

Software Development Guide

IBM Personal Computer
XENIX™ Software
Development System

Programming Family

--..------- - ------- -. ---- - - --------------, -
Personal
Computer
Software

First Edition (December 1984)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer or your IBM Marketing Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C,
Boca Raton, Florida 33432. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1984
© Copyright Microsoft Corporation 1983, 1984

IBM Personal Computer XENIX
Library Overview

The XENIXI System has three available products. They are the:

• Operating System

• Software Development System

• Text Formatting System

The following pages outline the XENIX Software Development
System library.

1 XENIX is a trademark of Microsoft Corporation.

iii

XENIX Software Development System

iv

•

•

•

•

•

Creating language programs

Invoking the C Compiler

Program checkers,
maintainers, and debuggers

Using S-Files

The C-Shell

A guide to the available programming tools in the XENIX
environment.

Programmer's
Guide To
Library Functions

o

o

For Experienced Language Users

• Elements of the C
~~~ programming language 

• Preprocessor Directives 

• Declarations 
XENIX 
C Compiler 

• Expressions and Assignments Reference 
Manual 

• Description of functions and 
statements 

~refer~ncetotheC pr9gra~rrii~glahguage~· N?tatiohaJ 
conve.t1tionsar~ Qe~cribeQ throughout the manuaL 

For All Users 

• 

• 

Software· Development 
commands ( CP) 

Command definition 
and syntax 

v 



vi 



Abou t This Book 

This guide explains how to use the XENIX Software 
Development system to create and maintain C language and 
assembly language programs. This guide is intended for 
programmers who are familiar with the C programming language 
and with the XENIX system. 

C language programmers should read Chapters 2, 3, 4, and 7 for 
an explanation of how to compile and debug C language 
programs. Programmers who wish to automate the compilation 
process of their programs should read Chapter 5 for an 
explanation of the make program. Programmers who wish to 
organize and maintain multiple versions of their programs should 
read Chapter 6 for an explanation of the SCCS commands. 

Special project programmers who need a convenient way to 
produce lexical analyzers and parsers should read Chapters 8 and 
9 for explanations of the lex and yacc program generators. 

This book is organized as follows: 

Chapter 1. Introduction 
Introduces the XENIX software development programs 
provided with this package. 

Chapter 2. CC: A C Compiler 
Explains how to compile C language programs using the cc 
command. 

Chapter 3. XENIX to DOS: A Cross Development System 
Provides information on how to create programs that run 
under DOS. The DOS cross development system lets you 
create, compile, and link DOS programs on the XENIX 
system and transfer these programs to the DOS system. 

Chapter 4. The lint Program: A C Program Checker 
Explains how to check C language programs for syntactical 
and semantical correctness using the C program checker 
lint. 

vii 



Chapter 5. A Program Maintainer: make 
Explains how to automate the development of a program 
or other project using the make program. 

Chapter 6. SCCS: A Source Code Control System 
Explains how to control and maintain all versions of a 
project's source files using the Source Code Control 
System (SCCS) commands. 

Chapter 7. The adb Program Debugger 
Explains how to debug C and assembly language programs 
using the XENIX debugger adb. 

Chapter 8. The lex Program: A Lexical Analyzer 
Explains how to create lexical analyzers using the program 
generator lex. 

Chapter 9. The yacc Program Generator: A Compiler-Compiler 
Explains how to create parsers using the program 
generator yacc. 

Chapter 10. The C Shell 
Explains how to use the C shell, a command interpreter 
that provides greater flexibility and more power than the 
standard XENIX shell, sh. 

Appendix A. C Language Portability 
Explains how to write C language programs that can be 
compiled on other XENIX systems. 

Appendix B. M4: A Macro Processor 
Explains how to use to create and process macros using the 
m4 macro processor. 

Appendix C. XENIX Device Driver 
Explains how to write device drivers for XENIX systems. 

Appendix D. Linker Error Messages 

viii 

Lists all linker error messages alphabetically. Explains 
each error message. 



Related XENIX Personal Computer 
Publications 

• IBM Personal Computer XENIX Programmer's Guide to 
Library Functions 

• IBM Personal Computer XENIX C Compiler Reference 
Manual 

• IBM Personal Computer XENIX Software Command 
Reference 

• IBM Personal Computer XENIX Assembler Reference 

• IBM Personal Computer XENIX Installation Guide 

• IBM Personal Computer XENIX Visual Shell 

• IBM Personal Computer XENIX System Administration 

• IBM Personal Computer XENIX Basic Operations Guide 

• IBM Personal Computer XENIX Command Reference 

ix 



x 



Contents 

Chapter 1. Introduction ............................. 1-1 
Overview ................................... 1-3 
Creating C Language Programs .................. 1-4 
Creating Other Programs ....................... 1-5 
Creating and Maintaining Libraries ............... 1-5 
Maintaining Program Source Files ................ 1-6 
Creating Programs with Shell Commands ........... 1-7 

Chapter 2. CC: The C Compiler ............ . . . . . . . . . .. 2-1 
Introduction ................................. 2-3 
Invoking the C Compiler ....................... 2-3 
Creating Programs From C Source Files . . . . . . . . . . .. 2-4 

Compiling a C Source File .................. 2-4 
Compiling Several Source Files ............... 2-5 
Naming the Output File .................... 2-7 

Creating Small, Middle, and Large Programs ........ 2-8 
The -Ms Option .......................... 2-8 
The -Ms and -i Options ....... . . . . . . . . . . . . .. 2-9 
The -Mm Option .......................... 2-9 
The -MI Option ........................... 2-9 
Creating Small Model Programs ............. 2-10 
Creating Pure-Text Small Model Programs ..... 2-10 
Creating Middle Model Programs ............ 2-10 
Creating Large Model Programs ............. 2-11 

Using Object Files and Libraries ................ 2-11 
Creating Object Files ..................... 2-12 
Creating Programs from Object Files ......... 2-13 
Linking a Program to Functions In Libraries ... 2-13 

Creating Smaller and Faster Programs ............ 2-14 
Creating Optimized Object Files ............ 2-15 
Stripping the Symbol Table ................. 2-15 
Removing Stack Probes from a Program ...... 2-16 

Preparing Programs for Debugging ............... 2-17 
Producing an Assembly Language Listing 2-17 
Profiling a Program ....................... 2-18 

Controlling the C Preprocessor . . . . . . . . . . . . . . . . .. 2-19 
Defining a Macro ........................ 2-19 

xi 



Defining Include Directories ................ 2-20 
Ignoring the Default Include Directories . . . . . .. 2-21 
Saving a Preprocessed Source File ........... 2-21 

Error Messages .............................. 2-22 
C Compiler Messages ..................... 2-22 
Setting the Level of Warnings ............... 2-23 

U sing Advanced Options ...................... 2-24 
Creating Programs from Assembly Language 
Source Files ............................ 2-24 

Using the near and far keywords ............ 2-25 
Setting the Stack Size ..................... 2-26 
Using Modules, Segments, and Groups ........ 2-27 
Creating Programs for DOS ................ 2-29 

Compiler Summary ........................... 2-29 
CC Options ............................ 2-29 
Memory Models ......................... 2-32 
Pointer and Integer Sizes .................. 2-32 
Segment and Module Names ................ 2-32 

Chapter 3. XENIX to DOS: A Cross Development System .. 3-1 
Introduction ................................. 3-3 
Creating Source Files .......................... 3-4 
Compiling a DOS Source File .................... 3-5 
Using Assembly Language Source Files ............ 3-6 
Creating Linking Object Files ............. . . . . . .. 3-6 
Running and Debugging a DOS Program ........... 3-7 
Transferring Programs Between Systems ........... 3-7 
Creating DOS Libraries ........................ 3-8 

Chapter 4. The lint Program-a C Program Checker ........ 4-1 
Introduction ................................. 4-3 
Invoking Lint ................................ 4-4 
Checking for Unused Variables and Functions ....... 4-5 
Checking Local Variables ....................... 4-6 
Checking for Unreachable Statements ............. 4-7 
Checking for Infinite Loops ..................... 4-8 
Checking Function Return Values ................ 4-9 
Checking for Unused Return Values ............. 4-10 
Checking Types ............................. 4-10 
Checking Type Casts ......................... 4-11 
Checking for Nonportable Character Use ......... 4-12 
Checking for Assignment of longs to ints .......... 4-12 
Checking for Strange Constructions .............. 4-13 

xii 



Checking for Use of Older C Syntax ............. 4-14 
Checking Pointer Alignment .................... 4-15 
Checking Expression Evaluation Order ........... 4-16 
Embedding Directives ......................... 4-17 
Checking for Library Compatibility .............. 4-18 

Chapter 5. A Program Maintainer: make ................ 5-1 
Introduction ................................. 5-3 
Creating a Makefile ........................... 5-3 
Invoking make ............................... 5-5 
Using Pseudo-Target Names ..................... 5-8 
Using Macros ................................ 5-9 
Using Shell Environment Variables .............. 5-12 
Using the Built-In Rules ....................... 5-14 
Changing the Built-in Rules .................... 5-15 
Using Libraries .............................. 5-17 
Troubleshooting ............................. 5-18 
Using make: An Example ...................... 5-19 

Chapter 6. secs: A Source Code Control System ......... 6-1 
Introduction ................................. 6-5 
Basic Information ............................. 6-5 

Files and Directories ....................... 6-6 
Deltas and SIDs .......................... 6-6 
sces Working Files ....................... 6-7 
sces Command Arguments ................ 6-9 
File Administrator ....................... 6-10 

Creating and Using S-files ..................... 6-10 
Creating an S-file ........................ 6-10 
Retrieving a File for Reading ............... 6-12 
Retrieving a File for Editing ................ 6-13 
Saving a New Version of a File .............. 6-14 
Retrieving a Specific Version ............... 6-15 
Changing the Release Number of a File ....... 6-16 
Creating a Branch Version ................. 6-1 7 
Retrieving a Branch Version ................ 6-1 7 
Retrieving the Most Recent Version .......... 6-18 
Displaying a Version ...................... 6-19 
Saving a Copy of a New Version ............ 6-19 
Displaying Helpful Information ............. 6-20 

Using Identification Keywords .................. 6-20 
Inserting a Keyword into a File .............. 6-21 
Assigning Values to Keywords .............. 6-22 

xiii 



xiv 

Forcing Keywords ......... . . . . . . . . . . . . . .. 6-22 
Using S-file Flags ............................ 6-23 

Setting S-file Flags ....................... 6-23 
Using the i Flag ......... . . . . . . . . . . . . . . . .. 6-24 
Using the d Flag ......................... 6-24 
Using the v Flag ......................... 6-24 
Removing an S-file Flag ................... 6-25 

Modifying S-file Information ................... 6-25 
Adding Comments ....................... 6-26 
Changing Comments ..................... 6-26 
Adding Modification Requests .............. 6-27 
Changing Modification Requests ............ 6-27 
Adding Descriptive Text ................... 6-28 

Printing from an S-file ........................ 6-29 
Using a Data Specification ................. 6-29 
Printing a Specific Version ................. 6-30 
Printing Later and Earlier Versions .......... 6-30 

Editing by Several Users ....................... 6-31 
Editing Different Versions ................. 6-31 
Editing a Single Version ................... 6-32 
Saving a Specific Version .................. 6-32 

Protecting S-files ............................ 6-33 
Adding a User to the User List .............. 6-33 
Removing a User from a User List ........... 6-34 
Setting the Floor Flag ..................... 6-34 
Setting the Ceiling Flag .. . . . . . . . . . . . . . . . . .. 6-34 
Locking a Version . . . . . . . . . . . . . . . . . . . . . . .. 6-35 

Repairing SCCS Files ......................... 6-35 
Checking an S-file ........................ 6-35 
Editing an S-file ......................... 6-36 
Changing an S-file's Checksum ............. 6-37 
Regenerating a G-file for Editing ............ 6-37 
Restoring a Damaged P-file ................ 6-37 

Using other Command Options ................. 6-37 
Getting Help With SCCS Commands ......... 6-38 
Creating a File with the Standard Input ....... 6-38 
Starting at a Specific Release ............... 6-38 
Adding a Comment to the First Version ....... 6-39 
Suppressing Normal Output ................ 6-39 
Including and Excluding Deltas ............. 6-40 
Listing the Deltas of a Version .............. 6-41 
Mapping Lines to Deltas ................... 6-42 
Naming Lines ........................... 6-42 



Displaying a List of Differences ............. 6-42 
Displaying File Information ................ 6-43 
Removing a Delta ........................ 6-43 
Searching for Strings ...................... 6-44 
Comparing sces Files .................... 6-45 

Chapter 7. The adb Program Debugger ................. 7 -1 
Introduction ................................. 7-3 
Starting and Stopping adb ....................... 7-3 

Starting with a Program File ................. 7-3 
Starting with a Core Image File .............. 7-4 

Starting with the Write Option ................... 7-6 
Starting with the Prompt Option .................. 7-6 
Leaving adb ................................. 7-7 
Displaying Instructions and Data ................. 7-7 

Forming Addresses ........................ 7-7 
Forming Expressions ...................... 7-8 
Choosing Data Formats ................... 7-13 

Using the Equal Command ..................... 7 -15 
Using the (?) and backslash Commands ....... 7-16 
An Example: Simple Formatting ............. 7-17 

Debugging Program Execution .................. 7-19 
Executing a Program .......................... 7-19 

Setting Breakpoints ....................... 7 -20 
Displaying Breakpoints .................... 7-22 
Continuing Execution ..................... 7-22 
Stopping a Program with Interrupt and Quit .... 7 -22 
Single-Stepping a Program ................. 7-23 
Killing a Program .. " . . . . . . . . . . . . . . . . . . . .. 7-23 

Deleting Breakpoints ......................... 7-24 
Displaying the C Stack Backtrace ............ 7-24 
Displaying CPU Registers .................. 7-25 
Displaying External Variables ............... 7-25 
An Example: Tracing Multiple Functions ...... 7-26 

Using the adb Memory Maps ................... 7-31 
Displaying the Memory Maps ............... 7-31 
Changing the Memory Map ................ 7-33 
Creating New Map Entries ................. 7-33 

Validating Addresses ......................... 7-34 
Miscellaneous Features ........................ 7-35 

Combining Commands on a Single Line ....... 7-35 
Creating adb Scripts ...................... 7-36 
Setting Output Width ..................... 7-36 

xv 



Setting the Maximum Offset ................ 7-37 
Setting Default Input Format ................... 7-38 
Using XENIX Commands ..................... 7-38 
Computing Numbers and Displaying Text ......... 7-39 
An Example: Directory and Inode Dumps ......... 7-40 
Patching Binary Files ......................... 7-42 
Locating Values in a File ...................... 7-42 
Writing to a File ............................. 7-43 
Making Changes to Memory .................... 7 -43 

Chapter 8. The lex Program: A Lexical Analyzer .......... 8-1 
Introduction ................................. 8-3 
The lex Source Format ......................... 8-5 
The lex Regular Expressions ..................... 8-6 
Invoking lex ................................. 8-8 
Specifying Character Classes .................... 8-9 
Specifying an Arbitrary Character ............... 8-10 
Specifying Optional Expressions ................. 8-10 
Specifying Repeated Expressions ................ 8-10 
Specifying Alternation and Grouping ............. 8-11 
Specifying Context Sensitivity .................. 8-11 
Specifying Expression Repetition ................ 8-12 
Specifying Definitions ......................... 8-13 
Specifying Actions ........................... 8-13 
Handling Ambiguous Source Rules ............... 8-18 
Specifying Left Context Sensitivity .............. 8-21 
Specifying Source Definitions ................... 8-24 
The Programs lex and yacc ..................... 8-26 
Specifying Character Sets ...................... 8-30 
Source Format .............................. 8-31 

Chapter 9. The yacc Program Generator: A Compiler-Compiler 9-1 
Introduction ................................. 9-3 
Specifications ................................ 9-7 
Actions .................................... 9-10 
Lexical Analysis ............................. 9-13 
How the Parser Works ........................ 9-15 
Ambiguity and Conflicts ....................... 9-21 
Precedence ................................. 9-27 
Error Handling .............................. 9-30 
The yacc Environment ........................ 9-33 
Preparing Specifications ....................... 9-34 
Input Style ................................. 9-35 

xvi 



Left Recursion .............................. 9-35 
Lexical Tie-ins .............................. 9-37 
Handling Reserved Words ..................... 9-38 
Simulating Error and Accept in Actions ........... 9-38 
Accessing Values in Enclosing Rules ............. 9-38 
Supporting Arbitrary Value Types ............... 9-39 
A Small Desk Calculator .. . . . . . . . . . . . . . . . . . . . .. 9-41 
The yacc Input Syntax ........................ 9-44 
An Advanced Example ........................ 9-47 
Old Features ................................ 9-55 

Chapter 10. The C Shell ........................... 10-1 
Introduction ................................ 10-3 
Invoking the C Shell .......................... 10-3 
Using Shell Variables ......................... 10-5 
U sing the C Shell History List .................. 10-7 
Using Aliases .............................. 10-10 
Redirecting Input and Output .................. 10-12 
Creating Background and Foreground Jobs ....... 10-13 
Using Built-In Commands .................... 10-14 
Creating Command Scripts .................... 10-16 
Using the argv Variable ...................... 10-16 
Substituting Shell Variables ................... 10-17 
Using Expressions ........................... 10-20 
Using the C Shell: A Sample Script. . . . . . . . . . . . .. 10-21 
Using Other Control Structures ................ 10-24 
Supplying Input to Commands ................. 10-25 
Catching Interrupts .......................... 10-26 
Using Other Features ........................ 10-26 
Starting a Loop at a Terminal .................. 10-27 
Using Braces with Arguments .................. 10-28 
Substituting Commands ...................... 10-29 
Special Characters .......................... 10-29 

Syntactic Metacharacter .................. 10-29 
Filename Metacharacters ................. 10-30 
Quotation Metacharacters ................ 10-30 
Input/ Output Metacharacters . . . . . . . . . . . . .. 10-30 
Expansion/Substitution Metacharacters ...... 10-31 
Other Metacharacters .................... 10-31 

Appendix A. C Language Portability .................... A-5 
Introduction ................................. A-5 
Program Portability ............................ A-6 

xvii 



Machine Hardware 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-7 
Byte Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-7 
Word Length 0000000000000000000000000000 A-7 
Storage Alignment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-8 
Byte Order in a Word 0000000000000 000000000 A-9 
Bitfields 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-I 0 
Pointers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-II 
Address Space 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A -12 
Character Set 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-13 

Compiler Differences 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 A-13 
Signed/Unsigned char, Sign Extension 0 0 0 0 0 0 0 0 A-13 
Shift Operations 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-14 
Identifier Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-15 
Register Variables 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-15 
Type Conversion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 A-16 
Functions With Variable Number of Arguments A-17 
Side Effects, Evaluation Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-19 

Program Environment Differences 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-20 
Portability of Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-21 
The lint C Program Checker 000000000000 00000000 A-21 
Byte Ordering Summary 000000000000000 00000000 A-21 

Appendix B. The m4 Macro Processor .................. B-1 
Introduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-1 
Invoking m4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-2 
Defining Macros 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 B-2 
Quoting 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-4 
Using Arguments 00000000000000000000000000000 B-6 
Using Arithmetic Built-ins 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-7 
Manipulating Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 B-8 
Using System Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-I0 
Using Conditionals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-I0 
Manipulating Strings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-ll 
Printing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-13 

Appendix C. The XENIX Device Driver Guide ............ C-l 

xviii 

Introduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 C-l 
Preliminaries 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 C-2 
Character Devices 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C-4 
Block Devices 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C-7 
Configuration and Installation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C-9 
Warnings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C-ll 
Sample Line Printer Driver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C-12 



IpopenO ............................... C-13 
IpcloseO ............................... C-13 
IpwriteO ............................... C-15 
IpstartO ............................... C-15 
IpintrO ................................ C-15 

Sample Terminal Driver ....................... C-18 
tdopenO ............................... C-20 
tdcloseO ............................... C-22 
tdreadO and tdwriteO .................... C-22 
tdparamO .............................. C-22 
tmodemO .............................. C-24 
tdintrO ................................ C-24 
tdxintO ................................ C-26 
tdrintO ................................ C-26 
tdmintO ............................... C-28 
tdioctlO ............................... C-28 
tdprocO ............................... C-30 

Sample Disk Driver ........................... C-33 
hdstrategy .............................. C-36 
hdstartO ............................... C-38 
hdintrO ................................ C-38 
hdreadO ............................... C-40 
hdwriteO ............................... C-42 

Appendix D. Linker Error Messages ................... D-l 

Index ........................................ Index-l 

xix 



xx 



Chapter 1. Introduction 

Contents 

Overview ........................................ 1-3 

Creating C Language Programs ....................... 1-4 

Creating Other Programs ............................ 1-5 

Creating and Maintaining Libraries 1-5 

Maintaining Program Source Files ..................... 1-6 

Creating Programs with Shell Commands ................ 1-7 

1-1 



1-2 



Overview 

The IBM Personal Computer XENIX Software Development 
System provides a broad spectrum of programs and commands to 
help you design and develop applications and system software. 
These programs and commands enable you to create C and 
assembly language programs for execution on the XENIX system. 
They also let you debug these programs, "automate" their 
creation, and maintain different versions of the programs you 
develop. The make program saves many steps because you don't 
have to do each one manually. 

This guide uses a number of special symbols to describe the 
syntax of XENIX commands. The following is a list of these 
symbols and their meaning. 

[] Brackets indicate an optional command argument. 

Ellipses indicate that the preceding argument can be 
repeated one or more times. 

bold Boldface characters indicate a command or program 
name. 

italics Italic characters indicate a placeholder for a 
command argument. When typing a command, a 
placeholder must be replaced with an appropriate 
filename, number, or option. 

The following sections introduce the programs and commands of 
the IBM XENIX Software Development System, and explain the 
steps you can take to develop programs for the IBM XENIX 
system. Most of the programs and commands in these 
introductory sections are fully explained later in this guide. Some 
commands mentioned here are part of the IBM Personal 
Computer XENIX Timesharing System. These are explained in 
the IBM Personal Computer XENIX Basic Operations Guide and 
the IBM Personal Computer XENIX System Administration. 

1-3 



Creating C Language Programs 

All C language programs start as a collection of C program 
statements in a source file. The XENIX system provides a 
number of text editors that let you create source files easily and 
efficiently. The most convenient editor is the screen-oriented 
editor vi. The vi screen editor provides many editing commands 
that let you easily insert, replace, move, and search for text. All 
commands can be invoked from command keys or from a 
command line. The vi editor also has a variety of options that let 
you modify its operation. 

Once a C language program has been written to a source file, you 
can create an executable program by using the cc command. The 
cc command invokes the XENIX C compiler which compiles the 
source file. This command also invokes other XENIX programs 
to prepare the compiled program for execution such as the linker 
and the assembler. 

You can debug an executable C program with the XENIX 
debugger adb. The adb debugger provides a direct interface to the 
machine instructions that make up an executable program. 

If you wish to check a program before compiling it, you can use 
lint, the XENIX C program checker. The lint program checks the 
content and construction of C language programs for syntactical 
and logical errors. It also enforces a strict set of guidelines for 
proper C programming style. The lint program is normally used in 
the early stages of program development to check for illegal and 
improper usage of the C language. 

Another way to check a program is with cb, the XENIX C 
program beautifier. The cb program improves readability of C 
programs, making detection of logical errors easier. 

1-4 



Creating Other Programs 

The C programming language can meet the needs of most 
programming projects. In cases where finer control of execution 
is required, you can create assembly language programs using the 
XENIX assembler as. The as program assembles source files and 
produces relocatable object files that can be linked to your C 
language programs with Id. The Id program is the XENIX linker. 
It links relocatable object files created by the C compiler or 
assembler to produce executable programs. The cc command 
automatically invokes the linker and the assembler, so use of 
either as or Id is optional. 

You can create source files for lexical analyzers and parsers using 
the program generators lex and yacc. Lexical analyzers are used in 
programs to pick patterns out of complex input and convert these 
patterns into meaningful values or tokens. Parsers in programs 
convert meaningful sequences of tokens and values into actions. 
The lex program is the XENIX lexical analyzer generator. It 
generates lexical analyzers, written in C program statements, from 
given specification files. The XENIX parser generator yacc 
generates parsers, written in C program statements, from given 
specification files. The lex and and yacc program generators are 
often used together to make complete programs. 

You can preprocess C and assembly language source files, or even 
lex and yacc source files using the m4 macro processor. The m4 
program performs several preprocessing functions, such as 
converting macros to their defined values and including the 
contents of files into a source file. 

Creating and Maintaining Libraries 

You can create libraries of useful C and assembly language 
functions and programs using the ar and ranlib programs. The 

1-5 



XENIX archiver, ar, creates libraries of relocatable object files. 
The XENIX random library generator, ranlib, converts archive 
libraries to random libraries and places a table of contents at the 
front of each library. 

The lorder command finds the ordering relation in an object 
library. The tsort command topologically sorts object libraries so 
that dependencies are apparent. 

Maintaining Program Source Files 

You can automate the creation of executable programs from C 
and assembly language source files and maintain your source files 
using the make program and the Source Code Control Program 
(SCCS) commands. 

The make program is the XENIX program maintainer. It 
automates the steps required to create executable programs, and 
provides a mechanism for ensuring up-to-date programs. It is 
used with medium-scale programming projects. 

The SCCS commands let you maintain different versions of a 
single program. The commands compress all versions of a source 
file into a single file containing a list of differences. These 
commands also restore compressed files to their original size and 
content. 

Many XENIX commands let you carefully examine a program's 
source files. The ctags command creates a tags file so that C 
functions can be quickly found in a set of related C source files. 
The mkstr command creates an error message file by examining a 
C source file. 

Other commands let you examine object and executable binary 
files. The nm command prints the list of symbol names in a 
program. The hd command performs a hexadecimal dump of 
given files, printing files in a variety of formats, one of which is 
hexadecimal. The size command reports the size of an object file. 
The strings command finds and prints readable text (strings) in an 
object or other binary file. The strip command removes symbols 

1-6 



and relocation bits from executable files. The sum command 
computes a checksum value for a file and a count of its blocks. It 
searches for bad spots in a file and verifies transmission of data 
between systems. The xstr command extracts strings from C 
programs to implement shared strings. 

Creating Programs with Shell 
Commands 

In some cases, it is easier to write a program as a series of XENIX 
shell commands than it is to create a C language program. Shell 
commands provide much of the same control capability as the C 
language, and give direct access to all the commands and 
programs normally available to the XENIX user. 

The csh command invokes the C-shell, a XENIX command 
interpreter. The C-shell interprets and executes commands taken 
from the keyboard or from a command file. It has a C-like syntax 
that makes programming in this command language easy. It also 
has an "aliasing" facility and a command history mechanism. For 
a discussion of aliasing, refer to the section "Using Aliases" in 
"Chapter 10. The C Shell." 

1-7 



1-8 



Chapter 2. CC: The C Compiler 

Contents 

Introduction 2-3 

Invoking the C Compiler ............................ 2-3 

Creating Programs From C Source Files ................ 2-4 
Compiling a C Source File ....................... 2-4 
Compiling Several Source Files .................... 2-5 
Naming the Output File ........... . . . . . . . . . . . . . .. 2-7 

Creating Small, Middle, and Large Programs ............. 2-8 
The -Ms Option .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-8 
The -Ms and -i Options .......................... 2-9 
The -Mm Option ............................... 2-9 
The -MI Option ................................ 2-9 
Creating Small Model Programs .................. 2-10 
Creating Pure-Text Small Model Programs .......... 2-10 
Creating Middle Model Programs ................. 2-10 
Creating Large Model Programs .................. 2-11 

Using Object Files and Libraries •.................... 2-11 
Creating Object Files .......................... 2-12 
Creating Programs from Object Files .............. 2-13 
Linking a Program to Functions In Libraries ......... 2-13 

Creating Smaller and Faster Programs ................. 2-14 
Creating Optimized Object Files .................. 2-15 
Stripping the Symbol Table ...................... 2-15 
Removing Stack Probes from a Program ............ 2-16 

Preparing Programs for Debugging .................... 2-17 
Producing an Assembly Language Listing ........... 2-17 
Profiling a Program ............................ 2-18 

2-1 



Controlling the C Preprocessor ...................... 2-19 
Defining a Macro ............................. 2-19 
Defining Include Directories ..................... 2-20 
Ignoring the Default Include Directories ............ 2-21 
Saving a Preprocessed Source File ................. 2-21 

Error Messages ..•............................... 2-22 
C Compiler Messages .......................... 2-22 
Setting the Level of Warnings .................... 2-23 

Using Advanced Options ........................... 2-24 
Creating Programs from Assembly Language Source 
Files ........................................ 2-24 
U sing the near and far keywords .................. 2-25 
Setting the Stack Size .......................... 2-26 
Using Modules, Segments, and Groups ............. 2-27 
Creating Programs for DOS ..................... 2-29 

Compiler Summary ............................... 2-29 
CC Options .................................. 2-29 
Memory Models .............................. 2-32 
Pointer and Integer Sizes ........................ 2-32 
Segment and Module Names ..................... 2-32 

2-2 



Introduction 

This chapter explains how to use the cc command. In particular, 
it explains how to: 

• Compile C language source files 

• Choose a memory model for a program 

• Use object files and libraries with a program 

• Create smaller and faster programs 

• Prepare C programs for debugging 

• Control the C preprocessor 

It also describes the error and warning messages generated by the 
C compiler, and explains how to use advanced features of the cc 
command to make customized programs. 

This chapter assumes that you are familiar with the C 
programming language, and that you can create C program source 
files using a IBM Personal Computer XENIX text editor. For a 
description of the C language, see the IBM Personal Computer 
XENIX Software Command Reference or the C Compiler 
Reference. 

Invoking the C Compiler 

The cc command has the form 

cc [ option] . . . filename 

where option is a command option, and filename is the name of a 
C language source file, an assembly language source file, an 

2-3 



object file, or an archive library. You can give more than one 
option or filename, if desired, but must separate each item with 
one or more spaces. 

The cc command options let you control and modify the tasks 
performed by the command. For example, you can direct cc to 
perform optimization or create an assembly listing file. The 
options also let you specify additional information about the 
compilation, such as which program libraries to examine and what 
the name of the executable file should be. Many options are 
described in the following sections. For a complete description of 
all options, see cc (CP) in the IBM Personal Computer XENIX 
Software Command Reference. 

Creating Programs From C Source Files 

The cc command creates executable programs from C language 
source files. A file's contents are identified by the filename 
extension. C source files must have the extension ".c". 

The cc command can create executable programs only from 
source files that make up a complete C program. In XENIX 
system, a complete program must have one (and only one) 
function named "main". This function becomes the entry point 
for program execution. The "main" function can call other 
functions as long as they are defined within the program or are 
part of the C standard library. The standard C library is 
described in the IBM Personal Computer XENIX Programmer's 
Guide to Library Functions. 

Compiling a C Source File 
You can compile a C source file by giving the name of the file 
when you invoke the cc command. The command compiles the 
statements in the file, then copies the executable program to the 
default output file a.out. 

To compile a source program, type: 

2-4 



cc fil ename 

where filename is the name of the file containing the program. 
The program must be complete, that is, it must contain a "main" 
program function. It can also contain calls to functions explicitly 
defined by the program or by the standard C library. 

For example, assume that the following program is stored in the 
file named main.e. 

#include <stdio.h> 

main () 
{ 

} 

int x,y; 

scanf("%d %d", &x, &y); 
printf("%d\n", x+y); 

To compile this program, type: 

cc main.c 

The command first invokes the C preprocessor, which adds the 
statements in the file / usr / include / stdio. h to the beginning of the 
program. It then compiles these statements and the rest of the 
program statements. Next, the command links the program with 
the standard C library, which contains the object files for the 
seanf and printffunctions. Finally, it copies the program to the 
file a.out. 

You can execute the new program by typing 

a.out 

The program waits until you enter two numbers, then prints their 
sum. For example, if you type "3 5" the program displays "8". 

Compiling Several Source Files 

Large source programs are often split into several files to make 
them easier to understand, update and edit. You can compile 
such a program by giving the names of all the files belonging to 

2-5 



the program when you invoke the cc command. The command 
reads and compiles each file in turn, then links all object files 
together, and copies the new program to the file a.out. 

To compile several source files, type: 

cc filename 

where each filename is separated from the next by at least one 
space. One of these files (and only one) must contain a "main" 
function. The others can contain functions called by this "main" 
function or by other functions in the program. The files must not 
contain calls to functions not explicitly defined by the program or 
by the standard C library. 

For example, suppose the following main program function is 
stored in the file main. 

#include <stdio.h> 
extern int add(); 

rna in () 
{ 

} 

int X,y,Z; 

scanf ("%d %d", &x, &y); 
Z = add (x, y); 
printf ("%d \n", z); 

Assume that the following function is stored in the file add.c. 

add (a, b) 
int a, b; 
{ 

return (a + b); 

You can compile these files and create an executable program by 
typing: 

cc rnain.c add.c 

The command compiles the statements in main.c, then compiles 
the statements in add.c. Finally, it links the two together (along 

2-6 



with the standard C library) and copies the program to a.out. 
This program, like the program in the previous section, waits for 
two numbers, then prints their sum. 

Since the cc command cannot keep track of more than one 
compiled file at a time, when several source files are compiled at a 
time, the command creates object files to hold the binary code 
generated for each source file. These object files are then linked 
to create an executable program. The object files have the same 
basename as the source files, but are given the" .0" file extension. 
For example, when you compile the two source files above, the 
compiler produces the object files main.o and add.o. These files 
are permanent files, that is, the command does not delete them 
after completing its operation. N ate that the command also 
creates an object file if only one source file is compiled. 

Naming the Output File 

You can give the executable program file any valid filename by 
using the -0 (for output) option. The option has the form 

-0 filename 

where filename is a valid filename or pathname. 

Refer to "Chapter 10. The C Shell" in the section "Using Shell 
Variables" for more information about pathname. Also refer to 
the IBM Personal Computer XENIX Basic Operations Guide. If a 
filename is given, the program file is stored in the current 
directory. If a full pathname is given, the file is stored in the 
given directory. If that file already exists, its contents are 
replaced with the new executable program. 

For example, the command: 

CC -0 addem main.c add.o 

causes the compiler to create an executable program file add em 
from the source file main.c and object file add.o. You can execute 
this program by typing: 

addem 

2-7 



Note that the -0 option does not affect the existing a.out file. 
This means that the cc command does not change the current 
contents of a. out if the -0 option has been given. 

Creating Small, Middle, and Large 
Programs 

C programs in memory consist of the actual machine instructions 
created from the program's source statements, and the several 
bytes of binary data storage created for the program's variables. 
The data storage also contains the stack used by the program for 
temporary storage during execution. The XENIX system stores 
the instructions and data in one or more segments of physical 
memory. Each segment is 64K bytes long. Thus, the maximum 
allowable size for any program depends on how many segments 
are allocated for it when compiled. 

The cc command lets you create programs of a variety of sizes 
and purposes using the -Ms, -Mm, -MI, and -i options. These 
options define the size of a given program by defining the number 
of segments in the memory to be allocated for your program's use. 
They also determine how the system loads the program for 
execution. 

The cc command allows the creation of programs in four different 
memory models: impure-text small model, pure-text small model, 
middle model, and large model. Each model defines a different 
type of program structure and storage. 

Following is a brief description of each of these options. 

The -Ms Option 
You can create a small model program by using the -Ms option. 
Impure text small model programs are C programs that are short 
or have a limited purpose. These programs must not exceed 64K 
bytes. See the section "Creating Small Model Programs." 

2-8 



The -Ms and -i Options 
You can combine the -Ms and -i options to create a pure-text 
small model program. Pure-text small model programs are 
typically short programs intended to be invoked by many users. 
Pure-text programs can occupy up to 128K bytes, but no more 
than 64K bytes each is permitted for either instructions or data. 
Unlike impure-text small model programs, the system loads only 
one copy of a pure-text program's instructions into memory, no 
matter how many times it has been invoked. As long as this copy 
stays in memory, the system simply loads a new copy of the data 
for each new invocation of the program. It then keeps each copy 
of data separate, while sharing the instructions among the 
different invocations. Pure-text programs save valuable memory 
space that would otherwise be wasted by small model programs. 
See the section "Creating Pure-Text Small Model Programs" later 
in this chapter. 

The -Mm Option 
You can create a middle model program by using the -Mm option. 
Middle model programs are typically C programs, that have a 
large number of program statements but a relatively small amount 
of data. Program instructions can be any size, but program data 
must not exceed 64K bytes. Refer to "Creating Middle Model 
Programs. " 

The -Ml Option 
You can create a large model program by using the -Ml option. 
Large model programs are very large C programs that use a large 
amount of data storage during normal processing. Program 
instructions and data can have any size, except that the program 
must not contain a single array or structure exceeding 64K bytes. 
For an example refer to the "Creating Large Model Programs" 
section. 

The following sections describe how to use the -M and -i options 
to create programs with a specific number of segments. They also 
describe how to create pure-text programs for execution by 
multiple users. 

2-9 



Creating Small Model Programs 

You can create a small model program by using the -Ms option. 
This option directs cc to create a program that occupies a single 
segment when loaded into physical memory. To create a small 
model program, type: 

cc -Ms filename 

where filename is the name of the program you wish to compile. 

The cc command creates small model programs by default when 
you do not otherwise specify a program model. Thus, the -Ms 
option is not required. 

Creating Pure-Text Small Model Programs 

You can create a pure-text small model program by combining the 
-i and -Ms options. The -i option directs cc to create separate 
memory segments for the instructions and data of a small model 
program. To create a pure-text program, type: 

cc -Ms -i filename 

where filename is the name of the file source program to be 
compiled. Since cc creates small model programs by default, only 
the -i option is required. 

Creating Middle Model Programs 

You can create a middle model program by using the -Mm option. 
This option creates one segment for the data of the program, and 
one or more segments for the instructions. To create a middle 
model program, type 

cc -Mm filename 

where filename is the name of the source file to be compiled. 
When creating a program, the compiler attempts to fit as many 
instructions into a segment (up to 64K bytes) as possible. 

2-10 



Middle model programs are pure in the sense that the system 
never loads more than one copy of the program's instructions into 
memory at one time. This means the -i option, used with 
pure-text small model programs, is not required for middle model 
programs. 

Creating Large Model Programs 

You can create large model programs by using the -MI option. 
This option directs cc to create multiple segments for both 
instructions and data. To create a large model program, type 

cc -Ml filename 

where filename is the name of a source file to be compiled. 

As with middle model programs, the compiler attempts to fit as 
many instructions into a segment as possible. 

Like middle model programs, large model programs are 
considered pure. 

Using Object Files and Libraries 

The cc command lets you save useful functions as object files, and 
use these object files to create programs at a later time. Object 
files contain the compiled or assembled instructions of your 
source file, so they save you the time and trouble of recompiling 
the functions each time you need them. All object files created 
by cc have the file extension" .0". 

The cc command also lets you use functions found in XENIX 
system libraries, such as the standard C library or the screen 
processing library curses. To use these functions, you simply 
supply the name of the library containing them. In some cases, 
such as for the standard C library, cc accesses the library 
automatically and no explicit naming is required. 

2-11 



For convenience, you can create your own libraries with the ar 
and ranlib commands. These commands, described in section CP 
of the IBM Personal Computer XENIX Software Command 
Reference, copy your useful object files to a library file, and 
prepare the file for use by the cc command. You can access the 
library like any other library in the system if you copy it to the 
/ lib directory. 

Creating Object Files 

You can create a linkable object file for each source file by using 
the -c (for compile) option~ The -c option does not link these 
files. No executable program is created. This option directs cc to 
compile the source file without creating a final program. The 
option has the form: 

cc -c filename 

where filename is the name of the source file. You can give more 
than one filename if you wish. Make sure each name is separated 
from the next by a space. 

To make object files for the source files add.c and mult.c, type: 

cc -c add.c mult.c 

This command compiles each file and copies the compiled source 
files to the object files add.o and mult.o. It does not link these 
files; no executable program is created. 

The -c option saves useful functions for programs developed 
later. Once a function is in an object file it can be used as is, or 
saved in a library file and accessed like other library functions, as 
described in the following sections. 

The cc command automatically creates object files for each 
source file in the command line. Unless the -c option is given, 
however, it also attempts to link these files, even if they do not 
form a complete program. 

Note: For more information about the compile command, see 
IBM Personal Computer XENIX Software Command 
Reference (cc) (CP). 

2-12 



Creating Programs from Object Files 

You can use the cc command to create executable programs from 
one or more object files, or from a combination of object files and 
C source files. The command compiles the source files (if any), 
then links the compiled source files with the object files to create 
an executable program. 

To create a program, give the names of the object and source files 
you wish to use. For example, if the source file main.e contains 
calls to the functions add and mult (saved in the object files add.o 
and mult.o )~ you can create a program by typing: 

cc main.c add.o mult.o 

In this case, main.e is compiled, then linked with add.o and mult.o 
to create the executable file a.out. 

Linking a Program to Functions In Libraries 

You can link a program to functions in a library by using the -I 
(for library) option. The option directs cc to search the given 
library for the functions called in the source file. If the functions 
are found, the command links them to the program file. 

The option has the form: 

cc -lname 

where name is a shortened version of the library'S actual filename 
(see Intro (S) in the IBM Personal Computer XENIX Software 
Command Refereneefor a list of names). Spaces between the 
name and option are optional. The linker searches the / lib 
directory for the library. If not found, it searches the /usr/lib 
directory. 

For example, the command: 

cc main.c -lcurses 

links the library /lib/libeurses.a to the source file main.e. 

2-13 



A library is a convenient way to store a large collection of object 
files. The XENIX system provides several libraries, the most 
common of which is the standard C library. Functions in this 
library are automatically linked to your program whenever you 
invoke the compiler. Other libraries, such as libcurses.a, must be 
explicitly linked using the -I option. The XENIX libraries and 
their functions are described in detail in the IBM Personal 
Computer XENIX Programmer's Guide to Library Functions. 

In general, the cc command does not search a library until the -I 
option is encountered, so the placement of the option is 
important. The option must follow the names of any source files 
containing calls to functions in the given library. In general, place 
all library options at the end of the command line, after all source 
and object files. 

Creating Smaller and Faster Programs 

You can create smaller and faster C programs by using the 
optimizing options available with the cc command. These options 
reduce the size of a compiled program by removing unnecessary 
or redundant instructions or unnecessary symbol information. 
Smaller programs usually run faster and save valuable space. 

2-14 



Creating Optimized Object Files 

You can create an optimized object file or an optimized program 
from a given source file by using the -0 (for optimize) option. 
This option reduces the size of the object file or program by 
removing unnecessary instructions. For example, the command: 

cc -0 main.c 

creates an optimized program from the source file main.c. The 
resulting object file or program is smaller (in bytes) than if the 
source had been compiled without the option. A smaller object 
file usually means faster execution. 

The -0 option applies to source files only; existing object files are 
ignored if included with this option. The option must appear 
before the names of the files you wish to optimize. For example, 
the command: 

cc -0 add.c main.c 

optimizes main.c and add.c. 

You can combine the -0 and -c options to compile and optimize 
source files without linking the resulting object files. For 
example, the command: 

cc -0 -c main.c add.c 

creates separate optimized object files from the source files 
main. c and add. c. 

Although optimization is very useful for large programs, it takes 
more time than regular compilation. In general, it should be used 
in the last stage of program development, after the program has 
been debugged. 

Stripping the Symbol Table 

To reduce the size of a program's executable file use the -s and -x 
options. These options direct cc to remove items from the symbol 
table. The symbol table contains information about code 
relocation and program symbols and is used by the XENIX 

2-15 



debugger adb to allow symbolic references to variables and 
functions when debugging. The information in this table is not 
required for normal execution. Remove it when the program has 
been completely debugged. 

The -s option strips the entire table, leaving machine instructions 
only. For example, the command: 

CC -5 main.c add.c 

creates an executable program that contains no symbol table. It 
also creates the object files main.o and add.o, which contain no 
symbol tables. 

The -x option strips all nonglobal symbols from the file including 
the names of local functions and variables, but excluding 
externally declared items. The command: 

cc -x main.o add.o 

creates an executable program with global symbols, but only if the 
object files main.o and add.o have symbol tables. 

The -s option can be combined with the -0 option to create an 
optimized and stripped program. 

Also, the -x option can be combined with the -0 option to create 
an optimized and stripped program. You can also strip a program 
with the XENIX command strip. See the IBM Personal 
Computer XENIX Software Command Reference for details. 

Removing Stack Probes from a Program 

You can reduce the size of a program slightly by using the -K 
option to remove all stack probes. A stack probe is a short 
routine called by a function to check the program stack for 
available space. The probes are not needed if the program makes 
very few function calls or has unlimited stack space. 

To remove the stack probes from the program main.c, type 

cc -K main.c 

2-16 



Although this option, when combined with the -0 option, makes 
the smallest possible program, it should be used with great care. 
Removing stack probes from a program whose stack use is not 
well known can cause execution errors. 

Preparing Programs for Debugging 

The cc command provides a variety of options to prepare a 
program that is under development for debugging. These options 
range from creating an assembly language listing of the program, 
for use with the XENIX debugger adb, to adding routines for 
profiling the execution of a program. 

Producing an Assembly Language Listing 

You can direct the compiler to generate an assembly language 
listing of your compiled source file by using the -S and -L 
options. The -S option creates an assembly source listing of the 
compiled C source file and copies this listing to the file whose 
basename is the same as the source, but whose extension is ".s". 
This file is not suitable for assembly. This option provides code 
for reading only. The -L option creates a listing that shows 
assembled code, as well as instructions. The file created by -L is 
given the file extension ".L". 

Assembly language listing files are used by programmers to debug 
their program with adb, since adb recognizes machine instructions 
instead of the actual source statements in your program. A 
programmer needs an assembly language listing for accurate 
debugging. 

To create an assembly language listing, give the name of the 
desired source file. For example, the command: 

cc -S add.c 

creates an assembly language listing file named add.s and the 
command 

2-17 



cc -L mult.c 

creates a listing file named mult.L. Both the -8 and -L 
commands suppress subsequent compilation of the source file; 
they imply the -c option. Thus, no program file is created and no 
linking is performed. 

Another use of the -8 option is to create an assembly language 
source file. Although this method can be useful, optimizing 
should be left to the compiler whenever possible. 

The -8 and -L options apply to source files only; the compiler 
cannot create an assembly language listing file from an existing 
object file. Furthermore, the option in the command line must 
appear before the names of the files for which the assembly listing 
is to be saved. 

Profiling a Program 

You can examine the flow of execution of a program by adding 
"profiling" code to the program with the -p option. The profiling 
code automatically keeps a record of the number of times 
program functions are called during execution of the program. 
This record is written to the mon.out file and can be examined 
with the prof command. 

For example, the command: 

cc -p main.c 

adds profiling code to the program created from the source file 
main. c. The profiling code automatically calls the monitor 
function, which creates the mon.out file at normal termination of 
the program. The prof command and monitor function are 
described in detail in prof (ep) and monitor (S) in the IBM 
Personal Computer XENIX Software Command Reference. 

The -p option must be given in any command line that references 
object files that contain profiling code. For example, if the 
command 

cc -c -p fl.c f2.c 

2-18 



was used to create the object files /1.0 and /2.0, then the 
command 

cc -p fl.o f2.o 

must be used to create an executable program from these files. 

Controlling the C Preprocessor 

The cc command provides a number of options that let you 
control the operation of the C preprocessor. These options let 
you define macros, create new search paths for include files, and 
suppress subsequent compilation of the source file. 

Defining a Macro 

You may define the value or meaning of a macro used in a source 
file by using the -D (for define) option. The option lets you 
assign a value to a macro when you invoke the compiler, and is 
useful if you have used if, ifdef, and ifndef directives in your 
source files. 

The option has the form: 

-Dname[=stringJ 

where name is the name of the macro and string is its value or 
meaning. If no string is given, the macro is assumed to be defined 
and its value is set to 1. For example, the command: 

cc -DNEED=2 main.c 

sets the macro NEED to the value 2. This is the same as having 
the directive: 

#define NEED 2 

in the source file. The command compiles the source file main. c, 
replacing every occurrence of NEED with 2. 

2-19 



The -D option is especially useful with the ifdef directive. You 
may use the option to determine which statements in the source 
are to be compiled. For example, suppose a source file, main.c, 
contains the directive 

#ifdef NEED 

but does not contain an explicit define directive for the macro 
NEED. Then all statements following the ifdef directive are 
compiled only if you define NEED using the -D option. For 
example, the command: 

cc -DNEED main.c 

is sufficient to compile all statements following the ifdef directive, 
while the command 

cc main.c 

causes all those statements to be ignored. 

You may use -D to define up to 11 macros on a command line. 
However, you may not redefine a macro once it has been defined. 
If a file uses a macro, you must place the -D option before that 
file's name on the command line. For example, in the command 

cc main.c -DNEED add.c 

the macro NEED is defined for add.c but not defined for main.c. 

Defining Include Directories 
You may explicitly define the directories containing "include" 
files by using the -I (for include) option. This option adds the 
given directory to a list of directories to be searched for include 
files. The directories in the list are searched whenever an include 
directive is encountered in the source file. The option has the 
form: 

-Idirectoryname 

where directoryname is a valid pathname to a directory containing 
include files. For example, the command: 

2-20 



cc -I/usr/joe/include main.c 

causes the compiler to search the directory /usr/joe/include for 
include files requested by the source file main.c. 

The directories are searched in the order they are listed and only 
until the given include file is found. The /usr/include directory is 
the default include directory and is always searched after 
directories given with -I . 

Ignoring the Default Include Directories 

You may prevent the C preprocessor from searching the default 
include directories by using the -x option. This option is 
generally used with the -I option to define the location of include 
files that have the same names as those found in the default 
directories, but which contain different definitions. For example, 
the command: 

cc -x -I/usr/joe/include main.c add.c 

causes cc to look for all include files only in the directory 
/ usr / joe / inc lude. 

Saving a Preprocessed Source File 

You may save a copy of the preprocessed source file by using the 
-p and -E options. The file is identical to the original source file 
except that all C preprocessor directives have been expanded or 
replaced. The -P option copies the result to the file named 
filename. i, where filename is the same name as the source file 
without the .c extension. The -E option copies the result to the 
standard output, and places a #line directive at the be ginning and 
end of this output. You may save this output by redirecting it. 
For example, the command: 

cc -P main.c 

creates a preprocessed file main.i from the source file main.c, and 
the command: 

cc -E add.c >add.i 

2-21 



creates a preprocessed file from the source file add.c. The output 
is redirected to the file add. i. 

Please observe that -P and -E suppress compilation of the source 
file. Thus, no object file or program is created. 

Refer to "Chapter 10. The C Shell" in the section "Redirecting 
Input and Output" for an explanation of the redirection> 
symbol. Also, see the IBM Personal Computer XENIX Basic 
Operations Guide. 

Error Messages 

The C compiler generates a broad range of error and warning 
messages to help you locate errors and potential problems in 
programs. In addition to compiler messages, the cc command also 
displays error messages generated by the XENIX C preprocessor 
and the XENIX assembler and linker programs. (Refer to 
Appendix D for an alphabetical list of the linker error messages.) 
The following sections describe the form and meaning of the 
compiler error messages and warning messages you may 
encounter while using the cc command. 

C Compiler Messages 

The C compiler displays messages about syntactical and semantic 
errors in a source file, such as misplaced punctuation, illegal use 
of operators, and undeclared variables. It also displays warning 
messages about statements containing potential problems caused 
by data conversions or the mismatch of types. Error and warning 
messages have the form: 

filename ( linenumber ) : message 

where filename is the name of the source file being compiled, 
linen umber is the number of the line in the source file containing 
the error, and message is a self-explanatory description of the 
error or warning. 

2-22 



If an error is severe, the compiler displays a message and 
terminates the compilation. Otherwise, the compiler continues 
looking for other errors, but does not create an object file. If only 
warning messages are displayed, the compiler completes 
compilation and creates an object file. 

You may avoid many C compiler errors by using the XENIX C 
program checker lint before compiling your C source files. The 
lint program performs detailed error checking on a source file, and 
provides a list of actual errors and possible problems that can 
affect execution of the program. For a description of lint, see 
"Chapter 4. The lint Program-a C Program Checker." 

Setting the Level of Warnings 

You may set the level of warning messages produced by the 
compiler by using the -W option. This option directs the compiler 
to display messages about statements that may not be compiled as 
the programmer intends. Warnings indicate potential problems 
rather than actual errors. The option has the form: 

-W number 

where number is a number in the range 0 to 3 giving the level of 
warnings. The levels are: 

Level Warning 

o Suppresses all warning messages. Only syntactical 
messages or semantic errors are displayed. 

1 Warns about potentially missing statements, 
non-reachable statements, and other structural problems. 
Also, warns about overt type mismatches. 

2 Warns about all type mismatches (strong typing). 

3 Warns on all automatic data conversions. 

If the option is not used, the default is level 1. 

The higher option levels are especially useful in the earlier stages 
of program development when messages about potential problems 

2-23 



are most helpful. The lower levels are best for compiling 
programs whose questionable statements are intentionally 
designed. For example, the command: 

cc -W 3 main.c 

directs the compiler to perform the highest level of checking, and 
produces the greatest number warning messages. The command: 

cc -W a main.c 

produces no warning messages. The -w option has the same 
effect as -W O. 

U sing Advanced Options 

The cc command provides a number of advanced programming 
options that give greater control over the compilation process and 
the final form of the executable program. The following sections 
describe a number of these options. 

Creating Programs from Assembly Language 
Source Files 

You may use the cc command to create executable programs from 
a combination of C source files and 8086/286 assembly language 
source files. Assembly language source files must contain 
8086/286 instructions and must have the extension" .s". 

When assembly language source files are given, the cc command 
invokes the XENIX assembler, as, to assemble the instructions 
and create an object file. The object file may then be linked with 
object files created by the compiler. For example, the command: 

cc main.c add.s 

compiles the C source file main.c, but assembles the assemble 
language source file add.s. The resulting object files, main.o and 
add.o, are linked to form a single program. 

2-24 



When using assembly language routines with C programs, you 
must be sure to provide the correct interface for calls to and from 
C language functions. C functions require a specific calling and 
return sequence. Assembly language functions which fail to 
provide this interface will cause errors. See Appendix A, 
"Assembly Language Interface," in the IBM Personal Computer 
XENIX Programmer's Guide to Library Functions. 

Using the near and far keywords 

The near and far keywords are special type modifiers that define 
the length and meaning of the address of a given variable. The 
near keyword defines an object with a 16-bit address. The far 
keyword defines an object with a full 32-bit segmented address. 
Any data item or function may be accessed. 

The near and far keywords override the normal address length 
generated by the compiler for variables and functions. Therefore, 
you need to enable these keywords at compile time (with the -Me 
option). In small model programs, far lets you access data and 
functions in segments outside of the program. In middle and large 
model programs, near lets you access data with just an offset. 

The examples in the following table illustrate the far and near 
keywords as used in declarations in a small model program. 

2-25 



Uses of near and far Keywords 

Declaration Address Size Item Size 

char c; near(16 bits) 8 bits (data) 

char far d; far(32 bits) 8 bits (data) 

char *p; near(16 bits) 16 bits (near pointer) 

char far *q; near(16 bits) 32 bits (far pointer) 

char * far r; far(32 bits) 16 bits (near pointer) [1] 

char far * far s; far(32 bits) 32 bits (far pointer) [2] 

int fooO; near(16 bits) function returning 16 bits 

int far fooO; far(32 bits) function returning 16 bits[3] 

Notes: 

1. This example has no meaning; it is shown for syntactic 
completeness only. 

2. This is similar to accessing data in a long model program. 

3. This example leads to trouble in most environments. The far 
call changes the CS register, and makes run time support 
unavailable. 

The following example is from a middle model compilation: 

int near foo(); 

This does a near call in an otherwise far (calling) program. 

