®

RADIO CORPORATION OF AMERICA ;ElEL‘TRﬂNlG DATA PR[II:‘E'SSINE CAMDEN, N.J.

RCA 301
TRAINING
MANUAL

“58% ELECTRONIC DATA PROCESSING

SYSTEMS A BROAD RANGE OF SPEEDS AND
EDP | CarasiLiTiES TO MATGH MANY USER REQUIREMENTS

"RCA 301
TRAINING
MANUAL

. 93-06-000

The information contained herein is subject
to change without notice. Page replacements may
be provided to advise of such additions and/or
corrections. :

This edition includes 93-06-000 (Feb. 1963
Edition), and 93-06-000-1 (March 1963 Revision).

When ordering this manual, the following
publication control number should be used:

~ 93-06-000 (December 1963 Edition)

TABLE OF CONTENTS

CHAPTER TITLE

I History and Development

I1 Development of an Application
III What is a Computer?

Iv) RCA 301 Equipmenf

v ~ The Binary Numbering System

Vi " Data Layout

VII High Speed Memory

VIII ~ Imstruction Format and Computer Program Record
IX Operating Logic

X A An Introduction to Flow Charting
X1 Introduqtory Instructions

XI1I Card Instructions

XIIT ' Tape andrFile Terminéting Test Instructions
X1V Decision Making Instructions

XV Data Handling Instructions

XVI : Printing

XVII Iterative Coding

XVIII Address Modification

XIX ' Variable Connectors

XX Logical Cperations

XX1 Handling Variable Data

XXII Repetition of Instructions

XXIII Indirect Addressing

XXIV Timing

CHAPTER

XXV

XXVI

XXVII

XXVIII

XXIX

XXX

XXXI

XXXII

XXXIIT

XXXIV

XXXV

XXXVI

XXXVII

XXXVIII

XXX1X

APPENDIX A

APPENDIX B

INDEX

TABLE OF CONTENTS (Cont!d)

TLTLE

Batching

Simultaneity

Editing

Program Controls

Data Record File

Data Record File Mode
Data Disc File

Table Look-Up Techniques
Randomizing

Arithmetic Operations
Console

RCA 301 Programming Standards
RCA 301 Supplied Routines
Compatibility

Sorting and Merging

MICR Sorter Reader

Arithmetic Instructions

I — HISTORY AND DEVELOPMENT

Men have always been fascinated by mathematics but bored by the drudgery of it,
In early days, the amount of computation required was relatively little and could
be accomplished by piling stones in a heap or notching & stick, As numbers became
more important in the advancement of civilization, numbering systems had to be
developed, The development of the decimal system was the real beginning of exper=-
imentation in computational devices, The earliest of these devices was man's
fingers, but unfortunately (or fortunately, as the case may be) he was relatively
limited in this respect, If numbers can be represented by fingers, they can be
represented by other things as well, and this thought lead first to the stones
and notches we mentioned and finally to the construction of the earliest computer,
the abacus, The abacus is nothing but beads strung in groups of ten, These beads
can be moved easily and rapidly, and in the hands of skillful operators rival the
speed of our modern mechanical calculators even today,

The beginning of modern machines dates back to the seventeenth century, Many
of the famous mathematicians of that time (Ragcal, Liebnitz, and Napier) invented
mechanical deviceg to aid them in their work, Pascal's machine is particularly
impor tant because it introduced some of the basic principles and mechanisms which
are still used in our machines, Pascal encountered the one difficulty which had
been the stumbling stone up to that point, the fact that a machine which is to
calculate must have the ability to recognize the need to "carry'. That is, when
a number is added mechanically, the carry (if any) must also be taken care of
mechanically, Pascal's carry mechanism is significant as the beginning of auto-
matic computing because it removes a function from the operator to the machine,
Unfortunately, in an effort to make the invention completely free of operator
control, he passed the technological boundary of his era, and therefore his
invention was a failure, as were other adding machines for the next two centuries,

In 1885, William Burrouehs produced the firsi-saleahle-adding machine, The

device caught the attention of the business world and the machines were improved
so that they could both add and subtract,

Around the time of World War I, desk calculators were developed, These machines
could perform arithmetics by keyboard control, All of these devices, however, re-
quired human operators who had to be trained, This introduced the possibility of
human error,

In 1830, Charles Babbage attempted to build an automatic mechanical calculator,
He failed again because of technical problems of construction, Babbage did, however,
lay the design groundwork for our modern day computer, He divided his machine into
three parts which he called the store, the-mill, and the control, The purpose of
the store was to hold all the data which would be used during the long computation,
The mill worked on the data and the control was the automatic operator,

To aid in the computations of the 1890 census, Hollerith and Powers developed
electrical contact reading which led to the initial punched card systems,

It wasn't until after World War I that the relay was developed, This was the
technological advancement needed for the control functions that would free mechan-
ical devices from the need of being operator controlled,

World War II brought about the impetus for development of our modern high speed
electronic computers, The first computer was the Mark T developed at Harvard, In
1943, the ENIAC was built by the University of Pennsylvania, NTAC was the

i =electronic computer, This was the break through into the field of
electronic computation and into the field of data processing,

I-1

I — DEVELOPMENT OF AN APPLICATION

let us say that our ABC Bank has decided that its paper work is getting g
strangle hold on the checking account part of business and that further mechaniza-
tion is necessary, We ask for a proposal from a number of different computer (or
data processor) manufacturers, A proposal is simply a written report on what their
individual equipment will do for us and what will be required of us in terms of
monthly rental, space requirements, time personnel, etc, In order to prepare this
report, each manufacturer's personnel must familiarize themselves with the problem,
This requires that they learn:

1, What input will be fed into the computer, 1In our case this would include
what information must be maintained for each account; what information
will be brought in from each check or deposit; what additional input there
might be, such as stop payments, holds, change of addresses, new accounts,
etc,

2, What output will be required, Obviously one thing must be updated master
information, but in additiom, statements will be required periodicalily,
summarizing reports will be needed, overdraft notices must be prepared to
send to negligent account holders, etc,

3. What steps are currently being taken by the bank personnel to handle the
work,

Having learned this, the analyst can determine what equipment will be needed to
do the job in the time allowed and basically how the job will have to be handled,

Fnavisis
Once our ABC Bank has decided on a particular system, both the bank and the 4:

manufacturer supply personnel to begin the detailed work, The bank personnel must o _
be trained to be able to handle the equipment, This training will be in programming (ftﬁa?kﬂ
and operating, The data developed by the analyst must be gone over in detail, The J/
exact format of the input and output data must be determined, Specific problem
statements. must be prepared, and the programmers must determine the best way to have 1fe5;+‘
the equipment perform the required tasks, Having developed the procedure that the Dota
computer must follow, 1t 1s necessary to "code" or translate it dinto instruciions in =
a form that the computer can understand, Pnce a program is written, it must be checked

nd rechecked, which will also include actually running it on the computer with test
data to make sure that the results will be accurate, This must be done for every
program or "run", before the actual equipment is delivered, i

Once the equipment is installed and checked out, the conversion and systems
check must be executed, This may mean that only a few programs are actually put into
operation, with only the input data required for those programs converted to computer
input; or it may mean that the entire system of programs is put into operation but
only on a portion of the data,

Once the personnel in charge have assured themselves that things are running
smoothly, the complete system can be established, Additional programs encompassing
other jobs (such as savings accounts, special "club" accounts, etc,) are added as
time allows, This may or may not require the addition of more equipment,

The same sort of procedure takes place at any installation, whether the appli-
cation is demand deposit accounting which we covered here, customer billing, payroll,
premium payments for an insurance company, subscription mailing, stock inventory,
general accounting, or practically any job that requires a large volume of data
processing,

II-1

III - WHAT IS A COMPUTER?

There are two basic types of computers; the analog computer which calculates
by using physical analogs of the variables, and the digital computer which calculates
by expressing all characters in a bi-state form, We are interested in digital

computers,

A computer is made up of five basic elements:

U P B SN
Tl gk \\;‘WH JETED N

Lae b YA \{4
€ acd Reaber. 4258 Rezeert A}/%M

- 2.) R s Y k1)
3 é“i‘;ﬁt Ste Card forchyTape (Mapete XRupery Frooter
u \
3) Storage™ HMruin Wiewory v pord et um,;z,mh&;
4) Arithmetic - Tewivioad wlceo ixtor. \ws\ic« \:wn{ A G SYPRTURAERD
5) Control ~ \.e Xty Card Rexded 45 veed | L3fa |

CONTROL |

—]

HSM

INPUT STORAGE

Y SN 2

ARITH-
METIC

The purpose of the input devices is to feed data into the computer, There
are numerous types of input, but we will concern ourselves with three basic types:
cards, paper tape, and magnetic tape, All of these types of input are coded with a
binary code, That is to say, it is only possible to represent data on cards and
tape using holes or no holes, magnetic bits or no magnetic bits, Unique combinations
of these holes and no holes, or bits and no bits represent the different alphabetic,

numeric and special symbols,

In the case of card input, we will limit our discussion to 80 column EAM
(Electric Accounting Machine) cards, An example card is shown below:

Mo 33833333
44444444
12545618

ABCDEFGHIJKLMNOPQRSTUVWXYZ 8%*¢&4#,$. 0123456789
mnquumﬂnwmﬂmnnﬂunn@ﬁ&]‘@uﬁthasﬂnaaﬂﬁaﬂﬂumﬂﬂﬁaﬁﬂnawdmawﬂwsumhmnnhunﬂnnmﬂ

nmnun] ! ‘f
vocomoc oo WENTN 0OWoOo0mYoOCa0Nu000E000[0000[0000/50000000/0000/00C00000[0008

9 10 11 12{13 14 15 16{17 18 19 20,21 22 23 24,25 25 %7 28| 23 31 35 35[37 36 39 45,41 42 43 44145 46 47 48|49 50 51 52153 54 55 55!57 58 59 661 62 £3 6455 6 BT IV BN 1B H BT B9 80

L ARNBREIRRRIBRERIEEE! R RRET AR RN R R R R R R R RS R R R R R RERI RRE
22822222 22222022 2222 22222222

SMUDBIBE <7 38 38 4041 42 43 44 53 5455 35 B3N IZTI IS T

333%3333 33333383 35333332 33323332
142404412 4444148481440 204548/4444l0094221 444414444

S I2BUISIE 313”(!41424344‘554647‘3?350&52535‘55&575!550“62?.33 82 2071 7273 14 73 76l

B55555555853 555555550555:555555555555555555555555/5555
66665B6566666506/5666(65§5/5665 68ES SiSEGGGEESEBhﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁsﬁﬁgﬁﬁﬁﬁﬁ

123 4[58 73/9WNRZIBUISKITIBIN 22 AUES2% 77 26,23 M 31 52133 34 15 25,37 38 39 4041 42 43 4345 46 47 4849 50 51 5253 54 55'56(57 58 53 60/61 62 63 64{85 65 67 6869 70 71 72/73 74 15 Ts

771717!17777777!1771777ﬁ171:7 H AR RN N EY NI R AR R R iR i REE]
88828853888/8388 sssssas!sa!&ll:i]!lﬁaaqsasasaalasssaaseaaasssassassasseaassassa
IR DG4 243

1zs45:1s9mﬂunuﬁﬁﬁmmnmnm%amazmnmﬁsuax 45 45 47 48149 50 51 52|53 54 55 53157 58 50 G0l61 62 63 64J55 65 67 68)69 7071 T2ATI T4 75 1T B 79 85
195999999 99999993'9999939!5%999&99593929@9999999 85999993999/9899995469999/559319963
736 i 2

!234587I!mll11IﬁHlSlG!U!l193'2122224525272808303!32&345.’5 s4a 0 51 52153 54 55 56157 58 59 60161 62 63 64165 66 67 68169 70 71 72173 74 75 7617 78 19 8
MiDCO C-733727

-~
-
—)
—_o
-
-
)

- - o
—_

2282)2222
TBWARN 20N

333M3333

2222

2
5% 2 B

33333
41448

% 22128
5585

22212

1545 47 33
3332

2222

49 5 51 52!

222212222

37 58 59 50:51 52 63 64:

33333333

2222

65 56 67 63,

3333
4444

5 €5 57 68,

282

12

N

2

4155738

222

ra

222
HIHB
e
Ha414

32,33 34 35 A0

55555

2222

TTHem

3333

i

e £ 5D
T
L 22N

o

44448422
s N

55555055

44414
Ry

5555
5666

I8

§555

55666666

GENERAL PURPOSE, 20 FIELD

Swemerm
N e e e

el

ot wmen
C. S

=

L2

!

o e
Ve
-

i

As you can see, the card has been "punched"”, That is to say, the card was

run through a card punching device which works along the same lines as a typewriter,
the difference being that the output are cards punched with the binary code of the
character desired and, in this case, the character above it, This card can be read
by a device called a card reader which can then transmit the data by impulses, 1In
order to do this, the card passes over a roller, and a brush senses the holes or the
absence of holes: i.e,, when the trush is capable of touching the roller (hole must
be present), it causes a current to flow,

Paper tape is another input device, It is also prepared on a special piece of
equipment which causes the proper binary code to be placed in the paper tape, Paper
tape is spoken of as having "levels", For example, a 7 level paper tape would refer
to paper tape whose code for each character consists of 7 holes and no holes; 5 level
tape has a code consisting of 5 holes and no holes per character, Information is
separated on paper tape by the '"gap" or physical lack of any punching except for a
sprocket hole, A sprocket hole is punched along with each character (or in each
character location), It is utilized by the reading device as well as the punching
device to move the tape, A sample of punched paper tape (7 levels) is shown below:

o 000 O ® o 000 [I]
00000 000000 000000 000 O [4 (1 J
[X4 0000 [1} (4 3.4 LN e o (X]
00 o [J e & 000 O [] o & o [X J
0060000000000 000600000606000006000080 0000000000000 000606000000
(X 1 J o 000 00000000 000 O 00000000000000
o & o o 00 [] 000
[[] o o0 [] o0]

Magnetic tape also utilizes a binary code; however, it is represented by
magnetic bits, The tape itself is made of oxide coated plastic and comes in various
widths and lengths depending upon the equipment on which it is to be used, This
tape is processed in a unit called a "tape station" which contains, among other
things, a read-write head, This device has the ability to place bits on the tape
(write) by transmitting a current which it receives from the computer or other
device, It also has the ability to sense the presence of these bits (read), If
we can say that a + current places the bits, we can also say that a - current
would erase them, thus allowing us to use the same tape over again at some later
date, Information is separated on magnetic tapes by gaps, as in the case of paper
tape. In addition, other sentinels must be utilized to indicate the beginning of
the tape and the end of the tape. These differ between equipment,

One additional type of input is manual entry into the computer through the console,
which is the operators' device for controlling the computer, This is done for "de=-
bugging" pruposes primarily., Debugging refers to proofing of a program in order to
ascertain that it will do the job required of it accurately,

The quipul from a computer would be made up of the same sort of thing as the
input; i.e., magpefig tape, papal.ape and pupgh cards, The devices which produce
the output would receive the information and prepare the media, either by punching
cards, punching paper tape or placing bits on magnetic tape., The actual punching
is done by triggering a solenoid driver which then hits a punch die that would place
a hole in the card or tape,

Another very important type of output is priunfing, that is, preparing actual
hard copy that can be read by human beings with ease, This is done by a printer
which prepares documents at a rapid pace, by printing a complete line at a time,
Many systems also have a high speed electric typewriter device, which produces
written information one character at a time, This, obviously, is a much slower
device than the printer,

I11-2

Once the data is in the computer, there must be some place to store it, This
unit is a storage devigce and is called "memory!, Many typs of memory devices have
been used, such as mercury delay lines and electrostatic tubes, however, the magne=-
tic core memories have proved a great improvement in the art, They allow for a
larger capacity with regards to data, while requiring less physical area and power
requirements, In addition, heat production is less, The internal speed (the time
it takes to place a character, remove a character or transfer a character) is also
considerably faster., A magnetic core memgry is made of ferrite cores, which look

something like tiny beads or like.miniature doughnuts, aHE'EEﬁEEEEZESE_E;;g§. Each . § 2K
core will represent one bit so that if a code were seven leveT, %t W?ulg Lake 7 cores *w%@@gm
e T e i metiau, They also have TR TR 1ty £o sense the

condition of the cores, :

An illustration of one plane of these .cores appears below:
RN
SRR R R LS L B et

KRR I 0 Sk I X o X e
B DX DX X XL X SXE XD XL I SXT Wy
o 5k SDXJe B S P 9 PXB Kb X XL D [s Mo
B DXl PSP XU <L 3L ST S DXL IXE X o |
2 DB X XD Xy X DXL XL IKE S IXE DT W Thind
IR RERERRKK R =
BOSOOROOROZOROOZOROZOROROOR0S0N00Y DN
X T L K LN W WP LGRS B S

The memory "bank" is formed of a number of these planes,

It is also possible to store data in larger volumes on magnetic drums or disecs,
These have a much higher access time but cost less per character of storage then the
internal computer memory. The information is stored on these devices so that the
"bits" that make up a character follow one after another, Writing and reading de=-
vices attached to these units have the ability to place characters of information on
the drum or disc or read information from the storage device,

The grithgetic unit of a computer performs any arithmeile functions required of
it, and also handles such things as making logical decisions (is 13458 greater than
135767),

The confrol unit of the computer "supervises' the work beijnc.dope. It controls

the input and output devices and the arithmetic unit and it accesses the storage
devices, It knows yhat to do by following a “program'’, A program is simply a
sequential series of steps to be taken by the computer control. The program may be
wired by using a plugboard, or stored in memory, This latter types is the one in
which we are interested,

III-3

To illustrate a program, let us take a sample problem and develop it for Brand X
Computer, For many years the ABC Bank has had a number of girls whose job it was to
caleulate the interest on each savings account, They then entered on a file card
the following information:

ACCOUNT NO, ___ ~
BATANCE e
INT, AMT, ————
NEW BAL

A second group of girls then took one card at a time, added the interest to
the balance and placed the new balance on the card, then repeated the process for the
next card, It is this job that we now want to do on a computer,

At some previous date, we have prepared a magnetic tape that has for each
account:

1) a five digit account number
2) a 6 digit interest amount, loaded with insignificant zeros
3) a 6 digit balance amount, also loaded with insignificant zeros

L) Example: 43675 0032& 34564 rpzéw ié i»% ggé{,:@ff;
SR F L
acct, int, bal, inte we el |
St
\OCJQ il

The information for each 5bcount la seEaratedﬂon magnetic tape by a £ap,

The steps we want to go through are:

1) Read in the information for one gccount, This will cause the tape to
be moved past the read head so that we will end up in the gap after
the first record and prior to the second record, When we initiate
this read again, therefore, we will read in the data for the second
record,

2) Add the interest to the balance, Now the balance figure will really
be the new balance figure,

3) Write this information out to another tape, This means that we will
end up with two tapes: the original and the new updated tape,

4) Go back and repeat the instructions over again, By going through
these four steps, we can process every record on the tape,

In order to spell out these instructions to the computer, we must put them in a
language that it can understand, This is called machine language or '"absolute",

In addition, our computer has a magnetic core memory in which each character is
addressable, A layout of a section of this memory is shown in the figure below:

ITI-4

00]0102]03] 04Jos[os[07[o8] o9 10] 11]12[13] 14 15] 16| 17[18] 19] 20 [21[22]23[24

10

25 |26] 27/ 28] 2030 [31]32]33] 34 35] 3637 38[39 40| 41[a2]43]4s 45)4c]47[a8] 49

10

50]51]52]53] 54]55] 56] 57| 58] 59| 60| 61] 62| 63 64|65 66] 67] 6863 | 70 [71]72[73[74

10

75 [76]77] 78] 79 [80 |81 82] 83] Ba] 85| 86|87 [88]89 [90 [91]92]93 |94 95[96197[96199‘

The first thing we must do is to decide where we wish to place the data that
will come in from tape, Having decided to place the first character at 1000, we
can visualize how the data will fall when it is actually brought in (see figure),
In addition, we must remember that this program that we are writing must be placed
into memory after it has been written, so that the control logic can follow it
step by step. For this reason, we decide to place the program in memory starting
at location 1500 when we read it in,

00 01 02 02 O4 OS 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

10 4 3 6 7 5 0 0 0 3 2 41 3 7 5 6 4
AN e AN ~ S~ A

Acct # Int Bal

Each instruction will be made up of 10 characters, The first character tells the
computer what to do and is called an operation code, the second character might or might
not contain an additional piece of information depending upon the instruction, the
next four characters form the first address, and the last four characters form the
second address,

The read instruction has an operation code of "R", The first address tells where
to place the first character, The characters will then fall in sequentially until
the gap is sensed, The second address is ignored, but we still have to tell the
computer one additional piece of information and that is the tape station that holds
the magnetic tape containing the data, For purposes of our problem, we will say that
the tape is mounted on tape station 1, OQur instruction therefore would be:
Supplity & By ool eedey e Memertt
R 1 1000 0000 Read in the data placing the first character at 1000,
The data is on tape 1,

The add instruction has an operation code of "+", The addition will take place
from right to left, so we must indicate the right hamd end of each operand, We want
to add to the balance, so we will mention this first, The second address will give
the location of the right hand end of the interest, The computer must also know
when to stop, and we'll specify the number of characters to be added in the information
digit, Our 1nstruct10n will be:

Fﬁ¢ by’ e by ianed el
GRASE G O 1016 1010 Add the six characters of the interest to the six

characters of the balance,

The write instruction has an operation code of W, It will be necessary to tell
the computer the left hand end and the right hand end of the sector to be written

and also the tape station to be written to: . %(o
u_)?'v"’.) 3;
L
W 2 1000 1016 Write out the data from 1000 to 1016 to tape unit 2, :";’M~
LN o H
rec:id

The last instruction simply wants to indicate that the computer must execute the
read instruction again, So far we have written three instructions and we have stated
that the program will start in memory at 1500, A summary would look as follows:

IT11I-5

e i DO e e e te oA e aa

S i ~
location instruction
1500 R 1 1000 0000
1510 + 6 1016 1010
: 1520 W 2 1000 1016
pert

b
g
]

The thing we must tell the computer is where to find the next instruction to
be executed, That instruction is located at 1500 - 1509, the opsration code at 1500,
This transfer instruction therefore will have an operation code of 1, and the first
address will be the address of the next instruction to be executed, Everything else
will be ignored, The entire program will therefore appear as follows:

it prepared as input to the computer

location instruction
1500 R 1 1000 0000
1510 + 6 1016 1010
\‘? f) 1520 W 2 1000 1016
B 1530 1 0 1500 0000
a3 o -
;»‘x Having written this program, we would have

-~ (either punching cards or paper tape) and would

have the operator cause it to be

read in from the media to memory so that the first character would fall at 1500, Then
we would instruct the computer as to where it will find the
1500, Having mounted the input data tape on trunk 1, and a
we have only to hit the start button and the computer takes
that the computer is not the "giant brain” of publicity but
which must be told step by step what to do and also must be

first instruction, again
blank tape on trunk 2,
control, Remembering
rather a "giant idiot"”
able to "jot down'" every-

ED thing it must rememher, we must first mention that the computer has scratch pads

called'"registers", {There will be a register to keep tr

dress of

n next instruction to be executed, a second to tell what to do, a third tg,hold~ihe

information character, a fourth to track the first address,.and a fifth to track the

$j second address, [For Sme11c1ty sake, let's name these registers the Program register
(since it trac he program), the Operation Code register, the Information register,

The First Address register, and the Second Address register,

We have already stated

/ that we manually placed in the Program register the address of the first instruction,

fs 1500, By hitting the start button, the computer knows that it must read the 10
characters in memory between 1500 and 1509 in order to know what to do, This it does,
placing the information in the appropriate registers, and increasing the program
register by 10, in order to address the next instruction which it is to execute,

The computer then has in the Operation Code register an "R",

which tells it to read;

in the Information register there is a 1, which indicates that the information to be
read is on tape trunk 1, and that the computer must place this tape in motion, The
First Address register holds the location to receive the first character (1000) and
the data, as it is read by the tape station, is transmitted into memory at the loca=
tion designated by the First register, As a character is placed in memory, the
register is increased by one in order to address the location to receive the next
character, The Second Register is not needed for the execution of this instruction,

When the gap (that separates the data records on tape) is sensed, the Read is
completed and the computer refers to the Program register to find the location the
-next instruction to be executed, This time the Operation Code register will hold
a +, which indicates addition; the Information register a 6, which tells how many
characters are to be added; the First register 1016, which is the address of the
least significant digit of the augend; the Secondregister 1010, which is the address
of the LSD of the addend; and the Program register 1520, which is the address of
the next instruction to be performed once the addition is completed, When the addition

I11-6

begins, the computer knows which characters to add together, because they are
addressed by the first and second Address registers. It knows where to place the
sum, because the computer will simply wipe out the augend with the sum. As each
set of characters is added together, the First and Second Address registers will
decrease, in order to address the next set and the Information register will also
decrease by one in order to be able to tell the computer when the entire field has
been processed.

The third instruction will write the information out to tape. The computer \
knows that it is to write, since the Operation register contains a W, which was
addressed by the Program register. The other registers contain the tape unit (the
2 in the Information register), and the left and right hand ends of the sector of
memory which contains the data to be transcribed to tape (the left hand address in
the First Address register, and the right hand address in the Second Address register).
The Program register, at this point, will hold 1530, so that it will be able to pick
up the next instruction. Tape trunk 2 will be activated and the first character will
be picked up from memory and sent to the tape unit. The First Address register will
increase by one, and the second character will be written out to tape. This process
will continue until the character addressed by the Second Address register has been
written to tape, at which time the computer will again look to the Program register to
know what instruction is to be executed next. —

This time the Operation Code register will tell the computer to change the contents
of the Program register (which holds at this point 1540) by transferring the contents of
the First Address register to the Program register. This is all the computer must do to
execute this instruction, but note that when it again refers to the Program register to
determine where the next instruction is located, it is told to pick up the instruction
at 1500, which will begin to repeat the process again.

The one point which must be remembered is that the tape which contains the data to
be processed (as well as the output tape) has moved as a result of reading in (or writing
out) the first data record, When we repeat this read, therefore, the second data record
will be brought into memory and subsequently processed and written out to the output tape.
When all the data records have been processed, we will have two reels of information: the
original information and a reel of new, updated information.

I11-7

2; poe s
Nes s
\Wwole = N e L
IV— RCA 301 EQUIPMENT s U R

When we discussed elements of a computer, we broke the description into five parts.
Now that we are about to discuss the elements of a particular data processor, the RCA
301, we will follow the same format.

INPUT:
-

One of the features of the RCA 301 is that any individual customer may design his
own system with regard to input-output requirements. Data may be fed into memory by use
of :

1) Cards

2) Paper Tape

3) Magnetic Tape

4y Data Record File

5) Data Disc File

6) Interrogating Typewriter

There are two models of Card Reading equipment in the RCA 301 system. %Eﬂs

The Card Reader has the ability to read and translate 80 column EAM cards up
to a rate of 600 cards per minute. The reading takes place column by column, the
data in each column being translated and placed into memory as it is read. 1If
translation is not desired, depression of the BCT (Bypass Card Translation) button
will allow binary reading of a card into memory. Two characters will be placed in
high speed memory for each of the 80 columns on the card. Thus, 160 high speed
memory locations would be necessary. Accuracy is maintained by two reading stations
_which read the data twice and compare it by hole count, If a 600 card-per-minute
rate is maintained, there is approximately 20 ms of free computing time between
cards. The Card Reader can be instructed to maintain a 300 card-per-minute rate,
resulting in 120 ms of free computing time between cards. Only one Card Reader can
be attached to an RCA 301 system.

The Card Reader/Punch has the ability to read and translate 80-column EAM cards
up to a rate of 800 cards per minute. The reading takes place row by row, the
data in each column being translated to RCA 301 code and placed into memory as it is
read. 1If translation is not desired, it is possible to obtain a representation of
this card data by placing 12 information bits (two characters) in memory to represent
each column. This is instruction controlled. Thus, 160 HSM locations would be needed
for the read-in area. Accuracy is maintained by two reading stations which read the
data twice and compare it by hole count. If an 800 card-per-minute rate is maintained,
there is approximately 10 milliseconds of free computing time available per card cycle.
When the read-release feature is programmed, an additional 21 milliseconds of free
computing time is available per card cycle. The card read feed hopper holds 3000 cards.
Three of the five 1000 card capacity output stackers are subject to program control.
Only one Card Reader/Punch can be attached to a 301 system.

The paper tape reading equipment includes the Paper Tape Reader/Punch and the
Paper Tape Reader.

The Paper Tape Reader/Punch is mounted on one base and can both read and punch
at a rate of 100 characters per second. This unit will read and punch either 5
channel or 7 channel paper tape. Packing density is 10 characters per inch and tape
speed is approximately 10 inches per second. The reader stops on a character and is
positioned to read the next character.

The Paper Tape Reader is capable of reading either 500 or 1000 characters per
second. It will accept 5, 6, or 7 level paper tape depending on a switch setting.

Iv-1

At the 500 character per second rate, the Readetr stops on a character and is positioned
to read the next character, When reading at the 1000 character per second rate, the
Reader stops in a position to read a character at a maximum of 0.3 inch (three sprocket
holes) from the last character read. Packing density is 10 characters per inch and the
tape moves at either 50 or 100 inches per second,

Magnetic tape is read by a device called a tape station or tape deck. It is

possible to have several q}iferent types of magnetic tape.
TEL

The first is the%Higﬁ Data Tape Grouj The High Data Tape Group is composed of a
cluster of six tape stations. Up fto two clusters can be attached to a 301 system.
Two 8'" tape reels are mounted on each station; one a supply reel and the other a take
up reel., Each reel accomodates 1230 feet of 1/2 inch wide oxide coated plastic tape
of which 1200 feet are usable. Each tape station can be read in a forward or reverse
direction or written to in a forward direction. Since packing density is 333.3
characters per inch and tape speed is 30" per second, the tape station reads and
writes at a rate of 10,000 characters per second. Once a tape has been processed, it
can be rewound at a rate of 90" per second. Information on these tapes is separated
by gaps. These are approximately 0.34 inches in length. Only one tape station in
each cluster can be addressed at one time since only one electronic unit services
all six of the tape stations in the cluster.

Another type of tape unit which is available with an RCA 301 System is a
high speed tape station. There are two models available -"33KC and=66&C.

The 33KC tape station records data at a density of 333 characters per inch
and the tape speed is 100 inches per second. Gap size is a minimum of .45 inches.
33KC tape stations may be incorporated in an RCA 301 System through Tape Adapters
Dual Tape Channels or both. The Tape Adapter connects a single tape station to
the Computer and an RCA 301 System can have a maximum of two. Two models of the
Dual Tape Channel are available which will each operate up to six or up to twelve
tape stations respectively. A maximum of fourteen 33KC tape stations may be
attached to an RCA 301 System.

)

The 66KC tape station records data at a density of 667 characters per inch and
the tape speed is 100 inches per second. Gap size is a minimum of .55 inches. 66KC
tape stations may be incorporated in an RCA 301 System through Tape Adapters, Dual Tape
Channels or both. The Tape Adapter connects a single tape station to the computer and
and RCA 301 System can have a maximum of two. Two models of the Dual Tape Channel are
available which will each operate up to six or up to twelve tape stations respectively.
A maximum of fourteen 66KC tape stations may be attached to an RCA 301 System.

Both the 33KC and the 66KC tape stations use 3/4" oxide plastic tape. A tape reel
contains 2400 feet of tape, 2300 feet of which are usable. All characters on these
tapes are dually recorded (Each 7 bit character is recorded twice, side by side, across
the width of the tape.) When a character is read, both sets of 7 bits are overlayed
and the resultant character placed in memory. This procedure, used in addition to
parity checking, greatly cuts down the number of computer stops due to the inability to
read a character, without cutting down the accuracy of the information.

The Data Record File contains 128 magnetic coated records which can have informa-
tion recorded on both sides (up to 4 1/2 million characters). The surface of every
record has two bands each containing 10 cells of 900 characters each. Information is
recorded in serial fashion in a spiral pattern around the record. Characters may be
transferred from the Data Record File to HSM in blocks of from one to ten cells at a
time. The rate of transfer is 2,500 characters per second. Up to six Data Record
Files may be used in an RCA 301 system, Parity is checked on the information to be
written on the record and on the address of the data to be selected.

Iv-2

The Data Disc File can consist of from one to four modules. Each module consists
of six data discs with recording on both sides. There are 9 zones of 128 tracks on
each disc surface, and each track contains 10 sectors of 160 characters. The total
capacity of one module is 22,118,400 alphanumeric characters. One instruction can be
used to transfer blocks of from one to ten sectors from the Data Disc File and HSM,
When the strata concept of data organization is utilized, associated records of data
stored within related tracks of each zone on each disc surface are accessible to
a single file positioning. There are 108 related tracks per module for each strata.

Information is recorded bit-serially in each track. Each zone has one read-write
head serving 128 tracks. All read-write heads in a file are moved simultaneously so
that when an arm is positioned to a particular track in a particular zone, all arms are
positioned to the corresponding track within their respective zones.

A Data Disc File can consist of from one to four modules. Two Files can be
used in an RCA 301 System giving a maximum capacity of 176,947,200 characters in
steps of 22,118,400 characters. If two Files exist in the system, both can be
transferring data to or from the High Speed Memory at the same time, one in the
Normal Mode and one in the Simultaneous Mode.

A parity check is performed on the information to be written on the disc and
on the Information read from the disc. A check is made to determine that the positioner
is on the correct track of the disc. Conversion from bit-serial to character-serial
operations are checked by a bit counter.

The Interrogating Typewriter, under Program Control, permits an operator to
enter information via its'! keyboard to the RCA 301, and to receive typed informa-
tion from the computer. Programmed routines process the interrogations and information
can be extracted from either magnetic tapes or storage or can be computed by sub-
routines. Data transmission speed is up to 10 characters per second.

On the Quiput side of the picture we find:

1) Cards

2) Paper Tape

3} Magnetic Tape

4) Data Record File

5) Data Disc File %% -3¢
6) Documents

7) Monitor Printer

B gl vELETeN

Two models of Card Punching equipment are available in the RCA 301 system.

The Card Punch punches by row at a rate of 100 cards per minute. Accuracy is
maintained by reading the card once it has been punched and comparing the hole count.

The Card Reader/Punch has the ability to punch cards either binarily. or in
Hollerith code as designated by the computer program. Cards are punched at a rate
of up to 250 cards per minute. Accuracy is maintained by reading each card after
it has been punched and performing a hole count check. There is a maximum of
22.5 milliseconds of computing time available per card cycle. When the punch-re-
lease feature is utilized, an additional 37 milliseconds of computing time is
available. The punch feed hopper holds 1200 cards. Three of the five 1000 card
capacity output stackers are Subject to program control, Only one Card Reader/Punch
can be attached to a 301 System. Stsc¥X ar Helec T

The Paper Tape Reader/Punch and the Paper Tape Punch produce 5 or 7 level,
even parity, punched paper tape at a rate of 100 characters per second. Packing
density on tape is approximately 10 characters per inch and tape moves at approxi-
mately 10 inches per second. The punch stops in a position to punch a character
a maximum of 0.3 inches (three sprocket holes) from the last character punched.

ets
ot

e {vz;‘*\\r“‘*‘, RS o /: C Y rag

A ern LnEwa < Iv-3
N o eeiet Lo RS)

L RS e .
W T e AR RS
Y

Magnetic Tape, the Data Record File and the Data Disc File have been previously
discussed.

Output documents are prepared on the Qp-Line Printer. There are two models
available in the RCA 301 System. The important differences between the two are
1) the number of characters that can be printed per line, and 2) the number of lines
that can be printed per minute. One model prints a maximum of 120 characters per
line. The printing rate is up to approximately 1000 lines per minute in the Synch-
ronous Mode which permits thé printing of 47 selected characters. In the Asynchronous
Mode which permits the printing of 64 characters, the printing rate is up to approx-
imately 800 lipes per minute. The second model prints a maximum of 160 characters
per line. The printing rate is up to approximately 1070 lines per minute in the
Synchronous Mode and up to approximately 835 lines per minute in the Asynchronous
Mode. The following characteristics are common to both printers:

1) The On-Line Printer is a transistorized device which prints data
directly from the High Speed Memory to prepare output documents.

2) Data editing is accomplished by the computer via a stored program.

3) Paper advance is controlled by the computer program, either directly
or through a tape loop in the Printer.

4) Ten characters are printed per horizontal inch and six lines per
vertical inch.

5) Paper stock may be single or multiple sheet fanfold. One original,

plus 5 carbon copies may be used. Hecto and multilith master stock
may also be used.

[5 Y A ST B c)*?‘&‘o - . .
RO ““>”fh the Synchronous Made, the On-Line Printer will print 26 letters of the
English alphabet, the numerals (0 to 9), and the following 11 punctuation marks and

| ﬁrf"~‘1*"irw"'°"‘symbols for a total of 47 available characters.
& cen
Aot CR credit / virgule space

! apostrophe X lozenge , comma

* asterisk - minus . period

& ampersand + plus
2 for R N T AT 2 g O

In the chronous Mode, the On-Line Printer will print 26 letters of the

~‘£ﬁ“‘fé%nglish alphabet > the numerals (0 to 9), the above listed 11 punctuation marks and
+ .8ymbols, and the following 17 punctuation marks and symbols for a total of 64 availe
" ‘able characters.

R {\J R ’1{"\‘\&3“«

e @ at the rate of : colon $ dollar sign
Sy % percent # number) close parenthesis
o " quote or ditto ; semicolon [open bracket

10 subscriptyg > greater than < less than

(open parenthesis $ divide = equal

] close brackets 4 up arrow

A maximum of 2 On-Line Printers may be included in an RCA 301 System.

The Monitor Printer is a typewriter-like output device operated under program
control. Characters may be printed at the rate of up to 10 characters per second.
Ten characters are printed per inch. Paper may be single or multiple sheets and up
to 17 inches wide. All the alphanumeric characters can be printed plus the following:

V-4

number @ at the rate of (open parenthesis

) close parenthesis = equal : colon
, comma % percent & ampersand

EB end block ; semi-colon EI end information
$ dollar sign " quote or ditto -
. period . 1SS + plus
* asterisk ED end data ‘EF end information
/ virgule -~ minus

A carriage return is effected by printing an RCA 301 "ED" or by setting tab

stops. 7ﬂ 5
F’ Nals e'g, ooa & [b Wﬁ: ff:”"“ i“ ;‘: ”?” w—’:?\l
& ¥ 4 : g
STORAGE :

There are two basic types of storage in the RCA 301 System:

1) magnetic core memory
2) magnetic disc

The core memory has a minimum size of 10,000 locations. This may be increased
to 20,000 or 40,000 character locations if desired. Each one of these character
locations is individually addressable and the memory cycle (the time it takes to
pull a character from memory and regenerate it) is 7 microseconds (7 millionths of
a second).

Magnetic disc storage (Data Record File and Data Disc File) have been previ-
ously discussed.

ARTITHMETIC:

The RCA 301 has the ability to do comparisons, allowing it to make decisions
as to magnitude, and to add and subtract using a table look~up method which will be
discussed in detail later in this manual. Logical instructions are also available.
Multiplication and Division must be handled by program or RCA supplied subroutines.

Iv-5

V — THE BINARY NUMBERING SYSTEM

The Binary Numbering System can be thoﬁght of as the language by which the
equipment in the RCA 301 System communicates with each other and processes the data
internally.

A numbering system is simply an orderly system of marks, used for making
quantitative measurements, which are controlled by a basic set of rules. The most
familiar system is the decimal system, which uses the ten marks (or Arabic Numerals)
0, 1,2, 3,4, 5,6, 7,8, and 9.

The first thing a person needs to know when working with a numbering system is
its "base". This term refers to the number of marks used in a particular system.
The decimal system operates on a base of 10; i.e., there are 10 different marks in
the system. The binary system has a base of 2. That is to say, there are only two
different marks in this system, O and 1.

Having learned the base of a system, the next step is to learn to count. The
three rules of progression are:

1) Knowing the sequence of marks, the rightmost number is advanced to the
next number in sequence. (From O to 1, from 1 to 2, from 2 to 3, etc.)

2) If the rightmost number is the last mark used in the system, it is
changed to the first mark and then we move to the next column to the
1eft and advance this number one mark in the system. (From 29 to 30,
from 79 to 80, etc.)

3) If this column to the left also used the last mark in the system, it is
returned to the first mark and we again move one column to the left and
advance one mark. (499 to 500, 999 to 1000, etc.)

Since these rules apply to all numbering systems, we can proceed to count
binarily:

0

1

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
ete.

Another concept which should be clarified before proceeding is the actual
meaning of a number. Considering the decimal system, which has a base of 10, we
could really say that the number 39 is 10 + 10 + 10 + 9. Another way of saying
this is 3(101) + 9(10%). (Remember that any number raised to the zero power is
equal to 1). 1In the same way, the number 589 is in realilty 5¢(102) + 8(101) +
9¢(109) = 5¢100) + 8(10) + 9(1). The same logic holds true in connection with the

v-1

binary system, except that here the base is 2. For example, the binary number
101111 could be thought of as:

1(2%) + 02" + 123) + 1(22) + 121) + 1(29).

Figuring this out decimally would actually give us the decimal equivalent of
the binary number:

(101111)2 =32+ 0+8+4+2+1-= (47)10

In summation, the meaning of a number, regardless of its base, is a succession
of columns, where each column to the left is omne power of the base higher.

BINARY CODE:

As has been stated previously the binary code is a system using only two marks.
For convenience we use the Arabic Numerals O to 1 as the two marks. The "base" of
this system is 2.

It was stated that this binary system is the language of the machines in the
RCA 301 system. What does this actually mean? If we forget our convenience in
using the Arabic Numerals O and 1 as the binary marks we can visualize the binary
code internally in the machines as: mno (0) a wire is not carrying an electrical
pulse or yes (1) a wire is carrying an electrical pulse; yes (1) a gate is opened
or no (0) a gate is closed; yes (1) a core is magnetized or no (0) a core is not
magnetized. 1In effect any two way condition can be treated in binary code as a 0
or a l.

Now because man does not think directly in binary, as he does in decimal,
these are a few methods provided for his use. You cannot glance at the binary num-
ber 101101101(p) and appreciate its relative magnitude, unless you can convert
these binary marks to a decimal equivalent. Likewise the decimal number 789 is
not readily converted mentally to its binary equivalent without the aid of a tool.
There are various auxiliary rules to convert decimal to binary number and conversely,

a. Decimal to Binary:
Take the decimal number 329(10) and convert it to its binary equivalent. The

method is to successively divide by two and retain the remainders of each division.
The successive list of remainders is the binary equivalent,

Example: Remainders
0 -1 1
2 1 -0 0

Starting from the last remainder the binary equivalent of 329(;0) = 1010010015,
b. Binary to Decimal:

This method of comnversion merely follows the earlier discussion of the column
values. In binary our base of two makes each column a value of two to a successively
higher power.

Examgle:

1010010019y from the previous example.

28 27 26 25 ol 23 2 51 50
10106 010 01

Only those columns with a one bit present are needed in the computation of the
decimal equivalent.

202 1 x1= 1
23- g8x1= 8
26 = 64 x1 64
28 - 256 x 1 = 256

329

c. Addition in Binary

There are only a few basic rules to remember in becoming proficient at addition
of binary numbers. These rules are:

Rule 1. 0+0=0

Rule 2. 0+1=1

Rule 3. 1+ 1 =10 (a 0 in the right column & a carry to the left.)

Rule 4, 1 +1+1=11(al in the right column & a carry to the left.)
Example:
1011011 = 91

B (10)

0010001 = 11(10)

1101100 = 108(10)

d. Subtraction in Binary:

Although there are several methods available for subtraction in binary the one
presented here closely resembles the method used by a computer. The first require-
ment is an understanding of a method of "complementing” the subtrahend. This is
done by changing all the O's to 1's and all the 1's to O's. If the subtrahend in
a binary subtraction is 1001101 the "complement" of this number would be 0110010.
These are the rules for subtraction of binary numbers.

1) Complement the subtrahend.

2) Add the subtrahend (complemented) to the minuend.

3) If there is a carry from the most significant digit, this indicates a
positive number and the carry must be added to the least significant digit.

4) If there is no carry, this indicates a negative number and the answer must
be complemented to obtain the correct result.

ExamEIe:
1) From 1011011 subtract 0110011

1011011 = 91
10
0110011 = 51510§
40¢10)

2)

a)

b)

c)

complement the subtrahend and the problem appears as follows:

1011011
1001100

adding these we obtain:

1 0100111

the carry indicates a positive answer and must be added to the result
0100111

1
0101000

(4031,

from 0011011 subtract 1001100

0011011 = 27 10
1001100 = 76 10
~49 19

a) complementing the subtrahend we have 0110011
b) adding we have

0011011

0110011

1001110
c) the lack of a carry indicates a negative result, so the answer must

be complemented giving 0110001 (49)10

With very few exceptions, we will not be concerned with the binary arithmetic
that the computer is executing. This previous discussion, however, has given us a
feeling of what is involved, which will prove useful as the course develops.

CLASS EXERCISE ON NUMBERING SYSTEMS

A,

Convert the following decimal numbers to binary:

.

ur E W N
.

24
26
47
86
104

Convert the following binary numbers to decimal:

Ul F W=
. .

1011
10100
101101
011100
111111

Add the following binary numbers.

1. 101 2, 0101
010 1010
4. 11111 5.
10101

Subtract the following binary numbers:

1. 111 2. 1001
001 100
4., 0111 5.
1000

10011
01111

11111
10101

11101
11001

11001
00111

Vi—- DATA LAYOUT

Data Layout, is different depending on the various types of input-output media.
In order to completely understand data layout it will be necessary to discuss each

type.

CARDS:

As was mentioned in the introduction to computers, information is punched into
these cards using a binary code. Each column represents one character, but since,
in most cases, more than one character is needed to indicate some useful data, a
number of adjacent columns will contain a “"field" of information. For example, on
one set of cards we find the following information:

Columns Data
1-8 account number
10-35 name
37-45 total deposits
4755 total checks
57-63 balance
65 one character code indicating overdraft if needed
67-72 date
Fixed Forwel
123 4[5 6 7 8]9]10 11 (2]13 1415 16]17 18 18 2021 22 23 4[25 26 27 28129 30 31 2233 3 35spT 38 30 aj 243 4 4a}48 5t 51 5253 54 545457 56 59 6061 62 6364 sspsnnn]uumspmnﬁ[—
ACCT. # || NAME TOTAL TOTAL BAL. 0| |DATE
DEPS. CHECKS
MMMBﬂrll#llﬂﬂ'ﬂMM[IMWGI][IEII]MWI]008I]MMI]MMﬂ[ﬂ_llo-ﬂtlllﬂMIJI)IIUMIIUDMDMUDI] 000j0000
123 4fs 5 7 sfafio 11 12§13 14 %5 1817 18 19 20[21 22 23 24[25 25 27 289 30 31 32183 34 3516 BT 38 38 40[41 42 43 A[4514GHT 4843 50 51 52{53 54 54557 58 59 68l €2 TR Rl Rk Rl
Tttt drr e nrrngn e nptrpp e I IRRRNERINUUIRIIERRI IRRRIIRRE

2222121122122

los 10 71 123 74 15 78§77 78 79 80

31333p333)3333

222202222§2f2220222202222012222§22222 222022 2022222222 2221222222022 2§42 222

2
1234567 8J901112[13 141516 7Il19&21222324@23212!]29”3!32}1334353 13!3!40414?13““6"H148k8505! 52|53 54 55]56457 58 59 60
3

3333J33SJF33333333333333333333333333333333333 3313333]33333333

44444 4)a444

69 70 71 1203 74 15 [T 18 19 80

5555Pp5551555§

SOl a4 8444844488 a)i qadadjaddadpaidaidadaidsdaddnd

12 34[586 7 8fsp01112]131415 16017 1819 20R1 Z2 23 245 25 27 289 30 31 3283 W 1516 BT 38 39 40 |41 42 43 |45 ’4049505152@35‘

55565[3555)5;5565{5555{5555[5555[5555[{95555(555/5]5555/{55535[5(5/55(5555555(43353

ESEGGGSGEEEEGGESEEEEGEGBGB

6
9 O 11 1213 1415 18{17 18 19 20{21 22 23 24[25 26 27 2829 30 31 3233 34 I5REP” 38 39 40[41 42 43 44 7 48149 50 51 52§53 54 5
1

R R R R IR R R IR RN I

646 6 6 66 6 6 6{6{6(6 6{6 6 6 6{6 6 6[66 6 6 6 6666p66E6666
- 57 58 59 safs1 62 6364 o9 70 71 723 74 75 767 78 79 80

IRRE] RRRIINEN

w—

66666666
12345618
IRV REN

Q1314 02-3S0d¥Nd TVH3INIO

IEER] ERREILER R

107120 14 /57647187380

99999983399

163 70 71 72[83 74 15 76177 78 19 B0

[8368/88888;88/880888888/8688/5888888808838
t23afssreplonnussiyesapeanprsanpynnpus

9¢99/9999)9P99(9999/9939;9998)9939(9599{999
323 als 5 788 fon iz ol 0 0 2ln 2 72 oabs 28 22 299 3 1 by s
T8BCO 73372 .

8868/88886[6/8{308i88383{58888888

7 38 J9 40 {41 42 43 44 145165 47 48 K9 50 51 5253 54 SSPGIET 58 53 60

9999/9999(3)5)9919999/999)3193399

> 38 39 40141 42 43 s MG 1T ankig 50 51 52153 54 o657 58 59 60

This same format will be followed by each card, and therefore the format is
fixed. That is to say, 26 locations have been left for a name. If any one name
should have fewer than 26 characters, it would be necessary to carry blank columns
to fill out the field. The balance has a 7 character field, so insignificant zeros
will be needed. For example, a balance of 64324 (read $643.24 although no dollar
or decimal symbols are carried) would appear as 0064324. Although the length of
each field is fixed, the different fields vary in size. For this reason, we say
that the information is in "fixed-variable"™ format.

Fi

ar

~
.

A card consists of 80 columns and 12 rows. We can further break down this
description by mentioning ‘that the rows are either numeric (rows 0-9) or zone
(X or 11 and Y or 12) where O also acts as a zone. This type of set-up is necessary
to allow all characters to be expressed. When discussing any decimal digit, a hole
in the proper row would be sufficient. To express the alphabetic characters, however,
we must combine holes. For example, the letters A-I are represented by the same
1-9 rows all of which have been overpunched (given a zone punch) with a "Y" or "12"
punch (top row). "~ Thus an "A" is a "Y" and a "1'; a "B" is a "Y" and a "2"; etc.
J-R also utilize the numbers 1-9 but with a zone punch of "X" or "11" (second row).
The remaining letters, S-Z, use the digits 2-9 with O acting as an overpunch. The
punctuation and special symbols are also shown in this manner, some even having
3 punches (a period is represented by a Y, a 3 and an 8).

Looking at our example another though occurs. How would we show a negative
balance? The card code indicates that a minus is shown by an "X" punch by itself.
By overpunching this minus over the least significant digit of the balance we can
then show a negative balance. For example, if our balance was a minus $5.92, it
would appear on the card as 000059K, since a 2 punch in combination with an X punch
would indicate a minus 2 for operational purposes.

In many cases, a number of punches may be placed in a column. These might not
have a legitimate translation when referring to a code sheet, but may have a signif-
icant meaning to the particular installation in which it is used. An extreme example
would be that one column were used to store the answer to 12 bi-state questions
(Male or Female, Married or Single, etc.)

At this point, it seems advisable to define some frequently used terms:

Lid - a bit is gingle binary digit expressed as either a "0" or a "1"

characier: a characierin the RCA 30] system is made up of its. These con-
sist of 6 information bits and 1 parity bit. The 6 information bits
are the unique binary configurations used to indicate the individual
numerics, alphabetics, and special characters. The parj it d

rac ur . In the RCA 301-machine code, we say
that parity is "odd", that is the number of 1 bits in a character

must be odd. If a bit is gained or lost, therefore, the parity will
be wrong and this will cause the computer to register a parity alarm
so that the character can be corrected. For example, the decimal
number O is known to the computer as 000000. Since there are 6 zero
bits in this character, parity must be a 1; the whole character would
be 1000000. The letter A is 1010001. The 010001 are the information
bits, the left hand 1 is the parity character. The bit positions are
called:

ZONE NUMERIC
2° o 23 22 51 0
The RCA 301 code was developed to allow the easiest conversion of

card code to machine code, in an attempt to keep cost and engineering
hardware at a minimum.

item; one charagter seldom indicates enough data, so it is necessary to

or \, gombine a nugber of cHALICLEIX tE™EIve one pertinent pigeg Qf in-

F:$\d' formation. An example would be a name, or another one might be a

. stock number. This may or may not be preceded by a special symbol

cep el %Q@ to indicate the beginning. This symbol is used primarily when the
D% riaey o data is variable, a term which will be discussed as a separate topic.

In addition, an item could contain sub-items; for example an employee
number might consist of a department. number, a section number and a
man number,

VI-2

Cralaatee T wf‘xﬁd 0B s, m [Pl
» N Bl ¥ L wy 2 !
Tamoen v Lo {Reis e s BESERE-F T -
resora. Fopoaw g wd;» - F". ‘; 1 é..

f\"}

, . ; e - ik . For example, all
the data pertalnlng to John Doe s saVLngs account would be one record;
in addition, all the records referring ke savings accountsmmguld be

ne file. Another example would be all the records pertaining to “to the
checking accounts. All records in a file must have the same format.
A file is terminated by a single control symbol called an EE_(End.qf
File). When this is sensed, it means that all the records in the file
have been processed.

record:
M

variability: data may be presented in three possible formats:

1) fixed Rese 0L, carta.n Pb'&‘ lang
2) fixed-variable
3) wvariable

If data must be fixed, it means that the computer on which it will

be processed has a fixed word length. For example, a computer with

a 10 character word means that instead of being able to address each
character, it is necessary to address 10 characters at a time. If
data is fixed-variable, it means that the same item in each record
must have a fixed length, but that different items may vary in length.
The card has a fixed-variable format.

Qﬁfxt A variable em zed to eliminate the need to carrs
ékefgvk - unnecessarx charag;g&g gggggm@amggggqs or 1n51gn1f1cant zeros) on
Q;“ o -~ tape, which would res ecreased input-output times. It allows
;i¢%1 e data to be carried at its significant length. For example, if
Q ﬁF‘Jiiéi a name is John Doe, that is all that is carried. A balance of 63457
N Q: " would appear just like that, without any insignificant zeros.
o
»ﬁr‘ The RCA 301 has the ability to handle data as fixed variable or as

variable.

The following example indicates the difference. Note the amount of
space that can be saved utilizing a variable format.

account number 8 characters maximum
name 25 characters maximum

" fixed: (10 character word length)

0012345678J0E_DOE 0012345679BOB_SMITH 001 "}
fixed variable:
12345678J0E_DOE 12345679B0B_SMITH 12345680JOHN_JONE!

variable: (symbol * needed to differentiate between items) :
e

H

*12345678*JOE_DOE*12345679*BOB_§MITH*12345680*JOHN_JONES*12345681*JACK_BROWN*123456 ,}

block: rghg$ggk is any number of characters (minimum 3) which appear on tape
“between two gaps.] A single record surrounded by gaps would therefore
be a block. Two records placed end to end, with a gap preceding and
a gap following, would be a block. ‘:An EF (which must be preceded and
followed by a gap) is a legitimate one character block, as is an ED:l

bol: The ED is a gopntrol symbol which serves a function similar to the EF

symbol. It indicates that the end of good data on this.resdeal.faRe,

‘has been reachedﬁthat the file has not been completely processed

VI-3

For example, a file might take up two reels of tape. The first reel
would have an ED as the last block; the last block on the second reel
(appearing immediately after the last record) would be an EF. e
ther ere no _other data the reel., the block after the EF would be
an ED. It is also possible tg ﬁgvg two files on.one.reel. The first
file woll®BETerminated by an EF, the second one by an EF followed
by an ED to indicate the end of gooa data on the tape

PAPER TAPE AND MAGNETIC TAPE:

Data on tape is also coded binarily; on paper tape, no holes represent the ones,
holes the zeros; on magnetic tape, magnetic spots indicate the zeros, the lack of
these spots shows ones. The information is separated by gaps. On paper tape this
gap must be a minimum of three character locations; on magnetic tape it is approxi-
mately .34 inch,

Information on RCA 301 10kc Magnetic and paper tape is coded as the complement
of the character in memory. For example, the letter "A"™ is represented in memory as
(1010001)5 but on tape it would be (0101110)7. The reason behind this is two fold.
To give the best possible accuracy check, information on tape should have even parity.
This is because odd parity would permit a character to be written on tape with only
one 1 bit, and if this 1 bit were lost, the character would become a gap. (On 33kc
tapes, parity is odd but the dual recording eliminates the difficulty of losing a
bit and not being able to read the character.) With even parity, however, it is
very unlikely that the two 1 bits (which would be the minimum amount in any one
character) would both be lost at the same time, so that even if one were lost, parity
would be incorrect and the computer would halt on a parity error. However, if even
parity is maintained, the decimal zero which has a code of (000000)9 would itself
be a gap. To prevent this from occurring, the entire character is complemented when
being written to tape from memory or being read to memory from tape.

TOTALS AND WEIGHTED AVERAGES:

It was mentioned that every record in a file must have the same format. There-
fore, by setting down the description of a file, we are in effect describing each
record in the file, 1If the file is variable, we must know more than the maximum
number of characters in each item; we must also know the average number of characters
and the percentage of occurance of these items. By multiplying these two factors
together, we have the weighted average number of characters in each item. This is
important, primarily for timing purposes. Figure VI-I illustrates a DATA SHEET
describing a variable file. Since it is necessary to carry the separating symbol
for positional purposes, unless there is no data after it for the remainder of the
record, it is necessary to add in these symbols. A file should normally be arranged
by decreasing percentages of occurances, therefore, it may not be necessary to carry
all of the separating control symbols. For this reason, we must determine how many
are necessary and we do this by employing the probability of occurrence. An example
would be best to illustrate this method:

VI-4

ITEM NO. % OF OCCURRENCE ACCUMULATED % OF OCCURRENCE

1 100

2 920

3 75

i 60

5 (breakpoint item) 4O (40 + 59 99

6 25 (25 + 34) 59

7 20 (20 + 14) 34

8 10 (10 + 4) 14

9 3(3+ 1D 4

10 1 1
211

Starting at the last item, figure the accumulated % of occurrence. Continue
to do this until you reach the breakpoint item. This is the item whose accumulated
% of occurrence is closest to, but less than 100%. Totaling the accumulated % of
occurrences you will get a percentage of occurrence for the control characters, in
this case 211%. This means that 2.11 control characters must be added to the 4
which will always appear (for the first four items) giving a grand total of 6.11
control symbols. Having developed the number of control symbols, add this amount
to the sum of the weighted average of each item and you will have the total weighted
average of characters in each record.

EXERCISE I

Organization of Data

1. Define the following:

a) Record -

b) Block -

c) Item -

d) Control Symbol -

e) File -

2, The master inventory file is a three reel file. What controls symbols
terminate each reel?

3. A record contains the following information:
Number of Characters Information
Max. Avg.
Stock Number 5 5 12345
Stock Description 20 10 GENERATOR
Balance on Hand 7 5 1000
Unit Cost 5 3 3275

&) E.D.P. DATA SHEET -
INPUT oUTPUT IDENTIFICATION DATE
X | rererence INTERMEDI ATE STOCK MASTER FILE 60-10-6
SOURCE USE SCHEDULE -
MABTER FILE
SEQUENCE DISPOSITION NO. OF MESSAGES
1 ORDER BY BTOCK NO. PEAK: / NORMAL:
DOCUMENT DESCRIPTION: -
TYPE: / SIZE: WIDE X LONG / NO. OF COPIES
REMARK S
{:5? { :g?' DESCRIPTI1ON . ::;.OF cu::::\ %Riﬁigk :zz:
1 STOCK NUMBER 9 9 100 | 9
2 BTOCK DESCRIPTION ~ 25 14 100 14
3 RBATANCE ON HAND 10 8 100]
h TOTAL ISBUED TO DATE 15 12 - 100 12
5 REORDER LEVEL 10 b 100 L
6 AMOUNT DUE IN \ 8 6 50 | 3\
T REJECTIONS PERCENTAGE 3 2 29 .50
8 . OBSOLETE CODE 1 1 5 .05
TGTAL CHARACTERS OF iNFORMATION 81 50,55
AUDED CONTROL CHARACTERS 8 6.1
.. TOTAL RCA CHARACTERS | 89 S 56,70
1E 24~

VIi-6

a) Compose this information in a fixed length record. (Fixed word length
10 characters.)

b) Compose this information in a fixed-variatle length record.
c¢) Compose this information in 301 variable.

4, Construct a data sheet for the following payroil file.. There are approxi-
mately 10,000 messages.

No. of Characters

-Description . _ Max. ézg.‘ % Use
Pay Pefiéd ‘ - 2 _ 2 1007
Man Number) 5 " 5 100
Tax Class 1. 1 100
Year to Date Earnings 6 5 v100
Year to Date Withholdings 6 ’ 4 100 _
Quarterly FICA ' 4 4 100
Gross Pay 5 4 100
Deductions
Bonds 7 4 . - 3 75

) Combined Charities 3 2 50

Major Medical Insurancev 3 - 2 35

o
[Or}

Automobile Insurance - 25

EXERCISE II ' - -

Create a data sheet for a payroll master file. The file is currently on
ledger cards and contains the following information: (Maximum and average lengths
have been determined). Assume you are setting up this tape file and may choose
any se€quence for each item. :

Maximum Average
o Name] . 20 - 12
Address 20 15
City ' 20 ‘ 15
Telephone Number 7 7
Job Title - 30 15
Job Classification Number 4 4
Employee Number 5 5
Department Number 2 2
YTD Municipal Wage Tax 5 I
Health Insurance 5 L
Automobile Insurance 5 L
Stock Ded. 4 L
YTD Gross 7 6
Quarterly FICA 5 -4
YTD Withholding 6 5

VIi-7

The criteria for sorting will be department number. Within each department num-
ber, messages will be in order by employee number,

500 employees live in the city and must pay the Municipal Wage Tax; 2000
employees have health insurance deductions; 1500 also have automobile insurance;
1000 have Stock Deductions.

There are 10,000 employees.

VI-8

VII — HIGH SPEED MEMORY
0¥ 20w ¥

Memory may contain either 10,000, 20,000, or 40,000 character locations.
Since each character consists of 7 bits, each location must be made up of 7 cores,
one core representing each bit. For this reason, we can say that memory is made up
of 70,000, 140,000, or 280,000 magnetic cores. These are held in 14, 28, or 56
matrices of 50 x 100 cores.

Discussing the first 10,000 locations first, it is obvious that each location
could be given an individual address, if we started counting at 0000 and continued
to 9999, The problem of addressing does not exist, therefore, until we desire to
address something in the second 10,000 character locations. To prevent having to
add a fifth digit to the address, we simply take the most significant digit of the
address and add a zone bit in 2%. For example, if we wanted to address the location
10,000 character locations away from location 7854, we would simply take the 7 (the
most significant digit), break it down to its binary code of 000111, and place a bit
in the 24 position yielding 010111. This character is a G, so the address is G854.
To address the third 10,000 locations, we take the MSD of the address and add a
zone bit in 2° position. To address the fourth 10,000 locations, we add zone bits
in 2% and 25 positions of the MSD of the address. The following table will simplify
this process:

2nd 10,000 3rd 10,000 Lth 10,000)

0 changes to & - (minus) " (quotes)

1 changes to A J /

2 changes to B K S

3 changes to C L T

4 changes to D M U

5 changes to E N v

6 changes to F 0 W

7 changes to G P X

8 changes to H Q Y

9 changes to I R Z

The term ''diad" will be referred to throughout the text. A diad is two cons

with an even address for the first locallop and an odd

eoutive JAM.localiaons
address foL.thowsecond.

For illustrative purposes, we will use our original problem of adding the
interest to the balance and indicate how the Interest Account Masters would appear
in High Speed Memory.

VII-1

VII-2

T E.D-P. DATA SHEET
INPUT OUTPUT IDENTIFICATION B DATE
REFERENCE INTERMEDI ATE INTEREST ACCOUNT MABTERS
SOURCE USE SCHEDULE
SEQUERCE DISPOSITION NO. OF MESSAGES
PEAK: / NORMAL :
DOCUMENT DESCRA, ,DiN:
TYPE: / SIZE: WIDE X LONG / NO. OF COPIES
REMARK S
BB sescnirTion A LR
1 ACCOUNT NUMEER 5 5 100 5
2 INTEREST AMOUNT 6 6 100 | 6
3 BATANCE 6 6 100 6
1,)
!
: e
|
— f -
TOTAL CHARACTERS OF INFORMATION 17 17
ADDED CONTROL CHARACTERS - -
TOTAL RCA CHARACTERS 17 1T
1E 245

€~TIIA

0s] 06| 07| 0809

10] 11]12]13] 14

15 16] 17[18] 19

20|§1|22]23|za

25(26|27) 28] 29

30 [31]32]33] 34

35/36|37] 38|39

40] 41[42]4a3]44

45/ 46)47[48] 49

< TNT

lor@— BAT —

—>

55]56]57] 58] 59

60] 61]62[63]64

65| 66| 67] 68] 69

70[71]52[73|7a

75|76 77]78] 79

ao[e!]ezlaalea

85|86 | 87| 88|89

90 [91]92]93]94

95[96[97] 98] 99

os]os]07]0a] 09

1011 12]13] 14

15[16] 17] 18] 19

20 [21]22]23] 24

25]26] 27] 28] 29

30[31[32]33] 34

35] 36 37 38] 39

40 | 41]a2]4a3]aa

45146 47[48] 49

55| 56| 57 58] 59

60| 61]62[63]6a

65| 66| 67| 68| 69

70 [71]72]73] 74

75]76]77] 78] 79

80 |81]82]83]8a

85|86 [87]88] 89

90 | 91[92]03]sa

95] 96|97 98] 99

os] 06[07] o8] 09

10] 11]12]13] 14

15] 16 17] 18] 19

20 |21] 22]23] 24

25|26 27] 28] 29

30]31]32|33] 34

35| 36| 37 38] 39

20 [a1]a2]a3]aa

45| a6[47] a8 49

55] 56] 57] 58] 59

0] 61]62]63[64

65 66] 67] 68] 69

70 [71]72] 73] 74

75[76]77] 78] 79

sole1]ez2le3]ea

85|86 | 87|88 89

90 [91]92]93]0a

95|96 |97/ 98] 99

05| 06] 07| 08] 09

10]11]12]13]14

15[16 [17 [18] 19

20 [21]22{23] 24

25[26]27] 28] 29

30[31{321}3[34

45] 46| 47] 48] a9

35(36|37 38)39

40 [a1]a2]43] 44

55] 56| 57] 58] 59

60] 61/ 626364

65| 66| 67| 68| 69

70 [71]72]73] 74

75]|76| 77| 78] 79

80 |81|s2|83]84

9091 [o2]03]0a

95|96]97[98] 99

es]se[a7]ae|a§

o5[06] 07| 08] 09

10] 11{12[13] 14

1516 [17 [18] 19

20 |21]22]23] 24

25|26]27[28] 29

30 [31]32]33) 34

353637 |38] 30

40 | 41]a2 a3]aa

a5]as[a7] 48] 29

55[56]57]53[59

60| 61] 62| 63|64

65]66] 67] 6869

70 [71}72[73] 74

75|76] 77| 78] 79

80 [81]82]83] 84

85[86 |67]88 [80

90 [91 [92[03]0a

9596 [97] 98] 99

05|06} 07| 08| 09

10]11]12{13] 14

15{16 {17 [18] 19

20 [21]22][23] 24

25]26] 27] 28] 20

303132} 33 34

35{36[37[38] 39

40 | 4142 |a3]4aa

45[46[47!48149

60[61]62]63]6a

65|66 67 68 69

70 [71]72]73] 74

75]76| 77| 78] 79

80 [81]82[83]84

85|86 |87 | 88|89

90|91|92193|94

95|96 |97]98] 99

55] 56] 57| 58] 59

05/ 06]07] 08 09

wof11]12[13]1a

15| 16]17 [18] 19

20 |21]22]23] 24

25|26|27] 28| 29

30 [31]32[33] 34

35| 3637 [38] 39

40 I41 [42 IABIIM

25 | 46 | 47] 48] 49

55]56[57[53[59

60[61[62]63]6a

65) 66| 67] 68|69

70 |71]72{73]| 74

75|76]| 77| 78] 79

80 [81]82[83]84

85[86[87188189

90 |91]92 93]0a

95[96[97][98] 99

osjosjo7] 0809

10] 1] 12[13] 14

15[1617 [18] 19

20 [21]22]23]24

30 [31]32[33] 34

35/36 [37 38 30

40 [a1 [az[a3]aa

a5 |a6]a7]a8] 29

25|26 27| 28] 29

55] 56| 57] 58] 59

s0]61]62]63]6a

65J66[67[se|e§

70 [71[72]73]7a

75]76]77[78] 79

80 [81]82[83| 84

85|86 |87 |88]8s

90 o1 [o2[o3]0a

95 [96[97]98] 99

o05]06[07[0a]0s

10] 11f 12]13]1a

20 [21]22]23] 24

25]26]27]28] 20

36[31[32]33[34

35[36 [37]38] 39

15[16[17] 18] 19

40[41]42}43]44

45|46 [47] 48] 49

55|56 57| 58] 59

6061 [62]63 |64

65 66] 67 68]69

70 {71]72{73]74

7576|7778 79

80 |81]82]a3]8a

as|s6 |87 |88 |89

90 [91]02[93 [94

95 |96 {97 98] 99

osloe[oylos]os

|o|11||z[v3114

15] 16| 17] 18] 19

20 |21]22]23]24

25]26]27] 28] 29

30 [31]32]33] 34

35|36 |37]38 39

40 | a1]42]43[4s

45|46 |47 28] a0

60/61]62{63]6a

65]66]67[68]69

70 [71]72]73]74

75]76(77[78] 79

80 |81[e2|82]8a

8586 |87 (88| 689

90[91]92|93]sa

95|96 [97]98] 99

85[56| 57| 58 59

FORM NO. 1223

oofo1]o02]03] 04
30 | ACCTH—»
’ 5051 [52]53] 54
00fo1]02[03[04
31 | PROGRAM —
50 |51]52]53] 54
00 [01]02]03[0a

32
50 [51 52| 53] 54
00 fo1[o2]03]04

33
50 |51]52]53] 54
00 [01]02]03] 04
50 [51]52]53] 54
00{o1]02]03] 04

35
50 [51]52[53]54
00 [o1]o2]03]0a

36
50 [51]52[53] 54
00 [01]02103] 0a

37
s0[s1[s2]s3]sa
00 [01]02 03] 0a

38
50 [51]52]53] 54
00 [o1[o2]03 |04

39
50 |51]52]53]54

TITLE:

BLOCK

28M 6-60

NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE

OF _

VIII - INSTRUCTION FORMAT AND
COMPUTER PROGRAM RECORD

The RCA 301 is a two address computer. This means that the individual in-
structions allow for two addresses. Due to the construction of the instruction,
it is possible to put in more than two pieces of information if necessary.

The format of the RCA 301 instruction is as follows:

1 a one character operation code that tells the computer what to do

2) a one character information bit, called "N", which gives various data
depending upon the instruction

3) two four character addresses called A and B

In summary, we have:
0P N AgAjAjA; BgB{B,Bj3
X X X XXX X XXX

An example instruction would look as follows:
N 4 1515 1689

This tells the computer to transfer 4 characters starting at location 1515
to location 1689, moving right to left.
——

This instruction conventionally is placed in memory so that its operatiomn
code falls in a location whose address is a multiple of 10, for example 1750. N
would then fall in 1751, the A address in 1752-1755 and the B address in 1756-1759.

To aid in the writing of programs, a standard form is available for coding.
This form is called the RCA 301 COMPUTER PROGRAM RECORD. On it there is room for
the program title, the coder's name, the date, remarks, and page notation. In the
body of the form there are a number of columns, a few of which we will discuss now,
the remainder to be mentioned later in the text when they become important to us.

The instruction itself is written in the columns marked OP, N, A and B.
Note that each position is numbered 0-9, and this refers to the address of the HSM
location which is to hold that particular character of the instruction.

The HSM LOCATION column should contain the address which is to receive the
operation code of each instruction. Again note that the "0" has been pre-printed
for programmer convenience.

The REMARKS column is for programmer use and should always be filled in to
give an English explanation of what that particular instruction is doing.

The BOX NO. column refers to the number given to a box on the flow chart,
(a picture statement of the problem discussed in another chapter) that pertains to
this particular instruction.

The FROM INST. LOC. (from instruction location) box must contain the address(es)
of any instruction(s) that transferred to this particular instruction. For example,
in our initial interest problem, the last instruction transferred the program back
to the Read instruction. The address of the transfer instruction would then be
entered in the From Inst. Loc. line of the Read instruction.

VIII-1

Pretending for the moment that the instructions we discussed as example in-
structions were, in truth, RCA 301 instruction, the Program Record sheet would
appear as follows:

VIII-2

€-I1IIA

TITLE INTEREST PROGRAM .
CODER~ L. BATLEY DATE 10-6-60
REMARKS PROGRAM RECORD EXAMPLE SEGMENT NO.
FROM NO. : I‘E OP| N A REFERRED
'5322 |?~1';. Logi":lou 53 0 1_21; 4ls|sl7]8]9 33 REMARKS BN°°)f
1 ololo]r|1]|1]o]ololo]lo]o]a READ RECORD FROM 1 1
ofolol+l6|xlofrl6]r|o]r]o |ADD INTEREST TO BATANCE 2
ofojofw|a|1|o]olo |10 |1 |6 WRITE UP-DATED RECORD TO 2 3
ofofolrlol2z|? {o]olo]o|o|o TRANSFER PROGRAM BACK TO READ "
ofo|o '
ofo] o 1
'6 ofo]o «
‘ ofo | o
ofo | o
ofo|o
cfo{o
ofo]|o
I«s ofolo
ofo | o
ofo]| o
ool o
ofo|o
ool o
-
6 olo]o
ofo] o
ofo|o
oo | o
oo o
offo [o
IE 1224 REV. 8-60 PAGE 1 OF 1

IX — OPERATING LOGIC

When the program has been written, prepared as input and read into memory,
how does the computer operate on it? As in the case of human beings, the computer
has many "memory devices" called registers. These help it to keep track of what
it is doing. A few of the most important ones are discussed below:

The OP register is a one character register that holds the operation code of
the instruction being executed.

The N register is a one character register that holds the N character of the
instruction being executed.

The A register is a four character register that holds the A address of the
instruction being executed.

The B register is a four character register that holds the B address of the
instruction being executed.

The P register is a four character register that keeps track of the program,
by holding the address of the next imstruction to be executed.

The Memory Addressing register is a four character register which addresses
memory .

The Memory register is a two character register which holds the contents of
the diad addressed by the MAR in order that they may be worked on.

