H=-20-0885

Vistagraphic" 3DDD/
GCraphnic 38"

COMPUTER GRAFPHICS
DISFLAY SYSTEM
SERIES 3X0D0O

PROGRAMMER'S REFERENCE MANUAL

FEERUARY 1831

CALCOMP

SANDERS

Cooyrignt 1981 Sancers Associates. nc
r ic 8 1S a tracemark of Sangers ~sscciat2s, nc
Vistagrapn:c is 3 rragemark of CaiComo

H-20-D444

Vistagraphic" 3DD0D/
Graphic B

COMPUTER GRAPHICS
DISELAY SYSTEM
SERIES SXDO

PROGRAMMER’'S REFERENCE MANUAL

FEBRUARY 1881

CALCOMP

FASANDERS

Copyri ght 1981 Sanders Associates , Inc.
Graphic 8 1s a trademark of Sanders Associates, Inc.
Vistagraphic 1s a trademark of CaiComp

Sanders Associates,Inc. reserves the right to make corrections or alterations
to this manual at any time without notice.

L I

Original issue: February 1981
Reprint: August 1981
Reprint: November 1981 [

Reprint: February 1982
Reprint: April 1982
Change 1: September 1982

Reprint: September 1982

Reprint: January 1983 .-

RECORD OF CHANGES

" CHANGE NO.

DATE

TITLE OR BRIEF
DESCRIPTION

ENTERED BY

Sapt 82

Correct errors, general
update

Sectiocn

1

GRAFHIC

* e ®
.

W W WA BRI BRI 2 8 bt 1=l b b b pd fmd b b b b

L e e
RRONNNNNN NN NRSNDNRNRNDND RN NN

o e &

e o »

L] L)

e o

e o L]
s bt O 00 S OV B L N
w NNe—= O

e o o
e & o
°

a o

® ® &

. L] L]
W N

bt et b ped b b o e b bbb fd b ped b b S ek b fed hd et
L]
[3 Jurry

TABLE OF CONTENTS

8 SYSTEM DESCRIPTION

Introduction

Component Description
Terminal Controller
Display Processor
Read/Write Memory

ROM/ Status Logic

Multiport Serial Interface
Parallel Interface

Digital Graphic Controller
Video Controller

Mapping Memory

Timing Module

Character Generator

2-D/3-D Coordinate Converter

Data Converter

EPROM Expansion Module
Input Devices
Reyboards

Trackball, Forcestick, and Data Tablet
Maintenance Data Input Devices

Output Devices
Display Monitors
Hardcopy Units

OPERATING MODES

® & e @
PR
+ e
3 =Y

.
RN NN NN
.

DRDRNRNRNRN NN NN -
® e

N NN MNRN RN RN RSN N
o
L)
o S I S S I NI]

General
Local Mode

Verification Test Pattern and Diagnostics

Hardcopy Generation

Data Tablet Testing

Local Mode Commands

Memory Commands

Displaying a Refresh File
Transfer of Program Control
Transfer to System Mode
Teletypewriter Emulation

Additional Local Mode Commands

Y n:horan:uuv [CY SIS
O WO DWW O G

W

Seétion

30

ii

GRAPHIC 8

L] . e @ L] ® -
* s & e

® e @ &
. ¢ & 9 *@ ©
W RN R RO R R R e e et e e
® . @ t
W e W pa

LI
€« @
€ o

*
.

. .

L]

o E
L [
Jes]
=]
(@]
[+ 4]

-

PP RPLLWLWLWLN -

s
3y 4

L4 a * »

@ ® &

A N N N N N -

. @

TABLE OF CONTENTS (Cont)

INSTRUCTIONS

General

Display Processor Instructions
Digital/Graphic Controller Instructions
Pizel Position Instructions
Load Instructions

Move Instructions

Draw Instructions

Text Instructions

Conic Instructions

Sequence Control Instructions
Unconditional Jump Instructions
Conditional Jump Instructions
Subroutine Instructions

Linkage Instruction

Halt and Wait Instructions
Register Instructions

Display Control Imstructions

REGISTERS

General '

Display Processor Registers
Digital Graphic Controller Registers
Processor Registers

Function Registers

Sense and Mask Registers
Function Control Registers
Display Control Registers
Configuration Registers
Interface Registers

Serial Interface Registers
Parallel Interface Registers

GRAPHIC CONTROL PROGRAM (GCP)

[NV RN R NV IR
L N)
Ws W MR —
®
[3>

L

n b antn
®

Description and Purpose
Host/GRAPHIC 8 Communications
Serial Interface Communications
Parallel Interface Communications
Host/GRAPHIC 8 Messages
Initialize and Error Messagss

Establish I/0 Transmission Mode (Polling/

Non-Polling)

" Memory Related Messages

Interrupt Related Messages
Keyboard Related Messages v
Positional Entry Device Related Messages

Page
3-1

3~-1
3-1
3-2
3-3
3-3
3-4
3-5
3-9
3-11
3-12
3-12
3-14
3~15
3-19
3-20
3=-22
3-25

4-1

41
4=l
4=1
42
b=4
4-14
4=~16
4-17
4=-21
422
4~23
4-32

5=~1

5-1
5=2
5-2
5-6
5-6

5-11
5-16
5-27
5-33
5-40

TABLE OF CONTENTS (Cont)

Section B} Page
5.3.7 . Extended Device Control Message 5=49
5.3.8 Fortran Support {(FSP) Messages 5=53
5.3.8.1 Packed Vector Mode 5-63
5.3.9 Option Support . : 5-67
- 5.3.9.1 = Option Messages - 5-68
P 5.4 Programming the 3-D Coordinate Converter 5=72
6 GRAPHIC CONTROL PROGRAM USAGE : 6=-1
6.1 General 6=1
6.2 Startup Procedures 6-1
6.2.1 GRAPHIC 8 Turned On After Host Computer 6=-1
6.2.2 GRAPHIC 8 Turned On Before Host Computer 6=-1
6.2.3 Power Failure Startup 6-1
. 6.2.4 Startup with GRAPHIC 8 in Teletypewriter Emulation
? Mode 6=2
6.3 Refresh Files 6=2
6.3.1 Refresh File Generation 6-2
IS 6.3.2 Refresh File Transmission 6-6
£ 6.3.3 Refresh File Alteration 6=7
- 6.4 Optional Equipment Usage 6-8
6.4.1 Keyboards _ 6~8
6.4.2 PEDs 6-10
6.5 Mul tistation Usage ' 6-11
7 ADVANCED GRAPHIC CONTROL PROGRAM USAGES 7=1
. Introduction -

RAM Linkages

Unknown Command Header Sent by Host Computer
Beginning of GCP Executive Loop

Message Ready to Send to Host Computer

Link Instruction

UL

e s o
e © @
W BN e
I

\l\l\l\l\l\l"d\i\l\l\‘\l
s 00 00 S8~ B B BN b 8

7.1
7.2
7.2
7.2
7.2
7.3
7.3.1 Basic Instruction Cperation -
7.3.2 Synchronized Linkage -
7.3.3 Syne Link -

! 7.3.4 Super Sync -11
- 7.4 The Digital Graphic Controller as a Device -16
o 7.5 The Parallel Interface as a Device -16

7.5.1 Programming Examples 7=16

N 7.5.2 Interrupt Operation 7=17
’ 7.6 The Serial Interface as a Device 7-18
7.6,1 ROM and Status Logic Card Port 7-13

7.6.2 Multiport Serial Interface Ports 7-18

% 7.6.2.1 Host Computer ; 7-18
7.6.2.2 Keyboards 7-19

{ 7.6.2.3 FPEDs 7-10

- A 111

il

Section
7.7 Programming Examples ,
7.7.1 Programming the Color Display Monitor
7.7.2 Use of Blink and LUT
Appendix A SUMMARY INFORMATION
Appendix B GRAPHIC 8 MACRO DESCRIPTION:
Appendix C PROGRAMMING CAUTIONS
LIST OF ILLUSTRATIONS
Number
1;1 ' GRAPHIC 8 System Ccmponernts
1-2 CalComp Model 31 Color Craphic System Specifications
1-3 GRAPHIC 8 Terminal Controller Functional Block Diagram
1-4 GRAPHIC 8 System Memory Map
1-5 Addressable vs. Displayable Areas for Low Screen Resolutionm
1-6 Representative GRAPHIC 8 System Configuration
21 Verification Test Pattern .
2-2 Summary of GRAPHIC 8 Operating Modes
4~1 Addregsable vs. Displayable Mapping Memory Areas for
1024 z 1024 Secreen .
61 Display Created by Sample Refresh File No. 1
7-1 GCP Executive Loop Flowchart '
72 Synchronized Linkage Program Coding Example
7-3 Synchronized Linkage Flow Chart Example
74 Sync link Program Coding Example
T=5 Sync Link Flow Chart Example
7-6 Super Syne Program Coding Example
7=7 Super Synce Flow Chart Erample
7-8 Relationship Between PDR and LUT
Al GRAPHIC 8 System Memory Map
A2 Model 5784 Reyboard Layout and Code Assigmments
iv

TABLE OF CONTENTS (Cont)

Page

7-21
7-21
7-21

g

0w
1]

1]

it

a2

1

R R e o
i
[l Sl ¥ e SR B VL]

i

o

~N o B
L T |
O W

7-10
7-12
7-13
7-14
7-13
7-22
A-2

A-71

— I e

p— p— -, p—

LIST OF TABLES

Number ' Page
2-1 Serial Interface Port Codes 2=5

2=2 Local Mode Command Summary 2-7

2=3 Standard Transfer Table : 4 2-11
5=1 Data Word Translation Codes 5-4

5=2 GCP Extended Device Control 5=50
5=3 Byte Transmission Requirements 5=65
6=1 Sample Refresh File No. 1 6=4

6=2 Sample Refresh File No. 2 6=-13
7-1 Map LUT Size 7=22
A=1 GRAPHIC 8 Local Mode Command Summary A=3

A-2 Graphic 8 Controller Instruction Summary A~4

A-3 Graphic Controller Register Format Summary A-20
A=4 Serial Interface Register Format Summary A-286
A=5 Parallel Interface Register Format Summary A-28
A-6 Register Designations and Address Assigmments A-29
A~7 Display Processor Trap Addresses A-34
A=8 Alphabetical Index of Messages Between Host and GRAPHIC 8 A-36
A-9 Character Generator Code Assigmments A=67
A=-10 Multiport Serial Interface Port Assigrments A-68
A-11 Standard Transfer Table A-69
A=12 Character Font Summary A=70
A-13 7-Bit ASCII Code . A-T72
A-14 GRAPHIC 8 Registers A=75
A-15 GRAPHIC 8 Instruction Timing A~78
B-1 GRAPHIC 8 Display Macros B-3

B-2 Detailed Macro Descriptions B-3

B-3 Typical Program Structures ' B-19

v/vi

et

i

MNEMONIC

ADDI
CALL
CALLE
CALR(E)
CHAR
CLRM
DRKY
DRSR
DRXA
DRZXR
DRYA
DRYR
FLPG
HREF
INIT
IZPR
JMPM
JMPR
JMPZ
JMPZE
JPRZ
JRMP
JUMP

JUMPE
LICG

LDDI

LDDP
LDDZ
LDKX
LDPD
LIRI
LDSP
LIDSPE
LDTI
LDXA
LDXR
LINK
LINKE
MDLU
MODE
MPVD
MVSR
MVZA
MVZR
MVYA

NOOP

Summary of Controller Instructions
DESCRIPTION

Add to display register immediate

Call subroutine

Call extended subroutine

Call relative

Draw single character

Clear mapping memory

Draw conic Y

Draw short relative

Draw X absolute

Draw X relative

Draw Y absolute

Draw Y relative

Fill a convex polygon

Halt refresh

Initialize

Initialize

Jump and mark

Jump short relative

Jump if display register 0 contents # 0

Jump extended if display register 0
‘contents # 0

Jump relative if display register 0
contents # 0

Jump relative

Jump

Jump extended address

Load character generator

load display register immediate

load display parameter register

load display Z register

Load conic X register

Load pixel data register

load device register immediate

load stack pointer .

load extended stack pointer

load text increment register

Load X absolute

Ioad X relative

Synchronized linkage

Synchronized linkage extended

Modify lookup table

load instruction mode register

Move pixel data

Move short relative

Move X absolute

Move X relative

Move Y absolute

Move Y relative

No operation

PAGE

3-23
3-15
3-15
3-16
3-9

3-28
311
36

3-5

35

3-6

36

3-32
3-20
328
3-27
3-18
3-13
314
3=14

3-15

3-13
3-12
3=12
3=23
3-22
3=25
3-26
311
3-28
3-23
3-22
3~22
3-27
3=3

3=3

3-19
3-19
3=-31
3-28
3-29
3=5

3=4

3I~4

3=4

3=4

313

Change 1

vii

wviii

MNEMONIC

PPLR
PPTA
PPIR
PPYA
PPFYR

RESD(E)

RIRN

SAVD(E)

TXT
UPDT
WATE

MESSAGE

GR

Iv
IX
1y
1Z
X?
KT
XY
LK
LT
MI
MS
MU
M
NN
NO
NP
QT

Change 1

Summary of

Point plot
Point plot
Point plot
Point plot
Point plot
Restore di
Return

Save displ
Draw two t

Controller Instructions (Cont)
DESCRIPTION

relative
tabular absolute
tabular relative
Y absolute
Y relative
splay register

ay register
abular characters

Update video controller registers

Wait

Summary

ORIGIN

Host
Host

_ Host

Host
Host

" Host

Host

of Host-GRAPHIC 8 Messages
DESCRIPTION

Give image

Give opticn status
Give PED No. 1
Give register

Get status of FEDs
Give PED No. 2

. Graphic update

GRAPHIC 8

Host
Host
Host
Host

GRAPHIC 8

Host
Host

Host

Host
Host
Host

Host

Host

GRAPHIC 8
GRAFHIC 8
Host

Host

Host

Host

Host
GRAPHIC 8
Host

Host

Host
Host

Halt interrupt

Halt picture

Initialize FSP support
Interrupt control

Initialize I/0 message formats
Input device '
Initialize PED No. 1

Enable selected interrupts
Initialize PED No. 2
Initialize device

Enter EDC mode

Initialize 2

Initialize

Continue picture

Alphanumeric keyboard No. 2
Alphanumeric keyboard No. 1
Light keys on function keyboard No. 1
Light keys on function keyboard No. 2
Move image

Memorv blank select

Memory update

No messages ready

Enable error number

No operation

Enable box display

Requast to device

PAGE

3-6
3=-7
3-8
3-7
3-7
3-24
3~17
3-24
3-10
3-21

PAGE

5-23
5-71
5-47
5-26
545
5=47
5-57
5-31
5-21
5=54
5-28
5-11
5=-51
5~42
5-29
5-42
5-51
5-50
5-71
5-7

5=22
5-37
5-37
5-36
5-36
5-58
5-17
5-18
5-16

- 5-61

5-16
5-59
5-51

A

H
S w

MESSAGE

PL

PV

RG
RI
RX
RL
RO
RP
RR
RT
RU
RW
SP
SU
X
™
TN
s
VL
v1
xR

XT

XX
YA S
N
ZP
ZR

Z8
ZT

ZU

Summary of Host-GRAPHIC 8 Messages (Cont)

ORIGIN

Host
Host
GRAPHIC
GRAPHIC
GRAPHIC
GRAFHIC
GRAPHIC
GRAFHIC
GRAPHIC
GRAFHIC
Host
GRAFHIC
Host
Host
Host
Host
Host
GRAPFHIC
GRAPHIC
GRAPHIC
GRAPHIC

GRAFPHIC

GRAPEIC
Host
Host
Host
Host

Host
Host

Host

00 00 GO0 G 00 OO 0o OO

o r]

€0 0o 00 @

o]

DESCRIPTION

Poll GRAPHIC 8 for next message

Packed vector -

Return FSP table address

Return image

Function keyboard No. 1

Function keyboard No. 2

Return option

Return PED No. 1

Return register

Return PED status

Register update

Return PED No. 2

Start picture

Selective update

Transfer control

Assign data tablet as PED No. 1

Assign data tablet as PED No. 2

2D/3D coordinate converter status

Variable length (follows RI or RO)

X or Y position overflow interrupt

Scratchpad ready for alphanumeric
keyboard No. 1

Scratchpad ready for alphamumeric
keyboard No. 2

Error status

Disable selected interrupts

Disable error number

Disable box display

Initialize scratchpad for
alphanumeric keyboard No. 1

Zero scratchpad No. 1

Initialize scratchpad for
alphanumeric keyboard No. 2

Zero scratchpad No. 2

Change 1

PAGE

5-15
5-65
5=55
5-24
5-39
5-39
5=72
5-48
5-27
5-46
5-20
5-48
5-21
5-19
3=23
5-41
5-41
5-75
5-25
5-32
5-38

5-38
5-8
5=30
" 5-62
5-60
5=34

3=35
5-34

5=35

ix/(x blank)

o5

SECTION 1

GRAPHIC 8 SYSTEM DESCRIPTION

1.1 INTRODUCTION

The Sanders Associates, Inc. GRAPHIC 8™ is a high-performance, intelligent
computer graphics terminal system incorporating refreshed raster display technology.
The Graphic 8 combines sophisticated display processing techniques, developed by
Sanders in the popular GRAPHIC 7™ refreshed stroke graphics product line, with new
CRT raster graphics features. It is designed to interface a host computer and to
support operator CRT display monitor stations configured with interactive devices,
such as keyboards, trackballs, forcesticks, and data tablets. Also, it can produce
permanent hard copy records of displayed data.

The. GRAPHIC 8 system utilizes many of the key features of the GRAPHIC 7 system.
For instance, the GRAPHIC 8 can use any of the existing GRAPHIC 7 high-speed,
parallel host computer interfaces or the RS5-232C port. Existing GRAPHIC 7 software,
including the Sanders' FORTRAN Support Package (FSP), may be used with the GRAPHIC
8. And both systems use a common display processor instruction set.

The 8X00 series GRAPHIC 8 features a dymamic display update via a2 double
refresh buffer memory technique. From one up to four CRT display monitors are
supported by the 8X00 series configurations. Resolutions of 512 x 512, 640 x 480,
1024 % 768 (interlaced) or 1024 x 1024 (interlaced) are available. Both color and
monochrome versions are offered with up to 8 bits per pixel to provide as many as
256 simultaneous colors or monochrome intensities (or 128 plus blink).

The GRAPHIC 8 display processor is a general purpose digital computer with a
set of over 400 instructions that controls a variety of functions, which reduce the
loading on the host computer. In combination with the host computer, the GRAPHIC 8
system permits the user to display digital data in a visual format on the CRT
display monitor and to interact with the displayed image by means of keyboards,
forcesticks, trackballs, and data tablets. Its high performance and intelligence
make it well suited to a variety of applications, such as, CAD/CAM, simulation and
training, command and control, cartography, and many others.

1.2 COMPONENT DESCRIPTION ‘

The basic GRAPHIC 8 system consists of a temminal controller and a monitor.

The basic system can be expanded to include a wide variety of options and
enhancements.

™GRAPHIC 8 and GRAPHIC 7 are trademarks of Sanders Associates, Inc.

£
o
g.

TERMINAL CONTROLLER

Figure l=-1.

COLORDISPLAY MONITOR
AND KEYBOARD

GRAPHIC 8 System Components

4

3
RS §

W

« _ ;

.t

DESCRIBTION

The CalComp Model 31 is a stand-alone recording
system for making 8 x 10 inch color or black and white
prints and 35 mm color siides of any data presented on
its seif-contained, high resociution raster scan CRT. With
Polaroid Type 808 Poiarcoior 2 Land fiim, the Model 31

FEATURES

® Exceptional image resoiution with accurate rendition
of color hue, saturation and lightness

#® High throughput (at least thirty 8 x 10 prints or over
one hundred 35 mm slides per hour)

® For use with all raster scan computer graphics and
digital image processing applications

® Microprocessor controlled to assure consistent
exposure, reliable operation

® Separation mode for automatic three-color separation
exposures

® Switchabie raster blending for high color saturation
prints

Fully automated 35 mm slide capability with remote
control (optional)

SYSTEMS INTERCONNECT

oSt 3+ 10 POLAROID
COMPUTER COLOR OR B&W FiLM
CALCOMP 8-10
MODEL COLOR OR B&W FiLM
RED n
COLOR VIDED it 35 mm
GRAPHICS SREEN COLOR SUDES
0ISPLAY SYNC -

SPECIFICATIONS AND CHARACTERISTICS |

Video Monitor:
Nominai resolution of 1400 lines center screen at 100
cd/m? (30 fL) on fiat-face CRT. :

Pixel position error i$<0.6% within a 9 cm circle,: <1% at
corners. :

Speed of Operation: .

8” by 10" Polaroid—less than 60 seconds per exposure
8" by 10" Transparency-—Iless than 40 seconds per
exposure :

35 mm—6 seconds per exposure '

Film Type: : :

8" x 10" (20.32 cm x 25.40 cm)—color or biack and
white. Must be loadable in cassette format.

With optional auxiliary camera, 35 mm sprocket feed
film—color only, in cartridge.

Fiim Speed:
15 DIN (ASAZ25) to 24 DIN (ASA200)

Physical Specifications:

Width 38.7 ¢cm (15.25 in.)

Depth 38.7 cm (15.28 in.)

Height 113.2 cm (44.78 in.)

Base 50.4 cm x 50.4 cm (20 in. x 20 in.)

Weight 40 kg (88 Ibs.)

Power Requirements: (all units single phase, line to
neutral):
Standard 120 VAC £ 10%, 50/60 Hz, 0.8 amps, 110
watts (max)
Optional 100 VAC £ 10%, 50/60 Hz, 1.0 amps, 220
or 240 VAC = 10%, 50/60 Hz, 0.5 amps

Video Input: .
Separate Red, Green, Blue, and Sync video signals of
0.35 to 2.0 peak to peak voitage required.
Standard~-Handles horizontal line rate of 500 to 850.
Optionai-High Line— Handles horizantal line rate of 800
to 11C0 at 60 Hz or 1300 at
50 Hz.

Operating Environment:

Temperature—20°C = 10°C

Relative Humidity—15% to 90% non-condensing
Altitude—Sea level to 4500 meters

Operating Noise—NMegligible

Cabiles:

Power: 3 meter power cord.

Interface: Four 74 Ohm, RG-59 coaxial cables of 3
meters each. BNC Plug on each end will mate”
to BNC Bulkhead Receptacie.

Figure 1-2. CalComp Model 31 Color Graphics System Specifications

1.2.1 TERMINAL CONTROLLER. The GRAPHIC 8 system contains a terminal controller
which consists of a rack mountable card cage and a power supply. As shown in figure
1-3, the cards are interconnected via elther a processor bus or a graphic bus. The
size of controller selected is based on the four following major comnsiderations:

1. Color or monochrome

2. Number of simultaneous colors or intensities
3. Resolution of the display imagé

4, Number of display stations per controller

The GRAPHIC 8 terminal controller accommodates 17 cards and a power supply.
The controller consists of a card cage with slots for 17 cards. 8ixz of the slots
are for the processor cards, one slot is for the digital graphics controller, cne
slot is for the timing module, and the reamaining nine slots are for the mapping
memory and video controller cards.

1.2.1.1 Display Processor. The display processor card is a general purpose digital
computer that runs the GCP and acts as master control for all devices connected to
the processer bus. It contains multiple high-speed general-purpose registers that
can be used as accumulators, pointers, index registers, or auto-indexing pointers in
auto~increment and auto~decrement modes. Functlons performed by the display

processor card include system initialization, interface handling, local data
editing, and local generation of simple display images.

Instructions used for the display processor emulate the instruction set for the
PDP-11/34® manufactured by Digital Equipment Corporation (DEC®), They are
fetched either from the GCP in read-only memory on the ROM and status logic card
(paragraph 1.2.1.5) or from the read/write memory (paragraph 1.2.1.1). An 8-bit
configuration switch 1s program readable (used by GCP) from octal location 177774,

1.2.1.2 Read/Write Memory. Locations in the read/write memory are assigned
addresses 000000g through 777777g and are accessed by means of a 18-bit address

on the processor bus and by a 16~bit address and mapping registers on the memory
card. The 18-bit address can be used to access the location of a word (16 bits) or
of an individual byte (8 bits) as required. Refer to figure 1-4 for a GRAPHIC 8
system memory map. ' :

Each read/write memot? card is capable of storing 63,3367 (64K) sizteen bit
words or 128K separately addressable 8-bit bytes. A maximum of two memory cards can

be installed in a GRAPHIC 8 system for a total of 128K 16-bit words of memory. The
read/write memory card is also available in 16K and 32K word sizes.

®PDP and DEC are registered trademarks of Digital Equipment Corporation.

1

Figure 1-3.

(DIAGNOSTIC USE)

SR el
']
.)
DISPLAY READ WRITE | processor H MAPPING ' TIMING
PROCESSOR MEMORY | orrions i MEMORY [*7} MODULE
i 3
} L_Q(?;_J]
{ }. DIGITAL ‘{ }
PROCESSOR BUS ™S GRAPHIC - GRAPHIC BUS
} { } { } 1] CONTROLLER
I T R po-tdoog
pARALLEL | | MULTIPORT § i oPrionAL I
i 1 ¢ SERIAL i ROM AND H 1 VIDEO
tINTERFACE ¢ 4 yyrERFACE STATUS i VIDEO i o
z OPTION s : OPTION ! § CONTROLLER 4 INTROLLER
i §
L_~1___J L.'_..r._f_.f_a | S |
:);RALLEL 4 SERIAL 1 SERIAL L?Smw - —~ 10
(o) O PORTS 1/O PORT DISPLA
v MONITOR - Y

INDICATORS MONITOR

GA-76 166-017
AEVA

GRAPHIC 8 Terminal Controller Functional Block Dliagram

1-6

OCTAL
BYTE
ADDRESSES

- 177777

Figure 1-4,

DATA AND ™~ GCP 1S ALSO LOCATED
IN SECTIONS IN
STATUS
REGISTERS 160000-177777 AREA.
AND
DEVICE
. ADDRESSES
160000
157777 ~
GRAPHIC
CONTROL > ROM
PROGRAM
< 140000 P
137777 ~
. ROM
-~ OPTIONAL ~ AND/QOR
syl MEMORY -~ READ/WRITE
EXPANSION MEMORY
040000 P
037777 ~
- AVAILABLE
TO
USER > READ/WRITE
MEMORY
003000
002777 :
. oo00co | RESERVED FOR USE BY GCP P

GRAPHIC 8 System Memory Map

NOTE

User refresh programs will not execute in RAM
memory in the 24K to 32K area (140000-177777).
This area is reserved for Sanders' display
processor option software. The option software is
loaded from the expansion module or is down-loaded
from the- host.

1le2.1.3 ROM and Status Logic. The ROM and Status logic card contains the read-only
memory in which the GCP used to control the display processor is stored (refer to
figure 1-4). Also contained on the card are display status and interrupt logic
circuits plus a serial interface port to which a teletypewriter may be connected for
diagnostic purposes.

The standard read—-only memory provided onm the ROM and status logic card
contains the GCP firmware. The GCP is approximately 6.6K words (16 bits). Like
read/write memory, read-only memory may be accessed to retrieve either 16-bit words
or individual 8-bit bytes.

1.2.1.4 Multiport Serial Interface. The multiport serial interface card contains
four serial interface ports that operate in a serial asynchronous mode using RS=232C
or TTL voltage levels with standard transmission rates up to 9600 baud. Additiom~
ally, the first port can be operated as a full RS-232C asynchronous interface at
transmission rates greater than 9600 baud. For GCP applications, the maximum
transmission rate supported is 9600 baud. Normally, the host computer is connected
to the first port, which is compatible with the standard communication and terminal
interfaces supplied by most computer manufacturers. The remaining three ports omn
the card are used for peripheral devices.

Three m<iport serial interface cards may be installed in a terminal
controller to handle additional peripheral devices if required. Normal device
assignments for each port are listed in Appendix A.

1.2.1.5 Parallel Interface. An optional GRAPHIC 8 parallel interface allows
high-speed communications with handshaking and is intended for applications where
the Graphic 8 is located in proximity to the host. All parallel interface signals
are TTL-compatible., Under program control, the interface operates in either an
interrupt driven or a DMA mode. In the latter mode, the interface operates at
speeds up to 500,000 l6~bit words/sec. If a parallel interface card is imstalled in
the terminal controller, GCP assumes that it is connected to the host computer.
Therefore, if serial communication with the host computer is desired, a parallel
interface card cannot be connected to the processor bus.

NOTE

Normally, if a parallel interface port is used, a
single parallel interface card (for the host
computer) is installed in the terminal controller.
For special applications, however, two parallel
interface cards may be installed, but are not
supported by the standard Graphic Control Program.

1-7

1.2.1.6 Digital Graphic Controller. The digital graphics controller is a
microprocessor with more than 50 instructions committed to ROM. It retrieves
display update instructions from R/W memory, generates vectors, characters, conics,
point plots, fills and stores these in mapping memory in raster—scan format. It
executes all 40 display instructions of Sanders' stroke-writing (randcm position)
product line graphics terminal, the GRAPHIC 7. Additional display instructions have
been added to implement features unique to digital TV.

These digital graphic controller instructions are described in detail in
Section 3. The complete series of sequential instructions that defines any
particular display image is referred to as a refresh file.

The digital graphic controller may be considered as a device o6n the processor
bus of the terminal controller. It contains its one set of registers that maintain
instruction address, controcl fetch operations, and perform any branching that may be
specified by non—-graphic instructions. It also calculates relative data when
required, loads data into appropriate registers, and initiates execution of refresh
file instructiouns.

Status bits of the digital graphic controller are maintained by circuits on the
ROM and status logic card (paragraph 1.2.1.5). These bits plus the graphic
controller registers are accessible to the display processor (paragraph 1.2.1.4)
which maintains control over the entire temminal comtroller.

1.2.1.7 Video Controller. The video controller obtains data from the mapping
memory and formats it for presentation on the display monitor(s). Outputs are
provided as either RGB color or monochrome and as compesite video.

External video may be accépted by the video controller and logically ORed with
internally-generated video. A single video controller can accommodate up to eight
bits per pixel. .

The video controller generates one non-destructive, full-screen, crosshair
cursor and contains the cursor address registers which are accessible to the user.
It controls the split screen function which allows the user to divide the display
face into up to three variable-height horizontal bands and fill these bands with
data from anywhere in addressable mapping memory. This feature allows the user to
simultaneously view up to three separate areas of mapping memory which are not
necessarily contiguous.

The video controller contains a 256 x 8~bit word RAM look-up—table (LUT) which
allows pseudo~color or pseudo—gray level transformation to be made.

1.2.1.8 Mapping Memory. The mapping memory contains pixel data in a format which
allows display refresh in a raster scan mode. The mapping memory may be configured
for various resolutions up to 1024 x 1024 and for interlace or non-interlace
refresh. A single memory board can be supplied with a capacity of over four million
bits. Up to eight bits can be combined per pixel to provide 256 possible colors or
intensity levels.

.

N

N

(5

CISPLAYABLE
AREA

(=512, =512)

11, 511)

AN

A\

PROGRAMMABLE
AREA

AN

(=1024, -1024)

1024 X 1024

N

N

(639,479)-"'//1

AN

//4¢w,JM)

X
AN

Figure 1-5.

640 X 480

Addressable vs. Displayablé Areas for the Four Screen Resolutions

(1023, 1023)

(511, 383)

/ (=512, -384)

NN
=X

1024 X 758

(511, 511)

n
o
]
1
)
&
]
)

N

NSRS

512 x 512

#-80-0444-003

1-9

A dual mapping memory configuration is for high-speed dynamic update of data.
The dual memory concept allows the hardware to clear and update one memory while the
saecond memory is refreshing the display. When the next update occurs, the roles of
the two memories are reversed sgo that the previously updated memory now becomes the
refresh memory. . _

1.2.1.9 Timing Module. The timing board generates all display-related timing
signals as well as the necessary synchronization signals for the monitors. Om~board

gwitches allow selection for cnmpatible operation with the possible resolutions and
refresh frequencies.

1.2.1.10 Character Generation. Character generation is performed by the Digital
Graphic Controller. The basic set of characters supplied is a standard set of 96
ASCII characters. When the ASCII code corresponding to the desired character is
applied to the read-only memory, the character is drawn at tha position determined
by the current/position for X and Y. :

As determined by instructions from the digital graphic contrpller, characters

of three different sizes can be generated. Characters may also be rotated 90
degrees counterclockwise to accommodate vertical writing requirements. Both normal

and rotated characters can be made to blink.

Read-only memory for six groups of 16 characters can be added to provide a
total of up to 192 standard and special characterg that can be produced by the
GRAPHIC 8.

1.2.1.11 2-D/3~D Coordinate Converter. The Model 5753 2-D/3-D coordinate comverter
converts a Sanders graphic display into a three dimensional display capable of
independent dynamic manipulation of objects in apparent space. Among the functions
provided by the Model 5753 are translation, scaling, rotation, windowing, indepen~
dent display coordinate mapping, perspective, and zooming with perspective.

The perspective feature is especially useful for realistic viewing of an
object. Utilizing perspective, the location of the viewer is defined relative to
the Iimage space, and all lines and objects within the image space are then viewed at
the proper perspective for that location. The view may be completely orthographic
if the viewer deoes not wish to use the perspective feature.

Objects can be defined within a 64K (X), 64K (¥), by 32K (2Z) image space and
presented on a 1K by 1K screen or any portion thereof. Translations can be made
within the limits of the image space and scaling range i1s 64 to 1. Rotation can be
provided about any axis.

3-D windowing, in conjunction with indepeundent screen coordinate mapping,
allows the presentation of any data within a software definable X, Y, Z image space

to be presented on the full screen or any porticn of the screen. Zooming is
accommodated by scaling and changing the user's apparent perspective viewpoint.

Alphanumeric data can be moved about the screen with vector defined data
without scaling and rotation.

The 3753 provides for both homegeneous and ﬁon—homogeneous matrix operatiom.

Also, transformations of 2-D images can be accomplished including translation,
rotation, scaling, and windowing.

1-10

M e, —

, _

1.2.1.12 Data Converter. The model 5744 data converter option transforms incoming
floating point binary numbers into displayable numbers. The displayable numbers may
be in any of sixteen formats selected by the host. The bi-directional converter
also converts the displayed numbers into floating-point binary for transmission back
to the host.

The data converter saves host computer time and storage resources by performing
these conversions within the graphic terminal. It allows data to be transmitted to
and from the host in its most compact form and frees the host programmer from the
conversion programming task.

The data converter can pérform more than 500 conversions per second, which
allows 1t to be used in high data~rate applications resulting in significant
of f-loading of the host computer.

The data converter is not supported by the standard Graphic Control Program.
1.2.1.13 EPROM Expansion Module. As options are added to the GRAPHIC 8, the

additional software required to handle the options will be stored on the model 7750
expansion module (EM).

The expansion module may contain up to 32K lé-bit words of non-volatile
read-only memory (EPROMS). The data may be loaded from the EM automatically by
pressing the SYSTEM button or when so instructed by the host, depending on the
options stored.

1.2.,2 1INPUT DEVICES. Optional data input devices for the GRAPHIC 8 give the
operator two-way interaction with the display and processing system. Input devices
available include two types of keyboards; a trackball, a forcestick, and a data
tablet. The GCP in firmware can support up to eight keyboards, or eight position
entry devices (trackball, forcestick, or data tablet)., In addition to the fore-
going, a teletypewriter or paper tape reader can be connected to the GRAPHIC 8 for
the input of maintenance data.

1.2.2.1 Keyboards. Standard keyboards available for the GRAPHIC 8 are the Model
5783 and Model 3784 keyboards. The keyboards contain a main block of alphanumeric
keys plus a matrix and a row of function keys.

The Model 5783 keyboard offers an alphanumeric bBlock of 58 keys. These keys
generate standard seven—bit ASCII codes with an eighth (MSB) bit always set to l.
The alphabetic keys generate both upper and lower case codes. A four-by-four matrix
of function keys is located to the right of the alphanumeric block and a row of 16
function keys is located immediately above the alphanumeric block. Each function
key generates a single eight-bit octal code from 000 to 037.

An added feature of the Model 5784 keyboard is that each function key contains
a LED that can be lighted or turned off as required under program control. The
Model 5784 also has provisions for additional keys to the basic board. These keys
are for future expansion and are located on beth sides of the space bar.

The keybeards operate at a rate of 9600 baud and interface to the terminal

controller via ports on the multiport serial interface card. Refer to Appendix A
for layouts of the two keyboards and the specific codes generated by each key.

1-11

1.2.2.2 Trackball, Forcestick, and Data Tablet. The trackball, forcestick, and

data tablet are referred to as PEDs (position entry devices). These devices are
used as determined by program control to move a cursor and/or data displayed on the
CRT screen. Movement initiated by the trackball 1s proportiomal to the speed and
direction in which the trackball is rolled. Movement initiated by the forcestick is
proportional to the direction and force with which the forcestick is deflected.
Movement initiated by a data tablet is proportiomal to the speed and direction in
which the data tablet pem is moved along the data tablet surface. PEDs are
connected to the system via ports on the multiport serial interface card(s) in the
terminal controller.

1.2.2.3 Maintenance Data Input Devices. A teletypewriter and/or a paper tape
reader can be connected to the GRAPHIC 8 to input data for maintenance purposes.

The teletypewriter is normally connected to a port on the ROM and status card in the
terminal controller while the paper tape reader is connected to ome of the ports on
a multiport serial interface card. The teletypewriter serves basically as a
troubleshooting aid. The .paper tape reader is used to load special user or
diagnostic programs into the GRAPHIC 8.

1.2.3 OUTPUT DEVICES. The standard output device for the GRAPHIC 8 is the CRT
display monitor. A hard copy unit is available as an optional ocutput device. Using
the same signals that go to a standard display monitor, the hard copy unit can
produce a duplicate on paper of any static image displayed on the CRT of the display
monitor. Operation of the hard copy unit 1is controlled manually.

An optional hard copy multiplex switech is available. The multiplex switch is
capable of interfacing up to four GRAPHIC 8 displays to a single hard copy unit.

1.2.3.1 Display Monitors. The GRAPHIC 8 offers the user a choice of configuration
of eight CRT monitors (four monochrome and four color) to provide the right monitor
for the intended application. -

Positions on the screen are specified in terms of a matrix containing 2048
coordinates in the X dimension and 2048 coordinates in the Y dimension. Two's
complement notation 1s used to designate the coordinates with location 0,0 being
defined as the center of the screen. Of the 2048 by 2048 addressable locations, the
displayable area comprises the fileld of coordinates centered about the middle of the
screen, Refer to figure 1-5 for different screen resolutiomns.

1.2.3.2 Hard Copy. Both monochrome and color hard copy devices are available for
use with the GRAPHIC 8. Refer to figures 1-1 and 1-2.

1-12

M i —

i

o,

|

——— —— oy — o — st ctee,

e e 0 e s, — o e

| SASIC GRAPHIC 8 GRAPHIC 8 STANDARD TERMINAL I
| N m 1
TERMINAL HOST TERMINAL
| [] 1 conTROLLER 1 COMPUTER T 'CONTROLLER |
| | ,
: |
e = el e][] |
T T 7T TGRAPHIC 8 MULTIPLE STATION T -
: !
| |
| [reo] [ko] l
{ |
| |
: : ERMINAL | [T 7 7T GRaRiC 3 REMOTE TERMINAL
| (e [_xso | CONTROLLER]]
- TERMINAL
| | MODEM. ™ conrrouier ‘ ;
| B | |
‘ | l
| o] [x| l <80 i [PEDJ
! | L - - _—_ __
| D |
| [P0} | xp | |
KED - KEYBOARD . . T T T —
PED - TRACKBALL, FORCESTICK,
DATA TABLET
PAR;—L:;L—] B DISPLAY B MAPPING
L N
(o = = !—H:JTERFACZ b= ™™ PROCESSOR MEMORY
_ H
TO/FROM r_D,G,TAL-—l READ/ TIMING
HOST b ooprions = 5 e WRITE « MODULE
L. __] : MEMCRY g
— 5 U
23 -
:E;AT] § DIGITAL % [VIDEO > oo
e g * MONITOR
T *HLNTERFAC;B = ?émgm m CONTROLLER EXTERNAL SYNC
b ROM & (—SECOND LER »DAI(S)PI\IL;’\C()R
| | i it STATUS tapncemd VIDEO 1
T T CONTROLLER ~ o — —EXTERNAL SYNC
| | | B) — - -
oY 1 |

SERIAL |/Q PORTS
DATA ENTRY DEVICES

Figure L-é.

1
SERIAL DIAGNOSTIC
PORT

Representative GRAPHIC 8 System Configurations

H-80-0444-004

1-13/1-14

SECTION 2

OPERATING MOILES

T 2.1 GENERAL

The GRAPHIC 8 system can be operated in either the local or the system mode.
In the local mode, the GRAPHIC 8 operates as a stand-alone system; in the system
mode, the GRAPHIC 8 operates on—-line to the host computer. Initialization in either
mode causes built=-in diagnostic routines to be performed automatically.

2.2 LOCAL MODE

After primary power has been applied to the GRAPHIC 8, the system may be
initialized in the local mode by pressing the LOCAL pushbutton switch on the front
of the terminal controller., Pressing this switch causes a wverification test pattern
to be displayed on each of the associated display indicators, causes the built-in
diagnostic routines to be perfommed, and enables local mode commands to be executed.
The following paragraphs discuss these operations as they relate to software.

E NOTE

When the LOCAL switch is pressed, the built-=in
memory diagnostic exercises the complete memory
system. For systems containing more thanm 32K of
memory, it may take several seconds before the
terminal verification pattern is displayed. As
part of the memory diagnostic, the memory con-
figuration installed in the terminal controller is
saved and can be examined if desired. Address 736
contains the RAM configuration word and address
750 contains the RM configuration word.

The RAM and ROM configuratlon words are defined as
follows:

RAM CONFIGURATION WORD

151413121110 9 8 7 6 5 4 3 2 1 0
i MEMORY SYSTEM [0 0olTo o olTo o ol
. Address 670 contains a copy of the system config-=

wation register (see page page 4-22).

- ‘ Change 1 2-1

i
ad

Memory System (64K cards)

Bys By4 By3 Bya Byy Byo Bg Bg

Banks 3

(16K word 1/2 banks)

© 0 0 0 0 0 0 0 0K
o 0 0 0 0 0 0 1 16K
0 0 0 0 0 0 1 1 328
© 0o 0 0 0 1 1 1 48K
o 0o 0o 0o 1 1 1 1 64K
o 0o 0o 1 1 1 1 1 80K
o o 1-1 1 1 1 1 96K
o 1 1 1 1 1 1 1 1128
1 1 1 1 1 1 1 1 128K
| | I l
2 1 0
ROM CONFIGURATION WORD
15 14 13 12 11 10 9 8 6 3 10
L FL LI I |
lo 0o 0 0o 0 0 0 0 0] RoM |0 0o

Bg By
0 0O No optional ROM
1 0 4K optional ROM
1 1 8K optional ROM

o

2.2.1 VERIFICATION TEST PATTERN AND DIAGNOSTICS. Figure 2-1 is the verification
test pattern that is displayed on each display monitor when the GRAPHIC 8 is
initialized in the local mode. This pattern remains displayed until terminated by
the proper command (paragraph 2.2.2) or until a period of 45 minutes has elapsed
since an operation affecting the pattern was last performed.

Components of the verification test pattern that are primarily associated with
software and the operation of peripheral devices are identified in figure 2-1. When
the system is first initialized in the local mode, "XX" appears in the small box in
the lower right portion of the patternm. The "XX" indicates that the code appearing
in the same box contains the results of the built-in diagnostic routines that were
automatically performed. The diagnostic code is a three-digit octal representation
of an eight-bit binary code that indicates the results of each diagnostic routine.
Bits in the binary code are assigned as follows:

SERIAL INTERFACE DIAGNOSTIC

READ/WRITE MEMORY DIAGNOSTIC

DISPLAY PROCESSOR DIAGNCSTIC

_MSB e , LSB
7 1 6 | 5 | 4 [3 | 2 | 1] ? !
| | | |] | | |
l I l l l I ! |
| l ‘ l l l l l
I | | | | | [!
NOT USED l | l i | | l |
l l l I I | l
NOT USED l ; } i { : ;
3-D COORDINATE CONVERTER I | | | | |
DIAGNOSTIC ' } % = % i
PARALLEL INTERFACE DIAGNOSTIC | { i % g
R ! l l
| i I
l l |
| |
l |
l
I

DIGITAL GRAPHIC CONTROLLER
DIAGNOSTIC

A checksum calculation routine performed whenever the GRAPHIC 8 is initialized
in the local mode is a checksum calculation based on all GCP stored in read only
memory. The result is depositad in memory location = 500 (oetal). Location 500 can
also be examined as described in paragraph 2.2.2.1.

When a diagnostic routine detects a malfunction, the corresponding bit in the
error code is set to a 1l; if no malfunction is detected, the bit is set to a 0. The
octal code displayed in the verification test pattern then indicates the results of
all the diagnostic tests. TFor example, 000 indicates all tests passed, 002
indicates the display processor diagnostic test failed, 030 indicates the serial and
the parallel interface diagnostic tests failed, and 077 indicates that all
diagnostic tests failed.

2=4

Figure 2-1.

Verification

Test Pattern

PR
[

bl

'? .

R,

As soon as any input is received by the terminal controller via a serial
interface port, the "XX” in the small box is replaced by a code that indicates the
port to which the input device is counected. Codes associated with each serial
interface port are shown in table 2-1.

Table 2-1. Serial Interface Port Codes

SERIAL ' ' ' .
INTERFACE

CODE PORT DEVICE ASSOCIATED CONNECTOR

TT TTY Console teletypewriter J2 on ROM and Status card

F1 3 Function keyboard 1 J5 on multiport serial interface
card #1

F2 7 Function keyboard 2 J5 on multiport serial interface
card #2

F3 = 2 Function keyboard 3 J4 on multiport serial interface
card #1

Fé4 9 Fudction keyboard 4 J3 on multiport serial interface

% card #3 :

S1 1 Serial host J2 on multiport serial interface
card #1

PED

Iandicators

1% 4 PED #1 J6 on card #1

2% 8 PED #2 J6 on card #2

3%) PED #3 J4 on card #2

4 10 PED #4 J4 on card #3

Trackball (or forcestick) indicators appear in the upper left corner of the
verification test pattern. The "1*" indicator is assoclated with the device
normally connected to serial interface port 4 (J6 on multiport serial interface card
no. 1) while the "2%" is associated with the device normally connected to serial
interface port 8 (J6 on multiport serial interface card no. 2). These indicators n*
displayed on the test pattern are only those that are included in the system
configuration (Display Processor II switch settings) regardless of whether the
trackball or forcestick is physically connected to the systems If a trackball or
forcestick is connected to port 4 or 8, it can be manipulated to move its associated
indicator about the screen of the CRT as desired. (See paragraph 2.2.1.2 for data
tablet.)

When the serial interface port designation 1s displayed in the small box, the
three digit octal code in the box indicates the code last transmitted to the

terminal contreller. Additionally, if the code represents a displayable character,
the character appears in the upper left corner of the box. If the code does not

represent a displayable character, the upper left corner of the box is blank. In

systems using SI (shift inm) ‘and SO (shift out) codes to identify characters in an
extended set, the S8I character is displayed over the left hand digit of the code and

the S0 character is displayed over the right hand digit.

The l-digit nﬁmeral in the upper center of the verification test pattern
indicates the monitor (1=4).

A filled Polygon positibned beneath the blinking Monitor Number will display
the default Colors/Gray levels. The number of Colors/Gray levels is a function of
the configuration and can bg 8, 16, 128, or 256.

2.2.1.1 Hardcbpy Generation. A hardcopy of the terminal verification pattern can
.be generated by pressing function key FO to freeze the pattern and then the hardcopy
initiate button located on the hardcopy unit.

2.2.1.2 Data Tablet Testing. The data tablet can be tested by pressing function
key F1. This causes the o* trackball/forcestick indicators to change to n#. The 1#
and 2# symbols indicate that all messages received via ports &4 and 8 are in data
tablet format. (Data tablet messages consist of 10 character messages, whereas the
trackball and forcestick generate 2-character messages.) When the data tablet pen
switeh is pressed and the pen is moved along the active area of the data table

sur face, the appropriate cursor symbol (1# or 2#) moves at a rate proportional to
the movement of the pen. The 1# symbol is associated with the data tablet connected
to port 4 and the 2# symbol is associated with the data tablet conmnected to port 8.

NOTE

Successively pressing function key Fl causes the
terminal verification pattern to switch from
processing data tablet messages to trackball/
forcestick messages and vice versa.

2.2.2 LOCAL MODE COMMANDS. After the GRAPHIC 8 has been initialized in the local
mode the verification test pattern 1s no lomger required, display of the pattern may
be terminated by pressing the RETURN key on the keyboard. The pattern then
disappears and the letters "BO M" are displayed on the center of the CRT screen as
an indication that the system is in the local monitor mode. At this point, the
operator can perform any of several operations that permit him to monitor or debug a
program, trangfer control, or communicate with the host computer.

NOTE

Commands are executed when the RETURN key on the
keyboard 1s pressed.

The following paragraphs discuss commands that can be executed when the system
is in the local monitor mode. A swumwary of the commands is given in table 2-2.

2-6

[

Table 2-2. Local Mode Command Summary

KEYBOARD
ENTRY OPERATION

RETURN Executes local mode command or returns system to local monitor level.

nnonnn/ Displays contents of memory address nnnnnn (octal).

/ Increments memory address counter by two and displays address
contents.

or Decrements memory address counter by two and displays address
contents,

Bn Select different memory bank. (BO 0-32K; Bl 32-64K; B2 64—96K;

B3 96-128K; and B4 16-32K RAM).

S Transfers GRAPHIC 8 to system mode operation.

T RETURN Transfers to the verification test pattern.

L RETURN Loads memory from paper tape rzader.

nnnnl Loads selected option from expansion module,

RETURN

U RETURN Unload all optiomns.

O RETURN Display status of all options loaded.

Q Decrements contents of display processor Q register by twe and
displays result., Used with diagnostics to indicate address at which
display processor halted,

nannnnD Directs graphic controller to display refresh file beginning at

RETURN address nnnnnnn (octal).

nnonnnG Transfers control of display processor to program beginning at memory

RETURN address nnnnn (octal).

Y RETURN or Calls teletypewriter emulation program. After entering emulation

P RETURN program, function key FO clears CRT screen. Function key Fl selects
full or half duplex operation; receipt of octal code 035 from the
host computer or pressing function key Fl13 transfers GRAPHIC 8 to
system operating mode. (Y = serial, P = parallel)

RUB OUT Deletes last octal entry from keyboard.

Change 1 2-7

2.2.2.1 Memory Commands. The content of a memory location is displayed by typing
the octal address (typing of leading zeros is not required) followed by a slash (/),
As soon as the slash is typed, the content of the memory location is displayed
immediately to the right of the address. Successive memory locations can then be
examined simply by pressing the slash key. Each time the slash key is pressed, the
memory address is incremented by two and its content displayed immediately to the
right of the slash.

Agter the slash key has been used to examine the content of a memory location,
the up arrow (! or A) key may be used in a similar manner to examine preceding
memory locations. Each time the up arrow key is pressed, the memory address is
decremented by two and its content displayed immediately to the right of the slash.

