—r
JoHv NI A

- JOHNNIAC FLOATING-POINT

INTERPRETIVE SYSTEM

'by'John I. Derr
August 31, 1955

Room

JOHNNIAC FLOATING-POINT INTERPRETIVE SYSTEM

- INTRODUCTION
SECTION I WORD FPORM FOR FLOATING-POINT DATA
A. External Form of Data p. 3
B. Internal gPacked) Form of Data p. &
C. Internal (Unpacked) Porm of Data p. 6
D. Normalizing and Significant Digits Modes p.- 8
E. Summary of Section I. p. 9
SECTION 1II INSTRUCTION WORD FORMS FOR FLOATING-POINT OPERATIONS
A. Operation Types and Classes p. 13
B. Indexing Mode p. 15
c. Input-Qutput Word Form p. 22
SECTION IIlI SYSTEM PHILOSOPHY FOR THE ARITHMETIC TYPE
OPERATIONS
A. Significant Digits p. 24
B. Approximate and Exact Numbers - p. 24
C. Absolute and Relative Error p. 26
D. Guarding Figures p. 29
E. Application to the Normalizing Mode p. 30
F. Summary of Section III p. 31
SECTION IV FLOATING-POINT OPERATIONS
A. Arithmetic Type Operations p. 34

B. Logical-Control Type Operations

Non-indexing) p. 54
c. Logical-Control Type Operations (Indexing) p. 56
D. Input-Output Type Operations p. 62
SECTION V OPERATION
A. Tracing p. 66
B. Error Halt p. 70
c. Conversion of Data p. 71
SECTION VI APPENDIX

. Th
75
T6

A. _Data Porms

B. Instruction Word Forms

c. Switch Settings

D. Operations which Differ Significantly from
JOHNNIAC Operations

E. List of JOHNNIAC Operations

F. List of Floating Point Operations

G. ANelex Printer Formats

84
85

‘oo ‘oo
[}

INTRODUCTION

This system is a floating~point 1nterpreiive system,‘
and as such 1ts primary function isvto facilitate the ex<
ecutién of the elementary arithmetic operations (add, sub-
tract, multiply, and divide) and, in addition, some of the
more freqqently'used elementary mathematical function
’operationsl(square root, sine coéine, arc tangeht,(eXpon;
‘ential, and logarithm). Entry into the system is effected
by basic 1inkageﬁ;nder stored-program contreol. Upon entry
into thevSystgﬁ}ﬁail succeeding operations are carried out
as pseudo-ordefs ﬁ;der the controlv6f £he interpretive
éystem until one.of a unique pair of exit orders is encountered.

The system 15; relatively speaking, almost complefe r
within itself. In addition to the arithmetic operations
mentioned, the system recognizes input and 6utput orders
for floating-point data, conditional and unconditional
transfer orders, indexing orders for the modification of
addresses and the execution of repetitive loops, and in-
dications (from bothuexternal and stored-program control)
to print out the results of specified operations.

The logical form of the orders, which will be recog-
nized by thé interpreter, 1is very similar to that of’the
JOHNNIAC itself. (This system is basically a two-operation,
two~address per instruction word system with an interpreta-
tion cycle of feteh, 1eft,‘right. The same points hold
trﬁe for the JOHNNIAC, and as a result, both are essenti-

ally single-address.) Another analogy is the agreement of

(o]
el

both numeric and hnemonic order codes for_moSt of the
operations which eXiS't“'in'b‘othﬁfhej'“J‘OHN‘N‘I’A’C'"and"“t'h'e
‘floating-point system. The extent to which the over-all
logic of this system conforms with that of the JOHNKIAC
makes possible the integration of this system into the
entire system of utility programs and sub-programs written
or tc be written for the JOHNNIAC. For example, that sec-
tion of a problem code which is to be executed under inter-
preter control éan be modified in the same way as machine-
‘language code. The same assembly program can be used to
process floating-point orders as that which 1s used to
process machine-language cbde including the floating-point
system itself, all of which 1mplies that within a program
we can convenlently intersperse fixed-point arithmetic,
floating—point arithmetic, and loglcal operations iﬁ the

ratio required by the problem being solved.

I. WORD FORM FCR FLOATIKG POINT DATA

The JOHNNIAC 1s a high-speed computef with an approxi-
mate add-time of 80 us and 40496 words of high-speed mag-
netic core storage. A JOHNNIAC word contains 40 binary bits
with the binary pcint to the right of the left-most bit.
When data words are bveing considered, the left-most bit
functions as a sign indicator and the remaining 39 bits
represent the magnitudes of the data. Negative numbers are
represénted in complement form.

At all times the numerical data, which are operated
upon or which are being transmitted to or from the high-
speed storage under interpreter control, are in single-
precision, flcating-decimal form: i.e.,every pliece of data
can be expressed in the form M. 10™ where M 1is a posi-
tive nine decimal digit number with a fixed decimal point
and m is a two decimal digit 1nteger} M is called the
mantissa and m 1s the exponent of the number. The sigh (t)

is assoclated with the mantissa.

A. External Form of Data

By the external form of a pilece of numerical data X
we mean either the form in which X 1s punched into a card
for input to high-speed storage or the form in which X is
printed or punched as output from high-speed storage. First

.of all, X can be uniquely represented as follows:

(F) X =1 a» . lOa*, where A* is a positive

Q-digit decimal fraction or zero, i.e.
1077 < A* <1 or A* = 0, and a* is a decimal
integer in the range -50 < a* < 50.

In order to eliminate the sign (%) from the exponent,
we can increase a* by 50. Then O < a* + 50 < 100. We
shall at times refer to (F) as the implicit fractional
form of X, and call a* the true exponent or the implicit
exponent of X. In the same way, let us call a* + 50 the
explicit -exponent of X.

[g] [a*50] | A* |
LTa

37 (33
External Form of Data

A* is a positive 9-digit decimal fraction, a*+50 is
the true expcnent increased by 50, and S is the sign
assocliated with A*., In summary, the external form of X
is that of sign, fractional mantissa, and true expcnent +50.

Examples: Prepare 7w £ 3.1410 for input in 1) and 2) below.

1) 3.1416 =+ 3.plo . 10V (implicit fractional form)
= IIJE*I .3.1 416000 0 (external form)
R T
2) 3.140 =+ .0000 31416 - 10° (implicit fractional form)
) I+ 5 51,0000 31 41 ¢ (external form)
T Y237 11

Note: The mantissa A* need not be normalized. (See Section D

below for definition of "normalized".)

B. 1Internal (Packed) Form of Data

Prom (F) above, it follows that X can alsc be represented

as fcllows: ‘
(1) X =t A - 10%, where A = A% - 10”7 1s a positive

‘9-digit decimal integer or zero, i.e. 1 < A < 107

or A =0, and a = a* - 9 is a decimal integer in

the range - 59 < a < 41.

We shall refer to (I) as the implicit integer form of

X. By combining certain aspects of all three of the mentloned
representations of X, we have as a result the explicit

representation of X in its internal form.

9|

Internal Packed Form of Data

¥ + 50 =
+ 59
9

AT

A= A% . 10°
T T3

|]

T

The above representation holds true if X is non-negative.
If X is negative, the entire word is complemented.

Note that in order to transform A* into A, A* is not
explicitly multiplied by 109, since when A* is read rrom a
.card it is simply converted as an integer. Note also that
a* + 50 = a + 53. As a result, no extra arithmetic is nec-
essary when converting the external form of X into the in-
ternal form, since the only difference between the two is
the location of the decimal point of the mantissa.

Example: Conslder again 7 = 3.1416.
3141 =+ . 31 4100000 - 101 (implicit fractional form)

3.1416 =+ 3141,0000 ° 10'8 (implicit integer form)

1
[+]5 1]. 31 %1 %000 0] external form
+]o 1]3 1 4

Note: The only difference between the last two forms

110000 .| internal form

le the location of the declmal point.

[V

Three reasons Uor choosing this system {or the repre-

sentatlicn of data are crnumerated helow:

1) Exact reconversion of input data is made possible.
For example, any numter X ls exactly the same
after having been read into the machline and then
printed as it was before elther of these opera-
tions was performed. Therefore, under certaln
limitations to be specified later, this system
can slmulate a true decimal computer.

2) The form of paciking data internally makes possible
algebraic and magnitude comparisons of data while
cutside of the interpreter control.

3) Nine digit mantissas were chosen because

-y - 7 [®
229 + 109 ¢ 230 and 100 < 27 < 29.

~

C. Internal (Unpacked) Form of Data

All arithmetic operations executed under interpreter
control involve an arithmetic pseudo-register called the
AMQ. All floating-point numbers placed in the AMQ are in

their unpacked form, which is as follows:

; ne - Tox C

Exponent: [O]Q _...078% + 50

Mantissa [olo ... © A |
1T RS '

Internal Unpacked Form of Data

The above representation holds tfué if the mantissa is
non-negative. Otherwise, the\mantissa only is complemented.
Then the AMQ consists of two adjacent full words of

storage, and its location is permanent, relative to the

location of the interpretive program. The function of the

AMQ 15 o
LOme Ol
2)
-y \
3

1losely tied to the one-address nature of the system.

‘ts properties are listed below:

Th:e AMQ receives fioatingsdecim&l numbers from
storage to initiate a sequence of operations. In
the pfcéess of veing transmitted from storagé to
the AMQ., all numbeis are converted from their
packed ferm tc their unpacked form.

Conversely, at'any staée o' a sequence of operationz
the numbem»retéined in the AMQ may be transmitted
tc storage, and in this pﬂ;cess it will be con-
verted‘from its unpacked form to its ﬁacked form.