Bus Adder is a device which has the ability to increment or decrement the
operating registers by 1 or 2.

Using our example (at location 1750 we have an instruction which reads
N 4 1515 1689), let us investigate the operation.

First of all, we must place the address of this instruction into the P register.

We could do this from the console. Then, by hitting the start button on the console,
the computer takes over.

P_REG
1|7]5|0

The contents of the P register fall into the MAR

b P11]7]5 |0
; l |
52{
a

1 vvl‘k
Y MAR| 17 |5|0

The diad 1750-1751 is pulled from memory and placed intc the MR. At the same
time the characters are regenerated so that they still appear at 1750 and 1751.

Hsm | N

From the MR, - these characters are placed in their respective registers; i.e.,
OP and N.

MR| N | 4

T_‘
OP| N N 4

At the same-time, the Bus Adder has added two to the P register contents.

BUS ADDER P REG

1750+2=1752 —= 1 |7 |5 |2

The process is repeated four more times, allowing the entire instruction to be
staticized (to pull an instruction from memory and break it into its component parts,
placing each in the appropriate register). Igg_gxnaa&swﬁtsalﬁ%ﬁake&vgugwmﬁm9w¥-

cycle (pulling the characters out and lacing them in Eggmgggkﬁgggg) Since the
‘0cess 1s executed ftive imes, staticizin "f8kes a total of 35 microseconds (35
4 mllllonths of a second).
et f\m f’& -~

per Sreh .z,asjruc'?wq

Pl1|7]5]2

MAR | | |7 (|5]2
17 50 51 52 53 54 55 56 57 58 59

HSMIN |4 |1 |[5]|1[|5]1]|6]|8]9

5 éBUS 1752+ 2= (754

| |7]5]4

1X-2

17 50 51 52 53 54 55 56 57 58 5%
HSM | N | 5|1 [e]8]9
MR | I |5
aAlils|i]s
BUS -

AoDeR |[754+2=1756

Pl1[7]5|6
Mar[1 [7]5 |6 |

7 50 51 52 53 54 55 56 57 58 59
HsminTa T1 [s5]1[5]1 (68|09

-~

MR[| |6

B[16
BUS T
BUS (175621758

Pl 1758
Mar[1 17 (5 [8

IX-3

50 51 52 53 54 55 56 &7 58 59

HSMIN (4 |1 |5 |1 |5 |1 (6]|8|9

ks I758+2= 1760
S &
$ PlI |76]0

After staticizing, we find that the OP register holds our operation code (N,
The "N" register holds a 4, the A register holds 1515, and the B register holds 1689,
In addition, the P register holds the address of the next instruction to be executed
(since this is a sequential machine), 1760. We are ready to execute this instruction.

The N in the OP register tells the computer that we want to transfer data right
to left. The content of the "N'" register is not zero, so the instruction begins to
execute, The A register contents are placed in the MAR and the character addressed
is pulled out to the MR.

The Bus Adder decreases the contents of the A register by 1. The contents of
the B register are placed in the MAR register and the character in the MR is placed
in memory at this location. The contents of the B register are then decreased by 1
as is the content of the "N" register. Again, "N" does not equal O, so the process
is repeated. When N finally equals zero, the staticizing of the next instruction
will begin.

?

OP N
N 41 (1 (5|1 (5] |l |6|8]9

MAR| | |5 | {5

IX-4

HSM
15

@

14 15

@
o

MR

MAR
HSM
15

MAR

87,

6]

88 89

(o))
~

B
|| 4 | {6
B
13 I | 6

IX-5

87 88 89

MAR| | |6 |8 |7

- HSMjre 13 Tie Tis
IS

MR B

MAR| I |5 |1 |2

Ix-6

HSM IZA

i3

87

MR

6|8

MAR

HSM
15

3

87

MR

P REG

MAR

IX-7

X — AN INTRODUCTION TO FLOW CHARTING

A flow chart is a pictorial representation of the logical steps required to
perform a task. Once completed, the problem need only be coded following the
specifications of the flow chart, in order that the machine may understand its work.

There are three types of flow charts.

The first is called a "systems flow chart®. It is a diagrammatical represen-
tation of the sequential steps which must be performed in order to accomplish the
complete data processing application. The analyst prepares this in order to de-
termine what the input will be, what output is expected, and what types of data
processing are necessary to derive the required output from the input.

The second type is a "functional flow chart'. This is prepared by the pro-
grammer to show the general data processing steps which must be accomplished. The
word "general” in this context means just the actual work to be accomplished with
no reference to particular equipment. For example, a functional chart might contain
a block called UPDATE BALANCE; in the corresponding detailed chart, this might re-
quire five or more computer steps to accomplish.

The remaining type is a detailed process chart" often abbreviated to ''detailed
chart"”. The detail flow charting of a problem could actually be called the pro-
gramming, since this is where the logical thinking is required. It is this chart
that spells out the computer operations one by one. By utilizing this type of
presentation of the problem, the programmer has the ability to think through the
logical flow of the steps before having to concern himself with addresses, constants,
names, and the like.

The following is a picture of the RCA template. The symbols on this template
are the ones that are standard for all RCA charts.

O

\
C

0
O

In order to be more familiar with the symbols, a discussion of each of the
chart types of symbols follows:

SYSTEM FLOW CHARTING SYMBOLS:

Since the major function of a systems flow chart is to show the input and out-
put media, it is necessary to have symbols to show each type.

STORAGE MEDIA

Magnetic Tape

Paper Tape

Random Storage

< f; Documents
Lm } EAM Card

DATA PREPARATION

Tapewriter

((//:;\\\>' ’ Tapewriter Verifier
\,‘:y /4'
//
//\\\
TR \T> Tapewriter Reader

Reader Typer

Key Punch

Key Punch Verifier

OFF LINE PERIPHERAL EQUIPMENT

H-T-R

140 060

Hi-Speed Transmission and Reception Unit

Transmission and Reception Unit

Code Translator

PROCESSING OPERATIONS

Computer Operation
(Sort, Merge, and Extract operations
would be indicated within box.)

GENERAL RULE

Arrows should be used to clarify
direction.

FUNCTIONAL AND DETAIL CHARTING SYMROLS:

SYMBOLS AND SPECIFIC RULES

Tape Read or Tape Write (Magnetic and Paper Tape)
(Type of operation should be indicated within
symbol.)

Card Read or Card Punch

Random Storage Read or Write

Document Read or Print

Internal Computer Operation

(Internal computer operation boxes may be drawn
without separate vertical connecting lines pro-
vided there is only one point of entry.)

Decision

égga) To and From Connector (Numerically designated)

1. The No. within "To" symbol is the destination
box No.

2. The No. within "From" symbol is the box No.
transferred from.

3. More than one "From' symbol can be used if
one cannot indicate all "From" box numbers.

4. Comnectors that refer to a different page
should indicate the "referred to" page No.

5. "To" and "From" connectors are NOT numbered
externally,

X-4

Variable Connectors (Alphabetically Designated)

“ b 1. Variable paths are designated with connector
Al Ao letter with subscripted number,
2. "To" path of variable paths are designated in
{14 identical manner as "To' connectors.
3. Variable connectors are externally numbered.
Start

Normal or Error Stop

1.

2.

3.

PES # - Programmed ERROR STOP.
HALT # - Intermediate HALT.

EOR # - END OF RUN.

Closed Subroutine
(Designates entrance into, execution of, and
exit from designated subroutine.)

Assertion Box

1.

3.

Defines purpose of any operation or decision
box.

Indicates the box numbers that set variable
connectors.

Defines purpose of variable connector settings.

GENERAL RULES

1. Lines

A, Points of entry should be to the vertical line preceeding the box to be

entered.

B. Lines should be drawn in place of connectors whenever possible.

C. Lines must never cross-over.

D. Arrows are optional and used for clarification.

2. Other
A. External numbering of boxes should follow the actual coding sheets when-
ever possible,

B. Box sizes should be uniform but may be enlarged within reason.

C. Boxes enéompassing a subroutine should be titled above the first box.
The entire routine should be enclosed by a dotted line whenever possible.

D. Charting for subroutines not unique to the program need not be included.
E. Charts should be drawn to flow down and to the right whenever possible.

In addition to the template symbols, several written symbols are common. A
few of these are:

is greater than
is less than
equal

not equal

is compared with
replaces

sum of

letter O

digit zero
letter 2z

period

blank or spac
minus -

0] C)& C>¢>bﬂJ’u WAV

The following problem statement is used to exemplify what has been stated in
this chapter. It shows the development from ome chart to another, utilizing the
symbols discussed.

The problem is to prepare the payroll for 3000 employees paid on a weekly
basis, Each employee has an identifying employee number and the master information
for each employee is maintained on magnetic tape (1 employee per block) in ascending
order by employee number. For any one week, approximately 2500 time cards wmust be
processed to show the regular hours worked. In addition, there will be about 1000
overtime documents which must be processed. There will never be more than one card
and/or 1 overtime slip per employee. (An employee cannot work overtime, without
working regular hours.) The transactions are to be sorted and then a computer run
must combine the two types of tramsactions, preparing the information which is to be
posted against the master. This last updating is the second run. The output from
this will be an updated master and a printed payroll register, and the checks pre=-
pared on card punch.

SYSTEMS FLOW CHART

g ; Lo
penete Chw e |
. \ i . S
TIME w\r\g‘k‘ G \,.i,,';\«‘» A3 OVERTIME
— | ? SLIPS
do 4o ¥
SORT
SORT
]
RUN I :
COMBINE

TRANSACTION

RUN I1:

UPDATE
MASTER

CHECKS

PAYROLL
REGISTER

RUN I FUNCTIONAL CHART

IC >0T COMPARE TC<OT

SET UP O.T.

PORTION OF
TRANSACTION

RUN I DETAILED CHART

HOUSEKEEPING:
CLEAR READ IN AREAS

@

YES

IS THIS THE

LAST TC?

1

LAST O.T. INFO?

18 | TERMINATE TRANS.
REEL

IS THIS THE
LAST T.C. INFO?

19

TC<OT

T.C.EMP#

TRANSFER O.T. HRS.

> TRANS.AREA

TRANSFER O.T. RATE
—> TRANS. AREA

IS THE END

S TH
F THE OUTPUT
EL?

|
0
RE

12

IS THIS THE END
| OF THE OUTPUT
REEL?

The detailed chart for our interest problem would Yappear as follows:

READ
MASTER

ADD
BAL & INT

4

?‘i&rmg o Sease Lo EF =

~

XI— INTRODUCTORY INSTRUCTIONS Dc; ;{rnm;_ rew eost €

TAPE READ FORWARD NORMAL, ADD, TAPE WRITE NORMAL, STORE REGISTER

Having discussed most of the preliminaries, it is now possible to investigate
the specific format and operation of some of the instructions.

TAPE READ FORWARD NORMAL:

In order to be able to process any data, it is necessary first to bring the
data into memory. One instruction that accomplishes this is the TAPE READ FORWARD
NORMAL. The name of this instruction implies that it will read from tape moving
in a forward direction and the instruction will be executed in the normal operating
registers (OP, N, A, and B). As we have already discussed, when a read instruction
is initiated, the tape moves, so that at the end of the read the read-wrlte head
is sitting in the gap before the next block:

AS - .
5.\'1 BEFORE § ABCDEFGHI JKLMNOPQR STUVWXYZ }
gg\r,.nﬁ RA (Read hwete\Head cha.n“ (,z;x *a @.z'{o
AFTER JHI __ JKLMHCPQR _ STUVWXYZ 123456789 {
' RM

The operation code. of the RFN is 4,

—* Tage Stelion -0NE = shd=ns

The "N" character gives the unit addressed.

" Device First Unit Second Unit

Paper Tape Reader \ 8
Hi-Data Tape Group . 123456 ABCDEF
Tape Adapter:)

33KG J ‘ N

66KC L P
Dual Tape Channel (2x6) 123456
Dual Tape Channel (2x12) 123456 ABCDEF
Interrogating Typewriter U

Lohere de you want Yo plxe s \n e e s
The A address gives the HSM location to receive the first character

The B address gives the HSM location of the rlghthand end of the maximum read
in area.

Example:

We have a file of records containing 10 characters each, which appear on

Pt

tape as follows: F&iT’
zye
JOE_DOE_21 JIM_RAU_30 DON_RAY_07 E
The RFN instruction is: ‘ Eseh%wﬁ ?" -
4 3 1500 1509 !
- 4 Y
Y Ugen Compeun e Resds Left = & ?3“

O;Q\;*a Toagtessken - (Mébeest) X1-1 reuy Ceow ©3g Xe {:R\? ba svrk

3 » R ™ - LA L N \
Tegk 1w avtet A .w\"a‘:@\t‘;ﬁﬁgs P T de wAiows Ear B Vo o @ A o
nom . or7 - RN) k -~ Neees A oV de aer tetsent ey

A

3 {‘m J
N
The instyuction is staticized and tape.station 3 is activated. The tape begins

to move and obtains the proper speed (30" per second). The first character is placed
in the tape buffer and then transferred to the MR and then into memory at the address
designated by the A register. The contents of the A and the B registers are com-
pared. In our case, they do not match so the contents of the A register are in-
creased by 1. The next character is read in and placed, the registers are compared.
Again they do not agree, so the A register 1s increased by one and the process con-
tinues. After the tenth character has been placed in memory at location 1509, an
A-B equality is found. [?his causes an igg;ggzar to be éeF in order that the com-
puteT will be able to remember this condition?] The A register again is increased,
but when the tape station attempts to bring in the next character from tape, it
senses the inter-record gap. The—sapsing of thisigig_siyses,thgwinstrucpéggrto
terminate. -

ADD:

Since addition is essential to any %Pmputation, a very important instruction
is the ADD, w -8 & - \’?5

"~€‘% }‘.v K W
L PN
> z?\§? S

"N'" giyes the number.of characiers in each operand, which implies that the
operands must be of equal length. Obviously, if we were limited to the decimal
numbers, the maximum length would be 9 characters. Since this would be too limited
for our needs, there had to be developed a way to circumvent this problem. If we
examine the construction of a character, we can see that we have ability to express
all of the decimal digits from 0-9 with the right four bits:

The OP code is a +.

23 22 o1 0

0O 0 0 O 0
0 0o o0 1 1
0 0 1 O 2
o 0 1 1 3
0 1 0 0 i
o 1 0 1 5
o 1 1 0 6
o 1 1 1 7
1 0 0 o0 8
1 0 0 1 9

If we then take the remaining two bits, we can construct any number from 0-3:

5 4

== O ON
O = ON
w N = O

Combining the two, we can construct any number from 0-39. This plus 5 special
symbols give us a field limit of 44. To simplify the process, a table has been
developed, called the "N" table:

X1-2

N Count Symbol N Count Symbol N Count Symbol N Count Symbol
0 0 11 A 22 K 33 T
1 1 12 B 23 L 34 U
2 2 13 C 24 M 35 v
3 3 14 D 25 N 36 w
4 4 15 E 26 (o] 37 X
5 5 16. F 27 P 38 Y
6 6 17 G 28 Q. 39 z
7 7 18 H 29 R 40 EB
8 8 19 I 30 ! 41 , (comma)
9 9 20 - (minus) 31 / 2 %
10 & 21] 32 S 43 e (ISS)
44 =
Rionr Pagh Pegitrion o6 the Fiid
) = \S you W wh te

. s . f *
The A address gives the HSM location of the least significant digit of theuéﬁ'
augend (augend plus addend equals sum). This is also the address of the least
significant digit of the sum (the sum overlays the a‘gig%‘rgl)%:%gf oot om,

The B address givés the HSM location of the least significant digit of the
addend. L enping Foeld. - -
4 »

If an amount is negative, it will be indicated by placing a zone bit in the
25 position of the least significant digit. For example, a positive 5 would have
a bit configuration of 000101, a negative 5 would have a configuration of 100101.

Addition is ‘done in the RCA 301 by "table look-up". This simply means that
there are two tables stored in memory, a sum table between 0000-0099 and a
difference table between 0100-0199. The two digits that must be added form the
right hand two digits of the address. If the signs of the two operands are alike,
the lefthand two digits are 00, if the signs are unlike, the digits are 01.

If a carry occurs, one of the next two digits is increased by one.

If the signs are unlike, and the addend is larger than the augend, the entire
sum must be complemented before the termination of the operation, in order to yield
the proper result. For example, if we had the following problem the computer would
handle it by the following steps: '

1) ADD 23
Y

2) Using the difference table: * 81

3) *end around condition which requires complementation of 81, which yields
19

4) the answer is =19
Example:

Executing the following instruction, we will be able to follow through the
steps of the computer.

+§3 1999 1989

86 87 88 89 90 91 92 93 94 95 96 97 98 99
19 A 1 8 3 B C D E F G H 4_6 4

XI-3

Once the instruction is staticized, the least significant digits are examined.
Since the signs are alike, the sum table will be utilized. In order to compose the
address, another register must be introduced at this point. This is the D register
(Data Register) which is composed of two one character registers, labeled Dy and
D3 (due to the fact that they hold the right hand two characters of the address of
the sum). The A address falls into the MAR and the character addressed is pulled
from memory, placed first in the MR and then in Dj. The process is repeated for
the B address. D and D3 would then contain, for our example, 43, Since we are
using the Sum table, 00 will be added to this giving us an address of 0043, At
that location in the table, there is a 7, which is the sum of 3 plus 4. This:char-
acter will be placed into memory at the location given by the A register, namely
1999. The contents of the A, B, and N registers are decreased by one and N is
‘again sensed for zero. Since it is not zero yet, the process is repeated. The
address this time will be 0068, and at that location will be a 4. In addition, an
indicator will be set which will cause a carry to be added to the mext digits.

This 4 is placed at 1998. The registers are again decreased, and N is sensed.

Since it is not zero, the next address that will be constructed will be 0041. The
carry must be added in, so the address will become 0042. At that address, we find

a 6 which will be placed in memory at location 1987. [}gain the registers are de-
creased, but this time the "N" register indicates zero, which terminates the operat{gﬁﬂ

In addition, one more step is required before the operation is completed. This
is ti&??ﬂ?EfTﬁE’Bf one of three_indicators known collectively as the PRI's (Previous
} Result Indicators). 1Individually, these are the PRP (previous result positive),
PRN (previous result negative), and PRZ (previous result zero). This setting will
; indicate the result of the operation. In our case the result was positive (the sum
{"Egs plus 647) so that the PRP would be set.

ere is a carry be e D and the first Overflow
Indicator has already been set in a Computer containing only one Overflow Indicator,
the Computer stops on an alarm. When there is a carry beyond the MSD of the sum
in a Computer with a second Overflow Indicator and this indicator has already been
set, the Computer stops on an alarm.

The only allowable one zone bits in the operands of an addition for a processor
with up to 20,000 characters are in the 2% bit position of the MSD and the 2% and
25 positions in the LSD. The only allowable one zone bits in the operands of an
addition for a processor with 40,000 characters are the 2% and 25 bit positions in
the MSD and the LSD.

In single character operands, however, a one bit in the 24 position of either
operand causes an alarm stop.

TAPE WRITE NORMAL:
Once the data is updated, it will be necessary to prepare it as output. The
TAPE WRITE NORMAL instruction allows us to write to magnetic tape utilizing the

normal operating registers.

The OP code is an 8. - A

- SEENenN ¢ YR ANTAL A e o
"N'' again defines the tape unit (1-6, A-F, J or N, L. or P, 9 for the Paper |
Tape Punch, i Printer, or U for the Interrogating Typewriter. i

TR “l} ()?!i(et Win L ey b e e g g B
The ddress gives the HSM location of the first character to be written,
punched, or typed. -

W e'tes 6n@ Crerzemer ab f me Covwn Moo b, .
f‘ % 1 3 Dok o L2 Lomo ¥

XI-4

Thegg address gives the HSM location of the last character to be written,
punched, or typed.

Example:

N 44 W\#“;g

65 66 67 68 69 70 71 72 73 74 75?:‘&:&”»’%‘?
17RCA-301_EDP@~&&&§*J3TQ

We wish to write the following to magnetic tape: 3‘_ wi“‘"&‘, = F NESEASETIYA S

The instruction is
8 5 1765 1775

which says to write to tape on station 5 the information that falls in memory be-
tween 1765 and 1775. i

The instruction is staticized and tape station 5 is activated. The contents]
of the A register are placed in the MAR and the character addressed is pulled out
of memory and placed in the MR. From there it goes to the tape buffer and then to
tape. The contents of the A and B registers are .then compared. Since they will
not be equal, the A register will be increased by one and the process will continue
until A equals B. The A register will increase once more, so that it will end up
with an address one to the right of the last character written, in our case 1776.

STORE REGISTER:

As we've already dlscovered the P regls;er kgggg_;;guj& ofmbhe Rrogran, by

the e s] ‘ X d, It follows, therefore,
that lf we could modlfy the P'reglster"the 1nstructlons'wouldn't necessarily have
to be processed in sequential order. In order to do this, it must be possible to
address the P register, but since registers are not part of HSM, we must have an
instruction that will affect the registers, in this case the P register. This in-
struction is called STORE REGISTER. When we address the P register with a REG
instruction, we not only have the ability to store the present contents of the P
register, but also to place something new in that register.

In HSM there are some standard memory locations that are always used for the
same thing. One of these is called STP (store P). It is used to store the contents
of the P register before it is modified so that a temporary record can be kept of
the location at which the change was made (STP will contain an address 10 greater
than the instruction that made the change). The addresses of this location are
0216-0219, At this point, we will make a temporary rule that states that the
contents of the P register must always be placed in STP before the P register is
affected,

The OP code is a V.

N gives the register to be affected. At this point we are interested in the
P register, so "N' must be a 1.

The A address gives the right hand end of the area to receive the contents of
the P register, which we have stated to be 0219,

The B address is the address of the next instruction to be executed.
ey Gt R e Vi Mo

T G I AN
ST o ean e me ERd
1P [Twese Wreen O EE T

3 L. iow v Tews s
A2 “ TR SN oe. wetd 3 GXI=5 ekl ol in '

e

S i g ‘1?- . ‘A‘;: 2 ";f;a’% -%-—.
Tw Qg-“z}u‘i" BYED Vo ot s wwjoﬁw,?}

o 4ure “\V“"

Example:

We have just written a program that consisted of 10 steps. We decided to
place this program in memory starting at location 1700.

OP N A B
1700 X X XXXX XXXX
1710 X X XXXX XXXX
1720 X X XXXX XXXX
1730 X X XXX XXXX
1740 X X XXX XXXX
1750 X X XXXX XXXX
1760 X X XXX XXXX
1770 X X XXXX XXXX
1780 X X XXX XXXX
1790 Vv 1 0219 1700

The last instruction in our program is a STORE REGISTER instruction. It will
enable us to start doing the steps over again at 1700. Once the instruction has
been staticized, the computer will recognize that it must affect the P register.
The present contents of the P register (1800) will be placed in memory at STP
(0216-0219) and 1700 will be placed in the P register., The computer will then
start to staticize the next instruction, which will be the one located at 1700.

oP N A B
\Y I O|12|1]9 {700

) 2) ¥

02
STP| 118|100

Having discussed these four imnstructions, Tape Read Forward Normal, Add,
Tape Write Normal, and Store Register, it will be possible for us to write a
program which will solve our interest problem. As you remember, we were to add
the interest to the balance for each of the records.

Our first step would be to read in a record from tape 1 and place it into

memory from 3000-3016, as depicted on the HSM Record (page XI-9). This instruction

4 1 3000 3016

The next step would be to add the interest to the balance, so that the sum
becomes the new balance:

+ 6 3016 3010
The next step would be to write the updated record out to tape on station 2:

8 2 3000 3016

XI-6

is:

The last step would be to start over again with the read. We have stipulated
that the program will start at 3100. The Read will be at 3100, the Add at 3110,
the Write at 3120 and the Register at 3130, Since we want to transfer back to the
Read, our instruction will be:

A 1 0219 3100

To facilitate our writing of programs, we will use a 301 Computer Program
Record sheet (page XI-10).

Following through on our program we would have it prepared as input, and read
into the computer memory starting at location 3100. We would then set the P register
to 3100 (by use of the computer console) and hit the start button. The following are
the first two records we must process:

{ 13452000256034189 23546000150013550 S

The first record is read into memory starting at 3000:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
30 1 3 4 5 2 0 0 0 2 5 6 0 3 4 1 89

The next step would add the interest to the balance leaving:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
30 1 3 4 5 2 0 0 0 2 5 6 0 3 4 4 4 5

The next step would write this new record out to a new tape:

{ 13452000256034445 }

The Register instruction would put 3100 in the P register and the Read in-
struction would be executed again:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
30 2 3 5 46 0 001 5 001 3 5 50

The add instruction would result in:

00 01 02 03 O4 05 06 07 08 09 10 11 12 13 14 15 16
30 2 35 4 6 00015001 3 7 00

Writing this record out to tape we have:

{ 13452000256034445 23546000150013700]

The next instruction would transfer the program back to the read, etc.

XI-7

&

E.D.P. DATA SHEET

INPUT OUTPUT IDENTIFICATION DATE
REFERENCE INTERMEDI ATE INTEREST ACCOUNT MASTERS
SOURCE USE SCHEDULE
SEQUENCE BPSPOSITION NO. OF MESSAGES
PEAK: / NORMAL :
DOCUMENT DESCRIPTION: .
TYPE: / S1ZE: WIDE X LONG / NO. OF COPIES
REMARK S
ITEM | sus.) NO. OF CHARS. % occur-| wro.
NO. | No. DESCRIPTION e TR RANCE AVG.
1 ACCOUNT NUMBER 5 5 100 5
2 INTEREST 6 6 100 6
3 BALAKRCE 6 6 100 6
L
TOTAL CHARACTERS OF INFORMATION 1T 17
ADDED CONTROL CHARACTERS - -
TOTAL RCA CHARACTERS 17 17
1E 245

XI-8

00({01{02|03|04

05/ 06| 07] 08| 09

10 11[12]13] 14

15| 16] 17] 18] 19

20 |21[22]23] 24

25/26]| 27| 28] 29

30]31]32]|33] 34

35[36]57|3SJ39

40| a1]a2]a3[44

45| 46] 47| 48] 49

—TAL

—»

55] 56| 57| 58] 59

60| 61{62[63 |64

65| 66| 67| 6869

70 [71]72]73]74

75]76| 77| 78] 79

so[a1]82]83] 84

85| 86| 87| 88[89

90 [91[92]93]94

95][96]97]98] 99

05/ 06]07] o8] 09

10[11[12}13] 14

15[16] 17{ 18] 19

2o|2‘|22[23]24

25[26{27|25129

3013\]32]33[34

35|3s[37] 36[39

40 | a1]a2]4a3]aa

45[46]47[48] 49

60| 61/ 62[63]6a

65| 66| 67| e8] 69

70 [71]72]73] 74

75|76|77] 78] 79

80(81}82|83}| 84

85|86 |87 |88| 89

90 [91]92]93]94

95| 96|97/ 98] 99

05} 06| 07] 08| 09

10] 11]12]13] 14

15| 16] 17] 18] 19

20 [21] 22 23] 24

25]|26] 27| 28] 29

30 [31]32) 33} 34

35] 36 37[38] 39

40 | a1]a2[a3]aa

a5]as|a7] 48] a0

55| 56 | 57| 58] 59

60| 61/62]63]64

65| 66| 67] 68 69

70 {71 72[73] 74

75[76] 77| 78] 79

sols1]s2[e3]es

8586|8788 a0

90 [91[92]03] 04

95| 96|97 98] 99

05/ 06| 07| 08| 09

10]11]12}13] 14

15]16 [17 [18] 19

20 |21]22]23] 24

25[26]27| 28] 29

30]31[32]33] 34

35[36[3%]33]39

40141[42[43]44

a5] 46| a7] 48] 20

55) 56] 57| 58] 59

60 61/ 62| 63|64

65| 66] 67] 68] 69

70 {71[72]73] 74

75] 76| 77] 78] 79

soJe1][s2]83]8a

85/ 86 [87[88] 89

90 |91 [92{93[0a

95|96 |97 98] 99

05| 06| 07| 08| 09

10] 11{12[13] 14

15[16]17 [18] 19

20 [21]22]23] 24

25[26]27[28] 29

30 [31]32[33] 34

35]36 | 37| 38] 30

40 [41]a2 4344

a5]as a7[a8] 29

6-1IX

55[56|57[55[59

60| 61]62[63]64

65] 66 67] 68] 69

70 [71]72]73] 74

75|76{77] 78] 79

80 |81[62|83| 84

85|86 |87 [s8[as

90 |91 [92]93][04

95|96 [97[98] 99

os[oe|o7[oé|09

10}11]12]13] 14

151617 [18] 19

20 |21 22| 23] 24

25|26 27] 28] 20

30[31132]33[34

35] 36 [37] 38] 39

40| a1]a2]a3]aa

45_I 46] 47] 48 rAS

55| 56| 57| 58 59

60/61]62]63]6a

65| 66| 67| e8] 69

70 [71{72|73] 74

75|76 77] 78] 79

80 |81|82]83]8a

8586 |87 |68 89

90 [91 [92 | 93[94

95|96 [97]98] 99

osJoEJO7|oa[09

15[16[17 [18 [19

20 |21 {22 23] 24

25 26|27 28] 20

30 |31]32[33] 34

35| 36/ 37[38] 39

40 |41 |a2]a3]aa

a5]46|47[48] 29

10[11}12]13]14

55] 56| 57| 58 59

60{61]62]63]64

65].66| 67] 68[69

70 [71]72]73] 74

75|76 77]| 78] 79

éo|s1|az[ea|aa

90 |91 [92]93 94

95 [96[97[98] 09

85|86 |87 [88]s0

05] 06{07| 08| 09

10 11] 12]13] 14

15[1617 [18]19

20 |21]22]23]24

25|26 27]28] 29

30 [31{32]33] 34

35)36 |37 |38 39

40 [a1 [42 |43][44

a5 |46]47]48] 29

55| 56| 57| 58 59

60[61(6263]64

65| 66| 67 68 69

70 [71]72] 7374

75[76]77] 78] 79

80 [81]82]83]8a

85|86 87 [88]ss

90 |91 [o2[e3][04

95 |96]97] 98] 99

os|oe|o7|os|09

10[11[12[13[14

1516 17] 18] 19

20 [21]22]23] 24

25|26 27] 28] 20

30[31[32[33] 34

35[36 |37]38 39

a0 [a1 |42 43|24

4546 [47] 28] 49

55|56 57] 58] 59

60[61]62[63]64

5] 66] 67 68]60

70 [71]72[73]74

75|76 77| 78] 79

80 |81]82 83|84

85|86 |87 [88]89

90 [91]92 |93)94

9596 |97 98| 99

o5]o6 Jo7 o8 os

10[11]12[13] 14

15]16] 17] 18] 19

20 [21]22]23]24

25]26[27] 28] 29

30 31]32]33] 34

38|36 |37 38 39

40 | 41]42]a3[4a

4546 |47 [48] 29

55]56]57|se[59

6061 /62]63]6a

65{66] 676869

70[%1|7z|73|74

75|76]77| 78] 79

80 [81{82[02]84

85|86 |a7 |68 a9

90[91[92[93[0a

9596|9798 99

30 [¢—ACC
50(51]52]53] 54
00/01]02[03]04

31 PROGRAM
50 [51]52]53] 54 55‘56157i58i59
00 Jo1]02]03]0a

32
50 [51|52|53] 54
00 [o1]02]03[04

33

" 50 [51|52[53] 54
00 [01[02]03]0a

3

- 50 [51[52[53] 54
00 [o1]0z]03[04

35
50 [51]52]53] 54
00 [o1]o2[03[0a

36
50 [51]52|53)54

“Jooo1]02]03] 04

37
50|51]52|53]54
00 [01]02{03]0a

38
50 [51[52 53] 54
00 [01]02]03 |04

39
50 [51]52[53]54

TITLE:

FORM NO. 1223

BLOCK

28M 6-60

NO.:

_INDEX NO.:

PROGRAMMER:

DATE

PAGE

OF __

TITLE
CODER DATE
REMARKS SEGMENT NO.

REFERRED

FROM |NO. op| N A B

INST. |OF Logﬂlon T0 REMARKS BN%X

Loc. |Ins. 1 s |6 | I BY .
' 1

L READ MASTER RECORD

3130 I 6 310

ADD BATANCE + INTEREST

[\

WRITE MASTER

(O3]

g ||+ |F o
H DO

olwlwlw]le
Mlojo|lo}w
Hlo|H]|of»
Ol |OoO|O\J o

=

TRANSFER —p READ (1)

ololo o | o IFLoATA

<O

14 Heait

Clo|lcojlo|o |ofolojlolo|lojlcjololo|lola|lofolololo |lo o FFLOATBE

5| 2050 0]0]0][w NTEREER Resed, Terpa™r
0 W] 2|02 |0 Sense EF/ED
> ofolof|+ B e o Hdd, 1+ Qe t
ey A -+ = o -
oo ofe v ol E]i]o]2]4 ed 70
S KNS kA T [RS i N e SogTh o
IO 206001008l lalele] |o]2]F e te Gutogt
0 Vitlola | e felalo]o Do Haoin
= 0 itz ola o]l sl- G ve oF
0 “lalz2] ol 2] ol]2 Wede £/0
6 ololgl7l2]olsloll] o sl Mow. 10 Megsaae 80
olo]-lglalal=]|9|4] 4 -
0
0
0
0

OO |lo|lojojocjo oo

IE 1224 REV. 8-60 i) PAGE 1 OF 1

FLOW CHARTING & CuuING EXERCISE T

Flow chart and code the following routine:

of the message

in the Savings File. The input data appears as follows:

acct no. first dep second dep third dep fourth dep total
5 6 6 6 6 6
Assumptions:
1) The items are all fixed-variable.
2) Total is carried as O's initially, all fields are loaded with
insignificant zeros.
3) Accumulate total in total item.
4) Read in the information from tape deck 1.
5) Write out the entire record to tape deck 2.

FLOW CHARTING & CODING EXERCISE IT

Flow chart and code the following routine to develop a total of the quarterly
profits for each year of the company's existence. The information is to come in
from paper tape in the format:

P

%

1st quarter} 2nd quarterg 3rd quarter 4th quarter total
Z 7 E 7 7 7
tsommes o s s e e e

Q—\z‘*;?x;’ftfs*
Punch the full record out to the paper tape.
Assumptions:
1) The items are all fixed-variable.
2) Total is carried as O's initially, all items are loaded with in-
significant zeros.
3) Accumulate total in total itemi
4) Write the entire record.

vV

w T ¥ e W oAt oo
Con R
(R TR X}xa,*‘w:‘~g

XI-11

o

n

to develop savings totals for each

[+%2

G

XII — CARD INSTRUCTIONS

Card Read Normal, Card Punch and Input-Output Control

So far, we have limited our input and output to magnetic tape, but it is
quite feasible that it might be cards. For this reason, we must have the ability
to read and punch cards.

Since there are two models of Card Reader and two models of Card Punch in
the RCA 301 system, we shall discuss the card instructions for the Card Reader
(600 CPM) and Card Punch (100 CPM) first and the Card Read Punch (800 CPM Read
and 250 CPM Punch) second.

CARD READER UNIT

CARD READ NORMAL

This instruction reads information from punched cards in the Card Reader and
places this data into HSM.

The OP code is 0 (zero).

N either determines the rate at which cards are to be read or is used in a
card cycle ending routine.

N RESULT

—

Reads single card (200 CPM) or ends continuous
card reading

Used in continuous card ending routine

Used in continuous card reading cycle (600 CPM)
Used in alternate card reading cycle (300 CPM)
Ends alternate card reading cycle

0o EN

The A address gives the HSM location to receive the first character read
into memory.

The B address is zeros (0000).
Example:
0 1 2900 0000

Once this instruction is staticized, the Card Reader places a card in the
read station. The first character is translated from card code to RCA 301 code
and is transferred to the Card Reader buffer. From there it is placed in the MR
and finally into memory at the location designated by the A register. The follow-
ing 79 characters are placed in successive locations in HSM. The final character
(column 80) is located at (A); + 79.

XII-1

Automatic card translation does not take place if the BCT button on the Com-
puter Console Panel is in the "on" position. Each card column is then split into
two groups of six bits each, a parity bit is generated and added to each group, and
the resultant two characters are transferred into HSM.

The character represented by rows 9 through & in column 1 (row 9 = 25, row 4 =
20) is read into HSM at the location specified by the A register. Successive char-
acters representing rows 9 through 4 are also read into memory with column 80 being
placed at (A)i + 79. The character represented by column 1, rows 3 through Y
(row 3 = 25, row Y = 20) is read into HSM at (A); + 80. Successive characters repre-
senting rows 3 through Y are likewise read into HSM with column 80 being placed at
(A); + 159. The final A register setting is (A); + 160.

In order to maintain a 600 card per minute rate, a Card Read instruction in
which the N character is 4 must be executed for each card read. The successive card
read instructions must be staticized before 100 milliseconds have elapsed. Approxi-
mately 80 milliseconds are required to read one card leaving 20 milliseconds of
compute time between cards.

Continuous card reading is initiated when N=4. Since only the first of the
three cards in the card reader transport mechanism is read by this instruction, the
continuous card reading cycle, must be terminated by two card read instructions in
which the N characters are 2 and 1 respectively to avoid a '"feed" error.

The card feed rate may be accomplished at 300 cards per minute by staticizing
successive card read instructions every 200 milliseconds for each card read. The
N character in the card read instructions must be M. Of this 200 millisecond card
cycle, approximately 120 milliseconds are free for computing after the card has
been read.

This Alternate Card Reading cycle must be terminated by a Card Read instruction
in which the N=8.

When Card Read instructions are staticized in which the N character is 1, cards
may be read at any rate up to 200 cards per minute. No terminating instruction is
necessary since only one card has been fed into the Card Reader transport mechanism
by this instruction.

CARD PUNCH NORMAL:

This instruction enables the Card Punch to punch 80-column cards from informa-
tion contained in HSM.

‘The OP code is a 2.

"N is a zero 0.

The A address gives the HSM address of the first character to be punched.

The B address gives the HSM address of the last character to be punched.

The information we wish to punch is located in memory from location 4500-4739,
This indicates that we will be preparing three cards (80 x 3 = 240). The instruc-
tion is: '

2 0 4500 4739

XI1-2

The instruction is staticized and the Card Punch is activated. A scanning
process begins which enables the Card Punch to prepare one row of one card to be
punched at a time. It continues punching a row at a time until the A and B reg-
isters are equal for the last row punched in a card. The punched cards are read
to insure the accuracy of punching.

CARD READER/PUNCH UNIT

CARD READ NORMAL:

* This instruction reads information from punched cards in the Card Reader/Punch
~and places this data into HSM) '

The OP code is 0 (zero).

N- SYMBOL RESULT
1 .
K Binary read mode specified G rows 10 LR
1 Translate read mode specified {2 Touwrt 5O c_e:\%umm%

‘:The A address gives the HSM location to receive the first character read from
punched cards.

{;he B address is zeroé (0000).

. This instruction directs the Card Reader/Punch to place a card in the read
station and operates on successive characters in the following cycle.

When the translate read mode has been specified (N=1) the character in column
one of the punched card is automatically translated from RCA card code to RCA 301
code and is placed in HSM in the location specified by the A register. The following
79 characters are placed in successive locations in HSM. The final character (column
80) is located at (A)j + 79.

[&hen the binary read mode has been specified (N=K) card card column is split
into two groups of six bits each, a parity bit is generated and added to each group
and the resultant two characters are transferred into HSM.

The character represented by rows 9 through 4 in column 1 (row 9 = 25, row
4 = 20) is read into HSM at the location specified by the A register. Successive
characters representing rows 9 through 4 are also read into memory with column 80
being placed at (A)j + 79. The character represented by column 1, rows 3 through
Y (row 3 = 23, row ¥ = 20) is read into HSM at (A); + 80. Successive characters
representing rows 3 through Y are likewise read into HSM with column- 80 ‘being
placed at (A)j + 159. The final A register setting is (A); + 160.

A card read instruction must be staticized for each card read. 1In order to
maintain an 800 card per minute rate, successive Card Read Instructions must be
staticized before 75 milliseconds have elapsed. The 75 milliseconds card cycle is
comprised of 21 milliseconds card feed access time, 44 milliseconds card read time,
and 10 milliseconds time free for compute. When the read release option is exer-
cised (via the Input Output Control Instruction), an additional 21 milliseconds of
compute time is made available.

CARD PUNCH NORMAL:

This instruction enables the Card Reader/Punch to punch 80-column cards from
information contained in HSM.

The OP code is 2

N -
N CARD PUNCH MODE
& Binary
0 (zero) Translate

The A address gives the HSM address of the first character to be punched.
The B address gives the HSM address of the last character to be punched.

A start signal is sent to the card punch unit. The card punch punches
the information from HSM between and including the locations addressed by the
contents of the A and B registers, punching up to 80 columns to a card. When
the A and B registers are equal, the last card is punched and the contents of
the A register are incremented by one.

When the binary punch mode is specified (N = &), the A register denotes the
memory location of the character to be punched in column 1, rows Y through 3.
Each information bit results in a hole in the card (20 - row Y, 25 = row 3).
Successive characters representing rows Y through 3 are also punched from HSM
with column 80 being punched from (A); + 79. The character present at (A); + 80
is punched into column 1, rows 4 through 9 (29 = Row 4, 2> = Row 9). Successive
characters representing rows 4 through 9 are also punched from HSM with column
80 being punched from (A); + 159.

The card punched is read concurrently with the punching of the succeeding
card to insure the accuracy of punching.
INPUT-OUTPUT CONTROL:

This instruction performs the Read Release, Punch Release and Stacker Select
functions for the Card Reader/Punch.

The OP code is ;.
N - (.

A Address - Ay, Ay, Ay - 000 (zeros).
A3 - designates function to be performed:

XII-4

>
w

FUNCTION

& Proxetr
Select Reader Stacker No. 1
Select Reader Stacker No. 2
Select Punch Stacker No. &
Select Punch Stacker No. 8
Read Release
Punch Release
Read Release and Select Stacker No. 1
Read Release and Select Stacker No. 2
Punch Release and Select Stacker No., 4
Punch Release and Select Stacker No. 8

O O ~NOUF WN -

9]
el

B Address - 0000 (zeros)

The A3 character is sent to the control module. After the operation is
initiated, the registers are available for use by the next instruction.

CARD EXERCISE 1

B. F. Swift Company has a weekly run to determine the total gross pay. Trans-
actions come in from cards in the following fixed format:

1-25 26-30 31-35 36-40
Name Clock No. Base Pay Overtime

25 5 5 5

Compute total gross pay by adding overtime to base pay (columns 31-35 will be
gross pay) and punch out name, clock no. and gross.

Flow chart and code.

XII-5 S

XIII — TAPE AND FILE TERMINATING
TEST INSTRUCTIONS

(REWIND, INPUT-OUTPUT SENSE, ED/EF SENSE, HALT)

The tape programs that we have written up to this time have been "loop" pro-
grams. That is to say, once they got started there would be no way to stop them
until the tape physically ended. Obviously, this is not desirable, so we must have
some way to be able'to sense the end of tape, in order to be able to stop writing
to it, and also be able to sense for the ED or EF on an input tape.

Each reel of tape will be supplied with three physical markers: The first one
is called BTIC (Beginning of Tape Contact). This is located near the physical be-
ginning of the reel, and it is at this point that data should be started. For this
reason, it is advisable to rewind each new tape placed QU3 tagé“statibn to BTC

before beginning to record on it.

The second marker is near the end of the reel. It is called ETW (End of Tape
Warning). This device will trigger an indicator which can be sensed by the pro-
grammer, thus allowing him to prevent writing up to the physical end of the tape
(PET), which would cause the computer to stop in an error condition.

REWIND TO BTC:

Ihis. instruction causes a designated magnetic.tape unil.lo rewind the tape reel
"t to BTC. Once it is initiated, the tape unit takes over and the com-~
puter is free icize the mext instruction.
The OP code is ;.
"N identifies the tape station (1-6, A-F, J or N, L or P).

The A and B addresses contain zeros (0000).

INPUT-0U :

With this instruction, the programmer is able to gense Eggl&m indicator to
see if it has been set and then choose the proper one of two sequences of instructions.

The OP code is S.

N gives the device to be sensed (1=-6. A~F, J or N, L or P).

The A address gives in Ay a code that will ask the proper question. In this
case, the question is "Has ETW been sensed?" and the code is a bit in the 22 position,
which would give us a 4. Aj 2 and 3 are zeros.

The B address gives the address of the next instruction to be executed if the
condition exists, in this case if EIW has been sensed.

Programming-wise, this implies that a test should be made for ETW bafqore or-

after _each write, so that when it is found, the transfer could be to a routine
which would allow some steps to be taken to continue the writing on a new tape.

XIII-1

Example:

The following is only a section of a program:

1970 S 2 4000 2060 Sense Tape Station 2 for ETW

1980 8 2 1000 1099 Write out the record to Tape Station 2

1990 Vv 1 0219 1900 Transfer back to the first instruction

2060 8 2 2000 2000 Write an ED (an ED is found at 2000) to tape
2070 ;2 0000 0000 Rewind tape 2

2080 [O 0000 0000 Halt (To mount new tape)

2090 ;2 0000 0000 Rewind the new tape to BTC

2100 vV 1 0219 1980 Transfer back to write of record

When the sense is staticized it will examine the ETW indicator. As long as
this is not set (i.e., ETW has not been sensed by the tape unit), the P register
will remain unaffected and the program will continue in sequential order, with
the Write of the record occurring next. When ETW has been sensed, the indicator
will be set and when the next Sense instruction is staticized, the contents of the
P register will automatically go to STP (0216-0219) and then the contents of the
B register will go to the P register. 1In this way the next instruction to be ex-
ecuted will be a write of an ED to the completed tape. As you remember, an ED symbol
indicates the end of the good data onm a reel of tape. The tape can then be rewound
to BTC, so that the operator can remove it when the operation is completed.

The computer is instructed to Halt and wait for the operator to re-initiate
the program. This allows him to remove the completed tape and mount a new tape.
Then, by hitting the Start button, the next instruction will be to rewind this new
tape to make sure that it is on BTC and then transfer back into the program to pick
up where it had left off, with the write of the record. Flow charted, the program
would look as follows:

ETW?

'B‘EEEE|)

@

XITI=-2

HALT:

In our ETW routine, we mentioned one instruction we have not yet discussed,
HALT. This stops the computer from staticizing the next instruction, causing the
computer to cease operations. The OP code is <} (period) written as [} .

N, A, and B may contain numeric constants.

The P register remains unaffected.

CONDITIONAL TRANSFER OF CONTROL (ED/EF INDICATOR) :

When we were writing to a tape we had to maintain a continual check for the
end of the tape. When we sensed it, we placed an ED symbol that was to act as a
sentinel for the end of data on the tape. It is only logical, therefore, that
when we are reading data in from tape. we should watch for this symbol, and for
the EF symbol which would indicate thét we had processed the last record in the
file. In order to facilitate this, the tape stations are doing the actual sensing
for these characters. When one or the other is found, an ED/EF indicator is set.
It is the programmer's responsibility to continually sense this indicator. This
is done by use of a CONDITIONAL TRANSFER OF CONTROL instruction.

The OP code is W.

uN" indicates what is to be sensed. In this case we want to sense the EF/ED
indicator, so the code would be an 8.

The A address gives the location of the next instruction to be executed if the
EF/ED indicator is set.

The B address gives the location of the next instruction to be executed if the
EF/ED indicator is not set.

Example:

The file we are dealing with is only one reel in length, so that we can
assume that the control symbol we will find will be an EF. Once it is found
we want to end the run, which means that we must put an EF on the output tapes,
rewind all the tapes and stop. Charted, this particular portion of the pro-
gram would look as follows:

XIII-3

READ
MASTER

YES

ED/EF?

The coding would be:

3600 4 5 2500 2750 Read a record into memory from Tape 5
3610 W 3700 3620 CTC to sense EF/ED.

o

3700 8 3 3690 3690 Write an EF to the output tape (EF at 3690)
3710 ; 5 0000 0000 Rewind input tape

3720 ; 3 0000 0000 Rewind output tape

3730 - 0 0000 0000 Halt (End of Run)

After each read, the EF/ED indicator is sensed. As long as it is not set, the
program will continue to the instruction addressed by the B register. This is
accomplished because the current contents of the B register are placed in the P
register. 1In our particular example, the P register will end up with the same
address. Once the indicator is sensed, however, the program will transfer to 3700,
which will cause the computer to place an EF on the end of the output reel in order
that it may be used as input tomorrow, with a sentinel to indicate its end. The
next two instructions cause the tapes being utilized by the program to start re-
winding to BTC and then the computer stops at the end of the run.

XIII-4

In order to examine a complete program, let'!s take our interest problem and
incorporate what we have just learned:

|
6
r !
READ
MASTER

ED/EF?

ADD

5
ETW?

-
6
WRITE
MASTER

BAL + INT

XIII=5

EXERCISE I - TAPE AND FILE TERMINATING TESTS

PROBLEM: Duplicate a file.
INPUT: One reel of tape containing records in the following format:
Lol

o Branch Acct No. ID Code "= Activity Date Balance
al 3 8 1 6 10

PROCESSING: 1) Read the records into memory starting at 1000 from deck 1.
2) Check for ED/EF and ETW.
3) Write the message to an output tape on deck 2.
4) 1If EF is sensed, proceed to end of job routine.
5) End of procedure
a) Write EF to output tape.
b) Rewind both tapes.
¢) Stop

6) Start Program at 2000.

OUTPUT: A duplicate tape.

XIII-6

X1V — DECISION MAKING INSTRUCTIONS

(SECTOR COMPARE LEFT, CONDITIONAL TRANSFER OF CONTROL)

One of the most important functions of the computer is to make magnitude com-
parisons, i.e., is 3457 equal to, greater than, or less than 56742 1In order to do
this we utilize two instructions:

SECTOR COMPARE LEFT:
e ——————

This instruction enables the program to compare two equal length sectors and
" indicate their magnitudinal relationships. The instruction compares the fields one
character at a time working from lefi to right. so that the first time the characters
are unequal the operation can terminate, having determined the relative magnitude.

The OP_code is Y.
M»;;;fwﬁ :.:z"'e‘f‘-,..“(ut %AJ eite Bhwwihae Yo Fidd
N is the number of characters in each operand (remember that the gperands must
be equ in length). Here again we make use of the "N" table shown on page XI-3.

The A address is the HSM location of the leftmost character of the first operand,
which we may think of as the minuend (minuend minus subtrahend equals difference.)

The B address is the HSM location of the lefitmost character of the second
operand, which we may think of as the subtrahend.

Again, the Previous Result Indicators are utilized. As you remember, there are
three of them, and only one can be set at a time. If the first operand is greater
than the second operand, the PRP (Previous Result Positive) is set; if it is equal
to the second operand, the PRZ (Previous Result Zero) is set; if it is less than the
second operand, the PRN (Previous Result Negative) is set.

Example:

Compare two stock numbers shown below:

34 3 3 5 6 3 23 3 3 6 3 2
The instruction is:
Y 5 3445 2334

The instruction is staticized and the contents of the HSM locations addressed
by the A and B registers are transferred to the D register (Data Register). The A
and B registers are increased by 1 and the 3 and the 3 are compared in the D reg-
isters. The N register is decreased by 1. They are equal so the next two characters
are brought out and compared. Again they are equal and the comparison continues.
When the 5 and the 6 are compared, they are found to be unequal. This will terminate
the operation. The PRN is set (the second operand is greater than the first), and
other than that nothing is affected. Both operands remain intact in the memory lo-
cations that they were in originally.

Having done the comparisom, it is logical that we would wish to follow one of
three paths, depending upon the result of the comparison. This is possible by
utilizing the Conditional Transfer of Control which senses the PRI's.

X1iv-l

CONDITIONAL TRANSFER OF CONTROL (PRI's)

Again this instruction enables us to branch our program depending upon a
previous result, in this case the setting of the PRI's.

The OP code is W.
"N" this time will be a 1, indicating that the PRI's are to be examined.

The A address gives the location of the next instruction to be executed if
the PRP is set.

The B address gives the location of the next instruction if the PRN is set.

If the PRZ is set, the P register will not be affected, and therefore the next
instruction in sequence will be executed.

Example:

We have just compared stock numbers. Let us assume that these were read in
from two files, the first file containing master information to be updated by
transaction information coming in on the second file. We are now comparing the
Master stock number and the Transaction stock number (the master having been read
into 3440 and the transaction into 2330 and assuming that the stock number is the
first item in each record). If the master and the transaction have the same stock
number, obviously we will want to post the information in the transaction against
the master. If the master is greater than the transaction, the transaction refers
to a non-existent stock master, which must then be developed. If the master is
less than the transaction, we need a new master, so we must write out the present
master and then bring in a new one. Briefly our chart looks like this:

MASTER STOCK #
TRANS. STOCK # :

DEVELOP WRITE OUT
NEW : MASTER
MASTER MeT
POST

Giving addresses at random to the two side paths, we'll say that the master
preparation path starts at 6700 and that the write out of the old master path starts
at 6850, Our series of imstructions would then be: '

6540 Y 5 3440 2330
6550 W 1 6700 6850

6560 begins the processing path
6700 begins the master preparation path
6850 begins the write out of the old master path

After the comparison instruction is done, the CTC is staticized, the computer
then senses the PRI's and if the PRP is set, it places the current contents of the
P register in STP and then places the contents of the A register into the P register,
If the PRZ is set, the P register remains untouched and the program continues. If
the PRN is set, as in our case, the contents of the P register are transferred to
STP and then the contents of the B register are placed in the P register. Our
particular example indicates that this master must be written out and a new master
read in.

XIV=2

The following example will illustrate two comparisons, one for EF or ED (due
to a multi-reel file) and the other a comparison of a constant (remains the same
throughout the program) to the branch number.

DECISION MAKING EXAMPLE

PROBLEM:

INPUT:

PROCESSING:

OUTPUT:

A bank keeps a master account file for all its branches on one tape
file. As individual branches become large enough to handle their
own updating, it is necessary to strip the master file of all the
records pertaining to that particular branch. This is the purpose
of your run.

Bank Master Account File on magnetic tape deck 6.

Branch Acct # ID Code Activity Date Balance on Hand
3 8 1 6 7

1) Read Master File Record

2) Select all messages pertaining to a particular Branch indicated
by card input and write these to a separate tape on deck 2.

3) Write all other messages of the file on deck 4.

4) End of Job: a) Write EF to output tapes; b) Rewind tapes;
c) Stop :

1) A branch master tape containing all messages pertaining to the
branch indicated on the card.

2) A new master tape containing all other messages.

Sew \\\&*&,?&e@%h

XIv-3

READ IN
CONSTANT

RECORD

YES

1ST cHAR: ED

NO

XIV~4

G=AIX

0s] 06|07/ 08| 09

10 11{12]13] 14

15/ 16| 17] 18] 19

20 [21]22]23]24

25| 26] 27| 28] 29

30 | 31[32]33] 34

35/ 36|37 38|39

40| a1]a2]a3]4a

a5 a6 |4a7] 48] a9

—ID4-A C.1

DA TE ¢

—BAL, ——P

55| 56] 57| 58] 59

60 61[62[63]64

65| 66[67 68| 69

7071|7273 74

75|7s|77[7§]7§

80 [a1]82[83] 84

85| 8687|8889

90 [91[92]93]|94

95]96]97] 98] 99

o5]06]07] o8] 09

10]11]12]13] 14

15[16] 17] 18] 19

20 |21]22]23] 24

25| 26| 27| 2s| 29

303132 33] 34

35/ 36 37[38]3s

40[41]42]43[44

as5[as[47] 48] a9

55 56| 57/ 58| 59

60| 61] 62|63 64

65] 66| 67| 68] 69

70 [71]72{73]7a

75]76| 77| 78] 79

80]81[82[83] 84

85|86 | 87] e8] 89

90| 91]02]93]sa

95]96]97] 98] 99

os[oef07| 08|09

10] 11]12]13]14

15] i6] 17] 18] 19

20 [21]22]23] 24

25| 26| 27| 28] 29

30[31]32[33] 34

35| 36| 37| 38|39

40 [41]a2]43]4aa

a5 as[a7] 48] 20

55] 56 57] 58] 59

60| 61]62]63] 64

65| 66] 67| 68| 69

70 |71]72[73] 74

75[76] 77| 78] 79

80 [81]82]83] 84

85|86 |87]88] 80

90|91 [o2[93]oa

95][96]97[98] 99

os5]06]07] 08] 09

10]11]12]13] 14

15]16[17 [18] 19

20 [21[22[23]24

25[26[27 28] 29

30 [31]32]33] 34

35/ 36 | 37| 38] 39

40] a1[a2]a3]aa

45[46|4§|48[49

55| 56| 57| 58] 59

60| 61]62]63]64

65| 66| 67| 68| 69

70 [71]72] 73] 74

75|76 77[78] 79

so]s1[s2]e3]ea

85|86 |07]88] 89

90 [91[92 {9394

95][96]97] 98] 99

os5[06[07] 08] 09

10] 11[12]13] 14

15[16 {17 [18] 19

20 |21]22]23] 24

25| 26]27[28] 29

30[31[32]33] 34

35/ 36|37 [38] 39

40 | a1]a2[a3]4as

as[a6[47[48] a0

55 56| 57| 58] 59

60] 61[62[63[64

65] 66| 67] 68] 69

70 [71]72[73] 74

75|76{ 77| 78] 79

sols1[sz|83]8a

85|86 |87 [a8[8s

90 [91 |92]93 04

95]96]97]98] 99

05| 06| 07] o8] 09

10[11]12[13] 14

15[16 {17 | 18] 19

20 [21]22[23] 24

25]26) 27] 28] 29

30]31]32]33] 34

35[36 37| 38| 39

40 | a1/a2]a3]aa

45 a6 47] 48] a0

55] 56| 57] 58] 59

60[61]62[63]ea

65| 66| 67] 68] 69

70 [71]72]73] 74

75]76| 77| 78] 79

80 |81]|82]83{ 84

85|86 |87 a8 [8s

90 {91 [92] 93]04

9596 [97]98] 99

0s[06 07] o8] 09

10[11]12[13] 14

15] 1617 [18] 19

20 |21 22]23] 24

25 26[27{28] 20

30 [31]s2[33] 34

35| 36] 3738 30

40 [41]a2]43] 44

45[46[47‘48]49

55 56| 57| 58| 59

60[61]62]|63]64

65] 66] 67] 68] 69

70 [71]72]73] 74

75]76]77[78] 79

80 [81]s2[83]84

8586 |87 88|89

90 |91 [92]030a

95]96 [97] 98] 99

o5] 06{07| o8] 09

10] 1] 12[13] 14

15]16{17 18] 19

20 |21[22]23]24

25]26[27] 28] 20

30 [31]32]33]34

35] 36 [37[38] 39

40 [a1 {42 [43]aa

4546 [a7]a8] a0

55] 56 57| 58 59

60[61[62[63 64

65| 66[67| 68] 69

70 [71]72[73] 74

75]76]77] 78] 79

s0s1]s2]83] 84

85[86 87 [88[s0

90 [91 [92 [93 [s4

95 [96[97]98] 99

o5]o6[07] o8] 09

10 11]12]13] 14

15[16] 17] 18] 19

20 [21]22[23]24

zs]zs[z7[23|29

30[31[32[33[34

3536 |37 [38] 39

ao[41|42[43[44

a5 [46 [47] 48] a9

55]56|57] 58] 59

60[61 (626364

65| 66| 67| 68[69

70 [71]72[7374

75(76|77]| 78] 79

8o [a1]82]83]84

85|86 |87 |88 89

90 {9192 |93 |94

95[96[97[08] 09

05]o06 [07]os Jos

1011]12]13]14

15]16{ 17] 18] 19

20 [21]22]23]2a

25|26 27| 28] 29

3o|§||32]33[34

35[36 [37 [98] 39

40 [41]42]43 |44

a5]46 |47 48] 29

55| 56] 57| 58] 59

60]61]62]63]6a

65{66| 67| 68} 69

70 [71]72]73]74

75]76]77]78] 79

80[s1[s2[aa]8a

85|86 |87 |88 89

90[91]92]93|94

959697]98] 99

Joolo1]o2]03]04a

20 BR # ACC

50|51]52[53]54

oofo1oz2f03[04
27 XXX

50 [51]52]53] 54

00 {01 [02]03] 04
22

50 [51[52[53] 54

00 [01]02[03]04
23 PROG
— |sofs1]52]53]sa

00 [01]0203]0a
2l

50 [51]52[53] 54

00]ot1]oz{03]0a
25

50 [51[52|53] 54

00 [o1]oz2[030a
26

50 [51[52[53] 54

00 Jo1]o2]03]0a
27

50 [51]52[53] 54

00 [01 020304
28

50 [51]s52]53] 54

00]o1o2]oa |oa
29

50 [51][52{53]54
TITLE:

FORM nO. 1223

28M 6-60

BLOCK NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE.

OF _

TITLE DECISION MAKING EXERCISE

G~AIX

CODER DATE
REMARKS SEGMENT NO.
FROM NO. : ,‘f, OP| N A B REFERRED
Lot |ms. LocATIoN 55 ol1|2|3fa|s {6789 By REMARKS o.
1 olofo
ofo|o
oo o
ofo | o
ofo| o
ofo|o |74
- = I
__:_—Eﬁo-ﬂ%oooooooo RWD INPUT TAPE 1
1 Ogojojsiololojolo]ofo]olo RWD _OUTPUT _TAPE 1
2 OQojot;inlolololololololo RWD__OUTPUT TAPE 1
I 3 Q910 0ol1of1lolololololo READ CARD VITH BRANCH CONSTANT 1
2&0@ L CojoJLi6|2|ololof2fol2 |4 READ IN A RECORD 2
&¥90) 5 000w82hh02;60 SENSE FOR ED/EF 3
2350 .6 236 O|O OYviala]ojololal1ilo]o COMPARE BRANCH # ¢ BRANCH CONSTANT 4
7 OO0l O0Pwisio|ulalofolh|1]o B # > Be » 8 B # < BC - 8 L
8 Ofojofrsiafh]olololels]s]o EW ON 2 5
26T0 9 Opojofglolofololola|ola |k WRITE RECORD TO TAPE 2 6
2ho OJ0 i O0Jvialolaf1lo (2|3]k |0 TRANSFER > 2
0 1 Jolodslulhlolololalsls o] ETW_ON k 7
2620 61 oho 0]0101g|h|ofolo]lo]|2lo]2 |y WRITE RECORD TQ TAPE L 8
3 ofojofvlijofelifofa]3|n o TRANSFER __ 2
2350 v B0 O0hv|slalolololelzle g COMPARE 1st CHAR READ IN ; ED 9
5 Q0 (%0wlrlo]slolofalé]s o st ¢ >ED » 16, gt C< ED - HALT (ERROR) 9
6 CRo0jo¥;lé6lolololololololo RWD OLD TAPE ; ' 10
7 O0go 0= ' STOP TO ALIOW OPERATOR TO MOUNT NEW TAPE 11

{E 1224 REV. 8-60 PAGE 1 OF 2

SEGMENT NO.

DATE

DECISTON MAKING EXERCISE

TITLE
CODER
REMARKS

24
25
26
27
28

BOX
NO
12
13
13
14
15
16
17
18
19
20
21
22
23

2 OF

PAGE

REMARKS
(ERROR)
]

> HALT

et C
£ EF

WRITE EF TO 2

-

RWD NEW TAPE

TRANSFER

WRITE _FF _T0 L

HALT (EOR)

WRITE ED -* 4

RWD 4

HALT TO MOUNT NEW TAPE
RWD L4 |
TRANSFER _* 9

WRITE ED = 2

RWD 2

HALT .TO MOUNT NEW TAPE
RWD 2

TRANSFER > 6

HALT ERROR

COMPARE
CTC

RWD 6
RWD 2
RWD L

[a)
w
o
o o >
whEm
w
w
[
900808&000090000900000
80.49890,—0000900020/000010
m
70?262&00002000\42000?0
60?2229—000020002200020
500008&000090009900090
4010890.—0000900010,00010
<
3020,620—0000200,02200020
ZOOEQQéOOOOZvOOOOQOo—OOO
Z|~fvo] A A A h—/o]l #f Of &) 9 # | o nﬂ ol - ©
alol | o ™ 5 © o A A [o -1 | =] < -~ ﬁ“ - = mg
m._.<o._u_000000000000000000—00000
VIVOldf o| ol clo|lo|cfjo|o|locjojoloo]olo ool oo
p—— P
ool o clofjofolclojo|lojo o] ocfloffol o
z
o
=+
m.A o1 Of H o mﬁ Iy 0| 4 O O N o = N M @
8 0 1
S [4Y Ql
ww N
mnvm O o o
£ . .
oFUV o le) Ol ole]
£239 g . £ AR
L= o~ QY [\ QAUQY

XIv-7

tE 1224 REV. 8-60

DECISION MAKING EXERCISE I

PROBLEM:

INPUT:

PROCESSING:

OUTPUT:

A company wishes to run a sales analysis on certain stock items. A
work tape is to be prepared for this later run by extracting all
messages pertaining to those items from the master inventory file.
1) Master Inventory File on tape deck 5.

a) One reel

7 6 25 8
STK # ACTIVITY DATE DESCRIPTION QTY ON HAND

1) Read a master.

2) Select all messages pertaining to stock numbers 0000100 through
0001111 and write these messages to magnetic tape on deck 3.
Make these constants a part of the program.

3) Write all other messages to a separate magnetic tape on deck 1.

4) End of Job: write EF to output tapes, rewind tapes, stop.

1 A work tape containing all active messages
a) One reel

2) A second tape containing all inactive messages

a) One reel

REVIEW EXERCISE I

PROBLEM :

ASSUMPTIONS:

Update all the messages in a master retirement fund file having the
format:

ACCT # BALANCE
5 7
(loaded with insignificant zeros)

1-5 7-13
ACCT # CURRENT DEPOSIT
5 7

(loaded with insignificant zeros)
1) Only one reel of master information.
2) If ED or ETW sensed, stop.

3) If transaction account number is less than the master account
number, the transaction is out of sort.

4) There is only one transaction per message.

5) The EF of the reference file will occur at the same time as a
blank terminal card,

XIv-8

PROCESSING:

REQUIRED :

25
3

4)

5)

6)

7)

2)

3)

Read the transaction into memory at 1500 from card.
Read the master message into memory at 1500 from deck 3.
Check for ED/EF. If EF, go to end of run routine.

Compare the Master Account Number and the transaction account
number:

a) IfM>T
-1-Sort error; stop

b) IfM<T
~1-Sense the end of tape deck 1
-2-Write out the master message on deck 1
-3-Go back to read in a new master

¢) IfM =T continue processing

Add the current deposit to the balance.

Sense the end of tape on deck 1 and write the updated master
to deck 1.

Go back and read in a new transaction and a new reference.
Functional and Detailed Charts
Coding

HSM layout

XIv-9

XV — DATA HANDLING INSTRUCTIONS

(SUBTRACT, TRANSFER DATA RIGHT, TRANSFER DATA LEFT, TRANSFER SYMBOL TO FILL)

Having learned most of the essential instructions, we will now investigate

some more of the Data Handling.jhStlilodetis.
SUBTRACT: RN %\"T‘ = Leb¥

Obviously, it is as important to be able to subtract as to add. The subtract
instruction works in a manner similar to the add instruction. Again it is table
look up arithmetic on equal length operands, with the difference replacing the
minuend (minuend minus subtrahend equals difference) and the PRI's being affected.

The OP code is & (minus). L R
e ' PR R O N e
N gives the number of characters in each operand (0-44). - YL
teeeg g Patie,
The A address gives the location of the lgasi.gignificant digit of the minuend,
and naturally, the difference.

. i Q'\«\vw\ .n\é_
The B address gives the location of the least significant digit of the sub- i

trahend.

A1l the rules are the same, with the excepiion that if the signs start ouf
alidees the difference table is used; if they are initially unlike, the sum table
is used:]

Example:

O] 1 0317 o442 (assume signs are alike)

0317 0442

7 4

0174

o 74

0317 0442

TRANSFER SYMBOL TO FILL: Le &t 4+ P\\q\\d"
N

Suppose you should bring in a transaction that had a 7 digit amount and you
were required to add this amount to a 10 digit field. Obvicusly, you must be able
to place 3 insignificant zeros in front of this transaction amount. This could be
accomplished with a IEéEﬁEEB_SXMBQL_IQ_EILL,1nstructlon which allows the programmer
to f111 any size sector of memory with any given character.

ey

XvV-1

The OP code is a J.

N gives the character to be used.

The A address gives the left ﬁand end address of the sector to be filled.
The B address gives the right hand end address of the se;tor to be filled.
Example:

In our problem stated above, we desire to load-insignificant zeros. Let us

' say that the information is coming from cards, and that ‘the format of the card is
as follows: : :

Stock number . Amount
5) 7
col 1=5 11-17

If we read this into memory starting at 8900, we would have:

: 00 01 02 03 O4 05 06 07 08 09 10 11 12 13 14 15 16
89 X X X X X - - - - - X X X X X X X

Since the location 8907-8909 are not used for data, we could fill these with zeros
using the SF instruction:

J 0 8907 8909

Once the instruction is staticized, the character in N is-placed in the loca--
tion mentioned by the A register, A is increased by 1, and this process continues
until the desired character is placed in the location mentioned by the B register.
This would leave us with: » ‘

00 01 02 03 04 05 06 07 08 09 10 11 12 13 -14 15 16
8% X X X X X -7 - 0 o0 0 X X X X X X X

which gives us a 10 character field to use as an addend,

TRANSFER DATA RIGHT:

Suppose we had the same problem, but the data was coming in from paper tape,
so that when it fell in memory, there would be no locations free to place the zeros.
In that case we would have to set up a "work area" which is simply a portion of
memory utilized by the programmer as a "scratch pad". We could then £ill the
first three characters with zeros at the beginning of our program, and then (after
reading in each new transaction) simply transfer the transaction amount from the
original read in area to the work area. To do this, we will need an instruction
that has the facility to transfer data from .one location to another in memory.
One such instruction is Transfer Data Right.

The OP code is N.
The "N character indicates the number of characters in the sector to be
transferred, and again we utilize the "N' table. The A address gives the right

hand end location of the data to be transferred.

The B address gives the right hand end location of the area to receive the data.

oY agt\“;“ > ety

Xv-2

Example:

Suppose the same data came into memory from paper tape and was placed in memory
- starting at 7500:

00 01 02 03 04 05 06 07 08 09 10 11

75 1 2 3 4 5 3 =7 4 2 9 0 0
f{gA ¥ J L . J
A v

STOCK # _ AMOUNT

We would then desire to transfer the amount to a work area which we have aiready
loaded with three insignificant zeros. The work area is located at 1590-1599:

90 91 92 93 ou 95 . 96 97 -98 99

15 0 0 0 = - - - -
e

Our transfer instruction would be:
< -—

N 7 7511 1599

0

(a]]

The character addressed by A will be placed in the location designated by B.
The A and B registers are then decreased by 1. N is decreased by one and sensed
for 0. Since it is not zero the process will continue. - When N does reach zero,
.the instruction will terminate. We will then have in memory:

As you can see, Lthe trapsfer is not destructive, i.e., when .the characters
are picked up from their original locations, they are regenerated in those léoca-
tions so that, at the termination of the instr i : jll appear in two
places (the original location and the destination location). o ‘

TRANSFER DATA LEFT:

The same operation could have been accomplished moving the data from left to
right instead of right to left, :

The OP code is M.
"N" is still the number of characters to be transferred.
The A address gives the location of the leftmost character to be transferred.
" The B address gives the location of the leftmost destination location.
The instruction:
-
M 7 7505 1593

would cause memory to end up in the same condition as the DR instruction did. The
only difference is that the A and B registers would be increased by one after each

trapsfer. L‘e‘g;r = ‘l§\é}:¥

Xv-3

DATA HANDLING EXERCISE 1:

PROBLEM: Perform a verifying run on Master Inventory File to assure ascending
sequence of records.

7

Master Inventory File on deck 1.

a) One reel
b) Format

6 25 8

STK # ACTIVITY DATE DESCRIPTION QTY ON HAND

INPUT: 1)
PROCESSING: 1)
2)

3)

o 4)

5)

OUTPUT: 1)

2)

Read a Master in

Sequence Check the criterion stock number. Assume that first
record is in correct sequence and that multiple records concerning
the same stock number are feasible.

Write Non-Sequence messages on an error tape, deck 3.

Write the properly ordered file to tape on deck 5.

When all messages have been processed, place EF on output tapes,
rewind all tapes, and stop.

Master File in proper sequence on tape deck 5.
a) One reel
Out of sequence messages on error tape deck 3.

a) One reel

DATA HANDLING EXERCISE II

"The problem is to update the mastetr payroll information and then prepare a card
to be punched out with weekly information.

Master Payroll Information (one reel)

. EMP # NAME ST. ADDRESS CITY-STATE ADDRESS NET PER WEEK TOTAL GROSS

25 18 20 6 7
Transaction information (cards)

EMP # GROSS PER WEEK
5 6

cols: 1-5 6-11

INPUT: D
5

2)

PROCESSING: D

2)

3)

Initially clear the punch area to spaces and a work area to zeros.
Read in a transaction.

Read in a master.

43 Compare the employee numbers. 1If the Master employee number is
greater than the transaction employee number, assume a sort error
and stop. If they are equal, continue to process. If the Trans-
action is greater than the Master, write out the master and bring
in a new master. (Assume one transaction against a master.)

5) Processing consists of:

a)
b)

c)
d)

Updating the Total Gross item in the Master,

Transferring the following information so that a card can

be produced with the given specifications:

EMP # NAME ST. ADD C-S ADD NET PER WEEK
1-5 7-31 33-50 52-71 75-80

Punch the card

Write out the master and bring in a new transaction and master

6) When all messages have been processed, place an EF on the output
tape, rewind the tapes and stop.

REVIEW EXERCISE I1: 5eoe Flow CherY

PROBLEM:

INPUT:

To update the Master Checking Account Information of a Bank, and
prepare an overdraft notification card if necessary.

1) Master Information (1 reel)

ACCT # NAME

PROCESSING:

7

25

1059 - 9 e

ST. ADD C-S ADD TOTAL DEPOSITS TOTAL CHECKS BALANCE
18 19 9 9 6

2) Transaction Information (cards)

-~

ACCT # CODE AMOUNT 2>
7 1 5
cols. 1-7 8 9-13

The code will either be a C or a D, standing for Check or Deposit.

Assume that there will never be more than one transaction per master.

1) The problem is to update the master by adding a deposit to both
the total deposit amount and also to the balance, or adding a
check to the total check amount and subtracting it from the balance.

2) After subtracting a check from the balance, the programmer should
determine if the balance is negative (treat a zero balance as a
plus). 1If so, an overdraft card should be prepared to be sent to
the customer. The format of this card is:

ACCT # NAME ST. ADD C-S ADD BALANCE -

1-7

9-33 35=52 54-72 74-79

/

/ey

/o
A

XVI - PRINTING

PRINT AND PAPER ADVANCE

So far we have learned how to read from and write to magnetic tape, read and
punch paper tape, and read and punch cards. The next output device is the printer.

