
H-79-0350

TM

COIVIPUTER GRAPHICS
DISPLA V SYSTEM

Information Products Division
Federal Systems Group

MODEL 5753 2-0/3-0

COORDINATE CONVERTER

USER'S MANUAL

gSANDERS Daniel Webster Highway, South - Nashua, New Hampshire 03061

Copyright 1980, Sanders Associates, Inc .

GRAPHIC 7 is a trademark of Sanders Associates, Inc.

H-79-0350
• ""': ". - .-_"._ • - _. >I'

o

D@
COIVIPUTERGRAPHICS

DISPLA V SVSTEIVI

Information Products Division
Federal Systems Group

MODEL 5753 2-D/3-D

COORDINATE CONVERTER

USER'S MANUAL

gSANDERS Daniel Webster Highway, South - Nashua, New Hampshire 03061

,Copyright 1980, Sanders Associate~, Inc.

GRAPHIC 7 is a trademark of Sanders Associates, Inc.

(! I
Sanders Associates, Inc., reserves the right to modify the products described '

in this manual and to make corrections or alterations to this manual at any time I t
without notice.

First Edition - May 1980

Reprint June 1980

Reprint October 1980

Reprint March 1981

Reprint July 1981 -

Reprint October 1981

A

Change 1

II

.li I

1 \1

1 \ !
'1i
{f ')

It
{i

Ii
1 ::.
1:,
l(

I

RECORD OF CHANGES

CHANGE NO. DATE TITLE OR BRIEF
DESCRIPTION

ENTERED BY

1 June 81 Adds 2D programming

1;
{

I"
1 t
{t

r
.~'l.

. ,1:: i

1.(

(:
i(
fil

,!:
f
1 :'
'1 (

{I

Paragraph

1.

2.
2.1

\ 2.2
2.3
2.4
2.5
2.6
2.7 ,
2.8

3.
3.1
3.2
3.3
3.4

4.

5.

6.

7.
7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.
8.1
8.2
8.3

TABLE OF CONTENTS

Operational Modes

Operational Modes
Coordinates
Eye Position
Coordinate Transformation
Homogeneous Mode
Perspective
Clipping
Refresh Generation
Pen Mode

Coordinate Converter Instrustions
Operand Addressing
Refresh Control Instructions
Sequence Control Instructions
Parameter Instructions

Graphic Controller Instructions

Coordinate Converter Registers

Interrupts

Instruction Usage
Numbering System
Matrix Operations
Translation
Scaling
Rotation
Matrix Concatenation
Sample Image File Converting a Cube

Associated GCP+ Instructions
Programming the 2-D/3-D Coordinate Converter
FSP 3D Coordinate Converter Programming
FSP 2D Coordinate Converter Programming

Appendix A

CCBLK Matrix Element Definitions

Appendix B

CCBLK Format

1-1

2-1
2-1
2-1
2-2
2-3
2-4
2-9
2-9
2-10

3-1
3-1
3-1
3-7
3-10

4-1

5-1

6-1

7-1
7-1
7-1
7-2
7-2
7-3
7-5
7-9

8-1
8-1
8-5
8-13

Change Ii

Paragraph

ii Change 1

TABLE OF CONTENTS (cont)

Appendix C

Advanced 3D Applications

Appendix D

CC2DBL Matrix Element Definitions

Appendix E

CC2DBL Format'

Appendix F

FSP Sample Programs - 2D/3D

Page

1:
1"

1
'l
f
:1

~ ..

1:
r
IJ

:J
I

{,11

{~
1,,:

." : I

[I,

fl (I ,~' I

1/ ~

SECTION 1

INTRODUCTION

This User's Manual describes the operational modes of the Model 5753 2-D/3-D
coordinate converter, its instruction set, its parameter and control registers, and
its interrupts. This manual also describes the use of the 2-D/3-D Coordinate
Converter via the associated GCP+ instructions and FSP subroutines.

1-1/1-2

[,

I

I~

1
f 1,'

~.,,'

'{I

lL

1.1

I: I

, il i

,. ,

,~ /'
" I

It

((
{i

~ 't

l\~

I"
li

SECTION 2

OPERATIONAL MODES

The coordinate converter has the following operational modes:

2D or 3D
Homogeneous or non-homogeneous
Normal or PHOTOPEN mode
Clipping or no clipping
Perspective or non-perspective

The desired modes are set in the dimension register. They determine how
the coordinate converter processes the user's image file. Processing takes
place within the coordinate converter in the following order:

Coordinate transformation
Homogeneous conversion (optional)
Perspective generation (optional)
Clipping (optional)
Refresh code generation

2.1 COORDINATES

Object points may be defined in 2D or 3D coordinates, X, Y or X,Y,Z
respectively. The range of coordinates in X and Y is ±32K. The range of
coordinates in Z is a to +32K, where a is in the same plane as the screen and
positive Z increases with depth into the screen. Thus, the coordinates are
operated upon in a left-handed system. Negative values of Z are not permitted
for coordinates. The range of coordinates in X, Y, and Z define the usable
image space.

Coordinates are expressed in two's complement notation.

2.2 EYE POSITION

When using 3D with perspective, you must specify the observer's eye
position, Xa, Ya, Za. Xa and Ya can range from +32K to -32K. Za ranges from
a to -32K, where a is in the same plane as the screen and Z increases in the
negative sense as you move out of the screen.

PHOTOPEN is a trademark of Sanders Associates, Inc.

2-1

2-2

2.3 COORDINATE TRANSFORMATION

Coordinate transformation is the concatenation of a coordinate point by a
composite matrix. The composite matrix contains any desired combination of
scaling, rotation, and translation. Its derivation is discussed later.

The form of the actual concatenation is shown below for each operating
mode.

2D Non-homogeneous

2D Homogeneous

It ·
,}

1
I{

JI

I /
1
1/
1 I

3D Non-homogeneous

~1' Yl, ziJ = ~O' YO, z~ Mll M12 M13

M21 M22 M23

M31 'M32 M33

M41 M42 M43

3D Homogeneous

~1' Yl, ZI, w!J = Eo, Yo, ZO, w~ Mll M12 M13 M14

M2L M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44'

2.4 HOMOGENEOUS MODE

Using homogeneous mode involves an additional coordinate, W, which modifies
the other coordinates of each point. Thus,! 2D homogeneous points have 3
coordinates, X, Y, and Wj 3D homogeneous points have 4 coordinates, X, Y, Z,
and W~

Dehomogeneization is the division of W into X, Y, and Z (or just X and Y)
as shown below.

2D

~, Y, ~ .. ~/w, Y/~

3D

~, Y, Z, ~"'~W, Y/W, z/~

W is expressed as a fraction with limits:

0.0 < W < 1. 0

Therefore, it can be seen that W can be used for scaling. As
W decreases in size, the resulting scaled values are larger.

2-3

\
\

\
\

'I
\

2.5 PERSPECTIVE

Perspective application is a 3D function in which X and Y coordinate values
are modified as a function of their depth (Z coordinate value) and of the
observer's eye position (Xa , Ya , Za).

Figures 2-1 through 2-3 illustrate the relationship between the eye
position, coordinate points, and the screen in 3-D space. In these figures,
two identical 3-dimensiona1 cubes have been set up in 3-D space. Xa and Ya
have been set at 0 for simplicity. Za has been set to an arbitrary value
which places both cubes in the viewable area.

In figure 2-1, the large square represents the viewable area of the screen.
The smaller squares represent the cubes, shown with no perspective
(orthographic projection). Figures 2-2 and 2-3 show the top and right side
views, respectively_ The dark line in the center is the actual screen,
situated at Z = O. The point to the left where the lines converge is the eye
position. The large wedge which extends from the eye position through the ends
of the screen line defines the actual viewable area. Any coordinate points
which are within this wedge and to the right of the screen (positive Z) can be
viewed from the defined eye position. Each viewable coordinate point can be
mapped onto the screen at the intersection of the screen and the line which
extends from the eye position to the coordinate point.

Figure 2-4 shows the result of this mapping. It shows the same objects as
figure 2-1 with perspective, as seen from the eye position.

The coordinate converter, when operating in perspective mode, automatically
performs the mapping between the 3-dimensiona1 viewing area as seen from the
user defined eye position and the 2-dimensiona1 screen.

1
f,

,f (
,Ii

11
" I·-J. ~

I,
I,
if i
IJ '

I .\ :\
, \

'f: I

1:
1;

+

x

Figure 2-1

2-5

XL
z

Figure 2-2

2-6

I
(

(,

f:

J :,
I;
l~

1" f\
r
1'1'

I i I

f', :
I,;
I;
1:,

I ~
, ,

z

Figure 2-3

2-7

+

x

Figure 2-4

2-8

Ii
f
1
a
J
I
Ii:
1 .
J'

1,
1 }
,I '

f :'1

I, '
I!,

, 1

t :,
,I i

I '! ,!

2.6 CLIPPING

Clipping is a coordinate converter function which eliminates graphic data
that falls outside a user-definable 2D or 3D box. The clipping box or viewbox
is defined in terms of six boundary planes (four for 2D): left, right, top,
bottom, near and far (Lv, Rv, Tv, Bv, Nv, FV). Vectors that are totally
outside the clipping box are rejected. Vectors which cross a clipping boundary
are clipped; that is, the portion of the vector which falls outside of the
clipping box is eliminated. When using perspective, coordinate points are
modified for perspective before comparison to the clipping boundaries. That
is, the user-defined viewbox is defined with perspective already applied.
Characters drawn with graphic controller instructions are also clipped.
However, vectors drawn with graphic controller instructions are not clipped.

2.7 REFRESH GENERATION

The coordinate converter translates certain 3D instructions into refresh
code recognizable by the graphic controller. Prior to this translation, you
must specify where the refresh code is to be placed in memory. Note that the
refresh code cannot cross a 32K word boundary. The lower 16 bits of the
starting address should be placed in the refresh address register. The upper 2
bits (which specify the 32K block number) should be placed in bits 9 and 8 of
the block register.

If you want to partition refresh memory into blocks, then you should place
the address of the end of the block in the refresh limit register. The refresh
used-up bit in the mask register should also be enabled. When the coordinate
converter reaches the end of the block while generating refresh code, it sets
the refresh used-up bit in the status register and halts. This causes a
refresh used-up interrupt to be sent to the display processor. In response to
this interrupt, you should write the starting address of the next block into
the refresh address register and the ending address of the new block into the
refresh limit register. You should then access the continue register to
restart the coordinate converter. The coordinate converter then inserts a
graphic controller relative jump instruction into the previous refresh block to
provide the linkage to the new refresh block. It then continues processing as
before.

2-9

2-10

2.8 PEN MODE

Pen mode is used to associate a word of refresh code, which was previously
generated by the coordinate converter, to the coordinate converter instruction
which was translated into that word of refresh code. This feature can be used
in conjunction with a PHOTOPEN to relate a displayed vector to the coordinate
converter instruction which generated it.

Before starting a pen mode search, it is necessary to set the PHOTOPEN
match bit in the mask register and to load the PHOTOPEN strike address register
with the address of the word of refresh code to search for. Except for setting
the pen mode bit in the dimension register, the image file should appear
exactly as it did when the target refresh word was actually generated.

Pen mode processing differs from normal mode processing in the following
way. Instead of writing refresh code into memory, the coordinate converter
compares the address of the location where it would normally write each word of
refresh to the contents of the PHOTOPEN strike address register. When a m!ltch
occurs, the coordinate converter sets the PHOTOPEN match bit in the status
register, which causes an interrupt to be sent to the display processor.

In response to this inter!upt,you should read the program counter to
determine the address in the image file where the match occurred. Note that
the program counter has already been updated by 2 bytes at this point.

If refresh memory has been partitioned into blocks, you will not receive
any refresh used-up interrupts. The coordinate converter will go from block to
block by reading the jump relative instruction which has previously been
inserted at the end of each block. Note that refresh blocks must have a
uniform size.

(

I,

{,

I,
I f

1 i\ j

I t

I
I
I

SECTION 3

COORDINATE CONVERTER INSTRUCTIONS

The coordinate converter instruction set consists of 41 unique instructions
plus all of the existing graphic controller instructions. The unique
instructions comprise three basic categories: refresh control instructions,
sequence control instructions, and parameter instructions. Refresh control
instructions define the object to be converted and translated into refresh
code. Sequence control instructions specify the sequence of program execution
by using jumps and calls. Parameter instructions allow modification of
variables which affect the operation of the coordinate converter.

3.1 OPERAND ADDRESSING

Most of the refresh control and parameter instructions can be used with
three different addressing modes: immediate, deferred, and deferred relative.
When using immediate mode, instruction operands follow directly in line after
the instruction op code. With deferred mode, the contents of the word
following the op code is the address of the first operand. Any additional
operands follow the first in consecutive words. With deferred relative mode,
the contents of the word following the op code is the relative address of the
first operand. This relative address is added to the program counter (which
has been updated and now contains the address of the instruction op code plus 4
bytes) and the result is used to address the operand. Both deferred and
deferred relative addresses must be in even bytes. In the deferred cases,
after the operands have been loaded, the next instruction is fetched from the
word following the word containing the deferred address.

3.2 REFRESH CONTROL INSTRUCTIONS

Refresh control instructions consist of moves and draws which define the
image to be transformed by the matrix parameters and translated into graphic
controller refresh code.

The moves and draws define points through coordinate blocks which vary in
length from 2 to 4 words, made up of X,Y,Z, and W coordinates, Z and W being
optional depending on the dimension (2D/3D, homogeneous/non-homogeneous). The
actual coordinates can be in terms of absolute or relative position. Each move
and draw instruction is available in all three addressing modes.

3-1

3-2

When clipping is enabled, several differences can be noted about moves and
draws. For points which are outside the clipping window, refresh code
generation is inhibited. For vectors which cross clipping boundaries, refresh
code is generated to account for boundary point intersections.

AMV3 MOVE ABSOLUTE Octal Code: 006404

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2D 3D

0 ·0 0 . 0 I 1 1 0 1 0 01 0 0 o 11 0 0 N-H H N-H H

X coordinate X X X X

Y coordinate X X X X

Z coordinate X X

W coordinate X X

The AMV3 instruction converts the point, 4efined by the variable length
coordinate block, through the transformation defined by the previously loaded
matrix parameters. The converted point is then translated into the following
refresh code and loaded into memory at the· location specified by the refresh
register.

LDXA Load X absolute

MVYA Move Y absolute {

li:1
1'\

I : ,I

I I
l r
It
I !

