
Chapter 7
The Shell

7.1 Introduction 7-1

7.2 Basic Concepts 7-1
7.2.1 How Shells Are Created
7.2.2 Commands 7-2

7-1

7.2.3 How the Shell Finds Commands
7.2.4 Generation of Argument Lists
7.2.5 Quoting Mechanisms 7-4

7.3 Redirecting Input and Output 7-5

7-2
7-3

7.3.1 Standard Input and Output 7-5
7.3.2 Diagnostic and Other Outputs 7-6
7.3.3 CommandLinesandPipelines 7-7
7.3.4 Command Substitution 7-8

7.4 Shell Variables 7-9
7.4.1 Positional Parameters 7-10
7.4.2 User-Defined Variables 7-10
7.4.3 Predefined Special Variables 7-13

7.5 TheShellState 7-14
7.5.1 Changing Directories 7-14
7.5.2 The .profile File 7-15
7.5.3 Execution Flags 7-15

7.6 A Command's Environment 7-15

7.7 Invoking the Shell 7-16

7.8 Passing Arguments to Shell Procedures 7-17

7.9 Controlling the Flow or Control 7-19
7.9.1 Using theirStatement 7-20
7.9.2 Using the case Statement 7-22

7.9.3 Conditional Looping: while and until 7-22
7.9.4 Looping Over aList: for 7-23
7.9.5 Loop Control: break and continue 7-24
7.9.6 End-of-File and exit 7-25
7.9.7 Command Grouping: Parentheses and Braces -

7-25
7.9.8 Input/Output Redirection and Control

Commands 7-26
7.9.9 Transfer to Another File and Back: The Dot (.)

Command 7-27
7.9.10 InterruptHandling: trap 7-27

7.10 Special Shell Commands 7-29

7.11 Creation and Organization orShellProcedures 7-31

7.12 More About Execution Flags 7-32

7.13 Supporting Commands and Features 7-33
7.13.1 Conditional Evaluation: test 7-33
7.13.2 Echoing Arguments 7-35
7.13.3 Expression Evaluation: expr 7-35
7.13.4 True and False 7-36
7.13.5 In-Line Input Documents 7-36
7.13.6 Input / Output Redirection Using File

Descriptors 7-37
7.13.7 Conditional Substitution 7-37
7.13.8InvocationFlags 7-39

7.14 Effective and Efficient Shell Programming 7-39
7.14.1 NumberoCProcessesGenerated 7-40
7.14.2 Number of Data Bytes Accessed 7-41
7.14.3 Shortening Directory Searches 7-42
7.14.4 Directory-Search Order and the PATH

Variable 7-42
7.14.5 Good Ways to SetUp Directories 7-43

7.15 Shell Procedure Examples 7-43

7.16 Shell Grammar 7-52

The Shell

7.1 Introduction

When users los into XENIX, they communicate with the shell command
interpreter, sh. This interpreter is a XENIX prosram that supports a very
powerful command lansuase. Each invocation of this interpreter is called a
shell; and each shell has one function: to read and execute commands from its
standard input.

Because the shell pves the user a hish-levellanlUase in which to communicate
with the operatins system, XENIX can perform tasks unheard of in leas
sophisticated operatin, systems. Commands that would normally have to be
written in a traditional prosrammins lansuase can be written with just a few
lines in a shell procedure. In other operating systems, commands are executed
in strict sequence. With XENIX and the shell, commands can be:

• Combined to form new commands
• Passed positional parameters
• Added or renamed by the user
• Executed within loops or executed conditionally
• Created for local execution without fear of name conflict with other

user commands
• Executed in the bacqround without interruptins a semon at a

terminal

Furthermore, commands can "redirect" command input from one lOuree to
another and redirect command output to a file, terminal, printer, or to another
command. This provides flexibility in tailor ins a task for a particular purpose.

7.2 Basic Concepts

The shell itselC (i.e., the program that reads your commands when you loS in or
that is invoked with the.h command) is a program written in the C lanlUage; it
is not part oC the operatins system proper, but an ordinary user program.

7.2.1 How Shells Are Created

In XENIX, a process is an executins entity complete with instructions, data,
input, and output. All processes have lives of their own, and may even start (or
"fork") new processes. Thus, at any siven moment several processes may be
executin" some of which are "children" of other processes.

Users log into the operating system and are assigned a "shell" from which they
execute. This shell is a personal copy of the shell command interpreter that is
reading commands from the keyboard: in this context, the shell is simply
another process.

In the XENIX multitasking environment, files may be created in one phase and
then sent off to be processed in the "background." This allows the user to

7-1

XENIX User's Guide

continue working while programs are running.

7.2.2 Commands

The most common way or using the shell is by typing simple commands at your
keyboard. A .imple eomm4nil is any sequence or arguments separated by
spaces or tabs. The first argument (numbered zero) specifies the name ot the
command to be executed. Any remaining arguments, with a few exceptions, are
passed as arguments to that command. For example, the followin, command
line might be typed to request printing orthe files ell4n, b4rr1l, and cd,;,,:

lpr allan barry calvin

If the first argument or a command names a file that is ezee"tGble (as indicated
by an appropriate set or permission bits associated with that file) and is actually
a compiled program, the shell, as parent, creates a child process that
immediately executes that program. Ir the file is marked as being executable,
but is not a compiled program, it is assumed to be a shell procedure, i.e., a file ot
ordinary text containing shell command lines. In this ease, the shell spawns
another instance or itselr (a .ublAt/l) to read the file and execute the commands
inside it.

From the user's viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implementation
has been used, rather than requiring the user to do so. This provides unirormity
of invocation.

7.2.3 How the Shell Finds Commands

The shell normally searches ror commands in three distinct locations in the file
system. The shell attempts to use the command name as given; it this rails, it
prepends the string I bin to the name. If the latter is unsuccessful, it prepends
IUlrlbin to the command name. The effect is to search, in order, the current
directory, then the directory Ibin, and finally, IUlrlhi". For example, the pr
and man commands are actually the files Ibinlpr and 1-"lbin/mGA,
respectively. A more complex pathname may be given, either to locate a file'
relative to the user's current directory, or to access a command with an
absolute pathname. Ir a given command name begins with a slash (/) (e.I.,
I binI ~ort or I emil), the prepending is not perrormed. Instead, a single attempt
is made to execute the command as named.

This mechanism gives the user a convenient way to execute public commands
and commands in or near the current directory, as well as the ability to execute
any accessible command, regardless or its location in the file structure. Because
the current directory is usually searched first, anyone can possess a private
version or a public command without affectin, other users. Similarly, the
creation or a new public command does not affect a user who already has a
priv-ate command with the same name. The particular sequence or directories

7-2

The Shell

searched may be chansed by resettins the shell PATH variable. (Shell variables
are discussed later in this chapter).

'1.2.4 Generation or Arsument Lists

The arsuments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantase of this
similarity in names, the shell lets the user specify patterns that match the
filenames in a directory. If a pattern is matched by one or more filenames in a
directory, then those filenames are automatically senerated by the shell as
arguments to the command.

Most characters in such a pattern match themselves, but there are alsoXENIX
special characters that may be included in a pattern. These special characters
are: the star (*), which matches any strins, including the null string; the
question mark (f), which matches anyone character; and any sequence of
characters enclosed within brackets ((and)), which matches anyone of the
enclosed characters. Inside brackets, a pair of characters separated by a dash
(-) matches any character within the ranse ot that pair. Thus la-de) is
equivalent to (abcde).

Examples otmetacharacter usage:

--temp·
la-f].
·.c
/usr/bin/!

(MtltcAu all fttlmel ift tAe carre," tlirec:tDr,)
(MtltcAe. all fttlmel eDftttliftl·., "temp")
(MtltcAu all fttlme. be,iftftift, ",itA" Ii' tArDa,A" r)
(MtltcAu all •• mel e.4ift, i. ".c")
(MtltcAu all .i.,le-chtlracter •• met ift /alr/bift)

This pattern-matching capability saves typing and, more importantly, makes
it possible to organize intormation in larse collections or files that are named in
a structured fashion, using common characters or extensions to identify related
files.

Pattern matching ha.s some restrictions. If the first character or a filename is a
period (.), it can be matched only by an argument that literally begins with a
period. Ir a pattern does not match any filenames, then the pattern itself' is
printed out as the result ot the match.

Note that directory n ames should not contain any ot the following characters:

• ! ()

Ir these characters are used, then infinite recursion may occur durins pattern
matching attempts.

7·3

XENIX User's Guide

7.2.0 Quoting Mechanisms

The characters <, > ,.,!,L and G have special meanings to the shell. To remove
the special meaning or these characters requires some rorm or quoting. This is
done by using single quotation marks (1 or double quotation marks (") to
surround a string. A backslash (\) berore a single character provides this
function. (Back quotation marks (') are used only ror command substitution in
the shell and do not hide the special meanings or any characters.)

All characters within single quotation marks are taken literally. Thus

echostuff- 'echo I! I.j Is • I wc'

results in the string

echo I! S.j Is • I we

being assigned to the variable tc I&oltuJf, but it does flot result in any other
commands being execllted.

Within double quotation marks, the special meaning or certain characters does
persist, while all other characters are taken literally. The characters that
retain their special meaning are the dollar sign (S), the backslash (\), the single
quotation mark ('), and the double quotation mark (") itself. Thus, within
double quotation marks, variables are expanded and command substitution
takes place (both topics are discussed in later sections). However, any
commands in a command substitution are unaffected by double quotation
marks, so that characters such as star (.) retain their special meaning.

To hide the special meaning or the dollar sign (I) and single a.nd double
quotation ma.rks within double quotation marks, precede these characters with
a backslash (\). Outside or double quotation marks, preceding a character with
a backslash is equivalent to placing single quotation marks around that
character. A backslash (\) rollowed by a newline causes that newline to be
ignored and is equivalent to a space. The backslash-newline pair is thererore
userul in allowing continuation orIong command lines.

Some examplesor quoting are shown below:

7-4

The Shell

InDut Shell interDret~~· -. , The back guotation mark (•)
,,, ,

The double Quotation mark I")
,.

echo one ' , the one word" 'echo one'
"\" " The double Quot.ation mark e"}
" 'echo one'" the one word "one"
"'" illegal (expects another')
one two the two words "one" It "two"
"one two" the one word "one two"
'one two

,
the one word" one two"

'one. two' the one word" one. two"
"one. two" the one word "one. two"
,
echo one' the one word "one"

7.3 Redirecting Input and Output

In seneral, most commands do not know or care whether their input or output
is comins from or soins to a terminal or a file. Thus, a command can be used
conveniently either at a terminal or in a pipeline. A few commands vary their
actions depending on the nature of their input or output, either for efficiency,
or to avoid useless actions (such as attemptins random access I/0 on a terminal
or a pipe).

7.3.1 Standard Input and Output

When a command besins execution, it usually expects that three flies are
alrea.dy open: a "standard input". a "standard output". and a "diasnostic
output''. (also called "standard error"). A number called a file ~e,cri"Dr is
associated with each of these files. By convention, file descriptor 0 is associated
with the standard input, file descriptor 1 with the standard output, and flle
descriptor 2 with the diagnostic output. A child process normally inherits these
files from its parent; all three files are initially connected to the terminal (0 to
the keyboard, 1 and 2 to the terminal screen). The shell permits the files to be
redirected elsewhere before con trol is passed to an invoked command.

An arsument to the shell orthe form" <file" or" > Jile" opens the specified flle
as the standard input or output (in the case or output, destroyins the previous
contents of file, if any). An argument of the form "> > Jile" directs the
standard output to the end of Jile, thus providing a way to append data to the
file without destroying its ex'isting contents. In either or the two output cases,

XENIX User's Guide

the shell creates file if it does not already exist. Thus

>output

alone on a line creates a zero-length file. The following appends to file IDg the
list of users who are currently logged on:

who» log

Such redirection arguments are only subject to variable and command
substitution; neither blank interpretation nor pattern matching ot filenames
occurs after these substitutions. This means that "

echo 'this is a test' > •. gal

produces a one-line file named -.,tIl. Similarly, an error message is produced by
the following command, unless you have a file with the name "1":

cat < !

So remember, special characters are Aot expanded in redirection arguments.
The reason this is so is that redirection arguments are scanned by the shell
before pattern recognition and expansion takes place.

1.3.2 Diagnostic and Other Outputs

Diagnostic output from XENIX commands is normally directed to the file
associated with file descriptor 2. (There is often a need for an error output file
that is different from standard output so that error messages do not get lost
down pipelines.) You can redirect this error output to a file by immediately
prepending the number ot the file descriptor (2 in this case) to either output
redirection symbol (> or > ». The following line appends error messages
trom the cc command to the file named ERRORS:

cc testfile.c 2> > ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number will be
passed as an argument to the command.

This method may be generalized to allow redirection ot output associated with
any of the first ten file descriptors (numbered 0-9). For instance, if em4 puts
output on file descriptor 9, then the following line will direct that output to the
file ltIf1e tlilt 4:

cmd 9 >savedata

A command often generates standard output and error output, and might even
have some other output, perhaps a data file. In this ease, one can redirect

7-6

The Shell

independently all the different outputs. Suppose, ror example, that emil directs
its standard output to file descriptor I, its error output to file descriptor 2, and
builds a data file on file descriptor 9. The rollowing would direct each or these
three outputs to a different file:

cmd >standard 2>error 9>data

7.3.3 Command Lines and Pipelines

A sequence or commands separated by the vertical bar (I) makes up a "ipdiat.
In a pipeline consisting or more than one command, each command is run as a
separate process connected to its neigh bors by pipu, that is, the output of each
command (except the last one) becomes the input of the next command in line.

A filte,. is a command that reads its standard input, transforms it in some way,
then writes it as its standard output. A pipeline normally consists or a series of
filters. Although the processes in a pipeline are permitted to execute in parallel,
each program needs to read the output or its predecessor. Many commands
operate on individual lines of text, reading a line, processing it, writing it out,
and looping back ror more input. Some must read large amounts of data berore
producing output; sort is an example orthe extreme case that requires all input
to be read before any output is produced.

The following is an example or a typical pipeline:

nroff -mm text I col Ilpr

N roft' is a text rormatter available in the XENlX Text Processing System whose
output may contain reverse line motions, col converts these motions to a form
that can be printed on a terminal lacking reverse-motion capability, and Ipr
does the actual printing. The ftag -mm indicates one or the commonly used
formatting options, and tezt is the name of the file to be rormatted.

The rollowing examples illustrate the variety or effects that can be obtained by
combining a few commands in the ways described above. It may be helprul to
try these at a terminal:

• who
Prints the list orIogged-in users on the terminal screen.

• who»log
Appends the list or logged-in users to the end of file log.

• wholwc-I
Prints the number of logged-in users. (The argument to we is
pronounced "minus ell".)

7-7

XENIX User's Guide

• who I pr
Prints a paginated list orIogged-in users.

• who I sort
Prints an alphabetized list orIogged-in users.

• who I grep bob
Prints the list of logged-in users whose login names contain the string
bob.

• who I grep bob I sort I pr
Prints an alphabetized, paginated list of logged-in users whose login
names contain the string bob.

• {date;whoIWc-lj} »log
Appends (to file log) the current date followed by the count of logged­
in users. Be sure to place a space after the left brace and a semicolon
berore the right brace.

• who I sed-e 'sl .*1 1'1 sort I uniq-d
Prints only the login names or all users who are logged in more than
once. Note the use or sed as a filter to remove characters trailing the
login name from each line. (The" .• " in the sed command is preceded
by a space.)

The who command does not b, it,ell provide options to yield all these
results-they are obtained by combining who with other commands. Note
that who just serves as the data source in these examples. As an exercise,
replace "who I" with "</etc/passwd" in the above examples to see how a file
can be used as a data source in the same way. Notice that redirection
arguments may appear anywhere on the command line, even at the start. This
means that

<infile >outfile sortlpr

is the same as

sortlpr <infile >outfile

7.3.4 Command Substitution

Any command line can be placed within back quotation marks (' •.. ') so that
the output or the command replaces the quoted command line itself. This
concept is known as comman.d ,ub,titution.. The command or commands
enclosed between back quotation marks are first executed by the shell and then
their output replaces the whole expression, back quotation marks and all. This
reature is often used to assign to shell variables. (Shell variables are described
in the next section.) For example,

7-8

The Shell

today- 'date'

assigns the string representing the current date to the variable "today"; for
example "Tue Nov 2716:01:09 EST 1982". The rollowing command saves the
number of logged-in users in the shell variable ver,:

users- 'who I wc -1'

Any command that writes to the standard output can be enclosed in back
quotation marks. Back quotation marks may be nested, but the inside eets
must be escaped with backslashes (\). For example:

logmsg-'echo Your login directory is \,pwd\"

.ill display the line "your login directory is •• me tJ/ltJgt" tlireetor,". Shell
variables can also be given values indirectly by using the read and line
commands. The read command takes a line trom the standard input (usually
your terminal) and assigns consecutive words on that line to any variables
named.

For example,

read first init last

takes an input line or the form

G. A. Snyder

and has the same effect as typing:

first-G. init-A. last-Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line or input rrom the standard input and then
echoes it to the standard output.

'1.4 Shell Variables

The shell has eeveral mechanisms ror creating variables. A variable is a name
representing a string value. Certain variables are referred to as po,ifio"tIl
parameter,; these are the variables that are normally set only on the command
line. Other shell variables are simply names to which the user or the shell itself
may assign string vaJues.

7-9

XENIX User's Guide-

7.4.1 Positional Parameters

When a shell procedure is invoked, the shell implicitly creates ptl,ititl ••
peremeterl. The name of the shell procedure itself in position lero on the
command line is assigned to the positional parameter $0. The first command
argument is called SI, and so on. The shift command may be used to acee.
arguments in positions numbered higher than nine. For example, the following
shell script might be used to cycle through command line switches and then
process all succeeding files:

while test 11'

done

do case '1 in
-a) A==aoption ; shift ;;
-b) B== boption ; shift ;;
-c) C-coption ; shift ;;
-*) echo" bad option" ; exit 1 ;;
*) process rest of files
esac

One can explicitly force values into these positional parameters by using the set
command. For example,

set abc def ghi

assigns the string "abc" to the first positional parameter, $1, the ~ring "der' to
$2, and the string "ghi" to $3. Note that So may not be assigned a value in this
way-it always rerers to the name of the shell procedure; or in the login shell, to
the name of the shell.

7.4.2 User-Defined Variables

The shell also recognizes alphanumeric variables to which string values may be
assigned. Asimple assignment has the syntax:

n4me:=altring

Thereafter, 'neme will yield the value Itring. A name is a sequence of letters,
digits, and underscores that begins with a letter or an underscore. No spaces
surround the equal sign (==) in an assignment statement. Note that positional
parameters may not appear on the lert side of an assignment statement; they
can only be set as described in the previous section.

More than one assignment may appear in an assignment statement, but
beware: the ,hell perform, the ellignment. from right ttl left. Thus, the
rollowing command line results in the variable "A" acquiring the value "abc":

7-10

The Shell

A-'B B-abc

The following are examples of simple assignments. Double quotation marks
around the right-hand side allow spaces, tabs, semicolons, and newlines to be
included in a string, while also allowing variable substitution (also known as
"parameter subst.itution ") to occur. This means that references to positional
parameters and other variable names that are prefixed by a dollar sign (I) are
replaced by the corresponding values, if any. Single quotation marks inhibit
variable substitution:

MAIL-/usr Imaillgas
echovar-" echo II '2 13 14"
stars-·····
asterisks-"stars'

In the above example, the variable "echovar" has as ita value the string
consisting or the values or the first rour positional parameters, separated by
spaces, plus the string "echo". No quotation marks are needed around the
string or asterisks being assigned to ,t"r, because pattern matching (expansion
of star, the question mark, and brackets) does not apply in this context. Note
that the value of I 4,t t ri Ik. is the liter al string "Istars", aot the strilll U " ,

because the single quotation marks inhibit substitution.

In assignments, spaces are not re-interpreted after variable substitution, so
that the following example results in lfir.t and S,ee oAtihaving the same value:

first=-'a string with embedded spaces'
second-lfirst

In accessing the values or variables, you may enclose the variable name in
braces { ... } to delimit the variable name from any following string. In
particula.r, ir the character immedia.tely following the name is a letter, digit, or
underscore, then the braces are required. For example, examine the following
input:

a= 'This is a string'
echo "S{a}ent test or variables."

Here, the echo command prints:

This is a stringent test of variables.

Ir no braces were used, the shell would substitute a null value for "Iaent" and
print:

test or variables.

1-11

XENIX User's Guide

The following variables are maintained by the shell. Some 01 them are set by
the shell, and all or them can be reset by the user:

HOME Initialized by the login program to the name 01 the user's log ••
director" that is, the directory that becomes the current
directory upon completion 01 a login; cd without arguments
switches to the SHOME directory. Using this variable helps keep
lull pathnames out or shell procedures. This is or great benefit
when path names are changed, either to balance disk loads or to
reflect administrative changes.

IFS The variable that specifies which characters are interntd field
.ep"rGtor •. These are the characters the shell uses during blank
interpretation. (II you want to parse some delimiter-separated
data easily, you can set IFS to include that delimiter.) The shell
initially sets IFS to include the blank, tab, and newline characters.

MAIL The pathname 01 a file where your mail is deposited. II MAIL is
set, then the shell checks to see ir anything has been added to the
file it names and announces the arrival or new mail each time you
return to command level (e.g., by leaving the editor). MAlL must
be set by the user and "exported". (The export command is
discussed later in this chapter.) (The presence or mail in the
standard mail file is also announced at login, regardless or whether
MAIL is set.)

PATH The variable that specifies the search path used by the shell in
finding commands. Its value is an ordered list or directory
pathnames separated by colons. The shell initializes PATH to the
list :/hi":/ulrlhin where a null argument appears in rront or the
first colon. A null anywhere in the path list represents the current
directory. On some systems, a search or the current directory is
not the delault and the PATH variable is initialized instead to
Ihira:/u.rlbin. II you wish to search your current directory last,
rather than first, use:

PATH-/bin:/usr Ibin::

Here, the two colons together represent a colon rollowed by a null,
rollowed by a colon, thus naming the current directory. You could
possess a personal directory or commands (say, IHOMEI bin) and
cause it to be searched be/ore the other three directories by using:

PATH==SHOME/bin::/bin:/usr Ibin

"PATH" is normally set in your . profile file.

PSI The variable that specifies what string is to be used as the primary
prompt string. Ir the sheil is interactive, it prompts with the value
or PSI when it expects input. The delault value orpSI is "I " (a

7-12

The Shell

dollar sign (S) followed by a blank).

PS2 The variable that specifies the secondary prompt Arin,. U the
shell expects more input when it encounters a newline in its input,
it prompts with the value of PS2. The derault value lor dlis
variable is" > "(a greater-than symbollollowed by a space).

In ,eneral, you should be sure to export all or the above variables 80 that their
values are passed to all shells created from your login. Use export at the end of
Jour. ",jile file. An example of an export statement rollows:

export HOME IFS MAIL PATH PSI PS2

'1.4.3 Predefined Special Variables

Several variables have special meanin!!; the 10Uowin, are set ,.1, by the shell:

S, Records the number of arguments passed to the shell, not countin,
the name 01 the shell procedure itself. For instance, Sf yields the
number of the highest set positional parameter. Thus

sh cmd abc

automatically sets Sf to 3. One or its primary uses is in checkin, for
the presence olthe required number of arguments:

if test Sf -It 2
then

echo ~two or more arp required '; exit
fi

S! Contains the exit status of the last command executed (also referred
to as "return code", "exit code", or "value"). Its value is a decimal
.trin,. Most XENIX commands return Jero to indicate .uccessful
completion. The shell itself returns the current value or S1 as its exit
.tatus.

.. The process number of the current process. Because process
numbers are unique among all existin, processes, this Arin, is often
used to ,enerate unique names for temporary files. XENIX provides
no mechanism ror the automatic creation and deletion of t.empor&l'J
files; a file exists until it is explicitly removed. Temporary files are
generally undesirable objects; the XENIX pipe mechanism is far
superior for many applications. However, the need for uniquely­
named temporary files does occasionally occur.

The following example illustrates the recommended practice of
creatin, te m porary fi les; note that the directories /." and /.,,/ tmp

7·13

are cleared out it the system is rebooted.

* use current process id * to torm unique temp file
teiilp~ lusr Itemp/SS
Is > .temp
1= commands here, lOme of which use ltemp
rm Stemp * clean up at end

St The process number or the last process run in the backsround (using
the ampersand (&)). This is a string containing from one to five
digits.

S- A string consisting of names ot execution flags currently turned on in
the shell. For example, $- might have the value "xv" if you are
tracing your output.

1.5 The Shell State

The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of
execution, and the current working directory.

The state or a shell may be altered in various ways. These include changing the
working directory with the cd command, setting several flags, and by reading
commands from the special file, . profile , in your login directory.

7.5.1 Changing Directories

The cd command changes the current directory to the one specified as ita
argtJmcilt. This can and should be used to change to a convenient place in the
directory fitructure. Note that cd is otten placed within parentheses to cause a
subshell to cha.nge to a different directory and execute some commands without
affecting the original shell.

For example, the first sequence below copies the file I etcl ptl.II",l to
I u,rllloul pt",,,,tl; the second example first changes directory to I etc and then
copies the file:

cp letc/passwd lusr Iyou/bin/passwd
(cd letc ; cp passwd lusr/you/passwd)

Note the use or parentheses. Both command lines have the same effect.

7-14

The Shell

'1.5.2 The .profile File

The file named. profile is read each time you loS in to XENIX. It is normally used
to execute special one-time-only commands and to set and export variables to
all later shells. Only atter commands are read and executed from .pro/Ue, does
the shell read commands from the standard input-usually the terminal.

'1.6.3 Execution Flass

The set command lets you alter the behavior of the sheD by settin, certain shell
flags. In particular, the -x and -v fla,s may be userul when invokin, the shell
as a command from the terminal. The flags -x and -v may be set by typing:

set -xv

The same flags may be turned o6by typin,:

set +xv

These two fta,s have the followilll meanilll=

-v Input lines are printed as they are read by the shell. This ftag is
particularly useful ror isolating syntax errors. The commands on
each input line are executed atter that input line is printed.

-x Commands and their arguments are printed as they are executed.
(Shell control commands, such as tor, while, etc., are not printed,
however.) Note that -x causes a trace or only those comm ands that
are actually executed, whereas -v prints each line of input until a
syntax error is detected.

The set command is also used to set these and other flags within shell
procedures.

7.8 A Command'. Environment

All variables and their associated values that are known to a command at the
beginning or its execution make up its efU/iroftmeftt. This environment
includes variables that the command inherits trom its parent process and
variables specified as kertDor4 p"r"mete" on the command line that invokes
the command.

The vari3.bles that a shell passes to its child processes are those that have been
named as arguments to the export command. The export command places
the named variables in the environments or both the shell .ft4 all its future child
processes.

1-15

XENIX User's Guide

Keyword parameters are variable-value pairs that appear in the rorm or
assignments, normally be/ore the procedure name on a command line. Such
variables are placed in the environment or the procedure being invoked. For
example:

I: keycommand
echo Sa Sb

This is a simple procedure that echoes the values or two variables. It it is
invoked as:

a==keyl b-key2 keycommand

then the resulting output is:

key} key2

Keyword parameters are aot counted as arguments to the procedure and do not
affectS,.

A procedure may access the value or any variable in its environment. However,
il changes are made to the value 01 a variable, these changes are not reflected in
the environment; they are local to the procedure in question. In order ror these
changes to be placed in the environment that the procedure passes to it. child
processes, the variable must be named as an argument to the export command
within that procedure. To obtain a list oC variables that have been made
exportable Irom the current shell, type:

export

You will also get a list oCvariables that have been made readonly. To get a Jist
or name-value pairs in the current environment, type either

printenv

or

env

7.7 Invoking the Shell

The shell is a command and may be invoked in the same way as any other
command:

sh proc I Grg ••• J

7-18

A new instance oC the shell is explicitly invoked to
read proc. Arguments, iC any, can be
manipulated.

sh -v prot (.rg ...)

prot (Grg ••.)

The Shell

This is equivalent to putting "set -v" at the
beginning or prot. It can be used in the same way
for the -x, -e, -u, and -D flags.

If prot is an executable file, and is not a compiled
executable program, the effect is similar to that
of:

sh proc args

An advantage of this form is that variables that
have been exported in the shell will still be
exported from prot when this form is used
(because the shell only forks to read commands
from prot). Thus any changes made within prot
to the values of exported variables will be passed
on to subsequent commands invoked from proc.

'1.8 Passing Arguments to Shell Procedures

When a command line is scanned, any character sequence of the form S" is
replaced by the "th argument to the shell, counting the name of the shell
procedure itself as SO. This notation permits direct reference to the procedure
name and to as many as nine positional parameters. Additional arguments can
be processed using the shift command or by using a for loop.

The shift command shifts arguments to the left; i.e., the value ofSl is thrown
away, S2 replaces SI, Sa replaces '2, and so on. The highest-numbered
positional para.meter becomes "",et ('0 is never shifted). For example, in the
shell procedure ripple below, echo writes its arguments to the sta.ndard output.

f ripple command
while test " !- 0
do

done

echo '1 $2 $3 $4 $5 $6 '7 $8 $9
shift

Lines that begin with anumber sign (f) are comments. The looping command,
while, is discussed in Section 7.9.3 of this chapter. If the procedure were
invoked with

ripple abc

it would print:

7-17

XENIX User's Guide"

abc
bc
c

The special shell variable "star" (S.) causes substitution of all positional
parameters except SO. Thus, the echo line in the ripple example above could be
written more compactly as:

echo S.

These two echo commands are taot equivalent: the first prints at most nine
positional parameters; the second prints all of the current positional
parameters. The shell star variable (S.) is more concise and less error-prone.
One obvious application is in passing an arbitrary number of arguments to a
command: For example

wc S.

coun ts the wor ds of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of the input.
Variables are replaced by their values and then command substitution (via
back quotation marks) is attempted. 1/0 redirection arguments are detected,
acted upon, and deleted from the command line. Next, the shell scans the
resulting command line for itatertatd field ,eptlrtltor" that is, for any characters
specified by IFS to break the command line into distinct arguments; tzplicit
null arguments (specified by "" or ") are retained, while implicit null
arguments resulting from evaluation of variables that are null or not set are
removed. Then filename generation occurs with all metacharacters bein,
expanded. The resulting command line is then executed by the shell

Sometimes, command lines are built inside a shell procedure. In this case, it is
sometimes useful to have the shell rescan the command line after all the initial
substitutions and expansions have been performed. The special command eva)
is available for this purpose. Eval takes a command line as its argument and
simply rescans the line, performing any variable or command substitutions
that are specified. Consider the following (simplified) situation:

command=who
output- ' I wc -1'
eval .command Soutput

This segment of code results in the execution of the command line

who I we -I

The output of eval cannot be redirected. However, uses of eva) can be nested,
so that a command line can be evaluated several times.

7-18

The Shell

7.9 Controlling the Flow or Control

The shell provides several commands that implement a variety of tontrol
structures useful in controlling the flow of control in shell procedures. Before
describing these structures, a few terms need to be defined.

A ,imple commcuulis any single irreducible command specified by the name of
an executable file. 1/0 redirection arguments can appear in a simple command
line and are passed to the shell, tI ot to the command.

A command is a simple command or any of the shell control comm&nds
described below. A pipelin.e is a. sequence of one or more commands sepa.rated
by vertical bars (I). In a pipeline, the standard output of each command but
the last is connected (by a pipe) to the standard input of the next command.
Each command in a pipeline is run separately; the shell waits for the last
command to finish. The exit status or a pipeline is nonzero if the exit status of
either the first or last process in the pipeline is nonzero.

A C omman.tlli8t is a sequence of one or more pipelines separated by a semicolon
(;), an ampersand (&), an "and-ir' symbol (&&), or an "or-ir' (II) symbol, and
optionally terminated by a semicolon or an ampersand. A semicolon causes
sequential execution or the previous pipeline. This means that the shell waits
for the pipeline to finish berore reading the next pipeline. On the other hand,
the ampersand (&) causes asynchronous background execution of the
preceding pipeline. Thus, both sequential and background execution are
allowed. A background pipeline continues execution until it terminates
voluntarily, or until its processes are kill-ed.

Other uses of the ampersand include off-line printing, background
compilation, and generation of jobs to be sent to other computers. For
example, iryou type

nohup cc prog.c&

you may continue working while the C compiler runs in the background. A
command line ending with an ampersand is immune to interrupts or quits that
you might generate by typing INTERRUPT or QUIT. It is also immune to
logouts with CNTRL-D. However, CNTRL-D wiU abort the command if you are
operating over a dial-up line. In this case, it is wise to make the command
immune to hang-ups (Le., logouts) as well. The nohup command is used for
this purpose. In the above example without nohup, if you logout from a dial­
up line while cc is still executing, cc will be killed and your output will
disappear.

The ampersand operator should be used with restraint, especially on heavily·
loaded systems. Other users will not consider you a good citizen if you start up
a large number of background processes without a compelling reason for doing
so.

7-1g

XENIX User's Guide

The and-if and or-if (&& and II) operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating command
lines (but both are lower than the ampersand (&) and the vertical bar (I)). In
the command line

cmdl II cmd2

the first command, tmdl, is executed and its exit status examined. Only it
tmdl rails (i.e., has a nonzero exit status) is cmdtexecuted. Thus, this is a more
terse notation for:

it cmdl
test $1 !- 0

then
cmd2

fi

The and-if operator (&&) operator yields a complementary test. For example,
in the following command line

cmdl && cmd2

the second command is executed only it the first ,veeeed, (and has a zero exit
status). In the sequence below, each command is' executed in order until one
fails:

cmdl && cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline may be replaced by a command list enclosed in
either parentheses or braces. The output of all the commands so enclosed is
combined into one stream that becomes the input to the next command in the
pipeline. The rollowing line formats and prints two separate documents:

{ nroft' -mm text1; nroft' -mm text2j } Ilpr

Note that a space is needed arter the left brace and that a semicolon should
appear.berore the right brace.

7.0.1 Using the it Statement

The shell provides structured conditional capability with the it command. The
simplest it command has the rollowing form:

it command-lilt
then command-li,t
fl

The command list rollowing the itisexecuted and itthe last commandin the list
has a zero exit status, then the command list that follows then is executed. The

7-20

The Shell

word fl indicates the end or the ir command.

To cause an alternative set or commands to be executed when there is a nonzero
exit status, an else clause can be given with the following structure:

it comma"tl-lilt
then t omma"tl-li.t
else t omma"tl-lilt
fl

Multiple tests can be achieved in an ir command by using the elir clause,
although the case statement (See Section 1.G.2) is better for large numbers of
tests. For example:

if test -f "$1" * ~llafiW
then pr $1
elif test -d "$1"
f else, ~ II a directory!
then (cd II; pr .)
else echo $1 is neither a fUe nor a directory
fi

The above example is executed as follows: if the value of the first positional
parameter is a filename (-f), then print that file; if not, then check to see if it is
the name ofa directory (-d). Irso, change to that directory (cd) and print all the
files there (pr.). Otherwise, echo the error message.

The ir command may be nested (but be sure to end each one with a 6). The
new lines in the above examples of ir may be replaced by semicolons.

The exit status of the ir command is the exit status of the last command
executed in any then clauSe or else clause. U no such command was executed,
ir returns a aero exit status.

Note that an alternate notation for the test command uses brackets to enclose
the expression being tested. For example, the previous example might have
been written as follows:

if
f
then
elif

* then
else
fi

(-f "$1" J
~ II a file!

pr II
[-d "$1")

else, is II a directory!
(cd II; pr .)
echo $1 is neither a file nor a directory

Note that a space after the left bracket and one before the right bracket are
essential in thisrorm of the syntax.

1-21

XENIX User's Guide

7.0.2 Using the case Statement

A multiple test conditional is provided by the case command. The basic
format of the case statement is:

case ,tri", in
patte,..) comm4atl·li,t ;;

patte,..) commaatl·li.t ;;
esac

The shell tries to match .tria, against each pattern in turn, uains the same
pattern-matching conventions as in filename generation. If a match is found,
the command list following the matched pattern is executed; the double
semicolon (;;) serves as a break out of the case and is required arter each
command list except the last. Note that only one pattern is ever matched, and
that matches are attempted in order, so that if a star (*) is the first pattern in a
case, no other patterns are looked at.

More than one pattern may be associated with a given command list by
specifying alternate patterns separated by vertical bars (I).

case Ii in
*.c) cc Ii

tt

-.h I -.sh)
: do nothing

" echo" Ii of unknown type"
It

esac

In the above example, no action is taken Cor the second set oC patterns because
the null, colon (:) command is specified. The star (*) is used as a deCault pattern,
because it matches any word.

The exit status of case is the exit status oC the last command executed in the
case command. If no commands are executed, then case has a lero exit statuI.

7.0.3 Conditional Looping: while and until

A while command has the general form:

7-22

while cDmmantI·li,t
do

C omm4ntI·Un
done

The Shell

The commands in the first e omma,,,l-li,t are executed, and if the exit status of
the last command in that list is Jero, then the commands in the second
command-li.t are executed. This sequence is repeated as long as the exit status
of the first command·li,t is zero. A loop can be executed as long as the first
command-list returns a nonzero exit status by replacing while with until.

Any newline in the above example may be replaced by a semicolon. The exit
status of a while (or until) command is the exit status of the last command
executed in the second command-li,t. It no such command is executed, while
(or until) hasazeroexitstatus.

7.g.4 Looping Over a List: tor

Orten, one wishes to perform some set or operations for each file in a set ot fiJea,
or execute some command once for each or several arguments. The tor
command can be used to accomplish this. The tor command has the format:

tor f1eriable in .ord-li,t
do

comma,,,l-lilt
done

Here wortl-li.t is a list of strings separated by blanks. The commands in the
command-li.t are executed once for each word in the .ortl-li.t. V.riable takes
on as its value each word rrom the word list, in turn. The word list is fixed after
it is ev aluated the first time. For example, the rollowing tor loop causes each or
the C source files zec.c, cmtl.c, and wortl.c in the current directory to be
compared with a file orthe same name in the directory I.,rl ,reI cmd/ ,A:

tor CFILE in xec cmd word
do diff S{CFILE}.c /usr/src/cmd/sh/S{CFILE}.c
done

Note that the first occurrence of CFILE immediately after the word tor has no
preceding dollar sign, since the name of the variable is wanted and not its value.

You can omit the "in word-li,t" part or a tor command; this causes the
current set or positional parameters to be used in place of word-list. This is
useful when writing a command that performs the same set of commands for
each of an unknown number of arguments. Create a file named ecAot that
contains the following shell script:

for wortl
do echo StDor4tDortl
done

Give ee Aotexecute status:

7·23

XENIX User's Guide

chmod +x eeh02

Now type the following command:

eeh02 ma pa bo 8 yo no so ta

The output from this command is:

mama
papa
bobo
8fi
yoyo
nono
soso
tata

7.0.5 Loop Control: break and continue

The break command can be used to terminate execution of a while or a tor
loop. Continue requests the execution of the next iteration of the loop. These
commands are effective only when they appear between do and done.

The break command terminates execution of the smallest (i.e., innermost)
enclosing loop, causing execution to resume after the nearest following
unmatched done. Exit from" levels is obtained by break •.

The eontinue command causes execution to resume at the nearest enclosing
tor, while, or until statement, i.e., the one that begins the innermost loop
containing the eontinue. You can also specify an argument" to eontinue and
execution will resume at the "th enclosing loop:

* This procedure is interactive.
,. "Break" and "continue" commands are ueed
f to allow the user to control data entry.
while true 'loop forever
do echo "Please enter data"

read response

done

case "'responee" in
" done")

"")

esac

7.0.8 End-of-File and exit

The Shell

break * no more data
;;
f just a carri&&e return,
f keep on loinl
continue

" f process the data here

"

When the shell reaches the end-or-file in a shell procedure, it terminates
execution, returning to its parent the exit status of the last command executed
prior to the end-of-file. The top level shell is terminated by typin& a CNTRL-D
which is the same as logging out.

The exit command simply reads to the end-of-file and returns, setting the exit
status to the value of its argument, if any. Thus, a procedure can be terminated
normally by placing "exitO" at the end orthe file.

7.0.7 Command Groupinl: Parentheses and Braces

There are two methods for grouping commands in the sheU: parentheses and
braces. Parentheses cause the shell to create a subshell that reads the enclosed
commands. Both the right and left parentheses are recopized wherever they
appear in a command line-they can appear as literal parentheses oa/, when
enclosed in quotation marks. For example, if you type

gar ble(stuff)

the shen prints an error message. Quoted lines, such as

garble" (" stuft"')"
"garble(stuft'}"

are interpreted correctly. Other quoting mechanisms are discussed in section
7 .2.3.2, "Quoting Mechanisms".

7-25

XENIX User's Guide

This capability of creating a subshell by grouping commands is useful when
perrormilll operations without all'ecting the values of variables in the current
shell, or when temporarily changing the working directory and executing
commands in the new directory without having to return to the current
directory.