The content of a memory location may be changed after it has been examined by
typing the new data (typing of leading zeros is not required) before pressing the
slash or up arrow key. The new data is displayed to the right of the old data and
is automatically substituted when the slash or up arrow key is pressed.

Memory locations in other banks can be examined or changed via the bank (B)
select command. Typing BO, Bl, B2, B3, or B4 causes the memory bank selection to be
changed to bank 0, bank 1, bank 2, bank 3, or bank 4 respectively. Below is a table
representing the associated virtual and physical addresses for each bank.

Bank Number Virtual Address Physical Address Pages

Q% 000000-177777 000000-177777 00-07

1 000000~177777 200000-377777 10-17

2 000000-177777 400000-577777 20-27

] 3 000000~177777 600000—7777%7 30-37

4 000000-177777 ©100000-177777 ' 04-07
NOTE

*Addresses in the range of 140000-177777 (pages &,
5, 6, and 7) for bank 0 correspond to ROM and I/0
device registers. Addresses in the range of

_ 140000-177777 for bank 4 correspond to RAM.

Return to the monitor level is accomplished by pressing the RETURN key. When
this key is pressed, any specified memory content change is completed and the system
returns to monitor level as indicated by letters "Bn M" displayed at the center of
the CRT screen. '

2.2,2.2 Displaying a Refresh File. When the system is in the local monitor mode,
the contents of a refresh file may be displayed by typing the starting address of
the file (in octal notation) followed by a "D" and then pressing the RETURN key.
This command instructs the graphic controller to display the entire refresh file
that begins at the specified address. Display of the refresh file continues until
the RETURN key is pressed again, at which time the system returns to the local
monitor level. This command is subject to the bank argument presently displayed.

2-8

2.2.2.3 Transfer of Program Control. Program control may be transferred from local
monitor level to any desired address location in bank O by typing the address
location in octal notation followed by a "G" and then pressing the RETURN key. The
display processor then executes instructions beginning with the instruction at the
specified address. Any further operations depend on the program to which control is
transferred.

2.2.2.4 Transfer to System Mode. To transfer to the system mode of operation from
monitor level, type "S”. This command has the same effect as pressing the SYSTEM
switch on the terminal controller (paragraph 2.3). After transferring to the system
mode, operation in the local mode can be reestablished only by a message from the
host computer or by pressing the LOCAL switch on the terminal controller,

@

2.2.2.5 Teletypewriter Emulation. For purposes of communicating with a host
computer, the GRAPHIC 8 can be made to emulate the functions of a teletypewriter.
In this mode, the keyboard operates like the keyboard of a teletypewriter and the
display monitor serves as the printout device. Scrolling of data on the display
monitor is handled on a half-page basis. That is, when the CRT screen is full, the
top half of the data is deleted from.the display and the bottom half of the data
moves up to take its place.

If a parallel interface card is installed in the terminal controller, the
Graphic Contreol Program assumes that communications with the host computer are to be
handled over the parallel interface. In this case, teletypewriter emulation signals
are transmitted in parallel using only the low order byte (bits 0=7) of the 16-bit
interface. If a parallel interface card is not installed, a standard 8-bit serial
interface via serial interface port 1 is assumed. 1In either case, bit 7 is always
equal to zero,

The emulation program is entered from the monitor level by typing the letter
"Y" or "P" followed by RETURN.* Full-duplex of half-duplex emulation may then be
selected by preassing function key Fl which changes the selection each time it is
pressed. The type of emulation selected is indicated by the "TTY F" (full duplex)
or "TTY E" (half duplex) that is displayed at the top of the screen at all times
during emulation. Switching between full and half duplex operation may be’
accomplished at any time during emulation by pressing function key Fl., Pressing
function key FO during teletypewriter emulation causes the screen to be cleared.

Exit from the teletypewriter emulation program occurs when octal code 033
(ASCII control character GS Group Separator) is received from the host computer,
This code, which can also be generated by pressing function key Fl3, immediately
causes the GRAPHIC 8 to transfer to the system mode of operation. Return to the
local monitor level can be achieved only by a command from the host computer or by
pressing the LCCAL pushbutton switch on the terminal controller.

2.2.2.6 Additional Local Mode Commands. Additional commands that can be used when
the GRAPHIC 8 is in the local mode at the monitor level are the'lL, U, 0, T, Q, and
RUB OUT commands. The L command enables the memory to be loaded from a paper tape
reader connected to the terminal controller, After the tape has been placed in the
reader, loading is initiated by typing the letter "L” followed by RETURN.

*Y = gerial, P = parallel

Change 1 2-9

NOTE

A paper tape reader may be connected to multiport
serial interface card ports 1, 2, or 3 or to the
serilal ;interface port on the ROM and status logic
cards

The L command can also be used to load in options from: the expanaion module.
The option command format is as follows:

nnnnl TURN

where nnonn is the option number. Valid option numbers are in the ranges-of 1 to
3777 and 4001 to 7777. o

NOTE

The optional expansion module can store a variety
of option types.

The U command is used to unload all optlons. Typing "U" followed by RETURN
will cause all options to be unloaded.

The O command is used to detect the presence and status of all loaded options.
Typing O followed by RETURN causes the display of the first option loaded. Succes~
sively pressing the RETURN key causes the display of all other options loaded. The
option status is displayed in the following format.

nnnn ss Where nnnn is the option number
) and ss is the option status

The option status code is as follows:

00 Detected but unlcaded

01 Unloaded, checksum error (local)

11 Unloaded, checksum error (system)

02 Unloaded, checksum OK, hardware not present (local)
12 Unloaded, checksum OK, hardware not present (system)
03 Unloaded, checksum OK, self test = no go {(local)

13 Unloaded, checksum OK, self test = no go (system)

04 Loaded, checksum OK, self test = go (local)

14 Loaded, checksum OK, self test = go (system)

The T command is used to recall the verification test pattsrn when the system
is at the local monitor level. This command is executed by typing the letter "T"
followed by RETURN., The effect is the same as pressing the LOCAL switch on the
terminal controller. Pressing RETURN a second time causes the system to return to
the monitor level.

e —— ——

—._.,

d

Table 2-3. Standard Transfer Table

ADDRESS
(OCTAL)

INFORMATION OR ROUTINE

REMARKS

157700

157702

157704

157706

157710

157720

157730

157740

157750

157760

157770

GCP date (year and month)

GCP date (day)

GCP release number

Number of GCP field changes

ZERO

PLUS

MINUS

LOADER

MONITOR MODE

SYSTEM MODE

TEST PATTERN

High order byte indicates month
in octal form. Low order byte
indicates last twe digits of year
in octal form (e.g., 003115
indicates Jume 1977).

Day of month is indicated in
octal form. -

Release number is indicated in
octal form.

Number of field changes is
indicated by the number of bits
set to 1 (e.g., 000007 indicates
three field changes).

Maintenance routine. Graphic
controller sets X and Y positions
at zero (center of screen) and
then halts.

Maintenance routine. Graphic
controller sets X and Y positions
at maximum on-screen positions
(upper and right corner) and then
halts.

Maintenance routine. Graphic
controller sets X and Y positions
at minimum con~screen positions
(lower left corner) and then
halts.

Enables a file to be loaded into
read/write memory from various

input devices.

Enables local mode commands to be
executed.

Enables system mode.

Transfers to verification test
pattern.

2-11

LOCAL BUTTON

VERIFICATION
TEST

/ PATTERN .

2
¢ A
| / A
-t
%
-
%
—t
2
Ly B
Luomal MO usour
.) INITIALIZE
SIGNAL
FROM
\ HOST

\ Y el 3 /
RETURN A

D /
i S _.-ﬂ"\’/).o

F13 1Z FROM

i,? ™ SYSTEM HOST

EMULATION ASCII 035 FROM HOST MODE = __ SYSTEM
K’) " BUTTON
POWER
*SEE TRAMSFER TABLE 2-3 ON
H80-0444-007

Figure 2-2. Summary of GRAPHIC 8 Operating Modes

2~12

temsid

SECTION 3

GRAPHIC 8 INSTRUCTIONS

3.1 GENERAL

Instructions used by the GRAPHIC 8 can be divided into twoc categories: those
executed by the display processcr and those executed by the digital graphic con—
troller. The two microcontrollers operate independently of one another and share
common memories via the controller bus (see figure 1-3). Running of GCP is con~
trolled by the display processor while generation of the display image is controlled
by the digital graphic controller. The following paragraphs provide details
concerning the instructions executed by each microprocessor.

NOTE
In the octal codes shown for each instruction,
unused bits are indicated by X. Bits representing

variable data are indicated by d.

3.2 DISPLAY PROCESSOR INSTRUCTIONS

The display processor emulates a minicomputer of the PDP=11 type manufactured
by Digital Equipment Corporation (DEC). As such, the display processor is capable
of executing the standard set of instructions used for the PDP-11/34 minicomputer
and user software may be prepared using standard DEC mnemonics. Other PDP-11
instructions that can be executed are the MUL, DIV, ASH, ASHC, and SPL instructions.
Details concerning PDP-11 instructions are contained in the DEC PDP-11/04/34/45/
55/60 Processor Handbook which should be used as a supplement to this manual.

An additional instruction that can be executed by the display processor is the
EXCQ (exchange register Q) instruction. The format and operation of this
instruction are as follows:

|EXCQ] 'EXCHANGE REGISTER Q Octal code: 0767dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

The EXCQ instruction causes the contents of register Q to be exchanged with the
contents of the general register gpecified by bits 0=5. Its primary purpose is to
provide a means of retrieving the contents of the program counter following the
execution of a HALT instruction. When a HALT instruction is executed, the contents
of the program counter (HALT instruction address + 2) is stored in register Q. The
EXCQ instruction can then be used to move the value to a general register so that it
can be processed as required. The EXCQ instruction is used in conjunction with the
Q command of the local operating mode to enable the operator to determine the
address at which the display processor halted (refer to paragraph 2.2.2.6).

Oéeration:
" (REG Q) ¢ (REG DD)
(REG DD) < (REG Q)

Cdndition Codes:

N: Set if value in Q reg < 0; cleared otherwise:
Z: Set 1f value in,Q‘reg,= 0, cleared otherwise.
V: Cleared

C: Not affected

3.3 DIGITAL/GRA?HIC CONTROLLER INSTRUCTIONS

The primary functions of the digital graphic controller are to ratrieve‘the
display instructions from the refresh file, calculate the addresses of the pixels
that are to be illuminated and to write the pixel data into the mapping memory.

The digital graphic controller (DGC) instruction set comprises more than 60
instructions that are used to control the presentation of the image to be displayed.
These Iinstructions can be broken down into four basic categories: Pixel position
instructions, sequence control instructions, register instructions, and display
control instructions. Pixel position instructionms detemmine which pixels will be
displayed for the purpose of presenting vectors, conics, and characters. Sequence
control instructions direct the graphic controller to jump, branch, halt, or wait as
required for proper program execution. Registar instructions permit data to be
manipulated using the four general purpose registers and the stack pointer of the
graphic controller. Display instructions enable various parameters to be
astablished or modified as requlired to achieve the desired display image
characteristics.

NOTE

Macros written in MACRO-1l assembly language are
available for GRAPHIC 8 users. These macros can
be used to assemble all the graphic controller
instructions plus some useful instruction
sequences. Refer to Appendix B for description of
the macros.

The complete set of instructions and data that defines a particular display
image is referred to as a refresh file. An Extended Instruction Mode (EIM) bit
permits more instructions than would normally be possible with a given set of opcode
bits. The EIM bit is set or cleared by the Load Mode bits imstruction, MODE.

For example, 18 bit addressing is used for most sequence control instructions
_when the EIM bit is on.

3=2

L

i

An indicator (EIM) anpears - whenever the imstruction being described is for EIM
bit om. i

Instructions are fetched by the digital graphic controller via the processor
bus, acted upon, and the resulting data placed on the graphic bus for application to
appropriate circuits (refer to figure 1-3). The following paragraphs describe the
format and function of each instruction in each category of digital graphic
controller instructions. A summary of the instructions is contained in Appendix A.

Instructions with bit = X Qeans that the bit is ignored by the instruction
processor. However, since future systems may utilize these X bits, never use an X
bit for information storage. :

3.3.1 PIXEL POSITION INSTRUCTICNS. Twenty-five instructions are used to determine
the intensified Pixels in the display monitor. These instructions include load,
move, draw, text, and conic instructions. :

3.3:.1.1 Load Instructions. Load instructions specify X-axis positions on the
screen in terms of absolute data (specific coordinates) or relative data (lengths
along X axis).

Except for short relative moves or draws, if both X~ and Y~axis data are to be
changed, a load instruction must precede a move or draw instruction.

|LDXA| LOAD ¥ ABSOLUTE Octal code: 02dddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ 1 1 [] l [1 1 1 1 [[1 1 i

|
o § 0 ,! 0 1 0 1! 0 } :’:1 X COORDINATE l
. ‘ I

Bits 0~10 define absolute X~axis coordinate in two's complement form. These
bits (sign extended) replace contents of X position register.

Operation: (DXR) <— X COORDINATE
|LDXR| LOAD X RELATIVE Octal code: 024ddd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 ‘ i i [1 1 1 1 1 1 1 [!

P
lolo 1t o} 1]+] X INCREMENT i
|

Bits 0-10 define increment in X-axis coordinate in two's complement form.
These bits (sign extended) are added to contents of X position register.

Operaticn: (DXR) <— (DXR) + X INCREMENT

wnd

3.3.1.2 Move Instructions. Move instructions specify X~ and/or Y-axis new pixel
positions on the CRT screen in terms of absolute data (specific coordinates) or

relative data (lengths along X and/or Y axis). Except for a move short relative
instruction, a load instruction (paragraph 3.3.1.1) must precede a move instruction

when both %= and Y-axis data are to be changed.

| M7TRA | MOVE X ABSOLUTE Octal.code:;. 05dddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I)] i k] T 1 T 1 v 1 ‘ ¥ ’
l
i

T
1 0 1101+ X COORDINATE . 1
d

.
| 0
i

Bits 0-10 define absclute X-axis coordinate in two's complement form. These
bits (sign extended) replace contents of X position register. NOTE: Mode O only

Operation: (DER) <~ X CCORDINATE

| MER | MOVE X RELATIVE Octal code: 054ddd

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

¥ ¥ 1 1 ¥ 1 ? 1 1 1 [I

T T :
IIOill 0 1%1;12 X INCREMENT | o

Bits 0-10 define increment 1in X-axis coordinate in two's complement form.
These bits (sign extended) are added to contents of X position register. NOTE: Mode
0 only

Operation: (DXR) <~ (DXR) + X INCREMENT

ke | MOVE Y ABSOLUTE Octal code: 06dddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ot ? ' Tt] 1 T Y. K ‘v' B r !
1' Y COORDINATE ' !l

P I
loft1r 1 olol+
I L

Bits 0-10 define absolute Y-axis coordinates in two's complement form. These
bits (sign extended) replace contents of Y position register.

Operation: (DYR) <~ Y COORDINATE

IWERl MOVE ¥ RELATIVE Octal code: 064ddd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i ' ' 1 [} [[] t ? vt [
|

o
11 Olllli-%{’ Y INCREMENT |
!

Bits 0~10 define increment in Y-axis coordinate in two's complement form.
These bits (sign extended) are added to contents of Y position register.

f
I o
II o

Operation: (DIR) <~ Y INCREMENT

3-~b

| MVSR | . MOVE SHORT RELATIVE Octal code: 1ddldd

15 14 13 12 11 10 S 8 7 6 5 4 3 2 1 O

! 1 1 1 ! 1 1 t ' 1 1 ’

I l B
l 11 0]+ Y INCREMENT ' 0 1] + X INCREMENT !
1 | 1 1 ' I

— Bits 0-5 define increment in X-axis coordinates; bits 8-=13 define increment in
Y-axis coordinate. Both sets of bits are in two's complement form. These bits are
added (sign extended) to contents of X and Y position registers, respectively.

|

Operation: (DXR) < (DXR) + X INCREMENT
(DYR) <— (DYR) + Y INCREMENT

3.3.1.3 Draw Instructicns. Draw instructions are similar to move instructions
(paragraph 3.3.1.2) except that they cause appropriate pixels to be illuminated from
the current X and Y positions to the specified X and/or Y positions. A point plot
relative instruction 1s also included in the draw instructions. This instruction
defines a dot represented by an intensified pixel.

|DRXA| DRAW X ABSOLUTE Octal code: 03dddd

15 14 13 12 1 10 S 8 7 &6 5 4 3 2 1 0

1 t ? 1 1 4 1 1 1) 1 I

I N
olio 1 I‘IO’li!l X COORDINATE 1

Bits 0=10 define absolute X-axis coordinate in two's complement form. These
bits (sign extended) replace contents of X position register. NOTE: Mode O only

Operation: (DXR) <~ X COORDINATE

|DRXR | DRAW X RELATIVE Octal code: 034ddd

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 O

[l [] St [1 1 1 1 1 1 1 !
lolo 1 1] 11]+] X INCREMENT ;
| [

Bits 0-10 define increment in X-axis coordinate in two's complement form.
These bits (sign extended) are added to contents of X position register. NOTE: Mode
0 omnly

Operation: (DXR) <~ (DXR) + X INCREMENT

L

L

| SRTE| DRAW Y ABSOLUTE Octal code: O4dddd

15 14 13 12 11 10 9 8 7 6 3 4 3 2 1 0
I I 1 [I l I 1 1 ¥] ' 1 [[} [i
lol1 o ololill- .Y COORDINATE |
|| | 1

Bits 0-10 define absolute Y-axis coordinate in two's complement form,. These
bits (sign extended) replace contents of Y position register. '

Operation: (DYR) <— Y COORDINATE

|DRYR| DRAW Y RELATIVE Octal code: 044ddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 90

1 L] [1 [[} 1 1 [] 1 1 1 ‘

P 1
{Oill 0‘0%1%_{-_5 Y INCREMENT |

Bits 0-10 define increment in Y~axis coordinate in two's complement form.
These bits (sign extended) are added to contents of Y position register.

Operation: (DYR) <= (DYR) + Y INCREMENT

| DRSR| DRAW SHORT RELATIVE Octal code: 1dd0dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 [} [] [} l [l T [}] l
| 1] 0]+ Y INCREMENT | 0 0|+ X INCREMENT |
1 1 | | |

Bits 0-5 define increment in X-axis coordinate; bits 8~13 define increment in
Y-axis coordinate. Both sets of bits are in two's complement form. These bits are
added (sign extended) to contents of X and Y position registers, respectively.

Operation: (DXR) <~ (DXR) + X INCREMENT
(DYR) < (DYR) + Y INCREMENT

|PPLR| POINT PLOT RELATIVE ~—— 0Octal code: 1dd0dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l l] t [} [] ' I 1 l] 1 1 [l 1 l
| 11 1]+ Y INCREMENT : 0 0 % + X INCREMENT o
(S ' |

Bits 0~5 define increment in X-axis coordinate; bits 8-13 define increment in
Y-axis coordinate. Both sets of bits are in two's complement form. These bits are
added (sign extended) to contents of X and Y position registers, respectively., A
dot is displayed as ome intensified pixel.

Operation: (DXR) <— (DXR) + X INCREMENT
(DYR) <~ (DYR) + Y INCREMENT

|PPYA|

15 14 13 12
!

POINT PLOT Y ABSOLUTE (EIM) Octal code: 05dddd

11 10 9 8 7 6 5 4 3 2 1 0

1

1
lol1 o 1
|

I i] 1 1 ? 1] 1 1] 1 I

Fol+1 Y COORDINATE |

The Point Plot Y Abs
the Y direction without ¢
displayed as one pixel.

|17 ‘ |

olute instruction provides the ability to point plot along
he need for the MVYA instruction. The Point Plot is
Normally, LDXA precedes this instruction.

Operation: (DYR) <~ Y COORDINATE

|PPYR|

15 14 13 12
0 T

POINT PLOT Y RELATIVE (EIM) Octal code: 054ddd

11 10 9 8 7 & 5 4 3 2 1 O

lol1 o 1
.

‘ ; [¥ T [1 1 1 1 1 1

}1%3—_%- Y INCREMENT |
— . |

The Point Plot Y Rel

ative instruction provides the ability to point plot in the

Y direction without the need for the MVYR instruction. The plotted point is

displayed as one pixel.

Operation: (DYR) < (DYR) + Y INCREMENT

|PPTA]

POINT PLOT TABULAR ABSOLUTE (EIM) Octal code: 0076dd

11 10 9 8 7 &6 5 4 3 2 1 O

15 14 13 12
{] [}

0|
|

0 0

1+ 1 111 1 o;aort’ TAB INCR

I
|
l
!
|
|
I
|

|

|

0
Flx X X

] l 1 1 1 1 1 1 1 1 1 7

X | + COORDINATE

The PPTA instruction specifies a sequence of X or Y coordinate depending on the

orientation.
Bits 0—=4 represents

Bit 5 = 0 indicates
=] indicates

Bit 15 (in the data
= (0 indicates
=] indicates

instruction.

the ¥ or Y Tabular Increment between successive points.

horizontal orientation. Coordinates are Y values.
vertical orientation. Coordinates are X values.

words)

an intermediate point.
the final plotted point and the end to the variable length

3=7

Operation:
For horizontal orientation: (ROT = 0)

(DXR) < (DXR) + tabular increment
(DYR) < Coordipate

For vertical orientation: (ROT = 1)

(DYR) <— (DYR) + tabular increment
(DXR) <~ Coordinate

|$PTR| POINT PLOT TABULAR RELATIVE (EIM) Octal code: 0077dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
'] 1 ‘ []) i t [] l 1 1 [[
ojo o o}1r 1 11]1 1 1 |roT! . TAB INCR
| | | |

‘ T] [l T 7 1 T T T 7 T 7
FlX X x|x| + INCREMENT
| L

The PPTA instruction specifies a sequence of X or Y increment depending on the
orientation.

I
I
l
|
i
I
I
l
l

Bits 0-4 represents the X or Y Tabular Increment between successive points.

Bit 5 = 0 indicates horizontal orientation. Increments are Y values.
= 1 indicates vertical orientation. Increments are X values.

Bit 15 (in the data words)
= 0 indicates an intermediate point.
= 1 indicates the final plotted point and the end to the variable length
instruction.

Operation:

For horizontal orientation: (ROT = 0):

-

(DXR) <— (DXR) + tabular increment
(DYR) < (DYR) + increment

For vertical orientation: (ROT = 1):

(DYR) <~ (DYR) + tabular increment
(DXR) <— (DXR) + increment

3-8

3¢.3.1.4 Text Instructions. Two instructions are used to draw characters. One
instruction causes a single steady or blinking character to be drawn at the current
position. The second instruction enables two characters to be drawn and the
position incremented automatically when each is complete. Character size and
orientation data are not included in the text instructions. These parameters as
well as the values used to increment the X, Y position are determined by display
control instructions (paragraph 3.2.4).

| CHAR| DRAW SINGLE CHARACTER Octal code: 116ddd (blink)
117ddd (steady)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
]] E]] i] [] i | 1 1 1 1 1 t [] r
110 o 111 1 Bl S| 1| CHARACTER ASCII CODE %

Bits 0-6 specify ASCII code of character to be drawn at location defined by
contents of X and Y position registers. Bit 9 specifies whether the character is to
blink or be steady (1 indicates steady). Bits 0-6 replace contents of character
register. Bit 8, the shift bit, indicates either the standard character set (1) or
the extended optional character set (0)., This shift bit, applies only to the
character specified in the CHAR instruction. It has no effect on subsequent text
instructions. Bit 9 replaces blink bit in display Z register. After a character is
presented, the starting location is returned in X and Y position registers and the
previous state of the blink bit is restored in the display Z register.

Operation: (DCR) <~ CHARACTER ASCII CODE
DZR (blink bit) < Bit 9
DZR blink bit is restored following instruction execution

NOTE

On customer systems containing special characters
or speclal symbols, the shift out code (character
code octal 16) can be used to display these
symbols. This is done by executing a CHAR
instruction containing the shift out code.
Following the shift out code is a group of TEXT
instructions to display the selected special
symbols. After displaying special symbols, the
shift in code (character code octal 17) must be
used to permit display of the standard characters
again. '

3-9

| TXT| DRAW TWO TABULAR CHARACTERS Octal code: 1dd2dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l § l] [1 1] []] i T 1 1] 1 [}
| 1 | CHARACTER 2 ASCII CODE | 1 | CHARACTER 1 ASCII CODE |
I [‘ |

Bits O=6 specify ASCII code of first character to be drawn; bits 8-14 specify
ASCII code of second character to be drawn. Beginning location for each character
is defined by X and Y pogition registers, Bits 0O~6 replace the contents of charac—
ter register. -The character is presented. Then bits 8-14 replace contents of
character register. When a character is completed, the X position register (Y
position register for rotated characters) is automatically incremented by the con-
tents of text increment register. If ASCII code for a NULL character is specified,
no character is drawn and the X (or Y) position register is not incremented.

Operation: Draw character 1 at position DXR, DYR

(DXR) <= (DXR) + (DTI) [(DYR) <~ (DYR) -+ (DTI) for
.rotated text]

Repeated above for character 2

Three control characters are used in the CHAR or TXT instruction to determine
text position on the screen (see table A-9).

The STX character defines the left margin of screen as the present X position
(Y position for rotated text).

STX Operation: (LMR) < (DXR)
B [(LMR) <~ (DYR) of rotated text]

The Carriage Return CR character sets the X position (Y position for rotated
text) to the previously defined left margin.

CR Operation: (DXR) < (LMR)
' ’ [(DYR) <~ (IMR) for rotated text]

The Line Feed LF character decrements the current Y position (or increments the
current X position for rotated text) by the amount previously defined as the line
increment (see the LDTI instruction).

LF Operation: (DYR) <= (DYR) = (DLI)
o [(DXR) < (DXR) + (DLI) for rotated text]

3~10

Py

The following information describes the RAM character generatoff

Summary of features:

1. The font size of the standard character set determines the font size which
must be used in the extended and RAM character sets. Vertical misalign-
ment of the characters will result if this condition is not met.

2. In the RAM set, 32 character codes (0003-0373) are reserved for
control functions; 96 character codes (040g~177g) are for displayable
characters.

3. Multiple character tables are possible,

4, All standard character sizes and rotation apply to RAM characters.

Se ASCII code 033g is the control code used to enter the RAM character set.

6. The base address for the RAM table must be loaded prior to using RAM
characters for the first time. Reloading is necessary only when multiple
tables are in use.

7 The "building” of the RAM character table must conform to the guidelines
that follow.

8. The character table must be based at 4K boundaries and may be placed in
any bank of memory. Care must be tzken not to violate any reserved areas
of memory in bank 0.)

9. RAM Control Characters
NULL (0008) performs same function as in standard and extended sets,

SO (0l6g) exits RAM character set and enters entended set.
SI (017g) exits RAM character set and enters standard set.
Guidelines

The RAM address of a specific character is determined by shifting the 7-bit
ASCII code four places to the left, filling the four least significant bits with the
LSB of the ASCII code, and "oring"” this value with the base address loaded by the
LDCG (load character generator) instruction (see page 3-23). The equation to
calculate the RAM address of a character in decimal is:

ASCIIjy + base addressyg (415 if ASCII|y is odd) = address of RAM
character

Change 1 3-10A

' B8y

1001000 = ASCII code

0000010010000000 * Modified ASCII code

0010010013000000 © RAM address'assuﬁing base address of 20000g. f_F
Base ;, : -
address ; v .

| The digital graphic controller microcode checks the LSB of the RAM address to
] determine the direction to proceed through the RAM. If the address is even, the .
§ digital graphic controller increments the RAM address by 1 to fetch the succeeding [-
d character data. If the address is odd, the digital graphic controller decrements
q the RAM address. This implies that the character definition is referenced to the
4 initial character address calculated. An example of how the L and M characters =
would appear in a RAM table based at 20000g using their assigned ASCII codes is |
| shown below. :

1001100 = L character ASCII code ‘W
0010010011000000 = RAM address for L character 22300g |

1001101 = M character ASCII code [.i
00L0010011011111 = RAM address for M character 22337g

4 The maximum width of a character is fixed at 7 pixels. Bit O of the 8-bit byte
2 is a flag that informs the digital graphic controller that the character is

Q canplete, Character length may be up to 16 pixels and may be shifted as in the case
§ of lower case characters. :

; The load character generator address instruction loads the base address of the .
§ RAM character set. The character table must be based at 4K boundaries in memory. ‘

Allowable character table base addresses (Bank 0):

4000 44000 104000
10000 50000 110000
14000 54000 114000
20000 60000 120000
24000 64000 124000
30000 70000 130000
34000 74000 134000
40000 100000

3~10B Change 1

iExample of a refresh file using the RAM character set:

°

4700 . Load character table address
30000 . Base address
117601 Enter RAM character set
140301
174201} RAM characters
100277 :
117600 Exit RAM character set
117601 Enter RAM character set
112217
130711 } RAM characters
141674
117600 Exit RAM character set

e © e @

Change 1 3-10C

RAM RAM

76543210

8

22300 200
' 200
200
200
200
200
200
200
3

N

22337 N N | 202

END OF CHARACTER BIT

H-80-0444-100

Example of Two 7 X 9 Characters in RaM

3-10D Change 1

3.3.1.5 Conic Instructions. Two conic instructions are used to specify 90-degree
segments and axis lengths of ellipses to be displayed. One is a lcad imstruction
that specifies X-~axis data. The second is a draw instruction that specifies Y—~axis
data and presents the ellipse. Bits in both instructions specify what combination
of 90-degree segments will be unblanked when an ellipse is drawn. Axes of all
ellipses drawn using these instructions alone lie parallel to the X and Y axes of

the display indicator.
°

L]

NOTE

Both conic instructions are required to define
each ellipse even when parameters specified by one
instruction must precede the draw instruction. If
the draw instruction is used alone, a circle will
be displayed with a radius equal to the length
specified for the semi~Y axis,

| LDRX | LOAD CONIC X REGISTER Octal code: 07dddd

15 14 13 12 11 10 9 8 7 6 5 4 3-2 1 0
[7 i l !] T 1 T 1 1 1 7 1 }
fol1 1 1] o0]qirtiqtl X SEMI-AXIS LENGTH |

[AR A R | _ |

Bits 0-8 define semi-axis length of ellipse (distance from ellipse center to
its perimeter) along X axis of CRT. Bits 9 and 10 specify unblanking (1l indicates
unblank) in quadrants QI (upper right) and QIII (lower left), with respect to the
.major and minor axes (if rotated) of the ellipse. All of bits 0=10 replace countents
of X conic register. !

Operation: (KXR) X SEMI-AXIS LENGTH plus QI and QIII bits

| DRKY | DRAW CONIC Y Octal code: 07dddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
l [] 1 ‘ l } ' 1] t [}] ? 1] ‘
[ol1 1 111]QIviQrrly SEMI-AXIS LENGTH (OR CIRCLE RADIUS)|
I | | | | | I

Bits 0~8 define semi-axis length of ellipse (distance from ellipse center to
its perimeter) along Y axis of CRT. Bits 9 and 10 specify unblanking (1l indicates
unblanking) in quadrants QII (upper left) and QIV (lower right), with respect to the
ma jor and minor azes (if the ellipse is rotated). All of bits 0-10 replace contents
of conic Y register. The ellipse is drawn as defined in conic X and Y registers
with ellipse center at location defined by X and Y position registers. The ellipse
: is unblanked in quadrants specified by bits 9 and 10 in the conic X and conic ¥
T3 registers. If a DRKY instruction is not preceded by an LDKX instruction, bits 0-10
of the DRKY instruction replace the contents of the conic ¥ as well as the conic ¥
register. The result is that a circle with a radius equal to the length specified

3-11

by bits 0-8 is created. Bits 9 and 10 then specify unblanking for the upper and
lower semicircles, respectively.

Operation: Preceded by LDKX instruction:
(KYR) <= ¥ SEMI-AXIS LENGTH plus QII and QIV bits
Not preceded by LDKX instruction: .

(KYR) <— Y SEMI-AXIS LENGTH plus QII and QIV bits
(RXR) <~ Y SEMI-AXIS LENGTH plus QII and QIV bits

3.3.2 SEQUENCE CONTROL INSTRUCTIONS. Thirteen instructions are used to control the
sequence of program execution and timing by the digital graphic controller. These
instructions include unconditional jump, conditional jump, subroutmne, linkage,
halt, wait, and update instructions.

The JUMP, JMPZ, JPRZ, CALL, CALR and RTBN utilize an 18-bit address if the EIM
bit is on. In this case it is recommended that you use the extended form of the
mnemonic for clarity.

3.3.,2.1 Unconditional Jump Instructions. Unconditional jump instructions permit
program control of the graphic controller to be transferred directly or indirectly
to a specific address in memory (absolute jump) or to an address removed from the
current location by a specified increment (relative jump). The jump short relative
instruction (JMPR) can also be used as a npo-operation instruction (NCOP) by .
specifying a jump increment of zero bytes.

[JUMP(E) | , JuMp Octal code: 00L0Xd dddddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -0

¥ ¥ i v 1 I [¥ g 1] ‘ i 1

| T |
| o lo o olo o 1}0 o0 o0}l%x X %] X% Al7 Al6]
l | | | | I
I~ T ' ‘ T |
}(AlS)iAlé Al3 . . JUMP ADDRESS . . A2 Al A0 ;

JUMP is a two-word Instruction used for unconditional transfer of program
control (direct or indirect) to a specific location in memory. The first word
identifies the instruction. The sacond word specifies a direct or indirect address
(for EIM = 0) to which program control is to be transferred. The JUMPE, jump
extended address instruction, utilizes bits O0-1 of the first word as bits Al6~Al7 of
the extended 18 bit address. Also, when in extended mode bit 15 represents address
bit 15 (Al5) not the indirect bit I.

The specified address may be the address of any even-numbered byte from 00000
to 777776 (octal). If bit 15 of the second word is set to O (direct addressing) and
EIM = 0, control is transferred to the address specified by bits AO-Al4. If bit 15
is a 1 (indirect addressing) and EIM = 0O, bits AO0=Al4 specify the memory address
that contains the required data. In this case, the contents of the specified

3=-12

address are used as tﬁe location to which program control is transferred. Note that
direct addressing cannot be used for addresses greater than 777776 (octal). Multi-
level indirect addressing may be used.

Operation: Direct: (DPC) <~ JUMP ADDRESS
iIndireCt: (DPC) <~ (JUMP ADDRESS)

[JRMP(E) | JUMP RELATIVE Octal code: 0011XX dddddd

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0

1 1 I 1 t] 1 1 I 1 t l 1 1

o o oJo o 1/0 o0 1]|X X XI|X X

0

]

+ |Al4 .. JUMP INCREMENT (IN EVEN BYTES) . . Al AQ

|
l
|
|
!
l

JRMP is a two-word instruction that causes unconditional transfer of program
control to a relative location in memory. The first word identifies the instruc-
tion, the second word specifies an even number of bytes by which the program counter
is to be incremented. The jump increment is added modulo 216 (any carry is
ignored) fo the contents of the program counter which is pointing to the address
following the location of the jump increment word. The result is used as the
address of the next instruction to be executed by the digital graphic controller.
Relative jumps from =100000 to 77776 (octal) bytes can be accomplished using this
instruction.)

If EIM = 1, the JRMP(E) instruction utilizes 18-bit addressing. If the
increment causes the 16-bit program counter to overflow, the bank register PGR is
incremented or decremented appropriately.

Operation: (DPC) <— (DPC) + JUMP INCREMENT

| IMPR | JUMP SHORT RELATIVE or NO OPERATION Octal code: 005ddd (JMPR)

— 005000 (NOOP)
or

|NooP |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
I i 1 1 r [1 l 1 1 t 1 1 1 7 [!
| o Jo o o1 0 1|+ JUMP INCREMENT (IN EVEN | 0 |
| B | | BYTES) [

Bits 0~8 specify, in two's complement form, an even number of bytes by which
the program counter is to be incremented (or decremented). These bits are added to
the contents of the program counter which is pointing to the address following the
location of the JMPR or NOOP instruction. The result is used as the address of the
next instruction to be executed by the digital graphic controller. Relative jumps
from =400 to 376 (octal) bytes in either direction can be accomplished using this

3-13

instruction. Specifying a relative jump of O bytes results in a no-operation
instruction.

Operation: (DPC) <= (DPC) + JUMP INCREMENT

3.3.2.2 Conditional Jump Instructions. Two conditional jump instructions are
provided to permit program control to be transferred or to continue in normal
sequence as determined by testing the contents of gemeral purpose register 0. Jumps
are executed when the contents of this register are not equal to zero. One instruc-
tion causes a conditional jump, direct or indirect, to a specific address in memory
(absolute jump). The second instruction causes a conditional jump to an address
removed from the current location by a specified increment (relative jump).

[IMPZ(E)| JUMP IF DISPLAY REGISTER O CONTENTS #0 Octal code: 0012X dddddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! 1 7 I ' [! 1 1)] [} 1] ! E]] l
}00 o!!oo 110 1 ollxxxlxzu?mai
, ’ | |

T . — , |
(Al5)|Al4 A13 . . JUMP ADDRESS = . . A2 Al A0 |
| , , |

JMPZ is a two~word instruction used for the conditional transfer (direct or
indirect) or program control to a specific memory location. The first word identi-
fies the instruction and causes the contents of general register 0 (DRO) to be
tested., The second word specifies a direct or indirect address to which program
control is conditiomally to be transferred.

0

The JMPZE, conditional jump extended address instruction, uses bits 0~1 of the
first word as bits AlS~Al7, respectively, of the extended 18 bit address. Note that
for EIM = 1 bit 15 represents the address bit (Al5) not the indirect bit I.

The specified address may be the address of any even—-numbered byte from- 00000
to 77776 (octal). Program control is transferred only when (DRO) # 0. If bit 15
of the second word is set to 0 and EIM = 0 (direct addressing), control is trans-
ferred to the address specified by bits AO-Al4. If bit 15 is a 1 and EIM = 0O
(indirect addressing), bits AO-Al4 specify the memory address that contains the
required data. In this case, the contents of the specified address is used as the
location to which program control is transferred. If (DRO) = O, program control is
not transferred and the program continues by executing the instruction at the
address that immediately follows the second word of the IMPZ(E) instruction (this is
the address to which the program counter is pointing). Note that direct addressing
cannot be used for addresses greater than (7) 77776 (octal). Multilevel indirect
addresssing may be used.

Operation: Direct: (DRO) # 0: (DPC <~ JUMP ADDRESS
' (DRO) = 0: (DPC) < (DPC)

Indirect: (DRO) # 0: (DPC) <— (JUMP ADDRESS)
(DRO) = 0: (DPC) <— (DPC)

3-14

| TPRZ(E) | JUMP RELATIVE IF DISPLAY REGISTER O CONTENTS # 0
Octal code: 0013XX dddddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
;] ' I 1 1 l [[I 1 1] v 1

lo o oflo o 1]Jo0o 1 1]% X X|XxX X X
| I | | !
|
|
I

0 .

I+

|
I
|
|
§ Al4 . . JUMP INCREMENT (IN EVEN BYTES) . . Al A0

|
I
|
|
l
i

JPRZ is a two-word instruction that causes a conditional transfer of program
control to a relative location in memory. The first word identifies the instruction
and causes the contents of general purpose register 0 (DRO) to be tested. The
second word specifies an even number of bytes by which the program counter is
conditionally to be incremented. Program control is transferred only when (DRO) #
0. When (DRO) # 0, the jump increment is added modulo 216 (any carry is
ignored) to the contents of the program counter which is pointing to the address
following the location of the jump increment word. The result is used as the
address of the next instruction to be executed by the graphic controller. When
(DRO) = 0, program control is not twansferred and the program continues by executing
the instruction that immediately follows the second word of the JPRZ instruction.
Conditional relative jumps from =-100000 to 77776 (octal) bytes can be accomplished
uging this instruction.

If EIM = 1, then the JPRZE instruction utilizes 18-bit addressing. If the
increment causes the l6-~bit program counter to overflow, the bank register PGR is
incremented or decremented appropriately.

Operation: (DRO) # O: (DPC) <~ (DPC) + JUMP INCREMENT
(DRO) = 0: (DPC) < (DPC)

3.3.2.3 Subroutine Instructions. Four subroutine instructions are provided to
permit calls to and returns from subroutines as required. Calls may be made to
subroutines located at a specific address in memory (absolute calls) or to sub-
routines at an address removed from the current location by a specified increment
(relative calls). The digital graphic controller is capable of calling subroutines
between different memory banks by the use of the extended address instructions
CALLE. A jump~and=-mark instruction is also included which permits direct or
indirect calls to be made to subroutines at specific memory locations.

[CALL(E)] CALL SUBROUTINE Octal code: 0021%d dddddd

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 O

] [1 I 1 1 | 1 1] [1 [] 1 l

o lo o0 ojJo 1 o0lo0o o0 1 g X X X | X Al7 Als]
| | | | I

I

|

Al5S Al4 . . SUBROUTINE ADDRESS . . A2 Al A0
!

l
l
i
|
l
l

3-15

CALL is a two~word instruction that calls a subroutine from a specific location
in memory. The first word identifies the instruction; the second word specifies the
address that contains the first instruction of the desired subroutine.

The CALLE, call extended subroutine address instructiom, utilizes bits O-l of
the first word as bits Al6—-Al7, respectively, of the extended 18 bit subroutine
address. .

The specified address may be the address of any even—numbered byte from 000000
to 777776 (octal). When a CALL instruction is executed, the contents of the program
counter (which is pointing to the address following the location of the subroutine
address word) is pushed onto the graphic controller stack. This saves the address
of the instruction to be executed following completion of the subroutine. Bits
Al6=Al7 are loaded into the bits 14 and 15, respectively, of the bank register PGR.
The contents of the second word of the CALL instruction is then loaded into the
program counter and used as the location of the next instruction to be executed by
the digital graphic controller.

Operation: (DSP) < (DSP) - 2
o ' (Top stack location) <~ (DPC)

IF EIM = 0, then:
(DPC) <~ SUBROUTINE ADDRESS

ELSE [EIM = 1]
(DSP) <- (DSP) - 2
(Top stack loecation) <~ (PGR)
(DPC) <— SUBROUTINE ADDRESS
END

[CALR(E) | CALL RELATIVE Octal code: 0022XX dddddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i R : , > , OO

. SUBROUTINE INCREMENT (IN EVEN . . Al A0
BYTES)

1+
. |-
i
#\

|
|
i
|
i
!

CALR is a two-word instruction that calls a subroutine from a relative location
in memory. The first word identifies the instruction; the second word specifies an
even number of bytes by which the program counter must be incremented to obtain the
address that contains the first instruction of the desired subroutine. The
specified increment may be any even number of bytes from -100000 to 77776 (octal).
When a CALR instruction is executed, the contents of the program counter {(which is
pointing to the address following the location of the subroutine increment word) is
pushed onto the digital graphic controller stack. This saves the address of the
instruction to be executed following completion of the subroutine. The contents of
the second word of the CALR instruction is then added modulo 219 (any carry is

—ignored) to the contents of the program counter and the result used as the location
of the next imstruction to be executed by the graphic controller.

3-16

If EIM = 1, then the CALRE instruction utilizes 18-bit addressing. £ the
increment causes the 16-bit program counter to overflow, the bank register PGR is
incremented or decremented appropriately.

Operation: IF (EIM = 1) then:
- (DSP) < (DSP) - 2
(Top stack location) < (PGR)
(DSP) <= (DSP) - 2
(Top stack location) < (DPC)
(DPC) <— (DPC) -+ SUBROUTINE INCREMENT
ELSE [EIM = 0]
- (DSP) <— (DSP) - 2
(Top stack location) <~ (DPC)
(DPC) <~ (DPC) + SUBROUTINE INCREMENT
END

IRTRN(E) | RETURN Octal code: 0023XX

15 14 13 12 11 10 9 8 7 6 5 43 .2 1 0
"- l T 1 r 1 1] g 1] 1 1 l T] I
| o Jlo o olo 1 olo 1 1] X xX|Xx x X|
l l | | B | I

A RTRN instruction is normally the last instruction of a subroutine called by a
CALL(E) instruction. It causes program control to return from the subroutine to the
main program. When a RTRN instruction is executed, the contents of the location
indicated by the digital graphic controller stack pointer is popped from the stack,
loaded into the program counter, and used as the address of the next instruction to
be executed by the digital graphic controller.

Operation: IF (EIM = 1) then:

(PGR) <~ (Top stack location)
(DSP) <& (DSP) + 2
(DPC) <~ (Top stack location)
(DSP) < (DSP) + 2

ELSE [EIM = §]
(DPC) <— (Top stack location)
(DSP) <&~ (DSP) + 2

END

3-17

| IMPM(E) | JUMP AND MARK Octal code: 0020XX dddddd

‘,\
(93]
N
=
(@]

15 14 13 12 11 10 9 8 7 6 5

1 [] i]] i] t l [} 1] 1 1

| ,
oo o ofjo 1 o]0 o 0]x ¥ X|Xx ¥ X
!

I |
l |
l i
| I 4 . ' |
I(ALS){AM . . JUMP ADDRESS (IN EVEN BYTES) . . Al AOQ |
l |

JMPM is a two~word instruction used for direct or indirect calls to sub-
routines. The first word identifies the instruction; the second specifies a direct
or indirect address to be used for storage of a return address from the subroutine
being called. The specified address may be the address of any even—numbered byte
from 00000 to 77776 (octal). 1If bit 15 of the second word is set to 0 and EIM = 0
(direct addressing), the return address is stored in the location specified by bits
0-14., TIf bit 15 is a 1 and EIM = 0 (indirect addressing), bits 0-14 specify the
memory address that contains the required data. In this case, the contents of the
specified address are used to designate the location in which the return address
will be stored. When a JMPM instruction is executed, the contents of the program
counter (which is pointing to the address followng the location of the jump address
word) is stored in the direct or indirect address specified. This saves the
location of the instruction to be executed following completion of the subroutine.
Execution of the called subroutine then begins at the address immediately following
the location in which the return address is stored. When the subroutine is
completed, returm to the main program is effected by an indirect JUMP instruction
that references the return address storage location. Note that the JMPM instruction
cannot be used for direct addressing of addresses greater than 77776 (octal).
Multilevel indirect addressing may be used.

Note that for EIM = 1 bit 15 of the second word represents jump address bit
(Al5) rather than the indirect bit I.

Operation: Direct:

(JUMP ADDRESS) <— (DPC)
(DPC) < JUMP ADDRESS + 2

Indirect:

(Address contained in JUMP ADDRESS) <— (DPC)
(DPC) <~ (Address contained in JUMP ADDRESS) + 2

3.3.2.4 Linkage Instruction. A linkage instr@ction is provided so that synchro-
nized linkage can be effected between a progr&% being executed by the digital
graphic controller and a program being executed by the display processor. This
enables the additional power of the display processor to be used to modify or
process refresh file data as required. Details concerning applications of the
linkage instruction are contained in Section 7.

|LINK(E) | SYNCHRONIZED LINKAGE , Octal code: 0040XX dddddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 r]] ! 1 1 I [1 f 1 1 l
|
|

0 0o 0 oJ]Jr o oflo 0 oOlxXx X ¥Xlx x 'x

I
(A15) LINK ADDRESS | 0

LINK is a two-word instruction. The first word identifies the instruction; the
second word specifies a direct or indirect address to be used for storage of the
address that follows the location of the LINK instruction. The specified address
may be the address of any even-numbered byte from 00000 to 77776 (octal). If bit 15
of the second word is set to 0 (direct addressing), the storage address' is the
location specified by bits O-14., If bit 15 is a 1 (indirect addressing), bits 0-14
specify the memory address that contains the required data. In this case, the
contents of the specified address designate the location to be used for storage.
When a LINK instruction is executed, the contents of the program counter {(which is
pointing to the address following the location of the link address word) is stored
in the direct or indirect address specified. This saves the address of the
instruction that immediately follows the LINK instruction. The graphic controller
then halts and interrupts the display processor. ' Restarting of the graphic con—
troller is controlled by a command from the display processor as described in
Section 7. Note that the LINK instruction cannot be used for direct addressing of
addresses greater than 77776 (octal). Multilevel indirect addressing may be used.

| [
l I l
| | |
i I o
| l I
l I I

All indirect addresses are accessed in the bank defined by the bank register.
(See PGR in Section 4.) The direct link address is accessed in bank O.

Note that for EIM = 1 bit 15 of the second word represents the LINK address bit
(Al5) rather than indirect bit I.

Operation: Direct:
LINK ADDRESS) <— (DPC)

Indirect:

(Address contained in LINK ADDRESS) < (DPC)

3-19

3.3.2.5 Halt and Wait Instructiomns. One halt, one wait and update instruction are
included in the digital graphic controller sequence control instructions. The halt
instruction is used for debugging while the wait instruction ensures that the
displayed image is synchronized with the update of mapping memory. ’

El

| EREF | HALT REFRESH Octal code: 0000XX

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0
l‘ l] "[1 1 I 1 1 | t 1 l] v‘!
| o fo o o0}J0 0 0}l0 0 -0]lX X X|x X %I

| ’ | | : !

The HREF instruction causes the graphic controller to halt and to send an
interrupt to the display processor. This instruction is nommally used for debugging
purposes. Whether the interrupt is enabled and the manner in which it is processed
are determined by the software being executed by the display processor. Restarting
of the digital graphic controller is controlled by a command from the display

processor as described in Section 7.
Operation: Digital graphic controller:
Halt
Send interrupt to display processor
Display proceséor:

Process interrupt (1f enabled)

-

3-20

|WATE | o WATT Octal code: 0070XX

15 14 13 12 11 10 9 3 7 6 5 4 3 2 1 0

1 i T 1 rv 7 i [l t i] ¥ i] 1]
Ioiooogl 1 1§oooixxx}xxx|
| _ | |

The WATE instruction is used to control the displaying of a refresh file each
time a frame sync pulse is generated. One and only one WATE instruction is used in
each refresh file, The mapping memory is cleared each time the WATE instruction is
accessed by the digital graphic controller. The mapping memory being displayed is i
swapped and then the sscond (non- displayed) mapping memory 1s clearsd when WATE is
encountered. The second mapping memory then becomes the displayed memory. This
process 1s repeated each time the WATE instruction is accessed by the digital
graphic controller.,-

|UPDTI UPDATE VIDEO CONTROLLER REGISTERS (EIM) Octal code: 0073XX

‘15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0
] 1 1
;0!10001]1 1 1!'0 1 1llxxxlxxx!

The UPDT instruction is used to update the selected video controller registers
from the corresponding RAM register without effecting pixel memory. It is used, for
example, to display the full screen cross hair cursor, display a split screen, or
change video controller status.

Change 1 3-21

3.3.3 REGISTER INSTRUCTIONS. Register instructions are used to modify the contents
of general purpose registers of the digital graphic controller (display registers)
and to control graphic controller stack operations.

|ToDT| 'LOAD DISPLAY REGISTER IMMEDIATE Octal code: 006ldd dddddd

15 14 13 12 11 10 9 8 7 6. 5 & 3 21 0
i i 1 t] K] l 1 1 ’ 1 T [
lotlo o ol1 1 olo o0 1] DR#

- b-]
- — L s L
|

|

|
!
1
|
DATA !
i

LDDT is a two-word instruction used to load data into one of the display
registers of the digital graphic controller. The first word identifies the
instruection and the display register into which data is to be loaded. The second
word contains the data to be loaded into the designated register. Bits 0 to 3 of
the first word specify, in binary form, the number of the register to be loaded.
General purpose registers DRO through DR3 are designated by 00, 01, 10, and 11
respectively. See table A-6 for the complete list of registars that can be loaded.

