H-79-0347

TM

reonic

COMPUTER GRAPHICS
DISPLAY SYSTEM

PACKAGE [FSP]
USER’'S MANUAL

FORTRAN SUPPORT

SANDERS

ASSOCIATES, INC. DANIEL WEBSTER HIGHWAY, SOUTH-NASHUA, NEW HAMPSHIRE 03061

Copyright 1979, Sanders Associates, Inc.
GRAPHIC 7 is a trademark of Sanders Associates, Inc.

Sanders Associates, Inc., reserves the right to modify the products described
in this manual and to make corrections or alterations to this manual at any time
without notice.

Reprint = October 1980 - 100 Copies

Reprint-February 1981-100 Copies

Paragraph
1.1

1.2
1.3
1.4
1.5

TABLE OF CONTENTS

Section 1
Introduction
Subroutine Concept
Host Computers
Structure
;FSB/QCP%:Link Control
Error Detection/Receiving
Section 2

Features of FSP

Section 3

FSP Distributed Processing .

Section 4

FSP Subroutine Library

Section 5

Hardware Configurations Supported

Section 6

Paging Concept

Section 7

Coordinate System

Section 8

Use of Labelled Common

Paragraph
9.1

9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

TABLE OF CONTENTS (Cont)

Section 9

Setup Routines

GSS4 Initialize the Terminal to FSP Mode

LAYOUT Define FSP Memory Layout in the Graphic 7 Terminal
SCALE Define User Coordinate System

ENBBOX Turn Border Display On

DSABOX Turn Border Display Off

ENBERR Turn Error Display On

DSAERR Turn Error Display Off

THEEND Terminate FSP Mode

.- Section 10
Image Generation Routines

MOVE Move Beam to the Position Specified
DRAW Draw a Line
TEXT Display Text Characters
POINT Display a Point
CIRCLE Draw a Circle
REFDAT Transfer a Block of Predefined Graphic Orders

Section 11
Page Management Routines
ADDREF Open Page for Adding Refresh Data
UPDATE Open Page for Editing Refresh Data

 ERASEP Erase frbm Page Mark to End of Page

PICTUR Graphic Subroutine Call
REQMRK Request the Present Page Mark
GETMRK Get Mark Request Information
MOVEIM Move a Block of Graphic Orders
COPYIM Copy a Block of Graphic Orders

ii

10-9

10-2

10-4
10-6 :

10-7
10-8

11-15
11-15
11-16
11-16
11-17
11-17
11-18
11-20

Paragraph
12.1

12.2
12.3
12.4
12.5
12.6

13.1

14.1
14.2
14.3
14.4

15.1
15.2
15.3
15.4

16.1
16.2
16.3
16.4

TABLE OF CONTENTS (Cont)

Section 12

Status Routines

CPARM Set Character Parameters
DPARM Set Display Parameters
STATUS Set Display Status
LAMPON Turn Keyboard Lamp On
LAMPOF Turn Keyboard Lamp Off
COLOR Set Display Color

Section 13
Event Routine

EVENT Péii‘Terminal for Event or Request Response

Section 14
Alphanumeric Keyboard Routines
ENBPAD Enable Alphanumeric, Scratch Pad
DSAPAD Disable Alphanumeric Scratch Pad
GETTXT Get Text Event Information
GETKEY Get Function Key Event Information

Section 15
Photopen Item Routines
ENBPEN Enable Global Photopen Sensitization
DSAPEN Disable Global Photopen Sensitization
ITEM Define a Graphic Item
GETPEN Get Photopen Event Information

Section 16
Photopen Scan Routines
ENBPXY Enter Photopen Scan Mode
DSAPXY Terminate Photopen Scan Mode
REQPXY Request Photopen Scan
GETPXY Get Photopen Scan Event Information

iii

Page
12-2
12-3
12-4
12-5
12-6
12-7

13-2

14-2
14-3
14-3

14-4

15-4
15-4
15-5
15-6

16-2
16-2
16-3
16-4

Paragraph
17.

17.
17.
17.
17.
17.
17.

18.
18.
18.
18.

19.
19.
19.
19.

20.
20.
20.
20.

B~ LW N = S~ N e ~N oY Ut BN

S LN

TABLE OF CONTENTS (Cont)

Section 17

Trackball/Forcestick/Data Tablet Routines

TBALL Enable PED Events

DISTB Disable PED Events

DTINIT Assign PED as a Data Tablet
DTMODE Select Data Tablet Operating Mode
PED Programming Examples

REQTB Request PED X, Y

GETTB Get PED Request Information

Section 18
Miscellaneous Routines
HCOPY Initiate Hard Copy
REQIM Request Refresh Image
GETIM Get Refresh Image
GETERR Get Error Information

Section 19
Packed Vector Mode
ENBPMD Enable Packed Vector Mode
PMOVE Packed Vector Move
PDRAW Packed Vector Draw
DSAPMD Disable Packed Vector Mode

Section 20
Coordinate Converter Routines
CCINIT Initialize Coordinate Converter
CCVAL Activate the Coordinate Converter with Specific Values
CCON Turn On the Coordinate Converter
CCOFF Turn Off the Coordinate Converﬁer

iv

18-2
18-3
18-4
18-5

19-2
19-3
19-4
19-5

20-7
20-8
20-9
20-9

Paragraph
21.1

21.2

22.1
22.2
22.3
22.4

TABLE OF CONTENTS (Cont)

Section 21

Image Control Routines

CLIP Remove Off-Screen Data
SMOOTH Smooth Displayed Lines

Section 22
FSP Input/Output
G7INIT Initialize Host/Graphic 7 I/0 Driver
G7TERM Terminate Host/Graphic 7 I/0 Driver
MSGOUT Output Message to Graphic 7 Terminal
MSGIN Input Message from Graphic 7 Terminal

Section 23

Deliverable Items

Section 24

Installation Procedure

Section 25

Startup Procedure

APPENDICES

ATLPHABETICAL SUMMARY OF SUBROUTINES
ASCII CODES

ERROR CODES

MEMORY USAGE

PROGRAMMING EXAMPLES

PRODUCT PERFORMANCE REPORT

H H O Q W >

22-2
22-3
22-4

22-5

SECTION 1

INTRODUCTION

This Programmers Reference Manual for the Fortran Support Package (FSP) is pro-

vided by Sanders in support of its GRAPHICS 7 interactive display terminal.

1.1

1.2

1.3

1.4

SUBROUTINE CONCEPT

FSP is a collection of 62 Fortran-callable subroutines. The routines
require little knowledge of the GRAPHIC 7 terminal, yet allow the user
maximum utilization of its interactive capabilities.

HOST COMPUTERS

FSP is designed to run in any host computer which supports Fortran and has
a minimum word length'of 16 bits. The actual hardware method by which the
GRAPHIC 7 terminal is connected to the host is of no concern to FSP since it is
1/0 independent. I/0 considerations such as parallel or serial interfaces, half
or full-duplex, selector or multiplexer channels, etc., are incorporated in the
customer-supplied I/0 driver and hardware interface, leaving FSP computer
independent. Depending on the host computer, Sanders, by special request, will
supply the I/0 driver (software).

STRUCTURE

FSP employs the distributed processing approach, because it requires and
makes extensive use of the Graphic Control Program Enhanced (GCP+), which is
resident in read-only memory in the GRAPHIC 7.

Figure 1-1 shows that the application program uses FSP by making calls to
the various subroutines. FSP formats GCP+-compatible messages and transmits
them to the GRAPHIC 7 terminal via the MSGOUT subroutine (provided by the cus-
tomer). GCP+ in the GRAPHIC 7 processes the message to produce the desired
results.

FSP also receives and interprets messages from GCP+ in response to a POLL
request. These messages contain PHOTOPEN, keyboard, and PED* information.

FSP/GCP+ LINK CONTROL

As mentioned above, GCP+ sends messages to FSP only when polled. Each
message (input or output) contains a header word to identify the message, then
the remainder of the message. FSP may send a message to the GCP+ at any time.

*# — PED = position entry device

1-1

1.5

1-2

ERROR DETECTION/RECEIVING

Errors generated in running FSP are detected and an error code is displayed
in the upper left corner of the display screen. This error display area can be
turned on or off (displayed or not displayed) by user calls to routines ENBERR,
to turn error display on, or DSAERR to turn error display off. See Section 9
for a more detailed description of these routines.

Error detection is also available under program control. When the user
calls to EVENT, the routine which polls the terminal for an event or request
response, the routine sends back an event code indicating an error has been
detected. The user can now call subroutine GETERR to retrieve the error code.
See Section 18 for a detailed description of the GETERR routines.

Error codes are defined in Appendix C.

s

1-3

1-1 2an3Tt4
MANOLSND A9 (AAIAOEd , | SIATHA on
NIOSK “
IN09SH WALSAS
LINI/D INILVIAIO
WIdL.D
A
(SYIANVS A9 QINIAAd IONANOAS HNITIVD) —
MAROISND A9 (IATAONd —I
WIXdOD HAOWLA AXJINT
LINIDO WIAAOK IINIIC
MVIad avdavsa WALT TVADD
om0 Nagvsa wimray msbed (N195H) (100951) (1181£9) (RAELLO)
WHAVSA NAdONT MWIAD MIROTY UNILNOY NLLOOY ANTLOOY ANILNOY
TEINT 4ISId AXdIED SOLVIS INdNT 10dLao dZITVILINI ALVNINGAL
X04vsd 41149 WIOMM WIVda AY £5 to £9
X0g9Nd TIVEL INIAT WIVdD i
AdODH A0dWVT ¥NIOId dASvYd * ’
N0DD NOJWV'L INIOd 41vadn -
11000 ATALAD ATIOWID AT9qav
IVaATd IXL1IE9 IXAL ANTTHL
HIOOKWS NAdLI) Mvaa ATVDS
dI10 aWdvsa HAOW LNOAVT ﬁ
A INT AXdVSa AAORJ 7SS9
H4OVAIVd (SEANILNO¥ENS dSd
SYHANVS A9 dAdIAOYd ' ANTIINO¥INS g ——P 0l STIVD SAANTIONI)
dsd WV990¥d NOILVOITddv

" Sp— —— — mp— Sm—

SECTION 2

FEATURES OF FSP

The standard features of FSP are specified below:
1. Fortran-callable subroutines.

2. Distributed processing: Some features are performed in the host computer,
others in the GRAPHIC 7 terminal.

3. FSP is machine independent.

4, Refresh paging mechanism for organizing refresh data. This includes refresh
subroutine capability.

5. Windowing of user data including:

a. Data scaling: The conversion of user coordinates to refresh coordin-
ates and vice versa.

b. Image scissoring: Truncating portions of a display that extend be-
yond the screen boundaries.

6. Modifying images presently displayed (selective updating).

7. Each copy of FSP in the host supports one GRAPHIC 7 controller with four
CRT indicators, two keyboards, two trackballs or data tablets, two
PHOTOPENs, conic generator, and 2D coordinate converter.

8. - Operator interactions with application program:

a. Alphanumeric keyboard
b. Function keys
c. Trackball, forcestick, or data tablet

d. PHOTOPEN

9. Generation of all refresh instructions including image generation commands
(MOVE, DRAW, CIRCLE, POINT, TEXT).

10. Smoothing of user data to minimize the number of coordinates necessary for
presenting a continuous line.

11. Local PED operation pé£f6fméd étithé téfmiﬁai.

a. PED symbol locally updated at the terminal.

2-1

12.

13.

14.

15.

16.

17.

18.

19.

b. Symbol may be user defined or the default symbol.

Local keyboard manipulations performed at the terminal.

a. Characters typed directly into a refresh scratchpad.

b. Scratchpad area can be edited from the keyboard.

Local PHOTOPEN operations performed at the terminal.

a. PHOTOPEN finder - The position of the PHOTOPEN on the screen is

' determined by the GCP+, by flashing a grid pattern locating the
PHOTOPEN position.

Mass transfer of existing refresh data to the terminal. This allows for

off line generated refresh code to be passed directly to the GRAPHIC 7

terminal and inserted into the refresh memory without any additional

processing.

All floating point arithmetic processing of FSP is done in the host com~
puter. The GRAPHIC 7 GCP+ performs fixed point arithmetic.

For inserting refresh code, two modes of operation exist:
a. Initial or additional data.
b. Editing data (selective updating).

Hard copy capability. The application program can request that the image
on the screen be hard copied on the Sanders 570 Hard Copy Unit.

Displayed images can be rotated and translated on the CRT. Four subrou-
tines exist for manipulating the 2D coordinate converter hardware option.

All position data transmitted between host and GRAPHIC 7 is in screen
coordinates.

host

3.1

3.2

This

SECTION 3

FSP DISTRIBUTED PROCESSING

section describes how graphics tasks are distributed between FSP in the

and GCP+ in the terminal.

FSP Processing

1.

All floating point conversion.

a) Scaling: conversion of user floating point coordinates to display
coordinates.

b) Windowing: zooming and offsetting.

Scissoring: the clipping of off screen data.

Smoothing: the removing of unneeded points in defining a continuous line.
Formatting and transmitting the message to the GRAPHIC 7 terminal.
Receiving and converting all messages from the GRAHPIC 7 terminal to a
manageable form for Fortran. This includes converting screen coordinates
to floating point user coordinates.

Controls refresh file management, LAYOUT.

Processing

Receives messages from the host computer.
Processes messages from the host computer.
Handles PED manipulations and,symbol{

Finds the PHOTOPEN position on a blank screen.

Displays alphanumeric keyboard inputs on the screen in a predefined
scratch pad area.

Handles editing of text displayed in the scratch pad.
Formats all messages to the host computer.

Services all display interrupts.

Services all display peripheral devices.

Performs validation test and diagnostics.

3-1

SECTION 4

FSP SUBROUTINE LIBRARY

The FSP subroutines can be categorized as follows:

A.

Setup Routines

1. GSS4

2. LAYOUT
3. SCALE

4. ENBBOX
5. DSABOX
6. ENBERR
7. DSAERR
8. THEEND

Image Generation Routines

1. MOVE

2. DRAW

3. TEXT

4, POINT

5. CIRCLE

6. REFDAT

Page Management Routines
1, ADDREF

2. UPDATE

3. ERASEP ’
4, PICTUR

5. REQMRK

6. GETMRK

7. MOVEIM

8. COPYIM

Status Routines

1. CPARM
2. DPARM
3. STATUS
4. LAMPON
5. LAMPOF
6. COLOR

Event Routine

1. EVENT

Alphanumeric/Function Keyboard Routines

ENBPAD
DSAPAD
GETTXT
GETKEY

B BOVIN NI

Photopen Item Routines

ENBPEN
DSAPEN
ITEM

GETPEN

SO

Photopen Scan Routines

ENBPXY
DSAPXY
REQPXY
GETPXY

LN

Trackball/Forcestick/Data Tablet Routines

. TBALL
DISTB
DTINIT
DTMODE
. REQTB
GETTB

[oX RN 0, I S B OV RN o6 B

Miscellaneous Routines

HCOPY
REQIM
GETIM
GETERR

ES OV Sl
e o o

Packed Vector Routines

ENBPMD
PDRAW
PMOVE
DSAPMD

SN

Coordinate Converter Routines

1. CCINIT

2. CCVAL
3. CCON
4, CCOFF

Image Control Routines

1. CLIP
2. SMOOTH

SECTION 5
HARDWARE CONFIGURATIONS SUPPORTED

FSP supports either one or two display stations. A display station may have
the following equipment:

. Monitor

. Slave monitor

] PHOTOPEN

. Trackball or forcestick or data tablet

° Alphanumeric/function keyboard

° Hardcopy

The basic FSP supports the following hardware in the terminal controller:

° Memory configurations up to 128K
o Character generator

o Vector/position generator

° Conic generator

° 2D coordinate converter

5-1

SECTION 6

PAGING CONCEPT

A GRAPHIC 7 may be configured to have up to four 32K banks of memory for a total
of 128K of memory.

GCP+ and the memory required to support it occupies approximately 9K of space in
memory bank 0 and leaves approximately 23K of space for the user's refresh program.
The entire 32K in memory banks 1, 2, and 3 is available for refresh. The approximate
total useable refresh space in a 128K system therefore is 119K. The following chart
summarizes the amount of user refresh program space available for the various memory
configurations:

TOTAL MEMORY USER REFRESH SPACE

8K 5K* *These memory configurations are exceptions to
16K , 11K* the above paragraph. For 8K systems, 2K of
32K 23K memory is set aside to support options. For
64K 55K 16K systems, 4K of memory is set aside to
80K 71K support options. On systems where no present
96K 87K or future option support is needed, modifica-
128K 119K tions can be made to FSP to increase user

' refresh space to 7K or 15K in 8K or 16K memory
systems.

FSP uses a paging and mark approach wherein the following definitions are used:

"Page' Definition

° A page is a contiguous block of memory locationms.
° A éége may range in size from 4 memory locations to 32K-4 memory locations.
[A maximum of 255 pages may be defined.
° A page is referred to by a numeric value which ranges from 1 to 255.
° A page normally contains refresh commands generated by the various calls
to FSP.

] Pages are defined by a call to LAYOUT in the host but physically exist in
the memory of the GRAPHIC 7. .

° A page may not cross bank boundaries.
® Page 1 exists entirely in memory bank O.
° Page 1 is always refreshed and can be thought of as the "mainline" refresh

program.

. Pages 2 and above are not always refreshed and may be thought of as refresh
subroutines.

"Mark' Definition

. A mark is a relative pointer into a page.
° Each page has a corresponding mark pointer associated with it.
° Mark values range from 0 to 32K-4

e.g.

A mark value of 4 refers to the 5th memory location
relative to the start of a page.

° The length of a page is defined in terms of 16:bi£ words.

The LAYOUT call (see paragraph 9.2) allows the caller to define Graphic pages

(divide memory into sections).

The page and mark combination allows any memory location to be addressed by the

FSP routines.

6-2

| —— ——

— _ — - .

SECTION 7

COORDINATE SYSTEM

The user can define the limits of the coordinate system he will use by calling
subroutine SCALE with parameters defining the lower left and the upper right coordin-
ates of the screen. FSP converts these floating point coordinates to integer display
coordinates as the various FSP routines are called. It is the display coordinates
that are passed to the GCP+ program. Without a call to SCALE, the user coordinate
system is the same resolution as the display coordinate system. The lower left point
is defined as (0., 0.) and the upper right point as (+1023.,+1023.). See paragraph
9.3 for a detailed description of subroutine SCALE.

7-1

SECTION 8
USE OF LABELLED COMMON
FSP uses labelled common. The user should be careful not to use these common

block names within his program. These common blocks and their dimensions are as
follows:

Common Block Name Common Block Length (Words)
TERMB 279
COORD 9
PVMD 9
LAYOT 516
MAST 5
PERIPH 6

__PER2 2
PEN 1
LMEM 1

Total 838

8-1

SECTION 9

SETUP ROUTINES

The following subroutines are described in this section:

GSS4 - 1Initialize the terminal to FSP mode.

LAYOUT - Define FSP memory layout in the GRAPHIC 7 terminal.
SCALE - Define user coordinate system.

ENDBOX - Turn border display on.

DSABOX - Turn border display off.

ENBERR - - Turn error display on.

DSAERR - Turn error display off.

THEEND - Terminate FSP mode.

The purpose of the routines in this section is to set up and define the general
characteristics of the GRAPHIC 7. The GRAPHIC 7 is notified that it will be com-
municating with a host application program that is using the Fortran support package
(FSP) and is placed in FSP mode by the user's call to GSS4. The GRAPHIC 7 memory is
allocated according to the specifications defined by the user in the call to LAYOUT.
The wviewable area or boundary (commonly called window) that the user specifies
(by the call to SCALE) maps the user's coordinates to display coordinates and deter-
mines what image generation routines are called. Only objects with coordinates
withhin this user defined viewing area are displayped.

The status of FSP's error message area and border are controlled by the user's
call s to ENBERR and ENBBOX, which enable them to be displayable, and calls to DSABOX
and DSAERR to turn them off.

When the host application program has completed its task, it must call THEEND

to rotify the GRAPHIC 7 that it is no longer communicating with a FSP host applica-
tiom and to place it in teletypewriter emulation mode.

9-1

SINILNOY IDVINI/INLIS

9,1 INITIALIZE THE TERMINAL TO FSP MODE

NAME: GSS4

FUNCTION: Initializes FSP. This must be the first FSP routine called.
CALLING FORMAT: CALL GSS4 (IUNIT, IDUM, IFACE)

DESCRIPTION OF PARAMETERS: 1

Integer variable containing the logical unit # assigned to the
GRAPHIC 7 I/0 driver. This value is supplied as an argument to e
subsequent G7INIT, G7TERM, MSGOUT, and MSGIN subroutine calls
(see Section 22 for a more detailed description of these
subroutines).

IUNIT

IDUM = Dummy argument (for expansion)
IFACE = Integer variable containing the type of hardware interface between
the host and the GRAPHIC 7 terminal.
1 = Parallel
2 = Serial

DETAILED DESCRIPTION:

Tn addition to reinitializing internal FSP variables, the following visuals
can be observed: '

e The screen is cleared. The GSS4 roﬁtine causes the customer-
supplied G7INIT routine described in paragraph 22.1 to be called
as follows:

CALL G7INIT (IUNIT)

This subroutine is responsible for activating the system mode of 1
GCP+.
e A full screen border is placed on the screen to outline the dis-

playable area.

® A two digit "error message' is displayed in the upper left corner
of the screen. A successful call results in "00" being displayed.

9.2 DEFINE FSP MEMORY LAYQOUT IN THE GRAPHIC 7 TERMINAL .

NAME: LAYOUT

FUNCTION: Partitions the memory in the GRAPHIC 7 into pages. This routine
must be the second FSP routine called (GSS4 is the first).

CALLING FORMAT: CALL LAYOUT (NPAGES, LNGARY)

DESCRIPTION OF PARAMETERS:

Three distinct functions can be performed by LAYOUT depending on the
value of the NPAGES.

NPAGES = 1 to 255 ... User specifies memory layout
=0 ... FSP automatically performs memory layout
= -1 .+. User requests a description of how FSP would

allocate memory but no allocation is made.

USER ALLOCATION

NPAGES = An integer variable supplied by the caller indicating the number
of graphic pages desired. Each element of the length array
(LNGARY) contains the length in words of the corresponding
graphic page.
1 < NPAGES < 255
LNGARY = An integer array supplied by the caller whose length is equal to

NPAGES. Each element of the array must be filled in by the
caller with the length in "words" of the corresponding page, i.e.

LNGARY (1) = Length of page 1
LNGARY(2) = Length of page 2
LNGARY (NPAGES) = Length of page NPAGES

The maximum size of page 1 is 23720 words; the maximum size of all other pages
is 32763 words.

AUTOMATIC ALLOCATION

NPAGES = 0 (Supplied by caller and indicates automatic allocation
requested.)
LNGARY = A four word integer array supplied by the caller and filled in by

LAYOUT. TLAYOUT automatically creates 1 to 4 graphic pages,
depending on the installed memory configuration. The mark length
values returned in LNGARY are as follows:

9-3

e B8K,16K,32K systems LNGARY(l) = Length of page 1

LNGARY(2) = -1 (no page 2 defined)
LNGARY(3) = -1 (no page 3 defined)
LNGARY(4) = -1 (no page 4 defined)
e 64K systems LNGARY (1) = Length of page 1
LNGARY(2) = Length of page 2
LNGARY(3) = -1 (no page 3)
LNGARY (4) = -1 (no page 4)
e 80K, 96K systems LNGARY (1) = Length of page 1 ?
' LNGARY (2) = Length of page 2
LNGARY(3) = Length of page 3
LNGARY(4) = -1 (no page 4)
e 128K systems LNGARY (1) = Length of page 1
LNGARY (2) = Length of page 2
LNGARY(3) = Length of page 3
LNGARY (4) = Length of page 4
CONFIGURATION
NPAGES = -1 (Supplied by caller and indicates configuration request;
no pages allocated.) '
LNGARY =

by LAYOUT. No pages are allocated and the data returned is the
same as for the automatic allocation.

DETAILED DESCRIPTION

The memory of the GRAPHIC 7 must be divided into graphic pages by
using the LAYOUT subroutine before the subroutines described in the
remaining sections can be used. User pages are numbered starting at 1.
Page 1 is the "mainline refresh" page and all graphic orders in it are
displayed. Graphic orders in pages 2 through 255 are displayed only
through calling the PICTUR subroutine (see paragraph 11.5). The mark
values for each graphic page created by this call are set to zero. Pages
are allocated starting at the lowest memory allowable location of the first
32K memory bank and work upwards. A page is not allowed to cross 32K
memory banks and LAYOUT will assign memory accordingly. If the user at
some later time wishes to reallocate his pages, he must reinitialize the
graphics package by calling GSS4, followed by a call LAYOUT.

f
!
{
|
¥

A four word integer array supplied by the caller and filled in ,l

Example

c

C ALLOCATE 20,200 WORDS OF THE

C GRAPHIC 7 MEMORY

c INTO 7 PAGES USING LAYOUT

c WHERE

c PAGE 1 = 10,000 WORDS

C PAGE 2 = 2,000 WORDS

c PAGE 3 = 200 WORDS

c PAGE 4 = 1,500 WORDS

C PAGE 5 = 1,500 WORDS

C PAGE 6 = 3,000 WORDS

C PAGE 7 = 2,000 WORDS
LNGARY (1) = 10000
LNGARY (2) = 2000
LNGARY (3) = 200
LNGARY (4) = 1500
LNGARY (5) = 1500
LNGARY (6) = 3000
LNGARY (7) = 2000

C

C CALL LAYOUT FOR 7 PAGES

C
CALL LAYOUT (7, LNGARY)

C

C

9.3

9-6

DEFINE USER COORDINATE SYSTEM

NAME: SCALE

FUNCTION: Allows the caller to define the X, Y coordinates (in floating point)
of the lower left and upper right coordinates of the screen. FSP
maps these user coordinates to display coordinates as the various
FSP routines are called.