The current environment is passed to the subshell and variables that are
exported in the current shell are also exported in the subshelL Thus

and

CURRENTDffi-'pwd'; cd /usr/docs/otherdir;
nohup nroll' doc.n Ilpr & ; cd ,CURRENTDIR

(cd /usr/docs/otherdir; nohup nroff doc.n Ilpr&)

accomplish the same result: a copy of / u,r/ doe./ otAerdir/ doc •• is sent to the
lineprinter. (Note that nrotl' is a command available in the XENIX Text
Processing System.) However, the second example automatically puts you back
in your original working directory. In the second example above, blanks or
new lines surrounding the parentheses are allowed but not necessary. When
entering a command line at your terminal, the shell will prompt with the value
of the shell variable PS2 if an end parenthesis is expected.

Braces ({ and }) may also be used to group commands together. Both the left
and the right brace are recogniJed oAl, if they appear as the first (unquoted)
word or a command. The opening brace may be followed by a newline (in which
case the shell prompts for more input). Unlike parentheses, no .ubshell is
created for braces: the enclosed commands are simply read by the shell. The
braces are convenient when you wish to use the (sequential) output of several
commands as input to one commait'd.

The exit status of a set of commands grou ped by either parentheses or brace. is
the exit statu80f the last enclosed'executed command.

7.0.8 Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recognizes the
control commands (other than parentheses) described above. However, each
command in a pipeline is run as a separate process in order to direct input to or
output from each command. Also, when redirection of input or output is
specified explicitly to a control command, a separate process is spawned to
execute that command. Thus, when if, while, until, ease, and for are used in
a pipeline consisting of more than one command, the shell forks and a subshell
runs the control command. This has two implications:

1. Any changes made to variables within the control command are not
effective once that control command finishes (this is similar to the

7-26

The Shell

effector using parenthel!les to lfouP commands}.

2. Control commands run slightly slower when redirected, because of
the additional overhead or creatins a shell ror the control command.

7.G.G Transfer to Another File and Back: The Dot (.) Command

A command line orthe rorm

• proc

causes the shell to read commands rrom proe without spawning a new process.
Changes made to variables in proe are in effect arter the dot command finishes.
This is a good way to gather a number of shell variable initialisations into one
file. A common use or this command is to reinitialise the top level shell by
reading the .profile file with:

• . profile

7.G.tO Interrupt Handlin,: trap

Shell procedures can use the trap command to disable a signal (cause it to be
ignored), or redefine its action. The rorm or the trap command is:

trap .rl 'igr"Jl-lilf

Here arg is a string to be interpreted as a command list and ,ig"aI·lilt consists
of one or more signal numbers as described in ,i,,,GI(S)) in the XENIX Re/ereaet
Ma"ual. The most importantorthese signals follow:

Number Sienal

00 KILL (CNTRL-U)
01 Jl.\NGUP
02 INTERRUPT character
03 QUIT
09 KILL (cannot be caught or ignored)
11 segmentation violation (cannot be caught or ignored)
15 software termination si,;nal

The commands in ar, are scanned at least once, when the shell first encounters
the trap command. Because of this, it is usually wise to use single rather than
double quotation marks to surround these commands. The former inhibit
immediate command and variable substitution. This becomes important, for
instance, when one wishes to remove temporary files and the names or those
files have not yet been determined when the trap command is first read by the
shell. The following procedure will print the name or the current directory in

7-27

XENIX User's Guide

the flle errtla'red when it is interrupted, thus giving the user inlormation as to
how much ohhe job was done:

trap ~echo 'pwd' >errdirect ~ 2 3 IS
lor i in ibin /usr/bin /uar/gas/bin
do

cd Si * commands to be executed in directory Si here
done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name orthe directory
from which the procedure was flrst executed:

(trap "echo 'pwd' >errdirect" 2 3 IS)

A signal II can never be trapped, because the shell itsellneeds to catch it to deal
with memory allocation. Zero is interpreted by the trap command as a signal
generated by exiting from a shell. This occurs either with an exit command, or
by "falling through" to the end of a procedure. Ir .rg is not specifled, then the
action taken upon receipt of any of the signals in the signal list is reset to the
default system action. Ir .rg is an explicit null string ("or ""), then the signals
in the signal list are ignored by the shell.

The trap command is most frequently used to make sure that temporary flies
are removed upon termination of a procedure. The preceding example would
be written more typically as follows:

temp-SHOME/temp/S'
trap 'rm 'temp; trap OJ exit' 0 I 2 3 IS
Is > Stemp *' commands that use Stemp here

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or IS (kill) is
received by the shell procedure, or whenever the shell procedure is about to
exit, the commands enclosed between the single quotation marks are executed.
The exit command must be included, or else the shell continues reading
commands where it left off when the signal was received. The "trap 0" in the
above procedure turns off the original traps 1, 2, 3, and IS on exits from the
shell, so that the exit command does not reactivate the execution or the trap
commands.

Sometimes the shell continues reading commands after executing trap
commands. The following procedure takes each directory in the current
directory, changes to that directory, prompts with its name, and executes
commands typed at the terminal until an end-of-file (<NIRl,o) or an interrupt
is received. An end-of·file causes the read command to return a nonzero exit
status, and thus the while loop terminates and the next directory cycle is
initiated. An interrupt is ignored while executing the requested commands, but
causes termination or the procedure when it is waiting tor input:

7-28

d 'pwd'
for i in.
do if test -d Id/Si

done

then cd Sd/$i
while

do

done
fi

echo "Ii:"
trap exit 2
read x
trap : 2
I ignore interrupts
eval Ix

The Shell

Several traps may be in effect at the same time: if multiple signals are received
simultaneously, they are serviced in numerically ascending order. To
determine which traps are currently set, type:

trap

It is important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received by
the shell, it is passed on to whatever child processes are currently executing.
When these (synchronous) processes terminate, normally or abnormally, the
shell polls any traps that happen to be set and executes the appropriate trap
commands. This process is straightforward, except in the case of traps set at
the command (outermost, or login) level. In this case, it is possible that no child
process is running, so before the shell polls the traps, it waits for the
termination of the first process spawned alter the signal was received.

When a signal is redefined in a shell script, this does not redefine the signal for
programs invoked by that script; the signal is merely passed along. A disabled
signal is not passed.

For internal commands, the shell normally polls traps on completion or the
command. An exception to this rule is made for the read command, for which
traps are serviced immediately, so that read can be interrupted while waiting
for input.

7.10 Special Shell Command.

There are several special commands that are interntd to the shell, some or which
have already been mentioned. The shell does not fork to execute these
commands, so no additional processes are spawned. These commands should
be used whenever possible, because they are, in general, faster and more
efficient than other XENIX commands. The trade-off ror this effitiency is that
redirection or input and output is not allowed for most of these special
commands.

7-29

XENIX User's Guide

Several of the special com muds have already been described because they
affect the ftow or control. They are dot (.), break, continue, exit, and trap.
The set command is also a special command. Descriptions of the remaining
special commands are given here:

cd 4rg

exec 4rg .••

newgrp 4rg •••

read '4r .••

readonly 114r •••

times

7-30

The null commud. This command does nothing ud
can be used to insert comments in shell procedures.
Its exit status is lero (true). Its utility as a comment
character has largely been supplanted by the number
sign (f) which cu be used to insert comments to the
end-of-line. Beware: uy arguments to the null
command are parsed Cor syntactic correctness; when
in doubt, quote such arguments. Parameter
substitution takes place, just as in other commands.

Make 4rg the current directory. It 4rg is not a valid
directory, or the user is not authorized to access it, a
nonzero exit status is returned. Specifying cd with
no 4rg is equivalent to typing "cd .HOME" which
takes you to your home directory.

It 4rg is a command, then the shell executes the
command without forking and returning to the
current shell. This effectively a "gato" and no new
process is created. Input and output redirection
arguments are allowed on the command line. It Oft"

input and output redirection arguments appear,
then the input and output ot the shell itself are
modified accordingly.

The newgrp command is executed, replacing the
shell. Newgrp in turn creates a new shell. Beware:
only environment variables will be known in the shell
created by the newgrp commud. Any variables
that were exported will no longer be mar ked as such.

One line (up to a newline) is read trom the standard
input ud the first word is assigned to the first
variable, the second word to the second variable, and
so on. All words lett over are assigned to the ltld
variable. The exit status of read is Jero unless an
end-of-file is read.

The specified variables are made readonly so that
no subsequent assignments may be made to them. It
no arguments are given, a list of all readonly and ot
all exported variables is given.

The accumulated user and system times for
processes run from the current shell are printed.

umask """

wait

The Shell

The user file c:rea~ion mask is let to •••• II ••• is
omitted, then the current value of the mask is
printed. This bit-mask is used to set the default
permissions when creating files. For example, an
octal umask of 137 corresponds to the following bit­
mask and permission settings for a newly created file:

User user ~oup other
Octal I 3 7
bit-mask 001 011 111
permissions rw- r-- ---

See umc&,k(C) in the XENIX Refereftce Mc&ft"tJI ror
information on the value or ftftft.

The shell waits ror all currently active child processes
to terminate. The exit status of wait is always zero.

7.11 Creation and Organization of Shell Procedures

A shell procedure can be created in two simple steps. The first is building an
ordinary text file. The second is changing the mode or the file to make it
ezetutc&ble, thus permitting it to be invoked by

proc args

rather than

sh proc args

The second step may be omitted tor a procedure to be used once or twice and
then discarded, but is recommended for frequently-used ones. To set up a
simple procedure, first create a file named mailc&ll with the following contents:

LETTER=SI
shift
for i in ••
do mail Si <SLETTER
done

Next type:

chmod +x mailall

The new command might then be invoked from within the current directory by
typing:

7-31

XENIX User's Guide

mailall letter joe bob

Here letter is the name of the file containing the message you want to send, and
ioe and bob are people you want to send the message to. Note that shell
procedures must always be at least readable, so that the shell itself can read
commands from the file.

Ir mailtdl were thus created in a directory whose name appears in the user's
PATH variable, the user could change working directories and still invoke the
mailtdl command.

Shell procedures may be created dynamically. A procedure may generate a file
of commands, invoke another instance of the shell to execute that file, a.nd then
remove it. An alterna.te approach is that of using the dot command (.) to make
the current shell read commands from the new file, allowing use or existing shell
variables and avoiding the spawning or an additional process ror another shell.

Many users prefer writing shell procedures to writing C programs. This is true
ror several reasons:

1. A shell procedure is easy to create and maintain because it is only a file
or ordinary text.

2. A shell procedure has no corresponding object program that must be
generated and maintained.

3. A shell procedure is easy to create quickly, use a rew times, and then
remove.

4. Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source­
language Corm, they are generally easy to find, understan~, and
modify.

By convention, directories that contain only commands and shell procedures
are named bin. This name is derived from the word "binary", and is used
because compiled and ex-ecutable programs are orten called "binaries" to
distinguish them rrom program source files. Most groups or users sharing
common interests have one or more bin directories set up to hold common
procedures. Some users have their PATH variable list several such directories.
Although you can have a number of such directories, it is unwise to go
overboard: it may become difficult to keep track or your environment and
efficiency may suffer.

7.12 More About Execution Flags

There a.re several execution fla.gs available in the shell that can be useful in shell
procedures:

7-32

The Shell

-e This flag causes the shell to exit immediately if any command that it
executes exits with a nonzero exit status. This flag is userul ror shell
procedures composed or simple command lines; it is not intended ror
use in conjunction with other conditional constructs.

-u This flag causes unset variables to be considered errors when
substituting variable values. This flag can be used to effect a !lobal
check on variables, rather than using conditional substitution to
check each variable.

-t This flag causes the shell to exit arter reading and executing the
commands on the remainder of the current input line. This fla! is
typically used by C programs which call the shell to execute a single
command.

-n This is a "don't execute" flag. On occasion, one may want to check a
procedure ror synta.x errors, but not execute the commands in the
procedure. Using "set -nv" at the beginning or a file will accomplish
this.

-k This flag causes all arguments or the form .anable-.clue to be
treated as keyword parameters. When this flag is ftot set, only such
arguments that appear berore the command name are treated as
keyword parameters.

'1.13 Supporting Commands and Features

Shell procedures can make use or any XENIX command. The commands
described in this section are either used especially frequently in shell
procedures, or are explicitly designed ror such use.

7.13.1 Conditional Evaluation: test

The test command evaluates the expression specified by its arguments and, if
the expression is true, test returns a zero exit status. Otherwise, a nonzero
(raIse) exit status is returned. Test also returns a nonzero exit status iJ'it has no
arguments. Orten it is convenient to use the test command as the first
command in the command list following an if or a while. Shell variables used
in test expressions should be enclosed in double quotation marks ir there is any
chance or their being null or not set.

The square brackets may be used as an alias to test, so that

(ezpre"ioft)

has the same effect as:

XENIX User's Guide .

test ezpre"io"

Note that the spaces before and after the ezpru,io"in brackets are essential.

The following is a partial list of the options that can be used to construct &

conditional expression:

-r file

-w file

-x file

-sfile

-dfile

-ffile

-111

-nil

-tfildt'

,1!== ,e

True if the named file exists and is readable by the user.

True irthe named file exists and is writable by the user.

True if the named file exists and is executable by the user.

True ir the named file exists and has a sue greater than zero.

True ir the named file is a directory.

True irthe named file is an ordinary file.

True irthe length oestring 11 is zero.

True irthe length orthe string It is nonzero.

True if the open file whose file descriptor number is Jildu is
associated with a terminal device. It fildu is not specified, file
descriptor 1 is used by default.

True if strings 11 and ,'are identical.

True if strings 11 and ,'are "ot identical.

True if d is "ot the null string.

,,1 -eq ,,' True ir the integers .1 and ,,' are algebraically equal; other
algebraic comparisons are indicated by -ne (not equal), -gt
(greater than), -ge (greater than or equal to), -It (less than),
and -Ie (less than or equal to).

These may be combined with the following operators:

-a

-0

(ezpr)

7-34

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower precedence than the
logical AND operator (-a).

Parentheses ror grouping; they must be escaped to remove
their significance to the shell. In the absence of parentheses,
evaluation proceeds from left to right.

The Shell

Note that all options, operators, filenames, etc. are separate arsuments to teat.

7.13.2 Echoing Arguments

The echo command has the followins syntax:

echo [opts Oft.] [arg.]

Echo copies its arguments to the standard output, each followed by a MillIe
space, except for the last arlUment, which is normally followed by a newline.
Often, it is used to prompt the user for input, to issue diagnostics in shell
procedures, or to add a few lines to an output stream in the middle of a pipeline.
Another use is to verify the argument list generation process before issuinS a
command that does something drastic. The command

Is

is otten replaced by

echo·

because the latter is faster and prints fewer lines ot output.

The -D option to echo removes the newline' from the end of the echoed line.
Thus, the following two commands prompt tor input and then allow typinson
the same line as the prompt:

echo -n 'enter name:'
read name

The echo command also recognizes several escape sequences described in
eelao(e) in the XENIX Refereftu Maftual.

7.13.3 Expression Evaluation: expr

The expr command provides arithmetic and logical operations on integers and
some pattern-matching facilities on its· arguments. It evaluates a single
expression and writes the result on the standard output; expr can be used
inside grave accents to set a variable. Some typical examples follow:

1= increment 'A
A-= 'expr 'a + l'
1= put third through last characters of
I $1 into substring
substring='expr "'1" : ' .. \(.• \) "
obtain length of '1
c= 'expr "$1": ',."

XENIX User's Guide

The most common uses of ~xpr are in counting iterations of a loop and in using
its pattern-matching ca,p3.bility to pick apart strings.

7.13.4 True and False

The true and false commands perform the functions of exiting with lero and
nonlero exit status, respectively. The true and false commands are often used
to implement unconditional loops. For example, you might type:

while true
do echo forever
done

This will echo "forever" on the screen until an INTERRUPT is typed.

7.13.5 In-Line Input Documents

Upon seeing a command line or the torm

comma"d < < to/,t,;",

where eo/It"", is any arbitrary string, the shell will take the subsequent lines
as the standard input ot commCl"d until a line is read consisting only of
eo/,t';",. (By appending a minus (-) to the input redirection symbol « <),
leading spaces and tabs are deleted from each line otthe input document before
the shell passes the line to comma"d.)

The shell creates a temporary file containing the input document and pertorms
variable and command substitution on its contents before passing it to the
command. Pattern matching on filenames is pertormed on the arguments or
command lines in command substitutions. In order to prohibit all
substitutions, you may quote any character of eo/d"",:

command < < \eofstring

The in-line input document feature is especially useful ror smaIl amounts or
input data, where it is more convenient to place the data in the shell procedure
than to keep it in aseparate file. For instance, you could type:

eat «- xx

xx

This message will be printed on the
terminal with leading tabs and spaces
removed.

This in-line input document feature is most useful in shell procedures. Note
that in-line input documents may not appear within grave accents.

7-38

The Shell

7.13.6 Input/Output Redirection Using File Descriptors

We me:ltioned above that a command occasionally directs output to some file
associated with a file descriptor other than 1 or 2. In languages such ~ C, one
can associate output with any file descriptor by using the vnte(S) system call
(see the XENIX Reference Manual. The shell provides its own mechanism for
creating an output file associated with a particular file descriptor. By typing

141>&141

where Idl and Idl are valid file descriptors, one can direct output that would
normally be associated with file descriptor /41 to the file associated with 14e.
The default value ror 141 and Idl is 1. If, at run time, no file is associated with
Idl, then the redirection is void. The most common use or this mechanism is
that or directing standard error output to the same file as standard output.
This is accomplisbed by typing:

command 2>&1

Ir you wanted to redirect both standard output and standard error output to
the same file, you would type:

command l>file 2>&1

The order here is significant: first, file descriptor 1 is associated with file; then
file descriptor 2 is associated with the same file as is currently associated with
file descriptor 1. Ir the order or the redirections were reversed, standard error
output would go to the terminal, and standard output would go to file, because
at the time of the error output redirection, file descriptor 1 still would have
been associated with the terminal.

This mechanism can also be generalized to the redirection of standard input.
You could type

tda<&rdb

to cause both file descriptors Ida and 14h to be associated with the same input
file. If IdfJ or Idb is not specified, file descriptor 0 is assumed. Such input
redirection is useful for a command that uses two or more input sources.

'1.13.7 Conditional Substitution

Normally, the shell replaces occurrences of lf1fJridle by the string value
assigned to f1(Jridle, if any. However, there exists a special notation to allow
conditional substitution, dependent upon whether the variable is set or not
null. By definition, a variable is set ir it has ever been assigned a value. The
value of a variable can be the null string, which may be assigned to a variable in
anyone of the following ways:

7-37

XENIX User's Guide

A­
bed-''''
efg=-"
set" ''''

The first three examples assign null to each orthe corresponding shell variables.
The last example sets the first and second positional parameters to nuDe The
following conditional expressions depend upon whether a variable is set and not
null. Note that the meaning of braces in these expressions differs from their
meaning when used in grouping shell commands. Partlmeter as used below
refers to either a digit or a variable name.

S{ 1It1n4ble:-nn"g} IC lIt1nable is set and is nonnull, then substitute the
value Sf/ariable in place of this expression.
Otherwise, replace the expression with nriA,. Note
that the value of flaM·able is Aot changed by the
evaluation of this expression.

S{ flariable:=-nring} IC flariable is set and is nonnull, then substitute the
value S1I4n 4ble in place of this expression.
Otherwise, set flariable to ,triA" and then
substitute the value Sflaria6le in place of this
expression. Positional parameters may not be
assigned values in this fashion.

S{ vtZriable:!,triA9} If fltZriable is set and is nonnull, then substitute the
value of flt.iritlble for the expression. Otherwise,
print a message of the form

fltlri tJble: IfriA,

and exit from the current shell. (If the shell is the
login shell, it is not exited.) If ,triA, is omitted in
this form, then the message

fltlritJble: parameter null or not set

is printed instead.

S{ v tZnable: + It riA,} If vtlri46le is set and is nonnull, then substitute
,triA, for this expression. Otherwise, substitute the
null string. Note that the value of fltlriable is not
altered by the evaluation of this expression.

These expressions may also be used without the colon. In this variation, the
shell does not cheek whether the variable is null or not; it only cheeks whether
the variable has ever been set.

The two examples below illustrate the use of this facility:

7-38

The Shell

1. This example per Corms an explicit assignment to the PAm variable:

"PATH"-S{PATH:- ':/bin:/usr Ibin 1
This says, if PATH has ever been set and is not null, then keep its
current value; otherwise, set it to the string ":/bin:/usr/bin".

2. This example automatically assigns the HOME variable avalue:

cd S{HOME:- '/usr /gas 1

If HOME is set, and is not null, then change directory to it. Otherwise
set HOME to the given value and change directory to it.

7.13.8 Invocation Flags

There are Cour flags that may be specified on the command line when invoking
the shell. These flags may not be turned on with the set command:

-i If this flag is specified, or if the shell's input and output are both
attached to a terminal, the shell is ifttertJctitlt. In such a shell,
INTERRUPT (signal 2) is caught and ignored, and TERMINATE
(signal 15) and QUIT (signal 3) are ignored.

-8 If this flag is specified or if no input/output redirection arguments
are given, the shell reads commands from standard input. Shell
output is wr itten to file descriptor 2. The shell you get upon logging
into the system has the -8 flag turned on.

-c When this flag is turned on, the shell reads commands from the first
string following the flag. Remaining arguments are ignored. Double
quotation marks should be used to enclose a multiword string, in
order to allow for variable substitution.

7.14 Effective and Efficient Shell Programming

This section outlines strategies for writing efficient shell procedures, ones that
do not waste resources in accomplishing their purposes. The primary re8.80n
for choosing a shell procedure to perform a specific function is to achieve a
desired result at a minimum human cost. Emphasis should always be placed on
simplicity, clarity, and readability, but efficiency can also be gained through
awareness of a few design strategies. In many cases, an effective redesign of an
existing procedure improves its efficiency by reducing its size, and often
increases its comprehensibility. In any case, you should not worry about
optimizing shell procedures unless they are intolerably slow or are known to
consume an inordinate amount of a system '8 resources.

7·39

XENIX User's Guide

The same kind or iteration cycle should be applied to shell procedures as to
other programs: write code, measure it, and optimize only the lew important
parts. The user should become familiar with the time command, which can be
used to measure both entire procedures and parts thereof. Its use i~ strongly
recommended; human intuition is notoriously unreliable when used to estimate
timings of programs, even when the style or programming is a familiar one.
Each timing test should be run several times, because the results are easily
disturbed by variations in system load.

7.14.1 Number or Processes Generated

When large numbers of short commands are executed, the actual execution
time of the commands may well be dominated by the overhead of creating
proce$ses. The procedures that incur significant amounts orsuch overhead are
those that perform mueh looping and those that generate command sequences
to be interpreted by another shell.

It you are worried about efficiency, it is important to know which commands
are currently built into the shell, and which are not. Here is the alphabetical list
orthose that are built in:

break case cd continue eva!
exec exit export for if
newgrp read readonly set shift
test times trap umask until
wait while {}

Parentheses, (), are built into the shell, but commands enclosed within them
are executed as a child process, i.e., the shell does a rork, but no exec. Any
command not in the above list requires both rork and exec.

The user should always have at least a vague idea of the number or processes
generated by a shell procedure. In the bulk of observed procedures, the number
of processes created (not necessarily sim ultaneously) can be described by:

processes - (k *n) + c

where k and t are constants, and n may be the number of procedure arguments,
the number of lines in some input file, the number of entries in some directory ,
or some other obvious quantity. Efficiency improvements are most commonly
gained by reducing the value of k, sometimes to zero.

Any procedure whose complexity measure includes n' terms or higher powers
of n is likely to be intolerably expensive.

As an example, here is an analysis of a procedure named ,plit,' whose text is
given below:

7-40

* split
trap 'rm temp"; trap 0; exit' 0 1 2 3 15
startl =0 start2==O
b-1A-Za-z] ,
cat> tempSS

., read stdin into temp file

., save original lengths of SI, S2
if test -s "SI"
then startl- 'wc -I < SI'
fi
if test -8 "82"
then start2== 'wc -I < S2'
fi
grep "Sb" tempS. > > SI * lines with letters onto SI
grep -v "Sb" tempSS I grep lo.Q]' > > S2 * lines with only numbers onto S2
total-" 'wc -I < tempSS'"
endl==" 'wc -I < SI'''
end2=" 'wc -I < $2'"
lost==" 'expr Stotal - \(Sendl - Sstartl\) \
- \(Send2 - Sstart2\)'''
echo" Stotal read, Slost thrown away"

The Shell

For each iteration of the loop, there is one expr plus either an echo or ¬her
expr. One additional echo is executed at the end. Ir n is the number ollines of
input, the number ofprocessesis2* n + 1.

Some types of procedures should ftot be written using the shell. For example, ir
one or more processes are generated for each character in some file, it is a good
indication that the procedure should be rewritten in C. Shell procedures should
not be used to scan or buil d files a character at a time.

-: .14.2 Number or Data Bytes Accessed

It is worthwhile considering any action that reduces the number of bytes read
or writti4!n. This may be important Cor those procedures whose time is spent
passing data around among a few processes, rather than in creating large
numbers of short processes. Some filters shrink their output, others usually
increase it. It always pays to put the drinker. first when the order is
irrelevant. For instance, the second of the following examples is likely to be
faster because the input to sort will be much smaller:

sort file I grep pattern
grep pattern file I sort

1-41

~J.'&..A. v~n:;l- ilt '-lIUIUC

7.14.3 Shortening Directory Searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames.
Judicious use of cd, the change directory command, can help shorten long
pathnames and thus reduce the number of directory searches needed. As an
exercise, try the following commands:

Is -l/usr/bin/* >/dev/null
cd lusr/bin; Is -1 * >/dev/null

The second command will run faster because of the fewer directory searches.

7.14.4 Directory-Search Order and the PATH Variable

The PAm variable is a convenient mechanism for allowing organization and
sharing of procedures. However, it must be used in a sensible fashion, or the
result may be a great increase in system overhead.

The process of finding a command involves reading every directory included in
every path name that precedes the needed pathname in the current PAm
variable. As an example, consider the effect of invoking nroff (i.e.,
/ ulr/ bini nroff) when the value or PATH is ":/bin:/usr Ibin". The sequence of
directories read is:

/
/bin
I
lusr
lusr/bin

This is a total of six directories. A long path list assigned to PATH can increase
this number significantly.

The vast majority of command executions are or commands round in I bira and,
to a somewhat lesser extent, in /ulrlbira. Careless PAm setup may lead to a
great deal or unnecessary searching. The rollowing four examples are ordered
rrom worst to best with respect to the efficiency of command searches:

:/usr /john/bin:/usr /localbin:/bin: lusr Ibin
:/bin:/usr/john/bin:/usr /localbin:/usr Ibin
:/bin:/usr /bin:/usr /john/hin: /usr /localbin
/bin::/usr Ibin: lusr Ijohn/bin: /usr Ilocalbin

The first one above should be avoided. The others are acceptable and the
choice among them is dictated by the rate of change in the set of commands
kept in I bin and I Ulr/ bin.

7·42

The Shell

A procedure that is expensive because it invokes many short-lived commands
may often be speeded up by setting the PATH variable inside the procedure so
that the fewest possible directories are searched in an optimum order.

7.14.5 Good Ways to Set Up Directories

It is wise to avoid directories that are larger than necessary. You should be
aware of several special sizes. A directory that contains entries for up to 30 files
(plus the required. and ..) fits in a single disk block and can be searched very
efficiently. One that has up to 286 entries is still a small directory; anything
larger is usually a disaster when used as a working directory. It is especially
important to keep login directories small, preferably one block at most. Note
that, as a rule, directories never shrink. This is very important to understand,
because if your directory ever exceeds either the 30 or 286 thresholds, searches
will be inefficient; furthermore, even ir you delete files so that the number or
files is less than either threshold, the system will still continue to treat the
directory inefficiently.

7.15 Shell Procedure Examples

The power or the XENIX shell command language is most readily seen by
examining how XENIX's many labor-saving utilities can be combined to
perform powerful and useful commands with very little programming effort.
This section gives examples of procedures that do just that. By studying these
examples, you will gain insight into the techniques and shortcuts that can be
used in programming shell procedures (also called "scripts"). Note the use of
the number sign (#) to introduce comments into shell procedures.

It is intended that the following steps be carried out for each procedure:

1. Place the procedure in a file with the indicated name.

2. Give the file execute permission with the ch mod command.

3. Move the file to a directory in which commands are kept, such as your
own bin directory.

4. Make sure that the path of the bin directory is specified in the PATH
variable found in . profile.

5. Execute the named command.

7-43

XENIX User's Guide

BINUNIQ

Is Ibin lusr Ibin I sort I uniq -d

This procedure determines which files are in both I bin and I fllrl bin. It is done
because files in I bin will "override" those in I fllrl bin during most searches and
duplicates need to be weeded out. It the I fllrl bin file is obsolete, then space is
being wasted; if the I bin file is outdated by a corresponding entry in I 'fllrl bin
then the wrong version is being run and, again, space is being wasted. This is
also a good demonstration of "sort I !Jniq" to find matches and duplications.

COPYPAIRS

* Usage: copypairs file 1 file2 ...
f Copies file 1 to file2, file3 to file4, ...
while test "12" !== ""
do

done

cp II $2
shift; shift

if test "$1" !== ""
then echo" $0: odd number of arguments"

fi

This procedure illustrates the use of a while loop to process a list of positional
parameters that are somehow related to one another. Here a while loop is
much better than a. ror loop, because you can adjust the positional parameters
with the shirt command to handle related arguments.

7-44

COPYTO

* Usage: copy to dir file •..
f Copies argument files to "dir",
,. making sure that at least
,. two arguments exist, that" dir" is a directory,
,. and that each additional argument
,. is a readable file.
if test Sf -It 2

then echo "SO: usage: copy to directory file ... "
elir test! -d SI

then echo "SO: SI is not a directory";
else dir-SI; shirt

ror eachfile

done
fi

do cp Seachfile Sdir

The Shell

This procedure uses an ir command with several parts to screen out improper
usage. The ror loop at the end of the procedure loops over all of the arguments
to copy to but the first; the originalS! is shifted off.

DISTINCT!

* Usage: distinct! * Reads standard input and reports list of
,. alphanumeric strings that differ only in case, * giving lowercase form of each.
tr -cs 'A-Za-zo.9 ' '\OI21sort -u I \
tr 'A-Z' 'a-z ' I sort I uniq -d

This procedure is an example of the kind of process that is created by the lert­
to-right construction ora long pipeline. Note the useorthe backslash at the end
of the first line as the line continuation character. It may not be immediately
obvious how this command works. You may wish to consult tr(C), rort(C), and
uniq(C) in the XENIX Reference M4nu41 iryou are completely unfamiliar with
these commands. The tr command translates aU characters except letters and
digits into newline characters, and then squeezes out repeated newline
characters. This leaves each string (in this case, any contiguous sequence of
letters and digits) on a separate line. The sort command sorts the lines and
emits only one line from any sequence of one or more repeated lines. The next
tr converts everything to lowercase, so that identifiers differing only in case
become identical. The output is sorted again to bring such duplicates together.
The "uniq -d" prints (once) only those lines that occur more thanonce,yielding
the desired list.

7-45

XENIX User's Guide

The process of building such a pipeline relies on the fact that pipes and files can
usually be interchanged. The first line below is equivalent to the last two lines,
assuming that sufficient disk space is available:

cmdi I cmd2 I cmd3

cmdi > tempI; < tempi cmd2 > temp2; < temp2 cmd3
rm temp(I23)

Starting with a file of test data on the standard input and working from left to
right, each command is executed taking its input from the previous file and
putting its output in the next file. The final output is. then examined to make
sure that it contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired output.

Although pipelines can give a concise notation for complex processes, you
should exercise some restraint, since such practice often yields
incomprehensible code.

DRAFT

* Usage: draft file(s)
, Print manual pages for Diablo printer.
for i in S.

do nroft' -man Ii Ilpr
done

Users often write this kind of procedure for convenience in dealing with
commands that require the use of distinct ftags that cannot be given default
values that are reasonable for all (or even most) users.

1-48

EDFIND

* Usage: edfind file arg * Finds the last occurrence in "file" of a line * whose beginning matches" arg", then prints * 3 lines (the one berore, the line itseIr, * and the one a.rter)
ed - $1 «-EOF

EOF

1"'$21
-,+p
q

The Shell

This illustra.tes the practice or using ed in-line input scripts into which the shell
can substitute the values of variables.

EDLAST

* Usage: edlast file * Prints the last line of file, * then deletes that line.
ed - II «-\!

$p
Id
w
q

echo done

This procedure illustrates taking input rrom within the file itseIr up to the
exclamation point (!). Variable substitution is prohibited within the input text
because or the backslash.

7-47

XENIX User's Guide

FSPLIT

, Usage: fsplit fUel file2
, Reads standard input and divides it into 3 parts
, by appending any line containing at least one letter
f to filel, appending any line containing digits but
f no letters to file2, and by throwing the rest away.
count==O gone-=O
while read next
do

done

eount-" 'expr Scount + 1 '"
case "Snext" in
(A-Za-z])

echo "Snext" > > SI ;;

echo "Snext" > > S2;;

gone-" 'expr Sgone + 1'"
esac

echo "Scount lines read, 'gone thrown away"

Each iteration or the loop reads a line rrom the input and analyzes it. The loop
terminates only when read encounters an end-of-file. Note the use or the expr
command.

Don't use the shell to read a line at a time unless you must-it can be an
extremely slow process.

The Shell

LISTFIELDS

pep I. I tr ":" -\012"

This procedure lists lines containin, any desired entry that is ~veD to it as an
ar~ment. It places any field that bepns with a colon on a newline. Thus, if
pven the rollowin, input

joe newman: 13S0g NE 78th St: Redmond, Wa 08062

li,tfieltl, will produce this:

joe newman
13S0g NE 78th St
Redmond, Wa QS062

Note the use ofthe tr command to transpose colons to line reeds.

MKFILES

f Usage: mkfiles prer (quant.ity)
f Makes" quantity" files, named prerJ, prel2, .•.
f Default is 5 as determined on rollowin, line.
quantity-I{2-5}
i==l
while test "Ii" -Ie "Iquantity"
do

> Illi
i-" 'expr Ii + 1'"

done

The mkfile, procedure uses output redirection to create sero-lenlth files. The
expr command is used ror counting iterations ofthe while loop.

7-4Q

XENIX User's Guide

NULL

f Usage: null files * Create each of the named files as an empty file.
for each file
do

>Seaehfile
done

This procedure uses the fact that output redirection creates the (empty) output
file if a file does not already exist.

PHONE

., Usage: phone initials ...
f Prints the phone numbers of the * people with the given initials.
echo 'inits ext home'
grep ""SI" «-END

jrk 1234
Ibj 2234
hst 3342
jqa 4567

END

999-2345
583-2245
988-1010
555-1234

This procedure is an example of using an in-line input script to maintain a small
data. base.

7-50

TEXTFILE

ir test "'1" - "_s"
then
f Return condition code

shirt

fi

it test -I " 'So ,.'" , check return value
then

exit 1
else

exit 0
fi

it test $f -It 1
then echo "SO: Usage: SO 1-1) file .•.• 1>&2

exit 0
fi

file $- I tgrep , text' I sed 's/: .-//'

The Shell

To determine which files in a directory contain only textual information,
tutfile filters argument lists to other commands. For example, the following
command line will print all the text files in the current directory:

pr 'textfile -' Ilpr

This procedure also uses an -8 ftag which silently tests whether any of the files
in the a.rgument list is a text file.

WRlTEMAlL

f Usage: writemail message user
, Ir user is logged in,
f writes message to terminal;
f otherwise,. mails it to user.
echo "$1" I { write "$2" II mail "$2" ;}

This procedure illustrates the use of command grouping. The message specified
by $1 is piped to both the write command and, if write fails, to the mail
command.

" 11:..

XENIX User's Guide

'1.18 Shell Grammar

item: ",ot'd
input-output
n4me - "tJlut

limple-comm4nd: item
.implt-commend item

commend: ,imple-comm4nd
(eomm4nd-lilt)
{ commend-li,t }
for n4me do commend-li,t done
for n4me in ",ord do comm4nd·li,t done
while commend-lilt do comm4nd-lilt done
until comm4nti·lilt do commend-li,t done
case ",ord in ce,e-p4" esac
if command-lilt then comm4Ad-li,t d,e-part 8

piptline: commend
pipdine I commend

,,,,dor: pipeline
IIAtior &.&. pipeliAe
entlor II pipeline

eommaful-lilt: IIAtior
command-lilt ;
command-lilt &.
commIlAd-li,t ; lI"tlOt'
comma,,4-lilt &. IIAdot'

i"put-output: > file
< file
« Vlortl
» "'0,4

file: "'0,4
&. digit
&.-

ell,e-port: p4tter") commeAtI-li,t ;;

pettera: flJo,d
ptJtterA I Vlord

el,e-pllrt: elif commend-lilt then eomma"d-li,' elle-pllrt
else command-lilt

7-52

empt,:

word:

•• me:

tligit:

empt,

.. ,equeAce 01 "oAbl.d cla.raeter,

.. ,efue"ee olletter" tligit" Dr ."tler,coru
,t.rti"g with. letter

0123468780

The Shell

7-53

XENIX User's Guide

Metacharacters and Reserved Words

a. Syntactic

Pipe symbol

/£/£ And-if symbol

II Or-ilsymbol

Command separator

;; Case delimiter

/£ Background commands

() Command groupinS

< Input redirection

« Input from a here document

> Output creation

< Output append , Comment to end of line

b. Patterns

* Match any character(s) includinsnone

T Match any sinsle character

[•••] Match any of enclosed characters

c. Substitution

7-54

I{ •.. } Substitute shell variable

Substitute command output

The Shell

d. Quoting

e.

\ Quote next character as literal with no special meaning

" "

Quote enclosed charaeters excepting the baek quotation
marks (1

Quote enclosed characters excepting: S '\ "

Reserved words

if esac
then for
else while
elif until
fi do
case done
in { }

1-55

Chapter 8
Be: A Calculator

8.1 Introduction 8-1

8.2 Demonstration 8-1

8.3 Tasks 8-3
8.3.1 Computing with Integers 8-3
8.3.2 Specifying Input and Output Bases 8-5
8.3.3 Scaling Quantities 8-6
8.3.4 Using Functions 8-7
8.3.5 Using Subscripted Variables 8-8
8.3.6 Using Control Statements: if, while and for 8-0
8.3.7 Using Other Language Features 8-12

8.4 Language Reference 8-14
8.4.1 Tokens 8-14
8.4.2 Expressions 8-14
8.4.3 Function Calls 8-15
8.4.4 Unary Operators 8-16
8.4.5 Multiplicative Operators 8-16
8.4.6 Additive Operators 8-17
8.4.7 Assignment Operators 8-17
8.4.8 Relational Operators 8-18
8.4.9 Storage Classes 8-18
8.4.10 Stat.ements 8-19

BC: A Calculator

8.1 Introduction

BC is a program that can be used as an arbitrary preCISIon arithmetic
calculator. BC's output is interpreted and executed by a collection 01 routines
which can input, output, and do arithmetic on indefinitely large integers and on
scaled fixed-point numbers. A1though you can write substantial programs with
BC, it is olten used as an interactive tool lor perlorming calculator-like
computations. The language supports a complete set 01 control structures and
functions that can be defined and saved ror later execution. The syntax of BC
has been deliberately selected to agree with the C language; those who are
lamiliar with C will find few surprises. A small collection of library functions is
also available, including sin, cos, arctan, log, exponential, and Bessel functions
of integer order.

Common uses lor BC are:

Computation with large integers.

Computations accurate to many decimal places.

Conversions of num bers Irom one base to another base.

There is a scaling provision that permits the use or decimal point notation.
Provision is made tor input and output in bases other than decimal. Numbers
can be converted trom decimal to octal simply by setting the output base equal
to 8.

The actual limit on the number or digits that can be handled depends on the
amount of storage available on the machine, so manipulation of numbers with
many hundreds of digits is possible.

8.2 Demonstration

This demonstration is designed to show you:

How to get into and outofBC.

How to perform simple computations.

How expressions are formed and evaluated.

How to assign values to registers.

A normal session with BC begins by invoking the program with the command:

be

To exit BC type

8-1

XENIX User's Guide

quit

or press CNTRL-D. 0 nee you have entered Be, you can use it very much like a
normal calculator. As with the XENIX shell, commands are read as command­
lines, so each line that you type must be terminated by a RETURN. Throughout
this chapter, the RETURN is implied at the end of each command line. Within
BC, normal processing or other keys, such as BKSP and INTERRUPT, also
works.

For example, type the simple integer 5:

Output is immediately echoed on the next line to the standard output, which is
normally: the terminal screen:

5

Here" 5" is a simple numeric expression. However, it you type the expression

(where the star (*) is the multiplication operator) a computation is executed
and the result printed on the next line:

26.25

What has happened here is that the line "5-5.25" has been evaluated, i.e., the
expression has been reduced to its most elementary form, which is the number
26.25. The process of evaluation normally involves some type of computation
such as multiplication, division, addition, or subtraction. For example, all four
or these operations are involve d in the following expression:

When this expression is evaluated, the subexpressions within parentheses are
evaluated first, just as they would be with simple algebra, so that an
intermediate step in the evaluation is "50+50-25" which ultimately reduces to
the number "75".