AMD3 MOVE ABSOLUTE DEFERRED Octal Code: 006444

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0

Address of coordinate block

Same as AMV3 except that second word of instruction is pointer to variable
length coordinate block.

AMDR MOVE ABSOLUTE DEFERRED RELATIVE Octal Code: 006464

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 0 0 I 1 1 o II 0 01 1 1 01 1 0 0

Relative address of coordinate block

Same as AMV3 except that second word of instruction is relative address of
variable length coordinate block.

RMV3 MOVE RELATIVE Octal Code: 006405

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2D 3D

01 0 0 o I 1 1 o /1 0 01 0 0 o 11 0 1 N-H H N-H H

X coordinate X X X X

Y coordinate X X X X

Z coordinate X X

W coordinate X X

The RMV3 instruction adds the relative coordinates, defined by the variable
length coordinate block, to the last defined point and converts the result
through the transformation defined by the previously loaded matrix parameters.
The converted point is then translated into the following refresh code and
loaded into memory at the location specified by the refresh address register.

LDXA Load X absolute

MVYA Move Y absolute

3-3

3-4

RMD3 MOVE RELATIVE DEFERRED Octal Code: 006445

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 o 11 0 0 1 0 o 11 0 1

Address of coordinate block

Same as RMV3 except that second word of instruction is pointer to variable
length coordinate block.

RMDR MOVE RELATIVE DEFERRED RELATIVE Octal Code: 006465

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1

Relative address of coordinate block

Same as RMV3 except that second word of instruction is relative address of
variable length coordinate block.

ADR3 DRAW ABSOLUTE Octal Code: 006406

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2D 3D

0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 N-H H N-H H

X coordinate X X X X

y coordinate X X X X

Z coordinate X X

W coordinate X X

The ADR3 instruction converts the point, defined by the variable length
coordinate block, through the transformation defined by the previously loaded
matrix parameters. The converted point is then translated into the following
refresh code and loaded into memory at the location specified by the refresh
address register.

LDXA Load X absolute

DRYA Draw Y absolute

(i'

'I ~
Ii
{-;

Ii

I'
f:, 1

I

{(

l~

,."

ADD3 DRAW ABSOLUTE DEFERRED Octal Code: 006446

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0/0 0 011 1 o /1 0 o 11 0 0/1 1 0

Address of coordinate block

Same as ADR3 except. that second word of instruction is pointer to variable
length coordinate block.

ADDR DRAW ABSOLUTE DEFERRED RELATIVE Octal Code: 006466

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 o

Relative address of coordinate block

Same as ADR3 except that second word of instruction is relative address of
variable length coordinate block.

RDR3 DRAW RELATIVE Octal Code: 006407

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2D 3D

01 0 0 o I 1 1 o 11 0 o I 0 0 o 11 1 1 N-H H N-H H

X coordinate X X X X

Y coordinate X X X X

Z coordinate ..
X X

W coordinate X X

The RDR3 instruction adds the relative coordinates, defined by the variable
length coordinate block to the last defined point and converts the result
through the transformation defined by the previously loaded matrix parameters.
The converted point is then translated into the following refresh code and
loaded into memory at the location specified by the refresh address register.

LDXA Load X absolute

DRYA Draw Y absolute

3-5

3-6

RDD3 DRAW RELATIVE DEFERRED Octal Code: 006447

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1

Address of coordinate block

Same as RDR3 except that second word of instruction is pointer to variable
length coordinate block.

RDDR DRAW RELATIVE DEFERRED RELATIVE Octal Code: 006467

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 a 1 1 o 11 0 0 1 1 0 1 1 1

Relative address of coordinate block

Same as RDR3 except that second word of instruction is relative address of
variable length coordinate block.

I:
Ii
[

I
r

r:

I
f:.
I:
I~

Ii

3.3 SEQUENCE CONTROL INSTRUCTIONS

These instructions are used to unconditionally control the sequence of
program execution by the coordinate conveter.

JP3A JUMP ABSOLUTE Octal Code: 006416

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o

Jump address

JP3A is a 2-word instruction which transfers program control to the
absolute address specified in the second word of the instruction.

JP3R JUMP RELATIVE Octal Code: 006436

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 o 01 1

Jump increment

JP3R is a 2-word instruction which transfers program control to a relative
memory location. The content of the second word of the instruction is added to
the program counter, which is pointing to the address following the jump
increment. The result is then used as the address of the next instruction to
be executed.

3-7

3-8

CL3A CALL SUBROUTINE ABSOLUTE Octal Code: 006415

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 o 01 1

Subroutine address

CL3A is a 2-word instruction which calls a subroutine whose address is
specified by the second word of the instruction. When the instruction is
executed, the content of the program counter (which is pointing to the address
following the location of the subroutine address) is pushed onto the coordinate
converter stack. This saves the address of the instruction to be executed
following completion of 'the subroutine. The content of the second word of the
instruction is then loaded into the program counter and used as the address of
the next instruction to be executed.

CL3R CALL SUBROUTINE RELATIVE Octal Code: 006435

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 o 011 1 o 1

Subroutine increment

CL3R is a 2-word instruction which calls a subroutine fr,om a relative
memory location. When the instruction is executed, the content of the program
counter (which points to the address following the location of the subroutine
increment) is pushed onto the coordinate converter stack. This saves the
address of the instruction to be executed following completion of the
subroutine. The content of the second word of the instruction is then added to
the program counter and the result is used as the address of the next
instruction to be executed.

I
I
(

{

I
{

I
I
I (I

I
I
I
(

I
(

I

""~

RTN3 RETURN Octal Code: 006420

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o I 1

RTN3 is normally the last instruction of a subroutine and causes
program control to return to the calling program. When the instruction is
executed, the content of the location pointed to by the coordinate converter
stack pointer is popped from the stack, loaded into the program counter, and
used as the address of the next instruction to he executed.

NOP3 NO OPERATION Octal Code: 006400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 0 0 I 1 1 0 11 0 01 0 0 0
1 0 0 01

NOP3 is generally a filler instruction which does not perform any action.

HLT3 HALT Octal Code: 006422

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o I 0 0 0 1 1 0 I 1 0 01 0 1 0 0 1 01

The HLT3 instruction should always be the last instruction in the image
file. It causes the coordinate converter to set the halt bit in the status
register before going into the halt state. This also causes a halt interrupt
to be sent to the display processor, if enabled.

3-9

3·dO

3.4 PARAMETER INSTRUCTIONS

Parameter instructions are used to establish or change various parameters
which affect the operation of the coordinate converter. Note that all of these
parameters can also be modified using display processor instructions to write
to the individual par~meter registers (see Section 5).

With the exception of LSP3, all of these parameter instructions are
available in all three addressing modes. In each instruction the associated
parameters are loaded into the indicated coordinate converter registers. See
Section 5 for descriptions of the individual registers and their usage.

LSP3 LOAD STACK POINTER' Octal Code: 006421

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1

Stack address ~.

The second word of the instruction is loaded into the coordinate converter
stack pointer.

I
I
I
[,

('

Ii
(I

- I

LBOX LOAD VIEWBOX PARAHETERS Octal Code: 006401

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 2-D 3-D 3-D
No Persp.

Persp.

Lv X X X

Bv X X X

Nv X X

Rv X X X

Tv X X X

Fv X X

Xa X

Ya X

Za X

LBOX is used to set the viewbox boundaries (Lv,Bv,Nv,Rv,Tv,Fv) which are
used in clipping, and to set the viewing point (Xa,Ya,Za) which is used in
generating perspective. The parameter block varies in length from 4 to 9 words
as shown above, depending on the currently established dimension (2D/3D,
perspective/no perspective).

3-11

3-12

LBXD LOAD VIEW BOX PARAMETERS DEFERRED Octal Code: 006441

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 01 1 0 o 11 0 0 /0 0 1

Address of parameter block

Same as LBOX except that second word of instruction contains pointer to
variable length parameter block.

LBDR LOAD VIEWBOX PARAMETERS DEFERRED RELATIVE Octal Code: 006461

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1

Relative address of arameter block

Same as LBOX except that second word of instruction is the relative address
of variable length parameter block.

I
I:
[

(

(

I' '

LMTX LOAD MATRIX PARAMETERS Octal Code: 006402

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2D

0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 N-H

Mll X

M12 X

M13

M14

M21 X

M22 X

M23

M24

M31 X

M32 X

M33

M34

M41

M42

M43

M44

NOTE

See Section 7.1 for the range of values
for elements in the composite matrix.

3D

H N-H H

X X X

X X X

X X X

X

X X X

X X X

X X X

X

X X X

X X X

X X X

X

X X

X X

X X

X

3-13

3-14

LMTX is used to load the matrix parameters to be used in the coordinate
transformations. The parameter block varies in length from 6 to 16 words,
depending on the currently established dimension (2D/3D homogeneous/
non-homogeneous).

The parameters specified occupy locations with.1,n a 4 x 4 matrix as shown
below: .

MU M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

LMXD LOAD MATRIX PARAMETERS DEFERRED Octal Code: 006442

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0

Address of parameter block

Same as LMTX except that second word of instruction is a pointer to
variable length parameter block.

I'
(

I
(

(

I,

I
(

(.
/
I

(!

LMDR LOAD MATRIX PARAMETERS DEFERRED RELATIVE Octal Code: 006462

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0

Relative address of parameter block

Same as LMTX except that second word of instruction is relative address of
variable length parameter block.

LREF LOAD REFRESH ADDRESS Octal Code: 006410

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 o I 1 1 o 11 0 o 10 o. 11 0 0 0

Refresh address

Loads second word of instruction into refresh address register.

3-15

3-16

LRFD LOAD REFRESH ADDRESS DEFERRED Octal Code: 006450

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0

Address of refresh address

Same as LREF except that second word of instruction is pointer to
parameter.

LRDR LOAD REFRESH ADDRESS DEFERRED RELATIVE Octal Code: 006470

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0

Relative address of refresh address

Same as LREF except that second word of instruction is relative address of
parameter.

(I

I,
I
(

(

I
l: i

(

(~

(

LWSC LOAD W-SCALE Octal Code: 006414

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 I 0 0 0 I 1 1 0 11 0 01 0 0 1 I 1 0 0

W-sca1e

Loads second word of instruction into W-scale register.

LWSD LOAD W-SCALE DEFERRED Octal Code: 006454

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0

Address of W-scale

Same as LWSC except that second word of instruction is pointer to
parameter.

3-17

LWDR LOAD W-SCALE DEFERRED RELATIVE Octal Code: 006474

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 o I 1 1 o 11 0 o 11 1 1 I 1 0 0

Relative address of W-scale

Same as LWSC except that second word of instruction is relative address of
parameter.

LL1M LOAD REFRESH LIMIT ADDRESS Octal Code: 006411

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1

Refresh limit address

Loads second word of instruction into refresh limit register.

3-18

(:

I:
(:

I
I

(

(

(

(

L
(,

LLMD LOAD REFRESH LIMIT ADDRESS DEFERRED Octal Code: 006451

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1

Address of refresh limit address

Same as LLIM except that second word of instruction is pointer to
parameter.

LLDR LOAD REFRESH LIMIT ADDRESS DEFERRED RELATIVE Octal Code: 006471

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 0 o I 1 1 o 11 0 o 11 1 1 I 0 0 1

Relative address of refresh limit address

Same as LLIM except that second word of instruction is relative address of
parameter.

3-19 .

LMSK LOAD MASK REGISTER Octal Code: 006412

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0

Mask bits

Loads the second word of the instruction into the mask register.

LMKD LOAD MASK REGISTER DEFERRED Octal Code: 006452 -
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 0 01 1 1 o 11 0 o 11 0 11 0 1 0

Address of mask bits

Same as LMSK except that second word of instruction is pointer to
parameter.

3-20

(~

I
(

(

I
I
I
(

I
[,

I)

('

I

LKDR LOAD MASK REGISTER DEFERRED RELATIVE Octal code: 006472

15 14 13 12 11 109 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0

Relative address of mask bits

Same as LMSK except that second word of instruction is relative address of
parameter.

LDIM LOAD DIMENSION INFORMATION Octal Code: 006413

15 14 13 12 11 10 9 8 7 6. 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 b 0 0 1 0 1 1

Dimension Information

Loads seco.nd word of instruction into dimension register.

3-21

I

3-22

LDMD LOAD DIMENSION INFORMATION DEFERRED Octal Code: 006453

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1

Address of dimension information

Same as LDIM except that second word of instruction is pointer to
parameter.

LDDR LOAD DIMENSION INFORMATION DEFERRED RELATIVE Octal Code: 006473

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 0 0 1 1 o 11 0 o 11 1 1 I 0 1 1

Relative address of dimension information

Same as LDIM except that second word of instruction is relative address of
parameter.

r
I
r
I
I
I:
(

1:"

(

[

I)

[! .. i
I,

(,

('

SECTION 4

GRAPHIC CONTROLLER INSTRUCTIONS

Any standard graphic controller instructions can be inserted in line in the
image file. These instructions are generally passed directly through the
coordinate converter and loaded into the refresh file. Note, however, that no
transformations are performed on graphic controller moves and draws. Also, if
clipping is enabled, vectors drawn with graphic controller instructions are not
clipped. However, graphic controller TEXT and CHAR instructions which attempt
to define characters out of the clipping window are clipped.

4-1/4-2

!

I
,(

(I

I"
I
I
I
()

(:

II

I.
I
I'

SECTION 5

COORDINATE CONVERTER REGISTERS

The coordinate converter contains a number of parameter and control
registers which can be written to or read from via the display processor.

If the coordinate converter is halted, then these registers can be accessed
freely. However, if the coordinate converter is not halted and is executing
instructions, accessing a coordinate converter register may cause a bus
time-out which will in turn cause an interrupt to the display processor. This
occurs because when the coordinate converter is running, it only responds to
register accesses for a brief interval before fetching the next instruction.
The average time between instruction fetches is several times longer than the
interval that defines a bus time-out. Therefore, be certain that the
coordinate converter has halted before doing any register accesses.

You can access the stop register (the stop register is the only register
that can be accessed at any time) and wait for a stop interrupt to occur. It
is then safe to access registers and, if you want, the coordinate converter can
be re-started by accessing the continue register.

Three of these registers, INZ, CNT, and STOP, are not actually physical
registers. However, accessing these registers (either reading or writing)
causes the coordinate converter to perform an action. The remainder of the
registers are 16 bits long.