Since there is no type checking between items in separate source 
files, use the near and far keywords with great care. 

Setting the Stack Size 
You can set the size of the program stack by using the -F option. 
This option has the form 

-F num 

where num is the size (in bytes) of the program stack. The 
program stack stores function parameters and automatic 
variables. If the option is not used, a default stack size (usually 
4K bytes) is set. 

2-26 



You can determine the stack requirements of a given program by 
using the stackuse program. This program analyzes C source files 
and computes the minimum stack requirement for all functions in 
the program. The program displays a warning if recursive 
functions are encountered; stack use requirements for recursive 
functions must be determined by the programmer. The stackuse 
program is described in stackuse (CP) in the IBM Personal 
Computer XENIX Software Command Reference. 

All programs created by cc have fixed stacks. This means the 
stack size cannot be increased during execution of the program. 
Therefore, a sufficient stack size must be given when compiling 
the program. 

Using Modules, Segments, and Groups 

"Module" is another name for the object file created by the C 
compiler. Every module has a name, and the cc command uses 
this name in error messages if problems are encountered during 
linking. The module name is usually the same as the source file's 
name (without the" .c" or ".s" extension). You can change this 
name using the -NM option. The option has the form: 

-NM name 

where name can be any combination of letters and digits. 

Changing a module's name is useful if the source file to be 
compiled is actually the output of a program preprocessor and 
generator, such as lex or yacc. 

A "segment" is a contiguous block of binary code produced by 
the C compiler. Every module has two segments: a text segment 
containing the program instructions, and a data segment 
containing the program data. Each segment in every module has 
a name. This name is used by cc to define the order in which the 
segments of the program appear in memory when loaded for 
execution. Text segments having the same name are loaded as a 
contiguous block of code. Data segments of the same name are 
also loaded as contiguous blocks. 

Text and data segment names are normally created by the C 
compiler. These default names depend on the memory model 

2-27 



chosen for the program. For example, in small model programs 
the text segment is named" TEXT" and the data segment is 
named" DATA". These names are the same for all small model 
modules;So all segments from all modules of a small model 
program are loaded as a contiguous block. In middle model 
programs, each text segment has a different name. In large model 
programs, each text and data segment has a different name. The 
default text and data segment names for middle and large model 
programs are given in the section "Segment and Module Names" 
given at the end of this chapter. 

You can override the default names used by the C compiler (and 
override the default loading order) by using the -NT and -ND 
options. These options set the names of the text and data 
segments, in each module being compiled, to a given name. The 
options have the form: 

-NT name 

and 

-NO name 

where name is any combination of letters and digits. These 
options are useful in middle and large model programs that have 
no specific loading order. In these programs, you can guarantee 
contiguous loading for two or more segments by giving them the 
same name. 

All text and data segments, whether or not they are loaded as 
contiguous blocks, are eventually loaded into one or more 
physical segments of memory. All segments in a physical segment 
are collectively called a "group". 

All programs have at least two groups: a text group and a data 
group. Each group has a name. The text group is named 
IGROUP and the data group is named DGROUP. The C 
compiler automatically applies these names to the text and data 
segments in each module. Thus, when the modules are eventually 
linked, all text segments belong to the same group, and all data 
segments belong to the same group. 

2-28 



Creating Programs for DOS 

You can create IBM Personal Computer Disk Operating System 
(DOS-executable) C programs from existing XENIX C language 
source files by using the -dos option. The option directs cc to 
compile and link C language source files for execution on DOS 
systems. The cc uses a special DOS linker, include files, and 
libraries to produce an executable program file that can be copied 
to and run on any DOS system. 

For a complete description of the -dos option and the cross 
development tools available under the IBM Personal Computer 
XENIX system, see "Chapter 3. XENIX to DOS: A Cross 
Development System." 

Compiler Summary 

The following sections summarize cc options and memory models. 

CC Options 

The following is a complete list of cc options: 

-c 

-c 

-dos 

-D name [= string] 

Creates a linkable object file for 
each source file. 

Preserves comments when 
preprocessing a file (only when -P 
or -E). Refer to IBM Personal 
Computer XENIX Software 
Command Reference cc(CPJ. 

Creates an executable program for 
DOS. (Program requires an .exe 
extension to run under DOS. Refer 
to Chapter 3.) 

Defines name to the preprocessor. 
The value is string or 1. 

2-29 



-E 

-F num 

-i 

-I pathname 

-K 

-I name 

-L 

-M string 

-nl num 

-ND name 

2-30 

Preprocesses each source file, 
copying the result to the standard 
output. 

Sets the size of the program stack. 

Creates separate instruction and 
data spaces for small model 
programs. 

Adds pathname to the list of 
directories to be searched for 
#include files. 

Removes stack probes from a 
program. 

Search library name for unresolved 
function names. 

Creates an assembler listing file 
containing assembled code and 
assembly source instructions. 

Sets the program configuration. 
The string can be any combination 
of "s" (small model), "m" (middle 
model), "f' (large model), "e" 
(enable far and near keywords), 
"2" (enables 286 code 
generation)-- this is the default, 
and, "t" (sets data threshold for 
largest item in a segment). The 
"s," "m," and "I" are mutually 
exclusive. 

Sets the maximum length of 
external symbols. Refer to IBM 
Personal Computer XENIX 
Software Command Reference 
(cc)(CPJ. 

Sets the data segment name. 



-NM name 

-NT name 

-0 filename 

-0 

-p 

-p 

-s 

-s 

-v string 

-w 

-W num 

-x 

-x 

Sets the module name. 

Sets the text segment name. 

Makes filename the name of the 
final executable program. 

Invokes the object code optimizer. 

Adds code for program profiling. 

Preprocesses source files and sends 
output to files with the extension 
"j". 

The -s option strips the entire table, 
leaving machine instructions only. 

Creates an assembly source listing. 

Copies string to the object file. 

Suppresses compiler warning 
messages. 

Sets the output level for compiler 
warning messages. 

The -x option strips all nonglobal 
symbols from the file. 

Removes the standard directories 
from the list of directories to be 
searched for #inc1ude files. 

2-31 



Memory Models 
The following table defines the number of text and data segments 
for the four different program memory models. This table also 
lists the segment register values. 

Model Text Data Segment Registers 

Small 1* 1* CS=DS=SS 

Middle 1 per module 1 DS=SS 

Large 1 per module 1 per module 

*In impure-text small module programs, text and data occupy the 
same segment. In pure-text programs, they occupy different 
segments. 

Pointer and Integer Sizes 
The following table defines the sizes (in bits) of integers (int 
type), and text and data pointers, in each program memory model. 

Model Data Pointer Text Pointer Integer 

Small 16 16 16 

Middle 16 32 16 

Large 32 32 16 

Segment and Module Names 

The following table lists the default text and data segment names, 
and the default module name, for each object file. 

Model Text Data Module 

Small TEXT DATA filename 

Middle module TEXT DATA filename 

Large module TEXT module DATA filename 

2-32 



Chapter 3. XENIX to DOS: A Cross 
Development System 

Contents 

Introduction 3-3 

Creating Source Files ............................... 3-4 

Compiling a DOS Source File ........................ 3-5 

Using Assembly Language Source Files ................. 3-6 

Creating Linking Object Files .....................•.. 3-6 

Running and Debugging a DOS Program 3-7 

Transferring Programs Between Systems 3-7 

Creating DOS Libraries ..........................•.. 3-8 

3-1 



3-2 



Introduction 

The IBM Personal Computer XENIX system provides a variety of 
tools to create programs that can be executed under control of the 
IBM Disk Operating System (DOS). The DOS cross development 
system lets you create, compile, and link DOS programs on the 
XENIX system and transfer these programs to a DOS system for 
execution and debugging. 

The complete development system consists of 

• The C program compiler cc 

• The 8086 assembler as 

• The DOS linker dosld 

• The DOS libraries (in / usr / lib / dos ) 

• The DOS include files (in /usr/include/dos) 

• The dos (C) commands 

The heart of the cross development system is the cc command. 
The command provides a special -dos option which directs the 
compiler to create code for execution under DOS. When -dos is 
given, cc uses the special DOS include files and libraries to create 
a program. The resulting program file has the correct format for 
execution on any DOS system. 

The cc command uses the dosld commands to carry out the last 
part of the compilation process, the creation of the executable 
program file. Cc only invokes the as command when 8086 
assembly language source files are given in the command line. In 
most cases, cc invokes as and dosld automatically. You can also 
invoke them directly when you need to perform special tasks. 

The last important step in the cross development process is to 
transfer the executable program files to a DOS system. Since 
DOS programs cannot be executed or debugged on the XENIX 
system, you must copy the resulting programs to DOS file systems 
before attempting execution. You can do this using the XENIX 

3-3 



dos(C) commands. For example, the doscp command lets you 
copy files back and forth between XENIX and DOS disks. This 
means you can transfer program files from the XENIX system to 
a DOS system, or copy source files from a DOS system to a 
XENIX system. 

Crea ting Source Files 

You can create program source files using either XENIX or DOS 
text editors. The most convenient way is to use a XENIX editor, 
such as vi , since this means you do not have to transfer the source 
files from the DOS system to XENIX system each time you make 
changes to the files. 

When creating source files, you should follow these simple rules: 

• Use the standard C language format for your source files. 
DOS source files have the same format as XENIX source 
files. In fact, many DOS programs, if compiled without the 
-dos option, can be executed on the XENIX system. 

• Use the DOS naming conventions when giving file and 
directory names within a program, for example, use \ 
instead of / for the pathname separator. Since the compiler 
does not check names, failure to follow the conventions will 
cause errors when the program is executed. 

• Use only the DOS include files and library functions. Most 
DOS include files and functions are identical to their XENIX 
counterparts. Others have only slight differences. For a 
complete list of the available DOS include files and functions, 
and a description of the differences between them and the 
corresponding XENIX files and functions, see Appendix C 
of the IBM Personal Computer XENIX Programmer's Guide 
to Library Functions. 

If you use a function that does not exist, do sId displays an error 
message and leaves the linked output file incomplete. 

3-4 



Compiling a DOS Source File 

You can compile a DOS source file by using the -dos option of 
the XENIX cc command. The command line has the form 

cc -dos options filename 

where options are other cc command options (as described in 
Chapter 2), and filename is the name of the source file you wish 
to compile. You can give more than one source file if desired. 
Each source filename must end with the ".c" extension. 

The cc command compiles each source file separately, creating an 
object file for each file, then links all object files together with the 
appropriate C libraries. The object files created by the cc 
command have the same base name as the corresponding source 
file, but end with the" .0" extension instead of the" .c" extension. 
The resulting program file also has the name a.out if no name is 
explicitly given. 

For example, the command 

cc -dos test.c 

compiles the source file test.e and creates the object file test.o. It 
then calls dosld which links the object file with functions from the 
DOS libraries. The resulting program file is named, a.out . 

You can use any number of cc options in the command line. The 
way the options work is described in Chapter 2 of this book. For 
example, you can use the -0 option to explicitly name the 
resulting program file, or the -c option to create object files 
without creating a program file. In some cases, the default values 
for an option are different than when compiling for a XENIX 
system. In particular, the default directory for library files given 
with the -I option is /usr/lib/dos. Note that the -p (for 
profiling) option cannot be used. 

3-5 



U sing Assembly Language Source Files 

You can direct cc to assemble 8086 assembly language source 
files by including the files in the cc command line. Like C source 
files, assembly language source files may only contain calls to 
functions in the DOS libraries. Furthermore, the source files must 
follow the C calling conventions described in Appendix A of the 
IBM Personal Computer XENIX Programmer's Guide to Library 
Functions. The filename of an assembly language source file must 
end with the ".s" extension. 

When an assembly language source file is given, cc automatically 
invokes as the 8086 assembler. The assembler creates an object 
file that can be linked with any other object file created by cc. 

You can invoke the assembler directly by using the as command. 
The command creates an object file just as the cc command, but 
does not create an executable file. For a description of the 
command and its options, see as (CP) in the IBM Personal 
Computer XENIX Software Command Reference. 

Creating Linking Object Files 

You can link DOS object files previously created by cc or as by 
giving the names of the files in the cc command line. The object 
files must have been created using as or with cc using the -dos 
option. Object files created without using the -dos cannot be 
linked to DOS programs. The object filenames must end with the 
".0" extension. 

When an object file is given, cc automatically invokes dosld the 
DOS linker which links the given object files with the appropriate 
C libraries. If there are no errors, dosld creates an executable 
program file named a. out. 

You can invoke the linker directly by using the dosld command. 
The command creates a DOS program file just as the cc 

3-6 



command, but does not accept source files. For a description of 
the command and its options, see dosld (CP) in the IBM Personal 
Computer XENIX Software Command Reference. 

Note: DOS programs created by cc and dosld are completely 
compatible with the DOS system and can be executed on any 
such system. DOS programs cannot be executed on the 
XENIX system. 

Running and Debugging a DOS Program 

You can debug a DOS program by transferring the program file to 
a DOS system and using the DOS debugger, Debug, to load and 
execute the program. The following section explains how to 
transfer program files between systems. For a description of the 
Debug program, see your IBM Personal Computer Disk Operating 
System manual. 

Transferring Programs Between 
Systems 

You can transfer programs between XENIX and DOS systems by 
using DOS diskettes and the XENIX doscp command. The doscp 
command lets you copy files to a DOS diskette. The command 
has the form: 

doscp -r file-l dev:file-2 

where -r is the required "raw" option, file-l is the name of the 
DOS program file you wish to transfer, dev is the full pathname of 
a XENIX system diskette drive, and file-2 is the full pathname of 
the new program file on the DOS disk. The new filename must 
have the .exe extension. The -r option ensures that the program 
file is copied byte for byte. 

To transfer a program file to a DOS system, follow these steps: 

3-7 



1. Insert a formatted DOS diskette into a XENIX system 
diskette drive. 

2. Use the doscp command to copy the program file to the disk. 
For example, to copy the program file a.out to the file test.exe 
on the DOS disk into the disk drive /dev/fdO, type: 

doscp -r a.out /dev/fdO:/test.exe 

3. Remove the diskette from the drive. 

You can now insert the diskette into the diskette drive of the DOS 
system and invoke the program just as you would any other DOS 
progi'am. 

Note: DOS program files that do not end with the .EXE or 
.COM extension cannot be loaded for execution under DOS. 
When transferring program files from a XENIX system to 
DOS, you must make sure you rename a.out files to an 
appropriate .exe or .com file. 

Creating DOS Libraries 

You can create a library of your own DOS object files by using 
the XENIX ar command. The command copies object files 
created by the compiler to a given archive file. The command has 
the form: 

ar archive filename 

where archive is the name of an archive file, and filename is the 
name of the DOS object file you wish to add to the library. 

3-8 

Note: DOS libraries created on the XENIX system are not 
compatible with libraries created on the DOS system. This 
means you cannot copy the libraries to the DOS system and 
expect them to work with the DOS Link command. 



Chapter 4. The lint Program-a C 
Program Checker 

Contents 

Introduction 

Invoking Lint 

4-3 

4-4 

Checking for Unused Variables and Functions ............ 4-5 

Checking Local Variables ............................ 4-6 

Checking for Unreachable Statements .................. 4-7 

Checking for Infinite Loops .......................... 4-8 

Checking Function Return Values ..................... 4-9 

Checking for Unused Return Values ................... 4-10 

Checking Types .................................. 4-10 

Checking Type Casts .............................. 4-11 

Checking for Nonportable Character Use 4-12 

Checking for Assignment of longs to ints 4-12 

Checking for Strange Constructions ................... 4-13 

Checking for Use of Older C Syntax .................. 4-14 

Checking Pointer Alignment ......................... 4-15 

Checking Expression Evaluation Order ....... . . . . . . . . .. 4-16 

Embedding Directives ............................. 4-17 

4-1 



Checking for Library Compatibility ................... 4-18 

4-2 



Introduction 

This chapter explains how to use the C program checker lint. The 
program examines C source files and warns of errors or 
misconstructions that can cause errors during compilation of the 
file or during execution of the compiled file. 

In particular, lint checks for: 

• Unused functions and variables 

• Unknown values in local variables 

• Unreachable statements and infinite loops 

• Unused and misused return values 

• Inconsistent types and type casts 

• Mismatched types in assignments 

• Nonportable and old fashioned syntax 

• Strange constructions 

• Inconsistent pointer alignment and expression evaluation 
order 

The lint program and the C compiler are generally used together 
to check and compile C language programs. Although the C 
compiler rapidly and efficiently compiles C language source files, 
it does not perform the sophisticated type and error checking 
required by many programs. The lint program, on the other hand, 
provides thorough checking of source files without compiling. 

4-3 



Invoking Lint 

You can invoke lint by typing its name at the shell command line. 
The command has the form: 

lint [option] ... filename ... lib 

where option is a command option that defines how the checker 
should operate, filename is the name of the C language source file 
to be checked, and lib is the name of a library to check. You can 
give more than one option, filename , or library name in the 
command as long as you use spaces to separate them. If you give 
two or more filenames, lint assumes that the files form a complete 
program and checks the files accordingly. For example, the 
command: 

lint main.c add.c 

treats main.c andadd.c as two parts of a complete program. 

If lint discovers errors or inconsistencies in a source file, it 
produces messages describing the problem. The message has the 
form: 

filename ( num ): description 

where filename is the name of the source file containing the 
problem, num is the number of the line in the source containing 
the problem, and description is a description of the problem. For 
example, the message: 

main.c (3): warning: x unused in function main 

shows that the variable "x", defined in line three of the source file 
main. c , is not used anywhere in the file. 

4-4 



Checking for Unused Variables and 
Functions 

The lint program checks for unused variables and functions by 
seeing if each declared variable and function is used at least once 
in the source file. The program considers a variable or function 
used if the name appears in at least one statement. It is not 
considered used if it only appears on the left side of an 
assignment. For example, in the following program fragment: 

main () 
{ 

int x,Y,z; 

x=l; y=2; z=x+y; 

the variables "x" and "y" are considered used, but variable "z" is 
not. 

Unused variables and functions often occur during the 
development of large programs. It is not uncommon for a 
programmer to remove all references to a variable or function 
from a source file, but forget to remove its declaration. Such 
unused variables and functions rarely cause working programs to 
fail, but do make programs harder to understand and change. 
Checking for unused variables and functions can also help you 
find variables or functions that you intended to used but 
accidentally have left out of the program. 

The lint program does not report a variable or function unused if 
it is explicitly declared with the extern storage class. Such a 
variable or function is assumed to be used in another source file. 

You can direct lint to ignore all the external declarations in a 
source file by using the -x (for external) option. This option 
causes the program checker to skip any line that begins with the 
extern storage class. The -x option saves time when checking a 
program, especially if all external declarations are known to be 
valid. 

Some programming styles require functions that perform closely 
related tasks to have the same number and type of arguments, 

4-5 



regardless of whether these arguments are used. Under normal 
operation, lint reports any argument not used as an unused 
variable, but you can direct lint to ignore unused arguments by 
using the -v option. The -v option causes lint to ignore all unused 
function arguments except for those declared with register storage 
class. The program considers unused arguments of this class to be 
a preventable waste of the register resources of the computer. 

You can direct lint to ignore all unused variables and functions by 
using the -u (for unused) option. This option prevents lint from 
reporting variables and functions it considers unused. The-u 
option checks a source file that contains just a portion of a large 
program. Such source files usually contain declarations of 
variables and functions intended to be used in other source files 
and are not explicitly used within the file. Since lint can only 
check the given file, it assumes that such variables or functions 
are unused and reports them as errors whenever the -u option is 
not given. 

Checking Local Variables 

The lint program checks all local variables to ensure that they are 
set to a value before being used. Since local variables have either 
automatic or register storage class, their values at the start of the 
program or function cannot be known. Using such a variable 
before assigning a value to it is an error. 

The lint program checks the local variables by searching for the 
first assignment in which the variable receives a value, and for the 
first statement or expression in which the variable is used. If the 
first assignment appears later than the first use, lint considers the 
variable inappropriately used. For example, in the program 
fragment: 

char c; 

if ( c != EOF ) 
c = getchar(); 

lint warns that the the variable" e" is used before it is assigned. 

4-6 



If a variable is used in the same statement in which it is assigned 
for the first time, lint determines the order of evaluation of the 
statement and displays an appropriate message. For example, in 
the program fragment: 

int i,total; 

scanf( "%d ll
, &i); 

tota 1 = tota 1 + i; 

lint warns that the variable total is used before it is set, since it 
appears on the right side of the same statement that assigns its 
first value. 

Static and external variables are always initialized to zero before 
program execution begins, so lint does not report such variables if 
they are used before being set to a value. 

Checking for Unreachable Statements 

The lint program checks for unreachable statements. Unreachable 
statements are unlabeled statements that immediately follow a 
goto, break, continue, or return statement. During execution of a 
program, the unreachable statements never receive execution 
control and therefore are considered wasteful. For example, in 
the program fragment: 

int x,y; 
return (x+y); 
ex i t (1); 

the function call exit after the return statement is unreachable. 

Unreachable statements are common when developing programs 
containing large case constructions, or loops containing break and 
continue statements. Such statements are wasteful and should be 
removed when convenient. 

During normal operation, lint reports all unreachable break 
statements. Unreachable break statements are relatively common 

4-7 



(some programs created by the yacc and lex programs contain 
hundreds), so it may be desirable to suppress these reports. You 
can direct lint to suppress the reports by using the -b option. 

That lint assumes that all functions eventually return control, so it 
does not report as unreachable any statement that follows a 
function that takes control and never returns it. For example, in 
the program fragment: 

exit 0); 
return; 

the call to exit causes the return statement to become an 
unreachable statement, but lint does not report it as such. 

Checking for Infinite Loops 

The lint program checks for infinite loops and for loops which are 
never executed. For example, the statements: 

wh il e (1) { } 

and 

for (;;) {} 

are both considered infinite loops. While the statements: 

whil e (0) { } 

and 

for (0;0;) { } 

are never executed. 

Although some valid programs have such loops, they are generally 
considered errors. 

4-8 



Checking Function Return Values 

The lint program checks to ensure that a function returns a 
meaningful value if a return value is expected. Some functions 
return values that are never used; some programs incorrectly use 
function values that have never been returned. The lint program 
addresses these problems in a number of ways. 

Within a function definition, the appearance of both: 

return (expr); 

and 

return 

statements is cause for alarm. In this case, lint produces the 
following error message: 

function name contains return(e) and return 

It is difficult to detect when a function return is implied by the 
flow of control reaching the end of the given function. This is 
demonstrated with a simple example. 

f (a) 
{ 

} 

if (a) 
return (3); 

9 (); 

In this example, if the variable "a" is false, then "f" calls the 
function" g" and returns with no defined return value. This will 
trigger a report from lint. If" g", like exit, never returns, the 
message will still be produced when in fact nothing is wrong. In 
practice, potentially serious bugs can be discovered with this 
feature. It also accounts for a substantial fraction of the 
undeserved error messages produced by lint. 

4-9 



Checking for Unused Return Values 

The lint program checks for cases where a function returns a 
value, but the value is rarely if ever used. The lint program 
considers functions that return unused values to be inefficient, 
and functions that return rarely used values to be a result of bad 
programming style. 

The lint program also checks for cases where a function does not 
return a value but the value is used anyway. This is considered a 
serious error. 

Checking Types 

Lint enforces the type checking rules of C more strictly than the 
C compiler. The additional checking occurs in four major areas. 

1. Across certain binary operators and implied assignments 

2. At the structure selection operators 

3. Between the definition and uses of functions 

4. In the use of enumerations 

A number of operators have an implied balancing between types 
of operands. The assignment, conditional, and relational 
operators have this property. The argument of a return statement, 
and expressions used in initialization also suffer similar 
conversions. In these operations, char short, int, long, unsigned, 
float, and double types can be freely intermixed. The types of 
pointers must agree exactly, except that arrays of x's can be 
intermixed with pointers to x's. 

The type checking rules also require that, in structure references, 
the left operand of a pointer arrow symbol (-» be a pointer to a 
structure, the left operand of a period (.) be a structure, and the 

4-10 



right operand of these operators be a member of the structure 
implied by the left operand. Similar checking is done for 
references to unions. 

Strict rules apply to function argument and return value matching. 
The types float and double can be freely matched, as can the types 
char, short, int, and unsigned. Pointers can also be matched with 
the associated arrays. Aside from these relaxations in type 
checking, all actual arguments must agree in type with their 
declared counterparts. 

The lint program checker makes sure that enumeration variables 
or members are not mixed with other types or other 
enumerations. It also ensures that the only operations applied to 
enumerated variables are assignment (=), initialization, equals 
(= =), and not-equals (!=). Enumerations can also be function 
arguments and return values. 

Checking Type Casts 

The type cast feature in C was introduced largely as an aid to 
producing more portable programs. Consider the assignment: 

p = 1 ; 

where "p" is a character pointer. The lint program reports this as 
suspect. But consider the assignment 

p = (char *)1 ; 

in which a cast has been used to convert the integer to a character 
pointer. The programmer obviously had a strong motivation for 
doing this and has clearly signaled his intentions. On the other 
hand if this code is moved to another machine, it should be looked 
at carefully. The -c option controls the printing of comments 
about casts. When -c is in effect, casts are not checked, and all 
legal casts are passed without comment, no matter how strange 
the type mixing seems to be. 

4-11 



Checking for Nonportable Character 
Use 

The lint program flags certain comparisons and assignments as 
illegal or nonportable. For example, the fragment: 

char c; 

if ( (c = getchar()) < 0 ) 

works on some machines, but fails on machines where characters 
always take on positive values. In this case, lint issues the 
message: 

nonportable character comparison 

The solution is to declare "c" an integer, since getchar is actually 
returning integer values. 

A similar issue arises with bitfields. When assignments of 
constant values are made to bitfields, the field may be too small to 
hold the value. This is especially true where on some machines 
bitfields are considered as signed quantities. Although a 2-bit 
field with int type cannot hold the value 3, a 2-bit field with 
unsigned type can. 

Checking for Assignment of longs to ints 

Problems can arise from the assignment of long values to an int 
values, because of a loss in accuracy in the assignment. This can 
happen in programs that have been incompletely converted by 
changing type definitions with typedef. When a typedef variable 
is changed from int to long, the program can stop working because 
some intermediate results can be assigned to integer values, losing 

4-12 



accuracy. Since there are a number of legitimate reasons for 
assigning longs to integers, you may wish to suppress detection of 
these assignments by using the -a option. 

Checking for Strange Constructions 

Several perfectly legal, but somewhat strange constructions are 
flagged by lint. The generated messages encourage better code 
quality, clearer style, and can even point out bugs. For example, 
in the statement: 

*p++ ; 

the star (*) does nothing, so lint prints: 

null effect 

The program fragment: 

unsigned x ; 
if (x < 0) 

is also strange since the test will never succeed. 

Similarly, the test: 

if (x > 0) 

is equivalent to: 

if (x != 0) 

which may not be the intended action. In these cases, lint prints 
the message 

degenerate unsigned comparison 

If you use 

if ( 1 != 0 ) 

4-13 



then lint reports: 

constant in conditional context 

since the comparison of 1 with 0 gives a constant result. 

Another construction detected by lint involves operator 
precedence. Bugs that arise from misunderstandings about the 
precedence of operators can be accentuated by spacing and 
formatting, making such bugs extremely hard to find. For 
example, the statements: 

if ( x&077 == 0 ) 

or 

x«2 + 40 

probably do not do what is intended. The best solution is to place 
parentheses around such expressions. The lint program 
encourages this by printing an appropriate message. 

Finally, lint checks variables redec1ared in inner blocks in a way 
that conflicts with their use in outer blocks. This is legal, but is 
considered bad style, usually unnecessary, and frequently a bug. 

If you do not wish these heuristic checks, you can suppress them 
by using the -h option. 

Checking for Use of Older C Syntax 

The lint program checks for older C constructions. These fall into 
two classes: assignment operators and initialization. 

The older forms of assignment operators (for example, =+, =-, 
... ) can cause ambiguous expressions, such as: 

a =-1 ; 

which could be taken as either 

4-14 



a =- 1 

or 

a -1; 

The situation is especially perplexing if this kind of ambiguity 
arises as the result of a macro substitution. The newer, and 
preferred operators (for example, + =, -=) have no such 
ambiguities. To encourage the abandonment of the older forms, 
lint checks for occurrences of these old-fashioned operators. 

A similar issue arises with initialization. The older language 
allowed 

int xl; 

to initialize "x" to 1. This causes syntactic difficulties. For 
example: 

int x -1 ) ; 

looks somewhat like the beginning of a function declaration 

i nt x (y) { 

and the compiler must read past "x" to determine what the 
declaration really is. The problem is even more perplexing when 
the initializer involves a macro. The current C syntax places an 
equal sign between the variable and the initializer 

int x -1; 

This form is free of any possible syntactic ambiguity. 

Checking Pointer Alignment 

Certain pointer assignments can be reasonable on some machines, 
and illegal on others, due to alignment restrictions. For example, 

4-15 



on some machines it is reasonable to assign integer pointers to 
double pointers, since double precision values can begin on any 
integer boundary. On other machines, however, double precision 
values must begin on even word boundaries; thus, not all such 
assignments make sense. The lint program tries to detect cases 
where pointers are assigned to other pointers, and other such 
alignment problems that might arise. The message: 

possible pointer alignment problem 

results from this situation. 

Checking Expression Evaluation Order 

In complicated expressions, the best order in which to evaluate 
subexpressions may be highly machine-dependent. For example, 
on machines in which the stack runs backwards, function 
arguments are probably best evaluated from right to left; on 
machines with a stack running forward, left to right is probably 
best. Function calls embedded as arguments of other functions 
mayor may not be treated in the same way as ordinary 
arguments. Similar issues arise with other operators that have 
side effects, such as the assignment operators and the increment 
and decrement operators. 

To ensure maximum efficiency of C on a particular machine, the 
C language leaves the order of evaluation of complicated 
expressions up to the compiler. Various C compilers have 
considerable differences in the order in which they evaluate 
complicated expressions. In particular, if any variable is changed 
by a side effect, and also used elsewhere in the same expression, 
the result is undefined. 

The lint program checks for the important special case where a 
simple scalar variable is affected. For example, the statement: 

a[i] = b[i++] ; 

4-16 



will draw the comment: 

warning: i evaluation order undefined 

Embedding Directives 

Sometimes the programmer is smarter than lint. There may be 
valid reasons for illegal type casts, functions with a variable 
number of arguments, and other constructions that lint finds 
objectionable. Moreover, as specified in the above sections, the 
flow of control information produced by lint often has blind spots, 
causing occasional spurious messages about perfectly reasonable 
programs. Some way of communicating with lint, to turn off its 
output, is desirable. Therefore, a number of words are recognized 
by lint when they are embedded in comments in a C source file. 
These words are called directives. The lint program directives are 
invisible to the compiler. 

The first directive discussed concerns flow of control information. 
If a particular place in the program cannot be reached, this can be 
asserted at the appropriate spot in the program with the directive 

/* NOTREACHED */ 

Similarly, if you desire to turn off strict type checking for the next 
expression, use the directive 

/* NOSTRICT */ 

The situation reverts to the previous default after the next 
expression. The -v option can be turned on for one function with 
the directive 

/* ARGSUSED */ 

Comments about a variable number of arguments in calls to a 
function can be turned off by preceding the function definition 
with the directive 

/* VARARGS */ 

4-17 



In some cases, it is desirable to check the first several arguments, 
and leave the later arguments unchecked. You can define the 
number of arguments to be checked by placing a digit (giving this 
number) immediately after the VARARGS keyword. For 
example: 

/* VARARGS2 */ 

causes only the first two arguments to be checked. Finally, the 
directive 

/* LINTLIBRARY */ 

at the head of a file identifies this file as a library declaration file, 
which is discussed in the next section. 

Checking for Library Compatibility 

The lint program accepts certain library directives, such as 

-1 Y 

and tests the source files for compatibility with these libraries. 
This testing is done by accessing library description files whose 
names are constructed from the library directives. These files all 
begin with the directive 

/* LINTLIBRARY */ 

that is followed by a series of dummy function definitions. These 
definitions indicate whether a function returns a value, what type 
a function's return type is, and the number and types of 
arguments expected by the function. The VARARGS and 
ARGSUSED directives can be used to specify features of the 
library functions. 

The lint library files are processed almost exactly like ordinary 
source files. The only difference is that functions that are defined 
in a library file, but are not used in a source file, draw no 

4-18 



comments. The lint program does not simulate a full library 
search algorithm, and checks to see if the source files contain 
redefinitions of library routines. 

By default, lint checks the programs it is given against a standard 
library file, which contains descriptions of the programs that are 
normally loaded when a C program is run. When the -p option is 
in effect, the portable library file is checked. This library contains 
descriptions of the standard 110 library routines that are portable 
across various machines. The -n option suppresss all library 
checking. 

4-19 



4-20 



Chapter 5. A Program Maintainer: make 

Contents 

Introduction 5-3 

Creating a Makefile ..........•..................... 5-3 

Invoking make .................................... 5-5 

Using Pseudo-Target Names ...•..................... 5-8 

Using Macros .................................... 5-9 

U sing Shell Environment Variables .................... 5 -12 

Using the Built-In Rules ......•.................... 5-14 

Changing the Built-in Rules ....•.................... 5-15 

U sing Libraries .................................. 5 -17 

Troubleshooting .............•.................... 5-18 

Using make: An Example ........................... 5-19 

5-1 



5-2 



Introduction 

The make program provides an easy way to automate the creation 
of large programs. The make program reads commands from a 
user-defined "makefile" that lists the files to be created, the 
commands that create them, and the files from which they are 
created. When you direct make to create a program, it verifies 
that each file on which the program depends is up to date, then 
creates the program by executing the given commands. If a file is 
not up to date, make updates it before creating the program. The 
make program updates a program by executing explicitly given 
commands, or one of the many built-in commands. 

This chapter explains how to use make to automate medium-sized 
programming projects. It explains how to create makefiles for 
each project, and how to invoke make for creating programs and 
updating files. For more details about the program, see make 
(CP) in the IBM Personal Computer XENIX Software Command 
Reference. 

Creating a Makefile 

A makefile contains one or more lines of text called dependency 
lines. A dependency line shows how a given file depends on other 
files and what commands are required to bring a file up to date. 
A dependency line has the form: 

target : [dependent . . . ] [ ; command 

where target is the filename of the file to be updated, dependent is 
the filename of the file on which the target depends, and 
command is the XENIX command needed to create the target 
file. Each dependency line must have at least one command 
associated with it, even if it is only the null command (;). 

You can give more than one target filename or dependent 
filename if desired. Each filename must be separated from the 
next by at least one space. The target filenames must be 

5-3 



separated from the dependent filenames by a colon (:). 
Filenames must be spelled as defined by the XENIX system. 
Shell metacharacters, such as star (*) and question mark (?), can 
also be used. 

You can give a sequence of commands on the same line as the 
target and dependent filenames, if you precede each command 
with a semicolon (;). You can give additional commands on 
following lines by beginning each line with a tab character. 
Commands must be given exactly as they would appear on a shell 
command line. The at sign (@) can be placed in front of a 
command to prevent make from displaying the command before 
executing it. Shell commands, such as cd (C), must appear on 
single lines; they must not contain the backslash and newline 
character combination. 

You can add a comment to a makefile by starting the comment 
with a number sign (#) and ending it with a newline character. 
All characters after the number sign are ignored. Comments can 
be placed at the end of a dependency line if desired. If a 
command contains a number sign, it must be enclosed in double 
quotation marks ("). 

If a dependency line is too long, you can continue it by typing a 
backslash \ and a newline character. 

Keep the make file in the same directory as the given source files. 
For convenience, the filenames makefile, Makefile, s.makefile, and 
s.Makefile are provided as default filenames. These names are 
used by make if no explicit name is given at invocation. You can 
use one of these names for your makefile, or choose one of your 
own. If the filename begins with the s. prefix, make assumes it is 
an sces file and invokes the appropriate SCCS command to 
retrieve the lastest version of the file. 

To illustrate dependency lines, consider the following example. A 
program named prog is made by linking three object files, x.o, y.o, 
and z.o . These object files are created by compiling the C 
language source files x.c, y.c, and z.c . Furthermore, the files x.c 
and y.c contain the line: 

#include "defs" 

5-4 



This means that prog depends on the three object files, the object 
files depend on the C source files, and two of the source files 
depend on the include file defs . You can represent these 
relationships in a makefile with the following lines. 

prog: x.o y.o z.o 
ee x.o y.o z.o -0 prog 

x.o: x.e defs 
ee -e x.e 

y.o: y.e defs 
ee -e y.e 

z.o: z.e 
ee -e z.e 

In the first dependency line, prog is the target file and x.o, y.o and 
z.o are its dependents. The command sequence: 

ee x.o y.o z.o -0 prog 

on the next line tells how to create prog if it is out of date. The 
program is out of date if anyone of its dependents has been 
modified since prog was last created. 

The second, third, and fourth dependency lines have the same 
form, with the x.o, y.o, and z.o files as targets and x.c, y.c, Z.c, and 
defs files as dependents. Each dependency line has one command 
sequence that defines how to update the given target file. 

Invoking make 

Once you have a makefile and wish to update and modify one or 
more target files in the file, you can invoke make by typing its 
name and optional arguments. The invocation has the form: 

make [ option] 
macdef+ ] 

[ 
[ target] . . . 

where option is a program option used to modify program 
operation, macdef is a macro definition used to give a macro a 
value or meaning, and target is the filename of the file to be 

5-5 



updated. It must correspond to one of the target names in the 
makefile. All arguments are optional. If you give more than one 
argument, you must separate them with spaces. 

You can direct make to update the first target file in the makefile 
by typing just the program name. In this case, make searches for 
the files makefile, Makefile, s.makefile, and s.Makefile in the 
current directory, and uses the first one it finds as the makefile. 
For example, assume that the current makefile contains the 
dependency lines given in the last section. Then the command: 

make 

compares the current date of the prog program with the current 
date each of the object files x.o, y.o, and z.o . It recreates prog if 
any changes have been made to any object file since prog was last 
created. It also compares the current dates of the object files with 
the dates of the four source files x.c, y.c, z.c, or defs and recreates 
the object files if the source files have changed. It does this 
before recreating prog so that the recreated object files can be 
used to recreate prog . If none of the source or object files have 
been altered since the last time prog was created, make announces 
this fact and stops. No files are changed. 

You can direct make to update a given target file by giving the 
filename of the target. For example, 

make x.o 

causes make to recompile the x.o file, if the x.c or defs files have 
changed since the object file was last created. Similarly, the 
command 

make x.o z.o 

causes make to recompile X.D and z.o if the corresponding 
dependents have been modified. The make program processes 
target names from the command line in a left to right order. 

You can specify the name of the make file you wish make to use 
by giving the -f option in the invocation. The option has the 
form: 

-f fil ename 

5-6 



where filename is the name of the makefile. You must supply a 
full pathname if the file is not in the current directory. For 
example, the command: 

make -f makeprog 

reads the dependency lines of the make file named makeprog 
found in the current directory. You can direct make to read 
dependency lines from the standard input by giving "-" as the 
filename. The make program reads the standard input until the 
end-of-file character is encountered. 

You can use the program options to modify the operation of the 
make program. The following list describes some of the options. 

-p Prints the complete set of macro definitions and 
dependency lines in a makefile. 

-i Ignores errors returned by XENIX commands. 

-k Abandons work on the current entry, but continues 
on other branches that do not depend on that entry. 

-s Executes commands without displaying them. 

-r Ignores the built-in rules. 

-0 Displays commands but does not execute them. The 
make program even displays lines beginning with the 
at sign (@). 

-e Ignores any macro definitions that attempt to assign 
new values to the shell's environment variables. 

-t Changes the modification date of each target file 
without recreating the files. 

Note that make executes each command in the make file by 
passing it to a separate invocation of a shell. Because of this, care 
must be taken with certain commands (for example, cd and shell 
control commands) that have meaning only within a single shell 
process; the results are forgotten before the next line is executed. 
If an error occurs, make normally stops the command. 

5-7 



Using Pseu do-Target Names 

It is often useful to include dependency lines that have 
pseudo-target names, that is, names for which no files actually 
exist or are produced. Pseudo-target names allow make to 
perform tasks not directly connected with the creation of a 
program, such as deleting old files or printing copies of source 
files. For example, the following dependency line removes old 
copies of the given object files when the pseudo-target name 
"cleanup" is given in the invocation of make. 

cleanup 
rm x.o y.o z.o 

Since no file exists for a given pseudo-target name, the target is 
always assumed to be out of date. Thus the associated command 
is always executed. 

The make program also has built-in pseudo-target names that 
modify its operation. The pseudo-target name .IGNORE causes 
make to ignore errors during execution of commands, allowing 
make to continue after an error. This is the same as the -i option. 
Make also ignores errors for a given command if the command 
string begins with a hyphen (-). 

The pseudo-target name .DEFAULT defines the commands to be 
executed either when no built-in rule or user-defined dependency 
line exists for the given target. You can give any number of 
commands with this name. If .DEFAULT is not used and an 
undefined target is given, make prints a message and stops. 

The pseudo-target name .PRECIOUS prevents dependents of the 
current target from being deleted when make is terminated using 
the Interrupt or Quit key, and the pseudo-target name .SILENT 
has the same effect as the -s option. 

5-8 

Note: The Interrupt key is the Del (Delete key) on your 
keyboard. The Quit key is a combination of the Ctrl key and 
the \ key. Press and hold down the Ctrl key and press the \ 
key. 



U sing Macros 

An important feature of a makefile is that it can contain macros. 
A macro is a short name that represents a filename or command 
option. The macros can be defined when you invoke make or in 
the makefile itself. 

A macro definition is a line containing a name, an equal sign (=), 
and a value. The equal sign must not be preceded by a colon or a 
tab. The name (string of letters and digits) to the left of the equal 
sign (trailing blanks and tabs are stripped) is assigned the string of 
characters following the equal sign (leading blanks and tabs are 
stripped.) The following are valid macro definitions: 

2 = xyz 
abc = -11 -1y 
LIBES = 

The last definition assigns LIBES the null string. A macro that is 
never explicitly defined has the null string as its value. 

A macro is invoked by preceding the macro name with a dollar 
sign; macro names longer than one character must be placed in 
parentheses. 

The name of the macro is either the single character after the 
dollar sign or a name inside parentheses. The following are valid 
macro invocations. 

$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. 

Macros are typically used as placeholders for values that may 
change from time to time. For example, the following make file 
uses a macro for the names of object files that are linked and 
another macro for the names of the library. 

5-9 



OBJECTS = x.o y.o z.o 
LIBES = -lln 
prog: $(OBJECTS) 

cc $(OBJECTS) $(LIBES) -0 prog 

If this make file is invoked with the command: 

make 

it will load the three object files with the lex library specified with 
the -lin option. 

You can include a macro definition in a command line. A macro 
definition in a command line has the same form as a macro 
definition in a makefile. If spaces are in the definition, use double 
quotation marks to enclose the definition. Macros in a command 
line override corresponding definitions found in the makefile. For 
example, the command: 

make "LIBES=-lln -lm" 

loads assigns the library options -lin and -1m to "LIBES." 

You can modify all or part of the value generated from a macro 
invocation without changing the macro itself by using the 
"substitution sequence." The sequence has the form 

name: stl =[ st2] 

where name is the name of the macro whose value is to be 
modified, st 1 is the character or characters to be modified, and st2 
is the character or characters to replace the modified characters. 
If st2 is not given, st 1 is replaced by a null character. 

The substitution sequence allows user-defined metacharacters in a 
makefile. For example, suppose that" .x" is used as a 
metacharacter for a prefix and suppose that a makefile contains 
the definition 

FILES = progl.x prog2.x prog3.x 

Then the macro invocation 

$(FILES : .x=.o) 

5-10 



generates the value 

progl.o prog2.o prog3.o 

The actual value of FILES remains unchanged. 

The make program has five built-in macros that can be used when 
writing dependency lines. The following is a list of these macros. 

$* Contains the name of the current target with the 
suffix removed. Thus if the current target is prog.o 
$* contains prog . It can be used in dependency lines 
that redefine the built-in rules. 

$@ Contains the full pathname of the current target. It 
can be used in dependency lines with user-defined 
target names. 

$< Contains the filename of the dependent that is more 
recent than the given target. It can be used in 
dependency lines with built-in target names or the 
.DEFAULT pseudo-target name. 

$? Contains the filenames of the dependents that are 
more recent than the given target. It can be used in 
dependency lines with user-defined target names. 

$ % Contains the filename of a library member. It can be 
used with target library names (see the section 
"Using Libraries" later in this chapter). In this case, 
$@ contains the name of the library and $% 
contains the name of the library member. 

You can change the meaning of a built-in macro by appending the 
D or F descriptor to its name. A built-in macro with the D 
descriptor contains the name of the directory containing the given 
file. If the file is in the current directory, the macro contains "." 
A macro with the F descriptor contains the name of the given file 
with the directory name part removed. Do not use the D and F 
descriptor with the $? macro. 

5-11 



As an example, let's say you have a makefile with the target: 

/usr/you/prog: x.o 
cc -0 /usr/you/prog x.o 
echo II$@" 
echo II$(@D)" 
echo II$(@F)" 

$@ is the full pathname of the current target. It has the 
value /usr/you/prog. 

$@ with a D descriptor produces the directory name for 
the current target. $(@D) has the value /usr/you: 

$@ with an F descriptor produces the filename for the 
current target. $ ( @F) has the value prog. 

Using Shell Environment Variables 

The make program provides access to current values of the shell's 
environment variables such as HOME, PATH, and LOGIN. The 
make program automatically assigns the value of each shell 
variable in your environment to a macro of the same name. You 
can access a variable's value in the same way that you access the 
value of explicitly defined macros. For example, in the following 
dependency line, $(HOME) has the same value as the user's 
HOME variable. 

prog : 
CC $(HOME)/x.o $(HOME)/y.o /usr/pub/z.o 

The make program assigns the shell variable values after it assigns 
values to the built-in macros, but before it assigns values to 
user-specified macros. Thus, you can override the value of a shell 
variable by explicitly assigning a value to the corresponding 
macro. For example, the following macro definition causes make 
to ignore the current value of the HOME variable and use 
/ usr / pub instead: 

HOME = /usr/pub 

5-12 



If a makefile contains macro definitions that override the current 
values of the shell variables, you can direct make to ignore these 
definitions by using the -e option. 

The make program has two shell variables, MAKE and 
MAKEFLAGS that correspond to two special-purpose macros. 

The MAKE macro provides a way to override the -0 option and 
execute selected commands in a makefile. When MAKE is used 
in a command, make will always execute that command, even if -0 

has been given in the invocation. The variable can be set to any 
value or command sequence. 

The MAKEFLAGS macro contains one or more make options, 
and can be used in invocations of make from within a makefile. 
You can assign any make options to MAKEFLAGS except -f -p 
and -d . If you do not assign a value to the macro, make 
automatically assigns the current options to it, that is, the options 
given in the current invocation. 

The MAKE and MAKEFLAGS variables, together with the -0 

option, are used to debug makefiles that generate entire software 
systems. For example, in the following makefile, setting MAKE 
to make and invoking this file with the -0 options displays all the 
commands used to generate the programs progJ, prog2, and prog3 
without actually executing them. 

system : progl prog2 prog3 
@echo System complete. 

progl progl.c 
$(MAKE) $(MAKEFLAGS) progl 

prog2 prog2.c 
$(MAKE) $(MAKEFLAGS) prog2 

prog3 prog3.c 
$(MAKE) $(MAKEFLAGS) prog3 

5-13 



Using the Built-In Rules 

The make program provides a set of built-in dependency lines, 
called built-in rules, that automatically check the targets and 
dependents given in a makefile, and create up-to-date versions of 
these files if necessary. The built-in rules are identical to 
user-defined dependency lines except the suffix of the filename is 
the target or dependent instead of the filename itself. For 
example, make automatically assumes that all files with the suffix 
.0 have dependent files with the suffixes .c and .s. 

When no explicit dependency line for a given file is given in a 
makefile, make automatically checks the default dependents of the 
file. It then forms the name of the dependents by removing the 
suffix of the given file and appending the predefined dependent 
suffixes. If the given file is out of date with respect to these 
default dependents, make searches for a built-in rule that defines 
how to create an up-to-date version of the file, then executes it. 
There are built-in rules for the following files . 

. 0 Object file 

.c C source file 

.r Ratfor source file 

.f FORTRAN source file 

.s Assembler source file 

.y Yacc-C source grammar 

.yr Yacc-Ratfor source grammar 

.1 Lex source grammar 

For example, if the file x.o is needed and is an x.c in the 
description or directory, it is compiled. If there is also an x.1 that 
grammar would be run through lex before compiling the result. 

The built-in rules are designed to reduce the size of your 
makefiles. They provide the rules for creating common files from 
typical dependents. Reconsider the example given in the section 
"Creating a Makefile ." In this example, the program prog 
depended on three object files x.o, y.o, and z.o . These files in turn 
depended on the C language source files x.c, y.c, and z.c . The 
files x. c and y. c also depended on the include file defs . In the 
original example each dependency and corresponding command 
sequence was explicitly given. Many of these dependency lines 

5-14 



were unnecessary, since the built-in rules could have been used 
instead. The following is all that is needed to show the 
relationships between these files. 

prog: x.o y.o z.o 
cc x.o y.o Z.o -0 prog 

x.o y.o: defs 

In this makefile, prog depends on three object files, and an explicit 
command is given showing how to update prog. However, the 
second line merely shows that two objects files depend on the 
include file defs. No explicit command sequence is given on how 
to update these files if necessary. Instead, make uses the built-in 
rules to locate the desired C source files, compile these files, and 
create the necessary object files. 

Changing the Built-in Rules 

You can change the built-in rules by redefining the macros used in 
these lines or by redefining the commands associated with the 
rules. You can display a complete list of the built-in rules and the 
macros used in the rules by typing: 

make -fp - 2>/dev/null </dev/null 

The rules and macros are displayed at the standard output. 

The macros of the built-in dependency lines define the names and 
options of the compilers, program generators, and other programs 
invoked by the built-in commands. The make program 
automatically assigns a default value to these macros when you 
start the program. You can change the values by redefining the 
macro in your makefile. For example, the following built-in rule 
contains three macros, CC, CFLAGS, and LOADLIBES . 

. c : 
$(CC) $(CFLAGS) $< $(LOADLIBES) -0 $@ 

You can redefine any of these macros by placing the appropriate 
macro definition at the beginning of the makefile. 

5-15 



You can redefine the action of a built-in rule by giving a new rule 
in your makefile. A built-in rule has the form: 

suffix-rule: 
command 

where suffix-rule is a combination of suffixes showing the 
relationship of the implied target and dependent, and command is 
the XENIX command required to carry out the rule. If more 
than one command is needed, they are given on separate lines. 

The new rule must begin with an appropriate suffix-rule. The 
available suffix-rules are: 

.C . C '" 

.sh .sh'" 

.C"'.o .C"'.o 

.C'" .c .S.o 

.S"'.o .y.o 
· y'" . a .1.0 
.1"'.0 .y.c 
· y'" . c .1.c 
· C"". a .c"'.a 
· S"". a .h"'.h 

A tilde ("') indicates an sees file. A single suffix indicates a rule 
that makes an executable file from the given file. For example, 
the suffix rule" .c" is for the built-in rule that creates an 
executable file from a e source file. A pair of suffixes indicates a 
rule that makes one file from the other. For example, ".c.o" is for 
the rule that creates an object file (.0) file from a corresponding 
e source file (.c). 

Any commands in the rule can use the built-in macros provided 
by make. For example, the following dependency line redefines 
the action of the .c.o rule . 

. c. a : 
cc $< -c $*.0 

If necessary, you can also create new suffix-rules by adding a list 
of new suffixes to a make file with .SUFFIXES. This 
pseudo-target name defines the suffixes to make suffix-rules for 
the built-in rules. The line has the form 

5-16 



.SUFFIXES: suffix .. 

where suffix is usually a lowercase letter preceded by a dot (.). If 
more than one suffix is given, use spaces to separate them. 

The order of the suffixes is significant. Each suffix is a dependent 
of the suffixes preceding it. For example, the suffix list 

.SUFFIXES: .0 .C .y .1 .s 

causes prog.c to be a dependent of prog.o and prog.y to be a 
dependent of prog.c. 

You can create new suffix-rules by combining dependent suffixes 
with the suffix of the intended target. The dependent suffix must 
appear first. 

If a .SUFFIXES list appears more than once in a makefile, the 
suffixes are combined into a single list. If a .SUFFIXES is given 
that has no list, all suffixes are ignored. 

U sing Libraries 

You can direct make to use a file contained in an archive library 
as a target or dependent. To do this you must explicitly name the 
file you wish to access by using a library name. A library name 
has the form: 

1ib(member-name) 

where lib is the name of the library containing the file, and 
member-name is the name of the file. For example, the library 
name 

1ibtemp.a(print.o) 

refers to the object file print. 0 in the archive library libtemp.a. 

You can create your own built-in rules for archive libraries by 
adding the .a suffix to the suffix list, and creating new suffix 

5-17 



combinations. For example, the combination" .c.a" can be used 
for a rule that defines how to create a library member from a C 
source file. The dependent suffix in the new combination must be 
different than the suffix of the ultimate file. For example, the 
combination" .c.a" can be used for a rule that creates .0 files, but 
not for one that creates .c files. 

The most common use of the library naming convention is to 
create a makefile that automatically maintains an archive library. 
For example, the following dependency lines define the 
commands required to create a library, named lib containing 
up-to-date versions of the filesfilei.o,file2.0, andfile3.0. 

1 i b: 

. c. a: 

lib(filel.o) lib(file2.0) lib(file3.0) 
@echo lib is now up to date 

$(CC) -c $(CFLAGS) $< 
ar rv $@ $*.0 
rm -f $*.0 

The .c.a rule shows how to redefine a built-in rule for a library. 
In the following example, the built-in rule is disabled, allowing the 
first dependency to create the library. 

1 i b: 

. c. a: ; 

lib(filel.o) lib(file2.0) lib(file3.o) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
ar rv lib $? 
rm $? 
@echo lib is now up to date 

In this example, a substitution sequence is used to change the 
value of the $? macro from the names of the object files file1.o, 
file2.o, and file3.o to file1.c, file2.c, and file3.c. 

Troubleshooting 

Most difficulties in using make arise from make's specific meaning 
of dependency. If the file x.c has the line: 

5-18 



#include "defs" 

then the object file x.o depends on defs; the source file x.c does 
not. (If defs is changed, it is not necessary to do anything to the 
file x.c, while it is necessary to recreate x.o.) 

To determine which commands make will execute, without 
actually executing them, use the -0 option. For example, the 
command: 

make -n 

prints out the commands make would normally execute without 
actually executing them. 

The debugging option -d causes make to print out a very detailed 
description of what it is doing, including the file times. The 
output is verbose, and recommended only as a last resort. 

If a change to a file is absolutely certain to be benign (for 
example, adding a new definition to an include file), the -t 
(touch) option can save a lot of time. Instead of issuing a large 
number of superfluous recompilations, make updates the 
modification times on the affected file. Thus, the command: 

make -ts 

which stands for touch silently, causes the relevant files to appear 
up to date. 

Using make: An Example 

An example of the use of make is shown at the end of this 
chapter. Examine the makefile used to maintain the make itself. 
The code for make is spread over a number of C source files and a 
yacc grammar. 

The make program usually prints out each command before 
issuing it. The following output results from typing the simple 
command: 

5-19 



make 

in a directory containing only the source and makefile: 

cc -c vers.c 
cc -c main.c 
cc -c doname.c 
cc -c misc.c 
cc -c files.c 
cc -c dosys.c 
yacc gram.y 
mv y.tab.c gram.c 
cc -c gram.c 
cc vers.o main.o dosys.o gram.o -0 make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars were mentioned by 
name in the makefile, make found them by using its suffix rules 
and issued the needed commands. The string of digits results 
from the size make command. 

The last few targets in the makefile are useful maintenance 
sequences. The print target prints only the files that have been 
changed since the last make print command. A zero-length file, 
print, is maintained to keep track of the time of the printing; the 
$? macro in the command line then picks up only the names of 
the files changed since print was touched. The printed output can 
be sent to a different printer or to a file by changing the definition 
of the P macro. 

5-20 



# Description file for the make command 

# Macro definitions below 
P = lpr 
FILES = Makefile vers.c defs main.c doname.c misc.c files.c 

dosys.c \gram.y lex.c 
OBJECTS = vers.o main.o ... dosys.o gram.o 
LIBES= 
LINT = lint-p 
CFLAGS =-0 

#targets: dependents 
#<TAB>actions 

make: $(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make 
size make 

$(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm *.0 gram.c 

5-21 



-du 

install: 
@size make /usr/bin/make 
cp make / usr /bin/ make ; rm make 

print: $(FILES) 
pr $? I $P 