CALLING FORMAT: CALL SCALE (XL, YL, XU, YU)

DESCRIPTION OF PARAMETERS:

(XL, YL) = Floating point variables containing the X and Y values to be
assigned to the lower left corner of the displayable area.
(XU, YU) = Floating point variables containing the X and Y values to be

assigned to the upper right corner of the displayable area.
DETAILED DESCRIPTION:

All calls to FSP subroutines in which X, Y coordinates are supplied
convert the floating point user coordinate into an integer display
coordinate. It is the display coordinate which is then placed in the
currently opened page.

Without a call to SCALE, the user coordinate system is equal to the
default display coordinate system, i.e.,

XL, YL = 0.,0.
XU, YU = +1023.,+1023.

P—

— _ " A J—

—
-

9.4 TURN BORDER DISPLAY ON

NAME :

ENBBOX

FUNCTION: Allows the caller to display a rectangular border around the

displayable area on the selected indicators.

CALLING FORMAT: CALL ENBBOX (IND)

DESCRIPTION OF PARAMETERS:

IND - An integer variable indicating which of the four possible indicators
the border is to be presented on.

0 - none - 8 - #1

1 - #4 9 - #1 & 4

2 - #3 10 - #1 & 3

3 - #3 & 4 11 - #1, 3, & 4

4 - #2 12 - #1 & 2

5-1#2 & 4 13 - #1, 2, & 4

6 - #2 & 3 14 - #1, 2, & 3

7 - #2, 3 & 4 15 - #1, 2, 3, & 4 (default)

DETAILED DESCRIPTION

This routine allows the caller to selectively display the border on any
or all indicators. The default condition for FSP is to have the borders
displayed on all indicators.

TURN BORDER DISPLAY OFF

NAME:

DSABOX

FUNCTION: Allows the caller to remove the rectangular border from selected

indicators

CALLING FORMAT: CALL DSABOX (IND)

DESCRIPTION OF PARAMETERS:

IND = An integer variable indicating which of the four possible border
indicators to remove. See ENBBOX for the associated indicators
values.

DETAILED DESCRIPTION:

Removes outline around the displayable area on selected indicators.

9.6 TURN ERROR DISPLAY ON

9.7

NAME: ENBERR

FUNCTION: Allows the caller to turn on the error display area .
CALLING FORMAT: . CALL ENBERR (IND)

DESCRIPTION OF PARAMETERS:

IND = An integer variable indicating which of the four possible error
displays to present. See ENBBOX for the associated indicators
values.

DETAILED DESCRIPTION:

The error display is two digits in the upper left hand corner of the

display. The initial value displayed is "@@". If an error condition

is detected, the error number is both displayed and an error event is
created. The error numbers are listed in Appendix C.

TURN ERROR DISPLAY OFF

NAME: DSAERR

FUNCTION: Allows the caller to remove the error display area from the
selected indicator.

CALLING FORMAT: CALL DSAERR (IND)
DESCRIPTION OF PARAMETERS:
IND = An integer variable indicating which of the four possible error
displays to remove. See ENBBOX for a list of the values for
IND and the associated indicators.

DETAILED DESCRIPTION:

Removes the error display from the requested indicators. Error events
are still generated regardless of the status of the error display.

an

—

9.8 TERMINATE FSP MODE

NAME: THEEND

FUNCTION: Causes the GRAPHIC 7 terminal to return to the teletypewriter

emulation mode of GCP+. All screens are cleared before FSP
is terminated.

CALLING FORMAT: CALL THEEND

DETAILED DESCRIPTION:

When the host application program is through with its FSP processing
requirements, it must issue the THEEND call to notify the GRAPHIC 7

terminal that it is no longer communicating with FSP and ‘to place it
in teletypewriter emulation mode. In the emulator mode, the display
operator could then cause another graphics job to be run which would

issue a GSS4 call to put the terminal back into the FSP mode of
operation.

9-9

SECTION 10

IMAGE GENERATION ROUTINES

The subroutines described in this section permit the application programmer to
describe objects in user coordinates. The actual appearance of the objects on the
GRAPHIC 7 display is determined by the following:

[The‘gfaphic ordéféicreétéalb§”tﬁéWEalls”tdrEﬂé image generation

routines described in this section.

MOVE -- Move Beam to the position specified
DRAW ~-- Draw a line

TEXT -- Display text characters

POINT -- Display a point

CIRCLE -- Draw a circle
REFDAT -- Transfer a block of predefined graphic orders.

° The current value of display parameters which have been previously set
by calls to the status subroutines:

CPARM =-- Character size, spacing, and orientation.
DPARM -~ Drawing and refresh rates

STATUS -- Blinking, intensity, line type, and display CRT usage

COLOR -- Color selection when applicable (red, yellow, green and
orange)
° The current pages and areas of pages being displayed which have been

defined by previous calls to page management routines.

PICTUR -- Select pages to be displayed

-

ERASEP —-- Select area within page which is to be erased.
Examples in Appendix E illustrate various display images generated by calls to

routines in this section and the effects that display parameter settings and page
management activities have on these images.

10-1

10.1

10-2

MOVE BEAM TO THE POSITION SPECIFIED

NAME: MOVE

FUNCTION: Generates either an absolute or relative move graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL MOVE (X, Y, MODE)
DESCRIPTION OF PARAMETERS:

Absolute mode (MODE = 0, 2, or 3)

Absolute X, Y coordinate of the desired beam position.
The coordinate is in the user coordinate system.

X, ¥ = Relative mode (MODE = 1)

Relative X, Y coordinate (deltas) to be moved from the
current beam position. These relative values are also
in the user coordinate system.

MODE

An integer variable supplied by the caller which identifies
the type of graphic orders to be generated.

0 = X, Y supplied is absolute and absolute graphic orders
are to be generated

1 =X, Y supplied is relative and relative graphic orders
are to be generated

2=X,%Y sup@lied is absolute but relative graphic orders
are to be generated relative to the last absolute co-
ordinate with MODE = 3

3 =X, Y supplied is absolute and absolute graphic order
is to be generated (similar to MODE = 0). It is expected,
however, that subsequent calls to MOVE or DRAW will have
MODE = 2.

DETAILED DESCRIPTION:
Mode = 2 and MODE = 3 are provided to allow a user whose data base

contains only absolute X, Y coordinates to produce relative graphic
orders without calculating the deltas.

| — f—

Avvm— — A——

PRESSS == - =

-

— ‘,A

‘”‘/'

R

o

e, ., e, SRR, ie—.
S~

—

Example:

aaan

[eNeNeNe!

c

The following call produces an absolute graphic order
which moves the beam to (1,1)

CALL MOVE (1.,1.,3)
The following call produces a relative graphic order
which draws the beam from absolute (1,1) to absolute
(3,3). The deltas computed are (2,2).

CALL DRAW (3.,3.,2)
The following call produces another relative graphic
order
which draws the beam from absolute (3,3) to absolute(6,7)
The deltas computed are (3,4).

CALL DRAW (6.,7.,2)

The end result of the above example is that absolute coordinates were
used to create a relative entity (entity consisting of an absolute
move and two relative vectors). The TBALL routine described in
paragraph 17.1 can be used to link to the absolute move and to locally
move the entity around under control of the PED.

Example

a)
b)
c)
d)

e)

current position

.\\
CALL MOVE (5.,6.,0) 1ABS Tl
CALL MOVE (-3.,-3.,1) !REL »© ‘\glﬁi)
‘ 0,5

CALL MOVE (2.,2.,3) !ABS T 0.4 —
CALL MOVE (3.,3.,2) !REL Y 0,3 (b)q!""' =

0,2 R
CALL MOVE (3.,2.,2) !REL ’ o

0,1 (c) (e)

0,0 1,0 2,0 3,0 4,0 5,0
X —»

® Beam Position After Move
———————— Absolute Move

........ Relative Move

10-3

10.2 DRAW A LINE

NAME: DRAW

FUNCTION: Generates either an absolute or relative draw graphic order

and places it at the mark
page.

position of the currently opened

CALLING FORMAT: CALL DRAW (X, Y, MODE)

DESCRIPTION OF PARAMETERS:

(Absolute mode (MODE = 0, 2)

ordinate system.

< Relative mode (MODE =

Absolute X, Y coordinate of the end point of a line
to be drawn. The coordinate is in the user co-

1)

\ system.

MODE

Relative X, Y coordinate to be used in drawing a line
from the current beam position to a new position.
These relative values are also in the user coordinate

An integer variable supplied by the caller which identifies

the type of graphic orders to be generated

0

X, Y supplied is
graphic order is

1 =X, Y supplied is
graphic order is

2 =X, Y supplied is
graphic order is

DETAILED DESCRIPTION:

The behavior of this routine is
except that DRAW graphic orders
graphic orders. Note, however,
DRAW routine.

absolute and an absolute draw
to be generated

relative and a relative draw
to be generated

absolute but a relative draw
to be generated

almost identical to the MOVE subroutine
are produced rather than MOVE
that MODE = 3 .is not allowed for the

The attributes of the line drawn as a result of this call are deter-

mined by previous user calls to

the STATUS routine which sets up

(1) the type of line (solid, dotted, dashed, dot-dashed), (2) blink
or no blink, (3) intensity level and (4) the drawing rate. For color
displays, a previous call to COLOR determines the color of the line.

10-4

gy, A— So—— —

Example

c
C
C

DRAW

CALL
CALL
CALL
CALL

DRAW

CALL
CALL
CALL
CALL

A TRIANGLE USING ABSOLUTE COORDINATES

MOVE (1.,1.,0) (a)
DRAW (3.,4.,0) (b)
DRAW (5.,1.,0) (c)
DRAW (1.,1.,0) (d)

THE SAME TRIANGLE USING RELATIVE COORDINATES

MOVE (1.,1.,0) (a)
DRAW (2.,3.,1) (b)
DRAW (2.,-3.,1) (c)
DRAW (-4.0,0.,1)(d)

(d)

(a)

(b)

(c)

10-5

10.3

10-6

DISPLAY TEXT CHARACTERS

NAME: TEXT

FUNCTIONS: Generates text graphic orders and places them starting at the
mark position of the currently opened page.

CALLING FORMAT: CALL TEXT (N, IARRAY)

DESCRIPTION OF PARAMETERS:

N = An integer variable supplied by the caller indicating the
number of text characters to be displayed.
1 <N<386
TARRAY = An integer ‘array supplied by the caller in which each element

of the array contains an 8 bit ASCII character code right
adjusted in the element (see Appendix B for character codes).

DETAILED DESCRIPTION:

If N is odd, a®null character is stored as the last text character.

When the currently opened page is displayed, the GRAPHIC 7 displays

text starting at the current position of the beam in either a horizontal
or vertical direction with character size and spacing determined by a
previous user call to CPARM:. The text intensity, blink or no blink,

and color (color displays only) has also been determined by calls to
other FSP routines. The current beam position after the text is
displayed is located at the location of the last text character drawn
(blanks included)

C
C NON-ROTATED TEXT
C THIS IS TEXT
CALL MOVE (1.,1.,0)
sles bef ft
CALL TEXT (12, TARRAY) erore atter
Beam Position
=
c £
C ROTATED TEXT &
C % After
vp]
CALL MOVE (l.,1.,0) o
CALL TEXT (12,IARRAY) &
Before

Beam Position

~« o

10.4

DISPLAY A POINT

NAME: POINT

FUNCTION: Generates a '"point" graphic order and places it at the mark
position of the currently opened page.

CALLING FORMAT: CALL POINT
DETAILED DESCRIPTION:

This call does not change the position of the beam but simply causes
a point to appear at the current position of the beam.

Example: C Plot 3 horizontal points starting

C at (512,512) along the positive X

C axis with the spacing between points = 5
CALL MOVE (512.,512.,0)
CALL POINT
CALL MOVE (5.,0.,1)
CALL POINT
CALL MOVE (5.,0.,1)
CALL POINT

10-7

10.5 DRAW A CIRCLE

NAME:

FUNCTION:

CALLING FORMAT:

DESCRIPTION
RADIUS
IQUAD
IQUAD
0 1

CIRCLE

OF PARAMETERS:
where:
§ = turn
1 = turn
2 = turn
3 = turn
4 = turn
5 = turn
6 = turn
7 = turn
8 = turn
9 = turn
10 = turn
11 = turn
12 = turn
13 = turn
14 = turn
2

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

CALL CIRCLE (RADIUS, IQUAD)

all quadrants
quadrant 4 only
quadrant 3 only

quadrants

3 and

quadrant 2 only

quadrants

2 and

quadrants-2 and

quadrants

2, 3’

quadrant 1 only

quadrants
quadrants
quadrants
quadrants
quadrants
quadrants

1 and
1 and
1, 3,
1 and
1, 2,
1, 2,

Radius of the circle in user coordinates.

4 only

4 only
3 only
and 4 only

4 only
3 only
and 4 only
2 only
and 4 only
and 3 only

Ja

Which quadrants of the circle are to be displayed.

(o))

Allows the caller to display specified quadrants of a circle
centered around the current position of the beam.

N

{lu

(T

10-8

ENVARN
//

—

3

AR VAR
/

DETAILED DESCRIPTION:

This routine places a '"draw circle" or "draw quadrant(s)" graphic order
at the mark position of the currently opened page. When the currently
opened page is displayed, the GRAPHIC 7 displays a circle or a series of
quadrants (see description of IQUAD) at a distance equal to RADIUS around
the current position of the beam. The current position of the beam re-
mains unchanged.

10.6 TRANSFER A BLOCK OF PREDEFINED GRAPHIC ORDERS

NAME: REFDAT

FUNCTION: Allows the caller to transfer and display a block of predefined
graphic orders (MOVE, DRAW, TEXT, POINT, CIRCLE)

CALLING FORMAT: CALL REFDAT (IARRAY, N)

DESCRIPTION OF PARAMETERS:

IARRAY = An integer array containing graphic orders right
adjusted in the right-most 16 bits of each element.
N = An integer variable containing the number of elements in

the array.
1 <N<20
DETAILED DESCRIPTION

This routine takes the lower 16 bits (right-most) of the first N elements
found in the array IARRAY and places them at the mark position of the
currently opened page.

The contents of the array IARRAY must be predefined graphic orders.

The image generated by the transferred contents of the array IARRAY
are displayed when the currently opened page is displayed.

10-9

SECTION 11

PAGE MANAGEMENT ROUTINES

The page management routines are used to select the memory address in the
GRAPHIC 7 that will be used to store the next graphic instruction. The GRAPHIC 7
memory address is calculated internally in FSP based on the current page selected
and the current mark position. Each time the application program calls one of the
image generation routines (MOVE, DRAW, TEXT, POINT, CIRCLE, REFDAT), FSP generates
the equivalent graphic controller instructions which are sent to the GRAPHIC 7 and
stored in the GRAPHIC 7 memory.

The page management routines comnsist of the following subroutines:

ADDREF - Open page for adding refresh data.
UPDATE - Open page for editing refresh data.
ERASEP - Erase from page mark to end of page.
PICTUR - Graphic subroutine call.

REQMRK - Request the present page mark.
GETﬁRK - Get mark request information.
MOVEIM - Move a block of graphic orders
COPYIM - Copy a block of graphic orders

Refresh data refers to the block (or group) of graphic controller instructionsg
that are used to display the desired image on the CRT indicator. :

When the application program calls the LAYOUT subroutine, the GRAPHIC 7
memory is sectioned into pages. For example, if 3 pages were selected and page 1
length was 2000, page 2 length was 1000, and page 3 length was 500, then the
GRAPHIC 7 memory would look as follows:

11-1

ADDRESS GRAPHIC 7 MEMORY

0
Memory space used
by GCP+
3000 Start of Page 1
5000 Start of Page 2
6000 Start of Page 3
6500 End of memory for
use by FSP

These addresses were selected for illustrative purposes and may not be the
same memory addresses that would be used by an FSP program. Note that in this
example all addresses above 6500 are unassigned and would be unavailable for storage
of refresh data.

When refresh data is to be added to GRAPHIC 7 memory, the address is selected
by adding the start address of the current page to the current mark. The following
table indicates the GRAPHIC 7 memory address that would be selected, based on the
current page and current mark.

CURRENT CURRENT START ADDRESS GRAPHIC 7 MEMORY
PAGE MARK OF PAGE ADDRESS

1 0 3000 3000

1 5 3000 3005

2 0 5000 5000

2 876 5000 5876

3 0 6000 6000

3 499 6000 6499

3 500 6000 *

*A mark selection of 500 would result in an error code being generated because the
length of page 3 was only 500 and valid marks would be in the range of @ to 499,

11-2

To illustrate the principles involved when using the page management routines,
a simple FSP program will be reviewed in the areas related to page management. The
program is given below; the image that would be displayed on a CRT for this program

is shown in figure 11-1.

NOTE

Please read the subroutine descriptions for ADDREF,
UPDATE, ERASEP, PICTUR, REQMRK and GETMRK before
continuing.

An FSP program which generates the display image in figure 11-1 is given

below:

LINE NO.

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call

GSS4 (3, 0, 2)
LAYOUT (3, LPAGES)
SCALE (0.0, 0.0, 12.0, 12.0)
ADDREF (1)

MOVE (6.0, 6.0,0)
DRAW (7.0, 5.5, 0)
DRAW (8.0, 5.5, 0)
TEXT (8, ITEXT)
ADDREF (2)

MOVE (-.5, -.5, 1)
DRAW (1.0, 0., 1)
DRAW (0., 1.0, 1)
DRAW (-1.0, 0., 1)
DRAW (0., -1.0, 1)
ADDREF (3)

MOVE (-.5, 0., 1)
DRAW (1.0, 0., 1)
MOVE (-.5, -.5, 1)
DRAW (0, 1.0, 1)

ADDREF (1)

MOVE (1.5, 10.5, 0)
PICTUR (2)

MOVE (10.5, 10.5,0)
PICTUR (2)

MOVE (10.5, 1.5, 0)
PICTUR (2)

MOVE (1.5, 1.5, 0)

PICTUR (2)

MOVE (6.0, 8.0, 0)

PICTUR (3)

MOVE (6.0, 4.0, 0)

PICTUR (3)

The call to GSS4 (line 10) initializes the FSP program and a full screen box
and an error code value of "00" are displayed on the CRT indicator.

11-3

X~AXTS P

5”

6” 7” 8" 9”].O” 11”

I I

121!

+

\; TEST ONE

l

12"

__11”

—10H

—3|1

L 2”

11-4

FIGURE 11-1

Dk 4 ——

The call to LAYOUT (line 20) sections GRAPHIC 7 memory into three pages.
The first word of each page (i.e., mark @) is set up to contain an end of page
mark. The end of page mark is equivalent to a return statement in a subroutine.

The call to SCALE (line 30) sets up FSP to map all values in the range of "0"
to '"12" into the equivalent CRT coordinate system. The user coordinate system
defines the lower left corner of the CRT as 0", 0" and the upper right hand corner
as 12", 12". TFor the CRT coordinate system the lower left corner is always -512,-512
and the upper right corner is always +511, +511 This is always true regardless of
which values are specified in the call to SCALE.

The call to ADDREF (line 40) opens up page 1 in the add mode. In the add mode,
an end of page mark (EPM) is added after each refresh data word is stored in page 1.
This call also sets up a GRAPHIC 7 memory address pointer to point to the first word
(mark @) in page 1. After the call to ADDREF, page 1 looks as follows:

Page 1 EPM 1\———Mark pointing here
> Undefined
/

After the call to MOVE (line 50), page 1 looks as follows:

Page 1 MOVE . -
‘ ' EPM [Mark pointing here

Undefined

Note that after the call to MOVE, the mark value points to the new address
in which the EPM is stored.

11-5

After the two calls to DRAW (lines 60 and 70) and the call to TEXT (line 80),
page 1 looks as follows: :

Page 1 MOVE

DRAW

DRAW

TEXT ('TEST ONE')

EPM ¢— Mark

At this point the following is displayed on the CRT indicator.

\\\——————— TEST ONE

The call to ADDREF (2) (line 90) opens up page 2 in the add mode. This call
also sets up a GRAPHIC 7 memory address pointer to point to the first word (mark @)
in page 2. It also saves the last mark value associated with page 1.

After the call to MOVE (line 100) and the 4 calls to DRAW (lines 110 to 140),
page 2 looks as follows:

Page 2 MOVE

DRAW

DRAW

DRAW

DRAW

EPM €—Mark

At this point nothing in page 2 is displayed on the CRT indicator since a
call to PICTUR has not been made. Page 1 is always displayed.

11-6

The call to ADDREF (3) (line 150) opens up page 3 in the add mode. This call
also sets up a GRAPHIC 7 memory address pointer to point to the first word (mark @)
in page 3. It also saves the last mark value associated with page 2.

After the calls to MOVE, DRAW, MOVE, DRAW (lines 160 to 190), page 3 looks as

follows:

Page 3 MOVE

DRAW

MOVE

DRAW

EPM

§———— Mark

At this point nothing in page 3 is displayed on the CRT indicator since a call

to PICTUR has not been made.

The call to ADDREF (1) at line 200 re-opens page 1 in the add mode. This call
also sets up a GRAPHIC 7 memory address pointer to point to the last word in page 1
that contains the EPM. It also saves the last mark value associated with page 3.

After the calls to MOVE and PICTUR (2) at lines 210 and 220, page 1 looks as

follows:

Page 1 MOVE

DRAW

DRAW

TEXT

MOVE

PICTUR(2)

EPM

§——Mark

11-7

At this point a box is displayed at the top left side of the CRT indicator.
The call to PICTUR (2) causes a subroutine call to be made to page 2. This causes
the instructions in page 2 to be executed. When the EPM is executed in page 2,
program control is returned back to page 1 (i.e., the EPM in page 1).

After the remaining statements in the FSP program (i.e., lines 230 to 320)
are executed, the GRAPHIC 7 memory looks as follows:

Page 1 MOVE

DRAW

DRAW These 1nst?uct10ns are
executed first

TEXT

MOVE

PICTUR(2) |@¢——All instructions in page 2
executed

MOVE 44— This instruction executed

after page 2
PICTUR(2) |€—— All instructions in page 2
are executed again.

MOVE

PICTUR(2)

MOVE

PICTUR(2)

MOVE

PICTUR(3) |@4——All instructions in page 3

executed
MOVE
PICTUR(3)
EPM ——Mark
Undefined

11-8

Page 2 MOVE

DRAW

DRAW

DRAW

DRAW

EPM

} Undefined

Page 3 MOVE

DRAW

MOVE

DRAW

EPM

} Undefined

At this point the image shown in figure 11-1 is displayed on the CRT indicator.
NOTE

The page 1 instructions are the only instructions
that are directly executed. All instructions in
pages 2 and 3 are executed indirectly via the PICTUR
subroutine linkage.

The UPDATE and ERASEP subroutines are normally used in response to some
operator action. For example, the function keys on a keyboard could be programmed
to cause certain modifications to a display image. To illustrate the use of UPDATE
and ERASEP, let's say that it is now desired to perform the following actions in
response to function key responses from an operator.

FUNCTION KEY ACTION
16 Remove box display from 4 corners.
(Effectively delete or erase the

instructions stored in page 2.)

17 ~ Replace the 'TEST ONE' characters with
'"TEST TWO'.

11-9

All operator inputs from the GRAPHIC 7 are returned via the EVENT subroutine. [
This subroutine is described in Section 13. To avoid confusion, let's say that the
FSP program has been properly set up to detect function key responses.

When a function key 16 response is detected, the following FSP code could be
used to erase page 2: ' 1

CALL UPDATE (2,0)
CALL ERASEP

The call to UPDATE sets up the GRAPHIC 7 address pointer to point to the first 1
instruction in page 2. The call to ERASEP stores an EPM in page 2 which replaces

the first instruction.

Based on the previous example, page 2 would look as follows:

Page 2 EPM §——Mark
DRAW
DRAW | | |
o ° 1

DRAW These instructions won't
be executed

DRAW l

EPM 1
Undefined :

At this point the boxes are no longer displayed at the four corners. In [
page 1 there are four CALL PICTUR (2) instructions; but every time page 2 is executed |
now, the first instruction executed in page 2 is an EPM so program control returns
to page 1. (I.e., the four DRAWS and second EPM in page 2 will never get executed.)

NOTE

When an ERASEP is executed, the page is also re- (
opened. This has the same effect as executing another L
ADDREF(2). For example, if the FSP program were
coded in the following way in response to a function
key 16 response:

CALL UPDATE (2,0)
CALL ERASEP
CALL TEXT ()

then page 2 would look as follows after the TEXT l‘
instruction is executed: '

11-10

Page 2 TEXT

EPM §——Mark

DRAW

DRAW
Never executed

 DRAW

EPM

} Undefined

At this point the text contained in the TEXT array would be displayed.

In the previous example, if we want to replace the text 'TEST ONE' with
'"TEST TWO', we must know where the TEXT instruction is located in page 1. The
following code would have to be added to the previous example to determine the loca-
tion of the TEXT instruction in page 1.

LINE NO.
71 CALL REQMRK
72 10 CALL EVENT (IEVNT)
73 IF (IEVNT.NE.7) GOTO 10
74 CALL GETMRK (MARK)

The above code would be inserted between lines 70 and 80. The call to REQMRK
tells FSP to determine what the current mark value is. (Effectively, the mark
points to the EPM which is where the TEXT instruction is stored.) When FSP deter-
mines the current mark value, it sets up the EVENT table to contain a mark event
(i.e., event type 7). The event type 7 response indicates that the current mark
value is now stored in the EVENT table. The CALL to GETMRK retrieves the current
mark value from the event table. After the call to GETMRK, the variable MARK

contains the current mark value. MARK is saved for future updating.