5-1

(

REGISTER MEMORY ADDRESS (
Ml1 172500
M12 172502 I Ml3 172504
M14 172506
M21 172510 (M22 172512
M23 172514
M24 172516 (MATRIX PARAMETERS REGISTERS
M31 172520
M32 172522

(M33 172524
M34 172526
M41 172530
M42 172532 I M43 172534

. M44 172536

Lv 172540 I
Bv 172542
Nv 172544

(' VIEWBOX PARAMETERS REGISTERS
Rv 172546

/y;l

Tv 172550
/ Fv 172552 Ii !

PERSPECTIVE PARAMETERS REGISTERS { i: 172554
172556 I . Za 172560.

W-SCALE REGISTER WSR 172564

I REFRESH ADDRESS REGISTER RAR 172566

REFRESH LIMIT REGISTER LIM 172570 I
BLOCK REGISTER BLK 172572

DIMENSION REGISTER DIM 172574 I)
PHOTOPEN STRIKE ADDRESS REGISTER STR 172600

I
I)
(

(;
5-2 I

REGISTER MEMORY ADDRESS

---1

CC INSTRUCTION REGISTER CIR 172602

CC PROGRAM COUNTER CPC 172604

erN 172606
YIN 172610

INCOMING POINT REGISTERS ZIN 172612
WIN 172614

MASK REGISTER MSK 172616
---"',

STATUS REGISTER STAT 172620

STACK POINTER REGISTER STP 172622

INITIALIZE REGISTER INZ 172624

CONTINUE REGISTER CNT 172626

STOP REGISTER STOP 172630

5-3

5-4

MATRIX PARAMETER REGISTERS

MIl through M44

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The 16 matrix parameter registers contain the elements of the composite
matrix used in the coordinate transformation which are generally loaded with a
LMAT instruction.

The parameters occupy locations within a 4 x 4 matrix as shown below:

Mll M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

NOTE

See Section 7.1 for the
range of values for elements
in the composite matrix.

The actual parameters used vary with dimension (2D/3D,
homogeneous/non-homogeneous) as shown below:

2D 3D
j

N-H H N-H H
f

MIl X X X X

M12 X X X X

M13 X X X

M14 X

M21 X X X X

M22 X X X X

M23 X X X

M24 X

M31 X X X X

M32 X X X X

M33 X X X

M34 X

M41 X X

M42 X X

M43 X X

M44 X

}1 i

\l'

{I

r
Ii

l
If

I t

Lv LEFT VIEWBOX BOUNDARY REGISTER

15 , 14 I 13 I 12 ,II I 10, 9 I 8 I 7 I 6 I 5 I 4, 3 I 2 , 1 I 0

The Lv register contains the minimum X coordinate value which can be
displayed with clipping. Its range is + 32K.

Bv BOTTOM VIEWBOX BOUNDARY REGISTER

15 14 13 I 12 11 I 10 9 8 7 6 5 4 3 2 1 0 I I I I I I " I I I I I I

The Bv register contains the minimum Y coordinate value which can be
displayed with clipping. Its range is + 32K.

Nv NEAR VIEWBOX BOUNDARY REGISTER

15 14 13 I 12 11 I 10 9 8 7 6 5 4
I

3
I

2
I

1 o
I I I I I I I " I I

The Nv register contains the minimum Z coordinate value which can be
displayed with clipping. Its range is 0 to + 32K.

5-5

5-6

Rv

15
I

RIGHT VIEWBOX BOUNDARY REGISTER

14 13
I I

12 11
I I

10 9 8 7 6 5
I I I I I

4 3
I

210
I I

the Rv register contains the maximum X coordinate value which can be
displayed with clipping. Its range is + 32K.

Tv

15
I

TOP VIEWBOX BOUNDARY REGISTER

14 13 12 11
I I

10 9
I I

8 7
I I

6 5
I

4 3
I

2
I

1 o
I

The Tv register contains the maximum Y coordinate value which can be
displayed with clipping. Its range is + 32K.

Fv

15
I

FAR VIEWBOX BOUNDARY REGISTER

14 13 12
I I I

11 10 9
I I I

8 7
I

6 5
I I

4 3
I

2 1/ 0
I / I

The Fv register contains the maximum Z coordinate value which can be
displayed with clipping. Its range is 0 to + 32K.

I:
I

" ,t
L
1
I,
1:
(')

I
'f
t

Xa

15
I

X PERSPECTIVE PARAMETER REGISTER

14 13 12 11 10 9 8 7 6 543
I F I I I I I I I I I I

2 1 0
I

The Xa register contains the X coordinate of the observer's eye position in
viewbox space. Its range is + 32K.

Ya Y PERSPECTIVE PARAMETER REGISTER

15 1'4 13 12 11 10 9 8 7 6 543 2 1 o
I I I I I I I I I I I I I I

The Ya register contains the Y coordinate of the observer's eye position in
viewbox space. Its range is + 32K.

Za

15
I

Z PERSPECTIVE PARAMETER REGISTER

14 13 12 11 10 9 8 7 6 5 4 3

I I I I I I I I I I I
210

I I

The Za register contains the Z coordinate of the observer's eye position in
viewbox space. Its range is 0 to -32K.

5-7

5-8

WSR W-SCALE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4, 3 2 1 0
I I I I I I I I I I I I

The WSR register contains the exponent value for W, the fourth coordinate.
W-scale is used in homogeneous mode to modify the W coordinate by multiplying
it by 2 raised to the W-scale power (i.e., W x 2W-scale). Its range is +15.

15
I

REFRESH ADDRESS REGISTER

14 13
I

12 11
I I

10 9
I I

8 7
I

6
I
543 2

I I I
1 0

I

The RAR register contains the 16 low order address bits where the next word
of refresh code generated by the coordinate converter is to be stored. The two
high order bits are provided by the block register. After each word of refresh
code is written into memory, the RAR is incremented by 2.

LIM REFRESH LIMIT REGISTER /

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
I I I I I I I I I I I I I I

The LIM register contains the 16 low order address bits of the upper limit
of memory space allocated for the converted refresh code. The two high order
bits are provided by the block register. When an attempt is made by the
coordinate converter to place refresh code at this address, a bit is set in the
status register indicating an error condition and the coordinate converter
halts.

I
I
I·
t
{

1\
{

,I.

I
1
, !

"'{' \

{

Ii
(,

BLK BLOCK REGISTER

15 14 13 12 11 10 9 8
I

7 6 543 2 1 o

The BLK register contains two sets of the two higher order address bits
used by the coordinate converter for memory accesses. Block register bits I
and 0 are used for all source operations which include accesses to the image
file and the coordinate converter stack. Block register bits 9 and 8 are used
for all destination operations involving the refresh file.

DIM DIMENSION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clipping/no-clipping----------~
Pen model regular mode _________ ---1

Perspective/non-perspective----------------~
2D/3D----------------------------------~
Homogeneous/non-homogeneous----------------------~

The DIM register contains five bits which establish the manner in which
instructions are processed. A '1' in any bit enables the first function in the
corresponding pair. A '0' enables its complement. For example, a 'I' in bit 6
enables clipping, a '0' enables no-clipping. Each function is discussed in
Section 2.

5-9

5-10

STR

15

PHOTOPEN STRIKE ADDRESS REGISTER

14 13
I

12
I

11
I I

10 9
I

8 7
I I I

6
I
543

I I
2 1

I
o

I

The STR register contains the 16 low order address bits corresponding to a
word of refresh code to be used in a pen mod'e search. Pen mode is discussed in
Section 2.

CIR

15
I

INSTRUCTION REGISTER

14 13
I

12
I

11
I I

10 9
I

8 7 6
I I I I

543 2
I I I

1
I

o
I

The CIR register contains the last instruction which was executed by the
coordinate converter.

CPC PROGRAM COUNTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I I I I I I I

:
I I I I I I I.

,I· , '

I:
.1
{I

fl,
f
l'
I
{

,I

J' The program counter contains the 16 low order address bits of the next
instruction to be executed. As each instruction is fetched from memory, the
program counter is automatically incremented by 2. The coordinate conversion
process is initiated by writing the starting address of the image file into the' ~'
program counter. \

{:

'1, I
"

XIN

YIN

ZIN

WIN

15 14 13 12

INCOMING POINT REGISTERS

11 10 9 8
I

7 6 543
I I I I

2 1
I

o

The incoming point registers contain the -coordinates of the last point
processed, before transformation. When using absolute moves and draws, the
XIN, YIN, and ZIN registers contain the coordinates loaded in from the
coordinate block of the last instruction. When using relative moves and draws,
the XIN, YIN, and ZIN registers contain the sum of the relative coordinates
loaded in from the coordinate block of the last instruction and the resultant
coordinates of the previous instruction. When using homogeneous mode, the WIN
register contains the homogeneous value loaded in with the last instruction.

5-11

5-12

MSK MASK REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a

I
PEN MATC~J
SH USED UP

AL INSTRUCTION

STOP
PHOTO
REFRE
HALT
ILLBG
HOMOG
TRANS
PERSP
Z-CLI
Y-CLI
X-CLI
Z-CLI
Y-CLI
X-CLI

ENEOUS CONVERSION OVERFLOW
FORMATION OVERFLOW
ECTIVE DIVISION OVERFLOW
PPING'HIGH
PPING HIGH
PPING HIGH \
PPING LOW
PPING LOW
PPING LOW

~ ~

" -

I

The bits of the mask r~gister are used to allow 14 status conditions to
send interrupts to the display processor.- A 'l'in a mask register bit allows
an interrupt if the corresponding bit in the status register goes true ('I').
A 'a' in a mask register bit inhibits an interrupt for the corresponding status
condition.

1
1
!'
l~

I'
:1'

I'
i
I

r
I
l
{

(,

STAT

STOP
PHOTO
REFRE
HALT
ILLEG
HOMOG
TRANS
PERSP
Z-CLI
Y-CLI
X-CLI
Z-CLI
Y-CLI
X-CLI

STATUS REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I ~ I I .~ 11,1 I··. I> I

PEN MATC~~
SH USED UP

AL INSTRUCTION
ENEOUS CONVERSION OVERFLOW
FORMATION OVERFLOW
ECTIVE DIVISION OVERFLOW
PPING HIGH
PPING HIGH
PPING HIGH
PPING LOW
PPING LOW
PPING LOW

The status register indicates the present state of the coordinate
converter. A 'I' in any bit indicates that the corresponding condition has
gone true and initiates an interrupt to the display processor if the
corresponding bit in the mask register is also a 'I'. Note that when the
status register is read under program control, it is automatically cleared.

5-13

STP STACK POINTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I I I j I I I I I I j I I I

The STP register contains the 16 lower address bits corresponding to the
top of the coordinate converter stack. This value is modified when CL3A, CL3R,
or RTN3'is executed.

INZ INITIALIZE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W/7/LZ@//7~
The INZ register is used to initialize the coordinate converter by

establishing default values for certain parameter and control registers.
Whenever this register is accessed, the following octal values are loaded,into
the corresponding registers. Note that a GRAPHIC 7®bus reset causes the same
initialization.

Mask register (MSK)
Status register (STAT)
Block register (BLK)
Left viewbox boundary register (Lv)
Bottom viewbox boundary register (Bv)
Near viewbox boundary register (Nv)
Right viewbox boundary register (Rv)
Top viewbox boundary register (Tv)
Far viewbox boundary register (Fv)
Refresh limit register (LIM)
W-scale (WSC)
Dimension register (DIM)

177777
o
o

177000
177000

o
777
777

40000
o
o
o

®GRAPHIC 7 is a trademark of Sanders Associates, Inc.

r
'I'
,t,

J'
I:
I
l
r
.{".

I
1\

I',
5-14 [l

CNT CONTINUE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~~ZZ73Z7~
The continue register is used to restart the coordinate converter after it

has been stopped by a stop command (see below) or an interrupt such as refresh
used up. Accessing this register causes the coordinate converter to resume
processing from the point where it was last halted.

STOP STOP REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a

The stop register is used to halt the coordinate converter. Accessing this
register causes the coordinate converter to complete the instruction in
progress, set the stop bit in the status register, and halt. If the stop bit
is set in the mask register, an interrupt is generated to the display
processor.

5-15/5-16

{

t·

I
II

i

I:' i

J
I:

1
l'
{

J\

t :
',:' ;'1 \

SECTION 6

INTERRUPTS

The coordinate converter monitors 14 conditions which, when active, can
generate interrupts to the display processor. The current state of these
conditions is in the status register ('1' is active). When a condition is
active and the corresponding bit in the mask register is also set, then an
interrupt signal is automatically sent to the display processor. When the
coordinate converter senses that the interrupt has been accepted by the display
processor, the active status register bit which initiated the interrupt is
cleared, with the exception of data anomaly interrupts.

The 14 conditions are grouped into six interrupt classes (listed below with
their corresponding trap address assignments).

Halt

Interrupt

Halt
Refresh used up
PHOTOPEN match
Illegal instruction
Data anomaly
Stop

Trap Address (octal)

200
204
210
214
220
224

When the coordinate converter executes a HLT3 instruction, it sets the halt
bit in the status register and halts.

Refresh Used Up

When the coordinate converter attempts to write refresh code to a location
which corresponds to the end of the refresh block, it sets the refresh used-up
bit in the status register and halts.

PHOTOPEN Match

When the coordinate converter is operating in pen mode and a match occurs
between the contents of the PHOTOPEN strike register and the contents of the
refresh address register, then it sets the PHOTOPEN match bit in the status
register and halts.

Illegal Instruction

When the coordinate converter attempts to execute an illegal instruction,
it sets the illegal instruction bit in the status register and then fetches the
next instruction.

6-1

Data Anomaly

Nine conditions may cause a data anomaly interrupt: three overflow
conditions and six clipping conditions. The homogeneous conversion overflow
bit in the status register is set in response to an error when de-homogeneizing
coordinates. This usually indicates that the resultant coordinates are out of
range (+32K).

The transformation overflow bit in the status register is set in response
to an error during the transformation process. This generally indicates that
the resultant coordinates are out of range (+32K).

(i

t:
r.
r:

The perspective overflow bit in the status register is set in response to ,-,I,'
an error in the perspective application process. This' generally indicates that
the coordinate values with perspective applied are out of range (+32K).

The six clipping bits in the status register are individually set when
clipping is enabled and a transformed coordinate is found to be outside the
respective clipping boundary.