The simple addition

10.45+5.5555.)55

produces the output:

16.0055555

Note how precision is retained in the above result.

8-2

BC: A Calculator

The two-part multiplication

produces the answer:

504

The last part of this demonstration shows you how to store v&lues in special
alphabetic registers. For example. type:

a=100 ; b-=5

What happens here is that the registers "an and "bn are assigned the values 100
and 5, respectively. The semicolon is used here to place multiple BC statements
on a single line. just as it is used in the XENIX shell. This command line
produces no output because assignment statements are not considered
expressions. However, the registers "an and "b" can now be used in
expressions. Thus you can now type

a*b; a+b

to produce:

500
105

To exit BC. rem em ber to type

quit

or pressCNTRL-D.

This ends the demonstration. Following sections describe use of BC in more
deta.il. The final section of this chapter is a Be language reference.

8.3 Tasks

This section describes how to perform common BC tasks. Mastery or these
tasks should turn you into a competentBC user.

8.3.1 Computing with Integers

The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, if you type

142857 + 285714

8-3

XENIX User's Guide

and press RETURN, Be responds immediately with the line:

428571

Other operators also can be used. The complete list includes:

+ _ * / % A

They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers
produces an integer result truncated toward zero. Division by zero produces an
error message.

Any term in an expression can be prefixed with a minus sign to indicate that it is
to be negated (this is the "unary" minus sign). For example, the expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in FORTRAN, with exponentiation (") performed first,
then multiplication (*), division (/), modulo (%), and finally, addition (+), and
subtraction (-). The contents of parentheses are evaluated before expressions
outside the parentheses. Allor the above operations are performed from left to
right, except exponentiation, which is performed rrom right to left. Thus the
following two expressions

aAbAc and a"(bAc)

are equivalent, as are the two expressions:

a*b*c and (a*b)*c

BC shares with FORTRAN and C the convention that a/b*c is equivalent to
(a/b)*c.

Internal storage registers to hold numbers have single lowercase letter names.
The value of an expression can be assigned to a register in the usual way, thus
the statement

has the effect of increasing by 3 the value of the contents of the register named
"x". When, as in this case, the outermost operator is the assignment operator
(=), then the assignment is performed but the result is not printed. There are
26 available named storage registers, one for each letter ofthe alphabet.

There is also a built-in square root tunction whose result is truncated to an
integer (See also Section 8.5, "Scaling"). For example, the lines

8-4

x - sqrt(lgl)
x

produce the printed result

13

8.3.2 Specifying Input and Output Dues

DC: A Calculator

There are special internal quantities in Be, called ib41t and ,b41e. 1641t is
initially set to 10, and determines the base used ror interpretin, numbers that
are read by BO. For example, the lines

ibase - 8
11

produce the output line

9

and you are all 8et up to do octal to decimal conversions. However, beware of
trying to change the input base back to decimal by typing:

ibase - 10

Because the number 10 is interpreted as'octal, this statement has no effect. For
those who deal in hexadecimal notation, the characters A-F are permitted in
numbers (no matter what base is in effect) and are interpreted as digits having
values 10-15, respectively. These characters mUlt be uppercase and not
lowercase. The statement

ibase - A

changes you back to decimal input base no matter what the current input base
is. Negative and large positive input bases are permitted; however no
mecha.nism has been provided for the input of arbitrary numbers in bases less
than 1 and greater than 16.

Ob4ft is used as the base ror output numbers. The value of ,b41t is initially set
to a decimal 10. The lines

obase == 16
1000

produce the output line:

3E8

8-5

XENIX User's Guide

This is interpreted as a three-digit hexadecimal number. Very large output
bases are permitted. For example, large numbers can be output in groups or
five digits by setting 064,t to 100000. Even strange output bases, such as
negative bases, and 1 and 0, are handled correctly.

Very large numbers are split across lines with seventy characters per line. A
split line that continues on the next line ends with a backslash (\). Decimal
output conversion is fast, but output of very large numbers (i.e., more than 100
digits) with other bases is rather slow.

Remember that ib4.t and 064,t do not affect the course or internal
computation or the evaluation of expressions; they only affect input and output
conversion.

8.3.3 Scaling Quantities

A special internal quantity called .calt is used to determine the scale of
calculated quantities. Numbers can have up to 99 decimal digits after the
decimal point. This fra.ctional part is retained in further computations. We
refer to the number or digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one or the arithmetic
operations, the result has a scale determined by the rollowing rules:

Addition, subtraction
The scale or the result is the larger or the scales of the two
operands. There is never any truncation orthe result.

Multiplication The scale or the result is never less than the maximum ofthe
two scales of the operands, never more than the sum of the
scales or the operands, and subject to those two restrictions,
the scale of the result is set equal to the contents of the
internal quantity, .tale.

Division The scale of a quotient is the contents of the internal
quantity, .tGle.

Modulo The scale of a remainder is the sum or the scales or the
quotient and the divisor.

Exponentiation The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer.

Square Root The scale of a square root is set to the maximum of the scale
of the argument and the contents of Ie ale.

All of the internal operations are actually carried out in terms or integers, with
digits being discarded when necessary. In every case where digits are discarded

8-8

BC: A Calculator

truncation is performed without rounding.

The contents or IctUe must be no greater than 99 and no less than O.lt is initially
set toO.

The internal quantities IctUe, ib",e, and 6",e can be used in expressions just
like other variables. The line

scale == sc ale + 1

increases the value or IctUe by one, and the line

scale

causes the current value or Ie ale to be printed.

The value or letUe retains its meaning as a number or decimal digits to be
retained in internal computation even when i6t11e or obtlle are not equal to 10.
The internal computa.tions (which are still conducted in decimal, regardless or
the bases) are performed to the specified number or decimal digits, never
hexadecimal or octal or any other kind or digits.

8.3.4 Using Functions

The name or a runction is a single lowercase letter. Function names are
permitted to use the same letters as simple variable names. Twenty-six
different defined runctions are permitted in addition to the twenty-six variable
names. The line

define a(x}{

begins the definition or a runction with one argument. This line must be
followed by one or more statements, which make up the body or the function,
ending with a right brace (}). Return or control rrom a runction occurs when a
return statement is executed or when the end or the runction is reached. The
return statement can take either or the two forms:

return
return(x)

In the first case, the returned value or the function is OJ in the second, it is the
value or the expression in parentheses.

Variables used in runctions can be declared as automatic by a sta.tement of the
rorm

auto X,y,Z

There can be only one auto statement in a runction and it must be the first

8-7

XENIX User's Guide

statement in the definition. These automatic variables are allocated space and
initialized to zero on entry to the function and thrown away on return. The
values or any variables with the same names outside the runction are not
disturbed. Functions can be called recursively and the automatic variables at
each call level are protected. The parameters named in a function definition are
treated in the same way as the automatic variables of that function, with the
single exception that they are given a value on entry to the function. An
example or a runction definition rollows:

define a(x,y){
auto I

1== x*y
return(z)

}

The value of this function, when called, will be the product or its two
arguments.

A runction is called by the appearance of its name, followed by a string or
arguments enclosed in parentheses and separated by commu. The result is
unpredictable ir the wrong number or arguments is used.

If the function" a" is defined as shown above, then the line

a(7,3.14)

would print the result:

21.98

Similarly, the line

x =- a(a(3,4),5)

would cause the value of"x" to become 60.

Functions can require no arguments, but still perform some useful operation or
return a usefui result. Such functions are defined and called using parentheses
with nothing between them. For example:

bO

calls the function named 6.

8.3.5 Using Subscripted Variables

A single lowercase letter variable name followed by an expression in brackets is
called a subscripted variable and indicates an array element. The variable
name is the name of the array and the expression in brackets is called the

8-8

BC: A Calculator

subscript. Only one-dimensional arrays are permitted in BC. The names of
arrays are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts
must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables can be freely used in expressions, in function calls and in
return statements.

An array name can be used as an arlUment to a function, as in:

f(a[J)

Array names can also be declared as automatic in a function definition with the
use of empty brackets:

define f(a())
auto a()

When an array name is so used, the entire contents of the array are copied for
the use of the function, then thrown away on exit from the function. Array
names that rerer to whole arrays cannot be used in any other context.

8.3.6 Using Control Statements: iI, while and lor

The if, while, and for statements are used to alter the flow within programs or
to cause iteration. The range of each of these statements is a following
statement or compound statement consisting of a collection of statements
enclosed in braces. They are written as rollows:

if(relation) "atemtftt
while (rtlation) ,tClttmtftt
lor (ezpre"ioftl; rtltJtioftj ezpre"iofttj,tatemeftt

if(relation) { ,tate me ftt. }
while (relation) { ,tafemeftt.}
lor (ezpru,ionlj rtiatioftj ezpre"iontj { "ate me nt' }

A relation in one or the control statements is an expression or the form

tzpre"ioftl rei-op ezpre"ioftf

where the two expressions are related by one of the six relational operators:

< > <= >= == !=

Note that a double equaJ sign (=-) stands for "equal to" and an exclamation­
equal sign (!=) stands tor "not equal to". The meaning or the remaining
relational operators is their normal arithmetic and logical meaning.

8-0

XENIX User's Guide

Beware ot usinS a sinsle equal sisn (-) instead ot the double equal sisn (--) in
a relational. Both ot these symbols are legal, so you will not get a diasnostic
message. However, the operation will not pertorm the intended comparison.

The if statement causes execution of its range if and only it the relation is true.
Then control passes to the next statement in the sequence.

The while statement causes repeated execution ot its range as long as the
relation is true. The relation is tested before each execution ot its range and it
the relation is false, control passes to the next statement beyond the range of
the while statement.

The for statement begins by executing ezpre"'oftl. Then the relation is tested
and, if true, the statements in the range of the for statement are executed.
Then ezpre"iofteis executed. The relation is tested, and so on. The typical use
of the for statement is tor a controlled iteration, as in the statement

for(i=l; i<-lO; i-i+l) i

which will print the intesers trom 1 to 10.

The followinS are some examples of the use of the control statements:

define t(nH

}

auto it x
x-I
for(i-I; i<-n; i-i+l) x-x*j
return(x)

The line

f(a)

prints "a" factorial if "a" is a positive integer.

The loUowing is the definition of a function that computes values of the
binomial coefficient ("m" and "n" are assumed to be positive integers):

8-10

define b(n,mH
auto x, j
x-I

}

for(j-I; j<-m; j-j+l) x==x*(n-j+l)/j
return(x)

BC: A Calculator

The rollowing runction computes values or the exponential function by
summing the appropriate series without relard to possible truncation errors:

scale - 20
define e(x}{

}

auto a, b, c, d, n
a-I
b-I
c - I
d-O
n-I
while(l-=-=I}{

}

a - a*x
b - ben
c - e + alb
n-n+l
if(c--d) return(c)
d-c

8-11

XENIX User's Guide·

8.3.7 Using Other Language Features

Some language reatures that every user should know about are listed below.

8-12

Normally, statements are typed one to a line. It is also permissible to
type several state men ts on a line ir they are separated by semicolons.

Ir an assignment statement is placed in parentheses, it then has a
value and can be used anywhere that an expression can. For example,
the line

(x-y+17)

not only makes the indicated assignment, but also prints the resultin,
value.

The rollowing is an example or a use of the value of an assignment
statement even when it is not placed in parentheses:

x - a(i-i+lJ

This causes a value to be assigned to "x" and also increments "i"
before it is used as a subscript.

The following constructions work in BC in exactly the same manner
as they do in the C language:

Construction Equivalent
x.....:y=z x .. (v==z\
x-+y x -x+y
x --y x - x-y
X"· Y x - x.v
x -/y x - x/y
x=%Y x-x%y
x _A y X _ XAy

x++ {x-x+U-l
x-- (x-x-I)+l
++x x - x+l
--x x -x-l

Even if you don't intend to use these constructions, if you type one
inadvertently, something legal but unexpected may happen. Be
aware that in some of these constructions spaces are significant.
There is a real difference between "x--y" and "x- -y". The first
replaces "x" by "x-y" and the second by "-y".

BC: A Calculator

The comment convention is identical to the C comment convention.
Comments begin with "I." and end with ".1".

There is a library of math functions that can be obtained by typing

be -I

when you invoke BC. This command loads the library functions sine,
eosine, arctangent, natural logarithm, exponential, and Bessel
functions or integer order. These are named "s", "e", "a", "1", "e",
and "j(n,x)", respectively. This library sets .eale to 20 by default.

Uyou type

be file •••

Be will read and execute the named file or files before accepting
commands rrom the keyboard. In this way, you can load your own
programs and function definitions.

8-13

XENIX User's Guide

8.4 Language Reference

This section is a comprehensive rererence to the BC language. It contains a
more concise description or the reaturesmentioned in earlier sections.

8.4.1 Tokens

Tokens are keywords, identifiers, constants, operators, and separators. Token
separators can be blanks, tabs or comments. Newline characters or semicolons
separate statements.

Comments

Identifiers

Keywords

Constants

Comments are introduced by the characters",." and are
terminated by".,".

There are three kinds or identifiers: ordinary identifiers,
array identifiers and runction identifiers. All three types
consist or single lowercase letters. Array identifiers are
rollowed by square brackets, enclosing an optional expression
describing a subscript. Arrays are singly dimensioned and
can contain up to 2048 elements. Indexing begins at 0 so an
array can be indexed rrom 0 to 2047. Subscripts are
truncated to integers. Function identifiers are rollowed by
parentheses, enclosing optional arguments. The three types
ot identifiers do not conflict; a program can have a variable
named "x", an array named "x", and a runction named "x",
all or which are separate and distinct.

The rollowing are reserved keywords:

ibase it
obase break
scale define
sqrt auto
length return
while quit
ror

Constants are arbitrarily long numbers with an optional
decimal point. The hexadecimal digits A·F are also
recognized as digi ts with decimal val ues 10-15, respectively.

8.4.2 Expressions

AI) expressions can be evaluated to a value. The value or an expression is always
printed unless the main operator is an assignment. The precedence or
expressions (i.e., the order in which they are evaluated) is asrollowa:

8-14

BC: A Calculator

Function calls

Unary operators

Multiplicative operators

Additive operators

Assignment operators

Relational operators

There are several types of expressions:

Named expressions
Named expressions are places where values are stored. Simply stated,
named expressions are legal on the lert side or an assignment. The value
of a named expression is the value stored in the place named.

i tie Ati fie ,.,
Simple identifiers are named expressions. They have an initial
value of zero.

erraN-Acme [ezpre"iOA]
Array elements are na.med expressions. They have an initial value
of zero.

,cme, i641e entl ob41e

Constants

The internal registers Ie me, i6ele, and obe.e are all named
expressions. Seme is the number of digits after the decimal point to
be retained in arithmetic operations and has an initial value of Jero.
164fe and ob41e are the input and output number radixes
respectively. Both ibele and ob41e have initial values of 10.

Constants are primitive expressions that evaluate to themselves.

Parenthetic Expressions
An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter normal operator precedence.

Fun ction Calls
Function calls are expressions that return values. They are discussed in
section 8.10.3.

8.4.3 Function Calls

A function call consists or a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. The

8-15

XENIX User's Guide

syntax is as follows:

/uA,tioA·A4me ((ezpru"'oA (, ezpru.ioA ...) J)

A whole array passed as an argument is specified by the array name followed by
empty square brackets. All function arguments are passed by value. As a
result., changes made to t.he formal parameters have no effect on the actual
arguments. If the function terminates by executing a return statement, the
value of the runction is the value or the expression in the parentheses of the
return statement, or 0 if no expression is provided or it there is no return
stat.ement. Three built-in functions are listed below:

sqrt (ezpr) The result is the square root of the expression and is
truncated in the least significant decimal place. The scale of
the result is the scale or the expression or the value of .c41e,
whichever is larger.

length(ezpr) The result is the total number or significant decimal digits in
the expression. The scale or the result is zero.

scale (ezp,.) The result is the scale of the expression. The seale of the
result is zero.

8.4.4 Unary Operators

The unary operators bind right to lert. .

-up,. The result is the negative ofthe expression.

++A4me4_ezpr The named expression is incremented by one. The result is
the value or the named expression after incrementing.

-A4me4_ezp,. The named expression is decremented by one. The result is
the value ofthe named expression after decrementing.

A4me4_ezpr++ The named expression is incremented by one. The result is
the value ofthe named expression before incrementing.

A4me4_tzp,,- The named expression is decremented by one. The result is
the value or the named expression before decrementing.

8.4.5 Multiplicative Operators

The multiplicative operators (*,/, and %) bind from lerttoright.

8-16

The result is the product or the two expressions. If "a" and
"b" are the scales or the two expressions, then the seale or the
result is:

ezpr/ezpr

expr%expr

ezprAezpr

BC: A Calculator

min (a+b, max (scale, ... b))

The result is the quotient of the two expressions. The scale of
the result is the value of .eale.

The modulo operator (%) produces the remainder or the
division of the two expressions. More precisely, &%6 is
a-_I b-6. The scale of the result is the sum of the scale of the
divisor and the value of .eale.

The exponentiation operator binds right to left. The result is
the first expression raised to the power of the second
expression. The second expression must be an integer. If "au
is the scale of the left expression and "b" is the absolute value
of the right expression, then the sc&le of the result is:

min (a-b, max (scale, a))

8 .•. 6 Additive Operators

The additive operators bind left to right.

ezpr+ezpr

ezpr-ezpr

The result is the sum of the two expressions. The scale of the
result is the maximum ofthe scales ofthe expressions.

The result is the difference of the two expressions. The scale
of the result is the maxim um of the seales of the expressions.

8 .•. 7 Assignment Operators

The assignment operators listed below assign values to the named expression
on the lert side.

ftcrne4_ezpr-=ezpr
This expression results in assigning the value of the expression on
the right to the named expression on the left .

• cme 4_e zpr-+ezpr
The result of this expression is equivalent to
.crne4_ezpr-ftcme4_ezpr+ezpr.

ftcme4_ezpr--ezpr
The result of this expression is equivalent to
ftcme 4_ez1'r=ftcrne4_ez1'r-ezpr.

ftcme 4_e z1'r=- -ezpr
The result of this expression is equivalent to

8-17

XENIX User's Guide

taame4_ezpr-/ezpr
The result of this expression is equivalent to
taame4_ezpr==taame4_ezp,/ ezp"

tlame4_ezpr-%ezp,
The result of this expression is equivalent to
fume4_ezpr-flame4_ezp,%ezp,.

ftame4_ezpr==A ezpr
The result of this expression is equivalent to
f&ame4_eZpr-flGme4_ezprA ezpr.

8.4.8 Relational Operators

Unlike all other operators, the relational operators are only valid as the object
of an if or while statement, or inside a for statement. These operators are
listed below:

ezpr< ezp,

ezpr>ezpr

ezpr< ==ezp'

ezp'> -ezp'

ezpr===ezpr

ezp,!==ezp,

8.4.0 Storage Classes

There are only two storage classes in BO: global and automatic (local). Only
identifiers that are to be local to a function need to be declared with the auto
command. The arguments to a function are local to the function. All other
identifiers are assumed to be gJobal and available to all functions.

All identifiers, global and local, have initial values orlero. Identifters declared
as au to are allocated on entry to the function and released on returning from
the function. They, therefore, do not retain values between function calls.
Note that auto arrays are specified by the array namer, followed by empty
square brackets.

Automatic variables in BO do not work the same way as in O. On entry to a
function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until return is made from the

8-18

BC: A Calculator

function, reference to these names refers only to the new values.

8.4.10 Statements

Statements must be separated by a semicolon or a newline. Except where
altered by control statements, execution is sequential. There are four types of
statements: expression statements, compound statements, quoted string
statements, and built-in statements. Each kind or statement is discussed
below:

Expression statements
When a statement is an expression, unless the main operator
is an assignment, the value or the expression is printed,
followed by a newline character.

Compound statements
Statements can be grouped together and used when one
statement is expected by surrounding them with curly braces
({and}).

Quoted string statements
For example

" ,tring'

prints the string inside the quotation marks.

Built-in sta.tements
Built-in statements include auto, break, define, tor, it,
quit, return, and while.

The syntax for each built-in statement is given below:

Auto statement

The auto statement causes the values or the identifiers to be
pushed down. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by rollowing
the array name by empty square brackets. The auto
statement must be the first statement in a runction definition.
Syntax of the auto statement is:

auto identifier I, identifier)

Break statement

The break statement causes termination of a tor or while
statement. Syntax for the break statement is:

8-19

XENIX User's Guide

8-20

6reak

Define statement

The define statement defines a function; parameters to the
function can be ordinary identifiers or array names. Array
names must be followed by empty square brackets. The
syntax of the define statement is:

Jeji.e (fp.r.mder /, p.r.mder ... JJ){ It.teme.t.}

For statement

The tor statement is the same as:

jirlt-ezpre"io.
while(rel.tio.) {

}

.tatemeat
'.It-ezpre ,Ii o.

All three expressions must be present. Syntax of the for
statement is:

lor (ezpru.ioaj rel.tiDa,'ezpre"ioa) .tateme.t

If statement .

The statement is executed if the relation is true. The syntax
is as follows: .

if (rei.tio.) ,t.teme.t

Quit statement

The quit statement stops execution of a BC program and
returns control to XENlX when it is first encountered.
Because it is not treated as an executable statement, it cannot
be used in a function definition or in an it, tor, or while
statement. Note that entering a CNTRL-D at the keyboard is
the same as typing" quit". The syntax ot the quit statement
is as follows:

quit

Return statement

The return statement terminates a function, pops its auto
variables off the stack, and specifies the result or the function.
The result of the function is the result or the expression in

BC: A Calculator

parentheses. The first form is equivalent to "return(O)". The
syntax of the return statement is as follows:

rdur.(ezprJ

While statement

The statement is executed while the relation is true. The test
occurs before each execution of the statement. The syntax of
the while statement is as follows:

tDAile (rel4tionJ .t4teme.t

8-21

Chapter 9
Building a Uucp System

9.1 Introduction 1

9.2 Uucp -SystemtoSystemFlleCopy 1
9.2.1 Copying Flles to a Local Destination 3
9.2.2 ReceivingFllesfromOtherSystems 3
9.2.3 SendingFllestoRemoteSystems 3
9.2.4 Copying Flles Between Systems 4

9.3 Uux-SystemToSystemExecution 4

9.4 Uucico-Copyln,CopyOut 5
9.4.1 Scanning For Work 6
9.4.2 CallingaRemoteSystem 6
9.4.3 Selecting Line Protocol 7
9.4.4 Processing Work 7
9.4.5 TerminatingacOnvenation 8

9.5 Uuxqt- UucpCommandExecution 8

9.6 Uulog- UucpLoglnquiry 9

9.7 Uuclean-UucpSpoolDirectoryCleanup 9

9.8 Securny 9

9.9 JnstallingaUucpSystem 10
9.9.1 Modifying the letclsystemidFlle 10
9.9.2 CreatingtheRequiredFlles 11

9.10 MaintainingtheSystem 13
9.10.1 SEQF - sequencechcckfile 14
9.10.2 TM. -temporarydatafiles 14
9.10.3 LOG -logentryfiles 14
9.10.4 STST - system status files 15
9.10.5 LCK -lockfiles 15

- i -

9.10.6 Creating Shell Files IS
9.10.7 Defining Login Entties 16
9.10.8 SeUingF.t1eModes 16

BuDding a Uucp System

9.1 Introduction

The uucp system is a series of programs design~.d to permit communicatio!1 between
XENlX systems using dial-up communication Jines. Uucp provides file transfer and
reDlOle command execution through. batch-type operation. Files are Cfuled in a
spool direcloly for processing by the uucpdaemons. TheR are three types offile.used
fortheexc:cutionof wort:

Data files

wOJtfiles

Contain data fortransfertorcmote systems

Comaindirectionafcrfiletranlfcnbclweensyllcnu

Exea1tion files CoJUin direaionJ for XENIX command exccutiona which
involve the l'elilOUl'Ccsof ODC cr more systems.

The uucp system consists of four primary and two accondary prognau. The pimary
programs are:

uucp

uux

waco

uuxqt

This program creates work and gatbcndata files in the spooldirect(X)' for
the transmission of files.

This program creates worttiJes,exccute files and galhendala filesforthe
relDOl.C C1CCUtiODOfXENlX COIDIIW1dJ.

ThiSprograDlexecu1estbe WOJt fileafordata transmission.

This program executes the execution fiJe. for XEN1X c<DJDaDd
execution.

The secondary programs are:

uulog This program updates the log file with new entries and I'q)OIts on the
Itatu.ofuucprequClts.

uuclean This program removes old files from the spool directory .

This chapter describes the operation of each program, the installation of the system,
the security aspects of the system, the files n:quircd for execution, and the
administration of the system.

Fer hardwirt'd communications between XENlX systems, use the Micnet network
described in the XENIX OpeTat;onsGuitk.

9.2 Uucp - System to System Yale Copy

The UUl"p program is the user's primary interface with the system. The UllCp pogram
was designed to look like the cpcommand. Thesymaxis

uucp r option 1 ... source ... ustination

where source and destination may contain the prefix system-nome! which indicates
the system on which the file or filesreside orwbere they wiD be copied. .

9-)

XF.NlX User's Guide

lbcoptions intcl'pl'etedby uucpare:

-d Make diredories whenocccssary forcopyin&thc file.

-c Don't copy sw.rce filestothe spool ctirec:toIy, but use the apcdfiedsoun:e
whenthe actual transfutakeaplace.

-tJell~' Put kne,inas the padc in the name of the v.ut file. (lbiscu be used 10
cban&e the order of wort for aputicularlDKbiDc.)

-m SendmaiJ ODccmpldioDofthe VtUt.

1befoUowinaopioDSlRusedprimarilyfordcbIlWIW=

-r QucuethejobbutdoDd aartlllldcoJllOlnlD.

-lilir V aedircctcJrydir fWtbe ipOOIdircctcJry.

- UIIIII VIC,..",. uthclevelofdebugjDaoutput.

The destination may be a dircctcJry DIIDC. in which ase the file name is takal from the
last part of the source', name. The source oame may cOllain lpCCiallheD c:Iwadcn
IUCh as .. ?~ ••• If alOUlCe arpmenlhu a .ryst",,-... 1 pdbfar aJCIIMU syllaD.
the file name expansion wiD be dooc OD thercmoce system.

1bec:omlDln4

uucp *.c UlB!/ua'Jdan

wiD set up the transfer of aU filel whose DIIQCI cud willi .ctothehurldimctirec:ulry 011
the IISg mac:hioe.

The ICUI'CC m:IIordestination DaIIlelmay alsoc:cmaiDa 1IU,pidlx. Tbis translata
to the login directoy on the specified S)'1leID. fOl' names wilh partial pathDIIDCS, the
curreDl ctirec:toIy iI prcpeDIcd 10 the tile DUIIC. File IIIIDCI wida u •• r an: DOl
pamiUed.

TheC'QDman4

uucP UlB! daDI*.h daD
wiD set up the transfer of filea wboae DIIDCI end wiIh .11 in daD',1ogia dircctcJry on
systemllSgtodantslocailogindim:toly .

For each IIClUICC file. the program wiD check the source and destination fileDIIDC' aad
the sylllC:m-panofeac:h to classify the work iDIoooeoffive typea:

I. Copy aourcetodeltinatiODonloc1l system.

2. Receive files from other ayltc:mJ.

3. Scud fi)estoal'ClDClC systcmJ.

4. Scud fiJe.fromraDOlesystemstoanolherl'ClDClC system.

S. Receive file. from remote syltalU when the source CODIaiDs special shd1
charactenumeDliODCdabow.

9-2

BuDding n lJuqt System

Afterlhe work has been set up inth: spool directory. the "'lLo;COprogram is startcdlOtry
to contact the othermachine to execute the work (unlesst.be -roption was specified).

9.1.1 CoPY .. Fles to. Local DestiDatioa

Acp command is used to cIotype I wom. The -d aod the - Dl options ale notbooored
inthiscuc.

9.1.2 ReceMac Fles from Otber Systems

fa type 2 wort. a one line wm file is created for each tile requested and put in the
spool dirc:dory with the foUowiqfieldl, eac:b separated by a bIaDt.

rll R

r21 Tbe fuD patbnameoftbe source m a uscrJpatbmme. The lI.serpan
will be expaDdedon the mnote I)'stem.

r31 ThefuDpathnameofthedestinationfile.1ftbe aserDOtabonisused.il·
will be jmmrAiately expanded tobetbe Ioginctirmcry f«theulC:l".

/41 Theusa" JIoain DIJDC.

Is1 A u_ •• followed by an option list. (Only the -. and -d os-ionJ will
appear intbillist.)

9.2.3 SeacUug FDes to Remote Systems

fmtype 3 w<rk. a work file is aeated f<reacb dsou.rce file and the source file is copied
into a data file in the spool directory. (A -c option OIl the UIlCp program will pre~nt
the data file from being made. In this case, the file will be ttansmitted from the
indicated SOUICe.) The fielcbof each entry are civenbelow.

rl1 S

f 21 The fuU pathnameofthe source file.

r31 The fullpathnameofthedestinationor usa-/filename.

f41 Tbeuser' s login name.

fs1 A u-"foUowedbyanoptionlist.

[61 Thenameofthedatafileintbespooldircctory.

r 71 The file mode bits of the source file iDoctalprintformat (e.g. 06(6).

9-3

Xt.NlX Users Guide

9.2.4 CopyiDg Faa Betweea Systems

fCC' 1Y}:ie 4 and 5 wort. "ut'p generates a ""t"P command line a'" sends it to the remote
machinc;lhercmotew.cicoexeaatcslhccommandlinc.

9.3 Un - System To System Executioa

The IUU ccmmand is used to set up lhc e.xccution ofaXENIX ccmmand when: the
execution machine andICI' 80IDe of the files are remote. The SYDIU of the uux
commandil

uux r - 1 r optioll 1 ... cOtnl1Ulllll-string

where command-string il made up of one CI' IIlOI'e argumcJts. AD special sheD
charactcn such as "<>1-" must be qu«ed either by quoting the CDlire command
suing or quoting the character ala separate argtDDent. Wilhin the command string. the
command and file names may contain a system - name! prefix. All arguments which
do DOl contain a "!" will DOt be Rated allilel. (lbey wiD not be copied to the
execution machine.) The - option is used to indicate that the standard input for the
given command should be inherited &om the staDIard inputofthewacomma The
options, essentially fordebug&ing. a:

-r DoDOutaRlUlCicoCl'lULtqtaftcrqucuingthejob

- XIIIIm V se""", uthe level of debuggiDgoutput.

The command

pr abc
will set up the output of"prabc" as standard iDput lOan commandtobeexccuted on
systeIDwg.

Uwe geuerate. an execute fiJc which CODIaiDS the names of the files requiRd fCl'
execution (including standald input), the User'l login name, the destination of the
stamanJ output, and the command to be executcd. This file is either put in the spool
directory for local executioa or ICDl to the rancte system using a generated ICDd
command (type 3 above).

For ~ired files which are DOt on the execution machine. IUIX wiD gencrale receive
command files (type 2 above). These c:ommand-Iiles will be put on the excaltion
machine and eJleCUted by the IIlIdcoprogram. ('Ibis will work only if the local system
has permission to put files in the remoce spool directory as cODllOUed by the remote
USERFILE.)

The execute file will be processed by lhc "1Wl'progralD on theexe«."Uuonmachine. It is
made up of several lines, each of which contains an identification character and one CI'

more argumenls. The order of tile lines in the file is DOt releVanl and some of the liDes
maynotbepreseDl. EachliDeisdcscribedbelow.

UserLJae

U IIUT ~SletII

where theuu,and systetll are thercquestcrt.Josinnameaud system.

9-4

BuDdblg a Vucp S)'s~m

Required File Uae

F fil~nD/1Ie real-name

where the filename is the generated name of a 61e for the execute machine aId reaJ­
NII'M is the la~ pan of the actual tile name (collains no path information) Zero or
more: of these liIxs may be preSC:nl in the e xecute 61e. The IUUqI program will check for
the existence of allrc:quired 61es befort the command is executed.

StaadarcllDput LiDe

J fiUnome

The standard input is either specified by a "<" in the command-suing or inherited
from the standard input of the uux ccmmand if the - option is used. If a staDdard input
ismtspecified,/del'lmJJisused.

StaDdardOutpJtUae

o filename system-name

The ~andard output is specified by a .. > .. within the command-string. If a standard
output ii not specified. ldev/tadl is used. (Noce that the usc: of "»" is DOl
implememed.)

Commaacl LiDe

C ComrtlQnd r argumenls 1 ...
The argumellls are those specified in the command string. The atandard input and
standard output will not appear on this line. AD required files wiD be moved to the
execution direCltY)' (a subdirectory ofthc spool directory) and the XENIX command is
executed using the Shell specified in the uucp. h header 61e. In addition. a shell PATH
statement is prepended tothc command Iinc as specified in the IllUqtprogram.

Afterexe:cution. the: standard output iscopicd or set upto be ICDltothepropel'p1ace.

9.4 Uudco - Copy In, Copy Out

The uuc;coprogram will perform the following major functions:

Scanthe spool directory for wort.

Place aeaD to a rcmote system.

Negotiate a line protocOl to be used.

ExccuteaD rc:que~s from both systems.

Log work requests and WCI't completions.

Uuc;co may be started by a system daemon. by one of the uucp, uux ,uuxqt , OIl UUC;CO

programs, by the user (this is usually for testing), or by a remote system. (The uucico
program should be specified as the sheD field in the letclpasswd file fa the uucp
Iogins.)

When started by method a daemon, a program. OIl the user, the program is considered
to be in MASTER mode. In this mode. a connection will be made to a remote system. If

9-5

XENlX User's Guide

started by a remote system. the program is consic:kredtobe inStA VEmodc.

The MASTER mode will operate in one of two ways. If no system name is specified (the
-5 oplion not specified)tbe program will scanthc spool directory forsystcms tocaU. If
a system name is specified, lhal sySlem will be called. aud wort wiD only be done for
that system.

The WU";co program is generally SWtcdby aDOlhCl" program. There arc scvcraloptions
used for execution:

-rl Swt the program in MASTER mode. 1biJ is used when IlllCico is Slar1cd
bya program orcronsbeD.

-s.sys Do wort only for system sys. If -I is specified. a caU to the specified
system wiU be made even if there is DO woik for system sys in the spool
directory. This is useful for POllin& systems which do DOt have the
hardWlRtoinitiate ac:onDCC:tioa.

The foUowing opcrionsare used primarily fordebugging:

-ddir

-xnum

Uscdirectcry dirforthe spool directcry.

Usc num as the Icvelof debup&output.

The next pan of this secUoa wiD describe the ~steps within the IIUC;COprogram.

9.4.1 Scaunla& F. Work

The names of the wortrelatcd files in the spoOl diredcry have formal

type • system-name grade 1rI4mbe,

where type may be "C" fOl'copyc:OIlIID.IDI file, "D" fordara file, "X" forexec:ute
file, syslem-1IDme is the remote system. g1Cllle iI a characta'. and nu:nbe, iI a four
digit. padded sequence number.

The file

C.res4SnOO3J

is a work file for a filetransferbctweenthe Ioc:almachine and tberes4S machine.

The scan for woat is done by looting through the spool directory for wert files (files
with prefix C.). A list is made of aU systems to be called. Uucico wiD then c:alI each
system and proc:essaU WOItfiJeI.

9.4.1 CaDiDa • Remote System

The caU is made using information from sevenl files which reside in the uucpprogram
directory. At the start of the call process. a lock is set to forbid multiple con\'Crsations
bctweenthe samctwosystema.

The system name is fOUDd in the L.sys tile. The informationoomained for each system
is;

9-6

Building a Uucp System

ill System name

121 Timestocalilhe system (days-of -wectand timcs-of-day)

[31 DcviceordevicctypetobeuscdforcaD

r41 line speed

r 5 1 phone number if field r 31 is •• ACU ,. or the device name (same as fieW r 31>
ifnot

r61 Login information (multiple fields)

Thetime6cldischeckedagainstthepreSCDltimetosceiflhecallsbouldbcmadc.

The phoM number may coraain abbreviations (e.g. mho py. boston) which get
translated intodiaJ scqucnccsusingtbeL-dialcodesfile.

The L -de ,ice s file is scanned using dcvicetype and line speed fields from the L . .sys file
to fim an available device for the call. The program wiD try aU devices whicb satisfy
these fields until the caD is made, or no more devices can be tried. If a device is
successfully opened, a lock file is created so that another copy of uuc;co will n<t try to
use it. If the caD is complete, the login informatioo n the last field of L.sys is used to
login.

The conversation between the two uucico programs begins with a handshake started
by the SLAVE system. The SLAVE sends a message to let the MASTERkDow it isrcady
to receive lhe system idellification and con\'Cl'Salion sequence mmber. The response
from the MASTER is verified by the SLAVE and if acceptable. protocol selection
begins. The SLAVE can also reply with i caU-back required message in which case.
the CUITent convcnationislmDinaled.

9.4.3 ScJectiDa LiDe Protocol

The rcmOle system sends a message

Pproto-list

where proto-listisa suing of characters. each representing a line protocol.

The calling p:-ogram checks the protocol list for a letter corresponding to an available
line protocol and rewms a use protocol message . The message has lhe form

Ucock

where cock is either a one character prttocolletter or "N" which means there is no
COIDmOnprotocoi.

9.4.4 ProcessiDg Work

The initial role of MASTER orSLA VE forthe work processing i~ lhe mode in which each
program starts. (The MASTER bas been specified by the - rl cption.) The MASTER
program does a work search similar to the one used in the section "Scanning For
Work"abovc.

9-7

XENLX User's Guide

There are five messages used during the work processing, each specified by the first
characlerofthemessage. They are;

S Send a file

R Receive a file

C Copy complete

X Execute armcpcommand

H Hangup

The MASTER wiD send R, S. or X messages until aD wort frma the spool directory is
complete. at which point an II messaae is scrl. The Sl.A VE will reply with the first
leuerofthe requesuDd either the Ietter"Y" or"N" for yes or no. f«example.lhe
message' 'SY" indicates that it isobytoseuda file.

The send and receiw replies are based on permission to access the requested
filddirectory usins the USERFIlE. and read/write permissioDl of the fileldirectwy.
After each file is copied into the spool directory of the receiving ~stem. a copy­
complete message is sent by the receiVCl' of the file. The message "CY" wiD be scn& if
the file bas successfuDy been moved from the temporary spool file to the actual
destination. Otherwise. a "CN" message is scltt. (In the case of "CN", the
transfmed file will be in the spool directory with a name beginning willa ·'TM' .) The
re~eSlsandresuhsareloggcdonbodlsystcms.

The hangup response is determined by the Sl.A VE program by a wort scan of the spool
directory. If wort for the remote system exists in the Sl.A VEt s spool directOl)'. an
"HN" message is scltt and the programs switch roiCl. If no wort exists. an ··H y.,
response is seltt.

9.4.5 TermlDatiDa. CoaversatfoD

When a "HY" messaae is received by the MASTER it is echoed back to the SL.A VE and
the protocols are turned off. Each program sends a final "00" message to the <mer.
The original SLAVE propam will clean up and terminate. The MASTER wiD aroceed
to call other systems and process wort as long as possible or terminate if a -I option
was specified.

9.S Uuxqt - Uucp Commagd Execution

The ruuqt program is used to process execute files generated by IUIX. The uu.xqt
program may be started by either the IU4C;CO or "'" programl. The program scans the
spool directory f« execute 6les (prefix X.). Each one is checked to see if aU the
required files are available and if so. the command line or send line isexecutcd.

The execute file is described in tbe section"Uux- SystemtoSystemCopy" above.

The execution is accomplished by cxccutins tbe ahellcommand

Ih-c

wilb the c<llUllaDd line after appropriate standard input and standard output have been

9-8

8uildUlg a Uucp System

~ned. If a standard output ts specified, the program will create a send command or
copy the wtput tile as appropriate.

9.6 Uulog - Uucp Log Inquiry

The UUC'p programs create individual log files for each program invocation.
Periodically, uulog may be executed to append these files to the system Iogtilc. This
method of logging was chosen to minimize file locking of the Iogfile during program
execution.

The wloC program merges the indivicllallog files and wtputs specified log entries.
The output request is specified by the use of the following options:

-uys Print entries where sys is the J'CIDOIle system name

-uuser Prirttentriesforuseru.ser.

The intersection of lines satisfying the two optioas is output. A nuD sys or IIsermeans
all system names or uscrs respectively .

9.7 Uuc:lean - Uuc:p Spool Directory Cleanup

This program is typically started by t.~e daemon, once a day. Its function is to remove
files from the spool direct~ which are more than three days old. These an' usuaDy
files f(I wmk which can not be completed.

The options available are:

-ddir Thedirectcxytobescannedisdir.

-m Send mail 10 the owner of each file being remo~d. (Note that most files
put into the spool directory wiD be owned by the owner of the uucp
programs since the sewid bit will be set on these programs. Themail will
thereforemostoftengototheowneroftheuucpprograms.)

-nhours Olangctheagingtime from 72 hours to hourshoun.

-ppn Examine files with prefix pre for deletion. (Up to 10 file ~efixes may be
specified.)

-xnum Usenum as the levelofdebuggingoutputdesircd.