All "binary' arithmetic operations executed undér
interpreter control iﬁvolve two operands, one of
wnich 1s in the AMQ, with the other in the loca-
tion specified by the address part of the opera-
tion. Furthermore, the result of the operation
will be placed in the AMQ. For example, consider
the operation X+Y. One of the operands (say X)
must qriginally be in the AMQ, and the c¢ther must
be at a specified location in storage. The
result (X+Y) of the operation will be found in
the AMQ upon completion of the operation. All
"unary' arithmetic operations executed under inter-
preter control involve only the contents of the
AMQ, and the result of any such operation will
be placed in the AMR. Fcr example, consider the

operation sin X; X must originally be in the AMQ,

and the result (sin X) of the operation will be
found in the AMQ upon completion of the opera-

tion.

D. Normalizing and Significant Diglt Modes

Two mutually exclusive modes of executing arithmetic
operations are available. The 1nterpreter is said to be
in the normalizing mode (the N mode) if the results of all
eleméntary arithmetic operations (+, -, X, +) and all ele-
mentary mathematical function operations are normalized
prior to being placed in the AMQ. A number is normalized
if 108 <AL lO9 cr A = Q. If A= 0, then a* + 50 =‘0‘also.
Note that if A ¥ O, this amounts to saylng that the most
significant (left-most) position of the mantissa contains
a non-zerc digilt.

- Conversely, the interpreter is said to ve in the
significant digits mode (the 3D mode) if for the results of
all elementary arithmetic operatiocns and mathematical func-
tion operations the following statement hoclds true:

Roughly speaking, carry only as many significant digits as
would be Jjustified by the theory of error analysis with the
possible exception of guarding flsures.

The system is in the N mode if conscle switch Tl is
off.

The system 1s in the SD mode éf console switch T1 is

on.

Examples: X, Y are in the packed internal f{ornm.

1) X > 59 .1234% 00000
Y ¢« 59.1201 00000¢C
X-Y & 59 .0033 00000 (SD mode)
X-Y & 57 .3300 00000 (N mode)
2) X e—> 53.0030 00000
Y > 51 .1000 00000
XY ¢« 53.0030 00000 (SD mode)
XY &> 51 .3000 00000 (N mode)

Note that the mantissa of X 1is less significant than
that of Y. Therefore, the number of significant digits of
the mantissa of X'Y depends upon the number of significant
digits of X. (See Section III for a more detailed discussion

of significant digits.)

E. Summary of Section I

The external form for representing data is that of sign,
fractional mantissa, and true exponent + 50, and the user
is required to know only this form of representation. The
internal form for representing data is that of integer
mantissa, true exponent + 59, and complementation for sign.
This form has been descrived for the primary purpose of
giving the user an insight into the system s¢o that he may
take full advantage of the opportunities available to him.
It might be pointed ocut here that the user might need to
know the internal form for representing data 1f he desires

to convert fixed pcint numbers inte floating point numbers,

and vice versa. However, one way of performing the conver-
" sion has been described in défail in Section V.

A primary advantage of treating floating point
mantissas as integers has already been mentioned in para-
graph B of this section, namely, the exact reconversicn of
input data. This is made possible by the fact that decimal
integers and binary integers convert exactly one into the
other.

But this system simulates a true decimal machine in a
broader class ol operations than Jjust Input-Output opera-
tions. The results of 2ll arithmetlc cperations are
truncated decimaily and without rounding. Then the re-
sults of any sequence of operations, with the exception of
the elementary mathematical funct.on operaticns, can be
simulated exuactly on a desk calculator by using nine digit
cperands. However, the algerithm for carrying out the
gimulation becomes more ccmplicated when operations are
carried out with unnormalized operands. A systematic way
of accomplishing this simulation will be described for each
order in Section IV¥.) Once more, we can say that this simu-
lation iz possible because no binary truncation is involved.
Put the simulation of decimal numbers is nct closed under the
mathematical functlon cperations, because for these opera-
tions it is most desirable tc¢ transform at least the man-
tissa intc a proper binary fraction. This transformation,
as well as the ensuing calculations necessary to ccmpute

the resulting functionzl value, involves binary truncation,

and 1t is a well-known fact that in general décim&l frac-
tions do not convert exactly into binary fractions, and

vice versa.

11

p. 12

IT. INSTRUCTION WORD FORMS FOR FLOATING POINT OPERATIONS
It was asserted in the Introduction that the inter-
pretation of floating polnt orders is similar in many re-
spects tc the interpretation of JOHNNIAC machine language
orders. In what follows we shall describe explicitly the
logical form of the floating-point orders. However, we
might take as our point of departure a brief description of

the way in which the JOHNNIAC interprets instruction words.

o'l [& 14i9 20l 22 27ESC 39
Left Lelt Not Right Right
Operation | Address Used | Operation Address
Left Order Right Order

JOHNNIAC Instruction Word Form (J)

The octal operation codes are restricted to the range

000 - 177g (128 possibilities). The octal representations
of addresses are restricted to the range 0000 - 7777g (4096
possibilities).

It has been mentloned in the Introduction that the
basic interpretation cycle of the JOHNNIAC is fetch, left,
right; 1.e., first a word of the form (J) is fetched from
storage, then the left order 1s executed, and finally the
right corder is executed. As 1is usual in the execution of
an order the operation part of the order takes precedence
cver the address part of the order. The JOHNNIAC operatiocn
list has been arranged so that operations which are similar
to each cther in some respect are grcuped in the same class,

where the class is defined by the two most significant

p. 13

octal digits of the octal operation code. As a result,
the classes range f{rom 008 to 178. See p.&3 for a 1list of
JOHNNIAC operations.

A. Operation Types and Classes

Perhaps it willl be convenient at this point to break
up the list of fleoating point operations into three basic
types: Logical-Control type operations, Arithmetic type
operations, and Input-Output type coperations. The Logical-
Contrcl type operations include the conditicnal and uncon-
diticnal transfer operaticns, the Indexling operatiocns, the
coperations effecting exit from the interpreter control, and
also the "No Operation" operation. The Arithmetic type
operaticns include the operations necessary for the trans-
mission of floating-pecint data between the high-speed stor-
age and the AMQ as well as the elementary arithmetic opers-
ticns and the elementary mathematical function operations.
Theose floating-point operations which are used to transmit
floatingnpoint data between the high-speed storage and any '
cf the mechanisms used for reading cards, punching cards,
-or printing, constitute the Input-Output type operations.

With the exception of orders executed in the Indexing
mecde and the Input«dutput type operations this system 1is,
like the JOHNNIAC, a two-operation, two-address per in-
struction word system with an interpretation cycle of fetch,
left, right. Under the same restrictions the instruction

word form is unchanged except that the flelds for the opera-

p. 14

tlen codes have been defined as follows:

O I 5 - Igl9 202122 278 33
Lef' Leflt Not [RE | Right
Con. OpeP.Left Address Used fon. Oper. Right Address
Lef't Order Right Order

Floating-Point Word Form (F)

The control fields are used for specialkcontrol indications
to the interpreter (with the exception of the Input-Output
type orders). For example, the presence of a "1" in the
Left Contrcl field can cause the breakpoint printing of the
order immediately after the order 1s executed. The octal
operation codes are now restricted to lie in the range
00-77g (64 possibilities). Recall that the operation part
of an order is that part which takes precedence cver all
others. Note that the operation parts in (F) coincide with
the least significant 6 binary (2 octal) digits of the cor-
responding operation parts in (J), and that the control parts
in (F) coilncide with the most significant binary (octal)
digits of the ccrresponding operation parts in (J). PFor
convenience of exposition in what follows, the term "opera-
tion" will be used interchangeably in either the sense of
(J) or that of (F). However, after having noted the dis-
tinction between the two meanings, the reader should exper-
ience no difficulty from this direction.

In analogy with the concept of classes of operations
For the JOHNNIAC, it 1s reasonable for us to group the

floating-point operations according to eight classes (a zero

p. 15

class, a one class, ..., a éeVen class), where the class

is defined by the most significant octal digit of the octal
operation code. (See p.%Y for a complete list of the
floating-point operations.) Note that the Logical-Control
type operations are in classes 0,1, and 7, the Arithmetic
type cperations are in classes 2, 3,v4, and 5, and the

Input-Output type cperations are in classes O and 1.

B. Indexing Mode

An Indexing mode (X mode) for interpretation of float-
ing-point orders and a corresponding class (7) of Indexing
crders have been incorporated into the interpretive system
in order to facilitate the address modification and the
counting involved in the execution of the repetitive loops
which occur in a program. Immediately following the execu-
tion of the Enter Indexing operation, the Interpreter will
be in the Indexing Mode. Then. all succeeding orders will
be interpreted in the Indexing Mode until a "1" is encountered
in the Right Control field. The presence of a "1" in the
Right Control field will always cause the Interpreter to
exit the Indexing Mcde. For this reason the Right Control
fleld will be referred to as the Exit Indicator field while
the Interpreter is in the X Mode.

When interpreting orders in the X Mode this system
becomes a one operation per instruction word system with
an interpretation cycle of fetch, left. The system also
remains a single-address one, since one high-speed storage

cell at most can be referred to in a single order. The in-

p. 16

struction word form for orders executed in the Indexing

Mode 1s as follows:

O 9/ 1919 20 21 213 %576 T8 39

+

Cory Oper. Left Address | Not X X T A G| Right Address
used [Ind.

