H-79-0350

™

S\yoln

COMPUTER GRAPHICS
DISPLAY SYSTEM

MODEL 5753 2-D/3-D
COORDINATE CONVERTER
USER’S MANUAL

Information Products Division
Federal Systems Group

SAN DEHS Daniel Webster Highway, South — Nashua, New Hampshire 03061

Copyright 1980, Sanders Associates, Inc.
GRAPHIC 7 is a trademark of Sanders Associates, Inc.

H-79-0350.

™

rE\on

CDMPUTER GRAPHICS
DISPLAY SYSTEM

'MODEL 5753 2-D/3-D
COORDINATE CONVERTER
USER’S MANUAL

Information Products Division
Federal Systems Group

-SANDEHS Daniel Webster Highway, South — Nashua, New Hampshlre 03061

Copynght 1980 Sanders Assoclates Inc. .
GRAPHIC 7 is a trademark of Sanders Associates, Inc.

Sanders Associates, Inc., reserves the right to modify the products described
in this manual and to make corrections or alterations to this

without notice.

First Edition
Reprint
Reprint
-Reprint
Reprint

Reprint

May 1980

June 1980

October 1980

March 1981

July 1981 - Change 1
October 1981

manual at any time

.—‘4,;_ o

-

'

e - —_—

R

RECORD OF CHANGES

CHANGE NO.

DATE

TITLE OR BRIEF
DESCRIPTION

ENTERED BY

June 81

Adds 2D programming

TABLE OF CONTENTS

Paragraph

—
.

Operational Modes

Operational Modes
Coordinates

Eye Position

Coordinate Transformation
Homogeneous Mode
Perspective

Clipping

Refresh Generation

Pen Mode

NMNNMNMNMNMDDNMNDNNDNMNDDNDN
.

L]
OOV~ WN -

Coordinate Converter Instrustions
Operand Addressing

Refresh Control Instructions
Sequence Control Instructions
Parameter Instructions

Wwwwww
. e e

.
SN =

~

Graphic Controller Instructions

Coordinate Converter Registers

9,1
.

(@)}
.

Interrupts

Instruction Usage

Numbering System

Matrix Operations

Translation

Scaling

Rotation

Matrix Concatenation

Sample Image File Converting a Cube

NN NN NN
L] - e
NoupwbdheE—

Associated GCP+ Instructions

Programming the 2-D/3-D Coordinate Converter
FSP 3D Coordinate Converter Programming

FSP 2D Coordinate Converter Programming

¢ e

o0 00 00 o
L]
wWN =

Appendix A

CCBLK Matrix Element Definitions

Appendix B

CCBLK Format

Change 1

— e
1 &)
—

(0]

—H OO WN =

= N s e
o o

e (9,1 B~
1 1 1
— — —

NN N N N NN
O UTWNN P

| 11
= Ul e
w

oo o 00 o

ii

TABLE OF CONTENTS (cont)
Paragraph

Appendix C

Advanced 3D Applications
Appendix D

CC2DBL Matrix Element Definitions
Appendix E
CC2DBL Format

Appendix F

FSP Sample Programs - 2D/3D

Change 1

Page

~ o~

SECTION 1
INTRODUCTION
This User's Manual describes the operational modes of the Model 5753 2-D/3-D
coordinate converter, its instruction set, its parameter and control registers, and

its interrupts. This manual also describes the use of the 2-D/3-D Coordinate
Converter via the associated GCP+ instructions and FSP subroutines.

1-1/1-2

SECTION 2

OPERATIONAL MODES

The coordinate converter has the following operational modes:

2D or 3D

Homogeneous or non—homogeneous
Normal or PHOTOPEN mode
Clipping or no clipping
Perspective or non—perspective

The desired modes are set in the dimension register. They determine how
the coordinate converter processes the user's image file. Processing takes
place within the coordinate converter in the following order:

Coordinate transformation
Homogeneous conversion (optional)
Perspective generation (optional)
Clipping (optional)

Refresh code generation

2.1 COORDINATES

Object points may be defined in 2D or 3D coordinates, X, Y or X,Y,Z
respectively. - The range of coordinates in X and Y is #32K. The range of
coordinates in Z is 0 to +32K, where 0 is in the same plane as the screen and
positive Z increases with depth into the screen. Thus, the coordinates are
operated upon in a left-handed system. Negative values of Z are not permitted
for coordinates. The range of coordinates in X, Y, and Z define the usable
image space.

Coordinates are expressed in two's complement notation.

2.2 EYE POSITION

When using 3D with perspective, you must specify the observer's eye
position, Xa, Ya, Za. Xa and Ya can range from +32K to -32K. Za ranges from
0 to -32K, where 0 is in the same plane as the screen and Z increases in the
negative sense as you move out of the screen.

PHOTOPEN is a trademark of Sanders Associates, Inc.

2-1

~2=2

2.3 COORDINATE TRANSFORMATION

Coordinate transformation is the concatenation of a coordinate point by a
composite matrix. The composite matrix contains any desired combination of
scaling, rotation, and translation. Its derivation is discussed later.

The form of the actual concatenation is shown below for each operating
mode.

2D Non—homogeneous

‘Eil, YI__] = ECO, Y(ZI Mz My
Mpp Ma2
M3; M3

2D Homogeneous
El’ ¥y, WZ] = Eo, Yo, W(Zl My;p Mpp Mp3
Moj M

22 M3
M31 M3z Mgzjg

3D Non—homogeneous

[X15 Y1, 21] = [%o, Yo, zo] M1 M2 M3
Mpp Mo Mg
M31 M3z M33
Ma1 Mz Mu3|

3D Homogeneous

[g}»‘Yl, Z1, Wi] = E?» Y0, 205 Wé] (Mjp My Mj3 o Mps
Mp1. Mpz2 Mp3z Myy
M3p M3z M3z M3y
My Mao Mgz Mgy

2.4 HOMOGENEOUS MODE

Using homogeneous mode involves an additional coordinate, W, which modifies
the other coordinates of each point. Thus, 2D homogeneous points have 3
coordinates, X, Y, and W; 3D homogeneous points have 4 coordinates, X, Y, Z,
and W. ' R :

Dehomogeneization is the division of W into X, Y, and Z (or just X and Y)
as shown below.

2D

5 v efirm, v/

3D . .

[g, Y, z, @]->1§?w, Y/W, Z/Eﬂ

W is expressed as a fraction with limits:
0.0 <w< 1.0

Therefore, it can be seen that W can be used for scaling. As
W decreases in size, the resulting scaled values are larger.

2.5 PERSPECTIVE

Perspective application is a 3D function in which X and Y coordinate values
are modified as a function of their depth (Z coordinate value) and of the
observer's eye position (X,, Y, Z,).

Figures 2-1 through 2-3 illustrate the relationship between the eye
position, coordinate points, and the screen in 3-D space. In these figures,
two identical 3-dimensional cubes have been set up in 3-D space. X, and Y4
have been set at 0 for simplicity. Zz has been set to an arbitrary value
which places both cubes in the viewable area.

In figure 2-1, the large square represents the viewable area of the screen.
The smaller squares represent the cubes, shown with no perspective
(orthographic projection). Figures 2-2 and 2-3 show the top and right side
views, respectively. The dark line in the center is the actual screen,
situated at Z = 0. The point to the left where the lines converge is the eye
position. The large wedge which extends from the eye position through the ends
of the screen line defines the actual viewable area. Any coordinate points
which are within this wedge and to the right of the screen (positive Z) can be
viewed from the defined eye position. Each viewable coordinate point can be
mapped onto the screen at the intersection of the screen and the line which

extends from the eye position to the coordinate point.

Figure 2-4 shows the result of this mapping. It shows the same objects as
figure 2-1 with perspective, as seen from the eye position.

The coordinate converter, when operating in perspective mode, automatically
performs the mapping between the 3—-dimensional viewing area as seen from the
user defined eye position and the 2-dimensional screen.

_—

Figure 2-1

2-5

Fig 2-2

2-6

Figure 2-4

2=8

2.6 CLIPPING

Clipping is a coordinate converter function which eliminates graphic data
that falls outside a user—definable 2D or 3D box. The clipping box or viewbox
is defined in terms of six boundary planes (four for 2D): left, right, top,
bottom, near and far (Lv, Rv, Tv, Bv, Nv, Fv). Vectors that are totally
outside the clipping box are rejected. Vectors which cross a clipping boundary
are clipped; that is, the portion of the vector which falls outside of the
clipping box is eliminated. When using perspective, coordinate points are
modified for perspective before comparison to the clipping boundaries. That
is, the user—defined viewbox is defined with perspective already applied.
Characters drawn with graphic controller instructions are also clipped.
However, vectors drawn with graphic controller instructions are not clipped.

2.7 REFRESH GENERATION

The coordinate converter translates certain 3D instructions into refresh
code recognizable by the graphic controller. Prior to this translation, you
must specify where the refresh code is to be placed in memory. Note that the
refresh code cannot cross a 32K word boundary. The lower 16 bits of the
starting address should be placed in the refresh address register. The upper 2
bits (which specify the 32K block number) should be placed in bits 9 and 8 of
the block register. :

If you want to partition refresh memory into blocks, then you should place
the address of the end of the block in the refresh limit register. The refresh
used-up bit in the mask register should also be enabled. When the coordinate
converter reaches the end of the block while generating refresh code, it sets
the refresh used—up bit in the status register and halts. This causes a
refresh used-up interrupt to be sent to the display processor. In response to
this interrupt, you should write the starting address of the next block into
the refresh address register and the ending address of the new block into the
refresh limit register. You should then access the continue register to
restart the coordinate converter. The coordinate converter then inserts a
graphic controller relative jump instruction into the previous refresh block to
provide the linkage to the new refresh block. It then continues processing as
before.

2-10

2.8 PEN MODE

Pen mode is used to associate a word of refresh code, which was previously
generated by the coordinate converter, to the coordinate converter instruction
which was translated into that word of refresh code. This feature can be used
in conjunction with a PHOTOPEN to relate a displayed vector to the coordinate
converter instruction which generated it.

Before starting a pen mode search, it is necessary to set the PHOTOPEN
match bit in the mask register and to load the PHOTOPEN strike address register
with the address of the word of refresh code to search for. Except for setting
the pen mode bit in the dimension register, the image file should appear
exactly as it did when the target refresh word was actually generated.

Pen mode processing differs from normal mode processing in the following
way. Instead of writing refresh code into memory, the coordinate converter
compares the address of the location where it would normally write each word of
refresh to the contents of the PHOTOPEN strike address register. When a match
occurs, the coordinate converter sets the PHOTOPEN match bit in the status
register, which causes an interrupt to be sent to the display processor.

In response to this interrupt, you should read the program counter to
determine the address in the image file where the match occurred. Note that
the program counter has already been updated by 2 bytes at this point.

If refresh memory has been partitioned into blocks, you will not receive
any refresh used—-up interrupts. The coordinate converter will go from block to
block by reading the jump relative instruction which has previously been
inserted at the end of each block. Note that refresh blocks must have a
uniform size.

SECTION 3

COORDINATE CONVERTER INSTRUCTIONS

The coordinate converter instruction set consists of 41 unique instructions
plus all of the existing graphic controller instructions. The unique
instructions comprise three basic categories: refresh control instructions,
sequence control instructions, and parameter instructions. Refresh control
instructions define the object to be converted and translated into refresh
code. Sequence control instructions specify the sequence of program execution
by using jumps and calls. Parameter instructions allow modification of
variables which affect the operation of the coordinate converter.

3.1 OPERAND ADDRESSING

Most of the refresh control and parameter instructions can be used with
three different addressing modes: immediate, deferred, and deferred relative.
When using immediate mode, instruction operands follow directly in line after
the instruction op code. With deferred mode, the contents of the word
following the op code is the address of the first operand. Any additional
operands follow the first in consecutive words. With deferred relative mode,
the contents of the word following the op code is the relative address of the
first operand. This relative address is added to the program counter (which
has been updated and now contains the address of the instruction op code plus 4
bytes) and the result is used to address the operand. Both deferred and
deferred relative addresses must be in even bytes. 1In the deferred cases,
after the operands have been loaded, the next instruction is fetched from the
word following the word containing the deferred address.

3.2 REFRESH CONTROL INSTRUCTIONS

Refresh control instructions consist of moves and draws which define the
image to be transformed by the matrix parameters and translated into graphic
controller refresh code.

The moves and draws define points through coordinate blocks which vary in
length from 2 to 4 words, made up of X,Y,Z, and W coordinates, Z and W being
optional depending on the dimension (2D/3D, homogeneous/non—homogeneous). The
actual coordinates can be in terms of absolute or relative position. Each move
and draw instruction is available in all three addressing modes.

When clipping is enabled, several differences can be noted about moves and
draws. For points which are outside the clipping window, refresh code
generation is inhibited. For vectors which cross clipping boundaries, refresh
code is generated to account for boundary point intersections.

AMV3 MOVE ABSOLUTE Octal Code: 006404
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O 2D 3D
olo o of1 1 0oft 0oo0fjoo0ofto0o0]f |vuln va|n
X coordinate X |X X IX
Y coordinate X | X X |IX
Z coordinate | X 1 X
W coordinate _ X X

The AMV3 instruction converts the point, defined by the variable length
coordinate block, through the transformation defined by the previously loaded
matrix parameters. The converted point is then translated into the following
refresh code and loaded into memory at the-location specified by the refresh
register.

LDXA ‘ Load X absolute

MVYA Move Y absolute

i Gen R sty g ——

AMD3 MOVE ABSOLUTE DEFERRED Octal Code: 006444

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0] 0 0 O 1 101 0 O0}j1 0 01 O O

Address of coordinate block

Same as AMV3 except that second word of instruction is pointer to variable
length coordinate block.