The On-Line Printer prepares documents at a rate of@ii/or 1000 lines per n minute
depending on the mode. A line may consist of\}?o or 160 character locationms.

The Printer sends a signal to the computer telling it what character on the
print wheel is to be printed next. The computer uses this signal to develop an
address in the print table which is stored in HSM. The chagacter addressed in the
print table is extracted and stored in the Print Register. fghe data to be printed
is compared with the character stored in the Print Register until 120 or 160 con-
secutive memory locations have been checked. This checking for one character is
known as a "scan". As each character is checked, a one bit is sent to the printer
shift register for an equality, a zero bit is sent for each non-equality. At the com-
pletion of a scan, the shift register contains a one bit in every position on the line
in which this character is to be printed. The one bits are then used to trigger the
corresponding print hammers. The following is the Print Table and where it is stored
in HSM.

Table Location Table Location
Character Memory Size Character Memory Size
10,000 | 20,000 | 40,000 10,000 20,000 | 40,000
- Minus 9900 1900 Z900 A Letter 9940 1940 2940
+ Plus 9901 1901 7901 B » 9941 1941 1 7941
Space 9902 1902 2902 c ” 9942 1942 7942
0 Zero 9903 1903 2903 D ”» 9943 1943 2943
1 One 9904 1904 7904 E » 9944 1944 7944
2 Two 9905 1905 2905 F ” 9945 1945 2945
3 Three 9906 1906 2906 G ” 9946 1946 2946
4 Four 9907 1907 7907 H 9947 1947 2947
5 Five 9910 1910 2910 I ” 9950 1950 2950
6 Six 9911 1911 Z911] 7 9951 1951 2951
7 Seven 9912 1912 7912 K ” 9952 1952 2952
8 Eight 9913 1913 7913 L 9953 1953 2953
9 Nine 9914 1914 2914 M 9954 1954 2954
, Comma 9915 1915 Z915 N 7 9955 1955 7955
. Period 9916 1916 2916 o 7 9956 1956 2956
@ At 9917 1917 Z917 p 9957 1957 7957
% Percent 9920 1920 7920 Q 9960 1960 Z960
Colon 9921 1921 2921 R 7 9961 1961 7961
Number 9922 1922 2922 s ” 9962 1962 7962
$ Dollar Sign 9923 1923 7923 T 9963 1963 2963
) Close
Parenthesis 9924 1924 7924 u 9964 1964 2964
”’ Quote 9925 1925 2925 v » 9965 1965 Z965
10Sub 10 9926 1926 2926 v 9966 1966 Z966
(Open
Parenthesis 9927 1927 Z927 X ” 9967 1967 2967
] Close Bracket | 9930 1930 Z930 Yy ” 9970 1970 2970
; Semicolon 9931 1931 7931 z " 9971 1971 7971
> Greater Than 9932 1932 2932 CR Credit Symbol 9972 1972 2972
<+ Divide 9933 1933 7933 ' Apostrophe 9973 1973 Z973
t Arrow Up 9934 1934 2934 * Asterisk 9974 1974 2974
[Open Bracket 9935 1935 2935 & Ampersand 9975 1975 2975
< Less Than 9936 1936 2936 / Virgule 9976 1976 2976
= Equal Sign 9937 1937 2937 X Lozenge 9977 1977 2977

* Four of the 64 code configurations will not be available as standard 301 codes

but can be generated by computer programming.

Also, some of the 301 symbols

do not appear in this list so that other symbols may be chosen to represent

the 301 symbols.

by placing the code (17)g in location 9902, 1902, or 2902,

printing of the associated character.

It is advisable to prevent energizing the hammers for spaces
In fact, the code
(17)g can be placed in any location in the table when it is desired to prevent

appearing in the print area will never cause printing of any character.

XVI-2

For this reason, too, any (17)g codes

The Synchronous Mode permits only 47 characters to be printed since a complete
line of print and paper advance to the next print line is accomplished during each
revolution of the print drum. The letter "A" is always the first character for
which HSM is scanned, and the period is the last. The Asynchronous Mode permits all
64 characters on the print drum to be printed in one full revolution, and paper ad~
vance occurs in a portion of the next print drum revolution. Scanning can proceed
with the next character in sequence on the print drum at the conclusion of the paper
advance function.

Once the full line has been printed, it is necessary to advance the paper so
that the next line will not be printed on top of this one. This is done in one of
two ways:

1) the computer can count the number of lines to advance, or
2) the paper advance can be controlled by a tape loop.

The tape loop mentioned can be thought of as a reinforced piece of paper tape. .
It is divided into two parts or 'channels", the first controlling the Page Change (21)
type of paper advance and the second controlling the Vertical Tabulation (20). This
tape is punched so that the holes correspond to the locations of the lines to be
printed. In this manner, it corresponds to the vertical layout of several sheets.
This tape is then spliced together to form a loop and is placed on the printer so that
it corresponds with the blank paper.

Once a line is printed, and paper advance under control of the VT channel of the
tape loop is requested, the paper will advance until it senses the first hole in the
VT channel.

This occurs when the tape, which is passing between a photo-electric cell and a
light, allows the light to hit the cell. This stops the paper, and the printer is
ready to print the next line. The same sort of procedure would be followed if we re-
quested control by the PC channel, the difference being that the sense would be made
for a hole in the page change channel. ‘

PRINT AND PAPER ADVANCE NORMAL:

This instruction allows the printing of one 120 or 160 character line on the On-
Line Printer. It can also cause the positioning of paper for the next line of writing.

The OP code is B.
YN' supplies 2 types of information. The numeric portion indicates the number of

lines to be advanced if the computer is to count the lines. This is limited to 0-14.
The zone bit, 24, indicates which of two possible printers is to be used.

ASYNCHRONOUS MODE SYNCHRONOUS
LINE # O 1 {2 {3 143351617 189 10:11j12t13114 1
1st
PRINTER O 11 12 I3 }4)516}7 1819 _ #1 @ ()) J
2nd
PRINTER A B ICIDIJEjFlGc i T} +1{ ;| :] . /

The A address must be zeros (0000).

The B address contains the LHE of data to be printed excluding Bj.

Bg - MSD of address

if even, printing will occur. If odd, printing will not occur.
always zero

indicates type of paper advance.

oW =
W N -
LI I |

B, TYPE OF PAPER ADVANCE

0 None

1 Paper Advance using N Register
2 Vertical Tab (using Tape Loop)
3 Page Change (using Tape Loop)

Reut e
It is up to the programmer to edii the line for printing. ,
LEN—— L ?',,ﬁ,r “,!5*3“&‘ \I.a“ﬁg’}i'té " %H ".i‘;
Example: 4y ;:,s € M o W;; (s f{v r
GELT oA Troe | ST rey o Ykt Fean
The problem is to print outia 1lSt of employee numbers’, section Humbers, and
names. The information is coming in from magnetic tape mounted on tape station 3
(one reel). The input is in thq‘format:

i
ACCT # SEC # NAME TQTAL GROSS TOTAL SS TOTAL WITH. TOTAL NET
5 3 25 7 5 6 7

H
The print format is to bé:

CGOUNT # SECTION # NAME
Print Positions——————)'l-IS 21-23 31-56

Assume that the VT channel of the tape loop has been punched to take care of all
paper advance desired.

(! B) i N
L)%} B oA ”u:j S Sk . H [“(4 Poapen
o e W
‘ g (R
ot

& o
Ay « o

XVI-4

HOUSEKEEPING;
CLEAR PRINT AREA
RWD TAPE

READ
RECORD

TRANSFER _
ACCT# —» PR A

TRANSFER
SEC 4—>» PR A

TRANSFER
NAME ——— PR A

7
PRINT
AND
PAPER ADV.

RWD
TAPE

oofo1]oz[o3]oafos[oe[o7[o8]0 10 11]12[13f14[1516 17[1819] 20 [21[22[23] 24 25[26[27] 28] 25 | 30 [31] 32] 33] 34 35/36[37]3839] 40| a1]a2]a3]aa]asac]a7 48] 4s
20 |—EMP # —>|8 —TOTGR <~ -TOTSS —| —TOT WITH| READ
50[s1[s52]s3]54]|55[56[57[58] 59| eo] 61[62[63]64|65] 66| 67| 68]69 [70 [71[72[73[74 75[76[77[78] 79 [a0 [e1] 62] 83] 84 8s|a6[87]88[89 |90 [91]92[93]94]o5]96]97] 58] 99
—TOT NEf —
oofo1o2]03[0afos 06 [070809 | 10[11]12[13]14[15] 16] 17] 18] 19] 20 [21] 22[23] 24 25[26] 27] 28] 29 | 30 [31 32] 33] 34] 35| 36| 37] 28] 39 40 [a1]a2]43]aafas[46]a7] 28] 49
21
50 [s1[s2[s3[se]ss|s6]57| 58] 59] 60| 61[62|63 [64 65] 66| 67| 68] 69 | 70 [71]72[73] 74| 75[76] 77[78] 75 | 80 [81] 82] 83] 8] 85| 86 | 67 | 88] 9| 50 | 51]52 93| 54 |95]| o6 | 57] 58] 59
00 [o1]02[030s[os]0s[07[08[0] 10] 11[12]13] 14| 15| 16| 17] 18] 19] 20 [21]22[23] 24] 25 [26] 27] 28] 25 | 30 [31] 32] 33] 38| 35] 36| 37] 38| 35 | 40 | a1]az]43] 44| a5] 46] 47] 48] as
oo P o . e - - - - BECT. - -|- - - = - NAME PRINT
50 {51[52[53] 54| 55]56] 57| 58] 59 60] 61[62] 63 64] 65| 66] 67| e8] 69| 70 [71]72] 73[74] 75[76] 77] 78] 75 | 80 [1] 82] 63| 64| 85[86 [67 [88] 89] 90 [51 |02 |93 |54]95] 96 7] s8] 95|
ety | wm e e o = e e e - e el T T T T R [TN T i O,
0o foifoz]o3]0a]os[o6[07] 08 as] 10 11 12][13[1a] 15[16[17 [18] 19| 20 [21]22[23[24] 25[26] 27 28] 20 | 30 [31] 32] 33] 34| 35] 36 [37| 38] 35 | 40 | a1[42 | 23] 44| a5] a6] 47] 28] 4o
L B I R e -
50[s1|s2]53[sa]s5]s6]57| 58] 59] 60| 61]62{63|64] 65|66 67[6869 [70 [71]72[73] 78] 75 [76 [77 78] 79 | 80 [61] 82| 83] 84| 85| 86 | 87| 88] 89] 90 [51 [92]93] 94|95 96|97 98] 99
00fo1[ozJosfoafos[os[07] 08 0s] 10] 11[12[13[14]15[16[17 [18[19] 20 21[22]23]2a] 25[26] 27] 28] 29 [30 [31] 32] 33 34| 35] 36 | 37| 38] 39] 40 | a1 [a2 |43 |44 | a5 | a6 |47] 48] a9
2 | PROGRAM — >
o 50 [51]52] 53] 54| 55] 56 57] 58] 59] 60[61[62] 63[64| 65| 66] 67] 68] 65 | 70 [71] 72| 73] 74| 75] 76| 77| 78] 75 | 80 |81 | 82 83] 4] 85| 86 | 67 | 8885 | 50 o [02]93]sa]o5 9697 o8] 09
I
1
o 00 Jo1]0z|03[oa]os[os[07[08 oaf 10| 1] 12[13[14] 151617 [16 |19 J 20 [21]22[232a] 25] 26] 27[28] 20 | 30[31] 52] 33] 34| 35] 36 [37 [38] 39| a0 | a1 |42 |43 as |45 | a6] a7] 48] 45
25 '
50]51[52[53[54]55]s6[57[58] 59 60[61|62]63[6a]65]66]67] 6860 |70 [71]72[73[7a] 75[76[77] 78] 79 | 80 [81]82] 03] 84| 85[66 67 [a8]80 |50 o1 [92] 93] |5 [96 |97]98] 99
00 [o1]02]|03]0afos|06|07]0a[o] 10| 11]12[13] 1a] 15[1617 [18[19 |20 [21]22] 23] 24] 25[26] 27] 28] 20 | 30 [31] 32] 33] 34| 35] 36] 37 6] 39] 40 [a1 [a2 43| a4 |45] a6] 47] 48] as
26
50 [51]52[53)54]55] 56|57 58] s9] 60|61 |62[63]6a65]66] 67 68[69 | 70 [71]72]73[74| 75[76[77] 78] 79 | 80 [81[82]83] 84| 85[86 [87 [88]e9 [90 |91 |92 [93 94 |95 96 97| 98] 9o
00 [o1[0z]03]04o5[o6[o7[0s0o] 10[11] 12[13]14] 15] 1617 [18] 19 J 20 [21[22[23[24] 25 [26 [2728 20 | 30 [31] 32 33] 34| 35] 36 [37 [38] 39| @0 [1 [a2 |43 |44 |45 a6 | 47 48] a0
27
50 [s1[s2[53[sa]55]56[57] 58] 59] 60[61[62[63]6a]65]66] 67] e8] [70 [71]72[73]7a] 75[76[77] 78] 75 | 80 [81 [82]83] 84| a5[e6 [67 [ee 69 [s0 [o1 [s2]o3 [s4 |95 [96 [97] 98] 95
00 [o1[o2[03]0a]o5 06 [07] 0809 | 10] 11] 12[13[14] 15] 16] 17] 18] 19 | 20 [21[22[23] 24| 25 [26 [27] 28] 20 | 30 [31[32]33] 34| 3536 [37 [38 39 | a0 [a1 [a2 [43 [as|46]a7]as]as
28
50 [s1]s2[s3[sa]ss|s6{57[s8[ss 6061 [62[63]6af65]66]67[68]69 |70 [71[72[73[74]75]76[77]78] 75 |s0 |8 1]82[83]84]85]86 [87 [68 e [0 [o1 52 [93 94 |95 [96 [97] 98] 99
00 [01]02]03 |04 Jos|os |07 [os [os f10 [11]12[13]1a]15] 16] 17] 18] 19 J 20 [21[22[23[2a[25[26] 27[28] 20 | 30 [31] 32[33] 34| 35] 36 [37 [38| 30 | a0 [41| 4243 [44 |5 |46 | 47 [48] a9
29
50 [51[s2[53[s4]55]56[57| s8] 59 o6t [62[63[6a]es]66]67[68]69 70 [71]72[73[74[75]76]77[78] 75 Jeo[a1]s2]ea] 8a|ss5]ac [87 [88] 89| 901 [s2]o3 |94 [s5 o6 [97[se] 95
TITLE: BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGE OF

FORM NO. 1223

28M 6-60

e

[=TIAX

TITLE PRINT EXAMPLE
CODER DATE
REMARKS SEGMENT NO.
FROM |NO. 12 Jor| n A B REFERRED
Toc. [ms. LocaTioN §§ ol1]|2]|3|4a)s]|e|7 (8] By REMARKS o.
,______E o 0l0/0f;i31ofolo]ojololo RWD 3 1
1 OofjofolgiENslolofolalal1]g CLEAR TPRINT AREA TO SPACES
2480 2 0go 0‘422‘9__0_9\2057 READ IN ONE RECORD 2
3 OO0 lOfwisfaiulolollalu|ulo SENSE FOR _ED/EF
y ofolofulsiololololelaltlo TRANS EMP #—————+ PRINT AREA 4
2430 5§01 0 iz lalololslolalalo TRANS SEC # PRINT AREA 5
| > 6 Yol 9Imw|ojolol8lalal3]o TRANS NAME - PRINT AREA 6
7 ofolofslo]o]ololol2]2a]lo]2 PRINT AND PA BY YT 7
80|00V102192h20 TRANSFER —— 2
2430 9 OQ%19%)sl13lolololololololo RWD 3 8
250 CJO 0o lo]lololololololo HALT _(FOR)
ofo | o
jé olo]o
ofo | o
ofo | o
ofo | o
oflo
ofc
6 oo o
offo | o
offe] o
ofo | o
cfo
0
IE 1224 REV. 800 PAGE 1 oOF 1

PRINT- EXERCISE:

PROBLEM: To prepare a list of names and addresses of each account in the file.
INPUT: A file containing account information of the format:

ACCOUNT # NAME ST. ADD ~ C-S ADD TOTAL CREDITS TOTAL DEBITS BAL.
B 7 25 30 25 10 10 8

This file is mulfi-reel.
. s

e

PROCEDURE : 1) Read in a record.

2) Print out the name on one line (starting at the first print
position), the street address on a second line directly under
it, and the city-state address on a third line (single space
between the three lines and assume the VT channel is set up
for the desired paper advance between the records).

3) Do this for every record in the file, allowing for a new reel
when required.

XVI-8

& . ~
E, . 7 4
y Hn :

w "‘?‘ -~
A e t.,ﬁ,.i e bd e

XVII — ITERATIVE CODING

(TALLY)

A Egggrammgr often wish&as.io..Re. able to repeat a‘portlon of his progre%la glven

number..of, times .apd. then. go, on to do so mething. else. This 18 cirf@ﬁ””"%éfd%lve codlng"

R

One example of this might be a program which is to write out 100 records to a
work tape and then stop. This means that, instead of a program transfer instruction
at the end of the main path, we need a type of conditional transfer. One way it
could be handled is to keep count of the number of writes which have been performed,
by adding a 001 to a work area which was initially cleared to 000. Then we would
have to continually sense this counter work area for 100.

Until it is found, we can continually go back to read.in a new tecord and then
write it out. When it is found, we can go to an end of run routine. These steps,
however, would greatly increase our running ‘time, which, of course, we are trying to
keep at a minimum. For this reason, we have one instruction called TALLY that works
in a reverse direction. That is, it starts out with the maximum number and dec¢reases
by one every time it is executed. ~

TALLY:

The OP code for this imstruction is X.

The "N" character is zero. -

The A address gives the HSM locatlon of the diad contalnlng the quantlty to be
tested, This is often referred to as a Tallz Cougg r. - The maximum value of the tally
quantity is 99.

The B address gives the locatlon of the Eg‘t instruction to be performed if the

. uantity belng tested has not been exhausted. When the quantlty has been exhausted,
the Ha¥t instruction in sequence will be executed

Example I:
Our problem was to write the first 100 records of a file out to tape. . Our input

contains records, 200 characters in length, ‘and it is mounted on tape station A. The
output is to be on tape station C.

XVIii-1

AX

TITLE PRINT EXAMPLE 1
CODER DATE
REMARKS SEGMENT NO.
FROM |NO. Sl e lop| N A B REFERRED
Loc. |ims. LocATIoN 55 ol1]|2|3(4]|5]6|7]8]59 By REMARKS .
6 0o
00
0o
0o
0o
yho OJ° 1 9dololololofodololo A TAIIY CTR EF
15_459 01019); lalololofololoolo RHD A 1
1 ofofols|clolololololo oo RWD_C 1
L4540 o Qo0 uiai3fololol3lr]o o READ A RECORD 2
3 491 %98]alalolololzlilele WRITE RECORD 3
L CRO1O)xioln [ulols fu s |2 |o TALLY 99 TIMES -
sobghg_guubquhqq WEITE FF TO ¢ 5
l3 ysg 0101 0); ialolofolololololo RWD A 6
7 O io0tsjefojololololololo RWD_C T
8 oo ol:dlolojolololo]o]o]o HALT (EOR) 8
GIbO
ofo o
-
6 oo o
ofo o
offo] o
oo | o
offo] o
ofo o

IE 1224 REV. 8-60 PAGE 1 oF 1

You will note that the tally quantity is 99. Since we have already executed
the write one time before we came to the Tally, we desire to transfer back only 99

times.

o
When the Tally instruction is executed, the contents of the tally counter t
addressed by A are sent to the D register. If the quantity is not 00, the contents
of the P register are sent to STP and the contents of the B register are transferred
to the P register. The contents of the D register are dgcreased by 1 and replaced
at the address designated by A. 1If the D register does contain 00, the next instrui;?

tion is staticized without affecting the P register.
Example 2:

A second example of the use of a Tally is connected with printing. Our problem
(stated in the last chapter) was to print out each employee!s number, section and
name on one line.

We assumed that the VT channel of the tape loop had been punched to take care

of any paper advance. Suppose, however, that this was not true, and we had to arrange
to do this in our program. Our particular size of paper allows us to print the in-
formation concerning 25 employees on one page. Having accomplished this, we want to
page change and then repeat the process. In other words, after printing 25 lines, we
want to cause the paper advance control to be thrown to the PC channel, rather than
having the computer cause the printer to double space. In order to do this, we have
to be able to keep a count of the lines we have printed.

Again the Tally can be utilized. We can tally to the regular print routine 24
times. On the 25th, we will go to the print routine that executes a Page Change.
Notice that we must reset the tally counter after printing out each group of 25 lines.
This is necessary since the tally quantity is physically reduced each time the in-
struction is executed. If we did not set it back to 24, it would register 00, and
from that point on we would print one line, page change, print another line, page
change, etc.

XVIT-3

HOUSEKEEPING:
RWD TAPE
CLEAR PR A TO SPACES

READ
RECORD

3
YES
o | TRANSFER
EMP # ——3> PR A
5 | TRANSFER
SEC# ———> PR A
¢ | TRANSFER '
NAME ——— PR A
7
NOT EXHAUSTED
[TALLY
10 24 TIMES
PRINT
AND EXHAUSTED

DOUBLE SPACE

8 PRINT
AND
PAGE CHANGE

RESET TALLY
COUNTER

XVIT-4

RWD -
TAPE

12

G—ITAX

TITLE PRINT EXERCISE 2 .
CODER DATE
REMARKS SEGMENT NO.
FROM NO. =| = |OP| N B REFERRED
HSM <| < BOX
INST. OF TO REMARKS :
Loc. |ins| LOCATION |1 513 o [y |23 (a5 |67 Is BY NO,
— —
1 olog o
cqo
¢ &
ooy 0
cjo| ¢
239 o ololalhlolololh _EF_TALIY QIY TATLY OTR
6 oo ClClo)s{3]l0]l0oj0oj0f0]j0|0O]|O0 RWD 3 1
1 ofolola|_|2lalo]|0o]|2|3]|1]|9 CLEAR PRINT AREA TO SPACES 1
5229 > ofolelsls]|alo]|ololalo]s]|T READ A RECORD 2
3 0ol |w|8|2]|5]|3|0o]|2|kik]0 SENSE ED/EF 3
y cjoelofM|s|ejojojo]2j2|1]|o0 TRANSFER EMP # -~ PRINT AREA L
, = cjolofm|3jajojo|5(2j2|2]o0 TRANSFER SEC # - PRINT AREA 5
1[? o6 0] fMIN|2[0]0]8]2]2]|3]|0 TRANSFER NAME ~ PRINT AREA 6
7 clelolxlol213{9]9]2|5|1}0 TALLY 24 TIMES ' 7
8 | clslololo|loloj2a]2]o]3 PRINT WITH PC- 8
ofole]xwl2]2]3]9[5]2[3]9]9 RESET TALLY CTR 9
250 ofe viijo|2|1l9|2|4{2]|0 TRANSFER - 2 .
2470 1 G Bl 2j o] o]0l ol2al2lo|1 PRINT WITH DOUBLE SPACE 10
252 ilofviiiolael1lolalkl2]0 TRANSFER ~* 2
2430 3 afls;l 3100l 0] 0j0O[f0O]0O]O RWD 3 11
L olelogl ol ol ojofofolojofo HALT (EOR) 12
IE 1224 REV, 8-80 PAGE OF 1

ITERATIVE CODING EXERCISE I

PROBLEM: Search a file for the first ten messages containing a specified
identification code.

INPUT: 1) Master Sales File mounted on tape E.

a) One reel
b) Format

CODE SALESMAN'S NAME REGION BR, OFFICE YRS. SERVICE SALES TO DATE QUOTA

2 25 8 8 2 9 9
PROCESSING: 1) Search the master file for the first ten messages which contain

the identification code brought in from a card.
2) Write the selected messages to tape trunk 5
3) Write the other messages to tape trunk 1

) When 10 selected messages have been written go to end of job
procedure.

5) End of job procedure:
a) Write EF to output tapes.
b) Rewind all tapes.
c) Stop.

OUTPUT: 1) One reel containing all selected messages.

2) One reel containing all non-selected messages.

ITERATIVE CODING EXERCISE II

PROBLEM : Using the same problem mentioned in the chapter on printing, page XVI-S8
single space between the lines of one address, triple space between
addresses, and page change after printing 10 addresses.

7

XVII-6

XVIII —

In all of our programs to date the instructions we wrote remained intact through-
It is qulte possible,

(LOCATE SYMBOL LEFT)

out the running of the program.

to change certain addresses within the program

modification’.
S B PSR ES AK d s

however,

ADDRESS MODIFICATION

i
it gy

One example of this is illustrated in the following program:

We have a table in memory.

that we might desire
Thls process is called ""address

ABAES FEER T iy
A RO

F

B0T41 (42 43] 44

45]46|47(48/49

50[51]52{53[54

55[56/57(58[59

60[61] 626364

6566|6768 69

56 9675 48 4 5 3 6|/6 54 9 8|3 2456]2 1 3 6 4 0 0000
Stk. #1 2 3 4 5

stock code
terminate the

Our only job is to verify that all the records in our file have a
that agrees with one of the above. The zeros are placed at the end to
loop. For example, -if our first message had a stock code of 43257, it would be less
than 96754, so we would compare it to 84536. Again it is less,.so the next comparison -
would be to 65498. The next step would be to compare it to 32&56. Since it is
greater than 32456 but less than 65498, it must be an erroneous code. All codes will
be greater than 00000, so a code of 10324 would be recognized as erroneous.

The problem is to keep the number of programming steps at a minimum. Since the
MSD of each code is located exactly 5 positions .away from the last MSD, wouldn't it
be possible to start out comparing against the first code and if it is necessary to
then compare against the second code, simply add 05 to the compare instruction? This
loop could be maintained until the code matches, or until the record is proven to be
illegitimate. We must remember, however, that if we are gOLng to modlf the address
of the compare whlle proeeSSLng one recordk it w111 b 1 i
£ & next record, I we do not “we mlght
mateh on code 3YLS6 Gi this Tecord. Wheh we bring in the mnext record, however, its
code is 84536. If we did not reset the compare to start again at the beginning, this
would register as a "greater than" and therefore be rejected, when, in fact, it is a
perfectly valid record.

INPUT: 1 reel of master information on trunk 6:
STOCK CODE STOCK NUMBER BALANCE ON HAND DUE IN
5 8 10 7
QUTPUT: 1) 1 reel of valid masters on trunk 3.

2)

1 reel of invalid masters on trunk 5.

XVIII-1

<

HOUSEKEEPING:
RWD TAPES

@

-
2
READ
RECORD

INITIALIZE COMPARE

X |

®
sﬁ
RC> C RECORD CODE

RC< C

. CODE

6
ETW? 3

7

XVIII=-2

16

|

ADD

05 TO COMPARE

)

=

—

—

et

2

3

h

5

€=1ITAX

00o1[02]03]o0a

os]o6[07/ 08| 09

10] 1] 12{13] 18

15] 16| 17 18] 19

20 [21] 2223 24

25| 26] 27| 28 29

30[31] 32 33] 34

35] 36| 37| 38]39

40]41|42|43]44

a5] a6 [47] 48] a9

50
50]51]52]53] 54| 55| 56| 57] 58] 59 | 60] 61| 62| 63]64] 65] 66] 67] 68] 69 70 [71]72]73] 74| 75 76] 77| 78] 79 | 80 [81 | 82 83] 84| 85[86| 87 [BB | 89 90 [91]92]93] 9495 9697 98] 99
00[01]02]0a]0a]o5]06]07] osos] 1o[11]12]13[14 15[16] 17] 18] 19 20 J21]22]23] 24 25[26] 27] 28] 29 30 [31[32]33] 34 35[36 [37[3820 [40 [a1]42]43]4a a5[a6]47] 48] 49
51 ,
50 51|52 53] 54| 55| 56| 57] 58] 59| 60 61] 62| 63| 64| 65] 66] 67] e8] 60 [70 [71]72] 73|74 75[76]77] 78] 79 |80 a1 62] 83] 84| 85 86 | 67| e8] 89 s0 [91]o2[93 92 [os5] 96 [97] 98] 09
00 [01]02]03]04]05] 06] 07] 08 05 | 10 1] 12[13]1a] 15] 16] 17] 18] 19| 20 | 21| 22] 23] 24] 25 26]27] 28] 29 | 30] 31| 32] 33] 34| 35] 36] 57 38] 39 J a0 [a1]az 43|44 a5 a6 a7] 28] a9
52 S8TK CODE |e—BTK # —> BAL ~> i ——
' 50]51]52] 53] 54] 55] 56| 57] 58] 59| 60] 61| 62| 63[64| 65 66] 67[68 69 | 70 [71] 72[73[74 75]76] 77] 78] 79 | 80 8182 83[84| 85 86 [87 |88 89 90 [91 |92[93 945 96]97] 98] 99
00o1]02]03] 0a|05] 06]07] o8 osf 101112 13]1a[15[16[17 18] 19 20 [21] 22| 23] 24| 25| 26] 27] 28] 29 | 30 31] 32] 33] 34| 35| 36 | 37| 38] 39 a0 | a1]a2[43]aa]as]a6|a7] 28] 49
53

50 [51[52|53]54

55] 56] 57] 58] 59

0] 61/ 62| 63|64

65| 66| 67| 68| 69

70 [71]72]73] 74

75]76]77] 78] 79

80 [81]s2|83[8a

85] 86 [87]88] 89

90 [91]02]03]94

95|96 [97] 98] 99

00 [01]02[03]0a

05] 06] 07 08] 03

10] 11]12]13] 14

15]16 |17 [18] 19

20 |21] 22| 23] 24

25]26] 27} 28] 29

30 [31]32[33] 34

35]36 | 37| 38 39

40 [a1]a2]a3]aa

4546 a7]a8] a9

PROGRAM —]

I

50 [51]52]53] 54

55 56] 57| 58| 59

0] 6162 63|64

65{ 66| 67| 68]69

70 [71]72{73] 74

75]76[77| 78] 79

80 [81]82]83]84

858687 [88]80

90 [91 [92]93[94

95]96[97] 98] 99

00 [01]o2[03]0a

os]06] 03] 08|09

10[11]12]13]1a

151617 [18] 19

20 [21]22]23]24

25[26] 27] 28] 29

30 [31]32]33] 34

35| 363738} 39

40 [41]a2]a3]as

45[4a6]a7] 48] as

60]61]62|63]64

65| 66| 67| 68] 69

70 71]72]73] 74

75]76]77] 78] 79

80 e1[82|83]8a

8586 |87 a8 |89

509102 93[9s

95|96 97|98 99

10]11]12]13] 12

15] 16[17 |18 [19

20 [21]22]23] 24

25[26] 27| 28] 29

30]31]32[33 34

3s] 36] 37 [38| 30

a0 [a1[a2[43]4a

a5 [a6|a7]a8] 4o

60]61]62[63[§4

65]66] 67| 68|69

70 [71]72[73] 74

75]76| 77| 78|79

80 [81]82[83{84

as[a6 [87 |88 [8s

90 [91]02 |93 |94

9596 |97[98] 99

10 11] 12[13] 14

15[16[17 J18] 19

20 [21]22]23]24

25[26]27] 28] 29

30 [31]32]33[34

35]36 [37]38] 39

40 [a1 [42 |43]aa

45|46 [47] 48] 20

sole1]62[63]64

65]65[67|sa[69

70 [71]72]73}74

75]76[77]78] 79

8081]82]83]84

858687 [8a]es

90 [91[o2]93[9a

95 |96 [97[08[90

10] 1] 12[13} 14

f5|16[17[|e[19

zo]ztlzz]23|24

zslzs|z7|ze[zs

30‘31[32[33[34

35]36[37]39[39

40[41]42[43[44

as [46 [47] 48] 49

60[61]62 63|64

65]66] 67 | 68]69

70 [71[72]73]74

75]76[77[78] 78

80 [81]82|83]84

aslas]s7{aa[a§

90 [o1]o2 |93]0a

95]96[97]98} 99

10]11[12]13[14

15[16] 17[18] 19

20 [21[22]23]24

25 (26| 27| 28 20

30 [31]32]33] 34

35[36 3738 39

40 [41]42]43]aa

a5]as[a7[48] 29

s0[61(62[63 |64

65]66] 67[6869

7o|7||72|73|74

75[76[77]75[79

eo|81|62]52|84

8586 |87 88| 89

90|91|92|93|94

95]96[97]96{99

55
50 [51[52] 53] 54] 55] 56| 57| 58] 59
00 Jo1]02[03[0afo5] 06| 07]08] 09

56
50 [51[s52]53)54 55] 56| 57| s8] 59
JooJo1Jo2]o3]0a|05][06]07] 08|09

57
50 5152|5354 55]56l57|58!59
‘ 90[01]02103[04 os]oe|o7|oe|09

58
50 |51]52]53] 54]55]56]57] 58| 59
00 [01]02]o3 [o4 [o5[06 |07 o8 0o

59
50 [51]52]53| 54 55]55[57]53|59

TITLE:

FORM NO., 1228

25M 6-60

BLOCK NO.:

INDEX NO

PROGRAMMER:

DATE

PAGE___OF__

1 OF

PAGE -

o
=z
T
z
w
MG
as
~
8
m
-
By
=~
g
0
3
g
wv
&
2 4
i
oW
FOx

50 11123r5c)67 | o ol =] &l »of #| nl ©
BN —] —=! —f —~] =] =] =
. 2
V3 .
o (5]
<
Z =]
- 2 a
o | w
B 4 3]
[N
(@] ~—r m
Bl Ol o 0
] v ™) n
: m §
[:<] t + .
3| 8 a M.,
aclgl | lell gl aln
Msmm ol * Ol ¢ + + 4 Bl .-
Om Q [&] mn.v. mm
[&) 93m N HW m !
WS maN NR m:/ ANn
O M i\ o wl o 0 Hl oof in] w0 ol | m| &=
mmmc Ww m MT =] (=] 7))
EHEEEHEPHEHEEHEEEEEEEHEL
M Ml mmCR m w WWRRRMM O
o
o [o0]
o
o > —
W o R
w =
o
L
9000909—000 ONOJ]og ol H - ol ool o]l oo | o
©Q Ol ol o]l aln|wvjol o aaj ul | v N nf oy olofo| ol mw]| ojo
)
70002\.4\4“66 AN T | O ANl OOl olofjofolvvl+] olo
6—0005555555555555000055OO
5000005—000 Ol ojolan H H olofolol o] olo
40000\43—010 0100133000061 O] =+
A3—000256—25022022660000\42 el Ne]
2000555—55‘4 no|lgfno 5500‘0050 ojo
Nl635682—5l33l551 3535—6021 Ot
&lol -~ .,hWN_YWSBVSSVBS.....,..,E+VD
mh<04m00000000000000.0000000000
<._.<04m—0 Clolojojlofojlojloc|lojo|loflo|o|lolo|lo|lolololololols
1tl e ——
OOOOOOOOOOOOOOOOOOOOOOCO
z
o
=+
v ol |mn]s]n Mo [0y |o l—23h567890123
o = n n \O
o [[T\ in N
4
= . .
Qg Q O (@] (@] o g
eho o3y = 3 S
wZ.a LA LY O = = LO\H
- L) ITaY [T TN LALA

XVITI-4

IE 1224 REV. 8-60

Another example of address modification alsc ties back to printing. In the print !
examples covered up to this time, we have only been printing fixed alpha or alpha- b L
numeric informatioms. Suppose, however, we wanted to print a balance. Since we are ?;f
carrying it in a 7 digit (6 characters maximum, 1 space for overflow) fixed field on ©
‘tape, a balance of $107.54 would appear as 0010754, and a balance of $6.98 would ;
appear as 0000698. Once we place the balance in the print area, we must change all
the insignificant zeros to spaces so that they will not appear on the printed copy.

In order to do this we must discuss a new instruction called LOCATE SYMBOL LEFT.

LOCATE SYMBOL LEFT:

This instruction searches a sector of memory looking for the lack of a given
symbol. For example, in our case, we would want to locate the rightmost insignificant
zero in the balance area.

The OP code is K. Sezrch ar fraa Sy v S \

N indicates the selected symbol,.
g
The A address gives the left hand end of the area to be seagpchede
The B address gives the right hand end of the area to be sear .
M‘m‘

If the balance item were placed in the print area between 2434-2440, our in-
struction would be:

K 0 2434 2440

Once the instruction is staticized, the contents of the HSM location specified
by the A register is compared against the contents of the N register. If the char-
acter is like that in N, and A does not equal B, the A register is increased by one
and the operation is repeated. The operation will terminate when either:

1) A equals B or

2) a symbol unlike the one in N is found. 1In this case, the A register is de-
creased by 1, so that the A register would be addressing the last symbol
found (in our case, the last zero).

In addition, the PRI's will be affected as follows:
PRN is set when the first character searched is not equal to the contents of N.
PRZ is set when all characters searched are equal to the contents of N.

PRP is set if a non-symbol is found after a character equal to the contents of
N has been found.

Now, if we have the ability to transfer the contents of the A register into the
B address of a Transfer Symbol to Fill imstruction, we would be able to replace the
zeros with spaces. This is true since we know the symbol to f£fill would be a blank
and that the left hand end of the field would be the left hand end of the balance or
2434, The only thing we didn't know originally was the right hand end of the sector
to be cleared, and we have just found that. The problem, therefore, is to get to
the contents of the A register.

XVIII-5

The first instruction that occurs to us is the STORE REGISTER instruction since
we already know that we have the ability to store the contents of the P register
utilizing this instruction. This presents a difficulty, due to the fact that the REG
instruction itself utilizes the A register, so. that before we could remove the address
we needed, we would destroy it. For this reason, the engineers supplied us with an
automatic storage of the final contents of the A register in practically every case
where we might need it.

Agéin we will be working with a standard high speed memory location. This time
0212-0215 are the locations, and they are called STA (Store A). At the termination

of certain imstructions, the final\ggﬁﬁﬁaxs of . the A register are placed automatically
into STA. Once there, the program as the ability to transfer them wherever they
may be needed. He must remember, however, that they are there only temporarily, since
the next instruction that affects STA will change its contents.

The solution to our problem.is now simple. All we must do is locate the right
hand least significant zero, transfer the contents of STA to the B address of a SF
instruction, and then f111 the zeros with blanks. The routine would look as follows:
(Assume one zero.) '

W TR ;b,>?gis ‘r_§500 K . 0 2434 2440 Locate MSD of balance
351060 N 4 0215 3529 Trans. STA to B address
3520 3 2434 () Replace zeros with spaces

Using the two examples we mentioned before, let's follow the routine through:

34 35 36 37 38 39 40
24 0 0 1 0 7 5 4

Locating the last zero wquid_put 2435 into STA.

Transfer the contents of STA to the B address of the SF instruction so that it
now reads:

J - 2434 (2435)
Execute that instruction so that you have in memory:

24 34 35 36 37 38 39 4o
- - 1 0 7 5 4

- Starting out with:

24 0 0 0 0 6 9 8
Locating the last zero would place in STA 2437.
Transferring this to the B address would give us an instruction. that reads:
J _ 2434 2437.
Executing this instruction would yield:

3% 35 36 37 38 39 40
24 - - - - 6 9 8

XVIII-6

ADDRESS MODIFICATION EXERCISE I:

PROBLEMS: Post a set of totals developed in a previous run to a table of year-to-~
- date totals maintained on magnetic tape.

INPUT: 1) Magnetic tape containing a table of 100 ten digit master totals
i a) One reel '
b) On tape 3

2) Magnetic tape containing a table of 100 ten digit transaction totals
a) One reel
b) On tape 5

PROCESSING: 1) Housekeeping
a) Rewind all tapes

2) Read a master total
3) Réad in ‘transaction total
4) Add the 100 transaction totals to the 100 master totals. The first
transaction total is to be added to the first master total, the second
transaction total is to be added to the second master total, etc. The
new sum will never exceed 10 digits. :
" 5) Write the updated 10 digit total table to tape station 1.
6) End of job procedure: :
a) Write EF to output tape.
b) Rewind all tapes.

OUTPUT: 1) TUpdated table on magnetic tape.
a) One reel, :

ADDRESS MODIFICATION EXERCISE II1:

PROBLEM: Prepare and print order forms from the data coming in from a stock file:
INPUT: One reel of master stock information in the format:

STOCK # - MFG'S NAME ST. ADD C-S ADD BALANCE ORDER QTY DUE IN
9 25 20 20 10 . 8 _ 8

The numeric fields (balance, order quantity and. due in) are loaded with insignificant
zeros. '

-OUTPUT: Printed order forms in the format:
STOCK # MFG'S NAME ST. ADD C-S ‘ADD. - ORDER QTY.
Print 1-9 20-44 ~ 50-69 75-94 113-120
Pos. ’

Advance 5 lines between lines and page change after every 10 order forms.

ADDRESS MODIFICATION EXERCISE III:

PROBLEM: To edit a tape which is supposed to contain one of a possible ten stock
numbers. ’

XVIII-7

INPUT:

PROCESSING:

OUTPUT:

iy

2)

2)
3)

1)

2)

An inventory file on one reel of magnetic tape, mounted on Station C.
(100 character records; the stock number is the first 8 characters).
A table which is to be read into memory from a card wjkth 10 eight
digit codes, in ascending order.

If the message doesn't contain a valid part number, write that
message to the Station A.” If the message does contain a valid part
number write the message to tape F. (»

If an EF is detected write EF's, rewind tapes, and halt.

Use a tally ta.shtop th ram loop.

A tape of valid messages.
a) One reel.
A tape of invalid messages.

M, L
Ry

XVIII-8

XIX — VARIABLE CONNECTORS

[&n our examples so far we have assumed that there would be no more than one
transaction against any one master. This, of course, is not always a valid assumption.
If we did have a problem with multiple transactions, another programming problem would
be involved.

Initially we would have to bring in both a master and a transaction in order to
start the processing. If the criteria of these two records matched, ye yould then up-
date the master with the information contained in the transaction. At this point we
would want to transter back to read in. 2 C T™811ce we know that there
may be multiple transactions against any one master. In addition, if the transaction
record had a criteria that was less than the master criteria, we have been assuming
that this was a sort error (or no master available) and have been stopping the computer.
This is inefficient and a more common practice would be to put this error transaction
out (for example, to a magnetic tape or to a punched card) and bring in a new trans-
action. . If this was the entire program, we would have no problem, and the functional
chart for it would appear as follows:

MYT
5
(punen
PDATE MAST
| TRANS uPo) S BTYRANS

However, this does not take care of the case where the master criterion is less
than the transaction criterion. This would indicate either that the master had no
transactions against it and was simply to be written to the new master tape or that
the master had one or more transactions against but these have been posted, and a
transaction belonging to another master is now in memory. 1In either casg there is a
good transaction in memory, and if we were to bring in another transaction over it we
would, in effect, lose it. If we could consider just this portion of the program we
could flow chart it as follows:

XIX-1

READ
TRANS

To have a complete program, however, we.must be able to "overlay" the two flow
charts. This we can accomplish by utilizing a "variable connector". This is nothing
more than a program transfer instruction that is modified. 1Inh our example, we could
simply place a Store Register instruction, affecting the P register, between the Read
of the master and the Read of the tramsaction. Initially, the variable connector or
"switch" will contain the address of the next instruction in -sequence. This next in-
struction will modify the switch so that the next time it is executed it will cause
the program to transfer to the compare of the criteria. From that point on, whenever
we desire a master (but not a transaction) we will transfer to 1 (the Read of the
Master) and the variable connector will skip us around the Read of the tramsaction to
the comparison. Now we have the ability to bring in just a transaction, or just a
master as the case may indicate. Functionally flow charted, our program would be as
follows: ’ '

XIX-2

M<T

_ REJECT
[TRANS 6

UPDATE MAST BY
TRANS

Example:'

There is a master inventory file with 10,000 records. We have 8,000 issues
sorted in gscending order by stock number to be posted against these masters. There
may be multiple transactions against any one master. Both files are being maintained
on magnetic tape.

File Descriptions:

Master:
Stock Number Balanée on Hand (BOH)
7 10
Transaction:
‘Srock Number Issued Quantity

7 10

X1X-3

We are to write any out of sort transactions to an error tape.

Assume that the EF on the Master tape will occur at the same time as the EF on

the Transaction tape.

Flow charted and coded the problem would appear as follows:

13

Housekeeping
Rwd Tapes

Read
Mast

/A set
Initially
Ap Set By 5

M>T M:T M<T
___ ¢
10 = 12
ETW SUB ETW
BOH & ISS

XIX =L

15/ 16| 17] 18] 19

20 [21]22]23] 24

25]26]27) 28] 29

30 [31]32]33] 34

35|36 37| 38|39

40} a1]42[43] 44

45]a6]47] 48] 29

—

'65] 66] s7vLsaJ 69

70 [71]72]73] 74

75]76]77] 78] 79

80[s1]s2]83] 84

85| 86] 878889

9091929394

95]96[97] 98] 99

20 [21]22]23] 24

25]26]27] 28] 29

30]31]32]33] 34

35[36] 37 38]39

40 [41]a2]a3]aa

45]a6[4a7] 48] a9

15] 16[171 13] 19

65| 66] 67| 68 69

70 [71]72]73] 74

75]76]|77] 78] 79

80]81]82[83]8a

90 [91]92]03]0a

95]96[97] 98] 99

‘55[86]87]88] 89

15] 16} 17{ 18] 19

20 [21]22[23[24

25]26] 27] 28] 29

30]31]32[33] 34

35] 36| 37| 38|39

a0 [a1[az]a3]aa

5] a6] a7] 48] a0

65| 66] 67{ e8] 69

70 [71]72] 73] 74

80 |a1]82|83[ea

a5]s6 | 8788 89

90 [s1[02]03]9a

95[96]97] 98] 99

75]76]77] 78] 79

15]16 17 [18] 19

20 {21]22]23] 24

25]26] 27| 28] 29

30 31]32]33] 34

35|36 [37]38{39

40 | 41]a2]a3] a4

45| a6 | 47] a8] a9

65] 66] 67] e8] 69

70 [71[72|73]74

85]86]87[88! 89

90 [91]02]93]0

75]76][77] 78] 79

8o |81]s2|83] 84

95]96[97] 98] 99

15/16 17 18] 19

20 [21]22]23] 24

252627 28] 29

30 |31]32]33] 34

3536 {3738 30

45]a6]a7[a8] a0

40 [a1]a2]a3]aa

-XIX

65| 66] 67] 68] 69

70 [71]72]73] 74

75| 76| 77| 78] 79

80 [81]82[83] 84

8586 [87[a8]as

90 |91 [92]93 04

95]96[97] 98] 99

15]|6l‘17!18||9

3031 32]33] 34

40 | a1]az|a3]aa

4546 a7] 48] a0

20 12112212;[24

25]26| 27] 28] 29

35] 36 |>37 [38] 39

65| 66] 67| e8] 69

70 [71[72]73] 74

75|76 77| 78] 79

80 |81]82|83]8a

85|86 |87]88 |89

90 [91 [92] 93[94

95‘196J97l98l 99

15]16[17 18] 19

20 |21]22]23] 24

25| 26| 27] 28 29

30 [31]32]33] 34

40 ‘41 [42 |43_I44

a5]46]47] 48] a9

35] 36 37]38] 39

65]66] 67[68|69

75|76] 77| 78] 79

80 [81]82|83]84

els] 86 [87 {8889

90 [91 9203]0a

95|96 |97[98] 99

70 [71]72]73] 74

15[16]17 {18] 19

30 [31[32[33] 34

40 [41 [a24a3]4aa

a5]a6[47] 48] a9

20 {21]22]23] 24

25]26] 27| 28| 20

35|36 | 37 38 39

65 66[67 68] 69

70 [71]72]73]74

75| 76| 77] 78] 79

8s|e6 |87 |88]8s

90 [91[s2]93]94

95]96[97] 98] 99

80 [81[82]83] 84

15[16[17]13[19

20 [21]22]23] 24

25]26[27] 28] 20

3o|31|3z[33]34

$5|3e]37lae[39

40 [41]az]a3]aa

45|46 |47 | 48] 49

65| 66| 67] 68|69

75|76]77] 78] 79

80 [81]82]83[84

8s]s6 [87 [88]8o

90 [91]s2[e3 |'94

95 [96 [97 98] 99

70 [71]72]73]74

150 16] 17] 18] 19

20 [21]22]23]24

25[26]27{28!29

30 [31]32]33] 34

35|36 |37 [38] 30

45 a6 |47 [48] 49>

40 [41[42]43]aa

65| 66]67] 68|69

70 [71]72]73]74

75!176|77|7Bl79

85|86 [87 88|89

90[91]92]03 |94

ao‘aﬂez[aa[sa

95|96 |97{98] 99

00]o1]oz]03]0aJos[o6]07[08 os] to] 11]12[13] 12
20 STK # <+ B0 H, =

50(51|52|53]54]|55]56|57] 58] 59] 60] 61] 62[63]64

ooJo1]o2]o3]oaos]oeo7[va]oa] 1o 11]12]13] 14

50 |51]52 53] 54| 55] 56] 57] 58] 59 60] 61] 62[63] 64

00 [o1[o2[03]0a]os]06]07] 08 0s] 10] 11[12]13] 14
52] PROG ‘

50 [51]52] 53] 54] 55] 56] 57| 58] 59] 60] 61} 62| 63] 64

00 Jo1]oz2]03]oa]os[os[07[08l 010 11]12] 13] 14
53

50 51]52]53] 5a] 55] 56| 57] 58] 59| 0] 61] 62] 63]64

N 00Jo1]o2]o3]0a]os[os]07]08]09] 10] 11]12]13] 14

5 .

50 [51]52] 53] 54| 55] 56] 57] 58 59] e0] 61] 62| 63 {64

o00Jo1]o2Jos]oaos[o6]o7[o8] 0o 1o] 1] 12] 13] 14
25

50|51[52] 53] 54 55] 56| 57] s8] 59| 60 61626364

00 Jo1]o2]03]0afos]o6[07[o8] oo 10 11]12] 13[4
56

50 [51]52]53)54] 55 56]57] 58] 59 60[61]62]63)64

00 [o1]0z2]03]0afos]oe]o7[o8] oo 10] 11] 12] 13] 2
5T ' : '

50 [51]52]53] 54]55]56] 57 58 s9] 60[61[62]63]6

00 [o1 [o2[03]0aos[os]o7[0s]oaf 10 11 12]13]1a
58 '

50 |51 52|53 54|55 56]57] s8] 59 J 60[61 [62]63 |64

00 [01]02]o3 [os [os]os o7 os Jos [1o]11]12]13]1a
59 :

50 [51]5253] 54]55] 5657 se[59 eo]e1 [62]63]6a
TITLE: BLOCK

FORM NO. 1223

28M 6-60

NO.:

INDEX NO.:

PROGRAMMER:

DATE._

PAGE

OF__

SEGMENT NO.

DATE

VARIABLE CONNECTOR EXAMPLE T

TITLE
CODER
REMARKS

1 OF

PAGE

a8 ||| Al Ala| o 2|] o] ~| ©] 0| & ol ~ ~f o t|n]oleo
BN —~] —~ —~] - — | —} =] —
™)
H o
" =1
x a 1
x 0
< B4
=
w m<m
x =
M~ N m Tm
B |2 3
1 o | A m
g e RERRPERENL
0
EEEPANHP N LR PR
S 1= B 17| & &
< m>o. - =
| | oo = By 1 E: =l m o m wn| © m 0 m SIRRY
EEEEDEHERERE AEEHEEEEEEE
m m| B <|w H O (73] ~
[a]
|11}
o
o>
w = @
L -
[+ 4
of o o] ol of V] ojo|on| vl o o of vl of o] | o] ol ol o | olo
ol o| o] of of Al olr=|o| | o of f | 0| ~| | o] + | +| 0| 0| ol
o
N Ol O] Of Ol O] N[N | ~Hf o Hl onf H i 2| |] 2 o] vl 2] 2] OO
60000556555555.5555 W NN N\ iy O|O
wfo|o| of of of ofan|in| o] of of of o] N o| o]l o of o] & o &nf olo
4—,u ol ol of of oo | of H o 2] Al A o] o]] of o] A| o]]| oo
<
3— ol ol ofl of ol fa|s| H| 1 ol mf o]]l o] A] au] o o | 2| =] olo
~fof o] of of W wnfoln] v T W] oz o ‘4—,2 o| | n| olo
z| -~ o] o+ Aot]| | of o A &S] A+ [] A A A Al | 5]~
Slol N 1 1 42 ==|"| = = ¥ =} Q>n|o|> oo >|wofo| -]|..
glvoldj ol ol ol |olofololo|lo|ocljloe|lololololofo|lolo|ololo
VIVOldl ol ol o|lo|loloflo|ololalolo -
i e W
CPRPO QIO |ClOCRo ol ololwlc o o
z
o
e o~ | 2| nlol M ol o]
sk 1« b Ql A
Ty N n N
o
- |
wwv
Soz o
\]‘
oo o
<. s 12l Bd |38 o8 | 8 2
ohbd ™ o Taha Ql 2) o
HNL N IaV I TaVia n Ly Sn_ [Tal

XIX-6

{E 1224 REV. 8-60

L=XIX

TITLE

VRRIABLE CONNECTOR EXAMPLE I

CODER DATE
REMARKS - SEGMENT NO.
FROM NO. | = |OP| N B REFERRED
TgcT:: l?l:. "°‘|;‘:A':'°N 53 o|1]2|3|a|5]6]7]|8]9 ;$ REMARKS BN%%
5 shh 0j0l0).[3]0|/0|loflolojolo]lo RWD 3 16
s ofojo};|%|olojo]o]o]lo|ofo [RWD 4 16
6 ofofo]B|ofolojolojololo]o 'EOR 17
5340 7000&‘_1000000000 [ERROR HALT 20
8 oJojofB@io|s{3/ofololofolk CONSTANTS Ag EF]
9 ogo | 0 i
'6 olo o
ofo|o
ofo|o
ofjo|o
ofo o
ofo|o
lé ofofo
ofo o
o|o 0
ofo o
ofo|o
ofo o
6 olofo
ofo|o
ofo o
ofo o
cfo| o
ofo |0
IE 1224 REV. 8:60 ‘ PAGE 2 OF 2

As you can see, setting a switch implies transferring the address of the in-
struction we want to transfer to into the program transfer instruction. 1In our
example, we utilized a Store Register instruction as our variable connector. By
initially having the Store Register transfer to 5270, we will be able to read in
both a master and a transaction. The instruction at 5270, however, places 5300 in
the B address of the Store Register, and from that point on when we read a master
we will skip over the read of the transaction to the compare located at 5300.

We could have saved an additional instruction by using the B address of the
CTC executed as an EF/ED test. The B address of this instruction tells the computer
where to go if the ED/EF has not been sensed. By initially having this address the
Transfer Data Right instruction and then modify it to address the Sector Compare Left
instruction we would get the same effect that is obtained in the program that we coded.

The example that we just investigated incorporates a "one way" switch. That is
to say, we changed its setting from Al to A2 and never affected it again. Many pro-
grams incorporate variable connectors that are changing two (or more) way connectors.
For example, suppose we had a payroll problem to program. Against each master there
can be no more than one transaction, however there may be masters without transactions
and there may be transactions without masters. We will assume that all of these latter
cases indicate new employees for which master must be set up. Examining the problem,
there are three possible requirements: '

1) we have updated a master and need both a new transaction and new master or

2) - we have a master without a transaction and need just a new master, as there
is a good transaction in memory or

3) we have a transaction without a master and need a new transaction as there
is a good master in memory at this point.

By placing a variable connector between the two reads we give ourselves the
necessary flexibility.

Since we don't know what path we have executed -at any one time, we must make
sure that the variable connector is in the proper condition. For example, if we have
just updated a master we will want the switch to allow us to read in both a transaction
and a master. For this reason we must make sure the switch is set to Al. It might
already be set to Al, which means that we are wasting an instruction, but we are safe-
guarding our program in case it is not. If we have just set up a new master (the
transaction did not have a master) we will want to read in another transaction but not
a new master (since we have a good one in memory). To do this we will set switch A
to A2, which skips us over the read of the master. If we have just written out a
master then did not have a transaction, we simply want a new master and since we will
transfer the program back to step 2, we are not interested in the condition of the
switch. Completely flow charted and coded (ignoring ED/EF, and ETW routines) the
problem appears as follows:

Data Description:

Master
Employee Number Total Withholding Total S.S. Total Gross
5 6 5 7
Transaction
Employee Number Weekly Withholding Weekly S.S. Weekly Gross
5 : 4 4 _ 5

XIX-8

M >

|

SET UP NEW MASTER

READ
TRANS

T

XIX-9

11

17

20

&

HSKPT
RWD TAPES

CLR WA TOIZEROS

A1 SET BY 16
A2 SET BY 20

TRANS

]9

SET A A2

&

4
W.W. > WW WA
5 | TRANS
WSS > WS WA
6
(o)
M >
I
EMP #> WA EMP #
11
ADDT W+ WY
12| ADD
@ TSS + WSS
ETW 1 oD
3 TG+ WG
14
WRITE
UPDATED
MASTER
16

O

SET ‘

A~ Al

XIX-10

T1-XIX

oo0fo1]o02]03] 04

os5[o6]07[08|09

10{ 11]12]13] 14

15/ 16] 17] 18] 19

20 [21]22]23]24

25|26 27| 28] 29

30]31]32]33] 34

35{ 36| 37| 38|39

40| a1]a2]43[424

45]46]47]43] a9

30 EMP # ——\f¢~TOT WITH4— ¢ TOT SS|= € TOT GR

50]51]52]53] 54| 55] 56]57] 58] 59| 60] 61] 62 63| 64]65] 66| 67] 68] 69 | 70 | 71|72 73] 74] 75| 76] 77] 78] 75 | 80 |81 [82[83] 84| 5[86 [67 8869 [90 [91]92[93[94)05 96 7] 98] 99

ooJo1[02]03]oafos[o6[o7]0s] oo} 1o] 11]12[13]va| 15[16] 17] 18] 19 | 20 [21] 22] 23] 2a[25 [26[27 28] 29 | 30 [31] 32] 33[3a] 35] 36| 37[38[30 40>[4'1|42|43|44 a5]a6[47[a8] a9
31 FMP # | W.WITH=W.B.S. — «W.|GROSSY

50 [51]52]53] 54] 55| 56| 57] 58] 59] 60] 61 62| 63] 64| 65] 66| 67] 68] 69 | 70 |7 | 72| 73] 78| 7576 77] 78] 79 | 80 |81] 82| 83[84| £5[86 [67 [88] 89] 90 [91[02]03]0a 05 96 97] 98] 99

00 J01]02]03] 04]os] 060708 0s] 10] 11[12]13]1a] 15[16] 17] 18] 19] 20 [21] 22[23] 24] 25 [26] 27] 28] 29 | 30| 31 32] 33] 34 35|36I37|3BI.39 40 [a1]42]a3]aa]45] 6] a7] a8 29
32 |WAEMP # |0 O WA W.WYTH OWA W.SLS. O O WA {.GROSS . '

50 |51]52]53] 54]55] 56] 57] 58] 59] 60] 61] 62] 63| 64] 65] 66] 67] 8] 69 | 70 [71] 72] 73] 74| 75| 76| 77] 78] 79 | 80 |8 1] 82| B3] 84| B5[86 | 87 [88] 89] 90 [91 [02[93]94 |95 96 [97[98] 99

00]01]02]03] 0a]05]o6]o7] 08 0|10 [11] 12] 13] 14] 15]16 17 [18] 19| 20 |21] 22| 23] 24] 25| 26] 27] 28] 20 | 30 [31] 32] 33 34] 35] 36373830 [40 [41]a2[43[aa] 5[26| 47] 48] a9
33

50 51]52]53] 54] 5] 56| 57] 58] 58] 60] 61] 62 63| 64| 65] 66] 67[68] 69 | 70 [71]72[73[74| 75[76[77] 78] 79 | B0 [81] 2] 83] 84| 8586 [87 88 89] 90 |91 [92[93[94 |95 |96 [97] 98] 99
) 00]01102]03]04]05] 06 07] 08] 09] 10] 11[12]13] 14| 15]16 17 |18] 19 | 20 [21] 22| 23] 24| 25 26| 27] 28] 29 | 30 [31[32] 33] 34| 35] 36 [37[38] 39| 40 [a1]a2 [43]aa [a5[a6 [47] 48] a0
3

50 51521 53] 54]55] 56| 57] 58] 59] 60] 61] 62| 63| 64| 65] 66] 67] 8] 69 | 70 [71]72] 73] 74| 75[76] 77] 78] 79 | 80 [81]62] 83 84| 85[8c [67 [88]eo [90 [91 92 93] 94|95 |96 [97] 98 09

00[01]02[03] 04} 05] 06] 07] 08] 0o | 10 1] 12] 13] 14| 15[16|17 [18] 19 | 20 [21] 22| 23] 24| 25 26[27] 28] 20 | 30 [31] 32 33[34] 35] 36 [37 [38] 30] a0 [a1]a2a3] 4a [a5 | ac[a7] 48] 49
35

50 [51]52] 53] 54] 55] 56] 57] 58] 59| 60] 61| 62| 63| 64| 65] 66] 67] 68] 69 | 70 [71] 72] 73] 78| 7576 77 78] 79 | 80 [81[2[83] 84| 65[86 [67 [08]00 [0 [01 [02 [93[9a o506 [97 s8] 99

00 [01]02]03] 04| 05| 06| 07] 0] o[10 11]12]13] 14| 15] 16] 17 [18] 19 | 20 [21] 22| 23] 24| 25[26 [27] 28] 20 | 30 [31] 32 33] 38| 3] 36[37[38] 39] a0 [a1 [a2[a3] a4 [a5 [ac |47 48] a0
36

50 [51]52] 53] 54] 5] 56] 57] 56] 59| 60] 616263 64|65 66] 67] 68] 69 | 70 [71]72[73] 74| 75 76] 77 78] 75 | 80 [81[82[83] 84| 85]86 [87 [88]89 [90 [91 [92 [93[94 o5 o6 [97] 98] 99
37 5¢ 1051021031041 051 0607, c8] 09 | 10 11] 12] 13| 14] 15] 16] 17 [18] 19 | 20 |21] 22| 23| 24| 25| 26] 27 28] 29 | 30 [31] 32 33] 38| 35] 36 [37 [38[39} 40 [a1 [a2 43[4 Jas [ae [47[48] 2o

50 51] 52|53 54| 55] 56| 57] 58] 59| 60[616263] 64| 5] 66] 67] 68] 69 | 70 [7+]72[73] 74| 75[76[77[78] 79 | 80 [81]62[83] 04| 85]66 |67 [e6]as [90 o1 [o2 [o3[oa o5 [96 [o7[sa] 0
8 00 [01]02]03[04[os] 06 o7]0s]oa] 1o] 11]12[13]1a] 1516 17] 18] 19 [20 212228 24| 25[26] 27[28] 20 [30 [31]32]33] 34| 35[36 |37 | 38| 30 | 40 |41 [a2 |43 |44 4546 [47]48] a0
3 :

50 [51]52]53] 54| 55] 56| 57] 58] 59 | 60]61]62] 63| 64|65 66] 67| 6869 | 70 [71]72]73[78] 75] 76 77[78] 79 |80 [e 162 [83]8a]es5]86 [87 [88]ao [90 [91]02 93 [9a |95 |96 [97[98]99

00 101]02]03 Joa [o5]o6 [07]os joo o[11]12]13]1a] 15[16] 17[18] 19 J 20 |21 | 22|23 24 ’25126127[28129 30 [31]32] 33 3a] 3536 [37]38 [3] a0 [41[a2[a3 |44 45|46 [47]aa] 40
39 :

50 [51]52]53] 54)55] 56| 57] 58] 59 | 60] 616263 [64|e5]66] 67 6860 | 70 [71]72] 7374|7576 [77[78] 79 Je0 [81]e2] o3 84| 85[e6 [87 [68] 69| 90[91]02[03 (94 |95 |96 {97]98] 99
TITLE: BLOCK NO.: INDEX NO.: DATE PAGE OF __.

FORM 0.

FR] E e

PROGRAMMER:

SEGMENT NO.

DATE

VARTABIE CONNECTOR EXAMPIE 2

TITLE
CODER
REMARKS

OF

PAGE 1

an L] I B | I BNQV s g B I ot BAN' I I ol of | ~jen]| £ 0o ~] o o
BN) o= =] =] =] ~] =] o~ — o~ —
q
o
Y
L]
wv O wm
> < | w
o =" o, w|
< = “ m m <
m El Sl © =
po] | ¢ M .
" =
Bl | 104 | g *
. Hoel g A + + M m
= ow o) It~
S w
E+ 7 m 3| & 3
W P M < E w o Q| iy
75, m m M = w o <
Wy M E+4
Ed < +
M W mw m <= =
s B gele
BYg dpg = H w wm B
H H
EEEEREEREEEE FEEEELELEEL
E 8 H t B 3 8 mM & w|. H
o .
O
o
- o
1y
- i
o .
hl
ol Ol Of O af 4 Of 4 au] aof O of of o] o] of v « o oN ©of ©
ol O O Ol] {4 O] O H ~ O ol af O H H| o O\] © . a
[« +]
~j] o of of o] H 1* Al o o O A H i o auf =5l o o o Q| B
offl ol O of { m :ﬁ.ﬂ A Ao o oo o | T A o B
nfl Ol O O Ol O Ay oy v} of ol al ol o] of v vl of 9 | o o] ©
<] Ol O Ol of O mlol o A | o ml o Al - R cu|] of O o H] o ©f 0O
«
owloloo ol | o] ofl DY ol il ol ofl ofl ol o | o Al o«
~NR OO O ol o] o M O e o] o 4 o | O A
Z |~ A o] 1 Of il Of 4 | 1 A A Y | O] 1y o) | | o ™
AR ERNREEE EEEEEE REEE R CEREDE
glvold ol ol oo loloolo|lo|lololololc|lo|lololclo|loclololola
Vv1voT1d ojlo| oo CSlo|loclofo|oloc|lolojlojo|lo|lolololo
— p—
(= el Yol (o3 Rl RelBoll Kol olo|loc|loflofoc|lolololo
z -
o
-
“ < of o O oy O wﬁ Y o oy
TO o = = T\
o o s o
=
wwm
Soz ©
b-
0 O o
£23 R g
w=- 252 _ 2

1E 1224 REV. 8-60

XIX=12

¢I-XIX

TITLE VARIABLE CONNECTOR EXAMPLE 2
CODER DATE
REMARKS SEGMENT NO.
FROM NO. : E OP| N B REFERRED
Ao el LOCATION gg ol 112131415 ; o REMARKS o,
6 351+oooiNl+3599 3 SET A » A2 20
5 ofjojofviitjol2|1]9 3 TRANS - 2
3430 ¢ ojolofs |3 [k |ofo]Oo| EmwW ETW 21
7 ojo|o}8 |3 |3 |ofo]o 0 WRITE MASTER 22
8 ofofofviri|ofai|1]9 L TRANS -~ 7
9 ofolol-|-|3 (4 |0]O L CONSTANTS A Ay
I6 oo o
ofo | o
ofo o
ofo|o
oo | o
ojo o
Ié olofo
ofo | 0
ofo| o
ofjo o
ofojo
ofo | o]
6 olo]o
ofo|o
ofofo
ofo |0
cjofo
ojo | o
IE 1224 REV. 8:60 PAGE 2 OF 2

Another example can be developed using our original inventory problem, by adding
another step to punch out a card if the BOH of a particular stock number reaches zero
or goes negative. We could determine this condition easily by sensing the PRI's after
subtracting the issues. If the balance is zero or negative the PRZ or PRN will be set.
Upon sensing this we could affect another variable conmector, this time the transfer-
that normally would take us back to read in a new master record. We could change this
so that it takes us to a punch routine and then back to the read of the master. Since
the negative result pertains to ‘6nly this one record, however, it is advisable to set
the switch back to its initial setting (B1l) immediately upon entering the B2 path.
This will prevent us from punching negative cards for stock accounts which are still
positive. Functionally flow charted, the program would look as follows:

Al SET
INITIALLY
A2 SET BY 2

READ
TRANS

A
@ 4m
M= T MIT M>T

9
5 B1SET BY 10
suB B2 SET BY 7

BOH © Iss

[s]

-

B

RESULT ‘

SET
B ——— B,

7 | seT 11
B —»B85

SET UP PUNCH AREA

12
PUNCH
CARD

XIX-14

It is possible to form a switch using only 1 character and two instructions,
if the Skip option of the Store Register instruction or the Conditional Transfer of
Control instruction is used. If an N or O appears in either of these instructions,
it will cause the instruction to be staticized but not executed. This means that
the P register will not be effected.

Suppose, for example, we have a switch which is to transfer to 3190 if set to
Al, and to 4850 if set to A2. We could code the switch as follows:

3500 Vv (0) 0219 3190
3510 V 1 0219 4850

Now, if the switch is to be set to Al, we must place a "1" in the N character of the
Store P Register instruction at 3500. This will cause the program to jump to 3190.
If the switch is to be set to A2, however, we must place a "0" in the N character of
that instruction. Then, when the instruction is staticized, it will not be executed
and the transfer instruction at 3510 will be staticized in sequence and executed,
causing the program to jump to 4850.

Variable Connector Exercise I:

A bank has 10,000 demand deposit (checking) accounts against which 8,000 trans-
actions are to be posted. There may be multiple transactions on any one master.
There are two types of transactions, withdrawals (checks) and deposits. The type of
transaction is determined by examining the transaction code which will be either a
W (withdrawal) or a D (deposit). There are approximately 1,000 deposits and 7,000
withdrawals. The transactions have been sorted in ascending order by account number
and then by transaction code.

Data Description:

Master: (1 reel, tape unit 5)
$ amount of $ amount of
Account Number Total Deposits to Date Total Withdrawals Balance
to Date
7 7 7 6

Transaction: (1 reel, tape unit 3)
Account Number Transaction Code Amount
7 1 7 (at least 1 insignificant zero in
every amount)

Assumptions:

1. Any out of sort transactions are to be preceeded with the code letter
"A" and placed on an error tape, unit 1.

2. Any transaction with an erroneous transaction code are to be pre-
ceeded with the code letter "B" and placed on the same error tape.

3. The new master file is to be constructed on tape unit 4.

L, Do not chart or code ED/EF or ETW routines, simply indicate a
transfer to them. :

XIX-15

Variable Connector Exercise II:

Using the same banking problem stated in variable Connector Exercise I, allow for
the punching of an overdraft card if the balance goes negative. The overdraft card is
to be in the format:

Col 1-7 59-65 67-73 Col 75-80
Acct. # Total Deposits Total With- Balance
Flow chart only. drawals

Review Exercise III:

The purpose of this problem is to obtain a total of salaries to date by:
1) section number
2) department number
The payroll file is maintained so that the employees of a particular section are

together and all the sections of a given department are together. Since the employee
number consists of 10 digits: '

XX XXX | XXXXX
department section employee
number number number

the entire file is in ascending order by employee number. Starting with the first
record in the file, accumulate the total gross by section and by department. When
the section number changes print out the total on the on-line printer. Continue
accumulating for a department total, but also start a new section accumulation.
Print out the total for every section and every department in this fashion. Page
change after every department total. Do mot print insignificant zeros.

Data Description:

Master (1 reel, tape A)

Employee Number Total Withholding Total Social Security Total Gross
10 6 5 7

rint Layout:

Department Number (print positions 1-2)

Section Number (print positions 3-5) total (print positions 10-18)
Department Number Dept. total (print position 20-28)
Example:

12

234 345263422

453 098765435
12 L4n028857
23

654 002746378

987 098745324

989 286543647

XIX-16

Assumptions:

. Assume that the file is in correct order, halt on any out of sort.
Assume no department will take more than one page.

Simply transfer to ED/EF and ETW routines, but do not chart or code them.
. Assume maximum accumulation size of 9 digits.

o=
.

i i N A ‘ o
%k%pffa VA k;é'"

£

Fisw

XI1X-17

XX — LOGICAL OPERATIONS

(LOGICAL AND, LOGICAL OR, EXCLUSIVE OR)

Most program steps require that the computer work on the information bits of
the bharacter as a whole, however there are some cases that require that we operate
on each individual bit as a separate piece of information.

For example, we already know that a minus sign appears in the 2° position of
the least significant digit of an amount. Suppose we are interested in printing out
a list of all the customers that have over paid their charge accounts. We are
carrying this as a negative amount (balance due = total purchases - total payments).
Our first step would be to examine 25 position of the least significant digit. TIf
this contains a 1 bit, the amount is negative; if it contains a 0 bit, the amount is

. - - . . o i
positive. To_ examine only 1 bit of.an entire character, it 1s necessary to 'mask'

out the other 5 bits. This is possible with a LOGILCAL AND instruction.

s

LOGLCAL AND;

This instruction enables us to extract or "mask" out individual bits from a
character (or characters). The rule for this instruction is that you must have a
1 in the bit position of the modifier, in order to get a 1 (a one and a one will
give you a one). That is to say: g

-1 and 1 gives 1
-1 and O gives O
0 and 0 gives O

Example: 110101 011011 - section being modified
011011 110101 - modifier (mask)

010001 010001 - result

For our particular problem, we would move the least significant digit of the
amount to a work area, since this instruction destroys the character or characters
being modified. We would then perform a Logical And using (100000), (minus sign)
as the mask. This will cause all the bit positions from 2,-2(3 to become zeros.

If the bit in 25 is a 0, it will remain a zero; and the resulting character will be
(000000)9; if it is a 1, the resulting character will be (100000)5. In addition

to modifying the character, the instruction will affect the PRI's. If the resulting
field is all zeros (in our case indicating a positive quantity) the PRN is set; if
the result contains one or more 1 bits (which shows a negative balance in our ex-
ample) the PRP is set.

The OP code of this instruction is T.
The N character indicates the number of characters in each operand (0-44).

The A address gives the location of the least significant digit of the field
to be modified (and the result).

The B address gives the location of the least significant digit of the modifier.

Having determined whether the balance is negative or positive, we are now
capable of taking the appropriate steps. If the result was positive, the record is
of no interest to us. If it was negative, we must now set up a print area. Let's

assume that the only information contained in the master is:

XX-1

Customer Number - Name - Balance
6 25 6

a space being carried between each item. We will also assume that we do not care

if the print out contains insignificant zeros, as it is only for internal use. We

have only to read this into an even-hundreds location (a legitimate print area) and
-we will be able to print, except for one step.

In order to get into this path, the balance had to be negative. This means
that the least significant digit of the balance has, in addition to its numeric bits,
a zone bit. If we printed this character as it stands, we would obtain the following:

if the numeric portion is: * the printed character will be:
0 ©
1 J .
2 K
3 L
4 M
5 N
6 0
7 P
8 0
9 R

In order to avoid this, we must get rid of the zone bit. This could be done
by again using the Logical And instruction with a mask of (001111)) or (011111),.
The only problem is that none of the RCA 301 characters have these binary config-
urations. We could construct the necessary character during the housekeeping
portion of our program, but it is just as easy to use the EXCLUSIVE OR instruction.

