Allen Newell
Fred M. Tonge
Edward A. Feigenbaum

Bert F. Green, Jr.

George H. Mealy

24 RAND @orporarcon

Second Edition

INFORMATION PROCESSING LANGUAGE-V MANUAL

IMPLEMENTATIONS

Burroughs 220
Alan Olson, Gilbert Hansen, Ranan B. Banerji

Control Data 1604
Robert K. Lindsay, John Dauwalder

Control Data G-20
David Cocper, Richard G. Shoup

Ferranti Mercury
David Cooper

IBM 650
Nicholas K. Saber, Ted Van Wormer

IBM 704
Charles L. Baker, Edward A. Feigenbaum, Hugh S. Kelly,
George H. Mealy

IBM 709-7090 (Lincoln System)
Bert F. Green, Jr., Alice K. Wolf, Michael Kahn

IBM 709-7090 (RAND System)
Charles L. Baker, Hugh S. Kelly

IBM 1620
Wendell T. Beyer, John D. MacDonald

Philco 2000
Stuart S. Shatffer, Clark Weissman, Julian Feldman

UNIVAC 1105
Bobbie F. Caviness, H. Lee Butler

UNIVAC 1107
Gilbert Hansen, Ranan B. Banerji

AN/FSQ-32
Michael Kahn, Clark Weissman

INFORMATION PROCESSING
LANGUAGE-V MANUAL

Second Edition

Allen Newell
Fred M. Tonge
Edward A. Feigenbaum
Bert F. Green, Ir.
George H. Mealy

Second Edition prepared by
Hugh S. Kelly
Allen Newell

The RAND Corporation

PRENTICE-HALL, INC. ENGLEWOOD CLIFFS. N.].

© 1961, 1964 by The RAND Corporation. All rights re-
served. No part of this book may be reproduced in any
form, by mimeograph or any other means, without per-
mission in writing from the publishers.

Printed in the United States of America

46440-C

PREFACE

The development of Inférmation Processing Language-V (IPL-V) has
been a cooperative effort of many people in numerous organizations
over a period of almost five years. The basic ideas from which IPL-V
was derived came from the work of Allen Newell,]. C. Shaw, and
Herbert A. Simon on the earlier IPL's. These earlier languages were
private to a small research group at The RAND Corporation and Car-
negie Institute of Technology working with JOHNNIAC, a computer at
RAND. IPL-V was the first IPL to be made available for public use. A
preliminary version for the IBM-650, called 650-IPL, was developed by
Fred M. Tonge and Carleton B. Hensley. Although the title page lists
the people principally involved in the design and original implemen-
tations of IPL-V, many others have been concerned with the continued
maintenance, revision, and updating of the various systems. In particu-
lar, the contributions of Gloria Goldberg and Einar Stefferud deserve
mention.

Throughout the entire period, the primary support for the develop-
ment of IPL-V has come from The RAND Corporation under U.S. Air
Force Project RAND. However, many other organizations have, at one
time or another, provided substantial amounts of support, both in man-
power and computing time. The organizations include Carnegie Insti-
tute of Technology, Lincoln Laboratory, Bell Telephone Laboratories,
System Development Corporation, University of North Carolina, Uni-
versity of Pittsburgh, University of Texas, Case Institute of Technology,
MESA Scientific Corporation, Hughes Aircraft Company, and the Com-
puting Unit of the University of London. In addition, grants and contract
support for various parts of this development have been made by the
Social Science Research Council, Carnegie Corporation of New York,
and the Advanced Research Projects Agency. The revision of the Man-
ual was supported by The RAND Corporation with its own funds.

Allen Newell
January 1964

PREFACE ..ottt v
INTRODUCTION TO THE FIRST EDITIONccocoovvveieerreen, ix
INTRODUCTION TO THE SECOND EDITIONcccccooovvviieeennn. XXV
REFERENGCES ... e xxxi
Part One: THE ELEMENTS OF IPL PROGRAMMING 1
1.0 Lists and Routinescccccovooivieovoieeeeeeeeeeeeeeeeeeeeeseeen, 3

2.0 A Complete Programcccccccoooeveeoiomeiieeeeeeeeeeeen 17

3.0 Simple List Processingc.occoovvvieveeeeeeeoreeeeeeereeeeeeene 24

4.0 List SITUCLUTES .oovoovieiiecceececeeeeeeee e 29

5.0 DAt TEIIIS .oooovvieieeeceic e 44

6.0 Description LiStsccooeooiiiiiiiieeiieeeeeeeeeeeeeeeeeeeee e, 48

7.0 Description Lists, Continuedcccccooocoevireiiincenn. 53

8.0 UsIng GENeratorsccccoooeiiuieeeereeeeeeeeeeeessenseees 68

9.0 Generator Constructionccocoovvivieeiiueioreeeeeenne 74

10.0 Line Printing ..ccoocoveveieececeee e 87

11.0 Line ReAAING vovovioeeeiiiciieeeceeoeee e 91

12.0 Saving for Restart and Restartingccococoveeennnn. 95

13.0 DebUGGING .ooiovieiieiecieieeeeeeee et 99

14.0 Organizing Complete Taskscccocoovvvveeeereeereeeeeee. 103
Sample Solutions to Selected Problemsccoccovvvvnnen. 119

Part Two: PROGRAMMERS' REFERENCE MANUAL 133
1.0 General Definitionsc.ccoco oo, 135

2.0 Data List StruCturesccccceevvvevviveeeceiieeee e 146

3.0 Routines and Programscococvoeieoeeeeeeeeeeeeeeeeeeen 154

4.0 Basic System of Processesccccoooeiveecieceeeneernnn. 166

5.0 General Processes, JO 10]9 ..o eevee e, 170

6.0 Description Processes, J10 to J16cooovriiciccrceennn. 172

7.0 Generator Housekeeping Processes, J17 to J19............. 174

8.0 Working Storage Processes, J20 10 J59 ...oooivveeceeeenne. 179

9.0 List Processes, J60 t0 J104 ..ocoooveveoeeeeeeeeee oo veeer e 180

10.0 Auxiliary Storage Processes, J105 to J109ccoveeeeee.. 190

11.0 Arithmetic Processes, J110 t0 J129 .oovooveeveeoeeoeeeeen, 195

12.0 Data Prefix Processes, J130t0 J139 ..coovievioieeee i 198

13.0 Input-Output Conventionscccccoevevevveveveeeneeeennee 202

14.0 Read and Write Processes, J140 1o J146 ...ccoovveeveeeen. 205

vii

15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0

Monitor System, J147 to J149 ..o 207

Print Processes, J150 10 J162 .ovvvveiireeciciiiiiiieeni e 213
Block Handling Processes, J171 to J179 ... 217
Initial LOAQING ...veeeeeeceieiiicieenre s 220
In-Process Loadingcoceoeeivereniimeiniiimniesees e 231
SAVE fOF RESIATT cvveeeeeeieie et 232
Error Trap, JI70 .o 234
Line Read Processes, J180 to JI89ccovveoiniiiiicee 236
Partial Word Processes, J190 to J197 ..ooooieniiiiiiiiniiens 239
Miscellaneous Processes, J200 to0 J209 ... 240
Changes and Extensions ..., 241
List of IPL-V Basic Processesccoocceeviiiviciiiicniiniciiicene 245
[P Yo L= RTTTT R TR TR RO O U RO RSP U U OO YRS 247

viii

INTRODUCTION TO THE FIRST EDITION

The language described in this Manual is an addi-
tion to the techniques for using digital computers. It
can be placed in perspective by describing briefly the
developments in the computer and programming arts that
preceded it, and current work that is closely allied
to it.

We now recognize that the digital computer is a
device for manipulating symbols of any kind, in any
way. Its genesis, however, lies in the desk calculator,
which is a device for automatically performing the four
operations of addition, subtraction, multiplication,
and division. The core of the computer, as initially
envisioned, is an arithmetic unit which performs these
same four operations extremely rapidly, in anywhere from
a tenth of a second to a few millionths of a second. It
is impossible to make good use of such a device in the
manner of a desk calculator, since the entire time of
calculation would be taken up with human decisions as
to what numbers to process next, and with human actions
to put the numbers into the machine. Several innovations
were made to take advantage of the tremendous speeds in
arithmetic. First, a way was found to remember the
numbers associated with a computation. Second, a small
set of '"mon-numerical" operations was invented to do the
tasks normally done by the human working with a desk
calculator. These were of three types: moving a number
from one cell in the memory to another without modifica-

tion; sensing simple conditions (such as whether a number

in a cell is negative) and taking differential action
depending on the result; and actuating various reading
and writing mechanisms, such as printers, card readers,
and the like. Third, a language of imperatives was in-
vented, which consisted of a sequence of instructions.
Each instruction stated that one of the operations of the
machine was to be performed on the numbers in specified
memory locations. Finally, a way was found in which

the machine could interpret each instruction, perform
the actions designated, and then automatically pass on
to the next instruction. Thus, a memory unit and a con-
trol unit were added to the arithmetic unit, and the
automatic digital computer was produced in essentially
its present form.

It was already known at the time these innovations
were taking place that the resulting machines would have
almost unlimited and universal capacities. The work
of Turing is central in this connection, but the entire
field of symbolic logic contributed to this knowledge.
Turing showed in 1937 that a machine with certain rela-
tively simple capacities could compute any number that
could reasonably be considered computable. By an
intuitive generalization, such a computer can be made
to perform any process that can be specified. However,
this abstract knowledge of great power is not equivalent
to knowing what sorts of symbol manipulations are needed
and are useful to achieve various practical results.
This latter knowledge has grown up only slowly from the

attempts to use the computer in ever widening contexts.

-Xi-

Problems in Writing ProgjramsJr

Writing programs of any sort is difficult enough.
As delivered by the engineers, the machine makes some
very specific and rigid demands on the user. The in-
structions require proper names for both operations and
locations--that is, fixed codes, which correspond to
the circuitry of the machine. Working with absolute
addresses, as these proper names are called, has many
drawbacks. Most important is having to select absolute
locations in order to get on with the coding, without
knowing whether later there will be good reason to want
these cells for other purposes. These conflicts arise
with great regularity, since computer routines are usually
put in the memory in consecutive cells, so that starting
a routine at a given location automatically places a
claim on many following locations.

A solution to this difficulty was found in regional
addressing and symbolic addressing. Both of these allow
the coder to write down a symbol to refer to an address,
but to delay the assignment of absolute addresses until
all the requirements for memory space are available.
Regional addressing assigns addresses according to a
scheme whereby A5 becomes the fifth cell after the
"origin cell," A. The origin cells, which control the

relationship between regional symbols and absolute

TSee Ref. 9 for a rather complete description of
the programming techniques currently available. It also
contains an extensive bibliography. (The References
begin on p. xxxi.)

-xii-

addresses, are assigned by the programmer after the entire
routine has been written. Symbolic addressing assigns
addresses according to an arbitrary dictionary, created
after the entire routine is finished.

Regional and symbolic addressings are conventions
that the programmer invents and adheres to, and they
involve no change in the engineering characteristics of
the computer. They can legitimately be considered an
increase in the computer's symbolic capabilities because
another program called an assembly program makes the
translation from regional and symbolic addresses to ab-
solute addresses. The '"computer-plus-assembly-program'
acts in every way like a machine with improved design.
The programmer can now use the new conventions as if
the machine understood them directly. Most of the im-
provements in computers have been achieved by construc-
ting programming systems to augment their capabilities,
rather than through hardware modifications.

The machine also requires that all numbers, constants,
and operation codes be translated into the fixed form
acceptable to its circuitry. This is especially vexing
with machines that work internally with a binary repre-
sentation. It is desirable to write numbers in ordinary
decimal form and to refer to the operations by easily
remembered mnemonic codes. These increases in capability
have been rather universally achieved by adding the
necessary translation facilities to the assembly program.

As constructed, the computer has a small repertoire
of instructions it can execute, each producing a very

small step forward in the total computation. However, it

-xiii-

is desirable to work with much larger units of processing
and to preserve the effort spent in constructing such
units. The subroutine has emerged as the standard solu-
tion to this problem. A subroutine is a block of coding
written under standard conventions so that others at a
later time can incorporate the coding into their program.
The conventions govern the transfer of control to the
subroutine and the return of control to the main program
that uses the subroutine. They also govern how to give
the subroutine its input information and how to get from
it the products of its computation. Originally, the
subroutine was a pure programming innovation, but its
use has become universal, and by now almost all machines
have special instructions that make subroutines easy to
use. In connection with assembly programs, libraries

of subroutines are built up that can be called in by
name and incorporated into the program automatically.
From a linguistic viewpoint, the use of subroutines is
an abbreviation device, whereby a name can be assigned
to a collection and used in place of it.

It is possible to go further than the isolated sub-
routine, and to build up whole systems of subroutines to
be called into action by means of a '"pseudo-code." A
typical example is the extension of a machine to handle
floating point arithmetic (arithmetic on numbers written
as .621 x 102 rather than 62.1). For most scientific
calculations this is the preferable form, since the
problems of keeping track of the decimal point can be
avoided. None of the early machines had circuitry for

performing floating point arithmetic. Rather than just

-xiv-

create a subroutine for each operation, an instruction
format (the pseudo-code) was set up, corresponding directly
to the regular instruction format of the machine, in which
the arithmetic operations were understood to be floating
point operations. The machine itself, of course, could
not interpret these instructions. A program called an
interpreter was used to decode these pseudo~instructions
and to execute subroutines corresponding to them. The
machine was made to behave as if it followed different
instructions from the ones the engineers had built into
it. This is achieved at a great cost in speed, since

each pseudo-instruction requires several machine instruc-
tions to interpret it. Partly for this reason, pseudo-
codes have never been very different from standard ma-
chine codes, since they would then have required elaborate
interpretation. IPL-V, the language described in this
Manual, is a pseudo-code.

The fundamental form of the machine language, although
universal in its applicability, is rather far from the
familiar and powerful language of algebra. As sophisti-
cation in programming has increased, computers have
finally been given the capability of understanding alge-
braic notation. The relative complexity of algebra re-
quires that this be a programming innovation, rather than
a hardware one. A translation program accepts the language
containing algebraic formulas and produces a code in
machine language that will accomplish the same computa-
tion. These translation programs, like FORTRAN and IT,
are functionally similar to assembly programs but the
translations they accomplish are much more complex, and,

instead, they are called compilers or translators.

Heuristic Programming and the Simulation of
Cognitive Processes

The language described in this Manual stems from
recent attempts to program computers for problems that
are sufficiently complex, ill-structured, and difficult
to require intelligence for their solution by humans.

The motivations behind these attempts range from the
desire to extend the capabilities of computers, to the
desire to understand how humans think, learn, and solve
problems. Most of the work in this area has focused on
rather formalized tasks, such as proving simple theorems,
playing chess or checkers, and performing various symbolic
calculations like differentiation and integration.

These programs have revealed some additional de-
sirable symbolic capabilities for computers; most important
is a need for a unit of data larger than the single number.
Indeed, in these programs the entire pattern of data,
both structure and content, evolves during the course of
processing. Thus, it is necessary to have the program
construct its own data structure dynamically. This im-
plies some convenient way of creating, aggregating,
modifying, and referring to units of data.

A solution to this problem has been found in the
list. A list is a set of words tied together by having
the address of each word in the list recorded in the word
that occurs just prior to it in the list. Each word in
the list contains two addresses: one gives the item of
information at this location in the list; the other gives

the link to the next word. This is shown below, where

-Xvi-

numerical addresses have been written for items and

arrows have been drawn for linking addresses:

1321 |2233| e—p»{3111| e— 14010 e—>16222]|0000

The list is a unit of data, just as a routine is a unit
of processing. Its name is the address of the first cell
(1321, above). It contains complete information about
its structure, including a special link (0000) to indicate
the end of the list.

Operations are performed on it as a unit. For ex-
ample, the operation of inserting an item at the end of
a list would take as input the name of the list (1321)

and an item (say, 5333) and produce:

1321 |2233] &—>{3111| & 4010 &—p=16222] e—1»1533310000

Similarly, the operation of deleting the first item on

list 1321 (as it was originally) would produce:

1321 |3111| &—>14010| e—7>16222|0000

These operations change the structure of the data
unit, not just its content. It is this ability that
contrasts rather strongly with standard ways or organizing
data on the computer. Normally, one would put items in

consecutive cells in memory:

1321 {2233
1322|3111
1323 |4010
1324 16222

-xvii-

There is a simple rule for finding the next item on the
list (add 1 to the address of the current cell), just as
there is a simple rule for lists (look in the link of
the current cell). With index registers, the address-
incrementing rule is even easier and quicker to use.
More important, no space has been taken to hold all the
linking addresses. However, if we wish to insert or
delete items, or otherwise modify the structure, then
difficulties arise with the sequential scheme. For ex-
ample, in order to insert after 1322 it is necessary to
make cell 1323 available, and this means moving all the
items after this into new addresses. No such difficulty
arises with lists, since there is no need for the cells
to bear any specified relation to each other.

It is desirable to have a unit of data larger than

a list. This is called a list structure and is compounded

from lists, by having the names of some lists occur as
items of information on other lists. A simple list struc-

ture is shown below:

1511 1111} e ‘T o—»12111| o— g 0000

L—6700 o-}-qsooo 0000

3422 o——a-{, o—t=153210000

l>4000 o—»1722210000

The example has a main list of four items, with one sub-
list of three items and another of two items. One sublist
itself has a sublist of two more items. The ability to

deal with a list structure as a unit--to copy it, print

-xviii~

it, or search it--is a great advantage.

The use of one address to link together a structure
is not an altogether new idea. For example, many machines
(e.g., the IBM 650) have a "plus-one' instruction format
in which one address of each instruction gives the address
of the next instruction. This is a list in the sense we
are using the term. The main use of "plus-one' addressing
is for efficient operation of machines which have cyclic
storage systems (such as a magnetic drum), and which need
minimal latency coding. Not until attempts were made to
code very complex symbol manipulating programs did lists
and list structures, together with the associated list
operations for manipulating the structures dynamically,
get adequately developed, both technically and conceptually.

There is a technical barrier to be overcome before
lists can be used as the basis of a complete and flexible
computing system. Imagine the data part of computer
memory being initially completely unused, and imagine
lists being built up and modified during processing.

Then, just as planned, all apparent order in the memory
disappears. New words are taken from the gradually
diminishing block of unused space. There is no difficulty
until, eventually, all the space is used up. By this

time there will be lots of unused cells, since many of

the lists are no longer needed, and many cells have been
removed by delete operations. However, these cells are
scattered throughout the memory in a completely haphazard
fashion. Some scheme must be incorporated to make all

of this space available again, so that processing can

continue.

-xix~

The solution to this is an extremely simple, but
elegant, trick--to have a list of available space. All
words not otherwise in use form the cells of a list,
each cell linking to the next. This list has a known
name (it is H2 in IPL-V). Any process that needs space
can get the address of an available cell from H2. This
cell in turn gives the address of another available cell,
and so on. A general responsibility is imposed on all
processes of the system to put any cells they make avail-~
able back on the available space list. Thus, at all
times all the free cells are linked together and available
to whatever process needs them. This technical device
clears the way for the programmer to become almost com-
pletely free from problems of memory assignment, and to
apply at will various processes that modify the structure
of memory.

The work on heuristic programs has also emphasized
the need for good conventions for subroutines. The pro-
grams are sufficiently complex and hierarchical in nature
that the power of abbreviation is extremely useful. Re-
cursive definitions have also been used extensively, and
ways for mechanizing these have been necessary. A re-
cursively-defined subroutine is one in which the sub-
routine executes itself. These arise because list struc-
tures are defined recursively--a list structure is a list
plus all the list structures whose names occur on the
list-~-so that the most natural way to define processes
on list structures is recursively. Recursive routines
also arise because of the recursiveness of the problem-

solving process. The general way to solve a problem, X,

-Xx-

is to set up some subproblems, say Y and Z, then to try
to solve Y, and then to try to solve Z. The process of
solving the subproblems is exactly the same routine as
the original. The use of lists has allowed simple solu-
tions to both of these problems. Since these are dis-
cussed in detail in the remainder of the Manual, there

is no need to describe them here.

History of Work on List Languages and
Heuristic Programming

Considerable work is going on in constructing pro-
gramming languages using lists, most of it in connection
with work on heuristic programs. This work illustrates
both the applications of list-processing languages which
have been made to date and the various ways in which
list processing can be introduced into programming .
Triggered by the pioneering work of Selfridge(so)
and Dinneen(1) on a program for recognizing visual
patterns, the work of Newell, Shaw, and Simon began in
late 1954. They first worked on chess and then switched
to the task of proving theorems in the propositional
calculus of Whitehead and Russell.(4o) Their earlier
languages were tied closely to subject matter--a "chess
language" and a "logic language.'" These languages, col-
lectively called IPL-I, although designed as pseudo-codes,
never reached the coded stage.T By the time a coded version
appeared, called IPL-II, for use with the symbolic logic

program, the concepts of lists and list processing as a

TSee Ref. 43 for what they looked like.

-xxi-

more general substratum had already developed. IPL-II1
was coded for JOHNNIAC, a RAND computer of the Princeton
(39) (7)

class. IPL-III was a version that attempted to
reduce list processing to its ultimate simplicity, but
it required too much space for JOHNNIAC, which has only
4096 words of core storage, and it was abandoned shortly
after it became operational. IPL-IV is a list language,
very similar to IPL-V, the language described in this
Manual. It is coded for JOHNNIAC, and much of the sub-
sequent work in heuristic programs has been done on it,

(41)

in management science of assigning tasks to work stations

including a chess program, a program for a problem

for an assembly 1ine,(56) and a program called GPS, for
General Problem Solver, that represents current efforts

(42,44) No documentation

(52)

of a command structure for list processing is considered;

to simulate human behavior.
exists for IPL-IV. 1In a recent paper, the design
this language is called IPL-VI, although it has never
progressed beyond the design stage.

The work with IPL-V so far is mostly concerned with
the simulation of human behavior. E. Feigenbaum has
developed a program, EPAM, for memorizing nonsense

(15) J. Feldman

syllables and making simple discriminations.

has developed a program to explain the behavior of humans

in a binary choice situation, where the subject is re-

quired to guess which of two symbols (say + or =) will occur

at each step in a long sequence.(ls) Both of these tasks

have received much attention in the psychological literature.
H. Gelernter at IBM has developed a program for prov-

(21,23)

ing theorems in plane geometry. To do this he and

-xxii-

his colleagues developed a list-processing adjunct to
FORTRAN for the IBM 704, called FLPL, for FORTRAN List
Processing Language.(zz) This was done by adding a
series of subroutines to the FORTRAN system. FLPL uses
the lists only for data, since it uses FORTRAN-produced
machine code for routines.

J. McCarthy of MIT has developed another list language
for the 704, called LISP, for List Processor.(34) LISP,
like IPL-V, uses lists for both routines and data. Ex-
ternally, LISP uses a horizontal notation in which list
structures are represented with the aid of parentheses.
The identity of parenthetical notation and list structures

can be seen from the following figure:

(A,B,(C,D)) A|let—>»{B | oet+—>{9]| 0

Part of the reason for the development of LISP is
McCarthy's own work, with M. Minsky, on heuristic pro-
grams.(35) There has also been some work done in LISP
on analytic differentiation and integration of elementary
functions.

It is also possible to add list-processing subroutines
to standard assembly systems, so that coding is done in
standard machine code, but the basic list operations are
available as processing units. No such system is docu-
mented yet, but one for the 704 is under way.

The work of Newell, Shaw, and Simon exhibits a bias

toward approaching complex programs by means of symbol-

-xxiii-

manipulating languages, and this attitude is shared by
most of the others mentioned so far. However, a number

of ambitious programs have been written without benefit

of this intermediate stage. Included here are the chess
programs of Bernstein(s) and of Wells and others at Los
Alamos;(zg) the checker program of Samuel;(49) and several
programs for proving theorems in symbolic logic--e.g.,
Dunham,(13) Gilmore,(24) and Wang.(57) The work of Kemeny
and others at Dartmouth on analytic differentiation and
integration(zs) and of Barnett at MIT(B) belong in be-
tween those who have worked directly in machine code,

and those who have developed rather complete list languages.

Additional Sources of Programming Innovation

The two sources of innovation for increasing the
symbolic capabilities of computers that have been men-
tioned--the writing of programs, and the attempts to create
intelligent programs--have had a particularly strong
effect on IPL-V. There are other sources that have also
contributed to the current state of the general program-
ming technique. The attempts to use computers for
business data processing have focused attention on the
unit of data, and have led toward variable-word-length
machines (like the IBM 702-705-7080) and toward variable-
field operations, rather than toward systems that allow
for the dynamic modification of the structure of informa-
tion in the memory. These attempts have also focused
on the operations of merging and sorting masses of data,
processes which have received scant attention in heuristic

programming.

-XxXiv-

The work on machine translation from one natural
language to another is a field that is similar to data
processing in those parts that concentrate on the dic-
tionary problem, and similar to heuristic programming
in those parts that concentrate on the use of multiple,
complex rules for resolving ambiguities and analyzing
sentences. A programming language, called COMIT, has
been developed by V. Yngve of MIT for the IBM 704 in
order to express translation algorithms easily.(60)
There is a great deal of similarity in underlying struc-
ture between COMIT and the list languages.

The assembly programs and compilers, which have been
the chief solution to most of the program-writing prob-
lems, are themselves complex symbol-manipulation pro-
grams. A great deal of work has gone into their develop-
ment and a great deal of programming know-how has re-
sulted. However, to date no innovations as specific as
lists or variable-field operations have resulted from
the process of coding these programs (as opposed to the
programs themselves, which are the means for the major

programming innovatians).

-XXV-

INTRODUCTION TO THE SECOND EDITION

The continued use of IPL-V and the necessity of a
reprinting of the Manual present an opportunity to in-
corporate some of the additions to the language and to
thoroughly rewrite Part One. A few words here will serve
to relate this second edition to the first, and to bring
some of the comments in the original introduction up to
date.

IPL-V has remained essentially constant since the
first edition of the Manual. By deliberate design no
attempt has been made to produce a general revision of
the language. A language is to be used, and it must
remain constant so that projects undertaken in its terms
can cumulate. Thus, the conventions and definitions
described in the initial Manual have been changed at
only six minor points, all associated with loading and
monitoring. W14 and W15 have had their monitoring func-
tion slightly redefined; J166 has been modified to set
H5; an error in specifying the conventions on Block
Reservation Cards has been corrected; loading routines
into auxiliary storage has been generalized slightly; a
first card (TYPE = 9) has been added to the loading
sequence; and returning unused regionals to available
space has been divorced from the loader and placed in
a primitive (J171). The exact changes made are listed
in Sec. 25 of Part Two of the revised Manual. This
revision of the Manual implies no changes in the running

of existing IPL-V programs.

~XxXvi-

Since the Manual was first published several addi-
tions to IPL-V have been made, providing facilities not
available in the original. One is a set of routines
(J180's) for reading lines of input, analogous to the
existing set for printing lines. A second is a set of
routines (J190's) for manipulating the subfields (P, Q,
SYMB, and LINK) in an IPL word. A third is the ability
to read and write blocks of contiguous cells onto tape.
This facility is needed to handle programs that greatly
exceed the size of core. The various parts of the
existing system that formed blocks of storage, such as
regions, auxiliary buffers, etc., have been fitted into
the same framework, so that they can be manipulated with
the block handling routines (the J170's). With this has
come the ability to obtain the region (in the form of
its block control word) given any regional symbol (J175).
All of these extensions imply no modification of current
programs; they are new facilities to be exploited if the
programmer desires. They are also listed in Sec. 25 of
Part Two.

More and more the programmer has wanted to get under
his control all of the features of the running system;
as a consequence, several changes have been made to
accomplish this. For example, the post mortem has been
made into a primitive (J202); also, the various constants
and routines involved in compacting auxiliary have been
made available in systems cells and primitive routines.
Again, these do not affect current operation. They are

listed in Sec. 25.

-xxvii-

The final item about the language itself is really
a suggestion. In order to avoid conflicts in name
assignments, it is suggested (in § 4.1, SYSTEM REGIONS)
that all installations use the $ region for installa-
tion-wide processes, cells, constants, etc.

Part Two, which is the Reference Manual, has been
revised only to the extent of incorporating the changes
and additions smoothly into the text and correcting
various misprints. As mentioned above, all changes and
extensions are listed in Sec. 25, which gives references
to where in the Manual these changes are actually in-
corporated. There should be little trouble spotting the
new material.

Part One, which is the introduction to IPL for those
who are trying to learn the language, has been largely
rewritten. The impetus was the need for exercises;
once a set of these was on hand, extensive revision was
inevitable. The resulting text still contains much of the
same material as the original, with the notable exception
of the use of Ackermann's function as an initial example
(it can now be found as Problem 45, p. 47), and the
program on the organism, which was used to illustrate
the programming and coding of a complex problem. This
latter was omitted because the new material claimed the
space, and because it was felt that students rarely
worked their way through it in enough detail to get much
out of it. (At least, this was the experienée in several
courses which used the Manual.)

The problems themselves have been used in a Summer

Training Institute on Simulation of Cognitive Processes

-xxviii-

held at The RAND Corporation during the summer of 1963
and sponsored by RAND and the Social Science Research
Council under a grant from the National Science Founda-
tion. Solutions to a selected subset of the problems
are given at the end of Part One.

Two additional teaching aids were used at the
Summer Institute. One of these was an IPL-V version of
the Logic Theorist (LT), a heuristic program for proving
theorems in elementary symbolic logic. LT, which was
originally coded in a different language in 1956, was
recoded in IPL-V by Fred Tonge and then carefully worked
into a demonstration problem by Einar Stefferud. The
result is a large, complex program which has been docu-
mented from the point of view of someone trying to learn
the ingredients of complex programs. Because of its
size, the LT demonstration program could not be incor-
porated in the revised Manual, but information on how
to get it can be obtained by writing The RAND Corpora-
(54)

The second teaching aid used is a program called
TIPL (Teach IPL). This program, developed by R. A.
Dupchak, takes as input the IPL code proposed by the

tion.

student as a solution to a problem and tests it against
various sets of inputs to see if it gives the correct
output. It then prints out appropriate information

about whether the student's program was correct or in-
correct (but not why). TIPL exists as an IPL routine,

so it will run on any machine that will run IPL. It can
be used with Problems 10 through 75 of Part One. Informa-
tion on obtaining it is also available by writing The

RAND Corporation. (14)

-xxix-

So much for the changes in the Manual and in the
language. Looking at the use of IPL-V, we find that it
continues to be used primarily for research purposes.
Many of the efforts noted in the first edition have been
continued‘r and a number of new ones reported.$ Generally,
these lie in the behavioral sciences or in the areas of
advanced programming research; e.g., artificial intel-
ligence, information retrieval, natural language pro-
cessing, etc.

The number of computers which have IPL-V systems
is now quite large (IBM 704, 709, 7090, IBM 650, Control
Data G-20, Control Data 1604, Univac 1105 and 1107,
Burroughs 220, Philco 2000, and AN/FSQ-32), and systems
are still being added as someone who wants to use IPL
becomes interested (IBM 1620 and IBM 7040/44). An IPL
Secretary has been established in order to provide a
minimum amount of coordination among interested parties.
Anyone wanting information about what IPL systems exist
and how they may be obtained can write to the IPL Secre-
tary, The RAND Corporation, 1700 Main Street, Santa
Monica, California 90604. A few published articles about
the IPL-V system also exist.H However, no users
organization has been formed in the sense in which this
notion is generally understood in the computing world.

Beyond IPL itself, work on list-processing languages

i* . .
has continued, several new systems becoming available.

TFor example, see Refs. 17, 20, 37, 45.

*For example, see Refs. 2, 10, 16, 26, 27, 30, 31,
32, 53, 55.

HFor example, see Refs. 19, 38, 46, 51.
$*For example, see Refs. 36, 61, 62.

-XXX~

Some of these are direct proposals for list-processing
languages, analogous to LISP and IPL;T others use list
processing as a base within a different framework,
analogous to COMIT.(33) This has led to the inevitable
comparisons as to which language is best. The most
recent comparison, by two knowledgeable programmers, ends
where most such comparisons end--"it all depends"(6)
An earlier, more general, discussion of list processing
by Green is also worth consulting.(zs)
Looking still more broadly, it is apparent that
list~-processing notions are by now an accepted part of
the programming art, to be used where and when the tech-
nical devices pay off in comparison with alternative
ways of organizing programs.* The time is not too dis-
tant when these capabilities will be available as an

integrated part of our main programming languages.

see Refs. 11, 58, 59.

*A scattering of references will give the flavor:
Refs. 1, 4, 8, 47, 48.

10.

11.

-xxxi-

REFERENCES

Baecker, H. D., "Mapped List Structures,' Comm. ACM,
Vol. 6, No. 8, August 1963, pp. 435-438.

Banerji, R. B., "The Description List of Concepts,"
Comm, ACM, Vol. 5, No. 8, August 1962, pp. 426-432.

Barnett, M. P., "A FORTRAN Encoded Symbol Pattern
Locator," Unpublished, 1959.

Berlekamp, E. R., "Program for Double-Dummy Bridge
Problems--A New Strategy for Mechanical Game
Playing," J. ACM, Vol. 10, No. 3, July 1963,
pp. 351-364.

Bernstein, A., M. De V. Roberts, T. Arbuckle, and
M. A. Belsky, "A Chess-Playing Program for the
IBM 704," Proceedings of the Western Joint Com-
puter Conference (1958), Institute of Radio Engi-
neers, New York, 1959, pp. 157-159.

Bobrow, D. G., and Bertram Raphael, A Comparison of
List-Processing Computer Languages, RM-3842-PR,
The RAND Corporation, October 1963.

Bottenbruch, H., et al., Application of Logic to
Advanced Digital Computer Programming, Summer
Session Notes, University of Michigan, 1957.

Bowlden, H. J., "A List-Type Storage Technique for
Alphanumeric Information,'" Comm. ACM, Vol. 6, No. 8,
August 1963, pp. 433-434.

Carr, J., "Programming and Coding," Handbook of Auto-
mation, Computation and Control, Vol. 2, E. Grabbe,
S. Ramo, and D. Wooldridge (eds.), Wiley, New York,
1959,

Clarkson, G.P.E., Portfolio Selection: A Simulation
of Trust Investment, Prentice-Hall, Englewood Cliffs,
New Jersey, 1962,

Cooper, D. C., and H. Whitfield, "ALP: An Autocode
List-Processing Language,' Comp. J., Vol. 5, No. 1,
April 1962, pp. 28-32.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

-xxxii-

Dinneen, G. P., "Programming Pattern Recognition,"
Proceedings of the Western Joint Computer Conference
(1955), Institute of Radio Engineers, New York,
1955, pp. 94-100.

Dunham, B., R. Fridshal, and G. L. Sward, "A Non-
Heuristic Program for Proving Elementary Logical
Theorems,'" Information Processing, Proceedings of
the International Conference on Information Pro-
cessing, 1959, UNESCO, Paris, 1960, pp. 282-285.

Dupchak, Robert, TIPL: Teach Information Processing
Language, The RAND Corporation, RM-3879-FPR,
October 1963.

Feigenbaum, E., '""The Simulation of Verbal Learning
Behavior,' Proceedings of the Western Joint Com-
puter Conference (1961), Institute of Radio Engi-
neers, New York, 1961, pp. 121-132.

Feigenbaum, E. A., "An Experimental Course in Simula-
tion of Cognitive Processes,' Behavioral Science,
Vol. 7, No. 2, April 1962, pp. 244-256 (including
several articles by members of the class).

Feigenbaum, E. A., and H. A. Simon, 'Performance of
a Reading Task by an Elementary Perceiving and
Memorizing Program,' Behavioral Science, Vol. 8,
No. 1, January 1963, pp. 72-76.

Feldman, J., '"Simulation of Behavior in the Binary
Choice Experiment,'" Proceedings of the Western
Joint Computer Conference (1961), Institute of
Radio Engineers, New York, 1961, pp. 133-144.

Feldman, Julian, "TALL--A List Processor for the
Philco 2000 Computer,'" Comm. ACM, Vol. 5, No. 9,
September 1962, pp. 484-485.

Feldman, J., F. Tonge, and H. Kanter, Empirical Ex-
plorations of a Hypothesis~-Testing Model of Binary
Choice Behavior, System Development Corporation,
SP-546, December 1961.

Gelernter, H., "Realization of a Geometry Theorem
Proving Machine,'" Information Processing, Proceed-
ings of the International Conference on Information
Processing, 1959, UNESCO, Paris, 1960, pp. 273-282.

22,

23.

24,

25.

26.

27.

28.

29,

30.

31.

32.

33.

-xXxxiii-

Gelernter, H., J. R. Hansen, and C. L. Gerberich, "A
FORTRAN-Compiled List-Processing Language,'" J. ACM,
Vol. 7, No. 2, April 1960, pp. 87-101.

Gelernter, H., and N. Rochester, "Intelligent Be-
havior in Problem-Solving Machines," IBM J. Res. &
Develop., Vol. 2, No. 4, October 1958, pp. 336-345.

Gilmore, P. C., "A Program for the Production from
Axioms, of Proofs for Theorems Derivable Within
the First Order Predicate Calculus,' Information
Processing, Proceedings of the International Con-
ference on Information Processing, 1959, UNESCO,
Paris, 1960, pp. 265-273.

Green, B. F., Jr., 'Computer Languages for Symbol
Manipulation,'" IRE Trans. on Human Factors in
Electronics, Vol. HFE-2, No. 1, March 1961, pp. 3-8;
Reprinted in IRE Trans. on Electronic Computers,
Vol. EC-10, No. 4, December 1961, pp. 729-735.

Gullahorn, J. T., and J. E. Gullahorn, "A Computer
Model of Elementary Social Behavior,'" Behavioral
Science, Vol. 8, No. 4, October 1963.

Hormann, A. M., "Programs for Machine Learning,'" Info.
& Control, Vol. 5, No. 4, December 1962, pp. 347-367.

Kemeny, J., et al., Symbolic Work on High Speed Com-
puters, Dartmouth Mathematics Project Report No. 4,
June 1959,

Kister, J., et al., "Experiments in Chess," J. ACM,
Vol. 4, No. 2, April 1957, pp. 174-177.

Kochen, M., "Adaptive Mechanisms in Digital 'Concept'
Processing,' Discrete Adaptive Processes--Symposium
and Panel Discussion, AIEE, New York, 1962, pp. 50-58.

Laughery, K. R., and L. W. Gregg, "Simulation of
Human Problem-Solving Behavior," Psychometrika,
Vol. 27, No. 3, September 1962, pp. 297-306.

Lindsay, R. K., '""The Reading Machine Problem,'" Un-
published Ph.D. dissertation, Carnegie Institute
of Technology, Pittsburgh, Pennsylvania, June 1961.

Markowitz, H. M., B. Hausner, and H. W. Karr,
SIMSCRIPT: A Simulation Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey, 1963.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

-XxXxiv~

McCarthy, J., "Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part
I," Communications of the ACM, Vol. 3, No. 4,
April 1960, pp. 184-185.

McCarthy, J., "Programs with Common Sense,' Mech-
anisation of Thought Processes, Her Majesty's
Stationery Office, London, 1959, pp. 77-84.

McCarthy, J., et al., LISP 1.5 Programmer's Manual,
MIT Computation Center and Research Laboratory of
Electronics, Cambridge, Massachusetts, 1962.

Newell, Allen, A Guide to the General Problem-Solver
Program GPS-2-2, The RAND Corporation, RM-3337-FR,
February 1963.

Newell, Allen, "Documentation of IPL-V,'" Comm. ACM,
Vol. 6, No. 3, March 1963, pp. 86-89.

Newell, A., and J. C. Shaw, ''Programming the Logic
Theory Machine,' Proceedings of the Western Joint
Computer Conference (1957), Institute of Radio
Engineers, New York, 1957, pp. 230-240.

Newell, A., J. C. Shaw, and H. A. Simon, "Empirical
Explorations of the Logic Theory Machine: A Case
Study in Heuristics,'" Proceedings of the Western
Joint Computer Conference (1957), Institute of
Radio Engineers, New York, 1957, pp. 218-230.

Newell, A., J. C. Shaw, and H. A. Simon, 'Chess
Playing Programs and the Problem of Complexity,"
IBM J. Res. & Develop., Vol 2, No. 4, October 1958,
pp. 320-335.

Newell, A., J. C. Shaw, and H. A. Simon, "Report on
a General Problem-Solving Program,' Information
Processing, Proceedings of the International Con-
ference on Information Processing, 1959, UNESCO,
Paris, 1960, pp. 256-264.

Newell, A., and H. A. Simon, ''The Logic Theory
Machine: A Complex Information Processing System, "
IRE Trans. Info. Theory, Vol. IT-2, No. 3, September
1956, pp. 61-79.

Newell, A., and H. A. Simcn, ''The Simulation of Human
Thought," Current Trends in Psychological Theory,
University of Pittsburgh, 1961, pp. 152-179.

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

=-XXXV=

Newell, A., and H. A. Simon, ''GPS, A Program that
Simulates Human Thought,' Lernende Automaten,
H. Billings (ed.), Oldenbourg, Munich, 1961.

Newell, Allen, and F. Tonge, "An Introduction to
Information Processing Language-V,'" Comm. ACM,
Vol. 3, No. 4, April 1960, pp. 205-211.

Perlis, A. J., and R. Iturriaga, "An Extension to
ALGOL for Manipulating Formulae,' Proceedings of
ACM Working Conference on Mechanical Language
Structures, August 1963 (to be published in Comm.
ACH) .

Reiss, R. F., "The Digital Simulation of Neuro-
Musclar Organisms,' Behavioral Science, Vol. 5,
No. 4, October 1960, pp. 343-358.

Samuel, A, L., "Some Studies in Machine Learning
Using the Game of Checkers,'" IBM J. Res. & Develop.,
Vol. 3, No. 3, July 1959, pp. 210-229.

Selfridge, 0. G., "Pattern Recognition and Modern
Computers,'" Proceedings of the Western Joint Com-
puter Conference (1955), Institute of Radio Engi-
neers, New York, 1955, pp. 91-93.

Shaffer, S. S., "Current Status of IPL-V for the
Philco 2000 Computer (June 1962)," Comm. ACM, Vol.
5, No. 9, September 1962, p. 479.

Shaw, J. C., A. Newell, H. A. Simon, and T. 0. Ellis,
"A Command Structure for Complex Information Pro-
cessing,'" Proceedings of the Western Joint Computer
Conference (1958), Institute of Radio Engineers,
New York, 1959, pp. 119-128.

Simon, H. A., "Experiments with a Heuristic Compiler,"
J. ACM, Vol. 10, No. 4, October 1963, pp. 493-506.

Stefferud, Einar, The Logic Theory Machine: A Model
Heuristic Program, The RAND Corporation, RM-3731-CC,
June 1963.

Stone, P. J., and E. B. Hunt, "A Computer Approach to
Content Analysis: Studies Using the General Inquirer
System,' 1963 Spring Joint Computer Conference,
Spartan, Baltimore, Maryland, 1963, pp. 241-256.

56.

57.

58.

59.

60.

61.

62.

-XXXVi-

Tonge, F. M., "Summary of a Heuristic Line Balancing
Procedure," Management Science, Vol. 7, No. 1, October
1960, pp. 21-42.

Wang, H., "Toward Mechanical Mathematics," IBM J.
Res. & Develop., Vol. 4, No. 1, January 1960, pp. 2-22,

Weizenbaum, J., "Knotted List Structures,' Comm. ACM,
Vol. 5, No. 3, March 1962, pp. 161-165.

Weizenbaum, J., "Symmetric List Processor,'" Comm. ACM,
Vol. 6, No. 9, September 1963, pp. 524-544.

Yngve, V. H., "A Programming Language for Mechanical
Translation," Mechanical Translation, Vol. 5, No. 1,
July 1958, pp. 25-41.

Yngve, V., COMIT Reference Manual, MIT Press,
Cambridge, Massachusetts, 1962.

Introduction to COMIT Programming, Research Laboratory

of Electronics and MIT Computation Center, MIT Press,
Cambridge, Massachusetts, 1961.