Floating-Point Word Form (X Mode)

Only the Left Operaticn functions as an operation. The
Right Operation field contains the Indexing Tag (X Tag)
which can be used to specify uniquely any of the C4 possible
combinations (including the combination where none of the
indexing registers is invclved) of six Indexing Registers
which are invelved in a given operaticn. Each of the Index-
ing Registers contains two quantities X() and AX() The
primary function of X() is at execution time cnly to
modify the addresses of arithmetic type orders which are
executed in the Indexing Mode, and which have X Tags refer -
ing to x() The principal use of AX() is to modify the
corresponding X() upon executlon of a Transfer on Positive
Index order or a transfer on Negative Index order. Each of
the_six Indexing Registers occuples one permanent full-word

of storage within the Interpretive System as follows:

T BT T8[I9" Ay 3
Zero X() ZETO Ax(N

Indexing Register Layout
Obviously, both X() and AX() contain numbers in the

range 0000 - 77778. Negative humbers are repfesented in

complement form. For example, if X() = - 7 and QX()
= - 1, then the corresponding Indexing register would

contain:

Zero 7771g = 408910 Zero 77778 = 409510

Thus far, we have made no attempt tc assign toc each of
the Indexing Registers a unique name. Consider the figure

below:

2223 24125 /20]27
A B |C |D |E |F

If we agree to use X() to designate the Index Register
containing X()’ as well as X() then we can enumerate
the Indexing Registers as Xy Xps «..» Xg. We can, in a
one-to-one manner, associate.xA with blnary pcesiticn 22 and
likewise for the other Indexing Registers.
Now we can adopt the convention that the presence of

a "1" in any of the binary tag positicns means that the
corresponding Indexing Register is involved in the execu-
tion of the given order, and that the presence of a "Q"
in the same position implies the opposite condition. Since
it is natural to express JOHNNIAC operaticn ccdes in octal
and since the Tag part of our orders coincides with the
Right Operation of form (F), then it will be convenient to
assoclate the octal representation of the Tags for each of
the Indexing Registers as follows:

A &5 b0, B e 20, C e 10

D§ «— O4, E ¢ 02, F > 01
Example: Assume that the X Tag field contains 658.

p. 18

658 = 110 101,.
= 408 + 208 + 0%8 + 018.
According to either of the right-hand members above, Index-
ing Registers XA’ XB’ XD’ and XF are invelved in this o;dér.

Given two modes of interpretation, the X Mode and the
NX Mode, and twc categories of operations, the Indexing
operations (7 class operations) and the Non-Indexing opera-
‘tlons, we have four logical possibilities:

1) Indexing crders executed in the X Mode,

2) Indexing orders executed in the NX Mcde,

3) Non-Indexing orders executed in the X Mode, and
4) Non-Indexing orders executed in the NX Mode.

Condition 4 represents the standard situation, and the
instruction werd form is that of (F). The only order which
satisfies Condition 2 is the Enter Indexing order. The
instruction word form is also that of (F). Therefore, we
can say that all orders executed in the NX Mode have the
instruction word form of (F).

Conversely, all orders which are executed in the X Mode
have the basic instruction word form of (X Mode). These
orders, of course, satisfy Conditions 1 and 3. Although
both Conditions 1 and 3 have the basic word form of (X |
Mode), there 1s a fundamental difference between the two
conditions insofar as the contents of the Address fields
are concerned.

Under Condition 3 ke exclude the Input-Output orders.

because the Input-Output type of operations cannot be

executed in the X Mode. We do explicitly include all of
the operations which are neither Indexing operations nor
Input-Output type operations. Then under Condition 3 we

have the instruction word form of (X Mode) modified to be:

0 T 1509 2072112 387576778 [5T07T 89
d i I . . ' ' ! ' :
Ccn Oper.| Lel't Address Uggg X T A G Blank CLUE

Floating-Point Word Form (Conditicn 3)

Note that this form differs from the form X Mode only in the
Right Address.

The reader can skip the remainder of Paragraph B on the
first reading without affecting the continuity of thought.
The six least significant bits of the word correspond in a
one-to-one fashion with the six bits of the X Tag. Ordin-
arily, the Clue field will be left blank. However, if the
X Tag field ccrresponding to XA contains a zero and if some
other X Tag field contains a "1", then if the user will
place the numerical representation of the first X()’ which
has a "1" in 1its corresponding X Tag field, in the Clue
field, the time required for executing the order will be
decreased. (The saving of time results from the fact that
the bits of the X Tag are examined from left to right,
ordinarily beginning with A.)

Note that if the information contained in the Address
fields is being processed by an assembly program as decimal
information and if the information conﬂained in the Opera-
tion flelds 1s being processed as octal information, then

the user must convert the numerical representation of the

p. 20

X() from octal to decimal. Perhaps the following table
and an example will help to fix the 1idea:
X Register Tag Octal Equiv. Dec. Equiv.

A 40 32
B 20 1o
c 10 08
D o4 Ok
E 02 02
F 01 0l
Examples: 1. X TAG = 268.
CLUE = 208 = lClO.
(or = Zero).
2. X TAG = 078

" CLUE = 048 = 0410.
(or = Zero).

We shall now emphasize the function of the Indexing
Reglisters under Condition 3. PFor any Non-indexing order
under Condition 3 we define the "Effective Address" of that
order to be the sum of the Left Address plus all of the X()
which have a "1" in the corresponding X Tag position. The
Effective Address is computed at interpretation time, and
it 1s the address associated with the executicn of the order.
It is important to note that the Left Address of the instruc-
tion word as 1t was stored in high-speed storage is left
unchanged by the execution of the order
Examples: Assume XA = 1010, XB = 510, XC = 2010.

1. Consider the following Reset and Add order
which is being executed in the X Mcde:
0 Of7 1ol 27128 39
020/0300/0 5 00000

The Effective Address = 900 + 10 + 20 = $30.

Then the result of this order is to place

the contents of storage cell‘0930 intc the
AMQ in unpacked form.
Consider the following Multiply order which

is stored in storage cell 1000 under the same

conditions as in example 1:

O ©J7 1621 27 |20 29

0322800/ 1 1 0/000 8

The Effective Address = 2800 + 20 = 2820.
There are two significant results of this
ocperation:

1) The contents of the AMQ will be multiplied
by the contents of memory cell 2820, and
the floating-point product will be placed
intoc the AMQ in unpacked form.

2) The Interpreter will exit from the Index-
ing Mode; i.e., the instruction word

stored in storage cell 1001 will be exe-
cuted in the NX Mode.

We have seen that the application of the Indexing Reg-

isters for the purpose of modifying addresses is performed

by orders executed under Condition 3. However, the opera-

tions performed upon the Indexing Registers themselves lie

strictly in the domain of the Indexing orders executed under

Condition 1.

The precise operations which can be performed

on the Indexing Registers will be discussed in Section 1V.

Let it suffice here tc say that for each of the Indexing

p. 22

Registers there exist operations for 1) setting X() and
| AX(y = to given values, 2) increasing X() and AX()
by given values, and 3) increasing.x() by Ax() and
then testing X() + AX() = a given value.

C. Input-Output Word Form

The Input-Output type of operations have been grouped
together under this one type primarily because they have a
word form which differs from both of the forms (F) and
(X Mcde). However, this word form is quite similar to the
form (X Mode). Once more we have only one cperation per
instruction word, and hence at the same time an interpreta-
tiocn cycle of fetch, left. All addresses both between and
including the ones specified are involved in the execution
of the order. Below is ﬁﬁe basic instruction word form

for all Input-Output type operations:

[o)ik ef7 1919 20R1P2-23P5-27E8 39
ODper.First Address Uggé A B C [Last Address

Input-OQutput Woerd Form

The left Operation field functions as the operation field
for the order.

The First Address field contains the address of the
first floating-point number to be transmitted between the
high-speed storage and the input-output mechanism specified
by the operation field. Similarly, the Last Address field
contains the address of the last floating-point number. Of
course, these flelds coincide with the address fields of the

other instruction word forms.

p. 23

The fields A, B, and C coincide with the octal digits
of the Right Operation field in the sense of (J). The
function of the A, B, C fields is to specify/to the inter-
preter the form which the data will take at the specified
input-output mechanism. With respect to reading and punch-
ing cards, for instance, the user can specify the number of
data words per card.

In the conclusion of Section II, we should like to
point out to the reader that in this section we have em-
phasized the differences existing among all of the various
instruction word forms. 1In doing so, we have presupposed
that the similarities wculd speak for themselves. Most of
the differences consist in calling the same fields by dif-
ferent names. All of the forms are similar in one very
important respect; they are, with minor exceptions to be
pointed out, compatible with all existing and proposed

assembly programs.

~

p. 2k

IIY. SYSTEM PHILOSOPHY FOR THE ARITHMETIC TYPE OPERATIONS

A. Significant Digits

We shall define the significant digits of any decimal

number toc be that‘set of digits which consists of all of

the non-zero digits (1, 2, ..., 9) and in addition all of

the zero digits which lie to the right of some non-zero digit.
The most significant digit is defined to the the first non-

zero digit from the left. The least significant digit 1s

defined to be the right-most significant digit. We shall
denote by SN the number of significant digits of N.

Examples:
1) N=009800100.

The digits 9800100 are significant. The
digit 9 is the most significant digit. The
digit O, which occupies the first positicn
from the right of N, is the least significant
digit. SN = 7,

2) N=00000000O0.
There are no significant digits. SN = 0.

B. Approximate and Exact Numbers

It is a well-known fact that certain classes of real
numbers cannot be represented exactly by a finite number of
digits in the decimal system. Examples of this phenomena
include the transcendental numbers, the irrational numbers
and many of the rational numbers. Explicit examples are w,
V2 , and 1/3, respectively. There also, of course, exist

rational numbers (including integers) which can be repre-

p. 25

sented by a finite number of decimal digits, but suéh that
this finite number exceeds some preassigned number. For
example, the number 1 2 3 4 5 6 7 8 9 1 cannot be repre-
sented exactly by nine decimal digits. In either of these

cases we have examples of what we shall call approximate

numbers. Under the c¢lass of approximate numbers we shall
also include the computed results of operations performed
upon either approximate numbers or, in some cases, exact

numbers. By exact numbers we shall mean only those quan-

tities which can be represented exactly by a given number
{nine in our case) of decimal digits. Observe that exact
numbers can arise as the result of arithmetic operations.
However, note that the arithmetic operations performed by
this interpretive system are pseudo-operations. (Decimal
éruncations are performed in accordance with the algorithms
to be specified for each operation.) It is important for
the reader to understand that, in order for the result of
an operation to be exaét, two necessary conditions must be
satisfied:

1) The operands must have been exact.

2) The pseudo-operation performed on these exact
operands must give the same result as the true
operation; i.e., no information can be lost
because of approximations,. truncations, etc.