Now we are ready to process function key 17 type responses. For a function
key 17 response, the following code would be added:

CALL UPDATE (1, MARK)
CALL TEXT ()

CALL ADDREF (1)

11-11

The call to UPDATE sets up the address pointer to point to the address where
the TEXT instruction ('TEST ONE') is located. The call to TEXT ('TEST TWO')
replaces the previous TEXT instruction. At this point the CRT indicator would dis-
play 'TEST TWO'. When UPDATE is executed, edit mode is entered. In this mode, no
EPM is inserted after the TEXT instruction is added. After the TEXT instruction is
executed, page 1 looks as follows:

Page 1 MOVE

DRAW

DRAW

‘ "TEST TWO' replaced
1 LAY
TEXT ('TEST TWO') —11pst oNE'

Mark (after TEXT instruc-
MOVE <—-—tion)

PICTUR (2)

MOVE

PICTUR (2)

MOVE

PICTUR (2)

MOVE

PICTUR (2)

MOVE

PICTUR (3)

MOVE

PICTUR (3)

EPM @—Mark (after ADDREF(1)
instruction)

Undefined

11-12

—

-

Note that after the TEXT instruction is replaced in GRAPHIC 7 memory, the
mark is pointing to the MOVE following the TEXT instruction. The call to ADDREF(1)
takes us out of edit mode and into add mode. After the call to ADDREF(l), the mark
is repositioned to the EPM. The call to ADDREF(l) is necessary so that all future
FSP subroutine calls made for page 1 will get added to the end of page 1. If no
call to ADDREF(l) is made, all future FSP subroutine calls made for page 1l would be

added following the TEXT instructions. In essence we would be destroying the refresh
data in page 1.

When UPDATE is used, care must be used to ensure that refresh data is not
destroyed. For example, when the 'TEST ONE' text was replaced, it was replaced with
a TEXT string consisting of exactly 8 characters (i.e., the same number of characters
as the original text string 'TEST ONE'). If a text string of more than 8 characters
were inserted in place of the 'TEST ONE' text string, then these additional char-
acters would be stored following the TEXT instruction. In this case the MOVE instruc-
tion would be destroyed. If the TEXT string were very large, the remaining instruc-
tions in page 1 could easily be over-written and destroyed. If the text string were
less than 8 characters, then the text string would have to be space filled to a
length of 8 characters.

The MOVEIM and COPYIM subroutines are intended for use by advanced FSP users.
It is strongly recommended that new FSP users get some experience writing FSP pro-
grams before attempting to use the MOVEIM and COPYIM subroutines.
NOTE

Please read the subroutine descriptions for MOVEIM
and COPYIM before continuing.

11-13

Normally a call MOVEIM is issued after the CALL COPYIM to remove the section of
data that has been copied.

STEP A Copy from MARKA to MARKB to end of page.

CALL COPYIM (MARKA, MARKB)

‘

STEP B Remove copied refresh

CALL MOVEIM (MARKB, MARKA)

STEP C Get new page mark

10 CALL EVENT (IEVENT)

IF (IEVENT EQ. 7) GO TO 20

OTHER PROCESSING

GO TO 10

C
C GET NEW PAGE MARK
C
20 CALL GETMRK (MARKC)
MARKA =P MARKA =P
/A/ A/ B
MARKB —pp < 2] ¥4 ///
B B A
A/

4— END OF PAGE

END OF PAGE I
Le L)) ¢~ END OF
PAGE
RESULTS OF STEP A RESULTS OF STEP B

11-14

11.1 OPEN PAGE FOR ADDING REFRESH DATA

NAME: ADDREF
FUNCTION: This routine opens the specified page and sets the mark to either
the beginning of the page, if it is empty, or directly following
the last data entered into the page.
CALLING FORMAT: CALL ADDREF (IPAGE)
DESCRIPTION OF PARAMETERS:
IPAGE = An integer variable containing the page number to be opened.
1 < IPAGE < 255
DETAILED DESCRIPTION:
This subroutine is used to set up a page for initial orders (if empty)
or for addition of graphics orders to the page. This subroutine does not

give the caller the ability to edit:.previous graphic orders as does the
UPDATE subroutine (see next descriptiomn).

11.2 OPEN PAGE FOR EDITING REFRESH DATA

NAME: UPDATE

FUNCTION: The requested page is opened for editing with the page mark set to
the value supplied by the caller.

CALLING FORMAT: CALL UPDATE (IPAGE, MARK)

DESCRIPTION OF PARAMETERS:

IPAGE = An integer variable containing the page number to be opened.
1 < IPAGE < 255
MARK = An integer variable containing the position in the page where the

mark is to be positioned.
DETAILED DESCRIPTION:
The current page and mark are set to IPAGE and MARK, and mode is changed
to edit. Used to modify existing refresh. Note that in the edit mode it is

possible to inadvertently insert refresh instructions, over and beyond the
current page ending. This will most likely cause an error.

11-15

11.3

11.4

11-16

ERASE FROM PAGE MARK TO END OF PAGE

NAME: ERASEP

FUNCTION: This routine erases the currently open page from the current
position of the mark to the end of the page. It does not
change the mark.

CALLING FORMAT: CALL ERASEP
DETAILED DESCRIPTION:

An "end of page" graphic order is placed at the present position of the
"mark" causing all graphic orders following it to be removed from the graphic
flow. If the program mode is in edit (UPDATE has been called), the program
is taken out of the edit mode and into addition mode (equivalent to calling
ADDREF).

GRAPHIC SUBROUTINE CALL

NAME: PICTUR

FUNCTION: Causes the contents of the specified page to be displayed at the
current mark and beam position, i.e., a graphic subroutine order
is inserted at the present page mark.

CALLING FORMAT: CALL PICTUR (IPAGE)

DESCRIPTION OF PARAMETERS:.

IPAGE = An integer variable containing the page number to be
displayed (that is, linked to).

-1 reserves space for a subsequent page call in the update mode.
DETAILED DESCRIPTION:

This routine causes the contents of page IPAGE to be called from the
current mark and beam position. Note that the page calls should not be arranged
so that a page can eventually call itself. See Section 6 for a more detailed
description.

If IPAGE = -1, then three no operation instructions (NOP's) are inserted
into the current page. The mark is advanced by 3.

11.5 REQUEST THE PRESENT PAGE MARK

11.6

NAME: REQMRK

FUNCTION: Allows caller to determine the location of the next available
location on a page.

CALLING FORMAT: CALL REQMRK
DETAILED DESCRIPTION:
This routine causes the host program to request the current mark. The

user then calls EVENT and GEIMRK to get the value. The user may then use the
value of the mark for subsequent updates.

GET MARK REQUEST INFORMATION

NAME: GETMRK

FUNCTION: Retrieves from the event tables the information requested by the
REQMRK call.

CALLING FORMAT: CALL GETMRK (M)
DESCRIPTION OF PARAMETERS:

M = An integer variable returned to the caller containing the present
page mark.

DETAILED DESCRIPTION:

This routine retrieves the value of the mark after a mark event has been
received.

11-17

11.7

11-18

MOVE A BLOCK OF GRAPHIC ORDERS

NAME: MOVEIM

FUNCTION: Allows the caller to move all data between a given position and the
end of the current page to another mark position on that page. The
current mark (end of page) will be changed. Current page mark can
be obtained by calls to EVENT and GETMRK.

CALLING FORMAT: CALL MOVEIM (MARKFR, MARKTO)

DESCRIPTION: OF PARAMETERS:

MARKFR = 1Integer variable indicating the mark location that data
will be moved from.
MARKTO = Integer variable indicating the mark location that the

data will be moved to.
The following condition must exist:
MARKTO < MARKFR < END OF PAGE
DETAILED DESCRIPTION:

This routine moves data between a specified mark location (MARKFR) and
the current end of page to a given mark location (MARKTO). The current end
of page will be changed to equal MARKTO plus the length of the data move (old
end of page minus MARKFR).

This routine automatically sends the current mark (new end of page) back
to the host as if a CALL REQMRK had been issued by the host. The user calls
EVENT and GETMRK to get the value. The user may use the value of the mark
for subsequent updates.

The following error codes can be generated for MOVEIM:

ERROR CODE MEANING
65 MARKTO> MARKFM
66 MARKFR> END OF PAGE

-

In terms of GRAPHIC 7 memory, the current page is altered as shown below
when a CALL MOVEIM (MARKFR, MARKTO) is executed.

Memofy before
CALL TO MOVEIM

Current page

:::k"

MARKTO

MARKFR

I\

END OF

\
\

\
\

PAGE MARK

MARKTO

Memory after
CALL TO MOVEIM

Current page

—
)

\

NEW END
OF PAGE
MARK

:://'*
,///,

\
\

The result of the MOVEIM operation is that section B has been deleted

from refresh memory and additional refresh memory has been freed for re-use
by the FSP programmer.

11-19

11.8 COPY A BLOCK OF GRAPHIC ORDERS

NAME: COPYIM

FUNCTION: Allows the user to copy the data between two given marks on the
current page to the end of that page. The current mark (end of
page) changes. .

CALLING FORMAT: CALL COPYIM (MARKA, MARKB)

DESCRIPTION OF PARAMETERS:

MARKA - An integer variable specified by the caller which gives the
starting mark location of the data being copied.

MARKB -~ An integer variable specified by the caller which gives the
last mark location of the data being copied.

The following condition must exist:

MARKA < MARKB < END OF PAGE
Space must be available at the end of the page.
DETAILED DESCRIPTION: B

This routine copies data between two given marks on the current page to
the end of the current page. The current end of page is modified to equal [
the end of page prior to the CALL COPYIM plus the length of the data copied.

This routine determines if room is available at the end of the page for
the data to be copied. If not enough space is available, error 64 is issued
and no data is copied.

This routine allows the user to expand an existing image by copying or]
appending the image to the end of the current page where additional FSP func-
tions may be performed.

This routine automatically sends the current mark (new end of page) l;
back to the host as if a CALL REQMRK had been issued by the host. The user
calls EVENT and GETMRK to get the new mark value.

The following error codes can be generated for COPYIM: L |
ERROR CODE _ MEANING 1
62 MARKA > MARKB
63 MARKB > END OF PAG£
|
64 Not enough room on page for copy.

11-20

In terms of GRAPHIC 7 memory, the current page is altered as shown
below when a CALL COPYIM (MARKA, MARKB) is executed.

MARKA

Memory before

CALL TO COPYIM

Current page

MARKB

\
\

END OF

\

AN

PAGE MARK

MARKA

Memory after

CALL TO COPYIM

Current page

A

MARKB

OLD END
OF PAGE
MARK

NEW END
OF PAGE

7
==

The result of the COPYIM operation is that a copy of the refresh code

in Section B is appended to the end of the current page.

After the COPYIM

operation, the mark pointer changes to reflect the new end of page mark.

11-21

SECTION 12
STATUS ROUTINES
The following routines described in this section allow the caller to define
how the display data (graphic orders) will be seen, which PHOTOPENs are enabled,

and which keyboard function keys are 1lit.

CPARM -- set character parameters for size, orientation,
and spacing

DPARM -- set drawing and refresh rate and enable
PHOTOPEN
STATUS -- set blinking, intensity, line style, and

indicator selection(s)
LAMPON -- Turn keyboard function key on
LAMPOF -~ Turn keyboard function key off

.COLOR =~-- Select red, orange, yellow, or green

12.1

12-2

SET CHARACTER PARAMETERS

NAME: CPARM

FUNCTION: Allows the caller to select the character parameters: size,
spacing, and orientation.

CALLING FORMAT: CALL CPARM (ICSIZE, ICROT, ICSPAC)

DESCRIPTION OF PARAMETERS:

ICSIZE = Integer variable selecting the character size desired.
Normal height 12" x 12" display
0 = size 0 (smallest) 0.125(inches)
1 =size 1 (1.5 times size 0) 0.187(inches) (default)
2 = gize 2 (2.0 times size 0) 0.250(inches)
3 = size 3 (3.0 times size 0) 0.375(inches)
ICROT = Integer variable indicating the character orientation.
0 = normal (horizontal) (default)
1 = rotate 90° CCW
ICSPAC = Integer variable containing the spacing (in dits) between
characters.
Recommended Spacing Value
Size O — 10
Size 1 - 15 (default)
Size 2 - 20
Size 3 - 30

DETAILED DESCRIPTION

This routine generates a graphic order containing the caller specified
character size, orientation, and spacing and places it at the mark position
of the currently opened page. Since the GRAPHIC 7 uses a hardware character
generator to display character, scaling has no impact on these character
parameters.

— p—— T— p—— — e —— — — — — — iy — i ——-— e — —

12.2 SET DISPLAY PARAMETERS

NAME: DPARM
FUNCTION: Allows the caller to set the GRAPHIC 7 display parameters for
drawing and refresh rate as well as enable and disable a selected
PHOTOPEN.
CALLING FORMAT: CALL DPARM (ISP, ISYNC, IPEN)
DESCRIPTION OF PARAMETERS:
ISP = Integer variable selecting the drawing rate desired

0 = fast drawing rate (default)
1 slow drawing rate

ISYNC = Integer variable selecting the refresh rate desired
0 = no change
1 = 60 Hz (normal) (default)
2 = 40 Hz
3 =30 Hz
IPEN = Integer variable selecting the PHOTOPEN to be enabled
0 = Both PHOTOPENs disabled
1 = PHOTOPEN 1 enabled
2 = PHOTOPEN 2 enabled
3 = Both PHOTOPENs enabled (default)

DETAILED DESCRIPTION:
This routine generates a graphic order containing the caller specified

drawing and refresh rates and enabled PHOTOPEN(s) and places it at the mark
position of the currently opened page.

12-3

12.3 SET DISPLAY STATUS

12-4

NAME: STATUS

FUNCTION: Allows the caller to control blinking, intensity, line style, and
indicator selection.

CALLING FORMAT: CALL STATUS (IBL, INT, IVT, IND)

DESCRIPTION OF PARAMETERS:

IBL = Integer variable controlling blinking
0 = stop blinking (default)
1 = start blinking

INT = Integer variable selecting 0-7 intensity levels

= invisible

1 = very dim
7 = (default) very bright

INT = 1Integer variable selecting line style
0 = solid vectors (default)
1 = dotted vectors
2 = dashed vectors
3 = dot-dashed vectors

IND = Integer variable selecting which indicators are to be refreshed
0 - none 8 - #1
1 - #4 9 - #1 & 4
2 - i3 10 - #1 & 3
3-#3& 4 11 - #1, 3, & 4
4 - 42 12 - #1 & 2
5-1#2 & 4 13 - #1, 2, & 4
6 - #2 & 3 14 - #1, 2, & 3
7 - #2, 3, & 4 15 - #1, 2, 3, & 4 (default)

-1 = indicator not changed.
Indicator specified in
previous call to STATUS
remains in effect.

DETAILED DESCRIPTION:

This routine generates a graphic order containing the caller specified
display attributes for blinking, intensity, line style and indicator selection
and places it in the currently opened page at the location pointed to by the
page's mark pointer. The display will remain in the specified status until
changed by another call to STATUS.

12.4 TURN KEYBOARD LAMP ON

NAME: LAMPON

FUNCTION: Allows the caller to turn on a selected lamp on the selected
keyboard.

CALLING FORMAT: CALL LAMPON (KBD, LAMP)

DESCRIPTION OF PARAMETERS:

KBD = 1Integer variable specifying which of the two possible
keyboards
1 = Keyboard 1
2 = Keyboard 2
LAMP = Integer variable specifying which of the lighted function keys

is to be lighted. NOTE: If LAMP = -1 then all lamps are turned
on.

DETAILED DESCRIPTION:

Lamps are numbered 0-31. The top row is numbered 16-31, left to right.
The lamp number is the same as the key number.

FUNCTION KEYS:

16 | 17 | 18 | 19 [20 |21 | 22 | 23 | 24 |25 | 26 | 27 | 28 |29 {30 | 31

MATRIX KEYS:

10 | o |11 |12

12-5

12.5 TURN KEYBOARD LAMP OFF

NAME: LAMPOF

FUNCTION: Allows the caller to turn off a selected lamp on a selected

keyboard.
CALLING FORMAT: CALL LAMPOF (KBD, LAMP)

DESCRIPTION OF PARAMETERS:

KBD =
keyboards
1 = Keyboard 1
2 = Keyboard 2
LAMP =

Integer variable specifying which of the two possible

Integer variable specifying which of the lighted function keys

is to be turned off. NOTE: If LAMP = -1, then all lamps are

turned off.

DETAILED DESCRIPTION:

Lamps are numbered 0-31. The top row is numbered 16-31 left to right.

The lamp number is the same as the key number.

FUNCTION KEYS:

12-6

16 { 17 | 18 | 19 | 20 |21 | 22 | 23 | 24 | 25 26 | 27 | 28 |29 |30 | 31
MATRIX KEYS:
7 8 9 |15
& 5 6 | 14
1 2 3 113
10 0 |11 | 12

. — '—‘i,

i - - , -7 ?‘- - - 'll . ! f A F‘I . v - i

et

—

12.6 SET DISPLAY COLOR

NAME: COLOR

FUNCTION: Allows the caller to select one of four colors for the specified
indicator(s).

CALLING FORMAT: CALL COLOR (ICOLOR, IND)

DESCRIPTION OF PARAMETERS:

ICOLOR = Integer variable containing the number of the color desired.
0 = red
1 = orange
2 = yellow
3 = green (default)
IND = Integer variable specifying the number of the desired
indicator(s)
0 - none 8 - #1
1 - #4 9 - #1 & 4
2 - #3 10 - #1 & 3
3-#3 & 4 11 - #1, 3, & 4
4 - #2 12 - #1 & 2
5-1#2 & 4 13 - #1, 2, & 4
7 - #2, 3, & 4 15 - #1, 2, 3, & 4 (default)

DETAILED DESCRIPTION:

Routine creates a graphic order to change color and places it at the mark
position of the currently open page. When possible, all codes of one color
should be grouped together. A maximum of four color changes are allowed in
an FSP program. If the color is changed more than four times, then the color
change selection probably won't take place. The color CRT is protected against
incorrect programming so the FSP programmer need not be overly concerned if an
error is made and the FSP program contains 5 or 6 color changes.

12-7

SECTION 13

EVENT ROUTINE

An asynchronous (unpredictable) "event" may occur when one of the following
operator actions takes place:

A PHOTOPEN select is performed on a blank screen while in the "scan"
mode.

A PHOTOPEN select is performed on a graphic item while in the "item"
mode. ’

One of the 16 function keys on the alphanumeric/function keyboard is
pressed.

One of the 16 matrix keys on the alphanumeric/function keyboard is
pressed.

An alphanumeric key depression causes the "text input" buffer to
become full.

A CR (carriage return) key is pressed on the alphanumeric/function
keyboard.

The data tablet pen is pressed and released while in the "automatic"
mode.

Another asynchronous event is the "error" event which is generated when any
of the error conditions described in Appendix C are detected. These error conditions
fall into the following categories:

System errors

A. Overload conditions

B. Malfunctions

Incorrect calling sequence

User parameter errors

Currently defined page refresh exceeded

Miscellaneous

The final asynchronous event is the "illegal response from terminal" event.
This ewvent occurs when FSP in the host receives a message from the GRAPHIC 7 which
is incomprehensible.

13-1

A synchronous (predictable) "event" will occur as a result of the following

FSP calls:
REQTB - TRequest current coordinate of a PED
REQIM - Request refresh data
REQPXY - Request single PHOTOPEN scan
HCOPY - Request hardcopy
REQMRK - Request mark.

The FSP programmer becomes aware that an "event" has occurred only by calling
the EVENT subroutine described in paragraph 13.1. The EVENT subroutine returns an
event code value to the caller which indicates either that no event has occurred
or that one of the above asynchronous or synchronous events has occurred.

13.1 POLL TERMINAL FOR EVENT OR REQUEST RESPONSE

NAME: EVENT

FUNCTION: Issues a poll request to GCP+ and waits for a poll response. An
event code is returned to the caller indicating the type of event

(if any).

CALLING FORMAT: CALL EVENT (IEVNT)

DESCRIPTION OF PARAMETERS:

IEVNT = An integer variable returned to the caller indicating the
event type.
1 = No events.
2 PED motion, call GETTB
3 = A line of text is available, call GETTXT.
4 = A function key was pressed, call GETKEY.
5 = There was a PHOTOPEN detect, call GETPEN.
6 = PHOTOPEN XY found, call GETPXY.
7 = Mark response available, call GETMRK.
8 = Error (XY overflow, halt, index out of range, etc.),
call GETERR.
9 = Refresh dump available, call GETIM.
10 = Hardcopy complete.
11 = TUnused.
12 = Illegal response from the terminal.

13-2

SECTION 14

ALPHANUMERIC KEYBOARD ROUTINES

This section describes the routines available to the user to handle alpha-
numexric and function keyboard data. These routines are named below:

FSP allows and

ENBPAD

DSAPAD

" GETTXT

GETKEY

Enable alphanumeric scfatchpad'
Disable alphanumeric scratchpad
Retrieve alphanumeric text information
Retrieve function key information

supports up to two alphanumeric/function keyboards. These

keyboards combine a 32 function keyboard and an alphanumeric keyboard into one

physdcal unit.

A single keyboard system has the keyboard connected to port 3 of the

first multiport serial interface. An additional keyboard may be added, and is con-
nected to port 7 of the second multiport serial interface.

Multiport serial #l

Multiport

PORT 1

PORT 2

PORT 3

PORT 4

PORT 5

PORT 6

PORT 7

PORT 8

- Alphanumeric/function keyboard #1

serial #2

- Alphanumeric/function keyboard #2

14-1

Each keyboard has an 86 character buffer or pad associated with it which

receives alphanumeric key characters as they are typed. The pad is refreshable and
is displayed as a single line of text at a user specified X, Y coordinate.

A "text" event is created (event code = 3) when one of the following operator

actions take place:

) An alphanumeric key depression causes the associated pad to become full.
) A "return" key is pressed and at least one character is already in the
pad.

Once a "text" event is created, the pad is cleared (reset to blanks).

A "key" event (event code = 4) is created when the operator presses any of the

16 function keys or any of the 16 matrix keys.

14.1

14-2

ENABLE ALPHANUMERIC SCRATCH PAD

NAME: ENBPAD

FUNCTION: Specifies parameters for pad for entry of information from
alphanumeric keyboard.

CALLING FORMAT: CALL ENBPAD (IKEY, IND, X, Y,‘IMAX)
DESCRIPTION OF PARAMETERS:
IKEY = (1 or 2) keyboard number specified by the caller.
IND = (@ thru 15) indicators on which the caller wishes alphanumeric
information displayed. See STATUS routine for which values

correspond to which indicators.

X = Real variable specified by the caller indicating the X position
in user coordinates of first character.

Y = Real variable specified by the caller indicating the Y position
in user coordinates of first character.

(1 thru 86) user specified number of characters allowed in pad
(default is 1).

IMAX

DETAILED DESCRIPTION:

This routine allows the user to establish for each keyboard the location
of the display of a single line of text entered from the alphanumeric keys.
See GETTXT for further information. Note that the keyboard is always enabled.
ENBPAD only displays the pad and establishes its parameters. The user may use
the keyboard without enmabling the pad. If the user does not call ENBPAD, the
default IMAX of 1 is used, which means that every alphanumeric key depression
causes a text event (event code = 3).

14.2

14.3

DISABLE ALPHANUMERIC SCRATCH PAD

NAME: DSAPAD

FUNCTION: Turns off the display of the alphanumeric keyboard information.
CALLING FORMAT: CALL DSAPAD (IKEY)

DESCRIPTION OF PARAMETERS:

IKEY

The keyboard number (1 or 2) specified by the caller.
DETAILED DESCRIPTION:

Turns off the display 'only for the selected keyboard. Does not change
any other parameters. The user may still use the keyboard and events are
still generated as explained in GETTXT. DSAPAD simply causes the keyboard
information not to appear on the displays.

GET TEXT EVENT INFORMATION

NAME: GETTXT

FUNCTION: Transfers the text buffer characters obtained by the EVENT
subroutine to the caller.

CALLING FORMAT: CALL GETTXT (IARRAY, ISIZE, NCHAR, KBD)

DESCRIPTION OF PARAMETERS:

IARRAY = A user defined integer array into which the currently com-
pleted text input buffer is transferred. Each array element
contains one 8-bit ASCII character in the rightmost 8 bits of
the element.

ISIZE = An integer variable supplied by the caller containing the
maximum number of characters to be placed in the array, i.e.,
ISIZE is the size of the array. If an input buffer string is
longer than the array size, those characters which don't fit
are lost.

NCHAR = An integer variable returned to the caller, containing the
number of characters (elements) placed in the array. The "NL"
(new line) character used to terminate the input buffer is not
included in the array or character count.

KBD = An integer variable returned to the caller indicating the

keyboard to which the input buffer is associated.

KBD = 1 = keyboard #1
KBD = 2 keyboard #2

14-3

14.4

14-4

DETAILED DESCRIPTION:

This subroutine should normally be called only after a call to EVENT has
indicated that a "text" event has occurred.

Associated with each of the two alphanumeric keyboards in the terminal is
an 86-character input buffer (there are two such buffers). As a key is
pressed on the keyboard, its corresponding character is added to the next
character position in its corresponding input buffer. If a typing error is
made while entering characters into the scratchpad, the RUBOUT key can be used
to make corrections. RUBOUT deletes the last character typed. Successively
pressing RUBOUT can delete the entire line.

The scratchpad characters are sent to the host and the input buffer is
cleared (reset to blanks) when one of the following events occurs:

1. .A new line or the carriage return key is typed.
2. A call to GSS4 is made.
3. The buffer is full.
See ENBPAD for further information.
NOTE
If the scratchpad is empty and a carriage
return is entered, no event flag is sent

back to the host.

GET FUNCTION KEY EVENT INFORMATION

NAME: GETKEY
FUNCTION: Retrieves from the event tables the function key event information.
CALLING FORMAT: CALL GETKEY (KBD, KEY)

DESCRIPTION OF PARAMETERS:

KBD = An integer variable returned to the caller indicating which of
the two keyboards caused the event.
KBD = 1 = keyboard #1
KBD = 2 = keyboard #2 .
KEY = An integer variable returned to the caller indicating which of

the 32 function keys was pressed.

