MEMORANDUM

RM-3337-PR
FEBRUARY 1963

A GUIDE TO THE GENERAL
PROBLEM-SOLVER PROGRAM GPS-2-2

Allen Newell

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

2te RHTD g

SANTA MONICA « CALIFORNIA

MEMORANDUM

RM-3337-PR
FEBRUARY 1963

A GUIDE TO THE GENERAL
PROBLEM-SOLVER PROGRAM GPS-2-2
Allen Newell

This research is sponsored by the United States Air Force under Project RAND -
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force. Permission to quote from or repro-
duce portions of this Memorandum must be obtained from The RAND Corporation.

1700 MAIN ST « SANTA MONICA « CALIFORNLtA

~iii-

PREFACE

This Memorandum provides a detalled account of the
internal structure of a problem-solving program, the
General Problem-Solver (GPS). This program in its various
versions has been one central part of work at RAND on
artificial intelligence and simulation of cognitive pro-
cesses during the past five years. Although GPS has been
reported on many times, there has never been a completely
adequate account of its detailed structure. This Memo-
randum attempts to fill this gap.

This guide will be of use only to those who are
deeply and technically concerned with the problems of pro-
gramming complex systems. It is essentially a reference
document which provides a level of description which is
normally unavailable in the field of complex programs.

The general field of artificial intelligence and
information processing psychology, to which this Memo-
randun is contributory, aims at understanding the complex
information processes that underlie man's ability to solve
problems, learn, adapt, and create. From a scientific
viewpoint, such activities are intrinsically worthwhile;
from an applied viewpoint they form the essential basis
for increasing the sophistication and eventual effectiveness
of our large command and control systems.

GPS in its various forms and guises is the Joint
work of J. C. Shaw of RAND, H. A. Simon, and the author.
The latter two are members of the faculty of the Carnegie
Institute of Technology, and consultants to The RAND

Corporation.

SUMMARY

The General Problem-Solver (GPS) is a computer pro-
gram being used for explorations into both the general
mechanisms involved in problem-solving and the way humans
solve problems. The program has existed in several ver-
sions since it was first developed in 1957. This
Memorandum is a guide to the detailed structure of one of
the versions, GPS-2-2., It assumes a substantial knowledge
of IPL-V, the programming language in which GPS is written,
and a general knowledge of GPS as it has been described
in the published literature. It is also meant to be used
in conjunction with an assembly listing of the program,
but can be used alone.

After the Introductlon, Sec. II gives the gross
topography of the program. It also includes a run-through
of a simple problem to put the parts in context. Section
III discusses the various data structures used in GPS:
goals, expressions, derivation lists, operators, location
programs, and differences. Section IV 1s devoted to a
detailed description of the subroutine hierarchy, working
from the top executive down through the technique of
method interpretation to a consideration of each method
and method segment. Section V describes the Experimenter;
i.e., the embedding program used to put GPS into operation
and to output selected aspects of its performance. Section
VI takes up the information provided for each task envi-
ronment. For GPS-2-2 these are Logic, and Missionaries
and Cannilbals. In addition there is a description of how
a new task environment might be added to GPS. Four ap-
pendices provide additional specific data on the program.

-vii-

CONTENTS

PREFACE € 8 6 68 06060 © 6 6 60 0660860600500 000600060 0606000 000000000 iii

SUIVMARY ¢ 6 0 0 8 6 0 060 06 0 ¢ 0 0 0 0 80 00 00 00 ® 6 0 @060 060600 ¢ ¢ 0 0800 v

Section
I. INTRODUCTION.....‘Q.O.....O...‘..l.‘...‘l...

1
II. GENERAL STRUCTURE OF THE PROGRAM...eecoceeee L
REZIONS . eeecerecscssascssososccacnses ceeenn L
GPS=COrCeeeeooecsssassscasnscccosssssasnsssscs 5
Task ENVIrONmMENt..eeeeeeoocococsscscansnns 6
EXperimenter. .ceeeeescsececeoscccccossscssns 8
Additions to the Basic SystemM..eceeeceessse 8
Signal SysteM.ceeeeeecsccoecssascssscccccne 9
A Tour Through a Simple Problem........... 11

TIIT. DATA STRUCTURES . .ueeeeesescesascessossescsss 24
CONEENE TYDC . v eveersnseseanoascsscsessnsaes 24
OB LS e e eoesesosonsensesesnssossasasnssenss 2U

GOAL TYPESeeeosoeccasssssasscassossssces 2D
Goal SULTLICIENCYseeeseesonseoveansssnses 20
Goal Repeatability.eeeeeeveeececceseasos 26
GOal CONEEXt.eseseosoovoconsssossconnsasns 2
Goal Creation and DestructionN........... 28
Goal Identity TeSt.veeeeeeeeeesonoasesss 28
Goal Duplication vs. Equivalence........ 29
Goal ModificatioN.eeoeeesccososocssesseass 30
Expressions and Objects.ceeeeeerscecccsss . 30
Structures of TEX's and EX'S.ceeveeeoess 31
Creation and Destruction of TEX's....... 33
Derivation ListS.ecoeececccoocscacsnosssess 3D
OPETrAtOrS . e s eaeencnsecesasosssssssansosss 3D
FOrm OperatorS..eeeecesecesesencssoanoes 30
Expressions for Operators..ceceececesss . 37
Direct OperatorS..ceeecscesesessssccnccese [
Location ProgramS...ceeceeeceescsssasscess 30
Inputs Are Locations Not Names of EX‘S.. 39
Structure of Location Programs....o..... 39
Location Program Reference Tree -
ADSOLULE . evvveessossosconcosssasssssss HO
Location Program Reference Tree -
RelativVe..ieeeeoeorsasssnnocscosns S
DifferencesS....... cesescesseannaae ceeeee.. U2

IV, ROUTINE STRUCTURES.::esecescoccocsosssosssas 43
TOp EXECULIVE. et eereonoorssssescnannonsess U3
Problem-Solving ExecuUtivVe..oecessscesssns . 43

Centralization of Decision-Making....... 43

-viii-

Control Techniques to Handle

Centralization..eeceeeseooeesoncoeses
Structure 0f RlO.eeeeeeececenooannsose
Antecedent GOal...ceeeeecooecsoecsconss
Gl - Expanded GO8l.ue:eeeeeeocvooocoons
Lower Goal SeleCtioN...eeeeeeccoecocses
Execution of Selected Attempt...vece.e.
Recording AttemptsS...eeececsncecocccces

Method Execution and Rll...eveeeoeon.

Methods and Method StatuS.....cev..
Method Structure: Segments........

Method Interpretation: Rll.......

Goal Values and Goal EvaluatioN.......

GOAl ValUES.eeeooseoseseonnoonnncess

G‘Oal Evaluationoooo.-.000.0.00....0-0

Matchlng OOOOO ® 6 & 0 & 0 & ¢ O 0 v " e 0 0o ® 6 o o &
R20 Match.eeeoeoeesne

® & 060000600000

Housekeeping for Match...............

e o 0 o

R21 Match..oooo:aooovooooopoooo'oio

Combination of Differences: Q92..
The Match Method for Transform Goals

KL,'O ® & 0 0.0 0 580 00 000000000000 0008000 e

The Method....ovvviiiiieieneennn. ceeen

Match #1 to #2: Segment R30......
Immediate Operators...eeeeeceeeses

Create SUDZOAl.s.eeereerneononennan

RematChing... oooooooooo ® o ¢ 00 00 000 ¢

Difference SeleCtionN.veeeeeeeeesessess

Create Modified Transform Goal:

Segment Q28...'."........'.........
Final Segment: Qll16....veeveeeeneenn.

The Try Operator Method for Apply Goals

(K""l @ 0 ¢ 0 00 000 006000000 06 0 0 0 00000000 0 00
The Methodnoloonoooo.ooooo'..otno.oc

Discriminate Type of Operator:
Segment R3l...‘l.....“..l..0...

Form Operators with One Input.........
Form Operators with Two Inputs........

Create Modified Apply Goal:

Segment Q38...vieieenneeneronenns

Final Segment: R33: Transferring Re-

sult (Q29) or Creating New Apply
Goal

Qlo3)0.‘....0.0..0.‘..00.‘00!0
The Find Relevant Operator Method for

Reduce Goals (K42)...vereeeernernnnnns
The Method........ Ceccecssssansenne
Find Operator: Segment R32...c0000e.e.
Find Next Untried Operator..........
B I T =
Transferring Result: Segment Q29.....

Repeatability of Method...veeee...

.

76

76
7
7
79

79
79

V.

VI.

-ix-

The Transfer Equivalent Result Method
for All Goals (K43)..eieeeoceonccnscns

Q70-ooooo.ooo-ooooooo

Blocking the Method...ceceeeceecoacsce

Single Segment:

THE EXPERII“ENTER.-0'...'00.0.....0.0.00..0
Input Conversion and Setup.scceceecseoess

El3.0.l.l....00..00‘0.
TE ConversiON.iccscsccscsccesscase
Goal ConversioN.cceceesrssesccccscsosccss
E2l.civeeeencrcconcns
Conversion of Parenthetical Expres-

Set Up Trivia:

TEX Conversion:

S1ONSeeeeeconnas

oo 0 0 0 0

e o o s 0 0 ® ¢ 00060 06000 00 00

Output and Debugging.seeceeecsessccossss
Behavior TracCCeceeesscecoesccocsccscccas
Prmting FomatS'..'00000.....0..‘.‘.0

Debugging Facilities..
Set Up for Running..

® 6 06 0 00 06000 000 000

® @ ¢ 0 0 0600 068800 00 05 0 0 o0

Assemblies and Modifications....eeecee

Spec Sheet......
Auxiliary Storage.ceceeesceses

e 0 06 0 0 0 000 0000000000

e 6 0 0 0 0 0 00 0

TASKENVIRONNENTS".O..C. e & o & & 0 0 o 0 9 0
Symbolic Logic TE (K70)..eeeeoosccsasnss
Types of Information........ cecsasecse

Differences and Associated Structures.
Multiple Negation SignS..ccceeececcoce
Filters and Similarity Tests....
Missionaries and Cannibals TE (M19).....
Types of Information....e.cevsee
Admissibility Test.veeeerecoccceccnnns

External Task Space:

e o 00 00

Top Executive

Rl........".l.....'.....‘......'..'

Adding New Task Environments.....cceeeee

Difference Ordering:

List of Variables: K82.........

Difference Print List:

Convert TEX: Z80...eeeeeeeecans
Multiple OperandsS..c.ccceeecscccos
Print TEX: Z8l....ccececescoccacsonse
List of Operators: Y5l.........
Numerical Calculation...ceecsecocecocens

Table of Connections:
List of Immediate Operators:

List of ObJects:

Ysu‘ooooooooo-o

Identity Comparison: Y60.......
Similarity Test for Object Sets:

Compare Objects:

Y63.c0000eenns

Compare Operators: Y64.........
Search Filter on Operator Conditions:

Y65, ieeeoesnnn

Standardization:

® 0 06 2 0000 000 00 00

¥69..ieieennnn

K810.0000000..'0

® o0 0 s 0

K84.0.0.......

® 0 0 0 0 0

Y52, ceeeeceaans
Y53oo-oo

"Ty6o.

® 0 0 0 o 0

102
103
103

104
104

Similarity Test for Operator Sets:
O...Q..Q."....Q...l..'.....‘.O'.Q

Adjustment for EX1 2Q513: Y72 eeenns

Adjustment for EX2
Summary..eeee.

Appendix

Q52): Y73 ¢ eeeeoes

® ® 0 0 0 0 0 0 05 0008 000 00000000

A. GPS RUN ON "R.(-PIQ) INTO (QVP).R"........
Specification Sheet. ® © & & & & 0 0 & 0 % O O O 0 O S 0 e
Trace Of PrOblem Rurl ® 6 & 0 & 0 9 6 0 0 0 s 000 e e 0o

B. GPS-2-2 VOCABULARY (ROUTINES) .:eevevecensns

C. GPS-2-2 VOCABULARY (DATA)..vereeeoocacenns

D. FIGUES....‘......'
REFERENCES . .v.0eveneens

8 6 000 5 00 00 0000000000000

® 0 0060 0 00 000006000000 0000

104
104
104
105

107
107
108
109
121
135

147

I. INTRODUCTION

The General Problem-Solver (GPS) is a computer program
being used for explorations both into the general mechan-
isms involved in problem-solving and into the way humans
solve problems. As its name indicates, there is both an
aspiration that GPS should be capable of handling a wide
range of tasks and the fact the GPS's organization is
task independent in many respects.

GPS grew out of The Logic Theory Machine,(l'3) a
program for proving theorems in the sentential calculus
of Whitehead and Russell. The first version, called
GPS-1, was coded in IPL-IV for JOHNNIAC.(A) The most
complete description of GPS existing in the published
literature is the "Report on a General Problem-solving
Program for a Computer,"(B) which gives only the highest
level organization. A discussion of some organizational
issues arising in GPS will be found in "Some Pro?éﬁms of

GPS

has been discussed in several other papers in connection

Basic Organization in Problem-solving Programs."

with its use as a simulation of human thought 7-11) and
in an investigation of learning.(le) A recent paper(l3)
also discusses the first steps in getting GPS to program
by constructing an independent, GPS-like program called
the Heuristic Coder.

GPS rapidly outgrew the small storage capacity of
JOHNNIAC (4096 words), and was recoded in IPL-V to run on
the TO4-T709-7090 series machines, which have 32,576 words
of fast storage. The new program was called GPS-2-1.
Functionally it was almost identical to GPS-1, but sub-
stantial organizational changes were made. The change to
GPS-2-2 involved somewhat smaller organizational changes,
but required a separate designation, since both versions
were running at the same time. This document 1s a de-

scription of the structure of GPS-2-2. GPS-2-1 is not

separately documented and 1s no longer a functioning pro-
gram. Additional versions, GPS-2-3 and GPS-2-4, now exist.
They involve more substantial organizational changes from
GPS-2-2, and will be documented separately.

This document is a guide to someone trying to under-
stand the GPS program in detail; it is not written as a
general introduction. It assumes knowledge of IPL-V(15)
and the published general descriptions of GPS. Thus, the
user of this guide should already understand that GPS uses
goals of three types in a recursive way to build up a hi-
erarchical goal tree for the problem at hand; and he
should understand in a general way the nature of the meth-
ods that generate this tree and the devices that are used
to prune the tree. He will find in this guide numerous
additional mechanisms that are unmentioned in the pub-
lished papers.

IPL-V is written in a vertical format with specific
fields assigned to various parts of the IPL words. We
will adopt a convention here that will allow us to write
IPL code without specifically assigning fields on the
page. We use a slash (/) to separate NAME from PQ SYMB
and a period (.) to separate PQ SYMB from LINK. Thus the
following IPL program would be transcribed as shown below:

NAME PQ SYMB LINK

P7 10 L5
P4
11 WO
J2
70 9-1 9-2
9-2 P5
P6 P8
9-1 P9 0
P7/ 10L5
P4
11WO
Je
709-1.9-2
9-2/ P5
P6.P8

9-1/ P9.0

-3-

We will use an equals sign (=) to indicate an integer data
term; e.g., 9-1=5 means that 9-1 is the name of data term

integer 5. (We will have no occasion to use the other
types of data terms.)

e

II. GENERAL STRUCTURE OF THE PROGRAM

REGIONS

The total program is divided into several parts: the
Experimenter, the GPS-Core, and the various specialized
parts for each task environment. Each part uses symbols
from different regions for its routines and data. One
rough picture of the total program is obtained by giving
a schematic division of the 32K store into the separate
parts, showing the different regions and their functions.
The amount of space devoted to a part and the number of
separate entities is necessarily approximate, since the
program 1s under continual modification. It also includes

numerous alternative versions of routines and 1lists.
GPS-Core: 4700 words

A: General attributes (50) (one word
per attribute)
Goal attributes (50) (one word
per attribute)
Basic routines (70) (1200 words)
: Y cell routines (100) (2500 words)
Top level routines (10) (500 words)
Constants and lists (60) (300 words)
Local context working cells (100)

'j!X:;.U@"U Q2

Logic Task Environment: 2100 words

F: Routines (20) (900 words)

C: Constants and 1lists (50) (400 words)
D: Differences (50)

B: Operators and objects (80) (800 words)

Missionaries and Cannibals Task Environment:
900 words

M: Routines (10) (600 words)
M: Data (20) (300 words)

Experimenter: 1100 words
E: Routines (50) (900 words)

L: Lists (30) (100 words)
Z: Cells and constants (100)

-5«

Additional Basic System: 200 words

I: Routines (1og 650 words)
S: Signals (100) (one word per signal)
N: Integers (100)

IPL-V System: 7000 words

H: Basic communication cells (10)
J: Primitive routines (200)
W: Working cells (30)

Working Space: 16,000 (less after set up,
conversion, etc.5
Goals run about 100-150 words per goal
Expressions (in logic) run about 30 words
per expression

GPS-CORE

The data structures that GPS uses are expressions,
which describe the objects GPS wishes to manipulate; and
goals, which describe the situations GPS wishes to obtain.
(There are also a few miscellaneous structures.) These
are described by numerous attributes. G-symbols (e.g.,
Gl, G25) are used for attributes that are peculiar to
goals; A-symbols are used for all other attributes. All
A-symbols and G-symbols define routines of identical form--
for example: Al/ 10A1.J10. Thus executing Al on the
name of an expression will retrieve the value of attribute
Al on the description list of that expression. The situ-
ation is similar with the G-symbols, except they check to
see if the goal is stored on auxiliary storage.

GPS 1s always in the context of attempting a single
specific goal. The goals form a hierarchical network,
so that one may visualize the program in operation as
located at some one node of this network. Depending on
the result of problem-solving activity on this current
goal, the program will move to another goal; e.g., back
up to the supergoal, down to a newly created subgoal, and
SO on.

The Y-cells hold the immediate context. That is,
they hold the information pertinent to the current goal
that is being attempted. Each Y-cell has a specific func-
tion. For example, Y2 holds the name of the current
goal, Y3 holds its type, and so on. Each Y-cell holds
only a single symbol, so that when one says, for example,
"the goal in YT" or "the expression in Y13" one means the
1ist structure whose name is in the cell Y7 or Y13, respec-
tively. (Y-cells are occasionally pushed down on a
temporary basis within a single Q-routine, but this is a
local matter, not within the cognizance of the system
conventions.) Thus, the gross action of the program is
to get into the context of a goal by setting the Y-cells
appropriately; to engage 1in some problem-solving activity,
working in and out of the Y-cells; to record the infor-
mation that should be kept permanently in the goal
structure; and to leave this goal context for another one.

The routines of the core are divided according to
their relation to the Y-cells. At the top level there are
R-routines. These are independent of the Y's and follow
a special set of coding conventions. Next come the Q-
routines. These routines take their inputs from the ¥-
cells and put their outputs back in the Y-cells. Thus,
the R-routines use the Q-routines in order to accomplish
all their actions. Finally, there are the P-routines.
These are general purpose routines that take their inputs
from HO and put their outputs in HO. They know nothing
of the Y-cells either. (A major purpose of this division
is to guarantee that Y-cells are safe over P-routines.)

TASK ENVIRONMENT

Basic to the current version of GPS 1s the assumption
that problems or tasks can be grouped into large classes
which are homogeneous with respect to the particular facts,

i

heuristics, operations, etc., required to solve them.
Thus, there is a collection of parciculars that make up
"knowing about chess" or "knowing about symbolic logic";
if these are known, then many problems about chess (or
symbolic logic) can be posed and attempted. GPS-Core
makes no reference to such particulars. It knows only
about "objects" and "operators" in the abstract; e.g.,
that there are differences between objects, that two ob-
jects can be put into correspondence, and so on. The
additional program and data needed to complete GPS so that
it can work on tasks of a given class is called a task
environment part. The symbolic logic task environment
part, for example, consists of routines that accomplish
input and output conversions; routines that compare two
expressions to determine what differences hold; routines
that perform similarity tests and identity tests; and

data structures for the table of connections, the oper-
ators, and logic expressions. The Missionaries and
Cannibals task environment, the other environment that
exists in GPS-2-2 in completed form, is similar in struc-
ture. Its principal addition is a routine for accomplishing
the basic operators (M22), since these are not conveniently
expressible as forms of the same kind used in symbolic
logic.

It is assumed that the routines of a task environment
know about the Y-cells and accomplish their functions by
working directly into and out of ¥Y-cells. They may use
the P-routines as subprocesses, but may not use either the
Q- or R-routines.

The information for each task environment is given
by a list (K70 for O. K. Moore symbolic logic, M19 for
Missionaries and Cannibals). GPS always works in the con-
text of a single task environment (TE), given in Y4.

There is a routine, Q79, which changes TE's. To be in

-8

context for a TE means to have all the routines and data
for that TE available (currently localized to ¥Y50-Y79,
K80-K89, and Z80-289). A TE list is formed as a list of
pairs: the name of the cell that should hold a given type
of information followed by the symbol it should hold for
this TE. Q79 accomplishes the function of changing to a
new TE, including blanking out all the cells from the old
TE (by putting K92 in the cell), so that old routines and
data will not be spuriously used.

EXPERTIMENTER

Besides the problem-solver, which consists of GPS-
Core plus the TE parts, there is another part of the
program, called the Experimenter, whose function 1s to
handle input and output conversions; to make the initial
setup; to present GPS with the problems we wish it to
attempt; to provide GPS with any appropriate "external en-
vironment" (such as the autonomous play of an opponent);
and to monitor the activity of GPS for any debugging or
performance data. The Experimenter has its own routines
(E-routines) and its own lists (L's) and its own cells and
constants (Z's). Insofar as these occur in P-, Q-, and R-
routines, they indicate monitor and output functions and
have nothing to do with the problem-solving activity.

ADDITIONS TO THE BASIC SYSTEM

GPS is coded in IPL-V and uses the basic set of J-
routines already available. The only additions to this
are a universal set of symbols for positive integers (Nx
for integer x); a few scattered P-routines, which accom-
plish basic lists processes (such as P60/ JT4.J136, copy
and make local); a couple of routines (I20, I21) for
handling the assembly and correction procedures; and the
signal system. This latter is sufficiently important to

be described in detail.

SIGNAL SYSTEM

The purpose of the signal system is to allow a sym-
bolized multi-way branch as a basic coding operation.
Imagine a routine, say R20, accomplishing some function
and leaving in a special cell (the signal cell) one of
several symbols, say S10, 811, S1l2, S16, S18, or S23.
Each of these indicates that some particular generalized
outcome has occurred. We now want to transfer to dif-
ferent routines depending on which outcome happened. As
a flow diagram, we might write:

R20

%ig////;::///lle S16 S18
: 523

In IPL-V terms we can think of following the execution of
R20 with a list of pairs, the first symbol giving the
signal (S-symbol) and the second giving the location to
transfer to:

9-1/ R20.9-2

9-2/ Il
S10
9-10
811
9-11
S12
9-12
S16
9-13
S18
9-14
823
915.0

We can visualize the execution of this structure pro-
ceeding as follows. Instruction 9-1 is executed. This

leads to R20 being executed, resulting in a signal, say
S12, being put in the signal cell. Having finished R20,

-10-

the next instruction to be executed is 9-2, which leads to
the execution of Il. Il now goes to Hl, the current in-
struction address list, and recovers the symbol 9~-2. It
then searches down 9-2 looking for the symbol that matches
the symbol in the signal cell (S12). This search is es-
sentially J10: find the value of an attribute on a
description list. In this case the value of S12 is the
symbol 9-12. Il removes 9-2 from Hl, since the list 9-2
should not be executed as a string of instructions, and
puts 9-12 into H1l in such a way that the next instruction
that is picked up for execution is 9-12. (The routines
that manipulate H1 [IS and I19] must really be considered
additions to the IPL-V basic system, since they imply de-
tailed knowledge of how the IPL~V interpreter works.) If
the signal is not found in the 1list, a special signal, SO,
is used to stand for "in all other cases," and a search
is made to see if S9 is on the list. If S9 is not on the
list, then Il behaves like JO.0--that is, the routine (at
this level) terminates.

All S-symbols are signals. The signal cell is Y1
and all S-symbols are defined as routines which put their

name into Y1l:

S12/ 10S12
20Y1 .0

It is sometimes desirable to take a multi-way branch on
some other class of symbols than the signals. Thus, I2
is a routine analogous to I1, but taking its symbol from
Y18, which contains the current difference symbol. This
permits a discrimination on the difference that 1s being
considered. Similarly I3 takes its symbol from Y3, which
contains the goal type, and I4 takes its symbol from Y85,
which contains the expression type.

Besides I1, I2, etc., the routines I11, Il12, etc.,
are also defined. Il1 is identical to Il1l, except that in

=11~

I1 the signal is recorded for output (via the monitor
routine, ET0, in Z92) whereas in Ill, it is not. The sit-
uation is similar for the others.

A TOUR THROUGH A SIMPLE PROBLEM

To provide an overview of the operation of the pro-
gram, its behavior on a simple problem will be described.
All the information in this subsection is described in
more detail elsewhere, so that only the single thread that
GPS follows need be outlined.

The problem is €36, Transform R.(-PIQ) into (QVP).R.
A trace of the program's behavior is given in Appendix A.
The first page is a list of specifications; the only part
that concerns us here is the task environment part, speci-
fied to be K70, and the task, specified to be C36.

The program starts at E2. This is the top executive
of the experimenter and oversees the conversion of all the
inputs into internal form (including the assignment of
names like Rl to operators and L1 to objects). By the
time the trace begins to print, all the conversion of
goals, operators, and objects has been completed and E2
has fired R2, which is the top executive of GPS-Core. The
number at the far right shows that 35,592 IPL cycles have
already gone by. R2 prints out the two expressions, the
goal expression, and sets up three derivation lists. These
1lists hold the names of expressions that have been derived
from a common source. Thus, list 28 now holds Ll. As
soon as some operator is applied to Ll to produce a new
expression, then the name of thils expression 1s put on 28.
Adding to 28 is essentially working forward; adding to 29
is working backward (not done in this run). All the oper-
ators are on list 30, and any new operators that are
generated (not done in this run) would be put on list 30
as well. R2 also sets a limit to the complexity of the ex-
pressions that GPS will consider (which does not affect
behavior in this run).