Part One

THE ELEMENTS OF IPL PROGRAMMING

1.0 LISTS AND ROUTINES

In IPL, everything is written in the form of lists:
programs are lists of instructions; data are lists of
symbols. Lists are written vertically on the coding sheet,
as shown below. The name of the list is put in the NAME
field and the symbols on the list are written in sequence
down the sheet in the SYMB field. For example, if we wish
to put the symbols, S1, S3, S4, on a data list, and to
name the list L1, we write:

NAME PQ SYMB LINK COMMENTS
L1 0
S1
S3
S4 0
Symbols in IPL-V are written as a character followed by
up to four digits.

Notice that the first symbol of the list is written
on the line below the line where the name is written;
also, that a termination symbol, 0, is written in the LINK
field of the last line of the list. The 1list, L1, when
it is stored inside the IPL computer will consist of four

cells, corresponding to the four lines on the coding sheet;
the address of the first cell will be L1. (More pre-
cisely, since L1 is a relative address, the first cell
will be at the address into which the symbol L1 is trans-
lated when the list is loaded into the computer.) The
addresses of the other cells are not specified by the
coder, but after loading, the LINK of each cell in the
list will contain the address of the following cell in the
list. The contents of each cell of the list, therefore,
consists of four parts: P and Q, the prefixes; SYMB, the
symbol in the cell; and LINK, the name of the next cell on
the list. On the coding sheet, the NAME, SYMB, and LINK
fields all hold IPL symbols which become addresses inside
the computer.

3

After loading, data lists can be processed by means of
routines. A routine has a name, say R1l, and has inputs and out-
puts. Suppose that Rl is a routine that will find the last sym-
bol on a list. This means that Rl takes as input the name
of a list (say L1, the list we just discussed), and pro-
vides as output the last symbol on the list (in this case,

S4). Suppose, further, that we wanted to store the last
symbol of L1 in a cell, WO. Then on the coding sheet we

would write:

NAME PQ SYMB LINK COMMENTS

10 L1 Input name of list, L1.
R1 Find last symbol on list.
20 WO Output last symbol to WO.

Each line on this coding sheet is an instruction. The
first instruction, 10L1, makes the symbol L1 the input to
the process. The code, P = 1, indicates that the symbol

is an input, and the code, Q = 0, indicates that the symbol
we are designating is Ll. The second instruction is really
OOR1l, but we do not need to write the zeros in the PQ
field. P = 0 indicates that a routine is to be executed,
and again, Q = 0 shows that the name of the routine is RI.
Finally, the instruction 20WO puts the output of R1--the
symbol that Rl has found at the end of list Ll--into cell
WO. The P = 2 indicates that the output symbol is to be
put in a specified cell, and the Q = 0 shows that the name
of the cell is WO.

In many cases we do not know the name of the list
directly, but only know what cell the name is in. In fact,
indirectness of reference is the rule rather than the
exception, since the lists we wish to process usually will
themselves have been found as the result of prior proces-
sing. Suppose, for example, we know that the last symbol
on list L1 is itself the name of another list (that is,
the list S4), and that we wish to put the last symbol on

this list in W1l. To do this, we do not need to know the
name, S4, as long as we know Ll1. For, after executing
the program described above, we will have the symbol S&
in cell WO (although we do not know what this symbol is;
only where it is) and can then proceed as follows:

NAME PQ SYMB LINK COMMENTS

11 WO Input 1WO.
R1 Find last symbol on list.
20 Wl Output to WI.

The first instruction, 11WO, again provides an input
symbol, but the Q = 1 indicates that the input is the sym-
bol contained in WO, and not the symbol WO itself, as
before. Once we have provided the input symbol (it would
be S4 in our example), we can proceed by executing R1
(O0R1) and putting the result in W1 (20Wl).

In this example, the symbol in WO is only an inter-
mediate product, and we might have no need for it except
to obtain the final result in Wl. Since inputs and
outputs of all routines are held in the same cell, this
symbol does not have to be moved out and back in again.
Instead, we simply execute the second Rl on the output of
the first:

NAME PQ SYMB LINK HO COMMENTS

10 L1 0 Input L1.
R1 L1l Find last symbol of LI1.
R1 S4 Find last symbol of
sublist (say, B2).
20 w1l B2 Output to Wl.
0

This is an essential point: Each routine finds its
inputs and places its outputs in the same fixed place.
This fixed cell is called the communication cell, and its
name is HO. (The symbols naming IPL-V system cells all
have the character H or W.) In the coding above, we
have shown in the column labeled HO the symbol in HO

just before execution of the instruction. The O means that

-5~

HO is empty. Thus, the second Rl was able to take as in-
put the output of the first Rl--i.e., S4--without having
to move or adapt output to input. In terms of the com-
munication cell, HO, we can state more precisely what the
first three P codes mean:

If P = Execute routine S (the meaning
of S will be explained below);

P =1, Put S in HO;

P = 2, Put the symbol now in HO in the
cell S.

We use S to stand for the symbol that P operates on.
We have seen from the examples already given that S de-
pends on the code in Q. S is called the designated symbol
of the instruction. It is obtained by the operation of
Q on the symbol in the SYMB field of the instruction:

I
(=)
L

If Q = 0, Take SYMB as S;
Q = 1, Take the symbol in the cell
named SYMB as S;
Q = 2, Take the symbol in the cell

whose name is in the cell
named SYMB as S.

We will often indicate a designated symbol in the text of
this manual by writing the Q code, followed by a symbol;
e.g., 1WO to indicate the symbol in WO. Thus, to illus-
trate the range of designation possible, in the two cells
shown below, OWO is WO, 1WO is S5, and 2WO is S6. Since
1S5 is also S6, 2WO is identical with 18S5.

NAME PQ SYMB LINK COMMENTS

WO S5 0

S5 S6 0

A routine can have more than one input or output--in

fact, it can have any number of either. The routine J64,
for instance, inserts a symbol on a list after another
symbol. (J64 is a basic IPL-V process. All basic processes
are named by symbols beginning with J.) J64 has two in-
puts: the symbol to be inserted, and the location in the

-6-

list after which it is to be inserted. We need names for
talking ébout multiple inputs and outputs, and shall use
(0) to stand for the first input, (1) to stand for the
second, and, generally, (n) to stand for the n+l input.
Thus, we would define J64 more formally as:

J64: 1Insert (0) after the list cell named (1).

To illustrate, suppose we want to insert K5 in L1,

changing the original L1 into:

NAME PQ SYMB LINK COMMENTS

L1 0
K5
S1
S3
S4 0
A comparison with the original L1 shows that we can
make this change by executing J64 with (0) = K5 and (1)

= L1. On the coding sheet we write:

NAME PQ SYMB LINK HO COMMENTS

10 L1 0 Input L1,
10 K5 L1 Input K5,
J64 K5 Insert K5 on LI1.
0

Two symbols are put successively into HO; hence, HO must

be capable of holding not just a single symbol, but a whole
stack of symbols (since it is permissible to define routines
having any number of inputs). In IPL, cells capable of
holding stacks of symbols are called storage cells, or

push down cells. A storage cell is constructed like a
cafeteria well for holding plates--as each new plate is
put in the top of the well, all the others are pushed down,
so that the only apparent change is that a new plate sits
on top. When this top plate is removed, the one just be-
low it '"pops up" and becomes the new plate on top. The
input and output operations treat HO as a storage cell.

In the program written just above, 10L1 put L1 into HO

-7~

and pushed down the symbol that had been in HO. Then
10K5 put K5 in HO after pushing down L1 (so that only K5
is seen in HO, above). If we refer back to our notation
for inputs, we see that (0) is the symbol in HO itself
(at the top of the stack), (1) is the symbol beneath (0),
(2) is the symbol just beneath (1), and so on.

Suppose we do not yet have the routine R1l, and need
to create it. The code for Rl will be the list of in-
structions whose name is R1. We construct a list of
instructions, with name R1l, that will carry out the re-
quired processing, provided that the inputs are in HO at
the outset, and that will put the outputs in HO when it
is complete. To code Rl we need a basic operation, J60,
that allows us to move down a list in order to examine
the contents of each cell in sequence:

J60: Locate the next symbol after cell (0).
The output of J60 (placed as (0)) will be the name

of a cell. Suppose we write L1 again, giving names to all
the cells (these are assigned automatically on loading)

to show the links explicitly:

NAME PQ SYMB LINK COMMENTS

L1l 0 9-1 (The symbols 9-1, 9-2,
9-1 Sl 9-2 and 9-3 are called
9-2 S3 9-3 local symbols.)

" 9-3 S4 0

If the input to J60 is L1, then the output will be
9-1, the name of the next cell on the list. If the input
is 9-1, then the output will be 9-2. Thus, repeated ap-
plications of J60 provide access to the successive symbols
on a list. But what if 9-3 is the input to J60? A stand-
ard convention is needed to recognize the end of a list,
and to communicate this information to the coder. IPL uses
a special cell, H5, called the test cell, for this purpose.
The cell H5 can contain either of two symbols, plus (+)
or minus (-). 1In executing J60, a + would be placed in

-8-

H5 if the next cell existed, and a - would be placed in
H5 if the next cell didn't exist (i.e., if the LINK of
the input to J60 were 0). Thus, the modified definition

of J60 is:
J60: Locate the next symbol after cell (0).
Set H5+ if it exists; if not, set H5-
and leave (0) unchanged.

Now we can write the routine, R1l, for finding the

last symbol on a list:

NAME PQ SYMB LINK COMMENTS

R1 J60 9-5 Locate next symbol.
9-5 70 9-7 R1 Repeat unless end of list.
9-7 52 HO 0 Input last symbol on list.

Let us trace this routine through, using L1 as the
input to J60:

9-5 70 9-7 R1 H5 set - , because no more
cells on list.
Branches to 9-7, because H5-.

Produces output.

- 9-7 52 HO 0

H5 NAME PQ SYMB LINK HO COMMENTS
+ R1 J60 9-5 L1 Input (0) = LI1.
+ 9-5 70 9-7 R1 9-1 The first list cell is 9-1.
+ RI1 J60 9-5 9-1 Since H5+, recycles.
+ 9-5 70 9-7 R1 9-2 The second list cell is 9-2.
+ Rl J60 9-5 9-2 Since H5+, recycles.
+ 9-5 70 9-7 Rl 9-3 The third list cell is 9-3.
+ RI1 J60 9-5 9-3 Since H5+, recycles.
- 9-3

9-3

S

~

This trace shows all the steps in carrying out R1.

J60 replaces the name of a cell on the list with the name
of the next cell. It sets H5+ if the next cell exists,
which is the case until (0) becomes 9-3. The next instruc-
tion, 70 9-7, has a P-prefix, 7. This prefix transfers
control conditionally upon the symbol in H5: 1If H5 is + ,
then the name of the next instruction to be performed is

in LINK (as usual). If H5 is - , however, the name of the
next instruction--in this case 9-7--is the designated
symbol, S. In our example, Rl is in LINK of the transfer

-9-

instruction, so the routine loops back as long as H5 is + .
When H5 does become - , the end of the list has been
reached, and the last location is stored in HO. Then the
instruction named by the designated symbol, 9-7, is executed.
To complete R1, this final instruction must replace the
name of the final list cell (9-3) by the name of the symbol
it contains (here, S4). P =5 is a prefix that does just
this: It replaces the symbol in HO by the designated symbol,
S. It is like P = 1, the input prefix, except that it does
not push down HO, but destroys the symbol previously in HO.
In the present example, 2HO designates the symbol we want
(the symbol S4 in the cell 9-3, whose name is in the cell
named HO), and 52HO produces the required output. We
terminate the routine like any list, with the termination
symbol for LINK.
Consider a similar routine:
J77: TEST if (0) is on list (1). Set H5+
if it is; set H5- if it isn't.
Here the result is simply a yes or no, and the test

cell is used to communicate this result. The P = 7 pre-
fix makes it easy to convert this signal into a conditional
transfer of control. To accomplish J77 we need J2, the test
of identity between two symbols:

J2: TEST if (0) = (1).

(We can omit the statements about H5 in the definition of
this routine, since all TEST routines set H5+ if they are satis-
fied, and set H5- otherwise. Likewise, it is understood from
the definition of TEST that J2 will remove both (0) and (1)
from HO.)
To do J77, we shall iterate through the list, testing
if each symbol on the list is the desired symbol:

-10-

NAME PQ SYMB LINK COMMENTS

J77 40 WO Push down WO.
20 wo Output test symbol.
9-2 J60 Locate next list symbol.
70 9-1 Transfer at end of list,
12 HO Input list symbol.
11 WO Input test symbol.
J2 Test for identity,
70 9-2 Iterate if unequal.
9-1 30 WO Pop up WO.
30 HO 0 Discard cell name in HO.

The first problem we face in coding J77 is the need
for a working cell to hold the symbol (0). We choose the
cell WO, but some other routine may already be using WO
for a different purpose, and have a symbol in it. If we
simply perform 20WO, we will destroy this information.

WO is to be used as a public working cell, and to avoid

loss of information it is declared safe--that is, any routine
that uses WO must take care not to destroy the information
already there. Our interpretive system is so arranged that
the only routines that could have symbols in WO when J77

goes to use it are the routines "above'" J77--that is, the

routines that are using J77 as a subroutine (as J77 is
using J60 as a subroutine). Hence, it is all right to

use WO within J77 as long as the symbols that are found

in WO and its push down list at the beginning of execu-
tion of J77 are left unchanged at the end. WO and the
other public working cells are push down cells, so that

we can save the symbol in WO simply by pushing it down
prior to doing 20WO. P = 4 is the operation that does
this: It pushes down the cell whose name is the designated
symbol (here, OWO). This operation leaves the same symbol
in WO, but also puts a copy right beneath it on WO's push
down list. Now, although the symbol in WO is destroyed
when 20WO occurs, the copy right beneath it is still there,
and when a pop up occurs--the 30WO at the end of the
routine--this original symbol is returned to the working

-11-

cell (WO). The rest of the routine J77 is straightforward:
Having put (0) in WO, the name of the list, formerly (1),
is now (0) and we begin a loop, using J60 to advance down
the list and J2 to test if the symbol in the list cell is
the desired symbol, 1WO. At each passage around the loop,
the input (1) to J2 is the symbol in the list cell whose
name has been placed in HO by J60. This symbol is 2HO,
since HO holds the name of the cell. The input (0) to J2
is the symbol we wish to test for, which is designated 1WO.
The latter is brought into HO by the operation 11WO.
Notice that after the test has been performed, both of these
inputs have been consumed and the name of the list cell is
again in HO, ready for the next operation of J60. Finally,
we do a 30HO to discard the list cell name left as (0)
from our last passage around the loop.

By now we have introduced a number of P and Q opera-
tions. The only P prefix we have not yet introduced is
P = 6, which, like P = 2, stores (0) in cell S, but does
not pop up HO. We have also defined several processes.
All processes whose names begin with J form a basic set
from which all other processes are constructed. The J's
and their complete definitions are given in Part Two.
For the first few examples in Part One, we will explain
each of the new J's we use; but later, as we proceed to
more complex examples, we will assume an acquaintance
with Part Two.

1.1 PROBLEMS

PROBLEM 1

Code the list named X1 which represents the days of
the week in the order in which they occur, with Sunday
being the first on the list. Use the symbol D1 for Sunday,
D2 for Monday, etc.

-12-

PROBLEM 2

Code the list named X2 which represents the phrase,
THE MORE THE MERRIER. Use the symbol Tl to represent the
word THE, the symbol M1 for MORE, and the symbol M2 for
MERRIER. The first word of the phrase should be first on
the list.

PROBLEM 3

Code the list named X3 which represents stops on the
route of a commercial airline flight originating at New
York, stopping at Chicago and Denver, and terminating at
Los Angeles. Invent symbols to represent the four cities,
and show the correspondence between cities and symbols in
the COMMENTS field of the coding sheet. The list should
be ordered, with New York appearing as the first city on
the list, Los Angeles as the last.

PROBLEM 4

Code the list named X4 which represents the string
A+B=A+C. Represent the character A by the IPL-V symbol
A0 (A-zero), the character + by the symbol +0, the
character = by the symbol =0, etc.

PROBLEM 5

The examples below show the effect of P = 1 through
P=6forQ=0, Q=1, and Q = 2. The lists and cells
involved in the instruction are shown both before and
after the execution and the symbol designated by the Q
code is displayed as S. There is an obvious error in one
of the examples after 5F. You should be able to spot it.

Instruction Before Execution S After Execution
P Q SYMB NAME SYMB LINK NAME SYMB LINK
10 X1 HO X2 0 X1 | HO X1
5A X2 0
Input X1 X1 X3 0 X1 X3 0
11 X1 HO X2 0 X3 | HO X3
5B X2 0
Input 1X1 X1 X3 0 X1 X3 0
X3 Y1 0 X3 Y1 0

-13-

5C

5D

SE

5F

5G

5H

51

Instruction

Before Execution

After Execution

P Q SYMB NAME SYMB LINK S NAME SYMB LINK
1 2 Xl HO X2 0 Y1l | HO Y1l
X2 0
Input 2X1 X1 X3 0 X1 X3 0
X3 Y1 0 X3 Y1l 0
Y1 Y2 0 Y1 Y2 0
2 0 X1 HO Y1 X1 | HO X2 0
X2 0
Output X1 X3 0 X1 Y1 0
to X1
21 X1 HO Y1 X3 | HO X2 0
X2 0
Output X1 X3 0 X1 X3 0
to 1X1 X3 Al 0 X3 Y1l 0
2 2 X1 HO Y1 0 Al | HO 0 0
X1 X3 0 X1 X3 0
Output X3 Al 0 X3 Al 0
to 2X1 Al B4 0 Al Y1 0
30 X1 X1 X3 X1 | X1 X4 0
X4 0
Restore X1
31 X1 X1 X3 X3 | X1 X3
X4 0 X4 0
Restore 1X1 X3 X5 X3 X6 0
X6 0
3 2X1 X1 X3 X5 X1 X3
X4 0 X4 0
Restore 2X1 X3 X5 X3 X5
X6 0 X6 0
X5 X7 X5 X8 0
X8 0

-14-

5J

5K

5L

5M

5N

5P

5Q

Instruction

Before Execution

After Execution

P Q SYMB NAME SYMB LINK S NAME SYMB LINK
4 0 X1 X1 X3 X1 | X1 X3
X4 0 X3
Preserve X1 X4 0
41 X1 X1 X3 X3 | X1 X3
X4 0 X4 0
Preserve 1X1 X3 X5 X3 X5
X6 0 X5
X6 0
4 2 X1 X1 X3 0 X5 | X1 X3 0
X3 X5 0 X3 X5 0
Preserve 2X1 X5 X7 0 X5 X7
X7 0
50 X1 HO Y4 X1} HO X1
Y2 0 Y2 0
Replace X1 X3 0 X1 X3 0
with X1
51 X1 HO Y4 X3 | HO X3
Y2 0 Y2 0
Replace X1 X3 0 X1 X3 0
with 1X1 X3 Y1 0 X3 Y1 0
52 X1 HO X1 0 X3 | HO X3 0
X1 X3 0 X1 X3 0
Replace X3 X5 0 X3 X5 0
with 2X1
6 0 X1 HO Y4 X1} HO Y4
Y5 0 Y5 0
Store in X1 X1 X3 0 X1 Y4 0
or
Copy to X1

-15-

Instruction Before Execution S After Execution
P Q SYMB NAME SYMB LINK NAME SYMB LINK
61 Xl HO Y4 X3 | HO Y4
5R Y5 0 Y5 0
Store in 1X1 X1 X3 0 X1 X3 0
X3 X5 0 X3 Y4 0
6 2 X1 HO Y4 X5 | HO Y4
Y5 0 Y5 0
58 Store in 2X1 X1 X3 0 X1 X3 0
X3 X5 0 X3 X5 0
X5 X6 0 X5 Y4 0

Show the state of the lists in Problems 5A through 5S
after the second execution of each instruction. You need
show only those lists which are changed by the second execu-
tion of the instruction in each example. Label the solutions
5A, 5B, etc.

PROBLEM 6

For each of the problems, 5A through 5S, code the
instruction or instructions needed to return the lists from
the ""After Execution'' state shown in the problem, to the
"Before Execution'' state. Label the solutions 6A, 6B, etc.

-16-

2.0 A COMPLETE PROGRAM

We can now take a simple problem and carry it all
the way through to assembly and execution on the computer.
The routines and data are shown on a facsimile of the
coding sheet to illustrate exactly how a deck suitable for
running would look. An assembly listing of the complete
program and a trace of its execution is also included.

Suppose we have a number of lists like KI1 below.

Each 1list has an unknown number of distinct symbols on it,
each distinct symbol occurring on the list any number of
times and in any order. The list K1, for example, has
only three distinct symbols: Al, Bl, and Cl. There is
one occurrence of the symbol Cl, three occurrences of B1,
and two of Al.

T s
Y i
COMMENTS g% NAME gpo SYmBs LINK
§: OOOOI111111111222222222233333333334ﬁ24444444555555“55566
$54678901234567890123456789012345678901/234567)8[90[12345 7890 112
DATA HEADER. TYPE=5, Q=L1. I o1 | |
THE LIST K1. 1 0 |
I ql |
| Bl |
[il i
I All
I Bl Rl
| | '
| | ‘

We wish to write a routine named F1l which will accept
the name of a list like K1 as input and will produce as
output a new list that contains only one occurrence of
each distinct symbol found on the input list. For example,
if F1 were to operate on the list K1 above, it would pro-
duce a new list with an internal name, say 777, that
looked like this:

-17-

NAME PQ SYMB LINK
777 0
Bl
C1
Al 0
The routine Fl needs to be able to create a new list
each time it is executed. The process named J90 will do
this, by removing a cell from a special list of cells re-
served by the system for this purpose.
J90: Get a cell from the available space list,
H2, and leave its name in HO.
The cell named in HO is empty, containing O in both SYMB
and LINK. The name of this cell is an intermnal symbol,
which is simply the decimal address of the cell. This
cell will be the head of the new list which F1 will build;
additional list cells will be added to it as necessary

by the process named J66:

J66: Insert the symbol (0) at the end of

list (1) if not already on it. 1If

the symbol (0) already exists on list

(1), J66 does nothing.
Given J66, the task of coding Fl1 becomes quite simple: We
create an empty output list with J90 and attempt to add
to it all of the symbols on the input list, using J66.
J66 will refuse to put more than one occurrence of each
distinct symbol onto the output list. The code for F1l is
shown below; it is preceded by a header card with TYPE = 5
and Q = 0, which signals the system that the cards follow-
ing the header card are to be loaded into the computer as
routines. A different header must precede data lists,
since the P and Q codes of data and routines are treated
differently by the loading processes. Cards with TYPE =
1 are comments; these cards are printed on the assembly
listing, but are otherwise ignored by the initial loader.
(The comments can extend across the entire card, even

though we have not done so in the example below.)

-18-

T S
Y| |
COMMENTS E% NAME [B|PQ| SYMB § LINK
%6’%2000”“”“a1222222222233333333334424444444555555255566‘
@ 78901234567890!234567890!234567890153456789012345578901;

RAUTINE HEADER, TYPE=5, Q=0. 51 ! 00] | |
F1---PRPDUCE AN @UTPUT LIST (0) [1f | |
CONTAINING @NLY $NE PCCURRENCE @F (1K | , ,
EACH DISTINCT SYMBAL ¢N THE INPUT [L | | |
LIST (0). THE RPUTINE F1 IS 1% | . |
MARKED TP TRACE CPNDITIPNALLY WITH] | ! ;
Q=4 IN ITS FIRST INSTRUCTI@N. 189 | |
CREATE AN EMPTY @UTPUT LIST. 1 D4TI90 |
PRESERVE WO. ! , OWD |
WO HPLDS NAME @F PUTPUT LIST. | Of |
LOCATE NEXT CELL OF INPUT LIST. O- 1 J60 I
GO TP 9-2 IF NP NEXT CELL. | 700-2 41
INPUT THE SYMBL IN THE CELL. | 12HD |
INPUT THE NAME ¢F THE @QUTPUT LIST,| [1 10 |
REVERSE THEIR P@SITION IN HO, AND I b |
ADD THE SYMBAL T$ THE @UTPUT LIST | 766 KPp-1
IF IT IS NAT ALREADY ¢N IT--- 189 | | |
RETURN TP 9-1 IN EITHER CASE. 1K | | |
PUT THE NAME @F THE bUTPgT LIST or2 | 1M I
IN HO AND RESTORE WO BEFORE | 0 |
QUITTING. 169 | i |

l | |

! l |

! |

! | ‘

The routine El1 below is a simple executive routine
whose main function is to place the name of the input list
K1 into HO, execute the routine F1l, and print the output
list produced by Fl. We have marked El to trace uncon-
ditionally by making Q = 3 in its first instruction. As
each instruction of El1 is executed, the monitor system
prints out pertinent information, such as the location
of the instruction, the contents of HO, the sign of H5,
etc. Since Fl is marked to trace conditionally, with
Q = 4, it will also trace because the routine which exe-
cutes it (E1l) is tracing.

-19-

T| S
Y| |
COMMENTS g% NAME 3Po SYMB § LINK
?é(0000|111|1||11222222222233333333334~£4444444555555555566§
451 67890123456 78901234567890123456 7890l \2)345678901 2345,\78901\;
ROUTINE HEADER. TYPE=5, Q = 0 50 | 0q | |
El---EXECUTIVE ROUTINE. 1K | | |
EXECUTE F1 WITH THE LIST K1 | l | ,
AS INPUT AND PRINT THE 1KY | , |
RESULTING QUTPUT LIST. 15 | , |
Q=3 SAYS TRACE THIS RPUTINE. 1 T3RT i
EXECUTE F1 AND [1
PRINT THE PUTPUT LIST. | 1151 q
| I
1 | |

Figure 1 is an assembly listing of the complete input
deck, produced by the IPL-V system as the deck was being
loaded for execution. First comes a Type-9 card, which
signals the start of the program. (The various Type cards
control the loading process.) This is followed by some
Type-1 cards (comment cards) which describe the program but
have no effect on the loading. Type-1 cards may appear
anywhere in a deck. Next come several Type-2 cards which
declare what regional symbols will be used: the first
Type-2 card, for example, states that ten symbols beginning
with the letter A may be used, AO through A9. The decimal
integers to the left show that cell 64 represents AO, 65
represents Al, etc. Next comes a Type-5 card with Q = 0,
indicating that a set of routines will follow immediately.
The data are preceded by a similar Type-5 card, except with
Q = 1 to signal data. The assembly listing shows each card
of the input deck and displays the cell NAME, P, Q, SYMB,
and LINK corresponding to it. The final card of the deck is
the start card, a Type-5 card with a regional SYMB, indi-
cating, in this case, that interpretation is to begin at
the routine named El.

Notice that E1 has Q = 3 in its first instruction
and that F1 has Q = 4 in its first instruction. Q = 3

-20-

TYPE=9, FIRST CARD. 9
EXAMPLE RUN OF F1 TO ILLUSTRATE 1
ASSEMBLY LISTING AND TRACE. 1
THE A-REGION=10 CELLS» AO0-A9. 2 A 10
THE B-REGION=10 CELLS, 80-B9. 2 8 10
THE C-REGION=10 CELLS» CO-C9. 2 C 10
THE E-REGION=10 CELLS» EOQ-E9. 2 E 10
THE F-REGION=10 CELLS», FO-F9. 2 F 10
THE K-REGION=10 CELLSs KO-K9. 2 K 10
ROUTINE HEADER. TYPE=S, Q=0. 5 0
E1--—-EXECUTIVE ROUTINE. 1
EXECUTE F1 WITH THE LIST K1 1
AS INPUT AND PRINT THE 1
RESULTING OUTPUT LIST. 1
Q=3 SAYS TRACE THIS ROUTINE. El 13K1
EXECUTE F1 AND F1
PRINT THE OUTPUT LIST. J151 O
ROUTINE HEADER, TYPE=5, Q=0. 5 o]
F1--—-PRODUCE AN OUTPUT LIST (0} 1
CONTAINING ONLY ONE OCCURRENCE OF 1
EACH DISTINCT SYMBOL ON THE INPUT 1
LIST (0)e THE ROUTINE F1 IS 1
MARKED TO TRACE CONDITIONALLY WITH 1
Q=4 IN ITS FIRST INSTRUCTION,. 1
CREATE AN EMPTY OUTPUT LIST. F1 04J90
PRESERVE WO 40W0
WO HOLDS NAME OF OUTPUT LIST. 20wW0
LOCATE NEXT CELL OF INPUT LIST. 9-1 J60
GO TO 9-2 IF NO NEXT CELLe. 709-2
INPUT THE SYMBOL IN THE CELL. 12HO
INPUT THE NAME OF THE OUTPUT LIST» 11wo
REVERSE THEIR POSITION IN HOs» AND Jé
ADD THE SYMBOL TO THE OUTPUT LIST NI S=-1
IF IT IS NOT ALREADY ON [T==- 1
RETURN TO 9-1 IN EITHER CASE. 1
PUT THE NAME OF THE OUTPUT LIST 9-2 51w0
IN HO AND RESTORE WO BEFORE 30W0 0
QUITTING. 1
DATA HEADERe TYPE=5, Q=1 5 1
THE LIST Kl. K1 0
B1
C1
81
Al
Al
B1 0
START CARDe EXECUTE Ele 5 El
END OF LOADINGe. PROGRAM STARTS AT £l 13K1 124

NUMBER OF CELLS ON AVAILABLE SPACE=21858

Fig. l1--Assembly Listing of F1

-21-

64
T4
84

94
104

114

95
124
125

105
126
127
128
129
130
132
133
134

131
135

115
136
137
138
139
140
141

(o N e ol

[PURS OO~ ~NON SO
OO NOOOO &

[eReoNeoNoNeNoXo]
[eNoNeNoNe NN

OO Ww

O

115
105
24911

248650
24587
24587
24820
131

24574
24587
24766
24826

24587
24587

75
85
75
65
65
75

73
83
93

103
113

123

124
125

126
127
128
129
130
132
133
134
128

135

136
137
138
139
140
141

and Q = 4 mean the same as Q = 0 except they also cause
tracing, as explained above. The trace of El and F1 is
shown in Fig. 2. The information provided in the trace
is that shown in the previous examples: H5 (before exe-
cution of the instruction), the instruction, its address
(known as the CIA or Current Instruction Address), the
contents of HO (before execution of the instruction), and
the contents of the cell named in HO. The trace also
prints: an integer indicating the level at which the sub-
routine operates, indented for reading ease; the desig-
nated symbol, S; and H3, a data term that keeps a count
of the number of interpretive cycles that have been per-
formed. The computation of F1 is short enough so that
every instruction executed appears in Fig. 2.

2.1 PROBLEMS

PROBLEM 7

Code the Type-2 cards defining all the regional symbols
that would be needed if you were to load the lists X1, X2,
and X4 at the same time. (See Problems 1, 2, and 4, pp. 12,
13, for a description of all the symbols used in these lists.

PROBLEM 8

Code a set of Type-2 cards to define 100 symbols for
each of the letters and punctuation marks. Omit H, J, W,
and §, since they are specially defined by the system. Use
unspecified origins for the regions. Keypunch and keep
this deck of cards for use in running your future codes on
the computer. It will be adequate for any problem you will
be asked to code in these exercises.

PROBLEM 9

Code a new executive routine named E5 for the complete
program described in this section (§ 2.0). E5 should first
print the list KO, execute the routine F1 with KO as the
input list, then print the output list produced by Fl. Code
the list KO also, using only symbols defined by the Type-2
cards in the sample assembly listing, and precede KO with
a Type-5 data header. Provide a Type-5 start card to start
the program at the new execution routine, E5. Mark E5 for
trace.

-22-

LEVEL CIA

3 El
1 124
Fl
126
127
128
129
130
132
133
134
128
129
130
132
133
134
128
129
130
132
133
134
128
129
130
132
133
134
128
129
13C
132
133
134
128
129
130
132
133
134
128
129
131
135
125
148 0
8l
Cl
Al

NNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNA\JNNNNNNN

—

PROGRAM RAN TG COMPLETION.

H5 P Q SYMB LINK
+ 1 3Kl 124
+ 0 0Fl 125
+ 0 4 J9C 126
+ 4 C WO 127
+ 2 0 WO 128
+ 0 G J6V 129
+ 70131 130
+ 1 2 HO 132
+ 1 1 w0 133
+ 0 C J6 134
+ 0 0 J6O 128
+ 0 0 J60 129
+ 7 0 131 130
+ 1 2 HO 132
+ 1 1 WO 133
+ 0 C J6 134
+ 0 0 J6O 128
+ 0 0 J60 129
+ 7 0131 130
+ 1 2 HO 132
+ 1 1 w0 133
+ 0 0 J6 134
+ 0 0 J66 128
+ 0 C J60 129
+ 7 0131 130
+ 1 2 HO 132
+ 1 1 WO 133
+ 0 C Jé6 134
+ 0 0 J66 128
+ 0 0 J6C 129
+« 7 C 131 130
+ 1 2 HO 132
+ 1 1 W0 133
+ 0 0 J6 134
+ 0 C J60O 128
+ 0 0 J60 129
+ 7T 0131 130
+ 1 2 HO 132
+ 1 1 WO 133
+ 0 0 J6 134
+ 0 0 J66 128
+ 0 C J60O 129
- 7 0131 130
- 5 1 WO 135
- 3 C WO 0
-0 CJlst O

Fig. 2--Trace of El and Fl

-23-

S

81
148

Ccl
148

81
148

Al
148

Al
148

Bl
148

148

CONTENTS OF (0)

OOOOOOOOOQOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOO
-‘“‘OOO&bbooobJ‘&OOO&&#OOO&&-&OOO&&J‘OOOOJ\#OO&&#&&

COO0OTTFTOOOOO
——

[oNeoNeNaNals
et

POOO>»PTOOODPION
— - -

136
136
0
0
136
137
137
0
0
0
137
138
138
0
149
0
138
139
139
(o]
149
0
139
140
140
0
149
0
140
141

149

3.0 SIMPLE LIST PROCESSING

The heart of IPL coding is in the manipulation of
lists. This section is devoted to learning how to perform
these basic manipulations. It consists almost entirely of
a set of problems, since the techniques introduced so far
are sufficient.

A large number of basic processes which can be used
in composing routines is given in Part Two. All their
names begin with J, and, in fact, the letter J is reserved
for officially defined processes. The routines J60 to
J99 are all devoted to processing lists, and a few of
these (J60, J64, J66, J77) we have already used. Although
some of these J's could be coded as IPL routines (e.g.,
J77), they may be looked at as a complete complement of
primitive list processes. From now on, free use should
be made of processes listed in Part Two, except as they
are specifically prohibited in some of the problems for
learning purposes.

Already in coding J77 we faced the need for working
storage and introduced pushing and popping as appropriate
basic operations. 1In general, several working cells will
be needed. This will require a mass push down, a mass
transfer of symbols stacked in HO to the working cell,
and a mass pop up at the end. To make these housekeeping
operations easy, a set of cells, WO, W1, ..., W9, are set
aside as working cells, and basic J-processes are provided
for pushing, popping and storing. Thus, if three working
cells are needed one has available:

J22: Move (0), (1), and (2) to WO, W1, and W2,
respectively.

J32: Pop up WO, W1, and W2.

J42: Push down WO, Wl, and W2.

J52: Push down WO, W1, and W2; then move 0),
(1), and (2) to WO, W1, and W2, respectively.

-24-

For any other number of cells, similar processes are avail-
able--e.g., for WO through W6 there is J26, J36, J46, and
J56. Collectively there are forty such routines, which
may seem a great many. However, they only take fifty cells
to code, and since this is an interesting coding device in
IPL, it is worth illustrating. We give below the codes for
J22, J32, J42, and J52:

NAME PQ SYMB LINK NAME PQ SYMB LINK
J22 J21 J32 30 w2 J31
20 w2 0 J31 30 Wl J30
J21 J20 J30 30 WO 0
20 Wl 0

J20 20 WO 0

NAME PQ SYMB LINK NAME PQ SYMB LINK
J42 40 W2 J41 J52 J42 J22
J41 40 Wl J40 J51 J41 J21
J40 40 WO 0 J50 J40 J20

Each of these J's uses members of the same class to do
part of the task. They also show that one can exit from
a routine by executing a routine 'from the right'--that
is, by writing the name of a routine in LINK. Thus, J52
is a one-word routine: J&42 J22, which reads, ''Do J42, then
transfer to J22." Ultimately, of course, there comes a
routine which does not quit by transferring to another one,
but by having a 0 in the LINK, the standard termination
signal.

A number of terms have a special meaning in IPL
parlance. In Sec. 10. the term TEST was introduced with
a special meaning. Others, such as FIND, INSERT, DELETE,
are defined in Part Two (§% 5.0, and 9.2 through 9.7). For
example, to locate a symbol on a 1list means to produce the

name of the cell which contains the symbol. R62 is a
routine which locates the first occurrence of symbol (0)
on the list named by (1), sets H5+, and outputs the cell
name. Otherwise, H5 is set - and the output (0) names

-25-

the location of the last symbol on the list. The code
for R62, below, uses the working cell processes just in-
troduced. One of the Q codes below is wrong; can you spot
it?

NAME PQ SYMB LINK COMMENTS

R62 J51 Preserve WO and W1l before
using them as working cells,
and output the symbol to WO,
the list to WI.

9-1 10 Wl Start (or resume) search.
J60 Locate the cell holding next
symbol.
70 J31 Pop WO and W1 when no more
symbols. Quit with H5-.
20 W1 Save location to resume search.
12 W1 Input the new symbol.
11 wO Input symbol being sought.
J2 Test if symbols match.
70 9-1 Resume search at 9-1 if no
match.

11 W1 J31 Location of matching symbol
to HO, restore working cells,
and quit with H5+.

The erroneous Q-code is at 9-1. The instruction should be
11Wl, since we do not want to search the list W1 but the
list whose name is in the top cell of Wl.

3.1 PROBLEMS

PROBLEM 10

Recode R62 above using only one working cell. Let
WO hold the input character (0) and manipulate the HO
list so that it provides the storage formerly provided by
Wl.

PROBLEM 11

Code the routine R66--'""Insert the symbol (0) at the
end of list (1) if (0) is not already on list (1). Set
H5+ if (0) was added to the list, set H5- if (0) already
existed on the 1list (1)." J5, J51, J65, and J77 may be
useful in coding R66. (R66 differs from the primitive
J66 in that R66 sets H5; J66 does not.)

-26-

PROBLEM 12

The list named X6 consists of one occurrence each of only
three symbols, Al, S1, and Tl, in an unknown order. Code P32--
"Print X6 as a list, then substitute the symbol Bl for the
symbol Al, then delete the symbol T1 and print X6 again."

PROBLEM 13

The list named X7 contains three occurrences of the
symbol Al, and three occurrences of the symbol Bl, all in
unknown order. Code P33--"Print X7 as a list, replace the
first and second occurrences of Al with the symbol Cl, and
delete the third occurrence of the symbol Bl. Print X7
again."

PROBLEM 14

The list X8 contains one occurrence each of four sym-
bols in unknown order: S1, S2, Tl, T2. Code P34--"Delete
g1 if S1 occurs before Tl. 1If Tl occurs before S1, add
another Tl at the end of list X8. Print X8 as a list, be-
fore and after altering it."

PROBLEM 15

Code P65--"Substitute the symbol (0) for each occur-
rence of symbol (1) found on the list named by the symbol
(2)." Use J62.

PROBLEM 16

Code P66--'""Replace the final occurrence of the symbol
(1) on the list named (2) with the symbol (0), and set
H5+. If the symbol (1) does not occur on the list, in-
sert symbol (0) at the end of the list and set H5-."

PROBLEM 17
Code P67--"Test if the last symbol on the list named
(1) is the symbol (0)." Remember that "test' has a tech-

nical meaning in IPL-V. A test routine's only output is
the sign of H5.

PROBLEM 18
Code P68--"Insert the symbol (0) ahead of all other
symbols on the list named (1)." P68 inserts symbol (0)

so that it is the first symbol on the list (1), not in
the head of the list (l1). Only one insertion is requested.

PROBLEM 19

Code P69--"Insert the symbol (0) immediately ahead of
each occurrence of the symbol (1) on the list named (2)."

-27-

PROBLEM 20

Code P70--"Insert the symbol (0) immediately after
each occurrence of symbol (1) on the list named (2)."

PROBLEM 21

Code P71--"Delete all occurrences of symbol (0) from
the list named (1). Set H5- if the symbol did not occur
on the list, otherwise set H5+.'" Do not use J69.

PROBLEM 22

Code P72--"Copy the list named (1). Divide the new
copy of the list after the first occurrence of the symbol
(0), which is guaranteed to occur on the list. Output the
name of the new copy in (0) and the name of the remainder
of the copy in (1)." Use J75.

PROBLEM 23

Code P73--"Join the list named (0) to the end of the
list named (1) to make one long list. Print the combined
list." (The head of list (0) should not become part of
the combined list; only its list cells are added to list

(1).)

PROBLEM 24
Code P74--'"Reverse the order of the symbols on the
list named (0).'" P74 should erase any lists it creates.

After P74, the list may be composed of the same or dif-
ferent list cells, depending on the method used.

PROBLEM 25

Code P75--'"Delete from the list named (1) all occur-
rences of each symbol on the list named (0). HS5 is safe
over P75." P75 must preserve H5 on input and restore it
before quitting, in order to make H5 safe over the routine.
Assume that a given symbol may occur only once on list (0)
but may occur several times on list (1).

-28-

4.0 LIST STRUCTURES

The basic process J77 tests if a symbol is on a simple
list. Suppose we complicate matters a little, and have a
list of lists, such as L5, below:

NAME PQ SYMB LINK

L5 0
L10
L1l
L12 0

L10 0
Sl
S2
S3 0

L11 0
S4
S5
S6 0

L12 0
S7
S8
S9 0

We want to find if a given symbol is on any of the three
sublists, L10, L1l, or L12. We can define a routine, R2,

as follows:

R2: Test if (0) is on any of the sublists of
list (1).

Given J77, the code is almost immediate.

NAME PQ SYMB LINK COMMENTS

R2 J50 Output the test symbol to
WO, pushing down WO.
9-2 J60 Locate the next sublist.
70 9-1 If no more sublists (H5-),
exit from R2 with H5-.
12 HO Input name of sublist.
11 WO Input the test symbol.
J77 Test if symbol on sublist.
70 9-2 If so (H5+), exit from R2
with H5+.
9-1 30 HO J30 Common clean-up for both
exits.

-29-

We can create a routine similar to R2 for any struc-
ture of lists and sublists, providing that we know the
exact structure--in this case, that all the symbols of
L5 name sublists, and that each sublist consists entirely
of symbols to be tested.

We may not always have such definite information.
Suppose we have another list, say L6, which has other
information on it besides the names of sublists, and some
of whose sublists themselves have further sublists that
require exploring. To handle this more general situation,
IPL uses the list structure. L6 might appear as follows:

NAME PQ SYMB LINK

L6 0

S1

9-1

S2

9-2 0
9-1 0

S3

9-3

9-3

S4 0
9-2 0

S5

S6 0
9-3 0

S10 O

L6 is a list structure consisting of four lists, L6, 9-1,
9-2, and 9-3. The symbols beginning with 9 are local
symbols (we have been using them right along), and they
indicate which lists belong to the structure. Thus, al-
though the symbol S1 may name a list, it is not part of
list structure L6, because it does not occur with a local
name. Local names can be detected by J132 (and also manu-

factured, but we do not need to do this yet):

J132: Test if (0) is a local symbol.

-30-

Hence, in L6 we can detect which of the symbols are local,
and therefore require further search.
We can now define a routine that works for all list

structures:

R3: Test if (0) occurs anywhere in the list
structure named (1).

The problem is that list structures are defined recursively--

they permit sublists to occur on sublists ad infinitum.

This means that our routine must likewise be prepared to
continue its search for the symbol (0) down as many sub-
lists as actually occur. The natural way to write such a
routine is recursively, as is shown if we build a simple
plan for how to code R3:

R3: Test if (0) occurs on the main list; if it
does, exit + . Otherwise, find the sub-
lists of the main list. For each one, test
if (0) occurs anywhere in the substructure.