For extensive calculations carried ocut in the floating-

point system, however, the class of exact numbers should in

general be restricted tc include only constants and data

p. 20

which do not change during a calculation. Furthermore,
these exact numbers should always be normalized. Extreme
caution is advised when considering the results of arith-
metic operations to be exact. Recall that in order for the
result of an operation to be exact, both of the operands -
must have been exact. In addition the actual pseudc-opera-
tion performed must be thoroughly understood.
Examples: 1) Assume X =100000001,
and Y =1000000O01 to be exact.
Then X+Y = 2 0 0 0 0 0 0 0 2 is exact.
Also X xY=10000000200000001
is exact. Dencte by X o Y the result of
X x Y after truncation to 9 digits. Then
XoY=100000002 is not exact.

2) Assume X =000 00000 1 is exact. Then
arc tan X = . 7853 981 6 3 1is not exact,
since .785398163 is only an approximation to
/4.

C. Absolute Error and Relatlive Error

If we denote by N¥* the approximate number representing

an exact number N, then we shall define the absoclute error

of N¥ to be N*¥ - N. Let us denote the absolute error by AN.

Then we shall define the relative error to be (AN) 2 N.

(Ordinarily, AN 4+ N can be approximated by AN + N*.)

In what follows now let us assume that our numbers N¥*
are 9 digit decimal integers, some of the digits of which
might not be significant. We shall also assume that these

approximate numbers have been truncated decimally without

p. 27

rounding, and that IANI < 1. This fact means that we are
considering only the absolute error intrcduced by this last
truncation, or that we are not including the accumulated
error which has been propagated from previous pseudo-operations.
Example: N=00000123%4%.999 - ...
N#¥ =00000123%4.
Therefore, AN= - . 9 99 - . . and |AN| < 1.
RULE I. The absolute value of the absolute error of the sum
of two approximate numbers cannot exceed the sum of the
absolute values of the absclute errors of the given numbers.
Example: Let X=0000123 45 . 9 and
Y=000054321 . 9. Then
X* = 000012345and¥Y*=0000514321,
Therefore, |AX| = . 9 and |AY]| = . 9 .
Now X+ Y=000066¢67 .8 and
X* + Y#=00006 6 6 6 6. Therefore,
la(x+¥)] = 1 . 8, and so |a(x+Y)| < |ax| + |ay].
Observe that the worst case 1s approached when
AX and AY both approach one and are of the same
sign.
RULE II. The absolute value of the relative error of the

product or quotient of two approximate numbers cannot ex-

ceed the sum of the absclute values of the relative errors
of the given numbers,
Example: lLet X=000000001.

9
and Y=000000002 . 0.

Then |é§l = Tf% and lé% = E%% .

p. 28

X*Y=000000005 .51 and

X*.Y* =« 00000000 2,

Therefore IQ%%)—’ = %—f-g-ll—, and '-é-(%((—%ll < l%! + !%,

These two rules give us a convenient way for positing

an upper bound for the error introduced by truncation in any
one of the pseudo-operations (+), (x), (¢). We can, however,
rephrase the second rule into a more useful form. We are
able to derive this alternate form from the original because
of the close connection between the concepts of significant
digits and relative error.
RULE III. The number of significant digits carried in the
product or the'quotient of two approximate numbers cannot
in general be Jjustified beyond the number of significant

digits carried in the least significant of the two operands.

Proof: We shall outline a proof for the product.
Let X and Y be the two operands and let X be the
more significant of X and Y; 1i.e., Sy 2 Sy. Also, assume
X and Y are both positive, and AX = 1, and AY = 1.
We know that (X + AX) (Y + AY) = XY + YAX + XAY
+ AY AX, and that either SXY = Sx + SY or SXY = Sx + SY - 1.
Since AY = 1, SXAY = SX' Therefore, the Sx least
significant positions of (X + AX) (Y + AY) cannot be justi-
fied.

Then SXY - Sx = SY if SXY = Sx + SY' and S S

Xy - °X
= SY -11if Sxy = S + SY - 1. 1In either case, SX*Y* < Sy
(Recall that X* = X + AX.)

A similar argument exists for the quotient.

p. 29

D. Guarding PFigures

Rule III holds true in general; i.e., even in the worst
pcssible case when AX and AY = 1, X and Y are of the same
sign, and Sx = Sy. However, 1f we assume a random distribu-
tion of truncated digits, we can say that the average value
of AX or AY is 1/2. PFurthermore, in many cases the relative
errors approach zerc, in which case we would be justified
in keeping all or most>of the generated digits of the prod-
uct. As a compromise we can always retain some additional
digits in the product or quotient. These additional digits

we shall call guarding figures. 1In the floating-point

system we have adopted the convention of keeplng at most
one guarding figure in the results of the elementary arith-
metic type orders. Referring back to the preceding proof,

we see that for the product Syy - (Sx -1) = Sy + 1 or Sy -

The product is actually computed in an analogou; manner so
that SY or SY + 1 significant digits gre carried in the
final result; and the same method 1s applied for the quotient.
The decision to keep zero or one guarding figure in
the results of the elementary arithmetic operations was
influenced by several factors. First and foremost, the
same computational algorithm is used for both of the cases~
of zero and one guarding figures. Whether or not an extra
digit is retained in a result 1s determined only by the dis-
tribution of the digitSin the operands. In order to make
the computational algorithm independent of the distribution

of the digits, it 1s necessary to retain a variable number

p. 30

of guarding figures, and the domain of this number must be
over two consecutive integers. Secondly, if a "negative
number of guarding figures" were allowed, information would
be needlessly lost. Thirdly, if more than zero or one guard-
ing figure were retained, we would fast lose the primary
advantage of the SD Mode.

This advantage of the SD Mode is to indicate the
number of’“good" Justifiable digits which result from a
calculation. During the course of a calculation the lead-
~ing significant digits of numbers can be lost when perform-
ing the Add type operations, and significant digits can bve
gained by inserting guarding figures into the low order
positiocn of the result when perfcrming any of the elementary
arithmetic operations. Consequently the quality of the
indication given by the number of significant digits of a

result depends upon the particular sequence of calculations

required to produce the result. For example, several sig-
nificant digits mdy be lost in computing an intermediate
sum, but subsequent operations can conceal this fact by re-
taining an extra guarding figure at each of several stéps in
the problem. Another advantage of the SD Mode is that the
execution time for all arithmetic orders is shortened since

the results are not noermalized.

E. Application to the Normalizing Mode

The advantage of using the N Mode is that the maximum
number of guarding figures is kept in the results of the

Multiply and Divide operations, provided that the operands

p. 31

are always normalized. If the operands are normalized, the
non-zero products and quotients are computed so as to con-
tain nine or ten significant digits. If the operands are

nct normalized, the products and quotients are computed
according to Rule III modified to insert at most one guard-
ing figure, and under normalization only zeros can be in-
serted intoc the least significant position of the mantissa.
Note that this operation of effectively shifting the result

to the left does not change the relative error, since the rela-

tive error is independent of the decimal point.
The advantage just mentioned for using the N Mode

becomes important in the same ratio as the relative errors
of the operands approach zero. This fact implies that all
exact numbers should be kept normalized at all times since
for exact numbers the relative errors equal zero.
Example: Input the number 2.
1) If the formis + 512000000 0O 0, then
the relative error is considered to be
approximately 1 + (2-108).
2) If the form1s +5 90000000 0 2, then
the relative error is considered to be

approximately 1 + 2.

F. Summary of Section III

The conventlions adopted for carrying out the "pinary"
elementary arithmetic operations were chosen s0 as to perQ
mit these operations to be performed on numbers which may

or may not be normalized and to be carried out in either the

N Mode or the SD Mcde. It is more efficient from the stand-

point of execution time to gﬁst-normalize the results of
these operations than to pre-normalize them. Storage space
is saved by using the same set of internal instructions to
carry out these operations (excluding post~normalization)
independent of the mode of operation and the state of normal-
ization of the operands.

The conwentions which were adcpted for these operations
are:

1) The operands are not pre-normalized prior to the

execution of the operation.

2) The calculation (prior to the final normalization)
is always carried out as 1f the operands were
not normalized and the mode cf operatlion were
the SD Mode. This means that decimai truncations
might have been performed at some point durlng
the calculation with the result that less than §
significant digits are present in the resulting
mantissa.

3) The result is normalized only if the system is in
the N Mode. Note that only zeros can be inserted
into the least significant positions of the
mantissa during the normalizaticn process.

The operands are always normalized prior to the execu-
tion of the mathematical function operations. The result-
ing functional values are normalized only if the system is
in the N Mode.

Decimal truncation without rounding and the use of

p. 33

integer mantissas were decided upon in order toc permit this
system to simulate a true decimal computer (except for the
mathematical function operations). Decimal simulation and
significant digits control have not been included in this
system without certain accompanying disadvantages. The dis-
advantages involve basically a loss of efficiency in regard
to space, time,and accuracy as described below:

1. The incorporation of a SD Mode and the use of
integer mantissgs result in more internal machine-
language instructions than would be necessary 1if
only the N Mode were available and fractiocnal
mantissas were used.

2. The admittance of unnormalized numbers and the use
of integer mantissas increase the execution time
for the elementary arithmetic operations.

3. Unrounded truncation and the significant digits
methed of computing products and quotients can
result in a faster accumulation of truncaticn
error.

Only the practical application of the system will deter-
mine whether or not the advantagesof decimal simulation and
s8ignificant digits control outweigh the accruing disadvan-
tages just enumerated. The notions of decimal simulation
and significant digits control are admittedly ncvel ones
(at least relative to interpretive systems for high-speed
binary computers), but they have been incorporated into this

system anyway in the spirit of experiment.

IV FLOATING-POINT OPERATIONS

The discussion of the floating-point opgrations will
be broken down intc paragraphs which parallel the types of
operations discussed in Section II. The only exceptiocn 1is
that the Logical-Control type operations will be split into
two parts. One part consists of the Indexing orders, and
the other part consists of the Non-indexing orders. See p. 84

for a complete list of floating-point operations.

