A VARIETY OF INTELLIGENT LEARNING IN A
GENERAL PROBLEM SOLVER

A. Newell
J. C. Shaw
H. A. Simon¥

Mathematics Division
The RAND Corporation

P-1742

July 6, 1959 J

-

Presented at the Interdisciplinary Conference
on Self-Organizing Systems, The Museum of
Science and Industry, Chicago, Illinois,

May 5,6, 1959.

*RAND Consultant with Carnegie Institute of
Technology

Reproduced by

The RAND Corporation ® Santa Monica e California

The views expressed in this paper are not necessarily those of the Corporation

THE RAND CORPORATION
Copyright © 1959



A VARIETY OF INTELLIGENT LEARNING IN A
GENERAL PROBLEM SOLVER

The analysis in this paper is part of an exploration
of the possibilities for learning and self-organization in a
computer program called the General Problem Solver I, or GPS.
GPS 1s a program that incorporates heuristic means for gsolving
a substantlal range of problems including, for example,
discovering proofs for theorems in logic, proving algebraic
and trigonometric identities, and performing formal integra-
tion and differentiation. The analysis derives from the
following heuristic: To study learning and self-organlzation,
take a program that accomplishes a significant task and
discover all the ways it can be improved and can improve
itself. Heurilstic programs are likely candidates for such an
investigation, since, by their very nature, they are open to
improvement almost everywhere. We might have chosen for
study our chess program or LT, our earlier program for proving
theorems 1in logic, but the'reason for preferring GPS will
become apparent lmmediately.

The basic learning situation is depicted in Figure 1.
The performance program at the bottom of the figure 1s GPS.
A learning situation requires another program, called the
learning program, that operates on the performance program as
its object to produce a new performance program better adapted
to its task. For GPS, the changes mﬁst make it a better

problem solver. We will not try to define in general the
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notion of adaptive change and its measurement. In each particu-
lar learning siltuation we must convince ourselves thatAthe
learning program is so structured that it will try to produce
better programs, although it may not always succeed, even in

the long run.

Basic Learning Situation

Set of Possible
A-Components

> Learning Program

®

Input — Performance Program ——» Output

J

Y

Figure 1

A performance program like GPS is large and complex,
and 1s organized from a set of components or aspects. There
will be many different learning opportunities corresponding
to the different aspects — it being our ultimate goal to dis-
cover each of these and determine 1ts nature. The learning
program for any particular aspect, A, must have access to a
set of possible components for the perfofmance program. The
set may be given simply by a list, or by the variation of

numerical parameters. If the aspect selected for learning is



a significant part of the performance system, then the space
of possible components will be'large and complex. It might
consist, for example, of all programs that can be built up
from a set of primitive processes. The learning program also
must have access to information about the performance program,
its inputs, and its outputs. What information 1s used will
vary, of course, but we shall assume that the learning program
has essentially complete information about the structure of
the performance program and its behavior for a sample of tasks.
The learning program may work iteratively over timé, selecting
candldate A-components, modifying the performance program
accordingly, watching the modified program operate, and then
repeating the cycle. It need not proceed in this way, however.
Although a learning program is constrained, by definition, to
produce new and hopefully better programs, it is not
constrained to do 1t in any particular way.

Our problem, then, 1s to construct a program, which we
call a learning program, that will make a good selection of an
element from the set of A's, so as to yield an effective per-
formance program — in the present instance, a program that
can solve problems. If the performance program handles a
significant task, if the A-component chosen 1s a significant
aspect of the performance program, and if the space of

A-components 1s sufficlently rich; construction of the learning



P-1T742
7-6-59

program will pose an interesting problem.¥*

In desligning learning programs we are using a particular
heuristic:

Generally: That significant learning
situations will require learning programs
that are heuristic problem-solving programs,
in the sense in which that word is currently
used in discussing chess and theorem-proving
programs . **

More specifically: That because GPS has
pretensions of solving a wide array of
problems, 1t may be possible to let GPS

be its own learning program, so that the
problem of selecting an A-component will

be a problem of the form GPS can work on.

The purpose of this paper is to follow this heuristic in
order to see where 1t leads. It will become apparent that our
analysis 1s still incomplete, although we have tried to be as
definite as we can. Perhaps, even so, we have traced enough
of the path so that the reader can evaluate the potentilalitles

and difficulties of this approach.

The General Problem Solver

GPS and its performance have been described in detail in

¥Thus the reason some early attempts, like Oettinger's
program for conditioned response (6|, have not led very far,
although they clearly are learnling programs, is that the space
of components 1s too simple and regular. Conversely, some of
the lnterest of Frledberg's learning program [2] stems from
the fact that the space of components for his program consists
of all possible programs — a very large and irregular space.

**Heuristlic programs are still best described by example.
See[3,5].



other publications [4,5]. We will include here only enough
description to make GPS comprehensible to readers who are not
already familiar with 1t.

GPS 1s a program for working on tasks in an environment
consisting of objects and operators. Symbolic loglc 1s one
particular task environment in which GPS can operate. Flgure
2 shows an example of a simple task in this environment. The
objects on the left-hand side of the figure are symbolic logilc
expressions, or propositions; the operators, on the right-hand
slde, are the rules that define the admissible transformations
of one expression into another. For example, the object, L1,
is transformed into the object, L2, by applying the operator,
Rl. This particular operator is applied by substituting S for
A and (~P »Q) for B in its "input" side, and extracting the
corresponding expression (L2) from its "output" side. GES
can solve problems like "Transform L1 into L4." Figure 2 shows

a solution for thls problem.

Symbolic Logic Problem

OBJECTS OPERATORS
Ll: S.(~P2Q)
12: (~P2Q).S Rl: A.B— B.A
L3: (PvQ).S

L4: (QvP).s

R6: ~A>B — AVB

Rl: AvB — BvA

Figure 2



The objects to which GPS 1s applied need not be logic
expressions, nor the operators rules of logic. Figure 3
deplcts schematically the general nature of the GPS task
environment. Here the objects are geometric shapes, and
the arrows show the possible transformations of one shape
into another by application of operators. In thils environ-
ment the problem might be posed of transforming the three
shapes on the left end of the figure into the shape at the
far right. GPS should be able to operate on any environment
where there are "things'" that can be transformed or combined
into other things by applying identifiliable operators or

rules, and where the things are describable — 1l.e., have

features. The significance of this last qualification will

become evident in a moment, as we explain how GPS operates.

The principal components of GPS are a set of goal types:

Goal types are used to state problems for GPS and are the
major units for organizing the problem-solving process. For
our present purposes we need to consider only three types of
goals: to transform one obJect, a, into another object, b;
to apply an operator, g, to an object, a; and to reduce a
difference, d, on an object, a. At the outset, GPS 1s given

a particular goal (e.g., the transform goal in Figure 2, of
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changing Ll into L4). It proceeds as follows (Figure 4): It
evaluates the goal to see whether it should be worked on; 1f
it accepts the goal, it selects a method assoclated with that
goal, and applies it; 1if the method fails, 1% evaluates
whether to continue attempting the goal. If so, 1t selects

another method, and so on.

GPS BASIC ORGANIZATION

EVALUATE reject
GOAL
accept
SELECT
METHOD
Method Method Method Method
#1 #e #3 #4
Figure 4

The main clues to the behavior of GPS lle in the methods
themselves. These glve GPS a basically recursive structure:
methods operate by establishing subgoals (belonging to one or
another of the three goal types) that are (hopefully) easier
than the original goal, until a stage is reached where a sub-
goal can actually be achileved. When this happens, it represents
a step of progress in the goal next above, which can then make

progress for the goal above it, and so on.