After any of the data anomaly status bits have been set, the coordinate
converter completes the instruction in progress and fetches the next one. Note
that after a data anomaly interrupt has been accepted by the display processor,
the coordinate converter does not clear the status bit which initiated the
interrupt. It does, however, ensure that this same condition does not generate
a second interrupt. This lets you read the status register to determine which
of the nine conditions caused the interrupt.

When the stop register is accessed by the display processor, the coordinate
converter sets the stop bit in the status register and halts.

t,!

I,

f
'f:

--

{,

~2 ('

"" . ,"
SECTION 7

INSTRUCTION USAGE

7.1 NUMBERING SYSTEM

The 3D Coordinate Converter uses two numbering systems, fixed point
integer arithmetic and a modified fractional two's complement arithmetic.

• Fixed Point Integer Arithmetic

The range of values possible is:

-32768 < number < 32767

• Modified Fractional Two's Complement Arithmetic

2-0r-12- 2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14

Binary point

The range of values possible is:

-2.0 < number < 2.0

• Use of Applicable Numbering System

Coordinate values (X,Y,Z) found in 3D instructions are represented
in fixed point integer arithmetic. Translation values (Tx, Ty, Tz)
found in the composite matrix are also in fixed point integer
arithmetic.

All other numbers, e.g., the 4th coordinate (W-coordinate) found in
3D instructions and all other elements other than Tx, Ty, Tz in the
composite matrix are expressed in the modified fractional two's
complement arithmetic.

7-1

7-2

Numbering System Constraints

• Coordinates

-32768 ~ X, Y ~ 32767

o < Z < 32767

0.0 < W < 1. 0

• Composite Matrix (4 x 4) Elements

Elements

-2.0 < {1,1;1,2;1,3;2,1;2,2;2,3;3,1;3,2;3,3} < 2.0

{1,4;2,4;3,4} = 0.0 (not used)

-32768 < {4,1;4,2;4,3} < 32767 (Tx, Ty, Tz)

{4,4} = 1.0

7.2 MATRIX OPERATIONS

In the following discussion, all matrices are shown as 4 x 4 matrices
for generality. The demonstrated principles can be applied to other dimen­
sioned matrices as desired. Also, numbers shown in matrices are represented
as integers for simplicity: e.g., 1 instead of 40000.

The following functions can be implemented using matrices individually.
Any combination of these functions can be implemented by concatenating these
matrices into a composite matrix.

- Translation
- Scaling
- Rotation

r
t

:f I
, \

I ',' '. ~

lr

t:

7.3 TRANSLATION

An object can be translated in X, Y, and/or Z. This may be represented by
addition of the offset or translational value Tx ' Ty ' and/or Tz to the
initial coordinate dimensions.

Xl Xo + Tx

Yl YO + Ty

Zl = Zo + Tz

These equations can be represented in matrix form as:

~l Yl Zl wJ] = [!o YO Zo wcU 1 0 0 0

0 1 0 0

0 0 1 0

Tx Ty Tz 1

7.4 SCALING

An object can be scaled in X, Y and/or Z. This can be represented as
multiplication of the initial coordinate dimensions by a factor Sx' Sy'
and/or Sz.

Xl Sx Xo

Yl Sy YO

Zl Sz Zo

These equations can be represented

~l Yl Zl wu = [Xo YO Zo wt2J Sx

0

0

0

in

0

Sy

0

0

matrix form as:

0 0

0 0

Sz 0

0 1

7-3

I

I

7-4

7.5 ROTATION

An object can be rotated about any axis in 3-D space through a combination
of rotations about the X, Y, and Z axes (using a left-handed coordinate
system) •

Ax = Angular rotation about X axis (in Y-Z plane)

Ay = Angular rotation about Y axis (in X-Z plane)

Az = Angular rotation about Z axis (in X-Y plane)

A positive angle is defined to give a counterclockwise rotation when
looking towards the origin from the negative axis of rotation. For example,
for a positive value 9fAx, when looking towards the origin from the negative
X axis, the Y-Z plane rotates in a counterclockwise direction.

The following equations represent rotation of a coordinate point XO'
YO, Zo about the X axis to a point Xl, Yl' Zl·

Xl Xo) Yl = YO cos Ax - Zo sin Ax X rotation

Zl = YO sin A + Zo cos Ax x

Similarly for rotation.ahout the Y axis:

Xl Xo cos'
l
Ay + Zo sin Ay) Yl = YO Yrotation

Zl = -XO sin Ay + Zo cos A
Y

Change 1

J'
~ .

And for rotation about the Z axis:

Xl = Xo cos Az Yo sin Az) Yl = Xo sin Az + YO cos Az Z rotation

Zl Zo

These equations are represented in matrix form as:

For X rotation:

~l Yl Zl wi] = ~ YO Zo weD 1 0 0 0

0 cos Ax sil). Ax 0

0 -sin Ax cos Ax 0

0 0 0 0

For Y rotation:

~l Yl Zi w~ @a YO Zo wQJ cos Ay 0 -sin Ay 0

0 1 0 0

sin Ay 0 cos Ay 0

0 0 0 0

7-5

7-6

For Z rotation:

[!l Yl Zl wI! = [!O YO zow:2J [os Az
-sin Az

o
o

7.6 MATRIX CONCATENATION

sin Az
cos Az

o
o

o
o
1
o

To combine more than one function of scaling, translation, or rotation, it
is necessary to concatenate the individual matrices involved, preparing one
composite matrix for transmission to the coordinate converter. Matrices which
are to be multiplied together must have the same dimensions: 3 x 3 for 2D; 4 x
4 for 3D. The multiplication process is illustrated below for a 3 x 3 case.

where Cll = AllBll + A12B2l,+ A13B3l

Cl2 = AIIBl2 + Al2B22 + Al3B32

Cl3 = AIIB13 + Al2B23 + Al3B33

C21 = A2lBU + A22B2! + A23BSl

C22 = A21 Bl2 + A22B22+ A23B32

C23 = AZI B13 + A22B23 + A23 B33

C31 = A3lBU + A32B21 + A33B31

C32 = A3I B12 + A32B22·+ A33B32

C33 = A3l Bl3 + A32B23 + A33B33

" 1:
r
(,

I,
I:

I
l:

I ~

t:
I

If you want -to rotate about more than one coordinate axis, it is necessary
to concatenate the rotational matrices.

Let

Then

Where

Let

Then

Rx = X axis rotational matrix

Ry Y axis rotational matrix

Rz = Z axis rotational matrix

Rc = RxRyRz

Rc represents the composite rotational matrix.

NOTE

This matrix provides rotation of an object with respect
to the origin. If you want to rotate an object about the
center of the object, and the center of the object does
correspond to the origin, then it is necessary to trans­
late the object to the origin, rotate it, and then trans­
late it back to its initial position.

Xc' Yc' and ZCl" represent the coordinates of the center of the
object to beirotated.

Trl = 1 0 0 0

0 1 0 0

0 0 1 0

-Xc -y .c -Zc 1

This is the matrix that translates the object to the origin.

7-7

7-8

1

o
o

o
1

o

o
o
1

o
o
o
1

This is the matrix that retranslates the object back to its initial
position. So, the composite rotational matrix for this case is:

If you then want to scale this object and to translate it to a given
location, two more concatenations are necessary.

Let

Then

Where

S = scaling matrix
T translational matrix

C = TSRc

C represents the final composite matrix to be passed
to the coordinate converter.

Ii

(,

I
{

I

t

I

7.7 SAMPLE IMAGE FILE FOR CONVERTING A CUBE

002000
002000 006413 000105

002004
002004 006442 002134
002010
002010 006441 002174
002014
002014 006410 020000

002020
002020 006411 020100
002024
002024 006412 030000

002030
002030 006444 002216
002034
002034 006446 002226
002040
002040 006446 002236
002044
002044 006446 002246
002050
002050 006446 002216

002054
002054 006446 002256
002060
002060 006446 002266
002064
002064 006446 002276
002070
002070 006446 002306
002074
002074 006446 002256

002100
002100 006444 002226
002104

DRASS.616
SRC

22-JUN-79 15:29 PAGE 1-1

002104 006446 002266
002110
002110 006444 002246
002114
002114 006446 002306
002120
002120 006444 002236
002124
002124 006446 002276

002130
002130 002300
002132
002132 006422

002134
002142
002144
002152
002154
002162
002164
002172

040000
000000
000000
000000
000000
000000
000000
040000

002174 176400
002202 001400
00221 Q 000000

002216
002224
002226
002234
002236
002244

(J (JL:.:! 46

002254
002256
002264
002266
002274
002276
002304
002306

177400
040000
177400
040000
000400
040000

0004()O

040000
177400
040000
177400
040000
000400
040000
000400

002314 040000

000000

040000

000000

000000

176400
001400
000000

177400

000400

000400

177400

177400

000400

000400

177400

000000

000000

040000

000000

000000
040000
170000

001000

001000

001000

001000

002000

002000

002000

002000

IMAT:

BOX:

;
PT1:

F'T2 :

PT3:

F'T4 :

PT5:

PT6:

PT7:

PTS:

SET UP PARAMETERS

LDIM 105

LMXD IMAT

LBXD BOX

LREF 20000

LLIM 20100

LMSK 30000

;8ET CLIPPING, 3D, PERSPECTIVE, AND

;HOMOGENEOUS MODE IN DIMENSION REGISTER
;LOAD DEFERRED MATRIX FROM IMAT

;LOAD DEFERRED VIEWBOX FROM BOX

;REFRESH CODE TO BE GENERATED

;AT LOCATION 20000
;REFRESH LIMIT AT 20100

; ENABLE HALT AND REFRESH USED UP INTERRUPT

DEFINE CUBE

DRAW FRONT SQUARE

AMD3 PTI

ADD3 PT2

ADD3 PT3

ADD3 PT4

ADD3 PT1

; MOVE TO LOWER LEFT

; DRAW TO UPPER LEFT

iTO UPPER RIGHT

;TO LOWER RIGHT

; BACK TO LOWER LEFT

DRAW REAR SQUARE

ADD3 PT5 ;DRAW STRAIGHT BACK

ADD3 PT6 ; TO UPPER LEFT

ADD3 PT7 no UPPEF: RIGHT

ADD3 PTe ; TO LOWER RIGHT

ADD3 PT5 ; BACK TO LOWER LEFT

CONNECT I'RONT fO BACK

AMD3 PT2

ADD3 PT6

AMD3 PT4

ADD3 PTe

AMD3 PT3

ADD3 PT7

RTRN

HLT3

; MOVE TO UPPER LEFT

;(IRAW STRAIGHT BACK

;MDVE TO LOWER RIGHT

;DRAW STRAIGHT BACK

; MOVE TO UPPER RIGHT

; DRA-W STRAIGHT BACK

;GRAPHIC CONTROLLER RETURN

;HALT - END OF IMAGE FILE

COMPOSITE IMAGE MATRIX

.WORD

.WORD

.WORD

,WORD

VIEWBOX

• WORD
.WORD
.WORD

UNITY,O,O,O ; IDENTITY MATRIX - 4X4

O,UNITY,O,O

O,O,UNITY,O

O,O,O,UNITY

-1400,-1400,0 ;LV,BV,NV
1400,1400,40000 ;RV,TV,FV
0,0,-10000 ;XA,YA,ZA

COORDINATE POINTS

,WORD -400, -400,1000,40000

.WORD -400,400,1000,40000

.WORD 400,400,1000,40000

.WORD 400, ·-400,1000,40000

,WORD -400, -400,2000,40000

.WORD -400,400,2000,40000

.WORD 400,400,2000,40000

,WORD 400, -400,2000,40000

7-9

r
II

f::
(. I

(,

r~

I:
I
I:
{:

II

l'
I,r.

t
I
(,

{I

I:'
I

SECTION 8

ASSOCIATED GCP+ INSTRUCTIONS

The Coordinate Converter may be programmed through the use of GCP+
instructions or through the use of the FSP subroutine support package. Both
methods are described below.

8.1 PROGRAMMING THE 2-D/3-D COORDINATE CONVERTER IN GCP

By using the register update (RU) and give register (GR) commands, the
GCP+ programmer may read and write all registers associated with the 2-D/3-D
coordinate converter.

This allows complete host control to perform such functions as:

• Set matrix parameters
• Set viewbox parameters
• Set perspective parameters
• Set various control parameters

- Scale select
- Refresh limits select

Source/destination of conversion process
- Homogeneous/non-homogeneous select
- 2-D/3-D select
- Perspective/no perspective select

• Start'2-D/3-D coordinate converter
• Activate 2-D/3-D coordinate converter for a PHOTOPEN search
• Selectively establish the desired interrupt control

When 2-D/3-D coordinate converter interrupts are generated, an appropriate
TS message is returned to the host computer.

NOTE
Refer to Sanders publication H-79-0348 for
more information on GCP+.

8-1

8-2

RU (H-G7) REGISTER UPDATE

15 14 13 12 11 10 9 8 7 6 5

I 0 ASCII R CODE I 0 I

I REGISTER ADDRESS

I REGISTER COUNT

I REGISTER DATA

REGISTER DATA

Command header code: 051125

4 3 210

ASCII U CODE Command header

Word 1

Word 2

Word 3

Word n

r:
f
f,
{.

(

I~

I
f
I

TheRll message is a variable length message that is used to update a series { ,
of registers in the I/O address of the hardware. Word 1 contains the address
of the first register to be updated. Valid register addresses are in the range
of 160000~177777 (octal). Word 2 contains the register count indicating the f

I

number of successive registers to be updated. Words 3 through n contain the
data values to be loaded into each register.

NOTE'

The RU message does not change the
current memory bank selection. It is
also possible to interpret register
address as memory address in the RU
message. When updating memory address,
the user ,must take into account memory
mapping. Memory addresses in the range
of 020000 to 077777 are subject to memory
mapping.

I,
{ ',"

"

I \
{

(:

(

GR (H-G7) GIVE REGISTER Command header code (octal): 043522

15 14 13 12 11 10 9. 8 7 6 5 4 3 2 1 °
.... 1_o---'-I_A_S_C_II_G_C_O_D_E _____ ...II_0---lI __ A_S_C_I_I_R_C_O_D_E_----Ilcommand header

L...-__ RE_G_I_S_T_E_R_(O_R_ME_M_OR_y_)_AD_D_RE_S_S _______ -'-I_o-'1 Word 1

The GR message is a two-word message used by the host computer to obtain
the contents of the GRAPHIC 7 register specified by the register address in
word 1. The contents of any register having an assigned address may be
obtained in this manner. If required, GCP+ automatically halts the graphic
controller before the data is obtained and then restarts it at the completion
of the operation. In response to a GR message, GCP+ sends an RR (return
register) message to the host.

