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Foreword 

The RCA Microprocessor (COSMAC) is an LSI CMOS 8-bit register-oriented central processing unit. It is 
suitable for use in a wide range of stored-program computer systems and products. These systems may be 
either special or general-purpose in nature. 

This User Manual provides a detailed guide to the COSMAC Microprocessor. It is written for electrical 
engineers, and assumes no familiarity with computers. It describes the microprocessor architecture and its 
set of simple, easy-to-use instructions. Examples are given to illustrate the operation of each instruction. 

For systems designers, this manual illustrates practical methods of adding external memory and control 
circuits. Because the processor is capable of supporting input/output (I/O) devices in polled, interrupt­
driven, and direct-memory-access modes, detailed examples are provided for the use of the I/O instructions 
and the use of the I/O interface lines. The latter include direct-memory-access and interrupt inputs, external 
flag inputs, command lines, processor state indicators, and external timing pulses. 

This manual also describes machine-code programming methods and gives detailed examples. Potential 
programming errors are discussed, and various programming techniques are described, including interrupt 
response, long branch, and subroutine linkage and nesting. 

This basic manual is intended to help design engineers understand the COSMAC Microprocessor and aid 

them in developing simpler and more powerful products based on microprocessors. Users requiring infor­
mation on the operation of the RCA COSMAC Microprocessor software support system should refer to the 
MPM-102 "Program Development Guide for the COSMAC Microprocessor". 
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I ntrod uction 

General 

The COSMAC Microprocessor has been developed and tested within RCA in a wide variety of appli­
cations. COSMAC is suitable for use in business, education, entertainment, instrumentation, control, 
communications, and other applications where stored program control is desired. 

The RCA COSMAC Microprocessor is a CMOS byte-oriented central processing unit (CPU). It is suitable 
for use in a wide range of stored-program computer systems or products. These systems can be either special 
or general-purpose in nature. They are byte-oriented, a byte being eight bits. 

COSMAC operations are specified by sequences of one-byte operation codes stored in a memory. These 
operation codes are called instructions. Sequences of instructions, called programs, determine the specific 
behavior or function of a COSMAC-based system. System functions are easily changed by modifying the 
program(s) stored in memory. This ability to change function without extensive hardware modification is 
the basic advantage of a stored-program computer. Reduced cost results from using identical hardware 
components (memory and microprocessor) in a variety of different systems or products. 

The COSMAC microprocessor includes all of the circuits required for fetching, interpreting, and exe­
cuting instructions which have been stored in standard types of memories. Extensive input/output (I/O) 
control features are also provided to facilitate system design. 

Microprocessor cost is only a small part of total system or product cost. Memory, input, output, power­
supply, system-control, and programming costs are also major considerations. A unique set of COSMAC 
features combine to minimize the total system cost. 

COSMAC's low-power, single-voltage CMOS circuitry minimizes power-supply and packaging costs. 
High noise immunity and wide temperature tolerance facilitate use in hostile environments. 

COSMAC compatibility with standard, high-volume memories assures minimum memory cost and 
maximum system flexibility for both current and future applications. Program storage requirements are 
reduced by means of an efficient one-byte instruction format. 

The 40-pin COSMAC system interface is designed to minimize external I/O and memory control 
circuitry. A single-phase clock, internal direct-memory-access (DMA) mode, flexible I/O instructions, 
program interrupt, program load mode, and static circuitry are other COS MAC features explicitly aimed 
at total system cost reduction. COSMAC does not require an external bootstrap ROM. 

Microprocessor programming is facilitated by a variety of support programs or software. Extensive 
support software and support hardware are available for use in developing COS MAC systems. Machine­
language programming is sometimes indicated when only a few short programs need to be developed. 
COSMAC provides a set of efficient, easy-to-Iearn instructions which are simple to use. 

The COSMAC microprocessor comprises two conservatively designed LSI chips (one 40-pin and one 
28-pin dual-in-line package). Appendix C shows the required interconnections for these two LSI chips and 
summarizes the COSMAC system interface signals. 



8 User Manual for the 

Specific Features 

The advanced features and operating characteristics of the RCA COSMAC Microprocessor include: 

• static COS/MOS circuitry, no minimum clock frequency 

• full military temperature range 

• high noise immun ity, wide operating-voltage range 

• TTL compatibility 

• 8-bit parallel organization with bidirectional data bus 

• built-in program-load facility 

• any combination of standard RAM/ROM via common interface 

• direct memory addressing up to 65,536 bytes 

• flexible programmed I/O mode 

• program interrupt mode 

• on-chip DMA facility 

• four I/O flag inputs directly testable by branch instruction 

• one-byte instruction format with two machine cycles for each instruction 

• 59 easy-to-use instructions 

• 16 x 16 matrix of registers for use as multiple program counters, data pointers, or data registers 

System Organization 

Fig. 1 illustrates a typical computer system incorporating the COSMAC microprocessor. Operations that 

can be performed by COSMAC include: 

a) control of input/output (I/O) devices, 

b) transfer of binary data between I/O and memory (M), 

c) movement of data bytes between different memory locations, 

d) interpretation or modification of bytes stored in memory. 

N (41 
I/O 

____ jr 
CPU 

______ J 

TIMING B MSC. 
STATE CODE (21 DEPENDING ON 

RAMIROM SYSTEM 
65536 TIMING (21 
BYTES COS MAC CONTROL 

MAX. MWRITE DMA/INT. (31 CKTS 

FLAGS (41 
1/0 

DEVICES 

DATABUS(BI 

92C5- 26554 

Fig. 1 - Block diagram of typical computer system using the COSMAC microprocessor. 
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For example, COSMAC can control the entry of binary-coded decimal numbers from an input keyboard and 
store them in predetermined memory locations. COSMAC can then perform specified arithmetic operations 
using the stored numbers and transfer the results to an output display or printing device. 

System input devices may include switches, paper-tape/card readers, magnetic-tape/disc devices, relays, 
modems, analog-to-digital converters, photodetectors, and other computers. Output devices may include 
lights, CRT /lED/liquid-crystal devices, digital-to-analog converters, modems, printers, and other computers. 

Memory can comprise any combination of RAM and ROM up to a maximum of 65,536 bytes. ROM 
(Read-Only Memory) is used for permanent storage of programs, tables, and other types of fixed data. RAM 
(Random-Access Memory) is required for general-purpose computer systems which require frequent program 
changes. RAM is also required for temporary storage of variable data. The type of memory and required 
storage capacity is determined by the specific application of the system. 

Bytes are transferred between ·1/0 devices, memory, and COSMAC by means of a common, bidirectional 
eight-bit data bus. 

Fifteen COSMAC I/O control signal lines are provided. Systems can use some or all of these signals 
depending on required I/O sophistication. A four-bit N code is generated by the COSMAC input/output 
instruction. It can be used to specify an I/O device to be involved in an I/O-memory byte transfer by means 
of the data bus, or, alternatively, to specify whether an I/O byte represents data, an I/O device selection 
code, an I/O status code, or an I/O control code. Use of the N code to directly specify an I/O device 

permits simple, inexpensive control of a small number of I/O devices or modes. Use of the N code to specify 
the meaning of the word on the data bus facilitates systems incroporating a large number of I/O devices 
or modes. 

Four I/O flag inputs are provided. I/O devices can activate these inputs at any time to signal COSMAC 
that a byte transfer is required, that an error condition has occurred, etc. These flags can also be used as 
binary input lines if desired. They can be tested by COSMAC instructions to determine whether or not they 
are active. Use of the flag inputs must be coordinated with programs that test them. 

A program interrupt line can be activated at any time by I/O circuits to obtain an immediate COSMAC 
response. The interrupt causes COSMAC to suspend its current program sequence and execute a prede­
termined sequence of operations designed to respond to the interrupt condtion. After servicing the inter­
rupt, COSMAC resumes execution of the interrupted program. COSMAC can be made to ignore the inter­
rupt line by resetting its interrupt-enable flip-flop (I E). 

Two additional I/O lines are provided for special types of byte transfer between memory and I/O devices. 
These lines are called direct-memory-access (DMA) lines. Activating the DMA-in line causes an input byte to 
be immediately stored in a memory location without affecting the COSMAC program being executed. The 
DMA-out line causes a byte to be immediately transferred from memory to the requesting output circuits. A 
built-in memory pointer register is used to indicate the memory location for the DMA cycles. The program 
sets this pointer to an initial memory location. Each DMA byte transfer automatically increments the pointer 
to the next higher memory location. Repeated activation of a DMA line can cause the transfer of any 
number of consecutive bytes to and from memory independent of concurrent program execution. 

I/O device circuits can cause data transfer by activating a flag line, the interrupt line, or a DMA line. A 
program must sample a flag line to determine when it becomes active. Activating the interrupt line causes an 
immediate COSMAC response regardless of the program currently in progress, suspending operation of that 
program. Use of DMA provides the quickest response with least disturbance of the program. 

A two-bit COSMAC state code and two timing lines are provided for use by I/O device circuits. These 
four signals permit synchronization of I/O circuits with internal COSMAC operating cycles. The state code 
indicates whether COSMAC is responding to a DMA request, responding to an interrupt request, executing 
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an input/output instruction, or none of thp.se. The timing signals are used by the memory and I/O systems to 
signal a new processor state code, to latch memory address bits, to take memory data from the bus, and to 

set and reset I/O controller flip-flops. 

Bytes are transmitted to and from memory by means of the common data bus. COSMAC provides two 
lines to control memory read/write cycles. During a memory write cycle, the byte to be written appears on 
the data bus and a memory write pulse is generated by COSMAC at the appropriate time. A memory read 
level is generated which is used by the system to gate the memory output byte onto the common data bus. 

COSMAC provides eight memory address lines. These eight lines supply 16-bit memory addresses in the 
form of two successive 8-bit bytes. The more significant (high-order) address byte appears on the eight 
address lines first, followed by the less significant (low-order) address byte. The number of high-order bits 
required to select a unique memory byte location depends on the size of the memory. For example, a 
4096-byte memory would require a 12-bit address. This 12-bit address is obtained by combining 4 bits 
from the high-order address byte with the 8 bits from the low-order address byte. One of the two COSMAC 
timing pulses strobes the required high-order bits into an address latch (register) when they appear on the 
eight address lines. An internal COSMAC register holds the eight low-order address bits on the address lines 
for the remainder of the memory cycle. No external latch circuits are required for the low -order address byte. 

Three additional lines complete the COSMAC microprocessor system interface. A single-phase clock 
input determines operating speed. The external clock may be stopped and started to synchronize COSMAC 
operation with system circuits if desired. A single clear input initializes internal COSMAC circuitry in one 
step. The load signal line holds the COSMAC microprocessor in the program load mode. The use of this 
mode is discussed in the section on Memory and Control Interface. 

COSMAC Architecture and Notation 

Fig. 2 illustrates the internal structure of the COSMAC microprocessor. This simple, unique architecture 
results in a number of system advantages. The COSMAC architecture is based on a register array comprising 
sixteen general-purpose 16-bit scratchpad registers. Each scratchpad register, R, is designated by a 4-bit 
binary code. Hexadecimal (hex) notation will be used here to refer to 4-bit binary codes. The 16 hexa­
decimal digits (0,1,2, ... E,F) and their binary equivalents (0000,0001,0010, ... ,1110,1111) are listed in 
Appendix A. 

Using hex notation, R (3) refers to the 16-bit scratch pad register designated or selected by the binary code 
0011. R (3).0 refers to the low-order (less significant) eight bits or byte of R (3). R (3).1 refers to the high­
order (more significant) byte of R(3). 

Three 4-bit registers labeled N, P, and X hold 4-bit binary codes (hex digits) that are used to select 
individual 16-bit scratch pad registers. The 16 bits contained in a selected scratch pad can be copied into the 
16-bit A register. The two A-register bytes are sequentially placed on the eight external memory address 
lines for memory read/write operations. Either of the two A-register bytes (A.O/ A.1) can also be gated to 
the 8-bit data bus for subsequent transfer to the D register. The 16-bit val ue in the A register can also be 
incremented or decremented by 1 and returned to the selected scratch pad register to permit a scratch pad 
register to be used as a counter. 

The notation R(X), R(N), or R(P) is used to refer to a scratchpad register selected by the 4-bit code in X, 
N, or P, respectively. Fig. 3 illustrates the transfer of a scratch pad register byte, designated by N, to D. The 
left half of Fig. 3 illustrates the initial contents of various registers (hex notation). The operation performed 
can be written as 

R(N)_O -7 D 

This expression indicated that the low-order 8 bits contained in the scratch pad register designated by the 
hex digit in N are to be placed into the 8-bit D register. The designated scratch pad register is left unchanged. 
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MEMORY 
ADDRESS 

(4) 
R SELECT 

SCRATCH PAD 
'"":&-.....,,"""~:-i -REG I STE RS 
R(9).1 R(9).0 R 
R( AU R(A).O 

R(E).I 

R(F).I 

(8) (8) 

I/O BI-DIRECTIONAL 
COMMAND DATA BUS 

(8) 

8 -BIT BUS 

92CM-26420 

Fig. 2 - Internal structure of the COSMAC microprocessor. 

The right half of Fig. 3 illustrates the contents of the COSMAC registers after this operation is completed. 
The following sequence of steps is required to perform this operation: 

1) N is used to select R. (left half of Fig. 3) 

2) R(N) is copied into A. \ 

3) A.O is gated to the bus. 

4) The bus is gated to D. 

(right half of Fig. 3) 

~ A - - - N 2 A 01 25 f--- N 2 

p 0 p 0 
A.O 

X 3 X 3 

I -
RIOI - -

Rill - - IALU I- I 
I -

RIO) - -

R(ll - - IALU I- I • RI2J 01 25 ~ DF= R(2) 01 25 I-- DF= 

R(3) - - I D I- I R(31 - - D 25 I-
25 

Fig. 3 - Use of N designator to transfer data from scratchpad register R (2) to the D register. 
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Memory or I/O data used in various COSMAC operations are transferred by means of the common data 
bus. Memory cycles involve both an address and the data byte itself. Memory addresses are provided by the 
contents of scratchpad registers. An example of a memory operation is 

M(R(X)) -+ D 

This expression indicates that the memory byte addressed by R(X) is copied into the D register. Fig. 4 
illustrates this operation. The following steps are required: 

1) X is used to select R. 

~ (I.ft ,;d. of F; •. 41 2) R(X) is copied into A. 

3) A addresses a memory byte. 

4) The addressed memory byte J I,;.h. ,;d. of F; •. 41 is gated to the bus. 

5) The bus is gated to D. 

Reading a byte from memory does not change the contents of memory. 

A 00 02 N 3 

6 p 0 

l- x 1 
ADDRESS M 

I -
00 01 FF R(O) - -
00 02 C5 R(l) 00 02 ~ IALUI- I 
00 03 AA R(2) - - DF=-

00 04 23 R(3) - - I D I- I 

Fig. 4 - Transfer of data from memory to the D register. 

The 8-bit arithmetic-logic unit (ALU in Fig. 2) performs arithmetic and logical operations. The byte 
stored in the D register is one operand and the byte on the bus (obtained from memory) is the second 
operand. The resultant byte replaces the operand in D. A single-bit register data flag (DF) is set to "0" if no 
carry results from an add, subtract, or shift operation. DF is set to "1" if a carry does occur. The 8-bit D 
register is similar to the accumulator found in many computers. 