Figure 5 shows a basic system of methods for what we usually
call means-end analysls. It deplcts 6nly a core system of inter-
linking methods used in GPS. Other methods are known but will
not be discussed here. The method associated with a transform
goal (Type #1) consists in matching the two objects, a and b;
discovering a difference, d, between them (1f there 1s no
difference, the problem has been solved); establishing the
Type #3 goal of reducing d in a; if this 1s accomplished, pro-
ducing ¢ from a, establishing the new transform goal of
changing ¢ into b. If this last goal is achieved, the original
Type #1 goal is achieved.

The method associated with a reduce goal (Type #3) consists
in searching for an operator, g, that 1s relevant to the differ-
ence, d; if one 1s found, setting up the Type #2 goal of apply~-
ing the operator.

The method assoclated with an apply goal (Type #2) consists
in determining 1f the operator can be applied by setting up a
Type #1 goal for transforming a into an object, €(g), that
satisfies the conditlons for an Input to the operator g. (Generally,
an operator can be applled only to obJects having certain charac-
teristlics. For example, R2 in Figure 2, can be applied only to
a logilc expression that has a horseshoe (o) as its main con-
nector.) If this is successful, the operator g 1s applied to
¢(q), producing a new object, P(q).

The recursive structure of the program is apparent. Trans-

form goals generate Reduce goals and new Transform goals; Reduce



Goal type #1: Transform object g into object b

Methpd #1:

Match a to b

Difference d

Identical

Method
succeeds

~ Succeed
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Reduce d between

aand b

object,

Modified
<

Fail, try
new ob

Transform ¢ into b

Goal type #2: Apply operator q to object a

Method #2:

Tronsform a
into C(9)> the
input form of q

Succeeds

Fail

Method
fails

Produce the output
c from P(g)the [ a

output form of q

Goal type # 3: Reduce the difference, d, between object a ond object b

Method #3:

Search for operator, q,
relevant to reducing d

q
e

Fail

Method
fails

Apply g to a

Try for new
operator

Method

succeeds

Fail
oo

10

Method
fails

for
ject

Method
succeeds

Succeed, new
object, ¢

Fig. 5 — Methods for means—ends analysis
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goals generate Apply goals; Apply goals generate Transform
goals and Apply goals. The additional methods that are known
for GPS fall withlin thls same general structure.

We have not yet defined the differences that are part of

the definition of the Reduce goals, nor the notion of relevant
operators.l Specific differences and the tests that detect them
are not part of the GPS proper but are parts of each particular
task environment to whilch the program is applied. The stub of
the table in Figure 6 1s a list of differences that may be
detected among loglc expressilons; a different list might be
used for trigonometry, and so on. The columns in Figure 6
correspond to the operators, also specific to the task, in the
logic task environment. The x's in the columns indicate which
operators, or rules, are relevant to which differences. (How
these are determined will be explained later.)

For example, in Figure 2, the goal of transforming L1
into L4 may lead to detection of a difference in position
between the two expressions. The operator relevant to this
difference (Figure 6) 1s Rl. Thus, the goal of reducing this
difference will generate the goal of applying Rl to Ll. Since
Ll matches the input to Rl, the goal will be achieved, producing
L2 and generating the new goal of transforming L2 into L4%. Using
Figure 6 and Figufe 2, the reader can simulate GPS's program in
carrying through the rest of the solution of this particular
simple problem.

The methods just desdribed are ways of setting up subgoals. In
the evaluation part of each goal are tests that allow subgoals to be
reJected as unprofitable, or to be delayed until after more profit-

able goals are tried.



LOGIC TABLE OF CONNECTIONS

RL R2 R3 R¥ R5 R6 R7T R8 R9 R1O R1l1 RIl2

Add variables X X X
Delete variables X X X
Increase number X X X X X
Decrease number X | X X X
Change connective X X X
Change sign X X X
Change grouping X X
Change position X X
TP
Figure 6 gl
= 4

OO N



pP-1742
7-6-59
13
This is all we shall have to say about the performance
program itself. We refer the reader to the other publications
already cited, in which we show that GPS will, in fact, solve
problems in logic, trigonometry, and elementary algebra, and

that certain variants of GPS will simulate in considerable detail

the behavior of humans performing the same tasks.

The Learning Problem

When GPS 1s solving problems 1in a particular task environ-
ment, the performance program consists of two parts: (1) GPS
proper, the goal types and methods, which are completely inde-
pendent of subJect matter and are not modified in any way
when GPS 1s applied to a new task environment; and (2) the
specifications of the particular task environment: its objects,
its operators, and its differences. Within a specified environ-
ment, of course, there are many different problems — proving
all loglic theorems or all trigonometric identities, for
example.

Learning programs might be devised for either main part
of GPS. 1In the present paper we shall only consider programs
to enable GPS to improve its performance in a given task
environment — to learn heuristics appropriate to that environ-
ment. The learning programs themselves will be general —
they are programs for learning about any new environment to
which GPS might be applied; the content of what 18 learned,
however, will be specific to a particular task environment.

These learning programs do not change the core of GPS; instead,



they modify the specification of the environment, thus making
GPS more efficient in solving problems in that environment.

Learning to characterize in an effective way the task
environment is an important and prevalent kind of human learn-
ing. A problem solver who is experilenced in a particular
environment wlll notice features that will be unnoticed by
(or even invisible to) an inexperilenced person. The native
tracker in the forest is a classical example.

The differences listed in Figure 6 are features of the
loglic task environment that are effective for problem solving
in that environment. A problem solver who does not have avail-
able a good set of differences has little means for working
toward his goal except to try, at random or by rote, different
sequences of operators until he gets the answer. He cannot
even measure progress easily, for the most direct clue to
progress 1is the elimination of differences between the
terminal expression and the expressions he has obtained.

After the problem solver has learned to recognilze and
attend to a useful set of differences, other things remain to
be learned about the environment. If a particular difference
appears, what operator shall he apply to remove 1it? He might
search the list of operators, again randomly or systematically,
until he found one that affected the difference to which he
attended. A more efficilent procedure would be to build up,
once and for all, the table of connections deplcted in Figure 6,

which indicates which operators are relevant to the removal of



which differences. Equipped with this table, he could, when
faced with a difference, consider only those operators from
the entire list that are relevant to removing this difference.

It would be possible, in instructing a learner about a.
new subject, to teach him specifically what differences to
attend to and what operators are relevant to what differences:
to give him explicitly a list of differences and a table of
connections. In teaching humans we seldom do this. We charac-
terize the task environment by more or less adequate descrip-
tions of the objects ahd operators (the rules of the game),
and perhaps guide somewhat his experiences with the environment.
We usually leave 1t up to the learner to acquire the differences
and connections inductively. We assume that humans are equipped
with learning programs for improving thelr performance programs
in these two respects. The learner 1s supposed to be able,
himself, to develop a theory about the significant character-
isties and structure of the task environment, and to incorpor-
ate that theory in hils problem-solving program.

In the remainder of this paper we shall dilscuss in some
detall learning programs for the two aspects we have Jjust been
considering. The first learning problem we shall pose 1is:

Given the operators and the differences in a task environment,
to find a good table of connections associating relevant
operators with the several differences. The second problem we
shall pose is: Given the objects and operators in a task
environment, and a set of basic tests for discriminating

features of objects, to find a good set of differences for
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that environment. The answers to both questions will take the
form of proposed learning programs.
These two aspects hardly exhaust the possibilities for
GPS to learn about the particular task environment that con-
fronts it. For example, GPS might learn new operators other
than the set glven 1t initially. It might also learn special
methods that apply to subclasses of problems. Or it might
learn cheap tests to indicate when operators are feasible,

thus short-circuiting some of the elaborate general machinery.