Although the intent of the GR message is to permit the contents of the
registers to be read, it can also be used to read the contents of GRAPHIC 7
memory address. When it is used to read a memory address, the address

. specified in word 1 must be that of an even-numbered byte. If the address of
an odd-numbered byte is specified, GCP+ causes an XX (error status) message to
be sent to the host.

NOTE

When the GR message is used on a large
memory system, the following restrictions
must be taken into account:

1. Addresses in the range of 000000-017776
are directly addressable.

2. Addresses in the range of 020000-077776
are subject to memory mapping.

3. Addresses in the range of 100000-177776
are directly addressable.

4. Addresses in the range of 120000-177776
are related to ROM and I/O device registers.

8-3

8-4

TS (G7-H) 2-D/3-D COORDINATE CONVERTER STATUS
Command header code (octal): 052123

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I ASCII T CODE

I

I
I B BI X X X X

I 0 I ASCII S CODE I Command header

STATUS I Word 1

CPcl Word 2

X X X X X X X X X xl· Word 3

The 2-D/3-D coordinate converter can generate 14 interrupt conditions,
provided that the corresponding mask bits are enabled. The TS message is
returned to the host computer when a 2-D/3-D coordinate converter interrupt
condition occurs.

Word 1 contains the contents of the 2-D/3-D coordinate converter status
register. Each bit in this register corresponds to an interrupt condition.
One or more of these bits sets to' indicate the type of interrupt condition
detected.

Word 2 is the value of the 2-D/3-Dcoordinate converter program counter.

Word 3 contains the 2.;...D/3-D coordinate converter block register bits
used for source operations at the time of the interrupt condition.

Bits Bank
15 14 Number

0 0 0
0 1 1
1 0 2
1 1 3

I'
I
f',
[,

(
[,

r
(,

r

[i

1:
{:

I;

I:

I

8.2 FSP 3D COORDINATE CONVERTER PROGRAMMING

This section describes the FSP support for the 3D Coordinate Converter.

NOTE

FSP (Model 7764) is a collection of
Fortran callable routines residing
in the host.

This FSP support is included in the FSP subroutine package and is
provided at no additional charge. The following "ten subroutines make
up this option:

INIT3D
SCAL3D (ZL,ZU)
CCBLK
MOVE3D (X,Y,Z,MODE)
DRAW3D (X,Y,Z,MODE)
T3D2D (IPAG3D,IPAG2D)
MTRX3D (ARRAY)
VIEWPT (X,Y,Z)
VIEWBX (LV,RV,TV,BV,NV,FV)

Initialize 3D system
Define Z coordinate system
Create 3D coordinate converter block
Create 3D move graphic order
Create 3D draw graphic order
Transform 3D page to 2D page
Update composite matrix in CCBLK
Update view point in CCBLK
Update view box in CCBLK

The remain~ng pages describe each subroutine in detail.

8.2.1 INIT3D ~ Initialize 3D

NAME: INIT3D

FUNCTION: InitializeFSP variables for 3D Coordinate Converter support.

CALLING FORMAT: CALL INIT3D

DESCRIPTION OF PARAMETERS: None

DETAILED DESCRIPTION:

This routine sets default values for the Z-axis user coordinates.
The default lower boundary is 0 and the default higher boundary is 32767.

8.2.2 SCAL3D - Define Z Coordinate System

NAME: SCAL3D

FUNCTION: Set the user coordinate values for the Z-axis user coordinates
(third coordinate).

CALLING FORMAT: CALL SCAL3D (ZL,ZU)

Ch.ange 1 8-5

I

8-6

DESCRIPTION OF PARAMETERS:

ZL = Real variable supplied by the user which specifies the value
to be assigned to the lower boundary of the Z-axis in the
user coordinate system.. Note that ZL is coincident with the
screen surface.

ZU = Real variable supplied by the user which specifies the value
to be assigned to the upper boundary of the Z-axis in the
user coordinate sys~em.

DETAILED DESCRIPTION:

This routine sets the Z-axis user coordinates (third coordinate)
to the values passed (ZL and ZU). This allows the caller to define
the Z-axis near and far coordinates in real numbers. The 3D move and
draw subroutines convert a coordinate in real numbers to an integer
display coordinate. This conversion process is based upon the values
of ZL and ZU. Without a call. to SCAL3D, the Z-axis of the user coor­
dinate system is equal to the default Z-axis coordinates, i.e., ZL=O
and ZU=32767. Note that the Z-axis is defined within a left-handed
coordinate system. ZL is the Z-axis p'oint that corresponds to the
screen and ZU is the Z-axis point that. is the furthest from the screen
extending into the screen. The value of ZU must be greater than the
value of ZL or unpredictable .resu1ts will occur.

8.2.3 CCBLK - Initialize Viewbox, Viewpq.int,and Matrix

NAME: CCBLK

FUNCTION: Generate Coordinate Converter instructions to initialize
the viewbox boundaries, the viewpoint and the matrix
parameters.

CALLING FORMAT: CALL CCBLK

DESCRIPTION OF PARAMETERS: None

DETAILED DESCRIPTION:

This routine generates two Coordinate Converter instructions and
places them at the beginning of the currently opened page. The fi;rst
instruction generated (LBOX) initializes the viewboxboundaries, which
are used in clipping, and the viewpoint which is used in generating ,
perspective. The viewbox and viewpoint parameters are ini.tialized as
follows:

Parameter

Viewbox left
(minimum X)

Viewbox bottom
(minimum Y)

Value Set to by CCBLK

-512.

~512.

(

r

I'
r

I

I
I.

(

Parameter Value Set to by CCBLK

Viewbox near O.
(minimum Z)

Viewbox right 51l.
(maximum X)

Viewbox top 51l.
(maximum Y)

Viewbox far 32767.
(maximum Z)

X Viewpoint O.

Y Viewpoint O.

Z Viewpoint -32767.

The second instruction generated (LMTX) initializes the matrix
parameters which are used in the coordinate transformation process.
All matrix elements except the scale factors are initialized to 0.
The scale factors, matrix elements (1,1), (2,2), and (3,3) aroe set to
256. This is equivalent to 1/64 in the fractional two's complement
notation (see section 7.1) and is the default scale factor. The
combination of the LBOX and LMTX instructions at the beginning of a
page is referred to as the CCBLK of the page.

8.2.4 MOVE3D - Create 3D Move Graphic Order

NAME: MOVE3D

FUNCTION: Generates either an absolute or relative 3D move graphic
order and places it at the mark position of the currently
opened page.

CALLING FORMAT: CALL MOVE3D (X,Y,Z,MODE)

DESCRIPTION OF PARAMETERS:

X,Y,Z

MODE

Real variables supplied by the user which specify the
3D coordinate of the desired beam position. The
coordinate is specified in the user coordinate system.

An integer variable supplied by the caller which
identifies the type of graphic instruction to be
generated. When MODE = ° an absolute MOVE is implied
and when MODE=1 a relative MOVE is implied. When
MODE=O, the coordinate (X,Y,Z) specifies an absolute 3D
coordinate. When MODE=I, the coordinate (X,Y,Z)
specifies an offset to be moved from the current beam
position.

8-7

8-8

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to absolute
screen coordinates and generates either an absolute or relative 3D move
graphic order. This graphic order is placed at the mark position of the
currently opened page. Note that relative moves are restricted to 1/2
of the screen size.

8.2.5 DRAW3D - Create 3D Draw Graphic Order

NAME : DRAW3D

FUNCTION: Generates either an absolute or relative 3D draw graphic
order and places it at the mark position of the currently
opened page.

CALLING FORMAT: CALL DRAW3D (X,Y,Z,MODE)

DESCRIPTION OF PARAMETERS:

X,Y,Z = Real variables supplied by the user which specify the 3D
coordinate of the end point of a line to be drawn. The
coordinate is in the user coordinate system.

MODE = An integer variable supplied by. the caller which
identifies the type of graphic instruction to be
generated. When MODE=O, an absolute DRAW is implied
and when MODE=l, a relative DRAW is implied. When
MODE=O, the coordinate (X,Y,Z) specifies the absolute
coordinate of the end point of a line to be drawn.
When MODE=l, the coordinate specifies the offsets to
be used in drawing a line from the current beam position
to a new position.

DETAILED DESCRIPTION:

This rc;>utine converts the coordinate values specified to absolute
screen coordinates and generates either an absolute or relative 3D
draw graphic order. This graphic order is placed at the mark position
of the currently opened page. Note that relative draws are restricted­
to 1/2 of the screen size.

8.2.6 T3D2D - Transform 3D to 2D

NAME: T3D2D

FUNCTION: Transform a page of graphic orders into a page which
consists entirely of 2D graphic orders.

CALLING FORMAT: CALL T3D2D (IPAG3D,IPAG2D)

I
I
r
I
(

[

I
(

r
(

I
(:

I
t
(

f

DESCRIPTION OF PARAMETERS:

IPAG3D = An integer variable supplied by the user which specifies
the number of the 3D page which is to be transformed.
IPAG3D must be in the range:

1 < IPAG3D < 256, IPAGE3D=FIPAG2D

IPAG2D = An integer variable supplied by the user which specifies
the number of the 2D page in which the transformed graphic
orders are to be placed. IPAG2D must be in the range:

1 < IPAG2D < 256, IPAG2D=FIPAG3D

DETAILED DESCRIPTION:

This routine sets up the coordinate converter to perform a 3D to 2D
transformation on the page of graphic instructions specified by IPAG3D.
The Coordinate Converter is started and a block of transformed graphic
instructions is output to the page specified by IPAG2D. Note that
unpredictable results will occur if the 2D output file is not large
enough to accommodate the transformed graphic instructions. Refer to
Appendix D of the Graphic 7 Fortran Support Package (FSP) User's Manual
to determine the necessary output file size.

8.2.7 MTRX3D - Compute and Replace Matrix Parameters

NAME: MTRX3D

FUNCTION: Compute matrix parameters and generate coordinate converter
instruction to update the matrix parameters.

CALLING FORMAT: CALL MTRX3D (ARRAY)

DESCRIPTION OF PARAMETERS:

ARRAY = A 12 element real array supplied by the user which specifies
the scaling, translation, and rotation factors necessary for
computing the matrix parameters. The array parameters and
their valid ranges are specified below:

ARRAY
Element Definition Range

1 X-Pre Translation - (XU-XL) < XPRE < + (XU-XL) - -

2 Y-Pre Translation - (YU-YL) < YPRE < + (YU-YL) - -

3 Z-Pre Translation - (ZU-ZL) < ZPRE < +(ZU-ZL) - -

4 X Scale Factor 1/256 ..2. XSC < 128

Change 1 8-9

I

8-10

ARRAY
Element Definition Range

5 Y Scale Factor 1/256 < YSC < 128 -

6 Z Scale Factor 1/256 < ZSC < 128 -

7 X Rotation (Y-Z Plane) any real number (in radians)

8 Y Rotation (X-Z Plane) any real number (in radians)

9 Z Rotation (X':"'Y Plane) any real number (in radians)

10 X-Post Translation - (XU-XL) < XPOST < + (XU-XL) - -

11 Y-Post Translation - (YU-YL) < YPOST <+ (YU-YL) - -

12 Z-Post Translation - (ZU-ZL) < ZPOST < + (ZU-ZL) - -
.

The variables used above are defined in the SCALE and SCAL3D sub­
routine descriptions.

e.g. CALL SCALE (XL,YL,XU,YU)

CALL SCAL3D (ZL,ZU)

DETAILED DESCRIPTION:

This routine uses the array parameters passed to compute new matrix'
parameters. These parameters are computed as indicated in Appendix A
and are entered into the CCBLK of the currently opened page, repla.cing
the previous matrix parameters. This routine must be called each time
the user wishes to change translation, scaling,or rotation factors.

8.2.8 VIEWPT - Update View Point inCCBLK

NAME: VIEWPT

FUNCTION: Updates view point parameters in the CCBLK of the currently
opened 3D page.

CALLING FORMAT: CALL VIEWPT (X,Y,Z)

DESCRIPTION OF PARAMETERS:

(X,Y,Z) = Real variables
viewing point
perspective.
coordinates.

supplied by the user which specify the
which is to be used in generating
These parameters are specified in user
The valid ranges for these parameters are:

(i

I

(

I
I
I
I
[

(

I
I
{

(

(

(

Ixi < XU-XL
2

< YU-YL
2

o < Z < ZU-ZL

DETAILED DESCRIPTION:

This routine updates the view point in the currently opened page.
The CCBLK view point parameters, generated by a previous call to the
CCBLK routine, are updated. This routine must be called in order to
change the view point. Note that the view point parameter range limits
specified above are constrained by the host computer word size.

8.2.9 VIEWBX - Update Viewbox

NAME: VIEWBX

FUNCTION: Update view box boundaries in the currently opened page.

CALLING FORMAT: CALL VIEWBX (LV,RV,BV,TV,NV,FV)

DESCRIPTION OF PARAMETERS:

LV = Real variable supplied by the user which specifies the viewbox
left boundary (minimum X). The valid range for LV is: , .
XL < LV < RV

RV = Real variable supplied by the user which specifies the viewbox
right boundary (maximum X). The valid range for RV is:
LV < RV < XU

BV = Real variable supplied by the user which specifies the viewbox
bottom boundary (minimum Y). The valid range for BV is:
YL < BV < TV

TV = Real variable supplied by the user which specifies the viewbox
top boundary (maximum Y). The valid range for TV is:
BV < TV < YU

NV = Real variable supplied by the user which specifies the viewbox
near boundary (minimum Z). The valid range for NV is:
ZL < NV < FV

FV = Real variable supplied by the user which specifies the viewbox
far boundary (maximum Z). The valid range for FV is:
NV < FV .$ ZU

The parameters LV, RV, BV, TV, NV and FV are all specified in the user
coordinate system.

8-11

8-12

DETAILED DESCRIPTION:

This routine updates the viewbox boundaries in the currently opened
page. The CCBLK viewbox parameters, generated by a previous call to the
CCBLK routine, are updated. This routine must be called in order to
change the viewbox.

(

I:
[

('
(,

, ,

I

(,

8.3 FSP 2D COORDINATE CONVERTER PROGRAMMING

This section describes the FSP support for the 2D Coordinate Converter.

NOTE

FSP (Model 7764) is a collection of
Fortran callable routines residing
in the host.