-]2-

At this point, R2 executes the main problem-solving
executive, R10. From here on the trace gives a blow-by-
blow account of all the decisions that are made. The
lines of symbols that run across the page are the signals
that occur at each point in the higher programs and that
are used to control the transfers (see the earlier section
on the signal system). The names of the R-routines are
also recorded in the "signal 1line" to make it easier to
keep track of what decisions are occurring. In the
appendices, along with the run, is a series of flow
diagrams for these higher routines. They should be con-
sulted as we go through the behavior.

At the moment when R10 takes over, Goal 1 (C36) is
the current goal (it is also the only goal). Thus, its
name is in cell Y2, and as long as we are working on it
directly, various information about it will occupy other
Y-cells. Most of these are blank at the moment, since
nothing has happened yet.

Consulting the flow diagram for R10 we see that we
enter at Ql. Ql tests if the "external limits" are viola-
ted—either too many cycles or too great a depth in the
goal tree. The signal (in Y1) was originally set by R2
to be S50; if either of these limits had been violated Q1
would have changed the signal (to either S72 or ST7.4).
What we observe in the signal line of the trace is an
S50 right after "R10." This is the signal that existed
after Ql; thus no limits were violated and the next Q-
routine to be executed is Q2.

Q2 finds the next method. There is a list of methods
assoclated with each goal, consisting of the method name
followed by a status symbol, which shows whether the
method has been used with the goal, whether it can still
be used, etc. In this case, of course, no methods have
been tried at all and method K40 is chosen. Its status
(s50) is made the signal, so that on the trace we see a
second S50 just before we go into Rll.

-13-

A method is not a program; instead it is a list of
method-segments. Each segment is a routine. R1ll is the
program that executes these segments and interprets the
signals that are sent back from them. Method K40 is the
method that matches two expressions against each other
and sets up subgoals to reduce the difference between them.
In Fig. 1% we give a flow diagram that is similar to the
ones in the published papers but containing more detail.

R11l first detects that the signal is S50, which indi-
cates that it is to perform the first segment of the
method, R30. This segment sets the two expressions to be
matched, L1 and LO, into the Y-cells and then calls on the
match routine proper (RQO) to match them. R20 reads the
signal, S19, which tells it that it is at the beginning
of a matech. This leads it (see R20's flow diagram) to
Q47, which checks that the match is between two objects
(which it is), rather than between, say, an object and a
set of objects. No difference being found, the output is
S20, which means, "I have a point of correspondence between
two objects which needs comparison,’ and leads to Q20.

The total match proceeds by a series of comparisons as

the various parts of the two expressions are brought into
correspondence. At this point, the total expressions are
being compared; i.e., the connective (here both dot), the
sign of the total expressions (here both positive), whether
both expressions have the same letters (here both have one
occurrence each of P, Q, and R), and whether their arrange-
ment is the same. On this last a difference is found, in
that the left of Ll has R, whereas no R occurs on the left
of LO but does occur on its right, and analogously with

P and Q. Thus, R20 finds that a difference in position,

*A11 figures, in addition to appearing in the text,
are reproduced together in Appendix D.

14~

Transform A into B

Method K40
| R30
R20 .
identical « Goal solved
Match A to B T10 7 SBO
work S12 difference D found
S10
S11 v
L—Try immediate
operators
S12
\ 4
Q27
Create goal:
Reduce D between
A and B
S40 new subgoal
v
Attempt subgoal Done by R1ll
(not part of method)
S30 modified object A' produced
v
Q28
Create subgoal:
Transform A' into B
lSAO new subgoal
Attempt subgoal Done by R1l
(not part of method)
S30 success
Q116

Set output for K4O method.

Fig. 1 Rough Flow Diagram for K4O Method.

-15-

D9, exists at the top level of the expressions. This
causes the signal to be set to S12, and since S12 is not
in the discrimination 1list of R20, R20 quits at this point
and control returns to R30.

The response of R30 to S12 is not to set up a sub-
goal, but to see if there are any "immediate operators"
that might take care of the difference right away. An
immediate operator is pragmatically defined as a course
of action that is guaranteed to remove the difference with-
out further caution. Examples from this logic task are
substitution and the elimination of double negation signs
(such as --P into P). To this end GPS discriminates on
the difference symbol (D9) which is in Y18 (and shows in
the trace). This occurs twice, once for GPS-Core immedi-
ate operators and once for logic operators, but with no
success. Hence R30 is led to Q27, which is the routine
for creating the subgoal of reducing the position dif-
ference between L1 and LO. All the information for
creating this goal is sitting in the Y-cells—the names of
the objects, the difference symbols, the names of other
goals to which this new goal should be linked, and so on.
This first segment of the K40 method ends at this point
with Q27 setting the signal to be S40O—there is a new sub-
goal created. However, before Q27 could set S40 it had
to check whether this new goal was like any other goal in
the memory. In this case there was only Goal 1 to worry
about, and Goal 2 was indeed found to be a new one.

At this point we are back in Rll, having performed
the first segment. The decision to work on the subgoal
is not part of the method, but is made by Rll using the
routine in Y92 (which happens to be Q74, as can be seen
from the initial sheet of specifications). The result of
this goal evaluation is S8, which means "undefined," and
can be interpreted as saying that no goals could be found

-16-

against which to compare Goal 2. Rll interprets this to
imply that Goal 2 should be tried, so it is led to execute
the problem-solving executive in Y90 (which is R10) on
Goal 2. This requires, first of all, that GPS get out of
the context of Goal 1 and into that of Goal 2; Q81, which
immediately precedes 1Y90 in Rll, accomplishes this.

Later on, when this attempt at Goal 2 is over, Q82 will
perform the task of bringing GPS back into the context of
Goal 1. This change of goal contexts involves changing
the contents of the Y-cells.

The cycle now starts over with Goal 2. R1l0 first
checks the external 1limits (Ql) and gets S50; it then
obtains a method and finds an untried one (S50); it then
goes to R1ll to carry out this method. This method, K42,
is given 1in Fig. 2. Its first segment, which is now exe-
cuted by R1ll, is R32. It consists of finding a relevant
operator to apply. The initial selection is done from
the table of connections, where the difference (here D9)
is used to select a sublist of relevant operators. These
are subjected to some additional tests. First, they
should not have been used before. There is a list of
used operators on the goal against which to check; at this
stage, of course, none have been used. Then each operator
is subjected to a preliminary test of feasibility. This
test requires, among other things, that the connectives
of the operator and the expression agree. L1l has a dot
main connective, so that one form of R1 (AVB => BVA) is
rejected but the second form (A.B => B.A) is accepted.
This can all be seen in the signal line of the trace,
where the S69 shows that we are dealing with form opera-
tors (as opposed to various other kinds of operators that
are possible); the first S1 S2 shows the selection of the
AVB rule as untried (S1 = OK) and its rejection as infea-
sible (S2 = reject); and the next S1 Sl shows the selection

-17-

Reduce D from A to B

Method K42
R32
~» Select the next relevant operator
reject if used before
reject if fail preliminary feasibility test
reject if fail preliminary desirability test
S35 S
No more”
operators
Q34
Create operator subgoal
S40 new subgoal
v
Attempt subgoal Done by R1l
(not part of method)
S30 modified object A' produced
\\ 7
Q29

Make A' the result of goal

Fig. 2 Rough Flow Diagram for K42 Method.

-18~

of the A.B form and its acceptance on the feasibility
test. The last S1 before R32 quits is a preliminary test
for desirability, which in this case is vacuous and auto-
matically S1. At this point, R32 is prepared to put
together a subgoal to apply this form of Rl to Ll. This
is again checked to see if 1t has been created earlier,
and the answer being in the negative, a signal S40 (new
subgoal) is set.

We are again back in R1ll, which reads the S40 and
evaluates the subgoal to see if it wants to do it. Again
the result of the evaluation is S8; however, this time it
stems from the fact that only reduce goals can be evalu-
ated, since they are the only ones that have differences.
Hence, all transform and apply goals are automatically
evaluated S8, which is interpreted to mean "try it."

R11 executes Q81 and then 1Y90 which leads to the
second recursion of R10, this time on Goal 3. Repeating
the cycle of three S50's we are again in R11l executing
the first segment of the method K41 for trying to apply an
operator. A flow diagram is shown in Fig. 3. The method
for applying operators 1s somewhat more complicated than
the other methods for two reasons. First, operators are
of various types—some are forms, some are IPL programs,
some have side conditions, and so on. Hence the first
step 1s to discriminate which kind of operator is being
applied; the S61 indicates we are working with a form
operator. (The alternatives have been left out of Fig. 3.)
Second, operators can have more than one input. This
leads to a host of complications, which show up in Fig. 3
as the production of modified operators rather than modi-
fied objects. Since no multiple input operators are used
in this simple problem, we will ignore these various
alternatives; however, it seemed necessary to put them
into the figure.

-19-
Apply R to A
Method K41

R31
Discriminate type
of operator

\],861 form operator

R20

Match A to identical Q102,Q37 ||S30 Produce object A!

Prepare
condition form of R. 510 new objecti|S131 Produce operator R;

work S12 found difference D
S10
S11 v

ry immediate operators

S12 not work

A 4

Q27

Create goal:
Reduce D between
A and C (R)

S40 new subgoal

v
Attempt subgoal Done by R1l1l
(not part of method)
| S30 modified object A" produced
or modified operator R"

Q38

Create subgoal:
Apply R to A"
or Apply R" to A

S40 new subgoal
Attempt subgoal Done by R1ll

$30 modified object A" produced (not part of method)
or modified operator R""' produced

R33

If A'", make it the result of goal.
If R'", create subgoal:
Apply R'" to derivation 1list of |A
Set to repeat R33

Fig. 3 Rough Flow Diagram for K41 Method.

-20-

A form operator is applied by matching the input
expression against the condition form of the operator;
i.e., R.(-PIQ) against A.B. This not only verifies that
the conditions of the operator are satisfied (that the
connective is a dot), but also gathers the information
necessary to produce the new expression; i.e., A is R and
B is -PIQ. If the match (R20) is followed through on the
signal line, it will be seen that difference D15 is found
twice. D15 stands for a variable versus an expression;
it is one of the differences for which GPS has an immediate
operator. Consequently, after R20 sets S12, R31 finds the
substitution operator, performs it, gets the S12 changed
to S10 (i.e., after substitution this part of the expres-
sion must be identical), and returns to the match routine.
At the end, after the two substitutions, the condition
form and the input expression are identical (S10) and so
R31 gets Q37 to produce the new expression from the output
form (here, B.A) which has now been filled in. Thus L2
is produced, and Goal 3 has been attained.

Before L2 was printed out as the result of Goal 3,

a check was made to see if the expression, (-PIQ).R, had
already been derived. This was done by checking each of
the expressions on the derivation list (#28). 1In this
case there was only L1, and so L2 was a new expression
and L2 was added to the 1list.

At this point in the signal line, we have S30, indi-
cating that Goal 3 was attained. Thils is detected by
R1l, serving as a signal for it to quit, and by R10,
serving as a signal for 1t to quit. GPS then returns to
Goal 2, as indicated in the signal 1line, and is back in
Rl1l. The 'Goal 2' is actually printed by Q82 in R11,
which changes the goal context. R1ll detects the S30 and
sets S48, which is the sign that the subgoal in the method
succeeded and that the next segment is to be obtained.
(This takes an additional turn around the main R11l 1loop,

=21~

since it must be determined whether to go on to the next
method segment [S41, which occurs herel, or to repeat the
previous segment [S46].)

From the flow diagram for method K42, we see that
the next segment is just the trivial step of assigning
L2 to be the result of Goal 2. Thus Goal 2 has been at-
tained, and again S30 (success) is detected by both R1l
and R10, so that GPS returns to the context of Goal 1.
Again R11l goes through the motions of detecting the S30,
setting S48, and finding that it wants to go to the next
segment of method K40. This segment is Q28, which creates
the goal of going from L2 to LO; i.e., the rest of the
way after L2 (presumably) has taken the first step of
eliminating the difference in position.

At this stage, we are back to familiar ground. The
pattern of behavior for Goal 4 is identical to that for
Goal 1 originally. A match is performed, which discovers
a difference in connective between the left subexpression
of L2 and that of LO. (The P9 in the goal expression
indicates "lower left.") If the match is traced through,
it will be seen that the comparison at the top level fails
to find a difference (S11 following the first S20 in R20),
so that the two left subexpressions were put into cor-
respondence and the comparison routine (Q20) executed for
them. Having found a difference, Goal 5 is set up to re-
duce this difference. At this point, the goal evaluation
accomplished in R11l (at Y92) is effective. A change of
connective on the left subexpression (D5 on P9) is com-
pared with a change of position on the main expression
(D9), with the conclusion that the former difference is
smaller than the latter. This is reflected in the S7
following the S40 just before GPS attempt Goal 5. Until
this time, there was nothing against which an evaluation

could be made.

-20-

As 1in the earlier sequence, Goal 5 leads to a search
for a relevant operator. R6 (AIB => -AVB) is selected be-
cause: 1) it is on the table of connections as changing
connectives; 2) it has not been used before; and 3) it
has the same main connective as the left of L2 (which is
where it is to be applied). Again there is no difficulty
in matching the condition form of R6 to the left of L2
and so L3 is produced.

The entire cycle repeats itself once more: obtaining
L3 implies success on Goal 6, which in turn implies suc-
cess on Goal 5. This leads to Goal 7 to transform L3 into
LO, analogously to the creation of Goal 4. Attempting
Goal 7 reveals yet one more difference, a change of posi-
tion on the left subexpression, which generates Goal 8 to
reduce it. Again the evaluation is favorable (S6) and
Goal 8 attempted, leading to Rl (this time the AVB => BVA
variant) and Goal 9. Rl can be applied, giving L4, which
is the result for both Goal 9 and Goal 8. Finally Goal 10
is created, to transform L4 into LO. At this point, the
match finds no more differences between them and so Goal
10 is attained (S30). This success rapidly propagates
back up the goal hierarchy to Goal 7, then Goal 4,and then
Goal 1. At this point, GPS realizes it has solved the
problem and quits.

It should be apparent that there is a large number
of features and responses of GPS that have not been 1l-
lustrated. The most apparent example is that the operators
always worked right away. Often, of course, when an in-
put expression is matched to a condition form, a difference
more serious than D15 (variable versus expression) shows
up. The flow diagram for method K41 shows that GPS will
then set up the reduce subgoal to try to eliminate this
difference. In addition to this, all the goal evaluations
were favorable, so that we never saw a goal rejection;
likewise, none of the created goals and expresslons

-23-

duplicated any structures already on hand. And as we
commented earlier, no multiple line rules were applied.
All these features, and a number of others, add varlety,
and sometimes zest, to GPS's behavior.

-2l

III. DATA STRUCTURES

There are several major kinds of data structures on
which the program operates. For each a description of
the structure, the conventions that govern its use, and a
discussion of the ways in which 1t is created, modified,
and destroyed 1s given. Various minor data structures,
such as the reference trees, are defined and discussed
where they naturally arise in the use of the major struc-

tures.

CONTENT TYPE

Some of the major kinds of data structure are la-
beled by a content type at A51. The ones currently
defined are:

K161 Object TEX

K162 Operator TEX

K163 Set of TEX's

K170 Constants

K172 Primitive operations
K173 Variables

K179 ObJject types

GOALS

A goal 1s a collection of information that defines a
desired state of affairs plus the means to attain this
state of affairs and the history of previous attempts.

All the information about a goal is on its description
list; the 1list named by the goal symbol is always empty.
Thus all information is obtained via attributes, usually
G-symbols, but occasionally A-symbols, where the attributes
are common across goals and expressions. The A-attributes
used with goals are A2 (external name, an integer, which

is the order of generation), A7 and A8 (used with auxil-
iary storage), and Al18 and A19 (used in output). The

-25-

attributes are routines and are executed to find the at-
tribute values. For the inverse operation of putting
values on goals, three routines are defined:
Q13 Put (1) to be non-local value of attribute
(0) of goal in Y2.

Q14 Put (1) to be local value of attribute (0)
of goal in Y2.

Q15 Add (1) to front of value 1list of attribute
(0) of goal in Y2.

Goal Types

Goals are of several types. Each type dictates the
kind of information required to specify the state of af-
fairs desired. Externally, a goal is specified by a
simple list giving its type and the objects involved.

This 1list is converted to a description list internally
and all the additional information added to it (by E22).
The current goal types, denoting the attributes and values
used internally by A V without a separating comma are:

External Internal
#1/ O Transform expression B50 into expression B51.
K1 G21 K1.

B50 Gl B50, Gl1 P8.
B51.0 G2 B51, Gl2 P8.

#2/ O Apply operator Bl to expression B50.
K2 G21 K2.
Bl G5 Bl.
B50.0 Gl B50, Gl1 P8.
#3/ O Reduce difference D1 between expressions B50
and B51.
K3 G21 K3.
D1 G4 D1.

B50 Gl B50, Gl1 P8.

B51.0 G2 B51, Gl2 P8.
The attributes Gll and Gl2 are for location programs,
which locate the subpart of the expression that is being
designated. Externally, subparts of the expression can be
designated by putting a * next to the subexpression.

26—

Goal Sufficiency

An important property of a goal is the sufficlency
of its information: given an arbitrarily selected goal
at any point in the course of problem-solving, it 1is pos-
sible without additional information, to commence problem=-
solving activity on that goal and to integrate the results
of such activity with the rest of the total problem-
solving activity. Thils means that it is possible to find
out from a goal the kind of situation that is desired (g1,
G2, G3, G4, G5, G11, G1l2, G13, Gl4, G15, G21, G31); the
current state of solution (G20, G25, G30, G36, G39, G52,
G53, G54); its role with respect to its supergoal (g23,
G28, G29, G37); the kind of techniques available for at-
taining it (G27); its subgoals (G24, G25); and its
relation to various other goals (G22, G33, G35, G38, G4O,

G50).

Goal Repeatability

A second important general property that goals have
is their repeatability. A goal may be attempted any
number of times; i.e., an attempt made to attain it.
Each attempt by a problem-solving executive (currently
R10) takes into account the previous history of attempts
with the goal, and tries something different. If the
goal has been solved previously, then additional attempts
result (if successful) in alternative ways to attain the
goal. For example, if the goal was to transform expres-
sion B50 into expression B51, then successive successful
attempts would provide different ways in which this could
be done; i.e., alternative proofs. It is possible, of
course, that the opportunities for attaining a goal may
be exhausted, either because all solutions have been
generated or because more varlations on methods and
techniques would yield nothing new. In this case every

-27-

attempt to obtain the goal will yield a signal that indi-
cates this state of affairs (such as S35 of S52).

Goal Context

The current goal is given in Y2. All information in
the Y-cells is relative to this goal. Thus, several other

Y-cells contain goals:

Y7 supergoal (K90 if not exists).

YO most recently tried subgoal (K90 if
not exists).

Y10 equal goal (may not exist).

Y87 proposed goal (held here until deter-
mine if should be next in Y2).

Y88 temporary cell for prior goal (needed
while establishing new goal).

Y111l top goal (this is not relative to
current goal).

Goal contexts are changed by one of a set of routines,
Q81-Q87. Each of these establishes a goal under certain
conditions: setting up a new subgoal (Q81); setting up
arbitrary goal for a retry (Q83, Q85, Q86, Q87); or re-
turning to the goal from which the current goal was tried
(Q82, Q84). All the goal setting routines use a common
subroutine, Q80. This routine sets Y2, Y3, Y4, Y7, Y9,
Y34, and ¥Y86. In addition these routines establish the
method-segment context,¥ in which a goal was operating (Y5,
Y6) where this is required (Q82, Q85, Q87); adjust the
relative depth (Y35); and set the signal (Y1) to be the
goal status (G20). These eleven Y-cells, plus those that
are goal invariant by definition, are all the Y-cells that
can be relied upon to hold good information at the begin-

ning of an attempt on a goal.

*
See discussions on methods, Sec. IV.

-28-

Goal Creation and Destruction

Goals are created by various Q-routines (Q27, Q28,
Q34, Q38, Q40, Q103, Q108, and Rl, the latter being a
temporary expedient). Each goal creatilon starts by giving
the type of goal desired (K1, K2, K3) as input to Q16.
Q16 obtains from the goal type a form for that goal (A20
with values K11, K12, and K13 respectively). These forms
are copied (J74) to produce the basic information for a
new goal and then Q16 links the new goal to its supergoal
and records the method-segment context in which the sub-
goal was created. The specific goal creating routine
records the particular components (Gl, G2, etc.) used to
define the goal. The final step in goal creation is Q17,
which records on the various components information about
the goals with which they are used.

Goals are independent structures. Whenever a goal
name occurs on another list, such as the name of a sub-
goal on the G24 list of its supergoal, it is always non-
local. Thus, if a goal were to be erased (J72), no other
goals would automatically be erased as a consequence
(although access to them might be lost). Currently, goals
are never erased once created. Instead they are filed on
auxiliary storage when space becomes scarce.

Goal Identity Test

An important step 1n creating a goal is to determine
if this goal already exists. Q17 makes this check, using
Q46. There is a goal reference tree (in Y25) in which
all goals are recorded (by Q46). This is a branching
structure, corresponding to a variable pocket sort, which
is built up by QU6 as the set of goals increases. The
goals are first sorted by type (G21), then they are sorted
on the name of the first expression (Gl). All those goals
with the same G21 and Gl are put on a simple list.

-29-

Thus we get a structure:

Y25/9-0.0 9-0/9-1.0 9-10/9-11.0 9-100,/0
9-1,/0 9-11/0 c32
K1 B50 7010.0
9-10 9-100
K2 8u25 9-110/0
9-20 9-110.0 11320.0
K3
9-30.0 9-20/9-21.0 etc.,
9-21/0
B50
9-200.0

9-30/9-31.0 ete.,
9-31,/0
B50
9-300
12345
9-310
8425
9-320.0
Q46 takes a new goal and locates 1t in this tree struc-
ture. If there are any other goals in the same pocket
it tests the new goal against each one on the remaining
attributes needed to determine if the goals are the same
(611, G2, Gl12, G4, G5). If the goals are not the same,
it adds the new goal to the list and reports back S40
(new goal generated). If no competitors exist, of course,
the goal is established as the first member of its (new)

pocket.

Goal Duplication vs. Equilvalence

If the new goal is identical to some already existing
goal, then there are two cases: either the goal is es-
sentially a duplicate and GPS does not want to attempt it
(indeed, it wants to clip the goal tree at this point);
or the goal, although identical, has been generated 1in a
different context for a different purpose. In this latter
case, GPS can attempt the new goal with profit and should
use any results that might have already been obtained on

-30-

the existing goal. Routine Q71 distinguishes between
these two cases.

The current criteria of duplication (leading to S54)
are: goals that are of type Kl, or have the same super-
goal, or have the same super-supergoal unless goals are
of type K3. All other cases are taken to imply useful or
"equivalent" goals (and lead to S42). In this latter case
Q71 sets up a way for the two goals to borrow results back
and forth. For each set of equivalent goals (there may
be more than two) there is a list. This is on each member
goal at G38. This list has on its description list at All4,
a 1list of all the results obtained so far by all the mem-
ber goals. These results are two-item lists: the G3
component, followed by the Gl3 component. There is a
method called the Transfer Equivalent Result Method (K43),
which Q71 establishes as part of the method 1list (G27) of
each member goal. The section on method K43 should be
consulted for the detalls; Q71 simply sets up for this
method at the point when a new goal is found to belong to
an equlvalence list.

Goal Modification

Goals are modified by innumerable routines (the in-
verse listing for Q13, Q1l4, Q15 indicates the occasions).
They are never destroyed once they are created, but can
be stored out on auxiliary storage and only called in
when they are needed again. (See Sec. V on auxiliary
storage.)

EXPRESSIONS AND OBJECTS

The objects that GPS manipulates and the operators
with which it manipulates them are specified by expres-
sions. All expressions, regardless of the particular TE
in which they occur, satisfy a certain set of conventions
as to how they are encoded into list structures.

-31-

Structures of TEX's and EX's

The TE is conceived to consist of many, independent
objects. The expressions which describe these objects are
called Total Expressions (TEX's). Each expression may be
bullt up from many subexpressions; each of these is called
simply an expression (EX). An expression consists of a
hierarchical structure (a tree) of subexpressions related
together at each level by some operation or connective.

By conventions each node of the tree is given by a simple
list in which the head contains the operation or con-
nective and the list cells contain the names of the
subexpressions. Thus in symbolic logic we would have:

external form: -(pPvQ).(RI-A)
I/ \/

tree form:

/V\ i |
P Q A
list form: 9-1/.
9-2 9-2/-
9-3.0 9-20.0 9-20 V7
9-3/1 P
R Q.0
9-30.0 9-30/-
A.O

(Since the computer alphabet is limited, the I stands for
"implies," usually denoted by > or = .) Notice that
none of the expressions is describable and that they all
form a single 1list structure (i.e., their names all occur
as local symbols). On the other hand, a total expression

(TEX) is describable. Its description list contains in-

formation about the expression, its history, genesis, and
properties. The actual expression (EX) that the TEX rep-
resents 1s given in the first list cell and is called the
main expression. Thus, in the example above, if -(PVQ).
(RI-A) was to be a total expression, called 7155 say, it
would appear as:

7155/ 9-0

9-1.0 (9-1 is the same 1list as above)
9-0/ 0O

A2
9-100= 3 7155 was the third expression
A3 created
9555 7155 was created by goal 9555
A4
9-110 9-110/0 7155 used by goals C32 and 702
Al2 C32
K70 702.0 7155 belongs to TE K70 (symbolic
A13 logicgm
9-120 9-120/0 7155 has one variable, A
Al5 A.O
9-130= 9 Complexity of 7155 is 9 (number
A16 of nodes)
9-140= 4 Maximum depth of the tree is 4
A51
K161.0 Object TEX's are of type K161.