Learning the Table of Connectlons

The learning program required to build a table of connec-
tions is quite simple. We describe 1t because it illustrates
a fundamental point about such programs. A simple bilt of
arithmetic performed on the matrix of Figure 6 shows that the
number of possible tables of connections is not small. There
are elght differences and twelve rules in the logilc environment,
and since each rule might be relevant to each difference, there
are 12x8=96 possible connections.

One might use a simple trlal-and-error learning scheme to
build up the table. By simple trial and error we mean a scheme
with the following general characteristics: (1) Begin with an
arbitrary table (perhaps the one that includes all connections).
(2) Keep statistics on how often each rule serves to reduce
each difference. (3) Try the several rules with frequencies
proportional to their relative successes. This procedure

incorporates the simplest kind of mechanism of natural selection,
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to use evolutionary language, or reinforcement of correct
responses, to use psychologlcal language.

Most learning programs that have been proposed for com-
puters have thils simple character. 1In some general sense,
such learning programs will presumably "work." What is not
clear 1s whether they will work within reasonable time limits
in environments of the slize and complexity of those we
encounter in problem solving.

Such a mechanism might work in the case before us, since
the set of possibilitiles seems fairly regular and small.
However, 1t 1s not evident that it would be effilcient. More
important, there is no reason why we should limit ourselves
to such mechanisms, which operate entirely inductively from
performance, when other Information is available. In this
case there 1s information about the structure of the operators
which can be used to construct the table of connections
directly, without a tedious inductive search.

In the lcgle environment, each operator is given as a
form. Rule 1, for example, will accept as input any expression
of the form (A.B) and produce as output an expression of
the form (B.A). Now by applying, in turn, the tests for each
of the differences to the pair of objects consisting of the
input and output form of the rule — that is, to (A.B) and
(B.A) — it will be apparent that the only difference between
output and input is in the position of the terms. It becomes

equally apparent that if Rule 1 operates on another expression,
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after the latter has been matched to the input form of the rule,
it will change only the position of terms in the expression.
Hence, the only difference to which Rule 1 is relevant is a
difference 1n position, and the only entry we make in the
first column of the table of connections is in the last row.

The remainder of the table can be constructed in the same
way. The learning program conslists simply in this: Consider
each operator in turn. Apply, successively, each test for a
dlfference to the operator. If the result of the test is
positive, record the operator in question on the list of oper-
ators relevant to the given difference. The 1list of such lists,
over the whole set of differences, 1s precisely the table of
connectlons.

Let us summarize the analysis briefly. The problem of
this particular learning program is to select an element from
a set (the set of all possible tables of connections) that
satisfies certaln conditions. How the learning program can
solve this problem depends on what information 1s available to
it. 1If the program can discover only how the performance
program behaves when a given element from the set is incorpor-
ated in it, then the learning brogram can do little more than
search blindly and select the elements that work well. If
other information 1s available, however, as in our example,
the learning program can incorporate other processes which may
be far more efficlent than simple trial and error mechanisms.

The 1mportant empirical question is this: When we consider the



P-1742
7-6-59
19
learning problems that arise naturally in complex intelligent
systems, what 1s the nature of the information that 1s avallable?
Is 1t so scanty as to restrict learning to simple natural
selection, or does 1t allow other,; more sophisticated schemes?

With thils basic question in mind, we can now examine the

second, more complex, learning situation.

Learning a Set of Differences

The second learning situation may be described thus:

Given the objects and operators in a task environment, and a
set of basic processes for detecting and discriminating
features of objects, to find a good set of differences between
palrs of objects for GPS in that environment.

When we try to define a set of possible differences we
discover why this learning task is both difficult and interest-
ing. By a "difference" between two objects we mean, of course,
some characteristic by which they can be distinguished. For
the performance program to make use of differences, these must
be incorporated in the program in the form of tests that make
the appropriate discriminations. For example, for the program
to detect that two logic expressions have different connectives,
there must be a test that compares the two connectives and
records them as ldentical or different. These tests are, of
course, subroutines in the performance program, and the learn-
ing program must be capable of constructing such subroutines -
of writing at least a specialized class of programs.

Unlike the earlier situation with the table of connections,
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we are here not given the set of possible aspects in any
natural way. Before we can discuss the learning program for
differences, we must define a programming language from which
difference programs can be generated. The programming lan-
guage must be rich enough to allow adequate learning potential-
1ties; yet simple enough so that the learning program can
construct viable routines. And 1t must not be simply a list
of differences already provided for the learner to try. We

turn now to the construction of such a programming language.

Programming Language for Differences. A program to test for a

difference must be bullt up out of some set of more elementary
processes that are assumed already avallable to the learning
program for assembly. Promilnent among these processes will be
a set of primitive discriminations. In some sense they must
be more elementary than the differences eventually needed, or
the susplicion will remain that the important learning occurred
in the selection of these primitive notions and not in the
assembly.of a program from them. Two devices are available to
avold circularity. We can use a very small set of primltive
notions; and we can insist that these same notions be applic-
able to more than a single task environment. For example, we
might start with a computer machine code, and require that all
differences be programmed in it for all environments.

We have tried to combine both of these criteria in a
Difference Program Language (DPL, for the purposes of this

paper). DPL has two parts: There is a general part that
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consists of a small number of processes for operating on sets
and lists. This part is to be used for all task environments,
and contains no information about the nature of particular task
environments. The second part consists of a list of'processes
particular to each task environment. These processes cohsti-
tute basic manipulations and perceptions about the obJects in
the task environment and form the totallty of information
about the environment. This list must be given de novo for
each environment, since we do ndt assume that there 1s a common
field (as, in perception, the visual field) in which all objects
from the several environments are presented. That is, we
proceed as i1f GPS had a different '"sense modality" for each
environment, and hence must abstract from this into represen-
tations of obJects belonging to the general part of DPL before
1t can describe these objects in terms of common properties or
conventions. |
Figure 7 gilves a list of processes for the environment of
symbolic loglic. The symbol, ¢3which represents the null set,
18 used to record that a test was negative or that a find
process had a null output. Note that none of the processes of
Figure 7 can be omitted (without some equivalent replacement)
1f the set 1s to be complete for logic expressions. If one
or more processes were deleted from the list, and the remain-
ing processes were our only source of information about
features of logic expressions, we could never become aware of

the missing elements. Each process accepts only certain types
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0w O N -

+

A (B,Cy..) Test if A (B,Cy..)
P (Q,Ryee) Test if P (Q,R,..)

