
PROBUG

68000 SOFTWARE DEBUGGER

USER tllANUAL

ISSE]
tIJ>

PRO BUG Command Summary

In this list, commands are printed in upper
case, parameters in lower-case. Optional para
meters are enclosed in brackets. Commas
indicate separators between parameters; a dot
is the terminator.

Aa.
BaLb,e,d].
Ca.b,c.
Dla,b].
Ela].
Fa,b,cLd].
Hla,b].
laLb].
J[a,b,e,d].
L[a,b].
M.
MaLb].
N[a].
O[a,b].
P[a,b].
O[a,b,c,d].
R.
RaLb].
Sa,b,e[,d].
T[a,b,e,d].
Wa,bLe].
@[a,b,e].
*[a].

Assemble
Breakpoint t
Copy Memory
Disassemble
Execute DOS Bootstrap
Fill Memory
Set Haltpoint t
Inspect/Alter Memory
Jump To Location t
Load Program Into RAM
Inspect Stack Word by Word
Inspect Memory Word by Word
Trace Next Instruction t
Set Observation Point t
Print Memory
Ouiet Trace t
Print Register Contents
Print/Alter Register Contents
Search Memory For Pattern
Trace Instructions t
Write Program In S-Record Format
Enter Transparent Mode
List/Set Program Counter

t Program Execution Command
6/83 ,

PROBUG Command Summary

In this list, commands are printed in upper
case, parameters in lower-case. Optional para
meters are enclosed in brackets. Commas
indicate separators between parameters; a dot
is the terminator.

Aa.
BaLb,c,d].
Ca,b,e.
D[a,b].
E[a].
Fa,b,cLd].
H[a,b].
laLb].
J [a,b,e,d] .
Lla,b].
M.
MaLb].
N[a].
O[a,b].
P[a,b].
O[a,b,c,d].
R.
RaLb].
Sa,b,e [,d] .
T[a,b,c,d].
Wa,bLc].
@[a,b,c].
* [a].

Assemble
Breakpoint t
Copy Memory
Disassemble
Execute DOS Bootstrap
Fill Memory
Set Haltpoint t
Inspect/Alter Memory
Jump To Location t
Load Program Into RAM
Inspect Stack Word by Word
Inspect Memory Word by Word
Trace Next Instruction t
Set Observation Point t
Print Memory
Ouiet Trace t
Print Register Contents
Print/Alter Register Contents
Search Memory For Pattern
Trace Instructions t
Write Program In S-Record Format
Enter Transparent Mode
List/Set Program Counter

t Program Execution Command
6/83

PROBUG

68000 SOFTWARE DEBUGGER

USER MANUAL

SBE, Inc.
4700 San Pablo Avenue
flneryville, california 94608

OOPYRIGHT @ 1983 SSE, Inc.

M-6790
PROBUG 2.0
July 1983

All rights reserved. tt> p:!rt of this manual may be reproduced ~ any means
wi thout written permission of the author except that mcessary p::>rtions of
this manual may be copied for internal use only by the purchaser of the
Modulas'fim system.

Table Of Contents

Introduction To PROBUG ..•......•.

What Happens When You Turn The Power On

PROBUG Command Syntax .

Parameters.

Registers .

Conventions Used In This Document . .

Special Keys •...

Program Execution Commands •.

Error Messages. .

N}IT (Non-Maskable Interrupt) Button.

RESET Button. . .

PROBUG Command Descriptions

A (Assemble) ..
B (Breakpoint). . .•......•
C (Copy Memory)
D (Disassemble)
E (Execute Disk Operating System Bootstrap) .
F (Fill Memory) • • • • • • ••••

1

2

2

3

4

5

5

7

11

· 12

. . . . 12

• 15

· 15
. 18

· 19
• • 20

21
• • 22

B (Set Haltpoint) • • . . • . • . . • 23
I (Inspect/Alter Memory). . . ••.
J (Jump To Location) ...
L (Load Program Into RAM) . •
M (Inspect Stack Word By Word) .•.
M (Inspect Memory Word By Word)
R (Trace Next Instruction)
o (Set Observation Point)
P (Print Memory)
Q (Quiet Trace) . • . • . . .
R (Print Register Contents) .
R (Print/Alter Register Contents)
S (Search Memory For Pattern) . • •
T (Trace Instructions) ••.••.
W (Write Program In S-Record Format •
@ (Enter Transparent Mode). • • ••••••
* (List /Set Program Counter).

PROBUG Function Call s •

• 24
· 26
• 27
· 30
· 30
· 31

. 32
34
35
37

· 38
. . • • .. 40

. . .

• 41
· 43

• . 44
• • 46

• • 47

Adding Your Own Functions . · 53 ,
Custom I/O · 55

PROBUG Memory Map . · 57

Special Considerations With PROBUG • 59

Start Program On M68K10 From Another Processor · 61

APPENDIX A: Getting Started - PROBUG And The M68K10 · 63

Jumpering The M68KIO 63

APPENDIX B: How To Use PROBUG - Some Debugging Techniques • 67

Index . 73

INTRODUCTION

Introduetion To PROIUG

PRO BUG is a sophisticated interactive debugger for testing software written
for the 68000. PROBUG is designed to facilitate debugging on SBE's ModulasTen
M68KIO single-board computer; it can be used on other 68000-based computers as
well. PROBUG offers a number of commands designed specifically to help you
identify the most commonly encountered problems.

PROBUG provides commands to:

* Print, inspect, and alter memory
* Print and alter registers
* Copy and fill memory
* Search memory for a pattern
* Assemble and disassemble instructions
* Download programs from, and write programs to, a host computer

or other external device
* Boot up disk operating system

In addition, there are PROBUG commands that allow you to control execution of
your program. With these program execution eomaands, you can:

* Breakpoint through your program, with optional iteration count
* Trace through RAM or ROM
* Halt program execution on memory change

There is also a way to call some of PROBUG's routines from within your
program; this is discussed under PROIUG Funetion Calls toward the back of the
manual.

For information on installing the PROBUG PROMs and jumpering the ModulasTen
M68KIO single-board computer, see Appendix At Getting Started: PROIUG And
The H68KIO.

If you have never used a debugger, we suggest you read Appendix B, Boy To Use
PROIUG, for some suggestions.

For quick reference, the 3" x 5" card provided with this manual lists all
PROBUG commands.

PROBUG - 68000 Software Debugger Page 1

POWER-UP ••• COMMAND SYNtAX

What Happens When You Turn The Power On

When you turn on the M68KlO, several lines of output will appear on the
terminal connected to channel "B". The current contents of the MPU registers
(data, address, and several other registers) will be displayed on the
terminal. The output will look like this:

PROBUG 2.0 - SBE SOFTWARE DEBUGGER
COPYRIGHT SBE, INC. 1983

(0) (1) (2) (3) (4) (5)
D) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
A) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
PC) FC0028 SR) 2700' CCR) ----- USP) FFFFFFFF
FC0028 MOVE #$2700,SR
>

(6) (7)

FFFFFFFF FFFFFFFF
FFFFFFFF 00000200

.ssP) 00000200

An explanation of this output appears under MPU Registers.

The > indicates that PROBUG is ready for you to type a command. This prompt
appears whenever PROBUG has completed a command, as well as at the beginning
of a debugging session.

PROBUG Command Syntax

A PROBUG command is a letter followed by one or more parameters and a termi
nator. For example, in the command 11000. the I represents an instruction to
PROBUG to inspect the contents of memory. The 1000 is the parameter, which in
this case tells PROBUG which memory location to inspect. The. is the termi
nator.

Some PROBUG commands do not require any parameters, but all require a termi
nator. You can use either a dot (.) or a carriage return «CR» as the termi
nator at the end of a command.

As a protection against syntax errors, PROBUG checks your input as it is
typed, not just after you type a terminator. If you type a character that is
invalid in the context in which you're typing it, that character will not
appear on the screen. If you are trying to type and nothing is appearing on
the screen, this may be the reason. Don't panic. Refer to the command
description in this manual and enter a correct value.

PROBUG evaluates all expressions to 32 bits; if an expression translates to a
number shorter than 32 bits, PROBUG adds the leading zeroes. In other words,
PROBUG right-justifies all strings and numbers that you input.

Page 2 PROBUG - 68000 Software Debugger

PARAMETERS

Parameters

A PROBUG command may have one or more parameters, separated by either a comma
or a space. The first parameter follows directly after the command, with no
separator. In the command ClOO,200.300. the 100 is the first parameter,
separated from the other parameters with commas. The command CIOO 200 300.
means the same thing as the command CIOO.200,300 ••

The parameters themselves may be expressed in a variety of ways. The most
common way is to use ordinary hexadecimal digits (in the above example, 100,
200 and 300). Note that PROBUG expects numeric input to be hexadecimal.
Likewise, it prints most output in hex, except for some output from the
Disassemble command, which it prints in decimal.

Any number may be preceded by an ampersand (&) to make it decimal instead of
hexadecimal. This holds true whether inputting the number, referencing a
location, etc.

Another way of expressing a parameter is to enclose an ASCII string in single
quotes (e.g., 'WXYZ')j the string will be translated into its numeric ASCII
code. (Note: the ASCI I string must be no more than four characters.) For
example, the character S is represented in ASCII as a hex 53; thus, within a
parameter, a quote-enclosed 's' has the same meaning as the hexadecimal number
53.

You can also define a parameter as the contents of a register. (Registers are
discussed on the following page.) To define a parameter as the contents of a
register, you must precede the register name with the letter "R". For
example, RD3 represents the contents of data register D3. You can use data
registers (expressed as RDO through RD7), address registers (RAO through RA7),
and user registers (RO through R7j see below under User Registers) in this
manner. Thus, if address register A3 contains the hex digits EOEOEOEO, the
expression RAJ has the same meaning as the expression EOEOEOEO.

RS represents the contents of the system stack pointer; RU represents the
contents of the user stack pointer.

You can express any parameter as the result of adding or subtracting terms of
any type (hex or decimal numbers, ASCII strings, or register contents). For
example, IIOOO+FF. and IlOFF. are equivalent. Another example: if address
register AO contained the hex number 0100, the command 1100+RAO. would inspect
memory location 200 (100 plus the contents of AO, which is 100).

Unary minuses are allowed. For example, you can use -1 as an expression.

An asterisk (*) represents the current contents of the program counter and can
be used in any expression. For example, if the program counter is 2000, the
commands 12000. and 1*. are equivalent. There is also an * command which
allows you to list and change the program counter.

Default Parameters. With some PROBUG commands, a default is assumed if you do
not specify a parameter. For example, the D (Disassemble) command allows you
to specify the location at which the disassembly should begin. With no
parameter, D. begins disassembling at the location currently in the program
counter, which is the default for this command. Defaults for other PROBUG
commands are documented under the detailed command descriptions.

PROBUG - 68000 Software Debugger Page 3

REGISTERS

Register.

The contents of the 68000's eight address registers and eight data registers,
labelled AO-A7 and DO-D7 respectively, are available for use within PROBUG.
You can define parameters using the current contents of these registers in
expressions; in addition, you can change register contents with the R command.

In addition to the data and address registers, there are eight user registers,
RO through R7. These may be used to help you match the locations on an
assembly listing with those in RAM. Suppose your program is assembled at
location 0000 but loaded in RAM at location 4000. If you store the number
4000 (the relocation factor) in user register Rl, you can refer to 11 instead
of adding the relocation factor to each address you specify in PROBUG
commands. For example, 20+11 would have the same meaning as 4000+20 or 4020.
This both saves time and helps prevent typing errors.

Using a register reference to define a parameter frequently involves adding an
offset to the register. Unlike with other terms, you can omit the plus sign
when adding to address, data, or user register references. For example, the
above expression 20+Rl can be abbreviated to 2011. The expression 10+B.A2 can
be abbreviated to 10RA2.

Be careful when using unary minuses before register references; the implied
addition takes precedence over the minus. For example, the expression -lORl
evaluates to -(10+11), not to -10+11.

If you do not specify the number of the user register, PROBUG assumes you mean
user register RO. Thus, IF+RO and lFRO and IFR all have the same meaning (IF
plus the value of user register RO).

MPU Registers. The data and address registers, program counter, status regis
ter, condition code register, user stack pointer, and system stack pointer are
known collectively as the MPU registers. The user registers are not included
as MPU registers.

The MPU register contents are displayed on the terminal whenever PROBUG
regains control after your program executes. The current instruction is
displayed, in disassembled form, on the next line. The following is a sample
display of register contents and the disassembled current instruction.

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOBOOOOO
PC) 001000 SR) 0704 CCR) --Z-- .USP) OOBOOOOO SSP) 0000076C
001000 MOVEQ.L #20,DO

The first line displays the contents of data registers DO through D7; the
second line, the contents of address registers AO through A7. The third line
displays the contents of the program counter (PC), the status register (SR),
the condition code register (CCR), the user stack pointer (USP), and the
system stack pointer (SSp).

The dot (.) before ''USP'' indicates that the 68000 is in user state. In this
case, the USP contains the same number as address register A7. If the 68000

Page 4 PROBUG - 68000 Software Debugger

CONVENTIONS USED IN THIS DOCUMENT ••• SPECIAL KEYS

is in supervisor state, the SSP (system stack pointer) will be preceded by a
dot and will contain the same number as register A7. See under the 1. command
for more on the MPU register contents.

Conventions Used In Thi. Docuaent

For readability, a dot (.) is used in this document as the terminator for
PROBUG commands. You can use either a dot or a carriage return as a termina
tor. Parameters are denoted as lower-case letters, in boldface (e.g., a is
the first parameter, b is the second, etc.). Parameters are separated by
commas; you can substitute spaces.

Square brackets ([]) around a parameter indicate that the parameter therei~ is
optional. If there are no brackets, you must specify the parameter. For
example, in the command Ia[,b] the first parameter is mandatory and the second
parameter is optional. Note that the comma (or a space) must be typed only if
you specify the second parameter.

The I, H, and R commands print long words one word (two bytes) at a
a space in between to improve readability. Accordingly, in sample
from these commands, we separate every two bytes with a space.
should not be interpreted as a character.

time, with
output
This space

In examples that show your input and PROBUG's output, your input is shown in
boldface to distinguish it from PROBUG's output. The _ symbol indicates a
press of the space bar.

Special Keys

When typing PROBUG commands, use the backspace or the DELETE or RUBOUT key to
backspace over an incorrectly typed character. Press LINE FEED or CTRL-X
(hold down the CONTROL key while pressing "X") to cancel the whole expression
you're typing and start over.

Use the ESCAPE (ESC) key to interrupt the output of commands that generate
large amounts of output. These commands include Print, Search, and Trace.