The necessity for the distinction between main expression
and total expresslon arises because we make description

lists obligatory on TEX's but do not permit them on EX's,
storing the operation symbol 1n the head of EX's instead.

-33-

The external format for TEX's i1s a simple list:

o))
&
S

—r 1l HO—~: — O <H~1

.0

There is no way to input an EX, since 1t cannot exist by
itself.

Creation and Destruction of TEX's

TEX's are created by initial input from outside or
by the application of operators to TEX's that already
exlst. Once created, a TEX is never modified and never de-
stroyed. Creation is always done by P50. It involves an
"official act" of assigning a name (A2, which has the
order of generation as value), and recording certain in-
formation about the TEX (Al3, Al5, and Al6 currently).
Expressions may exist temporarily and then be erased, if
they are no longer wanted. However, these are not TEX's.
Only when an expression 1s put on a goal (a G1, G2, G3,
or G5 currently) does it become a TEX with a name and,
hence, unmodifiable. A check exists in the system in QlT:
all components being put on the goal must "exist"; if
not, they are given permanent status at that time by Ql7.

As discussed in additlonal detail in the section on
Matching, the Y-cells used to hold expressions while they
are being worked on are ¥Y11-Y13-Y15 (for the first expres-
sion under consideration) and Y12-Y14-Y16 (for the
second expression under consideration). In the first
case, Y11l holds the locatlon of the expression; Y13 holds

~34-

the TEX (that is, the name of the independent entity con-
taining the subpart in Y11l); and Y15 holds the location
program that locates the part of the TEX initially con-
sidered. A similar interpretation holds for the second
expression. When setting up a process, such as the matching
of the expression at Gl to the expression at G2 during an
attempt on a K1 (transform) goal, the Gl TEX is put into
cells Y11-Y13-Y15 and a J3 is put into Y45. This latter
symbol indicates that the expression in cells Y11-Y13-Y15
is an official TEX and cannot be modified. It can be ex-
amined by the match process without restraint, but if

ever a modification occurs, a copy of the expression in
Y11-Y13~-Y15 is generated, replacing the Gl TEX, and this
copy is modified. Concurrently, a J4 is put into Y45,
which indicates that the expression in ¥11-Y13-Y15 is no
longer an "existing" entity. Consequently, subsequent
modifications can be made in the expression in Y11-Y13-Y15
without additional copies. Only when some routine (Q27,
Q34, Q37, QUO) uses the expression on a goal is it made
into an official TEX and a J3 put back into Y45. An en-
tirely similar situation exists for Y12-Y14-Y16 using the
cell Y46. At the completion of any processing of expres-
sions in the Y-cells, a clean-up routine (Q24) is executed.
This erases any expressions named in the Y-cells where
Y45 and Y46 indicate that it does not have official status.
The routines Ql1l and Ql2 are the ones that check Y45 and
Y46, respectively, copy (P13), and replace the expres-
sions in the Y-cells if they need it. Q11 or Ql2, as
appropriate, is executed at each point where it becomes
certain that an expression will be modified (Qll in F4,
F28, Q37, and Q52; Q12 in F5, F29, Q37, and Q51).

Some other expressions (the operator at Y20 and the
difference expression at Y84) also use an indicator (Y47
and Y48, respectively) to indicate whether they have
"official" existence or are to be erased by Q24.

-35-

DERIVATION LISTS

There is no reference tree of objects, analogous to
the reference tree of goals, even though each object must
be checked to see if it has already been created. This
role is played by derivation lists. Each expression is
generated from some other expression (or expressions) by
means of an operator. In general all those objects de-
riving from common parents are interchangeable in their
role as starting points in the application of additional
operators. Hence, as each expression is created 1t 1s
put on a single 1list, called the derivation l1list. For
all expressions with a common parenthood this same 1list
can be obtained at A5. It is possible for several de-
rivation lists to exist, however; one working forward from
the givens, one working backward from the desired, one
holding operators that have been derived from other oper-
ators, one starting from a conjecture that was tied neither
to the given nor the desired, and so on. Derivation
lists are created (P58) every time a TEX is created that
is unrelated to any of the derivation lists already in
existence. At the beginning, this is done in Q45.

The derivation list is a TEX:

11245/9-1

9-2.0 9-2/, , 1s the connective for
B50 "set"
7155
8266.0

9-1/0

A51

K163 Derivation lists are of

etc. type K163

When a new expression is created, it is checked fof
identity against all the expressions on its derivation
1ist (Q43). If it is really new, it is put on the list

-36-

and S30 reported. If 1t already exists, the new version
is destroyed and S36 is reported along with the name of
the o0ld version.

OPERATORS

The operators are also TEX's, but may be of several
kinds as 1ndicated by Al which takes on signals as
values.

Form Operators

S60 indicates a form operator with some initial con-
dition that has to be tested by a program (at A1l0).
After this test is completed (see R31), the operator can
st1ll be any of the several kinds. S61 indicates a form
operator, without such conditions, such as exists in
logic. The left-hand subexpression of a form 1is the
condition form which must be matched to the input obJect.
The right-hand subexpression is the product form which
glves the expression that 1s to replace the input expres-
sion. Unless otherwise stated, a form operator may be
applied to any subexpression (EX) of a TEX. For example,
B20 1s the operator A.B Y B in logic. (Since the com-
puter alphabet is limited, the Y stands for "yields,"
usually symbolized by => .)

B20/9-1

9-2.0 9-2/¥
9-3 9-3/.

B.O A
B.O

9-1/0
Al
S60
Al0
F2
A51
K162
ete. Operator TEX's are of
type K162

-37-

A1l S60 indicates that a test must be performed, in this
case F2. F2 is an IPL-V routine, which if the expression
being operated on were a main expression and positive,
would result in the signal being set S61, which would
then indicate that B20 is a form operator.

Expressions for Operators

It 1s also possible for an operator to be given an
expression, such as, "the reverse operator to B12" (S62).

Such an expression 1is itself a TEX:

B13/9-1
9-2.0 9-2/K60 K60 is the operation,
B12.0 "peverse"
9-1/0
Al
S62
etc.

Before such an operator can be applied, it must be ex-
pressed more directly. K60 has associated with 1t a
program (P30 at All) that will be the operand (B12 here)
and create a new operator that is the reverse of it;
i.e., has Bl2's product form as condition and Bl2's con-

dition form as product.

Direct Operators

Finally, it 1s possible to have a direct operator
(363), which is given simply as an IPL-V program (at All).
Such operators may have additional input informatlon
given as an expressilon, but it is the routine at All that
manipulates this information, not the general purpose
GPS routines for manipulating forms. Milssionaries and
Cannibals provides an example. A TEX in M&C looks like
(where B = the boat, M = a missionary, C = a cannibal,

L = the left side,and R = the right side of the river):

-38-

M72/9-1 M&C TEX
9-2.0 9-2/+
9-3 9-3/L 9-4/R Left side : MMCCB
-4.0 M M Right side: MC
M C.0
c
Cc
B.O

An operator for Missionarles and Cannibals looks like:

M30,/9-1 Move MC from the left

9-2.0 9-2/Y to the right side (a
9-3.0 9-3/L direct operator)

9-1/0 M
Al c.0
563
All
M22 M22 1s general operator
etc. routine

The operator specifies a general routine, M22, at All

and provlides an input form to tell M22 what specific
actlion to take. M22 interprets this form to mean, "test
if the boat is on the left side; if it is, take one M and
one C from the left-side 1list of the TEX and move them to
the right-side 1list of the TEX." 1In the case of M72

this could be accomplished; in other cases one of the
symbols (B, C, or M) might be missing and M22 would ter-
minate with a difference.

LOCATION PROGRAMS

The TEX 1s the independent unit, consisting of a
hierarchy of subparts. GPS 1s concerned with the various
subparts (e.g., it can apply operators to them) and re-
quires a way of designating them. It needs a way that
is 1ndependent of the particular names used for a subpart
(i.e., of the addresses); e.g., it must find corresponding
places 1n two expressions (such as a TEX and its copy) .

In addition, it must be able to store the TEX out in
auxiliary storage and still find the same subpart after

-39-

retrieval. (Only the name of the TEX 1is preserved when
a structure is filed on auxiliary.) The device used is
called a location program. It is an IPL-V program which,
if applied to the TEX in HO, gives (in HO) the location
of the subexpression designated.

Inputs Are Locations Not Names of EX's

Before discussing in detail the structure of loca-
tion programs, it is necessary to observe a major
convention about routines that work with expressions:
the appropriate input and output to such routines are the
locations of the expressions to be worked on, rather
than the expressions themselves. Thus, for example,

Y11l holds the location of the expression designated; P15
generates the locations of all the terms in the expres-

sion whose location is (1); P26 tests if the expressions

located in (0) and (1) have the same terms; and so on.

This convention 1s necessary to permit the modifi-
cation of expressions. If only the name of an expression
is available in HO, it is not possible to change the
occurrence of the name in the higher expression. That
is, the 1list cell in the higher expression that holds
the name is no longer accessible.

Structure of Location Programs

The location program is a simple list composed

from two routines:
P8 Locate the next EX after the EX located by (0);

P9 Locate the first EX in the subexpression of the EX
located by (0).

P8 is just a J60 and P9 is just a J80 followed by a J60.
Any position in a hierarchical 1list structure can be

found by executing a sequence of P9's and P8's. A

~40-

location program is always executed on the name of a TEX
in HO. Thus in the expression, 7155/ -(PVQ).(RI-A), we
get the followling location programs for locating each
subexpression (all with input 7155):

7155/9-0
P8 9-1.0
9-1/.
P8 P9 9-2
P8 PO P8 9-3.0
9-2
P8 P9 P9 9-20.0
9-20/
P8 P9 P9 P9 P
P8 PO P9 P9 P8 Q.0
9-3/ 1
P8 P9 P8 P9 R
P8 P9 P8 P9 P8 9-30.0
9-30/ -
P8 P9 P8 P9 P8 P9 S.0

Notice that P8 is the location program to be applied to
the name of the TEX (not its location) to get the lo-
cation of the main EX.

Location Program Reference Tree - Absolute

The same location programs arise over and over
again, and it is desirable to have fixed names for each
location program that is used (thus permitting the iden-
tity test for location programs to be a J2 test on their
names). This tree provides a node for each location
program that exists. If location program X 1is applied
to K98 (as a TEX), then it will locate the node cor-
responding to X. At that node can be found the name of
the canonical locatilon program (at A60) and also the
number of levels down in the tree (at A61). Thus, when-
ever a location program is constructed (e.g., during a

~4]-

match), it is executed on K98 to find the canonical lo-
cation program, and that name 1is used. By the way P8 and
P9 are constructed, if a location program 1s ever executed
on K98 that does not correspond to a node existing in
the tree, the reference tree will be automatically ex-
tended and the necessary canonical location programs will
be created.

Some of the location programs occur as P-routines,
since they are used in programming parts of GPS.

P10/P8 Locate first subexpression

P9.0 (also, locate operator condition)
P11/P8 Locate second subexpression

P9 (also, locate operator product)

P8.0
P71/P8 P72/P8

PO P9

P9.0 P9

P8.0

Location Program Reference Tree - Relative

Besides having programs that take the TEX as input
and deliver the location of the desired expression as
output (called absolute location programs), it is also
desirable to have location programs that take the lo-
cation of an EX as input and locate some EX below it.
These latter are called relative location programs. Due
to the conventions for TEX and main EX, relative location
programs differ slightly from absolute ones.

PO Relative location program: first subEX, one
level down
P70,/P9 Relative location program: second subEX, one
P8.0 level down
Consequently, the relative location programs have theilr
own reference tree (K99).

There are a few routines for manipulating location

programs (P40, P46, P4T).

=ho.

DIFFERENCES

The differences are symbols which are associated on
the one hand with the difference between expressions, as
discovered by the match routines (R20, using Q20 and
Q47); and on the other hand with the operators (via the
table of connections in Y52). At the moment, they have
no information at all associlated with them.

~43-

IV. ROUTINE STRUCTURES

The performance of GPS after it has been given a
problem by the experimenter can be described by starting
at the executive routine, which is at the top of a hier-
archy of routines, and working down through successive
levels of detail.

TOP EXECUTIVE

The top routine of the experimenter (E2 currently)
sets up the initial goal in Y87 and executes the top
executive of GPS-core (R2, normally, or Rl). R2 sets
up the goal context, creates the equivalence lists (Qus),
Initializes the various limits (Q44, Q107), and records
the initial goal on the goal reference tree (Qu6). It
then executes the problem-solving executive in cell Y9O
(RlO). The top executive, as a temporary expedient, uses
the Y's directly (in violation of the conventions for R-
routines).

PROBLEM-SOLVING EXECUTIVE

The important executive 1s R10, which is used re-
cursively in attempting each goal. A flow diagram for
R10 is shown in Fig. 4. The flow diagrams for the R=-
routines depend on the convention that each step consists
of executing a Q-routine and then taking a multiway
branch on the basis of the signal. Indirect executions
(e.g., 1Y90 and 1Y96) occur in several places to make it
easy to change key routines. These Y-cells are occupied
either by Q- or R-routines.

Centralization of Decision-Making

The signal system provides the basis for the most
important convention about the way GPS operates: all

S32,833,534,539,543,547,5130

Ll

/

dﬁ———ag—lo > Q6
(9-10)
$32 su3
332 Sy
S3
s39 | 7 581
350
351 l
3130
o S50 $51
S9
v S50 S51
S9 i\\'

s5282 g5
S1

Q108

S50 S51

S40 S42

S9

v

s5282 __1v96

Fig. 4 RlO:

N

‘\\V

S1 y
Q83 Q86
s &
Q
_-1S30 1830
LS9 (831 o 59|831
53 s |33
S38 S37
8131 S38
51322 S131
Q85 132
*548 S48 v
R6l R11 R11
Q
Q84

Test for limits,
record attempt

Repeat method

Find next method

Try antecedent goal

Test if goal 1is at top

Try Gl-expanded goal

Select subgoal for re-
try

Try subgoal

Try method

Problem-Solving Executive.

-45-

important decisions are made by the problem-solving ex-
ecutive, rather than being delegated to lower routines.
Thus, no matter where in the routine hierarchy a crucial
decision 1is posed (e.g., whether to attempt a subgoal),
it is necessary to bring this decision back to the ex-
ecutive. The signal system can be viewed as providing

a symbolization of all the important decision situations
that occur in the course of operation. A Q-routine
represents a simple enough action (in terms of the de-
cisions which must be made to carry it out) that GPS can
commit itself to carrying through a Q-routine once it
has initiated it. Thus Q-routines represent, in a way,
the "unit actions" of GPS. When a Q-routine is executed,
the "unit action" is carried out, and information about
just what happened is reported back as a signal (by an
S-symbol), so that a declsion can be made about what to

do next.

Control Techniques to Handle Centralization

Actually, the important decisions are shared among
all the R-routines, and are not all localized in R1O0.
However, the tendency remains for decisions to be "kicked
upstairs" for solution. This implies a certain violation
of the hierarchical organization of processing, since it
often happens that a crucial decision (such as whether
it is worthwhile to continue) occurs in the middle of a
process. It 1s then necessary to leave the routine to
return to the higher routine for decision and then (if
the decision is to continue) to return to the lower
routine again. Mechanically this is accomplished in GPS
by one of two mechanisms. The process may be split into
several Q-routines, so that the subroutine hierarchy is
formally preserved. This results in Q-routines with
rather truncated functions; i.e., just a fragment of what

46—

would normally be incorporated in a subroutine. The

second technique is to begin R-routines with discrimi-
nation on the signal. Then they can be entered several
times with different signals, which then cause an immediate
transfer to the appropriate starting or continuing place
(see R11l and R20). No difficulty arises in all of this,
but it makes the operation rather confusing until these
features of the program are understood.

Structure of R10

As revealed in Fig. 4, the operation of R10 is
rather easily comprehended, reflecting the crudity of the
ideas about how to handle the top decisions. R10 consists
of a loop: Q1 — select an attempt — attempt it — Q6 and
recycle. Q1 tests whether any "external™ limits have
been transgressed, such as effort limits (S72) or depth
limits (ST4). It also sets up a record of the attempt
(Q72). This is a structure which is filled in by Q6 at
the end of the attempt and recorded on the goal at G26.
The vertical column at the right side of Fig. 4 represents
the choice of what attempt to make. Right after Ql, it
is possible to attempt to repeat the methods just tried
(Q7); to select another method from the method list (Q2
using Y5, which is obtained from G27); or to quit any
further attempts on this goal (all S-symbols not occurring
at the branch point).

Antecedent Goal

As the next alternative, the antecedent goal to the
most recent subgoal may be retried (Q9). An antecedent
goal is one that produced a result used in defining a
goal. Thus, to retry it is to attempt to get an alter-
native result; 1f successful it will produce a modified
goal which may be more tractable. In a typical goal tree:

-47-

Goal 1l: A into B

/

Goal 2: Reduce D ----> Goal 4: A' into B

/

Goal 3: Apply Q to A

1

Al
Here Goal 2 is antecedent to Goal 4. Retrying it will
lead to some different operator, Q', being tried; hence
(perhaps) to some different expression, A", being pro-
duced; and then to a new goal, A" into B, being formed
which is an alternative to Goal 4.

Gl - Expanded Goal

Two other alternatives for attempting a goal exist
in R10. Both of these are currently restricted to the
top goal (Q5 exits S2 if not top goal). One possibility
is to generalize the goal by using the derivation list of
the Gl expression in place of the expression. For ex-
ample, if the top goal were to transform A into B and A
had expressions A', A", A"' on its derivation 1list, then
the situation would develop as follows (Q108 plus subse-~
quent problem-solving):

Goal 1: A into B

/

Goal 2: (A, A', A", A"') into B

/ \

Goal 3: Reduce D19 ----- > Goal 4: A" into B

‘
A"

-48-

Setting up Goal 2 to transform the set into the expression
generates a D19 difference (set versus element); this in
turn causes the selection of one of the elements of the
set (Q54), in this case A"; and this in turn leads to
creating the succeeding goal, A" into B. This technique
of generalizing a goal is a way of seeing if some of the
expressions which may be substituted for A might not be
better starting points than A for reaching B. Some of
these other expressions may have been generated without
their relationship to B being considered (e.g., as a
modification of A in order to apply an operator). Thus,
it 1is sometimes possible to discover the possibility of a
useful expression among the ones already generated.
Although we have stated this notion with respect to trans-
form goals, the same concepts apply to the other two goal
types. This technique 1s inserted directly 1in the ex-
ecutive as Q108, rather than as a method. This is an
expedient to restrict its usage to the top goal.

Lower Goal Selection

The final possibility for attempting a goal is to
select a lower goal and try it again (1Y96, which normally
holds Q109; but also Q8). A lower goal is one that lies
anywhere in the goal tree headed by the given goal; or,
alternatively, a direct or indirect subgoal of the given
goal. The goal selection procedure involves first listing
all the goals that are either untried or unfinished (G20
S50 or G20 S51 in Q109). This 1list is then submitted to
a further selection (Q73 or Ql05). Q73 selects the best
subgoal according to the goal values (G22) and the goal
evaluation procedure. Ql05 first splits the goals into
those which are subgoals of transform goals and those
which are not. It tries to get a goal from the former
sublist first (with Q73). Only if no evaluable goal exists

~49-

on the Kl-subgoal-list, does Q105 select from the remain-
der 1list.

Once a goal has been selected it is retried, inde-
pendent of the reasons for its not being tried further at
the time it was last worked on. Thus, this procedure
"forces" its way past the tests for rejection of a goal.
The net result is to make the total problem-solving activ-
ity of GPS proceed as a series of episodes, each one
starting from some goal that already exists in the goal
net and trying to extend it further until the various
limits and rejection criteria force a halt to the explo-
ration. After each episode GPS reselects another goal
somewhere in the total net to start the next episode.

Execution of Selected Attempt

R10 does not choose among all these alternative ways
of attempting a goal in a very sophisticated way: the
vertical column in Fig. 4 implies an approximately
lexicographic ordering. Once an affirmative decision has
been made about an attempt, then it is carried out by Rll
or by attempting a subgoal, as appropriate. The subgoal-
attempts require using a Q8x routine to get into the
context of the subgoal (Q83 or Q86), executing the exec-
utive (1Y90, holding R10), then returning to the context
of the present goal (Q84 or Q87).

In both cases of subgoal-attempts, R10 is retrying
a goal that was created on another occasion, tried (per-
haps), and abandoned. Thus there are now three goals
involved: the current goal, the lower goal it wants to
attempt, and the supergoal to the lower goal, which
created it and, alone, has the information to utilize its
attainment. If the lower goal is an immediate subgoal
(as in the antecedent goal), then the current goal and
the supergoal coincide; otherwise they differ. If the

-50-

attempt on the lower goal fails, then in all cases we
wish to return to the context of the current goal. But
if the attempt on the lower goal succeeds, 1t is neces-
sary to get into the context of its immediate supergoal
and to continue problem-solving from the position in that
supergoal's activity which is prepared to use the results.
This supergoal, of course, is still a subgoal of the pre-
sent goal. This is accomplished by Q85-R11-Q84. Notice
that there is a return afterwards to the context of the
initiating goal, since it is in this context that the
decision must be made as to whether to continue or not.
If this supergoal (of the initially attempted lower goal)
1s able to make some progress using the result, getting
yet another new result, it is then necessary to get into
the context of its supergoal to use the just obtained re-
sult. Thus, there is a loop around Q85-R11-Q84, which
continues until some supergoal up the line fails to make
positive use of the results and the whole attempt comes
to an end. Alternatively, of course, all goals are suc-
cessful until the supergoal being put into context by Q85
is the present goal, which initiated the whole attempt
series in the first place (S1 at Q85); in this case it

is appropriate to remain in the present context.

In the case of Q9 and Q108, which generate immediate
subgoals for retrying, it is not necessary to use Q85 to
obtain the supergoal, since it is known that the current
goal is the supergoal. Hence R1ll is executed directly
after a success on the attempted subgoal.

In the case of Q7, Q2, and sometimes Q108, we are
elther trying a method or working with an untried subgoal.
Hence we go directly into R11l.

~-51-

Recording Attempts

No matter where we quit in making the attempt in
R10, we return to do a Q6, which records the results of
the attempt. There is then opportunity to recycle and
continue with another attempt on this goal, or to quit
this goal and go back to the supergoal. Q6 does not
change the signal, so this decision 1is made on the basis
of the final signal resulting from the attempt.

Q6 records in the attempt record (created Dby Q72) the
signal that terminated the attempt (A40, the attempt status),
the method used (A41), its current status (A42; see section
on methods), and the limits of the attempt if they started
or ended somewhere in the middle (A43 and A44). The
attempt record is stored away at the front of the history
of attempts (G26). In addition Q6 updates the method
status: 1t changes it from S50 to S51, or from S51 to S52
if the method quit with S35 (impossible).

METHOD EXECUTION AND R11l

Methods and Method Status

The main course of GPS 1s guided by a series of
methods (K4O-K44). These are associated with goal types,
each method being a way to either attain the goal of the
given type or to analyze the task into subgoals and use
their results in attaining the goal. With respect to a
given goal, each method has a status indicating whether
this method has not yet been used (S50); has been used
but may be used again (S51); is no longer useful (S52);
or is temporarily blocked from being used (s53). Each
goal has a method list (G27) which contains the name of
each method applicable to the goal followed by the current
status for the goal. Status symbols are updated by Q6
after each attempt. The set of methods is not completely

-52-

fixed, although it is initially determined by the goal
type (the initial G27 1list is on the goal form, A20, that
is copied to create a goal). For example, K43, the trans-
fer result method, is added to the list by Q71.

Method Structure: Segments

In the published papers on GPS (and in GPS-1 program)
the methods are given as subroutines. However, the re-
quirement that all important decisions be reserved to the
problem-solving executive implies that the method be
broken up into a number of method-segments. Between each
segment, control returns to the executive (R10 and R11).
Thus methods are data lists of segments and R11l acts in
many ways like a higher level interpreter, executing each
segment on the list in turn and making the decision whether
to continue or not after each segment is finished. So
far it has been sufficient to have methods be simple 1lists
of segments which are executed strictly sequentially with
possible repetitions. It has not been necessary to have
the methods be branching, conditional structures.

Method Interpretation: R11

Figure 5 gives the flow diagram for R1l1l, the R-
routine that interprets and carries out methods. It
consists of a loop through a single large branch list
which distinguishes numerous signals. Typically R1l1l is
entered from R10 with the status of the methods as the
signal. If this is S50 or S51 (untried or unfinished)
then the first method-segment is obtained (Q3); if the
status 1s 852 or S53 (finished or blocked) R1l quits with-
out doing anything (S52 and S53 do not appear in the branch
list). If R1l is entered with S81, this symbolizes the
repetition of a method (from Q7 in R10) and again leads
to executing the first segment.

1
[

S41 S50 S51 S81'.Q3

\—Sk6 —eQ100
S48 -S101
_S40 _5vgo_ S6 ST 88
59
Qlok
s
Sy 1Y100 S6 S7 |
Q§1
S5 su7 1Y90
Q82
sh759 532 S34 5130
S30
S31
S33
S36
S37
S38
s131
15132
S48

J

L

Obtain next method-segment
(includes first)

Repeat current method-seg-
ment

Find segment to take next
(S41 or S46)

Evaluate new subgoal

Subgoal rejected (exits Si43)
Evaluate equivalent subgoal

Attempt subgoal

Fig. 5 R1ll: Executive Method until Fail.