Name

Find terms
Find left
Find right
Find connective
Find sign

Find variable

Test 1if constant

Test if free
variable

Test if =
Test if v
Test if ,
Test if +
Test if -

PROCESSES FOR SYMBOLIC LOGIC ENVIRONMENT

Input

object
object
object
object
object

object
anything

anything

connective
connective
connective
sign

sign
variable

variable

Qutput

set of all sub-objects

left hand sub-object (¢ if doesntt exist)
right hand sub-object (@ if doesn't exist)
main connective of object (4 if object is
main sign of object variable)
variable letter ( ¢ if a compound object)

input, if constant (g if it contains free
variables

input, if a free variable (g if not)

o if connective is = (¢ if not)
v if connective is v (§ if not)
. if connective is . (¢ if not)
+ if sign is + (g if not)

- if sign is - (g if not)

A if letter is A (F if not)

P if letter is P (¢ if not)

Figure 7

Examgle

t(Pw) = {PwQ,P,Q}
1(PWQ) = P, 1(Q) = ]
r(PvQ) = -Q

e( (BQ)VR) = v

(s(-(R.P) ) = -
-Ls(-RvP) = +

v(PQ) = 4, v(=Q) =Q
b(PvQ) = PvQ, b(a) = ¢

f(A) =4, £(P) = ¢

5(3) =2,=(.) = 4
v(v) =v, (=) =4
(o) =0 o(v) = #
+(+) =+, #(=) =4
~(=) ==, =(+) = §
A(a) A(P) = #
P(P) =P, P(Q) = #

L}
g
-

ce
65-9~L
[ATA



of inputs and produces specified types of outputs, as shown in
the figuré. Besldes the list of processes, a list of input and
output types 1s provided. Thus ¢, the process that finds
connectives, can be applied only to objects (logic expressions),
and produces a connective, which is a symbol of a different
type.* |

The general part of DPL consists 6f the seventeen processes
shown in Figure 8. The inputs and outputs of these processés
are lists and sets (unordered lists) of items. With two excep-
tions, the processes treat objects of the task environment as
unanalysable units. Thus, the general part of the language is
independent of information about particular task environments.
One of the exceptions is the process B[X], whose operand may be
an object, set of list. This process replaces each component
of a specified kind in the input by the null symbol, #. For
example B[c] replaces all connectives in an objJect by &, so
that the latter symbol now serves as a generalized abstract
connective. Thus B[X] must be able to "get at" all the sub-
objects of the object on which it operates.

The other process that requires information about the
structure of task environment objects is D, a process that
finds differences between pairs of objects. ‘Sincé this process
is of central importance, it deserves extended discussion. The

input to D 1s a pair — that 1is, a list of two items, say X and Y.

*This information is implicit in the operation of the pro-
cesses, and could be learned by GPS by a program not very
different from that for learning the table of connections.



Symbol  Name

ATX] Assign

K{X] Inverse assign
B(X]  Blank

c Find component
D Difference

E Expand

F Find first
G{X] Group

I Identity

K ﬁ{] Constant

L Find last

M Find prior

N Find next

P Intersection
R «:X] Select

representative

S'X]  select

U Set

Input
any object
any object
any object

set

any pair
of objects

set of sets

list
set

any object
any object
list

item

from list

item
from list

set of sets

set

set
list

GENERAL DPL PROCESSES

Qutput
X if input is not 4, ¢ if input is 4.
X if input is ¢, ¢ if input not 4.

Goes throubh all subparts of input: x
If X[x]not ¢, replace X[x]by # in input.

Takes any component for output.

Compares corresponding subparts of the two
inputs. If equal, replaces each by g.
Qutput is modified pair.

Qutput is set of all elements in the
subsets of input, with multiplicity.

First item on the list (£ if doesn't exist).

Qutput is a set of sets. Each subset
contains all the items of the input set
with the same value of X(x).

Input.
X, for any input.
Last item on the list.

Item preceding input item (g if doesnt't
exist).

Item following input item (4 if doesn't
exist).

Set of items common to all subsets of
input.

Set consisting of one representative element
of each value of X(x). Compare G(X].

Set of items of input set with X(x) not g.
Set of items on list

Figure 8

Exanples
A[+)(PQ) =+, A[¥])d = ¢
KE”](P:Q) = g, Al-_"‘]ﬁ‘ =+

B[c](P=(QvR) = PA(QFR)

C{}:, v, .:} =v

D((P,Q,R,),(Q,Q,R,P)) =

((P)ﬁ; ¢)’ (Q,¢ #’ )

EE{P,Q} {P,R” ={P,Q P,R}

F(P,Q R) =P
{P,P,Q,P,R,Q} =

{P P,F} {Q,Qf {R }

X =X

K[+]X = +

L(P,Q,R) = R
MP from (Q,R,P,S) =R

NP from (Q,R,P,S) =S
P’é’P,Q} ) (Q,R% {P,a,az

~

R(1] {P,P,Q, P,R,Q}

\,”Q;
rTeY)

-ZP,Q’R,
S(v] iP .Q, -R, R=P, R} ={’-R,R}
U (P,Q,R) = {P,Q,R;

1S
[ATA R

65-9-L



The members of the pair (X,Y) may be objects or they may
be sets, lists, or list structures. The output of D is also a
pair of items, say (X', Y'), obtained as follows:
(1) X and Y are put into correspondence according to
their structure. For example, i1f X and Y are logic expreséions,
they are lined up with thelr main expressions together, left-
hand subexpressions together, right-hand subexpressions
together, and so on.
(2) Any corresponding parts of X and Y, respectively,
that are identical are replaced, in both X and Y, by &. When
this process has been completed for all palrs of parts of X
and Y, a new palr of objects, (X',Y') will have been obtained
in place of (X,Y¥). The new pair, (X'Y") is the output of the
process D. In this new pair, X' consists of all parts of X
not belonging to ¥, and Y' of all parts of Y not belonging to X.
The processes are the elementary terms of DPL; we must
also provide ways for compounding programs of them. Speaking
roughly, DPL programs are sequences of DPL processes. Sequences
of processes, each term operating on the output of the preceding
ones, are written horizontally. The operation proceeds from
right’to left as in standard mathematical operator notation.
Apart from simple sequences, four other combining operations
are needed. These are indicated in Figure 9. For example, the
notation permits us to write down a set of processes as though
it were a simple process. The output of this set is the set

of outputs that would be produced by each of the component
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RULES OF COMBINATION

Iet P and Q be processes and X and Y be operands.

P.X or PX = apply P to X

pr X, 7] = {ex,pyf

P* (X,Y) = (PX, PY)

(P:Q):(X,'Y) = (PX;QY)

{r,g} x = {px, ax}

(pP,Q) X = (PX,QX)
Filgure 9

processes, operating independently on the input. These various
modes of combination of processes are.the functional equivalent,
in DPL, of such features normally found in programming lan-
guages, as l1lterations, conditional transfers, and working stor—‘
ages.

DPL consists, then, of a set of basic processes and some
ways of combining processes. It 1s not a complete programming
language; 1t omlts several important notions, such as ordering
relations and recursive definition, in the interest of simplic-
ity. However, DPL 1s adequate for constructing a rather large
set of differences, including those we have used in the per-
formance program of GPS for symbolilc logic.

Figure 10 shows, by a step-by-step analysis of an example,
how the DPL program will find the difference between the sets

of variables contained in two logic expressions. The input



DIFFERENCE IN SET OF VARIABLES

D(R[I]vt)* (X,Y)

Al
|
£ % {P, P.Q, Qr, {é, Q2Q,Q

R[I]* ’ {P,Q}, {Q

Figure 10

(X,Y), to the program is the pair of logic expressions,

(P.Q, Q>Q). The parenthesis followed by the asterisk (¥)
indicates that the whole sequence of operations, R[I]vt is to
be applied to each member of the palr, that 1s, to X and to Y
separately. Then, the differencling operation, D, is to be
applied to the resulting pair of outputs. First, application
of £ to each logic expression produces, for each, a set whose
elements are the subobJects included in the original expression
(including the expression itself). 1In ouf example, each

set produced by t contains three elements. Next, application

of v to each of these sets replaces each of 1ts elements that



is compound — that is not a variable — by &, and retains the
variables. Next, application of R[I] eliminates all multiple
occurrences of identical symbols — e.g., it reduces (Q,Q)

to (Q). Finaily, application of the difference, D, reduces
the left-hand set to P and the right-hand set to #. This
means, as it should, that the left expression in the original
pair contains the varliable P, which does not occur in the
right expression, but that all variables in the right
expression occur in the left.