Operation: (DR#) <~ DATA

|LDSP(E) | LOAD STACK POINTER Octal code: 0062Xd dddddd

115, 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0
P , , P — _

lolo o oJ1 1 o}lo 1 ofxXx ¥ X|x Al7 Al6

- | | | |

l _ — :

|

l

|
|
I
|
AlS . . ADDRESS . . Al A0 :

LDSP is a two-word instruction used to load an address into the digital graphic
controller stack pointar. The first word identifies the instruction. The sacond
word contains the memory address to be loaded into the digital graphiec controller
stack pointer.

The LDSPE, Load Stack Pointer Extended instruction, utilizes bits O and 1 of
the first word as bits Al6 and Al7, respectively, of the 18 bit extended address to
be loaded into the stack pointer (for EIM bit on), The graphic controller stack is
accessed in the bank defined by the bank register. (See PGR in Section 4.)

Operation: (DSP) <~ ADDRESS

NOTE

The beginning of stack may be defined in any bank.
The stack must not transcend bank boundaries.

3=22

| LDRI| LOAD DEVICE REGISTER IMMEDIATE Octal code: 0060dd XXdddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tt !l!.!! lYl!I

I
0o o o]J1 1 olo o of DEV# | REG#
|

0

X1 X X

"

DATA

|
|
|
l
l
I

l
I
I
l
l
!

LDRI is functionally equivalent to NOOP. It is included for compatibility with
the GRAPHIC 7 system.

|ADDI] ADD TO DISPLAY REGISTER IMMEDIATE Octal code: 0043dd dddddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 l 1 1 i 1 [] 7 [[1 1
o o ol1 o olo 1 1] DR#

| , l , | |
|
|
I

|
| 0
|
r
I+
|

DATA

ADDI is a two=word instruction that enables a numerical value to be added to or
subtracted from the contents of a display register. The first word identifies the
display register that contains the data to be modified. The second word, in two's
complement form, contains the numerical value to be added (or subtracted from) the
designated register. Bits 0-5 of the first word identify, in binary form, the
number of the register containing the data to be modified. General purpose
registers DRO through DR3 are designated by 00, 01, 10, and 11, respectively. See
table A-6 for a complete list of display registers. ,

Operation: (DR#) <— (DR#) <+ DATA

|ZDCG| LOAD CHARACTER GENERATOR Octal code: 0047dd ddd000

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0

T T T 1T T v T v T T T T T T
lolo o ol1 o ofl1 1 11X X X/ xla17la16]

[| l 1 N

l i i ! I I i

| BASE ADDRESS o o % 0 0 o0 % 0 0 0 } 0 0 0 }

l

|

LICG is a two-word instruction that loads the base address of the RAM character
set. The character table must be based at 4K boundaries in memory.

Change 1 3-23

|SAVD (E) | SAVE DISPLAY REGISTER Octal code: 0041dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

! l 0 1 1 [1 [1 1 t 1 1 l

z I]
folo o0 0 } 1 0 0O i 0 0 1] DR#
| | 1

The SAVD instruction causes the contents of the display register identified by
bits O~ to be pushed onto the top of the graphic controller stack. Before the push
operation, the graphic controller stack pointer is decremented by two. Bits 0-5
identify the number of the register in bipnary form. General purpose registers DRO
through DR3 are designated by 00, 01, 10, and 11, respectively., If EIM = 1, then an

18-bit stack address is used.

Operation: . (DSP) <— (DSP) =~ 2
' (Top stack location) <~ (DR#)

|RESD(®) | RESTORE DISPLAY REGISTER Octal code: 0042dd

15 14 13 12 11 10 9 &8 7 6 5 & 3 2 1 0
l l": 1 l T v’l Tt l.'] [] [} K] i
lo]Jo o o]1 o olo0o 1 o]} DR# |
[N | | . l

The RESD instruction causes the contents of the top of the graphic controller
stack to be popped and placed into the display register identified by bits 0-3.
Following the pop operation, the graphic controller stack pointer is incremented by
two. Bits 0-3 identify the number of the register in binary form. General purpose
registers DRO through DR3 are designated by 00, 01, 10, and 11, respectively. If
EIM = 1, then an 18-bit stack address is used.

Operation: (DR#) <~ (Top stack location)
(DSP) <— (DSP) + 2

3-24

3.3.4 DISPLAY CONTROL INSTRUCTIONS. Display control instructions are used to
. establish and/or change various display parameters as required. An initialized
o instruction is also included to permit definite hardware conditions to be
established before a refresh file is processed.

| LDDP | LOAD DISPLAY PARAMETER REGISTER Octal code: 0l4ddd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

l l 1 [[I] 1 [] [1 1 [1 1]]
lolo o 1]1] DISPLAY PARAMETERS |
| | | | ‘ |

LDDP is used to modify the contents of the display parameter register. The
action of individual bits is as follows:

Bit(s) ° Action
0,1 Character size:*
., 10
0 0 = size O (smallest)

PL ‘ _ 0 1 = size 1 (same as size 0)
1 0 =gize 2 (2.0 times size 0)
g 11 =3size 3 (3.0 times size 0)
2 - Character orientation:
0 = normal
1.= rotate 90° ccw
3 Character parameter change enable:
0 = no changé
1 = change character size and/or orienta-
) gf;n status to that indicated by bits

4-10 Not used but are always zero

[V

*See table A-12, page A-70 for character size déécriptions.

N 3-25

|LDDZ |

15 14 13
1

é LOAD DISPLAY Z REGISTER Octal code: 0ldddd

12 11 10 9 8 7 6 5 4 3 2 1 0
=

|
folo o
1

} 3 Kl [1 [1]] 1] 1 |

DISPLAY Z PARAMETERS |

LDDZ is used to modify the contents of the display 2 reglster.

The action of

individual bits is as follows:

Bir(s)

0-2

Action

 Gray level select (mode 0 only; not mode 1)

210

700 = = intensity level O (off)

0 01 = intensity level 1

thru thru

1 11 = intensity level 7 (brightest)

The gray level is also written into the Pixel Data Register (PDR) (bits 1-7).

The blink bit is also written into the MSB of the Pixel Data Register.

3,4

rate 1s 1.5 hertz.

3~-26

6~-9

10

Operation:

Change 1

Line structure selecht: .

| 43 Coqrdinata{unitg»on/cff
0 0 = solid vector
0 1 = dotted vector (3 on, 5 off)
1 0 = dashed vector (5 on, 3 off)
1 1 = dot~dashed vector (4 on, & off, 20 on, &4 off)

Blink select:

0 = staady
1 = blink

The blink

Display select:

387168

1 X X X = Display no. 1 enabled
1 XX = Display no. 2 enabled
X ¥ 1 X = Display no. 3 enabled
XXX 1 = Display no. 4 enabled

Display select change enable:

0 = no change
1 = change select status to that indicated by bits 6-9

(DZR) <— DISPLAY Z PARAMETERS

-

K

_~~

|LDTI| LOAD TEXT INCREMENT REGISTERS Octal code: 1401dd

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

] i 1 7 1 1 1 l 1 l i1 1 1 [i
| 111} LINE INCREMENT | o 1| TEXT INCREMENT |
L | | l

LDTI is used in conjunction with the TXT (draw two tabular characters) to
specify the amount by which each line and each character is incremented. For normal
characters, the contents of the X-position register is incremented. For rotated
characters, the contents of the Y-position register is incremented. The text
inerement specified by bits O through 5 replaces the contents of the text increment
register. The line increment is specified in bits 8 through 13. See table A-12 for
the recommended line and text increments for character sizes 1 through 3.

Operation: Normal characters:

(DT1) < TEXT INCREMENT
(DL1) <~ LINE INCREMENT
(DXR) {~ (DXR) + TEXT INCREMENT
(followng display of each character)

Rotated characters:

(DTI) <— TEXT INCREMENT
(DLI) <~ LINE INCREMENT
(DYR) <— (DYR) + TEXT INCREMENT °*
(following display or each character)

|IZPR| INITIALIZE Octal code: 0030XX

15 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0
! l [] l 1 1 i 1 1 I 1 1 ‘ 1 1'1
lofto o o0o}lo 1 110 0 O0]lX X X|Xx X x|
1 a | | | |

IZPR is functiomally equivalent to a NOOP. It is included for compatibility
with the GRAPHIC 7.

|ZDED| LOAD PIXEL DATA REGISTER (EIM) Octal code: 034Xddd -

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

1 1 g 1] O 1 g [1 1 l

T l b
o } 0o 1 1 ; 1 2 X ; 4 } VALUE | [-
| :

The LDPD instruction is used to modify the Pixel Data Regigter (bits 0-7). See -
Section 4.3.2 for a deseription of the Pixel Data Register (PDR). '

|MODE] LOAD INSTRUCTION MODE Octal code: 0072dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I l 1 1))

The MODE is used to modify the Extended Instruction Mode (EIM) bits 0-5. The | ™
EIM detemines which set of instructions will be recognized by the digital graphic .
controller with the same opcode. When mode = 0, the standard instruction set ig
used. When mode = 1, the Extended Instructicn Set is used. 1If bits 1-5 are set, no .
mode change results. ©See table A-2 for a summary of these instruction sets.

| INIT] ‘ INITIALIZE (EIM) Octal code: O0071%XX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l (] 1 ! i z‘['y 1 I 1 1 f'v] l [
i 0 % o o olJ1 1 110 o 1 { X ¥ x!x x x|

|
| z]

INIT is used to restore the digital graphic controller to power up conditions.,

INIT resets the split screen function and crosshair cursor on the video
controller, loads the look-up table to initial values (see page 7-21), and selects T .
the color white. :

-

| CRH | CLEAR MAPPING MEMORY (EIM) Octal code: O067XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 i [T B A - - l
lolo o ol1 1 ol1 1 1 % X X X i X x x|
i | | |

CLRM clears the selected mapping memory.

3-28 Change 1 l

[MVPD]| MOVE PIXEL DATA (EIM) Octal code: 063dd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 ! r 1 1 ! 1 1 { 1 i ! Ll 1
olo o ofJt 1 o0ofJOo 1 1]x X X i X Al7 Al6

Al5 . ; GRAPHIC 8 MEMORY ADDRESS . . A0

INITIAL Y VALUE

FINAL X VALUE

FINAL Y VALUE

!
|
l
I
|
|
!
I
|
5 INITIAL X VALUE
|
|
I
!
!
|
|
l
|

MVPD controls the transfer of data between the selected mapping (Pixel) memory
and the display processor memory. The data is defined ‘by the GRAPHIC 8 memory
address (bits AO to Al7). The Initial X and Y values and the Final X and Y values
represent the rectangular array of pixels involved in the transfer.

Word 1 Bits Description
: 0,1 GRAPHIC 8 memory address bits Al6, Al7
Word 3 12 = (0 Data transfer occurs from mapping memory to GRAPHIC 8§
memory

= 1 Data transfer occurs from Graphic 8 memory to mapping
memory

3-29

Word Bits Description
13 = 0 The XY pixel scan is left to right moving from %ottom
' to top. 5,

= 1 The XY pixel scan is bottom to top moving across from
left to right.

14 = 0 Initial X and Y values are absolute pixel addresses of
the lower left cormer of the rectangular pixel array.
The final X and Y values are absolute pixel addresses
of the upper right corner of the rectangular plxel
array. :

= 1 Initial ¥ and Y values represent pixel increments from
the current X,Y pixel address to the lower left corner
of the pixel array.

The final X and Y values are the pixel increments from
the current X,Y pixel address to the upper right corner
of the rectangular pixel array.

15 Addrassiné mode ,
= () GRAPHIC 8 absolute address
= 1 GRAPHIC 8 memory displacement from the display program

counter (lst word after word 7)

Each pixel array corresponds to an array of consecutive n bit bytes in the
GRAPHIC 8 memory. n (= 4,8) is the number of bits per pixel including the MSB or
blink bit. The value in the n bit byte represents the gray level of the corres-
ponding pixel.

3-30

MODIFY LOCK-UP TABLE (EIM) Octal code: 066Xd

5
[
Sl

15 14 13 12 11 16 9 8 7 6 5 4 3 2 1 0

[] [1] 1 1 i ? 7 ’ ' [

l ! i
5 o 0 0 % 1 1 0 ‘_1 1 0 a X X X % X Al7 Al

! |
| 0 [
| |
§A13 .. GRAPHIC 8 MEMORY ADDRESS . . A0 ;
b |
%AM % NUMBER OF GRAPHIC 8 8-BIT BYTES }
™ 1 T T T viogo |
% 0 g 0o 0 © ‘ 0o 0 o© 3 0 0 0 % 0 } 0 % CONTROLLERS }
1] N |
lojlo o oo o o] |
|1 n | l

1 % LOOKUP TABLE ADDRESS

MDLU is used to modify the video controller look-up table. The look=-up table
defines the manner in which the data in mapping memory is presented to the display
without modifying the refresh data itself.

Each video controller contains a 256 x 8-bit word RAM look-up table (LUT)
(starting at video controller memory 400 (octal)) which permits pseudo—color or gray
level transformaticns.

The GRAPHIC 8 memory address specifles the beginning of n consecutive 8=bit

bytes (where n 1s the number of GRAPHIC 8 bytes, word 3). If the addressing mode
(AM) bit is 0, then this address is absolute. If the (AM) bit is 1, then the value

represents a displacement from the program counter (lst word after word 5). The

contents of each byte 1s the desired new gray level (or color) for each
corresponding gray level (or color) in mapping memory.

The Video Controller number is assigned as follows:

Controller | Word 4, value for bit:
Number | 3 2 1 0
I
1 | 0 0 0 1
2 I 0 0 1 0
3 l 0 1 0 0
4 ! 1 0 0 0

Any combination of controllers can be assigned with the same MDLU instruction
by setting any combination of these bits.

The LUT beginning video controller address is 400g. Addresses greater than

400g but less than or equal to 7773 may be specified to medify a portion of the
LUT.

3-31

The useable portion of the LUT is a fumction of the number of bits per pixel
and the blink capability of the configuration. If blink is not enabled, then all
bits per pixel (number P) are used for pseudo gray level (or color). Therefore,
with oo blink, the useable portion of the LUT is from 400g to 400g + 2P - 1,

1f the configuration has blink, then the MSB is used so only P-1 bits are used
for the pseudo gray level (or color). Therefore, with blink, the useable portion of
the LUT is from 400g to 400g + 2P~1 - 1, -

For example, suppose the configuration has 4 bits per pixel with blink for
video controller number 1. Initially, the .LUT looks like:

Video Controller Address (octal) Contents
400 0
401 1
402 2
406 6
4Q7 7

We wish to modify the.LUT to reverse the roles of gray levels 0 and 7 (reverse
video). The MDLU instruction is: .

.WORD 4600 ‘ _ ; the MDLU opcode

.WORD #ADR : G8 memory address or displacement (if AM = 1)
10 | s # of 8-bit bytes

1 ' ; controller #

400 LUT address in video controller RaM

where
ADR: LBYTE 7, 1, 2, 3, 4, 3, 6,‘0
NOTE
Location O of the LUT defines the background
color. Blinking is between the defined

- color and black, regardless of the back-
ground color.

3-32 Change 1

|FLEG! ; FILL A CONVEX POLYGON (EIM) Octal code: 0075%X

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

1 [i 1 1 l 3 1 l 1 [1 [1

| | |
; 0 } 0 0 0 } 1 1 1 { 1 0 1 } £ X X ! X Al7 Alé;
[R o . |
%Al5} . . ADDRESS FOR LIST OF VERTICES . . A0
: |

R I
{AM ;REL% NUMBER OF VERTICES |
I

where the address contains:

X1 AX1
Y1 ‘ AY1
s o= .
. , .
) % A%n
n AYA
Lot Third word bit 15 = 0 for absolute address of list

=] for displacement from the program cownter (first
word after word 3)

and

bit 14

]

0 for absolute vertices

bit 14

1 for relative vertices. Each vertex is relative to
the current X and Y position, not to other vertices,

The adjacent vertices are listed in either the clockwise or counterclockwise
direction. The last vertex is adjacent to the first in the list. A previous LDDZ
or LDPD instruction is used to specify the gray or color level for the filling
algorithm,

The fill algorithm 1s based on the geometric shape of the comvex polygon. A
convex polygon has all its interior angles less than 180°.

Change 1 3-33

There 1s no limit to the number of vertices that can be specified except the
size of read/write memory, If a non—convex polygon is specified unpradictable
results will occur. Maximum execution speed is obtained if the vertices are
specified in the clockwise direction starting with ¥ maximum.

NOTE-

The DXR and DYR remain unchanged. The beginning:
of the vertex 1ist can be in any bank. However,
the vertex list must not transcend bank
boundaries.

3-34

» SECTION 4

GRAPHIC 8 REGISTERS

4.1 GENERAL

GRAPHIC 8 registers fall into three major categories: display processor
registers, digital graphic controller registers, and interface registers. This
section describes the application and format of each register in each category and
identifies the address assigned to each. A summary of the data contained in this
section is provided in Appendix A.

4.2 DISPLAY PROCESSOR REGISTERS

The display processor contains eight general registers designated RO through
R7. These registers function in a manmer similar to the corresponding registers in
a minicomputer of the PDP~1l type manufactured by Digital Equipment Corporation
(DEC). Details concerning the applications and formats of these registers are con-
tained in the DEC PDP-11/04/34/45/55/60 Processor Handbook which should be used as a
supplement to this manual. Note, however, that addresses are not assigned to the
display processor registers.

An 8=bit switch register is program readable (used by GCP) from octal location
177774,

4.3 DIGITAL GRAPHIC CONTROLLER REGISTERS

Digital graphic controller registers can be divided into six groups: processor
registers, function registers, sense and mask registers, function control registers,
display control registers, and configuration register., The following paragraphs
provide details concerning the application, format, and address of each register of
each group. The RAM register address, RRn, refers to a RAM address in the digital
graphic controller. The register is accessible by program control only if it is
also assigned an octal memory address: nnnnnn. Refer to Appendix A for a summary
of the data applicable to digital graphic controller registers and their display
register numbers (DRn).

NOTE

Except for the sense and mask, and the function
control registers, all graphic controller
registers ale l6-bit registers. In several cases,
however, fewer than 16 bits are used. The
descriptions in the following paragraphs consider
the size of each register to be equal to the
number of bits used.

4.3.1 PROCESSCOR REGISTERS. Processor regilsters of the digital graphic controller
comprise four general purpose registers, a stack pointer, a program counter, and an
instruction register. These registers are the general working registers of the
graphic controller. Each has an octal address and, when the graphic controller is
halted, the contents of each can be read by the display processor using programmed

data transfers.

|DRO| GENERAL PURPOSE REGISTER n Octal address: 165002 (DRO)
“ 165004 (DR1)
thru 165032 (DR2)

._a_ 165034 (DR3)
|5R3|

15 14 13 12 11 10 9 8 7 6 5 4 '3 2 1 O
1 1 k] Tt 1

1 1 vt 1 1 1 [] v'l

!
! | } !

Each of the four gemeral purpose registers (display registers) in the digital
-graphic controller is a 16~bit register that can be used as required for general
operatiecns or for temporary storage of data. Additionally, the contents of DRO can
be tested and a jump executed if the value is not equal to zerc. Data is written
into the general purpose registers using graphic controller instructions.

Asgegiateg ingtruc:ions: DRO thru DR3:

LDDI ~ SAVD .
ADDI RESD
DRO only:
JMPZ JPRZ
|DSP| STACK POINTER Octal address: 165000

17 16 15 14

13 12 11 10 9 8 7 6 5 & 3 2 1 0
b '

1 1] t 1 Yt [] t 1 l

L

The stack pointer is a 16-bit register that contains the address of the top
location in the memory stack. It is loaded by the graphic contreller LDSP(E)
instruction. When a SAVD(E) instruction is used to push data onto the stack, the
contents of the stack pointer 1s automatically decremented by two before the push
operation occurs. When a RESD(E) instruction is used to pop data from the stack,
the contents of the stack pointer 1f autematically incremented by two following the
pop operation. Call and return instructions make similar use of the stack pointer
to save and restore the contents of the program counter when a subroutine is

performed.

Agsociated instructions: LDSP CALL
' SAVD = CALR
RESD RTRN

42

n

|oEC| PROGRAM COUNTER Octal address: 165006

15 14 13 12 1i1.10 9 & 7 6 5 4 3 2 1 O

The program counter is a 16—bit register that contains the address of the next
instruction to be executed by the graphic controller. The program counter is
initially loaded by the display processor with the starting address of a refresh
file. This automatically starts the digital graphic dontroller. As instructiouns
are executed by the graphic controller, the contents of the program coimter is
incremented automatically. A one-word instruction causes the contents to be incre-
mented by two while a two=word instruction causes the contents to be incremented by
four (bit O is always zero). “For this reason, increments used for relative jumps or
calls must be calculated from the address immediately following the location of the
jump or call instruction.

Associlated instructions: All

|DIR| DISPLAY INSTRUCTION REGISTER Octal code: 165010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -0
l [] 1 1 t 1 1] 1] [1]] 1 1 1 '
| |
| | , , _ . _ I

The display dnstruction register is a 16-bit register into which each
instruction or data word fetched by the graphic controller is placed,

Associated,iggtructions: All

4=3

4,3:2 FUNCTION REGISTERS., These function registers are loaded by the digital
graphic controller instructions as required to control the functions performed by
the microcode. Each function register has an octal address so that, when the
digital graphic controller is halted, the contents of the registers can be read by
the display processor using programmed data transfers.

|DXR| : X POSITION REGISTER Octal address: 165020

15 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l] 1 1 i l ‘ 1 1 1 1] 1 1 1 K] I
| 11 % lt X COORDINATE VALUE |
|- !

|
| |___SIGN/OVERFLOW BIT
|
| SIGN BIT

The position register is a 12-bit register that contains the value of the X
coordinate of the screen position. When a digital graphic controller loads absolute
data into the X posifion register, the 11 bits that specify the value of the X
coordinate are sign extended to £ill the 12 bits of the register. When an
instruction specifying relative X position data is executed, the specified data is
added to the contents of the X position register. Bit 10 serves as an indicator of
overflow condition. Whenever the addition of relative data causes the value in the
X position register to exceed programmable limits, bit 10 will differ from bit 1ll.
Under these conditions, if the X/Y overflow bit in the mask register (MKR) is set
and the interrupt is emabled, the graphic controller will halt and interrupt the
display processor. Lf the X/Y overflow bit is not set, relative data will still
modify the register contents but the screen will be blanked until bits 10 and 1l are
no longer different. Coordinate values are expressed to two's complement form and
may range from 1777g (+1023) to 2000g (~1024). The zero X coordinate defines
the vertical center line of the CRT screen. Positive coordinates are to the right
of center; negative coordinates are to the left of center. Note that only the
values from 0777g (+511) to 3000g (~312) fall into the displayable area of the
CRT. Values outside these limits cause the display to be blanked (see figure 4-1).

Associated instructions: LDXA MVZA PPLR
' B LDXER MVXR TXT (for normally oriented

DRXA DRSR characters)
DRXR MVSR
PPTA PPTR
PPYA PPYR

,

H Yo Q717 /

|
|
|
I

X 011

]
MINIMUM |
DISPLAYABLE

AREA {

|

I

//// l

. PROGRAMMABLE i

AREA l
- / 2 /
H-80-0483-022

NOTE

Coordinate designations are in octal format.

Figure 4-1, Addressable vs. Displayable Mapping Memory Areas
for 1024 x 1024 Screen

|DYR] A 7 POSITLON REGISTER Octal address: 165022

15 14 13 12 11 10% 9 8 7 6 5 4 3 2 1 0

} [} 1 t i i ~! 1 1 1 1 1 [K] 1 [l

l | Y COORDINATE VALUE !

4 I:{
} |._SIGN/OVERFLOW BIT
l :

SIGN BIT

The Y position register is aglz—bit register that contains the value of the ¥
coordinate of the screen position. This register is identical to the X position
register and performs the same functions for Y coordinate data that the X position
register performs for X coordinate data. The X/Y overflow bit in the mask register

(MXR) is applicable to the Y as well as the X position register. The zero Y coordi~
nate defines the horizontal center line of the CRT screen.. Positive coordinates are

above the center; negative coordinates are below the center.

Associated instructioms: DRYA DRSR PPTA PPIR
' - \ - DRYR MVSR PPYA PPYR
MVYA PPLR
MVYR TXT (for rotated characters)

|DCR] DISPLAY CHARACTER REGISTER Octal address: 165024

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! [1 1 1 t T 4 t t t v Tt 1 1 l
; ; ASCII CHARACTER CODE |
, | , l

The display character register is a seven~bit register that contains the code
of the character or symbol to be displayed. ASCII codes are used for standard and
optional characters and symbols as shown in Appendix A.

Associated instructions: TXT
e c

[DTT| TEXT INCREMENT REGISTER Octal address: 165012

15 14 13 12 11 10 9 3 7 6 3 4 3 2 1 0
l 1 t 1 ! ! I] I , 1 [1 1 1 '

[
; { 0 g 0 % 0 } 0 % 0 } 0 % TEXT INCREMENT i

The text increment register is a 12-bit register that contains the value by
which the screen position is to be incremented after each tabular character is dis-
played. Bits 0-5 may be programmed as required; bits 6~11 are always zero. After a
normally oriented character is drawn, the value in the text increment register is
added to the value in the X position register. After a rotated character is drawn,
the text increment value is added to the value in the Y position register. UNote
that this register is associated only with the TXT (draw two tabular characters)

instruction. No automatic incrementing of the scrzen position occurs when the CHAR
(draw single character) is used.

Associated instructions: TXT LDTI

|DLI| LINE INCREMENT REGISTER Ram address: RR126

15 14 13 12 11 10 9, 8 7 6 5 4 3 2 1 0
| oo e e

} ; 0 } 0 ; 0 } 0 ; 0 i 0 % LINE INCREMENT |

The line increment register is a 12-bit Ram Register that contains the number
screen coordinate units that are advanced after the control character, Line Feed, is
encountered in the TXT or CHAR instruction. For horizontally oriented characters,
the line increment value is decremented from the Y position register. For

vertically oriented characters, the line increment value is incremented to the X
position register.

Associated instructions: TXT CHAR LDTI

4-7

|KXR| o CONIC X DATA REGISTER (OPTIONAL) Octal code: 165026

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! 1 » [[] I] 1 1] 1 1 1 1 1 I
| [QIII| QI | X SEMI-AXIS LENGTH |
| _ | | | . i

The conic X data register 1s an ll-bit register that contains the value of the
length of the X semi-axis (distance from the ellipse center to its perimeter on the
X axis) for an ellipse to be displayed. The X semi-axis length is contained in bits
0-8. Bits 9 and 10, respectively, designate unblanking for quadrants I (upper
right) and III (lowédr left). A zero indicates the image in the quadrant is to be
blanked while a one indicates the image is to be unblanked. Loading this register
does not change the current screen position. Normally, this register is loaded by a
LDKX (lecad conic X register) instruction. If a DRKY (draw conic Y register)
instruction i3 not preceded by a LDKX instruction, the data specified by the LDKY
instruction will be loaded into both the conic X and the conic Y data registers.

Associated instructions: LDKX
) ' DRKY (when not preceded by LDKX)

IKYR| CONIC Y DATA REGISTER (OPTIONAL) Octal address: 165030
15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0
‘ [1 B ik i T I t [T 1 1 T 1 B} l
l : |QIv]QrI| Y SEMI-AXIS LENGTH !

| | N | !

The conic Y register 1s associated with the optional conic generator card. It
is an 1l1-bit register that contains the value of the length of the Y semi~axis
(distance from the ellipse center to its perimeter on the Y axis) for an ellipse to
be displayed. The Y semi-axis length is contained in bits 0-8. Bits 9 and 10,
respectively, designate unblanking for quadrants II (upper left) and IV (lower
right). A zero indicates blanking while a one indicates unblanking. Loading this
‘register changes the current screen position in accordance with the data in the
conic X and the conic Y data registers (the ellipse center is defined by data in the
X and Y position registers). Data is loaded into the conic Y data register using a
DRKY instruction.

1.

Associated instructions: DRKY

4=8

(
1
|
3
|“
l
1

[DZR|

15 14 13

DISPLAY Z REGISTER

Octal address: 163016

DISPLAY SELECT CHANGE ENABLE | !

DISPLAY SELECT

BLINK SELECT

LINE STRUCTURE SELECT
GRAY LEVEL SELECT

I
i
|
|
|
|

The display Z register is an ll-bit register containing data that controls the

Z=axis parameters of the associated display indicators.

individual bits is as follows:

The action of the

Bit(s) Action .
0=-2 Gray level select:
210 .
0 0 0 = intensity level 0 (off)
0 01 = intensity level 1 .
thru
1 11 = intensity level 7 (brightest)
This gray level is also written into bits 1 to 7 in
the Pixel Data Register (PDR). See the Note.
3,4 Line structure select:
43
Screen Coordinates On/Off#*
0 0 = solid vector
0 1 = dotted vector 3 ON, 5 OFF
1 0 = dashed vector 5 ON, 3 OFF
1 1 = dot—-dashed vector 4 ON, 4 OFF, 20 ON, 4 OFF
5 Blink select:
0 = steady
1 = blink

This blink bit is also written into the Pixel Data
Register as the MSB. The blink rate is 1.5 hertz.

*For a 512 x 512 screen, one pixel represents two screen coordinate units.

4-9

4=-10

Action

Display select:

|0
joo
|~
jon

= Display No. 1 enabled
= Display No. 2 enabled
Display No. 3 enabled
Display No. 4 enabled

P e

I

Pd =

Ll s i
[

The Display Select bits 9-6 are mapped to bits 0-3 of
the Display Select Register (DSR).

Display select change enable:
0 = no change

1 = change display select status to that indicated by
bits 6-9

Associated instructions: LDDZ

NOTE

The DZR bit 5 (blink) and bits 0-2 are mapped to
the PDR register as follows:

Bits per

Pixel 7 6 3 4 3 2 1.0
4 5 2 1 0
8 5 2 1 0

In Mode O the intensity bits are written through
the DZR for compatibility with the GRAPHIC 7
gystems.

In Mode 1 the LDPD instruction is used to specify
intensities.

P ﬁ/ P —— -

[DPR| DISPLAY PARAMETER REGISTER Octal code: 165014

15 14 13 12 11 10 9 8 7 6 5 & 3 2
1 1 1

| (NN R AR N N N B
| lolotlololololol] |
| N D R R R e

CHARACTER PARAMETER CHANGE ENABLE ’ | |
CHARACTER ORIENTATION |
CHARACTER SIZE

The display parameter register is an 1l-bit register containing data that

controls various parameters of the associated display indicators.
individual bits is as follows:

Bit(s) Action

0,1 Character size: (Also see table A-12)

j
{{=]

= gize 0 (smallest)

= gize 1 (same as size 0)

= gize 2 (2.0 times size 0)
= gize 3 (3.0 times size 0)

——0 O
= OO

2 Character orientation:

0 = normal
1 = rotate 90° ccw

3 Character parameter change enable:

0 = no change

The action of the

1 = change character size and/or orientation status to

that indicated by bits 0=2

4-10 Not used, but are always zero

ILMR| LEFT MARGIN REGISTER Ram address: RR108

15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 O

! 7 1 [} l l I [1 [¥] v 1 [} 2 I

| | | % X (or Y) COORDINATE VALUE |

SIGN oo
SIGN OVFL __]

The left margin register contains the X position wvalue (or Y position value if
rotated text) that defines the position at which the next character will be

presented whenever a CR control character is encountered. The margin value is
stored when an STX character is specified in a CHAR or TXT instruction as the

current DXR (or DYR).

Associated instructionms: CHAR TXT

IEDR| PIXEL' DATA REGISTER Octal address: 165044

* ' 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! (A | T [N | [1"{ T T T T 7 T T i
| ! ' VALUE l

! o oo . —— !

The Pixel data register is an eight-bit register that contains a value that

specifies an index into the lookup table and the blink status. If blink is enabled,
the MSB of this value represents the blink bit. The remaining bits are the index

into the lookup table. Bits 8 to 15 are not used. The blink bit is set by the LDDZ
instruction only.

Asspciated ;nstruc;ions: 1DPR

NOTE

The following summarizes the use of the PDR for
various bits per pixel and blink (%*).

PPR Bits
Blink Bits per Pixel 7 6 5 4 3 2 1 0
Yes 3 s e . . * 2 1 0
Yo 4 s+« . 3 2 1 O .
Yes 7 * 6 5 4 3 2 1 0.
No 8 7 6 5 4 3 2 1 0O

4~12

‘

|PGR] GRAPHIC CONTROLLER RBANK REGISTER Octal address: §65014

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 1 l 1 1 i 1 1 1 T [] [] 1 1] . l
| MEMORY | -
|__BaNg | |

The graphic controller bank register is a two—bit register used to extend the
o memory addressing capability of the graphic controller up to a total of 131,072
- (128K) words.

DISPLAY PROCESSOR PAGE REGISTERS ~
|PRI| Octal address: 172342
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ‘
1 H H H H 1 []

fPR2] | v 7 ' [7 7 T 77| Octal address: 172344
| MAPPED | ;
PR3] | | PAGE | Octal address: 172346

: The display processor page registers are 5-bit registers that are used to
L extend the memory addressing capability of the display processor up to a total of
e 131,072 (128K) words.

NOTE
Refer to Sanders publication H=78-0408 for

detailed information on programming the page
registers of the GRAPHIC 8.

s : 4=13

4,3.3 SENSE AND MASK REGISTERS. One sense and one mask register are associated
with the digital graphic controller. Both registers are assigned octal addresses
and may be read at any time by the display processor using programmed data

transfers.

Programmed data transfers may also be used by the display processor at

any time to write data into the mask register,

=14

|'SENS]

SENSE REGISTER Octal address: 177660

15 14 13 12 11 10 9 & 7 6 5 & 3 2 1 0.
¥ 1 1 [} :

L R R

PP2 SWITCH ACTIVE __ |

PPl SWITCH ACTIVE

l
!
I
|
i
i

HALTED

The sense register i1s a one-bit register that indicates the halt status of the

digital graphic controller.
indicated by bit 4 when.it is set to 1 is as follows:

Bit

4

Change 1

The remaining bits are not used. The condition

Condition Indicated When Set to 1

Digital graphic controller is halted for one of the
following reasons:

1)

2)

3
4)

5)

6)

Display processor sends stop function code (165040) to
graphic controller

Display processor executes RESET instruction to
initialize devices on controller busg

HREF instruction executed by graphic controller
LINK instruction executed by graphic controller

Pus timeout (memory fails to respond to a feteh
command)

X or Y position overflow (bits 10 and 11 in the X
position or the Y position register are different and
the X/Y overflow bit in the mask register is set to 1)

PHOTOPEN switch 1| is active

PHOTOPEN switch 2 is active

ey
-

e

B

[MKR | ‘ MASK REGISTER Octal address: 177662

15 14 13 12 11 10 9 8 7 6 S5 & 3 2 1 0
[e e e T T T T
I N R A A A N A R
| I I O e
PP2 SWITCH R
PP2 STRIKE , I
PPl SWITCH !
PPl STRIKE

REAL TIME CLOCK

X/Y¥ OVERFLOW

HALT

l
l
|
|
|
I
l

) The mask register is a seven—-bit register on the ROM and Status card that 3
enables the digital graphic controller to report conditions to the display processor &
on an interrupt basis. An interrupt occurs when the condition is met and the cor- 4
responding bit in the mask register is set to 1. Bits in the mask register can be
set or cleared as required by the display processor using programmed data transfers.
Additionally, programmed data transfers may be used at any time by the display L
processor to read the contents of the mask register. Seven different interrypts are §
enabled or inhibited by bits 1 through 7 (bits 0 and 8-15 are not used). The
interrupt and the interrupt vector address associated with each bit are as follows:

Interrupt
Vector
Address
Bit Associated Interrupt (octal)
1 Graphic controller halted by HREF instruction 000140 i

-

2 X or Y position overflow (bits 10 and 11 in X position 000144
or Y position register are different)

3 Real time clock (interrupts at rate of 60 Hz) 000100
4 PHOTOPEN 1 strike 000150
5 PHOTCPEN 1 switch activated 000160
6 . PHOTOPEN 2 strike 000154

7 PHOTOPEN 2 switch activated
NOTE

Refer to H-82-1319 (Vistagraphic Series PICK
Routine User's Manual) for PHOTOPEN usage.

Associated instructions: Display processor programmed data transfers
(read or write)

Change 1 4-15

4,3.4 TFUNCTION CONTROL REGISTERS. Two function control registers are associated
with the digital graphic controller. These registers are actually only addresses
that may be accessed by the display processor. Simply by accessing function control
register addresses, the display processor can halt or restart the graphic controller

as required.

| FUNS | , FUNCTION CONTROL STOP REGISTER. Octal address: 165040

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0
9

i ! 1] ' 1 ! 1 1] ! L 1]

|
z - |
| | x

The function control stop register is a function control register used to halt
the digital graphic controller., The HALT bit 4 in the sense register SENS must be
checked for the digital graphic controller being halted before proceeding with code
that assumes the controller is halted. Whenever the display processor accesses the
address assigned to this register, the graphic controller halts.

Associated instructions: Accessing address 165040 by display processor

| FUNC| FUNCTION CONTROL CONTINUE REGISTERe Octal address: 165036

L]
-t
(o]

15 14 13 12 11 10 9 8 7 6 5 4 3 ,
l Tt [1 [[] 1 1 1 [? 1 :"l

l |

| _ — . l

The function control continue register is a function control register used to

restart the graphic controller after it has been halted. The HALT bit 4 in the
sense register SENS must be checked whether the digital graphic controller has
started before proceeding with code that assumes the graphic controller is running.
Whenever the display processor accesses the address assigned to this register, the
graphic controller resumes processing from the point at which it last halted. Note
that this register should not be accessed unless the graphic controller is halted.

Associated instructions: Accessing address 165036 by display processor

4=16

[
[pe)

4.,3.5 DISPLAY CONTROL REGISTERS. Any combination of four video controllers ‘may be
selected by the LDDZ instruction. Twelve display control registers are associated
with the selected video controllers. The first register allows blink, cursor,
and/or memory to be enabled. ¥Nine registers control split screen defimition. Two
registers specify the position of the non-destructive crosshair cursor. All these
registers are set by the LDDI instruction.

|'STAn | VIDEO CONTROLLER STATUS REGISTER
no. 0 Octal DR # 4
S 23
2 42
3 61
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l L N L R N R
| P by 1T 0 0
| ‘ ; | SN NSNS NN AU MU NN N R
CHANGE ENABLE | l [| | | |_PHOTOPEN
CURSOR BLINK ENABLE \ R R STRIKE
CURSOR ENABLE __ I . | |__ PHOTOPEN
MEMORY A/B SELECT I SEARCH
|

MEMORY A/B SELECT DISABLE

The Video Controller Status register contains data that controls the presenta-
tion of screen data.

Bit(s) Value Action
- 0 0 No PHOTOPEN strike in last frame
1 PHOTOPEN strike occurred in last frame
1 0 Set video to reference black
1 Set video to reference white
2 Disable selection of memory A or B
3 0 Select memory A if bit 2 = 0
1 Select memory B if bit 2 =0
4 0 : Unused
5 0 Disable crosshair cursor
1 Enable crosshair cursor
6 0 Disable cursor blink if bit 5 set
1 Enable cursor blink if bit 5 set
Cursor blink rate is 7.5 hertz
7-8 Unused
9 0 Allow only bits 2 and 3 to be written
B 1 Allow only bits 5 and 6 to be written

Change 1 4=17

[XCRN| X CURSOR ADDRESS REGISTER Octal DR #21
40
57
76

15 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0

I 1 1 [] i] 1 ' [} 1 [] 1 t] [} ,

; } % X CURSOR ADDRESS !
l

l
SIGN I

The X cursor address register defines the X coordinate of the vertical
<rosshair of the enabled cursor.

[¥CRn| Y CURSOR ADDRESS REGISTER Octal DR #22
' 41

60

77

15 14 13 12 11 10 S 8 7 6 5 4 3 2 1 -0
T 1 l

[i T 1 T T T T T T T !

[
| | | Y CURSOR ADDRESS |

| o 1

l
SIGN ’ I

The Y cursor address register defines the Y coordinate of the horizontal
crosshair of the enabled cursor.

The position of the cursor (intersection of the crosshair) is controlled by the

contents of the X Cursor Register XCR and the Y Cursor Register YCR. If the

intersection of the crosshair is off screen, but either X or Y is on screen, than

the corresponding Y or X crosshair will be displayed on the screen.

[SXns| START X REGISTER Octal DR #: see table below

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
']] 1 1 l 1 1 1 [t 1] [})]
% } X PARTITION ADDRESS |
- - !

The start X register is an 1l-bit register that contains the starting address
for the upper left corner of section number(s) for selected video controller (n).

The display register numbers (DR #) are defined in the following table.

4-18

a _.

-

A— umem; ey — —— ———

Lk

[/

OCTAL VALUES OF DR # FOR
SELECTED VIDEO CONTROLLER n

1 1 2 3 4
screen 1] 6 25 b 63
l
section s 2] 12 31 50 67
|
3 | 16 35 54 73
|SYns]| START Y REGISTER Octal DR #: see table below

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 o0
' 1 1 1 [} ! 1 1] v [} 1] 1] 1 !
! | Y PARTITION ADDRESS }
l | I

The start Y register is an ll-bit register that contains the starting address
for the upper left corner of section (s) ‘for selected video controller number (n).
The display register numbers (DR #) are given in the following table.

OCTAL VALUES OF DR # FOR
SELECT VIDEO CONTROLLER n

1 2 3 4
|
scraen 1.} 5 24 43 62
‘ | ’
section s 2 ; 11 30 47 66
3 | 15 34 53 72
|TNas| ‘ LINE REGISTER Octal TR #: see table below

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

’ [t [t | [1 1 [] 1 1] [}] !

} ‘ NUMBER OF SCAN LINES PER SECTION I

The line register 1is a 11-bit register that contains the number of scan lines
per section (s) for selected video controller (n). The display register numbers
(DR #) assigned are in the following table. For example, the line register for
video controller 3 and screen partition 2 is LN32 with display register DR51.

1 2 3 4

screen 1 ; 7 26 45 64
pesition s 2 : 13 32 51 70
3 ; 17 36 55 74

4=19

The split screen function allows the user to partition the display face into as
many as three variable height horizontal bands. The bands contain data from
anywhere in the addressable mapping memory. Up to three simultaneocus views can be
presented from three areas 6f mapping memory which are not necessarily contiguous,

The band defined by (S§s, §Yg, LNg) will wrap around to the beginning of
mapping memory if the SX; is closer to the "right edge” of mapping memory than the
torizontal resolutions of the screen. If the sum of LNy, LNy, and LN is less
than the vertical screenm resoluticn, then the split screen 1, 2, 3 will wrap around

in that order.

‘The cursor will appear in each split screen section in which either an X or ¥
coordinate of the cursor is in that section.

The following depicts the split screen function:

MAPPING MEMORY 2048 PIXELS SCREEN

s T T e R 1 |

i - | '

o, o” | T

oLy | | : !

| e o

! 2 | I

s, sy - | | P

| b —

| | e o7 | INa J
s | | e | L l { |

| | Powe | | |

| | ‘ I

‘ é ‘ H=80=0444-013

!]

NOTE

The system sets up SX1, SY1, LN1 to display
the complete screen when split sereen is not
being used.

4=20 Change 1

-

i

Al

4,3.6 CONFIGURATION REGISTERS., Three types of registers are available to determine
the configuration of the present GRAPHIC 8 installation.

|DCF | DISPLAY CONFIGURATION REGISTER Octal address: 165052

mcm—

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l 1 T 1 T 1 1 1 7 1 1 1 ! 1 1 ? !
! I l
! ' | - |

Display monitor number n (1=-4) is configured into the system when bit n-l1 of
the Display Configuration register is set.

|VCF| VITEQ CONTROLLER DIRECTORY REGISTER Octal address: 165046

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 1 T 1 [T 1 1 [1 1 1] 1 1 1 l
| l !
_ ,) , . 1 |

Video controller number n (1=4) is configured into the system when bit n-l is
set in the Video Controller Directory register.

|CFRI CHARACTER FONT REGISTER Octal address: 165070

15 14 13 12 11 ‘10 9 8 7 6 5 4 3 2 1 0
| 1 1] ¥ 1 1 1 [T 1 1 0 1 1 [|
g % VALIE l
_ c l

This register contains a value indicating the character font present in the
current configuration.

Value = 377 for 7 = 9 font
= 371 for 5 x 7 font

Change 1 4=21

NOT USED

BLINK STATUS | |
RESERVED FOR HARDWARE |
SCREEN RESOLUTION .
NUMBER OF VIDEO CONTROLLERS
MEMORY FIELD SIZE

BITS PER PIXEL

S?stem Configuration Register Octal address:

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1

[
B R R I
| N O T S S U S O A A

RESERVED FOR HARDWARE

BIT(S) VALUE N

1-2 Bits per pixel:

2 bits per pixel -
4 bits per pixel
8 bits per pixel

'}

= - O
— O efe
]

B

3~5 Memory field size:

X
2048 = 2048
1024 x 2048
2048 x 1024
1024 =% 1024
512 x 1024
1024 ¢ 312
312 x 512

b - O O Ojn
-0 O ke = O
O = O O rfto

OB Ry AN

6=7 Number of Video Controller

[T I

— -0 O~
WP

8~9 Screeh Resolution:

4=22

512 x 512
640 x 480
1024 x 768
1024 x 1024

Blink/No Blink:

12 .
0 = MSBor PDR is blink bit
1 = MSD or PDR is part of pixel data.

- - O Ofjw
- O = Ol
00 4 B

Change 1

‘ ‘

P

4.4 INTERFACE REGISTERS

Interface registers are associated with the various serial and parallel inter—
face ports of the GRAPHIC 8. The following paragraphs provide details concerning
the format and the address assigned to each interface register. Refer to Appendix A
for a summary of the data applicable to the interface registers.

4.4,1 SERIAL INTERFACE REGISTERS. Up to thirteen serial interface ports are avail-
able for external devices to communicate with the GRAPHIC 8. One is located on the
ROM and status logic card and four are located on each multiport serial interface
card (three multiport serial interface cards may be installed in the terminal
controller). The designations of these ports and the associated devices for &
keyboards and 4 PEDs are as follows (note that ports 1, 5 and 9 can be used either
as basic serial interface ports or as full RS-232C interface ports):

Port Associated
Designation Device Location
1 (RS=232C) Host computer ~
2 Alphanumeric/Function Keyboard no. 3 | _ Multiport serial
3 Alphanumeric/Function Keyboard no. 1 | interface card no. 1
4 PED no. 1 _
5 (RS-232C) Unused 1
6 PED no. 3 l___Multiport serial
7 Alphanumeric/Function Keyboard no. 2 | interface card no. 2
8 PED no. 2 _J
9 (RS=2320C) Alphanumeric/Function Keyboard no. 4 |
10 PED no. 4 |__ Multiport serial
11 Unused | interface card noc. 3
12 Unused _J
TTY Teletypewriter , ROM and status logic

card

Bits 0=3 of the Display Processor's 8-bit switch register (octal location
177774) represent the port assignments for keyboards and PEDS. When LOCAL or system
mode is entered, GCP connects the corresponding device interrupt routines te the
proper portse.

The following describes the assignment of serial interface ports 2, 3, 4, 6, 7,
8, 9 and 10 for different GRAPHIC 8 configurations. Port 1 is reserved for the
host. Port 5 is unused.

4=23

Value in bits 0=3 of the Ports left for PED no.
switch register represent

the number of keyboards

Ports for Keyboard No.

l I |
I | !
i I |
{ in the system. %: 8 7 6 5 4 3 2 1 ;
i 0 Il 3 7 2 910 6 8 4 |
l 1 [I73717_2 910 6 8 & |
| 2 [l 3 712_910 6 8 4|
| 3 Il 3 7 271910 6 8 & |
! 4 [l 32 7 2 9710 6 8 4 |
| 5 [l 3 7 2 910 16_8 4 |
l 6 13 7 2 910 618 4|
I 7 I3 7 2 910 6 8 14|
% 8 ;{37291068&§
| 1“1 2 3 & 5 6 7 8|
| i |
| B |
| I I

Normally, ports 1, 2, 3, and 4 are on nultiport serial interface card no. I.
However, each port (1=8) can be "dialed"” so to physically exist on any serial
interface card (1 or 2). For example, two keyboards (ports 3 and 7) and two PEDS
(ports 4 and 8) with no serial interface to the host computer could all be converted
to multiparﬁ serial interface card no. l.

Four registers are associated with each serial interface port: a receive
status register, a receive data buffer, a transmit status register, and a transmit
status reglster. Mnemonics for serial interface ports are suffixed with the number
of the associated port. No suffix is used for TTY port registers. FEach register
has an octal address and can be accessed as required by the display processor.

NOTE

With respect to serial interface registers,
receive data is data received from the external
device. Transmit data is data transmitted to the
external device.

4=24

, 4 .

O S

|RSRna|

RING INDICATOR
CLEAR TO SEND *
CARRIER *

RECELVE STATUS REGI%TER N Octal address: 1765300 (RSR1)

15 14 13 12 11

176510 (RSR2)
176520 (RSR3)
176530 (RSR4)
176540 (RSR5)
176550 (RSR6)
176560 (RSR7)
176570 (RSR8)
176600 (RSRY)
176610 (RSR10)
176560 (TTYRSR)

10 9 8§ 7 6 5 4 3 2 1 O

* N R

DATA SET READY
RECEIVER DONE

*

RECEIVER INTERRUPT ENABLE

REQUEST TO SEND

£

DATA TERMINAL READY *

READER ENABLE

1l Unidentified bits

NOTES
are not used.

2. Bits marked with an asterisk (*) are used on
full RS=232C interface ports (ports 1, 5, and

9) only.

The following receive status register bits are used on all serial interface

ports:
Bit

0

Function
Reader enable 1.
24
3.
4.
Receiver inter— 1l.
Tupt enable
2.
3.

Remarks
Program write (set) only
Cleared by controller bus reset
Cleared when start bit received

When set, places ground on pin 9 of
10=pin I/0 connector

Program read/write
Cleared by controller bus reset

When set, a display processor interrupt
is generated when data ready (bit 7) is set

4-25

Bit Functiqn
7 Data ready

L.

3.

b

3.

6.

Remarks
Program read only
Cleared by controller bus reset
Set when receiver has transferred a
character into assoclated receive data

buffer (RDBn)

Cleared by setting reader enable (bit 0)
or by reading RDBn

1f receiver interrupt enable (bit 6) is-
set, setting this bit causes display
processor interrupt to be generated

Interrupt trap addresses (octal) for each
register are:

RSR1 - 000300 RSR6 =~ 000330
RSR2 -~ 000310 RSR7 =~ 000360
RSR3 - 000320 RSR8 = 000370
RSR4 - 000330 RSR9 = 000400
RSRS - 000340 RSR10 - 000410

TTYRSR - 00060

The following receive status register bits are used on full RS-232C interface

ports (ports 1, 5, and 9) only:

Bit ~ Function
1 Data terminal
ready

b2

Request to send

9 Data set ready

1.
2.
3.

L.
20
3

1.

2.