Instructions and Timing 

COSMAC operations are specified by a sequence of operation codes stored in external memory. These 
code are called instructions. Each instruction consists of one 8-bit byte. Two 4-bit hex digits contained in 
each instruction byte are designated as I and N, as shown in Fig. 5. 

5A (HEX) 

I \ 
I N 

10 1 0 1 I 1 0 1 0 I 
,7654, ~ 

I ----.-
High Order Low-Order 

Digit Digit 

Fig. 5 - Eight-bit instruction format. 
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The execution of each instruction requires two machine cycles. The first cycle fetches or reads the ap­
propriate instruction byte from memory and stores the two hex instruction digits in registers I and N. The 
values in I and N specify the operation to be performed during the second machine cycle. I specifies the in­
struction type. Depending upon the instruction, N either designates a scratch pad register, as illustrated in 
Fig. 3, or acts as a special code, as described in more detail below. 

Instructions are normally executed in sequence. A program counter is used to address successively the 
memory bytes representing instructions. In the COSMAC microprocessor, anyone of the 16-bit scratchpad 
registers can be used as a program counter. The value of the hex digit contained in register P determines 
which scratch pad register is currently being used, as the program counter. The operations performed by the 
instruction fetch cycle are 

M{R{P)) -+ I,N;R{P)+l 

Fig. 6 illustrates a typical instruction fetch cycle. Register P has been previously set to 1, designating 

R (1) as the current program counter. During the instruction fetch cycle, the "0298" contained in R (P) is 

placed in A and used to address the memory. The F4 instruction byte at M (0298) is read onto the bus and 

then gated into I and N. The value in A is incremented by 1 and replaces the original value in R{P). The 

next machine cycle will perform the operation specified by the values in I and N. Following the execute 

cycle, another instruction fetch cycle will occur. R{P) designates the next instruction byte in sequence (56). 
Alternately repeating instruction fetch execute cycles in this manner causes sequences of instructions that 
are stored in memory to be executed. 

• 
A 02 98 I N 4 --cb I- p 1 

X 7 
ADDRESS M 

~ I F 
02 97 46 R(O) - -

02 98 F4 r-- R(l) 02 99 - ~ 02 99 56 R(2) - - DF =-

02 9A 17 R(3) - - D -

A 02 98 N 6 

cfu - P 1 

X 7 
ADDRESS M 

I 4 
02 97 46 R(O) - -

02 98 F4 R(l) 02 98 - IALul- I 
02 99 56 R(2) - - DF=-

02 9A 17 R(3) - - I D I- I 

~ F4 

Fig. 6 - Typical instruction fetch cycle. 

The COSMAC machine cycle during which an instruction byte is fetched from memory is called state 0 
(SO). The cycle during which the fetched instruction is executed is called state 1 (S1). During execution of 
a program, COSMAC alternates between SO and S1, as shown below: 

... I SO I S1 I SO I Sl I SO I S1 I ... 
Each machine cycle is internally divided into eight equal time intervals, as illustrated in Appendix D 

under general timing. Each time interval is equivalent to one external clock cycle (T). The rate at which 
machine cycles occur is, therefore, one-eight of the clock frequency. The instruction time is 16T or two 
machine cycles. All instructions require the same fetch/execute time. 
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Each COSMAC instruction is fetched during SO and executed during S1. The operations performed 
during the execute cycle S1 are determined by the two hex digits contained in I and N. These operations 
are divided into six general classes: 

Register Operations - This group includes six instructions used to count and to move data between 
internal COSMAC registers. 

Memory Reference - Two instructions are provided to load or store a memory byte. 

ALU Operations - This group contains fifteen instructions for performing arithmetic and logical 

operations. 

I/O Byte Transfer - Eight instructions are provided to load memory from I/O control circuits, and 
eight instructions to transfer data from memory to I/O control circuits. 

Branching - Fourteen different conditional and unconditional branch instruction are provided. 

Control - Six control instructions facilitate program interrupt, operand selection, or branch and link 

operations. 

Each instruction is designated by its two-digit hex code and by a name. A description of the operation is 
provided using a symbolic notation. A two- or three-letter abbreviated name is also given. Examples are 

shown in this section for most instructions. A summary of the instruction repertoire is given in Appendix A. 
It should be noted that any unused machine codes, such as "CN" "31 ", "72", "01 ", etc., are considered 
illegal codes and should not be used by users. They are reserved for future use by RCA. 

Register Operations 

11 N INCREMENT R(N)+1 INC 

When 1=1, the scratch pad register specified by the hex digit in N is incremented by 1. Note that 
FFFF+1=0000. 

A 02 FF I-- N 3 A 02 FF l- N 3 

p 0 p 0 
+1 

X 2 
+f x 2 

I 1 
RIOI 03 7A 
Rill 01 32 IALU I- I • I 1 

RIOI 03 7A 
Rill 01 32 IALU I- I 

RI21 - - DF ~- RI21 - - DF ~-

RI31 02 FF f4- I D I AB I r- R(31 03 00 l- I D I AB I 

Fig. 7 - Example of instruction TN -INCREMENT. 
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2N DECREMENT R(N)-l DEC 

When 1=2, the register specified by N is decremented by 1. Note that 0000-1=FFFF. 

A 01 32 ~ N 1 A 01 32 - N 1 

p 0 P 0 

-T 
X 2 

-1 
X 2 

• 2 I 
RWI 03 7B 

Rill 01 32 4- IALU I- I 
I 2 

RWI 03 7B - Rill 01 31 ~ IALul - I 
RI21 - - DF =- RI21 - - DF =-

RI31 03 00 I D I AB I RI31 03 00 I D I AB I 

Fig. 8 - Example of instruction 2N - DECREMENT. 

8N GET LOW R(N).O-+ D 

When 1=8, the low-order byte of the register specified by N replaces the byte in the D register. 

A 01 31 - N 1 { A 01 31 - N 1 

p 0 P 0 
A.O 

X 2 X 2 

I B 
RIOI 03 7C 

Rill 01 31 .. IALU I- I • 
I 8 

RWI 03 7(: 

Rill 01 31 f4- IALU I- I 
RI21 - - DF= - RI21 - - DF=-

RI31 03 00 I D I AB I RI31 03 00 D 31 

31 31 

Fig. 9 - Example of instruction 8N - GET LOW. 

GET HIGH R(N).l -+ D GHI 

When 1=9, the high-order byte of the register specified by N replaces the byte in the D register. 

A 72 00 ~ N 3 ~ A 72 00 . - N 3 

p 0 p 0 
A.l 

X 2 X 2 

I 9 
RIOI 03 7D 

Rill 01 31 IALU I- I • I 9 
RIOI 03 7D 

Rill 01 31 IALU I- I 
RI21 - - DF =- RI21 - - DF= -

RI31 72 00 f4- I D I 31 I RI31 72 00 .;- D 72 

72 72 

Fig. 10 - Example of instruction 9N - GET HIGH. 
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PUT LOW D--* R(N).O PLO 

When I=A, the byte contained in the D register replaces the low-order byte of the register specified by N. 

~ A - - t-- N 2 A - - l- N 2 

p 0 p 0 

X 2 X 2 

A I 

RIOI 03 7E 

R(1) 01 31 IALU I- I • I A 
RIOI 03 7E 

Rill 01 31 
IALU I- I 

RI21 00 00 I- DF ~- RI21 00 72 I- DF ~-

RI31 72 00 D 72 RI31 72 00 D 72J--

72 1 72 

Fig. 11 - Example of instruction AN - PUT LOW. 

PUT HIGH D--* R(N).l PHI 

When I=B, the byte contained in the D register replaces the high-order byte of the register specified by N. 

-1 A - - l- N 2 A - - l- N 2 

p 0 p 0 

X 2 X 2 

I B 
RIOI 03 7F 

Rill 01 31 IALU I- I • 
I B 

RIOI 03 7F 

Rill 01 31 IALU I- I 
RI21 00 72 I+- DF~ - RI21 66 72 I+- DF ~-

R131· 72 00 D 66 R(31 72 00 D 66 r-
66 t 66 

Fig. 12 - Example of instruction BN - PUT HIGH. 

Memory Reference 

LOAD ADVANCE M(R(N)) --* D; R(N)+1 

When 1=4, the external memory byte addressed by the contents of the register specified by N replaces 
by byte in the D register. The original memory address contained in R(N) is incremented by 1. The 
contents of memory are not changed. 

A 00 19 - N 1 

~ p 0 

X 2 ADDKIoSS M 
I 4 

00 17 12 R(oI 01 00 

00 18 34 Rill 00 19 - IALul- I 

A 00 19 - N 1 

dJ p 0 

X 2 
ADDRESS M 

I 4 
00 17 12 RIOI 01 00 

00 18 34 r- RI11 01 lA I-- IALU I - I • 00 19 56 RI21 00 17 DF ~- 00 19 56 RI21 00 17 DF ~-

00 lA 78 RI31 - -
I D I F7 I 00 1A 78 R(31 - - D 56..1-

t 56 

Fig. 13 - Example of instruction 4N - LOAD ADVANCE. 
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5N STORE D -i> M(R(N)) STR 

When 1=5, the byte in D replaces the memory byte addressed by the contents of the register specified by 

N. 

A 00 171 f- N 2 

cb p 0 

X 2 
ADDHt:SS M 

A 00 17 l- N 2 

6 p 0 

X 2 
ADDRESS M 

I 5 
00 17 12 RIOI 01 01 

I 5 
00 17 56 RIOI 01 01 

00 18 34 Rill 00 lA IALUI- I 00 18 34 Rill 00 1A IALul - I 
00 19 56 RI21 00 17 I- DF =- 00 19 56 RI21 00 17 r- DF =-

00 1A 78 RI31 - - D 56 00 1A 78 RI31 - - D 56]-

56 f 56 

Fig. 14 - Example of instruction 5N - STORE. 

ALU Operations Using M(R(X)) 

In this group of instructions, the N digit of the instruction is a code specifying. a specific ALU operation. 

The high-order bit of N is O. The X register must previously have been loaded (by an instruction, SET X, 

described among the control instructions). In general, R(X) points at one operand, D is the other, and the 
result replaces the latter in the D register. 

FO I LOAD BY X M(R(X)) -i> D I LDX ] 

When I=F and N=O, the memory byte addressed by the contents of the register specified by X replaces 
the byte in the D register. (This instruction does not increment the address as LOAD ADVANCE does.) 

A 00 32 N 

cb 
0 

p 0 

l- x 2 
ADDHcSS M 

I F 
00 30 01 RIOI 00 70 

00 31 00 Rill 00 33 IALUI - I 

A 00 32 N 0 

P 0 

l- x 2 

F I 
RIOI 00 70 

Rill 00 33 IALU I- I • 
ADDRESS M 

00 30 01 

00 31 00 

00 32 92 RI21 00 32 -DF =- 00 32 72 RI21 00 32 I- DF= -

00 33 57 RI31 - -
I D 100 I 00 33 57 RI31 - - D 92 

92 

Fig. 15 - Example of instruction FO - LOAD BY X. 

F1 OR M(R(X)) v D -i> D OR 

When I=F and N=1, the individual bits of the two 8-bit operands are combined according to the rules for 
logical OR as follows: 

M(R(X)) 

a 
a 

D 

a 

a 

OR(v) 

a 
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The byte in D is one operand. The memory byte addressed by R(X) is the second operand. The result byte 

replaces the D operand. This instruction can be used to set individual bits. 

A 00 33 N 1 

6 p 0 

f- 1 X 
ADDRESS M 

I F 
00 30 01 RiOl 00 71 

00 31 00 Rill 00 33 - ALU (V) r-

N 

0 

• 
ADDRESS M 

00 30 01 RIOI 00 71 

00 31 00 Rll) 00 33 

oo 32 92 RI21 00 32 OF =- t 00 32 92 R(2) 00 32 

00 33 57 RI31 - - D 92 00 33 57 R(3) 

57 

Fig. 16 - Example of instruction F1 - OR. 

F2 AND M(R(X)). D -?- D AND 

When I=F and N=2, the individual bits of the two 8-bit operands are combined according to the rules for 
logical AND as follows: 

M(R(X)) D AND(·) 

o 0 o 
o 0 

o 0 

The byte in D is one operand. The memory byte addressed by R(X) is the second operand. The result byte 
replaces the D operand. This instructi~n _~a~be used to test or mask individual bits. 

A 00 33 N 2 

cb P 0 

f- x 1 
ADDH~SS M 

I F 
00 30 01 RIO) 00 71 

00 31 00 Rill 00 33 I- ALU I·) 

00 32 92 R(2) 00 32 OF=- f 
00 33 57 R(3) - - D 92 

A N 2 

cb 
00 33 

p 0 

~ X 1 
ADDRESS M 

I F 
00 30 01 RIOI 00 71 

00 31 00 Rll) 00 33 I-

~ 00 32 92 R(2) 00 32 OF =-

00 33 57 R13) - - D 12 
• 

+ 57 

Fig. 17 - Example of instruction F2 - AND. 

F3 EXCLUSIVE-OR I M(R(X)) Ell D -?- D XOR 

When I=F and N=2, the individual bits of the two 8-bit operands are combined according to the rules for 

logical EXCLUSIVE-OR as follows: 

M(R(X)) D 

o 0 
o 1 

o 

XOR(Ell) 

o 

o 
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The 0 byte.and M(R(X)) are the two operands. The result byte replaces the 0 operand. This instruction can 
be used to compare two bytes for equality since identical values will result in all zeros in O. 

A 00 33 N 3 

cb p 0 - X 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 Rill 00 33 - ALU (@)/--

N 3 

0 

• 
ADDRESS M 

00 30 01 R(O) 00 71 

00 31 00 R(lI 00 33 

00 32 92 R(2) 00 32 DF =- t 00 32 92 R(21 00 32 

00 33 57 R(31 - - D 92 00 33 57 R(3) 

'" 57 

Fig. 18 - Example of instruction F3 - EXCLUSIVE-OR. 

ADD M(R(X))+O~O;C~OF I Aool 
When I=F and N=4, the two 8-bit operands are added together. The 0 byte and M(R(X)) are the two 

single-byte operands. The 8-bit result of the binary addition replaces the 0 operand. The final state of OF 
indicates whether or not carry occurred: 

3A + 4B = 85 (OF=O) 

3A+ FO = 2A (OF=1) 

OF can be subsequently tested with a branch instruction. 

A 00 33 N 4 

cb p 0 - X 1 
ADDHI:SS M 

00 30 01 
I F 

RIOI 00 71 

00 31 00 Rill 00 33 - ALU (+1 /-- • 
ADDRESS M 

00 30 01 RIOI 

00 31 00 R(lI 

00 32 92 R(21 00 32 DF =- t 00 32 92 RI21 

00 33 57 R(3) - - D 92 00 33 57 RI31 

57 

Fig. 19 - Example of instruction F4 - ADD. 

SUBTRACT 0 M(R(X))-O~O;C~OF 

N 4 

P 0 

00 71 

00 33 

00 32 

-

SO 

When I=F and N=5, the byte in 0 is subtracted from the memory byte addressed by R(X). The 8-bit 
result replaces the subtrahend in the 0 register. Subtraction is 2's complement: each bit of the subtrahend 
is complemented and the resultant byte added to the minuend plus 1. The final carry of this operation is 
stored in OF: 

42 -OE = 42+F1+ = 34 (OF = 1) 

42 -42 = 42+BO+1 = 00 (OF = 1) 

42 -77 = 42 +88+1 = CB (OF = 0) 
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A final value of "0" in DF indicates that the subtrahend was larger than the minuend. In this case the value 
in D is exactly 100 (hexadecimal) greater than the true (negative) difference. 