9.8 Security

The uucp systClO, left unrestricted, wiD let any outside user execute any commands
and copy in/out any file which is readable/writable by the uucp login user. It is up to the
individual sites to be aware of this and apply the protections that they feel are
necessary.

There are several security features available aside from the normal file nwde
protections. These must be set up by the instaDCI'ofthe UU4psystem.

9-9

XENlX Use"', Guide

The login for wcpdoes nOl get a SlaIkbrd sheD. Instead, the uucico program is staned.
Therefore. the only wort thal can be done is throughuucico.

A path cbeck is done on fiJe names that are to be sent or receiVed. The USERFILE
suppliestheinformalionforthesecbecb. TbeUSERFlLEcanalsobesetuptorequiJ'e
caD-bact for certain login-ids. See the section "Required Files" below in this
chaptcl".

A conversation sequence cOW1l can be set up 10 that the called system can be IIlOI'e

confident thalthe caller iswbobe saysbe is.

The lIUXql program canes with a list of commands that it will execute. A PATH sheD
statement is prepended to the command line as specified in the uuql pogram. The
instaUer may modify the list orrcmovetherestrictionsasdesin:d.

The L.,sys fiJe should be owned by uucp and have mode 0400 to protect the phone
numbers and login information for remote sites. (The uucp. uuc;co. lULl. and uuxqt
should be alsoowncd by uucpaDd have the scwidbit set.)

9.9 IDstalling a Uucp System

The uucp system provided with the XENIX Software Development System is already
configured for cperation on yourcomputa'. ToinstaU the system. you must edit a few
files to provide information about your local site. The following sections provide an
overview of the files 10 beeditedaodthe information required.

During execution of the uucp programs. the uucp system uses files from the following
three directories:

spool

(/wrllibluucp) This is the dRctory used for the executabJe system
programs and the systemfiJc ..

(/wrlspoollUIICp) 1bia it the spool directory used during UllCp
execution.

(/usr/ spoolhalcpl.XQTDIR)1bisdin:ctory is used duringexccutionof
execute file ..

The names given in parenJheses above are the default values for the directories. The
names lib. program. xqtdir. and spool wiU be used in the following text to represent
the appropriate directory names.

9.9.1 Modl'yi .. abe leldSYSlemid File

You must choose a unique site name for each computer to be directly connected 10 a
uucp line and add the site name tothelelclsysrmrid file oflhecorrespondingcomputer
by using aXENlX text editor. Theletcl SYSlemidfilc canadually cOlllaintwo names: the
uucp site name. which must appear on the first line of the file. and a Micnet machine
name. which must appear 00 the DeXlIine. However. you may decide tobave both the
uucp site name andMicnet machine name 10 be the same. in wbichcase. only one name
is required. For a dcacripdon of the iJe.1Ce systemid(M) in the XEN1X Reference
MaIfIlQJ.

9-10

Building a Uucp System

9.9.2 Creating the Requln:cl Fila

There are four files which are required for execution, aU of which ~hruld reside in the
program directory. To prepare tbeuucp system for eXeaJtion, you must add your own
site specific information to these files by editing the files with a XENIX text editor. The
field separator for all filesisa space unlessothcrwise specified.

L-devka

This file contains entries for the call-unit devices and hardwired connections which
are to be used by uucp. The spc:ciaJdevice files are assumed to be in the ldev directoIy .
The format forcach entry is

line caJI-1UIiI speed

where line is the device for the line (e.g. culO). call-unit is the automatic c:aJ1 unit
associated with Ii tie (e.g. cuaO). Hardwired lincsha YC a number' '0" in this field, and
&peed is the line speed.

The line

a1l0 cuaO 300

defines a system which has device '"cuIO" wired to a caD -unit "cuaO" for use at 300
baud.

L-cIlakodes

This file contains entries with 1ocationabbrcviations used in the L . .sy.s fiJc (e.g. PY. mho
boston). The entry fmnal is

abb dial-seq

where abb is the abbreviation. and dUJI-uq is the dial sequeoce to caU that location.
The line

py J6S-

causestheerlrypy7777tobeexpandedtoJ6S-7777.

USERFILE

This file contains useraccessibil~y informatim. It specifies

The files that can be accessed by a oormal user of the local machine

The files that can be accessed from a remote computer

The login name used by a particular remote computer

Whether a remote computer should be caUed back in ordel" to confirm its
identity

Each line inthe file has the foUowing format

Iogin.sys r c 1 pathname r palluwne 1 ...
where login is the login name for a user or the remote computer. sys is the system name
for a remote computer. c is the optional calJ-back required flag. and palhnome is a
pathname prefix that is acceptable for use, .

9-11

XI!.NL~ User's Guide

It is assumed that the login name used by a remote computer 10 call Into a local
computer IS not the same: as the login name of a normal user of that local machine.
Howe ver. several remote computers may employ the same login name.

Each computer is given a unique system name which is transmitted at the SlaJ'l of each
call. This name identifies the calling machine to tbe called machine.

When the program is obeying a ccmmand stcn:d on the local machine. MASTER
mode. the pathnames allowed are those given f~the first line inthe USERFILE that has
a login name that matches the login name of the user whoeDlered the command. If DO
such line is found. the first line wilh a nuliloginname is used.

When the program is responding to a command from arem~emachine, SLA VEmode.
the pathnames allowed are those given for the first line in the file that has the system
name that matches the system name of the I'CIIlOU machmc. lfnosuch line is found. the
first one with a null system name is used.

When a mncte ccmputc:r logs in. the login name that it uses must appear in the
USERFILE. There may be several lines with the same login name but one of them
must either have the name of the remotesystemormustcontaina null system name.

If a line is found that bat the appropriale login and mnOle system naJDea and also
contains a "c", the remote machine iscaUed back before any transactions take place.

The line

u.m lug/xyz

allows machine "m" to login with name "u" and request the transfer offiJcs whose
names start with "'/Ug/xyz" .••

Theline

dan, lug/dan

allows the ordinary user "'dan" to issue coounands for files whose name starts wi1b
"'usr/dan".

The lines

u,m lug/xyz lug/spool
u, lug/spool

allow any mnote machine to login with name "u", but ifils system name boot "m".
it can only ask totransfer files whose names start wilh "/usr/spooI··.

The lines

root, I
• lug

allow any user to transfer files beginning with ulu." but the UICI' with login "root"
can transfer any file.

Lays

Each entry in this file represents one system which can be called by the local uucp
program •. The fields are described below.

system namcTbe nameofthereDlOtC syataa.

9-12

device

speed

phone

login

Building a Uucp SystelD

This is a string which indicates the days-of-week and times-of-day
when the system should be called (e.g. MoTuThOSOO-1730). The day
portionmay be a list containing some of

Su Mo Tu We Th Fr Sa

01" it may be "Wk." for any week-day or· 'Any" for any day. The time
should bt' a range of times (e.g. 0800- J230). If no time portion is
specified. any time of day is assumed to be ok for the call.

This is either" ACU" or the hardwired device to be used for the call. For
the hardwired case. the last part of the special file name is used (c. g. ttyO).

This isthe line spcedforthe caD (e.g. 3(0).

The phone number is made up of anQltional alphabetic abbreviation and
a numeric part. The abbreviation is one which appears in the L­
dWcodes file (e.g. mhS900. boston99S-9980). For the hardwired
devices. this fieldcODlains the same string as used ford1edevice field.

The login information is given as a series of field. and subfields in the
format

expect send r expect send 1 ...
where expect is the string expcct.ed to be read and send is the string to ~
ICD1 when the expected string is received. The expect field may be made
up of sub fields of the form

expecd -send-expect] 1 ...
where send is sent if the prior expect is DOl successfuUy read and expect]
is the next expected string.

There are two special names available to be sera during the login
sequence. The string "EaT" sends an Ear character and the string
.. BREAK" tries to send a BREAK character. (The BREAK character is
simulated using line speed changes and mall c:haraClen and may not wort
on aD devices andlor systc:ms.)

A typical erary inthe L. sysfiie is

.ya Any ACU 300 mh76S4login uucp ssword: word

The expect algorithm looks at lhe last pan of lhe string as illuSlraled in the password
field.

9.10 Maintaining the System

This section indicates some events and files which must be maintained for the uucp
system. Y w may do some maintenance with sheD command files, initiating the files
with C'ronJ4b entries. Others wiD require manual modification. Some sample sheD
files are given toward the end of this sectioo.

9-13

XENIA User's Guide

9.10.1 SEQF - sequence check &Ie

This file is sel up intheprog,am directory and COnlams an entry for each remote system
with which you agree to perform conversation sequence checks. The initial enny is
just the system name of the remote system. The first conversation will add two items to
the line, the conversation count, and the dateltimc of the most reSCDl conversatioo.
These items wiU be updated with each conversation. If a &eqUCDCe cbect fails, the
entry will have tobe adjusted.

U seofthis featurcis DDtrc:commend.

9.10.1 TM - tcmporU'J clata 6Ics

These files areaeated inthe spool directOl)' while files are being copied from a remote
machine. Theiroameshavethc form

TM.pid.ddJ

where pidisa process-id andddd is a sequential three digit num~ starting at zero for
each invocationof "",,;coaad inaemc .. ed fcreach &Ie received.

After the entire remCltC file is received. the Tlrl file is moved/copied to the requested
destination. lfprocessing ilabmrmallytaminaled arthemovelcopy fails, the file will
mnainin the spooIdiredOI)'.

The leftover files should beperiodicaDy removed; the l4IId«Jnprogram is useful in this
regard. Thecommand

uuclean -pTM

removes aU 1M files older than three days.

9.10.3 LOG - loa airy fila

I>\D'ing execution of programs, individual LOG files IR created in the spool directory
with information about queued requests, caUs to remote systems, execution of IUU

commands and file copy resuhs. These files should beCmlbined into the LOGFlLEby
using the rudog program. This program will put the new LOG files at the beginning of
theexistingLOGFlLE. Thecommml

uuJos

performs the merge. Options are available to prim some or aU the log entries after the
files are merged. The UXiFILE should be removed periodically since it iscopicd each
time new LOG entries are put imothc file.

The LOG files are created initially with mode 0222. Ifthc program which creates the
fileterminatesnormaDy,ilcbangesthemodelo0666. Abortedrunsmayleavethefiles
with mode 0222 and the wJog program will not read or remove them. To remove
them. either use "" , uuckan, or change the mode lO(XJ66 and let Uldog merge them
with theWGFlLE.

9-14

BuiJdiDg a Vuep System

9.10.4 STST - system status files

These Wes are create~ in the spool direClocy by the uuc;co program. They contain
information of failures such as login. dialup or sequence check and wiD contain a
talking status when to machines are conversing. The form of the file name is

STST.sys

where sys isthe rem<xe system name.

Fm- ordinary failures (dialup. login). the file will prevent repeated tries for about one
hour. For sequence check failures. the We must bercmo'Yed befcweany future attempts
to converse with that rcmOCC system.

If the file is left d-Je toanaboned run. it may contain a talking status. lnthiscase, the file
must be removed before a conversalionis ananptcd.

'.10.5 LCK - led files

Lock files are created for each device in use (e.g. automatic calling unit) and each
system conversing. This prevents duplicate conversations and multiple attempts to
use the same devices. The form of the lock We name is

LCK .. str

where str is either a device or SYSlem name. The 6lesmay be left in the spool directory
if runs abort. They will be ignored (reused) after a time of aboot 24 hours. When runs
abort and calls are desired before the time limit. the tock files sbouldbe ImlOvecl.

'.10.6 CratiDg SheD Files

The uucp program will spool wort and attempt to start the uuc;co program. but the
starting of uuc;co will sometimes fail. (No devices availabJe. login failures etc.).
Therefore. the uuc;co program should be periodically started. The command to start
uuc;co can be put in a sheD file with a command to merge WG files and started by a
crontabentry on an hourly basis. The file could contain the commands

program luulog
program luuclco -rJ

N<xethatthe-rloptionisrequiredtostantheuuc;coprograminMASTERmode.

Another shell fiJe may be set up on a daily basis to remove TM. ST. and LCK files and
C. m- D. files fm- wort which can not be accomplished for reasons like bad phone
number.loginchangesetc. AsbeUfilecontainingcommandslike

program luuclean -pTM -pC. -pD.
program luuclean -pST -pLCK -n12

can be used. Note the -nIl option causes the.rr and LCK files oldcrthan 12hours to
bedeleted. Theabsenceofthe-noptionwiDuseathreedaytimelimit.

C)-IS

XENlX User's Guide

9.10.7 Defining LogiD Entries

One or more logins should be set up for UlK'p. Each of the JetcJ passwd entries should
have programJuuc;co as the sheD to be executed (where program is the directory
containing uwic"o). The login directory is not used, but if the system bas a special
directory for use by the users for sending or receiving file. it should as the login entry.
The various logins are used in coqjuDction with the USERFILE to restrict file access.
Specifying the shell argumerllimits the login to the use of uucicoonly.

9.10.8 SettiDa File Modes

It is suggested thal the OW'I'IQ and file modes of various program. aDd files be set as
foDows.

The programs uucp, UIU • uucico, and UlUqt should be owned by the lIIICp login with
the setuid bit set and only execute permissions (e.g. mode (4111). This wiD prevent
outsiders from modifying the pogramsto get al a standard shell for the IUlt'p logins.

The L.sys. SQFfLE. and USERFILE files which arc put in the program direcIory
should be owned by lbeuucp loainaDd set with mode 0400.

9-16

Chapter 10
The C-SheU

10.1 Inttoduction

10.2 InvoLingtheC-shell 1

10.3 Using Shell Variables 2

10.4 UsingtbeC-ShellHistoryUst 3

10.5 Using Aliases 5

10.6 Redirecting Input and Output 6

10.7 Creating Back.ground and ForegroundJobs 7

10.8 Using Built-In Commands 8

10.9 CreatingCommandScripts 9

10.10 UsingtbeargvVariable 9

10.11 Substituting Shell Variables 10

10.12 UsingExpressions 11

10.13 UsingtbeC-Shell:ASampleScript 12

10.14 Using Other Control Structures IS

10.15 Supplying Inputto Conunands 15

10.16 Catchinglnterrupts 16

10.17 U sing Other Features 16

10.18 Starting a Loop at a Tenninal 17

- i -

10.19 Using8raceswithArgumems 17

10.20 Substituting Commands 18

10.21 SpccialCbaracters 18

TIw C-SheD

10.1 Introduction

The C-shell program, csh. is a command language interpreter fm XENIX i)'stc:m
users. The C - shell. lite the standard XENIX shell sh. is an interface between you and
the XENIX commands and programs. It uansla1eS ccmmand lines typed at a terminal
intocmresponding system actions. gives you acceasto informal ion. such as yoor login
name. home directory. and mailbox. and lets you coDSUUCl of mell procedures fm
automaling system tasks.

This chapter explains how to use the C-ahell. It also explains the symax and fuD:tion
ofC-shell commands and features. and shows how 10usetl4t:Se feanues to create sheD
procedures. The C- sheD is ruDy described in csh(CP) in the XENIX Reference
ManutJI.

10.2 Invoking the C-sheU

You can indethe C-shellfr<m another shell by usingtheesla command. Toinvoke
theC-sheD.type:

cab

at the standard sheD's command line. You can also direct the system to invoke the
C-sheD for you when you log in.1fyou have giventheC-sheU as your loginsbeU in
your 1~ICIpa.sswd fiJeentry. the SYSIeIDaUlOmatically Slarlsthe sheD wbenyou loa in.

After the system starts the C-sheU. the Ihell searches your home directory for- the
command files .cwe and . login . If the shell finds the fiJcs. it executes the commands
contained in them. then displays the C-abeD prompt.

The .cWe- file typically comains the commands you wish to execute each time you
start a C-sheD. and the .Iogin file contains the commands you wish to execute afkr
logging in to the system. For example. the following is the contents of a typical./ogin
file:

set ignoreeof
set mail:: (lusr/spnoJlmaiIlbiU)
set time:: IS .
set history:: 10
mail

This file comains several setcmunands. The set command is executed directly by the
C - sheD; thel'e is no C'Ol'TCsponding XENIX program for this commarxl. Set sets the
C-sheD variable "ignoreeof' which shields the C-shelJ from logging out if
CNTRL - D is hit. Instead of CNTRL -D. the logout cammand is used to log out of the
system. By setting the "mail" variable, the C-sheD is notified that it is to watch for
incoming mail and notify you if ncwmail uri Yes.

Next the C-sheD variable .. time" is set to J 5 causing the C-sheU to autcmatically
print out statistics lines for commands that execute fm at least 15 seconds of CPU time.
TIle variable "history" is set to JO indicating thal theC-sheD willremembcrthe last
J Ocmunands typed in its history list. (described Iller).

Finally, theXENIXmail program is invoked.

When the C-sheU finishes processing the .Iogin file. it begins reading commands
from the terminal. prompting fm each with:

10-1

XENIX User's Guide

%

When you log out (by giving the logout command) tbe C-shell prints

logout

and executes commands from the file .logOfa ifil exists in your home directory: Aftt::r
that. the C - shell terminatcsand XENlX logs you off the system.

10.3 Using SheD Variables

The C - shell maintains a set of variables. For example. in the above discussion. the
variables "history" and "time" had the values 10 and IS. Each C-shell variable has
as its value an array of zero or more strings. C-abeD variables may be usigDed values
by the set command. which has sevaal fonns, the most useful of which is:

set name= value

C - sheD variables may be used to stOre values that are to be used later in commands
through a substitution mechanism. The C-shell variables most commonly
referenced are. however, those that the C-shell itself cefen to. 8y changing the
valucsofthesevariablesyoucandircctlyafJectthebehavioroftheC-lbell.

One of the most impOItaDl variables is "path". This variablec:omainsa list of dircctoIy
namcs. When youtypc a command name at yourtcrminal, theC-shellexamincseac:h
named directory in tum, until it findsancxccLitablc file whose DllDeCOll'espoods tothc
name you typed. The set command with DO arguments displays the values of aU
variables currently defined in Ihe C-sheU. The following example shows a typical
default values:

argv
home
path
prompt
sheD
statu.

()
lusrlbiD
(. Ibin lusrlbin)
'I>
lbiWcsb
o

This output indicale' that Ihe variable • 'path·· begins with the current directory
indicated by dot (.). thenlbill. and/lUl'lbill. Your own local commands may beinthc
currcmctircctory. NormalXENlX commands reside inlbill and/usrlbill.

SOOlctDncs a number of locally developed programsresidc in the directory lu.srllocaJ.
If you want all C-shells that yeu invoke to have accesltothesc new programs. plac:e
thecanmand

set path = (. Ibin lu .. lbin IusrJlocal)

in the .cshrc file in your heme directory. Try doingthia. thence-excaJtin&yeu . login
with thec:ommand 1OIII'Ce.1ogJD. Type

set

to sec that the value uaigDedto' 'path" halchanaed.

Yeu should be aware that when yeu log in the C-shell examines each directory that
you insert into your path and detcrmiDes which commands arc contained there. except
for the CUI1'CDl diRclcry which the C-sheU trcalI specially. 'Ibis meaDS thal if
commands arc added to a directory in your search path after yaa have swted the C-

JO-2

sheD. they will not necessarily be found. if you wish to use a command which has been
added after yoo have logged an, you should give the command

rehash

to the C-aheU. Rehuh causes the sheUto recompute its intcmaJ table of command
locations. so that it will find the newly added command. Since the C-shellhasto look
in the currcd directory on each command anyway, placing it at the end of the path
specification usually work ~ best and reduces overhead.

Other useful buill in variables are "home" which shows your home directory, and
• 'ignoreeof' which can be set in your .Iogill file to tell the C-shell not to exit when it
recei ves an end-of- file from a terminal. The variable "igtXnCOf' is one of several
variables whose value the C-sheD docs ~ care about; the C - shell isonJy concerned
with whether these variables are set or unset. Thus. to set • 'ignon:cof' you simply
type

set igooreeof

and tounsct it type

unset ignoreeof

Smle other useful buih-in C-sbeD variables are "noclobber" and "mail". The
syruax

>filenamc

which redirects lhe aandard OUlplt of. c:ommand just as in the regular sheD,
overwrites and destroys lhe previouscontcnts of the named file. lnthis way, you may
accidentally overwrite a file which is valuable. If you prefer thallhe C-sheD not
overwrite files in this way you can

set nocJobbcr

inycur .loginfiJe. typing

dale> DOW

causesanc:rrormessageifthefilellOtvalreadyexists. Youcantype

date >! DOW

if you reaDy want to overwrite the contents of now. The ">!" is a special syntax
indicating that overwriting or "clobbering" the file is ok. (The space between the
exclamation point (!) and the word "now" is critical here, as "!now" would be an
invocation of the history mechanism. desc:ribed below. and have a tocally different
effect.)

10.4 Using the C-SheU History List

The C-shell can maintain a history list into which it places the text of previous
commands. It is possible to use a notation that reuses commands. or words from
commands. in forming new commands. This mechanism can be used to repeat
previous commands or to correct mimr typing mistakes in commands.

The following figure gives a sample session involving typical usage of the hiSl<ry
mcchanismoflhe C-sheD. Boldface indicates user input:

10-3

XENIX User's Guide

% cat bug.e
mainO

I

% eelS
cc bug.c

primf(~eDo);

"bug.c"', line 4: newline in suina or char constaDl
"bug. c:"', line S: S)'DlU error
%ed %S
cd bug.c
29
4aI);I' Alp

p-intf(~eDo");

" 30
q
% !e
cc bug.c
% a.OIIt
bello% !e
eel bug.c
30
4JIJo/Io'\D!p

w
32
q

p-intf("heDcN1",);

% Ie -0

cc bug.c -0 bug
% size Lout bul
a.out: 2784+364+ 1028 = 4176b = OxIOS(h
bug: 2784+364+1028 = 4J76b = OxJO~
% Is -I t-
Is -I a.wt bug
-rwxr-xr-x 1 biD
-rwxr-xr-x 1 biD
%bul
hello
% pr bug.e I Ipt
Ipt: Command not found.
% 'p,"lpr
prbug.c: I'"
%

3932 Dec 1909:41 a.out
3932 Dec 1909:42 bug

In this example. we have • very simple C program that bas a bug or two iii the file
bug.e. wbich we cat out on our terminal. We then try to Nn the C c:ompila on it,
referring to the Ole again u U!S'" meaning the last argument to the previous
command. HeR the exclamation mark (!) is the history mechanism invocaaion
metacbaracter. and the doUar sign (S) stands for the last argumell. by analogy to the
doUar sign in the editor which stand. for the end-of-line. The C-sheD echoed the
command. as it would have been typed without use of the histolymecbanism, and then

10-4

The C-SbcU

executed the commard. The compibtion yielded error diagnostics. so we now edll the
fiJe we were trying to compile, fix the bug, and run the C compiler again. this time
refming to this command simply as "!c" • which repeats the last command that started
with the letter "c". lftheR were other commands beginning with the letter "c"
.executed recently. we could have said '"!cc" or even "!cc:p" which prints the last
command starting with "ee" without executing it. 8OthatyoucanchccklOscewbether
youreaUywant toexecuteagivencommand.

After this recompibtion. we ran the resuhing a.out file. and then noting that there stin
was a bug. ran the editor again. After fixing the program we ran the C compiler again.
but tacked onto the command an extra "-0 bug" telling the compiler 10 place the
resultant binary in the file bug ralberthan a.ow. In general. the hiSlory mechanisms
may be used anywhere in the formation of new commands, and other characters may
be placed before and after the subSlituted commands.

We then ran the size command to ICe how large the binary program images we have
created were, and then we ran an "Is -I" command with the same argumem list,
denoting the argument IiSl:

!*

Finally. we ran the program bug to see that its ootput is indeed oorrect.

To make a listingoftbeprogram, we ran the prcommandonthefilebug.c. Jnaderto
print the listing at a lineprinter we pipcdthe cutputtolpr ,butmisspened it as ulpt". To
correct this we used a C - shell substitute. placing the old text and new text between
caret n characters. This is similar to the substitute command in the editor. FmaUy. we
repealed tbe samc command with

!!

and sent its output to the lineprinter.

There are othQ" mechanisms available for repeating commands. The history
command prints out a numbered list of previous commands. You can then refer to
these commards by number. There is a way to refer to a previous command by
searching for a string which appeared in it. and there are other, less useful. ways to
select arguments to inc Jude in a new command. A complete description of aU these
mechanisms is given in csh (CP)theXENIXRejerenceMamuJl.

10.5 Using Aliases

The C-shell has an alias mechanism that can be used to make transformations on
commands immedialely after they are iIlplt. This mechanh'Dl can be used to simplify
the commands you type. to supply defauh arguments to commands. or to perform
transformations on commams and their argwnents. The alias facility is similar to a
macro facility. Some of the features obtained by aliasing can be obtained by using
C-sheU command files. but these take place in another instance of the C-shell and
cannot directly affect the current C - sheU' s environment or involve commands such
asccl whichmuSl be done inthecurrem C-sheU.

F<r example, suppose there is a new version of the mail program on the system called
newmail that you wish to use instead of the standard mail progr.un mail. If yro place
the C-sheU commam

JO-~

XENIX User's Guide

alias mail ncwmail

inyoor .cshrcfile. theC-shell will transform an inputlineofthe form

mail bill

intoacaDonnewmaii. Supposeyouwishthecommandlstoalwaysshowsizesoffiles.
that is, to always use the - soption. In thiscasc. you can use the alias command to do

alias Is Is -I

or even

aliaS dir Is - s

crcatinga new command named cUr. lfwcthenlype

dir Dill

the C-sheD translates thisto

Is -s /usrlbill

N«c that the tilde (1 is a special C-shcU symbol that represents the user's home
directory.

Thus the aJiascommandcan be used to provide short names for commands. to provide
dcfauh arguments, and todefine DeW &bort c<llDllWlds in terms of othCl' commands. It
is also possible todefinc aliases that contain multiple commands orpipelincs. showing
where the arguments to the original oommand are to be substituted using the facilities
of the hiSlorymecbanism. Thusthedcfinilioo

alias cd 'cd \!* ; Is •

specifiel an Is commaDd after eadl eel command. We er.:iosed the entire alias
definition in single quotation marts (•) to prevent more substitutions from occurring
and to p-event the semicolon (;) from being recognized as a metacbaractcr. The
exclamalionmark (!) is escaped with a backsJash (\) to pre vcnt it from being interprrted
when the alias command is typed in. The '"\!." here substitutes the entire argumcm lill
to the prealiasing cd command; 00 error is gi\'en if there are no arguments. The
semicolon separating COOlIDands is used here to iDJicate that one command is to be
done and then the next. Similarly the foDowingexample definesac:ommandthalloob
up its first argument in the password file.

alias whois • arep \!A letclpasswd'

The C - sheD currently reads the .cshrc file each time it stans up. If you place a large
number of aliases there. C-sheDs will tend to start slowly. You should tty to limit the
numbcrof aliases you have toa reasonable number (1001' 1 S is reasonable). Too many
aliases causes delays and mates the system seem sluggish when you execute
commands from wilhinaneditmorotherprograms.

10.6 Redireclinglnput and Output

In addition to the standard output. command. also ha\'e a diagnostic output that is
normally directed to the terminal even when the standard output is redirected to a file 01'

a pipe. It is occasionally useful to direct the diagnosdc output along with the standard
output. Forinstance.ifyouwanttorediRC:ttheoutputofalongnumingcommandimo
a file and wish to have arcc:mI ofany errordiagnostic it produces youcantype

10-6

The C-'SbelJ

command > &. file

The "> &." heR tells the C - sheD to route both the diagno&1lC output and the standard
outputinlofile. SimilarlyyoucangivethecOlDllWld

command I&. Ipr

to route bodl standard and diagnostic output through the pipe to the lineprinter. The
form

command >&! file

is used when' 'noclobbcr" is set arutfile already exists.

finally. use the form

command > > file

to append output to the end of an existing file. If "noclobber" is set. then an error
~8Ultsiffiledoesnotexist.od1erwisetheC-shcliaealesjile. Theform

command > >! file

Ictsyou appe!Jdto a file even ifit does nc:l exist and "ooclobbcr"is set.

10.7 Creating Backgrouod and Foreground Jobs

When one <r more commands are typed together as a pipeline or as a sequence of
commands separated by semicolons. a single job b; created by the C-sheD consisting
of these commands together as a unit. Single commands without pipes or semicolons
c:rcatethesimplestjobs. UsuaUy. every line typed totheC-shellcreatesajob. Eachof
the foUowing Iinescreatesajob:

sort < data
Is -s I son -n I bead -S
mail harold

If the ampersandmetacharacter (el) is typed at the end of the commands, thenthe job is
started as a background job. This means that the C-shell does not wait for the job to
finish. but instead. immediately prompts for amtber command. The job runs in the
background at the same time thal normaljobs. called foreground jobs. continue to be
read and executed by the C-sbeU. Thul

du> usage &.

runs the du program. which reports on the disk usage of your working directory. puts
the output irlO the file usage and ~tums immediately with a prompt for the next
command without waiting for till to finish. The till program continues executing in the
background until it finishes. even though you can type and execute more commands in
the mean time. Bactgroundjobs arc unaffected by any signals from the keyboard such
as the lNTERRUPTor QUIT signals.

'Ole kDJ command terminates a background job immediately. Normally. this is done
by sp«ifying the process number of the job you want tilled. Procell numbers can be
found with thepscommand.

10-7

XENlX User's Guide

10.8 Using Bullt-In Commands

This sectionexplainshowtouse some of the buih-inC-sheD commaIXIs.

The alias command described above is used to assign new aliases and to display
existing aliases. If given no arguments, a!las prints the list of curre.- aliases. It may
also be given one argument. such a. to show Ihe current alias for a given string of
characteR. Forexample

alias Is

printsthecurrentaliasforthestringuJsu.

The history command displays the contents of the histmy list. The numbers given
with the history events can be used to reference previous events that are difficult to
reference contextuaUy. There is also a C-sbeU variable named "prompl". By
placing an exclamation point (!) in its value the C-shell will substitute the I1UIDbeI' of
lhe cumnt command in the history list. Y oucan use this numberto refcr to a command
in ahistory substitution. for example. you could type:

set prompt = '\! ~ •

Ncxe that the exclamation mark (!)had to be escaped even within backslashes.

The Jogoutcommand is used totenDinate a login C-sheD that has "ignoreeof' &d.

The rehasb command causes the C-sheD torccompute a tableofcommaIXIlocations.
This is necessary if you add a command toa directmy in the current C-sheU's sean:h
path and want lheC - shell to find it. since otherwise the hashing algorithm mayteU the
C-sheD that the command wam "t in that directory whenthehash table wascomputecl.

The repeat command is used to rcpc:at a command several times. Thu. to make S
copies of the fileone in the filefiveyou couldtypc:

repeat S cat one » five

TheseleDycommandcanbeuscdtosctwriablesintheenvironmc.-. Thus

setenv TERM admla

sets the value of the environment variable ''TERM. I to "adm3a I •• The program env
existsto print out the environment. Forexample. its output might looklikcthis:

HOME = IusrlbiU
SHELL=lbinlcsh
PATH = :lusr/ucb:lbin:lusrlbin:lusrllocal
TERM = adm3a
USER = bill

The source command is used to fon:e the curred C-sheD to read commands from a
file. Thus

source .cshn:

can be used after editing ina change to the .ewe file that you wish totakc effect before
the next time you login.

The time command is used to cause a command to be timed DO mattcrhow much ~
time it takes. Thus

10-8

time cp Ictclrc lusrlbdllrc

displays:

O.OU 0.15 0:01 8%

Similarly

time wc 1eu:1rc lusrlbilllrc:

displays:

S2 178 1347/etdrc
S2 178 1347 IusrlbiWrc

104 356 2694 IOtaI
O.lu 0.15 0:00 13%

1"be C-SbeJl

ThisiDdic:ates that the cpcommand used a negligible amount of user time (u) and about
I/IOth of a second syaem time (s); the elapsed time was I second (0:01). The word
count command ft used O. 1 seconds of user time and 0.1 seconds of system time in
less than a lecond of elapsed time. The percentage "13%" indicates that over the
period when it was active the we command used an a\'a'age of 13 percent of the
available CPU cycles of the mac:hioe.

The uaalias and DDSet commands are used to remove aliases and variable definitions
from theC-lIbeD.

10.9 Creating Command Scripts

It is possible to place commands in files aDd to cause C - shells to be invoked to read
and execute commands from these files, which are called C-sheU saipts. This
sec:tiondescribestheC-sheDfeaturesthatareusefulwhenacatingC-lheUsaipts.

10.10 Vsing the argv Variable

Aah coounand script may be interprcled by saying

c:sh script tugument ...

where script is the name of the file cOllaining a group of C-shell commands arxl
argument is a sequence of command argumells. The C - shell p~ces these arguments
in the variable "argv" and then begins to read commands from script. These
parameters are then available through the same mechanisms that are used to reference
any «herC-sheD variables.

If you make the file scr;ptexec:utable by doing

chmod 755 script

or

chmod + x script

and then place a C-sheD commenl at the beginning of the C-sheU script (i.e., begin
the file with a number sign (#)) then I bin/em will automaticaBy be inwked to execute
scr;pt when you type

10-9

script

lfthe fiJe does not begin with a number sign (#) then the standard shell I bin/sh will be
used to execute it.

10.11 S ubstit uting SheD Variables

After each input line is broken into werds and history substitutions are done on it, the
. input line is parsed into distinct commands. Before each command is executed a

mechanism know as variable substitution is performed on these words. Keyed by the
dollar sign (S), this substitution replaces the name s of variables by their values. Thus

echo Salgv

when placcd in a command scripc would cause the cunem value of the variable "argv"
to be echoed to the output of the C-abeD script. It is an error fer "lIIv" to be unset at
thispoinl.

A number of notations are provided for accessing components and attributes of
variables. Thenotation

S?name

expands to I if name is set or to 0 if 1I/IIM is DOl set. It is the fundamedal mechanism
used fer chccking whether particular variables havc been assigned values. All other
forms of referenccto undefincd variables cause mon.

The notation

s#namc

expands to thc number of elements in the variable "name". To illustrate. cxaminethe
following terminal session (input is in boldface):

% set 8J'1l'=(a b e)
I
% echo S#arav
3
% uDld arav
% echo S?arr
o
% echo SallY
Undefined variable: argv . ..

it is also possible to access the components of a variable that has several values. Thus

Sargvfll

givcsthcfirstcomponentof .. argv .. orinthecxampleabovc ... ••. Similarly

SargvfS#argvl

wouldgivc'·c··,and

Sargvfl-21

would give:

10-10

ab

Olher notations useful in C - shell scripts are

Sn

where n is an integer This is shorthand for

$argvf n 1
the n 'th parameter and

$.

which isa shmhand for

Sargv

The form

S$

expands to the process IIJIIlber of the current C-sheU. Since this process number is
unique in the system. it is often used in the lencnlion of unique temporary filenamcs.
Thcform

S<

is quite special and is replaced by the Den line of input read from the C-sheU's
stardard input (0« the script it is reading). This is useful for writing C-sheU scripts
that arc interactive. reading commands &om the terminal. or c'\'en writing a C-aheU
script that actsasa filter. reading lines from its input file. Thus. the sequence

echo -n 'yes CJl'DO?'

set a=($<)

wrilesout the prompt

yes or oo?

without a newline and then reads the answCl'iIlo the variable coa" . In this case "S#a"
is Oif either a blank line orCN1RL -D is typed.

One minor difference between "Sn" and "Sargvfn 1" should be o«edhere. The form
"Sargvf n 1" win yield an error if 11 is not in the range 1-S#argv while' 'Sn" win never
yield an out-of-range subsaipt CITOI'. This ia for compatibility with the way older
sheUshandleparameters.

AnotherimpMant point is that it is neveranerrorto give a subrangeofthe form "n-";
if there are less than ., n" components of the given variable then no words are
substituted. A range of the form "m-n" likewise returns an empty vector withwt
giving an err« when "m" exceeds the number of elements of the Jiven variable.
provided the subscripi • 'nit is in range.

10.12 Using ExpressioDS

To construct useful C-shell scripts. the C-shell must be able to evaluate expressions
based on the values of variables. In fact. all the arithmetic operations of the C language
are available in the C-sbeU with the same precedence that they have in C. In
particular. thcoperations •• = =" and "! = "' compare strings and the operators "&.& "
and"l I" implement the logical AND and OR operations. The ~Ioperators H=-"

10-11

and •• r" are similar to •• = = •• and "! =" except rhat rhe string on rhe right side can
have pattern matching characters (like • • '? orf and b. These operators test wherhcr rhe
string on the left matches rhe pattern on rhe right.

TheC-shc:DalsoallowsWeenquiriesoftheform

-? fiJclItI1M

where question mark (1) is replaced by a number of single characters. For example.
rhee~s~onprioUtive

-e jiJCIfIJIM

teDs whetherjiJclltl1M exists. Othcrprimitivestest for read. write aDd execute access to
the file. whether it isadirectory. or if it has nonzero length.

It is possible to lest whether a command terminates normaUy. by using a primitive of
rheform

~ C'OtnnrQnd I
which returns I if the command exits DOnIlally with exit status O. or 0 if the cmunand
terminates abnormally or with exit status nonzero. If more detailed inf<mnation about
the execution status of a command is required. it can be executed and the •• status"
variable examined in the next command. Since "Sstatus" is set by eVCl)' oommand.
ilsvalueisalwaysc:hanginJ.

F« the full list of expression components. sec csh(CP). in the XENIX Reference
MIJIIIIIII.

10.13 Using the C-SheU: A ~mple Script

A sample C-sheD script follows that uses the expression mechanism of the C-shen
and some ofilsconlrol structures:

10-12

II
II Copyc copies those C programs in the specified li!l
to the directory -/backup if they differ from the files
/I already in -!backup

set noglob
forcach i (Sargv)

end

if (Si r • .c) continue # DOl a .c file so do nothing

if (! -r -lbackuplSi:t) then

cndif

echo Si:t not in backup ... DOt cp\'ed
continue

cmp -I Si -1bac:tuplSi:t # to ad Sstatus

if (Sstatus ! = 0) then
echo new backup of Si
cp Si -lbackup'Si:t

endif

Tile C-SbeU

This script uses the roreach command. The command executes the other commands
between the loreach and the matching ead. for each of the values given between
parentheses with the named wriable "i" whicb is set to successive values in the list.
Within this loop we may use the cmunand break to stop executing the loop and
coDtiDue to prematurely terminate one iteration and begin the next. After the roreach
loop the iteration variable (; in this case) lias the value at the last iteration.

The "noglob" variable is set to prevenl filename expansion of the members of
"argv". This is a good idea, in general. if the arguments to a C-sheU scri,- are
6lenames which have already bcenexpanded or if the arguments may coD1Binfilename
expansion metacharacters. It is also possible to quote each use of a "s" variable
expansion, but this isharda' and less reliable.

The othercontrolconstruct isa statement of the form

if (expression) then
command

endif

The placement of the keywords in this statement is not ftexible due to the current
implementation of the C-sheU. The foUowing two formats are not acceptable to the
C-shell:

and

if (exp-ession) # Won't work!
then

command

endif

10-13

X~IX User's Guidt

if (ellp'ession) then command endif # Won't wark

TheC-shelldoeshaveanotherformofthcifstatement:

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not
involve .. I " ... " .. 01' ";" and must DOt be another control command. The second
form requires the finalbackslash (\) to immediately precede the end-of-line.

The more general II statements above also admit a sequence of eJse-. pairs fonowed
by a single dseandan eucIiI. forexample:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another importanl mechanism used in C-shell scripts is the colon (:) modifier. We
can use the modifier:r here to extract the root of a filename or :e to eXlract the
extension. Thusifthevariable"i"hasthevalue/mntlfoo.barthen

echo Si Si:r Si:c

produces

/mllifoo. bar /mnJlfoo bar

This example shows how the :r modifier strips off the trailing cc .bu" and the :e
modifier leaves only the "bar". Other modifiers take off the last component of a
pathname leaving the head :b or aU but the last component of a pathname leaving the
tail: t. These modifiers are fully described in the csb(CP) entry in theXENlX Reference
Manulll. It is also possible to use the command substitution mechanism to perform
modificationsonstringstothenreentertheC-shellenviromnerl. Since each usage of
this mechanism involves the creation of a new process, it is much more expensive to
use than the colon (:) modification mechanism. It is also important to note that the
CUJTent implementation of the C - sheD limits the number of colon modifiers ona "s"
substitutionto I. Thus

% echo Si Si:h:t

produces

/alblc /a/b;t

and does not do what youmightexpcd.

Finally, we note that the number sign character (#) lexically introduces a C-sheD
comment in C - sheD scripts (but not from the terminal). All subsequell characters on
the input line after a number sign are discarded by the C-sheD. 'Ibis character can be
quoted using ",. or-argument word.

10-14

Tik C·-She!!