A. Arithmetic Type Operations

The data operated upon by the floating-point operations
are assumed to be floating-point numbers of the internal
form as discussed in Section I. Any of the Arithmetic type
operations can be executed in either the Indexing Mode or
the Non-indexing Mode.

The Arithmetic type of operations consists of the 2,

3, 4, and 5 classes of floating-pcint operations, and the

discussion of the operations will be by classes.

1. The Two Class (Add Class) of Operations

.| 0c¢H Mne- Oc- | Mne}
OPERATION tallonic OPERATION tal monie
Reset Add 20| RA Add 24 A
Reset Subtract| 21| RS Subtract 25 |S
Reset Add Ab- 22 | RAV{ Add Absolute 206 |AV
solute Value Value
| Reset Subtract| 23| RSV| Subtract Ab- 27 |SV
Lgbsolute Value solute Value

List of Two Class QOperations

p. 35

RESET ADD RA Y 20

The contents of cell Y (a packed floating-point number)
is first unpacked, and then the unpacked number replaces

the contents of the AMQ.

RESET SUBTRACT RS Y 21

1) The contents of cell Y (a packed floating-point
number) is complemented.
2) The result of Step 1 is unpacked.

3) The result of Step 2 replaces the contents of the
AMQ .

RESET ADD ABSOLUTE VALUE RAV Y 22

1) Take the absolute value of the packed floating-
point contents of Y.
2) The result of Step 1 1s unpacked.

3) The result of Step 2 replaces the contents of
the AMQ.

RESET SUBTRACT ABSOLUTE VALUE RSV Y 23

1) Take the negative absolute value of the packed
floating point contents of Y.
2) The result of Step 1 1s unpacked.

3) The result of Step 2 replaces the contents of
the AMQ.

ADD A Yy 24

1) The packed floating-point number in Y is first

p. 36

unpacked, and then the unpacked number replaces
the contents of the floating-point Number Register
(NR). The Number Register corresponds to the
JOHNNIAC Number Register in the same way that the
AMQ corresponds to the JOHNNIAC Accumulater and
Multiplier Quotient registers.

2) Compare the exponents of the NR and the AMQ. (Note
that we use NR and AMQ here to mean the contents
of the NR and AMQ respectively.) If the exponent
of the NR exceeds that of the AMQ, then inter-
change the contents of the NR and the AMQ.

3) Compute the positive difference of the exponents
of the NR and the AMQ. If the difference exceeds
8 or if the mantissa of the NR equals O, then pro-
ceed to Step 7.

4) Divide (unrounded) the mantissa of the NR by 10
raised to a power equal to the difference of the
exponents.

5) Add algebraically the result of Step 4 to the
mantissa of the AMQ. Retain the ten-digit sum
in the mantissa of the AMQ.

€)a. If the number of significant digits of the mantissa
of the AMQ = 10, then replace the mantissa by the
mantissa divided (unrounded) by 10, and increase
the expcnent of the AMQ by 1. If the resulting
exponent exceeds 93, then we shall say that the

Exponent Overflow condition exists. The machine

p. 37

will halt at the Error Halt location, and if

the Go button 1is ﬁressgd, then the results of
this operation will be printed and the control ™
will go to execute the next interpretation cycle.
If the exponent does not exceed}99, then this
operatlion 1s completed.

b. If the number of significant digits of the mantissa
of the AMQ is less than 10, then proceed to Step
7.

7)a. If the interpreter is in the 3D Mode, then this
operation is completed.

b. If the interpreter is in the N Mode, find the
number of significaﬁt digits in the mantissa of
the AMQ. (We shall designate this number as SAMQ')

8)a. If Samq < 9, then compute the positive difference
(9 - SAMQ)' Proceed to Step 9.

b. If SAMQ = §, then this operation is completed.

9) Multiply the mantissa of the AMQ by 10(% = Samg).
(Note that only zeros are inserted into the least
significant positions of the mantissa.)

10. Place the product in the mantissa part of the AMQ.
Decrease the exponent of the AMQ by (9 - SAMQ)'
If the resulting exponent 18 negative, then we

shall say that the Exponent Underflow condition

exists. The machine will halt at the Error Halt
location, and if the Go button is pressed, then

the results of this operation will be printed

p. 38

and the control will go to execute the next inter-
pretation cycle. If the resulting expcnent 1is
positive, then thls operaticn is completed.

Examples for the Add Operation:

1) AMQ + 55999000000
NR + 51505006011
999000000

50500 (Step 4)
999050500 (Step 5)

AMQ + 55999050500 (Resulting Sum)
2) AMQ + 51999000000
NR - 51997005000
+ 9939000000
- 997005000 $Step 4;
+ 001355000 Step 5
AMQ + 51001995000 (Sum if SD Mode)
AMQ + 49159500000 (Step 9 if N Mode)
3) AMQ + 50999999999
NR + 50000000002
+ 999999999
+ 000000002 $Step 4;
+ Step 5
AMQ + 51100000000 (Step 6a)
L) AMQ + 50123456789
NR - 50123456789
AMQ + 50000000000 €Sum if SD Mod&;
AMQ + 00000000000 Sum if N Mode
NR + 41876543210
AMQ + 50000000000 ESum if SD Mcde
AMQ + 41876543210 Sum if N Mode

5) AMQ + 50123456789
NR + 41876543210
AMQ + 50123456789 (Sum in either Mode)
NR - 50123456789
AMQ + 50000000000 §Sum if SD Mode}
AMQ + 00000000000 Sum if N Mode

In examples 4 and 5, the same three numbers are
added in different order. These examples emphasize
the relative importance of the exponents as compared
with the mantissas for the Add orders executed 1in

a floating-point system. The number of significant
digits of the mantissas plays an equally strong

role for the Multiply and Divide orders.

6) AMQ 59000000001 sexact number;
NR 51123456789 exact number
AMQ 59000000002 (Sum is an approximate
number

The reader should verify the sum if the original
number in the AMQ were normalized; i.e., 51100000000.
This example illustrates the necessity for keeping
exact numbers normalized.
According to Rule I of Section III, the maximum absolute
error which can be introduced into the ten-digit sum in Step
5 of this operation is equal to the sum of the absolute errors
of the addends. Observe that normalization will not produce
any additional guarding figures for the Add operations.
Normalization increases the absolute error corresponding to
the amount of shifting required, while it leaves the relatilve

error unchanged.

p. 40
SUBTRACT | S Y 25

1)a. The contents of cell Y (a packed floating-point
number) is complemented.
b. The result of a. is unpacked.

¢. The result of b. replaces the contents of the NR

Steps 2, 3, ..., 9 are the same as for the ADD
operation.
ADD ABSOLUTE VALUE : AV Y 20

1)a. Take the absolute value of the packed floating-
peint contents of Y.
b. The result of a. is unpacked.
¢. The result of b. replaces the contents of the NR.
Steps 2, 3, +«..s 9 are the same as for the ADD

operation.
SUBTRACT ABSCLUTE VALUE SV Y 27
!

1l)a. Take the negative absolute value of the packed
floating-point contents of Y.
b. The result of a. is unpacked.
¢. The result of b. replaces the contents of the NR.
Steps 2, 3, ..., 9 are the same as for the ADD

operation.

2. The Three Class (Multiply Class) of Operations

OPERATION Octal | Mnemonic
MULTIPLY 32 M
MULTIPLY NEGATIVELY 4 33 MN

List of Three Class Cperations

MULTIPLY

1)

3)

4)

5)

6)

7)

8)

p. 41

M Y 32

If the mantissa of the AMQ equals O, then the ex-
poﬁent of the AMQ is set equal to O, and this
operation is completed.

The packed floating-point number in Y 1s first
unpacked, and then the unpacked number replaces
the contents of the NR. | '

If the mantissa of the NR equals O, then the
mantissa and the exponent 6f the AMQ are set
equal to 0, and this operation is completed.

Find the number of significant digits (sM) of the
most significant of the mantissas of the AMQ and
the NR.

Replace the mantissa of the AMQ by the double-
length product of the mantissas of the AMQ and
the NR, all divided (unrounded) by 1)

Replace the exponent of the AMQ by the sum of the
exponents of the AMQ and the NR increased by
(Sm—l) and diminished by 59.

If the exponent of the AMQ is negative, then the
Exponent Overflow condition exists. See Step 9
of the ADD operation. | |

If the exponent of the AMQ exceeds 99, then the
Exponent Overflow condition exists. See Step 7 a.
of the ADD operation.

p. 42

>Steps 9, 10, 11, and 12 are the same as Steps 6, 7,
8, and 9 for the ADD operation.
| If we denote the original contehts of the AMQ by A'loa,
the original contents of the NR by B~10b, and the resulting
contents of the AMQ by C+10°, then we can summarize symbolic-
ally the MUiTIPLY operation as follows:
C = (AB) + 10 M-l, c+59 = a+59 + b+59 + (Sy,-1) - 59.
Denote by SA-B the number of significant digits of the

double-length product A-B. If S, o = 8, + Sy, then if

A-B
Sp.B » 18 there will be one more significant digit in the
resulting mantissa (C) than there were in the least signifi-
cant of the Mantissas (A and B) of the AMQ and the NR. If
SA'B - SA + SB - 1, then there will be as many significant
digits in C as there were in the least significant of A and
B. Assuming a uniform distribution of digits for A and B,
the former condition (one more significant digit) will occur
about 83% of the time. 1In either event one additional sig~
nificant digit is obtained so far as the relative error is
concerned.

If the user desires to simulate the Multiply operation
on a desk calculator, he can combine the décision concerning
whether or not to retain one extra significant digit in the
product mantissa along with the calculation of the double-
length product. Just perform the multiplication on the desk
calculator by using normalized mantissas. If the lead digit
of the product 1is zero, write the product mantissa with as
many leading zeros as the least significant of A and B. Other-

wise, write the product mantissa with one less leading zero

than the least signiflcant of A and B.

p. 43

Note: .In the N Mode, the result left in the AMQ is always
normalized. Observe that only zeros are introduced into the

least significant position.