54—

Q3 obtains each successive segment of the method and
automatically executes it (thus it performs the "fetch"
and "execute" steps of a standard interpreter). The re-
sulting signal is discriminated by the same major branch
l1ist. The results of a segment that Rll recognizes are
to go on to the next segment (S41); to repeat the current
segment (SU46); to find out whether to repeat or go on (S48);
that a new subgoal has been created (S40); that a new sub-
goal has been created which is equivalent to an existing
goal (S42); and, that the method cannot possibly work
(S35). Each of these leads to an appropriate routine,
which result is again discriminated for further action.
Several kinds of failing signals can occur (S32, S39),
but R11 quits in these cases, so they do not show up in
the branch 1list; the same 1is true of signals which indi-
cate goal success (S30, S31, S37, S38, Si44, S45, S131,
S132).

In case a subgoal is generated (S40, S42) it is neces-
sary to evaluate it before attempting it (1Y92 and 1Y100,
normally holding Q74, but sometimes Ql06, or Q4). This
evaluation (see below) results in a signal (S3, S4, S5,
S6, S7, S8), and for the appropriate set (S6, S7, S8) the
subgoal is tried (Q81-1Y90-Q82). Afterwards, the results
are summarized either as a failure (S47 and quit R1l) or
as a success (S48 and recycle in R11).

It is also possible to enter R11l with a subgoal to be
tried (e.g., with S40 or S42). Then R1l starts with the
evaluation and attempt (if appropriate) of the subgoal,
followed by the other method-segments called for by Q3.
The only unmentioned action is setting S47 if the subgoal
is a duplicate (S54).

..55_

Goal Values and Goal Evaluation

In the published accounts of GPS, mention is made of
"progress tests," which determine if a goal should really
be tried. These are embodied in the goal evaluation
routines (QT74, Q106, Q4). Certain goals can have a value
(at G22); currently only reduce-type goals (K3) have
values, the other (K1, K2) being unevaluable. Two goals
with values can be compared (P56) with one of several re-
sults (S3, S4, S5, S6, ST); if either of the goals is
unevaluable, the result of P56 is "undefined" (S8).

Goal Values

There are several kinds of values, each kind being
identified at A83 by a structure (KlOl, K102, K103) which
tells how to process the value. A K101l value compares
first on the level at which the difference occurs (A84),
giving S3 or ST if the levels are unequal. If the levels
are the same, it compares on the difference symbol (A89),
giving S4, S5, or S6, depending on whether the first value
is less than, equal to, or greater than the second value
on the difference ordering (e.g., C10 for TE K70). A K102
value compares first on the number of levels up from the
bottom of the expression (the maximum level minus the
level) (A85) and then on the difference symbol (A89). A
K103 value compares first on the difference symbol (A89)
and then on the level (A84) (just the opposite from K101).
Each of these values was introduced by experience with
certain special situations; none of them seems to be
appreciably better than the others. Each of these value
types has on it (at Al7) the appropriate comparison routines
(P49, P57, and P59 respectively). Values of each type
are created by separate routines (Q76, Q77, Q78 respec-
tively); creation occurs in the Q-routines that create
K3 goals (Q27 and QU4O, by executing 1Y95).

Goal Evaluation

The evaluation of a goal to determine if it should
be attempted consists first of a search for the goal
against which the candidate should be compared, and second,
of the comparison by P56 as described above. The search
(in Q74) consists in finding the first evaluable ante-
cedent goal, or supergoal. The rationale is that a
subgoal should be less difficult than its supergoals,
since 1t purports to solve only part of the total problem.
Similarly, if GPS works from hard differences to easy dif-
ferences, then a goal should be less difficult than its
antecedent goals. Finally, of several potential ante-
cedent and supergoals for comparison, Q74 prefers near
supergoals to more distant (higher) supergoals, and ante-
cedent goals to supergoals.

MATCHING

A crucial part of two methods (K40, K41) is the pro-
cess of matching two expression together in order to
determine their differences (or identity). There are two
alternative match routines (R20, R21), of which R20 is the
easier to understand and will be described first.

Matching is factored into two parts: two expressions
are first put into correspondence; then the contents of
various corresponding EX's are compared. Since all ex-
pressions have a common form (the tree structure with the
operation in the head) a set of GPS-Core routines handle
the task of putting two expressions in correspondence and
cycling through the successive pairs of corresponding
cells (Q21, Q22, Q23). For each pair a TE routine (in
Y17) is executed which compares the expressions at that
point (Q20).

-57 -

R20 Match

The flow diagram for R20, shown in Fig. 6, consists
of iteration through a basic discrimination, where Q20 is
used to compare EX's (following S20, meaning "both found").
The other Q2x's are used to locate the next corresponding
EX's in response to whether two cells are found to con-
tain identical subexpressions (S10) so that further sub-
exploration was unnecessary; whether no difference was
found for this pair at this level, but exploration of the
subexpressions should occur (Sll); or whether a boundary
of the expression has been reached (s23). Several nega-
tive signals are possible (S12, S13, S16, S21, $22) which
do not appear in the discrimination since they imply that
R20 should terminate. S19 is a signal indicating the
beginning of a match (not, however, just entry into R20,
since R20 may be executed and terminated numerous times
during a single, successful match). At this occasion
R20 executes a special comparison (Q47) of the top ele-
ments of the expressions being matched for differences
directly recognizable by GPS-core (D19, D20, D21 currently).
The final exit at S10 at the bottom of the diagram indi-
cates an inference that if the expressions have been
thoroughly scanned (Q23 yilelding S23 indicates a return
to the top of the expressions belng matched) and no dif-
ferences have shown up at any point (always S11), then
the two expressions are identical (S10).

Housekeeping for Match

The match occurs by setting one expression to be
matched (the "#1" or matching expression) in Y11-Y13-
Y15 and the other ("#2" or the expression being matched
to) in Y12-Y14-Y16. The initial setup (Q25, Q36) puts
the TEX into Y13 (for #1); puts the location program
that locates the EX into Y16; and uses this location

-58-

v
Qll2 Test if DE already exists
S—)
520 aQZO-—-ﬂ Compare
A S19 - QUT S20 J“ GPS Compare for top level
\ S1l -Q21 520) Go down one level
S23
L 510 — Q)22 S20 J Advance down list
S23 S20
Q23 Return one level
S23
S10 Identical

Fig. 6 R20: Match Element by Element, Depth First.

59

program to put the location of the EX into Y1l. A similar
setup occurs for the #2 expression. The location programs
for the two expressions need not be the same. For example,
in applying an operator, the main EX of an object (P8
location program) is matched against the condition form

of the operator (PlO location program).

The movement through the tree structures of the two
expressions (Q21, Q22, Q23) involves pushing down Y1l and
Y12 as the scan goes deeper and popping up these cells to
come back up a level (this is due to the one-way nature
of 1lists). It is also necessary to construct the location
program to any point that might be reached (say to record
a difference). This can be done by adding onto the
location program in Y15 (or Y16) the incremental location
program from the initial location down to where Y1l (or
Y12) currently is. Y19 is used for this and holds the
incremental location program. Since the location program
is only rarely desired, compared to all the movement back
and forth over expressions, this location program is kept
in reverse order so that it can be modified by push-down
and pop-up operations. Thus, the Q2x routines put P8's
and P9's into Y19 when going deeper and remove them when
coming up. (Carrying out a simple example will make
these considerations clear.) Routines exist which aid in
the manipulation of Y19 (Q10, Q18).

The routine for comparing two corresponding cells
belongs to the TE (F1 for K70, M23 for M19). This same
routine is repeated for each pair of cells. It outputs
the difference symbol applicable to the pair (into Y18).
Since several differences may be applicable, this routine
contains within it implicitly the order of importance of
the differences. A flow diagram for Fl, the comparison
for symbolic logic (K70), is shown in Fig. T.

-60-

—names — e 510

l=term
_ +
+ +
D12 — 1=—- l=var ——e= D14
2=term 2=term
D15 w—t— 2=var '1/=TEX\ o= tan13 2;var — D15
- + — - -
D6 a—F—1=-var S11 2=TEX 2=TEX D5 2=2vartp7 D18
D17 D25 - D16
2=e= D13

A1l 1 terms in 2 ———a=D1
‘+

All 2 terms in 1 =——® D2
‘+

All 2 terms occur at

least as often in 1 —w=D3

All 1 terms occur at
least as often in 2 -—e=Di
+

1=-

N

D7t 2= 2=- 1t 511

DS =connii:tives D‘6
L1~R2,‘Rl~ L2

- +
D10 «@—t—TIR1~ RL2 L1 ~ L2 ———e=D9
- +
D11 =—t—RL1~ RL2 s11 Legend
1 EX1
S11 > EX2
- negative

-— double negative
var varlable
-var negative variable

left subEX
R right subEX
~ similar

Fig. 7 Fl: Compare EX1 and EX2.

-61-

R21 Match

The R20 match involves an implicit double iteration
over the expressions. One iteration is employed by the
scan represented by the Q2x's. But if the comparison
routines are to see differences such as differences 1n
terms (D1, D2, etc.), they must independently scan over
the entire subexpression each time they are applied. The
R21 match is an attempt to eliminate this feature by
scanning over the expression just once, picking up infor-
mation from each of the nodes, and then assembling the
effective difference from the scraps of partial infor-
mation. R21 still takes almost as much effort as the
double iteration. However, it 1s useful in other ways;
e.g., making it easy to see certain multiple and complex
differences. Consequently it is the one normally used.

Figure 8 shows the flow diagram for R21, which is
very similar to that for R20. The important differences
are that when a difference is found (S12) a new signal is
set (S16) before exiting. When this signal is seen by
the main discrimination, data on the difference 1s recorded
in list of difference expressions (in ¥Y84). Q90 then re-
sets the signal to S10 and the match proceeds (even though
a difference has been found). The use of S16 allows
termination of R21 when a difference is found, and the
higher R-routines are to regain control. Subsequent re-
entry of R21 to continue the match is then possible. By
the time the entire expressions have been scanned, all
the differences that have been found are recorded on the
1ist in ¥Y84. Then, instead of quitting with S10 (as R20
does), R21 executes Q92, whose job is to analyze all the
differences on the difference expression list and deter-
mine a single effective difference.

~62-~

Q112

. S20]_on_____;)
1820

=210 iy

\ S16 _ng_j

\- Sle —e=316

\ S1l -Q21
1323

\— S10 -Qee—-}

S23
Q92

Test if DE already exists

Compare
If beginning, do GPS match
Construct difference ex-

pression

If difference, set to be
provisional
Go down one level

Advance down 1list

Ascend one level

Combine list of difference
expressions

Fig. 8 R2l: Match with Single Pass
Getting List of Difference Expressions.

-63-

Combination of Differences: Q92

Q92 consists of a series of scans over the difference
expression list, each time determining which pair of dif-
ferences should be combined into a difference at a higher
level. This is continued until only a single difference
expression is left, which is then the effective difference
for the match.

An important feature of the R21 match is that it
scans the expressions only down to the point where a dif-
ference is found. At that point, the entire subexpressions
are described on the difference expression. Besides the
difference symbol (A89), the relative location program
(the one determined by Y19) is created (A88) and lists
are made of the terms in the subexpressions (A86 for #1,
A87 for #2). These lists are marked to indicate the terms
of each that are held in common (P44). This is done by
putting S1 behind each term found on both lists. The
term difference (if any) that exists at this location can
be found from these lists (P45, yielding D30, D31, D32,
D33, D34). Figure 9 shows two matched expressions and
the resulting list of difference expressions.

In the main loop of Q92 the first part consists of
determining two difference expressions to be combined.
Notice in Fig. 9 that the difference expressions are on
the 1ist in order, so that adjacent difference expres-
sions on the list designate adjacent differences in the
tree. The basic act of combination is to take two dif-
ferences and form them into a single difference at the
lowest point in the tree that covers both of them (i.e.,
at their join, in lattice terms). Q92 is only prepared
to combine pairs of differences, which implies that it
must pick two differences whose join does not include any
other differences. A way of doing this is to combine
only adjacent differences whose levels constitute a

—6l-

EX1 EX2
[RI(T.R)].Q (TVR).R

N Ay
AN /\
T//.\\R T R

Y84/ 3725, Cell holding list

3725/ 0 List of difference expressions
9-1 (DE's)

9-2

9-1/ 9-10. DE for lefthand side
9-10/ ©
A89
D32 D32
A88
Péo P10 = location program "left"
A87
9-11 9-11/0 9-12/0 Lists of terms
A86 R T
9-12. S1 S1
T R
S1 S1.
R.

delete from EX1

9-2/ 9-20 DE for righthand side

9-20/ 0
A89
D34 D34 = disjoint terms
A88
Pél P11l = location program "right"
AoT
9-21 9-21/0. 9/22/0 Lists of terms
A8 Q. R.

Fig. 9 Two Matched Expressions.

-65-

relative low. Thus Q92 moves along the 1list comparing
successive triples; if it finds two that can be combined,
it does so and starts over.

Combination involves creating a new difference ex-
pression whose location program (A88) is the join of the
two components. The lists of terms for the joln are de-
termined afresh and compared against each other for term
identity (P4l).

The difference of the combination can be determined
from some simple rules. If at least one of the component
differences is not a term difference, then there 1is no
interaction between the differences, and the difference of
the Jjoin is simply the most important component difference,
as determined by the difference ordering (e.g., by C10).
If both component differences are term differences (D31 -
D34) then interaction is possible if the difference in
terms vanishes at the level of the combined difference
(D30 from P45). For this means that the same set of terms
is 1involved overall, but differences occur in subexpres-
sions because of their arrangement. This implies either
a position difference (D9) or a grouping difference (D10,
D11), the exact inference depending on the type of dif-
ferences of the subexpressions.

THE MATCH METHOD FOR TRANSFORM GOALS (K.40)

A transform goal (K1) is defined as, "finding a way
to transform object #1 (G1l, Gl1) into object #2 (G1, Gl2)."
The objects are given by both a TEX and a location pro-
gram. Thus, Gl obtains TEX #1 and Gll locates the EX it
is desired to transform. The transform goal has no
specific output; its result 1s the sequence of operator
applications that resulted in getting from #1 to #2. This
is embedded in the goal tree. (Under some conditions, it
would be appropriate to build a data structure of the

operators that were used.)

-66-

The Method

The main method for attaining a transform goal is by
the match method (K40). This method consists in matching
#1 to #2 and, if a difference 1s found, setting up a sub-
goal of reducing this difference (K2). If no difference
is found, then the two objects are already the same. If
this reduce goal is successful, then a modification of #1
is produced and the subgoal 1s set up to transform the
modified expression into #2. Thus, the method attempts
to divide the total goal into two subgoals: one takes an
initial step and the other attempts to go the rest of the
way. The method consists of a list of segments, the
separation between segments corresponding to major de-
cisions to be made by the executive:

K40/ 0
R30 Match and produce subgoal if difference exists
Q28 Create and modify transform goal

Q116 O Set output

Match #1 to #2: Segment R30

The flow diagram for R30 1s given in Fig. 10. It
consists of a setup routine (Q25), which sets up the Y-
cells from information on the goal (Yll-Y13-Y15—Y45, Yl2-
Y14-Y16-Y46, YBU4-Y48, Y1T7); a major loop through a
discrimination 1list; and a cleanup routine (Q24), which
erases all the structures that have been created but not
made into official structures and cleans out ¥Y1ll, Y12, and
Y19, which can have symbols stacked in them.

Immediate Operators

The initial signal set by Q25 is S19; this triggers
the match (1Y91). The match can result in numerous sig-
nals. If S10 occurs, the two objects have been found to
be identical, and it is only necessary to reset the signal

Q25— 9-l= Q24

v
(9-1)

67 -

Set up and clean up

N\ S9 —a 532

= S30

e 1Y99

\ S12 e k110
Jor
1Y53

v
Q113
S 9

~
— S17 --Qlla—/A If
N |
>
1

In

Ir

if

If

If

12 Q07
S10
S11
s16
S20

Fig. 10 R30:

'
L S16 S19 -1Y91 ’

If

all other cases method
fails

identical, method suc-
ceeds

something has changed,
rematch

have DE's, select one
difference, try GPS
immediate operator

difference, try TE immedi-
ate operator

difference, set up subgoal

Match

Match Gl to G2,
If Not Match Produce K3 (Reduce) Subgoal.

-68~

to S30, indication that the goal is achieved. If S12
occurs, a difference has been found. This is not neces-
sarily the end of the line, since there exist immediate
operators which might be applied to eliminate differences.
An immediate operator is a routine that GPS can apply to
take care of a difference. These may be part of the core
(K110) or part of the TE (C3 or M3, in Y53). For example,
C3 looks like:

C3 I2
/ D14

Q52
D15

Q51
D18

Q53
D21

Q53.0
C3 is a branch on the difference (12, which inspects Y18);
if the difference found is D14, Q52 is executed, etc.
Q51 and Q52 are substitution operators, corresponding to
differences between a variable and an expression. Thus,
if GPS sees a variable opposite an expression (D14, D15)
it will immediately substitute for it. Q53 is a routine
which resets the signal to indicate that matching is
impossible (S13). For example, D18 is the difference of
two terms in logic (e.g., P versus Q); when this occurs
there is no way to transform P into Q, and so GPS should
stop this attempt immediately rather than expend a large
effort simply to conclude that one letter cannot be turned
into another.

The immedlate operators, if they occur, may change
the signal (e.g., S12 to S10 for a successful substitution,
or Sl2 to S13 for Q53); i1f they cannot correct the dif-
ference they will leave the signal S12. Q113, which
follows 1Y101l in R30, is Just a bookkeeping operation that
records the final signal on the difference expression.

-69-

Create Subgoal

After the immediate operators have been tried, if a
difference still exists (S12), then the reduce subgoal is
created (Q27) and the segment is finished. Control re-
turns to R1l1l which attempts the new subgoal, rejects it,
etc. If the signal indicates that the difference is
taken care of (810, S11, S16, S20), then the match routine
(1Y91) is re-entered and matching continues from where it
left off. The match routine will continue in different
ways depending on which signal occurs: S10 says the
subEX's are identical, so go back up a level to continue
matching; S11 says the subEX's are the same at this level,
but the expressions need to be explored so go down a
level to continue matching; S20 says there may be more
comparison needed at this level; S16 says the provisional
difference (in R21) still exists, so record it and con-

tinue matching.

Rematching

Two other signals are currently possible in the loop
of R30. S17 indicates that something has happened, say
because of the application of immediate operators, so
that what was assumed no longer holds. The result 1s to
start the match all over again (Qll4 is another setup
operation). The necessity of S17 arises because several
differences may be discovered in a match; say, two occur-
rences of variables (two D15's) which require substitution,
but happen to be the same variable. Action taken on
them sequentially without exploring the consequences of
intermediate actions causes trouble: the first substi-
tution removes both variable occurrences and thus the
second substitution cannot work.

-70-

Difference Selection

The other possible signal is S18, which indicates
that a set of differences has been obtained, from which
one must be selected (1Y99). This occurs in R21 after
Q92 has finished. It is possible, when R30 is executed,
that the two expressions have already been matched
previously and as a consequence, the list of differences
already exists on the goal (G53). In this case Q25 pro-
vides S18 and R30 immediately selects another difference,
rather than going through the work of matching again.

Currently R30 can terminate with S30, S40, S42, or
S32. This last implies failure in the attempt, and is
used to summarize all the various ways the attempt could

fail.

Create Modified Transform Goal: Segment Q28

If R30 supplies a reduce difference subgoal (K3) and
R1l1l attempts it and succeeds, then R11l will execute the
next segment of the method, Q28. The subgoal has ob-
tained a result (G2, G13 on the subgoal) which can be
used to build a transform goal to get from that result to
the same final expression as the current goal (G2, Gl12
of the current goal). Q28 builds up this goal, tests to
see 1if the newly constructed goal i1s identical to one
already existing in the system (Q46 in Q17 in Q28), and
turns the new subgoal over to the executive for action.

Final Segment: Q116

If R11l attempts the modified transform goal and suc-
ceeds, then 1t executes the final segment of the K40
method, Q116. This routine simply finds the correct
signal (at A4O of the record of the most recent attempt)

to indicate to the higher goal the final result. It 1s

71

necessary to obtain the signal from the goal, rather than
having it available in a Y-cell, because it 1is unknown
what might transpire between the attempt to obtain the
modified transform goal and the use of this result by

the supergoal.

THE TRY OPERATOR METHOD FOR APPLY GOALS (Ki41)

An apply goal (K2) is defined as "applying an oper-
ator (G15, G5) to an object (Gl, G11)." The goal has a
specific output (the first symbols in G3, G13), which is
a new expression. (Recall that existing expressions

cannot be modified.)

The Method

The method for applying an operator is again a 1list
of several segments:
K41/ 0

R31 Try operator; if fail produce difference subgoal

Q38 Create modified applied goal

R33.0 Produce output (Q29 or Q103)
The method has separate parts for each of the various
types of operators. For the main type — the form oper-
ator — 1t matches the input (as the #1 expression)
against the condition form of the operator (as the #2
expression). If this is successful, then the information
so gained can be used to produce a new, modified expres-
sion from the produce form. If this is not successful,
then a difference goal is set up. If this difference
goal 1s attalned, an apply subgoal 1s created using the
modified expression provided by the reduce goal. In the
case of operators with more than one input, this scheme
requires an essentlal extension, which applies one of
the component condition forms to the input expression and
sets up a goal to find other suitable inputs from the

-72-

derivation list of the input expression for the addi-
tional components'condition forms.

Discriminate Type of Operator: Segment R31

The flow diagram for R31, the main segment, 1s
given in Fig. 11. It divides roughly into two parts. In
the upper part, there is a discrimination on the type of
operator (Al) being applied. If the type is S60, there
is a side condition to be applied (Q35, using a routine
at A10). If this test fails, there may be a difference
(S12), an attempt at immediate operators (9-900), and
the creation of a reduce subgoal. If the side condition
is satisfied, then the operator may still be of any other
type and the discrimination is repeated. An operator
may also be given directly by a routine (S63), in which
case it is tried (Q42 from the routine at All); again
there 1s the possibility of a difference. An operator
may be given by an expression (S62); for example, "re-
verse of operator X." In this case the actual operator
1s obtained (QU41l) and then it is processed. Finally the
operator may be given by a condition form and a product
form (S61); this is the case GPS 1s set up to handle in
detall and leads to the lower half of the R31 flow dia-

gram.

Form Operators with One Input

This lower half is very similar to R30, consisting
of a match, the use of immedliate operators, the selection
of differences, and so on., It differs from R30 in the
action to be taken if a match is achieved (S10). R31
matches the expression (Gl, Gl1) as #1 against the
condition form of the operator (G5, G15 or P10 if G15
does not exist) as #2. The purpose is not only to see
if the conditions are met, but to gather information

Q39 e 9= ——pm Q2L

(9-1)

52 - 532

62 o

S60 5
312
S16

S10 S11

S16 S20 9;900

32 -S32
. S10 Q102
fs10
QA7
L S17 Ql1h J
518 e 1v99 —
AN S512 e 9_900
G
12 o o7
510
S11
S16
520
_ S16 519 _1vqy J

9-900 K111
89 /{s12
1Y53

t
Q13

73

In all other cases method falls

Find operator given by expression

Test for operator applicability

Try immediate operators

If still difference, set up subgoal

Try direct operator

Try lmmedlate operators

If still difference, set up subgoal

If a form operator, set up for match

In all other cases method fails

If match, prepare output if product undetermined

Produce product
If something has changed, rematch
If have DE's, select one

If difference, try immediate operators

If still difference, set up subgoal

Match

Try GPS immediate operators
If difference, try TE immedlate Operators

Record result

Fig. 11 R31l: Try Operator, If Not Work Produce K3 (Reduce) Subgoal.

T4

in order to form the product; i.e., to identify the
values of the variables. Hence Q37, which produces the
output object, occurs after S1O.

Form Operators with Two Inputs

GPS has to deal both with operators that have one
input and with operators that have two inputs. In the
former case, once the input is accepted (match in R31)
the output can be produced (Q102 does nothing and S10 re-
mains). However, if the operator has two inputs then
even though the first input has been accepted, a second
input is needed before the output can be produced. Two
solutions to this problem are possible. First, the in-
put to the operator is defined to be a single thing; i.e.,
a pair of objects. Thus, an attempt to apply a two-input
operator to a single object reveals a "single vs. pair"
difference, which can trigger a process for creating a
pair. This solution was tried (Q55) and has been aban-
doned. The second solution is to permit the two-input
operators to be applied to a single object, by deciding
with which of the two input forms the object will be
identified. The result, if successful, is a partially
specified operator. This can be created as a new oper-
ator; it now only has a single input (the "other one")
and it can be applied to various objects to see if a
final result can be produced. In particular, it can be
applied to all the objects on the derivation list. This
attempt to apply an operator to a set will result in a
"set vs. single" difference (D19), which will result in
a selection of one of the objects on the derivation list.

The mechanlcs of this are somewhat involved. Two-
input operators have a list (Al7) which consists of pairs
of symbols: location programs to their different input
forms, followed by a cell for the name of the expression

=75~

which is accepted for this form (blank to begin with).
As each of these input forms (there may be more than two)
is used, its spot in the Al7 list 1s filled and Q102
selects the next form to be filled. The first one is
selected on the basis of trying the (two-input) operator
against a single object, thus getting a "single vs. set"
difference (D20), which results in the selection of one
of the input forms as most similar to the object.
Although the total action depends on the other seg-
ments of the apply method, we give below a diagram of a
typical application of a two line rule. (B25 is (AIB,
BIC)Y(AIC); L stands for left subEX, R for right subEX.)