CTlL-L: letrieve Previously Typed Character(s). PROBUG stores each character
you type in a buffer. When you type the command I80FO. ,for example, the "I"
is in po s ition 1 of the buffer, the "8" is in position 2, the "0" in position
3, etc. The buffer changes, position by position, as you type a new line.

You can use part or all of the previously typed line on the current line by
using CONTROL-L (hold down the CONTROL key while pressing "L") for each
character you want to retrieve. This is particularly useful when typing long
numbers. For example, suppose you just typed IDE0800. and then realized you
meant to type PDE0800. Instead of cancelling the line and starting over, you
could backspace over the command, type "P" and then type CTRL-L six times to
retrieve the number.

This feature is much more easily demonstrated than documented; experiment with
it to see how it works.

PROBUG - 68000 Software Debugger Page 5

PROGRAM EXECUTION COMMANDS

Program Execution Co ... nds

PROBUG offers an assortment of program execution commands for executing and
testing your program. With these commands, you specify the way in which you
want your program executed: where it should start executing, where and why it
should halt, etc. PROBUG temporarily passes control to your program and lets
it execute as you specify. PROBUG regains control only after the program or
program segment has finished executing.

Whenever PROBUG regains control after a program execution command, it displays
the current contents of the MPU registers, and prints a message about the
circumstances under which the program stopped executing.

The program execution commands are as follows:

B Breakpoint
J Jump
N Next Instruction(s)
Q Quiet Trace
T Trace Instructions

In addition, the commands

B
and 0

Set Baltpoint
Set Observation Point

are used in conjunction with program execution commands, as described below.

Which Program Execution Command !o Use. Breakpoints, haltpoints, trace, and
quiet trace are the four main methods of controlled execution of your program.
The advantages of each method are described in this section.

Breakpoints are perhaps the most valuable diagnostic tool of all the program
execution commands. They let you quickly identify problems in your program by
displaying the contents of processor registers after your program or program
segment has executed. You can then discover and correct problems using other
PROBUG commands.

When you use the Breakpoint command, PROBUG sets a breakpoint at the location
. you spec ify. Your program then starts .. xecuting from the . location -in the
program counter, following the flow of the program (including subroutines,
etc.). The program executes, in real time, until it reaches the breakpoint
location. If you specify more than one location as a breakpoint, a breakpoint
will occur at whichever location is encountered first.

When your program reaches the designated location, it stops executing. The
processor registers are displayed and saved, and the locations you specified
are no longer breakpoints. You can now examine memory, correct problems, etc.

Breakpoints can be set in RAM only, and only on the first word of an instruc
tion. To debug programs in ROM, you must use traces or quiet traces.

PROBUG - 68000 Software Debugger

n.,tl p' (,
Page 7

PROGRAM EXECUTION COMMANDS

Traces let you step through your program one instruction at a time, displaying
the register contents after each instruction is executed. Before executing
each instruction, PROBUG displays the processor registers and disassembles the
next instruction. Because instructions are traced one at a time, the program
cannot be executed in real time during a trace.

There are two trace commands: Nand T. With the R command (Trace Next
Instructions), you can specify the number of instructions to trace; as soon as
the specified count is reached, the trace stops. With the T command, you can
specify up to four addresses; the trace then lasts until any of the addresses
is reached.

Observation points (discussed below) are monitored during traces. Haltpoints
(also discussed below) are also monitored during traces, but because of the
68000's "trace interrupt" feature, PROBUG doesn't have to write the haltpoints
into your program. Programs can thus be traced, with haltpoints set, whether
they're in RAM or ROl1. This is a major advantage of both traces and quiet
traces.

The T command cannot be used to trace through interrupts or exceptions.

Quiet Traces provide a way of tracing through your program without generating
much output on the screen. A quiet trace is much faster than a regular trace,
since it prints register contents only after tracing all instructions, rather
than printing them after each instruction is executed.

The Q command offers several advantages over other program execution commands.
First, as mentioned above, you can use it to trace through either ROM or RAM,
with or without haltpoints set. Second, when you use it with the 0 command,
you can monitor a particular location in RAM (called an observation point) to
find out exactly when that location changes. See below in this section for
more on observation points.

Another major advantage of quiet traces is that they can be used to follow the
flow of program control. When the address you specify on the Q command is
reached, PROBUG prints the previously executed instruction as well as the
current instruction, in disassembled form.

During a quiet trace, the program will execute much more slowly than in real
time, but not as slowly as with the T command.

Jumps are the simplest way of executing your program from PROBUG. No fuss, no
muss, just execute. Using the J command, you can start the program either at
the program counter (the default), or at another memory location (by specify
ing one parameter). If you specify more than one parameter, execution starts
at the location specified in the first parameter, and PROBUG sets breakpoints
at the locations you specified as the other parameters.

Observation Points are used in conjunction with quiet traces, traces, halt
points, and breakpoints to monitor locations in RAM. When the contents of the
specified location change, PROBUG prints a message telling you of the change.
Observation points can be used either to report any change at the location, or
to print a message only when the contents of the location change to a

Page 8 PROBUG - 68000 Software Debugger

PROGRAM EXECUTION COMMANDS

particular value.

Sometimes a program erroneously changes a location in memory that is supposed
to remain constant. Or, a location is being set to an incorrect value.
Observation points are very useful in locating the instruction that is
changing the contents of a particular location in memory.

When you use observation points with the trace modes (usually quiet trace),
the memory locations being observed are checked after each instruction. When
a change is detected, program execution stops and PROBUG prints the address of
the observation point, the location's previous contents, its current contents,
and the address of the instruction that changed the location.

Observation points can also be used with breakpoints and haltpoints, but since
tbe program runs in real time, the observation points are checked only when a
breakpoint or haltpoint is reached. PROBUG reports any change that occurred
between the starting location of the jump/breakpoint and the location at which
execution stopped.

When baltpoints with iteration counts are used with observation points, memory
is checked each time the haltpoint is encountered. This can be used to
combine the advantages of observation points with real-time execution. (See
under Haltpoints, below.)

Note that the 0 command only sets observation points; it does not automati
cally generate the quiet trace necessary to monitor the location(s) in
question. Observation points remain set until you remove them.

Haltpoints are similar to breakpoints, but are kept in a table where they stay
until you remove them. The table will hold up to 8 haltpoints. You set
locations in this table using the H command.

Haltpoints are especially useful when there are particular locations you
always want to designate as breakpoints. Instead of specifying the locations
every time you issue a breakpoint command, you can set them as baltpoints.
This is also useful if you want to specify more than 4 locations as break
points (four is the limit on a breakpoint command).

You can set haltpoints at error exits or exit points to block exit routes.
This is useful for keeping control of your program as it executes.

Another advantage of haltpoints is that you can set them in RAM or ROM. When
used with RAM, haltpoints are similar to breakpoints: when your program
encounters a haltpoint, a breakpoint occurs and control is returned to PROBUG.

Only the T, Q, and R commands will recognize haltpoints set in ROM. With
these commands, PROBUG checks the haltpoint table between each instruction,
and stops program execution when a haltpoint is reached.

After reaching a haltpoint, you can continue program execution from that
location without clearing it from the haltpoint table. In other words, if the
program is currently at a haltpoint, that haltpoint is ignored when program
execution continues.

PROBUG - 68000 Software Debugger Page 9

PROGRAM EXECUTION COMMANDS

Iteration Count With Ualtpointa. To assist in monitoring loops, you can
specify an iteration count as part of a haltpoint command. This count is the
number of times that the instruction at the haltpoint location should be
executed before control returns to PROBUG. Once the iteration count is decre
mented to zero, control will be returned to PROBUG each ttme the haltpoint is
encountered.

When observation points are set, they are monitored each ttme the haltpoint is
reached, and also after the instruction at the haltpoint is executed. This
allows some of the usefulness of observation points to be retained while
running in real time. By setting several haltpoints with large iteration
counts at strategic points in the program, you can narrow down the general
area in which the observation point is being changed.

If you do not want to set an iteration count, trace through ROM, or use the
haltpoint table to set permanent breakpoints, breakpoints may be a more useful
debugging technique than haltpoints.

Page 10 PROBUG - 68000 Software Debugger

ERROR MESSAGES

Error Messages

Any time an exception occurs, PROBUG prints an error message enclosed in
asterisks, giving the reason for the exception. The current contents of MPU
registers are also printed. All register contents are preserved, and you are
returned to command mode (the> prompt appears).

The errors that occur most commonly are bus errors and address errors. Both
types of errors can occur from within PROBUG as well as from within your
program; they are handled differently in the two cases. When they occur from
within PROBUG, the registers that were previously on the stack remain un
changed on the stack. When the errors occur from your program (as a result of
a program execution command), the register contents are printed along with the
diagnostic message.

Bus errors occur when a program execution command or your program itself tries
to reference a location where there's no RAM or ROM. For example, suppose
there is no RAM above the location IFFFF and you typed a P command to print
the contents of locations IFFEO through 20010. The results would look some
thing like this:

>PIFFEO,20010.
OlFFEO 3D7C 0001 006A 2D6F
01FFFO 6120 OC50 4AFB 6602
020000 *** BUS ERROR ***
>

0001 006C 026F 7FFF
3080 5341 66FO 426E

Address errors occur when a program execution command (including 0 and H), or
your program itself, tries to access an odd location such as 1001. Here is a
sample of what PROBUG might print if your program tried to access location
COl.

>J48000.

*** ODD ADDRESS ERROR ***
OCCURRED AROUND 04800E WHILE ACCESSING OOOOOCOI
INSTRUCTION CODE 5378 FUNCTION CODE 5

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 0000076C
PC) 04800E SR) 2704 CCR) --Z-- USP) OOBOOOOO ~SSP) 0000076C
04800E CLR.W D1
>

This tells you that the error occurred around location 04800E while the
program was trying to access location OCOI. The opcode of the instruction
that caused the error is 5378. You could now use a PROBUG command to inspect
the problem area, looking for instruction 5378 around location 04800E.

If you try to access an odd location using a non-program execution PROBUG
command, PROBUG will either round down to the next even location or print the
message *** ODD ADDRESS ERROR *** with no other information. If a command
rounds down when you try to access an odd location, its command description
will say so.

PROBUG - 68000 Software Debugger Page 11

NMI & RESET BUTTONS

NMI (Hon-MAskable Interrupt) Button

You can safely interrupt any currently executing program that is non-timing
dependent by pressing the NMI button (called the ABORT button on some
machines). This is useful for determining why a program is hung, regaining
control of a program that never reached a breakpoint, etc.

PROBUG will display the contents of the registers at the point of the
interrupt and will return a > prompt. The contents of the MPU registers are
saved.

The following is a sample of output resulting from a press of the NMI button:

*** NON-MASKABLE INTERRUPT ***
(0) (1) (2) (3) (4) (5) (6) (7)

D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOBOOOOO
PC) 001000 SR) 0704 CCR) --Z-- .USP) OOBOOOOO SSP) 0000076C
001000 ADDQ.W 12,DO
>

After the message and register contents are printed, you can execute any
PROBUG command. To continue program execution at the point at which you
pressed the NMI button, enter a program execution command (e.g., jump, break
point, etc.).

RESET Button

The RESET button resets the M68K10; it is equivalent to a power-up. If the
processor halts, or if your program mistakenly overwrites PROBUG's RAM area,
RESET is the button to push.

RESET differs from the NMI button in the following ways:

1) RESET resets all the M68KI0's I/O components, and generates a RESET
for the iSBX connectors and the Multibus.

2) RESET loads the system stack pointer with PROBUG's initial system
stack pointer. (NMI leaves the stack pointer as it was before.)

3) RESET sets the program counter to the beginning of PROBUG. (NMI
leaves the program counter as it was before.)

4) RESET initializes the PROBUG variables and sets up all exception
vectors.

Like NMI, RESET restores breakpoints and haltpoints that were set in RAM and
prints the contents of the registers.

The following is a sample of output resulting from a press of the RESET
button:

Page 12 PROBUG - 68000 Software Debugger

(

PROBUG 2.0 - SBE SOFTWARE DEBUGGER
COPYRIGHT SBE, INC. 1983

NMI & RESET BUTTONS

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) FC0028 SR) 2700 CCR) ----- USP) OOBOOOOO .SSP) 00000200
FC0028 MOVE #$2700,SR
>

PROBUG - 68000 Software Debugger Page 13

Aa.

COMMAND DESCRIPTIONS: ASSEMBLE

PROlOG COMMARD DESCRIPTIONS

ASSEMBLE

The A command allows you to patch programs using assembly language instruc
tions. PROBUG converts these instructions into hex and puts them in RAM at
the location you specify. PROBUG accepts all standard Motorola 68000
mnemonics and addressing modes, plus the DC (Define Constant) directive.

To enter instructions into RAM, specify the desired starting location as a
parameter; for example, type AlOOO. to begin entering instructions at loca
tion 1000. PROBUG responds by displaying address 1000 as a prompt. Enter
each instruction followed by a carriage return; PROBUG assembles the source
line and prompts you with the RAM address of the next instruction. Press
carriage return alone on a line to exit assemble mode and return to PROBUG
command mode.

In the following example, your actions are shown in boldface, PROBUG's in
lightface:

>AIOOO.
001000
001002
001006
>

MOVEQ #2,DO (carriage return)
MOVE.W DO,$OCOO (carriage return)
(carriage return)

In order to detect and flag errors, PROBUG parses each instruction as you
type it, and ignores invalid characters. Most syntax errors are thus
detected while the line is being entered. Those that are not detected
until you press carriage return cause PROBUG to print an error message.
The address prompt is overwritten with asterisks and is then re-issued.

Immediate data constants that you enter are assumed to be decimal. To
define a hex value, precede the value with a $ - e.g., $FOOO. To enter an
ASCII literal, use single quotes around the character string.

You can type any number of spaces before the mnemonic or between the
fields. To document patches, you can add comments to instructions;
however, comments are not saved anywhere and are thus useful only if you're
using a printing terminal. To add a comment to an instruction, type a
space after the operand field and comment~away.

To facilitate skipping over existing instructions, or overwriting instruc
tions that have already been assembled, the + and - keys can be used to
step forward and backward in memory (respectively). For example:

00200A -
002008
002006 ROP

As in PROBUG command mode, you can use addition, subtraction, and user
register references within expressions. For example, if user register ao
contains 1000 (hex), the source lines IEQ $100C+1O and IEQ $200C
have the same meaning. You can al so use * to ref e:rence the current program
counter (the address of the current instruction).