touch print 

# print recently changed files 

test: 
make -dp I grep -v TIME> lzap 
/usr/bin/make -dp I grep -v TIME >2zap 
diff 1 zap 2zap 
rm lzap 2zap 

lint: dosys.c doname.c files.c main.c misc.c vers.c gram.c 
$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c 
rm gram.c 

arch: 
ar uv /sys/source/s2/make.a $(FILES) 

Makefile Contents 

5-22 



Chapter 6. SCCS: A Source Code 
Control System 

Contents 

Introduction 6-5 

Basic Information ................................. 6-5 
Files and Directories ............................ 6-6 
Deltas and SIDs ................................ 6-6 
SCCS Working Files ............................ 6-7 
SCCS Command Arguments ...................... 6-9 
File Administrator ............................. 6-10 

Creating and Using S-files .......................... 6-10 
Creating an S-file ............................. 6-10 
Retrieving a File for Reading .................... 6-12 
Retrieving a File for Editing ..................... 6-13 
Saving a New Version of a File ................... 6-14 
Retrieving a Specific Version .................... 6-15 
Changing the Release Number of a File ............ 6-16 
Creating a Branch Version ...................... 6-17 
Retrieving a Branch Version ..................... 6-17 
Retrieving the Most Recent Version ............... 6-18 
Displaying a Version ........................... 6-19 
Saving a Copy of a New Version .................. 6-19 
Displaying Helpful Information ................... 6-20 

Using Identification Keywords ....................... 6-20 
Inserting a Keyword into a File ................... 6-21 
Assigning Values to Keywords ................... 6-22 
Forcing Keywords ............................. 6-22 

Using S-file Flags ................................ 6-23 
Setting S-file Flags ............................ 6-23 
U sing the i Flag ............................... 6-24 
Using the d Flag .............................. 6-24 

6-1 



Using the v Flag .............................. 6-24 
Removing an S-file Flag ........................ 6-25 

Modifying S-file Information ...............•........ 6-25 
Adding Comments ............................ 6-26 
Changing Comments ........................... 6-26 
Adding Modification Requests ................... 6-27 
Changing Modification Requests ................. 6-27 
Adding Descriptive Text ........................ 6-28 

Printing from an S-file ............................. 6-29 
Using a Data Specification ...................... 6-29 
Printing a Specific Version ...................... 6-30 
Printing Later and Earlier Versions ................ 6-30 

Editing by Several Users ........................... 6-31 
Editing Different Versions ...................... 6-31 
Editing a Single Version ........................ 6-32 
Saving a Specific Version ....................... 6-32 

Protecting S-files ................................ 6-33 
Adding a User to the User List ................... 6-33 
Removing a User from a User List ................ 6-34 
Setting the Floor Flag .......................... 6-34 
Setting the Ceiling Flag ......................... 6-34 
Locking a Version ............................. 6-35 

Repairing SCCS Files ............................. 6-35 
Checking an S-file ............................. 6-35 
Editing an S-file .............................. 6-36 
Changing an S-file's Checksum ................... 6-37 
Regenerating a G-file for Editing ................. 6-37 
Restoring a Damaged P-file ...................... 6-37 

Using other Command Options ....................... 6-37 
Getting Help With SCCS Commands .............. 6-38 
Creating a File with the Standard Input ............ 6-38 

Starting at a Specific Release ................... " 6-38 
Adding a Comment to the First Version ........... 6-39 
Suppressing Normal Output ..................... 6-39 

Including and Excluding Deltas ................... 6-40 
Listing the Deltas of a Version ................... 6-41 
Mapping Lines to Deltas ........................ 6-42 

6-2 



Naming Lines ......................... ~ . . . . .. 6-42 
Displaying a List of Differences .................. 6-42 
Displaying File Information .............. . . . . . . .. 6-43 
Removing a Delta ............................. 6-43 
Searching for Strings ........................... 6-44 
Comparing SCCS Files ......................... 6-45 

6-3 



6-4 



Introduction 

The Source Code Control System (SeeS) is a collection of IBM 
Personal Computer XENIX commands that create, maintain, and 
control special files called sees files. The sees commands 
enable you to create and store multiple versions of a program or 
document in a single file, instead of one file for each version. 
With these commands you can retrieve any version you wish at 
any time, make changes to this version, and save the changes as a 
new version of the file in the sees file. 

The sees system is useful wherever you require a compact way 
to store multiple versions of the same file. The sees system 
provides an easy way to update any given version of a file and 
explicitly record the changes made. The commands are used to 
control changes to multiple versions of source programs, but can 
also control multiple versions of manuals, specifications, and 
other documentation. 

This chapter explains how to make sees files, how to update the 
files contained in sees files, and how to maintain the sees files 
once they are created. The following sections describe the basic 
information you need to start using the sees commands. Later 
sections describe the commands in detail. 

Basic Information 

This section provides some basic information about the sees 
system. In particular, it describes: 

1. Files and directories 

2. Deltas and SIDs 

3. sees working files 

4. sees command arguments 

5. File administration 

6-5 



Files and Directories 
All sees files (also called s-files) are originally created from text 
files containing documents or programs created by a user. The 
text files 'must have been created using a XENIX text editor such 
as vi. Special characters in the files are allowed only if they are 
also allowed by the given editor. 

To simplify s-file storage, keep all logically related files (for 
example, files belonging to the same project) in the same 
directory. Such directories should contain s-files only, and should 
have read (examine) permission for everyone, and write 
permission for the user only. 

You must not use the XENIX link command to create multiple 
copies of an s-file. 

Deltas and SIDs 
Unlike an ordinary text file, an sees file (or s-file for short) 
contains nothing more than lists of changes. Each list 
corresponds to the changes needed to construct exactly one 
version of the file. Then combine the lists to create the desired 
version from the original. 

Each list of changes is called a "delta." Each delta has an 
identification string called a "SID." The SID is a string of at least 
two, and at most four, numbers separated by periods. The 
numbers name the version and define how it is related to other 
versions. For example, the first delta is usually numbered 1.1 and 
the second 1.2. 

The first number in any SID is called the "release number. " The 
release number usually indicates a group of versions that are 
similar and generally compatible. The second number in the SID 
is the "level number." It indicates major differences between 
files in the same release. 

6-6 



An SID can also have two optional numbers. The branch number 
3, the optional third number, indicates changes at a particular 
level, and the "sequence number," the fourth number, indicates 
changes at a particular branch. For example, the SIDs 1.1.1.1 and 
1.1.1.2 indicate two new versions that contain slight changes to 
the original delta 1.1. 

An s-file can contain several different releases, levels, branches, 
and sequences of the same file. In general, the maximum number 
of releases an s-file may contain is 9999, that is, release numbers 
can range from 1 to 9999. The same limit applies to level, 
branch, and sequence numbers. 

When you create a new version, the sees system usually creates 
a new SID by incrementing the level number of the original 
version. If you wish to create a new release, you must explicitly 
instruct the system to do so. A change to a release number 
indicates a major new version of the file. How to create a new 
version of a file and change release numbers is described later. 

The sees system creates a branch and sequence number for the 
SIn of a new version, if the next higher level number already 
exists. For example, if you change version 1.3 to create a version 
1.4 and then change 1.3 again, the sees system creates a new 
version named 1. 3.1.1. 

Version numbers can become quite complicated. It is wise to 
keep the numbers as simple as possible by carefully planning the 
creation of each new version. 

sees Working Files 

The sees system uses several different kinds of files to complete 
its tasks. These files contain either actual text, or information 
about the commands in progress. For convenience, the sees 
system names these files by placing a prefix before the name of 
the original file from which all versions were made. The following 
is a list of the working files. 

s-file A permanent file that contains all versions of the 
given text file. The versions are stored as deltas, that 
is, lists of changes to be applied to the original file to 

6-7 



x-file 

g-file 

p-file 

z-file 

6-8 

create the given version. The name of an s-file is 
formed by placing the file prefix s. at the beginning 
of the original filename. 

A temporary copy of the s-file. It is created by 
sees commands which change the s-file. It is used 
instead of the s-file to carry out the changes. When 
all changes are complete, the sees system removes 
the original s-file and gives the x-file the name of the 
original s-file. The name of the x-file is formed by 
placing the prefix x. at the beginning of the original 
file. 

An ordinary text file created by applying the deltas 
in a given s-file to the original file. The g-file 
represents a copy of the given version of the original 
file, and as such receives the same filename as the 
original. When created, a g-file is placed in the 
current working directory of the user who requested 
the file. 

A special file containing information about the 
versions of an s-file currently being edited. The 
p-file is created when a g-file is retrieved from the 
s-file. The p-file exists until all currently retrieved 
files have been saved in the s-file; it is then deleted. 
The p-file contains one or more entries describing 
the SID of the retrieved g-file, the proposed SID of 
the new, edited g-file, and the login name of the user 
who retrieved the g-file. The p-file name is formed 
by placing the prefix p. at the beginning of the 
original filename. 

A lock file used by sees commands to prevent two 
users from updating a single sees file at the same 
time. Before a command modifes an sees file, it 
creates a z-file and copies its own process ID to it. 
Any other command that attempts to access the file 
while the z-file is present displays an error message 
and stops. When the original command has finished 
its tasks, it deletes the z-file before stopping. The 
z-file name is formed by placing the prefix z. at the 
beginning of the original filename. 



I-file 

d-file 

q-file 

A special file containing a list of the deltas required 
to create a given version of a file. The I-file name is 
formed by placing the prefix I. at the beginning of 
the original filename. 

A temporary copy of the g-file used to generate a 
new delta. 

A temporary file used by the delta command when 
updating the p-file. The file is not directly 
accessible. 

A user never directly accesses x-files, z-files, d-files, or q-files. If 
a system crash or similar situation abnormally terminates a 
command, the user may wish delete these files to ensure proper 
operation of subsequent sees commands. 

SCCS Command Arguments 

Almost all sees commands accept two types of arguments: 
options and filenames. These appear in the sees command line 
immediately after the command name. 

An option indicates a special action taken by the given sees 
command. An option is usually a lowercase letter preceded by a 
minus sign (-). Some options require an additional name or value. 

A filename indicates the file to be acted on. The syntax for sees 
filenames is like other XENIX filename syntax. Appropriate 
pathnames must be given if required. Some commands also allow 
directory names. In this case, all files in the directory are acted 
on. If the directory contains non-SeeS and unreadable files, 
these are ignored. A filename must not begin with a minus sign 
(-). 

The special symbol- causes the given command to read a list of 
filenames from the standard input. These filenames are then used 
as names for the files to be processed. The list must terminate 
with an end-of-file character. 

6-9 



Any options given with a command apply to all files. The sees 
commands process the options before any filenames, so the 
options can appear anywhere on the command line. 

Filenames are processed left to right. If a command encounters a 
fatal error, it stops processing the current file and, if any other 
files have been given, begins processing the next. 

File Administrator 

Every sees file requires an administrator to maintain and keep 
the file in order. The administrator is usually the user who 
created the file and therefore owns it. Before other users can 
access the file, the administrator must ensure that they have 
adequate access. Several sees commands let the administrator 
define who has access to the versions in a given s-file. These are 
described later. 

Creating and Using S-files 

The s-file is the key element in the sees system. It provides 
compact storage for all versions of a given file and automatic 
maintenance of the relationships between the versions. 

This section explains how to use the admin, get, and delta 
commands to create and use s-files. In particular, it describes 
how to create the first version of a file, how to retrieve versions 
for reading and editing, and how to save new versions. 

Creating an S-file 

You can create an s-file from an existing text file using the -i (for 
initialize) option of the admin command. The command has the 
form: 

admin -i filename s.filename 

6-10 



where -ifilename gives the name of the text file from which the 
s-file is to be created, and s.filename is the name of the new s-file. 
The name must begin with s. and must be unique; no other s-file 
in the same directory can have the same name. For example, 
suppose the file named demo.c contains the short C language 
program: 

#inelude <stdio.h> 

ma in () 
{ 

printf("This is version 1.1 \n"); 
} 

To create an s-file, type: 

admin -idemo.e s.demo.c 

This command creates the s-file s.demo.c, and copies the first 
delta describing the contents of demo.c to this new file. The first 
delta is numbered 1.1. 

After creating an s-file, remove the original text file using the rm 
command, since it is no longer needed. If you wish to view the 
text file or make changes to it, you can retrieve the file using the 
get command described in the next section. 

When first creating an s-file, the admin command may display the 
warning message: 

No id keywords (em7) 

This message can be ignored unless you have specifically included 
keywords in your file (see the section, "Using Identification 
Keywords" later in this chapter). 

Only a user with write permission in the directory containing the 
s-file can use the admin command on that file. This protects the 
file from administration by unauthorized users. 

6-11 



Retrieving a File for Reading 

You can retrieve a file for reading from a given s-file by using the 
get command. The command has the form: 

get s.filename ... 

where s.filename is the name of the s-file containing the text file. 
The command retrieves the lastest version of the text file and 
copies it to a regular file. The file has the same name as the s-file 
but with the s. removed. It also has read-only file permissions. 
For example, suppose the s-file s.demo.c contains the first version 
of the short C program shown in the previous section. To retrieve 
this program, type: 

get s.demo.c 

The command retrieves the program and copies it to the file 
named demo.c. You can then display the file just as you do any 
other text file. 

The command also displays a message that describes the SID of 
the retrieved file and its size in lines. For example, after 
retrieving the short C program from s.demo.c, the command 
displays the message: 

1.1 
6 lines 

You can also retrieve more than one file at a time by giving 
multiple s-file names in the command line. For example, the 
command 

get s.demo.c s.def.h 

retrieves the contents of the s-files s.demo.c and s.defh and copies 
them to the text files demo.c and defh. When giving multiple 
s-file names in a command, you must separate each with at least 
one space. When the get command displays information about 
the files, it places the corresponding filename before the relevant 
inf orma tion. 

6-12 



Retrieving a File for Editing 

You can retrieve a file for editing from a given s-file by using the 
-e (for "editing") option of the get command. The command has 
the form 

get -e s.filename ... 

where s.filename is the name of the s-file containing the text file. 
You can give more than one filename if you wish. If you do, you 
must separate each name with a space. 

The command retrieves the lastest version of the text file and 
copies it to an ordinary text file. The file has the same name as the 
s-file but with the s. removed. It has read and write file 
permissions. For example, suppose the s-file s.demo.c contains 
the first version of a C program. To retrieve this program, type 

get -e s.demo.c 

The command retrieves the program and copies it to the file 
named demo.c. Edit the file just as you do any other text file. 

If you give more than one filename, the command creates files for 
each corresponding s-file. Since the -e option applies to all the 
files, you can edit each one. 

After retrieving a text file, the command displays a message giving 
the SID of the file and its size in lines. The message also displays 
a proposed SID, that is, the SID for the new version after editing. 
For example, after retrieving the six-line C program in s.demo.c, 
the command displays the message 

1.1 
new delta 1.2 
6 lines 

The proposed SID is 1.2. If more than one file is retrieved, the 
corresponding filename precedes the relevant information. 

Any changes made to the text file are not immediately copied to 
the corresponding s-file. To save these changes you must use the 
delta command described in the next section. To help keep track 
of the current file version, the get command creates another file, 

6-13 



called a p-file, that contains information about the text file. This 
file is used by a subsequent delta command when saving the new 
version. The p-file has the same name as the s-file but begins 
with a p .. The user must not access the p-file directly. 

Saving a New Version of a File 

You can save a new version of a text file by using the delta 
command. The command has the form 

delta s.filename 

where s.filename is the name of the s-file from which the modified 
text file was retrieved. For example, to save changes made to a C 
program in the file demo. c (that was retrieved from the file 
s.demo.c ), type 

delta s.demo.c 

Before saving the new version, the delta command asks for 
comments explaining the nature of the changes. It displays the 
prompt: 

comments? 

You can type any text you think appropriate, up to 512 
characters. The comment must end with a newline character. If 
necessary, you can start a new line by typing a backslash (\) 
followed by a newline character. If you do not wish to include a 
comment, just type a newline character. 

Once you have given a comment, the command uses the 
information in the corresponding p-file to compare the original 
version with the new version. A list of all the changes is copied to 
the s-file. This is the new delta. 

After a command has copied the new delta to the s-file, it displays 
a message showing the new SID and the number of lines inserted, 
deleted, or left unchanged in the new version. 

6-14 



For example, if the C program has been changed to: 

#include <stdio.h> 

rna in () 
{ 

int i = 2; 

printf(IIThis is version 1.%d II i); 

the command displays the message: 

1.2 
3 inserted 
1 deleted 
5 unchanged 

Once a new version is saved, the next get command retrieves the 
new version. The command ignores previous versions. If you 
wish to retrieve a previous version, you must use the -r option of 
the get command as described in the next section. 

Retrieving a Specific Version 

You can retrieve any version you wish from an s-file by using the 
-r (for retrieve) of the get command. The command has the 
form: 

get [ ~e ] -rSID s.filename . .. 

where -e is the edit option, -rSID gives the SID of the version to 
be retrieved, and s.filename is the name of the s-file containing 
the file to be retrieved. You can give more than one filename. 
Separate the names with with spaces. 

The command retrieves the given version and copies it to the file 
having the same name as s-file but with the s. removed. The file 
has read-only permission unless you also give the -e option. If 
multiple filenames are given, one text file of the given version is 
retrieved from each. For example, the command: 

get -rI.I s.derno.c 

6-15 



retrieves version 1.1 from the s-file s.demo.c, but the command 

get -e -rl.l s.demo.c s.def.h 

retrieves for editing a version 1.1 from both s.demo.c and s.defh. 
If you give the number of a version that does not exist, the 
command displays an error message. 

You can omit the level number of a version number if you wish, 
that is, just give a release number. If you do, the command 
automatically retrieves the most recent version having the same 
release number. For example, if the most recent version in the 
file s.demo.c is numbered 1.4, the command 

get -rl s.demo.c 

retrieves the version 1.4. If no version with the given release 
number exists, the command retrieves the most recent version in 
the previous release. 

Changing the Release Number of a File 
You can direct the delta command to change the release number 
of a new version of a file by using the -r option of the get 
command. In this case, the get command has the form: 

get -e -rrel-num s.filename ... 

where -e is the required edit option, -rrel-num gives the new 
release number of the file, and s.filename gives the name of the 
s-file containing the file to be retrieved. The new release number 
must be an entirely new number, that is, no existing version can 
have this number. You may give more than one filename. 

The command retrieves the most recent version from the s-file, 
then copies the new release number to the p-file. On the 
subsequent delta command, the new version is saved using the 
new release number and level number 1. For example, if the most 
recent version in the s-file s.demo.c is 1.4, the command: 

get -e -r2 s.demo.c 

6-16 



causes the subsequent delta to save a new version 2.1, not 1.5. 
The new release number applies to the new version only; the 
release numbers of previous versions are not affected. Therefore, 
if you edit version 1.4 (from which 2.1 was derived) and save the 
changes, you create a new version 1.5. Similarly, if you edit 
version 2.1, you create a new version 2.2. 

As before, the get command also displays a message showing the 
current version number, the proposed version number, and the 
size of the file in lines. Similarly, the subsequent delta command 
displays the new version number and the number of lines inserted, 
deleted, and unchanged in the new file. 

Creating a Branch Version 

You can create a branch version of a file by editing a version that 
has been previously edited. A branch version is simply a version 
whose SID contains a branch and sequence number. 

For example, if version 1.4 already exists, the command: 

get -e -rl.3 s.demo.c 

retrieves version 1.3 for editing and gives 1.3.1.1 as the proposed 
SID. 

Whenever get discovers that you wish to edit a version that 
already has a succeeding version, it uses the first available branch 
and sequence numbers for the proposed SID. For example, if you 
edit version 1.3 a third time, get gives 1.3.2.1 as the proposed 
SID. 

You can save a branch version just like any other version by using 
the delta command. 

Retrieving a Branch Version 

You can retrieve a branch version of a file by using the -r option 
of the get command. For example, the command: 

get -rl.3.1.1 s.demo.c 

6-17 



retrieves branch version 1.3.1.1. 

You can retrieve a branch version for editing by using the -e 
option of the get command. When retrieving for editing, get 
creates the proposed SID by incrementing the sequence number 
by one. For example, if you retrieve branch version 1.3.1.1 for 
editing, get gives 1.3.1.2 as the proposed SID. 

As always, the command displays the version number and file 
size. If the given branch version does not exist, the command 
displays an error message. 

You can omit the sequence number if you wish. In this case, the 
command retrieves the most recent branch version with the given 
branch number. For example, if the most recent branch version 
in the s-file s.defh is 1.3.1.4, the command: 

get -rl.3.1 s.def.h 

retrieves version 1.3.1.4. 

Retrieving the Most Recent Version 
You can always retrieve the most recent version of a file by using 
the -t option with the get command. For example, the command: 

get -t s.demo.c 

retrieves the most recent version from the file s.demo.c. You can 
combine the -r and -t options to retrieve the most recent version 
of a given release number. For example, if the most recent 
version with release number 3 is 3.5, then the command: 

get -r3 -t s.demo.c 

retrieves version 3.5. If a branch version exists that is more 
recent than version 3.5 (for example, 3.2.1.5), then the above 
command retrieves the branch version and ignores version 3.5. 

6-18 



Displaying aVersion 
You can display the contents of a version at the standard output 
by using the -p option of the get command. For example, the 
command: 

get -p s.demo.c 

displays the most recent version in the s-file s.demo.c at the 
standard output. Similarly, the command: 

get -p -r2.1 s.demo.c 

displays version 2.1 at the standard output. 

The -p option is useful for creating g-files with user-supplied 
names. This option also directs all output normally sent to the 
standard output, such as the SID of the retrieved file, to the 
standard error file. Thus, the resulting file contains only the 
contents of the given version. For example, the command: 

get -p s.demo.c >version.c 

copies the most recent version in the s-file s.demo.c to the file 
version.c. The SID of the file and its size is copied to the standard 
error file. 

Saving a Copy of aNew Version 
The delta command normally removes the edited file after saving 
it in the s-file. You can save a copy of this file by using the -0 

option of the delta command. For example, the command: 

delta -n s.demo.c 

first saves a new version in the s-file s.demo.c, then saves a copy 
of this version in the file demo.c. You can display the file as 
desired, but you cannot edit the file. 

6-19 



Displaying Helpful Information 

An sees command displays an error message whenever it 
encounters an error in a file. An error message has the form: 

ERROR [ filename] :message ( code) 

where filename is the name of the file being processed, message is 
a short description of the error, and code is the error code. 

You can use the error code as an argument to the help command 
to display additional information about the error. The command 
has the form: 

help code 

where code is the error code given in an error message. The 
command displays one or more lines of text that explain the error 
and suggest a possible remedy. For example, the command: 

help col 

displays the message: 

col: 
"not an sees fil e" 
A file that you think is an sees file 
does not begin with the characters "S.". 

The help command can be used at any time. 

Using Identification Keywords 

The sees system provides several special symbols, called 
identification keywords, that is used in the text of a program or 
document to represent a predefined value. Keywords represent a 
wide range of values, from the creation date and time of a given 
file, to the name of the module containing the keyword. When a 

6-20 



user retrieves the file for reading, the sees system automatically 
replaces any keywords it finds in a given version of a file with the 
keyword's value. 

This section explains how keywords are treated by the various 
sees commands, and how you can use the keywords in your own 
files. Only a few keywords are described in this section. For a 
complete list of the keywords, see the section get (CP) in the IBM 
Personal Computer XENIX Software Command Reference. 

Inserting a Keyword into a File 

You can insert a keyword into any text file. A keyword is simply 
an uppercase letter enclosed in percent signs (%). No special 
characters are required. For example, %1% is the keyword 
representing the SID of the current version, and %H% is the 
keyword representing the current date. 

When the program is retrieved for reading using the get 
command, the keywords are replaced by their current values. For 
example, if the %M%, %1% and %H keywords are used in 
place of the module name, the SID, and the current data in a 
program statement: 

char header(100) = {" %M% %1% %H% "}; 

then these keywords are expanded in the retrieved version of the 
program: 

char header(100) = {" MODNAME 2.3 07/07/77 "}; 

The get command does not replace keywords when retrieving a 
version for editing. The system assumes that you wish keep the 
keywords (and not their values) when you save the new version of 
the file. 

To indicate that a file has no keywords, the get, delta, and admin 
commands display the message: 

No id keywords (cm7) 

6-21 



This message is normally treated as a warning, letting you know 
that no keywords are present. However, you can change the 
operation of the system to make this a fatal error, as explained 
later in this chapter. 

Assigning Values to Keywords 

The values of most keywords are predefined by the system, but 
some, such as the value for the O/oMO/o keyword is explicitly 
defined by the user. To assign a value to a keyword, you must set 
the corresponding s-file flag to the desired value. You can do this 
by using the -f option of the admin command. 

For example, to set the %MO/o keyword to cdemo, you must set 
the m flag as in the command: 

admin -fmcdemo s.demo.c 

This command records cdemo as the current value of the %M% 
keyword. If you do not set the m flag, the SCCS system uses the 
name of the original text file for %M% by default. 

The t and q flags are also associated with keywords. A 
description of these flags and the corresponding keywords is in 
the section get (CP) in the IBM Personal Computer XENIX 
Software Command Reference. You can change keyword values at 
any time. 

Forcing Keywords 

If a version is found to contain no keywords, you can force a fatal 
error by setting the i flag in the given s-file. The flag causes the 
delta and admin commands to stop processing of the given version 
and report an error. The flag is useful for ensuring that keywords 
are used properly in a given file. 

To set the i flag, you must use the -f option of the admin 
command. For example, the comm2.nd: 

admin -fi s.demo.c 

6-22 



sets the i flag in the s-file s.demo.c. If the given version does not 
contain keywords, subsequent delta or admin commands that 
access this file print an error message. 

If you attempt to set the i flag at the same time as you create an 
s-file, and if the initial text file contains no keywords, the admin 
command displays a fatal error message and stops without 
creating the s-file. 

Using S-file Flags 

An s-file flag is a special value that defines how a given SCCS 
command operates on the corresponding s-file. The s-file flags 
are stored in the s-file and are read by each sces command 
before it operates on the file. S-file flags affect operations such 
as keyword checking, keyword replacement values, and default 
values for commands. 

This section explains how to set and use s-file flags. It also 
describes the action of commonly-used flags. For a complete 
description of all flags, see the section admin (CP) in the IBM 
Personal Computer XENIX Software Command Reference. 

Setting S-file Flags 
You can set the flags in a given s-file by using the -f option of the 
admin command. The command has the form: 

admin -fflag s.filename 

where -f flag gives the flag to be set, and s.filename gives the 
name of the s-file in which the flag is to be set. For example, the 
command: 

admin -fi s.demo.c 

sets the i flag in the s-file s.demo.c. 

6-23 



Some s-file flags take values when they are set. For example, the 
m flag requires a module name. When a value is required, it must 
immediately follow the flag name, as in the command: 

admin -fmdmod s.demo.c 

that sets the m flag to the module name dmod. 

U sing the i Flag 

The i flag causes the admin and delta commands to print a fatal 
error message and stop, if no keywords are found in the given text 
file. The flag is used to prevent a version of a file, that contains 
expanded keywords, from being saved as a new version. (Saving 
an expanded version destroys the keywords for all subsequent 
versions.) 

When the i flag is set, each new version of a file must contain at 
least one keyword. Otherwise, the version cannot be saved. 

Using the d Flag 

The d flag gives the default SIn for versions retrieved by the get 
command. The flag takes an SIn as its value. For example, the 
command: 

admin -fdl.l s.demo.c 

sets the default SIn to 1.1. A subsequent get command that does 
not use the -r option retrieves version 1.1. 

Using the v Flag 

The v flag allows you to include modification requests in an s-file. 
Modification requests are names or numbers used as a shorthand 
means of indicating the reason for each new version. 

When the v flag is set, the delta command asks for the 
modification requests just before asking for comments. The v 
flag also allows use of the -m option in the delta and admin 
commands. 

6-24 



Removing an S-file Flag 

You can remove an s-file flag from an s-file by using the -d option 
of the admin command. The command has the form: 

admin -dflag s.filename 

where -d flag gives the name of the flag to be removed and 
s.filename is the name of the s-file from which the flag is to be 
removed. For example, the command: 

admin -di s.demo.c 

removes the i flag from the s-file s.demo.c. When removing a flag 
that takes a value, only the flag name is required. For example, 
the command: 

admin -dm s.demo.c 

removes the m flag from the s-file. 

The -d and -i options must not be used at the same time. 

Modifying S-file Information 

Every s-file contains information about the deltas it contains. 
Normally, this information is maintained by the sees commands 
and is not directly accessible by the user. Some information, 
however, is specific to the user who creates the s-file, and can be 
changed as desired to meet the user's requirements. This 
information is kept in two special parts of the s-file called the 
"delta table" and the "description field." 

The delta table contains information about each delta, such as the 
SID and the date and time of creation. It also contains 
user-supplied information, such as comments and modification 
requests. The description field contains a user-supplied 
description of the s-file and its contents. Both parts can be 
changed or deleted at any time to reflect changes to the s-file 
contents. 

6-25 



Adding Comments 

You can add comments to an s-file by using the -y option of the 
delta and admin commands. This option causes the given text to 
be copied to the s-file as the comment for the new version. The 
comment can be any combination of letters, digits, and 
punctuation symbols. No embedded newline characters are 
allowed. If spaces are used, the comment must be enclosed in 
double quotes. The complete command must fit on one line. For 
example, the command: 

delta -y"George Wheeler" s.demo.c 

saves the comment "George Wheeler" in the s-file s.demo.c. 

The -y option is used in shell procedures as part of an automated 
approach to maintaining files. When the option is used, the delta 
command does not print the corresponding comment prompt, so 
no interaction is required. If more than one s-file is given in the 
command line, the given comment applies to them all. 

Changing Comments 

You can change the comments in a given s-file by using the cdc 
command. The command has the form: 

cdc -rSID s.filename 

where -rSID gives the SID of the version whose comment is to be 
changed, and s.filename is the name of the s-file containing the 
version. The command asks for a new comment by displaying the 
prompt: 

comments? 

You can type any sequence of characters up to 512 characters 
long. The sequence can contain embedded newline characters if 
preceded by a backslash (\). The sequence must be terminated 
with a newline character. For example, the command: 

cdc -r3.4 s.demo.c 

prompts for a new comment for version 3.4. 

6-26 



Although the command does not delete the old comment, it is no 
longer directly accessible by the user. The new comment contains 
the login name of the user who invoked the cdc command and the 
time the comment was changed. 

Adding Modification Requests 

You can add modification requests to an s-file, when the v flag is 
set, by using the -m option of the delta and admin commands. A 
modification request is a shorthand method of describing the 
reason for a particular version. Modification requests are usually 
names or numbers that the user has chosen to represent a specific 
request. 

The -m option causes the given command to save the requests 
following the option. A request can be any combination of 
letters, digits, and punctuation symbols. If you give more than 
one request, you must separate them with spaces and enclose the 
request in double quotes. For example, the command: 

delta -m"error35 optimizelO" s.demo.c 

copies the requests error 35 and optimize 10 to s. demo. c, while 
saving the new version. 

The -m option, when used with the admin command, must be 
combined with the -i option. Furthermore, the v flag must be 
explicitly set with the -f option. For example, the command: 

admin -idef.h -mlerrorO" -fv s.def.h 

inserts the modification request "errorO" in the new file s.defh. 

The delta command does not prompt for modification requests if 
you use the -m option. 

Changing Modification Requests 

You can change modification requests, when the v flag is set, by 
using the cdc command. The command asks for a list of 
modification requests by displaying the prompt: 

6-27 



MRs? 

You can type any number of requests. Each request can have any 
combination of letters, digits, or punctuation symbols. No more 
than 512 characters are allowed, and the last request must be 
terminated with a newline character. To remove a request, you 
must precede the request with an exclamation mark (!). For 
example, the command: 

cdc -rl.4 s.demo.c 

asks for changes to the modification requests. The response: 

MRs? error36 !error35 

adds the request "error36" and removes "error35". 

Adding Descriptive Text 

You can add descriptive text to an s-file by using the -t option of 
the admin command. Descriptive text is any text that describes 
the purpose and reason for the given s-file. Descriptive text is 
independent of the contents of the s-file and can only be 
displayed using the prs command. 

The -t option directs the admin to copy the contents of a given file 
into the description field of the s-file. The command has the 
form: 

admin -tfilename s.filename 

where -t filename gives the name of the file containing the 
descriptive text, and s.filename is the name of the s-file to receive 
the descriptive text. The file to be inserted can contain any 
amount of text. For example, the command: 

admin -tcdemo s.demo.c 

inserts the contents of the file cdemo into the description field of 
the s-file s.demo.c. 

The -t option can also be used to initialize the description field 
when creating the s-file. For example, the command: 

6-28 



admin -idemo.c -tcdemo s.demo.c 

inserts the contents of the file cdemo into the new s-file s.demo.c. 
If -t is not used, the description field of the new s-file is left 
empty. 

You can remove the current descriptive text in an s-file by using 
the -t option without a filename. For example, the command: 

admin -t s.demo.c 

removes the descriptive text from the s-file s.demo.c. 

Printing from an S-file 

This section explains how to use the prs command to display 
information contained in an s-file. The prs command has a 
variety of options that control the display format and content. 

Using a Data Specification 
You can explicitly define the information to be printed from an 
s-file by using the -d option of the prs command. The command 
copies user-specified information to the standard output. The 
command has the form: 

prs -dspec s.filename 

where -d spec is the data specification, and s.filename is the name 
of the s-file from which the information is to be taken. 

The data specification is a string of data keywords and text. A 
data keyword is an uppercase letter, enclosed in colons (:). It 
represents a value contained in the given s-file. For example, the 
keyword :1: represents the SID of a given version, :F: represents 
the filename of the given s-file, :C: represents the comment line 
associated with a given version. Data keywords are replaced by 
these values when the information is printed. 

6-29 



For example, the command: 

prs -d II vers i on: : I: filename: :F: II s.demo.c 

may produce the line: 

vers i on: 2.1 filename: s.demo.c 

A complete list of the data keywords is given in the section prs 
(CP) in the IBM Personal Computer XENIX Software Command 
Reference. 

Printing a Specific Version 
You can print information about a specific version in a given s-file 
by using the -r option of the prs command. The command has the 
form: 

prs -rSID s.filename 

where rSID gives the SID of the desired version, and s.filename is 
the name of the s-file containing the version. For example, the 
command: 

prs -r2.1 s.demo.c 

prints information about version 2.1 in the s-file s.demo.c. 

If the -r option is not specified, the command prints information 
about the most recently created delta. 

Printing Later and Earlier Versions 
You can print information about a group of versions by using the 
-I and -e options of the prs command. The -I option causes the 
command to print information about all versions immediately 
succeeding the given version. The -e option causes the command 
to print information about all versions immediately preceding the 
given version. For example, the command: 

prs -r1.4 -e s.demo.c 

6-30 



prints all information about versions that precede version 1.4 (for 
example, 1.3, 1.2, and 1.1). The command: 

prs -rl.4 -1 s.abc 

prints information about versions that succeed version 1.4 (for 
example, 1.5, 1.6, and 2.1). 

If both options are given, information about all versions is 
printed. 

Editing by Several Users 

The sees system allows any number users to access and edit 
versions of a given s-file. Since users are likely to access different 
versions of the s-file at the same time, the system is designed to 
allow concurrent editing of different versions. Normally, the 
system allows only one user at a time to edit a given version, but 
you can allow concurrent editing of the same version by setting 
the j flag in the given s-file. 

The following sections explain how to perform concurrent editing 
and how to save edited versions when you have retrieved more 
than one version for editing. 

Editing Different Versions 

The sees system allows several different versions of a file to be 
edited at the same time. This means a user can edit version 2.1 
while another user edits version 1.1. There is no limit to the 
number of versions that can be edited at any given time. 

When several users edit different versions concurrently, each user 
must begin work in his own directory. If users attempt to share a 
directory and work on versions from the same s-file at the same 
time, the get command refuses to retrieve a version. 

6-31 



Editing a Single Version 

You can let a single version of a file be edited by more than one 
user by setting the j flag in the given s-file. The flag causes the 
get command to check the p-file and create a new proposed SID if 
the given version is already being edited. 

You can set the flag by using the -f option of the admin command. 
For example, the command: 

admin -fj s.demo.c 

sets the flag for the s-file s.demo.c. 

When the flag is set, the get command uses the next available 
branch SID for each new proposed SID. For example, suppose a 
user retrieves for editing version 1.4 in the file s.demo.c , and that 
the proposed version is 1.5. If another user retrieves version 1.4 
for editing before the first user has saved his changes, the the 
proposed version for the new user will be 1.4.1.1, since version 
1.5 is already proposed and likely to be taken. In no case can a 
version edited by two separate users result in a single new version. 

Saving a Specific Version 

When editing two or more versions of a file, you can direct the 
delta command to save a specific version by using the -r option to 
give the SID of that version. The command has the form: 

delta -rSID s.filename 

where -rSID gives the SID of the version being saved, and 
s.filename is the name of the s-file to receive the new version. 
The SID can be the SID of the version you have just edited, or the 
proposed SID for the new version. For example, if you have 
retrieved version 1.4 for editing (and no version 1.5 exists), both 
commands: 

delta -rl.5 s.demo.c 

and 

delta -rl.4 s.demo.c 

6-32 



save version 1.5. 

Protecting S-files 

The sees system uses the normal XENIX system file 
permissions to protect s-files from changes by unauthorized users. 
In addition to the XENIX system protections, the sees system 
provides two ways to protect the s-files: the "user list" and the 
"protection flags." The user list is a list of login names and group 
IDs of users who are allowed to access the s-file and create new 
versions of the file. The protection flags are three special s-file 
flags that define versions currently accessible to otherwise 
authorized users. The following sections explain how to set and 
use the user list and protection flags. 

Adding a User to the User List 
You can add a user or a group of users to the user list of a given 
s-file by using the -a option of the admin command. The option 
causes the given name to be added to the user list. The user list 
defines who can access and edit the versions in the s-file. The 
command has the form: 

admin -aname s.filename 

where -a name gives the login name of the user or the group name 
of a group of users to be added to the list, and s.filename gives the 
name of the s-file to receive the new users. For example, the 
command: 

admin -ajohnd -asuex -amarketing s.demo.c 

adds the users "johnd" and "suex" and the group "marketing" to 
the user list of the s-file s.demo.c. 

If you create an s-file without giving the -a option, the user list is 
left empty, and all users can access and edit the files. When you 
explicitly give a user name or names, only those users can access 
the files. 

6-33 



Removing a User from a User List 
You can remove a user or a group of users from the user list of a 
given s-file by using the -e option of the admin command. The 
option is similar to the -a option but performs the opposite 
operation. The command has the form: 

admin -ename s.filename 

where -e name gives the login name of a user or the group name 
of a group of users to be removed from the list, and s.filename is 
the name of the s-file from which the names are to be removed. 
For example, the command: 

admin -ejohnd -emarketing s.demo.c 

removes the user johnd and the group marketing from the user list 
of the s-file s.demo.c. 

Setting the Floor Flag 
The floor flag, f, defines the release number of the lowest version 
a user can edit in a given s-file. You can set the flag by using the 
-f option of the admin command. For example, the command: 

admin -ff2 s.demo.c 

sets the floor to release number 2. If you attempt to retrieve any 
versions with a release number less than 2, an error results. 

Setting the Ceiling Flag 
The ceiling flag, c, defines the release number of the highest 
version a user can edit in a given s-file. You can set the flag by 
using the -f option of the admin command. For example, the 
command: 

admin -fc5 s.demo.c 

sets the ceiling to release number 5. If you attempt to retrieve 
any versions with a release number greater than 5, an error 
results. 

6-34 



Locking aVersion 
The lock flag, I, lists by release number all versions in a given 
s-file that are locked against further editing. You can set the flag 
by using the -f flag of the admin command. The flag must be 
followed by one or more release numbers. Multiple release 
numbers must be separated by commas (,). For example, the 
command: 

admin -f13 s.demo.c 

locks all versions with release number 3 against further editing. 
The command: 

admin -f14,5,9 s.def.h 

locks all versions with release numbers 4, 5, and 9. 

The special symbol "a" can be used to specify all release 
numbers. The command: 

admin -fla s.demo.c 

locks all versions in the file s.demo.c. 

Repairing sees Files 

The sees system carefully maintains all sees files, making 
damage to the files very rare. However, damage can result from 
hardware malfunctions. This can cause incorrect information to 
be copied to the file. The following sections explain how to check 
for damage to sees files, and how to repair the damage or 
regenerate the file. 

Checking an S-file 
You can check a file for damage by using the -h option of the 
admin command. This option causes the checksum of the given 
s-file to be computed and compared with the existing sum. An 

6-35 



s-file's checksum is an internal value computed from the sum of 
all bytes in the file. If the new and existing checksums are not 
equal, the command displays the message: 

corrupted file (c06) 

indicating damage to the file. For example, the command: 

admin -h s.demo.c 

checks the s-file s.demo.c for damage by generating a new 
checksum for the file, and comparing the new sum with the 
existing sum. 

You can give more than one filename. If you do, the command 
checks each file in turn. You can also give the name of a 
directory, in that case, the command checks all files in the 
directory. 

Since failure to repair a damaged s-file can destroy the file's 
contents or make the file inaccessible, it is a good idea to regularly 
check all s-files for damage. 

Editing an S-file 
When an s-file is damaged, it is a good idea to restore a backup 
copy of the file from a backup disk rather than attempting to 
repair the file. (Restoring a backup copy of a file is described in 
the IBM Personal Computer XENIX Basic Operations Guide.) If 
this is not possible, the file can be edited using a XENIX text 
editor. 

To repair a damaged s-file, use the description of an s-file given in 
the section sccsfile (F) in the IBM Personal Computer XENIX 
Command Reference, to locate the part of the file that is damaged. 
Use extreme care when making changes; small errors can cause 
unwanted results. 

6-36 



Changing an S-file's Checksum 

After repairing a damaged s-file, you must change the file's 
checksum by using the -z option of the admin command. For 
example, to restore the checksum of the repaired file s.demo.c, 
type: 

admin -z s.demo.c 

The command computes and saves the new checksum, replacing 
the old sum. 

Regenerating a G-file for Editing 
You can create a g-file for editing without affecting the current 
contents of the p-file by using the -k option of the get command. 
The option has the same affect as the -e option, except that the 
current contents of the p-file remain unchanged. The option 
regenerates a g-file accidentally removed or destroyed before it 
has been saved using the delta command. 

Restoring a Damaged P-file 
The -g option of the get command generates a new copy of a 
p-file accidentally removed. For example, the command: 

get -e -g s.demo.c 

creates a new p-file entry for the most recent version in s.demo.c. 
If the file demo.c already exists, it is not be changed by this 
command. 

U sing other Command Options 

Many of the sees commands provide options that control their 
operation in useful ways. This section describes these options and 
explains how you can use them to perform useful work. 

6-37 



Getting Help With SCCS Commands 

You can display helpful information about an sees command by 
giving the name of the command as an argument to the help 
command. The help command displays a short explanation of the 
command and command syntax. For example, the command: 

help rmdel 

displays the message: 

rmdel: 
rmdel -rSID name 

Creating a File with the Standard Input 

You can direct admin to use the standard input as the source for a 
new s-file by using the -i option without a filename. For example, 
the command: 

admin -i s.demo.c <demo.c 

causes admin to create a new s-file named s.demo.c that uses the 
text file demo.c as its first version. 

This method of creating a new s-file connects admin to a pipe. 
For example, the command: 

cat modl.c mod2.c I admin -i s.mod.c 

creates a new s-file s.mod.c, that contains the first version of the 
concatenated files modl.c and mod2.c. 

Starting at a Specific Release 

The admin command normally starts numbering versions with 
release number 1. You can direct the command to start with any 
given release number by using the -r option. The command has 
the form: 

admin -rrel-num s.filename 

6-38 



where -rrel-num gives the clue of the starting release number, 
and s.filename is the name of the s-file to be created. For 
example, the command: 

admin -idemo.c -r3 s.demo.c 

starts with release number 3. The first version is 3.1. 

Adding a Comment to the First Version 

You can add a comment to the first version of file by using the -y 
option of the admin command when creating the s-file. For 
example, the command: 

admin -idemo.c -y"George Wheeler" s.demo.c 

inserts the comment "George Wheeler" in the new s-file s.demo.c. 

The comment can be any combination of letters, digits, and 
punctuation symbols. If spaces are used, the comment must be 
enclosed in double quotes. The complete command must fit on 
one line. 

If the -y option is not used when creating an s-file, a comment of 
the form: 

date and time created YY/MM/DD HH:MM:SS by logname 

is automatically inserted. 

Suppressing Normal Output 

You can suppress the normal display of messages created by the 
get command by using the -s option. The option prevents 
information, such as the SID of the retrieved file, from being 
copied to the standard output. The option does not suppress 
error messages. 

The -s option is often used with the -p option to pipe the output 
of the get command to other commands. For example, the 
command: 

6-39 



get -p -s s.demo.c I lpr 

copies the most recent version in the s-file s.demo.c to the line 
printer. 

You can also suppress the normal output of the delta command by 
using the -s option. This option suppresses all output normally 
directed to the standard output, except for the normal comment 
prompt. 

Including and Excluding Deltas 

You can explicitly define the deltas you wish to include as well as 
the ones you wish to exclude when creating a g-file, by using the 
-i and -x options of the get command. 

The -i option causes the command to apply the given deltas when 
constructing a version. The -x option causes the command to 
ignore the given deltas when constructing a version. Both options 
must be followed by one or more SIDs. If multiple SIDs are given 
they must be separated by commas (,). A range of SIDs can be 
given by separating two SIDs with a hyphen (-). For example, the 
command: 

get -;1.2,1.3 s.demo.c 

causes deltas 1.2 and 1.3 to be used to construct the g-file. The 
command: 

get -x1.2-1.4 s.demo.c 

causes deltas 1.2 throughlA to be ignored when constructing the 
file. 

The -i option is useful if you wish to automatically apply changes 
to a version while retrieving it for editing. For example, the 
command: 

get -e -;4.1 -r3.3 s.demo.c 

retrieves version 3.3 for editing. When the file is retrieved, the 
changes in delta 4.1 are automatically applied to it, making the 

6-40 



g-file the same as if version 3.3 had been edited by hand using the 
changes in delta 4.1. These changes can be saved immediately by 
issuing a delta command. No editing is required. 

The -x option is useful if you wish to remove changes performed 
on a given version. For example, the command: 

get -e -xl.5 -rl.6 s.demo.c 

retrieves version 1.6 for editing. When the file is retrieved, the 
changes in delta 1.5 are automatically left out of it, making the 
g-file the same as if version 1.4 had been changed according to 
delta 1.6 (with no intervening delta 1.5). These changes can be 
saved immediately by issuing a delta command. No editing is 
required. 

When deltas are included or excluded using the -i and -x options, 
get compares them with the deltas normally used in constructing 
the given version. If two deltas attempt to change the same line 
of the retrieved file, the command displays a warning message. 
The message shows the range of lines in which the problem can 
exist. Corrective action, if required, is the responsibility of the 
user. 

Listing the Deltas of aVersion 
You can create a table showing the deltas required to create a 
given version by using the -I option. This option causes the get 
command to create an I-file that contains the SIDs of all deltas 
used to create the given version. 

The option creates a history of a given version's development. 
For example, the command: 

get -1 s.demo.c 

creates a file named l.demo.c containing the deltas required to 
create the most recent version of demo.c. 

You can display the list of deltas required to create a version by 
using the -Ip option. The option performs the same function as 
the -I options except it copies the list to the standard output file. 
For example, the command: 

6-41 



get -lp -r2.3 s.demo.c 

copies the list of deltas required to create version 2.3 of demo.c to 
the standard output. 

The -I option can be combined with the -g option to create a list 
of deltas without retrieving the actual version. 

Mapping Lines to Deltas 

You can map each line in a given version to its corresponding 
delta by using the -m option of the get command. This option 
causes each line in a g-file to be preceded by the SID of the delta 
that caused that line to be inserted. The SID is separated from 
the beginning of the line by a tab character. The -m option is 
used to review the history of each line in a given version. 

Naming Lines 
You can name each line in a given version with the current 
module name (that is, the value of the %M% keyword) by using 
the -0 option of the get command. This option causes each line of 
the retrieved file to be preceded by the value of the %M% 
keyword and a tab character. 

The -0 option indicates that a given line is from the given file. 
When both the -m and -0 options are specified, each line begins 
with the %M% kt<yword. 

Displaying a List of Differences 

You can display a detailed list of the differences between a new 
version of a file and the previous version by using the -p option of 
the delta command. This option causes the command to display 
the differences, in a format similar to the output of the XENIX 
diff command. 

6-42 



Displaying File InC ormation 
You can display information about a given version by using the -g 
option of the get command. This option suppresses the actual 
retrieval of a version and causes only the information about the 
version, such as the SID and size, to be displayed. 

The -g option is often used with the -r option to check for the 
existence of a given version. For example, the command: 

get -g -r4.3 s.demo.c 

displays information about version 4.3 in the s-file s.demo.c. If 
the version does not exist, the command displays an error 
message. 

Removing a Delta 
You can remove a delta from an s-file by using the rmdel 
command. The command has the form: 

rmdel -rSID s.filename 

where -rSID gives the SID of the delta to be removed, and 
s.filename is the name of the s-file from which the delta is to be 
removed. The delta must be the most recently created delta in the 
s-file. Furthermore, the user must have write permission in the 
directory containing the s-file, and must either own the s-file or 
be the user who created the delta. 

For example, the command: 

rmdel -r2.3 s.demo.c 

removes delta 2.3 from the s-file s.demo.c. 

The rmdel command refuses to remove a protected delta, that is, a 
delta whose release number is below the current floor value, 
above the current ceiling value, or equal to a current locked value 
(see the section "Protecting S-files" given earlier in this chapter). 
The command refuses to remove a delta that is currently being 
edited. 

6-43 



Reserve the rmdel command for those cases in which incorrect, 
global changes were made to an s-file. 

Please observe that rmdel changes the type indicator of the given 
delta from "D" to "R". A type indicator defines the type of 
delta. Type indicators are described in full in the section delta 
(CP) in the IBM Personal Computer XENIX Software Command 
Reference. 

Searching for Strings 

You can search for strings in files created from an s-file by using 
the what command. This command searches for the symbol #(@) 
(the current value of the %ZO/o keyword) in the given file. It then 
prints, on the standard output, all text immediately following the 
symbol, up to the next double quote ("), greater than (», 
backslash (\), newline, or (non-printing) NULL character. For 
example, if the s-file s.demo.c contains the following line: 

char ide ] = "%Z%%M%:%I%;II 

and the command: 

get -r3.4 s.prog.c 

is executed, then the command: 

what prog.c 

displays: 

prog.c: 
prog.c:3.4 

You can also use what to search files that have not been created 
by sees commands. 

6-44 



Comparing SCCS Files 

You can compare two versions from a given s-file by using the 
sccsdiff command. This command prints on the standard output 
the differences between two versions of the s-file. The command 
has the form: 

sccsdiff -rSIDl-rSID2 s.filename 

where -rSID 1 and -rSID2 give the SIDs of the versions to be 
compared, and s.filename is the name of the s-file containing the 
versions. The version SIDs must be given in the order they were 
created. For example, the command: 

sccsdiff -r3.4 -r5.6 s.demo.c 

displays the differences between versions 3.4 and 5.6. The 
differences are displayed in a form similar to the XENIX diff 
command. This command prints on the standard output the 
differences between two versions of the s-file. The command has 
the form: 

sccsdiff -rSIDl-rSID2 s.filename 

where -rSID 1 and -rSID2 give the SIDs of the versions to be 
compared, and s.filename is the name of the s-file containing the 
versions. The version SIDs must be given in the order in which 
they were created. 

6-45 



6-46 



Chapter 7. The adb Program Debugger 

Contents 

Introduction 7-3 

Starting and Stopping adb ........................... 7 -3 
Starting with a Program File ...................... 7-3 
Starting with a Core Image File .................... 7 -4 

Starting with the Write Option ........................ 7-6 

Starting with the Prompt Option ...................... 7 -6 

Leaving adb ...................................... 7 - 7 

Displaying Instructions and Data ...................... 7 - 7 
Forming Addresses ............................. 7 -7 
Forming Expressions ............................ 7-8 

Decimal, Octal, and Hexadecimal Integers ........ 7-8 
Symbols ................................... 7-8 
Variables in adb ............................. 7-9 
Current Address ........................... 7 -10 
Register Names ............................ 7 -11 
Operators ................................. 7 -11 

Choosing Data Formats ........................ 7-13 

Using the Equal Command .......................... 7-15 
Using the (?) and backslash Commands ............ 7-16 
An Example: Simple Formatting .................. 7-17 

Debugging Program Execution ....................... 7 -19 

Executing a Program .............................. 7 -19 
Setting Breakpoints ............................ 7-20 
Displaying Breakpoints ......................... 7-22 
Continuing Execution .......................... 7-22 
Stopping a Program with Interrupt and Quit ......... 7-22 

7-1 



Single-Stepping a Program ...................... 7-23 
Killing a Program ............................. 7 -23 

Deleting Breakpoints .............................. 7 - 24 
Displaying the C Stack Backtrace ................. 7-24 
Displaying CPU Registers ....................... 7 -25 
Displaying External Variables .................... 7-25 
An Example: Tracing Multiple Functions ........... 7-26 

Using the adb Memory Maps ........................ 7-31 
Displaying the Memory Maps .................... 7-31 
Changing the Memory Map ...................... 7-33 
Creating New Map Entries ...................... 7-33 

Validating Addresses .............................. 7-34 

Miscellaneous Features ............................ 7-35 
Combining Commands on a Single Line ............ 7-35 
Creating adb Scripts ........................... 7-36 
Setting Output Width .......................... 7-36 
Setting the Maximum Offset ..................... 7-37 

Setting Default Input Format ........................ 7-38 

Using XENIX Commands ........................... 7-38 

Computing Numbers and Displaying Text ............... 7-39 

An Example: Directory and Inode Dumps .............. 7-40 

Patching Binary Files .............................. 7-42 

Locating Values in a File ........................... 7-42 

Writing to a File ................................. 7-43 

Making Changes to Memory ........................ 7-43 

7-2 



Introduction 

The adb program is a debugging tool for C and assembly language 
programs. It carefully controls the execution of a program while 
letting you examine and modify the program's data and text areas. 

This chapter explains how to use adb. In particular, it explains 
how to: 

1. Start the debugger 

2. Display program instructions and data 

3. Run, breakpoint, and single-step a program 

4. Patch program files and memory 

It also illustrates techniques for debugging C programs, and 
explains how to display information in non-ASCII data files. 

Starting and Stopping adb 

The adb program debugger provides a powerful set of commands 
to let you examine, debug, and repair executable binary files as 
well as examine non-ASCII data files. To use these commands 
you must invoke adb from a shell command line and specify the 
file or files you wish to debug. The following sections explain 
how to start adb and describe the types of files available for 
debugging. 

Starting with a Program File 

You can debug any executable C or assembly language program 
file by typing a command line of the form 

adb [ filename] 

7-3 



where filename is the name of the program file to be debugged. 
The adb program opens the file and prepares its text (instructions) 
and data for subsequent debugging. For example, the command: 

adb sample 

prepares the program named sample for examination and 
execution. 

Once started, adb normally prompts with an asterisk (*) and waits 
for you to type commands. If you have given the name of a file 
that does not exist or is in the wrong format, adb displays an error 
message first, then waits for commands. For example, if you 
invoke adb with the command: 

adb sample 

and the file sample does not exist, adb displays the message: adb 
cannot open sample. 

You can also start adb without a filename. In this case, adb 
searches for the default file a.out in your current working 
directory and prepares it for debugging. Thus, the command: 

adb 

is the same as typing 

adb a.out 

The adb program debugger displays an error message and waits 
for a command if the a.out file does not exist. 

Starting with a Core Image File 

The adb program debugger also lets you examine the core image 
files of programs that caused fatal system errors. Core image files 
contain the contents of the CPU registers, stack, and memory 
areas of the program at the time of the error and provide a way to 
determine the cause of an error. 

7-4 



To examine a core image file with its corresponding program, you 
must give the name of both the core and and the program file. 
The command line has the form: 

adb programfile corefile 

where programfile is the filename of the program that caused the 
error, and corefile is the filename of the core image file generated 
by the system. The adb program debugger then uses information 
from both files to provide responses to your commands. 

If you do not give a core image file, adb searches for the default 
core file, named core, in your current working directory. If such 
a file is found, adb uses it regardless of whether or not the file 