AMDR MOVE ABSOLUTE DEFERRED RELATIVE Octal Code: 006464

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o0j o0 0 O 1 1 0f1- 0 0}J1 1 O0j1 O O

Relative address of coordinate block

Same as AMV3 except that second word of instruction is relative address of
variable length coordinate block.

- RMV3 MOVE RELATIVE Octal Code: 006405
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O 2D 3D
0 0 0 0 1 1 0J]1 0 010 O O}1 0 1 N-H|H ||N-H| H
X coordinate X | X X | X
Y coordinate X | X X | X
'~ Z coordinate X | X
W coordinate X X

The RMV3 instruction adds the relative coordinates, defined by the variable
length coordinate block, to the last defined point and converts the result
through the transformation defined by the previously loaded matrix parameters.
The converted point is then translated into the following refresh code and
loaded into memory at the location specified by the refresh address register.

LDXA Load X absolute

MVYA Move Y absolute

3-3

RMD3 MOVE RELATIVE DEFERRED Octal Code: 006445

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

of 0o 0 0|1 1 0f1 0 Of1 O Of1 O 1

Address of coordinate block

Same as RMV3 except that second word of instruction is pointer to variable
length coordinate block.

RMDR MOVE RELATIVE DEFERRED RELATIVE Octal Code: 006465

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

of 0o 0 O0]1 1 01 0 0ojJ1 1 Ol O 1

Relative address of coordinate block

Same as RMV3 except that second word of instruction is relative address of
variable length coordinate block.

ADR3 DRAW ABSOLUTE Octal Code: 006406
15 14 13 ‘12 il 10 9 8 7 6 5 4 3 2 1 O 2D 3D
olo o of1 1 o0fl1 0 o0f0 0 0|1 1 0 N-H |H ||N-H | &
X coordinaté X X- X | X
Y coordinate - X |X X | X
Z coordinate X | X
W coordinate . X X

The ADR3 instruction converts the point, defined by the variable length
coordinate block, through the transformation defined by the previously loaded
matrix parameters. The converted point is then translated into the following
refresh code and loaded into memory at the location specified by the refresh
address register.

LDXA Load X absolute

DRYA Draw Y absolute

3-4

-

AR

ADD3 DRAW ABSOLUTE DEFERRED Octal Code: 006446

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

00 O 01 1 01 0 01 0 O]J1 1 O

Address of coordinate block

Same as ADR3 except. that second word of instruction is pointer to variable
length coordinate block.

ADDR DRAW ABSOLUTE DEFERRED RELATIVE Octal Code: 006466

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0o 0 071 1 oj1 0 0|1 1 Of1 1 O

Relative address of coordinate block

Same as ADR3 except that second word of instruction is relative address of
variable length coordinate block.

RDR3 ' DRAW RELATIVE Octal Code: 006407
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O 2D 3D
010 0 0} 1 1 0;1 0 0jO0 O Of1 1 1] |N-H|H ||N-H]|H
X coordinate / X | X X | X
Y coordinate _ X | X X I X
Z éoordinate ’ . X | X
W coordinate ‘ X X

The RDR3 instruction adds the relative coordinates, defined by the variable
length coordinate block to the last defined point and converts the result
through the transformation defined by the previously loaded matrix parameters.
The converted point is then translated into the following refresh code and
loaded into memory at the location specified by the refresh address register.

LDXA Load X absolute

DRYA Draw Y absolute

3-5

3-6

RDD3 DRAW RELATIVE DEFERRED Octal Code: 006447

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0y 0 0 0] 1 1 0j1 0 Oj1 O O11 1 1

Address of coordinate block

Same as RDR3 except that second word of instruction is pointer to variable
length coordinate block.

RDDR DRAW RELATIVE DEFERRED RELATIVE Octal Code: 006467

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ofo0 o o001 1 O0|J1 0 011 1 Of1 1 1

Relative address of coordinate block

Same as RDR3 except that second word of instruction is relative address of
variable length coordinate block.

3.3 SEQUENCE CONTROL INSTRUCTIONS

These instructions are used to unconditionally control the sequence of
program execution by the coordinate conveter.

JP3A JUMP ABSOLUTE Octal Code: 006416

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0y 0 0 O 1 1 0oy1 0 O0fO0 O 1|1 1 O

Jump address

JP3A is a 2-word instruction which transfers program control to the
absolute address specified in the second word of the instruction.

JP3R V JUMP RELATIVE Octal Code: 006436

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0} 0 O 0 1 1 of1 0 0fO0 1 1{1 1 O

Jump increment

JP3R is a 2-word instruction which transfers program control to a relative
memory location. The content of the second word of the instruction is added to
the program counter, which is pointing to the address following the jump
increment. The result is then used as the address of the next instruction to
be executed.

3-7

3-8

CL3A CALL SUBROUTINE ABSOLUTE Octal Code: 006415

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 O 071 1 0f1 0 00 O 1}1 0 1

Subroutine address

CL3A is a 2-word instruction which calls a subroutine whose address is
specified by the second word of the instruction. When the instruction is
executed, the content of the program counter (which is pointing to the address
following the location of the subroutine address) is pushed onto the coordinate
converter stack. This saves the address of the instruction to be executed
following completion of the subroutine. The content of the second word of the
instruction is then loaded into the program counter and used as the address of
the next instruction to be executed.

CL3R CALL SUBROUTINE RELATIVE Octal Code: 006435

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0] 0 0 O 1 1 0f1 0 O0f0O0 1 11 O 1

Subroutine increment

CL3R is a 2-word instruction which calls a subroutine from a relative
memory location. When the instruction is executed, the content of the program
counter (which points to the address following the location of the subroutine
increment) is pushed onto the coordinate converter stack. This saves the
address of the instruction to be executed following completion of the
subroutine. The content of the second word of the instruction is then added to
the program counter and the result is used as the address of the next
instruction to be executed.

RTN3 RETURN Octal Code: 006420

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o0 O O0]1 1 of1r o 0fj0 1 010 O O

RTN3 is normally the last instruction of a subroutine and causes
program control to return to the calling program. When the instruction is
executed, the content of the location pointed to by the coordinate converter
stack pointer is popped from the stack, loaded into the program counter, and
used as the address of the next instruction to be executed.

NOP3 NO OPERATION Octal Code: 006400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ol o o ol1 1 0|1 0 olo o ofo 0 o

NOP3 is generally a filler instruction which does not perform any action.

HLT3 HALT . Octal Code: 006422

<2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

of o0 o0 o0]1 1 0j1 0 0JO 1 010 1 O

The HLT3 instruction should always be the last instruction in the image
file. It causes the coordinate converter to set the halt bit in the status
register before going into the halt state. This also causes a halt interrupt
to be sent to the display processor, if enabled.

O U

3.4 PARAMETER INSTRUCTIONS

Parameter instructions are used to establish or change various parameters
which affect the operation of the coordinate converter. Note that all of these
parameters can also be modified using display processor instructions to write
to the individual parameter registers (see Section 5).

With the exception of LSP3, all of these parameter instructions are
available in all three addressing modes. In each instruction the associated
parameters are loaded into the indicated coordinate converter registers. See
Section 5 for descriptions of the individual registers and their usage.

LSP3 LOAD STACK POINTER® Octal Code: 006421

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ofo o0 oOof1 1 Of1 0 O0jO 1 0O0}J0 O 1

Stack address -

The second word of the instruction is loaded into the coordinate converter
stack pointer.

LBOX LOAD VIEWBOX PARAMETERS Octal Code: 006401

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0O o0 O 1 1 0f1 0 0J0 O O}0 O 1 -2—D 3-D 3-D
No Persp.
Persp.
Lv X X X
Bv X X X
Nv X X
Rv X X X
Tv _ X X X
Fv X X
Xa) X
Ya X
Za : X

LBOX is used to set the viewbox boundaries (Lv,Bv,Nv,Rv,Tv,Fv) which are
used in clipping, and to set the viewing point (Xa,Ya,Za) which is used in
generating perspective. The parameter block varies in length from 4 to 9 words
as shown above, depending on the currently established dimension (2D/3D,
perspective/no perspective).

3-11

3-12

LBXD LOAD VIEWBOX PARAMETERS DEFERRED Octal Code: 006441

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0} 1 1 0j1 0 0|1 O O0}J]0 O 1

Address of paramefer block

Same as LBOX except that second word of instruction contains pointer to

~variable length parameter block.

LBDR LOAD VIEWBOX PARAMETERS DEFERRED RELATIVE Octal Code: 006461

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 o0} 1 1 0j1 0 0}j1 1 0]O0 0O 1

Relative address of arameter block

Same as LBOX except that second word of instruction is the relative address
of variable length parameter block.

LMTX LOAD MATRIX PARAMETERS Octal Code: 006402

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2D 3D

0{0 O Of1 1 Ofl1L 0 0[O0 O OO 1 O N-H|H ||N-H | H
M;g ’ X [X |l X |X
Mj2 X | X || X |X
M]3 X Il X |X
M]4 X
My X | X || X |X
Myo ' X : X || X |Xx
Ms3 X il x | X
Moy | X
M3 : | X [X || X |X
M3) X [X || X |X
M33 ‘x X | X
M34 | X
My ' ' X | X
M4 ‘ X I X
M43 ' X [X
Ma4 X

NOTE

See Section 7.1 for the range of values
for elements in the composite matrix.

3-13

3-14

IMTX is used to load the matrix parameters to be used in the coordinate
transformations. The parameter block varies in length from 6 to 16 words,
depending on the currently established dimension (2D/3D homogeneous/
non—-homogeneous).

The parameters specified occupy locations within a 4 x 4 matrix as shown
below:

Myp Mp2 Mp3 Mpg4
Ma1 M2 Mp3 Mp4

M31 M3z M33 M3y

Mp1 Mgo Myz Mgy

s

LMXD LOAD MATRIX PARAMETERS DEFERRED Octal Code: 006442

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0}) 0 0 0] 1 1 0y1 0 O0f1 O 1]0 1 O

Address of parameter block

Same as LMTX except that second word of instruction is a pointer to
variable length parameter block.

LMDR LOAD MATRIX PARAMETERS DEFERRED RELATIVE Octal Code:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o0 0 O 1 1 011 0 Of1 1 0|0 1 O

Relative address of parameter block

006462

Same as LMTX except that second word of instruction is relative address of
variable length parameter block.

Octal Code:

LREF LOAD REFRESH ADDRESS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0y 0 0 O 1 1 0j1 0 0}JO0 O 10 O O

Refresh address

Loads second word of instruction into refresh address register.

006410

3-15

LRFD LOAD REFRESH ADDRESS DEFERRED Octal Code: 006450

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0] 0 O 0] 1 1 01 0 O0y1 0 110 O O

Address of refresh address

Same as LREF except that second word of instruction is pointer to
parameter.

LRDR LOAD REFRESH ADDRESS DEFERRED RELATIVE Octal Code: 006470

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0y 0 0 0] 1 1 0}j1 0 0O0fj1 1 110 0 O

Relative address of refresh address

Same as LREF except that second word of instruction is relative address of

parameter.

3-16

NN Lameem R e

LWSC LOAD W—-SCALE Octal Code: 006414

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0] 60 0 O 1 1 0f1 0 0fO0O O 1|1 O O

W-scale

Loads second word of instruction into W—-scale register.

LWSD LOAD W—-SCALE DEFERRED Octal Code: 006454

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0p 0 0 O 1 1 0j1 0 O0yJ1 O 1}1 O O

Address of W—-scale

Same as LWSC except that second word of instruction is pointer to
parameter.

3-17

LWDR LOAD W-SCALE DEFERRED RELATIVE Octal Code: 006474

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0y 0 0 011 1 01 0 O0J1 1 111 O O

Relative address of W-scale

Same as LWSC except that second word of instruction is relative address of
parameter.

LLIM LOAD REFRESH LIMIT ADDRESS Octal Code: 006411

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0l 60 0 0] 1 1 01 0 00 O 10 0 1

Refresh limit address

Loads second word of instruction into refresh limit register.

3-18

e R e T e e . D O]

””ﬂmmﬁ

LLMD LOAD REFRESH LIMIT ADDRESS DEFERRED Octal Code: 006451

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0f0 0 O 1 1 0j1 0 01 O 1|0 O 1

Address of refresh limit address

Same as LLIM except that second word of instruction is pointer to
parameter.

LLDR LOAD REFRESH LIMIT ADDRESS DEFERRED RELATIVE Octal Code: 006471

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0] 0 0 O 1 1 o1 0 0Ofj1 1 1J0 0 1

Relative address of refresh limit address

Same as LLIM except that second word of instruction is relative address of

parameter.

3-19 -

3-20

LMSK LOAD MASK REGISTER Octal Code: 006412

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 O 1 1 0y1 0 0|0 O 10 1 O

Mask bits

Loads the second word of the instruction into the mask register.

LMKD LOAD MASK REGISTER DEFERRED Octal Code: 006452

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 O 0] 1 1 011 0 Of1 0 1(0 1 O

Address of mask bits

Same as LMSK except that second word of instruction is pointer to
parameter. ’

L e e e e e e T T —

Octal code:

LKDR LOAD MASK REGISTER DEFERRED RELATIVE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0] 0 0 O 1 1 0j1 0 0y1 1 1]0 1 O

Relative address of mask bits

Same as LMSK except that second word of instruction is relative address of

parameter.

LDIM

15 14 13 12 11 10 9 8 7 6.5 4 3 2 1 0

LOAD DIMENSION INFORMATION

Octal Code:‘ 006413

0

0

0

01 1 1 0f1 0 00 ©

1

0

1

1

Dimension Information

Loads second word of instruction into dimension register.