’\\--

__

g ‘

T— — T— p——— —— o A— — ——— —

DETAILED DESCRIPTION:

This routine retrieves the key number after a function
been received. TFunction keys are always enabled.

FUNCTION KEYS:

key event has

16 | 17 | 18 | 19 {20 |21 | 22 | 23 | 24 | 25 | 26 | 27 | 28

29

30

31

MATRIX KEYS:

10 0 JI11 | 12

14-5

SECTION 15

PHOTOPEN ITEM ROUTINES

The PHOTOPEN can be used in two distinct ways:

° As a positional entry device

° As an item selection device

The two modes differ. Use as a positional entry device requires~no graphics
information on the screen; use as an item selection device requires existing

graphics. Section 16 describes the positional entry mode. This section describes
the item selection mode. The following subroutines are presented in this section:

ENBPEN - Enable global PHOTOPEN sensitization
DSAPEN -~ Disable global PHOTOPEN sensitization
ITEM - Define a graphic item

GETPEN Get PHOTOPEN event information

A page or sections of a page (items) may either be PHOTOPEN responsive or
non—-PHOTOPEN responsive. A PHOTOPEN responsive item generates a PHOTOPEN event
(event code 5) when the following operator actions are performed:

(1) The operator places the PHOTOPEN over any character, vector, conic,
or point making up the item.

(2) The PHOTOPEN is pressed to activate its switch.

A PHOTOPEN event then makes available to the FSP programmer (via subroutine
calls) the following information:

o PHOTOPEN number (1 or 2)

. Page and mark of exact graphic order within the item
° Type of graphic order (text, vector, code, point)
[Calling page if item is a refresh subroutine

° Text byte
° Item number

An item that is not PHOTOPEN responsive does not generate a PHOTOPEN event
when the above operator actions are performed.

Two levels of sensitization are required to make an item PHOTOPEN responsive.
Without these two levels enabled an item is not PHOTOPEN responsive.

15-1

Local Sensitization

This type of sensitization is provided by the DPARM subroutine and is used
when the programmer wishes to sensitize an item locally. The same routine is used
for desensitization, e.g.:

CALL DPARM
CALL MOVE } o ‘
CALL DRAW Sensitized (item 1)
CALL DPARM
CALL MOVE
CALL DRAW
CALL DRAW

Desensitized (item 2)

CALL DPARM
CALL POINT)
. Sensitized (item 3)

A page built as a result of the above calls, when refreshed, is not yet
PHOTOPEN responsive; i.e., an attempt to PHOTOPEN either item 1 or item 3 does not
create a PHOTOPEN event. Global sensitization is required to make this possible.

Global Sensitization

The enabling and disabling of global sensitization is provided by the ENBPEN
and DSAPEN routines. Global enabling (ENBPEN) allows all locally sensitized items
in all pages to be PHOTOPEN responsive; i.e., a locally sensitized block when
globally sensitized creates a PHOTOPEN event when penned.

Example:
CALL DSAPEN
CALL DPARM o
CALL DRAW] Item 1 - Locally sensitized
Items 1,2,3 CALL DPARM
Not PHOTOPEN CALL DRAW] Item 2 - Locally sensitized
responsive CALL DPARM
CALL DRAW] Item 3 - Locally sensitized
CALL ENBPEN
Items 1,2,3 -
PHOTOPEN -
responsive -
CALL DSAPEN
Items 1,2,3 -
Not PHOTOPEN -
responsive -
15-2

_ — i — — —— ot ——

7 — - — ——— S— ——— d—an

P P

The FSP programmer detects PHOTOPEN events by calling the EVENT routine and
checking the returned event code for a value of 5. If a PHOTOPEN event is detected,
then the FSP programmer must call the GETPEN subroutine, which returns to the caller
all the PHOTOPEN event information.

Example:

CALL EVENT (IEVNT)

IF (IEVNT ¢ EQ - 5) CALL GETPEN ()

15-3

15.1

15.2

15-4

ENABLE GLOBAL PHOTOPEN SENSITIZATION

NAME: ENBPEN

FUNCTION: Allows any locally sensitized pages or items to be PHOTOPEN
responsive to the selected PHOTOPEN.

CALLING FORMATS: CALL ENBPEN (IPEN)

DESCRIPTION OF PARAMETERS:

’ 1 PHOTOPEN #1 activated
IPEN = I
2

PHOTOPEN #2 activated

DETAILED DESCRIPTION:

This call may be made before, during, or after the creation of a page
or pages.

DISABLE GLOBAL PHOTOPEN SENSITIZATION

NAME: DSAPEN

FUNCTION: Causes all locally. sensitized pages or items to be globally de-
sensitized to the selected PHOTOPEN.

CALLING FORMAT: CALL DSAPEN (IPEN)
DESCRIPTION OF PARAMETERS:

1

PHOTOPEN #1 deactivated
IPEN = '
2

PHOTOPEN #2 deactivated

DETAILED DESCRIPTION:

Performs opposite action of ENBPEN,

7 R— ,ﬁ‘ _ T

~, —

, , \“

15.3 DEFINE A GRAPHIC ITEM

NAME: ITEM

FUNCTION: Allows the caller to associate an identifying number to all calls
(MOVE, DRAW, etc.) which follow this call.

CALLING FORMAT: CALL ITEM (NUM)
DESCRIPTION OF PARAMETERS:

NUM = 1Integer number associated with the calls that follow.
DETAILED DESCRIPTION:

The caller can use this routine to give identifying numbers to items in
the refresh file. This item number is returned to the caller via calls to
GETPEN routine.

It is often desirable to group several vectors, points, characters, etc.,
into a logical entity or item and to make it PHOTOPEN responsive in such a
way that penning any vector, point, character, etc. within the item causes a
PHOTOPEN event, which in turn provides the item number.

Example:
CALL ITEM (25)
CALL DPARM
CALL DRAW €4——ITEM 25
CALL ITEM (26)

CALL DRAW 4———ITEM 26

15-5

15.4 GET PHOTOPEN EVENT INFORMATION

NAME: GETPEN

FUNCTION: Retrieves from the event tables all of the information concerning
the PHOTOPEN event.

CALLING FORMAT: CALL GETPEN (IPEN,IPAGE,MARK,ITYPE,ICPAGE,IBYTE,ITMNUM)
DESCRIPTION OF PARAMETERS:

IPEN = An integer variable returned to the caller identifying
which pen caused the event.

IPEN = 1 = PHOTOPEN #1
IPEN = 2 = PHOTOPEN #2
IPAGE = An integer variable returned to the caller identifying the page
number in which the event occurred.
MARK = An integer variable returned to the caller giving the "mark"
of the graphic order which caused the event.
ITYPE = An integer variable returned to the caller identifying the
type of graphic order which caused the event.
1 = text
2 = vector
3 = circle
4 = point
5 = short vector
ICPAGE = An integer variable returned to the caller identifying the
page number of the calling page.
IBYTE = An integer variable returned to the caller identifying the
text byte causing the event.
ITMNUM = An integer variable returned to the caller giving the value

of the item number at the event position.
DETAILED DESCRIPTION:
This routine retrieves the PHOTOPEN event information from the event

tables. The page or item must have been locally sensitized by DPARM and
globally sensitized by ENBPEN to allow this event to occur.

15-6

SECTION 16

PHOTOPEN SCAN ROUTINES

Section 15 described the PHOTOPEN routines available when the PHOTOPEN is used
to pen existing graphic items on the screen. This section describes how the
PHOTOPEN can be used to point to a blank area of the screen and obtain the X, Y
position of that point. The following routines are described in this section:

ENBPXY - Enter multiple PHOTOPEN scan mode
DSAPXY - Leave multiple PHOTOPEN scan
REQPXY - Request single PHOTOPEN scan
GETPXY - Get PHOTOPEN scan event data

When PHOTOPEN scan is enabled (ENBPXY or REQPXY), PHOTOPEN events (event code
5) are not possible (see Section 15) but rather PHOTOPEN scan events are enabled.

A PHOTOPEN scan event is created by the operator performing the following actions:

1. The operator points the PHOTOPEN to any position on the screen.

2. The operator presses the PHOTOPEN to produce a PHOTOPEN switch interrupt.

3. The operator observes a momentary flash as FSP displays a full screen of

horizontal vectors to find the Y position and then a partial screen of
vertical vectors to find the X position.

The FSP programmer detects PHOTOPEN scan events by calling the EVENT routine
and checking the returned event code for a value of 6. If a PHOTOPEN scan event is
detected, then the FSP programmer must call the GETPXY subroutine which returns to
the caller the following PHOTOPEN scan information:

° Pen number

® X, Y position of pen

16-1

16.1

16.2

16-2

ENTER PHOTOPEN SCAN MODE

NAME: ENBPXY

FUNCTION: Sets the operating characteristics of the PHOTOPEN selected to
the scan mode. In this mode, the PHOTOPEN acts as a positional
entry device and can be pointed to a blank screen.

CALLING FORMAT: CALL ENBPXY (IPEN,ICRT)

DESCRIPTION OF PARAMETERS:

1 = PHOTOPEN #1 activated
IPEN =
2 = PHOTOPEN #2 activated
ICRT = An integer variable specifying which indicator to scan.

See STATUS for the values of ICRT and the corresponding
displays.

DETAILED DESCRIPTION:

This subroutine results in nothing visual but simply sets the PHOTOPEN

to the scan mode. While in this mode, any number of scan events are possible.

Both PHOTOPENs may be in the scan mode.

TERMINATE PHOTOPEN SCAN MODE

NAME: DSAPXY

FUNCTION: Sets the operating characteristics of the PHOTOPEN to the item
mode. '

CALLING FORMAT: CALL DSAPXY (IPEN)
DESCRIPTION OF PARAMETERS:

1
IPEN =

2

PHOTOPEN #1 deactivated

PHOTOPEN #2 deactivated

DETAILED DESCRIPTION:

This routine is normally visual in conjunction with ENBPXY.

o T T T B B

16.3 REQUEST PHOTOPEN SCAN

NAME: REQPXY

FUNCTION: Leaves item mode and enters scan mode. Control is returned to the
caller after a scan event has occurred. The item mode is then
reestablished.

CALLING FORMAT: CALL REQPXY (IPEN,ICRT)

DESCRIPTION OF PARAMETERS:

)

An integer variable specifying which indicator to scan,
See STATUS for the values of ICRT and the corresponding
displays.

]

PHOTOPEN #1 activated
IPEN

PHOTOPEN #2 activated

ICRT

DETAILED DESCRIPTION:

This call is used to obtain a single scan event. The sequence of events
performed by this call are as follows:

(1) Scan mode selected (CALL ENBPXY)
(2) Routine waits for operator to generate a scan event
(3) Item mode is reestablished (CALL DSAPXY)

To obtain the scan data, the FSP should call EVENT to verify an event
code of 6 (PHOTOPEN scan) and then call GETPXY to obtain the X,Y position.

16-3

16.4 GET PHOTOPEN SCAN EVENT INFORMATION

NAME: GETPXY

FUNCTION: Retrieves from the event tables all information concerning the
PHOTOPEN scan event.

CALLING FORMAT: CALL GETPXY (IPEN,X,Y)

DESCRIPTION OF PARAMETERS:

’

Real variables in user coordinates indicating the X,Y
position of the pen.

]

PHOTOPEN #1 caused scan event (returned)

IPEN

PHOTOPEN #2 caused scan event (returned)

X,Y

DETAILED DESCRIPTION:

Returns to the caller the PHOTOPEN scan information associated with the
last PHOTOPEN scan event.

16-4

SECTION 17

TRACKBALL /FORCESTICK/DATA TABLET ROUTINES

This section describes how to program the trackball or forcestick or data

tablet.

The following routines are described in this section:

TBALL ~ Enable PED events

DISTB - Disable PED events

DTINIT - Assign data tablet as a PED
DTMODE - Select data tablet operating mode
REQTB - Request PED X, Y

GETTB - Get PED request information

A device which is used to input an X, Y coordinate to FSP is called a positional
entry device (PED). FSP supports the following PEDs:

Trackball
Forcestick
Data Tablet
PHOTOPEN (scan mode)
NOTE

The use of the PHOTOPEN as a PED is addressed in
Section 16.

FSP allows and supports up to two PEDs. A single PED system has the PED
connected to port 4 of the first multiport serial interface. An additional PED
may be added, and is connected to port 8 of the second multiport serial interface.

17-1

Multiport serial #1

PORT 1

PORT 2

PORT 3

PORT 4 | - PED #1 (trackball or forcestick or data tablet)

Multiport serial #2

PORT 5

PORT 6

PORT 7

PORT 8 | - PED #2 (trackball or forcestick or data tablet)

FSP, when initialized (GSS4 call), assumes the PEDs to be either a trackball
or a forcestick (default). A call to DTINIT and DIMODE is required if the PED or
PEDs are data tablets. Following initialization, the X, Y position of the PED is
set to the center of the screen.

A PED event is created when one of the following operator actions or program
actions take place:

') REQTB subroutine is called (synchronous event)

® The data tablet pen is pressed and released while in the automatic
mode (asynchronous event).

The information available as a result of a PED event is as follows:
° PED causing the event (1 or 2)
. X, Y coordinate of the PED in user coordinates.

The subroutine GETTB is used to obtain the above information once the event
has occurred.

An additional PED feature is provided by the TBALL subroutine which locks a

visual cursor to the movement of the PED; i.e., as the PED is moved, so is the
visual cursor.

17-2

The following operator and/or program actions are required to use a PED:
(1) Enable PED and link PED movement to visual cursor (TBALL)

(2) Change forcestick/trackball default condition if PED is a data tablet
(DTINIT and DTMODE)

(3) Move PED to desired X, Y coordinate (operator action).
NOTE
Visual cursor follows PED movement.
(4) Request and get PED X, Y position (REQTB, EVENT, GETTB)
or, if PED is a data tablet in the automatic mode,

(4a) Get last PED position (EVENT, GETTB).

17-3

17.1 ENABLE PED EVENTS I

NAME: TBALL
FUNCTION: Link PED movement to visual cursor and enable PED events.
CALLING FORMAT: CALL TBALL (ITBALL, IPAGE, MARK)

DESCRIPTION OF PARAMETERS: |

ITBALL = Integer variable supplied by caller indicating the desired [
PED.
1 = PED #1 :
2 = PED #2
3
IPAGE = Page number containing user defined symbol. If @, a default
symbol is used ("#" for PED #1 and "#" for PED #2) ‘l
MARK = The location of the absolute move.preceding the symbol. If

IPAGE = (), MARK is used to establish the indicators on which r
the default symbol is to be displayed (1 thru 15 - see STATUS
for the values which correspond to the indicators).

DETAILED DESCRIPTION:

TBALL enables PED events and as such must be called before using the PED.
In addition to enabling PED events, a default visual indicator is placed on [
the screen ("*" for PED #1 and "#" for PED #2). As the PED is moved (pen
pressed on the data tablet), the cursor moves also to indicate the current
X, Y position of the PED.

This routine also allows the user to link the PED to a MOVE absolute
instruction in his page whose X, Y parameters will be modified in response to
movement of the PED. The user should obtain the mark (REQMRK and GETMRK) of |
the MOVE absolute instruction before calling MOVE.

Following the absolute MOVE call, relative graphic instructions (TEXT or 1
relative DRAWS) should be inserted. Now, when the absolute MOVE is updated,
all of the relative vectors move also.

17-4

17.2

17.3

DISABLE PED EVENTS

NAME: DISTB

FUNCTION: Disconnects linkage between PED and visual cursor and disables
PED events.

CALLING FORMAT: CALL DISTB (ITBALL)

DESCRIPTION OF PARAMETERS:

ITBALL = Integer variable supplied by caller indicating the desired
PED.
1 = PED #1
2 = PED {#2

DETAILED DESCRIPTION:

This routine reverses the action of a call to TBALL and no PED events
are possible.

ASSIGN PED AS A DATA TABLET

NAME: DTINIT

FUNCTION: Informs FSP that a data tablet is present.
CALLING FORMAT: CALL DTINIT (IPEDNO)

DESCRIPTION OF PARAMETERS:

IPEDNO = Integer variable supplied by the caller indicating which
PED position the data tablet is connected to.

1 = Connected to PED 1 position (port 4)
2 Connected to PED 2 position (port 8)

DETAILED DESCRIPTION:

This routine must be called if a data tablet is present and should be
called following the TBALL call. If not called, a trackball or forcestick
is assumed, which will result in incorrect data when the data tablet is used.

NOTE

Data tablet messages are 10 characters in length.
Trackball/forcestick messages are 2 characters in
length. This call must be immediately followed by
a "call" to DIMODE to select the "request" or
"automatic" mode.

17-5

17.4

17-6

SELECT DATA TABLET OPERATING MODE

NAME: DTMODE
FUNCTION: Define the operating mode for the data tablet.
CALLING FORMAT: CALL DTMODE (IPEDNO, IMODE)

DESCRIPTION OF PARAMETERS:

IPEDNO = Integer variable supplied by the caller indicating which
data tablet the mode change refers to.
1 = Data tablet #1 (port 4)
2 = Data tablet #2 (port 8)
IMODE = Integer variable supplied by the caller used to select the

operating mode for the data tablet.

0
1

Request mode
Automatic mode

DETAILED DESCRIPTION:

This subroutine establishes the operating mode for a data tablet. There
are two operating modes: the request mode and the automatic mode. In the
request mode, data tablet X, Y position data messages are generated only in
response to a REQTB call. In the automatic mode, data tablet X, Y position
data messages are generated any time the user releases (for at least % second)
the switch on the data tablet pen (after it has been pressed). For both
modes, the user calls EVENT to wait for the terminal response and then calls
GETTB to obtain the values.

17.5 PED PROGRAMMING

EXAMPLES

Example 1

Example 2

aa

@] [eNoNoNoNe!

[cNeNeNeNoNesNeNeNeNe]

Initialize forcestick as PED #l using
default cursor on display #1

CALL GSS4
CALL LAYOUT
CALL TBALL (1,0,1)

At this point in the program an "*" appears

on display #1 in the center of the screen and
follows the operators actions on the
forcestick. No PED events are generated,
however, until the program issues a REQTB call.

Initializes data tablet as PED #1 in automatic
mode using default cursor on display #1

CALL GSS4
CALL LAYOUT
CALL TBALL (2,0,2)

At this poifit a "#" appears on display #1;
however, the data tablet is not ready for use
until the following two calls are made.

CALL DTINIT (2)
CALL DTMODE (2,1)

At this point in the program the operator

may move the "#" only by moving the data

tablet pen with the switch pressed. Once the
switch is released, a PED event is created
which is detected by the EVENT call and
processed by the GETTB call - i.e., no REQTB is
required in this mode. Multiple PED events are

possible in the automatic mode simply by pointing

to a position on the tablet and pressing
and releasing the switch.

17-7

17-8

Example 3

Q eNeoNeNo N

(@]

Initialize trackball as PED #1 using
a user defined cursor on display f#1

Create a single page 50 words in length

CALL GSS4 (1,0,1)
CALL LAYOUT (1,50)

Define the cursor to be the letter "A"

CALL MOVE (512.,512.,0)
CALL TEXT (1,1HA)

Note: The mark associated with the above absolute
MOVE call is = 0 since nothing
else has been placed in the page.
Also the "A" is displayed at the center

of the screen but not under trackball control.

Link trackball to user defined cursor
CALL TBALL (1,1,0)

At this point in the program the "A" is linked
to the trackball and is moveable.

L e e T e

-

e . Y DR T B B B

17.6 REQUEST PED X,Y

NAME: REQTB

FUNCTION: Requests the current X, Y coordinate of the specified PED.
CALLING FORMAT: CALL REQTB (NUMBER)

DESCRIPTION OF PARAMETERS:

NUMBER = Integer variable supplied by the caller indicating the
PED selected.

1
2

PED #1
PED #1

DETAILED DESCRIPTION:

This routine causes a PED event to occur which has an event code of 2.
The PED event contains the current X,Y position of the PED as indicated by
the current cursor position on the screen. This call should not be used if
the PED is a data tablet in the automatic mode.

o

NOTE

This call only causes a PED event to occur.
The actual X, Y position of the PED is ob-
tained by a combination of the EVENT and GETTB
subroutines.

17-9

17.7 GET PED REQUEST INFORMATION

17-10

NAME: GETTB

FUNCTION: Retrieves the current X, Y coordinate of the PED.

CALLING FORMAT:

NUMBER

X, Y =

DETAILED DESCRIP

CALL GETTB (NUMBER, X, Y)

An integer variable returned to the caller identifying
the PED which caused the event.

Real variables containing the current location of the PED
in user coordinates.

TION:

This routine is called after the EVENT subroutine has returned an event

code of 2 (PED e
Example 1: C

10

Example 2: C
c
20

vent) .

Read current PED #1 position
CALL REQTB (1)
CALL EVENT (IEVNT)
IF (IEVNT .NE. 2) GO TO 10
CALL GETTB (NUMBER, X, Y)
IF (NUMBER .NE. 1) GO TO 10

Read current PED #2 position where PED #2
is a data tablet in the automatic mode
CALL EVENT (IEVNT)
IF (IEVNT .NE. 2) GO TO 20
CALL GETTB (NUMBER, X, Y)
IF (NUMBER .NE. 2) GO TO 20

e e e e T e T e e T e T e N e

|

SECTION 18
MISCELLANEOUS ROUTINES
This section describes how to produce hard copies, how to request and sub-
sequently how to receive a block of refresh data, and how to obtain error codes

currently displayed on enabled display indicators.

The following routines are described in this section:

HCOPY — Initiate hard copy

REQIM - Request refresh image
GETIM - Receive refresh image
GETERR =~ Get error information

18-1

18.1 INITIATE HARD COPY

NAME: HCOPY

FUNCTION: Initiates a hard copy of all data currently being directed to the
fourth display (output channel #4).

CALLING FORMAT: CALL HCOPY (-1)
DESCRIPTION OF PARAMETERS:
-1 = Start hard copy indicator

DETAILED DESCRIPTION:

The STATUS call is used for selecting display #4 as the output channel.
Approximately 7 seconds after this call is made, a hard copy event (event
code 10) is generated to indicate the hard copy is complete and that a new
copy may be initiated.

Example: C Initiate hard copy and wait for
c completion
CALL HCOPY (-1)
10 CALL EVENT (IEVNT)
IF (IEVNT.NE.10) GO TO 10

A direct approach for obtaining a hard copy of an image is to select two
indicators in the call to STATUS. The first indicator is the display on which
the graphics is to appear and the second indicator is display #4 which is
used for hard copy.

Example: C Draw a line on display #1 and then
C get a hard copy
CALL GSS4 (1, 0, 1)
CALL LAYOUT (1, 50)
CALL STATUS (0, 7, 0, 9)

NOTE

The 9 in the above STATUS call selected
indicators 1 and 4.

CALL MOVE (512., 512., 0)
CALL DRAW (1023., 1023., 0)

18-2

C Now initiate hard copy
CALL HCOPY (-1)

NOTE

If the STATUS call in the above example had
selected indicator 1 only, then a blank piece
of paper would have been produced. The fol-
lowing edit code would be required to obtain
the copy:

CALL UPDATE (1, 0)
NOTE

The mark associated with the STATUS call,
since it is the first item in the page, is = 0

CALL STATUS (0, 7, 0, 9)
CALL HCOPY (-1)

18.2 REQUEST REFRESH IMAGE

NAME: REQIM

FUNCTION: 1Initiates a request for a block of up to 20 words to be transferred
from an opened page back to the host.

CALLING FORMAT: CALL REQIM (NINST)

DESCRIPTION OF PARAMETERS:

NINST =

Integer variable specifying the number of refresh data to

be transferred starting at present mark.

1 < NINST < 20

DETAILED DESCRIPTION:

This routine causes an image event to occur which has an event code of 9.

The image event contains up to 20 words of refresh code, starting at the

current mark position supplied. The page is assumed to be the currently

opened page.

18-3

18.3 GET REFRESH IMAGE

18-4

NAME: GETIM

FUNCTION: Retrieves from the event tables an array of data which is the
refresh image code.

CALLING FORMAT:

DESCRIPTION OF

TARRAY

ISIZE

NINST

IPAGE

CALL GETIM (IARRAY, ISIZE, NINST, IPAGE)
PARAMETERS:

An integer array supplied by the caller into which the refresh
data is transferred.

An integer variable supplied by the caller containing the
maximum number of words of refresh data to be placed in the
array; i.e., ISIZE is the size of the array Any data in
excess of the limit is discarded.

An integer variable returned to the caller specifying the
number of words of refresh data transferred.

An integer variable returned to the caller identifying the
page number from which the data was transferred.

DETAILED DESCRIPTION:

The REQIM
event and this

routine initiates this event; the EVENT subroutine detects the
routine retrieves the data.

Example: C Read 10 words from page 3 starting at
‘ C mark 5.
DIMENSION IARRAY (10)
CALL UPDATE (3,5)
CALL REQIM (10)
10 CALL EVENT (IEVNT)

IF (IEVNT.NE.9) GO TO 10
CALL GETIM (IARRAY, 10, NINST, IPAGE)

— p—— e —

18.4 GET ERROR INFORMATION

NAME: GETERR

FUNCTION: Retrieves information concerning an error event
CALLING FORMAT: CALL GETERR (IARRAY)

DESCRIPTION OF PARAMETERS:

IARRAY

A 4-word integer array supplied by the caller into which
the 4-word error information is placed.

TARRAY (1)

= Error code
IARRAY(2) =0
IARRAY(3) =0
IARRAY(4) =0

DETAILED DESCRIPTION:

Detection of any of the error conditions described in Appendix C
causes an error event (event code 8). An error event is detected by the
EVENT routine and this routine actually retrieves the error data. The error
code is returned as two 8-bit ASCII characters right adjusted in IARRAY (1).
These same two characters are displayed in certain cases in the upper left
corner of the display.