EXCLUSIVE OR:

This instruction also works in individual bits. The rule that is applied is
that opposites are required in order to obtain a one bit:

0 and 0 will yield O
1 and 1 will yield O
0 and 1 will yield 1

In our example, we will want all the information between 2, and 2. to come
through untouched. To do this we will need O's. However, the %5 bit, which we
know to be a 1, must be changed to a zero which we can do by overlaying it with
a 1 (two ones will yield a zero). Our modifying character will be 100000, again
a minus sign. ‘ '

‘The OP code of this instruction is a U.
The N character again indicates the number of characters in each operand (0-44),

The A address gives the HSM location of the least significant digit of the
sector to be modified and subsequently the result.

The B address gives the HSM location of the least significant digit of the
modifier,

This instruction does not affect the PRI's.

Having thus set up the print area we have only to execute the Print and Paper
Advance instruction.

XX-2

Suppose that in addition to the printed list of credit balances, we must also
punch out cards in the format:

Customer Number Amount
1 -6 ‘ 75=80

In addition to simply transferring the desired information in order to set up

the punch area, we must also replace the minus bit. This we can do with a LOGICAL
OR instruction.)

LOGICAL OR:

This instruction allows us to insert bits into a character(s). The rule is a
one bit in one position or the other or both will yield a one:

0 and 0 yields O
1 and 0 yields 1
1 and 1 yields 1

In our case we wish to insert a 1 in the 2 position, and not affect the remainder
~of the character. Again our modifying character will be a minus, (100000) 5.

The OP code ‘is a Q.
The N gives the number of characters in each operand (0=44) .

The A address gives the location of the: least significant digit of the operand
to be modified and the result.

The B address gives the location of the least significant digit of the modifying
operand.

This instruction does not affect the PRI's.

Flow charting and coding our entire program, it would appear as follows:

XX-3

12-

VA

HOUSEKEEPING:
RWD TAPE
CLR PRINT AREA
CLR PUNCH AREA

PRP (D)

TRANS LSD —p WA

LA
WALSD +(100000),

6
PRI'S PRN (+)

|

EO

LSD+ (100000),

8

PRINT

|

TRANS
CUST # —» PUNCH A.

10

TRANS
BAL ——= PUNCH A,

11

Lo
LSO + (100000),

]
PUNCH

12 y

=

XX=4

_®

00]01]02][03] 04

o5]06] 07} 08 09

10 1] 12]13] 14

15] 16{ 17] 18] 19

20 [21]22] 23] 24

25]26]27] 28] 29

30 31{32] 33} 34

35| 36| 37| 38]39

40] a1]a2[a3] a4

as5] a6 | 47]a8] a9

10

50]51]52]53] 54] 55] 56] 57] 58] 59| 60] 61] 62| 63 64| 65] 66] 67] 6869 | 70 [71[72]73] 74| 75[76] 77] 78] 79 80 [81]62] 83] 84| 85| 86 | 87| 8889 J 90 [91[92 9394|9596]97] 98] 99

00]o1]02]03]0a|os] 06 07]0s] oo} o[11 12[13[raf15] 16] 17] 18] 19 20 |21 22| 23] 24| 25| 26] 27] 28] 29 [30 [31]32[33] 34| 35] 36 37] 38 39 40 [a1]a2]43[aa|a5]46]a7] 48] a0 =
11 |WA

50 [51] 52| 53] 54| 55| 56 57] 58] 59| 60] 61] 62| 63| 64| 65| 66| 67] 68|69 [70 [71]72] 73] 74 75]76]77] 78] 79 | 80 | 81| 82] 83] 84| 85 6 | 87| e8] @] s0 [91]92]03 94|05 96 [97] 98] 99

00 J01]02]03]0a]o5] 06] 07] 08] 09 | 10] 11 12] 13| 1a| 15] 16] 17] 18] 19 | 20 [21] 22] 23] 2a] 25 [26 27] 28] 2 30 [31] 32] 33] 34] 35 36| 37| 38] 35 | 40 [a1]a2[a3]aa|as] a6 [7] 0] 29
2 Jcugm NAME — BAL 4

5051]52] 53] 54]'55] 56 57 58] 59| 60] 61] 62| 63| 64| 65| 66] 67] 68] 69 | 70 [71]72] 73] 74| 75[76] 77[78] 79 | 80 [81 52]83] 8a| 85] 8687 88] 89| 90 [91 [92[93[04]95[96 [97] 98] 99

: PRINT AREA

00 [01]02] 03] 04| 05] 06] 07] o8] os [10 1] 12[3] 14| 15[16 17 [18] 19 J 20 [21]22]23] 24| 25 /26 [27] 28] 29 30]21] 32| 33] 34| 35] 36 37| 38 39 | 40 [a1]a2[a3]as[a5] 46| 47| 48] a9
13 PC US T # PUNCEH ___ARFA | ——————

5051 [52] 53] 54] 55] 56 57] 58] 59| 60] 61] 62| 63[64| 65] 66] 67] 68]69 | 70 [71]72]73]74] 75 76]77] 78] 79 | 80 [81] 82] 83] 84| 85| 66| 87| 86| 9] 90 [91 [92 [03]o4 o506 97 [98] 99

00 [01]02]03] 04| 05]06]07] 08] 09 | 10] 11] 12]13] 14] 151617 18] 19 | 20 [21]22] 23] 2a] 25 [26] 27] 28] 20 30 [31] 32] 33] 34 35] 36 | 37 | 38] 39| 40 | 4142 a3 |4]as]a6]a7]a8] 49
ik I PROGRA

50|5fT52?%3[54 58] 56]57] 58] 53] 60] 61] 62] 63| 64 65 66| 67] e8] 69 | 70 [71]72[73] 78] 75[76 77] 78] 79 80 |81] 02| 83] 84| 85|86 67|88 69 |90 [91 [92[93[9a |95 o6 [97] 98] 99

500102 03] 04 05] 06]07] o8] 0o | 1o] 11] 12[13[1a] 15]16[17 [18[19 [20 [2122 23] 2a] 25[26| 27] 28] 20 30 31] 32] 33] 34| 35] 36| 37| 38] 39| 40 | a1]a2]a3]4aa [a5 46| a7] 28] a9
15

50 [51]52[53] 54

55| 56| 57| 58] 59

60[61]62]63]6a

65| 66| 67 68] 69

70 [71]72] 7374

75]76[77] 78] 79

80 |81]82|83[8a

85| a6 |87 |88 89

90 [91 [92] 93] 94

9596 [97]98] 99

oo|o1|oz|03|04

05/ 06] 07| 08 09

10[11[12[13]14

15| 1617 [18] 19

20 [21]22]23] 24

25]26[27] 28] 20

30 [31]32{33 34

35] 36| 37|38 30

a0 [a1]a2[a3]aa

as [46| a7] 28] 4o

50 [51[52[53) 54

55] 56 57] 58] 59

60]61]62]63]64

65]66[67[68|69

70 [71]72[73] 74

75]76] 77| 78] 79

8o s1][82[83]84

85[86 |87 [as]8o

90 [91 9293 |94

9596 [97]98] 99

o0 [o1]o02]03{0a

0s] 06]07|08[09

10] 1] 12]13] 14

15]16[17 J18 |19

20 [21]22]23] 24

25]26]27] 28] 20

30 [31]32]33[34

35] 36 | 37 38] 39

40 [41]az2 [43]44

45 |46 [47] 48] a9

s0]61]62]63]64

65]66] 67] 68 69

70 [71]72]73]74

75[76[77] 78] 79

8o [a1]82]83]8a

858687 [sa]so

90 9192|2304

95 [96 [97] 98| 99

1o|1\[|2||3|14

\5| 16] 17 18] 19

zo|z||zz|23[za

25[26] 27| 28] 20

30[3\[32[33[34

35[36 37|38 |39

40]41|42143|41

as [a6[a7]a8] 49

60]61 |62 6364

65]66]67]68[69

70 [71[72 73] 74

75|76]77| 78] 79

8o |s1]82]|83]84

as]a6 [87 [88]a9

90 [91]o2 |93 o4

95 [96 [97]s8] 99

10[11]12]13]14

15[16] 17] 18] 19

20 [21]22]23]2a

25]26]27] 28] 29

30 [31]32]33] 34

95] 36 [37]38] 39

40 [41]42[a3 44

45] a6 [47] 48] a9

60]61!82‘63‘64

65]66| 676869

70171 [72]73]74

75]76]|77[78] 79

eﬂeﬂeﬂaﬂa4

asec |87 s8] 8o

90|9||92|9§194

95]96]97]98] 99

17

50 [51]52] 53] 54] 55] 56| 57 58] 59

00 Jo1]o2]03[0a 05[o6[07]08] 09
18

50 [51]52]53] 54] 55| 56| 57| 58| 59

00 [01]02[03 [oa [os]os Jo7]os |09
19

50 [51]52]53| 54 55] 56]57| 58] 59
TITLE:

FORM NO. 1223

28M 6-60

BLOCK NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE

OF _

9~XX

TITLE Iogicial Instructions Example

CODER
REMARKS

DATE
SEGMENT NO.

OP| N A B REFERRED
TO REMARKS

BY

FROM NO. HSM

INST. OF
Loc. INS. LOCATION

(-3
~
-]
~0

REWIND INPUT

CLR PRINT AND PUNCH AREAS

READ RECORD

EF/ED

TRANS LSD—PWA

LA TO DETERMINE SIGN

SENSE FRI's PRP-®7 PRN -»2

[OXN AV BN I —ull (OVIN ACT [HFRR [

PES

O o O Jw g |O o {o

o EO TO CHANGE ¢ TOT

~N

PRINT AND VT

FiR O oI~ TF F Jo
wmn o |lEfvnle =l o
Mo Mo [nffvlo [+]w ko o
ONI—-'lool_:o‘omkoo

oo W

TRANS CUST #—pPUNCH AREA

TRANS BAL -%PUNCH AREA

10

10 TO INSERT ¢

11

PUNCH CARD

12

TRANS =—$-2

Omww"’ Mo 0 o [0~ (v wa v v o
o fo OQI(D o @ jo loRo|o|oulo o |o

OHO;—IIO\O\O*-'OHHHoowlw
Ool—'l—’""’“o*""gl—‘l—'l—‘bj""‘—'o
A Ll RS S
O IF jwlw
o™ jolu
©1© |vo|+f°

MINUS

IE 1224 REV. 8-60

PAGE 1

Logical Operations Exercise:

A,

Show the result at the end of the following operations:

1. (100110)9 modified by (000111)j using a Logical And

2. (111000)5 (111111)9 modified by (000101)2 (010011), using a Logical Or.
3. (101010)9 modified by (110011), using an Exclusive Or.

What instruction(s) would you use to determine if the 23 bit of the character
located at 1687 is a one or a zero? What would be the modifying character?

What instruction would you use to change 1 to a 2 the first time it was executed,
2 to a 1 the second time, 1 to a 2 the third time, and so forth? What would be
the modifying character?

Suppose you wanted to insert a one bit into the 2 position of the character
located at 1564. What would be the instruction that you would use and what
would be the modifying character?

If you wanted to extract a one bit if present from the 22 position of the char-

acter located at 1743, what would be the instruction you would use? What would
be the modifying character?

XX-7

XXI—- HANDLING VARIABLE DATA

(TRANSFER DATA BY SYMBOL LEFT, TRANSFER DATA BY SYMBOL RIGHT, LOCATE SYMBOL RIGHT,
' STO

To date, we have been working with fixed variable records. Initially, however,
we pointed out that the RCA 301 was geared to handle both fixed-variable and variable
data. We are now concerned with the programming involved in handling the variable

data.

Taking the simplest example, suppose we wished to duplicate a one reel file con-
taining variable length messages (the maximum message length being 100 characters).
The instruction flow would be basically the same, but there is one important difference.
 When we are ready to write out the record, we must be able to give both the left and
right hand ends of the sector to be written out. We know the left hand end, but what
about the right hand end? Since we are reading in variable length data, the rightmost
address will vary. It will be necessary, therefore, to modify the B address of the
write. The question is, how?

When a Tape Read Forward Normal Instruction is executed, the A register is
keeping track of the destination location of the characters. At the end of the
operation (when the gap is sensed), the A register holds the address of the location
one to the right of the last character placed in memory. This is automatically
placed in the STA locations, where it is accessible by the programmer. Kpowing the
address that is ome to the right of the last character, it is oply a matter of sub=
tracting one to get the address of the last character in the sector,

4

1 HSKPG:
RWD TAPES
O; =
2
READ
RECORD
3
TRANS STA—= 7(B)
41 sus
7(8)-1
5
ED/EF
8 @
| @
10

¢~ IXX

TITLE Handling Variable Data Example I

CODER DATE
REMARKS SEGMENT NO.
IFROM NO. HSM E E OP| N REFERRED BOX
Loc. |ins| LocATioN lalol1|2]s]a]s56]7]8]0 . REMARKS NO.
6 beo ciolol; 11 Jololololololo]o RWD 1 1
: ‘L13lololololololola RWD 3 1
4280 O Jr 2 7 qofol2 17 19 lo READ RECORD 2
‘v e Jolo 3 fs Ju fo |7]g TRANS STA—p 7B 3
‘st 2793 v |9 SUBTRACT 1 FROM 7 (B) L
- ED/EF SENSE 5
Log 1G] Cs (314 Jo oo |k |3 13 o ETW SENSE ON # 6
[BN CRERER VAN CREaIE)) 3 WRITE RECORD T
o Slvirfolalilo|s |2]2 |o TRANS —p2
813 |4 {3 |+ {2 [% |3 [& |2 WRITE EF—p 3
; 13 1o Jo o o o |o [o lo RWD 3 9
;11 1o 1o o Jo Jo fo Jo Jo KD 1 10
o Jo o {0 lo lo 1o 1o ln HALT EOR 11
“Filo Jo lo Jo 1o lo o HALT ERROR J12
=1 17Flo Jo oo o lo lo [CONSTANTS
IE 1224 REV. 8-80 PAGE 1 OF 1

A second example would occur if we wished to print out a list of employee num-
bers and names from a file that had a variable format as follows:

EMP # * NAME * ST. ADD * C.S. ADD * TOTAL GROSS * TOTAL ISS * TOTAL WITH * TOTAL NET

5 25 30 35 7 5 7 7
5 15 20 22 6 4 6 6
100 100 100 100 100 100 - 100 : 100

(The * between each item differentiates them.)

We could easily transfer the employee number into the print area but the problem
would be the name. Since one name might be JOE DOE, and the next one might be
BENJAMIN FRANKLIN, we have no way of knowing how many characters to transfer. .Jo=
facilitate this, there is an instruction that will transfer characters up until the
time it picks up and transfers & given symbol, LD our case we would want to transfer
from left to right starting with the left hand end of the name, the location of which
we know, until we transferred the * which separates the name and the street address.

| 4
DATA TRANSFER BY SYMBOL LEFT{

This instruction transfers data moving left to right from one sector of memory
to another, until a selected symbol is sensed. :

The OP code is a #.

"N'* indicates the selected symbol on which to stop transferring.

The A address gives the location of the leftmost character to be transferred.

The B address gives the destination location of this first character to be
transferred (leftmost location of the destination area.)

Assuming that we have read our records into memory at 5100, the portion of
memory we know about appears as follows:

00 01 02 03 04 05 06 07 08 09
51 X X X X X * NAME
“ v,
V"
Employee #

m———

The last location that we know specifically is the left hand end of the name,
5106.

Assuming that the print area has been laid out to start at 1600 and has been
cleared to blanks, we want to place the employee number in 1600-1604 and start the
name in 1610. Knowing this, our instruction would appear as follows:

* 5106 1610
Suppose one record was 23456*JOE_DOE*123_ANY STREET etc.

The print area would appear as follows after the execution of the DL instruction
to transfer -the employee number and the DSL imstruction shown above:

00 01 02 03 O4 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
16 2 3 4 5 6 J 0 E D 0O E *

XXI-3

If the record was 45487*JOHN_SMITH*3543 FIRST STREET etc, the print area would be:

00 01 02 03 O4 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
16 4 5 4 8 7 J 0O H N _ S M I T H

20 21 22 23
*

The above records point out a programming necessity when handling variable data,

and that is the fact that it _yi be_necessar ortion of th rint area
that would contaln the name before the next name is transferred in, r thap, just

‘at the begrl 0 In the two cases illustrated, JOHN _SMITH would
simply overlay JOE_DOE, but suppose the next name was JIM RAU. The prlnt area would
appear as follows, unless the name portion had been filled with spaces:

00 01 02 03 O4 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
16 6 7 5 3 5 J I M _ R A U * T H

20 21 22 23

*
One other pointthat.presents itgelf is the fact that we end up with the X .in
the pr What happens is that the character addressed by the A register is

placed at the location addressed by the B register. Both the A and the B registers
are increased by one. If the character transferred is identical to the character in
the N register, the operation terminates, otherwise the process continues. This means
that the terminating symbol (in our case an *) will end up in the destination area.
However, since the B register has been keeping track of the destination locations, it
will end up with the address one to the right of the destination *. A simple trans-
igg_gﬁ_g_hlank__x~g_naiaml:angﬁg;,;gstrugtlon with the.B. addggggﬁcontaln;ngmjnlg_mgg—
ified address would solve our problgﬂ_ The only problem is to obtaln the contents of
B.

STORE REGISTER:

We have already discussed the Store Register instruction in conjunction with the
P register. We also have the ability to store the B register, by simply using an
"N of 4.
To summarize:

The OP code is V.

UN" would be 4 o) rcfe;ngigﬁf ? r$?1§ter

The A address would be the right hand end of the four locations to receive the
contents of the B register.

The B register is zeros (0000).

XXI=4

START

RWD TAPES
CLR THE PRINT AREA

TRANS #
EMPT—= PRA

CLR NAME PORTION
OF PRA

TRANS NAME
— PR A

STR B—= 9(B)

SUB | FROM 9(B)

REPLACE*® WITH SP

10
PRINT AND
vT

XXI-5

TITLE

CODER Hendling Variable Data Example II DATE
REMARKS SEGMENT NO.
FROM NO. : AE' OP| N A B REFERRED
'5322 &Z. "°g‘i:'°" 55 o|1|2]|3|4|5|6]|7]8]9 ;3 REMARKS BNoo)f
olofls;]1jolololololofolo RWD 1 1
cpojofgl-J1|6fololr|Tl1|9 CIR PRINT AREA 1
5 Cpoj o4]r]s5|1]o]lofs]1f9]9 READ RECORD 2
3 CQojopwi8|k]alalofk]1|k]o SENSE ED/EF 3
4130 L OQ0 [O0fMIs|s |1]lolof1f{6]|o]o TRANS EMP#—® PRINT AREA L
s CpO| ¢ 1]6]1]o 1|63 |L CLEAR PRINT AREA (NAME) 5
_g, o]0 *[sTifolé6 1|61 (0 TRANSFER NAME 6
[ol el {zlolololo]o o STR B IN 9 (B) - 1 7
v Olo|2 k1|99 k|2 |k |9 SUB 9 (B) -1 8
A Opvrfsfabjaj@tefci N 7.8 TRANS A BIANK OVER THE % 9
” ofslojololo]o]1]6|o |z FRINT AND VT 10
ofv] rjofa]z]o k|1 |2 |o TRANSFER-)2
5130 [¢ of; |1]ololofofolo [o]o RWD 1 , 11
s]oo]o]ofo]o]o oo HAIT EOR ' 12
ofo|-[ofo]o]o oo [o |1 CONSTANTS |
3]
0
9 T T

PAGE1 OF 1

IE 1224 REV. 8-60

We could eliminate one instruction by replacing the Transfer Data Right (9) with a
Transfer Symbol to Fill instruction which would appear as follows:

J_C) 1634

The A address would be the variable address of the *, obtained by storing B after the
Transfer Data by Symbol Left instruction and subtracting one. The B address is the
right hand end of the print area that is to receive the maximum name. In this way we
not only replace the * with a space, but we also clear the name area, both in one in-
struction.

Suppose we are required to compress the information coming in from cards in order
to put it out on to magnetic tape. The card format is:

Account Number Name
1-7 9-35

We want to read in the card and write the information out to magnetic tape, first
placing a # to differentiate between the two items. The problem is basically one of
locating the last significant character in the name. We can do this by doing a Locate
Symbol Right instruction.

LOCATE SYMBOL RIGHT:

Ihis.;gigigFtion allows the programmer to locate the lack of designated symbol.

The OP code is L.
"N" gives the symbol with which we are searching.
it
The A address gives the right hand end of the sector to be searched.
The B address gives the left hand end of the sector to be searched.
The operation will terminate if:
1) a non-symbol is found, in which case iiA gives the address of the last

;wbo.l&;rf . —~—m
2) the end Ofthe sector is found.

In addition, the PRI's are affected as follows:

PRN is set when the first character seaﬁched is not equal to the contents of N.
PRZ is set when all characters searched are equal to the contents of N.

PRP is set if a non-symbol is found after a character equal to the contents of
N hay been found.

For our particular case, let's assign 6700-6779 as the read in area. The name portion
will fall between 6708 and 6734. If our instruction reads: '

L _ 6734 6708

when the instruction terminates, STA will hold the address that is one to the right
of the last character in the name. By transferring that address and subtracting one
from it we come up with the address of the last character. We will not sense the
PRI's, as we are assuming that there will always be a name.

Flow charted and coded, our program would look as follows:

XXI-7

© ,r

HOUSEKEEPING
RWD TAPE

2
[,READ CARD

3 [TRANS

——— > AREA

4 | LOCATE LAST SPACE

5 [TRANS
STA— 8(B)

suB
8 (B)- I

Testing out one record, we have:

1234543 JOE_DOE

Reading this into

memory we have:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

67 1 2 3

4 5 4 3 J o E _ D 0O E

20 21 23 24 25 26 27 28 29 30 31 32 33 34

Locating the
Transferring this
instruction which

last blank moving from right to left, we end up in STA with 6715.
to the B address of the write and subtracting 1, we have a write
reads:

8 6 6700 6714

and which will write out just the information in the record.

XXI-8

6= IXX

TITLE

Handling Varisble Deta Example III

CODER DATE
REMARKS SEGMENT NO.
<[
FROM NO. | = |OP| N REFERRED
HSM < | < BOX
INST. OF g T0 REMARKS
toc, [ins| tocATIoN | 315 Tt a2 s]als|e|7]s]0 BY NoO.
lé 600 0191 0. 16]o]Jolololo]olola RWD_6 1
6080 1 Cfo (oo ly 16 17 lolo oo oo READ CARD 2
eofjelow|r |6 lo|r|6]T [o]T TRANS #--p POSITION BETWEEN ACCT # AND NAME 3
scfololn | lel7 |3 |u {67 o8 LOCATE IAST BIANK MOVING R—sL L
el oy ln lolo 11 ls 16 lol7 lo TRANS STA—p8 (B) >
s cjel o2 |6 lol7lo 6 [1 |o SUB 8 (R) - 1 6
| 6 5%60086hooo6090 ETW? T
7z ocjojol8|6]l6]71olo Koo |o|o) 5,6 WRITE RECORD 8
8 OQC{O0v i1 o2 |19 |6 |0 |1 |o TRANS~$2
6060 o d2191® 1o lolo oo lolo lolo HALT 9
610 “pojc @ # jo jo |oJo lo o |o |1 CONSTANTS
l{) "]
R
A
0
IE 1224 REV. 8.60 PAGE 7 OF 1

Apother problem.which.might bpresent-itself. is to he.able to find the left hand
end of a vaviable-item-for comparison.purposes.. Suppose we had a fiTE‘tﬁﬁf/IE_EEE;
structed as follows: . i

Stock # 'Description'’ Order Date' Balance (' acts as a separator)
Max 5 40 6 10
Avg 5 ’ 25 6 8
% 100 100 100 100

Our problem is to compare the date against today's date to see if we have to
put out an order. If an order is not due we must bring in a new record; if it is,
we must prepare a print-out. The portion of the program that we are interested in
is simply locating the order date and setting up the compare instruction. Due to
the fact that the variable item "Description" preceeds the "Order Date'", we must be
able to search through it and locate the MSD of the date. To do this, we again
utilize a Transfer Data by Symbol Left Instruction. If we start transferring with
the first character of the description (one to the right of the ') and transfer in
place, the operation will terminate when the ' between the description and the order
date is recognized. At that point, STA (and the B register) will hold the address
one to the right of the ', or the MSD of that date. By simply transferring this to
the A address of a compare instruction, we have set up the compare. '

Let's take a sample record to test out this theory:
76587 'BOLTS 6009301098765
If we read this into memory at 5000, we would have:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
50 7 6 5 8 7 ! B O L T 8 ! 6 0 0 9 3 0 ' etc.

Executing the instruction:
5510 # ! 5006 5006

we will end up in STA with 5012. Transferring this to a compare instruction will
give us a compare that appears as follows:

Y 6 (5012) 3560 (3560 is the LHE of today's date)
The three steps would look as follows:

5510 # ' 5006 5006
5520 N 4 0215 5535
5530 Y 6 () 3560

Having solved that problem, suppose we had to write a program which would add an
interest amount to a balance. We will assume that there will be one transaction

against every master.

The master information is in the format:

Acct. # / Balance (The / serves as a separation between the

two items)
Max. 7 ' 8
Avg. 7 6
% 100 100

XX1-10

The transaction information is coming from cards in the format:
Acct. # - Interest
Cols. 1-7 : 10-14

We are to ¢heck to make sure that the transaction and the master account numbers match,
but if they do not, we will HALT on an error condition.

The problem is basically one of reading, comparing account numbers, adding and
writing, but with one major difference, and that is that we are now working with
variable data. When we add, we must have our information in fixed fields with the
operands of equal length. To do this, we will have to move the transaction interest
amount to an eight character work area, in order to obtain the necessary insignificant
zeros. In addition, we must move the balance item to a work area, since it is of
variable length. Once there, we will have to clear the unused portion of the work
area (including the /) to zeros.

Once the addition has been accomplished, we will have to locate the most sig-
nificant digit of the new balance (since we don't want to carry the unnecessary zeros
in the master) and transfer this field back to the read in area. 1In order to stop the
transfer, we must arrangée to have a terminating character to the right of the work
area. In our case we will use a /. B

Having reconstructed the record, we can write out the record as long as we know
the address of the last character. 7

Developing the program then, our first steps would be to read in the master record.
Immediately, we must transfer the contents of STA to a storage location and subtract
one from it, in order to obtain fthe address of the last character read in, which is
the address of the LSD of the balance. ’

Having sensed for ED/EF, we can read in a transaction and compare account numbers.
If they are unequal, we must Halt; if they are equal we can continue processing.

The transfer of the interest amount to a work area can easily be accomplished by
a Data Transfer Right instruction, since-we know that the interest will always be 5
characters, loaded with insignificant zeros if necessary. The transfer of the balance
could not be accomplished as easily however, except for the fact that we stored the
address of the right hand end of the balance immediately after our read instructions.
If this address were placed in the A address of a Transfer Data by Symbol Right in-
struction, we would only have to execute the instruction to move the balance to a
work-area.

TRANSFER DATA BY SYMBOL RIGHT:

This instruction allows the computer to transfer data from one locatlon to
another, moving in a right to left direction, until a designated symbol is located
and transferred.

The OP code is a P.

"N gives the character that is to terminate the operation.

The A address gives the right hand address of the item to be transferred, and in
our case, this is the address that must be modified for every record.

XXI-11

The B address gives the right hand destination location, for our example, the
right hand end of a 9 character work area.

The operation will terminate when the symbol which matches the one held by the
N register is sensed and transferred. At that point, STA will hold the address ome
to the left of the original symbol, the B register will hold the address one to the
left of the destination symbol.

The contents of the B register are very important to us in this case, since we
will want to clear to zeros from the left hand end of the work area straight through
the /. Since the B register has the address one to the left of the /, we have only
to store the contents of the B register in the B address of a Transfer Symbol to Fill
instruction, and add one to it. The SF instruction will then load the area with in-
significant zeros.

J 0 LHE OF WA (Address of /)

Once the Add is accomplished, we will want to find the MSD of the new balance.
This can be done by executing a Locate Symbol Left instruction, looking for the lack
of a 0, When this instruction terminates, we will have the address of the last 0
sensed in STA., By placing in the A address of a Transfer Data by Symbol Left in-
struction, and adding 1 to it, we will have the address of the MSD.

In housekeeping, we will place a / one to the right of the work area which is
to receive the balance. This / will terminate the instruction. At the end of the
instruction, the B register will hold the address one to the right of the destination
/, which is also two locations away from the last character of the record. By stor-
ing the contents of the B register in the B address of Tape Write Normal instruction,
and then subtracting 2 from it, we will be able to write out just the record informa-
tion. Flow charted and coded the problem would look as follows:

XXI-12

A4

HOUSEKEEPING

RWD TAPES

CLR INT WA T
H ozsnos

PLACE AJONE TO RIGHT
OF BAL WA

@)

]
2
READ
MAST

TRANS
STA —= 9(A)

4| sus

M>T

9(A)-i

5

EF/ED

READ TRANS

-2
[\

26

__/

TRANS
INT —= INT WA

TRANS(BAL) —e-BALWA

STRp = 12(8)

ADD 12(B) + I

F
BAL WA WITH ZEROS

ADD
BAL + INT

LOCATE SYMBOL LEFT
TO FIND MSD

TRANS STA—e=[7(A)

ADD 17 (a) + 1

TRANS (NEW BAL)
—— READ IN AREA

Pg. 2
XXI-13

22

23

24

RWD
OUTPUT
25 g

STR

B ——————— 21 (B)

sus

21(B) - 2

20

XXI-14

26

ST=IXX

00Jo1[o2[o3foafos]o6]o7]os|osf 10] 11]12]13] 14| 15] 16] 17] 18] 19 20 [21[22]23] 24] 2526 27] 28] 29[30 [31 [32| 33[34] 35] 36| 37| 38] 39 | 40] 41]42[43] 44|45 46| 47] as] 45
bo J—accr # +—— CE — , ' _

50[51]52]s53]s455]56]57] 58] 59] 60] 61]62[63[64] 65 66] 67 6869 | 70 [71[72]73]74] 75]76] 77] 78] 79 |80 [s1[62] 63| 84| 856 5768|869 |90 [91]92 9394|9596 97 58] 99

o0]o1]o2]03]oafo5]06]07] 08 0of 1o] 11]12]13]1a[15 16] 17[18] 19] 20 [21 [22[23] 24| 25[26] 27] 28] 29 30 |31 32| 33] 34| 35| 36| 37[38]39 J 40 [41[42] 43 aa[as]ac]a7] 28] 49
pa S PRy YeRT o — INT —— I] . |

50 [51]52]53| 54] 55 56| 57| 58] 59| 60] 61]62[63] 64] 65] 66] 67 68 69 | 70 [71]72] 73 74| 75[76] 77] 78] 79 | 80 [61] 62 63 84| 85] 66 [87 88] 89| 90 [9 1]02 93] 94| 95] 96 | 97] 98] 09

oo[m]oz[osloa 05| 06]07] o8] 0] 10] 11[12]13] 1a] 15] 16] 17] 18] 19 20 [21] 22] 23] 24| 25 [26] 27] 28] 2 | 30 [31] 32] 33] 34| 35] 36| 37[38] 39 | 40 | 41[a2] 43| 44| as | a6 | 47] 48] 49
2 000 XX|[XXX

50 |51[52]53|54]55] 56| 57] 58] 59] 60 61[62]63[64]65] 66] 67] 6869 | 70 [71]72]73[74| 75 76] 77 78] 75 J 60 [81 | 2] 83| 84] 85] 86 | 87] 88] 89] 90 [91 [92]93] 94 |55 96|97] 98] 9o

o0 Jo1]o2fo3]0ajos06]07[o8]0 |10 11 12]13] 14| 15]16]17 18] 19] 20 [21]22] 23] 24| 25] 26 [27] 28] 29 | 30 [31] 32| 33] 34| 35| 36 | 37] 38|39 | 40 | 41]a2 |43] aa]a5] 6] 47] 48] 49
L3 WA / v

5051 (52|53 54]55] 56]57] 58] 59| 60] 61]62[63[64|65 66] 67 68[69] 70 [71]72] 73] 74 75[76[77] 78] 79 | 0 [61[02 [63 84| 65| 86 [87 e8] 8] 90|51 [92 [93]94 |95 96|97 [o8] 99

00 Jo1]o2]o3]0a]os[os[o7[0sos] 10 11]12]13] 14 15]16]17 18 [19| 20 [21[22] 23] 24| 25 26 [27[28] 29 | 30 [31] 32 33] 34 35[36 | 37 | 38] 39] 40 | 4142 |43 | 44 }a5] a6 | 47]a8] a0
Ll PROG — :

50 [51]52|53] 54]55] 56| 57| 58] 59} 60 61]62|63] 64 65]66] 67 e8] 69 | 70 [71]72]73] 74| 75] 76] 77[78] 79 | 80 [81[62[83] 84| 85] 86 [67 [68]9 | 50 91 [02 93 94|55 96 [97] 98] 99

00 [o1]02]03]oa[os]o6[07] 08[os] 10[11]12[13 1a] 15[16 [17 [18] 19 | 20 [21]22]23] 24| 25] 26 27] 28] 20 | 30 [31] 32| 33] 34| 35] 36 [37] 38] 39| @0 | a1 a2 [a3]aa |5] 46| a7] 48] 49
L5

50 [51[52]53]54]55] 56| 57| 58] 59]'60[61]62[63] 64| 65]66] 67] 6860 | 70 [71[72[73[7a] 75[76[77[78] 79 [80 [81[s2] s3] 4| 5[66 [67 6869 | 50 [91 [92 [93[0a |95 [96 [97] 98] 99

00 [01]02[03[0afos|0s[07[08[oo o 11]12[13[1a] 15[1617 [18] 19 20 [21] 2223 28] 25 [26 [27] 28] 29 | 30 [31] 52] 53] sa] 35] 36[37 [58] 39| a0 [a1 [a2 |43 | aa a5] 46 | a7] 48] 4o
46 c _ :

50 [51/52|53)54]55]56]|57] 58] s} 60[e1]62[63]64[65]66]67[68]69 [70 [71]72[73]7a[75]76]77[78] 75 |80 [61]62]83[84 8566 [87 [88]89 f90 [91 [92[93 94 [95 96 97]98] 09

oo [o1]o2]o3]0a]os]oe 07 0s]os | 10] 11] 12]13] 1a[15[16]17 [18] 19 [20 [21] 2223 2a| 25 [26 [27] 28] 29 30|31[32T33134 35|36 | 37 [38] 30f 40 [a1 [a2[a3]aa a5 [ae[a7] 48] a0
L7 , .

50 51|52{53]54]55] 56| 57| 58] 59] 60[61[62]63]64 65| 66] 67 68]69 [70 [71]72]73[74[75[76[77] 78] 75 | 80 [61]62[83] 84| 8566 7 [66]es [20 [0 1 [52[93 94|95 [96 [97]08] 99
18 |oo o1]oz]os[oalos[os[07[0s 0o 10] 11 12[13]1a] 15] 16] 17 18] 19 | 20 [21[22[23] 24|25 [26] 27] 28] 20 | 30 [31[22 33] 34| 35[36 [37 [s8] 20 | a0 [a1 [a2 [43 |44 45 |46 47| a8] 40

50 [51[52]53]5455]56]57] 58]59 | 60[61[62[63[6a]65]66]67[68]60 [70 [71]72[73]74]75]76[77[78] 79 Jo0 [81]2[63]84]e5[86 [87 [68]e0 |50 [o1]s2 [o3 [94 |5 [s6 [s7 98] 29

00 |01 [02]o3 [oa fos]os [07]os Joo J1011]12] 13 14| 15[16] 17] 18] 19 [20 [21[22]23] 24| 2526 27[28] 29 | 30 [31| 32] 33] 34] 35[36 [37 [38 [30 J a0 | 41 [42[a3[a |45 [a6 [a7]a8] a0
L9 ‘

50 |51]s2]53]5a]55]56[57[s8] 59| 60[61]62]63]64| 65 66 67] 6869 | 70 [71]72[73]74] 75]76] 77] 78] 79 J80 [81]62]83[84| 8586 [87 [88[89 | 9091 02]53 04 [95 06 [57 [s8] 90
TITLE: BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGE OF

FORM NO. 1223

28M 6-60

TITLE pondling variable Dete Example IV

91-1

CODER - DATE
REMARKS SEGMENT NO.
FROM |NO. s e lor| N A B REFERRED
Lot |, LocATIoN § 5 o|1|2|3|4|s|el7]|8]9 By REMARKS o.
6 Woolo|G]; |3]0]ofo|o]ofo]O]O RWD 3 1
1ol o]; s lojolojolofololo RWD b 1
2 ojejofjajols]e]olo|k]lalo]a FILL INT WA WITH ZEROS 1
scjolofwfafufrlalala]slo]o TRANS /~9 BAL WA (RHE + 1) 1
4650 y cl4|3|4]ololofkfo]r]s READ MAST 2
5 cinfkjofjalafs|u]slals TRANS STA—* 9 (A) 3
s || Jol 2k [slzls ul7 1o SUB 9 (4)-1 ad
7T ofelolw (8|4 |6 |60 (4 |4 (8]0 ED/EF 5
4470 g “Bologlifs]a]olo]ofojo]o RFEAD TRANS 6
9 1710y |7|4]o]o]olulr]olo COMPARE ACCT# T
wso lefelwlalul7lololulzlo]o IF UNEQUAL, HAIT 7
1 O ls d Jala e |uf2 o7 TRANS INT— INT W.A. 8
l b2 | 112 1/ 1(0lo lo o)k 13 o |8 | 3% | rans (mar)—smar w.a, 9
s Pl ela s {slofololo]o SIR B 12 (B) 10
ol ol s s s o L 7 11 |o ADD 12 (B) + 1 11
5 | tla o {u |3 |oo [(olo |0 |o)] 10,11 | FILL BAL WA WITH INSIGNIFICANT ZERO 12
6 “f°lcl+18in 3108 |uf2 o]y ADD BAL + INT 13
7 b ek lolulslololulslols LOCATE IAST INSIGNIFICANT ZERO 1
5 weg Ofo ok fo]2]1]s {u[6 {05 TRANSFER STA—d 17 (A) 15
9 ¢ sk |6elols kT2]o ADD 17 (A) +1 16
LED sl#F [/ 1olololo)|k o o8] 15,16 TRANS NEW BAL —# READ IN AREA 17
1 oV ks 6|k |9jo]o |ofo STR B—421 (B) 18
ol cofa kel]t |2]9 SUB 21 (B)&®2 19
3 3 FAL 0]0[0 |k 0 [o ETW 20
IE 1224 REV. 880 | ‘ PAGE 1 OF 2

L1=1IXX

TITLE Handling Variable Dats, Exemple IV

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. sl e |or| N A B REFERRED
'Egz: &'; Log::!ION 55 s |1 2|;4 . ;3 REMARKS Bnoo)f
6 olo]8|4|s]olo]ofo]oflo|ol 18,19 | WRITE NEW MASTER 21
vlcelv]ilofalalolblhlbl]o TRANS 4 2
4770 ofolos|u|u] 7l rlaly WRITE EF-b L 22
‘P19 13lolololololofolo RWD 3 23
C’Gf};lpooooooool RWD L 24
4630 g V0| O JEIjojojolofofojo]o]o EOR 25
4500 f¢ yro Yl l@alolofololololo]olo ERROR HAIT 26
1€>fﬁiﬁo/oo%00001| | CONSTANTS
25—?‘3‘‘9ooooooooozlr *
ofo] o
cfo]o
ofo]o
T T
oo o
Cgol G
6 glotf o -
oo | o
oo
ofe | o
IE 1224 REV. 8-80 PAGE 2 oOF 2

Taking a sample record let's step through the program:
The information record is:

2347668/99576
When read into memory it falls as shown:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
40 2 3 4 7 6 6 8 / 9 9 5 7 6

At the end of the Read, STA holds 4013, Transferring that and subtracting 1, we have
4012.

Reading in the transaction for this record, it appears in memory as follows:

00 01 02 03 04 O5 06 07 08 09 10 11 12 13 14
41 2 3 4 7 6 6 7 0 1 0 0 0

Transferring the interest amount to the work area, we have:

00 01 02 03 04 05 06 07
42 0 0 0 0 1 0 o0 O

Transferring the balance by a Transfer Data by Symbol Right instruction which now
appears as:

P / (4012) 4308
we have:

00 01 02 03 04 05 06 07 08 09
43 -/ 9 9 5 7 6 /

At the termination of this instruction, the B register holds 4302. By storing this
and adding 1, we have 4303. Our Transfer Symbol to Fill then reads:

J 0 4300 (4303)
At the completion of that instruction, we have in the work area:

00 01 02 03 04 O5 06 07 08 09
43 0 .0 0 O 9 9 5 7 6 /

The Add instruction will change the contents to:

00 01 02 03 o4 05 06 07 08 09
43 0O o© 0 1 0 0 5 7 6 /

The next instruction is to locate the last insignificant zero. At the end of
the operation, STA will contain 4302. Transferring this and adding one, we have 4303
and our Transfer Data by Symbol Left imstruction reads:

/ (4303) 4008

Executing this instruction the read in area will then contain:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Lo 2 3 4 7 6 6 8 / 1 0 0 5 7 6 /

XXI-18

and the B register will hold 4015. By storing the B register and subtracting 2, our
write instruction will then be:

8 4 4000 (4013)
allowing us to write out just the information pertaining to that record.

Expanding this problem one step further, suppose our master information was in
the format:

Acct, # / Name / Total Interest / Balance (The / serves as a sep=-
Max 7 25 7 8 aration between the items)
Avg 7 14 5 6
% 100 100 100 100

Now we run the problem of transferring both the Balance and the Total Interest
items, both of which are variable. To do this we must transfer STA after the Transfer
Data by Symbol Right which places the Balance in the work area. This will give us the
address of the location one to the left of the / which separates the Balance and the
Total Interest item. This address is the one we need for the A address of another
Transfer Data by Symbol Right instruction, which will transfer the Total Interest item
to a work area. The storing of the contents of the B register in order to fill the
work areas with insignificant zeros will be the same as in the other example.

Ancther problem is that of reconstructing the record after updating the two
items. This can be accomplished if we transfer the contents of STA after the DSR in-
struction that moves the Total Interest to the work area. That gives us the address
one to the left of the / which separates the Name and the Total Interest items.
Adding two to this will give us the location which should receive the most significant
digit of the mnew Total Interest amount. Again we would have to locate this most sig-
nificant digit by locating the last insignificant zero moving from left to right.
Having done this, transferring STA to the A address if a Transfer Data by Symbol Left
instruction and adding 1 to it will give us the address of the MSD of the Total Interest.
If the B address of the DSL instruction then contains the address which is to receive
this character, we have only to execute the instruction to put this item back in place,
even if the item has been expanded.

We would have to go through a similar process for the new Balance amount, but
first we must determine the location which is to receive the MSD of this amount. We
can do this by sorting the contents of the B register after the DSL instruction that
replaced the Total Interest item. This will give us the address one to the right of
the destination location of the terminating /, and this is the location that is to
receive the MSD of the new Balance. After the new Balance has been transferred back
into the original read in area, we will also want the contents of the B register.
Again it will give us the address that is one to the right of the destination loca-
tion of the terminating /. Subtracting 2 from this will give us the right hand limit
of the new, recomposed record.

XXI-19

HOUSEKEEPING
RWD TAPES

CLEAR INT WA TO ZEROS

PLACE / TO RIGHT_OF BAL
WA AND TOT INT WA

@

MD>T

READ
MAST

TRANS
STA— 9 (A)

sus
9(A) -1

5
EF/ED

READ TRANS

39

M<T

TRANS INT— INT WA

|

TRANS (BAL)— BAL WA

STRB — {3 (B)

TRANS
STA—— 14(A)

ADD < (B) +1

F
BAL WA WITH ZEROS

TRANS
| _(TOT INTH—=TOT INT WA |
STR

B ———— 19.(B)

TRANS
STA— 25 (B)

ADDZ§(B) +2

ADD 5 (B) + 1

SF
TOT INT WA WITH ZEROS

20

Pg. 2
XXI-20

(DSR)

(DSR)

20

21

22
23
24
25
26

27

28
29

30
30

ADD
BAL WA + INT

ADD
TOT INT WA + INT

I

LOCATE SYMBOL LEFT
TO FIND MSD OF TOT INT.

TRANS STA —— 25(A)

ADD
25 (A) +1

TRANS (NEWINT)—READ
IN AREA (DSL)

STR
B— 30(8)

LOCATE SYMBOL LEFT TO
FIND MSD OF BAL.

TRANS STA——— 30 (A)

Iy
P 20(a) +1

TRANS(NEW BAL)—
(READ IN AREA) (DSL)

STR
B— 34(B)

34(B) -2

33
ETW

34

XXI-21

39

7¢-IXX

4o

00jo1]o2[03] 04

05| 06] 07| 08| 09

10] 11/ 12]13] 14

15]16] 17] 18] 19

20 [21[22]23] 24

25/26] 27| 28] 29

30]31]32[33] 34

35/ 36| 37 38]39

40| a1]a2[4a3] a4

454647 48] a9

4ACCT #—

—))/ N A

E ——)

50[51]52[53] 54

55] 56] 57] 58] 59

60

61626368

65]| 66| 67| 68] 69

70 [71]72]73] 74

75[76]77[78] 79

80 [81][82]83] 84

85[86878889

90 [91]92]93]94

95[96[97[98] 99

b1

ooJo1]o2[03] 04

05/ 06]07] 08 09

10]11]12]13] 14

15[16] 17] 18] 19

20 [21]22]23]24

25 |zs| 27| za[29

30[31]32]33] 34

35| 36] 37 38[39

40[4!142[43[44

45]46]4a7] 48] 29

l¢=2c0T

& TyT ——)

50 5152|5354

55) 56| 57| 58| 59

60] 61]62]63] 64

65] 66] 67] s8] 69

70 |7\]72173]74

75]76]77] 78] 78

80 81/82|83] 84

85|86 | 87] s8] 8o

90 [ot[o2]s3]sa

95]96[97] 98] 99

Lo

00 [o1]02{03]0a

05| 06] 07] 08{ 09

10| 11]12]13] 14

15] 16| 17] 18] 19

20 [21]22]23] 24

25]26]27] 28] 29

30[31]32[33] 34

3s[36 [37] 38] 30

20 [a1]az]a3]as

5] a6[47[48] a0

000 xx

X X X

50 {51]52{53] 54

55/ 56 57| 58] 59

60| 61/62|63]64

65[66 67| 68] 69

70 [71]72[73] 74

75]76[77[78] 79

80[81]s2]83]8a

8586 [87]8a] 8o

90 [91[02]93]9s

95/ 96[97] 98] 99

43

00 [o1}02[03] 04

os[os[07[o8]0

10[11]12]13]14

15[16 17 [18] 19

20 [21[22]23] 24

25]26]27] 28] 29

30 [31]32]33] 34

35 36 [37] 38] 39

40 [a1/a2]4a3]44

as| a6 | 47|48 a0

)/

TOT

5051]52[53] 54

55] 56| 57] 58] 59

INT HA—

65| 66] 67 68] 69

70 [71]72]73] 74

75]76] 77] 78] 79

80]s1]82]83 84

85|86 |87]88] 89

90 91]92]a3]e4

95]96[97] 98] 09

60| 61/ 62| 63|64

Ll

00]o1]oz2]{03]0a

o0s5[06| 07] 08| 09

10 1112 13] 14

15]16 17 [18] 19

20 [21]22]23]28

25|26{27] 28] 29

30 [31]32]33] 34

353637]38] 39

40 [41]a2 [43]aa

45|46 [47] 48] 4o

A

PROG

50 [51]52]53] 54

¥
55] 56] 57| 58| 59

60| 61] 62| 63|64

65| 66| 67] 68] 69

70 [71]72]73[74

75|76 [77] 78] 79

80 |81]82]83[84

85|86 |87 [88]80

90 |91 [92]93 94

95|96 |97[98] 59

00 [o1]02[03] 04

05/ 06| 07| 08| 09

1o[11]12]13] 14

1516 [17 [18] 19

20 [21]22]23[24

25[26]27[28] 20

30[31[32[33] 34

35| 36[37]38] 39

40 | a1[a2[a3]aa

45|46 [a7] 48] 49

50 |51 52|53 54

55 56| 57| 58] 59

60]61]62[63[64

65] 66] 67] 68] 69

70 [71]72]73] 78

75|76 77] 78] 79

80 |81/62/83[84

85|86 |87 [88]89

90 [91 [92] 9394

9596 |97] 98] 99

oo|o1[oz]03[oa

05 06| 07| 08| 09

10]11]12]13]14

15] 1617 [18] 19

20 [21]22]23]24

25| 26]27] 28] 29

30 |31]32]33] 34

35I 36] 37 I 38] 39

40 |41 [a2]a3]aa

.45T46l47]48I49

50 [51[52[53) 54

55| 56| 57| 58 59

60[61]62[63]6a
3

65| 66| 67| 68|69

70 [71]72[73] 74

75]76[77] 78] 79

aole1laz[§3]aa

85|86 87 8889

90 |91 |92]93 [94

95[96[97] 98] 99

00 [01]02[03] 04

05| 06]07]08] 09

10] 1] 12[13] 14

15[1617 J18] 1o

20 [21]22]23]24

25|26 27] 28] 20

30 [31{32]33] 34

35|36 [37 [38] 39

40 [41 [a2]a3]aa

45 a6 [47] 48] a0

50 5152|5354

55]56] 57] 58] 59

60[s1[62]63]64

6s]66] 67] e8] 69

70 [71]72]73]74

75]76]77] 78] 70

80 |81(82]83|84

85|86 |87]88 [a0

90 fo1[s2]03]sa

95 [96[97]98] 99

oo[o1]oz]os[04

05[06[07]03[09

10]11[12[13]14

15]16[\7[13]19

20 [21]22]23]24

zs|2siz7]za]zs

30 [31]32[33] 34

u[m]w[m[%

40[41'42[43]44

as |46 [47] 48] a0

50 {51[52]53] 54

55|56[57[58|59

60]61]62]63]6a

65 66] 676869

70 [71[72 7374

75(76]77] 78] 79

80 [81[82]83[84

85|86 |87 [88 B9

90 [91]92[93 |94

95 96 |97 |98} 99

00 [o1]o0z2]o3 Jos

0506 [07 |08 Jos

10[11]12]13]1a

15[16] 17[18] 19

20 [21]22]23]2a

25|26 27|28 29

30 31|32 33] 3a

35[36 [37]38] 39

40 [a1]4a2[43]aa

45| a6 [47] 48] 49

50 |51[52|53]54

55] 5657 58] 59

60[61]62[63]6a

6§Jss]s7|sa[69

70 [71[72]73]74

75|76[77| 78] 79

go]e1]s2[a3|ss

85|86 [87 s8] a9

90[91]92]93 04

95|96 97]98] 99

TITLE:

FORM NO. 1223

2BM 6.60

BLOCK NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE

OF _

€ IXX

TITLE Handling Varleble Data Example V :
, - DATE

CODER ,
REMARKS | SEGMENT NO.’
FROM |NO. STE lor] N A B REFERRED , v
‘TcS)cT:: | 5, LoCATION 55 o{1|2{3|4|s5]e6]|7]8]>9 By REMARKS ~o.
010); 3 lololojololofofo RWD 3 INFUT !
1 cfole]s [s]oofo]o]o]o]o]o RWD 4 OUTPUT 1
, ofc|olalofe]elofo(a]2]o]2 FILL INT WA WITH ZEROS 1
2 ofelolsl/z nl3]o]loluf3]o]o TRANS / TO RIGHT OF BAL W.A. 1
ol oo/l zlolu]32]9 TRANS / 70 RIGHT OF TOT INT WA T
4790 s ojoledudslulolojolulolhlo READ MASTER -
'@ L6 feleln[ulolala]lslu]s]3]s TRANS STA—9 (4) 3
7 Qoo Dfolu]st3]s|ul8]s5]0 | SUBTRACT 9 (A) - 1 L
8 cfo|cdwlslnlgjolo|hlhlo]o EF/ED 5
o ‘Y1 °Jolp|ns|ajolo]o]olo]o READ CARD 6
sso heloly {7 ulolololu]afolo]l: COMPARE ACCOUNT NUMEERS T
o ofeloulafeleluloly 8#0 ' IF NOT EQUAL HALT FOR ERROR 7
I(; b5 2 U Chalstulalafululalo] TRANSFER INT—pINT W.A. 8
31 “Jel/lolololafulslols 3,L TRANSFER DATA BY SYMBOT RIGHT (BAL BAIWA) 9
b vl sl7lololofolo | STR _ B—13(B) | 10
5 o]0 aulololilslulslsls | TraNs sTA—b 1k (A) 11
6 qelol fslulslololulslslo L ADD 13 (B) + 1 12
7 0 slolulslol ool olol o]0 12 FILL BAL W.A. TO ZEROS 13
: 458 © pl/[ofofo]o)]u[3[1[&1 12 | DSR (TOT INT-HTOT INT WA) 14
9 vik|kl6el3]19]ojo]o]o STR B-—%19 (B) 15
460 N{k|ojal1]s|k|6]9]9 TRANS STA 25 (B) 16
cl+lelsle]lololulsgfs]s} ADD 25(B) +2 17
rlalsl6]3]olr]8]5]9 ADD 19 (B) +1 18
3 Jlo [k 1]1l0fojofo)15,18 | FILL TOT INT WA TO ZEROS 19

)V}

|E 1224 REV. 8-60 PAGE 1 OF

©Z7-IXX

TITLE Handling Variable Data Example V

CODER DATE
REMARKS SEGMENT NO.
<[
FROM NO. == |OP| N A B REFERRED
HSM < | < BOX
INST. OF TO REMA
Loc. [ins.| LOCGATION | 313 1o 2|3|4|5 6|7 |89 BY MARKS NO.
Lol C{Cl 0+ (8 (4 (3]0]8 |4 |2 [o |7 ADD BAL+ INT 0
5 Sl dr i 13 218 v j2 [olr ADD TOT INT + INT 21
6 CloEK (o [3 |2 [2 % (3 (1218 LOCATE IAST ZERO OF TOT INT 22
7 Q1% lolz a5 b |6 lo |5 TRANS STA — 25(A) 23
8 UBCI O+ 11 b |6 fo (5 |4 |8 |5 |9 ADD 25(A) + 1 2l
9 C‘I.G_&_#_L,Q_FO_Q_ 0)fo lo Jo [0 | 333 |7 st nmw or T —»tor TNT 25
Fé 470 ’[9 Clv b |x 7 u [9 Jo Jo fo Jo STR B —»30 (B) 26
1 cjelofk jofs (3]of1 v |3 [o]8 LOCATE LAST ZERO OF BAL 27
2 ‘0% " Iv iy fola |3 |5 b7 u |5 TRANS STA —30 (A) 28
3 PPk sz luls us s ADD 30(A) +1 22
L B 1S 1/ [(olo Jo oY|(olo lo [0)}26,28,29) DSL NEW BAL -+ BAL 30
5 el ofv s [|7 |8]9 |o|o |o o STR B—34 (B) 31
I W76 v 2 b 171819 |& |8 |5 |s SUB 34(B) -2 32
I "Ik |% [0 |00 |4 |8 |4 O BT 33
8 | -8 |4 |% jo [0 |0 |(o]lo |o [0)f 31,32 WRITE MASTER 34
9 -1 Wwhilolophlof |y ls |o TRANS —# 2 ,
4480 480 “BUICIB u 4 |8 |5 |1 4 8 (5 1 WRITE EF - —% QUTPUT (L) 35
1o s o [o [o]o |o]o oo
. 3 —— RWD 3 36
0 U190 I lodolofo oo lo o RyD 4 37
k770) 3 ‘001 Cklo oo folo lolo lo lo EOR , 38
4510) Y “§¢ |9 mjo o foJofo oo |o |o HALT ERROR 39
Aol ok Brlo o lol2 [ololo It
IE 1224 REV. 8-60 PAGE 2 OF 2

Suppose our sample record read:
3456436 /J0E_DOE/9984/99750

and our transaction amount was $5.00.

When read into memory, we would have:

00 01 02 03 O4 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
40 3 4 5 6 4 3 6 / J o0 E _ D 0O E / 9 9 § 4

20 21 22 23 24 25
/9 9 7 5 0

By picking up the contents of STA after the read and subtracting 1, we have a DSR in-
struction that reads:

P/ (4025) 4308

Transferring STA after this instruction will give us 4019, the address of the LSD of
the Total Interest amount. With this in the A address our DSL instruction will appear
as follows:

P/ (4019) 4318

Remembering that the work areas had to be cleared to insignificant zeros, after the
addition we would have:

00 01 02 03 04 05 06 07 08 09
43 0 0 0 1 o 0 2 5 o 7/

11 12 13 14 15 16 17 18 19
43 0o o0 O 1 0 4 8 4 /

Assuming that we transferred the contents of STA after the last DSR instruction
and modified it by adding two, and assuming that we located the last insignificant
zero and added one to this address, our Transfer Data by Symbol Left -instruction would
read:

/(4318 (4016)

At the termination of this instruction, the B register would hold 4022, the
location which must receive the MSD of the new Balance item. Having transferred this
amount back to the original read in area by an instruction which reads:

/ (4303) (4022)

we would have in the B register 4029. Storing this and subtracting 2 we have the
address of the right hand end of the new record, which appears in memory as follows:

00 01 02 03 04 O5 06 07 08 09 10 11 12 13 14 15 16 17 18 19
40 3 4 5 6 4 3 6 / J 0 E D o E / 1 o 4 8

20 21 22 23 24 25 26 27 28 29
4 , 1 0 0 2 5 0 / _

The write instruction would then be:

8 4 4000 4027

- XXI=25

Handling Variable Data Exercise I:

We want to run a totaling program to develop a grand total of the gross dollar
amount of the issues to be used at a later date as control information. The informa-
tion is coming in sorted from tape unit 6 in the format:

STK.# / DESCRIPTION / GROSS $ AMT. / DISCOUNT AMT. / NET $ AMT.

Max. 8 25 7 5 7
Avg. 8 12 6 n 6
% 100 100 100 ' 100 100

It.is necessary to locate the Gross Dollar Amount and add it to a 10 digit
work area. When the last record has been processed, place the zero suppressed grand
total after the EF, and follow this with an ED. This is called a *"trailer message".

~Assume 1 reel of information.

Handling Variable Data Exercise IT:

The problem is to print out a motification for every overdrawn account in the file.
Data Description:

Master file: (1 reel tape unit E)
Account. # ~®* Name * St. Add. * City-State Add. °* Balance

Max, 6 25 30 30 6
Avg. 6 14 16 15 5
% 100 100 100 100 100

(The * (called ISS-Item Separator Symbol) differentiates the items. This symbol appears

as a space when printed on the on-line printer.)

PRINT FORMAT

PRINT POSITIONS

l———30 5460
ACCOUNT NUMBER"

NAME

STREET ADDRESS

. CITY-STATE

OVERDRAWN BALANCE -~

An example:

123456

JOE DOE

123 ANY STREET

SOMEPLACE, N.J,

OVERDRAWN 689~

Assume that VT channel is punched appropriately.
Do not flow chart or code ED/EF or ETW routines.

XXI-26

Handling Variable Data Exercise III:

We are to write a program which will update the master insurance.file, by posting
the received premiums to the appropriate masters. There will never be more than one
premium per master.

DATA DESCRIPTION:
Master (tape 2) ‘ 7= 7

Policy Number ® Name ® St. Add. ® City-State Add. ® Total Premiums ¢ Premiums Due '

] . paid to date . /f
Max. 9 30 30 30 6 6
Avg. 9 16 17) 17 5 5 7
% 100 - 100 100 100 oo 180
e S
Transactions (tape 3, sorted in ascending order by policy number)
Policy Number Premium Amount
9 -4

(Punch reject cards for any out of sort transactions. These reject cards have the
same format as the input).

Do not flow chart or code ED/EF or EIW routines.

q. 2 L0WE T {l o T ST

B by Yo -
VLR i Lo s R AR

_E
'

PR,
i
£

XX1-27

XXII — REPETITION OF INSTRUCTIONS

It is often desirable to repeat a]%iven instructiogminzgggszegffzggégl For
example, suppose we wanted to multiply the gross sales amoun o obtain the

discount amount. One way we could do it is to add the weekly gross to itself 8 more
times. We could code this with 7 Add instructions:

Gross sales amount
34 34 35 36 37 38 39 40 54 55 56 57 58 59 60
0 7 9 4 6 7 O 0 7 9 4 6 7 O

1730 + 7 3440 3460
1740 + 7 3440 3460
1750 + 7 3440 3460
1760 + 7 3440 3460
1770 + 7 3440 3460
1780 + 7 3440 3460
1790 + 7 3440 3460
34 Discount amount

34 35 36 37 38 39 40
6 3 5 7 3 6 0 (63.57)

With the REPEAT instructién, this same operation would require only two in-
structions.

REPEAT:
The OP code is R.

N indicates the number of times (0-14) to repeat the next repeatable instruction,
expressed by the decimal digits and 10 is (:) , 11 is #, 12 is @, 13 is (, and 14 is).
s—— —— JIS— — ——
The A address indicates whether or not the A address of the repeating instruction
is to be staticized. If it is 0000, the A address will not staticize. If it is 0001,
the A address will staticize. '

The B address indicates whether or not the B address of the repeating instruction
is to be staticized. If it is 0001, the B address will staticize. Our example would
then be coded as follows:

1730 R 6 0001 0001
1740 + 7 3440 3460

Since a read instruction requires start time of 9.8 ms., it is advisable to "batch"
records. This means that instead of having one record per block, we could place multiple
records in a block, thus decreasing the number of gaps to be processed. Our problem is
to write a program which will "batch” these records. Assuming that there are 10,000
fifty character records on one reel of tape and we are required to batch records into
5 records per block, we would want to read in 5 times, placing the records end to end
in memory. At that point we could write out all five records as one block. By using
a Repeat instruction, we can repeat the Read 4 times. If we don't staticize the A
address, we will always have in the A register the address of the location to receive
the next character (after reading in a record, the A register contains the address of
the location one to the right of the last character read in). Noting this, our pro-
gram would be as follows:

XXIT-1

HOUSEKEEPING
RWD TAPE

|

1

REPEAT READ 4
TIMES

XXII-2

TITLE

€~1IXX

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. Sl Jorl N A B REFERRED
Toc. s, LocATION 55 o|l1f{2]|3|4]s ,6|7 8 |9 By REMARKS No.
| 6 2;,9(30@33'00'5-00000 RWD_INPUT 1
1 ool o) [5 fo |o oo Jofo jo |O RWD OUTPUT 1
2770 25‘6 0lr [4 |0 |0 fo fO |0 JO JO |1 | REPEAT READ 4 TIMES 12
‘3g|eou31000121#9 READ RECORD 3
y Ojc| 0w |8 |E|D|E|F |2 |T {5 [© ED/EF N
| ojc | 0Js b o Jolo | Elnw 1 1 | ETW 5
"3 U ls (5 11 Jolojo [1 |2 [u |9 WRITE BATCH 6
’ Tojoe|lopw |alof21]9 |27 |2 [0 TRANS 2 '
oo | G '
CRO O
cjolo
ofo o
]Lé Glofd
(

PAGE OF

{E 1224 REV, 8-60

In the chapter on handling variable data, we did an example which located a
variable item. 1In our particular example, we only had to execute a Transfer Data by
Symbol Left instruction once, as there was only one variable item between the last
FAA (fixed and always appearing--fixed with regard to number of characters and re-
lation to first character and 100% occuring) item and the item we were looking for.
Suppose, however, our file had been as follows:

Acct. # ® Name * St. Add * City-State Add * Date of Statement®

Max, 6 25 30 30 6
Avg. 6 166 17 15 6
Total Deposits ®* Total Checks ® Balance
7 7 6
6 6 5

(An ISS separates each item)
In order to locate the left hand end of the Date, we would have to Transfer
Data by Symbol Left three times, each time picking up the contents of STA and the B

register to set up the next DSL instruction:

40 41 52 43 44 45 46 47 48 49 50

16 <——— Acct, # ———> o Name

3440 # ¢ 1647 1647 Transfer name in place 1
3450 V 4 3479 0000 Str B in 4(B) 2
3460 N 4 0215 3475 Trams STA to 4(A) 3
3470 # () () Transfer St. Add. in place 4
3480 V 4 3509 0000 Str B in 7(B) 5
3490 N 4 0215 3505 Trans STA to 7(A) 6
3500 # » () () Transfer City-State Add in place 7
3510 N 4 0215 3525 Trans STA to 9(A) 8
3520 Y 6 () 1700 Compare Statement Date: Today's Date 9!

We could accomplish this same routine with only 4 steps using a Repeat instruction:

3440 R 2 0000 0000 Repeat the DSL 2 times, not stat. 1
3450 # * 1647 1647 Transfer in place (DSL) 2
3460 N 4 0215 3475 Trans STA to 4(A) 3
3470 Y 6 () 1700 Compare Statement Date: Today's Date 4

Suppose we were to transfer the 100 characters located in memory from 1500-1599
to locations 2100-2199. We already know that the most we can transfer with one in-
struction is 44 characters. If we executed 4 transfers of 25 characters each, however,
we would get a transfer of 100 characters. We must make sure that the registers do
not re-staticize between executions or we will only succeed in transferring the same
25 characters 4 times. We can accomplish this by prohibiting both the A and the B
registers from receiving data:

R 3 0000 0000
M N 1500 2100

Not all instructions in the RCA 301 complement are repeatable. We have mentioned
four:

Add

Tape Read Forward Normal
Transfer Data by Symbol Left
Transfer Data Left

XXII-4

The other repeatable instructions are:

Subtract

Tape Read Reverse Normal
Transfer Data by Symbol Right
Transfer Data Right

Logical “OR"

Logical "AND"

Logical "EXCLUSIVE"

Translate by Table

The following outline of operation is included in order to explain the internal
logic of the Repeat imstruction, which is not as obvious as some of the other instruc-
tions:

The contents of the N register are transferred to the Ny register (a one character
register which holds and keeps track of the N character of the Repeat instruction).
The contents of the P register are transferred to standard HSM locations 0222-0225.
Indicators are set specifying whether the staticizing of the A and B addresses are
inhibited or not, according to the A and B addresses of the Repeat instruction. The
next instruction is staticized disregarding the settings of the indicators. The
sequence of instruction executions differs according to whether this instruction
(the one immediately following the Repeat instruction) is repeatable or non-repeatable.

If the instruction is repeatable, it is completed and the sequence of instruction
executions occurs in the following cycle:

The contents of the Np register are examined. If zero, the indicators are reset
and the next instruction is executed. If other than zero, the contents of the Np
register ‘are decremented by one and the contents of the HSM locations 0222-0225 are
transferred to the P register. The instruction addressed by the P register is then
staticized as specified by the indicators and is executed. The cycle repeats itself
until the Ny register contains a zero.

1f the instruction is non-repeatable, it is completed, ignoring the indicators
and henceforth all successive non-repeatable instructions and the next repeatable in-
struction is staticized as specified by the indicators and executed. When a repeatable
instruction is encountered, the sequence of instruction executions occurs exactly as
shown above. Remember, however, that all the instructions between the Repeat and the
first repeatable instruction will be staticized (according to the indicators) and
executed each time.

Repetition of Instructions Exercise I:

Write the portion of a weekly payroll which would calculate the Social Security,
at a rate of 3%. The information is coming in from cards in the format:

Emp # Gross Pay
5 5
1-5 16=-14

You are to bring in the information, calculate the social security, and place
the amount in the proper positions so that the output card will have the format:

Emp # Gross Pay Social Security
5 5 3
i-5 16-14 20-22

(You may assume that no salary is over $300.00 per week.)

At this point, your part of the program is complete. Ignore sensing for End of
File.

XXII=-5

Repetition of Instructions Exercise II:

Indicate how Handling of Variable Data Exercise I could have been shortened if
a Repeat had been incorporated.

XXI1-6

XXIII — INDIRECT ADDRESSING

Everytime that we have needed the.contents of .STA..we have been.forced to transfer
them out of STA and Jjnto. the instructio required them. The concept of "indirect
addressing"” will eliminate many of these transfers. :

T

All of our instructions to date have contained direct addresses; for example,
the instruction:

M 6 3049 L4099

will move the 6 characters starting at 3049 to 4099. An indirect address, on the
other hand, tells the computer that it is not the address of the data to be operated
on, but rather the address of a storage location which contains the dlrect address.
An indirect address identifies itself by containing a zome bit in the 2 of the least
significant digit. Since direct addresses contain four digits, the-storage location
for the direct address must also be four characters in length. These four characters
must lie in two even diads, and the indirect address must be the address of the right
hand end of these two diads. The following table shows the character needed for each
numeric:

& for O E for 5
A for 1 F for 6
B for 2 G for 7
C for 3 H for 8
D for 4 1 for 9

An example will help to clarify this concept. In the last chapter, we worked
out a routine to locate the date in a field of variable information. The routine
appeared as follows:

3440 R 2 0000 0000
3450 # / 1647 1647
3460 N 4 0215 3475
3470 Y 6 () 1700

We could eliminate the Transfer Data Right instruction by utilizing indirect
addressing. The program would then appear as follows:

3440 R 2 0000 0000
3450 # / 1647 1647
3460 Y 6 021E 1700 -

Supposing that our record was in memory as follows:

‘ 4O 41 42 43 L4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
16 135 257 /3 AMES _ S MITH / 2

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77.78 79
0 PARK ST ./ ERTIE _PA ./

®) 81 82 83 84 85 86
6 01023/

STA at the end of the repeat loop would contain 1680:

12 13 14 15
02 1 6 8 0

XXI1I-1

When the Compare instruction is staticized, the registers will contain:

OP N A B
Y 6 021E 1700

The computer recognized that 021E is an indirect address (by the zone bit) and goes
to locations 0212-0215 and replaces the contents of A with the contents of those
locations. The registers then contain:

OP N A B
Y 6 1680 1700

and the compare is ready to be executed.

Suppose we wanted to set up a print area and print a summary line for every
master in the file we were just discussing (page XXII-3). The print line has a
format of:

Account # * Name * St. Add. * City-State Add. ® Balance

1-6 10-34 36-65 67-96 115-120

(assume only positive balance)

Since the ISS (Item Separator Symbol) is not printable, we do not have to WOrry
about clearing it to spaces. The problem would appear as follows:

XXITI-2

HOUSEKEEPING
RWD TAPE

ED/EF

FILL PRINT AREA

WITH SPACES
ke

TRANS (DSR)
BAL > PRA

TRANS (DL)

ACCT ﬁ; > _PRA

TRANS (DSL)
NAME - PRA

TRANS (DSL)
ST ADD » PRA

TRANS (DSL)
C.S. ADD - PRA

12

IND ADD-STA

IND. ADD - STA

IND. ADD - STA

11

PR AND PA

XXIII-3

RWD
TAPE

13

7= ITIIXX

0oo1]02]03] 04

05| 06]07] o8] 09

0] 11/12]13]1a

15[16] 17[18] 19

20 [21[22] 23] 24

25| 26]27] 28] 29

30[31]32] 33] 34

35]36[37]38]39

a5 |46]47] 28] a9

40| a1]a2]a3]as

10

50|51 [52[53[54]s5]56]57] 58] 59| 60[61] 62] 63| 64] 65| 66] 67] 68] 69 70 [71]72|73[74]75[76 77 78] 79 |80 &1]82]83] 64| 85] 86| 67| 88|80 90 |91[o2]93]94 959697 98] 59

00a102[o3]o4fos[o6[07] 0805 0] 11 12]13] 14 15T e[17] 18] 19 J 20 [21]22[23] 2a 25| 26| 27] 28] 29 | 30 [31]32[33] 32| 35] 36 [37] 38 39 40 [a1]a2[43]aa]asTas]4a7] 48] a0
11 .

50 [s1[s2[s3] 54| 5556 57] 58] 59| 60] 61] 62| 63] 64| 65] 66] 67] 68 69 70 [71]72]73]74]75[76] 77] 78] 79 | 0 [81]62] 83 84| 85 86 | 87 | e8] 9 90 [91][s2[93]9a[95] 06 97] 98] 9o

00 [o1]02]03]0a]os[os07] 08 0s] o] 11 12] 13[1] 15] 16] 17] 18] 19 20 |21 22{23] 24 25[26] 27[28] 29 | 30 [31] 32] 33] 34| 35 36] 37 38[39 | 40 | a1]a2]43] 4a 45|46 47] 48] a9
12

50 [51]s52[53]54]55] 56 57] 58] 59| 60] 61 62 63] 64| 65] 66] 67] e8] 69 70[71]72[73[74]75[76]77] 78] 79 | 80 [81]82[#3] 84| 8566 87 s8] 83| 50 [o1 |52 93|94 |55 6] 57| o8] o

00 [o1]02]03[0405060708 osf10]11] 12]13] 1 15[16[17 18] 19 20 21]2223[24| 25 2627 28] 25 | 30| 31| 32] 33] 3a 3536 [37] 3839 J a0 [a1]a2[a3]aa 4526 47] 28] 40
13

50 |s1[52]53[54]s5[56[57] 58] 59] 60] 6162 63| 6a 65| 66| 67] e8] 69 [70 [71]72[73] 73| 75 [76] 77] 78] 79 80 |81]82[83] 84| 6s[a6[a7]s8] 8950 51 [92[93 04 |95 [96]97] 98] o5

00 Jo1]02[03[0aos] 06 o708 09| 10] 1112 13[1a| 15[16] 17 18] 15 | 20 |21] 22| 23] 24 25]26]27] 28] 29 [30[31]32] 33] 34 35[36 | 37] 38] 30 40 | 41]az |43 |4a 45|46 |47]a8] a0
L Xe E— : ST. ADD ,

50 [s1[52[53[s4[55] s6]57] s8] s9] e0[61]62]63] 64| 65] 66] 67] e8] 65 | 70 [71]72]73[7a]75T76[77] 78] 75 | e0 e 1]2]e3] 84| 85] 6 [67 88]80 |50 o1 |o2[93]94[s5]s6 [97] s8] 99

CITY - STATE ADD, .

