47
CNTRL-J, inserting 5-26
CNTRL=-L
screen redraw 5-48
CNTRL-Q, inserting 5-26
CNTRL-S, inserting 5-26
CNTRL U
deleting an
insertion 5-28
serolling 5-5
CNTRL=V, use 5-26
co (copy) command 5-24

1=52

colon (3)
line-oriented command,
use 5«12
status line prompt 5-12

command mode
cursor movement 5-5
entering 5-3

command
line-oriented See line-
oriented commands 5-12

repeating, dot (.)

use 5-6

screen-oriented See

screen-oriented

commands 5-12
control characters,
inserting 5-26
copying lines 5-24
correcting mistakes 521
crash, recovery 5-U8
current line

deleting 5-28

deleting 5-6

designated 5-2

line containing

cursor S-li

number, finding out 5-

24
cursor movement

$ key 5-19

+ key 65-19

b 5-18

backward 5-19

BKSP 5-17

by character 65-17

by lines 5-19

by words 5-18
CNTRL=N 5-19
CNTRL-P 5-19

down 5-17

down 655

e 5-18

F 5-17

forward 5-19
5«17

5-19

5-17

5-19

5«17

5-19

keys 5-5

1 5-17

L 5-19

left 5-17

left 5-18

left 5<5

line beginning 55
line end 55
LINEFEED key 5-19
lower left screen 5-<5
M 5-19

RETURN key 5-19
right 5-17

right 5-18

right 5-5

screen 5-19
scrolling See
scrolling 5-5

See also scrolling
SPACEBAR 5-17

T 5-18

to end of file 5«5

L R Y FA. .-

up 5-17
up 5-5
upper left screen 5-5
w 5-18
word backward 5-5
word forward 5-5
cur sor movment
right 5-17
ew command 5-30
D command 5-6
d$ command 5-6
d0 command 5-6
date, finding out 5-14
dd command 5-6
delete buffer
use 5-33
deleting text
by character 527
by line 6-27
by word 5-27
D 5-27
dd command 5-27
deleting an
insertion 5-28
dw command 65-27
methods 5<6
repeating deletion 5-U42

undoing 5-40

undoing deletion 5-lU

X command 5-27
demonstration 5=-1
description 5-1
dollar sign ($)

cursor movement 5«5

pattern matching 5-39
dollar sign($)

use in line address 5-

1-53

XENIX User's Guide

28
dot (.)command See .
command 5«6
dot See also dot (.)
command
dot, use in line
address 5-28
dw command 5«6
editing several files
changing the order 545

end-of-line
displaying 5-51
entering
at a specified line 5-
17
at a specified word 65-
17
procedure 5-2
with filename 5-16
wiih several
filenames 5-43
error messages
shortening 5-52
turning off 5-U6
ESCAPE, insert mode
exit 5«3
ESCAPE, insert mode
exit 5-43
exclamation point (1)
shell escape 5-18
exiting
Q! 5-ib
tx 516
:x command 5-42
saving changes G5-42
saving file 5-13

1-58

temporarily 5-14

temporarily 5-46

without saving

changes 5-43

27 command 5-43
file

creating 5-2

not saving, :q! 5-16

saving 5-16

status information

display 5-10

status information

procedure 5-11
filename

finding out 5-U7

planning S5-Ui
G command

cursor movement 5-5
goto command See G
command
H' command

cursor movement 5.5
i command

inserting text 5-2
ignorecase option 5-36
ignorecase option 5-51
insert command See {
command
insert mode

entering 5-3

exiting 5«3
inserting text from
another file 5-14
inserting text

See also appending

text

control characters 5-<26

from other files 5-22
i s5.21
repeating insert 5«22
repeating insert 5-42
undoing 5-40
undoing insert 5-U48
undoing insertion 5-4
invoking See entering
J command
cursor movement 55
Joining lines 5-26
k command
cursor movement 55
L command
cursor movement 5«5
leaving See exiting
line addressing
dollar sign 65-28
dot(.) 5’28
procedure 5-28
line numbers, displaying
stnu command 5-48
linenumber option 5-15
linenumber option 5-24
linenumber option 552
nu command 5-24
line-oriented command
mode 5-47
line-oriented commands
sargs 5-U5
se 5=23
te 5-45
te# 5-23
ted 5-46
if 5-47
tfile 5-47
tn 5-=44

snu 5=24

tnu 548
:q 5-43
ir 5«22
irew 5-U5
s 5-31
W 5=22
twq 5<U2

colon (:) use 5-12
deleting text 5-27
entering 5-12
moving text 5-31
status line,
display 5-10
linenumber option 5-52
list option 5-51
magic option 5-40
magic option 5-53
marking lines 5-23
mesg option 5-53
mistakes, correcting 5-21
mode ,determining 5-48
mode)
See also command mode

See also insert mode
See also line-oriented
command mode
moving text 5-31
n command 5-10
n command 5-36
new line, opening 5-22
next command S5-U4l
opening a new line 5-22
options
displaying 5<51
ignorecase 5-36