3-21

3-22 .

LDMD LOAD DIMENSION INFORMATION DEFERRED Octal Code: 006453

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0f 0 0 o0} 1 1 01 0 .01 0 1{0 1 1

Address of dimension information

Same as LDIM except that second word of instruction is pointer to
parameter.

LDDR LOAD DIMENSION INFORMATION DEFERRED RELATIVE Octal Code: 006473

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0y 0 0 o0} 1 1 0j1 0 O0fj1-1 10 1 1

Relative address of dimension information

Same as LDIM except that second word of instruction is relative address of
parameter. :

oman, g p— —— — — P — —

SECTION 4

GRAPHIC CONTROLLER INSTRUCTIONS

Any standard graphic controller instructions can be inserted in line in the
image file. These instructions are generally passed directly through the
coordinate converter and loaded into the refresh file. Note, however, that no
transformations are performed on graphic controller moves and draws. Also, if
clipping is enabled, vectors drawn with graphic controller instructions are not
clipped. However, graphic controller TEXT and CHAR instructions which attempt
to define characters out of the clipping window are clipped.

4=1/4-2

— — — — — ;

SECTION 5

COORDINATE CONVERTER REGISTERS

The coordinate converter contains a number of parameter and control
registers which can be written to or read from via the display processor.

If the coordinate converter is halted, then these registers can be accessed
freely. However, if the coordinate converter is not halted and is executing
instructions, accessing a coordinate converter register may cause a bus
time-out which will in turn cause an interrupt to the display processor. This
occurs because when the coordinate converter is running, it only responds to
register accesses for a brief interval before fetching the next instruction.
The average time between instruction fetches is several times longer than the
interval that defines a bus time-out. Therefore, be certain that the
coordinate converter has halted before doing any register accesses.

You can access the stop register (the stop register is the only register
that can be accessed at any time) and wait for a stop interrupt to occur. It
is then safe to access registers and, if you want, the coordinate converter can
be re—started by accessing the continue register.

Three of these registers, INZ, CNT, and STOP, are not actually physical
registers. However, accessing these registers (either reading or writing)
causes the coordinate converter to perform an action. The remainder of the
registers are 16 bits long.

5-2

REGISTER

MATRIX PARAMETERS REGISTERS 4

VIEWBOX PARAMETERS REGISTERS

s

PERSPECTIVE PARAMETERS REGISTERS{ Ya

W-SCALE REGISTER

REFRESH ADDRESS REGISTER
REFRESH LIMIT REGISTER
BLOCK REGISTER

DIMENSION REGISTER

PHOTOPEN STRIKE ADDRESS REGISTER

(M1l
M12
M13
M14
M21
M22
M23
M24

M31
M32
M33
M34
M41
M42
M43

\. M&44

WSR

LIM
BLK
DIM

STR

MEMORY ADDRESS

172500
172502
172504
172506
172510
172512
172514
172516

172520
172522
172524
172526
172530
172532
172534
172536

172540
172542
172544
172546
172550
172552
172554
172556
172560
172564
172566
172570
172572
172574

172600

REGISTER

CC INSTRUCTION REGISTER

CC PROGRAM COUNTER

INCOMING POINT REGISTERS

MASK REGISTER

STATUS REGISTER

STACK POINTER REGISTER
INITIALIZE REGISTER
CONTINUE REGISTER

STOP REGISTER

CIR
CPC
XIN
YIN
ZIN
WIN
MSK
STAT
STP
INZ
CNT

STOP

MEMORY ADDRESS

172602
172604
172606
172610
172612
172614
172616
172620
172622
172624
172626

172630

MATRIX PARAMETER REGISTERS

M1l through M44

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

Feims, —

The 16 matrix parameter registers contain the elements of the composite

matrix used in the coordinate transformation which are generally loaded with a
ILMAT instruction.

The parameters occupy locations within a 4 x 4 matrix as shown below:
[Mp1 M2 Mj3 Mp4 | NOTE

Mpp Mpp Mp3 Moy
M31 M32 M33 M3q

See Section 7.1 for the
range of values for elements
in the composite matrix.

My1 My Mu3 Mgy

-

The actual parameters used vary with dimension (2D/3D,

homogeneous/non-homogeneous) as shown below:

2D 3D

N-H N-H| H
M11 X |1 X
M12 X
M13 X
Ml4 X
M21 X X | X
M22 X X
M23 X | X
M24 X
M31 X X | X
M32 X X | X
M33 X | X
M34 X
M41 X |1 X
M42 X | X
M43 X | X
M44 X

Lv LEFT VIEWBOX BOUNDARY REGISTER

15I 14' 13I 12 l11 lOl 9l 8I 714§

]
1 T 1 T T 1 T

5 L4l 3[2l 1 IO

I L 1 1 I

The Lv register contains the minimum X coordinate value which can be
displayed with clipping. Its range is + 32K.

O

Bv BOTTOM VIEWBOX BOUNDARY REGISTER

15 14 13 12 11,10 9 8 7 6 5 4 3 2 1 0
| 1 | [l | 1 1 1] i] | 1 i 1
1 1 | T 1 | [| 1 1] |]

The Bv register contains the minimum Y coordinate value which can be
displayed with clipping. Its range is + 32K.

Nv NEAR VIEWBOX BOUNDARY REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 .
I 1 1] 1 | | 1 | | | | | | e

The Nv register contains the minimum Z coordinate value which can be
displayed with clipping. Its range is O to + 32K.

5-5

5-6

Rv RIGHT VIEWBOX BOUNDARY REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i

the Rv register contains the maximum X coordinate value which can be
displayed with clipping. Its range is + 32K.

Tv TOP VIEWBOX BOUNDARY REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i i 1

The Tv register contains the maximum Y coordinate value which can be
displayed with clipping. Its range is + 32K.

Fv FAR VIEWBOX BOUNDARY REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0

The Fv register contains the maximum Z coordinate value which can be
displayed with clipping. Its range is O to + 32K.

- “‘

Xa X PERSPECTIVE PARAMETER REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
et —————————

The Xa register contains the X coordinate of the observer's eye position in
viewbox space. Its range is + 32K.

Ya Y PERSPECTIVE PARAMETER REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L]

[H L] | | 1 { | ! 1 1 1
T T T T T T T T T 1 T T T 1 T

The Ya register contains the Y coordinate of the observer's eye position in
viewbox space. Its range is + 32K.

Za Z PERSPECTIVE PARAMETER REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

The Za register contains the Z coordinate of the observer's eye position in
viewbox space. Its range is 0 to -32K.

5-7

5-8

WSR W-SCALE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|] 1 I 1 | | 1 I ! | { I ! !

The WSR register contains the exponent value for W, the fourth coordinate.
W-scale is used in homogeneous mode to modify the W coordinate by multiplying
it by 2 raised to the W-scale power (i.e., W x 2W-scaley 1tg range is +15.

REFRESH ADDRESS REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i f—rt } t I e e e L A L

The RAR register contains the 16 low order address bits where the next word
of refresh code generated by the coordinate converter is to be stored. The two
high order bits are provided by the block register. After each word of refresh
code is written into memory, the RAR is incremented by 2.

LIM REFRESH LIMIT REGISTER /

15141312|11109876'543210
| IR W | [T WIS NN NN NN DN N 1

i
¥ L) L] 1 L] 1 1) 1 I] ¥ 1 T] 1

The LIM register contains the 16 low order address bits of the upper limit
of memory space allocated for the converted refresh code. The two high order
bits are provided by the block register. When an attempt is made by the
coordinate converter to place refresh code at this address, a bit is set in the
status register indicating an error condition and the coordinate converter
halts.

_ I— ——"

‘ 4 - *

P Ve e ——

e R Sw— Semmwy, — "

BLK BLOCK REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The BLK register contains two sets of the two hlgher order address bits
used by the coordinate converter for memory accesses. Block register bits 1
and 0 are used for all source operations which include accesses to the image
file and the coordinate converter stack. Block register bits 9 and 8 are used
for all destination operations involving the refresh file.

DIM DIMENSION REGISTER

15 141312111098765743210

0

Clipping/no-clipping
Pen mode/regular mode
Perspective/non-perspective
2D/3D
Homogeneous/non-homogeneous

The DIM register contains five bits which establish the manner in which
instructions are processed. A 'l' in any bit enables the first function in the
corresponding pair. A '0' enables its complement. For example, a 'l' in bit 6
enables clipping, a '0' enables no—-clipping. Each function is discussed in
Section 2,

5-9

STR PHOTOPEN STRIKE ADDRESS REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
——t—

The STR register contains the 16 low order address bits corresponding to a
word of refresh code to be used in a pen mode search. Pen mode is discussed in

Section 2.

CIR INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 | i

1 1 ! 1 1 !] { i 1 1
Ll 1 Ll ! | 1 ' ! I 1 1 | 1 1 !

The CIR register contains the last instruction which was executed by the
coordinate converter.

CPC PROGRAM COUNTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 |]

The program counter contains the 16 low order address bits of the next
instruction to be executed. As each instruction is fetched from memory, the

program counter is automatically incremented by 2. The coordinate conversion
process is initiated by writing the starting address of the image file into the"

program counter.

e e A p— . et e e

Ji

LA

XIN
YIN INCOMING POINT REGISTERS
ZIN
WIN

15 14 13 12 11 10 9 8 7 6 5 4
i i }] 1

H 1 1 1 1] J
T T T T T T T T T T T 1 1

32 1 0
L 1 1
I ¥

The incoming point registers contain the coordinates of the last point
processed, before transformation. When using absolute moves and draws, the
XIN, YIN, and ZIN registers contain the coordinates loaded in from the
coordinate block of the last instruction. When using relative moves and draws,
the XIN, YIN, and ZIN registers contain the sum of the relative coordinates
loaded in from the coordinate block of the last instruction and the resultant
coordinates of the previous instruction. When using homogeneous mode, the WIN
register contains the homogeneous value loaded in with the last instruction.

5-11

5-12

MSK MASK REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STOP-—-—-———-————-I

PHOTOPEN MATCH—
REFRESH USED UP
HALT
ILLEGAL INSTRUCTION
HOMOGENEOUS CONVERSION OVERFLOW——
TRANSFORMATION OVERFLOW
PERSPECTIVE DIVISION OVERFLOW
Z-CLIPPING HIGH
Y-CLIPPING HIGH
X-CLIPPING HIGH 2
Z-CLIPPING LOW
Y-CLIPPING LOW
X-CLIPPING LOW

The bits of the mask register are used to allow 14 status conditions to
send interrupts to the display processor.- A 'l' .in a mask register bit allows
an interrupt if the corresponding bit in the status register goes true ('1').

A '0' in a mask register bit inhibits an interrupt for the corresponding status
condition.

— M— f——

— A— A al—, —— A— filmtitn, <n¢hn —_y S——

— ma

STAT STATUS REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

STOP-————————-| |

PHOTOPEN MATCH —
REFRESH USED UP ——
HALT
ILLEGAL INSTRUCTION —m8
HOMOGENEOUS CONVERSION OVERFLO
TRANSFORMATION OVERFLOW
PERSPECTIVE DIVISION OVERFLOW
Z-CLIPPING HIGH
Y-CLIPPING HIGH
X-CLIPPING HIGH
Z-CLIPPING LOW
Y-CLIPPING LOW
X-CLIPPING LOW

N

The status register indicates the present state of the coordinate
converter. A 'l' in any bit indicates that the corresponding condition has
gone true and initiates an interrupt to the display processor if the
corresponding bit in the mask register is also’a 'l'. Note that when the
status register is read under program control, it is automatically cleared.

5-13

5-14

STP

top of the coordinate converter stack. This value is modified when CL3A, CL3R,

15 14 13 12 11

L i
T T T T

' 10 9 8 7 6 5 14 32 1 0

STACK POINTER

1 H 1 i] 1
T T T T T Y 1 T T T

The STP register contains the 16 lower address bits corresponding to the

or RTN3 is executed.

INZ

the corresponding registers.

15 14 13 12 11

INITIALIZE REGISTER

10 9 8 7 6 5 4 3 2 0

VI IIIIIIT,

The INZ register is used to initialize the coordinate converter by
establishing default values for certain parameter and control registers.
Whenever this register is accessed, the following octal values are loaded into

Note that a GRAPHIC 7® bus reset causes the same

initialization.

Mask register (MSK)

Status register (STAT)

Block register (BLK)

Left viewbox boundary register (Lv)
Bottom viewbox boundary register (Bv)
Near viewbox boundary register (Nv)
Right viewbox boundary register (Rv)
Top viewbox boundary register (Tv)
Far viewbox boundary register (Fv)
Refresh limit register (LIM)

W-scale (WSC)

Dimension register (DIM)

®GRAPHIC 7 is a trademark of Sanders Associates,

177777

0

0
177000
177000

0
777
777
40000

0

0

0

Inc.

Bovnst it g i

—

e s, e e T e R

Sm—

—_— —

CNT CONTINUE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I,

The continue register is used to restart the coordinate converter after it
has been stopped by a stop command (see below) or an interrupt such as refresh
used up. Accessing this register causes the coordinate converter to resume
processing from the point where it was last halted.

STOP STOP REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I I,

The stop register is used to halt the coordinate converter. Accessing this
register causes the coordinate converter to complete the instruction in
progress, set the stop bit in the status register, and halt. If the stop bit
is set in the mask register, an interrupt is generated to the display
processor.