00 [o1]02]03]040s]06]07] 08 0s] 10[11] 12] 13] 1] 15|16 17 18] 19 20 [21] 22 23] 24| 2526 27] 28] 29 | 30 31| 32] 33 4 35|36 [37[38] 39| a0 [a1]a2[a3]4aa|a5] 26| 47] 28] 49
1 [: ‘ J ,

50 51]52[53]5a]s5[s6]57] s8] 59| 60[61]62]63] 4] 65] 66] 67] 68 69 70 [71]72[73[74]75]76] 77 78] 79 [80 [81] 82| 03] a4 85|86 87 [88]e9 | 90 [91 [52 [93[94 |05 [96 [97] 98] o5

00 o1]02]03[0aos[os]o7] 08 os] 1011 12]13] 14 15[1617 [18]19] 20 [21]22]23[24] 25 26| 27] 28] 20 30| 31]32{33]34] 35] 36] 37 [38] 30] 40 [a1 [42[43[2445 a6 |47] 8] as |
16 AcCT # e NAM

50 s1[s2[s3}sa]ss[s6]57] 58] 59 60[61]62[63]64]65]66] 67] e8] 69 70 [71[72[73]74]75[76[77[78] 75 | 20 [s1]e2] s3] 64| 85[6 87 [e8]8s |50 |01 [o2[s3[94]o5]96 a7 98] 20

00 [o1]o02]03]oafos[os 0708 os | 1o 11] 12[13[1a| 15[16]17 18] 18 20 [21]22 | 23] 24| 25 [26] 27] 28] 20 [30 [31]32]33] 34 35|36|5=7[38[39 40 a1 |42 [a3[aa]as[a6[a7] 48] 20
17

50 [51]52[s3]54]55]56]57] s8] 59| 06 1]6263]6a 65| 66[67] 6869 | 70 [71]72[73]7a 75]76[77] 78] 79 [80 [81]82]83] 84| 6566 [e7 [8]es’ 90 |91 /9293 [94 |95 [96 [o7]98] 99

00 Jo1]o203]oa]0s 0s[07] 08 0s | 10] 1] 12[13[1a] 15[18] 17] 18] 19 20 [21]22]23]24]25 26 27] 28] 20 30 [31]32[33[34| 35] 36 [37[38[3040 [41 [a2 [a3 [aa 45|46 [47]a8] a0
18

50 |st1]s2|s3]sa]ss[s6]s7]se]s9] 60]61 62 [636a65]66] 67 e8]69 f 70 [71[72]73]7a 75[76[77]78]79 Jeo e 1]82[83] 84| a5]s6 [87 [88]es [0 [o1]o2 |53 |94 |95 [96 [57]ea] 55

00 [01[02]o3 [oa [osoe [o7Jos Jos J1o 11 12]13] 1af15] 16] 17] 18] 19 20 |21[22[23]24) 25 [26 [27 28] 20 | 3031] 32] 33] 34| 35] 36 | 37 [8] 39 40 [41]a2[a3]aa]as]as[a7]a8] a9
19

|solsi[s2]s3]sa]s5] 56 57] 5859 | eo[e1[62]63]6a] 65 66] 67 68]69 | 70 [71]72]73]74]75[76]77] 78] 75 |e0[a1]s2[2] 0a 85|86 |87 |88 [89] 90[91]92[93]04 [95[o6 [97]98] 59
TITLE: BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGE OF __

FORM NO. 1228

28M 6-60

G-ITIXX

Indirect Addessing Example L

1E 1224

REV. 8-60

TITLE
CODER DATE
REMARKS SEGMENT NO.

FROM |NO. STE Tor] N A REFERRED

Loc. . LocaTIoN 55_0_4_1_2 3la|s|e|l7]8]9 By REM,ARKS .
— ——

6 Oj0)s}i3lojofolo]o]ofo}o RWD _INPUT 1

2110 olofh [3)afésfo]alT |6k READ RECORD 2

ololol3jolafrlslala k|9 SUB STA - 1 3
olofwi8la{r|2]|0|a|o |k {0 ED/EF L
01 o0fal-1afs]ololals|ar]o FILL PRINT AREA WITH SPACES 5
ojlofrleloj2]1lE |15 |1]9 DSR. (BAL)—#PRA . IND ADD 6
ie 006 OJO|OfM|6 1|6 ([L]o |1 0|0 D L ACCT #—»FRA T
Tofjolof#Elelrlée k|7]1|4 oo DSL NAME —»PRA 8
gojolof#letola]|L|E |14 |3]5 DSL (ST, ADD.)—»PRA 9
g Cpolol#|eofa|i|E L]k |6]6 DSL (C-S ADD.) —pFRA 10
210 0| 9Blojojojofo 1]k Jo |2 PRINT AND P, A, 11

L 01 0fvialofal 2 lo |1]o TRANS —p 2 '

2030 6 o120 O[C[OYs5I3]l0olo]o}o Jo]o [0 |O RWD INPUT 12
odlojofo]olojo]o o (o EOR 13
cloflofolojofojo o |1 CONSTANTS
0
0
0

6 elo]o
oo | o ,
oo | o
oo | o
ofo] o
ofo | o
PAGE 1

~ We have already seen that incorpora indirect addressing wherever possible
UQEXgS_;ﬂﬁLEEEE%QﬂS but in add1EI3;3§{;W§2§§;L2?;2. Performing a transfer of STA
takes 91 microseconds (35 us staticizing plus 4 x 14 operating time). Yﬁtlllzlng
indirect addressing takes only 14 microseconds per level (indirect addressing may
be multi-level; i.e., an indirect address may address an indirect address, which
may in turn address»an indirect address, etc.). Thus we are saving 77 microseconds
every time we use it.

To date, we have only used STA as an indireci address. Any Eﬁﬁ Eaﬁﬁes“;i¥§

An—memnxx_mazu_“_;nd1rect address storage locations, however, uppose we had
to prepare six small work files from one master file, each work flle to contain the
records for one particular branch. When we read in a record, we have in STA the
address of the location one to the right of the last character read in. By picking
this up and subtracting one, we would have the address of the last character in the
sector. However, we need this address in six different write instructions, since at
this point of the program we do not know which branch we are working with. One way
to handle it would be to place this address in the most used write instruction, and
then having determined another path, transfer the address from this write to the
proper write. An even easier and faster way would be to use this the B address of
this write as an indirect address in the alternate write instructions. The program
would then be as follows: (ED/EF and ETW ignored)

Data Description:
Master (100 character maximum, 1 reel)
Branch code
3
3
100
(137, 142, 233, 497, 674, 785 and 497 is the high hit)

XXIII~6

RWD TAPES

OO® 2

READ
RECORD
3
TRANS STA—7 (B)
4| sus
7 ® O

HALT

WRITE

1.A.

XXII1I-7

SEGMENT NO.

DATE

Indirect Addressing Exemple II

TITLE
CODER
REMARKS

> ‘
2 | | A~ A=]~]|] o]z o] o @] o of of =] [~
=l =] o~ — 1 Q
w
o
- ~
w
[T}
<
o
w
p*4
o
<
=
w
%
—~
Gl < X
ol ol —~ m% m
N ©) |
2Bl |2 50 g e o
Bl 2l & 882 Sl=l~| |5 o =% I N Y a§
E Ol e m o | o
M~ ool oof | = Bl a|— = I*QEMQ
<l 3 5 SR |5F © M Mm +
Al | o |~ SSWW*ESW@ESW ESW
Bl B[8|g(8]g Blalgl 'W\& = = |
o o (@)
RRRRRRRMMS@C+Wm0+mm0+_mmw
[a)
[13]
[+ 4
€O > =
[T =) o
L.
w
o« n T. — — _ .
ol olojo]lojojoflojanjonlH] ojofolololojo]HBo]|lo|l ol H]OlO
B8..000000093610707033705370
Nl ololololologololAlm] Aloga]jo]olojajdfo|l ol] A|] o]lo
o O O] ol OJOo|O RO Al O AR NI Ol M Al | mgond Al oo oo oof
ni o] of ol ojlo|lo ool N O\ mimJolo]l O\ olofO]] o] o] O\~
<« o] ol of ojo|jo ool Afm] Bl ol Ao NjJofgA]| ~ n] O] A~
<
“f o]l of of ofocjo o]l ojal Al Al Aol o] JA]lofau]]] o] aalm
NR o]l o ol ojoj]o ol Hl o] Al o) Al O]] A O]]] A o]l:n
Z|l—~g Al o] o] <f]] o nf] Al o] AR A o] A A A
P .
ol A ofnfn]~Bo]l =l =5{ Q] =] =) =] 0] | 5] =]of>]] =] of >
._.<O.._.._—OOOOOOOOOGOOnU..ﬁuenUOOAvOmUnvﬁv
h<04m—0000000000000003 ololalo
Nﬂ,OQOOOOOOOOOOGO [onl) Jew] <o
=)
= j§ ©Of ~
WMO o 0| =4 %789w nl:owh wO/ i
=3 ™
o
-1
owwvl o O sl ¢
ZzO0Z &
>
= F
okFV o9 o o, a o
223 338898 q G el
w= 333*1”% ™ o ™ =
! W

XXI1I-8

6-IIIXX

TITLEIndirect

Addressing Exemple II

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. Hsm E;op N A B REFERRED i
INST. [OF| s imon | 513 TO REMARKS X
LOC. INS. dldfo| 2 |13|4|5]|617(8]9 BY NO.
o OJO0fwial|3]3]5]/0]3|3]5]0 + —#HAIIT 12
olol8(3|1|ofolo|3|1|3]I WRITE — 3 13
ojojviijolajilgf3jofrlo TRANS—2
3120 °|°IvI3{3f3|8|3]alojolo COMPARE 785: BR 14
olofwir|3|3|2]ol3|3|5]0 +—) 16 ——p HALIT 14
L1862 j0 003 i) RIES > L5
!6 UlO9lviajolafiigol3lo]lr |0O TRANS — 2
3280 ooy (313(318|7|rlo|o]o COMPARE 67hk: Br 16
Clofwiilsl3fsfol3{3]s o EE S 16
s l51lofolo|3]a]|3]z WRITE — 5 17
3320) Ofvialolalalol3loltlo TRANS —p £
3200 ofo G»_Eilo*o ofofojojojojo HAIT
3280) | ¢ 336 0000 olalolu]of 7lola]u]2]
TololoJofolol1l3]7]ol2]3]|3 > CONSTANTS
gojojofololof7]8]s]o]e 7]y Ji
ofo | o
offo|o
ofo|o
6 ofoo
ofo|o
ofo]o
ofo|o
offo | o
ofo o
IE 1224 REV, 8-60 PAGE » OF n

Indirect Addressing Exercise I:

The problem is to prepare a summary print out for every master in the stock

inventory flye: i j; . d
Stk # * Desc. ® Mfg. Name * Mfg. St. Add. ® Mfg. C-S Add. ® Tot. Iss'd
7 50 35 30 30 10

7 10 - 15 \L 15 15 10
Tot. Rec'd ® Due In ® Orders Not Met * Balance
10 5 7 \ 8
10 5 7 8

(ISS's separate the items as shown; numeric fields are carried with insignificant
zZeros.) :

The Print Format is to be as follows:

Stk # Due In Orders Not Met Balance
1-7 20-24 30-36 4o=47

Assume that the VT channel has been punched to give all necessary paper advance.
No insignificant zergs are to appear on the print out.
&U(i}«{' e qv}k}

OO0~ 066
BL3In-0636 T

E g

, {1
o Y\‘\ b
Wi - Lo

‘5'*\

L

i

XXIII;IO

XXIV — TIMING

Several instances within the text we have mentioned timing and it seems
advisable that we take it up in more detail at this point.

Timing within a computer is talked of in terms of "microseconds™ and
"milliseconds'. A millisecond is 1/1000 of a second. A microsecond is 1/1000
of a millisecond or 1/1,000,000 of a second. Each instruction has a formula
that will enable you to compute the time it takes to execute it. This formula
is made up of two or three parts:

1) 35 microseconds for staticizing the instruction

2) 14 microseconds for STA (if applicable)
3) the operating time

For example, the timing for the Transfer Data Right instruction is:

~1lh4n +.35

where n equals the number of characters transferred. If we were transferring
STA, for example, the formula would be:

14 x 4 x 35 = 91 microseconds

An additional 14 microseconds must be added for every indirect address
level that is used.

The Repeat instruction deserves special notice., Each repeatable instruc-
tion, when repeated, requires three additional status levels (21 microseconds)
when the contents of the Np Register exceeds zero, and requires one additional

tatus level (7 microseconds) when the contents of the Ngp Register equal zero.

In timing fixed information, the maximum number of characters is used.
In timing variable information, the weighted average is used.

In addition to knowing how long it takes to execute a given instruc-
tion once, we must also know how many times that particular instruction
will be executed during the problem. This we determine by the volumes given.

As an example of timing, lets time out the problem on page XIX-4, assuming

that 50% of the inventory is active, and 1/8 of 1% of the transactions are
out of sort., We will ignore housekeeping and the EF routine.

XX1V-1

TOTAL TIME

BLOCK INSTRUCTION TIME VOLUME SECONDS
2 17 Char x 100 us/char + 9.8 msup to speed timé 10,000 115,000
3 49 us 10,000 0.490
4 L9 us 10,000 0.490
6 17 Char x 100 us/char + 9.8 msup to speed time 8,000 92.000
7 49 us 8,000 0.392
8 21 us x 4 (average) + 35us 18,000 2.142
8 49 us 10,000 0.490
8 35 us 7,990 0.280
9 28 us x 10 + 49us 7,990 2.629
9 49 us 7,990 0.392
10 35 us 10 0.0004
11 17 Char x 100 us/char + 9.8ms up to speed time+

3.9ms gap + 22.4ms delay + 10ms switch 10 0.478
11 49 us 10 0.0005
12 35 us 10,000 0.350
13 17 Char x 100 us/char + 9.8ms up to speed time+
3.9ms gap + 22.4ms delay + 10ms switch 10,000 478.000
13 49 us 10,000 0.490
693.6239

Total Time (approximate) or 11 minutes and
6 seconds

XXIV-2

This time is only approximate since we did not time any instructions which were
executed only once in the program.

The following indicates timing specifications for RCA 301 peripheral
equipment:

PAPER TAPE
Paper Tape Reader/Punch - 100 characters per second

Paper Tape Reader - 500 or 1000 characters per second
Paper Tape Punch - 100 characters per second

MAGNETIC TAPE

10KC 33KC 66KC
Tape speed (inches/sec) 30 100 100
Characters/inch 333 333 667
Hot up to speed time (ms) 9.8% 3.5% 5.5%%
Hot gap size (inches) .3 CLA45 .55
Switch time (ms) 10 none none
Write to Read Delay (ms) 22 . 4+20% 7.2+20% 5.83+20%
Rewind speed (inches/second) 30 100 100

*Does not include staticizing time.

**Includes read after write stop delay, but not staticizing time.

CARD READER

Card Reader - 600 cards per minute
Card Reader/Punch - 800 cards per minute

CARD PUNCH

Card Punch - 100 cards per minute
Card Reader/Punch - 200 cards per minute

XXIV=3

ON-LINE PRINTER

The two On-Line Printer Models can be operated in the following com-
binations at the indicated speeds:

NO OF SYNCHRONOUS |ASYNCHRONOUS | NORMAL MODE(N) OR
PRINTERS MODEL SPEED (LPM)| SPEED (LPM) | SIMULTANEOUS MODE(S)
1 120 Column 1,000 800 N or S
1 160 Column 1,070 835 N
1 160 Column 715 600 N or S
2 120 GColumn #1 1,000 800 N or S
120 Column #2 1,000 800 N or S
2 160 Column #1 715 600 N or S
160 Column #2 715 600 Nor$S =~

NOTE: Timing for the Data Record File and the Data Disc File will be dis-
cussed in their respective sections.

A complete table of instruction times is given in Appendix IV of the
RCA 301 Programmers+ Reference Manual.

TIMING EXERCISE I:

Time the problem found on pages XIX-8 - XIX-13. Assume the following volumes:
10,000 masters
9,500 transactions
9,000 to be posted against existing masters
500 new masters

Do not time ED/EF, ETW, or Housekeeping.

TIMING EXERCISE II:

Time the program on pages XXI-10 to XXI-19. Assume the number of masters to be
10,000, Do not time Housekeeping or EF routines,

XXIV-4

XXV — BATCHING

If we were to break down and analyze the timing of the problem illustrated on
page XXI%2, we would discover that only 9 seconds.of the time was used for com-
putation and that 11 minutes and 4 seconds was required to read in the infor-
mation and write out the updated master. Of course, this relationship is due
primarily to the fact that this is a very simplified program,

Examining the time even further, however, we can see that the major portion
of this time (11 minutes) was needed for start time. Here again, this extreme
proportion is due to the fact that the size of the records is unrealistically
small, However, it does point up the fact that the gap size and the up-to-speed
time does play an important part in timing problems.

Obviously, if we could he number of gaps to be processed, input-
2E;puL_L;gg‘EgElgxgiszgggg_ﬁigniﬁigagglg. This is where "hg;ggigg" becomes
very important. S we have already mentioned, batching refers to the process
of carrying numerous records in one block (a_bleek.being all the information
between two gaps on.fapes. Taking the same problem, and batching the master

records into groups of ten, but leaving our transactions in a one record per
block state, our program would now appear as follows (ignoring the EF routine).

Timing this program, we would find that we have added approximately
3 1/2 seconds (for the Adds, Tally, and resetting Transfers), but we have
cut the tape time by 8.4 minutes. The program time is now approximately
6.7 minutes.

XXv-~1

AV

RWD TAPES

Ay SET

INITIALLY
A7 SET BY 4

M<T

ADD 8 (A)Y+17

ADD 9(A) +17

14
TA(9)

15| RESET TALLY

16] RESET 8{(A)

17| RESET 9(A)

18
ETW

@

XXv-2

)

£=AXX

50

00[01{02]03]0a

05| 06]07] o8] 09

10 11]12]13]14

15| 16f 17] 18] 19

20 [21]22] 23

25)|26]27] 28] 29

30]31]32]33f 3a

35]36] 37| 38] 39

a0} a1[a2]43]aa

?5]46147[48)49

F

- BOH

<

50[51[52]53]54

55[56|57

60] 61[62]63]64

65 66

67] e8] 69

70 [71[72]73] 74

75|76 77[78] 79

80|81]82]83]aa

85|86 87]88]a9

90 |91

92]93]94

95[96]97] 98] 99

51

0001 /02]03]0a

05] 06] 07

o[11]12]13]14

15[16] 17] 18] 19

20121]22|23|24

251 26| 27] 2e[29

30][31][32]33] 34

35136[37[38[39

40 [41]a2]a3]aa

a5/ 46]47] 48] a9

BRI

55 56| 57 58] 59

60| 61/ 62[63] 64

65| 66| 67 68] 69

70]71172{73[74

75

76| 77| 78] 79

8o[e1]82]83]8a

ssts |87] e8] 8o

90 [91]o2]s3]sa

95|96 |97] 98] 09

52

00 [01]02[03]0a

o5] 06| 07[0809

10| 11]12]13]1a

15] 16 17] 1810

20 |21]22]23] 24

25]26] 27 28] 29

30 [31] 2] 33] 34

35| 36| 37] 38 39

40 [41]a2]43]aa

45| 46) a7] 48] a9

STK 4 ¢

—— IS5

50 [51[s52]53] 54

55| 56| 57| 58] 59

60| 61[62]63] 64

65| 66| 67] 68[69

70 [71] 72 73] 74

75]76[77] 78] 79

80[81 [82183[84

85|86 [87] e8] 80

90 [9192[93]0a

95/96]97] 98] 99

23

00 Jo1]oz]o3]0a

05| 06[07] 08 09

10]11]12]13] 14

15[16[17 [18]19

20 [21]22]23] 24

25]26]27] 28] 20

30[31]32]33] 34

35 36| 37] 38]39

20 | 41[42]43]4a

45) a6 [47| a8] a9

PROG e

50 [51]52[53]54

55| 56 57] s8] 59

SOI 61‘62'83164

65] 66] 67] 68[69

70 l71 [72'73174

75 [76;[77] 78 [79

so]s1|ez]83]sa

85186[B7I88| a9

90 [o1o2{93]0a

95]96]97[98] 99

00Jo1[o2[03]0a

05 06 [07] 08] 09

0] 11]12]13]1a

15[16[17 18] 19

20 [2122[23] 24

25|26 27] 28] 25

30 3132 33] 34

35|36 37 [38] 39

40| a1[a2]a3]aa

45]a6[47]4a8] a9

50 [s1[52]53]sa

55|56 57] 58] 59

60| 61]62[63]64

65] 66] 67] 68] 69

70 [71]72]73]74

75| 76|77 78] 79

8o[81]e2]83] 84

85|86 |87 [88]80

50[91]92]93[94

95[96 |97/ 98] 09

00 [01]oz]03]0a

05[0s]07]0a]0s

w[11]12]13] 14

15]16 17 [18]19

20 [21] 2223 24

25| 26(27| 28] 20

30 [31]32[33] 34

35| 36| 37] 38] 39

40 | 41]a2]a3]aa

45'46147]48l49

50 [51]52]83[54

55| 56|57/ s8] 59

60|61)62[63]64

65| 66| 67] 68] 69

70 [71]72[73[7a

75]76[77] 78] 79

80 |81|82]83]84

85|86 87]e8]a0

90 [91 [92] 93|94

95|96 [97]98] 09

00 [01]02]03]0a

05|06]07[oe[os

10[11[12||3j|a

1] 16[17 18] 10

20 [21]22]23] 24

25[26]27] 28] 29

30 31]32]33] 34

35[36] 37] 3Bl 39

40 141 [42]43144

45| a6 | 47| 48[a9

;o|51[52]53154

53J55[57|55[59

60[61[62[63]64

65|66 67[68]60

70 {71]72]73[74

75|76{77] 78] 79

80 |81]82]{83[8s

8s]a6 [87 |88]89

90 [91 [92]93]0a

95]o6[97[98] 99

00 [01]02]03]0a

os[@s|o7[oa|ps

0] 1] 12[13] 14

15| 16[17 [18] 19

20 [21]22]23]24

25]26]27[28] 20

30 [31]32]33] 34

35|36 [37]38] 30

40 [a1 42 [43]aa

45 [46]a7] 48] a0

52151[52]53154

55| 56| 87] 58] 59

s0[61[62]63]6a

65] 66] 67] 68] 69

70 [71]72]73]74

75[76]77[78] 79

80 [81]82]83] 84

85]66 [87 |88 a9

90 [91[s2 0304

9596 [97]98] 09

oo]o1]ozloa[oa

os[os|o7[oa|os

10| 1] 12[13]14

15[16] 17[18[19

20 [21]22]23] 24

25[26|27|28|29

30L31|32|33[34

35[36 [37 [38] 30

40 [a1 [a2[a3]aa

45[4s|47|43|49

50 [51]s52[53] 54

55| 5657 s8] 59

60[61][62]63]64

65| 66| 67]68]69

70 {71]72]73]74

75[7§[77]7e[79

80 |81]s2]83]84

85[86 |87 |88 [8o

90 [91]e2 o354

9596 |97 [98] 99

oo[o1|02103|04

0506 [07 [os [os

w[11]12]13]1a

15[16] 17] 18] 19

20 [21]22]23]24

25{26]27(28] 20

30 [31]32]33] 34

3536 {3738 39

40 [41]a2[43]aa

45 a6 [a7 [48] a9

80 |51]52]53]sa

55| 56| 57| s8] 59

s0[61]62[63]6a

65| 66] 67] 68]69

70 |71]72]73]7a

75]76]77]78] 79

80 |81[82|83|8a

85|86 |87 [88] 89

90[91]92[93]0a

9596 [97[98]99

TITLE:

FORM NO. 1223

28M 6-60

BLOCK NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE,

OF _

SEGMENT NO.

DATE

Batching Example

TITLE
CODER
REMARKS

BOX
NO.
3-4

10
11
12
13
14
15
16
17
18

REMARKS

RWD 1 MAST
RWD 2 TRANS

RWD 3 NEW MAST
RWD 4 RFAECT
READ TEN MAST

ED/EF
SET A-PA2

OF

PAGE 1

3

MLT—9 12

9 TIMEg —P 7
RESET TALIY CTR

INCREMENT SUBRTRACT
RESET 7(A) (COMPARE)
RESET 9(A) (SUBTRACT)

TNCREMENT COMPARE

M>T—916
SITR_ROH

TRANS
BETW

ED/EF

WRITE REIECT
TATIY Q@ T
WRITE MAST

—_—

c

REFERRED
TO
BY
)]

rg

17,13

9

A

1

>

slhl6lo

clsls|3lq9lo

ojolo|s|1|6}9

510101 01 5

>

Glolllo)l (s 212101 18,1L

5
1lololololololalo
21alololololololo
3lo0jololololololo
Jiolololololololo

1

NM{4l5|5]|5|/5]5]3]|5]9

P
H
J
5
2

L

BRI EA R AV OISR

ol ©°

yl7i(slololo)lsl2lolo
villolelil9lsi3[Tl0O
+{3]/%5]3|lelsg|5|5|5]09
N|l3|5|5|7{5]|8|4[1]5
sl 3lkj{olololE|T|W

wialsl4yl3lo

[@lvold

0
0
0
N
0

O}lw|8|ElFiE|D|5[3]|9]0

0
Olvlalolelalolslzli7lo

CIxlolsls

0

\EXAAE

0go

7 OO0 | 0fyi2|s|l2lolols5]l2l1l6

» ofojo

gag U} O

HSM
LOCATION

0
ofo| o]| &
0
0
0

cjo | o

0

0
L Q01 01giulsiolololslalile

3 OO0 Ofgiylhlololol®mlm|lu
7000+ ll-l 9
EISIEIRIEEEIN-RE)
9 OO0 |0 N|2|5i/5|6|3]|5[5]|6!5
ss0 ‘B° 100wl 3ls|5l/6lelsl3lols

8

5hQ
A

siz 0] 0|0
5

»

o] _

oh5
pLe]
5350
500

IE 1224 REV. 8-60

| _sk2g

5

S—AXX

TITLE Batching Exemple

CODER DATE
REMARKS SEGMENT NO.
II;RS?I-M T)?: Logih':ION g g sl REFESRED BI'?O)f
LOC. |INS. 22101234567 |8]? BY
l6 ggk 0101 0dyliflolalaiflols]3|hlo
5 OQ0|0Jolo|s|3]ololojola|T CONSTANTS: INC AMT
6 ‘00| 0Jolojolololo)S5lololo TAIIY AMI + CTR INIT ADD
7 ‘8% %0lolslolal6lololo]o
ofjo| o
ofo| o
js I ERIE 1
ofo|o
oo | o
ofo|o
cjolo
ofolo
6 ofo]o
ojo | o
ofo| o
ofoto
oo o
ROt 0
]a elofo
oo | o
oo
offo | o
cfo |0
offo | ¢
IE 1224 REV, 8-60 PAGE OF

c0

o0]o102[03] 08

05|06 07| 08 09.

10 11712]13] 14

15[16/ 17] 18] 19

20 [21]22]23]2a

25|26] 27| 28[29 30 [31]32]33] 34

35| 36| 37] 38]39

40} a1]a2]43]aa

a5 46]a7] 48] 49

L 0 21

d add. 3rd

dd. Lth ad

. 5th add,

6th add. 74

add,.,8th

Q
50[51[52[53]54

55[56 57] 58] 59

60[61[62[63]64

65] 66| 67] 68] 69

70 [71]72[73] 74

75[76[77[78] 79

dd, 9th add

10th add,

1st MASTER

8081182|83| 84

85|86 [87]88]89

90 | 91[92]93]94

e
95[96[97[98] 09

oofo1[o2[03[04

os[06]07] o8] 09

tof11[12][13] 18

15[16] 17] 18] 19

20 [21]22]23] 24

2526 27] 28] 29

30]31|32|33[34

35[36[37]38]39

40 a1Jaz2]a3]as

45]46[47[48i49

50 [51[52]53] 58

55] 56 57] 58] 59

60| 61[62]63]es

65| 66] 67 68[69

70 [71]72]73] 74

75]76] 77[78] 79

80]a1][82[83]8a

85|86 | 87] s8] 8o

90[91]92]s3]0a

95]96[97]98] 99

00 [01]02[03] 04

05] 06|07} 08] 09

10] 11]12]13] 14

15[16[17] 18] 19

20 |21[22[23] 24

25[26] 27] 28] 29

30]31]32]33] 34

35] 36] 37 38] 39

20 [a1]a2]4a3]aa

45]a6]4a7] 28] a9

50 [51]52|53]54

55) 56 57| s8] 59

60] 61]62]63]6a

65| 66] 67] 68] 69

70 [71]72]73]74

sofei[ez2[83]ss

85]86][87[e8] 89

90 [91[92[93]0a

95[96]97] o8] 99

75{76]77[78] 79

0o [01[02]03[0a

os[o6[07] 08]09

o[11]12]13] 1

15{16[17]18] 19

20 [21]22]23] 24

25]26]27] 28] 29

30 [31]32]33] 34

40 [41]a2]4a3]4a

a5]ac[47] 48] a0

35[36 | 37[38] 39

s0[s1]s2[53[54

55] 5657 s8] 59

0] 61[62]63[64

65] 66] 67[s8] 69

70 [71]72][73]74

75]76]77[78] 79

80]s1]s2[83]aa

85|86 |87|88] 89

90 [91]s2]93]0a

95][s6]97] s8] 99

00 [01]02[03]0a

o5]o06]07] 0a] 09

1] 11[12]13] 14

15[16[17 18] 19

20 [21]22]23]24

25]26]27]28] 20

30 [31]32]33] 34

3s[36 [37]38] 30

40 | a1]a2[a3]aa

a5 [a6[a7]a8] a0

50 [51]52] 53] 54

58] 56]57] 58] 59

60| 61]62[63[6a

65] 66] 67] s8] 69

70 |71[72{73]74

75]76][77] 78] 79

80 [81]s2]83] 84

8586 [87 [88]8s

90 {91 [s2]03] 94

95]96[97[98] 09

00 [01]02[03]0a

05/ 06/ 07] o8] 09

0] 11]12]13]1a

15]16]17 [18] 19

20 [21]2223]24

25[26]27[28] 20

30 [31]32]33] 34

35/ 36|37]38] 39

40 [a1[a2[a3]aa

as[ac[a7]a8] a0

50 [51]52]53]54

s5]s6|57] 58] 59

60]61]62[63]6a

65| 66] 67 e8] 69

70 [71]72]73[7a

75]76][77] 78] 79

80]s1[a2[s3[8a

8s]86]e7[e8[e0

90 [91 {92 [93]0a

9596 [97]08] 99

o0 [o1]oz[03]0s

os]oe07] 08 09

w[1]12]13]1a

15[1617 18] 19

20 |21]22]23] 24

25| 26] 27[28] 29

30 [31]32]33] 34

3s] 3s] 37 38] 39

4041 [s2]a3]aa

l5]46‘[47]48|’49

50]51]52153!54

55] 56] 57| s8] 59

60[6t]62]63]6a

65] 66] 67 68] 69

70 [71]72]73]7a

75]76[77] 78] 79

80 |81 [s2[83]e4

8s]e6 [87]s8]ss

90 [91]s2]93]o0a

95|96]97[98] 99

00 [01]02]03[04

o5 06[07[08]09

10] 11] 12[13]1a

15[16[17 18] 19

20 [21[22]23]24

25]26[27]28] 29

30 [31]32]33] 34

35]36 [37]38] 39

40 [41]az[a3]aa

45 [as[a7] 48] 4o

s0[s1]s2]53]sa

ss]s6[57] s8] 59

s0[61]62[63[6a

65 66] 67] e8] 69

70 [71]72]73]74

75]76[77]78]79

80 [8182[83] 84

85]86 87 a8 [as

90 [91 [92[93]0a

95 [96 [97]98] 99

oo fo1]02]03]0s

os[os[o7] 0809

|o[|'|12]|3|15

15]16] 17 18] 19

20 [21[22]23] 24

25[26[27] 28] 20

3o|3|[32[33]34

35[36 |37 [38] 30

40 [41]az[a3]aa

as|as]a7]a8] a9

50 |51[s52[53]5a

55]56]57] s8] 59

so[sl[sz]sa[sf

65]66]67]68]69

70 [71]72]73]74

75 [76[77] 78] 79

80 [81]82]83]84

85|86 |87 |88 a9

90 [91]02]93]oa

959697 [s8] 99

o0 [0o1]oz]o3]ea

o506 07 [os [oa

15[16 17[18] 19

20 [21]22]23]24

25[26]27] 28] 29

30 [31]32]33] 24

35|36 [37[38] 39

40 [41]42]a3]aa

a5]as[a7]a8] a9

10]!1]12]13L14

50 [s1]52]53] 54

ss] s6]57] s8] 59

c0]61[62[63]64

6566 67] 6869

70 [71[72]73]74

75[76]77] 78] 79

80[s1]e2]aalsa

as[se [a7]88 [a9

90[91]92[93]0a

95[96]97]0a] 09

TITLE:

FORM NO. 1223

28M 6.60

BLOCK NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE____OF_

TITLE

L=AXX

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. ~TE Tor[n A B REFERRED '
Toc. [is. LoCATION gé o|1]2|3]4]s 6|7|8 9 ;3 REMARKS B"%)f
2090 |6 0j0]0Inl2]l2l1]lolat2l1lol3 INTTTALIZE TALLY 1
1 OpofOfNi{pi2la1lalsglol2l1lg INITTIALIZ® STA WITH ADDRESS OF FIRST MASTER 2
2 ofojolniploialalel2lolule INTTTALIZE LIST (5B) TO RECETVE SECOND ADDRESS 3
2060 3 Q0 9 nfalolelalrl6lolale READ MASTER (USE STA AS INDIPECT ADDRESS FOR A) L
b ofololn|nlolelalsi{slolol7ll TRANS STA ——> LIST _ g
501 00+iololollolalalole INCREMENT LIST BY L - b
bé 206 0101 00xlol2l1lol3l2lo]l3]o TALLY 9 TTMRS =3)i 7
7 Cfofo Llol2lalglolilale SUBTRACT STAG 1 8
8 OR0|10]8i{3lslolololololilr TRITE BATCH (USE STA AS INDIRECT ADDRESS FOR B) 9
o OQ0|O%v|1jlolz2]alol2]olo}o TRANSFER —% 1
210 cjolodoloklalolalbialolals CONSTANTS
1 J01%lololglolplolelolol?
6 ofolo
ofo | o
o]o 0
cfe o
o CRE
ofe | o
6 oo o
ofo o
ofe o
OL 0
ofo] o
oio 0

28-00-004

PAGE

OF

2
READ

BATCH

INITIALIZE IND, ADD,

INITIALIZE TALLY

IND ADD (MAST)

MAST: TRANS

16

7-14

)

MOVE ACCT #-->PR A

FINISH SETTING UP
PRINT AREA

PRINT AND
PAPER ADV,

15

16/READ
TRANS.

17
IND ADL

INCREMENT IND ADD

IND ADD
18

6—AXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. MM ; g opP| N A B REFERRED _
INST. OF LOCATION ol o TO REMARKS
Loc. |INs. 21210 L 2|3 |a|s5]6|7 |89 BY
___E_gu ojojolylsl7lololol7lololh READ TRANSACTION 1
2290 1 ogolofyl|3{slolololélol3lo BEAD BATCH 2
2 OgO O N[hj2}3f2]s5]2]2|hk]5 INITIALIZE INDIRECT ADDRESS (5A) 3
3 OQ0 |0 wnf2]l2]3]1 21 311]9 INITIALIZE TALLY N
2280 L ogo 191yl 0|0 710l0lo0 COMPARE M:T (MASTER IS IND, ADD, IN LIST) g
g 0jolo0lwiglolalololol ol 7 PRP —> PES PRN —17 g
'6 206 001 0fmiclola|blE]BlOlOlO MOVE ACCT #-3PRINT AREA (IND ADD SA) é
7 ofo|o]y PREPATE DPRINT LINE 1
g ofolo]))
o Ofolof{ \
220 ofolo]] /
i DK D) \
]6 22; 010]0 1/
3 oho 0 {
L o|o ol {
5 ojojolslolojofolo|8|olo]2 PRINT
6 0|0 Ofui8l7lololol7lololl READ NEXT TRAMSACTION
2150 7 4010 slololalllolols INCRE'CNT LIST TND. ADD. + L
6| 228 010 f0¥xlofel3j2to]2]1|L|O TALLY 9 TIMES— &5
9 ogojodviajof2ialof2l1f1]o TRANSFER —3 2
150 230 OJ%|%}alololololololololo PES
1 ojolofoinlelololclolollolg CONSTANTS
oIo 0
ofo|o

28-00-004 PAGE

To Illustrate tow more concepts which can be applied to indirect addressing,
let-s assume that we have a reel of master information maintained in batched-
variable fromat. Our batch size is 10 records, and the maximum size record is
100 characters,

The problem with which we are concerned deals with the printing of the in-
formation in particular records specified by paper tape input. In order to do
this, it will be necessary to obtain the address of the first character in each
record. When initially batching the information, it would be possible to develop
a list of addresses of the left hand end of each record: (we will eliminate the
ED/EF and ETW senses)

Oz =

1 INITIALIZE TALLY

2 INITIALIZE STA

3 INITIALIZE LIST(5B)

READ
RECORD JIND ADD STA FOR A

5 | TRANS STA---> LIST

6 |ADD LIST(5B) + 4

TALLY 9
TIMES

8] suB sTA O 1

XXv-10

When we must program our print run, it will be quite easy to reach each re-
cord. We will read in each batch, and using the first address in the list of ad-
dresses as an indirect address, we will be able to locate the 5 digit account
number of the first master. If we don't find a match between the transaction
account number and the account number of the first master in the batch, it is
possible to increment the list-s indirect address by 4 to obtain the indirect
address of the second master. This is due to the fact that it is possible to
add (or subtract) a numeric from another numeric, the least significant digit
of which has a zone bit in 24 (indicating an indirect address). The numeric
portions are added together (or subtracted), and the zone bit is inserted in
the LSD of the sum (or difference):

500C + 0004 = u

5003 (with a zone bit in 2, of the 3) + 0004 =
5007 (with a zone bit in 2 of the 7) =

500G

When we finally find a match, the A address of the Compare instruction holds
the indirect address of the correct master. By using this A address of the Com-
pare instruction as an indirect address, we have created a multi-level indirect
address, which will result in the placing of the address of the MSD of the pro-
per account number into the A register before the Compare is executed:

00 01 02 03 04 05 06 07 etc.
LIST: 50 5 0 4 0 5 1 2 3

MASTER READ IN AREA:

4O 41 42 43 44 45 etc.
50 1 2 3 4 5

23 24 25 26 27 28 etc.
51 1 3 6 4 2

PROGRAM:

2140 Y 5 500G 7000 Compare Master: Transaction

2150 W 1 2300 2270

2160 M 5 214E 8000 Move Master Acct.# ---> Print Area
REGISTERS:

OP N A B
M 5 214E 8000

214E in the A register indicated indirect address so re-
placed by contents of 2142-2145, which in our example
are 500G:

OP N A B
M 5 500G 8000

500G in the A register indicates indirect address so re-
placed by contents of 5004-5007, which in our example are

5123:

OP N A B
M 5 5123 8000

The instruction will now begin to execute.

XXv-11

XXVI - SIMULTANEITY

It is obvious by this time that one of the prime requisites of a good pro-
gram is that it must be efficient with regard to time and space (although com-
promises must be made depending upon which is more important for a particular
application).

Timewise, a program can be written to be accomplished in a minimum amount
of time, but once that minimum is reached even the best programmer in the world
can not improve on it as long as he is forced to process the data one step at
a time. The RCA 301 system allows the customer to better this minimum time, if
he desires, by renting or purchasing an additional logic device, called the
Simultaneous Program Control Unit. It is the utilization of thlS "mode" which
is our next topic of investigation.

We have already seen that computers are input-output bound; i.e., that to
read a character into memory (or write it out from memory) takes a much longer
time than any type of processing on that character once it is in memory. In
an effort to handle this situation, all the input-output devices are "buffered".
A buffer is an intermediary device which assures the speed compatability between
two units. For example, we have already determined that it takes 100 us. to
read one character from 10 kc magnetic tape., We also know that it only takes 7 us.
(one cycle) to place a character in memory. To make the two time cycles compatible,
the character is brought from tape into a one character buffer, and from there it
is transmitted to the Memory Register and then into memory.

Analyzing this time, it is obvious that the computer itself is busy only 7 us.
of the 100 us. time, and that the remaining 93 us. of the time it is waiting for
the next character. This same sort of relationship is true with each type of in-
put-output device as the following table shows:

INSTRUCTIONS MUST
DEVICE ACCESS MEMORY FOR OUT OF EVERY

Card Reading Equipment
Card Reader 13.44ms 100ms
Card Reader/Punch 13.44ms 7 5ms

Card Punching Equipment

Card Punch - 100 cpm 6.72ms 600ms

200 cpm 13.44ms 300ms
Card Reader/Punch 6.72ms 240ms
Paper Tape Read or Punch (100cps) 7us 10ms
Paper Tape Reader (1000cps) 7us 1ms

Cont+d. on following page

XXvi-1

INSTRUGCTIONS MUST
DEVICE ACCESS MEMORY FOR |OUT OF EVERY
Printer 120 col: Synchronous Mode 21ms 60ms
Asynchronous Mode 28ms 76ms
160 col:
Synchronous Mode (full speed) 27ms 55.8ms
Asynchronous Mode (full speed) 37ms 71.8ms
Synchronous Mode (Reduced speed) 27ms 83.9ms
Asynchronous Mode (Reduced speed] 37ms 100ms
Monitor Printer 7us 100ms
Data Record File 7us 400us
Data Disc File 7us 62.5us
Hi-Data Magnetic Tape Read-Write 7us 100us
33kc Magnetic Tape Read-Write 7us 30us
66kc Magnetic Tape Read-Write 7us 30us

Having proved that the time is available in which to do another simultaneous
operation, we must discover how the computer has the ability to keep track of two
instructions operating at the same time,

With the simultaneous program logic, the computer is equipped with a second
set of registers. This second set of registers is the counterpart of the 0P,
N, A and B registers which keep track of the instruction being executed in the
Normal Mode. These registers, (SOR(Simultaneous Operation Register), M, S, and
T) keep track of the instruction being executed in the Simultaneous Mode. Entry
to these registers is through the Normal Registers. That is, a Simultaneous in-
struction is staticized in the Normal Mode and if the Simultaneous Mode is un-
occupied, it will drop into the Simultaneous Registers before it begins to ex
ecute, leaving the Normal Mode free to receive the next instruction. If the
Simultaneous Mode is occupied, the Simultaneous instruction simply waits (does
not execute) in the Normal Mode until the Simultaneous registers can accept it.
During a situation like this the only thing that would be executing would be the
Ainstruction already in the Simultaneous Mode,

XXVI-2

In the RCA 301 System, then the HSM is time-shared; i.e., during the time
that an input-output instruction is in progress, but is not using memory,
another input-output or compute instruction can use the memory.

If an input-output operation is being executed in each mode, there can be
a direct overlap; i.e., a 100ms. card read can be completely buried in a 100 ms.
tape read. This is accomplished due to sequenced servicing of the input-output
buffers. If, however, an input-output instruction is being executed in the
Simultaneous Mode while a compute instruction is in process in the Normal Mode,
the computation will have to be "interrupted" by the simultaneous operation in
order to transfer the characters from the buffer into memory (or from memory
to the buffer). This is obvious, since computation instructions (transfers,
adds, compares, etc.) require the constant use of the Memory Register. Timewise,
this means that if we were doing a 100 ms. tape write in the Simultaneous Mode,
we would have 94.74 ms available for computation in the Normal Mode.

The following matrix chart shows some operations that can be done simultaneously:

SIMULTANEOUS OPERATION: MAGNETIC TAPE: PAPER TAPE: CARDS: PRINTER:
READ | WRITE |READ |WRITE | READ | PUNCH | READ | PUNCH | PRINT
(33) (33)
NORMAL, OPERATION: (10) | (10) |(66) | (66)
MAGNETIC TAPE:
READ (10) * * Y Y Y Y Y Y Y
WRITE (10) * * Y Y Y Y Y Y Y
READ (33) (66) Y Y % % Y Y Y Y Y
WRITE (33) (66) Y Y % % Y Y Y Y Y
PAPER TAPE
READ Y Y Y Y N % Y Y Y
PUNCH Y Y Y Y % N Y Y Y
CARDS
READ Y Y Y Y Y Y N Y Y
PUNCH Y Y Y Y Y Y Y N Y
PRINTER
PRINT Y Y Y Y Y Y Y Y @
COMPUTATION Y Y Y Y Y Y Y Y Y
Cont-d.

XXVI-3

Where:

Y means yes, the two operations can be done simultaneously.
N means no, the two operations can not be done simultaneously since they would both
be addressing the same device.

% means yes, Lf 2 tapes are available and a different one is being used by each mode,
* means yes, if both tape clusters are available, and one operation is being executed
by a tape deck in one cluster, while the other operation is being executed by a

tape deck in the other cluster.

@ means yes, if both Printers are available, and a different one is being used by
each Mode,

% means yes, if both a Paper Tape Reader and a Paper Tape Reader/Punch were included
in the system,

As the chart shows, the only limitation is one of device ability. Obviously we couldn-t
print in both the Normal and the Simultaneous modes at one time if we only have one Printer.

To do an instruction in the Simultaneous Mode, it must be a Simultaneous instruction.
Each output-input instruction we have had to date has a simultaneous counterpart:

TAPE READ FORWARD SIMULTANEOUS:

The OP code is 5.

N contains the identification character of the input device (1-6, A-F, J or N,
L or P, 8 or U)

The A address is the HSM location which is to receive the first character on
tape.

The B address is the HSM location which is to receive the last character read
from tape.

The instruction is executed in the simultaneous registers, which means that
Sf will be the address of the location one to the right of the last character
read into HSM and Ty will be the same as Ti (Bi)'

As in the case in the Tape Read Forward Normal, the operation will terminate
when the gap following the block is sensed. If S should equal T before this gap
is located, the character will be read but not placed in memory, The PRI?S are
NOT affected as they are used in conjuction with the Normal Mode. An ED or EF
alone is accepted as a legitimate one character block and will set a Simultaneous

ED/EF indicator which can be sensed using the CTC instruction with a - (minus)
in the N character.

TAPE WRITE SIMULTANEOUS

The OP code is 9,
N identifies the output device

The A address gives the location of the first character to be written, punched
or typed.

XXVI -4

The B address gives the address of the last character to be written, punched
or typed.

The operation terminates when the entire sector has been written and at that
point Sf holds the address one to the right of the last character written.

Since there are two models of Card Reader and two models of Card Punch in the
RCA 301 system, we shall discuss the simultaneous card instructions for the Card

Reader (600CPM) and Card Punch (100CPM) first, and the instructions for the Card
Reader/Punch (800CPM read and 250CPM punch) second.

CARD READ SIMULTANEOUS (for 600CPM Reader)

The OP code is 1

- N RESULT

Reads single card or terminates (600CPM) continuous card reading
Used in continuous card ending routine (600CPM)

Used in continuous card reading cycle (600CPM)

Used in alternate card reading cycle (300CPM)

Used in alternate card ending routine (300CPM)

R EN-

The A address gives the HSM location to receive the first character read from
punched cards.

The B address is zeros (0000).

S . holds the address one to the right of the location of the character last
rea 1in. -

CARD PUNCH SIMULTANEOUS (for 100CPM Punch)

The OP code is 1
N is zero (0)

The A address gives the HSM location of the first character to be punched.
The B address gives the HSM location of the last character to be punched.
The operation terminates when the information in the sector designated has

been punched to cards. This allows for multiple card punching with one in-
struction, Sf is the HSM address one to the right of the last character punched.

CARD READ SIMULTANEOUS (for 800CPM Reader/Punch)

The OP code is 1

XXVI-5

N is SYMBOL RESULT

K Binary read mode specified
1 Translate read mode specified

The A address gives the HSM location to receive the first character read
from punched cards,

The B address is zeros (0000).

S¢ contains the address one location to the right of the last character read
into HSM,

CARD PUNCH SIMULTANEOUS (250CPM Reader/Punch)

The OP code is 3.

is N CARD PUNCH MODE

& Binary
0(zero) Translate

The A address gives the HSM location of the first character to be punched,
The B address gives the HSM location of the last character to be punched,

Sg is the address of the location one to the right of the last character
punched.

PRINT AND PAPER ADVANCE SIMULTANEOUS:
The OP code is G,
N is the same as in the normal mode.
The A address is zeros (0000).

The B address gives in B the address of the left hand end of the print
area and in B3 the type of papdr ddvance:

Type of Paper Advance B3
No paper advance 0
Paper advnace using N
register as count 1

Vertical Tab channel
control 2

Page Change channel
control XXVI-6

In addition to these Simultaneous instructions, there are several Normal in-
structions that are used in conjunction with the Simultaneous Mode.

CONDITIONAL TRANSFER OF CONTROL:

The CTC allows us to sense two different states that relate to the Simultaneous
Mode. One is the sense of the Simultaneous ED/EF indicator., To do this a minus (&)
must be placed in the N character. The A address gives the location of the next in-
struction which must be executed if the indicator has been set; the B address, the
location if it has not been set,

The second test that can be made is of the type of instruction being executed

in the Simultaneous Mode. This is done by placing a 4 in the N position. The A
address gives the address of the next instruction to be executed if there is an
Input instruction being executed in the Simultaneous Mode. The B address gives
the location of the next instruction to be executed if an output instruction is
being executed in the Simultaneous Mode. If the Simultaneous mode is unoccupied,
no transfer will take place and the next instruction in sequence will be the one
to be performed.

STORE REGISTER:

We discovered that the final contents of the A register (placed for us in
most cases in STA) were important to us in many instances. The same will be true
of the final contents of the S register, so that we must make sure that the Simul-
taneous instruction has been completed before we store the contents of the S reg-
ister with a STORE REGISTER instruction. To do this, we must place an 8 in the
N character. The A address gives the right hand end of two diad sector which is
to receive the address in the S register., The B address is zeros. An illus-
tration of this will be shown later in this chapter.

INPUT-OUTPUT SENSE:

Another way of keeping track of what is going on in the Simultaneous Mode is
to sense the device being utilized by the instruction which is being executed in
the Simultaneous Mode. This can be done with an INPUT-OUTPUT SENSE instruction.
The interrogations that would be utilized in this manner would include:

1. magnetic tapes (1-6 or A-F for 10kc; J or N for 33ke; L or P for 66kc)
a. is tape now in motion (Ag is 2)
2. paper tape reader or punch (8 and 9 respectively)
a. is the selected device operating (Ag is 2)
3. card reader or punch (card reader (, and) is the card punch)
a. is the selected device operating (Ag is 2)
4, printers (7 or G)
a. is a line being printed (Ag is 2)
b. is the paper advancing (Ag is &)

XXVI-7

Having obtained a basic understanding of Simultaneity, we should apply what
we have learned to a number of example problems. If we remember one rule, we
will never have any difficulty when laying out a program with simultaneity. The
rule is never to do processing in the same area at the same time in both modes.
For example, it would be disastrous if we started to read in the Simultaneous
mode and immediately began to process on that data in the Normal Mode. Since we
already know that it takes 9.8ms. for the tape to get up to speed, it is quite
obvious that we would not be processing the new data that we are planning to
read in but rather the old data that was in the area, In most cases, all "no"
answers to the following tests will prevent any difficulties:

1) Are we processing data that we haven-t brought in?
2) Are we putting out data that we haven't finished processing?

3) Are we reading in new data to an area before we are finished processing
the o0ld data?

Example I:

We have 10,000 records to bring in, compute, and print. The approximate
read time per record is 55ms.;the compute time is 5ms.; and print is 76ms.
Timing this program without using simultaneity, our time is approximately 23
minutes. Suppose, however, we overlap the Read and the Print as follows:

35

— ‘.\ -

60 16‘

REPRESENTS UNUSED TIME

NORM

COMPUTE NORMAL

l

PRINT SIMULT}T
® /

XXVI-8

Timewise, we can see that we have processed one record completely (Read,
Compute, and Print) under the bracket. We know that the Print takes 60 ms.
and since the Read takes only 55 ms. we can bury it completely in the Print.
We will not want to start computation, however, until the Print is entirely
done, since the computation is primarily setting up for the next print. How-
ever, there is 16 ms. of paper advance time which must be done before the next
print can be accomplished, therefore the compute time is actually buried in this.
Our time now is only the print time of 76 ms. per record or a total of 12 and
2/3 minutes, a savings of approximately 10 minutes,

Checking our rules, we can see that we can't compute until we have finished
reading simply because of the sequence of the Normal instructions. We can-t
Print before we have finished computing, again due to instruction sequence. We
don*t care if we Read in a new record while we are in two different areas.

We do, however, run into a problem due to the fact that we have the possibility
of starting to set up the new print area before we finish printing out the old
line. To prevent this, we can incorporate one of two senses. One way is to
determine if an output instruction (Print) is being done in the Simultaneous
Mode and if it is we can transfer to the inquiring instruction:

1760 W 4 1830 1760

1770 start the computation

1830 7 O 0000 0000 There should not be an input instruction going on in
the Simultaneous Mode, as none have been staticized.

This sets up a program loop that will not be ended until the Print is finished.

Another way to handle it 1is to inquire of the Printer whether or not a line
is being printed. 1If the answer is yes, we will again set up a loop. If the answer
is no, either the paper advance has begun or the entire instruction has been com-

pleted, and in either case we are safe to start setting up the next print line.

1760 S 7 2000 1760
1770 start computation instructions

Flow-charted the program now appears as follows:

IS LINE
BEING PRINT-
ED?

COMPUTE NORMAL

|

PRINT SIMULT.

O

XXVI-9

Taking another example suppose we wished to duplicate a file of 10,000 re-

cords.

Assuming that we have 2 Hi Data Tape Groups and that we
group and write to the other, our read time (and write time) is
cord (600 character records), and our compute time is not worth
cessing this in the Normal Mode would take 23.3 minutes.
the reads and the writes, however, we could cut our time almost
we will have to utilize dual areas, that is to say, we will set
write out areas instead of one.

read from one

70 ms. per re-
including. Pro-
could overlap

in half. To this
up two read in-

If we

While we are reading into A, we could be writing

out from B; then while we read into B, we could be writing out from A; etc.

[/}

READ A

READ B

READ A

READ B

READ A

READ B READ A

[

WRITE A

WRITE B

WRITE A

WRITE B

WRITE A

WRITE B 1

XXVI-10

Timewise, we can overlap the reads and writes completely. Our total time
for processing 1 record, then will be 70 ms. The total processing time will be

11.7 minutes.

No safeguards are needed since the simultaneous operations act as a guard
on each other; i.e., it would be impossible to read into A before the write of
A is completed since it is impossible to start the write of B (which is Simul-
taneous) until the write of A has been completed in the Simultaneous Mode. The
write of B, therefore, holds up the read of a new A until the old A has been
written out. Coded, it would appear as follows:

XXVI-11

I=IAXX

TITLE Similtanelty Exemple 1

CODER " DATE
REMARKS SEGMENT NO.
FROM |NO. s e lor| N A B REFERRED - '
INST. | OF Logmlon gi % I P P s e b e ;3 REMARKS BN°°’f
Clo)sla1loflolololololo]o RWD INPUT
1 g0 19)sialolololololololo RWD QUTPUT
1100 2 “Isla|lsfololols5]{s5]9l9 READ A 1
3 ‘Julgimlpiel rl1lolulo ED/EF? 2
L °lsialblolololrlrly ETW? 3
< I -Q'A_O"LLTQ WRITE A STMULTANEOUS 4
‘1206 °Jula1lélololol6ls]g READ B 5
7 oQolo)yl8l vl Fl1lolslo ED/EF? 6
BQIOCSAILOOOETW ETW? T
9 “I°|“lolal6lololol6ls]g]e WRITE B SIMULTANEOUS 8
110 9% vlafo 1l 9laloj2fo] TRANS 1
CRo | O
<] olot o
ool o

IE 1224 REV. 8-60 PAGE] OF 1

Suppose the file had been of variable length and we had done the Reads in
the Simultaneous Mode, We would have to modify the different write instructions
before executing them, in order that they might contain the proper righthand
1imit. To do this, we must Store S after the read is completed.

Bar graphed, flow charted, and coded, the program would appear as follows:

N //// / Write A Write B Write A Write B Write

S Read A Read B Read A Read B Read A Read

L

XXVI-13

READ
A

IMU

2 / N\
SENSE WRITE

READ

SIM. MODE 17

STR § -~ 8(B)

SUB 8(B) - 1

READ
B
SIMU

9
I SENSE \ WRITE

11

12

17

ED/EF
SIMUL

STR $ » 15(B)

SUB 15(B) - 1

XXVI-14

SI-TIAXX

TITLE Simultaneity Exsmple 2

CODER DATE
REMARKS SEGMENT NO.
FROM NO. : : OP] N A B REFERRED
IITS(T:: 1(:1';. "°CH:¥'°N 55 of[1|2(3|4]s LL7_8 9 33 REMARKS BNoo)f
919)s11lolojolololololo RWD TNPUT
0]j0ls|Aloflo]olo]o|ofo]o RWD_QUTPUT
Clo)s5]1f{s5lololo]|5]|5]9l9 READ A SIMULTANEOUSILY 1
Ol O wl4[alof3f{o]z]l1]8]0 SENSE SIMO MODE READ — 2;WRITE —HALT 2
Clolw|@lE[pAE|Fl1]lo]s5]0 ED/EF _SIMULS 3
G@'vs_l__g_ggooooi STR s—*8 (B) L
l°I@[3]1]0l9]|9l1|19]9 SUB_ 8 (B) (1 5
401015l 1]6lololol6]5]|9]9 READ B SIMULTANEOUSIY 6
"«‘;IGQSAhOOOETw ETW? T
‘P°19]18lalslololofojolop] 4,5 |wRITE A NoRMAL 8
1110 R GE wlslililololalil8]lo SENSE SIMO. MODE READ—® 9.WRITE % FAIT 9
P £ Jwl@leiplelrlajilzlo ED/EF SIMULZ 10
Jj mi*HﬁGv8116goooo STR 8= 15 (B) 11
3 Qo 01O@I3l1l1l6]lelal1lale SUB 15 (B) @1 12
Yy ‘Bl CIs]als|olololsls5l9ole READ A SIMULTANFOUSTY 13
s 9 9 sialslolololm|mliw| ETW? 1k
6 “0°1°J8ial6lolololololob)) 11,12 |WRITE B NORMAL 15
ol viajolalalolilol3 ’ TRANS 2
TTIO . : :
1030 2 1'I=tlolololololololo HALT _ (ERROR) 17
cgololB]olololololololo]1 CONSTANTS ' |
e
ol
0

IE 1224 REV. 8-60 PAGE 1 OF 1

A1l these problems deal with single files, but we have already discovered
that most computer programs are of an updating mature, which means we will have
two (or more) Files to process, Suppose we had this problem to solve with
SIMULTANELTY :

At the end of the month, we are going to post all payments against our
Accounts Payable file. There are 1,000 masters in the Accounts Payable file
containing an average 200 characters. There are 990 payments being made, and
the data in this transaction consists of an 8 character Account Payable code’
and a 7 character payment (fixed). Compute time is approximately 15 ms. per
updated master. Flow charted our program would look as follows: (Assume HALT
for error .out of sort transactions, and that both clusters are available. The
Master Imput is on tape deck 1, the Transaction Input on 3, and the Master
Output on A, Assume 1 Transaction per Master maximum).

XXVI-16

% o V] write [AwrrtE | READ |C | WRITE
iEﬁD iTZ CXR;TEgB %BM 719 AM |A]ANM
/) R |READ |R | READ B/ /4 rEAD
//BT B M AT |anM BT /17 B
I | Hskpe

READ A MASTER
READ A TRANS

XXVI-17

As we can see, ‘the program is completely safeguarded because of the Reads.
Since only 1% of the masters will not have transactions, we have arranged to
write out the non-updated masters from their read in areas and replace them with
the next master ‘in the file. This will mean that we can always be posting a
transaction in -the A area ‘against a master in the A area, and a B transaction
against a B master. This will save us programming and in this case it is ad-
visable due to the low hit on the master without transaction path,

Timewise, we can figure out the approximate time it would take to complete
this program in the Normal Mode:

Read of a Master: 39.8 ms.. times 1000 records 39.8 sec.
Write of a Master: 56.3 ms. times 1000 records 56.3 sec.
Read of a trans: 22.3 ms. times 990 records 22.1 sec.
Computation 15 mws. times 990 updatings 14,9 sec.

133.1 sec.

or 2 minutes ‘13 ‘seconds.

Timing with ‘Simultaneity, we can overlap the Reads and Write of 990 of
the masters. The Read can be completely overlapped. For 10 of the masters we
are not overlapping, so that both the read and the write time must be included.
The computation is easily taken care of in the read of the tramsaction, so that
we need include only the read time:

56.3 ms x 990 55,7 sec.
39,8 ms x 10 L sec.
56,3 ms x 10 .56 sec.
22.3 ms x 990 22.1 sec.
78.76 or 1 minute 19 seconds.

Taking another préblem, suppose we had 100,000 two hundred character re-
cords which were to be read, and printed, and suppose further that we had two
33 ke tapes and 2 printers available, This would mean that we could process
half the data .on one reader and printer, and the other half on the other reader
and printer., Our bar chart would appear as follows:

60 16
N
C c
0 0 PRINT 3
Rl M PRINT 1 Rq M
P P
N \
R, \ PRINT 2 R, \ PRINT 4
\ k
76

76 ms. X 50,000 records is approximately 1 hour and 4 minutes., Comparing
this with the processing time it would take if we only had 1 tape unit, 1 printer
and no simultaneity, we find that we have cut our time in half.

XXVi-18

At this point we should examine the principle of "interrupt" more closely,
Memory interrupt occurs whenever an input/output device is accessing memory, For
example, the 7us. it takes to transfer a character from the buffer to memory in
a tape read instruction or the scanning process in a print instruction. Interrupt
becomes significant when working in 2 or 3 modes atonce since the simultaneous
or R.F. Mode instructions will "interrupt" the normal mode when it is ready to
access memory. For this reason there will be less available time in the normal
mode, For example:

When reading from tape and computing in the normal mode and printing in the
simultaneous mode, interrupt will occur. If the printing is at a rate of 1000
lines per minute in the synchronous mode, the print instruction must be executed
within 60 ms. The interrupt time is 20.069 ms. (for scanning etc).

Ly ms read time
20,069 interrupt
24,931 time available in the normal mode.
+ 16 ms P.A, time = a total of 40.931 ms.

a tolerance of +3% to5% should be allowed for the printer so that approximately
38 ms are available for reading and computing,

SIMULTANEITY EXERCISE I:

We have a stack of 1200 cards which we are to read in one at a time, do
some computation on and print out a line of summary information., The compute
time is 15 ms, per card, and assume single spacing.

Bar graph and flow chart the problem,

SIMULTANEITY EXERCISE II:

We are to process one reel of magnetic tape consisting of 1200 six hundred
character records. The computation will take approximately 15 ms. and then a
summary line is to be printed (single space),

Bar graph and flow chart the problem.

SIMULTANEITY EXERCISE III:

Referring to the Exercise given on page XVII-7 (ITERATIVE CODING EXERCISE ip)
bar graph and flow chart this same problem using SIMULTANEITY.

XXVI-19

XXVII — EDITING

In the prior chapters, we have assumed that all printing has been done on
pre-printed forms that would have appropriately placed dollar signs and lines
to separate dollars from cents and thousands from hundreds. The only thing
that we were responsible for was suppressing any insignificant zeros and
right justifying the amounts so that the columns would be properly aligned.

Suppose, however, we were given a program to write in which we were re-
sponsible for inserting the dollar sign, decimal point, and commas, in addition
to the above editing. How would we handle this?

Let+s take a sample application. Suppose that we are to print bank state-
ments and that one entry is the balance in the account, which we will limit to
a maximum of 8 characters. We are to print out this field with all the necessary
accounting symbols, with no insignificant zeros and with the proper sign. For
this problem, we will assume that the doilar sign will be in a fixed location on
each statement,

Initially, in housekeeping, we should place a decimal point and a dollar
sign in the edit field (the print area), so that it would appear as follows:

comma, } decimal
if need- point sign
ed

$

1 2 3 4 5 6 7 1 8 9 10 11 12

Note that the edit field will require 12 positions: 8 for the maximum
amount, 1 for a dollar sign, 1 for a decimal point, 1 for a comma (if needed)
and 1 for a sign position.

The first step in the editing portion of the program would be to clear from
position 2 through position 5 to spaces. It would not be necessary to clear the
cents position since this will always appear on every statement, even if it is
only '.00",

Then, in the original, data area, we must find the rightmost insignificant
zero. In order to safeguard. the program against the possibility of a maximum
field, we will locate the lack of a zero up to, but not including, the cents
positions (assume a dummy position immediately to the left of the data field).
In this way we will end up with an address in STA which will be the location
of the rightmost insignificant zero (if there are any present) or the location
immediately to the left of the data field (if there are no zeros). Then us-
ing STA as an indirect address, we will be able to fill with spaces from the
dummy position through the address in STA, thus clearing everything except the
significant digits.

XXVII-1

The next step would be to move just the cents to the edit area so that they
would fall to the right of the decimal point.

Assuming that the original data area was of no further use, we could now
examine the least significant digit for the sign. This could be accomplished by
using a Logical And Instruction to mask out all the bits except the 25, and then
use a Conditional Transfer of Control testing the PRI's to find if the result
had any 1 bits in it, If it did, PRP would be set and this would indicate a
negative amount., This condition would require masking out the 2° bit of the
least significant digit in the edit area, to eliminate the sign bit, and then
inserting a minus sign in the sign position of the edit area., If the PRN were
set, this would indicate a positive amount and the only step that would have to
be taken would be placing a space (which represents a plus sign) in the sign
position.

At this point we could move the right three dollar locations in the original
area to the left of the decimal point in the edit area.

In order to determine when the operation finishes, we could then test the
thousand's position in the original area. If a space is present in that location,
the routine is finished. 1If the character in that position is greater than a
space, some error must have occurred (the data is not numeric) and the routine
should act accordingly. 1If the character is less than a space, there are more
numeric characters left to be transferred, so a comma should be placed in the
edit area and then the last three dollar positions should be moved from the
original area to the edit area.

Flow charted, the routine would look as follows:

XXVII-2

PRP

CLEAR EDIT POSITIONS
2-5T0 SPACES
SF

FIND RIGHTMOST
INSIGNIFICANT
ZERO IN DATA AREA

LSL

CLEAR INSIGNIFICANT
ZEROS TO SPACES

IN DATA AREA

S IND ADD

MOVE CENTS
EDIT AREA

DR

I

MASK QUT MINUS BIT
IN EDIT AREA

EO

INSERT MINUS SIGN
IN EDIT AREA

SF

©

. EXAMINE
{ SIGN IN \ PRN

DATA AREA /
LA, CTC 8

INSERT PLUS (SPACE)
iIN EDIT AREA

SF

Q,

12

PES

—

MOVE FIRST THREE
DOLL AR POSITIONS

DR

10

11

IS NEXT POSI-
TION IN DATA
AREA A SPACE?,

PLACE COMMA

SF

14

MOVE LAST THREE
DOLLAR POSITIONS
DR

END

15

END

XXVII-3

We could time each step in this routine in every program that used it, or
we could develop a timing formula for it initially, and then when we incorporate
this particular editing approach in a program, we could incorporate its timing
formula into the total time calculations. This formula is, of course, nothing
but an accumulation of the individual instruction times. For the flow charted
routine it would be (in microseconds):

567 + 21ln + a + b

where
n = the number of insignificant zeros
a = 0 if the amount is positive or
105 if the amount is negative
b = 0 if the amount contains less than 6 digits
133 if the amount contains 6 or more digits
EXAMPLES:
1. E*
X
T 0 3 6 7 3 1 2 3
R
A
1 2 3 4 5 6 7 8 9

*Extra one character needed for maximum field protectiomn.

Locating the rightmost insignificant zero between position 2 and 7 of the
data field and then using STA as the indirect address in the B address of a
sector fill, we can clear from position 1 - 2 to spaces.

Transferring the cents to the edit area, it appears as follows:

EDIT AREA

By masking out all bits of the least significant digit in the data field ex-
cept the 22 position and then doing a test of the PRI*s we can determine that this
is a positive amount and therefore insert a plus sign (space) in the edit area.
Transferring the dollars, tens, and hundreds figure we then have:

XXVII-4

Examining the thousands digit in the data area, we find that it is a decimal
digit (< space), and therefore, insert a comma and transfer the last three digits:

Time:

567 + 21 x 1 + 0 + 133 = 721 us,

EDIT AREA

Time:
567 + 21 x 4 + 105 + 0 = 756 us.

For a second example, let's assume that we are to print checks. For security
purposes, the dollar sign should always be printed immediately to the left of the
left of the most significant digit of the amount, so this will require what is
called a "floating" dollar sign. The routine is basically the same as with the
fixed dollar sign, with certain modifications:

1) It will now be necessary to clear the edit area from position 1 to 5,
since the dollar sign will be placed in the edit area in a different
position each time, rather than being placed once in housekeeping.

2) After clearing the insignificant zeros to spaces, it will be necessary
to again use STA as an indirect address, and place a dollar sign ($)
over the rightmost space in the data area, This will place the dollar
sign immediately to the left of the most significant digit. It seems
unnecessary to place a space in this location and then a dollar sign
over it, but this is cheaper, timewise, than a modification of STA
would be,

3) When sensing the thousands+ position for a space, we now have the
possibility of discovering a character which has a binary code greater
than a space. This would be the dollar sign, and would indicate that
the operation could be terminated simply by placing a dollar sign in
position 5 of the edit area,

XXVII-5

The time formula for this routine is slightly greater due to the addition of the
above steps:

637 + 21ln + a + b, (in microseconds)

where:
n = the number of insignificant zeros
a = 0 if the amount is positive or
105 if the mount is negative
b = 147 if the edited amount contains more than 5 digits
0 if the edited amount contains less than 5 digits
56 if the edited amount contains exactly 5 digits
EXAMPLE 1:

DATA AREA

EXTRA | 0 0 216 5 112 13

Time:
637 + 21 x 2 + 0 + 147 = 826 us.

EXAMPLE 2:

DATA AREA

EXTRA 0 0 0 0 0 2 3 1

EDIT IN PLACE

EDIT AREA

Time:

637 + 21 x5+ 0 + 0 = 742 us.

XXVII-6

Editing Exercise I:

A file of fixed length, 116 character records is to be read into memory
and then printed out to the on-line printer (one record per line) from this
initial read-in-area. All the information except the last 8 characters is
already edited for printing (either fixed in length such as stock number, or
alphabetic and carrying spaces, such as description). These last 8 characters,
however, represent a dollar amount and carry insignificant zeros if needed.
Your portion of the program is to edit this amount in order to:

1) eliminate insignificant zeros, if any;

2) piace a fixed dollar sign at the leftmost position of the amount field;

3) place the proper sign in the rightmost position of the amount field;

4) insert a decimal point;

5) right justify;

6) insert a comma, if necessary.

Note that the amount will fall in positions 109-116, which will give you
the additional 4 locations (117-120) needed for the editing.

Flow chart your routine, and develop a timing formula for it. (Assume

for timing purposes only that at least one insignificant zero will be present
and at least 1 character that is not equal to O will be present.)

XXVII-7

XXVIII— PROGRAM CONTROLS

In every program there are certain controls which must be incorporated.
These are not actually a part of the production program, but they are necessary
in order to process the data in a smooth, orderly, and controlled fashion.

These routines include such things as:

1) Housekeeping
2) ED routines
3) ETW routines
4) EF routines
5) Error stop routines

It must be remembered that although certain things must be accomplished by
each of these routines, the complexity and the manner in which they are handled
are a matter of programming specifications of the individual installation.

Using a sample problem, let's now investigate how we might program for these
sub-routines:

We have 20,000 employees each with the following master:

EMP NO. SEC DEPT NAME ST. ADD C-S ADD. NO OF DEPENDENTS
5 3 2 25 20 20 2

TOTAL WITH. TOTAL S.S. TOTAL GROSS
6 5 7

We will have no more than one transaction for each master, but there may
be transactions with no masters, and vice-versa, masters with no transactions.

The transactions have the format:

EMP. NO. WEEKLY WITH. WEEKLY S.S. WEEKLY GROSS
5 4 3 5

If a transaction comes in with no master, it will have the same format as
a master and must simply be written out to the master tape.

We will assume that the master file is multi-reel, but that the transactions
are contained on one reel.

The tape allocations are as follows:
Master input 1 and 4

Master output 2 and 5
Trans. input 3

XXVIII-1

SYSTEMS CHECKS:

Since it is absolutely mecessary to maintain a strict control over the data
being processed, many safeguards are incorporated in programs to assure their accuracy.
The number and type of safeguards programmed will depend, of course, on the require-
ments of the specific installation. The following are just a few of the common ones:

Tape Labels.:

In order to be sure that the operator has mounted a specific reel of data,
tapes are given unique labels or names., This label is the first block on the
tape. The program is then written in such a way that before the tape is processed
this first block is read in and compared with the proper name of the reel, If
equality exists, the processing may begin. If the labels are not alike, the op-
erator must be notified and he must then mount a new tape. This sort of pro-
cedure will comtinue until the correct tape is on the tape unit.

The actual format of a tape label is decided upon by the individual in-
stallation. Our example, however, appears below:

IDENTIFICATION REEL NUMBER DATA WRITTEN PURGE DATE
8 3 6 6

Each file is given a unique identification number (or alpha name).
In our problem we will use:
MASTER:
MASPAYRL ~ (MASTER PAYROLL)
TRANSACTION
PYRLTRNS (PAYROLL TRANSACTIONS)
Each reel within that file has a reel number: 001, 002, etc.

The date written is, of course, the date the tape was prepared, and the
purge date is the date when this particular reel will again be available for
new data. This last item is extremely important, as most installations work
on what is termed the "grandfather-father-son" system. This simply means that
two back-up files are kept for each file so that if it becomes necessary to
reconstruct the file it can be accomplished with the least amount of work,

When a tape label is constructed, the DATE WRITIEN is obviously today-s
date. The PURGE DATE could be developed by the program simply by increasing
today-s date by the number of processing periods that we are going to keep
this tape as back up. For example, if the processing cycle is, as in our ex-
ample, 1 week, we would want to keep this tape no less than 3 weeks, In order
to determine if the tape mounted is the correct tape, we would have to compare
the tape label already on the reel with the correct tape label. At the beginning
of the program (fer ocur master) we would have the file identification and 001
indicating the first reel.

XXVIII-2

The DATE WRITTEN would be today's date less one week. To avoid having to
go through the portion that modifies the date, we will assume that we will bring

in at the beginning of the run:
PURGE DATE OF

TODAY *S DATE DATE WRITTEN FOR THE MASTER DATE WRITTEN FOR TRANS. THE NEW MASTER
6 6 6 6

Not only will we have to check the tape label of the master file, we will
also have to check the tape label of the transaction file. Since the master is
a multi-reel file, we will have to modify the tape label as to reel number in
order to check the tape labels of all the subsequent reels,

So far we have discussed only the input tapes. We can easily see that we
must also label the output tapes, so that these labels can act as a check during
future processing.

Trailer Record:

In order to ascertain that all records in a file have been processed, it
is common to carry an additional record that appears after the ED (or EF) on
a reel. This is called a "trailer record”. This trailer record may contain
a number of things, but the most common is a count of the number of records on
that reel. When the tape is first prepared, this count is developed by simply
adding one each time a record is written to the tape. When ETW is sensed, this
trailer record is placed on the reel., The next time the reel is processed, one
is added to a work area each time a record is read in from the tape. When the
ED is sensed, it is a simple matter to read in the trailer record and compare
the two counts to make sure that each record in the file has been processed.