10.14 Using Other Control Structures

The C - shell also has control structures while and swikh similar to those of C. These
take the forms

and

while (expression)
commands

end

switch (word)

case strl:
commands
breatsw

case stm:
commands
breatsw

defa~
commands
breabw

endsw

fmdetailss«themanualsectionforah(CP). Cprogrammersshouldnotethatweuse
breaksw to exit from a swlkh while break exits a whle m'roreach loop. A common
mistake to make in C-sheD scripts is to use break ralherthan breaks. in switches.

finaJly.theC-shellaUowsaaotostatemcnt. wilhlabels looking like they do inC:

loop:

10.15

commands
goto loop

Supplying Input to Commands

Commands run from C-sheD scripts receiw by defauk the standard input of the C­
sheD which is running the script. It aDows C-sheU scripts to fuDy participate in
pipelines. butmandatesexua IlOlationfa commands thai are totake inline data.

Thus we need a metanotation fm' supplying inline data to commands in C-sheU
scripts. fm'example. consider this scrip whiduunsthceditortodeleteleadingblanks
from the lines in eachargummfile:

10-15

XE.NIX Usu's Guide

-# deblank - - remove leading blanks
foreach i (Sargv)
ed - Si < < ' EOP'
1.5511 1*/1
w
q
'EOF
end

The notation

« 'EOF

means that the standard input for the eel command is to COOle from the text in the c­
shell script file up to the neXlIinc consisting of exactly EOf. The fact that the EOF is
enclosed in single quotation marts (.). i.e .• it is CJloted. causes the C-sbeU to not
perform variable substitution on the intervening lines. In general. if any pan of the
w()l'd following the "< <" which the C-sheD uses to terminate the text to be given to
the command is quoted then these substitutions will n« be performed. In this case
since we used the form "I.S·· in our editor script we needed to insure lhat this doUar
sign was not variable substituted. We could also have insured this by preceding the
dollar sign (S)withabactslash(\).i.e.:

I.\$sr[1·"
Quoting the EOFtenninator is a more reliable way of achieving the same thina.

10.16 Catching Interrupts

If our C-shell script creates telDp(Jl1lr)' files. we may wish tocatch imerruptionsofthe
C-sheUsaiptsothatwecanclcanupthesefiles. Wecanthendo

onintt label

where /Qbel is a label in our program. If an inlaTUpt is received the C-sheD wiD do •
.. gOiO label" and we can remove tbe temporary files. then do an exit command (which
is built in to the C-shell) to exit from the C-sheU script. If we wish to exit with
nonzero status we can write .

exit(l)

to exit with status I.

10.17 Using Other Features

There are other features of tile C-sheD useful to writers of C-sheU procedures. The
verbose and echo options and the related -v and -K command line options can be
used to help trace the actions of the C-sheD. The - D option causes the C-sheD only
to read commands and DOl to execute them and may sometimes be of use.

One other thing to note is that the C-shell will not execute C-sheD scripts that do not
begin with the number sip charac:ter (#). that isC-abeD scripts dWdonot begin with
acommenl.

There is also another quocation mechanism usinathc doublequotalion mart ("). whicb
allows only some of the expansion mechanisms we have so far discussed to OCCurOD

10-16

The ('-SbeU

the quoted slrmg and serves to make this string into a smgle word as the smgle quote (,)
does

10.18 Starting a Loop at a Terminal

It is occasionally useful to use the lorear' control structure at the terminal to aid in
performing a number of similar canmands. for instance, if there were three shells In

useonaparticuJarsystem,lbinlsla.lbinlnsla,and/binlcsh,youcouldcOUJlthcnumber
of persons u sing each shell by using the following commands:

pep -c cshS letclpasswd
pep -c nshS lelclpasswd
gep -c -v sb$/ctc:lpasswd

Since these commands are very similar wecanuse lorach to simplify thcm:

S loreach I ('abS' 'DSIIS' '-•• $')
'? pep -c SI/etdpasswd
?ead

Note here that the C-shell prompts for input with .. ? ., when reading the body of the
loop. Thisocc:ursonly wbentheloruchcommand iSenlercd interactively.

Also useful with loops are variables that col'lain lists offilenames or other words. For
example. examine the following terminal session:

~ let .=(,11')
~ eebo $a
c:sh. n c:sb.rm
%Is
esb.n
c:sb.rm
% eebo $#.
2

The set command here gave the variable "8" 8 list of all the filenames in the c:urrem
directory as value. We can then iterate over these names to perform any chosen
function.

Theoutputofacommandwithinbackquotationmarks{')isconvCl'tedbytheC-sheU
to a list of words. You can also place the quoted string within double quotation marts
(") to take each (nonempty) line as a canponent of the variable. This prevems the lines
from being split into words at blanks and tabs. A modifier :x exists which can be used
later to expand each component of the variable into another variable by splitting the
original vari~ble into separate words at embedded blanks and tabs.

10.19 Using Braces with Arguments

Another form of filename expansion involves the charactcn. "t" and "1". These
characters specify that the contained strings, separated by commas (.) are to be
consecutively substituted intothecomaining characters and the resuhs expanded left to
right. Thus

A~sttl.str2 •... stmlB

10-17

Xt..NlX User's Guide

expands to

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions. and may be applied
recursively (i.e .• nested). The resuhs of each expanded string are sorted separately.
left to right ceder being preserved. The resulting filenames are nOl required to exist if
no tthcr expansion mcchanismsare used. This means that this mechanism can beuscd
to generate arguments which arc not filenames. but which have common partS.

A typical use of this would be

mkdir -/~drs.retrofit,cshl

to make subdirectories hdrs • retrojil and csh in your home directory. This mechanism
is most useful whcnthc common prefix is Iongc:rthan inthisexamplc:

chown root lusr/demo'~filcJ ,file2, ... 1

10.20 Substituting Commands

A command enclosed in accent symbols (,) is replaced, just before filenames are
expanded, by the output from that command. Thus. it is possible to do

set pwd=::'pwd'

to savethecwrcrt dircctory in the variablc "pwd"OI"todo

vi 'grep -I TRACE -.c'

to run the editOl" vi supplying as arguments those files whose names end in .c which
have the string "TRACE" in them. Command expansion also occurs in input
redirected with" < <" and within quotationmarb ("). Referto csh(CP) in the XENIX
Reference ManualfOl"more information.

10.21 Spedal Characters

The following table lists the special cbaractersof csh and the XENIX system. Anumber
of these characters also have special meaning in expressions. See the csh manual
section fOl"a complete list.

Syntadic: metacharacters

Scparatesc:ommands to beexcc:uted sequentially

Separates commands in a pipeline

() Brackets expressions and variablc valuc.

&. FoUowscommaoostobe executed without waiting fOl"completioo

Filename metacharacten

Separatcsc:omponcmsofafi)e'spalhnamc

10-18

The C-SheD

Separates root pans of a filename from extensions

Expansion character matching any single character

* ExpansIOn character matching any sequence of characters

r1 Expansion sequence matching any single character from a set of characters

Used at the beginning of a filename 10 indicate home dRctories

! I U sed to specify groupsofargumems withcommonpans

QuotatiOD metacharacters

\ Prevents meta-meaning offolJowing single character

Prevents meta-meaning of a grwp of characters

Like • • but allows variable and command expansioo

IDputloutputmetacharacters

< lndicatesrcdirected inplt

> lndicates redirected output

Expamlo!WSubstitutIoDMetacharac:ters

S Indicates variable substitutio~

Indicateshistory substitution

Precedes substitutionmodificrs

Used in special formsofhist<ry substitution

Indicates command substitution

Other Metacharacters

Begins scratch filenames; indicates C - shell commerts

Prefixes option (ftag) argumeIts to commands

10-19

Chapter 11
Using The Visual Shell

11.1 What is the Visual Shell?

11.2 Getting Started with the Visual Shell 1
11.2.1 Enteringthe VisualShell 1
11.2.2 Getting Help 2
11.2.3 Leaving the Visual Shell 2

11.3 The Visual Shell Screen 2
11.3.1 Status Line 2
11.3.2 Message Line 2
11.3.3 MainMenu 2
11.3.4 Command Option Menu 3
11.3.5 Program Output 3
11.3.6 View Window 3

11.4 Visual Shell Reference 5
11.4.1 Visual Shell DefaultMenu 5
11.4.2 Options 6
11.4.3 Print 7
11.4.4 Quit 8
11.4.5 Run 8
11.4.6 View 8
11.4.7 Window 8
11.4.8 Pipes 9
11.4.9 Count 9
11.4.10 Get 9
11.4.11 Head 9
11.4.12 More 9
11.4.13 Run 10
11.4.14 SOI1 10
11.4.15 Tail 10

- i -

Using The V~ual Shell

11.1 What is the Visual Shell?

The Visual SheD nb is a menu -driven XENLX sheD. This chapter describes the use
:md behavitX' of the vsb. This chapter assumes that the reader is familiar with some
generalXENIX concepts, specificaDy the structureofXENIX fi Ie systems and Ihe nature
ofaXENlX 'command'. No familiarity with any other sheD, however. is assumed. If
you are a first-time user of the Visual Shell. please completely read the 1l.1lTative
ICCtions of this chapler .

A 'sheD' is a progrdm which passes a command to an opeming system, and displays
the result of running the command. The XENlX sheDs can also create 'pipelines' for
passing the outpUt of one command to another command or 'redirect 'the output iDIO a
file.

The «her XENlX sheDs available are sb and csh. These shells are caned
'cc:mmand-line memed' shells. This means that the user enters COID.IIW1ds one line
at a time. The sh aid csh shens are full computer languages which require study and
some programming knowledge to use effectively. These command-line shells are
powerful and eflkie ...

The nb is a 'menu-orielled' shell. In a menu-oriemed shell. the user is given the
available commands. or some of the available commands. The Use6 can run the
command. by selecting from themem.

The Visual Shell is a good sheD for users who may not wam to master a p'ogramming
language right away just to useXENlX or a specficXENlX application. AU V iwaI Shell
users should additionally become familiar with some command-line shell usage.

Users familiar with command-line shells are in f<r a pleasam surprise if they try the
Visual Shell. Experienced users will appreciate the efficiency and versatility of the
Visual Shell. The distinction is very much akin to the differe.x;e between a line­
oriemedtext editor and a full - sc:reeneditor.

A menu shell can be used effectively with \U)' little study. On the other hand, a menu
shell can also restrict the user from using the operatir.g system in creative, possibly
more efficiem ways. The Microsoft Visual Shell strikes a balance in this regard. The
Visual Shell is designcd to do aU of the things Ihat the command-line sbellscando.

11.2 Getting Started with the VisuaiSheU

This section describes how toemer. obtain help about. and kave the visual shell. This
section also describes what you will see on the screen while running the visual shell and
how the IDeIl1S wort.

N«e the following convemion for specifying keystrokes. CI'RL refers to the CI'R1.
shift key. CI'RL -Cmeans pressing the CfRL and 'c' keys at the same time. AL T refers
to the ALT shift key. ALT-H means pressing theALT and 'H' keys at the same time.
N«etheirrelevanceofcaseinelleringMenuSelectioncharacters. forinstance.press
either'Q' or'q' torunthe "Quit" commandfromthemainmenu.

11.1.1 EDteriDl the Visual SheD

11-)

Xi.NlX Operations (;uid~

Log in to XENlX If you are not sure how to log in, consult the Operations Guide or
have someone knowlegeable about XENIX help you. When you have a sheD p-anpl
(typically "S' or "% '), the operating system is waitin& for a command. Enter the
command:

vsh

and pressRETURN.

11.1.2 Getting Help

If at anytime you are DOl sure what to do. eithea- run the "Help" Menu Selection or
press AL T -no Refel' to the reference sectioo oftbis chapter for information about the
Help command.

Leaving the Visual Shdl

To exit the Vis'Jal SheD select the Quit command from the main menu. The simplest
way to do this is to simply press 'q' or "Q'. 10 response to the prompt "Type Y to
confirm". enter "y' or "Y·. Uyou doo't want to exit the Visual SheD Yel (perhaps you
pressed "q' by mistake). entCl" any othcrcharactCl" but 'y' go 'Y·. Uyou have invoked
the visual sheD frc:m another sheD. as described above. you will need to log out from
XENlX by edenng CI'R1.-D or "logout' and pressing RETURN. Uthe Visual SheD is
yourdcfault sheD. you will automatically be logged out.

11.3 The VisualSheUScreen,

11.3.1 Status Uae

The bottan line 00 the sacco is called the "status line'. The status line displays the
name of the current working directory. notifies you if you have mail. and gives the
date, time and the name of1beopcrating system.

11.3.2 . Message LIne

The line above the "status line' is called the "message line'. The message line displays
special output fromXENlXccmmands. suchaserrorrcports.

11.3.3

The next section of the screen above the message line is the 'main menu'. The main
menu displays aselectiooofusefulXENIX commands.

The currently selected menu command is highlighted on the screen. To select any
command, press the SPACE BAR. The next highlighted cc:mmand is selected. The
BACKSPACE key wiD move to the previous command. Move through the menu until

11-2

Usmg Tbe Visual Shell

youha\'efoundthecommandyouwaot. TONnthecurrentlyselcctedcommand,press
RE1l1RN.

Y w may also enter the first letter of a command to select that command. If you emer
the fintlencr oflhe ccmmand, you do notoecdtopressREnJRN.

If you emer a letter whicb does DOt COIRspondtoamclllscleaion, the message

Not a valid option

wiD be displayed. Try amtbcroption.

11.3.4 Cc.DID8DCI Optioa MeDII

When you have selected a command, the main menu wiD be replaced with. command
option melll. T'he command option menu gives the options available with the specific
command. You must fiB in theopions wilb appropriatercsponsea.

Ifyw wish toretum to the mainmcnu without running tbecommand, pressCl1U. -C.
(cancel). lfyou wal1 torunthecClllllDaDd with the selcctccloptionapressREnJRN.

The followin&keystrokcsaUow edilingofoplionresponsea.

CI'R1. -1. CTIU. -A. or 'tab'
CI1U.-YorDEL
CI1U.-L

CI1U.-K

cnu.-p

Cl1U.-O

11.3.5 PrcJgrua Output

Move to next 6eld in options meau.
Delete cbaractcrundercuraor.
Move cursor tocbaractertoright OfcurreDl position
inCUll'ent option field.
Move cursortochal'actcrtoleft ofCUl1'eJllposWoo
inCUll'ent option6eld.
Move cUrsor to word in aurell fieldtorigbtofthe
CUI1'eDlword.
Move cursorto wont in current field to Icftofthe
cwrenl w«d.

While running a command, commands given and output (unless redirected) wiD be
displayed above the menu and below the view window. The output scrolls up: moves
from b«tom totop. Lines scrolling offtbetop of the output window disappear.

Visual SheD command lines are listed with each argument preceded by the number in
the argument list enclosed in parenlheac.. The command is named in the output
window by the menu cmunand. Hence, if you Nn the command lbia'ls with the
argumem-R.theOUlputwindowwiUdisplaythccommamlineasfoUows:

Run (I) Ibinlls (2) - R

To change the command line format to reflect the actual XENlX command line
generated by tbe VisualSbell. use Ibe Options Outputmcnu command.

11.3.6 VIewWiDdow

A melll of currently accessible files and directories can be displayed at the top of thc

JI-3

XENIX Operations Guide

screen in alphabetical order. left to right, top to bottom. Note that this display is the
same as that obtained using the view command. This will be referred to as the • view
window' in this chapter. lfthe directory list is larger than the current window size. you
may scroU through using the key commands gi~n below. To reset the window size.
usethe • Window' mainmenucommand.

The CWTenlly selected item is highlighted in the view window . Use the anow keys and
other key commands given at the end of this section to move the highlight around the
window.

If a directory is being listed. subdirectories are shown enclosed in square brackets. To
view a subdirectory. press '::' while the directory is highlighted. To return to the
previous directOl)' aftel' viewing a subdirectory, press • - '. The parent directory of the
CWTent directory is shown as ·r .. 1'. The CUIRnt directory is shown as 'r .1'. Executable
files are preceded by an aama. The last modification date of the currenlly seb:ted
item is gi~n at the right margin of the last IiDe of the window. The name of the item in
view in the current window is given in the uppcrrigbt-handcomcrofthe wiDdow.

The view window may also display contents of files. Highlight a file. and press • ='.
You may scroll through the file using the by conmands given below. While viewing
a file. thehighligbtedareacovenoneliDe.

Uyou PRu' =' whiJeanexecutablc file ishigblighted. that file willbe Nn.

If the Visual Shell RqUires a file or directory name. the a.urently selected View
Window item can be automaticaDy entered in the relevent option field by pressing any
directional movemeDl by following selection of the command. This method saves
keystrokes and reWces the chance of making typing mistakes. On the other band. if
you wish to explicitly eda' a file ordi.rectory in an option field. type in the name after
selecting the command.

Usc these keystrokes to select files from the vieW window:

CfRL-Q
CfRL-Z
CfRL-RCI1U.-E
CfRL-RCl1U.-S

=

U-4

WINDOW MonON KEYS
Move to start (first item alphabetically) of view window.
Move to end (last itcm alpbabcticaDy) of view window.
ScroU view window up.
ScroD view window down.
View indicated item. eilhel' file or directory .
Uno view window ispreseDl. theaurcnl workinadirectory
isdisplayed.
Return wiDJowdisplay tOpareDl directory of
CUltCdly listeddirec:tcry.
Ifviewingafile.exitfromviewinathatfile.
Lut view wilIIow i.raurncdlO.

USlDl Tb~ Visual Shell

DlREcrlONALMOVEMENT KEYS
ARROW UP or CfRL -E: Move highhght up in viewwmdow.
ARROW OOWN orcrRL - X: Move highlight down in view window.
ARROW LEfT orCfRL -S: Move highlight left in view window.
ARROW RIGHT orCfRL --0: Move highlight right in view window.

Movemert beyond the left or right margin wiD proceed to the next item on the previous
or next line unless at the edge of the view window. Movemert beyond the top or
bottom edge oft.~e curreDl wimow will scroll the view window up or down ifthcre are
more items inthal direction in the view window.

Note that there are two ways to move the highlight around. Ei1hcruse the keypad arrow
keys<.-theclusteroffour keysonthe far left of the teyboard 'e' • 'I.' • 's'. and 'd' shifted
withCI'RL..

While viewing a file. the diredional movement keys for up and left move the highlight
up, and the keys for down am right move the highlighted line down.

11.4 Visual SheD Reference

11.4.1 Visual SheD Delault Me ...

This section describes the default Visual Shell mell1 commams and options. The
mcnu options are di~-played al the bottomofthe screen above the status line.

To invoke a command. move the highlight forwards through the main menu using the
space bar or the tab key. or backwards using the bach1Jace key. Or simply press lhe
firslletterofthe c<mmand.

Most commands require entering options. Move the CUI'SU' to the field using the
SPACE BAR. TAB key or BACKSPACE key. and type ywr response. To edit the
options. refer to the key commaBis listed above in the section in lhis chapter labelled
"Command Option Menu". To select an item from a View Window listing fm
inscrtioninafield. refer to the section inthis cilaJler labelled "ViewWindow·'.

Note that some options have 'switches' with predefined (defauh) selections. The
curremly selected switch setting is highlighted. The default is the pareDlhesized
setting. Forinstance, in the switch:

Recursive: (yes) DO

the defauk is recursIve. To change a switch, selcctthc field and ... essthe SPACE BAR
orBACKSPACE.

Copy

TheCopyoommandcancopy files and directorics. To copy a file, select "File" from
the options. to copy a directory. select "Directory". Asub-menuwillappcar. EDler
the file or diredOl)' you wish copied in the/rom: field. Enter the file or directory you
wish copied to the 10: field. Note thal if the item in the 10: field already exists, it will be
overwritten. so be careful.

The Copy Directory sub-menu has a switch "recursive". If this switch is set to yes,
all sub- directories and their coDlents below the specified dircdory will be copied.

11-5

XENIX Operatioos Guide

Ddete

The Delete command can remove files and direct<ries. In the DEIE1'E name: field
enter the name of the tile or directory you want to remove. Note that once the file or
directory is deleted. the con1ellS are gone forever unless you have another copy. so be
careful.

£cUt

The Edit command invokes the fuD-screen editor vi. The aurent directory will be
displayed in the output window. Enter in the option field ED" fiktrQ/II~: the name of
the 6leyou wish to edit usinS vi.

To learn vi, consultthedocumeot "vi: aScrcenEdit<r" intheXENIX UMr'sGuid4,
and the vI(C) manual page in the XENlX Relere1lC~. A vi reference card is abo
available.

Help

The Help command (aiso availabJe by pres si ngALT-H at anytime),cangiveon-Iine
help regardina many aspects of Visual SheD use. The view window wiD display 1he
help file. Use the menu to select the topic you need help with. for instance, move the
highlight to' Keyboard' using the SPACE BAR and preSI RETURN to vicw the help tile
starting at the 'Keyboard' section. The 'Ne"" and 'Previous' fields in the menu will
scroll through the the help file from the present location one screen at a time. Your
W<R will remain undistuJbed. To return from Help, press CI'RL-C or selecl the
'Resume' menu option.

MaD

The Mail command etters the XENIX mail system. There arc two options: "Send"
and • 'Read" for more information about mail, refer to the section oftheXENlX Users
Guidetitled"Mail"orrefertothemal(C)manualpage.

Name

The Name command renames an existing fileordirectory. There are two fields,From:
and To:. Enter the name of the file or directory you want to"naDlC inFrom: and the
new name inTo:

11.4.2 Optioas

The Options Main Menu Selection provides four sub-menus. These sub-menus run
commands which typically areuscdinfi'equently or which bave irrcvocableresuhs.

DIndoryOptioa

The Directory commandhutwo sub-menus, Mate and Usage.

Make Directory Optioa 1bia command create. a new directoJy named what you
enter in tbe name: field.

UsapDIndoryOptioa Countsthenumberofdiskb1ocbinthedirec:tOl'ksspecified
in the trQ/IIt!: field. The format is the same as the XENIX command Is -So Refer to the
manual pagels(C).

11-6

Using The V lsual Shell

FiJeSystem OptioD

fileSystem has the five sub-menus: Create. fi1es01eck. Spacefree. Moull1 and
UIDlOUJl.

Create FiJeSystem OptioD Create fileSystem makes a XENIX fiiesystem. The
Create command performs radical system maintenance and may have imvocable
effects. Care is advised when using CzeatefilcSystem.

The functionality is the same as mkfs(C). Consult the mkfs(C) manual page before
running Create fileSySlem. Create FileSystem wilJprompl you for device. block size.
gap number and block number. Refer to the XENlX OpertUions Guide cbaJler on
"Using File Systems". The section "Creating a File System" also explains this
command.

FiJaCheck n~ystem OptioD FilcsCbeck checks the consistency ofaXENIX
filesystcm and attempts repair if damage is detected. The FiIcsC'hcct ccmmaad
performs radical system maintenance and may have irrevocable effects. Can: is
-'vised whenusingfilesCheck.

The functionality is the same as rsck(C). Consult the fsck(C) manual page before
runningFilesOled. FilesOleck wiU prompt you forthe device to cheek.

OutputOplioD

The Output Option commam has one switch. cmanumd.s like: VSMU XENIr· . The
default is VSheU. IF VShell is set, the wb form of commands given appear iD the
upward scrolling output window. If XENlX is specified. the XENlX command line
which wbgenerated will be shown instead.

Perm.iuioasOptioD

The Permissions Option command allows changing the access permissions on files
anddirectories. The functionality isthe same as the chmod(C) command. Consult the
chmocl manual page if you do not undentand thecoDCept ofXENlX permissiCQS.

In the """,e: field enter the name of the file or directory you wish to aha the
pcrmissionson. You may only alter the permissions on files and din:ctories yoo own.
There are four switches, who: .retJd: ,wrile: .andu~c..,e:.

The who: switch has four settings. All. Me • Group and OlMrs. All is the default. All
refers to yourself. those with the same group id as yourself and others. Me refers to
yourself. Group refers and aU others with yourgroupid. OIMrsreferstothoseoutside
yourgroup.

The read. write and execute switches have two settings. yes and DO. The defauh is yes
forMe. and no forGroupandOIMrs . Thisgram.sthegiventypeofpermissiontothose
specified in the who: switch. No takes away the gi\'en type of permission fiom those
specified in the who: switch.

11.4.3 Print

The Print command puts a file or files in the queue fOl'your lineprinter. In thejikTllll1Je:
option field. enterthe file or files yoo wall1 toprint.

11-7

X~IX Operations Guide

11.4.4 Quit

The Quit command exits the Visual Shell. The only option is ETZler Y to confinn: .
Enter'Y' «'y' ifyoureaUywanttoquit. Anyotherkcycancclstbequit.

11.4,5 RUD

The Run command executes a program or sheD saipt. The 1IIlme: option takes the
name of an executable file. In the parameterJ: option field cDleI' Bags to pas. to the
executable file. The output: option can specify a file to redirect output to or anoth«
program to send the output to. Ent« a vertical bar 'I' in the output field to use the pipe
menu.

It is also possible to run an executable tile by highlighting the name of the file in the
View Window and pressing C =' .

11.4.6 View

The View command allows you to inspect wilbon altering the contents of files and
directories. View is also available at any time for an item highlighted in the View
Window by lRuin, '=t. Sec the section above labelled 'View Window' for the
dctailsofusina View.

To aher the height and characteristics of the View Window. use the 'Window' menu
opticn. See the section below labcllccl' 'Window" •

Jfyou have invoked View from the menu, eDlel' the name of the file or directory you
wish to view in the VIEW name: field, orselectfnm adirec:t«y view window.

To return ucm lIlY View action to the IRviously displayed View Window. press the
minus key' -'.

If you View a DOn-executable binary tile. non-ascii characters are displayed as the
character '@'.

11.4.7 WlDdow

The Window command allers the height and mlraw charaderisticsofthe Visual SheD
Vicw Window.

The

WINDOW redraw: Y CI (No)

lwitchtunuonor OffRchw of the view window aftcrrunninaacommaad.

The MigluinJiMS: field changes the number oflines displayed in the view window.
The minimum window height is I linea. The default window height ilS liDe •. The
maximum windowhei&bt is I S lines.

11-8

Using Tbf V filial SbclJ

11.4.8 Pipes

XENlX allows output from one program to be passed to another program or to be put in
a file. This is ca11ed 'piping' or 'pipe lining '. If the output is placed in a file it is said to be
'redirected' . Piping is supported in the Visual Shell through the pipe menu.

The Pipe menu is anvoked by emenng a vertical bar 'I' character in any option field
named output:. For instance. the Run main menu and the Pipe menu itself have an
output: field. The available Pipe menu commands are COUIK, Gel. Head. More. Run.
SortandTail. Each Pipe menu sub-command also has anOfdput: field. whichaDows
constructioo of pipelines of arbitrary length.

11.4.9 CauDt

Count counts words. lines and characters in the input pipe. The default is all of the
above. There is a switch for each type of item to count. The Count Pipe Menu option
corresponds to the XENlX cmunand we. Consult the manual page we(C) for the
functionality .

11.4.10 Get

Gel loots for patterns in the input pipe. The pattern may be verbatim. or you may
specify a "regular expression" to loot for. Regular expressions may coIlain
'wildcard' characters which represent sets of Slrings. Consult the manual page
grep(C) forthe available wildcard characters.

The first Gel switch isUnmtltched(Yes)No. lfyou spc:cify Yes (the default). aU lines
containing the given pattern wiD be output. lfUmnatched is set to off. aU lines Jl(t

containingthe givenpattcrn wiD be output.

The second Gel switch is ignore case: which suppresses the case while looting for the
regular expression. The default isoff.

The third Get switch is line nwnbers: • which reports the line in the iqNt stream which
the regular expression was matched on. The default is 011.

11.4.11 Head

Head prints a specified number oflines of the input stream staning from the first line.
The lines: field may be set to specify the number of lines at the head of the input stream
toprint. The default isS lines.

The Head Pipe Menu option corresponds to the XENlX cOlDllllIXl head. Consult the
manual page bead(C) forthe functionality.

1l.4.1l More

More allows viewing an input stream one screenat a time. The More Pipe Menu option
invokes the XENlX canmand mme. Consuh the manual page more(C) for the
functionality .

11-9

XENIX Operaaioas Guide

11.4.13 RD.

The Run Pipe Menu option aDows the specification of any command ad in the Pipe
menu. The functionality is the same as the VisualShellMainMenu OptiOll "Run".

11.4.14 Sort

The XENIX 8011 utility Cln be invoked through the Son Pipe menu option. The input
stream is soned.

The first Son switch is ord~,: < >. Select '>' , the default, to sort in alCCDdiD& order.
Select' <' to sort indescendina mlcr.

The second Sort switdllUppreSICS the case of characters in the sort. The default boffo

The third Son switch sorts the input sueamassuming an initial D\1IDeJ'ic field inthe input
stream. If this switch is off. initialll.llllben wiD be sorted in ascii order. which means
that a line beginning wilh '.0' will be output before the liDe beginniua with '2'. The
default is off.

The fourth Son switch SOItsthe input strcamindictionary order. rather than ascii order.

The Son Pipe Menu option cmespoDds to the XENIX c:ommand sort. Consuh the
manual page 5Ort(C) f«the funaionality.

11.4.15 Tal

Tail prints a specified number of lines of the input stream up to the end of the stream.
The IiM&: field may be set to specify the number of lines to prim. The defauk is 1 S
lines.

The Tail Pipe Menu q»tion corresponds to the XENIX command tail. Consult the
manual page taI(C) fortbefuDctionaJity.

11-10

Appendix A
Ed

A.I Introduction A-I

A.2 Demonstration A-I

A.3 Basic Concepts A-2
A.3.l The Editing Buffer A-2
A.3.2 Commands A-2
A.3.3 Line Numbers A-2

A.4 Tasks A-2
A.4.l Entering and Exiting The Editor A-3
A.4.2 Appending Text: a A-3
A.4.3 WritingOutaFile:w A-4
A.4.4 Leaving The Editor: q A-S
A.4.S Editing A New File: e A-6
A.4.6 Changing the File to Write Out to: r A-6
A.4.7 Reading in a File: r A-7
A.4.8 Displaying Lines On The Screen: p A-8
A.4.9 Displaying The Current Line: dot (.) A-lO
A.4.10 Deleting Lines: d A-I2
A.4.11 Perrorming Text Substitutions: s A-13
A.4.12 Searching. A-IS
AA.13 Changing and Inserting Text: c and i A-19
A.4.14 Moving Lines: m A-20
A.4.lS Performing Global Commands: gand v A-22
A.4.16 Displaying Tabs and Control Characters: I A-24
AA.17 Undoing Commands: u A-25
A.4.18 Marking Your Spotin aFile: k A-2S
A.4.19 TransrerringLines: t A-26
A.4.20 Escaping to the Shell: ! A-26

A.5 Context and Regular Expressions A-27
A.5.1 Period: (.) A-28
A.S.2 Backslash: \ A-30

A.S.3 Dollar Sign: $ A·32
A.S.4 Caret: A A.33
A.S.S Star: • A·33
A.S.6 Brackets: (and J A·36
A.S.7 Ampersand: & A-37
A.S.S Su bstituting New Lines A·38
A.S.9 Joining Lines A-39
A.S.IO Rearranging aLine: \(and \) A-30

A.6 Speeding Up Editing A-40
A.6.l Semicolon: ; A-42
A.6.2 Interrupting the Editor A-44

A.7 Cutting and Pasting with the Editor A-44
A.7.1 Inserting One File Into Another A-44
A.7.2 WritingOutPartoraFile A-4S

A.S Editing Scripts A-46

A.O Summary or Commands A-47

Ed

A.I Introduction

Ed is a text editor used to create and modiry text. The text is normally a
document, a propam, or dat.a for a propam, thus e.ris a truly ,eneral purpose
program. Note that the line editor tZ, available with other XENIX paekages is
very similar to t 4, and thererore this chapter can be used as an introduction to
ez as well as to t 4.

A.2 Demonstration

This section leads you through a simple session with t.r, pving you a feel ror
how it. is used and how it works. To begin the demoIl!tration, invoke e.r by
typing:

ed

This invokes the editor and begins your editing session. An asterisk U."
prompts for commands to be entered. Initially, you are editing a temporary file
that you can later copy to any file that you name. This temporary file is called
the "editing buffer ," because it acts as a buffer between the text you enter &nd
the file that you will eventually write out. your changes to. Typically, the first
thing you will want to do with an empty buffer is add text to it. For example,
after the prompt, type:

a
this is line 1
this is line 2
this is line 3
this is line 4
CNTRL-D

This "appends" tour lines of text to the buffer. To view theR lines on your
screen, type,

l,4p

where the "1,4" specifies a line number range and the p command "prints" the
specified lineson the screen.

Now type

2p

to view line number two. Next type just

p

This prints out the current line on the screen, which happens to be line number

A·I

XENIX User's Guide

two. By dera.ult, most t Ii commands opera.te on only the current line.

A.3 Basic Concepts

This section illustrates some or the basic concepts that you need to understand
to effectively use t Ii.

A.3.1 The Editinl Buffer

Each time you invoke t Ii, an area in the memory or the computer is allocated on
which you will perrorm aU or your editing operations. This area is called the
"editing buffer". When you edit a file, the file is copied into this buffer where
you wm work on the copy or the original file. Only when you write out your file
do you affect the original copy or the file.

A.3.! Commands

Commands are ent.ered by typing them at your keyboard. Like normal XEN1X
commands, en try or a command is ended by typing a NEWLINE. Alter you type
NEWLINE the command is carried out. In the roUowing examples, we wilJ
presume that entry or each command is completed by typing a NEWLINE,
although this will not be explicitly shown in our examples. Most commands are
single characters that can be preceded by the specification of a lin~ number or a
line number range. By derault, most eommands operat.e on the "current line",
described below in the section on "Line Numbers". Many commands tue
filename or string arguments that are used by the command when it is
executed.

A.3.3 Line Numbers

Any time you execute a command that changes the number or lines in the
editing buffer, eli immediately renumbers the Jines. At all times, every line in
the edit.ing buffer has a line number. Many editing commands will take either
single line numbers or line number ranges as prefixing arguments. These
arguments wm normally speciry the actual lines in the editing buffer that are to
be affected by the given command. By derault, a special line number called
"dot" specifies the current line.

A.4 Task.

This section discusses the tasks you perform in everyday editing. Frequently
used and essential tasks are discussed near the beginning or t.his Rct.ion.
Seldom- used and special-purpose commands are discussed later.

A·2

Ed

A.4.1 Entering and Exiting The Editor

The simplest way to invoke etlis to type:

ed

The most common way, however, is to type:

ed fileru,me

where file n, a.me is the name of a new or existing file.

To exit the editor, all you need to do is type:

q

If you have not yet written out the changes you have made to your file, edwarns
you that you will lose these changes by printing the message:

!

If you still want to quit, type another q. In most cases you will want to exit by
typing:

w
q

so that you first write out your changes and only tAen, exit the editor.

A.4.2 Appending Text: a

Suppose that you want to create some text starting from scratch. This section
shows you how to put text in a file, just to get started. Later we'll talk about
how to change it.

'Vhen you first invoke etl, it is like working with a blank piece of paper-there
is no text or information present. These must be supplied by the person using
e tl, usually by typing in the text, or by reading it in from a file. We will start by
typing in some text and discuss how to read files later.

In etl terminology, the text being worked on is said to be "kept in a buffer".
Think of the buffer as a workspace, or simply as a place where the information
that you are going to be editing is kept. In effect, the buffer is the piece of paper
on which you will write things, make changes, and finally file away.

You tell etlwhat to do to your text by typing instructions called "commands".
Most commands consist of a single letter, each typed on a separate line. Etl
prompts with an asterisk (*). This prompting can be turned on and off with the

A-3

XENIX User's Guide

prompt command, P.

The first command we will discuss is append (a) written as the letter "a" on a
line by itsell. It means "append (or add) text lines to the buffer, as they are
typed in." Appending is like writing new material on a piece 01 paper.

To enter lines of text into the buffer, just type an "a", lollowed by a RETURN,
followed by the lines oltext you want, like this:

a
Now is the time
for all good men
to come to the aid 01 their party.

To stop appending, type a line that contains only a period. The period (.) tells
ttl that you have finished appending. (You can also use eNTRL-D, but we will
use the period throughout this discussion.) II etlseems to be iporingyou, type
an extra line with just a period (.) on it. You may find you've added some
gar bage lines to your text, which you will have to take out later.

After appending is completed, the buffer contains the following three lines:

Now is the time
tor all good men
to come to the aid 01 their party.

The a and. aren't there, because they are not text.

To add more text to what you already have, type another a command and
continue typing your text.

If you make an error in the commands you type to etl, it will tell you by
displaying the message:

!
error mel"'ge

A.4.3 Writing Out a File: w

You will probably want to save your text lor later use. To write out the
contents 01 the buffer into a file, use the write (w) command lollowed by the
name or the file that you want to write to. This copies the contents 01 the buffer
to the specified file, destroying any previous contents of the file. For example,
to save the text in a file named tezt, type:

w text

A-4

Ed

Leave a space between wand the filename. Etl responds by printing the
number or characters it has written out. For instance, etlmight respond with

68

(Remember that blanks and the newline character at the end or each line are
included in the character count.) Writing out a file just makes a copy of the
text-the buffer's contents are not disturbed, so you can go on adding text to it.
If you invoked etl with the command "ed fil'ft.4me", then by default a w
command by itseIrwill write the buffer out to file ft.4me.

This is an important point. Etl at all times works on a copy of a file, not the file
itseU. No change in the contents or a file takes place until you give a w
command. Writing out the text to a file from time to time as it is being created
is a good idea. If the system crashes or ir you make some horrible mistake, you
will lose all the text in the buffer, but any text that was written out to a file is
relatively sare.

AAA Leaving The Editor: q

To terminate a session with etl, save the text you're working on by writing it to
a file using the w command, then type:

q

The system responds with the XENIX prompt character. If you try to quit
withou t writing out the file e d will print

!

At that point, write out the text ir you want to save it; if not, typing another
"q" will get you out of the editor.

Exercise

Enter e d and create some text by typing:

a
... text ...

Write it out by typing:

w jileft.4me

Then leave e dby typing:

A-5

XENIX User'. Guide

q

Next, use the cat command to display the file on your terminal screen to see
that everything has worked.

A.4.o Editinl A New File: e

A common way to get text into your editing buffer is to read it in from a file.
This is what you do to edit text that you have saved with the w command in a
previous session. The edit (e) command places the entire contents of a file in
the buffer. It you had saved the three lines "Now is the time", etc., with a w
command in an earlier session, the e 4 command

e text

would place the entire contents otthe file tezt into the buffer and respond with

68

which is the number or characters in ttzt. 1/ .nrtAin, il Glrt.d,i" tAt buffer, if
i, deletedfir,t.

If you use the e command to read a file into the buffer, then you don't need to
use a filename after a subsequent w command. Ed remembers the last filename
used in an e command, and w will write to this file. Thus, a good way to operate
is this:

ed
e file
[e ditin, ,uftonJ
w
q

This way, you can type w from time to time and be secure in the knowledge that
if you typed the filename right in the beginning, you are writing out to the
proper file each time.

A.4.6 Changing the File to Write Out to: r

You can find out the last file written to at any time using the file (I) command.
Just type r without a filename. You can also change the name or the
remembered filename with r. Thus a useful sequence is

ed precious
f junk

which gets a copy or the file named preciouI, then uses t to save the text in the
fileiunk. The original file will be preserved as preeioal.

A-a

Ed

A.4.7 Reading in a File: r

Sometimes you want to read a file into the buffer without destroying what is
already there. This function is useful for combining files. This is done with the
read (r) command. The command

r text

reads the file tezt into your editing buffer and adds it to the end of whatever is
already in the buffer. For example, pretend that you have performed a read
after an edit:

e text
r text

The buffer now contains two copies of tezt (i.e., six lines):

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, after the reading operation is complete r prints
the number of characters read in.

Exercise

Experiment with the e command by reading and printing various files. You
may get the error message

?name
cannot open input file

where name is the name of a nonexistent file. This means that the file doesn't
exist, typically because you spelled the filename wrong, or perhaps because you
do not have permission to read from or write to that file. Try alternately
reading and appending to see how they work. Verify that the command

ed file. text

is equivalent to

ed
e file.text

A-7

XENIX User's Guide

A.4.8 Displaying Lines On The Screen: p

Use the "print"(p) command to print the contents of the editing buffer (or
parts of it) on the terminal screen. Specify the lines where you want !>linting to
begin and where you want it to end, separated by a comma and followed by the
letter "p". Th us, to print the first two lines of the buffer (that is, lines I through
2) type:

1,2p

Ed responds with:

Now is the time
fOl all good men

Suppose you want to print tJll the lines in the buffer. You could use "1,3p" as
above if you knew there were exactly 3 lines in the buffer. But you will rarely
know how many lines there are, so ed provides a shorthand symbol for the line
number of the last line in the buffer-the dollar sign ('). Use it this way:

I,Sp

This will print all the lines in the buffer (from line 1 to the last line). Uyou want
to stop the printing before it is finished, press the INTERRUPT key. EJ then
displays

!
interrupt

and waits ror the next command.

To print the le,tline of the buffer, use:

Sp

You can print any single line by typing the line number, followed by a p. Thus

Ip

produces the response

Now is the time

which is the first line otthe buffer.

In fact, tJ lets you abbreviate even further: you can print any single line by
typingju,t the line number; there's no need to type the letter p. Iryou type

A-8

Ed

S

tdprints the last line orthe buffer.

You can also use S in combinations like

S-I,Sp

which prints the last two lines or the buffer. This helps when you want to see
how far you are in your typing.