Examples for the Multiply Operation

1) AMQ + 50000000000
NR + 51100000000
AMQ + 00000000000 (Step 1)
2) AMQ + 52040000040 (A-10%)
NR + 55000050000 (B-10°)

SAMQ = 8 and SNR = 5, Therefore SM = 8 and SM-l - 7.

000002000002000000 . 500200000 = C.

c =52 +55+7 - 59 = 55,
AMQ + 55000200000 sProduct 1f SD Mode
AMQ + 52200000000 (Product if N Mode

Note that 8, = S,+S,. For this reason, SA.B-SB+1;

3) AMQ + 51400000400

NR + 51500000000

C = 2000002000 (Step 5)

c = 51
AMQ +52200000200 (Product)

MULTIPLY NEGATIVELY MN Y 33

1) (Same as Step 1 of Multiply operation.)
2)a. The contents of cell Y (a packed floating-point
number) is complemented.
b. The result of a. is unpacked.

¢. The result of b. replaces the contents of the NR.

p. 44

Steps 3 through 12 are the same as the same steps for
the Multiply Operatilon.

3. The Four Class (Divide Class) of Operations

" OPERATION Octal | Mnemonic
DIVIDE 40 DS
DIVIDE NEGATIVELY 41 DNS

List of Pour Class Operatlons

DIVIDE DS Y 40

1) The packed floating-point number in Y is first un-
packed, and then the unpacked number replaces the
contents of the NR. ,

2) 1If the mantissa of the NR equals zero, then we shall
say that the Divide Check condition exists. The
machine will halt at the Error Halt locatlion, and
i1f the Go button is pressed, then the status of
this operation will be printed and the control will
go to execute the next 1nterpretétion(cycle.

3) If the mantissa of the AMQ equals zero, then the
exponent of the AMQ 1s set equal to zero, and this
operation is completed.

4)a. If the absolute value of the mantissa of the AMQ
is less than that of the NR, then replace the
mantissa of the AMQ by the double-length product
of the mantissa of the AMQ and 10 M 211 divided
(unrounded) by the mantissa of the NR. Also re-

pP. 45

place the exponent of the AMQ by the difference
of the expénents of the AMQ and NR increased by
59 and diminished by Syr.

b. If the absolute value of the mantissas of the AMQ
is equal to or greater than that of the NR and if
ESNR 2-SAMQ’ then replace the mantissa of the AMQ
by the double-length product of the mantissa of the

(2SyR- SAMQ§ |

AMQ and 10 » all divided unrounded by

the mantissa of the NR. Also replace the exponent

of the AMQ by the difference of the exponents of
the AMQ and NR increased by 59 and diminished by

(2s -8

NR AMQ)’

¢. If the absolute value of the mantissa of the AMQ
is equal to or greater than that of the NR and if
2SNR < SAMQ’ then reylace the mantissa of the NR
by the full-length product of the mantissa of the

S... - 28
NR and 10 AMQ NR) |

Then replace the contents
of the mantissa of the AMQ by the unrounded quo-
tient of the mantissa of the AMQ divided by the
mantissa of the NR. Also replace the exponent of
the AMQ by the difference of the exponenté of the
AMQ and NR increased by 59 and (SAMQ - 2SNR).

5) The remaining steps are the same as Steps 7 through

12 for the Multiply Operation.

p. 46
SYMBOLIC SUMMARY OF DIVIDE OPERATION
a. If |aA|l < |B|, then
C = A-losB and c+59 = a+59 -(b+59) + 59 - Sg -
B \
b. If |A] > |B| and 285 > S,, then

(28,-8,)
C = A-10 e and c+59 = a+59 -(b+59) + 59
' B

- (285 - sA).

c. If |A| > |B| and 8, > 285, then

C = A and c+59 = a+59 - (b+59) + 59

SA-QSB

B-10
+ (SA - 23B)

Note: If the user desires to simulate the Divide Opera-
tion on a desk calculator, he can combine the decision con-
cerning whether or not to retain one extra significant digit
in the quotient mantissa along with the calculation of the
unrounded quotient. Just perform the division on thé desk
calculator by using normalized mantissas. If the quotient
18 less than one, write the qﬁqtient mantissa with as many
leading zeros as the least significant of A and B. -Other;
wise, write the quotient mantissa with one less lead zero
than the least significant of A and B. Assuming a uniform
distribution of digiﬁs for A and B, both of these cases are
equally likely. In either event one additional significant
digit is obtailned so far as the relative error 1s concerned.

In the N Mode the quotient left in the AMQ 1s always normal -

p. 47

ized. Observe that only zeros are introduced intoc the least

significant positions.

Examples for the Divide Operation:

1) AMQ + 58000000050 §A-lo§;
NR + 57000010000 (B-10

lal < |B] and s = 5.

»

102
c =53 - 57T + 59 - 5= 55,
AMQ +55000000500 iQuotient if sn'moae;
AMQ +49500000000 (Quotient if N Mode
2) AMQ + 57000010000 §A-10§;
- NR + 58000000900 (B-10

|a] > |B| and 235 > S,. S, =5 and Sy = 3.

28, - 8, = 1.
¢ = 20888°10° . 111.
c =57 -584 55 -18=5T,
AMQ + 57000000111 $Quot1ent if 3D Modeg
AMQ + 51111000000 (Quotient if N Mode
3) AMQ + 56009000000
NR + 57000000500

|al > Bl and 8, > 28;. S, = 7 and S = 3.
8, - 28; = 1.

. 9000000 _
c =5 - 57459+ 1=59,

AMQ + 59000001800 gQuobient if SD Mode;
AMQ + 54180000000 (Quotient if N Mode

p. 48
DIVIDE NEGATIVELY DNS Y W

1) a.The contents of cell Y (a packed floating-point
number) is complemented.
b. The result of a. 18 unpacked.
¢. The result of b. replaces the contents of the NR;

Steps 2 through 10 are the same as for the Divide Operation.

4. The Five Class of Operations
TOPERATION <, %, | OPERATION — [oc,. e,
5 "z

¢ Ve

Store 50 | ST Arc Tangent 54 ! ART

Square Root 51 | SQR | Exponential 55 | BXP
Sine 52 | SIN Logarithm 56 | LOG
Cosine 53 1COS

List of Five Class Operations

STORE 8T Y 50

The unpacked floating-point number in the AMQ is packed

and then the packed number replaces the contents of Y.
SQUARE ROOT SQR 51

1) If the mantissa of the AMQ equals zero, then this
operation is completed.

2) Normalize the contents of the AMQ. (Note that
normdlization can cause an Exponent Underflow.
condition.)

3) If the mantissa of the AMQ is negative, the machine
will halt at the Error Halt location. If the Ge

p. 49

button is pressed, then the present state of the
operagion will be printed. Then the mantissa of
the AMQ will be complemented. Proceed to Step b,

4) Replace the mantissa of the AMQ by the unrounded
qQuotient of the mantiss§ divided by 10° (the con-
tents of the AMQ are now in the internal fractional
form). 'Denote the mantissa by A.

5) If A< 1/2, set y, = 1/4 + A. If A > 1/2, set yo
1/2 + 1/2 A. With Yo @8 a "first guess' compute
V/ A using a Newton iteration process. The y A
is computed using 39 binary bit arithmetic, put
ordinarily the test for the completion of the
i1teration (this test can be modified by altering

a shift order) is made upon only 34 most signifi-

cant positions. At most 3 iterations are required'
for convergence. ')

6) The resulting’square root of the original coﬁteﬁts
of the AMQ replaces the contents of the AMQvin—
integer form. The operation 1s completed.

SINE (Radian Arguments) - SIN 52

1) Normalize the contents of the AMQ.

2) 1If the exponent of the AMQ exceeds 58, the machine
will halt at the Error Halt location. If the Go
button is pressed, then the status of this opera-
tion will be printed, and the control will proceed

to execute the next interpretation cycle.

p. 50

3)a. If the operation is SINE and 1f the true expon-
ent < —3, then the operation 18 completed.

b. If the operation is COSINE and 1f the true ex-
ponent < -5, then replace the mantissa of the
AMQ by 108 and the’expcnent by 51.

¢. Otherwise, proceed to Step 4.

4) Convert the AMQ into fractional form.

5) Divide the absolute value of the AMQ by w/h Call
the integral part of this quotient 1 and the frac-
tional part F. Ordinarily, the series test word
18 2739, but if I > O, then the test word is re-
placed by I for this operation. I (mod 8) deter-
mines the octant into which our argument is re-
solved. We compute the sine of F or (v/4-F) or
the cosine of P or (w/4-F), depending upon the
octant. F does not exceed /4. Siné F or cosiné
F 18 computed using 39 binary bit arithmetic.

The calculation is carried.out by using a MacLaurin
series expansion, and first and seéond differences
are used to compute the coefficients. The test

for convergence is ordinarily made on the leading
34 positions diminished by the series,teat word.

A maximum of seven terms of the series is required
for convergence when the argument equdls v/#.'

6) The resulting Sine (Coéine) of thenoriginal con-
tents of the AMQ replaces the contents of the AMQ

in the integer form.

- p. 51

7) aQ'If 8D Mode, the operatioh is completed.
b. If'N Mode, normalize the AMQ. |

COSINE (Radian Arguments) Ccos 53

The operation 1is performed in almost the same manner
as the Sine. The main difference between the two is that
I 4 2 (mod 8) determines the octdht into which the argument
18 resolved in Step 5.