Example: CALL EVENT (IEVNT)
IF (IEVNT.NE.8) GO TO 10
CALL GETERR (IARRAY)
10 CONTINUE

18-5

SECTION 19

PACKED VECTOR MODE

The following subroutines are described in this section:

ENBPMD - Enable packed vector mode
PMOVE - Packed vector move
PDRAW - Packed vector draw
DSAPMD - Disable packed vector mode

Packed vector mode is primarily intended for serial interface users. Using
packed vector mode can result in a 4:1 speed increase when inserting absolute move
and absolute draws into refresh.

The packed vector mode feature is most useful when large amounts of X, Y move
and draw data are being created over the serial interface. Packed vector mode can
also be used on parallel interface systems but it is strongly recommended that
packed vector messages not be used on parallel systems. No FSP internal ASCII code
conversions are required for parallel transmissions and the use of packed vector
messages on parallel systems will result in a decrease in speed due to the FORTRAN
overhead involved in processing packed moves and draws.

Calls to PMOVE and PDRAW data create packed vector data in an output buffer.
When the buffer is filled, the data in the buffer is sent to GCP+ automatically.
An important function of DSAPMD is to insure that no residual data is lost by send-
ing the contents of the output buffer to GCP+.

NOTE
Once packed vector mode is enabled by calling

ENBPMD, the only calls allowed to FSP are to PMOVE,
PDRAW, and DSAPMD.

19-1

19.1

19-2

Sample user program segment:

C
C REFRESH CODE FOR DRAWING BARRED BOX
C
X = XCOORD
Y = YCOORD
XRIGHT = XCOORD + 128.
C
C ENABLE PACKED VECTOR MODE
C
CALL ENBPMD
C

DO 40 M =1, 64

Y=Y+ 2.

CALL PMOVE (X, Y)

CALL PDRAW (XRIGHT, Y)
40 CONTINUE

C
C DISABLE PACKED VECTOR MODE
C
CALL DSAPMD
C

ENABLE PACKED VECTOR MODE

NAME: ENBPMD

FUNCTION: This routine enables the packed vector mode.

CALLING FORMAT: CALL ENBPMD
DESCRIPTION OF PARAMETERS: None
DETAILED DESCRIPTION:

This routine enables the packed vector mode, allowing the user to send
graphic absolute move and draw commands in packed mode. ENBPMD must be
called before the PMOVE, PDRAW, and DSAPMD routines may be called. Once
packed vector mode is enabled, any number of calls to PMOVE and PDRAW and
one call to DSAPMD are allowed. No other FSP subroutines may be called while
in packed vector mode. A call to DSAPMD is required to disable packed
vector mode.

— Jo—

—— — j—— f—

19.2 PACKED VECTOR MOVE

NAME: PMOVE

FUNCTION: Allows the caller to move the CRT beam to a desired absolute
X, Y position in user coordinates while in packed vector mode.

CALLING SEQUENCE: CALL PMOVE (X, Y)

DESCRIPTION OF PARAMETERS:

X, Y = Real variables specified by the caller indicating the
absolute X, Y user coordinate to which the beam is to be
moved. (Note: X and Y must be in the range specified
in the user's call to SCALE.) '

DETAILED DESCRIPTION:

PMOVE operates similarly to the FSP subroutine MOVE in absolute mode O
(paragraph 10.1). The beam is moved to the X, Y coordinate specified by
the caller. The X, Y coordinate then becomes the current beam position.

PMOVE converts the absolute X, Y user coordinate into a display coordinate,
formats (packs) the X, Y data for transfer to GCP+, and causes an absolute
move graphic order to be inserted at the mark position of the currently
opened refresh page. PMOVE may be called only when packed vector mode is
enabled (see ENBPMD).

The sample user program segment at the introduction to this section
illustrates a use of PMOVE.

19-3

19.3

19-4

PACKED VECTOR DRAW

NAME: PDRAW

FUNCTION: Allows the user to draw a line (vector) from the current CRT
beam position to the absolute X, Y position in user coordinates
while in packed vector mode.

CALLING FORMAT: CALL PDRAW (X, Y)
DESCRIPTION OF PARAMETERS:

X, Y = Real variables specified by the caller indicating the
absolute X, Y position in user coordinates while in packed -
vector mode.

DETAILED DESCRIPTION:

PDRAW operates similarly to the FSP subroutine DRAW in absolute mode 0
(paragraph 10.2). A line is drawn from the current beam position to the
X, Y coordinate specified by the caller. The X, Y coordinate then becomes
the current beam position.

PDRAW converts the absolute X, Y user coordinate into a display coor-
dinate, formats (packs) the X, Y data for transfer to GCP+, and causes an
absolute draw graphic order to be inserted at the mark position of the currently
opened page., PDRAW may be called only when packed vector mode is enabled
(see ENBPMD). :

The sample user program segment at the introduction to this section
illustrates a use of PDRAW.

s N e

19.4 DISABLE PACKED VECTOR MODE

NAME: DSAPMD

FUNCTION: Disables packed vector mode by changing the FSP operating mode
from packed vector mode back to standard FSP call mode.

CALLING FORMAT: CALL DSAPMD
DESCRIPTION OF PARAMETERS: None
DETAILED DESCRIPTION:
Once packed vector mode has been enabled by a call to ENBPMD, a call
to DSAPMD must be made before calls to any other non-packed vector mode

" routines.

This routine also insures that residual packed vector data will be sent
(see introduction to this section).

19-5

SECTION 20

COORDINATE CONVERTER ROUTINES

Four subroutines enable the programmer to manipulate the coordinate converter.
They are:

CCINIT - 1Initialize coordinate converter

CCVAL - Activate the coordinate converter with specific values
CCON - Turﬁ on the coordinate converter

CCOFF - Turn off the coordinate converter

These subroutines enable the user to selectively rotate and translate a par-
ticular segment of the image, multiple segments of the image, or the total image
displayed on the screen. For example, the picture displayed may have one part ro-
tated 90 degrees, another 310 degrees, another 45 degrees, and another not rotated
at all. The rotation can be performed around any point of the screen. This is
made possible by positioning the point upon which an image is to be rotated at the
center of the screen, rotating the image to the desired angle (0.2 degree resolu-
tion), and then translating the image to the position desired. For example, say
the picture the programmer wants to display is as shown in figure 20-1.

(500.0, 500.0)

Q
o
CENTER OF CIRCLE = _@
o
S

-200.0, 230.0
() P CENTER = (0.0, 0.0)
+
Gy
S
(~500.0, =500.0)
Figure 20-1

20-1

The picture contains three objects drawn at different positions and angles:

Object 1: +

Object 2: 270 <::> 90 (drawn at 90°)

Object 3: GSS-4 (drawn at 310°)

Object 1 is a small cross, not rotated, drawn at the center of the screen.
Object 2 requires the coordinate converter. An example of the code necessary to
rotate and position object 2 is as follows:

CALL CCVAL (0, 90.0, -200., 230.,0)

CALL MOVE (0., 0., 0)

CALL CIRCLE (50.0, 0)

CALL MOVE (-150., 0.0, 0)

CALL TEXT (3, IT270) (IT270 = array of text '270'")
CALL MOVE (100.0, 0.0, 0)

CALL TEXT (2, IT90) (IT90 = array of text '90')
CALL CCOFF (0)

Pictorially, the events that take place are as follows:

1. First, the image is drawn around the origin as specified by calls to
MOVE, CIRCLE and TEXT. See figure 20-2.

<-(500,0, 500,0)

— (50,0, 0.0)

270 /_
7 OF

(-150,0, 0,0)— (100.0, 0.0)

(=500.0, -500.0)

Figure 20-2

20-2

_ —— .

The coordinate converter rotates the image 90 degrees as specified

by an argument to subroutine CCVAL.

See figure 20-3.

=—(500,0, 500.0)

270 @ 90

(~500.0, =500.0)

The coordinate converter then translates object 2 to the position

specified by the

Figure 20-3

arguments to CCVAL.

See figure 20-4.

(=200,0, 230.0)—

270 AD 90

-<-(500.0, 500,0)

(~500.0, =500.0)

Figure 20-4

20-3

Case 1 - box translated

to (100.0, 100.0)

<+— (500.0, 500,0)

'%———- (100,0, 100.0)

‘\-——-——"—-—(mo,om)

(=500.0, =500,0)

control the angle of rotation:
lation positions:

Figure 20-10,

Case 2 - box translated
to (100.0, 100.0)

+— (500.0, 500.0)

X O

o N (100.0, 100.0)
\——_—— (0.0, 0.0)

A - OFFSET DISTANCE
(-500.0, ~500.0) B - TRANSLATION DISTANCE

Figure 20-11

In case 1, the box ends up rotated about the point (100.0, 100.0). In case 2,
the box ends up rotated and translated with respect to the center of the screen.

Four display registers are associated with the coordinate converter. Two

cosine and sine register; and two control the trans-
X translation coordinate and Y translation coordinate. Four

refresh commands load these registers and another command controls activating or

deactivating the coordinate converter.

Each command advances the mark by 2.

A detailed description of the four FSP subroutines that manipulate the coordinate
converter are presented on the following pages.

20-6

20.1 INITIALIZE COORDINATE CONVERTER

NAME: CCINIT
FUNCTION: Initialize the coordinate converter to a standard initial state.
CALLING FORMAT: CALL CCINIT (XCEN, YCEN)

DESCRIPTION OF PARAMETERS:

XCEN = A floating point variable returned to the caller specifying
the X-coordinate of the center of the display in user
coordinates.

YCEN = A floating point variable returned to the caller specifying the

Y-coordinate of the center of the display in user coordinates.
DETAILED DESCRIPTION:

This subroutine initializes the coordinate converter to the following
initial state: :

X translation 0

Y translation 0
Angle = 0 degrees

The returned parameters specify the location upon which all rotation
occurs before translation. This subroutine advances the mark by 10.

20-7

20.2 ACTIVATE THE COORDINATE CONVERTER WITH SPECIFIC VALUES

NAME: CCVAL

FUNCTION: Inserts values into the coordinate converter registers and
activates the coordinate converter.

CALLING FORMAT: CALL CCVAL (K, ANGLE, XTRAN, YTRAN, IREL)
DESCRIPTION OF PARAMETERS:
K = An integer constant defining angle format.

0.. angle in degrees
1.. angle in radians

ANGLE = Angle of rotation in degrees or radianms.
XTRAN = X position of tramnslation.

YTRAN = Y position of translatien.

IREL = Specifies (XTRAN, YTRAN) format

0.. absolute position
1.. relative position from center

DETAILED DESCRIPTION:
All refresh data following this call, until another CCVAL or CCOFF call,

is rotated and translated by the coordinate converter to the values the caller
specified. This subroutine advances the mark by 10.

20-8

— P SRS G e il SR — S, fEwnS, A—

T—

20.3 TURN ON THE COORDINATE .CONVERTER
NAME: CCON
FUNCTION: Activates the coordinate converter.
CALLING FORMAT: CALL CCON
DETAILED DESCRIPTION:
This subroutine activates the coordinate converter. The values the
coordinate converter responds to would have been previously set by calls to
CCVAL or CCINIT. All refresh data following this call, until another CCVAL
or CCOFF call, is rotated and translated by the coordinate converter to the
values previously specified. To deactivate the coordinate converter, or change

its values, the user would call CCOFF or CCVAL, respectively. This subroutine
advances the mark by 2.

20.4 TURN OFF THE COORDINATE CONVERTER

NAME: CCOFF
FUNCTION: Deactivates the coordinate converter.
CALLING FORMAT: CALL CCOFF
DETAILED DESCRIPTION:

This subroutine deactivates (turns off) the coordinate converter. All
following ‘calls to FSP are not affected by the coordinate converter. The
values set in the coordinate converter registers remain intact and may be

reactivated or modified by calls to CCON or CCVAL, respectively. The mark is
advanced by 2.

20-9

SECTION 21

IMAGE CONTROL ROUTINES

There are two image control routines available to the FSP programmer: CLIP,
which is used to eliminate graphic data that lies outside a user specified window,
and SMOOTH, which is used to smooth lines by eliminating changes in direction too
small to be visible. These routines require no special hardware, but rather all of
the operations are done in software on the host computer. Using these routines, the
user is able to preprocess his graphic data before shipping it to the GRAPHIC 7 via
the FSP subroutine calls.

CLIP

It is often desirable to define a box in the viewing area in which an image is
to be confined. This requires that the user guarantee that all graphic instructions
which move the beam (MOVE,DRAW) do not cause data to be displayed outside of the
selected window. By using the Sanders-supplied CLIP subroutine, the FSP programmer
is relieved of the burden of performing his own slope calculations to guarantee that
all data intersecting with the window boundaries do not cross outside. Refer to
paragraph 21.1 for a description of the CLIP routine.

SMOOTH

The smooth routine is used to remove 'kinks' in a line composed of a series
of connected lines whose changes in direction with respect to one another are too
small to be seen. In many cases, this routine reduces the amount of data required
to 'refresh' the image (by collecting several 'draws' into one 'draw') and causes
a clearer looking plot by smoothing out the line. See paragraph 21.2 for a descrip-
tion of the SMOOTH routine.

NOTE
Please refer to examples 4 and 5 in Appendix E

for sample FSP programs demonstrating the use
of the CLIP and SMOOTH subroutines.

21-1

21.1 REMOVE OFF-SCREEN DATA

NAME: CLIP

FUNCTION: Eliminates lines and graphic data that lie outside a user specified

window.

CALLING FORMAT:

CALL CLIP (IOP, X1, Y1, X2, Y2, XLC, YLC, XUC, UYC, XPOSB,
YPOSB)

DESCRIPTION OF PARAMETERS:

If I0P =1,

then X1, Y1 =

If I0P = 2,

then X2, Y2 =

21-2

are supplied by the caller to 'CLIP' as candidates for a beam
positioning command (MOVE). CLIP checks these values and
determines if they lie within the window described by (XLC,
YLC) and (XUC, YUC). 1IOP is returned as follows:

8 - (X1, Y1) lie outside the window. No action should be
taken by the caller on these coordinates.

9 - (X1, Y1) lie within the window. The caller may call
'MOVE' to position the beam to (X1, Y1). ‘

NOTE

X2, Y2 are not used.

are supplied by the caller as the end point of a vector to be
drawn having as its start point the current beam position.
CLIP determines how much, if any, of the vector will be
visible within the specified window. IOP is returned as
follows:

7 - the start point of the vector is within window.
Call DRAW using X2, Y2.

8 - the vector lies entirely outside the window and therefore
should not be drawn. (No action should be taken by the
caller.)

9 - the start point of the vector lies outside the window.
The user should call MOVE using X1, Yl to move the beam
within the window boundaries. A call to DRAW using X2,
Y2 will then display the visible portion of the vector.

~

~\ ,h—‘ ! ~/ ﬁ _ “— n—

—p— —

(XLC, YLC, XUC, YUC) = window limits in user coordinates.

XLC = X lower left corner

YLC

Y lower left corner

XUC = X upper right corner

YUC

(XPOSB, YPOSB) =

Y upper right corner

current beam position.

These are used to keep track of the

current beam position, and should be the same two variables

on each call to CLIP.
user.

These are neither set nor used by the

21-3

21.2

21-4

SMOOTH DISPLAYED LINES

NAME: SMOOTH

FUNCTION: This: subroutine straightens lines whose kinks are too small to be
noticeable on the screen, thus saving room in the display buffer.

CALLING FORMAT: CALL SMOOTH (IOP, X, Y, ISAVE, XSAVE, YSAVE, MSAVE, EPS)
DESCRIPTION OF PARAMETERS:

1.. IOP = 1: Line break. This-call initializes the subroutine.
X and Y are not used.

2. IOP = 2: New point. X and Y represent a new point in the current line.

3. IOP = 3: Line end. This call indicates that the last point has been
appended to the current line. X and Y are not used. This
call forces out a point. The next call can be with IOP = 2
to continue the line or with IOP = 1 to start a new line.

On return, IOP, X and Y are set as follows:

1. IOP = 4: No action required.

2. IOP = 5: Call MOVE to move the beam to X, Y.

3. IOP = 6: Call DRAW to draw a line from the present beam position to X, Y.
4, IOP = 7: Parameter error - IOP not 1-3.

The "line break" call always returns IOP = 4 and the "line end" call
never returns IOP = 5.

The parameter ISAVE is used internally to remember how many points are
being buffered, and should be the same variable on each call to SMOOTH.
XSAVE and YSAVE are real arrays of length MSAVE which are used to buffer data
points. Each call to SMOOTH should pass the same two arrays. EPS is the
amount of excursion from a straight line that will cause the line to be broken.
To avoid any change in the screen image due to smoothing, EPS should be set
to the screen resolution, which is @.00@09765625 (1/1%24) of full screen width
for the GRAPHIC 7. In user coordinates, screen width is the difference between
the first and third (or second and fourth) arguments to SCALE. Smaller values
of EPS may use more display buffer at the expense of making the picture less
precise. If EPS is set to @#.@, SMOOTH produces output identical to its input
with the exception of eliminating adjacent coincidental points.

SECTION 22

FSP INPUT/OUTPUT

Four subroutines are used by FSP for performing I1/0 to the GRAPHIC 7 terminal.

They are:
a G7INIT - Initialize host/GRAPHIC 7 I/O driver
G7TERM =~ Terminate host/GRAPHIC 7 I/0 driver
MSGOUT =~ Output message to GRAPHIC 7 terminal
MSGIN - 1Input message from GRAPHIC 7 terminal

The calling sequences for these subroutines are defined by Sanders, but the
actual routines themselves are supplied by the customer, i.e., Sanders does not pro-
vide the host software necessary to perform the actual I/0 (see figure 1, page 1-3)
unless special arrangements have been made.

FSP OUTPUT

Most of the FSP subroutines, when called, perform the following functions:

a. Create a message (header plus data) and place it in an output block.

b. Call MSGOUT to transmit the message to the GRAPHIC 7 terminal for
execution.

FSP INPUT

The graphic control program enhanced (GCP+) in the GRAPHIC 7 sends data
to the host when polled by the host, i.e., PHOTOPEN, keyboard, and PED
events are sent to the host only on request. A poll request and response
sequence works as follows:

CALL MSGOUT = Outputs a POLL request to GRAPHIC 7

CALL MSGIN - Read POLL response from GRAPHIC 7

FSP then analyzes the POLL response message and updates internal tables
accordingly.

22-1

L R

IN2Lno/nan:

22.1 INITIALIZE HOST/GRAPHIC 7 1/0 DRIVER

NAME: G7INIT

FUNCTION: To initialize the host /GRAPHIC 7 1/0 driver. i

CALLING FORMAT: CALL G7INIT (IUNIT)

DESCRIPTION OF PARAMETERS: {

TUNIT = An integer variable containing the device number associated
with the GRAPHIC 7 in the call to the GSS4 subroutine. [

DETAILED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the actual I
routine itself must be supplied by the customer. This routine is not called
directly by the application program, but rather is called internally by FSP
as a result of the call to GSS4 subroutine.

For parallel hosts, when the application program makes a call to the FSP

subroutine, several functions are performed to initialize the GRAPHIC 7 ter- -
‘ minal to FSP mode. One function is to logically connect the application
| program with the GRAPHIC 7 within the architecture of the host operating
system. The actual operations needed to perform the connection are host-
dependent. Internal to the GSS4 subroutine a call is made to the G7INIT sub-
routine to provide the customer with a mechanism for performing the I/0
driver initialization process. In terms of the GRAPHIC 7, the key function
performed by G7INIT is to initialize (under program control) the terminal
controller by pulsing the INIT control line to the GRAPHIC 7 parallel inter-
face card. The INIT pulse resets the terminal controller to the system mode.

NOTE
The INIT control line is exposed at the host end.

For serial hosts, the G7INIT subroutine is not needed. To eliminate |
compilation errors, the customer should write a dummy G7INIT subroutine that

only has a return statement.

For example: SUBROUTINE G7INIT (IUNIT)
RETURN
END

For parallel hosts, the design of the G7INIT subroutine is influenced by
the following factors:

e Host word length (16, 24, 32, 36, etc.)
° Host I/0 system f!
® Host operating system

e GRAPHIC 7 1/0 driver (provided by customer)

22-2

Any unrecoverable errors detected by this subroutine, I/0 driver or
operating system, should cause termination of the job with appropriate
diagnostic messages.

22.2 TERMINATE HOST/GRAPHIC 7 I/O DRIVER

NAME: G7TERM

FUNCTION: To terminate the host/GRAPHIC 7 I/O driver
- CALLING FORMAT: CALL G7TERM (IUNIT)

DESCRIPTION OF PARAMETERS:

IUNIT = An integer variable containing the device number associated
with the GRAPHIC 7 in the call to the GSS4 subroutine.

DETAILED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the
actual routine itself must be supplied by the customer. This routine is not
called directly by the application program, but rather is called internally
by FSP as a result of the call to the GSS4 subroutine.

For parallel hosts, when the applications program makes a call to the
THEEND subroutine, several functions are performed to terminate the FSP mode
of operation and to return the GRAPHIC 7 terminal to the TTY emulator mode.
One function is to logically terminate the connection between the application
program and the GRAPHIC 7. The actual operations needed to terminate the
connection are host-dependent. Internal to the THEEND subroutine a call is
made to the G7TERM subroutine to provide the customer with a mechanism
' for performing the I/0 driver termination process.
For serial hosts, the G7TERM subroutine is not needed. To eliminate
| compilation errors, the customer should write a dummy G7TERM subroutine
! that only has a return statement.

For parallel hosts, the design of the G7TERM subroutine is influenced
l by the following factors:

o Host word length (16, 24, 32, 36, etc.)

) Host I/0 system

o Host operating system

° GRAPHIC 7 I1/0 driver (provided by customer)

Any unrecoverable errors detected by this subroutine, I/0 driver or

operating system, should cause termination of the job with appropriate diag-
nostic messages.

22-3

22.3

22-4

OUTPUT MESSAGE TO GRAPHIC 7 TERMINAL

NAME: MSGOUT

FUNCTION: Outputs a message to the GRAPHIC 7 terminal.
CALLING FORMAT: CALL MSGOUT (IUNIT, IBUF, IELEMC)
DESCRIPTION OF PARAMETERS:

An integer variable containing the device number associated

TUNIT =
with the GRAPHIC 7 in the call to the GSS4 subroutine.

IBUF = An integer array, each entry of which contains two 8-bit
bytes (one element), right adjusted.

IELEMC = An integer variable containing the number of elements in the

array IBUF to be output. Control is returned to the caller
only after all elements have been successfully transmitted.

DETAILED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the
actual routine itself must be supplied by the customer. This routine is
not called directly by the application program, but rather is called
internally as a result of calls to other FSP routines.

This routine invokes the I/0 driver and requests output via the approp-
riate operating system call.

The actual details of this subroutine depend on the customer's design
and implementation. The design is influenced by the following factors:

. Host word length (16, 24, 32, 36, etc.)

° Host I/0 system

° Serial or parallel interface

. Host operating system

° GRAPHIC 7 I/0 driver (provided by customer)

NOTE

In the serial mode, a '"carriage return'" must be
appended to the data provided by the caller, i.e.,
MSGOUT sends to the GRAPHIC 7 each character sup-
plied by the caller and then MSGOUT sends a car-

riage return. The 8 bit code for a carriage
return may be either of the following:

22.4

00001101
or
10001101
Any unrecoverable errors detected by this routine, I/O driver or operat-

ing system should cause termination of the job with appropriate diagnostic
messages.

INPUT MESSAGE FROM GRAPHIC 7 TERMINAL

NAME: MSGIN
FUNCTION: Inputs a message from the GRAPHIC 7 terminal.
CALLING FORMATS: CALL MSGIN (IUNIT, IBUF, IELEMC)

DESCRIPTION OF PARAMETERS:

IUNIT = An integer variable containing the device number associated
with the GRAPHIC 7 in the call to the GSS4 subroutine.

IBUF = An integer array into which data received from the GRAPHIC 7
will be placed. Data will be packed two 8-bit bytes
(one element) per array entry.

IELEMC = An integer variable containing the number of elements in the

array IBUF to be filled. Control is returned to the caller
only after all elements have been successfully received.

DETAILED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the
actual routine itself must be supplied by the customer. This routine is not
called directly by the application program, but rather is called internally
as a result of calls to other FSP routines.

This routine invokes the I/0 driver and requests input via the approp-
riate operating system call.

The actual details of this subroutine depend on the customer's design
and implementation. The design is influenced by the following factors:

22-5

22-6

) Host word length (16, 24, 32, 36, etc.)
® Host I/0 system

° Serial or parallel interface

° Host operating system

° GRAPHIC 7 I/0 driver (provided by customer)

NOTE

In the serial mode, the GRAPHIC 7 terminates each
message sent to the host with a carriage return.

This carriage return should be stripped by MSGIN

and not supplied to the caller as part of his message.

Any unrecoverable errors detected by this subroutine, I/0 driver or

operating system, should cause termination of the job with appropriate
diagnostic messages.

SECTION 23

DELIVERABLE ITEMS

The following FSP items are provided to the customer at installation time:

A. FSP Source Code

The FSP subroutines are provided as interpreted source code in card
deck form (029 keypunch).

B. FSP User's Manual

C. FSP Sample Program

A sample FSP demonstration program written in FORTRAN is provided as
interpreted source code in card deck form (029 keypunch).

23-1

ﬁ

\/

SECTION 24

INSTALLATION PROCEDURE

The following steps must be taken by the customer before the FSP sample

A.

program may be run:

The FSP subroutines (provided by Sanders) must be made part of the
operating system subroutine library.

A GRAPHIC 7 I/0 driver must be written and made part of the
operating system.

The MSGOUT, MSGIN, G7INIT, and G7TERM subroutines must be written and
made part of the operating system subroutine library.

A SETEXT subroutine must be written before the sample FSP program
can be used.

The FSP sample program must be compiled and link-edited to create
a load module.

NOTE
The following installation-dependent source
statements in the sample program must be changed
before compilation.

CALL GSS4 (IUNIT,@,IFACE)

IUNIT must be set to the logical unit number
assigned to the GRAPHIC 7 device driver. .