PROBUG - 68000 Software Debugger
\1.0 p' 14-
Page 15

COmiAND DESCRIPTIONS: ASSEHBLE

Whenever possible, PROBUG converts your instructions to a more compact
form. For example, ADD 11,DO becomes an ADDQ 11,DO; a HOVE.L 11,DO becomes
a MOVBQ 11,DO; etc.

The Define Constant (DC) assembly directive is allowed with bytes, words,
and long words (DC.B, DC.W, and DC.L). The operands may be expressions or
ASCII literals enclosed in single quotes (e.g., DC.B 'TEST STIlIBG' ,$04).

The following are examples of use of the DC directive, and the resulting
ASCII code in RAM (in hex). Each pair of hex numbers represents one byte.
An underscore (_) indicates that PROBUG will skip over that byte to align
the next instruction on a word boundary. (This occurs when you use DC.B
with an odd number of characters or numbers in the operand.)

Directive & Operand
DC.B 1,2,3,4,5
DC.W 'ABCDE'
DC.L O+'AB' ,'CDE'
DC.B 'TEST STRING' ,$04

Resulting ASCII Codes (Hex)
0102030405_
414243444500
0000414243444500
5445535420535452494E4704

Note that strings of ASCII literals are left-justified and padded with
zeroes. Expressions are right-justified.

Branch Labels. To aid in resolving branch addresses, four special labels
are allowed: :A, :B, :C, and :D. Only branch instructions and decrement
and-branch instructions may reference these labels. Each label's value is
defined when the label appears at the beginning of the line.

You can make references to as-yet undefined labels. When you define the
label, the address is resolved. Backward references are also allowed.

If you attempt to leave assemble mode with a label undefined, you will get
the message * UNDEFlBED LABEL * and you will be re-prompted with the most
recent'address. In such cases, you need not re-type the entire line at
which you forgot to define the label. Just go back to the line (using - if
necessary) and type the label alone on the line. The source line will
remain as well as the newly attached label.

This example shows the use of labels (the labels are boldfaced here):

001000 CMP.B #'0'-1»0 .
001004 BLO :B
001006 CMP.B #'9',DO
OOlOOA BLS :A
00100C CMP.B #'A' ,DO
001010 BLO :B
001012 CMP.B #'F' ,DO
001016 BHI :B
001018 SUB.B #7,DO
OOIOlA :A AND.B #$OF,DO
00101E BRA :C
001020 :B MOVEQ #-I,DO
001022 :C BRA $1000
001024 (carriage return)

Page 16 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: ASSEMBLE

When using the A command, you can substitute certain mnemonics for others:

BLO is allowed for BCS
BRS is allowed for BCC
DBLO is allowed for DBCS
DBRS is allowed for DBCe
DBRA is allowed for DBF

PROBUG - 68000 Software Debugger Page 17

COMMAND DESCRIPTION S: IUAUOIRT

Ba[,b] [,c] [,d) • IREAKPOIBT (Program Execution Command)

Before using this command, please read the section Program Execution
Comaands above in this manual to compare breakpoints with haltpoints,
traces, and quiet traces.

The B command causes your program to execute until (one of) the location(s)
you specify is reached. The program always starts executing at the loca
tion in the program counter. (If you want to breakpoint starting at a
location other than the one in the program counter, use the J command.)

The command 11000. says to execute the program from the current location
and stop at location 1000. The contents of various registers are displayed
when location 1000 is reached. Here's a sample:

>11000.
BREAKPOINT AT 001000

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOBOOOOO
PC) 001000 SR) 0704 CCR) --Z-- .USP) OOBOOOOO SSP) 0000076C
001000 SUBQ.W Il,$OCOO
>

If you specify more than one parameter, the program stops executing as soon
as it encounters anyone of the locations specified by the parameters. For
example, with the command 11000,409C,2000,FFOO. the program would stop
executing as soon as location 1000, 409C, 2000, RL FFOO had been reached.
Register contents are displayed as soon as program execution stops.

If you have set haltpoints (with the B command) and they are encountered
before the breakpoint location(s), program execution will halt before the
breakpoint location(s). If you have set observation points and they change
during program execution, a message will be displayed to indicate this.

Note: Do not use locations as breakpoints if you have already set them as
haltpoints.

As soon as breakpoint output is displayed, all the breakpoints you speci
fied are cleared. The location at which program execution stopped is now
the current location.

If the program never reaches a breakpoint, press the NMI button to regain
control.

Page 18 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: COpy HEMOIY

Ca,b,c. COPY HEMOI.Y

This command copies the contents of location a through b (called the source
block) into locations c through c + (b - a) (called the destination block).
Since the C command by itself generates no output, several P (print)
commands appear in the following example to illustrate the effects of a
Copy.

>PIOOO,lOOF. (Print contents & ASCII representation of locations 1000-100F)

001000 5678 9ABC 9999 9999 FFFF FF60 FFFF l2FF Vx_ < ___ '"

>CIOOO,l003,2000. (Copy contents of 1000 through 1003 to location 2000)

>P2000,200F. (Print contents & ASCII representation of locations 2000-200F)

002000 5678 9ABC 3D7C 0001 006E 2D6F 0072 006C

>PIOOO,lOOF. (Print contents & ASCII representation of locations 1000-100F)

001000 5678 9ABC 9999 9999 FFFF FF60 FFFF 12FF Vx_ < __ _

>CIOOO,l003,l002. (Copy contents of 1000-1003 to location 1002)

>PIOOO,lOOF. (Print contents & ASCII representation of locations 1000-100F)

001000 5678 5678 9ABC 9999
>

PROBUG - 68000 Software Debugger

FFFF FF60 FFFF 12FF VxVx_ <. __ _

Page 19

COMMAND DESCRIPTIONS: DISASSEMBLE

D[a)[,b). DISASSEMBLE

The D command displays assembled code in its original state (assembly
language) for your perusal. Typically, you use D to examine the next
instructions to be executed by a breakpoint or jump command.

The D command with no parameters starts the disassembly at the locat;.on in
the program counter, and disassembles ten instructions. If you specify one
parameter (a), the disassembly will start at that location, and disassemble
continuously. For example, DI000. starts the disassembly at location 1000
and keeps going until you type a character. If you specify two parameters,
the disassembly will start at location a and stop after disassembling the
instruction at location b.

To freeze output on the screen, press the Escape key; to start it up again,
press the Escape key again. To terminate the disassembly, type any other
character on the keyboard.

Output From The D Command. For each instruction, the D command prints the
address, hexadecimal instruction code, standard mnemonic for that code, and
operand(s).

Illegal instructions are disassembled as DC.W directives. The D command
resolves branch instructions to their absolute addresses. Instructions
using the program counter with the displacement mode of addressing are
printed with the displacement resolved to an absolute memory location.

Note: Normally, PROBUG displays operands in hex, preceded by a $. PROBUG (
displays immediate operands in the range -31 to +31 in decimal.

The following is a sample D command and its output:

>D48000.
048000 7014 MOVEQ.L #20 ,DO
048002 31CO oeoo MOVE.W DO,$OeOO
048006 4241 CLR.W D1
048008 5440 ADDQ.W #2,DO
04800A 5378 oeoo SUBQ. W #l,$OeOO
04800E 66F8 BNE.S $048008
048010 4E71 NOP
048012 60Ee BRA.S $048000
048014 4E71 NOP
048016 FFFF DC.W $FFFF
>

Page 20 PROBUG - 68000 Software Debugger

COMMAND DESCRIPTIONS: EXECUTE DISK OPEalTIRG SYSTEM BOOTSTRAP

E[a]. EXECUTE DISK OPDATIlIG SYSTEM BOOTSTRAP

This command starts execution of the bootstrap program which loads the disk
operating system into RAM. You can specify the disk drive (0, 1, 2, or 3)
from which the system should be loaded. For example, the command El. would
load the system from drive 1. If you do not specify the drive, the system
will be loaded from drive O.

If an error occurs while the system is being loaded, control returns to
PROBUG and the error codes are displayed in the registers. Your disk
operating system documentation should contain a description of the boot
strap program, including the codes for possible errors. See that document
for a translation if an error code appears in the registers.

PROBUG - 68000 Software Debugger Page 21

COMMAND DESCRIPTION S: IILL HEHOJty

la,b,cl,d]. IILL IlEMOR.Y

This command writes the value c into locations a through b. Depending on
the size of c (1 byte, 2 bytes, or 4 bytes long), PROBUG will choose byte,

. word, or long word mode.

Since the I command by itself generates no output, several P (print)
commands appear in the following example to illustrate the effects of a
Fill.

>FIOOO,lOlF,4C. (Fill locations 1000 through lOlF with 4C, byte by byte)
>PIOOO,lOIF. (Print contents & ASCII representation of locations 1000-lOIF)

001000 4C4c 4C4C 4C4C 4C4C
001010 4C4C 4C4C 4C4C 4C4C

4c4C 4C4C 4C4C 4C4C
4C4C 4C4C 4C4C 4C4C

LLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLL

>FIOOO,IOlF,004C. (Fill locations 1000-101F with 004C, word by word)
>PlOOO,IOIF. (Print contents/ASCII of locations 1000-101F)

001000 004C 004C 004C 004C
001010 004C 004C 004C 004C
>

004C 004C 004C 004C
004C 004C 004C 004C

The optional parameter d indicates the amount by which PROBUG should
increment value c at each consecutive location:

>FIOOO ,101F ,EO ,02. (Fill 1000-101F with EO, incrementing each byte by 02) (--
>PlOOO,IOlF. (Print contents/ASCII of locations 1000-101F)

001000
001010
>

EOE2 E4E6 E8EA ECEE
0002 0406 080A OCOE

FOF2 F4F6 F8FA FCFE
1012 1416 18lA lClE

'bdfhjlnprtvxz/-

If the size of the increment differs from the size of the value itself,
PROBUG will switch modes to accommodate the larger of the two. For
example, the command FlOOO,2000,EO,lOO. would force PROBUG into word mode.
Similarly, if the value is larger than the increment, the value will
determine the mode.

When operating in word or long word mode, the F command will begin a fill
only at an even location. -If you specify an odd starting locati~nit will
be rounded down to make it even. Thus, the commands

FIOOl,2000,FOFO,02.
FIOOl,200l,FOFO,02. and
FlOOO,2000,FOFO,02.

all perform the same function.

Page 22 PROBUG - 68000 Software Debugger

COMMAND DESCRIPTIONS: SET BALTPOIIT(S)

Ra[,b]. SET BALTPOIBT(S) (With Program Execution Commands)

Before using this command, you should read the section Program Execution
Commands earlier in this manual.

Use the H command to set up to eight haltpoints. The haltpoints will
remain in the haltpoint table until you remove them (or until the computer
is turned off). Note that the H command only allows you to set the halt
points; it does not automatically cause the program to execute. After
setting haltpoints, you must use a program execution command to execute the
program.

Haltpoints are treated much like breakpoints when encountered by program
execution commands other than traces. After setting haltpoints in ROM, you
must use a trace (T, N, or Q command) to monitor those haltpoints.

To set a haltpoint at a location, type Ha. where a is the location. For
example, the command BI000. would set a haltpoint at location 1000. To
display the table of all the haltpoints you have set so far, type H. with
no parameter.

Iteration Count. To assist in monitoring loops, you can specify an itera
tion count as the second parameter of a haltpoint command. (The iteration
count is assumed to be hexadecimal unless you precede it with an &). For
example, suppose you entered the command HI000,&100. and then executed a
program execution command. The instruction at location 1000 would be
executed one hundred tUnes before control was returned to PROBUG.

Type -H. to remove all haltpoints. Type -Ra. to remove only the haltpoint
at location a. The following is an example of output from the B command:

>BlOFO. (Set location 10FO as a haltpoint)
>B90C,4. (Set location 90C as a haltpoint with count of 4)
>B. (List all current haltpoints)
HALT POINTS
00090C COUNT-0004
OOIOFO
>-BlOFO. (Remove location 10FO from the haltpoint table)
>H. (List all current haltpoints)
HALT POINTS
00090CCOUNT=0004
>

PROBUG - 68000 Software Debugger Page 23

COMMAND DESCRIPTIONS: IIlSPECT / ALTER MEIIORY

Ia[,b) • I.SPEeT/ALTER MEMORY

This command lets you inspect and alter memory locations one byte at a
time, beginning at location a. For example, the command 11000. displays
memory address 1000 and its contents. You can alter the contents by typing
in the new value followed by a terminator (see below). To retain the
existing contents, simply type a terminator without typing a new value.
Whether you continue to inspect memory locations or exit the I command
depends on the kind of terminator you use.

Terminators. To exit the 1 command, use the conventional. or <CR> as a
terminator. (They serve this function whether you alter memory locations
or not.) The space bar and comma also serve as terminators within the I
command. They allow you to continue to inspect/alter memory locations.
Press the space bar to get to the next location; type a comma to go back
ward one location. Both of these terminators can be used successively to
skip forward or backward more than one location.

The following is an example of the use of the I command. The _ symbol
represents a press of the space bar. Your actions are shown in boldface.

>11000.
001000
001001
001002
001001
001000
>

00 23 -
00
FF 33,
00 •
23 •

(Inspect/alter memory location 1000)
(Replace 00 with 23; go to next location)
(Leave as is; go to next location)
(Replace FF with 33; go to previous location)
(Leave as is; go to previous location)
(Leave as is; exit 1 command)

Amount Of Memory Per Line. The I command accepts a parameter that speci
fies the amount of memory to be displayed at a time. To display every
other byte (see the next paragraph), specify "1"; to display 2 bytes (1
word) at a time, specify "2"; to display 4 bytes (1 long word) at a time,
specify "4". For example, the command 11000,2. says "inspect 2 bytes (1
word) of memory beginning at location 1000." If you do not specify this
parameter, it is assumed you want every byte displayed, one byte at a time.

Sometimes it is useful to examine only the odd or only the even bytes. For
this purpose, you can specify "l" for byte mode which will display only
every other byte, one byte at a time. The result of specifying "l" depends
on whether the address given with the command is~oddoreven. For example,
the command 11001,1. would display

001001
001003
001005

EOEO EOEO_
EOOO 0100_
12FF FF05_ etc. (_ represents a press of the space bar)

Each time you press the space bar, the contents of the next odd address are
displayed; the contents of even addresses are never displayed. Similarly,
the command 11000,1. displays the contents of even address 1000, 1002, etc.
(with spaces typed by you in between), and never displays the contents of
odd addresses.