The most striking characteristic of differences written
in DPL is that they are "abstractive." They start with com-
parisons of the full detail, and gradually remove distinctions
by successive application of DPL operations.* This 1s to be
contrasted with normal programming tests, which are
"discriminative," in that each elementary process only dis-
criminates a very minute part of the object, and more and
more information is built up about the objects by constructing

a tree of tests.

Learning Situation for Differences. Having described a rel-

atively rich programming language having a simple structure,
which expresses easlly some kinds of differences we know to
be useful, we can now return to the problem of how a set of

differences appropriate to a particular task environment

¥DPL is similar in this respect to the language construc-
ted by Selfridge and Dinneen [7,{] for a pattern recognition
program. Using the alternative dpproach Mr. Edward Feigenbaum
of Carnegie Institute of Technology, in a forthcoming report,
describes a system of discriminative tests that comprise part
of a program for simulating human rote learning.
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might be learned. The problem can be reformulated thus: Given
the objects, operators, and list of deSignations for a task
environment, to find a good set of differences; expressed in
DPL, to be Incorporated in GPS for effective problem solving
in that environment.

It would not be hard to design such a learning program
based on the simple trial-and-error prototype. The program
would generate sequences of processes in DPL, and test these
for their usefulness as differen@es. Because DPL has a simple
structure, most such sequences would be viable programs, and
perhaps a significant proportion of them might even be inter-
pretable, in some sense, as differences. The learning program
would 1ncorporate such sequences, tentétively, in the perform-
ance program and keep statistics on their application in
successful attempts on problems. If a difference were tried
and found wanting, the learning program would remove it to make
way for a new candidate. Gradually, in the fullness of time
and with a non-hostile task environment, the learning program
might evolve a satisfactory set of differences.

This much can be done, but we have no reason for a priori
confidence — or even hope — that the learning will be accomplished
within a reasonable time span. The space of possible differ-
ences 1s very large, and humans guide their trial-and-error
searches through it with a variety of heuristics. If the
learning program is to operate in real time, it must make use

of additional information in selecting and testing candidates
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for the set of differences. There is, iIn fact, a great deal
of information avallable in the task situation, if the learning
program can get access to it: information about the structure
of the operators; informatlion about the elementary processes
of DPL; information about criterlia for a good set of differ-
ences; information about the transformations that particular
operators produce on particular objJects in the task environment;
and so on. The learning program might even conduct investiga-
tlons to obtain additional information: for example, it might
explore the designation processes in the task environment to
discover their mutual relations.

If 1t 1s to use such information frultfully, the learning
program must be intelligent — 1t must be a problem solver. It
is doubtful that a simple process, like the one we used to
construct the table of connectlons, exists in this situation.

A learning program that resembled a chess-playing or theorem-
proving program would have a better chance of succeeding. At
any rate, this is our hunch: that an intelligent learning
program will differ from a problem solver, not in its structure,
but only in the content of its task.

Since GPS is a problem-solving program having pretensions
of generality, we can try to use GPS itself as the learning
program. If we can restate the learning problem as a problem
involving the application of operators to objects in order to
remove differences, then, upon presentation of a suitable goal,

GPS should be able to work on the new (learning) problem of
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creating good sets of differences for the original task environ-
ment, and should be able to bring to bear on this learning
problem its full repertoire of heuristics.

The idea of using a single "intelligent" program to boot-
strap 1tself appeals to deeply-rooted notions about the reflex-
iveness that 1s involved in self-organization. But the
strategy has other attractive features. First, 1t provides a
test of the power of GPS and a source of ldeas for expanding
its repertoire of goals and methods. Second, if the program
for learning on a'single aspect of performance is as large and
complex as the performance program itself, only by using the
same program in both roles can we hope to keep the size of the
total system within tolerable pounds. This argument becomes
even more compelling when we conslder the problems of learning
on all the other aspects of each performance program.

Our task, then, in the remainder of the paper is to
attempt to translate this learning situation into GPS terms,
and to evaluate the chances that GPS can handle the learning
problem successfully. We will proceed by setting up each of
several GPS task environments that seem to be required, and
defining the objects, operators, and differences in them. Our
own goal, in exploring this path, was to create enough mechan-
isms to allow us to hand simulate GPS in the process of learn-
ing differences. Thus we could provide some assurance that
all the essential parts had been identified. We achieved this,

but at the cost of a large amount of detail. In the pages that
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follow we will give just enough of this detall to convey the
general fbrm of the solution and to allow a meaningful sketch
of the hand simulation. Since this 1s not nearly enough infor-
mation to allow anyone else to verlify what we have done, we put

the scheme forward in a very tentatlive spirit.

Basic Task Environment for Learning

From now dn we will be applying GPS‘to several task
environments. Since all of them will be formally similar —
involving objects, differences, and operators — we need to
label them if we are to avold confusion. We will introduce two
of these, the A-environment and the B-environment, at the outset.

The A-environment. We shall call the original task environ-

ment (e.g., logic) the A-environment. The A-environment will

have A-objects (loglc expressions), A-operators (rules), and a
list of A-designations (e.g., the test for a connective). The
learning problem is to find a good set of A-differences (like
the set in the table of connections).

The B-environment. We shall call the environment of the

initial learning problem (to learn a good set of A-differences)

the B-environment. The B-environment will have B-objects (sets

of A-differences), and the learning problem is to find a

B-object that makes for good problem solving in the A-environment.
Our task is to create B-operators (operators for creating and
modifying sets of A-differences), and B-differences (tests for
comparing B-objects), and to discover how to state the learning

goai as a B-goal. The B-differences must be independent of the
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particular task envlironment, the A-environment, and must use
only information derivable from the 1list of A-designation
processes, A-operators, and samples of A-objects.

The B-Operétors work on sets of A-differences. They add
A-differences to a set, delete A-differences from a set, or
modify existing members of a set. Since what is available to
the learning program are éamples of A—dbjects and A-operators,
B-operators are needed that construct A-differences on the basis
of thelir behavior for given sampieS«— i.e., that produce
A-differences defined extensionally. Figure 11 gives five such
B-operators, enough for the purposes of this paper. Except for
Ql4, each seeks to obtain an A-difference that glves a specified
result, + or @, for a specified pair of objects. (The + is a
conventional symﬁol that means that the A-difference "holds" ‘
for the palr of A-objects — that is, gives some non-null output.)
These B-operators are applicable to any A-difference in the set,
Just as 1n logic or algebra, the commutative law may be applic-
able to several parts of an expression. The particular element
to which a B-operator is to be applied 1s determined by B-
differences, which we shall consider in a moment, or by addi- .
tional selective heuristics that we shall discuss in more detail
a little latér. Defining operators by giving the properties
of the things they produce does not guarantee that such oper-
ators exist, or that, if found, they will accomplish what is
wanted of them.

Before we consider the problem of constructing the
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THE B~ENVIRONMENT

B-Ogcratora

Ql Add an A-difference that gives + for pair X and ¢ for pair Y
(A pair may either be a pair of objects, or the condition and product

forms of an operator.)

Q2 Modify A-difference T to give + for pair X.

Q3 Modify A~difference T to give ¢ for pair X.

Q4 Delete A~-difference T from set S.

Q5 Add an A-difference that gives + for pair X.

B-Differences

D1 The set of A-differences not consistently defined for some pair of obJjects.

D2 The set of A-operators with no associated difference.

D3 The set of A-object pairs with no associated difference,

D4 The set of non-orthogonal situations (each situation consists of an A-object,
a list of A-operators, the product from applying the operators to the
given A-object, and the new differences between the input and output that
are not associated with any of the operators).

D5 The set of full A-differences (having all A-operators associated with them).

D6 The set of empty A-differences (having no A-operators associated with them).

D7 The set of A-differences with more than one associated A-operator.

D8 The set of A-operators with more than one associated A-difference.