The last line of the plan is equivalent to doing R3 on the
sublist. Thus, R3 will occur as a subroutine in the code
for R3--which is the formal way of defining a recursive
process. There is nothing circular about using a routine
to define itself, as long as there comes a point where the
recursion stops. For R3, this will occur when, finally,

a sublist is reached which either contains the symbol (0),
or contains no further sublists. Since any list structure
is finite in size (although perhaps of unknown structure),
this will eventually occur. (Actually, for our code, we
must assume that the sublists 9-1 and 9-2 do not mutually
reference each other. This we will do, although we will
soon see how to remove even this restriction.) The plan
divides the task into two separate parts, but there is no
reason why we should not accomplish them simultaneously

as we iterate down the list. A code for this is the
following:

-31-

NAME PQ SYMB LINK COMMENTS

R3 J50 9-2 Output the test symbol to
WO, pushing down WO.
9-2 J60 Locate the next cell.
70 9-1 If no more cells (H5-),
exit from R3 with H5-.
12 HO
11 WO
J2 Test if symbol is test
symbol.
70 9-1 If so (H5+), exit from R3
with H5+.
12 HO
J132 Test if symbol in cell is
local (the name of a sublist).
70 9-2 If not (H5-), recycle.
12 HO
11 WO
R3 If so, test if symbol is in
substructure (recurse).
70 9-2 If R3 gives H5+, exit this

R3 with H5+; if not, recycle.
9-1 30 HO J30 Common clean-up for all
exits.
The only new feature in this program besides the recursion
is in the instruction following J2, where a blank SYMB
means the name of the next cell, just as it does for LINK
when LINK is left blank.
Let us trace schematically the operation of R3 find-
ing S4 on L6 to see how a recursion is actually carried
out. To help keep track of exactly which instructions are
being executed and which list cells are being referenced,
we arbitrarily load the routine as shown below. Starting
at cell 100 is a segment of a routine preparing to use
R3; R3 is loaded into cells starting at 200, and L6 is
loaded into cells starting at 500, with the various sub-
lists loading into cells at 600, 700, and 800, respectively.

-32-

NAME PQ SYMB LINK NAME PQ SYMB LINK

100 10 L6 101 L6 0 500
101 10 S4 102 500 s1 501
102 R3 103 501 9-1 502
103 70 110 104 502 s2° 503
R3 J50 200 503 -2 0
260 360 201 9-1 0 600
201 70 213 202 600 s3 601
202 12 HO 203 601 9-3 602
203 11 WO 204 602 9-3 603
204 J2 205 603 s4& 0
205 19 206 213 9-2 0 700
HO 207 700 s5 701
207 J132 208
701 s6 0
208 70 200 209
209 12 HO 210 9-3 0 800
210 11 wo 211 800 s7 801
211 R3 212 801 s8 802
212 70 200 213 802 s9 803
213 30 HO J30 803 s10 0

H1l, the Current Instruction Address cell, always holds
the address of the instruction being executed. It is a
push down cell, just like HO and the W's. When a sub-
routine is to be executed, Hl is pushed down and the name
of the subroutine is put in Hl. The address originally
in H1, which is needed to tell where to resume interpreta-
tion after the subroutine is finished, is then one-down in
H1.

Figure 3 shows the course of processing. It starts
with instruction 100 to be executed. By step 4 we see that
subroutine R3 is to be executed on its inputs, S4 and L6,
and that Hl has been pushed down. With the next step we
start to execute the instructions of R3 in sequence, and
J50 has pushed down WO and moved S4 to it.

The next twenty instructions, which are not shown
(but which can be easily traced by following R3), involve
seeing that S1 is neither S4 nor local, advancing down the
list, seeing that 9-1 is not S4 but is a local sublist, and
inputting S4 and 9-1 into HO. At step 25, we are ready to

-33-

_17£-

WWWLWWLWW W ww

EoR SRR SR

H1

100
101

102
R3,102
200,102

211,102
R3,211,102
200,211,102

211,211,102
R3,311,211,102

200,211,211,102

200,211,211,102
201,211,211,102
213.211,211,102

212,211,102
200,211,102

211,211,102

200,211,102
201,211,102
202,211,102
203,211,102
204,211,102
205,211,102
213,211,102
212,102
213,102

103

Instruction

10L6
10L4

R3

J50

J60

R3

J50

J60

R3

J50

J60

J60
70213
30HO J30
70200

J60

R3

J60
70213
12HO
11W0

J2
70206 213
30HO J30
70200 213

30HO J30
70110

tH+ ottt AT

+

+++++++++0

Fig. 3--Trace of R3

HO

0

L6
S4,L6
S4,L6
L6

S4.9-1,501
S4.9-1.501
9-1,501

S4,9-3,601,501
$4.9-3.601,501
9-3, 601,501

803,601,501
803,601,501
803,601, 501
601,501
601,501

S4,9-3,602,501

602,501
603,501
603,501
4,603,501
S&,S4,603,501
603,501
603,501

501

501

S4

S4

S4

S4,S4
S4,S4
S4,S4
S4,S4,S4
S4,S4,S4
S4,S4, Sk
S4,S4,S4
S4,S84
S4,S4

S4,Sh
St ,Sh
AT
St .Sk
St .Sk
St .Sk
S, S4
St.Sh

S4
S4

execute instruction 211, and to recurse on R3. Step 26

corresponds to step 4, except that Hl1 has been pushed down
again, leaving 211 as the instruction from which to continue

when the latest performance of R3 is over. Notice that HO
contains 501, the place in list L6 from which to continue
when the processing of 9-1 is done.

By steps 47, 48, and 49, testing has progressed past
S3 in sublist 9-1 to the first occurrence of sublist 9-3.
Another recursion occurs, resulting in Hl1 being pushed
down, etc.

By step 85 the last cell on list 9-3 has been pro-
cessed and J60 attempts to find the next cell. Since J60
sets H5-, a transfer to instruction 213 occurs, leading
to step 87 which pops HO and WO. This is the end of the
routine, so in step 88 we see that Hl1 has been popped,
which means that the program continues in the superroutine
of R3. Since we are in the midst of a recursion, the
superroutine is R3 and the program continues at the next
instruction after 211 (which was held in H1l), namely, 212.
At step 100, the system has advanced to the second occur-
rence of 9-3 in sublist 9~-1 and another recursion of R3
has commenced. This follows the same course as the previous
one, so that by step 142 instruction 200 is prepared to do
J60 on 602 and process the cell which holds S&4.

The final steps of the program, 144-151, start with
the test J2 setting H5+. This result rapidly terminates
the two occurrences of R3 that are still represented in
Hl. At step 151 the original R3 has been completed, H5
is + , and instruction 103 is about to be executed.

Although somewhat tedious, tracing out a recursive
routine clearly demonstrates the way push down lists keep
the place in the routines to be executed and in the data
to be processed.

We also note that at all levels of the recursion, WO
contains the same symbol, the input (0), so that much of

-35-

the symbol shuffling is superfluous. We want a way to
hold the test symbol in common for all levels of the
recursion. Thus, a more elegant R3 should follow a slight-

ly different plan:

R3: Set up (0) in WO. Test if the symbol in
WO occurs in the list structure (0) (this
is a recursive routine). Clean up WO.
The coding for this is shown below. The recursive sub-
routine is given a local name, since its use is strictly

internal to R3.

NAME PQ SYMB LINK COMMENTS

R3 J50 Set up (0) in WO.
9-10 J30 Execute subroutine, then
clean up.
9-10 J60 9-10 tests if symbol in WO
occurs in list structure.
70 J8
12 HO
11 WO
J2
70 J8
12 HO
J132
70 9-10
12 HO
9-10 9-10 can be executed with-
out input from WO.
70 9-10 J8

We have indeed avoided the superfluous shuffling of the
test symbol.

This example illustrates rather well several aspects
of subroutines, iterations, and recursions. First, the
last two instructions show clearly the difference between
executing a subroutine (P = 0 on 9-10) and transferring to
a routine (P = 7 on 9-10). The processing of 9-10 is ac-
complished, after whith the instruction 70 9-10 J8 is
executed; thus, the processing always returns to the point
at which the subroutine was executed. In the transfer,
no return ever occurs; if H5 is - so that 70 9-10 transfers

-36-

to 9-10, it is just as if the symbol 9-10 had been written
in the link. Second, we have already noted that since the
execution of 9-10 (P = 0) occurs as part of the subroutine
9-10, we have a recursion, whereas the transfer to 9-10
simply causes an iteration. In both cases, the routine

is repeated, and so a recursion differs from an iteration
simply in that the processing returns to the point of
execution in a recursion. Lastly, this routine should
provide an appreciation of how easily subroutine hier-
archies are built up when the mechanization of subroutines
is sufficiently smooth, as it is in IPL.

Notice that R3 tested the sublist 9-3 twice, because
it appears on sublist 9-1 twice. This could have been
anticipated, since J132 only lets us detect all the sub-
lists, and gives no information as to whether a list has
already been processed. To avoid such duplication, we must
keep track somehow of those sublists that have been pro-
cessed at any point. Indeed, if two lists hold each
others' names, the recursive routines we have been writing
may never terminate. We could restrict list structures
to simple trees which allow a sublist to appear only once.
We have preferred a more general form; however, it is far
from the most general list structure possible: We require
lists to terminate, and we don't allow one list to link
into another.

It is always possible to keep a list of the local
names and test against it, say with J77. A more efficient
method is also provided in IPL. A list can be marked
"processed'" with a special mark, which can then be de-
tected directly without a search. It is still necessary
to keep a list of the local names, since the marks must
be removed at the end of processing. Two J's provide the

tools:

-37-

J133: Test if (0) is marked processed--that is,
if P =1 in the cell (0).

J137: Mark list (0) processed. This pushes (0)
down and places a P = 1 in the head cell.
The head cell also is put blank; i.e., now
contains 0 for SYMB. (0) is left as the
output.
Marking a list processed pushes the list down and puts a
special signal (P = 1) in the top word that can be recog-
nized by J133. The processing mark is 'undone'' whenever

the list is popped up. Pictorially:
NAME PQ SYMB LINK

L8 at the L8 C3
beginning: S4

S5 0
L8 after J137, L8 1 0
now marked Cc3
processed: S4

S5 0
L8 after pop L8 C3
up operation, ‘ S4
30L8: S5 0

We used a list with a symbol in the head (top word), so
that the effect of J137 could be clearly seen. (It can
be seen from this example that the P and Q of data lists
are used differently than the P and Q of routines.)

The modification in the R3 coding consists of marking
each list of the list structure processed with J137, and
then searching down only those local lists which are not
yet marked. R3 must also create a list, put all the local
names on it, and then clear it up at the end. A plan for
this is shown in Fig. 4, together with the code.

-38-~-

R3: Set up (0) and a list for local Recursive subroutine:
names in the W's. Mark list processed and add to
1)
Execute recursive subroutine on local names’ list.
main list (set H5+ if found, Locate next symbol on list.
H5- if not). If none, exit -
Clean up the local names' list. Test if it is the test symbol.
Pop each local name to un- If yes, exit + .
mark it. Test if it is local (hence, names
Erase local names' list. a sublist).
Clean up W's and exit with H5 as Ifsnog,lloop to locate next
set by the recursive subroutine. ymboL .
Test if marked processed.
If yes, loop to locate next
symbol on sublist.
Execute recursive subroutine on
sublist (set H5+ if found, H5-
if not).
If test symbol found, exit +).
Loop to locate next symbol.
NAME PQ SYMB LINK COMMENTS
R3 J90 Create local name list,
J51 Put local name list in WO, test symbol in Wl.
9-10 Execute recursive subroutine, result is + or - .
40 HS Push down H5 to save result.
11 wo
9-2 J60 Locate next symbol on local namne list.
70 9-1
32 HO 9-2 Pop it up, thus unmarking it (doesn't pop up HO).
9-1 51 WO Input local name list (replacing unwanted symbol).
J71 Erase list (see definitions of J's).
30 H5 J31 Pop up H5, bringing back result; clean up W's.
9-10 J137 Recursive subroutine; mark list processed.
61 WO Put in top cell of local name list (in cell named in WO).
41 wo Push down local name list (push down cell named in WO).
9-11 J60 Locate next symbol on list being tested.
70 J8 If at end, exit--(not find test symbol).
12 HO
11 wl
J2 Test if symbol is test symbol (which is in W1).
70 J8 If so, exit + .
12 HO
J132 Test if local.
70 9-11 If not, proceed to next symbol.
12 HO
J133 Test if symbol already marked processed.
70 9-11 If so, proceed to next symbol.
12 HO
9-10 Execute recursive subroutine on unsearched sublist.
70 9-11 J8 If H5+, found symbol, quit; if not, go to next.

Fig. 4--Plan and Code for R3

-39-

4.1 PROBLEMS

PROBLEM 26

19 below is a list structure which represents an
algebraic expression in a hierarchical form. In this form,
an operator is the first symbol on a list, followed im-
mediately by its operands. If an operand is a sub-expres-
sion instead of a simple variable, the operand is repre-
sented by a local sublist of the same form as the main
list. L9 is a tree because each local sublist name occurs
only once in the structure.

TYPE NAME PQ SYMB LINK COMMENTS

5 01 DATA HEADER FOR L9.
19 A+B=C in a hierarchical form.
The main operator is EQUALS.
One operand is the sub-
expression (A+B).
0 The other operand is the
variable C.
The subexpression A+B.
The operator is PLUS.
The operands are the simple
0 variables A and B.

Code the list structure named X9, which will repre-
sent the algebraic expression ''A+B=C-D'" in a tree like L9
above. Then code the routine Y9 which prints X9 as a list
structure. -

]
Pt

\O
]
'—l
WP 4+O0O O Y| O

PROBLEM 27
Represent the algebraic expression "A=B+(C*D)" by a
list structure named X10. (The asterisk signifies multi-

plication and should appear in the structure as an opera-
tor. The parentheses indicate grouping and should not
appear explicitly in the structure. Use L9 as a model.)
Then code the routine Y10 which prints X10 as a structure.

PROBLEM 28
Code P77--"Test if variable (0) occurs in the expres-
sion named (1)." P77 assumes the expression is represented

by a tree like L9, arbitrarily deep; thus, P77 should
be recursive. Note that since L9 is a tree, P77 need not
mark sublists processed.

PROBLEM 29

Code P78--'Create a list of the locations of all of
the occurrences of variable (0) in the expression named
(1)." P78 assumes that (1) names a tree similar to L9.

-40-

Set H5- and produce no output if the variable does not
occur; otherwise, set H5+ and output the list of locations.
The location of a variable means the name of the cell which
holds it, not the name of the sublist on which it occurs.

PROBLEM 30

Code P79--""Create a list of the sublists of tree (1)
on which the operator (0) occurs. Set H5- and produce no
output if operator (0) does not occur; otherwise, set H5+
and output the list of sublists. The names of the sub-
lists on the output list should be internal symbols."
J138. (If we did not make the sublist names non-local
with J138, we would erase the sublists if we ever erased
the output list with J72. 1In practice, we would not need
to make the sublist names internal if we were careful to
use J71 to erase the output list.)

Use

PROBLEM 31
Code P80--"'Substitute the variable (0) for the variable
(1) wherever (1) occurs in the expression named (2)." Use

P78 of Problem 29, above.

PROBLEM 32

Code P81--"At every occurrence of the variable (1) in
the expression named (2), substitute the name of a copy of
the subexpression named (0). Make the name of the copy a
local symbol with J136, since we assume (0) to be an
internal symbol." Do not use P78. Will your routine take
care of the case where subexpression (0) contains an occur-
rence of the variable (1)?

PROBLEM 33

A slightly different representation of algebraic
expressions may give some insight into the practical dif-
ferences between trees and more general list structures.
Both L10 and L11 below represent the expression
"(A+B)-(A-B)=(A-B)+(A+B)." 1L10 is a tree, since each sub-
list name occurs only once in the structure, where a given
local sublist name may occur several places in the struc-
ture. L11 occupies less space than L10, but, as will be
seen, must be processed with care.

TYPE NAME PQ SYMB LINK COMMENTS

5 01 DATA HEADER FOR L10.

L10 L10 is a tree, representing
(A+B)-(A-B)=(A-B)+(A+B).
The operator is EQUALS.

1 9-1 represents the left
half and

-2 0 9-2 the right half of

expression

41~

(@)

O O
i

TYPE NAME PQ SYMB

9-1

9-10

9-11

9-2

9-20

9-21

L1l

9-1

9-10

9-11

9-2

0
9-10

|
=
-

NN
= O

N =

1
—
= O

P 1 OWP+OVWOIOVY IO WErL+OWEP I OOVO+OWE I OFP +OV0

LINK COMMENTS

(A+B)-(A-B).

The operator is MINUS.
9-10 represents §A+B).
9-11 represents (A-B).
(A+B).

The operator is PLUS.

The left operand is A.

The right operand is B.
(A-B).

The operator is MINUS.
Left operand.

Right operand.
(A-B)+(A+B).

The operator is PLUS.

The left operand is (A-B).
The right operand is (A+B).
9-20 represents (A-B).

9-21 represents (A+B).

DATA HEADER FOR L11.

[(A+B)-(A-B)]=[(A-B)+(A+B)].
The main operator is EQUALS.
The left operand is 9-1.

The right operand is 9-2.

(A+B)-(A-B).

The operator is MINUS.
(A+B).

(A-B).

9-10 represents (A+B).

9-11 represents (A-B).

9-2 represents the entire
right half of the expres-
sion quite simply now, since
it merely points to exist-
ing sublists.

9-2 represents (A-B)+(A+B).

-42-

Code the expression '[(A+B)+(A+B)]=(A+B)'" as a general
list structure named X11, in which identical subexpressions
are all represented by the same single sublist. Use L1l
as a model. Then code the routine Y1l to print X1l as a
structure.

NOTE: Problems 34 through 37 all assume that the
algebraic expressions are represented by a general
list structure like L11. Hence, sublists should be
marked processed with J137 when first encountered,
and tested for the process mark with J133 to avoid
multiple processing. Correct solutions must remove
the process marks from the sublists, and erase any
temporary lists that were needed.

PROBLEM 34

Code P87, whose definition is the same as that of P77
(Problem 28, p. 40), with allowances for the fact that P87
must work on a general structure instead of a tree. P87
must mark local sublists processed and pop up the process
marks before quitting.

PROBLEM 35

Code P88, whose definition is the same as that of P78
(Problem 29, p. 40), except that P88 operates on general
structures like L11l. P88 marks sublists processed and
removes the process marks before terminating.

PROBLEM 36

Code P89, whose definition is the same as that of P79
(Problem 30, p. 41), except that P89 does not assume the
structure to be a tree, but marks local sublists processed
and cleans them up afterward.

PROBLEM 37

Code P90, defined like P80 (Problem 31, p. 41), except
it works on general list structures. P90 should use P88
as a subroutine.

PROBLEM 38
Code P91--"Erase the tree named (0), including all its
local sublists, without using J72." P91 also erases any

lists it may create. J71 may be used.

PROBLEM 39

Code P92--"Erase the general list structure named (0),
taking care not to attempt to erase a given local sublist
more than once.'" Do not use J72. J71 and J137 should be
used. P92 also erases any temporary lists it creates for

its own use.

-43-

5.0 DATA TERMS

IPL works with symbols. These are not numbers, even
though they are represented by numerical addresses in the
computer. To work with information other than IPL symbols--
integers, floating point numbers, alphabetic information,
etc.--IPL uses data terms. For example, the integer data
terms MO and NO are written as follows:

NAME PQ SYMB LINK COMMENTS

MO 01 1 This is integer 1.

NO 01 2 This is integer 2.
Q = 1, when used with data, indicates that the remainder
of the word is in a special form. The P codes tell what
kind of data: P = 0 is used for integers, P = 1 is used
for floating point numbers, and so on. Each data term
has a name, which is an IPL symbol--the MO and NO in the
example above. IPL routines manipulate data terms through
their names. For example, one of the basic routines is

J125:

J125: Add 1 to the numerical data term whose
name is (0). Leave the name in HO.

If we use J125 on MO, we get:
H5 NAME PQ SYMB LINK HO ‘PQ DATA COMMENTS

10 MO 0
J125 MO 01 1
MO O1 2

Now we have added a DATA column to the trace, which shows
the data term named by the symbol in HO.

The four basic arithmetic operations in IPL require
three inputs: (1) and (2) are the names of the data term
operands, and (0) is the name of the data term which will
hold the result. Thus, J110, the primitive process for

addition, is defined as follows:

A

J110: (1) + (2)——(0). The data term named (0)
is set equal to the algebraic sum of the
data terms named (1) and (2). The output
(0) is the input (0); i.e., the result.

Let us introduce a few of the data term processes by coding
a simple routine, Sl:
Sl: Test if the sum of the integer data terms
named on list (1) exceeds (0). (0) names
a floating point data term. List (1) names
data terms only, but some of them are not in-
tegers. All numeric data terms are positive.
The code for S1 follows below. It introduces three new
data term processes, J115, J124, and J127, which are de-
fined in § 11.0 of Part Two.
NAME PQ SYMB LINK COMMENTS

S1 J90 Create cell to hold the sum,
J124 make cell into integer zero.
J51 WO holds name of sum; W1
holds name of limit to test
against.
9-1 J60 Locate next cell of the list.
70 9-5 To 9-5 when done, with H5
set correctly.
12 HO Name of next data term to HO.
11 WO Name of data term known to be
J127 integer.
70 9-1 To 9-1 if not an integer data
term.
12 HO Name of next data term to HO.
11 WO Name of sum to HO twice,
40 HO once as operand, once as result.
J110 ADD next to sum.
11 W1) Name of 1limit to HO.
J6 Reverse positions of sum
and limit.
J115 Test if sum exceeds limit.
70 9-1 Continue summing if no.
9-5 51 WO Name of sum to WO.

J9 J31 Erase sum and pop W's.

A few points about this code should be explained.
Even though the limit (0) that we will test against is a
floating point data term, we have chosen to accumulate the

-45-

sum as an integer data term. We are free to do this since
J115, like most of the arithmetic processes, will operate
successfully with numeric operands of mixed types. (J114,
the equality test, is the only exception to this rule.)
Alternatively, we could have chosen to accumulate the sum
as a floating point data term; in this case, J110 would
have converted the integer operand before adding it to the
floating point sum, without any more coding on our part.
Since it was immaterial whether the sum be integer or
floating for the addition and comparison processes, but
imperative that we have an integer data term around to
detect integer data terms on the list (with J127), we chose
to create a cell (J90) and make the cell into an integer
data term equal to zero (J124). This satisfied both our
requirements. S1 properly erases this data term (J9) be-
fore popping the W's, thus avoiding a common error en-
countered when working with data term processes. ,

Note that S1 would not function properly if the input
list contained some symbols that did not name data terms;
in this case, we would first have to detect (with J131)
which symbols were the names of data terms before the J127
test would be wvalid.

5.1 PROBLEMS

PROBLEM 40

Code P93--"Test if the number of cells on H2, the
available space list, exceeds (0). (0) is an integer data
term." Use J126 but not J200. P93 erases any data terms

it creates for its own use.

PROBLEM 41

Code P94--""Test if the sum of the integer data terms
named on list (1) is equal to (0). (0) names an integer
data term. List (1) contains the names of some cells
which are not data terms and the names of some data terms
which are not integers.'" (Consider the consequences of
allowing input (0) to be a floating point data term.)

-46-

PROBLEM 42

The simple lists (0) and (1) are considered to repre-
sent unordered sets of symbols (by disregarding the in-
herent ordering of the lists). Each set may have only one
occurrence of any given symbol. Hence, the sets are
identical if each symbol of set (0) also occurs on set (1)
and the sets contain an equal number of symbols. Using
J77 and J126, code P95--""Test if set (0) is identical to
set (1)."

PROBLEM 43
Code J200 as an IPL routine whose name is P96.

PROBLEM 44
Code P97--"Evaluate the algebraic expression named
(0)." P97 assumes that (0) is a structure like X10 of

Problem 27 (p. 40), where a single variable is equated to
an arbitrary subexpression involving only the addition or
multiplication operators. Assume that the variables name
floating point data terms. Thus, in the case of X10, P97
should multiply the data terms named C and D, add the data
term named B to this product, and set the data term named
A equal to this sum.

PROBLEM 45
Write a routine to evaluate the recursive function:

A(M,N) = A(M-1,A(M,N-1))
A(M,0) = A(M-1,1)
A(O,N) = N+1

This function increases very rapidly with M, as the
table shows; so, evaluation with large M should not be
attempted.

A(O,N) = N+1
A(1,N) = N+2
AC2.N) = 2N+3
A(3,N) = 2N+3-2
| 3
A(4,N) = 22 -3

Can this function be coded in any natural way without
using data terms and the arithmetic processes?

-47-

6.0 DESCRIPTION LISTS

Suppose we were building a program for playing con-
tract bridge. We have certain symbols for each card of
the deck: €2 for the deuce of clubs; D7 for the seven of
diamonds; S13 for the king of spades; Fl for the ace of
hearts (the H's are already being used); and so on. A
hand would then be a list of 13 cards, such as Xl:

NAME PQ SYMB LINK COMMENTS

X1 0 Hand consists of:
Cl3 Clubs: K,Q,3.
-C12
Cc3
D7 Diamonds: 7,4,
D4
F1l1 Hearts: J,7,6,
F7
F6
S1 Spades: A,J,10,5,3.
S11
S10
S5
S3 0

During the course of play, we will find out various
facts about the hand, such as the number of quick tricks.
(There are two in X1.) This number is recorded with an
integer data term, say N2. The problem is where to keep
this information so that it is available when we want it.
IPL has a general device, called a description list, for

doing this. Let QO, say, stand for the number of quick
tricks. Then we construct a list as follows:

NAME PQ SYMB LINK

X1 9-1
C13
cl12
3 0
9-1 0

QO
N2 0

-48-

0-1 is the description list of list X1. Its name occurs

in the head of X1--hence, given X1, it is possible to get
at any information on the description list. Since the
information on the description list is named (by QO, here),
it is possible to have many pieces of information on a
description list, as long as they have different names.

N1 is called the value of attribute Q0 of list X1. 1If

Ql stands for length of the longest suit, another relevant
property of the bridge hand, we could also put this
property on the description list:

NAME PQ SYMB LINK

X1 9-1

c13

c12

s3 0
9-1 0

QO

N2

Ql
N5 0

For such a device to be useful, there must exist
processes to get information from description lists, and
to add and modify the information on description lists.
The following three J's are basic (although there are
some additional ones also used with description lists):

J10: Find the value of attribute (0) on the
description list of list (1). If it is
found, it is the output (0) and H5 is
set + ; if it is not found, there is no
output, and H5 is set -

J11: Assign the symbol (1) to be the value
of attribute (0) on the description list
of list (2). If attribute (0) already
has a value, replace it with (1). If
there is no description list, create it
(with a local name).

J14: Erase the attribute (0) from the descrip-
tion list of list (1). This removes both
the attribute symbol and the value symbol.

-49-

H5 NAME

44t ++ 4+

+++++

++ 4+ 4+

+++ +

10
10

= =
oo

10
10
10

10

10

10
10

SYMB LINK
X1

Qo0
J10

X1

Q3
J10

X1
N3
QO
J11

X1
N6

J11

X1

Ql
J14

HO

X1

QO
N2

X1
N3
QO

X1
N6

Q4
0

COMMENTS

J10 has found N2, the value of Q0.

J10 found no value, hence H5-.

After J11, the description list of X1 is:

NAME
9-1

After J11, the

NAME
9-1

PQ

PQ

SYMB LINK

0
Qo0
N3
qQl
N5 0

description list is:
SYMB LINK
0

Q4

N6

Q0

N2

Q1

N5 0

Note that J11 puts the new attribute
at the front of the description list.

After J14, the description list is:

NAME
9-1

PQ

SYMB LINK
0

Q0

N2 0

Fig. 5--Trace of Description List Processes

To show how these operations work, we give a few examples
of tracing in Fig. 5, each independently using list X1
above.

The description list has a local name, which means it
If X1 is
ever erased as a list structure (see J72), then its de-
In the
examples above, none of the attribute symbols or value

belongs to the list structure of the main list.
scription list will automatically be erased also.

symbols are local, so any lists they name would not be
erased.
local value would also be erased by J14, and by J11 if it
replaced one (otherwise, the sublist would be lost space

However, any that were local would be erased. A

to the system). For example, if we had an attribute whose
value was the biddable suits, this value would be a locally
named list of from one to three symbols, each designating

a suit. If we remove the value from the description list

with a Jl4, we want to erase this list also.

6.1 PROBLEMS

PROBLEM 46

L12 below represents a list of books, Bl, B2, etc.
Bl is an empty described list which represents a book by
the attributes Al = Author, Pl = Publisher, and Cl = Cost.
The value symbol of attribute Al is regional if a book
has a single author; otherwise, it is local.

TYPE NAME PQ SYMB LINK COMMENTS
5 01 Type = 5, Q = 1, DATA HEADER.
L12 0 112 represents list of books.
Bl
B2
B3
B4 0
Bl 9-0 O 9-0 is description list
9-0 0 of Bl.
Al Al = Author.
9-1 9-1 is list of authors.
Pl P1 = Publisher.
Yl Publisher is YI1.
Cl Cl = Cost.
9-2 0 9-2 is data term giving cost.
9-1 0 Authors of Bl are X1, X2.
X1
X2 0
9-2 01 450 cCost of Bl is $4.50.

-51-

Code the empty described lists B2, B3, and B4, similar to
Bl above. Assume each of the books has a single author,
X2, X3, and X4, respectively; no known costs; and pub-
lishers Y2, Y3, and Y4, respectively.

PROBLEM 47

Code Ql--"Find the cost of Bl, assign a copy of this
data term to B2 as a local data term value of the attribute
Cl, and delete the attribute Cl and its value from Bl."

PROBLEM 48

Code Q2--"'Search the list of books (1) for books whose
author or co-author is (0). Print (0) once, followed by
the books he has authored. If he has authored none, print
the word NONE."

PROBLEM 49

Assume that L13 is an empty described list whose at-
tributes are the names of some of the books on L12 of
Problem 46, above. The values are local integer data terms
representing the number of copies of the particular book
that have been sold. Code Q3--"For each book on L12, add
the attribute D1 to the book's description list if the book
is found as an attribute on L13. The value of D1 (which
represents ''Distribution') for each book should be a local
copy of the integer data term found as the value of the
book on L13."

PROBLEM 50

Code Q4--"For each book on list (0), add the author
Y1l at the end of the list of authors if the book already
has more than one author. If the book has only a single
author, delete the attribute Al and its value.'

-52-

7.0 DESCRIPTION LISTS, CONTINUED

Description list processes are very powerful and can
be used in many flexible ways. To give some feeling for
this, let us pursue further the problem of the bridge
hand. As we pose more complicated problems, we gradually
move into the area of real programming, where a representa-
tion must be chosen for the problem and where this repre-
sentation determines the efficiency and elegance of the
code.

Our problem is to proceed with the analysis of the
hand prior to bidding it. We have already chosen a
straightforward representation of the bridge hand. It
comes originally as a simple list in random order from the
deal. The first task is to reconstitute the hand (which
we shall continue to call X1), so that it consists of a
1ist structure with four sublists, one for each suit. Each
of the sublists should be in descending order on the value
of the card, just as some people normally arrange a bridge
hand. We want the "point count" value of the hand, which
we shall denote by the attribute Q2. For the point count,
each card gets a specified number of points--4, 3, 2, 1,
or 0-- depending on its type--ace, king, queen, jack, or
small card. We will need to associate with each of the
52 card symbols (the C3, Sl1, etc.) its type according
to an attribute, say Q3. To avoid complexity, we can
represent the types by data terms corresponding to their
point counts. (We could also look up the point count in
a table, which would be another description list with
types for attributes and point counts for values.) We
can use T's for types: Tl for ace, T13 for king, and so
on. The small cards will have no type. An example is
shown below:

-53-

NAME PQ SYMB LINK COMMENTS

Cl2 9-1 0 The queen of

9-1 0 clubs has the
Q3 point count 2
T12 0

T12 01 2

We also need to associate with each card symbol its 'card

' which is a number between 2 and 14 that determines

value,'
the ordering (and which card takes which in play). We
can use Q4 as the attribute for this, and the symbols N2
through N14 for the integers. Finally, we must have a
suit symbol--say, CO, DO, FO, and SO--associated with each
card symbol; we will use Q5 as the attribute for this.
Before we can begin planning the routines, we must
agree on a format for the hand list. We could have it
contain the names of the four sublists in some specified
order. Alternatively, we can make the hand list in the
form of a description list, with suit symbols as attributes
and sublists as values. Then J10 can use the suit symbols
to select the sublist for that suit. With this convention,

the final arranged form of X1 would be:

NAME PQ SYMB LINK
X1 0

9-3 0
Fl1

9-2 0

-54-

NAME PQ SYMB LINK
9-4 0
S1
S11
S10
S5
S3 0
Now we can formally define our routine. At the top
level we have R4, whose task is to sort the hand and
"analyze" it (get the point count). As subroutines with-
in this, we have R5 whose task will be to rearrange the
list, and R6 whose task will be to total the point count:
R4: Rearrange and analyze the hand list (0),

which initially consists of 13 card symbols
in random order.

R5: Rearrange the hand list (0) into ordered
form, as above.

R6: Compute the total point count of the hand
list (0) (assume already arranged). Output
is a new integer data term, (0).
Neither R4 nor R5 has any output in HO, since they only
modify a structure whose name 1is already known to the
routine using them. Given R5 and R6, R4 is almost trivial
to code (we have simply put all the work off by giving
names to the subroutines):

NAME PQ SYMB LINK COMMENTS

R4 40 WO Push down WO.
60 WO Put name of list in WO,
but leave in HO.
R5 Rearrange.
11 WO
40 HO
R6 Compute point count.
J136 Make local (to tie it to
hand 1list).
10 Q2

J11 J30 Put on description list with
attribute Q2, clean up.

One of the problems in coding R5 is that we want to
modify the same list from which we are taking information.

-55-

We need a way of detaching the body of the list. The
following J does the job:

J75: Divide list after location named (0). ((0)
gets a 0 for LINK.) Construct a new list,
consisting of a new head (which is empty)
plus all the remaining symbols after (O;.
Output the name of this list as (0).

The sequence below illustrates J75 quite generally:

List L1 at beginning: NAME PQ SYMB LINK

0
S1
S2
S3
S4 0

O o
1=
N =

Program sequence that NAME PQ SYMB LINK HO

gets second list cell,

then does J75 to divide 10 11 0

list: J60 L1
J60 9-1
J75 9-2

L1 after program, and NAME PQ SYMB LINK
new list, 3125, with

remaining symbols: L1 0
S1
S2 0

3125 0
S3
S4 0

Using J75, we can form a plan for R5, shown in Fig.
6 together with the code. The routine is rather long,
but it accomplishes a good deal; there is very little lost
motion except for the repeated searches of the symbols on

-56-

R5: Split the hand list to get all the symbols on a separate working list.
For each symbol on the working list:
Find the right sublist:
Use Q5 to find suit symbol;
Use suit symbol to find sublist:
- If not find, create it,
Insert card symbol at right place on sublist:
Compare card values for successive symbols (Q4):
- If new value is lower, keep going;
- If new value is higher, insert before symbol on list.
Erase working list.
NAME PQ SYMB LINK COMMENTS
R5 60 9-10 Place hand list in 9-10, leave in HO.
J75 Detach list from head, (0).
40 HO Save remainder list for erasing at end.
9-5 J60 Find next card symbol to be sorted.
20 9-20 Place in cell 9-20.
70 J71 If no more, through; erase remainder list and quit.
12 9-20
10 Q5
J10 Find suit symbol, assume it exists.
20 9-30 Place in cell 9-30.
10 9-10 Input hand list (must be 9-10, not list name, for J10).
11 9-30 Input suit symbol.
J10 Find sublist.
70 9-1 If not exist, go to create it,
12 9-20 Input card symbol,
10 &
J10 Find card value, assume it exists,
20 9-40 Place in cell 9-40,
9-3 J60 Locate the next card symbol on sublist.
70 9-2
12 HO
10 Q&
J10 Find card value of symbol on sublist, assume it exists.
11 9-40 Input card value of new symbol to be sorted.
J116 Compare: H5 + if old greater than new; H5 - if not.
70 9-3 If H5 +, to go next symbol on sublist.
12 9-20 New greater than old.
J63 9-4 Insert on sublist ahead of old symbol.
9-2 12 9-20 End of list.
J64 Insert on sublist at end (after current end).
9-4 11 9-20 9-5 Common input of remainder list, go to next symbol.
9-1 J90 No sublist, create it.
J136 Mark it local (to tie list structure together).
40 HO Push down to save it for after Jll.
10 9-10 Input hand list.
J6 Invert order in HO to agree with J11 conventions.
11 9-30 Input suit symbol.
J11 9-2 Assign sublist, return to put symbol on it.
9-10 0 0 Local cell: holds input hand list.
9-20 0 0 Local cell: holds location in remainder list,
9-30 0 0 Local cell: holds suit symbol,
9-40 0 0 Local cell: holds card value of symbol to be sorted.

Fig. 6--Plan and Code for R5

-57-

the sublist for their card values. We used local cells,
rather than the W's, for temporary storage, although we
could just as well have used the latter. We did not need
to push down the local cells, since we knew exactly what
they were to be used for.

One common device in working with description lists
is to define attribute symbols to be routines that find
the attribute values. In our present case, for example,

we might define two routines:

NAME PQ SYMB LINK COMMENTS

Q4 10 Q4 J10 Q4 is the routine that finds
the value of attribute Q4.

Q5 10 Q5 J10 Q5 is the routine that finds
the value of attribute Q5.
This will replace the various occurrences of two lines--
10Q4, J10--with a single routine, Q4. Although the total
processing‘remains the same, it saves a line of code at
each occurrence. More important, perhaps, it makes it
natural to think of an attribute as a single-valued func-
tion, so that Q4 (X1) has the same form as sin(BOo)--i.e.,
both are functions that produce values, given arguments.

To accomplish R6, we need to add up all the point
counts of all the card symbols. We must proceed separately
for the four sublists. (It might have been simpler to get
the point count before the list was arranged, but, in
general, the various featv—-es of the hand will depend on
suit and order, so we preferred to proceed this way.) A

code for this is as follows:

-58-

NAME PQ SYMB LINK COMMENTS

R6 J41 Preserve WO and WI1.
20 WO Put hand list in WO.
J90 Create cell for out data term.
J124 Set it to 0, leave in HO.
9-1 11 wo
J60 Locate next symbol.
J60 Locate next symbol (names sub-
list).
20 WO Put back in WO before
branching.
70 J31 If no more sublist, clean up
W's, quit.
12 WO Input name of sublist.
9-2 J60 Locate next card symbol.
20 W1 Put back in W1 before
branching.
70 9-1 If no more, go to get next
sublist.
12 Wi Input card symbol.
Q3 Find type (Q3 = 10Q3 J10).
70 9-1 If not find, go to next
sublist.
J6 Invert order in HO for J110.
40 HO Double up output data term
for J110.
J110 Add point count, put in
data term.
11 w1 9-2 Input location in sublist,
continue.

As a matter of technique, it is perhaps worth noting
that we delayed branching after the J60's until we had put
the result back in the W's. This avoided an additional
pop up of HO in case the H5- branch occurred. Notice also,
that although J90 created a new cell for us, it has to be
preset to zero to make it into a legitimate integer data
term. Finally, in R5 we used the hand list as a descrip-
tion list; here in R6 we used it as a regular list, iter-
ating down it and selecting out every other symbol. The
moral is that, although the description list processes are
especially fitted to description lists, they are also
general purpose search and insert operations, to be inter-

mixed to advantage with other list processes.

-59-

Computing the point count was simple, because we could
treat each card independently. If we had chosen quick trick
count instead, we would have been involved with combinations
of cards. Suppose quick tricks (Q0) are defined for each
suit according to the table in Fig. 7. Since bridge books

Combination Count Equivalent value
AKQ 2-1/2 N10
AK 2 N8
AQ 1-1/2 N6
AJ 1 + N5
A 1 N4
KQJ 1-1/2 N6
KQ 1 N4
KJ10 1 N4
Kx 1/2 N2
QJx 1/2 N2
Qxx + N1

Fig. 7--Quick Trick Table

take the liberty of adding ''plus'" values, we have taken the
liberty of considering these to be quarter points and
multiplying everything by four to get integer terms. We
now wish to add to R4 the computation of quick tricks, say
by a routine R7. Reference to the previous code shows that
we can simply add another small sequence at the end:

NAME PQ SYMB LINK COMMENTS

R4 e e
11 WO (This occurs after J11 in
prior code, with J30 removed.)

40 HO

R7

J136
10 QO

J11 J30

R7 is defined similarly to R6. It takes the arranged list
as input and provides a new data term with the total count
as output. In fact, examination of R6 shows that if we had

a routine for getting the quick trick count of a sublist

-60-

(suit), say R8, we could simply replace the 9-2 loop by:
NAME PQ SYMB LINK COMMENTS

R6 e e
12 WO Input name of sublist,
R8 Find count for suit (not a
new data term).
J6 Invert for J110.
40 HO Double up output data term
for J110,

J110 9-1 Add in count to total
(leave in HO).
Hence, we can restrict ourselves to the interesting
problem, which is to code R8:
R8: Find quick trick count of list of cards, (0).

The 1list is arranged according to R5; that is,

with sublists for each suit. The output data

term is not new (hence, not to be erased).
The problem is how to arrange the information conveyed by
the table. We could build it into a large routine with
many conditional transfers. Better, we could construct
a data list structure with this information in it in
some natural way, such that a relatively simple routine
could find the value by consulting it in conjunction with
the information in the list of cards. The ordering of the
cards in the 1list gives the clue: If we pick up the first
card, it is the highest type that occurs, and should allow
us to select a subset of the table corresponding to all
those cases where this type is the highest. We can visu-
alize a net of questions, shown in Fig. 8. We have put in
only some of the nodes. The path through this net goes
down to the left until a yes answer is received--that is,
until the type of the first card is known. Then we pick
up the next card (move one step down to the right) and
again travel down to the left until its type is known.
Eventually a value is reached. This suggests that, in-
stead of viewing the tree of tests as symmetric in ''yes"
and '"no," we might better depict it as multiple branches,

-61-

Is card 1

an Ace?
- \\\\\<t\\\
Is card 1 Is card 2
a King? a King?
“ + / +
Is card 1 Is card 2 Is card 2 Is card 3
& a Queen? a Queen? a Queen? a Queen?
N
]
/ / / / ,
Value Is card 2 Is card 3 Is card 2 Value Value Value
= NO a Jack? a Jack? a Jack? = = N8 = N10
(Nothing) ’ (AQ) (AK) (AKQ)
- |+ - + - K

Fig. 8--Quick Trick Table Structure (Incomplete)

as in Fig. 9. Moreover, rather than do a sequence of
tests on card 1, we can use J10, the search on description
lists, to determine what type it is. The types will be
the attributes, and their values will either be the counts
or the sublists giving further differentiation in the
table. The tree of Fig. 9 uses '"x'" for a small card and
"-'"" for anything else. This latter includes the case of
finding no additional cards, whereas '"x'" implies that at
least one card is found. The bottom half of the figure
shows the table laid out as a list structure. Type-x is
represented by TO. The count corresponding to "anything
else' appears in the head of each sublist. (It cannot
appear in the list as a value, since there will be no
attribute to which it corresponds.) We have had to dif-
ferentiate T10, the Type-10 card, from TO, the small card.
The names of the lists are given on the tree to show the
correspondence.

The difficult part of most problems is finding a good
representation of the data. Having found one, the coding
is direct:

NAME PQ SYMB LINK COMMENTS

R8 10 L14 Input the name of the table.
J51 Put table name in WO,
9-3 11 W1 card list name in WI.
J60 Locate next card.
20 W1 Put back in W1 prior to branching.
70 9-1 If no more cards, must be
"anything else'' case.
10 WO Input sublist of table (J10

requires the symbol WO rather
than the list name).

12 Wl Input card.
Q3 Find type.
70 9-2
10 TO If no type found, must be type TO.
9-2 J10 Find entry in sublist of table.
70 9-1 If not find, must be
"anything else' case.
60 WO Replace table sublist with new
sub-sublist.
J132 Test if local.
70 9-3 If it is, another sublist;

if not, WO holds count.
11 wo J31 Input count, clean up.
9-1 12 WO J31 Input count from head for
"anything else' case, clean

up.