Page 24 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: lRSPler/ALTD 1IIII0l.Y

Use the parameter 2 (for word mode) to display 2 bytes at a time; use 4
(for long word mode) to display 4 bytes at a time. Example: the command
11000,4. would display

001000 EOEO EOEO_
001004 EOEO EOEO_
001008 EOEO EOEO_ etc.

PROBUG - 68000 Software Debugger Page 25

COMMAND DESCRIPTIONS: JUMP TO LOCATION

J[a][,b][.c][,d]. JUMP TO LOClTIOI (Program Execution Command)

Please read the section Program Izecution Commands earlier in this manual
before using this command.

The J command jumps to location a of memory and begins executing at that
point. If you do not specify a location, J starts execution at the current
program counter.

When you specify two or more parameters, the J command is interpreted as a
breakpoint command. That is, the first parameter is the point at which
PROBUG is to start executing the program; the other parameters are inter
preted as breakpoints. For example, the command J1000.llOO,2000,C090.
jumps to location 1000 and executes until one of the three locations lFOO,
2000, or C090 is reached. See the B command for details on breakpoints.

The following is a sample of the use of the J command. In this sample, a
haltpoint had been set at locatioD 90C.

>J900. (Jump to location 900 and begin executing)

HALTPOINT AT 00090C

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOBOOOOO
PC) 00090C SR) 0704 cea) --z-- .USP) OOBOOOOO SSp) 0000076C
00090C BNE.S $000940 (FALSE)
>

Page 26 PROBUG - 68000 Software Debugger

COMMAND DESCRIPTIONS: LOAD PROGUH IftO UH

L[aH,b]. LOAD PROGRAM IIfTO UM

The L command loads a program into BAM 'from an S-record formatted object
tape or from a host computer that produces output in S-record format. The
program is loaded according to the load addresses in its S-records. Data
is not displayed as it is being read.

With a parameter, L loads the specified (hexadecimal) number of files into
memory: for example, 12. loads two files into memory. Each of the files
to be loaded must end with an S8 or S9 record (see below for a description
of S-record format).

You can specify the starting location in RAM (in hex) using a second
parameter: for example, L2,1000. loads two files starting at location
1000. That is, the first program record is loaded at location 1000 and
subsequent records are loaded relative to that location.

To cance 1 a Load from tape, type "Sl" (upper-case "S") followed by a line
feed. To cancel a Load from a host computer, type any character while the
data is being loaded, and the load will abort.

Select Port. Before using the L command, you may want to select the port
using the @ command. See under that command for a description of how to do
this.

Transparent Mode. Each time you use the L (or W) command, PROBUG automati
cally enters a special "transparent ,t mode which allows your terminal to
communicate with the host computer or other external device. While PROBUG
is in transparent mode, the characters you type at the terminal are sent to
the other port, and output from the host computer goes to your terminal.

You should run both ports at the same baud rate. (If your only task is to
download programs, the two ports may not need to be at the same speed.)

Once you are in transparent mode, you can type the appropriate command
telling the host computer to start sending data. The command line would
typically end in a carriage return, but do not end the command line as you
normally would on the host computer. Instead, type the "exit character"
(explained below) to terminate the command line. PROBUG will send the
subst i tut icncharacter to the host ~omputer; this terminates the~ommand
line and starts the transmission of Sl records into RAM.

Exit Character. When you type a Load command, a message like the following
appears:

EXIT CHARACTER • $01 • CONTROL-A

This indicates what character to type when you want to begin the actual
transfer of data into RAM. The exit character causes an exit from trans
parent mode. While you are in transparent mode, the exit character is the
only character you can type that does not get sent to the host computer.
Instead, when you type the exit character, a "substitution character" is
sent to tell the host computer to begin the load.

PROBUG - 68000 Software Debugger Page 27

COMMAND DESCRIPTIONS: LOAD PROGRAM IRTO 1AM ••. S-RECORD FORMAT

Because a carriage return signifies the end of a line in most computer
systems, the substitution character has been set to carriage return. In
other words, when you type the exit character, the host computer receives a
carriage return. If your host computer expects a character other than
carriage return at the end of a command line, be sure to change the substi
tution character to that character using the @ command. The exit character
can also be set using the @ command.

When PROBUG exits transparent
computer, having received the
begins sending the S1 records.
host computer with the M68K10.

mode to start the load process, the host
substitution character ending the line,
Typing the exit character synchronizes the

Note that while PROBUG is in load mode (loading S1 records from the alter
nate port), typing any character at the terminal will abort the load
process.

S-Record Format

The host computer's output, or the object tape, consists of a series of
data records and an end-of-file record. Each record consists of pairs of
ASCII characters representing hexadecimal digits; each pair of characters
represents one 8-bit byte. Data records include a header, the number of
bytes in the record (in hex), the program block's address, the program data
itself, and a checksum for the record. The end-of-file record includes all
of these fields except that it does not contain program data.

There are two types of data records: S1 and S2. The data record type is
marked at the beginning of the record, in ASCII. If the program loads into
the first 64K bytes of RAM, its load address is two bytes long, and the
data record starts with the ASCII characters "S1". If not, the record
starts with "S2". The only difference between SI and S2 records is a 2-
byte versus a 3-byte load address.

The first byte of the record, after the "SI" or "S2", contains the number
of bytes to follow in the record. This number is given in hex and includes
the starting address and checksum. The next two bytes (three bytes if it
is an S2 record) show the address at which the record is to be stored in
memory. Next follows the actual program/data bytes and, after that, a

... checksum byte. The checksum_is the one's complement of the summation of
all previous bytes in the record, including the record length and address
bytes. See the example below.

The end-of-file record is labelled according to the type of data record in
the group. If they were SI records, the end-of-file record is marked "S9".
If they were S2 records, it is marked "S8". The end-of-file record does
not contain any program data. Its address is the address at which the
program will start executing.

The following is a sample of S-record format. Since there is no output
from the L command, you see this type of record only when using the W
command.

The records take up one line each. In the first line, 51 is the record

Page 28 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: LOAD PJlOGIAK lITO IAK ••• S-RECORD FORMAT

type, OB is the number of bytes, 1000 is the address, FBDCBA9876543210 is
the data, and AC is the checksum. In the second line, S9 is the record
type, 03 is the number of bytes, 1000 is the address, and BC is the check
sum. Note that there is no data in the 89 record.

SlOBIOOOFEDCBA98765432l0AC
S9031000EC

PROBUG does not control the start/stop functions of the tape, so you must
manually start the tape after typing the L command. Stop the tape as soon
as the PROBUG prompt (» appears; otherwise, any characters following the
end of the program on the tape will be interpreted as PROBUG commands.

All characters between records are ignored by the L command; thus <CR> and
line feed may be used to terminate each record. If PROBUG detects an error
(e.g., invalid character or checksum failure) during the loading process,
it will display an appropriate error message.

The L command puts the address given in the S9 or S8 record into the
program counter. Thus, if you execute a oJ command directly after executing
an L command, the program will start executing at its start address.

PROBUG - 68000 Software Debugger

COMMAND DESCRIPTIONS: TRACE IEXT INSTRUCTION(S)

B[a]. TRACE NEXT INSTRUCTION(S) (Program Execution Command)

The R command is identical to T (Trace) but it executes only the next
instruction. See the section Progr •• Execution Command. and the
description of the Trace command for more details on tracing.

The command N. with no parameters traces the next instruction - that is,
the one at the current value in the program counter. Control is then
returned to PROBUG. After using N, you can trace subsequent instructions
by pressing carriage return or typing a dot (.). You can continue using
carriage return or dot to single-step through the program until you type
another command.

>N.

(0) (1) (2) (3) (4) (5)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000
PC) 04100C SR) 0704 CCR) --Z-- .USp) OOBOOOOO
04100C NOP
>

(6) (7)
00000000 FFFFFFFF
OOOOFEOO OOBOOOOO

SSP) 0000076C

The N command with a parameter traces the number of instructions you
specify; for example, N3. traces three instructions starting at the next
instruction and following the flow of the program.

Suppose you set observation points and then use an N command to trace the
next ten instructions. If an observation point changes before ten
instructions have been traced, the trace will stop after the instruction
that changed the observation point; all ten instructions will not be
traced.

PROBUG - 68000 Software Debugger Page 31

COMMAND DESCRIPTIONS: I.SPECT S'UC%/IIEMOI.Y WOlD BY WOlD

M. INSPECT STAC% WOlD BY WORD

The II command with no parameters allows you to inspect/alter the contents
of either the user stack or the system stack, one word at a time, depending
on whether the 68000 is in user or supervisor state. Use the same termina
tors as with the I command to move forward and backward in the stack and to
exit the II command. The following is a sample of the use of the II command:

>11.
0007B6
0007B8
0007BA
0007B8
0007B6
>

0000 IF_
1021
FFEB FFEC,
1021 ,
001F •

(Inspect stack word by word)
(Replace 0000 with 001F; go to next location)
(Leave as is; go to next location)
(Replace FFEB with FFEC; go to previous location)
(Leave as is; go to previous location)
(Leave as is; exit M command)

Ma[,b] • INSPECT MEMORY WORD BY WOiD {2 bytes at a time}

This command is identical to the Ia[,b]. command except that its default
mode is word mode. That is, if you don't use the second parameter (b) to
specify the amount of memory you want displayed per line, the system
displays 2 bytes at a time. The following example assumes memory location
928 contains 4E71.

>11928.
000928
00092A
00092C
>

4E71
BE06 OA_
FE02 •

(Inspect 1 word of memory starting at location 928)
(Leave as is; go to next word)
(Change BE06 to OOOA; go to next word)
(Leave as is; exit II command)

Use the same commands as with the I command to travel through memory.

The II command accepts even addresses only.

The II and I commands offer you the convenience of inspecting memory eitber
in bytes orin words~_without having to specify the size.

Page 30 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: SET OBSERVATlOR POllT

OaI.bl. SET OBSERVATlOR POllT (With Program Execution Commands)

Observation points are used in conjunction with quiet traces, traces, halt
points, and breakpoints to monitor locations in RAM. When the contents of
the specified location change, PROBUG prints a message telling you of the
change. Observation points can be used either to report any change at the
location, or to print a message only when the contents of the location
changed to a specific value. Please read Program Execution Commands
earlier in this manual before using observation points.

You can set an observation point in two ways: with one or with two
parameters after the 0 (the letter O. not zero). With one parameter (Oa.).
PROBUG reports whenever the contents of location a change. When you
specify a second parameter (Oa,b.). PROBUG prints a diagnostic message only
when the contents of location a change to target value b.

Specify only word addresses as observation points. Observation points
apply to whole words, not to individual bytes; for example, if you specify
location 1000, both 1000 and 1001 are observed.

PROBUG keeps a table of up to 8 observation points and their corresponding
target values, if any. The locations remain in the table until you remove
them or until the computer is turned off.

Note that the 0 command only ~ observation points; it does not automat
ically generate the program execution command necessary to track down the
problem. PROBUG reports changes that occurred in the location(s) being ob
served only after you do a quiet trace, trace, or breakpoint.

To remove an observation point from the table, precede the 0 with a minus
sign (-). For example, the command -01000. removes location 1000 as an
observation point.

To display a list of all observation points you have set, type O. (with no
parameter). The command -0. with no parameter removes all observation
points from the table. The following is a sample that includes various
uses of the 0 command.

>0100. (Set location 100 as an observation point)
>OCOO,FI00. (Set location COO as observation point with target value FIOO)
>0. (Display all observation points and their contents)

OBSERVATION POINTS
000100 47E7
OOOCOO FOOO TARGET VALUE .. FIOO

>-0100.
>0.

(Remove location 100 as an observation point)
(Display all observation points and their contents)

OBSERVATION POINTS
OOOCOO FOOO TARGET VALUE .. FlOO
>

Note that the 0 command with no parameters displays the observatit:m points
and their current contents. If you change the contents of an observation

Page 32 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: SIT OBSU.VATIOR POIRT

point (for example, use the M command on it), a subsequent 0 command will
reflect the change.

Observation Poiuts With Quiet Trace. Suppose you did a quiet trace after
setting an observation point with a target value. If the specified change
occurred in location OOOCOO, the following output would appear:

>OCOO.F004.
>Q.

(Set location coo as observation point with target value F004)
(Quiet trace starting at location in current program counter)

INSTRUCTION AT LOCATION 048002 CHANGED DATA AT
LOCATION OOOCOO FROM FOOO TO F004

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 0000076C
PC) 048006 SR) 2704 CCR) --Z-- USP) OOBOOOOO .SSP) 0000076C
048002 ADD.W #4,$COO
048006 MOVEQ.L #15,DO
>

When you trace through your program after setting observation points,
program execution stops after the instruction that changed the observation
point. This is true whether you use Q, 5, or T to trace through the
program. In the above example, if the contents of location COO had not
changed to F004, no message would have been printed.

If you ran a breakpoint after setting the same observation point and target
value, and the instruction changed as you specified, program execution
would stop at the breakpoint and PROBUG would report that the observation
point changed. The output might look like this:

>OCOO,F004.
>B480AO.

(Set location COO as observation point with target value F004)
(Breakpoint starting at location in current program counter)

INSTRUCTION BETWEEN 048000 AND 0480AO CHANGED DATA AT
LOCATION OOOCOO FROM FOOO TO F004

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012~000FEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 0012345500000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 000007.6C
PC) 0480AO SR) 2704 CCR) --Z-- USP) OOBOOOOO .SSP) 0000076C
0480AO MOVEQ.L #20,DO
>

Note: the reference to an instruction "between" locations 48000 and 480AO
means that during program execution between those points, the data changed.
It does not necessarily mean that the guilty instruction's address falls
between 48000 and 480AO.

PRO BUG - 68000 Software Debugger Page 33

COMMAND DESCRIPTIONS: PI.INT HEMOI.Y

P[a][,b]. PI.IRT HEMORY

This command displays the contents of memory within the locations you
specify. For example, P1000,2000. displays the contents of locations 1000
through 2000. If you specify only one location, PROBUG displays 256 bytes
of memory (one screenful) starting at that location. Note: if you specify
an odd address, it will be rounded down; each line can begin only with an
even byte. For example, P1000. and PlOOl. have the same meaning.

The P command with no parameters displays 256 bytes of memory starting at
the address contained in either the system stack pointer or the user stack
pointer. The system stack pointer has the starting address if the 68000 is
in supervisor state; the user stack pointer has the starting address if the
68000 is in user state.

Each line of the display shows the contents of eight words (16 bytes) one
word at a time, preceded by the address of the line's first byte. To the
right, the ASCII representation of the bytes appears, or, for any byte that
does not translate to an ASCII character, an underscore (_) appears. (The
Print command masks the high-order bit, so ASCII values AO-FE are printed
as 20-7E.)