D9 The total number of A-differences.,

Table of Connections for B-Operators and B-Differences

D1
D2
D3
D4
D5
Dé
D7
D8
D9

Q1 Q2 Q3 Q4 Q5

X X X
X X
X X
X X
X X
X X
X X
X X
X

Figure 11



B-operators, let us look at the B-goals and the B-differences.
The highest B-goal for the learhing process 1s a criterion for
a good set of A-differences. Ultimately, a good set of differ-
ences 1s one that is effective for problem solving in the A-
environment. But to permit intelligent learning, other ways
must be found to characterize good sets of differences, so that
GPS, 1n 1ts learning efforts, can evaluate the improvement it
is achleving.* We shall provide, in the B-environment, the
following criteria of a good set of differences:

1. Only one or a few A-operators should be
relevant to each A-difference in the set.

2. Only one or a few differences should be
assoclated with each operator.

3. Each operator should bevrelevant to at
least one difference.

4. Each pair of non-identical A-objects
should exhibit at least one A-difference
in the set.

5. The set of A-differences should be nearly
orthogonal — that is, if only difference
D 1s relevant to a particular operator,
then application of this operator to an
object should produce only difference D
between the input obJect and the output
object.

6. An A-difference should always give the same
result when applied to the same A-objects.

The rationale for these criteria is rather simple. The

*We wlll not consider whether GPS could itself construct
the intermediate criteria given only the ultimate performance
criteria and experience in several task environments.



P-1742
7-6-59

36
differences are the diagnostic tests that GPS uses to determlne
what operators it should apply in a given situation. The
diagnosis will be most efficient if each difference points to
the application of one and only one operator, 1f each operator
affects one and only one difference, if the effect of an oper-
ator 1s predicﬁable, and if a difference 1s always detectable
'between nonidentical objects. In the limiting case, with a
"perfect" set of differences, the performance program would
have the trivial task of finding the differences between a
given and a desired object, and applying, in sequence the
(unique) operators for removing the several differences. Of
course, in general, no such perfect set of differences exists
or can be found; the task of the learning program is to approx-
imate 1t as closely as possible. Moreover, there may be more
than one satisfactory set of differéhces. Any such set is a
theory of the important features of the task environment and
their interrelations.

B-differences, in the iight of this discussion of goals,
are simply features of sets of A-differences that describe in
what respect those sets meet or fail to meet the above criteria.
FPigure 11 states these differences in measurable form, and
gives the table of connections between the B-differences and
the B-Opefators. To weld all the separate "reduce difference"
goals in the B-environment into a single effective goal, we
establish a priority order of the differences, giving highest

priority to completeness properties. (They are so ordered in



Figure 11). GPS will be instructed to produce a set of A-
differences, attending first tb consistency and completeness
requirements. Once these are satisfied, GPS wlll attempt to
improve the set with respect to the lower-priority criteria,
always returning to the higher criteria if these are no longer
satisfied after the set has been modified.

Let ug summarize what we have sald up to this point about
the learning task. The task is defined in the B-environment,
which is an environment sultable for GPS. The B-obJjects are
sets of differences 1in the A-environment; the B-operators,
shown in Figure 11, permift manipulation of these sets; and the
B-differences, also shown in Figure 11, correspond to varlous
eriteria for "good" sets. The learner's goal is not to attain
a fixed, given, B-obJect, but to construct a serles of B-objJects
in an attempt to reduce the B-differences. We have left open
the problem of how the B-operators are to provide differences
satisfying the criterla specifled. The B-operators assume
there 1s some effective way of programming in DPL to provide

sultable A-differences. We now turn to this problem.

Task Environment for A-Differences

If GPS is to construct DPL programs for A-differences,
then programming in DPL must be described as a GPS-type task.
Again, we need an environment in which this task can be per-

formed.

The C-environment. The natural environment for the task

1s one where C-objects are DPL programs. Then the C-operators



are ways of putting programs together; the C-differences are
things that can be noticed about programs, such as whether one
contains a D (difference) or not, and the C-goals are set up
by the B-operators: to transform the baslc set of programs
(the given C-objects) into a program (a new C-object) with
certaln features.

However, a different environment may be considered. Pro-
grams consist of sequences of subprograms — ultimately of
sequences of the primitive DPL processes. A program takes an
input and transforms it step by step until it finally is made
into the output. Thils sequential character suggests an environ-
ment where the objects are the various inputs and outputs, and
the operators the elementary DPL processes. Then the final
desired program 1is the sequence that transforms an inltial
input to a final output.

The situation here is exactly analogous to that in theo-
rem-proving. In symbolic logic, for example, the problem 1is
stated: Prove theorem T, given axioms A, B, .... What is
wanted 1s a proof. But instead of working in the space of
proofs — that 1s, in an environment where proofs are objects —
one works in an environment where logic expressions are objects,
rules of inference are operators, and the desired proof is the
sequence of rules that 1s applied to get from the axioms (the

given objects) to the desired theorem (the final object).*

*Seen in this light, the original LT program [3] was itself
a program wrilter, which generated a program — the sequence of
methods leading to the proof — that would produce logic express-
ions from other loglc expressions. It was, of course, an unin-
teresting programmer, since the product has no particular use-
fulness as a program, but 1t provides a direct model for the
present self-programming scheme.
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We will work entirely in this latter environment, which
we willl call the D~environment; Our reason for mentioning the
C-environment is to explain the ways in which GPS must be
extended to work in this D-environment. Not all the relevant
information can be obtalned by examining the inputs and outputs
of programs. An important part of the problem-solving informa-
tion comes from the properties of programs, viewed as objects
(e.g., whether the program contains some task-environment processes
or only general processes). Thus GPS must consider not only
differences between inputs and outputs, but features of the
sequence 1t 1is building to bridge the gap — that is, differences
that properly belong to the C-environment. The sltuation is
again analogous to theorem-proving where one may impose such
constraints as finding the shortest proof, finding an elegant
proof, or finding a proof using a glven theorem.

The D-environment. Let us define the D-environment more

carefully. D-objects are the inputs and outputs of DPL pro-
grams. A-objects are inclﬁded, since these form the initial
inputs to the A-differences. All the intermediate products

are also included among the D-objects: A-objects with parts
replaced by #'s (from B[x]), sets and 1lists of D-objects, the
sumbols & and +, and so on. No circularity arises from
inclusion of the A-objects, since the only information avallable
in the D-environment about the A-objJects is that already avail-
able to GPS for learning: the list of environmental processes

with their input and output types as shown in Figure 7.
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By definition, the D-operators are DPL programs: they
transform D-objects into other D-objects. The set of D-operators
includes all of the DPL primitive processes, as given in Figures
7, 8, and 9 — some 42 operators in all. It will be noticed
that’a number of operators contain free variables, whose values
are other operators. This 1is true, for example, of the five
operators of Figure 9, which only specify ways of combinlng
other operators.

Beside the D-operators indicated above, we need operators
that allow other manipulations of DPL programs than merely
adding a new operator to the front end of a sequence of DPL
operators. These additional operators are C-operators, properly
speaking. However, for the simulation only two such operators
were required: one that deleted the last D-operator of a
sequence, thus going back "one step;" and one that deleted a
D-operator satisfying certain conditions from the middle of the
sequence . ¥*

The D-differences are based partly on features of D-obJects.
GPS can only detect features of D-objects within the limits of

the information available for learning. Considered as a D-

*Constructing programs by "working forward" in the D-
environment, adding one process at a time, 1s directly analogous
to the way by which the completed DPL program wlll carry out its
information processing. This "analoging" i1s a very common
human technique for programming. But this is not the only con-
slderation that goes into human programming, and we suspect
that for programming tasks more complicated than our elementary
example, other C-operators will be needed.



object, an A-object 1s an unanalysable unit, and the D-differences
must treat it as such. GPS is able, of course, to examine the
sets and 1lists of objects and parts of objects that are created

in the course of a DPL program. Nevertheless, the features of
D-objects it detects are rather general:

Type: GPS can tell whether it is working with
an object, a set of objects, a set of sets of
connectives, and so on. A glance at the D-
operators in Figures 7 and shows that D-
operators vary considerably as to the type of
D-object taken as input, and the type produced
as output.