-63-

..179-

card 1?7
(L14) \
Ace Queen NO
King
What is What is What is
card 2? card 2? card 27
(9-1) 9-2) (9-3)
What is N6 N5 N4 What is What is N2 NO What is What is What is NO
card 37 card 3? card 3? card 37 card 3? card 3?7
(9-4) (9-5) (9-6) (9-7) (9-8) (9-9)
q \ VRSBV VANEANEEVAN
N10 N8 N6 N4 N4 N2 N2 NO N1 NO N1 NO
NAME PQ SYMB LINK NAME PQ SYMB LINK NAME PQ SYMB LINK NAME PQ SYMB LINK NAME PQ SYMB LINK
L14 NO 9-1 N4 9-2 NO 9-3 NO 9-4 N8
Tl T13 T12 T1l1l T12
9-1 9-4 9-5 9-7 N10O O
T13 T12 Til T10
9-2 N6 9-6 9-8 -
12 11 T10 TO -8 gg
9-3 0 N5 0 N2 9-9 0 N1 0
TO
N2 0
9-5 N4 9-6 N2 9-7 NO 9-9 NO
Tl1 T10 T10 TO
N6 0 N4 0 N2 N1 0
TO
N2 0

Fig. 9--Graphic Representation of Quick Trick Table and its IPL Equivalent

This is a remarkably short routine, which only demonstrates
that we have been successful in organizing the relevant
information in a convenient way. We even accepted the
convention laid down earlier that small cards would have

no type symbol, and we provided for it in the routine
(10T0). TIf we were actually to use R8 in a program, we
would probably stipulate that all cards would have type
symbols. Then Q3 would always find a result, and the
instruction that follows it could be eliminated.

7.1 PROBLEMS

PROBLEM 51

Below is an alternate version of Ll14; it represents
the information in the quick trick table of Fig. 7 in a
simple format; each sublist of L14 represents one line
of the table. The symbols on each sublist represent a
particular combination of card types (denominations); the
symbol in the head of the sublist names the data term
value of that particular combination. Recode the routine
R8 (p. 61), so that it will work with the version of Ll4

shown below.
NAME PQ SYMB LINK COMMENTS

L14 L1l4 represents the table of
quick tricks.

AKQ

AK

RHEYoNOUBPRWNH
~
o
<

o
~
'—-l
o

LI R |
—
&

OCOOWOVOWOWOOVOVOOOVOW o

1
= e
VP WN
(o)

re)

'—l

(@)

b

9-1 N10 AKQ = 10

!
'—-l
3>
Q
e

T13 KING
T12 0 QUEEN

NAME PQ SYMB

9-2

9-3

9-4

9-7

9-8

9-10

9-11

9-12

9-13

9-14

9-15

N8
Tl
T13
N6
Tl
T12
N5
Tl
T1l1

-66-

AK = 8

I
o))

AQ

KJ10

QJx = 2

Ql0x =

Qxx =1

LINK COMMENTS

1

PROBLEM 52

Given the version of L14 shown in Problem 51 above,
code the routine R90 which transforms L14 into the version
shown in Fig. 9. R90 has no input or output, and erases
any temporary lists or cells that it creates. It also
erases the original structure L14.

-67-

8.0 USING GENERATORS

It is possible to write compact codes that do lots
of processing simply by using various sequences of in-
structions repeatedly. Already in IPL we have made ex-
tensive use of three devices for achieving this: we have
written loops, making use of the conditional branch;
we have built subroutines, which can be used in many dif-
ferent places; and, we have written recursive programs,
in which the same routine is used within itself. There is
another device in IPL to accomplish repeated processes,
called a generator. The generator reflects the fact that
the generation of a set of things to be processed is often
quite independent of the processing that is to be done on
them. To take an example, suppose we wanted to recode
J77, which tests if a symbol, (0), is on a list, (1). The
relevant generator is J100:
J100: Generate all the symbols on list (1). Input
each one to HO and apply the process named
(0) to it in turn.
The code for J77 using J100 would be:

NAME PQ SYMB LINK COMMENTS

J77 J50 Put test symbol in WO.
10 9-10 Input name of subprocess;
name of list already in HO.
J100 Execute generator.

J5 J30 Result is H5+ if looked at
all symbols in vain; reverse

sign.
9-10 11 WO Subprocess: input test symbol.
J2 J5 Test; reverse sign to stop

generator if find symbol,

In order to understand this code, we can visualize three
routines, as shown in Fig. 10. There is J77, the super-
routine. Besides a little housekeeping (the J50, J30,
and J5), it consists of two parts: J100, which produces
a stream of symbols; and 9-10, which tests each symbol

-68-

SUPERROUTINE GENERATOR SUBPROCESS

List to be Symbol from
generated list
J77 J100 9-10
H5+ if completed ___H_Si if continue
H5- 1if stopped H5- 1f stop

Fig. 10--Generator Relationships

against the symbol in WO. Since, in the computer, they
cannot both work at once, control alternates between them.
First, J100 operates long enough to produce a symbol; then,
9-10 tests it; then, J100 produces the next symbol; and so
on. Processing should stop, of course, if 9-10 ever finds
the symbol for which it is testing. There is communication
back from 9-10 to J100 telling it whether to continue or
not. This follows the convention: 9-10 exits with H5+

if the generator is to continue; that is, if it is to find
the next symbol, put it in HO, and execute the subprocess
9-10 again. 9-10 exits with H5- if the generator is to
stop and return control to the superroutine. Thus, 9-10
reverses the sign of H5 (with J5) which results from J2,
since J2 gives H5+ if it finds the symbol and H5- if it
doesn't. There must also be communication to the super?
routine; otherwise, it could not determine whether the
symbol was found or not. This communication is from J100
to the superroutine at the time J100 finishes. It follows
the convention: J100 exits with H5+ if it generates all
the symbols and was not asked to stop by the subprocess;
J100 exits with H5- if it was asked to stop by 9-10. Thus,
J77 forms its output by reversing this sign (J5), since if
J100 exits with H5+, it means that the symbol was not found,
and so J77 should exit with H5-. These two communication

-69-

conventions are not unique to J100. They hold universally
for generators in IPL, whether in the basic J's, or com-
structed for a particular program.

We can do multiple iterations with generators. Sup-
pose, for example, we had a generator R9, that produced
only the local symbols on a list:

RO: Generate all the local symbols on list (1).
Input each one to HO and apply the sub-
process (0) to it in turn.
Now we can use J100 and R9 to rewrite R6 of the previous
section, to total up the point count of a bridge hand by
a double iteration, first over the lists for each suit,
and within this, over the cards of the suit.

NAME PQ SYMB LINK COMMENTS

R6 J90 Create output data term,
J124 Preset it to O.
J6 Invert to put list on top.
10 9-10 R9 Input subprocess, iterate
over suit sublists,
9-10 10 9-20 Input subprocess, iterate
over cards symbol in sublist.
J100 J4
9-20 Q3 Subprocess for card symbol,
find type.
70 O If not find, exit H5-, stop-
ping iteration of this sublist.
Jé6 Invert for J110.
40 HO J110 Accumulate count, exits with

H5+4+ to continue.

Note that 9-10 must set H5+ (with a J4) as a signal to R9

to continue with the next suit. If 9-10 does not do this,

the H5- by which 9-20 signals the end of a sublist will

stop both 9-10 and R9, and no further points will be counted.
One additional convention shows in this routine: H5

is safe over basic J processes. Thus, after Q3 had set

H5+, the J6 and J110 did not modify this, since neither of

them sets H5 as part of its output. As this routine

indicates, sometimes large space savings can be achieved

by using generators rather than by looping. This space is

-70-

purchased at the price of additional processing to shuffle
the contexts back and forth. The main virtue of generators
is to permit a complex generation process to be coded once,
and then used repeatedly without further coding or check-
out.

While the subject of generators is fairly complex,
a good deal of confusion will be avoided if pains are
taken to distinguish clearly the coding that is needed to
use or execute a generator, and the coding that is needed

to construct a generator. To use a generator is purposely
quite simple; the main concern should be that the sub-
process is coded to set H5 to continue or to terminate the
generator, as desired, after each element is processed.
Even when the subprocess itself uses a generator, and its
subprocess uses a generator, etc., our attention is focused

on what each subprocess is doing with each element of the

set being presented, rather than on what processing is
going on in the generators. (See § 7.2 of Part Two,
CONVENTIONS FOR USING GENERATORS.)

Besides J100, which generates the symbols of a list,
a few other generators are already constructed for the
programmer to use. For example, J102 generates all the
cells (not the symbols) of a tree.

J102: Generate the cells of tree (1) for sub-
process (0). The subprocess named (0) is
performed successively with each of the
names of the cells of the tree named (1)
as input. A tree is a data list structure
in which each sublist appears once and
only once. The cells of each sublist are
generated before going on with the super-
list; the cell containing the name of the
sublist occurs immediately before the sub-
list and all its sublists are generated.
H5 is set + to the subprocess if input (0)
is the head of a new sublist, and is set
- otherwise. (Nothing is marked processed,
since there is no need to keep track of
multiple occurrences.) The name of the
next cell to be generated is found before

-71-

the cell is présented to the subprocess--
i.e., it is possible to erase a tree with
J102.

J102 will move in list structure (1) if it
is on auxiliary.
R77 below is a simple example using J102 to generate
the cells of L10 of Problem 33 (p. 41). L1l0 represents
an algebraic expression as a general list structure rather
than a tree, but since there are no sublists which contain
their own name, J102 will not loop endlessly. R77 purports
to print the algebraic'expression in Polish prefix form--
e.g., to print X+Y as +XY and (X-Y):Z as --XYZ. The sub-
process 9-10 contains a common error: It fails to set H5

properly.
TYPE NAME PQ SYMB LINK COMMENTS
5 ROUTINE HEADER FOR R77.
R77 10 L5 Input structure name.
10 9-10 J102 Input subprocess name, do
J102.
9-10 70 J8 Skip heads of sublists.
52 HO Operator or operand to HO.
40 HO Save it in case we print.
J132 Test for local. Operand

may be subexpression yet
to be generated.

70 J152 J8 Print if not local; other-
wise, pop HO.

R77 would terminate after printing the first operator,
since J132 in the subprocess 9-10 has set H5-, which the
generator J102 interprets as a signal to terminate. H5
should be set + after the negative branch is selected and

before 9-10 terminates.

8.1 PROBLEMS

PROBLEM 53

Code Q5--"For each regional symbol on L12 of Problem
46 (p. 51), copy the structure named by that symbol, assign
the regional symbol as the value of the attribute N1
(meaning name) on the description list of the copy, and
add the internal name of the copy to the end of list X12."
Use J100 to generate L12.

-72-

PROBLEM 54

Code Q6--""For each regional symbol on L12 of Problem
46 (p. 51), copy the structure named by that symbol and
replace that symbol on L12 with the internal name of the
copy.'" Use J102 to generate the cells of L12.

PROBLEM 55

Code Q7--"Test if any locally named value list found
on the description list of any of the lists named by
regional symbols on L12 contains the symbol (0)." Q7
exits with H5+ if the input symbol (0) is found on any
of the locally named value sublists, and with H5- other-
wise. Use J100 three times: to generate the lists named
on L12; to generate the attribute-value pairs on the de-
scription lists of these lists; and to generate the symbols
of the locally named value lists found on these descrip-
tion lists.

PROBLEM 56

Code Q8--'"Test if L10 of Problem 33 (p. 41) contains
the variable (0)." Q8 exits with H5+ if yes, - if no.
Use J102.

-73-

9.0 GENERATOR CONSTRUCTION

J100 is the simplest of generators; let us examine
how it is constructed. Basically, of course, it consists
of a loop to go down the list. But it must have some
place to keep both the location in the list and the name
of the subprocess while the subprocess is working. Like-
wise, it must be sure that it doesn't destroy any of the
information used by the subprocess. To see this problem
clearly, suppose we code J100 as follows, which seems

perfectly straightforward:

NAME PQ SYMB LINK COMMENTS

J100 J51 Put subprocess in WO, list
name in W1, push down W's,
9-2 11 w1 Input location on list,
J60 Locate next.
20 W1 Put back in Wl prior to branch.
70 9-1
12 w1 Input symbol in cell of list
for subprocess.
01 WO Execute subprocess (P=0, Q=1).

70 J31 9-2 If subprocess returns
H5-, quit with H5-.
9-1 J4 J31 If went to end of list,
quit with H5+.
Let us trace through the beginning of J77 with this version

of J100, keeping track of what is in WO as well as HO:

LEVEL NAME PQ SYMB LINK H5 HO wo COMMENTS

1 J77 J50 + S4 0 S4 is the test symbol.
1 10 9-10 + L1 S4 Ll is the list to be
searched.
1 J100 + 9-10 sS4
2 J100 J51 + 9-10 S4 9-10 goes into WO,
2 11 Wl + 0 9-10 L1 into Wl.
2 J60 + L1 9-10
2 20 W1 + 9-1 9-10 9-1 names the first
cell list.
2 70 9-1 + 0 9-10
2 12 w1 + 0 9-10
2 01 wo + 82 9-10 S2 is the symbol in
cell 9-1.
3 9-10 11 WO + S2 9-10 9-10 executed by
1WO instruction.
3 J2 + 9-10 9-10 Get 9-10 instead of

S4; ERROR.

From the last line of trace we see that the subprocess with-
in J77, while expecting S4 to be in WO, finds 9-10 instead.

-74-

This latter symbol was being used by J100 (so that, in fact,
S4 is sitting in WO right below it), and it is necessary
somehow for J100 to remove its working information from WO
before executing the subprocess of J77. That is, both J100
and J77 wish to use the same cell, each in ignorance of the
other. Thus, the problem is one of changing contexts of
information. 9-10 works in the same context as J77; J100
works in an entirely different context. These contexts
must alternate, just as the control alternates back and
forth between generator and subprocess. The basic assump-
tion of a strict hierarchy of routines is violated here,
and with it the ability to have cells safe just by pushing
down and popping up.

We show below the correct code for J100, which will
illustrate the additional processes that are needed to

accomplish generators.

NAME PQ SYMB LINK COMMENTS

J100 10 wo Input the symbol WO for J17:
want one cell of working storage.
J17 J17 sets up housekeeping,
stores away subprocess.
9-1 J60 Locate next symbol.
20 WO Put back in WO prior to branch.
70 J19 If end of list, exit with
generator clean-up, J19.
12 WO Input symbol for subprocess.
J18 Execute subprocess; J18
changes contexts.
70 J19 If subprocess returns with

H5-, exit with J19.
11 WO 9-1 Input current location in

list and cycle.
Three routines handle the housekeeping. Roughly, J17 sets
up a ''generator hideout' in which to store the context
information. The 'highest'" W to be used by the generator
is input to J17 (here just WO). J17 pushes down the W's.
J18 executes the subprocess stored away in the hideout by
J17. 1t also removes all the generator's information, so
that the context of the superroutine is returned to the
W's. After the subprocess is through, J18 brings back the
generator's context again. It thus assures that the dif-

ficulty that occurred in our trace will not occur. Finally,

-75-

J19 cleans everything up: It cleans up the hideout, pops
up the W's, and sets the correct output signal for H5 (J18
has kept track of how the subprocess reported to the gener-
ator).

Generators can be cascaded to produce other generators.
That is, a generator can be formed by taking the output of
another generator and modifying it. This is best under-
stood by an example. In the previous section we defined a
generator, R9, which produced only local symbols. R9 can
be constructed by using J100 and simply discarding those
symbols it produces which are not local.

R9: Generate all the local symbols on list (1),
and apply the subprocess (0) to each of them.

NAME PQ SYMB LINK COMMENTS

R9 10 WO
J17 Set up context,
10 9-10 Input subprocess for J100.

J100 J19 Execute J100, and quit
afterwards with J19.

9-10 60 WO Save symbol in WO.
J132 Test if local.
70 J4 If not local, set H5+ to call

for next omne,
11 wo J18 Input symbol and execute
subprocess to R9,
Notice that our use of J100 within the code of R9 does not
cause any difficulty, even though J100 is used in R6 within
the subprocess to R9. In short, generators can be combined
safely in almost any way.

As a more complex example of constructing generators,
we will describe the code for J101, a basic process which
generates all the cells on a list structure. J101 gener-
ates the cells rather than the symbols in the cells, since
it is meant to be useful in manipulating list structures as
well as searching them. There are several possible ways
to generate the cells of a list structure, and it is

-76-

necessary to settle on one of them. J101 generates the
cells in an order called print order, which is the order

used to print a structure for human inspection. It is
illustrated below:

NAME PQ SYMB LINK COMMENTS

L1 0 The main list is printed first.

S1

9-1

9-2

S2 0

9-1 0 The first sublist of L1 comes
next.

9-3

9-3

S3 0

9-2 0 The other sublists of L1 come
next, before the sublists of
9-1.
9-4 0
9-3 0 The sublists of 9-1 come be-
fore the sublists of 9-2.

S5 0 Sublist 9-3 is only printed
once, although it occurs
twice.

9-4 0 Finally 9-4 is printed.

S6 0

The general rule is to generate all the cells of a
list in sequence, accumulating its sublists, and to take
sublists in the order in which they are first encountered.

A second question concerns the problem of marking
processed with J137. Some marking must be done or J101
will not successfully generate many legitimate list struc-
tures, such as the following:

NAME PQ SYMB LINK COMMENTS

L2 0

9-1 O
9-1 0

9-1 O

The convention adopted is to have J101 mark each sublist
processed prior to presenting it to the subprocess, and
to have J101 remove the processed marks as part of its

-77-

clean up. Local symbols that name data terms are treated
in the same way as other sublists and are marked processed.
A consequence of this is that every time J101 presents the
head of a sublist to the subprocess, that cell has a pro-
cessed mark in it. The actual contents of the head are in
the cell following, which was added to the list by the
operation of marking processed.

In order to work with a list structure effectively,
it is necessary to know when a new sublist is being gener-
ated. The output from J101 to the subprocess includes
setting H5+ if the cell is the head of a new sublist; and
setting H5- for any other cell. (Since names of sublists
will be marked processed, they could be distinguished by
J133, and the H5 convention is redundant; however, it is
useful.)

A final issue concerns how much manipulation of the
generated list structure is allowed. It is undoubtedly
possible to construct a subprocess that can fool any
generator into misbehaving, by searching ahead in the list
structure and recomposing the structure in various ways.
On the other hand, certain manipulations should be ac-
ceptable. For J101l, we adopt the principle that it should
be possible to erase a list structure with J101. This
means that J101 must have the name of the next cell to be
generated safely stored before it presents a given cell.
To show this sort of manipulation, we give below an IPL
code for J72, which erases the list structure (0).

NAME PQ SYMB LINK COMMENTS

J72 40 H5 Save H5, since H5 safe over J's.
10 9-10 Input subprocess; list is
already in HO.
J101
30 H5 0 Restore original H5 and quit.
9-10 70 9-11 Test if start of sublist:

J75 J9 If yes, disengage head (marked
processed), and erase cell;
9-11 J9 J4 If no, erase cell and set
H5+ to continue,

-78-

Besides the H5 instructions, which occur because of the
special convention for J's, the only noteworthy feature of
this routine is the use of J75 in erasing a head. Cells
with processed marks (heads) cannot be thrown away before
the end of the generation, at which time J101 will do it
if these cells are all that remain of the structure. J75
disconnects the heads from the structure and at the same
time creates a new head which is unwanted and must be dis-
posed of with J9.

A code for J101 is given in Fig. 11. The key problem,
as usual, is how to keep the necessary information. J101
has two lists: a record list, which is used to keep the
names of all sublists; and a generation list, which is
used to keep the current location in the list structure,
plus the ungenerated sublists. The name of the record
list is kept in WO. As each new sublist is found, it is
marked processed and its name put on the front of the list.
This is accomplished by putting the name in the head and
pushing down the record list, rather than by an insert.

All this occurs in Process new sublist. At the end of the

generation, in Clean up, each sublist on the record list
is popped up. If the sublist is still there, then this
simply unmarks it. If the sublist has been erased, there
will be no cells after the cell carrying the processed
mark (recall the J75 in the code for J72). The pop up
will leave the cell as a private termination symbol and
the cell is erased with a J9.

There are two points of access to the generation list.
The name is kept in Wl. 1Its head contains the name of the
next cell to be generated. Just before the subprocess is
executed, the next cell is found and put into the head
(see Find next cell.) All the other sublists found to date
are also in the generation list in order of generation.
Thus, when one sublist is finished (either J60 in Find next

cell fails to find another, or J131 in Diagnose current cell

-79-

NAME PQ SYMB LINK COMMENTS

J101 10 W2 Set up:
J17
J105 Bring list in from auxiliary, if
there,
J90 Create generation list (and record list,
below) :
40 HO WO holds name of record list.
J90 Wl holds name of generation list.
J22 W2 holds location for inserting
on generation list.
J4
40 H5 Set H5+ and save for initial subprocess.
40 HO 9-1 Pushdown to match entry; jump into
middle of loop.
9-4 40 HO Find next cell:
J60 Current cell to be generated
is already in HO.
21 W1 Place name of next cell in head of
generator list.
70 9-2 9-9 Test if current cell is end of sublist.
9-2 31 Wl Obtain next sublist.
9-9 30 H5 Execute subprocess:
J18 Pop up HS5 to set for subprocess.
70 9-3 Test if subprocess says to quit (H5-).
11 Wl Diagnose current cell:
J80 Find symbol in cell (if none,
generation list termination),
70 9-3
40 HO
J133 Test if marked processed.
40 H5 Save sign for output to subprocess.
70 9-4
40 HO
J131 Test if a data term.
70 9-2
12 HO
J133 Test if symbol in cell already processed.
70 9-4
12 HO
J132 Test if symbol in cell is local.
70 9-4

Fig. 11--J101

-80~

NAME PQ
11

70
9-11 41
11

20
41

12
9-1

61
21
9-10 30
9-3 11
9-8 11

70
31

70
30

9-6 12
9-7 31

SYMB

Wl
J60

w2
w2

w2
J60
w2
WO

HO
J137

WO
w2
HO
Wl
J71

WO
J80

HO
J80

9-6
HO
WO
J9
WO

J9

LINK COMMENTS

9-10

9-4
9-11

9-7

9-8
J19

Process new sublist:

Test if only one sublist.

Reset insert location.
Add a cell to the end of the genera-
tion list.

Advance insert pointer to new cell.

Add a cell to the beginning of the
record list,

Mark cell processed (entry point for
main list).

Put sublist name in record list (in
head) .

Put sublist name in generation list
(at end).

Clean up:

Erase remaining fragment of generation

list,
Clean up record list:
Test if end of record list.

Pop up sublist, getting rid of
processed mark.

Test if sublist was erased (cell
now termination) .

(Discard unwanted symbol from
J80 on + branch).

Erase cell for non-existing sublist.
Obtain next sublist on record list.

Erase head of record list; quit.

Fig. 11--(Continued)

shows the cell to be a data term), the next sublist is
found simply by popping up the generation list. This is
done with a 31Wl in Obtain next sublist. The name of the
last cell on the generation list is kept in W2. This is
where newly found sublists should be added to the genera-

tion list for "print order."

-81-

The initial setup creates the two working lists. It
also uses J105 to bring in the list structure from auxiliary
storage if it is there. If the list structure is already
in main storage, J105 does nothing. (Notice that the setup
enters the main loop at the lower end of 9-1.)

J101 is some 62 instructions long, and seems like a
very large routine. It accomplishes a good deal in the way
of generality, however: handling multiple occurrences;
allowing data terms; finding the next cell prior to pre-
senting the current one; bringing in the list from auxiliary;
and following a particular order of generation. Each of
these adds instructions to the code. By way of contrast,
if we eliminated most of these features we would have a
(still useful) routine, defined as follows:

R10: Generate all the cells in a tree (a list
structure that allows sublists to occur
only once) containing only symbols (no
data terms). The order of generation will
be sublist first order: the cells of each
sub-tree will be generated immediately
after the cell that holds the name of the
sub-tree. H5 will be set + to the sub-

process if a new sublist is starting, and
set - otherwise.

NAME PQ SYMB LINK COMMENTS

R10 10 WO Set up:
J17
J90 Create generation list.
20 wo Store generation list in
Wo.
J4 Set initial H5+,
9-3 61 WO Put cell name in generation
list,
J18 Execute subprocess:
70 9-1 Test 1f quit from subprocess,
12 WO Test if cell holds sublist:
12 HO
J132 Test if local symbol in cell,
70 9-4
52 HO Set up new sublist:
41 WO 9-3 Push down generation list,

saving current cell,

-82-

9-4 J60 Find next cell:

70 9-2
J3 9-3 Set H5- to subprocess.
9-2 51 WO Obtain cell in prior sublist:
J68 Recall prior cell.
70 9-1
12 WO 9-4 Get prior cell (already
generated) .
9-1 11 WO Clean up:
J71 J19 Erase generation list.

This routine has only 23 instructions, about one-third the
number of instructions in J101. It also shows very clearly
the form of this kind of routine.

When constructing your own generators, it is permis-
sible to establish private conventions about communication
between the generator and subprocess as long as such con-
ventions do not conflict with the standard conventions
(given in § 7.3 of Part Two). Thus, for example, the
subprocess could use HO, or even some private regional
cells reserved for this purpose, to communicate informa-
tion back to the generator, if this proves useful. The
following is an example which demonstrates the freedom to
add other conventions as well.

R78: Repeat the generation of the list cells
of list (1) for subprocess (0) until signaled
to stop by the subprocess setting H5- (stop
immediately) or setting the symbol omne-
down in HS5- (stop after the current itera-
tion through the list is finished). R78
signals the start of a new iteration
through the list by setting H5+ to the

subprocess on the first list cell, - on
all others.

TYPE NAME PQ SYMB LINK COMMENTS

R78 10 w1 J17 removes subprocess name
J17 from HO and preserves WO, WI.
60 Wl W1l holds name of 1list (15.
WO holds current location
9-0 20 WO on list.

-83-

TYPE NAME PQ SYMB LINK COMMENTS

J4 Set H5+ and make sure it is
3 deep. The symbol 1 down in
H5 is plus to signal sub-

40 H5 process that this is 1lst cell,
40 H5 It is 1 down in H5 to protect
it from J60, below.
9-1 11 WO Get next list cell and save
J60 it in WO, as well as in HO
60 WO for subprocess,
70 9-10 If end of list, go to 9-10;
30 H5 otherwise, pop H5 to signal
J18 if this is first cell, and

execute subprocess via J18.
H5 is 2 deep.

70 9-20 Quit immediately if subprocess
set H5-;
J3 otherwise, set H5- for sub-

process since next cell will
be list cell, and protect
this signal from
40 H5 9-1 J60 above by preserving H5.
9-10 30 H5 At the end of list, check
1 down in H5 to see if sub-
process wants to continue,

70 9-20 If not, clean up and quit via J19.
30 H5 If continuing, restore H5 to be
1 deep,

11 wl 9-0 get name of list from W1, and
start another iteration through
list, at 9-0.
9-20 30 H5 J19 Restore H5 to original depth,
quit.

9.1 PROBLEMS

NOTE: 1In constructing the following generators,
follow the standard conventions.

PROBLEM 57

Code Q9--'"Replace every occurrence of variable (1) in
the algebraic expression (2; with the variable (0). Q9
sets H5- if no replacements occurred, sets H5+ otherwise.'
Assume that (2) names a general list structure like L1l of
Problem 33 (p.41l), and use J10l1 to generate it.

-84-

PROBLEM 58

Code Q10--'"Delete all operators in the algebraic
expression (0)." Assume (0) names an expression like L11
of Problem 33 (p. 41), and use J101. Note that great care
must be taken in modifying list structures when a generator
is involved, since the generator in general does not know
what manipulations are taking place. In this problem,

J101 always obtains the name of the next cell before out-
putting the name of the current cell to HO for the sub-
process. If the next cell is erased by the subprocess and
returned to available space, there is bound to be trouble.

PROBLEM 59 |
Code the generator Qll--''Generate the names of the
list cells of list (1) for subprocess (0)." Qll does not

generate the head cell of the list. Do not use J101 or
J102. Ql1 has the name of the next cell saved before
handing the name of the current cell to the subprocess.

PROBLEM 60

Code the generator Ql2--''Generate the names of the
list cells of list (1) for subprocess (0). Set H5+ to
the subprocess if the cell being output to the subprocess
contains a local symbol; otherwise, set H5- to the sub-
process.”" QL1 should be used in the construction of Ql12.
(This does not mean to cannibalize or modify the code for
Qll to produce Q12; it means that the code for Q12 should
contain an execution of Qll.)

PROBLEM 61

Code the generator Ql3--''Generate the symbols of list
(1) two symbols at a time for the subprocess (0). The
first of the pair of symbols output to the subprocess is
in HO, the second is one-down in HO. The symbol in the
head of the list is not generated.' Ql3 is considered to
have run to completion when it cannot find two more symbols
on the 1list. Do not use any other generators in con-
structing Q13.

PROBLEM 62

Code the generator Ql4--''Generate every even numbered
symbol from list (1) for subprocess (0). The symbol in the
first list cell is symbol number one.'" The code for Ql4
should contain an execution of Q1l3.

-85-

PROBLEM 63

Code the generator Ql5--'"Generate the names of cor-
responding cells of 1list (1) and (2) for the subprocess
(0), until one of the lists is exhausted. When output-
ting to the subprocess, HO holds the name of a cell from
the input list (1), and one-down in HO is the name of a
cell from the input list (2)." Q15 is called a parallel
generator for obvious reasons. Observe that this cannot
be coded using two J100's '"in parallel'; this is one of
the few limitations in how generators can be combined.

PROBLEM 64

Code the generator Ql16, which has the same definition
as R78 in this section, except that the subprocess uses
the cell RO instead of the second cell of H5 to signal
whether another iteration through the list is desired."
Ql6 should preserve RO sometime before the first execu-
tion of the subprocess and restore it before terminating
via J19. Ql6 should be shorter than R78.

PROBLEM 65

Code the generator Ql7--''Generate the names of the
cells which contain operator symbols in the algebraic
expression (1) for the subprocess (0)." Q17 assumes the
algebraic expression is represented by a general list struc-
ture like L11 of Problem 33 (p. 41). Use J101.

PROBLEM 66

Code the generator Q18--''Generate the location of the
variable (1) in the algebraic expression (2) for the sub-
process (0)." Q18 assumes the algebraic expression is
represented by a tree like L10 of Problem 33 (p. 41).

Use J102.

PROBLEM 67

Code Ql9--""Replace every occurrence of the variable
(1) in the algebraic expression (2) with a locally named
copy of the subexpression (0)." Use Q18. The subexpres-
sion (0) is guaranteed not to contain an occurrence of
the variable (1). The algebraic expression (2) is like
L10 of Problem 33 (p. 41).

PROBLEM 68

Code D99--'"Delete all operator symbols in the alge-
braic expression (0)." Use Q17 of Problem 65 above. The
expression (0) is like L11 of Problem 33 (p. 41). Note
the remarks in Problem 58 (p. 85) on use of generators
for deletion.

-86-

10.0 LINE PRINTING

J150 through J153 are primitives for printing struc-
tures, lists, symbols, and data terms in a standard vertical
format. For composing and printing horizontal lines of
information, the primitives J154 through J161 are provided.
(Detailed definitions of these primitives and conventions
for using them are given in §¢ 16.1, 16.2 of Part Two.)

As an example, we develop the coding to print a
sentence and a row of numbers horizontally, on separate
lines. The sentence is represented by L15, a list of BCD
data terms. The data terms themselves contain blanks to
separate the words of the sentence, so there is no format-
ting to be done by the program. The numbers are represented
by L16, a list of integer, octal, and floating point data
terms. The program introduces formatting by leaving five
blanks between adjacent numbers. Neither L15 nor L16 are
long enough to produce several lines of printing in this
case, but the code handles lists that do. The routines
are described as follows:

R80: Generate the data term names from list (1)
for the subprocess (0). Clear the print

line 1W24 before beginning generation and
print the line when generation terminates.

R81: Subprocess for printing sentences. Enter
the data term (0) into the print line 1W24.
If line 1W24 is full, print it, and then
enter data term (0).

R82: Subprocess for printing rows of numbers.
Skip five columns (blanks) and enter data
term (0) into print line 1W24 if room for
it; if not, print the line, then skip five
columns and enter data term (0).

R83: Executive routine for this example. Enter
and print the sentence L15, then enter and
print the list of numeric data terms, L16.

-87-

TYPE NAME SIGN PQ SYMB

5

R80

R81
9-10

9-30 +

R82
9-10

R83

60

70

11

60
10

70

11

01

10
10

J154
J100

J155

9-30
J157

J155
J154

9-30

9-30
9-40

J161
J157

J155
J154
9-30

L15
R81
R80

LINK

J157

-88-

COMMENT S

Routine header.

R80: Generate list (1) for
subprocess,

Clear the print line 1W24.
Generate list (1) for
subprocess (0).

Print the line 1W24,

R81: Subprocess for enter-
ing a data term into line
1W24 without any formatting.
Save data term name, in case
line is full.

Enter data term left-
justified at column 1W25,

if there's room.

Quit, with H5+, if there

was room,

Otherwise, print full line
and then clear it, reset-
ting 1W25.

Now enter data term at

left margin.

9-30 holds name of data term.

R82: Subprocess for enter-
ing data term (0) + 5 blanks.
Save data term name, in

case line is full.

Tab 5 columns (same as
entering blanks).

Enter data term (0) left-
justified at column 1W25,

if there's room.

Quit subprocess with H5+ if
there was room.

Otherwise, print full line
and

Clear it, resetting 1W25 to
left margin.

Now get data term, tab 5
columns, and enter it.

9-30 holds name of data term.
9-40 is number of columns

to tab.

R83 (Executive): Print line
L15 as a sentence, then
print list L16 as a row of
numbers.

Input data,

input format routine, and
fire generator.

TYPE NAME SIGN PQ SYMB LINK COMMENTS

10 L16 Input data,
10 R82 R80 input format routine, and
fire generator.
5 01 Data header.

L15 0 L15 represents a sentence as
list of BCD data terms. Each
9-1 word will be separated from
9-2 next by 1 blank when printed.
9-3 Note that two blanks follow
9-4 0 word THIS because trailing
blank in 9-1 will be eliminated
on entry into print line.
9-1 + 21 THIS
9-2 + 21 IS A
9-3 + 21 SENT
9-4 + 21 ENCE.
L16 0 L16 is list of numeric data
9-1 terms.
9-2
9-3 O
9-1 - 01 33 Integer data terms = -33.
9-2 - 11 33 -29 Floating point -.33 to the -29th.
9-3 - 31 77777 77777 Octal data term -7777777777 (octal).
5 R83 Start at R83.
10.1 PROBLEMS
PROBLEM 69

Assume that L17 is a list and that each symbol on L17
names a list like L15 above; i.e., L17 is a list of sentences.
Code R84--'"Print the sentences named by the symbols on L17.
Each sentence should not start on a new line, but should be
separated from the preceding sentence by two blanks.' Use
R81 and J100, but not R80 above. The two blanks between
sentences must be provided by the program; they are not
contained in the first data term of each sentence.

PROBLEM 70

Construct the generator R85--''Generate only the integer

data terms of list (1) for subprocess (0)." List (1) is
gssumed to be like L16 above. Code the subprocess R86--

'If data term (0) is positive, tab five columns and enter
the data term into line 1W24. If (0) is negative, tab

five columns and enter the absolute value of the data term
and enclosing parentheses into line 1W24. Assume that there
will never be enough data to fill the line.' Then code
R87--"Each symbol on L18 names a list like L16 above. Print
the integer data terms on each list on a separate line.'

Use R85 and R86.

-89-

PROBLEM 71

Code R88--'"Print the symbols on list (0), preceding
each symbol with three blanks. Print the name of the
list (0) first, enclosing it in parentheses.' The list
may produce several lines of printing.

-90-

11.0 LINE READING

J154 through J161 allow one to build lines of text
from symbols and data terms; J180 through J189 are primi-
tives that allow one to build symbols and data terms from
1ines of text. These primitives are described in § 22.0
of Part Two. Below, we use some of these primitives to
read an English sentence from a card and to represent the
sentence as a list of BCD data terms, exactly like list
L15 of the previous section.

R95: Read a card into line X1 and create a list
of local BCD data terms from the line,
starting from the leftmost non-blank column.
Output (0) names the list, and H5 is set + .
If no card is present, or if the card is
blank, there is no output and H5 is set -

(The card is assumed to contain one English sentence, with
one blank separating each word. We wish to be able to

print this sentence later by entering the data terms of

list (0) into a print line via J157. Since J157 eliminates
trailing blanks, R95 will test the rightmost character of
each data term. If this character is a blank, it will be
inserted as the leftmost character of the next data term,
which will insure that a blank will appear between the words

when list (0) is printed with J157.)
TYPE NAME SIGN PQ SYMB LINK COMMENTS

2 B 100 Define Regional Symbols.
2 M 100
2 N 100
2 R 100
2 X 100
3 X1 01 80 Print line X1, 80 char. long.
5 01 Data header for constants.
M1 - 01 1 M1l = Minus one.
N1 + 01 1 N1 = Plus one.
N5 + 01 5 N5 = Plus five.
N8O + 01 80 N80 = Plus eighty.
Bl 21 Bl = BCD BLANK.

-91-

TYPE NAME SIGN PQ SYMB

5

= =

R95

9-10

9-200
9-300

10

70
11

30
70

10

70
11

11
10
70
10

70

50

X1
R96

J180
R97

W25
J184
HO
R97
J90
J50
Bl
J90
J121
J136
J182

9-200
WO

J6
J65
W25
N80
J116

M1

J161
J186
9-10

N1
J1lé61
J9
wo
J30
R97

LINK

9-300

9-10

J4

COMMENTS

Routine header.

Set up to read into line XI.
Read a card from unit 1W18
into XI1.

R97 cleans up and quits, H5-
if no card present.

Set 1W25 to 1lst non-blank col.

Quit if card was blank.
Create output 1list (0) and
save it in WO.

Create a cell, make it
into a blank BCD data

term with a local name.
Fill data term with 5 char.
of line.

To 9-200 if data term all blanks.

Add data term to end of output
list.
N80 is integer data term = 80.

To 9-300 if 1w25 = 80 or more
(Done).
M1 is integer data term = -1.

1wW25 points to last char. of
data term.

Final blank of this D.T. will
be initial char. of next
data term.

N1 is integer data term = 1.
Reset 1W25 and loop.

Erase blank data term.

Name of output list to HO.
Pop WO.

Clean up print line controls,
set H5+.

Routine header.

R96: Set up to read from
line (0). Preserve W21,
W24, W25, W30. Set 1wW21,
1W25 = 0. Set 1W24 = (0).
Set 1W30 = 5.

-92-

TYPE NAME SIGN PQ SYMB LINK COMMENTS

R96 40 W24
20 w24 1w24 = (0).
40 w21
40 W25
40 W30
J90 Create and
J124 clear data term.
20 w21 1w21 = 0.
J90
J124
20 W25 1w25 = 0.
10 N5
J120 Create copy of N5
20 w30 for W30 and
J154 O clear print line.
1 R97: Clean up after reading.
1 ERASE 1w21, 1w25, 1w30.
1 Pop W21, W24, W25, W30.
R97 11 w21
11 w25
11 w30
J9 ERASE data terms.
J9
J9
30 w21
30 W24
30 w25
30 w30 O
5 R95 Start card for reading.

THIS IS A SAMPLE SENTENCE FOR R95 TO READ.

11.1 PROBLEMS

PROBLEM 72

Code Q20--'"Read a card from unit 1Wl8 into print line
X1l. The card is either blank or contains a series of
decimal integer numbers separated from each other by one or
more blanks. The number of digits in each number varies
from one to eight. Create a locally named data term for
each number on the card and read the number into it.
Create and output the internally named list (0), which
names the data terms, and set H5+. If the card is blank,
set H5- and do not create a list.'" Q20 assumes the first
number may start in any column of the card. Treat W21,
W24, W25, and W30 as safe cells as usual, preserving them
before use, restoring them afterwards.

-93-

PROBLEM 73

Code Q21, whose definition is the same as that of Q20
except that the series of numbers extends over several
cards. All the numbers should be added to the same output
list (0). The end of the series of numbers is signaled by
a blank column followed by the character slash (/) fol-
lowed by all blanks to the end of the card. Modify the
code for Q20 so it is a suitable subroutine doing most
of the work for Q21.

PROBLEM 74
Code Q22, whose definition is that of R95 except that
the sentence extends over several cards. The end of a

sentence is signaled by a period (.) immediately follow-
ing the last word, with no intervening blank; a period will
not occur anywhere else in the sentence. All columns
following the period are blank, and the period should be
included in the final data term. Words are complete on one
card, and the first word on each card begins in column 2

or later.

PROBLEM 75

Code Q23--'"Generate the words of the sentence in
print line (1) for the subprocess (0). The output of the
generator to the supperroutine is H5+ if words were en-
countered and the generator ran to completion; H5- if no
card was present, or if the card was blank, or if the
subprocess turned the generator off before it ran to com-
pletion. The output of the generator to the subprocess
is an internally named list in HO. The list has an empty
head and contains the locally named BCD data terms needed
to represent the characters in the word. Only the last
data term on the list may contain blanks, from 0 to 4 of
them. Print line (1) is 80 characters long. The sentence
begins in column 1 or later, and is terminated by a period,
as in Problem 74 above; the period should not be included
in the last data term of the last word.

-94-

12.0 SAVING FOR RESTART AND RESTARTING

When very large programs have been constructed in
IPL-V, it is common practice to load the program and data
into the computer from the symbolic cards only once, then
save the contents of memory on tape for fast restart on
subsequent runs. J166, Save on Unit (0) for Restart, is
used for this purpose. (0) is the name of an integer data
term whose value designates one of the IPL tapes, 1 through
10. The program does not stop after executing J166, so
a normal run can be executed after saving for restart.
When making subsequent runs from a restart tape, the pro-
grammer usually wishes to make corrections to existing
routines or data structures, or to add new ones. Thus,
the normal practice is to save for restart by executing
J166, followed immediately by an execution of J165, Load
More Routines and Data. For example, in the program of
the previous section involving R95-R97, if the following
deck of cards were to replace the Type-5 start card, a
restart tape would be created on IPL Unit 1 by the execu-
tion of J166 in R99. Then, J165 in R99 would encounter
the start card for R95 and a normal execution of the prob-
lem would occur.

TYPE NAME PQ SYMB LINK COMMENTS

5 Routine header.
R99: Save for restart on
unit 1, then load more
routines and data from 1W18,

R99 10 N1 N1 = Integer data term = 1.
J166 J165
5 R99 Start at R99, Save.
5 R95 Start problem, R95.

The following deck is all that would be required,
along with the restart tape, of course, to perform sub-
sequent runs of R95.

-95-

TYPE NAME PQ SYMB LINK COMMENTS

5 40 7 Restart from tape on Unit 7.
5 R95 Start problem at R95.

THIS IS A SENTENCE FOR R95 TO WORK ON.

The Type-5 card, with P = 4, is encountered by the
initial load process, causing memory to be reloaded from
the IPL tape named by SYMB; interpretation begins with
the instruction following the J166 which created the re-
start tape--in this case, with J165. J165 immediately
encounters the start card for R95 and executes the problem
normally. Generally, we will have corrections to make, as
in the deck below, and these corrections will be loaded
by J165 if placed between the Type-5 restart card and the
Type-5 start card. ‘

TYPE NAME PQ SYMB LINK COMMENTS

5 40 1 Restart from tape on Unit 1.
5 04 Routine header--corrections.
R97 30 w24 O R97: Pop W24 only.
2222 20 W24 0 Terminate R96 at 2nd
instruction. ,
5 R99 Start card to save original
plus corrected code onto Unit 1.
5 R95 Start problem.

THIS IS ANOTHER SENTENCE FOR R95 TO PROCESS.