A 00 33 N 5 

6 p 0 - X 1 
ADDAcSS M 

I F 
00 30 01 RIO) 00 71 

00 31 00 RI1 ) 00 33 I- ALU 1-) 

A 00 33 N 5 

c6 p a 

l- x 1 
ADDRESS M 

I F 
00 30 01 RIO) 00 71 

00 31 00 R(1 ) 00 33 I- ALU 1-) • 00 32 92 R(2) 00 32 OF =- t 00 32 92 R(2) 00 32 OF = a ~ 
00 33 57 R(3) - - 0 92 00 33 57 R(3) - - 0 C5 

1 57 

Fig. 20 - Example of instruction F5 - SUBTRACT D. 

SUBTRACT M D·M(R(X)) ~ D; C ~ DF SM 

When I=F and N=7, the memory byte addressed by R(X) is subtracted from the byte in D. The result 
byte replaces the minuend in D. This operation is identical to F5 with the operands reversed. 

A 00 33 N 7 

6 p a - x 1 
ADDHcSS M 

I F 
00 30 01 RIO) 00 71 

00 31 00 R(1) 00 33 ~ ALU HI-• 
ADDRESS M 

00 30 01 R(O) 00 71 

00 31 00 R(1 ) 00 33 

N 

p a 

00 32 92 R(2) 00 32 OF =- t 00 32 92 R(2) 00 32 

00 33 57 R(3) - - 0 92 00 33 57 R(3) 

57 

Fig. 21 - Example of instruction F7 - SUBTRACT M. 

SHIFT RIGHT ISHI FT D RIGHT 1 BIT; LSB ~ DF; 0 ~ MSB I SHR 

When I=F and N=6, the 8 bits in D are shifted right one bit position. The original value of the low·order 
D bit is placed in DF. The final value of the high·order D bit is always "0". In this instruction, unlike other 
instructions in this group, M(R(X)) is not used. This instruction can be used to test successive bits of the 
operand or to divide by 2. 

RIO) -

R(1) -

R(2) -

R(3) -

-

-

-

-

16 

P a 

x 1 

I F 

DF~ 
Cirili • 

R(O) 

R(1) 

R(2) 

R(3) 

m6 

P a 

x 1 

I F 
- -

- -

- -
- -
~
LU-

OF = 1 

o 79 

Fig. 22 - Example of instruction F6 - SHIFT RIGHT. 
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ALU Operations Using M(R(P)) 

In this group of ALU instructions, the N digit has a 1 in the high-order bit position. The remaining three 
bits of N are a code specifying the same ALU operation as instructions using M( R (X) l. except when N=6. 

In general, R (P) points to one of the operands, the byte in memory after the instruction byte, called the 
immediate byte. The D register supplies the second operand, and then receives the result. 

The use of immediate data is a useful way to avoid setting up special constant areas in memory and 
pointers to them. 

LOAD IMMEDIATE M(R(P)) -+ D; R(P)+1 I LDI I 
When I=F and N=8, the memory byte immediately following the current instruction byte replaces the 

byte in D. Because the current program counter represented by R(P) is incremented again by 1 during the 
execution ofthis instruction, the instruction byte following the immediate byte placed in D will be fetched 
next. 

This instruction is one of three which load D from memory. It uses R(P) as a pointer, while LDA uses 
R(N) and LDX uses R(X). LDI and LDA each increment the pointer after use, but LDX does not. 

A 03 28 N 8 

6 i+- p 0 

X 2 
ADDK~SS M 

I F 
03 27 F8 RIO) 03 28 I-
03 28 92 R(1) 00 71 IALUI- I 

A 03 28 N 8 

cb - p 0 

X 2 
ADDRESS M 

I F 
03 27 F8 -- RIO) 03 29 I-
03 28 92 R(1) 00 71 IALUI,- 1 • 03 29 F9 R(2) 00 33 OF =- 03 29 F9 R(2) 00 33 OF =-

03 2A 57 R(3) - - I o 121 1 
03 2A 57 R(3) - - 0 92 I--

+ 92 

Fig. 23 - Example of instruction F8 - LOAD IMMEDIA TE. 

OR IMMEDIATE M(R(P)) v D -+ D; R(P)+1 ORI 

When I=F and N=9, a logical OR operation is performed similar to F1. The D byte is one operand, and 
the memory byte immediately following the F9 instruction is the second operand. The result goes to D. 

A 03 2A N 9 

6 i+- p 0 

ADDKbS 
X 2 

M - I F 
03 27 F8 RIO) 03 2A 

03 28 92 Rill 00 71 ALU (V) 

A 03 2A N 9 

cb I- p 0 

X 2 
ADDRESS M -- 28 I--

I F 
03 27 F8 RIO) 03 

03 28 92 R(1) 00 71 ALU (V) • 03 29 F9 R(2) 00 33 OF =- t 03 29 F9 R(2) 00 33 OF =- + 
03 2A 57 R(3) - - 0 92 03 2A 57 R(3) - - 0 07 

~ 57 

Fig. 24 - Example of instruction F9 - OR IMMEDIA TE. 
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AND IMMEDIATE I M(R(P)) . D -+ D; R(P)+l ANI 

When I=F and N=A, a logical AND operation is performed similar to F2. The D byte is one operand, and 
the memory byte immediately following the FA instruction is the second operand. 

A 03 2C N 

dJ 
A 

I+- p 0 

X 2 
ADDRESS M 

I F 
03 2B FA R(QI 03 2C t-
03 2C OF R(ll 00 71 ALU ('1 

03 20 FB R(21 00 33 OF =- r 
03 2E Fa R(31 - - 0 07 

N A 

cb 
A 03 2C 

~ p 0 

X 2 
ADDRESS M 

I F 
03 2B FA r--- R(OI 03 20 -
03 2C OF R(ll 00 71 

~ 03 20 FB R(21 00 33 
OF =-

03 2E Fa R(31 - - o 07 
• 

~ OF 

Fig. 25 - Example of instruction FA - AND IMMEDIA TE. 

EXCLUSIVE-OR IMMEDIATE I M(R(P)) EB D -+ D; R(P)+l XRI 

When I=F and N=B, an EXCLUSIVE-OR operation similar to F3 is performed. The D byte is one 
operand, and the memory byte immediately following the FB instruction is the second operand. This 
instruction can be used to complement the D register when the immediate byte is "F F". 

A 03 ' 2E N B 

dJ I- p 0 

X 2 
ADDRESS M 

f-
I F 

03 2B FA R(OI 03 2E 

03 2C OF Rill 00 71 ALU «!) I 

A 03 2E N B 

c6 I- p 0 

X 2 
ADDRESS M 

I F 
03 2B FA t- R(OI 03 2F ~ 
03 2C OF R(ll 00 71 ALU «!) ) • 03 20 FB R(21 00 33 DF =- t 03 20 FB R(21 00 33 OF =- + 

03 2E Fa R(31 - - 0 07 03 2E Fa R(31 - - 0 F7 

l FO 

Fig. 26 - Example of instruction FB - EXCLUSIVE-OR IMMEDIA TE. 

ADD IMMEDIATE I M(R(P))+D -+ D; C -+ DF; R(P)+l ADI 

When I=F and N=C, the two operands are added as in F4. The D byte is one operand, and the memory 
byte immediately following the FC instruction is the other operand. 

A 03 30 N C 

dJ r- p 0 

X 2 
ADDReSS M 

f-
I F 

03 2F FC RIOI 03 30 

03 30 80 Rill 00 71 ALU (+) 

A 03 30 N C 

c6 ~ p 0 

X 2 
ADDRESS M 

I F 
03 2F FC r--- R(OI 03 31 -
03 30 80 R(ll 00 71 ALU (+)] • 03 31 FD RI21 00 33 DF =- t 03 31 FD R(21 00 33 OF =- 1 

03 32 92 R(31 - - D F7 03 32 92 R(31 - - 0 77 

~ 80 

Fig. 27 - Example of instruction FC - ADD IMMEDIA TE. 
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SUBTRACT D IMMEDIATE I M(R(P))-D -+ D; C -+ DF; R(P)+1 I SDI I 
When I=F and N=D, the two operands are subtracted as in F5. The D byte is the subtrahend, and the 

memory byte immediately following the FD instruction is the minuend. 

A 03 32 N D 

c6 f-- p 0 

X 2 
ADDH~SS M 

l-
I F 

03 2F FC RIOI 03 32 

03 30 80 Rll) 00 71 ALU HI-• 
A 03 32 1 N 0 

c6 I- p 0 

X 2 
ADDRESS M 

f--
I F 

03 2F FC RIOI 03 33 -
03 30 80 RllI 00 71 ALU H 

03 31 FD R(2) 00 33 DF ~- f 03 31 FD· R(2) 00 33 DF ~ 1 + 
03 32 92 R(3) - - D 77 03 32 92 R(3) - - D lB 

+ 92 

Fig. 28 - Example of instruction FD - SUBTRACT D IMMEDIA TE. 

SUBTRACT M IMMEDIATE I D-M(R(P)) -+ D; C -+ DF; R(P)+1 I SMI I 
When I=F and N=F, the two operands are subtracted as in F7. The D byte represents the minuend, and 

the memory byte immediately following the FF instruction represents the subtrahend. (This instruction is 

equivalent to FD with the operands reversed.) 

A 03 34 N F 

cb - p 0 

X 2 
ADDRESS M 

4-
I F 

03 33 FF RIO) 03 34 

03 34 lA R(l) 00 71 ALU H 

A 03 34 N F 

cb I- p 0 

X 2 
ADDRESS M 

f-- - I F 
03 33 FF RIO) 03 35 

03 34 lA R(l) 00 71 ALU H • 03 35 62 R(2) 00 33 OF ~- f 03 35 62 R(2) 00 33 DF ~ 1 1 
33 36 6A R(3) - - D lB 03 36 6A R(3) - - D 01 

t lA 

Fig. 29 - Example of instruction FF - SUBTRACT M IMMEDIATE. 

Input/Output Byte Transfer 

N=O-7 OUTPUT M(R(X)) -+ BUS; R(X)+1 10UTI 
When 1 =6 and N=O,1 ,2,3,4,5,6, or 7, the memory byte addressed by R (X) is placed on the data bus. The 

four bits of N are simultaneously sent from COSMAC to the I/O system, and a specific code is provided on 

r+ 7 r+ 7 

A 00 33 N 7 

cb p 0 

f-- x 2 
ADDRESS M 

I 6 
00 31 12 RIO) 03 36 

00 32 34 Rll) 00 71 IALul- I 

A 00 33 N 7 

c6 p 0 - X 2 
ADDRESS M 

I 6 
00 31 12 RIO) 03 36 

00 32 34 Rll) 00 71 !ALU I- I • 00 33 56 R(2) 00 33 I- DF~- 00 33 56- - R(2) 00 34 ~ OF ~-

00 34 78 R(3) - -
I D I - I 00 34 78 R(3) - - I D I- I 

+ 56 

Fig. 30 - Example of instruction 6N (N=0-7J - OUTPUT. 
56 



COSMAC Microprocessor _____________________________ 25 

the COSMAC state code lines to indicate I/O (1=6). The most significant bit of N is "0", indicating "OUT­
PUT". The I/O system recognizes these conditions, and reads the output byte from the bus. The 3 less 
significant bits of N specify which of the 8 output instructions is being executed. R (X) is incremented by , 
so that successively executed output instructions can transfer bytes from successive memory locations. 

If X is set to the same value as P, then thf! byte immediately following the output instruction is read out 
as immediate data. 

N=8-F INPUT BUS -+ M(R(X)) IINP I 
When 1=6 and N=8,9,A,B,C,D,E, or F, an input byte replaces the memory byte addressed by R(X). R(X) is 
not modified. The four bits of N are simultaneously sent from COSMAC to the I/O system, and the I/O 
state code (1=6) is provided. The most significant bit of N is '" ", indicating "INPUT". The I/O circuits 
should gate an input byte onto the data bus during the execute cycle.- The 3 least significant bits of N 
specify which of the 8 possible input instructions is being executed. R(X) is not modified. 

r- A A 

A 00 34 I N A 

cb p 0 

l- x 2 
ADDREoSS M 

I 6 
00 31 12 RIOI 03 36 

00 32 34 Rill 00 71 IALul- I 

A 00 34J N A 

cb p 0 

l- x 2 
ADDRESS M 

I 6 
00 31 12 RIOI 03 36 

00 32 34 Rill 00 71 IALU I- I • 00 33 56 RI21 00 34 I- DF =- 00 33 56 RI21 00 34 I- DF =-

00 34 78 RI31 - - I D I- I 00 34 27 RI31 - - I D I- I 
______ ~2~7 _____________ ~~27 f 27 

Fig. 31 - Example of instruction 6N (N=8-FJ -INPUT. 

Branching 
The current program counter, R(P), normally steps sequentially through a list of instructions, skipping 

over immediate data bytes. When 1=3, a branch instruction is executed. The N code specifies which 
condition is tested. If the test is satisfied, a branch is effected by changing R(P). 

When a branch condition is satisfied, the byte immediately following the branch instruction replaces the 
low-order byte of R(P). The next instruction byte will be fetched from the memory location specified by 
the byte following the branch instruction. If the test condition is not satisfied, then execution continues 
with the instruction following the immediate byte. This ability to branch to a new instruction sequence 
(or back to the beginning of the same sequence to form a loop) is fundamental to stored-program computer 
usefulness. 

30 UNCONDITIONAL BRANCH M(R(P)) -+ R(P).O 

When 1=3 and N=O, an unconditional branch operation is performed. The byte immediately following the 
"30" replaces R (P) .0. -

A 01 23 N 0 

cb - P 1 

2 X 
ADDRESS M 

I 3 
01 21 F6 RIO) - -

01 22 30 Rill 01 23 - IALul- I 

A -01 23 N 0 

c6 I- p 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 RIOI - -

01 22 30 Rill 01 82 I- IALU I- I • 01 23 82 RI21 00 37 DF =- 01 23 82 R(21 00 37 DF =-

01 24 2A RI31 - - I D I- I 01 24 2A RI31 - - I D I- I 
~ 82 f 

Fig. 32 - Example of instruction 30 - UNCONDITIONAL BRANCH. 

27 
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BRANCH IF D=OO I M(R(P)) -+ R(P).O IF D=OO, OR R(P)+11 BZ I 

When 1=3 and N=2, a conditional branch operation dependent on the value of D is performed. The byte 
in D is examined and if it is equal to zero a branch operation is performed. If the value of D is not zero, 
R (P) is incremented by 1. This increment causes the branch address byte following the "32" instruction to 
be skipped so that the next instruction in sequence is fetched and executed. 

This instruction can be used following one of the ALU operations described earlier. For example, an 
EXCLUSIVE-OR operation (F3 or FB) might be used to compare an input byte with a byte representing a 
constant. A zero result byte in D would represent equality. The "32" instruction could then be used to 
branch to a location in the program for handling this value of the input byte when D=OO, or to proceed to 

> the next instruction in sequence if D;O!OO, possibly to look for equality with other constants. 