After using the Print command, you can print subsequent screenfuls (256-
byte blocks) of memory by pressing carriage return or typing a dot (.).
You can continue to use carriage return or dot to print subsequent
screenfuls until you type another command.

To freeze output on the screen as it is printing, press the Escape (ESC)
key. Press it again to allow output to continue. To abort printing and
return to PROBUG command mode, press any character at the keyboard (besides
Escape). PROBUG will finish displaying the current line before the abort
takes effect.

The following is a sample of possible output from a P command, interrupted
by pressing any key.

>P2000. (Print screenful of contents in hex & ASCII, starting at 2000)

002000 3D7C 0001 006A 2D6F
002010 6120 OC50 4AFB 6602

__ 002020 00000600 0000 2020
(aDY key)
>

0042 006C 026F 7FFF
3080 5341 66FO 426E
0000 0600 6000 0012

"1--..J-o_B_l_o_
a _PJ{f_O_SAfpBn ...

To reference the system stack pointer in an expression, use RS; to refer
ence the user stack pointer, use I.U. Thus, if the 68000 is in supervisor
state and you want to print the user stack, type PI.U.

Page 34 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: QUIlT TRACE

Q[a][,b][,c)[,d). QUIET TRACE (Program Execution Command)

Please read the section ~rogra. Execution Commands before using this
couanand.

The Q command provides a way of tracing through your program without
generating a lot of output on the screen. Quiet traces print register
contents only after tracing all instructions, rather than printing them
after each instruction is executed. This makes quiet traces much faster
than traces.

Like the Breakpoint (B) command, Q takes up to four addresses as parame
ters. Quiet traces always begin at the location in the program counter.
Use the * command to change the program counter if necessary before using
this couanand.

The command QIOOO. does a quiet trace from the location in the program
counter to location 1000. If you specify more than one parameter, the
quiet trace will stop at whichever location is encountered first. Q with
no parameters runs continuously.

The Q command offers several advantages over other program execution
couanands. First, you can use it to "breakpoint" through either ROM or RAM.
Second, when you use it with the 0 command, you can monitor a particular
location in RAM (called an observation point) to find out exactly when that
location changes.

Third, quiet traces can be used to follow the flow of program control.
When the address you specify on the Q command is reached, PROBUG prints the
previously executed instruction as well as the current instruction, in
disassembled form.

The following sequence includes the use of the 0 command, and assumes the
current program counter is FOOO.

>0100.
>QF200.

(Set location 100 as an observation point)
(Quiet trace from current program counter to F200)

INSTRUCTION AT LOCATION 00F1F2 CHANGED DATA AT
LOCATION 000100 FROM 0014 TO 0000

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOOOOBOO
PC) 00F1F6 SR) 0704 CCR) --Z-- .USP) OOOOOBOO SSP) 0000076C
00F1F2 CLR.W $0100
00F1F6 SUBQ.W 11,$OCOO
>

Note that although the Q command said to trace to F200, it never got there
because it stopped after the instruction that changed the observation
point.

If location 100 had not changed, the trace would have continued to F2tOO,
and the MPU registers would have been printed without a message.

PROBUG - 68000 Software Debugger Page 35

COMMAND DESCRIPTIONS: QUIET TRACE

As mentioned above, quiet traces can be used to follow the flow of program
control. Suppose your program crashes with an unimplemented instruction at
40020. Run the program using a Q to that location:

>Q40020. (Quiet trace from current program counter to 40020)

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 OOOOOOQO 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOOOOBOO
PC) 040020 SR) 0704 CCR) --Z-- .USp) OOOOOBOO SSP) 0000076C
001420 RTS
040020 DC.W $FFFF
TRACE STOPPED AT 040020
>

001420 is the address of the instruction that caused the program to jump to
40020.

Note: After using Q, you can trace the next instruction by pressing
carriage return or typing a dot (.). You can continue to use carriage
return or dot to single-step through the program (as if you were using the
B command) until you type another command.

There are two ways that the Q command is commonly used: (1) Q with one
parameter with neither haltpoints nor observation points set; and (2) Q
without a parameter and with no haltpoints, but with one observation point
set. These two uses of the Q command have been optimized to run much
faster than Q commands with multiple parameters and mUltiple haltpoints and
observation points.

Page 36 PROBUG - 68000 Software Debugger

(

R..

COMMAND DESCRIPTIONS: PI.IBT UGISTIB. COBTDTS

PI.IIn' UGISTEB. COBTDTS

The I.. command prints the contents of the MPU registers and disassembles
one line starting at the current program counter. The following is an
example of this command:

>R.. (Print register contents)

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOBOOOOO
PC) 04100C SR) 0704 CCR) --Z-- .USP) OOBOOOOO SSP) 0000076C
04100C BEQ.S $041056 (TRUE)
>

The first line (line D) displays the contents of the data registers, DO
through D7. The second line (line A) displays the contents of the address
registers, AO through A7. The third line displays the contents of the
program counter (PC), the status register (st), the condition code register
(CCR.; see below), the user stack pointer (USP), and the system stack
pointer (SSP). Either the USP or the SSP will be preceded by a dot (.) to
indicate the state of the 68000 (user or supervisor, respectively).

Condition Code I.egister (CCI.) Codes: Each of the five positions in this
field tells whether a particular bit is on or off. The positions are as
follows:

Position Heaning If On If Off
1 Extend Bit X
2 Negative Bit N
3 Zero Bit Z
4 Overflow Bit V
5 Carry Bit C

In the above example, tI_Z_tI appears in the CCIl field, indicating that the
extend and negative bits are off, the zero bit is on, and the overflow and
carry bits are off. If all of these bits were on, "XNZVC" would appear in
the CCIl field.

After the MPU registers are displayed, the next instruction to be executed
. is disas.sembled. --If--·the·--instruction isa conditional (Bcc, DBcc,-or· Scc),
the condition codes are examined and (TaUE) or (FALSE) is printed to
indicate whether or not the condition occurred.

PROBUG - 68000 Software Debugger Page 37

COMMAND DESCRIPTIONS: pallT/ALTER IIGISTER CORTBBTS

a.[,b]. paiIT/ALTER REGISTER COBTERTS

The a.l,b]. command prints the contents of the register you specify and
allows you to alter them. You can use this command to print/alter a data,
address, or user register. As with the I command, you can go on to the
next location (or back to the previous one) after printing or altering the
contents of a register.

There are eight data registers, eight address registers, and eight user
registers. When used with the a command, these are expressed as aDO
through aD7, RAO through RA7, and RO through a7, respectively. For
example, the command RAl. would display the contents of address register
AI; the command RJ. would display the contents of user register R3. As
with the I command, type. or <ca> to exit; press the space bar to go on to
the next address register; type, to go back to the previous register. To
alter the contents, type the new value followed by a terminator.

The order in which the registers are displayed (if you type RDO. and keep
typing the space bar to go on to the next register) is as follows: RDO
through RD7, RAO through RA6, USP, SSP, SR, PC, then back to RnO, etc.

To change the SSP or USP, type RA7. from the PROBUG prompt. This will
display the contents of either the USP or the SSP, depending on the state
of the 68000 (user or supervisor). Note: If you change the SSP, the
registers that PROBUG pushed on the stack are moved to the new stack
location.

You can change register contents without displaying them at all by typing
the command followed by the desired value and a terminator. For example,
suppose you want to change the contents of address register A4 to IF.
Typing RA4,lF. changes the register's contents without displaying the
contents either before or after the command.

The following sequence shows the use of the R command with one parameter; a
"before" and an "after" R. command is included to illustrate the changes.

>R.

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO OOOOOOOO-OOOOFEOO 0001eOOO 000007-6C
PC) 04100e SR) 2704 eCR) --Z-- USp) 0001COOO .SSP) 0000076C
04100e CLR.W D1
>

>1A5. (Print / alter address register AS)
RA5 0000 FEOO 1000_ (Replace OOOOFEOO with 00001000; go to next register)
RA6 0001 COOO • (Leave as is; exit a command)
>

Page 38 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: paIIT/ALTER REGISTER CORTERTS

>R.

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00001000 OOOlCOOO 0000076C
PC) 04100C SR) 2704 CCR) --Z-- Usp) 0001COOO .SSP) 0000076C
04100C CLR.W D1
>

Note that address register A5 now contains 00001000, the new value. The
values in the other registers remain the same.

PROBUG - 68000 Software Debugger Page 39

COMMAND DESCRIPTIONS: SEARCH MBHOllY rOil PATTED

Sa.b,c[,d1. SEARCH MEMOIlY rOil PATTElR

This command searches memory locations a through b for pattern c. The
pattern you specify may be one byte, one word (2 bytes), or one long word
(4 bytes). As with other expressions, the pattern may be a hex number, a
result of addition/subtraction, or an ASCII character enclosed in single
quotes.

All locations between a and b (inclusive) that match the pattern will be
displayed, along with their contents. If no matches are found, nothing is
printed.

The S command will not find a pattern that is split between two words. For
example, the pattern "34" would not be found in the long word "0123 4567".

You can specify a fourth parameter (d) representing a bit mask. Both
memory and the value of the pattern are logically ANDed with the mask
before being compared with each other. PROBUG will compare only those bits
that have a corresponding "1" bit in the mask. For each "0" bit in the
mask, the corresponding bit in memory is ignored during the search for a
match. If you do not specify a mask, the mask is Unplicitly FFFFFFFF.

If the size of the pattern differs from the size of the mask, PROBUG will
switch modes to accommodate the larger of the two. For example, the
command S1000,2000,EO,rrFF. would force the search into word mode, adding
leading zeroes to the pattern EO. PROBUG would search for the word OOEO.

To interrupt output from the Search command, type ESCAPE, and type it again
to resume output printing. To abort a search in progress and return to
PROBUG command mode, type any character besides ESCAPE.

The following is a sample of the S command.

>S800,900,10. (Search locations 800 through 900 for 10)
00085F 10
0008FO 10
0008F4 10
>

Search For Ron-Match: -So To search for a non-match, precede the S
command with a minus sign (-).Forexample, the command -SI000.2000,OOOO.
would print only those words between locations 1000 and 2000 that do not
consist of all zeroes.

Page 40 PROBUG - 68000 Software Debugger

(

COMMAND- DESCRIPTIONS: 'l'IACI 11lSnUCTIORS

T[a][,b][,c][,d]. TRACE IRSnUCTIOIiS (Program Execution Command)

Traces allow you to step through your program instruction by instruction
and examine register contents after each instruction. You can use traces
on ROM as well as RAM. Please read the section Program Execution Command.
before using the T command.

T always begins at the location in the program counter (the current loca
tion). Use the * command to change the program counter if necessary before
using this command. PROBUG prints the register contents after each
instruction is executed.

You can specify up to four addresses in the T command; the trace then lasts
until anyone of the addresses is reached. For example, the command
TIOOO,2000,2FOO,3COO. begins by executing the current instruction and
continues until it reaches location 1000, 2000, 2FOO, ~ 3COO.

The T command often generates a considerable amount of output as the
program runs. Press the ESCAPE (ESC) key at any time to freeze the output
on the screen. Press ESC again to continue the trace.

To abort printing and return to PROBUG command mode, press any character at
the keyboard (besides ESCAPE). PROBUG will finish displaying this instruc
tion's register contents before the abort takes effect.

Note: After using T, you can trace the next instruction by pressing
carriage return or typing a dot (.). You can continue to use carriage
return or dot to single-step through the program (as if you were using the
II command) until you type another command.

The following is a sample of possible trace output when the program counter
is 4800A. This example assumes you pressed a key while the third
instruction was being traced.

>T. (Trace continuously beginning at the current program counter)

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000036 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A) 00000820 00000000 00000000 00000000 00000000 00000000 00000000 00000770
PC) 04800A SR) 2700 CCR) --Z-- USP) FFFF5FFF .SSP) 00000770
04800A SUBQ.W 11,$OCOO

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000036 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A) 00000820 00000000 00000000 00000000 00000000 00000000 00000000 00000770
PC) 04800E SR) 2700 CCR) ----- USP) FFFF5FFF .SSP) 00000770
04800E BNE.S $048000 (TRUE)

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000036 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A) 00000820 00000000 00000000 00000000 00000000 00000000 00000000 00000770
PC) 048000 SR) 2700 CCR) ----- USp) FFFF5FFF .SSP) 00000770
048000 TST.W (AO)+
TRACE STOPPED AT 048000
>

PROBUG - "68000 Software Debugger Page 41

COMMAND DESCRIPTIONS: TRACE IBSTIDCTIORS

The trace was stopped because of the key you pressed. Note that PROBUG
prints the address at which the trace was stopped.

Note: If you use the T command after setting observation points. and the
trace causes a change in an observation point, the trace will stop after
the instruction that changes the observation point.

To trace only the next or next few instructions, use the B command.

Page 42 PROBUG - 68000 Software Debugger

(

COMMAND DESCRIPTIONS: RITE PJ.OGIAM IN S-JlECOllD rOIMAT

WJ.ITE PJ.OGIWI II S-UCOID FORMAT

The W command writes the contents of location a through b to-a host compu
ter, or to tape, in S-record format. Please read the descriptions of the L
and @ commands for details on how communication takes place between PROBUG
and the host computer or external device.

SI and S9 records are used if the program is in the first 64K bytes of
memory, S2 and S8 if not. Refer to the description of S-record format
under the L command for more information.

If you specify only parameters a and b, the end-of-file record (an S8 or S9
record) will have location a as its starting address. For example, the
command W48000,48013. would assign 48000 as the end-of-file record's
address, indicating that program execution should begin at 48000 when the
program is loaded again.

If you specify a third parameter (c) in addition to the first two, the end
of-file record will have location c as its address. The program will begin
executing at that location when it is loaded again.

The following is a sample of S-record formatted output generated by a W
command. The records take up one line each. In the first line, the record
type is Sl, the number of bytes is 01, the address is 1000, the data is
FEDCIA9876543210, and the checksum is AC. In the second line, the record
type is S9, the number of bytes is 03, the address (set by the third
parameter of the W command) is 2000, and the checksum is DC. Note that
there is no data in the S9 record.

>W1000,1007,2000.
SlOBIOOOFEDCBA9876543210AC
S9032000DC

PROBUG does not control the start/stop functions of the tape, so you must
manually start the tape after typing the W command. Stop the tape as soon
as the PROBUG prompt (» appears.

Before using the W command, be sure both of the M68KIO's ports are running
at the same baud rate.

PROBUG - 68000 Software Debugger Page 43

COMMAND DESCRIPTIONS: UTn TlABSPAIDT HOD! (@)

@[a][,b][,c]. ERTBa taARSPAlENT HODE

The @ command is used to initiate communication with a host computer or
other external device. Using the @ command causes you to enter "trans
parent mode," from which you can "talk" directly to the host computer (type
commands, etc.).