This FSP support is included in the FSP subroutine package and is
provided at no additional charge. The fol.lowing six subroutines make
up this option:

CC2DBL
MOVE2D (X, Y, MODE)
DRAW2D (X, Y, MODE)
T2D2D (IGRAPH, IPAG2D)
MTRX2D (ARRAY)
VI2DBX (LV, RV, BV, TV)

Create 2D converter block
Create 2D move graphic order
Create 2D draw graphic order
Transform graphic page to 2D page
Update 2D composite matrix in CC2DBL
Update view box in CC2DBL

The remaining pages describe each subroutine in detail.

8.3.1 CC2DBL - Initialize 2D Viewbox, 2D Viewpoint, and 2D Matrix

NAME: CC2DBL

FUNCTION: Generate Coordinate Converter instructions to initialize
the viewbox boundaries and matrix parameters.

CALLING FORMAT: CALL CC2DBL

DESCRIPTION OF PARAMETERS: NONE

DETAILED DESCRIPTION:

This routine generates two Coordinate Converter
them at the beginning of the currently opened page.
generated (LBOX) initializes the viewbox boundaries,
clipping. The viewbox parameters are initialized as

instructions and places
The first instruction
which are used in
follows:

Parameter Value Set to by CC2DBL

Viewbox left
(Minimum X)

Viewbox bottom
(Minimum Y)

Viewbox right
(Maximum X)

Viewbox top
(Maximum Y)

-512.

-512.

511.

511.

The second instruction generated (LMTX) initializes the matrix
parameters which are used in the transformation process. All matrix

Change 1 8-13

8-14

elements except the scale factors are in~tialized to 0. The scale
factors, matrix elements (1,1) and (2,2), are set to 256. This is
equivalent to 1/64 in the fractional two's complement notation (see
section 7.1) and is the default scale factor. The combination of the
LBOX and LMTX instructions at the beginning of a page is referred to as
the CC2DBL of the page.

8.3.2 MOVE2D - Create 2D Move Graphic Order

NAME: MOVE2D

FUNCTION: Generates either an absolute or relative 2D move
graphic order and places it at the mark position of the·
currently opened page.

CALLING FORMAT: CALL MOVE2D (X, Y, MODE)

DESCRIPTION OF PARAMETERS:

x, Y = Real variables suppl.ied by the user which specify
the 2D coordinate of the desired beam position. The
coordinate is specified in the user coordinate system.

MODE = An integer variable supplied by the caller which
identifies the type of graphic instruction to be
gene~ated. When MODE=O, an absolute MOVE is implied.
When MODE=l, a relative MOVE is implied. When MODE=O,
The coordinate (X, Y) specifies an absolute 2D coordinate.
When MODE=l, the coordinate (X, Y) specifies an offset
to be moved from the current beam position.

DETAILED DESCRIPTION:

(I

[

I
(I

(:

This routine converts the coordinate values specified to (.
absolute screen coordinates and generates either an absolute
or relative 2D move graphic order. This graphic order is placed
at the mark position of the currently opened page. Note that (
relative moves are restricted to 1/2 of the screen size.

8.3.3 DRAW2D - Create 2D Draw Graphic Order

NAME: DRAW2D

FUNCTION: Generates either an absolute or relative 2D draw
graphic order and places it at the mark position of
the currently opened page.

CALLING FORMAT: CALL DRAW2D (X, Y MODE)

DESCRIPTION OF PARAMETERS:

Change 1

X, Y = Real variables supplied by the user which specify the
2D coordinate of the end point of a line to be drawn.
The coordinate is in the user coordinate system.

I:
[

('

(

(

MODE = An integer variable supplied by the caller which
identifies the type of graphic instruction to be
generated. When MODE=O, a absolute DRAW is implied.
When MODE=l, a relative DRAW is implied. When MODE=O,
the coordinate (X, Y) specifies the absolute coordinate
of the end pOint of a line to be drawn. When MODE=l,
the coordinate specifies the offsets to be used in
drawing a line from the current beam position to a
new position.

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to
absolute screen coordinates and generates either an absolute or
relative 2D draw graphic order. This graphic order is placed at
the mark position of the currently opened page. Note· that
relative draws are restricted to 1/2 of the screen size.

8.3.4 T2D2D - Transform 2D to 2D

NAME: T2D2D

FUNCTION: Transform a page of graphic orders into a page which
consists entirely of 2D graphic orders.

CALLING FORMAT: CALL T2D2D (IGRAPH, IPAG2D)

DESCRIPTION OF PARAMETERS:

IGRAPH = An integer variable supplied by the user which
specifies the number of the graphic page which is to
be transformed. IGRAPH must be in the range:

1 <IGRAPH <256, IGRAPHfIPAG2D

IPAG2D = An integer v~riable supplied by the user which
specifies the number of the 2D page in which the
transformed graphic orders are to be placed.
IPAG2D must be in the range:

1 <IPAG2D <256, IPAG2DfIGRAPH

DETAILED DESCRIPTION:

This routine sets up the coordinate converter to perform a
graphic page to 2D transformation on the page of graphic instructions
specified by IGRAPH. The Coordinate Converter is started and a
block of transformed graphic instructions is output to the page
specified by IPAG2D. Note that unpredictable results will occur if
the 2D output file is not large enough to accommodate the transformed
graphic instructions. Refer to Appendix D of the Graphic 7 Fortran
Support Package (FSP) User's Manual to determine the necessary
output file size.

Change 1 8-15

8-16

8.3.5 MTRX2D - Compute and Replace Matrix Parameters

NAME: MTRX2D

FUNCTION: Compute matrix parameters and generate coordinate
converter instruction to update the matrix parameters.

CALLING FORMAT: CALL MTRX2D (ARRAY)

DESCRIPTION Of PARAMETERS:

ARRAY = A 7 element real array supplied by the user which
specifies the scaling, translation, and rotation
factors necessary for computing the matrix parameters.
The array parameters and their valid ranges are
specified below:

ARRAY
Element

1

2

3

4

5

6

7

Definition

X-Pre Translation

Y-Pre Translation

X Scale Factor

Y Scale Factor

Z Rotation (X-Y Plane)

X-Post Translation

Y-Post Translation

Range

-(XU-XL) < XPRE < + (XU-XL)

~(YU-YL) < YPRE < + (YU-YL)

1/256 ~ XSC< 128

- 1/256 ~YSC < 128

any real number (in radians)

.. - (XU-XL) < XPOST < + (XU-XL)

-(YU-YL) < YPOST < + (YU-YL)

The variables used above are defined in the SCALE subroutine
description.

e.g. CALL SCALE (XL, YL, XU, YU)

DETAILED .DESCRIPTION:

. This routine uses the array parameters passed to compute new
matrix parameters. These parameters are computed as indicated in
Appendix D and are entered into the CG2DBL of the currently opened
page, replacing the previous matrix parameters. This routine must
be called each time the uSer wishes to change translation, scaling,
or rotation factors.

8.3.6 VI2DBX - Update Viewbox

NAME: VI2DBX

FUNCTION: Update viewbox boundaries in the currently opened page.

CALLING FORMAT: CALL VI2DBX (LV, RV, BV, TV)

Change 1

I

r

[

1.1

(:

I

DESCRIPTION OF PARAMETERS:

LV = Real variable supplied by the user which specifies
the viewbox left boundary (minimum X). The valid
range for LV is: XL<LV<RV

RV = Real variable supplied by the user which specifies the
viewbox right boundary (maximum X). The valid range for
RV is: LV<RV<XU

BV = Real variable supplied by the user which specifies the
viewbox bottom boundary (minimum Y). The valid range for
BV is: YL<BV<TV

TV = Real variable supplied by the user which specifies the
viewbox top boundary (maximum Y). The valid range for
TV is: BV<TV<YU

The parameters LV, RV, BV and TV are all specified in the user
coordinate system.

DETAILED DESCRIPTION:

This routine updates the viewbox boundaries in the currently
opened page. The CC2DBL viewbox parameters, generated by a
previous call to the CC2DBL routine, are updated. This routine
must be called in order to change the viewbox.

Change 1 8-17/(8-18 blank)

(i,

(:

(:

(I

r!
r
('.

(, I

, I

1.1

("

(i

(,

(,

(

(i

I'
("

rl
I

I

APPENDIX 'A'

CCBLK MATRIX ELEMENT DEFINITIONS

NEW CCBLK MATRIX (4 * 3)

Element

1,1 Sx Cos Ay Cos Az
= 64

1,2 Sx Cos Ay Sin Az
= 64

1,3 -Sx Sin Ay
= 64

2,1 +Sy (Sin Ax Sin Ay Cos Az - Cos Ax Sin Az) = 64

2,2 +Sy (Sin Ax Sin Ay Sin Az + Cos Ax Cos Az)
= 64

2,3 = S~ Sin Ax Cos AY..
64

3,1 Sz (Cos Ax Sin Ay" Cos Az + Sin Ax Sin Az) = 64

3,2 Sz (Cos Ax Sin Ay Sin Az - Sin Ax Cos Az) = 64

3,3 Sz Cos Ax Cos A~
64

4,1 = [Tx Sx Cos Ay + (Ty Sy Sin Ax + Tz Sz Cos Ax) Sin Ay] Cos Az -
(Ty Sy Cos Ax - Tz Sz Sin Ax) Sin Az + Txp·

4,2 = [Tx Sx Cos Ay + (Ty Sy Sin Ax + Tz Sz Cos Ax) Sin Ay] Sin Az +
(Ty Sy Cos Ax - Tz Sz Sin Ax) Cos Az + Typ

4,3 -Tx Sx Sin Ay + (Ty Sy Sin Ax + Tz Sz Cos Ax) Cos Ay + Tzp

A-1/A-2

(;1

("

I:

(I
('j

(i

(I

L
1.1

(,

(
(,

(

(

(i

(;}

(,

(I

('

WORD /I COMMAND

0 LBOX

1

2

3

4

5

6

7

8

9

10 LMTX

11

12

13

14

15

16

17

18

APPENDIX 'B'

CCB.LK FORMAT

FORMAT

LBOX

LV

BV

NV

RV

TV

FV

Xa

Ya

Za

LMTX

M11

M12

M13

M21

M22

M23

M31

M32

DESCRIPTION

Load viewbox parameters

Left Boundary

Bottom Boundary

Near Boundary

Right Boundary

Top Boundary

Far Boundary

X - Eye Point

Y - Eye Point

Z - Eye Point

Load matrix parameters

Matrix Elements

B-1

B-2

WORD 11

19

20

21

22

COMMAND

APPENDIX 'B'

CCBLK FORMAT (Cont)

FORMAT

M33

M41

M42

M43

DESCRIPTION

I,
I,

I
I
I)
(

I i

I
(I

il
I
(

I·

I
(I

[/

(,

(I

I

r 0

APPENDIX 'c'

ADVANCED 3D APPLICATIONS

The routines described provide basic 3D graphic capabilities and the
operations performed are not cumulative. The advanced application may
require that matrix concatenations be performed in the host computer. In
this case, a concatenated matrix may be sent to the Graphic-7 by using an
FSP REFDAT command. In this way the user can directly update the GCBLK
matrix parameters. The CCBLK viewbox and view point parameters can be
updated similarly.

C-l/C-2

(

t
r
I:
(;

I,
(,

. Ii

II

" I,
:((

il
f.
I'
t
I
I
II

APPENDIX 'D'

CC2DBL MATRIX ELEMENT DEFINITIONS

NEW CC2DBL MATRIX (3 x 2)

ELEMENT·

1,1 = Sx CosAxy
64

1,2 = Sx SinAxy
64

2.1 = Sy SinAxy
64

2,2 Sy CosAxy
64

3,1 ::, ~Xc Sx CosAx:,z:

3,2 = -Xc Sx SinAxy

- Yc Sl SinAx:,z: + Xc + Tx
64

- Yc S:,z: CosAx:,z: + Yc + Tl
64

Change 1 D-1/D-2

1
(:

I;
I I
, '

\

I
. II

I~

I:

(:

I:
I!

1:
I
I:
I!
I,
I
I

WORD
0

1

2

3

4

5

6

7

8

9

10

11

II COMMAND
LBOX

LMTX

Composite Matrix

Translation

Xl = Xcj> + Tx

Y1 Ycj> + Ty

APPENDIX 'E'

CC2DBL FORMAT

FORMAT
LBOX

LV

BV

RV

TV

. LMTX

M1l

M12

M21

M22

M31

M32

[Xl Y1 W1] = [XO Yo WO]

Scaling

Xl = Sx Xo

Y1 = Sy Yo

[Xl Y1 W1] = [XO Yo wo] lX
. 0
... 0

DESCRIPTION
Load viewbox parameters

Left Boundary

Bottom Boundary

Right Boundary

Top Boundary

Load matrix parameters

Matrix Elements

Change 1 E1

E-2

ROTATION

Y

Xl---------------r--------------X

Xl = Xo Cosx + Yo Sinx

Yl YI = Xo Sinx + Yo Cosx

For rotation in Y-Y plane (clockwise)

Axy = angle of rotation in X-Y plane

Xl = Xo CosAxy + Yo SinAxy

YI = Xo SinAxy + Yo CosAxy

[Xl YI WI] = [xo Yo

Change I

woJ
[

CosAxy

-S~nAxy

SinAxy

CosAxy

o

I
I
I,
f;
t,
I
I.
I:
[

r
,t'

.I:
(,

I
I
I~
{:

I
I

Method III

Order of Matrix Multiplication

1. Pre-translate to origin
2. Scale
3. Rotate
4. Post-translate back to original coordinates
5. Translate to new coordinates

Pre-Trans Scale

~
0

~ GX 0

~ [~X 0

~ ~XC
1 Sy

~xcsx
Sy

-Yc 0 -YcSy

Rotate

~X 0

~ Cos~
SinAxy

0J [COS~ SxSinAxy

~ ~xcsx
Sy ;SinAxY CosAxy 0 -SySinAxy SyCosAxy

-YcSy 0 1 -XcSxCosAxy -XcSxSinAxy
+YcSySinAxy -YcSyCosAxy

Post-Trans.