Remarks
Program read/write
Cleared by controller bus reset

Status of this bit is placed on pin 15 of
26=pin 1/0 connector

Program read/write
Cleared by controller bus reset

Status of this bit is placed on pin 7 of
26=pin 1/0 connector

Program read only

Status of this bit reflects level at pin 11
of 26=pin I/0 conmnector

Bit Function Remarks

12 Carrier 1. Program read only ;
;
2. Status of this bit reflects level atipin 16
of 26=pin I/0 connector

Tl

13 Clear to send l. Program read only

2. Status of this bit reflects level at pin 9
of 26-pin 1/0 connector

14 Ring indicator 1. Program read only

2. Status of this bit reflects level at pin 19
of 26=pin I/0 connector

3. A jumper option permits a high ring indicator
, input at pin 19 to initialize the GRAPHIC 8
- in the system mode

4=27

ERROR

RECEIVE DATA BUFFER n

15 14 13

12 11

Octal address: 176502
' 176512
176522
176532
176542
176552
176562
176572
176602
176612
177562

10 9 8 7 6 5 4 3 2

(RDBL)
(RDB2)
(RDB3)
(RDB4)
(RDBS5)
(RDB6)
(RDB7)
(RDB8)
(RDB9)
(RDB10O)
(TTYRDB)

l" [i 17 1

RECEIVE DATA

OVERRUN ERROR
PARITY ERROR

NOTES

l. Unidentified bits are not used.

2. Parity error (bit 12) is used on full RS-232C
interface ports (ports 1, 5 and 9) only.

The following receive data buffer bits are used on all serial interface ports:

-

Bit(s) Funetion Remarks
0 Receive data l. Program read only
thru
7 2. These bits contain last serial character
received :
3. If character is less than 8 characters,
umused high~order bits will be zeros
14 Overrun error l. Program read only

2. Cleared by controller bus reset

3. Updated each time a character is received :
4, This bit is set when a new character is l_
received before preceding character is read
by program

Bt

- 4-28

Bit(s) Function Remarks
15 Error l. Program read only

2. Cleared only when parity error (bit 12)
-~ and overrun error (bit 14) are cleared

3, This bit is set whenever parity error
(bit 12) or overrun error (bit 14) is
set (parity error is used only on full
RS=232C ports)

The following receive data buffer bit is used on full RS-232C interface ports
(ports 1, 5, and 9) only:

Bit Function Remarks
12 Parity Error ls Program read only

2. Cleared by controller bus reset
o _ 3. Cleared when buffer is read

4, Updated each time a new character is
received

5. This bit is set when the receiver detects
a parity error in the character received

4=-29

i

|TSRn| TRANSMIT STATUS REGISTER n Octal address: 176504 (TSR1)

15 14 13 12

176514 (TSR2)
176524 (TSR3)
176534 (TSR4)
176544 (TSRS)
176554 (TSR6)
176564 (TSR7)
176574 (TSR8)
176604 (TSR9)
176614 (TSR10)
177564 (TTYTSR)

[I
A
it 1t 1

TRANSMITTER READY

TRANSMITTER INTERRUPT ENABLE

NOTE

Unidentified bits are not used.4

Bits in the transmit status register function as follows (the bits are used on

all serial interface ports):

Bit Functipn
& Transmitter

interrupt enable

7 Transmitter
ready

4-30

1.
2e

3.

4o

L.

2.

3.

Program read/write .

Cleared by controller bus reset

When sat, a diéplay processor interrupt
is generated when transmitter ready

(bit 7) is set

Interrupt trap addresses (octal) for each
ragister are:

TSRl = 000304 TSR&6 = 000354
TSRZ -~ 000314 TSR7 =- 000364
TSR3 - 000324 TSR8 - 000374
TSR4 - 000334 TSR9 - 000404
TSRS - 000344 TSR10 - 000414

TTYTSR - 000064

Program read only

Cleared by writing into associated transait
data buffer (TDBm)

This bit is set when first bit of character
is presented to the line the TDBn is ready
to accept another character

alisian

| TDBn| TRANSMIT DATA BUFFER n Octal address: 176506 (TDBL)
176516 (TDB2)
176526 (TDB3)
176536 (TDB4)
176546 (TDBS)
176556 (TDB6)
176566 (TDB7)
176576 (TDB8)
176606 (TDB9)
176616 (TDB1O)
177566 (TTYTDB)

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 Q

[AR (R AN AN R I AR TRANSMIT DATA

NOTE

Unidentified bits are not used

Bits O through 7 in the transmit data buffer are program write only bits. They
are loaded by the program with the code of the character to be transmitted to the
external device. Bits 8 through 15 are not used.

4-31

4.4,2 PARALLEL INTERFACE REGISTER. Up to two parallel interfacss can be used by
external devices to communicate with the GRAPHIC 8; a separate card is required for
each. Four resgisters are associated with each parallel interface., These are a word
count register, a memory address register, a status register, and a data register.
Each register has an octal address and can be accessed as required by the dLSplay
processor. Mnemonics for the registers are suffixed with the number of the
assoclated interface.. .

NOTE

Parallel interface ports are optional. Normally,
if a parallel interface port is used, a single
parallel interface card (for the host computer) is
installed in the terminal controller. For special
applications, however, up to two parallel inter-
face cards may be installed.

With respect to parallel interface registers,
input data is data sent from the GRAPHIC 8 to the
host computer; output data is data sent from the
host coputer to the GRAPHIC 8.

| WCRn| WORD COUNT REGISTER n Octal address: 172410 (WCR1)
- ' 172430 (WCR2)

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0
I] 1 1 1 1 K 1] 1 1 1 [) (N [1 l
| TWO'S COMPLEMENT OF DMA WORD COUNT |
| - . |

The word count register is a program read/write register used for direct memory
access (DMA) operations. It is clegred by a controller bus reset. To initiate a
IMA operation, the program writes into the word count register the two's complement
of the number of memory words to be transferred between the GRAPHIC 8 and the host
computer. Each time the parallel interface completes a DMA word transfer, the word
count is incremented by one. The DMA operation contimies until the word count
equals zero at which time the interface generates an interrupt to the display
processor (by setting the DMA complete bit in the associated status register).

| MARn| MEMORY ADDRESS REGISTER n Octal address: 172412 (MARL)
172432 (MAR2)

15 14 13 12 11 10 9 8§ 7 6) 4 3 2 1 0
i 1 1 [) 1 1)] 7 1 i 1 7 1 l i
| STARTING MEMORY ADDRESS FOR DMA OPERATION | 0]
i ; L

The memory address register is a program read/write register used for direct
memory access {DMA) operations. It is cleared by a controller bus reset. Before
initiating a DMA operation, the program writes into the memory address register the
memory address of the first word to be transferred between the GRAPHIC 8 and the
host cemputer. This address must be the address of an even-numbered byte. Each
time the parallel interface completes a DMA word transfer, the address in the memory
address reglster is incremented by two bytes.

4=-32

e B R R ™ e,

|STRa|

STATUS REGISTER n

15 14

13

12

Octal address: 172414 (STR1)

172434 (STR2)

10 8 &8 7 6 S5 4 3 2 1

0

IIIIIIIII{T
L

!
|
I

INPUT NOT READY I
INPUT INTERRUPT ENABLE __ |
INPUT WORD REQUEST
SPARE INPUT NO. 2

ATTENTION INTERRUPT ENABLE _

ATTENTION NO. 2
ATTENTION NO. 1

WORD COUNT # ZERO
OUTPUT CONTROL

OUTPUT INTERRUPT ENABLE
QUTPUT WORD RECEIVED

DMA COMPLETE
DMA I/0 MODE

ADDRESS BIT 17
ADDRESS BIT 16
SPARE INPUT NO. 1

I
|
I
I
|
I
I
I
I
I
|
I
I
I
I
I
|

The status register contains the necessary control and status bits to operate

the parallel interface in either a DMA mode or a program control mode.

of each bit is as follows:

Bit

0

1

Function

Spare input no. 1

Address bit 16

2.

3.

1.

2.

3.

Remarks
Program read/write
Cleared by controller bus reset
The status of this bit is directly
presented to the host computer for
programming as required
Program read/write
Cleared by controller bus reset
This bit and address bit 17 (bit 2) are
used in conjunction with the address in
the memory address register (MARmn) to

expand the DMA addressing capability to
128K words

4-33

|
I
|

The function

4=34

3

4

Function

Address bit 17

DMA I/0 mode

DMA complete

Output word
received

Remarks

" Program read/write

Cleared by controller bus reset

© This bit and address bit 16 (bit 1) are

used in conjunction with the address in the

; memory address register (MARn) to expand

l..
2.
3..

l'}t‘

1.

2.

4.

1.
2.

3.

b

the DMA addressing capability to 128K

* words

Program read/write

Cleared by controller bus reset

When set, indicates DMA input operation
(transfer of words from GRAPHIC 8 to host
computer), When cleared, indicates DMA
output operating (transfer of words

from host computer to GRAPHIC 8)

This bit is written by the program prior
to a DMA operation; it must not be changed
until the DMA operation is complete
Program read only

Cleared by controller bus reset

Cleared when DMA operation is initiated

This bit is set at the completion of a
DMA operation

Program read/write (set only)

Cleared by controller bus reset

Cleared whenever output control (bit 7) is
cleared

This bit is sent to the host computer to
indicate that data has been received. It
is set by the program either when a data
ready interrupt occurs or ‘when output
control (bit 7) is sensed as being set

During a DMA output coperation, this bit
is set by the interface

ol

L

10

Function

Qutput interrupt
enable

Output control

Word count #
zero

Attention no. 1

Attention no. 2

1.

2.

2.

Remarks
Program read/write
Cleared by controller bus reset

Setting this bit enables the interface
to generate a data ready or a DMA complete
interrupt i

Interrupt trap address (octal) for each
register is:

STR1 - 000124
STR2 = Unassigned

Program read only

This bit, when set, interrupts the display
processor to indicate that output data

is available from the host computer. It
reflects the status of the output control
signal from the host computer

Program read only
Cleared by controller bus reset

Cleared when value in word count register
(WCRn) equals zero

Set when WCRn contains non-zero value
Program read only

This bit reflects status of attention no. 1
signal from host computer. If attention
interrupt enable (bit 11) is set, a high
attention no. ! input will cause an optional
interrupt to the display processor to be
generated

Program read only

This bit reflects status of attention no. 2
signal from host computer. If attention
interrupt enable (bit 11) is set, a high
attention no. 2 input will cause an optional
interrupt to the display processor to be
generated

4=35

4~36

Bit Fudction
11 Artention inter-

rupt enable

12 Spare input no. 2

13 ~ Input word request

1.

2,

3.

l}'

1.

2.

3.

1.

2.

3.

4,

Remarks
Program read/write
Cleared by controller bus reset

This bit, when set, allows the interface

~to generate an optional interrupt to the

display processcr when either attention
no. 1 (bit 9) or attention no. 2 (bit 10)
goes high

Interrupt trap address (octal) for each
register is:

STR1I - 000130
STR2 - Unassigned

Program read/write
Cleared by controller bus reset

The status of this bit is directly
presented to the host computer for
programming as required

Program read/write (set only)
Cleared by controller bus reset

If a single word transfer to the host
computer is desired, the program loads the
input data register (IDRn) with the word
and then sets this bit tp iadicate that
the data is available., Either an input
interrupt or sensing that input not ready
(bit 13) is cleared indicates that the
transfer is complete.

During a IMA input operation, the interface
loads data from memory into the IDRn and -
then sets this bit, The bit is cleared
whenever a néw data ready (NDRY) pulse
occurs (the interface generates an NDRY
pulse for the host computer whenever the
input control signal from the host computer
goes high).

SR — e e — — F— —

Bit Function Remarks

*l4 Input interrupt l. Program read/write
enable
2. Cleared by controller bus reset

3. This bit, when set, enables the interface
to generate an interrupt to the display
processor to indicate either that data

- ' has been accepted by the host° computer or
that a DMA transfer of data to the host
computer is complete

4, Interrupt trap address (octal) for each
register is:

STR1 -~ 000120
STR2 - Unassigned

15 Input not ready 1. Program read only
2. When set, this bit indicates that a transfer
of data to the host computer is in process.
It is cleared when input word reguest

5 (bit 13) is cleared and the inmput control
signal from the host computer is low

-

4-37

=

|ODRn| OUTPUT DATA REGISTER Octal address: 172416 (ODRl or IDR1)
172436 (ODR2 or IDR2)

or or
| IDRn| INPUT DATA REGISTER

15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 0
- v

l [v [[[] [? 1 1 v [1 [[i
| OUTPUT OR INPUT DATA I
I |

The data register is a dual-purpose register referred to as an ocutput data
register (ODRn) when data is being transferred from the host computer to the GRAPHIC
8 and as an input data register (IDRn) when data is being transferred from the

GRAPHIC 8 to the host computer.

When used as an ODRn, the register is a program read only register the contents
of which reflect the states of the data lines from the host computer. The program
reads the contents of the register either when a data ready interrupt occurs or when
output control (status register bit 7) is sensed as being set. During an output DMA
operation (transferring data from the host computer to the GRAPHIC 8) the interface
loads the ODRn contents into the GRAPHIC 8 memory.

When used as an IDRn, the register is a program write only register the
- contents of which are directly presented to the host computer. It is cleared by a
controller bus reset. During an input DMA operation (transferring data from the
GRAPHIC 8 to the host computer) the interface loads the IDRn with data from the
GRAPHIC 8 to memory. During transfers of single words, the program loads the data
into the IDRn and then sets input word request (status register bit 13).

NOTE
The parallel interface will provide either high-
true or low—-true data to the host computer.

Similarly, the interface will accept either high-
true or low-true data from the host computer.

4-38

—

SECTION 5

" GRAPHIC CONTROL PROGRAM (GCP)

5.1 DESCRIPTION AND PURPOSE *

The Graphic Control Program (GCP), a program in read only memory (ROM), is the
central intelligence of the GRAPHIC 8. GCP allows the user to easily control the
interactions between the human and Graphic system responses. This program handles
all the tasks for the GRAPHIC 8 that must normally be programmed for other display
systems. The softwars engineer, therefore, need only be concerned with the
generation of software for the host computer. Specific tasks performed by GCP with
no requirement for host intervention include:

® Routine housekeeping .

® Handling of all operator inputs

s Handling of trackball;forcestick or data tablet manipulatious
® Handling of all graphic controller interrupts |

° Insertion of keyboard data directly into a refresh file

. Formatting of messages for GRAPHIC 8~to—host communications

When the GRAPHIC 8 is initialized in the system mode (refer to Section 2), all
peripheral devices are automatically initialized without any action by the host and
GCP is able to accept messages from the host. As determined by the host application
program, the GRAPHIC 8 is also enabled to format and transmit various types of
messages to the host. The host application program determines the manner in which
data in messages from the GRAPHIC 8 will be processed and the type of data that will
be returned in messages to the GRAPHIC 8. For controlling these operations, the
application programmer has full access to all control registers of the terminal
controller.

Generations of all display instruction codes and management of the refresh file
must be accomplished by the application program resident in the host computer or by
software down=loaded into the GRAPHIC 8. For most computers, display instruction
macros can be used to simplify this task. Extended macro assemblers that contain
the display instruction macros already exist for some computers (refer to Appendix
B). Other methods of generating display instruction codes include host—-resident
graphic suport packages and data statements. A package of this type available as an
option for the GRAPHIC 8 is the host—based FORTRAN support package (FSP).

5.2 HOST/GRAPHIC 8 COMMUNICATIONS

All communications between the host computer and the GRAPHIC 8 are handled by
GCP. Transmissions in either direction are referred to as messages. Each message
begins with a command header that contains two ASCII characters to define the
message type. The header is then followed by as many 16~bit words as are required
to transmit the associated data. The general form of all messages is as follows:

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o

l [t Tt s[i o B v 1 1 }

| 0 | ASCII CHARACTER NO. 1) E ASCII CHARACTER NO. 2]i Command header
- T
i T T [T 1 7 1 T T 7 [1 1 1 [i _!
| WORD 1 [
| l }
l] T] T T 1] T 1 T 1]]) k] ‘ ‘
| WORD 2 [
|] | Associated
|__ data
. i (if any)
. I
, |
l‘ 1 1 (]] t] 1 1 o) 1 1 i l
| WORD n [
!

— _ !

5.2.1 SERIAL INTERFACE COMMUNICATIONS. When communications with the host computer
are handled over a serial interface, the data portion of each message must be
converted to an ASCII format. This translation is required for messages transmitted
in either direction. For GRAPHIC 8~to~host maessages, the translation is accom-
plished by GCP, For host-to-GRAPHIC 8 messages, the translation must be accom=
plished by the host computer and GCP is used to restore the data to its original
format. - The resulting messages, regardless of content, consist entirely of the
alphanumeriec ASCII characters A through Z and O through 9 terminated with rhe ASCII
code for a carriage return. The reason for the translation is to ensure that no
ASCIT code is transmitted. that might interfere with a host operating system or with
the serial interface itself.

ASCII characters used in message command headers are limited to G through Z.
S3ince these headers are originally generated in ASCII format, no tranmslation is
required. Translation is required only for the information contained in the
associated data words. The information in these words is translated into ASCII
characters O through 9 and A through F. Each data word is translated in the
following manner:

5=2

a. The data word is divided into four 4-bit nibbles.

b. Beginning at the left (the most significant nibble), each nibble 1is
considered as if it represented its hexadecimal equivalent (0 through F).

Ce The ASCII code for the hexadecimal number is transmitted over the serial
interface (all ASCII codes are transmitted as eight-bit codes with a 0 in
the most significant bit position).

After all data words have been translated and transmitted, the ASCII code for a
carriage return is transmitted as an end-of-message indicator. Table 5=1 shows all
possible bit combinations for nibbles and the resulting ASCII character codes into
which they are translated.

As an example of the tramslation process, consider the host=to—~GRAPHIC 8
message GI 013700g 000746g. This message instructs the GRAPHIC 8 to transmit
486 decimal words of data in its memory to the host computer beginning at octal
address 013700. As originally constituted, the message would have the following
form: ’

MSB . LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!t 1 T 1 7 1 1 [1 [1 1 T ot ’1]

| ASCII G CODE l' ASCII I CODE | Command header
i _ ‘]

! 1] 1 1 Y 1 1 1 1] 1] ¥ ot 1 1] - I

| BEGINNING ADDRESS | wWord 1

|

l 1 [Ty T [1] 1 t [] 7 1 [[‘

| NUMBER OF WORDS REQUESTED | Word 2

¥
Ll

NIBELE

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 5-1,

HEXADECIMAL
EQUIVALENT

Which, in binary form is:

15 14 13 12 11
T 1]

10 9 8

Data Word Translation Codes

e B Y D3 B0 00 OV B R O

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
01000001
01000010
01000011
01000100
01000101
01000110

I

H

c 0
1

1 0
?

0o 0

1 0
T ¥

o 1
i T

o 0O
T

1 0

ASCII CODE FOR
HEXADECIMAL EQUIVALENT

GI

013700g

0007463

The command header, which is already in ASCII form, is transmitted as is in two
The two data words are then
divided into eight nibbles and translated into ASCII codes as follows:

bytes with the high—order byte being transmitted first.

message resulting from this example would appear as follows to
byte at a time over a serial interface:

Command
header

Starting
address
data word

Ending
address
data word

- Terminator

ASCII G CODE_

ASCIT

T CODE

ASCII

1 CODE

ASCII

7 CODE

ASCII

C CODE

ASCII

0 CODE

ASCII

0 CODE

_ASCII

1 CODE

ASCII

E CODE

ASCII

6 CODE

ASCII

1

CR CODE |

or

be transmitted one

1000111

1

0

0

1

0

0

-

0

0

5

L3

Hexadecimal ASCII
Equivalent Translation
1 00110001
| 7 00110111
! C 01000011
| 0 00110000
! |
1 1 I i [] 1] [1]
lo o 0 110 111 1 0o o1]o 0 |
. ! . | | | |
' 0 00110000
| 1 00110001
. l E 01000101
- 1 6 00110110
| I
o l 1 ' 1 l 1 I 1 i 1 1]
‘ lo o o o1lo 111 1 1 o1lo 0 |
l | I | |
— After the ASCII code for a carriage return has been added at the end, the final

5-3

5.2.2 PARALLEL INTERFACE COMMUNICATIONS. When communications between the host
computer and the GRAPHIC 8 are handled over a parallel interface, messages in both
directions are transmitted in the binary 16-bit word format in which they are
originally constituteds ©No translation of the data words 1s necessary and no
end-of-message indicator is required. Note, however, that ASCII codes are used for
the two characters in the command header regardless of whether the message is
handled over a parallel or a serial interface.

5.3 HOST/GRAPHIC 3 MESSAGES

There are nine different groups of messages transmitted between the host
computer and the GRAPHIC 8. These groups are listed below:

i. Initialize and error messages
2. Establish I/0 transmission mode (poiling/ncn&polling)
3. Memory related messages

4, Interrupt related messages

5. Keyboard related messages

6. Positional entry device related messages
7. FORTRAN suppert (FSP) messages

8. Option messages

9. 3D coerdinate converter messages

-

5.3.1 INITIALIZE AND ERRCOR MESSAGES. The initialize and error group consist of the
following messages:

HOST-to~GRAPHIC 8 (B->G8)

Iz Initialize

GRAPEIC 8-to-HOST (G8—>H)

XX ' -

The following paragraphs discuss theses messages and give details concerning the
format and application of each.

ITZ] (8->G8) INITIALIZE Command header code (octal): 044532

“15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

l] [] 1 1 1] T i l] [] 1]] i

| 0| ASCIT I CODE | 0] ASCII Z CODE | Command header
P ‘ [’ |

The initialize message is a single-word message that causes the GRAPHIC 8 to
initialize in the system operating mode (refer to Section 2). Initialization in the
system mode results in the following:

a. Associated display indicator(s) goes blank.
b. Associated keyboard(s) and PED's are enabled.
Co Built-in diagnostic tests are performed.

d. The results of the diagnostic tests are sent in an XX message to the host
e computer.

I NOTES

1. An IZ message is recognized by the GRAPHIC 8
o) only when the GRAPHIC 8 1s operating in the
S system mode. If the GRAPHIC 8 is operating in
the local mode, the host computer must first
generate a hard-wired INIT signal (if a
parallel interface is used) or a RING+ signal
(if a serial interface is used) or the
. - operator must press the SYSTEM switch on the
i GRAPHIC 8 front panel.

2. After an IZ message has been sent, no further
message should be sent from the host computer
to the GRAPHIC 8 until an XX message has been
sent from the GRAPHIC 8 to the host computer.

3. When the GRAPHIC 8 is operated inm the tele=-
typewriter emulation mode (refer to Section
2), inirialization in the system mode can be
accomplished by sending the code for ASCII
character group separator (octal code 035)
from the host computer to the GRAPHIC 8.

ads

XX (c8—>) ERROR STATUS Command header code (octal): 054130

15 14 13 12 11 10 9 8 7 6 5 4 3.2 1 0

I [1 [[] 1 [} [i | [[} Y ¥ 1 1 i

| 0| ASCII X CODE | 0| ASCII X CODE | Command Header
| ' - l

i [[] ! 1 1 T 1 1 T 1 i o1 l

! . ERROR BITS | | Word 1

I - |

l T ¥ 7 A A T e e e T T i :

| '~ ADDITIONAL INFORMATION | Word 2

i T T T T 7 Y ! R N N 7 T Y | :
% B ; B. 0 O } 0 0 o'} 0 0 o0 { 0 0 0 % 0 0 O } Word 3

Whenever the GRAPHIC 8 is initialized in the system mode (refer to paragraph
2.3), an XX message ls automatically sent to the host computer to indicate the
results of the diagnostic tests performed and the ROM checksum calculated during the
initialization routine: When the GRAPHIC 8 is operating in the system mode, XX mes-
sages are also automatically sent to the host computer (provided that error detec—
tion has been enabled via the IM message) whenever an error condition is semnsed by
GCP. There are four basic categories of XX messages, each of which has a slightly
different format for words 1 and 2. The make~up of words ! and 2 for each category
is as follows (a 1 in a bit position marked "X" indicates an error condition or
failure of a diagnostic test):

»

3-8

=

Initialization XX message:

15 14 13 12 11 16 9 8 7 6 5 4 3 2 1 O

I ' ROM CHECKSUM

Bits in word 1 indicate the following:

Bit 0 - results of interface diagnostic test

Bit 1 - results of graphic controller diagnostic test

Bit 2 -~ results of display processor diagnostic test

Bit 4 = results of 3-D Converter diagnostic test

Bit & = results of read/write memory diagnostic test

Bit 15 - set to 1 indicates initialization XX message

All other bits are always zero.

Any possible combination of test results can be indicated.
Word 2 contains the result of the ROM checksum calculzation.

Nommal running XX message:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l T '
| o
I

|1 ! S 1]

Bits in word 1 indicate the following (when set to 1):

Bit 3 - incorrect message format sent by host computer

Bit 7 - unidentified internal interrupt detected by display
processor

Bit 10 - GCP serial interface buffer is full

Bit 11 = GCP serial interface buffer is 7/8 full
Bit 14 -~ Command header not recognized by GCP

All other bits are always zero.
Any combination of errors can be indicated.
Word 2 contains all zeros for bit 3, 10, 11 and 14 type errors.

errors, word 2 contains the address plus 4 bytes to identify the
of the unidentified intermnal interrupt.

Al

Change 1

| Word 2
l

For bit 7
address

Ce Buffer XX message:

15 14 13 12 11 10 _9 38

1 1 T

| ! |
} olo 0 O g 0. 0 0 % 1

|
{ 0 } ASCTI CHAR NO. 1

; 0 } '~ ASCII CHAR NO. 2 | Word 2
- N !

A buffer XX message is sent when no output buffer is available to GCP for a

message to be sent to the host computer. Bit 8 in word 1l identifies the message as

a buffer XX message; all other bits in word 1l are always zero. Word 2 is the
command header for the message that could not be sent to the host computer.

de Character overrun XX message:

15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 0
; = . —_—

A character overrun XX message is sent whenever a character overrun condition

or parity error is detected at the serial interface port used for communications

1| Word 2
i

with the host computer (normally port 1).

Bit 9 in'word 1 identifies the XX message

as a character overrun XX message; all other bits in word 1 are always zero.
identifies the port on which the overrun was detected (GCP assumes serial communi-

cations with the host computer are handled via port 1.

Therefore, word 2 of a

Word 2

character overrun XX message always has a binary value equal to 1).
For all XX messages:

Bits 14 and 15 of word 3 contain the bank number associated with the XX
Message. Bits 14 and 15 are defined as follows:

Bits Bank Number
15 1t
0 0 0)
0 1 1
1 0 2
1 1 3

Lic..

e

5.3.2 ESTABLISH I/O TRANSMISSION MODE (POLLING/NON=-POLLING). The eétablish 1/0
transmission group consists of the following messages: ¢

HOST-to~GRAPHIC 38

™ Initialize I/0 message formats
PL Poll GRAPHIC 8 for next message
NO No operation

GRAPHIC 8-to-HOST

M No messages ready

The following paragraphs discuss these messages and give details concerning the
format and application of each. :

DM (#->G8) INITIALIZE I/0 MESSAGE FORMATS

Command header code (octal): 044515

»

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0
1 1 1 [] 1 ?] l [l 1 t [1) l
ASCII I CODE | 0| ASCII M CODE | Command Header
| | i .

o

[[] 1 }

| |
lolp » p p » D D|JOolo 0 O]lD D D D| Word 1
i | - I

The IM message is used to activate or de~activate error detection and to
initialize GCP to operate in either a polling or non-polling mode.

A detailed description of the meaning of all bits i@:WORD 1 is given below:

Bit

0 Polling

1 Send poll
message back

2 Host to GRAPHIC 8
data not packed

3 Activate error
detection

48 Reserved

5«12

Value

0

| Description

‘GCP operates in non-polling mode (i.e.,

messages are automatically sent to HOST
when a message is ready.)

GCP operates in a polling mode (i.e.,

the HOST must issue a poll (PL), message

each time the Host wants the next
message from the GRAPHIC 8.)

In this ﬁode, GCP does not respond to

polls until a message is ready for
transmission to the Host.

In this mode, if the GCP output buffer
is empty, a dummy NM message 1s sent
back to the Host to indicate that the
GCP output buffer is empty.

GCP interprets all data words sent from
the HOST to be in packed format.

GCP interprets all data words sent from
the HOST to-be in image format.

GCP ignores all command header errors.
This permits the operation of GCP in
serial full-duplex mode. Messages
echoed back to GRAPHIC 8 from Host are
ignored.

GCP validates all command headers; when
errors are detected, an appropriate XX
error message is sent to the Host.

These bits are reserved for future
expansion.,

Bit Description

8=-14 Special poll These bits operate in conjunction with
character ' bits O and 1.

If bits 8~14 are all zeroes, GCP sends
messages back to the Host anytime a PL
message is received.

If bits 8~14 contain any non—-zero
value, then GCP does not send a message
to the Host until the Host sends a PL
message followed by the special poll
character. Effectively, when GCP
raceives the PL message, it prepares a
message for transmission to the Host.
It then waits for the special poll
character before the message is sent to
the Host. The special poll character
is sent by the Host to indicate that it
is ready to receive the next GRAPHIC 8
message. The special poll character
permits operation with operating
systems that use a special character to
turn around (change direction) a serial

- communications line from output to
input.

NOTE

By default, GCP is initialized so that all bits
(functions) represented by word 1 of the IM
message are set to C.

When GCP is initialized by the IZ message, it 1s set up to operate in a
non-polling mode. In this mode, whenever GCP has a message stored in its output
buffer, the message is automatically sent to the host computer (i.e., GCP is
operating in an asynchronous or non=-polling environment).

By setting bit O of word ! of the IM message to a 1, GCP can be set up to
operate in a polling mode. In this mode GCP only sends a message to the host
computer when the following two conditions exist. B

1. GCP has a message stored in its output buffer.

2. The host has issued a PL message. The PL message tells GCP that the host
computer is ready to receive the next message and that GCP should send it.
If a message is stored in the output buffer, GCP immediately sends it to
the host computer. If no message is stored in the output buffer, GCP
waits until a message gets stored in the output buffer, them it sends the
message to the host computer.

5-13

Bit 1 of word 1 works in conjunction with the way bit 0 has been set up. When
bit 0 is set up for non—polling mode (bit 0 = Q), the value of bit 1l is ignored.
When bit 0 is set up for polling mode (bir 0 = 1), GCP operates as follows:

1. When bit 1 is 0, GCP operates in a polling mode as described in. the
- previous paragraph. #

2. When bit 1l is 1, GCP operates in a polling mode that is slightly dif-
ferent. In this mode, after GCP receives the PL message, it does one of
the following:

(1) If a message is storad in the output buffer, GCP immediately sends it
to the host computer.

(2) 1If the ocutput buffer is empty, GCP immediately sends a NM dummy
message to the host computer. The NM message indicates to the host
computer that the GCP output buffer is empty and that the communi-
cations line between the GRAPHIC 8 and the host computer is still
active.

The special poll character is applicable to serial. communications only. This
character is defined in bits 8 through 14 of word 1. The special character poll
mode works in conjunction with the way bits 0 and 1 have been set up. When bit 0 is
0, the special poll character is ignored by GCP. Setting bit O to a 1 activates the
special poll character bits. If the special poll character is set up for 0 (i.e.,
bits 8 through 14 are 0), the polling modes previously described are in effect. If
the special poll character is set up with non-zero value, then the following special
polling mode is activated. ‘ '

1. Host computer sends a PL message to GCP.
2. Host computer sends the special poll character to GCP.

3. After GCP receives the PL message followed by the special poll character,
the next message 1s sent to the host computer. The sending of this
message is based on whether the output buffer has a message and the way
bit 1 has been set up. '

Bit 3 of word 1 of the IM message 1is used to activate the detection of command
header errors. By default, GCP is initialized to ignore all command header errors.
By setting bit 3 to a 1, GCP can be activated to validate all command headers. When
GCP detects that the host computer has sent an invalid GCP message, it stores an
appropriate XX error message in its output buffer.

3-14

The recommended values for word 1 of the IM message are given below:

Type of Interface Polling Mode Non=Polling Mode
Parallel % or 11 8
Serial half-duplex 9 or 11 8

Serial full-duplex lor3 ' 0
(echoing enabled) :

Serial full-duplex 9 or 11 8
(echoing disabled)

IPL] (#>G8) POLL GRAPHIC 8 FOR NEXT MESSAGE -

Command header code (octal): 050114

. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

. l i 1 7 1 [1 1] ‘ 1 1 1 1 1 1 l

| o | ASCII P | 0 | CASCII L | Command Header
1 ' - |

The poll message is sent by the Host to request that the GRAPHIC 8 send the
next message. This command works in conjunction with the way the IM command has
initialized GCP.

M| (G8->H) NO MESSAGES READY

Command header code (octal): 047115

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
] 1 1

[T I l [[N [} 1 T 1 I

} 0| ASCIT N CODE ; 0 % ASCII M CODE } Command Header
! ! ¥ (] l] [] i] 1 ! .3 Kl i] 1 *
g 0 z 0 0 o0 } 0 0 o0 ; ¢ 0 o ; 0 0 0 } 0 0 0/ Word 1
!
! l 1] l'v 1 i)] ! t : i] 1 l
lolo o olo o olo o o0lo 0 o0}l0 0 01 Word 2
1 | | | | | ‘
!{ 1 [] l]]] T s'[1 [] , [1 ’
lo]o

o 0/o o olo o 0l0 0 00 0 0] Word3
!

This message is sent by GCP (in response to the PL command) when the output
buffer is empty and the poll message bit has been set previously by the IM command.

INO| (z->G8) NO OPERATION
Command header code (octal): 047117
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

For e

B B]] [] v"l i [] [[] 1 l

ASCII N CODE | 0} ASCII O CODE | Command Header

I

The NO message is a single~word message that causes no operation to be
GCP. NO messages are used primarily as fillers when the host computer
application program requires that all messages sent to the GRAPHIC 8 be of constant

performed by

length.

5.3.3 MEMORY RELATED MESSAGES. The memory related messages consist of the

following:

Host-to-GRAPHIC 8

s
MU
sU
RU
Sp
HP
KP
X
GI
GR

Memory bank select
Memory update
Selective update
Register update
Start picture

Halt picture
Contimue picture
Trangfer coantrol
Give image

Give register

1

GRAPHIC 8~to-Host

RI Return image
VL Variable length
RR Return register

The following paragraphs discuss these messages and give details concerning the

format and. application of each.

IMS| (E=>G8) MEMORY BANK SELECT

Command header code (octal): 046523
15 714 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1] 1 1 1 1 1 i 1 1 1 1 i

|]] |
| 0| ASCII M CODE | 0| ASCII S CODE
| | , | |

| Command Header

: l il ! I
o X X X X X X X X X X X X X X| BANK | Wordl
7 l e - _ _ | |

The MS message is used to select the desired memory bank, This message should
be issued prior to such commands as MU, SU, GU and GI if a large memory system is in
use. Bits 2 through 15 in word 1l are ignored by GCP. Bits 0 and 1 represent the
bank’ number selected as. given below:

- Bits
J) 0 BANK NUMBER SELECTED
AS
- 0 0 0
0 1 1
1 0 2
. 11 3

Below is a table showing the relation of virtual addresses (i.e., addresses
specified in MU, SU, GU, and GI messages) to physical addresses when different
memory banks are selected.

BANK NUMBER VIRTUAL ADDRESS PHYSICAL ADDRESS RAM PAGES
0 | 000000-177777 000000-137777 - 00-05
1 000000~177777 200000-377777 10-17
2 000000-177777 400000-577777 26«27
3 000000-177777 600000-777777 30-37

B
o Sl

5-17

NOTE
When GCP is inftialized by default, bank 0 is

selected. Memory bank selection should be taken
into account for the following Host-to-GRAPHIC 8

b

messages: : ‘ .
MU, SU, SP, GI, MS, IP, IT, TK, ZR, ZT, MI, GU

Memory bank selection should be taken into account
for the following GRAPHIC 8-to-Host messages:

RI, XX, HI, XI

IMU| (B->G8) MEMORY UPDATE Command header code (octal)::

15 14 13 12 11 10 9 8 .7 6 5 & 3 2 1 o
2312 5 2

046525

L 1 1 T

. |
| 01 ASCII M CODE | 0| ASCII U CODE
. |

’ { [B T T T T T T 7] Ty i

l LOAD ADDRESS |0

!:I i [S 7 T T T [S T 1

| NUMBER OF DATA WORDS TO BE LOADED

| T [} T 1 V] T ¥ 7 T 7 [

! DATA WORD

®

*

| T (I 7 T =t 7 T i 7 T T AR I

| DATA WORD

!
l

Command Header

Word 1

Word 2

Word 3

Word n

The MU message is a variable-length message used to load data into the
read/write memory of the GRAPHIC 8. The load address specified in word 1 tells GCP
the address at which loading of the data should begin. This address must be the
address of an even—numbered byte. An odd address will result in an XX (error
status) message being returmned by the GRAPHIC 8 and data will not be loaded.

5-18

Word 2 specifies the total number of data words that are to be loaded into
successive read/write memory locations. This word is then followed by the data
words to be loaded. -

When a memory update message is sent from the host computer to the GRAPHIC 8,
GCP halts the graphic controller (this blanks the display indlicator). The GRAPHIC 8
then remains halted until a KP (continue picture) or SP (start picture) is sent by
the host computer., For lengthy memory update messages, this can result in
noticeable blanking on the display indicator.

ISTl (#->G8) SELECTIVE UPDATE Command header code (octal): 051525

15 14 13
! E]

| 0| ASCII S CODE | 0] ASCII U CODE | Command Header

|1 e , R , I

| 7 T 7 — 7 T 7 1 T T T 1 T

12 11 10 9 8 7 6 5 4 3 2 1 O
1

1 1 T 1 ‘ i] 1 g 1 1 1]

[LOAD ADDRESS [0] Word 1
| [
| T 7 I T Tt T T T ¥ ¥ 7 T
| NUMBER OF DATA WORDS TO BE LOADED | Word 2
| !
" T T T 7 T 1 1 7 7 7 T (DR 7
l |
| DATA WORD | Word 3
|
! T T T 7 7 T 7 =7 T T ¥ T T T i
| DATA WORD | Word n

The SU message is a variable~length message that operates in exactly the same
manner as the MU (memory update) message except that the digital graphic controller
is not halted. Therefore, if an SU message is used to update a refresh file
currently being processed by the graphic controller, the file must remain valid as
each data word is replaced.

More commonly, an SU message is used to load a new refresh file into a
different area of memory while an older file is being processed by the graphic
controller. After loading of the new file is complete, an SP (start picture)
message from the host computer causes the graphic controller to process the new
file. This assures that the display will not be blanked while the data is being
transferred as occurs when an MU (memory update) message is used,

Igﬁl (E=->G8) REGISTER UPDATE Command header code (octal): 051125

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7

! i 1] 1 []] 1 1 T]

|
| 01 ASCII R CODE [o | ASCII U CODE | Command Header
[, , |1 | |
1 T B ¥ T T 1 T 1] [v 1] I
| REGISTER ADDRESS ' | Word 1
l |
1' R B S Y T T T 7] T T T l
! REGISTER COUNT } Word 2
| T 7 T T Tt 7 T D) T T R R |
| , REGISTER DATA | Word 3.
! i
|7 Y 7 ¥ T ¥ T T 3 7 T A ¥ ¥ |

| REGISTER DATA | Word n
I

The BU message 1s a variable length message that is used to update a series of .

registers in the I/0 address area of the hardware. Word ! contains the address of
the first register to be updated. Valid register addresses are in the range of
160000~177777 (octal). Word 2 contains the register count indicating the number of
successive registers to be updated. Words 3 through n contain the data values to be
loaded into each register.

NOTE

The RU message does not change the current memory
bank selection. It is also possible to interpret
register address as memory address in the above
message. When updating memory address, the user
must take into account memeory mapping. Memory
addresses in the range of 020000 to 077777 are
subject to memory mapping.

ISEl (8->G8) START PICTURE Command header code (octal): 051520

15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 O
1

1 [1 1 [} 1] [1 [1 1 1]

l !
| 0| ASCII S CODE | 01 ASCII P CODE | Command Header
I - | : i '

| T 7 7 1 1 T T 7] 1 T 7 T] !

| STARTING ADDRESS OF REFRESH FILE | | Word 1
!

The SP message is a two-word message that causes the digital graphic controller
to begin processing a refresh file starting at the address specified in word 1. The
specified starting address should be the address of an even-numbered byte. If,
however, an odd address.is specified, the low order bit is ignored by GCP and no XX
(error status) message is generated. If the graphic controller is running, it is
halted and restarted at the specified refresh file address.

!Eﬁfl (8=->G8) HALT PICTURE Command header code (octal): 044120

15 14 13 12 11 10 9 8 7 6 S5 4 3. 2 1 0
ot

7 7 7 T g 1 T 1 =3 1 T l

[|
| 0| ASCII H CODE | 01 ASCII P CODE | Command Header
N |

The HP message is a single-word message that causes GCP to halt the digital
graphic controller. The refresh file is not altered and the graphic controller
program counter remains pointing at the location of the next instruction to be
processed. Following an HP message, the digital graphic controller remains halted
until an SP (start picture) or KP (continue picture) message is sent by the host
computer.

5-21

L B T St d

X2 | (&—DGS% CONTINUE PICTURE Command header code (octal): 045520

¥

¥

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

. | l [0 T T i ! 7 ¥ T K T ¥ I
| o | © ASCII X CODE | 0| ASCII P CODE | Command Header:
| ') | . | | ;

The KP message is a single-word message used to restart the digital graphic
controller at the instruction following the one at which it halted. Conditions
causing the digital graphic controller to halt include:

a. Host computer gends HP (halt picture) message to GRAPHIC 8

b. Host computer sends MU (memory update) message to GRAPHIC 8

Cs Display proceséor sends stop function code (165040) to &igital graphic
controller

d. Display processor executes RESET imstruction
e HREF instruction executed by digital graphic controller
£. LINK instruction exeéuted by digital graphic controller
2 Invalid instruction executed by digital gréphic contreller
he. Bus timeout (memory fails to respond to a fetch command)
i. X or Y position overflow (if interrupt to display processor is enabled)
| NOTE
If the digital graphic controller is running when
a2 KP nmessage is sent by the host computer, GCP

returns an XX (error status) message to the host
computer.

ITR| (8->G8) TRANSFER CONTROL Command header code (octal): 052113

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

! l) 1 1] i 1 I i 1] 1 1 1 1 !

| 0| ASCII T CODE 1 0] ASCII K CODE | Command Header
.] , |

l [O 1 1 0 t l”l [[] [T 1 ‘ i

l " STARTING ADDRESS OF PROGRAM | | 0 Word 1
|

The TK message is a two-word message that causes the display processor to stop
processing GCP and begin processing the program that begins at the address specified
in word 1. This message 1s intended for advanced applications to permit a program
other than GCP to be processed by the display processor. Normally, such a program .
would be down=-loaded from the host computer using an MU (memory update) message and
then started by using a TK message. After control has been transferred, no further
communications via GCP are possible unless the new program deliberately returns to
GCP with an RIS PC instruction.

|GIl (#->G8) GILVE IMAGE Command header code (octal): 043511

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

l | 1 1 g 1 [l 1] 1 1 1 v l

1

| 0| ASCII G CODE | 0| ASCII I CODE | Command Header
. [l I

‘ 7 ¥ T T 7 T ™3] T T 7 T T T ! I

! STARTING ADDRESS |0 | Word 1

l |

| 7 T 7 T T 0 T R T T] 1 7 l

| _ NUMBER OF WORDS REQUESTED | Word 2

The GI message is a three-word message that causes GCP to send back to the host
computer the contents of the GRAPHIC 8 memory beginning at the specified starting
address and ending when the requested number of words have been sent. The specified
starting address should be the address of an even-numbered byte. If, however, an
odd address is specified, the low order bit is ignored by GCP and no XX (error
status) message is generated.

In response to a GI message, GCP sends an RI (return image) and a VL (variable
length) message to the host computer. The RI message indicates the length of the VL
message while the VL message contains the requested data.

IEE! (G8=>H) RETURN IMAGE Command header code (ocectal): 051111

15 14 13 12 11 10 4 3 2 1 0

] I [[1 TTTTTTTTTY] { t] [i 1 R I

o
o
~
o
u

| 0] ASCII R CODE i 0 i ASCII I CODE } Command Header
| ‘ [~
I T] 1 [] [] [] 1 1 1 T 1 7] l
| STARTING ADDRESS ' | 0] Word 1
I |1
l T N 7 7 1 AT 7] T T F] 7 ! :
o NUMBER OF WORDS TO BE TRANSFERRED | Word 2
' |

I] T T T ¥ T " TR T 7 | :
/s 8/0 0 0 0 0 O O 0 O O O 0O 0 O/ Word 3
! | _ |

GCP returns an RI message to the host computer in response to a GI (give image)
message from the host computer. Word 1 specifies the starting address of the data
to be transferred and word 2 specifies the number of 16~bit words to be transferred.
The data in words 1 and 2 are always the same as the data in the corresponding words
of the requesting GI message. Bits 14 and 15 contain the bank number that the RI
message i1s related to. Each RI message is immediately followed by a VL (variable
length) message that contains the data requested by the host computer.

5=24

VL1 (G&=H) VARIABLE LENGTH Command header code (octal): 053114

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i

1 [[1 1 ‘ i 1 1 1 [T 1]

| 0| ASCII V CODE | 01 ASCII L CODE | Command Header
I | |
] 7 [1 1 1]] [Y 1 (B 1 1 [1 '
| NUMBER OF DATA WORDS TO BE TRANSFERRED | Word 1
I |
l 1 1 [1 1 [[1 t [] 1 1 1 7 1 i
| DATA WORD | Word 2
| I
i °

- ‘ 2 I B S 1 ¥ T -~ "3 T T (R I

| - i DATA WORD | Word n

The VL message is the only GRAPHIC 8~to-host message that does not necessarily
contain four words. Its length is determined by the number of data words to be
transferred. In response to a GI (give image) message from the host computer, GCP
v returns an RI (return image) message that is immediately followed by a VL message.
i The RI message informs the host computer that a VL message is to follow. The VL
‘ message contains the data requested by the host computer. Word 1 of each VL mes—-
sage always contains the same data as word 2 of the preceding RI message. Words 2
through n of each VL message contain the requested data.

NOTE

. Normally, after receiving the RI message, the host

1 sets up to read in the VL message. For host DMA
operations, the word count specified to read in
the VL message should be set equal to the number
of words to be transferred (i.e., word 2 of the RI
message), plus two.

- 5-25

IGRI (8->G8) GIVE REGISTER Command header code (octal): 043522

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: .

I ! 1 1 [} 1 1 ; l 1 [[[1 l
Lo} ASCII G CODE | 0| ASCII R CODE | Command Header
A [: ’ |

' 1] K] [1 R B 1 T 1 [} v } i

i
| REGISTER (OR MEMORY) ADDRESS | 0| Word 1
| _ , _ ‘ I |

The GR message is a two-word message used by the host computer to obtain the
contents of the GRAPHIC 8 register specified by the register address in word 1. The
contents of any register having an assigned address may be obtained in this manner.
1f required, GCP automatically halts the graphic controller before the data is
-obtained and then restarts it at the completion of the operatiom. In response to a
GR message, GCP sends an RR (return register) message to the host computer.

Although the intent of the GR message is to permit the contents of registers to
be read, it can also be used to read the contents of GRAPHIC 8 memory addresses.
When it is used to read a memory address, the specified address in word | must be
that of an even-numbered byte. If the address of an odd-numbered byte is specified,
GCP causes an XX (error status) message to be sent to the host computer. :

NOTE
When the GR message is used on a large memory

system, the following restrictions must be taken
into account.

1. Addresses in the range of 000000-017776 are
diractly addressable.

2. Addresses in the range of 020000-077776 are
subject to memory mapping.

3. Addresses in the range of 100000~117776 are
directly addressable.

4. Addresses in the range of 120000-177776 are
related to ROM and I/0 device registers.

3-26

1
| SV

IRR| (G&—>H) RETURN REGISTER Command header code (octal): 051122

15 14 13 12 11 10 9 8 7.6 5 4 3 2 1 0

l ‘ v 1 T [1 1 i l 1 1 1 1 1 1]

| 0l ~ ASCII R CODE I o ASCII R CODE | Command Header
l | ‘ , . i | |

I [} E]] . [] ! [] [] [] 1 1)] 1 1 l l .

| REGISTER (OR MEMORY) ADDRESS | 0] Word 1

l | !

1 T i 7 7 T T T [7 T T 7 T T i

| CONTENTS OF REGISTER (OR MEMORY ADDRESS) | Word 2

lolJo o o]Jo o olo 0 o]lo 0 o0l0 0 0] vord 3

An RR message is sent by GCP to the host computer in response to a GR (give
register) message from the host computer. Word 1! of an RR message is always the
same as word 1 of the requesting GR message. The requested data is returned to the
host computer in word 2. Word 3 always contains all zeros.

5.3.4 INTERRUPT RELATED MESSAGES. The interrupt related group consist of the
following messages:

Host=to=GRAPHIC 8

IX Interrupt control
IS8 Enable selected interrupts
ZI Disable selected interrupts

GRAPHIC 8-to-Host

HI Halt interrupt
¥I X or Y position overflow interrupt

The following paragraphs discuss these messages and give details concernlng the
format and application of each.

5-27

‘Eg] (B=->G8) INTERRUPT CONTROL Ceommand header code (octal): 044513

15 14 13 12 11 10 9 8 7 &6 S5 & 3 2 1 O

I 1 1 7 t 1 7 ‘ 1 1 [T 1 [l
0| ASCII I CODE ; 0 | ASCII K CODE | Command Header
| , I !
[!‘ E] [} [1 t 't 1 R 1 K]

!
SELECTED MASK BITS | Word 1
|

The IK message is a two-word message used to enable or disable certain GCP
functions and to determine conditions under which the digital graphic controller can
interrupt the display processor. When an IK message is sent, the contents of bits
1-3 of the word 1 directly replaces the contents of the graphic controller mask
register (MKR). The remaining bits of the word are decoded and used to enable or
disable associated interface ports, The function or interrupt condition associated
with each bit is as follows:

BIT FUNCTION OR INTERRUPT CONDITION SERIAL INTERFACE PORT
0 PED no. 4 ' ’ 10
1 Digital Graphic Comtroller halt N/A
2 XorYy positioﬁ overflow N N/A
3 Real time clock ‘N/A
4 Unused
3 Unused
6 Unused
7 Unused
8 Unused
9 Alphanumeric¢/function keyboard no. 4 9
10 PED no. 2 8
11 Alphanumeric/function keyboard no. 2 7
12 PED no. 3 6

13 PED no. 1 4
14 Alphanumeric/function keyboard no. 3 2

15 Alphanumeric/function keyboard no. 1 3

Note the serial interface ports to device assigrments may vary for different
configurations. See section 4,4.1 for more information on port assignments.

=28 Change 1

IIS| (B->G8) ENABLE SELECTED INTERRUPTS
Command header code (octal): 0445323

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 T T T 1] I T T T] T T 7]

|
| 0| ASCII I CODE | 0] ASCII S CODE | Command Header
| l | |

T T T T T T Ty
[xlxlxlxlxlxl x| x| SELECTED MASK BITS | Word 1

.ttt +rt + t 1 , |

The IS message is a two word message used to selectively enable mask register
(MKR) associated interrupts. If a mask bit is set to 1, then the interrupt
associated with that bit is enabled. If a mask bit is set to 0, then the interrupt
associated with that bit remains unchanged after the I8 message is processed by GCP.