IFACE must be set to 1 for parallel interface,
or set to 2 for serial interface.

After the FSP sample program has been successfully run, the customer should
consider making the following improvements:

1.

The INSERT, EXTRAC, and SHIFT subroutines should be rewritten in assembly
language to improve overall system speed. For parallel users, when these
routines are rewritten, the customer can expect to see improvements in
the order of 50%. (I.e., if it takes 30 seconds to display an image on
the CRT indicator using the FORTRAN versions of INSERT, EXTRAC, and
SHIFT, then the same image should take about 15 seconds to display when
using assembly language versions of these subroutines.)

24-1

For serial users, the speed improvements will only be reflected at the
higher baud rates. No speed improvement will probably be seen when
operating below 2400 baud. At 9600 baud, a speed improvement in the
order of 15% to 30% can probably be achieved.

2. The CKPOLL subroutine can be modified to minimize the use of system
resources when running FSP programs.

When the CKPOLL subroutine is delivered, it is configured to operate in
a polling mode. The GRAPHIC 7 is also configured to ignore command
header errors. The polling mode configuration (set up by Sanders) works
in the following manner:

1. FSP user calls EVENT

2. EVENT sends a POLL message to the GRAPHIC 7 via MSGOUT.

3. The GRAPHIC 7 receives the POLL message and does the following:
A. Sends out the next message in the O/P buffer.

B. If the 0/P buffer is empty, the GRAPHIC 7 returns a dummy
message to indicate that no message is ready. (Normally
messages get stored in the 0/P buffer in response to some
operator inputs.)

For this configuration, the host computer is looping in a constant event loop.
(I.e., for every POLL message sent, the GRAPHIC 7 returns a message.)

To minimize the number of host to GRAPHIC 7 messages, the CKPOLL subroutine
can be modified so that the GRAPHIC 7 only sends a message back to the host com-
puter when a new message is stored in the O/P buffer.

For parallel users, this type of poll mode can be selected by changing the
IPOLL variable to 1. For this mode, error detection can also be enabled by setting
IPOLL to 9. (I.e., when IPOLL = 9, error detection is enabled and messages are
sent from the GRAPHIC 7 to the host only when a new message is stored in the 0/P
buffer.)

For serial users, this type of poll mode can be selected by changing the IPOLL
variable to 1. For this mode, error detection can also be enabled by setting IPOLL
to 9. For half-duplex serial transmissions, no problems should be encountered with
an IPOLL value of 9. For full-duplex serial transmissions, echoing types or prob-
lems can be encountered. (I.e., when the host computer receives a message from the
GRAPHIC 7, it echos it back to the GRAPHIC 7, which results in an endless loop of
command header errors.) If error detection is enabled for full-duplex, then the
user must write the MSGIN software in a way that ensures that no echoing of messages
back to the GRAPHIC 7 occurs.

24-2

The CKPOLL subroutine can also be configured to operate in a special type of
In this mode, the sending of GRAPHIC 7 to host messages is controlled
by a user designated special character. This mode works as follows:

polling mode.

1.

2.

special character.
next message back to the host.

FSP user calls EVENT.
EVENT sends a POLL message to the GRAPHIC 7 via MSGOUT.

EVENT sends a special character to the GRAPHIC 7 to indicate that the
host is set up to read in the next message from the GRAPHIC 7.

When the GRAPHIC 7 receives the POLL message, it starts looking for the
When it detects the special character, it sends the

The special character type of polling mode is only applicable to serial users.

This mode is used in cases where the host operating system can't get set up in

time to receive incoming messages from the GRAPHIC 7.

If the special character type of polling mode is used, then the ISPCHR vari-
able should be changed to the customer-selected value.

NOTE

The CKPOLL subroutine can also be set up to oper-

ate in a non-polling mode. In this mode the

GRAPHIC 7 sends messages back to the host computer
anytime there is a message in the O/P buffer. Please
refer to the IM initialize I/0 message formats mes-
sage for additional information on running FSP programs
in a non-polling environment. The IM message is des-
cribed in the GRAPHIC 7 GCP+ Programmers Reference
Manual.)

Normally when the THEEND subroutine is called, the
GRAPHIC 7 is returned to the full-duplex teletype
emulator. If half-duplex is being used, the THEEND
subroutine can be modified to return the user to the
half-duplex teletype emulator as follows:

Change IOUTB(2)=30884 to IOUTB(2)=30880

24-3

SECTION 25

STARTUP PROCEDURE

The following paragraphs assume the following:

° All steps of the installation procedure have been performed.
° The GRAPHIC 7 terminal is hardware-wise connected to the host.
1) All power is on and the brightness and contrast knobs on the display

indicator are set properly.

A. Press LOCAL button on front panel of the GRAPHIC 7 and observe built-in
test pattern. Validate (using this pattern and its associated built-in

diagnostics) that the terminal is in working order.

B. Press the "RETURN" key on the keyboard (causes pattern to disappear and

"B@PM'" to appear),

C. Press "Y" key followed by "RETURN" key to enter teletype emulation mode.
At this point the GRAPHIC 7 performs as a teletype emulator until such
time that a FORTRAN/FSP program (e.g., FSP sample program) is executed in

the host. The call to GSS4, when executed, causes GCP+ to enter the
SYSTEM mode. GCP+ remains in the SYSTEM mode until a call to THEEND
is made, at which time the teletype emulator is re-entered.

NOTE
Refer to the GRAPHIC 7 GCP+ Programmer's

Reference Manual (H-79-0348) for more
information on LOCAL mode features.

25-1

—— — —— —— ‘— — — ‘—— - - — — —— —— ‘— — —— — —

APPENDIX A
ALPHABETICAL SUMMARY OF SUBROUTINES
The following FORTRAN callable FSP subroutines are available to the application
pProgram in the host computer.

FSP SUBROUTINES

PAGE SUBROUTINE DESCRIPTION

11-15 ADDREF (IPAGE) Open page for adding refresh data

20-7 CCINIT (XCEN, YCEN) Initialize coordinate converter

20-8 CCVAL (K, ANGLE, XTRAN, Activate the coordinate converter with
YTRAN, IREL) specific values

20-9 CCON Turn on the coordinate converter

20-9 CCOFF Turn off the coordinate converter

10-8 CIRCLE (RADIUS, IQUAD) Draw a circle

21-2 CLIP (I0P, X1, Y1, X2, Y2, Remove off-screen data

XLC, YLC, XUC, YUC,
XPOSB, YPOSB)

12-7 COLOR (ICOLOR, IND) Set display color
11-20 COPYIM (MARKA, MARKB) Copy a block of graphic orders
12-2 CPARM (ICSIZE, ICROT, ICSPAC) Set character parameters
17-5 DISTB (ITBALL) Disconnect PED from symbol
12-3 DPARM (ISP, ISYNC, IPEN) Set display parameters
10-4 DRAW (X, Y, MODE) Draw a vector

9-7 DSABOX (IND_) Turn border display off

9-8 DSAERR (IND) Turn error display off
14-3 DSAPAD (IKILIY) Disable alphanumeric scratch pad
15-4 DSAPEN (IPEN) Disable PHOTOPEN detection mechanism
19-5 DSAPM) Disable packed vector mode

PAGE

16-2

17-6

9-7

14-2

15-4
19-2
16-2
11-16
13-2
22-2
22-3
18-5

18-4

14-4
11-17

15-6

16-4
17-10

14-3

FSP SUBROUTINES (Cont.)

SUBROUTINE
DSAPXY (IPEN)
DTINIT (IPEDNO)
DTMODE (IPEDNO, IMODE)
ENBBOX (IND)
ENBERR (IND)

ENBPAD (IKEY, IND, X, Y,
IMAX)

ENBPEN (IPEN)
ENBPMD

ENBPXY (IPEN, ICRT)
ERASEP

EVENT (IEVNT)
G7INIT (IUNIT)
G7TERM (IUNIT)
GETERR (IARRAY)

GETIM (TARRAY, ISIZE,
NINST, IPAGE)

GETKEY (KBD, KEY)

GETMRK (M)

GETPEN (IPEN, IPAGE, MARK,
ITYPE, ICPAGE,
IBYTE, ITMNUM)

GETPXY (IPEN, X, Y)

GETTB (NUMBER, X, Y)

GETTXT (IARRAY, ISIZE,
NCHAR, KBD)

GSS4 (IUNIT, IDUM, IFACE)

HCOPY (-1)

DESCRIPTION
Disable PHOTOPEN scan
Assign PED as a data tablet
Select data tablet operating mode
Turn border display on
Turn error display on

Enable alphanumeric scratch pad

Enable PHOTOPEN detection mechanism
Enable packed vector

Enable PHOTOPEN scan

Erase from page mark to end of page
Poll terminal for event or request
Initialize host/GRAPHIC 7 I/O driver
Terminate host/GRAPHIC 7 I/0 driver
Get error information

Get refresh image

Get function key event information
Get mark request information

Get PHOTOPEN event information

Get PHOTOPEN X, Y request information

Get PED request information

Get text event information

Initialize terminal to FSP mode

Initiate a hard copy

PAGE
15-5
12-6
12-5
9-3
10-2
11-18

22-5

22-4°

19-4
11-16
19-3
10-7
10-9
18-3
11-17
16-3

17-9

21-4

12-4
17-4
10-6

9-9

11-15

FSP_SUBROUTINES (Cont.)

SUBROUTINE
ITEM (NUM)

LAMPOF (KBD, LAMP)
LAMPON (KBD, LAMP)
LAYOUT (NPAGES, LNGARY)
MOVE (X, Y MODE)
MOVEIM (MARKFR, MARKTO)

MSGIN (IUNIT, IBUF,
IELEMC)

MSGOUT (IUNIT, IBUF,
IELEMC)

PDRAW (X, Y)

PICTUR (IPAGE)

PMOVE (X, Y)

POINT

REFDAT (IARRAY, N)

REQIM (NINST)

REQMRK

REQPXY (IPEN, ICRT)

REQTB (NUMBER)

SCALE (XL, YL, XL, YU)

SMOOTH (IOP, X, Y, ISAVE,
XSAVE, YSAVE,
MSAVE, EPS)

STATUS (IBL, INT, IVT, IND)

TBALL (ITBALL, IPAGE, MARK)

TEXT (N, IARRAY)

THEEND

UPDATE (TIPAGE, MARK)

DESCRIPTION
Set item number
Turn keyboard lamp off
Turn keyboard lamp on
Define graphic page layout
Move beam to the position specified
Move a block of graphic orders

Input message from GRAPHIC 7 Terminal

Output message to GRAPHIC 7 terminal

Packed vector draw

Graphic subroutine call

Packed vector move

Display a point

Transfer a block of graphic orders
Request refresh image

Request the present page mark
Request PHOTOPEN X, Y

Request PED X, Y

Define coordinates

Smooth displayed lines

Set display status
Connect PED to symbol
Display text characters
Terminate FSP mode

Open page for editing refresh data

CHARACTER

APPENDIX B

ASCII CODES

CONTROL
KEYB. EQUIV.

OCTAL HEX
1) 0]
gg1 g1
g@2 @2
¢@3 @3
go4 g4
0@5 @5
g06 @6
iy @7
g1 @8
@11 @9
g12 gA
¢13 @B
@14 gc
@15 @D
@16 gE
@17 gF
@20 1¢
@21 11
@22 12
¢23 13
@24 14
@25 15
#26 16
@27 17
330 18
¢31 19
@32 1A
@33 1B
@34 1C

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
ST
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS

N < X @& < a+d n ©¥ o dJg o0 2 B 0 R uoa+H @O oa+dHmM83 a0 w > e

ALTERNATE CODE NAMES
NULL, CTRL SHIFT P, TAPE LEADER
START OF HEADER, SOM
START OF TEXT, EOA
END OF TEXT, EOM
END OF TRANSMISSION, END
ENQUIRY, WRU, WHO ARE YOU
ACKNOWLEDGE, RU, ARE YOU
BELL
BACKSPACE, FE{
HORIZONTAL TAB, TAB
LINE FEED, NEW LINE, NL
VERTICAL TAB, VTAB
FORM FEED, FORM, PAGE
CARRIAGE RETURN, EOL
SHIFT OUT, RED SHIFT
SHIFT IN, BLACK SHIFT
DATA LINK ESCAPE, DC@
XON, READER ON
TAPE, PUNCH ON
XOFF, READER OFF
TAPE, PUNCH OFF
NEGATIVE ACKNOWLEDGE, ERR
SYNCHRONOUS IDLE, SYNC
END OF TEXT BUFFER, LEM
CANCEL, CANCL
END OF MEDIUM
SUBSTITUTE
ESCAPE, PREFIX
FILE SEPARATOR

B-1

OCTAL HEX
@35 1D
#36 1E
@37 1F
@40 20
g4l 21
@42 22
@43 23
@ab 24
@45 25
@46 26
@47 27
@50 28
@51 29
@52 2A
@53 2B
@54 2C
@55 2D
@56 2E
@57 2F
g60 3¢
?61 31
$62 32
$63 33
@64 34
#65 35
g66 36
@67 37
@70 38
@71 39
@72 3A
@73 3B
@74 3C

B-2

CHARACTER

GS
RS
Us

W 00 N O it & LW N P & N -

ASCII CODES (Cont)

CONTROL
KEYB. EQUIV.

ALTERNATE CODE NAMES

GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR
SPACE, BLANK

APOSTROPHE

COMMA
MINUS

NUMBER ZERO
NUMBER ONE

LESS THAN

ASCII CODES (Cont)

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
@75 3D =
@76 3E > GREATER THAN
977 3F ? |
1090 40 @ SHIFT P
161 41 A
192 42 B
193 43 C
104 44 D
1¢5 45 E
196 46 F
197 47 G
119 48 H
111 49 1 LETTER I
112 4A J
113 4B K
114 4C L
115 4D M
116 4E N
117 4F 0 LETTER O
12¢ 5@ P
121 51 Q
122 52 R
123 53 S
124 54 T
125 55 U
126 56 v
127 57 W
139 58 X
131 59 Y
132 5A yA
133 5B SHIFT K
134 5C SHIFT L

135 5D SHIFT M

OCTAL HEX
136 5E
137 " 5F
140 60
141 61
142 62
143 63
144 64
145 65
146 66
147 67
150 68
151 69
152 6A
153 6B
154 6C
155 6D
156 6E
157 6F
160 70
161 71
162 72
163 73
164 74
165 75
166 76
167 77
17¢ 78
171 79
172 7A
173 7B
174 7C
175 7D
176 7E
177 7F

B-4

CHARACTER

A

O B B H & L. P D@ H DO AR TP e

R £a o

M & <4 g o

<

“— — M N

DEL

ASCII CODES (Cont)

CONTROL

KEYB. EQUIV. ALTERNATE CODE NAMES

4+ SHIFT N
<« SHIFT O, UNDERSCORE
ACCENT GRAVE

VERTICAL SLASH
ALT MODE

(ALT MODE)
DELETE, RUBOUT

APPENDIX C
ERROR CODES
Errors encountered by FSP subroutines are relayed to the user in two ways:
visually and under program control (see paragraph 1.5).
FSP error codes fall in the following categories:
1. System errors
A. Overload conditions
B. Malfunctions
2. Incorrect calling sequence
3. User parameter errors
4. Current defined page refresh exceeded
5. Miscellaneous
All of the FSP error codes require the user to correct the error described and
rerun the user program. FSP continues to execute the user program after an error

has occurred, but undefined results may be observed.

The normal running error code is @@ and is displayed in the upper left corner
of the indicator(s) unless modified by a call to ENBERR or DSAERR (see Section 9).

c-1.

Cc-2

SYSTEM ERRORS

A.

Overload Conditions - the following errors are caused when GCP+ buffers
are overloaded and GCP+ cannot accept messages from or send messages to
the host. These errors are detected when the EVENT routine requests a
message from the GRAPHIC 7.

Error Action Initiating
Code Description The Request
02 GCP+ output buffer full-PED coordinates CALL REQTB

cannot be sent to the Host.

03 GCP+ output buffer full-GCP error message -
cannot be sent to the host.

04 GCP+ input buffer full-messages cannot -
be sent to GCP+

05 GCP+ output buffer full-function key or Pressing function
A/N keyboard information cannot be or A/N key(s)
sent to the host

06 GCP+ output buffer full-hardcopy status CALL HCOPY or
or PHOTOPEN data messages cannot be PHOTOPEN

sent to the host

08 GCP+ output buffer full-return image CALL REQIM
cannot be sent to the host

Malfunctions
Error code 13 is caused by the user calling routine ERASEP to delete
refresh code when the current mark is beyond the end of the defined

page. This situation can be encountered in edit mode.

The user should check the code before the offending call to ERASEP to
insure that correct FSP edit commands have been used.

c-2.

c-3.

INCORRECT CALLING SEQUENCE

The following errors are caused by calling routines out of sequence. The
user should check the order of the code in his program for the incorrect
sequences described below.

Code

21

22

99

Cause

PED is not connected to a symbol,
check for call to TBALL to connect
PED to a symbol.

Call made to packed vector routine
before call to ENBPMD or successive
calls to DSAPMD.

Error is caused when LAYOUT is called
without first calling GSS4 routine or
multiple calls to LAYOUT in the same
routine.

USER PARAMETER ERRORS

Routine Causing
Error

REQTB, DTMODE

PMOVE, PDRAW,
DSAPMD

LAYOUT

The following parameter errors are detected in user calls to FSP routines.
The user should reread descriptions and check calls to named routines for the
described errors.

Code
30
31
32
33

34

35
37

38

Description

Page number out of range
Page number or mark out of range
Page number out of range
Specifications too large

Symbol cannot be moved by PED, mark
specified is out of range

Lamp number out of range
Number of words greater than 20

PED number out of range

Routine
ADDREF
UPDATE
PICTUR
LAYOUT

TBALL

LAMPON, LAMPOF
REQIM

DTINIT,DTMODE

C-3

C-4. CURRENT DEFINED PAGE REFRESH EXCEEDED

The following errors are caused by insufficient refresh on the page where the
error is detected. The user should increase the offending page size in the
call to LAYOUT and rerun the user's program.

Routine Called when Refresh

,

Code Overflow Occurred
40 MOVE or DRAW
41 TEXT
42 CIRCLE
43 POINT
44 PICTUR
45 CPARM
46 DPARM
47 STATUS
48 TBALL
49 REFDAT
50 PMOVE or PDRAW
51 COLOR
52 ITEM

C-5. MISCELLANEQOUS
Error Code Routine Causing Error
60 HCOPY
62 COPYIM
63 COPYIM
64 COPYIM
65 MOVEIM
66 MOVEIM
C-4

p—

APPENDIX D

MEMORY USAGE

This table shows commonly used FSP user available subroutines which generate

graphic orders in the GRAPHIC 7 memory.

routines may insert refresh in the user's pages.

Note, however, that certain FSP internal
The number of words of refresh

created by internal routines is relatively small for normal applications.

ASSOCIATED GRAPHIC ORDERS
NUMBER OF (16 BIT) WORDS (See GRAPHIC 7 GCP+ Programmer's
FSP OF GRAPHIC 7 REFRESH Reference Manual for further descrip-
SUBROUTINE MEMORY FILLED tion of the graphic orders mentioned.)
MOVE 0, 1, or 2 Depending on optimization, sends approp-
riate "load" and "move" graphic orders.
DRAW 0, 1, or 2 Depending on optimization, sends approp-
riate "move" and "draw'" graphic orders.
TEXT (N+1)/2 N = number of characters of text.
POINT 1 Point plot graphic order
CIRCLE 2 LDKX, DRKY
.CPARM 2 LDDP, LDTI
DPARM 1 LDDP
STATUS 1 LDDZ
COLOR 2 LDRI and indicator/color
ITEM 2 LDRI and item (ID) number
CCINIT 11 HREF and LDRIs
CCVAL 11 HREF and LDRIs
CCOFF 2 LDRI and @.
CCON 2 LDRT and 2.
PMOVE 2 (*see note)
PDRAW 2 max. per draw (*see note)

NUMBER OF (16 BIT) WORDS
FSP OF GRAPHIC 7 REFRESH
SUBROUTINE | MEMORY FILLED

ASSOCIATED GRAPHIC ORDERS
(See GRAPHIC 7 GCP+ Programmer's
Reference Manual for further descrip-
tion of the graphic orders mentioned.)

PICTUR 3 max.

LAYOUT -

CALL address or HALT, LDRI combination

Inserts one graphic "RETURN" per user
page.

*PMOVE and PDRAW are generally used to create large blocks of X, Y move and draw
data. The number of words of refresh created is a function of the number of
PMOVEs and PDRAWs executed and the amount of optimization of X, Y move and

draw data.

APPENDIX E

PROGRAMMING EXAMPLES

EXAMPLE 1

This example illustrates the use of subroutine calls GSS4, LAYOUT, SCALE and
THEEND.

C
C EXAMPLE PROGRAM 1
C
DIMENSION LPAGES(5)
DATA LPAGES /100@, 1¢¢, 10¢, 1¢, 1@/
C INITIALIZE AND USE LOGICAL UNIT NUMBER 5. TRANSMISSION
C WILL BE OVER THE PARALLEL INTERFACE
C
CALL GSS4(5,0,1)
C
C SPECIFY 5 PAGES OF USER DATA, EACH LENGTH BEING AS
C DESCRIBED IN THE "LPAGES" DATA STATEMENT ABOVE.
C
CALL LAYOUT(5,LPAGES)
C
C SPECIFY ORIGIN AT THE LOWER-LEFT CORNER AND A LENGTH
C AND WIDTH OF 1@24.
C
CALL SCALE((.0,0.0,1023.0,1¢23.0)
o
C (THE BODY OF THE DISPLAY PROGRAM GOES HERE)
C
C
C WE ARE DONE, SHUT DOWN THE DISPLAY.
C
CALL THEEND
C
C EXIT THE PROGRAM
C
CALL EXIT
END

EXAMPLE 2

This sample program, when executed, displays EXAMPLE 2-PICTURE 1 on the screen.
It illustrates user calls to the following subroutines.

GSS4

LAYOUT

SCALE

S

ADDREF
MOVE
DRAW
POINT
PICTUR
TEXT
EVENT
GETKEY

In using these routines, it illustrates page linking and also the programming
interaction with peripheral devices.

NOTE

After picture is displayed, to return to the TTY
emulator, hit most upper right function key.