Another type of total that is often placed in the trailer record is called
a "hash count". This is the sum of all the criteria of the records in the file
(for example, the sum of all the employee numbers). This is developed and used

in the same way as the record count, but becomes even more important if we should
gain or lose a record. If, for example, we have the following trailer record:

OF RECORDS.8000; HASH TOTAL 34625347
and at the end of processing the file we find:

of records 7999
hash total 34612345

we can easily determine that 1 record has not been processed and that record has
an employee number of 13002,

CONTROL TOTALS:
To verify any arithmetics which might be done in the program, control totals

may be utilized. For example, the trailer record of the tramsaction file may
contain the number of records and the sum of all the weekly gross salaries.

XXVIII-3

The trailer record at the end of the master file may contain, in addition to the
record count and the hash count, the sum of all the total gross salaries, By
adding these two together, we should be equal to the new sum of the total gross
salaries, which will then become part of the trailer record on the new file.

LIMIT CHECKS:

Another type of check is called a "limit check". This is performed while
processing each record. For example, in our problem we might have checked to
make sure that no weekly gross salary exceeds $250. 1If any exceed this limit
the transaction could be treated as a reject.

MAIN PATH - 1

2
READ
TRANS

3
ED/EF?

4 ADD

TRANS. IN. CTR. + 1

Al SET BY 22

Ay SET BY 24

XXVIII-4

27

28

29

MAIN PATH - 2

ADD
MAST IN CTR+1

ADD
IN HASH CTR + EMP #

24
SET

A~ Ag

25
ETW?

TRANS TOT. GROSS
5 WATG

ADD
3. TOT. GROSS + WATG
j |

ADD
MAST, QUTPUT CTR + 1

ADD
QUT HASH CTR+ EMP #

@

11

O

13

15

16
17

18

10—/
MAST EMP # :

M< T

TRANS EMP #

TRANS
W, WITH > WAWW

TRANS
W _SOC SEFC > WAWSS |
TRANS

W, GROSS » WAWGR

ADD
TOT. WITH + WAWW

ADD
10T, $OC SEC + WAWSS

ADD
TOT GROSS + WAWGR

TRANS
NEW TOT. GROSStWATG

ADD

S, TOT. GROSS+WATG

®,

31

&)-

33

34

35

36

21

22

23

ADD
MAST. OUTPUT CTR + 1

ADD
OUT HASH CTR + EMP #
|
SET A- A1

©

XXVIII-5

32

TRANS TOT. GROSS -»
WATG

ADD
3. TOT. GROSS + WATG

ADD
MAST OUTPUT CTR +1

ADD
OUT HASH CTR + EMP #

HOUSEKEEPING:

We have already discovered that a number of steps must be executed
before the production part of the program is begun.

Summarizing:

1) all tapes must be positioned at BTC

2) tape labels on input tapes must be checked

3) tape labels on output tapes must be checked to see if the purge
date has passed and the tapes are available for re-use

4) tape labels must be put on the output tapes

5) any areas to be used as counters must be cleared to zeros

6) . variable connectors and modified addresses should be set at
their initial condition to facilitate re-start if necessary

7) any steps unique to the program itself should be performed

HOUSEKEEPING - 1

REWIND
MAST
INPUT

REWIND
MAST

OUTPUT,

1.03
REWIND
TRANS
INPUT

1.04

i READ DATE _ |
I

1.05 | TRANS PROC DATE '
MAST INPUT TAPE LAB

1.07

COMPARE

TAPE LABELS

HOUSEKEEPING - 2

1.08 | TRANS PROC DATE
TRANS INPUT TAPE LABEL

1.10,
COMPARE

TAPE LABELS

COMPARE

PURGE DATES

1.1

REWIND
QUTPUT

1.14 /WRITE

115 TRANS TODAY'S DATE
TO OUTPUT TAPE LABEL

1.16 TRANS PURGE DATE
TO OUTPUT TAPE LABEL

L
1.18 | CLEAR CTR AREAS AND
WORK ARFAS TO ZEROS

1.19 PLACE ZEROS PRECED-
ING READ IN AREAS

SET A~ A]

®

XXVIII-7

135

140

ETW ROUTINES:

Throughout the program we are checking for the ETW market on the tape.
When it is recognized, an indicator is set and sense of this indicator
will transfer the program to an ETW routine. At this point we must place
an ED on this reel, and follow it with the appropriate trailer record.
The trailer counters can then be put back to zeros. Once this is on the
tape, the next step would be to initiate the Rewind of that reel. At this
point it will be necessary to notify the operator that the tape on that
particular tape deck is exhausted and that a new reel will be needed. How
this is accomplished will be discussed under the topic HALT ROUTINES. Having
notified the operator, we have two choices. One is to simply wait until he
has mounted a new tape, but this could means forcing the computer to stand
idle for four or five minutes. The other choice is to perform a "tape swap"
which will simply change all the references to this first tape deck to a
second tape deck, on which there is a new reel. The processing can continue
utilizing this second reel while the operator is replacing the first reel.
The next time through we can swap back to the first reel while the second
reel is being replaced. This can continue until the file is exhausted. To
keep the programming at a minimum, it would be advisable to have one location
which would always hold the address of the new tape unit and then simply
have a number of instructions that would transfer from that location to
each instruction which must know the tape unit (ETW, WRITE, etc.). To do
this, we must have the ability to change (in our example) a 2 to a 5, and
vice versa. Using the Exclusive OR we find that this is relatively simple:

2 is 000010
modify by 000111
yields 000101 which is 5

5 is 000101
modify by 000111
yields 000010 which is 2

etc,

We will want to make sure that the new reel of tape is available for
processing (today-s date > purge date), and if it is, we will want to re-
place the old tape label, with the proper tape label. (Every tape in the
-System must have a tape label of some sort, or at least a control symbol
such as ED at the beginning of the tape. We will assume that tapes in our
example system are all marked with full tape labels). Once this is done,
we are ready to transfer back to the program where we left off.

Since there are often many senses for ETW on the same tape, it is ad-
visable to write a common ETW routine for each tape unit., The only thing
that will be modified, therefore, is the re-entry point, and this is easily
determined by picking up the contents of STP after the I-0 Sense.

XXVIII-8

19
25
31

ETW?

ETW ROUTINE - 1

40

42

43

47

48

49

50

51

52

53

54

55

56
57

58

59

60

TRANS sTP ——>EXIT

41

TRANS
OUT CTR > TRAILER

TRANS
HASH CTR » TRAILER

TRANS NEW TAPE
UNIT #-°7

UNIT #--> 20

UNIT #--> 25

UNIT #-—> 26

UNIT #——> 31

UNIT #--> 32

UNIT #--> 41

UNIT #=—> 44

UNIT #—-—> 45

uNIT #-—> 61

UNIT #-—> 62

UNIT #~=> 64

uNIT #-—> 66

]

MODIFY TAPE UNIT

XXVIII-9

ETW ROUTINE - 2

TODAY'S @
DATE : PURGE

65

MODIFY OUTPUT T.L.
66‘

67
CLR OUTPUT CTR

68
CLR HASH (OUTPUT)

CIR

®

ED ROUTINES:

Everytime a record is read from tape, we sense the ED/EF indicator to see if
this has been set. 1If so, we will transfer to an ED/EF routine. If we are working
with a multi-reel file, we must ascertain which one of these control symbols has
set the indicator. This can be accomplished by comparing the first character in
the read in area against an ED. If it doesn-t match, we would then transfer to an
EF routine; if it does match we must perform those steps which are required in a
routine that terminates a reel of a file, but not the last reel.

The first step would be to bring in the trailer record and compare it with
the totals that have been developed during the program, 1If they compare, these
total areas can be put back to zero. The tape can then be rewound and the operator
notified, Again, it may be desirable to swap tapes, When the new tape is checked
as to tape label, the program should transfer back to read in a record from the
new tape.

XXVIII-10

READ
MAST

ED ROUTINE - 1

o

76

77

78

79

80

81

83

ED:1ST C

COMPARE

RECORD
COUNTS

COMPARE

HASH
COUNTS

74
RWD
TAPE
d
75‘

TRANS NEW TAPE UNIT 5

TAPE UNIT 71

TAPE UNIT 74

TAPE UNIT 82

TAPE UNIT 84

MODIFY TAPE UNIT

82

MODIFY MASTER
 INPUT TAPE LABEL

|
®

XXVIII-11

100

151

ED ROUTINE - 2

85 COMPARE

TAPE
LABELS

86
CLR INPUT CTR AREA
87 CLR INPUT HASH
CTR AREA

EF ROUTINES:

When we have determined that it is the EF symbol which has set the ED/EF in-
dicator, we know that we have finished processing that entire‘'file., If this were
a one file program, we would then be ready to do into an End of Run routine (EOR),
which would ""wrap up" the program and allow us to get off the computer. This
EOR routine would consist of such things as:

1) checking the last trailer records, which may contain control totals as
well as the record count and hash count;

2) placing an EF and the appropriate trailer record on each of the output
tapes, and possibly an ED;

3) rewind the tapes;

4) performing any steps which are unique to this program, such as preparing
and printing of a summary report, etc.;

5) HALT, notifying the operator of EOR,

Suppose, however, we have multiple files to be processed, as in our problem.
Obviously, if we go to EOR upon sensing the EF of the transaction file, we may
not have all the masters on the new master file, If we go to EOR upon sensing
the EF of the master file, we may not have processed all of the transactions. To
prevent this, we must make sure that an EF has been found on each of the files be-
fore terminating the run. This can be done quite simply.

If we sense an EF on the transaction file, we need only sense the first
character of the master read in area to see if that also has an EF. If so, we
can transfer to the EOR routine. If not, we will want to set up a loop that will
bring in a master, write it out, bring in another master, write it out, etc. This
can be done without a lot of recoding if we simply modify the program as it stands
in memory. (Since we will no longer be using the program in memory to do the re-
gular processing, we are not harming anything.) The modification would simply be
to change the instruction that compares the Master and the Transaction employee
numbers to an instruction which will force a transfer to step 31. In other words,
we will overlay the Compare Left instruction with a Store P Register instruction
which transfers to the I-O Sense instruction (step 31). One additional thing
must be noted, however, and that is the possibility of already having a master in
memory that must be written out before a new master is read in over it. This can
be accomplished by simply transferring from the EF routine back to the "A" variable
connector, which is, in effect, keeping track of this condition for us.

XXVIII-12

The same sort of procedure can be done with regard to sensing the EF of the
master before the EF of the transaction. The difference is that now we must loop
on reading a transaction, incorporating a new master on the new master tape, etc.
The program modification is even simpler this time, as we have only to modify the
A" yariable connector to transfer to step 25 and then transfer back from the
Master EF path to step 25 in order to take card of the transaction which is already
in memory.

Obviously, either of these loops would be broken once the EF of the remaining
file was sensed.

XXVIII-13

30 EF ROUTINES - 1
O ~
2

READ
TRANS

HAS EF

BEEN SENSED NO

.

ON MAST?

91 CHANGE10 (COMPARE) TO
A PROGRAM TRANS » 31

®

NO

100

HAS EF
BEEN SENSED

NQ

ON TRANS?

YFS

128

| TRANS MASTER TAPE
UNIT > 103

TAPE UNIT~> 114

103

READ
MAST.

TRAILER

104
COMPARE RECORD

COUNT

COMPARE HASH

—

CHANGE A TO TRANS

- .25.
!
l

COUNT

.
S

106 | TRANSFER TRANS TAPE
UNIT > 108

107

TAPE UNIT~> 115

109
COMPARE RECORD

COUNT
XXVIII-14

151

.EF ROUTINES - 2

110 | TRANS

S TOT. GR > WASTG
111 | suB

WASTG @®OLD 2TG
112 | sus

WAS TGCD TRANS AMT

113 \ PRN
SENSE PRP

PRI'S

PRZ
114
REWIND
MAST

I

REWIND
TRAN

115

116 [TRANS RECORD COUNT -

TRAILER =
117 | TRANS HASH COUNT -
TRAILER
118 | TRANS X TOT. GR~
TRAILER

119 |TRANS OUTPUT
TAPE UNIT > _ 123

120 “ 124
121 * 125
122 “ 126
123
124
WRITE
TRAILER
125

XXVIII-15

HALT ROUTINES:

Since there is only one HALT instruction in the RCA 301 complement, an identifying
character in the N should be used to differentiate between the EOR stop and the error
stops. The character 0 (zero) is to be used for the EOR HALT, while the character 1
denoted the error HALTS.

In addition, each error halt routine should do as much as it is possible for the
computer to handle before stopping for operator action. The error halt routine should
allow the operator to simply correct the situation, and then hit the start button
in order to re-enter the program as the required location. It should be remembered
that the least amount of human interference possible is the best.

DOCUMENTATION OF THE PROGRAM

Every program written must be accompanied by a written documentation which covers
such things as:

1) Name of Program

2) Name of Programmer

3) Date of final debugging

4) Explanation of what it will do
5) Explanation of how it will do it
6) Detailed flow chart

7) HSM Layout

8) Coding

9) Operational Procedures

This will enable operators to use it with ease and will also allow for corrections,
additions, or deletions, as time goes by,

Due to space problems, we will not include the entire Documentation of the Program

in this chapter. The flow chart is broken into its individual parts and incorporated
with the proper topic. The coding, HSM layout, and the Operation Procedures follow:

XXVIII-16

PROGRAM ERROR ROUTINES - 1

WRONG INITIAL TRANSACTION TAPE

REWIND
NEW
AP

141 INITIAL OUTPUT TAPE, NOT AVAILABLE

REWIND
NEW
APE

PROGRAM ERROR ROUTINES - 2

®

1441 TRANS TAPE UNIT > 145

OUTPUT TAPES NOT AVAILABLE

146 '
147#
®
150 .
ED/EF SET, BUT 1st CHARACTER NEITHER ED OR EF -
COMPUTER LOGIC ERROR
_ 1

& ®—F

152 CLR PRINT AREA
TO SPACES
i

TRANS STP - 163

153
PC

|
154 TRANS MASTER PRINT POSITIONS

TRAILER =+ PRA 1-14
155 TRANS REEL # -
PRA 16- 18
156 TRANS TRAILER ~
PRA 20 - 50
157 TRANS > *INPUT CTR”
PRA 52 -74
158 TRANS CONTENTS OF
INPUUT CTR > PRA 76 - 80

159 TRANS “HASH CTR”
PRA 82 - 93

160 TRANS CONTENTS OF
HASH CTR—{ PRA 95 - 104

161 PRINT
ERROR

LINE

162

106 73
¢ 105 74

XXVIII-18

®

PROGRAM ERROR ROUTINES - 3

164
TRANS TAPE #- 166
165 TRANS TAPE # - 168
167
168
REWIND
NEW
AP
170 CLR PRINT
AREA TOQ SPACE
171
PC
172 TRANS “TRANS
TRAILER” » PRA
173 TRANS "TRAILER
COUNT TO PRA AREA
174 TRANS “INPUT
___COUNTER" > PRA
175 TRANS CONTENTS OF

INPUT COUNT PRA

176
PRINT

177,

XXVIII-19

PRINT POSITIONS
1-19

21-25
27 - 39

41 - 45

180

182

183

184

185

186

187

188

-

CLR PRINT AREA

181

]

PC

TRANS
“CONTROL TOTALS”

TRANS “NEW SUM OF
TOTAL GROSS” » PRA

TRANS "OLD SUM OF
TOTAL GROSS” » PRA

-TRANS “TRANSACTION

AMT” > PRA

TRANS “3 TOT. OR
GR - PRA

TRANSOLD = TG »
PRA

TRANS AMT » PRA

189

PRINT

190

XXVIII-20

PRINT POSITIONS
1-14

16-37

52-73

88-105

39-50

75-86

107-118

12-IITIAXX

00f01i0zi03]uvalosioe] oy

YT T T =
osiosd il 1vf1z{13]1a 5|16l 17] 18 19

20 [217]22(23] 24

25]26] 27| 28] 29

30| 31]32]33] 34

35/ 36| 37| 38] 39

40] a1[az2]a3]aa

45]46]47[48[49

FORM NO. 1223

25M 6-60

- YA T YA - 'y D W MAST
1O JeTODAY 'S DATH oepras fare ¢ PROG DATE P BIREE DATE - ’ L.
50]51|52|53| 5455/ 56[57[58|59 60 61[62|63[64]65]66] 67]68]69 [70 [71[72]73] 74| 7576 77] 78] 79 [80 [81[82]83] 4] 85|86 [87]88]a9 [90 [91]92]03]94]95] 9697 98] 99
3 ! ' LABEL 0O 000
oolo1]o2]o3[oafo5[06]07[08[0o] 10/ 11 12][13]14] 15[16[17]18[19] 20 [21]22]23] 24| 25[26 27] 28] 29 [30[31]32] 33] 34 35[36 [37[3839 [a0 [414243] 44| £5[2647 [48] 49
1L #r € SECHDE NAME ADDRESS | MAST
50 [51]52] 53] 54|55 565758 s9] 60| 61]62[63[6a| 65| 66] 67] 6860 | 70 [71]72[73]7a] 75[76 [77] 78] 70 |80 [81]82[83] 84| 85] 86 8768 a9| 00 [91]02[093]0a[o5[o6 [97 o8] 90| REATS
¢ CITY-ST ADDREES DEPN ' T4-T0T| WITHé—TOT .5 4—1or _GROSS ARFA
00[01]02]03|0alos]06|07[08[0a] 10 11} 12[13]1a] 15] 16] 17] 18] 19| 20 [21[22] 23 24[25 [26] 27] 28] 20 § 30 [31| 32] 33| 34 35| 36] 37] 38] 30 | 40 [41]a2[43] a4 [a5 a6] a7] a8] a9
12 | .
50 [5152[53]5a]55] 56 57] 58] 59 60] 61[62[63]6a] 65[66] 67[68[69] 70 [71]72[73] 74| 75[76] 77[78] 79 80 [81 [82[83] 04| 85[66 [87 [B8] 89f 90 [o1 [s2]93[04 [o5] 96 [97] o8] 99 JTRANS
LARET, i ’ 99 goolmr,
00 [o1[o2]03]0afos[os[o7[0sfosf10[11]12]13] 1a]ss[v6[17 [t8[19] 20 [21]22]23] 24| 25] 26| 27] 28] 29 [30 [31] 32] 33] 34| 35[36 [37[38] 30 J a0 [a1]42]a3]aa[as a6 47] 28] as
13 JEM P _#dy. w—bul sed€ w crosgd TRANS
5051 [52] 53] 54] 55| 56]57] 58] 59 60| 61] 62| 63|64 65| 66] 67] 68] 69 [70 [71]72]73]74] 75 [76[77] 78] 79 |80 [8 1] 82]83] 84] 85] 6687 86] 8] 90 |91 [92]03[s4 |05 06]97] 98] 9o} READ
: : : AREA
oo]Jo1]oz]oa]0a[os5[06]07[08 os | 10] 11]12[13]1a] 15[16]17 [18[19 | 20 [2122]23] 24] 25 [26] 27[28] 20 [30 [31[32] 33] 3a] 35[36 [37| 38 30f a0 [a1]az [a3 [a4 a5 a6 [a7] 28] 20 FTRATLER
W IRECORID~CO UIN TXX YXXX—HAS B CIOUN T —IXX XXX|X XXXXt-SUM-0F -TO {RECORD
s0[51[52]s3]54]55] 56| 57[58] 9] e0[61] 62| 63] 64| 65] 66] 67] 68] 69 | 70 [71] 7273} 74| 75[76] 77] 78] 79 | 80 [81[82] B3] 84| 85[86 [87 [88]89 | 90 [0 [02[93]04 05 [96 [97[o8] o8 frraTT AR
- GIROS S -PXXXX HXXX XXX X - ¢~ TRANS —4 MT ~— TOTAY—+ RECORT]
oofo1]oz[o3]0a]os] 06|07 o8] oo o] 11]12]13] 14} 15[16[17 18 [19|20 [21]22]23] 2a] 25] 26| 27[28] 20 [30 [31] 32| 33] 34] 35| 36 [37| 38 30 a0 [a1[a2 |42 [aa a5]| a6 [a7] 48] a0
15 W AW WAW G R W A T G W _AS H WORK |
50 [51]52] 53] 54| 55|56 57| 58] 50 60]61]62|63]6a]65] 66] 67| 6869 | 70 [71]72[73] 74| 75[76[77[78] 79 {80 [81[2]83| 84 8586 |67 |88]e0 [50 |01 [92 | 03[9 |95 06 [97]s8] 09
: AREA{
00 o1]02[03]oafos]oe] o708 oaf 10 11 12]13[1a] 15[1617 [18] 19 20 [21]22] 23] 24 25| 26] 27] 28] 29 § 30 [31] 32] 33] 34] 35] 36| 37 [38] 30] 40 [a1 [a2 [a3]|4a 45 |46 |47] 48] a0
16 PRTNT
50 [51[52]523] 54| 55] 56 57] 58] 59] 60[61]62]63]64] 65 66] 67[68]60 |70 [71]72]73]74] 7576 [77[78] 79 fe0 {81 [62] 03[84| 85]86 67 88]e0 | o0 [o1 [s2]03]sa]o5[96 [97] s8] 00
i ARFA
oo [o1oz]o0s]oalos]os]o7]0s]0s] 10] 11] 12[13]1a] 15[16]17 [18 15§ 20 [21[22 23] 24} 25 [26 [27 [28] 29 | 30 [31]32]33] 34| 35] 36 [37 [38 39] a0 [a1 [az [a3[aa[as [a6[a7]| 48] a9
17
50 [51]52]53] 54| 55] 56]57] s8] s0] e0[61 626364 65| 66[67]68]69 [70 [71[72]73]74]75]76]77] 78] 79 [80 [81]82]63] 84] 85]86 [87]88 80 |50 [0 1 [02 [0 [sa o5 [96 [o7[08] 00
oo]oﬂoz[o;[oa oslos]wloelos 10|11| 12]13|14 15[!6!17[18[19 20 {21 |22 |23] 24| 25|26 | 27| 28] 29 | 30 [31[32]33] 34 35[36]37|33139 40[41 Iaz[aalu 45[45[47[49]49
18 |€eMAST TN{4- MAST O &Iy HAsH| QT S H: = > TomaAT. GrROSSEP CTR
50 |51 [52]53]54]55]56 [57] 58| 59 60]61 |62 |63]6a]65]66[67]68]69 §70 [71]72]73]7a] 75 [76][77[78] 79 |80 [81]82]83] 82| 85]86 [87 [88 a0 foo [o1]o2s3 o4 o5 [o6 [o7 e8] 00
- a
00 [o1]o02o3 [oa [os]os Jo7 Jos Jos 1011 12]13]1a] 15[16] 17] 1819 [20 [21[22[23]2a] 25] 26] 27[28] 20 30 [31] 32] 33[3a] 3536 [37 [38 30 [a0 [41]a2[43 a4 [a5 a6 [a7] 48] a0
19
|50 [st]s2]s3]5a|55]s6]57] s8] 59 e0[e1|62[63]6a|65]66] 67[68] 60 f 70 [71]72]73]74[75]76]77] 78] 79 [s0 [e1]82] 03] 84| 85|66 [87 8] 89] s0[91]02]93 04 [95 |06 97|08 00
TITLE: BLOCK NO.: INDEX NO.: PROGRAMMER: DATE PAGE OF__

SEGMENT NO.

DATE

TITLE
CODER
REMARKS

BOX
NO

1.01

1.02

REMARKS

TAPE TABLE (MODIFIFRS)
MASTER INPUT TAPE LABEL

OF

PAGE 31

TRANS INPUT TAPE IABEL
MASTER OUTPUT TAPE LABEL
REWIND MASTER INFPUT
REWIND MASTER OUTPUT

a
w
o
o>
Wk o
n
w
o
9- ol ol H © 0—_ o] ™ O|O
«© ol o] W © o-ox 00
@
~ olol 1} 1 oy H =X o|o
©° olol 1 m = B] OO
n olol 1} ™ my X o M olo
< ool r] < EHE XN < M, | OO
<
” olo] 1| M HE M A], | olo
~ Iolo M = il =]] <] x| o]o
z | ~ ol o] 1 <« HE MR o M M A
gl o|l o H = P i = oAl M
IR R E DD | OO O | O O o fel Run] o
Iv.ivOoid olo|lolo ool o] o s}
p—
2 EIEIEIE] E BIBREE [)
(=} Al o] ™M N \O| M [»]
X = &
v < ™
v
[e]
|
WMWM ,0— G N
= .
oV
ob 8
& ZJ

IE 1224 REV. 8-680

XXVITII=-22

€Z-TIIAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. =1 e lor| N B REFERRED
Toc. |, "°g‘i¥'°" 55 o|1]|2]3l4|s5|6]7]8]9 By REMARKS BNOO)S
l*f? o6 1010 ;13lplnlololololola REWTND TRANSACTTON TNPUT 1.03
7 Cf°|1%Jojolalolololo]ololo READ DATES FROM CARD 1.04
8 OO O0In|6]1]0j1]1]2]1[8]6 TRANS. MAST. PROC. DATE TO M.T.L. (INPUT) 1.05
3990 9 “Y01%Iul1lalolslof1lofTle2 READ INPUT MASTER TAPE IABLE 1.06
230 ol olylalalolslolelaifz]o COMPARE TAPE IABEIS 1.07
1 901 0lwial3lolélol3lolélo IF NOT IDENTICAL,STOP 1.07
| 6 232 U101 YInj6l1lolajr]alalol6 TRANS TRANSACTION PROC. DATE TO T.T.L. 1.08
4030 3 cjojo]ulalalalslolalalr]e READ TRANS TAPE LAREIL 1.09
y Q0 1% ylglal2|sf{ofl2li]9]o COMPARE TAPE LABELS 1.10
5 00 9 wla|k|o|olo|kfolo]o IF NOT IDENTICAL, STOP 1.10
4070 6 Q9 C%ful2]1lofslolilo|T]|2 READ MASTER OUTPUT TAPE LAREILS 1.11
7 01 %ylelalolololilol6]T COMPARE TODAY'S DATE _T,L. PURGE DATE 1.12]
, l*‘j 238 UV |O0fyla1l2|3/9lo|k|olk]o T 3 PD—31.13 T < PD — 140 1.12
2380 9 Ypojcril2lofojoflofololo]o REWIND OUTPUT TAPE 1.13
240 ¢ “Inl6l1lololsla|2]|2]6 TRANS TODAY'S DATE ~—3OUTPUT TAPE IABEL (MAST) 1.1k
1 “In|6|l1fjo]|2|3(2]2[3]2 TRANS PURGE DATE->OUTPUT TAPE IAREL (MAST) 1.15
2 Cl8l2lel2|1]ol2]|2]|3]|2 WRITE TAPE IABEL TO OUTPUT TAPE 1.16
UiV lalolalslololilolele CLEAR CTR AND WORK AREA 1.17
& by OO0 glofa]lo]lols5l1]lo]9]9 PLACE 5 O'S BEFORE MASTER READ IN ARFA 1.18
5 oloyglolaf2lglsl1(2]l9]9 PLACE 5 0'S BEFORE TRANS READ IN AREA 1.18
6 CQU|OIn|u|2|h|9|b|2{5|3]|9 SET A—>A7 1.19
7 “B°1°%)v]alol2]|1l9]lel5]|0]0 TRANS 2
g8 oJoloPp Bl -|-]-]- 5180 lconsTanTs FOR MATN PROGRAM
9 VpUL O™ h.g and Aj SETTINGS,1 FOR CTR ADD (5)
IE 1224 REV. 8-80 PAGE 2 12

tZ~IIIAXX

TITLE

CODER DATE

REMARKS \ | SEGMENT NO.

[< &
ron el wew fE[Elor[e] s |rerzmee
Loc. lins| LOCATION ;g o |1 ZI3I4LL;L8 9 BY NO.
_gig 6 2500{0|of%|3]|1|3|0]o|l1|3]|9]|k READ TRANSACTION 2
2k0 10fojo|w|8|3|s|8]o|l2|l5]|2]|0 ED/EF SENSE 3
2510 sofolof+|s|z|8l1lu]|2|s]9]9 ATD 1 TO TRANS, INPUT CTR 4
3520 sofolofviajol2f1|of|s|ujo)] 58"]| swrrcE A A5 Aop9 5
i§58§8}': wofo o|u[]2l a]o]o1]1]o] RFAD MASTER 6
3970 sclalofw!8]3|2[5]0]2|5]|6]0 ED/EF SENSE 7
| 2550 6 256000+51‘80u2h99 ADD 1 TO MASTER INPUT CTR 8
7ojofof+{slaf8]|2lulal1]lolx ADD EMP # TO INPUT HASH CTR 9
2530 gojojoly|sfif1|ofof1[3]0|Of 92 COMPARE MASTER EMP # TRANS EMP # 10
90RO 1 0wiarl2|T|4|0|2]|8|2]0 M2T24 M< T 35 10
260cfo | ofN| %] 1[3|0|8|1|5]|0]|5 TRANS WEEKLY WITH- WORK AREA WW 11
1000 10w 3]1|3][1[1]1]|5]1]0 TRANS W. 80C. SEC.~p WAWSS 12
Ié 2620/ 0f0N|s5|1|3|1]6|1]5(1|T TRANS W. GROSS -» WAWGR 13
30000+ 61|18l 2|1]5|0]>5 ADD TOT. WITH + WAWW 14
uok of+|s5|1{1|8|7|1]5|1]0 ADD TOT. SOC. SEC + WAWSS 15
of+{7lalalolnlalsla]|7T ADD TOT. GROSS + WAWGR 16
ofx|T7l1l1{9{4|1|5]|2]9 TRANS NEW TOT. GROSS-®WATG 17
OJ+/Bl1[{8|4[6]l1]5]|2]9 ADD ¥ TOT. GROSS + WATG 18
6| Olsi2|ulololol2alols]o ETW_SENSE 19
of8|2f1j1]lojol1{1]{9]k WRITE MASTER 20
ol+{s|1l8|0o]9|l2|u]|9]9 ADD 1 TO MASTER OUTPUT CTR 97
Oy+|&{1{8|3|%|2]1|0]k ATD EMP # TO OUTPUT HASH CTR 29
ofx|[s|2|4|9lk|2]5|3]9 SET A<pA; 23
0 TRANSER TO 2

IE 1224 REV. 8-60 PAGE OF 112 l

GT-ITIAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
< | @
FROM NO. = N A REFERRED " .
HSM < | < BOX
INST. OF TO REMARKS
LoC. |[iNs| LOCATION | 25 120345]|6|7]s]s BY NO.
Ojow |4 2|4 [8]9]|2(5]3]9 SET A= A, 2k
ololsf{2|(s|o|lolof2]9]|3]0 ETW SENSE 25 .
olol8l2f1(3]|0]0|1]|3]9 |k WRITE NEW MASTER 26
olom|T|2|3}t9|4|2ls5]2]9 TRANS TOT. GROSS =) WATG 27
80|oo+1318u61529 ADD 3TG + WATG 28
ofo|o
) +lo 108 1olol2lhlolo ADD MASTER OUTPUT + 1 29
6 28001010+ 1&]118(3[4[1]3]|0(k ADD OUT HASH + EMP # 30
1olololylalol2l1lof2]|5]0]0 TRANS = 2 '
2590 20|0 Ofsi2|s|o|olol2]|9]|3]0 ETW SENSE 31
30|00821100119h WRITE MASTER 32
Lofolon|7]afa]ols]2]5]2]9 TRANS TOT. GROSS—3 WATG 33
50|00+318h61529 ADD 3TG + WATG 34
6 2860/ 0| 0]+{s5|1[8]|ol9|2|k]|9]|9 ADD MASTER OUTPUT + 1 35
TORO [Of+ &} 8 3|4 |a]l1]0]|k ADD OUT HASH + EMP # 36
8O0 |01y jajolal1lol2ls|L]o TRANS --> 6 37
golololrlelclolr]Dl-]clo]u TRATLER RECORD
290 oo | o |Ti-ix XX |X|X|-(H
1ofojolais|E|.|ClO |U{N|[T!|-
R
ofolx|x|{x|x|x Xi{x|[x|x
5228] oloIN|4|o]|2]1 31239 TRANS STP---> EXIT 4o
20620 olol8lal2|y |8 24|80 WRITE ED-» OUTPUT 41
oloN|5]1(8]0 219107 TRANS RECORD COUNT - TRAILER ko
oloN|Bl1[8]3 21929 TRANS HASH COUNT -» TRATLER 43
olol8|2|2|8]9 2191219 WRITE TRAILER TO OUTPUT Iy
IE 1224 REV. 8-60 PAGE L 17 :

9C¢-ITIAXX

TITLE

CODER DATE

REMARKS SEGMENT NO.
FROM |NO. Hm E;op N REFERRED Sox
toc. |ins) LOCATION | 503 ol T s]a]s |67 By REMARKS No.
2080|/0|0});|2]0fl0|O0]O|O|O|O]O RWD OUTPUT 45
9ofolo]lmlo|ofo|o]o]o]jo]ofo HALT L6
3000Q0|oN|1|2|1]6(1]|2]|6|8]1 TRANS NEW UNIT~ 19 LT
1040 (ofN({1|2(1|6|1f{2]|6]9]1 " " "5 20 48
2000 0N |21(2]1|6|2|2|T|5]1 " " " 925 4o
3011001«121612761 " " "3 26 50
!6 30&000‘1\'12161282; "o 331 51
sofofofn|1l2|1]|6f{1]2]8]3]1 mooomm 3 52
6ofofo]lw|2l2]2]6]2]2]o[]2 moom o 53
70001 %wlal2lal6|1la]o|T]|2 L 3" 5
8CRO | Ox|1|2]|1|6|1|2|9|8]1 " " "3 45 55
900 |0 fN|2f2]2]6] 21|31k " " " 61 56
- I‘3 10000 0Iw|1|2|2[6]1]3]1]5]1 R 57
1000 100N jal2fa]6)1)3]1(8]1 A - 58
2000 | OfN|2|2f1|6]l1]|3]2|0]12 " " " 66 59
30Qof(ojuii|l2|1i{6l1]{2]|1|6]9 MODIFY TAPE UNIT 60
4110 Lofolo};|5(0l0|]0]0O|0O]OjOfO REWIND NEW TAPE 61
sOR0| O hfs]a1fofs]oj1]|o]|T]2 READ T.L. FROM NEW TAPE 62
6 0JO0fy|é6|arfjojojof1]o]|6]T COMPARE TODAY'S DATE -PURGE DATE 63
olofw|1|3]1|80|4f0]|8]O TD ® PD -> 64 ™ < PD —> 144 63
3170 olol;|s|olololofo[olofo RWD NEW TAPE [3n
o 3lel2l2lol3l2|k]o MODIFY OUTPUT TAPE LABEL (REEL #) 65
0olo 5/2l2|1] 0|l2|2(3]|2 WRITE TAPE LABEL TO NEW OUTPUT TAPE 66
00 1l 8/ 0 0 FILL RECORD CTR (OUTPUT) WITH ZEROS 67
IE 1224 REV. 8.60 PAGE 5 OF 35

LT~TITAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
<[a
FROM NO. | = |OP| N A B REFERRED
HSM < | < BOX
INST, OF ol e TO REMARKS
Loc. |[INs| WOCATION | Sl oto |1]2|3 |4 5-6-7|8 o] e NO.
‘ |6 3220/0j0)Jjof1]|8]2|5]|1(8|3]|W FILL HASH CTR WITH ZEROS (OUTPUT) 68
3olololv|[1|o|2l1[oko|o]|o]|oYro TRANS =) ¢ ,26, or 32
i | Yofo|oPFpEr| -7 -4~ ~|-109]0]|2 REEL NO. MODIFIER
2550 SoblololY|1|{1|1]|0|lO0|3]2|k]|0O 1st CHARACTER COMPARED TO AN ED 70
6ofo|ofw|1{3|6}l2|0|k|2]|2]0O lst CHAR > ED—EF lst < ED— STOP TO
Tololofs|1|2{k|ofof1|Lu]|3]9 READ TRATLER RECORD TL
!6 32800 0[¥[5[1|k|1][3]1[8]0]0 COMPARE RECORD |COUNTS T2
Soflolofwlrik|21|T|OlM|2]|T]|O IF UNLIKE —3151 T2
33000 (O Y| & |21 |4 |3|0f1|[8|1]5 COMPARE INPUT HASH COUNTS T3
100010 wir{ki1|T|O|{M|2|T|O IF UNLIKE-5'151 T3
2¢ofolo]ls{1lo|olo|lofolo|o]0O REWIND MAJTER TAPE Th
3oooﬂooooooooo HALT 5
lé 33 O0j0fON|L|[2]|1]|6|0{2|5|k]|1 TRANSFER NEW MASTER TAPE NO.—5 76
500 0 N 1 2 1 6 03 27 1 " " " 1" 1" _%Tl rn
6ojojlolx|1|2|l1|6l0]|3]|3|[2]|1 " " " e (! 78
TOQO[ON|1|2j2|6]lof3[hio]f1 " noo A 7 79
gojofoN|[1f2(1|6]0|3|k|2]|1 " " " R X 80
ofo| o
S vjif2l116loi2111618 | MODIFY TAPE UNIT IN TABLE 81
6 3oojofolsioflolo|lojo|oflo|o]o REWIND NEW TAPE 82
lololol+|3|2|2|8|0|3|2(4]9 MODIFY REEL NO. IN INPUT MASTER T.L. 83
4360 200 (o |k |(2L]O|5|0f1|lO|T|2 READ NEW TAPE LABEL 8l
3000 |0y |a|1|o{5]|0|2f1|T]|O COMPARE TAPE LABELS 85
LOoRo|Ofw 1|4 |3]2]o|k|{3]2]0O IF UNLIKE — 164 85
5 ofo{ops (oL (8 [0f{0 [1]8 |o |k CLR INPUT RECORD CTR 86

IE 1224 REV. 8-60 PAGE 6 OF 12

87~ IIIAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM NO. : f OP| N REFERRED
Toc. |, LocATION 55 o|1]2(3]|4]|s]s ;La 9 By REMARKS No.
6 346 ojofolaglol1)8l1ls]1f8)a]lk CIR INPUT HASH AREA 87
Tojojojvliijolaf1folels|{k]o TRANS —$ 7
2510 gofololylafji]i]jolof3]lall]1 SENSE FOR E F IN MAST READ AREA 90
9o|o ofw|]1{3]5]21]0]3l5{1]0 IF NOT —p 93 0
- 350 ofo]ofv]1]of2a]1] o]3][6|u]o0 TRANS —101 o1
3490 1 ofe|ofumf & 3_5& ola|ls]8]o PIACE A STR REG INST OVER 9 TC = 31 »
lé 352 e ofv]1]o]2 119121513510 TRANS A : 93
3ojolov|i1]olal1lola]8]2]o0 INSTRUCTION CHANGE TC =) 31
y ojolo|r|E|lCclolR| D|-|{cCc|lo]U
sofoloN|T|-§X|X| X|X|X|-|H
gclolo]als|H]l-|clojulw|T
7o‘oo_>gxxxx.xxxxx_
lo 35800 ol sfulM[-[olF]-]T]O INAL TRATLER RECORD
g ojolofr) Al L] -|c| RjO[| 8] S| -
360 ofo | o | x| x| x| x| x| x| X] x| x| X
1 ojoflodx|x|-|-|-l-12]7]5]0 LOCATION OF 25
3060 2 oio oflx| 11 2] 30| o324 SENSE FOR E F IN TRANS READ INN AREA 100
3 ofofofw] 1] 3] of 4] of 3] of & of IF NOT —p128 100
3500 |6 AR EREELREREEE TRANS MASTER TAPE #3103 101
ololnl 1| 2] 5 1] 3] 8|01 " " oo 11k 102
oloup@y 1|4 o 1f 4| 31 9 READ MASTER TRAILER 103
ocljolY 14 311 8]lo]o0 COMPARE RECORD COUNT 10k
ojo|w ki1 ot 4l 1] 7]o0 IF UNLIKE —p151 104
0]0])Y 1l 4 0] 14 8} 1] 5 COMPARE HASH COUNT 105
IE 1224 REV. 8-60 PAGET OF 12

67~ 1IIAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM NO. : E OP| N A REFERRED

S e LocATion 3 3 o123 |4 l 5 |6 | 7|89 By REMARKS No.
46 3o ol ofofw |1 [% |1 {70 % |1 |T |0 IF UNLIKE =151 105
1 ololnlaleisfo]1 {3 (T |3 (1 TRANSFER TRANS TAPE UNIT —3108 106
ooflololw{alals|of1|3]|8 |1]2 " " " " 115 107
3 ORO Oy |3 {3k (75 (2[4]9]2 READ TRANS TAPE LABEL 108
yolololyis|alnl7ls1ls %1 lo COMPARE RECORD COUNT 109
sofolow 1 |s|3]|9]0(k|3]9 |0 TF UNLIKE —3170 109
6 376 V01 OfN |B |18 Y16 (1115 |+ |1 TRAN ¥ TOT GR WASTG 110
TGO I©|B 1|5 4]11 yT |1 SUB WASTG @ TOT GR-IN MAST TRATTER 111
80 o815 s|1]|1{x]o2 SUB WASIG &) TRANS AMI 110
90 wlitls|s5|6|l0lk]|5|6]0 SENSE PRIS 113
4670 380 CJ9 [9], f1yololololololojo) 192 REWIND MASTER L
10 ol; (3Yolojolofofo]ojo 107 REWIND TRANSACTION 115
6 382 ofw|(s|{1r|8|0|9|3|5(|5]|7T TRANS OUTFUT RECORD COUNT —>FINAL TRATLER 1116
30 oIn|&|1]|8{3[%|3]|5]|T7]9 TRANS OUTPUT HASH COUNT-—FINAI, TRATLER 17|
L C CinfBl21]|8|k|6]3]6]21]1 TRANS TG —>OUTPUT FINAL TRATILER 118
5 U Inlrlolslaol1lsl8lol1 TRANS OUTPUT TAPE NO-—»123 119
| 60 cfn|1la2l6|9l1i(3]9|0]|1 " " 2k 120
iad CHEE RN BREICIRNES | S oW e
6 388 0 ofx|1f{2|6}9|1|3]9]|2]|1 " " —3106 122
9ORo |0)8 alojulafslafs] 119 WRITE EF 123
390 ¢ o]8 3je2|s|o|3]6|1|1] 120 WRITE TRALIER 12k
10 018 32|kl 0]|3]2|k|O 121 WRITE ED 125
oefolcl]: ofofo]lofo]ojojo} 1202 REWIND MASTER 126
3¢ o | ofofofolojojolo FND OF RUN 127
IE 1224 REV. 8-60 ‘pace 8 o 12

0g—ITIAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. =12 [or A B REFERRED
Lot [is. LocaTioN 55 o|1|2|3]a|s|6|7 |89 BY REMARKS “o.
— : ,
L 6 1l 3l 6/ 1] glal 5|3l SET A —> 25 128]
5 Q91 °%)vlalolelalolel 7lslo TRANS —> 25
2310 6 "Bl %15l 1]lo0lojololojloflolo REWIND WRONG MASTER TAPE 130
7 A1) B@ 1] 2l ol ol 1]l ol alala HATT 131
8 " 5]1loloelolololololo REWIND NEW MASTER TAPE 132 |
viioleli o2 2/ 0l0 TRANS —> 1.06 _
2350 5] 3/olololojololo]o REWIND WRONG TRANSACTION TAPE 135
cJB 12| 0lol3]olololo HALT 136
13/ 3/olololo|lololo]o REWIND NEW TRANSACTION TAPE 137
“Ivialol2li 9l2| 3]3]o TRANS — 1.09 ,
“}il2]lolololololololo REWIND OUTPUT TAPE - NOT AVATIABLE 140
O 1 olol2/olololo HATIT 141
I il2lolojololo|olofo REWIND NEW QUTPUT TAPE 1h2
viijol2l1 ¢/2{3]|6]|o TRANS —3 1.11 -
3170 nl 1l 3] 1ls|l1{slolala TRANS TAPE UNIT —- 145 14
jl(sjojlojojojololofo REWIND OUTPUT TAPE =~ NOT AVATABLE 145
Gl 1/ 3/ ol 2| 5|0]lo0lo]o HALT 146
vialolalilol3lilklo TRANSFFR —>61
| 3260 B 1l1]olof1]olo]lolo HAIT — ED/EF SET BUT NOT PRESENT 150
Ml Al sl Tl E|R| -| T|R]|A "
Il L| B/ R[-|I|N|PlU|T ONSTANTS
-lcloluln| |l rR|E]A
:gsfg;o’}: slal -Tcloluln|TlElR g
3310 L 2l oltlslofol TRANS STP — 163 151
IE 1224 REV. 8-60 PAGE ¢ OF 12

TE-IITAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM NO. : ﬁ OP| N A B REFERRED
Loc. . LocATION 5 3 o|112]3|4]|s|e6|7]8]o By REMARIS o.
Jé 418 ojofogf{-Jal6fojojrfTr|r|o CLR PRINT AREA 152
) OfsloJololofol1l6]0]3 PAGE CHANGE 153
420 pMip|h[1]3]0f1]1610 J0 TRANS "MASTER TRATLFR'—3 PRA 154
Cimlzlatr7t8l1]611]5 TRANS REEL NUMBER—-PRA 1559
CIm|"Jajkjojofri6}1]9 TRANS TRAILER RECORD—YPRA 156
Jolelm]s b |3{ofr]6 |k o) TRANS TRAILER RECORD -=)PRA 156
|€ boo CJUiVIMjc k]rkf5]1[6f6]2 TRANS "INPUT COUNTER' RECORD-—) PRA 157
} s ofclofn|s a8 jofu|r[6]T]9 TRANS CONTENTS OF INPUT CTR—=3FPRA 158
6 QU |OquiB|h]1|5]8])1 6181 TRANS "HASH COUNTER'-—)PRA 159
7 0|<‘ Ofnfealr|8laft|2fT]0]3 TRANS COUNTERTS OF HAST COUNTER—=) PRA 160
g cJojolslafojojojo]1]éfofr PRINT ERROR LINE 161
o ofelelal i lufololalolofo]o HALT 162
| Ia’:)+30 Dlelv]ilolal1lo9 ©jofo 0) TRANS-);‘—LSQ %2
ko 1 ojojowfaf3fufojijb]|3f3(1 TRANS TAPE UNIT =166 164
2 Qelohwlalzlulofalnis]s|a TRANS- TAPE_UNIT —368 165
3 40195 J@lojolololololol]o REWIND/ WRONG MASTER TAPE 166
y celofE|vr|afof1ls]|ofjo]o]oO HALT 167
5 ol lsd@jojololololojolo REWIND NEW MASTER TAPE 168
T"\{}TRANSACTIODI CONSTANTS
8 UQiiCYIn|-|T|R|A|I|L|E|R]|-
3750 g CRojo]af-Jal6lofofjafT]r]o CLEAR PRINT AREA 170
Mo vpol 0 Blofojo]o]o]r]6fo]3 PAGE CHANGE 171
1« ofmfzful 3T rlolafelo]o. " TRANS "TRANSACTION TRATLER"—PPR. A. 172

IE 1224 REV. 8-60 PAGE 10 OF 12

Te-ITIAXX

TITLE

CODER DATE
REMARKS _ SEGMENT NO.
FRoM |NO. M E ; oP| N A REFERRED ' | Cox
Loc. [ins] LOCATION | S S o Ty T2 s a]s |6]7 8]0 By REMARKS NO.
B R T N
ot 0] 0w lelfutzlaolilslo]n TRANS TRAILER COUNT—» PRA 173
cfol ofumledulalulslilelz]s TRANS "INPUT COUNTER"—3 PRA 174
Jolofulslalslrlulilslnly TRANS TRANSACTION INPUT COUNT— FRA 175 |
el ¢lslalofjololotlilefo]n PRINT ? 176 |
6ojoiof@m{|ufolo]elofofo]o HATT 177
vi1jolaf1]o|3]7]6]0 TRANS —¥ 110
i ° clo|N|T|RlO|nL|-JT]O
r{alnlsinlelul-lsly;
ul-lofrl-{rlolr|afL
18 1 d-lc|rlofs|s]olL|D]- JCONSTANTS
2t Sdslulml-folFr|-|T]o]|r '
;fAL-GR&rg_STR
| l‘i«f‘ANSACT‘IONj
sl dalmlolulnlrt o]
B gl-1ailslololilzl1lg CLEAR PRINT AREA TO SPACES 180
7 eloflolololol1i6lo]s PAGE CHANGE 181
8t miplulalslolilelolo TRANSFER "CONTROL TOTAIS"—¥ PR A 182
X EER A slalelals TRANS "NEW SUM OF TOTAL GROSS"-® PR A 183
é neot| o -—TTT?%T 1]le6ls |1 TRANS "OLD SUM OF TOTAL GROSS"—»FR A 184
10 Mlululs|sfsli]els]T: TRANS "TRANSACTION AMOUNT'"~— FR A 185
vl Iwfslalsfulef]ls|n]o TRANS X TOT GR —_ FR A 186
30 vislajulrlalilelsls TRANS OID 2T G — PR A 187
e nlelalu]ofalal7zlaly TRANS TRANSACTION AMOUNT —» PR A 188
50 Bl2]oJolo]olols6 o1 PRINT 189
IE 1224 REV. 8-60 PAGE 11 OF 1p

€e~IITAXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM . |NO. : - |OP REFERRED
Wt |9%| Locamion | 3] 3T , .
4 !2 466 °1 01 0 jrgy 0 HALT 190
TOjo |0V 8 TRANS —— 11k
ofo o
ofo | o
ofojo
ofo o
6 ofo]o h"f
ofo o
ofo | o
ofo|o
cfo|o
ofo|o
‘Fé ojofo
oo o0
ofo |0
ofo o
ofo]o
ofo|o
6 ofo]o
ofo}o
ofo o
ofo|o
cfo|o
ofo o
IE 1224 REV. 8-60 PAGE 12 OF 12

OPERATIONAL INFORMATION:

TAPE UNITS:
1 for first Master Tape; alternate 4

2 for first Output; alternate 5
3 for Transaction tape

TAPES:

Master Tape Label: MASPAYRL
Transaction Tape Label: PYRLTRNS

ADDITIONAL INPUT:

Card in format:

cols, 1-6 7-12 13-18 19-24
Today-s Master-s Transaction-s New Purge
Date Processing Processing Date
Date Date

PROGRAM LIMITS:

2140-4719

START LOCATION:

2240

STOP LOCATIONS:
END OF RUN at 3930
A REGISTER: REASON:

1001 LOGIC ERROR, ED/EF INDICATOR SET BUT ED/EF NOT PRESENT, NOTIFY
ENGINEER

2001 TAPE LABEL INCORRECT-MASTER ON TAPE 1 (INITIAL)

2003 TAPE LABEL INCORRECT-TRANSACTION ON TAPE 3(INITIAL)

2014 TAPE LABEL INCORRECT-MASTER ON TAPE 1 or &

3002 PURGE DATE GREATER THAN TODAY 'S DATE-TAPE 5 (INITIAL)

XXVIII=-34

A REGISTER: REASON: (Cont-d.)

3025 DPURGE DATE GREATER THAN TODAY'S DATE-TAPE 2 or 5
4Loo1 MASTER TRAILER INCORRECT AS TO COUNT AND HASH
4002 TRANSACTION TRAILER INCORREGT AS TO COUNT

4003 CONTROL TOTALS PROVE INCORRECT

CORRECTION PROCEDURES: FOR ALL ERRORS CODED 2-4, NOTE CONDITION AND RESTART
BY HITTING START BUTTON. ERROR CODED 1, MACHINE FAILURE, NOTIFY ENGINEER AND
RESTART PROGRAM FROM BEGINNING,

XXVIII=35

XXIX — DATA RECORD FILE

Although we mentioned the Data Record File in the early chapters of this
text, we have not been utilizing it in our programs to date. This storage
device has many important applications, however, so it is very important for
us to be completely familiar with it.

As was stated earlier, each single data record file, with which we are con-
cerned in this chapter, is a magnetic disc storage device. It can hold up to
128 discs at one time in a basket, which simply acts as a holding device for the
records,

Each disc has two faces, and each face has two bands. These bands are
arranged in parallel spiralling in toward the center:

TRACKING: AREA

The arm has two vertical contacts, one which physically rests on the record
in the tracking area to insure proper reading and writing, and the second which
is actually two read-write heads, one for each band.

When a band is requested by the program, the basket turns to the proper
slot, the record is extracted and placed on a turntable with the proper side
up, the arm is placed on the record so that the read-write heads are at the
beginning of the bands, and the proper read-write head is activated. Then,
again by program control, information can be read from the band or written to
it.

XXIX~-1

So far we have discovered that there are 128 records, each with four bands
(two per side), yielding 512 bands which are numbered from 000 to 511, Each
band, in turn, contains 10 cells and these cells are separated by inter-cell
gaps. Each cell has the ability to hold up to 900 characters of information,
and the inter-cell gap is approximately the length of 100 characters. It is
possible to address any one cell within a band, or any group of consecutive
cells, The cells are numbered 0 - 9,

The following instructions are used with the Data Record File:

BAND SELECT NORMAL:

The instruction initiates a search of the Data Record File for the disc
containing the desired band, puts the disc on the turntable, positions the arm,
and activates the proper read-write head. Once initiated, the disc and the
band will be selected independent of computer aperation.

The OP code is a D.

N is used to indicate whether or not the proper disc face is positioned
on the same face. If there is a 1 bit in 20, this indicates that the proper
disc face is present on the turntable, and the B. character is then examined to
discover if it is odd or even, If By is odd, the read-write head is activated
for the odd numbered band. If B3 is even, the even read write head is activated.
If there is a O bit in 27, this indicates to the Record File that the disc on
the turntable (if there is one there) is not the one desired and it will be
placed back into the basket before the Select begins. In addition, a 0 or 1 in
the 2% bit will indicate the Data Record File to be used.

Correct disc |New disc

Ry 1 0
1

R

2 A &

The A address is ZEROS.

The B address contains, in B1 2 and 3. the number of the desired band.
B, is ZERO(0). o ’
Examples:

D 0 0000 0412

XXIX=-2

Any disc now on the turntable of the first Data Record File will be placed
in the basket and the disc containing band 412 will be selected and placed on the
turntable. The first read-write head will be activated and positioned at the
beginning of the band.

D 1 0000 0413

The disc on the turntable is indicated to be the correct one, so the only
operation is to activate the second (or odd) read-write head.

In timing this operation, we must remember that the computer is completely
free to continue operation while the select is being accomplished. The average
select time, which means that the basket must turn 90° (the worst possible case
is a 180° turn, as the basket can rotate in either direction and will automatically
select the shorter path), is 3.1 seconds. If there is a disc on the turntable
when the select is begun and if this disc must be replaced in the basket before
the select can be started, this will take an additional 1.6 seconds. Obviously,
if the band desired is on the opposite side of the disc on the turntable or on
an adjacent disc the access time is reduced. It will take 3.4 seconds to select
the disc if the band is on the opposite side and .9 seconds if the adjacent band
is desired. - It takes 1.6 seconds to select an adjacent disec.

BLOCK READ RECORD NORMAL:

Once the proper band has been selected, information will either be read
from it or written to it. The BLOCK READ FROM RECORD NORMAL instruction reads
from a selected cell of the band to a designated HSM location. From one to ten
consecutive blocks of information may be transferred from the band to memory
with one instruction. As was stated before, a cell can contain up to 900 characters.
If less information is kept in the cell (for example, 750 characters) the end of
the block of data should be marked with a control symbol called an End of Block
(EB).

The OP code is an F.

The N character indicates the number of cells to be read from the band.
This is expressed by 1-9, with O equalling 10. In addition, a 0 or 1 in the
2% position indicates which Data Record File.

The A address gives the HSM location to receive the first character.
The B address contains a number of different pieces of information:

B, is ZERO(O)

0

B1 determines whether or not the disc is to remain on the turntable,.
if By is 1 the disc is returned to the cage. If it is O the disc
stays on the turntable and the arm is placed at the beginning of

the band.

determines what is to stop the read. If B, is 1 the entire 900
characters in the cell will be read in, If it is O the read ter-
minates when an EB is sensed or when the 900 characters have been
read in, whichever occurs first,

XXIX-3

The B address (Cont’d)

B3 addresses the first cell to be read into memory, The cells are
numbered sequentially from 0-9,

Suppose the data we wanted was in cell 4, and we wanted the full 900 characters,
After reading the cell, we will be doing some updating, and then will place the
updated information back into the cell, so we will not want the disc returned
to the basket. The read instruction will be:

F 1 1500 0014
This tells the computer to read in 1 cell starting at cei' 4 placing the

data starting at HSM location 1500. The full 900 characters are to be read in,
and the disc is to remain on the turntable at the end of the operation.

STA, upon termination of the instruction, will hold the address one to the
right of the last character read in.

Characters are passed over and read into memory at a rate 2500 characters
per second. In our example, we must pass over U4 cells to reach the fifth (cell &)
and then read in the fifth cell. This means that just less than 5000 character
locations must be processed, and this will take approximately 2 seconds.

BLOCK WRITE TO RECORD NORMAL:

This instruction writes from a designated HSM location to designated cells
of a selected band. From one to ten blocks of information may be transferred to
the band with one instruction.

The OP code is H,

N gives the number of blocks to be written and the Data Record File. The
number, of blocks can vary from one to ten, with ten being specified by 0.A 1 or
0 in 27 indicates the device,

The A address gives the location of the first character to be written.

The B address expresses the same information indicated by the B address
of the READ, :

Bo is ZERO(0).
B1 determines if the disc is to stay on the turntable after the op-
eration (1, returns to basket; 0, stays and arm positioned at the

beginning of the band).

B, determines the terminating conditions (1, 900 count; 0, 900 count
or EB, whichever appears first),

B, addresses the first cell to receive data (0-9).

3

The rate is again 2.3 KC (2500 characters per second).

XXIX-4

DATA RECORD FILE TIMING

Character transfer rate - 2.5KC

Maximum number of characters/read-write access - 9,000

Band Select Timing

A,

Processor time to initiate selection (in microseconds)
21 (Bl) + 14 (By) + b2 = (staticizing time + establishing address
counter),

Select data record from cage - since the 128 position data re-
cord storage wheel rotates in either direction, the maximum data
record position from the selection point is 64,

of data record positions rotated Time (in seconds)*
1 1.6
2 1.8
3 2.0
4 2.2
5 2.4
6 2.6
7 2.8
8 3.0
9 2,65

16 2.8
32 3.1
64 3.4

*Variance + 10%

Note: The cage rotation proceeds at low speed from one to eight
data record positions from the selection point. The cage
rotation proceeds at fast speed from nine to sixty-four
data record positions from the selection point. TUse
straight line interpolation for interim positions on the
table,

To select a band on the opposite side of a data record on the turn-
table (head at ready to head at ready) = 3.4 seconds.

To select the adjacent band of a data record on the turntable and
return the head to ready = 0.9 seconds.

Read or Write Timing

A,

The data record is positioned on the turntable and the read/write
arm is in the "ready" position.

1. Read/write arm transferred to data record = 62 to .85 sec.

2. Latency (to reach the first character of the first cell on
on the data record) = .2 to .4 seconds.

XX1IX-5

Read or Write Timing (Cont'd)

3. Inter-cell gap (fixed time between 900-character cells) = .04
seconds

4, Transfer time per cell (characters and gap) = .4 seconds.
B. To return the data record to the record storage wheel
1. If the read/write arm is on the data record = 1.6 seconds
2. If the read/write arm is in the "ready" position = 1.84 seconds
There are many applications for the Data Record File, a primary one being the
storage of all the programs of the installation and the ability to sequence these
programs. (This will be covered in more detail in the chapter on Supplied Routines).
Updating can be handled on the Data Record File, in a manner similar to us-
ing magnetic tape, but it must be remembered that the access time and the read-
write rate are considerably slower, so that the program running time will be in-
creased. Here it is a matter of balancing dollars and minutes in order to come

up with the most efficient system.

Using as an example an updating run, we can become familiar with the tech-
nique of using the data record as well as the time considerations.

The problem is as follows:
There are 4500 one-hundred character records to be updated by no more than
one transaction apiece. #4000 transactions are coming in from cards and are in

a completely sorted order. We are to HALT if any are out of sort. If we were
to handle this problem using magnetic tape, it would appear flow-charted as

follows:
®
; ‘
READ TRANS
2
READ
MAST
M>T 3 M<T

UPDATE

MASTER o

XXIX-6

If, however, the masters are arranged on the Data Record File so that 9
records are maintained (in fixed field) in a cell, we must program this slightly
differently in order to bring a new group of cells when needed, and to allow
for the most efficient program.

1If we had a 20,000 character location memory, we would have enough room
to bring in the entire band at one time. Suppose, however, we are limited to a
10K memory. It will be necessary to bring in only a portion of the band, process
that, write it out and then bring in the next portion of the same band. Since
the arm is positioned at the beginning of the band at the end of the operation
(if we request that the disc remain on the. turntable), it will mean that we
must pass over the first portion in order to reach the second position. For
example, if we brought in the first 5 cells (app. 2 seconds), the second 5 cells
would take 4 seconds. To avoid this, it is obvious that if the data could be
placed at the beginning of ‘the band, the time could be greatly reduced. In our
problem, letrs stipulate that the data is packed in the first 5 cells of every
band and it will therefore take 100 bands to hold the full 4500 records. The
bands containing this data are 100-199. We will assume that there is only one
record control in our system, Assume an EF card at end of transactions.

XXIX~-7

15

®

SELECT BAND
100.

INITIALIZE INSTS:
TALLY, SELECT

READ TRANS

A"}

pal

READ
BAND

M>T

3

YES

R
(e)

UPDATE MASTER

READ TRANS

6
Ist CHAR:

WRITE

18

EF

NO

XXIX-8

INCREMENT

INSTRUCTION
To ADDRESS

NEXT MASTER

TALLY
(44 TIMES)

REINITIALIZE INST-
RUCTIONS TO ADDRESSY

FIRST MASTER

10

RESET TALLY CTR

|

11

WRITE

SELECT| D1 0000 0101

13

EO TO MODIFY SELECT
N

ADD 12(B) +1

I

TALLY (99) @

16

15

When the first select instruction is done, it will take (average) 3.1
seconds. The Read (F 5 5000 0010) will bring in 45 masters. The comparison
begins with the first master, the criterion of which is located starting at
5000. If the master and transaction match, the master is updated and a new
transaction is read in. Since we now have finished with the old master, we can
increment the compare (and all the other instructions which refer to the master)
by 100 locations, so that the second master is addressed (the criterion will be
at 5100, etc.) When we have processed all 45 masters in a similar fashion,
the tally will be exhausted and we will reset all the instructions to again
address the first master in the read in area, We will also place 44 back into
the Tally Counter. Writing the 5 cells back out, we can select the next band. -
Since every other band will be on the disc face, we can arrange to have an N
of 1 in the Select instruction the first time, allowing us to address band 101,
and alternate 0, 1,0, 1 each time from there on in. :

The last Tally (step 15) or sensing the EF card will allow us to terminate
the program. Ignoring the computation, which will be increased due to the in-
crementing and the tally, we can see that the input-output time for the master
is increased.

10KC Mag. Tape : Record File
READ 1 min, 32 sec. First select - 3.1 sec.
WRITE 4 min, 21 sec. Select Adjacent band - .9 sec x 100 90 sec.
5 min. 53 sec.* Select band on opposite-3.4 sec x 50 170 sec.
side. v
Select new RCD - 1.6 sec (replace used RCD)
i 1.6 sec (select next position)
1.0 sec (ARM movement)
4.2 sec x 49 - 20 sec.
All reads - 2 sec. x 100 200 sec.
All writes- 2 sec. x 100 200 sec.

683.1 sec.
*NOT BATCHED or 11 min., 38 sec.

In addition to sequential updating on the Data Record File, there are many
schemes for "random access'; that is, locating just the information that is needed
at this particular time. These techniques will be discussed in more detail in
the chapter on Randomizing, but right now we will take up the simplest of these
methods, called "direct addressing".

Suppose we had the ability to place information on discs in the data re-
cord file, and then compose an identifying code that was not only the unique code
for that particular information, but also was the address of its storage cell.
Obviously, we could ther simply use this code to pick up the proper disc, acti-
vate the proper band?s read-write head, and read in the appropriate cell.

For example, we are working for an installation that is perfectly willing
to set up a new series of stock numbers. Each master record contains 150
characters and since there are 12000 of these masters, it will require 200 bands
(50 discs) to accomodate them. When these records were written to the data re-
cord file, they were placed on bands 100-299. In addition, as they were assigned,

XXIX-9

the band number, cell number, and a positional number (to indicate the position
within the cell) were made into an identifying data stock number:

Examples: 15964 is the stock number of the master located on band 159,
in cell 6, and it is the 5th master in from the beginning of the
cell (to be consistant with the numbering of the bands and the
cells, the masters are numbered 0-5),

Suppose that any one day we might have 1000 issues coming in in random
order, containing a 5 digit stock number and a 3-10 digit issue amount proceeded
by an ISS. 1In addition, we will assume that the first five digits of each master
is the stock number, and that the balance is the last 10 digits. Our program
must subtract the issue amount from the proper balance,

XXIX-10

12

13

14

15

16

17

SUB STA-1

TRANS ISS AMT -SWA

STR B --> 7 (B)

.

ADD 7 (B) + 1

FILL WA WITH ZEROS

iS NEW BAND #
THE SAME AS

NO

OLD BAND # ?

23

PLACE CELL NUMBER
IN READ

PLACE CELL NUMBER
IN WRITE
|

11
READ

CELL

25

INITIALIZE COMPARE
(18)

INITIALIZE SUBTRACT
(21)

|

PLACE MASTER # IN
REPEAT (16)

PLACE MASTER # IN
REPEAT (19)

REPEAT (16) X TIMES

ADD
COMPARE + 150

18

EO OLD BAND NUMBER
70 CHANGE 20 g|T OF LSD

24 /|5 MODIFIED

OLD BAND # =

NGO
TO NEW BAND I
27] PLACEOBITINNOF
: SELECT
PLACE 1BITINNOF |, o1™ 51 ACE NEW BAND # IN
SELECT
A SELECT
&
26 SELECT
BAND @

®

NO

#rs=7 |

STK

Py 2

XXIX-11

19

REPEAT (19) X TIMES

20 ADD
SUBTRACT + 150

21 | SUBTRACT
(BALANCE) ()ISSUE

22
WRITE

CELL

By examining the program, we can see that an effort is being made to cut
down on unnecessary Select time. If the new band number and the old band number
do not agree (if they did, no Select would be necessary), one further test is
made, and that is to see- lf the new band is on the same disc face as the old
band. This is done by changing the 20 bit of the least significant dlglt of the
old band number and then comparing this modified band number to the new band
number, If they are equal, the Select need only activate the alternate read-
write head, 1If they are still unequal, it will be necessary to replace the
current disc and Select an entirely new disc, in order to obtain the proper band.
For example:

1) old band number 135 new band number 134
least 51%n1f1cant digit (in binary) 000101
modify 27 using EO 000001
modified digit 000100

modified band number, 134, which equals new band number, proving that
both bands are on the same disc face, -

2) old band number 266 new band number 267
least significant digit ’ 000110
modifying character 000001
modified digit 000111

modified band number, 267, which equals the new band number.

3) old band number 197 new band number 198
least significant digit 000111
modifying character 000001
modified digit 000110

modified band number 196; new band number 198; therefore, a new band
on a different disc face is needed.

XXIX-12

It is also possible to perform the Block Read from Record and the Block Write
to Record in the Simultaneous Mode (remember that the Select is free of computer
control). When using the Simultaneous Mode, Memory must be accessed 7 us, out
of every 400 us. This forms an available time percentage of 98.25%, which must
be considered if computation is going on in the Normal Mode while characters are
actually being read and transferred by the Simultaneous Mode.

XX1X-13

H1-XIXX

50

oojo1[02]03]04

os] 06| 07| o8] 09

10] 11]12[13]1a

15| 16 17] 18] 18

20 [21]22[23] 24

25| 26| 27] 28] 29

30)31]32|33] 34

35/36| 37| 38] 39

40]at1]a2]4a3]aa

a5{ac]a7[4s] as}

I XX XX

50|51 [52[53] 54

55]56]57] s8] 59

60{ 61]62[63] 64

65| 66] 67 68] 69

70 [71]72]73]74

75{76]77[78] 79

8081]82]83[84

85| 8687|8889

90]91][92]93]04

95[96]97[98] 99

S T E R

a1

0001 f02]03]04

05/ 06| 07] 08 09

1ol 11]12]13]14

15] 16] 1]5741 18]A'9

20 [21]22]23] 24

0
25|26 27[28] 29

30[31[32]33]3a

35| 36] 37 38]3s

40 [a1]a2]a3]aa

a5]4a6]47{48] a9

XX XXX

XX XXX

50 {51]52]53]sa

55| 56| 57] s8] 59

60| 61[62]63]6a

65]66] 67| e8] 69

70 |71]72]73]74

75{76]77] 78] 78

80]s1[82{83]84

8586 |e7]88] 89

90 |91]92{93]94

95{ 96|97 98] 99

XX XXX

52

00 Jo1]02]03]04

05] 06 07] 08} 09

o 11] 12] 13] 1a,

15{ 16] 17] 18] 19

20 |21] 22{ 23] 24

25|26{ 27| 28] 20

30| 31]32]33] 38

35 36| 37] 38] 39

40 | a1]a2]a3]ae

45{ 46 47] 28] a9

g8 T E

50 {51[52]53] 54

55[s6] 57] 58] 59

60| 61]62/63]6a

5] 66] g] 53?59

70{71{72[73] 74

1
75]76] 77/ 78] 79

80 |81]82| 83 84

85|86 |87]88] 89

90 |91 {02]93]0a

95]95[97] 98] 9o f|

XXX XX

XXX XX

33

o0 jo1]02]03]0a

os[os]{07]08] 09

1] 111213 1a

15[16[17]18 19

20 |21{22]23]24

25{26|27]28] 29

30{31]32]33] 3a

35{36]37]38]39

a0 | a1{a2{43]aa

a5{a6{47] 48] a9

XX XXX

50 {51{52{53]s8a

55|56 57] 58] 59

60| 61{62{63]56a

65| 66{ 67/ 68 69

70{71]{72{7372

7s]76] 77 78] 79

80 |81]82]83]ea

85' 861 87]86189

90 [91[92{93]04

95]96]97{98] 99

S

00 [01]02{03] 04

05|/ 06| 07] 08| 09

10| 11{12]13] 14

1s]16{17 [18{19

20 {21{22]23] 24

25{26{27] 28] 29

30 [31]32]33[34

35|36 |37 38 39

a0 {41}42]4a3]aa

45{4as | a7] a8} as

XX XXX

XX ALALX

50 [51]52[53] 54

55 56|57 58] 59

60| 61/ 62]63]64

65 66| 67] 68] 69

70 {71]72]73]74

75|76]|77{78] 79

80 |81]82]83] 84

85|86 |87 |88[80

90 |91 {92939

9596 [97]98] 99

XXX

55

0001]02[03] 04

0s] 06| 07| 08] 09

0] 11]12]13]1a

15{16 [17 [18]19

20 {21]22]23] 24

25]26)27)] 28] 29

30]31]32[33] 34

3s|36{37]38] 35

20 | 41/a2{a3]aa

as]as|47{ 48] 29

S T E

50{51]|52]/53]58

55| 56]57] 58] 59

60{61]62]63]5a

65|66 67| 68|69

70 {71]72{73] 74

75|76]77[78] 79

8o la1]s2]83]sa

85]86 |87 |as{es

90 |91 {92] 93]0a

95{95]97]98] 99

XX XXX

56

oo fo1]02]03] 04

0s| 06{07] o8] 09

wli]i2]13]1a

15| 16/17 {18] 19

20 {21]22{23] 24

2s|26)27] 28] 29

30 [31132]33] 34

35| 35/ 37{38] 39

a0 {41]42]43]as

XX XXX

50 |51{52] 53} 54

55| 56| 57{ 58] 50

60]61]62]63]6a

65] 66| 67| s8] 69

70 {71]72]73]74

75]76[77[78] s

80 {81]82{83]8a

as{e6 |87 |88 |89

90 Jo1 [e2 9392

9596 |97 {98] 99

o1

o0 [01]p2]03]0a

os|o6]o7] o8] 09

10 11) 12[13] 14

M__A
15[1617 [18] 19

S 7T E
20 [21]22]23]2a

25]26]27(28720

30 [31]32{33] 34

35]36 |37 [38] 39

40 |41 [a2]a3]aa

4546]47]as] a9

XX XXX

XXXXX

50 (5152|5354

55) 56| 57] 58] 59

60|61[62]s3]6a

65 66] 67] s8] 69

70 |71]72]73]74

75]76][77] 78] 79

80 [81]82]83] 84

8s]se |87]sa[es

95 {96 |97{98| 98

XX XXX

90 |91 {92 19.3 |84

58

o0 [01 {02{03]0a

os{os|07]os]0s

o] 1] v2]13]1a

15] 15| 17]15] 19

20 {21 {22]23]24

2s]26]27]28] 20

30 [31]32[33] 34

35]35]37}38139

40 |21 142]43{44

45 |46 [47] 48] 28

50 |51[52[53]54

55 56| 57] 58] 59

60|61 |62 {63164

65 |66] 67 68|69

vo [71]72]73]7a

15{76[77] 78] 79

80 [81]82]83]84

85|86 {87 [88 89

50 |51{92 [93][04

9s {96 [97]98] 0o

XX XXX

XXXXX

29

00 [01{02]03 Joa

05 os {07 [o8 Jos

1w]11]12]13]1a

15[18] 17] 18] 19

20 [21]22]23]24

25|26 27] 28] 20

30 |31]32]33] 34

35/36 |37]38 39

40 {41]a2]a3]aa

asla6]a7{as]as .