5-15/5-16

SECTION 6

INTERRUPTS

The coordinate converter monitors 14 conditions which, when active, can
generate interrupts to the display processor. The current state of these
conditions is in the status register ('1l' is active). When a condition is
active and the corresponding bit in the mask register is also set, then an
interrupt signal is automatically sent to the display processor. When the
coordinate converter senses that the interrupt has been accepted by the display
processor, the active status register bit which initiated the interrupt is
cleared, with the exception of data anomaly interrupts.

The 14 conditions are grouped into six interrupt classes (listed below with
their corresponding trap address assignments).

Interrupt Trap Address (octal)
Halt 200
Refresh used up 204
PHOTOPEN match 210
Illegal instruction 214
Data anomaly 220
Stop 224

Halt

When the coordinate converter executes a HLT3 instruction, it sets the halt
bit in the status register and halts.

Refresh Used Up

When the coordinate converter attempts to write refresh code to a location
which corresponds to the end of the refresh block, it sets the refresh used-up
bit in the status register and halts.

PHOTOPEN Match

When the coordinate converter is operating in pen mode and a match occurs
between the contents of the PHOTOPEN strike register and the contents of the
refresh address register, then it sets the PHOTOPEN match bit in the status
register and halts.

Illegal Instruction

When the coordinate converter attempts to execute an illegal instruction,
it sets the illegal instruction bit in the status register and then fetches the
next instruction.

6-2

Data Anomaly

Nine conditions may cause a data anomaly interrupt: three overflow
conditions and six clipping conditions. The homogeneous conversion overflow
bit in the status register is set in response to an error when de—homogeneizing
coordinates. This usually indicates that the resultant coordinates are out of
range (+32K).

The transformation overflow bit in the status register is set in response
to an error during the transformation process. This generally indicates that
the resultant coordinates are out of range (+32K).

The perspective overflow bit in the status register is set in response to
an error in the perspective application process. This generally indicates that
the coordinate values with perspective applied are out of range (+32K).

The six clipping bits in the status register are individually set when
clipping is enabled and a transformed coordinate is found to be outside the
respective clipping boundary.

After any of the data anomaly status bits have been set, the coordinate
converter completes the instruction in progress and fetches the next one. Note
that after a data anomaly interrupt has been accepted by the display processor,
the coordinate converter does not clear the status bit which initiated the
interrupt. It does, however, ensure that this same condition does not generate
a second interrupt. This lets you read the status register to determine which
of the nine conditions caused the interrupt.

Stop

When the stop register is accessed by the display processor, the coordinate
converter sets the stop bit in the status register and halts.

SECTION 7

INSTRUCTION USAGE

7.1 NUMBERING SYSTEM

The 3D Coordinate Converter uses two numbering systems, fixed point
integer arithmetic and a modified fractional two's complement arithmetic.

Fixed Point Integer Arithmetic

*

214 213 212 211 210 29 28 27 26 25 24 23 22 21 2O

The range of values possible is:
-32768 < number < 32767

Modified Fractional Two's Complement Arithmetic

+-

-08-1,-2 -3 -4 2—5 7

. - - - - -
01,72, 9 10 9 11 9 12 9 13 14

276 5 278579, 2

~-Binary point
The range of values possible is:

-2.0 < number < 2.0
Use of Applicable Numbering System
Coordinate values (X,Y,Z) found in 3D instructions are represented
in fixed point integer arithmetic. Translation values (Tx, Ty, Tz)
found in the composite matrix are also in fixed point integer
arithmetic.
All other numbers, e.g., the 4th coordinate (W-coordinate) found in
3D instructions and all other elements other than Tx, Ty, Tz in the

composite matrix are expressed in the modified fractional two's
complement arithmetic.

7-1

Numbering System Constraints

) Coordinates
-32768 < X, Y < 32767
0<12Z 32767

0.0 <

=

< 1.0
° Composite Matrix (4 x 4) Elements
Elements
-2.0 < {1,11,2;1,3;2,1;2,2;2,3;3,1;3,2;3,3} < 2.0
{1,4;2,43;3,4} = 0.0 (not used)
-32768 < {4,1;4,2;4,3} < 32767 (Tx, Ty, Tz)

{4,4} = 1.0

7.2 MATRIX OPERATIONS

In the following discussion, all matrices are shown as 4 x 4 matrices
for generality. The demonstrated principles can be applied to other dimen-
sioned matrices as desired. Also, numbers shown in matrices are represented
as integers for simplicity: e.g., 1 instead of 40000.

The following functions can be implemented using matrices individually.
Any combination of these functions can be implemented by concatenating these
matrices into a composite matrix.

- Translation
"= Scaling
- Rotation

ity —

e S T R e T T P Y

7.3 TRANSLATION

An object can be translated in X, Y, and/or Z. This may be represented by

addition of the offset or translational value Ty, Ty, and/or T, to the
initial coordinate dimensions.

X} =X + Ty

Yl = YO + Ty
Zy =29+ T,

These equations can be represented in matrix form as:
[X1 Y1 21 Wi = [%0 Yo zowo:] 0 0
1 0
0 0
T 1

0
0
1
TZ

1
0
0
Ty Ty

7.4 SCALING

An object can be scaled in X, Y and/or Z. This can be represented as
multiplication of the initial coordinate dimensions by a factor Sy, Sy,
and/or S,.

Xl = SX XO
Yl = Sy YO
Z1 = 8z Zg

These equations can be represented in matrix form as:

[X1 Y1 21 Wi = [Xo Yo Zo Wo]

X

y

0
0
SZ
0

0
0
0
1

o O wn O

S
0
0
0

7-3

7-4

7.5 ROTATION

An object can be rotated about any axis in 3-D space through a combination
of rotations about the X, Y, and Z axes (using a left—handed coordinate
system).

Ay = Angular rotation about X axis (in Y-Z plane)
Ay = Angular rotation about Y axis (in X-Z plane)
A, = Angular rotation about Z axis (in X~Y plane)

A positive angle is defined to give a counterclockwise rotation when
looking towards the origin from the negative axis of rotation. For example,
for a positive value of Ay, when looking towards the origin from the negative
X axis, the Y-Z plane rotates in a counterclockwise direction.

The following equations represent rotation of a coordinate point X,
Yo, 20 about the X axis to a point X;, Y;, Zj.

X1 = %o
Y, =Yg cos Ay — Zg sin Ay X rotation
Z1 = Yo sin Ay + 20 cos Ay

Similarly for rotation about the Y axis:

Xl = XO cos Ay + Zg sin Ay
"y d
Yl = Y , - Y rotation

Z1 = =X sinvAy + Zg cos Ay

Change 1

And for rotation about the Z axis:

Xl = XO cos Az - YO sin AZ
Yy = X9 sin A, + Yo cos A, Z rotation
Zl=ZO

These equations are represented in matrix form as:

For X rotation:

@1Y121W_1__]={§0Y020W(ﬂ 1 0 0
0 cos Ay sin Ay
0 -sin Ay cos A4
0 0 0
For Y rotation:
LEI Y, Z{ wﬂ = EO Yy Zg WQ_I cos Ay 0 =-sin Ay
0 1 0
sin Ay 0 cos Ay
0 0 0

o O O O

o O O O

7-6

For Z rotation:

[X1 Y1 z1 wI] = [X0 YO z0 WO]

7.6 MATRIX CONCATENATION

cos Az sin Az
-sin Az cos Az

0
0

0 0
0 0
0 1 1
0 0 1

To combine more than one function of scaling, translation, or rotation, it
is necessary to concatenate the individual matrices involved, preparing one
composite matrix for transmission to the coordinate converter. Matrices which
are to be multiplied together must have the same dimensions: 3 x 3 for 2D; 4 x
4 for 3D. The multiplication process is illustrated below for a 3 x 3 case.

where Ci1
C12
C13
C21
Co2
C23
C31

C33

Aj1 Ap2 A3
Ay] Agp A3 |
A3] A32 A33
A11B11 + A12Ba1
A11B12 + A12B22
A11B13 + A12B23
A21B11 + Ag2Byg
" Ag1Bio + Ap2Boa
Ap1B13 + AgpBag-
A31B11 + A32B31
A31B12 + A32Bp)
A31B13 + A32B23

+
+
+
+
+
+
+
+
+

Br1 B2 B13
By1 By2 B23
B31 B32 B33

A13B3]
A13B32
A13B33
A23B3]
Ap3B3)
A23B33
A33B3]
A33B3)
A33B33

Ci1 C12 C13
Ca1 Co2 Ca3
C31 C32 C33

e U B

If you want to rotate about more than one coordinate axis, it is necessary

to concatenate the rotational matrices.

Let Ry = X axis rotational matrix

=
I

y Y axis rotational matrix

=
1

z 7Z axis rotational matrix

c = RyRyRg

Where R. represents the composite rotational matrix.

Then

s
I

NOTE
This matrix provides rotation of an object with respect
to the origin. If you want to rotate an object about the
center of the object, and the center of the object does
correspond to the origin, then it is necessary to trans-—
late the object to the origin, rotate it, and then trans-
late it back to its initial position.

Let Xos Y., and Z. represent the coordinates of the center of the
object to be rotated.

Then Tyl = 0

o
— O O O
I |

(@]

This is the matrix that translates the object to the origin.

7-7

7-8

]
KOO = O
N —= O O

Il o o —
| =~ © © 9

This is the matrix that retranslates the object back to its initial
position. So, the composite rotational matrix for this case is:

Re = Tr1 Bx Ry Ry Ty

If you then want to scale this object and to translate it to a given
location, two more concatenations are. necessary.

Let S = scaling matrix
T = translational matrix
Then C = TSR,
Where C represents the final composite matrix to be passed

to the coordinate converter.

.

7.7 SAMPLE IMAGE FILE FOR CONVERTING A CUBE

002000

002000 006413 000105
002004

002004 006442 002134
002010

002010 006441 002174
002014

002014 006410 020000
002020

002020 006411 020100
002024

002024 006412 030000
002030

002030 006444 002216
002034

002034 006446 002226
002040

002040 006446 002236
002044

002044 006446 002246
002050

002050 006446 002216
002054

002054 006446 002256
002060

002060 006446 002266
002064

002064 006446 002276
002070

002070 006446 002306
002074

002074 006446 002256
002100

002100 006444 002226
002104

DRASS.616 22-JUN-79
SRC

002104 006446 002246
002110

002110 006444 002246
002114

002114 006446 002306
002120

002120 006444 002236
002124

002124 006446 002276
002130

002130 002300

002132

002132 006422

002134 040000 000000
002142 000000

002144 000000 040000
002152 000000

002154 000000 000000
002162 000000

002164 000000 000000
002172 040000

002174 176400 176400
002202 001400 001400
002219 000000 000000
002216 177400 177400
002224 040000

002226 177400 000400
002234 040000

002236 000400 000400
002244 040000

V0L246 000400 177400
002254 040000

002256 177400 177400
002264 040000

002266 177400 000400
002274 040000

002276 000400. 000400
002304 040000 .
002306 000400 177400
002314 040000

15:29 PAGE 1-1

000000
000000
040000

000000

000000
040000
170000

001000

001000

001000

001000

002000

002000

002000

002000

[N

PRy

T o e

FT2:

FT3:

FT4:

FTS:

FT6:

FT7%

FT8¢

SET UF FARAMETERS

LDIM 105

LMXT IMAT
LBXD BOX

LREF 20000

LLIM 20100

LMSK 30000

DEFINE CUBE

LRAW FRONT SQUARE

AMII3 PT1
ADD3 PT2
ADD3 PT3
ADD3 FT4
ADD3 PT1

IRAW REAR SQUARE

ADD3 FTS
ADD3 FTé
ADD3 FT7
A3 FT8
ADD3 FTS

CONNECT FRONT TO EACK

AMD3 PT2
ADD3 FTé
AMD3 FT4
ADD3 FT8
AMD3 FT3
ADD3 FT7
RTRN

HLT3

COMFOSITE IMAGE MATRIX

+WORD UNITY»0y0,0
+WORD OyUNITY»0,0
+WORD 0sOyUNITY»O
+WORD 0r0s0sUNITY
VIEWBOX

+WORD! -1400s-1400,0
+WORD 140051400y40000
+WORD 050,-10000

COORDINATE FOINTS

#SET CLIFPING,3D,FERSFECTIVE,AND

#HOMOGENEQUS MODE IN DIMENSION REGISTER
FiLOAD DEFERRED MATRIX FROM IMAT

FiLOAD DEFERRED VIEWBOX FROM BOX
JREFRESH CODE TO BE GENERATED

AT LOCATION 20000
FREFRESH LIMIT AT 20100

JENABLE HALT AND REFRESH USED UP INTERRUPT

$MOVE TO LOWER LEFT
iDRAW TO UPFER LEFT
#TO UPFER RIGHT
#TO LOWER RIGHT

#BACK TO LOWER LEFT

iDIRAW STRAIGHT BACK
iTO UFPER LEFT
iTO UFFER RIGHT
iTO LOWER RIGHT

FBACK TO LOWER LEFT

" $MOVE TO UFPER LEFT

FDRAW STRAIGHT BACK

$MOVE TO LOWER RIGHT
i IRAW STRAIGHT BACK
$MOVE TO UPFER RIGHT

5DRAW STRAIGHT BACK

GRAFHIC CONTROLLER RETURN
FHALT - END OF IMAGE FILE

FIDENTITY MATRIX - 4X4

FLUs BV NV

iRV TUYFU
iIXArYAsZA

+WORD -400y~400,1000y40000
+WORD -400r40051000r40000
+WORD 400740051000740000
»WORD 400,-400y1000,40000
+WORD ~400y-400,2000540000
+WORD ~4007400,2000,40000
+WORD 40074007,2000740000
+WORID 4007-400y2000540000

- —— — ‘— p— — —— Gomeew ‘enp— W —

SECTION 8

ASSOCIATED GCP+ INSTRUCTIONS

The Coordinate Converter may be programmed through the use of GCP+
instructions or through the use of the FSP subroutine support package. Both
methods are described below.