The deck above demonstrates two ways of making correc-
tions: by replacing an entire routine or data structure;
or by making an absolute patch at the proper place. The
old, and longer, version of R97 is completely replaced by
the one line above. The cells making up the original R97
are lost to the system. The correction to R96 at cell
2222 demonstrates patching at a known location, obtained
by examining the original assembly listing of R96. Note
that the routine header must have Q = 4 if absolute
internal symbols are to be used. (See & 18.5 of Part Two
for discussion.) Most people prefer to make corrections
by correcting the original symbolic deck for the routine

-96-

and reloading the entire routine, as R97 was above, since
this simplifies the problem of keeping the symbolic deck up-
dated. The old version of R97 is erasable by J201 if desired.
The deck above makes changes to R96 and R97, then
immediately makes a new restart tape which includes these
changes. One usually prefers to test the changes before
this is done, and it is certainly risky to destroy the
previous restart tape until the new one has been tested
at least once. An inopportune hardware failure could pro-
duce a useless restart tape and thus force a reassembly
of the complete symbolic deck if the new restart tape has
been written over the old one. The new restart tape may
be tested in the same run which created it merely by in-
serting an appropriate restart card in the deck immediately
following the start at R99.
There is another use of J166 worth mentioning. When
a program runs a long time on the computer, it is usually
subject to termination by the computer operator through
a signal from the console. 1In this case, we would like
to create a restart tape which will allow us to resume
exactly where we were interrupted, without having to supply
a start card on restart. The solution is to plant the
name of a routine, say R98, in Wl4, which will only be
executed when the interrupt signal from the console is
detected. R98 could be exactly like R99 above except that the
final LINK would be zero rather than J165. Restarting
from a tape thus created requires only a restart card, and
interpretation resumes at the point of interruption. Since
details of the interrupt and restart procedure may vary
on different computers, the conventions of the local
installation should be checked. It is worth noting that H5
is set + when J166 is executed, but that H5 is set - by the
system when a run is restarted. Thus, in the code following
the occurrence of a J166, it is possible to detect whether
one is continuing the original run or doing a rerun. See

the example in § 20.0 of Part Two, SAVE FOR RESTART.
-97-

12.1 PROBLEMS

PROBLEM 76

Code Q24--""Save on Unit 2 for restart, with pro-
vision for making corrections on restart."

PROBLEM 77

Make up the deck and run the code in the example of
R95-R97, using Q24 to save for restart before starting the
problem, R95. Use the restart tape and do a second run
with the definitions of R96 and R97 changed, as follows:

R96: Preserve W24 and set it to (0). Pre-
serve W25, create a new data term and
put its name in W25, then clear print
line 1W24.

R97: Return 1W25 to available space, then
pop W24 and W25.

Make these changes by replacing R96 and R97, rather than by
patching them. Erase the old versions of R96 and R97 with
J201 in order to recover the list cells they occupied.

PROBLEM 78
Code Q26--'""Save for restart on Unit 5, without pro-
vision for corrections on restart.' Check the conventions

of your local installation and test Q26 to verify that it
does indeed provide interruption and continuation of long
problems without using a start card on restart.

-98-

13.0 DEBUGGING

The primary debugging facilities of IPL-V are the
trace, the snapshot cells, the post mortem, and the error
trap (see § 15.0, MONITOR SYSTEM, and § 21.0, ERROR TRAP,
in Part Two). Other uses can be found for some of these
mechanisms, but we shall consider them here only in terms
of their utility for checking out a program. A common
philosophy underlies these various facilities: namely,
(a) one should be able to preserve a logical and physical
separation between the program being debugged and the code
for debugging it; and (b) the debugging code should be
capable of using the full power and generality of IPL-V.

The trace is simplest to use. If the program is small
and the run will be short, all of the routines can be
traced simply by setting the external trace mode, 1W31,
to FULL TRACE initially. None of the routines need have
monitor points (Q = 3) in them. However, this option should
be used intelligently; small routines with small bugs can
produce reams of useless trace under this mode of operation.
One can guard against this by using local installation
measures either to limit the output to a specified number
of pages, or to limit the running time. IPL measures are
also available to prevent runaway tracing. W33 can con-
tain a limiting cycle count which will cause trapping;
providing J7 as the trap action will terminate the run.
When running with FULL TRACE, the number in W33 is also
the limit to the number of lines of trace that will be
produced. Or, 1Wl4 can name a terminating routine (e.g.,
J7) that is invoked by the external interrupt mechanism.

For large programs, setting 1W31l to FULL TRACE for
the entire run is unacceptable. However, there will be
occasions when it may be useful to obtain full tracing
of all the routines executed between two points in the

-99 -

program. If these points can be identified by approximate
cycle counts, then the H3 trap is an effective mechanism.
In the example below, W33 is set to cause trapping when
1999 interpretation cycles have occurred; the trap action
routine D1 is then executed. Dl causes FULL TRACE to be
turned on, sets W33 so it will trap again 1000 cycles
later, and arranges that the trap action at that point will
set the external trace mode back to its normal SELECTIVE
TRACE value. The effect is to produce a trace of every
instruction executed between the two trapping points; the
names of the routines that would be traced need not have

been known beforehand.

TYPE NAME SIGN PQ SYMB LINK COMMENTS

5 ROUTINE HEADER.
w33 + 01 2000 H3 trap at 2000 cycles.
1 EO is a debugging execution.
EO 10 w26 Set the trap action of H3
10 D1 to be DIl.
10 H3
J11
R1 0 Execute R1l, the program
being debugged.
D1 10 9-1 Set 1W3l = 1, FULL TRACE.
11 w31l
J121
50 9-999
10 W33 Set W33 to trap after
40 HO another 1000 cycles.
J110
50 W26 Action for next trap is D2,
10 D2 which will return 1W31 to
10 H3 SELECTIVE TRACE.
03 J11 0 Cause MONITOR POINT.
9-1 + 01 1
9-999 + 01 1000
D2 10 9-2
11 w31
J121 Set 1W31 = 2, SELECTIVE TRACE.

03 J8 0 Cause MONITOR POINT.
9-2 + 01 2

A useful variant of this technique would leave the
trace in the SELECTIVE TRACE mode, but cause specified
routines to trace only if executed during the 1000-cycle

-100-

interval. This can be done by having the first trap action
routine mark the specified routines to trace with J147,

and having the second trap action routine undo the trace
mark with J149. This method might be used when known
routines are suspected, but are used too frequently to
allow tracing each time--routines which seem to perform
correctly up to a certain point in the run, and then appear
to misbehave.

Since the system only examines the external trace mode
at monitor points, each of these routines should include a
monitor point after changing 1W31l, in order to make the
change effective immediately.

The snapshot mechanism is triggered by the occurrence
of monitor points in the executed code. The snapshot cells,
W12 and W13, name routines which are executed before and
after (respectively) the execution of the routine contain-
ing the monitor point. This mechanism can be used to pro-
vide the equivalent of a ''data trace'; i.e., selected lists
can be printed to observe the changes which the program is
producing in them. The routines named by W12 and W13 should
not be traced, but are otherwise unrestricted.

Each of the routines which are activated by the error
trap, the snapshot cells, or the post mortem routine cell,
W15, may be used to control the course of debugging in a
dynamic fashion; in particular, they may create or destroy
monitor points, control the trace mechanism via 1W31l, cause
trapping on the cycle count 1W33, execute post mortems,
change the contents of the snapshot cell, etc.

13.1 PROBLEMS
PROBLEM 79

Code the debugging routines and data needed to cause
each of the routines R80 through R83 (§ 10.0, pp. 87-89)
to be traced for their first execution only. If monitor
points are needed, create with J147.

-101-

PROBLEM 80

Code the debugging routines needed to produce a snap-
shot of the output list being built by F1 (§ 2.0, pp.
17-22) each time a new symbol has been added to the list,
and at no other time. No trace output is desired. (The
J routines may be marked to trace.)

PROBLEM 81

Code the debugging routines needed to produce a snap-
shot of list L1 after each execution of a routine Rl, a
snapshot of L2 and L3 before each execution of R2, and a
post mortem every 100,000 interpretation cycles. No
tracing is desired.

PROBLEM 82

Code the debugging routines needed to cause a routine
Rl to trace only on its tenth execution. Assume that other
routines are being traced selectively in the same run.

-102-

14.0 ORGANIZING COMPLETE TASKS

The important concepts of IPL-V have been presented
in the earlier sections and the meaning of most of the
primitive processes has been illustrated by using them
in solutions to the problems. These illustrative prob-
lems have called for coding precisely-defined routines,
so that there has been little opportunity for the reader
to attempt to organize complex tasks. A few guidelines
on the larger issues of organization are offered below,
even though of necessity our comments are somewhat general.
The problems at the end of this section are more complex
than those in the earlier sections and provide an oppor-
tunity to try out some of these organizational ideas.
However, they can be no substitute for organizing and
constructing programs to handle one's own problems.

The transition from the small problem, which is simply
an exercise in coding, to the large problem, involving all
the skills of the programming art, introduces several new
concerns. First, a large program must be organized into
parts. These subdivisions are not given, but must be
created by the programmer. Second, the scheme for repre-
senting the data of the problem is not given, but must be
chosen by the programmer. Finally, a big system will not
be created once and for all, but will evolve; that is,
parts of it will require modification while other parts
still retain their original form. Needs for modification
arise because understanding about what the program really
should do and how it might do it increases. slowly, and

because demands arise during construction for the program

-103-

14.

1

to perform additional functions. Thus, the initial organ-
ization must be chosen with an eye to the unknown future.
Notably absent from this list is concern about how
well defined the task is. ' Programming does not usually
extend to defining the task; and, many tasks that are
extremely well defined pose very large design problems
of the kinds we have just mentioned. For example, imple-
menting any programming language (such as IPL-V) on a new
machine poses major problems of program organization,
data representation, and preparation for future modifica-
tion, despite the fact that the language is completely

defined and already runs on other machines.

PROGRAM SUBDIVISION

With current programming languages, and especially
with IPL, any large program will be organized as a
hierarchy of subroutines. The alternatives to hierarchical
organization are not very well understood, and we shall
not consider them here. The problem for the programmer,
then, is how to get the most out of a hierarchical
organization.

One programming strategy, often called the "top-down"
approach, is to divide each large process, no matter how
complicated, into a small number of subprocesses. Each
of these subprocesses is given a name, and its function--
the processing it accomplishes--is defined precisely by
specifying exactly what inputs it requires and what out-
puts it produces. How this subprocess will carry out this

processing does not matter at this stage, although it may

10/~

be necessary to make some decisions about data representa-
tion at the same time that subprocesses are defined.

When all its subprocesses have been defined, it should
be possible to write the code for the process itself. The
routine defining the process will then consist entirely
of instructions executing the subprocesses, instructions
positioning inputs for the subprocesses and disposing of
their outputs, and instructions using the outputs of some
subprocesses to decide which subprocesses to execute next.
(These latter decisions, if they are at all complex, should
be packaged as additional subprocesses, of course.)

Once any process is coded, attention can be directed
to developing and coding each of its subprocesses, using
exactly the same strategy of decomposing these into sub-
processes. Ultimately, subprocesses are reached that can
be defined directly in terms of the IPL primitive pro-
cesses, so that the decomposition comes to a stop. Al-
though apparently at each stage all the complexities are
being relegated to the subprocesses and only codes for
trivial processes are being written, it will be found at
last that nothing complicated remains to be done at the
bottom of the hierarchy.

Following the top-down strategy provides a framework
within which the programmer can concern himself with de-
veloping a subroutine hierarchy that is at once compact,
flexible, efficient, and comprehensible. If the number
of subprocesses at each stage is kept small, the code for
each routine constitutes an immediately understood out-
line of the process accomplished by that routine, es-

pecially if appropriate titles and comments are added.

-105-

14.2

Such routine hierarchies are easy to read and comprehend

to any desired level of detail.

CENTRALIZATION OF FUNCTION

One of the important general principles for design-
ing program hierarchies is to centralize functions. That
is, each function that is required in one or more pro-
cesses should be performed by a single subroutine, in-
sofar as possible. The advantages of doing so are many.
Most obviously, space is saved by not duplicating the
same segment of code in the total program; likewise,
programming time is saved by not having to code essentially
the same routine more than once. By far the most im-
portant advantage, however, is the flexibility achieved
by centralization. Almost always, significant proposed
program changes are initially described as modifications
or additions of function (or of representation). If the
functions are centralized, modification is usually quite
easy; if they are not, modification may be impossible,
requiring multiple changes throughout the program.

As an example, in one of the earlier versions of
IPL the functions of getting cells from available space
and putting cells back on available space were decentra-
lized; each routine that called for space or returned
cells to available space did the job itself in its own
way. The rationale for so doing was that the amount of
code required for these functions in any given routine
was small and standardization would sometimes have doubled
the amount of processing required to do it. At a later

time in the development of the language design, it was

-106-

proposed to use many available space lists, analogous to
the mechanisms in IPL-V for loading into separate blocks.
This whole proposed line of modification had to be aban-
doned because of the decentralized scheme for handling
available space--to change this scheme was tantamount to
recoding the entire language.

A final advantage of centralization is that it in-
creases the comprehensibility of the program. Some of
this clarification comes about simply because the central-
jzed scheme contains fewer subroutines. But, some of
the gain is due to the fact that the centralized program
structure matches well the way humans normally describe
large operating structures; namely, in terms of functions.

On the other hand, there are costs associated with
centralization. As suggested by the example above,
centralization requires standardizing the manner of cal-
ling on the standard subroutines, and this increases the
processing cost of subroutinization. In IPL, for example,
a DESCEND process and an ASCEND process must be executed
in the interpreter to enter and return from a subroutine.
In this case, however, the cost of centralization is
almost negligible in comparison with its advantages.

Working through the program from the top down, and
accumulating a list of the routines as they are defined,
is an excellent way to discover when the same function
recurs in several places. Often, the routines for the
several uses of the function are not identical; for
example, several details of the input and outputs may
be different. In this case, it is still possible to

create a single routine, perhaps with additional parameters,

-107-

that will perform both jobs. The price of this standard-
ization may be appreciable if much extra processing is
required to interpret the additional parameters. However,
the price is usually well worth it, for changing similar
functions into identical ones by such modification is one
of the main mechanisms for exposing the underlying struc-
ture of a task.

A concomitant principle to centralization is the
separation of function. That is, each process should
accomplish only a single function. The main advantage
of this is to permit each process to be used in several
parts of the total program. By the nature of things,
processes composed of several functions are less likely
to recur than processes incorporating only the separate
functions.

There is a conflict between writing the program so
that each function is performed by a corresponding routine
and the principle of dividing each routine, no matter
how complex, into a small number of subroutines. The sub-
routines at the top of the program hierarchy are often
highly particular, corresponding to no familiar functional
concept. They occur only once in the entire structure.
Only as one works down the hierarchy of subprocesses does
one encounter functions that recur at different points
in the program.

Of course, the concept of function is not very pre-
cisely defined. There is considerable freedom in analyzing
a task into functions. However, functional analysis ap-
pears to be a natural way for humans to cope with tasks,
so that the principles just enumerated are useful guides
to programming.

-108-

14.3

ISOLATION OF SUBROUTINES

Another principle may be called the principle of
isolation. The flexibility in hierarchical organization
depends on each subroutine being isolated from the rest
of the program, except for a small number of well-defined
connections. Only with such isolation is it possible,
in making changes in other parts of the program, to know
what consequences these have for a given routine; or
conversely, in changing a routine to know that other
routines are unaffected by the change. The connections
between a routine and its environment should be describable
solely in terms of the routine's inputs and of general
conventions about the form of data representation.

Concretely, one subroutine should not link to another;
rather, all subroutines should end by simply terminating.
If two routines are to occur in sequence, a higher routine
should be used to execute them. As another example, the
information available to a subroutine about its inputs
should be clearly stated and no other information about
them should be used, even if the programmer possesses
additional information (which he often seems to, due to
the concrete context in which the routine is first de-
fined).

This seemingly obvious principle is easily violated.
For instance, a rather complex routine was once written
to keep track of the space used in various structures of
a program. To permit future expansion of the program,
the routine took as input a list, each of whose sublists
contained the names of all the data structures of a given

type; thus, additions could be made to the lists. It

~-109-

happened that some types of substructures required special
processing. Since, at the time of coding, the input list
was already available, the programmer made use of what he
knew about the types of structures filed on that list and
where they occurred--e.g., the third sublist contained
structures of a certain type to be treated in a certain
manner. As a consequence of these coding conventions,
when the input list was finally changed (a year after it
was coded) chaos resulted, since position on the list no
longer corresponded to the positions assumed during the
original coding. Ignoring the principle of isolation

was not unmotivated; to have written the program correctly
would have required having the routine determine at each
stage what kind of structures were stored on the sublist
being processed. This would have called for additional
processing, as well as for reliable criteria by which the
different types of structures could be identified. Con-
sequently, real costs were associated with preserving
independence.

In keeping programs independent, it is often useful
to channel all inputs and outputs through HO. Whenever,
for example, the W's are used as direct communication
devices between routines (to avoid additional input and
output actions), unintended connections between routines
easily occur. The use of common 'blackboards' by a whole
system of routines is a useful organizing scheme, but one
that takes a good deal of thought. To press the analogy,

one man with an eraser can wreak havoc on a blackboard.

-110-

14 .4 DATA REPRESENTATION

So far we have discussed only organizing the pro-
cessing. Organizing the data--i.e., choosing representa-
tions of the information in the task--is perhaps even
more crucial. Unfortunately, little can be said about
it in general by way of guidelines.

Concern with representation leads to what is often
called the "bottom-up' approach; that is, first creating
a set of "standard" subprocesses, which are then used as
the basic components of higher-level routines. Given a
representation, various processes must be performed on
the information so represented: reading information out
and writing information into the representation. There
may be a variety of these processing requirements, form-
ing a collection of processes that recur again and again
in any program utilizing the representation. Consequently,
the programmer can attend to the design and implementation
of these basic processes before he goes on to consider
how the entire program will be structured.

Programming languages themselves provide excellent
illustrations of the bottom-up approach. Consider lists
in IPL-V, for example. Once the list was introduced as
a representation of information, it was necessary to pro-
vide processes to read lists (J60 and J80) and to write
lists. The latter process involves not only writing in
an already existing list (21WO if the name of the list
cell is in WO), but also creating lists (J90), modifying
the structure of lists (J64 and J68), and erasing lists
(J71). Since a useful set of basic processes, and not

just a minimal set, was being provided, additional

-111-

specialized processes were also defined (e.g., J61, J62,
etc.). IPL-V as a whole, of course, includes not only
lists, but list structures, description lists, cells,
push down lists, and data terms. Each of these re-
quires additional reading and writing processes. Thus,
for description lists, J10 reads; J11, J12, and J13
write and create; J1l4 and J15 erase. All these reading
and writing processes are internal to the computer. In
addition, reading and writing must occur with respect to
the outside world; thus, we get J140 and J151 for reading
and printing list structures.

By the time one takes care of the different repre-
sentations, the different media in which reading and
writing are possible, and the desire to build useful
collections of processes and not just minimal ones, most
of the basic primitives in IPL-V have been accounted for.
A similar story holds true for other programming languages.

This story of the programming languages is repeated,
although on a smaller scale, every time a new representa-
tion with distinctive conventions is created within a
program. Building up the collection of reading and writ-
ing processes, including ones for printing and reading
from cards in some convenient external form, is, in effect,
constructing a small programming language. However, this
language remains embedded in IPL-V, so that it amounts to
considerably less than a completely new language.

The advantages of working up from the bottom of the
program toward the top are several. Having a unified
conceptual scheme for a complete set of processes for

reading and writing leads to a much cleaner set of

-112-

routines than just coding each particular 'read" or 'write"
when it happens to first be called for, as is the case

in working down from the top. In addition, the new read
and write processes form higher conceptual units that can
be worked with directly in discovering how to code higher
processes. Instead of having to think continually in terms
of the detailed features of the representation, one simply
thinks of "putting it there'" and "'getting it." Perhaps

the most important advantage is in keeping a clean separa-
tion between the conventions of the representation, on

the one hand, and the use of the information held in the
representation, on the other. For example, having created
a complete set of read and write operations, it is often
possible at some later time to change the underlying
representation completely without modifying any part of

the program except the read and write processes themselves.
This rather dramatic demonstration of program modifi-
ability is seldom possible unless such care has been taken
beforehand.

Occasionally, the bottom-up approach provides im-
portant information about the qualities of a proposed
representation. If a representation is created when it
is needed, only a few of the read or write operations are
uppermost in the programmer's concern at the time. Al-
though the ad hoc representation may be extremely good
for these few operations (say reading information and
writing it into an already constructed representation),
when additional operations are needed (say deleting in-
formation from the structure), they may be difficult or

even literally impossible to code. Coding up the full

~113=-

collection of reading and writing processes at the outset
can reveal this situation before large amounts of coding
and analysis have been completed which have to be redone.
An additional issue often arises with representations
that permit constructions, such as lists and list structures.
After a data structure is no longer needed it has to be
erased and returned to the available space list. If the
cautions mentioned above have been heeded, there will be
no difficulty about coding the erasing process; but, there
may still be a real problem in deciding what routine
should do the erasing. This is usually termed the problem
of responsibility: The routine that is responsible for
a structure knows when it is no longer needed and can
erase it. In simple situations where a structure is
created, used, and discarded all within a single routine,
the issue of responsibility is easily settled. However,
if various structures are created by routines that have no
control over or knowledge about what other routines will
be using these structures and what conditions will lead to
their becoming superfluous, then some more elaborate set
of responsibility conventions becomes necessary. Although
it is hard to give general advice, the principle that
functions should be centralized wherever possible suggests
that responsibility rest in a single routine (often called
the '"'garbage collector') that has some means of independent
access to all structures of concern and some processes for
determining when these structures have lost their useful-
ness. Schemes of this kind often require additional pro-
cessing, but bring their rewards by removing a major

problem once and for all from the concern of the programmer.

-11/-

14.5 SYSTEM EVOLUTION

At the beginning of this section we noted three con-
siderations that distinguish large complex problems from
the small exercises in the Manual. Two of these, the
organization of processing and the choice of representa-
tion, have already been discussed. The third is the
evolution of the system. A large programming structure
represents a considerable investment, not just in pro-
gramming effort, but in the discovery of sets of conven-
tions that fit together to permit the task to be performed.
Programs almost always undergo repeated modifications
which seek to preserve intact as much of the system as
possible, while still permitting the program to run under
more general conditions or getting additional useful out-
put from it.

Almost the sole guide in preparing for this unknown
future is to keep the program flexible. Most of the
specific recommendations for flexibility have been dis-
cussed already. Flexibility is always worth more than
one is prepared to admit at the moment of coding, if only
because other criteria, such as speed and space, are
easier to respond to. The only other guideline is one
that is trivial--but often ignored. Each routine should
be documented to indicate specifically what is assumed for
each input and output, and to state succinctly the general
conventions of representation and coding philosophy. It
is this documentation that permits discovery of possibil-
jities for modification of the program, and that allows the
assessment of the consequences of changes for apparently

remote parts of the program. Without adequate documentation,

~115-

it becomes progressively more difficult to introduce
changes into a large, complex program without losing
control over their indirect effects, and without a gradual
accumulation of complexities that soon produce incompre-

hensible chaos.

14.6 PROBLEMS

PROBLEM 83

Design a different representation for the bridge
hand example which does not use description lists. Re-
code R4, R5, and R6 of that example for the new repre-
sentation.

PROBLEM 84

Each card in a poker deck has a suit (spades, hearts,
diamonds, clubs) and a value (ace, king, queen, jack, 10,
9’ 8’ 7’ 6’ 5’ 4’ 3’ 2)'

a) Design an IPL representation for a card and for
a poker hand of five cards.

b) For each of the following types of poker hand,
write a routine to determine if a given poker
hand is of that type:

1) One pair (two cards of same value, others of
different values).

2) Two pair (two cards of one value, two cards
of another value, fifth card of a third value).

3) Three of a kind (three cards of same value,
others of different values).

4) Straight (five successive contiguous values).

5) Flush (all cards of same unit).

6) Full house (three cards of one value, two of
a second value).

7) Four of a kind (four cards of one value).

8) Straight flush (both straight and flush).

9) Royal flush (straight flush, highest value
is ace).

-116-

¢) Write an overall routine to evaluate a poker
hand, assuming the existence of each of the
routines in (b) above.

d) Sometimes a poker deck includes one additional
card, the joker, which may be used in place of
any card in evaluating the hand. Write routines
to determine the type of poker hand when a joker
is in the deck.

e) In some poker games, the dealer may specify some
of the cards as wild cards (e.g., deuces wild).
Any of these cards may be used in the same way
as the joker in evaluating the hand. Write
routines to determine the type of poker hand
in this case.

PROBLEM 85

Devise an information retrieval and storage system for
a university room assignment office, which stores a list
of all the rooms on campus together with their capacities
and the hours during which they are in use. The system
should have three operators: Sl, which accepts a room
(0) and an hour (1), and marks that room "occupied" during
that hour; S2 which accepts the same inputs and unmarks
the room at that hour; S3, which accepts an hour (0) and
a number (1) of students in a class, and outputs the
smallest room available at that hour that can accommodate
the class. If a room can be found, H5 is set + ; other-
wise, it is set - , and there is no output.

PROBLEM 86

Design a representation of a chessboard and the white
and black pieces, and code routines which will generate all
the legal moves for a given piece at a given position on
the board, taking into account the positions of the other
pieces at the time.

PROBLEM 87

Design and code a program to solve crossword puzzles.
There should be a dictionary of synonyms and antonyms,
capable of retrieving several alternate responses to a
definition. Assume definitions are single words, negated
when the antonym is intended. Allow the puzzle form to be

-117-

rectangular with unused or blacked-out squares appearing
where needed. Provide a convenient way to add to the
dictionary, to specify new puzzles, and to print the
solution in crossword format.

PROBLEM 88

Design and code a program which would be useful to
the instructor of an IPL course for checking the solu-
tions to the problems in this Manual. Make some reason-
able assumptions about the required format for submitting
decks, whether the program or the student should provide
test data, maximum running time for each solution, safe-
guards against clobbering the system, criteria for evalu-
ating a solution, providing useful diagnostic information
to the student, etc. State these assumptions explicitly
on comment cards.

-118-

SAMPLE SOLUTIONS TO SELECTED PROBLEMS

PROBLEM 1 9% % 33 3 3% 3 3 36 9 % 34 3 36 3 3 % % %

HEAD CELL IS EMPTY. X1

syMsoL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

FOR
FOR
FOR
FOR
FOR
FOR
FOR

SUNDAY.,

MONDAY .

TUESDAY .

WEDNESDAY.

THURSDAY

FRIDAY.

SUNDAYs END OF LIST.

PROBLEM 2 3 3 3 3 I 3 % 3 I I W 3 3 I WKW KX N

HEAD CELL IS EMPTY. X2

SYMBOL
SYMBOL
SYMBOL
SYMBOL

FOR
FOR
FOR
FOR

'THE'.

'MORE '«

*THE ',

*tMERRIER's END OF LIST.

PROBLEM 3 %33 % 3 3 3% 3% % 3 3 3 3 3 36 3 % % 3% % %

X3
N1 CORRESPONDS TO NEW YORKe
Cl1 CORRESPONDS TO CHICAGO.
D1 CORRESPONDS TO DENVERe
L1 CCRRESPONDS TO LOS ANGELES.
PROBLEM & %% % % 3 3 3% 3 % % 3 3 3 % % 3% % % 3 % % %

X4
PROBLEM 5 %35 %3 3 3 3 3 3 % 3 3 6 3 3 3 % 3 3 % %
THE ERROR IS IN 5Pe
AFTER EXECUTION HO SHOULD BEeee HO
SOLUTION 5A. HO
SOLUTION 5B HO
SOLUTION 5C. HO

-119-

D1
D2
D3
D4
D5
D6
D7

Tl
M1
Tl
M2

N1
Cl
D1
L1

AQ
+0
BO
AO
+0
Cco

x5

X1
X1
X2
X3
X3
X2
Yl

X2
SOLUTION 50, HO 0
X1 X2
SOLUTION 5E. HO 0
X3 X2
SOLUTION 5F., HO 0
X3 0
SOLUTION 5G. X1 0
SOLUTION SHo X3 0
SOLUTION 51. X5 0
SOLUTION 5J. x1 X3
X3
X3
X4
SOLUTION 5K X3 X5
X5
X5
X6
SOLUTION 5L X5 X7
X7
X7
SOLUTION 5Me NO CHANGE.
SOLUTION 5Ne NO CHANGE.
SOLUTION 5P. NO CHANGE.
SOLUTION 5Qe NO CHANGE.
SOLUTION 5Re NO CHANGE.
SOLUTION 5Se NO CHANGE.
PROBLEM () IZZEETE TSRS ER T L L L N L X X
SOLUTION 6A.
RESTORE HOe 30HO
SOLUTION 6B
RESTORE HO. 30HO
SOLUTION 6C.
RESTORE HOC. 30H0
SOLUTION 6D
INPUT 1X1. 11x1
INPUT X3, 10X3
OUTPUT TO X1e 20X1
SOLUTION 6E.
INPUT 2X1. 12x1
INPUT Al, 10A1
OUTPUT TO 1X1e 21x1
SOLUTION 6F .
INPUT 2X1, 12x1
REPLACE WITH 2HOQ. 52H0

-120-~

COooo0oo0o00O0OO0OO

INPUT Ba4.
OUTPUT TO 2X1e.

SOLUTION 6Ge
PRESERVE X1le
INPUT X3.

QUTPUT TO Xl

SOLUTION 6H.
PRESERVE 1X1e
INPUT X5
OQUTPUT TO 1X1e.

SOLUTION 61
PRESERVE 2X1e
INPUT X7
OUTPUT TO 2X1.

SOLUTION 6J.
RESTORE X1

SOLUTION 6Ke
RESTORE 1X1e

SOLUTION 6L
RESTORE 2X1.

SOLUTION 6Me
REPLACE WITH Y&,

SOLUTION 6Ne
REPLACE WITH Y4,

SOLUTION 6P
REPLACE WITH Xl

SOLUTION 6Q.
INPUT X3.
OUTPUT TO X1e

SOLUTION 6Re
INPUT X5
OUTPUT TO 1Xle
SOLUTION 6Se.

INPUT X6e
QUTPUT TO 2X1

PROBLEM 7 36 9 36 3 I 3 I I I I I I K I W K K WK K H

-121-

NN N
oxX

10B4
22X1

40X1
10X3
20X1

41X1
10X5
21X1

42X1
10X7
22X1

30X1

31X1

32X1

50Y4

50Y4

50X1

10X3
20X1

10X5
21X1

10X6
22X1

owN

PROBLEM G 333335 % 3% % 9 % % % 3 3 % 3 % % 3 % %

5
ES
5
KO
5
PROBLEM 1] #%HANIAXREXEANNFXEERRE §
PRESERVE WOswWle PUT SYMBOL (C) IN R66
WOs PUT LIST (1) IN Wle
TEST IF SYMBOL IS ON LIST,.
REVERSE SENSE OF H5.
IF NOT ON LISTs RESTORE W*'S AND
QUIT WITH HS5-,
OTHERWISE ADD SYMBOL TO LIST»
RESTORE W'Sy QUIT +.
PROBLEM 13 #%¥¥NHAXEHAEHEIEERRR(R 5
P33

PRINT LIST X7.
PRESERVE WOe

LOCATE FIRST OCCURRENCE OF
SYMBOL Al ON LIST X7.

OQUTPUT LOCATION TO WO.

OUTPUT SYMBOL C1 INTO LOCATION.

LOCATE NEXT OCCURRENCE OF
SYMBOL Al ON LIST X7e

OUTPUT LOCATION INTO WO
OUTPUT SYMBOL C1 INTO LOCATION.

-122-

13K0
J151
10KO
Fl
J151
01

Al
B3
ES
Al
c9
Al
co
B3
ES

J51
11wl
11w0

JT7

J5
70J31
11wl
11WO0

J65

10x7
J151
40W0
10X7
10A1
J62
20WO0
10C1
21WC
11wC
10A1
J62
20wW0
10C1
21W0

J31

LOCATE FIRST OCCURRENCE OF
SYMBOL B1 ON LIST X7

LOCATE NEXT OCCURRENCE OF
SYMBOL Bl ON LIST XT7.
LOCATE THIRD OCCURRENCE OF
SYMBOL Bl ON LIST X7.
DELETE THIS CELL FROM XT7.
PRINT LIST X7e

PROBLEM 15 %% 3 363 3 3 36 3 363 3 36 46 36 4 3 36 36 34 3 3¢

PUT SYMBOL IN WOs LIST IN Wle
LOCATE SYMBOL ON LIST.

IF IT DOESN'T OCCURs GO TO 9-2.
COPY LOCATION INTO 9-3.

PUT SYMBOL INTO LOCATION.

GO TO 9-1.

WORKING STORAGE.

PROBLEM 17 %7355 353 353 3 903 3 34 3 3 6 %

REVERSE (0) AND (1)
LOCATE LAST CELL ON LIST,.
TEST IF CONTENTS OF CELL = SYMBOL.

PROBLEM 19 %% 3 33 3 3 3 6 % 3 3 3 3 3 3 3 3 36 % 3 %

PUT (0) IN WO»s (1) IN Wle
LOCATE 1wl ON LIST.

IF IT DOESN'T OCCUR GO TO 9-2.

PRESERVE LOCATION.

INSERT 1w0 BEFORE THE SYMBOL
IN THIS LOCATION.

LOCATE NEXT SYMBOLs GO TO 9-1.

CLEAN UP W'S AND HO.

PROBLEM 271 %% %333 53 335 39 % % % 3% % % %

PUT SYMBOL IN WO»s LIST IN Wle
DELETE SYMBOL FROM LIST.

IF IT DOESN'T OCCUR QUIT =.
DELETE SYMBOL FROM LIST.

=123=

P65
9-1

P67

P71

10xX7
1081
J62
1081
J62
1081
J62
J68
10X7
J151

J51
11wl

J62
709-2
609-3
11w0
219-3

J31

J6
J61
52HO

J51
11wl
J62
709-2
4QHO
11wo
J63
J60
J31

Jsl
11wl
11wWC

J69
70J31
11wl
11w0

J30

9-1
J8

J2

9-1
J8

IF IT WAS ON LIST REPEAT AGAIN.
OTHERWISE CLEAN UPs QUIT +.

PROBLEM B AARZEZ SIS 2SR LTS R

PUT LIST (0) IN WOs» (1) IN wl,
LOCATE LAST CELL ON LIST 1wl.

INSERT LIST 1wO AFTER LIST 1wl.

PRINT COMBINED LIST.
CLEAN UP,

PROBLEM 25 333 33 3 53 3 % 3 3 3 3 % 3 4 % % % %

PRESERVE HS
PUT LIST (0) IN WOs (1) IN Wle
LOCATE NEXT CELL ON LIST 1wOe.

IF NONE GO TO 9-3,
OTHERWISE LOCATE THE SYMBOL

IN CELL 1WC ON LIST 1wl
DELETE IT FROM LIST 1wl.
IF DELETEDs GO TO 9-2» ELSE 9-1.
RESTORE H5 AND THE Ww'S.

PROBLEM 28 359 33 3 9 4 3 3 3 35 9 6 3 9 3 3 3 3% %

PUT SYMBOL (0) IN WO.

DO TEST 9-1s THEN CLEAN UP.
PRESERVE HO.

TEST IF SYMBOL IN HO IS LOCALe.
IF NOT GO TO 9-2.

OTHERWISE PRESERVE HO.

FIND THE 2ND SYMBOL ON THIS LIST.
APPLY TEST 9-1 TO THIS SYMBOL.
IF TEST IS + POP HO AND QUIT +.
ELSE APPLY 9-1 TO 3RD SYMBOL.
TEST IF SYMBOL (0) = SYMBOL 1WOe

PROBLEM 31 %33 535 3 3 3 3 3536 3 3 3 3 % 3% 3 % # #

PUT (C) IN WO.

CREATE LIST OF LOCATIONS.

IF NONE RESTORE WO AND QUIT.
OTHERWISE SAVE NAME OF LIST IN HO.
LOCATE NEXT CELL ON LIST.

IF NONE GO TO 9-2.

=124~

P73

P75

9-2

P80

J69
70
J31

J51
11wl
J61
11w0
J76
51wl
J151

40H5
J51
11wC
J60
20W0
709-3
11wl
12w0
J69
709-1
30H5

J50
9-1
40HO
J132
709-2
40HO
J82
9-1
70
Jg3
11wo0

J50

P78
70J30
40HO

J60
709-2

J&

J31

9-2
J31

J30

J8
9~1
J2

OTHERWISE COPY LOCATION IN 9-3.

PUT SYMBOL INTO THE CELL STORED
IN THIS LOCATIONs GO 9-1.

POP LAST LOCATION OUT OF HO.

ERASE CREATED LIST»s POP WO» QUIT.

WORKING STORAGE.

PROBLEM 34 %3336 % 3 3 3 3 3 3 3 3 3 3 3 3 % % %

CREATE LOCAL NAME LIST.

PUT LIST IN WO, TEST SYMBOL IN Wwle.
APPLY TEST 9-10.

PRESERVE TEST RESULT IN H5.

INPUT LOCAL NAME LIST.

FIND NEXT LOCATION IN LIST.

IF NCNE GO TO 9-1.

ELSE UNMARK LOCAL NAMES, GO 9-2.
ERASE LOCAL NAME LIST.

RESTORE H5 AND W'Se.

PRESERVE HO.

TEST IF SYMBOL IN HO IS LOCAL.
IF NOT GO TO 9-12.

MARK (0).

PUT (0) ON LOCAL NAME LIST.

PRESERVE HOe

FIND 3RD (COUNTING MARK) SYMBOL.
APPLY TEST 9-1C TO THIS SYMBOL.

IF TEST IS + POP HO AND QUIT +.
ELSE APPLY 9-10 TO 4TH SYMBOL.

PROBLEM 37 73353 33 3 35 3 36 3 36 3 3 3 3 % %

PUT (0) IN WO

CREATE LIST OF LOCATIONS.

IF NOT RESTORE WO AND QUIT.

OTHERWISE SAVE NAME OF LIST IN HO.

LOCATE NEXT CELL ON LIST.

IF NONE GO TO 9-2,.

OTHERWISE COPY LOCATION IN 9-3.

PUT SYMBOL 1WC INTO CELL STORED
IN THIS LOCATIONs GO 9-1.

POP LAST LOCATION OUT OF HOe.

ERASE CREATED LISTs POP wWO» QUIT.

PROBLEM 40 33 33336 3 3 35 3 36 38 36 36 30 34 3 3 3 3¢ % %

COUNT LIST H2.

-125-

P87

9-11

PSO

P93

609-3
11W0
229-3
30HO
J71

J90
Js1l
9-10
40HS
11wW0
J60
709-1
32HC
51w0
J71
30H5
40HO
J132
709-12
J137
61w0
41W0
40HO
Jg3
9-10
70
JBa
11wl

J50
P88
70J30
40HO
J60
709-2
609-3
11wWO0
229-3
30HO
J71
0

10H2

J31

J8
9-10
J2

9~1

J30
0

COPY NAME OF DATA TERM INTO 9-0.
TEST IF (0) IS GREATER THAN (1)e
ERASE CREATED DATA TERM.

WORKING STORAGE.

PROBLEM 43 #%%X#¥AHEXAERERRRRAERRE &

STORE (0) IN WO

CLEAR 9-2.

LEAVE 9-2 IN (L) INPUT (1) IN (1)
DOES 1wW0 = 9-2.

IF SO POP WO AND QUIT +.

OTHERWISE LOCATE NEXT CELLe

IF NONE POP WO AND QUIT =,

OTHERWISE TALLY 9-2.
LEAVE 9-2 IN (0)s LOCATION IN (1)

PROBLEM 46 #H%HHXRXXXXERUERIERRRR &
9~1 = DESCRIPTION LI1ST,.

Al1=AUTHOR.,
P1=PUBLISHER.

9-1 = DESCRIPTION LIST.
Al1=AUTHOR.
P1=PUBLISHER.

9-1 = DESCRIPTION LIST.

Al=AUTHOR.,
P1=PUBLISHER.

PROBLEM 49 333 3 3¢ 3 3 9 3 % 3 3 3 4 3 3¢ 3% 3% 3% 3% % % 5

PUT L12 IN wOe.

LOCATE NEXT CELL AFTER 1WO.

IF NONE POP WO AND QUIT.
OTHERWISE FIND THE VALUE
OF ATTRIBUTE 2wO

-126-

B4
9-1

Q3

J126
609-0

J115
119-0

J50
109-2

Jl2a4
11w0

J114
70

J60
70J30
109-2

J1a25s

+01

01
9-1

Al
X2
P1
Y2
9-1

Al
X3
P1
Y3
9-1

Al
X4
P1
Y4

10L12
J50
11w0
J60
20W0
70J30
loLl3
12w0

J30

(BOOK) ON LIST L13.
IF NONE GO TO 9-1.
OTHERWISE COPY DATA TERM.
ASSIGN COPY AS VALUE OF
ATTRIBUTE D1 ON LIST 2WO.

GO TO 9-1.

PROBLEM 52 #%HHXHXEHEAXEXHEXNXNER 5

PRESERVE WO-W&e RS0
DIVIDE LIST L1l4.

COPY NAME IN wO.

GENERATE SYMBOLS ON ORIGINAL L14
FOR SUBPROCESS 9-0.

STORE NC IN HEAD CELL OF L1l4.

PRINT L1l4.

ERASE ORIGINAL L1lé4.
RESTORE WO=W4.
PUT NAME OF SUBLIST IN W1 AND WZ2e. 9~C

PUT L14 IN W3 AND Wé4e
THIS IS THE TABLE WE'RE
GOING TO CREATE.
LOCATE NEXT CELL IN SUBLIST. 9-1

PUT LOCATION IN TABLE INTO HO.
LOCATE NEXT CELL. 5=2
IF NONE GO TO 9-4.
TEST IF THE ATTRIBUTE (2HO) IN
THIS LOCATION IS IDENTICAL TO
THE SYMBOL (2W2) WE'RE AT.
IF SOs GO TO 9-3.
IF NOT SKIP VALUE, GO TO 9-2.
TEST IF LIST AT THIS LOCATION IN 9-3
THE TABLE IS EMPTY.
IF EMPTY GO TO 9-2.
IF NOT FIND FIRST SYMBOL.
PUT SYMBOL IN W3 AND W&o
GO TO 9-1.
FIND FIRST SYMBOL. 9-6
PUT IT IN Wé&e
PUT NAME OF SUBTABLE INTO CELL
NAMED BY THIS SYMBOL.
ADD THE SYMBOL WE'RE AT 9-4
(2w2) TO THE END OF
THIS SUBTABLE.
PUT NAME OF SUBTABLE IN HO.
TEST IF LIST AT LOCATION 1WZ2

-127-

J10
709-1
J120
12w0
J6é
10D1
J11 9-1

Jaa
10L14
J75
60WO0
109-0
J100
10NO
20L14
10L14
J150
11w0
J72 J34
60wl
20W2
10L14
60W4
20W3
11W2
J60
20W2
11W3
J60
709-4
12HO
12w2
J2
70 9-3
J60 9-2
11wW2
J78
709-6
J81l
60W4
20W3 9-1
Jal
20wWa
12W1
21W4 Jé
51w3
12W2
J65
11W3
11wW2

IS EMPTY.

IF EMPTY GO TO 9-5.

IF NOT EMPTY CREATE A CELL.

MAKE THE CELL LOCAL.

PUT A COPY OF THE CELL NAME INTO
W3 AND Wé4e.

ADD CELL NAME TO END OF SUBTABLE.

STORE NO INTO HEAD CELL OF THIS
SUBTABLEs GO TO 9-1.

ADD THIS SUB=SUBTABLE (2W1) 9=5
TO SUBTABLE (1W3)e

PROBLEM 5§65 %% %4H4%1%%%X1XFEREXRR 6

PUT SYMBOL (O) IN WO. Q7
GENERATE SYMBOLS ON LIST L12
FOR SUBPROCESS 9-1.

POP wOs REVERSE SENSE OF H5s QUIT.
TEST IF (0) IS REGIONAL. 9-1

IF NOT POP HO» QUIT +.
ELSE FIND DESCRIPTION LIST.
IF NONE QUIT +.
PUT J3 IN 9-2.
GENERATE SYMBOLS ON DESCRIPTION
LIST FOR SUBPROCESS 9-3.
SIGNAL = ~ IF ATTRIBe» + IF VALUE.
IS THIS A VALUE.
REVERSE SENSE OF H5e
PUT 1H5 IN SIGNALs SETTING
IT FOR NEXT CYCLE.
IF NOT A VALUE POP HOs QUIT +.
IS THIS VALUE A LOCAL SYMBOL.
IF NOT POP HO AND QUIT +.
GENERATE SYMBOLS ON LOCAL VALUE
LIST FOR SUBPROCESS 9-5.