ADDRESS 

01 

01 

01 

01 

ADD 

01 

01 

01 

01 

21 

22 

23 

24 

RESS 

21 

22 

23 

24 

M ~ 
F6 

32 

97 

2C 

M 
cfu 

F6 

32 

97 

2C 

A 01 23 

R(O) - -
R(I) 01 23 I-
R(2) 00 37 

R(3) - -

A 01 23 

R(O) - -

R(I) 01 23 I-
R(2) 00 37 

R(3) - -

N 2 

I+- p 1 

X 2 
ADDRESS 

I 3 
01 21 

ALU - I- • 02 22 

DF=-

1 o 1 00 1 

N 2 

I- p 1 

X 2 

I 3 

IALul- I 
DF= -

1 o 112 1 

03 23 

04 24 

CONDITION TRUE 

ADD 

• 

01 

01 

01 

01 

RESS 

21 

22 

23 

24 

CONDITION FALSE 

A 01 23 

dJ 
M 

F6 R(O) - -
32 R(I) 01 97 I-
97 R(2) 00 37 

2C R(3) - -

~ 97 1 

A 01 23 

c6 
M 

F6 R(O) - -
32 f---- R(l) 01 24 I-
97 R(2) 00 37 

2C R(3) - -

N 2 

I- p 1 

X 2 

I 3 

IALul - I 
DF= -

1 0 1 00 1 

N 2 

I- p 1 

X 2 

I 3 

IALU I- I 
DF=-

I 0 112 1 

Fig. 33 - Example of instruction 32 - BRANCH IF D=OO for both false and true conditions. 

BRANCH IF DF M(R(P)) -+ R(P).O IF DF=1, OR R(P)+1 I BDF I 
When 1=3 and N=3, branching occurs if DF=1. Otherwise, the next instruction in sequence is performed. 

Examples are not shown for the remainder of the branching instructions because they differ only in the 
condition tested. 

34 BRANCH IF EF1 M(R(P)) -+ R(P).O IF EF1=1, OR R(P)+1 B1 

35 BRANCH IF EF2 M(R(P)) -+ R(P).O IF EF2=1, OR R(P)+1 B2 

36 BRANCH IF EF3 M(R(P)) -+ R(P).O IF EF3=1, OR R(P)+1 B3 

37 BRANCH IF EF4 M(R(P)) -+ R(P).O IF EF4 =1, OR R(P)+1 B4 

When 1=3 and N=4,5,6, or 7, branching occurs only when the corresponding external flag mput (EF1 ,2, 
3, or 4) is held in its "true" state by external circuits. These four branch instructions permit the micro­
processor to test the flags as required. 
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SKIP R(P)+1 SKP 

When 1=3 and N=8, the byte following the "38" instruction is skipped. 

BRANCH I F D~OO M(R(P)) -+ R(P).O IF D100, OR R(P)+1 BNZ 

When 1=3 and N=A, a branch is performed only if the byte in D does not equal zero; If it does, the next 
instruction in sequence is executed. 

A 01 23 N A 

~ - P 1 

ADDRESS M 
X 2 

I 3 
01 21 F6 R(O) - -

01 22 3A R(1) 01 23 - IALul- I • 
A 01 23 N A 

cb I- p 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 R(O) - -

01 22 3A R(I) 01 97 - IALU I- I 
01 23 97 R(2) 00 37 OF =- 01 23 97 R(2) 00 37 DF=-

01 24 2C R(3) - - I o 112 I 01 24 2C R(3) - - I 0 lId 
~ 97 

, 
Fig. 34 - Example of instruction 3A - BRANCH IF DIDO. 

BRANCH IF NO DF M(R(P)) -+ R(P).O IF DF = 0, OR R(P)+l BNF 

When 1=3 and N=B, a branch occurs only if DF=O. Otherwise, the next instruction in sequence is fetched 
and executed. 

3C BRANCH IF NO EF1 M(R(P)) -+ R(P).O IF EF1=0, OR R(P)+1 BN1 

3D BRANCH IF NO EF2 M(R(P)) -+ R(P).O IF EF2=0, OR R(P)+1 BN2 

3E BRANCH IF NO EF2 M(R(P)) -+ R(P).O IF EF3 = 0, OR R(P)+1 BN3 

3F BRANCH IF NO EF4 M(R(P)) -+ R(P).O IF EF4 = 0, OR R(P)+1 BN4 

When 1=3 and N=C,D,E, or F, a branc occurs only when the corresponding external flag input (EF1 ,2,3, 
or 4) is in its "0" state. 

Because only the low-order byte of R(P). can be modified by a branch instruction, the range of memory 
locations that can be branched to is limited. Since only the low-order 8 bits can be modified, branching is 
limited to 28 or 256 bytes. Each 256-byte memory segment is called a page. Methods for branching to any 
location in memory are described in the section on Machine Code Programming. 

The special case of a branch instruction and its immediate byte occupying the last two bytes in a page is 
treated as follows: If a branch takes place, R(P).1 is not changed -- the branch stays on the same page. If a 
branch does not take place, execution continues at the first (Oth) byte of the next page. A branch in­
struction on the last byte of a page always leads into the next page, either by branch or by increment. In 
other words, the address of the immediate byte determines the page to which a branch takes place. 

Control 

100 I IDLE WAIT FOR INTERRUPT/DMA-IN/DMA-.oUT IDL 

When 1=0 and N=O, the microprocessor repeats execute (S1) cycles until an interrupt, DMA-in, or DMA­
out is activated, at which time the IDLE instruction is terminated. During IDLE, the microprocessor 
continues to put out the two timing pulses for I/O synchronization. 
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DN SET P N-+P SEP 

When I=D, the digit contained in N replaces the digit in P. This operation is used to specify which scratch­
pad register is to be used as the program counter. This instruction causes a jump to the instruction sequence 
beginning at M(R(N)). It facilitates "branch and link" functions, subroutine nesting, and long branches to 
any location in memory_ (These topics are discussed in the section on Machine Code Programming.) 

A - - N 8 f- N 8 

p 1 8 8 
-

X 2 x 
I 0 

RIO) - -

R(l) 01 23 IALU I - I • R(O) - -

R(l) 01 23 

o 

R(2) 00 37 OF= - R(2) 00 37 OF =-

R(3) - - I 0 I- I R(3) - - D 1- I 

Fig. 35 - Example of instruction DN - SET P. 

EN SET X N-+X SEX 

When I=E, the N digit replaces the digit in X. This instruction is used to designate R (X) for ALU and 
I/O byte transfer operations. 

rl A I- I- I N 3 r- N 3 

p 1 
-

X 2 3 X 3 

• R(O) - -

R(l) 01 23 

I E 
R(O) - -

R(l) 01 23 IALU I- I 
E 

R(2) 00' 37 OF=- R(2) 00 37 OF =-

R(3) - -R(3) - - I 0 I- I I 0 1- I 

Fig. 36 - Example of instruction EN - SET X. 

Interrupt Handling 

The special interrupt servicing instructions can best be understood by examining COSMAC's response to 
an interrupt. When an interrupt occurs, it is necessary to save the current configuration of the machine by 
storing the values of X and P, and to set X and P to new values for the interrupt service program. The 
interrupt forces X and P to be automatically transferred into a temporary register (T), and forces a value of 
"1" into P and "2" into X. In addition, further interrupts are disabled by resetting the interrupt enable 
flip-flop (IE) to "0". Also, a specific code is provided on the COSMAC state code lines. Details of the 
interrupt servicing are discussed in the section on I/O Interface. 
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INTERRUPT ACTION X,P -+ T; 1 -+ P; 2 -+ X; 0 -+ IE 

N N 
t----+----i 

P 3 

X 4 X 2 

RIOI - - RIOI - -

Rill 00 56 Rill 00 56 

RI21 01 24 DF =- RI21 01 24 DF= -

RI31 02 3C D 1- 1 RI31 02 3C I D 1- I 
IE = 1 IE = 0 

Fig. 37 - Example of instruction -- - INTERRUPT ACTION. 

78 SAVE T -+ M(R(X)) SAV 

When 1=7 and N=8, a SAVE operation is performer'. This operation stores the byte contained in the T 

register at the memory location addressed by R(X). Subsequent execution of a RETURN or DISABLE 
instruction can then replace the original X and P values to resume (or return to) normal program execution. 

70 RETURN M(R(X)) -+ X, P; R(X)+1; 1 -+ IE I RET I 
When 1=7 and N=O, a RETURN operation is performed. The digits in X and P are replaced by the 

memory byte addressed by R(X), and R(X) is incremented by 1. The 1-bit Interrupt Enable (IE) latch 
is set. 

A 01 23 N 0 

Gb P 1 

l+- x 2 
ADDRESS M 

I 7 
01 21 00 RIOI - -

01 22 00 Rill 00 56 IALUI-
I • 

A 01 23 N 0 

c6 P 3 l-
x 4 I-

ADDRESS M 
I 7 

01 21 00 RIOI - -

01 22 00 Rill 00 56 IALU I - I 

01 23 43 RI21 01 23 I- OF =- 01 23 43 I---- RI21 01 24 t- OF =-

01 24 00 RI31 02 3C I D I- I . . 01 24 00 RI31 02 3C I 0 I- I 
+ 43 

Fig. 38 - Example of instruction 70 - RETURN. 

71 DISABLE M(R(X)) -+ X, P; R(X)+1; ° -+ IE DIS 

When 1=7 and N=1, an instruction similar to RETURN is executed, except that in this case IE is reset. 
While I E=O, the interrupt line is ignored by the processor. 

Either the R ETU RN or DISAB LE instruction can be used to set or reset I E, respectively, as explained 
in the section on Machine Code Programming. 

Instruction Utilization 

The following table shows the use of some of the preceding instructions to form a program. This program 
inputs two bytes from different sources, compares them, and outputs the larger. It then continues to repeat 
the process. 
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The first four instructions (at locations 0001,3,4, and 5) set up R(2) as a pointer to address 0000 for 
I/O and for doing arithmetic. The reader unfamiliar with computers should trace through the program with 

specific numbers, noting the successive contents of M(OOOO), 0, and R(3).0. 

M ADDRESS M BYTE OPERATION COMMENTS 

0000 00 

1 
Data Storage. 

0001 F8 
"OO"~ D 

Execution starts at 0001. 

0002 00 Immediate data. 

0003 A2 ~R(2).0 1 Sets R(2) = 0000. 
0004 B2 D~R(2).1 

0005 E2 2~X Prepare to input. 

0006 68 INPUT 0 Read 1st input data to M(R(2)) = M (0000). 

0007 FO M(R(2))~D Transfer it to D. 

0008 69 INPUT 1 Read 2nd input data to M(R(2)) = M (0000). 

0009 A3 ~R(3).0 Save first data. 

OOOA F7 D-M~D; C~DF Subtract;set DF to next step. 

OOOB 38 BNF 

1 
Branch to OOOF if DF = 0, 

ie. if 2nd input greater than 

OOOC OF 1st input, otherwise: 

DODD 83 R(3).~D Retrieve first data. 

OOOE 52 D~M(R(2)) Store it at M (0000). 

OOOF 60 OUTPUTO; R(2)+1 Output larger value; M( R (2) )~I/O. 

0010 30 BR 1 Go back to beginning: 0001. 

0011 01 Immediate address byte. 

Fig. 39 - Example of program for inputting two bytes, compared them, 
and outputting the larger. 

As a more practical and complicated example, the following program segment multiplies two bytes, 

The multiplicand is assumed to be in memory as addressed by register R(3). The multiplier is in R(5).0, the 

byte to be added is in R(4).1, and the product will be placed in R(4).1 and R(4).0 -- two bytes. 

This program multiplies by shifting the multiplier and product right eight times. Alternatives are to shift 
the multiplier right and the multiplicand left (by adding it to itself), or the multiplier left and the multipli­
cand right, or the multiplier and the product both left. 

M ADDRESS M BYTE OPERATION COMMENTS 

0100 E3 ~X Prepare for instruction at 01 DA. 

0101 F8 
8~D 1 

The bit in 80 (10000000) will be shifted 

0102 80 down, using R (4).0 as a counter. 

0103 A4 D~R(4).0 

0104 85 R(5).~D 

1 
Fetch multiplier, 

0105 F6 D/~D shift it, 

0106 A5 ~R(5).0 and put it back. 

0107 94 R(4).1~D Fetch partial result. 

0108 3B BNF 

J 
If bit shifted into DF is 0, branch to 

0109 OD location 0100; otherwise: 

(cont'd on next pa,ge) 
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(cont'd) 

M ADDRESS M BYTE OPERATION COMMENTS 

010A F4 D+M(R(3)) Add in multiplicand. 

010B 33 BDF 

J 
If carry in D F, branch to 

010C 10 loc 0110; otherwise: 

010D F6 D/2 Shift the result right I 

010E 30 BR 

J 
and go to 0113 to shift the rest 

010F 13 of result. 

0110 F6 D/2 Shift result right. 

0111 F9 D OR immed 

J 
OR in high bit for carry 

0112 80 (data) from instruction at 010A (NOTE). 

0113 B4 D~R(4).1 Store result back. 

0114 84 R(4).~D Fetch low byte of result. 

0115 33 BDF } Delayed branch on shift in 

0116 lA 010D or 0110, to 011A. 

0117 F6 D/2 Shift low byte I 

0118 30 BR } and branch to 001 D 

0119 10 to finish shift. 

011A F6 D/2 Shift low byte, 

011B F9 D OR immed ] and OR in high bit 

011C 80 (data) from shift of 010D or 0110 (NOTE). 

011D A4 D~R(4).0 Put low byte back. 

011E 3B BNF ] Branch back ("loop") if the original 

011F 04 80 hasn't shifted thru yet. 

0120 Product is now ready. Continue to 

rest of program. 

NOTE: The SHIFT RIGHT instruction will not shift the DF bit into the highest bit of D. These operations 
essentially restore, if DF=l, a "1" bit into the highest bit of D after a SHI FT RIGHT. 

Fig. 40 - Example of program for multiplying two bytes and adding the 
result to a third byte. 
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The reader will find that Appendices B, C, and 0 are helpful while reading this section. Note that all 
signal lines except Memory Write (MWR) are made active by holding them low, e.g., when the memory is to 
be read, MREAD goes low (consistent with T2L bus conventions). 

Memory Interface and Timing 
The use of the COSMAC memory interface lines is best described by a specific example. Fig. 41 shows 

the attachment of a static 1024·byte RAM. The 1024-byte read-write memory comprises eight 1024-bit 
T A6780 RAM chips. These static single-power-supply chips are easy to use. 

ADDRESS 
0-9 

MEMORY 
1024 SYTES 

TA67S0 
STATIC RAM 

CH IPS 

WE I----<X' 

S- DATA 
IN SITS 

3-STATE 
OUTPUTS 

CS /4-------(X 

DATA BUS 

MAO-I 

COS MAC 

fi MWR 

VCC 

S SUS 
PULL UP 
RESISTORS 

122 K) 

92CS-26574 

Fig. 41 - Attachment of a static 1024-bit Random-Access-Memory (RAM) 
to the COSMAC microprocessor. 



34 _______________________________ User Manual for the 

Ten memory address bits are required to select lout of 1024 memory byte location~high-order 
byte (A.1) of a 16-bit COSMAC memory address appears on the memory addres~s MAO-7 first. The 
two least-significant bits are strobed into the 2-bit address latch by timing pulse A (TPA). Fig. 42 shows the 
timing. 