XX XXX

50 |51]52]53] 54

[
ss] sers7i sa’ 55

60{61/62{63|64

65166 67/ 68]69

READ

TRANS

5 DR

75]78]77]78]7s

sofa1[sz{ea]8a

85/86 |87 s8] 09

20]91792]93s4

95{96{97]98] 99

TITLE:

FORM NO. 1223 2BM 6-60

BLOCK NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE

OF _

ST-XIXX

TITLE Record File Exemple 1

1E 1224 REV, 8-60

CODER DATE
REMARKS SEGMENT NO.
FROM NO : E OP| N A REFERRED
LocATION 55 o1z a]a]s]el7]a]s| ov REMARKS “o.
600 ¢jofo
1 Qoo
2 ofolo
3 CRO1OY4 (o (9o fai8'|510 (0|1 CONSTANTS
4 ¢oge|lofjot1jo0j1|o0Jo0(0O}11|5]1]0
6290 5 Ccgol o+ 181519 |0fO0t5]19 |1 15 READ TRANSACTION 1
ié 606 OOl C w8 ED/EF 6. 017 O. ED/EF SENSE 2
7 ofclo@Dl2 (012|156 0|3]9 SUBTRACT 1 FROM STA 3
8 ¢c | cP|®* |02 |]1}|E |59 219 TRANSFER ISSUE AMOUNT TO WORK AREA (STA --IND ADD) L
9 Qe ofvi4 e 1 (112]0]01]0]0 STORE B IN 7 (B) 5
610 Ccje|of+«{21|6 |1 |1|l9]|6]0|3]9 ADD 1 TO 7 (B) 6
ofofolsfols|of1]|sko]ofo]o FILL WA ANT WITH INSIG ZEROS 7
6 612 010 %lyi3|slolojlol6|3|h]|T 'COMPARE NEW BAND “# : OID BAND # 8
3 CQ01O0fywlalé6f{3|lolelci{s]o UNEQUAL —» 23
| 6350 y 40 1%Iwlalsloglol3l6lal6]o TRANS CELL, # READ (11) 9
| 5 OJojoln|1l{5]9|0[3[6][2(8[9] TRANS CELL # WRITE (22) 10
6 §°1 % rials|lofololololal 8 READ CELL 11
2.4 O glelclols 7l6lalzls (18) 12|
[6 ClO)%Inl4|6lol3]|3]6l2l7]s 13
ool otwiylslololhl6lalill R MASTER (16) 14
ogo | o 1l5/ololk|6|l2]|5]|a PLACE MASTER # IN REPEAT _ (19) 15
1 091 %I Rrito)ololol1lolelola] 13 REPEAT 16 (X) TIMES 16
2 00O+ 612|3|5[6]lolh|9 ADD 18 (A) + 150 1z
3 00| 0 \ 11,16 | COMPARE MASTER STK # : TRANS STK # 18

PAGE 1

OF 2

TITLE

DATE

XIXX

-
o

L

S

CODER
REMARKS SEGMENT NO.
FROM |NO. ' s B REFERRED
Toc. [, LocaTioN 5 s 12(3]4]s 6| 7|89 BY REMWARKS No.
Ojo0jw|1]6]3[9]o|6]3]|9]|0} UNEQUAL ~) HALT 14
ololrkolololala]alalala] ¥ | mmar 15 () s s
olof+|3|6|2|T|5]|6]0]|k]|9 | ADD 21 (A) + 150 20
ool &f(0o|o|0|O)Y5]|9|2(9 12,19 SUBTRACT BATANCE - ISSUE 21
00315000001(-91 9 WRITE CELL i
0o TRANS — 1
2130 j‘é 6 0lo z i'%'gﬁ%’i-l EO TO CHANGE 2° BIT OF LSD OF OLD BAND # 23
ojlofx(3{6|3(s|T|5]|9]|0]|O COMPARE. MODIFIED OLD BAND # : NEW BAND # 2k
019% wialelalslolslals UNEQUAL= 27 2l
Ofglalelolulalelalela PIACE 1 IN N OF SELECT 25
6380 ofn|()]olo|lolofofo]|o]0)f26,28,29 SELECT BAND 26
Ofvialolz]1l9]|6]1|k]o0O TRANS —3 6
6320 lu 6360{ofoln|1]|6]o|u|ul6]l3]|u]2 TRANS O TO N OF SELECT 27
olmM|3]|5|9folol6]3|k]T TRANS NEW BAND # SELECT 28
ofjv]1ilola;1l9]6]l3]k]o0 TRANS— 26
6240 ol o]l ol ool oflojolo]o ERROR HALT
0
0
-
0
0
0
0
0
0

IE 1224 REV. 8-60

PAGE 2

BLOCK READ FROM RECORD SIMULTANEOUS: .

This instruction is similar in all respects to the Block Read from Record
Normal except that is is accomplished in the simultaneous mode.

The OP is G.

N indicates the number of blocks to be read (1-9, 0=10), and the Data Record
File Control.

The A address gives the HSM location to receive the first-character,
B indicates:
BO Zero(0).

B1 1: disc returned to cage
0: disc remains on turntable and arm positioned at beginning of band

i1: 900 count terminates instruction
0: EB or 900 count terminates instruction

Bg addresses first cell to be read (0-9)

If the address one to the right of the last character read in is needed, the
- 8 register must be stored.)

BLOCK WRITE TO RECORD SIMULTANEOUS:
The OP is I.

N indicates the number of blocks to be written (1-9, 0=10), and the Data
Record File Control. '

The A address gives the HSM location of the first character to be written
The B address indicates:
By Zero(0).

By 1: disc returned to cage

0: disc remains on turntable and arm is placed at the beginning of the band

B2 1: 900 count terminates instruction
0: 900 count or EB terminates instruction

By address first cell to receive data (0-9)
Example Problem:

"Suppose a utility company has 8000 accounts maintained on a data record file
in sequential order, Each master contains 450 characters, which means that two masters

XXIX-17

can be stored in each cell (20 per band, 100 discs for the entire file), 1In
addition, let's assume that this installation has 20,000 character locations of
memory.

The problem is to issue statements for each master. These statements are
to be produced on the on-line printer so that two customers+ bills are produced
side by side (each statement takes up 60 print positions). Each set of state-
ments has 5 lines of printing and a 3 line skip before the next set:

]
Date) | Date
Name Name
Address Line 1 I Address Line 1
Address Line 2 I ‘Address Line 2
Balance Due : Balance Due
I
T T T T S
Date) l Date
Name . | Name
ete. etc.
|

If this problem were to be programmed without simultaneity, we would
have the following time breakdown (assume that set up can be handled during
paper advance):)
Time in seconds

READ - 400 Bands 1600.0
Select New Disc (100 times) 160.0
Return Record to Cage (100 times) 160.0
Select band on opposite side of record (100 times) 340.0
Select adjacent bands (200 times) 180.0
Latency (400 times) 80.0
Read/Write Arm transferred to record (400 times) 248.,0
Print 5 lines & Pa 2 lines (4000 times) 1573.6

4341,6

-or 1 hour 12 minutes 4 seconds

However, if simultaneity were available, we could program the reads in the
Simultaneous Mode and do the printing and set up in the Normal, In addition, we
could start the computation and printing immediately upon receipt of the information
and could start the read of the second band into the same area, thus saving memory.
The bar graph would appear as follows:

Print Band 0 Band 1 2 3
A
/
o|1f2i3|4|s[6]7|s{oBol1|2]|3|u]5|6] 7|5 [o Mol l2]3]+ i5]6}7|e jo Mo} %

Read Band 0 Band 1 2

w

Ad jacent Band Opposite Side New Disc
XXIX-18

Timewise, we need only include the Read and Select time which totals 46 min-
utes, 1 second. This is nearly half the processing timé required without simultaneity.

The flow charted program appears as follows:

XXIX-19

SELECT
BAND O

READ
BAND O

IS FIRST CELL
IN?

YES
PREP . AND
PRINT 0-5
AND PART OF
]
5 |SELECT
BAND 1

READ
BAND 1

REPARE AND [
PRINT 6-9,

_3, PART OF
B F)

PRINT 4-8 [
AND PART OF
9

10
READ

BAND 0

11 FINISH

PRINTING 9

©

XXIX=20

NO

Data Record File Exercise I:
Flow chart and code the following program:

A utility company maintains its customér billing masters on a Record File,.
Each master contains 450 characters, so that two may be stored on a cell. There
are 8000 customer masters in the entire file, filling bands 100-4#99., The first
eight (8) digits of each master is the account number. Each accéunt number is
actually a direct address:

XXXX XXX X
Customer Band Cell
Number ‘# #

The last 7 digits in the field is the amount due the utility company. Each
day, approximately 400 payment transactions are posted to the masters. The payment
information is coming in from punched cards: the account number (8 digits) is lo-
cated in columns 1-8, and the payment amount (loaded with insignficant zeros) is
located in columns 74-80.

You are to assume that the transactions are coming in in completely random
order, An EF card terminates the file., Program to eliminate unnecessary select
time and unnecessary read and write time (if the proper cell is in memory, there
"is no need to change information). Halt if the account number is not found in
the proper cell.

Data Recrod File Exercise II:

A company keeps its payroll master file on a record file. There are 3000
employees, and each employee has a 300 character record, so that data concerning
3 employees may be maintained on one cell (30 per band). :

Against these masters there will transactions in a ratio of 1 card for every
master,

Each master will require about 30 ms. of computation (does not include set up
of print lines which can be buried in the paper advance time), In addition to
writing out the updated information to the record file, there will be two print
outputs (one to each of two printers). The first will be a one line per employee
payroll register (single spaced), and the second will be a check containing 3
lines of print. You are to double space between the first and second lines and
between the second and third lines, but leave 3 spaces between the last line and
the beginning of the next form. The forms are set up so that you are printing
checks for 3 employees at a time: -

! 1
Employee 1 | Employee 2 | - Employee 3
XXXXXXXXXX : XXXXXXXXX : XXXXXXKKKX
XXXXXXXXXXX : KXXXXXXXXX : XXXXXXXXX
- — - = 4 o - o4 = 444 o4 o e e o oo oo
Employee 4 ! Employee 5 ! Employee 6
1 1

XXIX-21

Show the total amount of time it would take to process this program without
simultaneity, and then bar graph (with times) the problem using simultaneity and
calculate a total time for comparison purposes.

Assume a 20K memory.

XXIX-22

XXX — DATA RECORD FILE MODE

In addition to the initial record files, it is possible to obtain up to 4
more data record files under the control of the Data Record File Mode, This
data record file mode has its own set of registers, called the FOR, L, U and V
registers, which directly correspond to the Normal Registers. As in the case
of simultaneity, if a Data Record File Mode instruction is staticized in the
Normal Registers, and if the Data Record File Mode is free, the instruction will
drop into the Data Record File Mode and be executed there, leaving the Normal
Mode free for additional operation.

It is feasible, therefore, that if an installation had both the Simultaneous
Mode and the Data Record File Mode, up to three operations could be performed on
a time-sharing basis. For example, a program could be reading in the Data Re-

cord File Mode while printing in the Simultaneous Mode and computing in the Normal
Mode.

INSTRUCTIONS:

BAND SELECT RECORD FILE MODE:

This instruction selects a band from one of the four Data Record File units
controlled by the Data Record File Mode Control Unit. Once initiated, the band
will be selected independent of computer operation. ’

The OP code is E.

N indicates two things:

UNIT
1 2 3 m EFFECT
& | - " Return record to cage, if any.
Place new RCD. on turntable and select proper band
I 1A T}/ Record on turntable is the correct one

The A address is zeros(0000).

The B address gives in B1 9 43 the number of the band desired (000-511)

an
Timing is the same as in the Band Select Normal.

RECORD FILE MODE READ:

This instruction reads from selected cells located on the selected band. The
instruction is executed only in the Data Record File Mode.

XXX-1

The OP code is *,

N gives the number of blocks to be read in the numeric portion, and the
specific data record file in the zone bits (00, 01, 10, 11).

The A address gi@es the location to receive the first character,
The B address is broken into parts:
B is zer
0 °

B1 indicates the position of the disc at the end of the operation (1,
returned- to cage; 0, still on turntable with arm at beginning of’
Band).

B, indicates the terminating condition (1, 900 count; 0, 900 count or EB).

B; gives the address of the first cell to be read (0-9).

RECORD FILE MODE WRITE:

This instruction is executed in the Data Record File Mode and writes data
from memory to selected cells.

The OP code is %.

N gives both the number of blocks (in the numeric portion) and the Data Record
File addressed (in .the zone portiom). ‘

The A address gives the HSM location of the first character to be written.
The B address indicates in:
BO zero

the location of the disc at the end of the operation

B, the terminal condition

By the address of the first cell to receive data.

If instructions are going to be executed in the Data Record File Mode, we

may desire to obtain the final contents of the U register. To do this, we can

store the U register by placing an & in the N character of the Store Register
Instruction.

We also have the ability to sense the Data Record Files, This is done by the
Input-Output Sense instruction:

The OP is S.

N indicates the device:

R is the first Data Record File, Z is the second.

@B, indicate the additional four record files under control of the
Data Record File Mode. '

The tests that can be made are designated in AO:

1 bit in the 20 Is the selected Data Record-File inoperable?

1 . .
1 bit in the 2~ Is the selected Data Record File operating?

2
1 bit in the 2° Is a disc on the turntable of the selected Data Record File?

The B address gives the transfer location if a yes answer is obtained.

To illustrate these instructions and the programming applications, let+s ex-
amine an inquiry routine.

We have stored on the additional four data record files 20, 240 records, each
640 characters in length. Each record occupies 1 cell, and is terminated by an
EB symbol. The identifying number of each record contains the following:

1 character 3 character 1 character
Record File band identification cell
identification : identification

1 000-511 0-9

2

3

I

In our main updating program, we have included a CIC to sense the Interrupt
Indicator on the console, This is done by placing an & in N, the address of the
interrupt routine in A, and the address of the next instruction to be executed
if the indicator is not set in B. The interrupt button must be manually set and
reset:

Our problem is to write the interrupt routine, which is to read a card con-

taining the identifying number of the record desired, select and read it, and
punch out a card with some pertinent information regarding balance.

XXX=-3

1 | TRANS STP --> EXIT

i

2 READ
INQUIRY

T

'RANS R.F. CODE -->4

4| TRANS DATA BY
SYMBOT.) TN PILACE
TRANS R.F. SYMBOL--3 IND

7 (N) ADD
6 |TRANS BAND # TO
7 (B)

7| SELECT
BAND

[

TRANS "'1" TO N
OF 13

° |0 R.F. SYMBOL OVER
N OF READ

10 ADD STA + 1

11 [[RANS R.F. SYMBOL-->| IND
14(N) ADD
|

12 | TRANS CELL TO

(13)
|

READ

CELL

13

IS READ
FINISHED

15| PREPARE
CARD FOR
PUNCHING

16 [puNCH DATA
17

TO RESET INTERRUPT BUTTON

O EXIT TO PROGRAM

XXXk

TITLE

G-XXX

CODER DATE
REMARKS SEGMENT NO.
FROM |NO. =1 & Jor| N A REFERRED
ng: |?1§. Logﬂm" 55 0of1]2 44_ 567|809 ;3 REMARKS BN°°’S
— S s
6 0 0j0fO0IN|hjo]2fri|9]9f2]1]9 TRANS STP —3 EaIT 1
1 ofojojol ololofo]9 lo o |o READmg,UIRY(?cF%AoNcDCEEcLL) 2
2 000w |1fol9jolofo]l9o {3 |1 TRANS RF__CODE — L4 (W) 3
3 0o jO0fLY0)jola]2(8|ola |2 |8 3 |IOCATE RF _CODE \ -
» ofofofulr]ole]r]E]ofo]6]2 TRANS RF SYMBOL —> 7 (N) IND AD 5
5 2Joio0dmi3lojololalolole 71 TRANS BAND—T7 (B) 6
ré 206 0001w fo)o |olololo ko |o o) 5.6 | SELECT T
7 Ofojoln|rjoja|2lalol1le |1 TRANS "1" T0 13 (W) 8
8 Oj0|0)gialolifel1lelol6]a 10 RF SYMBOL OVER 13 (N) 9
9 Ooiol+iololalalslolalals ADD STA + 1 10
910 CpO O Mlafol2lalE o1 [3 (1 TRANS RF SYMBOL —314 (N) IND ADD 11
1 O9p0 {0 ni1]lofofollol1]2 o TRANS CEIL—13 (B3) 12
[6 gl2 O[0JO}*(o)ol2|5]0l0]|3 [2 [0)} 3,9,12 |READ CELL 13
3 ofojols)2 folololo]r]3 o 11 |T-0 SENSE IS READ FINISHED? 1
y 0Jojo 15
5 Og0 | O
6 O0Jo|o0 PREPARE CARD
7 ofofo ‘
Jé a8 ojofo
9 O0fojo PUNCH CARD v 16
oo Of0]0 _ HALT TO RESET INTERRUPT BUTTON 17
1 Ofojo 1 _ |TRANS PROG
2 0J010 CONSTANTS AND TARIE
3 ofofo
IE 1224 REV. 8-60 PAGE 1 OF 1l

The first step sets up a re-entry into the main program by modifying the
terminating program transfer instruction., Once the inquiry card containing the
identifying number is in memory, it is a simple matter to set up the Select and
Read instructions. The first thing that must be determined is the Data Record
File being addressed. 1In the identification, the files are designated by 1, 2,
3, or 4. The Select and Read instructions, however, need a particular bit con-
figuration in the N character (2° and 2% must be 00, 01, 10, or 11), then the
Input-Output Sense instruction recognizes the different data record files by #,
$, ., or ,. For this reason, we must program to obtain the desired symbols for
that particular record file. If we have in memory the following character con-
figuration:

1042883 O 4",

and then we transfer the record file code from the card area to the N character
of a Transfer Data by Symbol instruction, which hasas A and B addresses the left-
hand 1limit of the above data, when we executed the instruction we would have in
STA the address one to the right of the symbol (1, 2, 3, or 4), By using this
as an indirect address, we could transfer the 0, &, &, or " to the N character
of the select instruction and also use the character as a Logical Or modifier of
a 1 in the N character of the Read. STA could then be increased by 1 and the
transfer of the #, $, . or , to the N character of the Input-Output Sense in-
struction can be accomplished, This input check will make sure that the Read
from the Record File has been finished before it will allow the computation of
the data to begin.

Suppose a company had a Data Record File Control Unit with all four of the
addition Record Files attached. On these record files there are 20, 480 master
records, each one of which is 800 characters in length, and takes up 1 cell,

The problem is to print out a three line summary (double space between the
1st and the 2nd lines, and between the 2nd and 3rd lines, and leave 4 spaces
between master prints) for every master. The order of the print is not im-
portant.

If the Data Record File Mode were not available, the time for this program
would be as follows:

Time in seconds

READ 2048 BANDS 8,192.0
SELECT 512 DISCS 819.2
RETURN 512 DISCS 819.2
BAND ON OPPOSITE SIDE OF DISC 512 TIMES 1,740.8
BAND ON ADJACENT SIDE OF DISC 1024 TIMES 921.6
LATENCY 2048 TIMES 4096
R/W ARM TRANSFERRED TO RECORD 2048 TIMES 1,269.76
PRINT 20,480 MASTERS 5,355.52
19,527.68

OR 5 HRS 25 MIN 46 SECONDS

XXX~-6

RFM

SELECT

With the availability of the Data Record File Mode Control, however, we can

cut our time substantially.

The first step would be to make the initial select

on each record file. Once the read from the first band of the first record file
has been accomplished, computation and printing can be done on that data while

the next cell is being brought into memory.
read going on in the RFM.

read of the second band can begin.

band on the second record file can begin, etc,
be done to obtain the next band on the first record file.

would appear as follows:

In this way, there can be a continual
As soon as the 10 cells of the first band are in, the

When that is finished, the read of the first

In the meantime, a Select can
Bar graphed, the program

<
HSKPG § PREPARE AND PRINT INFO. \\PREPARE AND PRINT INFO. \ PREPARE AND PRINT
N FROM BAND 0, 1 RF 1 \FROM BAND 0, 1 RF 2 k FROM BAND 0, 1 RF
\ \ \
N ‘\\ .
| BAND 0 BAND 1 BAND O BAND 1 BAND 0 BAND 1
N\ RF 1 RF 1 RF 2 RF 2 RF 3 RF 3
:\:\ ™ \ Y
BAND 2 |\ \ BAND 2
RE 1 \\\ * RF 2 \
b \ \\ R,

This means that we can completely bury the prepafation of the print lines,
the printing and the select time in the Read time, so that the only thing that
need be included is the 8192 seconds, or 2 hours, 16 minutes, and 32 seconds, an
improvement of nearly 50% over the other time mentioned.

Record File Mode Exercise:

Flow chart the program just discussed, showing the preparation of the print

line as only one block labeled "preparation".

XXX-7

Ignore terminal condition charting.

XXXl — DATA DISC FILE

One module of the Data Disc File has 6 data discs.
Each disc surface has 9 zones.

Each zone has 128 tracks.

Each track has 10 sectors.

Each sector has the ability to hold 160 characters.

The total capacity of one module is 22,118,400 alphanumeric characters.

128 INTERLACED DATA
TRACKS IN EACH

READ -WRITE
HEADS

128 SINGLE DATA
TRACKS IN EACH

Since there is more disc surface available for data nearer the rim of the disc,
the tracks of the three outer zomes are interlaced - zone 4 with zome 7, 5 with 8,
and 6 with 9. This means there are 6 read-write heads required on one disc surface -
the outer 3 reading and writing 2 zones each. Therefore, one Data Disc File Module

requires 72 read-write heads.

i |

N

Read~Write
Heads

hd

i

6 Discs

s
[~ T Access Arm

|
L
t
1
1
1
i
N
t
+
t

il
|

A
7o —||—

XXXI-1

Since in one movement all the access arms of a file are positioned so that all
the read-write heads are over the same track in each zone, 108 related tracks are
available with no extra movement (in one module). These available tracks are called
"Strata.

A Track Select instruction positions the read-write heads in the file selected
to the proper track, which are numbered 000-127.

A Sector Read or Write instruction is used to read or write from one to ten
sectors of any one of the tracks of the strata for which the read-write heads are
positioned. Any number of these instructions may be given after a Track Select in-
struction. There are no gaps between sectors.

Track Select Timing:

Staticizing 42 us
Average time to ‘
reach proper track 75 ms

Sector Read-Write Timing:

Average time to

reach proper sector 25 ms
Read one sector 5 ms
Transfer Rate 32,000 char/sec.

Time to switch from

read or write to

same track 35 us + time to locate sector
Interrupt 7 us out of 31.25 us

Up to 2 Data Disc Files can be attached to the RCA 301 system. Each file may
be 1 to 4 modules in size.

TRACK SELECT:
The OP code is D.

N - R (First Data Disc File)
- Z (Second Data Disec File)

A address - (0000) zeros.

B address - Bg = 0 (zero), will not override a DDF Simultaneous Instruction.

&, will override any DDF Sim. Instr.

B1, By, B3 = Designate track address.

SECTOR READ DISC NORMAL:

The OP code is F.

XXXI =2

N - Specifies additional number of sectors to be read as follows:

Additional Sectors: 0 1 2 3 i 5 6 7 8 9
First File 0 1 2 3 L 5 6 7 8 9
Second File gla|Bl]C|DJE F{Gci{u|1I

A address - Address of HSM location to receive the first character read from
the Data Disc File. This address must be an even number (left-
hand end of a diad).

B address - B; - designates first sector to be read:

First Sector to be read | O 1 2 3 4 5 6 7 8 9

Will Not Override Any
DDF Simultaneous 0 1 2 3 4 5 6 7 8 9
Instruction

Will Override Any DDF
Simultaneous Instruction| & | A B C D E F G| H I

By, Bp, B3 - specify the zone from which data is to be read:

MODULE : ZONE
1 000 to 107
2 108 to 215
3 216 to 323
4 324 to 431

SECTOR READ DISC SIMULTANEOQOUS:

The OP code is G.

The N, A address, and B address are programmed the same as the Sector Read
Disc Normal Instruction.
SECTOR WRITE DISC NORMAL:

The OP code is H.

The N, A address, and B address are programmed the same as in the Sector Read
Disc Normal Instruction.
SECTOR WRITE DISC SIMULTANEOUS:

The OP code is I.

The N, A address, and B address are programmed the same as in the Sector Read
Disc Normal Instruction.

XXXI-3

The Input-Output Sense Instruction can be used with the Data Disc File.
The OP code is S.

N = R - First Data Disc File.
Z - Second Data Disc File.

Ag =1 - is the device inoperable
2 - is the device operating
4 - is the track select complete
8 - has incorrect parity been read

Ay, Ay, Az = zeros (000).

B address - HSM location of the next instruction to be executed if the condition
or conditions being tested are present.

Any instruction containing a bit in the B 24 position will terminate any DDF
instruction being executed in the Simultaneous Mode. The instruction with the Bg
2% bit will then be executed in the normal manner.

Example:

Suppose we had a master file on Data Discs that we wish to duplicate onto tape
(33ke) for backup purposes. We wish to do this the fastest way possible (simultaneity)
and yet supply enough information so that editing this tape will not be too difficult.

Let us assume 160,000 records of 80 characters per record distributed on a one-
module Data Disc File as follows:

Records 1—20 Track 001 Zone 001
21 =340 001 002
41 —)60 001 003

etc.
Records 2141 —32160 Track 002 Zone 001
4281—4300 003 001

ete,

We can read a track in the Simultaneous Mode while writing and editing in the
Normal Mode. By placing the track number, zone number, and the sector number from
which we started reading in front of the read-in area, we can write the read-in area
plus this identification in one write instruction.

Assuming an EF at the beginning of a track to signify the end of the file, the pro=-
gram could be flowcharted and coded as follows:

N WRITE WRITE ETC

LeRcdale

R O

S READ TRACK READ

XXXI -4

G-IXXX

Write Ar

—

Sector

ea

“_————"—-’-'—-—>

40

00]01[02[03] 04

05] 06| 07[08| 09

10] 11]12]13[14

15] 16| 17] 18] 19

zo[z1|zz[23]24

25]26]27] 28] 29

30 [31]32] 33| 34

35| 36|37 38] 39

40[a1]42[43]aa

45146[47]43[45

«TRACK *

ZONE ~» €&——

READ IN AREA

5051 [52[53(54

55]56]57] 58] 59

60] 6162|6364

65] 66] 67] 68] 69

70 f;:I7z]73[7a

75]76]77] 78] 79

so[81]s2]83[84

as| 86878889

90 [91]92]93 94

9s5[96[97[98] 99

00]01]o2[03}04

os[o6[07] 08 09

wln]12]13]14

15[16]17[18] 19

20[21]22]23[24

2526 27] 28] 29

30]3\[32[33]34

35[36 [37 38] 39

40 [a1]a2]4a3] a4

as[ac]a7[48[a9

50 [51]52|53] 54

55| 56] 57| 58] 59

60| 61626364

65) 66| 67 68| 69

70 [71]72[73] 74

’7517ET77[7§]79

80161[82|83|84

8s[86 | 87] s8] 8o

90 [91]s2]93]0a

95|96 [97] 98] 99

60

oo [o1]o2[03|0a

05] 06 07/ 08] 09

10] 11[12]13] 14

15[16] 17] 18] 19

30121122[23]24

25]26]27] 28] 29

30 [31]32]33] 34

35] 36 37| 38] 30

40] ar]a2[4a3]4aa

a5 [a6] a7] 48] 29

€« TRACK..* 7

ONE =S €]

RYAD IN AREA

50 |51[52[53]54

55] 56| 57| 58] 59

60] 61{62]63]6a

65| 66| 67| 68] 69

70 [71]72[73] 74

75]76[77] 78] 79

80 [81[82]83]84

8586 [a7]88] 89

90 [91[s2]93]9a

95[96[97] 98] 99

00 [01]02]03[04

‘05 06[07{ 08| 09

10[11]12]13] 14

15[16]17 [18] 19

20 [21]22[23] 24

25]26[27] 28| 29

30[31]32]33] 34

3536 |37 38]39

40 [a1]a2[4a3]44

45{46[47]| 48] a9

50 [s1[52]53]54

55] 56 57| 58] 59

eo|e1{ez[ssle4

65| 66] 67| 68 69

70 [71]72]73] 74

75[76]77] 78] 79

80 [81]82]83] 84

85|86 |87]88] 89

90 [91]e2]03]sa

95[95]97[98[9§

00 [01]02[03]04

os5[06[07] 08| 09

0] 11]12[13] 14

15[16[17 [18] 19

20 [21]22]23] 24

25]26]27] 28] 29

30 [31]32]33] 34

35] 3637 38] 39

40 [41 [42 143 | 44

45|46Ti7]43[49

50 |51]52]|53]54

55|56 57(58] 59

60] 61]62[63]64

65] 66| 67| 68] 69

70 [71[72] 7374

75]76| 77| 78] 79

80 [81]82]83]84

8s[86 [87]88]89

96]91[92]93[94

959697 98] 99

00]o1]o2[03]0a

0s[06|07 0809

0] 11]12]13[14

15[16 17 [18] 19

20 [21]22] 23] 24

2526 27] 28] 20

30[31]32]33] 34

35] 36] 37] 38] 30

a0 [a1]a2[43]aa

a5 46| a7] 48] a9

50 [51]52|53]54

s5] 56|57 58] 59

60]61]62[63]64

65]66] 67] 68 69

70 [71]72[73] 74

75]76]77[78] 79

80]81[82[83]8a

85|86 |87 88|89

90 91 [92 [93[9a

95|96 [97]98] 99

00 [01]02]03] 04

05 06{07| 08| 09

\0[11[12[13[14

15| 16]17 [18 19

20 [21]22]23] 24

25 26| 27[28] 29

30 [31]32[33] 34

3s] 36[37] 38 30

40 [a1[a2 |a3]aa

a5 |46 |a7] 48] a9

50 [51[52[53) 54

55[56| 57| s8] 59

60161[62[63'64

65]66] 67| 6869

70 [71]72[73] 74

75]76]77] 78] 79

80[e1]82[83]84

85|86 |87 8889

90 [91 [92]93[94

95[96[97]98] 99

00 [01[02]03]04

os] 06|07 08[09

10] 11] 12[13] 14

15] 1617 [18] 19

20 |21[22]23]24

25]26]27] 28] 29

50|3\|32T33]34

35]36 [37[38] 39

40 [a1 [42]43]aa

45|26]47] 48] a9

50 [51]52]53] 54

55| 56] 57| s8] 59

c0l61]62|63]68

65]66] 67] 68|69

70 [71]72]73]74

75|76 [77]78] 79

80 [81{82{83]84

8s|a6[87 8880

90 [91 [92]93]0

95 [96 [97 [98] 99

00 [01]02[03[0a

os[os[ov]oe]os

10111[12[\3[14

15[16 17] 18] 19

20 [21]22]23] 24

25[26]27] 28] 29

30[31[32]33[34

35[36 [37[38] 39

20 [41]42 [43 }44

as 46 [47[48] a9

50 {51[52]53|54

55]56]57] 58] 59

60]61]62]63]6a

65| 66] 67]68]69

70 |71]72[73]74

75(76|77]78] 79

80 [s1]82]83] 84

8s]e6 [87 8869

90 [91]92 [93]04

95|96 [97 [98] 99

00 [01]02[03 |oa

0506 [07[oa jo9

w[11]12{13]14

15]16] 17 18] 19

20 [21]22]23] 24

25|26 27{28| 20

30 [31]32] 33] 34

35[36[37]38] 39

a0]a1[az2]a3]aa

4546 |a7]48] a9

50 {51[52[53)54

s5[s6[57] 58] 59

so]sa]sz[ga[ea

65|66 67| 68|69

70 [71]72]73]74

75[76]77|78] 79

80 |81]82[82] 84

85|86 (87 88|89

90[91]92|93 94

9596 [97]98] 99

TITLE:

BLOCK

FORM NO. 28-00-003

NO.:

INDEX NO.:

PROGRAMMER:

DATE

PAGE

HSK :

RWD OUTPUT TAPE
CLEAR WRITE AREA

J
-

@

10

ADD 1 TO
BOX 3 (B3)

g

TRACK
SELECT

INITIALIZE
BOX 11

INITIALIZE
BOX 12

INITIALIZE
BOX 13

INITIALIZE
BOX 15

|
8 | rEAD
DISC
NORM.

YES
EF?

MOVE
TRACK NO.
ZONE NO,
SECTOR NO.
TO WRITE AREA

27
28

13

111 READ

DISC
SIMUL.

12

?
EF? YES

(PREVIOUS
READ)

MOVE
TRACK NO.
ZONE NO.
SECTOR NO.

TO WRITE AREA
d

@

14
YES

ETW?

15) XXXI-6

o - =7

/ TO EOR /
7" ROUTINE

/
Lo o e
————

/ TO EOR Y
/ ROUTINE /
Y 4

T T T Ty

/ TO ETW /
7 ROUTINE
[/

22

107

(o I
107 : BOX 11

21

107<

|

EO

BOX 12, BOX 13,
BOX 14 FOR OTHER

AREA

23

SENSE
SIMO

24

ADD-1 TO
BOX 11 (B3)
FOR NEXT ZONE

I

25

EO
BOX 11 (A7)

FOR OTHER
AREA

26

\ #
BOX 11 (Bg)

@ ©

18

SENSE
SIMO

SET
A 3 Ay

i

TBOX 15 FOR
OTHER AREA

®

L)

e sttt g o e o

27

MOVE A ZERO
TO BOX 11 (By
FOR FIRST

SECTOR

O

28

ADD 1 TO
BOX 11 (Bp)
FOR NEXT
SECTOR

XXX1-7

29

8= IXXX

TITLE

28-00-004

CODER DATE
REMARKS SEGMENT NO.
I ® .
msr |oF Locaton K oy ™ - 2 D= REMARKS oy
LOC. INS. gigdlol1 123]4]5]6|7 (819 BY
200600 |2|oloJoflololofo}o RWD Tape 1
10001 0JgERIuslofolo]ls]ololo Clear Read-Write Area 1
2360 200010 +]1]2]o]3f[92]5]|ua]s Increment Track Select 2
3CR0|OYp|rR|{O]JO|O|lO]lOoflOo]O|O Track Select 3
L ORO T OfNf&[2]5]3|9]2]1]8]9 Initialize Box 11 4
5 ¢ Jl4j2(14f9]2]2f{1]9]2 " Box 12 5
n - --1---------I‘*

6 206 U] © Jl6]2]2]2]|6]2]|2]2]s " Box 13 6
Ji{6|22]|3|6[|2]2]3]6 ! Box 13 6
8 & Jl6]2(2(4]l6 22|46 " Box 13 6
¢ Jijal2]2])62{2]216]|2 " Box 15 7
210 o J|5]22|16|6|2]12]|61]6 " Box 15 7
1 - Flols|ofols]o]o]ol1 Read Disc Normal 8
i & 212 Y|[1|4]o]o|8]2]5 4]0 Check for EF 9
3 Will|2|1]|5}10¢f2|1]|5]0 9

4 VIil]0]j2f1]9([X|[X|x][X To End of Run Routine
2130 5 Nji3|210|3]9|4|0]|0]3 Move Track No. to Write Area 10
6 o Nji3j|2l1]1]9|4]0]0|6e6 Zone No, 10
7 L SIN 12 (1]1|6 40|07 Sector No. 10
2490 1 218 © ' IG {9 (6|0 O |8 (1)]O JO k2) Read Dise Simul 11
9 Y |1 (B)fofo|8 2|5 |4 |0 Check for EF 12
220 Wl lll2212)101(2]21f2]0 12

1 VIil1J]0[2[1]9 XX |X|X To End of Run Routine
2200 N|3[2j0(|3]9[6)0]|0 |3 Move Track No. to Write Area 13
N3 f2f1]1]9¢(6)0]0 |6 Zone No, 13

PAGE

OF

6= IXXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
<[@
e Hannanan B! S
Loc. [iNs| ™ 2l2lol1|2(3l4|5|6][7]|8]?9 BY
224 gl o{ o IN] 1 1|16 6)0l0]7 Sector No. 13
5 gloeggs|2|4|ofojolxX|X|X|X Sense ETW 14
6ofololsl2]wlololrls)elo]7 Write Track 15
70401 0viojlof2]1]9}2]|3]|5]|0 A Switch 16
s ORO | Oy |3 |2|1|8]7|2]|5]|4]1 Check for End of Strata 17
oojolow]|1|2]|3|7]0]2]|5]2]0 ' |
-
2300 i<; 230 0ol ofwlaf2]3]|ofof2]3]o]o0 Clear Simo 18
10 ola|1(2)2|711]2]|2]7]1 Set A ~=> Ap 19
2000 0Juf1]2|2]6|6|2|5]L]u l Modify Write for Other Area 20
sofoflofuli|2l2le|2]2]|5]|uln B 20
g gt 1 0fvitf{oj2f1f9l2|2(|5]0 To Write
2270 500 0qalof2]2|7|1|2]2]|7]1 Set A wm=-> Ay 21
lfé 236 0] 0 OQv|{1]o|2f1]9(2]0]2]0 To Begin Next Strata
2290 7OofolCQuii)2frjof2]2]s5 |4y Modify Boxes 12, 13, and 14 22
gORU | CHul1]2]2]2le6l2]s5|[u]u ' 22
goga | Guli12y{213|16{2|514]4 > To Address Other Area 22
260 ool oquirf2f2lale6 2|54 22
10 uli1]2|2|6|2f2|514]|4 22
6 242 ool ofjulr|2)2]|6]|6 2|5 |4 |4 22
2430 sogelofw|af2fa|3jof2]|4]3]0 Clear Simo 23
o CQE O+ 2|21 ([8]9 2|5 |45 Increment Zone No, in Read 24
5 0 oflulil2|1lsl2]2]5|s|u Change Read to Other Area 25
6 & gy i(1t2|(1i§{8j112(1 8 6 Check Sector No, for 9 26
7 oo folwlarf2]s5]ojof2(5]0}o0 26
28-00-004 PAGE OF

0T~ IXXX

TITLE

CODER DATE
REMARKS SEGMENT NO.
<T@
FROM NO. | = |OP] N B REFERRED
INST. |OF Logi:"ION R T0 REMARKS BOX
LOC. INS. i i 0 1 21345 |67 |81]F¢9 BY *
Oj2(14(8|16[2]1]8]6 Move a Zero to Sector No. 27
110f211{91]2]118]0 To Read Next Track
11211181625 (4|5 Add 1 to Sector No. 28
1102119121 1(81}0 To Read Next Track
oOfoJlofotofolofjo|o Error Halt 29
91610 |08 [1]01}0 |2 ‘\
P
1107121]0]J0]01}0 S Constants

28-00-004

PAGE

OF

XXXII — TABLE LOOK-UP TECHNIQUES

The term "table look-up"” simply refers to a programming technique used to locate
one particular thing in a table of like values. For example, we can see where this
would come in very handy when dealing with the data record file since it is not common
to have a direct addressing scheme similar to the ones which we have been using. We
could get around the problem of knowing that exact address for each master by setting
up a table which contains both the different stock numbers (for example) and the
corresponding addresses. Normally this table would be laid out in one of two formats,
either in order by stock number or in order by frequency of use. In either case we
would have the following:

SSSSSéééééSSSSSAAAAASSSSSAAAAASSSSSAAAAA ete.
STK # ADDRESS

Suppose we are handling a program similar to the interrupt program we discussed
previously. The only difference is that now we will bring in a card with
an account number on it and from that must locate the information. We can assume that
we have a table set up in memory in ascending order by account number:

Account # Band and Cell Account # Band and Cell etec.
6 4 6 4

The last account number is a dummy with the highest binary code possible. We
will assume that we have a 20K memory and that the last 10K is used as table storage.
We have 1000 records stored in 1000 cells on the record file. Assume that all requests
have masters. The program would look as follows:

XXXII-1

TRANS STP » EXIT

CARD

INITIATE
COMPARE

TABLE

COMPARE

ACCT #

FORCE STA

6/_j
PRP i SENSE

16

PRN
\ PRI’'S /
14]
t
TRANS BAND~ 8 IND
ADD
(STA)
8
SELECT
BAND
ADD
STA+ 3
IND
TRANS CELL-> 11 ADD
(STA)

1

READ
CARD

PREPARE
CARD

PUNCH
CARD

EXIT

XXXII-2

INCREMENT 4(A) + lq

As we can see, we form a loop until we find the account number in the table. At
that point, STA will contain the address of the MSD of the band. By forcing STA and
using indirect addressing, we can transfer both the band and later, by modifying STA,
the cell location. ' '

Another example of table look-up might run as follows:

We have a table that contains 26 different letter codes (A-Z) each followed by
a specific digit hourly rate.. When doing a payroll problem we find one of these 26
codes in each master and we must then transfer the appropriate rate to a work area.
A portion of the table appears as follows:

A150B155C160D165E170 etc.

We could program another compare loop again, but an even simpler and faster way
to do it would be as follows:

1 | TrRANS CODE
FROM MAST—2(N)
2. | TRANS DATA
BY (SYMBOL)
LEFT IN PLACE
3 A
TRANS RATE .
TO W.A. 1nd‘. add.
Table 2000-2103
Master
Read
In EMP # RATE CODE
Area XXX X
/—M
0 oo mo
10 X X X X

2010 N 1 1003 2021 DR THE SYMBOL
2020 # () 2000 2000 TSL TO FIND CODE _
2030 M 3 @21E 1200 DL TO MOVE RATE TO WORK AREA

Another type of table look-up could be called "direct addressing”. This is the
same type of thing that is done when executing an ADD or SUBTRACT instruction.
There is an instruction in the RCA 301 complement that is called Translate by Table.
This actually is a table look-up instruction which allows a translation from any 7
bit binary code to any other 7 bit binary code. Its primary use is for compatability
between RCA systems, but many other applications can be developed for it.

TRANSLATE BY TABLE:

This instruction translates a specified number of characters in one area from
one code to another, by the use of a specified table.

XXXII-3

The OP code is A.

The N character is the number of characters to be translated. This is limited
to 0-44, but since this instruction is repeatable the actual limit is 660 (44 x 15),
without a second Translate.

The A address gives the HSM location of the leftmost character to be translated.
This will also be the leftmost location of the translated data, -since the result re-
places the original information.

The B address gives the HSM location of the first character in the table to be
used for translation. This table must be stored beginning at a hundreds location;
i.e., the last two characters in the address must be 00.

The direction of this operation is left to right, and (A)f will hold the address
of the location one to the right of the last character translated in the original area.
(B)¢ is identical to (B)j.

In order to operate, it is necessary to break each character to be translated
into two parts, which then becomes the address of the location in the table that holds
the translated equivalent. Suppose, for example, that we were translating RCA 301

code to RCA 501 code. An "A" in 301 is represented by (010001)2, in 501 by (100000),.
The 301 "A" would be pulled from memory and the 22, 21, and 2 bits transferred to tﬁe
corresponding locatlon of Da (D register). The 25, 2%, and 23 bits would be trans-
ferred to the 22, , and 2V positions of Dy. The other bits of the D register would
be zero, so that the figures constructed would be a 2 and a 1:

RCA 301 code for an “A” = 010001
S 43121 0 S| 4] 3 2{1 0
D, 212221212 D3 21221212
oj0ojopiLj|o 0000 pPI|1
which is the RCA which is the RCA
301 code for a 2. 301 code fora 1.

These characters, in combination with the contents of the B register, are used
to address the particular table being used for translation. For example, if our table
started at 7500, at location 7521 there should be the binary character 100000, which
is the RCA 501 code for an "A".

Obviously, these tables can be made up for any purpose. Suppose, for another
example, that our program we were to ascertain that a particular field, coming in on
the transactions, was numeric. One way to do this would be to compare each location
in the field to a 9, and if equal to or less than a 9, continue on and sense the next
character in the field, but if greater than a 9, register an error. For a field of
10 digits, this would require 10 compares and 10 senses of the PRI's, or timewise,
10(56 + 49) = 1050 us. Suppose, however, that we set up a table in memory that
would translate all numerics to O's and all other characters to l's. We would have
to transfer our 10 digit field to a work area, since it would be destroyed during
translation, translate it, search through the result area for the lack of a zero,
and then test the PRI's for a PRZ setting (a character other than 0 in the field
will set a PRP or a PRN in a Locate Symbol Left or Right instruction). This would
require 175 us. for transferring the data, 245 us. for translation, 210 us. for
searching for a non-zero, and 35 for sensing the PRI's, or a total of 665 us., a

XXXII-4

considerable savings over the other approach., The table would also be very easy to
construct, since the decimal digits would be the only characters that would develop
into 00, 01, 02, 03, 04, 05, 06, 07, 10, or 11 addresses. By placing O's in these
locations and 1's in all the other positions (12-77), the table would be accurate.

Table Look-Up Exercise I:

A shipping company pays its employees by cash whenever a ship lands. It is the
accounting departments responsibility to make up a list of the number of hundred
dollar bills, fifties, twenties, tens, fives and ones, and the number of fifty cent
pieces, quarters, dimes, nickels and pennies needed to meet any particular payroll.
Having converted to EDP, it is your job to write a program which will develop these
totals, and bring the final results out on the on-line printer. You may assume no
more than 5 digit amounts of any one denomination (99999 one dollar bills, for ex-
ample; that no persons make over $99999.99; that data is fixed; and that there is
only one reel of information. Flow chart this program only.

Since you will need tables to solve this program, you should indicate the con-
struction of the table. You need not show the entire set of tables.

XXXII-5

XXXIII — RANDOMIZING

With regard to the Data Record Files, we have discussed two methods of locating
information. One was the direct addressing scheme and the other was the table look-
up method. There is also a third method called "randomizing". This is simply util-
izing the criterion to form the address. For example, one method is to take the
eriterion and add parts of it together. The break up of the criterion is decided
upon statistically, in order to come up with the fewest possible duplications of
addresses.

Stock # 34562436

3456
2436
5892

Obviously the next step would be to break this down into two parts, band and
cell. This could be done by subtracting the highest possible address from the band
portion if it is 512 or over.

589
511
078

We now have an address for the information connected with stock #34562436 and
that is band 078, cell 2,

By working out an address for each of the stock records, we could then assign
them to that particular location. The one problem is, of course, duplication of
address., If we had 140 character records, we could get 6 records in the same cell,
but if more than 6 records have the same address, we must come up with a technique
to take care of the overflow.

One method is "chaining". By this method, when we have placed our six records,
and we find more with the same address, we could place the address of another cell
at the end of this cell, so that if the desired record is not in this cell, the pro-
gram has only to pick up this new address and select, read, and search the alternate
cell. This technique would be efficient only if the high-hit records were placed in
the first cell; i.e., the idea is to arrange the data records by use rather than by
sequence of criteria.

Qur example assumed that we were using only the single data record file, other
similar steps could be developed to allow use of all the data record files.

There are hundreds of randomizing techniques. The choice of the correct one

or possibly the development of a new one is based on a statistical study of the data
to be used.

XXXIIT-1

XXXIV — ARITHMETIC OPERATIONS

Although we have discussed Adding and Subtracting throughout the text, we have
not mentioned certain qualifying conditions.

For example, we have assumed that all of our problems have allowed for maximum
fields, but what would happen if we had an instruction to add two 3 digit fields
together and the result was 11977 The field would not be expanded to a 4 digit field,
but rather a zone bit called an "overflow" bit would be placed in the 24 position of
the MSD of the sum. In our example, the answer would then be A97 (the binary code
for an A is 010001).

This condition can be tested for by the Conditional Transfer of Control Instruc-—
tion with a 2 in the N character. If the overflow indicator has been set, a transfer
will occur to the address given in the A address, if the indicator has not been set,
the program will transfer to the address given in the B address.

‘A second situation should then occur to us. What would happen if we had an
illegitimate bit, such as a 1 bit in 22 of anything except the LSD (in which case
it indicates a negative number) or a 1 bit in 24 of anything except the MSD? A 1
bit in the 23 position of anything except the LSD will cause -a parity alarm. A 1
bit in the 2% position of anything except the MSD will cause the computer to hang
on an ARIE (Arithmetic Error) alarm. In addition, if we try to add two operands
which both have overflow bits, or if we try to add two operands where one had an
overflow bit and where a carry is generated by the addition, we will also obtain an
ARIE alarm. Subtracting two fields which both have overflow bits will not cause an
alarm, so long as each operand is at least 2 characters in length,

For example:

C3216 plus D4831 will hang the computer on an ARIE since there are two over-
flow bits;

C43 plus 942 will hang the computer, since there is already one overflow bit
and .a carry will be generated;

C342 plus 0238 will not hang the computer

D2184 minus A3216 will not hang the computer

D minus A will hang the computer since there are not 2 digits in each operand

321E54 minus 213583 will hang the computer- due to the-bit in the 24 position
which is not the MSD of the operand"

21N4982 plus 2938475 will hang the computer

A21 minus E78 will not hang the computer even though the subtrahend is greater
than the minuend since the answer will only be negative. ‘

E212 minus A43L will hang the computer, since the . subtraction is of a minus
number from a positive number, which will cause an addition of the two
operands, and both have overflow bits

The final arithmetic topic which has not been covered is how to multiply and
divide. We have already noted that the RCA 301 has both an Add and a Subtract
instruction. To aid the users, RCA will supply multiply and divide subroutines,
which will perform these functions. A sub-routine is simply a group of instructions
which will accomplish a given task. -These particular sub-routines will be "closed"
sub-routines, which means that when the programmer wishes to execute a multiply or
divide, he must transfer to the second instruction of the sub-routine (since these
routines will be floatable (capable of being placed at any free area in memory)
this will be the float address plus 10), the routine will then pick up STP, which
tells where the transfer came from, and the last instruction w111 be a transfer
back to this location.

XXXIVv-1

There are three multiply routines and two divide routines. The multiply routines
allow for operation on an 8 X 8, 10 X 10 or 17 X 17 field. The divide routines allow
for operation on a 10 X 10 or 17 X 17 field. 1If an operand does not have the exact
number of characters called for in the routine, it must be loaded with insignificant
Zeros.

It is the programmer's responsibility to place the operands at standard HSM loca-
tions, and any unused portions (including the product and the quotient areas) must be
cleared of zeros.

MULTIPLY MULTIPLICAND MULTIPLIER PRODUCT FILL WITH ZEROS
8X8 0808-0816 0791-0798 0817-0834 0791-0798
- LSC at 0816 LSC at 0798 | LSC at 0834 0808-0816
10 X 10 0800-0809 0785-0794 0815-0834 0785-0794
LSC at 0809 LSC at 0794 | LSC at 0834 | 0800-0809
17 X 17 0799-0816 0782-0798 0799-0834 0782-0798
LSC at 0816 1LSC at 0798 | LSC at 0834 | 0799-0816

DIVIDE DIVIDEND DIVISOR QUOTIENT

10 X 10 0825-0834 0800-0809 0785-0794 0800-0809
LSC at 0834 LSC at 0809 | MSC at 0782 0825-0834
17 X 17 0818-0834 0800-0816 0782-0798 0800-0816
LSC at 0834 LSC at 0816 | MSC at 0782 | 0818-0834

The 8 X 8 multiply requires 580 locations; the 10 X 10 600 locations; the

17 X 17 690 locations.

locations.

The 10 X 10 divide requires 600 locations; the 17 X 17 470
The multiplicand is destroyed, but the multiplier is restored. The

divisor is restored but the dividend is destroyed; the remainder is left in the

dividend field.

Example:

Suppose we had to write a program which would read in a card, calculate the
total gross wage by multiplying the hourly wage by the rate, and transcribe this
information to tape. The initial card is in the format:

cols. 1=5 69 10-13

Emp # Rate Hours (XX.XX) without the decimal point)
The transcription should appear in the same format, except that an additional
5 digit field should be added to the end of the record containing the gross salary.

This must be rounded to the nearest penny. The flow chart would appear as follows:

XXXIV-2

1
READ
CARD

FILL MULT.
AREA TO ZEROS

3 TRANS.
RATE > M.A.

TRANS.

HRS. M.A.
5 THIS SYMBOL SHOWS ENTRANCE TO,
MULT. EXCECUTION OF, AND EXIT FROM A
SUBROUTINE.

ADD ROUND
OFF TO PROD

7 TRANS. PROD. TO
WRITE_AREA

WRITE
AREA

Suppose one particular card had the information:
1234502554750
which means that employee 12345 works at a rate of $2.55 and worked this week 47.5 hours.
Once the multiply area has been filled with zeros and the operands moved to their
respective fields, the multiplication will yield 1211250, or $121.12 and 5 mills. In
order to round off, we must add 0000050 to the product area, which will give us 1211300,
and moving just the leftmost 5 digits (12113) to the write area will place this weeks

gross earnings in the proper position for writing the record to tape.

The coding follows (assume that the multiply was placed immediately following the
program) on page XXIV-4,

XXXIV=-3

TITLE

7= AIXXX

CODER DATE
REMARKS SEGMENT NO.
<] @
FROM NO. |+~ |OP! N A B REFERRED
HSM < | < BOX
INST. OF TO REMARKS
toc. f[ins| LOCATION [S13 fo [y afsfals|e]7]s]o BY NO.
| 609 lﬂ 600 lclcofoli |5 |o]olo]o]o oo __ |READ CARD 1
1 <|C Clglolofrlolrlo{8|1l610 FILL MULT, AREA WITH ZFROS 2
2 OR0| Oy [k |5 o]0 |8 fo}8 |1 l6 TRANS RATE M.A. 3
3 ‘Pl 0Iy (4 |s o]l lolr 198 TRANS HOURS M.A., N
L OjCloQvir o2 1|9 |6 |1 |2 |O TRANS TO MULTIPLY SUB-ROUTINE 5
(PR _:__Lo 8 13k l6 11 10 19 ADD ROUND-OFF TO PROD 6
606 “l¢|CIn|s]o 8|32 |50 |1]7 TRANS PROD. TO WRITE AREA 7
Qo cls i3 |h(o|oJo | E T W SENSE ETW -8
CRO 1818 |3 (5 o Jolo |5 fo |1 l7 WRITE RECORD 9
Qo1 9% v jzlolalalole]o o]o |TRANS > 1
610 Cfo olo|o|ololo oo |5 |o CONSTANTS
A MULT ROUTTNE (410 I0C)
Ie > 0|00 | ENTRANCE
fo] ¢ '
¢|o
cfo|e
ORC | O
folo
& G G
= 3 ERE
CRC O
o1 EU I
0
IE 1224 REV. 8-80 PAGE 1 OF 1

XXXV —

CONSOLE

The Console is normally the operators domain, but since it never does the pro-
grammer any harm to be familiar with the layout of the panel and the various imdica-
tors, we will take time to discuss the layout of the console, the abbreviations, and
the functions of the indicators and buttons.

GEN RES:

START:

The General Reset button resets all the registers and counters and
most of the flip flops, when depressed.

The Start button will begin execution of the status level displayed.

P, A, B, NOR/N, D MR, S, T, SOR/M, U, V, FOR/L indicate the various registers.

By depres31ng any one of these you will cause the contents of the
register to be displayed. The contents of these registers will not
be visable unless they are particularly called for in this manner.
For example, say that we were interested in the contents of -the A
register when the computer stopped. By selecting the A register
(depressing the button marked A) the. address in the A register would
appear in binary in the display area:

Reading this, we can see that the address is 0310,

The P, A, B, S, T, U, and V register w111 appear as four characters
in length the NOR/N SORM, and FOR/L and the D and MR registers
appear as only 2 characters.

The Special Purpose switches are alternate action switches and include:

OCSP:

- ICSP:

FPLS:

One Cycle Stop, which permits the operation to be performed one
status level at a time by stopping the computer at the end of every
status level.

Instruction Complete Stop, which permits one instruction at a time
operation by stopping the computer prior to the staticizing the
next instruction.

First Processing Level Stop, which permits the computer to stop
after staticizing the instruction.

XXXV-1

Z-AXXX

RCA 301 CONSOLE

[P%'g* TAE | RE | DDF | W sTie ware) > IE INIE -"°%~ D MR_<>]
[SAL-MCP WE cce_soau]hcome"[napeluapg [S T 5‘% u v _“’% & RES
FAL RAE-CIG-MPE:foRL:ARIE]NDRN- opr:]] @]

¢ || 5B || AL HSMI][STLR scr:suoxnxsm] INT BAIMWRM-RDM CSP:FPLS-OCSP] [START

<>All buttons with <>configurations are reset buttons.

RDM:

HSMI:

BAI:

STIR:

ISIM:

BCT:

INT:

WTAB:

SMDI :

ALIL:

Read Memory, which allows the displaying of any diad in HSM.

Write Memory, which permits the placing of two characters at a time
into any diad in HSM.

HSM Inhibit, which inhibits information from going to or coming from
HSM. ‘

Bus Adder Inhibit, which inhibits the adding or subtracting ability
of the Bus Adder.

Status Level Repeat, which inhibits the changing of the current
status level.

Inhibit Simultaneity, causes all instructions to be executed serially,
although they take place in the mode desired.

Bypass Card Translation, which causes the automatic card translation
to be inhibited, and places the information into memory so that 2
characters represent 1 column.

Interrupt button, which is sensed by the CTC instruction when N = &.

Write to Table allows the arithmetic tables (0000-0199) to be written
into HSM. When not set, any attempt to write to the tables will
cause an alarm.

Simul taneous Mode Inhibit, causes all Simultaneous Instructions to
be performed in the Normal Mode. It also will store the A register
when the S register is indicated in the Store Register instruction.
However, storing the A register only means forcing STA, and will

not automatically place the contents in any given destination area.

Alarm Inhibit, when depressed the Computer will mot stop on any
error condition, but the alarm indicator will light.

The Alarm Indicators include:

Alarms for Parity Errors in the following registers:

SORM :

NORN:

FORL:

NRPE:

MAPE:

MRPE :

DPE:

STLE:

Simultaneous Operatioh or M Registers
Normal Operation or N Registers

V or L Registers

Repeat Register

Memory Address Register

Memory Register

D Register

Status Level

alarms for such other errors as:

XXXV-3

COME: Error in the Comparator

ARIE: Arithmetic error caused by one of the following in a 10K or 20K
computer: : .
24 bit is a "1" in MSD of both operands in an Add instruction;
25 or 2% bit is a "1" in other than MSD or LSD of either operand;
24 bit is a 1 in the MSD of one of the operands and there is a carry.

Processor with 40,000 character memory:

a. An address ADD or address SUBTRACT instruction with a resultant neg-
ative address whenever an operand is distinguishable from data by
having a zome bit in the MSD position.

2% or 2° bit is a "one" in other than the MSD or LSD of either operand.

c. 25 bit is 'a "one" in the MSD of one of the operands and there is a
carry. ’

WIT: Write To Table indicates an attempt to write to the arithmetic
table withomt setting WTAB.

DDF: Device Doesn't Follow means that the device addressed is inoperable.

RE: Read Error indicates that an error has occurred during a read in-
struction or when data is transferred from HSM to the printer out-
put buffer,

TAE : Tape Address Error indicates that there is a parity error in the

tape address.

CCE: Card Compare Error indicates the second read station does not com-
pare with the first read station on the Card Reader, or that the
read station does not compare with the punch on the Card Punch.

WE: Write Error indicates that an error has occurred during a write in-
struction or when data is transferred between the memory register
and an input or output buffer.

MCP: Missing Clock Pulse shows that there is an error on the 33 ke or
66 kc tape station(s).

SAL: Simultaneous Alarm occurs when an input-output alarm has occurred
’ and the instruction is in the Simultaneous Mode.

MPE: Multipunch Error indicates that a non-301 character has been recog-
nized on a card with the BCT switch off.

CIG: (Character in the Gap) shows that a block of less than 3 characters
has been read or indicates that a Card Read or Card Punch instruction
has not been staticized in the required amount of time when utilizing
Read or Punch release for the Card Reader/Punch.

RAE: Record File Address Error indicates a parity error in the Record
File Address Register.

FAL: Record File Alarm shows that an error has occurred in an instruc-
tion in the Record File Mode.

XXXV-4

The remaining miscellaneous indicators are:
SR, which indicates that the Simultaneous Mode is busy.
FB, which indicates that the Record File Mode is busy.

Power Off, which will turn off the power to the computer. Turning the
power on must be done at the Power Supply.

XXXV-5

XXXVI - RCA 301 PROGRAMMING STANDARDS

In all the programs we have done up to this point, we have been interested only
in doing the work defined in a correct and efficient manner. However, if we were
programming for actual use, rather than training, we would be required to follow
certain programming standards, In order that these requirements will be completely
understood and familiar, it seems advisable to discuss them, in detail, at this point.

The first requirement which is made is that machine coded programs be prepared
in a particular format. By utilizing the RCA 301 Computer Program Record, that we
have been using throughout the text, this requirement is automatically met. This
form has many columns which are self explanatory, such as "from instruction location’,
YHSM location', "Referred to by", "Remarks" and "Box No.". Two columns, Float A and
Float B, have not been defined as yet. All of our programs have been written so
that the first character falls in a pre-designated location and all characters fall
sequentially after it. With this method, each character in the program is addressable
by a specific or "fixed" address. Suppose, however, that we wanted to be able to -
write a program that would fit into memory.in any area that we had available at any
one time. This type of program we would call "floatable". To enable us to do this,
the routines written to load the programs into memory from the initial input media
have the ability to "float" programs by incrementing every address which is denoted
to be a "float" address by the HSM address of the first location in the area to re-
ceive the program. If we coded our program to start at location 0000 (even though
we know that this is not normally permitted) and placed a 1 in the Float A and/or
Float B box (depending upon if we wanted the A and/or B address modified) we would
have a floatable program. For example, the following program does nothing but read,
write and transfer. The first solution shows it coded as a fixed program, beginning
at location 2000. The second solution shows it as floatable program.

XXXVI-1

BOX
NO.

DATE
SEGMENT NO.

REMARKS

TRANSEFER

OF

PAGE

/

READ
WRITE
TRANSFER
%EAD AREA
%

HSM

' LOCATION
200
2
T

a

w

o

o>

wFm

w

w

o
oy Oy o N Oy O
oy Oy O oy O O
o] O O ol O ©
ql N O] ©f O
O] O OY O] O Oy
o o H o e —
O] O o] O
Al qf O] o] ©OF ©
R af | ~
= O | @O} =
ool o o SDlojlofA|l Nl Alolto|loflololal ol o
olol o o Do |lofA|AC

R p——

000

REMARKS

NO.

CODER
OF

TITLE
INS.

FROM
INST.
LocC.

REV, 8-80

1E 1224

XXXVI-2 245

1f we then loaded the second solution into the area starting at 2000, 2000
would be added to cach address marked for floating:

2000 4 2 2030 2099 _
8 4 2030 2099 _ i
v 1 0219 2000

If we»héd choosen 9500, the program would appear in memory as follows:

9500 4 2 9530 9599
8 4 9530 9599
v o1

0219 9500
Thus we can re-float any program simply by re-loading it with a new float address..

In addition, we must code the programs so that if a block of instructions (a
block is contained within the heavy black lines) contains less than 6 instruction
they must be located at the top of the block with the location to receive the first
character in the HSM LOCATION box and the number of instructions in the NO. OF INS.
box. This enables the loader routines, which we will discuss later, to place our
program into memory at the proper locations. Note the following example:

XXXVI-3

TITLE

CODER DATE
REMARKS SEGMENT NO.
4| 0
FROM NO. |+ |JOP| N REFERRED
INST. | OF Logi¥ION 3l s TO REMARKS BN°°x
LOC. INS. f;_'o 1 21314 5 6 7 8 9 BY)
———————————
L Ol xixIxixix xixlxixlx OGRAM
G
iy
. - —+_———'h
x| x|z xixIxlxix
1 SIxIxIx|Ixix|xixixlxlx
2 PPl % x| xlxlx{xlxlxlxlxlx PROGRAM
E 3 99 xlxlxlx] x| x|zl xlxlx \
~ ’
IS y ° Cixixlx|xlx!lxlxlxix|x
= 5 U Clxlxlx{xix|x|x[xixlx
2| Joo ©|° X x| x|z x| x|{xIx{x|x
clx| x| x[x|xIx|x|x|x
/ \;E .
ofe | ¢
o L
-

~ 1E 1224 REv. 8-60

PAGE

OF

Writing and Card Key=Punching Standards for All RCA 301 Characters

Writing and Overangchjng,Standards

Due to the natute of RCA 301 coding, standards have been established to facili-

tate the writing and card punching of 301 characters.

follows:

Character

Description

Zero

One

Two

Three

Four

Five

Six

Seven
Eight

Nine

Space or
Underline
Number

At

Op n
Parenthesis
Closed
Parenthesis
Ampersand

ooy W >

Plus
Period
Semicolon
Colon

Program Card

Writing Card
Standard Key-Punching

0 0

1 1

2 2

3 3

4 L

5 5

6 6

7 7

8 8

9 9
No

- Punch

3/8

@ b7/8

(5/8

) 6/8

& Y (Zone Punch)

A A

B B

C C

D D

E E

F F

G G

H H

I I

+ B/8

n] Cc/8

; D/8

B E/8

Character
Degcription

Apostrophe
Minus

"NOMH OB RO

End of
Information
Dollar
Asterisk
End Data
End File
Quotes
Slant

Nt

End Bloek
Comma
Percentage

Item Separator

Equal

The standards are defined as

writing Card
Standard Key-Punching
® F/8
) X (Zone Punch)
J J
K K
L L
M M
N N
e 0
P P
Q Q
R R
E/I K/8
$ L/8
* M/8
E/D N/8
E/F e/8
" X (Zone Punch)/0
0/1
S
T T
U U
A4 v
W W
X X
Y Y
-~ Z
E/B S/8
, T/8
% u/8
. v/8
= w/8

The instruetions written on the RCA 301 COMPUTER PROGRAM RECORD (Exhibit 1) are

punched on paper tape or punched cards in instruction groups of 6 or less.

of the 301 INSTRUCTION CARD is {Exhibit 2) as follows:

XXXVI-5

The format

Card Interpreter Interpreter

Column Position Line Field
1 1-2 1 Number of Instructions
2-5 5-8 1 Beginning ﬁSM Aadress
67 11-12 1 Instr. #1 - Float Digifs
8-9 14-15 1 OP-N

-10-13 17-20 1 A Address

| 14-17 22-25 1 B Address

18-19 | 25-29 1 Instr. #2 - Float Digits
20-21 31-32 1 OP=-N

2225 34-37 1 A Address

26-29 39-42 1 B Address

30-31 45-46 1 Instr. #3 - Float Digits
32-33 48-49 1 OP-N

34-37 51-54 1 A Address

38-41 56-59 1 B Address

42-43 11-12 2 Instr, #4 - Float Digits
44-45 14-15 2 OP-N

46-49 17-20 2 A Address

50-53 2225 2 B Address

54-55 28-29 2 Instr. #5 - Float Digits
56-57 31-32 2 OP-N

58-61 34-37 2 A Address

6265 39-42 2 B Address

66-67 L5-46 2 Instr, #6 - Float Digits
68-69 48-49 2 OP-N

70-73 51-54 2 A Address

74-77 56-59 2 B Address

78-80 5-7 2 Identification #

XXXVI-6

Atiother requirement which must be met deals with segmenting a program. The
small programs we have been writing could easily be placed in 10,000 character lo-
-cations but suppose we wrote a.program containing 1300 instructions. This would
require 13,000 memory locations and obviously would not fit in memory. For this
reason, the program must be broken into segments containing no more than 700 instruc-
tions, thus leaving room for read-in areas, work areas, etc.

A gegugps can.be any number of instructions (up to 700) that are ipdspendspt of
nstricTions in a segment can directly affect

the rest of the program. That is, no
instructions in another segment, since only one segment of a program will be in

memory at one time. For example, housekeeping could be a segment of a program since
most of the steps pertain to such things as clearing work areas, checking labels,
ete.. (The exception would be instructions used to initialize switches and other
instructions, since these would not yet be in memory). Once these steps are ex-
ecuted, there is no longer any reason why they should remain in memory, since they
will not be executed again during the running of this program. For this reason it
would be possible to incorporate steps which would bring in the next segment and
place it over the housekeeping instructions, in effect wiping housekeeping out of
Memory ..

This next segment might be the production portion. Once this is completed, the
End of Run routine could be performed without having the main instructions in memory
so that, if memory requires it, we could make the EOR steps the third segment of the
program, and have the second segment (main portion) incorporate coding to read in
these EOR instructions when needed.

We have really been discussing two things, segmenting and overlaying. Segment-
ing is ‘'simply deciding where to break the coding, while overlaying is the incorpora-
tion of the program steps which will read the next segment into memory over that
portion of the program which is already in memory but of no further use. Three
rules must be remembered in segmenting:

1) the first instruction of each program segment must contain the letters

' PS as the. first two characters and HSM location to receive this first
digit must be placed in the A address. The B address must contain in-
formation to identify the program segment;

2) the second instruction of the first program segment must be the entrance
location; i.e., first instruction to be executed. This is due to the
fact that the insertion routines (which will load the program and set
the P register to address the first instruction to be executed) will
assume that this condition exists; ’

3) the last instruction in the entire program must transfer or exit to a
standard HSM location. '

Since the insertioh routine will insert only the first segment of each program,
it is the responsibility of the programmer to handle all insertions of additional
segments and overlays. In addition to incorporating into the segment those steps
necessary to read in the next segment, it is also necessary to do the following:

1) place the segment number (always 2 digits) into HSM locations 0858-0859,

2) place a STORE V REGISTER instruction into HSM locations 0870-0879. This
ingtruction must read:

V 1 0219 XXXX (where XXXX is the return address to the main program)

“3) transfer control to HSM location 0860,

XXXVI-7

There are certain locations in memory which are restricted from the programmer's
use, These are called Standard HSM Areas and can be broken into two groups. The
first group are those locations required for use by the 301 Computer. This area of
memory falls between 0000-0225 and includes:

00000099 Sum Table

0100-0199 Difference Table

0202-0205 Card Punch Inmstruction Location, which is used by the computer in
order to keep track of the first of 80 positions to be scanped
for each card.

0206-0209 Arithmetic Imstruction Location, which is used to hold the address
of the sign of the sum or difference so that the computer ean
correct it, if the resylt indicates carrection is necesgary,

0212-0215 STA

0216~0219 STP

02220228 Store P during REPEAT
MODEL 303 PROCESSOR

9900-9927 Print Table

9978-9999 Reserved
MODEL 304 PROCESSOR

1900~1977 Print Table

1978-1999 Reserved
MODEL 305 PROCESSOR

Z2900-2977 Print Table

7978-72999% Reserved

The second group includes thaose locations which are required by the gervice

routines, which we will discuss in the next chapter, These fall between 0226=1999,
and include:

0200-02Q0 Storage location for the program tape number for program ine
sertion from magnetic tape (used only for magnetic tape libraries).

0226-0228 Storage locations for the band number position of the standard
record file. (Used only for disc librarieg and only by the
service routines, but whenever a Seleect instruction is executed
the band number must be transferred to these locations.)

0230-0599 Program Insertion Routine

0600~0759 Program Insertion routine wark area (also the first 120 locations

are used as a standard print area by the service routines or by
the programmer, if needed),

XXXVI-8

0760-0767 Standard Date, this should be loaded as an initial step each day.

0770-0779 Standard Exit, all programs should transfer to this position at
EOR.
*0780-0834 Multiply and Divide Parameters.
*(0835-0849 Tape Table, which appears as follows:

35 36 37 38 39 40 41 42 43 44 45 46 47 48
08 1 2 3 4 5 6 A B C D E F J N

This tape table will be initialized by the Insertion Bootstrap.
Each program should utilize this table for tape swapping. In

this manner, if a particular tape is inoperable, it is possible

to make a substitution in the table and modify the entire program.
(If you refer back to the entire program done in the chapter on
Program Controls, you will note that we also had a "tape table"
except that we incorporated ours in the program itself. With this
external tape table, we can accomplish uniformity between programs.)

*0850-0879 Overlay Area, which has already been discussed.
*0880-1999 Storage Area for Debugging Routines.

Those areas that are marked with *'s may be used for other purposes when they
are not used for the indicated purposes. '

The programmer has available from HSM location 2000 to the last 100 locations
in memory for his program.

Since only one Stop instruction is available in the RCA 301, it is necessary to
indicate whether it is a normal stop or an error stop. The following convention should
be used:

a. The N character of a Stop Instruction will be O for a programmed normal
stop and a 1 for a programmed error stop.

b. The A address of the Stop will be numerically coded to indicate the
meaning of the Stop when no print-out accompanies the Stop.

Care must be exercised when using the Translate by Table Instruction. The
translate table must be located in a HSM location ending in 00. Particular care
should be exercised in floatable programs.

When the Record File is utilized for program storage, an EB character can only
appear as the last character in a program segment. Therefore, when need arises to
use an EB character for a count, another means must be adopted, such as using a lower
count and repeating the instruction. Likewise, if need arises for a constant EB, the
last character of the segment may be used.

When using the Record File, the band number of the disc must be stored in the
standard locations 0226-0228 after each band select. This requirement is only
necessary for the standard record file, i.e., it does not apply for use of the
optional record file units. This standard is necessary for any type of program
interruption. For example, the Sampler will disturb the position of the Record
File while sampling, and after each Sampling Point, will restore the position of
Record File according to the information contained in locations 0226-0228.

XXXVI-9

301 and 501 Translation Tables

Alphabetic, numerics, and following characters:
(" :%$%; ®&* / , #E/FE/DISS * ' g

will be translated from their RCA 501 Configurations to correspondlng RCA 301 Con-
figurations and vice versa.

The following table gives the translation for all remaining characters from
RCA 501 Configurations to RCA 301 Configurations and vice versa.

RCA 501 RCA 301
Symbol Configuration Symbol l Configuration
Blank 000000 @ 001100
Space 000001 SP 001010
Cross 000010 T 011010
Carriage Shift 001111 CcS 001111
Page Change 010000 PC 011111
Line Shift 010001 LS 101111
Carriage Normal 011111 = 111110
End Message 111101 E1 101010
Start Message 111110 EB 111010
Delete 111111 Unused 111111

i

The RCA 501 character (77)g will be translated to RCA 301 character (77)g.
This RCA 301 character can be used for sensing or writing to a Record File or tape
on a Tape Adaptor. However, it cannot be written to a tape on the High Data group.
Octal characters (17)g, (37)g, (57)g, and (77)g cannot be introduced into the RCA
301 system via cards or paper tape; and therefore, must be generated if desired
for sensing purposes.

501 to 301 Translation Table (501 Magnetic Tape Input)

The following table shows the construction of a translate table in 301 HSM
used to translate RCA 501 characters (introduced via a magnetic tape) to the
corresponding RCA 301 character configurations. The chart is as the table would
appear on a coding sheet where XX is arbitrary.

00 01 02 03 o4 05 06 07 08 09
XX00 @ _ + () " $ Free Free

10 % ; & ! (o] * . CS T "
20 PC LS /- 0 1 2 3 i} " "
30 5 6 7 8 9 , # = " "
40 A B C D E F G H " "
50 I J K L M N 2] P " f
60 Q| R | s|Tt|ul|l v| w| x " "
70 Y Z E/F{ E/D L4 EI EB (77)8 " "

XXXVi-10

501 to 301 Tramslation Table (501 Paper Tape Input)

The following table shows the construction of a translate table in HSM used to
translate RCA 501 characters (introduced via 501 paper tape) to the corresponding
RCA 301 Character Configurations. The chart is as the table would appear on a coding
sheet where XX is arbitrary.

00 01 02

03 o4 05 06 07 08 09

XX00 77(8) E/B E/I . E/ND} E/F| 7 Y | Free | Free
10 X 1% v U T S R Q " "
20 P] N M L K J I " "
30 H G F E D C B A " "
40 = # , 9 8 7 6 5 " n
50 4 3 2 1 0 / LS PC " "
60 | ¢cs | . * o ! & ; 3 "
70 $. 1") (+ _ @ 1 11

301 to 501 Translation Table

The following table shows the construction of a translate table in HSM used to
translate RCA 301 Characters to the corresponding RCA 501 Character Configurations.
The chart is as the table would appear on a coding sheet where XX is arbitrary. The
symbols internal to the table contain the proper octal configurations to produce the
correct translation to 501 characters.