With the @ command, you can also set the exit and the substitution
characters, which are used in communicating with the host computer. In
addition, you can select the port for loading/writing. Please read the
description of the L command for an introduction to transparent mode and
related concepts.

Enter Transparent Hode. Type @ to enter transparent mode, which allows
your terminal to communicate with a host computer or other external device.
While PROBUG is in transparent mode, the characters you type at the termi
nal are sent to the other port.

To enter transparent mode without doing an L or W, type @. with no parame
ters. As soon as you do this, the system will respond with a message
similar to the following:

EXIT CHARACTER = $01 = CONTROL-A

This message indicates the character you must type to exit transparent mode
(as with the Land W commands, the exit character is by default CTRL-A).
The ASCII code for· the exit character (in this case, 01) is included in the
message, preceded by a $. To exit transparent mode, type the exit charac- (
ter and you will be returned to PROBUG command mode. ._

Set Exit Character. To set the exit character to be used with the Land W
commands (as well as with the @ command itself), use @ with a parameter.
You can do this either in hex, or in ASCII surrounded by single quotes:
for example, type @02. to set the exit character to hex 02 (which is a
CTRL-B). The command @'\'. would set the exit character to backslash (\).

Set Substitution Character. To set the substitution character, use a
second parameter with the @: for example, the command 102,04. would set
the exit character to ASCII 02 (CTRL-B) and the substitution character to
04 (CTRL-D). To set only the substitution character, use a comma before
the exit character: for example, the command @,04. sets the substitution
character to 04 and leaves the exit character as it is.

Select Port Address. On the M68KlO, there are two ports, channel A and
channe 1 B. Channe 1 B generally connects to the user terminal. Channel A
can be co·nnected to a printer, to a host computer, etc. By default, the
port used to download programs from the host computer (using the L
command), and to write them back to the host computer (using the W
command), is channel A.

If this default is not desired, use the @ command to select the port before
using the L or W command. The port selection is the third parameter of the
@ command. Specify "1" for channel A or "0" for channel B. For example,
the command @02,04,1. sets the exit character to 02 and the substitution
character to 04, and selects channel A.

Page 44 PROBUG - 68000 Software Debugger

COMMAND DESCRIPTIONS: DTIIl DABSPAUIIT 1I0DE (@)

To select the port without selecting the other two characters, use commas:
@,,1. in this example. (The command 102,,1. would set the exit character
to 02, leave the substitution character as it is, and select channel A.)

Select "I" (the default) if you want the channel A to be used to load and
write files. Select "0" if you want channel B to be used to load and write
files (this is generally used when loading files from an S-record formatted
object tape).

You can also select a port other than channel A or B by specifying the hex
address of the port instead of specifying "I" or "0". For example, the
command @"FD0020 specifies address FD0020 for the port (and leaves the
exit and substitution characters as they are). See under Custom I/O later
in this manual for a description of custom port specifications.

Be sure to run both ports at the same baud rate.

Note: You cannot set the exit or substitution character to null using the
@ command; this is the same as leaving it out and will cause the old value
to be retained. (For example, the commands 10,0,1. and @,,1. are equiva
lent.)

PROBUG - 68000 Software Debugger Page 45

COMMAND DESCRIPTIONS: LIST/SET PIOGUM COUBTD (*)

*[a]. LIST/SET PIOGRAM COUBTEl

The * command sets the program counter to the value you specify. For
example, the command *1000. sets the program counter to 1000. With no
parameter, *. lists the current program counter as a prompt for you to
enter a new value. Press carriage return or type a dot (.) after typing
the new value. To exit without changing the program counter, press
carriage return or type a dot.

If you press the space bar or comma after typing * .• this command works
like the I command which allows you to print/alter register contents. The
space bar causes an advance to data register DOj press it again to advance
to Dl, etc. The comma backs up to sa (status register). See under the R
command for the order in which the registers appear when you use the space
bar or comma.

Page 46 PROBUG - 68000 Software Debugger

(

(

PROBUG FUNCTION CALLS

PROBUG Function Calls

Certain subroutines within PROBUG can be accessed from your programs. Most of
these subroutines perform I/O functions such as input and output of charac
ters, character strings, hexadecimal numbers, and decimal numbers. You can
also extend the available functions with your own routines (see Addin& Your
Own Functions, below).

PROBUG functions are accessed using the TRAP 14 instruction. Use the follow
ing calling sequence:

MOVE.B #<Funtion Number>,D7
TRAP #14

The function number is passed 1n the low order byte of D7j thus, up to 256
functions may be selected.

Except where otherwise noted, all registers are preserved by these routines.

Function
Number

255

Meaning

RESTART - Restart PROBUG

PROBUG is re-initialized as if the reset button had been pressed.
Control is not returned to the user program. This function is
necessary only when PROBUG's RAM has been altered.

254 REENTER - Re-enter PROBUG

PROBUG is entered and the MPU registers are printed. You can now
execute any PROBUG cODDIland. Typing "J." will continue the program
at the next instruction.

253 SELECT - Select I/O Port

ENTER: AO contains the address of the I/O port.

This function allows I/O to be redirected to other devices.-The
redirection applies to function calls only, not to PROBUG command
I/O.

All of the I/O function calls communicate
selected by this routine. By default, the
same terminal that PROBUG uses for its I/O.
110 below.

252 INITIO - Initialize I/O Port

through the I/O port
I/O port is set to the
See the section Custom

This routine is used to initialize the I/O port. This is usually
necessary only after the I/O port is selected for the first time.
Note: This routine destroys the contents of register DO.

PROBUG - 68000 Software Debugger Page 47

PROBUG FUNCTION CALLS

Function
Number Heaning

251 CREADY - Check For Character aeady

EXIT: The NOT EQUAL condition is set if a character is waiting.

This routine checks the status of the I/O port to see if a character
is waiting to be read. If a character is waiting t the NOT EQUAL
condition is set. The lowest byte of register DO may be altered by
this routine.

The location of the I/O port is determined by the "Select I/O Port"
function.

250 INCBAR - Get Character From I/O Port

EXIT: Low order byte of DO contains the character.

Like the GETCHAR routine t INCHAR gets a single character from the
keyboard t but INCRAR does not echo the character. The character is
returned in the lowest byte of DO. The high order bit of the
character is always cleared.

The location of the I/O port is determined by the "Select I/O Port"
function.

249 CBUSY - Check Whether Output Busy

EXIT: The EQUAL condition is set if the I/O port is busy.

This routine checks the status of the I/O port to see whether the
previous character has been output. The EQUAL condition is set if
the output is still busy. Note that this routine only returns the
status of the port; most devices will report a not-busy condition
before actually outputting the character. The lowest byte of
register DO may be altered by this routine.

The location of the I/!) port is determined by the "Select r/OPort"
function.

248 OUTCBR - Write Character To I/O Port

Page 48

ENTER: DO contains the character to write.

This routine writes the character in the low order byte of DO to the
I/O port selected with the "Select I/O Port" function.

PROBUG - 68000 Software Debugger

(

Function
BUIIlber

247

PROBUG FUNCTION CAUS

Heaning

GETCBAR - Get and Icho Character From I/O Port

EXIT: Character in low order byte of DO.

This routine gets a single character from the keyboard and echoes
the character. The character is returned in the lowest byte of DO.
The location of the I/O port is determined by the "Select I/O Port"
function.

246 GETBUFF - Input String From Terainal

ENTER: AO contains the address of a buffer;
DO contains the length of the buffer.

EXIT: AO points one past the last character typed;
DO contains the number of characters typed.
CARRY set if error or line cancelled.

This routine inputs a line from the keyboard into the character
buffer to which register AO points. On entry, the low order byte of
register DO contains the length of the buffer. Any backspace and
delete characters are checked and processed.

To cancel the line, use CTRL-X. All other control characters,
except carriage return (CR), are ignored. When CR is entered,
control is returned with register DO containing the number of
characters typed and register AO pointing one character past the
last character typed. If the line is cancelled, or the buffer is
overflowed, or too many backspaces are entered, control is returned
with the carry bit set. The buffer pointer used by CBKNEXT,
GETNEXT, GETBEX, and GETDEC is set pointing to the first character
of the buffer.

245 SETBUFF - Set Buffer Pointer

ENTER: AO contains the address of a buffer.

_This_routine sets .the buffer pointer used_by CHKNEXT, GETNEXT,
GETBEX, and GETDEC to the address in register AO.

244 CBKREXT - Check Bext Character In Buffer

EXIT: AO contains the current buffer pointer;
DO contains the next character in the buffer.

The character pointed to by the buffer pointer is returned in the
lowest byte of register DO. This routine does not advance the
buffer pointer; this allows the next character in the buffer to be
previewed before being read by the GETNEXT, GETBEX, or GETDEC
functions. CBKNEXT can also be used to get the current buffer
pointer.

PROBUG - 68000 Software Debugger Page 49

PROBUG FUNCTION CALLS

Function
lil_ber

243

Meaning

GEtREXT - Get lext Character In Buffer

EXIT: DO contains the next character in the buffer.

The character pointed to by the buffer pointer is returned in the
lowest byte of register DO. The buffer pointer is advanced to the
next character in the buffer unless the character returned is a CR.
The buffer pointer is not advanced past the CR at the end of the
buffer.

242 GETBEX - Get Hexadecimal Number From Buffer

EXIT: DI contains the 32-bit value of the number;
DO contains the next character in the buffer.
EQUAL condition set if no number found.

The string of ASCII characters pointed to by the buffer pointer is
converted to a 32-bit binary number and returned in register DI.
The conversion process is terminated by the first non-hexadecimal
digit in the string. The buffer pointer is left pointing to the
terminating character which is returned in register DO. If no valid
hexadecimal digits are found, the EQUAL condition is set in the
condition codes and register DI is set to zero.

241 GEtDEC - Get Deciaal lumber From Buffer

EXIT: DI contains the 32-bit value of the number;
DO contains the next character in the buffer.
EQUAL condition set if no number found.
CARRY set if number overflow.

The string of ASCII characters pointed to by the buffer pointer is
converted to a 32-bit signed binary number and returned in register
DI. The conversion process is terminated by the first non-decimal
digit in the string. The buffer pointer is left pointing to the
terminating character which is returned in register DO. If no valid
decimal digits are found, the EQUAL condition is -set in the condi
tion codes and register DI is set to zero. If a number is converted
that cannot be contained in 32 bits, the CARRY bit is set and the
value in register DI is undefined.

240 CONVERT - Convert Hex Byte To ASCII

Page 50

ENTER:
EXIT:

DO contains the byte to convert.
DO contains 2 ASCII characters.

The lowest byte of register DO is converted to two ASCII characters
and returned in the lower word of register DO.

PROBUG - 68000 Software Debugger

(

Function
Number

239

PROBUG FUNCTION CALLS

lIeaning

PCILF - Print End-Of-Line Sequence

This routine prints a carriage return, line feed, and four nulls on
the terminal. The four nulls are included to give printing termi
nals enough time to perform a carriage return.

238 PSTRING - Print String

ENTER: Al contains the address of a string.

The string of characters pointed to by register At is printed on the
terminal. The string is terminated by a $00 byte. Register At is
left pointing one character past the $00 byte. If this routine
encounters a $01 byte embedded in the string, an end-of-line
sequence will be written in its place. The lowest byte of register
DO is destroyed by this routine.

237 PHKK8 - Print 8-bit Rex Number

ENTER: DO contains the byte to write.

The lowest byte of register DO is printed as a two-digit hexadec~al
number. The contents of register DO are preserved.

236 PHEX16 - Print 16-bit Rex Number

ENTER: DO contains the word to write.

The lowest two bytes of register DO are printed as a four-digit
hexadecimal number. The contents of register DO are preserved.

235 PHEX24 - Print 24-bit Rex Number

ENTER: DO contains the value to write.

The lowest three bytes of register DO are printed as a six-digit
hexadecimal number. The contents of register DO are preserved.

234 PHEX32 - Print 32-bit Rex Number

ENTER: DO contains the value to write.

The contents of register DO are printed as an eight-digit -hexa
decimal number. The contents of register DO are preserved.

PROBUG - 68000 Software Debugger Page 51

PROBUG FUNCTION CALLS

Function
Number

233

Meaning

PBYTE - Print Rex Byte At AO

ENTER:
EXIT:

AO contains the address of the byte to write.
AO points to the next byte 1n memory.

The byte pointed to by register AO is converted to two hexadec~al
digits and printed. Register AO is advanced to point to the next
byte in memory.

232 PDEC - Print Decimal Rumber

ENTER: D1 contains the value to write.

On entry, register D1 contains a 32-bit two's complement binary
number. The number will be printed as a signed decimal number with
leading zeroes suppressed. To print leading zeroes or leading
blanks, see below.

231 PDECF - Print Dec~l Rumber With Field Size

ENTER: D1 contains the value to write;
DO contains the field size.

On entry, register D1 contains a 32-bit two's complement binary
number. The number may be printed as a signed dec~a1 number with
leading zeroes or leading blanks in a field from 1 to 127 characters
long. The field size is given by the lowest byte of register DO. A
positive field size means pad with leading spaces. A negative field
size means pad with leading zeroes. If the number overflows the
field specified, the field size is ignored.

For example, printing 100 with a field size of 5 causes" 100" to
be printed. With a field size of -5, "00100" would be printed; with
a field size of 0, "100" would be printed.

230 LIRK - Link User Function table

Page 52

ENTER:
EXIT:

AO contains the address of the user's function code table.
AO contains the address of the previous table.

The LINK function is called with the address of the new function
table in register AO. The address of the previous table is returned
in register AO. For linked tables, the last entry in the table
should have $FE as a function code followed by the address of the
next table. If the address of the next table is unknown at the time
of the LINK, the address returned in register AO should be stored as
the last entry. The high order byte of register AO will be $FE and
the next three bytes will be the address of the previous table.
Register AO will contain $Fl~FFFFFF if no tables have been linked.

PROBUG - 68000 Software Debugger

PROBUG FUNCTION CALLS

Adding Your OWn Function.

T,he PROBUG function processor can be used to call functions that you define,
as well as the functions listed in the above table. To define new function
codes~ you must provide a table giving the new codes and the addresses of the
processing routines to ~plement them. Use the LINK function (code 230) to do
this. You can provide more than one such table if desired.

Each entry in the code table must be four bytes long, of which the first byte
is the function code number and the subsequent three bytes are the address of
the processing routine.