The next step is to use address arithmetic to combine the line numbers like dot
(.) and dollar sign ($) with plus (+) and minus (-). (Note that "dot" is
shorthand ror the current line, and is discussed in a later section.) Thus

$-1

prints the next to last line or the current file (that is, one line berore the line S).
For example, to recall how rar you were in a previous editing session

$-5,$p

prints the last six lines. (Be sure you understand why it's six, not five.) It there
aren't six lines in the file, you'll get an error message.

The command

.-3,.+3p

prints rrom three lines berore the current line (line dot) to three lines after. The
plus (+) can be omitted:

.-3,.3p

is identical in meaning.

Another area in which you can save typing effort in specirying lines is to use plus
and minus as line numbers by t.hemselves. For example

by itselC is a command to move back one line in the file. In fact, you can string
several minus signs together to move back that many lines. For example

moves back three lines, as does

-3

A·9

XENIX User's Guide

Thus

-3,+3p

is also identical to

!.-3p+3p

A.4.0 Displaying The Current Line: dot (.)

Suppose your editing buffer still conta.ins the following six lines:

Now is the time
for all good men
to come to the aid or their party.
Now is the time
for all good men
to come to the aid of their party.

It you type

t,3p

eddisplays

Now is the time
ror all good men
to come to the aid of their party.

Try typing:

p

This prints

to come to the aid of their party.

which is the third line of the buffer. In fact, it is the last (most recent) line that
you have done anything with. You can repeat this p command without line
numbers, and edwill continue to print line 3.

This happens because e d maintains a. record of the last line that you did
anything to (in this case" line 3, which you just printed) so that it can be used
instead of an explicit line number. The line most recently acted on is rererred to
with a period (.) and is called "dot". Dot is a line number in the same way that
dollar ($) is; it means "the current line", or loosely, "the line you most recently
did something to". You can use it in several ways. One possibility is to type:

A-tO

Ed

.,Sp

This will print all the lines rrom (and including) the current line clear to the end
ofthe buffer. In our example these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p command
sets dot to the number or the last line printed. In the example above, p sets dot
to6.

Dot is orten used in combinations like this one:

.+1

Or equivalently:

.+lp

This means "print the next line" and is one way or stepping slowly through the
editing buffer. You can also type

.-1

This means "print the line before the current line". This enables you to go
backwards through the file ir you wish. Another userul command is something
like

.-3,.-lp

which prints the previous three lines.

Don'tforget that tdl ofthe,e cha.nge the fltdue of dot. You can find out what dot
is at any time by typing:

.=
Ed responds by printing the value or dot. Essentially, p can be preceded by
zero, one, or two line numbers. Uno line number is given, edprintsthe "current
line", the line that dot refers to. If one line num ber is given (with or without the
letter p), ed prints that line (and dot is set there); and ir two line numbers are
given, edprints all the lines in that range (and sets dot to the last line printed).

A-ll

XENIX User's Guide

If two line n urn bers are spec ified, the first cannot be bigger than the second.

Pressing RETURN once causes printing ot the next line. It is equivalent to:

.+lp

Try it. Next, try typing a minus sign (-) by itself; it is equivalent to typing

.-lp

Exercise

Create some text using the a command and experiment with the p eommand.
You will find, tor example, that you can't print line 0 or a line beyond the end ot
the buffer, and that attempts to print lines in reverse order using "3,lp" do not
work.

A.4.10 Deleting Lines: d

Suppose you want to get rid ot the three extra lines in the buffer. Use the delete
(d) command. Its action is similar to that or p, except that d deletes lines
instead of printing them. The lines to be deleted are specified ror d exactly as
they are ror p. Thus, the command

4,Sd

deletes lines 4 through the end. There are now three lines lett in our example, as
you can check by typing:

l,lp

Notice that S now is line 3! Dot is set to the next line arter the last line deleted,
unless the last line deleted is the last line in the buffer. In that case, dot is set to
S.

Exercise

Experiment with the a, e, r, w, p, and d commands until you are sure that you
know what they do, and until you understand how dot (.), dollar (S), and line
numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a appends
lines tl./ter the line number that you specify (rather than after dot); that r reads
in a file 4/ter the line number you speciry (not necessarily at the end ot the
buffer); and that w writes out exactly the lines you specify, not the whole buffer.
These variations are sometimes userul. For instance, you can insert a file at the

A-l2

Ed

beginning ofa buffer by typing

Or jilena.me

andyou can enter lines at the beginningofthe buffer by typing:

Oa
(input fezt here]

Notice that typing

.w

is very different from typing

w

since the former writes out only a single line and the latter writes out the whole
file.

A.4.11 Performing Text Substitutions: 8

One of the most important e d commands is the substitute (8) command. This is
the command that is used to change individual words or letters within a line or
group of lines. It is the command used to correct spelling mistakes and typing
errors.

Suppose that, due to a typing error, line 1 says:

Now is th time

The letter "e" has been left off of the word "the" . You can use s to fix this up as
follows:

ls/th/the/

This substitutes for the characters "th", the characters "the", in line I. To
verify that the substitution has worked, type

p

to get

Now is the time

which is what you wanted. Notice that dot must be the line where the
substitution took place, since the p command printed that line. Dot is always

A-13

XENIX User's Guide

set this way with the s command.

The syntax for the substitute command follows:

[,tarting-line,encling-line]s/ pattern/ replau me nt/ cmcl,

Whatever string or characters is between the first pair of slashes is replaced by
whatever is between the second pair, in all the lines between ,tarling-line and
ending-line. Only the first occurrence on each line is changed, however.
Changing et'erroccurrence is discussed later in this section. The rules for line
numbers are the same as those for p, except that dot is set to the last line
changed. (If no substitution takes place, dot is not changed. This causes
printing of the error message:

!
search string not found

Thus, you can type

1 ,Ss / spe ling/ spe lling/

and correct the first spelling mistake on each line in the text.

If no line numbers are given, the s command assumes we mean "make the
substitution on line dot", so it changes things only on the current line. This
leads to the very common sequence

s/something/something else/p

which makes a correction on the current line, then prints it to make sure the
correction worked out right. If it didn't, you can try again. (Notice that the pis
on the same line as the s command. With few exceptions, p can Collow any
command; no other multicommand lines are legal.)

It is also legal to type

s/string//

which means "change the first string of characters to nothing" or, in other
words, remove them. This is useful for deleting extra words in a line or
removing extra letters rrom words. For instance, iryou had

Nowxx is the time

you could type

s/xx//p

to get

A-I4

Ed

Now is the time

Notice that two adjacent slashes mean "no characters", not a space. There il a
difference.

Exercise

Experiment with the substitute command. See what happens ir you substitute
a word on a line with several occurrences ot that word. For example, type:

a
the other side or the coin

s/the/on the/p

This results in:

on the other side of the coin

A substitute command changes only the firlt occurrence otthe first string. You
can change all occurrences by adding a g (ror "global") to the s command, like
this:

sl ... I ... Ig

Try using characters other than slashes to delimit the two sets or characters in
the s command-anything should work except spaces or tabs.

A.4.12 Searching

Now that you've mastered the substitute command, you can move on to
mastering another important concept: context searching.

Suppose you have the original three-line text in the buffer:

Now is the time
tor all good men
to come to the aid or their party.

Suppose you want to find the line that contains the word "their", so that you
can change it to the word "the". \Vith only three lines in the buffer, it's pretty
easy to keep track or which line the word "their" is on. But ir the buffer
contained several hundred lines, and you'd been making changes, deleting and
rearranging lines, and so on, you would no longer really know what this line
number would be. Context searching is simply a method or specirying the
desired line, regardless ot its number, by specifying a textual pattern contained
in the line.

A-IS

XENIX User's Guide

The way to say "search ror a line that contains this particular string or
characters" is to type:

/string or characters we want to find/

For example, the etlcommand

/their/

is a context search sufficient to find the desired line-it will locate the next
occurrence or the characters between the slashes (i.e., "their"). Note that you
do not need to type the final slash. The above search command is the same as
typing:

/their

The search command sets dot to the line on which the pattern is found and
prints it ror verification:

to come to the aid of their party.

"Next occurrence" means that etl starts looking ror the string at line ".+1",
searches to the end of the buffer, then continues at line 1 and searches to line
dot. (That is, the search "wraps around" from' to 1.) It scans all the lines in the
buffer until it either finds the desired line or gets back to dot. It the given string
of characters can't be found in any line, etlprints the error message:

?
search string not found

Otherwise, e tl prints the line it found. You can also search backward, in a file
ror search strings by using question marks instead or slashes. For example

!thing!

searches backwards in the file ror the word "thing" as does

!thing

This is especially handy when you realize that the string you want is backwards
rrom the current line.

The slash and question mark are the onty characters you can use to delimit a
context search, though you can use any character in a substitute command. It
you get unexpected results using any or the characters

• • \ &

read Section AS, "Context and Regular Expressions".

A-I6

Ed

You can do both the search for the desired line anti a substitution at the same
time, like this:

Itheir Is/their /the/p

Thisyields:

to come to the aid of the party.

The above command contains three separa.te actions. The first is a context
search for the desired line, the second is the substitution, and the third is the
printing of the line.

The expression" /their /" is a context search expression. In their simplest rorm,
all context search expressions are like this-a string or characters surrounded
by slashes. Context searches are interchangeable with line numbers, 80 they
can be used by themselves to find and print a desired line, or as line numbers ror
some other command, like s. They were used both ways in the previous
examples.

Suppose the buffer contains the three ramiliar lines

Now is the time
for all good men
to come to the aid or their party.

The etIline numbers

/Now/+I
/good/
/party/-l

are all context search expressions, and they all rerer to the same line (line 2). To
make a change in line 2, you could type

/Now 1+ ls/good/bad/

or

/good/s/good/bad/

or

/pa.rty / -lsI good/bad/

A-17

XENIX User's Guide

The choice is dictated only by convenience. For instance, you could print all
three lines by typing

/Now/,/party/p

or

/Now/,/Now/+2p

or any similar combination. The first combination is better iCyou don't know
how many lines are involved.

The basic rule is that a context search expression is the same as aline number,
so it can be used wherever aline number is needed.

Suppose you search ror

/horrible thingl

and when the line is printed you discover that it isn't the "horrible thing" that
you wanted, so it is necessary to repeat the search. You don't have to retype the
search, because the construction

II
is a shorthand expression Cor "the previous thing that was searched Cor",
whatever it was. This can be repeated.as many times as necessary. You can also
go backwards, since

searches Cor the same thing, but in the reverse direction.

You can also use I I as the lert side or a substitute command, to mean "the most
recent pattern". For example, examine:

/horrible thingl

Ed prints the line containing" horrible thillg" .

sl/good/p

This changes "horrible thing" to "good". To go backwards and change
"horrible thing" to "good", type:

!!s/Igoodl

A·18

Ed

Exercise

Experiment with context searching. Scan through a body of text with several
occurrences or the same string or characters using the same context search.

Try using context searches as line numbers ror the substitute, print, and delete
commands. (Context searches can also be used with the r, W, and a
commands.)

Try context searching using !tezt! instead or / tezt/. This scans lines in the
buffer in reverse order instead or normal order, which is sometimes useful iryou
go too rar while looking for a string or characters. It's an easy way to back up in
the file you're editing.

ICyou get unexpected results with any of the characters

• • \ &

read Section A 4, "Context and Regular Expressions".

A.4.13 Changing and Inserting Text: c:: and i

This section discusses the change (c::) command, which is used to change or
replace one or more lines, and the insert (i) command, which is used for
inserting one or more lines.

The c:: command is used to replace a number or lines with different lines that you
type at the terminal. For example, to change lines ".+1" through "$" to
something else, type:

.+I,$c
type the line. 01 tezt you want here ...

The lines you type between the c:: command and the dot (.) will replace the
originally addressed lines. This is useful in replacing a line or several lines that
have errors in them.

It only one line is specified in the c command, then only that line is replaced.
(You can type in as many replacement lines as you like.) Notice the use of a
period to end the input. This works just like the period in the append command
and must appear by itself on a new line. If no line number is given, the current
line specified by dot is replaced. The value or dot is set to the last line you typed
in. Note that the terminating period and the line referenced by dot are
completely different: the first is used simply to terminate a command, the
second points at a specific line or text.

XENIX User's Guide

The i command is similar to the append command. For example

/string/i
type the line. to be "n,eried "ere ...

inserts the given text be/ore the next line that contains "string". The text
between i and the terminating period is "".erted be/ore the specified line. Uno
line number is specified, dot is used. Dot isset to the last line inserted.

Exercise

The c command is like a combination or delete rollowed by insert. Experiment
to verity that

,tart,endd
i
(teztJ

is almost the same as

'tart, end c
(tezt)

These are not preci,e/g the same it the last line gets deleted.

Experiment with a and i to see that they are similar, but not the same. Observe
that

line-"umbera
(teztJ

appends alter the given line, while

Une-"umberi
[tezt)

inserts be/ore it. It no line number is given, i inserts betore line dot, while a
appends after line dot.

A.4.14 Moving Lines: m

The move (m) command lets you move a group ot lines trom one place to
another in the buffer. Suppose you want to put the first three lines or the buffer

A-20

at the end instead. You c oultl do it by tYPinl

1,3w temp
Sr temp
1,3d

Ed

where temp is the na.me or a temporary file. However, you can do it more easily
with the m command:

1,3mS

This will move lines 1 through 3 to the end of the file.

The general case is

,tart·li rat, eratl·liratm alter.tAi,·1i rat

There is a third line to be specified: the place where the moved text lets put. or
course, the lines to be moved can be specified by context searches. Uyou had

First paragraph
end or first paragraph.
Second paragraph
end or second paragraph.

you could reverse the two paragraphs like this:

/Second/,/end or second/m/First/-I

Notice the -I. The moved text goes altt r the line mentioned. Dot gets set to the
last line moved. Your file will now look like this:

Second paragraph
end or second paragraph
First paragraph
end or first paragraph

As another example or a rrequent operation, you can reverse the order oC two
adjacent lines by moving the first line arter the second line. Suppose that you
are positioned at the first line. Then

m+

moves line dot to one line after the current line dot. Uyou are positioned on the
second line,

m--

moves line dot to one line after the current line dot.

A·21

XENIX User's Guide

The m command is more succinct than writing, deleting and rereading. The
main difficulty with the m command is that if you use patterns to specify both
the lines you are moving and the target, you have to take care to speciry them
properly, or you may not move the lines you want. The result or a bad m
command can be a mess. Doing the job one step at a time makes it easier for you
to veriry at each step that you accomplished what you wanted. It is also a good
idea to issue a w command berore doing anything complicated; then if you
make a mistake, it's easy to back up to where you were. '

For more information on moving text, see Section A4.18, "Marking Your Spot
in aFile:k".

A.4.16 Performing Global Commands: g and v

The "global" commands g and v are used to execute one or more editing
commands on allUnes that either contain (g) or don't contain (v) a specified
pattern.

For example, the command

gfXENIX/p

prints all lines that contain the word "XENIX". The pattern that goes between
the slashes can be anything that could be used in a line search or in a substitute
command; exactly the same rules and limitations apply.

For example,

g/,,\./p

prints all the troff Cormatting commands in a file (lines that begin with".").
(For an explanation or the use otthe caret (") and the backslash (\) see Section
A.S, "Context and Regular Expressions".

The v command is identical to g, except that it operates on those lines that do
not contain an occurrence or the pattern. (Mnemonically, the "v" can be
thoughtor as part of the word "inverse".

For example

v/,,\./p

A-22

Ed

prints all the lines that don't begin with a period (i.e., the actual text lines) ..

Any command can follow g or v. For example, the following command deletes
all lines that begin with".":

This command deletes all empty lines:

Probably the most usetul command that can tollow a global command is the
substitute command. For example, we could change the word "Xenix" to
"XENIX" everywhere, and verify that it really worked, with

g/Xenix/s/ fXENJXfgp

Notice that we used II in the substitute command to mean "the previous
pattern", in this case, "Xenix". The p command executes on each line that
matches the pattern, not just on those in which a substitution took place.

The global command makes two passes over the file. On the first pass, all lines
that match the pattern are marked. On the second pass, each marked line is
examined in turn, dot is set to that line, and the command executed. This
means that it is possible ror the command that rollows a g or v command to use
addresses, set dot, and so on, quite freely. For example:

g/,,\.P/+

prints the line that follows each" .P" command (the signal tor a new paragraph
in some rormatting packages). Remember that plus (+) means "one line past
dot". And

searches ror each line that contains the word "topic", scans backwards until it
finds a line that begins with a ".H" (a heading) and prints it, thus showing the
headings under which "topic" is mentioned. Finally

g(\.EQ/+,/,,\.EN/-p

prints all the lines that lie between lines beginning with" .EQ" and" .EN"
formatting commands.

The g and v commands can also be preceded by line numbers, in which case the
lines searched are only those in the range specified.

It is possible to give more than one command under the control of a global
command. For example, suppose the task is to change "x" to "y" and "a" to
"b" on all lines that contain Ilthing". Then

A-23

XENIX User's Guide

g/thing/s/x/y /\
s/a/b/

is sufficient. The backslash (\) signals the g command that the set of
commands continues on the next line; the g command terminates on the first
line that does not end with a backslash.

Note that you cannot use a substitute command to insert a new line within a g
command. Watch out ror this.

The command

g/x/s/ /y/\
s/a/b/

does not work as you might expect. The remembered pattern is the last pattern
that was actually executed, so sometimes it will be "x" (as expected), and
sometimes it will be "a" (not expected). You must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i commands as part of a global command.
As with other multiline constructions, add a backslash at the end of each line
except the last. Thus, to add an ".nr' and ".sp" command before each" .EQ"
line, type:

gt\·EQ/i\
.nl\
.sp

There is no need ror a final line containing a period (.) to terminate the i
command, unless there are rurther commands to be executed under the global
command.

A.4.16 Displaying Tabs and Control Characters: I

Edprovides two commands ror printing the contentsorthe text you are editing.
You should already be ramiliar with p, in combinations like

I,Sp

to print all the lines you are editing, or

s/abc/der/p

t·o change "abe" to "der' on the current line. Less familiar is the "list" (I)
command which gives slightly more information than p. In particular, I makes
visible characters that are normally invisible, such as tabs and backspaces. U

A-24

Ed

you list a line that contains some of these, I prints each tab as ">" and each
backspace as U <". This makes it much easier to correct the sort or typing
mistake that inserts extra spaces adjacent to tabs, or inserts a backspace
followed by a space.

The 1 command also "folds" long lines ror printing. Any line that exceeds 72
characters is printed on multiple lines; each printed line except the last is
terminated by a backslash (\), so you can tell it was folded. This is useful ror
printing lines longer than the width or your terminal screen.

Occasionally, the I command will print a string of numbers preceded by a
backslash, such as \07 or \16. These combinations are used to make visible
characters that normally don't print, like form reed, vertical tab, or bell. Each
backslash-number combination represents a single ASCII character. Note that
numbers are octal and not decimal. When you see such characters, be wary:
they may have surprising meanings when printed on some terminals. Orten
their presence indicates an error in typing, because they are rarely used.

A.4.17 Undoing Commands: u

Occasionally you will make a substitution in a line, only to realize too late that
it was a mistake. The undo (u) command, lets you "undo" the last substitution.
Thus the last line that was substituted can be restored to its previous state by
typing:

u

This command does not work with the g and v commands.

A.4.1S Marking Your Spot in a File: k

The mark command, k, provides a facility for marking a line with a particular
name, so that you can later reference it by name, regardless of its actua.lline
number. This can be handy for moving lines and keeping tra.ck of them as they
move. For example

kx

marks the current line with the name "x". If a line number precedes the k, that
line is marked. (The mark name must be a single lowercase letter.) You can
refer to the marked line with the notation:

'x

Note the use of the single quotation mark (') here. Marks are very userul for
moving things around. Find the first line of the block to be moved and then
mark itwith:

A-25

XENIX User's Guide

ka

Then find the last line and mark it with

kb

Go to at the place where the text is to be inserted and type:

'a, 'bm.

A line can have only one mark name associated with it at any given time.

A.4.1 Q Transferring Lines: t

We mentioned earlier the idea ot saving lines that are hard to type or used
otten, to cut down on typing time. Ed provides another command, called t (for
transfer) tor making a copy or a group or one or more lines at any point. This is
otten easier than writing and reading.

The t command is identical to the m command, except that instead of moving
lines it simply duplicates them at the place you named. Thus

1,$tS

duplicates the entire contents that you are editing.

A common use tor t is to create a series ot lines that differ only slightly. For
example,you can type

a
Now is the time tor all good men to come to the aid of their party.

t. -(make a copy)

t. make third copy)
s/men/women/ IChange it a bit]

s/Now is/yesterday was/ change it a bit)

Your file will look like this:

Now is the time tor all good men to come to the aid of their party.
Now is the time tor all good women to come to the aid or their party.
Yesterday was the time tor all good women to come to the aid ot their party.

A.4.20 Escaping to the Shell: !

Sometimes it is convenient to temporarily escape from the editor to execute a
XENIX command without leaving the editor. The shell escape (!) command,

A-28

Ed

provides a way to do this.

Iryou type

!comm4nd

your current editing state is suspended, and the XENIX command you asked ror
isexecuted. When the command finishes, edwillsignalyou by printing another
exclamation (!); at that point you can resume editing.

A.5 Context and Regular Expressions

You may have noticed that things don't work right when you use characters
such as the period (.), the asterisk (.), and the dollar sign ($) in context searches
and with the substitute command. The reason is rather complex, although the
solution to the problem is simple. Ed treats these characters as special. For
instance, in a context search or the first string or the substitute command, the
period (.) means "any character", not a period, so

Ix·yl

means a line with an "x", any character, and a "y", not just aline with an "x", a
period, and a "y". A complete list of the special characters that ca.n cause
trouble follows:

s • \ I
The next few subsections discuss how to use these characters to describe
patterns of text in search and substitute commands. These patterns are called
"regular expressions", and occur in several other important XENIX commands
and utilities, including grep(C), ud(C) (See theXENIX Reference Manual).

Recall that a trailing g after a substitute command causes al1 occurrences to be
changed. With

s/this/thatl

and

s/this/thatl g

the first command replaces the jirBt "this" on the line with "that". If there is
more than one "this" on the line, the second form with the trailing g changes all
orthem.

Either rorm or the 8 command can be rollowed by p or 1 to print or list the
contents or the line. For example, all of the following are legal and mean
slightly different things:

A-27

XENIX User's Guide

s/this/that/p
s/this/that/l
s/this/that/ gp
s/this/that/ gl

Make sure you know what the differences are.

or course, any 5 command can be preceded by one or two line numbers to
specify that the substitution is to take place on a group of lines. Thus

1,Ss/mispell/misspell/

changes the fird occurrence of "mispell" to "misspell" in each line or the file.
But

l,Ss/mispell/misspell/ g

changes ever, occurrence in each line (and this is more likely to be what you
wanted).

It you add a p or I to the end of any of these substitute commands, only the last
line changed is printed, not all the lines. We will talk later about how to print
all the lines that were modified.

A.S.I Period: (.)

The first metacharacter that we will discuss is the period (.). On the left side or
a substitute command, or in a search, a period stands for czn,single character.
Thus the search

/x.y/

finds any line where "x" and "y" occur separated by a single character, as in

x+y
x-y
x y
xzy

and so on.

Since a period matches a single character, it gives you a way to deal with funny
characters printed by I. Suppose you have a line that appears as

th\07is

when printed with the I command, and that you want. to get. rid or the \07,
which represents an ASCII bell character.

A-28

Ed

The most obvious solution is to try

s/\0711

but this will fail. Another solution is to retype the entire line. This is
guaranteed, and is actually quite a reasonable tactic if the line in question isn't
too big. But ror a very long line, retyping is not the best solution. This is where
the metacharacter "." comes in handy. Since \07 really represents a single
character, ir we type

s/th.is/thisl

the job is done. The period matches the mysterious character between the "h"
and the "i", wha:tever itis.

Since the period matches any single character, the command

5/·1,/

converts the first character on a line into a comma (,), which very often is not
what you intended. The special meaning oC the period can be removed by
preceding it with a backslash.

& is true or many characters in ed, the period (.) has several meanings,
depending on its con text. This line shows all three:

.5/·/.1

The first period is the line number oC the line we are editing, which is called
"dot". The second period is a metacharacter that matches any single character
on that line. The third period is the only one that really is an honest, literal
period. (Remember that a period is also used to terminate input Crom the a and
i commands.) On the right side or a substitution, the period (.) is not special. Ie
you apply this command to the line

Now is the time.

the result is

.ow is the time.

which is probably not what you intended. To change the period at the end or
the sentence to a comma, type

sl\·I,/
The special meaning oC the period can be removed by preceding it with a
backslash.

A-2Q

XENIX User's Guide

A.S.2 Backslash:,

Since a period means "any character", the question naturally arises: what do
you do when you really want a period! For example, how do you convert the
line

Now is the time.

into

Now is the time!

The backslash (') turns ofT any special meaning that the next character might
have; in particular, ",." converts the"." rrom a "match anything" into a
literal period, so you can use it to replace the period in "Now is the time." like
this:

s/\·/!I

The pair of characters "\." is considered by ed to be a single real period.

The backslash can also be used when searching ror lines that contain a special
character. Suppose you are looking ror a line that contains

.DE

at the start or a line. The search

I·DEI

isn't adequate, ror it will find lines like

JADE
FADE
MADE

because the"." matches the letter "A" on each or the lines in question. But if
you type

I\.DEI

only lines that contain" .DE" are found.

The backslash can be used to turn ofT special meanings for characters other
than the period. For example, consider finding a line that contains a backslash.
The search

1\/

A-30

Ed

won't work, because the backslash (\) isn't a literal backslash, but instead
means that the second slash (/) no longer delimits the search. By preceding a
backslash with another backslash, you can search for a Jiteral backslash:

/\\/
You can search ror a forward slash (/) with

/\1/
The backslash turns off the special meaning of the slash immediately following
so that it doesn't terminate the slash-slash construction prematurely.

A miscellaneous note about backslashes and special characters: you can use any
character to delimit the pieces or an s command; there is nothing sacred about
slashes. (But you must use slashes ror context searching.) For instance, in & line
that contains several slashes already, such as

Ilexec I/sys.rort.go 1/ etc ...

you could use a colon as the delimiter. To de lete all the slashes, type

s:/::g

The result is:

exec sys.rort.go etc ...

When you are adding text with a or i or c, the backslash has no special meaning,
and you should only put in one backslash ror each one you want.

Exercise

Find two substitute commands, each orwhich converts the line

\x\.\y

into the line

\x\y

Here are several solutions; you should veriry that each works:

5/\\\·//
s/x .. /xl
s/ .. y/yl

A-31

XENIX User's Guide

A.S.3 Dollar Sign: t

The dollar sign ut", stands Cor "the end orthe line". Suppose you have the line

Now is the

and you want to add the word "time" to the end. Use the dollar sign (t) like
this:

s/t/ time/

to get

Now is the time

A space is needed before "time" in the substitute command, or you will get:

Now is thetime

You can replace the second comma in the following line with a period without
a.ltering the first.

Now is the time, (or all good men,

The command needed is:

s/,S/./

to get

Now is the time, for all good men.

The dollar sign CI) here provides context to make specific which comma we
mean. Without it the 5 command would operate on the first comm& to produce:

Now is the time. for all good men,

To convert:

Now is the time.

into

Now is the time!

as we did earlier, we can use:

s/.S/!/

A-32

Ed

Like the period (.), the dollar sign (S) has multiple meanings depending on
context. In the rollowing line

$s/S/S/

the first "S" refers to the last line of the file, the second refers to the end or that
line, and the third is a literal dollar sign to be added to that line.

A.o.4 Caret:'"

The caret (...) stands ror the beginning or the line. For example, suppose you
are looking ror a line that begins with "the". Jryou simply type

/the/

you will probably find several lines that contain "the" in the middle before
arriving at the one you want. But with

you narrow the context, and thus arrive at the desired line more easily.

The other use or the caret (A) enables you to insert something at the beginning
of a line. For example

srI /
places a space at the beginning of the current line.

Metacharacters can be combined. To search ror a line that contains oft/, the
characters

.P

you can use the command

r\·PS/

A.o.o Star: *

Suppose you have a line that looks like this:

text x y text

where "text" stands ror lots ortext, and there are an indeterminate number or
spaces between the "x" and the "y". Suppose the job is to replace all the spaces
between "x" and "y" with a single space. The line is too long to retype, and

A·33

XENIX User's Guide

there are too many spaces to count.

This is where the metacharacter "star" (.) comes in handy. A character
followed by a star stands for as many consecutive occurrences orthat character
as possible. To refer to all the spaces at once, type:

sIx .y/x yl

The" ." means "as many spaces as possible". Thus "x .y" means an "x", as
many spaces as possible, then a "y".

The star can be used with any character, not just a space. It the original
example was

text x--------y text

then all minus signs (-) can be replaced by a single space with the command:

s/x-*y/x y/

Finally, su ppose that the line was:

text x y text

It you blindly type

s/x··y/x y/

The result is unpredictable. It there are no other x's or y's on the line, the
substitution will work, but not necessarily. The period matches an, single
character so the" .• " matches as many single characters as possible, and unless
you are carerul, it can remove more of the line than you expected. For example,
if the line was like this

x text x y text y

then typing

s/x··y/x y/

takes everything trom the fir,t "x" to the lalt "y", which, in this example, is
undoubtedly more thanyou wanted.

The solution is to turn off the special meaning of the period (.) with the
backslash (\):

s/x\··y/x y/
Now the substitution works, for "\ .• " means "as many periods as possible".

A-34

Ed

There are times when the pattern" .*" is exactly what you want. For example,
to change

Now is the time ror all good men

into

Now is the time.

use ". *" to remove everything arter the "ror":

s/ ror.*/./

There are a couple of additional pitfalls associated with the star (*). Most
notable is the fact that "as many as possible" means zero or more. Theract that
zero is a legitimate possibility is sometimes rather surprising. For example, if
our line contained

xy text x y text

where the squares represent spaces, and we said

sIx *y/x y/

the first "xy" matches this pattern, for it consists of an "x", zero spaces, and a
"y". The result is that the substitute acts on the first "xy", and does not touch
the later one that actually con tains some intervening spaces.

The way around this is to specify a pattern like

/x *y/

which says an "x", a space, then as many more spaces as possible, then a "y", in
other words, one or more spaces.

The other pitrall associated with the star (*) again relates to the fact that zero is
a legitimate number or occurrences of something rollowed by a star. The
command

s/x*/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason ror this is that

A-35

XENIX User's Guide

zero is a legitimate number of matches, and there are no x's at the beginning of
the line (so that gets converted into a "y"), nor between the "a" and the "b" (so
that gets converted into a "y"), and so on. ICyou don't want zero matches, use

s/xx./y/g

since "xx." is one or more x's.

A.S.6 Brackets: [and]

Suppose that you want to delete any numbers that appear at the beginning of
all lines of a file. You might try a series of commands like

and 50 on, but this is clearly going to take forever if the numbers are at all long.
Unless you want to repeat the commands over and over until finally all the
numbers are gone, you must get all the digits on one pass. That is the purpose of
the brackets.

The construction

(0123456789)

matches any single digit-the whole thing is called a "character class". With a
character class, the job is easy. The pattern "(0123456789)." matches zero or
more digits (an entire number), so

1 ,Is/" (0123456789).//

deletes all digits trom the beginning ot all lines.

Any characters can appear within a character class, and there are only three
special characters (" ,), and -) inside the brackets; even the backslash doesn't
have a special meaning. To search for special characters, tor example, you can
type:

It's a nuisance to have to spell out the digits, so you can abbreviate them as
[0-9); similarly, [a-z) standsfor the lowercase letters, and (A-Z) tor uppercase.

Within [), the "(" is not special. To get a ")" (or a "_") into a character class,
make it the first character.

You can also specify a class that means "none of the following characters".
This is done by beginning the class with a caret (A). For example

A-3S

Ed

r0-91
stands ror "any character tzcept a digit". Thus, you might find the first line
that doesn't begin with a tab or space with a search like:

r r(space)(tab)J/

Within a character class, the caret has a special meaning only ir it occurs at the
beginning. Just to convince yourselr, verify that

finds a line that doesn't begin with a caret.

A.6.7 Ampersand: &,

To save typing, the ampersand (&) can be used in substitutions to signify the
string or text that was round on the lert side or a substitute command. Suppose
you have the line

Now is the time

an d you want to make it:

Now is the best time

You can type:

s/the/the best/

It's unnecessary to repeat the word "the". The ampersand (&) eliminates this
repetition. On the right side of a substjtution, the ampersand means "whatever
wasjust matched", so you can type

s/the/ & best/

and the ampersand will stand for "the". This isn't much or a saving irthe thing
matched is just "the", but if the match is very long, or ir it is something like
".-" which matches a lot of text, you can save some tedious typing. There is
also much less chance or making a typing error in the replacement text. For
example, to put parentheses in aline, regardless of its length, type:

s/.*/(&)/

The ampersand can occur more than once on the right side. For example

s/the/ & best and & worst/

makes

A-37

XENIX User's Guide

Now is the best and the worst time

and

s/.*/&1 &!!I

converts the original line into

Now is the time! Now is the time!!

To get a literal ampersand use the backslash to turn off the special meaning.
For example

s/ampersand/\&/

converts the word into the symbol. The ampersand is not special on the lert side
of a substitute command, only on the right side.

A.S.S Substituting New Lines

Ed provides a racility for splitting a single line into two or more shorter lines by
"substituting in a newline". For example, suppose a line. has become
unmanageably long because of editing. If it looks like

text xy text

you can break it between the "x" and the "y" like this:

s/xy/x\
y/

This is actually a single command, although it is typed on two lines. Because
the backslash (\) turns off special meanings, a backslash at the end of a line
makes the newline there no longer special.

You can in fact make a single line into several lines with this same mechanism.
As an example, consider italicizing the word "very" in a long line by splitting
"very" onto a separate line, and preceding it with the formatting command
" .I". Assume the line in question looks like this:

text a very big text

The command

s/ very /\
.1\
very\
/

A-38

Ed

converts the line into four shorter lines, preceding the word "very" with the
line ".1", a.nd elimina.ting the spaces aroun d the "very" a.t the same time.

When a new line is substituted in a string, dot is left at the last line created.

A.S.O Joining Lines

Lines may be joined together, with the j command. Assume that you are given
the lines:

Now is
the time

Suppose that dot is set to the first line. Then the command

joins them together to produce:

Now is the time

No blanks a.re added, which is why a blank was shown at the beginning of the
second line.

All by itseIr, aj command joins the lines signified by dot and dot -+ -1, but any
contiguous set of lines can be joined. Just specify the starting and ending line
numbers. For example,

l,$jp

joins all the lines in a file into one big line and prints it.

A.S.IO Rearranging a Line: \(and \)

Recall that "&" is shortha.nd for whatever was matched by the left side or a.n s
command. In much the same way, you can capture separate pieces of what was
matched. The only difference is that you have to speciry on the left side just
what pieces you're interested in.

Suppose that you have a file of lines that consist or names in the rorm

Smith, A B.
Jones, C.

and so on, and you want the initials to precede the name, as in:

A-39

XENIX User's Guide

A. B. Smith
C. Jones

It is possible to do this with a series or editing commands, but it is tedious and
error-prone.

The alternative is to "tag" the pieces or the pattern (in this case, the last name,
and the initials), then rearrange the pieces. On the lert side or a substitution, ir
part or the pattern is enclosed between \(and \), whatever matched that part is
remembered, and available ror use on the right side. On the right side, the
symbol, "\1", refers to whatever matched the first \(... \) pair; "\2", to the
second \(... \), andsoon.

The command

1,SsF\([.*J\), *\(.*\)/\2 \1/

although hard to read, does the job. The first \(... \) matches the last name,
which is any string up to the comma; this is rererred to on the right side with
"\1". The second \(... \) is whatever rollows the comma and any spaces, and is
rererred to as "\2" .

\Vith any editing sequence this complicated, it's unwise to simply run it and
hope. The global commands g and v provide a way ror you to print exactly
those lines which were affected by the substitute command, and thus veriry
that it did what you wanted in all cases.

A.6 ~peeding Up Editing

One or the most effective ways to speed up your editing is knowing what lines
will be affected by acommand iryou don'tspeciry the lines it is to act on, and on
what line you will be positioned (Le., the value or dot) when a command finishes.
It you can edit without specifying unnecessary line numbers, you can save a lot
or typing.

For example, iryou issue a search command like

/thing/

you are lert pointing at the next line that contains "thing". Then no address is
required with commands like s to make a substitution on that line, or p to print
it, or I to list it, or d to delete it, or a to append text arter it, or c to change it, or i
to insert text berore it.

What happens ir there is no occurrence or "thing"! Dot is unchanged. This is
also true ir the cursor was on the only occurrence of "thing" when you issued
the command. The same rules hold ror searches that use t .. T; the only
difference is the direction in which you search.

A-40

Ed

The delete command, d, leaves dot pointing at the line that followed the last
deleted line. When the line dollar (S) gets deleted, however, dot points at the
new line $.

The line-cha.nging commands a, c, and i, by default, all affect the current line.
If you give no line number with them, a appends text arter the current line, c
changes the current line, and i inserts text beCore the current line.

The a, c, and i commands behave identically in one respect - when you stop
appendinb' changing or inserting, dot points at the last line entered. This is
exactly what you want when typing and editing on the fly. For example, you
can type

a
text
botch (minor error)

s/botch/correct/ (fix botched line)
a
more text

without specifying any line number ror the substitute command or ror the
second append command. Or you can type:

a
text
horrible botch (major error)

c (replace entire line)
fixed up line

Experiment to determine what happens iC you add no lines with an a, c, or i
command.

The r command reads a file into the text being edited, at the end iCyou give no
address, or after the specified line iryou do. In either case, dot points at the last
line read in. Remember that you can even type

Or

to read a file in at the beginning or the text. (You can also type 04 or li to start
adding text at the beginning.)

The w command writes out the entire file. If you precede the command by one
line number, that line is written out. Uyou precede it by two line numbers, that
range of lines is written out. The w command does not change dot: the current
line remains the same, regardless or what lines are written out. This is true even
iryou type something like

A-41

XENIX User's Guide

r\.AB/,t\.AE/w abstract

which involves a context search.

(Since the w command is so easy to use, you should save what you are editing
regularly as you go along just in case the system crashes, or in case you
accidentally delete what you're editing.)

The general rule is simple: you are left sitting on the last line changed; if there
were no changes, then dot is unchanged. To illustrate, suppose that there are
three lines in the buffer, and the line given by dot is the middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line, which is the last one changed. But if the three lines had
been

xl
y2
y3

and the same command had been issued while dot pointed at the second line,
only the first line would be changed and printed, and that is where dot would be
set.

A.6.1 Semicolon:;

Searches with / ... / and L.! start at the current line and move forward or
backward, respectively, until they either find the pattern or get back to the
current line. Sometimes this is not what you want. Suppose, for example, that
the buffer contains lines like this:

A-42

Ed

ab

bc

Starting at line 1, you would expect the command

la/,/b/p

to print all the lines from the "ab" to the "bc" inclusive. This is not what
happens. Both. searches (for "a" and for "b") start rrom the same point, and
thus they both find the line that contains "ab". As a result, a single line is
printed. Worse, if there had been a line with a "b" in it before the "ab" line,
then the print command would be in error, since the second line number would
be less than the first, and it is illegal to try to print lines in reverse order.

This is because the comma separator ror line numbers doesn't set dot as each
address is processed; each search starts rrom the same place. In ed, the
semicolon (;) can be used just like the comma, with the single difference that use
or a semicolon rorces dot to be set at the time the semicolon is encountered, as
the line numbers are being evaluated. In effect, the semicolon "moves" dot.
Thus, in our example above, the command

la/;/b/p

prints the range of lines from "ab" to "be", because after the "a" is round, dot
is set to that line, and then" btl is searched ror, starting beyond that line.

This property is most often useful in a very simple situation. Suppose you want
to find the ,econdoccurrenceof"thing". You could type

Ithingl
II

but this prints the first occurrence as well as the second, and is a nuisance when
you know very well that it is only the second one you're interested in. The
solution is to type:

Ithing/;I I

This says "find the first occurrence of "thing", set dot to that line, then find the
second occurrence and print only that".

A-43

XENIX User's Guide

Closely related is searching for the second to last occurrence of something, as in:

! something! iT!

Finally, bear in mind that if you want to find the first occurrence or something
in a file, starting at an arbitrary place within the file, it is notsuflicient to type

Ij/thing/

because if "thing" occurs on line I it won't be found. The command

O;/thing/

will work because it starts the search at line 1. This is one of the few places
where 0 is a legal line number.

A.B.2 Interrupting the Editor

As a final note on wha.t dot gets set to, you should be aware that if you press the
INTERRUPT key while ed is executing a command, your file is restored, as much
as possible, to what it was before the command began. Na.turally, some changes
are irrevocable - if you are reading in or writing out a file, making
substitutions, or deleting lines. These will be stopped in some unpredictable
state in the middle (which is why it usually unwise to stop them). Dot mayor
may not be changed.