The function or interrupt associated with each bit is as follows:

BIT FUNCTION OR INTERRUPT CONDITION
0 Not used
1 Digital graphic controller halt
2 X or Y position overflow =
3 Real time clock

4=15 These bits are ignored by GCP

5=29

IZI] (B->G8) DISABLE SELECTED INTERRUPTS

Command header code (octal): 055111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

1 1 [l'{ i‘r 1] 1 1 v'l

|
E 0 | ASCII Z CODE - 1ol ASCII I CODE ; Command Header
| : .

i Y 1] T T T l 3 ¥ ~ ¥ Y I
¥ ¥ X ¥ X X x x| SELECTED MASK BITS | Word 1.
I | I

The ZI message is a two word message used to selectively disable mask register
(MXR) associated interrupts. If a mask bit is set to 1, then the interrupt
associated with that bit is disabled. If a mask bit is set to 0, then the interrupt
associated with that bit remains unchanged after the ZI message is processed by GCP.

The function or interrupt associated with each bit is as follows:

BIT N " FUNCTION OR INTERRUPT CONDITION
0 Not used
1 Digital graphic comtroller halt
2 X or Y position overflow
3 Real time clock
4=15 These bits are ignored by GCP
NOTE

If a data tablet is operating in the auto/tracking
mode, the real time clock shouldn't be disabled.

5-30

IEL| (G&>H) HALT INTERRUPT Command header code (octal): 044111

153 14 13,12 11 10 9 &8 7 6 5 4 3 2 1 0

l 1 [[1 1 1 ‘ l 7 [t T 1 ¥ !

|
|
| o | ASCII H CODE | 0| ASCII I CODE | Command Header
[[|
l 1 1 t 1 [] ’ 1] [} 1 1 Ty [} 1 1 l ‘
- | CONTENTS OF GRAHPIC CONTROLLER PROGRAM COUNTER (DPC) | 0| Word 1
l ~ . _ [
l 1 H 1 1 [1 1 t 1 [1 1 7 1 1

l CONTENTS OF GRAPHIC CONTROLLER INSTRUCTION REGISTER (DIR) | Word 2
I

I/l o olo o olo o olo0o o o0l0 o O}WordB

When the digital graphic controller halt interrupt to the display processor is
enabled (by a host=-to~GRAPHIC 8 IK or IS message), GCP sends an HI message to the
host computer each time that a HREF instruction is executed by the digital graphic
controller. Word 1 of the HI message contains the contents of the graphic
controller program counter (DPC) which is the address of the instruction following
the HREF instruction. Word 2 contains the contents of the graphic controller
instruction register (DIR) which, in turn, is the contents of the address pointed to
by the program counter. Bits 14 and 15 of word 3.contain the bank number associated
with the HI interrupt.

IXT] (G&->H) X OR Y POSITION OVERFLOW INTERRUPT

Command header code (octal): 054111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 T 1 1 1 T I I T T T T T

|
[0] ASCII X CODE I 0| ASCII I CODE
|) :

l 1 [[] — [] 0 1 1 [[

| CONTENTS OF GRAPHIC CONTROLLER PROGRAM COUNTER (DPC)

| I] 1 ’] [t 1 1 ! 1 1 1 v

lolo o o] CONTENTS OF X POSITION REGISTER (DXR)

li"ll"ll't!"f!l"

f B B|0 0] CONTENTS OF Y POSITION REGISTER (DYR)

| Command Header

l
]
{ Word 1

- | Word 2

| Word 3

When the graphic controller X or Y position overflow interrupt to the display
processor is enabled (by a host=-to~GRAPHIC 8 IK or IS message), GCP sends an XI
message to the host computer whenever the graphic controller determines that an X or
Y position overflow condition has been created. An overflow condition exists if the
two's complement value in either the X or the Y position register (DXR or DYR) of

the graphic controller exceeds 1777g (+1023) or 20008 (-1024).

An overflow

condition is detected when bits 10 and 11 of the X position register or the Y
position register are not the same. Word 1l of an XI message contains the contents
of the graphic controller program counter (DPC). This is the address of the second

instruction following the inmstruction that caused the interrupt.

Words 2 and 3,

respectively, contain the contents of the graphic controller X and Y position
registers (following execution of the instruction that caused the interrupt). Also
bits 14 and 15 or word 3 contains the bank number associated with the XI message.

NOTE

When an X or Y position overflow condition is
detected by the graphic controller, an interrupt
to the display processor is generated and the

graphic controller halts. GCCP also disables
further X, Y overflow interrupts.

5-32

—

35.3.5 RXEYBOARD RELATED MESSAGES. The keyboard related group comsists of the
following messages:

o HOST-to~GRAPHIC 8 >
o ZR Initialize scratchpad for alphanumeric keyboard no. 1
e 2T Initialize scratchpad for alphanumeric keyboard no. 2

Z5 Zero out scratchpad no. 1
YAl Zero out scratchpad no. 2
LK Light keys on function keyboard no. 1
LT Light keys on function keyboard no. 2

GRAPHIC 8-to~HOST

Alphanumeric keyboard no. 1
Alphanumeric keyboard no. 2
Scratchpad ready for alphanumeric keyboard no. 1

Scratchpad ready for alphanumeric keyboard no. 2

 H W A A

Function keyboard no. 1
RL Function keyboard no. 2

The following paragraphs discuss these messages and give details concerning the
format and application of each.

5-33

(B—=>G8) INITIALIZE SCRATCHPAD FOR ALPHANUMERIG KEYBOARD

lzgi no. 1 ' Command header code (octal): 055122
IZEI no. 2 z‘ . 055124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T [AR | 1 1 | |] D 1"!'['

i .

; 0| ASCII Z CODE i 0-{ ASCII R CODE 1 Command Header
| ' .

I 7 T 7 7 T R (e T 7 T T T]]

| STARTING ADDRESS IN REFRESH FILE , ; 0 5 Word 1

l ;

| 7 R] 7 7 T e B T T T i

| ~ NUMBER OF CHARACTERS IN LINE % Word 2

This three word Initialize Scratchpad message is used to establish parameters
for handling alphanumeric characters on a line basis from the keyboard. It is used
in conjunction with a refresh file that contains an area reserved for storage of
characters typed in by the operator. This area, called a scratchpad, typically
consists of a sequence of TXT (draw two tabular characters) instructions with ASCII
codes for spaces.

When an Initialize Scratchpad message i1s sent by the host computer, GCP begins
collecting characters from the alphanumeric keybecard, and storess them in the refresh
file starting at the address specified in word 1. This address must be even. Word
2 specifies the total number of characters that may be collected. This number may
be equal to or less than the capacity of the scratchpad.

Characters are collected in the scratchpad until the total count specified in
word 2 is reached. At that point, GCP sends a Scratchpad for Alphanumeric Keybcard
Ready message to the host computer. RETURN, which may be typed at any time,
terminates collection of characters and causes GCP to send a Scratchpad for
Alphanumeric Keyhoard Ready message to the host computer. The host computer can
then obtain the contents of the scratchpad by sending a GI (give image) message to
the GRAPHIC 8, VNotz that typing RETURN only causes the Ready message to be
generated and has no effect on the seratchpad itself. Additional inputs from the
keyboard are simply added to the scratchpad 1f space is available or ignored if
space is not available.

5=34

i

Characters collected in the scratchpad remain there until a) they are cleared
by a Zero Scratchpad, a SU (selective update), or MU (memory update) message from
the host computer; b) they are replaced when another Initialize Scratchpad message
from the host computer causes the scratchpad to be reused; or c¢) RUB OUT is typed.
Typing RUB OUT deletes the last character in the scratchpad and permits it to be
replaced with a different character. Repeated typing of RUB OUT deletes successive
characters in the reverse order of input.

NOTE

When processing on a line basis is no longer
required, the host computer can cause keyboard
inputs to be handled on a single character basis
by sending an Initialize Scratchpad message to the
GRAPHIC 8 in which words 1 and 2 (address and
character count) are all zeros. GCP then sends a
KY (alphanumeric keyboard no. 1) message to the
host computer each time a character is typed.

(B->G8) ZERO SCRATCHPAD
28] no. 1 Command header code (octal): 055123
IZU] no. 2 055125

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0

[1 1 1 1 1 v i l 1 1 1 1 1 1) l

|
| 01 ASCII Z CODE | ol ASCII S CODE | Command Header
[, , | I

The Zero Scratchpad message is normally sent after an Initialize Scratchpad
message has been processed. The Zero Scratchpad message causes GCP to replace all
characters in the scratchpad with spaces, After the scratchpad is set to spaces,
the scratchpad input pointer is positioned to the beginning of the scratchpad area.

NOTE

The Initialize Scratchpad message is used first to
define the starting address and size of the
scratchpad in the refresh memory.

3-35

(B->G8) LIGHT KEYS ON FUNCTION KEYBOARD

Izgl no. 1 Command. header code (octal): 046113
IZT] no. 2 £ 046124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 [[1 1 l [1 1 [] 1 1 I

! i
| 0} ASCII L CODE | 0] ASCII K CODE | Command Header
[. [
!] 1] 1 Y 1 1 1 [T T T] 1 1 l
| MASK FOR FUNCTION KEY LIGHTS | Word 1
l |
l 1 v‘ 1 1] 1 1) T T [1 [l. [l
| MASK FOR MATRIX KEY LIGHTS | Word 2

l e |

The three-word Light keys message is used to light function and/or matrix keys
on a keyboard. Bit 0 through 15 of word 1 are associated with function keys O
through 15, respectively. Similarly, bits O through 15 of word 2 are associated
with matrix keys 0 through 15, respectively. If a bit is set to 1, the corres-
ponding key lights; if a bit is set to 0, the corresponding key does not light. The
layout of the function and matrix keys is as follows:

FUNCTION KEYS

MATRIX KEYS
[7787 97115 |
I~ B MRS
|71 2] 3] 13 |
|10 o it T12]

5~36

(G&—>H) ALPHANUMERIC KEYBOARD

]gi} no. 1 Command header code (octal): 045331
IXKT! no. 2 045524

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

l I ¥ 1] 1 7 1 ; i 1 [N 1 1 [[!

| 0] ASCII K CODE | 0| ASCII Y CODE | Command Header
> |

‘ i ¥ 1 ! 1 O l i 1 1 9 1 1 1 1 l

folo o olJo o o] ol . ASCII CHAR CODE | Word 1

lolo o olo o oflo o olo 0o 0]0 0 0] Word2
l

lolo o o]Jo o o0]lo 0o o]0 0 O0]0 0 O] Word 3

Alphanumeric Keyboard messages are associated with alphanumeric inputs from a
keyboard. Each time an alphanumeric key is typed, GCP sends the message to the host
computer if the following conditions are met:

a. The keyboard is enabled (refer to host=to=GRAPHIC 8 IK messages).

be The keyboard is not being operated in the scratchpad mode (refer to
host=to~GRAPHIC 8 Initialize Scratchpad message).

If the keyboard 1s not enabled, typed inputs are ignored. If the keyboard is
being operated in the scratchpad mode, inputs are sent to the host computer in RI
(return image) messages. Each Alphanumeric Keyboard message sent to the host
computer contains the ASCII code for a single alphanumeric character (refer to
Appendix A for a summary of keyboard codes). This code is contained in the low
order byte (bits 0=7) of word l. Words 2 and 3 always contain all zeros.

NOTE

Keyboards are automatically enabled by GCP when
the GRAPHIC 8 is initialized in the system mode.

5-=37

(G&~>H) SCRATCHPAD READY FOR ALPHANUMERIC KEYBOARD

|z§i no. 1 Command header code (octal): 054122
IXT| no. 2 | 054124

15 14 13 12 11 10 9 8 7 -6 5 &4 3 2 1 0
—= v

‘ l]) [] 1 1 l] [[}] [[I
| 0] ASCII X CODE ; 0 ; ASCII R CODE | Command Header
. |
| ¥ 7 T T T T Y T 7 T 7 g |

| NUMBER OF CHARACTERS IN SCRATCHPAD | Word 1

folo o olo o o]Jo 0o olo 0 o0l0o 0 O] Word 2

lolo o olo o oto o oflo0o o o0l0 O O]} Word3

Scratchpad Ready messages are generated by GCP to inform the host computer that
data in the scratchpad for the alphanumeric keyboard is ready to be transferred.
GCP sends a Scratchpad Ready message to the host computer whenever an alphanumeric
keyboard is operated in the scratchpad mode and the RETURN key is typed. GCP also
sends this message to the host computer when the scratchpad is full. Word 1
contains the character count indicating the number of characters entered into the
scratchpad by the operator. Words 2 and 3 always contain all zeros. Normally, the
host computer responds with a GI (give image) message to obain the contents of the
gcratchpad.

5-38

(G8->H)

FUNCTION KEYBOARD

IEK! no. 1 » Command header code (octal): 051113
IRL] no. 2 051114

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

] i 1] Y [) 1 I I [(B [[] 1 1 l

| 0| ASCII R CODE | o | ASCII K CODE | Command Header

| | | |

l ! T T]’ [1 l i 7 1 1 [7]] !

lolo o olo o o]0} FUNCTION OR MATRIX KEY CODE| Word 1

| | | | | |

l [1 T ’ T 1 [] 1 i T I 1 [!

l[olo o0, 0]l0 0 o0o]Jo o o0ojl0o 0 0]0 0 0] Word?2

| | | | | | l

‘ I 7 T [1 i i T 7 T 7 T T T 7

lolo o olo o olo 0o olo 0 0]0 O 0] Word 3

n I L l

Function Keyboard messages are associated with the . function or matrix keys on

the keyboard.

1f a function keyboard has been enabled (refer to host-to=GRAPHIC 8

IX message), GCP sends a Function Keyboard message to the host computer each time a

key is typed.

(refer to Appendix A for a summary of codes).

Each message contains the code for a single function or matrix key

This code is contained in the low

order byte (bits 0=7) of word 1. Words 2 and 3 always contain all zeros.

-39

w

S.3.6 POSITIONAL ENTRY DEV?CE RELATED MESSAGES*, The positional entry dewvice o
related group consist of the following messages:

Host-to-GRAPHIC 3

™ Assign data tablet as PED no. 1
TN ' Assign data tablet as PED no. 2

1P Initialize PED no. 1

IT Initialize PED 0. 2
GS. Get status of PEDs - ‘ 1,

GP Give PED no,4l

GT Give PED no. 2

GRAPHIC 8-to-Host A | -
RT Return PED status
RP Return PED no. 1

BW Return PED no. 2

The following paragraphs discuss these messages and give details concerning the
format and application of each. :

o | o

*See Section 5.3.7 for messages for device numbers greater than 2.

5-40

(B—>G8) ASSIGN DATA TABLET AS PED

iizl no. 1 Command header code (octal): 052113

liﬁl no. 2

052116

15 14 13 12 11 10 9 8 7 6 5 &4
i i i 1 1 [] [{ I]
| ol ASCII T CODE | 0] ASCII M CODE | Command Header
P P |

The Assign Data Tablet message is used to inform GCP that all messages received
on ports 4 and 8 should be interpreted as data tablet type messages.

is initialized to interpret all messages received on ports 4 and 8 as
trackball/forcestick type messages.

By default GCP

NOTE

Refer to Initialize PED message for more informa=-
tion on the data tablet message format.

5-41

(B=>G8) INITIALIZE PED i

!zgl no. 1 Command header code (octal): 044520

»
ITT] no. 2 044524 _

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Y 1 ?

l]] r 1 l 1 [v 1 [

| 0| ASCII I CODE foi ASCII P CODE Command Header

i] i T 7 7 T] —] l 1 7 i

| 0| DELAY TIME VALUE o o0lo0o 0 0] 0] MODE | Word 1
: | L1 | ,

| [] 1 1 T 1 [T Tt T 1 1 T] } : l

| MEMORY ADDRESS (FOR MODE O AND 3 OPERATION) } 0 % Word 2

The Initialize PED message is a three—-word message used to establish the l
operating mode for the PED (trackball/forcestick or data tablet), Bits | and O of
word 1 specify the operating mode in binary form as follows: automatic tracking
mode (mode 0) = 00; automatic mode (mode 1) = 0l; request mode (mode 2) = 10;
tracking mode (mode 3) = 11. Bits 8 through 14 of word 1 saslect the delay time when '
mode 0 is selected. For all other modes, bits 8 through 14 of word ! are. set to
zeroes. All remaining bits in word 1 are always set to zeros. When mode 0 or 3 is
specified, word 2 contains a memory address to be used for the storage of associated l
data. The address should be that of an even-numbered byte. If an odd address is
specified, the low-order bit is ignored by GCP and no XX (error status) message is
generated if an address of 0 is specified, the symbol is "detached” from PED action I'“
and further PED interrupts are disabled.

Mode 0, 2 and 3 are applicable to data tablet type PEDs and modes l, 2, and 3
are applicable to trackball/forcestick type PEDs.

In the automatic tracking mode (mode 0), absolute displacement data received
from the data tablet is used to update the memory address specified in word 2 each
time a data tablet message is received, to reflect the last position of the data
tablet pen entry. This updating is done by generating an LDXA (load X absolute) and
an MVYA (move Y absolute) instruction to replace the ones already in the refresh
file. When mode O operation for a PED is specified, word 2 of the IP or IT nessage
from the host computer contalins the address of the LDXA instruction to be replaced.
The new MVYA instruction then replaces the old MVYA instruction at the next higher
address. ;

5-42

Non

The delay time values in word Q associated with mode 0 are given below:

BIT DELAY TIME VALUE (seconds)
8 1/60 (or 1/50)*
9 2/60 (or 2/50)

10 4/60 (or 4/50)

11 8/60 (or 8/50)

12 16/60 (or 16/50)

13 32/60 (or 32/50)

14 64/60 (or 64/50)

The delay time applies to all PED's in mode O on the same GRAPHIC 8 controller.

When the bit is set to 1, the associated delay factor is activated. When the
bit is set to 0, a zero delay factor 1s associated with the bit.

Each time the data tablet pen switch is pressed, the data tablet sends co-
ordinate information to GCP at the rate of approximately 100 messages per second.
As each message 1is received, GCP does a data tablet—=to-display coordinate system
conversion and updates the memory address specified in word 2.

As soon as the pen switch is released, the delay time mechanism is activated.
GCP then waits for whatever time the delay is set for and then sends a Return PED
message to the host to reflect the latest position of the last data tablet eatry.
If the delay time is set for O seconds, then each time a data tablet message is
received, a Return PED message is sent to the host computer. With a delay time of O
seconds, the host computer could be overloaded with a series of identical Returm PED
messages. (E.g., if the data tablet pen switch remains pressed for 2 seconds, then
200 Return PED messages, would have to be processed by the host computer.) The
recommended delay time should be approximately 1/4 second.

Each time the data tablet pen switch is pressed, the delay time mechanism is
restarted. If the data tablet pen switch is re-pressed before the delay time
expires, then no Return PED message is sent to the host computer until the new delay
time expires.

When the automatic tracking mode is selected for the PED, the Give PED nessage
must not be sent from the host computer to the GRAPHIC 8. If a message is sent to
the GRAPHIC 8 when the PED is operating in the automatic tracking mode, GCP responds

‘by sending an XX message back to the host computer.

In the automatic mode (mode 1), relative displacement data received from the
trackball/forcestick is sent to the host computer in a Return PED message. This
message is sent each time the display processor is interrupted by the PED. When the
automatic mode is selected for the PED, the Give PED message must not be sent from
the host computer to the GRAPHIC 8., If a GP message is sent to the GRAPHIC 8 when
the PED is operating in the automatic mode, GCP responds by sending an XX message
back to the host computer.

* For 50 cps power frequency

5-43

In th& request mode (mode 2), GCP maintains the absolute coordinates of the PED
position iuternally. Then, when a GP message is sent by the host computer, GCP f
returns the latest absgolute position data -to the host computer in an RP message.:

Ed
. In the tracking mode (mode 3), GCP maintains absolute PED position data and "
- sends it to the host computer in the same manner as for mode 2 operation. In %
addition, GCP continuously updates the refresh file to reflect the latest position
of the PED ‘at all times. Movements of the PED is indicated by generating an LDXA
(load X absolute) and an MVYA (move ¥ absolute) instruction to replace the ones
already in the refresh file. When modeé 3 operation for the PFED is specifled, word 2
of the IP or IT message from the host computer contains the address of the LDXA
instruction to be replaced. The new MVYA instruction then replaces the old MVYA
instruction at the next higher address.

Note that relative position data is returned automatically to the host compﬁter
in mode 1 operation while absolute position data is returned in mode 0, mode 2, and
mode 3 operation, but only upon request of the host message (GP or 0T).

When mode 3 operation for the FED is specified, word 2 of the initlalize FED
message (IP, IT, or 1IV) from the host computer contains the address of an LDXA or
LDDI instruction. The LDXA is used to define (by user) a symbol or curseor in

refresh as follows:

cevs 3 specify x

LDXA =; and y position of symbol

MVYA v; graphic orders defining a symbol
innasel cursor (e.g., CHAR < * >)

A 1DDI graphic order is used to define (by the user) a hardware crosshalr cursor
control routine as follows:

emn

LDDI < XCRn, 0 > ; 2 words, opcode + XCRn data
LDDI < YCRn, O > ;3 2 words, opcode + YCRn data
LDDI < STAn, 1040 > ; 2 words to enable crosshair cursor

L)

NOTE

The cross hair cursor can be disabled (removed
from the screen) by using the graphic order:

LDDI < STAn, 1000 >

The GCP input PED handler (in mode 3 or 0) tests for the presence of LDXA or
LDDI (pointed to by word 2) and updates the X and Y position in refresh correctly
for either case, If the GCP input PED handler does not recognize the LDXA or LDDI,
the X and Y position iIn refresh file is not updated.

S5=44

L B — S

In summary:

Trackball
Mode Forcestick Data Tablet
0 XX Update intermal X, Y position

and X, Y position in refresh file.
Return X, Y when pen is released.

Automatic mode (1) Send relative X, Y XXXXX

\ to host
Request mode (2) Update internal Update intermal X, Y position
X, Y position only
’ Tracking mode (3) Update intermal Update internal X, Y position
%, Y position and and X, Y position in user
X, Y position in refresh file.

ced user refresh file.

Lj} I§§X (B->G8) GET STATUS OF PEDS Command header code (octal): 043523

T 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
k]

I I] 1 [1] ! [1 t ' 1 T 1 l
| 0] ASCII G CODE | 0] ASCII S CODE | Command Header
| | | |

The GS message is used to request the current status of each PED. An RT
message is sent by GCP to the host computer in response to the GS message.

) NOTE

The GS and RT messages are maintenance type
messages. Normally the GCP application programmer
won't process the GS and RT messages but they can
be used to validate the modes and PED types
established by the IP, IT, T and TN messages.

BT

5-45

IRT| (G8->H) RETURN PED STATUS

multiport interface 1).

Command header code (éctél): 051124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I T T T T . T 1 i T T 7 | ’
| 0| ASCIT R CODE ; 0 g ASCII T CODE | Command Header
o ’
PED 2 PED 1
! ? ? £}] i] ; ‘ 1 [] l 1 1 i
o o 0o 0 o1 MopE | lo 0 0 0 0] MoDE | | Word 1
| . | | -
l !
TYPE __| TYPE __|
PED 6 PED 5 PED 4 PED 3
(A L A A Y B IR R E R L R
ol MDpE | | O] mMDE | JOlMoDE | | O MODE | | Word 2
I A | [1 -
] I [|
TYPE __ | TYPE __ | TYPE __| TYPE _|
PED 8 PED 7
L L A AL R RN BN
leo o o o o0}l0 0 o1 0] MODE | | 0| MODE | | Word 3 '
| | | T |
| |
TYPE | TYPE |

The RT message 1s sent by GCP to the host computer in response to a GS message.
Word 1 contains the software status of each PED.

Bits 0, 1, and 2 are associated with PED 1 (PED connected to port 4 on serial

Bits 8, 9 and 10 are associated with PED 2 (PED connected

to port 8 on serial multiport interface 2). The meaning of the TYPE and MODE bits

are

given below:
Bits
0 or 8 word 1 |
C or 8 word 2 _J> '

1,2 or 9,10 word 1 |

1,2 or 9,10 word 2 _|

>

Value

0

1

Type PED;

Trackball/forcestick

Data tabiet

Automatic tracking mode (data tablet only)
Automatic mode

Request mode

Tracking mode

— S —— A— — — Ao et

(B—->G8) GIVE PED

[

lggi Qo. 1 Command header code (octal): 043520
[GT] mno. 2 ; 043524

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

! ! 1 1] i i

l

A |
| 0| ASCII G CODE | 0| "ASCII P CODE | Command Header
| | i

The Give PED message is a single-word message used to request the current
absolute coordinate data for the PED (trackball/forcestick or data tablet).
Requested data is returned by GCP to the host computer using a Return PED message.

A Give PED message can be used only when the PED is operating in mode 2 (request
mode) or mode 3 (tracking mode). If this message is sent when the PED is operating
in mode 0 (automatic tracking mode) or in mode 1 (automatic mode), GCP responds with
an XX (error status) message.

3=47

(G8&->H) RETURN PED
lggl no. 1 Command header code (octal): 051120
IRHl no. 2 051127

15 14 13 12 11 10 9 8 7 6 5 &4 3 2 1 0

l] 1 i i ¥ (] t) I] 1 1 . T 1 1 T [

% 0| ASCII R CODE g 0 % ASCII P COLE ; Command Header
l _

| T T T T T '
lolo o o ; 0 0 olo o o ; 0 0 o0 ; 0 i MODE :'Wcrd 1
| ’ R

‘"l K] D) 1 Y R] T] T B 7 !

| X POSITION DATA | word 2
; ,

L ¥ T 2 I M ¥ T 5 7 |

| ' Y POSITION DATA { Word 3

The Return PED messages are assoclated with the PED (trackball/forcestick or
data tablet). When the PED is operating in the automatic tracking mode (mode 0) or
in the automatic mode (mode 1), these messages are sent automatically by GCP. When
the PED is operating in the request or tracking mode (modes 2 and 3, respectively),
these messages are sent 1ln response to Give PED messages from the host computer.

The operating mode for PED is established by a corresponding Initialize PED message
from the host computer. For all Return PED messages, the operating mode of the PED
is identified by bits 1 and 0 of word 1 (00, 01, 10, and 11 indicate modes 0, 1, 2,
and 3, respectively). Bits 2 through 15 of word 1 are always zeros. When the PED
is operating in mode 0 (data tablet only) GCP sends a Return PED message to the host
computer every time the data tablet pen switch is pressed. In this mode words 2 and
3 contain absolute X and Y position data, respectively, for the PED.

When the PED is operating in mode 1, GCP sends this message to the host
computer every time the PED generates an interrupt to the display processor. PED
interrupts are enabled or inhibited by host-to-GRAPHIC 8 IK messages. In this mode,
words 2 and 3 contain relative X and Y position data, respectively, for the PED
(direction and disgtance moved since last RP message was sent). The relative data in
each word consists of eight bits in two's complement form with the sign bit (bit 7)
extended to £ill the complete lé=bit word.

When the PED is operating in mode 2 or mode 3, GCP sends Return PED messages to
the host computer in response to a Give PED message from the host computer, In
these modes, words 2 and 3 contain absolute X and Y position data for the PED. The
absolute data in each word consists of 12 bits in two's complement form with the
sign bit (bit 11) extended to fill the complete 16-bit word. Note that PED inter—
rupts are not used to initiate RP messages in mode 2 or mode 3.

NOTE

PED's are automatically enabled by GCP when the
GRAPHIC 8 is initialized in the system mode.

5-48

-

e

5.3.7 EXTENDED DEVICE CONTROL MESSAGE. The four Extended Device Control messages
extend the functions described in Sectioms 5.3.5 and 5.3.6 to eight peripheral
devices of the same device type. - E

HOST-to=GRAPHIC 8

IX = Enter Extended Device Control (EDC) mode
IV = Initialize a peripheral device

QU = Output or Request to Device

GRAPHIC 8-to—-HOST
IN - Input from device

Refer to table 5-2 for the device types and the corresponding functions. Refer
to the messages that the EDC messages functional replace for a complete description
of the function. .

Table 5-2. GCP Extended Device Control®*
(Functional Replacement)

‘(RP, RW)

DEVICE ~ MESSAGE [INITIALIZE | OUTPUT OR |
TYPE | DEVICE | REQUEST DEVICE | INPUT DEVICE
(OCTAL) ~ < | v | oT | IN (4 WORDS)
~| | |
l | |
0 | Initialize | Zero- | Mode = 0,
Alphanumeric | Scratchpad | Secratchpad | Scratchpad Ready
Keyboard ; (ZR, 2T) ; (25, ZU) { (XR, XT)
i | I
| l | Mode = 1,
l | | Character data
| l | - (KY, KT)
| l |
| I l
1 | | Light function | Function or
Function | | keys | Matrix Key Code
Keyboard ; } (LK, LT) } (RK, RL)
| | |
2 | Initialize | Request | X and Y position
Trackball/ | PED | Position data | data
Forcestick ; (1P, IT) % (GP, GT) ; (RP, RW)
‘ I | l
3 | Initialize PED | Request | X and Y position
Tablet | as Tablet | Position data | data
; (IP,IT)+(TM,TN) i (6P, GT) ;

General Message Format:

15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 O
v

t v 1] 1 I l L] 1 t r 1

I i !
{ 0 | ASCII CODE | 0| ASCII CODE | Command Header
| - I
T | [| l
| 0 | DELAY TIME | MODE |DEVICE | DEVICE** | Word 1
: | I | TYPE | NUMBER I
|
{ DATA | Word 2
I
| !
| DATA | Word 3
l l

*Enter Extended Device Control (EDC) mode via an IX message. GCP initialization
in system mode is in non EDC mode.
**¥eyboard or PED is device no. n-l.

3=50

_ —i ——c—g A M——— — — Y — -

The format of words 1, 2, and 3 for each device type and message are shown
below.

i

lzﬁl —~ Initialize Device Command Header (octal 44126)

s Initialize Scratchpad
Word 1 - device type = 0; device number = 0-7
Word 2 - starting address of scratchpad in refresh file
Word 3 - number of characters in line in scratchpad

® Initialize PED
Word 1 = delay time; mode = 1, 2, or 3; type = 2; number = 0-7
Word 2 = address of LDXA of PED symbol in refresh file if software symbol

- address of LDDI if hardware cursor

® Initialize PED as data tablet
Word 1 - delay time; mode = 0, 2, or 3; type = 3, number = 0-7
Word 2 = address of ILDXA of tablet symbol in refresh file if software

symbol
- address of LDDI if hardware curosr

!§i} -~ Qutput or Request Device Command Header (octal 47524)

® Zero Scratchpad
Word 1 = type = 0; device number = 0=7

® Light Function Reys
Word 1 - type = 1; device number = 0=7
Word 2 -~ mask for function key lights .
Word 3 - mask for matrix key lights

® Request FPED Position Data
Word 1 - Mode 2 or 3, type = 2, number = 0-7

® Request Tablet Position Data
Word 1 = Mode 2 or 3, type = 3, number = 0-7

ijiil == Input Device Command Header (octal 44516)

® Scratchpad Ready
Word 1 - mode = 0; type = 0; number = 0=7

Word 2 - number of characters in the scratchpad
Word 3 - 0

5-51

o Character Data

Word 1 = mode = 1, type = 0; device number = 0-7
Word 2 = ASCII character code in bits O=7
Word 3 - Q

#: Function or Matrix Key Data
Word 1 = type = 1l; -device number 0-7
Word 2 =~ Funetion kay code in bits 07
Word 3 - 0 -

® X and Y PED Position Data

Word 1 - mode = 1, 2, or 3; type = 2; number = 0=7
Word 2 - X position coordinate
Word 3 -~ Y position coordinate

® X and Y Tablet Position Data

Word 1 = mode = 8, 2, or 3; type = 3; number = 0=7
Word 2 -~ X position coordinate
Word 3 - Y position coordinate

i

3-32

5.3.8 FORTRAN SUPPORT (FSP) MESSAGES.
the following messages:

Host=to~GRAPHIC 8

IG

GU

MI

NP

ZP

NN

ZN

PV

Initialize GCP to support FSP
Graphic update

Move image

Enable box display

Disable box display

Enable error number

Disable error number

Packed vector

GRAPHIC 8-to—-Host

RG

Return FSP table address

The Fortran support (FSP) group consists of

The following paragraphs discuss these messages and give details concerning the
format and application of each.

5-53

IIG| (#->G8) INITIALIZE FSP suypoéx Command header code (octal): 044507

t

15 14 13 12 11 10 9 8 7 6°5 & 3 2 1 0

1 7 T 1 7 1 N 1 ! t T T]

| [
| 0| ASCII I CODE | ol ASCII G CODE | Command Header
| | o] | .

The IG message is used to initialize GCP to operate in the Fortran support
program (FSP) enviromment. Associated with this environment is a Sanders-developed
Fortran Graphic Support program. This program is host resident and consists of a
collection of Fortran callable subroutines. This program simplifies the task of
generating a graphic program by enabling the application programmer to write all
application programs in Fortran. The:task of formatting GCP messages is performed
by the FSP. '

The execution of the IG message results in a full screen box and an error code
being displayed on all display indicators. This gives the application programmer a
visual indication that GCP is now operating in an FSP enviromment. In response to
the IG message, GCP sends an RG message to the host computer to indicate where all
key addresses are located in the GRPAHIC 8. FSP uses these addresses to manage the
refresh program associated with the FSP environment,

NOTE

Although the IG message is primarily intended for

, use in the FSP environment, the user has the
option of developing his own host package to s
communicate with GCP in the FSP environment.

5-54

lgg] (G8—>H) RETURN FSP TABLE ADDRESS Command header code (octal): 051107

1S 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

] 1 1 1 7 1 I

! |

[ol ASCII R CODE | 0] ASCII G CODE | Command Header
! | | ! |

’ 1 [T 7 14] 1 1 T 1 T 1 i T T L ,

| ADDRESS OF FSP TABLE ' | Word 1

| |

i l

,l ADDRESS OF LDDZ/LDPD SUBROUTINE]l Word 2

| : - : |

| ADDRESS OF START OF MASTER REFRESH | word 3

The RG message 1s returned to the host computer in response to the IG message.
Word 1 contains the starting address of the FSP table in GRAPHIC 8 memory. Word 2
contains the address of the LDDZ instruction loaded by GCP to support GRAPHIC 7 FSP.
GRAPHIC 8 FSP will replace this LDDZ with an LDPD. Word 3 contains the address of
the start of Master Refresh which controls System and User Refresh. The FSP table
contains all key addresses associated with the FSP refresh program that is started
by the IG message. The addresses contained in this table are retrieved by sending a
GI message with a word count of 1 (octal). The FSP table always resides in bank 0
and contains the following information:

’ ot] t [[1] 1 [] 1] 1 [] [} i

I STARTING ADDRESS OF USER REFRESH | Word 1
I I

l T T T T] T T T T ¥ T T T l

| ADDRESS OF ERROR CODE IN ERROR ROUTINE | Word 2
l l

l F— T Y T T 7 T 7 7 T] 7 7 |

1 ADDRESS OF LDDZ IN SCRATCHPAD 1 ; Word 3
I }

] [1 1 T 1 [7 [1 1 T] 1 1 [l

| ADDRESS OF LDDZ IN SCRATCHPAD 2 : | Word 4
i ' l

I t 1 1 [} B 1 1 1 ? [} ? 1 [} [1]

l ADDRESS OF DEFAULT PED 1 SYMBOL | Word 5

{ t [[1 [}] G 1 1 [[1] 1 7 ‘

Word 6

ADDRESS OF DEFAULT PED 2 SYMBOL

5-55

1 [? 1 T]

1 i 1 A . 1) 1
l GCP RAM CONFIGURATION WORD |
! : |
i 1 1] 1 1 1 1 1 1 " o [i
| GCP EXPANSION LOW BOUNDARY (PHYSICAL ADDRESS) i
| |
i g] 1] T T ¥ [(] K] !
| GCP EXPANSION LOW BOUNDARY |
| !
i 1]] [} i 1 1 1 1 [})]
| GCP EXPANSION HI BOUNDARY |
| |
i 7 T 7 T N ‘ 7 7 T "1 Tt ’ |
| GCP EXPANSION POINTER |
| |
|~ v ¥ T T T e B |
| GCP ROM CONFIGURATION WORD |
| |
| T T 7 7 7 7 7 7 7 T ~l
| OPTION COUNT |
} i
‘ 1]] []] [1 [] [1) l
| OPTION LIMIT |
| |
i S T] T 7 7 Fm—— 7 T 7 : }
i ADDRESS OF LDDZ IN SCRATCHPAD 3 l
l !
l 7 T ¥ 7 7] T T Tl
| ADDRESS OF LDDZ IN SCRATCHPAD 4 |
! |
! [T] A i T T !
| ADDRESS OF DEFAULT PED 3 SYMBOL |
| |
! T 7 T ¥ T I T 1 l
| ADDRESS OF DEFAULT PED &4 SYMBOL i
I l
5-56

W?rd
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word

Word

10

11

12

13

14

15

16

17

18

!Eﬁ! (B->G8) GRAPHIC UPDATE Command header code (octal): 043525

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘] [1 [[} i 7 1 1] 1] [} [I

l :
| 0| ASCII G CODE | o | ASCII U CODE | Command Header
[(. R
{ T T T ¥ T T T T T Y T] T T T '

! LOAD ADDRESS ' | 0] Word 1
i -

i bl] 1 13 1 T 1 L3 1 7 | T H 1 1 !

| NUMBER OF WORDS TO BE LOADED ‘ 1’ Word 2
I

! T T T ¥] T T 7 T T] T 7 T T '

l DATA WORD 1 | Word 3
I_ ‘ l

| R T ¥ L T 7 ¥ T T T Y T T LA

Z DATA WORD 2 | Word 4
I I

' 1 1 ? ? R 1 [1 1 [l"] [[l

| DATA WORD n | Word n

l , !

The GU message 13 a varlable-length message used to load data into read/write
memory of the GRAPHIC 8. This message is primarily intended for use in the FSP
enviromment but it can also be used by the GCP application programmer. The GU
message is a special form of the MU and SU messages.

This message has been designed to maintain the validity of the refresh file
during updates. This is done by loading words 4 through word n into read/write
memory first. Then a return instruction 1s added following word n. Then word 3 is
loaded into read/write memory.

The use of the GU message assumes that the user 1s operating in a subroutine
enviromment (i.e., the first data word to be replaced contains a return instruction
and that the end of the subroutine is identified by a return instruction).

E (s->c8)

MOVE IMAGE Command header code (octal): 046511
15 14 13 0 9 8 7 6 5 4 3 2 1 0
' (1 1 [] [} 7 i ‘ []] 3 1 1 [’
[0] ASCII M CODE | 0] ASCIT I CODE | Command Header
| [| ! |
’ T T Y Ty T v Y T T 7 T ¥ Y T]
| REFRESH START ADDRESS | Word 1
| I
; ' Y i) 1 Y 7 [} K] 1 1 [] 1]] l
[Dl B3 B NUMBER OF WORDS | Word 2
| | | l
[1 1 1 T 1 1 [¥ 1 1 [T v 1 ,
I NEW REFRESH START ADDRESS | Word 3

The MI message is a four word message that is primarily intended for use in the

FSP envirorment.

other areas of memory.
be copled to another area of memory.

This message permits the copying of sections of refresh files to

Word 1 specifies the starting address of the refresh data to

Bits O through 12 in word 2 define the number

of successive words that should be transferred beginning with the refresh start

address specified in word 1.
refresh start address is located.

Bit 15

0

- OO

Bits 13, 14, and 15 define the bank where the new
These bits are defined as follows:

Transfer refresh data to current bank

(ignore bits 13 and 14)

Transfer refresh data to bank specified

in bits 13 and 14

Destination Bank

W pa = O

When the last data word has been copiled into the new refresh area, a return
(RTRN) instruction is appended to the refresh data moved.

5-58

b,

INE| (B=>G8) ENABLE BOX DISPLAY Command header code (octal): 047120

15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0

I] 1] 1 1 1 1 l ‘ [1 1 Kl 1) 1

| 0 | ASCII N CODE | o | ASCII P CODE | Command Header
| | ‘ | | _]

1T 1 1 T 1T T T 1T T T T 7T 777
| X ; X i X } X } X { X ; X : X ; X : X ; X { X g INDICATOR % Word 1

The NP message 1s used to enable the box display on selected indicators when
operating in the FSP enviromment. Bits &4 through 15 in word 1 are ignored by GCP.
Bits O through 3 specify which indicators the box should be displayed on. These
bits are defined as follows:

BITS

3210

1000 Display box on indicator 1
0100 Display box on indicator 2
0010 Display box on indicator 3
0001 Display box on indicator 4

If all bits are set to 1, then the box is displayed on all four indicators.
Any combination of indicators is permitted.

lzzl (B->G8) DISABLE BOX DISPLAY Command header code (octal): 055120

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
¥] 1 [1] ! ! 1 1] () 1) !
{ 0 }) ASCII Z CODE ; 0 ; ASCIT P CODE | Command Header
|

T P R l =
| X } X1 X } 2l x1 X1 X1 X i lxlx ; X i INDICATOR | Word 1 -
| | | | | , l

1 1 K]

The ZP message is used to disable the box display on selected indicators when
operating in the FSP environment. Bits 4 through 15 in word 1 are ignored by GCP. [-
Bits 0 through 3 specify which indicators. the box should be removed from. - These
bits are defined as follows.

BITS | B

o
3210 -
1000 Remove box from indicator 1 (,iE
0100 Remove box from indicator 2 -
0010 Remove box from indicator 3. 'é

0001 Remove box from indicator 4 : . j 1

If all bits are set to 1, then the box will be removed from all four
indicators.

5-60

lgﬁ] (B—=>G8) ENABLE ERROR NUMBER Command header code (octal): 047116

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Q
1

1 1 1 1 [1 l ! 1 1 [[[1 I

|
| 0| ASCII N CODE | 0] ASCII N CODE | Command Header
I | - , | | |

g 7 T l

l R .
lxlxlx]xlxlxlx :)¢ } X : X ; X :’x : INDICATOR % Word 1

The NN message is used to enable the error number display on selected
‘ indicators when operating in the FSP enviromment. These error numbers are updated
- by FSP to give the user a visual indication that an error has occurred. Bits 4
through 15 are ignored by GCP. Bits O through 3 specify which indicators the error
number should be displayed on. These bits are defined as follows:

S BITS

1 3210

- 1000 . Display error number on indicator 1

: 0100 Display error number on indicator 2

| 0010 Display error number on indicator 3

. 0001 Display error number on indicator 4

- If all bits are set to 1, then the error number is displayed on all four
indicators. :

h

3-61

Iz

1

(H=>G8) DISABLE ERROR NUMBER Command header code (octal): 055116

5 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

f 1 1 [} 1 1 1 ‘ 1 1 [}] [1 1]
0 | ASCII Z CODE | 0 | ASCIT N CODE | Command Header
| | |

[7 L
X | x| INDICATOR | Word 1
A l

|
X1 x

I

e

w
| o

-

4
~=
[= |
-

The ZN message is used to remove the error number display from selected

indicators when operating in the FSP environment. Bits 4 through 15 are ignored by

GCP.
from.

Bits 0 through 3 specify which indicators the error number should be removed
These bits are defined as follows:
BITS

3210

1000 Remove error number from indicator 1

0100 Remove error number from indicator 2

0010 Remove error number from indicator 3

0001 . Remove error number from indicator 4

If all bits are set to 1, then the error number is removed from all four

indicatorse.

5-62

5.3.8.1 Packed Vector Mode. Packed vector mode is primarily intended for serial
users running in the FSP enviromment. Using packed vector mode can result in a 4 to
1 speed increase when inserting absolute move (LDXA, MVYA) and absolute draw (LDXA,
DRYA) Iinstructions into refresh. Normal vectors are generated by sending an
appropriate GU (or MU or S5U) message. The GU message contains all of the LDXA,
MVYA, and DRYA instructions needed to generate the desired image. These LDXA, MVYA,
and DRYA instructions are created at the host computer. This method requires that
large amounts of data be transmitted between the host computer and the GRAPHIC 8 to
get these instructions stored in refresh.

When packed vector mode is used, a coded PV message is sent to the GRAPHIC 8.
The PV message contains a series of ASCII characters that reflect the moves and
draws that should be stored in refresh. The GRAPHIC 8 decodes the PV message and
generates the equivalent LDXA, MVYA, and DRYA instructions and stores them in
refresh.

The PV message is given below:

1BV (8—>G8) PACKED VECTOR Command header code (octal): 050126
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
; r 1 [[[] [] 1 I , ? [] v [T 1 []
| 0] ASCII P CODE | 0] ASCII V CODE | Command Header
| | [I
1T T T T 1 T T 1T 1T T 71T
| 01 BYTE COUNT (B) Izl xlxlx!I x| ! x| | Word 1
| | | | | o | | | |
|

MODE _ |
]' A T 7 T =% 7 T 7 7 7 7 ¥ 7] I
| STARTING ADDRESS | Word 2
| [
l R— rEE——]]] T I] T T 0 T Y 1 i
1 DATA BYTE 1 ll DATA BYTE 2 ll Word 3
] [} 1 1] 1 T [} l 1 [} 1 [}) [] I
| DATA BYTE B-1 | LAST DATA BYTE B | Word N

5-63

Bits 8 through 14 in word 1 contailn the byte count indicating. the number (B) of
data bytes contained in the PV message. Bit 0 in word 1 selects the mode. When bit
0 is set to 0, add mode is selected. For add mode, an RIRN, return instruction is
added to the end of the refresh code created from the data bytes contained in the PV

message.

When bit O is set to 1, edit mode is selected. For edit mode, no return
instruction 1s added to refresh. Bits 1 through 7 in word 1 are ignored by GCP.
Word 2 contains the starting address of where the first LDXA instruction should be
stored.

NOTE

When word 1 and word 2 are sent from the host
computer to the GRAPHIC 8, they must be sent
according to the algoritim described in paragraph

5.2.1 for serial transmission of binary words
(i.2., 4 characters for each binary word).

Words 3 through n contain the data bytes for the

PV message. The format of the data bytes given
below:

BITS 15 THROUGH 8

AND 7 THROUGH 0 DESCRIPTION
X0011 i 11 Create move instead of draw
XO0Olnnnnn msmtsofxoi?value
X10nnnnan LO 5 bits of X value
Xllonuannn LO 5 bits of Y value

Table 5-3 relates the number of bytes that change
at the host computer to the number of bytes
required for transmission to generate the appro-
priate LDXA, MVYA, or DRYA instructions in the
refresh file.

5=64

Table 5-~3. Byte Transmission Requirements

[
| # OF BYTES
BYTES WHICH CHANGE | BYTE TRANSMISSION REQ. } SENT*
[: i
BI Y LOY HIX L0X H HI Y 1.0Y HI X 10X H
I ; 11
*% 1 1 1 1 11 - 1 1 1 I 4
1 1 1 o Il 1 1 1 1 [4
1 1 0 1 I 1 1 0 1 [3
1 1 0 o Il 1 1 0 1 I 3
17 0 1 1 1] 1 0 1 1 [3
1 0 1 o Il 1 0 1 1 [3
1 0 0 1 I 1 0 0 1 [2
1 0 0 o Il 1 0 0 1 [2
. 0 1 1 1 |l o 1 1 1 [3
0 1 1 o Il o 1 1 1 I 3
0 1 0 1 1o 1 0 1 I 2
0 1 0 o Il o 1 0 1 [2
0 1 1 S S B R 1 1 1 [3
0 0 1 o |l o 1 1 1 | 3
, 0 0 0 A 0 0 1 [1
4 0 0 0 o Il o 0 0 1 [1
| I
_J 0 = no transmission

1= transmit the byte containing that field

[* 1 extra byte will be sent on a MOVE to set to move mode.
%% OT Y defined as bits 5-~9 of user Y on a scale from 0 - 1023
L0 Y defined as bits 0~4 of user Y on a scale from 0 - 1023

To change a HI X, you must send at least ome LO Y.
NOTE

o The host coordinate gystem is from 0,0 (lower

i left) to 1023, 1023 (upper right) and the display

’ coordinate system is from -512, =512 (lower left)
to +511, 4511 (upper right). GCP maps 0,0 into
-512, =512 and 1023, 1023 into +511, +511.

u:«.%
'

:a 5=-65

5-66

Below is a brief description of how the PV message functions:

1‘

The normal case (also initial value is):

|_XO1AAAAA X11BBBEB |
| _X0TCcCCe X10DDooD_|

%

GCP compares each byte as sent with old value (except on initial-wvalue).
If same, do nothing until LO X value is sent, then creats LDZXA and MVYA or
DRYA commands with the 10 bits of X and Y data. In the case shown above,
since & bytes were sent, all 4 data values changed so old X, ¥ values are
all replaced with new values.

BEFORE AFTER

(OLD VALUES)

HY Y OOOKKKKK 000AAAAA As soon as L0 X byte is

L0 Y OOOLLLLL O0COBBBBB received, create LDXA with
HI X OoOMMMMM goocceee A//B data and MVYA with

L0 ¥ OOONNNNN 000DDDDD C//D data.

The concatenated data (A//B or C//D) is in the displayable range of the
screen (with values from 0-1023). The data is converted to screen

coordinates -512 to +511 before creating LDXA, MVYA, or DRYA instructions.

After commands have been created, they are added to the user refresh file.
GCP checks the mode specified in the PV messzage to see whether a return
must be added In addition to the MOVE and DRAW command sequence.

A LD X byte (bits 6 and 7 = 10) initiates creation of graphic
instructions.

Review table 5-3 for further clarification of meaning of bytes sent. A O

in the byte transmission column implies byte is not sent. (Ex. If only
the lower 5 bits of Y value change, the following bytes are sent LO Y and

LO X)a

NOTE

All data bytes are valid ASCII characters (l.e.,
range is between 037 and 177 in octal). When the
data bytes are transmitted from the host computer
to the GRAPHIC 8, there 1s no need to code these

» bytes according to the algorithm previocusly
described for serial transmission of binary words
(i.e., words 3 through n are transmitted directly
without any conversion performed at the host com-
puter). PV messages can also be used on parallel
interface systems but it is strongly recommended
that PV messages not be used on parallel systems.
No ASCII code conversion is required for parallel
transmissions and the use of PV messages on such
systems will probably result in a decrease of
speed. For serial users who are using applica-
tions that require the generation of large amounts
of absolute moves and draws, the PV mode feature
can be very useful. The routines needed at the
host computer for PV mode are quite involved and
as such are fhot included in this manual. On
request, Sanders will provide additional informa-
tion on the host routines needed to perform pack
vector mode functions.

5.3.9 OPTION SUPPORT. Software options allow the GRAPHIC 8 to expand into a more
specialized system while maintaining a common firmware program (i.e., GCP). GCP

includes a method for the user to load, test, initialize, and link several optiocns

together to enhance system requirements. There are a variety of option types that
can be supported. Some general types of options are listed below:

1. Sanders—developed software to support a present or future option (e.g.,
additional GCP messages to provide sophisticated 3-D coordinate converter

support at the GRAPHIC 8 end).

2. Customer-developed software to meet a unique requirement (e.g., additional
GCP messages to permit local editing of text at the GRAPHIC 8 end).

3. Sanders~developed control program (e.g., GET-2 emulator control program to
effectively replace the GCP program).

5=67

4 Customer-developed control program (e.g., a special control program that
effectively replaces the GCP program).

Normally, the option software is stored on the expansion module. GCP also can
support the downloading of optilons from 2 host computer.