J—— {—

=0
THIS IS TEXT

EXAMPLE 2 - PICTURE 1

Bg1v2 @
pE20w C sooapoudndaphonononayeduaprsSp "SAMPLE-2 mu»g“,-:uwuaoaaoaoooa;nglagqi
zeINe ¢ THIS SAMPLE PROGRAM TESTS SOME QF THE FEATURPS CF THME FSP
_prane C_FORTRAN PACKAGE,
RR5OL c
2geae DIMENSION LPAGES(5),ITEX(6}
_pR70R DATA LPAGES /10¢2,120,120,10,48/
egepe ¢
ago0e C INITIALIZE AND USE LOGICAL UNIT NUMBER 57 TRANSMISSION
_P1eP2 C WILL BE OVER THE SERIAL INTERFACE
g1ige ¢
pL202 CALL GSS4(5,0,2)
aL39op c . ;
@1488 € SPECIFY 5 PAGES OF LSER UATA, EAEH LENGTH
gls@0 C BEING AS QESCRIBEC IN THE 'L,PAGES' DATA STATEMENY ABOVE'
ple0n ¢
21700 CALL LAYOUT(5,LPAGES)
gi8ge ¢
_ 31600 C SPECIFY ORIGIN AT THE LOWER LEFY CORNER AND 1 LENGTHW
T @eePP € AND WIDTH OF 1024,
$2108 c
_Mgggpg CALL SCALE(2,2.:2,0,17223,,1023,)
p2so c
geano C THE FOLLOWING EXAMPLE ILLUSTRATES THE uSES oF ADOREF,
gR25P2 € MOVE,DRAW,TEXT,POINTPICTUR,EVENT,GETKEY
YL NOTEI TEXT1S™ DISPLAYEU‘VTI N“SUBRUUY}NE‘U‘T*UE‘Tn”nUR
2708 C HOST cOMPUTER WHICH IS A PDP»38, THIS SURROUTINE [S CALLED
_ p28@B € 'SETEXT!,
P T]
23082 C OPEN PAGE 1 FQR TCP LEVEL DRAWING,
23ia@ c '
Tp3zae CALL AUDREFTD)
33080 ¢ ‘ ' _
__ggﬁgu C POSITION THE BEAM TO THE CENTER OF THE SEREEN
g3s5pe ¢ :
23600 CALL MOVE(S12%:512,.0)
33700 €
TP3end C ORAW A SHALL BUX IN PAGE 2
23900 C NOTE THAT THESE MCVES AND ORAHS ARE ALL RELATIVE
g4pRe €
74100 CALL ADDREFTZ2Y
p4290 ¢
#43@¢ € UP AND RIGHT BY 5
24408 g
24508 CALL MOVE(5,157:%)
46068 C
TTgA70¢T T ¢ RIGHY S10E OF HOX
p48ge ¢ .
24920 CALL DRAW(Q,s184311)
o500 g
B5480 ¢ : ;
23288 C BOTTOM OF BOX
p536e ¢
25400 CALL DRAW(®18,,04 1)
65502 c
56l ¢ LEFT STCE OF BOX
osvﬂz o
ps8Qde CALL DRAW(B,418423)
5608 ¢
péese ¢ TOP OF BOX
E~4

< —— A‘

26198 € e
Tp6egd CALL DRAW(LZ,:8,:)
36300 c
06408 C RETURN TO CENTER
pés8e €
mééﬁﬂ CALL MOVE(#5,,54:11)
_@Pgyp C
pceBs € PUY A POINT IN THE CENTER
g6s88 C
_p7e08 CALL POINT
@708 €
27200 C NOW GO BACK TO BUILDING PAGE §
_py308 € o
37408 CALL ADNDREF(Y
p7sge c
@768¢ C INSERT A SUBROUTINE CALL Y0 CUR LITTLE BBXT FHIS wiLk
p7790 C SHOW [T IN THE CENTER OF THE SCREEN,
7882 C
97908 cALL PICTUR(2)
geeeeT ¢ '
eaizg C DRAW A LINE FROM THE CENTER CF THIS BOX 70 TWE RIGHT A LITTLE,
p829 e
-paz0e CALL DRAW(AEZZ,+5120.7)
p84ge ¢
_@85P@ € NOW DRANK ANOTHER LITTLE BOX KEREY
p860% o
p8700 CALL PICTUR(?)
peege ¢ N
08998 ¢ PLACE SOME TEXT JUST BELOW THE BOXES,
g9ede ¢ T s
291020 CALL MOVE(52n,,468,,8)
g%200 CALL SETEXT(VIRIS 1,9]
69300 CALL SETEXT('!S TE!,8)
29400 CALL SETEXT('XT',12)
gesge ¢ §
p9602 C PICTURE SHOULD BE FINISHED NOW
29709 c

T@9BAY ¢ USE THE TEVENTY ROUYINE YO PIND A KEYBOARD STRIKE
zsggg C FROM FUNCTION KEY NUMBER 3% 70 EXIT
18¢ c

12100 127 AL EVENTTTD —
12206 C IF 1 IS 4 THEN A KEY WAS HIT, OTHER WISE Go RACK TO EVENT AND
12308 C WAIT FOR ONE,

{2490

18450 WRITE(L,112)]

12475 110 FORMAT(! EVENTI ',15)
0411 T

12600 IF(IWNEV4)GC 10 1p@
12708 ¢

Tig8oey CWILL CORE HERE FOR KEYBOARD HIT, NOW GO READ KEY NUMBER
12908 c .
11008 CALL GETKEY(KBO,KEY)

11100 ¢
11208 € NOW SEE JF IT WAS. KEY NYMBER 31. IF NOT 60 BACK T¢
14308 C EVENT AND WAIT FOR IT,

11400 C T
11500 IF(KEYVNE, 32060 TQ 129
116020

¢ :
L1782 C WILL COME HERE IF KEY SI WAS HIT, SO NOW_WE ARE DTNE,
14802 ¢ SHUT DOWN THE DISPLAY AND RETURN TO THE TTy gMULATOR,

_ 14908 CALL THEEND
12002 END
121082 c

12208 c panoansocsnseensoswSETEXT SUBROUTINE FAR THE FDFoiQaanesesnanqoednvens
123089 c
1§4gﬂ c SUBROUTINE TO PUT TEXY RIGHT ADJUSTED N 520 ARRAY
125080 ¢
T 12608 c THIS SUBRQUYINE SETEXT IS USED Yo SET THE ARRAY FOR TEXY
1270¢ C IN THE TSP ATP, TEXT IS TRANSMITYED IN AN ARRAY W!TH ONE
128868 C 7 BIT ASCI) CHARACTER,; RIGHT ADJUSTED, IN EACk ELEMENT
12998 € MOST OF THE TEXY IN THE FSP ATP 1s CalLLER USING SETEXT
13280 o} THE FQRMAY IS}
13102 € cALL SETEXT{TAAAAA',1A)
13200 ¢ WHERE 1A I3 TKE TeTAL NUMBER™ OP CHARACTERS ANC AAAAA TS L T0 A MAX
13302 € OF 5 CHARACTERS SURROUNDED BY SINGLE GUOTES, ThIS EVOLED FRON
13400 € THE PLPei@ WHQSE 36 B]T WORDS WOLD 5 ASCI! CHARACYERS, TO SEND
135082 € A TEXY STRING OF MORE THAN 5 CHARACYTERS, MaKE SEVERAL CALLS
13600 c OF 5 CHARACTERS FACH WITH lA=8, THIS WILL ACOD
13708 C__ THE 5 CHARACTERS 10 THE ENC OF AN ARRAY, oN THE LASY CALL
1380€ ¢ TO SETEXT, SEY TA EGUAL TO THE TOTAL NUMRER OF CHARAQTERS,
13908 c SETEXT DOES THE ACTUAL CALL TQ THE TEXT SUBROLTINE IN HCP
14098 c WHEN THE USER IS DONE,
1410¢ c
14200 SUBROUTINE SETEXT(IWRD,;1A)
14308 DIMENSION [ARRAY(5),1ARY(128)
14400 DATA TAD/%/
145082 {HORDEIWRD
14608 ITEST=1WORD
14709 ¢C ,
14808 c THIS.MOVES_THE & ASCI! CHAR-4 BIT T0 THE RIGHT 70 MAKE
149080 c IT RIGHT ADJUSTED
15p24d IWORD=TWORD/2
15108 ¢)
15200 c THE ARRAY GOES FROM 5 TO 1 BECAUSE YWAT 1S THE CRLCER THE
15308 o} CHARACTERS ARE REYRTEVED FROM IWORD
15400 00 108 1s4,5
15508 ¢ i

15600 o TAKE THE 7 RIGHT BITS; THE NEXT CHARACTER
15700 TARRAY (61)3IWCRDAND, "L77
15800 ITEST=IWORD
{590 & SHIFY IWORD RIGRT 7 BITS TU GET THE NEXT CWAR RIGHRT AUJUSTED
16292 IWCRD=IWQRD/(2487)
1619 ¢

16200 € THE PCP=1P TRUNCAYES; SU CONTINUE IF [WORD IS PCSTTIVE

1233; IF{IWORD,GE,)GQ TQ 1802
164 c
T16%50F o] IF IWORD 1S NEGATIVETMAKE SURE THERE TGNTY A TRUNTATTION ERROR
166080 IF(ITEST NE, IWCRD® (2447)) IWORDE | WORAwY
16700 102 CONTINUE
16600 T “ ' . ’
469082 c TRANSFER THE ASCIvaHARACTERS Y0 THE QUTPUT ARRAY
17000 00 121 Jz1,5
17108 TARY{TADOYETARRAYTJY
17209 TACET1ADSY
173082 101 CONTINUE
{7400 € .
17588 € IF THIS IS JUST AN ADDITION YO THE QUTPUT ARRAY, RETURN
174608 IF(IALEQ,3) RETURN
17708 ¢ i
17800 c RESET lAD TO THE START QF THE QUTPUT ARRAY
E-6

(T— F— ——— . —— T—

_1799¢ TLER
18000 ¢
18108 C SEND OUT TEXT
_1820¢ cALL TEXT(IA JARY)
1839092 RETURN
18402 END
18500 ¢

EXAMPLE 3

This sample program, when executed, displays EXAMPLE 3 - PICTURE 1 on the
screen. Lt illustrates user calls to:

GSS4 i
LAYOUT

SCALE

ADDREF

l
l

DRAW ' |

POINT l
PICTUR ‘
TEXT

EVENT

|
GETKEY
GETMRK ‘
REQMRK ‘
UPDATE
ENBPEN l\
DPARM \
CPARM

The text "TEXT" is sensitive to PHOTOPEN strikes and will BLINK or NOT BLINK
with successive PHOTOPEN hits.

NOTE
After full picture is displayed, to return

to the TTY emulator, hit most upper right
function key.

E-8

76

_EX EX _EX &x

FSP

TEST

PROGRAM

l

“‘67 E—

TEXT

EXAMPLE 3 - PICTURE 1

E-9

ggege ¢
Tagz08 G waecnacadanawsannosadeae TSP SAHPLERIweateanRaiBassdni s naanqeview
ae3ae c
ge498 € THIS FROGRAM 1S A SAMPLE TEST PROGRAM FHAT TESTS SOMF
Tp2s@e € FEATURES OF "TKE FCRTRAN FACKAGE FSP , IN ORCER YO USE THTS
gReBE - C PROGRAM A BUBRQOLUTINE MUST EE WRITTEN To cORRECTLY FORMAT THE
_ag7@8 € TEXT AND OUTPUT THE ARRAY, THE CALLING SEQVENGE S}
geeoE ¢
geses ¢ CALL SETEXT('AAAAAY TA)
eiepe ¢ . e :
glige [WHERE TA 1S AN INTEGER CF THE YQTVAL NUMBER OF CKARACTERS BE[NG
gL120@ € SENT AND AAAAA IS 4 TQ A MAX OF 5 CHARACTERS SURROUNDED BY
_ei¥pe € SINGLE GUOTES, TH]S EVOLVED FROM USE AN YWE FOP»4@ WROSE
21402 C 36 BIT WORD HCLCS 5 ASCII CHARACTERS, NoftE | TO SEND A STRTNG
gi5@@ C OF MORE THAN 5 CHARACTERS, MAKE SEVERAL cALLS OF § CHARACTERS
_Pi600 € EACH WITH [A=8, THIS WILL ADD EACH AODITIANAL & CHARAGTERS
1708 C T0 THE END OF AN CUTPUT ARRAY, ON THE [AST CALL TO SETEXT
@180 € SET IA EQUAL 70 THE TQTAL NUMBER OF CHARACYERS 10 BE QUTPUY
1902 C AND THE SUBROUTINE SETEXT WIlLL MAKE THE cALL 10 THE SUBROUTINE
TRReRr € TEXT INTHCP,
22120 DIMENSION ILENG(2)
mggzgg C- INITIALIZE PARAMETER VALUES Y0 DEFAYLT ViLUES
223 £
2482 € 1BL=0 = NQ RLINKING .
g25@2 ¢ INT=7 = INTENSITY OF 7
Tgees? C VY=g ~ SOLID LINE
22702 € IND=i{5 = ALL INDICATORS
2802 c
ZZ¢EE“””U“TCSX?E=Z » SMALLEST CHARACTLF SIZE
z3gno ICROT= = NO ROTATION OF CHARACTERS
33100 c ICSPAC=10 = SPACING BETWEEN CHARAGTERS(IN AIFS)
TEILET T
p3382 € 1SP=@ ~ FASY DRAWING RATE
23400 O ISYNC=1L = 606 HZ
73500 ¢ IPEN3@ » FHOTOPENS DUSABLED
3608 C :
23720 € ILENG= LENGTH OF REFRESH PAGES
g38e0 ¢ _
335080 DATA IBL,INT,IVT,IND/B;7,8,15¢
24200 DATA 1CSI1ZE,ICRQT,JCSPAC/B,0:48/
041Pe —OATATISPTISYNC TPEN/ZS 3707
24200 DATA ILENG/2569168/
g43080 €
34400 C ,
- 24500 C PLAG IS AN INDICATOR SPECIFYING WWHETHER
4632 C THE TEXT !'TEXT' IS BLINKING CR NOT,
TE4YeE U IF PFLAGES IV IS NCT TBLINKING
g480C € IF PFLAG=1, IT IS BLINKING
p4902 €
T@5009 PFLAG € P -
p512¢ € INITIALIZE TFSP USING LOGICAL UNIT 5 WITH SERIAL INTPRFACE
25209 CALL GSS4(5,;8,2)
TSI ¢ :
p5400 €)
p5584 [SPECIFY 2 PAGES OF LSER DATA ,EACH LENGTH REING AS CESCRIBED
PSR T T INTTHE VILENGY DATASTATEMENT ABOVEY
p5708¢ CALL LAYCUT(2, ILENG)
25880 ¢
Tps%es ¢ .
g6e@d® ¢ SPECIFY USER COOROINATE SYSTENM WITH LOWER LEFT
E-10

—

_p6i062 C_AT (0,,84) AND UPFER RIGHT AY (700,,722,)
06280 ¢ , ‘
06300 CALL SCALELB,2,2,2,720,8,7¢0,0)
26400 C ENABLE PHOTOPEN 2
06508 €
26620 cALL ENBPEN{2)

_P67909 C }
p688C C TURN ALL LAMPS OFF 0K KEYBUARD
86508 €
27089 CALL LAMPOF {1,m3)

E-11

_egye €
gEROY T STARY AY BEGINNING ¢F FAGE Y
peg3ge c
peage € N .
25049 € THIS SECTTON YESTS THE VARIOUS UINETTYPES
P2608 c
__ 827082 c
29899 C ORAW BOROER
pgeae c
pLeae CALL MOVE (102, ,120,,0)
21176 CALL DRAR(68C, 480 2)
gi22¢ CALL DRAW(Z, 4102,)
21320 C DRAW DOTTED LINE
24400 c
@159 £ CALL STATUS TO CHANGE LINE TYPE
_p16929 C 1VT={ SPRECIFIES DRAW DOTTED VECTORS
"~ pivee C
241809 1VTs1)
__pioae 99 CALL STATUSCIBLINT IVT,IND)
peuae CALT ORAW(E 1308, v 1)

@2190 € BACK TO SOLID
02208 € CALL STATUS TO CHANGE LINE TYPE

@230@ € 1VTso SPECIFIES SCLID VETTORS
92490 c

225@0 tVT=02
T pR2600 CALL STATUSTIBLGINTTIVTITNDY
72708 cALL DRAW (602, , 622 .@>
28290 CALL DRAk(-Lzullﬁnli)
TTPZe@e T ORAW BOT=UASH
glgpe ¢ -

23182 € CALL STATUS TO CHANGE LINE TYPE

"—z_g‘?ﬂg CTIVTEY SPECTFIES DOT=DASH LINE
8330 ¢

73400 T 1VTs3 o
135414 CALL STATUSTIFLINT IV NI
23622 CALL DRAW(3E0,,04, %)

237082 C BACK 70 SOLID

TTP3EPR C CALL STATUS TO CHANGE LINETTYPE
g3one ¢ 1VTap SPECIFIES SCLID VEGCTORS
4020 ¢

L RN TVTaD

g4200 cALL STATUS(IBL,INY, IVT,IND)
' p430e CALL DRAW(102,,620,,2)

LY TALT DRAWCE i3I0)

4500 C DRAW DASH
46230 C CALL STATUS TO CHANGE LINE TVYPE

P47 CTIVT=2 SFECIFIES DASK VEQTORS
p48080 ¢
pas@e 1VTa2

Tp5pEe CALL STATUS CIBLTINTVIVTITINDGY
7951080 CALL DRA‘N‘QQO”;’”Q|.1’
ph2ee € BACK t0 SoLID

TTPSIOC T CALL STATUS T TO CHANGE LINETTYPE
g540@ C 1VT=@ SPECIFIES SCLID VECTORS
p5508 C

05609 1Y T%D :
25798 CAl.L STATUS(IBLINTIVT, IND)
p5818 CALL DRAW(10D 2.;102,.0)

TTghSPw CALL " DRAW(Z 0By
26008 CALL MOVE(70Ry 48,03

E-12

A———— smany, - — a— i fn— —

r,,

T— L] — —— A —— — an—

26400 cALL DRAW(S2E, 127, ,8)
24200 CALL HOVE(GPR, 620, ,0)
96300 CALL DRAW(TBZ ¢ 722,,0)
26408 CALL MOVE(n780402443)
26508 cAlL DRAW(10E,,=120,,1)
26608 cALL MOVE(25¢2,,352,,8)
p6782 CaLL DRAW(68,18y.1)
p6add CALL Mcv‘E'n%Tﬂ‘iﬂuﬂ)
6908 CALL DRAW(6@49B 42 %)
87040 CALL _ MOVE(358,,458,;8)
2741080 CALL DRAW(B 160y, 31}
27200 CALL MOVE(352,:310%,0)
p7308 CALL DRAW(R,1m68,,4]

E-13

ee102 ¢
TAR20G CTPAGE 1 (GONT) = YEST FARAMETERS AND TEXT -
22282 C THIS SECTION TESTS ¥HE VARIOLS CHARACTER SrZrS. INTENSITIES
_ prAa2e C_AND CHARACTER ROTATIOMN,
Tpgsee ¢
aes00 c
22720 -
TpPEed ¢ c‘gflRT WITH INTYTAL VALUES,, CHARACTER STZE @, NCRCTATE,
ggo@® G AND SPACING OF 3§42 DITS
g1eg0 C - B
21100 CALL CRARMTICSTZE, JCROT,ITSPAC)
zizag CALL MEVE(53244325412)
2130 c
gi4§; C NOW Do SOME TEXY, SEE QESCRIPTION AHOVE FCR WOW SETEXT WGRKY
P15 ¢
ple0@ CALL SETEXT('SANDE!; @)
pivaoe CALL SETEXTIYRS 179
1800 © NOW TEST ROTATE
31908 € CALL CPARM TO CHANGE CHARACTER ROTATE
PZEd8 G ICRO¥=1 SPECIFIES RoTlTE“CHIRKUTEH"9z*bzsntzﬁ‘ctuN?EﬂttUcKWTSE*‘"“"““
02108 C
_ pR2p0 1CROTsY
T p23ew CALL FFARH!!CSIZE”TCRDT.xchAc:
p2400 CALL SETEXT('ASSQC!,;?)
02502 CALL SETEXT('IATES ! 12)
TpZ6B0 € NOW TESY FOUR CHARACTER SIZES AND SPACING
g2782 C CALL CPARM T7Q CHANGE CHARACYER S]2E
g2808 C 1CS!1ZE=@ SPECIFIES SMALLEST ,
TGZeA0 ¢ TCSTZERY SPECIFIES NEXT YO SMALLEST
239@¢ € ICSIZE=3 SPECIFIES NEXT TQ LARGEST
3182 € 1CSI2ER4 SPECIFIES LARGESTY
TEICLY C
23328 € I1CSPAC W!ILL BE ‘CHANGE AS EACH CHARACTER SI2E 1S CKANGED 10
23402 C ALLOW FQR DEGENT SPACING BETWEEN CHARACTERS,
ICPW i
p3600 CALL MOVE (458, ,605%,82)
23702 € SET ROTATE OFF,CHARj|4,SPACINGI3@
¢gI808 TCROTED
p3cne CALL CRARM({J3,0,30)
24000 CALL SETEXT('EX 1,3)
TTH4YPe T T SET CHARV3I;SPT20
p4290 CALL CPARM{2,]GROT;22)
24300 CALL SETEXTL'EX 1,3)
744P0 T SET CHARTZ,SPIL5
g4%500 cALL CPARM(1,ICRQT{13)
74609 CALL SETEXY('EX ', 3}
T@dYCT T SEY CHARTIISPILP
248080 CALL CPARM(@,ICGRQT,;18)
24900 cALL SETEXT(IEX 1,3)

TTESPRe T C PRINT TRE TITLE

25100 CALL MOVE (298,516 i0)
252008 C SET CHARI3,SPi128)
BEEL L CALL CRARMT27TCROT 25T
75400 CALL SETEXY('GSS4 1;8)
95500 CALL SETEXY(! TESTI,;10)
LEEY) CALT Movsrzaw.,saw;.u:
g57@0 CALL SETEXT('PROGR @)
5808 CALL SETEXTEYAM 1,
TTP59eeT CTEST BRIGHTNESS
g6eoe C CALL STATUS TO CHANGE [NTENSITY
E-14

26100__ G INTENSITY_RANGES FRCM B T0 79
26200 C © IS INVISIBLE
26300 £ L IS5 VERY DIM
_pbaee C 7 1S THE BRIGHTEST
g6508 €
26602 CALL MOVE(148,,625,:0)
_pe708e DQ 200 J=i,7
36802 € CHANGE INTENSITY YO
26900 INTz28ay
37008 CALL STATUS(IBLINTIVTY, IND)
p7106 ¢
27202 € WE WILL CALL A ROUTINE 70 CONVERT OUT INFERGPR 1J' 10
27322 € AN ASCI! CHARACTER WHICH WE CAN DJSPLAY AN THE SCREEN,
p7408 ¢
@7502 C CALCULAYTE 7«BIT ASCII FQR INTENS!TY NUMBER
77608 1TXz48%8w,)
g778@ C
27808 C CALL TEXT TGO DISPLAY THE CHARACTER JUST GOMPUTEC,WE USE 1TEXM
7982 G RATHER THAN 'SETEXT! BEGAUSE THE CHARACTER !S SET Up [N THE
papae C INTEGER ARRAY PROFERLY ALREADY,
pnaLed ¢
_p82Q¢@ cALL TEXT(4,1TX)
p8330 209 CONTINUE

28400 C TESY BLINK
pgcsae C CALL STATUS 10 CHANGE EL!NK

¢8602 € 1BL=1{ SPECIFIES BLINK
28708 c
paepe

zaqaz"‘E“TUR“‘ELINR‘DN’SET“IRTENS!T? T0 71 CHAR14.5P 130
290020 caLL CPARM{3,ICROT 300
P51 80 INT=7
25200 TEL=Y :
29300 CALL STATUSEIBLINTIVT IND)
p5420 cALL MOVE (325,43354,0)
Tg%9%av CALL SETEXT(TG7 1, 2]

39600 C TURN BLINK OFF; SET CHAR|1,SP11@

g9708 C CALL STATUS TO TURN BLINK OFF

Tg980e@ O IBL#0 SFECTFIES NC BLINK
goee2 €
10008 1BL,20

YL CAEE_““SYITUSITﬂtdINT.IVT INDJ
10200 CALL CPARH(ICSI2E.!CROT.1CSPAc}

E-15

peias ¢
Tpr20¢ € PAGE 1 (CONY) = DRAW POUINT CIRCLE
2308 ¢ THIS SECTION DEMONSTRATES THE USE OF SUBROUTINE PCINT
02408 C WE WiLL DRAW A CIRCLE CQNSISTING OF 24 POINTS
ges08 C
apege ¢
02700 D0 4192 I=i,24
ggeod € T
22900 € WE DO SOQME ARITHEMETIC COMPUTATIONS TO CAMPUTE X,Y VALUES AT
21008 C WHICH WE WILL DRAW A POINT,
gi192 C)
$24280 ANGLE={(1045,)/18R¢)»3,44159
21309 XPTa350, +40¢, »COS(ANGLE)
04408 YPT=350, 4102, S IN{ANGLED , v
¢150@ ¢ DO A MOVE TO THAT X; AND Y AND PLOQT A POINT,
216090 CALL MOVE(XPT,YPT,0)
ai7ae cal.L POINY
gi8@o C
1500 C D0 FOR ALL 24 POINTS
TpZode €
g2198 100 CONTINUE
22808 C END OF PAGE 4

gg2088 ¢ ‘
@238 € PAGE 2

_ §8468 C THIS SEGTION GENERATES GRAPHIGC DATA ON PAGE 4, THIS PAGE WILL
gespd € THEN BE CALLED BY PAGE 1 SHOWING SUBROUTINE LINKAGES, NOTE THAY
P26@B C PAGE 2 WiLL NOT BE DISPLAYED UNLESS AND UNTIL PAGE 1 CALLS T,
geyee ¢
pgegld ¢
p290P ¢
gLe98 C OPEN PAGE 2 FOR DATA
gi108 C
81200 CALL AQDREF(2)
04308 ___CALL_MOVE(34D,,14R,,0)
234P€ ¢ SENSITIZE DATA TC PHOTQPEN
@4i5@8 C WE WANT TO USE THE PHOTQPEN TO0 MAKE THE TEXT 'TEXT' IN THIS

_ 246008 € SECT{ON BLINK OR NOT ELINK ON COMMAND, We MUST, THERFQRE
@i702 C SENSITIZE THE DATA WE WANT LhE DO THAY BY CALLING
piege C DPARM WITH A PARAMETER §PECXFYING ENABLE PHOYPEN 2
pisao ¢
20020 CALL DPARM({ISP,TSYNG, 21
p2i0a c
P22@@ C NOW WE WANT T0 KEEP TRACK OF THE DATA WORD THAT CCNTRQLS THE
8230¢ C BLINK, 10 DO THIS WE REQUEST THE MARK OF THE NEXY AVAJLABLE
pR400 C LOCATION INTO WHICH WE WILL PUT THE CaLL To sTATUS TO cQNTRQL
P25@88 ¢ THE BLINKING,
g2686 C CALL REQMRK DOES THIS T
@272 € NEXT cALL EVENT TC SEE]F THE DATA }S REAOY 7O BE SENT 7O USY
g28@08 C CALL EVENT (]) DOES THIS
22980 C [IF THE EVENT SPECTFIES THAT TT RAS A MARK RESFONSE,
p3e@d8 £ CALL GETMARK TO RETRIEVE ITy 7
#3182 C CALL GETMARK({INAL) DOES THIS
@3200 € SAVE THE MARK FOR FUTURE USE TO UPDATE TWRE BLINKING
g3392 C CONTROL WORD,
3408 c ‘
23500 CALL REQGMRK
23602 40 CALL EVENT(D)
p37ae ¢

Tg3sg¢ CIF I=7, THEN EVENT WAS A NARK RESPONSE, OTHERWISE

p3909 C GO WAIT FOR IT,
g4gan ¢
241080 IF (T WNEV 7) GO YO 19 ~
04209 ¢ EVENT SAYS MARK RESPONSE READRY, GO GET MIRK
p430e cALL GETMRK(INAL)
g4a4ge C TNAL WILL BE USED LATER FUR UFDATING '
g4520 C PUT IN ELINKING CCNTROL WGRD TO BE ALTERED
p4629 C IN RESPONSE TO RHCTOPEN STRIKES,
LML CALU STATUSCIBLYINT,IVT IND
34800 ¢
p4908d C THIS 1S THE TEXY THAT WILL BLINK
T ¢
25400 CALL SETEXT (ITEXT!,4)
35280 ¢
Tp5age € IS SENSTTIZED,
g5528 ¢
256008 CALL DPARM(ISR, ISYNGC,R)
Tg5700 T
25822 c
g5998 ¢
ge6pee ¢ NOW MOWIFY PAGE 4 YU CALL PAGE™2
261280 CALL ADOREF(L)

E-17

_p62R@ GALL PICTUR(2)

6300 c

p64apa c

_p&5SAB € NOW WAIT FOR PHOTOREN STRIKE AND GET INFORMATICN

“psepd € OR FOR FUNCTJON KEY 31 TOEXTY

67029 o . .
_p6eQe ¢

p6900 20 cALL EVENY(D)