~ I+-T(NOTE I) 

MEMORY TIMING: 

ADDRESS (MAO TO MA 7) 

M READ 
MWR (NOTE 2) 

MEMORY OUTPUT 2'ZW/ZI) V//~~/I1~ k0? 
j I 'VALID BYTE -""""""'NOTE 3 ~VALID BYTE 

!.-ALLOWABLE MEMORY ACCESS TIME ~ 3.5T-ts 

(ts=SETTLING TIME) 92CM-26472 

NOTES: 

1. MINIMUM T DETERMINED BY VDD--NO MAXIMUM T 

2. MEMORY WRITE PULSE WIDTH (MWR);:::: 1.5 T 

3. MEMORY OUTPUT "OFF" INDICATES HIGH-IMPEDANCE CONDITION. 
4. SHADING INDICATES "DON'T CARE" OR INTERNAL DELAYS DEPENDING ON 

VDD AND THE CLOCK SPEED. 

Fig. 42 - Memory read/write timing. 

The low-order byte (A.O) of a 16-bit COSMAC memory address appears on the MAO-7 lines after the 
high-order bits have been strobed into the address latch. Latching all eight A.1 bits would permit memory 
expansion to 65,536 bytes. Chip select decoding would have to be added to the latch output for memory 
expansion. The MAO-7 lines may also require buffer circuits to reduce the load on them to achieve high 
speed. 

The state of the MWR and MREAD lines determine whether a byte is to be read from or written into the 
addressed memory location. COSMAC controls the destination of the memory output byte when it appears 
on the data bus. It may be strobed into an internal COSMAC register or an external I/O register. 

A high MREAD line forces a high-impedance state at the output of the memory. COSMAC or I/Ocir­
cuits can then place a byte to be stored in memory on the bus. A positive-going MWR pulse will cause the 
data byte to be written into the addressed memory location. 

When a data bit is true ("1 "), the corresponding bus line is low; when data is false ("0"), the corre­
sponding line is high. Eight bus pull-up resistors should be provided to place the bus in a known state when 
it is not being driven. 

Other standard RAM types are readily accommodated by the COSMACinterface lines. Access time 
must be consistent with clock frequency; e.g., a 2-MHz clock will require a memory with a maximum access 
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time of 1 microsecond. The time required by the ALU and internal gating is specified in COSMAC data 
sheets. 

If a memory does not have a 3-state high-impedance output, M READ is useful for driving memory-bus 
separator gates, otherwise it is used to control 3-state outputs from the addressed memory. A low on 
MREAD indicates a read cycle; the low MREAD line enables the memory-output-bus gates during the read 
cycle (see Appendix 0, COSMAC Timing). 

For various memory systems, MREAD signal and the MWR pulse polarity and width may require modi­
fication by external circuitry. Segments of ROM can be attached in the same manner, omitting the write 
controls. Dynamic RAM's can be used with appropriate refresh circuits. Since COSMAC circuitry is static, 
the clock may be stopped and restarted for asynchronous memory operation if required. 

Control Interfaces: Starting, Stopping, and Loading 

COSMAC requires an external single-phase clock. Each machine cycle consists of eight clock pulses. 
A 2-MHz clock frequency would yield a 4-microsecond machine cycle and result in an operating speed of 
125,000 instructions per second. 

During normal operation, the COSMAC CLEAR line must be held high. A momentary low on this line 
places COSMAC in an IDLE state by forcing an IDLE instruction with P=O, R (0)=0000, and I E=1. 

The COSMAC LoAD" line should also be held high during normal operation. Following CLEAR, a low 
LOAD line permi1:s input bytes to be sequentially loaded into memory beginning at M (0000). Input bytes 
can be supplied from a keyboard, tape reader, etc. This feature permits direct program loading without the 
use of external ROM's or PROM's. 

Fig. 43 illustrates one method of using the ~, CLOCK, and LOAD lines to control a COSMAC 
system. All logic consists of standard 4000-series CMOS circuits. A free-running Pierce crystal oscillator 
using a single 4007 chip provides a suitable gated clock. A high CLEAR on the control lead of the NAND 
gate formed from the 4007 gates the oscillator output to the COSMAC CPU. When CLEAR is low, CLOCK 
remains high. COSMAC design permits an asynchronous relationship between the free-running clock and 
switch closures; a short first clock pulse will not affect COSMAC operation. 

The two toggle switches control the operation of this system. When both switches are off, as shown in 
Fig. 43, the CLEAR line is held low and the CLOCK line is held high. This CLEAR signal resets COSMAC 
and can also be used to initialize I/O circuits. 

If the LOAD switch is turned on, the CLEAR line will go high, the clock will be started, and the LOAD 
line will be held low. COSMAC will remain in an IDLE state until a low occurs on the INTERRUPT, DMA­
iN, or DMA-OUT line. Input circuits (not shown) can then activate DMA-IN to load bytes into memory. 
The low iJ)Aj) line causes COSMAC to return to the IDLE state after each input byte is loaded. 

Turning off the LOAD switch after a program has been loaded turns off the clock, holds the LOAD 
line high, and puts the CLEAR line back to a low state. This sequence resets COSMAC once again, putting 
it in an IDLE state. 
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NOTE: FF SET/RESET' LOW 

VCC 
RUN 

t QI------' 

VCC 

VCC 

r---------
I 4007 

I X)-------, 

I 
I 
I 
I 
I 22M 

SCI 

------1 
I 
1 

I 
I 
1 

CLOCK 

I 
1 1

20PF 
120PF 1 

1_ -= _____ ~ ________ ---1 

COS MAC 

92CM-26473 

Fig. 43 - Two-switch COSMAC control. 

Turning on the RUN switch starts the clock and puts a high on the CLEAR line. Fig. 44 shows the 
sequence of events that initiates program execution when the RUN switch is turned on. The clock 
cau"ses a TPA signal each machine cycle. The low on the DMA-OUT line is detected by COSMAC_ It 
responds by performing a DMA cycle (S2), which is described in the section on I/O interface. A low on the 
state code line (SCI) indicates that COSMAC is executing the DMA cycle (or interrupt cycle, which would 
not normally occur at this time) and causes the flip-flop holding the DMA-OUT line low to be ~In this 
case, the DMA cycle does nothing more than take COSMAC out of the IDLE state. Since the LOAD line is 
high, the cycle immediately following the DMA cycle will be a normal instruction fetch operation (SO). 

RUN SWITCH OFF w.. ON 

CLEAR (LOWI _____ ---' 

CLOCK 

TPA 

DMA-OUT 

L..J 
I ,I 
I 

L 
~ 

I----IDLE CYCLE (SII----1.~I .. o__- DMA-OUT CYCLE (S21--1 

92CM-26471 

Fig. 44 - START timing. 
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The previous low on the CLEAR line has set P=O and R(O)=OOOO. The DMA cycle (S2) caused R(O) to 
be incremented by 1. The first instruction will, therefore, be fetched from M(0001) and not M(OOOO). Note 
that program execution normally begins at M(0001) with R(O) as the program counter. After initiation, 
program execution continues until an IDLE instruction occurs or the RUN switch is turned off. 

The above example represents one method of initiating system operation. The load operation could be 
eliminated by having a program permanently stored in ROM. Separate CLEAR and RUN momentary con­
tact switches could be used. Program execution could also be initiated by another computer instead of by 
manual switches. Other oscillators could be used for clock generation. 
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I/O Interface 

Programmed I/O 

The following paragraphs indicate a few of the ways in which I/O data transfer can be accomplished 

under program control. It should be noted that the MREAD signal, discussed in the section on Memory and 

Control Interface. can also be used in conjunction with Sl" (1=6) to transfer data from the bus into an I/O 

device or to gate data from an I/O device onto the bus. 

Data output. When 1=6 and N=O,l ,2,3,4,5,6, or 7, the memory byte addressed by R(X) is placed on the 

bus. The SCO line goes low and the SCI line goes high to indicate that an I/O instruction cycle is performed. 

The M(R(X)) byte will appear on the data bus before the timing pulse B (TPB) occurs, and will remain on 

the bus until after the TPB line returns to its high state. Fig. 45 shows how the output instruction might be 
used to set a byte i ntQ a two-hex-digit output display device. 

COSMAC 

N3 (HIGH'OUTPUT DURING INPUT/OUTPUT EXECUTION) 

SC I 
4049 

STROBE BUS--DISPLAY 
SCO 

TPB 

U 
NOTE: S CO ' H , SC I ' L 

INDICATES AN I~6 
EXECUTION CYCLE 

4049 

01 

5082-

7340 

HIGH-ORDER 
DIGIT 

Lf 

92CS-26474 

Fig. 45 - Simple output display logic. 

DO 

5082-

7340 

LOW-ORDER 
DIGIT 

Each HP5082-7340 display chip contains a 4-bit register, decoder, and hex LED display. A four-input 

gate causes the byte from memory to be strobed into the 2-digit hex display during TPB when SCO 
and SCI indicate that an input/output instruction is being executed. The N3 gate input permits the display 
to be set only when the high-order bit of the N register equals "0". Note that the four N-register bit lines 
NO-3 are high when the corresponding internal N-register bits equal "0". In Fig. 45, any of the 8 output 
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instructions can be used to transfer the M(R(X)) byte to the output display. This logic is suitable if the hex 
display is the only output device in the system. 

If more than one output device is required, NO through N2 can be decoded to specify up to eight 

different output devices or channels. The N3 gate input of Fig. 45 might be replaced by a decoded. N=l 

signal. This change would permit the display to be set when 1=6 and N=l (a 61 instruction). Instructions 

60, 62, 63, 64, 65, 66, and 67 could then designate other devices or channels to receive the output byte. 

Data input. The simplest form of input to the COSMAC microprocessor utilizes one of the four external 
flag lines (EF1, EF2, EF3, or EF4). A Iowan a flag line places it in its "true" state. The BRANCH in­
structions 34, 35,36,37, 3C, 3D, 3E, and 3F allow programs to determine the states of these flag lines. 
Fig. 46 illustrates one method of using a flag line (EFl in this case) as a binary input. 

NOTE: FF SET IRESET ~ LOW 
COSMAC 

4011 

92C5-26478 

Fig. 46 - Use of a flag time (EFT) as an input. 

Turning on the switch sets EFl low. Turning off the switch sets EFl high. (The flip-flop eliminates 
switch bounce.) A COSMAC program can be written to simulate a free-running two-digit decimal counter. 
Each two-digit count can be placed in the output display of Fig. 45. The switch in Fig. 46 will start and 
stop the counter. 

If the switch is in the "ON" position, counting proceeds (00-99). When it is turned off, counting stops 
with the current value of the count displayed. Another closure will initiate counting again, started at the 

value displayed. A portion of a possible "counter program" is shown below. 

M address M byte 

0018 3C 

I 18 
I I 
I I 
I I 

I I 
I 

I I 

I 61 

30 
I 18 

operation 
I 

Initialize registers 

and display 
• 
I 

BNl 
I 
I 
I 
I 

Code to perform 

count function 
I 
I 

Output 1 

BR 

comments 

Loop here until 

switch "ON" 
i.e., EFl goes low. 

Output the counter byte to display. 
Branch to M(0018). 

The switch of Fig_ 46 might be replaced by a Teletype® output relay. The opening and closing of this 

relay contact represent the bit-serial Teletype character code. A COSMAC program could interpret the 
sequential states of the EFl line to provide an extremely simple bit-serial interface. 
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Fig. 47 illustrates the use of the INPUT instruction in conjunction with a flag line. Eight input switches 
are first set to represent a desired input byte (l=low, O=high). Momentarily pressing the ENTER switch then 
places a low on the EFl line. The program monitors the status of this line. When a low is detected, the 

program branches to an INPUT instruction (1=6 and N3=1). 

COSMAC 
TPA 4069 

u 

EFI 

n 

"1" 
,-----0 8 INPUT 

-.L ~WITeHES 

"SW -- BUS" eON T ROL ION H) 

14------1Q 

ENTER 

S 14-4>----D 

R~~~Lw:c---' 

92CM - 264 79 

Fig. 47 - Simple byte input logic. 

Vee 

2 
4066 

SCO in a low state and SCl in a high state indicate that an input/output byte transfer cycle is being 
performed. Ouringthiscycle the data byte is stored in the memory location addressed by R(X). The 3-input 

gate in Fig. 47 transfers the state of the eight input switches to the bus through eight 4066 transmission 
gates. The EFl line is forced high at TPA to assure that only one byte is entered per ENTER switch depres· 

sion. This logic is suitable only if the single set of eight switches is the only input device in the system. 

If more than one input device is required, NO through N2 can be decoded to specify up to eight 

different input devices. The N3 signal can be replaced by a decoded N=9 signal. This arrangement would 
permit the byte to be entered when 1=6 and N=9 (a 69 instruction). Instructions 68, 6A, 68, 6C, 60, 6E, 
and 6F could then designate other devices or channels to enter data. 

The eight input switches might be replaced by the byte output of a paper-tape reader, keyboard, or other 

type of input device. The ENTER switch would then be replaced by a strobing signal generated by the 

input device. The program must sample the flag line and execute input byte transfer instructions at speeds 
consistent with the input byte transfer rate. Output devices can also utilize flag lines to signal COSMAC 

that an output byte transfer is required. 

The preceding examples have illustrated the use of the four flag lines, the 4-bit N code, the two state 

code lines, the two timing lines, and the data bus for simple I/O operations. These I/O interface lines can be 
used to implement more sophisticated I/O systems. Fig. 48 shows one such system. 

The N digit provided by the input/output instruction (on NO-3) is decoded to provide 16 separate 
control signals. One of these signals (N=O in this example) strobes an output byte into an 8-bit I/O device 
select register. The outputs of this register are decoded to provide selection signals for up to 256 individual 

I/O devices. 

A 60 instruction is executed to place an 8-bit device selection code in the I/O device select register. Subse­
quent execution of a 61 instruction will send an 8-bit control code to the selected device or channel. Control 
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1---~.2!.N£O.:.-3~_~ 4 TO 16 
DECODE 

COS MAC 

SCO 

TPB 

N ~ F: STORE DATA BYTE FROM 
SELECTED DEVICE 

N~ E: STORE STATUS BYTE FROM 
SELECTED DEVICE 

N~ 2: TRANSFER DATA BYTE TO 
SELECTED DEVICE 

N~I:TRANFER CONTROL BYTE TO 
SELECTED DEVICE 

N =O:SELECT DEVIC E 

STROBE 8-BIT I/O 
DEV ICE SELECT 

REGISTER 

Fig. 48 - Two-level I/O system. 

User Manual for the 

SELECT DEVICE No256 

SELECT DEVICE No.255 

SELECT DEVICE No.2 

SELECT DEVICE No I 

92CM-26475 

codes can be used to start or stop electromechanical devices, set up specific modes of operations, etc. When 
the 8-bit I/O device select register specifies an output device, execution of a 62 instruction will cause an 
output data byte transfer to selected device. After an input device is selected, a 6F instruction could be 

executed to store an input byte in memory. Execution of a 6E instruction is used to obtain a status code 

byte from a selected device. Instructions 63,64,65,66,67,68, 6A, 6B, 6C, and 60 could be used to con­
trol other system functions, either directly (ignoring device selection) or under control of the device select 

register. 

A flag line can be shared between several I/O devices by treating it as a bus. Individual device conditions 

would be gated to the flag bus only when that device is selected. 

The above examples indicate only a few of the ways in which I/O instructions can be implemented. The 

I/O interface line can be used in a great variety of ways,limited only by the ingenuity of the system designer. 

DMA Operation 

The I/O examples described above require that a program periodically sample I/O device status. These 

techniques also require several instruction executions for each I/O byte transfer. In many cases it is desirable 

to have I/O byte transfers occur without burdening the program or to transfer data at higher rates than 

possible with programmed I/O. A built-in direct-memory-access (DMA) facility permits high-speed I/O byte 
transfer operations independent of normal program execution. 