Goal 1: Apply B25 to PIQ
Goal 2: Reduce D20 between PIQ and input set
Select: LL B25
Goal 3: Apply LL B25 to PIQ
Produce operator: 1: (PIQ, QIC)Y(PIC)

Goal 4: Apply LR 1 to Deriv. list of PIQ =
(SV(QIP), SVR, QIR)

Goal 5: Reduce D19 between set and LR 1
Select: QIR

Goal 6: Apply LR 1 to QIR
Produce object: 2: PIR

Although it appears that a good many steps are required
to get through a single straightforward application of
a two-input rule, it will be seen that the various se-

lections, etc., are necessary.

Create Modified Apply Goal: Segment Q38

The second segment of the apply method (Q38) is
analogous to Q28 for the transform-method. It sets up

-76-

the modified apply goal after the preceding reduce goal
has provided a modified expression. The only difference
1s that Q38 must be prepared for the result to be either
an object (K161) or an operator (K162). In the latter
case, Q38 must set up a different modified apply goal in
which the result becomes the new operator. (See example

above.)

Final Segment: R33: Transferring Result (Q29) or
Creating New Apply Goal (Q103)

The flnal segment (R33) either executes Q29, if the
result is an object (S30, S36), or Q103, if the result
is still not completely specified (S131, S132). Q29
transfers the results of this goal to be the result of
the supergoal; e.g., the result of Goal 6, PIR, is also
the result of Goal 1. Q103 creates another apply goal
which applies one of the stilll undetermined input forms
to the equivalence list of the original object; e.g.,
Goal 4 above. It then sets the signal for repeating the
step (S46); this guarantees that Q103 will be executed
enough times to get all of the input forms determined.

THE FIND RELEVANT OPERATOR METHOD FOR REDUCE GOALS (K42)

A reduce goal (K3) is defined as, "reduce the dif-
ference (G4) between an object (Gl, Gl1l) and a second
object (G2, G12)." The goal has a specific result, a
new object (the first symbols on G3, G13), which is a
modification of object #1 (Gl, Gl1). This object should
not differ from the #2 object with respect to the speci-
fied difference (G4), although there is no guarantee of
this. Likewise there i1s no guarantee that new differ-
ences have not been introduced.

-77-

The Method

The K42 method for reducing differences is a list

of two segments:

K42 /0
R32 Find relevant operator and set up apply goal
Q29.0 If subgoal successful, transfer result to

this goal

Find Operator: Segment R32

The flow diagram for the main segment, R32, is given
in Fig. 12. It consists of a setup (Q30), followed by
the bulk of the program, followed by the standard clean-
up routine, Q24. Q30 finds the list of relevant operators
in the table of connections. There are two tables, one
for GPS generally, which contains differences such as
D19 and D20 (K59), and the other for the particular TE
(in Y52). The tables of connections are description
lists with differences as attributes and lists of rele-
vant operators as values. Q30 will use the TE list if it
exists (setting S69); if not, it will use the GPS 1list
(setting S63); and if neither exists, it will set S2.
Besides the table of connections, Q30 also sets up the #1
and #2 components, the various filters (see below), and
the 1ist of operators already tried (G30).

The body of R32 consists of one part for S63 (direct
operators) and another for S69 (general operators). The
distinction reflects the fact that GPS core has operators
that are directly executed programs (1Y20). In the more
general situation, it is necessary to go through the
steps of setting up a subgoal and trying it through R31
(ultimately).

-78-

Q30==> 9-100——p Q24 Set up and clean up
(9-100)
®
N 59 - S35 In all other cases impossible
503 031—S59 e 535 Find next untried operator
131 (direct)
1¥Y20 5L Execute direct operator
. 569 — Q31—§-9—-——S35 Find next untried operator
‘31
S2 . o
Q32 Filter on condition
131
S2 .
Q33 Filter on product
¥s1
Q34 Create operator goal

Fig. 12 R32: Find Next Untried Relevant Operator
and Produce K2 Goal.

=79-

Find Next Untried Operator

Q31 is used to find the next untried operator by
getting the next operator from the list of relevant oper-
ators and checking to see if it has been used before.
There is no assumption that operators will be used in
order; therefore, this check involves a J77 test on the
list of used operators (in Y21 from G30).

Filters

There are two opportunities to test whether a pro-
posed operator should be set up in a goal (usually called
filters). The first involves testing for feasibility,
the second for desirability (this latter has not yet been
used). Examples of feasibility tests used in logic are
tests for identical main connectives, or for size simi-
larity. If the operator passes these preliminary tests,
it is set up as an apply goal (Q34). The output is then
S40, SU42, S54 depending on QU6 in QL7 of Q3L.

Transferring Result: Segment Q29

As usual, the executive takes the output of the
segment, and if 1t indicates a subgoal, decides whether
or not to attempt it. If it does and the result is
favorable, then the next segment (Q29) simply makes the
object produced by the subgoal (and available as the
first symbols on G3, G1l3) the result of the reduce goal.

Repeatability of Method

If the apply subgoal fails (S32, etc.) then the
executlive decides whether to retry the method or to do
something else. In the flow diagrams normally given for
the methods, failure to produce a modified expression
leads to a loop back to obtain another operator. Con-
sistent with the general philosophy, this decision is up

-80~

to the executive (R10). Thus, methods are labeled (at
A30) as either "not repeatable" (S80) or "repeatable"
(s81).

THE TRANSFER EQUIVALENT RESULT METHOD FOR ALL GOALS (K43)

As described in the section on goal identity test,
we distinguish duplicate goals (S54), which are of no
use to GPS, and equivalent goals (S42), which are poten-
tially valuable. In both cases the goal is identical (in
the sense of defining attributes: Gl, Gll, G2, Gl2, G4,
G5, G15, and G21) to some other goal already created.
In the case of equivalence, the identical goals serve
different purposes, and it may be profitable to share
results obtained on one of the goals with the other (or
others).

Single Segment: Q70

The mechanics of this are initiated in Q71, as
already described; the borrowing is carried through by
the K43 method, which consists of only a single segment,
Q70. This method gets initiated because Q71 placed K43
on the method list of the goal with status S50. By the
time Q70 is executed, Q71 has also already created a
list of equivalent goals. This is available to each of
the member goals (at G38). This common list contains on
its description list, a list of all results generated to
date by all the goals put together (Al4). Each result
consists of two parts (G3 and G13) and is packaged as a
two-element 1list. On the description list of the equiva-
lence 1list there is for each goal (as attribute) the name
of the last result that was transferred to it from the
common pool. Q70 gets one more result from this 1list and
transfers it to the goal for which the K43 method is
being executed. It then resets the marker so that this
result will not be transferred again.

-81-~

Blocking the Method

A problem in the use of this method is to avoid the
continual checking for new results when none exist. Con-
sequently, when a goal has received all the results
available, Q70 changes the method status from S50 (or
351) to S54. This blocks the method from being used
further. When a new result is added to the result list
(A14) Q6, in recording this, goes to each of the member
goals and changes the S54 back to S51.

-82-

V. THE EXPERIMENTER

INPUT CONVERSION AND SETUP

The experimenter executive is the first routine
executed (currently E2). It first does a number of mis-
cellaneous setups (E13); then converts and sets up the
TE, which is given in 290 (E23); then converts and sets
up the top goal, which is given in Z91 (E22). At this
point, it is ready to have GPS attempt the goal (1Y94).
Following this a number of lists are printed and erased
(LlO for goals, L1l for TEX's, L12 for goal equivalence
lists).

Set Up Trivia: E13

E13, which does all the miscellaneous initialization,
first sets up the signals and attributes. These items
each have a common form: a signal Sx 1is of form 10Sx.I8;
an attribute Ax is of form 10Ax.J10; and an attribute Gx
is of form 10Gx.L, where L 1links to a routine (see E15)
that will bring the goal back in from auxiliary storage
if needed. Lists of the symbols to be made into signals
and attributes (L5 for signals, L6 for attributes, L15
for goal attributes) are fed to E10 along with their
forms (E13, E17, E15). Initially this was done to avoid
writing each routine separately; it has since proved of
advantage in changing the action taken by attributes.

(It also permits new signals and goal attributes to be
defined by GPS, but this feature has not been exploited.)

E13 next takes an input list of identifications to
be made (L1l). This 1list consists of pairs, say X Y,
which may be read "make X identical to Y." This is ac-
complished by a full word store in which X receives the

same PQ SYMB LINK as Y.

-83-

Next, E13 sets up a number of things for output (see
also Output). The routines named on input 1list L3 are
marked with Q=3 for tracing; the symbols on input list
L4 are marked with Q=4 for propagating trace; the sym-
bols on input list L7 are fixed to "trace" by putting
their names in the signal line (El9); and the symbols on
list L18 are given the output names associated with them
on L18 (by E16, at Al9).

Finally E13 modifies the TE (in Z90) by putting on
it the pairs given on list L17. This is either an
addition or a replacement depending on whether the value
is new or already exlists on the TE.

TE Conversion

E23, which converts and sets up the TE, uses Q79 to
put the TE symbols into the Y-cells. It then constructs
a composite list of variables, adding the list from GPS
(in X56) to the list from the TE (in K82). Finally it
takes the TE operators (on list in ¥51) and the TE ob-
Jects (on list in Y54) and converts them to internal
form (E21).

Goal Conversion

E22, which converts an externally given goal, first
checks to see if the goal is in internal form (since
we wish to allow a complete goal 1list structure to be
put in from outside). The indicator is the existence of
the goal type at attribute G21; in the external form
this 1is given in the first 1list cell. If the goal needs
conversion, & form is obtained at A20 of the goal type,
copied, and established as the basic description list of
the goal. Then the varilous components of the goal are
converted. This requires a dilvision of the routine ac-
cording to goal type, since the format of information on

-8l

the external goal list depends on goal type. Again, con-
version of objects is done with E21, so that the objects
for goals need not have been previously converted.

TEX Conversion: E21

The most complex initial conversion is from the ex-
ternal form of a TEX, which is a linear list, such as
(AV B) = (BV A), to the internal form, which is a tree
structure. This is handled by E21 in two parts. Each
TE has its own external format, and hence the conversion
of TEX itself is done by a TE routine (in Z80). Beyond
this, however, there are several things to be done in
common for all TE objects. If a location program is
given externally, then this should be recorded at A9, as
well as being put at ¥81l. The TE must be recorded at
Al2. If the object is an expression for an operator,
the operator must be produced. If the object is an oper-
ator with a set of inputs, it requires a list to keep
track of what objects are assigned to which component
input forms. This 1s obtained by copying a form (XK97)
and attaching it at A70. Finally, if a TEX is a set of
objects, then its subobjects should be set up as TEX's,
and not just as EX's (P43).

Conversion of Parenthetical Expressions

The conversion of parenthetical expressions,
although specific to the TE and accomplished by a TE
routine (F10 for logic), is of common enough occurrence
that central processes are available out of which
specific conversion routines can be built. A set of
cells (Z40 to ZU47) is assigned purely to conversion
processes and a set of routines (E30 to El41) provides com-
ponent routines. A basic assumption is that the input
list (to be converted) will be a linear list, consisting

-85-

of a finite known alphabet of significant characters
(i.e., those that signal some actlon in the conversion
process), plus additional characters which are simply to
be transferred. Thus the organization of the conversion
routine is in the form of description lists, with char-
acters as attributes and conversion action programs as
values. Any symbol which is not on this 1list 1is taken
over into the converted expression without change.
These lists are loaded into Z30 by the conversion routine
and interpreted there by E31. This permits the inter-
pretation to change as a function of the conversion
process (e.g., F10 uses one list for converting the
description list, another for converting the logic expres-
sion). Another assumption is that the converted expression
will have the same name as the original; hence E30 removes
the head from the input list and establishes it as the
first cell of the converted expression (Z41, z42, Z43).
The initial 1list, now called the working list, is saved
in Z45 for later erasing (E39) and put into Z44, which
acts as a running pointer to it (being advanced by E32).

Throughout the conversion process it 1s necessary
to keep a pushdown list of P8's and P9's (in Z46) out of
which a location program can be fashioned if a character
is encountered that requires it (E36, which puts it in
Z47). This list, as well as other stacks that might be
built up during the conversion process, are all cleaned
up by E39.

Several composlite routines are avallable which
accomplish large portions of a conversion. E37 takes
the next sStep in a conversion where parentheses have
their usual meaning, either transferring a symbol or, if
the next symbol is " (", creating the sublist to the
matching ")" and transferring its name as the next symbol.
E38 makes a sublist out of the remaining symbols on the

_86-

input list. E40 simply follows the basic cycle of
interpret and advance. E41 is a conversion of a paren-
thetical expression into a list structure, leaving all
other symbols unchanged.

OUTPUT AND DEBUGGING

The output of all runs is a trace of the behavior
of the program. A run is shown as Appendix A. This is
a clean run without any tracing for debugging purposes;
if there had been some it would have been intermixed at
the point of its occurrence in the run.

The first page 1s the spec sheet, which will be
discussed in the next section on setting up a run. The
second page 1s the problem-solving attempt proper. This
is followed by the Post-Mortem, which is not shown.

Behavior Trace

Each goal 1is printed out in full the first time it
is attempted (E24 in Q81). The level in the goal tree
is first given followed by the name (at A2, which is the
order of generation number taken from Y34); then the
defining phrase; then the supergoal; and finally the
internal name of the list structure (for debugging pur-
poses). The integer at the far right gives the cycle
count, H3. The occurrence of this expression indicates
that GPS 1s now attempting this goal.

The course of the program's behavior can be fol-
lowed by the "signal trace"; i.e., the lines of signals
and other symbols occurring throughout the run. Each
time a signal is discriminated (by I1, I2, I3, or I4),
it is put into the print line (by E70 in Z92). If the
discrimination is made by Ill, Il12, etc., then the sig-
nal is not recorded in the print line. In addition,
whenever certain routines occur (those recorded on LT),

-87-

they record their own name in the print line along with
parentheses; this makes it easy to group the signals 1n
terms of the subroutines in which they occur. Also,
whenever GPS passes into the context of a goal (other
than a new one), it records the goal name in the print
line (E25). With these items and the flow diagrams of
the R-routines it 1is possible to trace what GPS did
through a run.¥*

Every new object that is created 1s also printed
out (E26 or E68 in P50). This includes its name (at A2,
which 1s the order of generation from Y36), the object
according to its format as given by the TE routine, and
the internal symbol for the list structure (for debugging
purposes). In addition, various other major decisions
of the program rate special messages: goal rejected,
operator rejected (E27), goal selected (E69), object too
complex, and so on.

Printing Formats

The printing of all the expressions and statements
is handled in a uniform way. There is a print format
consisting of a list of information to be printed across
the page. This format 1s interpreted by E50, which reads
each symbol of the format and loads the print line. The
rules E50 follows are: if the symbol in the format 1list
is an alphabetic data term, it is entered as the next
chunk of information to be printed; if the symbol is not
an alphabetic data term, 1t is assumed to be a "format
routine” and it is executed. The format routines take
their inputs in HO. The main one, E57, is used to re-
cord the external name of (0) in the print line: if (0)

*See Sec. II, "A Tour Through a Simple Problem."

-88-

is a data term, the data term is printed; if (0) has a
value at Al9 this is taken as the name; if it has a value
(integer) at A2 then this is used for the name; finally,
if none of these hold, the symbol itself is taken as the
name. Besides E57 there are several others: E54 and
E55 for advancing the column number; E56 if (O) is a
format; E61 if (0) is a 1list of names, E63 if (0) is a
location program (which might involve substituting a
special expression); and E64 if (0) is a difference
(which might involve substituting a special expression).
E50 uses several subroutines (E51, E52, E53) and some
standard cells (250, Z51) to perform its task.

Besides E50 there are a few additional print
routines: E58 to print a simple list, and E59 to print
a "linear" 1list. The latter is a special form that comes
from the execution of E60 on a list structure. E60
creates a linear parenthesized form of a structure,
consisting of nothing but alphabetic data terms.

Debugging Facilities

Besides the ability to trace any routine selectively,
as provided for in the IPL manual, a few addltional de-
bugging facilities are provided. The most useful is a
collection of "monitor points" that are built into
various routines where experience has shown 1t is desir-
able to be able to execute an arbitrary monitoring
routine. These are the 29x cells, each of which gilves
in its title the routine in which 1t is executed (e.g.,
1295 executed in E25). The IPL Post-Mortem on the 7090
executes the routine in W14 after it has executed the
rest of the Post-Mortem (a GPS patch). E12 is the stand-
ard routine used to give the contents of various cells
plus the prints of a few lists. The final debugging aid
consists of two routines which will trace a routine if

-89-

and only if it occurs in certain goal contexts (i.e.,
the number at A2 of 1Y2). Ell specifies the goal; E18
specifies an interval of goals.

SET UP FOR RUNNING

Assemblies and Modifications

In general,runs are made from an assembled verslon
on tape. A typical run consists of reading the total
system in from the tape; loading some additional perma-
nent routines and data, either new ones or modifications
of o0ld ones (J165); saving the updated system on tape
(J166); loading some additional routines and data that
are unique to this run and temporary; and then kicking
off with E2.

Spec Sheet

There is always at least a page of assembled infor-
mation unique to the run to specify the various parameters
and lists. This is called the spec sheet and is shown
as the first page of the run in Appendix A. Most of the
individual cells are self-explanatory. 290 holds the TE;
Z91 holds the task; i.e., the top goal. The rest of the
Z9x cells hold the monitor routines. This is followed
by some Y-cells (Y90 - Y101) which hold the names of
various important routines in GPS-Core. All the various
lists for tracing and modifying (Ll, L3, etc.) also occur
here. Finally there are a few data terms, such as 27, the
avallable space limit for reading goals to auxiliary stor-
age; K32, the time 1limit in cycles (H3); and K34, the
limit on goal depth.

-90-

AUXILIARY STORAGE

There is automatic storage of goals onto auxiliary
storage when space becomes scarce. Every time a new
goal is created (Ql6) routine E7 (file goals if avail-
able space 1s less than Z7) is executed. If it is
necessary to get more space, E7 starts at the top goal
(1Y111) and attempts to file each goal. Certain excep-
tions are made: 1f the goal is closely related to the
current context (in Y2, Y7, Y9, Y10, ¥87, Y88, Z228); if
the goal 1s already on auxiliary (A8); or if the goal
has been marked to stay in core (A7). A goal to be
filed is split into two parts: all those attributes
named on list L29 are kept in core with the goal; all
the rest are moved to a separate structure, which is
then filed (J107). The head cell of this structure
(which is now the auxiliary control word) is kept on the
goal at A8. After E7 has filed all the goals it can,
availlable space 1s rechecked; 1if space is still shy, the
signal S139 is recorded and the run is terminated.

Whenever it is necessary to work with a goal (Q80),
E8 is executed to bring the goal back into core if it
was on auxiliary. This action simply undoes what E7 did:
the structure at A8 is moved in (J105) and it is merged
with the goal structure that was left in main storage.
Besides the transitions from one goal context to another,
there are also occasions to examine a few features of a
great number of goals, such as in the process of selec-
ting which subgoal to try next (Q109). Thus, every time
a goal attribute (Gx) is executed and its value not
found, 1t 1s necessary to determine if that goal 1is on
auxiliary and, if so, to bring it in. This is automati-
cally handled by the goal attribute routines (from form
E15).

-91-

VI. TASK ENVIRONMENTS

SYMBOLIC LOGIC TE (K70)

Types of Information

This TE gives the necessary information to do the
kind of problems used by O. K. Moore.(ls) It consists
of a set of operators (B1 to B25), given as forms (e.g.,
AVB = BVA); a set of objects (B50 to B99), which are
logic expressions (e.g., (-P.Q)V(P.-P)); various lists
of objects and constants (Cl to C9); the table of con-
nections (C2); a set of differences (D1 to D39); the
ordering of the differences by difficulty or importance
(cio, Cll); and a collection of routines for various
functions (Fl through F32). All of these items of in-
formation are obtained either directly or indirectly
through KT70.

Differences and Associated Structures

The differences have no information associated with
them directly. They function purely as selectlve inter-
mediates: they are produced by the comparison routines
during the match (Fl, F24, F26), and are used to select
lists of operators on the table of connections (c2).

The relations between them are given by the ordering of
differences (C10, Cll). These latter consist of a list
whose items are either difference symbols or lists of
difference symbols. There is a routine (P48) to test if

a difference is on the ordering (some, such as D19 and

D20, are not). There is also a routine (P7) to compare

two differences. This outputs a signal: S4 if (0)

oceurs before (1) in the 1list; S5 if (0) and (1) are the
same difference or occur in the same sublist of differences;
and S6 if (0) occurs after (1) in the list.

-92-

Several TE routines implement the comparison of two
EX's in Y11l and Y1l2. Recall that the match is divided
into two parts: the putting of two structures into cor-
respondence, done by GPS-core; and the comparison of two
such pleces, done by the TE routine. The latter 1is the
one that detects and assigns the differences. These
comparisons are discussed in detail in the section on
matching and will not be repeated here. There are
several comparison routines (F1l for R20; F20, F24, F26
for R21) reflecting attempts to fit GPS to different
protocols. Several of the tests for specific differences
have been centralized into routines (F30, F31, F32),
Jjust to make modifications easier,

Multiple Negation Signs

Several of the TE routines (F4, F5, F6, F7) deal
with the manipulation of multiple negative signs. Ac-
cording to the rules of logic used in these problems, a
positive sign may be freely replaced with a double nega-
tion and vice versa. This 1s actually expressed in the
rules by talking of "sign changes," but is realized in
GPS-2-2 by doing sign manipulation by means of immediate
operators (see C3). The problem of signs is also re-
flected in handling substitutions. Thus, in the system
of logic used here if -A 1s opposite PVP (where A is a
variable), then it is possible to substitute A = -(PVP)
to produce identity. Thils requires an adjustment in the
substitution routines (F25 and F27, which use some ele-
mentary operations; F28 and F29).

Double negations occur mostly through the act of
substitution. The format of expressions makes 1t dif-
ficult to become aware of a double negation when it is
formed. Hence the philosophy has been to carry them
along until they are spotted as a difference (D6 or D7)

_93-

during some later match. At this time, an immediate
operator (F6 or F7) would get rid of them. It has also
proved convenient, mostly for output purposes, to go
over the TEX and remove all multiple negation signs at
once (F9).

Filters and Similarity Tests

The final part of the routines provides the various
operator conditions, filters, and similarity tests which
cannot be expressed by forms (F2, F3, F8, F21, F22, F23).

MISSIONARIES AND CANNIBALS TE (M19)

This TE gives the necessary information to enable
GPS to work on the Missionaries and Cannibals puzzle.
There are three missionaries and three cannibals on one
side of a river, with a boat that holds two people.
All six can row the boat. The problem is to get all six
people to the other side of the river without ever
letting more cannibals than missionaries exist on either
side of the river, in which case the missionaries would
be eaten. The cannibals are sufficiently reliable,
however, to be trusted to row the boat by themselves or
stay on one side of the river by themselves.

Types of Information

The TE consists of a set of operators (M30 to M39);
a set of differences (MMO to M59); a set of objects
(M70 and M71); a single problem (M80); a set of lists of
various items (M1 to M9); a table of connections (M2);
an ordering of differences (M10); a set of routines (M20
to M28); and a set of symbols for handling the side
conditlon about more missionaries than cannibals (M11,
M60 to M63, M0 to M93).

~9l-

Most of these entities are strictly analogous to
those in the symbolic logic TE (K70): the table of con-
nections, the difference ordering, the identity test,
the fllters, etc. The differences reside in the way of
handling the operators (M22), the admissibility test
(M27, etc.), and a special executive used for some runs
(R2 involving M28). The basic format for objects has
already been discussed in the section on TEX's. Like-
wise, M22 and the format for operators was illustrated
in detail in the section on Operators. Neither of these
will be discussed further here.

Admissibility Test

The admissibility test (M27) is built to take as
input a symbol (M90O - M93) which designates which side
is to be checked. It checks the indicated side by putting
the missionaries and cannibals 1n one-to-one correspondence
and emits either "satisfied" (S1) or an "unsatisfied" (S2),
along with an indication of the failure (M60 to M63 in
Y18). There are four ways of specifying the side to be
checked: the left side, which initially holds all the
men (M90); the right side, which must hold all the men
at the end (M91); the side from which the men are moving
on this boatload (M92); and the side to which the boat-
load is moving (M93). The reason for the different ways
of designating sides comes from attempts to simulate human
subjects, who have a tendency to check, say, left side
and "to" side. Since these sometimes designate only a
single side between them, they can lead to failure to
observe the admissibility constraint. There is a 1list
(M11) which gives the set of admissibility tests to be
applied.

=95~

External Task Space: Top Executive R1

In running GPS on the M&C problem and comparing it
with human performance, it was observed that the humans
often did not remember any of the intervening positions.
They knew the initial position, they knew the position
they were at, and they knew the position they had just
come from. This contrasted with the situation in logic
where Intermediate positions were known and often used.
Part of this difference rests in the different external
arrangements of the tasks. In logic (K70) the "official"
results of applying operators were kept on the black-
board in plain view. (There could, of course, be other
results which the subject though of but never made
explicit.)

In MXC the subjects worked with a graphical repre-
sentatlon of the river, using physical objects for
missionaries and cannibals and physically moving them
from one side to the other. As a consequence, they had
no external memory of any position but the current one.
Top executive Rl is an attempt to simulate this latter
situation. A list of external TEX's (L13) is kept, which
simulates the external graphical device. For recording
purposes this contains all the TEX's ever obtained in
order, but for GPS the only TEX that counts 1is the last
one on the list, which represents the current situation.
GPS must command the experimenter to apply an operator
to this current position (done by executing M28 rather
than by a communication). M28 applies the operator to
be the last TEX on L13, if it is feasible, and adds a
new TEX to the end of L13. It then applies a complete
set of admissibility tests and if the move 1is not admis-
sible another move 1is made that undoes the move (thus
leaving a graphical record of the failure to satisfy the
rules). Two new signals are used in the problem-solving

-96-

executive: S44 (final problem solved) which occurs if

the final state 1is ever obtained by the TEX on Ll13, and
S45 (external progress made) which occurs whenever a new
TEX is generated on L13 (excluding the returns to previous
TEX). When S44 occurs R10 is able to quit. Whenever

S45 occurs, Rl sets up a new transform goal to get from
the new TEX to the final result. Rl is written in a
reasonably general fashion; however, it has never been
tried with any task except MxC.