belongs to the given program. You can prevent adb from opening 
this file by using the hyphen (-) in place of the core filename. For 
example, the command: 

adb sample -

prevents adb from searching your current working directory for a 
core file. You can use adb to examine data files by giving the 
name of the data file in place of the program or core file. For 
example, to examine a data file named outdata, type: 

adb outdata 

The adb program debugger opens this file and lets you examine its 
contents. 

This method of examining files is very useful if the file contains 
non-ASCII data. The adb program debugger provides a way to 
look at the contents of the file in a variety of formats and 
structures. The adb command can display a warning when you 
give the name of non-ASCII data file in place of a program file. 
This usually happens when the content of the data file is similar to 
a program file. Like core files, data files cannot be executed. 

7-5 



Starting with the Write Option 

You can make changes and corrections in a program or data file 
using adb if you open it for writing using the -w option. For 
example, the command: 

adb -w sample 

opens the program file sample for writing. You may then use adb 
commands to examine and modify this file. 

Note that the -w option causes adb to create a given file if it does 
not already exist. The option also lets you write directly to 
memory after executing the given program. See the section 
"Patching Binary Files" later in this chapter. 

Starting with the Prompt Option 

You can define the prompt used by adb by using the -p option. 
The option has the form: 

-p prompt 

where prompt is any combination of characters. If you use spaces, 
enclose the prompt in quotes. For example, the command: 

adb -p "Mar 10->" sample 

sets the prompt to Mar 10->. The new prompt takes the place of 
the default prompt (*) when adb begins to prompt for commands. 

Make sure there is at least one space between the -p and the new 
prompt, otherwise adb displays an error message. The adb 
command automatically supplies a space at the end of the new 
prompt, so you do not have to supply one. 

7-6 



Leaving adb 

You can stop adb and return to the system shell by using the $q or 
$Q commands. You can also stop the debugger by typing 
Ctrl-D. 

You cannot stop adb command by pressing the Interrupt (Del) or 
Quit (Crt! \) keys. These keys are caught by adb and cause it to 
to wait for a new command. 

Displaying Instructions and Data 

The adb program debugger provides several commands for 
displaying the instructions and data of a given program and the 
data of a given data file. The commands have the form: 

address [, count] format 

address [, count ] ~ format 

address [, count] / format 

where address is a value or expression giving the location of the 
instruction or data item, count is an expression giving the number 
of items to be displayed, and format is an expression defining how 
to display the items. The equal sign (=), question mark (?), and 
slash (/) tell adb from what source to take the item to be 
displayed. 

The following sections explain how to form addresses, how to 
choose formats, and the meaning of each of the display 
commands. 

Forming Addresses 

In adb , every address has the form: 

[ segment] offset 

7-7 



where segment is an expression giving the address of a specific 
segment of 8086/286 memory, and offset is an expression giving 
an offset from the beginning of the specified segment to the 
desired item. Segments and offsets are formed by combining 
numbers, symbols, variables, and operators. The following are 
some valid addresses: 

0:1 
OxObce:772 

The segment is optional. If not given, the most recently typed 
segment is used. 

Forming Expressions 

Expressions can contain decimal, octal, and hexadecimal integers, 
symbols, adb variables, register names, and a variety of arithmetic 
and logical operators. 

Decimal, Octal, and Hexadecimal Integers 

Decimal integers must begin with a nonzero decimal digit. Octal 
numbers must begin with a zero and may have octal digits only. 
Hexadecimal numbers must begin with the prefix "Ox" and may 
contain decimal digits and the letters "a" through "f" (in both 
uppercase and lowercase). The following are valid numbers: 

Decimal Octal Hexadecimal 

34 042 Ox22 
4090 07772 Oxffa 

Although decimal numbers are displayed with a trailing decimal 
point C.), you must not use the decimal point when typing the 
number. 

Symbols 

Symbols are the names of global variables and functions defined 
within the program being debugged and are equal to the address 

7-8 



of the given variable or function. Symbols are stored in the 
program's symbol table and are available if the symbol table has 
not been stripped from the program file (see strip (CP) in the IBM 
Personal Computer XENIX Software Command Reference.) 

In expressions, you can spell the symbol exactly as it is in the 
source program or as it has been stored in the symbol table. 
Symbols in the symbol table are no more than eight characters 
long and those defined in C programs are given a leading 
underscore ( ). The following are examples of symbols. 
main main hex2bin out of 

If the spelling of any two symbols is the same (except for a 
leading underscore), adb ignores one of the symbols and allows 
references only to the other. For example, if both "main" and 
" main" exist in a program, then adb accesses only the first to 
appear in the source and ignores the other. 

When you use the (?) command, adb uses the symbols found in 
the symbol table of the program file to create symbolic addresses. 
Thus, the command sometimes gives a function name when 
displaying data. This does not happen if the (?) command is used 
for text (instructions) and the (I) command for data. Local 
variables cannot be addressed. 

Variables in adb 

The adb program automatically creates a set of its own variables 
whenever you start the debugger. These variables are set to the 
addresses and sizes of various parts of the program file as defined 
below. 

d size of data 
e entry address of the program 
m execution type 
n number of segments 
s size of stack 
t size of text 

The adb program debugger reads the program file to find the 
values for these variables. If the file does not seem to be a 
program file, then adb leaves the values undefined. 

7-9 



You can use the current value of a . b adb variable in an 
expression by preceqing the variable name with an less than «) 
sign. For example, the current value of the base variable "b" is 

<b 

You can create your own variables or change the value of an 
existing variable by assigning a value to a variable name with the 
greater than (» sign. The assignment has the form 

expression> variable-name 

where expression is the value to be assigned to the variable, and 
variable-name must be a single letter. For example, the 
assignment 

Ox2000>b 

assigns the hexadecimal value Ox2000 to the variable "b." 

You can display the value of all currently defined adb variables by 
using the $v command. The command lists the variable names 
followed by their values in the current format. The command 
displays any variable whose value is not zero. If a variable also 
has a nonzero segment value, the variable's value is displayed as 
an address; otherwise it is displayed as a number. 

Current Address 

The adb program debugger has two special variables that keep 
track of the last address used in a command and the last address 
typed with a command. The. (dot) variable, also called the 
current address, contains the last address to be used in a 
command. The" (double quotation mark) variable contains the 
last address to be typed with.a command. The (.) and (") 
variables are usually the same except when implied commands, 
such as the newline and caret (1\) characters, are used. These 
automatically increment and decrement (.) but leave (") 
unchanged. 

Both the (.) and the (") can be used in any expression. The less 
than «) sign is not required. For example, the command: 

7-10 



displays the value of the current address and 

" = 

displays the last address to be typed. 

Register Names 

The adb program debugger lets you use the current value of the 
CPU registers in expressions. You can give the value of the 
register by preceding its name with the less than «) sign. The 
adb program debugger recognizes the following register names: 

ax register a 
bx register b 
cx register c 
dx register d 
di data index 
si stack index 
bp base pointer 
fl status flag 
ip instruction pointer 
cs code segment 
ds data segment 
ss stack segment 
es extra segment 
sp stack pointer 

For example, the value of the "ax" register can be given as 

<ax 

Register names cannot be used unless adb has been started with a 
core file or the program is currently being run under adb control. 

Operators 

You may combine integers, symbols, variables, and register names 
with the following operators: 

7-11 



Unary 

Not 

Negative 

* Contents of location 

Binary 

+ Addition 

Subtraction 

* Multiplication 

0/0 Integer division 

& Bitwise AND 

Bitwise inclusive OR 

A Modulo 

# Round up to the next multiple 

Unary operators have higher precedence than binary operators. 
All binary operators have the same precedence. Thus, the 
expression 

2*3+4 

is equal to 10 and 

4+2*3 

is 18. 

You can change the precedence of the operations in an expression 
by using parentheses. For example, the expression: 

4+(2*3) 

7-12 



is equal to 10. 

Note that adb uses 32-bit arithmetic. This means that values that 
exceed 2,147,483,647 (decimal) are displayed as negative values. 

The unary (*) operator treats the given address as a pointer. An 
expression using this operator resolves to the value pointed to by 
that pointer. For example, the expression: 

*Ox1234 

is equal to the value at the address Ox1234, whereas 

Ox1234 

is just equal to Ox1234. 

Choosing Data Formats 

A format is a letter or character that defines how data is to be 
displayed. The following are the most commonly used formats: 

Letter Format 

o 1 word in octal 
d 1 word in decimal 
o 2 words in decimal 
x 1 word in hexadecimal 
X 2 words in hexadecimal 
u 1 word as an unsigned integer 
f 2 words in floating point 
F 4 words in floating point 

c 1 byte as a character 
s a null terminated character string 

i machine instruction 
b 1 byte in octal 

a the current symbolic address 
A the current absolute address 
n a new line 
r a blank space 
t a horizontal tab 

7-13 



A format can be used by itself or combined with other formats to 
present a combination of data in different forms. 

The d, 0, x, and u formats display int type variables; D and X to 
display long variables or 32-bit values. The f and F formats 
display single and double precision floating point numbers. The c 
format displays char type variables and s is for arrays of char that 
end with a null character (null terminated strings). 

The i format displays machine instructions in 8086/286 
mnemonics. The b format displays individual bytes and is useful 
for display data associated with instructions or the high or low 
bytes of registers. 

The a, r, and n formats are usually combined with other formats 
to make the display more readable. For example, the format: 

ia 

causes the current address to be displayed after each instruction. 

You can precede each format with a count of the number of times 
you wish it to be repeated. For example the format: 

4c 

displays four ASCII characters. 

It is possible to combine format requests to provide elaborate 
displays. For example, the command: 

<b,-1/404 t\ 8Cn 

displays four octal words followed by their ASCII interpretation 
from the data space of the core-image file. In this example, the 
display starts at the address <b, the base address of the program's 
data. The display continues until the end-of-the-file since the 
negative count -1 causes an indefinite execution of the command 
until an error condition such as the end-of-the-file occurs. In the 
format, 40 displays the next four words (16-bit values) as octal 
numbers. The 4 t\ then moves the current address back to the 
beginning of these four words and "*C" redisplays them as 8 
ASCII characters. Finally, "n" sends a newline character to the 
terminal. The C format causes values to be displayed as ASCII 

7-14 



characters if they are in the range 32 to 126. If the value is in the 
range 0 to 31, it is displayed as an "at" sign (@) followed by a 
lowercase letter. For example, the value 0 is displayed as "@a." 
The "at" sign itself is displayed as a double at sign" @@." 

Using the Equal Command 

The (=) command displays a given address in a given format. 
The command is used primarily to display instruction and data 
addresses in simpler form, or to display the results of arithmetic 
expressions. For example, the command: 

main=A 

displays the absolute address of the symbol "main" (giving the 
segment and offset) and the command: 

<b+Ox2000=D 

displays (in decimal) the sum of the variable "b" and the 
hexadecimal value "Ox2000." 

If a count is given, the same value is repeated that number of 
times. For example, the command: 

main,2=x 

displays the value of main twice. 

If no address is given, the current address is used instead. This is 
the same as the command: 

If no format is given, the previous format given for this command 
is used. For example in the following sequence of commands, 
both "main" and "start" are displayed in hexadecimal: 

main=x 
start= 

7-15 



Using the (?) and backslash Commands 

You can display the contents of a text or data segment with the 
(?) and (I) commands. The commands have the form: 

[ address ][, count] ? [ format] 

address] [,count] / [ format] 

where address is an address with the given segment, count is the 
number of items you wish to display, and format is the format of 
the items you wish to display. 

The (?) command displays instructions in a given text segment. 
For example, the command: 

main,5?ia 

displays five instructions starting at the address, main, and the 
address of each instruction is displayed immediately before it. 
The command: 

main,5?i 

displays the instructions but no addresses other than the starting 
address. 

The / command checks the values of variables in a program, 
especially variables for which no name exists in the program's 
symbol table. For example, the command: 

<bp-4?x 

displays the value (in hexadecimal) of a local variable. Local 
variables are generally at some offset from the address pointed to 
by the bp register. 

7-16 



An Example: Simple Formatting 

This example illustrates how to combine formats in (?) or (I) 
commands to display different types of values whene stored 
together in the same program. The program to be examined has 
the following source statements. 

char s trl[ ] "This is a character string"; 
int one 1 ; 
int number 456 
long lnum 1234 
f1 oat fpt 1. 25 
char str2[ "This is the second character string"; 

main() 
{ 

one 2; 

The program is compiled and stored in a file named sample. 

To start the session, type: 

adb sample 

You can display the value of each individual variable by giving its 
name and corresponding format in a / command. For example, 
the command: 

strl/s 

displays the contents of strl as a string 

strl: This a character string: 

and the command: 

number/d 

displays the contents of "number" as a decimal integer: 

number: 456. 

7-17 



You can choose to view a variable in a variety of formats. For 
example, you can display the long variable "Inurn" as a 4-byte 
decimal, octal, and hexadecimal number by using the commands: 

lnum/D 
lnum: 1234 

lnum/O 
lnum: 02322 -

lnum/X 
lnum: Ox4D2 

You can also examine all variables as a whole. For example, if 
you wish to see them all in hexadecimal, type: 

str1,5/8x 

This command displays eight hexadecimal values on a line and 
continues for five lines. 

Since the data contains a combination of numeric and string 
values, it is worthwhile to display each value as both a number 
and a character to see where the actual strings are located. You 
can do this with one command by typing: 

strt,5 /4x4 A 8Cn 

In this case, the command displays 4 values in hexadecimal, then 
the same values as 8 ASCII characters. The caret (A) is used four 
times just before displaying the characters to set the current 
address back to the starting address for that line. 

To make the display easier to read, you can insert a tab between 
the values and characters and give an address for each line by 
typing: 

strt,5/4x4 A 8t8Cna 

7-18 



Debugging Program Execution 

The adb program provides a variety of commands to control the 
execution of programs being debugged. The following sections 
explain how to use these commands as well as how to display the 
contents of memory and registers. 

C does not generate statement labels for programs. This means it 
is not possible to refer to individual C statements when using the 
debugger. To use execution commands effectively, you must be 
familiar with the instructions generated by the C compiler and 
how they relate to individual C statements. One useful technique 
is to create an assembly language listing of your C program before 
using adb, then refer to the listing as you use the debugger. To 
create an assembly language listing, use the -8 option of the cc 
command (see Chapter 2, "Cc: a C Compiler"). 

Execu tiog a Program 

You can execute a program by using the :r or :R commands. The 
commands have the form: 

[ address ][,count ] :r [ arguments] 

[ address ][,count ]:R arguments] 

where address gives the address at which to start execution, count 
is the number of breakpoints you wish to skip before one is taken, 
and arguments are the command line arguments, such as filenames 
and options, you wish to pass to the program. 

If no address is given, then the start of the program is used. Thus, 
to execute the program from the beginning type: 

:r 

If a count is given, adb ignores all breakpoints until the given 
number have been encountered. For example, the command: 

7-19 



,5:r 

causes adb to skip the first 5 breakpoints. 

If arguments are given, they must be separated by at least one 
space each. The arguments are passed to the program in the same 
way the system shell passes command line arguments to a 
program. You can use the shell redirection symbols if you wish. 

The :R command passes the command arguments through the 
shell before starting program execution. This means you can use 
shell metacharacters in the arguments to refer to multiple files or 
other input values. The shell expands arguments containing 
metacharacters before passing them on to the program. 

The command is especially useful if the program expects multiple 
filenames. For example, the command: 

:R [a-z]*.s 

passes the argument "[a-z]* .s" to the shell where it is expanded to 
a list of the corresponding filenames before being passed to the 
program. 

The :r and :R commands remove the contents of all registers and 
destroy the current stack before starting the program. This kills 
any previous copy of the program you may have been running. 

Setting Breakpoints 

You can set a breakpoint in a program by using the :br command. 
Breakpoints cause execution of the program to stop when it 
reaches the specified address. Control then returns to adb. The 
command has the form: 

address [, count] : command 

where address must be a valid instruction address, count is a count 
of the number of times you wish the breakpoint to be skipped 
before it causes the program to stop, and command is the adb 
command you wish to execute when the breakpoint is taken. 

7-20 



Breakpoints are typically set to stop program execution at a 
specific place in the program, such as the beginning of a function, 
so that the contents of registers and memory can be examined. 
For example, the command: 

main:br 

sets a breakpoint at the start of the function named main. The 
breakpoint is taken just as control enters the function and before 
the function's stack frame is created. 

A breakpoint with a count is used within a function that is called 
several times during execution of a program, or within the 
instructions that correspond to a for or while statement. Such a 
breakpoint allows the program to continue to execute until the 
given function or instructions have been executed the specified 
number of times. For example, the command: 

light,5:br 

sets a breakpoint at the fifth invocation of the function "light." 
The breakpoint does not stop the function until it has been called 
at least five times. 

No more than 16 breakpoints at a time are allowed. 

7-21 



Displaying Breakpoints 

You can display the location and count of each currently defined 
breakpoint by using the $b command. The command displays a 
list of the breakpoints given by address. If the breakpoint has a 
count and/or a command, these are given as well. 

Use the $b command if you created several breakpoints in your 
program. 

Continuing Execution 

You can continue the execution of a program after it has been 
stopped by a breakpoint by using the :co command. The 
command has the form: 

[ address ][,count] :co [signal] 

where address is the address of the instruction at which you wish 
to continue execution, count is the number of breakpoints you 
wish to ignore, and signal is the number of the signal to send to 
the program (see signal (S) in the IBM Personal Computer 
XENIX Software Command Reference). 

If no address is given, the program starts at the next instruction 
after the breakpoint. If a count is given, adb ignores the first count 
breakpoints. 

Stopping a Program with Interrupt and Quit 

You can stop execution of a program at any time by pressing the 
Interrupt (Del) or Quit (Ctrl \) keys. These keys stop the 
current program and return control to adb, The key are especially 
useful for programs t.hat have infinite loops or other program 
errors. 

Whenever you press the Interrupt (Del) or Quit (Ctrl \) key to 
stop a program, adb automatically saves the signal and passes it to 
the program if you start it again by using the :co command. This 
is very useful if you wish to test a program that uses these signals 
as part of its processing. 

7-22 



If you wish to continue execution of the program but do not wish 
to send the signals, type: 

:co 0 

The command argument "0" prevents a signal from being sent to 
the program. 

Single-Stepping a Program 

You can single-step a program, that is, execute it one instruction 
at a time, by using the :s command. The command executes an 
instruction and returns control to adb. The command has the 
form: 

[address ] [, count ] : s 

where address must be the address of the instruction you wish to 
execute, and count is the number of times you wish to repeat the 
command. 

If no address is given, adb uses the current address. If a count is 
given, adb continues to execute each successive instruction until 
count instructions have been executed. For example, the 
command 

main,5:s 

executes the first 5 instructions in the function main. 

Killing a Program 

You can kill the program you are debugging by using the :k 
command. The command kills the process created for the 
program and returns control to adb. The command clears the 
current contents of the CPU registers and stack and begins the 
program again. 

7-23 



Deleting Breakpoints 

You can delete a breakpoint from a program by using the :dl 
command. The command has the form: 

address :dl 

where address is the address of the breakpoint you wish to delete. 

The :dl command deletes breakpoints you no longer wish to use. 
The following command deletes the breakpoint set at the start of 
the function "main". 

main:dl 

Displaying the C Stack Backtrace 
You can trace the path of all active functions by using the $c 
command. The command lists the names of all functions that 
have been called and have not yet returned control, as well as the 
address from which each function was called and the arguments 
passed to it. 

For example, the command: 

$c 

displays a backtrace of the C language functions called. 

By default, the $c command displays all calls. If you wish to 
display just a few, you must supply a count of the number of calls 
you wish to see. For example, the command: 

,25$c 

displays upto 25 calls in the current call path. 

Function calls and arguments are put on the stack after the 
function has been called. If you put breakpoints at the entry 
point to a function, the function does not appear in the list 
generated by the $c command. You can remedy this problem by 
placing breakpoints a few instructions into the function. 

7-24 



Displaying CPU Registers 

You can display the contents of all CPU registers by using the $r 
command. The command displays the name and contents of each 
register in the CPU as well as the current value of the program 
counter and the instruction at the current address. The display 
has the form: 

ax OxO fl OxO 
bx OxO ip OxO 
ex OxO es OxO 
dx OxO ds OxO 
di OxO ss OxO 
si OxO es OxO 
sp OxO sp OxO 
0:0: addb a 1 ,b 1 

The value of each register is given in the current default format. 

Displaying External Variables 

You can display the values of all external variables in the program 
by using the $e command. External variables are the variables in 
your program that have global scope or have been defined outside 
of any function. This can include variables defined in library 
routines used by your program. 

The $e command is useful whenever you need a list of the names 
for all available variables or to quickly summarize their values. 
The command displays one name on each line with the variable's 
value (if any) on the same line. 

7-25 



The display has the form: 

fae: 0 

errno: 0 

end: 0 

sobuf: 0 

obuf: 0 

lastbu: 0406 

sibuf: 0 

stkmax: 0 

Iseadr: 02 

iob: 01664 

edata: 0 

An Example: Tracing Multiple Functions 

The following example illustrates how to execute a program under 
adb control. In particular, it shows how to set breakpoints, start 
the program, and examine registers and memory. The program to 
be examined has the following source statements. 

7-26 



int fcnt,gcnt,hcnt; 
h(x,y) 
{ 

int hi; register int hr; 
hi = x+l; 
hr = x-y+l; 
hcnt++ ; 
hj: 
f(hr,hi) ; 

} 

g(p,q) 
{ 

i nt 9 i ; register int gr; 
gi = q-p; 
gr = q-p+l; 
gcnt++ ; 
gj: 
h(gr,gi) ; 

} 

f(a,b) 
{ 

; nt fi; register int fr; 
fi = a+2*b; 
fr = a+b; 
fcnt++ ; 
fj: 
g(fr,fi) ; 

} 

main() 
{ 

f(1,l); 
} 

The program is compiled and stored in the file named sample. To 
start the session, type: 

adb sample 

This starts adb and opens the corresponding program file. There is 
no core image file. 

The first step is to set breakpoints at the beginning of each 
function. You can do this with the :br command. For example, to 
set a breakpoint at the start of the function "f," type: 

7-27 



f:br 

You can use similar commands for the "g" and "h" functions. 
Once you have created the breakpoints you can display their 
locations by typing: 

$b 

This command lists the address, optional count, and optional 
command associated with each breakpoint. In this case, the 
command displays: 

breakpoints 
count bkpt 
1 f 
1 _9 
1 h 

command 

The next step is to display the first five instructions in the "f" 
function. Type: 

f,5?ia 

This command displays five instructions, each preceded by its 
symbolic address. The instructions in 8086/286 mnemonics are: 

f: push bp 
f+l. : mov bp,sp 
f+3. : push di 
f+4. : push s; 
f+5. : call chkstk 
f+8. : 

You can display five instructions in "g" without their addresses 
by typing: 

9,5?i 

In this case, the display is: 

-9: push bp 
mov bp,sp 
push di 
push s; 
call chkstk 

7-28 



To start program execution, type: 

:r 

The adb program debugger displays the message: 

sample: running 

and begins to execute. As soon as adb encounters the first 
breakpoint (at the beginning of the "f" function), it stops 
execution and displays the message: 

breakpoint _f: push bp 

Since execution to this point caused no errors, you can remove the 
first breakpoint by typing: 

f:dl 

and continue the program by typing: 

:co 

The adb program debugger displays the message: 

sample: running 

and starts the program at the next instruction. Execution 
continues until the next breakpoint where adb displays the 
message: 

breakpoint_g: push bp 

You can now trace the path of execution by typing: 

$c 

The commands shows that only two functions are active: "main" 
and "f". 

f (1. ,1.) from main+6. 
=main (1. ,470.) -from_start+114. 

7-29 



Although the breakpoint has been set at the start of function "g" 
is not listed in the backtrace until its first few instructions have 
been executed. To execute these instructions, type: 

,5:s 

The adb program debugger single-steps the first five instructions. 
Now you can list the backtrace again. Type: 

$c 

This time the list shows three active functions: 

_9 (2. ,3.) from_f+48. 
f (1. ,1.) from main+6. 

=main (1.,470.) from_start+114. 

You can display the contents of the integer variable "fcnt" by 
typing: 

fcnt/d 

This command displays the value of "fcnt" found in memory. 
The number should be "1". 

You can continue execution of the program and skip the first 1 0 
breakpoints by typing: 

, 10: co 

The adb program debugger starts the program and displays the 
running message again. It does not stop the program until exactly 
ten breakpoints have been encountered. It displays the message: 

breakpoint _9: push bp 

To show that these breakpoints have been skipped, you can 
display the backtrace again using $c . 

7-30 



_f (2., 11. ) from_h+46: 
- h (10.,9.) from_9+48 : 
-9 (11., 20.) from_f+48: 

f (2. , 9. ) from_h+46: 
h (8. , 7 . ) from_9+48 : 

-9 (9. , 16. ) from_f+48: 
f (2. , 7 . ) from_h+46: 
h (6. , 5. ) from_9+ 48 : 

-9 (7 . , 12. ) from_f+48: 
f (2. , 5. ) from_h+46: 
h (4.,3.) from_9+48 : 

-9 (5.,8.) from_f+48: 
f (2.,3.) from_h+46: 
h (2. , 1.) from_9+48 : 

U sing the adb Memory Maps 

The adb program debugger prepares a set of maps for the text and 
data segments in your program and uses these maps to access 
items that you request for display. The following sections 
describe how to view these maps and how they are used to access 
the text and data segments. 

Displaying the Memory Maps 
You can display the contents of the memory maps by using the 
$m command. The command has the form: 

$m [ se9ment ] 

where segment is the number of a segment used in the program. 

The command displays the maps for all segments in the program 
using information taken from either the program and core files or 
directly from memory. 

If you have started adb but have not executed the program, the 
$m command display has the form: 

7-31 



Text Segments 
Seg # Fil e Pas 
63. 32. 
71. 2080. 

Data Segments 
Seg # File Pas 
39. 2736. 

Phys Size 'sample ' - File 
2048. 
656. 

Phys Size Icare l 
- File 

242. 

Each entry gives the segment number, file position, and physical 
size of a segment. The segment number is the starting address of 
the segment. The file position is the offset from the start of the 
file to the contents of the segment. The physical size is the 
number of bytes the segment occupies in the program or core file. 
The filenames to the right of the display are the program and core 
filenames. 

If you have executed the program, the command display has the 
form: 

Text Segments 
Seg # Fil e Pas 
63. 32. 
71. 2080. 

Data Segments 
Seg # Fil e Pas 
39. 2736. 

Vir Size 
2048. 
656. 

Vir Size 
456. 

'sample' - Memory 

'sample ' - Memary 

where virtual size is the number of bytes the segment occupies in 
memory. This size is sometimes different than the size of the 
segment in the file and often changes as you execute the program. 
This is due to expansion of the stack or allocation of additional 
memory during program execution. The filenames to the right 
always name program file. The file position value is ignored. 

If you give a segment number with the command, adb displays 
information only about that segment. For example, the 
command: 

$m 63 

displays a map for segment 63 only. The display has the form: 

7-32 



Segment #= 63. 
Type= Text 
File position= 32. 
Physical Size= 2048. 

Changing the Memory Map 

You can change the values of a memory map by using the ?m and 
1m commands. These commands assign specified values to the 
corresponding map entries. The commands have the form: 

?m segment-number file-position size 

and 

1m segment-number file-position size 

where segment-n_umber gives the number of the segment map you 
wish to change, file-position gives the offset in the file to the 
beginning of the given address, and size gives the segment size in 
bytes. The?m assigns values to a text segment entry; 1m to a 
data segment entry. 

For example, the following command changes the file position for 
segment 63 in the text map to Ox2000: 

?m 63 Ox2000 

The command 

1m 39 OxO 

changes the file position for segment 39 in the data map to O. 

Creating New Map Entries 
You can create new segment maps and add them to your memory 
map by using the ?M and 1M commands. Unlike?m and 1m, 
these commands create a new map instead of changing an existing 
one. These commands have the form: 

?M segment-number file-position size 

7-33 



and 

1M segment-number file-position size 

where segment-number gives the number of the segment map you 
wish to create, file-position gives the offset in the file to the 
beginning of the given address, and size gives the segment size in 
bytes. The?M command creates a text segment entry; 1M 
creates a data segment entry. The segment number must be 
unique. You cannot create a new map entry that has the same 
number as an existing one. 

The ?M and 1M commands are especially useful for accessing 
segments that are allocated to your program. For example, the 
command: 

?M 71 0 2504 

creates a text segment entry for segment 71 whose size is 2504 
bytes. 

Validating Addresses 

Whenever you use an address in a command, adb checks the 
address to make sure it is valid. The adb program debugger uses 
the segment number, file position, and size values in each map 
entry to validate the addresses. If an address is correct, adb 
carries out the command; otherwise, it displays an error message. 

The first step adb takes when validating an address is to check the 
segment value to make sure it belongs to the appropriate map. 
Segments used with the (?) command must appear in the text 
segments map; segments used with the (I) command must appear 
in the data segments map. If the value does not belong to the 
map, adb displays a bad segment error. 

The next step is to check the offset to see if it is in range. The 
offset must be within the range: 

o <= offset <= segment-size 

7-34 



If it is not in this range, adb displays a bad address error. 

If adb is currently accessing memory, the validating segment and 
offset are used to access a memory location and no other 
processing takes place. If adb is accessing files, it computes an 
effective file address 

effective-file-address = offset + file-position 

then uses this effective address to read from the corresponding 
file. 

Miscellaneous Features 

The following sections explain several of commands and features 
of adb. 

Combining Commands on a Single Line 

You can give more than one command on a line by separating the 
commands with a semicolon (;). The commands are performed 
one at a time, starting at the left. Changes to the current address 
and format carryover to the next command. If an error occurs, 
the remaining commands are ignored. 

One such combination is to place a (?) command after a I 
command. For example, the command: 

?l'Th';?s 

search for and display a string that begins with the characters 
"Th" . 

7-35 



Creating adb Scripts 

You can direct adb to read commands from a text file instead of 
the keyboard by redirecting adb's standard input file at 
invocation. To redirect the standard input, use the standard 
redirection symbol < and supply a filename. For example, to read 
commands from the file script, type: 

adb sample <script 

The file you supply must contain valid adb commands. Such files 
are called script files and can be used with any invocation of the 
debugger. 

Reading commands from a script file is very convenient when you 
wish to use the same set of commands on several different object 
files. Scripts display the contents of core files after a program 
error. For example, a file containing the following commands is 
used to display most of the relevant information about a program 
error: 

120$w 
4095$s 
$v 
=3" 
$m 
=3"C Stack Backtrace" 
$C 
=3"C External Variables" 
$e 
=3"Registers" 
$r 
O$s 
=3"Oata Segment" 
<b,-1/8xna 

Setting Output Width 

You can set the maximum width (in characters) of each line of 
output created by adb by using the $w command. The command 
has the form: 

n$w 

7-36 



where n is an integer giving the width in characters of the display. 
You can give any width convenient for your terminal or display 
device. The default width when adb is first invoked is 80 
characters. 

The command is used when redirecting output to a line printer or 
special terminal. For example, the command: 

120$w 

sets the display width to 120 characters, a common maximum 
width for line printers. 

Setting the Maximum Off set 
The adb program debugger normally displays memory and file 
addresses as the sum of a symbol and an offset. This helps 
associate the instructions and data you are viewing with a given 
function or variable. When first invoked, adb sets the maximum 
offset to 255. This means instructions or data no more than 255 
bytes from the start of the function or variable are given symbolic 
addresses. Instructions or data beyond this point are given 
numeric addresses. 

In many programs, the size of a function or variable is actually 
larger than 255 bytes. For this reason adb lets you change the 
maximum offset to accomodate larger programs. You can change 
the maximum offset by using the $s command. The command has 
the form: 

n$s 

where n is an integer giving the new offset. For example, the 
command: 

4095$5 

increases the maximum possible offset to 4095. All instructions 
and data that are no more than 4095 bytes away are given 
symbolic addresses. 

You can disable all symbolic addressing by setting the maximum 
offset to zero. All addresses are given numeric values instead. 

7-37 



Setting Default Input Format 

You can set the default format for numbers used in commands 
with the $d (decimal), $0 (octal), and $x (hexadecimal) 
commands. The default format tells adb how to interpret numbers 
that do not begin with "0" or "Ox" and how to display numbers 
when no specific format is given. 

The commands are useful if you wish to work with a combination 
of decimal, octal, and hexadecimal numbers. For example, if you 
use: 

$x 

you may give addresses in hexadecimal without prep ending each 
address with "Ox". Furthermore, adb displays all numbers in 
hexadecimal except those specifically requested to be in some 
other format. 

When you first start adb, the default format is decimal. You can 
change this at any time and restore it as necessary using the $d 
command. 

Using XENIX Commands 

You can execute IBM Personal Computer XENIX commands 
without leaving adb by using the adb escape command (!). The 
escape command has the form: 

! command 

where command is the XENIX command you wish to execute. 
The command must have any required arguments. The adb 
program debugger passes this command to the system shell that 
executes it. When finished, the shell returns control to adb. 

For example, to display the date type: 

! date 

7-38 



The system displays the date at your terminal and restores control 
to adb. 

Computing Numbers and Displaying 
Text 

You can perform arithmetic calculations while in adb by using the 
= command. The command directs adb to display the value of an 
expression in a given format. 

The command converts 1 numbers in one base to another, to 
double check the arithmetic performed by a program, and to 
display complex addresses in easier form. For example, the 
command: 

Ox2a=d 

displays the hexadecimal number Ox2a as the decimal number 42 
but: 

Ox2a=c 

displays it as the ASCII character (*). Expressions in a command 
may have any combination of symbols and operators. For 
example, the command: 

<dO-12*<dl+<b+5=X 

computes a value using the contents of the dO and dl registers 
and the adb variable "b". You can also compute the value of 
external symbols as in the command: 

main+5=X 

This checks the hexadecimal value of an external symbol address. 

The = command can also be used to display literal strings at your 
terminal. This is especially useful in adb scripts to display 
comments about the script as it performs its commands. For 
example, the command: 

7-39 



=3n"C Stack Backtrace" 

spaces three lines, then prints the message "e Stack Backtrace" 
on the terminal. 

An Example: Directory and Inode 
Dumps 

This example illustrates how to create adb scripts to display the 
contents of a directory file and the inode map of aXE NIX file 
system. The directory file is assumed to be named dir and 
contains a variety of files. The XENIX file system is assumed to 
be associated with the device file / dev / src and has the necessary 
permissions to be read by the user. 

To display a directory file, you must create an appropriate script, 
then start adb with the name of the directory, redirecting its input 
to the script. 

First, you can create a script file named script. A directory file 
normally contains one or more entries. Each entry consists of an 
unsigned "inumber" and a 14-character filename. You can 
display this information by adding the command: 

O,-1?ut14cn 

to the script file. This command displays one entry for each line, 
separating the number and filename with a tab. The display 
continues to the end of the file. If you place the command 

at the beginning of the script, adb will display the strings as 
headings for each column of numbers. 

Once you have the script file, type: 

adb dir - <script 

7-40 



(The hyphen (-) is used to prevent adb from attempting to open a 
core file.) The adb program debugger reads the commands from 
the script and the resulting display has the form: 

inumber 
652 
82 
5971 
5323 
o 

name 

cap.c 
cap 
pp 

To display the ina de table of a file system, you must create a new 
script, then start adb with the filename of the device associated 
with the file system (for example, the fixed disk drive). 

The ina de table of a file system has a very complex structure. 
Each entry contains: a word value for the file's status flags; a byte 
value for the number links; two byte values for the user and group 
IDs; a byte and word value for the size; eight word values for the 
location on disk of the file's blocks; and two word values for the 
creation and modification dates. The inode table starts at the 
address "02000." You can display the first entry by typing: 

02000,-1?on3bnbrdn8un2Y2na 

Several newlines are inserted within the display to make it easier 
to read. 

To use the script on the ina de table of / dev / src, type: 

adb /dev/src - <script 

(Again, the hypen (-) is used to prevent an unwanted core file.) 
Each entry in the display has the form: 

02000: 073145 
0163 0164 0141 
0162 10356 
28770 8236 25956 27766 25455 8236 25956 25206 
1976 Feb 5 08:34:56 1975 Dec 28 10:55:15 

7-41 



Patching Binary Files 

You can make corrections or changes to any file, including 
executable binary files, by using the wand W commands and 
invoking adb with the -w option. The following sections describe 
how to locate and change values in a file. 

Locating Values in a File 

You can locate specific values within a file by using the I and L 
commands. The commands have the form: 

[ address] ?l value 

where address is the address at which to start the search, and value 
is the value (given as an expression) to be located. The I 
command searches for 2-byte values; L for 4 bytes. 

The 

?l 

commands starts the search at the current address and continues 
until the first match or the end of the file. If the value is found, 
the current address is set to that value's address. For example, 
the command: 

?l I Th I 

searches for the first occurrence of the string value "Th." If the 
value is found at "main+210" the current address is set to that 
address. 

7-42 



Writing to a File 

You can write to a file by using the wand W commands. The 
commands have the form: 

[ address] ?w value 

where address is the address of the value you wish to change, and 
value is the new value. The w command writes 2 byte values; W 
writes 4 bytes. For example, the following commands change the 
word "This" to "The": 

?l I Th I 

?W 'The ' 

The W changed all four characters. 

Making Changes to Memory 

You can also make changes to memory whenever a program has 
been executed. If you have used an :r command with a breakpoint 
to start program execution, subsequent w commands cause adb to 
write to the program in memory rather than the file. This is useful 
if you wish to make changes to a program's data as it runs, for 
example, to temporarily change the value of program flags or 
constants. 

7-43 



7-44 



Chapter 8. The lex Program: A Lexical 
Analyzer 

Contents 

Introduction 8-3 

The lex Source Format ..............•.............. 8-5 

The lex Regular Expressions ..........•.............. 8-6 

Invoking lex ................•......•.............. 8-8 

Specifying Character Classes ..........•.............. 8-9 

Specifying an Arbitrary Character .....••............. 8-10 

Specifying Optional Expressions 8-10 

Specifying Repeated Expressions 8-10 

Specifying Alternation and Grouping ...••............. 8-11 

Specifying Context Sensitivity .........•............. 8-11 

Specifying Expression Repetition ..................... 8-12 

Specifying Definitions ............................. 8-13 

Specifying Actions ................................ 8-13 

Handling Ambiguous Source Rules .................... 8-18 

Specifying Left Context Sensitivity ................... 8-21 

Specifying Source Definitions ....................... 8-24 

The Programs lex and yacc ......................... 8-26 

8-1 



Specifying Character Sets .......................... 8-30 

Source Format ................................... 8-31 

8-2 



Introduction 

The lex program generator is designed for lexical processing of 
character input streams. It accepts a high-level, problem-oriented 
specification for character string matching, and produces a C 
program that recognizes regular expressions. The regular 
expressions are specified by the user in the source specifications 
given to lex. The lex code recognizes these expressions in an 
input stream and partitions the input stream into strings matching 
the expressions. At the boundaries between strings, program 
sections provided by the user are executed. The lex source file 
associates the regular expressions and the program fragments. As 
each expression appears in the input to the program written by 
lex, the corresponding fragment is executed. 

The user supplies the additional code needed to complete the 
tasks, including code written by other generators. The program 
that recognizes the expressions is generated in the from the user's 
C program fragments. The lex program is not a complete 
language, but rather a generator representing a new language 
feature added on top of the C programming language. 

The lex program generator turns the user's expressions and 
actions (called source in this chapter) into a C program named 
yylex. The yylex program recognizes expressions in a stream 
(called input in this chapter) and performs the specified actions 
for each expression as it is detected. 

Consider a program to delete from the input all blanks or tabs at 
the ends of lines. The following lines: 

%% 
[\ tJ+$ 

are all that is required. The program contains a % % delimiter to 
mark the beginning of the rules, and one rule. This rule contains 
a regular expression that matches one or more instances of the 
characters blank or tab (written \ t for visibility, in accordance 
with the C-Ianguage convention) just prior to the end of a line. 
The brackets indicate the character class made of blank and tab; 
the + indicates one or more of the previous item; and the dollar 
sign ($) indicates the end of the line. No action is specified, so 

8-3 



the program generated by lex ignores these characters. 
Everything else is copied. To change any remaining string of 
blanks or tabs to a single blank, add another rule: 

%% 
[\tJ+$ 
[\ tJ+ 

, 
printf(1I II); 

The finite automaton generated for this source scans for both 
rules at once, observes at the termination of the string of blanks 
or tabs whether or not there is a newline character, and then 
executes the desired rule's action. The first rule matches all 
strings of blanks or tabs at the end of lines, and the second rule 
matches all remaining strings of blanks or tabs. 

The lex program generator is used alone for simple 
transformations, or for analysis and statistics gathering on a 
lexical level. The lex program is also used with a parser generator 
to perform the lexical analysis phase; it is especially easy to 
interface lex and yacc. The lex program recognizes only regular 
expressions; yacc writes parsers that accept a large class of 
context-free grammars, but that require a lower level analyzer to 
recognize input tokens. Thus, a combination of lex and yacc is 
often appropriate. When used as a preprocessor for a later parser 
generator, lex partitions the input stream, and the parser 
generator assigns structure to the resulting pieces. Additional 
programs, written by other generators or by hand, can be added 
easily to programs written by lex. Users of yacc will realize that 
the name yylex is what yacc expects its lexical analyzer to be 
named, so that the use of this name by lex simplifies interfacing. 

The lex program generates a deterministic finite automaton from 
the regular expressions in the source. To save space the 
automaton is interpreted, rather than compiled. The result is still 
a fast analyzer. In particular, the time taken by a lex program to 
recognize and partition an input stream is proportional to the 
length of the input. The number of lex rules or the complexity of 
the rules is not important in determining speed, unless rules that 
include forward context require a significant amount of 
rescanning. What does increase with the number and complexity 
of rules is the size of the finite automaton and, therefore, the size 
of the program generated by lex. 

8-4 



In the program written by lex, the fragments left for the user 
(representing the actions to be performed as each regular 
expression is found) are gathered as cases of a switch. The 
automaton interpreter directs the control flow. Opportunity is 
provided for the user to insert either declarations or additional 
statements in the routine containing the actions, or to add 
subroutines outside this action routine. 

The lex program generator is not limited to source that can be 
interpreted on the basis of one character lookahead. For 
example, if there are two rules, one looking for ab and another for 
abcdefg, and the input stream is abcdeJh, lex recognizes ab and 
leaves the input pointer just before cd. Such backup is more 
costly than the processing of simpler languages. 

The lex Source Format 

The general format of lex source is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines are often omitted. 
The second % % is optional, but the first is required to mark the 
beginning of the rules. The absolute minimum lex program is: 

%% 

(no definitions, no rules) which translates into a program that 
copies the input to the output unchanged. 

In the lex program format shown above, the rules represent the 
user's control decisions. They make up a table in which the left 
column contains regular expressions and the right column 
contains actions, program fragments to be executed when the 
expressions are recognized. Thus the following individual rule 
might appear: 

8-5 



integer printf("found keyword INT"); 

This looks for the string integer in the input stream and prints the 
message: 

found keyword INT 

whenever it appears in the input text. In this example the C 
library function printfO prints the string. The end of the lex 
regular expression is indicated by the first blank or tab character. 
If the action is merely a single C expression, it can be given on the 
right side of the line; if it is compound, or takes more than a line, 
it should be enclosed in braces. As a slightly more useful 
example, suppose it is desired to change a number of words from 
British to American spelling. The lex program generator rules 
such as: 

colour 
mechanise 
petrol 

printf("color"); 
printf("mechanize"); 
printf("gas"); 

would be a start. These rules are not quite enough, since the word 
petroleum would become gaseum; a way of dealing with such 
problems is described in "Handling Ambiguous Source Rules" 
later in this chapter. 

The lex Regular Expressions 

A regular expression specifies a set of strings to be matched. It 
contains text characters, that match the corresponding characters 
in the strings being compared, and operator characters (these 
specify repetitions, choices, and other features). The letters of 
the alphabet and the digits are always text characters. Thus, the 
regular expression: 

integer 

matches the string integer wherever it appears and the expression, 

a57D 

8-6 



looks for the string A57D. 

The operator characters are: 

II\[]II_?*+I ()$/{}%<> 

If any of these characters are used literally, they need to be 
quoted individually with a backslash (\) or as a group within 
quotation marks ("). The quotation mark operator (") indicates 
that whatever is contained between a pair of quotation marks is to 
be taken as text characters. Thus: 

xyzll+1I 

matches the string xyz+ when it appears. Part of a string can be 
quoted. It is harmless but unnecessary to quote an ordinary text 
character; the expression: 

IIxYZ++1I 

is the same as the one above. Thus by quoting every 
nonalphanumeric character used as a text character, you need not 
memorize the above list of current operator characters. 

An operator character is also be turned into a text character by 
preceding it with a backslash (\) as in: 

xyz\ + \ + 

that is another, less readable, equivalent of the above expressions. 
The quoting mechanism is also used to get a blank into an 
expression; normally, as explained above, blanks or tabs end a 
rule. Any blank character not contained within brackets must be 
quoted. Several normal C escapes with the backslash (\) are 
recognized: 

8-7 



\0 newline 

\t tab 

\ b backspace 

\ \ backslash 

Since newline is an illegal expression, a (\ n ) must be used; it is 
not required to escape tab and backspace. Every character but 
blank, tab, newline and the list above is always a text character. 

Invoking lex 

There are two steps in compiling a lex source program. First, the 
lex source must be turned into a generated program in the host 
general purpose language. Then this program must be compiled 
and loaded, usually with a library of lex subroutines. The 
generated program is in a file named lex.yy.c. The I/O library is 
defined in terms of the C standard library. 

The library is accessed by the loader flag -II. So an appropriate 
set of commands is: 

lex source 
cc lex.yy.c -11 

The resulting program is placed on the usual file a.out for later 
execution. To use lex with yacc see the section, "The Programs 
lex and yace" later in this chapter. Also, refer to Chapter 9. 
Although the default lex I/O routines use the C standard library, 
the lex automata themselves do not do so. If private versions of 
input, output and unput are given, the library can be avoided. 

8-8 



Specifying Character Classes 

Classes of characters can be specified by enclosing them within a 
left bracket and a right bracket. The construction: 

[abcJ 

matches a single character, that can be a, b, or c. Within square 
brackets, most operator meanings are ignored. Only three 
characters are special: these are the backslash (\), the dash (-), 
and the caret (A). The dash character indicates ranges. For 
example: 

[a-zO-9<> J 

indicates the character class containing all the lowercase letters, 
the digits, the angle brackets, and underline. Ranges are given in 
either order. Using the dash between any pair of characters that 
are not both uppercase letters, both lowercase letters, or both 
digits is implementation dependent and causes a warning message. 
If it is desired to include the dash in a character class, it should be 
first or last; thus: 

[-+0-9J 

matches all the digits and the plus and minus signs. 

In character classes, the caret (A) operator must appear as the 
first character after the left bracket; it indicates that the resulting 
string is to be complemented with respect to the computer 
character set. Thus: 

[ AabcJ 

matches all characters except: a, b, or, A including all special or 
control characters; or: 

[Aa-zA-ZJ 

is any character that is not a letter. The backs lash (\) provides 
an escape mechanism within character class brackets, so that 
characters can be entered literally by preceding them with this 
character. 

8-9 



Specifying an Arbitrary Character 

To match almost any character, the period (.) designates the class 
of all characters except a newline. Escaping into octal is possible 
although nonportable. For example: 

[\40-\176J 

matches all printable characters in the ASCII character set, from 
octal 40 (blank) to octal 176 (tilde). 

Specifying Optional Expressions 

The question mark (?) operator indicates an optional element of 
an expression. Thus: 

ab?c 

matches either ac or abc. Here the meaning of the question mark 
differs from its meaning in the shell. 

Specifying Repeated Expressions 

Repetitions of classes are indicated by the asterisk (*) and plus 
( +) operators. For example: 

a* 

matches any number of consecutive a characters, including zero; 
while a+ matches one or more instances of a. For example: 

[a-zJ+ 

matches all strings of lowercase letters, and 

8-10 



[A-Za-z][A-Za-zO-9]* 

matches all alphanumeric strings with a leading alphabetic 
character; this is a typical expression for recognizing identifiers in 
computer languages. 

Specifying Alternation and Grouping 

The vertical bar ( I ) operator indicates alternation. For example: 

(ablcd) 

matches either ab or cd. Parentheses are used for grouping, 
although they are not necessary at the outside level. For example: 

ablcd 

would have sufficed in the preceding example. Parentheses are 
for more complex expressions, such as: 

(ablcd+)?(ef)* 

to match such strings as abefef, efefef, cdef, and cddd, but not 
abc, abed, or abcdef. 

Specifying Context Sensitivity 

The lex program generator recognizes a small amount of 
surrounding context. The two simplest operators for this are the 
caret (/\) and the dollar sign ($). If the first character of an 
expression is a caret, then the expression is only matched at the 
beginning of a line (after a newline character, or at the beginning 
of the input stream). This can never conflict with the other 
meaning of the caret, complementation of character classes, since 
complementation only applies within brackets. If the very last 
character is dollar sign, the expression is only matched at the end 

8-11 



of a line (when immediately followed by newline). The latter 
operator is a special case of the slash (/) operator, and indicates 
trailing context. The expression: 

ab/cd 

matches the string ab but only if followed by cd. Thus: 

ab$ 

is the same as: 

ab/\n 

Left context is handled in lex by specifying start conditions as 
explained in the section "Specifying Left Context Sensitivity". If 
a rule is only to be executed when the lex automaton interpreter is 
in start condition x, the rule should be enclosed in angle brackets: 

<x> 

If the beginning of a line starts condition ONE, then the caret (A) 
operator is equivalent to: 

<ONE> 

Start conditions are explained more in the section, "Specifying 
Left Context Sensitivity." 

Specifying Expression Repetition 

The curly braces ({ and}) specify either repetitions, if they 
enclose numbers, or definition expansion, if they enclose a name. 
For example: 

{digit} 

looks for a predefined string named digit and inserts it at that 
point in the expression. 

8-12 



Specifying Definitions 

The definitions are given in the first part of the lex input, before 
the rules. In contrast, 

a{1,5} 

looks for 1 to 5 occurrences of the character a. 

Finally, an initial percent sign (%) is special, since it is the 
separator for lex source segments. 

Specifying Actions 

When an expression is matched by a pattern of text in the input, 
lex executes the corresponding action. This section describes 
some features of lex that aid in writing actions. There is a default 
action, that consists of copying the input to the output. This is 
performed on all strings not otherwise matched. Thus the lex user 
who wishes to absorb the entire input, without producing any 
output, must provide rules to match everything. The lex program 
used with yacc , is the normal situation. You can consider that 
actions are what is done instead of copying the input to the 
output; thus, a rule that merely copies can be omitted. 

One of the simplest things that can be done is to ignore the input. 
Specifying a C null statement C·) as an action causes this result. 
A frequent rule is: 

[ \t\nJ 

which causes the three spacing characters (blank, tab, and 
newline) to be ignored. 

Another easy way to avoid writing actions is to use the repeat 
action character; I this indicates that the action for this rule is the 
action for the next rule. The previous example is also written as: 

8-13 



II II 

11\ til 
lI\nll 

I 
I 

with the same result, although in a different style. The quotes 
around (\ n ) and (\ t ) are not required. 

In more complex actions, you often want to know the actual text 
that matched some expression like: 

[a-z]+ 

The lex program generator leaves this text in an external character 
array named yytext. Thus, to print the name found, a rule like 

[a-z]+ printf(lI%sll, yytext); 

prints the string in yytext. The C function print! accepts a format 
argument and data to be printed; in this case, the format is print 
string where the percent sign (%) indicates data conversion, and 
the s indicates string type, and the data are the characters in 
yytext. So this just places the matched string on the output. This 
action is so common that it is written as ECHO. For example: 

[a-z]+ ECHO; 

is the same as the preceding example. Since the default action is 
just to print the characters found, one might ask why give a rule 
which, like this one, merely specifies the default action. Such 
rules are often required to avoid matching some other rule that is 
not desired. For example, if there is a rule that matches read it 
normally matchs the instances of read contained in bread or 
readjust; to avoid this, a rule of the form: 

[a-z]+ 

is needed. This is explained further below. 

Sometimes it is more convenient to know the end of what has 
been found; hence lex also provides a count of the number of 
characters matched in the variable yyleng. To count both the 
number of words and the number of characters in words in the 
input, you might write: 

8-14 



[a-zA-ZJ+ {words++; chars += yyleng;} 

which accumulates in the variables chars the number of characters 
in the words recognized. The last character in the string matched 
can be accessed with: 

yytext[yyleng-lJ 

Occasionally, a lex action may decide that a rule has not 
recognized the correct span of characters. Two routines are 
provided to aid with this situation. First, yymore () can be called 
to indicate that the next input expression recognized is to be 
tacked on to the end of this input. Normally, the next input string 
overwrites the current entry in yytext. Second, .yyless(n) can be 
called to indicate that not all the characters matched by the 
currently successful expression are wanted right now. The 
argument n indicates the number of characters in yytext to be 
retained. Further characters previously matched are returned to 
the input. This provides the same sort of lookahead offered by 
the slash (I) operator, but in a different form. 

For example consider a language that defines a string as a set of 
characters between quotation marks ("), and specifies that a 
quotation mark in a string must be preceded by a backslash (\). 
The regular expression that matches this is somewhat confusing, 
so that it might be preferable to write: 

\ II [A II J* { 
if (yytext[yyleng-lJ == 1\\1) 

yymore(); 
else 

... normal user processing 

and, when faced with a string such as: 

"abc\ "def" 

first matches the five characters: 

lIabc \ 

and then the call to yymore () causes the next part of the string: 

8-15 



to be tacked on the end. The final quotation mark terminating the 
string should be picked up in the code labeled normal processing. 

The function yyless 0 might be used to reprocess text in various 
circumstances. Consider the problem in the older C syntax of 
distinguishing the ambiguity of =-Q. Suppose it is desired to treat 
this as =- a and to print a message. A rule might be: 

=-[a-zA-z] { 
printf(1I0perator (=-) ambiguous\nll); 
yyless(yyleng-l); 

action for =- ... 
} 

which prints a message, returns the letter after the operator to the 
input stream, and treats the operator as =-. 

Alternatively it might be desired to treat this as = -Q. To do this, 
just return the minus sign as well as the letter to the input. The 
following performs the interpretation: 

=-[a-zA-z] { 
printf(1I0perator (=-) ambiguous\nll); 
yyless(yyleng-2); 

action for = ... 
} 

The expressions for the two cases might more easily be written: 

=-/[A-Za-z] 

in the first case and 

=/-[A-Za-z] 

in the second: no backup is required in the rule action. It is not 
necessary to recognize the whole identifier to observe the 
ambiguity. The possibility of =-3, however, makes: 

=-/[/\ \t\n] 

a still better rule. 

In addition to these routines, lex also permits access to the I/O 
routines it uses. They include: 

8-16 



1. input 0 which returns the next input character; 

2. output (c) which writes the character c on the output; and 

3. unput (c) which pushes the character c back onto the input 
stream to be read later by input O. 

By default these routines are provided as macro definitions, but 
the user can override them and supply private versions. These 
routines define the relationship between external files and internal 
characters, and must all be retained or modified consistently. 
They can be redefined, to cause input or output to be transmitted 
to or from strange places, including other programs or internal 
memory; but the character set used must be consistent in all 
routines; a value of zero returned by input must mean end-of-file; 
and the relationship between unput and input must be retained or 
the lookahead does not work. The lex program generator does 
not look ahead at all if it does not have to, but every rule 
containing a slash (I) or ending in one of the following characters 
implies lookahead: 

+ * ? $ 

Lookahead is also necessary to match an expression that is a 
prefix of another expression. See below for a discussion of the 
character set used by lex. The standard lex library imposes a 100 
character limit on backup. 

Another lex library routine that you sometimes want to redefine is 
yywrapO which is called whenever lex reaches an end-of-file. If 
yywrap returns aI, lex continues with the normal wrapup on end 
of input. Sometimes, however, it is convenient to arrange for 
more input to arrive from a new source. In this case, the user 
should provide a yywrap that arranges for new input and returns O. 
This instructs lex to continue processing. The default yywrap 
always returns 1. 

This routine is also a convenient place to print such things as 
tables and summaries at the end of a program. You cannot write 
a normal rule that recognizes end-of-file; the only access to this 
condition is through yywrapO. In fact, unless a private version of 
inputO is supplied a file containing nulls cannot be handled, since 
a value of 0 returned by input is taken to be end-of-file. 

8-17 



Handling Ambiguous Source Rules 

The lex program generator can handle ambiguous specifications. 
When more than one expression can match the current input, lex 
chooses as follows: 

• The longest match is preferred. 

• Among rules that match the same number of characters, the 
first given rule is preferred. 

For example, suppose the following rules are given: 

integer keyword action ... ; 
[a-z]+ identifier action ... ; 

If the input is integers, it is taken as an identifier, because: 

[a-z]+ 

matches 8 characters while 

integer 

matches only 7. If the input is integer, both rules match 7 
characters, and the keyword rule is selected because it was given 
first. Anything shorter (for example, int) does not match the 
expression integer, so the identifier interpretation is used. 

The principle of preferring the longest match makes certain 
constructions dangerous, such as the following: 

* 

For example: 

I * I 

might seem a good way of recognizing a string in single quotes. 
But it is an invitation for the program to read far ahead, looking 
for a distant single quote. Presented with the input 

'first ' quoted string here, 'second ' here 

8-18 



the above expression matches 

I fi rs t I quoted s tri ng here; I second I 

and that is probably not what was wanted. A better rule is of the 
form: 

I[AI\nJ* 

which, on the above input, stops after 'first'. The consequences 
of errors like this are mitigated by the fact that the dot (.) 