ARC TANGENT (Radians) ART 5%

1) Normalize the contents of the AMQ. _
2) 1If the true exponent < -3, then the operation is
completed. | 4 |
3) Convert the AMQ into fractional form.
4) a. If the AMQ exceeds "1" in absolute value, set
y equal to the quotient of "1" divided by the AMQ.
b. Otherwise, set y equal to the AMQ. |

5) If y < tan v/8, compute tan~! (§ ; ;agag/%§16) '

If y > tan 7/8, compute tan~t (: ;anarw166) .

In either case the absolute value of the argument

does not exceed tan 7/16. The calculation is
carried out with a MacLaurin's sebies expansioh
using 39 binary bit arithmetic. First differenées
are used to compute'the coefficients;' The test
for convergence is ordinarily made on the leading

34 positions, althcugh this test may be modified.

6)

P 52

A maximum of eight terms of the series 1s'requ1red'
for convergence, when the absolute value of the
argument equals tan w/16.

The resulting Arc Tangent of the original AMQ
replaces the AMQ in the integer form.

7) a. If SD Mode, the operation is completed.

EXPONENTIAL (e

1)
2
3)

#)

5)

b. If N Mode, normalize the AMQ.

) EXP 55

Normalize the AMQ.

Convert the AMQ into fractional form.

If the true ekponent is less than -9, then replace
the mantissa of the AMQ by 108 and the correspond-
ing exponent by 51. The operation is completed.

If the true exponent exceeds 3, and if the mantissa
is negative, then the Exponent Underflow condi- |
tion exists; but if the mantissa is positive, the

Exponent Oveérflow condition exists.

Denoting the contents of the AMQ by X, one may
Mx

write ex = 10 I+F

, where M = log,,e. 10" = 10
= 107-10F, where I 1s the integral part of 10™
and P is the corresponding fractional part. ' Set
the exponent of the AMQ = I. Now, 107 = ef*M,
With (p,n)wa‘g = y as the argumént, compute e’-1
with a MaclLaurin series expansion using 39 binary
bit arithmetic. First differences are used to

compute the coefficients. The test for convergence

p. 53

is ordinarily made on the first 34 binary bits.

A maximum of 12 terms 1s required for convergence

2

when the argument equals (144+2 " which is

approximately equal to .576.

6) The resulting value of e* replaces the AMQ in the

integer form.

7) The remaining steps are the same as Steps 6 through

10 for the ADD operation.

LOGARITHM (Log,) Lo@ 56

1)
2)

3)
%)

Normalize the AMQ.

If the mantissa of the AMQ is negative, the machine
will halt at the Error Halt location. If the Go
button is pressed, then the present state of the
operation will be printed. Then the mantissa of
the AMQ will be compiemented. Proceed to Step 3.

Convert the AMQ into fractional form.

Denoting the fractional mantissa by A, find X = eq-A
such that ﬁ/ V2 <X </ 2. With %&% as the argu-
ment, compute 1/2 1n X with a Taylor series expan-
sion using 39 binary bit arithmetic. First differ-.
ences are used to compute the series coefficients.
The test for coﬁvergence'is ordinarily made on
the first 34 binary bits. A maximum of 7 terms

of the series 1s required for convergence when

the argument equals Z:2~1—l .
2+ 1

p. 5k

5) The resulting loge of the original contents of
the AMQ replaces the AMQ in the integer form.

6) If the number of significant digits'of the
mantissa of the AMQ = 10, then replace the
mantissa by the mantiséa divided (unrounded) by
10, and increase the exponent of the AMQ by 1.

7) The remaining steps are the same as Steps 7 through
10 for the ADD operation.

B, Logical-Control Type Operations (Non-indexing)

Any of the operations to be discussed in this paragraph
can be executed in either the Indexing Mode or the Non-
indexing Mode. These operations constitute most of the "0O"
class and the "1" class of operations. The Inpuﬁ-Output
type of operations which occur in these two classes will be
discussed in a later paragraph. |

1. The Zero Class of Operations

Transfer to the Left |03 |TL Transfer to the Right | O7

OPERATION Oc-THne - T GPERATION Oo-THme -
No Operation 00 |--- [Punch Data Cards O4% |PCH
Transfer Neg. tq Left {01 |TNL Transfer Neg. to Right| 05 |TNR
Transfer Plus to Left |02 |TPL [Transfer Plus to Right| 06 |TPR

TR

List of Zero Class Operations

NO OPERATION _ ——- -- 00

Proceed to the next operation.

p. 55

TRANSFER NEGATIVE TO LEPFT T™NL Y Ol
TRANSFER NEGATIVE TO RIGHT ™R Y O5

If the mantissa of the AMQ 1s negative, then the left
(right) operation of the instruction word stored in Y will

be executed next. Otherwise, proceed to the next operation.
TRANSFER PLUS TO LEFT o TPL Y 02
TRANSFER PLUS TO RIGHT TPR Y 06

If the mantissa of the AMQ is non-negative, then the
left (right) operation of the instruction word stored in Y

will be executed next. Otherwise, proceed to the next opera-

tion.
TRANSFER TO THE LEFT T Y 03
TRANSFER TO THE RIGHT ™ Y 07

The left (right) operation of the instruction word
atbred in Y will be executed next. (Note that this opefa-
tion is the same as the JOHNNIAC operation 010 (O14) with
mnemonic code TRL (TRR).)

2. The One Class of Operations

Oc-Mne- Oc - |Mne -
OPERATION tal|monic tal jmonic

Exit Interpreter Left|10 |EXL [Exit Interpreter Right |14 (EXR
ffransfer Zero to Left|{1ll |TZL (Transfer Zero to Right|l15 |[TZR
12 , 16

Input Data Cards 13 |INP |Print Data , 17 |PNT
List of One Class Operations

p. 56
EXIT INTERPRETER TO LEFT | EXL Y 10
EXIT INTERPRETER TO RIGHT EXR Y 14

The left (right) operation of the instruction word
stored in Y, and all operations following this one and pre-
ceding re-entry into interpreter control will be executed
as JOHNNIAC machine-language operations. (Note that the
octal operation code for this operation is the same as that.
for the transfer to the left (right) JOHNNIAC operation.)

This operation cannot be executed in the Indexing Mode
if the Exit Indicator is "1". 1In other words, the control

cannot exit the Interpreter and the X Mode simultaneously.

TRANSFER ZERO TO LEFT L Y 11
TRANSFER ZERO TO RIGHT TZR Y 15

If the mantissa of the AMQ is O, then the left (fight)
operation of the instruction word stored in Y will be

executed next. Otherwise, proceed to the next operation.

C. Logical-Control Type Operations (Indexing)

All of the operations to be discussed in this paragraph
must be executed in the Indexing Mode with the exception of
the Enter Indexing Mode operation. These operations con-

stitute the "7" class of operations.

p. 57

Oc = [Mne- Oc< [Mne-

OPERATION tal |monic OPERATION tal monic
Reset Add Index 70 |RAX Add ‘Index T4 |[AX
Transfer on Negative Index |71 |TNX 75
Transfer on Positive Index|72 |TPX ' 76
Enter Indexing Mode 73 |ENX 77

List of Seven Class Operations
ENTER INDEXING MODE ENX 73

The operation in the next instruction word and all opera-
tions succeeding this one will be executed in the X Mode ,
until a "1" 1s encountered in the Exit Indicator field.

RESET ADD INDEX RAX 70
0|1 57 16119 20 21 |22 27|20 3
Not | X
CON| 7 O X Used [Ind X TAG AX

The contents of the x() and AX() of the Indexing
Register specified by the X Tag are replaced by X and AX
respectively. If either X or AX is negative, then the values
must be expressed in complement form, 1.e.,“212 - |x].

Por example, 1if XC is specified, then X —> xc and
X —> Xo.

ADD INDEX AX T4
0 |1 ol 18719 20| 2122 2({28 3

Not [X
CON [7 &4 X Use§ Ind ‘X TAG X

The contents of the x() and AX() for the Indexing

p. 58

Registers specified by the X Tag are increased by X and
AX respectively. If either X or AX is negative, then their
values must be expressed in complement form, 1.e., 212 _ x].

Also, the resulting values of X()’ and Ax() are retained

modulo 212. ,

For example, if Xp 1s specified, then X + Xp (mod 212)
—> Xg and &X + AXg(mod 22%)— AX.
TRANSFER ON NEGATIVE INDEX TNX 71

0 I 6|7 18TIS 20| 2122 27128 3
» “Not X
coN| 7 1 Y Used |Tnd| X TAG Xuax

1) Denote the Indexing Register specified in the X Tag
field by Xa. Then compute X = X, + AX,.
q 18 negative, replace X, by‘X&
. Then execute the Left Operation of
the instruction word stored in Y. |
be If Xyax - Xg 18 non-negative, then execute the
left operation of the next instruction word.

This operation is designed fo; use with Indexing Reg-
isters which have negative x(,) and Ax(”,) (in this case

xMAx must be in complement form). Observe that Y refers to

a location in storage, whereas XMAX does not. This fact
should not be overlooked when the code is8 to be translated

by an assembly program,

p. 59

TRANSPER ON POSITIVE INDEX - TPX 72
O 1L 617 18[10 20[21 B2 78 39
Not | X ’ _
CON| 7 2 ¥ Used |mnd] X TAG | Xy

1) Compute Xy =X, + AX .

2)a. If x& - Xyax 18 negative, replace X, by X!

(mod 212). Then execute the Left Operation of
the instruction word stored in Y.

b. If x& - XMAX is non-negative, then execute the
Lefb‘Operabion of the next instruction word.

Observe that Y refers to a location in storage, whereas
XMAX does not.

The formation of loops can be accomplished by the use
of the RAX operation, followed later in the code by the use
of either the TPX or the TNX operation. The RAX operation
sets the’specified Indexing Register, say Xa’ to the values
X and AX. The TPX or TNX operation 1ncrea$es.or decreases
xa by Axa, and then tests the result against xMAx‘ Ir
xMAx = X + n*AX, then the loop will be exeguted exactly n
times. Ordinarily X = 0. In this case X, = n-AX.