Size: It is possible to count how big a D-
object is, taking as the unit the innermost
component. Thus GPS can assign size 3 to a
list of three objects, or size 21 to a set of
seven sets of three variables each, and so on.
It cannot assign a size measure to single
A-objects, of course, and must treat them all
as equlvalent.

Variety: It 1s also possible to measure the
variety of a D-object — to count how many
different things there are in the D-object.
This is possible because the process, D,
provides a test of identity. Varilety is a
useful notion because certain D-operators,
such as B|X|, decrease the variety without

- changing thé size of a D-object.

Sign: Finally, GPS can determine whether a

D-object is + or ¢g. (Formally this can be

done by applying the operator A[+]U to the

D-object. This produces the output + unless

the object is &, (d.£), ..., in which case

it produces ¢).

The D-differences are also based partly on features
of the DPL programs that produce a D-object. Again, these
features lead to C-differences, properly speaking. The features

we will need are the following:
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Set of environmental processes: GPS can note
which of the processes that occur in the DPL
program also occur on the list of environmental
processes glven GPS to characterize a particular
A-environment (Figure 7).

Set of general processes: GPS can note, similarly,
what general processes occur in a DPL program.

Set of special processes: GPS can tell 1f the
program contains some speclal process, like the
constant operator K[X] .

Contains a D: GPS can note whether the program
contains a D anywhere. This 1s a very important
feature, since this one operator takes a differ-
ence between two objects, and thus must be a
constituent of every A-difference.

Consistency: A number of DPL processes involve
selections from sets — e.g., C, which simply
selects a member of the set to which it is
applied. Which member 1s selected, within the
constraints laid down by the process, is a
matter of '"chance." It often happens that the
final output of a program is critically depen-
dent on such a chancy event. Thus an A-difference
may sometimes glve +, sometimes ¢ when applied to
the same pair of A-objects. We assume GPS can
detect such 1inconsistencies.

Given these features of D-obJjects and DPL programs, we
can construct D-differences, based on the ability of the var-
ious D-operators to change one feature into another. Instead
of laying out the table of D-differences, which is rather
large and complicated, we will content ourselves with indicating,
as we discuss the simulation, those D-differences that played
an important role.

It remains to describe the topmost D-goals, which are set
up by the B-operators. Consider the B-operator Q5: Add an
A-difference that gives + for the pair X. In the D-environment

this can be phrased as: Transform X into +. However, there
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are some important side conditlons. First the DPL program that
transforms X to + must be a difference. This can be expressed
by requiring the program to contain a D.¥* Second, the program
should not be trivial. After all, the constant function will
yield + if applied to an A-object. We can give a partial list
of excluded special programs. Taking'these points into account,
a more complete formulation of the D-goal corresponding to Q5
would be: Transform X into +, in such a way that the transform
is a difference and is not trivial. This goal implies a slight
generalization from the form of the transform goal gilven at the
beginning of the paper. There we said: Transform object A into
object B. Here we allow ourselves to require that additional
conditions be satisfied. There is no diffliculty in doing this,
'however, as long as GPS can recognlze the exlistence of unsat-
1sfied conditions and can set up differences and reduce goals
based on them.

A glance at the other B-operators shows that similar form-
ulations hold for each one, except Q4, which has no side con-
ditions. Ql requires a single transform that accomplishes two
transformations simultaneously. This 1s important, since Ql

is the B-operator that brings about a discrimination. Both Q2

%*An appropriate operational definition of "difference"
should also require that the two inputs to D be dependent on
the two input A-objects, and that the output of the program be
dependent on the output of D. Thils dependency can be measured
structurally by drawing the oriented graph corresponding to the
information flow through the program. Since these conditions
never affected the simulation, we indicate them only in
passing.
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and Q3 require that the transform goal start with a partially

completed sequence, although modifications are allowed in this
initial segment.

The D-environment 1s now complete. It differs sufficiently
from the initial environments of GPS to requlre some additional
heuristics. The need arises from the large number of D-
operators that satisfy various differences. This multiplicity
of operators makes further subselection both necessary and
profitable. The selection is accomplished in two ways:

1. In selecting an operator, GPS will also
consider feasibllity: that is, 1t willl

match the input type of the operator to
the type of the object.

This added test will reduce the attempts to fit infeasilble
operators. This 1s reasonable in a situation in which feasible
operators are always avallable.

2. If more than one operator is avallable after
selection by a serles of criteria, then the
original goal will be consulted and the next
most important difference will be generated
to provide an additional means of selection.

Thus at each search for a D-operator selection may take place
on a number of criteria. Given thils opportunity for multiple
selection, we can influence the construction of DPL programs
by adding further condltions to the goals set up by the B-
operators. Besldes requiring that the final program be an
A-difference, we can also require that 1t contain some task
environment processes, but that it have few of these in common

with the other difference programs already in the set. These

requirements are distinctly heuristic, for their aim 1s to
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bias the order in which programs are constructed. By glving
the heuristic conditions low priority we allew thelr use
occasionally as selective principles when there 1s lots of

choice available, but assure that they will not overrlide more

cruclal conditlons.

Simulation of Learning

We have now described the task environments that will let
GPS work on the problem of learning 1ts own sets of differences.
This has required a considerable amount of specification: a
new programming language, and three GPS environments. And,
although we have been fairly specific in describing the lan-
guage, operators and differences, a number of gaps stlill exist.
Hopefully, however, these are gaps of detail, all the essential
mechanisms have appeared.

To shed some light on the questlion of completeness —
which 1is crucilal in an 1nitilal exploratlion — we tried to
simulate the program by hand. We took logic as the A-environ-
ment, for which GPS was to produce a set of A-differences,
corresponding to part of those in Figure 6. The course of
this simulation is given in Figure 12. 1t 18 very crude.
Answers to many questions of detall were created on the spot
during the simulation. Many arbitrary selections were made,
often without a formal scheme.

The simulation was based on the simple example used
earlier to illustrate GPS (Figure 2). The four operators that

were chosen, Rl, R2, R5, and R6, are the ones involved in that



example; and when a sample problem was needed at step 4 of
the hand simulation, that was the one used.

Starting from scratch in Step 1, GPS used operator Ql to
insure that the resulting A-difference would discriminate some-
thing. The exploration in the D-environment is shown for this
goal, to find an A-difference that is + for Rl and ¢ for R2.
What occurred was rather simple: The initial program, consist-
ing simply of process D, was obtalned because of the high prior-
ity given (by the D—differenceé) to programs contalning process
D. Each partial sequence, D, LD, tLD, and so on, produced +
with both Rl and R2. Therefore, new processes were added
that "decreased size" or "decreased variety" until finally,
with the addition of S[—J, a ﬁrogram was produced that gave
# with Rl and + with R2. This output was Just the opposite
of what was needed; but the discrepancy was detected by a
"reversal" difference and the routine K[+] was applied to
change the + to @ and the @ to +. The various branches that
were generated but not further explored were rejected either
because the output was ildentical with the input, thus indica-
ting no progress, or because the outputs from both Rl and R2
were ldentical, so that the process did not discriminate
between these two rules.