NOTE

The option support provided by GCP 1s quite
extensive and as such is not included in this
manual. Refer to Sanders Publication H~79-0357
for a detailed description of all option support.
This publication also contains information om .
writing customer-developed options.

5.3.9.1 Option Messages. The option group consist of the following messages:

Host-to-GRAPHIC 8

1Y Initialize 2

GO Give option status

ou Option update (host downloading — described in option manual,
B=~79=-0357)

GRAEBIC 8«to~ﬂost

RO Return option

The following paragraphs discuss these messages'and give details concerning the
format and application of each. '

5-68

v

ad

e

o

Y] (B->68)

15 14 13 12 11 10 9

INITIALIZE 2

Command header code (octal): 0445331

8 7 6 5 4 3 2 1 0

] 1] 1 1 T 1]

[
| 0| ASCII I CODE
|

' 1 ? 4 1 4 '

| !
| o | ASCII Y CODE | Command Header
[]

l

T T T 1
lololol ol
R N N

T T T 7 T 7 T]

12 BIT OPTION FIELD | Word 1
' |

The initialize 2 message 1is
following actions:

(OCTAL)
OPTION FIELD

0
4000

1 to 3777
4001 to 7777

B0 (a->68)

GIVE OPTION STATUS

a two word message that performs one of the

ACTION
Load all system automatic load options
Unload all options

Load specified option (if unloaded),
initialize option, and update option status

Command header code (octal): 043517

15 14 13 12 11 10 9

[r [? ¥ ¥)
!
!

|
| 0 ASCII G CODE
!

T 7 ¥ T 7 7 }

| Command Beader

|

I
lololo } 0|

12 BIT OPTION FIELD

? 1 [] [1 7 li

; Word 1

The give option status message 1s a two word message which allows the host to
verify an option's status. One or two messages will be returned to the host as

specified below.

OPTION FIELD

0

Non-zero

ACTION
Return status of all optioms via RO, VL

Return status of specified optgon via RO

Two styles of RO option messages are returned to the host in response to the Go

(give option) message:
message.

the single option status message and multiple option status

5-69

kg

15 14

(G8&—>H)

RETURN OPTION

Single option status return.

13 12 11 10 9 8 7 6

S

i

I3

T

r
0|
i

?

? ? \J ¥

|
ASCII R CODE | 0

1

1

g -

ASCIT 0 CODE

OPTION
__STATUS

! 12 BIT OPTION ID

Iv

OPTION INITIALIZATION ADDRESS

OPTION LAST ADDRESS +

2

IRl

(G&~>H)

RETURN OPTION

Multiple option status return.

Command header?code (octal): 051117

Command Header

Word 1

wWord 2

‘Word 3

Command header code (octal): 051117

15 14 .13 12 11 10 9 8 7 6 5 4 3 2

i i] 1] ¥ i) [] 7 ! o ‘ 1 ot] 1] I

i 0] ASCII R CODE ; 0 ; ASCII 0O CODE’ | Command Header
L1 |
= |

lo 0 o0 0 o0 0 O O 0 O 0 0 0 0.0 | Word 1
| |

t "

| NUMBER OF WORDS TO BE TRANSFERRED | Word 2
| |

! e N ' }

lo o o 0o o 0o O 0 0O O 0 O O 0 O | Word 3
| |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ¢

l 1

1

1 t II 1

1 [} T

! _ |

| 0| ASCII V CODE | o ASCII L CODE | Command Header
[I |

| |

[NUMBER OF WORDS TO BE TRANSFERRED | word 1
! l

| I |

| orrION | . OPTION ID | Word 2
| sTAaTUS | |

/ /

/ /

l | l

| oprION | OPTION ID | Word n
|__starus | !

5=70

b

e

The number of words to be transmitted equal the option limit. A limit of zero
prevents any VL message being returned. The option ID is returned in bits 0 through
11 of words 2 through n. Option ID values of zero shall be interpreted to mean
that no option is loaded for that reserved area. The option status code is returned
in bits 12 through 15 words of 2 through n. The meaning associated with the option

status code are given in the following table:
»

(0CTAL)
BIT

1514 13 12
0 0 0 O Local detected option ,unloaded
0 0.0 1 Local checksum error s,unloaded
0 01 0 Local hardware not present ,ﬁnloaded
0 0 1 1 Local self test = NOGO ,unloaded
0O 1 0 0 Local Self Test = GO s;loaded
0 1 0 1 Unfound option (for single RO message only)

5-71

5.4 PROGRAMMING THE 3—D'COORDINAIE CONVERTER

By using the register update (RU) and the give register (GR) commands, the GCP

programmer may read and write all registers associated with the 3-D coordinate

converter.

This allows complete host control to perform such functions as:

a
-

5-72

7]

et matrix parameters

Set viewbox parametars

Set perspective parameters-

Set various control paramaters

Deéth cueing select

Scale select

Refresh limits select

Source/destination of conversion process
Homogeneous/non~homogeneous select

2D/3D select

Perspective/no-perspective select

Start 3-D coordinate converter

Selectively establish the desired interrupt control

vad

b

When 3-D interrupts are generated,'an appropriate TS message is returned to the
host computer.

NOTE
Please refer to Sanders Publication H~79-0305 for
more information on the 3-~D coordinate converter.
ITS| (G8->H) 2-D/3-D COORDINATE CONVERTER STATUS
Command header code (octal): 052123

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T

l] T T U l ' T T T T T T ;

| 0| ASCII T CODE | 0| ASCITI S CODE | Command Header
! | ,] I

] []] T [] [] 7 F] !‘ t [] 1 t f K]]

| STATUS !l Word 1

| T T T 'S 7 T T T 7 T I 7 7 7 |

| CPC | Word 2

| . . I

T N R T T e T Y { T ‘
B Bl O 0 0 0 0 0 0 0 0 «0 0 0 0 0 | Word 3
| l

The 2-D/3-D coordinate converter can generate 16 interrupt conditions, provided

that the corresponding mask bits are enabled. The TS message is returned to the
host computer when a 3D ecoordinate converter interrupt condition occurs.

Word 1 contains the contents of the 2-D/3-D coordinate converter status
register. Each bit in thils register corresponds to an interrupt condition. One or

more of these bits sets to indicate the type of interrupt condition detected.
Word 2 is the value of 2-D/3-D coordinate converter program counter.
Word 3 contains two bits of the 2-D/3-D coordinate converter block register

corresponding to the bank in which the coordinate couverter was executing at the
time of the interrupt condition. Bits 14 and 15 are defined as followed:

Bits

lé);i Bank Number
0 O 0

0 1 1

1 0 2

1 1 3

5=73/5-74

o

*
,.

P
1

i
—d

SECTION 6

GRAPHIC CONTROL PROGRAM USAGE

6.1 GENERAL

This section contains information concerning basic usage of the Graphic Control
Program (GCP). Included are startup procedures, procedures for generating and
manipulating a refresh file, and information for using optional GRAPHIC 8 equipment.

6.2 STARTUP ?ROCEDURES

Startup procedures consist of initializing the GRAPHIC 8 in the system mode and
ensuring that an XX (error status) message indicating zero errors is sent by GCP to
the host computer. In certain cases, these operations are performed automatically.
In other cases, action must be initiated by the host computer. The following
paragraphs describe startup procedures for typical operating conditions.

6.2.1 GRAPHIC 8 TURNED ON AFTER HOST COMPUTER. When power is applied to the
GRAPHIC 8 it is automatically initialized in the system mode and an XX message is
sent to the host computer. If the host computer application program is running at
the time and no errors are indicated by the XX message (bit 15 should be one and
bits O through 14 should be zeros), no further action is required and startup is
complete. '

NOTE

On systems that do not have a 3~D coordinate
converter option installed, bit 4 of the XX
message is set to 1 to indicate failure of the 3-D
self-test. .

6.2.2 GRAPHIC 8 TURNED ON BEFORE HOST COMPUTER. If the GRAPHIC 8 is turned on
before the host computer, any XX message sent to the host computer is lost. 1In this
case, action must be initiated by the host computer to obtain another XX message
from the GRAPHIC 8. This is done by sending an IZ (initialize) message to the
GRAPHIC 8 which causes GCP to return an initialization XX message to the host
ccmputer.

6.2.3 POWER FAILURE STARTUP. To ensure proper startup following power failure, it
should be agsumed that the power failure affected both the GRAPHIC 8 and the host
computer and that power is first restored to the GRAPHIC 8. This condition is
gimilar to that described in paragraph 6.2.2 in that the XX message automatically
generated by the GRAPHIC 8 is lost. To ensure proper startup, therefore, the power
recovery routine in the host computer should ‘cause an IZ message to be sent to the
GRAPHIC 8 causing GCP to respond by sending an initialization XX message to the host
computer. In this way, an initialization XX message is guaranteed to be received by
the host computer regardless of the order in which power is restored to the various
equipments.

6-1

6.2.4 STARTUP WITH GRAPHIC 8 IN TELETYPEWRITER EMULATION MODE. A special startup
procedure is required when the telntypewriter emulation capability of the GRAPHIC 8§
is used for communications with the host computer, This capability is used when the
host computer is a time-sharing ‘system or when loading and running the host
application program must be accomplished from a console=type device. Refer to
Section 2 for the procedure used. to establish the teletypewriter emulation mode.

When all procedures rvequiring the teletypewriter emulation capability have heen
completed, the host computer should initiate the startup procedure by sending the
single ASCII character GS (group separator; octal code 035) to the GRAPHIC 8, This
character causes the GRAPHIC 8 to exit from the teletypewriter emulation mode and
respond as if an IZ message had been sent from the host computer (an IZ message
would not be recognized when the GRAPHIC 8 is in the teletypewriter emulation mode).
The resulting initializaiton XX message tc the host computer then completes the
startup procedure. ;

NOTE

Exit from the teletypewriter emulation mode,
initialization in the system mode, and sending of
tHe XX message can also be accomplished by typing
function key F13 (this causes octal code 035 to be
generated). However, this operation would not be
synchronized with normal host computer operatlons
and might result in an improper startup sequence.

6.3 REFRESH FILES

The following paragraphs describe the generation, transmission, and glteration
of refresh files to be processed by the digital graphic controller, Table 6~1 is an
example of a simple refresh file that is used to illustrate various parts of the
discussions. TFilgure 6~1 shows the display that results when the refresh file in
table 6-1 is processed.

6.3.1 REFRESH FILE GENERATION. After startup procedures have been completed, the
host computer application program must generate a refresh file to send to the
GRAPHIC 8 so that the desired image can be displayed. The refresh file may be
included in the application program itself or may be generated dynamically by the
applicaticn program.

Table 6=l is the listing for a simple refresh file that could be generated for
display by the GRAPHIC 8. The first part of the file (before the label RLOOP)
initializes parameters as required to ensure the proper interpretation of the
instructions that follow.

Following the WATE ipstruction is the sequence of instructions used to display
the two large squares and the four vectors that intersect in the center of the
screen, The next instructions establish a scratchpad area by inserting ten spaces
following the word "INPUT:" at the lower left of the screen. WNote that the size and
spacing of these characters was established by the initialization instructions at
the beginning of the listing. The actual seratchpad is defined by the memory
locations in which the spaces are located. '

62

S

Figure 6-~1. Display Created

GA-77-419-07

by Sample Refresh File No. 1

6-3

6-4

00100
00200
00300
00400
00500
00600

ANT
Juid 00

00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900
03000
03100
03200
03300
03400
03500
03600
03700
03800
03900
04000
04100
04200
04300
04400
04500
04700
04800
04900
05000
05100

@

003000
003002
003004
003006
003006
003010
003012
003014

003016
003020
003022
003024
003026
003030
003032
003034
003036
003040
803042
003044

003046
003050
003052
003054
003056

003060
003062
003064
003066
003070
003072

003074
003076
003100
003102
003104

Table 6=1.

013707
014010
140114

005000
020000
060000
007000

020777
060777
023000
043000
050777
023000
040777
050000
043000
020777
060000
033000

063000
030777
040777
033000
043000

023076
063076
045604
033604
046174
036174

023200
063110
147311

152720

135324

.
’

»
’

RLOOP:

.
bl

; SET DISPLAY PARAMETERS

Sample Refresh File Wo. 1

LDDZ <ALL, BLOFF, LINE, BR7>

LDDP <NOROTATE, CS0>

LDTI 14

NOQP
LDXA O
MVIA O
WATE

; DRAW DIAGONALS

»
b

s e we

e We ww

LDXA 777
MVYA 777
LDXA -1000
DRYA -1000
MVXA 777
LDXA -1000
DRYA 777
MVXA O
DRYA ~1000
LDXA 777
MVYA O
DRXA -1000

DRAW INSIDE SQUARE

MVYA -1000
DRXA 777

. DRYA 777
DRXA ~1000
DRYA -1000

DRAW INNER SQUARE

LDXA -702
MVYA =702
DRYR 1604
DRXR 1604
DRYR.~1604
DRXR -1604

; SCRATCHPAD PROMPTER

1DZA -600
MVYA =670
TET I,N
TXT P,U
TXT T,:

;CENTER AT 0,0

{MOVE TO

; UPPER RIGHT

;DRAW DIAGONAL

; TO LOWER LEFT
;MOVE TO LOWER RIGHT
;DRAW DIAGONAL -

; TO UPPER LEFT
sMOVE TO TOP CENTER
sDRAW STRAIGHT DOWN
sMOVE TO FAR '
; RIGHT CENTER

;DRAW HORIZONTAL TO LEFT:

;MOVE TO BOTTOM LEFT
;DRAW STRAIGHT UP

;DRAW TOP EDGE TO RIGHT
;DRAW RIGHT EDGE DOWN
;DRAW BOTTCM EDGE TO LEFT

sSET INSIDE POINT

; AT LOWER LEFT

;DRAW STRAIGHT UP

;DRAW TOP EDGE TO RIGHT
;DRAW STRAIGHT DOWN

;DRAW BOTTOM EDGE TO LEFT

04600

' H
; POSITION INSIDE INNER
; SQUARE AT LOWER LEFT
;INSERT 'INPUT:'
1

05200
05300
05400
05500
05600
05700
05800
05900
06000
06100

106200

06300
06400
06500
06600
06700
06800
06900
07000

003106
003106
003110
003112
003114
003116

003120
003120
003122
003124
003126
003130
003132

Table 6-l.. Sample Refresh File No. 1

120240
120240
120240
120240
120240

020000
060000

073020

077020
001000
002006

°
3

; SCRATCHPAD
SCRPD:
Pe TXT < >,K >
TXT < >,< >
TXT < >,< > -
TXT < >,< >
TXT < >,< >

H
; PED CONTROLLED MOVING CIRCLE:

5
MCR@LE:

3

LDXA O

MVYA O

LDKX 3,20
DRKY 3,20
JUMP RLOCP .

(Cont)

s TEN

; SPACES

; FOR

H SCRATCHPAD
; AREA

sPED CONTROLLED
3 POSITION OF
; SMALL

H CIRCLE

s REPEAT

The four instructlons following the scratchpad instructions define the small
circle that is: drawn at the center of the display. This circle is used to

illustrate PED operation. Note that, if a comic generator card is not installed in |

the terminal controller, a small square is drawn in place of the small circle,

Finally, the refresh file is terminated with a JUMP instruction. The JUMP
instruction causes the digital graphic controller to loop back to the point in the
file labeled RLOOP and reprocess the entire file except for the parameter
mitialization instructions,

Thus table 6—-1 represents a complete refresh file that can be processed by the

digital graphic controller. The listing specifies that 46 words are requiresd and
that they are to be loaded into read/write memory beginning at octal locatiom 3000
and ending at octal location 3132, Figure 6~-1 illustrates the display that is
created when this refresh file is processed by the digital graphic controller.

6.,3.2 REFRESH FILE TRANSMISSION., After a refresh file has been generated, it must

be transmitted from the host computer to the GRAPHIC 8 using a GCP message.
Following transmission of the file, another GCP message must be sent to the host
computer to start processing of the file. For the example refresh file shown in
table 6-~1, the following sequence of GCP messages would be used (it is assumed that
an 1Z message from the host computer has prev1ously been sent to znltialize the

GRAPHIC 8):
S Host=to=-GRAPHIC 8 MU (memory update) message:

046525 = MU command header

003000 - load address for first data word
000056‘- number of data words to be loaded
013007 - first data word to be loaded
014010 - second data word to be loaded

.
®

002006 - last data word to be loaded
b. Host-to—~GRAPHIC 8 SP (start picture) message:
051520 = SP command header

002000 = starting address of refresh file

After this message is sent, a display similar to that illustrated in figure 6-1

appears on display indicator no. 1.

6~6 Change 1

NOTE

For purposes of development or debugging, refresh
files may also be loaded into read/write memory
manwally or from paper tape. These methods employ
local mode commands for the GRAPHIC 8 as described
in Section 2.

6.3.3 REFRESH FILE ALTERATION. After a refresh file has been loaded into
read/write memory, it can be altered by the application program of the host computer
using wvarious GCP messages. Suppose for example, it is desired that the word
"READY" be displayed in the scratchpad area for a specific period of time, after
which spaces will be reinserted into the display. This can be accomplished by using
GCP messages as follows:
a. Host=to~GRAPHIC 8 IS (enabled selected interrupts) message:
044523 - IS command header
000002 - enable halt interrupt

This message enables the digital graphic controller to interrupt the display
processor whenever the digital graphic controller executes a HALT instruction.

b. Host=to=-GRAPHIC 8 SU (selactive update) message:
051525 = SU command header

load address (beginning of scratchpad)

002100 -

OOQPOA - number of data words to be loaded
142722 - first data word (text "RE")
142301 - second data word (text "AD").
120331 - third data word (text "Y")

000000 - fourth data word (HREF)

After the refresh file has been altered in accordance with this message,
"READY" is displayed in the scratchpad area each time the file is processed. After
displaying "READY", the digital graphic controller halts and interrupts the display
processor. This causes GCP to send a HI message to the host computer.

Co GRAPHIC 8-to~host HI (halt interrupt) message:

044111 - HI command header
002116 - contents of graphic controller program counter

120240 - contents of graphic controller instruction register _

000000 - filler

6=-7

This message 1s sent to the host computer each time tha HREF Lnstructlan is
exzcuted by the graphic controller. '

d. Host—towcaAPHIC 8 XP (continue picture) message:
045520 -« KP command header

Each time an HI message is received from the GRAPHIC 8, the host computer must
respond with a XP message to restart the graphic controller.

&, Host=to-GRAPHIC 8 MU (memory update) messages:

046525 = MU command header

002100 - load address (beginning of scratchpad)
000004 - number of data words to be loaded
120240 - first data word (text " ")

120240 - second data word (text ")

IZOého - third data word (text " 5)

120240 - fourth data word (text " ™)

This message 1s sent after "READY" has been displayed in the scratchpad area
for the desired period of time., Altering the refresh file in accordance with this
message restores the file to its original content and format.

f. THost-to-GRAPHIC 8 KP (continue picture) message:

045520 - KP command header

Following restoration of the refresh file to its original content, the host
computer should send a XP message to the GRAPHIC 8.

6.4 OPTIONAL EQUIPMENT USAGE

Optional GRAPHIC 8 equipment includes keyboards, PEDs, and a hard copy umit.
At the time the GRAPHIC 8 is initialized in the system mode, keyboards and PEDs are
automatically enabled. Following initiszlization, these devices are enabled and
disabled as required by IXK (interrupt control) messages from the host computer to
the GRAPHIC 8. The hard copy wnit is controlled only by pressing the start button
on the hardcopy unit. The following paragraphs provide examples of how to control
each, type of optional equipment (unless otherwise stated, the examples are assumed
to refer to alphanumeri¢ keyboard no. 1, and PED no., 1, in non-EDC mode).

b.4.1 KEYBOARDS. After a keyboard has been enabed, GCP sends each character to the
host computer in a KY (alphanumeric keyboard no. 1) message. For the refresh file
listed in table 6-1, this feature might be used by the host computer to collect
characters for the scratchpad area on an individual basis. The host computer could
then use SU (selectlve update) messages to echo each character as it is typed by the
operator.

6-8 Change 1

[

Such operations have the advantage that the host computer can maintain complete
control over what is displayed in the scratchpad area and can perform any editing or
character conversion routines that may be required (e.g., lower case to upper case).
For simple applications, however, the scratchpad feature available in GCP can be
used to relieve the host computer of many processing tasks. For example, assume
that the scratchpad feature is to be used for the scratchpad area defined in the
table 6=1 refresh file. The scratchpad mode of operation would be established by
the following host—-to-GRAPHIC 8 ZR (initialize scratchpad for alphanumeric keyboard
no. 1) message: . ‘

055122 - ZR command header
002100 - starting address (first address of scratchpad)
000012 = number of characters in line (ten)

Once this message has been received by the GRAPHIC 8, GCP enables the keyboard
and enters the scratchpad mode of processing keyboard inputs. The host computer is
then free to proceed to other tasks as necessary while GCP collects keyboard inputs
in the scratchpad area. GCP collects characters in the scratchpad area and echos
them on the display completely independent of any operations being performed by the
host computer. The RUB OUT key can also be used, 1if required, to delete any
erroneous entries that may be made. When the operator is through typing characters
into the scratchpad, he types RETURN at which time communications are reestablished
with the host computer by means of the following GRAPHIC 8-=to-host XR (scratchpad
ready for alphanumeric keyboard no. 1) message:

054122 = XR command header

XXX = number of characters in the scratchpad
000000 = filler

000000 - filler

After receiving the XR message, the host computer responds with the following
host=to~GRAPHRIC 8 message:

043511 - GI command header
002100 = starting address (first address of scratchpad)
000005 = number of words requested

The GI message would, in turn, cause GCP to respond with the following two
messages to the host computer:

6=9

NOTE
For large scratchpad sizes, the number of integer
words requested for the GI message could be
calculated as follows:

number of words = (number of characters in the
scratchpad +1)/2

a. GRAPHIC 8-to—host RI (return image) message:
051111 = RI command header
002100 - starting address (first address of scratchpad)
000005 - number of words to be transferred |
000000 - filler

be GRAPHIC 8~to-host VL (variable length) message:

053114 - VL command header

000005 - number of words to be transferred
147723 - first data word (text "SO")
140640 - second data word (text " A")
120315 ~ third data word (text "M ")
120311 - fourth data word (text "I ")
120240 - fifth data word (text " ")

This message indicates that the operator typed "SO AM I" into the
scratchpad and then typed RETURN.

After the requested data has been returned to the host computer inm a VL
message, the host computer sends the following message to the GRAPHIC 8 to clear the
scratchpad area:

Hos t~to~GRAPHIC 8 ZS message:

055123 - ZS command header

) i
This message causes GCP to space fill the whole scratchpad area and
reposition the scratchpad pointer to the beginning of the scratchpad
area.

6.4.2 PEDs. There are four modes of operation that can be established for PEDs.
These are the automatic track (mode 0), the automatic mode (mode 1), the request
mode (mode 2), and the tracking mode (mode 3). The desired operating mode is
established by a host-to-GRAPHIC 8 IP (initialize PED no. 1) message, a detailed
discussion of which is contained in paragraph 5.3.6. 1In the following paragraphs,

6~10

the small circle in figure 6-1 is used as an example ofga PED=-controlled display
element. _ :

Mode O is applicable only to data tablet type PEDs and is not discussed in this
example. Mode 1 is applicable only to trackball/forcestick type PEDs. Modes 2 and
3 are applicable to all types of PEDs. Uses of modes 1, 2, and 3 are described in
the following paragraphs. '

When mode 1 is used, RP (return PED no. l) messages are sent automatically from
the GRAPHIC 8 to the host computer to indicate changes in the relative position of
the PED. The host computer then processes this data and, whenever required by the
application program, sends an SU (selective update) message to update the
instructions that define the center of the circle (these are the LDXA and MVYA
instructions at addresses 2120 and 2122 respectively).

When mode 2 is used, absolute PED position coordinates are maintained at all
times by GCP but the refresh file is not altered and the data is not sent to the
host computer. In this mode, if the host computer application desires to know the
position of the PED, a GP (give PED no. l) message must be sent to the GRAPHIC 8.
GCP responds by returning the latest absolute PED position data to the host computer
in an RP (return PED no. 1) message. If desired, the host computer can then send
the data back to the GRAPHIC 8 in an SU message to update the instructions that
define the center of the circle.

When mode 3 is used, the position of the circle can be controlled by
manipulating the PED completely independently of the host computer. This mode would
be established for the circle by the following host=to~-GRAPHIC 8 IP message:

044520 - IP command header
000003 - establish PED operating mode 3
002120 - address of LDXA instruction (that defines circle center)
After mode 3 operation has been established for the PED, GCP automatically
updates the instructions in the refresh file that define the center of the circle

and the circle follows PED motions without any further action on the part of the
host computer.

NOTE
Whenever an IP message is sent from the host
computer to the GRAPHIC 8, GCP automatically
enables the interrupt associated with the PED.

6.5 MULTISTATION USAGE

In the discussions in paragraphs 6.3 and 6.4, it was assumed that identical
images were desired on any display monitor or hard copy unit that might be enabled.
It is possible, however, to send different images to each display indicator if
required. The images may have elements in common or may be entirely different.

Table 6~2 is a listing for a refresh file that causes an image similar to that
shown in figure 6—1 to appear on each of two display monitor (no. 1 and 2 are '
assumed for purposes of illustration). This refresh file causes the squares and the
intersecting vectors to be drawn simultanecusly on both displays. Then, only
display monitor no. 1 is enabled while "INPUT:" is drawn, the scratchpad for
keyboard no. 1 is initial}zed, and the circle for PED no. 1l is drawn. Finally, only
display monitor no. 2 is enabled while the corresponding elements are drawn for its
display.

At this point, the images on both display monitors should appear to be
identical. The scratchpad, and circle of each display, however, can be controlled
separately by the associated peripheral dewvices. It is only necessary for the host
computer application program to recognize the discrete interrupts caused by each
peripheral device. Messages similar to those discussed in paragraph 6.4 would be
used by GCP and the host computer but data for each display indicator would be
transmitted in separate messages. Thus it would be possible for the circle to
appear in different positions on each display and for different text to appear in
each scratchpad area.

6-12

Table 6=2. Sample Refresh File No. 2

00100 ;
00200 ; SET DISPLAY PARAMETERS
00300 ;
. 00400 003000 014010 LDDP <NOROTATE, CSO>
3 00500 003002 140114 LDTI 14
e 00600 003004 RLOOP:
00700 003004 005000 . NOOP :
00800 003006 013407 LDDZ <CRT1, CRT2, BLOFF, LINE, BR7>
00900 003010 020000 LDXA O ;CENTER AT 0,0
01000 003012 060000 MVYA O
" 01100 003014 007000 WATE
01200 ;
01300 ; DRAW DIAGONALS
01400 :
01500 003016 020777 LDXA 777 {MOVE TO
01600 003020 060777 MVYA 777 ; UPPER RIGHT
01700 003022 023000 LDXA -1000 . ;DRAW DIAGONAL
01800 003024 043000 DRYA -1000 ; TO LOWER LEFT
N 01900 003026 050777 MVZA 777 {MOVE TO LOWER RIGHT
R 02000 003030 023000 LDXA -1000 :DRAW DTAGONAL
02100 003032 040777 DRYA 777 ; TO UPPER LEFT
: 02200 003034 050000 MVZA O sMOVE TO TOP CENTER
02300 003036 043000 DRYA =1000 sDRAW STRAIGHT DOWN
. 02400 003040 020777 LDXA 777 ;MOVE TO FAR
n 02500 003042 060000 MVYA O . : RIGHT CENTER
i 02600 003044 033000 DRXA -1000 sDRAW HORIZONTAL TO LEFT
oy 02700 :
02800 ; DRAW INSIDE SQUARE .
02900 ;
03000 003046 063000 MUYA -1000 :MOVE TO BOTTOM LEFT
03100 003050 030777 DRXA 777 :DRAW STRAIGHT UP
03200 003052 040777 DRYA 777 ;DRAW TOP EDGE TO RIGHT
- 03300 003054 033000 DRXA -1000 sDRAW RIGHT EDGE DOWN
03400 003056 043000 DRYA -1000 :DRAW BOTTOM EDGE TO LEFT
03500 : : :
03600 ; DRAW INNER SQUARE
03700 ;
: 03800 003060 023076 LDXA -702 ;SET INSIDE POINT
03900 003062 063076 MVYA =702 ; AT LOWER LEFT
04000 003064 043604 DRYR 1604 : sDRAW STRAIGHT UP
- 04100 003066 035604 DRXR 1604 ;DRAW TOP EDGE TO RIGHT
04200 003070 046174 DRYR -1604 ;DRAW STRAIGHT DOWN A
04300 003072 036174 DRXR -1604 ;DRAW BOTTOM EDGE TO LEFT
B 04400 : ;
04500 ; SCRATCHPAD PROMPTER #1
04600 ;
04700 003074 013007 LDDZ <CRT1> sSELECT DISPLAY #1
04800 003076 023200 LDXA -600 ;POSITION INSIDE INNER
04900 003100 063110 MVYA =670 ; SQUARE AT LOWER LEFT
o 05000 003102 147311 TXT I,N , :INSERT 'INPUT:®
o 05100 003104 152720 TXT P,U
= 05200 003106 135324 TXT T.:

6=14

05300
05400
05500
05600
05700
05800
05900
06000
06100
06200
06300
06400
06500
06600
06700
06800
06900
07000
07100
07200
07300
07400
07500
07600
07700
07800
07900
08000
08100
08200
08300
08400
08500
08600
08700
08800
08900
09000
09100
09200
09300
09400
08500
09600

109700

003110
003110
003112
003114
003116
003120

003122
003122
003124
003126
003130

003132

003134

003136
003140
003142
003144

003146
003146
003150
003152
003134
003156

003160
003160
003162
003164
003166
003170
003172

Table 6=2. Sample Refresh File No. 2

120240
120240
120240
120240
120240

020000
060000

0732020

077020

012407
023200
063110
147311
152720
135324

120240
120240
120240
120240
120240

020000
060000
073020
077020
001000
002004

?
b

; SCRATCHPAD FOR DISPLAY #1

5
SCRPD1:

; MOVING CIRCLE #1

MCRCLL:
LDXA 0
MVYA O
LDKX 3
DRKY 3

s SCRATCHPAD

PROMPTER #2

LDDZ <CRT2>
LDXA -600
MVYA =670

we

SCRATCHPAD FOR DISPLAY #2

Us we e

CRPD2:

.
E]

; PED CONTROLLED MOVING CIRCLE

MCRCL2:
LDXA O
MVYA O
LDKX 3,20
DRKY 3,20
JUMP RLOOP

(Cont)

3 TEN

;5 SPACES

3 FOR

3 SCRATCHPAD
3 AREA

sPED CONTROLLED
3 POSITION OF

3 SMALL

H CIRCLE

s SELECT DISPLAY #2
sPOSITION INSIDE INNER
; SQUARE AT LOWER LEFT
3 INSERT 'INPUT:'

s TEN

SPACES

FOR
SCRATCHPAD
AREA

we Ws Yo we

#2

;PED CONTROLLED
; POSITION OF

y SMALL

3 CIRCLE

;s REPEAT

It is also possible for a refresh file to contain entirely different images for
each display monitor. Normally, such a file would contain a main programiioop that
calls two subroutines, each subroutine being the instructions associated with a
particular display monitor. The following is an example of how such a refresh file
might be structured:

MAIN:
WATE ; SWAP PIXEL MEMORIES
CALL RFRS1 ;DRAW IMAGE ON DISPLAY MONITOR NO. 1
_ CALL RFRS2 ; DRAW IMAGE ON DISPLAY MONITOR NO. 2
ff JUMP MAIN ;LOOP BACK TO BEGINNING |
RFRS1:

LDDZ <CRT1l,.....ARGn> $SELECT DISPLAY MONITOR NO. 1

0 ’ LDDP <ARG1,ARGR> ; AND ESTABLISH

‘} . LDTI nn ; DESIRED PARAMETERS
| . ; INSTRUCTIONS
i . ; FOR
T : DRAWING .
. ; IMAGE ON
. ; DISPLAY
! . : : MONITOR NO. 1
RTRN sRETURN TO MAIN LOOP

6-15

6-16

RFRS2:

LDDZ <CRT2, oo s s ARG

i

LDDP <ARGl,.....ARGR> ;. AND ESTABLISH

LDTI nn ;f DESIRED PARAMETERS

. ' ; INSTRUCTIONS

. ;? FOR

. ;. DRAWING

R ‘ ;; IMAGE ON

. i DISPLAY

. 3 MONITOR NO. 2
RTRN ;QETURN TO MAIN LOOP

NOTE

In the example presented, some additional software
conslderations should be taken into account if it
is desired to generate hard copies of each display
presentation. The LDDZ instruction performs
several functions in addition to enabling each
display monitor. (Refer to paragraph 2.3.4 for a
description of the LDDZ instruction.) In the
example, the refresh instructions contained in the

‘body of code designated as instructions for

drawing image on display monitor no. 1 or no. 2
could contain several LDDZ instructions. To
simplify hardcopy generation, all LDDZ
instructions, contained in the body of code
mentioned previously, should be set up so that the
display change enable bit (bit 10) is set to 0.
When these LDDZ instructions are executed, the
display selected remains unchanged (i.e., the
display selected defaults to the display selected
via the first LDDZ instructicn contained in the
refresh files allocated to each display monitor).

In the example, a hardcopy of display menitor
nos 1 could be generated as follows:

ls Send an SU message to modify the first LDDZ
in RFRS2 to select display monitor no. 2.

;SELECT DISPLAY MONITOR NO. 2

2. Send an SU message to modify the first LDDZ
in RFRS1 to select display monitor no. 1 and
no. 4.

3. Press the hardcopy button on the hardcopy
unite.
A hardcopy of display monitor mo. 2 could be

generated as follows:

l. Send an SU message to modify the first LDDZ
in RFRS1 to select display monitor no. l.

2. Send an SU message to modify the first LLDZ
in RFRS2 to select display monitor no. 2 and
M0« 4‘. N

3. Press the hardcopy button on the hardcopy
unit. '

6-17/6-18

—— T—— — ——— m— — ——— S— ,,

SECTION 7

ADVANCED GRAPHIC CONTROL PROGRAM USAGE

7.1 INTRODUCTION

For certain applications, the GRAPHIC 8 may be required to operate in a stand
alone mode or to provide processing capabilities beyond those available in the
standard graphic control program. As previously discussed, the display processor
and the digital graphic controller can operate independently, each executing a
separate program located in the GRAPHIC 8 memory. It is also possible for the two
microprocessors to interact by using the LINK instruction to synchronize the
operations. Programs to be executed by the display processor are loaded into the
read/write memory of the GRAPHIC 8 in the same manner that refresh files to be
processed by the digital graphic controller are loaded (refer to the descriptions of
the host=to-GRAPHIC 8 MU and TK messages in paragraph 5.3.3).

This section describes the manner in which special instructions and programming
techniques can be used to expand the processing capabilities of the GRAPHIC 8. The
discussions assume that the reader is thoroughly familiar with the display processor
instruction set (paragraph 3.2). It is also recommended that, before using any of
the techniques described in this section, the user study a listing of the Graphic
Control Program (Sanders publication H-81-0022) and familiarize himself with the
details of its operatiomn.

7.2 RAM LINKAGES

There are three different linkages by which GCP can exit to a user-defined
program in the GRAPHIC 8 memory. Each linkage can be enabled separately by placing
an address, to which GCP should transfer control, into a specified memory location.
These memory locations and the associated GCP exit points are as follows: ’

Memory Location Associated GCP Exit Point
000710 Unknown command header sent by host computer
000712 Beginning of GCP executivé loop
000714 Message ready to send to host computer

Normally, the contents of the linkage locations are zero. . If, however, the
user places a non—-zero value in any of the locations, its contents will be
interpreted by GCP as a subroutine address to which control of the display processor
should be transferred. That is, a non—zero value in any linkage location will cause
the following instruction to be performed by GCP:

JSR PC,address

~I
§
o

7.2.1 UNKNOWN COMMAND HEADER SENT BY HOST COMPUTER. When GCP does not recognize a
command header sent by the host computer, it checks location 710 for a possible
linkage to a user program. Lf the contents of the location is nom~zero, GCP loads
the command header into register RO of the display processor and performs a JSR PC
instruction to the specified address.

At this point, GCP is operating within an interrupt handling process if
communications with the host computer are being handled over a parallel interface.
If communications with the host computer are being handled over a serial interface,

GCP? operates under simulated interrupt conditions. The basic difference is that the
true interrupt process is nominterruptible, whereas the simulated interrupt process

can be interrupted.

Regardless of the interface used, additional processing required by a user
program should be completed as quickly as possible. GCP expects the user program
either to recognize the command header and process it or to make an error returd.
If the command header 1s recognized and/or processed, the normal return is simply:

RTS BC
If the command header is not recognized, the error return is:

ADD #2,(SP)
RIS PC

which eventually causes GCP to send an XX message to the host computer with bit 14
of word L set to one. Bit 14 indicates that the command header was not recognized
by GCP. .

During the processing of a user-defined command header sent by the hest
computer, the following subroutines of GCP may be useful:

READ =~ reads additional data from the host computer over a parallel or
' serial interface (serial data.is coded, 4 bytes per word, as
deseribed in paragraph 5.2. T1)

READH reads data in command header sent by the host éomputer

REQUST

o

requests a send buffer for returning data to the host computer

FULL = this subroutine should be called if REQUST indicates that no send

buffer is available
Methods of employing these subroutines are as follows:
a. READ
1, Single word read:
CLR RS ;SET RS = O

JSR PC,@READ ;READ ONE WORD
;WORD IS IN RO

7-2

Wk

NOTE
For a word read over the parallel interface,
the word is placed directly in RC. For a

word read over the serial interface, the
word is decoded and then placed in RO,

2. IMA mode:
Set RS = word count
Set R4 = gtart address
JSR PC,EREAD ;READ R5 WORDS
+INTO ADDRESS STARTING AT R4
NOTE
On return, the DMA 1s done.
b READH
READH is always called by:
CLR RS 3SET R5 = 0
JSR PC,@READH ;GET COMMAND HEADER
;COMMAND HEADER IS IN RO
NOTE
For a word read over the parallel interface,
READH is the same as READ. For a word read

over the serial interface, READH places the
word, undecoded, in RO.

c. REQUST
The following sequence requests a send buffer:

JSR PC,REQUST ;BUFFER ADDRESS

TST R3 ; RETURNED IN R3
BNE GOTIT H UNLESS
. H R3 = 0 (NONE AVAILABLE)
GOTIT:

NOTE

The send buffer is 4 words (8 bytes) long.
The first word should consist of 2 alpha-
aumeric (A=Z or 0-9) ASCII characters with
the MSB (8th bit) of each set to omne. Any
desired information may be placed in the
vemaining three words. The action of REQUST
is to queue the selected buffer so that GCP
can aeventually send its contents to the host
computer.

d. FULL
If REQUST returnms R3 = 0, FULL should be called as follows:

Set R3 = first word intended for send buffer
JSR PC,FULL

NOTE

Calling FULL causes GCP to send a buffer XX
message to the host computer as described in
paragraph 5.3.1.

7.2.2 BEGINNING OF GCP EXECUTIVE LOOP. GCP operates constantly in an interruptible
executive loop that performs the following steps as shown in figure 7-1.

Any additionmal processas that the user may want to Include in the GCP executive
loop can be included by writing an appropriate subroutine and placing the starting
address of the subroutine in linkage location 712. GCP then performs a JSR PC to
the specified address as the first step in its executive routine. Note that the
contents of registers RO through R5 are meaningless at this point in the execution
of the program.

iz)

The GCP subroutines listed in paragraph 7.2.1 may also be useful in user-
defined programs to which GCP exists via linkage location 712. Two additiomal GCP
subroutines that may be useful are:

ENBINT ~ enables iaterrupts on interface to host computer

DISINT - disables interrupts on interface to host computer
These subroutines are called by JSR PC,@ENBINT and JSR PC,@DISINT, respectively.
'7.2.3 MESSAGE READY TO SEND TO HOST COMPUTER. As described in paragraph 7.2.2, GCP
automatically checks linkage location 714 whenever a message is ready to be sent
from the GRAPHIC 8 to the host computer. If the content of location 714 is zero,

the message is sent to the host computer. If the content of location 714 is
non~zero, GCP parforms a JSR PC to the user—defined program at the specified

m— p— A

—tvi)

-

-
Y

P

START

GCP
EXECUTIVE
RAM LINK JSRPC, @712
=07
i
|
S
OPTION PERFORM
EXECUTIVE OPTION(S)
RAM LINK PROCESSING

=0?

ENABLE INPUT
INTERRUPTS
(JSR PC, @ ENBINT)

;

SET PROCESSOR
PRIORITY TO

O TO ENABLE ALL
INTERRUPTS
(PSW+0)

ERROR
DETECTION
ENABLED
?

ANY
ERRORS
DETECTED?

Figure 7-1. GCP Executive Loop Flowchart (Sheet 1 of 2)

LOAD O/P BUFFER
WITH XX MESSAGE
OR BUFFER

FULL MESSAGE

ANY
MESSAGES
INO/P
BUFFER
® ?

GO TO START

LOAD O/P
BUFFER WITH
NM MESSAGE

GCP
MESSAGE
RAM LINK
=07

JSRPC, @714

CPTION
MESSAGE
RAM LINK
=07

PERFORM OPTION(S)
PROCESSING

POLLING
MODE
?

L

MESSAGE NO

RECEIVED
?

SPECIAL POLL
SHARACTER
?

SPECIAL

POLL CHAR. MO

NO

(B

DISABLE ALL
INTERRUPTS

{PSW=7) |
UPDATE Q/P BUFFER
TO NEXT MESSAGE
sSLoT

' LOAD ERROR
MESSAGE IN

O/P BUFFER

ENABLE ALL
INTERRUPTS
(PSW = 0)

GO TO START

RECEIVED

TRY TO SEND
MEXT MESSAGE
TO HOST

Figure 7-1.

GCP Executive Loop Flowchart (Sheet 2 of 2)

Bva

address. One purpose of this linkage is to permit standard messages to be
intercepted and, if necessary, modified before being sent to the host computer. A
second purpose is to permit the data in certain messages to be processed locally by
user-defined routines within the GRAPHIC 8 and thereby relieve the host computer of
many of its processing tasks.

7.3 LINK INSTRUCTION

The graphic controller LINK instruction provides an efficient means of time-
sharing the capabilities of the digital graphic controller and the display
processor. Use of the LINK instruction permits:

® Peripheral and optional equipment to be slaved to requirements of the
refresh file.

® Parallel processing to be accomplished by the digital graphic controller
and the display processor without having to maintain a separate work copy
of the refresh file and without harmful interference to the displayed
image.
7.3.1 BASIC INSTRUCTION OPERATION. When the digital graphic controller encounters
a LINK instruction in the refresh file, the following operations occur:

EW The digital graphic controller fetches the address portion of the LINK
instruction and then performs a jump and mark to that address.

b. The digital graphic controller stops fetching words from the refresh file,
halts, and interrupts the display processor.

Ce The contents of a few graphic controller registers are made available to
the program being run by the display processor.

Several features of the display processor contribute to the efficiency of
operations using the LINK instruction:

a. The display processor allows a unique trap vector to be assigned to the
LINK interrupt (the hardwired trap address is 170). Therefore, a lengthy
and time-consuming interrupt handler is not required to sort out the LINK
interrupt from all other possible types of interrupts.

b. The display processor hardware automatically stores its program paraméters
when an interrupt occurs.

C. Almost all display processor instructions can be performed using
references to memory locations instead of registers. This means that, for
many routines, the contents of the general purpose registers need not be
stored.

d. If the LINK interrupt routine requires the use of one or more general
purpose registers, their contents can easily be saved on the interrupt
push down stack and recalled upon completion of the interrupt routine.

7-7

2. Upon completion of the LINK interrupt'routine, a single instruction (RTI)
returns the display processor to the task it was performing at the time of
the interrupt.

f. The interrupt nesting feature of the display processor (using the stack
pointer) allows the LINK interrupt routine to be interrupted, if
necessary, and returned to in an entirely transparent manner,

‘ To restart the digital graphic controller after a LINK imstruction has been

_executed, it is only necessary to write the desired starting address into the

‘graphic comtroller program counter (DPC). The digital graphic controller

‘automatically starts fatching refresh file instructions from that location. If is

‘possible for a given LINK interrupt routine to have several exits, each specifying a

"different restart address as determined by decisions made in the interrupt routine.

There are three basic methods of using the LINK instruction. They are referred
to as synchronized linkage, sync link, and super sync. Paragraphs 7.3.2 through
7.3.4 describe these methods in detail and give a coding example and a flow chart

for each.

7.3.2 SYNCHRONIZED LINKAGE. Synchronized linkage is the straightforward method of
using the LINK instruction. Figure 7=-2 is an example of program coding using the
synchronized linkage method. Figure 7-3 is a flow chart for the coding example.
The following features of the synchronized linkage method of using the LINK
instruction should be noted:

a. The interrupt routine can be used several times in a refresh file. This
is possible because each calling routine automatically writes a unique
LINK return address into memory to provide the required steering back to
the routine that called it. ,

b. If two or more different image problems must be solved in the same refresh
file, the synchronized linkage method usually requires the beginning
portion of the LINK interrupt routine. to contain an interrupt handler.
This handler is used to identify which of the image problems is to be
solved. Such identification can be based on the LINK return address, the
contents of the graphic controller program counter, or the contents of
other graphic controller registers.

Ce 1f the refresh file and image problem—solving sequence is well ordered, an
interrupt handler may not be required. Instead, the routine used to solve
one image problem can load the trap address (location 170) with the
starting address of the next LINK interrupt routine in the refresh file.

7.3.3 SYNC LINK., The sync link method improves the efficiency and ease of using
the LINK instruction by means of a simple technique. When a syne link operation is
performed, the LIMK instruction causes the LINK return address to be placed in the
LINK trap address (location 170), This, in turn, causes the display processor to
trap to the next instruction in the refresh file. Figure 7-4 is an example of
program coding using the sync link method. Figure 7-5 is a flow chart for the
coding example.

]
l
|
(.
.
‘
[
[

170
172

1000
1002
1004
1006
1000
1012
1014

5000
5002
5004
5010
5012
5014
5016
5020
5022
5024
5026

DOG

CAT

Figure 7-2.

¢ Trap Coding

5002
< 340

Word CAT+2 ;Trap pointer
Word +034@ ;New priority assigned

3efresh Coding

e e 9

v e e

L]

4000
5000

Graphic Controller Instructions

LINK CAT

Graphic Controller Instructions

Interrupt Coding

Y
>
P
13737
5000
165006
2

Normal LINK return address

Interrupt
Routine

MOV @{#CAT,@#DPC

RTI

GA~77-419-08

Synchronized Linkage Program Coding Example

7-9

7=-10

GRAPHIC CONTROLLER

DISPLAY PROCESSOR

Prepare trap locations 170 and 172 with
LINK interrupt routine location and new
status and priority respectively

(i.e., CAT+2, priority 7)

/

/

Start the graphic controller . J

Fetch and process graphic controller
ingtructions .

Do Background tasks

Fezch locatiom DOG

1

Decode LINK instruction (OOAXXXB)

f

Fetch LINK address from location DOGH2

(=CAT)
!

Store LINK return address DQGH4 in

link address

Stop fetching (halt graphic controller)

-

Interrupt display processor through trap
address 170

Detect interrupt

7
- Y .

Push old PC and stacus onto stack

1

Get new PC and status from locations
170 and 172 -

i

Start performing interrupt at location
CAT+2

Y

Do interrupt routine . J

!

Start fetching graphic controller
instructions

Load the LINK return address DOG+4 into
the DPC. Contents (CAT) DBC

I

/

Fetch and process graphic comtroller

Return from interrupt, by loading PC and
stacus register from the top of the stack.

instructions

!

Continue background tasks

!

Figure 7-3. Synchronized Linkage Flow Chart Example

The result of using the sync link method is that display processor instructions
can be placed directly in a refresh file. When the digital graphic controller
encounters the LINK instruction, the interrupt routine (immediately following the

Vi LINK ianstruction in the refresh file) is processed by the display processor.

Return to processging of refresh file instructions by the digital graphic
controller is accomplished by means of a relink command. The form of this command,
which is shown in figure 7-4, never changes. Thus the assembler can generate the
necessary coding with a single macro instruction. :

The relink operation need not always be to the next sequential group of
instructions in the refresh file. Several relinks can be provided for each LINK
operation. Each relink can jump to any appropriate location in the refresh file as
determined by decisions made in the interrupt routine. All that is necessary to
jump anywhere in memory is to change the second word of the relink command to
reflect the desired location.

4 Using the sync link method enables the capabilities of the digital graphic
o controller and the display processor to be time shared to solve a problem in a
manner that is practically transparent to the programmer. Note that no interrupt
handler is required if the sync link method is used for several LINK instructions in
s a refresh file. The sync link method uses the display processor interrupt trapping

mechanism as an automatic interrupt handler to establish the required return paths.

“ i 7.3.4 SUPER SYNC. The main feature of the super sync method is that the LINK
instruction identifies to the display processor a location in the refresh file.

This permits parallel processing by the display processor and the digital graphic
controller that is synchronized with the displayed image. TFigure 7-6 is an example

of program coding using the super sync method. Figure 7-7 is a flow chart for the
coding example.

An obvious advantage of using the super sync method is that the digital graphic
controller is required to be halted for a minimum amount of time. Therefore, the
- maximum data load that can be handled by the digital graphic controller is not
reduced significantly. If data internal to the digital graphic controller is
required by the display processor, it can be read before the digital graphic
controller is restarted and then processed while the digital graphic controller is
running.

The super sync method can be used to perform both simple and intricate
functions.

170
172

1000
1002
1004
" 1006
1010
1012
1014
1016
1020
1022
1024
1026

1030
1032

1034
1036
1040

7=-12

Trap Coding

v e e

340

Word +0348 ;new priority assignment

Refresh Coding

DOG _ 4000

L

12737

1036

165006

Graphic controller instructions

LINK +0170

5

> Display Processor Instructigns

MOV #.+4018,@#DEC
- Relink
Command«u

RTI

:}’ Graphic controller instructions

GA~77=419-10

Figure 7-4, Sync Link Program Coding Example

GRAPHIC CONTROLLER

DISPLAY PROCESSOR

Prepare trap location 172 with appropriate
new stacus and priority (i.e., priority 7)

Fetch and process graphic controller
instructions

1

Start the graphic controller .

Fetch location DOG

1

Do background tasks]

Decode LINK instruction (0004XX)

!

Fetch LINK address from location DOG+2
(=170)

}

Store LINK return address DOG+4 in

link address

Stop fetching (halt graphic comtroller)

!

Interrupt display processor through the
trap address 170

Detect interrupt AJ

i

Push old PC and status onto stack

Get new PC and stactus from locations 170

and 172

Start performing interrupc routine at

location DOG+4

Do interrupt routine }

!

Start fetching graphic controller
instructions

Load the present PC + 108 into the DPC

1

Tetch and process graphic concroller
instructions

}

Return from interrupt by loading PC and
status register from the top of the stack

Figure 7-5.

+

Continue background tasks }

J

Sync Link Flow Chart Example

170
172

1000
1002
1004
1006
1010
1012
1014
1016
1020
1022
1024
1026
1030

5000
5002
5004

7=14

DOG

CAT

Figure 7-6.