The last entry in the table must consist of either $FE or $FF as the function
code byte. If you are creating mUltiple function code tables, use $FE for the
last entry in all but the last table, and give the address of the next
function code table as the subsequent three bytes. PROBUG will then chain to
the next table after going through the current table.

Use $FF as the function code number for the last entry in the last table, or,
if you are creating only one function code table, for the last entry in that
table.

Function codes 230 through 255 are implemented in PROBUG, as defined in the
above table, and cannot be re-defined. Codes 0 through 229 are available for
user functions.

Function code numbers 128 through 255 are processed differently from function
codes 0 through 127. Function codes 128 through 255 execute in the supervisor
state. For codes 128 through 229, control is passed to the subroutine with
both the status register and the return address pushed on the system stack.
The routine must end in a RTE instruction.

For function codes 0 through 127, control is passed to the subroutine with
just the return address pushed on the stack. If the program is in the
supervisor state when the function is called, the return address will be on
the system stack and control is passed to the routine with the processor in
the supervisor state. If the program is in the user state when the function
is called, the return address will be on the user stack and control is passed
in the user state. In either case, the routine must end with aRTS
instruction.

What Happens When ~ 14 Instruction 18 Executed. When a TRAP 14 instruction
is executed, the current program counter and status register are pushed onto
the system stack, the supervisor state is entered, and control is passed to
the address given in the TRAP 14 exception vector.

The TRAP 14 exception vector points to the PROBUG function code processor,
which first checks the range of the function code number in data register D7.
If the number is in the range 230 to 255, control is passed to the appropriate
function within PROBUG. If the number is in the range 0 to 229, the user
function code table is searched. If the function is not found in that table~
or if no table has been linked, an error message as printed and control is
returned to PROBUG. Otherwise, control is passed to the address given in the
function code table. The contents of all r,egisters are preserved.

PROBUG - 68000 Software Debugger Page 53

CUltom I/O

You can interface an MPSC, ACIA, or custom I/O device to PROBUG.
the port to be used for downloading programs, use the @ command.
the I/O address, use PROBUG function call 253 (SELECT I/O PORT).

CUSTOM I/O

To select
To select

An MPSC is the default device to connect to the M68K10's terminal or printer
port. To connect an MPSC to the terminal port, specify 0 as follows:

For Downloading:

@.,O.

To Select I/O Port:

MOVE.L
MOVE.B
TRAP

#O,AO
#253,D7
#14

To connect an MPSC to the printer port, specify 1 as follows:

For Downloading:

@, ,1.

To Select I/O Port:

MOVE.L
MOVE.B
TRAP

#I,AO
#253,D7
#14

If you do not want to use the terminal or printer port, you need to specify
the port type and address in four bytes:

The first byte is the code for the port type. Specify $00 for MPSC, $01
for ACIA, or $FF for a custom device. For custom devices, you will need
to create special subroutines; see below.

The subsequent three bytes are the port address.

For example:

TASK FOR DOWNLOADING TO SELECT I/O PORT

Connect MPSC at
Address FD0002

MOVE.L #$00FD0002,AO
@, J 00FD0002. MOVE.B #253,D7

TRAP #14

Connect ACIA at
Address FD0500

MOVE.L #$OIFD0500,AO
@, , 01FD0500 • MOVE.B #253,D7

TRAP #14

For custom devices, you will need routines to perform the following five
functtions:

* Initialize I/O port;
* Check for a character ready;
* Read the character from the device;
* Check to see whether the output is busy; and
* Write a character to the device.

To supply PROBUG with the addresses of these five functions, you must create a
tabl e consist ing of five lo-ng branch instructions (one to each of the subrou
tines).. Then PROBUG will only need to know the address of this table.

PROBUG - 68000 Software Debugger
V1D p. 54
Page 55

CUSTOM I/O

Suppose you have written the five routines and called them INITIO, CREADY,
INCHAR, CBUSY, and OUTCHAR, respectively. The following is a sample program
for selecting the routines for the custom device. In the LEA instruction, the
$FF indicates that this is a custom device; BRTBL is the address of the branch
table.

BRTBL

LEA
MOVE.B
TRAP

EQU
BRA.L
BRA.L
BRA.L
BRA.L
BRA.L

$FFOOOOOO+BRTBLtAO
#253,D7 SELECT I/O PORT
#14

*
INITIO
CREADY
INCRAR
CBUSY
OUTCRAR

INITIALIZE I/O PORT
CHECK FOR CHARACTER READY
READ CRARACTER FROM DEVICE
CHECK WHETHER OUTPUT BUSY
WRITE CHARACTER TO DEVICE

See the section on PROBUG function calls to determine what values are returned
by these routines.

Page 56 PROBUG - 68000 Software Debugger

(

PROBUG MEMORY MAP

rROBUG Meaory Map

The following chart shows the memory addresses that PROBUG uses.

A A

0400-lFFFF Available RAM

0200-03FF PROBUG Variable Area

0108-01FF PROBUG System Stack Area

0100-0107 Dual-Ported Memory - Startup Area

OOOO-OOFF Interrupt & Exceptio~ Vectors

PROBUG - 68000 Software Debugger Page 57

SPECIAL CONSIDERATIONS WITH PROBUG

Special Considerations With PROBUG

This collection of notes offers an assortment of information for the
sophisticated, the curious, and the unlucky.

Stack Usage. Whenever PROBUG is in command mode, it saves all register
contents on the system stack; thus PROBUG itself uses up about 110 bytes
(decimal) of system stack space. During certain NMI presses, up to 100
additional bytes may be used. Be sure to take this into consideration when
you set up your system's stack area.

What Happens When You Set A Breakpoint Or Baltpoint. When you type a break
point command, or start executing your program after setting a haltpoint in
RA!I, PROBUG saves the instructions at the breakpoint/haltpoint location(s) and
temporarily replaces each one with a special instruction. This instruction is
$4AFB for breakpoints and $4AFA for haltpoints (Motorola's standard codes for
illegal instructions).

Your program now begins to execute. When it reaches a breakpoint/haltpoint,
it doesn't recognize the $4AFB or $4AFA as executable code. Control is re
turned to PROBUG, which restores the original instruction and displays regis
ter contents and a message indicating why the program stopped executing.

When a haltpoint with an iteration count is reached, the count is decremented,
and the original instruction is restored and executed. The haltpoint's loca
tion is again replaced with $4AFA, and program execution continues.

Because PROBUG needs to write the breakpoint/haltpoint illegal instruction
code into the location you specify, you can use breakpoints on RAM (writeable
memory) only, and not on ROM.

Exception Processing. Unless you set up routines to handle exceptions, and
vectors pointing to these routines, PROBUG will process all exceptions.
Assuming PROBUG is the error processor, whenever an exception occurs, PROBUG
prints the reason for the exception and prints the contents of the MPU regis
ters. The registers are saved on the stack, and PROBUG returns to command
mode.

Exceptions include interrupts, attempts to divide by zero, traps, etc.

TRAP Exceptions In Trace Hode. The TRAP, TRAPV, CHK, and Zero Divide
exceptions all have lower priority than a TRACE exception. As a result,
PROBUG traces tbe first instruction of the exception processing routine of
these four types of exceptions. Also, PROBUG does not trace the first
instruction after the one that caused the exception.

Suppose a TRAP #0 routine is written and the TRAP #0 exception vector is
pointing to the routine. When the TRAP #0 instruction is encountered it
causes an exception. Because of tbe way TRAP exceptions are bandled, you
could not trace or quiet-trace to the address of the instruction after the
TRAP #0. Also, a haltpoint set at that addretls would not be recognized as a
baltpoint when you traced or quiet-traced through it.

PROBUG - 68000 Software Debugger
(M. ?' ~~

Page 59

SPECIAL CONSIDERATIONS WITH PROBUG

To allow these instructions to be traced, you can write your exception
processing routine as follows. At the end of the routine, check to see
whether the 68000' s trace bit was on when the exception was taken. If it was
on, turn the trace bit on before the RTE instruction:

EXIT

TST.B
BPL
OR
RTE

(A7)
EXIT
#$8000,SR

Limitations Of Trace MOde. You cannot trace through an instruction that turns
trace mode off. For example, you should use the instruction OR #$2700,SR
wherever you would use HOVE #$2700, SR.

You can use the N. command on instructions that turn trace mode off.

Timing. PROBUG affects the timing of programs. For non-timing-dependent
programs, there is no difference between executing the program outside of
PROBUG and executing it with PROBUG program execution commands.

When used on timing-dependent programs, however, PROBUG may affect the
program's pathways. For example, tracing through your program takes much
longer than executing it in real time. If you use program execution commands
such as trace and breakpoint for timing-critical code, the results will not
necessarily reflect what would happen in real time.

Page 60 PROBUG - 68000 Software Debugger

,.

(

(

StART PROGRAM ON M68KIO FROM ANOTHER PROCESSOR

Start Program On M68KIO From Another Processor

The M68KlO's dual-ported memory allows another processor on the Multibus to
access PROBUG's RAM. The external processor can use the eight bytes of
PROBUG's memory at locations 100-107 to communicate with PROBUG. Using these
eight bytes, the external processor can cause PROBUG to load a new stack and
program counter and begin execution of a program. These bytes are used as
follows:

When the high-order bit of location 100 is set to 1, PROBUG goes into a loop
monitoring the high-order bit of location 104. As long as the high-order bit
of location 104 is 0, PROBUG remains suspended and any memory location may be
altered (even PROBUG's stack space or its variables).

When the high-order bit of location 104 is set to 1, the bytes at both loca
tions 100 and 104 are cleared. The contents of locations 100-103 are loaded
into the system stack pointer, and the contents of locations 104-107 are
loaded into the program counter. Program execution will begin at the address
that was in locations 104-107.

When you first power the system up, PROBUG sets locations 100 and 104 to be
its initial stack and initial program counter, respectively.

Exa.ple. Suppose you wanted to load a 32K-byte program through dual-ported
memory into the M68K10's RAM at location 0, and then execute the program. In
this program, the stack resides at location $800 and the program starts exe
cuting at location $1000.

In order to prevent PROBUG from using the RAM that your program will occupy,
you need to set location 100 to be a number whose high-order bit is on. For
example, you could put $FF at location 100, followed by the 3-byte address at
which the stack will reside. Since the stack will reside at location $800,
locations 100 through 103 should contain $FFOOOSOO.

Set locations 104 through 107 to be the address at which the program should
start executing: in this case, $00001000.

If memory is copied starting at location 0 and the data that w~ll be at
locations 100-107 is set up correctly, the communication with PROBUG and the
copying of program data can be done in the same step. When the program is
copied into RAM at locations 0 through $7FFF, the data at locations 100
through 107 should be:

FF00080000001000

The $FF at location 100 signals PROBUG to wait until the high-order byte of
location 104 changes to a 1. To start the program, you must now set location
104 to be a number whose high-order bit is on. Again, you can use $FF.

The stack is now set to $SOO and the program starts at location $1000.

PROBUG - 68000 Software Debugger Page 61

APPENDIX A: GETTING STARTED - PROBUG & THE M68K10

APPENDIX A: Getting Started - PROBUG And The K68KIO

If you are using PROBUG on SBE's ModulasTen M68K10 single-board computer, read
this section for information on installing the PROBUG PROMs, jumpering the
M68K10, and serial port usage. If you are using an MPU board other than the
M68K10, refer to that MPU's documentation for relevant information. In
addition, the following information on PROM handling may be useful.

PROM Installation. PROBUG is contained in two 2764-type, 28-pin PROMs (8K x
8-bit). You will receive these PROMs in special anti-static treated tubing or
packaging. Keep them in their package until you are ready to install them.

There are two pairs of 28-pin PROM sockets on the M68KIO module: U16 & U17,
and US & U35. The two PROBUG PROMs must be installed in sockets U16 and U17.
One PROM will be labelled "U16" and the other ''U17'', indicating the appro
priate socket for each.

When installing PROMs, which are static-sensitive, have the M68KI0 nearby.
Handle the PROMs one at a time. If possible, use benchtop pads and wrist
straps grounded through a high-resistance resistor. Put on a wrist strap
before unpacking the PROMs from their antistatic packaging.

If benchtop pads and wrist straps are not available, you can reduce the risk
of PROM damage as follows: Touch one finger to the surface on which you are
working before handling the PROM. Keep the finger on that surface while
handling the PROM. Similarly, when you get ready to load the PROM into the
socket, first touch the M68KI0 board with one finger and keep it touching the
board while you load the PROM.

In general, avoid wearing nylon, polyester, or other static-generating
fabrics, and avoid nylon and other carpet, while installing PROMs. Don't
install PROMs in areas that are high in static electricity. Avoid excess
handling of PROMs; handling and movement generates static. Carry PROMs only
in conductive black foam or in the special anti-static treated tubes in which
the PRmls were del iv ered.

Turn the M68KlO board, with the component side toward you, so that the NM!
button is in the upper right-hand corner. Note that U16 and U17 are the
middle two PROM sockets in the group of four on the board. Install each PROM
so that its left edge is aligned with the left edge of the socket, and its
notch ~s on the right, matched with the socket notch.

After installing the PROMs, make sure none of the pins got bent under during
the installation.

Jumpering For Power Supply. The six-pin jumper area called J26 is located
just to the right of area J25, which is just to the right of PROM socket US.
To make sure the M68KIO can provide power to the PROMs, be sure that jumper
area J26 is set as shown here:

PROBUG - 68000 Software Debugger Page 63

APPENDIX A: GETTING STARTED - PROBUG & THE M68KIO

J26 JUlipers

Jumpering For 2764 PROMs. Just to the right of each PROM socket is a 14-pin
jumper area for setting up the socket for the type of PROM you are installing.
The jumper area for U16 is labelled J24; the area for V17 is labelled J22.
Their jumpering is identical. Make sure that J22 and J24 are jumpered as
shown here:

. A B

I ...
2 00
3 DO
4 00
5
~Z 6

7 ...
J22 and J24 Jaapers

Jumpering lor paOK Size. Just below socket U6 on the right-band side of the
module is area J21, which is set according to the size of the PROMs being
installed. Make sure J21 is jumpered as shown here:

123

A.rCC
B_~

.121 Jaapers

Juaperi_, For Access T~e. Just to the right of socket V45 is area J4, which
is set according to the access time of the PROMs being installed. (Note: the
jumper across position 3 corresponds to an access time of 450 nanoseconds, the
speed of the PROBVG PROMs. 250 nanosecond parts should be jumpered across
position 1 instead of position 3.) Note that a jumper is already installed in
position 6; do not move this jumper. J4 should be jumpered as shown here:

Page 64 PROBUG - 68000 Software Debugger

(

A B

I DO
2 00
3 ...
4 00
5 00
6 ...
7 DO

J4 Juapera

Serial Port And Interrupt Processing. PROBUG uses channel "B" of the M68KlO
to perform I/O. If you are using the "B" channel of the MPSC controller to
connect your terminal to the M68KIO, your program's output and the output from
PROBUG will both appear on the screen: your program and PROBUG share the same
serial I/O port.