During DMA operation, R(O) is used as the memory address register and should not be used for other 

purposes. Two lines, DMA-IN and DMA-OUT, are used to request DMA byte transfer to and from the 
memory. Also, a specific code is provided on the state code lines (SCO, SC1) to indicate a DMA cycle (S2). 

DMA-IN ACTION BUS ..... M(R(O)); R(O)+l 

DMA-OUT ACTION M(R(O)) ..... BUS; R(O)+l 
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DMA-IN. Fig. 49 illustrates the manner in which a DMA input mode might be implemented. TPA is used 
to sample the state code to avoid the state transition times (after TPB but before TPA). The input device may 
be the same devices discussed in conjunction with Fig. 48. In the DMA case, however, each ENTER pulse 
will put a low on the DMA-IN line instead of on a flag line. 

4069 

eOSMAe 

~D~M~A~-~IN~ ______________ ~Q 

Fig. 49 - DMA input logic. 

(ON=H) 

INPUT 
BYTE 

2-4066 

JrlL ENTER PULSE 

Vee 
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A low DMA-IN line will automatically modify the normal fetch-execute sequences. If the DMA-IN 
line goes low during an instruction fetch cycle (SO)' then the normally following execute cycle (S1) will 
still be performed. Following this execute cycle (S1), a special DMA cycle (S2) will be performed. If the 
DMA-I N line goes low during an instruction execute cycle (S1), then the DMA cycle (S2) will immediately 
follow. If the DMA-I N line is reset to its high state during the DMA ~ycle (S2) then the deferred next 
instruction fetch cycle (SO) will be performed following the S2 cycle, as shown below: 

DMA-IN 

CYCLES/ST ATES 

If the DMA-IN line remains low, S2 cycles will be performed until the DMA-IN line goes high, as shown 
below. The DMA mode permits a maximum I/O byte transfer rate of one byte per machine cycle. 

DMA-IN 

CYC LES/ST ATES SO I S1 SO S1 S2 S2 S2 I SO I S 1 I 
An S2 cycle is indicated by a high SCO line and a low SC1 line. This condition is used to place a DMA 

input byte onto the bus, as shown in Fig. 49. The S2 cycle stores the input byte in memory at the location 
addressed by R(O). R(O) is then incremented by 1 so that subsequent S2 cycles will store input bytes in 
sequential memory locations. S2 cycles do not alter the sequence of program execution. The program will, 
however, be slowed down by the S2 cycles that are "stolen". The concurrent program must, of course, 
properly use R(O) and memory areas in which input bytes are being stored. It may examine R(O) and the 
memory area involved to observe the course of the data transfer. The program must also set R(O) to the ad­
dress of the desired first input byte location in memory before permitting a DMA input operation. 

Program Load Facility. The DMA-I N feature, in conjunction with the LOAD and CLEAR signals, 

provides a built-in program load mechanism. A low on the CLEAR line resets R (0) to 0000. If the LOAD 
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line is.then held low, the DMA-In logic of Fig. 49 can be used to load a program into memory. Bytes would 

be stored in sequential memory locations beginning at M(OOOO). COSMAC will idle between DMA entries, 

as explained in the section on Memory and Control Interface. 

DMA-OUT. A low on the DMA-OUT line causes S2 cycles to occur in a similar manner as a low on the 

DMA-I N line. The S2 cycle caused by a low on the DMA-OUT line places the memory byte addressed by 

R(O) on the bus and increments R(O) by 1. DMA output bytes can be strobed into an output device by 

TPB, as shown in Fig. 50. The program must set R(O) to the address of the first output byte of the desired 

memory sequence before the DMA transfer requests occur. 

H= "BUS .... OUT." 

COSMAC 

Ii 
OUTPUT BYTE REQUEST 

DMA-OUT It 
Vcc 
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Fig. 50 - DMA output logic. 

Interrupt Control 

The interrupt mechanism permits an external signal to interrupt program execution and transfer control 

to a program designed to handle the interrupt condition. This function is useful for responding to system 

alarm conditions, initializing the DMA memory pointer, or, in general, responding to real-time events less 

urgent than those handled by DMA but more urgent than those which can be handled by sensing external 
flags. 

A low on the INTERRUPT line causes an interrupt response cycle (53) to occur following the next S1 

cycle, provided the I E flip-flop is set. Execution of an S3 cycle is indicated by a low on both the SCO and 
andSCi' lines, as shown below: 

INTERRUPT 
r----

'-----II _____ _ 

IE 

CYCLES/STATES I SO 1 S1 1 SO 1 S1 I S31 SO 1 S1 I SO I S1 1 
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Fig. 51 shows a typical interrupt circuit. The flip-flop is reset during the S3 cycle, but could also be reset 
by an output instruction. 

TPA Vee 
jlREQUEST 

COSMAC 

92C5-26484 

Fig. 51 - Typical interrupt circuit_ 

During the S3 cycle, the current values of the X and P registers are stored in the T register. P is then set 

to 1, X to 2, and IE to O. Following S3, a normal instruction fetch cycle (SO) is performed. The S3 cycle, 
however, changed P to 1, so that next the sequence of instructions starting at the memory location 
addressed by R(1) will be executed. This sequence of instructions is called the interrupt service program. 

It saves the current state of the COSMAC registers such as T, D, and possibly some of the scratch pad 
registers, by storing them in reserved memory locations. DF must also be saved if the interrupt service 

program will disturb it. The service program then performs the desired functions, restores the saved 
registers to their original states, and returns control to execution of the original program. Special instructions 

RETURN, DISABLE, and SAVE (70,71, and 78) facilitate interrupt handling. These instructions were 

described in the section on Instruction Repertoire; their use will be illustrated in the section on Machine­

Code Programming. 

The COSMAC microprocessor also provides a special one-bit register (flip-flop) called Interrupt Enable 
(IE). When IE is set to "0", the state of th!5.interrupt line is ignored. IE is set to "1" by a low on the 
CLEAR line. IE can be set to "1" or "0" by RETURN and DISABLE instructions, respectively. It is 

automatically set to "0" by an S3 cycle, preventing subsequent interrupt cycles even if the INTERRUPT 
line stays low. The program must set I E to "1" to permit subsequent interrupts. Sharing the I NTE R RUPT 
line with a number of interrupt signal sources is possible. 

When the interrupt facility is used in a system, R(1) must be reserved for use as the interrupt service 

program counter and R(2) is normally used as a pointer to a storage area. The latter may be shared with the 

main programs if appropriate conventions are employed, as described in the section on Machine-Code 
Programming. 
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A simple program will illustrate the use of the COSMAC instructions and provide an example of system 
design. The demonstration system is a programmed multiple-output sequencer, timer, or controller. Fig. 52 
shows a block diagram of the system. 

MAO-7 

COS MAC 

BYTE INPUT 
SWITCHES 

-l.... 0- ENTER SWITC H 
8-BIT 

OUTPUT 
REGISTER 

SWITCH 
INPUT 
LOG IC 

OUTPUT 
LOG I C !-"":"':":'::..::j1Ool 

EFI=INPUT BYTE READY; 68= INPUT BYTE-M(R(X))·,60=M(R(X)) __ OUT, R(Xl+1 

92CM-26477 

Fig. 52 - Sample microprocessor system. 

BIT 0 

BIT I 

BIT 2 
BIT 3 

BIT 4 

BIT 5 
BIT 6 

BIT 7 

Because a small memory will suffice for this application, no address latch is required. The program re 
quires less than 64 bytes and could be stored in a single-chip ROM. RAM capacity of 64 bytes or less is also 
required. The switch input logic is used to enter initial parameters and could be simil~r to that shown in 
Fig. 47. An 8-bit output register could be implemented as shown in Fig. 50. 

The 8-bit output register provides 8 output bit lines. Each output line can be programmed to provide a 
repeating sequence of binary output states. Fig. 53 shows an arbitrary sequence of output states that could 
be programmed to apoear on the four low-order output lines. 

01, 02, 03, and 04 represent four states for the eight output lines. For example, if 01 =03 (00000011), 
then the four low-order output lines will have the states shown during the T1 time interval. They will then 
assume the states shown at 02 during the T2 time interval. The state of all eight output lines can be repre­
sented by a single byte. in the sample program, four bytes are entered to specify the value of the output 
lines at 01, 02, 03, and 04. This sequence of states will repeat indefinitely as Iorig as the program runs. 
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BIT 0 

BIT I 

BIT Z 

BIT 3 
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I- BASI C SEOUENCE -I 
-....JI 10 II 10 II 10 II 10 II L2-

10 II 10 II 

1 0 0 II 10 0 II 10 0 

,0 0 0 II 10 0 0 II 10 0 
~TI--t-TZ+-T3+T4-t-T I-+-TZ-+-T 3~T4-+-T l-j 

01 
(O~) 

02 
CO2) 

03 
(05) 

04 
(OE) 

01 
(03) 

02 
(02) 

Q 3 
(05) 

Fig. 53 - Typical output-state sequence. 

04 
(OE) 

01 
(03) 
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02 
(02) 

The time intervals between output-line state changes are specified by another set of four input bytes 
(T1, T2, T3, and T4). The program can easily be modified to permit a larger number of output-line states 
to be specified. The repetitive output-register state sequences cou Id be used as a programmable test pulse 
generator. The output lines might also activate relays for programmable sequencing of up to eight inde­
pendent external functions or devices. 

Fig. 54 outlines the manner in which five scratchpad registers are utilized for this program. R(O) is used as 
the program counter for the"entire program. R(3) is used as a loop counter called LC. R(4) is used as a time 
interval counter called TC. The four bytes that specify the four sets of output-line values are stored in four 
sequential memory locations (01, 02, 03, and 04 in Fig. 54). These four bytes are followed by the four 
time-control bytes (T1, T2, T3, and T4). R(A) is used to address the four state bytes and is called OP (state 
table pointer). R(B) is used to address the four time bytes and is called TP (time table pointer). 

M 

OP- 01 RIO)'PROGRAM COUNTER 

02 R (3)' LCILOOP COUNTER) 
03 RI41'TC ITIME COUNTER) 
04 

RIA)' OP (0 TABLE POINTER) 

TP-" TI 
RIB)' TP(T TABLE POINTER) 

T2 

T3 

T4 

nes- 26485 

Fig, 54 - Register utilization. 

Fig. 55 illustrates the operation of the program in flow-chart form. Step 1 initializes the high-order 
bytes of R(A) and R(B) to 00. Step 2 puts the memory address of the first state byte (01) into R (A). LC is 
set to 8. The operator must now enter a desired set of four state bytes by means of the byte input switches. 
The first input bytes will be stored at the 01 memory location since OP was initially set to address this 

location. 

After the first input byte is stored in memory, OP is incremented by 1 so that it is addressing the 02 
memory location. LC is decremented by 1 so that it will be equal to 7. A branch instruction causes steps 
4-5 to be repeated, and the next input byte win be stored at the 02 memory location. OP will again be incre­
mented and LC decremented. The loop comprising steps 4-5-6-7 will be repeated eight times, causing 
eight input bytes to be stored in memory. The first four bytes represent desired output line values and will 
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be stored in memory locations Ql-Q4. The second group of four input bytes represent the desired time 
intervals between output states and will be stored in memory locations Tl-T4. 

When eight input bytes have been stored, LC will be equal to zero in step 7. In this case, steps 8·9·10 will 
be performed next. QP is set to address the Q1 memory byte again. TP is set to address the T1 byte. LC is 
set equal to 4 and step 11 is performed to place the Q1 memory byte into the output register. QP is incre· 
mented by 1 so that the Q2 byte will be placed in the output register the next time step 11 is performed. 

Step 12 sets TC equal to the value of the Tl byte. TP is incremented by 1 so that TC will be set equal to 
the value of the T2 byte the next time step 12 is performed. 

Step 13 and 14 continually decrement TC until it reaches a value of zero. The time required for TC to 
reach zero determines the time interval between the current output state and the next output state. This 
time is a function of the clock frequency, the number of instructions in the loop comprising steps 13-14, 
and the original value placed in TC. 

At the end of the TC counting time, LC is decremented by 1. If LC does not equal zero, the step 11-17 
loop is repeated. This loop causes the Q1-Q2-Q3-Q4 output sequence to occur at the specified T1-t2-
T3-T4 time intervals. When LC equals zero at step 17, steps 8, 9, and 10 are performed again to repeat the 
Q1-Q2-Q3-Q4 sequence. This four·state output sequence is repeated until the system is stopped. After 
applying a clear signal, a new set of state and time bytes can be entered to modify the output sequence. 

STEP 
I 

STEP 
2-3 

STEP 
4-5 

STEP 
6 

STEP 
7 

STEP 

START 

8-9-10 L-__ ~ ___ --l 

STEP 
II 

STEP 
12 

STEP 
13 

STEP 
14 

STEP 
15 

STEP 
L-___ ,.-=-_--l 16-17 
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Fig. 55 - Sample program flow chart. 

Fig. 56 shows the actual instruction bytes in memory required for the program. A low on the CLEAR 
line sets P equal to 0 and R(O) equal to 0000. When execution is started, the instruction in memory location 
0001 will be fetched and executed as described in the section on Memory and Control Interface. The in­
structions required for each flow-chart step are shown. 

Note that in step 12 the time-control byte is placed in the high-order half of R (4) or TC. As a result, the 
loop comprising steps 13 and 14 will be executed 256 times to decrement the T byte value by 1. Steps 13 
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M AOORESS M BYTE OPERATION COMMENTS 

0000 00 
0001 90 R(01.1+0 lnitialize higher byte oftable pointers STEP 1 
0002 BB O+R(BI.l 
0003 BA O+R(AI.l 

0004 F8 M(R(PII+O Init'ialize lower byte of Q table pointer STEP 2 
0005 2A 
0006 AA D>R(AI.O 

0007 F8 M(R(PII+O Initialize loop counter to 8 STEP 3 
0008 08 
0009 A3 0+R(31.0 

OOOA 3C IF EFl *1 Loop here until byte ready STEP4 
noOB OA GO TO OOOA 
OOOC EA A+X 

Store input byte STEP 5 0000 68 IN+M(R(XII 
OOOE lA R(AI + 1 Advance table pointer STEP 6 
OOOF 23 R(31-1 Decrement loop counter 

0010 83 R(31.0+0 Load and test loop counter STEP 7 
0011 3A IF O#{)O 
0012 OA GO TO OOOA 

0013 F8 M(R(PII'O Reset Q table pointer STEP8 
0014 2A 
0015 AA O+R(AI.O 

0016 F8 MIRIPII+O Set T table pointer STEP 9 
0017 2E 
0018 AB O+RIBI.O 

0019 F8 MIRIPII+O Set loop counter to 4 STEP 10 
001A 04 
001B A3 0+RI31.0 

001C 60 MIR(XII+OUT Output; advance pointer STEP 11 

0010 4B MIRIBII+O; RIBI + 1 Load time interval counter STEP 12 
001E B4 D>RI41.1 

00lF 24 R(41-1 Decrement tim.e counter STEP 13 

0020 94 R(41.1+0 Load and test time counter STEP 14 
0021 3A IF O#{)O 
0022 lF GO TO 001F 

0023 23 R131-1 Decrement loop counter STEP 15 

0024 83 R(31.0+0 Load and test loop counter STEP 16' 

0025 3A IF O#{)O 
0026 lC GO TOOO1C 

0027 30 BRANCH Repeat basic sequence STEP 17 
0028 13 TO 0013 
0029 --

002A -- Ql o Table 
002B -- 02 Contains State 
002C -- 03 Bytes 
0020 -- 04 

002E -- T1 T·Table 
002F -- T2 Contains Time Count Bytes 
0030 -- T3 
0031 -- T4 

Fig. 56 - Sample program code. 

and 14 comprise three instructions, or six machine cycles, or 48 clock cycles. With a 1 OO-kHz clock, each 
clock cycle is equivalent to 10 x 10-6 second. Time intervals between output register states would then 
equal (256 x 48 x 10 x 10-6 x Tn), or 0.123Tn seconds. The maximum time interval that could be specified 
would be obtained with a T byte value of "FF", which would yield a delay of 256 x 0.123, or 31.5 seconds. 
Shorter time intervals can be achieved by using R(4).0 as Te. Longer time intervals could be obtained by 
combining several scratchpad registers into a longer time interval counter. The clock frequency can also 
be adjusted to provide a desired time interval range. 
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Detailed study of the sample program shown in Fig. 56 will provide a basic understanding of the use of 
the individual instructions. 