[XCOSAxY SxSinAxy

~ ~c
0

~
SxCosAxy SxSinAxy 0

(")
-SySinAxy SyCosAxy 1 -SySinAxy SyCosAxy 0 ::r'

§ . -XcSxCosAxy -XcSxSinAxy Yc ...;.XcSxCosAxy , -XcSxSinAxy 1 OQ
(1) +YcSySinAxy -YcSyCosAxy +YcSySinAxy -YcSyCosAxy +xc +Yc

t:tj
w -r-- SxCosAxy SxSinAxy 0 1 0' 0 'SxCosAxy' SxSinAxy 0
t:tj

-SySinAxy .SyCosAxy 0 0 1 0 -SySinAxy SyCosAxy 0 I
~

cT -XcSxCosAxy ..,.XcSxSinAxy 1 Tx Ty 1 -XcSxCosAxy -XcSxSinAxy 1
I-' +YcSySinAxy -YcSyCisAxy +YcSySinAxy -YcSyCosAxy III
::l +xc +Yc +xc +Tx +Yc +Ty ~

APPEND IX ' F '

FSP SAMPLE PROGRAMS - 2D/3D

• 3DTEST.FOR - 3D SAMPLE

• TEST2D.FOR - 2D SAMPLE

Change 1 F-l

I'%j
N

o
::r'
§

OQ
CD

I-'

_333333333 DDDODDDDDDDD TTTTTTt'TTTTTT'fT HEEt:::EEHEEEEE SSSSSSSSSSSS TT'fTrTTT-rTrTl'TT
333333333 DDDDDDDDDDDD TTTTTTTT1TTTTTT 6EE~L!E2EEEfEEE SSSSSSSSSSSS TTTTTTTTTTrTTTT

----fii'rTifTTTTTfiT i£EEE£EE~EEEEEE ssssssssssss-----yTi'T1'i'TTTTTTTTT 333333333 DDDDDDDDDDDO-
333 333 ODD DOD TTT HE SSS rTT
333 333 DOD DOD TTT BEE: SSS TTT
333 333 DOD DDti

TTT EEE ----------------- 555------ 1'TT

333 DOD DOD 'l'TT EEr~ SSS 'fT'f
333 DOD DOD TTT t:EE SSS rTT
333 DOD DOD TTT - HE SSS TTT

333 DOD ODD TTT- EEEEEEEEhEEE SSSS5S5SS TTT
333 ODD DOD TTT EEEEEEEEEEE£ SSSSSSSSS TTT

- 333 - ODn DDD------ -TTT ---------EEEEEEEEEEEE---------------SS5SSSSSS ------------ TfT

333 DOD DOD TTT EEE SSS TTT
333 DOD DOD TTT EEE SSS TTT
333 DOD DOD TTT EEE SSS TTT

333 333 DOD DOD TTT EEE SSS TTT
333 333 DOD DOD TTT EEE SSS TT1 TTT --------------------- EEE ---- ------------------------------- S55----------------111 333 -- 333 - DOD 000- -- -- -

333333333 DDDDDDODDODD TTT EEEEEEEEEEEEEEE SSSSSSSSSSSS TTT
333333333 DDDDDDODDODO TTT EEEEEEEEEEEEEEE SSSSSSSSSSSS TTT
333333333 ODOODDODDODD -- TTT EEEEEEEEEEEEEEE SSSSSSSSSSSS - - TTT

FFFFFFfFHFFH[O' 000000000 RRRRRRRI<RRRR
FFFfFFFfFFFFFF~OOOOOOOOO RRRRRRRRRRRR -
FFFFFYFFFFFFFFF DOOOUOOOO RRRRRRRRRRRR
FFF 000 000 RRR RRR
HI" cioo oOd--RRR------ RRR---~-------

HI" 000 000 -RRR RRR
fFF 000 000 RRR RRR
_FFfOOO 000 RRR RRR
FFf 000 000 RRR RRR
FFFFFFFFFFFF 000 000 RHRRRRRRRRRR
FHFFFFFFFFF boo ooo--------RRRRRRRRRRRR
FFfFFFFFFF'F ODD 000 RRRRRRRRRRRR
FFF 000 000 RRR RRR
FFF 000 000 RRR RRR
FFF GOO 000 RRR RRR

222222222
-222222222
222222222

222 222 -- -- ---------------222--------2 22 -----------------

222 222

222

222
222-
222

222
222----"--
222

222--- ------
222

__ --"...... 222 • ~ • • • • -222-------------- --------------
FFF 000 _ 000 RRR RRR
F FF'---------------- --------------000 ---,- ---- -- 00-0 '------R RR------- ----R RR--
FFF 000 000 RRR RRR
FFF 000000000 RRR RRR
FH 000000000 RRR ---RRR
FFF 000000000 RRR RRR

~ · · ,
222

222222222222222
- 222222222222222

222222222222222

START Job FSPot Req #2446 for E00018 Date 12';May;;'Sl11:-45:42-Monito[":--SANDERSASSOCIATES-INC.;T-OP-S~2() Monit'or *START*
File 05KB:<E00018>3DTEST.FOR.2, created: 29-Apr-BO 11:38:33, printed: 12-May-81 11:48:20 .
Job parameters; Request created:12-May-Bl11:19:46 Page limit;216 Forms:NORMAL Account: 60777

--F'ue- paranll1teCs :---Copy: -r-orf-----Spacinij-:SINGLE----:-F{fe-- torniat : AscIi--P-ifnt lIIode:-i5ct1--- -- ------ ------ ------

~---~~~-- ~.....-II! ,......~~~---~,......

o ::r
§

OQ
(D

I-'

t-rj
LV

C MARK.FTN C--------------------- --------- -

C

DIMENSION IlkPAY(3),ARRAY(12}
DATA IARRlY/ICOO,lODO,l~OOI

- CALL GSS4(5,(,2) - - --
CALL LAYOUT(3/IA~RAV)
CALL INJT3D
CALL SCALE(O.,C.,200.,200.)
CALL SCAL3D(O.,lCO.)
CALL AOOREF(2)

-CALL CCaLK -

C DRAW A CUBE 50 UNITS ON A SIDE WITH CENTER AT (lOO,lOQ,45) C -- -- -

CALL MUVE30(7S.,75.,20.,O)
CALL DRAW3D(50.,O.,O.,1)
CALL DRAW3D(C.,50.,O.,1)
CALL DRAW3D(-5D.,O.,O.,1)
CALL DRAW30(D.,-50.,C.,1)
CALL MOVE30(O.,C.,50.,1)
CALL DRAW3D(5D.,O.,O.,1)
CALL DRIW3D(O'i~O.,Q.{1)

-CALL DRAW3D(-50.,O.,O.,1)
CALL DRAW3D(O.,-50.,O.,1)
CALL DRA~3D(O.,O.,-50.,1)
CALL MOVE3D(50.,O.,50.,1)
CALL DRAW3D(O.,O.,-50.,1)

_ C A r.L_ MDV£3D(O ., 50. {50 !.f 1)_
CALL DHAW3U(O.,O.,-50.,1)
CALL HOVE3D(-5D.,O.,50.,1)
CALL ORA~3D(0.,O.,-50.,1)

-CALL MOVE3D(lOO.,lOD.,45.,O)
CALL SETEXT('MARK',4)
ANGLE=O. -----------f:A D~180 :/3 .1415 9265 -------------- ---

5
2

CALL ADDRH (3)
CALL ERASEP
CALL ADDREF(l)
CALL PICTUR(3)
CALL AOOREF(2)
CALL v I E~i PT (ioo:-,166:~:..-lOO:--)----­
CALL T3020(2,3)
DO 2 I=1,12
ARF<.AY(I}=O.
ARHAY(4)=1
ARRAY(5)=1 - ------,U~ RAv (6) ,; f-------- ---

6 C~LL EVENT(I)

c

IF(I .NE. 4) GO TO 6
CALL GETKEV(I,IKEV)
IKEY=IKE'i-16
IF(IKEY .EQ. 0) GO TO 99
GO- T U (1(jO~200~ 300 ~ 40 (f; 500~-600)~ IKE Y . -------- ----
GO TO 6

C THIS SECTION C1!ANGES THE VIEWPOINT FROM (lUO,D,lOO) TO (100,20D,100)
C IN CONTINUCUS STEPS

~

t":l
P"'
§

OQ
CD

.....

v,.lu-'.+J
.~_~C ALL VII~~fI (l £:c.!--t1.cJ._~!.I.)_

110 CALL T3D2D(2,3)
CALL VIEriPT(1'D.,10~.,-lOO.)
Co TO 5 . ·C··_··············,· , ... ' ' , , .. .

C CHANGES THE SCALING FROM 1 TO 1/64, 1/64 TO 64, AND fROM 64 TO 1
C
200 .

210

220

DO 2lv'J=1,64
X=1.0/J
AKRA'l(4)=X
Af<!UY(5)=X
ARAA 'i(6)=x
CALL MTRX3D(ARRAV}
CALL T3D20(2,3)
DO 22vJ=64,1,-1
X=1.0/J ARRAY (4)=X'" ,"- '-.
ARRAY(5)=X
ARRA'l(6)=X
CALL MTRX3D(ARR.AY) ... " ... ~ ,.
CALL T302D(2,3)
DO 230 J=1,64 . . --'--X=J-'" --.... --- .. - .. ------.-----.,.-... ---.... --.-------,
ARRAY('l)=X
ARRAyeS)=X
~RRAV(6)=X .
CALL MTRX3D(lRHAV)

230 CALL T302D(2,3)
-·-·----'DO-24(j .. J;64~i~:.r·

X=J
ARRAY(4)=X
ARRAY(S)=X
ARRAy(6)=x
CALL MTRX3D(ARRAlI) '. -:2'40-'-"""(;,"'-CT3 D20f2~'j) -.. --... --.---------------.
GO TO 5

C
C TRANSLATES THE OBJECT FIRST' LEI-'f" AND- RIGHT1N THE X OIRECTION,
C THEN UP AND DOWN IN THE Y DIRECtION, AND LASTLW BACK AND FORTH
_~ .. _..!~_ THE ..LQ!!.{~cTJ.P!L __ ... ,. ___ _. ____ ___ . ___ '

C
300 00 330 J=1,3

ARRAV (l)=0 ~... .
ARRA'{(2)=(i •

,. --.... ~.-.--- --- .. -.. _--.-.. , .. - --.. -~,-...... ----.~ ..

... >\RRAVO)::O!._ ... _ .. ,._-_._,.; .-'. _ ... _-_ .. _--_. __-~--,,--.--.. -... ----

310

DO 310 1=0,-100,-2
ARI<A'l (J)=1
CALL MTPX3D(ARRAY)
CALL T3020(2,3)
DO 320 1=-100,100,2
ARkAV(J)::;:1

,.-...... - C ALt: t·H RX3D(ARR AY)--'--"

320

330

CALL T3P2D(2,3f
DO 330 1=10J,0,-2
ARRAV(J)=I . "n •

CALL MTRX3D(ARRAY)
cnL 'I'3D2D{2;,.3) ~ ~~ ~ ,.......-~ ~~~ --,.......

(J
::r'
III
tj

()'Q
(J)

I:tj
U1

_~ ___ RO'!'~1'_L'!'l!..f.il8JECT AIWUND ITS CENTER
C
400

410

1~Q

430

C
C
C
C
C
5ClO

ARRAY (1) =(••

ARHY(2)=(;.
ARRAY(3)=-45.
ARkA'i(1C)=C'.
A R Ii AV (11) ::'! •
ARiHV(l2)=45.
DO 410 J=C',36(.,2
ARRAY (7)=J/RAO
CALL MTRX3DORkAY) -- -- --- --

CALL T3D2D(2,3)
DO 420 J=O, 360, 2
ARRAY(6)=J/RAD- -
CALL MTRX3D(ARR!Y)
CALL T3D2D(2,3)
DO ~3C-J~0~3~O~i
ARRAV(9)=J/RAD
CALL MTRX3D(IRRAY)
CALL '1'3020(2,3) -
GO Tli 5

SCALE-THE CUBE- 8Y A fACTOR-OF- i/4;-ROTATE--IT--ARDUNO- THC-X:';-AXtS-~--­
RELATIVE TO ITS CENTER WHILE MOVING THE ENTIRE CUBE IN A
CIRCULAR MOTION AROUND THE CENTER OF THE SCREEN - -

ARkAY(l)=C.
ARRAY(2)=O. ARRA Y (3 f=- 45. ---------------------- ------ -

•• __ _h •••• __ •• _ • _. _______ , •• ________ _

ARRAY(4)=.25
J.RHAY(5}=.25
ARRAY (6)=. 25
ARRAY(1(i)=().
ARIUY(ll)::::O.

----- --- ARRAY(l2)=45~-----

510

C
C

DO 510 J=(,,360
THETA=J/RAD
THETA2=(J*4.)/HAD
H:f<AY(7)=THeTA2
ARRAY(lO)=100.*COS(THETA)
ARRAY(1U=lOO.*SIN{THETA)------- -- --------
CALL MTRX30(ARRAY)
CALL 13020(2,3)
GO TO 5

CHANGE THE VIEk80X FIRST BY COMPRESSING THE X CLIPPING BOUNDARY,

-------------- ------. - "--'.-'

-_.----- ...• ----- __

-C- THE:N- THt--Y," AND LASTLYTHE-Z--- ------------------------------- ---

C
600 VL=O.

VR=200.
VB=O.

---------VT=200-~--- - ----

VN=O.
VF=400.
ARRA'i(4)=4.
ARkAY(5)=4.
AP]JH (J))=4.

to:j

'"

(")
P'
§

OQ
fD

I-'

DO 61(1 1=':',98,2
VL=T
V~-;2-0r:-=I----------------- -------
CALL VIEwBX(VL,VW,VB,VT,VN,VF)

610 .. ~ CALL T302D(2,3) .
------------·DO -62(1=98,0,-2

VL=I
VP.=20l<.-I
tALL VIEWBX(VL,VR,VB,VT,VN,~F)

620 CALL T3D20(2,3)
DO 630 1=C,98,2 -_.----_.--_.------ V B= I - .. -- -.--.---- -... --.--.. ------

VT=200.-1
CALL VJEWBX(VL,VR,VB,VT,VN,VF)

630 CALL T3D20(2,3)· - ,-. -
DO 640 1=98,0,-2
VB=!
VT =20(,. - C -- --,--
CALL VIEwBX(VL,VR,VB,VT,VN,VF)

~40 .. CALL T3020(2,~)
DO 65{; 1=0,49
VN=I*4.

____ ________ Yf';::49 (i ~ - (I" 4 d _.. __ ._,
CALL VIEWbX(VL,VR,VB,VT,VN,VF)

650 CALL T3D20(2,3)
DO 66(1=49/0/-~
VN=I*4.
Vf=4ut..-(I"4.)

_, CALL V IEWIlX(VLI YR, VB , If Td'NLYO
660 CALL T3D20(2,3)

VF=(32767.J511.)*lOJ.
CALL VIEwBX(VL,VR,VB,VT,VN,VF}
GO TO 5 ,. . ,. ,. - -

c
C END THE PROGRAM C·· -. - - - .-- ---- ..