\'O\D
w N

TEST IF THIS IS REQUIRED SYMBOLe.
IF SO STOP GENERATORs ELSE GO ON.

PROBLEM 58 #%%%aiuttttttnittinnstr 5

CREATE 'CELLS TO BE DELETED' LIST. Qlo
PUT LIST IN WO.
GENERATE CELLS ON (0) FOR
SUBPROCESS 9-1.
DELETE ALL CELLS ON THE
'CELLS TO BE DELETED' LIST.

ERASE 'CELLS TO BE DELETED' LIST.
POP WO AND QUIT.

-128-

J78
709-5
J90
J13é6
60W3
60W4
J65
10NO
21W4
12wl
J65

J50
10L12
109-1

J100

J30
40HO

J130
709-4

J8o
70J4
10J3
209-2
109-3

J3
019-2

J5
11H5
209=2
70
40HO

J132
709-4
109-5

J8
11w0

J2

J90
J50
109-1
J101
11w0
10J68
J100

11w0
J71

Ja

J5

J100

J8

J100O
Ja

J5

J30

TEST IF THE SYMBOL IN CELL (0)
1S AN OPERATOR.

IF IT IS NOTs POP HO AND QUIT +.
ELSE ADD CELL (0) TO
'*CELLS TO BE DELETED' LIST.

LIST OF OPERATORS.

PROBLEM ©1 333 3363 3 3 33 3 3 3 3 3% 3 3 3 3 3 %

SET UP GENERATOR.

COPY LIST CELL (0) IN WOe
FIND 2ND SYMBOL.

IF NONE CLEAN UP GENERATOR.
FIND 1ST SYMBOL.

EXECUTE SUBPROCESS.
IF H5 IS - CLEAN UP GENERATOR.

LOCATE CELL AFTER NEXTe
GO TO 9-1.

PROBULEM ©4 %333 3 5 3 3t 3 30 36 36 06 46 6 36 8 3¢ 3¢ 3 %

SET UP GENERATOR.

PUT LIST NAME IN WO.
KEEP NAME OF HEAD CELL IN Wle
FIND NEXT LOCATION.

IF NONE GO TO 9-1.
PUT LOCATION IN HO.
EXECUTE SUBPROCESS.
IF H5 - QUITs ELSE GO TO 9-0.
SHOULD WE ITERATE AGAIN.
IF NOT QUIT.
ELSE PUT NAME OF HEAD CELL
IN WO.

PROBLEM ©F #9536 3 3 36 3 3 5 3% 35 3 3 % 3 3 3 3% % #

PUSH DOWN WO AND Wl.
PUT SUBEXPRESSION (0) IN WOe.

-129-

5

5

Q13

Q16

Q19

12H0
109-3
J6
J17
709-2
21W0
41W0
J8

N %)+

10W0
J17
60W0
J82
70J19
11w0
Jél
J18
70J19
11w0
J6O
J60

10W1
J17
60wW0
20wl
11w0
J60
20W0
709-1
11wW0
J18
70J19
01RO
70J19
11wl
20W0

Jal
20W0

GEN LOCS OF VAR(1) FOR S/P 90,QUIT.

PUT LOCATION IN Wl.
COPY SUBEXPRESSION 1WOe.

MAKE COPY LOCAL.
PUT COPY IN GEN LOCs QUIT +.

PROBLEM 7O %333 3 3 363 3 36 5 36 36 3 36 3¢ 3 3 3 3 % %

SET UP GENERATOR.

GENERATE SYMBOLS ON LIST (1)
FOR SUBPROCESS 9-1» QUIT.

TEST IF SYMBOL NAMES AN
INTEGER DATA TERMe.

IF SO EXECUTE ORIGINAL SUBPROCESS.
OTHERWISE POP HO AND QUIT +e.

INCREMENT COLUMN BY FIVE.
TEST IF DATA TERM IS POSITIVE.

IF SO ENTER IT IN PRINT LINE.
IF NOT ENTER A (IN PRINT LINE.

MAKE 9-0 IDENTICAL TO DATA TERM.

TAKE ABSOLUTE VALUE.
ENTER ABSOLUTE VAL IN PRINT LINE.

GENERATE THE SYMBOLS ON LIST L18
FOR SUBPROCESS 9-1e.

CLEAR THE PRINT LINE.

GENERATE THE INTEGERS ON
LIST FOR S/P R88s PRINT LINE.

PROBLEM T3 %3333 33 5 33 3 3646 3 % 3 3 3 3 % %

PRESERVE W21ls W24s W25s AND W30.

LEAVE 1wW25 IN HOe
-130-

5

5

109-0

Q18
9-0 20wl
11w0

J74

J136
21wl

R85 10wW0
J17
109-1
J100
9-1 40HO
109-2
J127
70
J8
9-2 +01
R86 109-5
J161
40HO
J118
70
10¢
J156
109-10
J121
Jl22
J157
10)
9-5 +01
9-10 +01
R87 10L18
109-1
9~1 J154
10R86
R85

Q21 40wW2l1
40W24
40W25
40W30
109-0
20W21
10X1
20W24
109-1
60W25

J31

Ja

J19

J1l8
Jé

J157

J156

J100

J155

109-2

20wW30
10J3
J9O
PUT LIST IN WO, SIGNAL IN Wle J51
DO 9-3. 9-3
POP 1W25 OUT OF HOe J8
RESTORE W21y W24y W25s AND W30, 30W21
30wW24
30W25
30W30
PUT LIST IN HO. 11w0
Olwl
J31
ERASE LIST IF SIGNAL IS STILL =» T70J9 0
9=-0 +01
9-1 +01
CLEAR PRINT LINE. 9=2 +01
READ A CARD. 9-3 J154
J180
STOP 1F THERE IS NO CARD TO READe. 7047
SCAN (WITH 1W25) FOR NON-BLANK. 9~-4 J184
GO TO 9-3 IF REST OF CARD IS BLANK. 709-3
PUT CHARACTER AT 1W25 INTO HOe J186
TEST IF IT IS /. 10/
J2
QUIT IF IT IS /o 70 0
OTHERWISE CLEAR 1W30. 11wW30
J124
SCAN (WITH 1wW30) FOR NEXT BLANKe. J183
REPLACE 1W30 WITH LIST 1wO0 IN HO. 51W0
COPY 9-0. 109-0
J120
MAKE COPY LOCAL. J136
INPUT LINE DATA TERM. J182
ADD IT TO LIST 1WOe. J65
SET SIGNAL +e 10J4
GO TO 9-=4. 20W1 9=4
5 o0

-131-

Part Two

PROGRAMMERS' REFERENCE MANUAL

1.2

1.0 GENERAL DEFINITIONS

1.1 IPL LANGUAGE

1.2

IPL is a formal language in terms of which informa-
tion can be stated and processes specified for processing
the information. IPL allows two kinds of expressions:
data list structures, which contain the information to be

processed; and routines, which define information processes.
A complete program consists of a set of data list struc-
tures and the set of routines that define the processing

to be done.

IPL COMPUTER

No computer currently available can process the IPL
language directly, but any general purpose digital computer
can be made to interpret this language by writing a special
program in the language of the computer. Such a program is
called an IPL-V interpretive system. The interpretive sys-
tem interprets IPL expressions as equivalent expressions
in the language of the particular computer, and causes the

computer to carry out IPL processes. When a computer is
running with the IPL interpreter system, its main storage
has two major sections, one containing the IPL interpretive
system, and the remainder--called the total available space--
in which IPL programs and data may be stored. The partic-
ular computer, together with the interpretive system, is
known as the IPL computer. The total available space is
the ''storage' of the IPL computer.

The interpretive system consists of several parts:

1) A loader, for loading IPL programs into the

available space from cards or tape;
2) A set of primitive processes, for manipulating

IPL expressions; ,
3) An interpreter, for executing the instructions

in the IPL routines;

-135-

1.

3

1.3

1.4

4) A monitor, for providing debugging information.

IPL SYMBOLS

IPL is a system for manipulating symbols. The IPL
computer distinguishes three types of symbols--regional,
internal, and local. It keeps track of the type of each
symbol being used, and will behave differently in some
cases, according to the type of symbol encountered.

To the programmer, a regional symbol is a letter or
punctuation mark followed by a positive decimal integer
no greater than 9999; e.g., A 1, *12, R3496. Regional
symbols are the programmer's stock of symbols. An internal
symbol is a positive decimal integer. Internal symbols are
the computer's stock of symbols, and will generally not be
used by programmers. Inside the computer--that is, except
for input and output--internal and regional symbols are
treated identically. Each symbol corresponds to a partic-
ular storage address. However, there are means to tell
regional and internal Symbols apart, if needed.

Local symbols are used to connect lists and list
structures. Their identity is transitory--they are erased,
generated, and changed at will by the IPL computer. To
the programmer, a local symbol is a 9 followed by a posi-
tive decimal integer no greater than 9999; e.g., 9-1, 9-34,
9-123. The 9 takes the place of the letter in the regional
symbols. The use of local symbols will be explained in
§ 2.0, DATA LIST STRUCTURES.

All symbols are printed out in the same form as they
are input: regionals are printed in the letter-numbers
form; internals are printed as decimal integers; and locals
are printed as integers prefixed by a 9.

STANDARD IPL WORDS

All IPL expressions, both data list structures and

-136-

1.6

routines, are written in terms of an elementary unit, called
the IPL word. Each word occupies a single cell of the total
available space in the IPL computer. A standard word consists
of four parts: P, Q, SYMB, and LINK. P and Q are called the

prefixes of the word. Q is the designation prefix and P is

the operation prefix (for routines) or the data type prefix
(for data list structures). Each prefix is an octal digit--
i.e., it may take on the values 0, 1, ..., 7. 1Its meaning
depends on whether it occurs in routines or data. The SYMB
part of the word is an IPL symbol, and is called the symbol
of the word. The LINK part is also an IPL symbol.

SPECIAL IPL WORDS: DATA TERMS

Different formats are necessary to represent integers,
floating point numbers, alphabetic characters, etc. Words
containing such information are called data terms, and have
three parts: P, Q, DATA. P and Q are prefixes, and DATA
contains the special datum. The Q prefix is always 1,
indicating that the word is a data term. The P prefix

specifies the type of data. (Q =1 is also used in routines
with a different meaning; program and data are kept separate

by context.)

THE CODING FORM

To put IPL words into the IPL computer, they must
first be coded and punched into cards. The cards can then
be read by the interpretive system. The cards are pre-
pared from the standard coding form, one card per line,
each card representing one IPL word (see Fig. 1). For
standard IPL words, the columns labeled NAME, P, Q, SYMB,
and LINK are used. Type is O or blank, Sign (+ -) is ir-
relevant (but see § 18.0, INITIAL LOADING), and all
other columns are ignored by the IPL computer. (Certain
columns are excluded from use.) P and Q may each contain

-137-

-g¢1-

IPL-V CODING SHEET

Problem No. Progrommer Date Page of
3
COMMENTS E NAME |&]PO COMMENTS 1.D.
00880123456 r805755358535531333333833(131342¢7%)8)331% 538569880 1332a5¢87888
X X , , N] |
i 1 1 N n 1 i
i 1 i n L 1 1
N A . . . 1 1
. . R . .]]
) . . L s | 1
) . , .) 1]
s s N " s | 1
. . " . A] i
" " " A . 1 |
" " L " " 1 1
1 1 1 1 i 1 1
. :) A N 1] .
. N L A . 1] .
. X . . ,]]
A) . . . 1]
) |] . | I |
L . L . . . 1
' 1 -) | 1
i A 1 1 n 1]
1 1 Y 2 1 1
N n " i 1 L 1
s N L N " - |
. N . . . L
A . ; . R A i Il At

678901 234367890123 456178901 2345678901

Fig.

23

1--IPL-V Coding Sheet

4567 8901 23 456

890 1 2345678 901234567890

1.7

any digit from O through 7. Blank is regarded as 0. For
data lists, P and Q are always blank (or 0) unless the

word is a data term. NAME, SYMB, and LINK may contain any
IPL symbol. 1If LINK is left blank, the IPL computer auto-
matically fills in the address of the next cell, represented
by the next line on the coding sheet. This is also true

for SYMB. However, if the next line has a regional or
internal symbol as NAME, the blank LINK or SYMB is taken

as a termination symbol O.

NAME, SYMB, and LINK each occupy five columns. The
first (leftmost) column holds the region character--i.e.,
the letter for regions, or 9 for local symbols. The other
four columns hold the four-digit integer associated with
the symbol. The integer may be located anywhere within
the field in consecutive digits. For example, Al, A 1, A 1,
and A0001, are all instances of Al. Likewise, 910, 9 10,
and 9-10 are all instances of the local symbol 9-10, as
long as the 9 occurs in the leftmost column. (In the Manual,
we shall use "9-" to indicate a local symbol.) The exact
rules for writing legitimate IPL symbols in NAME, SYMB, and
LINK are the following:

-Regional and local symbols must have their initial
character in the leftmost column of the field (columns
43, 51, and 57 respectively). Internal symbols may
start anywhere in the field, except that if the
initial digit is "9", that digit cannot be in the
leftmost column.

-Except for the character in the leftmost column, all
non-numeric characters and blanks are ignored.

-The numeric part of the symbol may occur anywhere in
the field with any spacing. The field is scanned,
and the digits are accumulated as they are found and
composed into a number.

1.7 DATA TYPE CODE P

The format for data terms is shown in Fig. 2. Data
terms have been defined for P = 0, 1, 2, 3, only. The other

-139-

-o%t-

IPL-V

CODING SHEET

Problem No. Progrommer Page of
: TES
COMMENTS éff NAME % PQ | commenTs LD
TRgR T IIT0T{1332933834331387 30783 008/78 {2 2sla003 SRTesss I TILe
P = 0 DEGIMAL INTEGER , . . o L
N , General Formgat =-- \ 1 o1 \Jddd
. . Examples; \ L =12,192 1 - 1} 4
. . N A 15 {1 7] 1
L i L " L L 1 1 L
P = 1 FLQATING POINT . . | l .
. . General Format -- . | 212dddd| |d| ~ee
) . _(Exponent ee ranges from 50 to 1 \ Ll
N) -5Q. Any character in cpl. 59 1 i]
. . is .taken as "-".) | i] ! v
A . Examples: N . =.15 x 103 ! Tl221,5 1 4%
‘ ‘ , l 732 x 1072 || [, 247,32 Lo 2|
. . \ , . X \ ! .]
P = 2 ALPHANUMERIC . . ! 1
. . General Format -- 2708190920 1
. . Example: N , 2z2|11PL 5 I
' I L 1 1 Il |
P =3 OCTAL , ,) 1 |
) ., Genergl Formgt -- 2|37 Jldddc'f_%dldddd
. Example: , , 31777770 [717777].
, . . \ . 1 1
. 1 1
X , R . X 1 1
. . X . . - 1 L 1
; . . . X X Al i I

678901 23435678901 23456786901 23456789012

Fig. 2--Format for Data Terms

456789012345

67

890 1 2345678 90123456789%90

1.

1.

1.

8

9

10

four values, 4 through 7, are available for private use
(see machine system write-ups).

CELLS

Each IPL word resides in a cell in the IPL computer
(that is, a register in the total available space). We
say a cell contains the word, also that the cell contains
a symbol; i.e., the SYMB part of the word. Alternatively,
we refer to SYMB as the symbol in a cell. LINK is also a
symbol, but this is referred to as the link in a cell.

AVATLABLE SPACE

Since each IPL word resides in a cell in the IPL com-
puter, during a run the routines and data list structures
require a certain amount of the total available space--
that is, of the total set of cells. At any moment during
a run there is a set of cells which are not part of any
routine or data list structure. This set is called the
available space at that moment. It is the stock of cells
out of which new list structures can be constructed. The
available space is continually depleted as new structures
are built, but continually replenished as old structures
are no longer needed and are erased--i.e., the cells com-
posing them returned to available space. All the avail-

able space is on a list, named H2, and called the available

space list. The mechanics for transferring cells to and

from available space will be described later.

LIMITS ON THE NUMBER AND TYPES OF STRUCTURES

All data list structures and routines are built up
from the available space, and any cell may be used for
any purpose in such constructions. Consequently, as long
as cells are available, construction can continue. No
separate limits exist on how many data list structures,

-141-

1.

10

.11

1.

1.

1.

11

12

13

storage cells, symbols, and so on, can be used. The only
limit is in the total amount of available space.

AUXILIARY STORAGE

The storage that holds the interpretive system and the

available space is called the main storage. Access is also

possible to secondary storages--fast-auxiliary storage and

slow-auxiliary storage--when available on the object machine.

CELL NAMES

Access to a word requires access to the cell that holds
the word, and this requires that the cell have a known IPL

name. The name of a cell is the IPL symbol that represents

the machine address of the cell. All cells in use have names,

either regional, local, or internal. The cells in available
space are not considered to have names since only when they
are taken for a specific use is the name determined. On

the coding sheet, putting a symbol in the NAME field spec-
ifies that the word on that line will be in the cell named.
In essence, cells are named by writing a symbol for NAME.
The programmer need name only those cells he wishes to refer
to explicitly; hence, NAME is left blank in most instances.

HEADS, LIST CELLS, TERMINATION CELLS

Cells are used to construct the various structures in
IPL. There are three kinds of cells: heads, which start
structures; list cells, which form the bodies of structures;

and termination cells, which mark the end of structures.

(Data terms occur in heads.) We will need these distinc-
tions in giving the conventions for each type of structure.
A termination cell contains the word 00 00000 00000, and
the symbol that names it is called a termination symbol.
The internal symbol O is a termination symbol, and is used

by the programmer in preference to other termination symbols.

-142-

1.

1.

14

15

1.15

Hence, it is referred to as the termination symbol. The
need for other termination symbols arises from the delete
processes (see § 9.4, DELETE). Any cell containing 0--i.e.,
SYMB = 0--is called empty.

STORAGE CELLS

A storage cell is one whose purpose is to hold symbols.

A storage cell is created by giving a cell a regional name
and putting the termination symbol, O, for LINK. SYMB is
then the symbol contained in the cell; it may be put in
initially by writing in the symbol on the coding sheet,

or the cell may be left empty and a symbol put in during

processing.
Examples:
NAME PQ SYMB LINK
The empty storage cell, Al: Al 0 0
The cell, A2, containing B3: A2 B3 0

Any cell may function as a storage cell (assuming it is
not being used in some other capacity).

PUSH DOWN LISTS FOR STORAGE CELLS

Associated with each storage cell, is a system for
storing symbols contained in the cell. This system is a
data list, called a push down list. The storage cell is
the head of the list, and the cells used in the storage

system are list cells. The symbol currently in the storage
cell may be put onto the push down list, so that the cell
can be used for another purpose, and then recovered at a
later time. The system is a ''Last-In-First-Out' system
(LIFO) ; that is, the symbols are recovered from storage

in the inverse order of their entry. The most recently
preserved symbol is the first one recovered. The system

is fully specified by the operation for putting symbols in
storage, preserve or push down, and the operation

-143-

1.

15

for recovering symbols from storage, restore or pop up.

PRESERVE

RESTORE

Examples:
S5:

To preserve a storage cell is to put a
copy of the symbol contained in the cell
on the push down list associated with the
cell. The operation leaves the symbol
still in the cell.

To restore a storage cell is to move into
the cell the symbol most recently put on
the associated push down list of that cell.
The symbol occurrence in the cell just
prior to restoring is lost, and the symbol
moved from the push down list is no longer
on the list.

Let the storage cell W3 contain the symbol

NAME PQ SYMB LINK
W3 S5 0

If W3 is preserved, than a copy of S5 goes into
storage, while W3 continues to hold S5:

If W3 is restored, then:

W3 S5
S5 0
If another symbol, Bl, is now put into W3, we have:
W3 Bl
S5 0
If W3 is preserved again, we have:
W3 Bl
Bl
S5 0
And if another symbol, G3, is put into W3, we have:
W3 G3
Bl
S5 0
W3 Bl
S5 0

And if W3 is restored again:

W3 S5 0

After two preserves followed by two restores, W3 is
brought back to the original condition; and similarly
for any number of preserves followed by the same
number of restores.

=14k~

1.

Each cell, then, really consists of a stack of symbols.

The one on top is accessible, and the others are in storage
in the order in which they are put in the stack. There is
no limit to the number of symbols that may be stored in a
push down list; it is always possible to add another as long
as some available space remains in the IPL system.

-145=-

15

2.0

.1

2.0 DATA LIST STRUCTURES

The data list structure is the IPL expression that

contains the data to be processed. The total data for a
program will be given as a set of data list structures.
Each data list structure is made up of data lists, which
in turn are made up of IPL words. (Routines are also
list structures, but satisfy different conventions.)

DATA LISTS

A data list is a sequence of cells containing IPL
words whose order is defined by the rule: the LINK part
of the cell contains the name of the next cell in the list,
The first cell in a list--the cell which does not have its
name as the LINK of any cell of the list--is the head of
the list. All other cells of the list are list cells.

The following rules apply to all data lists:

-Only the names of list cells can occur as the LINK
of a cell.

-Only names of heads can occur as the SYMB of a cell.

-The name of each list cell occurs once and only
once as LINK (this is equivalent to making lists
linear, without cycles).

~-The LINK of the last cell in a list is a termination
symbol.

A list with a termination symbol for the LINK of the head
is called an empty list. Cells containing data terms
(cells with Q = 1), while not subject to the above rules,
are considered to be the heads of empty data lists when
manipulating data list structures.

To create a data list, write down a symbol in the NAME
field of some line. This symbol is the name of the list,
and the cell corresponding to it is the head of the 1list.
(Thus, the same symbol names both the list and the head
cell.) Write down the IPL words of the list on successive
lines of the coding sheet. These lines are the list cells,

-146-

2.

2

and they occur in the list in the order they appear on
the coding sheet. No names are given to the list cells
(NAME left blank) and the LINKs of all cells but the last
one are left blank. The public termination symbol, O, is
written for LINK of the last cell.

Examples: NAME PQ SYMB LINK
The list with name L1, con- Ll Sl

taining the symbols S1, S5, S5

S12, and S7 in that order: S12

(the first symbol occurs in S7 0

the head here; conventions
for heads will be given

presently)

The list with name 9-5, 9-5 A5
containing the symbols 9-3 0
A5 and 9-3.

The termination symbol, 0, is used, although any other
termination symbol is perfectly legal. The latter would
require an additional cell, and thus take extra space
without any compensating gain.

NAMING LIST CELLS

The IPL computer will assign an internal name to any
cell that is not explicitly named by the programmer. The
programmer may give names to list cells by using local
symbols (using regional symbols would start a new list,
in effect). The IPL computer interprets a blank SYMB or
LINK in a cell as referring to the next cell, and the
name of this next cell is filled in. This occurs properly
either when the next cell has a blank NAME or a local
symbol for NAME. If the next cell has a regional name,
the blank SYMB or LINK is taken as the termination symbol,
0.

Example: NAME PQ SYMB LINK
The usual reason for naming Ll 0 9-1
data list cells is to break 9-2 S2 9-3
the sequential order on the 9-1 S1 9-2
coding sheet: 9-3 S3 0

=147~

2.2

2

.3

2.3

2.4

2.5

DESCRIBABLE LISTS

It is possible to associate with a list, a description

list, similar in concept to a function table, which can con-
tain information about the list being described. The SYMB of
the head is reserved for the name of the description 1list.

A list with the head so reserved is called describable. If

a list is describable, descriptive information can be

added to it or requested about it, at any time during pro-
cessing, by means of a set of processes, J10 - J15. Since
the head of a describable list is reserved, the first symbol
is in the first list cell after the head, and so on.

Lists that use the head for any other purpose are called
non-describable. If no information has been associated
with a describable 1list, then there will exist no descrip-
tion list. However, the head is still reserved, and hence
is empty. (The list in the previous example has no de-
scription list associated with it but has a reserved head.)

POLICY ON DESCRIBABLE LISTS

The basic processes (the J's) assume that data lists
are describable whenever this is relevant to their opera-
tion. In the Manual we will assume a list to be describable,
unless explicitly stated otherwise.

ATTRIBUTES AND VALUES

The information that can be associated with a describ-
able list is in the form of values to specified attributes.
Suppose L1 is a describable list, and Al is some attribute,

say the number of symbols on a list. Then, the value of
Al for L1 is some symbol, say N3. This can be expressed
in mathematical notation as A1(L1l) = N3. Any symbol at

all may be used as an attribute, no matter what its other
functions in the total program might be. The value of an
attribute is always a single symbol. However, any symbol

-14,8-

2.6

2.7

may be the value--for example, the name of a data term,
the name of a list, or the name of a list structure--so
that there is no restriction at all on the kind of in-
formation that can effectively be the value of an attri-
bute. Only a single value is possible for a given at-
tribute, but it is always possible for the value of an
attribute to be the name of a list of ''values,' thus
achieving the effect of multivalued attributes. The use-
fulness of descriptions stems from the generality of what
constitutes an attribute or a value. Any number of at-
tribute values may be associated with a describable 1list.

DESCRIPTION LISTS

A description list is a list that contains alternately
the symbols for attributes and their values. The attribute
symbol occurs first, followed by its value for the list
the description list is describing. Description lists are
themselves describable, so that the first attribute symbol
occurs in the first list cell, its value in the second list
cell, the next attribute symbol in the third, and so on.
The same symbol cannot occur more than once as an attribute

on the description list.

CREATING DESCRIPTION LISTS

Processes exist to create, modify, interrogate, and
erase description lists during processing (see J10 to J15).
Such lists can also be created on the coding sheet prior
to loading. A local name is written for SYMB of the head
of the list to be described. The description list is de-
fined in the same manner as any other list: its name is
written for NAME on some line (the same symbol as occurred
in the head of the main list); the head of the description
list is made empty since the description list is describ-
able; then follow the attributes and values in sequence

-14L9-

2

.8

2

.8

on the coding sheet; the final value has a termination
symbol for LINK. (No other list structures may intervene
on the coding sheet between the describable list and the
description. See § 2.9, DOMAIN OF DEFINITION OF LOCAL
SYMBOLS.)

Examples: NAME PQ SYMB LINK

The describable list, L1, L1l 0
with no descriptions: S1
S2
S3 0

L2 described by the attributes L2 9-0
Al and A2 with values V1 and S1
V2, respectively: S2

9-0 0

V2 0

DATA LIST STRUCTURES

A list structure is a set of lists connected together
by the names of the lists occurring on other lists in
the set. A data list structure is characterized by the

following conditions:

-All the component lists are data lists (hence,
linear--that is, not re-entrant).

-There is one 1list, called the main list, that has
a regional or internal name.

-All lists, except the main list, have local names,
and are called sublists.

-All local names that occur in the list structure--
that is, as SYMB of some cell--name lists that
belong to the list structure.

-No cell belongs to more than one list (no merging
of lists).

-The name of each component list, except the main
list, occurs at least once on some list of the list
structure; it may occur many times.

-150-

2.9

2.9

A data list structure is thus a fairly simple form of

list structure--many complicated ways of linking lists
together having been excluded. It is not the simplest,
which would be a tree, since it is possible for the name
of a sublist to appear in several places in the structure.
Data terms are included in the definition, as are storage
cells, since they are also data lists. The name of a list
structure is the name of its main list. (Thus, this symbol
does triple duty as the name of a list structure, a list,
and a cell.) Not all symbols occurring in a list struc-
ture refer to other lists in the structure: if they are
regional or internal symbols, their referents cannot be-
long to the same list structure. Thus, there can be com-
plicated cross references between a set of data list

structures.

DOMAIN OF DEFINITION OF LOCAL SYMBOLS

The domain of definition of a local symbol is a list

structure. Within a single list structure, a local symbol
can be the name of only one data list--that for which it
occurs as NAME. All occurrences of a local symbol within
a list structure are understood to refer to this data list.
However, there is no connection between the local symbols
in one list structure and those in another (which is why
they are called local). Thus, the symbol 9-1 will stand
for many things in a total program. Contrariwise, a
regional symbol, like Al, or an internal symbol, like
1622, always stands for the same object throughout the
total program. On the coding sheet, the occurrence of a
regional or internal symbol for NAME marks the start of

a list structure. All local symbols that occur after this
line belong to this list structure, until another regional
or internal NAME occurs.

-151-

2.

10

.10

LEVELS

It is often convenient to refer to the lists of a
data list structure as having levels. The main list has
the highest level, and a sublist is one level below its
superlist--i.e., the list on which its name occurs. (It
is possible for the name of a list to occur on several
lists at different levels.) If numbers need to be as-
signed to levels, the main list is assigned level 1 and
increasing positive integers are used for successively

lower levels.

Examples: NAME PQ SYMB LINK
A single list can be a data L1 0
list structure: S1
S2
S3 0
A single data term can be a B5 21 BILL
data list structure:
A list of lists can be a data L2 0
list structure (the spaces 9-1
between lists are for clarity 9-2
in the Manual; no such spaces 9-3 0
need occur on the coding
sheet) : 9-1 0
S1
S2
S3 0
9-2 0
S3
S1
S2 0
9-3 0
S2
S3
S1 0
A list of numbers can be a L3 0
list structure; in the 9-3
example, two of the numbers N3
belong to the structure and 9-1 O
the other, N3, does not:
9-1 01 15
9-3 - 01 19

-152-

11

NAME PQ SYMB LINK

A list can have multiple L4 0
occurrences of sublists, 9-1
as well as mutual references 9-1 0
and self references:
9-1 0
9-2 0
9-2 0
9-1
9-2 0
1f the name of the main list, L5 0
which is internal or regional, L5
appears in the list structure, L5
it is treated like any other L5 0
regional or internal symbol;
the example, L5, is a simple
list.
The algebraic expression, X0 0
(X14X2)+(X3-X4) can be written 9-1
as a list structure where the .
sublist arrangement indicates 9-2 0
the parenthetical structure: 9-1 0
X1
+
X2 0
9-2 0
X3
X4 0

OTHER LIST STRUCTURES

Other kinds of list structures besides data list
structures are possible and useful--e.g., circular lists,
in which the '"last' cell links to the "first' cell. The
programmer is free to invent and use any such structures
he desires, but he is then responsible for being aware of
their special nature. Almost any kind of structure can be
loaded in the computer (see § 18.0, INITIAL LOADING) .

We have defined the class of data list structures, in
order to provide useful processes which take into account
their particular conventions--e.g., cOpYy and erase an

entire data list structure.

-153=~

2.

11

3.0

3.

3.

3.

1

2

3

3.0 ROUTINES AND PROGRAMS

The IPL expressions used to specify information pro-
cesses are generally similar to their data counterparts,
but differ in detail. Corresponding to the word of data
is the instruction, to the data list is the program list,
and to the data list structure is the routine.

PRIMITIVE PROCESSES

A primitive process is one that can be directly per-
formed by the computer without further IPL interpretation;
i.e., one that is coded directly in machine language. IPL
symbols can name primitives. Most of the basic processes
(the J's) are primitives, and it is possible to add prim-
itives to the language (see machine system write-ups).

INSTRUCTIONS

The IPL word that specifies an information process
is called an instruction. It always has the standard form:
PQ SYMB LINK. The process to be done is designated by
PQ SYMB, while the LINK, as usual, designates the next cell
in a list. The P and Q codes are entirely different from
the data P and Q codes. They denote operations to be
carried out rather than types of symbols and data. (The
information that SYMB is regional, internal, or local is
lost in an instruction, but is not needed for interpreta-

tion.) The definitions of P and Q, given presently, com-
pletely define the process designated by an instruction.

PROGRAM LISTS

A program list is a sequence of cells containing

instructions, whose order is defined by the following rule:
the LINK of a cell is the name of the next cell in the list.

=154~

3.4

The first cell in a list is the head; all others are list
cells. The head contains an instruction, so no program
list is describable. In interpretation, the program list
gives a sequence of instructions to be carried out in the
order of the list. Almost anything is possible with pro-
gram lists: they may be re-entrant, Or merge; they may
have regional symbols as LINKs, and names of list cells as
SYMB.

ROUTINES AND PROGRAMS

A routine is a list structure characterized by the
following conditions:
-Some of the lists are program lists.

-There is one program list, called the main list,
that has a regional or internal name.

-All lists, except the main list, have local names
and are called sublists (and initiate local sub-
routines).

-All local names that occur in the list structure
as SYMB of some cell, name lists that belong to the
list structure.

-The name of each sublist occurs at least once on
some list of the list structure; it may occur many
times.

-The main list is not describable (since it is a
program list).

Local symbols follow the same rules for the domain of
definition given in connection with data list structures.

It is also possible to talk about the levels in a routine
in the same manner as with data list structures. Each
routine specifies a process. A routine is executed when
this specified process is carried out by the IPL computer.
This implies that the subroutines out of which the process
is composed, are also executed (as required). A program
is the set of routines that specifies a process in terms
of primitive processes. The routine first executed is at
the highest level. The routines of the program are all

=155-

3.4

3.5

3.5

3.6

routines required in the execution of this top routine,
taking into account that routines require other routines

for their execution.

DATA IN ROUTINES

Normally, routines consist purely of program lists.
However, it is sometimes convenient to include various
kinds of data along with the routine, such as constants,
storage cells, and so on. Since data list structures are
handled differently from program lists on input (P and Q
are treated differently), it is necessary to indicate
which cells are to be interpreted as data. A + or - in
the Sign column is used for this, and every cell in
routines to be interpreted as data must be so marked.
(The + or - contributes to the data only in the case of
numeric data terms, as defined earlier; in all other cases
it has no effect.)

SAFE CELL

A storage cell is called safe over a routine if that

routine leaves the symbecl in the cell (and the push down
list) the same as it was prior to the execution of the
routine, except as modification is explicitly required by
the definition of the routine. If there is no guarantee
that the contents of the storage cell will remain un-
molested, the cell is called unsafe over the routine. A

routine can use a safe cell, as long as it returns the cell
to the original condition. Safe cells are useful in IPL
because the preserve and restore operations make it easy

to use a storage cell and then return it to an earlier
condition. From the point of view of the using routine,

a safe cell is one into which it can put a symbol, then
execute a subroutine, and expect to find the symbol still

in the cell afterwards.

-156-

3.7

3.8

3.8

INPUTS AND OUTPUTS OF ROUTINES, HO

A routine can have a set of operands, called the
input symbols. It can also produce a set of symbols as
outputs. It may also modify existing data list structures,
either those designated by input symbols, or those im-
plicit in the construction of the routine. The number of
inputs or outputs is unlimited. They are always symbols,
but these symbols can name list structures (either data
or routines), so that the types of inputs and outputs are
completely general.

All inputs for a routine are placed in a special
storage cell, HO, called the communication cell. 1If there

are multiple inputs, they are placed in the push down

list of HO in a sequence determined by the definition of
the routine. All outputs from a routine are also placed
in the communication cell, HO. If there are multiple out-
puts, they are placed in the push down list of HO in a
sequence determined by the definition of the routine. 1In

the Manual we will let (0), (1),..., represent, respectively,

the symbols in HO and its push down list. They will serve
as names for the inputs and outputs. The communication

cell is safe over all routines: in connection with in-

puts, this means that a routine must remove (before it
terminates) all the input symbols from the communication
push down list. The outputs, of course, are explicitly
required to be in HO at the end of processing. (Of course,
routines can be defined with any input-output conventions
the programmer desires. The above ones are used by the
basic processes (the J's), and means are provided to make
them easy to use generally.)

EXPLICIT STATEMENT OF INPUTS AND OUTPUTS

The safety of HO implies that a routine must remove
all its input symbols from HO. Its outputs, of course,

~157-

3.9

3.9

are to be left in HO. In order to avoid confusion, we
adopt the policy of explicitly stating all inputs and
outputs. For example, if a routine leaves one of its
input symbols in HO, this is to be stated explicitly as

one of the outputs.

TEST CELL, H5

The result of many processes involves a binary dis-
tinction--a '"yes" or '"mo.'" For example, a process may be
a "test'" whose purpose is to make a binary choice, or it
may produce an output where there is no guarantee that the
output can be produced, so that a binary indication, ''Yes,
the output was produced," or, 'No, the output was not pro-
duced," is needed as well as the output symbol in those
cases where it can be produced. A special storage cell,
H5, called the test cell, is used for this binary informa-
tion. It can contain either of two special symbols,'+",
which stands for yes, or '"-'", which stands for no. The +
and - are symbols used only in the Manual. In the com-
puter, J4 is the symbol for + and J3 for - . These are,
respectively, the names of the basic processes that set
H5 + or - . The test cell is safe over the basic processes
(the J's); that is, if a J-process does not set H5 as
part of its definition, then H5 will be the same after
performance of the process as it was before. (This means
that conditional transfers may be delayed after the de-
cision has been made and recorded in H5, as long as only J's

which do not set H5 are performed.)

-158-

.10

THE DESIGNATION OPERATION, Q, AND

THE DESIGNATED SYMBOL, S

In instructions, the Q prefix specifies an operation,
called the designation operation, whose operand is SYMB.
The result of performing the designation operation on SYMB
is a new symbol, S, called the designated symbol of the
instruction. We give below all eight values of Q. The
first five Q's, Q = 0, 1, ..., 4, are normally the only
ones that appear on the coding sheet.

Q =0 S = the symbol in the instruction itself--

i.e., SYMB.

Q =1 S = the symbol in the cell named in the in-
struction--i.e., in SYMB.

Q =2 S = the symbol in the cell whose name is in
the cell named in the instruction--i.e., in
the cell named in SYMB.

Q = 3 Trace this program list (otherwise equivalent
to Q = 0).
Q = 4 Continue tracing (otherwise equivalent to
Q =0).
Q =5 SYMB is the address of a primitive--i.e., of
a machine language subroutine.
Q = 6 Routine is in fast-auxiliary storage.
Q = 7 Routine is in slow-auxiliary storage.
Examples: NAME PQ SYMB LINK
Given the memory situation: Bl Cl 0
Cl D1 0

For the three instructions
below we get the following
designated symbol:

S = Bl 0 Bl
S =Cl 1 Bl
S = D1 2 Bl

=150~

3.

10

3.

11

.11

THE OPERATION CODE, P

The P prefix specifies an operation, called simply
the operation of the instruction, whose operand is the
designated symbol, S. The result is an action related to

the set up, execution, and clear up of routines. The

eight operations are:

P =0 EXECUTE S. S is assumed to name a routine or
a primitive; it is executed--i.e., the process
it specifies is carried out--before the next
instruction is performed.

P =1 INPUT S. HO is preserved; then a copy of S
1s put in HO.

P =2 OUTPUT TO S. A copy of (0) is put in cell S;
then HO 1s restored.

P = 3 RESTORE S. The symbol most recently stored
in the push down list of S is moved into S;
the current symbol in S is lost.

P = 4 PRESERVE S. A copy of the symbol in S is
stored in the push down list of S; the symbol
still remains in S.

P =5 REPLACE (0) BY S. A copy of S is put in HO;
the current (0) is lost.

P=6 COPY (0) IN S. A copy of (0) is put in S;
the current symbol in S is lost, and (0) is

unaffected.
P =7 BRANCH TO S IF H5 - . The symbol in H5 is
always either + or - . If H5 is + , then

LINK names the cell containing the next in-
struction to be performed. (This is the normal
sequence.) If H5 is - , then S names the cell
containing the next instruction to be performed.
Thus, P = 0 is used to execute subroutines; P =1, 2, 5,
and 6, are used to transfer symbols to and from the com-
munication cell, HO; P = 3 and 4 are used in connection
with safe cells; and P = 7 is a centralized transfer of
control.
Examples: On the right we give small segments of
program lists--i.e., sequences of instructions.

On the left we give a verbal statement of the
action.

-160-

NAME PQ SYMB

It takes two instructions to put the
symbol in WO into the cell W1l. The
first instruction, 11WO, inputs the
symbol 1WO to HO, and the second, 20Wl,
moves the symbol into cell WIL.

It is desired to execute a process, P15,
which takes two inputs and produces one
output. The inputs are to be L1 and the
symbol in WO; and the output is to be in
Wl. 10L1 inputs L1 to HO, pushing the
symbol in HO down, so it is not destroyed.
11WO inputs the symbol in WO to HO,
again pushing down. Then P15 is fired;
it removes the two symbols just put in
HO, and places its own output there.
20Wl takes this output from HO and puts
it in W1 (destroying the symbol in Wl1).
HO is left as it was at the beginning.

It is desired to put (0) into Y5, but
without destroying the symbol already
there. Hence, 20Y5 is preceded by
40Y5, which preserves Y5.

It is desired to replace a symbol in the
cell named in W1 by the symbol in the
cell named in WO. 12WO brings the symbol
into HO, and 21Wl puts it in 1Wl--i.e.,
in the cell named in Wl. Notice that HO
is left just as it was before the two
operations were performed.

A process whose name is in Y2 is fired

with input from WO. Assume it has one

output. This is put into W1 by 60Wl,

which also leaves it in HO so that J2

can test if it is equal to S5. The

result of J2 is either a + or - in H5.

709-1 transfers control to the part of

the program list starting at 9-1 if H5

is - . 1If H5+, then control proceeds 9-1
down the list.

Process P30 is fired on an input from
WO. WO is restored by 30WO to bring
it back to its earlier condition.

-161-

11
20

10
11

20

40
20

12
21

11

60
10

70

11
30

WO
Wl

L1l

P15
Wl

Y5
Y5

WO
Wl

WO
Y2
Wl
S5
J2
9-1

WO
P30
wo

LINK

.11

.12

3.12 INTERPRETATION

The interpretation of a program consists of gen-
erating a sequence of primitives according to the lists
in the program, and executing each primitive in turn.
The part of the IPL computer that carries this process
out is called the interpreter. The process consists

of a cycle of operations, which we define in two alterna-
tive ways: first, as a series of rules, by the RULES OF
INTERPRETATION; and second, as a step-by-step sequence of
actions, by the INTERPRETATION CYCLE, similar to a flow

diagram.

3.13 CURRENT INSTRUCTION ADDRESS CELL, HI1

Execution of a routine in a program involves
executing its subroutines. While executing a sub-
routine, it is necessary to remember the current
location in the higher routine, so that when the sub-
routine is finished, interpretation can proceed from
the correct instruction in the higher routine. The
hierarchy of in-process subroutines is necessarily un-
limited, since a subroutine can be composed of other
subroutines of unknown composition. A special storage
cell, H1, called the current instruction address cell,

or CIA, is used to mark locations in the hierarchy of
in-process routines. The symbol in Hl is the address
of the current instruction; the symbol one-down in the
push down list is the address of the instruction in the
routine one level up; the next symbol down is the ad-
dress of the instruction in the routine two levels up;
and so on. (The programmer never uses Hl; it is used

solely by the interpreter.)

-162-

3.14 RULES OF INTERPRETATION

1.

An instruction is interpreted by first apply-
ing Q to SYMB to get S and then applying P
to S to get the action.

Generally, the instructions in a program list
are interpreted in the order of the list.
Control advances.

In case P = 7, the sequence may be broken (if
H5-), but control remains at the same level
and continues along the list from the cell
with name S. Control branches.

A process designated in a program list is
executed by remembering the address of its
instruction in H1 (with a preserve), and then
interpreting its program list--i.e., the

list with the instruction in the head. Con-
trol descends a level.

A primitive process designated in a program
list is executed by transferring machine
control to the machine language subroutine
corresponding to the primitive process; no
descent occurs.

Interpretation of a program list terminates
with a LINK = 0, the end of the list; or with
LINK = name of a routine, in which case this
routine is executed as the last process of
the program list. (Termination is also
achieved by branching to a 0 or the name of

a routine via P = 7.)

Upon termination of a program list, control
ascends a level, and interpretation proceeds
1in the program list that contained the name
of the program list just finished, from the

point at which it was executed (H1l is restored).

If Hl is empty, the computer halts.

If the routine of a designated process is
in auxiliary storage, the auxiliary block
it belongs to is brought into main storage,
and interpretation proceeds.

-163-

3.

14

3.

15

3.15 THE INTERPRETATION CYCLE

START: Hl contains the name of the cell holding
the instruction to be interpreted.