If you are using the print command, dot is not changed until the printing is
done. Thus, if you decide to print until you see an interesting line, and then
press INTERRUPT, to stop the command, dot will not not be set to that line or
even near it. Dot is left where it was when the p command was started.

A.7 Cutting and Pasting with the Editor

This section describes how to manipulate pieces or files, individual lines or
groups of lines.

A.7.1 Inserting One File Into Another

Suppose you have a file called memo, and you want the file called table to be
inserted just after a reference to Table 1. That is, in memo somewhere is a line
that says

Table 1 shows that ...

and the data conta.ined in table has to go there.

A-44

Ed

To put table into the correct place in the file edit memD, find "Table I", and add
the file table right there:

ed memo
/Table 1/
f'upon,e from e d
.r table

The critical line is the last one. The r command reads a file; here you asked ror
it to be read in right arter line dot. An r command, without any address, adds
lines at the end, so it is the same as "Sr".

A.7.2 Writing Out Part or a File

The other side or the coin is writing out part or the document you're editing.
For example, you may want to split the table rrom the previous example out
into a separate file so it can be rormatted and tested separately. Suppose that in
the file being edited we have

.TS
(lots or stufJ]
.TE

which is the way a table is set up ror the tbl program. To isolate the table in a
separate file called table, first find the start or the table (the" .TS" line), then
write out the interesting part. For example, first type:

r\·TS/

This prints out the round line:

.TS

Next type

.,r\.TE/w table

and the job is done. ICyou are confident, you can do it all at once with

r\.TS/;r\.TE/w table

The point is that the w command can write out a group or lines, instead or the
whole file. In ract, you can write out a single line ir you like; just give one line
number instead or two. ICyou have just typed a horribly complicated line and
you know that it (or something like it) is going to be needed later, then save it-

A-45

XENIX User's Guide

don't retype it. For example, in the editor, type:

a
lots of stuff
horrible line

.w temp
a
more stuff

.r temp
a
more stuff

A.S Editing Scripta

If a fairly complicated set of editing operations is to be done on a whole set of
files, the easiest thing to do is to make up a "script", i.e., a file that contains the
operations you want to perform, then apply this script to each file in turn.

For example, suppose you want to change every "Xenix" to "XENIX" and every
"USA" to "America" in a large number or files. Put the following lines into the
file ,cn·pt:

gfXenix/s/ /XENrx/g
g/USA/s/ /America/g
w
q

Now you can type:

ed - file 1 < script
ed - file2 <script

This causes ed to take its commands from the prepared file ,eript. Notice that
the whole job has to be planned in advance, and that by using the XENIX shell
command interpreter, you can cycle through a set of files automatically. The
dash (-) suppresses unwanted messages rrom eel.

When preparing editing scripts, you may need to place a period as the only
cha.racter on a line to indicate termination of input from an a or i command.
This is difficult to do in ed, because the period you type will terminate input
rather than be inserted in the file. Using a backslash to escape the period won't
work either. One solution is to crea.te the script using a character such as the
at-sign (@) to indicate end or input. Then, later, use the rollowing command to
replace the at-sign with a period:

A·46

Ed

A.9 Summary of Commands

This following is a list of all ed commands. The general form of ed commands is
the command name, preceded by one or two optional line numbers and, in the
case of e, f, r, and w, followed by a filename. Only one command is allowed per
line, but ap command may follow any other command (excepte, f, r, w, and q).

a Appends, i.e., adds lines to the buffer (at line dot, unless a different
line is specified). Appending continues until a period is typed on anew
line. The value of dot is set to the last line appended.

c Changes the specified lines to the new text which follows. The new
lines are terminated by a period on a new line, as with a. If no lines are
specified, replace line dot. Dot is set to the last line changed.

d Deletes the lines specified. Ir none are specified, deletes line dot. Dot is
set to the first undeleted line following the deleted lines unless dollar
($) is deleted, in which case dot is set to dollar.

e Edits a new file. AIly previous contents of the buffer are thrown away,
so issue a w command first.

r Prints the remembered filename. Ir a name follows f, then the
remembered name is set to it ..

g The command g/ ,tring /command, executes command, on those
lines that contain ,tn'ng, which can be any context search expression.

Inserts lines before specified line (or dot) until a single period is typed
on a new line. Dot is set to the last line inserted.

Lists lines, making visible nonprinting ASCII characters and tabs.
Otherwise similar to p.

m Moves lines specified to after the line named after m. Dot is set to the
last line moved.

p Prints specified lines. Ir none are specified, print the line specified by
dot. A single line number is equivalent to aline-numberp command.
A single RETURN prints". + 1", the next line.

q Quits ed. Your work is not saved unless you first give a w command.
Give it twice in a row to abort edit.

r Reads a file into buffer (at end unless specified elsewhere.) Dot isset to
the last line read.

A-47

XENIX User's Guide

s The command "s/,t,;ngll,t,;ngel" substitutes the pattern matched
by ,tn·ng1 with the string specified by ,tringein the specified lines. It
no lines are specified, the substitution takes place only on the line
specified by dot. Dot is set to the last line in which asubstitlttion took
place, which means that if no substitution takes place, dot remains
unchanged. The s command changes only the first occurrence of
,t"·ng10n a line; to change multiple occurrences on a line, type a g
after the final slash.

t Transfers specified lines to the line named after t. Dot is set to the last
line moved.

v The command .,I,t';ngl comm4nil, executes comm4nil.on those lines
that do-not contain Itring.

u Undoes the last substitute command.

w Writes out the editing buffer to a file. Dot remains unchanged .

. - Prints value of dot. (An equal sign by itself prints the value of'.)

!comm4nd
The line !emil·line causes cmd·line to be executed as a XENIX
command.

I,tringl
Context search. Searches for next line which contains this string of
characters and prints it. Dot is set to the line where string was found.
The search starts at .+1, wraps around from S to 1, and continues to
dot, if necessary.

!,tri"g!

A-48

Context search in reverse direction. Starts search at .-1 , scans to 1,
wraps around to S.

Index

-b option
mail 6-31

-c option
mail 6-31

-r option
mail 6-31

-u option
mail 6-31

I command See escape command
(I)

$! variable, process
number 7-14

$# variable, argument
recording 7-13

$$ variable, process
number 7-13

$- variable, execution
flags 7-14

$? variable, command exit
status 7-13

,t See Quotation marks,
single (")

(0), write command message
end 4-29

(00), write command message
end 4-29

• See Asterisk (.)
- See Dash (-)
-a operator 7-34
-a option

function 3-10
-c option, shell

invocation 7-39

-e option, shell
procedure 7-33

-f option, mail 6-31
-f option, mail 6-9
-i option

mail 6-30
mail 6-31
mail 6-39
mail 6-9
shell invocation 7-39

-k option, shell
procedure 7 -33

-1 option
function 3-9

-m option, mail 6-32
-n option

echo command 7-35
shell procedure 7-33

-0 operator 7-34
-r option 3-9
-R option, recursive

listing 4-12
-s option

mail, subject
specification 4-28
mail, subject
specification 6-31
shell invocation 7-39

-t option, shell
procedure 7-33

-u option, shell
procedure 7-33

-v option, input line
printing 7-15

XENIX User's Guide

-v option
function 3-10

-x option, oommand
printing 7-15

• oonunand See Dot oommand
(.)
command
vi 5-3
vi use See Vi

• See Period (.)
.profile file

description, use 7-15
PATH variable setting 7-12

variable export 7-13
/ command See Vi
/ See Slash (I)
Ibin direotory

lusr/bin duplioate
determination 7-44
command searoh 7-2
contents 3-5
contents 7-32
name derivation 7-32

Idev direotory
contents 3-5

Idev/oonsole direotory
contents 3-5

Idev/tty direotory
contents 3~5

leto/termoap file 4-3
Ilib direotory

contents 3-5
Itmp direotory 4-25

contents 3-5
lusr direotory

con tents 3-5

1-2

lusr/bin directory
/bin duplicate
determination 7-44
command search 7-2
contents 3-5

o command See Vi
command See Colon command
(:)

See Greater-than sign
(»)

? See Question mark (1)
a character, permission

change 4-18
a command

appending See Ed
ed use See Ed
mail 6-13
mail 6-20
mail 6-34

Absolute pathname See
Pathname

Acoount, new user 2-1
Add i tion See BC
Addition See Calculation
Alias cODlDand See a

command
Alphabetizing See sort

command
Amper sand (&)

and-if oper ator symbol See
And-if operator (&&)
background command 3-9
background prooess 4-24
baokground process 7-19
baokground prooess 7-54

command list 7-19
ed use See Ed
interrupt, quit
i1llDunity 7-19
jobs to other
computers 7-19
metacharacter See Ed
off-line printing 7-19
use restraint 7-19

And-if operator (&&)
command list 7-19
description, use 7-20
deSignated 7-54

Append
ed procedure See Ed
output append symbol See
Output

Appending files 4-7
Appending See Output
Argument

filename 7-3
list creation 7-3
mail commands 6-8
number checking, $'
variable 7-13
processing 7-17
redirection argument
location 7-8
shell argument passing 7-
17
substitution sequence 7-18

switch See Switch
test command argument 7-35

Arithmetic
See also BC

expr command effect 7-35
askcc option See Mail
asksubject option See Mail
Asterisk (*)

BC
comment convention 8-
13
comment convention 8-
14
multiplication operator
symbol 8-2
multiplication operator
symbol 8-4

directory name, use
avoidance 7-3
filename wildcard 3-7
filename. use
avoidance 3-4
mail

character matching. 6-7

message saved. header
notation 6-16
message saved, header
notation 6-18

metacharacter 7-3
metacharacter 7-54
pattern matching
functions 3-7
pattern matching See
metacharacter
special shell variable 7-
18

at command 4-22
At sign (@), mail 6-30
At sign (@), mail 6-39
atrm command 4-23

1-3

XENIX User's Guide

auto command, BC 8-18
autombox option See Hail
autoprint option See Hail
b command See Vi
Background process 4-24

$1 variable 7-14
ampersand (&) operator 4-
24
ampersand (&) operator 7-
19
ampersand (&) operator 7-
54
CNTRL-D immunity 7-19
dial-up line

CNTRL-D effect 7-19
nohup command 7-19

INTERRUPT immunity 7-19
logout immunity 7-19
QUIT immunity 7-19
use restraint 7-19

Backslash (\)
escape character 2-4

Backslash (\)
BC

comment convention 8-
13

Backslash (\)
BC

comment convention 8-
14

Backslash (\)
BC

line continuation
notation 8-6

Backslash (\)
ed See Ed

Backslash (\)
erasing 2-4

Backslash (\)
line continuation
notation 7-45

Backslash (\)
metacharacter escape 7-4

Backslash (\)
quoting 7-55

BACKSPACE key
erasure function 2-4
inserting as text 2-4
mail 6-1'
mail 6-6

Batch processing See
C01ll1land

bcl command, BC 8-13
bc cODlDand

BC
file reading,
execution 8-13
invocation 8-1

calculation 4-30
BC

addition operator
evaluation order 8-15
left to right binding
8-4
scale 8-17
scale 8-6
symbol (+) 8-4

additive operators
See also Specific
Operator
left to right binding
8-17

alphabetic register See
storage register
arctan function

availability 8-1

loading procedure

array
auto array 8-18
characteristics
identifier 8-14
identifier 8-19
name 8-9
named expression
one-dimensional

assignment operator
designated, use
evaluation order
positioning effect

symbol (=) 8-4
assignment statement

asterisk (.)
comment convention
13

8-13

8-14

8-15
8-9

8-17
8-15

8-4

8-12

8-

comment convention 8-
14
multiplication operator
symbol 8-2
multiplication operator
symbol 8-4

auto command 8-18
auto statement

built-in statement 8-
19

auto, keyword 8-14
backslash C\)

comment convention 8-
13

backslash (\)
comment convention 8-
14

backslash C \)
line continuation
notation 8-6

bases 8-5
bc -1 command 8-13
bc command

file reading,
execution 8-13
invocation 8-1

Bessel function
availability 8-1
loading procedure

BKSP key 8-2
braces ({})

compound statement
enclosure 8-19
function body
enclosure 8-7

8-13

brackets ([])
array identifier 8-14

auto array 8-18
subscripted variable
8-9

break statement
built-in statement 8-
19

break, keyword 8-14
built-in statement 8-19
caret (A), exponentiation
operator symbol 8-4
command See bc command
comment convention 8-13
comment convention 8-14
compound statement 8-19
constant

composition 8-14

1-5

XENIX User's Guide

defined 8-15
con str uc t ion

diagram 8-12
space significance 8-
12

control statements 8-9
cos function

availability 8-1
loading procedure 8-13

define statement
built-in statement 8-
19
description, use 8-20

define, keyword 8-14
demonstration run 8-1
description 8-1
division operator

left to right binding
8-16
left to right binding
8-4
scale 8-17
scale 8-6
symbol (I) 8-4

equal sign (=)
assignment operator
symbol 8-4
relational operator
8-18
relational operator
8-9

equivalent constructions
diagram 8-12
evaluation sequence 8-2
exclamation point (!)

1-6

relational operator
8-18

relational operator
8-9

exit 8-1
exit 8-3
exponential function

availability 8-1
loading procedure 8-13

exponentiation operator
right to left binding
8-17
right to left binding
8-4
scale 8-17
scale 8-6
symbol (A) 8-4

expression
enclosure 8-15
evaluation order 8-14
named expression 8-15

. statement 8-19
for statement

break statement effect
8-19
built-in statement 8-
19
description, use 8-9
format 8-20
range execution 8-10
relational operator
8-18

for, keyword 8-14
function call

defined 8-15
description 8-15
evaluation order 8-15
procedure 8-8

syntax 8-16
function

argument absence 8-8
array 8-9
calling See function
call
definition procedure
8-7
form 8-7
identifier 8-14
name 8-7
parameters 8-8
return statement See
return statement
termination, return
statement 8-20
variable automatic 8-7

global storage class 8-18

greater-than sign (
>), rel ational
operator 8-18
», relational
operator 8-9

hexadecimal digit
ibase 8-5
obase 8-6
value 8-14

ibase
decimal input setting
8-5
defined 8-15
initial setting 8-5
keyword 8-14
named expression 8-15
setting 8-5

var iable 8-7
identifier

array See array
auto statement effect
8-19
description 8-14
global 8-18
local 8-18
named expression 8-15
value 8-18

if statement
built-in statement 8-
19
description, use 8-9
format 8-20
range execution 8-10
relational operator
8-18

if, keyword 8-14
INTERRUPT key 8-2
introduction 8-1
invocation 8-1
keywords designated 8-14
language features 8-12
length

built-in function 8-16

keyword 8-14
less-than sign «),
relational operator 8-18
less-than sign «),
relational operator 8-9
line continuation
notation 8-6
local storage class 8-18
log function

availability 8-1

1-7

XENIX User's Guide

loading procedure 8-13

math function library See
bcl command
minus sign C-)

subtraction operator
symbol 8-4
unary operator symbol
8-16
unary operator symbol
8~

modulo operator
left to right binding
8-16
left to right binding
8-4
scale 8-17
scale 8-6
symbol (I) 8-4

multiplication operator
evaluation order 8-15

left to right binding
8-16
left to right binding
8-4
scale 8-16
scale 8-6
symbol C.) 8-2
symbol C.) 8-4

multiplicative operators
See also Specific
Operator
left to right binding
8-16

named expression 8-15
negative number, unary
minus sign C-) 8~

1-8

obase
conversion speed 8-6
defined 8-15
description 8-5
hexadecimal notation
8-6
initial setting 8-5
keyword 8-14
named expression 8-15
var iable 8-7

operator
See also Specific
Operator
designated, use 8-4

parentheses «»
expression enclosure
8-15
function identifier
argument enclosure 8-
14

percentage sign (I),
modulo operator symbol
8-4
plus sign (+)

addition operator
symbol 8-4
unary operator symbol
8-16

program flow alteration
8-9
quit command 8-1
qui t command 8-3
quit statement

Be exit 8-20
built-in statement 8-
19

quit, keyword 8-14

quoted string statement
8-19
register See storage
register
relational operator

designated 8-18
designated 8-9
evaluation order 8-15

RETURN key 8-2
return statement

built-in statement 8-
19
description 8-20
form 8-7

return, keyword 8-1~
scale co_and 8-7
scale

addition operator 8-17

addition operator
arctan function
Bessel function
built-in function

command See scale
command

8-6
8-13
8-13

8-16

cos function 8-13
decimal digit value
8-7
defined 8-15
description 8-6
division operator 8-17

division operator 8-6
exponential function
8-13
exponentiation
operator 8-17

exponentiation
operator 8-6
initial setting 8-7
keyword 8-1~
length function 8-16
length maximum 8-6
log function 8-13
modulo operator 8-17
modulo operator 8-6
multiplication
operator 8-16
multiplication
operator 8-6
named expression 8-15
sin function 8-13
square root effect 8-
16
square root effect 8-6

subtraction operator
8-17
subtraction operator
8-6
value printing
procedure 8-7
var iable 8-7

semicolon (;), statement
separation 8-19
semicolon (;), statement
separation 8-3
sin function

availability 8-1
loading procedure 8-13

slash (/), division
operator symbol 8~
space significance 8-12

XEHIX User's Guide

square root
built-in function 8-16

keyword 8-14
result as integer 8-5
scale procedure 8-6
sqrt keyword 8-14

statement
See also Specific
Statement
entry procedure 8-12
execution sequence 8-
19
separation methods 8-
19
types designated 8-19

storage classes 8-18
storage register 8-4
subscript

fractions discarded
8-9
truncation 8-14
value limits 8-9

subscripted variable
array See array
description 8-9
subscript See
subscript

subtraction operator
left to right binding
8-4
scale 8-17
scale 8-6
symbol (-) 8-4

syntax 8-1
token composition 8-14
truncation use when 8-7

1-10

unary operator
deSignated 8-16
evaluation order 8-15
left to right binding
8-16
symbol (-) 8--

variable
automatic 8-18
automatic 8-7
name 8-7
subscripted See
subscripted variable

whil e statement
break statement effect
8-19
built-in statement 8-
19
description, use 8-9
execution 8-21
range execution 8-10

. rel ational oper ator
8-18

While, keyword 8-14
Bessel function See BC
Binary file See File
Binary logical and

operator 7-34
Binary logical or

operator 7-34
BINUNIQ shell procedure 7-

44
BKSP key

BC 8-2
command-line buffer
editing 3-9

BKSP
vi cursor movement 5-17

Block special device 4-16
Bourne shell

TERM variable 5-50
terminal type 5-50

Braces ({»
Be

compound statement
enclosure 8-19
function body
enclosure 8-7

command grouping 7-25
pipeline, command list
enclosure 7-20
variable

condi tional
substitution 7-38
enclosure 7-11

Braces command ({» 7-40
Brackets ([])

Bt
array identifier 8-14
auto array 8-18
subscripted variable
8-9

directory name, use
avoidance 7-3
ed metacharacter See Ed
fil en arne, use
avoidance 3-4
metacharacter 7-3
metacharacter 7-54
pattern matching See
metacharacter
pattern-matching
functions 3-8
test command, use in lieu
of 7-33

break command
for command control 7-24
loop control 7-24
shell built-in command 7-
40
special shell command 7-30

while command control 7-24

Buffer See Ed
Buffers See Vi 5-23
c command See Ed
C language

Be
comment convention
Similarity 8-13
syntax agreement 8-1

shell language 7-1
C shell

TERM variable 5-50
terminal type setting 5-50

cal command 4-29
Calculation

See also Be
example 4-30

Calculator functions See
BC

calendar command 4-30
Calendar reminder

service 6-32
Caret (A)

BC, exponentiation
operator symbol 8-4
ed use See Ed
mail, first message
specification 6-15

1-11

XENIX User's Guide

mail, first message
specification 6-34
mail, first message
specification 6-7

case command
description, use 7-22
exit status 7-22
redirection 7-26
shell built-in command 7-
40

Case delimiter symbol
(;;) 7-54

Case significance 2-2
Case-par t 7-52
cat command

ed See Ed
file

Cat

combining 4-7
contents display 2-3

command 4-7
cd arg command 7-30
cd command 4-15

directory change 3-5
directory change 7-14
mail 6-22
mail 6-34
parentheses use 7-14
time consumption
minimization 7-42

Changing password 4-2
Changing terminal types 4-3
Character class See Ed
Character counting 4-22
Character special

device 4-16
chmod command 4-17

1-12

chmod command 4-19
directory permission
change 3-2
file permission change 3-1

chron option See Hail
CNTRL-D

background process
immunity 7-19
BC exit 8-2
BC exit 8-3
end-of-file 4-2
logging out 2-5
mail 4-28

message sending 6-10
message sending 6-3
reply message
termination 6-12
reply message
termination 6-19

shell exit 6-21
shell exit 7-25
vi scroll 5-20

CNTRL-F
vi scroll 5-20

CNTRL-G
vi See Vi 5-11

CNTRL-H, mail 6-6
CNTRL-Q, output

resumption 4-4
CNTRL-S, output

stopping 4-4
CNTRL-U

command-line buffer
edi ting 3-9
inserting as text 2-4
kill character 2-4

line kill 4-4
mail, line killing 6-11
mail, line killing 6-6
vi scroll 5-20

Co command See Vi
Colon (:)

command See Colon command
(:)
mail

command escape 6-26
network mail 6-13

PATH variable use 7-12
variable conditional
substitution 7-38
vi use See Vi

Colon command (:)
description 7-30
shell built-in command 7-
40
special shell command 7-30

Command line
ampersand (&) effect 3-9
buffer defined 3-9
defined 3-8
entry 4-4
erasure 4-4
execution 7-18
interpretation 3-9
multiple commands
entry 3-9
options

See also Specific
Option
designated 7-39

pipeline, use in 7-20
rescan 7-18

RETURN key effect 4-4
scanning sequence 7-18
substitution 7-8

COIIIl1 and li st
case command,
execution 7-22
defined 7-19
for command, execution 7-
23
gr ammar 7-52

Cor.unand
See also Specific Command

background submittal 3-9
batch proceSSing See
background submittal
dash (-) use 3-"
defined 7-19
delimiter See Ed
directory See Ibin
directory
directory See Directory
ed commands See Ed
enclosure in parentheses
«», effect 7-40
environment 7-15
execution 3-8
execution 7-2

RETURN key required 2-2

sequence 4-24
time 7-40

exit status See Exit
status
grarmnar 7-52
grouping

exit status 7-26

1-13

XENIX User's Guide

parentheses «»
use 7-54
procedure 7-25
WRITEHAIL shell
procedure 7-51

keyword parameter 7-15
line See Command line
li st See Conn and li st
lowercase letters 3-9
mail commands summary 6-33

multiple commands
entry 3-9
multiple commands
entry 7-8
name error 2-2
output substitution
symbol 7-54
private command name 7-2
program invocation 3-8
public command name 7-2
RETURN key required 2-2
search

PATH variable 7-12
process 7-42

separation symbol (;) 7-54

shell, built-in commands
designated 7-40
simple command

defined 7-19
defined 7-2
granrnar 7-52

slash (I) beginning,
effect 7-2
special shell commands See
Shell

1-14

spec ial shell commands See
Specific Special Command
substitution

back quotation marks
COo) 7-4
double quotation marks
(\0
procedure 7-8
redirection
argument 7-6

syntax 3-9
typing error
correction 2-4
vi commands See Vi

Commands
at 4-22
atrm 4-23
cal 4-29
cat 4-7
cd 4-15
copy 4-14
cp 4-8
date 4-29
diff 4-19
diff3 4-20
echo 4-20
find 4-9
head 4-6
kill 4-26
lc 4-11
in 4-10
lpr 4-27
mkdir 4-13
more 4-5
mv 4-8
passwd 4-2
ps 4-24

pwd 4-14
rm 4-9
rmdir 4-13
sort 4-20
stty 4-4
tail 4-6
wc 4-22

Communication See Mail
Comparing files 4-19
compose escapes 6-1
Compose escapes See Mail
Concatenate See cat

command
Console 2-2
continue command

for command control 7-24
shell built-in command 7-
40
special shell command 7-30

until command control 7--24

while command control 7-24

Control characters
filename use
restrictions 3-4

Control command
See also Specific Control
Command
redirection 7-26

Copy command 4-14
Copying a directory 4-14
Copying files 4-8
Copying See cp command
COPYPAIRS shell

procedure 7-44

COPYTO shell procedure 7-45
Counting, wc command 4-22
cp command 4-8
CR key See RETURN key
Creating a directory 4-13
Creating a file 4-5
Current directory

change 3-5 .
procedure 4-14

description 4-14
printing 4-11
shorthand name 3-6
user residence 3-6

Current line
See Vi

Cursor movement
vi See Vi

Cutting and pasting
procedure See Ed

D command See Vi
d command

ed use See Ed
mail, message deletion See
Mail _

d$ command See Vi
dO command See Vi
Dash (-), permission

denial notation 4-16
ordinary file notation 4-
16

Dash (-)
command option use 3-4
filename, use
avoid ance 3-4
swi tch use 3-9

date command 2-2
Date command 4-29

1-15

IENIX User's Guide

dd command See Vi
Delete buffer See Vi
Deleting a file 4-9
Deletion See d command
Deletion

vi procedure See Vi
Delimiter See Ed
Demonstration 2-1
Device special file See

Special file
Device

fil en ame 3-4
filenamerequired 3-4
pathname 3-4

Diagnostic output See
OUtput

Dial-up line See Background
process

Diff command 4-19
diff3 4-20
Digit grammar 7-52
Directory

Ibin See Ibin directory
Idev See Idev directory
Ilib See Ilib directory
Itmp directory 4-25
Itmp See Itmp directory
Itty See Itty directory
lusr See lusr directory
access permission See
Permission
changing 4-14
command See cd command
composi tion 3-2
copying 4-14
creating 4-13
current directory See
Current directory

1-16

description 3-2
diagram 3-3
file See File
filename

required 3-4
unique to directory 3-4

listing 4-12
columns 4-11

logging in result 3-2
long listing 4-12
name, metacharacter
avoidance 7-3
nesting 3-2
parent directory See
Parent directory
pathname required 3-4
permission notation 4-16
permission See Permission

protection 3-2
recursive listing 4-12
removing 4-13
renaning 4-13
search permission See
Permission
search

optimum order 7-42
PATH variable 7-42
sequence change 7-3
size effect 7-43
time consumption 7-42

size consideration 7-43
user control 3-2
working directory See
Current directory

Displaying a file 4-5

DISTINCT1 shell
procedure 7-115

Division See BC
Division See Calculation
Dollar sign ($)

eel use See Ed
mail, final message
specification 6-15
mail, final message
specification 6-311
mail, final message
specification 6-7
positional parameter
prefix 7-10
positional parameter
prefix 7-11
PS1 variable default
value 7-13
variable prefix 7-11
vi See Vi

Dot (.)
command See Dot command
e.)
eel use See Ed
mail, current message
specification 6-15
mail, current message
speCification 6-7
vi use See Vi

Dot command (.)
description, use 7-27
shell built-in command 7-
40
shell procedure
alternate 7-32
special shell command 7-30

Dot option See Mail
Double quotation marks See

Quotation marks, double
(\0

dp command See Mail
DRAFT shell prooedure 7-116
dw command See Vi
dw command See Vi 5-27
e command

eel use See Ed
mail 6-311
mail 6-7
mailR 6-21

echo command 2-3
echo command 4-20

-n option effect 7-35
description, use 7-35
mail 6-311
syntax 7-35

Ed
a command

append A-3
append A-48
backslash (\)
characteristics A-32
dot e.) setting A-1I1
dot e.) setting A-1I8
global combination A-24

input termination A-30
input termination A-4

abortion, q command A-48
address arithmetic A-9
ampersand (&)

1i teral A-38
metacharacter A-38
substitution A-38

1-17

XENIX User's Guide

append See a command
asterisk (*),
metacharacter A-27
asterisk (*),
metacharacter A-34
at sign (@), script A-47
backslash (\)

a command A-32
backslash (\)

c cormnand A-32
backslash (\)

g command A-24
backslash (\)

i command A-32
backslash (\)

line folding A-25
backslash (\)

literal A-31
backslash (\)

metacharacter A-27
backslash (\)

metacharacter A-30
backslash C\)

metac har ac ter
escape A-30

backslash (\)
metachar acter
escape A-31

backslash (\)
metachar acter
escape A-38

backslash (\)
metacharacter
escape A-39

backslash (\)
multiline
construction A-24

1-18

backslash (\)
number string A-25

backslash (\)
v cOlIIDand A-24

backspace printing A-25
brackets C [l)

character class A-37
metacharacter A-27
metacharacter A-36

buffer
description A-4
writing to file See w
command

c cODlftand
backslash (\)
characteristics A-32
dot C.) setting A-20
dot (.) setting A-41
dot C.) setting A-48
global combination A-24

input termination A-20
line change A-19
line change A-48

caret CA
)

character class A-37
line beginning
notation A-33
metacharacter A-27
metacharacter A-33

cat command A-6
change command See c
command
character class A-37
character

deletion at line
beginning A-36

command
See also Specific
Command
combinations A-24
delimiter character A-
31
description A-4
editing command See e
command
form A-48
INTERRUPT key
effect A-45
listing A-48
multicommand line
restrictions A-15
summ ar y A-48

context search See search

current line See dot (.)
cutting and pasting

move command See m
command
procedures A-45

d command
deletion A-12
deletion A-48
dot (.) setting A-41
dot e.) setting A-48

deletion See d command
delimi ter

character choice A-31
description A-1
doll ar sign ($)

last line notation A-12

last line notation A-33

last line notation A-8
line end notation A-32
line end notation A-33
metacharacter A-27
metacharacter A-32
multiple functions A-33

dot (.)
current line
notation A-9
description A-11
determination A-41
search setting 1-16
search setting A-49
substitution
setting A-14
symbol (.) A-11
symbol (.) A-30
value determination A-
12
value determination A-
49

duplication See t command

e command A-48
e command A-6
edi t See e command
entry A-3
equals sign (=)

dot value printing
(.=) A-12
dot value printing
(.=) A-49
last line value
printing A-49

escape command (I) A-27
escape command (!) A-49

1-19

XENIX User's Guide

exclamation point (I),
. escape command A-27
exit See q command
f command A-48
f command A-7
file

insertion into another
tile A-45
writing out A-45

filename
change A-7
recovery A-7
remembered filename
printing A-48
remembered filename
printing A-7

folding A-25
g command

a command
combination A-24
backs1ash (\) use A-24
c command
combination A-24
command
combinations A-23
command
combinations A-24
dot (.) setting A-23
1 command
combination A-24
line number
specifications A-24
multiline
construction A-24
s command
combination A-23
s command
combination A-49

1-20

search, command
execution A-22
search, command
ex ec ut ion A-48
substitution A-15
substitution A-28
tr ail ing g A-28

global command See g
command
global command See v
command
greater-than sign (», tab

notation
A-25

grep command A-28
hyphen (-), character
class A-37
i cODllland

backs1ash (\)
characteristics A-32
dot (.) setting A-20
dot (.) setting A-41
dot (.) setting A-48
global combination A-24

input termination A-3D
insertion A-19
insertion A-48

in-line input scripts 7-47

input
termination A-20
termination A-30
termination A-4

insert command See 1
com and
INTERRUPT key

command execution

effect A-45
dot (.) setting A-45
print stopping A-8

introduction A-1
invocation A-3
j command, line
joining A-39
k command, line
marking A-25
I command

fold ing A-25
line listing A-25
line listing A-48
nondisplay character
pr inting A-25
number str ing A-25
s command
combination A-28

less-than sign «)
backspace notation A-25

line beginning
character deletion A-36

notation A-33
line end

notation A-32
line number

o as line number A-44
combinations A-9
summary A-48

line
beginning See line
beginning
break See splitting
fold ing A-25
joining A-39

marking A-26
moving See m command
number See line number

rearrangement A-40
splitting A-39
writing out A-46

list See 1 command
m command

dot C.) setting A-22
dot (.) setting A-48
line moving A-21
line moving A-48
warning A-22

mail system See Hail
marking See k command
metacharacter

ampersand C&) A-38
asterisk C.) A-27
asterisk C.) A-34
backslash C\) A-27
backslash (\) A-3D
brackets C[l) A-27
brackets ([l) A-36
caret C "") A-27
caret ("") A-33
character class A-37
combination A-34
dollar sign ($) A-27
dollar sign ($) A-32
escape A-31
escape A-38
per iod (.) A-27
period (.) A-29
search A-37
slash (I) A-27
star C.) A-27

1-21

XENIX User's Guide

star (.) A-34
minus sign (-), address
ar i thmetic A-9
move

command See m command

line marking A-26
multicommand line
restrictions A-15
new line

substitution A-39
nondisplay character
pr inting A-25
p command

dot (.) setting A-45
multicommand line A-15
printing A-48
printing A-8
s command
combination A-28

pattern search See search

period (.)
a command input
termination A-30
a command input
termination A-4
c command input
termination A-20
character
substitution A-29
dot symbol See Dot (.)

i command input
termination A-30
literal A-30
metacharacter A-27

1-22

metacharacter A-29
s command, effect A-29
script problems A-47
search problems A-27
troff command
prefix A-23

plus sign (+), address
arithmetic A-9
print

command See p command

line folding A-25
RETURN key effect A-12
stopping A-8

q command
abortion use A-48
quit session A-48
quit session A-5
w command
combination A-48

question mark (?)
exit warning A-3
search error message
(?) A-16
search repetition
(??) A-18
search, rever se
direction (??) A-17
search, reverse
direction (??) A-49
write warning A-5

quit See q command
quotation marks, single

(")
line marking A-26

r cODlDand
dot (.) setting A-42

dot (.) setting A-48
file insertion A-45
positioning without
address A-45
read file A-48
read file A-7

reading See r command
regular expression

description A-28
metacharacter list 1-27

RETURN key, printing 1-48
s command

ampersand (&) A-38
character match A-29
description, use 1-13
description, use A-49
dot (.) setting A-14
dot (.) setting A-41
dot (.) setting A-49
g command
combination 1-15
g command
combination A-23
g command
combination 1-49
1 command
combination A-28
line number A-28
new line A-39
p command
combination A-28
search combination A-17

text removal A-15
trailing g A-28
undoing A-25

v command
combination 1-23

script A-47
search

dot (.) setting A-49
error message (1) 1-16
forward search (I
I) 1-16
forward search (I
I) 1-49
global search See g
cODllland
global search See v
command
metacharacter
probl ems A-27
next occurrence
description A-16
procedure A-16
repetition (/1),
(??) 1-18
reverse direction (?
?) 1-17
separator 1-43
substi tution
combination A-17

sed command A-28
semicolon (;)

dot (.) setting A-44
search separator A-43

shell
escape See escape
command (!)

slash (I)
delimiter A-31
liter al A-31
metacharacter A-27

1-23

XENIX User's Guide

search forward (I
I) A-16
search forward (I
I) A-49
search repetition
(II) A-18

special character See
metacharacter
spelling correction See s
command
star C.),
metacharacter A-27
star C.),
metacharacter A-34
substitution

command See s command

t command
dot (.) setting A-49
transfer line A-26
tr an sfer line A-49

tab printing A-25
tbl command A-46
termination See q command

text
removal See s command

saving A-5
transfer See t command
troff command printing A-
23
typing error correction
See s command
u command

undo A-25
undo A-49

1-24

undo See u command
v conn and

a command
combination A-24
backslash ('> use A-24
c cOlIIDand
combination A-24'
command
combinations A-23
cODlDand
combinations A-24
dot C.) setting A-23
global search,
substitute A-22
global search,
substitute A-49
i command
combination A-24
line number
specifications A-24
s command
combination A-23

w command
description, use A-5
dot C.) setting A-42
dot C.) setting A-49
e command
combination A-48
file wr i te out A-45
frequent use
advantages A-42
line write out A-46
wr i te out A-45
write out A-49
write out A-5

write out
cOlIIDand See w command

warning A-5
EDFIND shell procedure 7-q7
Editor See Ed
EDITOR string, mail 6-29
EDITOR string, mail 6-39
EDUST shell procedure 7~7
egrep See grep command
elif clause See if command
el se clause See if command
Else-part grammar 7-52
Empty grammar 7-52
ENTER key See RETURN key
Equal sign (=)

BC
assignment operator
symbol 8-q
relational operator
8-18
relational operator
8-9

ed use See Ed
mail, message number
printing 6-16
mail, message number
printing 6-34
variable

cond i tional
substitution 7-38
string value
assignment 7-10

errdirect file 7-28
Error output

redirection 7-37
ESCAPE key

vi See Vi
Escape string, mail 6-29
Escape string, mail 6-39

eval command
command line rescan 7-18
shell built-in command 7-
40

Ex, ed Similarity A-1
Exclamation point (!)