8.1

PROGRAMMING THE 2-D/3-D COORDINATE CONVERTER IN GCP

By using the register update (RU) and give register (GR) commands, the
GCP+ programmer may read and write all registers associated with the 2-D/3-D
coordinate converter.

This allows complete host control to’perform such functions as:

Set matrix parameters

Set viewbox parameters

Set perspective parameters

Set various control parameters

~ Scale select

Refresh limits select

- Source/destination of conversion process

- Homogeneous/non-homogeneous select

2-D/3-D select

- Perspective/no perspective select

Start’2-D/3-D coordinate converter

Activate 2-D/3-D coordinate converter for a PHOTOPEN search
Selectively establish the desired interrupt control

When 2-D/3-D coordinate converter interrupts are generated, an appropriate
TS message is returned to the host computer.

NOTE
Refer to Sanders publication H-79-0348 for
more information on GCP+.

8-1

8~2

RU (H-G7)

REGISTER UPDATE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0

ASCITI R CODE 0 ASCII U CODE

REGISTER ADDRESS

REGISTER COUNT

REGISTER DATA

REGISTER DATA

The RU message is a variable length message that is used to update a series
of registers in the I/0 address of the hardware.
of the first register to be updated.
of 160000-177777 (octal).
number of successive registers to be updated.

data values to be loaded into each register.

NOTE -

The RU message does not change the
current memory bank selection. It is
also possible to interpret register
address as memory address in the RU
message. When updating memory address,
the user must take into account memory
mapping. Memory addresses in the range
of 020000 to 077777 are subject to memory
mapping.

Command header code: 051125

Command header
Word 1
Word 2

Word 3

Word n

Word 1 contains the address
Valid register addresses are in the range
Word 2 contains the register count indicating the
Words 3 through n contain the

GR (H-G7) GIVE REGISTER Command header code (octal): 043522

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0| ASCII G CODE 0 ASCII R CODE Command header

REGISTER (OR MEMORY) ADDRESS 0| Word 1

The GR message is a two—word message used by the host computer to obtain
the contents of the GRAPHIC 7 register specified by the register address in
word 1. The contents of any register having an assigned address may be
obtained in this manner. If required, GCP+ automatically halts the graphic
controller before the data is obtained and then restarts it at the completion
of the operation. In response to a GR message, GCP+ sends an RR (return
register) message to the host.

Although the intent of the GR message is to permit the contents of the
registers to be read, it can also be used to read the contents of GRAPHIC 7
memory address. When it is used to read a memory address, the address
" specified in word 1 must be that of an even—numbered byte. If the address of
an odd-numbered byte is specified, GCP+ causes an XX (error status) message to
be sent to the host.

NOTE

When the GR message is used on a large
memory system, the following restrictions
must be taken into account:

1. Addresses in the range of 000000-017776
are directly addressable.

2. Addresses in the range of 020000-077776
are subject to memory mapping.

3. Addresses in the range of 100000-177776
are directly addressable.

4, Addresses in the range of 120000-177776
are related to ROM and I/0 device registers.

8-3

TS (G7-H) 2-D/3-D COORDINATE CONVERTER STATUS
Command header code (octal): 052123

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 ASCII T CODE 0 ASCII S CODE Command header
STATUS Word 1

CpC Word 2

B B/ X X X X X X X X X X X X X X| Word 3

The 2-D/3-D coordinate converter can generate l4 interrupt conditions,
provided that the corresponding mask bits are enabled. The TS message is
returned to the host computer when a 2-D/3-D coordinate converter interrupt
condition occurs.

Word 1 contains the contents of the 2-D/3-D coordinate converter status
register. Each bit in this register corresponds to an interrupt condition.
One or more of these bits sets to indicate the type of interrupt condition
detected. ! :

Word 2 is the value of the 2-D/3-D coordinate converter program counter.

Word 3 contains the 2-D/3-D coordinate converter block register bits
used for source operations at the time of the interrupt condition.

Bits Bank
15 14 Number
0 0 0

0 1 1

1 0 2

1 1 3

8.2

FSP 3D COORDINATE CONVERTER PROGRAMMING

This section describes the FSP support for the 3D Coordinate Converter.
NOTE
FSP (Model'7764) is a collection of
Fortran callable routines residing

in the host.

This FSP support is included in the FSP subroutine package and is

provided at no additional charge. The following ten subroutines make
up this option:

INIT3D ' Initialize 3D system

SCAL3D (ZL,ZU) Define Z coordinate system

CCBLK Create 3D coordinate converter block
MOVE3D (X,Y,Z,MODE) Create 3D move graphic order

DRAW3D (X,Y,Z,MODE) Create 3D draw graphic order

T3D2D (IPAG3D,IPAG2D) , Transform 3D page to 2D page

MTRX3D (ARRAY) Update composite matrix in CCBLK
VIEWPT (X,Y,Z) Update view point in CCBLK

VIEWBX (LV,RV,TV,BV,NV,FV) Update view box in CCBLK

8.2.

8.2.

The remaining pages describe each subroutine in detail.

1 INIT3D - Initialize 3D

NAME: INIT3D

FUNCTION: 1Initialize FSP variables for Bb Coordinate Converter support.
CALLING FORMAT: CALL INIT3D

DESCRIPTION OF PARAMETERS: None

DETAILED DESCRIPTION:

This routine sets default wvalues for the Z-axis user coordinates.
The default lower boundary is O and the default higher boundary is 32767.

2 SCAL3D - Define Z Coordinate System

NAME: SCAL3D

FUNCTION: Set the user coordinate values for the Z-axis user coordinates
(third coordinate).

CALLING FORMAT: CALL SCAL3D (ZL,ZU)

Change 1 8-5

DESCRIPTION OF PARAMETERS:

ZL =

U =

DETAILED

This

Real variable supplied by the user which specifies the value
to be assigned to the lower boundary of the Z-axis in the
user coordinate system.. Note that ZL is coincident with the
screen surface.

Real variable supplied by the user which specifies the value
to be assigned to the upper boundary of the Z-axis in the
user coordinate system.

DESCRIPTION:

routine sets the Z-axis user coordinates (third coordinate)

to the values passed (ZL and ZU). This allows the caller to define
the Z-axis near and far coordinates in real numbers. The 3D move and
draw subroutines convert a coordinate in real numbers to an integer

display coordinate. This coﬁversion process is based upon the values

of ZL and ZU. Without a call to SCAL3D, the Z-axis of the user coor-
dinate system is equal to the default Z-axis coordinates, i.e., ZL=0
and ZU=32767. ©Note that the Z-axis is defined within a left-handed
coordinate system. ZL is the Z-axis point that corresponds to the

screen and ZU is the Z-axis point that is the furthest from the screen

extending into the screen. The wvalue of ZU must be greater than the

value of

ZL or unpredictable results will occur.

8.2.3 CCBIK - Initialize Viewbox, Viewpoint, and Matrix

NAME: CCBLK

FUNCTION: Generate Coordinate Converter instructions to initialize

the viewbox boundaries, the viewpoint and the matrix
parameters. : ‘

CALLING FORMAT: CALL CCBLK

DESCRIPTION OF PARAMETERS: None

DETAILED DESCRIPTION:

This

routine generates two Coordinate Converter instructions and

places them at the beginning of the currently opened page. The first

instruction generated (LBOX) initializes the viewbox boundaries, which

are used in clipping, and the viewpoint which is used in generating
perspective. The viewbox and viewpoint parameters are initialized as

follows:
Parameter | . Value Set to by CCBLK -
Viewbox left . -512.

(minimum X)

Viewbox bottom =512,
(minimum Y)

Parameter Value Set to by CCBLK

Viewbox near 0.
(minimum Z)

Viewbox right 511.
(maximum X)

Viewbox top 511.
(maximum Y)

Viewbox far 32767.
(maximum Z)

X Viewpoint 0.

Y Viewpoint 0.

Z Viewpoint -32767.

The second instruction generated (LMTX) initializes the matrix
parameters which are used in the coordinate transformation process.
All matrix elements except the scale factors are initialized to O.
The scale factors, matrix elements (1,1), (2,2), and (3,3) are set to
256. This is equivalent to 1/64 in the fractional two's complement
notation (see section 7.1) and is the default scale factor. The
combination of the LBOX and LMTX instructions at the beginning of a
page is referred to as the CCBLK of the page.

8.2.4 MOVE3D - Create 3D Move Graphic Order

NAME: MOVE3D

FUNCTION: Generates either an absolute or relative 3D move graphic
order and places it at the mark position of the currently
opened page. :

CALLING FORMAT: CALL MOVE3D (X,Y,Z,MODE)

DESCRIPTION OF PARAMETERS:

X,Y,Z = Real variables supplied by the user which specify the
3D coordinate of the desired beam position. The
coordinate is specified in the user coordinate system.

MODE An integer variable supplied by the caller which
identifies the type of graphic instruction to be
generated. When MODE = 0 an absolute MOVE is implied
and when MODE=1 a relative MOVE is implied. When
MODE=0, the coordinate (X,Y,Z) specifies an absolute 3D
coordinate. When MODE=1, the coordinate (X,Y,Z)
specifies an offset to be moved from the current beam

position.

8-7

8-8

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to absolute
screen coordinates and generates either an absolute or relative 3D move
graphic order. This graphic order is placed at the mark position of the
currently opened page. Note that relative moves are restricted to 1/2
of the screen size.

8.2.5 DRAW3D -~ Create 3D Draw Graphic Order

NAME: DRAW3D

FUNCTION: Generates either an absolute or relative 3D draw graphic
order and places it at the mark position of the currently
opened page.

CALLING FORMAT: CALL DRAW3D (X,Y,Z,MODE)
DESCRIPTION OF PARAMETERS:
X,Y,Z = Real variables supplied by the user which specify the 3D
coordinate of the end point of a line to be drawn. The

coordinate is in the user coordinate system.

MODE

An integer variable supplied by the caller which
identifies the type of graphic instruction to be
generated. When MODE=0, an absolute DRAW is implied

and when MODE=1, a relative DRAW is implied. When
MODE=0, the coordinate (X,Y,Z) specifies the absolute
coordinate of the end point of a line to be drawn.

When MODE=1, the coordinate specifies the offsets to

be used in drawing a line from the current beam position
to a new position:

DETATILED DESCRIPTION:

This routine converts the coordinate values specified to absolute
screen coordinates and generates either an absolute or relative 3D
draw graphic order. This graphic order is placed at the mark position
of the currently opened page. Note that relative draws are restricted-
to 1/2 of the screen size.

8.2.6 T3D2D - Transform 3D to 2D

NAME: T3D2D

FUNCTION: Transform a page of graphic orders into a page which
consists entirely of 2D graphic orders.

CALLING FORMAT: CALL T3D2D (IPAG3D,IPAG2D)

e B e S B B SR S

DESCRIPTION OF PARAMETERS:

IPAG3D = An integer variable supplied by the user which specifies
the number of the 3D page which is to be transformed.
IPAG3D must be in the range: '
1 < IPAG3D < 256, IPAGE3D#IPAG2D
IPAG2D = An integer variable supplied by the user which specifies

the number of the 2D page in which the transformed graphic
orders are to be placed. IPAG2D must be in the range:

1 < IPAG2D < 256, IPAG2D#IPAG3D

DETAILED DESCRIPTION:

This routine sets up the coordinate converter to perform a 3D to 2D
transformation on the page of graphic instructions specified by IPAG3D.
The Coordinate Converter is started and a block of transformed graphic
instructions is output to the page specified by IPAG2D. Note that
unpredictable results will occur if the 2D output file is not large
enough to accommodate the transformed graphic instructions. Refer to
Appendix D of the Graphic 7 Fortran Support Package (FSP) User's Manual
to determine the necessary output file size.

8.2.7 MTRX3D - Compute and Replace Matrix Parameters

NAME: MTRX3D

FUNCTION: Compute matrix parameters and generate coordinate converter
instruction to update the matrix parameters.

CALLING FORMAT: CALL MTRX3D (ARRAY)
DESCRIPTION OF PARAMETERS:

ARRAY = A 12 element real array supplied by the user which specifies
the scaling, translation, and rotation factors necessary for
computing the matrix parameters. The array parameters and
their valid ranges are specified below:

ARRAY
Element Definition Range
1 X-Pre Translation - (XU-XL) < XPRE < + (XU-XL)
2 Y-Pre Translation - (YU-YL) < YPRE < + (YU-YL) I
3 Z-Pre Translation - (ZU-ZL) < ZPRE < +(ZU-ZL)
4 X Scale Factor 1/256 < XSC < 128

Change 1 8=9

8-10

ARRAY

- Element Definition Range
5 Y Scale Factor 1/256 < YSC < 128
6 Z Scale Factor 1/256 < ZSC < 128
7 X Rotation (Y-Z Plane) any real number (in radians)
8 Y Rotation (X-Z Plane) any real number (in radians)
9 Z Rotation (X=Y Plane) any real number (in radians)
10 X-Post Translation - (XU-XL) < XPOST < + (XU-XL)
11 Y-Post Translation - (YU-YL) < YPOST < + (YU-YL)
12 . Z-Post Translation - (ZU-ZL) < ZPOST < + (ZU-ZL)

The variables used above are defined in the SCALE and SCAL3D sub-
routine descriptions.

e.g. CALL SCALE (XL,YL,XU,YU)
CALL SCAL3D (ZL,ZU)
DETAILED DESCRIPTION:
This routine uses the array parameters passed to compute new matrix:
parameters. These parameters are computed as indicated in Appendix A
and are entered into the CCBLK of the currently opened page, replacing

the previous matrix parameters. This routine must be called each time
the user wishes to change translation, scaling, or rotation factors.