The addresses of the operations executed between the
RAX and the TPX or the TNX can be modified at execution
time (that 1s, the Effective address is computed and used)
by the Indexing Registers specified in the‘x}Tag. If the
. Effective addresses result in selecting particular elements
of an array of data, then we can conceive of the X Tag

positions which contain a "1" as being subscripts. For the

p. 60

NX operations executed in the X Mode, if none of the X
Tag positions contains a "1", then we shall say that these
operations are non-subscripted. On the other hand if at
least one of the X Tag positions contains a "1", we shall
call these operations subscripted.
Example: Given the matrices A and B, compute the product
matrix C = A x B. A 1s a 10x20 array which is stored by
rows. The element AiJ is in storage location 1000+20i+].
B 1s a 20x10 array which is stored by columns. The
element bJk 1s 1in storage location 2000+j+20k.
C 1s a 10x10 array which is to be computed and stored
by rows. The element Cik is to bé in storage iocation

3000+10i+k, where Cyp = %: aij X ka.

A code for producing C is as follows:

LOC LOP LA ROP | RA COMMENTS
M.00 RA M.00 | 010 F.00 Basic link to interpreter
M.O1l ENX -- - -- Enter X Mode.

M.02 RAX 0000 o4%0 0020 |1 = 0, AL = 20
M.03 | RAX | 0000 | OO4 | 0010 [i'= 0,(Al)' = 10
M.O4 | RAX [0000 | 010 | 0020 |k = 0, Ak = 20
M.05 | RAX | 0000 | 001 | 0001 |k' = 0, (Ak)' = 1
M.06 | RAX | 0000 | 020 | 0001 {j =0, AJ =1

M.O7 RA K.00 000 0000
M.08 ST T.00 - - Set €y, = O.

M.09 RA (1000) | 060 -- Ay g 1000 + 20 i+]
M.10 M (2000) | 030 0016 Ayg X ka 2000 + J + 20k
M.11 A T.00 .- .- +Cy iy

M.12 ST T.00 -- - —> €y 11

M.13 TPX M.09 020 0020 |J < 20, J+1 —> J
M.14 RA T.00 -- -
M.15 ST (3000) 005 0004 jCi'k! 3000 + 101' + k!
M.16 AX 0001 001 0000 (k' + 1 —> k'

M.17 TPX M.06 010 0200 |k < 200, k + 20 —> k

M.18 AX 0010 o0k 0000 '+l — 1
M.19 TPX M.Ok o040 0200 |1 < 200, 1 + 20 —> 1
M.20 - -~ 100 -- Exit X Mode

M.21 EXR M.21 HTL M.00 |Exit Interpreter End
K.00 | 000 | 0000 | 000 | 0000 |Constant - Zero

T.00 -— -- - -- ci'k’ Temporary

p. 62

'The interpretation time required to execute Non-
indexing operations in the Non-indexing Mode is less (by
approximately 10% for the "average" operation) th&n if the
operations were executed in the X Mode. In addition, the
storage requirement for the instruction words, which con-
tain the operations, is doubled if the operations are
executed 1n the X Mode. Then from the standpoint of both
space and time, the operations can be executed more effi-
clently in the NX Mode. Therefore, if a reasonably long
sequence of operations occurs after a RAX operatiocn and
before a TPX or TNX operation, and if all of theae opera-
tions are non-subsc¢ripted, it may be desirable to exit the
X Mode prior to this sequence of operations and re-enter

the X Mode following this sequence of operations.

D. Input-Qutput Type Operations

The cperations to be discussed in this paragraph can-
not be executed in the Indexing Mode, nor can the opera-
tions be printed (traced). These operations occur among

the "0" class and the "1" class of operations.

PUNCH DATA CARDS PCH ok
0L o[I8T1S 20P1p2-23R5-27TED 39

Not
O 04 | Pirst Address |, .+ A O c st Address

The packed floating-point numbers in the consecutive
storage cells between the Pirst Address and the Last

Address inclusive will be punched, C words per card, into

p. 63

IBM punched cards. If A = 1, a 12 punch will be placed
in column 80 of the last card punched. The numbers will
appear in consecutive positions of the cards in their ex-
plicit external form, beginning with column "9". A max-
imum of six words can be punched in a card, i.e.; c < 6.
If a number is positive, the corresponding S coluﬁn will
contain a 12 punch. The cards will be punched according
to the Floating-Point Data Card Format described below.

A

T 8]9[I0-ITT1Z 20 69 [70-71 [72 7980 |

AN~

ID|S| EXP MANTISSA S | EXP E R
MANTISSA

Aan

Floating-Point Data Card Format

The above format holds for both the PCH and the INP
operations. Card columns 1-8 are not examined by the inter-
preter. If a number is negative, the corresponding S column
must contain an "11" punch. ' If the number is positive, the
corresponding S column may contain a 12 punch or 1tAmay'be
left blank. The EXP columns contain the true exponent in-
creased by 50, and the columns labeled MANTISSA contain the
mantissa as a proper fraction with the decimal point at the

extreme left.

INPUT DATA CARDS : INP 13

01 o7 ‘ 18719-20 121 [22-2% 25;27 20

ol 1 3 | Pirst Address Uﬁgﬁ Al O C | Last Address

p. 64

Floating-point numbers will be read from either the
primary or secondary feed of the collator, C words per
card, beginning with column "9", and will be stored in
packed form in the consecutive storage cells between the
Pirst Address and the Last Address inclusive, unless a 12
punch in column 80 is encountered on a card before the Last
Address is reached. 1In the latter event the address into
which the last word (Cth word) from the card with the 12
punch in column 80 mark is stored will replace the Last
Address of the INP instructien word in high-speed storage.

If A =1, the secondary feed the collator will be
read. Otherwise, the primary feed will be read. A maximum
of six words can be read from a card, i.e., C < 6. The
:cards to be read must be punched according to the Floating
Point Data Card Format described above. A blank or a zero

punch is interpreted as zero in the EXP and MANTISSA fields.

PRINT PNT 17

0L 617 18T1G-20 (21 [22-24|25-27]28 35
Not -

0117 ?1rst Address Used A B C Last Address

The packed floating-point numbers in the consecutive
storage cells between the First Address and the Lasﬁ Address
inclusive will be printed by the ANelex Printer. The format
for printing depends upon the information contained in the
A, B, and C fields. A maximum of three numbers can be
printed on one line. The positions gn the paper 1nt0‘whiéh

these numbers can be printed line up vertically from line to

p. 65

line and are called positions A, B, and C, starting from

the left-hand side of the paper. 'Now, the presence of an
octal digit "1" in any of the fields, A, B, and/or C, means
:hat floating-point numbers can be pfinted in the corres-
ponding positions A, B, and/or C on the paper. Any combina-
tion of these three positions can be specified by the INP
instruction word. If all of the fields A,B, and C are zero,
then the paper will be spaced as many lines as the number
appearing in the Last Address field. In this event, the

First Address 1s not interpreted, and no printing. occurs.

j

2 [3-4 T3AE-THI0R7 -1819 27 B°W

1
/s [Exp | manr1ssa | St | S| EXP | MANTISSA Not | gl EXP | MANTISSA
%

Use
A B , Cc

40 Column ANelex Printer Print Format

S is represented by a "0" and "1" over-printed if the
number 1is negative (©). Otherwise, 8 1s represented by
a blank. The EXP posifion contains the true exponent increased
by 50, and the MANTISSA position contains a proper fraction
with the decimal point at the extreme left. |

p. 66

v OPERATION
'A..'Tracing

Tracing 1is the name by which we shall call the process
of selectively printing the results of the operations
executed under interpreter control and the operations them-
selves. See p. 85 for the tracing formats.

Tracing is controlled first and foremost by the settings
of the T2 and T3 switches. There are four mutually exclusive
settings for these two switches, and corresponding to each

- there 18 a distinct type of tracing.

SWITCH SETTING TYPE OF TRACING
T2 off T3 off No Tracing
T2 On T3 off Breakpoint Tracing
T2 orf T3 On Transfer Tracing
T, On T, On | All Orders Tracing

‘ If T, 1s off and T3 is off, then no orders will be
traced unless the calculator has stopped at the Error Halt
location. _ .

If T, i3 on and Ty is off, then no orders can be traced
unless the Left Control field contains a "1" or the calcu-
lator has stopped at the Error Halt locatiun; Note that the
"1" in the Left Control field can cause either a Left Order
or a Right Order or both to be traced; i.e. Breakpoint
tracing can only be specifled for an entire instruction word,

and not for Left and Right orders separately.

p. 67

If T, is off and T3 is on, then no orders can be
traced except those Transfer orders which result in a Jﬁmp
to the location_Specified 1h the address fileld (thése_orders
include the TPX and TNX orders), unless the calcﬂlator has
stopped at the Error Halt location. |

If T2 is on andvT3 i8s on, then all floating point
orders can be traced upon execution except the Input-Output
orders and the EXL and EXR orders.

If an order which is executed in the X Mode is traced,
then two lines of information are printed. The f;rst line
of printing is the same aé that for a Left operation executed
in the NX Mode, except that the Left Address positions con-
tain the Effective Address, if the order is a NX order.

One extra line is spaced on the paper just prior to
tracing a Left Order.

T U567] THIEN7-] ‘28F950—31
7777A ‘ ' | 771 8 EX

;‘220? 7 DR . . ONTENTS

Tracing Format for Tracing Left Order

The LOC, LEPT OPER., and LEFT ADDR. positions are printed
as octal integers. The CONTENTS AMQ and CONTENTS LEFT ADDR.
positions are printed in decimal in exactly the same manner
as positions B and C for the PRINT operation. However, the :
CONTENTS LEFT ADDR. positions will be left blank for the "O",

"1", and "7" classes of operations.

T ¥56)
ZZRK. A
LOC 12 /o DR.
Z Z

Tracing Format for Tracing Right Order

The abo&e descriptiogwfor tracing the Left order applies
for tracing the Right order if, evgrywhere it occﬁrs, "Left"
1s replaced by “Riéht