BC, relational operator
8-18
BC, relational operator
8-9
ed use See Ed
mail

network mail 6-13
shell command
execution 6-21
shell command
exeoution 6-25
shell cODlDand
execution 6-34

unary negation
operator 7-34
vi See Vi

exec arg command 7-30
exec command 7-~0
Exit oode See $? variable
exit command

shell built-in command 7-
qO
shell exit 7-25
special shell command 7-30

Exit status
$? variable 7-13
case oommand 7-22
cd arg command 7-30
colon command (:) 7-30
command grouping 7-26

1-25

XENIX User's Guide

false command 7-36
if command 7-21
read command 7-30
true command 7-36
until command 7-23
wait command 7-31
while command 7-23

Exponentiation See Be
Exponentiation See

Calculation
export command

shell built-in command 1-
40
variable

example 7-13
listing 7-16
setting 7-15

expr command 7-35
F command, mail 6-12
F command, mail 6-20
F command, mail 6-35
f command

ed use See Ed
mail 6-11
mail 6-12
mail 6-19
mail 6-35

false command 7-36
fgrep See grep command
fi command

if command end 7-21
mail 6-35

File descriptor
description, use 7-5
redirection 7-37
redirection 7-6

File permission
changing 4-17

1-26

File permissions,
listing 4-12

File system
defined 3-3
diagram 3-4
organization 3-3

File
access

control 3-1
last access time 3-1
permission See
Permission

addItion See creation
alphabetizing See sort
appending 4-7
attr ibutes 3-1
binary file 3-1
combining 4-1
composi tion 3-1
copying 4-8
creating 4-5

with vi 5-2
creation

MKFILES shell
procedure 1-49
permission See
Permission
time 3-1
write permission
control 3-2

defined 3-1
deleting 4-9
deletion

write permission
control 3-2

descriptor See File
descriptor

directory See Directory
displaying 4-5
displaying 4-6
displaying 4-7
ed i ting See Vi
filename See Filename
grammar 7-52
inode number See Inode
number
linking 4-10
listing 3-2
mail system files See
Mail
manipulation 4-4
modification time 3-1
moving 4-7
moving 4-8
name See Filename
paginating 4-27
pathname required 3-4
pathname, printing 4-14'
pattern search See Ed
pattern search See grep
command
pattern search See Pattern
matching facility
permission See Permission

permissions 4-15
pipe interchange 7-46
printing See Lineprinter
protection 3-1
removal 4-9
renaming 4-8
scratch file directory 3-6

shell procedure
creation 7-31

size in bytes 3-1
sorting 4-20
special file See Special
file
temporary file See
Temporary file
textual contents
determination 7-51
types designated 3-1
variable file creation See
Variable

Filename
argument 7-3
asterisk (.) wildcard 3-7
characters use
restrictions 3-4
description 3-4
ed See Ed
example designated 3-6
long listing 4-12
question mark (?)
representation 3-8
required 3-1
required 3-4
unique to directory 3-4

Files
compar ing 4-19

Filter
description 7-7
order consideration 7-41

find command 4-9
Finding a file 4-9
finger command 4-25
Fl ag See Opt ion
fmt command, mail 6-25
for cOJnll'land

break command effect 7-24

1-27

XENIX User's Guide

continue command
effect 7-24
description, use 7-23
redirection 7-26
shell built-in command 7-
40

for loop, argument
processing 7-17

Foreground process 4-24
fork command 7-40
FSPLIT shell procedure 7-48
Full pathname See Pathname
g command See Ed
G command

vi See Vi
Global

ed use See Ed
variable check 7-33

goto command
See G command 5-5

Greater-than sign (

»BC, relational
operator 8-18
»BC, relational
operator 8-9
»fi1e combination 4-7
»output
redirection 3-11
) >PS2 var·iable default
value 7-13
»redirection
symbol 2-3
) >red iraction
symbol 7-54

grep command 4-21
ed See Ed

1-28

Group permission See
Permission

h command
mail 6-16
mail 6-35
mail 6-9
vi use See Vi

H nag, mail 6-17
head command 4-6
headers command See Hail
ho command See Mail
Home directory 4-15
HOME variable

conditional
substitution 7-39
description 7-12

1 command See Ed
if cODlDand

COPITO shell procedure 7-
45
description, use 7-20
exit status 7-21
fi command required 7-21
mult1ple testing
procedure 7-21
nesting 7-21
redirection 7-26
shell built-in command 7-
40
test command 7-33

IFS variable 7-12
ignore option See Hail
ignorecase option See

Vi 5-36
In-11ne input document See

Input
Inode number

defined 3-2

link See Link
ls command 3-2
required for file 3-1
required for file 3-2

Input
ed See Ed
gramar 7-52
in-line input

document 7-36
EDFIND shell
procedure 7-47

keyboard orisin 3-10
redirection See
Redirection
standard input file 7-5
termination 4-2

Insert mode See Vi
In sert ion See Ed
Internal field separ ator

shell scannins
sequence 7-18
specificaiton by IFS
variable 7-12

INTERRUPT key
background process
innunity 7-19
BC 8-2
command-line buffer
cancellation 3-9
ed use See Ed
foreground process
killing 4-24
logging in, nonsense
character removal 2-1
mail

askcc switch 6-27
message abortion 6-11

message abortion 6-28
program stopping 2-5

Interrupt
handlins methods 7-27
key See INTERRUPT key

Invocation flag See Option
Item srammar 7-52
j command See Ed
j command

vi use See Vi
k command See Ed
k command

vi use See Vi
Keyword parameter

-k option effect 7-33
description 7-15

Kill character See CNTRL-U
kill command 4-24
kill command 4-26
Killing a process 4-24
1 command 4-12

ed use See Ed
mail 6-19
mail 6-35
vi use See Vi

lc cODlDand 4-11
listing 2-3

Less-than sisn «)
BC, relational operator
8-18
BC, relational operator
8-9
redirection symbol 7-54

Less-than symbol «)
input redirection 3-12

line command
shell variable value
assignment 7-9

1-29

IENIX User's Guide

Line-oriented commands See
Vi 5-12

Line
beginning See Ed
counting See wc command
wri ting out See Ed

linenumber option See Vi
Lineprinter

command See 1 pr command
file printing ~-27
queue information 4-26
queue information 4-27

Link
command See In command
defined 3-2
description 4-10
long listing 4-12

Linking files 4-10
1 i st command

mail 6-35
list option See Vi
LISTFIELDS shell

procedure 7-49
Listing directory

contents 4-11
Listing See 1 command
Listing See lc command
ln command 4-10
Logg ins in 4-1

nonsense character·
removal 2-1
procedure 2-1
prompt character 2-1
resetting terminal
charchteristics 2-4
type-ahead not allowed 2-4

1-30

Logging out
background process
illlDunity 7-19
procedure 2-5
procedure 4-2
shell termination 7-25

Login directory
defined 7-12

. new user 2-1
Login message 2-1
Login

procedure 4-1
Looping

break command 7-24
continue command 7-24
control 7-24
expr command 7-36
false command 7-36
for command 7-23
iteration counting
procedure 7-36
time consumption 7-40
true command 1-36
unconditional loop
implementation 7-36
until command 7-23
while command 7-22
while loop 7-44

lpr command
file printing 4-21
mail

-1ft option 6-32
message printing 6-19
message printing 6-35

pipe 4-27
pr command combination 4-
27

ls command
echo * use in lieu of 7-35

function 3-2
inode number use 3-2

m command
ed See Ed
mail 6-19
mail 6-35

H nag See Mail
magic option See Vi
mail command See Hail
MAIL variable 7-12
Hail

-b option 6-31
-c option 6-31
-R option 6-31
-u option 6-31
-f option 6-31
-f option 6-9
-i option 6-30
-i option 6-31
-i option 6-39
-i option 6-9
-Ill option 6-32
-8 option 4-28
-s option 6-31
.mailre file

alias contents 6-20
distribution list
creation 6-13
example 6-27
options setting 6-13
set command 6-20
unset command 6-20

? command See hel p command
(1)

a command See alias
accumulation 6-32
Alias 6-34
alias

a command 6-13
a cOlllDand 6-20
a command 6-34
display 6-13
network mail 6-13
personal 6-13
per sonal 6-27
R cODlDand 6-13
system-wide 6-27

askcc option 6-13
askce option 6-27
a8kcc option 6-39
asksubject option 6-27
asksubject option 6-39
asterisk (.)

character matching 6-7

message saved. header
notation 6-16
message saved, header
notation 6-18

at sign (@), ignore switch
echo 6-30
at sign (@), ignore switch
echo 6-39
autombox option

description, use 6-30
description, use 6-39
effect 6-18
H flag 6-17
ho command 6-19

autoprint option 6-28
autoprint option 6-39

1-31

IENIX User's Guide

BACKSPACE key 6-11
BACKSPACE key 6-6
Bee field See blind carbon
copy field
blind carbon copy field

description 6-5
editing 6-23
editing 6-24
escape See bce escape

box See Ma ilbox
carbon copy field

additions prompt 6-13
blind See blind carbon
copy field
description 6-5
display 6-4
editing 6-24
escape See c escape
esc ape See cc esc ape
option See askcc
option
R command effect 6-12

caret CAl, first message
specification 6-15
caret CAl, first message
specification 6-34
caret CAl, first message
specification 6-7
cc field See carbon copy
field .
cd command 6-22
cd connand 6-34
chron option 6-28
chron option 6-39
CNTRL-D

message reply 6-12

1-32

message reply 6-19
message sending 6-10

CNTRL-H, backspace 6-6
CNTRL-U, line killing 6-11

CNTRL-U, line killing 6-6
colon (:)

escape See command
escape (:)
network mail 6-13

command escape (:) 6-26
command escape (:) 6-37
command line options 6-31
command mode

description, use 6-7
help command 6-14
options setting 6-13

command
See also Specific
Command
descriptions 6-14
escape See command
escape (:)
invocation 6-14
mail command See mail
command
sUIIIDary 6-33
syntax 6-8

compose escape (I) 6-37
compose escape (I) 6-37
compose escapes

See also Specific
Escape
compo se mod e ex it 6-6
edit mode entry 6-7
heading escapes 6-23
listing 6-11

listing 6-2
m cOlIIDand 6-19
reply 6-19
sunnary 6-37
tilde () component 6-
11

compose mode
compose escapes See
compose escapes
description, use 6-6
edit mode entry 6-7
entry from command
mode 6-11
entry from shell 6-11
tilde escapes See
compose escapes

concept s 6-4
d command --28
d command 6-11
d command 6-17
d command 6-34
d cOlIIDand 6-4
d command 6-7
dead .letter file

escape See d escape
nosave switch
effect 6-28
undelivered message
receipt 6-10

deletion See message
distribution list
creation 6-12
dollar sign ($), final
message specification 6-15

dollar sign ($), final
message specification 6-34

dollar Sign ($), final
message specification 6-7
dot (.), current message
specification 6-15
dot (.), current message
specification 6-7
dot option 6-28
dot option 6-39
dp command 6-17
dp command 6-34
e command 6-21
e command 6-34
echo command 6-34
editor escape See e
escape
editor escape See v
escape
EDITOR string 6-29
EDITOR string 6-39
entry 6-9
equal sign (=). message
number printing 6-16
equal sign (=). message
number printing 6-34
escape string 6-29
escape string 6-39
exclamation point (I)

network mail 6-13
shell command
execution 6-21
shell command
execution 6-25
shell command
execution 6-34

exit
q command 4-28
q command 6-17

1-33

XENIX User's Guide

q command 6-36
q command 6-"
q command 6-9
x command 6-18
x command 6-34

f conmand 6-11
f command 6-12
f conrnand 6-19
F command 6-20
f conmand 6-35
fi command 6-35
file switch See -f option

files designated 6-33
forwarding

messages not
deleted 6-17
procedure See F
command

h command 6-16
h command 6-35
h command 6-9
H fla~, message saving 6-
17
header

characteristics 6-16
command See h command
defined 6-8
display 6-3
display 6-8
display 6-9
listing 6-35
windows 6-16
windows 6-8

heading
compose escapes 6-23
composi tion 6-5

1-34

help command (?) 6-14
help command (?) 6-3
help escape (?) 6-11
help escape (?) 6-22
help escape (?) 6-37
ho command

description 6-19
H flag 6-17
message saving 6-35

hold command See ho
command
ignore switch See -i
option
INTERRUPT key

message abortion 6-11
message abortion 6-28
recipient list 6-21

introduction 6-1
invocation, -i option 6-9
I command 6-19
l'command 6-35
line killing 6-11
line killing 6-6
list command 6-35
lpr command

-m option 6-32
message printing 6-19
message printing 6-35

m command 6-19
m cOIIIDand 6-35
M flag, message saving 6-
11
mail command

command mode entry 6-1

command mode entry 6-9
compose mode entry 6-11

help 6-3
message reading
message reading
me ssage send ing
message sending

6-10
6-3
6-2
6-35

mail escapes See
escape

M

mailbox See Mailbox
mb command 6-18
mb command 6-35
mbox command See mb
command
mchron option 6-39
message number

command 6-16
command 6-3J1
message printing
printing 6-16
printing 6-3J1
types 6-7

message-list
argument, multiple
messages 6-12
composition 6-7
full message-list
description 6-8

message
abor tion 6-11
abortion 6-28
abortion 6-9
advancement 6-10
advancement 6-3J1
body 6-6
composition 6-5
deletion JI-28
deletion 6-11
deletion 6-17

6-10

deletion 6-3J1
deletion 6-11
deletion 6-7
deletion undoing 6-17
description 6-5
display --28
editing 6-11
editing 6-21
editing 6-31
editing 6-34
file inclusion 6-2J1
forwarding See
forwarding
header See header
heading See heading
insertion into new
message 6-25
list See message-list
listing 6-3
number See message
number
printing See printing
range description 6-7
reading 6-10
reading 6-3
reading into file 6-9
reply See reply
saving See saving
sending See sending
size 6-21
size 6-36
specification 6-12
undeletion 6-1'

metacharacters 6-15
metacharacters 6-7
metoo option 6-28
metoo option 6-39

1-35

XENIX User's Guide

minus sign C-), message
advancement 6-34
network mail 6-13
noisy phone line 6-9
nosave option 6-28
nosave option 6-39
number command See message
number
options

See al so Spec i fie
Option
cOllllland line
options 6-31
setting 6-13
summary 6-39
switch option
setting 6-20

organization 6-32
p command

message printing 6-14
message printing 6-36
message printing 6-4
message printing 6-7
syntax 6-8

page option 6-29
period C.), dot use See
dot C.)
phone line noise 6-9
plus sign (+), message
advancement 6-34
printing .

command See lpr
command
command See p command
escape See p escape
lineprinter See lpr
command

1-36

procedure 6-10
procedure 6-7
top five lines See t
command

programs designated 6-33
prompt 4-28
prompt 6-3
q command

exit 4-28
exit 6-17
exit 6-36
exit 6-4
exit 6-9
message abortion 6-28

question mark C?)
cOlIIDand sUDlDary
pr inting 6-34
compose escape help See
help escape C ?)
help command 6-14

quiet option 6-28
quiet option 6-40
R command

alias effect 6-13
r command

compose mode entry 6-11

message reply 6-11
R cODlDand

message reply 6-12
r command

message reply 6-19
message reply 6-36

read escape See d escape

read escape See r escape

read ing 4-28
recipient list, name
addi tion 6-23
record string 6-29
record string 6-40
reminder service 4-30
reminder service 6-32
Reply command See R
command
return receipt request
field 6-5
s command

flag 6-16
message saving 6-18
message saving 6-36
system mailbox, message
deletion 6-17

saving
asterisk (.)
notation 6-18
automatic 6-17
command See s command
flag 6-16
ho command 6-35
M flag 6-17
message display 6-4
s command 6-18
s command 6-36
system mailbox 6-9
w command 6-18
w command 6-37

se command See set
command
sending 4-27

cancellation
impossible 6-3
multiple recipients 6-
10

network mail 6-13
procedure 6-10
to self 6-2

session abortion 6-11
set command

description, use 6-20
description, use 6-36
option control 6-39

set options defined 6-27
sh command 6-21
sh command 6-36
shell commands 6-21
shell escape (I) 6-25
shell escape (I) 6-25
SHELL string 6-29
SHELL string 6-40
si command 6-21
si command 6-36
so command 6-22
so command 6-36
source command See so
command
special characters See
metacharacters
startup file 6-27
string option

setting 6-20
surrrnary 6-39

subject escape See s
escape
subject field 6-4
subject field 6-5
subject switch See -s
option
subject switch See
asksubject option
switch See Option

1-37

XENIX User's Guide

system composition 6-33
system mailbox, message
retention 6-9
t command

message top
printing 6-12
message top
printing 6-16
message top
printing 6-36
toplines option 6-16

tilde escapes See compose
escapes
tilde quote escape
() 6-26
tilde quote escape
() 6-37
to field

mandatory 6-5
R command effect 6-12

top command See t command

toplines option 6-40
toplines string 6-30
u command 6-11
u command 6-17
u conrnand 6-36
u command 6-7
undeletion See u command
unset command

description, use 6-20
description, use 6-37
option control 6-39

v command 6-21
v command 6-37
v command 6-7
variable See MAIL
variable

1-38

vertical bar (I) escape
See shell escape (I)
VISUAL string 6-29
VISUAL string 6-40
w command

message write out 6-18

message write out 6-37
system mailbox, message
deletion 6-17

write escape See w
escape
write out See W cODIDand
x command

exit 6-18
exit 6-34
session abortion 6-11

you have mail message 2-1
I See shell escape (I)
: See command escape

C' :)
1 See help escape (1)
b escape 6-23
bec escape 6-38
c escape 6-23 .
cc escape 6-38
d escape 6-24
dead escape 6-38
e escape 6-23
editor escape 6-38
h escape 6-24
headers escape 6-38
M escape 6-25
message escape 6-38
p escape 6-22
print escape 6-38
quit escape 6-38

r escape 6-24
read escape 6-38
s escape 6-23
subject escape 6-38
t escape 6-23
to escape 6-38
v escape 6-23
visual escape 6-38
w escape 6-25
write escape 6-38

See shell escape (I)
See tilde quote escape

()
Mailbox

cleaning out 6-32
command 6-18
reading in 6-9
system mailbox 6-5
user mail box

filename 6-5
message saving
notation 6-17

Make directory See mkdir
command

Mar king See Ed
mb command See Mail
mbox command See Mail
mchron option

mail 6-39
mesg option See Vi
Hetacharacter

asterisk (*) 7-54
brackets «(J) 7-54
directory name use
avoidance 7-3
escape 7-4
list designated 7-54

mail 6-15
mail 6-7
question mark (1) 7-54
redirection
restr iction 7-6

metoo option See Mail
Minus sign (-)

Be
subtraction operator
symbol 8-4
unary operator symbol
8-16
unary operator symbol
8-4

mail, message
advancement 6-34
redirection effect 7-36
subtraction operator
symbol 8-4
variable conditional
substitution 7-38

mkdir command 4-13
MKFILES shell procedure 7-

49
more command 4-5
Move See mv command
Multiple way branch See case

cOlIIDand
Multiplication See Be
mv cOlIIDand 4-7
mv command 4-8

directory moving 4-13
n command See Vi
Name grammar 7-52
Name special file 4-16
Named pi pe 4-16
newgrp command

description 7-30

1-39

IENIX User's Guide

shell built-in command 1-
40
special shell command 1-30

Newline substitution See
Ed

next command See Vi 5-44
nohup command 1-19
nosave option See Mail
nu command See Vi 5-24
Null command See Colon

command (:)
NULL shell procedure 7-50
Number sign (I), comment

symbol 1-54
Operator See BC
Option

See also Specific Option
configuration 3-9
DRAFT shell procedure 1-46

grouping 3-9
invocation flags 1-39
mail options See Mail
multiple options

grouping See grouping

separate listing 3-10
position 3-9
tracing, $- variable 7-14

Options
terminal 4-4
vi options See Vi

Or-if operator (II)
command list 1-19
description, use 7-20
designated 7-54

1-40

Ordinary file See File
Output

append symbol (
»» 7-5
»» 7-54

appending
procedure 3-11
symbol (»») 3-11

control 4-4
creation symbol

» 7-54
diagnostic output file 7-5

error redirection 7-37
grammar 7-52
red irection 2-3
redirection 4-7
redirection See
Redirection
resumpt ion 4-4
standard error file See
diagnostic output file
standard output file 1-5
terminal screen
destination 3-10
to rile 2-3

p command
eel use See Ed
mail

message printing 6-14
message printing 6-36
message printing 6-4
message printing 6-7
syntax 6-8

page option See Mail
Parent directory

description 3-6

shorthand name 3-6
Parentheses «»

BC
expression enclosure
8-15
function identifier
argument enclosure 8-
14

command grouping 7-25
command grouping 7-40
command grouping 7-5~
pipeline, command list
enclosure 7-20
... t command operator 7-34

passwd command 4-2
Password

changing 4-2
logging 1n 2-1
new user 2-1

PATH variable
conditional
substitution 7-39
description 7-12
directory search

effect 7-42
sequence change 7-3

Pathname
absolute pathname

exanple 3-5
required 3-4
slash (/)
significance 3-5
unique to system 3-4

defined 3-5
full pathname See absolute
pathname

relative pathname
defined 3-5
example designated 3-6

structure 3-5
Pattern matching facility

cancellation 3-8
case command 7-22
characters 3-7
description 3-6
expr command argument
effect 7-35
grep command 4-21
limitations 7-3
metacharacter See
Metacharacter
redirection
restriction 7-6
shell function 7-3
variable assignment, not
applicable 7-11

Pattern
grammar 7-52
metacharacter 7-54

Percentage sign (S), BC
modulo operator symbol
8-4

Period (.)
ed use See Ed
filename use 3-4
pattern matching facility
restrictions 7-3
vi See Vi
working directory
change 4-15

Permission types 4-16
Permission

block special device
notation 4-16

XENIX User's Guide

change 3-2
denial notation 4-16
directory permission

assignment 3-2
change 3-2
change 4-17
combinations
designated 4-17
file creation, deletion
notation 4-16
file listing
notation 4-16
notation 4-16
search notation 4-16
search permission 4-19
write permission 3-2

execute notation 4-16
file permission

change 3-1
denial notation 4-16
execute permission 4-16

file creation, deletion
notation 4-16
file listing
notation 4-16
file protection 3-1
notation 4-16
read notation 4-16
required 3-1
write notation 4-16

listing 4-15
notation 4-16
read notation 4-16
search notation 4-16
symbols designated 4-16
user class
specification 4-18

1-42

write notation 4-16
PHONE shell procedure 7-50
PID

$1 variable 7-14
$$ variable 7-13
process identification
number 4-24
process identification
number 4-26

Pipe
compose escapes See Mail
file interchange 7-46
function 3-12
lpr cOllllland 4-27
procedure 3-12
symbol (D 3-12
symbol (I) 7-54

Pipeline
command list 7-20
defined 3-12
defined 7-19
description 7-7
DISTINCT1 shell
procedure 7-45
filter 1-7
grammar 7-52
notation designated 1-7
procedure 7-7

Plus sign (+)
Be

addition operator
symbol 8-4
unary operator symbol
8-16

mail, message
advancement 6-10
mail, message
advancement 6-34

variable conditional
substitution 7-38

Positional parameter
description 7-10
direct access 1-17
null value assignment 7-38

number yield, Sf
variable 7-13
parameter substitution 7-
11
positioning 7-10
prefix (S) 7-11
setting 7-10
variable assignment
statement poSitioning 7-10

pr command 4-27
Print working directory See

pwd cOlIIDand
Printing

command See lpr command
command See p command
cOlIIDand See pr command
ed See Ed
mail See Mail

Process identification
number See PID

Process
background See Background
process
defined 7-1
foreground See Foreground
process
number See PID
status
status 4-26

Program stopping 2-5
Prompt character 2-1
Prompt character 4-1
ps command 4-24
ps command 4-26
PS1 variable 7-12
PS2 variable 7-13
pwd command 4-11
pwd command 4-14
q cOlIIDand

ed exit See Ed
mail

exit _-28
exit 6-17
exit 6-36
exit 6-4
exit 6-9
message abortion 6-28

q! See Vi
Question mark (?)

directory name, use
avoidance 7-3
ed use See Ed
filename, use
avoidance 3-4
mail

command summary
printing 6-34
compose escape
listing 6-11
compose escape
listing 6-2
compose escape
listing 6-22
help command 6-14
help command 6-3

metacharacter 7-3

1-43

XENII User's Guide

metacharacter 7-54
pattern matching See
metacharacter
pattern-matching
functions 3-8
single char acter
representation 3-8
variable conditional
substitution 7-38

quiet option See Mail
qui t command

See also q command
BC exit 8-1
BC exit 8-3

QUIT key, background process
i_unity 7-19

C).Ji t See q command
Quotation marks, back (")

command line
substitution 7-8
command substitution 7-4
command substitution 7-9
quoting 7-55

Quotation marks,
Quotation marks,
Quotation marks,
C).Jotation mar ks ,
Quotation marks,
C).Jotation marks,
Quotation mar ks ,

filename, use
avoidance 3-4

double
double
double
double
double
double
single

(\0
(\0
(\0
(\0
(\0
(\0
(")

grep command 4-21
metacharacter escape 7-4
pattern matching
cancellation 3-8
trap command 7-27

1-44

variable substitution
inhibition 7-11

Quoting
backslash (\) use 7-55
metacharacter escape 1-4
quotation marks, back (")
use 7-55
quotation marks, double
(7-55

r character, read permission
notation 4-16

R command See Mail
r command

ed use See Ed
mail use See Mail

read cODlDand
exit status 7-30
shell built-in command 7-
40
special shell command 7-30

Read cOlIIDand
vi See Vi

Read See r command
Read-ahead 2-4
readonly command

description 7-30
shell built-in command 7-
40
special shell command 7-30

Record string See Mail
Redirection

argument location 7-8
case command 7-26
cd arg command 7-30
control command 7-26

diagnostic output 7-6
file descriptor 7-37
for command 7-26
if command 7-26
input redirection

. procedure 3-12
symbol «) 3-12

minus sign (-) effect 7-36

output redirection 4-7
symbol (») 3-11

pattern matching use
restriction 7-6
simple command line,
appearance 7-19
special character use
restriction 7-6
special shell command,
restriction 7-29
symbol «) 7-54
symbol (

» 2-3
» 7-54

until command 7-26
while command 7-26

Reference Manual
directory removal
information 4-13
linking information 4-10
sort command
information 4-21
stty information 4-4

Regular expressions See Ed
Relative pathname See

Pathname
Reminder service

automatic 4-30

mail 6-32
Remove directory See rmdir

command
Remove See rm command
Removing a directory 4-13
Renaming a file 4-8
Repeat command

see Vi 5-42
reply command See Mail
Report option See Vi
Reserved word listing 7-55
Return code See $?

variable
RETURN key

BC 8-2
command execution 2-2
command execution 4-4
command-line buffer
submittal 3-9
mail, message display 4-28

rm command 2-3
nn command 4-9
rmdir command 4-13
s command

ed use See Ed
mail 6-16
mail 6-17
mail 6-18
mail 6-36

scale command 8-7
Scale See BC
Screen See Scrolling

screen
Screen See Terminal screen
Screen-oriented commands See

Vi 5-12

1-45

XENIX User's Guide

Scripts See Ed
Scripts See Shell
Scrolling commands

more 4-5
Scrolling screen

stopping 4-4
Scrolling, control 4-4
se command See set command
Search permission See

Permission
Se arch See Ed
Search str ings

example designated 3-10
Searching for a file 4-9
Searching See I command
Se ar ching See Vi
Searching

vi procedure See Vi
sed command See Ed
Semaphore 4-16
Semicolon (;)

BC, statement separation
8-19
BC, statement separation
8-3
case command break 7-22
case delimiter symbol 7-54

command list 7-19
command separation 3-9
cormnand separator
symbol 7-54
ed use See Ed

set all See Vi
set command

mail
description, use 6-20

1-46

description, use 6-36
option control 6-39

name-value pair
listing 7-16
poSitional parameters
setting 7-10
shell built-in command 1-
40
shell flag setting 7-15
special shell command 1-30

sh command
description 1-1
mail 6-21
mail 6-34
mail 6-36
shell invocation 1-16

Shell command
executing while in vi 5-14

SHELL string 6-29
SHELL string 6-40
Shell

-e option 7-33
-Ie option 7 -33
-n option 7-33
-t option 1-33
-u option 1-33
-v option 7-15
-x option 1-15
argument paSSing 1-11
command interpretation 3-9

command
search procedure 7-2
spec ial command See
special cODlDand

compose escapes See Hail
conditional capability 7-
20
creation

procedure 7-1
description 7-1
echo command 4-20
entry, mail mode
source 6-21
escape

ed procedure See Ed
mail procedure See
Hail

execution
flag See option
sequence 7-18
termination 7-25

exit
-e option 7-33
-t option 7-33
mail mode return 6-2-1
procedure 7-25

function 7-1
grammar 7-52
in-line input document
handling 7-36
interactive 7-39
interruption procedure 7-
27
invocation

option 7-39
procedure 7-16

mail
invocation 6-6
shell commands 6-21

option
See also Specific
Option

designated, use 7-32
setting 7-15

pattern matching facility
See Pattern matching
facility
positional parameter See
Positional parameter
procedure

See also Specific Shell
Procedure
advantages over C
programs 7-32
byte access reduction
consideration 7-41
creation 7-31
description 7-2
directory 7-32
efficiency analysis 7-
40
efficiency
awareness 7-40
examples designated 7-
43
fil ter order
consideration 7-41
option See option
scripts designation 7-
43
time command 7-40
writing strategies 7-39

redirection ability 7-5
scripts See procedure
spec ial command

See also Specific
Special Command
designated 7-29

1-47

XENIX User's Guide

redirection
restriction 7-29

special shell variable 7-
18
state 7-14
string See SHELL string
TERM variable See TERM
variable
variable See Variable

shi it cOrrJDand
argument processing 7-17
shell built-in cOrrJDand 7-
40

si command See Hail
Simple command See Command
Single quotation marks See

Quotation marks, single
(")

Slash (/)
absolute pathname
significance 3-5
BC, division operator
symbol 8-4
command prepending
suppression 7-2
ed use See Ed
pathname significance 3-5
search command See Vi

so command See Mail
sort command 4-20
Special character See

Metacharacter
Special character

ed use See Ed
pattern matching
facility 7-3

Special characters
designated 3-7

1-48

pattern matching 3-6
Special file

description 3-2
Sshared data file 4-16
Standard error file See

Output
Standard error output See

Error output
Standard input file See

Input
Standard output file See

Output
Star (*)

See also Asterisk (*)
ed metachar acter See Ed

Status
command See ps command
information procedures 4-
25

String option See Mail
String variable 7-10
String

searching for See Search
stty command 4-4

terminal setting 2-4
Subdirectory 4-15
Subshell, directory

change 7-14
Substitution command See s

cODIDand
Subtraction See BC
Subtraction See

Calculation
Switch See Option
Switch

defined 3-9
regulations See Option

System
basic concepts 3-1
characteristics 1-1
composi tion 1-1
mailbox See Mailbox
tree-structured directory
system 3-2

t cOlIIDand
ed use See Ed
mail 6-12
mail 6-16
mail 6-36

Table command See Ed
Tabs

ed See Ed
tail command 4-6
tbl command See Ed
Tempor ary file

directory (/tmp) 4-25
kill command warning 4-25
trap command, removal 7-28

use recommendation 7-13
term option See Vi
TERM variable, changing 4-3
Terminal screen

output See Output
scrolling screen See
Scrolling screen

Terminal
changing 4-3
name designation 2-2
options setting 4-4
strange behavior
remedy 2-4
writing to See ~ite
command

Terminals
supported 4-3

terse option See Vi
te st comm and

argument 7-35
brackets ([J) use in lieu
of 7-33
description, use 7-33
operators 7-34
options 7-34
shell built-in command 7-
40

Text editor
ed See Ed
ex See Ex
vi See Vi

TEXTFlLE shell
procedure 7-51

then clause See if command
Tilde escape See Mail
time command 7-40
Top command See t command
Toplines option See Mail
Toplines string See Mail
Transfer command See t

command
trap command

description, use 7-27
implementation method 7-29

multiple traps 7-29
special shell command 7-30

temporary file removal 7-
28

troff See Ed
true command 7-36

1-49

XENIX User's Guide

tty. terminal system
name 2-2

Type-ahe ad 2-4
Type-ahead 4-4
Typing error correction 2-3
u command See vi 5-40
u eommand

ed use See Ed
mail 6-17
mail 6-36
mail 6-7
vi See Vi

ugo, permission
classification 4-18

umask command
description 7-31
directory permission
change 3-2
shell built-in command 7-
40
special shell command 7-31

Undo command See u command
Undo command See Vi
undo command See Vi 5-40
unset command See Mail
until cODJnand

continue eommand
effect 7-24
description. use 7-23
exit status 7-23
redirection 7-26
shell built-in command 7-
40

User classes 4-17
User

addi tion 2-1

1-50

classification 4-18
mail See Mail
mailbox See Mailbox
permission See Permission

v cODllland
ed use See Ed
mail 6-21
mail 6-37
mail 6-7

Value See $? variable
Variable

$1 variable 7-14
$' variable 7-13
$$ variable 7-13
$- variable 7-14
$? variable 7-13
assignment

line command 7-9
string value 7-10

BC variable See BC
command environment
composition 7-15
conditional
substitution 7-37
description 7-9
double quotation marks
(7-11
enclosure 7-11
execution sequence 7-10
expansion 7-4
export 7-13
expr command 7-35
file creation 7-27
global check 7-33
HOME See HOME variable
IFS See IFS variable

keyword parameter 7-15
listing procedure 7-16
HAIL See HAIL variable
name defined 7-10
null value assignment
procedure 7-37
PATH See PATH variable
positional parameter See
Positional parameter
prefix ($) 7-11
PS1 See PS1 variable
PS2 See PS2 variable
set variable defined 7-37
special variable 7-13
string value
assignment 7-10
substitution

-u option effect 7-33
double quotation marks
(7-11
notation 7-54
redirection
argument 7-6
single quotation marks
(") 7-11
space
interpretation 7-11

test command 7-33
types designated 7-12

Vertical bar (D
mail escape 6-25
or-if operator symbol
(I:> 7-19
pipe symbol 3-12
pipeline notation 7-7

Vi, mail
compose escape, v 6-38

Vi

editing 6-21
entry from command
mode 6-7
entry from compose
mode 6-7
VISUAL string 6-40

• command See dot (.)
command
• command

See dot (.) command
.exrc file 5-54
.login file

terminal type setting
use 5-50

.profile file
terminal type
setting 5-50

I command
searching 5-9

o cODDDand
cursor movement 5-5

:q! 5-16
:x 5-16
: x command 5-42
appending text

A 5-21
See also inserting
text

args command 5-45
b command, cursor
movement 5-5
breaking lines 5-26
buffers

delete 5-33
delete See delete
buffer

1-51

XENIX User's Guide

naming 5-23
selecting 5-23

C c:omnuirid 5-30
C shell

prompt 5-50
TERM variable 5-50
terminal type
setting 5-50

canceling changes 5-43
caret (A), pattern
matching 5-39
caret (A), pattern
matching 5-40
cc command 5-31
CNTRL-B

scrolling 5-5
CNTRL-D

sct"olllng 5-5
subshell exit 5-48

CNTRL-F
scrolling 5-5

CNTRL-G
file status
information 5-11
file status
information 5-47

CNTRL-J, inserting 5-26
CNTRL-L

scree~ redraw 5-48
CNTRL-Q, inserting 5-26
CNTRL-S, inserting 5-26
CNTRL-iJ

deleting m1

insertion 5-28
scr'olling 5-5

CNTRL-V, use 5-26
co (copy) command 5-24

1-52

colon (:)
line-oriented command,
use 5-12
status line prompt 5-12

command mode
cursor movement 5-5
entering 5-3

c01lllland
line-oriented See line­
oriented commands 5-12

repeating, dot (.)
use 5-6
screen-oriented See
screen-oriented
commands 5-12

control characters,
inserting 5-26
copying lines 5-24
correcting mistakes 5-21
crash, recovery 5-48
current line

deleting 5-28
deleting 5-6
designated 5-2
line containing
cursor 5-4
number, finding out 5-
24

cursor movement
• key 5-19
+ key 5-19
b 5-18
backward 5-19
BKSP 5-17
by character 5-17

by lines 5-19
by words 5-18
CNTRL-N 5-19
CNTRL-P 5-19
down 5-17
down 5-5
e 5-18
F 5-17
forward 5-19
h 5-17
H 5-19
j 5-17
j 5-19
k 5-17
k 5-19
keys 5-5
1 5-17
L 5-19
left 5-17
left 5-18
left 5-5
line beginning 5-5
line end 5-5
LINEFEED key 5-19
lower left screen 5-5
M 5-19
RETURN key 5-19
right 5-17
right 5-18
right 5-5
screen 5-19
scrolling See
scrolling 5-5
See also scrolling
SPACEBAR 5-17
T 5-18
to end of file 5-5

up 5-17
up 5-5
upper left screen 5-5
w 5-18
word backward 5-5
word forward 5-5

cursor movment
right 5-17

cw command 5-30
D command 5-6
d$ command 5-6
dO cODlDand 5-6
date, finding out 5-14
dd command 5-6
delete buffer

use 5-33
deleting text

by character 5-27
by line 5-27
by word 5-27
D 5-27
dd command 5-27
deleting an
insertion 5-28
dw command 5-27
methods 5-6
repeating deletion 5-42

undoing 5-40
undoing deletion 5-4
X command 5-27

demonstration 5-1
description 5-1
dollar sign ($)

cursor movement 5-5
pattern matching 5-39

dollar sign($)
use in line address 5-

1-53

IENII User's Guide

28
dot (.)command See •
command 5-6
dot See al so dot. (.)
COlDDla'ld
dot, use In line
address 5-28
dw co_and 5-6
editing several files

changing ',he order 5-45

end-of-line
displaying 5-51

entering
at a specified line 5-
17
at a specified word 5-
17
proc~dure 5-2
with filenlDe 5-16
tdth sever'at
fil~names 5--3

error messages
abortenins 5-52
turning off 5-46

ESCAPE, insert mode
exit 5-3
ESCAPE, in~ert mode
exit 5-48
exclamation point (I)

shell escspe 5-1~
exiting

:q! 5-16
::1(5-16
:x command 5-42
saving changes 5--2
saving file 5-13

temporarily 5-1.
temporarily 5--6
without saving
changes 5-.3
ZZ command 5--3

file
creating 5-2
not saving, aql 5-16
savlns 5-16
status information
display 5-10
status information
procedure 5-11

filen_
find ins out 5--7
pl ann ins 5-'1.

G oo.and
cursor movement 5-5

goto command See G
co_and
H' command

our aor movement 5-5
i command

inserting text 5-2
isnorecase option 5-36
isnorecase option 5-51
insert comma'ld See i
cOlllDand
insert mode

entering 5-3
exiting 5-3

inserting text from
another file 5-1.
inserting text

See also appending
text
control characters 5-26

from other files 5-22
i 5-21
repeating insert 5-22
repeating insert 5-42
undoing 5-40
undoing insert 5-48
undoing insertion 5-4

invoking See entering
j command

cursor movement 5-5
joining lines 5-26
k command

cursor movement 5-5
L command

cursor movement 5-5
leaving See exiting
line addressing

doll ar aign 5-28
dot(.) 5-28
procedure 5-28

line numbers, displaying
:nu command 5-48
linenumber option 5-15
linenumber option 5-24
linenumber option 5-52
nu command 5-24

line-oriented command
mode 5-47
line-oriented commands

:args 5-45
:e 5-23
:e 5-45
:el 5-23
:e# 5-46
:f 5-47
:file 5-47
:n 5-44

:nu 5-24
:nu 5-48
:q 5-43
:r 5-22
:rew 5-45
:s 5-31
:w 5-22
:wq 5-'2
colon (:) uae 5-12
deleting text 5-27
entering 5-12
moving text 5-31
status line,
display 5-10

linenumber option 5-52
list option 5-51
magia option 5-'10
magic option 5-53
marking lines 5-23
mesg option 5-53
mistakes, correcting 5-21
mode,determining 5-48
mode .

See also command mode

See also insert mode
See also line-oriented
command mode

moving text 5-31
n command 5-10
n command 5-36
new line, opening 5-22
next command 5-44
opening a new line 5-22
options

displaying 5-51
ignorecase 5-36

1-55

XENIX User's Guide

ilnor eo ase 5-51
linenumber 5-2~
1 in en umber 5-31
linenumber 5-52
list 5-15
list 5-51
mas1c 5-40
masie 5-53
mesl 5-53
report 5-52
Sflttinl 5-49
settinl 5-51
term 5-52
terse 5-52
warn 5-46
warn 5-53
wrapscan 5-36
wrapscan 5-53

overstrike command8 5-28
pattern matahinl

See also searching
belinnins of line 5-39
caret (A) 5-40
character range 5-39
character, slnlle 5-39
end or line 5-39
exceptions 5-40
lener ally 5-39
special characters 5-40

square brackets
([]) 5-39

period (.)
pattern matchinl 5-39
repeat command
symbol 5-3

problem solving 5-48

1-56

puttinl 5-23
Q command, line-oriented
command mode 5-47
quittinl See exitinl 5-~3
r comand 5-1 ~
r coanand 5-28
read command 5-1~
redrawina the screen 5-48
repeat command 5-42
repeatina a command 5-~2
replacinl a l1ne 5-30
replec1nl a line 5-31
replecinl • word 5-30
rep1.cina a word 5-31
report option 5-52
rew command 5-45
S command 5-29
s command 5-30
savini a tile 5-43
screen, redrawinl 5-48
screen-or1ented
commands 5-12
scro11inl

backward 5-5
down 5-20
down 5-5
torward 5-5
up 5-20
up 5-5

searchinl and rep1ecins
a word 5-37
c option 5-38
choosins
replacement 5-38
command syntax 5-37
p option 5-38
printinl
replacement' 5-38

searching See I command
searching

See also searching and
replacing
backward 5-35
caret (A) use 5-39
caret 5-39
caret("') 5-40
case Signficance 5-5'
case Significance 5-36
dollar sign ($) 5-39
forward 5-10
forward 5-35
next command 5-36
period (.) 5-39
procedure 5-9
repetition 5-10
special characters 5-36

special characters 5-53

square brackets
([l) 5-39
status line,
display 5-10
wrap 5-10
wrap 5-36
wrap 5-53

session, canceling 5-16
set all, option list 5-15
set command 5-49
set cOlIIDand 5-51
setting options 5-51
shell command,
executing 5-14
shell escape 5-46
slash (I)

search cOllllland

delimiter 5-9
special characters,

matching 5-40
searching for 5-36
searching for 5-53
vi filenames 5-44

status line
line-oriented command
entry 5-12
location 5-10
prompt, colon (:)
use 5-12

string
pattern matching 5-39
searching for See
searching

sub shell
exiting 5-48

Substitute nommands 5-29
switching files 5-45
system crash

file recovery 5~9
tabs

displaying 5-51
TERM variable 5-50

Bourne shell 5-50
Visual Shell 5-50

termcap 5-50
terminal type setting

Bourne shell 5-50
C shell 5-50
how 5-52
Visual Shell 5-50

ter se option 5-52 ,
time, finding out 5-14
u COUlD and 5-4
u command 5-40

1"-57

XENIX User's Guide

u command 5-48
undo command See u
co_and
undoins a command 5-40
w command, cur lOr
movement 5-5
warn option 5-46
warn option 5-53
warnings, turning off 5-53

word, deleting 5-6
wrapscan option 5-36
wrapscan option 5-53
write messages 5-53
writins out a file

:wq command 5-42
:wq co_and 5"'3

x command 5-6
yankins lines 5-23
yanking lines 5-26
ZZ command 5-113

visual command See Mail
Visual Shell

TERM variable 5-50
terminal type 5-50

VISUAL string See Mail
w character

directory permission
notation 4-16
file permission t write
notation 4-16

w command See Vi
w command

ed use See Ed
maU

message saving 6-18
message write out 6-31

1-58

system mailbox, message
deletion 6-11

wait command
description 1-31
exit status '1-31
shell built-in command 1-
40
special shell command 1-31

warn option See Vi
we c~and 11-22

word count 3-13
while command

break command effect 1-24
continue command
effect 1-2.
description, use 1-22
exit status 1-23
loop 1-411
redirection 1-26
ahell built-in command 1-
40
test command 7-33

who command 11-25
description 2-2
logged 1n users list 3-13

Word
counting See wc command.
gr8lllDar 1-52

Working directory See
Current directory

wrapscan option See Vi
wrapscan option See Vi 5-36
write command 11-28
Write out See w command
WRITEMAIL shell

procedure 1-51

x character
directory permission
search 4-16
file permission, execute
notation 4-16

x command See Vi
x cODlDand

z

mail
exit 6-18
exit 6-34
session abortion 6-11

vi use See Vi

v i scroll 5-20
ZZ cOlIIDand See Vi 5-43
[] See Brackets ([])
{} command See Braces

command ({})
bee escape See Mail
cc escape See Mail
dead escape See Mail
editor escape See Hail
headers escape See Hail
message escape See Hail
print escape See Mail
qui t escape See Mail
read escape See Mail
subject escape See Mail
to escape See Mail
visual escape See Mail
write escape See Mail

	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28
	I-29
	I-30
	I-31
	I-32
	I-33
	I-34
	I-35
	I-36
	I-37
	I-38
	I-39
	I-40
	I-41
	I-42
	I-43
	I-44
	I-45
	I-46
	I-47
	I-48
	I-49
	I-50
	I-51
	I-52
	I-53
	I-54
	I-55
	I-56
	I-57
	I-58
	I-59