ADDING NEW TASK ENVIRONMENTS

The addition of a new TE still requires an intimate
knowledge of the way GPS works and of its internal con-
ventions. To install a new TE, the best course is to
take one of the existing TE's and ask what the relevance
of each part is to the new task. To illustrate, suppose
we wanted GPS to work on trigonometric identities--a task
that has been hand simulated in detail,(S) but not run
yet on GPS. We consider K70, the TE 1list for symbolic
logic, as providing the most appropriate check list.

K70/0
/k81 Difference ordering
C1l0
ng List of variables
C
K84 Difference print list
Cl9
Z 80 Convert TEX
F10
781 Print TEX
E26
Y51 List of operators
Cl
Y52 Table of connectives
c2
Y53 List of immediate operators
C3
YZM List of objects
C

Y60 Identity comparison

=97 -

ggg Similarity test for objects sets
52; Compare objects

5%4 Compare operators

§é5 Search filter on operator conditions
ggg Standardization

g?o Similarity test for operator sets
%g Adjustment for EX1 (Q51)

31?{"2/2 Adjustment for EX2 (Q52)

F27.0

Many of the considerations below are obvious and parallel
to information already given. Nevertheless, it is useful
to have it all in one place, oriented toward introducing
a new TE. To be simple-minded, we will take up the items
as they occur on K70.

Difference Ordering: K81

The set of difference symbols (Dx) are not yet se-
lected, but will be later. A look at C1l0O shows that we
can assign differences to indifference subclasses if we
wish. In any event we will undoubtedly need a specilal
list for Trig (call it T10). The function of the ordering

is to permit the evaluation of goals.

List of Variables: K82

For simple problems 1n trigonometry, we will only
need variables in the algebraic operators (like A2-B° -
(A+B). (A-B)). We might as well use A, B, C, D, which

are used in Logic; hence C6 can be used directly.

-98-

Difference Print List: K84

This structure is used to make the output pretty.
When a difference symbol is going to be printed in a
format, this list 1s consulted and if format information
exists for the difference symbol, it is used. Thus,
"REDUCE D9 ON L1 TO LO" becomes, "CHANGE POSITION ON L1
TO LO." There is no need to develop such a 1list for a
new TE at the outset, so we will just leave 1t out.

Convert TEX: 280

For most new TE's the input format is quite idio-
syncratic to the task area and an entirely new routine
has to be thought through. For Trig, however, we can
work quite close to Logic, since they both use parenthet-
ical notations. An examination of F1l0 shows that there
is an interpretation of the various symbols in the input
line, each calling forth its own conversion subroutine.
Thus V, ., I are treated as binary operators. Trig de-
mands a symbol for equality, addition, subtraction,
multiplication, division, and exponentiation. Suppose
we use =, +, -, *, /, and ** for these. We incur a few
additional problems in the minus sign, which must be
admitted as a unary operator when it occurs initially;
and in the exponentiation sign, which has a double symbol,
so that the decision on whether * or *¥ has occurred re-
quires some memory or a forward and backward look. Since
equality is part of the object expression connectives,
we need another symbol, say E, for the operator connective.
In any event, a routine (Ul0) can be written using F10
as a model that will convert an expression in standard
external notation into the accepted internal structure.

-99-

Multiple Operands

A much more difficult problem will be encountered
if it is desired to use addition and multiplication as
operations with an indefinite number of operands; e.g.,
sinx + cosx + singx + 1. It is easy enough to code the
conversion routine to give a list with + as the head and
all the operands in the list cells. The problems arise
in getting operators to work on expressions with indefi-
nite operands. The kind of form GPS knows about--e.g.,
A*¥(B+C) = A¥*B+A*C--assumes fixed structure. To get GPS
to work with A*(B+...+D) = A*B+...+A*D requires some ad-
ditional ingenuity. Even to apply a binary operator
anywhere within a set of operands of indefinite length
requires ingenuity. Since the purpose here is to illus-
trate, rather than solve new problems, let us agree to
stick with operations with flxed operands. (This is
what was done in the hand simulation.)

Print TEX: Z81

A look at E26, the Logic print, shows it depends on
E60, which produces a linear string of characters from
a tree structure. Examination of E60 shows that it, like
P10, examines each of the important symbols in the input
structure to select a specific subroutine to build the
linear 1list. A routine is needed for Trig that can
easily be modeled on E60 (say U60)., However, E60 is not
directly named in the TE 1list. Either a variant of E26
must be written using U60, or perhaps a new TE cell can
be created (say Y79) such that E26 uses the routine in
Y79 and the TE list specifies what routine it should be.
(The TE cell for printing cannot be eliminated, since
not all TE's can use E26.)

-100-

List of Operators: Y51

Most of the operators for Trig can be written down
right away. The algebraic ones are clear; so are the
trigonometric identities--e.g., singx + cosgx = 1. This
may be expressed as two rules, one running in each di-
rection; GPS does not yet recognize rules as two sided.
(However, the second rule can be expressed simply as the
reverse of the first.)

However, one operator--the combine operation--cannot
be expressed as a form. It simplifies expressions by
recursively applying to them a whole series of rules:
0O+ 0=20, 1*n = n, xl = X, x0 = 1, x/x =1, x + X =
2*x, etec. This operator should be coded as a direct
operator (Al = S63)--that is, as an IPL program. This
will be a rather extensive piece of code; it was coded
once for GPS-1 in IPL-IV and ran about 200 instructilons.
In coding thils operator, it can be assumed that the
operand 1is 1in Y11-Y13-Y15. Alternatively, of course, the
component laws could be expressed as separate forms,
letting the simplification emerge from the general at-
tempts at a solution. Some sort of general trend toward
simplicity, as expressed by additional differences, might

be requilred.

Numerilcal Calculatilon

A subsidlary problem, but one that is quite impor-
tant for mathematical manipulation in general, i1s how to
represent numbers and get numerical calculations carried
out. Some form of rational arithmetic 1s required, such
that 2/2 = 1 and 4/2 = 2, but 3/2 = 3/2. In Trig this
only shows up 1n the combine operator; stilll it requires
an agreement on representation, on when operations will
be performed, etc.

-101-

Table of Connectlons: Y52

The form of the table of connections can be seen
from C2. For each of the differences there must be a
list of what operators are considered relevant and in
what order. Clearly a new structure T2 is needed for
Trig.

List of Immediate Operators: Y53

Again the form of the 1list can be seen from C3. For
Logic 1t consists of ways of handling the double negation,
and a response to two different constant terms (e.g., P
versus Q) that the difference is impossible to reduce
(set S13). The immediate operators for D14 and D15 that
accomplish substitution are associated with GPS-core,
since they are part of the general apparatus to apply
form operators. For Trig, according to the way we were
proceeding above, the sign is to be a binary operation
(with some unresolved problems about the initial sign).
This means we do not want the D6, D7, D12, D13 immediate
operators, and their function will be taken over by the
combine operator. On the other hand, it may be easier
to still think of '-' as an unary operator. This would
change the converslon routines so that x-y becomes
x + (-y); then these immediate operators of Logic would
perhaps be appropriate. One can see from this that
basic decisions about representation can affect everything
else.

In a similar vein, if we handle the trigonometric
functions as constants (since we are ignoring their
arguments completely for simple problems), then there
exlist ways of transforming one term into another via
trigonometric identities. Hence we do not want the D18
immediate operator. On the other hand, if we continue
to represent "sinx" as an expression with sin as the

-102-

operation and x as the operand, then the D18 immediate
operator 1s still reasonable.

There is probably little point in trying to think
of additional immediate operators until some runs show
where something is needed. If we take the right optilons
above, we don't need any immediate operators at all, and
can just leave Y53 off the list.

List of Objects: Y54

For Logic, C4 1s an empty list, since the only ob-
jects used are those defined in the top goal and objects
derived from them. Y54 could just as well have been
left out. The same is true of Trig. However, any ob-
jects put on the object 1list will be converted.

Identity Comparison: Y60

This test 1s used when a new object has been created
to find if an 1dentical TEX already exists. P20 1s a
general comparison of two list structures, ignoring the
description lists. It should be perfectly suitable for
Trig.

Similarity Test for Object Sets: Y62

This routine is directed toward selecting out the
one member of a set of objects that is most similar to
an external object. It occurs in Q54, the direct operator
that is evoked by D19. For example, if the initial prob-
lem 1s given as getting from a set of objects to a
specified one, then matching produces D19, which ends up
by selecting the most similar one of the set as the
starting point. The similarity test used for logic, F21,
demands that the main connective (read operation, for
Trig) is the same and that the two objects have at least
one term in common. If used in Trig, it would tend to

-103-

classify sums with sums, products with products, etc.,
and would call expressions dissimilar if they didn't
both contain the sin, or the cos, etc. This probably
isn't exactly the right shape for Trig, but it 1is a good
start.

Compare Objects: Y63

This is the part of the match routine that is task
independent. The two expressions are put into corres-
pondence on their structure and the routine in Y63 is
executed at each pair of subexpressions. The output of
the comparison routine is one of the signals: S10 (the
entire subexpressions headed at this point are identical);
S11 (no differences at this point, but the subparts of
the subexpressions need investigation); S12 (a difference
exists at this point); or S13 (it is impossible to make
these two expressions the same). In the latter two
cases the difference symbol (Dx) is placed in Y18.

This IPL routine provides half the operational defi-
nition of the differences, the rest being provided by
the table of connections. The routine for Logic, F1l, is
diagrammed in Fig. 7. Many of the same differences will
be appropriate; in fact, perhaps F1 could be used to get
started for Trig. New differences can be introduced by
expanding the compare routine to output a new symbol when
it detects some new feature, and associating some oper-
ators with the symbol on the table of connections.

Compare Operators: Y6l

Conceivably a difference comparison should be used
when trying to satisfy the condition form of an operator
rather than comparing two objects. This has not proved
to be the case for Logic, and initially there is no
reason to suppose it true for Trig.

-104-

Search Filter on Operator Conditions: Y65

In selecting an operator to reduce a difference, a
preliminary selection is made on the feasibility of the
operator. GPS will run perfectly well without any
filter; and one can be added later. Again however, the
ones for Logic (F22 or F8) are good candidates for use-

ful ones for Trig.

Standardization: Y69

This routine was introduced into Logic to remove
all the double negation signs prior to printing the ob-
Ject. There is no reason to consider such a routine for
Trig until the need becomes manifest.

Similarity Test for Operator Sets: Y70

This routine is analogous to the similarity
test for objects, Y62. It occurs in connection with Q56
and D20, which is related to the two-line rules. Since
there are no two-line rules in the operator set for Trig,
there is no need for this.

Adjustment for EX1 (Q51): Y72

This routine permits GPS to see a negative varilable
as a variable--that is, 1f -A is opposite PVQ, then
-(PVQ) is substituted for A. The immediate operators
take care of whatever double negations occur. Whether
something like this 1s needed for Trig depends intimately
on the issues mentioned earlier about how to handle

signs.

Adjustment for EX2 (Q52): Y73

This routine is analogous to the one for Y72, but
concerns variables in EX2 rather than variables in EX1.

-105-

Summary

We have now covered the range of items in the Logic
TE list. We have raised some representational issues
plus the question of how to get arithmetic done. These
may require a good bit of thought before they can be
satisfactorily settled. There are several substantial
routines to code: the conversion, the print, and (at
some time) the compare. However, the Logic routines
provide good models. There may be entirely new TE de-
pendent elements, but none of these are apparent yet.
Hence, if we assume the analysis above, we can build a
new list for Trig, say KT71l:

K71/0
K81
T10 New difference ordering
K82
c6
Z80
Ulo New conversion
Z81
U26 New print, like E26, but using U60 in
Y51 place of E60
T1 New list of operators)
Y52
T2 New table of connections, but with Logic
Y60 differences
P20
Y62
F21
Y63
Fl1 Use Logic compare to get started
Y64
Fl
Y65
F22.0 Use Logic filter to get started

Besides K71 and the structures that are named on it,
we must write down all the operators and code up the
combine operator. Also, we must write down a few objects
and put their names on goals. Finally, we are ready to
assemble all the new routines, put K71l in Z90 and the
goal name in Z91, and GPS will attempt a problem in the

-106-

Trig task environment. In fact, over and above the bugs

in the new programs and structures, there are sure to be

a few conceptual errors that will require modification

of the TE, including perhaps the addition of new routines.
The chosen example, trigonometry, was almost guar-

anteed to be easy, since it is so similar to Logic. If

we had picked a quite different task, say chess or various

puzzles, we would have been faced with a much more intri-

cate problem of how to represent the essentials of the

task so that they fit GPS's way of doing thing.

2704
2705
2706
12594
2710
2714
2494
2495
2u96
2497
2498
2499
2500
2501
2502
2503
2504
1135
1137
1141
12593
12595
12596
125971
12598
12599
12600
12601
1151
12602
12603
12604
12605
986
938
1037
691

[eNeoReReNoNelaoNoNeNoloNoNoleoNoNoNoloNoNoNoRoNo oo o oleNo oo oo olo Ne)

QO == OO0 FOOOOO0OQCOFFFfFroOoOO0OOOOOOOOOOOOCCC

1024 O
520 0
734 12594
735 0
26258 0
26258 0
2014 O
2024 0
1868 0
1598 0
2006 O
1870 0
1903 0
1899 0
1674 O
1904 O
1898 0
0 0
0 0
0 12593
2014 12595
2015 12596
2024 12597
2025 12598
2034 12599
2035 12600
2036 12601
2037 O
0 12602
2467 12603
775 12604
2468 12605
775 0
1000000
20
1055 O
26258 0

Appendix A

@rs RUN ON "R.(-PIQ) INFO (QVP).R"

190
Z91
192

196
2100
Y90
Y91
Y92
Y93
You
Y95
Y96
Y97
Y98
Y99
Y100
Ll

L7

L7

K32
K34
K83
E27

P R R R I N Sy s

(=N

- o

o
W
o
o

~
N
[eNeoNeNoloNoNoleloNoRoNoNelo]

R10
R
R20
R21
R30
R31
R32
R33 0
0
Y63
F1
Y6l
F1 0
100 0000
20
K101 O
JO 0

TASK ENVIRCNMENT
TASK
SIGNAL MONITOR

MONITOR INPUT PRINT FORMAT
PROBLEM SOLVING EXEC

MATCH

EVALUATE NEW SUBGOAL

MAKE VARS DISJOINT

TOP EXEC

CONSTRUCT GOAL VALUE

SELECTION COF NEW GOAL IN R10
SELECTION OF SUBGOAL FROM LIST
DESCRIPTION OF MARKED LIST
SELECTION OF NEXT DIFF
EVALUATE EQUIVALENT SUBGOAL
LIST OF IDENTIFICATIONS

Q=3 TRACE LIST

LIST OF ROUTINES FOR SIGNAL ()

~-10T-

LIST FOR TE MODIFICATION

ABSOLUTE EFFORT LIMIT
ABSOLUTE DEPTH

GOAL VALUE TYPE

TEMP SUPPRESS PRINT

LO QvP .R (883)

Ll R. -PIQ (882)
1 GOAL 1 TRANSFORM L1 INTO LO (SUBGOAL OF NONE)(C36)
28 L1 DERIVATION LIST
29 Lo DERIVATION LIST
30 RrR1 DERIVATION LIST

{R10. S50 S50 (R11. S50 (R30. S19 (R20. S19 $20 S12) S12 D9 S12 D9 S12) SuO S8

2 GOAL 2 REDUCE D9 ON L1 TO LO {SUBGOAL OF 1)(13633)
(R10. S50 S50 (R11. S50 (R32. S69 S1 $2 S1 S1 S1) S40 S8

3 GOAL 3 APPLY R1 71O LI (SUBGOAL OF 2)(13711)
(R10. S50 S50 (R11. S50 (R31. S61 S19 (R20. S19 S20 S11 S20 S12) S12 DIS S10 S10 (R20.
R20. S10 S23 $20 S23 S23) S10 S10

L2 -PIQ .R {13796)
) S30) S30) GOAL 2 S30 S8 Su41 S30) S30) GOAL 1 S30 S48 S&l Su0 S8

2 GOAL 4 TRANSFORM L2 INTO LO (SUBGOAL OF 1)(13790)
(R10. S50 S50 {R11. $50 (R30. S19 {R20. S19 S20 S11 S20 S12) S12 D5 S12 D5 S12) S40 S7

3 GOAL 5 REDUCE D5 ON P9 L2 TO P9 LO (SUBGOAL OF 4 1)(13929)
(R10. 550 S50 (R11. S50 (R32. S69 SI1 $2 S1 S2 S1 S1 S1) Sk0 S8

4 GOAL 6 APPLY R6 TO P9 L2 (SUBGODAL OF 5){14019)
(R10. S50 S50 (R11. S50 (R31. S61 S19 (R20. S19 520 SI11 S20 S$S12) S12 D1S S10 S10 (R20.
R20. S10 S23 $20 S$23 $23) S10 S10

L3 PVQ R (14109) _
) $30) S30) GOAL 5 S30 Su8 Su41 S30) S30) GOAL 4 S30 S48 Su! Su0 S8

3 GOAL 7 TRANSFORM L3 INTO LO (SUBGODAL OF 4)({14139)
(R10. S50 S50 (R11. S50 {R30. S19 (R20. S19 S20 S11 S20 S12) S12 D9 S12 D9 $12) SKLO S$6

4 GOAL 8 REDUCE D9 ON P9 L3 TO P9 LO (SUBGODAL OF 7)(14214)
{R10. S50 S50 (R11. S50 (R32. $S69 S! S1 S1) Suo S8

5 GOAL 9 APPLY R1 TO P9 L3 (SUBGOAL OF 8)(14305)
(R10. S50 S50 (R11. S50 (R31. S61 S19 (R20. S19 S20 S11 $S20 S12) S12 D15 S10 S10 (R20.
R20. S10 S$S23 S20 S23 S23) S10 S10

L4 QVP .R (14404)
) S30) S30) GUAL 8 S30 S48 Sul S30) S30) GOAL 7 S30 S48 Su1 Su0 S8

4 GOAL 10 TRANSFORM L4 INTO LO {SUBGOAL OF 7)(14380)

35654
36269
36833
37816
38690
39730

84750

47080
S10 S20 S12) S12 DIS S10 S10 |

52738

54953

60301

8OI

63020
S10 $20 S12) S12 D15 S10 S10 ¢

68608

70826

76721

78584
S10 S20 S12) S12 D15 S10 S10 (

84111

86329

{R10. S50 S50 {R1V. S50 (R30. S19 (R20. S19 S20 S11 S20 S11 S20 S10 S20 S10 $23 $S20 S$S20 S10 S$S23 $20 S$23 $23) S10)

$30) S30) GOAL 7 S30 Su8 Su) S30) S30) GOAL 4 S30 Su8 S41 S30) S30) GOAL 1 S30 Su8 Su1

$30) $30)

109

Appendix B
GPS—-2-2 VOCABULARY {ROUTINES)

GENERAL ATTRIBUTES
COMPONENT ATTRIBUTES

Al
A2
A3
A4
AS
Al
A8
A9
AlO
All
Al2
Al3
Ala
Al5
Alé
AL7
Al9

TYPE OF COMPONENT

ORDER OF GENERATION (NAME)
GOAL THAT PRODUCEC COMPONENT
LIST OF GOALS USING COMPONENTS
LIST OF EQUIVALENT COMPONENTS
MARK TO KEEP IN CORE

CONTROL WORD FOR AUX STORAGE
LOCATION PROGRAM, IF EXTERNAL
TEST FOR OPERATOR CONDITIONS
DIRECT PROGRAM FOR OPERATOR
TE OF OBJECT

LIST OF VARIABLES FOR TEX

RESULT LIST (EQUIVALENT GOALS LIST)

COMPLEXITY OF TEX (0) (INTEGER)
MAX DEPTH OF TEX {0) {INTEGER)
DIRECT PROGRAM FOR COMPARISON
CHARACTER TO BE PRINTED

GOAL TYPE ATTRIBUTES

A20

GOAL FORM

METHOO ATTRIBUTES

A30

METHOD TYPE

RESULT ATTRIBUTES

A4Q
A4
A42
A43
A44

GENERAL
AS1

ATTEMPT STATUS

LOCATICN OF METHOD USED
STATUS OF METHOD

START OF SUBGOAL ATTEMPT
FINAL SUBGOAL

ATTRIBUTES
CONTENT TYPE

LOCATION PROGRAM TREES

A60
A6l

LOCATION PROGRAM
LEVEL

-110-

MISCELLANEQUS ATTRIBUTES

A70

LIST OF COMPONENTS USED (MULT. OPR)

DIFFERENCE EXPRESSION ATTRIBUTES

AB0
A8l
AB2
A83
A84
A85
A87
A88
A89
A90
A109

STATUS

NBR 1 SuB DE

NBR 2 SuB DE

EVALUATION TYPE- K10X
LEVEL (ABSOLUTE)

MAX - LEVEL (ABSOLUTE)
NBR 2 LIST OF OCCURRENCES
RELATIVE LOC PROGRAM
DIFFERENCE TYPE

LIST OF DIFFERENCE TYPES
HIGHEST DEFINED REGIONAL

EXPERIMENTER ROUTINES
EXECUTIVES

E2

TOP EXECUTIVE FOR SINGLE TASK

E7 FILE GOALS IF SPACE LESS THAN 27

E8 MOVE GOAL (0) IN FROM AUX
MISCELLANEOQOUS

E10 DEFINE ONE WORD ROUTINES

El2 POST MCRTEM PRINT

E1l3 INITIAL SET UP OF TRIVIA

Ela FORM FOR SIGNAL

E1S FORM FOR ATTRIBUTE

El6 SET PRINT NAMES (Al9) A/C LIST (0)

EL19 SET SUBR (0) FOR SIGNAL-LINE TRACE
INPUT OUTPUT ROUTINES

£21 CONVERT TEX (1), CONTENT TYPE (0)

E22 CONVERT GOAL (0) TO INTERNAL FORM

E23 CONVERT TE (0) TO INTERNAL FORM

E24 PRINT GOAL EXPRESSION

E25 PRINT GOAL NAME AND DEPTH

E26 PRINT TEX (0)

E27 PRINT OPERATOR REJECTED

E28 PRINT GOAL NAME

€29

PRINT GOAL STRUCTURE

-111-

BASIC CONVERSION ROUTINES

€30
€31
E32
E33
E34
E35
E36
€37
E38
E39
E4Q
E4l
E49

SET UP FOR CONVERSION
INTERPRET CURRENT SYMBOL
LOCATE NEXT INPUT SYMBOL
CREATE SUBLIST (NOT CONNECTED)
CREATE NEXT CELL

RETURN TO LOC IN PRIOR SUBLIST
FIND LOC PROG, PUT IN Z47 (SAFE)
CREATE NEXT UNIT, SYMBOL OR ()
CREATE NEXT EXTENDED UNIT
CLEAN UP CONVERSION {HS5 SAFE)
FOLLOW INTERPRETATION LIST
CONVERT () TO LIST STRUCTURE
ASSIGN A PRINT NAME TO (0)

OUTPUT ROUTINES

E50 PRINT STANDARD FORMAT (0)
ES1 SET UP FOR PRINTING
ES52 CLEAN UP PRINTING
ES3 LOCATE NEXT CELL IN FORMAT
ES4 ADVANCE COL NUMBER 1 SPACE
ES55 ADVANCE COL A/C DEPTH (0)
ES6 PRINT SUBFORMAT (0)
ES7 ENTER NAME (0)
ES58 ENTER SIMPLE LIST OF SYMBOLS (0)
£59 ENTER LINEAR LIST (0)
E60 CREATE LINEAR LIST FOR EX{O0)
E6l ENTER LIST OF NAMES (0)
€62 ENTER CIFFERENCE EXPRESSION
E63 ENTER LOCATION PROGRAM
E64 ENTER DIFFERENCE (0)
E68 PRINT EQUIVALENCE LIST {0)
E69 PRINT GOAL SELECTED
ET0 ENTER SIGNAL (0) IN PRINT LINE
E71 TEST IF X0 IN HO
E109 HIGHEST DEFINED REGIONAL

LOGIC TE

PROCESSES

F1 DIFFERENCE NET
F2 OPR APPL TEST, EX 1 MAIN, POSITIVE
F3 OPR APPL TEST, EX 1 MAIN
Fé4 ADD A DOUBLE NOT TO EX 1 {KNOWN +)
F5 ADD A DOUBLE NOT TO EX 2 (KNOWN +)
F6 REDUCE MULTIPLE NOTS ON EX 1
F7 RECUCE MULTIPLE NOTS ON EX 2
F8 OPERATOR FILTER
F9 STANARDIZE EX{0) (DOUBLE NOTS)
F10 CONVERT TEX (0) TO INTERNAL
F20 DIFFERENCE NET, LOCAL
F21 SIMILARITY TEST ON TEXS (0), (1)
F22 OPR FILTER, NBR 2
F23 SIMILARITY TEST FOR OPR SETS

F24

DIFF NET, TEST IF EX2 - TERM (D5)

F25
F26
F21
F28
F29
F30
F31
F32
F39

-112-

ADJUST EX 1y VAR 2 FOR SUBS

DIFF NET, TEST IF EX2 - TERM (D9)
ADJUST EX 24 VAR 1 FOR SUBS

ADD A DOUBLE NOT

ADD A DOuUBLE NOT

TEST IF CONNECTIVE OIFF (D5S)

TEST IF POSITION DIFF (D9)

TEST IF LOWER SIGN DIFFS EXIST (D8)
HIGHEST DEFINED REGIONAL

GOAL ATTRIBUTES

COMPONENTS
Gl TEX 1
G2 TEX 2
G3 LIST OF RESULTS
G4 DIFFERENCE
G5 OPERATOR

ADDITIONAL COMPONENT SPECS

Gl1 LOC PROGRAM FOR EX 1

Gl2 LOC PROGRAM FOR EX 2

G13 LIST OF LOC PROGRAMS FOR RESULTS

Gl5 LOC PROGRAM FOR OPERATOR
MISCELLANEQUS

G20 GOAL STATUS

G21 GOAL TYPE

G22 CURRENT VALUE

G23 SUPERGOAL

G24 LIST OF SUBGOALS

G625 LIST OF SUBGOAL TRIES

G26 HISTORY OF ATTEMPTS

G27 METHOD LIST

G28 METHOD USED TO GET THIS GOAL

G29 LOC OF SEG USED TO GET THIS GOAL

G30 LIST OF OPERATORS TRIED

G31 TE FOR THIS GOAL

G32 ACTION FOR SEGMENT

G33 GOAL NET (TOP GOAL ONLY)

G34 LIST OF VARIABLES USED

G35 ANTECEDENT GOAL

G36 RESULT STATUS

G37 LIST OF ATTEMPTS THE GOAL PART OF

G38 LIST OF EQUIVALENT GOALS

G39 LIST OF UNTRIED LOWER GOALS

-113-

MEASURES
G40 ABSOLUTE DEPTH
MISCELLANEQOUS
G50 Gl-EXPANDED GOAL
G51 PERMANENT LIST, S50-S51 SUBGOALS
G52 GOAL NBR AT LAST TRY {(FOR G50 GOAL)
G53 COMPOUND DIFFERENCE EXPRESSION
G54 MOST RECENT ATTEMPT STATUS
G109 HIGHEST DEFINED REGIONAL

ADDITIONAL SYSTEM ROUTINES
INTERPRETATION ROUTINES

Il INTERPRET SIGNAL IN Y1 (S9 IF NONE)

12 INTERPRET OIFFERENCE IN Y18

I3 INTERPRET GOAL TYPE IN Y3

14 INTERPRET CONTENT TYYPE IN Y85

18 LOAD SIGNAL FROM HO

I9 FIND SIGNAL LIST, PLUG Hl.