operator does not match a newline. Therefore, no more than one 
line is ever matched by such expressions. Don't try to defeat this 
with expressions like: 

[. \nJ+ 

or their equivalents. The lex generated program tries to read the 
entire input file, causing internal buffer overflows. 

The lex program generator is normally partitioning the input 
stream, not searching for all possible matches of each expression. 
This means that each character is accounted for once and only 
once. For example, suppose it is desired to count occurrences of 
both she and he in an input text. Some lex rules to do this might 
be: 

she s++; 
he h++; 
\n I 

where the last two rules ignore everything besides he and she. 
Remember that the period (.) does not include the newline. Since 
she includes he, lex does not recognize the instances of he 
included in she, since once it has passed a she those characters are 
gone. 

Sometimes the user would like to override this choice. The action 
REJECT means go do the next alternative. It causes whatever 
rule was second choice after the current rule to be executed. The 
position of the input pointer is adjusted accordingly. Suppose the 
user really wants to count the included instances of he: 

8-19 



she {s++; REJECT;} 
he {h++; REJECT;} 
\n I 

These rules are one way of changing the previous example to do 
just that. After counting each expression, it is rejected; whenever 
appropriate, the other expression are then be counted. In this 
example, of course, the user could note that she includes he, but 
not vice versa, and omit the REJECT action on he; in other cases, 
however, it would not be possible to tell which input characters 
were in both classes. 

Consider the two rules 

aCbcJ+ { 
aCcdJ+ { 

REJECT;} 
REJECT;} 

If the input is ab, only the first rule matches, and on ad only the 
second matches. The input string accb matches the first rule for 4 
characters and then the second rule for 3 characters. In contrast, 
the input aced agrees with the second rule for 4 characters and 
then the first rule for 3 characters. 

REJECT is useful whenever the purpose of lex is not to partition 
the input stream but to detect all examples of some items in the 
input, and the instances of these items may overlap or include 
each other. Suppose a digram table of the input is desired; 
normally the digrams overlap, that is the word the is considered to 
contain both th and he. Assuming a two-dimensional array 
named digram to be incremented, the appropriate source is: 

%% 
[a-z][a-z] {digram[yytext[O]][yytext[l]]++; REJECT;} 

\n 

where the REJECT is necessary to pick up a letter pair beginning 
at every character, rather than at every other character. 

Remember that REJECT does not rescan the input. Instead it 
remembers the results of the previous scan. This means that if a 
rule with trailing context is found, and REJECT executed, you 

8-20 



must not have used unput to change the characters forthcoming 
from the input stream. This is the only restriction in your ability 
to manipulate the not-yet-processed input. 

Specifying Left Context Sensitivity 

Sometimes it is desirable to have several sets of lexical rules to be 
applied at different times in the input. For example, a compiler 
preprocessor might distinguish preprocessor statements and 
analyze them differently from ordinary statements. This requires 
sensitivity to prior context, and there are several ways of handling 
such problems. The caret (1\) operator, for example, is a prior 
context operator, recognizing immediately preceding left context 
just as the dollar sign ($) recognizes immediately following right 
context. Adjacent left context could be extended to produce a 
facility similar to that for adjacent right context, but it is unlikely 
to be as useful, since often the relevant left context appeared 
some time earlier, such as at the beginning of a line. 

This section describes three means of dealing with different 
environments: 

• The use of flags, when only a few rules change from one 
environment to another 

• The use of start conditions with rules 

• The use multiple lexical analyzers running together 

In each case, there are rules that recognize the need to change the 
environment in which the following input text is analyzed, and set 
some parameter to reflect the change. This can be a flag explicitly 
tested by the user's action code; such a flag is the simplest way of 
dealing with the problem, since lex is not involved at all. It can be 
more convenient, however, to have lex remember the flags as 
initial conditions on the rules. Any rule can be associated with a 
start condition. It is only be recognized when lex is in that start 
condition. The current start condition can be changed at any 
time. Finally, if the sets of rules for the different environments 

8-21 



are very dissimilar, clarity can be best achieved by writing several 
distinct lexical analyzers, and switching from one to another as 
desired. 

Consider the following problem: 

• Copy the input to the output. 

• Change the word magic to first on every line that begins with 
the letter a. 

• Change magic to second on every line that begins with the 
letter b. 

• Change magic to third on every line that begins with the 
letter c. 

• Leave all other words and all other lines unchanged. 

These rules are so simple that the easiest way to do this job is 
with a flag: 

%% 
Aa 
Ab 
AC 

\n 
magic 

int flag; 

{flag 
{flag 
{flag 
{flag 

{ 

'a I; ECHO;} 
'b ' ; ECHO;} 
I c I; ECHO;} 
o ; ECHO;} 

switch (flag) 
{ 
case la ' : printf("first"); break; 
case 'b ' : printf("second"); break; 
case IC

I
: printf("third"); break; 

default: ECHO; break; 
} 
} 

should be adequate. 

To handle the same problem with start conditions, each start 
condition must be introduced to lex in the definitions section with 
a line reading 

%Start name! name2 ... 

8-22 



where the conditions can be named in any order. The word Start 
can be abbreviated to s or S. The conditions can be referenced at 
the head of a rule with angle brackets. For example: 

<namel>expression 

is a rule recognized only when lex is in the start condition name 1. 
To enter a start condition, execute the action statement 

BEGIN namel; 

which changes the start condition to name 1 . To return to the 
initial state 

BEGIN 0; 

resets the initial condition of the lex automaton interpreter. A 
rule can be active in several start conditions; for example: 

<namel,name2,name3> 

is a legal prefix. Any rule not beginning with the < > prefix 
operator is always active. 

The same example as before can be written: 

%START AA BB CC 
%% 
Aa {ECHO; 
Ab {ECHO; 
AC {ECHO; 
\n {ECHO; 
<AA>magic 
<BB>magic 
<CC>magic 

BEGIN AA;} 
BEGIN BB;} 
BEGIN CC;} 
BEGIN O;} 
printf("first"); 
pr) ntf( "second "); 
printf("third"); 

where the logic is exactly the same as in the previous method of 
handling the problem, but lex does the work rather than the user's 
code. 

8-23 



Specifying Source Definitions 

Remember the format of the lex source: 

{definitions} 
%% 
{rules} 
%% 
{user routines} 

So far only the rules have been described. You need additional 
options, though, to define variables for use in your program and 
for use by lex. These can go either in the definitions section or in 
the rules section. 

Remember that lex is turning the rules into a program. Any 
source not intercepted by lex is copied into the generated 
program. There are three classes of such things: 

1. Any line that is not part of a lex rule or action that begins 
with a blank or tab is copied into the lex generated program. 
Such source input prior to the first % % delimiter are 
external to any function in the code; if it appears 
immediately after the first % 0/0, it appears in an appropriate 
place for declarations in the function written by lex which 
contains the actions. This material must look like program 
fragments, and should precede the first lex rule. 

As a side effect of the above, lines that begin with a blank or 
tab, and that contain a comment, are passed through to the 
generated program. This can be used to include comments in 
either the lex source or the generated code. The comments 
should follow the conventions of the C language. 

2. Anything included between lines containing only % { and 
%} is copied out as above. The delimiters are discarded. 
This format permits entering text like preprocessor 
statements that must begin in column 1, or copying lines that 
do not look like programs. 

3. Anything after the third % % delimiter, regardless of format, 
is copied out after the lex output. 

8-24 



Definitions intended for lex are given before the first % % 
delimiter. Any line in this section not contained between olaf and 
%} and beginning in column 1, is assumed to define lex 
substitution strings. The format of such lines is: 

name translation 

and it causes the string given as a translation to be associated with 
the name. The name and translation must be separated by at least 
1 blank or tab, and the name must begin with a letter. The 
translation can then be called out by the {name} syntax in a rule. 
Using {D} for the digits and {E} for an exponent field, for 
example, might abbreviate rules to recognize numbers: 

o 
E 
%% 
{O}+ 
{O}+II. II{O}*( {E})? 
{O}*II. "{O}+( {E})? 
{O} + {E} 

[0-9J 
[OEdeJ[-+J?{O}+ 

printf("integer ll
); 

I 
I 
printf(lIreal"); 

The first two rules for real numbers are require that have a 
decimal point and contain an optional exponent field, but the first 
requires at least 1 digit before the decimal point and the second 
requires at least 1 digit after the decimal point. To correctly 
handle the problem posed by a FORTRAN expression such as, 
35.EQ.I, that does not contain a real number, a context-sensitive 
rule such as: 

[0-9J+/'."EQ printf("integer"); 

could be used in addition to the normal rule for integers. 

The definitions section can also contain other commands, 
including a character set table, a list of start conditions, or 
adjustments to the default size of arrays within lex itself for larger 
source programs. These possibilities are discussed in the section 
"Source Format" later in this chapter. 

8-25 



The Programs lex and yacc 

To use lex with yacc note that what lex writes is a program named 
yyiexO, the name required by yacc for its analyzer. Normally, the 
default main program on the lex library calls this routine, but if 
yacc is loaded, and its main program is used, yacc calls yylexO. In 
this case, each lex rule should end with: 

return(token); 

where the appropriate token value is returned. An easy way to 
get access to yacc 's names for tokens is to compile the lex output 
file as part of the yacc output file by placing the line: 

#include 1I1ex.yy.c ll 

in the last section of yacc input. Supposing the grammar to be 
named good and the lexical rules to be named better the XENIX 
command sequence can just be: 

yacc good 
lex better 
cc y.tab.c -ly -11 

The yacc library (-ly) should be loaded before the lex library, to 
obtain a main program that invokes the yacc parser. The 
generation of lex and yacc programs can be done in either order. 

As a trivial problem, consider copying an input file while adding 3 
to every positive number divisible by 7. Here is a suitable lex 
source program to do just that: 

%% 
int k; 

[0-9J+ { 

8-26 

k = atoi(yytext); 
if (k%7 == 0) 

printfC1%d ll
, k+3); 

else 
printf(lI%d ll ,k); 

} 



The rule [0-9]+ recognizes strings of digits; aloiO converts the 
digits to binary and stores the result in k. The remainder operator 
(%) checks whether k is divisible by 7; if it is, it is incremented 
by 3 as it is written out. An objection can be raised that this 
program alters such input items as 49.63 or X7. Furthermore, it 
increments the absolute value of all negative numbers divisible by 
7. To avoid this, just add a few more rules after the active one, as 
here: 

%% 
int k; 

-7[0-9J+ { 
k = atoi(yytext); 
printf("%d", k%7 == 0 7 k+3 k); 
} 

-7[0-9.J+ ECHO; 
[A-Za-zJ[A-Za-zO-9J+ ECHO; 

Numerical strings containing a decimal point or preceded by a 
letter are picked up by one of the last two rules, and not changed. 
The if-else has been replaced by a C conditional expression to 
save space; the form: a?b:c: means: if a then b else c. 

For an example of statistics gathering, here is a program that 
makes histograms of word lengths, where a word is defined as a 
string of letters. 

int lengs[100J; 
%% 
[a-zJ+ lengs[yylengJ++; 

I 
\n 
%% 
yywrap() 
{ 
i nt i; 
printf("Length No. words\n"); 
for(i=O; i<100; i++) 

if (lengs[iJ > 0) 
printf( 1%5d%10d\n", i, lengs[i J); 

return (1 ) ; 
} 

This program accumulates the histogram, while producing no 
output. At the end of the input it prints the table. The final 
statement return(l); indicates that lex is to perform wrapup. If 

8-27 



yywrapO, returns zero (false) it implies that further input is 
available and the program is to continue reading and processing. 
To provide a yywrapO that never returns true, causes an infinite 
loop. 

As a larger example, here are some parts of a program written to 
convert double-precision FORTRAN to single precision 
FORTRAN. Because FORTRAN does not distinguish between 
uppercase and lowercase letters, this routine begins by defining a 
set of classes including both cases of each letter: 

a [aAJ 
b [bBJ 
c [cCJ 

z [zZJ 

An additional class recognizes white space: 

w [ \ tJ* 

The first rule changes double-precision to real, or 
DOUBLE-PRECISION to REAL. 

{d} {oJ {u} {b} 
O} {e} {W} {p} {r} 
{e} {c} {i} {5} {i} {oJ 
{n}{printf(yytext[OJ=='d ' ? "real" 

} 
"REAL"); 

Care is taken throughout this program to preserve the case of the 
original program. The conditional operator is used to select the 
proper form of the keyword. The next rule copies continuation 
card indications to avoid confusing them with constants: 

/\" "[/\ OJ ECHO; 

In the regular expression, the quotes surround the blanks. It is 
interpreted as "beginning of line, then five blanks, then anything 
but blank or zero." Two different meanings of the caret (/\) are 
used here. There follow some rules to change double-precision 
constants to ordinary floating constants. 

8-28 



[0-9J+{W}{d}{W}[+-J?{W}& 
lbr.0-9J+ I 
[0-9J+{W}II.II{W}{d}{W}[-J?{W}[0-9J+ 
II. II {W} [0-9J+{W} {d} {W} [- J? {W} [0-9J+ 

/* convert constants */ 
for(p=yytext; *p 1= 0; p++) 

{ 
if (*p== Id l II *p 10 1) 

*p+= I e I - I d I ; 
ECHO; 

} 

After the floating-point constant is recognized, it is scanned by 
the for loop to find the letter "d" or "D". The program then adds 
"'e' -'d'" and then converts it to the next letter of the alphabet. 
The modified constant, now single precision, is written out again. 
A series of names follow that must be respelled to remove their 
initial "d". By using the array yytext the same action suffices for 
all the names (only a sample of a rather long list is given here). 

{d}{s}{i}{n} 
{d} {c} {oJ {s} 
{d} {s} {q} {r} {t} 
{d} {a} {t} {a} {n} 

{d}{f}{l}{o}{a}{t} 
printf( II%S II ,yytext+1); 

Another list of names must have initial d changed to initial a: 

{d} {l} {oJ {g} 
{d} {l} {oJ {g} 10 
{d} {m} {i} {n} 1 
{d}{m}{a}{x}l { 

yytext[OJ += la l - Id l ; 
ECHO; 
} 

And one routine must have initial d changed to initial r: 

{d}l{m}{a}{c}{h} { 

} 

yytext[OJ += Irl - Id l ; 
ECHO; 

8-29 



To avoid such names as dsinx being detected as instances of dsin, 
some final rules pick up longer words as identifiers and copy some 
surviving characters: 

[A-Za-zJ[A-Za-zO-9J* I 
[0-9J+ I 
\n I 

ECHO; 

This program is not complete; it does not deal with the spacing 
problems in FORTRAN or with the use of keywords as 
identifiers. 

Specifying Character Sets 

The programs generated by lex handle character 110 only through 
the routines input, output, and unput. Thus the character 
representation provided in these routines is accepted by lex and 
employed to return values in yytext. For internal use a character is 
represented as a small integer which, if the standard library is 
used, has a value equal to the integer value of the bit pattern 
representing the character on the host computer. Normally, the 
letter a is represented as the same form as the character constant: 

I a I 

If this interpretation is changed, by providing 110 routines that 
translate the characters, lex must be told about it, by being giving 
a translation table. This table must be in the definitions section, 
and must be bracketed by lines containing only % T. The table 
contains lines of the form: 

{integer} {character string} 

that indicate the value associated with each character. For 
example: 

8-30 



%T 
1 Aa 
2 Bb 

26 Zz 
27 \n 
28 + 
29 
30 0 
31 1 

39 9 
%T 

This table maps the lowercase and uppercase letters together into 
the integers 1 through 26, newline into 27, plus (+) and minus (-) 
into 28 and 29, and the digits into 30 through 39. Observe the 
escape for newline. If a table is supplied, every character that is 
to appear either in the rules or in any valid input must be included 
in the table. No character can be assigned the number 0, and no 
character can be assigned a larger number than the size of the 
hardware character set. 

Source Format 

The general form of a lex source file is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

The definitions section contains a combination of: 

1. Definitions, in the form "name space translation" 

2. Included code, in the form "space code" 

3. Included code, in the form 

8-31 



%{ 
code 
%} 

4. Start conditions, given in the form 

%5 namel name2 ... 

5. Character set tables, in the form 

%T 
number space character-string 
%T 

6. Changes to internal array sizes, in the form 

%x nnn 

where nnn is a decimal integer representing an array size. and x 
selects the parameter as follows: 

Letter Parameter 

p positions 
n states 
e tree nodes 
a transitions 
k packed character classes 
o output array size 

Lines in the rules section have the form: 

expression action 

where the action is continued on succeeding lines by using braces 
to delimit it. 

Regular expressions in lex use the following operators: 

x The character "x" 

"x" An "x", evenjf x is an operator. 

\x An "x", even if x is an operator. 

8-32 



[xy] 

[x-z] 

[ AX] 

AX 

<y>x 

x$ 

x? 

x* 

x+ 

xly 

(X) 

x/y 

{XX} 

x{m,n} 

The character x or y. 

The characters x, y or z. 

Any character but x. 

Any character but newline. 

An x at the beginning of a line. 

An x when lex is in start condition y. 

An x at the end of a line. 

An optional x. 

0,1,2, ... instances of x. 

1,2,3, ... instances of x. 

An x or a y. 

Anx. 

An x but only if followed by y. 

The translation of xx from the definitions section. 

m through n occurrences of x. 

8-33 



8-34 



Chapter 9. The yacc Program Generator: 
A Compiler-Compiler 

Contents 

Introduction 9-3 

Specifications .................................... 9-7 

Actions ........................................ 9-10 

Lexical Analysis .................................. 9-13 

How the Parser Works 9-15 

Ambiguity and Conflicts 9-21 

Precedence ..................................... 9=27 

Error Handling ................................... 9-30 

The yacc Environment ..........•.................. 9-33 

Preparing Specifications ........................... 9-34 

Input Style ...................•.................. 9-35 

Left Recursion ................................... 9-35 

Lexical Tie-ins .................................. 9-37 

Handling Reserved Words .......................... 9-38 

Simulating Error and Accept in Actions ................ 9-38 

Accessing Values in Enclosing Rules ................... 9-38 

Supporting Arbitrary Value Types .•.................. 9-39 

9-1 



A Small Desk Calculator ........................... 9-41 

The yacc Input Syntax 9-44 

An Advanced Example ...................•......... 9-47 

Old Features .........................•.......... 9-55 

9-2 



Introduction 

Computer program input generally has some structure; every 
computer program that does input can be thought of as defining 
an input language that it accepts. An input language can be as 
complex as a programming language, or as simple as a sequence of 
numbers. Unfortunately, usual input facilities are limited, 
difficult to use, and often lax about checking their inputs for 
validity. 

The yacc program generator provides a general tool for describing 
the input to a computer program. The name yacc itself stands for 
"yet another compiler-compiler". The yacc user specifies the 
structures of his input, together with code to be invoked as each 
such structure is recognized. The yacc program generator turns 
such a specification into a subroutine that handles the input 
process; frequently, it is convenient and appropriate to have most 
of the flow of control in the user's application handled by this 
subroutine. 

The input subroutine produced by yacc calls a user-supplied 
routine to return the next basic input item. Thus, the user can 
specify his input in terms of individual input characters, or in 
terms of higher level constructs such as names and numbers. The 
user-supplied routine can also handle idiomatic features such as 
comment and continuation conventions, and these defy easy 
grammatical specification. The class of specifications accepted is 
a very general one: LALR grammars with disambiguating rules. 
(LALR means Look-Ahead-Left-to-Right type of parsing 
mechanism. A rule describing what choice to make in a given 
situation is called a disambiguating rule.) 

In addition to compilers for C, APL, Pascal, RATFOR, etc., yacc 
has also been used for less conventional languages, including a 
phototypesetter language, several desk calculator languages, a 
document retrieval system, and a FORTRAN debugging system. 

The yacc program generator provides a general tool for imposing 
structure on the input to a computer program. The yacc user 
prepares a specification of the input process; this includes rules 
describing the input structure, code to be invoked when these 
rules are recognized, and a low-level routine to do the basic input. 

9-3 



The yacc program generator then generates a function to control 
the input process. This function, called a parser, calls the 
user-supplied low-level input routine (called the lexical analyzer) 
to pick up the basic items (called tokens) from the input stream. 
These tokens are organized according to the input structure rules, 
called grammar rules; when one of these rules has been 
recognized, then user code supplied for this rule, an action, is 
invoked; actions have the ability to return values and make use of 
the values of other actions. 

The yacc program generator is written in a portable dialect of C 
and the actions, and output subroutine, are in C as well. 
Moreover, many of the syntactic conventions of yacc follow C. 

The heart of the input specification is a collection of grammar 
rules. Each rule describes an allowable structure and gives it a 
name. For example, one grammar rule might be: 

date : month_name day I I year 

Here, date, month name, day, and year represent structures of 
interest in the input process; presumably, month name, day, and 
year are defined elsewhere. The comma (,) is enclosed in single 
quotation marks; this implies that the comma is to appear literally 
in the input. The colon and semicolon merely serve as 
punctuation in the rule, and have no significance in controlling the 
input. Thus, with proper definitions, the input: 

July 4, 1776 

might be matched by the above rule. 

An important part of the input process is carried out by the lexical 
analyzer. This user routine reads the input stream, recognizing 
the lower level structures, and communicates these tokens to the 
parser. A structure recognized by the lexical analyzer is called a 
terminal symbol, while the structure recognized by the parser is 
called a nonterminal symbol. To avoid confusion, terminal 
symbols will usually be referred to as tokens. 

There is considerable leeway in deciding whether to recognize 
structures using the lexical analyzer or grammar rules. For 
example, the rules: 

9-4 



month_name 
month name 

I J I I a I I n I 
I F I I e I I b I 

month name : 10 1 
I e I I C I ; 

might be used in the above example. The lexical analyzer would 
only need to recognize individual letters, and month name would 
be a nonterminal symbol. Such low-level rules tend to waste time 
and space, and may complicate the specification beyond yacc 's 
ability to deal with it. Usually, the lexical analyzer would 
recognize the month names, and return an indication that a 
month name was seen; in this case, month name would be a 
w~n-.- --

Literal characters, such as the comma, must also be passed 
through the lexical analyzer and are considered tokens. 

Specification files are very flexible. It is relatively easy to add to 
the above example the rule 

date: month 1/1 day 1/1 year 

allowing 

7/4/1776 

as a synonym for 

July 4, 1776 

In most cases, this new rule could be slipped in to a working 
system with minimal effort, and little danger of disrupting existing 
input. 

The input being read may not conform to the specifications. 
These input errors are detected as early as is theoretically possible 
with a left-to-right scan; thus, not only is the chance of reading 
and computing with bad input data substantially reduced, but the 
bad data can usually be quickly found. Error handling, provided 
as part of the input specifications, permits the reentry of bad data, 
or the continuation of the input process after skipping over the 
bad data. 

9-5 



In some cases, yacc fails to produce a parser when given a set of 
specifications. For example, the specifications can be self 
contradictory, or they may require a more powerful recognition 
mechanism than that available to yacc. The former cases 
represent design errors; the latter cases can often be corrected by 
making the lexical analyzer more powerful, or by rewriting some 
of the grammar rules. While yacc cannot handle all possible 
specifications, its power compares favorably with similar systems; 
moreover, the constructions that are difficult for yacc to handle 
are also frequently difficult for human beings to handle. Some 
users have reported that the discipline of formulating valid yacc 
specifications for their input revealed errors of conception or 
design early in the program development. 

The next several sections describe: 

• The preparation of grammar rules 

• The preparation of the user supplied actions associated with 
the grammar rules 

• The preparation of lexical analyzers 

• The operation of the parser 

• Various reasons why yacc may be unable to produce a parser 
from a specification, and what to do about it. 

• A simple mechanism for handling operator precedences 
(order of arithmetic operation) in arthmetic operations. 

• Error detection and recovery. 

• The operating environment and special features of the 
parsers yacc produces. 

• Some suggestions that should improve the style and 
efficiency of the specifications. 

9-6 



Specifications 

Names refer to either tokens or nonterminal symbols. The yacc 
program requires token names to be declared as such. In 
addition, for reasons discussed later, it is often desirable to 
include the lexical analyzer as part of the specification file. It can 
be useful to include other programs as well. Thus, every 
specification file consists of three sections: the declarations, 
(grammar) rules, and programs. The sections are separated by 
double percent % % marks. The percent sign (%) is generally 
used in yacc specifications as an escape character. 

In other words, a full specification file looks like 

declarations 
%% 
rules 
%% 
programs 

The declaration section may be empty. Moreover, if the programs 
section is omitted, the second % % mark can be omitted also; 
thus, the smallest legal yacc specification is: 

%% 
rul es 

Blanks, tabs, and newlines are ignored except that they may not 
appear in names or multicharacter reserved symbols. Comments 
appear wherever a name is legal; they are enclosed in /* ... * /, 
asinC. 

The rules section is made up of one or more grammar rules. A 
grammar rule has the form: 

A : BODY ; 

A represents a nonterminal name, and BODY represents a 
sequence of zero or more names and literals. The colon and the 
semicolon are yacc punctuation. 

9-7 



N ames are of arbitrary length, and may be made up of letters, dot 
(.), the underscore ( ), and noninitial digits. Uppercase and 
lowercase letters are distinct. The names in the body of a 
grammar rule represent tokens or nonterminal symbols. 

A literal consists of a character enclosed in single quotation marks 
('). As in C, the backslash (\) is an escape character within 
literals, and all the C escapes are recognized. 

Thus: 

'\0' Newline 

'\r' Return 

'\ " Single quotation mark 

'\ \' Backslash 

'\ t' Tab 

'\b' Backspace 

'\f' Form feed 

'\xxx' "xxx" in octal 

For a number of technical reasons, never use the ASCII NUL 
character ('\0' or 0) in grammar rules. 

If several grammar rules have the same left hand side, then the 
vertical bar ( I ) can be used to avoid rewriting the left hand side. 
In addition, the semicolon at the end of a rule can be dropped 
before a vertical bar. Thus the grammar rules 

ABC 0 
A E F 
A G 

can be given to yacc as: 

9-8 



ABC 0 
E F 
G 

It is not necessary that all grammar rules with the same left side 
appear together in the grammar rules section, although it makes 
the input much more readable, and easier to change. 

If a nonterminal symbol matches the empty string, this can be 
indicated in the obvious way: 

empty : ; 

Names representing tokens must be declared; this is most simply 
done by writing 

%token namel name2 

in the declarations section. (Following sections discuss this in 
more detail.) Every nonterminal symbol must appear on the left 
side of at least one rule. 

Of all the nonterminal symbols, one, called the start symbol, has 
particular importance. The parser is designed to recognize the 
start symbol; thus, this symbol represents the largest, most 
general structure described by the grammar rules. By default, the 
start symbol is taken to be the left hand side of the first grammar 
rule in the rules section. It is possible, and in fact desirable, to 
declare the start symbol explicitly in the declarations section using 
the %start keyword: 

%start symbol 

The end of the input to the parser is signaled by a special token, 
called the endmarker. If the tokens up to, but not including, the 
endmarker form a structure matching the start symbol, the parser 
function returns to its caller after the endmarker is seen; it 
accepts the input. If the endmarker is seen in any other context, 
it is an error. 

It is the job of the user-supplied lexical analyzer to return the 
endmarker when appropriate; see the section, "Actions" next in 

9-9 



this chapter. Usually the endmarker represents some reasonably 
obvious 110 status, such as the end of the file or end of the 
record. 

Actions 

With each grammar rule, the user associates actions performed 
each time the rule is recognized in the input process. These 
actions may return values, and can obtain the values returned by 
previous actions. Moreover, the lexical analyzer can return values 
for tokens, if desired. 

An action is an arbitrary C statement, and as such can do input 
and output, call subprograms, and alter external vectors and 
variables. An action is specified by one or more statements, 
enclosed in curly braces { and}. For example: 

and 

xxx yyy ZZZ 

hello( 1, lIabe ll
); } 

{ p r i n t f ( II a me s sag e \ nil) ; 
flag = 25;} 

are grammar rules with actions. 

To facilitate easy communication between the actions and the 
parser, the action statements are altered slightly. The dollar sign 
($) is used as a signal to yacc in this context. 

To return a value, the action normally sets the pseudo-variable $$ 
to some value. For example, an action that does nothing but 
return the value 1 is: 

{ $$ = 1; } 

9-10 



To obtain the values returned by previous actions and the lexical 
analyzer, the action uses the pseudo-variables $1, $2, ... , that 
refer to the values returned by the components of the right side of 
a rule, reading from left to right. Thus, if the rule is: 

A : BCD ; 

for example, then $2 has the value returned by C, and $3 the 
value returned by D. 

As a more concrete example, consider the rule: 

expr: 1(1 expr 1)1 ; 

The value returned by this rule is usually the value of the expr in 
parentheses. This can be indicated by 

expr : 1 (I expr I) 1 { $$ = $2 ; } 

By default, the value of a rule is the value of the first element in it 
($1). Thus, grammar rules of the form: 

A : B ; 

frequently need not have an explicit action. 

In the examples above, all the actions came at the end of their 
rules. Sometimes, it is desirable to get control before a rule is 
fully parsed. The yacc program generator permits an action to be 
written in the middle of a rule as well as at the end. This rule is 
assumed to return a value, accessible through the usual $ 
mechanism by the actions to the right of it. In turn, it may access 
the values returned by the symbols to its left. Thus, in the rule: 

A : B 
{ $$ 1 ; } 

C 
{ x = $2; y = $3; 

the effect is to set x to 1, and y to the value returned by C. 

Actions that do not terminate a rule are actually handled by yacc 
by manufacturing a new nonterminal symbol name, and a new 

9-11 



rule matching this name to the empty string. The interior action is 
the action triggered off by recognizing this added rule. The yacc 
program generator actually treats the above example as if it had 
been written: 

$ACT /* empty */ 
{ $$ 1; } 

A B $ACT C 
{ x = $2; Y $3; } 

In many applications, output is not done directly by the actions; 
rather, a data structure, such as a parse tree, is constructed in 
memory, and transformations are applied to it before output is 
generated. Parse trees are particularly easy to construct, given 
routines to build and maintain the tree structure desired. For 
example, suppose there is a C function node, written so that the 
call: 

node( L, n1, n2 ) 

creates a node with label L, and descendants nl and n2, and 
returns the index of the newly created node. Then parse tree can 
be built by supplying actions such as: 

expr : expr 1+1 expr 
{ $$ = node( 1+1, $1, $3); } 

in the specification. 

The user can define other variables to be used by the actions. 
Declarations and definitions can appear in the declarations 
section, enclosed in the marks % {and %}. These declarations 
and definitions have global scope, so they are known to the action 
statements and the lexical analyzer. For example, 

%{ int variable = 0; %} 

could be placed in the declarations section, making variable 
accessible to all of the actions. The yacc parser uses only names 
beginning in yy, therefore, the user should avoid such names. 

9-12 



In these examples, all the values are integers: a discussion of 
values of other types will be found in a later section. 

Lexical Analysis 

The user must supply a lexical analyzer to read the input stream 
and communicate tokens (with values, if desired) to the parser. 
The lexical analyzer is an integer-valued function called yylex. 
The function returns an integer, called the token number, 
representing the kind of token read. If a value is associated with 
that token, it should be assigned to the external variable yylval. 

The parser and the lexical analyzer must agree on these token 
numbers in order for communication between them to take place. 
The numbers are chosen either by yacc, or the user. In either 
case, the # define mechanism of C is used to allow the lexical 
analyzer to return these numbers symbolically. For example, 
suppose that the token name DIGIT has been defined in the 
declarations section of the yacc specification file. The relevant 
portion of the lexical analyzer might look like: 

yylex(){ 
extern int yylval; 
int c; 

c = getchar(); 

switch( c ) { 

case 10 1: 
case 111: 

case 19 1: 
yylval = C-IO

I
; 

return( DIGIT ); 

} 

The intent is to return a token number of DIGIT, and a value 
equal to the numerical value of the digit. Provided that the lexical 

9-13 



analyzer code is placed in the programs section of the 
specification file, the identifier DIGIT will be defined as the 
token number associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers; 
the only pitfall is the need to avoid using any token names in the 
grammar that are reserved or significant in C or the parser; for 
example, the use of token names if or while will almost certainly 
cause severe difficulties when the lexical analyzer is compiled. 
The token name error is reserved for error handling, and should 
not be used naively. 

As mentioned above, the token numbers are chosen by yacc or by 
the user. In the default situation, the numbers are chosen by yacc. 
The default token number for a literal character is the numerical 
value of the character in the local character set. Other names are 
assigned token numbers starting at 257. 

To assign a token number to a token (including literals), the first 
appearance of the token name or literal in the declarations section 
can be immediately followed by a nonnegative integer. This 
integer is taken to be the token number of the name or literal. 
N ames and literals not defined by this mechanism retain their 
default definition. It is important that all token numbers be 
distinct. 

For historical reasons, the endmarker must have token number 0 
or negative. This token number cannot be redefined by the user. 
Hence, all lexical analyzers should be prepared to return 0 or 
negative as a token number upon reaching the end of their input. 

A very useful tool for constructing lexical analyzers is lex, 
discussed in a previous section. These lexical analyzers are 
designed to work in close harmony with yacc parsers. The 
specifications for these lexical analyzers use regular expressions 
instead of grammar rules. The lex program can easily be used to 
produce some quite complicated lexical analyzers, but there 
remain some languages (such as FORTRAN) that do not fit any 
theoretical framework and whose lexical analyzers must be 
crafted by hand. 

9-14 



How the Parser Works 

The yacc program generator turns the specification file into a C 
program, that parses the input according to the specification 
given. The algorithm used to go from the specification to the 
parser is complex, and is not discussed here (see the references 
for more information). The parser itself, however, is relatively 
simple, and understanding how it works, while not strictly 
necessary, will nevertheless make treatment of error recovery and 
ambiguities much more comprehensible. 

The parser produced by yacc consists of a finite state machine 
with a stack. The parser is also capable of reading and 
remembering the next input token (called the lookahead token). 
The current state is always the one on the top of the stack. The 
states of the finite state machine are given small integer labels; 
initially, the machine is in state 0, the stack contains only state 0, 
and no lookahead token has been read. 

The machine has only four actions available to it, called shift, 
reduce, accept, and error. A move of the parser is done as follows: 

1. Based on its current state, the parser decides whether it 
needs a lookahead token to decide what action should be 
done; if it needs one, and does not have one, it calls yylex to 
obtain the next token. 

2. U sing the current state, and the lookahead token if needed, 
the parser decides on its next action, and carries it out. This 
can result in states being pushed onto the stack, or popped 
off of the stack, and in the lookahead token being processed 
or left alone. 

The shift action is the most common action the parser takes. 
Whenever a shift action is taken, there is always a lookahead 
token. For example, in state 56 there may be an action: 

IF shift 34 

9-15 



which says, in state 56, if the lookahead token is IF, the current 
state (56) is pushed down on the stack, and state 34 becomes the 
current state (on the top of the stack). The lookahead token is 
cleared. 

The reduce action keeps the stack from growing without bounds. 
Reduce actions are appropriate when the parser has seen the right 
hand side of a grammar rule, and is prepared to announce that it 
has seen an instance of the rule, replacing the right hand side by 
the left hand side. You may have to consult the lookahead token 
to decide whether to reduce, but usually it is not; in fact the 
default action, represented by a dot (.) is often a reduce action. 

Reduce actions are associated with individual grammar rules. 
Grammar rules are also given small integer numbers, leading to 
some confusion. The action: 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule being reduced is: 

A : x y z ; 

The reduce action depends on the left hand symbol (A in this 
case), and the number of symbols on the right hand side (three in 
this case). To reduce, first pop off the top three states from the 
stack (in general, the number of states popped equals the number 
of symbols on the right side of the rule). In effect, these states 
were the ones put on the stack while recognizing x, y, and z, and 
no longer serve any useful purpose. After popping these states, a 
state is uncovered that was the state the parser was in before 
beginning to process the rule. U sing this uncovered state, and the 
symbol on the left side of the rule, perform what is in effect a 
shift of A. A new state is obtained, pushed onto the stack, and 
parsing continues. There are significant differences between the 
processing of the left hand symbol and an ordinary shift of a 
token, however, so this action is called a "goto" action. In 

9-16 



particular, the lookahead token is cleared by a shift, and is not 
affected by a goto. In any case, the uncovered state contains an 
entry such as: 

A goto 20 

causing state 20 to be pushed onto the stack, and become the 
current state. 

In effect, the reduce action turns back the clock in the parse, 
popping the states off the stack to go back to the state where the 
right-hand side of the rule was first seen. The parser then 
behaves as if it had seen the left side at that time. If the 
right-hand side of the rule is empty, no states are popped off of 
the stack; the uncovered state is in fact the current state. 

The reduce action is also important in the treatment of 
user-supplied actions and values. When a rule is reduced, the 
code supplied with the rule is executed before the stack is 
adjusted. In addition to the stack holding the states, another 
stack, running in parallel with it, holds the values returned from 
the lexical analyzer and the actions. When a shift takes place, the 
external variable yylval is copied onto the value stack. After the 
return from the user code, the reduction is carried out. When the 
goto action is done, the external variable yyval is copied onto the 
value stack. The pseudo-variables $1, $2, etc., refer to the value 
stack. 

The other two parser actions are conceptually much simpler. The 
accept action indicates that the entire input has been seen and 
that it matches the specification. This action appears only when 
the lookahead token is the endmarker, and indicates that the 
parser has successfully done its job. The error action, on the 
other hand, represents a place where the parser can no longer 
continue parsing according to the specification. The input tokens 
it has seen, together with the lookahead token, cannot be 
followed by anything that would result in a legal input. The 
parser reports an error, and attempts to recover the situation and 
resume parsing. Error recovery (as opposed to the detection of 
error) is discussed later in this chapter. 

9-17 



Consider the following example: 

%token DING DONG DELL 
%% 

rhyme : sound place 

sound: DING DONG 

place: DELL 

When yacc is invoked with the -v option, a file called y.output is 
produced, with a human-readable description of the parser. The 
y.output file corresponding to the above grammar (with some 
statistics stripped off the end) is: 

9-18 



state a 

state 1 

state 2 

state 3 

state 4 

state 5 

state 6 

$accept : 

DING shift 3 
· error 

rhyme goto 1 
sound goto 2 

_rhyme $end 

$accept : rhyme_$end 

$end accept 
· error 

rhyme: sound_place 

DELL shift 5 
· error 

place goto 4 

sound : DING_DONG 

DONG shift 6 
· error 

rhyme: sound place_ (1) 

· reduce 1 

place: DELL_ (3) 

· reduce 3 

sound: DING DONG_ (2) 

· reduce 2 

9-19 



In addition to the actions for each state, there is a description of 
the parsing rules being processed in each state. The underscore 
character ( ) is used to indicate what has been seen, and what is 
yet to come, in each rule. Suppose the input is: 

DING DONG DELL 

It is instructive to follow the steps of the parser while processing 
this input. 

Initially, the current state is O. The parser needs to refer to the 
input in order to decide between the actions available in state 0, 
so the first token, DING, is read, becoming the lookahead token. 
The action in state 0 on DING is shift 3, so state 3 is pushed onto 
the stack, and the lookahead token is cleared. State 3 becomes 
the current state. The next token, DONG, is read, becoming the 
lookahead token. The action in state 3 on the token DONG is 
shift 6, so state 6 is pushed onto the stack, and the lookahead is 
cleared. The stack now contains 0,3, and 6. In state 6, without 
even consulting the lookahead, the parser reduces by rule 2. 

sound : DING DONG 

This rule has two symbols on the right hand side, so two states, 6 
and 3, are popped off of the stack, uncovering state O. Consulting 
the description of state 0, looking for a goto on sound, 

sound goto 2 

is obtained; thus state 2 is pushed onto the stack, becoming the 
current state. 

In state 2, the next token, DELL, must be read. The action is 
shift 5, so state 5 is pushed onto the stack, that now has 0, 2, and 
5 on it, and the lookahead token is cleared. In state 5, the only 
action is to reduce by rule 3. This has one symbol on the right 
hand side, so one state, 5, is popped off, and state 2 is uncovered. 
The goto in state 2 on place, the left side of rule 3, is state 4. 
Now, the stack contains 0, 2, and 4. In state 4, the only action is 
to reduce by rule 1. There are two symbols on the right, so the 
top two states are popped off, uncovering state 0 again. In state 
0, there is a goto on rhyme causing the parser to enter state 1. In 

9-20 



state 1, the input is read; the endmarker is obtained, indicated by 
Send in the y.output file. The action in state 1 when the 
endmarker is seen is to accept, successfully ending the parse. 

We urge you to consider how the parser works when confronted 
with such incorrect strings as DING DONG DONG, DING 
DONG, DING DONG DELL DELL. A few minutes, spent with 
this and other simple examples, will probably repay you when 
problems arise in more complicated contexts. 

Ambiguity and Conflicts 

A set of grammar rules is ambiguous if some input string can be 
structured in two or more different ways. For example, the 
grammar rule: 

expr : expr I_I expr 

is a natural way of expressing the fact that one way of forming an 
arithmetic expression is to put two other expressions together 
with a minus sign between them. Unfortunately, this grammar 
rule does not completely specify the way that all complex inputs 
should be structured. For example, if the input is: 

expr - expr - expr 

the rule allows this input to be structured as either: 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

(The first is called left association, the second right association). 

The yacc program generator detects such ambiguities when it is 
attempting to build the parser. It is instructive to consider the 
problem that confronts the parser when it is given an input such 
as: 

9-21 



expr - expr - expr 

When the parser has read the second expr, the input that it has 
seen: 

expr - expr 

matches the right side of the grammar rule above. The parser 
could reduce the input by applying this rule; after applying the 
rule; the input is reduced to expr (the left side of the rule). The 
parser would then read the final part of the input: 

- expr 

and again reduce. The effect of this is to take the left associative 
interpretation. 

Alternatively, when the parser has seen: 

expr - expr 

it could defer the immediate application of the rule, and continue 
reading the input until it had seen: 

expr - expr - expr 

It could then apply the rule to the rightmost three symbols, 
reducing them to expr and leaving: 

expr - expr 

Now the rule can be reduced once more; the effect is to take the 
right associative interpretation. Thus, having read: 

expr - expr 

the parser can do two legal things, a shift or a reduction, and has 
no way of deciding between them. This is called a shift/reduce 
conflict. It may also possible for the parser to have a choice of 
two legal reductions; this is called a reduce/reduce conflict. 
There are never any shift/shift conflicts. 

Ii 

9-22 



When there are shift/reduce or reduce/reduce conflicts, yacc still 
produces a parser. It does this by selecting one of the valid steps 
wherever it has a choice. A rule describing the choice to make in 
a given situation is called a disambiguating rule. 

The yacc program generator invokes two disambiguating rules by 
default: 

1. In a shift/reduce conflict, the default is to do the shift. 

2. In a reduce/reduce conflict, the default is to reduce by the 
earlier grammar rule (in the input sequence). 

Rule 1 implies that reductions are deferred whenever there is a 
choice, in favor of shifts. Rule 2 gives the user rather crude 
control over the behavior of the parser in this situation, but you 
should avoid reduce/reduce conflicts whenever possible. 

Conflicts arise because of mistakes in input or logic, or because 
the grammar rules, while consistent, require a more complex 
parser than yacc can construct. The use of actions within rules 
can also cause conflicts, if the action must be done before the 
parser can be sure of the rule recognized. In these cases, the 
application of disambiguating rules is inappropriate, and leads to 
an incorrect parser. For this reason, yacc always reports the 
number of shift/reduce and reduce / reduce conflicts resolved by 
Rule 1 and Rule 2. 

Whenever it is possible to apply disambiguating rules to produce a 
correct parser, it is also possible to rewrite the grammar rules so 
that the same inputs are read but without conflicts. For this 
reason, most previous parser generators have considered conflicts 
to be fatal errors. Our experience has suggested that this 
rewriting is somewhat unnatural, and produces slower parsers; 
thus, yacc will produce parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider a 
fragment from a programming language involving an if-then-else 
construction: 

stat IF I( 1 cond 1)1 stat 
IF I( 1 cond 1)1 stat ELSE stat 

9-23 



In these rules, IF and ELSE are tokens, cond is a nonterminal 
symbol describing conditional (logical) expressions, and stat is a 
nonterminal symbol describing statements. The first rule will be 
called the simple-if rule, and the second the if -else rule. 

These two rules form an ambiguous construction, since input of 
the form 

IF ( C1 ) IF ( C2 ) Sl ELSE S2 

can be structured according to these rules in two ways: 

IF ( C1 ) { 

ELSE S2 

or 

IF ( C2 ) Sl 
} 

IF ( C1 ) { 
IF ( C2 ) Sl 
ELSE S2 
} 

The second interpretation is the one given in most programming 
languages having this construct. Each ELSE is associated with 
the last IF immediately preceding the ELSE. In this example, 
consider the situation where the parser has seen: 

IF ( C1 ) IF ( C2 ) Sl 

and is looking at the ELSE. It can immediately reduce by the 
simple-if rule to get, 

IF ( C1 ) stat 

and then read the remaining input, 

ELSE 52 

and reduce: 

IF ( C1 ) stat ELSE 52 

9-24 



by the if-else rule. This leads to the first of the above groupings 
of the input. 

On the other hand, the ELSE can be shifted, S2 read, and then 
the right hand portion of 

IF ( Cl ) IF ( C2 ) SI ELSE S2 

can be reduced by the if-else rule to get: 

IF ( C 1 ) s ta t 

which can be reduced by the simple-if rule. This leads to the 
second of the above groupings of the input, which is usually 
desired. 

Once again the parser can do two valid things - there is a 
shift/ reduce conflict. The application of disambiguating rule 1 
tells the parser to shift in this case, and this leads to the desired 
grouping. 

This shift/reduce conflict arises only when there is a particular 
current input symbol, ELSE, and particular inputs already seen, 
such as: 

IF ( Cl ) IF ( C2 ) SI 

There can be many conflicts, and each one will be associated with 
an input symbol and a set of previously read inputs. The 
previously read inputs are characterized by the state of the parser. 

The conflict messages of yacc are best understood by examining 
the verbose (-v) option output file. For example, the output 
corresponding to the above conflict state might be: 

23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat 
stat 

IF ( cond 
IF ( cond 

ELSE shift 45 
reduce 18 

stat_ (18) 
stat ELSE stat 

9-25 



The first line describes the conflict, giving the state and the input 
symbol. The ordinary state description follows, giving the 
grammar rules active in the state, and the parser actions. Recall 
that the underline marks the portion of the grammar rules that 
have been seen. Thus in the example, in state 23, the parser has 
seen input corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The 
parser can do two possible things. If the input symbol is ELSE, it 
is possible to shift into state 45. State 45 has, as part of its 
description, the line 

stat : IF ( cond ) stat ELSE_stat 

since the ELSE will have been shifted in this state. Back in state 
23, the alternative action, described by ".", is to be done if the 
input symbol is not mentioned explicitly in the above actions; 
thus, in this case, if the input symbol is not ELSE, the parser 
reduces by grammar rule 18: 

stat: IF '(I cond I)' stat 

Once again, notice that the numbers following shift commands 
refer to other states, while the numbers following reduce 
commands refer to grammar rule numbers. In the y.output file, 
the rule numbers are printed after those rules that can be reduced. 
In most states, there will be at most one release action possible 
for that state. This will be the default command. The user who 
encounters unexpected shift/reduce conflicts should look at the 
verbose output to decide whether the default actions are 
appropriate. In really tough cases, the user might need to know 
more about the behavior and construction of the parser than can 
be covered here. In this case, one of the theoretical references 
might be consulted; the services of a local expert might also be 
appropriate. 

9-26 



Precedence 

One common situation where the rules given above for resolving 
conflicts are not sufficient is in the parsing of arithmetic 
expressions. Most of the commonly used constructions for 
arithmetic expressions can be naturally described by the notion of 
precedence levels for operators, together with information about 
left or right associativity. It turns out that ambiguous grammars 
with appropriate disambiguating rules can be used to create 
parsers that are faster and easier to write than parsers constructed 
from unambiguous grammars. The basic notion is to write 
grammar rules of the form: 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very 
ambiguous grammar, with many parsing conflicts. As 
disambiguating rules, the user specifies the precedence, or binding 
strength, of all the operators, and the associativity of the binary 
operators. This information is sufficient to allow yacc to resolve 
the parsing conflicts in accordance with these rules, and to 
construct a parser that realizes the desired precedences and 
associativities. 

The precedences and associativities are attached to tokens in the 
declarations section. This is done by a series of lines beginning 
with a yacc keyword: %left, %right, or %nonassoc, followed by 
a list of tokens. All of the tokens on the same line are assumed to 
have the same precedence level and associativity; the lines are 
listed in order of increasing precedence or binding strength. 
Thus, 

%left 
%left 

1+1 

1* 1 

1 _ 1 

1/1 

describes the precedence and associativity of the four arithmetic 
operators. Plus and minus are left associative, and have lower 
precedence than star and slash, that are also left associative. The 

9-27 



keyword %right describes right associative operators, and the 
keyword % nonassoc describes operators, like the operator .L T. in 
FORTRAN, that may not associate with themselves; thus, 

l\ .LT. B .LT. C 

is illegal in FORTRAN, and such an operator would be described 
with the keyword %nonassoc in yacc. As an example of the 
behavior of these declarations, the description 

%right 1=1 
%left 1+1 I I 

% 1 eft I * I 1/1 

%% 

'2xpr expr 
expr 
expr 
expr 
expr 
NAME 

I =1 expr 
1+1 expr 
I - I expr 
1* I expr 
1/1 expr 

might be used to structure the input 

a = b = c*d - e - f*g 

as follows: 

a = ( b = ( «c*d)-e) - (f*g) ) ) 

When this mechanism is used, unary operators must, in general, 
be given a precedence. Sometimes a unary operator and a binary 
operator have the same symbolic representation, but different 
precedences. An example is unary and binary '-'; unary minus 
can be given the same strength as multiplication, or even higher, 
while binary minus has a lower strength than multiplication. The 
keyword, % prec, changes the precedence level associated with a 
particular grammar rule. The % prec appears immediately after 
the body of the grammar rule, before the action or closing 
semicolon, and is followed by a token name or literal. It causes 
the precedence of the grammar rule to become that of the 

9-28 



following token name or literal. For example, to make unary 
minus have the same precedence as multiplication the rules might 
resemble: 

%left '+ ' 
, - , 

%left '* , '/ ' 

%% 

expr expr '+ ' expr 
expr 

, - , 
expr 

expr '* , expr 
expr '/ ' expr , , - expr %prec '* , 
NAME 

A token declared by %left, %right, and %nonassoc need not be, 
but may be, declared by %token as well. 

The precedences and associativities are used by yacc to resolve 
parsing conflicts; they give rise to disambiguating rules. Formally, 
the rules work as follows: 

1. The precedences and associativities are recorded for those 
tokens and literals that have them. 

2. A precedence and associativity is associated with each 
grammar rule; it is the precedence and associativity of the 
last token or literal in the body of the rule. If the % prec 
construction is used, it overrides this default. Some grammar 
rules have no precedence and associativity associated with 
them. 

3. When there is a reduce/reduce conflict, a shift/reduce 
conflict and either the input symbol or the grammar rule has 
no precedence and associativity, then the two disambiguating 
rules given at the beginning of the section are used, and the 
conflicts are reported. 

4. If there is a shift/reduce conflict, and both the grammar rule 
and the input character have precedence and associativity 
associated with them, then the conflict is resolved in favor of 
the action (shift or reduce) associated with the higher 

9-29 



precedence. If the precedences are the same, then the 
associativity is used; left associative implies reduce, right 
associative implies shift, and nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number 
of shift/reduce and reduce / reduce conflicts reported by yacc. 
This means that mistakes in the specification of precedences can 
disguise errors in the input grammar; it is a good idea to be 
sparing with precedences, and use them in an essentially 
cookbook fashion, until some experience is gained. The y.output 
file is very useful in deciding whether the parser is actually doing 
what was intended. 

Error Handling 

Error handling is an extremely difficult area because many of the 
problems are semantic ones. When an error is found, for 
example, it may be necessary to reclaim parse tree storage, delete 
or alter symbol table entries, and, typically, set switches to avoid 
generating any further output. 

It is seldom acceptable to stop all processing when an error is 
found. It is more useful to continue scanning the input to find 
further syntax errors. This leads to the problem of getting the 
parser restarted after an error. A general class of algorithms to 
perform this involves discarding a number of tokens from the 
input string, and attempting to adjust the parser so that input can 
continue. 

To allow the user some control over this process, yacc provides a 
simple, but reasonably general feature. The token name error is 
reserved for error handling. This name can be used in grammar 
rules; in effect, it suggests places where errors are expected, and 
recovery might take place. The parser pops its stack until it enters 
a state where the token error is legal. It then behaves as if the 
token error were the current lookahead token, and performs the 
action encountered. The lookahead token is then reset to the 
token that caused the error. If no special error rules have been 
specified, the processing halts when an error is detected. 

9-30 



To prevent a cascade of error messages, the parser, after detecting 
an error, remains in error state until three tokens have been 
successfully read and shifted. If an error is detected when the 
parser is already in error state, no message is given, and the input 
token is deleted. 

As an example, a rule of the form 

stat : error 

would, in effect, mean that on a syntax error the parser would 
attempt to skip over the statement where the error was seen. 
More precisely, the parser scans ahead, looking for three tokens 
that legally follow a statement, and starts processing at the first of 
these; if the beginnings of statements are not sufficiently 
distinctive, it can make a false start in the middle of a statement, 
and end up reporting a second error where there is in fact no 
error. 

Actions can be used with these special error rules. These actions 
might attempt to reinitialize tables, reclaim symbol table space, 
etc. 

Error rules such as the above are very general, but difficult to 
control. Somewhat easier are rules such as: 

stat : error I; I 

Here, when there is an error, the parser attempts to skip over the 
statement, but will do so by skipping to the next ';'. All tokens 
after the error and before the next';' cannot be shifted, and are 
discarded. When the ';' is seen, this rule is reduced, and any 
cleanup action associated with it performed. 

Another form of error rule arises in interactive applications, 
where it is desirable to permit a line to be reentered after an error. 
A possible error rule might be 

input: error I\nl { printf( "Reenter line: ");} input 
{ $$ = $4;} 

There is one potential difficulty with this approach; the parser 
must correctly process three input tokens before it admits that it 
has correctly resynchronized after the error. If the reentered line 

9-31 



contains an error in the first two tokens, the parser deletes the 
offending tokens, and gives no message; this is clearly 
unacceptable. For this reason, a mechanism can be used to force 
the parser to believe that an error has been fully recovered from. 
The statement: 

yyerrok ; 

in an action resets the parser to its normal mode. The last 
example is better written: 

input: error I\nl 
[ yyerrok; 

printf( "Reenter last line: II ); } 

input 
[ $$ = $4; } 

As mentioned above, the token seen immediately after the error 
symbol is the input token where the error was discovered. 
Sometimes, this is inappropriate; for example, an error recovery 
action might take upon itself the job of finding the correct place 
to resume input. In this case, the previous lookahead token must 
be cleared. The statement 

yyclearin ; 

in an action will have this effect. For example, suppose the action 
after error were to call some sophisticated resynchronization 
routine, supplied by the user, that attempted to advance the input 
to the beginning of the next valid statement. After this routine 
was called, the next token returned by yylex would presumably be 
the first token in a legal statement; the old, illegal token must be 
discarded, and the error state reset. This could be done by a rule 
like: 

stat error 

9-32 

{ resynch(); 
yyerrok ; 
yyclearin ; } 



These mechanisms are admittedly crude, but do allow for a 
simple, fairly effective recovery of the parser from many errors. 
Moreover, the user can get control to deal with the error actions 
required by other portions of the program. 

The yacc Environment 

When the user inputs a specification to yacc, the output is a file of 
C programs, called y. tab. c on most systems. The function 
produced by yacc is called yyparse; it is an integer valued function. 
When it is called, it in turn repeatedly calls yylex, the lexical 
analyzer supplied by the user to obtain input tokens. Eventually, 
either an error is detected, in which case (if no error recovery is 
possible) yyparse returns the value 1, or the lexical analyzer 
returns the endmarker token and the parser accepts. In this case, 
yyparse returns the value O. 

The user must provide a certain amount of environment for this 
parser in order to obtain a working program. For example, as 
with every C program, a program called main must be defined, 
that eventually calls yyparse. In addition, a routine called yyerror 
prints a message when a syntax error is detected. 

These two routines must be supplied in one form or another by 
the user. To ease the initial effort of using yacc, a library has 
been provided with default versions of main and yyerror. The 
name of this library is system dependent; on many systems the 
library is accessed by a -ly argument to the loader. To show the 
triviality of these default programs, the source is given below: 

9-33 



main(){ 

and 

return( yyparse() ); 
} 

# include <stdio.h> 

yyerror(s) char *s; { 
fprintf( stderr, "%s\n", s ); 
} 

The argument to yyerror is a string containing an error message, 
usually the string syntax error. The average application will want 
to do better than this. Ordinarily, the program should keep track 
of the input line number, and print it along with the message 
when a syntax error is detected. The external integer variable 
yychar contains the lookahead token number at the time the error 
is detected; this can give better diagnostics. Since the main 
program is probably supplied by the user (to read arguments, etc.) 
the yacc library is useful only in small projects, or in the earliest 
stages of larger ones. 

The external integer variable yydebug is normally set to o. If it is 
set to a nonzero value, the parser outputs a verbose description of 
its actions, including a discussion of the input symbols that have 
been read and what the parser actions are. Depending on the 
operating environment, you can possibly set this variable by using 
a de bugging system. 

Preparing Specifications 

This section contains miscellaneous hints on preparing efficient, 
easy to change, and clear specifications. The individual 
subsections are more or less independent. 

9-34 



Input Style 

It is difficult to provide rules with substantial actions and still 
have a readable specification file. 

1. Use uppercase letters for token names, lowercase letters for 
nonterminal names. This rule helps you to know where to 
place the blame when things go wrong. 

2. Put grammar rules and actions on separate lines. This allows 
either to be changed without an automatic need to change 
the other. 

3. Put all rules with the same left hand side together. Put the 
left hand side in only once, and let all following rules begin 
with a vertical bar. 

4. Put a semicolon only after the last rule with a given left hand 
side, and put the semicolon on a separate line. This allows 
new rules to be easily added. 

5. Indent rule bodies by two tab stops, and action bodies by 
three tab stops. 

The examples in the text of this section follow this style (where 
space permits). The user must decide about these stylistic 
questions; the central problem, however, is to make the rules 
visible through the morass of action code. 

Left Recursion 

The algorithm used by the yacc parser encourages so called left 
recursive grammar rules: rules of the form 

These rules frequently arise when writing specifications of 
sequences and lists: 

9-35 



list 

and 

item 
list I I 

seq item 
seq item 

item 

In each of these cases, the first rule is reduced for the first item 
only, and the second rule is reduced for the second and all 
succeeding items. 

With right recursive rules, such as 

seq item 
item seq 

the parser is a bit bigger, and the items are seen, and reduced, 
from right to left. More seriously, an internal stack in the parser 
is in danger of overflowing if a very long sequence were read. 
Thus, the user should use left recursion wherever reasonable. 

It is worth considering whether a sequence with zero elements has 
any meaning, and if so, consider writing the sequence 
specification with an empty rule: 

seq /* empty */ 
seq item 

Once again, the first rule is always reduced exactly once, before 
the first item is read, and then the second rule is reduced once for 
each item read. Permitting empty sequences often leads to 
increased generality. However, conflicts might arise if yacc is 
asked to decide which empty sequence it has seen, when it hasn't 
seen enough to know! 

9-36 



Lexical Tie-ins 