99 CALL THEENO
STOP
END

~ ___ .~ _____ • .l-. __

---_ .. _---------_._----." -------- .-- - .. --.-~-.. ----... -.-.- .. --.--.

_ ... - .. _---_._-------....... --.--------------~---.--------- ._--, .•. _--._ ...

TTTTTTTT1T!!!1T ~£EE££EE E EEEE SSSSSSS5SSSS TTTTTfTITTTTTT! 222222222 DDDDDDDDDDDD
TTTTTTTITITTTTT FEfEEEE~ E EEEE SSSSS~SSSS5S ITTTT11TITTTITT 222222222 DDDDDDDDDDDD

-lTTTT'i''ttlTT-fTff---'--fE£ifE£f:E E fEEt 5S-ssssssssss tTff-fTTT Tt TfT""TT 2-2-n2"2":r:22 ODD DoifoIfiiOffir--'
TTT HE S5':; TTT 222 222 DOD DOD
Tn EE::E SSS 'in 222 222 DOD DOD
TTT '£EF -- --.--. sss ---.----- ---------·------·-1'TT---------·----""""222"-·--------222··---DOD '000

TTT fEf: SSS TTT 222 DOD DOD
TTT tEE SSS ITT 222 DOD DOD
TTl fEE SSS TIT - 222 DOD DOD
TTT £En·EEEEEEEE SSSSSSSSS TTT 222 ODD DOD
TTT EEE£EEEE£EEE SSSSSSSSS TTT 222 DOD DOD
TTT EEEEEEEEE£EE ... ---- ---- ." SSSSsSSSS---------------TTT·----·-----------:22r-----·-----DDD---- 'DDD'

TTT EEr. SSS TTT 222 ODD DOD
TTT EEE SSS 'l'T'r 222 DOD DOD
TTT EEE-;-·-----·- .. -.-... -;---- - SSS ----.- ·----------TTT------·----·------------·222----~---·'--'--'-" '000--'- "000

TTT EEE SSS TTT 222 DOD DOD
TTT EEE SSS TTT 222 DOD DOD TTT fEE ----.-------.- ----.---.---.- s-SS---·------------T,.,.---·--------22:f--------------- DOD - -.--- DOD'

TTl EEEEEEEEEEEEEEE SSSSSSSSSSSS TTT 222222222222222 DDDDDDDDDDDD
TTT EEEEEEEEEEEEEEE SSSSSSSSSSSS TTT 222222222222222 DDDDDDDDDDDD
TTT EEEE£EEEEEEEEEE SSSSSSSSSSSS . TTT----·-----·2'22222222222222- DDDDDDDDDDDD

'FFFfFFFFFFFYFF 000000000 RRRRRRRRRRRR 111
FFFFFFFFFFfFFFf 000000000 RRRRRRRRRRRR

-- . --- -- 111--- .---

FFfFFFfFFFFFFFF 000000000 RRRRRRRRRRRR
FFF 000 000 RRR RRR FH-------·----·--------ooci . -'---'''-' OOO·--·--RRfC--------------k-RR-------·-
FFF 000 000 RRR RRR
FFF 000 000 RRR RRR
FFF 000 000 RRR" ~ RRR
FfF 000 000 RRR RRR
FFFFFFFFFFFF 000 000 RRRRRRRRRRRR
FFFFFFFFFFFF---'- --------- 000 ----.--. OOO------·RRRRRRRRRRRR
FfFFFFfFFFFF 000 000 RRRRRRRRRRRR
FFF 000 000 RRR RHR
FfF 000 000 .RRR RRR
FFF 000 000 RRR RRR
FFF 000 000 RRR RRR •••••• FFF--------- --- ood .--.- --- ---omj-------- RRR RRR- .-----. -.-----.--.--.- ---.
FFF 000 000 RRR RRR
FFF 000000000 RRR RRR

Ul
111111

-THIH
111111

111
111
111
111 ----1 n----------·-·-----------.. --------·
111
111
111--'-
111
111 -----11[--- ----- -_ .. __ . __ ._------- ---._----

9 FFFOOOOOOoou RRR RRR'
111

111111111
111111111
111111111 § FFF 000000000 RRR RRR

OQ
CD

.....
---.. - -~--..... ----... - - ._------- ---- -------------

*STAl<T*Job FSPOl Req #244& tor E00018 Date 12':'May-8l1fi-45:42-Monitor:SANDERSASSOCIATES INC~~ TOPS-20 Monitor *STlRT*
File DSKB:<EDD018>TEST2D.FOR.l , created: 20-Feb-81 10:30:39, printed: 12-May-81 11:48:06

t-xj ~obe~e<!lIletf!!'s: J~e'1ues!.H~~ttld;12~Hay-81 11 ;19.t19 r~9.tl_JtDIH.:_nQ __ . fQ!:m~JNO,RM~1 __ !£,t:.QW!!t~QI1.L _______________ . __ ___ ..
~ File parameters: COpy: 1 of 1 Spacing:SINGLE File format:ASCII Peint mode:ASCII

t:I:j
00

l.l
::r'
§

OQ
CD

I-'

C
C

C

Mhtlt<.HN ----

.,

DIMENSION IARRAY(3),ARRAV(12)
DIMENSION IOUTB(50),INB(10),IEVENT(15~),LAMPA(4,2)
DIMENSIOU IMARK(256),LPAGES(256),IPEVNT(2),IBNK(B),IPBNK(4)
DIME~SION IUPED(4),IPEDA(4),IUSL(4),LDZS(4),LDZSA(4)
COMMON /TERMS/ IOUTB,INB,IFAC,IUNIT,IEVENT,LAMPA,IPEVNT,INIF1C
COMMON /PVMD/ ILXP,IHXP,ILVP,IHYP,IBFPTR,IRL,LBFPTH,LRL,IPFLAG
COMMON /COORD/ XLO~,XHI,YLOW,YHI,IXB,IYB,IADR,IOPT,INDH
COMMON ILAVOTI LPAGES,IMARK,IPAGEC,LOCK,MAXPAG,HODE
COMMOIi NlAS!/ JERRI, LDZS,LDZSA·
COMMON IPEFI?H/ IPBNK,IUPED,IPEDA,IUSL
COMMLN IL~E~I IBNK,ICBANK,ISBANK,ISWORD
DATA IARRAV/1CCO,lOOO,lOOOI
CALL GSS4(5,O,2)
CALL LAVUUT(3,IARRAV)
CALL SCALE(O.~O.,200.,200.r·
CALL ADDRFF(2)
CALL CC2DBL

C DRAW A CUBE 50 UNITS ON A SIDE WItH CENTER IT (lOO,lOO,45}
C

C

5
2 .

6

600

10('
701

CALL MOVE2D(15.~15.,O)
CALL DRAW2D(50.,D.,l)
CALL DRAW2D(O.,50.,1)
CALL DR1~2DC-50.,O.,1)
CALL DHAW2D(O.,-50.,1)
CALL MOVE2D(90.,lOO.,O)

. CALL SETEXTC-2D TE-~5)
ANGLE=n.
RAD=lBn./3~14159~65
CALL AOORH(3)
CALL ERASEP
CALL ADDREf(1)
CALL PICTUR(3)
CALL ADDREf(2)
CALL MOVE2D(lOD.,lOO.,D)
CALL T2020(2,3)" ..
IPNT=O
DO 2 1=1,1
A.R~AV(I)=;j.

ARRAY (3)=1
ARRH(4)=1
CALL BENTO)
If(I .NE. 4) GO TO 6
CALL GETKEY(I,IKEV)
IKEY=IKEY-16 . - .
IFCIK£Y .EQ. 0) GO TO 99
GO TO (99,200,3vO,400,500,600,700,800),IKEY
IPNT=IPNT-l _. -.
GO TO 10
IPNT=IPNT+l
ARRAY (3):::IPNT
ARRA V(4)=IP~T
CALL ~TPX2DCARRAV)
CALL T2020(2,3)
GO TG 5
GO 'to 6

(")

::r'
§

OQ
CD

t-'

t:t:j
\0

C
C
200

210

220

230

240

CHANGES THE SCALING FROM 1 TO_JL50LJ1~ __ ,'t()_2Q.L~l!._Eg;J~I...?L1'.U-

00 216 J=1,5C
X=l.(}/J
Af/RAV(3)=X
ARHAY(4}=X
CALL ~TRX2D(APRAY)
CALL T2D21}(2,3)
DO 22(; J=SJ,l,-l
X=1.~!/J

'ARItA'i(3)=X
ARRAY(4)=X
CALL MTRX2D(ARRAY)
CALL T202D(2,3) , ,
DO 230 J=1,50
X=J
AR RA Y (3)=X ------- ------
IRl<AY(4)=X
CALL MTRX2D(ARRAY)
CALL T2D2D(2,3} ,
DO 240 J=50,1,-1
X=J --- -- A-RRAV (3) =x"--------- ----
ARRAY (4)=X
CALL MTRX2D(ARRAY)
CALL T2020(2,3)
GO TO 5

C
t TRA.NSLATESTHf-O-BJEC T FIRST- LEFT-' ND- RIGHT- I NTHEl(iHRECfION,
C THEN UP AND OO~N IN THE Y DIRECTION, AND LASTLY BACK ANO FORTH
C IN THE Z DIRECTION

C
_~()_O

310

320

330

C
C
C

DO 330 J=1,2
ARRAY(1);"()~
ARRAV(2)=(,.
DO 31e I=t,-80,-2
ARRAY(J)=I
CALL MTRX20(ARHAY)
CALL T2D2D(2,3)
DO 32t I=-BO,86~2
ARRAY(J)=I
CALL MTRX20(ARRAY)
CALL 12020(2,3) ,
DO 33C; 1=80,0,-2
ARRAY (J)=1
CkLC MTRX20(Arm-AV)
CALL T202D(2,3)
GO TO 5

ROTATE THE OBJECT AROUND ITS CENTER

"._" -"-_ .. _-"-----"--

-_ .. _----- -_ .. _"_. -- ----_._-_._ .. _--_.--...... _-

400--- ----" ._. -- -- ----_._ __ __ ._-----_ .. _---- ... _- ... ------_ ... _--------._-
IRHA'i (1)={;.
ARfiAY(2)=C.
ARkAY(6)=C.
AKiO,Y(7)=(:.
DO 41(; J=C,36G,2
_~ p k ~ V (:;) =J I R A 0

--.-----

I':!j
I-'
o

(")

P'
§

OQ
(1)

I-'

410

c

CALL T2D2O(2,3)
GO TO S

C SC~LE THE CUBE HY A FACTOR OF 1/4, ROTATE IT AROUND THE X-AXIS
C RFLITIVE TO ITS C£NT~R WHILE MOVING THE ENTIRE CUBE IN A
C··· CI·RCULAI<MO'l'IUN HOUND TilE CENTER OF-THE SCREEN .-- -- .. -- - -.-------

C
500 AxkAV(1)=C:.

A R R A'l (2) =u •
ARRAV(3)=.25
ARf<AV(4)=.25
ARiUY(6)=ll.
ARIUiY (7) =(1.
DO 51(; J=\),36C
HIETA=J/RAD
THETA2=(J*2.}/RAD
ARRAY(5)=THE1'A2 .. ARRAY (6)=100~ *C OS(Ttl ETA)-.--.. --.- --- .. - -- - -.- ----------.. --.... --... -- .-

ARHAV(1)=lQO.*SIN(TtiETA)
CALL MTRX20(ARRAV)

510 CALL T2020(2,3) -
GO TO 5 .

C
C--CHAriGE-·fliE·VIEWBOX FfRST--BY-COMPRESSING THE X CLIPPING-BOliNOARY,
C THEN THE Y, AND LASTLY THE Z

C
600

. .~

610

V L=I).
VR=150.
VB=Ci. . ..
VT=150.
ARHA-H3)=4.
ARRlV(4)=4.
CALL MTRX20(ARRAY)
DO 610i=o198,2 . .. V L = 1- . -. -- -. -- -- -.- ---

VR=150.-!
CALL VI2DDX(VL,VR,VB,VT)
CALL T2D2D(2,3) . -.
DO 620 I=98,CI,-2
VL=!.

---------VR=150. -1

620

630

640

C

CALL VI2DBX(VL,VR,Vn,VT)
CALL T2020(2,3)
DO 630 1=0,96,2
VB=!
VT=15().-I
CALL VI20BX(VL,VR,VB,V~)
CALL T202D(2,3)
00 640 1=98,0,-2
VB=I .
VT=15C.-I
CALL VI20BX(VL,VR,VB,VT)
C H L . T 2 02 D(2 ~ ~) -: ----- - -------

GO TO 5

C END THE P~OGRAM
C
99 CALL THERMO

... --------.--

-~.----.--.--.-.. ---_.

----_._----

.---------_._----- _ .. _--------._._-... _----_.---

Name: __________________________________ _

Company~: ____________________________ ___

Address :, ________________________________ _

Telephone:,_[___ --.::.-J ___________________________ _

Date:, __________________________________ __

Description of problem (or suggestion for improvement):

Sanders Equ ipment. _______________________ _

Part Number _________________ _

Software/Firmware System ________________ _

Version __________________________ _

Host computer ___________________________ __

Host operating system _________ Version _____ __

Host-GRAPHIC 7 interface ______________ _

My problem is: hardware 0 software 0

firmware 0 manual 0

Related tech manual number ___________________ _

FOLD

FOLD

THE INTENT AND PURPOSE OF THIS PUBLICATION IS TO PROVIDE ACCURATE
AND MEANINGFUL INFORMATION TO SUPPORT EQUIPMENT MANUFACTURED
BY SANDERS ASSOCIATES, INC. YOUR COMMENTS AND SUGGESTIONS ARE
ReQUESTED.

PLEASE USE THE FORM ON THE REVERSE SIDE TO REPORT ANY PROBLEMS
YOU HAVE HAD WITH THIS PUBLICATION OR THE EQUIPMENT IT DESCRIBES.

FOLD

111111 FIRST CLASS
PERMIT NO. 568
NASHUA. N.H.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by

Sanders Associates, Inc.
Information Products Division
Daniel Webster Highway South
Nashua, New Hampshire 03061

ATTN: DEPARTMENT 1-2894 (NHQ 1-447)

'P!SANDERS

FOLD