8.2.8 VIEWPT - Update View Point in CCBLK

NAME: VIEWPT

FUNCTION: Updates view point parameters in the CCBLK of the currently
opened 3D page.

CALLING FORMAT: CALL VIEWPT (X,Y,Z)
DESCRIPTION OF PARAMETERS:
(X,Y,Z) = Real variables supplied by the user which specify the
viewing point which is to be used in generating

perspective. These parameters are specified in user
coordinates. The valid ranges for these parameters are:

m— — e e e e e i e T R

8.2,

|Xl < XU;XL

< YU-YL
===

0 <2z < ZU-ZL
DETAILED DESCRIPTION:

This routine updates the view point in the currently opened page.
The CCBLK view point parameters, generated by a previous call to the
CCBLK routine, are updated. This routine must be called in order to
change the view point. Note that the view point parameter range limits
specified above are constrained by the host computer word size.

9 VIEWBX - Update Viewbox

NAME: VIEWBX

FUNCTION: TUpdate view box boundaries in the currently opened page.
CALLING FORMAT: CALL VIEWBX (LV,RV,BV,TV,NV,FV)

DESCRIPTION OF PARAMETERS:

LV = Real variable supplied by the user which specifies the viewbox
left boundary (minimum X). The valid range for LV is:
XL < LV < RV .

RV = Real variable supplied by the user which specifies the viewbox
right boundary (maximum X). The valid range for RV is:
LV < RV < XU

BV = Real variable suppiied by the user which specifies the viewbox
bottom boundary (minimum Y). The valid range for BV is:
YL < BV < TV

TV = Real variable supplied by the user which specifies the viewbox
top boundary (maximum Y). The valid range for TV is:
BV < TV < YU

NV = Real variable supplied by the user which specifies the viewbox
near boundary (minimum Z). The valid range for NV is:
ZL < NV < FV

FV = Real variable supplied by the user which specifies the viewbox
far boundary (maximum Z). The valid range for FV is:
NV < FV < ZU

The parameters LV, RV, BV, TV, NV and FV are all specified in the user
coordinate system.

8-11

8-12

DETAILED DESCRIPTION:

This routine updates the viewbox boundaries in the currently opened
page. The CCBLK viewbox parameters, generated by a previous call to the
CCBLK routine, are updated. This routine must be called in order to
change the viewbox.

8.3 FSP 2D COORDINATE CONVERTER PROGRAMMING

This section describes the FSP support for the 2D Coordinate Converter.
NOTE

FSP (Model 7764) is a collection of
Fortran callable routines residing
in the host.

This FSP support is included in the FSP subroutine package and is
provided at no additional charge. The following six subroutines make
up this option:

CC2DBL Create 2D converter block

MOVE2D (X, Y, MODE) Create 2D move graphic order

DRAW2D (X, Y, MODE) Create 2D draw graphic order

T2D2D (IGRAPH, IPAG2D) Transform graphic page to 2D page
MTRX2D (ARRAY) Update 2D composite matrix in CC2DBL
VI2DBX (LV, RV, BV, TV) Update view box in CC2DBL

The remaining pages describe each subroutine in detaii.

8.3.1 CC2DBL - Initialize 2D Viewbox, 2D Viewpoint, and 2D Matrix

NAME: CC2DBL

FUNCTION: Generate Coordinate Converter instructions to initialize
the viewbox boundaries and matrix parameters.

CALLING FORMAT: CALL CC2DBL
DESCRIPTION OF PARAMETERS: NONE
DETAILED DESCRIPTION:
This routine generates two Coordinate Converter instructions and places
them at the beginning of the currently opened page. The first instruction

generated (LBOX) initializes the viewbox boundaries, which are used in
clipping. The viewbox parameters are initialized as follows:

Parameter Value Set to by CC2DBL

Viewbox left
(Minimum X) -512.

Viewbox bottom
(Minimum Y) - =512,

Viewbox right
(Maximum X) 511.

Viewbox top
(Maximum Y) 511.

The second instruction generated (IMIX) initializes the matrix
parameters which are used in the transformation process. All matrix

Change 1 8-13

8-14

elements except the scale factors are initialized to 0, The scale
factors, matrix elements (l,1) and (2,2), are set to 256. This is
equivalent to 1/64 in the fractional two's complement notation (see
section 7.1) and is the default scale factor. The combination of the
LBOX and LMTIX instructions at the beginning of a page is referred to as
the CC2DBL of the page.

8.3.2

8:.3.3

MOVE2D - Create 2D Move Graphic Order

NAME: MOVE2D

FUNCTION: Generates either an absolute or relative 2D move

graphic order and places it at the mark position of the

currently opened page.
CALLING FORMAT: CALL MOVE2D (X, Y, MODE)
DESCRIPTION OF PARAMETERS:

Real variables supplied by the user which specify

X, ¥ =
the 2D coordinate of the desired beam position. The
coordinate is specified in the user coordinate system.
MODE = An integer variable supplied by the caller which

identifies the type of graphic instruction to be
generated. When MODE=0, an absolute MOVE is implied.
When MODE=1, a relative MOVE is implied. When MODE=0,

The coordinate (X, Y) specifies an absolute 2D coordinate.

When MODE=1, the coordinate (X, Y) specifies an offset
to be moved from the current beam position.

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to
absolute screen coordinates and generates either an absolute
or relative 2D move graphic order. This graphic order is placed
at the mark position of the currently opened page. Note that
relative moves are restricted to 1/2 of the screen size.

DRAW2D - Create 2D Draw Graphic Order

NAME: DRAW2D
FUNCTION: Generates either an absolute or relative 2D draw
graphic order and places it at the mark position of
the currently opened page.
CALLING FORMAT: CALL DRAW2D (X, Y MODE)
DESCRIPTION OF PARAMETERS:
X, Y = Real variables supplied by the user which specify the

2D coordinate of the end point of a line to be drawn.
The coordinate is in the user coordinate system.

Change 1

8.3.4

MODE = An integer variable supplied by the caller which
identifies the type of graphic instruction to be
generated. When MODE=0, a absolute DRAW is implied.
When MODE=1, a relative DRAW is implied. When MODE=0,
the coordinate (X, Y) specifies the absolute coordinate
of the end point of a line to be drawn. When MODE=1,
the coordinate specifies the offsets to be used in
drawing a line from the current beam position to a
new position.

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to
absolute screen coordinates and generates either an absolute or
relative 2D draw graphic order. This graphic order is placed at
the mark position of the currently opened page. Note. that
relative draws are restricted to 1/2 of the screen size.

T2D2D - Transform 2D to 2D

NAME: T2D2D

FUNCTION: Transform a page of graphic orders into a page which
consists entirely of 2D graphic orders.

CALLING FORMAT: CALL T2D2D (IGRAPH, IPAG2D)

DESCRIPTION OF PARAMETERS:

IGRAPH = An integer variable supplied by the user which
specifies the number of the graphic page which is to
be transformed. IGRAPH must be in the range:

1 <IGRAPH <256, IGRAPH#IPAG2D
IPAG2D = An integer variable supplied by the user which

specifies the number of the 2D page in which the
transformed graphic orders are to be placed.
IPAG2D must be in the range:

1 <IPAG2D <256, IPAG2D#IGRAPH
DETAILED DESCRIPTION:

This routine sets up the coordinate converter to perform a
graphic page to 2D transformation on the page of graphic instructions
specified by IGRAPH. The Coordinate Converter is started and a
block of transformed graphic instructions is output to the page
specified by IPAG2D. Note that unpredictable results will occur if
the 2D output file is not large enough to accommodate the transformed
graphic instructions. Refer to Appendix D of the Graphic 7 Fortran
Support Package (FSP) User's Manual to determine the necessary
output file size.

Change 1 8=15

8.3.5 MIRX2D - Compute and Replace Matrix Parameters

NAME: MTRX2D

FUNCTION: Compute matrix parameters and generate coordinate
converter instruction to update the matrix parameters.

CALLING FORMAT: CALL MTRX2D (ARRAY)
DESCRIPTION OF PARAMETERS:

ARRAY = A 7 element real array supplied by the user which
specifies the scaling, translation, and rotation
factors necessary for computing the matrix parameters.
The array parameters and their valid ranges are
specified below:

ARRAY ‘ _ :

Element Definition A Range
1 X-Pre Translation ~(XU-XL) < XPRE < + (XU-XL)
2 Y-Pre Translation -(YU-YL) < YPRE < + (YU-YL)
3 X Scale Factor 1/256 < XSC < 128
4 Y Scale Factor " 1/256 < YSC < 128 2
5 Z Rotation (X~Y Plane) " any real number (in radians)
6 X-Post Translation " =(XU-XL) < XPOST < + (XU-XL)
7 Y~Post Translation -(YU-YL) < YPOST < + (YU-YL)

The wvariables used above are defined in the SCALE subroutine
description.

e.g. CALL SCALE (XL, YL, XU, YU)
DFTATLED DESCRIPTION:

v . This routine uses the array parameters passed to compute new
matrix parameters. These parameters are computed as indicated in
Appendix D and are entered into the CC2DBL of the currently opened
page, replacing the previous matrix parameters. This routine must
be called each time the user wishes to change translation, scaling,
or rotation factors.

8.3.6 VI2DBX —bUpdate Viewbox

NAME: VI2DBX
FUNCTION: Update viewbox boundaries in the currently opened page.

CALLING FORMAT: CALL VI2DBX (LV, RV, BV, TV)

8-16 Change 1

DESCRIPTION OF PARAMETERS:

Lv

RV

BV

v

Real variable supplied by the user which specifies
the viewbox left boundary (minimum X). The wvalid
range for LV is: XL<LV<RV

Real variable supplied by the user which specifies the
viewbox right boundary (maximum X). The valid range for
RV is?i LV<RV<XU

Real variable supplied by the user which specifies the
viewbox bottom boundary (minimum Y). The valid range for
BV is: YL<BV<TV

Real variable éupplied by the user which specifies the
viewbox top boundary (maximum Y). The valid range for
TV is: BV<TV<YU

The parameters LV, RV, BV and TV are all specified in the user
coordinate system.

DETAILED DESCRIPTION:

This routine updates the viewbox boundaries in the currently

opened page. The CC2DBL viewbox parameters, generated by a
previous call to the CC2DBL routine, are updated. This routine
must be called in order to change the viewbox.

Change 1 8-17/(8-18 blank)

APPENDIX 'A'

CCBLK MATRIX ELEMENT DEFINITIONS

NEW CCBLK MATRIX (4 * 3)

Element
1.1 = Sx Cos Ay Cos Az
’ 64
1.2 = Sx Cos Ay Sin Az
’ 64
_ -Sx Sin Ay
1,3 64
_ +Sy (Sin Ax Sin Ay Cos Az - Cos Ax Sin Az)
2,1 =
64
5 9 = 18¥ (Sin Ax Sin Ay Sin Az + Cos Ax Cos Az)
,2 =
64
2.3 = Sy Sin Ax Cos Ay
’ 64
3.1 = Sz (Cos Ax Sin Ay Cos Az + Sin Ax Sin Az)
, 1 =
64
3.0 = Sz (Cos Ax Sin Ay Sin Az - Sin Ax Cos Az)
,2 =
64
_ Sz Cos Ax Cos Ay
33 = 64
4,1 = |[Tx Sx Cos Ay + (Ty Sy Sin Ax + Tz Sz Cos Ax) Sin Ay] Cos Az -
(Ty Sy Cos Ax - Tz Sz Sin Ax) Sin Az + Txp
4,2 = [Tx Sx Cos Ay + (Ty Sy Sin Ax + Tz Sz Cos Ax) Sin Ay] Sin Az +
(Ty Sy Cos Ax — Tz Sz Sin Ax) Cos Az + Typ
4,3 = -Tx Sx Sin Ay + (Ty Sy Sin Ax + Tz Sz Cos Ax) Cos Ay + Tzp

A-1/A-2

WORD #

10
11
12
13
14
15'
16
17

18

COMMAND

LBOX

LMTX

APPENDIX 'B'

CCBLK FORMAT

FORMAT

LBOX

LV

BV

NV

RV

TV

FV

Xa

Ya

Za

IMTX

M1l

M12

M13

M21

M22

M23

M31

M32

DESCRIPTION

Load viewbox parameters

Left Boundary

Bottom Boundary

Near Boundary

Right Boundary

Top Boundary

Far Boundary

X - Eye Point

Y - Eye Point

Z - Eye Point

Load matrix parameters

Matrix Elements

B-1

WORD # COMMAND
19
20
21

22

APPENDIX 'B'

CCBLK FORMAT (Cont)

FORMAT

M33

M41

M42

M43

DESCRIPTION

APPENDIX 'C'

ADVANCED 3D APPLICATIONS

The routines described provide basic 3D graphic capabilities and the
operations performed are not cumulative. The advanced application may
require that matrix concatenations be performed in the host computer. In
this case, a concatenated matrix may be sent to the Graphic-7 by using an
FSP REFDAT command. In this way the user can directly update the CCBLK
matrix parameters. The CCBLK viewbox and view point parameters can be
updated similarly.

c-1/c-2

,,,,,,,,,,,,,,,,,,,,

APPENDIX 'D'
CC2DBL MATRIX ELEMENT DEFINITIONS

NEW CC2DBL MATRIX (3 x 2)