Some lexical decisions depend on context. For example, the 
lexical analyzer might want to delete blanks normally, but not 
within quoted strings. Or names are entered into a symbol table 
in declarations, but not in expressions. 

One way of handling this situation is to create a global flag that is 
examined by the lexical analyzer and set by actions. For example, 
suppose a program consists of 0 or more declarations, followed by 
o or more statements. Consider: 

%{ 
int dfl ag; 

%} 
other declarations 

%% 

prog decls stats 

decls /* empty */ 
{ dflag 1 ; } 

decls declaration 

stats /* empty */ 
{ dflag 0; } 

stats statement 

other rules 

The flag dflag is now 0 when reading statements, and 1 when 
reading declarations, except for the first token in the first 
statement. This token must be seen by the parser before it can 
tell that the declaration section has ended and the statements have 
begun. In many cases, this single token exception does not affect 
the lexical scan. 

This kind of back door approach can be overdone. Nevertheless, 
it represents a way of doing some things that are difficult to do 
otherwise. 

9-37 



Handling Reserved Words 

Some programming languages permit the user to use words like if, 
which are normally reserved as label or variable names, provided 
that such use does not conflict with the legal use of these names 
in the programming language. This is extremely hard to do in the 
framework of yacc ; it is difficult to pass information to the lexical 
analyzer telling it "this instance of 'if' is a keyword, and that 
instance is a variable." The user can make a stab at it, but it is 
difficult. It is best that keywords be reserved; that is, be 
forbidden for use as variable names. 

Simulating Error and Accept in Actions 

The parsing actions of error and accept are simulated in an action 
by use of macros YYACCEPT and YYERROR. YYACCEPT 
causes yyparse to return the value 0; YYERROR causes the parser 
to behave as if the current input symbol had been a syntax error; 
yyerror is called, and error recovery takes place. These 
mechanisms are used to simulate parsers with multiple 
endmarkers or context-sensitive syntax checking. 

Accessing Values in Enclosing Rules 

An action can refer to values returned by actions to the left of the 
current rule. The mechanism is simply the same as with ordinary 
actions, a dollar sign followed by a digit, but in this case the digit 
is 0 or negative. Consider: 

9-38 



sent 

adj 

adj noun verb adj noun 
{ look at the sentence 

THE {$$ 
YOUNG { $$ 

THE; } 
YOUNG; } 

noun DOG {$$ = DOG; } 
CRONE { if( $0 == YOUNG ){ 

} 

printf( "what?\n" ); 
} 

$$ CRONE; 

} 

In the action following the word CRONE, a check is made that 
the preceding token shifted was not YOUNG. Obviously, this is 
only possible when a great deal is known about what might 
precede the symbol noun in the input. There is also a distinctly 
unstructured flavor about this. Nevertheless, at times this 
mechanism saves a great deal of trouble, especially when a few 
combinations are excluded from an otherwise regular structure. 

Supporting Arbitrary Value Types 

By default, the values returned by actions and the lexical analyzer 
are integers. The yacc program generator can also support values 
of other types including structures. In addition, yacc keeps track 
of the types, and inserts appropriate union member names so that 
the resulting parser is strictly type checked. The yacc value stack 
is declared to be a union of the various types of values desired. 
The user declares the union, and associates union member names 
to each token and nonterminal symbol having a value. When the 
value is referenced through a $$ or $n construction, yacc 
automatically inserts the appropriate union name, so that no 
unwanted conversions take place. In addition, type checking 
commands such as lint (C) will be far more silent. 

9-39 



Three mechanisms provide for this typing. First, a way of 
defining the union must be done by the user since other programs, 
notably the lexical analyzer, must know about the union member 
names. Second, there is a way of associating a union member 
name with tokens and nonterminals. Finally, there is a 
mechanism for describing the type of those few values where yacc 
cannot easily determine the type. 

To declare the union, the user includes in the declaration section: 

%union { 
body of union 
} 

This declares the yacc value stack, and the external variables 
yylval and yyval, to have type equal to this union. If yacc was 
invoked with the -d option, the union declaration is copied onto 
the y.tab.h file. Alternatively, the union can be declared in a 
header file, and a typedef used to define the variable YYSTYP E to 
represent this union. Thus, the header file might also have said: 

typedef union { 
body of union 

} YYSTYPE; 

The header file must be included in the declarations section, by 
use of %{ and %}. 

Once YYSTYP E is defined, the union member names must be 
associated with the various terminal and nonterminal names. The 
construction 

< name > 

is used to indicate a union member name. If this follows one of 
the keywords %token, %left, %right, and %nonassoc, the union 
member name is associated with the tokens listed. Thus, saying: 

%left <optype> 1+1 
1 _ 1 

causes any reference to values returned by these two tokens to be 
tagged with the union member name optype. Another keyword, 
% type, similarly to associates union member names with 
nonterminals. Thus, one might say: 

9-40 



%type <nodetype> expr stat 

A couple of cases remain where these mechanisms are 
insufficient. If there is an action within a rule, the value returned 
by this action has no predefined type. Similarly, reference to left 
context values (such as $0 previously discussed) leaves yacc with 
no easy way of knowing the type. In this case, a type can be 
imposed on the reference by inserting a union member name, 
between < and>, immediately after the first $. An example of 
this usage is: 

rule aaa { $<intval>$ = 3; } bbb 
{ fun( $<intval>2, $<other>Q ); } 

This syntax has little to recommend it, but the situation arises 
rarely. 

A sample specification is given in a later section. The facilities in 
this subsection are not triggered until used: in particular, the use 
of % type turns on these mechanisms. When used, there is a 
fairly strict level of checking. For example, use of $n or $$ to 
refer to something with no defined type is diagnosed. If these 
facilities are not triggered the yacc value stack is used to hold 
int's, as was true historically. 

A Small Desk Calculator 

This example gives the complete yacc specification for a small 
desk calculator: the desk calculator has 26 registers, labeled a 
through Z, and accepts arithmetic expressions made up of the 
operators +, -, *, /, % (mod operator), & (bitwise and), I 
(bitwise or), and assignment. 

If an expression at the top level is an assignment, the value is not 
printed; otherwise it is. As in C, an integer that begins with 0 
(zero) is assumed to be octal; otherwise, it is assumed to be 
decimal. 

9-41 



As an example of a yacc specification, the desk calculator does a 
reasonable job of showing how precedences and ambiguities are 
used, and demonstrating simple error recovery. The major 
oversimplifications are that the lexical analysis phase is much 
simpler than for most applications, and the output is produced 
immediately, line by line. Note the way that decimal and octal 
integers are read in by the grammar rules. This job is probably 
better done by the lexical analyzer. 

%{ 
# include <stdio.h> 
# include <ctype.h> 

int regs[26J; 
int base; 

%} 

%start list 

%token DIGIT LETTER 

%left III 
%left 1&1 

%1 eft I + I I _ I 

%1 eft I * I 1/1 I % I 
%left UMINUS /* precedence for unary minus */ 

%% /* beginning of rules section */ 

list /* empty */ 
list stat I \n l 

1 ist error I \n I 
{ yyerrok; } 

stat expr 

9-42 

{ printf( "%d\n", $1 ); } 
LETTER 1=1 expr 

{ regs[$lJ = $3; } 



expr 1(1 expr 1)1 

number 

{$$ $2;} 
expr 1+1 expr 

{ $$ = $1 + $3; } 
expr I_I expr 

{ $$ = $1 - $3; } 
expr 1*1 expr 

{ $$ = $1 * $3; } 
expr 1/1 expr 

{ $$ = $1 / $3; } 
expr 1%1 expr 

{ $$ = $1 % $3; } 
expr 1&1 expr 

{ $$ = $1 & $3; } 
expr I I I expr 

{ $$ = $1 I $3; } 
I_I expr %prec UMINUS 

{$$ - $2; } 
LETTER 

{ $$ = regs[$l]; } 
number 

DIGIT 
{ $$ = $1; base = ($1==0) ? 8 10;} 

number DIGIT 
{ $$ = base * $1 + $2; } 

9-43 



%% /* start of programs */ 

yyl ex () { /* lexical analysis routine */ 
/* returns LETTER for a lowercase letter, */ 
/* yylval = 0 through 25 */ 
/* return DIGIT for a digit, */ 
/* yylval = 0 through 9 */ 
/* all other characters */ 
/* are returned immediately */ 

int c; 

while( (c=getchar()) I I) {/* skip blanks */ } 

/* c is now nonblank */ 

i f( is lower( c ) ) { 

yylval c - I a I ; 

return LETTER ); 
} 

i f( isdigit( c ) ) { 

yylval c - 10 1 ; 
return( DIGIT ) ; 
} 

return( c ); 
} 

The yacc Input Syntax 

This section has a description of the yacc input syntax, as a yacc 
specification. Context dependencies, and the like, are not 
considered. Ironically, the yacc input specification language is 
most naturally specified as an LR(2) grammar; the sticky part 
comes when an identifier is seen in a rule immediately following 
an action. If this identifier is followed by a colon, it is the start of 
the next rule; otherwise it is a continuation of the current rule, 
which just happens to have an action embedded in it. As 
implemented, the lexical analyzer looks ahead after seeing an 
identifier and decides whether the next token (skipping blanks, 
newlines, comments, etc.) is a colon. If so, it returns the token 

9-44 



C IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals 
(quoted strings) are also returned as IDENTIFIER, but never as 
part of C_IDENTIFIER. 

/* grammar for the input to yacc */ 

/* basic entities */ 
%token IDENTIFIER /* includes identifiers and literals */ 
%token C_IDENTIFIER /* identifier followed by colon */ 
%token NUMBER /* [0-9J+ */ 

/* reserved words: %type => TYPE, %left => LEFT, etc.*/ 

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

%token MARK 
%token LCURL 
%token RCURL 

/* the %% mark */ 
/* the %{ mark */ 
/* the %} mark */ 

/* ascii character literals stand for themselves */ 

%start spec 

%% 

spec defs MARK rules tail 

tail MARK Eat up the rest of the file} 
/* empty: the second MARK is optional */ 

defs /* empty */ 
defs def 

def START IDENTIFIER 
UNION {Copy union definition to output} 
LCURL {Copy C code to output file} RCURL 
ndefs rword tag nlist 

9-45 



rword TOKEN 
LEFT 
RIGHT 
NONASSOC 
TYPE 

tag /* empty: union tag is optional */ 
1<1 IDENTIFIER 1>1 

nlist nmno 
nlist 
nlist 

nmno 
I I nmno 

nmno IDENTIFIER /* Literal illegal with %type */ 
IDENTIFIER NUMBER /* Illegal with %type */ 

/* rules section */ 

rules C IDENTIFIER rbody prec 
rules rule 

rule C IDENTIFIER rbody prec 
ITI rbody prec 

rbody 

act 

/* empty */ 
rbody IDENTIFIER 
rbody act 

I { I Copy action, translate $$, etc. } I} I 

prec /* empty */ 

9-46 

PREC IDENTIFIER 
PREC IDENTIFIER act 
prec I. I , 



An Advanced Example 

This section gives an example of a grammar using some of the 
advanced features discussed in earlier sections. The desk 
calculator example is modified to provide a desk calculator that 
does floating-point interval arithmetic. The calculator 
understands floating-point constants, the arithmetic operations +, 
-, *, /, unary -, and = (assignment), and has 26 floating-point 
variables, a through z. Moreover it also understands intervals, 
written: 

( x , y 

where x is less than or equal to y. There are 26 interval valued 
variables A through Z that are also used. Assignments return no 
value, and print nothing, while expressions print the (floating or 
interval) value. 

This example explores a number of interesting features of yacc 
and C. Intervals are represented by a structure, consisting of the 
left and right endpoint values, stored as a double-precision values. 
This structure is given a type name, INTER VAL, by using typedef. 
The yacc value stack can also contain floating-point scalars, and 
integers (used to index into the arrays holding the variable 
values). This entire strategy depends strongly on the ability to 
assign structures and unions in C. In fact, many of the actions 
call functions that return structures as well. 

It is also worth noting the use of YYERROR to handle error 
conditions: division by an interval containing 0, and an interval 
presented in the wrong order. In effect, the error recovery 
mechanism of yacc throws away the rest of the offending line. 

In addition to the mixing of types on the value stack, this 
grammar also demonstrates an interesting use of syntax to keep 
track of the type (for example, scalar or interval) of intermediate 
expressions. A scalar can be automatically promoted to an 
interval if the context demands an interval value. This causes a 
large number of conflicts when the grammar is run through yacc: 
18 Shift/Reduce and 26 Reduce/Reduce. The problem is seen by 
looking at the two input lines: 

9-47 



2.5 + ( 3.5 - 4. ) 

and 

2.5 + ( 3.5 , 4. ) 

The 2.5 is used in an interval valued expression in the second 
example, but this fact is not known until the comma (,) is read; by 
this time, 2.5 is finished, and the parser cannot go back and 
change the value. More generally, it might be necessary to look 
ahead an arbitrary number of tokens to decide whether to convert 
a scalar to an interval. This problem is circumvented by having 
two rules for each binary interval valued operator: one when the 
left operand is a scalar, and one when the left operand is an 
interval. In the second case, the right operand must be an 
interval, so the conversion is applied automatically. However, 
there are still many cases where the conversion may be applied or 
not, leading to the above conflicts. They are resolved by listing 
the rules that yield scalars first in the specification file; in this 
way, the conflicts are resolved in the direction of keeping scalar­
valued expressions scalar-valued until they are forced to become 
intervals. 

This way of handling multiple types is very instructive, but not 
very general. If there were many kinds of expression types, 
instead of just two, the number of rules needed would increase 
dramatically, and the conflicts even more dramatically. Thus, 
while this example is instructive, it is better practice in a more 
normal programming language environment to keep the type 
information as part of the value, and not as part of the grammar. 

Finally, a word about the lexical analysis. The only unusual 
feature is the treatment of floating-point constants. The C library 
routine alof is used to do the actual conversion from a character 
string to a double-precision value. If the lexical analyzer detects 
an error, it responds by returning a token that is illegal in the 
grammar, provoking a syntax error in the parser, and thence error 
recovery. 

9-48 



%{ 

# include <stdio.h> 
# include <ctype.h> 

typedef struct interval 
double 10, hi; 
} INTERVAL; 

INTERVAL vmu1(), vdiv(); 

double atof(); 

double dreg[ 26 J; 
INTERVAL vreg[ 26 J; 

%} 

%start 1 i nes 

%union 
int iva 1 ; 
double dva1 ; 
INTERVAL vva1 ; 
} 

%token <iva1> DREG VREG 

%token <dva1> CONST 

%type <dva1> dexp 

%type <vva1> vexp 

/* indices into dreg, vreg arrays*/ 

/* floating-point constant */ 

/* expression */ 

/* interval expression */ 

/* precedence information about the operators */ 

%left 
%left 
%left 

1+ 1 1_ 1 

1*1 1/1 

UMINUS /* precedence for unary minus */ 

9-49 



%% 

lines /* empty */ 
lines line 

line dexp '\n' 
{ printf( 1%15.8f\n", $1 ); } 

vexp '\n' 
{ printf( "(%15.8f, %15.8f )\n", 

$1.10, $1.hi ); } 
DREG '=' dexp '\n' 

{ dreg[$lJ = $3; } 
VREG ' = ' vexp , \ n ' 

{vreg[$lJ $3;} 
error '\n' 

{ yyerrok; } 

dexp CONST 

9-50 

DREG 
{ $$ = dreg[$lJ; } 

dexp '+' dexp 
{ $$ = $1 + $3; } 

dexp I_I dexp 
{ $$ = $1 - $3; } 

dexp '*' dexp 
{ $$ = $1 * $3; } 

dexp III dexp 
{ $$ = $1 / $3; } 

I_I dexp %prec UMINUS 
{ $$ = - $2; } 

, (' dexp ')' 
{ $$ = $2; } 



vexp dexp 
{ $$.hi = $$.10 = $1; } 

1 (I dexp I, 1 dexp I) 1 
{ 

$$.10 = $2; 
$$.hi = $4; 
if( $$.10 > $$.hi ){ 

printf("interva1 out of order \n"); 
YYERROR; 
} 

} 

VREG 
{ $$ = vreg[$lJ; } 

vexp 1+1 vexp 
{ $$.hi = $1. hi + $3.hi; 

$$.10 = $1.10. + $3. 1 0; } 
dexp 1+1 vexp 

{ $$.hi = $1 + $3.hi; 
$$.10 = $1 + $3.10.; } 

vexp 1 - 1 vexp 
{ $$.hi = $1.hi - $3. 10; 

$$.10 = $1. 10. - $3.hi; } 

dexp 1 - 1 vexp 
{ $$.hi = $1 - $3.10; 

$$.10. = $1 - $3.;} 
vexp 1*1 vexp 

{ $$ = vmul( $1.10, $1. hi, $3 ) ; } 

dexp 1* 1 vexp 
{ $$ = vmu1( $1 , $1 , $3 ) ; } 

vexp 1/1 vexp 
{ if ( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1. 10, $1. hi, $3 ) ; } 

9-51 



%% 

dexp III vexp 
{ if ( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1, $1, $3 ); } 
I_I vexp %prec UMINUS 

{ $$.hi = -$2.10.; $$.10. = -$2.hi; } 
I (I vexp I) I 

{ $$ = $2; } 

# define BSZ 50 1* buffer size for fp numbers *1 

1* lexical analysis *1 

yyl ex() { 

9-52 

register c; 
while( ( c = getchar() ) == I I ) 

{ 1* skip over blanks *1 } 
if ( isupper(c) ){ 

yylval.ival = c - IAI; 
return( VREG ); 
} 

if ( islower(c) ){ 
yylval.ival = c - la l ; 
return( DREG ); 
} 

if( isdigit( c ) I I C==I. I ){ 
1* gobble up digits, points, exponents *1 

char buf[BSZ+1J, *cp = buf; 
int dot = 0, exp = 0; 



for( (cp-buf)<BSZ; ++cp,c=getchar() ){ 

*cp = c; 
if ( isdigit(c) ) continue; 
if ( c == I. I ) { 

if ( dot++ I I exp ) return ( I. I ); 

/* above causes syntax error */ 
continue; 
} 

if (c lei) { 
if ( exp++ ) return ( I e I ); 

/* above causes syntax error */ 
continue; 
} 

/* end of number */ 
break; 
} 

*cp= 1\0 1; 
if( (cp-buf) >= BSZ ) 

pri ntf ( II cons tant too long: truncated \ nil) 
else ungetc( c, stdin ); 

/* above pushes back last char read */ 
yylval.dval = atof ( buf ); 
return( CONST ); 
} 

return( c ); 
} 

9-53 



INTERVAL hilo( a, b, c, d) double a, b, c, d; { 
/* returns the smallest interval containing a, b, c, and d */ 
/* used by *, / routines */ 
INTERVAL v; 

if( a>b ) { v.hi = a; v.lo b;} 
else { v.hi = b; v.lo = a; 
if( c>d ) { 

else 

if ( c>v.hi ) v.hi C; 
if ( d<v.lo ) v.lo d; 
} 

if ( d>v.hi) v.hi = d; 
if ( c<v.lo ) v.lo = C; 
} 

return( v ); 
} 

INTERVAL vmul ( a, b, v ) double a, b; INTERVAL V; { 
return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo) ) 
} 

dcheck( v ) INTERVAL V; { 
if( v.hi >= O. && v.lo <= O. ){ 

printf( "divisor interval contains O. \n" ); 
return(l); 
} 

return(O) ; 
} 

INTERVAL vdiv( a, b, v) double a, b; INTERVAL V; { 
return( hilo( a/v.hi, a/v.lo, b/v.hi,/v.lo) ); 

9-54 



Old Features 

This section mentions synonyms and features supported for 
historical continuity, but, for various reasons, not encouraged. 

1. Literals can also be delimited by double quotation marks ("). 

2. Literals can be more than 1 character long. If all the 
characters are alphabetic, numeric, or underscore, the type 
number of the literal is defined, just as if the literal did not 
have the quotation marks around it. Otherwise, it is difficult 
to find the value for such literals. The use of multicharacter 
literals is likely to mislead those unfamiliar with yacc, since it 
suggests that yacc is doing a job that must actually be done 
by the lexical analyzer. 

3. Most places where percent (%) is legal, backslash (\) can 
be used. In particular, the double backslash (\ \) is the same 
as % %, \ left the same as %left, etc. 

4. There are a number of other synonyms: 

%< ;s the same as %left 
%> ;s the same as %r;ght 
%b;nary and %2 are the same as %nonassoc 
%0 and %term are the same as %token 
%= ;s the same as %prec 

5. Actions also have the form: 

={ } 

and the curly braces can be dropped if the action is a single 
C statement. 

6. C code between % { and %} used to be permitted at the 
head of the rules section, as well as in the declaration section. 

9-55 



9-56 



Chapter 10. The C Shell 

Contents 

Introduction 10-3 

Invoking the C Shell ........... . . . . . . . . . . . . . . . . . . .. 10-3 

U sing Shell Variables .............................. 10-5 

U sing the C Shell History List ....................... 10-7 

Using Aliases ................................... 10-10 

Redirecting Input and Output ....................... 10-12 

Creating Background and Foreground Jobs ............. 10-13 

Using Built-In Commands 

Creating Command Scripts 

10-14 

10-16 

U sing the argv Variable ........................... 10-16 

Substituting Shell Variables ........................ 10-17 

Using Expressions ............................... 10-20 

Using the C Shell: A Sample Script .................. 10-21 

Using Other Control Structures ..................... 10-24 

Supplying Input to Commands ...................... 10-25 

Catching Interrupts .............................. 10-26 

Using Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-26 

10-1 



Starting a Loop at a Terminal 10-27 

U sing Braces with Arguments 10-28 

Substituting Commands ........................... 10-29 

Special Characters ............................... 10-29 
Syntactic Metacharacter ....................... 10-29 
Filename Metacharacters ...................... 10-30 
Quotation Metacharacters ...................... 10-30 
Input/Output Metacharacters ................... 10-30 
Expansion/Substitution Metacharacters ........... 10-31 
Other Metacharacters ......................... 10-31 

10-2 



Introduction 

The C shell program, csh, is a command language interpreter for 
XENIX system users. The C shell, like the standard XENIX shell 
sh, is an interface between you and the XENIX commands and 
programs. It translates command lines typed at a terminal into 
corresponding system actions, gives access to information, such as 
your login name, home directory, and mailbox, and lets you 
construct shell procedures for automating system tasks. 

This chapter explains how to use the C shell. It also explains the 
syntax and function of C shell commands and features, and shows 
how to use these features to create shell procedures. The C shell 
is fully described in csh (CP) in the IBM Personal Computer 
XENIX Software Command Reference. 

Invoking the C Shell 

To invoke the C shell from another shell, use the csh command. 
Type: 

csh 

at the standard shell's command line. To direct the system to 
invoke the C shell when you log in, give the C shell as your login 
shell in your / etc / passwd file entry, and the· system automatically 
starts the shell when you log in. 

After the system starts the C shell, the shell the home directory 
for the command files .cshrc and .login. If the shell finds the 
files, it executes the commands contained in them, then displays 
the C shell prompt. 

The cshrc file contains the commands you wish to execute each 
time you start a C shell, and the .login file contains the commands 
you wish to execute after logging in to the system. For example, 
the following is the contents of a typical .login file: 

10-3 



set ignoreeof 
set mail=(/usr/spool/mail/bill) 
set time=15 
set history=10 
mail 

This file contains several set commands. The set command is 
executed directly by the C shell; there is no corresponding 
XENIX program for this command. The set command sets the C 
shell variable "ignoreeof" that shields the C shell from logging out 
if Ctrl-D is hit. Instead of Ctrl-D , the logout command is used to 
log out of the system. By setting the "mail" variable, the C shell 
is notified that it is to watch for incoming mail and notify you if 
new mail arrives. 

Next the C shell variable "time" is set to 15 causing the C shell to 
automatically print out statistics lines for commands that execute 
for at least 15 seconds of CPU time. The variable "history" is set 
to 10 indicating that the C shell will remember the last 10 
commands typed in its history list, (described later). 

Finally, the XENIX mail program is invoked. 

When the C shell finishes processing the .login file, it begins 
reading commands from the terminal, prompting for each with: 

01 
10 

When you log out (by giving the logout command) the C shell 
prints 

logout 

and executes commands from the file logout if it exists in the 
home directory. After that, the C shell terminates and the 
XENIX system logs you off. 

10-4 



Using Shell Variables 

The C shell maintains a set of variables. For example, in the 
above discussion, the variables "history" and "time" had the 
values 10 and 15. Each C shell variable has as its value an array 
of zero or more strings. C shell variables are assigned values by 
the set command, which has several forms. The most useful is: 

set name=value 

C shell variables store values that are used later in commands 
through a substitution mechanism. The C shell variables most 
commonly referenced are, however, those that the C shell itself 
refers to. By changing the values of these variables you can 
directly affect the behavior of the C shell. 

One of the most important variables is "path." This variable 
contains a list of directory names. When you type a command 
name at your terminal, the C shell examines each named directory 
in turn, until it finds an executable file whose name corresponds 
to the name you typed. The set command with no arguments 
displays the values of all variables currently defined in the C shell. 
The following example shows a typical default values: 

argv 
home 
path 
prompt 
shell 
status 

() 
Ius r fbi 11 
(. /bin /usr/bin) 
% 
/bin/csh 
o 

This output indicates that the variable "path" begins with the 
current directory indicated by dot (.), then / bin, and / usr / bin. 
Your own local commands can be in the current directory. 
Normal XENIX commands reside in / bin and / usr / bin. 

Sometimes a number of locally developed programs reside in the 
directory / usr / local. If you want all C shells that you invoke to 
have access to these new programs, place the command 

set path=(. /bin /usr/bin /usr/local) 

10-5 



in the .cshrc file in the home directory. Try doing this, then 
logging out and back in. Type: 

set 

to see that the value assigned to "path" has changed. 

When you log in the C shell examines each directory that you 
insert into the path and determines which commands are 
contained there, except for the current directory which the C shell 
treats specially. This means that if commands are added to a 
directory in your search path after you have started the C shell, 
they will not necessarily be found. To use a command added after 
you have logged in, you should give the command: 

rehash 

to the C shell. The rehash command causes the shell to 
recompute its internal table of command locations, so that it will 
find the newly added command. Since the C shell has to look in 
the current directory on each command anyway, placing it at the 
end of the path specification usually works best and reduces 
overhead. 

Other useful built in variables are "home" that shows the home 
directory, and "ignoreeof" that can be set in your . login file to tell 
the C shell not to exit when it receives an end-of-file from a 
terminal. The variable "ignoreeof" is one of several variables 
whose value the C shell does not care about; the C shell is only 
concerned with whether these variables are set or unset. Thus, to 
set "ignoreeof" simply type: 

set ignoreeof 

and to unset it type 

unset ignoreeof 

Some other useful built-in C shell variables are "noc1obber" and 
"mail". The syntax: 

>filename 

10-6 



that redirects the standard output of a command just as in the 
regular shell, overwrites and destroys the previous contents of the 
named file. In this way, you may accidentally overwrite a 
valuable file. To avoid having the C shell overwrite files in this 
way, you can: 

set noclobber 

in your . login file. Then typing: 

date > now 

causes an error message if the file now already exists. You can 
type: 

date >1 now 

to overwrite the contents of now. The >! is a special syntax 
indicating that overwriting or "clobbering" the file is all right. 
The space between the exclamation point (!) and the word "now" 
is critical here, as "!now" would be an invocation of the history 
mechanism, described below, and have a totally different effect. 

V sing the C Shell History List 

The C shell can maintain a history list into which it places the text 
of previous commands. It is possible to use a notation that reuses 
commands, or words from commands, in forming new commands. 
This mechanism repeats previous commands or corrects minor 
typing mistakes in commands. 

The following figure gives a sample session involving typical usage 
of the history mechanism of the C shell. Boldface indicates user 
input: 

0/0 cat bug.c 
mainO 
{ 

printf( "hello); 
} 

10-7 



%ee !$ 
cc bug.c 
bug.c( 4) : warning: Newline in string constant 
bug.c( 4) : syntax error: '}' 
0/0 ed!$ 
ed bug.c 
29 
3s/);/" &/p 

printf("hello") ; 
w 
30 
q 
0/0 !e 
cc bug.c 
bug.c 
0/0 a.out 
hello % !e 
ed bug.e 
30 
3s/lo/lo \ \n/p 

printf("hello \n"); 
w 
32 
q 
01<> !e -0 bug 
cc bug.c -0 bug 
bug.c 
0/0 size a.out bug 
a.out: 4176 + 496 + 1072 = 5744 = Ox1670 
bug.c 4176 + 496 + 1072 = 5744 = Ox1670 
0/0 Is -I !* 
Is -I a.out bug 
-rwxr-xr-x 1 bill 
-rwxr-xr-x 1 bill 
0/0 bug 
hello 
0/0 pr bug.e I Ipt 

5898 Dec 19 09:41 a.out 
5898 Dec 19 09:42 bug 

Ipt: Command not found. 
0/0 A Ipt A Ipr 
pr bug.c I Ipr 
% 

10-8 



This example demonstrates a very simple C program with a bug or 
two in the file bug. c, that we cat out on our terminal. We then try 
to run the C compiler on it, referring to the file again as "!$", 
meaning the last argument to the previous command. Here the 
exclamation mark (!) is the history mechanism invocation 
metacharacter, and the dollar sign ($) stands for the last 
argument, by analogy to the dollar sign in the editor that stands 
for the end-of-line. The C shell echoed the command, as it would 
have been typed without use of the history mechanism, and then 
executed the command. The compilation yielded error 
diagnostics, so we now edit the file we are trying to compile, fix 
the bug, and run the C compiler again, this time referring to this 
command simply as "!c", which repeats the last command that 
started with the letter" c". If there were other commands 
beginning with the letter "c" executed recently, we could have 
said "!cc" or even "!cc:p" which prints the last command starting 
with "cc" without executing it, so that you can check to see 
whether you really want to execute a given command. 

After this recompilation, we ran the resulting a.out file, and then 
noting that there still was a bug, ran the editor again. After fixing 
the program we ran the C compiler again, but tacked onto the 
command an extra "-0 bug" telling the compiler to place the 
resultant binary in the file bug rather than a.out. In general, the 
history mechanisms are used anywhere in the formation of new 
commands, and other characters are placed before and after the 
substituted commands. 

We then ran the size command to see how large the binary 
program images we have created were, and then we ran an "Is -I" 
command with the same argument list, denoting the argument list: 

!* 

Finally, we ran the program bug to see that its output is indeed 
correct. 

To make a listing of the program, we ran the pr command on the 
file bug.c. To print the listing at a line printer, we piped the 
output to Ipr , but misspelled it as "lpt". To correct this we used a 
C shell substitute, placing the old text and new text between caret 
( A) characters. This is similar to the substitute command in the 
editor. 

10-9 



Other mechanisms are available for repeating commands. The 
history command prints out a numbered list of previous 
commands. You can then refer to these commands by number. 
There is a way to refer to a previous command by searching for a 
string that appeared in it, and there are other, less useful, ways to 
select arguments to include in a new command. A complete 
description of all these mechanisms is given in csh (CP) the IBM 
Personal Computer XENIX Software Command Reference. 

U sing Aliases 

The C shell has an alias mechanism that can make 
transformations on commands immediately after you input them. 
This mechanism: 

• Simplifies the commands you type 

• Supplies default arguments to commands 

or 

• Performs transformations on commands and their arguments. 

The alias facility is similar to a macro facility. Some of the 
features obtained by aliasing can be obtained also using C shell 
command files, but these take place in another instance of the C 
shell and cannot directly affect the current C shell's environment 
or involve commands such as cd which must be done in the 
current C shell. 

For example, suppose a new version of the mail program is on the 
system called newmail, and you wish to use this instead of the 
standard mail program mail. If you place the C shell command: 

alias mail newmail 

in your .cshrc file, the C shell transforms an input line of the 
form: 

rna il bi 11 

10-10 



into a call on newmail. Suppose you wish the command Is to 
always show sizes of files, that is, to always use the -s option. In 
this case, use the alias command to do: 

alias 15 ls -s 

or even: 

alias dir ls -s 

creating a new command named dir. Then type: 

di r "'bill 

the C shell translates this to: 

ls -s /u5r/bill 

The tilde ("') is a special C shell symbol that represents the user's 
home directory. 

Thus the alias command can be used to provide short names for 
commands, to provide default arguments, and to define new short 
commands in terms of other commands. It is also possible to 
define aliases that contain multiple commands or pipelines, 
showing where the arguments to the original command are to be 
substituted using the facilities of the history mechanism. Thus the 
definition: 

alias cd Icd \!* ; ls I 

specifies an Is command after each cd command. The entire alias 
definition is enclosed in single quotation marks (') to prevent 
most substitutions from occurring and to prevent the semicolon 
(;) from being recognized as a metacharacter. The exclamation 
mark (!) is escaped with a backslash (\) to prevent it from being 
interpreted when the alias command is typed in. The" \ !*" here 
substitutes the entire argument list to the prealiasing cd command; 
no error is given if there are no arguments. The semicolon 
separating commands indicates one command is to be done and 
then the next is to be done. Similarly the following example 
defines a command that looks up its first argument in the 
password file. 

10-11 



alias whois Igrep \!A /etc/passwd l 

The C shell currently reads the .cshrc file each time it starts up. 
Try to limit the number of aliases you have; 10 or 15 is a 
reasonable number. Too many aliases cause system delays and 
sluggishness when you execute commands from within an editor 
or other programs. Also, C shells tend to start slowly. 

Redirecting Inpu t and Ou tpu t 

In addition to the standard output, commands also have a 
diagnostic output normally directed to the terminal even when the 
standard output is redirected to a file or a pipe. It is occasionally 
useful to direct the diagnostic output along with the standard 
output. For instance, if you want to redirect the output of a long 
running command into a file and wish to have a record of any 
error diagnostic it produces you can type: 

command >& file 

The ">&" here tells the C shell to route both the diagnostic 
output and the standard output into file. Similarly you can give 
the command: 

command 1& lpr 

to route both standard and diagnostic output through the pipe to 
the lineprinter. The form: 

command >&1 file 

is used when "noclobber" is set and file already exists. 

Finally, use the form: 

command » file 

to append output to the end of an existing file. If "noclobber" is 
set, then an error results if file does not exist, otherwise the C 
shell appends the output to file. The form: 

10-12 



command »! file 

lets you append to a file even if it does not exist and "noc1obber" 
is set. 

Creating Background and Foreground 
Jobs 

When one or more commands are typed together as a pipeline or 
as a sequence of commands separated by semicolons, a single job 
is created by the C shell consisting of these commands together as 
a unit. Single commands without pipes or semicolons create the 
simplest jobs. Usually, every line typed to the C shell creates a 
job. Each of the following lines creates a job: 

sort < data 
1 s -s I sort -n I head -5 
mail harol d 

If the ampersand metacharacter (&) is typed at the end of the 
commands, then the job is started as a background job. This 
means that the C shell does not wait for the job to finish, but 
instead, immediately prompts for another command. The job 
runs in the background at the same time that normal jobs, called 
foreground jobs, continue to be read and executed by the C shell. 
Thus 

du > usage & 

runs the du program, that: 

• Reports on the disk usage of your working directory 

• Puts the output into the file usage 

and 

• Returns immediately with a prompt for the next command 
without waiting for du to finish. 

10-13 



The du program continues executing in the background until it 
finishes, even though you can type and execute more commands 
in the meantime. Background jobs are unaffected by any signals 
from the keyboard such as the Interrupt (Del) or Quit (Ctrl \) 
signals. 

The kill command terminates a background job immediately. 
Normally, this is done by specifying the process number of the 
job you want killed. Process numbers can be found with the ps 
command. 

Using Built-In Commands 

This section explains how to use some of the built-in C shell 
commands. 

The alias command described above assigns new aliases and 
displays existing aliases. If given no arguments, alias prints the list 
of current aliases. You can also give it one argument, to show the 
current alias for a given string of characters. For example: 

alias ls 

prints the current alias for the string "Is". 

The history command displays the contents of the history list. 
The numbers given with the history events reference previous 
events that are difficult to reference contextually. There is also a 
C shell variable named "prompt". By placing an exclamation 
point (!) in its value the C shell will substitute the number of the 
current command in the history list. You can use this number to 
refer to a command in a history substitution. For example, you 
could type: 

set prompt='\! % ' 

The exclamation mark (!) had to be escaped here even within 
quotes. 

10-14 



The logout command terminates a login C shell that has 
"ignoreeof" set. 

The rehash command causes the C shell to recompute a table of 
command locations. This is necessary if you add a command to a 
directory in the current C shell's search path and want the C shell 
to find it, since otherwise the hashing algorithm may tell the C 
shell that the command wasn't in that directory when the hash 
table was computed. 

The repeat command is used to repeat a command several times. 
Thus to make 5 copies of the file one in the file five you could 
type: 

repeat 5 cat one » five 

The setenv command sets variables in the environment. Thus: 

setenv TERM adm3a 

sets the value of the environment variable "TERM" to 
"adm3a." The program env exists to print out the environment. 
For example, its output might look like this: 

HOME=/usr fbi 11 
SHELL=/bin/csh 
PATH=/usr/ucb:/bin:/usr/bin:/usr/local 
TERM=adm3a 
USER=bill 

The source command forces the current C shell to read commands 
from a file. Thus: 

source .cshrc 

can be used after editing in a change to the .cshrc file that you 
wish to take effect before the next time you login. 

The time command causes command to be timed no matter how 
much CPU time it takes. Thus: 

time cp /etc/rc /usr/bill/rc 

displays: 

10-15 



O.Ou O.ls 0:01 8% 

Similarly 

time wc /etc/rc /usr/bill/rc 

displays: 

52 178 1347 /etc/rc 
52 178 1347 /usr/bill/rc 

104 356 2694 total 
O.lu O.ls 0:00 13% 

This indicates that the ep command used a negligible amount of 
user time (u) and about 1/10th of a second system time (s); the 
elapsed time was 1 second (0: 0 1). The word count command we 
used 0.1 seconds of user time and 0.1 seconds of system time in 
less than a second of elapsed time. The" 13 %" indicates that 
over the period when it was active the we command used an 
average of 13 percent of the available CPU cycles of the machine. 

The unalias and unset commands remove aliases and variable 
definitions from the C shell. The command unsetenv removes 
variables from the environment. 

Creating Command Scripts 

It is possible to place commands in files and to cause C shells to 
be invoked to read and execute commands from these files, called 
C shell scripts. This section describes the C shell features useful 
for creating C shell scripts. 

Using the argv Variable 

A esh command script can be interpreted by saying: 

csh script argument 

10-16 



where script is the name of the file containing a group of C shell 
commands and argument is a sequence of command arguments. 
The C shell places these arguments in the variable "argv" and 
then begins to read commands from script. These parameters are 
then available through the same mechanisms used to reference 
any other C shell variables. 

If you make the file script executable by doing: 

chmod 755 script 

or: 

chmod +x script 

and then place a C shell comment at the beginning of the C shell 
script (that is, begin the file with a number sign (#» then 
/bin/csh will automatically be invoked to execute script when you 
type: 

script 

If the file does not begin with a number sign (#) then the standard 
shell /bin/sh is used to execute it. 

Substituting Shell Variables 

After each input line is broken into words and history 
substitutions are done on it, the input line is parsed into distinct 
commands. Before each command is executed, a mechanism 
known as variable substitution is performed on these words. 
Keyed by the dollar sign ($), this substitution replaces the names 
of variables by their values. Thus: 

echo $argv 

when placed in a command script causes the current value of the 
variable "argv" to be echoed to the output of the C shell script. It 
is an error for "argv" to be unset at this point. 

10-17 



A number of notations are provided for accessing components 
and attributes of variables. The notation: 

$?name 

expands to 1 if name is set or to 0 if name is not set. It is the 
fundamental mechanism for checking whether particular variables 
have been assigned values. All other forms of reference to 
undefined variables cause errors. 

The notation: 

$#name 

expands to the number of elements in the variable "name." To 
illustrate, examine the following terminal session (input is in 
boldface): 

0/0 set argv=(a b c) 
0/0 echo $?argv 
1 
0/0 echo $#argv 
3 
0/0 unset argv 
0/0 echo $?argv 
0 
0/0 echo $argv 
argv: Undefined variable. 
0/0 

It is also possible to access the components of a variable that has 
several values. Thus: 

$argv[1 ] 

gives the first component of "argv" or in the example above "a." 
Similarly: 

$argv[$#argv] 

would give "c", and 

$argv[1-2] 

10-18 



would give: 

a b 

Other notations useful in C shell scripts are: 

$n 

where n is an integer. This is shorthand for: 

$argv[nJ 

the n'th parameter and: 

$* 

which is a shorthand for: 

$argv 

The form: 

$$ 

expands to the process number of the current C shell. Since this 
process number is unique in the system, it is often used in the 
generation of unique temporary filenames. 

One minor difference exists between "$n"and "$argv[n]". The 
form" $argv[n]" yields an error if n is not in the range l-$#argv 
while "$n" never yields an out-of-range subscript error. This is 
for compatibility with the way older shells handle parameters. 

It is never an error to give a subrange of the form "n-"; if there 
are less than "n" components of the given variable then no words 
are substituted. A range of the form "m-n" likewise returns an 
empty vector without giving an error when "m" exceeds the 
number of elements of the given variable, provided the subscript 
"n" is in range. 

10-19 



U sing Expressions 

To construct useful C shell scripts, the C shell must be able to 
evaluate expressions based on the values of variables. In fact, all 
the arithmetic operations of the C language are available in the C 
shell with the same precedence that they have in C. In particular, 
the operations = = and ! = compare strings and the operators && 
and I I implement the logical AND and OR operations. The 
special operators = rv and ! rv are similar to = = and! = except that 
the string on the right side can have pattern matching characters 
(like *, ? or [ and]). These operators test whether the string on 
the left matches the pattern on the right. 

The C shell also allows file enquiries of the form: 

-? filename 

where question mark (?) is replaced by a number of single 
characters. For example, the expression primitive: 

-e filename 

tells whether filename exists. Other primitives test for read, write 
and execute access to the file, whether it is a directory, or if it has 
nonzero length. 

It is possible to test whether a command terminates normally, by 
using a primitive of the form: 

{command} 

which returns 1 if the command exits normally with exit status 0, 
or 0 if the command terminates abnormally or with exit status 
nonzero. If more detailed information about the execution status 
of a command is required, it can be executed and the "status" 
variable examined in the next command. Since "$status" is set by 
every command, its value is always changing. 

For the full list of expression components, see csh (CP) in the 
IBM Personal Computer XENIX Software Command Reference. 

10-20 



U sing the C Shell: A Sample Script 

A sample C shell script follows that uses the expression 
mechanism of the C shell and some of its control structures: 

# 
# Copyc copies those C programs in the specified list 
# to the directory ~/backup if they differ from the files 
# already in ~/backup 
# 
set noglob 
foreach i ($argv) 

if ($i 1~ *.c) continue # not a .c file so do not 

end 

if (1 -r ~/backup/$i:t) then 
echo $i:t not in backup 
continue 

endif 

not cp\'ed 

cmp -s $i ~/backup/$i:t # to set $status 

if ($status 1= 0) then 

endif 

echo new backup of $i 
cp $i ~/backup/$i:t 

This script uses the foreach command. The command executes 
the other commands between the foreach and the matching end. 
For each of the values given between parentheses with the named 
variable "i" set to successive values in the list. Within this loop 
use the command break to stop executing the loop and continue to 
prematurely terminate one iteration and begin the next. After the 
foreach loop the iteration variable (i in this case) has the value at 
the last iteration. 

The" noglob" variable is set to prevent filename expansion of the 
members of " argv". This is a good idea if the arguments to a C 
shell script are filenames already expanded or if the arguments 
contain filename expansion metacharacters. It is also possible to 
quote each use of a "$" variable expansion, but this is harder and 
less reliable. 

10-21 



The other control construct is a statement of the form: 

if ( expression) then 
command 

endif 

The placement of the keywords in this statement is not flexible 
due to the current implementation of the C shell. The following 
two formats are not acceptable to the C shell: 

if (expression) # Won't work! 
then 

command 

endif 

and 

if (expression) then command endif # Won't work 

The C shell does have another form of the if statement: 

if ( expression) command 

that can be written: 

if (expression \ 
command 

Here we have escaped the newline for the sake of appearance. 
The command must not involve I, & or ; and must not be another 
control command. The second form requires the final backslash 
(\) to immediately precede the end-of-line. 

The more general if statements above also admit a sequence of 
else-if pairs followed by a single else and an endif, for example: 

10-22 



if ( expression) then 
commands 

else if (expression) then 
commands 

else 
commands 

endif 

Another important mechanism used in C shell scripts is the colon 
(:) modifier. We can use the modifier :r here to extract the root 
of a filename or :e to extract the extension. Thus if the variable 
"i" has the value /mnt/foo.bar then: 

echo $i $i:r $i:e 

produces: 

/mnt/foo.bar /mnt/foo bar 

This example shows how the :r modifier strips off the trailing . bar 
and the :e modifier leaves only the bar. Other modifiers take off 
the last component of a pathname leaving the head :h or all but 
the last component of a pathname leaving the tail :t. These 
modifiers are fully described in the csh (CP) entry in the IBM 
Personal Computer XENIX Software Command Reference. It is 
also possible to use the command substitution mechanism to 
perform modifications on strings to then reenter the C shell 
environment. Since each usage of this mechanism involves the 
creation of a new process, it is much more expensive to use than 
the colon (:) modification mechanism. It is also important to note 
that the current implementation of the C shell limits the number 
of colon modifiers on a "$" substitution to 1. Thus: 

% echo $i $i:h:t 

produces: 

/a/b/c /a/b:t 

and does not do what you might expect. 

The number sign character (#) lexically introduces a C shell 
comment in C shell scripts (but not from the terminal). All 

10-23 



subsequent characters on the input line after a number sign are 
discarded by the C shell. This character can be quoted using C) 
or (\) to place it in an argument word. 

Using Other Control Structures 

The C shell also has control structures while and switch similar to 
those of C. These take the forms: 

while expression 
commands 

end 

and: 

switch ( word ) 

case strl: 
commands 
breaksw 

case strn: 
commands 
breaksw 

default: 

endsw 

commands 
breaksw 

For details see the XENIX Software Command Reference csh 
(CP). C-programmers should use breaksw to exit from a switch 
while break exits a while or foreach loop. A common mistake to 
make in C shell scripts is to use break rather than breaksw in 
switches. 

Finally, the C shell allows a goto statement, with labels looking 
like they do in C: 

10-24 



loop: 
commands 
goto loop 

Supplying Input to Commands 

Commands that are run from C shell scripts receive by default the 
standard input of the C shell running the script. It allows C shell 
scripts to fully participate in pipelines, but mandates extra 
notation for commands that are to take inline data. 

Thus we need a metanotation for supplying inline data to 
commands in C shell scripts. For example, consider this script 
that runs the editor to delete leading blanks from the lines in each 
argument file: 

# deblank -- remove leading blanks 
foreach i ($a rgv) 
ed - $i « IEaF I 
1,$s/l\[ J*// 
W 

q 
IEaF I 
end 

The notation 

« IEaF I 

means that the standard input for the ed command comes from 
the text in the C shell script file up to the next line consisting of 
exactly EOF. The fact that the EOF is enclosed in single 
quotation marks ('), that is, it is quoted, causes the C shell to not 
perform variable substitution on the intervening lines. If any part 
of the word following the" < <" used by the C shell to terminate 
the text to be given to the command is quoted, then these 
substitutions are not performed. In this case since we used the 
form "1,$" in our editor script we needed to insure that this dollar 
sign was not variable substituted. Another way to ensure this is 
preceding the dollar sign ($) with a backslash (\), that is: 

10-25 



1,\$5/1\[ J*// 

Quoting the EOF terminator is a more reliable way of achieving 
the same thing. 

Catching Interrupts 

If the C shell script creates temporary files, you may wish to catch 
interruptions of the C shell script so that you can clean up these 
files. You can then do: 

onintr label 

where label is a label in our program. If an interrupt is received 
the C shell does "goto label". Remove the temporary files, and do 
an exit command (built in to the C shell) to exit from the C shell 
script. To exit with nonzero status, write: 

ex it (1) 

to exit with status 1. 

Using Other Features 

Other features of the C shell are useful to writers of C shell 
procedures. The verbose and echo options and the related -v and 
-x command line options help to trace the actions of the C shell. 
The -0 option causes the C shell to read commands only. 

Unless they begin with the number sign (#), the C shell does not 
execute C shell scripts. That is, C shell scripts that do not begin 
with a comment. 

There is also another quotation mechanism using the double 
quotation mark ("), that allows only some of the expansion 

10-26 



mechanisms discussed so far to occur on the quoted string and 
serves to make this string into a single word as the single quote (') 
does. 

Starting a Loop at a Terminal 

It is occasionally useful to use the foreach control structure at the 
terminal to aid in performing a number of similar commands. For 
instance, if three shells are in use on a particular system, /bin/ sh, 
/bin/nsh, and /bin/csh, you can count the number of persons 
using each shell with the following commands: 

grep -c csh$ /etc/passwd 
grep -c nsh$ /etc/passwd 
grep -c -v sh$ /etc/passwd 

Since these commands are very similar, use foreach to simplify 
them: 

$ foreach i ('sh$' 'csh$' I-V Sh$') 
? grep -c $; /etc/passwd 
? end 

The C shell prompts for input with "?" when reading the body of 
the loop. This occurs only when the foreach command is entered 
interactively. 

Also useful with loops are variables that contain lists of filenames 
or other words. For example, examine the following terminal 
session: 

% set a=('ls') 
% echo $a 
csh.n csh.rm 
% ls 
csh.n 
csh.rm 
% echo $#a 
2 

10-27 



The set command here gave the variable "a" a list of all the 
filenames in the current directory as value. You can then iterate 
over these names to perform any chosen function. 

The C shell converts the output of a command enclosed in accent 
symbols C) to a list of words. You can also place the quoted 
string within double quotation marks (") to take each (nonempty) 
line as a component of the variable. This prevents the lines from 
being split into words at blanks and tabs. Use a modifier :x later 
to expand each component of the variable into another variable 
by splitting the original variable into separate words at embedded 
blanks and tabs. 

Using Braces with Arguments 

Another form of filename expansion involves the characters, { 
and }. These characters specify that the contained strings, 
separated by commas (,) are to be consecutively substituted into 
the containing characters and the results expanded left to right. 
Thus: 

A{strl,str2, ... strn}B 

expands to: 

AstrlB Astr2B AstrnB 

This expansion occurs before the other filename expansions, and 
can be applied recursively (that is, nested). The results of each 
expanded string are sorted separately, left to right order being 
preserved. The resulting filenames are not required to exist if no 
other expansion mechanisms are used. Use mechanism to 
generate arguments that are not filenames, but have common 
parts. 

A typical use would be: 

mkdir -/{hdrs,retrofit,csh} 

10-28 



to make subdirectories hdrs, retrofit and csh in the home directory. 
This mechanism is most useful when the common prefix is longer 
than in this example: 

chown root /usr/demo/{filel,file2, ... } 

Substituting Commands 

A command enclosed in accent symbols C) is replaced, just before 
filenames are expanded, by the output from that command. Thus, 
it is possible to do: 

set pwd='pwd' 

to save the current directory in the variable "pwd" or to do 

vi 'grep -1 TRACE * .c' 

to run the editor vi supplying as arguments those files whose 
names end in .c that have the string TRACE in them. Command 
expansion also occurs in input redirected with "< <" and within 
quotation marks ("). Refer to csh (CP) in the IBM Personal 
Computer XENIX Software Command Reference for more 
information. 

Special Characters 

The following table lists the special characters of csh and the 
XENIX system. A number of these characters also have special 
meaning in expressions. See the csh in the IBM Personal 
Computer XENIX Software Command Reference for a complete 
list. 

Syntactic Metacharacter 
Separates commands to be executed sequentially 

10-29 



Separates commands in a pipeline 

( ) Brackets expressions and variable values 

& Follows commands to be executed without waiting for 
completion 

Filename Metacharacters 

/ Separates components of a file's pathname 

Separates root parts of a filename from extensions 

? Expansion character matching any single character 

* Expansion character matching any sequence of characters 

[ ] Expansion sequence matching any single character from a 
set of characters 

U sed at the beginning of a filename to indicate home 
directories 

{ } U sed to specify groups of arguments with common parts 

Quotation Metacharacters 

\ Prevents meta-meaning of following single character 

Prevents meta-meaning of a group of characters 

" Like " but allows variable and command expansion 

Input/ Output Metacharacters 

< Indicates redirected input 

> Indicates redirected output 

10-30 



Expansion/ Substitution Metacharacters 

$ Indicates variable substitution 

Indicates history substitution 

Precedes substitution modifiers 

1\ Used in special forms of history substitution 

Indicates command substitution 

Other Metacharacters 

# Begins scratch filenames; indicates C shell comments 

Prefixes option (flag) arguments to commands 

10-31 



10-32 



Appendixes 

Contents 

Appendix A. C Language Portability ........... A-5 

Introduction .............................. A-5 

Program Portability ........................ A-6 

Machine Hardware ........................ A - 7 
Byte Length ........................... A-7 
Word Length .......................... A-7 
Storage Alignment ...................... A-8 
Byte Order in a Word ................... A-9 
Bitfields ............................. A-I0 
Pointers ............................. A-II 
Address Space ........................ A-12 
Character Set ........................ A -13 

Compiler Differences ...................... A-13 
Signed/Unsigned char, Sign Extension ..... A-13 
Shift Operations ...................... A-14 
Identifier Length ...................... A-15 
Register Variables ..................... A-15 
Type Conversion ...................... A-16 
Functions With Variable Number of 
Arguments ........................... A-17 
Side Effects, Evaluation Order ........... A-19 

Program Environment Differences ............ A-20 

Portability of Data ........................ A-21 

The lint C Program Checker ................ A - 21 

Byte Ordering Summary ................... A-21 

Appendix B. The m4 Macro Processor .......... B-1 

A-I 



Introduction .............................. B-1 

Invoking m4 B-2 

Defining Macros .......................... B-2 

Quoting ................................. B-4 

Using Arguments .......................... B-6 

Using Arithmetic Built-ins ................... B-7 

Manipulating Files ......................... B-8 

Using System Commands ................... B-I0 

Using Conditionals ........................ B-I0 

Manipulating Strings ...................... B-ll 

Printing ................................ B-13 

Appendix C. The XENIX Device Driver Guide .... C-l 

Introduction .............................. C-l 

Preliminaries ............................. C-2 

Character Devices ......................... C-4 

Block Devices ............................ C-7 

Configuration and Installation ................ C-9 

Warnings ............................... C-ll 

Sample Line Printer Driver •................ C-12 
IpopenO ............................ C-13 
IpcloseO ............................ C-13 
IpwriteO ............................ C-15 
IpstartO ............................. C-15 
IpintrO ............................. C-15 

A-2 



Sample Terminal Driver .................... C-18 
tdopen 0 ............................ C-20 
tdclose 0 ............................ C-22 
tdreadO and tdwriteO .................. C-22 
tdparamO ........................... C-22 
tmodemO ........................... C-24 
tdintrO ............................. C-24 
tdxintO ............................. C-26 
tdrintO ............................. C-26 
tdmintO ............................. C-28 
tdioctlO ............................. C-28 
tdprocO ............................. C-30 

Sample Disk Driver ....................... C-33 
hdstrategy ........................... C-36 
hdstartO ............................ C-38 
hdintrO ............................. C-38 
hdreadO ............................ C-40 
hdwriteO ............................ C-42 

Appendix D. Linker Error Messages ....•...... D-l 

A-3 



A-4 



Appendix A. C Language Portability 

Introduction 

The standard definition of the C programming language leaves 
many details to be decided by individual implementations of the 
language. These unspecified features of the language detract from 
its portability and must be studied when attempting to write 
portable C code. 

Most of the issues affecting C portability arise from differences in 
either target machine hardware or compilers. C was designed to 
compile to efficient code for the target machine (initially a 
PDPL 11) and so many of the language features not precisely 
defined are those that reflect a particular machine's hardware 
characteristics. 

This appendix highlights the various aspects of C that may not be 
portable across different machines and compilers. It also briefly 
discusses the portability of a C program in terms of its 
environment, which is determined by the system calls and library 
routines it uses during execution, file pathnames it requires, and 
other items not guaranteed to be constant across different 
systems. 

The C language has been implemented on many different 
computers with widely different hardware characteristics, from 
small 8-bit microprocessors to large mainframes. This appendix is 
concerned with the portability of C code in the XENIX 
programming environment. This is a more restricted problem to 
consider since all UNIX2 systems to date run on hardware with 
the following basic characteristics: 

PDP is a trademark of the Digital Equipment Corporation. 
UNIX is a trademark of AT&T Bell Laboratories. 

A-5 



• ASCII character set 

• 8-bit bytes 

• 2-byte or 4-byte integers 

• Twos complement arithmetic 

These features are not formally defined for the language and may 
not be found in of all implementations of C. However, the 
remainder of this appendix is devoted to those systems where 
these basic assumptions hold. 

The C language definition contains no specification of how input 
and output is performed. This is left to system calls and library 
routines on individual systems. Within XENIX systems there are 
system calls and library routines that can be considered portable. 
These are described briefly in a later section. 

This appendix is not intended as a C-Ianguage primer. It is 
assumed that the reader is familiar with C, and with the basic 
architecture of common microprocessors. 

Program Portability 

A program is portable if it can be compiled and run successfully 
on different machines without alteration. There are many ways to 
write portable programs. The first is to avoid using inherently 
nonportable language features. The second is to isolate any 
nonportable interactions with the environment, such as 110 to 
nonstandard devices. For example programs should avoid 
hard-coding pathnames unless a pathname is common to all 
systems (for example, /etc/passwd J. 

Files required at compiletime (that is, include files) can also 
introduce nonportability if the pathnames are not the same on all 
machines. In some cases include files containing machine 
parameters can be used to make the source code itself portable. 

A-6 



Machine Hardware 

Differences in the hardware of the various target machines and 
diff erences in the corresponding C compilers cause the greatest 
number of portability problems. This section lists problems 
commonly encountered on UNIX systems. 

Byte Length 

By definition, the char data type in C must be large enough to 
hold as positive integers all members of a machine's character set. 
For the machines described in this appendix, the char size is 
exactly an 8-bit byte. 

Word Length 

In C, the size of the basic data types for a given implementation 
are not formally defined. Thus they often follow the most natural 
size for the underlying machine. It is safe to assume that short is 
no longer than long. Beyond that no assumptions are portable. 
For example on some machines short is the same length as int, 
whereas on others long is the same length as into 

Programs that need to know the size of a particular data type 
should avoid hard-coded constants where possible. Such 
information can usually be written in a fairly portable way. For 
example the maximum positive integer (on a twos complement 
machine) can be obtained with: 

#define MAXPOS ((int)(((unsigned)-l»> 1)) 

A-7 



This is preferable to something like: 

#ifdef PDPl1 
#define MAXPOS 32767 
#else 

#endif 

To find the number of bytes in an int use "sizeof Ont}" rather 
than 2, 4, or some other nonportable constant. 

Storage Alignment 

The C-Ianguage defines no particular layout for storage of data 
items relative to each other, or for storage of elements of 
structures or unions within the structure or union. 

Some CPUs, such as the PDP-II and M680003
, require that data 

types longer than I byte be aligned on even byte address 
boundaries. Others, such as the 80864 and VAX5 have no such 
hardware restriction. PDP and VAX are trademarks of the Digital 
Equipment Corporation. However, even with these machines, 
most compilers generate code that aligns words, structures, arrays, 
and long words on even addresses, or even long-word addresses. 
Thus, on the VAX-II, the following code sequence gives "8," 
even though the VAX hardware can access an int (a 4-byte word) 
on any physical starting address: 

struct s_tag { 
char C; 
i nt i; 

} ; 
printf( "%d\n" ,sizeof(struct s_tag)); 

The principal implications of this variation in data storage are that 
data accessed as nonprimitive data types is not portable~ and code 
that makes use of knowledge of the layout on a particular 
machine is not portable. 

M6800 is a trademark of the Motorola Corporation 
8086 is a trademark of the Intel Corporation 
VAX is a trademark of the Digital Equipment Corporation 

A-8 



Unions containing structures are nonportable if the union 
accesses the same data in different ways. Unions are only likely 
to be portable only if they have different data in the same space 
at different times. For example, if the following union were used 
to obtain 4 bytes from a long word, the code would not be 
portable: 

union { 

} u; 

char c[4J; 
long lw; 

Always use the sizeo! operator when reading and writing 
structures: 

struct s_tag st; 

write(fd, &st, sizeof(st)); 

This ensures portability of the source code. It does not produce a 
portable data file. Portability of data is discussed in a later in this 
appendix. 

Note that the sizeo! operator returns the number of bytes an 
object would occupy in an array. Thus on machines with 
structures aligned to begin on a word boundary in memory, the 
sizeo! operator includes any necessary padding for this in the 
return value, even if the padding occurs after all useful data in the 
structure. This occurs whether or not the argument is actually an 
array element. 

Byte Order in a Word 

The variation in byte order in a word affects the portability of 
data more than the portability of source code. However, any 
program that makes use of knowledge of the internal byte order in 
a word is not portable. For example, on some systems there is an 
include file misc.h that contains the following structure 
declaration: 

A-9 



/* 
* structure to access an 
* integer in bytes 
*/ 
struct { 

char lobyte; 
char hibyte; 

} ; 

Certain less restrictive compilers could access the high- and 
low-order bytes of an integer separately, and in a completely 
nonportable way. The correct way is to use mask and shift 
operations to extract the required byte: 

#define LOBYTE(i) (i & Oxff) 
#define HIBYTE(i) ((i » 8) & Oxff) 

Even this operation is applicable only to machines with 2 bytes in 
an into 

One result of the byte ordering problem is that the following code 
sequence does not always perform as intended: 

int c = 0; 

read (fd, &c, 1); 

On machines where the low-order byte is stored first, the value of 
"c" is the byte value read. On other machines the byte is read 
into some byte other than the low-order one, and the value of "c" 
is different. 

Bitfields 
Bitfields are not implemented in all C compilers. When they are, 
no field is larger than an int, and no field can overlap an int 
boundary. If necessary the compiler leaves gaps and moves to the 
next int boundary. 

The C language makes no guarantees about whether fields are 
assigned left to right, or right to left in an into Thus, while 

A-to 



bitfields are useful for storing flags and other small data items, 
their use in unions to dissect bits from other data is definitely 
nonportable. 

To ensure portability no individual field should exceed 16 bits. 

Pointers 
The C language is fairly generous in allowing manipulation of 
pointers, to the extent that most compilers permit nonportable 
pointer operations. The lint program is particularly useful for 
detecting questionable pointer assignments and comparisons. 