111 I1 WITHOUT MONITOR

I12 [2 WITHOUT MONITOR

I3 13 WITHOUT MONITOR

114 I4 WITHOUT MONITOR

I18 1292 118

119 FIND SIGNAL INTERPRETATION,
MISCELLANEOUS

120 SAVE FOR RESTART

121 SAVE ON SYSBRI1

129 HIGHEST DEFINED REGIONAL

MISSIONARIES AND CANNIBALS TE

PROGRAM

M20
M21
M22
M23
M24
M25
M26
M217
M28
M109

CONVERT TEX (0) TO INTERNAL

PRINT TEX (0)

GENERAL OPERATOR ROUTINE
DIFFERENCE NET

IDENTITY TEST (0), (1) (LOC MAIN)
FILTER OPR ON CONDITION

FILTER OPR ON CONDITION

TEST ADMISSIBILITY OF EX(0) (LOC)
COMMAND TEX 1Y80

HIGHEST DEFINED REGIONAL

-114-

P - ROUTINES

MISCELLANEOUS
P1 TALLY 1 AND RESTORE
P2 SET (0) TO O AND RESTORE
P3 SET EFFORT BASE INTO (0)
P5 SUBTRACT 1 FROM (0), RESTORE
P6 COMPARE (0) AND (1) {(NUMBERS)
P7 COMPARE (0) AND (1) ON ORDERING (2)
P8 LOCATE MAIN EX, LOCATE NEXT EX
P9 LOCATE FIRST SUBEXPRESSION

EXPRESSIONS (INPUTS ARE LOCS OF EX)

P10
P11
P12
P13
Pl4
P15
Pl6
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P21
P28
P29

LOC PROG FOR FIRST SUBEX (IN K98)
LOC PROG FOR SECOND SUBEX (IN K98)
EXECUTE EX(0). OUTPUT IS INPUT (0)
CoPY TEX {(0)

MAKE VARS OF (0) AND (1) DISJOINT
GENERATE LOC OF TERMS OF EX(1)
GENERATE LOC OF VARIABLES OF EX(1)
GENERATE LOC OF CONSTANTS OF EX(1)
GENERATE LOC OF SUBEX OF EX(1)
CREATE A NEW VARIABLE

COMPARE LIST STRUCTURES LOC (0),(1)
TEST IF {(0) IS A VARIABLE

TEST IF (0) IS A SET

TEST IF (0) IS TEX

TEST IF TERMS OF EX(1) ARE ON EX(0)
TEST IF ALL CONSTANT TERMS OF EX(1)
TEST IF EX{(0)y (1) HAVE SAME TERMS
TEST IF (0) FIRST LEVEL EX OR TERM
TEST EX{0) HAS MORE TERMS THAN EX 1
TEST IF EX{0), (1) HAVE COMMON TERM

OPERATOR ROUTINES

P30 PRODUCE REVERSED OPR

MISCELLANEQUS
P40 FIND LEVEL OF ABS LOC PROG (0)
P4l LOC 1ST ITEM LIST{2) THAT PASS COMP
P42 DELETE ITEMS LIST(2) THAT FAIL COMP
P43 IF OPR(0)=, MAKE OPERANDS INTO TEXS
P44 MARK COMMON TERMS OF LISTS (0),(1)
P45 DESCRIBE MARKED LISTS IN Y18
P46 COMPARE LEVEL OF LOC PROGS (0), (1)
P47 FIND LOCPRG OF JOIN LOCPRGS (0),(1)
P48 TEST IF (0) ON ORDERING (1)
P49 COMPARE VALUES (0), (1) (K101)
P50 ASSIGN NAME TO TEX (0)
P51 MAKE VARS OF (0) AND (1) DISJOINT
P52 CREATE VAR LIST FOR TEX (0) (Al3)
P53 COMPUTE COMPLEXITY OF TEX(0) (AlS)
P54 COMPUTE MAX DEPTH OF TEX (0) (Al6)

P55

COMPUTE MAX DEPTH OF EX(O0)

P56
P57
P58
P59

BASIC
P60
P61
P62
P63
P64
P66
P68
P69

-115-

GENERALIZED COMPARE (0), (1)
COMPARE VALUES (0), (1) (K102)
FIND(CREATE) EQUIV LIST FOR TEX (0)
COMPARE VALUES (0), {1) (K103)

HOUSEKEEPING

COPY AND MAKE LOCAL

DELETE ALL SYMBOLS

IF LOCAL COPY LOCALLY, IF NOT NO-OP
GENERATE LOCATION OF LIST (0)

GEN LOCATIONS OF LIST (1), (2)

MOVE ATR-VALUE {(0) FROM (1) TO (2)
POP HO TWICE

JO/0

LOCATION PROGRAMS (IN K97, K98)

P70 LOC 2ND SUBEX 1 LEVEL DOWN (K97)

P71 ABS LOC PROG. LEFT OF LEFT {K98)

P12 ABS LOC PROG. RIGHT OF LEFT (K98)

P73 RELATIVE NEXT

P74 RELATIVE FIRST SUBEX, 1 LEVEL DOWN
EXPRESSIONS

P80 LOC FIRST NON-UNARY EX IN EX(1)

P81 FIND MAIN EX OF {0)

P82 LOC MAIN GIVEN (0) = LOC OF TEX/EX
MISCELLANEOUS

P90 DESCRIBE MARKED LISTS, NBR 2

P91l FIND LEVEL OF REL LOC PROG (0)

P92 LIST HIGHEST VALUED DE-S IN DE(O)

P93 TEMP FOR K70 ON S4 C32

P109 HIGHEST DEFINED REGIONAL

Q - ROUTINES
EXECUTIVE SEGMENTS

Ql
Q2
Q3
Q4
CS
Q6
Q7
Q8
Q9

WHAT LIMIT IS EXCEEDED

LOCATE NEXT UNTRIED METHOD

LOC NEXT SEGMENT AND EXECUTE
EVALUATE GOAL

TEST IF AT TOP LEVEL

RECORD ATTEMPT (LEAVE SIGNAL)
REPEAT CURRENT METHOD IF REPEATABLE
SELECT BEST UNTRIED LOWER GOAL
RETRY ANTECDENT GOAL

-116-

MISCELLANEQUS

Qlo FIND NEW LOC PROG=(0) + Y19 RECORD
Qll1 COPY Y11-Y13-Y15-Y45 IF NEEDED

Q12 COPY Y12-Y1l4-Y16-Y46 IF NEEDED

Q13 ASSIGN (1) TO BE ATR (0) OF GOAL
Ql4 ASSIGN (1) TO BE ATR (0) OF GOAL
C15 ADD (1) TO ATR LIST (0) OF GOAL
Q16 COMMON FRONT PART OF GOAL CREATION
Q17 COMMON END PART OF GOAL CREATION
Q18 FIND REL LOC PROG FOR Y19 LIST

C19 ASSIGN LIST ATRS (0) FROM GOAL (1)

METHOD SEGMENTS AND SUBSEGMENTS

Q20
Q21
Q22
Q23
Q24
Q25
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
Q41
Q42
Q43
Q44
Q45
Q46
Q47
Q48
Q49

COMPARE NBR 1 AND NBR 2 A/C 1Y17
FIND FIRST PAIRy 1 LEVEL DOWN
FIND NEXT PAIR, THIS LEVEL
RETURN ONE LEVEL uP

CLEAN UP Y11-Y20

SET UP MATCH FOR Gl TO G2

FIND IMMEDIATE TE OPR

CREATE DIFFERENCE GOAL

CREATE MODIFIED TRANSFORM GOAL
USE RESULT OF SBGL AS RESLT OF GOAL
SET UP TO FIND RELEVANT OPERATOR
FIND NEXT UNTRIED OPERATOR
FILTER OPERATOR ON CONDITIONS
FILTER OPERATOR ON PRODUCT
CREATE APPLY OPERATOR GOUOAL

TEST OPR COND FOR APPLICABILITY
SET UP OPR FOR MATCH (Q39 DONE)
CREATE PRODUCT FROM FORM

CREATE MODIFIED APPLY GOAL

FIND OPERATOR TYPE AND SET UP
CREATE DIFF GOAL FOR DIRECT TEST
FIND OPR GIVEN BY EXP, SET UP
TRY DIRECT OPERATOR

TEST IF NEW TEX ON EQUIV LIST
SET VALUES ON Y3X LIMITS

CREATE EQUIVALENCE LISTS

TEST IF GOAL ALREADY EXISTS ON 1Y25
FIND GPS DIFFERENCES

RECORDS FOR NEW TEX

RECORDS FOR SELECTED TEX

~-117-

IMMEDIATE CPERATORS

Q50
Q51
Q52
Q53
Q54
Q56

METHOD
C70
Q71
Q72
Q73
Q74
Q75
Q76
Q77
Q78
Q79

COMMUTE SET EX 1

SUBS EX 1 FOR EX 2 (VAR) IN TEX 2
SUBS EX 2 FOR EX 1 (VAR) IN TEX 1
IMPOSSIBLE IF NOT PROVISIONAL
SELECT FROM Y11l SET

SELECT FROM Y12 SET

SEGMENTS AND SUBSEGMENTS
TRANSFER A RESULT FROM EQUIV GOALS
TEST IF GOALS EQUIV, AND SET UP
CREATE ATTEMPT RECORD
SELECT BEST SUBGOAL ON LIST (0)
EVALUATE GOAL (NBR 2)

OBJECT VARIATION METHOD FOR Kl
CREATE GOAL VALUE (K101)
CREATE GOAL VALUE (K102)
CREATE GOAL VALUE (K103)

SET NEW TE (0)

GOAL SETTING ROUTINES

Q80
Q81
Q82
Q83
Q84
a8s
Q86
Q87
Q89

MATCH
Q90
Q92

METHCO
C100
Q101
€102
Q103
Q104
Q105
Q106
Q107
Q108
Q109
Q110
Q111
Q112
Q113
Qll4
Q115

GOAL SET ROUTINE, (0) = GOAL

SET UP NEW SUBGOAL (IN Y87)

SET UP SUPER-GOAL FOR RETURN

SET UP GOAL FOR RETRY

SET UP PRIOR GOAL FOR RETURN

SET UP SUPERGOAL OF 1Y88 FOR RETRY
SET UP SUBGOAL FOR RETRY

SET UP SUPER-GOAL FOR RETRY

RESET MTH-SEG CONTEXT FROM GOAL (0)

ROUTINES

CREATE DIFF-EXP AND PUT ON 1Y84
COMBINE LIST Y84 OF DES (NBR 2)

SEGMENTS AND SUBSEGMENTS
RE-EXECUTE CURRENT SEGMENT

SET METHOD ACTION SIGNAL
PREPARE OUTPUT IF NOT DETERMINED
CREATE NEXT OPR GOAL FROM SET
GOAL REJECTED

SELECT BEST GOAL FROM LIST (0)
EVALUATE GOAL (NBR 3)

SET COMPLEXITY LIMITS

TRY GI-EXPANDED GOAL

SELECT BEST S50, S51 LOWER GOAL
SELECT NEXT DIFF FROM 1lY84

SET Y1X CONTEXT FOR DE (0)

TEST IF MATCH ALREADY DONE
RECORD STATUS OF DE

ERASE DE AND SETUP FOR REMATCH
RECORD METHOD ATTEMPT

<116
Qlls8
Ql19
Q209

-118-

SET OUTPUT FOR K40 METHOD
ADD P8 TO Y19

ADD P9 TO Y19

HIGHEST DEFINED REGIONAL

R - ROUTINES (NO PREFIXES, NO YS)
EXECUTIVES

R1
R2

KEEP WORKING FROM EXTERNAL
TOP EXECUTIVE FOR NEW PROBLEM

PROBLEM EXECUTIVES

R10
R11

MATCHES

R20
R21

PROBLEM SOLVING EXECUTIVE
EXECUTE METHOD UNTIL FAIL

MATCH DEPTH FIRST
MATCHy SINGLE PASS (Q90-Q92)

METHOD SEGMENTS

R30
R31
R32
R33
R109

MATCH G1 TO G2y CREATE SUBGOAL
TRY OPERATOR, CREATE SUBGOAL
FIND NEXT UNTRIED RELEVANT QOPR
SECOND STEP IN K41 METHOD
HIGHEST DEFINED REGIONAL

SIGNALS (SX = 10SX/18)

GENERAL
S1
S2
S3
S4
S5
Sé6
ST
S8
S9

YES, +, POSITIVE, OK, FIND, ACCEPT
NO, -+ NEGATIVE, NOT FIND, REJECT
MUCH WORSE

SOME WORSE, LESS

THE SAME

SOME BETTER, GREATER

MUCH BETTER

UNDEF INED

NO INTERPRETATION

DIFFERENCE RESULTS

sSl0
Sl
S12
S13
Sl4
S15
S1e6
S17
Sl8
S19

IDENTICAL

NO DIFF SO FAR, MAY BE DEEPER
DIFFERENCE FOUND

HOPELESS, TOO ODIFFERENT
OPERATORS DIFFER

OPERANDS DIFFER

PROVISIONAL OIFFERENCE
SOMETHING HAS CHANGED
CIFFERENCE EXPRESSION EXISTS
START OF DIFFERENCE

-119-

CORRESPONDENCE RESULTS
S20 BOTH 1Y11l AND 1Y12 FOUND
s21 1Yll FOUND, 1Y12 NOT, DEEPER
S22 1Yll NOT, 1Y1l2 FOUND, DEEPER
23 NEITHER 1Y1l1 NOR 1Yl2 FOUND, DEEPER
S24 1Yll FOUND, 1Y12 NOT, MORE OPERANDS
525 1Yl1l NOY, 1Y12 FOUND, MORE OPERANDS
$26 1Yll, 1Y12 HAVE SAME NBR OPERANDS

ATTEMPT STATUS
S30 SUCCESSy ONE RESULT
S$31 SUCCESSy SEVERAL RESULTS
$32 TRIED UNSUCCESSFULLY
S$33 UNTRIED
S$34 INCOMPLETE
S35 IMPOSSIBLE (METHOD EXHAUSTED)
S36 IDENTICAL RESULT
S$37 BORROWED, ONE RESULT
S38 BORROWED, SEVERAL RESULTS
S$39 BORROWED, UNSUCCESSFUL

SEGMENT RESULTS
S$40 SUCCEEDy NEW SUBGOAL GENERATED
S41 SUCCEED, MORE SEGMENTS
S42 SUBGOAL GENERATED (=ONE EXISTING)
S$43 SUBGOAL REJECTED
S44 FINAL PROBLEM SOLVED
$45 EXTERNAL PROGRESS MADE
S46 SUCCEED, REPEAT SEGMENT
Sa7 SUBGOAL FAILS
S48 SUBGOAL SUCCEEDS

METHOD STATUS AND GOAL STATUS
S50 UNTRIED
S$51 NOT THROUGH
$52 THROUGH
S$53 BLOCKED
S$54 DUPLICATION

COMPONENT TYPE
S60 OPERATOR WITH INITIAL CONDITIONS
Sé61 FORM OPERATOR
S62 EXPRESSION FOR OPERATOR
S63 DIRECT ACTION OPERATOR (KNOWS Y'S)
S69 GENERAL OPERATOR

-120-

LIMITS
S70 ABSOLUTE NUMBER OF GOALS
ST71 RELATIVE NUMBER OF GOALS
S72 ABSOLUTE EFFORT
$73 RELATIVE EFFORT
S74 ABSOLUTE DEPTH
S75 RELATIVE DEPTH
S76 ABSOLUTE NUMBER OF OBJECTS
ST7 RELATIVE NUMBER OF OBJECTS
S78 ABSOLUTE NUMBER OF METHOD TRIES
S79 RELATIVE NUMBER OF METHOD TRIES

METHOD AND GOAL TYPE PROPERTIES
S80 NOT REPEATABLE
ss8l REPEATABLE

GENERAL

$90 NONE

S91 1

$92 2

$93 3

S94 4

595 SOME

S96 TERM

S97 UNARY

598 FIRST LEVEL
S99 COMPLEX
S100 PERMANENT
S101 TEMPORARY

ATTEMPT STATUS
$130 SUCCESS, REJECT FOR COMPLEXITY
S131 SUCCESS, STILL INDETERMINENT
S132 SUCCESS, S131, IDENTICAL
S139 OUT OF SPACE
$209 HIGHEST DEFINED REGIONAL

-121-
Appendix C

GPS-2-2 VOCABULARY {DATA)

LOGIC TE OPERATORS AND OBJECTS
OPERATORS (OKMOORE)s RX ARE HIS NAMES

8l R1 AVB YIELDS BVA
B2 R1 A.B YIELDS B.A
83 R2 AIB YIELDS -BI-A
84 R3 AVA = A
BS R3 REVERSE B4y A = AVA
B6 R3 A.A = A
B7 R3 REVERSE B6y A = A.A
B8 R4 AV{BVC) = (AvVB)VC
89 R4 REVERSE B8, (AVB)VC = AV{BVC)
Bl0 R4 A.(B.C) = (A.B).C
811 R4 REVERSE B10, (A.B).C = A.(B.C)
Bl2 R5 AV8 = -(-A.-B)
813 R5 REVERSE 812, -(-A.-B) = AVB
Bl4 R6 AIB = ~AVSB
B1S R6 REVERSE Bl4, -AVB = AIB
Bl6 R7T A.(BVC) = (A.B)VIA.C)
817 R7 REVERSE B1l6, (A.BIV(A.C)=A.(BVC)
B18 RT AV(B.C) = (AVB).(AVC)
B19 R7 REVERSE B18, (AVB).{AVC)=AV(B.C)
820 R8 A.B YIELDS A MAIN, POUSITIVE
B21 R8 A.B YIELDS B MAIN, POSITIVE
B22 R9 A YIELDS AvB, MAIN
B23 R10 A,B8 YIELDS A.B
B24 R11 AIB,A YIELDS B
B25 R12 AIB, BIC YIELDS AIC

OBJECTS
B50 (-P.Q)VIP.-P) Al
851 Q Al
BS2 Pe(QeR),—{RIT)I-(P.Q) A2
B53 T.T A2
B54 PVIQVR) y-{QVR) .S52-P A3
BS5S -QI-S A3
856 PVQ,s=RI-QyS,4RI-S A4
B57 PVT A4
858 (P.~P){(RIT) Bl
859 Qvs Bl
B60 {PVQ)I-=-{-RVP) 4=-{-{S.Q)VR) B2
g6l -Q B2
B62 -PIQy-RIQ:-PV-R B3
B63 Qvs B3
B64 (PVP)I-QsQVR,RIS,P B4
B65 {S.R)VT B4
B66 {PVQ).{QIR) Cl

B67 PV(Q.R) Cl1

868
B69
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
880
881
B82
883
884
B85
886
887
B90
B9l
B92
B93
B94
B9S
B96
897
898
899
B109

-122-

(P.QIVIP.T),TI(P.R)
QVR
=SyRVS,H,{PIQ)I-R

-Q

-PV{(-T.R)
(RI-T).{-RIQ)
-{’QOP’

(PVQYIR,LRIS

-PVS
(PIQ)I-R,RVS,-S

-Q

(PVQ)I{RVS) Py=TI-(QVR),~T
S

R (=-PIQ)

(QVP).R

-Se. ‘SV"QO

-Q

(P.QIV(P.-P)

PIQ

PeQ

PyPIQ

PIC,QIR

AV{BVP) = (AVB)VP
-{(PYP)IR,-R

P

-PvQ

PIC

Q

P.Q

HIGHEST DEFINED REGIONAL

LOGIC TASK ENVIRONMENT
CONSTANTS, LISTS, PROBLEMS

Cl1
C2
c3
Cé
Cc5
cé
c7
cs8
c9
Cl1o0
Cll1
Ccl9

LIST OF OPERATORS
TABLE OF CONNECTIONS

c2
c2
c3
C3
Ca
Ca
D1
D1
D2
D2
C3
D3
D4

ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA

W W NN = e

(COPY B8)

LIST OF IMMEDIATE OPRS FOR DIFFS

LIST OF OBJECTS

LIST OF EQUIVALENCE LIST OF OBJECTS

LIST OF VARIJIABLES

LIST OF CONSTANT TERMS
LIST OF OPERATIONS
LIST OF DIFFERENCES

ORDERING ON RELEVANT DIFFERENCES
ORDERING ON REL DIFFS, S9 ON C36

FORMATS FOR DIFFERENCES

O.K. MOORE PROBLEMS

c20
cz21
c22
c23
C24

PROBLEM OKMOORE Al
PROBLEM OKMOORE A2
PROBLEM OKMOORE A3
PROBLEM OKMOORE A4
PROBLEM OKMOORE B1

-123-

C25 PROBLEM OKMOORE B2

C26 PROBLEM OKMOORE B3

ca27 PROBLEM OKMOORE B84

c28 PROBLEM OKMOORE C1

Cc29 PROBLEM OKMOORE C2

C30 PRUBLEM OKMOORE C3

C31 PROBLEM OKMOORE C4

c32 PROBLEM OKMOORE 01

C33 PROBLEM OKMOORE D2

C34 PRCBLEM OKMOORE D3

C35 PROBLEM OKMOORE D4

C36 PROBLEM OKMOORE ALPHA 1

c37 PROBLEM OKMOORE ALPHA 2

c38 PRCBLEM OKMOORE ALPHA 3

C39 APPLY B19 TO B74

c90 APPLY 823 TO B90

C9l APPLY 824 TO B91

€92 APPLY B25 TO B892

ca93 TRANSFORM B93 INTO B8

Cca7 TRANSFORM B94 INTO B9S

c9o8 TRANSFORM B97 INTO B96

c99 TRANSFORM B99 INTO B98

Cl109 HIGHEST DEFINED REGIONAL
DIFFERENCES

D1 ADD TERMS (EXTRA TERMS IN NBR 2)

D2 DELETE TERMS (EXTRA TERMS IN NBR 1)

03 INCREASE TERMS {MORE OFTEN IN NBR2)

D4 DECREASE TERMS (MORE OFTEN IN NBR1)

D5 CHANGE CONNECTIVES (NEITHER -)

D6 CHANGE SIGN (NBR 1 =y NBR 2 +)

D7 CHANGE SIGN (NBR 1 +, NBR 2 -)

D8 CHANGE LOWER SIGN

09 CHANGE POSITION

D10 CHANGE GROUPING A(BC) TO (AB)C

o1l CHANGE GROUPING (AB)IC TO A(BC)

12 NBR 1 HAS MULTIPLE NOTS

D13 NBR 2 HAS MULTIPLE NOTS

D14 VAR NBR 1 VS EXP NBR 2

D015 EXP NBR 1 VS VAR NBR 2

D16 CONSTANT NBR 1 VS EXP NBR 2

D17 EXP NBR 1 VS CONSTANT NBR 2

D18 CONSTANT VS CONSTANT

019 EXP NBR 1 HAS COMMA, EXP NBR 2 NOT

D20 EXP NBR 2 HAS COMMA, EXP NBR 1 NOT

D21 BOTH HAVE COMMA, EXP NBR1 MORE OPER

D22 BOTH HAVE COMMAA, EXP NBR2 MORE OPR

D23 BOTH HAVE COMMA, SAME NBR OPERANDS

D24 TEX NBR 1 VS. EX NBR 2

D25

EX NBR 1 VS TEX NBR 2

-124-

EX 1 VS. EX 2y UNMATCHED TERMS
£330 NONE,» NONE
31 NONE, SOME
D32 SOME, NONE
D33 SOME, SOME
034 ALL, ALL
D39 UNION OF INDEPENDENT SuB DIFFS
D69 HIGHEST DEFINED REGIONAL