The question of consistency, which seems a rather technical
detall, produced the next phase of the simﬁlation. When T9
was applied to R6 it sometimes gave + and sometimes g. When

operator Q2 was invoked to remedy this, i1t produced two
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The set of A-operators for which A-differences are to be found is:

Rl: AvB —> BvVA or A.B —> B.A

R2: APB —> =B2 -A ’

R5: AvB =~> =(-A.-B) or A.B => ~(-Av-B)
R6: A®B —> ~AVB or AVB -> -AS>B

The initial set of A~differences is the null set;:
S0 4

The set, SO, is operator incomplete (see D2 in Figure 11) since none of the
operators now have associated differences. The first goal given the D-environ-
ment is to find an A-difference that is + for Rl and ¢ for R2. The following
exploration is conducted in the D-environment:

DD (reject)
D— FD (reject) S[+]s*R(c)tLD (reject)
™ —3 tLD — R[c]tLD—» s#R[c]tLD— S[-] s#R(c)tLD— A[+]S[-]s#R[ec]tLD
This gives the next set, Sl, of A-differences:

RL R2 R5 BR6
Sl: T9 =4 (:+:] S [—J S#R [c] tLD + ¢ 2 ?

T9 is inconsistent with Ré--it gives + or ¢ depending on arbitrary selective pro-
cesses. The next goal in the D-environment is to modify T9 to produce + for R6.
This is accomplished, giving the next set:

RL R2 R5 BR6
S2: Tl = s[-]s#*tLD g+ o+ 4

Rl is no longer covered by S2, so the next goal in the D-environment 1s to create
an A-difference that is + on Rl and § on R5. This leads to the set, S3:

RL R2 R5 R6
83: Tl = g{-]e*tLD g+ o+ 4
T15 = A[*]D(l,r):D + '] 4 +

with 83, all operators have associated A-differences, and all the A-differences

are consistent. In order to see if S3 could distinguish non-identical pairs of
objects, the simple problem of Figure 2, Transform S.(-P>Q) into (QvP).S, was
attacked with the above table of connections., Tl5 was + for the pair of objects,
and Rl was applied, just as in Figure 2. However, no difference was found be-
tween the left side of L2 and the left side of L4, even though they are not
identical. The next problem for the D-environment was to find an A-difference that
would produce + for this pair, (-P2Q, QvP). This resulted in the next set:

RL R2 R5 R6

Sk: Tl = gl-]s*tLD d T+ T+
T15 = Al +] D(1,r):D P S
T20 = Dci* ¢ ¢ + +

S4 distinguishes all the pairs of non-identical objects generated in solving the
test problem. The simulation was terminated at this point.

Figure 12
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applications of C-operators. The first of these deleted R[c]
from the middle of T9, where this process had been identified
as the culprit causing the incbnsistency. R[c] was ildentifled
by tracing through the flow of information. Deletion of R[c]
vielded a program (T10) that was ¢ on R6. This discrepancy
was detected by the "reversal" difference and the K'[+] was
" stripped off the front of T10, giving Tll an A-difference that
satiéfied the goal.

The change from T9 to Tl1l ieft Rl not covered by any A-
difference. Ql was again applied to get an A-difference that
would be + on Rl. Since a second pair of objects was needed
to specify Ql completely, the input and output forms of R5
were chosen arbitrarily as the second pair. The result of the
problem solving in the D-environment was T15. This test was
developed in a similar manner to that which produced T9. How-
ever, the heuristic of choosing different task environment
processes for the two tests resulted in the occurrence of r
and 1 as components of T15. Again the "reversal" difference
accounts for tﬁe K[+] at the front of T15.

The new set of differences, S3, had all operators covered.
It was necessary, next, to use some A-objects in order to test
whether 83 could discriminate pairs of non-identical obJjects.
Using the sample problem of Figure 2, a pair of objects,

(-P 5q) and (QvP), was found that were not identical, but still
yielded ¢ when T1l and T15 were applied to them. This caused

the next problem-solving attempt in the D-environment, defined
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by operator Q5: to discriminate these two objects. T20 was
found to do this. It was added to the set to make S4. This
final set proved satisfactory for the remainder of the sample
problem, and the simulation was terminated. if the simulation
had continued, either more problems would have been generated
to test for object coverage and orthogonality, or some lesser
differences would have been tried in order to imprové the dis-

criminability of the table.

Conclusion
We conclude this paper by listing some observations — both

reassuring and discomforting — on the path we have followed.

1. The rough simulation presents good evidence, we think,
that we have Spécified the mechanisms that are essential to
permitting GPS to work on 1ts own learning. These mechanisms
delineate at least one variety of intelligent learning.

2. A feature that stands out clearly in the program is
the interaction between the two environments, B and D, one
providing the goals for the other. This makes good sense in
the light of our general knowledge of computer codlng. The
distinctions commonly made between "programming" and "coding,"
and between "problem-oriented languages" and "machine-oriented

1"

languages,” may reflect the relation between the two environ-

ments.
3. An interesting feature of the learning task is that
the set of differences is a very ambiguous objJject. No differ-

ence can be completely evaluated in isolation, since the
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propertles of the set as a whole determine how effective the
problem solving is. Similarly, complete factorlization with

each operator associlated uniquely with a particular difference
seems unattainable. Hence, the goal of obtaining a satisfactory
set of differences, unlike GPS goals consldered previously,

is not a search for a unique specified object. This difficulty
was cilrcumvented by the form of the Reduce goals (Ql to Q5),
which give GPS "direction" in its learning task without
specifyling a definite final resting place.

4. A considerable amount of mechanism has been added to
GPS, but none of this new mechanism seems peculiar to the
learning of logic, and much of 1t, such as the additional
selection mechanism, 1s of the same generality and spirit as
the i1nitlal version of GPS.

5. In splte of thils apparent generality, the Justification
for much of the mechanism rests on the possibility of using it
for a number of different task environments. This possibility
is qulte untested, for all our work here has been limited to
the task of logic. Although GPS has pretensions of being
general, only two task en&ironments (logic and elementary
algebra with trigonometric functions) have been specified with
sufficient precision to exhibit in detail the set of differ-
ences. Hence a question that occurs prior to testing this
learning program is whether a sufficient population of environ-
ments can be constructed in which GPS can operate.

6. A more serious problem 1s that a general set of
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differences may possibly exist that would be effective for all
environments. Some of the differences in the logic situation —
the set of different kinds of things, and 1@entitjlof symbols
of a given class, like connectives — have a very basic ring.
In trigonometry, the one other environment for which we have
good information, exactly the same set of differences was
used as for loglc, with the exception of commutativity and
assoclativity, which were incorporated in the structure of
the objects as in normal algebfaic notation. If such a
"universal" set of differences existed, 1t might still leave
the task of applying differences to the specific environment,
but this is a task more like learning the table of connections
than like the learning task we have just analyzed. Supporting
this possibility is the fact that it is difficult to imagine
how differences like commutativity could be built up from
more elementary notions. In the simulation this 1s achileved
by the A-difference T15, which compares the left hand side of
one object with the right hand side of the other. |
7. A final oddity of the present scheme was noted
earlier: Different task environments for GPS are completely
independent, much more so than the different task environments
for a human, which all occur, in the last analysis, in the same
real world, to be perceived through the same set of senses.
A closer analogy to the human situation would result in GPS
if all the task environments were basically analyzable by

elementary programs in the general part of DPL. These would
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be programs for exploring the structure of objects and making
tests of identity on the contents found in various places.

Such a scheme not only seems more natural than the present one,
but reinforces the vague feeling that there should exist a

good set of "universal" differences.
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