The common nonportable use of pointers is the use of casts to 
assign one pointer to another pointer of a different data type. 
This almost always makes some assumption about the internal 
byte ordering and layout of the data type, and is therefore 
nonportable. In the following code, the byte order in the given 
array is not portable: 

char c[4J; 
long *lp; 

lp = (long *)&c[OJ; 
*lp = Ox12345678L; 

The lint program issues warning messages about such uses of 
pointers. Code like this is very rarely necessary or valid. It is 
acceptable, however, when using the maUoc function to allocate 
space for variables that do not have char type. The routine is 
declared as type char * and the return value is cast to the type to 
be stored in the allocated memory. If this type is not char * then 
lint issues a warning concerning illegal type conversion. In 
addition, the maUoc function is written to always return a starting 
address suitable for storing all types of data. lint does not know 
this, so it gives a warning about possible data alignment problems 
too. In the following example, maUoc obtains memory for an array 
of 50 integers. 

A-It 



extern char *malloc(); 
int *ip; 

ip = (int *)malloc(50 * sizeof(int»; 

This example attracts a warning message from lint . 

The C Reference Manual states that a pointer can be assigned (or 
cast) to an integer large enough to hold it. The size of the int type 
depends on the given machine and implementation. This type is a 
long on some machines and short on others. Do not assume that 
"sizeof(char *) == sizeof(int)." 

In most implementations, the null pointer value, "NULL" is 
defined as the integer value O. This can lead to problems for 
functions that expect pointer arguments larger than integers. For 
portable code, always use: 

func( (char *)NULL ); 

to pass a "NULL" value of the correct size. 

Address Space 

The address space available to a program running a UNIX 
operating system varies considerably from system to system. On 
a small PDP-11 there are only 64K bytes available for program 
and data combined. Larger PDP-11's, and some 16-bit 
microprocessors allow 64K bytes of data, and 64K bytes of 
program text. Other machines may allow considerably more text, 
and possibly more data as well. 

Large programs, or programs that require large data areas can 
have portability problems on small machines. 

A-12 



Character Set 
The C language does not require the use of the ASCII character 
set. In fact, the only character set requirements are all characters 
must fit in the char data type, and all characters must have 
positive values. 

In the ASCII character set, all characters have values between 
zero and 127. Therefore they can all be represented in 7 bits, and 
on an 8-bits-per-byte machine are all positive, whether char is 
treated as signed or unsigned. 

Use the set of macros defined under XENIX macros in the header 
file /usr/include/ctype.h for most tests on character quantities. 
They provide insulation from the internal structure of the 
character set and in most cases their names are more meaningful 
than the equivalent line of code. Compare: 

if(isupper(c)) 

to 

i f( (c >= I A I) && (c <= I Z I)) 

With some of the other macros, such as isdigit to test for a hex 
digit, the advantage is even greater. Also, the internal 
implementation of the macros makes them more efficient than an 
explicit test with an if statement. 

Compiler Differences 

A number of C compilers run under the UNIX system. On 
PDP-II systems there is the "Ritchie" compiler. Also on the 11, 
and on most other systems, there is the Portable C Compiler. 

Signed/Unsigned char, Sign Extension 
The current state of the signed versus unsigned char problem is 
best described as unsatisfactory. 

A-13 



The sign extension problem is a serious barrier to writing portable 
C, and the best solution at present is to write defensive code that 
does not rely on particular implementation features. 

Shift Operations 

The left shift operator, "< <" shifts its operand a number of bits 
left, filling vacated bits with zero. This is a so-called logical shift. 
The right shift operator, "»" when applied to an unsigned 
quantity, performs a logical shift operation. When applied to a 
signed quantity, the vacated bits are filled with zero (logical shift) 
or with sign bits (arithmetic shift). The decision is 
implementation dependent, and code that uses knowledge of a 
particular implementation is nonportable. 

The PDP-II compilers use arithmetic right shift. To avoid sign 
extension it is necessary to shift and mask out the appropriate 
number of high order bits: 

char c; 

c = (c » 3) & Oxlf; 

You can also avoid sign extension by using using the divide 
operator: 

char c; 

c = c / 8; 

A-14 



Identifier Length 

Using long symbols and identifier names causes portability 
problems with some compilers. To avoid these problems, a 
program should keep the following symbols as short as possible: 

• C Preprocessor Symbols 

• C Local Symbols 

• C External Symbols 

The loader used can also place a restriction on the number of 
unique characters in C external symbols. 

Symbols unique in the first six characters are unique to most C 
language processors. 

On some non-UNIX C implementations, uppercase and lowercase 
letters are not distinct in identifiers. 

Register Variables 

The number and type of register variables in a function depends 
on the machine hardware and the compiler. Excess and invalid 
register declarations are treated as nonregister declarations and 
should not cause a portability problem. On a PDP-11, up to three 
register declarations are significant, and they must be of type int, 
char, or pointer. While other machines and compilers can support 
declarations such as: 

register unsigned short 

this should not be relied upon. 

Since the compiler ignores excess variables of register type, 
declare the most important register type variables first. This way, 
if any are ignored, they will be the least important ones. 

A-1S 



Type Conversion 

The C language has some rules for implicit type conversion; it 
also allows explicit type conversions by type casting. The most 
common portability problem in implicit type conversion is 
unexpected sign extension. This is a potential problem whenever 
something of type char is compared with an into 

For example: 

char c; 

if(c Ox80) 

never evaluates true on a machine that sign extends since "c" is 
sign extended before the comparison with Ox80, an into 

The only safe comparison between char type and an int is the 
following: 

char c; 

if(c IXI) 

This is reliable because C guarantees all characters to be positive. 
The use of hard-coded octal constants is subject to sign extension. 
For example the following program prints "ff80" on a PDP-11: 

main() 
{ 

printf( lI%x\nll, I \200 I); 

Type conversion also takes place when arguments are passed to 
functions. Types char and short become into Machines that sign 
extend char can give surprises. For example the following 
program gives -128 on some machines: 

char c = 128; 
printf(lI%d\nll ,c); 

A-16 



This is because "c" is converted to int before passing to the 
function. The function itself has no knowledge of the original 
type of the argument, and is expecting an int. The correct way to 
handle this is to code defensively and allow for the possibility of 
sign extension: 

char c = 128; 
printf("%d\n", c & Oxff); 

Functions With Variable Number of 
Arguments 

Functions with a variable number of arguments present a 
particular portability problem if the type of the arguments is 
variable too. In such cases the code is dependent upon the size of 
various data types. 

An include file in the XENIX command, /usr/include/varargs.h, 
contains macros for use in variable argument functions to access 
the arguments in a portable way: 

typedef char *vu_list 

#define va_del int va_alist; 

#define va_start (list) list = (char *) &va_alist 

#define va_end (list) 

#define va_arg(list,mode) «mode *)(list += sizeof(mode»)[-l] 

The va_endO macro is not currently required. Use of the other 
macros is demonstrated by an example of the [print[ library 
routine. This has a first argument of type FILE *, and a second 
argument of type char *. Subsequent arguments are of unknown 
type and number at compilation time. They are determined at run 
time by the contents of the control string, argument 2. 

The first few lines of [print[ to declare the arguments and find the 
output file and control string address could be: 

A-17 



#include <varargs.h> 
#include <stdio.h> 

int fprintf(va_alist) 
va_del 
{ 

va_list ap; 
char *format; 
FILE *fp; 

/* pointer to arg list */ 

va_start(ap); /* initialize arg pointer */ 
fp = va_arg(ap, (FILE *)); 
format = va_arg(ap, (char *)); 

} 

Just one argument is declared to jprintj. This argument is 
declared by the va dcl macro to be type int, although its actual 
type is unknown atcompile time. The argument pointer" ap" is 
initialized by va start to the address of the first argument. 
Successive arguments can be picked from the stack so long as 
their type is known using the va arg macro. This has a type as its 
second argument, and this controls what data is removed from the 
stack, and how far the argument pointer "ap" is incremented. In 
jprintj, once the control string is found, the type of subsequent 
arguments is known and they can be accessed sequentially by 
repeated calls to va arg O. For example, arguments of type 
double, int *, and short, could be retrieved as follows: 

double dint; 
int *ip; 
short s; 

dint = va_arg(ap, double); 
ip = va_arg(ap, (int *)); 
s = va_arg(ap, short); 

The use of these macros makes the code more portable, although 
it does assume a certain standard method of passing arguments on 
the stack. In particular no holes must be left by the compiler, and 
types smaller than int (for example, char, and short on long word 
machines) must be declared as into 

A-18 



Side Effects, Evaluation Order 

The C language makes few guarantees about the order of 
evaluation of operands in an expression, or arguments to a 
function call. Thus: 

func(i++, i++); 

is extremely nonportable, and even: 

func(i++); 

is unwise if junc is ever likely to be replaced by a macro, since the 
macro can use "i" more than once. Certain XENIX macros are 
common in user programs; these are all guaranteed to use their 
argument once, and so can safely be called with a side-effect 
argument. The most common examples are getc, putc, getchar, 
and putchar . 

Operands to the following operators are guaranteed to be 
evaluated left to right: 

&& II ? 

The comma operator here is a separator for two C statements'. A 
list of items separated by commas in a declaration list is not 
guaranteed to be processed left to right. Thus the declaration: 

register int a, b, c, d; 

on a PDP-II where only three register variables can be declared 
could make any three of the four variables register type, 
depending on the compiler. The correct declaration is to decide 
the order of importance of the variables being register type, and 
then use separate declaration statements, since the order of 
processing of individual declaration statements is guaranteed to be 
sequential: 

register int a; 
register int b; 
register int c; 
register int d; 

A-19 



Program Environment Differences 

Most programs make system calls and use library routines for 
various services. This section indicates some of those routines that 
are not always portable, and those that particularly aid portability. 

We are concerned here primarily with portability under the UNIX 
operating system. Many of the UNIX system calls are specific to 
that particular operating system environment and are not present 
on all other operating system implementations of C. Examples of 
this are getpwent for accessing entries in the UNIX password file, 
and getenv that is specific to the UNIX concept of a process 
environment. 

Any program containing hard-coded pathnames to files or 
directories, or user IDs, login names, terminal lines or other 
system dependent parameters is nonportable. These types of 
constant should be in header files, passed as command line 
arguments, obtained from the environment, or obtained by using 
the UNIX default parameter library routines dfopen, and dfread . 

Within the UNIX system, most system calls and library routines 
are portable across different implementations and UNIX releases. 
However, a few routines have changed in their user interface. 
The UNIX library routines are usually portable among UNIX 
systems. 

The members of the printf family, printf, fprintf, sprintf, sscanf, 
and scanf have changed in several ways during the evolution of 
the UNIX system, and some features are not completely portable. 
The return values of these routines cannot be relied upon to have 
the same meaning on all systems. Some of the format conversion 
characters have changed their meanings, in particular those 
relating to uppercase and lowercase in the output of hexadecimal 
numbers, and the specification of long integers on 16-bit word 
machines. The reference manual page for printf in the IBM 
Personal Computer XENIX Software Command Reference 
contains the correct specification for these routines. 

A-20 



Portability of Data 

Data files are almost always nonportable across different machine 
CPU architectures. As mentioned above, structures, unions, and 
arrays have varying internal layout and padding requirements on 
different machines. In addition, byte ordering within words and 
actual word length may differ. 

The only way to achieve data file portability is to write and read 
data files as one-dimensional character arrays. This avoids 
alignment and padding problems if the data is written and read as 
characters, and interpreted that way. Thus ASCII text files can 
usually be moved between different machine types without too 
many problems. 

The lint C Program Checker 

The lint C program checker attempts to detect features of a 
collection of C source files that are nonportable or even incorrect 
C. One particular advantage of lint over any compiler checking is 
that lint checks function declaration and usage across source files. 
N either compiler nor loader do this. 

The lint program generates warning messages about nonportable 
pointer arithmetic, assignments, and type conversions. Passage 
unscathed through lint is not a guarantee that a program is 
completely portable. 

Byte Ordering Summary 

The following conventions are used in tables below: 

aO The lowest physically addressed byte of the data item 
aO + 1, and so on. 

A-21 



bO The least significant byte of the data item, 'b l' being 
the next least significant, and so on. 

Any program that actually makes use of the following information 
is guaranteed to be nonportable! 

Byte Ordering for Short Types 

CPU Byte Order 

a0 al 
PDP-II b0 bl 
VAX-II b0 bl 
8086 b0 bl 
286 b0 bl 
M68000 bl b0 
Z8000 bl b0 

Byte Ordering for Long Types 

CPU Byte Order 

a0 al a2 a3 
PDP-II b2 b3 b0 bl 
VAX-II b0 bl b2 b3 
8086 b2 b3 b0 bl 
286 b2 b3 b0 bl 

M68000 b3 b2 bl b0 
Z8000 b3 b2 bl b0 

A-22 



Appendix B. The m4 Macro Processor 

Introduction 

The m4 macro processor defines and processes specially defined 
strings of characters called macros. By defining a set of macros to 
be processed by m4, a programming language can be enhanced to 
make it: 

• More structured 

• More readable 

• More appropriate for a particular application 

The #define statement in C and the analogous define in Ratfor are 
examples of the basic facility provided by any macro 
processor-replacement of text by other text. 

Besides the straightforward replacement of one string of text by 
another, m4 provides: 

• Macros with arguments 

• Conditional macro expansions 

• Arithmetic expressions 

• File manipulation facilities 

• String processing functions 

The basic operation of m4 is copying its input to its output. As 
the input is read, each alphanumeric token (that is, string of 
letters and digits) is checked. If the token is the name of a macro, 
then the name of the macro is replaced by its defining text. The 
resulting string is reread by m4. Macros can also be called with 

B-1 



arguments, in which case the arguments are collected and 
substituted in the right places in the defining text before m4 
rescans the text. 

The m4 macro provides a collection of about twenty built-in 
macros. In addition, the user can define new macros. Built-ins 
and user-defined macros work in exactly the same way, except 
that some of the built-in macros have side effects on the state of 
the process. 

Invokingm4 

The invocation syntax for m4 is: 

m4 [fil es ] 

Each filename argument is processed in order. If there are no 
arguments, or if an argument is a dash (-), then the standard input 
is read. The processed text is written to the standard output, and 
can be redirected as in the following example: 

m4 file! file2 - >Qutputfile 

The use of the dash in the above example indicates processing of 
the standard input, after the files filel and file2 have been 
processed by m4. 

Defining Macros 

The primary built-in function of m4 is define, which is used to 
define new macros. The input: 

define(name, stuff) 

causes the string name to be defined as stuf! All subsequent 
occurrences of name will be replaced by stuff. Name must be 

B-2 



alphanumeric and must begin with a letter (the underscore ( ) 
counts as a letter). Stuffis any text, induding text that contains 
balanced parentheses; it can stretch over multiple lines. 

Thus, as a typical example: 

define(N, 100) 

if (i > N) 

defines N to be 100, and uses this symbolic constant in a later if 
statement. 

The left parenthesis must immediately follow the word define, to 
signal that define has arguments. If a macro or built-in name is 
not followed immediately by a left parenthesis, (, it is assumed to 
have no arguments. This is the situation for N above; it is 
actually a macro with no arguments. Thus, when it is used, no 
parentheses are needed following its name. 

You should also notice that a macro name is only recognized as 
such if it appears surrounded by nonalphanumerics. For example, 
in: 

define(N, 100) 

if (NNN > 100) 

the variable NNN is absolutely unrelated to the defined macro N, 
even though it contains three N's. 

Things can be defined in terms of other things. For example 

define(N, 100) 
define(M, N) 

defines both M and N to be 100. 

What happens if N is redefined? Or, to say it another way, is M 
defined as N or as 100? In m4, the latter is true, M is 100, so 
even if N subsequently changes, M does not. 

B-3 



This behavior arises because m4 expands macro names into their 
defining text as soon as it possibly can. Here, that means that 
when the string N is seen as the arguments of define are being 
collected, it is immediately replaced by 100; it's just as if you had 
said: 

define(M, 100) 

in the first place. 

If this isn't what you really want, there are two ways out of it. 
The first, which is specific to this situation, is to interchange the 
order of the definitions: 

define(M, N) 
define(N, 100) 

Now M is defined to be the string N so when you ask for M later, 
always get the value of N (because the M is replaced by N which, 
in turn, is replaced by 100). 

Quoting 

The more general solution is to delay the expansion of the 
arguments of define by quoting them. Any text surrounded by 
single quotation marks' , is not expanded immediately, but has 
the quotation marks stripped off. If you say: 

define(N, 100) 
define(M, 'N ' ) 

the quotation marks around the N are stripped off as the 
argument is being collected, but they have served their purpose, 
and M is defined as the string 'N', not 100. The general rule is 
that m4 always strips off one level of single quotation marks 
whenever it evaluates something. This is true even outside of 
macros. If you want the word "define" to appear in the output, 
you have to quote it in the input, as in: 

I defi ne I = 1; 

B-4 



As another instance of the same thing, which is a bit more 
surprising, consider redefining N: 

define(N~ 100) 

define(N~ 200) 

Perhaps regrettably, the N in the second definition is evaluated as 
soon as it's seen; that is, it is replaced by 100, so it's as if you had 
written: 

define(100~ 200) 

This statement is ignored by m4, since you can only define things 
that look like names, but it obviously doesn't have the effect you 
wanted. To really redefine 'N', you must delay the evaluation by 
quoting: 

define(N, 100) 

defi ne ( I N I ~ 200) 

In m4, it is often wise to quote the first argument of a macro. 

If the forward and backward quotation marks 'and' are not 
convenient for some reason, the quotation marks can be changed 
with the built-in changequote. For example: 

changequote([~ J) 

makes the new quotation marks the left and right brackets. You 
can restore the original characters with just: 

changequote 

Two additional built-ins are related to define. The built-in 
undefine removes the definition of some macro or built-in: 

undefi ne ( IN') 

removes the definition of N. Built-ins can be removed with 
undefine, as in: 

undefine('define ' ) 

B-5 



but once you remove one, you can never get it back. 

The built-in ifdef provides a way to determine if a macro is 
currently defined. For instance, pretend that either the word 
"xenix" or "unix" is defined according to a particular 
implementation of a program. To perform operations according 
to which system you have you might say: 

ifdef('xenix', 'define(system,l), ) 
ifdef( 'unix', 'define(system,2)' ) 

Don't forget the single quote marks in the above example. 

Ifdef actually permits three arguments: if the name is undefined, 
the value of ifdef is then the third argument, as in: 

ifdef( 'xenix', on XENIX, not on XENIX) 

Using Arguments 

So far we have discussed the simplest form of macro 
processing-replacing one string by another (fixed) string. 
User-defined macros can also have arguments, so different 
invocations can have different results. Within the replacement 
text for a macro (the second argument of its define) any 
occurrence of $n is replaced by the n th argument when the macro 
is actually used. Thus, the macro bump, defined as 

define(bump, $1 = $1 + 1) 

generates code to increment its argument by 1: 

bump(x) 

is 

x = x + 1 

A macro can have as many arguments as you want, but only the 
first nine are accessible, through $1 to $9. (The macro name 

B-6 



itself is $0.) Arguments not supplied are replaced by null strings, 
so we can define a macro cat which simply concatenates its 
arguments, like this: 

define(cat, $1$2$3$4$5$6$7$8$9) 

Thus 

cat(x, y, z) 

is equivalent to 

xyz 

The arguments $4 through $9 are null, since no corresponding 
arguments were provided. 

Leading unquoted blanks, tabs, or newlines that occur during 
argument collection are discarded. All other white space is 
retained. Thus: 

define(a, b c) 

defines "a" to be "b c." 

Arguments are separated by commas, but parentheses are counted 
properly, so a comma protected by parentheses does not 
terminate an argument. That is, in 

define(a, (b,c)) 

there are only two arguments; the second is literally "(b,c)." And 
of course a bare comma or parenthesis can be inserted by quoting 
it. 

Using Arithmetic Built-ins 

The m4 macro provides two built-in functions for doing 
arithmetic on integers. The simplest is incr, which increments its 

B-7 



numeric argument by 1. Thus, to handle the common 
programming situation where you want a variable to be defined as 
one more than N, write: 

define(N, 100) 
define(Nl, lincr(N)I) 

Then N 1 is defined as one more than the current value of N .. 

The more general mechanism for arithmetic is a built-in called 
eva), which is capable of arbitrary arithmetic on integers. It 
provides the following operators (in decreasing order of 
precedence) : 

unary + and -
** or /\ (exponentiation) 
* / % (modulus) 
+ 

!= < <= > >= 
(not) 

& or && (logical and) 
I or II (logical or) 

Parentheses can group operations where needed. All the 
operands of an expression given to eva) must ultimately be 
numeric. The numeric value of a true relation (like 1 >0) is 1, and 
false is O. The precision in eva) is implementation dependent. 

As a simple example, suppose we want M to be 2* *N + 1. Then: 

define(N, 3) 
define(M, leval(2**N+l)l) 

As a matter of principle, it is advisable to quote the defining text 
for a macro unless it is very simple indeed (say just a number); it 
usually gives the result you want, and is a good habit to get into. 

Manipulating Files 

You can include a new file in the input at any time by the built-in 
function include : 

B-8 



include(filename) 

inserts the contents of filename in place of the include command. 
The contents of the file is often a set of definitions. The value of 
include (that is, its replacement text) is the contents of the file; 
this can be captured in definitions, etc. 

It is a fatal error if the file named in include cannot be accessed. 
To get some control over this situation, the alternate form sinclude 
can be used; sinclude (for "silent include") says nothing and 
continues if it can't access the file. 

It is also possible to divert the output of m4 to temporary files 
during processing, and output the collected material upon 
command. The m4 macro maintains nine of these diversions, 
numbered 1 through 9. If you say: 

divert(n) 

all subsequent output is put onto the end of a temporary file 
referred to as n. Diverting to this file is stopped by another divert 
command; in particular, divert or divert(O) resumes the normal 
output process. 

Diverted text is normally output all at once at the end of 
processing, with the diversions output in numeric order. It is 
possible, however, to bring back diversions at any time, that is, to 
append them to the current diversion. 

undivert 

brings back all diversions in numeric order, and undivert with 
arguments brings back the selected diversions in the order given. 
The act of undiverting discards the diverted stuff, as does 
diverting into a diversion whose number is not between 0 and 9 
inclusive. 

The value of undivert is not the diverted stuff. Furthermore, the 
diverted material is not rescanned for macros. 

The built-in divnum returns the number of the currently active 
diversion. This is zero during normal processing. 

B-9 



Using System Commands 

You can run any program in the local operating system with the 
syscmd built-in. For example, 

syscmd(date) 

runs the date command. Normally, syscmd would be used to 
create a file for a subsequent include. 

To facilitate making unique file names, the built-in maketemp is 
provided, with specifications identical to the system function 
mktemp: a string of XXXXX in the argument is replaced by the id 
process id of the current process. 

Using Conditionals 

A built-in called ifelse enables you to perform arbitrary 
conditional testing. In the simplest form, 

ifelse(a, b, c, d) 

compares the two strings a and h. If these are identical, ifelse 
returns the string c; otherwise it returns d. Thus, we might define 
a macro called compare that compares two strings and returns yes 
if they are the same, or no if they are different. 

define(compare, 'ifelse($l, $2, yes, no)') 

The quotation marks, prevent too-early evaluation of ifelse. 

If the fourth argument is missing, it is treated as empty. 

ifelse can actually have any number of arguments, and thus 
provides a limited form of multi-way decision capability. In the 
input: 

ifelse(a, b, c, d, e, f, g) 

B-IO 



if the string a matches the string b, the result is c. Otherwise, if d 
is the same as e, the result is f. Otherwise the result is g. If the 
final argument is omitted, the result is null, so: 

ifelse(a, b, c) 

is c if a matches b ~ and null otherwise. 

Manipulating Strings 

The built-in len returns the length of the string that makes up its 
argument. Thus: 

len(abcdef) 

is 6, and: 

1 en ( ( a , b ) ) 

is 5. 

The built-in substr can be used to produce substrings of strings. 
For example: 

substr(s,i,n) 

returns the substring of s that starts at position i (origin zero), 
and is n characters long. If n is omitted, the rest of the string is 
returned, so: 

substr(,now is the time', 1) 

is 

ow is the time 

If i or n are out of range, various sensible things happen. 

The command: 

index(sl,s2) 

B-l1 



returns the index (position) in sl where the string s2 occurs, or -1 
if it doesn't occur. As with substr, the origin for strings is O. 

The built-in traoslit performs character transliteration. 

translit(s, f, t) 

modifies s by replacing any character found in [by the 
corresponding character of t. That is: 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. If t is shorter 
than [, characters that don't have an entry in t are deleted; as a 
limiting case, if t is not present at all, characters from [ are 
deleted from s. So: 

translit(s, aeiou) 

deletes vowels from "s." 

A built-in called dol deletes all characters that follow it up to and 
including the next newline. It is useful mainly for throwing away 
empty lines that otherwise tend to clutter up m4 output. For 
example, if you say: 

define(N, 100) 
define(M, 200) 
define(L, 300) 

the newline at the end of each line is not part of the definition, so 
it is copied into the output, where it may not be wanted. If you 
add dol to each of these lines, the newlines disappear. 

Another way to achieve this, is 

divert(-l) 
define( ... ) 

divert 

B-12 



Printing 

The built-in errprint writes its arguments out on the standard error 
file. Thus, you can say: 

errprint('fatal error ' ) 

Dumpdef is a debugging aid that dumps the current definitions of 
defined terms. If there are no arguments, you get everything; 
otherwise you get the ones you name as arguments. Don't forget 
the single quotation marks. 

B-13 



B-14 



Appendix C. The XENIX Device Driver 
Guide 

Introduction 

This guide explains how to write device drivers for the IBM 
Personal Computer XENIX System. It discusses the XENIX 
model of devices as files, task time and interrupt time processing, 
how to configure device drivers with the kernel, and other special 
considerations that should be made when writing a device driver. 
The latter sections of this guide provide commentary on sample 
device driver sources for a line printer, a terminal, and a fixed 
disk. These source code samples are intended as prototypes from 
which the experienced programmer can begin writing a driver for 
a particular device. 

If a user of aXE NIX system wants to use some peripheral, there 
must be a device driver for that peripheral. A device driver is a set 
of routines that communicates with a hardware device and 
provides a uniform interface to the XENIX kernel. This uniform 
interface allows the kernel to translate user requests such as "read 
ten bytes" into some sensible action. This document provides the 
details necessary to write drivers for devices that conform 
reasonably well to one of the device models XENIX supports. 

To a user of a XENIX system, a device will appear for most 
purposes to act like a file. A file consists of an ordered sequence 
of bytes. Files that contain data are called regular files and files 
that represent devices are called special files. Associated with 
each file is at least one name; the names of special files are, by 
convention, placed in the directory / dev. 

Associated with each special file is a device number. This number 
uniquely identifies the device, and consists of two parts. The two 
parts are the major number, and the minor number. The major 

C-l 



number tells the kernel which device driver will handle requests 
for this special file, and the minor number provides addition 
information to the driver such as the unit number of the device. 

There are two kinds of special files in the XENIX system: 
character and block. Character devices conform immediately to 
the byte stream model of XENIX files, while block devices 
require intervention by the kernel to provide a byte stream 
interface. In general, any device that appears to be a randomly 
addressable set of fixed size records should be a block device; 
anything else a character device. For example, interfaces for 
terminals and line printers should be character devices; disk or 
tape drives should be block devices. 

Preliminaries 

Depending on the type of processor, the registers that control a 
device may live either in main memory (referred to as memory 
nlapped) or in I/O space. To provide some portability between 
these two types of systems, four routines are provided by the 
kernel: in a and out 0, and inb 0 and outb O. In 0 and inb 0 both 
take an address as an argument, and return the word or byte, 
respectively. Out 0 and outb 0 take an address as the first 
argument, and a value as the second argument. The word or byte 
at the specified address is set to the specified value. 

When the CPU is executing instructions in user programs, it is 
said to be in user mode; when it is executing instructions in the 
XENIX kernel, it is said to be in kernel mode. When the CPU 
receives an interrupt from an external device, it reverts to kernel 
mode if it was in user mode, and control is passed to the interrupt 
routine of the appropriate device driver. When the driver is done, 
it returns, and the processing that was interrupted is resumed. 
The processing that was interrupted is referred to as task time 
processing, and the processing that took place as a result of the 
interrupt is called interrupt time processing. 

If it is necessary to prevent acknowledgement of interrupts during 
task time processing, this can be done by calling the routine spl5 
o. Spl5 0 takes no arguments, and returns a value that is used 

C-2 



when restoring interrupts with the routine splx O. Splx 0 takes 
the return value of spl5 () and enables interrupts. Calls to spl5 0 
and splx 0 nest correctly. 

Sometimes a device driver may receive a request that it cannot 
service immediately. For example, it may receive a write request 
when the output buffer is full. In this case, the requesting process 
can suspend itself by calling sleep O. Sleep 0 takes two 
arguments; the first is a unique number, and the second is the 
priority. When the condition is alleviated, some other process 
may awaken the suspended process by calling wakeup O. Wakeup 
o takes as its only argument the unique number mentioned above; 
all the processes that have called sleep 0 with that number are 
awakened. A sleeping process may also be awakened by a signal. 
When a process is awakened, the call to sleep 0 returns, and the 
process should check that the reason for going to sleep has 
disappeared. The convention for generating unique numbers for 
sleep 0 and wakeup 0 is to use the address of some data structure 
the driver uses; since no data structures will have the same 
address, uniqueness is guaranteed. The priority passed to sleep 0 
has two effects: 

1. It determines the priority of the process when it awakens. 

2. If a process goes to sleep at a priority lower than the manifest 
constant PZERO, the sleep will not be broken by a signal. 
The priority is below PZERO if the condition is likely to 
disappear almost immediately, and above PZERO otherwise. 
Sleep 0 should never be called at interrupt time. 

The kernel provides a mechanism for scheduling a call to a routine 
at some later time. The driver calls the routine timeout 0 with the 
following three arguments: 

1. The routine to be called. 

2. The argument to the routine. 

3. The number of clock ticks that should elapse before the call. 

Busy waiting can be effected by using timeout 0 with sleep 0 and 
wakeup O. The following code fragment illustrates this: 

C-3 



#define PERIOD HZ/IO /* 1/10 second */ 
#define BUSYPRI (PZERO - 1) /* somewhat arbitrary */ 

int status; 

int busywait() /* wait until status is non-zero */ 
{ 

} 

while status == 0 ) { 
timeout(stopwait, 0, PERIOD); 
sleep(&status, BUSYPRI); 

} 

int stopwait() 
{ 

wakeup(&status); 
} 

A driver should never loop waiting for a status change unless the 
delay involved is shorter than 100 microseconds. 

Each driver has a prefix that is applied to all the names it uses. 
Typically this prefix is two characters, but it can be up to four 
characters long. For example, a fixed disk driver might use the 
prefix hd. In the following discussions, the names all use the 
prefix xx. 

Character Devices 

Character devices conform to the file model; their data consists of 
a stream of bytes delimited only by the beginning and end of file. 

The kernel interfaces to character device drivers through six 
routines named xxopen, xxclose, xxread, xx write, xxioctl, and 
xxintr. 

The xxopen 0 routine is called each time the device is opened. 
The kernel calls this routine with two arguments: 

1. The minor number of the device 

C-4 



2. The o/lag argument that was passed to the open system call. 

It is the responsibility of the xxopen () routine to initialize the 
device, and perform any error or protection checking. 

The xxclose () routine is called on the last close on a device. It 
gets two arguments: the minor number of the device being closed, 
and the flags that were passed on the last open. The flags are 
ignored. The close routine is responsible for any cleanup that 
may be required, such as disabling interrupts, clearing device 
registers, ejecting media, etc. 

The xxread () and xxwrite () routines are called when a program 
makes a read or write system call. Their responsibility is to 
transfer data to and from the user's address space. 

Two routines are available to transfer one character at-a-time to 
or from the user. The epass () routine gets one character from the 
user; passe () passes the character argument to the user. Both 
routines return -1 when there are no more characters to be 
transferred. 

There is a pool of small buffers called clists in the kernel. Clists 
are small buffers that form linked lists with head and tail pointers; 
thus, they provide a FIFO buffer. The elements in the linked list 
are called ebloeks ~.. each cblock can hold a small number of 
characters. These are used for buffering low-speed character 
devices. The primary use of the clist buffers is for terminal 
devices that must interface with the common terminal interface. 

A driver that wishes to use the clist buffer mechanism must 
declare a queue header of type clist. If both input and output are 
buffered, the driver will need two headers. There are six routines 
that the driver can use to manipulate clist buffers. 

Gete 0 and pute () move one character from or to the clist buffer 
for each call. Gete () returns the next character in the buffer, or 
-1 if the buffer is empty. Pute () places in the buffer the character 
passed as an argument and returns -1 if there is no free space. 

Geteb () and puteb () are similar to gete () and pute ()~ but put and 
get one cblock instead of a character. Geteb () returns a pointer 

C-5 



to a cblock, which it takes from the c1ist passed as an argument. 
puteb 0 takes two arguments; the first is a pointer to a cblock, and 
the second is a pointer to a c1ist. It puts the cblock onto the c1ist. 

All the cblocks not currently used are kept on a freelist. The 
routine gete! 0 takes a cblock from the freelist, and returns a 
pointer to it. The routine pute! 0 puts the cblock pointed to by its 
argument onto the freelist. Since there are a limited number of 
cblocks in the system, each driver must strive to be judicious in 
determining how many cblocks are used for buffering input and 
output. 

For output buffering, the driver usually follows a "high and low 
water mark" convention. The driver accepts and queues requests 
from the user process until the buffer size exceeds the high water 
mark; at that point, the requesting processes are suspended via 
sleep O. When the buffer has drained below the 'low water mark' 
the suspended processes are awakened, and can fill the buffer 
again. 

For input buffering, the driver usually buffers the data up to some 
limit. If the buffer length exceeds this limit, data is discarded to 
make room for the more recent data. 

The xxioetl 0 routine is called by the kernel when a user process 
makes an ioetlO system call for that device. Its function is to 
perform hardware dependent functions such as setting data rate. 
It gets called with four arguments: the minor number, the 
command and argument passed to the ioetl system call, and the 
flags passed on the open 0 system call for that device. 

The xxintr 0 routine is called by the kernel when the device issues 
an interrupt. Since the interrupt signals completion of a data 
transfer, the interrupt routine must determine the appropriate 
action; perhaps fetching the received character and placing it in 
the input buffer, or removing the next character from the output 
buffer and starting the transmission. The xxintr 0 routine is 
called with the interrupt number as its only argument. 

If a serial device is intended to be used as a interactive terminal, it 
must support various functions such as character and line erase, 
echoing, and buffered input. The code needed to perform these 
functions has been abstracted into sets of routines that roughly 

C-6 



correspond to the character device functions. Each of these sets 
is called a line discipline. One standard line discipline is provided 
by default. Each of the routines is called through the linesw table; 
each entry in this table represents one line discipline, and has 
entries for eight functions. 

The [ open routine should be called on the first open of a device. 
The [-close routine should be called on the last close of the 
devicZ The [ read and [ write routines are called by the 
drivers read and write routines, to pass characters to and from the 
calling process. The [ input routine is called to buffer an 
incoming character. The [ output~ [ ioct[~ and [ mdmint 
routines are currently unused. - -

If the device driver is to be used to handle the console, the putchar 
() routine for printing error and panic messages must be supplied. 
This routine puts one character on the console, doing a busy wait 
rather than depending on interrupts. The character to be printed 
is passed as an argument. 

Block Devices 

Block devices appear to the kernel to be a randomly addressable 
set of records of size BSIZE, where BSIZE is a manifest constant 
defined in the file param.h. The XENIX kernel inserts a layer of 
buffering software between user requests for block devices and 
the device driver. This buffering improves system performance 
by acting as a cache, allowing read ahead and write behind on 
block devices. 

Each buffer in the cache has associated with it a header of type 
struct buf which holds all the data describing the data in the 
buffer. When an I/O request is passed to the block device driver, 
all of the relevant information is held in the buffer header, and the 
request is linked into a chain of pending requests. 

Each block device driver must have a header of type struct iobuf 
for this chain of requests, named xxtab. 

C-7 



The interface between the kernel and the device driver consists of 
the routines xxopen 0, xxclose 0, xxstrategy 0, and xxintr O. 

The xxopen 0 routine is called each time the device is opened. 
The kernel calls this routine with two arguments: 

1. The device number 

2. The of lag argument that was passed to the open system call. 

It is the responsibility of the xxopen () routine to initialize the 
device, and perform any error or protection checking. The 
xxclose 0 routine is called on the last close on a device. It gets 
two arguments: the device number of the device being closed, and 
the flags that were passed on the last open. The flags are ignored. 
The close routine is responsible for any cleanup that may be 
required, such as disabling interrupts, clearing device registers, 
and ejecting media. 

The xxstrategy 0 routine is called by the kernel to queue a 1/0 
request. It is called with one argument: a pointer to a buffer 
header. The xxstrategy 0 routine must make sure the request is 
for a valid block, and then insert the request into the queue. 
Usually the driver will call disksort 0 to insert the request into the 
queue; disksort 0 takes two arguments: a pointer to the head of 
the queue, and a pointer to the buffer header to be inserted. 

The xxintr 0 routine is called whenever the device issues an 
interrupt. It depending on the meaning of the interrupt, it may 
mark the current request as complete, start the next request, 
continue the current request, or retry a failed operation. 

Often a block device driver will provide a character device driver 
interface so that the device can be accessed without going through 
the structuring and buffering imposed by the kernel's block device 
interface. For example, a program might wish to read magtape 
records of arbitrary size, or read large portions of a disk directly. 
When a block device is referenced through the character device 
interface, it is called raw 110 to emphasize the unstructured 
nature of the action. Adding the character device interface entails 
only adding xxread 0 and xx write 0 routines. 

C-8 



Because it is common for block device drivers to provide the raw 
interface, all the work has been abstracted into one routine, physio 
(), which validates the request, builds a buffer header, and calls 
the strategy routine to queue the request. The arguments to 
physio () are: 

• A pointer to the strategy routine 

• A pointer to the buffer header to be filled, 

• The device number of the device 

• A read/write flag 

The driver must be prepared for block sizes different from BSIZE, 
or requests longer than BSIZE. 

Configuration and Installation 

Once the device driver is written, you need to link a new kernel 
that includes the device driver. There are two directories within 
the directory / usr / sys that need to be modified, they are: con! and 
io. The source for the driver is placed in io and compiled into 
object code. The object is then archived in the library lib io. In 
the conf directory, the files master and xenixcon! need to have a 
line added to specify the new device in the configuration. 

Following are step-by-step instructions on the method of 
installing a new device driver. We recommend that you secure a 
bootable copy of the working kernel and carefully follow these 
instructions: 

1. Login as the super-user. 

2. Change directory to usr / sys / io and copy the source code of 
the device driver into that directory. 

3. Compile the source and archive the object code generated by 
typing make OBJS=XX.o, where XX is the filename of the 
source code. (for example: make 'OBJS = prtr.o') 

C-9 



4. Change directory to I dev. List the files in the directory using 
Is -I and determine a unique major device number for the 
driver. Execute a mknod with the device name, device type, 
major device number, and minor device number (for 
example: mknod Idev/prtr c 90). (The device name is the 
same as the name used to access the driver. You may choose 
any name you wish.) This creates the device special file in 
the I dev directory. Remember the major device number; you 
will need it in step 6. 

5. Change directory to I usr I sys I conf. List the files in the 
directory and remove the c.c file if it exists. 

6. Edit the file lusrlsyslconflmaster and add the appropriate 
line to the device information table that describes the driver. 
Refer to master(F) in the IBM Personal Computer XENIX 
Command Reference for more information about the master 
file. As an example, the lines for the three example device 
drivers in this appendix might be: 

* The following devices are those that can be specified 

* in the system description file. The name specified must 

* agree with the name shown. 

*name vsiz msk typ hndlr na bmaj cmaj # vec1 vec2 vec3 vec4 

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

hd 1 0027 014 hd 0 0 36 0 0 0 

td 2 0137 004 sa 0 

lp 1 0022 004 pa 0 

Note that major numbers must be unique; that is, no two 
devices can have the same block major numbers, or the same 
character major numbers. 

7. Edit the file I usr I sys I conf I xenixconf and add the name of 
the device, followed by the number of devices present in the 
configuration. If more information is needed about this 
definition file, refer to config( CP) in the IBM Personal 
Computer XENIX Software Command Reference. For the 
driver examples in this appendix, you might use: 

hd 1 
td 2 
1 P 1 

C-IO 



8. Execute a make command with no arguments in your current 
directory, /usr/sys/conf(for example: make). The new 
kernel is linked and placed in a file named xenix in that 
directory. 

If any errors occur while the kernel is being linked, do not go 
on. Review your device driver for invalid code, such as using 
functions which do not exist in the kernel and start again. 

9. If the kernel is successfully linked, change directory to the 
root ( / ). Move the current kernel xenix to xenix- and copy 
the new kernel from /usr/sys/confto the root directory. 

10. Execute a haItsys and restart the system as usual. If the 
system starts normally, the driver is installed and ready for 
testing. If the system does not start normally, load the 
system using the backup kernel by entering hd xenix- when 
prompted. 

Warnings 

What follows are warnings, based on real world experience, about 
possible problems that can occur when writing a device driver. It 
is very important to heed the advice presented here when writing 
a device driver: 

• Don't defer interrupts with spl?() calls any longer than 
necessary. 

• Don't touch the per process data in the u structure at 
interrupt time. 

• Don't call seterror () or sleep () at interrupt time. 

• Don't call spl at interrupt time. 

• Make interrupt time processing as short as possible. 

• Protect buffer and c1ist processing with spl () calls. 

C-ll 



• Avoid busy waiting whenever possible. 

Sample Line Printer Driver 

This and following sections consist of sample device driver 
listings. for line printer, terminal, and fixed disk drivers. Each 
50-line segment of these listings is preceded by a general 
commentary on the code itself. This commentary describes each 
of the routines used in a particular driver and explains the purpose 
of certain key lines in the program. These key lines are denoted 
by their linenumber in the listing. 

The driver presented here is for a single parallel interface to a 
printer. It transfers characters one at a time, buffering the output 
from the user process through the use of cblocks. 

11. LPPRI is the priority to sleep at when a process needs to 
stop. Since the priority is greater than PZERO, a signal sent 
to the suspended process will awaken the suspended 
process. 

12. If there are fewer than LOWAT characters in the buffer, a 
process which was suspended because of the buffer being 
full can be restarted. 

13. HIW A T is the maximum number of characters in the queue. 
If a process fills the buffer up to this point, it will be 
suspended via sleep 0 until the buffer has drained below 
LOWAT. 

17. The registers in this interface occupy a contiguous block of 
address, starting at RBASE, and running through 
RBASE+2. The data to be printed is placed in RDATA a 
character at a time. The status of the printer can be read 
from RST A TUS, and the interface can be configured by 
writing into RCONTRL. 

C-12 



27. The flags defined here are kept in the variable lp flags. 
FIRST is set if the interface has been initialized. ASLEEP 
is set if a process is asleep waiting for the buffer to drain 
below LOWAT. 

31. lp queue is the head of the linked list of cblocks that forms 
theoutput buffer. 

32. lp ~lags is the variable in which the flags mentioned above 
are kept. 

Ipopen() 

The lpopen () routine is called when some process makes an open 
() system call on the special file that represents this driver. Its 
single argument, dev represents the minor number of the device. 
Since this driver supports only one device, the minor number is 
ignored. 

37: If this is the first time (since boot) that the device has been 
touched, we initialize the interface by setting the CRESET 
bit in the control register. 

41: Enable interrupts from this device by setting the IENABL 
bit in the control register. 

Ipclose() 

The lpclose () routine is called on the last close of the device; that 
is, when the current close () system call will reduce the number of 
processes referencing the device to zero. No action is taken. 

C-13 



1* 
** lp- prototype line printer driver 

*1 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

#include .. /h/param.h 

#include .. /h/dir.h 

#include .. /h/a.out.h 

#include .. /h/user.h 

#include .. /h/file.h 

#include .. /h/tty.h 

#define LPPRI PZERO+5 

#define LOWAT 50 

#define HIWAT 150 

1* register definitions 

#define RBASE OxOO 

#define RDATA CRBASE 

#define RSTATUS CRBASE 

#define RCONTRL CRBASE 

*1 

+ 0) 

+ 1) 

+ 2 ) 

1* base address of registers *1 
1* place character here *1 
1* non zero means busy *1 
1* write control here *1 

22 1* control definitions *1 
23 

24 

25 

#define CINIT Ox01 

#define CIENABL Ox02 

26 1* flags definitions *1 
27 #define FIRST Ox01 

28 #define ASLEEP Ox02 

29 #define ACTIVE Ox04 

30 

31 struct clist lp_queue; 

32 int lp_flags = 0; 

33 
34 lpopenCdev) 

35 int dey; 

36 

1* initialize the interface *1 
1* +Interrupt enable *1 

37 

38 

39 

40 

41 

42 

43 

if Clp_flags & FIRST) == 0 ) { 

lp _ fl ags 1= FIRST; 

outbCRCtrl, CRESET); 

outbCRCtrl, CIENABL); 

44 IpcloseCdev) 

45 int dey; 

46 

47 

48 

49 lpwriteCdev) 

50 int dey; 

C-14 



Ipwrite() 
The lpwrite 0 routine is called to move the data from the user 
process to the output buffer. 

55. While there are still characters to be transferred ... 

56. Raise the processor priority so that the interrupt routine 
can't change the buffer. If the buffer is full, we make sure 
the printer is running, make note of the fact that we are 
waiting, and go to sleep. When we wakeup, we check to 
make sure we the buffer is drained enough, and if it has, we 
go back to the old priority and put the character in the 
buffer. 

65. Make sure the printer is running by locking out interrupts 
and calling lpstart O. 

Ipstart() 
The lpstart 0 routine ensures that the printer is running. It's 
called twice from lpwrite 0, and serves simply to avoid duplicate 
code. 

72. If the printer is running, just return; otherwise, mark it 
ACTIVE, and call1pintr 0 to start the transfer of 
characters. 

Ipintr() 
The /pintr 0 routine is called from two places: /pstart 0, and from 
the kernel when an interrupt occurs. 

84. If lpintr 0 gets called when we don't expect it to, or we 
don't have anything to do, we just return without doing 
anything. 

88. While the printer indicates that it can take more characters 
and we have characters to give it, we get the character from 
the buffer through getc 0, and pass it to the interface by 
writing it to the data register. 

C-15 



92. If the buffer has fewer than LOWAT characters in it, and 
some process is asleep waiting for room, wake him up. 

98. If the queue is now empty turn off the ACTIVE flag. Note 
that the completion interrupt for the transfer that empties 
the buffer is in some sense spurious, since it will occur with 
the ACTIVE flag reset. 

C-16 



51 

52 

53 

54 

55 

56 

57 

58 

59 

60 
61 

62 

63 

64 

65 

66 

67 

68 

69 

register int c; 

int s; 

while ( (c = cpass(» >= 0 ) ! 
ospl = SPL(); 

while ( lp_queue.c_cc > HIWAT ) ! 
lpstart(dev); 

lpflags = ASLEEP; 

sleep(&lp_queue, LPPRI); 

splx(ospl); 

putc(c, &lp_queue); 

SPL() ; 

lpstart ( ); 

splx(s); 

70 Ips tart ( ) 

71 ! 
72 if ( lp_flags & ACTIVE ) 

73 return; 1* interrupt chain is keeping printer going *1 
74 lp_flags 1= ACTIVE; 
75 Ipintr(O); 

76 
77 

78 

79 lpintr(vec) 

80 int vee; 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

int tmp; 

if ( (Ip_flags & ACTIVE) == 0 

return; 1* ignore spurious interrupt *1 

1* pass chars until busy *1 
while ( inb(RSTATUS) == 0 && (tmp 

outb(RDATA, tmp); 

1* wakeup the writer if necessary *1 

getc(&lp_queue» >= 0) 

if ( lp_queue.c_cc < LOWAT && lp_flags & ASLEP ) ! 
Ip_flags &= 'ASLEP; 

wakeup(&lp_queue); 

1* wakeup writer if waiting for drain *1 
if ( Ip_queue.c_cc <= 0 ) 

Ip_flags &= 'ACTIVE; 

C-17 



Sample Terminal Driver 

This driver supports one serial terminal on a hypothetical UART 
type interface. 

11: The interface for each line consists of seven registers. The 
values defined here represent offsets from the base address, 
which is defined elsewhere. The data to be transmitted is 
placed a character at a time into the RTDATA register. 
Likewise, the received data is read a character at a time 
from the RRDATA register. The status of the UART can 
be determined by examining the contents of the RST A TUS 
register. The UART configuration is adjusted by changing 
the contents of the Retd register. Interrupts are enabled or 
disabled by the setting of the bits in the RIENABL register. 
The data rate is set by changing the contents of the 
RSPEED register. 

29. The two low order bits determine the length of the 
character sent. The next two bits control the 
data-terminal-ready and request-to-send lines of the 
interface. The next three bits control the number of stop 
bits, whether parity is generated, and whether generated 
parity is even or odd. Finally, the most significant bit forces 
the transmitter to continuous spacing if it is set. 

41. The three low order bits of the interrupt enable register 
control whether the device generates interrupts under 
certain conditions. If bit 0 is set, an interrupt is generated 
every time the transmitter becomes ready for another 
character. If bit 1 is set, an interrupt is generated every 
time a character is received. If bit 2 is set, an interrupt is 
generated every time the data set ready line changes state. 

46. After an interrupt, the value in the interrupt identification 
register will contain one of three values, indicating the 
reason for the interrupt. 

C-18 



10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

td- terminal device driver 

*1 
#include .. /h/param.h 

#include .. /h/dir.h 

#include .. /h/user.h 

#include .. /h/file.h 

#include .. /h/tty.h 

#include .. /h/conf.h 

1* registers *1 
#define RRDATA 

#define RTDATA 

#define RSTATUS 

#define RCtrl 

#define RIENABL 

#define RSPEED 

#define RIIR 

1* status register bits 

#define SRRDY Ox01 

#define STRDY Ox02 

#define SOERR Ox04 

#define SPERR Ox08 

#define SFERR Ox10 

#define SDSR Ox20 

#define SCTS Ox40 

1* control register *1 
#define CBITS5 OxOO 

#define CBITS6 Ox01 

#define CBITS7 Ox02 

#define CBITS8 Ox03 

#define CDTR Ox04 

#define CRTS Ox08 

#define CSTOP2 Ox10 

#define CPARITY Ox20 

#define CEVEN Ox40 

#define CBREAK Ox80 

1* interrupt enable *1 
#define EXMIT Ox01 

#define ERECV Ox02 

#define EMS Ox04 

1* interrupt ident *1 
#define IRECV Ox01 

#define IXMIT Ox02 

#define IMS Ox04 

1* 
1* 
1* 
1* 
1* 
1* 
1* 

*1 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

1* 
1* 
1* 
1* 
1* 
1* 
I. 
I. 

1* 
1* 

1* 
1* 
1* 

received data *1 
transmitted data *1 
status *1 
control *1 
interrupt enable *1 
data rate *1 
interrupt identification *1 

received data ready *1 
transmitter ready *1 
received data overrun *1 
received data parity error *1 
received data framing error *1 
status of dsr (cd)*1 
status of clear to send *1 

five bit chars *1 
six bit chars *1 
seven bit chars *1 
eight bit chars *1 
data terminal ready *1 
request to send *1 
two stop bits *1 
parity on *1 
even parity otherwise odd *1 
set xmitter to space *1 

tranmitter ready *1 
receiver ready *1 
modem status change *1 

C-19 



51. The values to be loaded into the RSPEED register to get 
various data rates are defined here. 

71. Each line must have a tty structure allocated for it. 

72. Here, the base addresses of the registers is defined for each 
line. 

tdopen() 

The tdopen () routine is called whenever a process makes an open 
() system call on a special file corresponds to this driver. 

83. If the minor number indicates a device that doesn't exist, 
indicate the error, and return. 

89. If the line is already open for exclusive use, and the current 
user is not the super user, indicate the error and return. 

93. If the line is not already open, initialize the tty structure via 
a call to ttinit (), set the value of the proc field in the tty 
struct, and configure the line by calling tdparam (). 

98. Defer interrupts so that the interrupt routines cannot 
change the state while we are examining it. 

99. If the line is not using modem control, or turning on data 
terminal ready and request to send resulted in carrier detect 
being asserted by the remote device, indicate that carrier is 
present on this line. Otherwise, indicate that there is no 
carrier. 

C-20 



1* data rates *1 
int td speeds¢1 -

1* BO *1 0, 

1* B50 *1 2304, 

1* B75 *1 1536, 

1* B110 *1 1047, 

1* B 134 *1 857, 

1* B150 *1 768, 

1* B200 *1 0, 

1* B300 *1 384, 

1* B600 *1 192, 

1* B1200 *1 96, 

1* B1800 *1 64, 

1* B2400 *1 48, 

1* B4800 *1 24, 

1* B9600 *1 12, 

51 

52 

53 

54 

55 

56 
57 

58 

59 

60 

61 

62 

63 
64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

1* EXTA *1 6, 1* 19.2k bps 

1* EXTB *1 58 1* 2000 bps 

}; 

struct tty td _ t ty¢NTDDEVSI ; 

int td _ addr¢NTDEVSI ~ { OxOO, Ox10 

74 

75 tdopen(dey, flag) 

76 int dey, flag; 

77 

78 register struct tty *tp; 

79 int addr; 

80 extern tdproc(); 

int x; 

if ( dey >~ NTDDEVS ) { 

seterror(ENXIO); 

return; 

tp 

addr ~ td _ addr¢deyl; 

}; 

*1 
*1 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

if( (tp->t_lflag & XCLUDE) && !suser() ) { 

seterror(EBUSY); 

100 

return; 

if « tp->t_state& (ISOPENlwOPEN)) 

ttinit(tp) ; 

tp->t_proc ~ tdproc; 

tdparam( dey) ; 

splS ( ) ; 

0) { 

if ( tp->t_cflag & CLOCAL II tdmodem(dey, TURNON)) 

tp->t_state I~ CARR_ON; 

C-21 



103. If the open is supposed to wait for carrier, wait until carrier 
is present. 

108. Call the I open routine indirectly through the linesw table. 
This completes the machinations required for the current 
line discipline to open a line. 

109. Resume taking interrupts. 

tdclose() 

The tdclose () routine is called on the last close on a line. 

117. Call the close routine through the linesw table to do the 
work required by the current line discipline. 

118. If the "hang up on last close" bit is set, drop data terminal 
ready and request to send. 

120. Reset the exclusive use bit. 

122. To prevent spurious interrupts, disable all interrupts for 
this line. 

tdread() and tdwrite() 

Both of these routines simply call the relevant routine via the 
linesw table; the called routine performs the action appropriate for 
the current line discipline. 

tdparam() 

The tdparam () routine configures the line to the mode specified in 
the appropriate tty structure. 

142. Get the base address and flags for the referenced line. 

146. The speed BO has the special meaning of "hang up the 
line. " 

C-22 



101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

else 

tp->t_state &~ 'CARR_ON; 

if (!(flag&FNDELAY)) 

while ((tp->t_state&CARR_ON) 0) I 

tp->t_state I~ WOPEN; 

sleep((caddr_t)&tp->t_canq, TTIPRI); 

(*linesw¢tp->t _1 inel. 1_ open) (tp) ; 

splx(x); 

112 tdclose(dev) 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

register struct tty *tp; 

(*linesw¢tp->t_linel.l close)(tp); 

if (tp->t_cflag & HUPCL) 

tdmodem(dev, TURNOFF); 

tp->t Iflag &= 'XCLUDE; /* turn off exclusive use bit */ 

/* tu;n off interrupts */ 

out (td_ addr¢devl + RIENABL, 0); 

125 tdread(dev) 

126 

127 

128 

129 

(* 1 inesw¢tp->t _1 inel. 1_ read) ( &td _ t ty¢devl) ; 

130 tdwrite(dev) 

131 

132 

133 

134 

135 

(* 1 inesw¢tp->t _1 inel. 1_ wr i te) ( & td _ t ty¢devl) ; 

136 tdparam(dev) 

137 

138 register int cflag; 

139 register int addr; 

140 register int temp, speed, x; 

141 

142 addr ~ td_addr¢devl; 

143 cflag = td_tty¢devl.t_cflag; 

1* if speed is BO, turn line off */ 

if (cflag & CBAUD) == BO)I 

144 

145 

146 

147 

148 

149 

150 

outb(addr + RCONTRL, inb(addr'RCONTRL) & CDTR & CRTS); 

return; 

C-23 



152. The remainder of this routine simply loads the device 
registers with the correct values. 

tmodem() 

The tmodem routine controls the data terminal ready and request 
to send outputs of the line. Its return value indicates whether 
data set ready (carrier detect) is present for the line. 

180. If cmdwas TURNON, we turn on modem interrupts, and 
assert data terminal ready and request to send. 

185. We disable modem interrupts, and drop data terminal ready 
and request to send. 

189. Return a zero value if there is no data set ready on this line, 
otherwise return a non zero value. 

tdintr() 

The tdintr () routine determines which line caused the interrupt, 
and what the reason was, and calls the appropriate routine to 
handle the interrupt. 

198. Different lines will result in different interrupt vectors being 
passed as tdintrO's argument.. Here, we deduce the minor 
number from the vec that was passed to us. 

C-24 



1* set up speed *1 151 

152 

153 

outb( addr + RSPEED, td_speeds¢ eflag & CBAUD I); 

1* set up line control *1 154 

155 

156 

157 

158 

159 

160 

161 

temp = (eflag & CSIZE) 4; 1* length *1 

162 

163 

164 

165 

if ( eflag & CSTOPB ) 

if 

temp 1= CSTOP2; 

eflag & PARENB ) { 

temp 1= CPARITY; 
if ( (eflag & PARODD) 

temp 1= CEVEN; 

temp 1= CDTR 1 CRTS; 

out( addr + RCtrl, temp); 

1* setup interrupts *1 
temp = EXMIT; 

if ( eflag & CREAD ) 

temp 1= ERECV; 

0) 

166 

167 

168 

169 

170 

171 

outb(addr + RENABL, inb(RENABL) 1 temp); 

172 

173 tdmodem(dev, emd) 

174 int dey, emd; 

175 

176 register int addr; 

177 
addr = td _ addr¢devl; 

switeh(emd) { 

178 

179 

180 

181 

case TURNON: I. enable modem interrupts, set DTR & RTS true *1 
outb (addr + RENABL, inb (RENABL) 1 EMS); 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 #endif 

192 

outb (addr + RCONTRL, inb (RENABL) 1 CDTR 1 CRTS ); 

break; 

case TURNOFF: 1* disable modem interrupts, reset DTR, RTS *1 
outb(addr + RENABL, inb(RENABL) & OEMS); 

outb(addr + RCONTRL, inb(RENABL) * o(CDTR 1 CRTS) ); 

break; 

return (inb(addr + RSTATUS) & SDSR); 

193 tdintr(vee) 

194 int vee; 

195 

196 

197 

198 

199 

200 

register int iir, dey, inter; 

switeh( vee) { 

case VECTO: 
dey 0; 

C-25 



209. While the interrupt identification register indicates that 
there is more to deal with, call the appropriate routine. 
When the condition that caused the interrupt is dealt with, 
the UART will reset the bit in the register by itself. 

tdxint() 

The tdxint () routine is called when a transmitter ready interrupt is 
received. It may issue a eSTOP character to indicate that the 
device on the other end must stop sending characters, or it may 
issue a eST AR T character to indicate that the device on the other 
end may resume sending characters, or it may call tdproc () to send 
the next character in the queue. 

226. If the transmitter is ready, reset the busy indicator, and go 
do it. 

229. If we are to restart the line, send a eSTART, and reset the 
indicator. 

232. If we are to stop the line, send a eSTOP, and reset the 
character. 

236. Most of the time, we will just call tdproc () and ask it to 
send the next character in the queue. 

tdrint() 

The tdrint () routine is called when a receiver interrupt is received. 
All it has to do is pass the character, along with any errors, to the 
appropriate routine via the linesw table. 

250. Get the character and status. 

C-26 



201 
202 
203 
204 

205 
206 
207 

208 
209 
210 
211 
212 
213 
214 
215 
216 

217 
218 

break; 
case VECT1: 

default: 

dey ~ 1; 

break; 

printfCtdint: wrong level interrupt C%x)\en,vec); 

return; 

whileC CUr inbCtd_addr¢devl+RIIR)) 
ifC CUr & IXMIT) != 0 ) 

tdxintCdev); 
ifC CUr & IRECV) != 0 

tdrintCdev); 
ifC Ciir & IMS) != 0 

tdmintCdev); 

0) ! 

219 tdxintCdev) 

220 
221 
222 

223 
224 

225 
226 
227 
228 
229 

230 
231 

232 
233 
234 
235 
236 
237 

238 
239 

register struct tty *tp; 
register int addr; 

tp = &td_tty¢devl; 
addr ~ td _ addr¢devl; 

if inbCaddr + RSTATUS) & STRDY 

tp->t_state &~ °BUSY; 
if Ctp->t_state & TTXON) 

outbCaddr + RTDATA, CSTART); 
tp->t_state &~ 'TTXON; 

) else if Ctp->t_state & TTXOFF) ! 
outbCaddr + RTDATA, CSTOP); 
tp->t_state &~ TTXOFF; 

) else 
tdprocCtp, T_OUTPUT); 

240 tdrintCdev) 
241 

242 

243 
244 
245 
246 

247 
248 
249 

250 

register int c, status; 
register int addr; 
register struct tty *tp; 

addr td _ addr¢devl; 

1* get char and status *1 
c ~ inbC addr + RRDATA ); 

C-27 



256. If we detected any errors, set the appropriate bit in c. 

262. And finally, pass the character and errors to the I input 0 
routine for the current line discipline. -

tdmint() 

The tdmint 0 routine is called whenever a modem interrupt is 
caught. 

271. If we aren't doing modem support for this line, just return. 

276. If we see data set ready for this line, and we didn't before, 
mark the line as having carrier, and wakeup any processes 
that are waiting for the carrier before their tdopen 0 call 
can complete. 

281. If we don't see data set ready for this line, and we did 
before, we send a hangup signal to all of the processes that 
are associated with this line, call tdmodem 0 to hang up the 
line, flush the output queue for this line by calling tty/lush 
0, and finally, mark the line as having no carrier. 

tdioctl() 

The tdioctlO routine is called when some process makes a ioctl 
system call on a device associated with the driver. It just calls 
ttiocom 0 which returns a non-zero value if the hardware must be 
reconfigured. 

C-28 



251 

252 

253 

254 

255 

256 
257 

258 

259 

260 
261 

262 

263 

264 