340

Word +0340 ;new priority assignment

Refresh Codiﬁg-

s 00

LN

4000

170

12737

1024

165006

137

5000

Graphic controller instructions

LINK +017¢ -

MOV #.+4012,@#DPC

JMP @#CAT

Graphic controller instructions

Parsllel Process Coding

RTI

Super Sync Program Coding Example

FonE
A

GRAPHIC CONTROLLER

DISPLAY PROCESSOR

Prepare trap location 172 with appropriate
new status and priority (i.e., priority 7)

Fetch and process graphic controllar
instructions

1

Start graphic contreller

Fetch location DOG

!

!

Do background tasks or wait

Decode LINK inscruction (OOAXXXS)

Fetch LINK address from location DOGH2

(=170)
!

Store LINK return address DOG+4 in
link address :

!

Stop fetching (halt graphic contreller)

!

Incerrupt display processor through the
trap address 170

Detect interrupt

. I

Push old PC and status onto stack

/

Get new PC and status from locacticms 170
and 172

Start fetching graphic controller

!

| Load the present PC + 12

3 into the DPC

instructions

Fetch and process graphic controller

|

Jump to routine to be processed in parallel

instructions

{

Perform parallel processing with the
refresh file

!

Return from interrupt by loading PC and
status register from the top of the stack

#

Do background tasks or wait

1

Figure 7-7. Super Sync Flow Chart Example

7-15

7.4 THE DIGITAL GRAPHIC CONTROLLER AS A DEVICE

Although the digital graphic controller operates independently of the display
processor, it is under the control of the display processor at all times. The
digital graphic controller can be halted and restarted at any time by the display
processor and the graphic controller registers are at all times available to the
display processor for purposes of reading, writing, or testing data as required. As
far as the display processor is concerned, therefore, the digital graphic controller
can be considered as a device connected to the controller bus.

Section 4 contains complete descriptions of all graphic controller registers
and lists the address that is assigned to each. With the exception of the function
control stop register (FUNS), the sense register (SENS), and the mask register
(MKR), data should not be read from or written into any graphic controller registers
unless the digital graphic controller is halted. With the digital graphic
controller running, such operations normally result in an error lnterrupt to the
display processor through location 10.

7.5 THE PARALLIEL INTERFACE AS A DEVICE

As previously discussed, if a parallel interface is installed in the terminal
controller, GCP assumes that communications with the host computer are to be handled
via this interface (parallel interface no. 1).

The parallel interface can operate in either a DMA mode or a single-word
ransfer mode. The DMA mode 1s initiated when a non-zero value (two's complement of

the number of words to be transferred) is written Into the word count register

(WCR1) and continues until the specified number of words has been transferred. Bit
2 in the status register (STR1) determines the direction of transfer and the value

in the memory address register (MAR1) determines the starting memory address to be
used for the IMA operation.

-

When the parallel interface is operated in the single-word transfer mode, data
sent from the host computer to the GRAPHIC 8 is read from the output data register
(ODR1) while data to be sent from the GRAPHIC 8 to the host computer is writtem into
the input data register (IDRl1). In actuality, the ODR1 and IDR1 are a single dual-
purpose register and, therefore, the same address 1Is used for both. The direction
of data transfer is determined by control signals to or from the host computer as

appropriate (refer to paragraph 4.4.2).

7.5.1 PROGRAMMING EXAMPLES. Proper handling of the parallel interface requires
knowledge of the handshaking requirements of the communications with the host
computer. The following coding examples illustrate methods for handling the
parallel interface in its wvarious operating modes.

7-16

de To transfer a single word from the host computer (output data transfer):

WAIT: TSTB @#STRL ;TEST 'OUTPUT CONTROL' BIT OF STRI

BPL WAIT ;5 UNTIL SET BY HOST

MoV @#0DR1,RO ;MOVE DATA WORD INTO RO

BIS #40,@#STR1 ;SET 'OUTPUT WORD RECEIVED' BIT IN STRIL
ACKNLG: BIT #40,@#STRI sWAIT FOR ACKNOWLEDGE

BNE ACKNLG 3 BY HOST CLEARING THE BIT

b. To transfer a single word to the host computer (input data transfer):

MOV RO,G@#IDR1 sMOVE DATA WORD INTO IDRI

BIS #20000,@#STR1 ;SET "INPUT WORD REQUEST' BIT IN STRI1
WAIT: TST @#STRL ;WAIT FOR HOST TO ACKNOWLEDGE BY

BMI WAIT 3 CLEARING 'INPUT NOT READY' BIT OF STRI

¢s To set up a DMA transfer from the host computer (output data transfer)

WAIT: TSTB @#STRL ;TEST 'OUTPUT CONTROL' BIT OF STRL
BPL WAIT ; UNTIL SET BY HOST
BIC #10,@#STRI - ;ENABLE DMA OUTPUT MODE
MOV #DATABF,@#MAR] - ;SET MARI TO INTERNAL BUFFER ADDR
MOV #-100. ,@#WCRI 3 START DMA TRANSFER OF 100 WORDS
COMPL: BIT #20,@#STRL sTEST 'DMA COMPLETE' BIT IN STRI
BEQ COMPL ; (BIT IS SET WHEN DMA COMPLETE)

d. To set up a DMA transfer to the host computer (input data transfer):

BIS #10,@#STR1 ;ENABLE DMA INPUT MODE

MOV #DATABF,@#MARL $SET MARI TO INTERNAL BUFFER ADDR

MOV #=100. ,@#WCR1 ;START DMA TRANSFER OF 100 WORDS
WAIT: BIT ~ #20,@#STRI ;TEST 'DMA COMPLETE' BIT IN STRI

BNE WAIT ; (BIT IS SET WHEN DMA IS COMPLETE)

7.5.2 INTERRUPT OPERATION. The coding examples in paragraph 7.5.1 assumed that
interrupt capabilities provided by the parallel interface were not used. An

o
®

the

interrupt capability is provided for both input and output data transfers. These
interrupts can be enabled or disabled separately as required by changing the status
of bit 14 (input interrupt enable) and bit 6 (output interrupt enable) in the status

register. Setting a bit enables the associated interrupt while clearing a bit
disables it.

When the input interrupt enable bit is set, an interrupt to the display
processor occurs when the host computer acknowledges that data has been taken or

when an input DMA operation is complete. When the output interrupt enable bit is
set, an interrupt to the display processor occurs when output data is available from

the host computer or when an output DMA operation is complete.

An attention interrupt is also provided by the parallel interface for special
applications. This interrupt is enabled when bit 11 (attention interrupt enable) of

the status register is set and disabled when bit 11 is cleared. The attention
interrupt is associated with status register bits 9 (attention no. 1) and 10

(attention no. 2) which reflect the states of the two attention signals from the
host computer. When the attention interrupt is enabled, an interrupt to the display
processor occurs whenever one of the two attention signals changes from a low to a

high state.

Bits 0 (spare input no. 1) and 12 (spare input no. 2) of the status register
are provided to enable special signals to be sent from the display processor to the
host computer via the parallel interface, These bits may be programmed as required.

7.6 THE SERIAL INTERFACE AS A DEVICE

Up to nine serial interface ports can be associated with one GRAPHIC 8 system.

One port is contained on the ROM and status logic card and four ports are contained
on each multiport serial interface card (up to three multiport serial interface
cards may be installed in a terminal controller). All serial interface ports
operate at speads up to 9600 baud. The following paragraphs describe the use of the
ports provided by each type of card. :

7.6.1 ROM AND STATUS LOGIC CARD PORT. The serial interface port onm the ROM and
status logic card 1s used to interface a teletypewriter to the GRAPHIC 8 for
maintenance and diagnostic purposes. This interface operates in a manner similar to
the standard teletypewriter interface used in conjunction with minicomputers of the
PDP-11 type manufactured by Digital Equipment Corporation (DEC). Instructions for
its use are contained in the DEC PDP-11/04/34/45/55/60 Processor Handbook which
should be used as a supplement to this manual. Registers associated with this port
are described in paragraph 4.4.1. ©Note that the register formats are the same as
the formats for corresponding registers zssociated with the multiport serial
interface ports.

7.6.2 MULTIPORT SERIAL INTERFACE PORTS. Ports on the multiport serial interface
cards are the ports through which peripheral devices (keyboards ,and PED's)
communicate with the display processor. The host computer also communicates with
the display processor through a multiport serial interface port when a parallel
interface is not used for the purpose. All four ports on each multiport serial
interface card can function as basic serial interface ports. Additionally, the
first port on each card is provided with full RS-232C capabilities for the purpose
of communicating with a host computer or driving a modem. BRefer to paragraph 4.4.1
for a list of the devices assigned to each port and a description of each type of
register associated with the ports. .

Using a multiport serial interface port is somewhat dependent upon the device
to which the port is connected. The following paragraphs, therefores, discuss each
type of device separately and give examples of how the associated port is used.

7.6.2.1 Host Computer. When communications with the host computer are handled via
a serial interface, the host computer is connected to serial interface port 1.
Examples of representative coding sequences used to handle these communications are
as follows:

7-18

de To receive data from the host computer:

WAIT: TSTB @#RSRL ;TEST '"RECEIVE DONE' BIT OF RSRI
BPL WAIT ; (DONE INDICATES CHARACTER RECEIVED
FROM HOST)
MOV @RDBL, RO ;PUT CHAR IN LOW ORDER BYTE OF RO

be To send data to the host computef:

MOV RO, G#TDBI ;MOVE CHAR FROM LOW ORDER BYTE OF RO TO TDBI
WAIT: TSTB @#TSRI ;TEST 'TRANSMITTER READY' BIT OF TSRI
BPL WAIT 3 UNTIL SET BY SERIAL INTERFACE

; (READY INDICATES CHARACTER SENT TO HOST)
NOTE

The preceding examples. do not use the
interrupt capabilities provided by the
serial interface port., If desired,
interrupt processing techniques may also be
used.

7.6.2.2 Keyboards. GCP accepts inputs from alphamumeric/function keyboards via
serial interface ports. All inputs from port 3 are identified as inputs from
keyboard No. 1 and inputs from port 7 are identified as inputs from keyboard No. 2.

An example of a coding sequence used to accept keyboard inputs is as follows:

To obtain an alpha character from a keybeoard:

WAIT: TSTB @#RSR3 ;TEST '"RECEIVER DONE' BIT OF RSR3
BPL WAIT 3 UNTIL SET BY KEYSTROKE
MOV G@#RDB3,RO ;PUT CHAR IN LOW ORDER BYTE OF RO
BIC #177600,R0 sCLEAR RO EXCEPT FOR 7-BIT ASCIL CHAR CODE
BIT #100,RO ;SEE IF FUNCTION
;OR MATRIX KEY
BEQ 1§ ;BRANCH FOR FUNCTION

;OR MATRIX KEY
;CODE TO PROCESS CHARACTER

H
1$:;CODE TO PROCESS FUNCTION OR MATRIX KEY

The lighting of function or matrix keys on a keyboard requires that five bytes
be sent to the keyboard via the associated interface. The first byte (224g) sets
up the keyboard te accept the data in the four bytes that follow. Bytes 2 and 3
contain data for lighting function keys O through 7 and 8 through 15 respectively.
Bytes 4 and 5 contain data for lighting matrix keys O through 7 and 8 through 15
respectively. A key is lighted when its corresponding bit is set and not lighted
when its corresponding bit is cleared. Function and matrix keys on a keyboard are
designated as follows:

7-19

FUNCTION KEYS

| oT1T2T3T4T576 1771871911071t [12 713 [14 J15 |

An example of coding that could be used to light function

matrix keys 5, 12, and 13 is as follows:

MoV
JSR
MOV
JSR
MOV
JSR
MoV
JSR
MoV
JSR

*

ouT: MOV

WAIT: TSTB
BPL
RTS

7.6‘2.3 PED'S.

inputs are generated unless the PED is moved.

#224 ,RO
PC, OUT

#12,RO
PC,0UT
#4 RO
PC,0UT
#40,R0
PC,O0UT
#60,R0
PC,0UT

RO, @#TDB3

@#FTSR3
WALT
PC

3 SET UP KEYBOARD

;3 TO ACCEPT LAMP DATA
sLIGHT FUNCTION

; KEYS 1 AND 3

s LIGHT FUNCTION

; KEY 10

;LIGHT MATRIX

; KEY 5

sLIGHT MATRIX

; KEYS 12 AND 13

sMOVE BYTE FROM RO TO TDB3

MATRIX KEYS
™7 1819 115 |
T4 157 6 |14 |
11213113 |
I_10 T o Tir 112 |

keys 1, 3, and 10 and

;TEST 'TRANSMITTER READY' BIT OF TSR3
; UNTIL SET BY INTERFACE (BYTE TAKEN)

sRETURN FROM SUBROUTINE

PED's (e.g., trackball, forcestick or data tablet) are assigned to
serial interface ports 4 and 8.

Inputs from port 4 are identified by GCP as coming
from PED no. 1 while inputs from port 8 are identified as coming from PED no. 2.
Inputs from trackball/forcestick represent coordinate displacement data in the form
of two successive 8~bit bytes that are updated at a maximum rate of 37.5 Hz. No

The format of each byte is as follows

(note that the coordinate data in each byte is in two's complement form):

| X coordinate displacement byte

7 6 5 &4 10
I‘ i l L]) Tt T l
| 0 | £ | X COORD DATA
Lo
; i i “1 1 [} 1 1 I
| 1 | #1 Y COORD DATA |

1

¥ coordinate displacement byte

f SR B T B B W~ REE Y

D v e .
v T

The handling of PED data 1s similar to the handling of inpq%s from a keyboard.
Refer to paragraph 7.6.2.2 for examples of coding that can be used.

7.7 PROGRAMMING EXAMPLES

7.7.1 PROGRAMMING THE COLOR DISPLAY MONITOR. Three primary colors are available
for the color display monitor. They are Red (R), Greem (G), and Blue (B). The

displays are selected by the LDDZ instruction. The color is specified by the use of

the Load Pixel Data Register (LDPD) instruction. or the LDDZ instructions (for
configurations with 3 bits per pixel plus blink). ;

The value in the Pixel Data Register (without the MSB if blink on) is the index
into the lookup table (LUT). Each 8-bit entry in the lockup table has a value that

represents the actual color seen on the screen (written to pixel memory). The
format of the entry is:

7 6 5 4 3 2 1 0
| BL 1 B0 [62 16l |Go [R2 | R1 | RO |

where:

Rn is the nth intensity bit of Red,

Gn is the nth intensity bdit of Green,

Bn is the nth.intensity bit of Blue.

For a 3 plus blink (*) configurations any 8 colors can be Qeiected from a
cholce of 256 colors by the use of the Lookup Table and the Modify Lookup Table

(MDLU) instruction. For example, the following LUT values will give a reasonable
set of colors.

LUT BYTE INDEX LUT VALUE (OCTAL) COLOR
0 0 BLACK
1 7 RED
2 70 GREEN
3 77 YELLOW
4 300 BLUE
5 307 MEGENTA
6 370 CYAN
7 377 WHITE

7.7.2 USE OF BLINK AND LUT. The size (8 bit bytes) of the mapped portion of the

Lookup Table (LUT) is the number of simultaneous intensities or colors available for
a given configuration. (See Table 7-1.) The blink bit acts on the data independent

of the contents of the LUT.

7-21

Table 7-1. Mapped LUT Size |

BITS/ SIMULTANEOUS INTENSITIES i | l &

PIXEL OR COLORS 'LUT BYTE SIZE
2 2 plus blink 2
2 4 4
4 8 plus blink 8
4 16 » 16
8 128 plus blink , 128 o
8 256 256 : ‘_J

For example, a blinking blue vector on the screen with a configuration of 4
bits/pixel with blink as the MSB could be produced by the following refresh.

REFRESH: INIT

LDDP . . o
LDDZ . . ' :
MDLU ADR, 10,1,400 .; where ADR: BYTE 0,0,0,0,300,0,0,0
' [.
LOQP: WATE '
LDPD 14 ; blink + intemsity = 14 | '
LDXA 0 ;5 center of screen
T OMVYA 0
‘DRYA 200 ; draw vector
JUMP LOOP l;;w
: INDEX . LUT ',‘“
+0 l 0 | -
+1 0 | “
+2 0| [
: +3 770 |
Pixel Data Register ~—emm—me———> Intensity = 4 --> +4 | 300 | BLUE -
| : / _/ | f
- 1 AR e R B |
7 6 5 4 3 2 1 0 | i T
T T T T T T l b
lolojololilt]o]ol | [
] s |)
I Screen { o
1 | [
l | | | | I
I Blink | ik | | -
> 1 | < :
! T 1 l l
1 | :
Figure 7-8. Relationship between PDR and LUT l _
To stop the vector from blinking, remove the blink bit from the LDPD :
instruction and execute the refresh file. l .
- 7-22 l :

APPENDIX A

SUMMARY INFORMATION

OCTAL
BYTE
ADDRESSES

s 177777
\
DATA AND
STATUS
REGISTERS
“ AND
DEVICE
ADDRESSES
160000
187777
GRAPHIC
CONTROL
PROGRAM
<<: 140000 .
137777
- OPTIONAL o
. MEMORY -
EXPANSION
040000
037777
AVAILABLE
TO
USER
003000
. 883333 RESERVED FOR USE BY GCP

GCP "ISALSO LOCATED
IN SECTIONS IN
160000-177777 AREA.

7/ \

ROM
AND/OR
READ/WRITE
MEMORY

(-

> READ/WRITE
MEMORY

H~79-0348~1

Figure A-l. GRAPHIC 8 System Memory Map

Table A-1, GRAPHIC 8 Local Mode Command Summary

KEYBOARD
ENTRY OPERATION

RETURN Execute local mode command or returns system to local monitor level. -

nnnnnn/ Display contents of memory address nannnn (octal).

/ Increment memory address counter by two and displays address contents.

or Decrement memory address counter by two and displays address contents.

Bn Select memory bank. (BO 0-32K;: Bl 32-64K; B2 64-96K; B3 96-128K;
and B4 16-32K RAM).

S Transfer GRAPHIC 8 to system mode operatiom.

T RETURN Transfer to the verification test pattern.

L RETURN Load memory from paper tape reader,

nnonL Load selected option from expansion module.

RETURN

U RETURN Unload all options.

O RETURN Display status of all options loaded. .

Q Decrement contents of display processor Q register by two and displays
result, Used with diagnostics to indicate address at which display
processor halted.

annnnnD Direct graphic controller to display refresh file beginning at address

RETURN nnnann (octal).

nnnnonnG Transfer control of display processor to program beginning at memory

RETURN address nnnnnn (octal).

.Y RETURN Call teletypewriter emulation program. - After entering emulation

or program, function key FO clears CRT screen. Function key Fl selects

P RETURN f£full or half duplex operation; receipt of octal code 035 from the host
computer or pressing function key F1l3 transfers GRAPHIC 8 to system
operating mode. (Y = serial, P = parallel)

RUB OUT Delete last octal entry from keyboard.

A-3

Change 1

Table A=-2.
NUMERICAL LIST

Legend:

Opcode word

GRAPHIC 8 Controller Instruction Summary

For example:

A-h

he opeode word contains bits in one of three categories:

L. Numeric represents actual opcode bits. Note that opcode bits are not
necessarily adjacent.-

2. A thru G represent variable bits @ (either binary zero or one) that
affect the function of the instruction.

A= 000 E = 000
B = Q@0 F = 000
c = 000 G = 000
D = 000

3. X means any bits left (up to 3) are ignored by the instruction.
Underline (_) means a combination of variable and left over bits that
fit into three bits as:

D2A = 010 binary
XC = X000 binary

1. 14C-

PPLR xinc, yine
2. 0 0 2 X XC

CALLE bank, adr

e TR B B B Y

i

Table A~2. GRAPHIC 8 Controller Instruction Summary (Cont)

MNEMONICS

adr =.16 bit address

bank = 2 bit bank 0=3 (if absent, bank 0 is assumed)
vemum = video controller number 1-4

iz = initial x value

iy = initial y value

fx = final = value

£y = final y value

D = adr is displacement (if ab;ent, adr is absolute address)
DR # = display registfr number

I = indirect address bit

F = final bit 15 of data word

Table A=2. GRAPHIC 8 Controller Instruction Summary (Cont)

* NUMERICAL LIST

PAGE

OPCODE MNEMONICS NUMBER
0000XX HREF | 3=20
‘OOIOXX JUMP adr,I (I»for mode -0 only) 3=~12
*0010XXC JUMPE baﬁk, #&r 3-12
0011XX JRMP inc ; 3-13
*Q011XX JEMPE inc 3-13
0012xX JMPZ adr,I (T for mode 0 only) 3-14
*0012XXC IMPZE bank, adr 3-14
0013xX JPRZ inc 3-15
*0013XX JPRZE inc 3-15
0020xX ‘JMPM adr,I (I for mode 0 only) 3-18
*0020XX JMPME adr 3-18
0021XX ékLL adr 3-15
*0021XXC CALLE bank,adr 3-15
0022%X CALR inec 3-16
#0022XX CALRE inc 3-16
0023xXX RTRN 3-17
*0023XX RTRNE 3-17
0030%X IZPR (G7 only) 3-27
0040%X - LINK adr,I (I for mode O only) 3-19
#*0040XX LINKE adr | 3-19
| 0041GG SAVD DR# 3-24
*0041GG SAVDE DR# 3-24

*Extended instruction cnly.

A-6

*.__\

v

—ad

Table A-=2. GRAPHIC 8 Controller Instruction Summary (Cont)

NUMERICAL LIST

PAGE
OPCODE MNEMONICS NUMBER
0042GG RESD DR# 3-24
#004 2GG RESDE DR# 3-24
0043GG ADDI DR#,data: 3-23
005000 NOOP 3-13
003GGG JMPR inc 3-13
006066 LDRI dev,reg,data (G7 only) 3-23
0061GG 1LDDI DR#,data 3-22
0062XX LDSP adr 3=22
*0062XXC LDSPE bank,adr 3=-22
*0063XXC VD [ABS| , |VERT| , |TOPM | , adr,p,bytes,ix,iy,fx,fy 3-29

IREL| ~ [EOR | ~ |FROMPM]

*gggggc:g-—-&@ee 3D instruction set in manual H=79-0330)
0066XXC MDLU bank,adrl,D,bytes,venum,adr2 : 3-31
*0067XX CLRM 3-28
0070%X WATE 3-21
*0071XX INIT 3-28
0072GG MODE mode 3-28
*0073%X UPDT 3-21
*0075XXC FLPG |ABS| , bank,adr,D,n 3-32

|REL]

*Extended instruction only.

A=7

Table A=~2. GRAPHIC 8 Controller Instruction Summary (Cont)

NUMERICAL LIST

PAGE -

OPCODE MNEMONICS NUMBER =
*007 666 PPTA ROT,TABINC | . 3-7 3

COOR1

COORn, F [~
*007 7GG PPTR ROT,TABINC 3-8

INC1 2

ven,? -
010CGGG LDDZ zpamm - 3-26
014CGGG LDDP dparm - 3-25 :
020CGGG LDXA =zcoor 3=3 :
024CGGE LDXR xinc 3-3
030CGGG DRXA xcoor (modé 0 only) 3~5 VJ
034CGEG DRXR xinc (mode 0 only) 3=-5
*034XXCGG LDPD data 3-28 |
.OAQQFGG DRYA yeoor 3-6
044CGGG | DRYR yine 3-6
030CGGG MVZA zeoor (mode O only) 3=4
*050CGGG PPYA yeoor 3-7
054CGGG MVER xine (mode 0 only). 3-4
*054CCGG PPYR yinc » 3-7 :
060CGGG MVYA yooor 3-4
064CGGG MVYIR vine 3~4

*Extended instruction only.

A-8

Table A-2.

GRAPHIC 8 Controller Instruction Summary (Cont)

NUMERICAL LIST

PAGE
OPCODE MNEMONICS NUMBER
070CGGG LDKX q , =xlen 3-11
074CGGG DRKY q , vlen 3-11
10CGDOGG DRSR =xinc, yinc 3=-6
10CGD1GG MVSR =xinc, yine 3=5
LGGD2AGG TXT chrl,chr2 3-10
116AD2AGG CHAR B,S,chr 3-9
14CGDOGG PPLR xinc,yinec 3-6
14CGD1GG LDTI 1linec,tinc 3=27

*Extended instruction only.

ALPHABETICAL LIST

Table A-2. GRAPHIC 8 Controller Imstruction Summary (Cont) [
MNEMONICS : FORMAT . DESCRIPTION PAGE NUMBER l

[
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o , p .
. i T R
7] |] f]
joloe o ofl1 o o0lo 1 1] DR# | App TO
ADDI . | | | | DISPLAY 3-23
f | REGISTER N -
L+ DATA | ‘IMMEDIATE : : B
] | |-
]]] | | |
folo o olo 1 olo o0 1]x x x|lx % %I
CALL [| | | | cary 3-15
| ' | SUBROUTINE
1' SUBROUTINE ADDRESS g
=T T T T T i R
lojo o oflo 1.0]l0 0 1]X X x| XAl7Al6| cauL . [
#*CALLE | ! ! ! | EXTENDED 3-15 |
™ ' ‘ ' | sUBROUTINE v
'I AlS . . SUBROUTINE ADDRESS . A0 ;
™ ™ T T T | |
fjolo o o9te 1 olo 1 olzxz 2 xix x x|
CAIR(E) |__| ! ! ! ! | cawL 3-16
I ' T ’ | RELATIVE a
’I SUBROUTINE INCREMENT (IN EVEN BYTES) |
]
. !] I ‘ ' | DRAW . [,
CHAR 110 ¢ 111 1 Bl 1] 1| CHARACTER ASCII CODE | SINGLE 3-9
R A L1 1 | CBARACTER - [
|] 1 | i ol | CLEAR
*CLRM folo o o1 1 o011 1 1]% %2 x| x X X | MAPPING 3-28
1 ! ! l [__| MEMORY l y
.] I [% SENI-AXLS LENGTH | DRAW -
DRKY fott 1 1] 1] qQvi ez | (OR CIRCLE RADIUS) | cowic 3-11
1 [| v [|
A=-10Q »

| RO N
[

T

Table A-2. GRAPHIC 8 Controller Instruction Summary (Cont)

ALPEABETICAL LIST

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER

15 14 13 12 11 10 9 8 7 & 5 & 3 2

T T T | DRAW SHORT 3-4
DRSR l'1] ol + Y-INCREMENT o l' 0 I, + X~INCREMENT lI RELATIVE

1 1

| ! | DRAW X 3=5
DRZA % 0 !l 0o 1 1 l' 0 l, + | X~CCORDINATE | ABSOLUTE

|

[] ' | DRAW X 3=5
DRXR ilollo 1 11'1l':lx-zmxmm llnzwf:vz

1 T 1 1 | DRAW Y 3-6
DRYA | o |l 1 0 0 !' 0 i! + ll Y-COORDINATE | ABSOLUTE

| |

=1 T 1 | DRAW ¥ 3-6
IRTR foli1 o ol 1]+ | Y-INCREMENT | RELATIVE

] L1 I :

I I | |] |
*FLPG }olloo 0];1 1 1|’~1 0 lixxxgx;mms!

| | FILL A

|15 . . ADDRESS OF LIST OF VERTICES | conveEx 3-32

| | POLYGON

b0 |

§AM !'xm.l! NUMBER OF VERTZCES |

|

o |] |] |
HREF lojlo o olo o olo 0 o|lx ¥ XxI|X | BALT REFRESH 3=20

| | | | | |

1 T N T] |
#INIT lolo o of1 1 1]0 o 1]x x x!|ZX | INITIALIZE 3-28

A-11

Table A~2. GRAPHIC 8 Controller Instruction Summary (Cont)

ALPHABETICAL LIST

15 14 13 12 11 -1 9 8 7 6 S5 &4 3 2 1 Q@

IZPR lejo o o]lo 1t 1t}0 o olx x x|z X X | INITIALIZE 3-27

JUMP AND MARK 3~18

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER [K
ey i

JUMP ADDRESS (IN EVEN BTTES)

I - T | F JUMF LBCREMENT | JIM® SHORY 3-13

JMPR foloe o o ; 1 0 1] (IN EVEN BYTES)]! RELATIVE -
|1 : o
T | 1 | { |
fojo o oflo o 1}l0 1 olx x X|X X X| JUMP IF DIS- .

1] |1 | |] | | PLAY REGISTER O 3-l4
I | CONTENTS # O
lI 1 % JUMP ADDRESS ; l
o o] ' [I |
fojo o0 o0/6 o 1]0 1 O0]X ¥ X | XAl7 Al6 | JMP EXTENDED

*IMPZE |1 | |] | | IF DISPLAY 314
I) | REGISTER 0
IlAI.S Al4 . JUMP ADDRESS . . AD % CONTENTS # 0 l
| 1) i | I o | .
lofo o olo o 110 1 1]x £ %x1X X X /| JUMP RELATIVE

JPRZ [| | l . | IF DISPLAY 3-13)
| ' ' ' T | REGISTER O ' ’
} JUMP INCREMENT (IF EVEN BYTES) { CONTENTS # O » (o

A=12 l

Table A-2. GRAPHIC 8 Controller Instruction Summary (Cont)

ALPHABETICAL LIST

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER
15 14 13 12 11 10 9 8 7 & S & 3 2 1 0
[1 I T T |
lolo o @¢}Jo0o o 1}/ 0 11%x 2 x|x x x|
JRMP | | | | | | JUMP RELATIVE 3=13
| : |
| JUMP INCREMENT (IN EVEN BYTES) |
| |
I] [i 1 |
loejloe o o0lJo o t}]0 0 o0}]xXx X xlx ¥ X|
Jovp |1 | | | | | JoMp 3-12
| | |
|11 JUMP ADDRESS |
(- |
| | | 1 | | |
lojlo o o]0 o 110 0 olx ¥ x|Xx AL7 A18]
*JUMPE |1 | | | | | JUMP EXTENDED 3-12
| | ADDRESS
. lals als . . JUMP ADDRESS . . 40| .
| I
=7 T T ' T |
lolo o o)J1 1 olo o 1] DR# | LOAD DISPLAY
LDDI (- | | | | REGISTER 3-22
| | DMMEDIATE
| DATA |
I | *
I [| LOAD DISPLAY
LDDP folo o 111/} DISPLAY PARAMETERS | PARAMETER 3-25
| | | REGISTER
[T I | LoaD
LDDZ folo o 11]0] DISPLAY Z PARAMETERS | DISPLAY 3-26
|1 | | z REGISTER

A-13

Table A~2. GRAPHIC 8 Controller Instruction Summary (Cont)
ALPHABETICAL LIST
MNEMONICS FORMAT DESCRIPTION PAGE NUMBER
15 14 12 11 16 ¢ 8§ 7 & 5 4 3 2
1 A T — "' | LoaD
LDEX lof1 1] 0] Qrrz | q | X SEMI-AXIS LENGTH | cowic _ 3=-11
- | | X REGISTER
I i T ' ‘ | LOAD PIXEL
*LDPD folo 111 x 2] x| GRAY LEVEL | DATA 3-28
. | i | REGISTER
1T i] i ') !
lolo ef1 t olo o of oyt | REG# | LOAD DEVICE
LDRI | | | | REGISTER 3-23
e | DMMEDIATE
Fxlx X DATA |
U !]
=T T T T T]
fofo of1 1 ofo 1 o]lx X XxX|3x % |
LDSP i |]]] |10AD STACK 322
I{ ' ' i! POINTER
! |

A~14

MENTIN $ RNN ARWEWR$ PRRSER, SEWEER

b

Table A~2. GRAPHIC 8 Contreoller Instruction Summary (Cont)

ALPHABETICAL LIST

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER
15 14 13 12 11 10 9 5 .04 3 2 1 0
[I] | I |
folJo o o1t 1 oo | £ =% X | X ALl7 Als] LoAD

*LDSPE | | | | | | EXTENDED 3=22
| | STACK POINTER
|AlS . . ADDRESS . . A0 |
| l
ol | | |] LOAD TEXT

LDTI f111 o olo o o}lo | TEXT INCREMENT | INCREMENT 3=27
1 | | | | REGISTER
I 17 1 |

LDX4& I 0 ; 0 1 0 s 0]+ } X-COORDINATE || LOAD X ABSOLUTE 3-3
I 1T 1]

LDXR ;] l‘ o 1 o0 } 1 || + 1 X~INCREMENT ll LOAD X RELATIVE 3=3
T I f { 1 |
lolo 9@ o1 0o olo lx ‘¥ XJx x x|

LINK 1 | | | | | SYNCHRONIZED 3-19
77 | LINKAGE
i] 1)‘ Al4 ., LINK ADDRESS . . A0 |

!

|] I | | | |

*LINKE jolo o o1 o 0f{o] X X]X ¥ X | SYNCHRONIZED
- | | | | | LINKAGE 3=19
| | EXTENDED
lals . . LINK ADDRESS . o 40|
| l

A-15

Table A=2. GRAPHIC 8 Controller Instruction Summary (Cont)

MNEMONICS FORMAT DESCRIPTION PAGE YUMBER

15 % 13 211 1w %9 8 7 65 4 3 2 1 0

1 i] T ! !

*MDLY lejo v ol1 1011 0 11X X X | Al7 Al6l woDIFY’ N
| | |] | | LOORUP 3-31
| ‘ ‘ ' | TABLE
115 . . GRAPHIC 8 MEMORY ADDRESS o o A0 | ,
T |
{an | NUMBER OF GRAPHIC 8 8-BIT BYTES ; '
[|
oo] T ' |
g 0 i 0o 0 o |I e 0o o0 % 0 % VIDEO CONTROLLER(S) ; i
I |] ' !
felJo o olo o ofu1] LUT ADDRESS |
1 1 A f
T I | | T | Loap

MODE lejo o o1 1 1ic 1 o0} MODE | INSTRUCTION 3-28
S | B R . | MODE REGISTER
i B T T T |

*MYPD folo o o1 1t o}lo 1 1]lx X X% Al7 Al6] wovE
I | | | | | PIXEL 3-29
| ‘ ' | DaTA
i!Als « . GRAPHIC 8 MEMORY ADDRESS . A0 ;
| T 1% 1 | i .
|a¥ IREL| Y |DIR] | |
|l A Jmel | % v
| INITTAL X VALUE | g
; |
‘ |
% INITIAL ¥ VALUE ;
| | hE
| FINAL X VALUE : !
|
l — v |
1l FINAL Y VALUE }
R T) ‘ | MOVE

MVSR 11 0] & ?~INCREMENT 101 1]+ E-INCREMENT | SHORT 3-3

S 1 | RELATIVE
A-16

Table A~2. GRAPHIC 8 Controller Instruction Summary (Cont)

ALPHABETICAL LIST

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER
15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 0
FT b . I

MVEA lol1 0 1|01+ | X~COORDINATE | MOVE X ABSOLUTE 3-4
[Lt 1 I
Il b !

MYIR foli1 0 1]1]#+]| X-INCREMENT | MOVE X RELATIVE 3-4
— I I
T T |

MVYA lolt 1 0] 0] +] Y-COORDINATE | MOVE Y ABSOLUTE 3-=4
- L1 |
T T |

MVYR el 1 o}Ll:}z—mmmzm }Movz'zazmnvs 3=4
I
T | [I] [

NOOP lolo o o]t o 110 0 0]0 0 0|0 0O O] NO OPERATION 3-13
1 | ! ! ! I
=T 71 ' 1 1 | POINT

PPLR 1] 1]+ Y-INCREMENT o]0+ EZ-INCREMENT | pLoT 3-6
1 1 I | RELATIVE
T] I T !

*PPTA fofo o o]t 1 1]t 1 o |rot| TAB. INCR. | POINT PLOT
I ! . ! [| TABULAR 37

. ABSOLUTE

T | I
| Pl X % X X|+ COORDINATE |
!

LB .

o B

A-17

ALPHABETICAL LIST

Table A~2. GRAPHIC 8 Controller Instruction Summary (Cont)

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER
15 14 13 12 i1 % % & 7 & 5 4 3 2 .1 ¢
|) | I |
*PPTR ojo o aofl1 1 1|1 1 1 |roT| TAB. INCR. | porNT PLOT
| | | 1 | TABULAR 3-8
" ' N RELATIVE -
1 1 .]
Pl X X X l! + INCREMENT 'l
|
T 1 ’ "| OINT
*PPYA 0l1 0o 110/ 4 7-COORDINATE | PLOT 3=7
L. I | ¥ ABSOLUTE
1 [H . | POINT
- *PPYR 011 0 1]1]#+ Y~INCREMENT | PLOT 3-7
L] | ¥ RELATIVE
o I i) i ‘ | RESTORE
RESD(E) olo o oft1 o o0}lo 1 0] DR# | DISPLAY 324
I L. ! | | REGISTER
1 1 i] I |
RTRN 0%0 o olo 1 0%0 1 1}3 xx%x xx}mm 3w17
v |
T o] | | savE
SAVD(E) olo o ol1 0o oJo o 1] DR# | DISPLAY 3=24
1 ! ‘! | _| REGISTER
] o T ' | DRAW TWO
TXT 1 | CHARACTER 2 ASCII CODE | 1 | CHARACTER 1 ASCIT CODE | TABULAR 3=10
| 1 | CHARACTERS
A~18

R

Table A-2. GRAPHIC 8 Controller Instruction Summary (Cont)

ALPHABETICAL LIST

MNEMONICS FORMAT DESCRIPTION PAGE NUMBER

15 14 13 12 11 10 ¢ 8 7 6 S & 3 2 1 O

I | I i ' T | UPDATE
*UPDT lolo o o]+ 1t 1]0 1 1]X X X|X X X| VIDEO 3-21
|1 | | | | | CONTROLLER
REGISTERS
I]] I] |

WATE lolo o ol1 1 110 0 o0}l ¥ X|x% X x| waIrT 3=21
|

A-19

DRn

DSP

DEC

DIR

DXR

DIR

4-20

Table A-3. Graphic Controléer Register Format Summary
15 14 13 12 11 10 9 8 7o 6 5 4 3 2 1 0
? 1 1 1] 1 T : 1 ! 1 1 1t 1 1]
15 14 13 12 11 10 9 & 7% 86 5 4 3 2 1 0
7 T ¥ v! 1 1 ? 1 7 17 1] 1 1 1
15 14 13 12 11 10 9 8 7. 6 5 4 3 2 1 0
L J 7 L V 1 L4 ¥ ¥ T T L 7 ¥
15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 0
'1 1 1 1 ' 1 ' ?] [] 7 1 4 ' 1
15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 ¢]
[f [(l 1 [T 1 [[1 [1
[| X COCRDINATE VALUE
-
T
i
|
I SIGN BIT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1] 1 7 H) 1 1 1 1

T CCORDINATE VALUE

SIGN BIT

GENERAL

PURPOSE
REGISTER

STACK
POINTER

PROGRAM
COUNTER

DISPIAY
INSTRUCTION
REGISTER

X POSITION
REGISTER

| Y POSITION
| REGISTER

mmmm_

o~

T i

i
2o

Table A-3. Graphic Controller Register Format Summary (Cont)

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

i' T [[[1‘ 1 1 1 ; 1 1 1 1 [1 ‘ DISPLAY
DCR | | ASCIT CHARACTER CODE | CHARACTER
l B | . | REGISTER

15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0O

l ! ! ! i | | | i | [' ! ! " | TEXT
DTI | lolol ol ol o] 0] TEXT INCREMENT | INCREMENT
| _ | A A A A A | REGISTER

15 14 13 12 11 10 S 8 7 6 S 4 3 2 1 O

| 7 D— T ’l ! ‘ T 7 T T 7 T T | CONIC X DATA
KR | | 1Qr | X SEMI-AXIS LENGTH | REGISTER
l S . ; | (OPTIONAL)
|
l QIII

15 1 13 12 11 10 9 8 7 6 5 & 3 2 1 0

l 1 T [1 J } l 1 1 1 [t 1 T 7] CONIC Y DATA
KYR | |QIVIQII| ¢ SEMI-AXIS LENGTH | REGISTER

l ,] | (OPTIONAL)

15 146 13 12-11 10 9 8 7 6 5 4 3 2 1 0

! R T T ‘ 7 T 7 I T 7 I 7 7] DISPLAY
DZR] | | #1 #2 #3 #4] | | | z

l B | | | REGISTER

l

{ ; |___ GRAY LEVEL SELECT
} 1 _____ LINE STRUCTURE SELECT
1 1 BLINK SELECT
%______ VIDEO CONTROLLER NUMBER

DISPLAY SELECT CHANGE ENABLE

A-21

Table A-3. Graphic Controller Register Format Summary (Cont)

1514 13 12 11 10 9 8 7 6 5 4& 3 2 1 90

| T T i 7 7 T 7 i T 7 T T ‘I I 7| DISPLAY
DER l N | PARAMETER
| ~ | L1 | REGISTER

| CHARACTER
SIZE -
CHAR ORIENTATION ['

CHAR PARAMETER
'CHANGE ENABLE

15 14 13 12 1 10 ¢ 8 7 6 5 4 3 2 1 O

! 1] i] vt] [} 1] 1 1]] 1 T ‘ PAGE

PGR |MEMORY | | REGISTER B
|PAGE | — . l [vf

15 14 13 12 1 10 9 8 7 6 53 4 3 2 1 O

A =7 R T T T I 1 T g i SENSE
SENS | | | .| REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

l ‘A! 1] [1 Tt 1 1 ot 1 1 }' ‘l ; l l MASK
MKR | , I 1 | | | REGISTER

|
i i HALT
|

REAL TIME CLOCK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

i 1 1 1 i 1 D] T t ¥ K] [T [1 i FUNCTION
FUNS | : ‘ | CONTROL STOP
l ; ‘ | REGISTER

A~22

X/Y OVERFLOW - ["

FUNC

IMR

PDR

SX1-3

SY1-3

LN1~-3

Table A-3.

| FUNCTION

| CONTROL

| CONTINUE
REGISTER

| MARGIN
| REGISTER

| PIXEL
| DATA
| REGISTER

| START
| X
| REGISTER

| START
| v
| REGISTER

Graphic Controller Register Format Summary (Cont)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 7 t i T " 7 | 1
15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0O
I (] T T 7 T 7 7 7
i PRESENT X OR Y MARGIN POSITION
I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 I 1] F] []]]]
% GRAY LEVEL BITS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l [] ¥ 1 H 1 [1 1 ?
X ADDRESS
|
15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0
I 1 [7 1) i 1 1 1
| Y ADDRESS
[
15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 0

1] 1 ? 1] 1 1 1 1

NUMBER OF LINES PER SECTCOR

1

| LINE
& REGISTER

A-23

Table A~3. Graphic Controller Register Format Summary (Cont)

13 14 13 12 11 10 9 8 7 6 5 4& 3 2 1 O

[e e b b Tt | STATUS

STAL=3 | [A R | REGISTER
| ; 1 T N N R P l
N S [| ! | { o
i [P MEM. SELECT ENABLE
CHANGE ENABLE l [i
‘ [| SELECT A/B
[
.
I
I CURSOR ENABLE
l
| CURSOR BLINK ENABLE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

}]) [l i - i i [] 1 1 1 [[) [} | X
XCR l | I X CURSOR ADDRESS | CURSOR
I I T i . | ADDRESS

I
| |_____ SIGN OVFL
l
|

1514 13 12 11 10 9 8 7 & 5 4 3 2 1 0

| T L ‘ 7 A T] 7 ¥ T T ¥

¥CR | R Y CURSOR ADDRESS | CURSOR
| ‘ [| ADDRESS
Tt g ,
| |_____ SIGN OVFL
| ‘
I SIGN

15 14 13 122 1 10 9 8 7 6 5 4 3 2 1 O

R O O A N R A R A TS 3.
DLI | fololo]lol o] 0ol LINE INCREMENT | INGREMENT
| N RO AN AR PO _| REGISTER
A=24

Tableé$~3, Graphic Controller Register Format Summary (Cont)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

v e e T T T T SYSTEM
scr | o | | | | | 1| CONFIGURATION
!] l !] n | | REGISTER
5) ' T
|__ RESERVED FOR
~ HARDWARE

l
|
l
I
| _ BITS PER PIXEL

I l

i l

i i

l !

i |

l | MEMORY FIELD SIZE

!

l - NUMBER OF VIDEO CONTROLLERS

SCREEN RESOLUTION

RESERVED FOR HARDWARE

BLINK STATUS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

CFR | s VALUE | FONT

’ — 7 1 [] 1] v]T H [1 C 1 T [I CHARACTER
| | REGISTER

wd

A-25

Table A~4. Serial Interface Register Format Summary

15 14 13 12 11 10 9 8 7 6 5 & 3 2 1 O

o T T T T T T] RECEIVE
RSRa | | - | [A T I 1 | | sTATUS

o+t t +r t +t ‘.t 1 1 R] | ’ | REGISTER n
; |___ RDR ENBL
i

I I
! !
| i
i ; *DATA TERM RDY
|

.; : *REQ TO SEND
; | RCVR INTRPT ENBL
l ___ RCVR DONE
|
| *DATA SET RDY

*CARR

——e——-

*CLEAR TO SEND

(
|
I
l
l
l
I
|
|
l
i
l
!
|
l
!
|
!

___ *RING IND

*Used on full RS~232C interface ports 1, 5 and 9

15 14 13 12 1 10 9 8 7 6 5 4 32 1 0

I 1 T i T 7 T T T 7 T (. 7 7 7 T ’ RECEIVE
oBn | | 1 1 | RECEIVE DATA | DATA -
N N N N | 1 , | BUFFER n ,

|
I *PARITY ERROR

l
|
l
|___ OVERRUN ERROR

ERROR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i Tt 1 [1 1 1 1 ! 'i] 1 [[[] [§ TRANSMIT
TSRa | R | STATUS
l , _ [| .REGISTER n

AMIR RDY

A=26

g

TDBn

Table A~4. Serial Interface Register Format Summary (Cont)

13 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0
t T 1 1 1 1 1 ’ 1] 1 1 1 [1] TRANSMIT

| TRANSMIT DATA | DATA
| , | BUFFER n

NOTE:

Unidentified bits not used.

A=27

Table A-3.