Useful I nstructions with X = P 

There are three instructions which have particular usefulness when X is set equal to P: the OUTPUT 
instructions (60-67), the RETURN instruction (70), and the DISABLE instruction (71)_ Since each of 
these instructions increments the R (X) register, when X=P the R (P)/R (X) register will be incremented once 
for the fetch cycle when it acts as program counter and once for the execute cycle. As a result, the byte 
immediately following the instruction byte is the operand byte. For example, if P=3, the sequenc~ v/ill 

E3 

60 

AD 

output the byte "AD" by means of the data bus. 

Set X=3_ 

Output a byte from memory. 

Immediate byte 

Next instruction 

This technique is also useful with the RETURN and DISABLE instructions, as discussed later in this 
section. 

Interrupt Service 

The use of the COSMAC interrupt line involves special programming considerations_ The user should be 
aware of the fact that an interrupt may occur between any two instructions in a program. Therefore, the 
sequence of instructions initiated by the interrupt routine must save the values of any machine registers it 
shares with the original program and restore these values before resuming execution of the interrupted 
program_ 

R(1) must always be initialized to the address of the interrupt service program before an interrupt is 
allowed_ Fig. 57 illustrates a hypothetical interrupt service routine. R(1) is initialized to 0055 before 
permitting interrupt. R(2) is a stack pointer, i.e., it addressed the topmost byte in a variable-size data 
storage area. This stack area grows in size as the pointer moves upward (lower memory addresses), much 
like a stack of dishes on a table. Also like the dish stack, it shrinks as bytes are removed from the top. In the 
interrupt service example of Fig. 57, the stack grew by two bytes as X,P and D were stored on it, and then 
decreased to its original size when D and X,P were restored. Such a stack is sometimes referred to as a 
"U FO" (Last·ln-First-Out) because the first item removed from the stack is the last one placed on it. 

When bytes are to be stored into the stack, the pointer R(2) is first decremented to assure that it is 
pointing to a free space. In the example shown, location OOFO may have been in use when the interrupt 
occurred, so the pointer decrements to OOEF to store X,P. When bytes are no longer needed, they are re­
moved from the stack and the pointer is incremented. 

The stack in Fig. 57 is used to store the values of X,P and D associated with the interrupted program. If 
the interrupting program will modify any other registers (scratch pad or DF), their contents must also be 
saved. 

After these "housekeeping" steps have been completed, the "real work" requested by the interrupt 
signal can be performed. This work may involve such tasks as transferring I/O bytes, initializing the DMA 
pointer R(O), checking the status of peripheral devices, incrementing or decrementing an internal timer/ 
counter register, branching to an emergency power-shut-down sequence, etc. 
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START 

~"'"' ADDRESS BYTE OPERATION COMMENTS 

0053 42 M(R(2))~D, R(2) + 1 RESTORE D 
0054 70 M(R(2))~X, P; R(2) + 1; l~IE RESTORE X, P AND R(2); 

1'0055 
ENABLE INTERRUPTS 

22 R(2) - 1 DEC STACK POINTER 
0056 78 T~M(R(2)) OLD X, P ONTO STACK 
0057 22 R(2) 1 DEC STACK POINTER 
0058 52 D~M(R(2)) OLD D ONTO STACK 

- SAVE OTHER REGISTERS 
IF-REQUIRED 

- PERFORM "REAL WORK" 
- REQUESTED BY INTERRUPT 
- RESTORE OTHER REGS' 
- PREPARE TO RETURN 

30 GO TO M(0053) 
53 

-

T -
- STORAGE FOR OTHER REG. 

OOEE STORAGE FOR D 
OOEF STACK STORAGE FOR T,i.e. OLD X, P 
OOFO 

1 
STACK TOP WHEN INTERRUPTED 

- OTHER STACK ENTRIES 
-
-

Fig. 57 - Interrupt service routine. 

Upon completion of the "real work", return housekeeping must be performed. The contents of 
registers saved on the stack are now restored. I n the example of Fig. 57, program execution branches to 
location M(0053). R(2) points at M(OOEE). The LDA (42) instruction at M(0053) restores the original 
value of D and R(2) advances to M(OOEF). The RETURN instruction (70) sets IE=1 and restores the 
original, interrupted X and P register values. The next instruction executed will be the one which would 
have been executed had no interrupt occurred (unless the interrupt is still present, in which case the whole 
process is repeated). Note that R(1) is left pointing at M(0055) and R(2) is pointing at M(OOFOl. as they 
were before the interrupt. 

When I E is reset to 0 by the S3 interrupt response cycle, further interrupts are inhibited regardless of 
the INTERRUPT line state. This setting prevents a second interrupt response from occurring whilean 
interrupt is being processed. The instruction (70) that restores original program exectuion at the end of the 
interrupt routine sets IE=1 so that subsequent interrupts are permitted. 

The RETURN and DISABLE instructions can be used to set or reset IE without changing P and per­
forming a branch. A convenient method is to set X equal to the current P value and then perform the 
RETURN (70) or DISABLE (71) instruction, using the desired X,P for the immediate byte. For example, 
if I E=O, X=5, and P=3, the sequence 

E3 

70 

53 

Set X=3. 

Return X to 5, P to 3, 
1 --*IE, R(3)+1. 

Immediate byte 

would have no effect other than setting the interrupt enable IE. A similar sequence with a 71 instruction 
can be used to disable interrupts during a critical instruction sequence. 
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Branching Between Pages 

The branch instructions (1=3) are limited to branches within the currently addressed 256-byte memory 
page. In larger programs, it is often necessary to be able to branch to any location in memory. The sequence 
of instructions shown in Fig. 58 illustrates one method of performing such a long branch. 

ADDRESS BYTE OPERATION COMMENTS 

0025 FB MIR(P))+D 
0026 05 
0027 B4 D+R(4).1 0573+R(4) 

002B FB MIRIP))+D 
0029 73 
002A A4 D+R(4).0 
002B D4 4+P CONTROL TO R(4) 
002C -- R(3) LEFT POINTING HERE 

Fig. 58 - Long branch code. 

Initially, R(3) is the program counter (P=3). The sequence of instructions shown puts the 2-byte 
dest,ination address (0573) into R(4). Setting P=4 then causes a branch to the instruction sequence 
beginning at M(0573) with R(4) as the program counter. Note that if the sequence using R(4) as program 
counter ends by setting P=3, execution resumes at 002C, with R (3) as program counter. 

Subroutine Techniques 

In large programs, a given short sequence of instructions might be used many times. For example, one 
short sequence might generate random numbers. The required instructions could be rewritten each place in 
the program that the function is needed. However, this duplication of instructions can consume much 
memory storage space, especially if the sequence is long. An alternate method is to write the sequence only 
once as a subroutine. Each time that the main program needs a random number it would branch to this 
subroutine by means of a subroutine call, Completion of the subroutine would cause a return to the main 
program at the instruction following the branch to the subroutine. The use of subroutines reduces the 
amount of memory required for programs since the subroutine instruction sequence occurs only once 
instead of each time it is used in a program. 

As an example, suppose the designer often wants to execute a long branch. To reduce the code needed 
for each long branch, one register such as R(4) could be dedicated as the permanent program counter for a 
long branch subroutine. Its entry address, say 1234, would be loaded once at the beginning of the main 
program. If R(3) is the main program counter, then a long branch to location 075A would appear as 
the following subroutine call: 

D4 

07 

5A 

The subroutine itself would be as shown in Fig. 59. 

Address to be branched to 

will be picked up by subroutine, 

This subroutine uses three useful devices: (1) The old program counter R (3) is used to pick up arguments 
for the subroutine -- in this case the new address. (2) A temporary location M(R(2)) was needed since 
R(3) could not be changed while its old value was still needed to fetch the 5A. (3) By branching to the top 
before returning to R(3). the subroutine leaves the program counter R(4) ready for another call by the 

main program, or by other subroutines. 
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M BYTE OPERATION COMMENTS 

D3 3+P RETURN, LEAVE R(4) OK 
43 M(R(3))+D FETCH HIGH BYTE; R(3) +1 
52 D+M(R(2)) SAVE IT ON STACK 
43 M(R(3))+D FETCH LOW BYTE 
A3 O+R(3).0 INSERT LOW BYTE 
42 M(R(2))+D FETCH BACK HIGH BYTE; R(2) +1 
22 DECR R(2) RESTORE STACK POINTER 
B3 D+R(3).1 INSERT HIGH BYTE 
30 BR BRANCH TO TOP 
33 

Fig. 59 Typical subroutine sequence. 

This example points up a tradeoff available to the designer. By dedicating registers and loading them 
only once, he can shorten subroutine calls to one byte (ON, for appropriate N). The availability of 16 
general·purpose registers makes this technique feasible. 

In large or complicated programs, subroutines themselves may contain calls upon other subroutines. 
This technique is called subroutine nesting. The mechanism described above works only for those sub· 
routines which do not call other subroutines. The following example illustrates one of many subroutine 
conventions that can be used in large programs. Register assignment is as follows: 

R(2) - stack pointer 

R(3) - program counter 

R(4) - dedicated program counter for call routine 

R(5) - dedicated program counter for return routine 

R(6) - temporary storage; memory pointer 

R(3) is used for both main and subroutine pointer counter. A call takes the following form: 

04 

1 

4--*P 

High byte of subroutine address 

Low byte of subroutine address 

Optional arguments 

Next instruction 

The 04 instruction transfers program counter control to R(4), which has been initialized to 0101. The call 
routine is then as shown in Fig. 60. 

At the end of the sequence shown in Fig. 60, R(6) points to the first of any optional arguments or, if 
none, to the next instruction. R(6) can thus be used by the subroutine to pick up the optional arguments 
or, by the return routine, to get back to the next instruction of the original program. 

All subroutines terminate with a 05. The 05 instruction transfers program control to R(5), which has 
been initialized to 0201. The return routine is illustrated in Fig. 61. 
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START 

~'" M ADDRESS M BYTE OPERATION COMMENTS 

0100 03 3+P 

1 
GO TO SUBROUTINE 

0101 96 RI61.1+D SAVE LAST RETURN 

0102 52 D+MIR1211 POINTER ON DC STACK 

0103 22 DECR RI21 
0104 86 R 161.O+D 

0105 52 D+MIRI211 
0106 22 DECR RI21 

0107 93 RI31.1+D 

} 
SAVE NEW RETURN 

0108 B6 D'RI61.1 POINTER IN RI61 

0109 83 RI31.O+D 
010A A6 D+RI61.0 

010B 46 MIR(61)+D; R(6) +J LOAD SUBROUTINE ADDRESS 

010C B3 D+R(3).1 USING RETURN POINTER 

010D 46 MIR(6))+D; R(6) +1 

010E A3 D·R(3).0 } 010F 30 BR GO TO TOP 

0110 00 

Fig. 60 - Subroutine call sequence with rep/oaded entry at 0101. 

START 

~'"' M ADDRESS M BYTE OPERATION COMMENTS 

0200 D3 3+P RETURN TO ORIGINAL PROGRAM 
0201 86 R(6).O+D } FETCH ADDRESS OF NEXT 
0202 A3 D+R(3).0 INSTRUCTION OF 
0203 96 R(6) l+D ORIGINAL PROGRAM 
0204 B3 D~·R (3). 1 

0205 E2 
2+X } 

0206 12 INCREMENT R(2) SET UP STACK POINTER 

0207 42 

M' "'" '0 "" "j RESTORE LAST 
0208 A6 D+R(6).0 RETURN POINTER 

0209 FO MIR(2))+D 

020A 86 D+R(6).1 

020B 30 BR } GO TO TOP 

020C 00 

Note that after a subroutine return using this mechanism, X equal, 2. 

Fig. 61 - Subroutine return sequence with pre/oaded entry at 0201. 
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Common 
Program Bugs 
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COSMAC is quite easy to program. Potential pitfalls are easy to avoid and the simple, consistent set of 
instructions is easy to understand and use. In general, program debugging will be reduced toa minimun by 
careful planning and flow-charting prior to machine language coding. Manually going through several flow­
chart examples will often turn up bugs that would take much more time to discover in the actual program. 

It has been observed, however, that certain types of programming errors occur relatively frequently. 
Avoiding these programming pitfalls will considerably reduce program debugging time. 

One of the most common errors involves the wrong value in X. Setting X to the proper value immediately 
before use eliminates this potential problem. 

The COSMAC programmer must keep track of which register is currently being used as the program 
counter. He must also keep track of 256-byte memory segments to avoid branching problems, since 
B RANCH instructions cannot directly branch between 256-byte pages. For long prograrns, a long branch 
subroutine should be employed. 

Improper scratch pad initialization before use is often a source of program bugs. The programmer should 
maintain a register utilization list and initialize each register before use. 

Program interrupt routines can cause very hard-to-find bugs. For example, if the interrupt service 
routine uses a SHIFT RIGHT (F6) instruction, OF mayor may not be changed during the interrupt 
routine. If OF is not saved and restored by the interrupt routine, programs will still run properly most of 
the time. Once in a great while, however, interrupt will occur just before a BRANCH on OF instruction, 
change OF, and cause a wrong branch. This type of nonrepetitive bug should be avoided at all cost. 
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Appendix A -
Instruction Summary 

Register Operations 

[

Code 

f Assembler Mnemonic (Note) 

f Name 
roperation 

IN 
1 N INC INCREMENT R(N)+l 

2 N DEC DECREMENT R(N)-l 

8 N GLO GET LOW R(N).O+O 

9 N GHI GET HIGH R(N) 1+0 

A N PLO PUT LOW ~R(N).O 

B N PHI PUT HIGH ~R(N).l 

N=O,1,2, ... ,9,A,B, ... ,E,F (Hexadecimal Notation) 

ALU Operations 
r---

I 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

r--
N 

0 LOX LOAD BY X M(R(X))"'D 

1 OR OR M(R(X)) v~D 

2 AND AND M(R(X))·O"'O 

3 XOR EXCL.OR M(R(X))GJ ~O 

4 ADD ADD M(R(X))+O+O;C+OF 

5 SO SUBTRACT 0 M(R(X))-~D;C+OF 

6 SHR SHIFT SHIFT 0 RIGHT; 
RIGHT LSB+OF;(},MSB 

7 SM SUBTRACT M O-M(R(X))+O;C+OF 

8 LOI LOAD IMM M (R (P))+O;R (P)+l 

9 ORI OR IMM M (R (P)) v~O;R(P)+l 

A ANI AND IMM M (R (P))· D+P;R(P)+l 

B XRI EXCLOR M(R(P))GJ 0+0; 
IMM R(P)+l 

C ADI ADD IMM M(R(P))+O+O; 
C+OF;R(P)+l 

0 SOl SUBT 0 IMM M(R(P))-~D; 

F 

C+DF;R(P)+l 

SMI SUBT M IMM O-M(R(P))+D; 
C+DF;R(P)+l 

'These are the only operations that modify 

OF. DF is set or reset by an ALU carry 

dUring add or subtract. Subtraction is by 

2's complement. A-8 ~ A+8 tl. 