CONSTANTS, GOAL TYPES, FORMS, ETC.
GOAL TYPES
K1l TRANSFORM OBJECTS GOAL TYPE
K2 APPLY OPERATOR GUAL TYPE
K3 REDUCE DIFFERENCE GOAL TYPE

GOAL FORMS
K1l TRANSFGRM GOAL FORM
K12 APPLY OPERATOR GOAL FORM
K13 REDUCE DIFFERENCE GOAL FORM

ATTRIBUTE TRANSFER LISTS
K20 TRANSFER LIST G21,y Gll, G2y Gl2
K21 TRANSFER LIST Gly G111, G2, G12
K22 TRANSFER LIST Gl1l, G2y G12
K23 TRANSFER LIST FOR ALL COMPONENTS
K29 TRANSFER LIST FOR COPYING TEX

CRITERIA FOR LIMITS
K30 CRITERIA FOR ABSOLUTE NBR OF GOALS
K31 CRITERIA FOR RELATIVE NBR OF GOALS
K32 CRITERIA FOR ABSOLUTE EFFORT
K33 CRITERIA FOR RELATIVE EFFORT
K34 CRITERIA FOR ABSOLUTE DEPTH
K35 CRITERIA FOR RELATIVE DEPTH
K36 CRITERIA FOR ABSOLUTE NBR OF OBJECT
K37 CRITERIA FOR RELATIVE NBR OF OBJECT
K38 CRITERIA FOR ABSOLUTE NBR MTH TRIES
K39 CRITERIA FOR RELATIVE NBR MTH TRIES

-125-

METHODS
K40 MATCH METHOD FOR TRANSFORM GOAL
Kal TRY OPR METHOD FUR APPLY OPR GOAL
K42 RELEVANT OPR METHOD FOR REDUCE GOAL
K43 TRANSFER RESULTS METHOD

MISCELLANEGUS
K50 BLANK LIST
K51 TEMPORARY STORAGE
K52 TEMPORARY STORAGE
K53 TEMPORARY STORAGE
K54 TEMPORARY STORAGE
K56 LIST OF GPS VAR
K59 GPS TABLE OF CONNECTIONS

OPERATOR EXPRESSION OPERATIONS
K60 REVERSE (CPR EXP OPERATION)

TASK ENVIRONMENTS
K70 TE FOR O.K. MOORE LOGIC

TE GENERAL REFERENCE
K80 REMOTE INFORMATION ABOUT TE
K81 CIFFERENCE ORDERING
K82 LIST OF VARIABLES
K83 GOAL VALUE TYPE
K84 DSC LIST OF DIFFERENCE FORMATS

MISCELLANEGUS
K90 NONEXISTANT GOAL SYMBOL
K91 NONEXISTANT ATTEMPT RECGRD
K92 NONEXISTENT TE
K97 FORM FOR A70 LIST FOR BINARY 0OPR
K98 REFERENCE TREE FOR ABSOLUTE
K99 REFERENCE TREE FOR INCREMENTAL

VALUES
K101 GOAL VALUE, LEVEL, DIFF
K102 GOAL VALUE, MAX - LEVEL, DIFF
K103 GOAL VALUE, DIFF, LEVEL

-126-

IMMEDIATE OPERATORS
K110 GPS IMMEDIATE OPERATOR LISTS
K11l GPS IMMEDIATE OPRS FOR R31

CONTENT TYPES
K161 OBJECT TEX
K162 OPERATGR
K163 EQUIVALENCE LIST
K179 HIGHEST DEFINED REGIONAL

EXPERIMENTER LISTS
SET UP LISTS
L1 LIST OF IDENTIFICATIONS
L2 LIST FOR OFF TRACE
L3 TRACE LIST FOR Q=3

L4 TRACE LIST FOR G=¢4

LS LIST OF SIGNALS

L6 LIST OF ATTRIBUTES

L7 LIST OF ROUTINES FOR SIGNAL TRACE
L8 A2 MONITOR LIST

L9 H3 MONITOR LIST

L10 LIST OF GOALS FOR A PROBLEM

L11 LIST OF TEX*S FOR A PROBLEM

L12 LIST OF LISTS QF EQUIVALENT GODALS
L13 LIST OF EXTERNAL TEXS

L7 LIST FOR TE MODIFICATION

L18 LIST OF NAMES

L19 POPUP LIST OF OBJECT NAMES

L29 GOAL ATTRIBUTES TO KEEP IN CORE

PRINTING FORMATS
L30 FORMAT FOR PRINTING GOAL NAME
L31 FORMAT FOR TRANSFORM GOAL PRINT
L32 FORMAT FOR APPLY GOAL PRINT
L33 FORMAT FOR DIFFERENCE GOAL PRINT
L40 FORMAT FOR SELECTED TEX
L4l FORMAT FOR TEX
L42 FORMAT FOR PRINTING OPERATOR
L43 FORMAT FOR SAME OBJECT
L44 FORMAT FOR TOO COMPLEX
L&5S FORMAT FOR GOAL SOLVED
L46 FORMAT FOR GOAL FAILED
L&7 FORMAT FOR NG GOOD
L48 FORMAT FOR GUAL SELECTED
L49 PRINT DERIVATION LIST
L50 NBR 2 L30 ALTERNATIVE
L51 NBR 2 L31 ALTERNATIVE (K1)
L52 NBR 2 L32 ALTERNATIVE (K2)
L53 NBR 2 L33 ALTERNATIVE (K3)
L109 HIGHEST DEFINED REGIONAL

-127-

MISSIONARIES AND CANNIBLES TE

M1 LIST OF OPERATORS
M2 TABLE OF CONNECTIONS
M3 IMMEDIATE OPERATOR
M6 LIST OF VARIABLES
M7 LIST OF CONSTANTS
M9 LIST OF DIFFERENCES
M10 ORDERING OF DIFFERENCES
M1l LIST OF ADMISSIBILITY TESTS
M19 TE FOR MISSIONARIES AND CANNIBALS
OPERATORS
M30 LM
M31 LC
M32 LMC
M33 LMM
M34 LCcC
M35 RM
M36 RC
M37 RMC
M38 RMM
M39 RCC
DIFFERENCES
M40 -8B ON L
M4l -8B ON R
M4 2 -M ON L
M43 -M ON R
M44 -C ON L
M45 -C ON R
M46 -MC ON L
M47 -MC ON R
M48 -MM ON L
M49 -MM ON R
M50 -CC ON L
M51 -CC ON R
M52 3 MC ON R
M53 3M ON R
M54 3C ON R
M57 4 ON R
M58 5 ON R
M59 6 ON R-

INADMISSIBILITY SIGNALS

M60
M61
M62
M63

1 EXTRA C ON L
1 EXTRA C ON R
2 EXTRA C ON L
2 EXTRA C ON R

-128-

OBJECTS
M70 L = BMMMCCC,y R = =
M71 L = -y R = BMMMCCC
PROBLEM

M80 TRANSFORM M70 INTO M71
M109 HIGHEST DEFINED REGIONAL

INTEGERS O THRU 99
NO
N1
N2
N3
N4
N5
N6
NT
N8
N9
N1O
N1l
N12
N13
N1l4
N15
N1l6
N17
N18
N19
N20
N21
N22
N23
N24
N25
N26
N27
N28
N29
N30
N31
N32
N33
N34
N35
N36
N37

N38
N39
N4C

N4l
N&42
N&43
Na4
N45
N46
N&7
N&8
N49
N50
N51
N52
NS53
N54
NSS
N56
NS7
NS58
N59
N60
N61
N62
N63
N64
N65S
N66
N67
N68
N69
N70
NT1
NT2
N73
N74
NT75
NT76
NT7
N78
NT9
N8O
N8l
N82
N83
N84
N85
N86
N87
N88
N89
N90
N9l
N92
N93

-129-~

N94
N95
N9é6
N97
N98
N99

N209

-130-

HIGHEST DEFINED REGIONAL

LOCAL CONTEXT CELLS

Y1l

Y2

Y3

Y4

Y5

Y6

Y?

Y9

Y10
Ylli
Ylz2
Yl3
Y14
Y15
Ylé6
Yi?
Y18
Y19
Y20
Y21
Y22
Y23
Y24
Y25
Y26
Y27
Y28
Y29

LIMITS
Y30
Y31
Y32
Y33
Y34
Y35
Y36
Y37
Y38
Y39

SIGNAL

CURRENT GOAL

GOAL TYPE

TASK ENVIRONMENT

CURRENT METHOD

LOCATION OF CURRENT SEGMENT
SUPER GOAL

MOST RECENT SUBGOAL

EQUAL GOAL, IF EXISTS

EX 1 (LOC)

EX 2 (LOC)

TEX 1

TEX 2

LOC PROGRAM FOR EX 1

LOC PROGRAM FOR EX 2

DIFFERENCE NET

DIFFERENCE TYPE

ADDITIONAL LOC PROGRAM (INVERTED)
OPERATOR

LOC IN LIST OF RELEVANT OPERATOR
LIST OF OPERATORS TRIED

TEST FOR OPERATOR CONDITION

TEST FCR OPERATOR PRODUCT

NET OF GOALS

FINAL TEX ’

LOC PROGRAM OF FINAL TEX

PRIOR SIGNAL IN Y1

LIST OF LIMIT CRITERIA TO BE USED

ABSOLUTE NUMBER OF GOALS
RELATIVE NUMBER OF GOALS
ABSOLUTE EFFORT (BASE)

RELATIVE EFFORT (BASE)

ABSOLUTE DEPTH

RELATIVE DEPTH

ABSOLUTE NUMBER OF OBJECTS
RELATIVE NUMBER OF OBJECTS
ABSOLUTE NUMBER OF METHOD TRIES
RELATIVE NUMBER OF METHOD TRIES

Y40
Y4l
Y42
Y43
Y44
Y45
Y46
Y&7?
Y48

-131-

TEMPORARY WURKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
SIGNAL FOR Y11l COPIED
SIGNAL FOR Y12 COPIED
SIGNAL FOR Y20 COPIED
SIGNAL FOR YB4

TASK ENVIRONMENT CELLS

Y51
Y52
Y53
Y54
Y55
Y60
Y6l
Y62
Y63
Y64
Y65
Y66
Y617
Y68
Y69
Y70
Y72
Y73

Y80
Y8l
Y82
Y84
Y85
Y86
Y8t
Y88
Y89

LIST OF OPERATORS

TABLE OF CONNECTIONS

LIST OF IMMEDIATE GPERATORS
LIST OF OBJECTS

LIST OF EQUIVALENCE LISTS
IDENTITY COMPARISON

COMMAND

SIMILARITY TEST, OBJECT SETS
COMPARE OBJECTS

COMPARE OPERATORS

SEARCH FILTER ON OPR CONDITIONS
SEARCH FILTER ON OPR PRODUCT
TEX ADMISSIBILITY TEST
ADMISSIBILITY TESTS TO BE DONE
STANDARDIZATION

SIMILARITY TEST, OPERATORS SET
ADJUSTMENT FOR EX1 (QS51)
ADJUSTMENT FOR EX2 (Q52)

NEW TEX

LOC PROGRAM OF NEW TEX
IDENTICAL TEX

LIST OF DIFFERENCE EXPRESSIONS
CONTENT TYPE OF NEW OBJECT
METHOD LISY

PROPOSED GOAL

TEMPORARY FOR PRIOR GOAL
ATTEMPT RECORD

INCIRECT ROUTINES

Y90
Y9t
Y92
Y93
Y94
Y95
Y96
Y97
Y98
Y99
Y100
Y110
Ylll1
Y130
Y209

EXECUTIVE

MATCH

EVALUATE NEW SUBGOAL

MAKE VARIABLES DISJOUINT

TOP EXECUTIVE

CONSTRUCT GOAL VALUE
SELECTION OF NEW GOAL IN R1O0
SELECTION OF SUBGOAL
DESCRIBE MARKED LIST

SELECT NEXT DIFFERENCE
EVALUATE EQUIVALENT SUBGOAL
CURRENT DIFFERENCE EXPRESSION
TOP GOAL

COMPLEXITY LIMIT

HIGHEST DEFINED REGIONAL

EXPERIMENTER CELLS

7

9

120
221
122
223
124
129
130

WORKING
240
141
142
143
244
145
146
147

WORKING
150
51
152

AVAILABLE SPACE LIMIT
ALPHABETIC BLANK

BLANK CELL

TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL

CELL FOR SIGNAL INTERPRETER
CRITERION FOR SPACE LEFT

CELLS FOR CONVERSION
HOLDS INTERPRETATION LIST

HOLDS ORIGINAL HEAD

HOLDS HEAD OF CURRENT SUBLIST

LAST LIST CELL OF CURRENT SUBLIST
HOLDS CURRENT CELL OF INPUT LIST
HOLDS INPUT WORKING LIST

PUSHDOWN LIST OF LOC PROGRAM OF 243
HOLDS LOC PROGRAM

CELLS FOR PRINT

HOLDS REFERENCE COL NBR
HOLDS LOC IN FORMAT LIST
HOLDS SIGNAL IF ANY SIGNALS

-133-

COMMON WORDS

160
61
162
163
164
165
266
261

GOAL

0 (SUBG
oaL O

F

)

{

REJEC
TED

EXPERIMENTER TE CELLS

280
181

CONVERT TEX
PRINT TEX

INITIAL SET UP AND MONITORING

290
291
292
194
195
196
197
298
799
2129

PROGRAM FOR THIS RUN

TASK FOR THIS RUN

MONITOR SIGNAL

MONITOR GOAL EXP PRINT (E24)
MONITOR GOAL NAME PRINT (EZ25)
MONITOR IN E2 PRIOR TO R2
MONITOR NEW TEX (Q48)

MONITOR RECORD ATTEMPT {Q6)
MONITOR LIMITS (Q1)

HIGHEST DEFINED REGIONAL

CHARACTER SYMBOLS

N XCC=-1UNIODVErFXmOMTMTMOO®>

-134-~

a4+

0 = o

Aypendix D

135

FIGURES
Transform A into B
Method K40
R30
R20
ldentical . Goal solved
Match A to B 10 > S30
work S12 difference D found
S10
S11
Try immediate
operators
S12
Q2T
Create goal:
Reduce D between
A and B
S40 new subgoal
Attempt Vsubgoal Done by R1ll
(not part of method)
S30 modified object A' produced
v
Q28
Create subgoal:
Transform A' into B
lsuo new subgoal
Attempt subgoal Done by R1l1l
(not part of method)
S30 success
Q116

Set output for KU4O method.

Fig. 1 Rough Flow Diagram for K4O Method.

Reduce D from A to B

Method K42
R32
» Select the next relevant operator
reject if used before
reject if fall preliminary feasiblllty test
reject if fail preliminary desirability test
S35 5
No more”
operators
Q34
Create operator subgoal
S40 new subgoal
v
Attempt subgoal Done by R11l
(not part of method)
S30 modified object A' produced
v
Q29
Make A' the result of goal

Flg. 2 Rough Flow Diagram for K42 Method.

137

Apply R to A
Method K41

R31
Discriminate type
of operator

S61 form operator

R20

Match A to ldentica
condition form of R.

Q102,Q37
Prepare
new object]

S30 Produce object A'!

S131 Produce operator R'

work S12 found difference D
S10
S11

ry lmmediate operators

lSI2 not work

Q27

Create goal:
Reduce D between
A and C (R)

S40 new subgoal

v
Attempt subgoal Done by R1l1
(not part of method)
S30 modified object A" produced
or modified operator R"

Q38

Create subgoal:
Apply R to A"
or Apply R" to A

S40 new subgoal
Attempt subgoal Done by R1l1l

S30 modified object A" produced (not part of method)
or modified operator R"" produced

R33

If A'", make 1t the result of goal.
If R'", create subgoal:
Apply R'" to derivation list of |A
Set to repeat R33

Fig. 3 Rough Flow Diagram for K41 Method.

532,533,534,539,543,S47,5130

-138-

S

Q{———>9-10 > Q6
(9-10)
S32 S43
332 sh7
s3
s39 | a7 581
S50
S51 l
S130
Q2 S50 S51
9
A 4
Q9 S50 S51

Y
S52&2 @5

S9 ‘\}'

J

s1
v
Q108 S50 851 S4o su2
S9 ‘*
S v
S52&2 1¥96 S1
Q83 Q86
1Y90 1Y90
Q84 Q87
_-1330 1330
s9” |s31 s9ls31
SUT g%? syt ggg
sS38 S37
S131 $38
1302 s131
s
R*? R11
Q6
Q84

Fig. 4 R10:

4\}

Test for limits,
record attempt

Repeat method

Find next method

Try antecedent goal

Test 1if goal 1s at top

Try Gl-expanded goal

Select subgoal for re-
try

Try subgoal

Try method

Problem-Solving Executive.

‘
i)
_S41 S50 S51 581 _ (4 D
_Si6 Q100
S48 -3101 —
_S40__3ygo 56 S7 S8
5
Qlokh
{59
542 1y100— 368
Q81
S34__ _su7 13‘(90
Q82
Sh7<S9 832 S34 S130 J
$30
S31
S33
336
S37
538
S131
5132
S48

Fig. 5 R1l:

139

Obtain next method-segment
(includes first)

Repeat current method-seg-
ment

Find segment to take next
(S41 or S46)

Evaluate new subgoal

Subgoal rejected (exits S43)
Evaluate equivalent subgoal

Attempt subgoal

Executive Method until Fall.

-140-

Qll2 Test if DE already exists
520 -Q20 - Compare
519 _quy 520 GPS Compare for top level
N\ S11 -Q21 S20 Go down one level
S23
\- S10 - Q22 520 Advance down 1list
S23 S20
Q23 Return one level
S23
S10 Identical

Fig. 6 R20: Match Element by Element, Depth First.

-141-~

=names L. S10

l=term
_ +
+ +
D12 etememe] = l=var ——e D14
2=term 2=term
D15 w—t— 2=var 'l/=TEX\ 2-f 213 oivar — = D15
- + — - -
D6 a—t—1=-var S11 2=TEX 2=TEX D25 2=-varX D7 D18
D17 D25 - D16
2=—= D13

All 1 terms in 2 ——=D1
‘+

All 2 terms in 1 ——& D2
&+

All 2 terms occur at

least as often in 1 —e=D3

All 1 terms occur at
least as often in 2 -—e=D}

1=-
/ \
D7t 2" oe. Y S11
D5 @w——— =connectives D6
I
L1~R2, Rl~ L2
- +
D10 @—t—IR1~ RL2 Ll *’vLE‘ ——D9
- +
D11l =—+—R11~ RL2 si1 Legend
1 EX1
511 > EXe
- negative

- double negative
var variable

-var negative variable
L left subEX

R right subEX

~ similar

Fig. 7 Fl: Compare EX1 and EX2.

-142~

Qll2 Test if DE already exists
N 820 - Q20] Compare
S20
o S19 -
Q4T If beginning, do GPS match
A S16 - Q90 J Construct difference ex-
pression
—S12 316 If difference, set to be
provisional
N S1l -
--Q21 Go down one 1level
S23
510 _o%) Advance down 1ist
S23 S20
Q23 Ascend one level
S23
Q92 Combine list of difference
expressions

Fig. 8 R21: Match with Single Pass
Getting List of Difference Expressions.

-143-

EX1 EX2
[RI(T.R)].Q (TVR).R

N 7N\
2 I\

VAN
T R
Y84/ 3725. Cell holding 1list
3725/ O List of difference expressions
-1 (DE's)
9-2
9-1/ 9-10. DE for lefthand side
9-10/ 0
A89
DgQ D32 = delete from EX1
A88
P%O P10 = location program "left"
A8T7
9-11 9-11/0 9-12/0 Lists of terms
A86 R T
9-12. S1 S1
T R
S1 S1.
R.
9-2/ 9-20 DE for righthand side
9-20/ 0
A89
Dgh D34 = disjoint terms
A88
Pél P11l = location program "right"
AB7
9-21 9-21/0. 9/22/0 Lists of terms
A86 Q. R.

Fig. 9 Two Matched Expresslons.

-144-

Q25 O-l=p Q24 Set up and clean up
1
(9-1)
~\
- S9 - 532 In all other cases method
fails
\ S10___ 530 If identical, method suc-
ceeds
- S17 aqill 1 If something has changed,
rematch
. 518 J‘
=1Y9Q If have DE's, select one
_ S12
— K110 If difference, try GPS
immediate operator
S12
1Y53 If difference, try TE immedi-
ate operator
)
Q113)
g
N = Q27 If difference, set up subgoal
S10
S11
S16
S20

\
S16 819 -1Y91—J Match

Fig. 10 R30: Match Gl to G2,
If Not Match Produce K3 (Reduce) Subgoal.

Q39 =t 9-1 =g Q24

(9-1)
52 - S32
362 - Q41
560 - 035
s12
516
510 S11
536 520 Yoo
§s512
Q40
Q42
s12
S16
S10 S11
836 520 _ o¥550
#s12
Q4o
e S0 532
510 -Qlo2
¥s10
QW7
@ 3S18 = 1799 J
S0
S10
S11
s16
S20 AJ

_ S16 819_,1Y9l

9-900 K111
Sg /§s12
1Y53

i
Q113

=145~

In all other cases method falls

Find operator glven by expression

Test for operator applicability

Try immediate operators

If still difference, set up subgoal

Try direct operator

Try immediate operators

If still difference, set up subgoal

If a form operator, set up for match

In all other cases method falls

If match, prepare output if product undetermined

Produce product
If something has changed, rematch
If have DE's, select one

If difference, try immediate operators

If still difference, set up subgoal

Match

Try GPS immediate operators
If difference, try TE immediate Operators

Record result

Fig. 11 R31l: Try Operator, If Not Work Produce X3 (Reduce) Subgoal.

-146-

Q30=> 9~100=—p Q24 Set up and clean up
(9-100)
p
L—§L—--S35 In all other cases impossible
S0 __Q3l —e= 335 Find next untried operator
i: (direct)
1Y20 Execute direct operator
- S6 e Q31 e 3535 Find next untried operator
131
S2
Q32 Filter on condition
131
S2
Q33 Filter on product
#s1
Q34 Create operator goal

Fig. 12 R32: Find Next Untried Relevant Operator
and Produce K2 Goal.

10.

147~

REFERENCES

Newell, Allen, and H. A. Simon, The Logic Theory Machine:
A Complex Information Processing System, The RAND
Corporation, P-068, published also in IRE Transaction
on Information Theory, Vol. IT-2, No. 3, September 1956,

pp. 61-79.

Newell, Allen, H. A. Simon, and J. C. Shaw, Empirical
Explorations of the Logic Theory Machine: K Case Study
in Heuristics, The RAND Corporation, P-951, published
also in Proceedings of the 1957 Western Joint Computer
Conference, February 1957, pp. 2106-230.

Newell, Allen, and J. C. Shaw, Programming the Logic
Theory Machine, The RAND Corporation, P-954, published
also in Proceedings of the 1957 Western Joint Compufer
Conference, February 1957, pp. 230-240.

Newell, Allen, J. C. Shaw, and H. A. Simon, "Preliminary
Description of General Problem-Solving Program--I1
(GPS-1 ,"" CIP Working Paper No. 7, December 1957.

Newell, Allen, J. C. Shaw, and H. A. Simon, Report on a
General Problem-Solving Program for a Computer, The RAND
Corporation, P-1584, also published in Information
Processing: Proceedings of the International Conference

on Information Processing, UNESCO, June 1959, Paris,
1960, pp. 256-264, and in Computers and Automation, July

1959.

Newell, Allen, Some Problems of Basic Organization in
Problem-Solving Programs, The RAND Corporation, RM-3283,

December 19602.

Newell, Allen, J. C. Shaw, and H. A. Simon, The Process
of Creative Thinking, The RAND Corporation, P-1320,
September 1950.

Newell, Allen, and H. A. Simon, The Simulation of Human
Thought , The RAND Corporation, P-1734 and RM-2500, also
published in Current Trends in Psychological Theory,
University of Pittsburgh, 1961, pp. 152-179.

Newell, Allen, and H. A. Simon, GPS, A Program that
Simulates Human Thought, The RAND Corporation, P-2257,
also published in Lernende Automaten, H. Billings (ed.),
(Proceedings of a Conference at Karlsruhe, Germany,
April 1961), Oldenbourg, Munich, 1961, pp. 109-124.

Newell, Allen, and H. A. Simon, Computer Simulation of
Human Thought, The RAND Corporation, P-2276, also pub-
Tished in Science, Vol. 134, No. 3495, December 1961,
pp. 2011-2017. '

11.

12.

13.
14.

15.

-148-

Newell, Allen, and H. A. Simon, Computer Simulation and
Human Thinking and Problem-Solving, The RAND Corporation,
P-2312, also published in Management and the Computer
Future, M. Greenburger (ed.), Wiley, 1962, pp. 95-131.

Newell, Allen, J. C. Shaw, and H. A. Simon, A Variety of
Intelligent Learning in a General Problem-Solver, The
RAND Corporation, P-1742, also published in Self-Organ-
izing Systems, M. C. Yovits, and S. Cameron (eds.),
Pergamon, 1960, pp. 153-189,

Simon, H. A., Experiment with the Heuristic Compiler, The
RAND Corporation, P-2349, June 1961.

Newell, Allen (ed.), Information Processing Language V
Manual, The RAND Corporation, P-1597 and P-19106, also
published by Prentice-Hall, 1961.

Moore, O. K., and S. B. Anderson, "Modern Logic and Tasks
for Experiments on Problem-Solving," Journal of
Psychology, Vol. 38, 1954, pp. 151-160.

	000
	00001
	00003
	00005
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148