00 01 02 03 ou 05 06 07 08 09

XX00 C D E F G H I + Free | Free
10 . ; 1 ! 0 3 i3 CS " "
20 (&) J K L M N e " "
30 P Q 2) 9 6 # &) " n
40 @ R E/I $ * E/D E/F LS " "
50 111 / 'y 7 (, E/B A 1t 1"
60 5 B S T U \4 W X " B
70 Y Z = : 8 % PC 77 " 1"

XXXVI-11

Standards for the Organization of Data on Cards, Magnetic and Paper Tape, and

Data Record Fi

le

Lesend
E/B
* E/I
E/F
E/D
BL
EL
BLK
* NOTE:

These symbol

represents
represents
represents
represents
represents
represents
represents

represents

represents

s are used

the RCA 301 End Block Symbol

the RCA 301 End Information Symbol

the RCA 301 End File Symbol

the RCA 301 End Data Symbol

the Beginning Label

the Ending Label

a Block of Data or One Cell which contains Data

an Interblock Gap

a single 80-character card

for control purposes only and must not appear within data.

XXXVI-12

I MAGNETIC AND PAPER TAPE STANDARDS

A.

Standard Label Formats

1. Beginning Label (29 Characters)

REEL- DATE- PURGE-
IDENTIFICATION NUMBER WRITTEN DATE
8 Chars. 3 Chars. 6 Chars. 6 Chars.
Y,
N\
E/B |- - - - E/I

2. Ending Label (10 Characters)
BLOCK-COUNT

7 Chars.

— N
-l ITT1]Il

Tape Label Conventions

The 301 User is permitted the following label conventions:
1. Standard Labels may be indicated.
2. Beginning and Ending Labels may be omitted.

3. A Beginning Label may be specified without an Ending Label. However,
an Ending Label may not be specified without a Beginning Label.

4. The User may specify the format of the entire label(s) in which none
of the standard items appear.

5. Additional information may appear in the label following all standard
items indicated above, except the E/I symbol. The E/I symbol must always
be the last character of the label.

NOTES :

1. The PURGE-DATE of a file is the earliest date on which the contents of
the file can be destroyed.

2. The PURGE-DATE of a label written on paper tape always contains six zeros.

3. The BLOCK—-COUNT of a file is the total number of data blocks on a tape,
and does not include Beginning or Ending Label Blocks.

XXXVI-13

RCA 301 Organization of Data on Tape

1. All data records are terminated by an E/I symbol.
2. A batch may contain:

a. A variable number of fixed length records,

b. A fixed number of fixed length records,

c, A variable number of variable length records,
d. A fixed number of variable length records.

3. A batch is always terminated by an E/F symbol. The E/F must be the last .
~character in the batch.

L, When the input to a run is composed of all single records, then mno E/F
symbol appears after the E/I symbol in 35; of the records. Howe?gr, when
the input to a run is batched, then each batch contains an E/F symbol as
the last character of the batch even though some batches may consist of
single records.

5. When labels are not present:

a. Each reel of a file begins with a block consisting of a single E/F
symbol.)

b. Initial and intermediate reels of a multi-reel file are terminated
by a block consisting of a single E/D symbol.

c. The final reel of a multi-reel file, or a single reel file, is
terminated by two successive blocks, the first of which consists of
a single E/F symbol, and the second, a single E/D symbol.

6. When labels are present:

a, Each reel of a file begins with a Beginning Label block, followed
by a block consisting of a single E/F symbol.
b. Initial and intermediate reels of a multi-reel file are terminated
'~ by three successive blocks:
(1) A block consisting of a single E/F symbol.
(2) An Ending Label block.
(3) A block consisting of a single E/D symbol.
c. The final reel of a multi-reel file, or a single reel file, is
terminated by four successive blocks:
(1) A block consisting of a single E/F symbol.
(2) An Ending Label block.
(3) A block consisting of a single E/F symbol.
(4) A block consisting of a single E/D symbol.

Format of Data on Tape

1. Initial and Intermediate Reels of a Multi-Reel File (With Labels)

BL E/H BLK BLK

A\

N

k\\\

N\

XXXVI-14

Final Reel of a Multi-Reel File (With Labels) or Single Reel File
(With Labels)

BL %E/F ////BLK /// BLK% E/F//AEL %E/F%E/D%

Initial and Intermediate Reels of a Multi-Reel File (With No Labels)

E/F ///BLK % BLK/A BLK //// BLK /// BLK///E/D/A

/ / /]

Final Reel of a Multi-Reel File (With No Labels) or Single Reel File
(With No Labels)

E/F % BLK;//A BLK% BLK 7/4 BLK @E/P‘ @E/D%

Single Records on Tape

CRec. E/I/R c2. E/T Z R ?.)E/I

Z

NN

Rec.E/I// Rec. E/17
4 %/ 5 /

/]

one block one block one block one block one block

Batched Records on Tape

NN

7 7
%Rec. E/I |Rec. E/I Rec.E/I /Rec.' E/TI |Rec. E/I |Rec.E/IL
/ ' 2 3 E/F / n 5 6 E/F
L /
N -~ "y re?
one block one block

N\

g

Rec. E/I E/F // Rec. E/I | Rec. E/I E/F
7 8 9

/ A

7
N ¥V ana —

Z
Z

one block one block

XXXVI-15

ITI Card Standards

A,

Standard Label Formats

The standard label formats for magnetic and paper tape also apply to card files
with the following exception:

The STANDARD label items, REEL-NUMBER and PURGE-DATE do not have logical
significance for card files. Thus, the REEL-NUMBER will always be 001
and the PURGE-DATE will always contain six zeros.

Card Label Conventions

The label

conventions for magnetic and paper tape also apply to card files with

the following exception:

The length of a user-defined label must not exceed 80 characters including
the E/B _(space) and E/I symbols.

RCA 301 Organization of Data on Cards

records are not terminated by an E/I symbol, nor any other symbol.
that this rule does not apply to labels.

records may not be batched.

records must be a fixed 80 characters in length.

1. Data
Note
2. Data
3. Data
Format of Data on Cards
1. With labels

[/ BL [, Data [' Data

/
Data E/F EL Blank

2. Without labels

(

Data Data Data

[T Data

E/F [, Blank [, Blank

XXXVI-16

Notes: 1. An E/F card signifies the end of the card file. The E/F Symbol must

appear in the First column, and the remainder of the card must be
blank.

2. A card file with labels must be followed by at least one blank card;
a card file witﬁout,labels tust be Followed by at least two blank cards.

XXXVI-17

I11

Data Record File Standards

A, Standard Label Formats

1.

Beginning Label (29 Characters)

When Beginning Labels are used, they appear in the first cell of the
initial band on each record side.

- SIDE- DATE- - PURGE-

IDENTIFICATION NUMBER WRITTEN DATE
8 Chars. 3 Chars. 6 Chars. 6 Chars.

A r_f_\ _(____/_Mu‘_\ S N

[T INEERERRAEEERAREEERENNNEY

The SIDE-NUMBER is a count- of the current record side in the file.
The SIDE-NUMBER starts at 001 for the first record side in the file.

Ending Label (10 Characters)

When an ending label is used, it appears only on the last record side

of a file, and must always appear in the beginning of a cell. The ending
label contalns the count of the number of data blocks in the file. The
format is as follows:

BLOCK-COUNT
7 Chars.

—"

E/H - E/I .

Data Record File Label Conventions

The 301 user is permitted the following label conventions:

Standard Labels may be indicated.
Beginning and Ending Labels may be omitted.

A Beginning Label may be specified without an Ending Label, however,
an Ending Label may not be specified without a Beginning Label.

The user may specify the format ~of the entire label(s) in which none
of the standard items appear.

The E/B symbol must always follow the E/I symbol in a Beginning Label.
The E/F E/B or E/F E/D E/B symbols must always appear following the
E/I sywbol in the Ending Label.

XXXVI-18

1st
Band

2nd
Band

7. _-Additional information may appear in the label following all standard items.
This information must precede the E/I symbol.

RCA 301 Organization of Data on the Data Record File

1. A1l data records are terminated by an E/I symbol.
2. No records may be split over cells.

3. All records must be fixed in size. If batching is used, the batch must
contain a fixed number of fixed-length records.

4, Data in each cell is terminated with an E/B symbol. Data is restricted to
‘ 897 characters per cell to allow for the writing of E/F E/D E/B in the same
cell,

5. When labels are not present, the following sentinels can appear immediately
following the E/I symbol of the last record of the last used cell, or in the
very next cell of the band, as indicated. When labels are present, the
following sentinels must always. appear following the last character of the
Ending Label, as indicated.

a. The sentinel E/D E/B terminates a partially filled record side.
Additional information for the same file. would appear on the next
logical side to be processed. (Note that this sentinel is never
used following an Ending Label.) '

b. The sentinel E/F E/D E/B indicates the end of data for the last
file to be processed.

c. The sentinel E/F E/B indicates the end of data for a file.

6. The five character sentinel E/F END E/B signifies the end of data in the
first band of a record side and immediately follows the E/I symbol of the
last data record. If there is insufficient space in the last data cell it
will appear as the first five characters of the following cell. When this
sentinel appears, the first cell in the second band must contain the next
data block. : ‘

This sentinel is not used if data appears in all éells of a band or if
" the sentinels E/F E/B, E/D E/B, or E/F E/D E/B appear in the band.

Format of Data on Data Record File

1. Initidl and Intermediate Side of a Multi-Side File (With Labels)

BL E/B BLK BLK BLK BLK ' BLK
) T T T

CELL #0 Bl #2 #3 #i #9
BLK BLK BLK BLK BLK BLK

XXXVI-19

2. Final Side of a Multi-Side File (With Labels) or Single Side File (With

Labels))
1st
Band
BL E/B BLK BLK BLK BLK BLK
CELL #0 #1 #2 #3 #4 #9
2nd J(Jr J’ l'; l s %L
Band EL E/F
BLK BLK BLK E/D E/B ‘
3. Initial and Intermediate Side of a Multi-Side File (With No Labels)
1st
Band
BLK BLK BLK BLK BLK BLK
CELL #0 #1 #2 #3 #4 #9
2nd \L l’ \L ‘L l . .15
Band ‘
BLK BLK BLK BLK BLK BLK
u, Final Side of A Multi-Side File (With No Labels) or Single Side File
(With No Labels) ' ' S
1st
Band o
BLK BLK BLK BLK BLK BLK
CELL #0 #1 #2 #3 #4 #9
2nd \L .l -L l ~L : ‘L
Band B BLK E/F
BLK E/D E/B

5. Single Records on the Data Record File

unused part of

cell
N\,
{')
¢—Record-1-——E/I E/B ¢—— Record-2 —————— E/I E/B
— Ve N
1 cell 1 Cell

XXXVI-20

6. Batched Records on the Data Record File

unused part
of cell

Rec.-1 E/I Rec.-2 E/I Rec.-3 E/I E/B

Rec.-4 E/I Rec.-5 E/I Rec.-6 E/I E/B

J
N 4
1 Cell 1 Cell
7. Partially Filled Record Side
I1st
Band
an E/F
BLK-1 BLK=2 BLK-3 END -
E/B
CELL #0 #1 #2 #3 #4 #9
2nd JL, ;L l l \L
Band JL
BLK=-7
BLK-4 BLK=5 BLK-6 E/D
E/B

XXXVI-21

XXXVII — RCA 301 SUPPLIED ROUTINES

To date, the programs we have discussed have been "Production" Programs. That
is, they perform some function of the particular installations application. There
are other programs necessary for EDP, however.

In an effort to facilitate the user!s development and maintenance of an efficient
system, RCA provides a series of "service routines”. Service routines are special
computer rograms for performing tasks common to all Electronlc Data Proce331ng
Systems ’E§€§“E§55§T€7‘5% “thepoTht that the productlon ‘programs aré operational
(i.e., performing the task for which they were written), they must be completely
free of logic or coding errors, in order to produce accurate results. The checking
of these programs is called "debugging", which simply means getting any "bugs™ or
mistakes out of the programs. To aid in this procedure, RCA supplies to its users
a series of service routines designed and written for this purpose.

Since a basic understanding of the service routines available is a prime
requisite of a good programmer, we will investigate the philosophy and functions of
the RCA 301 Service Routine System. We will not go into the use and operation of
these routines, since it would be more detail than we need at this point. Such in-
formation can be obtained from the RCA 301 Service Routines Specifications or the
RCA 301 Service Routine Manual.

Since the RCA 301 is a flexible system with regard to input-output equipment,
and long term storage, it is only logical that the Service Routine System be devel-
oped to be adaptable to any particular installation's needs. For this reason, there
are actually three Service Routine libraries. The first is written for magnetic
disc storage of the programs; the second is written for a magnetic tape library, and
the third is written for a card library. We will discuss each of these in turn.

DATA RECORD FILE LIBRARY:

To understand the Systems Operation, it is necessary to first understand the
library concept. In this system we are discussing a disc library. In.other words,
each program is maintained on one or more discs, and there is never more than one
program on a disc. The first cell of each disc contains information which identifies
the program contained on the disc. The first segment of the program may not exceed
700 instructions; each segment must start on a new cell. The program discs are
placed in the basket, so that the disc which contains the insertion routine, which
we will discuss in a moment, is located at a standard location. Following that are
the discs containing the programs which are to be used and the last disc is called
a terminal disc, which simply indicates that beyond this point there are no more
programs.

The function of the Insertion Routine is to read the first segment of the de-
sired program into memory and set the P register to address the first instruction.
This insertion routine can be set up to do a single insertion or automatic multiple
insertions. The single insertion will load only one program (the program desired
is designated by a "load message", which is input to the Insertion Routine), execute
this program, stopping at EOR. For run-to-run operation, the discs must be arranged
in the order of processing sequence, following the insertion disc, and terminated by
the terminal disc. The bootstrap routine, (a short routine maintained in memory for
the purpose of calling in the insertion routine) brings in this insertion program,
which in turn calls in the first segment of the program, sets the P register and
stops for operator convenience. The operator can then start the execution of the

XXXVII-1

program by depressing the Start button. Additional segments of the program must be
called in from the discs by the coding. When EOR has been reached, the program must
transfer to a common exit location, which in turn transfers to the bootstrap and the
process is repeated for the second program. -The procedure will continue until the
terminal disc is sensed, at which point the computer will stop operation.

The next classification of Service Routines in this library is the General
Processing Routines. These include the Multiplication and Division subroutines dis-
cussed earlier, the Sort and Merge routines to be discussed in the next chapter and
such other routlnes as: ’

1. File Maintenance, which will position, correct, duplicate, and/or compare
tape or disc stores files.

2. Tape-To-Printer, which edits information from 301 or 501 tapes and prints
the information on the on-~line printer. :
3
3. Card-To-Tape or Tape-To-Card, which edits information from 301 or 501
tapes and punches cards, or reads cards and prepares tapes for 301 or
501 use.

4, Abstract routine, which is used to obtain a summary of the information
contained on magnetic tape.

5. DlSC Print routine, which prints the information contalned on specified
discs.

Machine Code Oriented Programs

Program preparation in machine coding means that the program is prepared for
debugging once it has been coded, desk checked, and prepared as input to the com-
puter. The Program Disc Transcriber routine will read the information from punched
cards or paper tape, relocate the instructions to a new HSM location if the program
is floatable, and then transcribe the program to the disc in proper format. A.print
copy of the program can be obtained by using the Program Disc Print routine.

MAGNETIC TAPE LIBRARY:

The second major RCA 301 Service Routine Library is designed around the use of
magnetic tapes for program storage.

The Tape Library routines are designed to allow for COBOL oriented 1nformat10n
or machine code oriented data.

COBOL Oriented Service Routines:

The first step in any program is development of the coding., Here we are dis-
cussing a program written according to COBOL specifications. Once this has been

written and desk checked by the programmer and his associates, it must be prepared
as input to the COBOL program, which will translate it to 301 machlne code,

XXXVII-2

Once this is obtained, the next step is program testing. 1In order to test the
accuracy of a program, it is necessary to develop good test data (sample records
that will force the program down every possible path). With this sample data and
the predetermined results, it is possible to check the program and see if it is
acting correctly. If not, corrections must be made. To aid in this procedure, there
are a number of Service routines, called the RCA 301 COBOL VALIDATION SYSTEM, often
referred to as the CONSOLIDATA routines: The CONSOLIDATA routines are a set of
remote program check-out routines. It contains a number of routines which will:

1) allow the programmer to package all of his validation routines, test
data, and the program itself onto one or more discs for ease of handling;

2) permit him to distribute the information on the disc(s) to the appropriate
storage facilities in order to start debugging, thus greatly cutting down
set up time;

3 sample data fields at designated points during debugging, giving the pro-
grammer a printed output of this information;

b) print+out any designated areas of memory, as well as the contents of the
output tapes, when the program hangs. In addition, the position of the
input tapes will be given.

When the errors have been discovered, corrections can be made in COBOL and a
recompilation can be made, producing a corrected machine program. When the machine
program finally tests out perfectly, it can then be incorporated as part of the
program library.

Programs initially prepared in machine coding are fed into the computer through
either paper tape or cards. The Program Tape Transcriber routine floats the program,
if necessary, and then transcribes it to magnetic tape in the proper program tape
format. A printed copy of the program may be obtained by using the Program Tape
Print routine. '

Program testing would incorporate an Insertion routine, which would load the
program into memory. The HSM Print routine would give the programmer a picture of
memory at the point that the program hung, and the Tape Print routine would print
out any information or the output tapes. The File Maintenance routine would be used
to correct any errors which are found during the testing procedures.

The new program, having been completely checked out, is stored on magnetic tape,
either in a general library or as part of a "run tape", which is used in an automatic
multiple program run. The Insertion routine is used to insert the first program seg-
ment (limit for a segment is 700 instructions) into HSM. (The program itself must
incorporate steps to load all additional segments). This Insertion routine can
handle single or multiple program insertions.

Multiple program insertions can be accomplished by compiling a "run tape”.
The first three blocks of the tape must be the Insertion Bootstrap and the Insertion
routine. The first block must be manually read into a standard HSM area, the pro-
gram tape number placed in a standard HSM location (2000), and the P register must
be set to a standard location. Then hitting the Start button will bring in the
Insertion routine, which in tumm loads the first segment of the first program on the
"run” tape. The Insertion routine will cause a stop for operator convenience, but
hitting the Start button will cause the execution of the program. Termination of
the program must be a transfer to a standard exit location, which will cause a re-
turn to the Insertion routine. This procedure will continue until all the programs
on the run tape have been processed.

XXXVII-3

Single program insertions can be accomplished in the same manner, except that
only that portion of the Insertion routine which handles single insertions is brought
into memory. The identification of the program to be executed is fed to the computer
through either paper tape or cards. When the program is completed, the operation
terminates.

The General Processing routines are the same as for the Disc Library, except
that the Sort and Merge routines will be for tape only, since a Record File is not
available.

CARD LIBRARY:

This system was designed to meet the needs of an RCA 301 basic card system.
Again, the programs are all machine code oriented.

Program preparation is the same as before, when dealing with machine code, except that
now the program must be prepared on punched cards.

Testing can be accomplished by use of the Loader routine, which will place the
program into memory at the designated locations (floating it, if necessary), and the
High Speed Memory Print, which will prepare hard copy pictures of memory. Again,
the debugging procedure will be a run-to-hang operation. The Loader routine can be
used to correct affy errors found in the program during testing. The initial wrong
cards do not have to be removed from the deck, unless desired, if the correction
cards are placed as the last cards in the deck. This is true since each card is
treated individually, and the information on the correction cards would simply over~
lay the erroneous data.

System operation can be accomplished by using the Loader routine to bring in
the production program. The Loader routine cards must preceed the production program
cards and the insertion of the Loader routine must be manual from the console, as
must be the setting of the P register, in order to initiate the running of the Loader
routine. The Loader routine need not be inserted each time, as long as the produc-
tion program does not destroy it.

The General Processing routines are generally the same as those available for
the other two libraries.

XXXVII-4

XXXVIII - COMPATIBILITY

Having discussed the RCA 301 as an individual system, it is mecessary to mention
that the RCA 301 is also compatible with the other RCA EDP Systems, such as the RCA
501 and the RCA 601. For this reason, it is feasible that many applications will use
the RCA 301 as a '"satellite" computer to these larger systems. This compatibility is
possible due to several inherent features of the RCA 301.

In order to be compatible, it must be possible to feed data from one computer to
the next. This can be accomplished by one of two methods. First of all, the 33 ke
and 66 kc magnetic tape(s) which can be conmnected to the 301 can be utilized by both
the 501 and 601 systems. Secondly, RCA has a computer communications system called
Da-Span, which permits data to be sent over telegraph or telephone lines, thus tying
distant computer systems together. This long distance, rapid communication between
the master and satellite computers achieves the long desired results of immediate
electronic data processing even in an industry which is widely dispersed geographically.

Once the data is obtained, it must be converted from the original code to the
RCA 301 code. As was pointed out earlier, the Translate by Table instruction will
convert any 7 bit binary code to any other 7 bit binary code. This means that 501
or 601 code could be translated to 301 code or vice-versa, thus making all the codes
compatible,

XXXVIII-1

TAPE READ REVERSE NORMAL:

This instruction operates exactly as the TAPE READ FORWARD NORMAL, except that
the tape is moving in a reverse direction and the data is being placed in memory from
right to left.

The OP code is 6.

N indicates the tape unit or the paper tape reader.

The A address gives the location to receive the first character.

The B address gives the location to receive the last character.

The operation terminates when a gap is sensed on tape. If this condition should
exist before A equals B, PRN is set. 1If the gap is found at the same time that the
registers become equal, PRZ is set. If the registers reach equality, no more data
will be transferred into memory, but the tape will keep moving until the gap is

sensed. In this case the PRP is set.

Ag (STA) will contain the address one to the left of the last character read in.
This instruction is repeatable.

TAPE READ REVERSE SIMULTANEOUS:

This instruction is the same as the TAPE READ REVERSE NORMAL except that it is
executed in the Simultaneous Mode.

The OP code is 7.
Everything else is the same.

The PRI's are not affected, but Sg will contain the address one to the left of
the last character read in.

The Merge routine is a separate routine which will collate data that is stored
on from two to eight tapes, preparing output in sequential order. Again the data
must be fixed in length, but it may be batched. The output batch is specified by the
user and own coding and re-run are permitted.

XXXVIII-2

XXXIX — SORTING AND MERGING

Since transactions come in in random order, and since it is normally not efficient
to post them against their masters in this random order, it is necessary to have some
way to order or "sort" this raw data into sequential order based on the same criteria
by which the master file is sorted. Manually, this could be accomplished by waiting
until the transactions are in, sorting the hard copy, and then preparing the paper
tape for input, or by sorting the card transactions before entering them into the
computer run. This, however, is seldom efficient or even practical (especially in
the case of paper tape input), so that it is necessary to have a program which will
read this raw data, sort the records based on a specified criteria, and prepare a
final output which contains the information in sorted order. The sort and merge pro-
grams needed to accomplish this are service routines supplied by RCA to its users.
These routines are generalized in nature, that is the sort could be used on payroll
data in one format one time, and stock information in an entirely different format
the next time. The only requirements are that data records must be fixed in length
and maximum limits as to record size and criteria size are not exceeded. Since the
RCA 301 may have many configurations of peripheral gear, it is necessary to have more
than one Sort routine. Specifically, there will be sorts to handle the following
specifications:

1) a 2 way merge sort using a 10K or 20K memory and one Hi-Data tape group
2) a 2 to 5 way merge sort using 20K memory and two Hi-Data tape groups

3) a 2 way merge sort using 10K memory and one Record File

L) a 2 way merge sort using 20K memory and one Record File

In addition, the sort routines will allow for:

1) disc or tape program storage of the tape sorts (the disc sort will be
written only for disc storage)

2) input from magnetic tape
3) operation in the Normal Mode only or in the Normal and Simultaneous Modes

The output of the sort routines will be ascending or descending order and will
be stored on the medium of the sort (magnetic tape or disc) in the batch size specified
by the user.

Each installation will be able to include some own-coding (instructions to per-
form a task unique to that particular installation, but not commen to all EDP systems)
during the first and last passes of each of the sorts. Re-run (the ability to re-start
without having to begin at the beginning) will be available during the general merge
pass.

The Sorts will be made up of internal sort, which will develop strings or batches
of sorted data until the input data is exhausted and then a merge pass which will
merge these strings into batches of the specified length.

The tape sort routines incorporate two instructions which we have not yet covered.
These are the Reverse Reads. The advantage of these instructions is fairly obvious
if we consider that sorting is actually reading, writing, reading the previously
written data, re-writing it in another order, etc. The reverse reads permit reading
the written information without the necessity of rewinding the tape, cutting the tape
time drastically.

XXXIX-1

APPENDIX A — MICR SORTER READER

A MICR Sorter/Reader is an on-line device which enables a computer, under
program control, to read total or partial images of a paper document into HSM.
The computer can accumulate and verify data from magnetically encoded documents
and control the sorting of these documents into the stackers or pockets of the
Sorter Reader.

The Sorter/Reader has the ability to read 14 magnetic characters. These
consist of ten numerals (0 thru 9) and four special symbols (amount symbol,
on-us symbol, dash symbol, and transit number symbol). The numerals are
represented in RCA 301 as numerals. The amount symbol is represented in the
RCA 301 as a dollar sign ($), the on-us symbol as an equals sign (=), the dash
symbol as a minus sign (-), and the transit number symbol as a number sign (#).

The Sorter/Reader has a maximum rated speed of 1,560 6-inch documents per
minute. A timing cycle of 35.3 ms per document should be used. Approximately
31.424 ms are available for computing during a timing cycle.

MICR TIMING

The 35.3 ms it takes to process one document is divided up as follows:

35.3 N
/
4.6 13.45 17 .25
NV 'Ja’
Leading Edge Latest Time All Data from Leading Edge
Detection of to Make a Minimum Docu- Detection of
Next Document Pocket ment in HSM Document

Selection

As can be seen, 17.25 ms are needed from the detection of the reading edge
of a document to the completion of reading 42 characters into HSM. This leaves
18.05 ms remaining for processing. Moreover, since it takes a minimum of 1.680
ms to load the 6 characterbuffer and only 91 us to transfer the contents of the buffer
to HSM, even more free computing time is available. (This is assuming 7 read
instructions reading 6 characters each) A read instruction may read any number
of characters in multiples of 6. It is not limited to 6 characters. However,
if more than 6 characters are read with one instruction, free computing time
between buffer dumps is not available). Subtracting staticizing, reading, and
STA time (91 us) from 1.680 ms leaves 1,589 ms available for computing.

The fifth time the buffer is dumped into HSM a series of automatic checks
are performed which decreases the available compute time to 1.029 ms.

The time available between the detection of the leading edge of a document
and the latest time that the first 6 characters may be read is 4.700 ms. Because
of the subroutine necessary for leading edge detection, this time is cut to a
maximum of 4.4 ms.

Therefore the maximum total free compute time in one document time cycle

is:
4,400 ms
1.589 X 5 Buffer Dumps 7.945 ms
1,029 after Fifth Dump 1.029 ms
18.050 after Last Dump 18.050 ms

31.424 ms Computing Time

If processing is going on in the simultaneous mode, of course, this time
will be interrupted and therefore decreased.

MICR INSTRUCTIONS

Control Document Feeder

This instruction starts or stops the feeding of documents into the transport
mechanism of the Sorter/Reader.

The OP code is ; .

N - 0 (Zero)
A Address - 0000 (Zeros)
B Address - By, By, By = 000 (Zeros)

B3 0 1 = START
By - 0 = STOP

Document Read Reverse Normal

This instruction reads information from magnetically encoded documents in the
Sorter/Reader into HSM via the MICR Control Buffer.

The OP code is 6.

N - 0 (Zero)
A Address -~ HSM Location to Receive the First Character Read
B Address - HSM Location to Receive the Last Character Read

When the MICR Control Buffer is filled with 6 characters, the first character
is transferred into the HSM location addressed by the A register. The contents of
the A & B registers are compared and if equal, PRZ is set and the instruction
terminates. If unequal the A register is decreased by 1 and the process repeats.
Should the buffer be empty, continued execution of this instruction is held of
until the buffer is filled. If a malfunction occurs or no documents are in
transport, the instruction terminates and PRN is set. If the leading edge of
a document is sensed and the instruction is awaiting initial execution, PRP is
set and the instruction terminates. (Blank fields are treated as spaces)

Document Read Reverse Simultaneous:

The OP code is 7.

N - 0 (Zero)
A Address - Address of HSM Location to Receive First Character Read
B Address - Address of HSM Location to Receive Last Character Read

There are no PRI settings for this instruction.

Pocket Select:

This instruction designates the pocket in which the processed check can
be placed.

The OP code is 8.

N - 0 (Zero)
A Address -~ HSM Location of pocket number
B Address - HSM Location of pocket number
Possible pocket numbers: 0

1

2

3

4

5

6

7

8

9

+

-~ (minus)

If this instruction is not given the document will go to the reject pocket.

Input Output Sense:

The OP code is S.
N - 0 (Zero)

A Address =~ Ag specifies the test to be performed as follows:

Ao TEST
1 Is the Sorter/Reader inoperable?
2 Has the feeder been turned off?
4 Has transporting problem caused

delay of feeding?
Is feeder hopper empty?
Was pocket selection in error?

& 00

Az, A2, A3 = 000 (Zeros)

HSM Location of next instruction if the condition or conditions
being tested are present.

B Address

Documents are automatically rejected to the reject pocket if:

1. They are too close in transport
2, They are. too large
3. A pocket selection is not made

APPENDIX B— ARITHMETIC INSTRUCTIONS

In addition to the arithmetic instructions and subroutines we have discussed,
there are other arithmetic instructions which may be used with a 20K or 40K
processor if a high speed arithmetic unit is attached. This unit and Fixed and
Floating Point Arithmetic Instructions provide for higher forms of arithmetics
such as the multiplication and division of exponential numbers.

The high speed arithmetic unit consists of an addressable Accumulator and
Product Remainder Register, two non-addressable arithmetic registers, and a high
speed parallel adder. The addressable Accumulator and PR Register are 16 positions
in length (8 each) and are not contained in HSM. The result of every arithmetic
operation appears in the Accumulator and, if indicated, in memory. In some cases
the Accumulator and the PR Register will contain pertinent information after an
arithmetic operation. The contents of the Accumulator may be addressed, stored
or shifted and the PR Register may be stored or shifted.

The addresses of the Fixed and Floating Point instructions can be automatically
modified by three different Index Fields. These are 4 characters in length and
are contained in standard HSM locations. Three Increment Fields, each associated with
a particular Index Field, are also available. These are 4 characters in length,
contained in standard HSM locations, and are used to increment the Index Fields via
the Tally instruction.

Indexing and Incrementing are algebraic additions. The range of quantities that
can be used are -19,000 to +19,999 or -39,999 to +39,999 in 20K or 40K processors
respectively. If the result of Indexing produces a negative address or an address
which exceeds memory an alarm stop follows. Only one level of Index Field modifica-
tion is permitted for each address of each.instruction.

A fixed point operand is a quantity which must be 8 characters in length. The
decimal point can be assumed to anywhere within the operand. It is up to the
programmer to align the decimal points prior to addition or subtraction and calculate
its position after a multiplication or division operation.

A floating point operand must be 10 characters in length. The most significant
8 digits indicate the numerical value of the number and are called the mantissa. The
least significant 2 digits indicate the magnitude of the mantissa and are called the
exponent., All Floating Point Operands must be "normalized" before being used in
arithmetic operations.¥

This means that the exponent must be adjusted (done by processor) so that the
assumed decimal point is to the left of the MSD of the mantissa. After floating
point operations are completed, the exponent indicates the position of the decimal
point.

All operands must have their MSD in an even HSM location and must be addressed
by their least significant diad. All operand characters should be numeric unless
indicating a negative number or an overflow condition.

MSD OF OVERFLOW
1. Fixed Point Operands "one" bit in the 2% position
2. Exponent "one” bit in the 24 position

B-1

LSD OF NEGATIVE

1. Fixed Point Operands "one" bit in the 25 position
2. Exponent "one" bit in the 25 position
3. Mantissa "one™ bit in the 25 position

An overflow condition is not possible in the mantissa. If attempted the
Accumulator would shift one position to the right, a decimal ""one" would be inserted
in the MSD of the mantissa, and the exponent would be adjusted accordingly. Overflow
is possible only after an arithmetic operation. If present when initiating an
arithmetic operation an alarm stop will occur.

All floating point operation results are automatically normalized and rounded.
Fixed point operation results are not.

Examples of 301 floating point format:

NUMBERS NORMALIZED NUMBERS

+ 0.12345678 =+ ,12345678X100 1234567800
+123.45678 =+ ,12345678X103 1234567803
-123.45678 =- .12345678x103 1234567Q03

0 = 0 X100 0000000000
+ 0.00012345 =+ 12345 X10~3 123450000L
- 0.00000001 =- .1 X10—> 10000000-0P
+ .123456789x1079 1234567879

Any number between 10-99 to 10%99 may be represented in floating point format.

HSM LOCATIONS CONTENTS

0226-~-0229 Increment A Index Fields
0230-0233 A Index Fields

0234-0237 Increment B Index Fields
0238-0241 B Index Fields

0242-0245 Increment AB Index Fields
0246-0249 AB Index Fields

ARITHMETIC INSTRUCTIONS

The N code in each arithmetic instruction designate the type of address
modification (if any) and the location of the arithmetic operands. The following
table can be used to determine the N character for any particular instruction.

ADDRESS A,B A B A, B A5
ADDRESS MODIFIED BY INDEX FIELD: None A B A,B AB
0 1A= contents of A Address o R
P | B= contents of B Address 0 4 2 6 1
E !{Result stored into contents of
R | A Address and accumulator
A = contents of accumulator
N §B= contents of B Address : - M K 8] J
D |Result stored into contents of ;
R A Address and accumulator
E { A= contents of A Address
g I B= contents of accumulator & D B F A
u fResult stored into contents of
1, {A Address and accumulator
T } A= contents of accumulator
B= contents of accumulator] " U S W /
L |Result stored into contents of
0 | A Address and accumulator
2 A= contents of A Address
B= contents of B Address -
. 8 @ 9
¥ Result stored into accumulator (sPace))
o {A= contents of accumulator
N |B= contents of B Address Q * E/1 E/F R
S Result stored into accumulator
A= contents of A Address
B= contents of accumulator : H ; + : 1
Result stored into accumulator)
A= contents of accumulator
B= contents of accumulator .
Result stored into accumulator é Y % E/B = Z
i

Staticizing and execution time for each instruction will be indicated under its
description. Additional time, depending upon the specific instruction, may be
applicable.

CONDITION ADDITIONAL TIME
Indexing an address =21 us

Fetching a fixed point operand from HSM (A or B) -28 us

If and "end around condition" exists in an operand - 7 us

Storing a fixed point result in HSM ~28 us

Fetching a floating point operand from HSM (A or B) -35 us

Alignment of an operand during floating point operations - 7 us PER SHIFT
Normalization of operands during floating point operations - 7 us PER SHIFT
Rounding of a floating point result - 7 us

Storing a floating point result in HSM -35 us

B-3

@ Fixed Point Add (FXA) Non~Repeatable

General Description

This instruction performs decimal addition in accordance with algebraic rules
producing a non-zero suppressed sum in the Accumulator. Depending upon the
conditions as specified by the N character, the addresses of the operands can be
indexed and the operands may appear in HSM or in the Accumulator. The sum may be
placed in HSM if it is indicated. The operands are eight characters in length
and obey the rules concerning addressing sign, and overflow as described in the
fixed point word format description.

Format
Operation @
N as discussed previously.
A Address HSM location of least significant diad of augend and/or sum,
B Address HSM location of least significant diad of addend.

Direction

Right to left.

PRI's
PRP is set if the sum is positive.

PRZ is set if the sum is zero.
PRN is set if the sum is negative.

Timing

35 us + 7 us + additional timing.

Example
Instruction
Operation N A Address B Address
@ 0 2009 2017

HSM Before Instruction is Executed.

2002 [2003

2004

2005

2006

2007

2008

0009

2010

2011

2012

2013

2014

2015

2016

2017

8 2

HSM After Instruction is Executed.

2002] 2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

Contents of Accumulator After Instruction is Exec

8 6 0 1 8 8 0 1
Accumulator

PRI

PRP is set.

uted.

(Fixed Point Subtract (FXS) Non-Repeatable

General Description

This instruction performs decimal subtraction in accordance with algebraic rules
producing a non-zero suppressed difference in the Accumulator. Depending upon the
conditions as specified by the N character, the addresses of the operands can be
indexed and the operands may appear in HSM or in the Accumulator. The difference
may be placed in HSM if it is indicated. The operands are eight characters in
length and obey the rules concerning addressing sign, and overflow as described in
the fixed point word description.

Format
Operation (
N as described previously.
A Address HSM location of least significant diad of the minuend and/or
difference.
B Address HSM location of least significant diad of the subtrahend.
Direction

Right to left,

PRI's
PRP is set if the difference is positive.

PRZ is set if the difference is zero.
PRN is set if the difference is negative.

Timing

35 us + 7 us + additional timing.

Example
Instruction
Operation N A Address B Address
8 3363 3371

B-6

HSM Before Instruction is Executed

335613357 | 3358] 3359] 3360 3361|336213363]3364 13365133661336713368133691337013371
3 7 4 3 0 7 8 9 6 1 3 4 3 2 1 R
HSM After Instruction is Executed
335613357 13358 B359 360 |3361 1362|3363 [3364 3365 13366 3367336813369 {3370 13371
3 7 4 3 0 7 8 9 6 1 3 4 3 2 1 R
Accumulator After Instruction is Executed
9 8 7 7 4 0 0 8
PRI
PRP is set.

B-7

) - Fixed Point Multiply (FXM) Non-Repeatable

General Description

This instruction performs decimal multiplication in accordance with algebraic
rules producing a non-zero-suppressed product in the Accumulator and the PR
Register. The LSD of the product will be in the LSD position of the PQ Register.
The sign of the product will be indicated only by the 25 bit of the LSD of the
Accumulator.,

Depending on the conditions as specified by the N character, the addresses of
the operands can be indexed and the operands may appear in the HSM or in the
Accumulator. The product may be placed in HSM if it is indicated. The operands
are eight characters in length and obey the rules concerning addressing as
described in the fixed point word description.

If one operand is zero, the resultant zero product will produce all zeros in .
both the Accumulator and the PR Register. Execution time for the multiply will
be faster if the multiplier is the smaller operand.

Format
Operation)
N as described previously.
A Address HSM location of the least significant diad of the multiplicand
and/or product.
B Address HSM location of the least significant diad of the multiplier.
Direction

Right to left.

PRI's
PRP is set if the product is positive.

PRZ is set if the product is zero.
PRN is set if the product is negative.

Timing

Average Execution Time 35 us + 315 us + additional timing.

Example

Instruction

QEeration
)

N A Address B Address
L 3105 4615

HSM Before Instruction is Executed.

A - IR

1600

4601

4,602} 4603|4604

4605

1606]4607] 4608| 46094010 14611] 4612{ 4613 [4614f 461

1502

HSM After Instruction is Executed.

4600

4601

4602 4603 4604

4605

1606 J4607] 4608146094610 [4611] 46127 4613 {4614} 461

Contents of Accumulator and PR Register After Instruction is Executed.

P{4 |3 (4})4}o 1 4§ 5

1 oy 31715 (4711
{
— T T T T T T T
Accumulator PR Register
PRI
PRN is set.

& - Fixed Point Divide (FXD) Non-Repeatable

General Description

This instruction performs decimal division in accordance with algebraic rules
producing a non-zero suppressed quotient in the Accumulator and Remainder in the
PQ Register. The sign of the quotient will be indicated by the 2° bit of the LSD
of the Accumulator. The sign of the dividend will be retained and indicated by
the 25 bit of the LSD of the PR Register. If the decimal point of the operands
are aligned, the decimal point of the quotient will precede the MSD.

The absolute value of the dividend must be less than that of the divisor.
If this rule is violated, the computer stops with a ARIE Alarm Stop.

Depending on the conditions as specified by the N character, the addresses
of the operands can be indexed and the operands may appear in HSM or in the
Accumulator. The quotient may be placed in HSM if it is indicated. The operands
are eight characters in length and obey the rules concerning addressing as described in
the fixed point word description.

If the dividend is zero, the quotient will be zero, producing all zeros in
both the Accumulator and the PQ Register. If the divisor is zero, the computer
stops with a ARIE Alarm Stop.

Format
OP &
N as described previously.
A HSM location of the least significant diad of dividend and/or quotient
B HSM location of the least significant diad of divisor.
Direction

Right to left,

PRI's

PRP is set if the quotient is positive.
PRZ is set if the quotient is zero.
PRN is set if the quotient is negative.

Timing

Average execution time - 35 us + 322 us + additional timing.

B-11

Example
Instruction
Operation N A Address B Address
& 0 4583 4575
HSM Before Instruction is Executed.
45681 4569] 4570] 45711 457214573 4574 14575| 4576|4577 4578|4579| 45801 45814582 | 4583
0 0 0 3 2 1 0 0 0 0 0 0 6 7 8 9
HSM After Instruction is Executed.
4568 4569 4570] 4571 4572] 4573] 4574] 45754576 | 457714578 4579|4580} 4581 4582 4583
2 1 1 4 9 5 3 2 0 0 0 0 6 7 8 9
Contents of Accumulator and PR Register After Instruction is Executed.

2 1 1 4 9 5 3 2 0 0 0 2 2 8 0 0
\ 7 —
N ~N7
Accumulator PR Register

PRI
PRP is set.

Floating Point Arithmetics Non-Repeatable

$ - Floating Point ADD (FLA)

General Description

This instruction performs floating point decimal addition in accordance with
algebraic rules producing a rounded normalized floating point sum in the Accumulator.
Depending upon the conditions specified bythe N character, the addresses of the
operands may be indexed and the operands may appear in HSM or in the Accumulator.

The sum may be placed in the HSM if it is indicated. The operands are ten characters
in length and obey the rules concerning addressing, sign, and overflow as described
in the floating point data format description.

The Floating Point Add sum is rounded in the following manner:

During the alignment of the operands, the mantissa of the operand containing
the algebraically smaller exponent will be shifted right with overflow digits
entering the PQ Register. The addition is extended to these digits in the PQ
Register with zeros assured for the extension of the operand with the algebraically
larger exponent. If normalization requires the sum to be shifted left, the re-
quired number of digits will be shifted from the PR Register to the Accumulator.
Upon completion of normalization, the MSD of the PR Register will be examined, and
if 5 or greater, a one will be added to the LSD in the Accumulator. In the
exceptional case, where this addition produces a carry through the entire eight
digits of the Accumulator, the Accumulator will automatically be shifted right
one position, a one will be inserted in the MSD, and the exponent is incremented
by one.

Format

Operation - §$

N - as described previously.

A Address - HSM location of the least significant diad of augend and/or sum,
B Address - HSM location of the least significant diad of addend.

Direction

Right to left.

PRI's

PRP is set if the sum is positive.
PRZ is set if the sum is zero.
PRN is set if the sum is negative.

Timing

35 us + 7 us + additional timing.
Example

Operation N A Address B Address
$ 0 4609 4619

HSM Before Instruction is Executed.

it

600160 116021 603160446034 606]4607 4608 4609 4610/ 4.6 1 461Au613 4614 461 46164617]4 614619

4 6 | 7 01]3 4 6 19 ol 43 4L 1 5 6 17 3 4 15 0 1

HSM After Instruction is Executed.

1:600 1460 1160216031604 16034608 4604 4608 460946104610 461246134614 4615|4616 L617146181461D

4 6 713 8 |0 3 6 | O 4 13 415 6 7 3 4 F 5 0 1

PRI

PRP is set.

~ Floating Point Subtract (FLS) Non-Repeatable

General Description

This instruction performs floating point decimal subtraction in accordance
with algebraic rules producing a rounded normalized floating point difference
in the Accumulator. Depending upon the condition specified by the N character,
the addresses of the operands may be indexed and the operands may appear in
HSM or in the Accumulator. The difference may be placed in HSM if it is in-
dicated. The operands are ten characters in length and obey the rules concerning
addressing, sign, and overflow as described in the floating point data format.

The difference is rounded in the identical manner as described under the
Floating Point Add instruction.

Format
Operation - :
N - as described previously.
A Address - HSM location of the least significant diad of the minuend

and/or difference.
B Address - HSM location of the least significant diad of the subtrahend.
Direction

Right to left.

PRI's
PRP is set if the difference is positive.

PRZ is set if the difference is zero.
PRN is set if the difference is negative.

Timing

35 us + 7 us + additional timing.

Example
Operation N A Address B Address
: 0 5837 5827

HSM Before Instruction is Executed.

5818p819p820p 8215822582 35824b825p826p82 45828582 95830583 1583215833583458355836.:5837

1 3 61 7y 312 {0 0t 0| Ki 8 713 12 1 01 {3 0 3

HSM After Instruction is Executed.

F818 [5819p820b52 15822h82 3682 45825582 658245828582 95830583 1583245833583458395836 5837
3 J

1 -% 3 61 7 312 0y O 0f K| 8 7 312 018 7 6 |0
i

PRI

PRP is set.

B-15

" - Floating Point Multiply ~ (FLM) Non-Repeatable

General Description

This instruction performs floating point decimal multiplication in accordance
with algebraic rules producing a rounded, normalized floating point product in the
Accumulator. Depending upon the conditions specified by the N character, the
addresses of the operand may be indexed and the operands may appear in HSM or in
the Accumulator. The product may be placed in HSM if it is indicated. The operands
are ten characters in length and obey the rules concerning addressing and sign as
described in the floating point data format description.

During normalization, digits are shifted from the PR register to the Accumu-
lator (if required) and rounding is performed as discussed under the Floating Point
Add instruction.

If either operand is zero, the Accumulator and the PR register will be all
zeros, including the exponent.

Format

Operation - "

N - as described previously.

A Address - HSM location of least significant diad of the multiplicand

and/or product.

B Address - HSM location of least significant diad of the multiplier.

Direction

Right to left.

PRI's

PRP is set if the product is positive.
PRZ is set if the product is zero.
PRN is set if the product is negative.

Timing

Average execution time - 35us + 322us + additional timing.

Example
Instruction

Operation N A Address B Address
" 0 6743 6743

B-16

HSM Before Instruction is Executed.

6730673967366737h739673F674067416 744674367 44674467 4667476748674967506751675467 5

6 3 1 5 6 7 8 9 0 7 3 4 5 16 7 8 9 6 0 |2

HSM After Instruction is Executed.

b7306735467366737ph73367390 740674167446 7436740467436 7466747674 8674967 5067 51167546753

2 1 8 3 1 9 7 3 0 9 3 (4 |5 6 7 8 9 6 0 |2

Contents of Accumulator and PR Register After Instruction is Executed.

N Vv

Accumulator PR Register

PRI

PRP is set.

B-17

/ Floating Point Divide (FLD) Non-Repeatable

General Description

This instruction performs floating point decimal division in accordance with
algebraic rules producing a rounded, normalized floating point quotient in the
Accumulator. Depending upon the conditions specified by the N character, the
addresses of the operands may be indexed and the operands may appear in HSM or in
the Accumulator. The quotient may be placed in HSM if it is indicated. The oper-
ands are ten characters in length and obey the rules concerning addressing and
sign as described in the floating point data format description.

If the first digit produced in the quotient is zero, normalization takes place
immediately, so that eight digits are produced in the quotient. Rounding is per-
formed by increasing the LSD of the quotient by one if the remainder is greater than
one half the divisor. Since the quotient is rounded, the remainder becomes meaning-
less and is not available.

If the dividend is zero, the Accumulator and the PR Register will be all zeros
including the exponent. If the divisor is zero, the computer stops with a ARIE Alarm
Stop.

Format

Operation - /

N - As described previously.
A Address - HSM location of the least significant diad of the dividend and/or
quotient.

B Address - HSM location of the least significant diad of the divisor.

Directions
—_———

Right to left.

PRI's
PRP is set if the quotient is positive.

PRZ is set if the quotient is zero.
PRN is set if the quotient is negative.

Timing

Average execution time - 35us + 329us + additional timing.

Examgle

Instruction
Operation A Address B Address
/ 1009 1019
HSM Before Instruction is Executed.
100081001f10041003100410041006{1007100810094101101 1012101 310141015001 6101710191019,
8 3 4 3 2 1 0 1 0 2 3 6 2 0 1 3 2 2 0 1
HSM After Instruction is Executed.
1000fL00 11100241 0031 004§ 0050 006100710081 00941 0110111014101 3j101401015[10161017[L01 1019
2 3 0 4 6 7 0 0 0 2 3 6 2 0 1 3 2 2 0 1
PRI
PRP is set.

The final register settings for the high speed arithmetic instruction are
primarily determined by the fetching of operands and/or storing of the result.
These eight possible settings are imdicated below. Where 8 characters are indicated,
a fixed point operand was considered, and where 10 characters are indicated, a
floating point operand was considered. Because of the diad addressability of these
instructions, Ap and By settings will be on the corresponding character of the diad.

Final Register Setting Chart

Location of A | Location of B | Storage
Address or A Address or B of A Final B Final
Operand Operand Result
A B A Ai-8 or 10 ch. A
ACC B ACC Aj-2 ch. A
A ACC A Ai-8 or 10 ch. Af
ACC ACC ACC Ai-2 ch. Aj
ACC ACC A Aj-2 ch. Aj-8 or 10 ch.
ACC B A Aj=-2 ch. Ai-8 or 10 ch.
A ACC ACC Aj-8 or 10 ch. Bi
A B ACC Aj-8 or 10 ch. | Aj

There are several instructions available which aid the user to utilize the new
high speed arithmetic instructions more fully. Two of these are the Store Accumulator
instruction and the Shift Accumulator instruction.

Z Store Accumulator (SAC) Non-Repeatable

General Description

This instruction places the contents of the Accumulator and the PR Register, as
designated by the N character, into HSM. The sign and overflow bits are stored.

Format -

Operation - Z
N code designates the type of address modification (if any) and what is to be
stored. The following table indicates the possible alternatives.

ADDRESS AB|] A|B |[A,B | A.B
ADDRESS MODIFIED BY INDEX FIELDS None A B AB AB
To Accumulator and PQ Reg., - 16 ch. 8 @ -) 9
Be Accumulator - 10 ch. & D B F A
Stored | Accumulator - 8 ch. ™) M| K s J
PQ Register - 8 ch. 0 4 12 6 I

A Address - 0000 (zeros).
B Address - HSM location of least significant diad where designated portion
is to be stored.

Direction

Right to left.
B=-20

PRI's

None

Final Register Settings

Af=Ai
Be B;-8, 10 or 16 characters

Timing

Staticizing - 35 microseconds

8 character store - 23 microseconds

10 character store - 35 microseconds

16 character store - 56 microseconds

Each address modification - 21 microseconds

Example
Instruction
Operation N A Addresé B Address
Z 2 0000 4349
HSM Before Instructions are Executed Index Field B
4562 | 4563 | 4564 | 4565 | 4566 | 4567 | 4568 | 4569
Z Z Z Z Z Z Z Z 0 2 2

Accumulator and the PR Register Before Instruction is Executed

Y Y
Accumulator PR Register -

1567 | 4563 | 4564 | 5565 | 5566 | 4567 | 4568 4569

5 2 6 3 7 4 8 1

Timing

35us + 23us + 2lus.

’

Final Register Settings

Af
Bf

0000

4561 B-21

= Shift Accumulator (SHA) Non-Repeatable

General Description

This instruction shifts the Accumulator and the PQ Register a specified number
of times in either direction. In most cases, 8 places will be the maximum shifts
desired since this number permits the shifting of the entire contents of the Accumu-
lator or PQ Register. In the rare cases where more than 8 places are desired to be
shifted, up to 15 places may be shifted by indicating the number of places in binary
notation. (Use 301 N COUNT).

Characters are shifted off the end of the Accumulator and lost, while vacated
positions on the other end are filled with zeros. The sign positions in the Accumu-
lator and PQ Register are not affected by shifting. However, the overflow bit (if
present) is destroyed.

Format

Operation - =

N - 20 =1 A and B addresses are modified by the AB Index Field.
= 0 1Ignored
2l =1 B address modified by B Index Field
= 0 Ignored
22 = 1 A address modified by A Index Field
= 0 1Ignored
23 = 1 Couple Accumulator and the PQ Register (shift as one unit)
= 0 Uncouple Accumulator and the PQ Register (shift separately)
2% = 1 Shift Right
= 0 Shift Left
25 = 1 Shift Accumulator
= 0 Shift PQ Register

Only one level of Index Field Address Modification is permitted.

The various combination of bits that may be used in the N character are
indicated by the following table:

4 2 6 1
Address
Address Portion A,B A B A,B AB
Modification by None A B A B AB
Index Field
Shift Accum. and PQ Reg. Left 8 @ -) 9
Shift Accum. and PQ Reg. Right H ; + ! I
Shift Accumulator Left (&) M K o] J
Shift Aceumulator Right " U S W /
Shift PQ Register Left 0 4 2 6 1
Shift PQ Register Right & D B F AA
A address - 0000 (zeros).
B address - Bg, By, Bz - Ignored
B3 = Number of shifts.

Direction

As specified by the 24 bit of the N character

B=22

PRI's

None

Final Register Settings

Af =Ai
Br = Bj
Timing

Staticizing - 35 microseconds
Couple Shift Time - 7 microseconds per shift
Uncouple Shift Time - 7x %

where N = number of shifts

the time must be a multiple of 7 microseconds

Each address modification - 21 microseconds.

Example
Instruction
Operation N A Address

= & 0000

Accumulator and PQ Register Before Instruction is Executed

\ 4 N/
Accumulator PQ Register

Accumulator and PQ Register After Instruction has been Executed

Timing

35us + 1lhus

Final Register Settings

Ag
Be

0000
ooo4

B-23

B Address
0004

Tally Instruction ‘ Non-Repeatable

General Description

The TALLY imstruction enables the programmer to increment an Index Field by its
associated Increment Field. All three, or any combination of the Index Field may be
incremented by a single Tally instructiomn. Except for the ability to increment the
Index Field, the Tally instruction operates exactly as in Chapter

Format

Operation .XO

N - 27 =1 TIncrement AB Index Field by the quantity in the AB
Increment Field.
=0 Ignored

21 =1 TIncrement B Index Field by the quantity in the B
Increment Field.

=0 Ignored

27 =1 1Increment A Index Field by the quantity in the A
Increment Field.

=D Ignored

23, 24,,,25 =0 .Ignored

A Address - HSM address of the diad containing the quantity to be tested

B Address — HSM address of the next instruction to be performed if quantity

being tested has not been exhausted.

Final Register Settings

Ap = Aj
Bf = Bi
Timing

Additional timing associated with the incrementing is 42 microseconds per
Index Field.

Examgle
Instruction
Operation N A B
X 7
Index Field Before Increment Field Index Field
Instruction After Instruction
AB = 7561 AB = 1435 AB = 8996
B = 7602 B = 2000 B = 9602
A = 3211 A = 3150 A = 6361

Additional Timing

126 microseconds
B-24

Tepe [R5 1O & 20 read ia 1600

L-fmp!a FE Tt Totel
RCA 301 COMPUTER PROGRAM RECORD
TITLE
CODER DATE
REMARKS SEGMENT NO.
FROM NO. |+ |OP| N A B REFERRED
'['322 Icl:';. Logi¥'°N 55 01 2‘3|4l5 6l7|8 9 ;3 REMARKS BNOO)f
| [Tzec [T [[clolelololelolo Ru-SJ-BCT
\zl o |47 |0C>03C*2.g| Read T QD e
21 |wglalnlslolz]o]3 Sense ED/EF Trdicater
EE BRI RNANRNANAR Telly
y pPlegylefvjelefol2]\|2]2] Cmeprc Dept #
Hia | Sl cwiljzjzinelzlz)|© Testirg PRI of Compare Tnghrvedisn
C 6 | [ahloe=z=1 124 Complie, Section de
v LWl [2]z[5le [2lz2]1 [@ Test PRI s
Recc golo | o IN|71)[0]2]7|=2])|3]|5 Hee.
QP Halzh w22 s
FAE-E B IR NG EIEDES
b Do vt felzhvig 2]t [0 Trangfer Baak ta Rd Tope
] AEE NIENEENENANE Set Counter ¥ Wark Hreas
jOcjoo|loo|0[6 |60 N (DSave Hreas for Dept ¥ Sect ¥
Jolole] ol olo|e o] Constants @G Charseter FeldsGor Aldd
ol ol Eleld] Bl5& | .
cMislv slololz]) (2|2 S8 QeptHF Sect ™
RNl e/o/olow] [a Clezar Print Wrea
"Mz TeToloTd6]OC Meove Rept® = Print Frea
o Bl |s|o|ol 0|06 O] | Print Dept
vl elall (4|20 %O
olglh|2(2|4[o]|a| 248 Priat 0 Monider Ou‘l“afSngC‘rr!._
o1l Tyl | Ho e+ |
civil (ol [(2220

28-00-004 PAGE l OF

SEGMENT NO.

DATE

RCA 301 COMPUTER PROGRAM RECORD

REMARKS

TITLE
CODER

OF

PAGE &

s¢
)rs
T
3
s 4
o al
M * v »“1 «
prid - —
" o | ol el o o
Sy w9 018 g2 m <
v HH - < Mﬁ dmwwﬂ mm
-2 » < m\m s 3| \TA — |-
o x| 2 d s I |
> il Bd A - e =]
Ml P\ﬂi V.Q\N < & % - ~ led
< o B o |y
r] P “ W 3 (| ¢ AL £
[B P ot [e B B & IRk
f.,l. I [l gl) J
& o > M
w - @ .
- NI O0latm V75| 9F |V o T[0T e 0
© -‘90 % MO — | Q| M|~ AULAu do| —| Q| o] O M| s || o
~jd N o %nzrw Q9| - |~ oo |oir | 99O~ - | ~ ||~
< [N RTASQ D o #|] a0 O DO | |] | 1|4
o U4 [ot 0 | Nfs o] 029 | 0] Ola O T o] Nk 5| ©[O
<Jt]z]|~| x{0|]eA 0] O] m| 0| o]0 |—[O|N|=| O] o 7| —|O| N
)12 N[=] o] o] =[] o] O[] | —[0] 9 || 0|1
N RN EMER FEEEEE NE R R ENEEN
S oCuVVVUMWR.HQ\%HO@VJ”“BM\MVV.WV
q k<04m_ ol ol o o oo R el o o o R | b | o el f e e | oan | D D
V1ivoll3g o | o oo e oo B Sl B Sl BEe S Sl s | o am boeme b e | o | e
mm N M % Do o " FV)
TO
S N o
= . -

28-00-004

RCA 301 COMPUTER PROGRAM RECORD

TITLE

CODER DATE
REMARKS SEGMENT NO.
FROM NO. : 'n_) OP| N A B REFERRED
Loc. NS, LOCH:¥I0N 5_5 ofl1]2|3fa]|s|el7]8]o By REMARKS o,
4 ol o 5 ; ' G oy
Al o]l 712 188201571
250 iP‘“i"(.‘ﬁ’lﬁﬁ‘?‘)ﬁ
I BN NI R PARIA R EY IS (Y [S) |
200y [elalo 2]t]8]7 Cemp ED
i R ENAREIEIFBEE
'»;s Qo *-C_GCDQQOC}«S&
Sopoleje|21Z|2l2Z | 2la2
&1 | Vi |olzlilal2 geo Bock =¥ Rl
val BN K- I TV B RS 1legres | Meit
- M N NRPRNCIEEER N
ofelo
0
—- .

28-00-004 PAGE '3 OF

INDEX

Page No.

A
A AddresSS..ieececacececcascccnsacas VIII-1
Add...eiienesnnccnanns ceresccanaces XI-2
Address Modification..... ceresecens XVIII-1
A Register.ieieeeeeeeaneccosscncacs IX-1
ARIE .. veeeseccanasoccoonacnaan XXXIV-1, XXXV-4
Arithmetic Unit..ccceeacoccecences . 111-3
Assertion BOX...eeeeeeonesooes .. X=5, XIX-4
B
B AdAresSS.eeeccecececcacss eereanace VIII-1
Band..eeeveeceose ceceecocaccons V-2, XXIX-1
Band Select Normal....ceeeeecen. ‘e XXIX-2
Band Select Record File Mode....... XXX-1
Base..... teeteccensceacenes ceenaans V-1
BAtCh.eeeeeeeeooseaonccnnnens ceeaes XXI1-1
Batching.seeeeeeenn. teccesateaseae XXV-1
Binary Addition..... ceceresaee e V-3
Binary Code.e.eeeeennn ceeceneesanca V=2
Binary Numbering System........ ceen V-1
Binary Subtraction......ceceeeeees v-3
Bifeeweeeoooosossoacoonns csecsraene VI-2
BlOCK.:.eeeeeeeeeosasansasacoons e VI-3
Block Read from Record Normal...... XXIX-3
Block Read from Record Simultaneous XXIX-17
Block Write to Record Normal....... XXIX-4
Block Write to Record Simultaneous. XXIX-17
Bootstrap.seeeeceeceseecoccecns teees XXXVII-1
Box No. ColumnN..eeeeeeceseososcasas VIII-1
B Register..eeeeeeeeecacennnn ceeeen IX-1
BT C . eeeeeeososocosasassscesssncsnscas XIII-1
Buffer....iceeceeccencans et .. XXVI-1
Bus Adder...eeeececens ceecaesens ces IX-1
c
Card Punch Normal......ceceee vess XI1=2, =4
Card Punch SimultaneouS.......... XXVI-5, -6
Card Read Normal icveeeeceecoacance XiI-1, =3
Card Read SimultaneoUS..ceeeeeeecess XXVI-5
Cell.eeeeeneannannnane ceccacane 1Vv=-2, XXIX-2
Chaining..eeeeeeeeeaas ceeeenenanne XXXIII-1
Characterlee.eeeeeereseacasonns e VI-2
Closed Subroutine....... eeseseaasen XXXIV-1
CO0R.ireeeeseacsssncconsanscnnanse .o I11-1
Column..... cesecosmsenssasscaccsnes Vvi-1
CompatibilityV.eeeceeeaoeeens e ree .. XXXVITII-1
Conplementing.s.ceeees.. ceeeeecaneas V-3
Computer Elements........ seacecasas III-1
Conditional Transfer of Control

ED/EF Indicator...cecececcacecens XIII-3

Interrupt Indicator.....ecece... XXX-3

Overflow Indicator....... feeee.. XXXIV-1

PRITSeveeennaens teccesecesann - XIv-1

Simultaneous ED/EF Indicator.... XXVI-7

Simultaneous Mode....e.eeeeeenn- XXVI-7

Page No.
CONsSOle..viieeeneenansaneonnn IITI~2, XXXV-1
Consolidata....ecee... Ceeecsanaces XXXVII-3
Control Totals.....c.ue..oua vewenes XXVIII-3
Control Unit.ieeeceaceaans ceeenes II1-3
CONVErSiON..eeeaeecaeeoasacacsoces II-1
Conversion

Binary to Decimal.......... e V-3

Decimal t0 BiN8IV...oeveveaene V-2
(70} of T cecereacena e I11-2
2
Da-Span.v.eeecccacens ceccasanan eee XXXVIII-1
Data Disc File..ui.ieiieveneeannn .. XXXI-1
Data Record File...ovooiieeenaenans XXIX-1
Data Record File Mode....ceeeu... XXX-1
Data Register......cocceuinanan XI-4, XIv-1
Debugging..coeeeenaecancnas I1T1-2, XXXVII-1
Detailed Flow Chart............ X-1, =4, -9
Diad........ ceesscectsaertecnaaenns VII-1
Direct Addressing.......c.ceveuane XXXII-3
DiSCeueeeecenecaaoacnacanonnes I1vV-5, XXIX-1
Divide.eiieeeeeeoeacaeenonnaanaans XXXIV-2
Documentation of a Program....... XXVIII-16
Dual Recording.....ceeeeeeeecceas Iv-2
E
EAM Cards...iceeeevesccocans we.. I1II-1, IV-4
EB.ieieiieeennnns teecseesesesanen XXiX=3
0 ceen VI-=3
ED ROULINES . veeeeereeeeoceacnanane XXVIII-10
Editing....... ettt XXVII-1
EF ettt iiiitieteiecseseacanecannns " VI-3
EF ROULINES ... eeeeeeneeecoceacans XXVIITI-12
End Around Condition......ceeee.. X1-=3
1070, AP X=5, XXVIII-12
R XI1I1i-1
ETW Routines......ccevineeeccaans XXVIII-S8
Exclusive OR..eevurennnn. eeeaaaa XX~2
£
FAA....... ceecss s sesccacnscces s XXII-4
Field........ teectescnecanaeraans VI-1
Fixed Format....oueveeeieeeeennns VI-1
Fixed-Variable Format............ VI-1
Floatable......vveeeeuenss XXXIV-1, XXXVI-1
Floating...ooeeieeiieneeceancannn XXVII-5
Flow Charting.,.......... ceesenaan X-1
FOR...... e acceeesee s eaee e .. XXX-1
From Instruction Location........ VIII-1
Functional Flow Chart.......... X-b, -8

INDEX (Cont'd)

‘Page No. Page No.
G N

GAP.vessvosvosnancancennnwnnsess LLI=L TIV=2 N Character..vee.eeeeeeeenenanenoes VIII-1
N Register.ivueeevueenoieeeeennannn - IX-1
H N Table....vveeeee.n. cieecacenssne XI-3

Halt..... ceesencaacansnesananneaans XIiIi-3 0

Halt ROULINES..veescnmncnnwnanooesas XXVIII-16

Hash CoUnt...eeeeesenansncnsncensss XXVIII=3 Operation Code....., e cereean VIII-1
Hi-Data CluSterS.c.veescncoccncenos” V-4 OP Register..... ceeeseseccsancannns IX-1
High Speed MemOTY...eoecececnsncans VII-1 Output...... cetecetsentseana cedtees Iv-3
Hole Count...eeevecenn seasesaareane Iv-1 Overflow.....veereeeennnnnnnn. cees XXIV-1
Housekeeping..uoeeeessensmeonanennees XXVIII=6

HSM Location Column......... aseaan VIII-1 P

I Paper Tape...vvieeeeerennneeanas JAI1-2, VI-4
- Parity......vevun.. e ereeeeeeanaa. VI-2
Indirect Addressing........ ceeseses XXITII-1 Percentage of Occurrence.......... VI-5
Input....ciieeecnecnncans cecesanss . Iv-1 PET . ittt iinennnenennnnn cateas XII1-1
Input-Output Sense.....XIII-1, XXVI-7, XXX-2 PRI'S.iviienunennnn. e ceetaes XI-4
Instruction Format....eeeweeoeon. .o VIII-1 Print and Paper Advance Normal.... XVIi-3
Internal Speed.......evvccnenrnnn. . I1I-3 Print and Paper Advance
Interrogating Typewriter........... Iv-3 Simultaneous............ XXVI-6
S XX1-26 Printer............ ceeeeeaa .. I11I-2, XVI-1
Ttem, et iiiasecsacencnaacans . VI-2 PRN............... ceeeecsesassnan XI-4
Production Programs............... XXXVII-4
L Program........ creeeena Ceceeiaaaan III-5
- Proposal..ceeesnesenncnennn e eanan II-1
Limit CheckS.u.ieeieeensnocesanansa. XXVIII=L P Register.......... Ceteieeesseaas IX-1
Locate Symbol Left..........0...... XVIII-S PRP. ittt et e ceeetaeeea XI-4
Locate Symbol Right.....cvieeunnnn. XX1~7 PRZ........ Ceusecceseereeranaas e XI-4
Logical AND....ccvvevennnns cececans XX-1 Punched Card........ccvuuvenn.. ceee I1I-~1
Logical OR...cevveennceoecnnonnnnns XX-3 Purge Date............ teeeenessea. XXVIII=2
Loop..... ceeasscecvessssasenanas eae XITII-1
| R

1=

Random Access........... Ceceseneas XXIX-9

Magnetic Core....vveneencesnsea. III=3, IV=5 Randomizing.....v.veeeeeennnennns. XXXIII=1
Magnetic Disc........ ceeeses ITI=3, IV=2, =3 Read-Write Head.......c..... ceeenn XI-1
Magnetic Drum........ Ceeaecaceaaann I1I-3 Record.........ovvvuunn.. Ceeeeeen Vi-3
Magnetic Tape....cuveeeeeeencennannns I11-2 Record File Mode Read............ . XXX~1
Hi-Data ClusterS....cceeececcen. V-2 Record File Mode Write............ XXX=2
33KC et eittennennecenaannnannnnnn Iv=2 Regeneration...... e seeccecccoonnn IX-1
BOKC .t i veenteeeneneennnnannnons V=2 Register......veveee... cereeaan ITI-6, IX-1
MemoOry.oeeeeneneeanne ceeecsrencenas I11-3 Remarks Column.,...... ceseaen cesas VIII-1
Memory Addressing Register......... IX-1 Repeat....... ceasaans ceeaeaas eeen XXII-1
Memory CyCle ... veeeeeeenennas ceeene IX=-2 Repeat LOogiC.ieeenn e nnenennnnnn XXII-5
Memory Register........ ceececctonns IX-1 Rewind to BTC...ccvenvrvnnunnnnn. . XIII-1
Merging.oeeeeeeeeecenecaecnnannanss XXXIX-1 ROW..tt it iiiiiiieeiiiiinnann ceeean VI-2
Microsecond....eeeeoeoeasesene. IX=2, XXIV=1 ¢ II-1
Millisecond.seeseeeeeeeooeanans e XXIV-1 Run Tape...... e terieec e XXXVII-3
MOQe.seuieeoensceaeaneeeeoncaaaansa .. XXVI-1
Monitor Printer......ecevevececenn. V-4
M Register..eerereenreeconoconsans XXVI-2
MUltiply.eseeeeeeeeeneeneeeeeeennnn. XXXIV=2 Satellite............ seeoesenesns XXXVIII=-1

[19)]

INDEX (Cont'd)

Page No. Page No.

SeCLOT . teneereetnanacaessecnsnscen XXXI-1 Transfer Symbol to Fill...... ceee XV-1
Sector Compare Left.....ccciveeues _XIV-l Translate by Table..... XXXII-3, XXXVIII-1
Sector Read from Disc Normal...... XXXI-2 T Register.iseeeeesenas ceeseeanas XXVI-2
Sector Read from Disc Simultaneous XXXI1-3
Sector Write Disc Normal.......... XXXI-3 U
Sector Write Disc Simultaneous.... XXXI-3
Segment.iieeecneescscecseascacannnn XXXVI-7 URegister.v.veeeeenoeceans ceeeans XXX-1
Sequence CheCk.veeeeeveeronoonaens XV-4 Up to Speed Time....vcvvvue.. cesen XX1v-3
Service RoutineS...ceeeeececcoesss XXXVII-1
Simultaneous Mode.....eeceeeveeene XXVI-1 v
Simultaneous Program Control Unit. XXVi-1
SOR Registlr.eeeeeeeeeacescecaanens XXVI=2 Variability........ ceeetceencenne VI-3
SOTting.ieeeeeeeeeceoesccseeecaness XXXIX-1 Variable Connector.......eeuvuv.. XIxX=-2
S Register...veeeeeeeeesocennacnas XXVI-2 Variable Format.......eeceeecenno. VIi-3
STA. i eeeeinannnn cecessecsenencsane XVIII-6 Volume....... ceeans Ceereeccaraaas XX1v-1
Standard HSM LocationS...eeeeees.e XXXVI-8 V Register...veeseeacessocacaonns XXX-1
Staticizing.eeeessseensessossaecnse IX-2
StOrage.ceeeeseenescacecnssonnnans Iv-5 W
Store Register
A e teeteeceteaaaaa XXXII-3 Weighted Average.......oeveeeun... VI-4
P XXI-4 Work Area..... e eeceasscsssaseanes Xv-2
Poveeeennn eeeeens ceecssesscnns XI=5
S eetetetttettscrtteaaescnanacas XXVI-7 Z
Uirieietinennecansssscecncncenna XXX=2
STP it ieesceercneesacscsassossonsosns XI-5 ZONC . sseesuosonssonsvossnsssssscens Iv-3
Sub-item...ooveiiiieniinnnnn. ces VI-2
Subtract..iiiiereeeeeeearonnnancns Xv-1
Switch..... cesesassesssasesssesosne XIX~-2
Systems ChecK.v.veeewesoseses 1I=2, XXVIII-2
Systems Flow Chartg............. X-1, =2, -7

T

Table Look=UP.....g.e.enesnnn. XI=3, XXXII-1
Tallyereeeneeoeoneensocosanssanees XVII-1
Tape Adapters....i.eeeeesesnecenns Iv-2
Tape Tables..... XXVIII-2, XXXVI-13, -16, -18
Tape LOOP.uvieceeeesacecacoccansanns XVi-3
Tape Read Forward Normal.......... XI-1
Tape Read Forward Simultaneous.... XXVI-4
Tape SwapP..seeseiaeeeercsoonsnana.s XXVIII-8
Tape Write Normal..... creereaenenn XI-4
Tape Write SimultaneouS.....cecee. XXVI-4
Template.. .ot neieenrennnnnsnoas X=-1
Time Sharing....c.eecececenccocnnns XXVI-3
Timing..ueeeneeeenesoeenseennneens XXIV=l
Timing Formula...eeeeeeceescecasss XXIv=-1
Track SeleCt.uiueeeiasecoeceasanas XXXI-2
Trailer Message or Record...XXI-26, XXVIII-3
Transfer Data by Symbol Left...... XXI-3
Transfer Data by Symbol Right..... XXI-11
Transfer Data Left...eeeeeeeeeeons Xv=-3
Transfer Data Right...ceeeceeean.. Xv-2

THE MOST TRUSTED NAME IN ELECTRONICS

Radlo Corporation of America

	000
	001
	002
	003
	004
	01-01
	02-01
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	12-05
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	21-25
	21-26
	21-27
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	24-01
	24-02
	24-03
	24-04
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	26-16
	26-17
	26-18
	26-19
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	28-11
	28-12
	28-13
	28-14
	28-15
	28-16
	28-17
	28-18
	28-19
	28-20
	28-21
	28-22
	28-23
	28-24
	28-25
	28-26
	28-27
	28-28
	28-29
	28-30
	28-31
	28-32
	28-33
	28-34
	28-35
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	29-11
	29-12
	29-13
	29-14
	29-15
	29-16
	29-17
	29-18
	29-19
	29-20
	29-21
	29-22
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	31-10
	32-01
	32-02
	32-03
	32-04
	32-05
	33-01
	34-01
	34-02
	34-03
	34-04
	35-01
	35-02
	35-03
	35-04
	35-05
	36-01
	36-02
	36-03
	36-04
	36-05
	36-06
	36-07
	36-08
	36-09
	36-10
	36-11
	36-12
	36-13
	36-14
	36-15
	36-16
	36-17
	36-18
	36-19
	36-20
	36-21
	37-01
	37-02
	37-03
	37-04
	38-01
	38-02
	39-01
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	C-01
	C-02
	C-03
	Index-01
	Index-02
	Index-03
	xBack