ELEMENT-
1,1 = Sx CosAxy
64
1,2 = Sx SinAxy
64 -
2.1 = Sy SinAxy
64
2,2 = Sy CosAxy
64
3,1 = =Xc Sx CosAxy - Yc Sy SinAxy + Xc + Tx
64
3,2 = =Xc Sx SinAxy - Yc Sy CosAxy + Yc + Ty

64

Change 1 ~ D-1/D-2

APPENDIX 'E'

CC2DBL FORMAT

WORD # COMMAND FORMAT DESCRIPTION
0 LBOX _ LBOX Load viewbox parameters
1 LV Left Boundary
2 BV Bottom Boundary
3 RV Right Boundary
4 vV Top Boundary
5 LMTX " LMTX Load matrix parameters
6 M1l Matrix Elements
7 M12
8 M21
9 M22
10 . M31
11 M32

Composite Matrix

Translation’
X1l = X¢ + Tx
Yl = Y¢ + Ty

[Xl Y1 Wl] = [Xo Yo Wo] l—; ? 21,‘
. Tx Ty‘ 1

Scaling
X1 = Sx Xo
Yl = Sy Yo
[Xl Y1 Wl] = [Xo Yo Wo] sx @ ¢
g Sy @
g 0 1

Change 1 El

X1

ROTATION

E-2

X1l =
Y1 Yl =
For rotation in Y-Y plane (clockwise)
Axy = angle of rotation in X~Y plane
X1l = Xo CosAxy + Yo SinAxy
Yl = Xo SinAxy + Yo CosAxy
[kl Y1 le] = [ko Yo Wo] CosAxy
-SinAxy
9
Change 1

Xo Cosx + Yo Sinx

Xo Sinx + Yo Cosx

SinAxy
CosAxy
]

T ®@8uey)

¢queTq %-H) /¢4

Method III

Order of Matrix Multiplication

1. Pre-translate to origin
2. Scale
3. Rotate
4. Post-translate back to original coordinates
5. Translate to new coordinates
Pre-Trans Scale
1 0) Sx @ ¢ Sx ¢ @
¢ 1 ¢ ¢ Sy @ _ 9 Sy
| -Xc. -Ye 1 @ [} 1 -XeSx -YeSy 1
Rotate
[sx @ 1) CosAxy SinAxy @ SxCosAxy SxSinAxy 1)
@ Sy 1] -SinAxy CosAxy 6| = ~SySinAxy SyCosAxy 1]
-XcSx -YeSy [0} 1] 1 -XcSxCosAxy -XcSxSinAxy 1
— +YcSySinAxy -YcSyCosAxy
Post-Trans: .
'SxCosAxy SxSinAxy @ 1 @ [} -_EXCOSAXY SxSinAxy ET
- ~SySinAxy SyCosAxy)) 1) = -SySinAxy SyCosAxy @
~Xc SxCosAxy -XcSxSinAxy 1 Xe Ye —XcSxCosAxy " =XcSxSinAxy 1
+YcSySinAxy -Yc SyCosAxy A +YcSySinAxy -YcSyCosAxy
| +Xc +Yc]
SxCosAxy SxSinAxy gl |1 o ¢ 'SxCosAxy SxSinAxy]
-SySinAxy SyCosAxy 1)) 1 g = -SySinAxy SyCosAxy)
-XcSxCosAxy -XcSxSinAxy 1 Tx Ty 1 —-XcSxCosAxy —-XcSxSinAxy 1
+YcSySinAxy -YcSyCisAxy +YcSySinAxy -YcSyCosAxy
+Xc +Ye +Xc +Tx +Ye +Ty —

APPENDIX 'F'
FSP SAMPLE PROGRAMS - 2D/3D
3DTEST.FOR - 3D SAMPLE

TEST2D,FOR - 2D SAMPLE

Change 1

[4:

. 333333333 DDDLDDDDDDDOD TTTTTTTTTTTTITT $55555555555 TTTTITTTITITYIT
333333333 DD DLDDDDODDD TTTTTTTITSITTTTT CEEESEF 555555555558 TTTTITTTTTITITT
333333333 oDDDDDDDDDDD TTTTTTTTTTTTITT EnELEtEnEEEEEEE $55555555555 TTTTTTTTTTITTITT

333 333 DbD DDD TTT EER 588 ITT
o 333 _ 333 _ _DDD .. bbD_ 71 o EER 888 . ITT
5 333 333 DDD DDD TTT EEE 558 TTT
] 333 oDD DDD TTT EER SSs TTT
09 333 DDD DoD TTT EEE $SS TTT
© 333 DDD DDD TTT EEE $SS : TTT
- 333 DDD DoOD TTT EEEEFEEELEEE $555585S8S TTT
333 hivh) DDD TT® EEEEEEEEEEEE ' 88Sssssss TIT
T 333 pbd T DDD TTT EEEEEEEEEREE §555555S3 TTT
333 DpD] TTT EEF $SS TIT
333 DDD DDD TTT " EEE - 88S TTT
333 DDD DDD TTT EEE $5S TTT
333 333 DDD DDD TTT EEE $SS TTT
333 333 oDD DDD T EEE 58S CTTT
333 " 333 DDD pDD TTT EEE $S88 TTT
333333333 DODLDDDDDDDD TTT EEEEEEEEEEZEEEEE $5555555558S TTT
333333333 pDDDDDODDDDD TTT EEEEEEEEEEEEEEE ~ S$SSSSSSSSSSS TTT
333333333 DDDDDDD DDODD TTT EEEEEEEEEEEEEEE 558555555555 TTT
FFFFFFFFFFFFFFF 000000000 RRRRRRRRRRRR 222222222
FFFFFFFFFFFFFFF 000000000 RRRRRRRRRRRR 222222222
FEFFFFFFFFFFFFF 1u000u00o00 RRRRRRRRRRRR 222222222
FFF - ogg pbO0O RRR O RRR 222 222 e
FFF 000 0oo RRR RRR 222 222
FFF oon 000 RRE RRR 222 222
FEF Goo noo ~ RRR RRR 222
FFF 000 0an RRR RRR 233
FFF 000 poo RRR RRR 222
FEFFFFFFFFFF noo . 000. RRRRRRRRRRRR 222
FFFFFFFFFFFF 600 i) RRRRRRRRRRRR 233 e
FFFFFFFFFFFF 0o 000 RRRRRRRRRRRR 222
FFF 000 000 RRR RRR 222
FFF aoao 000 RRR ~ RRR o 22T i
FFF Goo 000 RRR RRR 222
FF§ 000 . D00 . RRR__ RRR cecase 222
FFF 0ca o0an RRR ‘RRR cssres 222 - R
FEF 0oo 000 RRR RRR esesee 222
FFF 100000000 RRR RRR eveses 222222222222222
FFF 000000000 RRR RRR esanee - 1222222222222222
FFF 000000000 RRR RRR cevoes

START Job FSPO1 Req #2446 for E00018

_Job parameterss
File parameters:

s T e T e B s

of '1

Spacing:SINGLE

Request created:i2-May-81 11:19:46
Copy: 1

222222222222222

A Date 12-May-81 11:45:42 Monitor: SANDERS ASSOCIATES INC., TOPS-20 Monitor *START*
File DSKB:<ECOU1B>3DTEST.FOR.2, created: 29-Apr=-80 11:38:33, printed: 12-May-81 11:48:20

Page limit:216

Forms3NORMAL Account360777

File format:ASCII

Print mode:ASCII

—— S— a— An— a— — A—] — [] — —"— — — —

T 923uey)

c€d

C MARK.FTN

c
DIMENSION IAKPAY(3),ARRAY(12)
DATA TARRAY/1G0G,1060,1009/
CALL GSS4(5,(,2)
CALL LAYDUT(3,IAKRAY)
CALL INIT3D ’
CALL SCALE(D.+,0.,200.,200.)
CALL SCAL3D(€¢.,100.)
CALL ADDREF(2)

. CaLL ccBLK
c
C DRAW A CUBE 50 UNITS ON A SIDE WITH CENTER AT (100,100,45)
PR v LUBE O A0 Wit L
CALL MUVE3D(75.,75.,20.,0)

CALL DRAW3ID(S50,,0.,0.,1) . . R

CALL DRAK3D(C.,50.,04,1)
CALL DRAH3D(—50.;0.,0.,1)
CALL DHAWBD(C‘-,“S{)-/CQ’].)
CALL MOVE3D(0e,0e,50.,1)
CALL DRAW3D(504,0.,0.,1)
CALL DK‘N3D(0-,50.,0-;1)

CALL DRAW3D(=504,0.,0.,1)
CALL DRAWSD(O.[‘SO.,OA’I)
CALL DRANBD(O.[O"-50111)
CALL MOVE3D(58.,0.,50.,1)
CALL DR’\W"‘D(C.[(J!I-SOQII)
CALL MOVE3D(G+,500,500,1)

"CALL DRAW3D(Cae,0.,-50.,1)
CALL MOVE3D(-504,04,50.,1)

CALL DRA'&:’ZD(O.,\‘).,‘SG.II) N
CALL MOVE3D(100.,100.,45.,0)
CALL SETEXT(°MARK?,4)
___ANGLE=0,

T RAD=180.7/3.14159265

CALL ADDREF(3)

CALL FRASEP

CALL ADDREF(1)

CALL PICTUR(3)
 CALL ADDREF(2)

CALL VIEwPT(lOO.,lOO -1‘1000)
CALL T3D2D(2,3)
5 Do 2 1=1,12
2 AHNAY(I)-\»-
ARRAY(4)=1
ARRAY(5)=1

ARRAV(6)=1
6 CALL EVENT(I)
IF(I .NE. 4) GO TO 6
CALL GETKEY(I,IKEY)
IKEY=IKEY-16
_IF(IKEY .EQ. C) GO TO 99 o
60 TU (100,200, 300 ,400,500,600), IKEY
GO TO 6

C
€ THIS SECTICN CHANGES THE VIEWPOINT FROM (100,0,10G) TQ (100;200,100)
C IN CONTINUCUS STEPS

Y=100,4J

 CALL VIZMPT(I00.,¥,=1G0.)
1107 CALL T3020(2,3)

CALL VIEWPT(1(0 011611.['100)

6o 185

i

e e o ‘
C CHANGES THE SCALING FROM 1 TOD 1/64, 1/64 TO 64, AND FROM 64 TO 1

c .
260 Do 210 J=1,64
X=1.0/J

ARKAY(4)=X) .
ARRAY(5)=X ' - '
ARRAY(6)=X
CALL MTRX3D(ARRAY)
210 * CALL T3D2D(2,3)
DO 2204 J=64,1,-1 : '
X=1.0/J e e e e e et i i - . R -
ARRAY(4)=X)
. ARRAY(5)=X)
 ARRAY(5)=X
CALL MTRX3D(ARRAY)
220 CALL T3D2D(2,3)
DO 230 J=1,64
X=J
ARRAY(4)=X
 ARKAY(5)=X
ARRAY(6)=X
CALL MTHK3J(ARRRY)
230 CALL T3D2D(2,3)
DO 240 J= 64,1,-1
X=d
CARRAY(4)=X
ARHAY(5)=X :
ARRAY(6)=X :
 CALL MTRX3D(ARRAY)
240 CALL T3D2D(2,3)
GO TO 5

1 ®8uey)

TEANSLATES THE CBJECT FIRST LEFT AND RIGHT IN THE X DIRECTION, =~ o
THEN UP AXD DOWN IN THE Y DIREC!ION, AND LASTLY BACK AND FORTH .
IN THE Z DIRECTION L

wa lenao N

00 DO 330 J=1,3))
ARRAY(1)=0, 7
ARRAY (2)=0.

_ARRAY(3)=0.
DO 310 I= 01‘1001-2
ARKAY{(J)=I

. CALL MTRX3D(ARKAY)

310 CALL T3D2D(2,3)
DO 320 I=-100,106G,2
CARKAV(I)=SI
CALL MTRX3D{ARKAY)
32¢ CALL T3D20(2,3)
DO 336 1=169,0,-2
ARRAY(J)=I
CALL MTRX3D(ARRAY)
330 CiLL T3D20D(2,3) .

93ueyn

T

C_ROTATE THe OBJECT AROUND ITS CENTER

c
400 ARRAY(1)=u,

ARFAY(2)=0. -~ o e

ARRAY (3)=-45,
ARKAY(1Q)=0,
ARBAY(11)=9,
ARKAY(12)=45.
DO 4106 J=0,36(,2
ARRAY(7)=J/RAD e O,
" CALL MTRX3D(ARKAY)
410 CALL T3D2D(2,3)
DD 420 J=0,368,2
ARRAY(6)=J/RAD
CALL MTRX3D(ARRAY) :
420 CALL T3D2D(2,3) R . I

[#]0] 43(J:("/ 36\},2

ARRAY(9)=J/RAD

CALL MTRX3D(ARRAY)
430 CALL T3D2D(2,3)

GO Tu 5

""SCALE THE CUBE BY A FACTOR OF 1/4, ROTATE IT ARCUND THE X-AXIS
RELATIVE TO ITS CENTER WHILE MOVING THE ENTIRE CUBE IN A
CIRCULAR MOTION AROUND THE CENTER OF THE SCREEN

LN oo Nel

60 ARRAY(1)=(o :
ARRAY(2)=CG. - : _

ARRAY(3)=-45.
ARRAY(4)=.25
ARRAY(5)=.25
ARRAY(6)=.25
ARRAY(15)=0.
_ARKAY(11)=0.

ARRAY(12)=45.