Q =0, 1, 2: Apply Q to SYMB to yield
S; go to INTERPRET P.
- g = 3, 4: Execute monitor action (see
15.0, MONITOR SYSTEM) ; take S = SYMB;
go to INTERPRET P.
- Q = 5: Transfer machine control to SYMB
(executing primitive); go to ASCEND.
- Q = 6, 7: Bring blocks of routines in
from auxiliary storage; put location of
routine in block into Hl; go to INTERPRET Q.

P 0: Go to TEST FOR PRIMITIVE.

-P=1, 2, 3, 4, 5, 6: Perform the
operation; go to ADVANCE.

- P = 7: Go to BRANCH.

INTERPRET Q:

INTERPRET P:

TEST FOR PRIMITIVE: Q of S:
- Q = 5: Transfer machine control to
SYMB of S (executing primitive); go
to ADVANCE.
- Q #5: Go to DESCEND.

ADVANCE : Interpret LINK:
- LINK = 0: Termination; go to ASCEND.
- LINK # O: LINK is the name of the cell
containing the next instruction; put
LINK in Hl; go to INTERPRET Q.

ASCEND: Restore H1 (returning to Hl the name of
the cell holding the current instruction,
one level up); restore auxiliary region
if required; go to ADVANCE.

DESCEND: Preserve Hl: Put S into H1 (H1 now con-
tains the name of the cell holding the
first instruction of the subprogram
1list) ; go to INTERPRET Q.

BRANCH : Interpret Sign in H5:
- H5-: Put S as LINK (control transfers
to S); go to ADVANCE.
- H5+: Go to ADVANCE.

Figure 3 gives a schematic picture of the connections
between the parts of the interpretive cycle. (The various
machine systems may not correspond exactly to this diagram--
see machine system write-ups for details.)

-164-

3.

16

Q:=6,7
——————— ;
INTERPRET 0 Get vf)f.u'ano from
auxiliory storage
Q=5 lo=ou,z Q:3,4
Transfer Take monitor action
o $=Q(SYmB)
primitive S=SYMB
INTERPRET P
lP:l,2,3.4,5,6 lP=7 P=0
TEST FOR -
Execute P BRANCH PRIMITIVE — DESCEND
H5- H5+ +
Take S Transfer
os LINK primitive
! LINK=0 L
ASCEND ADVANCE
|
LINK£O

Fig. 3--The Interpretation Cycle

TALLY OF INTERPRETATION CYCLES, H3

The interpreter counts the number of cycles executed
by tallying 1 into H3 every time an ADVANCE occurs. H3 is
an integer data term. It is set to zero at the beginning
of a run by the loader. It is available to the program
during running--that is, it can be copied, reset to 0 at
various points in the program, and so on. It provides a

useful measure of the amount of processing done.
=165~

3.16

4.0

4.1

4.0 BASIC SYSTEM OF PROCESSES

The system of prefixes, P and Q, the interpreter,
and the rules for constructing list structures, are es-
sentially the grammar of IPL. 1In order to construct use-
ful programs, it is necessary to add a set of basic
processes for manipulating symbols, lists, description
lists, list structures, and special format words. The
system provided here is general purpose, in that any
process can be accomplished with it. It is focused on list
manipulation, however, with the consequence that arithmet-
ical processes are inefficient in comparison with their
machine code counterparts. The system consists of a set
of storage cells with special functions (some of which
have already been described), and a set of basic informa-
tion processes. Some of the basic processes are primitives;
some are elementary IPL routines included to complete the

repertoire.

SYSTEM REGIONS (EXCLUDED FROM OTHER USE)

The regions H, J, and W are used by the system, and
no new symbols in these regions may be defined by the

programmer.
The $ region is set aside to be used by individual
installations for their own system routines and data. The
need for this arises because each installation eventually
creates a few routines which it makes commonly available
to its users. The designation of a single region for these
prevents unnecessary conflicts, since users everywhere
can avoid using the $ region. Similarly, it is unneces-
sary for an installation to use J-routine and W-cell names
for its unique system routines and data.

-166-

4.2

4.2 SYSTEM CELLS

The following cells have special functions. They are
all storage cells and safe, except H3, Wll, and W33, which

are integer data terms.

HO
H1l

H2

H3

H4

H5

WO-w9

w10

W1l

W12

W13

Wl4

W15

Wlé

W17

The communication cell.

Current instruction address cell (CIA); never
used by programmer.

Available space list; never manipulated by pro-
grammer, except to count with J126.

Tally of interpretation cycles executed; an
integer data term.

Current auxiliary routine cell; never used by
programmer.

Test cell; safe over J's. (See § 3.9, TEST CELL,
H5, for definition of safe.)

Ten cells for common working storage (see § 8.0,
WORKING STORAGE PROCESSES, and § 7.0, GENERATOR
HOUSEKEEPING PROCESSES) .

Random number control cell; holds the name of
Integer data term used to produce random numbers
in J129 and J16.

Remainder of integer division; an integer data
term (see J113).

(See § 15.0, MONITOR SYSTEM, for W12 through W15,
W23, W29.)

Monitor start cell; holds name of routine
executed at start of trace (Q = 3).

Monitor end cell; holds name of routine executed
at return to Q = 3 point.

External interrupt cell; holds name of routine
executed at signaled interruption.

Post mortem routine cell; holds name of routine
executed after the post mortem lists have been
printed.

(See § 13.0, INPUT-OUTPUT CONVENTIONS, for W16
through W22, W24, W25.)

Input mode cell; holds name of integer determin-
ing input mode.

Output mode cell; holds name of integer determin-
ing output mode.

-167-

4.2

W18

W19

w20

w21

w22

w23

W24

w25

W26

w27

w28

w29

w30

w31l

W32

W33

Read unit cell; holds name of integer deter-

mining unit used by J140, J165, J180.

Write unit cell; holds name of integer deter-

mining output unit used by J142 and loading
processes.

Print unit cell; holds name of integer deter-
mining unit for J150's.

Print column cell; holds name of integer deter-
mining print column.

Print spacing cell; holds name of integer deter-
mining line and page spacing.

Post mortem list cell; holds name of list
determining information to be printed on post
mortem dump.

Print line cell; holds name of present print
line.

Entry column cell; holds name of integer deter-
mining entry position in print line.

(See § 21.0, ERROR TRAP, for W26 through W28.)

Error trap cell; holds name of list, in
description list form, of trap symbols and
associated processes.

Trap address cell; holds CIA at the time of
the trap.

Trap symbol cell; holds symbol indicating cause

of trap.

Monitor point address cell; holds name of cell
holding instruction with Q = 3.

Field length cell; holds name of integer
specitying the number of columns in the current
input field for the line read primitives.

Trace mode cell; holds the name of an integer

specifying NO TRACE if O, FULL TRACE if 1,
and SELECTIVE TRACE if 2.

Reserved available space cell; holds the name

of an integer specifying how many cells of
available space will be withheld from H2, to
be returned when H2 is exhausted.

Cycle count for trap cell; an integer data term.
When H3 equals W33, the trap action routine
associated with H3 on W26 is executed.

-168-

W34

W35

W36

W37

w38

W39

W40

W4l

W&42

W43

Current available space cell; holds the name
oF the available space Iist used by the load-
ing processes, initially H2.

Slow-auxiliary obsolete structure cell; holds
the name of an integer that tallies the number

of obsolete data structures occupying space in
the slow-auxiliary data system.

Used slow-auxiliary space cell; holds the name
of an integer that tallies the total number of
data structures, both current and obsolete,
occupying space in the slow-auxiliary data
system.

Slow-auxiliary storage density cell; holds the
name of an integer specifying the percentage
of used slow-auxiliary space that may be
occupied by obsolete structures.

Slow-auxiliary storage compacting routine cell;
holds the name of the routine which tests
whether slow-auxiliary storage should be com-
pacted at this time, and compacts if yes.

Fast-auxiliary obsolete structure cell; same
as W35, but for fast-auxiliary.

Used fast-auxiliary space cell; same as W36,
Bbut for fast-auxiliary.

Fast-auxiliary storage density cell; same as
W37, but for fast-auxiliary.

Fast-auxiliary storage compacting routine cell;
same as W33, but for fast-auxiliary.

Format cell; holds the name of an integer data
term specifying the format for J162.

-169-

4.2

5

.0

5.0 GENERAL PROCESSES, JO to J9

In this and following sections we give the definitions
of the basic processes, accompanied by whatever general
explanations are appropriate. Note that all outputs are
explicitly named, and that only these outputs remain in HO
after completion of a routine. We include definitions of
some terms with a circumscribed meaning.

TEST--A test is a process whose only result is to set

H5 + or - . Its definition is of the form: 'TEST X",
where X is any statement. If X is true, then H5 is set
+ ; if X is false, then H5 is set - . Any number of inputs

is permissible.

FIND--A find is a process with a single symbol as out-
put, but where it is uncertain whether the output can be
produced (can be found). If the output is produced, it is
put in HO, and H5 is set + ; if the output is not produced,
there is no output in HO, and H5 is set - . Any number of
inputs is permissible.

MOVE--In normal computing one never destroys the in-
formation in the originating location when reading it into
a new place; i.e., readouts are 'mon-destructive.'" 1In

' read

IPL, with the operation of restore, a ''destructive'
becomes useful. Thus, move means to put in the newly
designated place, but not to leave in the original place.
If a symbol is being moved from a storage cell, then the
cell is restored; if a list structure is being moved to

auxiliary storage, then it is erased in main storage.

JO NO OPERATION. Proceed to the next instruction.

J1 EXECUTE (0). The process, (0), is removed from
HO, HO is restored (this positions the process's
inputs correctly), and the process is executed
(as if its name occurred in the instruction in-
stead of Jl).

J2 TEST IF (0) = (1). (The identity test is on the
SYMB part only; P and Q are ignored.)

-170-

J3

J4

J5

J6

J7

J8

J9

SET H5-. The symbol in H5 is replaced by the

symbol J3.

SET H5+. The symbol in H5 is replaced by the

symbol J&.

REVERSE H5. If H5 is + , it is set - ; if H5 is

- , 1t 1s set + .
REVERSE (0) and (1). Permutes the symbol in HO

with the Iirst symbol down in the HO push down
list.

HALT, PROCEED ON GO. The computer stops; if

started again, it interprets the next instruction
in sequence.

RESTORE HO. (Identical to 30HO, but can be

executed as LINK.)
ERASE CELL (0). The cell whose name is (0) is

returned to the available space list, without
regard to the contents of the cell.

-171-

5

.0

6.0

6.0 DESCRIPTION PROCESSES, J10 to J16

As described earlier (% 2.3, DESCRIBABLE LISTS),
there are processes for manipulating descriptions and
description lists. For all of them the name of the de-
scribable list is input, and not the name of the descrip-
tion list. The name of the description list is found in
the head of the describable list, and, whenever created
by these processes, is a local symbol. (This allows the
description list to be erased automatically whenever the
list is erased as a list structure--see J72.)

J10 FIND THE VALUE OF ATTRIBUTE (0) OF (1). If the
symbol (0) 1is on the description list of list
(1) as an attribute, then its value--i.e., the
symbol following it--is output as (0) and H5
set + ; if not found, or if the description list
doesn't exist, there is no output and H5 set -
(J10 is accomplished by a search and test of all
attributes on the description 1list.)

J11 ASSIGN (1) AS THE VALUE OF ATTRIBUTE (0) OF (2).
After J1I, the symbol (1) is on the description
list of list (2) as the value of attribute (0).
If (0) was already on the description list, the
old value has been removed, and (1) has taken
its place; if the old value was local, it has
been erased as a list structure (J72). If (0)
is a new attribute, it is placed at the front of
the description list. Jll will create the de-
scription list (with a local name) if it does
not exist (head of (2) empty). There is no out-
put in HO.

J12 ADD (1) AT FRONT OF VALUE LIST OF ATTRIBUTE (0)
OF (2). The value of (0) is assumed to be the
name of a list. The symbol, (1), is inserted on
the front of this list (behind head, as in J64).
If the attribute is not on the description list,
it is put on and a list is created as its value
(with a local name). As in J11, if the descrip-
tion list doesn't exist, it is created.

J13 ADD (1) AT END OF VALUE OF LIST OF ATTRIBUTE (0)
OF ggg. Identical to J1Z, except that (l) 1s in-
serted at the end of the list, rather than the
front.

-172-

J14

J15

J16

6.0

ERASE ATTRIBUTE (0) OF (1). 1If the symbol (0)
exists on the description list of list (1) as
an attribute, both it and its value symbol are
removed from the list. If either is local, it
is erased as a list structure (J72). If (0) is
not an attribute on the description list of (1),
nothing is done. (In all cases the description
list is left.)

ERASE ALL ATTRIBUTES OF (0). The description list
of Iist Is erased as a list structure (J72),
and the head of (0) is set empty.

FIND ATTRIBUTE RANDOMLY FROM DESCRIPTION LIST
OF . A the attributes on the description
Ist of list (0) that have positive numerical
data terms as values (integer or floating point)
are taken as a population from which a random
selection is made with relative weights given by
their values. Thus, if there are attributes Ai
with values N; > 0:

N.

Probability of A, being selected = _Z—J—
N.
1

all i

The output (0) is the attribute symbol selected,
and H5 is set + . If there are no positive
numerical data terms on the description list,
there is no output and H5 is set - . The random
number used in J16 is generated as in J129, and
is therefore controlled by W10.

~173-

7.0

7.

1

7.0 GENERATOR HOUSEKEEPING PROCESSES, J17/ to J19

GENERATORS

Repetitive operations can be handled in IPL by means
of loops, utilizing the conditional branch, just as in
normal programming. They can also be handled by means of
generators. A generator is a process that produces a
sequence of outputs and applies to each a specified pro-
cess. The process that the generator applies is called
the subprocess of the generator, and is an input. Thus,
the generator is associated with the kind of sequence it
produces, and will apply any process whatsoever to these
outputs. The only thing a generator knows about the sub-

process is the name of its routine, plus a convention al-
lowing the subprocess to control whether or not the gener-
ator will continue to produce outputs of the sequence.
This latter convention is necessary if generators are to
be used conditionally--e.g., to search for a member of a
sequence with certain properties.

What makes generators different from all the other
processes considered so far, is that two contexts of in-
formation--that of the generator, and that of the sub-
process and superprocess--must coexist in the computer at
the same time. Hence, the strict hierarchy of routines
and subroutines is violated, and special pains have to
be taken to see that information remains safe, and that
each routine is always working in its appropriate context.
To see this, define the context of a routine to be the set
of symbols in the working storages that it is using. We
will assume that any routine using n+l symbols of informa-
tion, stores these in WO through Wn, rather than some
arbitrary subset of W's. The routine that uses a generator,

which we will call the superroutine, has a certain context.

-174-

7.1

The subprocess is in the same context as the superroutine.
The generator is being used to provide a sequence of in-
formation to be processed in the routine using the gener-
ator, and the subprocess is simply that part of the super-
routine that does the processing. In general, it needs
access to all the symbols in the context of the super-
routine. It is given a name only to communicate to the
generator what processing to do. The generator has an
entirely different context in order to produce the sequence.
The purpose of the generator is to separate the processing
that goes into producing a sequence from the processing
that is to be done to the sequence. There is an alternation
between generator and subprocess which is both an alter-
nation of control and an alternation of context; to produce
an element of the sequence, the generator must be in con-
trol, and its context should occupy the W's; and to process
the element, the subprocess must be in control, and the
context of the superroutine should occupy the W's. Thus,
whenever the generator fires the subprocess, it is neces-
sary to remove the context of the generator from the W's,
thus revealing the prior context, which is that of the
superroutine. At the termination of the subprocess, the
context of the generator must be returned to the W's
(pushing down the W's, of course).

To handle the special housekeeping associated with
generators, three routines are provided: J17 is used at
the beginning of a generator to set up the housekeeping;
J18 is used to fire the subprocess, and shuffles the
contexts back and forth; and J19 is used at the end of a
generator to clean up the housekeeping structures.

-175-

J17 GENERATOR SETUP. Has two inputs:
(0) = Wn, the name of the highest W that

will be used for working storage--e.g.,

(0) = W6, if cells WO through W6 will

be used.

(1) = The name of the subprocess to be executed
by generator.
J17 does three things (and has no output):

-Preserves the cells WO through Wn, thereby
preserving the superroutine-subprocess
context;

-Stores Wn and the name of the subprocess
in storage cells, and preserves a third
cell for the output sign of H5 (these
three storage cells are called the gener-
ator hideout);

-Obtains the trace mode of the superroutine,
and records it in one of the hideout cells
(see & 15.0, MONITOR SYSTEM).

J18 EXECUTE SUBPROCESS. Has no input. It does six
things:

-Removes the symbols in WO through Wn
(generator context), thereby returning
the prev1ous context of symbols to the
top of the W's (superroutine-subprocess
context) ;

-Stiiks the generator context in a hideout
cell;

-Sets the trace mode of the subprocess to
be that of the superroutine (see § 15.0,
MONITOR SYSTEM) ;

-Executes the subprocess;

-Returns the symbols of the generator s
context from the hideout to the W's,
pushing the W's down, thereby preserving
the superroutine-subprocess context;

-Records H5, the communication of the sub-
process to the generator (see J19), in
one of the hideout cells.

J19 GENERATOR CLEANUP. Has no input. Does three
things:

-Restores WO through Wn;
-Restores all the cells of the hideout;
-Places in H5 the recorded sign, which
will be + if the generator went to com-
pletion (last subprocess communicated +),
and - if the generator was stopped (last
subprocess communicated -)

-176-

7.

7.2 CONVENTIONS FOR USING GENERATORS

We can now summarize the conventions for the use of

generators.

-A generator is executed like any other routine. Its
inputs are placed in HO:

(0) is always the name of the subprocess;

(1), (), ..., are inputs to the generator.

-The subprocess sets H5 upon termination: + if the
generator is to produce the next number of the
sequence; - if the generator is to terminate.

-There is no output from the generator to the super-
routine except H5, which is + if the generator went
to completion--i.e., produced all members of the
sequence--and is - if the generator was terminated.
J19 sets this output.

7.3 CONVENTIONS FOR CONSTRUCTING GENERATORS

We can now summarize the conventions for the con-

struction of generators.

-Start the generator routine by doing J17: input (1),
the subprocess, is already in place; do a 10Wn, where
Wn is the highest working cell to be used, for input

).
-Produce the first member of the sequence, and put it

in HO as input to the subprocess. The member may be
given by any number of symbols, (0), (1),

-Fire the subprocess by executing J18. At the time
of execution, the generator's symbols cannot be
stacked up more than one deep in the W's or J18 will
fail to clear the context.

-The subprocess operates in the context of the super-
routine, taking as input the symbols provided by the
generator, above. Thus, the symbols in the W's are
the ones placed by the superroutine, or by one of
the earlier executions of the subprocess. Likewise,
the subprocess can put symbols in the W's (or HO),
which are then available to later executions of the
subprocess, or to the superroutine after the termina-
tion of the generator.

-Within the generator, after executing J18, if H5 is

+ , produce the next member of the sequence. If there
are no more members, clean up and quit with J19, which
will pop up the W's and set H5 for output. If H5 is

- , then immediately clean up and quit with J19.

=177~

7.3

-There is no restriction on the nesting or cascading
of generators: a generator may use other generators
as subroutines; and a generator can be in the form
of a subprocess operating on the output of another
generator. (The subprocess of a generator is part
of its context, so that J18 always fires the sub-
process of the generator currently in context.)

-1f the generator is in main storage, the subprocess
to it may have either a regional or local name. If
the generator is in auxiliary storage, the subprocess
to it may need a regional name (see § 10.0, AUXILIARY
STORAGE PROCESSES).

-178-

8.0 WORKING STORAGE PROCESSES, J20 to J59

Storage cells can be created at will by the program-
mer, and can be used either as permanent or temporary
storage for any purpose the programmer desires. The only
advantage in using the W's lies in the following forty
processes for manipulating them, together with their
built-in use in the generator processes.

J2n MOVE (0), (1), ..., (n) INTO WOi Wl, ..., Wn,

RESPECTIVELY. Ten routines, J through J29,
that provide block transfers out of HO into

working storage. The symbols currently in WO
to Wn are lost.

J3n RESTORE WO, W1, ..., Wn. Ten routines, J30
through J39.

J4n PRESERVE WO, W1, ..., Wn. Ten routines, J40
through J49.

J5n PRESERVE WO, W1, ..., Wn, THEN s
..., (n) INTO WO, W1, ..., Wn, RESPECTIVELY.
Ten routines, Jb0 through J59, combining Jin
and J2n.

-179-

9.0

9.1

9.0 LIST PROCESSES, J60 to J104

PRESERVE AND RESTORE AS GENERAL LIST OPERATIONS

The preserve and restore operations were defined
earlier for storage cells. We describe below the mechanics
underlying them. It can be seen that these operations
can apply to any list, given the name of a cell in the
list: preserve will insert an additional cell with the
same PQ SYMB as the given cell, and restore will replace
the contents of the given symbol with the contents of
the following cell, and remove the following cell from
the list, thus performing a deletion.

NAME PQ SYMB LINK

We are given, initially, the available H2 0 1000
space list, H2, and a cell, WO, with a 1000 0 1050
list proceeding from its LINK: 1050 0 1020
1020 0 .
w0 B2 500
500 Ccl 505
505 c2 ce
If we preserve WO, then a word is obtained H2 0 1050
from available space and inserted in the 1050 0 1020
list following WO, with a copy of SYMB of WO: 1020 0
Notice that all words in the list except wo B2 1000
WO remained unchanged, and that all the con- 1000 B2 500
ditions for preserve are satisfied. Note 500 Cl 505
also the amount of processing is independent 505 Cc2 cen

of how many items are on the list.

If we now put into WO a new SYMB, D1, we wo D1 1000
get (with no change in the H2 list): 1000 B2 500
500 Cl 505

505 c2 cees

Restoring WO reverses the operation, dele- H2 0 1000
ting the cell next after WO, putting it back 1000 0 1050
on the available space, but putting its 1050 0 1020
SYMB in WO: 1020 0 e
wo B2 500

500 Ccl 505

505 c2 ceee

Restoring WO again yields: H2 0 500
(Notice that cells are returned on the front 500 0 1000
of the available space list, H2, so that the 1000 0 1050
amount of processing required is independent 1050 0 1020
of the size of available space.) 1020 0 e
wo cl 505

505 c2 ce

-180-

9.2

9.3

LOCATE

A locate produces an output which is the name of the
cell containing the desired symbol. Since there is no
guarantee that the symbol is locatable, H5 is set + if it
is, and - if it is not located. 1In the negative case, an
output is still produced; in the locate processes in the
basic system, J60, J61, J62, and J200, the output is the
name of the last list cell. (A private termination cell

is not a list cell.)

INSERT

In an insert, two symbols are specified, either by
the inputs or as the result of preliminary processing by
the insert processes: a symbol in a list cell, and a
symbol that is to be inserted in the list relative to the
first symbol. A new cell from available space is put in
the list to hold the new symbol, which is then located in
the appropriate relationship to the symbol already in the

list. There are no outputs in HO.
NAME PQ SYMB LINK

Consider the mechanics for two relation- 900 1000
ships: insert before and insert after. 1000 Bl 910
Suppose the symbol to be inserted is Al, 910 cees saes
the symbol in the list is Bl, and its

list cell is 1000:

In both cases we start by preserving 900 1000
1000: 1000 Bl 1010
1010 Bl 910
910 ceee eees
For insert before, we put Al in 1000: 900 1000
1000 Al 1010
1010 Bl 910
910 cese sees
For insert after, we put Al in 1010: 900 1000
1000 Bl 1010
1010 Al 910
910 ceee eaee

Notice that the symbols bear the appropriate relationship of
before and after, but not necessarily the cells. Given the
name of a cell, there is no way to insert a cell in front of
it, since the cell that links to it is unknown.

-181-

9.

3

9

4

9.4

DELETE

In a delete, a symbol in a list is specified,
either by the input or as a result of preliminary
processing, and it is desired to remove this symbol
from the list, reducing the number of list cells by
one. H5 is set - for appropriate special cases;
e.g., if the symbol designated for deletion does not
exist. Otherwise, it is set + .

NAME PQ SYMB

Suppose the symbol to be 900 ceen
removed is Al and it is 1000 Al
in list cell 1000: 910 Bl

920 cees

Then deletion is accomp- 900 ceen
lished by restoring 1000: 1000 Bl

920 ceen

Notice that it is the cell
after 1000 that is removed.
It is not possible to re-
move a cell knowing only the
name of the cell, since the
name of the cell linking to
it is unknown.

Suppose, however, that cell 900 ceen
1000 was the last cell in 1000 Al
the list:

Then, it is not possible to 900

remove the next cell, which 1000 00
is 0, the termination symbol.

Instead, 1000 is made into

a private termination cell.

This 1s the only way to make

cell 900 the last cell in the

list. H5 is set - to indicate

that we have deleted the last

symbol.

-182-

LINK

1000
910
920

1000
920

1000

1000

9.5

9.6

9.7

POLICY ON PRIVATE TERMINATION CELLS

Private termination cells are introduced by the
IPL system to allow deletion of final symbols on lists.
They occur in no other way. They can gradually accum-
ulate during processing, using up space. Consequently,
J60, the process which locates the next symbol on a
list, automatically returns private termination cells
to available space, substituting the termination sym-
bol, 0. (J60 can do this, since when it detects a
termination cell, it still has available the name of
the previous cell.) Any J's that use J60 as a sub-
routine will also have this feature (see machine system
write-ups).

ERASE

To erase a structure of any kind is to return
all the cells comprising it to available space.
There is no output in HO.

COPY

To copy a structure of any kind is to produce
a new set of cells from available space and link
them together isomorphically to the given struc-
ture. All the cells of the new set will contain
exactly the same symbols as their correspondents,
except those that contain symbols used to link the
structure together; e.g., local names in list struc-
tures. These contain the names of the copies of
the corresponding lists. The name of the new struc-
ture is the output, (0).

-183_

9.

7

9.8

9.8 LIST PROCESSES

J60

J61l

J62

J63

J64

LOCATE NEXT SYMBOL AFTER CELL (0). (0) is the

name of a cell. TIf a next cell exists (LINK of
(0) not a termination symbol), then the output
(0) is the name of the next cell, and H5 is set
+ . If LINK is a termination symbol, then the
output (0) is the input (0), which is the name
of the last cell on the list, and H5 is set -

If the next cell is a private termination cell,
J60 will work as specified above, but in addi-
tion, the private termination cell will be re-
turned to available space and the LINK of the
input cell (0) will be changed to hold O.

No test is made to see that (0) is not a data
term, and J60 will attempt to interpret a data
term as a standard IPL cell.

LOCATE LAST SYMBOL ON LIST (0). (0) is assumed
to be the name of a cell in a list (either a
head or list cell; it makes no difference). The
output (0) is the name of the last cell in the
list, and H5 is set + . If there is no cell
after (0), then the output (0) is the input (0)
and H5 is set -

LOCATE (0) ON LIST (1). A search of list with
name (l) 1s made, testing each symbol against
50) (starting with cell after cell (1)). If

0) is found, the output (0) is the name of the
cell containing it and H5 is set + . Hence,

J62 locates the first occurrence of (0) if there
are several. If (0) is not found, the output
(0) is the name of the last cell on the list,
and H5 set -

INSERT (0) BEFORE SYMBOL IN (1). (1) is assumed
to name a cell in a list. A new cell is in-
serted in the list behind (1). The symbol in
(1) is moved into the new cell, and (0) is put
into (1). The end result is that (0) occurs in
the list before the symbol that was originally
in cell (1).

INSERT (0) AFTER SYMBOL IN (1). Identical with
J63, except the symbol iIn (1) is left in (1),
and (0) is put into the new cell, thus occurring
after the symbol in (1). (If (1) is a private
termination symbol, (0) is put in cell (1),
which agrees with the definition of insert
after.)

~184-

J65

J66

J67

J68

J69

J70

J71

INSERT (0) AT END OF LIST (1). Identical

with J64, except that the location of the
last symbol is obtained first, prior to
inserting.

INSERT (0) AT END OF LIST (1), IF NOT ALREADY
ON IT. A search of Iist (1) 1s made, testing
each symbol against (0) (starting with the
cell after cell (1)). If (0) is found, J66
does nothing further. If (0) is not found,
it is inserted at the end of the list, as in
J65.

REPLACE (1) BY (0) ON LIST (2 FIRST OCCUR-
RENCE ONLY) . search o 1st 1s made,
testing each symbol against (1) (starting with
the cell after cell (2)). If (1) is found,

(0) is placed in that cell. If (1) is not
found, J67 does nothing.

DELETE SYMBOL IN CELL (0). (0) names a cell in
a list. The symbol in it is deleted by replac-
ing it with the next symbol down the list (the
next cell is removed from the list and returned
to available space, so that the list is now one
cell shorter). H5 is set + unless (0) is the
last cell in the list or a termination cell.
Then H5 is set - . Thus, H5- means that after
J68, the input (0) (which is no longer in HO)
is a termination cell (see discussion in § 9.4,
DELETE) .

DELETE SYMBOL (0) FROM LIST (1) (FIRST OCCUR-
RENCE ONLY). A search of list (1) 1s made,
testing each symbol against (0) (starting

with the cell after cell (1)). If (0) is found,
it is deleted, as in J68, and H5 is set + .

If (0) is not found, H5 is set -

DELETE LAST SYMBOL FROM LIST (0). The last
symbol on 1list (0) is located. 1If a last sym-
bol is found, it is deleted and H5 is set + .
If no last symbol exists (list (0) is empty

at input), H5 is set -

ERASE LIST (0). (0) is assumed to name a list.
AIT cells of the list--both head and list
cells--are returned to available space. (Noth-
ing else is returned, not even the description
list of (0), if it exists.) There is no out-
put in HO. If (0) names a list cell, the cell
linking to it will be linking to available space
after J71, a dangerous but not always fatal
situation.

-185-

9.8

9.8

J72

J73

J74

J75

ERASE LIST STRUCTURE (0). (0) is assumed
to name a list structure or a sublist
structure. List (0) is erased, as are all
lists with local names on list (0), and
all lists with local names on them, and so
on. Thus, description lists get erased,
if they have local names. If the list is
on auxiliary storage (Q of (0) = 6 or 7),
then the list structure is erased from
auxiliary, and the head, (0), is also
erased.

COPY LIST (0). The output (0) names a new
Iist, with the identical symbols in the
cells as are in the corresponding cells of
list (0), including the head. If (0) is

the name of a list cell, rather that a head,
the output (0) will be a copy of the remain-
der of the list from (0) on. (Nothing else
is copied, not even the description list of
(0), if it exists.) The name is local if
the input (0) is local; otherwise, it is
internal.

COPY LIST STRUCTURE (0). A new list struc-
ture 1s produced, the cells of which are

in one-to-one correspondence with the cells
of list structure (0). All the regional
and internal symbols in the cells will be
identical to the symbols in the correspon-
ding cells of (0), as will the contents

of data terms. There will be new local
symbols, since these are the names of the
sublists of the new structure. Description
lists will be copied, if their names are
local. 1If (0) is in auxiliary storage (Q of
(0) = 6 or 7), the copy will be produced

in main storage. 1In all cases, list struc-
ture (0) remains unaffected. The output
(0) names the new list structure. It is
local if the input (0) is local; it is in-
ternal otherwise.

DIVIDE LIST AFTER LOCATION (0). (0) is as-
sumed to be the name of a cell on a list.

A termination symbol is put for LINK of
(0), thus making (0) the last cell on the
list. The output (0) names the remainder
list: a new blank head followed by the
string of list cells that occurred after
cell (0).

-186-

9.8

J76 INSERT LIST (0) AFTER CELL (1 AND LOCATE LAST
S L. List 1s assumed to be describable.
Tts head is erased (if local, the symbol in the
head is erased as a list structure). The string
of list cells is inserted after cell (1): LINK
of cell (1) is the name of the first list cell,
and LINK of the last cell of the string is the
name of the cell originally occurring after cell
(1). The output (0) is the name of the last
cell in the inserted string and H5 is set + .

If list (0) has no list cells, then the output
(0) is the input (1) and H5 is set -

J77 TEST IF (0) IS ON LIST (1). Assume (1) is the
nhame of a cell on a list. A search is done of
all cells after (1); H5 is set + if (0) is found,
and set - if not.

J78 TEST IF LIST (0) IS NOT EMPTY. H5 is set - if
LINK of (0) is a termination symbol, and set +
if not.

J79 TEST IF CELL (0) IS NOT EMPTY. H5 is set - if
SYMB of (0) is 0, and set + otherwise. (Q of
(0) is ignored; thus, both cells holding internal
zero and termination cells give H5-.)

J8n FIND THE nth SYMBOL ON LIST (0), O =n = 9.
(Ten routines, J80-J89.) Set H> + 1f the nth
symbol erists, - if not. Assume list (0) de-
scribable, so that J81 finds symbol in first
list cell, etc. J80 finds symbol in head; and
sets H5- if (0) is a termination symbol.

J9n CREATE A LIST OF THE n SYMBOLS (n-1), (n-2),
..., (1), (0), 0 <n < 9. The order 1s (n-1)
Tirst, (n-2) second, ..., (0) last. The output
(0) is the name (internal) of the new list; it
is describable. J90 creates an empty list
(also used to create empty storage cells, and
empty data terms).

J100 GENERATE SYMBOLS FROM LIST (1) FOR SUBPROCESS gOi.
The subprocess name is performed successively
with each of the symbols of list named (1) as
input. The order is the order on the list, start-
ing with the first list cell. H5 is always set +
at the start of the subprocess. J100 will move

in 1list (1) if it is on auxiliary.

-187-

9.8

J101

GENERATE CELLS OF LIST STRUCTURE (1) FOR
SUBPROCESS (0). The subprocess named (0)
1s performed successively with each of the
names of the cells of list structure named
(1) as input. The order (called print
order) is as follows:

1. List (0) is generated first.

2. All cells of a list are generated
in contiguous sequence, starting
with the head.

3. After a list has been generated,
the sublists of the list structure
that occur on the list are gener-
ated in the order they occur on
the list.

4. Lower-level sequences of sublists
occur after the higher-level se-
quence is finished, and are not
interpolated.

5. Each 1list is generated only once,
at the first opportunity.

The name of the cell is output to the sub-
process as (0). H5 is set + if the cell is
the head of a list (so that J101 is starting
to generate a new sublist). In this case,
J101 has already marked the sublist proces-
sed (J137), so that the head contains the
processed mark and an internal zero. The
original contents of the head are one-down
in the list, and will occur as the next cell
to be generated. In case the cell output

to the subprocess is a list cell, H5 is set -

J101 has available the name of the next cell
to be generated prior to executing the sub-
process (which determines how manipulations
of the list structure by the subprocess will
affect generation).

J101 cleans up the processing marks that it
puts in the list structure, returning the
list structure to its original state (except
as modified by the subprocess). Structures
whose names have been put by the subprocess
in the empty heads created by marking pro-
cessed, are not erased by the generator.
(Note that J101 cannot be used in a subpro-
cess to itself on the same list, because of
the process marks.)

J101 will move in list structure (1) if it
is on auxiliary.

-188-

9.8

J102 GENERATE CELLS OF TREE (1) FOR SUBPROCESS (0).

J103

The subprocess named (0) is performed succes-
sively with each of the names of the cells of
the tree named (1) as input. A tree is a data
list structure in which each sublist appears
once and only once. The cells of each sublist
are generated before going on with the superlist;
the cell containing the name of the sublist
occurs immediately before the sublist and all
its sublists are generated. H5 is set + to the
subprocess if input (0) is the head of a new
sublist, and is set - otherwise. (Nothing is
marked processed, since there is no need to
keep track of multiple occurrences.) The name
of the next cell to be generated is found be-
fore the cell is presented to the subprocess--
i.e., it is possible to erase a tree with J102.

J102 will move in list structure (1) if it is
on auxiliary.

GENERATE CELLS OF BLOCK (1) FOR SUBPROCESS (0).

(1) is assumed to be a block control word. The
subprocess named (0) is performed successively
with each of the names of the cells of the

block (1) as input, generated in ascending order.
H5 is always set + at the start of the subprocess.
(See § 17.0, BLOCK HANDLING PROCESSES.)

-189-

10

.0

10.

1

10.0 AUXILIARY STORAGE PROCESSES, J105 to J109

There are two types of auxiliary storage--fast and
slow--and two separate auxiliary storage systems--one for

data list structures and the other for routines.

AUXILIARY STORAGE FOR DATA LIST STRUCTURES

The system for data list structures is patterned
after a file drawer. The file holds data list structures.
A list structure can be filed in auxiliary storage (it is
the programmer's decision whether in fast or slow storage).
When filed, the structure is no longer in main storage,
and all the space it used is made available (except the
head--see below). The programmer must be aware that he
has filed a list structure in auxiliary, since most of the
processes do not check for this. Thus, doing a J60, which
locates the next symbol, on the name of filed list struc-
ture can only lead to chaos. The system determines where
a list structure shall be filed, and records this informa-
tion in the head of the list structure, which acts as a
control word for the filed structure. The head remains
in main memory. Thus, a list structure has the same name
throughout a run, no matter how often it is shuffled be-
tween main and auxiliary storage: when it is in auxiliary,
the head of the filed structure holds the control informa-
tion to get the list structure back.

A filed list structure may be moved back into main
storage, in which case it is no longer filed; its image,
still occupying space in the auxiliary system, is con-
sidered an obsolete structure. A move can be done any time

the name of the filed list structure is encountered, since
the head holds the control information that locates it in
auxiliary. It is also possible to copy or erase list
structures in auxiliary using the regular list processes,

=190~

10.

J74 and J72. Thus, the repertoire of processes for

handling auxiliary storage of data list structures con-

sists of the following processes:

J72

J74

J105

J106

J107

J108

J109

ERASE LIST STRUCTURE (0). (See definition in
.38, LIST PROCESSES. J72 leaves an obsolete
structure occupying auxiliary storage.

COPY LIST STRUCTURE (0). (See definition in
¢ 9.8, LIST PROCESSES.)

(See also J101 and J102.)

MOVE LIST STRUCTURE (0) IN FROM AUXILIARY. The
control word in cell (0) determines the Toca-
tion of the list structure, including whether
it is in fast (Q = 6) or slow (Q = 7) storage.
The list structure is returned to main storage,
using words from available space, and the head
replaced by the head of the list structure, so
that the list structure is identical to itself
prior to filing (except that different list
cells are used). H5 is set + . If the list
structure (0) was already in main storage (Q # 6
or 7), J105 does nothing and H5 is set - .

The output (0) is the input (0). J105 leaves
an obsolete structure image occupying space in
auxiliary storage.

FILE LIST STRUCTURE (0) IN FAST-AUXILIARY
STORAGE. Creates a copy of Iist structure (0)

in a unit of the fast storage (the system selects
unit and the space within the unit). Erases

the list structure in main storage, except for
head. Creates control word (Q = 6) and places

it in the head. There is no output. (If there
is no space in the fast-auxiliary, it is filed

in the slow-auxiliary.)

FILE LIST STRUCTURE (0) IN SLOW-AUXILIARY

STORAGE. Identical to J106 except uses slow

storage (Q = 7). (If there is no space in the

slow-auxiliary, an error signal occurs; see
§ 21.0, ERROR TRAP.)

TEST IF LIST STRUCTURE (0) IS ON AUXILIARY.

Sets H5 + 1f (0) 1s on either fast- or slow-
auxiliary, and H5 - in all other cases.

COMPACT THE AUXILIARY DATA STORAGE SYSTEM (0).
J109 purges the obsolete data structures from
the auxiliary data storage system specified by
the integer data term (0). The slow-auxiliary
system is compacted if (0) = 0, the fast-auxil-
iary system if (0) = 1.

-191-

10.2

The system will automatically compact both fast- and
slow-auxiliary data storage when they become full or in-
efficient. However, since compacting may become a time-
consuming operation in some applications, the programmer
has the option of assuming partial or complete responsi-
bility for specifying when and how frequently it shall
occur. The following system cells are relevant to compac-
ting slow-auxiliary storage. Cells W39 through W42 per-
form the same function for the fast-auxiliary data system.

-W35 Holds the name of an integer data term which
gives the number of obsolete structures cur-
rently occupying space in the slow-auxiliary
data storage system.

-W36 Holds the name of an integer data term which
gives the total number of structures, current
and obsolete, occupying space in the slow-
auxiliary data storage system.

-W37 Holds the name of an integer data term which the
system interprets as the numerator of a fraction
whose denominator is 100. When the ratio of
obsolete to total structures in slow-auxiliary
exceeds the above fraction, compacting will
occur and all obsolete structures will be
eliminated. 1W37 is initially 25, so compacting
will occur when the number of obsolete struc-
tures is greater than 25 per cent of the total
number of structures on slow-auxiliary storage.

-W38 Holds the name of the routine which compacts
when necessary. W38 initially names a system
routine which performs the test described above
under W37, but may be replaced by the name of
a programmer's IPL routine which determines
when compacting should occur. 1W38 compacts by
executing J109. 1W38 is executed automatically
after every execution of J105 (Move List Struc-
ture (0) in from Auxiliary).

10.2 AUXILIARY STORAGE FOR ROUTINES

The auxiliary system for routines is used by the
interpreter to bring routines into main storage for execu-
tion. It uses an auxiliary buffer into which all routines

-192-

10.2

stored in auxiliary (either fast or slow) are copied, and
executed. All routines to be stored in auxiliary are as-
sembled into this buffer during loading, so that no further
assembly is needed to execute them once they have been
brought in (see % 3.12, INTERPRETATION). Since all auxiliary
routines use the same buffer, if an auxiliary routine uses
an auxiliary routine, the copy of the higher one in main
storage is destroyed when the lower one is called in. It
is necessary to bring the higher auxiliary routine back
into main storage again when the lower is finished. This
leads to a "two call" system, in which every routine re-
quires two reads from auxiliary storage: one to bring the
routine in, and one to bring its predecessor in the

auxiliary buffer back in. It is necessary to use a storage
cell, the current auxiliary routine cell, H4, to keep

track of the routines in the auxiliary buffer, since the
nesting of auxiliary routines is unlimited. The symbols
stacked in H4 are names of the control words, so the
routines can be called back. When the routines in auxiliary
storage are highly interdependent, the '"two call' system

is quite inefficient during execution. Much of this in-
efficiency can be eliminated by grouping those auxiliary
routines which call on one another frequently into the

same buffer-load. A buffer-load of auxiliary routines

is created at loading time by preceding a set of routines
with a single header card (TYPE = 6 or 7). The entire set
of routines is loaded into consecutive cells of the buffer
and written to auxiliary storage as a unit. The first call
on any one routine in the set causes the entire buffer-load
to be brought into main memory. Mutual calls between the
routines in this buffer-load do not result in accesses to
auxiliary storage; a call on a routine in a different
buffer-load does. Any number of buffer-loads can be
created while loading. A routine or group of routines

too large for the buffer overflows into main memory via H2,

-193-

10.2

with no ill effects other than the expenditure of cells
in main memory. The above considerations lead to the

following restrictions:

-No auxiliary routine shall modify itself in any way
during execution. If it did, the call back from
auxiliary would not be the same as the initial--and
now modified--copy read in from auxiliary. (There
are other reasons for not allowing self-modification--
e.g., recursions.)

When a subprocess and its generator reside in dif-
ferent buffer loads, the auxiliary subprocess must
be an independent routine--i.e., have a regional
name-~-so that every time the generator executes

the subprocess it can be brought in from auxiliary.
If the subprocess were a sub-list-structure of the
superroutine (with a local name), then when the
buffer load containing the generator was brought in
from auxiliary, it would destroy the copy of the
superroutine--and with it, the subprocess--and chaos
would result when the generator tried to execute the
subprocess (see § 7.1, GENERATORS).

=194~

11.0

11.0 ARITHMETIC PROCESSES, J110 to J129

All the input and output symbols in this section are
the names of data terms. Most operations admit only integers
(P =0, Q =1) or floating point numbers (P =1, Q = 1),
but some admit any data term. In the arithmetic operatioms,
if both factors are integers, then the result will be an
integer. 1If either factor is floating point, the result
will be a floating point number. Note that the prior nature
of the cell holding the answer is immaterial. Thus, for
example, J90 is used to create new result cells, even though
it does not create data terms. None of the factors are
affected by the operations, unless they are also named as
the result. Any illegal operation--overflow, divide check,
etc.--produces an error condition (see § 21.0, ERROR TRAP).