Memory Reference 
r----
I N 

4 N LOA I LOAD AOV 1M (R (('J))"'O;R(N)+l 

5 N STR ISTORE I~M(R(N)) 

Branching 

'iT"N 
3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

0 BR UNCOND.BR M(R(PII-R(P)O 

2 BZ BR.IF D~OO M (R (PII-R (PIO 
IF D~OO!R(PI+1 

3 BDF BR IF DF~l M(R(PI)-R(PIO 
IF DF~11R(PI+1 

4 B1 BR.IF EF1~1 M(R(PI)-R(PIO 
IF EF1~1!R(PI+l 

5 B2 BR IF EF2=1 M(R(PI)-R(P)O 
IF EF2=1!R(PI+l 

6 B3 BR.IF EF3=1 M(R(PI)-R(PIO 
IF EF3=1/R(P)+1 

7 B4 BR.IF EF4~1 M(R(PI)-R(PI.O 
IF EF4~1/R(PI+1 

8 SKP SKIP R(P)+l 

A BNZ BR.IF D*OO ' M(R(PI)-R(P).O 
IF D*OO/R(P)+l 

B BNF BR.IF DF~O M(R(P))"'R(P).O 
I F OF~O/R (P)+l 

C BN1 BR.IF EF1~0 M(R(P))+R(P).O 
IF EFI=O/R(P)+l 

0 BN2 BR.IF EF2=O M(R(P))"'R(P).O 
IF EF2=O/R(P)+1 

E BN3 BR.IF EF3~O M(R(P))-R(P)O 
IF EF3~0/R(P)+1 

F BN4 BR.IF EF4~O M(R(P))"'R(P)° 
IF EF4~O/R(P)+1 

Note This type of abbreviated nomenclature 

IS used when programs are designed 

with the aid of the COSMAC Assem· 

bier Slmulator!Debugger System,which 

is available on commercial timesharing 

systems. Refer to "Program Develop­

ment GUide for the COSMAC Micro­

processor" for details. 

I 
I 



Input-Output Byte Transfer 
.--,....-

I N 

6 0 OUTO OUTPUT 0 M(R(X))->BUS; 
R(X)+l;N=O 

6 1 OUT 1 OUTPUT 1 M(R (X) )+BUS; 
R(X)+l;N=l 

6 2 OUT 2 OUTPUT 2 M(R(X))+BUS; 
R(X)+ljN=2 

6 3 OUT3 OUTPUT 3 M(R(X))+BUS; 
R(X)+1;N=3 

6 4 OUT4 OUTPUT 4 M(R(X))+BUS; 
R(X)+1;N=4 

6 5 OUT5 OUTPUT 5 M(R(X))+BUS; 
R(X)+1;N=5 

6 6 OUT 6 OUTPUT 6 M(R(X))+BUS; 
R(X)+1;N=6 

6 7 OUT 7 OUTPUT 7 M(R(X))+BUS; 
R(X)+1;N=7 

6 8 INP 0 INPUT 0 BUS+M(R(X)); 
N=8 

6 9 INP 1 INPUT 1 BUS+M(R(X)); 
N=9 

6 A INP 2 INPUT 2 BUS+M(R(X)); 
N=A 

6 B INP 3 INPUT 3 BUS+M(R(X)); 
N=B 

6 C INP4 INPUT 4 BUS+M(R(X)); 
N=C 

6 D INP 5 INPUT 5 BUS+M(R(X)); 
N=D 

6 E INP 6 INPUT 6 BUS+M(R(X)); 
N=E 

6 F INP 7 INPUT 7 BUS+M(R(X)); 
N=F 

Control 
,....- -

I N 

o 0 IDL IDLE WAIT FOR 
INTERRUPTI 
DMA-INI 
DMA-OUT 

D N SEP SETP N+P 

E N SEX SET X N+X 

7 0 RET RETURN M(R(X))+ X. P; 
R(X)+l;HE 

7 1 DIS DISABLE M(R(X))+X. P; 
R(X)+l;O+IE 

7 8 SAV SAVE T+M(R(X)) 
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COSMAC Register Summary 

D 8 Bits D Register (Accumulator! 

DF 1 Bit Data Flag (ALU Carry) 

R 16 Bits 1 of 16 Scratchpad Registers 

P 4 Bits Designates which register is 
Program Counter 

X 4 Bits Designates wh ich register is 
Data Pointer 

N 4 Bits Low-order Instruction Digit 

I 4 Bits High-order Instruction Digit 

T 8 Bits Holds old X. P after I nter-
rupt 

IE 1 Bit Interrupt Enable 

Hexadecimal Code 
HEX BINARY HEX BINARY 

0 0000 8 1000 

1 0001 9 1001 

2 0010 A 1010 

3 0011 B 1011 

4 0100 C 1100 

5' 0101 D 1101 

6 0110 E 1110 

7 0111 F 1111 

Interrupt Action: X and P are stored in T 

after executing current instruction; des· 
ignator P is set to 1; designator X is set to 

2; interrupt enable is reset to 0 (inhibit); 
and the interrupt request is serviced. 

DMA Action: Finish executing current in­
struction; R (0) points to memory area 

for data transfer; data is loaded into or 
readout of memory; and increment R(O). 

Note: In the event of concurrent DMA 
and INTERRUPT requests, DMA has 
priority. 
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Appendix B -
State Sequencing 

COSMAC STATES/CYCLES STATE CODES 

SO INSTRUCTION FETCH CYCLE CYCLE TYPE 

S1 INSTRUCTION EXECUTE CYCLE S1 I ~ 6 (I/O INSTR.) 

S2 DMA BYTE TRANSFER CYCLE S2 CYCLE (DMA I/O) 

S3 INTERRUPT CYCLE S3 CYCLE (INTERRUPT) 

OTHER CYCLES 

COSMAC STATE TRANSITION DIAGRAM 92C5-26537 

START UP & NORMAL INSTRUCTION SEQUENCE: 

EXTERNAL -+ CLEAR 

INTERNAL --> S1 

STATE CODE --> HH 

EFFECT OF DMA IN/DMA OUT/INTERRUPT ON NORMAL SEQUENCE 

I EXTERNAL -+ I ... 
INTERNAL -+ 

STATE CODE-+ 

SCI SCO 

H L 

L H 

L L 

H 'H 



Vee Ie 40 

r 2 39 
DATA BlJS2 3 38 BUS __ 
....... BUS I 4 37 

BUSO 5 36 

NO 6 35 

V. { Ni 7 34 
eOM~OS N2 8 33 

N3 9 32 

* 10 31 

* II 30 

* 12 29 

* 13 28 

* 14 27 -- {CLOCK 15 26 

TIMING { TPB 16 25 
PULSES _ _ TPA 17 24 

* 18 23 

MWR 19 22 

Vss 20 21 

TOP VIEW 
TA6889 

Package Interconnections 

TA6889 Pin No. 

TA6890 Pin No. 

Appendix C -
COSMAC Interface 
and Chip Connections 

VDO 
EiliS4 
BUS5 }"" BUS 
BUS 6 -
BUS 7 

VSS 

{eo:': EFI 

EF2 } '" DATA BUS 5 
F~S 

EF3 
BUS __ 
---.. BUS6 

EF4 BUS 7 

DMA OUT } I/O MAO 
INTERRUPT RE~ST MAl 
OMA IN MA2 
CLEAR }CO~OL 

MEMORY 
ADDRESS MA3 

LOAD LINES 
MA4 

I.C.(NOTE 4) 
MA5 

SCI } STATE MA6 CODE SCO - MA7 
M READ 

VSS 

* 
92C5- 26417 

* * * * * * * 

* * * * * * 
* These pins are for interchip connections only. 

Notes: 

1. Any unused input pins should be connected to VDD or Vee· 
2. The Data Bus lines are bi-directional and have three-state outputs. 

They may be individually connected to Vee through external pull-up 
resistors (22 kn recommended) to prevent floating inputs. 

3. All inputs have the same noise immunity and level-shifting capability. 
All outputs have the same drive capability whether they have three­

state outputs or not. 
4. Pin 25 of TA6889 is used for an internal connection-do not use. 

Terminal Assignment Diagrams 
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Ie 28 VOO 

2 27 

""} .m 3 26 BUS 2 BUS 

BUS I --4 25 

5 24 BUS 0 

6 23 * 
7 22 TPB-

8 21 * 
9 20 * 
10 19 * 
II 18 * 
12 17 * 
13 16 * 
14 15 CLEAR-

TOP VIEW 
TA6890 

92C5-26418 
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Appendix D -

COSMAC Timing Summary 
GENERAL TIMING: --r f4-T(NOTE Il 

CLOCK 

INTERNAL 
TIMING INTERVALS 15161710 II 12131415161710 II 12131415161710 II 12131415161710 II 121314 

MACH INE CYCLE __ ---' __ C-'-'Y-"C.;;;;.L E",--n _--''-------'C..;..YC''-'L''''E...;;.n....;.+..;..1 _-,--_..;;,.CY.c..;C""L;::..E _n ..;..+.;;;;.2 _-"-___ _ 

INSTRUCTION -----.,.-----=---:--.,-y--EX-,.,E,.,..C.-I-NS-T-:cR--:. l----.---:cF=ET=C.,..,H""'"'1 NC":S=T-=-R.-l +-'-I:--rl E-X-E-C.""""IN-S=TR"""".l + i 
EXECUTION . 

TIMING PULSES: 

TPA 

TPB 

MEMORY TIMING: 

ADDRESS (MAO TO MA7) 

M READ 

MWR (NOTE 2) 

MEMORY OUTPUT mwffi" vz;r~5>FF-=+V///Z?//1.. fZ/Z/ 
j l VALID BYTE -------NOTE 3 ""VALID BYTE 

ALLOWABLE MEMORY ACCESS TIME:s 3.5T-l s 
(15 = SETTLING TIME) 

TII~TNEGR~~LERVALS 15161710 II 121 31415161710 II 12131415161710 II 121 31415161710 II 121 3 1 

INPUT 
INSTRUCTION TIMING: 

OUTPUT 

TPA 

TPB 

STATE/N 

BUS* 

MWR 

INSTRUCTION TIMING: 

STATE/N 

NO-N3 

BUS 

[SI'(I=6)'TPB]* 

I I I I I 

I 
SO SI- I=6/IXXX 

OFF INPUT BYTE 

r-h 

I I 
so---l SI-I=6/0XXX 

/////////////1 N VALID 
I 

-'lL//////////////////l .A 

/ 

BYTE OUT 

I I 
~ r--

I SO OR S2 OR S3 

OFF 

I 

I 
I SOORS20RS3 I 

V/////////////~ 

v///////////////, 

92CL-26421 



~~7~~f~TERVALS 15161710 II 12131415161710 II 12131415161710 II 12131415161710 II 12131 

DMA TIMING: 

TPB 

STATE 

DMA-IN/DMA-OUT* 

DMA-IN ONLyJBUS* 
lMWR 

DMA-OUT [BUS 

ONLY GS2'TPB)* 

I I I I I I I I I 

II 

u 
'fj~FNRGNI~~ERVALS ""'I1-5'T'16-r-17"T1-0 '-11"'1-2 T"13""'11-4 'T'15"'"'11r-6"T1-7 r-I 0"'1-1 T'"12'1-3 'T'14"'"'11r-5"T1-6 '-17""T1-0 'T'11""'I1-2'T'13"'"'11r-4"T1-5 '-16""T1-7 'T'1 0-1r-1"T1-2 '-13--r-1 

INTERRUPT TIMING: I ~! I I ~! II I ~ II I 

ST:~: ;: SO f.". F 51 ;.:. r~ ~. ~ 
INTERRUPT* 

INTERRUPT ENABLE'" 

FLAG INPUT TIMING: 

STATE 

INHIBIT INTERRUPT 

F:=" SO· I = 3: -I.. SI • I = 3 =----FJ (fSI, S2, S3 OR SO·I" 31 

* = SIGNAL GENERATED BY USER 

... = INTERNAL TO COSMAC 

NOTES: 
I. MINIMUM T DETERMINED BY VDD -- NO MAXIMUM T 

2. MEMORY WRITE PULSE WIDTH (MWR) ~ 1.5 T 

3. MEMORY OUTPUT "OFF" INDICATES HIGH-IMPEDANCE CONDITION. 

4. SHADING INDICATES "DON'T CARE" OR INTERNAL DELAYS DEPENDING ON 
VDD AND THE CLOCK SPEED. 

92CL - 26422 
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A (address register), 10 
Access time, 34 
Architecture, 10 
Architecture and Notation, 10 
Arithmetic-logic unit (ALU), 12 
ALU operations using M(R(P)), 22 
ALU operations using M(R(X)), 18 
Asynchronous memory, 35 

Branching, 25, 53 
Byte, 7 

Clear input, 10 
Clock input, 10 
Common Program Bugs, 57 
Control, 27 
Control interfaces, 35 
D (data register), 10 
Data bus, 9 
Data flag (DF), 12 
Data input, 40 
Data output, 39 
Direct memory access (DMA), 9 

DMA cycle (S2), 42 
DMA-IN,43 
DMA operation, 42 
DMA-OUT,44 
Example of Program, 50 

Hexadecimal (hex) notation, 10 

I (instruction register), 12 
Immediate byte, 22 
Input/Output (I/O), 7 
I/O byte transfer, 24 
I/O control signal lines, 9 
I/O device interface, 39 
I/O flag inputs, 9 
Instructions, 7, 12 
Instruction Repertoire, 15 
Instruction ti me, 13 
Instructions and timing, 12 
Instruction utilization, 29 
Interrupt Control, 44 
INTERRUPT ENABLE (IE) flip flop, 9, 44 

Index 

Interrupt Handling, 28 
Interrupt Line, 9 

I nterrupt Service Program, 45 
Interrupt Response Cycle (S3)' 44 
Interrupt Service, 51 

Load signal line, 10 
Long branch, 53 

Machine code programming, 47 
Machine cycles, 13 
Memory address lines, 10 

Memory and control interface, 33 
Memory read level, 10 
Memory Reference instructions, 17 
Memory write pu Ise, 10 

N Code, 9 
N (4-bit register), 10, 12 

P (program counter register), 10 
Page, 27 
Programs, 7 
Program counter, 13 
Program Load Facility, 43 

R (scratchpad registers), 10 
RAM (random access memory), 9 
ROM (read-only memory), 9 
Register Operations, 15 

Sample System and Program, 47 
Scratch pad registers, 10 
Stack pointer, 51 

State Code, 9 
State a (SO), 13 
State 1 (S1), 13 

State 2 (S2), 42 
State 3 (S3), 44 
Subroutines, 53 

Subroutine call, 53 
Subroutine nesting; 54 

Subroutine techniques, 53 
System Block Diagram, 8 
System Organization, 8 

Timing lines, 9 

X (auxiliary register), 10 