DO 51¢ J=0,360
THETA=J/RAD
THETA2=(J*4.)/EAD
ARKAY(T)=THETAZ
ARRAY(10)=100.*COS(THETA)

T ARRAY(11)=100.*SIN(THETA) ~
CALL MTRX3D(ARKAY)
510 CALL T3D2D(2,3)
6d T0 S
c
C CHANGE THE VIEWBOX FIRST BY COMPRESSING THE X CLIPPING BOUNDARY,

C THEN THE Y, AND LASTLY THE 2™~

C .
600 VL:Qo
VR=200.
L vB=t.
VT=200.
UN=D,
VF=40¢(,
ARRAY (4)=4.
ARRAY(5)=4%.
ERERY (A)=4,

94

Lo 610 I=<,98,2
VE=T

‘T °8uey)

VR=200.-1
~ CALL VIEwBX(VL,Vk,VB,VT,Vi,VF)
6101 CALL T3D2D(2,3)
DO 62¢ 1=98,0,-2
VL=I
VE=204,~1
CALL VIEWBX(VL,VR,VB,VT,VN,VF)
620 CALL T3D2D(2,3)
DD 63¢ I=(,98,2 .

VB=1I
VT=200e =1
CALL VIEWBX(VL,VR,VB,VT,VN,VF)
€36 CALL T3D2D(2,3)
D0 64¢ 1=98,0,-2
. vB=1 .
VT=200e~1
CALL VIEWBX(VL,VR,VB,VT,VN,VF)
§40 CALL 13D2D(2,3)
DO 65C¢ 1=0,49
VN=I*4.
VE=400.~(I*4,)
CALL VIEWBX(VL,VR,VB,VT,VN,VF)
650 CALL T3D2D(2,3)
DO 661 124910[—l
VN=1%*4,
VF=400 = (1%4.)
... .CALL VIEWBX(VL,VR,VB,VI,VN,VF) _
660 CALL T3D2D(2,3)
VF=(32767./511.)*105.
CALL VIEWBX(VL,VR,VB,VT,VN,VF)
GO TG 5

END THE PRUGRAM

V-l o N o]

9 CALL THEEND
STOP
END

-1 @8uey)

La

TTTTITTTITTTTTT 222222222 ppDDDDDDDDDD

TTTTTITTITITTIT EEEEEEEESEZEEEE 555555555583
TTTTTTTTTTTTTIT FEFEREEEEEEEEEE 555555555588 TTTTITITTTTTTTT 222222222 DDDDDDBDDDDDD
rfTTTTTrififTTf_““””‘ELEELLEantczszh T 7555555555555 TTTTTTITTTITITITIT 222222222 DDDDODDDDDDD ™
TTT FEE $53 : TTT 222 222 DDD bDD
TTT EEE 585 1T 222 222 DDD pDD
T T ppE e T R ~ O 555 55 hhn T bbb
TTT FEE 588 TTT : 222 pDD DDD
TTT EEE , $ss R N 5 o222 DDD DD
TTT FEE C 585 o R TTT oo U222 DDD DDD
TTT EEELEEEEEEEE S855555SS TTT 222 DDD DDD
TTT EEEEEEEEEEEE ~ 558558sss 71 o 222 DDD DDD
} TprT T T T EEEEEEEEEEEE T T 555555558 TTT 222 DDD DDD
TTT EEFE 58S TTT 222 DDD DDD
TTT EEE e855 TTT —— 222 - DDD_ DDD
B N 8 - R ™ 888 TTT 222 T7DDD DDD
TTT EEE $SS TTT ‘ 222 . DDD Dbd
T . EEES8ss__ .. TIT 222 ppp ~bDD
TTT EEE SSsS TTT 222 hih DDD
TTT EEEEEEREEEEEEEE 555585555588 TTT 222222222222222 DDDDDDDDDDDD
TTT EEEEEEEEEEEEEEE ~ S$S8555855S58) ~TTT .222222222222222 DDDDDDDDDDDD
TTT " . EEEEFEEEEEEEEEE $5555555558S TTT 222222223222222 DDDDDDDDDODDD
FFFFFFFFFFFFYFF 000000000 RRRRRRRRRRRR o
FFFFFFFFFFFFFFF 000000000 RRRRRRRRKRRR 111
FFFFFFFFFFFFFFF 000000000 RRRRRRRRRRRR 111
FFF . _.._..6Bog __ . 004 _RRR RRR 111111
FFF goga 000 "RRK RRR 111111
FFF 000 000 . RRR RRR 111111
FFF - too . 0oo RRR . RRR TR © 3 |
FFF [i[s] oo RRR ' ¢ RKR 111
FFF ooo 000 RREK RRR 111
FFFFFFFFFFFF_ 000 000 RKRRRRRRRRRR _ 111 -
FFFFFFFFFFFF 000 000 RRRRRRRRRRRR 111
FEFFEFFFFFFF 000 000 RRRRRRRRRRRR 111
FFF . 000 - Doo RRR RRR o o _ 111
FFF ooa 0oo .RRR RRR ‘ ‘ oo T 11y
FFF 000 000 RRR RRR ‘ 111
FFF . boo 000 _ _ RRR ___RRR o sssase ' 111 e
FFF oo 000 RRR RRR cesees 111
FFF poo 000 RRR RER cecsce A 111
FFF - 000000000 ~ RRR RRR seeees 111111111
FFF 000000000 RRR . RRR cossne 111111111
FFF . : 000000000 RRR RRR secese 111111111

STAKT Job FSPOl Req #2446 for E00018 Date 12-May-81 11345:42 Monitor: SANDERS ASSOCIATES INC., TOPS-20 Monitor *START*
File DSKB:<EUQ018>TEST2D.FOR.1, created: 20-Feb-81 10:30:39, printed: 12-May-81 11:48:06
Job parameters: Request created3l2-May-81 11:19:46 Page limit:216 FormsiINORMAL _Account:ib60777

File parameters: Copy: 1 of 1 Spacing:SINGLE File format: ASCIIA Print mode:ASCII

84

1 98ueyn

C MAiRK.

FTN

c

DRAW

aoa

_ CALL

6800

700
701

~ CALL

" CALL

TARRAY(I)=d.

CALL GETKEY(I,IKEY)

DIMENSION 1ARRAY(3),ARRAY(12)
DIMENSION IDUTb(Su)/INB(70),IEVENT(15J),LAMPA(4,2)

DIMENSION IMARK(256),LPAGES(256),IPEVNT(2),IBNK(8),IPBNK(4)

DIMENSION IUPED(4),IPEDA(4),IUSL(4),LDZS(4),LDZSA(4)
COMMUN

/TERMB/ TCGUTB,INB,IFAC,IUNIT,IEVENT,LAMPA,IPEVNT,IKIFLC

COMMON /PVYMD/ ILXP,IHXP,ILYP,IHYP,IBFPTK,IRL,LBFPTR,LRL,IPFLAG

COMMON fCOORD/ XLOW,XHI,YLOW,YHI,IXB,1YB,IADR,IOPT,INDH
COMMUN /LAYOT/ LPAGES,IMARK,IPAGEC,LOCK,MAXPAG,MODE
COMMON /MRST/ IERRA,LDZS,LDZSA

COMMON /PERIPH/ IPBNK,IUPED,IPEDA,IUSL
COMMUN /LMEM/ IBNK,ICBANK,ISBANK,ISWORD
DATA [ARRAY/1GC0,1000,1000/7

CALL GSS4(5,0,2)

CALL LAYUUT(3,IARRAY) e

CALL SCALE(D4,04,200.,200.)

CALL ADDRFF(2)

CALL CC2DRL

A CUBE 56 UNITS ON A SIDE WITH CENTER AT (100,100,45)
MOVEZD(754,754,0)

DRAW2D(5Ge,04,1)
DRAW2D(0.,5C.,1)
DRAWZD('SO./O., 1)
DRAN2D(G.,-SU.,1)

ALL MOVE20(90.,100.,0)
CALL SETEXT("2D TE*,S)
ANGLE=0,
RAD=160./3.14159265

CALL ADDREF(3)

CALL ERASEP

CALL ADDREF(1)

PICTUR(3)

ADDREF(2)
E‘“)V"?D(loo -’10\)0[0)
T202D(2,3)

CaLL
CALL
CALL
CALL

CALL
CaLL
CALL
IPNT=Y
Do 2 I=117

ARRAY(3)=1
ARRAY(4)=1

CALL EVENT(I)

IF(I .NE. 4) GD TO b

IKEY=1KEY-16

IF(IKEY .EQ. 0) GO TO 99

GO TU (99,200,300,400,500,600,700,800), IKEY
IPNT=IPNT-1

G0 1O 701

. IPNT=IPNT+1

ARKAY(3)=IPNT
ARRAY(4)=IPNT

CALL MTEXZD(ARRAY)
CRLL T2D2D(2,3)

GO TG 5

GO T 6

1 28ury)

64

C CHANGES THF SCALING FROM 1 TO 1/50, 1750 TO 50, AND FROM 54 TO 1

wa oaon

c
200 DO 21¢ J=1,5¢
X=1.Q/J
ARKAY(3)=X
AKRAY (4)=X
CALLL MTRX2D(ARRAY)
210 CALL T2D2D(2,3)
po 22¢ J=5311{‘1
X=1.%/dJ

ARKAY(3)=X
ARRAY (4)=X
- CALL MTRX2D(AERAY)

220 CALL T2D2D(2,3)

pa 23¢ J=1,5¢C

ARRAY(3)=X

ARRAY(4)=X

CALL MTRX2D(ARRAY)
230 CALL T2D2D(2,3)

D0 24¢ J=50,1,’1

ARRAY(3)=X -
ARRAY (4)=X

~ CALL MTRX2D(ARRAY)
240 CALL T2D2D(2,3)

GO TO S

THEN UP AND DOwl IN THE Y DIRECTION, AND LASTLY BACK AND FORTH
IN THE Z DIKECTICN

60 DO 330 9=1,2
ARRAY(1)=C.
ARRAY(2)=(.

DO 31¢ I=C(,-80,-2
ARRAY(J)=1 »
CALL MTRXZ2D(ARRAY)

310 ~ CALL T2D2D(2,3)
Do 32¢ I=-80,80,2
ARRAY(J)=1
- CALL MTRX2D(ARRAY)

320 CALL 12D2D(2,3)

DO 33¢G I=80,0,-2

_ARRAY(J)=I

TRANSLATES THE OBJECT FIRST LEFT AND RIGHT IN THE X DIRECTION,

CALL MTRX2D(ARRAY) ~ 7

330 CALL T2D2D(2,3)
GO T0 5 o
c
C ROGTATE THE OBJECT ARDUND ITS CENTER
C
Coo RRRAY (L. e e e
ARKAY(2)=(.
ARKAY (6)=(.
AKRAY (7)=(e
DO 41i J=0(,360,2
ARRRY(5)=J/RAD

014

1 ®8ueyn

410

CaLL T2D2L(2,3)
GO TO 5

o6 o

C
5¢0

TARRAY(6)=10G.*COS(THETA)

510
c

C THEN

C
600

610

620

630

640
c

ARKAY (1)=6.
ARRAY(2)=0.
ARKAY(3)=.25
ARKAY (4)=.25
ARRAY (6)=0.
ARRAY(7)=0.
DO 51& J=0,360
THETA=J/RAD
THETA2=(J*2.)/RAD
ARRAY(5)=THETA2

ARKAY(T)=100,*SIN(THETA)
CALL MTRXZD(ARRAY)

CALL T2D2D(2,3)

GD TU 5

THE Y, AND LASTLY THE Z

VR=150.
vB=0.
VT=150.
ARRAY(3)=4,
ARRAY(4)=4.
CALL MTRX2D(ARRAY)
DO 610 I=0,98,2
VL=1

VR=15§, -1

CALL VI2DBX(VL,VR,VB,VT)
CALL T2D2D(2,3)
DO 6206 I1=98,0,~2
VL=1.

SCALE THE CUBE BY A FACTUK OF 1/4, ROTATE IT AROUND THE X-AXIS
RFLATIVE TO ITS CENTER WHILE MOVING THE ENTIRE CUBE IN A
""CIRCULAR MOTIUN ARGUND THE CENTER OF THE SCREEN

¢ CHANGE THE VIEwBOX FIRST BY COMPRESSING THE X CLIPPING BOUNDARY,

VR=15G.-1
CALL VI2DBX(VL,VR,VB,VT)
CALL T2D2D(2,3)

DO 630 I=0,986,2

vB=1

VT=150, =1

CALL VI2DBX(VL,VR,VB,VT)

CALL T202D(2,3)
DO 640 I=98,0,-2
VB=1I

VT=15¢.-1

CALL VI2DBX(VL,VR,¥B,VT)

CALL T2D2D(2,3).
GO TG 5

C END THE PxOGRAM

C
99

CALL THEEMD

Name: : Sanders Equipment

Company: Part Number
Address: Software/Firmware System
Version
Telephone: [] . Host computer
Date: Host operating system Version

Host-GRAPHIC 7 interface

My problem is: hardware (] software [

firmware [J manual [

Description of problem (or suggestion for improvement):

Related tech manual number

THE INTENT AND PURPOSE OF THIS PUBLICATION IS TO PROVIDE ACCURATE
AND MEANINGFUL INFORMATION TO SUPPORT EQUIPMENT MANUFACTURED
BY SANDERS ASSOCIATES, INC. YOUR COMMENTS AND SUGGESTIONS ARE
REQUESTED.

PLEASE USE THE FORM ON THE REVERSE SIDE TO REPORT ANY PROBLEMS
YOU HAVE HAD WITH THIS PUBLICATION OR THE EQUIPMENT IT DESCRIBES.

I " " | FIRST CLASS

PERMIT NO. 568
NASHUA, N.H.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by

Sanders Associates, Inc.
Information Products Division
Daniel Webster Highway South
Nashua, New Hampshire 03061

ATTN: DEPARTMENT 1-2894 (NHQ 1-447)

ASANDERS