@7898 €

87108 C ON RETURN IF 1=4, THEN THERE WAS A KEYBOARD STRIKE

p7290 C GO GEY KEYBOARD DATA _
273082 ¢ IF l=5, THEN THERE WAS A PHOTOPEN STRIKE: 60 GET QATA
874082 C OTHERWISE, 6O WAIT FOR ANQTHER EVENT

27500 ¢

376080 1F (1 .EG. 4) GO 70 104

07720 1P (1 NET 8) GO 10 20

07820 & GOT PHGTOPEN. siRIKE““co GET UATA

07528 CALL GETPEN(IFENsIMPAGE,MARK, JTYPE 1cPAGE, 1EYTE, 1THNUM)

_@8¢@2 C THIS INFORMATION CAN BE USED FOR VARIOUS PURPOSES, THIS TESY
28109 € FROGRAM IS NOT CONCERNED W]TH THE DATA AND AOES NOTHING WITH
p82pe C 1T, TO ACKNOWLECDGE THAT WE GOT A PHOTCPEN STRIKEs THOUGH,
28308 C 'TEST! WILL BLINK OR NOT BLINK, DEPENDING oN PRESENT STATE,
PEEL L T IF PPLAGEG, YTEXTY IS NQT BLINKING, GO BLUINKTIY
g8522 C IF PFLAG=L, 'TEXT'! 1S BLINKING, GO STOP ALINKING

28608 ¢

T p87@p IF (PFLAG ,EQ, 1) GU 1T 3B
p8gge PFLAG 3 %
pgsny ¢

TEeEeDT C“HTITYER”WORUTWWTRNJHNG“BtTNKTNG‘"CﬂITUPU‘TETZ‘TWNEY“““’““'“‘—““
09402 C WHERE 2 SPECIFIES.PAGE 2 AND INAL SPECIFIES THE MARK OF
g9208@ C THE DATA WE ARE GCING TQ CHANGE,
g93IVe
CALL UPDATE(2.:INAL)

25400
‘E?zﬁﬁ**‘U“ItE‘DITI'NUW“WTEE—BE‘ENT€RED—ON—Pﬁu; 2 SYARTING

¢
29500 e

29709 C AT MARK INAL,
29800 c
9900 CALE STATUS STRLANRSARRLLE)
10009 60 TO 2¢
12100 C YTEXT WAS BLINKING, STOP BLINKING NOW
—ig20v 39 PFLCAG E @
123080 c

12409 C TO ALTER WORD CONTROLLING BLINKING, CALL UPDATE(2,INAL)
—{Eg5@F T WHERE 2 SPECIFIES PAGE 2 AND INAL SPECTFIES THE MARK OF
12600 C THE DATA WE ARE GCING TQ CHANGE)

ig7e8 €
ENELL CALL UPDAYE (27 INAL
129080 cALL STATUS (IBLIN a!VT.lNu)
11000 GO 70 22
—11109@
11208 c EVENT SAYS WE GOT A FUNCTION KEY HWIT
11300
""Il4EB"*“TT"WHT’GET“FUNCTIDN“KEY’NUMHER“%NU“TEST*FUR #3710 EXEY
11509 101 CALL GETKEY(KED.KEY)
11600 . IF (KEY ,NE, 31) GO 70 29
11790

T

11800 € 1T WAS FUNCTION KEY 31, SKUT OFF DISPLAY AND RETURN TO
11908 € TTY EMULATOR,

12080 C

12100 CALL THEEND

E-18

_ 12248 END

E-19

pe1e8 ¢
TE0200 T T wassabaodsawsanaenaSETEXT SUBROUTINE FBR YHE FOF={R4astdsdnadgauAnioay
2398 €
Be40? C SUBROUTINE TO PLT TEXT RIGHT ADJUSTED N 520 ARRAY
Tpgsad ¢ ‘
pReA® - ¢ THIS SUBRQUTINE SETEXT IS USED To SET THE ARRAY FPOR TEXY
_peg7e8 C IN THE FSP ATP, TEXT IS TRANSMITYED IN AN ARRAY WITH ONE
Tpged? € 7 BIT ASCII CHARACTERY RIGHT ADJUSTED, IN FACK ELEMENTYS
peoge € MOSY OF THE TEXT IN THE FSP ATP 1S CALLEA USING SETEXT
pig@? € THE FORMAY IS} ,
gli9® ¢ “cALL SETEXTUVAAARAY TAT
pi208e c WHERFE 1A IS THE TCTAL NUMBER QF CHARACTERS ANC AAAAA 1§ § TO A MAX
_pA3@2 € OF 5 CHARACYERS SURROYNDEDR BY SINGLE QUOTES, ThIS EVOLED FROM
21400 ¢ THE PDP=ig WHOSE 36 BIT WORDS HOLD 5 AsCII CHARACTERS, YO SEND
24582 C A TEXT STRING OF MORE THAN 5 CHARACTERS, MAKE SEVERAL CALLS
_pl6@% C OF 5 CHARACTERS EACH WITH lA=@, THIS WILL ACD
7?1700 c THE 5 CHARACTERS O THE ENDTOF ANTARRAY, ON THE LASY GALL
piapg (o] YO SETEXT, SEY IA EGUAL TO THE TOTAL NUMRER OF CHARACTERS,
_pi9@P € SETEXY DOES THE ACTUAL CALL TO THE TEXT SURROLTINE IN HCP
g2¢0@ € WHEN YHE USER IS DONE,
g2109 c
22200 SUBRQUTINE SETEXT(IWRD,[A)
T p2300 DIMENSTON TARRAYTSY, TARY(IR@)
02400 DATA 1AQ/&/
p2500 IWCRO=IWRD
pee0p ITYEST=IWQORD
92788 €
92800 c THIS MOVES THE 5 ASCI] CHAR 4 BIT Y0 THE RIGHT TO MAKE
T peeod o] I'T RIGHY ADJUSTED
23200 1WORD=]HWORD/2 .
231090 ¢

i zzéﬂB‘*‘t‘“‘TRE'KFRIY*UUEs—rwun~S—TU"I“BEcIUSt“war‘ﬁr1WE“tRUER‘THu

3300 € CHARACTERS ARE RETRIEYED FROM IWORD

3400 00 1920 1=s31,8

g3508 T : N
3608 € TAKE YHE 7 RIGHT BITS; THE NEXT CHARACYER
p3700 IARRAY (6=)21 WORDAND,"177

7380e “ITESTETWORD

23900 € SHIFT IWORD RIGHT 7 BITS YO GET THE NEXT CHAR RIGHT ADJUSTED
24000 IWQRD=IWQORD/(2wu7)
LR/ .
p4208 € THE PCPw1p TRUNCATES, 50 CONTINUE IF lWORD IS PCSITIVE
4309 IF{IWORDGE.2)G0O TQ ig¢0
LK1 .
4508 € IF [WORD IS NEGATIVE,MAKE SURE THERE fSN'f A TRUNCATION ERRQR
p46Q0 IF(ITEST,NE, INCRO#(2»47)) INORDS I WORAmY
LY YL CONTTINUE
g4gge €
24982 € TRANSFER THE ASCI! CHARACTERS Y0 THE OUTPUYT ARRAY
F5000 DO LBL JEL,S
25100 TARY(TAD)Y=TARRAY (V)
952082 IADE1ADSL
“@gsgg“—‘tvt‘“‘"cowrzNUL _
254 c
@558 ¢ IF THIS IS JUST AN ADRITION.TQ THE QUTARUT ARRAY, RETURN
LEEY A [F{TAEQ; @) RETURN ;
85700 ¢ : 3
5808 € RESET IAD TO YTHE START OF THE QUTPUT ARRAY
a5900 [ADEY
6028 C
E-20

0610 € SENQ QUT TEXT
L

26200 cALL TEXTCIAL TARY)
26300 RETURN

__ 06480 END
26520 ¢

E-21

EXAMPLE 4

This sample program illustrates FSP subroutine CLIP. The data base and its
relationship to the user defined coordinate system are shown in SAMPLE 4 - PICTURE 1.
The actual displayed picture after clipping is shown in SAMPLE 4 - PICTURE 2.

After picture is displayed, to return to the TTY emulator, hit upper right
most function key.

E-22

(USER DATA BASE)

p

800, ,800,

250, ,450.

(USER DEFINED COORDINATE SYSTEM)

200.,500,

500.,300,

SAMPLE 4 - PICTURE 1

This diagram shows the data points in the USERS DATA BASE in relation to the

user defined coordinate system.
clipped data.

Picture 2 shows how the display will look with

E-23

E-24

SAMPLE 4 - PICTURE 2

This is what the final display will look like with data clipped.

mmn—q-n—~———~—--—q~m

2100
oe20K
223006
22400
2590
agedn
og7080
0gegw
pLooe
ninev
4100
z120¢
wi3ge
alage
plsoe
pleoe
ny7@e
3lage
71504
geepe
p2i0e
pz2ee
p2300
p2400
2500
ge6pde
p2708
22809
pRsap
p3pae
p3106
p320e
p330¢
23420
03506
23608
P78
p3ape
23904
z4g@e
24120
pd29¢L
24308
24400
4500
4601
2470¢
P480C
pdo@2
r5pQ8
25100
n5220
5302
25400
75500
15600
@E7RL
ve8Qw
25908
P600L

OO o a0

aaQ e RoNeRe] aaa Qaaaa aaaa

«Q Qaoaaaooaoan

afaaa

sunscspavocapanapsonnens FSP SAMPLEmdaupdanptensndatosansssgnagesdng

THIS PRQGRAM 13 A SAMPLE PROGRAM THAT TEsTS TH F

SUBROUTINE CLIP, FSTS THE TS

THE USERS CCORDINATE SYSTEM]S DEFINED AS ¢ N 2 '

Qng(gﬂ@}}ggg}) NRRER RICHY: D AS (2a2,,229,)L0WER LEFT
AND Y DATA RANGES FROM (@,;2,)LOWER LEF oeQ '

UPPER AIGHT. 1k LEFT To (1029,,1002,)

EACH SET QF DATA POINTS !S FED TO SUBROUFINE CLIP

CLIP PASSES BACK FARAMETERS TELLING THE USER wnérﬁen

THE PQINT WAS ON SCREEN QR OFF CR PART ON ANP PART OFF,AND

WHETHER TO DO A MOVE,OR A DRAW OR A MOVE ANPR DRAW TO CREATE

THE DESIRED GLIPPED PICTURE, "

DIMENSION X(4),Y(6)
DATA ILENG/10g@/

DEFINE CUR DATA BASE OF X AND Y POSITIONS
OATA X/Q.;iQDT,EBQI.SﬁE,.652.;9@0?}
DATA Y/2,:350,14501130241100015080/
T g e SRR e o TR
CALL GSS4(5,8,2)
SPECIFY 4 PAGE OF USER DATA IILENG' IN LFNGTH WKICH IS 1822 WORDS,
CALL LAYOUT(4;ILENG)

SPECIFY THE USER COORDINATE SYSTEM TO RE (207,,202,) AT LOW
CEFT GORNER AND. (878, i8P85 AT UPPER-RIGHT GoRNER. " T LOKER

CALL SCALE(2P2,,200,,802,,8080,)
OPEN PAGE 1 FOR TCP LEVEL DRAWING
CALL ADDREF (1)

J0P={ SPECIFIES TC SUBRQUTINE CLIP, THAT THE POINT WE
PASSING IS THE INITIAL XiY DATA, ' e HIT KE ARE

X1 AHD Y1 ARE INPUT AS THE NEW BEAM POSITIaN,;X2 AND Y2 ARE NQT USED,

XPOSR AND YPOSB KEEF TRACK OF THE CURRENT REAM FOSITION,
AND SHOLLD EE THE SAME TWO VARIABLES ON FACH CALL TOICLiP
THESE ARE NEJTHER SET NOR USED BY THE USFR" '

10P=1
INITIAL POINT
X$3X(1)
Yi=Y (1) i
CALL CLIPLICP X1:Y1,%X2,Y2,200,,20C7,800:,802,,%XP05SB,;YP0SB)

ON RETURN, IF 10P=8) THE SPECIFIED POINT 1§ nFF SCREEN N
IF [0pa7, THE SPECIFIED PCINT IS ON SCREEN, THE ugeg + DO NOTHING
SHOULD THEN CGALL MOVE USING X1,Y4

E-25

0610¢

p6202

7632¢
264005
X315
26600
26700
pépae
269929
p7¢0@
p710K
p729¢e
@738¢e
g740¢
7520
27600
p77080
a78028
37900
aRpAd
28108
p82ae
p82Re
?840C
78592
8600
perae
28800
28900
gogae
pg10e
A9206
29300
ps40R
gssoRe
@96anR
P9702
29800
25900
12p00
1210¢
1200
12302
1£400
16500
10600
12700
12800
10900
11e08
1118¢
11200
11308
11400
11500
11600
11789
11800
115090
12000

E-26

IFCIOP,EQL7ICALL MOVE(XL,YL,d)

¢
C NOW Do REST OF POINTS
c
c 00 198 82,6
g igp=3 ssgci;xss At¥ ng¢r OTHER YTHAN THE INIFIAL FOINT
AND EINP A HE FINAL POSITION ECTeR

c SR$NN FﬁgM THE GURRENT PASITION, TION OF A VECTGR TO BE
C NOTE THAT WE MUST USE TKE SAME XPOSB AND YPOSB AS IN T
G NoTE THAT E. (USE TH | 8B AS IN THE INITAlL
c . :

10P=2

X2=X{1}

y2sY(1) . .
. CALL. CLIP(ICP,X1,Y$,X2;Y2,2002,,2008"7,80m¢s800,,XP0SB,YPOSB)
C ON RETURN, IF 1OP=8 THE ENTJRE VECTOR IS OFF SCREEN
g " ?o NOTH%NG .

OPs7, THE START POINT OF THE VECTOR IS ON ThE S¢R
G CALL DRAK USING X2 AND Y2 N CREEN:
g IF }“P;$' THE START PCINT WAS OFF SCREEN”
TRST CALL MOVE TO MOVE THE BEAM TO X1,Y17,.THAT IS RELOCATE

c START POINT Y0 WWERE VECTOR COMES men’uSrﬁ COCRDINATE RchE
g THEN CALL DRAW TC DRAW A LINE TO X2 AND Y2,

IF(I0P,EQ,Y8)GC TO 120

IF(10F,EQ,7)GC TO 52
. IFCIOP,NE,9)60 TO 320
C ON RETURN 10P=9 SPECIFYING THE START POINT I8 OFF ScREEN
g DO A CALL TO MOVE WITH X3,Y3 AND A CALL TO DRAW WITH X2,Y2

GALL MOVE(X1,Y4:0)
CALL DRAW{XZ2,Y2,9)
NOW GO GET NEXT PCINT
60 TO 429 o
ON RETURN 10Ps7 SFECIFYING THE START POINT OF ThE VECT
ON SCREEN, L : P ThE VECTOR IS
DG A CALL TO DRAW WITH X2,Y2,
2 CALL DRAW(X2,Y¥2:2) . .
NOW GO GET NEXT POINT
20 CONTINUE

¢ WHEN ALL DONE DRARWING,WALT FOR FUNCTION REV NUMEER B .
C THEN SHUT DOWN DISPLAY AND EXIT 3170 BE WITY

araaavaaoaaaaoa aQa

C

¢ L

C FIRST CALL EVENT TO SEE IF TYHERE HAS BEEN ANY KEYEOARD INPUTY
15@ CALL EVENT(II)

c IF 1f = 4, THEN A KEY WAS W]T, GO RETRIEUE 1F, CTHER W
G WAIT FOR ANOTHER KEY STRIKE + CTHER WISE
c

IF(LIGNE,41G0 TO 35¢

1210¢
1220@
123206
12408
125082
126280
12784
128082
1250882
13708
134098
132080

o e Ee] 22

322

C ' '
ALL GCTKEY T0 FIND OUT WHAT KEY WAS HIT
- a:%LKE$T§EY<KBDnKEY)
RIRACHE NUMER 34, ThEN EX]T, O
en KEY STRIKE., ¢ OTHERWISE GO WAIY FOR
IF(KEY,NC,34)60 TQ 159
IT WAS KEY 3% i
» SO SKYT DOWN LISPL in
AY AND FPXIT TO Tk
KE TTY EMULATOR'
. R

CALL THEEN
END th

E-27

EXAMPLE 5

This sample program illustrates the use of FSP subroutine SMOOTH. EXAMPLE
PICTURE 1 shows the displayed data before smoothing. EXAMPLE 5 - PICTURE 2 shows
the same data displayed after smoothing.

To return to the TTY emulator after the picture is fully displayed, hit the
upper right most function key.

E-28

00

EXAMPLE 5 - PICTURE 1

DISPLAYED DATA BEFORE SMOOTHING

E-29

BC10U Cossusespbossevoocvnsaseddny FSP SAMPLE o Sasupensnadasonsncacssagnedus

apope c
pe3pe c
ge4dy C_
gesee ¢
peade c
gg7ee ¢
Tpgsrd c

pgs@e C
pleee G

THIS SAMPLE PROGRAM JLLUSTRATES THE USg oF SUBRCUTINE SMOOTH

THE DATA BASE CONSTISTS QF X, Y DATA USED TO FaRM A CRAPH,
CACH DATA POINT WILL BE FEC TO SUBROUTINE SMAOTHR
AND AN ALOGRITM WILL DETERMINE WHICH POINTS of

TTHE DATA CAN BE DRAWN KEEPING WITH IN THR LUIMITS

SET BY A DEVIATION FACTQR FEO TQ SMOOTH,
PARAMETERS RETURNED INSTRUCT THE USER IN WHAT USER

Tgi100 £ ROUTINES TO CALL,THAT TS S WHETHER TO ¢all MOVE,CRAW OR
plagoe C @ERFORM NQ OPERATION,
71306 c
p1ane C
g1500 C THE DATA BASE CONSISTS QF 12 X,Y POINTYS
plepd C ,
“pi7oe NIMENSTON X127V, Y(ig) R
p1808%¢ © XSAVE AND YSAVE ARE ARRAYS USED Y0 BUFFER DAYTA POINTS
pi908 ¢
2000 DIMENSTON XSAVE(SPY, YSAVE(ST)
2106 C ILENG IS THE LENGTH OF PAGE 1}
p2208 c
02300 DATA TLENG/10¢R7
p2489 DATA X/256u275”25@0l5121057z|léﬁﬁna768n1568009ﬂ@n1agﬂ|l
pes5ae DATA Y/256,4268,,285,,359,,345,,350,,258,,260,,26%,,358/
p26pm [
22706 C INITYALIZE, MSE LCGiCAL UNIT NUMBER B8, TRANSMISIOQN
p2epe C WILL BE OVER THE SERJAL LINES
32907 o
p3gaR € SPECIFY ONE PAGE- 142@ WQRDS IN LENGTH
p31pe ¢ SPECIFY USER COQRCINATE SYSTEM AS ©,,8. L'OWER LEFTY
G3z00 ¢ T1323.,1823, UPPER RIGHT
p33I00 o
93400 CALL 5SS4¢(5,2,2)
73506 CALL UAYOUT(L, TEENG)
23602 CALL SCALE(R,,2,,3923,,1723,)
23780 e
TgIB0E T INTTTALCY SHOOTH IS CALLED WITH TOPIL TWIS INTTIALTZES
p3one ¢ THE SUBROUTINE, X AND Y ARE MQT USEQ
p4¢oo c
g4i9e € FOR INITTALTZATION
p4zee 10P = 4
p430€ XX=3,
gi40%¢ YYE%,
24500 ¢ CALL TO SMOOTHK FOR INJTIALIZATION
246080 CALL SMOOTH(ICP XX, YY ISAVE,XSAVE,¥SAVE 52,287
‘@?7@0“"U—NUW—STXRT-smooTHXhG‘Fck—uATm"BASL
248082 o
24900 ¢ N0 FOR 12 CAYA PQINTS
Poruy D018 I = 1,10
p51082 C X, AND Y DATA ARE FED TO SMQOOQTH WITH [oPw2
p52082 C THIS [MFORMS SMOCTH TKAT TH]S IS A NEW DiTa PQINT,
TPSIBTT C RX;YY IS THE NEW CATA POINT
25400 XX = X(1)
ps50e YY = Y{(1)
R Y2 Igp =2 . '
ps708e CALL SMOOTH(JIGP,) XX YY ISAVE,XSAVE ,¥SAVR52:29,)

p5800 c

TPSYRE T U IF T TDOPES T CALL MOVE TCTMOVE THE BEAMTTO XX, YV

06200 ¢

ON RETURN IF 10Fsz4,; THEN THE USER SHOULL TAKfs NG ACY]ON

E-31

6489 C IF lop=6_CALL DRAW Y0 XX, YY

26200 c -

263020 C NOTE} THE XX AMD YY RETURNED WILL NOT BE THE SAME AS THE
_@64P¥ C ONES JUST PASSEDR)

g6500 IFtlop ,EQ, 4) GO 70 1R¢@
P6600 1F(10P ,EQ, 5) CALL MOVE(XX,YY,2)
_ps708 1F(I10P LEG, 6) CALL DRAW(XX,YY,g)
6802 ¢ CONTINUE FOR ALL "CATA PQINTS
p6920 107 CONTINUE
72929 C DATA 1S ALL DONE, NeW CLEAN UP WITH FINAL' cAi'lL_10 SMOQTH
w?xag G THIS CALL IS NECESSARYTQ FORCE OUY THE LAST POINT
2720 c
27382 € THIS FINAL CALL TOC SMCOTH]S DONE W]TK !aPs3 TO
@7482 C SPECIFY LINE ENDY
@75082 € XX AND YY ARE NQT USEC
p7600 ¢
27700) 10P = 3
p7808 € CALL SMOOTH AND DRAW LINE
27900 CALL SMOOTHCIOP, XXaYY,ISAVE ,XSAVE,YSAVE.52,20)) |
28000 CALL DRAW(XX,YY, 0]
28108 €
p820@ C NOW WE ARE DONE WITH PIGTURE)
R C TO EXIT BACK Y0 THE TTY EMULAYUR , FUNCTION KEY NUMEER 3§ MUSY
ea4ae c BE HIT,
285
eaeﬁg FTﬁ§ TCALL EVENY 1O SEE IF YHERE RAS BEEN ANY KEYBCARU YNPUTy
péve c
28820 159 cALL EVENT(IT)

T 28900 C IF IT = 4, THER- A KEY WAS HIT,- GO RETRIEVE IY. CTHER WISE
go0082 C WAIT FOR ANOTHER KEY STRIKE

91082 e

9289 TF(TT,NE,4YGO TO I7¢

293082 C CALL GETKEY TQ F!ND QUT WHAT KEY WAS WiT
%40

?950% CALL GEYREY(KED,KEY)

p960202 ¢ IF 1T WAS KEY NUMER 31, THEN EXIT, OTHERWISE GO Walv FOR

29700 C ANOTYHER KEY STRIKE,

p98gp ¢ o

29500 IF(KEY,NE}31)G0 TQ 450

12008 ‘
“‘EIHW“'_U‘TT‘WIS‘KEY“?I*“SU—SRDT“DOWN”UTSPtIN*VHWT—EXTY‘TU‘TFE“TTY“ENuLATUR}

10200 e

103002 CALL THEEND

1P 400 , END

E-32

APPENDIX F

PRODUCT PERFORMANCE REPORT

Occasionally, problems may be encountered in the use of products delivered to
our customers. These problems or errors should be identified and communicated to
Sanders Associates, Information Products Division by means of a Product Performance
Report (PPR).

Product Performance Reports should be submitted to Sanders Associates. An
appropriate specialist will review your PPR and attempt to resolve the problem or
offer a temporary circumvention.

Every PPR is acknowledged upon receipt and answered in writing.

In preparing a PPR, the following guidelines should be followed for accurate
and timely service to your problem.

1. Give as complete a description as possible of the problem encountered.
Often a detail that may seem irrelevant will give a clue to solving
the problem.

2. If possible, isolate the problem to a small example or procedure.
This will make it easier for the specialist to duplicate the problem.

3. Include whatever documentation is possible, i.e., program listings,
computer output or sample input. Annotations in a listing pointing
to the error are very helpful. :

PRODUCT PERFORMANCE REPORT

Submit To:

CDMO

INFORMATION PRODUCTS DIVISION
SANDERS ASSOCIATES, INC.
DANIEL WEBSTER HIGHWAY, SOUTH
NASHUA, NEW HAMPSHIRE 03061

Page of

PPR #:
(assigned by the PPR center)

Product Identification and Version Operating System & Version Date
(or document)
Report Type Priority

Name: [OJ Logic error [] Low

[Documentation [J Standard
Company: [Suggestion [High

[0 Inquiry
Address:
: [Software [OFirmware [JHardware

Zip: Is the problem reproducible?

Phone: [Yes [ONo
CPU: Host-G7 interface: Attached documents: Distribution media:
Description:
PPR Center use only
Date received: Date resolved:
To specialist:

THE INTENT AND PURPOSE OF THIS PUBLICATION IS TO PROVIDE ACCURATE
AND MEANINGFUL INFORMATION TO SUPPORT EQUIPMENT MANUFACTURED
BY SANDERS ASSOCIATES, INC. YOUR COMMENTS AND SUGGESTIONS ARE
REQUESTED.

PLEASE USE THE FORM ON THE REVERSE SIDE TO REPORT ANY PROBLEMS
YOU HAVE HAD WITH THIS PUBLICATION OR THE EQUIPMENT IT DESCRIBES.

| " || l 'FIRST CLASS

PERMIT NO. 568
NASHUA, N.H.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by

Sanders Associates, Inc.
Information Products Division
Daniel Webster Highway South
Nashua, New Hampshire 03061

ATTN: DEPARTMENT 1-2894 (NHQ 1-447)

SA A F NSRS

Name: Sanders Equipment
Company: Part Number
Address: Software/Firmware System
Version
Telephone: [] Host computer
Date: ' Host operating system Version

Host-GRAPHIC 7 interface

My problem is: hardware [J] software []

firmware (] manual [

Description of problem (or suggestion for improvement):

Related tech manual number