1-55

XENIX User's Guide

ignorecase 5251
linenumber 5-24
linenumber 5-31
linenumber 5252
list 5«15

list 551

magic 5«40
magic 5-53

mesg 5=53
report 5«52
setiting 5-49
setting 5-51
term 5«52

terse 5«52

warn S5-lU6

warn 5-53
wrapscan 5-36
wrapscan 5-53

overstrike commands 5-28
pattern matching

See also searching
beginning of line 5=39
caret (%) S5-U40
character range 5-39
character, single 5-39
end of line 5-39
exceptions 5-40
generally 5-39

special characters §-i0

square brackets
(1) 5-39

period (.)

pattern matching 5-39
repeat command
symbol 5-3

problem sciving 5-i8

156

putting 5-23
Q command, line-oriented
command mode 5-47
quitting See exiting 5-43
r comand 5-14
r command 5-28
read command 5-14
redrawing the screen 5-i8
repeat command 5-42
repeating a command 5-42
replacing a line 5-30
replacing a line 5-31
replacing a word 5«30
replacing a word 5-31
report option 5-52
rew command 5-45
S command 5-29
s command 5-30
saving a file 5-43
screen, redrawing 5-48
screen-oriented
commands 5«12
scrolling
backward 5<5
down 5-20
down 5<5
forward 5-5
up 5-20
up 5-5
searching and replacing
a vword 5-37
c option 5-38
choosing
replacement 5-38
command syntax 5-37
p option 5-38
printing
replacement 5-38

searching See / command
searching
See also searching and
replacing
backward 5-35
caret (") use 5-39
caret 5-39
caret(”) 5-40
case signficance 5<51
case significance 5-36
dollar sign ($) 5-39
forward 5-10
forward 5-35
next command 5-36
period (.) 5-39
procedure 5-9
repetition 5-10
special characters 5-36

special characters 5-53

square brackets

([1) 5-=39

status line,

display 5-10

wrap 5-10

wrap 5-36

wrap 5«53
session, canceling 5-16
set all, option list 5-15
set command 5-49
set command 5-51
setting options 5-51
shell command,
executing 5-14
shell escape 5-46
slash (/)

search command

delimiter 5-9
special characters
matching 5«40
searching for 5-36
searching for 5«53
vi filenames 5-44
status line
line-oriented command
entry 5-12
location 5-10
prompt, colon ()
use 5-12
string
pattern matching 5-39
searching for See
searching
subshell
exiting 5-48
Substitute commands 5-29
switching files 545
system crash
file recovery 5-49
tabs
dispiaying 65-51
TERM variable 5-50
Bourne shell 5-50
Visual Shell 5<50
termcap 5-50
terminal type setting
Bourne shell 5«50
C shell 5<50
how 5-52
Visual Shell 5-50
terse option 5-52 .
time, finding out 5-14
u command 5-4
u command 5-40

1-57

XENIX User's Guide

u command 5-48

undo command See u

command

undoing a command 5-40

W command, cursor

movement 5-5

warn option 5-46

warn option 5-53

warnings, turning off 5-53

word, deleting 5-6
wrapscan option 5-36
wrapscan option 5-53
write messages 5-53
writing out a file
twq command 5-l2
twq command 5-43
x command 5-6
yanking lines 5-23
yanking lines 5-26
27 command 5-43
visual command See Mail
Visual Shell
TERM variable 5-50
terminal type 5+50
VISUAL string See Mail
W character
directory permission
notation 4-16
file permission, write
notation 4-16
w command See Vi
W command
ed use See Ed
mail
message saving 6-18
message write out 6-37

1-58

system mailbox, message
deletion 6-17
wait command

description 7=31

exit status '7-31

shell built-in command 7~

40

special shell command 7-31

warn option See Vi
wc command 4-22
word count 3-13
while command
break command effect 7-24
continue command
effect T=-24
description, use 7-22
exit status 7-23
loop 7-i#
redirection 7-26
shell built-in command 7-
40
test command 7-33
who command §-25
description 2-2
logged in users list 3-13
Word
counting See wc command .
grammar 7-=52
Working directory See
Current directory
wrapscan option See Vi
wrapscan option See Vi 5-36
write command 4-28
Write out See w command
WRITEMAIL shell
procedure 7-51

x character
directory permission
search U4-16 .

file permission, execute

notation 4-16
x command See Vi
x command
mail
exit 6-18
exit 6-34

session abortion 6-11

vi use See Vi
z

vi scroll 5-20
ZZ command See Vi 5-43
[] See Brackets ([])
{} command See Braces

command ({})

bece escape See Mail

cc escape See Mail

dead escape See Mail
editor escape See Mail
headers escape See Mail
message escape See Mail
print escape See Mail
quit escape See Mail
read escape See Mail
subject escape See Mail
to escape See Mail
visual escape See Mail
write escape See Mail

1489

	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28
	I-29
	I-30
	I-31
	I-32
	I-33
	I-34
	I-35
	I-36
	I-37
	I-38
	I-39
	I-40
	I-41
	I-42
	I-43
	I-44
	I-45
	I-46
	I-47
	I-48
	I-49
	I-50
	I-51
	I-52
	I-53
	I-54
	I-55
	I-56
	I-57
	I-58
	I-59