status inb(addr + RLSR); 

Were there any errors on input? 

*1 
if( status & SOERR 1* 

c 1= OVERRUN; 
if( status & SPERR ) 1* 

c 1= PERROR; 
if( status & SFERR ) 1* 

c 1= FRERROR; 

overrun 

parity 

framing 

265 tdmint(dev) 

266 

267 register struct tty *tp; 
268 register int addr,c; 

269 

270 

271 
272 

273 

tp 
if 

addr 

&td_ttY¢devl; 
tp->t_cflag & CLOCAL ) { 

return; • 

td_ addr¢devl; 

if «inb(addr + RSTATUS & SDSR» { 

if «tp->t_state & CARR_ON)==O) 

} 
} else { 

tp->t_state 1= CARR_ON; 
wakeup(&tp->t_canq); 

if (tp->t_state & ISOPEN) 

error *1 

error *1 

error *1 

274 

275 

276 

277 
278 

279 

280 

281 

282 

283 
284 

285 

286 

signal (tp->t_pgrp, SIGHUP); 

tdmodem(dev, TURNOFF); 

ttyflush(tp, (FREADIFWRITE»; 

287 

288 

289 

290 

291 

292 

293 tdioctl(dev, cmd, arg, mode) 
294 int dey; 

295 int cmd; 

296 faddr_t arg; 

297 int mode; 
298 

299 

300 

if (ttiocom(&td_tty¢devl, cmd, arg, mode» 

tdparam( dev) ; 

C-29 



tdproc() 

The tdproc () routine is called to effect some change on the output, 
such as emitting the next character in the queue, or halting or 
restarting the output. 

312. The cmd argument determines the action taken. 

314. The time delay for outputting a break has finished. Reset 
the flag that indicates there is a delay in progress, and stop 
sending a continuous space. Then restart output by 
jumping to start. 

321. We are either restarting a line on which output was 
stopped, or someone is waiting for the output queue to 
drain. Reset the flag indicating that output on this line is 
stopped, and start the output again by jumping to start. 

326. Here, we are trying to put out another character. If some 
delay is in progress (TIMEOUT) or the line has output 
stopped (TTSTOP) or a character is in the process of 
being output (BUSY) give up. 

328. If some process was waiting for the output queue to drain, 
reset the indicator, and wake him up. 

332. While we still have characters in the output buffer do the 
following. 

333. If we are doing output postprocessing on this line, and the 
current character is a delay marker (octal 200), get the 
next character, which specifies the delay in clock ticks, 
mark the line as waiting for a delay to expire, and~schedule 
the line to be restarted via timeout (). 

342. Otherwise, we have a character to output; mark the line 
BUSY, and pass the character to the controller. 

346. If some process is waiting because the buffer went over the 
high water mark, and it is now below the low water mark, 
wake him up. 

C-30 



301 

302 
303 tdproc(tp, cmd) 

304 register struct tty *tp; 

305 
306 
307 
308 
309 
310 
311 
312 
313 
314 

315 
316 
317 

318 
319 
320 
321 

322 
323 
324 

325 

326 
327 

328 
329 
330 
331 
332 
333 
334 

335 
336 
337 

338 
339 
340 
341 
342 
343 
344 
345 

346 
347 
348 
mi. 

349 
350 

register c; 
register int addr; 

extern ttrstrt(); 

addr = td _ addr¢tp - td_ tty[; 
switch (cmd) 

case T TIME: 

tp->t_state &= °TIMEOUT; 
outb(addr + RCtrl, inb(addr + RCtrl) & °CBREAK); 

goto start; 

case T WFLUSH: 
case T RESUME: 

tp->t_state &= °TTSTOP; 
goto start; 

case T OUTPUT: 
start: 

if (tp->t _ sta te& (TIMEOUT[TTSTOP[BUSY) ) 
break; 

if (tp->t state&TTIOW && tp->t outq.c_ee~~O) 

tp->t_state &= °TTIOW; 
wakeup«caddr_t)&tp->t_oflag); 

while «c=gete(&tp->t_outq» >= 0) { 
if (tp->t_oflag&~POST && c == 0200) 

if «c = gete(&tp->t_outq» ~ 0) 

break; 
if (e > 0200) { 

tp->t_state [= TIMEOUT; 
timeout(ttrstrt, (caddr_t)tp, (e&01771); 

break; 

tp->t_state [= BUSY; 
outb(addr + RTDATA, e); 

break; 

if (tp->t_state&OASLP && tp->t outq.c ee<= 

ttlowat¢tp->t_cflag&CBAUD[) { 
tp->t_state &= °OASLP; wakeup«eaddr t)&tp->t_outq)&se 

break; 

C-31 



352. We want to stop the output on this line. Since there is no 
way to stop the character we have already passed to the 
controller, we just flag the line stopped, and drop through. 

357 . We want to tell the device on the other end to stop sending 
characters. Reset the flag asking to stop the line and mark 
the line stopped. If the line is already busy, set the flag; 
otherwise, output a eSTOP character. 

365. Someone is waiting to flush the input queue. If we haven't 
blocked the device from sending us characters, just return. 
Otherwise, drop through and unblock him. 

369. We want to tell the device on the other end to resume 
sending characters. Adjust the flags. If the controller is 
sending a character, set the flag so we will send a CST ART 
later; otherwise, send the CSTART now. 

377. We want to send a break. Set the transmitter to 
continuous space, mark the line as waiting for a delay, and 
schedule output to be restarted later. 

C-32 



351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 

363 
364 
365 
366 
367 
368 
369 
370 
371 
372 

373 
374 
375 

376 
377 
378 
379 

380 
381 
382 

case T SUSPEND: 
tp->t _ state 1= TTSTOP; 
break; 

case T BLOCK: 
tp->t_state &= °TTXON; 
tp->t_state 1= TBLOCK; 
if (tp->t_state&BUSY) 

tp->t_state 1= TTXOFF; 
else 

outb(addr + RDATA, CSTOP); 
break; 

case T RFLUSH: 
- if (!(tp->t_state&TBLOCK» 

break; 
case T UNBLOCK: 

tp->t_state &= ° (TTXOFFITBLOCK); 
if (tp->t_state&BUSY) 

tp->t_state 1= TTXON; 
else 

outb(addr + TDATA, CSTART); 

break; 

case T BREAK: 
outb ( addr + RCtr 1, inb ( addr + RCtr 1 ) 1 CBREAK ); 
tp->t state 1= TIMEOUT; 
timeo~t(ttrstrt, tp, Hz/4); 
break; 

Sample Disk Driver 

The driver presented here is for an intelligent controller that is 
attached to one or more drives. The controller can handle 
multiple sector transfers that cross track and cylinder boundaries. 

13. NHD defines the number of drives the controller can be 
attached to. 

14. Each disk drive attached to the controller has NCPD 
cylinders; each cylinder has NTPC tracks, and each track 
has NSPT sectors. The sectors are NBPS bytes long. 

C-33 



21. The controller registers occupy a region of contiguous 
address space starting at RBASE and running through 
RBASE+7. 

32. To make the controller perform some action, the registers 
that describe the transfer (RCYL, RTRK, RSEC, 
RADDRL, RADDRH, RCNT) are set to the appropriate 
values, and then the bit representing the desired action is 
written into the RCMD register. 

40. drive 0 and part 0 are macros to split out the two parts of 
the minor number. Bits zero through two represent the 
partition on the disk, and the remaining bits specify the 
drive number. Thus, the minor number for drive 1, 
partition 2 would be ten decimal. 

44. Large disks are typically broken into several partitions of a 
more manageable size. The structure that specifies the size 
of the partitions specifies the length of the partition in 
blocks, and the starting cylinder of the partition. 

49. This driver splits a disk into up to eight pieces, but at 
present, only four are used. The first partition covers the 
whole disk. The remaining three split the disk three ways, 
one partition for each of root, swap, and usr. 

C-34 



1* 
** hd- prototype fixed disk driver 

*1 

#include .. /h/param.h 

#include .. /h/systm.h 

#include .. /h/buf.h 

#include . . /h/dir.h 

#include .. /h/conf.h 

10 #include .. /h/user.h 

11 

1* disk parameters *1 
#define NHD 4 1* number of drives 

#define NCPD 600 1* cylinders/disk 

#define NTPC 1* tracks/cylinder 

*1 
*1 

*1 
#define NSPT 10 1* sectors/track *1 
#define NBPS 512 1* bytes/sector *1 

12 

13 

14 

15 

16 

17 

18 

19 

#define NBPC (NTPC*NSPT*(BSIZE/NBPS)) 1* blocks/cylinder *1 

1* addresses of controller registers *1 
#define RBASE OxOO 1* base of all registers *1 
#define RCMD (RBASE+O) 1* command register *1 
#define RSTAT (RBASE+ 1) 1* status - nonzero means error *1 
#define RCYL (RBASE+2) 1* target cylinder *1 
#define RTRK (RBASE+3) 1* target track *1 
#define RSEC (RBASE+4) 1* target sector */ 

#define RADDRL (RBASE+5) 1* target memory address 10 16 bits*/ 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

#define RADDRH (RBASE+6) 1* target memory address hi 8 bits*/ 

31 

32 

33 

34 

35 

#define 

1* bits 

#define 

#define 

#define 

36 1* 

RCNT 

in RCMD 

CREAD 

CWRITE 

CRESET 

(RBASE+7) 1* number 

register *1 
Ox01 1* start 

Ox02 /* start 

o xO 3 1* reset 

37 minor number layout is OOOOdppp 

of sectors to xfer 

a read *1 
a write */ 

the contr"oller *1 

38 where d is the drive number and ppp is the partition 

39 

40 

41 

42 

*1 
#define drive(d) 

#define part(d) 

(d » 3) 

(d & Ox07) 

43 1* partition table *1 

*1 

44 
45 

46 

47 

48 

49 

50 

struct partab f 
daddr t len; 1* # of blocks in partition */ 

int cyloff; 1* starting cylinder of partition */ 

J; 

struct partab hd_sizes¢81 

NCPD*NBPC. O. 1* whole disk *1 

C-35 



60. The buffer headers representing requests for this driver are 
linked into a queue, with hdtab forming the head of the 
queue. In addition, information regarding the state of the 
driver is kept in hdtab. 

61. Each block driver that wants to allow "raw" I/O allocates 
one buffer header for this purpose. 

hdstrategy 

This is called by the kernel to queue a request for I/O. The single 
argument is a pointer to the buffer header which contains all of 
the data relevant to the request. The strategy routine is 
responsible for validating the request, and linking it into the queue 
of outstanding requests. 

79. First, compute various useful numbers that will be used 
repeatedly during the validation process. 

82. If the request is for a non-existent drive, a non-existent 
partition, lies completely outside the specified partition, or 
is a write and ends outside the partition, it is marked as 
failed by setting the B ERROR bit in the b flags field 
of the header, and then marked completed by calling 
iodone 0 with the pointer to the header as an argument. If 
the request is a read and ends outside the partition, it is 
truncated to lie completely within the partition. 

95. Compute the target cylinder of the request for the benefit 
of the disksort () routine. 

96. Block interrupts to prevent the interrupt routine from 
changing the queue of outstanding requests. 

97. Sort the request into the queue by passing it and the head 
of the queue to disksort O. 

98. If the controller is not already active, start it up. 

99. Re-enable interrupts and return to the user process. 

C-36 



ROOTSZ*NBPC, 0, 1* 
SWAPSZ*NBPC, ROOTSZ, 1* 
USERSZ*NBPC, USROFS, 1* 
0, 0, 1* 
0, 0, 1* 
0, 0, 1* 
0, 0, 1* 

J; 

51 

52 

53 
54 

55 

56 

57 

58 

59 

60 

61 

62 

struct buf hdtab; 1* 
struct 

63 1* 
64 

65 

66 

67 

68 

69 

70 

** 
** 
** 
** 
** 
** 
** 

71 *1 

buf rhdbuf; 1* 

strategy Routine: 

Arguments: 

Pointer to buffer structure 

Function: 

Check validity of request 

Queue the request 

start up the device if idle 

72 int hdstrategyCbp) 

73 register struct buf *bp; 

74 

root area *1 
swap area *1 
usr area *1 
spare *1 
spare *1 
spare *1 
spare *1 

start of request queue *1 
header for raw i/o *1 

75 

76 

77 

78 

79 

80 

81 

82 

83 

register int dr, pa; 

int sspl; 

1* drive and partition numbers *1 

READ» ) 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

long sz; 

dr driveCbp->b_dev); 

pa partCbp->b_dev); 

sz Csz + BMASK) » BSHIFT; 

if dr<NDRIVES && pa<NPARTS && bn>=O && bn<hd_sizes¢pal.len && 

C Cbn + sz < hd_sizes¢pal.len) Cbp->b_flags & B 

if C bn + sz > hd_sizes¢pal.len ) { 

else 

sz = Chd_sizes¢pal.len - bn) * BSIZE; 

bp->b_resid = bp->b_bcount - sz; 

bp->b_bcount = sz; 

bp->b_flags 1= B_ERROR; 

iodoneCbp); 

return; 

bp->b_cylin = Cb blkno I NBPC) + hd_sizes¢pal.start; 

sspl = splSC); 

disksortC&hdtab, bpI 

if Cdp->b_active == NULL) 

hdstartC ) ; 

splxCsspl); 

C-37 



hdstart() 
The hdstart () routine performs the calculation of target address 
on the disk, and starts the transfer. 

117. If there are no active requests, mark the state of the driver 
as idle, and return. 

121. Mark the state of the driver as active. 

123. Calculate the starting cylinder, track, and sector of the 
request, and load the controller registers with these values. 

129. Load the controller with the drive number, and the 
memory address of the data to be transferred. 

132. If the request is a read request, issue a read command, 
otherwise, issue a write command. 

hdintr() 
The hdintr () routine is called by the kernel whenever the 
controller issues an interrupt. 

149. If we get called when we don't expect to, just return. 

C-38 



101 

102 

103 1* 
104 startup Routine: 

105 Arguments: 

106 None 

107 Function: 

108 Compute device-dependent parameters 

109 start up device 

110 Indicate request to 1/0 monitor routines 

111 *1 
112 hdstart() 

113 

114 

115 

116 

117 

118 
119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

register struct buf *bp; 

register unsigned sec; 

1* BUFFER POINTER *1 

if ((bp = hdtab.b_actf) 

hdtab.b active = 0; 

return; 

hdtab.b active = 1; 

NULL) ! 

sec = (unsigned)bp->blkno * (unsigned) (BSIZE 1 NBPS); 

out(RCYL, sec I NSPC); 1* cylinder *1 
sec %= NSPC; 

out(RTRK, sec I NSPT); 1* track *1 
out(RSEC, sec NSPT); 1* sector *1 
out(RCNT, bp->b_count I NBPS); 1* count *1 
out(RDRV, drive(bp->b_dev)); 1* drive *1 
out (RADDRL, bp->b_paddr & Oxffff); 

out (RADDRH, bp->b_paddr » 16); 

if ( bp->b_flags & B_READ ) 

out(RCMD, CREAD); 

else 

out(RCMD, CWRITE); 

Interrupt routine: 

Che~k completion status 

1* memory address 10 *1 
1* memory address hi *1 

141 Indicate completion to ilo monitor routines 

142 Log errors 

143 Restart (on error) or start next request 

144 *1 
145 hdintr() 

146 

147 register struct buf *bp; 

148 

149 if (hdtab.b active 0) 

150 return; 

C-39 



152. Get a pointer to the first buffer header in the chain; this is 
the request that is currently being serviced. 

154. If the controller indicates an error, and we haven't retried 
ERRLIM times, try the operation again. If we have retried 
ERRLIM times, we assume the error is a hard one, and 
mark the request as failed, and call deverror 0 to print a 
console message about the failure. 

166. Mark this request complete, take it out of the request 
queue, and call hdstart () to start on the next request. 

hdread() 
The hdread 0 routine is called by the kernel when a process 
requests raw read on the device. All it has to do is call physio 0, 
passing the name of the strategy routine, a pointer to the raw 
buffer header, the device number, and a flag indicating a read 
request. Physio 0 performs all the necessary machinations, and 
queues the request by calling the strategy routine. 

C-40 



151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 /* 

bp 

if 

hdtab.b_actf; 

in(RSTAT) != 0 

out(RCMD, CRESET); 

if (++hdtab.b errcnt <= ERRLIM) ! 
hdstart() ; 

return; 

deverr(&hdtab, bp, in(RSTAT), 0); 

Flag current request complete, start next one 

hdtab.b_errcnt = 0; 

hdtab.b_actf = bp->av_forw; 

bp->b_resid = 0; 

iodone(bp); 

hdstart(); 

174 raw read routine: 

175 This routine calls physio which computes and validates 

176 a physical address from the current logical address. 
177 

178 Arguments 

179 Full device number 

180 Functions: 

181 Call physio which does the actual raw (physical) I/O 

182 The arguments to physio are: 

183 pointer to the strategy routine 
184 buffer for I/O 

185 device 

186 read/write flag 

187 */ 
188 hdread(dev) 

189 

190 

191 

192 

193 

194 /* 

physio(hdstrategy, &rhdbuf, dev, B_READ); 

195 Raw write routine: 

196 Arguments(to hdwrite): 

197 Full device number 

198 Functions: 

199 Call physio which does actual raw (physical) I/O 

200 */ 

C-41 



hdwrite() 
The hdwrite 0 routine is called by the kernel when a process 
requests a raw write on the device. Its responsibilities and actions 
are exactly the same as hdread 0 except that it passes a flag 
indicating a write request. 

C-42 



201 hdwrite(dev) 

202 

203 

204 

205 

physio(hdstrategy, &rhdbuf, dev, B_WRITE); 

C-43 



C-44 



Appendix D. Linker Error Messages 

This section lists and explains the messages displayed by the IBM 
Personal Computer XENIX linker. The linker, Id, displays a 
message whenever it encounters an error during processing. 

Array element size mismatch 
A far communal array has been declared with two or 
more different array element sizes (for example, 
declared once as an array of characters and once as 
an array of reals). Match definitions and recreate 
object module. 

Attempt to put segment name in more than one group in file 
filename 

A segment was declared to be a member of two 
different groups. Correct the source and recreate the 
object files. 

Cannot find file filename 
Specified file cannot be found. Try again after 
locating the file in question. 

Cannot open list file 
The directory or disk is full. Make space on the disk 
or in the directory. 

Cannot open run file 
The directory or disk is full. Make space on the disk 
or in the directory. 

Cannot open temporary file 
The directory or disk is full. Make space on the disk 
or in the directory. 

Common area longer than 65536 bytes 
User's program has more than 64K of communal 
variables. At the present time, only C language 
programs can possibly cause this message to be 

D-l 



displayed. Rewrite your program using fewer 
communal variables or making some of your 
communal variables far&sem 

Data record too large 
LEDATA record contains more than 1024 bytes of 
data. This is a translator error. 

Dup record too large 
LIDA T A record contains more than 512 bytes of 
data. Most likely, an assembly module contains a 
struc definition that is very complex, or a series of 
deeply nested DUP statements (for example, table 
db 10 dup(11 dup (12 dup (13 dup ( ... ))))). 
Simplify and reassemble. 

Error accessing library 
File in question is an invalid library. Use a valid 
library. 

Fixup overflow nearnum in segment name in filename (name ) offset 
num 

A fixup overflow can be caused by: 

1. A group larger than 64 K bytes. 

2. The user's program contains an intersegment 
short jump or intersegment short call. 

3. The user has a data item whose name conflicts 
with that of a subroutine in a library included in 
the link. 

4. An assembly language source file has an 
EXTRN declaration for a far procedure inside 
the body of a segment. 

Group name larger than 64K bytes 

D-2 

User has defined a group containing more than 64 K 
bytes of code or data. Make the offending group 
smaller and relink. 



Invalid object module 
One of the object modules is invalid. Try 
recompiling. 

List file name missing 
N arne missing after -m option. Try again with 
correct command line. 

Multiple code segments--should be medium model 
User's program contains more than one code 
segment, and the user has not informed the linker 
that the program is middle or large model. Unless 
the program is hybrid model, relink using -Mm 
option. 

Multiple data segments--should be large model 
User's program contains more than one data 
segment, and the user has not informed the linker 
that the program is large model. Unless the program 
is hybrid model, relink using -Ml option. 

Name length missing 
Number missing after the -nl option. Try again with 
correct command line. 

NEAR/HUGE conflict 
Conflicting near and huge definitions for a 
communal variable. Revise definitions to be 
consistent 

Note: A communal variable is huge if it is larger 
than 65536 bytes. 

No object files specified 
No object files were specified on the command line 
and the -u option was not used. Try again with 
correct command line. 

No object modules specified 
User failed to supply the linker with any object file 
names. Try again. 

D-3 



Out of space on list file 
Disk on which list file is being written is full. Free 
more space on the disk and try again. ' 

Out of space on run file 
Disk on which executable is being written is full. 
Free more space on the disk and try again. 

Out of space on scratch file 
Disk in default drive is full. Delete some files on that 
disk, or replace with another diskette, and restart the 
linker. 

Relocation table overflow 
More than 16384 long calls or long jumps or 
other long pointers in the user's program. Rewrite 
program replacing long references with short 
references where possible and recreate object 
module. 

Run file name missing 
N arne missing after the -0 option. Try again with 
correct command line. 

Segment limit set too high 
The limit on the number of segments allowed was set 
higher than 1024 using the -S option. Try link again 
with a smaller number. 

Segment limit too high 
There is insufficient memory for the linker to 
allocate tables to describe the number of segments 
requested (either the value specified with -S or the 
default: 128). Try the link again using -S to select a 
smaller number of segments (for example, 64, if the 
default were used previously). 

Segment size exceeds 64K 

D-4 

User has a small model program with more than 64K 
bytes of code, or user has a middle model program 
with more than 64 K bytes of data. Try compiling 
and linking middle or large model. 



Stack size exceeds 65536 bytes 
The value specified using the -F option exceeds 
OxlOOOO. Try again. 

Stack size missing 
Number missing after -F option. Try again with 
correct command line. 

Symbol missing 
Symbol missing after the -u option. Try again with 
correct command line. 

Symbol table overflow 
The user's program has greater than 256K of 
symbolic information (publics, externs, segments, 
groups, classes, files, etc). Combine modules and/or 
segments and recreate the object files. Eliminate as 
many public symbols as possible. 

Terminated by user 
The user pressed the delete key. 

Too many external symbols in one module 
User's object module specified more than the 
allowed number of external symbols. Break up the 
module. 

Too many group-, segment-, and class-names in one module 
User's program contains too many group, segment, 
and class names. Reduce the number of groups, 
segments, or classes, and recreate the object files. 

Too many groups 
User's program defines more than nine groups. 
Reduce the number of groups. 

Too many GRPDEFs in one module 
Linker encountered more than 9 GRPDEFs in a 
single module. Reduce the number of GRPDEFs or 
split up the module. 

D-5 



Too many libraries 
User tried to link with more than 32libraries. 
Combine libraries or link modules that require fewer 
libraries. 

Too many segments in one module 
The user's object module has more than 255 
segments. Split the modules or combine segments. 

Too many segments 
The user's program has too many segments. Relink 
using the -S option with an appropriate number of 
segments specified. 

Too many TYPDEFs 
TYPDEFs are records emitted by the compiler to 
describe communal variables. Create two sources 
from the old source, dividing the communal variable 
definitions between them; recompile and relink. 

Unexpected end-of-file on library 
The diskette containing the library has probably been 
removed. Try again after replacing the diskette with 
the library. 

Unknown model specifier +'&-M x' 
x was none of the following: s, m, or 1. Try again 
with correct command line. 

Unknown option '&-x' 
Specified option is not recognized by the linker. Try 
again with correct command line. 

Unrecognized XENIX version number 

Use -i option 

D-6 

Number after -v option was neither 2 nor 3. Try 
again with correct command line. 

User's program is not small model impure (that is, it 
consists of more than one segment). Relink using 
the -i option. 



Version number missing 
Number missing after -v option. Try again with 
correct command line. 

Warning: Groups name and name overlap 
User's program contains overlapping groups. Unless 
one group is completely contained by the other, fix 
the source code, recompile, and relink. 

Warning: model mismatch 
One or more object modules were not compiled using 
the memory model specified by the -M option. 
Recompile the offending module and relink. 

Warning: too many public symbols 
The user has asked for a sorted listing of public 
symbols in the list file, but there are too many 
symbols to sort. The linker will produce an unsorted 
listing of the public symbols. 

-u seen before -nl 
User has specified a symbol to look for (using the -u 
option) before specifying the maximum symbol 
length with the -nl option. Try again placing the -nl 
option and its argument before all-u options and 
their arguments. 

D-7 



D-8 



Index 

Special Characters 

.cshrc file 
C shell use 10-3 

.login file 
C shell use 10-3 

.logout file 
C shell use 10-4 

-a option 
lint 4-12 

-b option 
lint 4-8 

-c option 
C compiler 2-12 
lint 4-11 

-D option 
C compiler 2-19 

-E option 
C compiler 2-22 

-h option 
lint 4-14 

-I option 
C compiler 2-21 

-1 option 
C compiler 2-14 

-n option 
lint 4-19 

-0 option 
C compiler 2-8, 2-15 

-p option 
C compiler 2-18, 2-22 
lint 4-19 

-s option 
C compiler 2-16 

-u option 
lint 4-6 

-v option 
lint 4-6, 4-17 

-x option 

A 

C compiler 2-16 
lint 4-5 

Adb 
addresses, validating 7-34 
basic tool 1-4 
Core image 7-4 
data files 7-5 
displaying instructions 7-7 
input format 7-38 
locating values 7-42 
memory maps 7 -31 
patching binary files 7 -42 
prompt option 7-6 
Starting 7-3, 7-5 
Stopping 7 -3 
write option 7-6 

, writing to a file 7-43 
Alias 

C shell use See C 
shell 10-10 

aliasing 1-7 
ar 

description 1-6 
arguments B-6 
arithmetic built ins B-7 
As 

basic tool 1-5 
assembler 

Index-l 



error messages 2-22 
Assembler See As 1-5 
assembly language source 3-6 
associativity 9-27 

B 

Background job 
C shell use See C 
shell 10-14 

Backslash 
C shell use See C 
shell 10-11 

breakpoints 7-24 

c 

C compiler 
.s file 2-18 
-I option, include file 

search 2-21 
-1 option 

library linking 2-14 
-0 option 

a.out file naming 2-8 
output 

optimization 2-15 
-P option, preprocessor 
invocation 2-22 

-p option, profiling 
code 2-18 

-S option 
assembly language 

output 2-18 
-s option, output 

stripping 2-16 

Index-2 

-x option, external symbol 
entry 2-16 

-X option, symbol 
saving 2-16 

a.out file 
default output file 2-5 
naming 2-7 

assembly language 
output 2-18 

creating 
object files 2-12 

D option 
macro definition 2-19 

error messages 2-22 
expression 

evaluation order 4-16 
function calls 

counting 2-18 
include file 

search 2-21 
label discard 2-16 
library 

linking 2-14 
linking 

library 2-14 
lint directives, effect 4-17 
macro 

definition 2-19 
preprocessor 2-22 

mon.out file write out 2-18 
multiple source files 2-5 
object file 

creation 2-7 
optimization 2-15 
output 

assembly language 
output 2-18 

stripping 2-16 
output file See a.out 
file 2-7 

preprocessing 2-19, 2-22 
profiling code 2-18 



strip command, output 
stripping 2-16 

symbol table 2-16 
C language 

compiler See cc 1-4 
usage check 1-4 
yacc 9-4 

C programming language 1-3 
C programs 

creating 1-4 
string extraction 1-7 

C source file 
compilation See C 

compiler 2-4 
C-shell 

. cshrc file use 10-3 

.login file use 10-3 

.logout file use 10-4 
:e modifier 10-23 
:r modifier 10-23 
.cshrc file 

alias placement 10-10 
& symbol 

redirection use 10-12 
-n option 10-26 
-v command line 
option 10-26 

-x command line 
option 10-26 

alias 
command See alias 

command 10-14 
listing 10-14 
removal 10-16 

alias command 
multiple command 

use 10-11 
number 
limitation 10-12 

pipeline use 10-11 
quoting 10-11 
use 10-10, 10-14 

aliasing 1-7 

ampersand 
background job 
symbol 10-13 

background job 
use 10-29 

boolean AND operation 
implementation 10-20 

if statement, 
avoidance 10-22 

redirection 
symbol 10-12 

appending 
noclobber variable 
effect 10-12 

symbol 10-12 
argument 

expansion 10-28 
group 
specification 10-30 

argv variable 
filename expansion 
prevention 10-21 

script arguments 
contents 10-17 

arithmetic 
operations 10-20 

asterisk 
character 
matching 10-30 

script notation 10-19 
background job 

procedure 10-13 
symbol 10-13 
termination 
procedure 10-14 

backslash 
if statement use 10-22 
metacharacter 
cancellation 10-30 

metacharacter 
escape 10-11 

root parts separation 
from extension 10-30 

Index-3 



boolean AND operation 
implementation 10-20 

boolean OR operation 
implementation 10-20 

braces 
argument expansion 

use 10-28 
argument 

grouping 10-30 
brackets 

character 
matching 10-30 

break command 
foreach statement 

exit 10-24 
loop break 10-21 
while statement 

exit 10-24 
breaksw command 

switch exit 10-24 
c command 

reuse 10-7 
carat 

history substitution 
use 10-30 

character matching 10-30 
colon 

script modifier 10-23 
substitution modifier 

use 10-30 
command 

default argument 
supply 10-10 

execution status 10-20 
expansion 10-29 
file See script 10-16 
history list 10-7 
input supply 10-25 
location 

determination 10-15 
location 

recomputation 10-6 

Index-4 

multiple commands See 
commands, 
mUltiple 10-13 

quoting 10-28 
quoting, 
replacement 10-29 

read only option 10-26 
reading from file 10-15 
repetition 10-15 
repetition 

mechanisms 10-10 
separation 10-29 
separation 
symbol 10-11 

similarity, foreach 
command use 10-27 

simplification 10-10 
substitution 

symbol 10-30 
termination 

testing 10-20 
timing 10-15 
transformation 10-10 

command history 
mechanism 1-7 

command language 1-7 
command prompt 
symbol 10-4 

command substitution 
string 
modification 10-23 

commands, multiple 
alias use 10-11 
single job 10-13 

comment 
script use 10-1 7 
symbol 10-24 

comment 
metacharacter 10-31 

continue command 
loop use 10-21 

diagnostic output 
direction 10-12 



redirection See 
redirection 10-12 

directory 
examination 10-6 
listing 10-5 

disk usage 10-13 
dollar sign 

last argument 
symbol 10-9 

process number 
expansion 10-19 

variable substitution 
symbol 10-17 

variable substitution 
use 10-30 

du command 10-13 
echo option 10-26 
else-if statement use 10-22 
environment 

printing 10-15 
setting 10-15 
variable removal 10-16 

equal sign 
string comparison 

use 10-20 
exclamation point 

history list substitution 
use 10-14 

history mechanism 
invocation character 
use 10-9 

history substitution 
use 10-30 

string comparison 
use 10-20 

syntax use 10-7 
execute primitive 10-20 
existence primitive 10-20 
expansion 

control 10-27 
expansion metacharacters 
designated 10-30 

expression 

enclosure 10-29 
evaluation 10-20 

expression primitives 10-20 
extension extraction 10-23 
file 

appending 10-12 
command content See 
script 10-16 

enquiries 10-20 
file overwriting 

prevention 10,6 
procedure 10-7 

filename 
expansion 10-28 
expansion 
prevention 10-21 

home directory 
indication 10-30 

root extraction 10-23 
scratch filename 
metacharacter 10-31 

filename metacharacters 
designated 10-30 

f oreach command 10-27 
exit 10-24 
script use 10-21 

go to label 
script cleanup 10-26 

goto statement 10-24 
greater-than sign 

redirection 
symbol 10-12, 10-30 

history 
substitution 

symbol 10-30 
history command 10-10 

use 10-14 
history list 10-7 

command 
substitution 10-14 

contents display 10-14 
history mechanism 

alias, use 10-11 

Index-5 



use 10-9 
history mechanism 
invocation character 10-9 

history variable 10-4 
home variable 10-6 
if statement use 10-22 
ignoreeof variable 10-4, 

10-6 
input 

execution 
procedure 10-1 7 

variable substitution See 
variable 
substitution 10-1 7 

input metacharacters 
designated 10-30 

Interrupt key 
background job, 

effect 10-13 
invocation procedure 10-3 
kill command 

background job 
termination 10-14 

less-than sign 
redirection 

symbol 10-30 
script inline data 

supply 10-25 
variable 

substitution 10-19 
logging out 

logout command 
use 10-4 

procedure 10-4 
shield 10-4 

logout command 
use 10-4, 10-15 

loop 
break 10-21 
input prompt 10-27 
variable use 10-27 

mail program 
invocation 10-4 

Index-6 

mail variable 10-6 
new mail 

notification 10-4 
metacharacter 

cancellation 10-30 
expansion 
metacharacter 10-30 

filename 
metacharacter 10-30 

input 
metacharacter 10-30 

output 
metacharacter 10-30 

quotation 
metacharacter 10-30 

substitution 
metacharacter 10-30 

syntactatic 
metacharacter 10-29 

metasyntax 
exclamation point 
use 10-7 

minus sign 
option prefix 10-31 

modifiers 10-23 
nkey 

script error 
absence 10-19 

script notation 10-19 
new program access 10-5 
noclobber variable 10-6 

appending 
procedure 10-12 

redirection 
symbols 10-12 

noglob variable 
filename expansion 

prevention 10-21 
number sign 

C shell comment 
symbol 10-17, 10-26 

C shell comment 
use 10-24, 10-31 



scratch filename 
use 10-31 

onintr label 
script cleanup 10-26 

option 
metacharacter 10-31 

output 
& symbol>redirection 
use 10-12 

diagnostic output See 
diagnostic 
output 10-12 

redirection See 
redirection 10-12 

output metacharacters 
designated 10-30 

parentheses 
expression 
enclosure 10-29 

path variable 10-5 
pathname 

component 
separation 10-30 

paths 10-4 
percentage sign 

command prompt 
symbol 10-4 

pipe symbol 
boolean OR operation 
implementation 10-20 

command 
separation 10-29 

if statement, 
avoidance 10-22 

redirection 
symbol 10-12 

pipeline 
alias, use 10-11 

primitives See expression 
primitives 10-20 

printenv 
environment 
printing 10-15 

process number 
listing 10-14 

process number expansion 
notation 10-19 

prompt variable 10-14 
ps command 

process number 
listing 10-14 

question mark 
character 
matching 10-30 

loop input 
prompt 10-27 

Quit signal 
background job, 
effect 10-13 

quotation mark, back 
command 
quoting 10-28 

command substitution 
use 10-30 

quotation mark, double 
expansion 
control 10-27 

metacharacters 
cancellation 10-30 

string quoting 10-28 
quotation mark, single 

alias quoting 10-11 
quoted string, 
. effect 10-27 
script inline data 
quoting 10-25 

quotation metacharacters 
designated 10-30 

read primitive 10-20 
redirection 

diagnostic output 10-12 
output 10-12 
symbols 

designated 10-30 
rehash command 10-6 

Index-7 



command location 
recomputation 10-15 

repeat command 
command 
repetition 10-15 

root part 
extension, 

separation 10-30 
sees commands See 
sees 6-36 

sees See sees 6-5 
script 

clean up 10-26 
colon modifier 10-23 
command input 10-25 
comment 

required 10-26 
description 10-16 
example 10-21 
execution 10-17 
exit 10-26 
inline data supply 10-25 
interpretation 10-16 
interruption 

catching 10-26 
metanotation for inline 

data 10-25 
modifiers 10-23 
notations 10-19 
range 10-19 
variable substitution See 
variable 
substitution 10-18 

semicolon 
command 
separation 10-11, 
10-29 

if statement, 
avoidance 10-22 

set command 
variable listing 10-5 
variable value 

assignment 10-5 

Index-8 

setenv command 
environment 
setting 10-15 

slash 
pathname component 

separation 10-30 
source command 

command 
reading 10-15 

status variable 10-20 
string 

comparison 10-20 
quoting 10-28 

substitution metacharacters 
designated 10-30 

switch statement 
exit 10-24 
form 10-24 

syntactic metacharacters 
designated 10-29 

then statement use 10-22 
tilde 

home directory 
indication 10-30 

string 
comparision 10-20 

tiIne command 
command timing 10-15 

time variable 10-4 
unalias command 

alias removal 10-16 
unset command 

variable removal 10-16 
unsetenv command 

variable removal from 
environment 10-16 

unsetting procedure 10-6 
variable 

component 
access 10-18 

component access 
notations 10-18 



definition 
removal 10-16 

environment variable 
setting 10-15 

expansion 10-18, 10-28 
listing 10-5 
loop use 10-27 
removal from 

environment 10-16 
See also Specific 

Variable 10-5 
setting procedure 10-6 
substitution 

metacharacter 10-30 
substitution See variable 

substitution 10-17 
use 10-5 
value assignment 10-5 
value assignment 

check 10-18 
variable substitution 

procedure 10-17 
verbose option 10-26 
while statement 

exit 10-24 
form 10-24 

write primitive 10-20 
cc command 

error messages 2-22 
Command 

execution 1-7 
interpretation 1-7 

compilers A-13 
conditionals B-10 
cross development system 3-3 

assembly language files 3-6 
compiling DOS file 3-5 
creating libraries 3-8 
creating source files 3-4 
debugging DOS 
program 3-7 

linking 3-6 
transferring programs 3-7 

csh 
description 1-7 

csh command 
C shell invocation 10-3 

D 

Debugger See Adb 1-4 
debugging 7-3, 7-19 
de bugging DOS 3 -7 
debugging DOS program 3-7 
Delta See SCCS 6-5 
Desk calculator 

specifications 9-41 
Directory 

C shell use See C 
shell 10-6 

C-shell 
listing 10-5 

disambiguating 9-3 
DOS 3-7 

between systems 3-7 
transferring programs 3-7 

DOS libraries 3-8 
DOS object files 3-6 
DOS source file 3-5 

E 

Error message file 
creation 1-6 

error messages D-1 
errprint B-13 
Exclamation point 

C shell use See C 
shell 10-7 

Index-9 



executing a program 7-19 K 
execution profile 

prof 2-18 

F 

File 
archives 1-6 
block counting 1-6 
check sum computation 1-6 
error message file See Error 
message file 1-6 

octal dump 1-6 
relocation bits removal 1-6 
removal 

sees use See 
sees 6-11 

Source Code Control 
System See sees 6-5 

symbol removal 1-6 
text search, print 1-6 

FORTRAN 
conversion program 8-28 

H 

hardware A-7 
Hexadecimal dump 1-6 
history command 

e shell use 10-10 

Index-tO 

kill command 

L 

e shell use See e 
shell 10-14 

LALR 9-3 
Id 

basic tool 1-5 
Lex 

-11 flag 
library access 8-8 

action 
default 8-13 
description 8-5 
repetition 8-13 
specification 8-13 

alternation 8-11 
ambiguous source 
rules 8-18 

angle brackets 
operator character 8-7, 

8-33 
start condition 
referencing 8-23 

arbitrary character 
match 8-10 

array size change 8-32 
asterisk 

operator character 8-7, 
8-33 

repeated expression 
specification 8-10 

automaton interpreter 
initial condition 

resetting 8-23 



backslash 
C escapes 8-8 
operator character 8-7, 

8-32 
operator character 

escape 8-7, 8-9 
BEGIN 

start condition 
entry 8-23 

blank character 
quoting 8-7 
rule ending 8 -7 

blank, tab line 
be ginning 8 -24 

braces 
expression 
repetition 8-12 

operator character 8-7, 
8-33 

brackets 
character class 

specification 8-9 
character class use 8-3 
operator character 8-7, 

8-33 
operator character 
escape 8-9 

buffer overflow 8-19 
C escapes 8-8 
caret 

character class 
inclusion 8-9 

context sensitivity 8-11 
operator character 8-7, 

8-33 
string complement 8-9 

caret operator 
left context 

recognizing 8-21 
character 

internal use 8-30 
set table 8-30, 8-32 

translation table See set 
table 8-30 

character class 
notation 8-3 
specification 8-9 

character set 
specification 8-30 

context sensitivity 8-11 
conversion 1-6 
copy classes 8-24 
dash 

character class 
inclusion 8-9 

operator character 8-7, 
8-33 

range indicator 8-9 
definition 

character set table 8-30 
corttents 8-25, 8-31 
expansion 8-12 
format 8-25, 8-31 
location 8-25 
placement 8-13 
specification 8-24 

delimiter 
discard 8-24 
rule beginning 
marking 8-3 

source format 8-5 
third delimiter, 
copy 8-24 

description 1-5 
dollar sign 

context sensitivity 8-11 
end of line notation 8-3 
operator character 8-7, 

8-33 
dollar sign operator 

right context 
recognizing 8-21 

dot operator See 
period 8-19 

Index-11 



double precision constant 
change 8-28 

ECHO 
format argument, data 

printing 8-14 
end-of-file 

yywrap routine 8-17 
o handling 8-17 

environment 
change 8-21 

expression 
new line illegal 8-8 
repetition 8-12 

external character 
array 8-14 

flag 
environment 

change 8-21 
FORTRAN conversion 

program 8-28 
grouping 8-11 
I/O library See library 8-8 
I/O routine 

access 8-16 
consistency 8-17 

input 
description 8-3 
end-of-file,O 
notation 8-17 

ignoring 8-13 
manipulation 
restriction 8-21 

input 0 routine 8-17 
input routine 

character I/O 
handling 8-30 

invocation 8-8 
left context 8-12 

caret operator 8-21 
sensitivity 8-21 

lex.yy.c file 8-8 
lexical analyzer 

Index-12 

environment 
change 8-22 

library 
access 8-8 
avoidance 8-8 
backup limitation 8-17 
loading 8-26 

line beginning match 8-11 
line end match 8-11 
loader flag See -11 flag 8-8 
lookahead 

characteristic 8-15, 8-17 
maintenance 1-6 
match count 8-14 
matching 

occurrence 
counting 8-19 

newline 
escape 8-31 

octal escape 8-10 
operator characters 

designated 8-32 
escape 8-7, 8-9 
listing 8-7 
literal meaning 8-7 
operand types 

balancing 4-10 
precedence 4-14 
quoting 8-7 
See also Specific 
Operator 
Character 8-7 

optional expression 
specification 8-10 

ordering relation 1-6 
output (c) routine 8-17 
output routine 

character I/O 
handling 8 -30 

parentheses 
grouping 8-11 
operator character 8-7, 

8-33 



parser generator 
analysis phase 8-4 

percentage sign 
delimiter notation 8-3 
operator character 8-7 
remainder 
operator 8-26 

source segment 
separator 8-13 

period 
arbitrary character 
match 8-10 

newline no match 8-19 
operator character 8-7 

period operator 
designted 8-33 

plus sign 
operator character 8-7, 

8-33 
repeated expression 
specification 8-10 

preprocessor statement 
entry 8-24 

question mark 
operator character 8-7, 

8-33 
optional expression 

specification 8-10 
quotation marks, double 

operator character 8-32 
operator character 
escape 8-7 

real numbers rule 8-25 
regular expression 

description 8-6 
end indication 8-6 
operators See operator 
characters 8-32 

rule component 8-5 
REJECT 8-19,8-20 
repeated expression 

specification 8-10 
right context 

dollar sign 
operator 8-21 

rules 
active 8-23 
components 8-5 
format 8-32 
real number 8-25 

semicolon 
null statement 8-13 

slash 
operator character 8-7, 

8-33 
trailing text 8 -12 

sort 1-6 
source 

copy into generated 
program 8-24 

description 8-3 
format 8-5, 8-24 
interception 

failure 8-24 
segment separator 8-13 

source definitions 
specification 8-24 

source file 
format 8-31 

source program 
compilation 8-8 

spacing character 
ignoring 8-13 

start 
abbreviation 8-23 

start condition 8-12 
start conditions 

entry 8-23 
environment 

change 8-21 
format 8-32 
location 8-32 

statistics gathering 8-27 
string 

printing 8-6 
substitution string 

Index-13 



definition See 
definition 8-25 

tab line beginning See 
blank, tab line 
beginning 8-24 

text character 
quoting 8-7 

trailing text 8-12 
unput 

REJECT 
noncompatible 8-21 

unput ( c) routine 8-17 
unput routine 

character 1/0 
handling 8-30 

unreachable statement 4-8 
vertical bar 

action repetition 8-13 
alternation 8-11 
operator character 8-7, 

8-33 
wrapup See yywrap 

routine 8-17 
Yacc 

interface 8-4 
library loading 8-26 

Yacc interface 
tokens 8-26 
yylex 0 8-26 

yyleng variable 8-14 
yyless 

text reprocessing 8-16 
yyless (n) 8-15 
yylex 0 program 

contents 8-3 
Yacc interface 8-26 

yymore 0 8-15 
yytext 

external character 
array 8-14 

yywrap 0 8-28 
yywrap 0 routine 8-17 
0, end of file notation 8 ... 17 

Index-14 

Lex description 8-3 
linker 

error messages 2-22, D-l 
linker error messages D-l 
linking object files 3-6 
Lint A-21 

-a option 4-12 
-b option 4-8 
-c option 4-11 
-h option 4-14 
-ly directive 4-18 
-n option 4-19 
-p option 4-19 
-u option 4-6 
-v option 

turnon 4-17 
unused variable report 

suppression 4-6 
-x option 4-5 
ARGSUSED 
directive 4-17, 4-18 

argument number 
comments turnoff 4-17 

assignment of long to int 
check 4-12 

assignment operator 
new form 4-15 
old form, check 4-14 
operand type 
balancing 4-10 

assignment, implied See 
implied assignment 4-10 

binary operator, type 
check 4-10 

break statement 
unreachable See 
unreachable break 
statement 4-8 

C language check 1-4 
C program check 4-3 
C syntax, old form, 
check 4-14 

cast See type cast 4-11 



conditional operator, 
operand type 
balancing 4-10 

constant in conditional 
context 4-14 

construction check 4-3, 
4-13 

control information 
flow 4-17 

degenerate unsigned 
comparison 4-13 

description 4-3 
directive 

defined 4-17 
embedding 4-1 7 

enumeration, type 
check 4-10 

error message, function 
name 4-9 

expression, order 4-16 
extern statement 4-5 
external declaration, report 

suppression 4-5 
file 

library declaration file 
identification 4-18 

function 
error message 4-9 
return value check 4-9 
type check 4-10 
unused See unused 
function 4-5 

implied assignment, type 
check 4-10 

initialization, old style 
check 4-15 

Library 
compatibility 
check 4-18 

compatibility check 
suppression 4-19 

directive 
acceptance 4-18 

file processing 4-19 
LINTLIBRARY 

directive 4-18 
loop check 4-8 
nonportable character 
check 4-12 

nonportable expression 
evaluation order 
check 4-16 

NOSTRICT directive 4-17 
NOTREACHED 
directive 4-17 

output turnoff 4-17 
pointer 

agreement 4-10 
alignment check 4-15 

program flow 
control 4-7 

relational operator, operand 
type balancing 4-10 

scalar variable check 4-16 
source file, library 

compatibility check 4-18 
statement, unlabeled 

report 4-7 
structure selection operator, 

type check 4-10 
syntax 4-4 
type cast 

check 4-11 
comment printing 
control 4-11 

type check 
description 4-10 
turnoff 4-1 7 

unreachable break 
statement, report 
suppression 4-8 

unused argument 
report suppression 4-6 

unused function, check 4-5 
unused variable, check 4-5 
VARARGS directive 4-18 

Index-l~ 



variable 
external variable 
initialization 4-7 

inner / outer block 
conflict 4-14 

set/used 
information 4-6 

static variable 
initialization 4-7 

unused See unused 
variable 4-5 

Loader See Id 1-5 
logout command 

C shell use 10-4 
Loop 

lint use See Lint 4-8 
lorder 

description 1-6 

M 

macro processor B-1 
Macros 

preprocessing 1-5 
Mail 

C-shell 
new mail 

notification 10-4 
Maintainer See Make 1-6 
Make 

.c suffix 5-14 

.DEFAULT 5-8 

.f suffix 5-14 

.IGNORE 5-8 

.1 suffix 5-14 

.0 suffix 5-14 

.PRECIOUS 5-8 

.r suffix 5-14 

.s suffix 5-14 

.SILENT 5-8 

Index-16 

.y suffix 5-14 

.yr suffix 5-14 
-d option 5-19 
-n option 5-19 
-t option 5-19 
argument quoting 5-10 
basic tool 1-6 
command 

form 5-3 
location 5-3 
print without 

execution 5-19 
command argument 

macro definition 5-9 
command string 

hyphen (-) start 5-8 
command string 

substitution 5-9 
dependency line 

form 5-3 
dependency line 

substitution 5-9 
description file 

comment 
convention 5-4 

macro definition 5-9 
description filename 

argument 5-7 
dollar sign 

macro invocation 5-9 
equal sign 

macro definition 5-9 
file 

time, date printing 5-19 
updating 5-19 

file generation 5-8 
file update 5-3 
hyphen 

command string 
start 5-8 

macro 
definition 5-9 
definition override 5 -1 0 



invocation 5-9 
substitution 5-8, 5-9 
value assignment 5-9 

macro definition 
analysis 5-10 
argument 5-7 
description 5-9 

medium sized projects 5-3 
metacharacter 
expansion 5-4 

number sign 
description file 

comment 5-4 
object file 

suffix 5-14 
option argument 

use 5-7 
parentheses 

macro enclosure 5-9 
program maintenance 5-3 
semicolon 

command 
introduction 5-3 

source file 
suffixes 5 -14 

source grammar 
suffixes 5 -14 

suffixes 
list 5-14 
table 5-14 

target file 
pseudo-target files 5-8 
update 5-19 

target filename 
argument 5-7 

target name omission 5-6 
touch option See -t 

option 5-19 
transformation rules 

table 5-14 
troubleshooting 5-18 

make command 
arguments 5-7 

syntax 5-7 
m4 B-2 

description 1-5 

N 

Notational conventions 1-3 

o 

Object files 3-6 
creating 2-12 

p 

Path variable 
e shell use See e 
shell 10-5 

paths 10-5 
Pipe 

sees use See sees 6-39 
Pipeline 

e shell use See e 
shell 10-11 

portability A-5 
precedence 9-27 
prof command 2-18 
Program 

maintainer See Make 1-6 
Program development 1-3 
program file 7-3 
ps command 

Index-17 



Q 

e shell use See e 
shell 10-14 

Quotation marks, single 
e shell use See e 
shell 10-11 

quoting arguments B-4 

R 

ranlib 
description 1-6 

redirection 2-22 
rehash command 

e shell use See e 
shell 10-6 

rm command 
sees use See sees 6-11 

s 
sees 

-a option 
login name addition 

use 6-33 
-d flag 

flags deletion 6-25 
-d option 

data specification 
provision 6-29 

flag removal 6-25 

Index-1S 

-e option 
delta range 

printing 6-30 
file editing use 6-13 
login name 

removal 6-34 
-f option 

flag initialization, 
modification 6-23 

flag, value setting 6-24 
-g option 

output suppression 6-43 
p-file regeneration 6-37 

-h option 
file audit use 6-35 

-i flag 
keyword message, error 

treatment 6-24 
-i option 

delta inclusion list 
use 6-40 

-k option 
g-file regeneration 6-37 

-1 option 
delta range 

printing 6-30 
I-file creation 6-41 

-m option 
effective when 6-27 
file change 

identification 6-42 
new file creation 6-39 

-n option 
% M % keyword value 
use 6-42 

g-file preservation 6-19 
pipeline use 6-42 

-p option 
delta printing 6-42 
output effect 6-19 

-r option 
delta creation use 6-32 



delta printing use 6-30 
file retrieval 6-15 
release number 
specification 6-39 

-s option 
output 
suppression 6-39, 6-40 

-t option 
delta retrieval 6-18 
file initialization 6-29 
file modification 6-29 

-x option 
delta exclusion list 

use 6-40 
-yoption 

comments prompt 
response 6-26 

new file creation 6-39 
-z key 

file audit use 6-37 
%M% keyword>g-file line 
precedence 6-42 

@(#) string 
file information, 

search 6-44 
admin command 

file administration 6-35 
file checking use 6-35 
file creation 6-10 
use authorization 6-11 

administrator 
description 6-10 

argument 
minus sign use 6-9 
types designated 6-9 

branch delta 
retrieval 6-1 7 

branch number 
description 6-7 

cdc command 
commentary 

change 6-26 
ceiling flag 

protection 6-34 
checksum 

file corruption 
determination 6-35 

command 
argument See 

argument 6-9 
execution control 6-9 
explanation 6-38 

comments 
change procedure 6-26 
omission, effect 6-39 

corrupted file 
determination 6-35 
processing 

restrictions 6-35 
restoration 6-37 

d flag 
default 

specification 6-24 
d-file 

temporary g-file 6-9 
data keyword 

data specification 
component 6-29 

replacement 6-29 
data specification 

description 6-29 
delta 

branch delta See branch 
delta 6-17 

defined 6-5, 6-6 
exclusion 6-40 
inclusion 6-40 
interference 6-41 
latest release 

retrieval 6-18 
level number See level 

number 6-6 
name See SIDs 6-6 
printing 6-30, 6-42 
range printing 6-30 

Index-l 9 



release number See 
release number 6-6 

removal 6-43 
delta command 

comments prompt 6-14 
file change 

procedure 6-14 
g-file removal 6-19 
p-file reading 6-14 

delta table 
delta removal, 

effect 6-44 
description 6-25 

descriptive text 
initialization 6-28 
modification 6-28 
removal 6-29 

diagnostic output 
-p option effect 6-19 

diagnostics 
code as help 
argument 6-20 

form 6-20 
directory 

file argument 
application 6-9 

x-file location 6-8 
directory use 6-6 
error message 

code use 6-20 
form 6-20 

exclamation point 
MR deletion use 6-28 

file 
administration 6-35 
change 
identification 6-42 

change procedure 6-14 
change, major 6-16 
changes See delta 6-6 
checking 
procedure 6-35 

comparison 6-45 

Index-20 

composition 6-6, 6-25 
corrupted file See 

corrupted file 6-35 
creation 6-10 
data keyword See data 
keyword 6-30 

descriptive text 
description 6-25 

descriptive text See 
descriptive text 6-29 

editing, -e option 
use 6-13 

grouping 6-6 
identifying 

information 6-44 
link See link 6-6 
multiple concurrent 

edits 6-32 
name arbitrary 6-19 
name See link 6-6 
name, s use 6-10 
parameter initialization, 
modification 6-28 

printing 6-29 
protection 
methods 6-33 

removal 6-11 
retrieval See get 

command 6-12 
x-file See x-file 6-8 

file argument 
description 6-9 
processing 6-10 

file creation 
comment line 

generation 6-39 
commentary 6-39 
comments omission, 

effect 6-39 
level number 6-39 
release number 6-39 

file protection 6-33 
flags 



deletion 6-25 
initialization 6-23 
modification 6-23 
setting, value 

setting 6-24 
use 6-25 

floor flag 
protection 6-34 

g-file 
creation 6-8 
creation date, time 
recordation 6-21 

description 6-8 
line identification 6-42 
line, %MO/o keyword 

value 6-42 
ownership 6-8 
regeneration 6-37 
removal, delta command 

use 6-19 
temporary See 

d-file 6-9 
get command 

-e option use 6-13 
concurrent editing, 
directory use 6-31 

delta inclusion, 
exclusion check 6-41 

file retrieval 6-12 
filename creation 6-12 
g-file creation 6-8 
message 6-12 
release number 

change 6-16 
help command 

argument 6-20 
code use 6-20 
use 6-38 

i flag 
file creation, 

effect 6-23 
ID keyword See 
keyword 6-21 

identification string See 
SIDs 6-6 

j flag 
multiple concurrent 

edits 
specification 6-32 

keyword 
data See data 
keyword 6-30 

format 6-21 
lack, error 

treatment 6-24 
use 6-21 

I-file 
creation 6-41 

level number 
delta component 6-6 
new file 6-39 
omission, file retrieval, 

effect 6-16 
link 

number restriction 6-6 
lock file See z-file 6-8 
lock flag 

R protection 6-35 
minus sign 

argument use 6-9 
option argument 

use 6-9 
mode 

g-file 6-8 
MR 

commentary 
supply 6-26 

deletion 6-27 
new file creation 6-39 

multiple users 6-10 
option argument 

description 6-9 
processing order 6-10 

output 
data specification See 

data specification 6-29 

Index-21 



suppression, -g 
option 6-43 

suppression, -s 
option 6-3 9, 6-40 

write to standard 
output 6-19 

p-file 
contents 6-8,6-14 
creation 6-8 
delta command 

reading 6-14 
naming 6-8 
ownership 6-8 
permissions 6-8 
regeneration 6-37 
update 6-8 
updating 6-9 

percentage sign 
keyword enclosure 6-21 

piping 6-39 
-n option use 6-42 

prs command 
file printing 6-29 

purpose 6-5 
q-file 

use 6-9 
R 

delta removal 
check 6-43 

release 
protection 6-34 

release number 
-r option, 

specification 6-39 
change. 6-7 
change procedure 6-16 
delta component 6-6 
new file 6-39 

rmcommand 
file removal 6-11 

rmdel command 
delta removal 6-43 

sccsdiff command 

Index-22 

file comparison 6-45 
sequence number 

description 6-7 
SIDs 

components 6-6 
delta printing use 6-30 

tab character 
-n option, 

designation 6-42 
user list 

empty by default 6-33 
login name 

addition 6-33 
login name 

removal 6-34 
protection feature 6-33 

user name 
list 6-33 

v flag 
new file use 6-24 

what command 
file information 6-44 

write permission 
delta removal 6-43 

x-file 
directory, location 6-8 
naming procedure 6-8 
permissions 6-8 
temporary file copy 6-8 
use 6-8 

XENIX command 
use precaution 6-36 

z-file 
lock file use 6-8 
ownership 6-8 
permissions 6-8 

sees, source code control 1-6 
ses 

output 
piping 6-39 

Semicolon 
e shell use See e 

shell 10-11 



set command 
C-shell 

variable value 
assignment 10-5 

Software development 
described 1-3 

Source Code Control System 
See SCCS 6-5 

source file 3-5 
Source files 1-4, 3-4 
strings B-ll 
strip 

description 1-6 
sum 

description 1-6 
Symbol 

name list 1-6 
removal 1-6 

sync 
description 1-7 

syscmd B-I0 

T 

Tags file 
creation 1-6 

Text editor 
creating programs 1-4 

token 9-27 
tsort 

description 1-6 

u 

UNIX A-7 

v 

vi, the screen-oriented text 
editor 1-4 

x 

XENIX command 
directory residence 

C shell 10-5 
XENIX file 

identifying 
information 6-44 

XENIX timesharing 
system 1-3 

y 

Yacc 
%prec keyword 9-28 
accept action See 

parser 9-15 
accept simulation 9-38 
action 

conflict source 9-23 
defined 9-10 
error rules 9-31 
form 9-55 
global flag setting 9-37 
input style 9-35 
invocation 9-4 

Index-23 



location 9-11 
nonterminating 9-11 
parser See parser 9-15 
return value 9-39 
statement 9-10,9-12 
value in enclosing rules, 

access 9-38 
0, negative 

number 9-38 
ampersand 

bitwise AND 
operator 9-41 

desk calculator 
operator 9-41 

arithmetic expression 
desk calculator 9-41 
parsing 9-27 
precedence See 

precedence 9-27 
associa ti vi ty 

arithmetic expression 
parsing 9-27 

grammar rule 
association 9-29 

recordation 9-29 
token attachment 9-27 

asterisk 
desk calculator 

operator 9-41 
backslash 

escape character 9-8 
percentage sign 

substitution 9-55 
binary operator 

precedence 9-28 
blank character 

restrictions 9-7 
braces 

action 9-12 
action statement 

enclosure 9-10 
action, dropping 9-55 

Index-24 

header file 
enclosure 9-40 

colon 
identifier, effect 9-44 
punctuation 9-7 

comments 
location 9-7 

conflict 
associativity See 
associativity 9-29 

disambiguating 
rules 9-23 

message 9-25 
precedence See 

precedence 9-29 
reduce conflict 9-29 
reduce reduce 
conflict 9-30 

reduce / reduce 
conflict 9-22 

resolution, not 
counted 9-30 

shift reduce 
conflict 9-29, 9-30 

shift/ reduce 
conflict 9-22, 9-25 

source 9-23 
declaration 

specification file 
component 9-7 

declaration section 
header file 9-40 

description 1-5 
desk calculator 

advanced features 9-47 
error recovery 9-47 
floating-point 

interval 9-47 
scalar conversion 9-48 

desk calculator 
specifications 9-41 

dflag 9-37 
disambiguating rule 9-23 



disambiguating rules 9-23 
dollar sign 

action significance 9-10 
empty rule 9-36 
enclosing rules, access 9-38 
endmarker 

lookahead token 9-17 
parser input end 9-9 
representation 9-10 
token number 9-14 

environment 9-33 
error 

handling 9-30 
nonassociating 
implication 9-30 

parser restart 9-30 
simulation 9-38 
yyerrok statement 9-32 

error action See 
parser 9-15 

error token 
parser restart 9-30 

escape characters 9-8 
externalinterger 

variable 9-34 
flag 

global flag See global 
flag 9-37 

floating-point intervals See 
desk calculator 9-47 

global flag 
lexical analysis 9-37 

grammar rules 9-4 
advanced features 9-47 
ambiguity 9-21 
associativity 

association 9-29 
C code location 9-55 
empty rule 9-36 
error token 9-30 
format 9-7 
input style 9-35 
left recursion 9-35 

left side repetition 9-8 
names 9-8 
numbers 9-26 
precedence 

association 9-29 
reduce action 9-16 
reduction 9-17 
rewrite 9-23 
right recursion 9-36 
specification file 

component 9-7 
value 9-11 
o character 

avoidance 9-8 
header file, union 

declaration 9-40 
historical features 9-55 
identifier 

input syntax 9-44 
if-else rule 9-24 
if-then-else 

construction 9-24 
input 

style 9-35 
syntax 9-44 

input error detection 9-5 
input language 9-3 
key endmarker token 

marker 9-14 
keyword 9-27 

reservation 9-38 
union member name 
association 9-40 

left association 9-21 
left associative 

reduce implication 9-30 
left keyword 9-27 

union member name 
association 9-40 

left recursion 9-35 
value type 9-41 

left token 
synonym 9-55 

Index-25 



lex 
interface 8-4 
lexical analyzer 

construction 9-14 
lexical analyzer 

context 
dependency 9-37 

defined 9-3,9-13 
endmarker return 9-10 
floating-point 

constants 9-48 
function 9-4 
global flag 
examination 9-37 

identifier analysis 9-44 
lex 9-14 
return value 9-39 
scope 9-12 
specification file 

component 9-7 
terminal symbol 9-4 
token number 

agreement 9-13 
lexical tie-in 9-37 
library 9-33, 9-34 
literal 

defined 9-8 
delimiting 9-55 
length 9-55 

lookahead token 9-15 
clearing 9-32 
error rules 9-30 

LR grammar 9-44 
ly argument, library 

access 9-33 
main program 9-33 
minus sign 

desk calculator 
operator 9-41 

names 
composition 9-8 
length 9-8 
reference 9-7 

Index-26 

token name See token 
name 9-9 

newline character 
restrictions 9-7 

nonassoc keyword 9-27 
union member name 

association 9-40 
nonassoc token 

synonyms 9-55 
nonassociating 

error implication 9-30 
nonterminal 

union member name 
association 9-40 

nonterminal name 
input style 9-35 
representation 9-7 

nonterminal symbol 9-4 
empty string match 9-9 
location 9-9 
name See nonterminal 

name 9-7 
start symbol See start 
symbol 9-9 

octal interger 
beginning 9-41 

option 
output file 9-18 

parser 
accept action 9-17 
accept simulation 9-38 
actions 9-15 
arithmetic 
expression 9-27 

conflict See 
conflict 9-23, 9-29 

creation 9-27 
defined 9-3 
description 9-15 
error action 9-17 
error handling See 

error 9-31 
goto action 9-16 



initial state 9-20 
input end 9-9 
lookahead token 9-15 
movement 9-15 
names, yy prefix 9-12 
nonterminal symbol 9-4 
production failure 9-6 
reduce action 9-16 
restart 9-30 
shift action 9-15 
start symbol 

recognition 9-9 
token number 
agreement 9-13 

percentage sign 
action 9-12 
desk calculator mod 

operator 9-41 
header file 
enclosure 9-40 

precedence 
keyword 9-27 

specification file section 
separator 9-7 

substitution 9-55 
plus sign 

desk calculator 
operator 9-41 

prec 
synonym 9-55 

precedence 
binary operator 9-28 
change 9-28 
grammar rule 

association 9-29 
keyword 9-27 
parsing function 9-27 
recordation 9-29 
token attachment 9-27 
unary operator 9-28 

program 
specification file 
component 9-7 

punctuation 9-7 
quotation marks, double 

literal delimiting 9-55 
quotation marks, single 

literal enclosure 9-8 
reduce action See 

parser 9-15 
reduce command 

number reference 9-26 
reduce conflict 9-29 
reduce reduce conflict 9-30 
reduce/reduce 
conflict 9-22 

reduction conflict See 
reduce / reduce 
conflict 9-22 

reduction conflict See 
shift/ reduce conflict 9-22 

reserved words 9-38 
right association 9-21 
right associative 

shift implication 9-30 
right keyword 9-28 

union member name 
association 9-40 

right recursion 9-36 
right token 

synonym 9-55 
semicolon 

input style 9-35 
punctuation 9-7 

shift action See parser 9-15 
shift command 

number reference 9-26 
shift reduce conflict 9-29, 

9-30 
shift/reduce conflict 9-22, 

9-25 
simple-if rule 9-24 
slash 

desk calculator 
operator 9-41 

specification file 

Index-27 



contents 9-7 
lexical analyzer 

inclusion 9-7 
sections separator 9-7 

specification files 9-5 
start symbol 

description 9-9 
location 9-9 

symbol synonyms 9-55 
tab character 

restrictions 9-7 
terminal symbol 9-4 
token 

associativity 9-27 
defined 9-4 
error token See error 
token 9-30 

names 9-7 
organization 9-4 
precedence 9-27 
synonym 9-55 

token keyword 
union member name 

association 9-40 
token name 

declaration 9-9 
input style 9-35 

token names 9-14 
token number 9-13 

agreement 9-13 
assignment 9-14 
endmarker 9-14 

type keyword 9-40 
unary operator 

precedence 9-28 
underscore sign 

parser 9-20 
union 

Index-28 

copy 9-40 
declaration 9-39, 9-40 
header file 9-40 
name association 9-40 

unreachable statement 4-8 
value 

typing 9-39 
union See union 9-39 

value stack 9-39 
declaration 9-40 
floating-point scalars, 

intergers 9-47 
vertical bar 

bitwise OR 
operator 9-41 

desk calculator 
operator 9-41 

grammar rule 
repetition 9-8 

input style 9-35 
y.output file 9-18 
y.tab.c file 9-33 
y.tab.h file 9-40 
YYACCEPT 9-38 
yychar 9-34 
yyclearin statement 9-32 
yydebug 9-34 
yyerrok statement 9-32 
yyerror 9-33, 9-47 
yylex 9-33 
yyparse 9-33 

YYACCEPT 
effect 9-38 

YYSTYPE 9-40 
o character 

grammar rules, 
avoidance 9-8 



© IBM Corporation 1984 
All rights reserved . 

International Business 
Machines Corporation 
PO. Box 1328-S 
Boca Raton , Florida 33432 

Printed in the 
United States of America 

6138694 

--------------- ---- - - ----------_ . 
<!l 



Software Development Guide 

IBM Personal Computer 
XENIXTM Software 
Development System 

Software development tools, including 
language translators, source code 
management tools, a C compiler, a 
debug facility and a linker for combin­
ing modules into finished programs. 
The C compiler generates code for 
DOS or the IBM Personal Computer 
XENIX™ Operating System. 



Software required: 

IBM Personal Computer 
XENI X'" Operating 
System 

Software included: 

Three 1.2MB diskettes 

System requirements: 

IBM Monochrome or Color 
Display or equivalent (with 
appropriate adapter) 

~ 
IBM Personal Computer 
AT'" -I \ 512KB RAM memory 

IBM 20MB fixed disk 

IBM 1.2MB diskette drive 

Note: 
XENIX is a trademark of Microsoft 
Corporation . 

© IBM Corporation 1984 
All rights reserved. 

International Business 
Machines Corporation 
PO. Box 1328-S 
Boca Raton, Florida 33432 

Printed in the 
United States of America 

6024209 

Int ernational Business Machines Corporation 
IBM Program License Agreement 

Boca Raton . Florida 33432 

You should carefully read the following terms and conditions before opening this 
diskette package Opening this diskette package Indicates your acceptance of these 
terms and conditions If you do not agree with them. you should promptly return the 
package unopened; and your money will be refunded. 

IBM provides th is program and licenses ItS use In the United States and Puerto R,co 
You assume responsibi li ty for the selection of the program to achieve your Intended 
resu lts. and for the installation, use and results obtained from the program 
license 

You may 
a. use the prog ram on a sing le mach ine· 
b . copy the prog ram Into any machine readable or printed form for backup or mod­

Ifica tion purposes In support of your use of the prog ram on the Sing le machine ICer­
taln programs, however, may Include mechanisms to lim it or Inh ibit cOPYing They 
are marked "copy protected "I. 

c. modl ly the prog ram and lor merge It Into another program for your use on the single 
machine (Any portion of this program merged Into another prog ram wil l continue to 
be sublect to the terms and conditions of th iS Agreement. I, and, 

d. transfer the program and license to another party If the other party agrees to accept 
the terms and conditions of thiS Agreement If you transfer the program. you must 
at the same time either transfer all copies whether In prin ted or machine-readable 
form to the same party or destroy any copies not transferred, thiS Includes all mod­
,f,callons and portions of the program contained or merged Into o ther programs 
You must reproduce and Include the'copYright notice on any cOPY. modification or 

portion merged Into another prog ram 
You may not use, copy, modify, or transfer the program, or any copy, modification 

or merged portion, In whole or In pare, except as expressly provided for In thiS license 
If you transfer possession of any copy, modificatIOn or merged portIOn of the pro­

gram to another party, your license IS automatically terminated 
Term 

The license IS effective until termina ted You may terminate It at any other time by 
destrOYing the program together with all copies, modifications and merged portions In 
any form It will also terminate upon conditions set forth elsewhere In this Agreement 
or If you fa ll to comply with any term or condition of thiS Ag reement. You agree upon 
such termination to destroy the program together with all copies, modifications and 
merged portions In any form 
limited Warranty 

The program is provided "as is " without warranty of any kind. either 
expressed or implied. including. but not limited to the implied warranties of 
merchantability and fitness for a particular purpose. The entire risk as to the 
quality and performance of the program is with you. Should the program 
prove defective. you (and not IBM or an authorized Personal Computer 
dellierl assume the entire cost of all necessary servicing, repair or 
correction. 

Some states do not allow the exclusion of implied warranties. so the 
above exclusion may not apply to you. This warranty gives you specific legal 
rights and you may also have other rights which vary from state to state. 

IBM does not warrant that the functions contained in the program will 
meet your requirements or that the operation of the program will be unin­
terrupted or error free. 

However, IBM warrants the diskette(sl or cassettes on which the program 
is furnished. to be free from defects in materials and workmanship under nor­
mal use for a period of ninety (901 days from the date of delivery to you as 
evidenced by a copy of your receipt . 
Limitations of Remedies 

IBM's entire liability and your exclUSive remedy shall be 
1 . the replacement of any diskette or cassette not meeting IBM's "limited Warranty" 

and which IS returned to IBM or an authOrized IBM Personal Computer dealer 
With a copy of your receipt 

or 
2 . If IBM or the dea ler IS unable to deliver a replacemen t diskette or cassette which IS 

free of defects In materials or workmansh ip, you may terminate this Agreement by 
returning the program and you r money will be ref unded 

In no event will IBM be liable to you for any damages, including any lost profits, 
lost savmgs Or other inCidental or consequential damages arismg out of the use or 
inability to use such program even If IBM or an authoflzed IBM Personal Computer 
dealer has been adVised of the pOSSibility of such damages, or for any claim by any 
other party 

Some states do noc allow che flmllallon or exclusion of lIability for inCIdental or 
consequential damages so the above limitation or exclUSion may not apply to you 
General 

You may not sublicense, assign or transfer the license or the program except as 
expressly proVided In thiS Agreement. Any attempt otherwise to sublicense, assign or 
transfer any of the rights, duties or obligations hereunder IS VOId 

ThiS Agreement Will be governed by the laws of the State of FlOrida 
Should you have any questions concerning this Agreement, you may contact IBM 

by writing to IBM Personal Computer, Sa les and SerVice, PO. Box 132B-W Boca 
Raton, FlOrida 33432 

You acknowledge that you have read thiS agreement, understand It and agree to be 
bound by ItS terms and conditions You further agree chac It IS the complete and 
exclUSIVe statement of the agreement between us which supercedes any proposal or 
prior agreement, oral or Wrillen, and any other communications between us relatmg 
to the subject matter of thiS agreement 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01_cc
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	03-01_xenix_to_dos
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01_lint
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-01_make
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01_sccs
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01_adb
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	08-01_lex
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	09-01_yacc
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	10-01_C_Shell
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	xBack
	z_slipCase1
	z_slipCase2