PROBUG initializes both channels "A" and ''B'' to transmit and receive 8-bit
characters with no parity and 2 stop bits. The standard shipping
configuration of the M68KlO has both channels running at 9600 BAUD.

If your program configures the port to generate interrupts, you should be
aware that PROBUG does not rely on interrupts from the serial port to do I/O.
This can cause problems when control passes from PROBUG to your program: the
interrupts that PROBUG has been ignoring will still be pending. You should
take this into consideration when conetructing your interrupt processing
routine.

PROBUG - 68000 Software Debugger Page 65

APPENDIX A: GETTING STARTED - PROBUG & THE M68KIO

Pover-Up

Whether you are using the M68KIO or another single-board computer to run
PROBUG, several lines of output will appear on the terminal when you first
turn the power on. The current contents of the MPU registers (data, address,
and several other registers) will be displayed. The output will look like
this:

PROBUG 2.0 - SBE SOFTWARE DEBUGGER
COPYRIGHT SBE, INC. 1983

(0)
D) FFFFFFFF
A) FFFFFFFF
PC) FC0028
FC0028 MOVE
>

(1) (2) (3) (4) (5) (6) (7)

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000200

SR) 2700 CCR) ----- Usp) FFFFFFFF .SSP) 00000200
i't$2700,SR

An explanation of this output appears under MPU Registers.

The > indicates that PROBUG is ready for you to type a command. This prompt
appears whenever PROBUG has completed a command, as well as at the beginning
of a debugging session.

Page 66 PROBUG - 68000 Software Debugger

(

APPENDIX B: BOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

APPEHDIX B: BoY ~o Vae paOBO; - Some Debugging Suggeationa

This section offers some suggestions on debugging 68000 software. Use this
information as a supplement to the information in the remainder of the manual.
The examples in this section show some typical problems and some of the ways
you might use PROBUG to solve them.

Before using PROBUG, get a listing of the program you want to debug. Turn the
power on, or follow the appropriate procedure for starting PROBUG. If your
program is on tape, use the @ command to select the port through which the
program will be loaded. Now, load your program into RAM using the L command
as documented in the command descriptions.

Debugging your program will require that you isolate each section in which
problems exist, and attack them one at a time. Breakpoints allow you to
execute segments of your program to track down problems. Breakpoints are
perhaps the most frequently used of the program execution commands (see the
section Program Execution Commands early in the manual).

Typically, after loading your program into RAM, you breakpoint or jump to a
location and examine the MPU registers (which are displayed at the end of the
breakpoint or jump). Use the D command to disassemble the group of instruc
tions directly following the breakpoint location.

It is useful to breakpoint through a few instructions at a time so that if
there's an incorrect value in one of the registers, it's easy to locate the
guilty instruction.

Sometimes, it may be useful to breakpoint through each instruction rather than
through several instructions at a time. In such cases you can single-step
through the instructions in question with a trace. The T (Trace) command
prints the contents of the MPU registers after each instruction is executed.

The T command generates a distractingly large amount of output as compared
with the B command, which prints the MPU registers only after the program
stops executing and control is returned to PROBUG. The Q (Quiet Trace)
command is useful with observation points for locating an instruction that's
changing memory.

Sometimes, all of the registers are correct, but memory is incorrect. If your
program changed memory, use the I, H, or P command to inspect memory.

Forgotten lmmediate Sign (#): Suppose location 1000 of your program contains
a MOVE.L instruction. You had intended for this instruction to copy the value
$20 into register D3. You breakpoint to location 1000 of your program, and
then trace the next instruction using the B command:

PROBUG - 68000 Software Debugger Page 67

APPENDIX B: ROW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

>1\1000.
BREAKPOINT AT 001000

(0) (1) (2) (3) (4) (S) (6) (7)
D) 00000012 OOOOFEOO 00001000 OOOOEOOO 00000000 00000000 00000000 FFFFFFFF
A) 001234S5 00000000 SSSFF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) 001000 SR) 0704 ceR) --Z-- .USP) 00000200 SSp) 0000076C
001000 MOVE.L $20,D3
>N.

(0) (1) (2) (3) (4) (S) (6) (7)
D) 00000012 OOOOFEOO 00001000 08FOOFEE 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 SS5FF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) 001004 SR) 0704 eeR) --Z-- .Usp) 00000200 SSp) 0000076C
001004 MOVE.B D3,$OCOO
>

You notice that register D3 does not contain the immediate value 20, but
rather 08FOOFEE. Looking at the disassembled instruction (MOVE.L $20,D3),
you realize that it has copied the contents of location 20 into register D3,
rather than copying the immediate value $20 into D3. You can verify this by
using the M command to inspect location 20.

You now have several options. If the error you found need not be fixed
immediately, you can make a note on the listing to go back and correct the
source, and continue on to the next bug. If the error must be fixed before
you can continue debugging, yo~ can fix the instruction with the A command
(see below).

The contents of the registers have been set incorrectly because the
instruction was incorrect. To fix this, change the value in register D3 as
follows:

>RD3,20.

(See under the R command f or details.) Note that the "20" is assumed to be
hex in this command.

Make a note on your program listing to correct the source, and type a
breakpoint, jump, or other program execution command to continue.

Now for B slightly more complicated example: suppose the next instruction
also contained B reference to register D3, and that both instructions had been
executed before you noticed that D3 should contain $20.

1000
1004

MOVE.L
MOVE.B

$20,D3
D3,$OCOO

Correct the contents of register D3 as explained above. To correct the damage
resulting from instruction 1004, you must change location oeoo to contain $20.
Use the I command as follows:

>IOCOO.
oooeoo FD 20.
>

Page 68 PROBUG - 68000 Software Debugger

(

APPENDIX B: BOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

If you are an experienced user of PROBUG's mini-assembler, you could change
(patcb) tbe program in RAM using tbe A command to replace the instruction:

>AIOOO.
001000
001002
>

HOVE.L 1$20,D3
(carriage return)

Note: In using tbe Assemble command, you will need to compensate for any size
difference between tbe instruction you are replacing and tbe new instruction.
For example, if tbe new instruction is a word shorter tban tbe original
instruction, add a NOP after the new instruction. If tbe new instruction is a
word or more longer tban tbe original one, you will need to insert a BSR and
create a subroutine elsewhere in memory.

After assembling tbe patcbed code, you can start executing the program from
tbe beginning again to reset the registers with proper values, or use the R
command (as described above).

To continue debugging, disassemble tbe next group of instructions; or use your
program listing to determine tbe next location at wbicb tbere may be a
problem, and breakpoint to that location.

Memory Location Being Changed: Sometimes a memory location is being cbanged
wben you did not intend for it to be cbanged. Tbis can affect your program
instructions, variables, etc., and can be a difficult problem to track down.
However, by setting observation points at locations tbat are being set
incorrectly, you can greatly speed up your searcb.

Suppose a subroutine of your program isn't working properly. You breakpoint
to the beginning of the subroutine, and disassemble some instructions:

>B48000.
BREAKPOINT AT 048000

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00C01500 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 00800000
PC) 048000-SR) 0704 - CCR) --Z-.... • USp) OOBOOOOOSSP) 0000076C
048000 MOVEQ.L f20,DO
>D.
048000 7014 MOVEQ.L #20,DO
048002 31CO OCOO MOVE.W DO,$OCOO
048006 4241 CLR.W Dl
048008 0000 5378 OR!.B #$78,DO
04800C OCOO 66F8 CMPI.B #-8,DO
048010 4E71 NOP
048012 60EC BRA.S $048000
048014 4E71 NOP
048016 FFFF DC.W $FFFF
>

You notice that this is not tbe original code. Location 48008 was supposed to

PROBUG - 68000 Software Debugger Page 69

APPENDIX B: HOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

contain 5440 instead of 0000; the value was changed by mistake during program
execution. You need to restore the original code. either by reloading the
program using the L command. or by using the A command to re-enter the correct
instruction as follows:

>A48008.
048008 ADDQ.W 12.»0
04800A (carriage return)
>

Now set location 48008 as an observation point:

>048008.
>

Supposing your program begins at location 40000, set the program counter to
that location and then begin a quiet trace through the program. The quiet
trace will run merrily along until the observation point changes:

>*40000.
>Q.

INSTRUCTION AT LOCATION 041020 CHANGED DATA AT
LOCATION 048008 FROM 5440 TO 0000

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) 041026 SR) 0704 CCR) --Z-- .USp) 00000200 SSp) 0000076C
041020 CLR.W $048008
041026 SUBQ.W 11,DO
>

The output from the quiet trace reveals that the CLR.W at location 041020 is
the guilty instruction.

Conditional Branch Rot Being Taken: You will find it useful to breakpoint to
condi tional branche s to see whether the program takes the branch. If
something is wrong, there's a problem with either the conditions leading up to
the branch, or the branch instruction itself.

Suppose you breakpoint to a BEQ instruction to make sure the program takes the
branch. When the BEQ instruction is reached, the MPU register contents are
printed, followed by the disassembled instruction. The disassembled
instruction includes a (TRUE) or (FALSE) label which indicates whether or not
the branch will be taken.

You expected the branch to be taken, but the label says (FALSE), indicating
that the branch will not be taken. However, the conditions leading up to the
branch have all been set correctly.

The BEQ instruction should really have been a BNE. (This is easy to identify
using the (TRUE) or (FALSE) label as a guide.) Make a note on your listing to
go b,ack and correct tht~ source. Then use the A command to change the
instruction to a BNE; or jump (use the J command) to the address to which it

Page 70 PROBUG - 68000 Software Debugger

(

APPENDIX B: HOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

was supposed to go.

Progr •• Control Passing To Wild Address: Another difficult problem to track
down is when program control passes to some wild address outside the program.
This is often caused by careless stack maintenance and usually shows up as an
illegal instruction or unimplemented instruction.

In such cases, it is useful to quiet-trace to the location of the invalid
instruction, to find out how the MPU got to that address. With the Q (quiet
trace) command, PROBUG traces through each instruction without generating any
output. When the specified address is reached, PROBUG disassembles both the
current instruction and the previously executed instruction, allowing you to
follow the flow of program control.

For example, if your program is crashing with an unimplemented instruction at
40020, run the program using a Q to that location:

>q40020.

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOOOOBOO
PC) 040020 SR) 0704 CCR) --Z-- .USP) OOOOOBOO SSP) 0000076C
001420 RTS
040020 DC.W $FFFF
TRACE STOPPED AT 040020
>

001420 is the address of the instruction that caused the program to jump to
40020.

PROBUG - 68000 Software Debugger Page 71

&, 3
*, 3, 15
* conmand, 46
+ key, 15
- key, 15
@ command, 28, 43-45, 55, 67
ABORT button, 12
Adding your own functions, 53
Address error, 11
Address registers, 4
Ampersand, 3
ASCII characters, 3
Assemble (A command), 15-17,68
Asterisk, 3, 15, 46
Asterisk (* command), 3, 46
At-sign (@ command), 28, 43-45, 55, 67
Bit mask, 40
Brackets, square, 5
Branch labels, 16
Breakpoints (B command), 7-10, 18, 59, 67
Bus error, 11
Command descriptions, 15-46
Command syntax, 2
Condition codes, 37
Conventions used in this document, 5
Copy memory (C command), 19
CTRL-L, 5
Custom I/O, 55-56
Data registers, 4
DC direct ive, 16, 20
Debugging suggestions (Appendix B), 67-71
Disassemble (D command), 20, 67
Enter transparent mode (@ command), 28, 43-45, 55, 67
Error messages, 7, 11
Escape key,S
Exception processing, 59
Exceptions, TRAP, 59
Execute Disk Operating System bootstrap (E command), 21
Exit character, 27, 44-45
Expressions, 2, 3
Fill memory (F conmand), 22
Function calls, 47-54
Haltpoints, 7-10, 23, 59
How to use PROBUG (Appendix B), 67-71
I/O, custom, 55-56
Illegal instructions, 59
Inspect memory word by word (M command), 5, 30, 67
Inspect stack word by word (M conmand), 30
Inspect/alter memory, 5
Inspect/alter memory (I command), 24-25, 67
Installation of PROMs, 63
Instructions, illegal, 59
Interrupt processing, 65
Interrupt, non-maskable, 12, 13, 59
Iteration count with haltpoints, 10, 23
Jump to location (J command), 7-10, 26, 67

PROBUG - 68000 Software Debugger

INDEX

vw f' 7d
Page 73

INDEX

Jumpering the M68K10, 63
Labels, branch, 16
Load program into RAM (L command), 27-29, 67
Memory map, 57
Minus, unary, 3, 4
MPSC controller, 65
MPU registers, 2, 4, 11, 37-39, 59, 66, 67
Next instruction, trace (B command), 7-10, 31
NM! button, 12, 13, 59
Non-maskable interrupt button, 12, 13, 59
Observation points, 7-10, 32-33
Parameters, 3
Port selection, 27, 44-45
Port, serial, 65
Power-up, 2, 66
PROBUG and the M68K10, 63-66
PROM installation, 63
Print memory (p command), 11, 34, 67
Print register contents (R command), 37
Print/alter register contents (R command), 5, 38-39, 69
Program counter, 3, 15, 46
Program execution commands, 1, 7-10, 59, 60, 67
Quiet trace (Q command), 7-10, 35-36
RESET button, 12
Registers, 3
Registers, MPU, 4, 37-39, 59
Relocation factor, 4
ROM, haltpoints in, 8, 9
S-record format, 27-29, 43
SI, S2, S8, & S9 records, 27-29, 43
Search for non-match (-8), 40
Search memory for pattern (8 command), 40
Separators, 3
Serial port, 65
Set haltpoints, 7-10, 23, 59
Set observation points, 7-10, 32-33
Special keys, 5
Square brackets, 5
Stack space, 59
Substitution character, 27, 44-45
Syntax errors, 2
System stack pointer, 3
Terminators, 2, 5, 24
Timing, 12, 60
TRAP 14 instruction, 47, 53
TRAP Exceptions, 59
Trace instructions, 7-10, 41-42, 67
Trace with TRAP exceptions, 59
Transparent mode, 27, 28, 43-45
Unary minus, 3, 4
User registers, 3
User stack pointer, 3
Write program in S-record format (W command), 43

Page 74 PROBUG - 68000 Software Debugger

(