Parallel Interface Register Format Summary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! [1 1 TR 1 [[1 1 1 ! B 1 1 i WORD
WCRn | TWO's COMPLEMENT OF DMA WORD COUNT | COUNT :
| | REGISTER n
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: | ¥ T ¥ 7 T 7 7 1 7 [[T | MEMORY
MARn | STARTING ADDRESS FOR DMA OPERATION | 0 | ADDRESS -
| | REGISTER n
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T 1T T T T T T T 1T 7T T T T | status
STRa | | L L 0 L b 0 1t P 1 1 1 | REGISTER =
i+t v+t + +r + + t + +t .t t+t 1 1
[N R R Y I R R R B
wevr L0 0 L0 bbb bbb 111 |__ SPARE INPUT
(o S E T R I U A D AR A R R N NO. 1
READY [A HE H NN R A N A R D
Lt b1 b | | ADRS BIT 16
wpyr NTRE | L L b 0 0 L1
ENBL vttt 1 1 I 1 1_ ADRS BIT 17
I N
INPUT WORD REQ _| % % % % % % % 1 % |__ DMA I/0 MODE
SPARE InpUT No. 2 __| I -} | I I 1 1]__ pwA comPL
A A A N B
ATTEN INTRPT ENBL __| | % } % % |__ OUTPUT WORD RCVD
’ |
ATTEN NO. 2 __| 1 % % |__ OUTPUT INTRPT ENBL
ATTEN NO. 1 _| | |__ OUTPUT CONT
: !
3
WORD COUNT # 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDRn/ | T T T 7 7 7 T 7 T T U 7 | nPUT/

ODRn |

INPUT CR OUTPUT DATA

| OUTPUT DATA

| REGISTER n

A-28

Table A-6. Registerﬁbesignations and Address Assignments

DEVICE REGISTER MNEMONIC ADDRESS
DISPLAY PROCESSOR Processor Status Word PSW 177776
177760
Reserved |- thru
1177772
8-bit switch register SWT 177774
ROM AND STATUS LOGIC TTY Receive Status Register TTYRSR 177560
SERIAL INTERFACE PORT TTIY Receive Data Buffer TTYRDB 177562
TTY Transmit Status Register TTYTSR 177564
TTY Transmit Data Buffer TTYTDB 177566
PARALLEL INTERFACE Word Count Register 1 WRC1 172410
CARD NO. 1 (OPTIONAL) Memory Address Register 1 MAR1L 172412
© Status Register 1 STR1 172414
Input/Output Data Register 1 IDR1/ODRL 172416
PARALLEL INTERFACE Word Count Register 2 WCR2 172430
CARD NO. 2 (OPTIONAL) Memory Address Register 2 MAR2 172432
Status Register 2 STR2 172434
Input/Output Data Register 2 IDR2/0DR2 172436
MULTIPORT SERIAL Port No. 1 (Host Computer)
INTERFACE CARD NO. 1 Receive Status Register 1 RSR1 176500
- Receive Data Buffer 1 RDBL 176502
Transmit Status Register 1 TSR1 176504
Transmit Data Buffer 1 TDB1 176506
Port No. 2 (Keyboard No. 3 or PED No. 6)
Receive Status Register 2 RSR2 176510
Receive Data Buffer 2 RDB2 176512
Transmit Status Register 2 TSR2 176514
Transmit Data Buffer 2 TDB2 176516
Port No. 3 (Reyboard No. 1 or PED No. 8)
Receive Status Register 3 RSR3 176520
Receive Data Buffer 3 RDB3 176522
Transmit Status Register 3 TSR3 176524
Transmit Data Buffer 3 . TDB3 176526
Port No. 4 (Xeyboard No. 8 or PED WNo. 1)
Receive Status Register &4 RSR4 176530
Receive Data Buffer 4 RDB4 176532
Transmit Status Register & TSR4 176534
Transmit Data Buffer & TDB4 176536
MULTIPORT SERIAL Port No. 5 (unused)
INTERFACE CARD NO. 2 Receive Status Register 5 RSRS 176540
(OPTIONAL) Receive Data Buffer 5 RDB5 176542
Transmit Status Register 5 TSRS 176544
Transmit Data Buffer 5 TDBS 176546

A-29

Table A~6. Register Designations and Address Assignments (Cont)

A-30

DEVICE REGISTER MNEMONIC ADDRESS
° MULTIPORT SERIAL Port No. 6 (Keyboard No. 6 or PED No. 3)
+ INTERFACE CARD NO. 2 Receive Status Register 6 RSR6 176350
© (OPTIONAL) (Cont) Receive Data Buffer 6 - RDBA 176552
. Transmit Status Register 6 TSR6 176554
Transmit Data Buffer 6 TDB6 176556
Port No. 7 (Keyboard No. 2 or PED No. 7)
Receive Status Register 7 RSR7 176560
Receive Data Buffer 7 RDB7 - 176562
Transmit Status Register 7 TSRY 176564
Transmit Data Buffer 7 - "TDB7 176566
Port No. 8 (Keyboard No. 7 or PED No. 2) -
Receive Status Register 8 RSR8 176370
Recelve Data Buffer 8 ‘RDES8 176572
Transmit Status Register 8 TSRS 176574
Transmit Data Buffer 8 TDB8 176576
~ MULTIPORT SERIAL Port No. 9 (Keyboard No. & or PED No. 3)
INTERFACE CARD NO. 3 Receive Status Register 9 RSRY 176600
Receive Data Buffer 9 RDBY 176602
Transmit Status Register 9 TSRY 176604
Transmit Data Buffer 9 TDBY 176606
Port No. 10 (Keyboard No. 5 or PED No. &)
Receive Status Register 10 RSR10 176610
Receive Data Buffer 10 RDB1O 176612
Transmit Status Register 10 . TSR10 176614
Transmit Data Buffer 10 TDB1O 176616
Port No. 11 (Spare)
Receive Status Register 11 RSRI11 176620
Receive Datz Buffer 11 RDB11 176622
Transmit Status Register 11 TSR11 176624
Transmit Data Buffer 11 TDBL1 176626
Port No. 12 (Spare)
Receive Status Register 12 RSR12 176630
Receive Data Buffer 12 RDB12 176632
Transmit Status Register 12 TSR12 176634
Transmit Data Buffer 12 " TDB12 176636
MULTIPORT SERIAL Port No. 13 (Spare)
INTERFACE CARD NO. & Receive Status Register 13 RSR13 176640
(OPTIONAL) Receive Data Buffer 13 RDB13 176642
Transmit Status Register 13 TSR13 176644
Transmit Data Buffer 13 TDBL3 176646
Port No. 14 (Spare)
Receive Status Register 14 RSR14 176650
Receive Data Buffer 14 RDBL4 176652
Transmit Status Register 14 TSR14 176654
Transmit Data Buffer 14 TDBl4 176656

Table A=-6. Register Designations and Address Assignments

DEVICE REGISTER MNEMONIC ADDRESS
MULTIPORT SERIAL Port No. 15 (Spare)
INTERFACE CARD NO. 4 Receive Status Register 15 RSR15 176660
(OPTIONAL) (Cont) Receive Data Buffer 15 RDB15 176662
Transmit Status Register 15 TSR15 176664
Transmit Data Buffer 15 TDB13 176666
Port No. 16 (Spare)
Receive Status Register 16 RSR16 176670
Receive Data Buffer 16 RDB16 176672
e - Transmit Status Register 16 TSR16 176674
: Transmit Data Buffer 16 TDB16 176676
GRAPHIC CONTROLLER Stack Pointer DSP 165000
General Purpose Register 0 DRO 165002
N General Purpose Register 1 DR1 165004
P Program Counter DPEC 165006
Y Display Instruction Register DIR 165010
: Text Increment Register DTI 165012
Display Parameter Register DPR 165014
Bank Register PGR 165014
Display Z Register DZR 165016
X Position Register ' DXR 165020
Y Position Register DYR 165022
i Display Character Register DCR 165024
' Conic X Data Register RXR 165026
- Conic Y Data Register KYR 165030
: General Purpose Register 2 DR2 165032
General Purpose Register 3 - DR3 165034
Function Control Continue Register FUNC 165036
Function Control Stop Register FUNS 165040
Sense Register SENS 177660
Mask Register MKR 177662
64K READ/WRITE Page Register 1 PRI 172342
MEMORY CARDS NO. 1 Page Register 2 PR2 172344
AND NO. 2 Page Register 3 PR3 172346
. 1172340
172350
Reserved | thru
1172356

e

A=31

Table A~6. Register Designations and Address Assignmehts (Cont)

DR #
DEVICE REGISTER MYEMONIC (OCTAL) ADDRESS

Graphic Controller VC 1 Memory status " STAL 4
Start Y section 1 SY1ll 5

Start X section 1 SX11 6

Lines section 1l LN1L 7

Start Y sectiom 2 - 8Y12 11

Start X section 2 SX12 12

Lines section 2 LN12 13

Start Y section 3 SY13 15

Start X section 3 8%13 16

Lines section 3 N13 17

X cursor address ZCR1 21

¥ cursor address YCR1 22

Graphic Controller VC 2 Memory status STAZ 23
Start Y section 1 sv21 24

Start X section 1 §x21 25

Lines section 1 LN21 26

Start Y section 2 S§Y22 30

Start X section 2 SX22 31

Lines section 2 LN22 32

Start Y section 3 5v23 34

Start X section 3 8X23 35

Lines section 3 LN23 36

X cursor address XCR2 40

Y cursor address YCR2 L4l

Graphic Controller VC 3 Memory status STA3 42
Start ¥ section 1 8Y31 43

Start ¥ section 1 8X31 44

Lines section 1 LN31 45

Start Y section 2 SY32 47

Start X section 2 3%32 50

Lines section 2 LN32 51

Start Y section 3 SY33 33

Start X section 3 SX33 54

Lines section 3 LN33 55

% cursor address’ XCR3 57

Y cursor address YCR3 60

Graphic Controller VC 4 Memory status STAG 61
Start Y section 1 SY41l 62

Start X section 1 §X41 63

Lines section 1 LN41 64

Start Y section 2 SY42 66

Start X section 2 SY42 67

Lines section 2 LN&2 70

Start ¥ section 3 SY43 72

Start X section 3 5%43 73

Lines section 3 LN43 74

¥ cursoeor address XCR4 76

A=32

Table A=6. Register Designa%ions and Address Assignments (Cont)

DEVICE

REGISTER

DR #

MNEMONIC (OCTAL) ADDRESS

Graphic Controller VC4
(Cont)

Y cursor address

Left Margin

Pizel Data

Line Increment

Video Controller Directory
System Configuration
Display Counfiguration
Character Font

YCR4 77
LMR
PDR
DLI
VCF
SCF
DCF
CFR

165046
165050
165052
165070

A-33

Table A~7. Display Processor Trap Addresses

INTERRUPTION DEVICE INTERRUPT TRAP ADDRESS
DISPLAY PROCESSCR CPU Error 4
Reserved Instruction: 10
Breakpoint Trap 14
(Reserved) 24
Emulator Trap 30
Trap Iastruction 34
ROM AND STATUS LOGIC CARD, TTY Recelve 60
SERTIAL INTERFACE PORT TTY Transmit 64
GRAPHIC CONTROLLER Real Time Clock 100
' Halt 140
X or Y Position Overflow 144
Synce Link 170
PARALLEL INTERFACE Input Data (to Host Computer) 120
CARD NO. 1) Output Data (from Host Computer) 124
Attention (Optiocnal) 130
PARALIEL INTERFACE Input Data Unassigned
CARD NO. 2 Output Data Unassigned
Attention (Optional) Unassigned
MULTIPORT SERIAL Port 1 - Host Computer
INTERFACE CARD NO. 1 Input 300
Qutput 304
Port 2 - Keyboard No. 3 or PED No.
Input 310
Output 314
Port 3 - Xeyboard Nos 1 or PED No.
Input 320
Qutput 324
Port 4 = Reyboard No. or PED No.
Input 330
Qutput 334
MULTIPORT SERIAL Port 5 = (unused)
INTERFACE CARD NO. 2 Input 340
Output 344
Port 6 - Keyboard ¥o. 6 or PED No.
Input 350
Qutput 354
Port 7 - Keyboard No. or PED No.
Input 360
Output 364
Port 8 ~ Keyboard No. 7 or PED No.
Input 370
Cutput 374

A-34

W——

N

Table A-7. Display Processor Trap Addres%es‘(Cont)

INTERRUPTION DEVICE INTERRUPT TRAP ADDRESS
MULTIPORT SERIAL Port 9 - Keyboard No. 4 or PED No. 5
INTERFACE CARD NO. 3 Input 400
Qutput : 404
Port 10 - Keyboard No. 5 or PED No. &
Input : 410
Qutput 414
Port 11 =~ Spare
Input 420
Qutput 424
Port 12 = Spare
Input 430
OQutput 434
MULTIPCRT SERIAL Port 13 - Spare
INTERFACE CARD NO. 4 Input 440
Output 444
Port 14 -~ Spare
Input 450
Output 454
Port 15 = Spare
Input 460
Output 464
Port 16 - Spare
Input 470
Output 474
A=35

Material formerly on pages A-36 throﬁgh A-66 has been deleted.

A=36 Change 1

Character Generator Code Assignments .

Table A-9.

e T s s . S s St So, e s . T o — S s ot i a7, s, e e et et M s S e S s e e, e S et s s e, e e

=
o ~ ol of w) 3] =] -3 = 2] N Tt
o . ~
o O ¢ £0 3} Le) @ Uy oy o 1 M 4 =]] o
—4
.° 1o} =7} o & Y -~ S Y B] A =] =l o) > N — — < 1
o
— o N o « =] (& (=] 23} Fxy (W] jas} L} L] N, (=] = = (@]
i
o™ 1] o — o~ o < [Ta} o) ~ 00 o I AV # A o
o o~ n °
—i wa - e A e .} - o ~ E 3 + PN [} ~
O YN — (U SN G cm——
— —
o
o
B = |
o m Py B
o o =) i D =
o 7] w1 ol ol
1))
/N
~ |
!
o —t o~ o < [T 0 ™~ © o o — o (521 BRSNS 3 [Ta}
—_— — — — — — —
2
o
r A
AN
A bAU.iV o —1 (o] i (o] 1 o o=t o -~ o —t o — o —
— —— ——— —— — —— P S e fer —_—
A — [
.b.L:lv o] — ~f O] O] ~ - O] © ~-f -l O] o] ~f
pr— e e 6 g —n e hammad aund R el b
o o~ —> (=) =) o o - - - -l O o o o - - — —
..D3|IV o o o (] o o o o -4 -t —t — —i] — — —
<t
0
WY [
O B
\0 —
Nal m

A-67

= Carriage Return

STX - Set margin
- Line Feed

LF
CR

ek

Table A~10. Multiport Serial Interface Port Assignménts

For 4 Keyboards and 4 PEDS

A-63

! !] FORT T
| CARD | CONNECTOR: | DESIGNATION | ASSIGNMENT
[| ’] l '
I Multiport Serial | J2 (ms-232¢) | 1 | Host Cemputer
! Interface Card Ne. 1 | or l !
| | J3 | [
| | I P
| | J4 | 2 | Keyboard #3/PED #6
| | ‘ i ' [) o
| | J5, ! 3 |
i | | |
| | Keyboard #1/PED #8
| N
| J6 4 | PED #1/KBD #8
. , T .

Multiport Serial J2 (RS-2320) | 5 | Unused

| Interface Card Wo. 2 | or]]
' J3 -
l J4 | 6 | _PED #3/KBD #6
JS5 7
| | | [
| ! . | Reyboard #2/PED #7
|] ' ! o
| | J6 | 8 | PED #2/KBD #7
- i ‘ { - i _
| Multiport Serial | J3 | 9 | Keyboard #4/PED #5
| . Interface Card No. 3 | I |
| . | | |
l ! J4 ! 10 | PED #4/KBD #5
| l J5 | 11 | Spara
| | l [
| l J6 | 12 | Spare
NOTE

A paper tape reader may be connected to
multiport seriazl interface port 1, 2, or 3
or to the serial interface port on the ROM
and status logic card.

Table A=11l. Standard Transfer Table

MEMORY ADDRESS

(OCTAL) INFORMATION OR GCP ROUTINE
157700 GCP date (month and year)
157702 GCP date (day of month)
157704 GCP release number
1537706 Number of GCP field changes
157710 ZERO (display maintenance routine)
157720 PLUS (displavy maintenance routine)
157730 MINUS (display maintenance routine)
157740 LOADER (calls absolute loader routine)
157750 Monitor (calls command processing routine of
_local operating mode)
- 157760 SYSTEM (transfers\to system operating mode)
157770

s it S i) . At oA Sl A et S s i it St i St et S i et o it e

TEST (calls verification test pattern)

NOTE

In the local operating mode, information cad
be examined or control can be transferred
using local mode commands. In the system
operating mode, host—to-GRAPHIC 8 TK
messages can be used to transfer control.

A-69

Table A-12. Character Font Summary for GRAPHIC 7

0L~V

I	RECOMMENDED TEXT INCREMENT	RECOMMENDED LINE FEED	
I NOMINAL HEIGHT	(HORIZONTAL INCREMENT	INCREMENT (VERTICAL	
	(12 IN. x 12 IN. DISPLAY)	BETWEEN CHARACTERS)	INCREMENT BETWEEN
CHARACTER SIZE (INCHES) (GCTAL) LINES) (OCTAL) 1			
0 0.125	i2 17 ;		
',

| 1 0.187 . 17 26 g
| \

| 2 ' 0.250 24 36 |
| i ' |
| 3 | 0.375 | 36 | 55 |

For GRAPHIC 8

Character Font: 7 x 9 pixels for 1024 x 1024 screen or 1024 x 768%
Increment Units = Screen Coordinates

| T RECOMMENDED TEXT | RECOMMENDED LINE FEED RECOMMENDED NUMBER OF
| NOMINAL HEIGHT | INCREMENT | INCREMENT CHARACTERS | LINES PER
SIZE | {INCHES) | DECIMAL . (0CTAL) | DECIMAL . (OCTAL) PER LINE | SCREEN

i | I 1

o | 0.105 | 9. (11) | 13, (15) ! 113, |- 78.

1 | 0.105 | 9. (11) | 13. (15) | 113. i 78.

2 | 0.210] 17. (21) | 23. (27) | 60. i 44,

3 | 0.315 | 25. {31) | 34, (42) | 50, i 30.

Character Font: 5 x 7 pixels for 512 x 512 screen or 640 x 480% (1 pixel = 2 screen coordinates)

Cum S e W g GO Gmeth S WeNms GRS Geease GOSN cmos S ——
e mwaes doms et ewmes GRS wsamo SROG S GHTN e GEe MBI G (e

0 | 0.164 |12, (16) | 21. (25) | 85. | 48,
1 i 0.164 | 12, (16) | 21. (25) | 85. | 48.
2 | 0.328 I 24, (30)] 42, (52) | 42. | 24,
3 | 0.492 | 3. (44) | 63. - (77) | 28. | 16.

*Screen sizes 640 x 480 and 1024 x 768 have the same character font as 512 x 512 and 1024 x 1024,
respectively, except there is a different number of characters per line.

J— wem— — ——— —— M— —— Mi— —— nnm—

b poosd oy R At LAl i { N R T it i

oov

L=V

= FUNCTION KEYS

& L ® & L] [& & s o @ & L]
Fo F1 F2 Fa F4 [w | 8 0 [al] (311 Fi2 73 F14 Fib
020 021 022 023 024 026 o8 027 030 o 032 033 034 035 636 037
gy 30 fy 2w} 2e2) a3) o 24) y 25) , 26 . 2008, 20}, 21 L) . 22|, 286 333 336 [] & & &
re 30 fy aa | o 22 f 3 s g b o2l O owef @ e |, 27}, wef g e | o4 ol | w2y 28 373 376 7 v 19 MI§
L 200 261 282 283 264 265 266 267 210 an Wy ¢ a2 265 233 235 607 010 011 017
361 367 346 a62 364 an 366 3 367 60 § ¢ 334 a0z @ &] &
by a 3w a7 fe 3sfnp a2fT da]v mju ;)PP ld smle 0] 0 | r o2 i e s M5 w4
m 227 208 22 224 Fx1) 226 § an 283 20 8§\ 234 ni 004 0806 006 016
7,
211 W 31 383 344 346 sl sse 352 353 s . w3l . 338 [aack 210 [- [} -] &
e Permd a4 somfs :2fo 34frF 306|a 3] S efe m2ik N3G 3|7 mf L ;e out J el 230 M. "2 M3 M3
231 W 201 223 204 206 207 210 212 23 29§ ¢ 3 238 377 210 801 002 003 08
,
/ 7 anz 310 13 68 sz | e a6 § o 254§ 5), e aw Y //'/'7/'// & & & &
z 3 ix aefc 303|v aels 32} 0 usfim s 274 wf . mf - W SHIFT 777 mio | Mo it M2
232 230 203 226 202 213 216 | © 264 | © 266 267 237 M / o2 | ooe 013 014
(SPACE BAR) 240
7 - MATRIX KEVS
NO BNTERRUPT OR CODE GENERAYED _—m s
/ MODIFIES ASCII KEY CODES A
77, CODES GENERATED
BY EACH KEY SHOWN ASCH KEYS
ON RIGHY OF KEY BOST KEYE GENERATE THREE CODES
{OCTALY ., DEPENDING ON THE POSITION OF
STANDARD KEY 343 fa————— NOAMAL CODE THE SHIFT AND CONTROL KEVS.
MARKING SHOWN —————— g € 303 jod————— SHIFTED CODE SOME KEYS GENERATE ONE CODE
ON LEFY OF KEY 203 fa@—————— CONTROL £ODE ONLY, NOT AFFECTED BY SHIFT
NOTE OR CONTROL KEYS.
CODE MARKINGS DO NOT
APPEAR ON KEY CAPS
STANDARD KEY AU CODE GENERATED
MARKINGS SHOWN ————@» our BY EACH KEY SHOWN
\ ABOVE CODE 377 AT BOTTOM OF KEY
{OCTAL)

CONTROL, SHIFTED, &
NORMAL CODES SAME

Figure A-2. Model 5784 Keyboard Layout and Code Assignments

Table A-13. 7-Bit ASCII Code

A=72

OCTAL | OCTAL
OCTAL SHF *© I OCTAL ‘ SHF

CHAR. CODE _ DEC, 10= DEC. | CHAR, CODE _ DEC. 10= _ DEC.

NUL 000 0 o o & Us 037 31 17400 7936
SOH 001 . 400 © 256 | sp 040 32 20000 8192,
STX 002 2 1000 . 512 | 1 041 33 20400 8448
ETX - 003 3 1400 768 | * 042 34 21000 8960
EOT 004 4. 2000 1024 | # 043 35 21400 8960
ENQ - 005 5 26400 ‘1280 | 3§ 0bé 36 22000 9216
ACK 006 6 3000 1536 | % 045 37 22400 9472
BEL 007 7 3400 1792 | & 046 38 23000 9728
BS 010 8 4000 2048 | ' 047 39 23400 9984
HT 011 9 4400 2304 | (050 40 24000 10240
LF 012 10 5000 2560 |) 051 41 24400 10496
VT 013 11 5400 2816 | = 052 42 25000 10752
FF 014 12 6000 3072 | + 053 43 25400 11008
CR 015 13 6400 3328 | , 054 4h 26000 11264
50 016 14 7000 3584 | = 055 45 26400 11520
ST 017 15 7400 3840 | . 056 46 27000 11776
DLE 020 %~ 10000 4096 | / 057 47 27400 12032
DCl 021 17 10400 4352 | 0 060 48 30000 12288
DC2 022 18 11000 4608 | 1 061 49 30400 12544
DC3 023 19 11400 4864 | 2 062 50 31000 12800
DCA4 024 20 12000 5120 | 3 063 51 31400 13056
NAK 025 21 12400 5376 | 4 064 52 32000 13312
SYN 026 22 13000 5632 | 5 065 53 32400 13568
ETB 027 23 13400 5888 | 6 066 54 33000 13824
CAN 030 26 14000 6144 | 7 067 55 33400 14080
EM 031 25 14400 6400 | 8 070 56 34000 14336
SUB 032 26 15000 6656 | 9 071 57 34400 14392
ESC 033 27 15400 6912 | : 072 58 35000 14848
Fs 034 28 16000 7168 | 073 59 35400 15104
Gs 035 29 16400 7424 | < 074 60 36000 15360
RS 036 30 17000 7680 | = 075 61 36400 15616

i

......

Table A~13. 7-Bit ASCII Code (Cont)

OCTAL l OCTAL |

OCTAL SHF | OCTAL SHF |

CHAR. CODE DEC. 10= DEC. | CHAR. CODE DEC. 10= DEC. 1
> 076 62 37000 15872 i] 135 93 56400 23808
? 077 63 37400 16128 | A 136 9% 57000 24064
@ 100 64 40000 16384 | _ 137 95 57400 24320
A 101 65 40400 16640 | 140 96 60000 24576
B 102 66 41000 16896 | a 141 97 60400 24832
c 103 67 41400 17152 | b 142 98 61000 25088
D 104 68 42000 17408 | ¢ 143 99 61400 25344
E 105 69 42400 17664 | 4 144 100 62000 25600
F 106 70 43000 17920 | e 145 101 62400 25856
G 107 71 43400 18176 | £ 146 102 63000 26112
H 110 72 44000 18432 | g 147 103 63400 26368
I 111 73 44400 18688 | h 150 104 64000 26624
J 112 74 45000 18944 | 1 151 105 64400 26880
K 113 75 45400 19200 | i 153 106 65000 27136
L 114 76 46000 19456 | k 153 107 65400 27392
M 115 77 46400 19712 | 1 154 108 66000 27648
N 116 78 47000 19968 | m 155 109 66400 27904
0 117 79 47400 20224 | =n 156 110 67000 28160
P 120 80 50000 20480 | o 157 111 67400 28416
Q 121 81 50400 20736 | p 160 112 70000 28672
R 122 82 51000 20992 | gq 161 113 70400 28928
s 123 83 51400 21248 | r 162 114 71000 29184
T 124 84 52000 21504 | s 163 115 71400 29440
U 125 85 52400 21760 | t 164 116 72000 29696
v 126 86 53000 22016 | u 165 117 72400 29952
W 127 87 53400 22272 | v 166 118 73000 30208
X 130 88 54000 22528 | w 167 119 73400 30464
Y 131 89 54400 22784 | x 170 120 74000 30720
z 132 90 55000 23040 | ¥y 171 121 74400 30976
{ 133 91 55400 23296 | z 172 122 75000 31232
\ 134 92 56000 23552 | } 173 123 75400 31488

A-73

Table A-13.

7-Bit ASCII Code (Cont)

OCTAL | OCTAL
OCTAL SHF l OCTAL SHF
| CHAR. CODE DEC. 10= DEC. | CHAR. CODE DEC. 10= DEC.
i . ,
l 174 124 76000 31744 | ~ 176 126 77000 32256
} 175 125 76400 32000 | DEL 177 127 77400 32512
A=T4

Table A-l4, GRAPHIC 8 Registers

| MEMORY [I/0 [I/0
REGISTER | ADDRESS | READ | WRITE
SENSE WORD (SENS) { 177660 ; Yes } No
MASK REGISTER (MKR) ; 177662 } Yes ; Yes
STACK POINTER (DSP) ; 165000 ; Yes ; *
GENERAL PURPOSE REGISTER (DRO) { 165002 ; Yes ; *
GENERAL PURPOSE REGISTER (DR1) g 165004 } Yes ; *
PROGRAM COUNTER (DPC) ; 165006 ; Yes : Yes
DISPLAY INSTRUCTION REGISTER (DIR) : 165010 ; Yes ; *
TEXT INCREMENT REGISTER (DTI) { 165012 : Yes ; *
DISPLAY PARAMETER REGISTER (DPR) ; 165014 } Yes : *
BANK REGISTER (PGR) ; 165014 f ek ; Yes
DISPLAY Z REGISTER (DZR) ; 165016 } Yes } *
X REGISTER (DXR) : 165020 ; Yes : *
Y REGISTER (DYR) : 165022 ; Yes ; *
CHARACTER REGISTER (DCR) : 165024 { Yes ‘; *
X CONIC REGISTER (KXR) (Optional) ; 165026 ; Yes ; *
Y CONIC REGISTER (KYR) (Optiomnal) ; 165030 { Yes ; %*
GENERAL PURPOSE REGISTER (DR2) ; 165032 ; Tes ; *
GENERAL PURPOSE REGISTER (DR3) {_ 165034 ; Yes : *

*These registers are written by refresh commands and read by programmed

data transfers.

*%*The 2 bit Bank Register is read as bits 14 and 15 of the DPR.

***These registers are written by the I/0 and refresh commands.

#A write to FUNC register while the digital graphic controller is
running will cause an error trap through address 4 (error trap).

A-75

Table A=-l4., GRAPHIC 8 Registers (Cont)

| [MEMORY [1/0] 1/0
l REGISTER | ADDRESS | READ | WRITE
{ .#FUNCTION CC?}_NTROL CONTINUE (FUNC) ll 165036 l’ No 1} Yes
i FUNCTION CONTROL STOP (FUNS) 1: 165040 !i No il Yes
| ERROR REGISTER (ERR) | 165312 |l Tes ll Yes
; *%**These registars are written by the.I/O.and refresh commands.

% #4A write to .FUNC register while the digital graphic controller is

| running will cause an error trap through address 4 (erro: trap).

A~-76

Table A-14, GRAPHIC 8 ‘Registers (Cont)

1 | MEMORY | I/0 | I/0 | TRAP

| REGISTER | ADDRESS | READ | WRITE | ADDRESS

I | | | l
SERIAL | | RECEIVE STATUS (RSR) | 177560 | Yes | Yes | 60
INTERFACE | | REC. DATA BUFFER (RDR) | 177562 | Yes | No |
(SINGLE | | TRANSMIT STATUS (TSR) | 177564 | Yes | Yes | 64
PORT) | |_TRANS. DATA BUFFER (TDB) }y177566 | No } Yes {

| |

| | "RECEIVE STATUS (RSR) _ | 176500 | Yes | Yes | 300

| | REC. DATA BUFFER (RDB) | | 176502 | Yes | No |

| | PARAMETER CONTROL (PCR) | | | o | Yes |

| | TRANSMIT STATUS (TSR) | 176504 | Yes | Yes | 304

} } TRANS. DATA BUFFER (TDB) % 176506 : No : Yes g

| | RECEIVE STATUS (RSR) | 176510 | Yes | Yes | 310

| | REC. DATA BUFFER (RDB) | 176512 | Yes | No |

| | TRANSMIT STATUS (TSR) | 176514 | Yes | Yes | 314
SERIAL | | TRANS. DATA BUFFER (TDB) | 176516 | No | Yes |
INTERFACE | | | | I i
(4 PORTS) | | RECEIVE STATUS (RSR) | 176520 | Yes | Yes | 320

| | REC. DATA BUFFER (RDB) | 176522 | Yes | No |

| | TRANSMIT STATUS (TSR) | 176524 | Yes | Yes | 324

{ g TRANS. DATA BUFFER (TDB) % 176526 } No : Yes {

| | RECEIVE STATUS (RSR) | 176530 | Yes | Yes | 330

| | REC. DATA BUFFER (RDB) | 176532 | Yes | No |

| | TRANSMIT STATUS (TSR) | 176534 | Yes | Yes | 334

% |_TRANS. DATA BUFFER (TDB) } 176536 = No = Yes %

| |"WORD COUNT (WCR) | 172410 | Yes | Yes |

| | MEMORY ADDRESS (MAR) | 172412 | Yes | Yes |
PARALLEL | | STATUS (STR) | 172414 | Yes | Yes |
INTERFACE | | | | ! |

| | INPUT DATA (IDR) | 172416 | No | Yes | 120

il I { } Yas = No } 124

_OUTPUT DATA (ODR)

A=77

Table A-15. GRAPHIC 8 Instruction Timing

SANDERS ' GRAPHIC 8

» Vector Write Timgs

' A, Vertical Solid Lime

2.7 usec + 900 nsec/pizel

B. Ho:izpntal»Solid»Line

4.5 usec + 600 nsec/pixel
6.6 usec + 1.2 usec/pixzel
D. All Others

15.9 usec + 1.5 usec/pixel

Character Write Times‘(Small Size)

A. Overhead

1. CHAR instruction
2. TEXT instruction

B. "L" Character (135 pixels)
"E" Character (24 pixels)
Data Move
Configuration:

1. 8 bits/pixel
2. 4 bits/pixel

Point Plots

PPTA
PPIR
PPYA/PPYR
PPLR
Polygon Fill

FLPG

Conics

LDKX}
DREY

A-78

4.5 usec
8.4 usec

©37.2 usec (5 2 7)

38.7 usec (5 x 7)

3.9 usec/pixel
5.1 usec/pixel
5122

2.4 usec/pixel
2.7 usec/pixel
2.1 usec/pixel
3.0 usec/pixel

600 nsec/pixel average.
to 1.0 us/pixel depending on the length and

46.2 usec (7 x 9)

52.2 usee (7 x 9)

10242

2.1 usec/pixel
2.7 usec/pixel
1.8 usec/pixel
2.7 usec/pixel

Range is 100 ns/pixel

position of the horilzontal pixel lines

composing the fill.

2.5 usec/pixel

S

i

APPENDIX B

GRAPHIC 8 MACRO DESCRIPTIONS

B-l. GENERAL

This appendix describes the GRAPHIC 8 display macros that have been developed
by Sanders for Software Engineers who use the MACRO-1l assembly language for their
applications programs. Table B-l lists the macros in alphabetical order. Table B=2
describes the macros and defines the arguments accepted by each. Table B-3 shows
the program structures for two typical refresh files that use the macros.

The following conventions are used in table B~2 to define macro arguments.
i. All numbers are octal unless otherwise specified.
2. Lower case letters indicate variable arguments. With the exception of the

following, each letter represents a single octal digit (leading zeros are not
required for arguments shorter than the specified field):

ae “a"™ and "b" each represents a single ASCII character.
be "arg" represents a specific argument identified in the macro
* description.

Co "label” represents a label assigned by the aplications programmer or
an absolute or relative value.

d. "character string” represents any string of ASCII characters as
determined by the applications programmer.

3. Upper case letters indicate specific arguments as discussed in the macro
descriptions.

NOTES

1. Standard graphic controller instructions
. referenced in this appendix are described in
detail in Section 3. Coordinate converter

instructions are described in Sanders publication
79-0350.

2. All register mnemonics listed in table A-6 are
defined in the GRAPHIC 8 macros and may be used as
arguments for MACRO-11 instructions.

B-2

3. The following labels are used within the GRAPHIC 8
macros and must not be duplicated in any user
written program that employs these macros:

ARG.OK TI.
CH. ™PS
DISLOP TXT.
DER. ' YINC.
DZR. '

ey
}

.

Table B-1. GRAPH?C 8 Display Macros

FONCTION

MACRO

ADDI Add to display register immedlate

ADR Absolute draw

AMY © Absolute move

CALL (E) Call (Extended) subroutine

CALR (E) Call relative

CHAR Draw single character

CIRCLE Draw circle

CLRM Clear pixel memory

COLOR Select color

CR Carriage return control character

CRLF Carriage return line feed control characters
DISEND Display end

DISINT Display initialize

DRKY Draw conic Y

DRSR Draw short relative

DRXA Draw X absolute

DRXR Draw X relative

DRYA Draw Y absolute

DRYR Draw Y relative

ELLIPSE Draw ELLIPSE

ENTR Provide subroutine entry point

FILL Fill a comvex polygon

HREF Balt a refresh

INIT Initialize

IZPR Initialize the ramp generator (Graphic 7 omnly)
JMPM (E) Jump and mark

JHMFR Jump short relative

JMPZ (E) Jump (Extended) if display register O contents # 0
JPRZ (E) Jump relative if display register O contents # 0
JRMP (E) Jump relative

JUMP (E) Jump (Extended)

LDDI Load display register immediate

LDDP Load display parameter register

LDDZ Load display Z register

LDKX Load conic X register

LDPD Load pixel data register

LDRI Load device register immedlate (Graphic 7 only)
LDSP (E) Load (Extended) stack pointer

LDTI Load text and line increment registers

1DXA Load X absolute

LDXR Load X relative

LF Line feed control character

LINK (E) Synchronized linkage

MDLU Modify look-up table

MODE Load mode register

Table B~l, GRAFHIC 8 Display Macros (Cont)

MACRO FUNCTION

MVPD Move pixzel data

MVSR Move short relative

MVEA Move X absolute

MVXR Move X relative

MVYA Move Y absolute

MVYR Move Y relative

NEWL New line

NEWLR New line relative

NOOP No operation

PPLR Point plot relative

PPTA Point plot tabular absolute

PPTR Point plot tabular relative

PPYA Point plot Y absolute

PPYR Point plot ¥ ralative

RDR Relative draw

RESD (E) Restore display register

RLINK Relink

RMY Relative move

RTRN (E) Return (Extended)

SAVD (E) Save (Extended) display register
SETLF Set line feed

SETMRG Set left margin

SETTIL Set text increment

STX Set left margin control character
TEXT Draw tabular character string

TXT Draw two tabular characters

UPDT Update video controller register(s)
WATE Wait :
B4

W

FESv—

Table B=2. Detailed Macro Descriptions

MACRO CALL

DESCRIPTION

ADDI r,nnnnnn

ADR xxxx,yyYvy

AMV xxxx,779Y

CALL label

 CALLE label, bank

CALR (E) label

CHAR a, <B,S,0>

Inserts an ADDI (add to display register immediate)
instruction into the refresh file. Argument "r", which must
be "0" through "63", specifies one of the display registers
(DRO through DR63) of the digital graphic controller.

Argument "nnnnnn” specifies the value (-100000 to 77777) to be

added to the register.

Causes an absolute draw to position X, ¥ by inserting two
instructions into the refresh file. The first is an LDXA
(load X absolute) instruction with the X coordinate defined by
argument "xxxx". The second is a DYRA (draw Y absolute)
instruction with the Y coordinate defined by argument “"yyyy~.
Both arguments can vary from -2000 to 1777.

Causes an absolute move to position X, Y by inserting two
instruction into the refresh file. The first is an LDXA (lcad
X absolute) instruction with the X coordinate defined by
argument "xxxx”. The second i1s a MVYYA (move Y absolute)
instruction with the Y coordinate defined by argument “"yyyy".
Both arguments can vary from -2000 to 1777.

Inserts a CALL (call subroutine) instruction into the refresh
file with the subroutine address - defined by argument
“label”. Argument "label” may define any even location in
memory bank O.

Inserts a CALLE (call subroutine extended) instruction into
the refresh file with the subroutine address specified by the
combination of "bank” and "label”. The subroutine address may
be any even address in memory.

Inserts a CALR (E), call relative, instruction into the
refresh file with the subroutine address specified by argument
"label™. Argument "label” may define any even location in
memory bank O.

Inserts a CHAR (draw single character) into the refresh file.
Argument "a" specifies the ASCII character to be drawn. If
the character to be drawn is a space, it must be enclosed in
angle brackets: < >. If argument "B” is absent, the
character will be displayed steadily; if argument "B" is
present, the character will blink. No tabular text increment
move 1s made following the drawing of the character. If "0"
argument 1s present, the argument "a"” is interpreted as an
octal equivalent number. If "S" argument is present, a shift

out is applied to argument "a”.

Table B-2. Detailed Macro Descriptions (Cont)

MACRO CALL DESCRIPTION

LDDZ (cont) Octal
Argument Description Value
BR3 Select intensity level 3 3
BR&4 Select intensity level 4 4 -
BRS Select intensity level 5 5
BR6 Select intensity level 6 6
BR7 Select intensity level 7 (brightest) 7

LDKX q, nnn

MODE mode

LDPD level

LDRI

LDSP nnnnonn

B~12

Inserts an LDKX (load conic X register) instruction into the
refresh file. Argument "q" specifies unblanking of quadrants
I (upper right) and III (lower left) as follows:

q quadrants unElanked
0 neither

1 I

2 IIT

3 I and III

Argument "nnn” (which may vary from 0 to 777) specifies the
semi-axis dimension of an ellipse in terms of coordinates
along the X axis.

Inserts a MODE (load mode register) instruction into the
refresh file. "mode” = 0 indicates normal mode. “mode” =1
indicates extended instruction mode. If "mode” is greater
than 1, no change in mode will be made.

Ingerts an LDPD (load pixel data register) instruction into
the refresh file. Argument "level"” which varies from 0 to 377
represents the gray level or color that is to be stored in the
PDR (pixel data register) and used as the intensity of the
pixels written by subsequent refresh instructions.

Inserts an LDRI instruction {(no operation for GRAPHIC 8).

Inserts an LDSP (load stack pointer) instruction into the
refresh file. Argument "nonnnn” specifies the stack address

that 1is to be loaded intc the graphic controller stack
pointer.

|

T

P—

P ——

Table B-2. Detailed Macro Descriptions (Cont)

MACRO CALL

DESCRIPTION

LDSPE nnnnnn,Bank

LDTI nn,l1

LDXA nnaon
LDXR nnan

LF

LINK label, I

LINK label

Inserts an LDSPE (load stack pointer extended) intc the
refresh file. The combination of "bank” and "nnnnon”
specifies the address to be loaded onto the stack in two
successive words.

Inserts an LDTI (load text and line increment register) .
instruction into the refresh file. Argument "nn", which may *
vary from 0 to 77, specifies the text increment to be used for
tabular characters contained in the arguments of TXT (draw two
tabular characters) and TEXT (draw tabular character string)
macros. Argument "11" which may vary from O to 77, specifies
the line increment to be used for the CR control character,

If both arguments "an" and "11” are not present and increments
have previously been established, the established increments
will be used. If argument "11" is not present and an ‘
increment has not previcusly been established, a default
increment of "11" = 22, will be used.

Ingerts an LDXA (load X absolute) instruction into the refresh
file. The argument "nnnn” which may vary from =-2000 to 1777
defines the value or the x coordinate to be loaded in the
current X Position Register.

Inserts an LDXR (load X relative) instruction into the refresh
file. The relative distance, in terms of coordinates, that is
to be added to the Current X Position Register is specified by
argument "nnnn“, Argument “nnon” may vary from -2000 to 1777.

Inserts CHAR 012,0 (line feed) into the refresh file.

Inserts a LINK (synchronized linkage) instruction into the
refresh file, The link address is specified by argument
"label”. 1If argument "I" is absent, the link will be direct
(to the link address); if argument "I" is present, the link
will be indirect (to the address contained in the link
address). Direct links cannot be made to address higher than
77776, If argument "label” is absent, the LINK instruction
inserted into the refresh file will specify a direct link to
address 170.

If EIM = 1, then LINKE is used. Note "I" is not allowed.

Change ! B-13

Table B-2. Detailed Macro Descriptioms (Cont)

MACRO CALL ‘ DESCRIPTION

MDLU The data stored in sequential bytes starting at the GRAPHIC 8
adrl,banks,bytes, ‘memory address defined in the argument "adrl” is used to
venum, adr2,D replace data in sequential bytes in the video controller

look-up table starting at the address defined in "adr2"”. The
ccmbination of bank and adrl is an absolute address if
argument "D” is absent. adrl is a relative address from the
program counter if "D" is present. The video controller
selected is defined by the value l-4 in the argument "venum”
and the number of bytes to be replaced 1s defined in the
argument "bytes”.

MVPD Inserts an MVPD (move pixel data) instruction into the refresh
g adr,bank,ix,iy, file. 1f argument "a" = "ABS" the vertices are expressed as

fx,fy,D,a,b,c absolute coordinates if "a" = "REL" the vertices are defined
- by the deltas from the current X and ¥ position. If argument

"b" = "FROMPM", the transfer -will be from mapping memory to
GRAPHIC 8 memory. If "b" = "TOPM", the transfer will be
from GRAPHIC 8 memory- to mapping memory. If argument "c¢" =
"VERT" the scan will be bottom to top =~ left to right if "c¢" =
"HOR" the scan will be left to right - bottom to top. If
argument "D" is present the displacement (in even bytes) to
"ADR" will be calculated and stored in the address word. If
“D"” is absent, the combination of "bank” and "ADR" will be
stored. "ix" and "iy"” indicate the initial values for X and
Y, respectively., “"fx" and "fy” indicate the final X and Y,
respectively.

MVSR xx,yYy Inserts an MVSR (move short relative) instruction into the’
refresh file. Arguments "xx" and "yy” specify the values to
be added to the Current X and Y Position Registers,
respectively. Both "xx" and "yy" may vary from -40 to 37.

*MVXA nnnn Inserts an MVXA (move X absolute) instruction into the refresh
file. The X axls coordinate to which the Current X Position
Register is to be changed is specified by argument "annn"
which may vary from =-2000 to 1777.

*MVXR nnnn Inserts an MVXR (move X relative) instruction into the refresh
file. The relative distance, in terms of coordinates, that
the Current X Position Register is to be changed is specified
by Argument "nnnn”. Argument "nnnn” may vary from -2000 to
1777.

*MODE 0 only

B-14 Change 1

S
B

Table B-2. Detailed Macro Descriptions (Cont)

MACRO CALL

DESCRIPTION

MVYA nnnn

MVYR nnnn

NEWL

NEWLR
ssss,1111,R

©°

NOOP

Inserts MVYA (move Y absolute) instruction into the refresh
file. The Y axis coordinate to which the Current Y Position
Register is to be changed is specified by argument "nnnn”
which may vary from =-2000 to 1777.

Inserts an MVYR (move Y relative) instruction into the refresh
file. The relative distance, in terms of coordinates, that
the Current Y Position Register is to be changed is specified
by argument “"nnon”. Argument "nnnn” may vary from -2000 to
1777.

Causes a relative move to the left hand margin of a new
tabular line by inserting two insructions into the refresh
file. The first is an LDXA (load X absolute) instruction that
specifles the margin established by a previous SETMRG (set
margin) macro. The second is an MVYR (move Y relative)
instruction that specifies the Y axis increment established by
a previous SETLF (set line feed) macro. If a SETMRG macro has
not been used previously, a margin of O is assumed. If a
SETLF macro has not been used previously, a line feed
increment of 15 is assumed. The Macro is in no way related to
the STX control character. :

Causes a relative move to the beginning of a new tabular line
by inserting two instructions into the refresh file. The
first instruction inserted is an LDXR (load X relative)
instruction that specifies the number of spaces (text
increment units) that the Current X Position Register is to be
moved. If argument "R" is absent, the Current Y Position will
be moved to a new line for normal characters; if "R" is
present, the Current X Position will be moved to a new line
for rotated characters. Argument "ssss” specifies the number
of spaces. Positive arguments move the Current X Position
Registers left; negative arguments move the Current X Position
right. If a text increment has not been established by a
previous macro, a value of 14 is assumed. Argument “ssss”
multiplied by the text increment may vary from =-2000 to 1777.
The second instruction inserted is an MVYR (move Y relative)
instruction that specifies the number of lines (line feed
units) that the Current Y Position is to be moved. Argument
"1111" specifies the number of lines. Positive arguments move
the Current Y Position down; negative arguments move the
Current Y Position up. . If a line feed increment has not been
established by a SETLF (set line feed) macre, a value of 21 is
assumed. Argument "1111" multiplied by the line feed
increment may vary from -2000 to 1777. The Macro is in no way
related to the LF control character.

Inserts a NOOP (no operation) instruction into the refresh
file.

B=15

Table B-2. Detailed Macro Descriptions (Cont)

MACRO CALL

DESCRIPTION

PPLR x=x,yYy

PPTA a

PPIR a

PPYA a
PPYR a

RDR dx,dy

RESD n

RESDE n

- RLINK

RMV dx,dy

RTRN

RTRNE

B~16

Inserts a PPLR‘(point plot relative) instruction into the
refresh file. Arguments "xx" and "yy" specify the distances

the Current X and Y Position are to be moved, respectively. A
point is then displayed at the new position. Both "xx" and
"yy" may vary from -40 to 37.

Inserts a PPTA (point plot tabular absolute) instruction with
a=+X (or) coordinate (range =2000 to 1777) into the

refresh file.

Inserts a PPTR (point plot tabular relative) inmstruction with
a =+ X (or ¥) increment (range from -2000 to 1777) into the
refresh file.

Inserts a PPYA (point plot Y absolute) with a = + X (or Y)
coordinate (range from =-2000 to 1777) into the refresh file.

Inserts a PPYR (point plot Y relative) with a = + X (or ¥)
increment (range from -2000 to 1777) into the refresh file,

Causes a relative draw by inserting two instructions an LDXR
(load X relative) and a DRYR (draw Y relative) into the
refresh file. Arguments "dx” and "dy” specify the X and Y
deltas, respectively. ‘ .

Inserts an RESD (restore display register) instruction into
the refresh file. Argument "n" specifies the display
registers to be loaded from the top of the processor stack.

Inserts an RESDE (restore display register extended) into the
rafresh file. Argument "n" specifies the display register to
be loaded from the top of the processor stack.

Insert MOV (move) and RITI (return from interrupt) display
processor instructiong into the LINK interrupt service routine
to restart the graphic controller and return the display
processor to its previous state.

Causes a relative move by inserting two instructions an LDXR
(load X relative) instruction and an MVYR (move Y relative)

ingtruction into the refresh file. Arguments "dx" and "dy
specify the X and Y deltas, respectively.

Ingerts an RIBN (return from refresh subroutine) instruction
into the refresh file.

Inserts on RTRNE (return from refresh subroutine extended)
instructlon into the refresh file.

AR 1]

Table B-2. @etailed Macro Descriptions (Cont)

MACRO CALL

DESCRIPTION

SAVD n
SAVDE n

SETLF nnnn

L. SETMRG nann

SETTI nnnn

STX

TEXT
{character stringd>

TXT a,b,0

Inserts aﬁ SAVD (save display register) instruction into the
refresh file. Argument "n" specifies the display register to

be stored:on the processor stack.

Inserts an SAVDE (save display register extended) instruction
into the refresh file. Argument "n" specifies the register to

be stored on the processor stack.

Establishes the line feed increment to be used by the NEWL
(new line) and the NEWLR (new line relative) macros. The
increment . is specified in terms of Y axis coordinates by
argument "nnnn”. Positive arguments result in increments that
move the Current Y Position down; negative arguments result in
increments that move the Current Y Position up. Argument
"nnnn"” may vary from -2000 to 1777. Refer to table A-12 for
recommended line feed increments.

Egtablishes the left hand margin to be used for the NEWL (new
line) macro. The margin is defined in terms of character
spaces (text increments) by argument "nnnn”. The actual X
coordinate to be used as the margin is calculated by
multiplying "nnnn” times the text increment established by a
previous macro.. If a text .increment has not been established,
a value of 14 1s assumed. Argument "nnnn” multiplied by the
text increment may vary from -2000 to 1777.

Establishes the text increment to be used by the LDTI (load
text increment register) instruction the NEWLR (new line
relative) macro and the SETMRG (set margin) macro. The
inerement is specified in terms of X axis coordinates by
argument "nnnn”. Positive arguments result in increments that
move the Current X Position to the right; negative arguments
result in increments that move the Current X Position to the
left. Argument "nnnn” may vary from -2000 to 1777. Refer to
table A-12 for recommended text increments.

Inserts a CHAR (02,0 (Set Margin control character) into the
refresh file.

Inserts multiple TXT (draw two tabular characters)
instructions into the refresh file. One TXT instruction is
inserted for each pair of ASCII characters specified by
“character string”. If an odd number of characters is
specified, a null is inserted as the second character of the
final TXT instruction.

Inserts a TXT (draw two tabular characters) instruction into

the refresh file. Arguments "a” and "b" specify the first and
the second ASCII characters, respectively, to be drawn. TXT
will accept an equivalent octal number if the argument "0" is

present.

B=-17

b

Table B~2. Detailed Macro Descriptions (Cont)

HMACRO CALL DESCRIPTION

UPDT? Inserts a UPDT (update Video Controller registers) instruction
: into the refresh file.

WATE; Inserts a WATE (wait for vertical axes enable toggle and clear
: pixel memory) instruction into the refresh file.

B-18

T |

P

S
[~

.
3

Table B~3. Typical Program Structure

; SAMPLE PROGRAM NO. 1. A SIMPLE DRIVER, NOT USING THE DISINT
; AND DISEND MACROS, WITH A PLACE FOR DISPLAY INSTRUCTIONS.

TITLE
.§BTTL

BEGIN:
HTST:

LOOPL

START:

AGAIN:

Mo we wo wWo wo wo Ws ws We wo

.
3

SAMPL1
SAMPL 1 DRIVER

-ASECT
.=2000
JBLXW . 30
RESET
MoV #BEGIN, SP
CLR #FUNS
BIT #20, @48ENS BEQ HTST
MOV #START, @#DPC
WAIT
BER Loop
LDDZ <ALL,BLCFF,LINE,BR7>
LDDP <.NOROTATE, CS0>
LDTI 12
IZPR
LDXA 0
MYYA 0
WATE
BODY
oF
USER
WRITTEN
DISPLAY
PROGRAM
GOES
HERE

-
-

JUMP AGAIN
.END BEGIN

;BEGIN ASSEMBLY

; AT ADDRESS 2000

;SAVE SPACE FOR DISPLAY PROCESSOR STACK
;CLEAR PROQCESSOR BUS

;LOAD DISPLAY PROCESSOR STACK POINTER
sHALT GRAPHIC CONTROLLER

sWAIT FOR HALT

;START GRAPHIC CONTROLILER
;DISPLAY PROCESSOR WAIT

;WAIT LOOP

sSET Z PARAMETERS

sSET P PARAMETERS

:SET TEXT INCREMENT TO 12
sINITIALIZE GRAPHIC CONTROLLER
sMOVE CRT BEAM(S)

: TO CENTER

sWALT

;SHOW THE PICTURE AGAIN

H
;SAMPLE PROGRAM NO. 2. A SIMPLE DRIVER, USING THE DISINT
; AND DISEND MACROS, WITH A PLACE FOR DISPLAY INSTRUCTIONS.

+TITLE
-SBTTL

H

we ws wo Wo we e Ge We wo we

SAMPL2
SAMPLZ DRIVER

JASECT

.=2000

.BLKW =~ 30

RESET

MOV #BEGIN, SP
DISINT

BODY
oF
USER

WRITTEN

DISPLAY
PROGRAM

GOES

HERE

DISEND
LEND BEGIN

;BEGIN ASSEMBLY

3 AT ADDRESS 2000

3SAVE SPACE FOR DISPLAY PROCESSOR STACK
;CLEAR PROCESSOR BUS

;LOAD DISPLAY PROCESSOR STACK POINTER

sSET PARAMETERS AND START GRAPHIC CONTRCLLER

;SHOW THE PICTURE AGAIN

B-19/B-20

_ APPENDIX C
GCP PROGRAMMING CAUTTIONS
C=l. - When GCP is initialized the command header error detection is disabled.
Normally, the user should send an IM message to activate error detection.
NOTE

All previocusly developed GCP programs should still
fun with GCP. ‘

C-2. No user refresh programs should start below address 3000 (octal).
NOTE
Any previously developed GCP program should still

run with GCP provided that the user refresh
program doesn't start below address 3000.

C-3. When writing refresh programs, the user should ensure that the 32-word depth

or limit of the graphic controller stack is not exceeded.

-

C=4, When MU, SU, and GU messages are sent from the host to GCP, the user should

ensure that the words counts assoclated with these messages are correct,

c-1/C=2

s
g 0

Name:

Company:
Address:

Telephione: []

Date:

Description of probiem (or suggestion for improvemant):

Raiated tach manual number

CalCamé Equipment

Part Ns.gmber

Sofmaréf/ﬁrmware System

Version

Host computer

Host operating system

Host-Viétagraphic interface

Version

My problem is: hardware _ software

firmware _J manual

c

THEINTENT AND PURPOSE OF THIS PUBLICATICNISTO PROVIDS?ACCURATE
AND MEANINGFUL INFORMATION TO SUPPORT EQUIPMENT MANUFAC-

TURED BY CALCOMP/SANDERS. YOUR COMMENTS AND SUGGEST!ONS

ARE REQUESTED.

PLEASE USETHE FORM ON THE REVERSE SIDETO REPORT ANY PROBLEMS

YOU HAVEHAD WITH THIS PUBLICATION OR THE EQUIPMENT ITDESCRIBES.

___FfOL0 o FOLD
l " ” l FIRST CLASS
PERMIT NO, 568
NASHUA, N.H.
BUSINESS REPLY MAIL ——
- TSN INERER R
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES m
Postage will be paid by [rem—
AR
AR R
DRESERTASTTNN
CalComp remam————
Display Products Division ———
Daniel Webster Highway, South rsnsmsmsvommorsmecrs
P.O. Box 868 U —————
Nashua, NH 03061 rosrm—————
ARSI U A
TR RARFIRR AN
SRR DR FRORUERI
RN N S LEL AR
B~ 5 == Vi~ M

CALCOMP

A Sanders Graphics Company

FISANDERS