J110 (1) + (2)——=(0). The number named (0) is set

equal to the algebraic sum of the numbers named

(1) and (2). The output (0) is the input (0);
i.e., the result.

J111 (1) - 2)—=(0). The number (0) is set equal
to the algebraic difference between numbers
(1) and (2). The output (0) is the input (0).

J112 (1) x (2)——(0). The number (0) is set equal
to the low-order digits of the product of the
numbers (1) and (2). The output (0) is the
input (0).

J113 (1) / (2)—=(0). The number (0) is set equal
to the quotient of the number (1) divided by
the number (2). The output (0) is the input
(0). 1If division is integer division, then
the remainder is the data term, W1l (consequent-
ly, the remainder is unsafe over divisions).

J114 TEST IF (0) = (1). Tests identity, including
prefixes, of any two data terms, named (0) and
(1). Hence will always give H5- if an integer
is tested against a floating point.

J115 TEST IF (0) > (1).
J116 TEST IF (0) < (1).
J117 TEST IF (0) = 0.

-195-

11.0

J118 TEST IF (0) > 0.
J119 TEST IF (0) < O.

J120 COPY (0). The output (0) names a new cell con-
taining the identical contents to (0). The
name is local if the input (0) is local; other-
wise, it is internal.

J121 SET (0) IDENTICAL TO (1). The contents of the
cell named (1) is placed in the cell (0). The
output (0) is the input (0).

J122 TAKE ABSOLUTE VALUE OF (0). The number (0) is
modified by setting its sign + . It is left
as the output (0).

J123 TAKE NEGATIVE OF (0). The number (0) is modi-
fied by changing its sign--i.e., by multiplica-
tion by -1. It is left as the output (0).
(Zero is signed; J123 takes zero into minus
zero.)

J124 CLEAR EO!. The number (0) is set to be 0. 1If
the ce is not a data term, it is made an in-
teger data term = 0. If a number, its type,
integer, or floating point, is unaffected. It

is left as the output (0).

J125 TALLY 1 IN (0). An integer 1 is added to the
number (0). The type of the result is the
same as the type of (0). It is left as the
output (0).

J126 COUNT LIST (0). The output (0) is an integer
data term, whose value is the number of list
cells in list (0) (i.e., it doesn't count the
head). If (0) = H2, J126 will count the avail-
able space list. This is the only place where
H2 can be used safely by the programmer.

J127 TEST IF DATA TYPE (0) = DATA TYPE (l). Tests
if P of cell (0) 1s the same as the P of cell
(1). (Assumes (0) and (1) are data terms; hence,
uses P of data term representation, which is
not the same as P of instructions--see machine
system write-ups.)

J128 TRANSLATE (0) TO BE DATA TYPE OF (1). The out-
put (0) 1s the input (0), translated according
to the data type of data term (l). This trans-
lation is not defined for all data terms. It
will float integers (P = 0 to P = 1) and fix
floating point numbers (P = 1 to P = 0). It
can be expanded to include other P's (see
machine system write-ups).

-196-

11.0

J129 PRODUCE RANDOM NUMBER IN RANGE O TO (0). The
output (0) is a new number chosen from the
uniform distribution over the interval O up to
number (0) (the endpoint (0) is excluded). It
is an integer or floating point number accord-
ing to (0). It is produced by first generating
a random number in the interval O up to 1, and
then multiplying this number by (0). The random
fraction is generated by multiplying the number
named in storage cell W10 by a fixed number and
taking the low-order digits. This new number
is returned to W10 to become the factor in the
next random number generated. Thus, starting
W10 with a specified integer leads to a fixed
sequence with random properties, which can be
repeated. Different random sequences, such as
are needed in statistical replication, are
generated by starting W10 with different initial
numbers.

Note that if the input is the integer n, the
selection is from the n integers, 0, 1, ...,
n-1, each with probability 1/n.

-197-

12.0

12.0 DATA PREFIX PROCESSES, J130 to J139

The reason for defining the data 1list structure as a
unit of information is to allow processes that work for
the list structure as a whole. We have processes like
J72, erase a list structure; J74, copy a list structure;
and J140, read a list structure into the computer. One
erase process is sufficient to cover almost all possible
types of data. It is desirable to be able to construct
additional higher IPL routines that also work for list
structures. To do this requires the ability to detect
and manipulate the three kinds of symbols: regional,
internal, and local. This is possible (for data only) since
the Q prefix is used internally to encode the symbol with
each occurrence. Upon loading data list structures (see
§ 13.0, INPUT-OUTPUT CONVENTIONS), the following coding

takes place:

SYMB is regional.

Word is data term.

SYMB is local

Unassigned.

SYMB is internal.

Word is data term (same as Q = 1).
P = 1: List structure is in fast-
auxiliary storage.

P = 1: List structure in is slow-
auxiliary storage.

For all standard IPL words, and as
assigned for data terms.

| | A T |

H O 0000000
O N oounpLNDHO

The only values of Q and P that appear externally are those
connected with data terms. We give the others here to
make it clear what processes are being performed with the
data prefix processes; details can be found in the machine

system write-ups.

12.1 RECURSIONS

Besides the processes mentioned above, it is necessary

-198-

12.2

12.2

to be able to work on all parts of the list structure--
e.g., in an erase, every cell must be erased. The basic
technique in processing list structures is recursion.
Since a list structure is recursively defined, the kind

of operations that can be defined for a list structure in-

volve defining what is to be done to each list of the

structure and then recursing through the structure. That
is, the total process has the form:

-Do what you have to to this list;

-Find all the local names on this list;

-Do the total process to each sub-listestructure

defined by these local names.
Eventually, all the lists in the list structure get pro-
cessed and the recursion will stop; the recursive character
of the routine and the fact that all connections in the
structure are marked by local names assures this. Since,
however, the name of a list can occur in many places in a
list structure, there must be some device for avoiding
multiple processing of the same list if this is not de-
sired (and it must not be allowed for list structures which
allow the name of a list to appear on one of its sublists).

For example, in erasing a list of lists which consists
of three occurrences of the same sublist--e.g., L1: 9-1,
9-1, 9-1--the sublist, 9-1, must be erased only once, not
just as a matter of efficiency, but because chaos will
result if an erased list is erased.

MARKING A LIST PROCESSED

The solution provided in the basic system to keep track
of multiple processing is a technique for marking a list
"processed": J137 (taking the name of a list as input)
preserves the list, makes the head empty (Q = 4, SYMB = 0),
and marks it with P = 1. Since throughout the rest of
the data P = 0, it is possible to detect if the sublist

-199-

12

.2

has already been processed by testing whether P = 1 (J133).
The mark can be removed and the list returned to its
initial condition by a restore. The empty head can hold
temporary information relevant to each sublist during a
list structure process. For example, a new temporary
description list could be put in the head. It would not
get mixed up with the normal description list, which is
one-down in the push down list. Of course, this temporary
description list must be cleaned up at the end, say by

J15.

It is possible to avoid some of the problems of keep-
ing track of list structures by using J101, the generator
of the cells of a data list structure. J101 uses the
device of marking processed--every sublist is marked pro-
cessed when first presented--but much of the mechanics is
buried in J101, and need not be repeated by the subprocess
that uses it.

J130 ?ES%OIF (0) IS REGIONAL SYMBOL. Tests if Q =0

in .

J131 TEST IF (0) NAMES DATA TERM. Tests if Q =1 or
5 in the cell whose name is (0).

J132 TEST IF (0) IS LOCAL SYMBOL. Tests if Q
HO.

J133 TEST IF LIST (0) HAS BEEN MARKED PROCESSED.
Tests 1f P = 1 (and Q # 1 or 5) in the cell
whose name is (0). It will only be 1 if list
(0) has been preserved and P = 1 put in its
head by J137. This means list (0) has been
marked processed.

J134 TEST IF (0) IS INTERNAL SYMBOL. Tests if Q =
4 1n HO.

J136 MAKE SYMBOL (0) LOCAL. The output (0) is the
input (0) with Q = 2. Since all copies of this
symbol carry along the Q value, if a symbol is
made local when created, it will be local in
all its occurrences.

J137 MARK LIST (0) PROCESSED. List (0) is preserved,
its head made empty (Q = 4, SYMB = 0), and P set
to be 1. Restoring (0) will return (0) to its
initial state. This will work even with data
terms. The output (0) is the input (0).

-200~

2 in

12.2

J138 MAKE SYMBOL (0) INTERNAL. The output (0) is
the 1nput (0) with Q = 4. Best considered as
"unmake local symbol."

-201-

13.0

13.0 INPUT-OUTPUT CONVENTIONS

Input and output comprise several pieces: initial
loading, translation from one representation to another;
reading data list structures during running; writing
data list structures created during running so they can
be reloaded; printing; and monitoring the running program.
All of these utilize common conventions about format and

designation of units.

13.1 EXTERNAL TAPES

It is possible to use tapes for input and output,
rather than the on-line card readers, punches, and
printers. Such tapes are called external tapes to dis-
tinguish them from the tapes used for auxiliary storage.
An external tape is functionally identical with a deck
of cards outside the IPL computer. It consists of a
sequence of independent list structures. External tapes
can be generated in one run and used in a different runm.
External tapes are not generally compatible across dif-
ferent types of machines (but see machine system write-
ups for details). Tapes can be used as intermediate
storage, since tapes written by the write processes can
be read back in by the read processes. An external tape
can hold information in any of the representations de-
fined below. (External tapes are also used as inter-
mediate storage of blocks of information; see § 17.0,
BLOCK HANDLING PROCESSES.)

13.2 INPUT-OUTPUT UNIT CODE

The units used for input and output are named by

small integers as follows:

-202-

13.5

0 The '"mormal' value for an installation. This
will depend on the operating system being used
at the installation and the kind of machine.
It will include on-1line card read and punch
for some signal from the console.

1-10 External tapes. The connection between these
names and physical units is again dependent
on the machine and the installation.

The machine system write-ups should be consulted for more

information.

13.3 INPUT-OUTPUT REPRESENTATION MODE

The information being input and output is in one of

several modes, each of which has an integer code:

0 = IPL standard (one IPL word per card, as repre-
sented on the coding sheet).

1 = 1IPL compressed (about 7 IPL words per card).
2 = IPL binary (about 20 IPL words per card).

3 = Machine code.

4 = Restart mode (see § 20.0, SAVE FOR RESTART).
5 Machine language for various object machines.
6 = See machine system write-ups for further

7 details.

13.4 IPL COMPRESSED REPRESENTATION

See machine system write-ups for information.

13.5 IPL BINARY REPRESENTATION

(See machine system write-ups for further information.)

The information is put on the card in column binary,
although the notation used is as if it were row binary--
e.g., 9L is the 36-bit word in the left half of the 9 row
of the card. The 9 row is special:

-203-

13.5

9P = 6 (= 7 if wish to ignore checksum).

91D = v + 5008’ where v = word count and is, at most,
22.

9LA = sequence number of card in deck.

9R = checksum = (9L) + (8L) + ... + (Vth informa-

tion word).

All the v information words, starting with 8L and working
back, are considered one long string of bits. The string
is divided up into units by the following heading code

and convention:

Heading code (bits)

0 = End of list.
10 = IPL word: followed by Q LINK P SYMB NAME.
11 = Data term: followed by Q P DATA NAME.

P and Q each coded into 3 bits.

NAME, SYMB, LINK, each coded into 1 bit (= 0) if
blank; or into 6-bit region plus 15-bit relative
number if not blank.

DATA is coded into 30 bits.

=204~

14.0 READ AND WRITE PROCESSES, J140 to J146

These are processes that allow the input and output
of data list structures during running, under the control
of the program. Only data list structures, not routines,
can be input or output by these processes. The form of
the data list structures is identical to that of initial
loading, and may be in any of the three modes of repre-
sentation: IPL standard, IPL compressed, or IPL binary
(if possible for the object machine). A safe storage cell,
W16 for reading and W17 for writing, determines the mode.
The symbol in the cell is the name of the integer data
term giving the code stated earlier. The list structures
are handled independently, and not as sets (as in initial
loading), and no header cards are used. No translation,
assembly listing, or direct input to auxiliary (all in-
puts being to main storage) is possible. A structure may
be loaded into a specific block of main storage, however,
(see & 18.5, TYPE = 5, 6, 7, 8: HEADER CARDS). The
unit to be used must be selected, and safe storage cells,
W18 for read and W19 for write, are used for this. The
symbol in the cell names the integer data term giving the
unit (see & 13.2, INPUT-OUTPUT UNIT CODE).

J140 READ LIST STRUCTURE. A 1list structure on cards

(or external tape) in any of the admissible
forms (IPL, compressed, binary) is read into
the main storaie cells taken from the available
space list 1W34, its name input to (0), and H5
set + . Blank records are treated as end-of-
list-structure marks. (End-of-list-structure
is also signaled by an input end-of-file con-
dition or by the start of a new list structure,
with a regional or internal name.) If the first
record read by J140 is blank, it is ignored.

If there is no list structure (card hopper
empty or end-of-file) then there is no input
and H5 is set - . Internal symbols are as-

sumed to already exist in the IPL computer:
internal symbol 1345 is assigned address 1345.

-205-

14.0

14.0

J141

J142

J143

J144

J145

J146

READ A SYMBOL FROM CONSOLE. Inputs a symbol

or data term from the console into HO. Sets

H5 + if there is an input, and - if there is

not. An input data term is put in a new cell
and given an internal name.

The console conventions depend on the particular
machine, and the machine system write-ups

should be consulted for the exact defini-

tion of J141.

WRITE LIST STRUCTURE (0). (0) is assumed to
name a list structure. It is punched (or
written on external tape) in any of the admis-
sible forms (IPL, compressed, IPL binary).
Regional symbols are converted back to external
form, adddd; internal symbols are converted
directly--address 1345 to symbol 1345; and

local symbols are expressed as 9dddd, where

the dddd are small integers. The order of
writing is that of J101l, so that all the symbols
of a list are written consecutively. Thus,
there is no need for local names for list cells--
i.e., no link is needed except for 0, the
termination symbol.

REWIND TAPE (0). The external tape named by

the data term (0) is rewound.

SKIP TO NEXT TAPE FILE. The external tape named
in W18 is positioned past the next end-of-file
mark.

WRITE END OF FILE. The end-of-file mark is
written on the external tape named in WI19.

WRITE END OF SET. A blank record (appropriate

to mode IWI7) is written on the external tape
named in W19. (See % 18.0, INITIAL LOADING,
for use of blank records.)

-206-

15.

15.0 MONITOR SYSTEM, J147 to J149

Three kinds of facilities are available for monitoring
the running program and controlling it. First, it is pos-
sible to take a ''snapshot' of the program to see what it
is doing. Second, it is possible to get ''post mortem' in-
formation after a program has stopped. Third, it is pos-
sible to trace the program, printing information on each
instruction as it is executed. The machine system write-
ups should be consulted on the conventions for using the
console to accomplish the features described below.

15.1 MONITOR POINT, Q = 3

Any instruction with Q = 3 is called a monitor point
in the program. As far as execution of the program is
concerned, it is treated as Q = 0. However, when it is
encountered, the interpreter takes the following monitor-

ing action:

-It turns the trace ''on," also marking that a monitor
point has occurred.

-1t pushes down the safe storage cell W29 and stores
the current instruction address (the name of the
cell holding the instruction with Q = 3) as 1W29.

-It checks whether the number of cells of reserved
available space is equal to 1W32. 1If unequal, it
adjusts the supply of cells to equal 1W32.

-It checks the console for the following signals:

-External interrupt: if the external interrupt
signal is present, the routine named in the
safe storage cell W14 is executed and the pro-
gram continues.

-External trace mode: no trace, selective trace,
full trace. (If there is no external trace
signal from the console, the external trace
mode is set according to 1W31l.)

-Finally, it executes the routine named in the safe
storage cell, W12, and then continues the program.

-207-

15.

2

15

15.

.2

3

-When the program list in which Q = 3 occurred
is finished--i.e., when the marked routine is
finished--it executes the routine named in the
safe storage cell, W13.

-1t then pops up W29 and continues with the pro-
gram.

It is normal to mark a routine by putting the monitor mark
in the head.

SNAPSHOTS

W12 and W13 hold snapshot routines. As seen above,
they will be executed under various conditions associated
with the monitor points, Q = 3. There is no restriction
on the routine that may be executed, although the normal
use is to print out various lists to see how the program
is progressing.

The snapshot mechanism is operative at monitor points
regardless of the trace mode or external trace conditions.
The snapshot cells (W12 and W13) initially contain JO,

meaning ''mo operation.'

EXTERNAL INTERRUPT

The system checks for the presence of an external
interrupt signal at each monitor point. If the signal
is present, the routine named in the safe storage cell
W1l4 is executed and the program continues. Setting a
console switch manually is the normal way of providing an
external interrupt signal, but see the machine system
write-ups for additional or alternative methods.

There is no restriction on the nature of the routine
1Wl4. 1In particular, terminating 1Wl4 with J166 will
save for restart and continue with the program. Termina-
ting 1W14 with J7 will terminate the program without pro-
viding for restart. To terminate the program and provide
for restart, see the example in § 20.0, SAVE FOR RESTART.

-208-

15

15.4 POST MORTEM

15

.5

In the event the system detects some internal error
while executing a program, it automatically prints out
information about the terminating condition of the machine
via J202 and then stops. J202 may also be executed directly
by the programmer any number of times during a run. W23
holds the name of the list specifying information to be
printed by J202. This list may be modified by the pro-
grammer. W15 holds the name of a routine that J202
executes after the other information has been printed.

Any routine may be executed except J202. 1Its primary use
is to select and print debugging information that cannot
be specified on the 1W23 list. W15 initially holds JO.

J202 PRINT POST MORTEM AND CONTINUE. Print as
defined for the particular machine system.

TRACING

There are two internal trace modes, ''on'" and ''off."
In addition, there are three externally imposed conditions:
no trace, in which the trace mode is "off'" no matter what
is indicated internally; selective trace, in which the trace

mode is as indicated internally; and full trace, in which

the trace mode is ''on'" no matter what is indicated internally.

The three externally imposed trace conditions (no
trace, full trace, and selective trace), may also be im-
posed internally by the integer data term named by W31l.
The code for W3l is:

0 = No trace;
1 = Full trace;
2 = Selective trace.

1W31 is set for selective trace initially. The pro-
grammer may change 1W31l anytime. The change becomes ef-
fective when the next monitor point is encountered. If
the trace mode is on, then for each instruction the follow-
ing information is printed:
-209-

.5

15

.6

15.

6

-Level number, counting down from the initial routine
as level 1.

-CI?, the current instruction address (the symbol in
H1).

-Test signal, the contents of H5 (+ or -) prior to
execution.

-Instruction being executed, PQ SYMB LINK (the con-
tents of CIA).

-S, the designated symbol.
-(0), the symbol in HO prior to execution.

-The contents of cell (0), printed in appropriate
form (data term or PQ SYMB LINK).

-H3, the number of interpretation cycles since H3

was last reset. (H3 will include one count for each
line of trace that would have printed had full trace
been on.)

The format is as follows:

—<——Level CIA——H5 P Q SYMB LINK S (0) CONTENTS H3

The level and CIA are indented according to the level,
modulo the printing interval available. The symbols are
translated back into IPL representation (this is not pos-
sible on all machines). The Q of (0) is printed, indicat-
ing whether the symbol is internal or local.

TRACE MARKS

The trace mode is carried by a mark in Hl. This mark
encodes whether the trace mode is on or off, and also
whether a monitor point occurred. On selective trace, the
interpreter consults this mark each cycle (after INTERPRET
Q but before INTERPRET P) and if it reads on, prints the
trace information. This mark is governed by the occurrence
of Q = 3, and Q = 4, in the instructions of the program.
Both of these are treated as Q = 0 in determining the
designated symbol. The following rules describe their

function:

-210-

15.

-If a Q = 3 is encountered, set trace on.

-If the trace is on, it remains on as we advance along
a program list (always at the same level)--i.e., the
trace mark propagates down a list.

-When the program descends a level, the trace is al-
ways off, a priori--i.e., the trace mark does not
propagate down levels.

-If a Q = 4 is encountered, the trace mark is set to
equal the trace mark one level up--i.e., the trace
is propagated down a level by Q = 4.

-In ascending, Hl is restored and the trace mark of
the higher level again becomes operative.

These rules mean the following: putting Q = 3 in the
head of a program list will cause that list to be traced.
Putting Q = 4 in the head of a program list will cause that
list to be traced, if the program list calling upon it is
tracing. Hence, putting Q = 4 in the heads of all local
sublists of a routine, makes the routine a tracing unit:
all instructions of the routine will trace if Q = 3 in the
head of the routine; the whole routine will trace condi-
tionally if Q = 4 is put in the head; and none will trace
if Q # 3 or 4 in any instruction.

Where generators are involved, the superroutine and
subprocess are on the same level; the subprocess will trace
without being marked, provided the superroutine is trac-
ing. The generator is down one level from the superroutine;
hence, if marked with Q = 4, the generator will trace when
the superroutine is tracing.

The Q's can be written in the routines at the time of
coding by the programmer. Since Q = 3 and 4 are equivalent
to Q = 0, they can often be put in without adding space to
the system. If the head of a routine does not have Q = 0,
then an additional instruction, say with SYMB = JO, is
necessary. Since the routines that are traced are changed
often, it is desirable to specify the Q's at the beginning
of each run, without permanently marking the routines.

This can be done by means of three IPL processes:

-211-

15

.6

J147 MARK ROUTINE (0) TO TRACE. If Q =0, 3, or 4

J148

J149

in cell (0), changes Q to be 3. If not, pre-

serves (0), and places the instruction 03 JO
in cell (0).

MARK ROUTINE (0) TO PROPAGATE TRACE. 1Identical

to J14/, except uses Q = 4.
MARK ROUTINE (0) NOT TO TRACE. If Q = 3 or 4

in cell (0), puts Q = 0, unless SYMB is also
JO and P = 0, in which case J149 restores (0).
If Q # 3 or 4, does nothing.

=212~

16.

16.0 PRINT PROCESSES, J150 to J162

Two classes of printing processes are provided, those
for printing IPL units of data (symbols, lists, list struc-
tures, data terms) and those for composing and printing a
line of information. Each of the printing processes is

relative to:

-The unit that will print, given by the integer data
term named in the safe storage cell W20. (See § 13.2,
INPUT-OUTPUT UNIT CODE.)

-The column in which the leftmost character of the
format will print, given by the integer data term
named in the safe storage cell W21l. The columns
run from 1, at the far left of the page, to 120 at
the right.

-The line spacing that will occur between a line and
the previous printing, given by the integer data
term named in the safe storage cell W22. The spac-
ing code is the following:

0 If spacing is suppressed--i.e., print on the
same line;

I1f start printing on the next line;

1f skip one line before starting to print;
1f skip to next page, and start printing at
the top.

Not all the object machines have the full flexibility, so
the machine system write-ups should be consulted.

WM

16.1 PRINTING IPL UNITS OF DATA

J150 PRINT LIST STRUCTURE (0). The contents of all
the cells of the data Iist structure named (0)
are printed. Regional symbols are translated
to the form adddd; internals are printed as the
decimal integer corresponding to the address;
and local symbols are translated to the form
9dddd, where dddd are small integers. All data
terms are translated to their external form.
1f input (0) is a block control word or the
head of a structure on auxiliary, only the word
(0) itself is printed. Each list of the list
structure is printed in an uninterrupted vertical
column, so that neither LINK nor the NAME of any
list cell is ever printed. If the SYMB names a

-213-~

1

16.2

J151

J152

J153

-column: | 12345 | 67 | 89111 | 111 | 11112 | 2222 |22 | 22233333333

data term, then this data term is printed to
the right on the same line. If the NAME is a
local name (which can occur only in printing
the head of a sublist), its corresponding ad-
dress is printed to the left. The local name,
9dddd, bears no relation to this address. The
full format is shown below. (Column 1 cor-
responds to the column specified by the integer
data term named in W21.)

012 | 345 | 67890 | 1234 {56 | 78901234567

addr. NAME PQ | SYMB PQ DATA
of if SYMB names
NAME data term

if

local

The lists of the list structure are printed in
the order of J101.

PRINT LIST (0). The contents of all the cells

of the list named (0) are printed in an uninter-
rupted vertical column. The format is the same
as that of J150, except that local symbols are
not translated to form 9dddd; but instead, their
addresses are printed, and the Q = 2 identifies
them as locals. If input (0) is a block control
word or the head of a structure on auxiliary,
only the word (0) itself is printed.

PRINT SYMBOL (0). The symbol (0) is printed.

The format 1s the same as J150, where (0) is
placed at SYMB, and if it names a data term,

this is printed to the right. Locals are handled
as in J151.

PRINT DATA TERM (0) WITHOUT NAME OR TYPE. (0)
1s assumed to name a data term (if not, nothing
is printed and the designated spacing occurs).
The DATA part of the data term is printed in
its location in the format of J150, but neither
(0) nor the PQ of the data term is printed.

16.2 LINE PRINTING

In addition to the output unit, left margin, and line

spacing controls given previously, line printing is con-

trolled by:

-214-

16.2

-The current print line, named by the symbol in the

safe storage cell W24. Print lines are reserved

during loading (see § 18.3, TYPE = 3: BLOCK RESERVATION
CARDS), when the symbol naming the line and the size

of the line are specified. All print lines start with
column 1; the specified line size determines the right
margin of the line.

-The current column at which information will be
entered in the current print line, given by the
integer data term named in the safe storage cell W25.

Information can be entered either left-justified--1W25
specifying the position of the leftmost character of
the field being entered--or right-justified--1W25
specifying the position of the rightmost character of
the field. After an entry, 1W25 is set to the next
column following the rightmost character of the field
entered, and H5 is set + . If the entire field cannot
be entered because it would exceed the line size, no
information is entered, 1W25 is left unchanged, H5 is
set - , and HO no longer holds the input.
Symbols are entered in the print line compactly; i.e.,
as Al, B10, etc. (AO is entered as A). Data terms are

entered as follows:

Integers: Leading zeros are eliminated. Plus signs
are not entered, but minus signs are. Ex-
amples: '00273" entered as '273" (3 cols.);
"-01050" entered as '"-1050" (5 cols.).

Floating Point: The entire number is entered, signed
value followed by signed exponent. Only
minus signs are entered. Examples:
".505135x10°" entered as '505135 05" (9 cols.);
".14x10" 10" entered as "140000 -16" (10 cols.).

Alphanumeric: Trailing blanks--that is, blanks that
follow some non-blank character and are not
followed by some non-blank character--are
eliminated. Example: '" A F " entered as
" A F" (4 characters); " "' entered as

" " (5 characters).

All Other: The entire value of the data term is
entered as a ten-digit octal integer. Ex-

ample: '0000567234" entered as ''0000567234".
-215-

16.2

J154 CLEAR PRINT LINE. Print line 1W24 is cleared and
the current entry column, 1W25, is set equal
to the left margin, 1W21.

J155 PRINT LINE. Line 1W24 is printed, according to
spacing control 1W22. The print line is not
cleared.

J156 ENTER SYMBOL (0) LEFT-JUSTIFIED. Symbol (0)
1s entered in the current print line with its
leftmost character in print position 1W25, 1W25
is advanced to the next column after those in
which (0) is entered, and H5 is set + . If (0)
exceeds the remaining space, no entry is made
and H5 is set -

J157 ENTER DATA TERM (0) LEFT-JUSTIFIED. Data term
(0) 1s entered in the current print line with
its leftmost character in print position 1W25,
1w25 is advanced, and H5 is set + . If (0)
exceeds the remaining space, no entry is made
and H5 is set -

J158 ENTER SYMBOL (0) RIGHT-JUSTIFIED. Symbol (0)
1s entered as 1n J156, except that 1W25 names
the print position of the rightmost character
of the field. If entry is possible, 1W25 is
advanced and H5 is set + ; if not, H5 is set -

J159 ENTER DATA TERM (0) RIGHT-JUSTIFIED. Data term
(U) 1s entered as 1in J15/, except that 1W25
names the print position of the rightmost charac-
ter of the field. 1If entry is possible, 1W25 is
advanced and H5 is set + ; if not, H5 is set -

J160 TAB TO COLUMN (0). (0) is taken as the name
of an integer data term. Current entry column,
1w25, is set equal to 1W21 + (0).

J161 INCREMENT COLUMN BY (0). (0) is taken as the
name of an Integer data term. Current entry
column, 1W25, is set equal to 1W25 + (0).

J162 ENTER (0) ACCORDING TO FORMAT 1W43. The name
and contents of cell (U) are entered after
having been converted to an appropriate external
representation (e.g., octal), specified by the
data term in W43. 1W25 and H5 are treated as in
J156. J162 is intended primarily to provide
dumps of blocks when used with J103. (See machine
system write-ups for the various formats and
conversion schemes available.)

In addition to lines composed using these primitives,
complete headings and partial lines can be specified at
loading (see § 18.3, TYPE = 3: BLOCK RESERVATION CARDS).

-216-

17.0 BLOCK HANDLING PROCESSES, J171 to J179

In order to deal effectively with programs which
exceed the main storage capacity of the computer several
times over, it is necessary to have techniques for deal-
ing with blocks of main storage. A block control word is
a cell with P = 7 and Q = 7, whose SYMB specifies the
origin of a continuous block of memory cells, and whose
LINK specifies the number of cells in the block.

Since a region is represented in the computer by a
block of cells, there is a block control word for each of
the 36 possible regions definable by the IPL-V programmer.
We will refer to a block control word for a region as a

region control word hereafter. The 36 region control words

are a permanent part of the system; their names are only
obtainable via J175. They are used by the system to
translate the external representation of regional symbols
(e.g., R15) into computer addresses during loading, and
to translate regional cell names back into their external
regional representation during output. The programmer
may copy region control words, but should never modify
them; changing the contents of a region control word ef-
fectively redefines the region it controls.

The programmer may define and name blocks of space,
other than regions, with Type-3 cards; the symbol which
names the block is made the control word for the block
in this case.

A block of space, including a region, may be turned
into a list, which may be used by the loading processes
as an available space list. This ability to load into
specific blocks, coupled with fast processes to read and
write the contents of blocks on tape, allows overlay
techniques for problems too large to be performed econ-
omically in a single phase.

-217-

17

.0

17.0

J171

J172

J173

J174

J175

RETURN UNUSED REGIONAL CELLS TO H2. J171 scans
all region blocks for unused cells and returns
them to the end of H2. ''Unused'" means that the
regional symbol has not appeared in any NAME,
SYMB, or LINK field of the input deck and the
cell does not lie within a block reserved by

any Type-3 card. J171 modifies the region con-
trol word so that the highest symbol used be-
comes the last cell of the region after J171;
unused symbols higher than this symbol lose their
regional status; unused cells lower than this
symbol retain their regional status for the
input and output processes and for J175 and J201.

MAKE BLOCK (0) INTO A LIST. Input (0) is
assumed to be a block control word. Output (0)
names the head of the list and is the name of
the first cell of the block. The cells of the
block are linked in ascending order; their P,

Q, and SYMB are unchanged. (J172 provides a
way to turn a block into a list. The list may
then be added to H2 by J71, or used as special
available space for loading, by putting its name
in W34.)

READ NEXT BLOCK FROM TAPE 1Wl9 INTO BLOCK (0).
Sets H5+ 1if successful. 1If first word fails to
match the contents of (0), J173 traps on trap
attribute 'J173', with first word of block named
in HO. Sets H5-, gives message, and traps on
attribute 'HO' if (0) is not a block control
work; i.e., P and Q are not equal to 7.

WRITE BLOCK (0) ONTO TAPE 1Wl9. Sets H5+ if
successful. Same procedure as J173 if (0) is

not a block control word. The first word written
on tape is not the first word of the block, but
is the contents of the input block control word
(0). This is used by J173 to detect reading of
information into a block other than that from
which it was written.

FIND REGION CONTROL WORD OF REGIONAL SYMBOL (0).
If (0) 1is a regional symbol, H5 is set + , and
output (0) is the name of the block control word
for the region. H5 is set - and there is no
output if input (0) is not a regional symbol.

A symbol is a regional symbol to J175 if the

cell which it names lies within one of the blocks
defined by the 36 region control words.

-218-

J176

SPACE (0) BLOCKS ON UNIT 1Wl1l9. (0) is assumed

to be a signed integer data term. Tape 1W19

is spaced (0) blocks in the direction indicated
by the sign of (0). Plus indicates forward
spacing, minus specifies backspacing.

=210~

17.0

18.0

18.0 INITIAL LOADING

To use IPL, the computer must first be turned into
an IPL computer by loading the IPL interpretive system,
either from cards or tape. Then the IPL computer must
load the user's program into the total available space.
This requires a deck of cards (or external tape) contain-
ing the IPL words, as well as some special cards to
identify the program and to define the regional symbols
that are used in the program. These special cards are
called type cards, and they are identified by a non-zero
digit in the TYPE column (column 41). The cards that have
been described up till now have all been Type-0 cards
(TYPE may be left blank on Type-0 cards). The following
additional types are recognized.

18.1 TYPE = 1: COMMENT CARDS

All columns (except 41) are available for anything
the programmer wishes to write. Comment cards are listed
on the assembly listing, but have no other effect on the

loading process.

18.2 TYPE = 2: REGION CARDS

All the regional symbols with the same initial letter
constitute a region. Each region is represented in the
computer by a block of consecutive cells. For example,
the R-region might correspond to the block of cells 1000
to 1018: then RO would correspond to 1000, R1 to 1001,
and R18 to 1018. The size of each region must be specified
at loading time by a Type-2 card. One Type-2 card is
used for each region. The first symbol of the region--e.g.,
R or RO--is put in the NAME field, SYMB is left blank, and
the number of cells in the block is put in LINK. The
‘initial loader assigns the next available block of

-220-

18.2

contiguous cells to this region and records the origin
and size of the block in the region control word. Thus,
the origin of a region block is assigned arbitrarily.
There is normally no need to know the origin, since all
regional symbols are translated back into the letter-
number form for output. However, for some purposes it
may be desirable to specify the origin. This is done by
placing the absolute address of the origin in SYMB. The
origin can also be specified symbolically in terms of
another region, provided the other region is first defined.
(See machine system write-ups for further details.)

Examples: TYPE NAME PQ SYMB LINK
Ten symbols for the M

region MO to M9: 2 MO 1000 10
Starting the M region

at address 1000: 2 MO 1000 10
Making MO synonymous

with B37: 2 MO B37 10

There are 36 possible regions:
ABCDEFGHIJKLMNOPAQR
STUVWXYZ+-/=.,8%*)(

Three regions, H, J, and W, have already been permanently
specified for the basic system. Also, the $ region is

to be used for system routines unique to particular instal-
lations (see & 4.1, SYSTEM REGIONS). The first symbol of
all those regions which the programmer does not define
with Type-2 cards is automatically defined and reserved

by the initial loader when the first header card (TYPE = 5,
6, 7, or 8) is encountered. This allows the programmer to
use the line read primitives on English text without having
to define all 36 regions explicitly (see § 22.0, LINE

READ PROCESSES). All the regional symbols that are not
actually used during loading--i.e., do not occur as some
NAME, SYMB, or LINK on the coding sheet and have not been
read by J181 (Input Line Symbol) during processing--may be made

~-221-

718. :

18.

3

part of the available space for the IPL computer by ex-
ecuting J171. All regional symbols mentioned (in SYMB or
LINK) but not defined (in NAME) are used but empty. If

the exact limits of regions are specified, then the blocks
of cells corresponding to different regions may overlap

and need not be contiguous. If origins are assigned by

the IPL computer, the region blocks are adjacent and dis-
joint. The block control word for a region may be obtained

by J175.

TYPE = 3: BLOCK RESERVATION CARDS

It is necessary to create blocks of space for various
purposes, and sometimes desirable to set a number of
regional symbols to be empty without mentioning them.
Type-3 cards are used to accomplish this. As in Type-2
cards, SYMB indicates the base, if appropriate, and LINK
indicates the size of the block. The initial loader
creates a block control word in the cell mentioned in the
NAME field of all Type-3 cards. Q is used to indicate
the purpose of the block, according to the following

table:

Q = 0 RESERVE REGIONAL SYMBOLS. If SYMB is A5 and
LINK 1s 10, then A5 through Al4, inclusive,
are set empty, and will not be put back on
available space by J171. 1If NAME is B20, then
B20 is a block control word for the block A5-
Al4. The symbols reserved must have previously
been covered by a Type-2 card.

Q = 1 RESERVE PRINT LINE. NAME is the regional symbol
naming the line (i.e., the block control word).
LINK is the number of words to be set aside for
the print line. (These words are taken from
available storage, not from the region. See
machine system write-ups for details of how
many characters are stored per word in a
particular machine.) If P is not O or blank,
the immediately following record is a BCD
record to be loaded into the block starting
with column 1, into the first character posi-
tion, and continuing to the end of the block.

=222~

18.4

Q = 2 RESERVE BLOCK. The regional symbol appearing
in the NAME field is the name of the block,
(i.e., the block control word). LINK is an
integer specifying the number of cells in the
block. The size of any one block is limited
by the size of the machine. Blocks may over-
lap one or several other blocks, completely
or partially, including blocks of regional
cells or even blocks of code which make up
the IPL-V Loader, Interpreter, or Monitor, if
this is useful. Any number of blocks may be
reserved. In general, a block control word
should not lie within the block which it con-
trols.

Q = 3 RESERVE AUXILIARY ROUTINES BUFFER. This
reserves a block of size LINK (starting at SYMB,
if given). LINK is the number of cells, and
SYMB, if given, specifies the origin of the
block. NAME is optional. Only one such buffer
may be reserved. This buffer is used by all
the routines on auxiliary storage. 1Its size
limits the maximum size of a routine on
auxiliary (but see § 10.0 AUXILIARY STORAGE
PROCESSES) .

Q = 4 SPECIFY AVAILABLE SPACE. If this card is
absent from the loading deck, or if it is
present with LINK blank, all the available
space possible will be assigned to H2. This
includes all interstices between blocks, if
any, which would go at the end of available
space. LINK, when present, specifies the
number of cells that will be provided, in one
continuous block if possible. NAME, specifying
a block control word, is optional. If a large
enough block is not available, a message is
given, but the block control word is not
modified.

18.4 TYPE = 4: LISTING CARDS

Type-4 cards represent printed output from computers
which must output via cards and therefore require a way of
distinguishing printed output (J150's) from punched output
(J142). They are generated by the computer, and not by
the programmer. If input, they are listed on the assembly
listing, but have no other effect on loading.

-223-

18.5

18.5 TYPE =5, 6, 7, 8: HEADER CARDS

Data or routines are loaded in a series of separate
sets, each of which is preceded by a header card that

governs the loading process. The input set may be in omne
of several modes: IPL standard (one word per card); IPL
compressed; IPL binary; or one of the machine codes. It
may also come from one of several input units: tapes or
the card header. It is possible to specify an output
during initial loading, which serves the purpose of trans-
lating from one form, such as IPL standard, to another, such
as IPL binary, for subsequent use. An assembly listing is
usually produced during loading, to indicate the machine
location assigned to each IPL word in order to facilitate
debugging. This may be suppressed, if desired.

The set may contain either routines or data, and it
is necessary to specify which, as the P and Q codes are
treated differently. Also, the set may go into main storage

(TYPE = 5), may go to one of the auxiliary storages
(TYPE = 6 for fast, TYPE = 7 for slow), or may be skipped
(TYPE = 8). Structures going into main storage may be

loaded into cells from the standard available space list,
H2, or may be loaded into a specific block. Data list
structures are loaded to auxiliary in relocatable form;
auxiliary routines are assembled into the single auxiliary
routines buffer and written to secondary storage in non-
relocatable form.

Loading into a specific block of main storage 1is
accomplished by the use of the safe storage cell W34. W34
holds the name of the available space list used by the
loading processes (initial loading, J140 and J165) and
initially holds H2. To load into a specific block it
is necessary to make the cells of the block into a list
with J172 and put the name of this list into the safe
storage cell W34. Sets of data or routines preceded by

-224-

18.5

Type-5 cards with NAME = blank will then be loaded into
the cells of the block. The first cell of the block is
never loaded into since, like H2, it is the head of the
available space list. If the list 1W34 becomes exhausted,
H2 is placed in W34 without push down, an error message
is given, and loading continues from H2.

The loader will automatically set the name of the
desired available space list into W34 if it encounters
a Type-5 card with NAME = name of block. It preserves W34
and places the name of the first cell of the block into
W34; the associated set of routines or data is loaded and
W34 is restored when the next header card (TYPE = 5, 6,
7, or 8) is encountered. The block mentioned in the NAME
field must have been made into a list (J172) at some
previous time.

A Type-8 editing header inhibits the loading of its asso-

ciated set of routines or data, but allows the listing and
output options. It is intended for use on the controlling unit
to skip over unwanted sets on an alternate unit. (See
§ 18.7, CONTROLLING AND ALTERNATE INPUT UNITS.)

Finally, a Type-5 card is used to specify that load-
ing has finished, and to indicate where the program starts.

The codes for these various items of information are
given in the following table:

TYPE: Type of storage to be used:

Main storage

Fast-auxiliary storage
Slow-auxiliary storage

Inhibit loading--permits listing and
output options.

NAME: Name of storage block:

NAME = Blank, TYPE = 5: Load into the main
memory cells taken from the current
available space list, 1W34. 1W34 is
initially H2.

oo~V
o nn

-225-

NAME = Regional symbol, TYPE = 5: Name is
assumed to be a block control word whose
SYMB names a previously constructed avail-
able space list. Preserve and set W34
= SYMB, and load the set into the main
memory cells taken from the list named
SYMB, and restore W34 when the next header
is encountered.

NAME = Anything, TYPE = 6: (NAME is ignored.)
Load each data list structure to fast- or
slow-auxiliary in relocatable form. Load
routines to fast- or slow-auxiliary in
non-relocatable form, each routine origined
one cell beyond the end of the immediately
preceding routine. The first routine in
the set is origined at the first cell of
the auxiliary routines buffer. (See § 10.2,
AUXILIARY STORAGE FOR ROUTINES.)

nput Mode:

IPL standard (1 word per card)

IPL compressed

IPL binary

Machine code

Restart mode

} Machine dependent modes for various

1
0
1
2
3
4

object machines. See machine system
write-ups for details

~Novan

Type of Input:

0 = Routines. Internal symbols are considered
pure symbolics. Undefined internal symbols
(internal symbols not in the internal symbol
table) are assigned equivalents from available
space (0-9 are always defined and absolute).

1 = Data list structures. Internal symbols are
considered pure symbolics. Undefined
internal symbols are assigned equivalents
from available space.

2 = Routines. Internal symbols are considered
pure symbolics. The internal symbol table
is reset (thus undefining all internal
symbols) and undefined internal symbols are
assigned equivalents from available space.

3 = Data list structures. Internal symbols are
considered pure symbolics. The internal
symbol table is to be reset and undefined
internal symbols are to be assigned equiv-
alents from available space.

4 = Routines. Internal symbols are considered
machine addresses (and so no equivalent need
be assigned). Such internal symbols do not
start a new list structure.

-226-

18.6

18.7

18

5 = Data list structures. Internal symbols
are considered machine addresses and do not
start new list structures.

P or Q blank are interpreted as P or Q = 0.

SYMB: Input unit:

0 = "Normal" for installation; may be left
blank.

1-10 for external tapes (see § 18.7, CONTROLLING
AND ALTERNATE INPUT UNITS).

If SYMB of a Type-5 card contains a regional
symbol, this start card terminates loading
and the program begins at the routine named
in SYMB.

LINK: Output mode: of form bbbed
b = Output unit: blank = unit 1W1l9; 1-10 means
unit 1-10.

¢ = 0 or blank if assembly listing desired
= 1 or any other character, if assembly
listing to be suppressed.
d or blank if no output desired.

if output in IPL compressed.

if output in IPL binary.

if output in machine code.

if output in IPL standard.

Each set of IPL compressed or IPL binary output
ends with a blank record appropriate to
that mode (see § 18.7, CONTROLLING AND
ALTERNATE INPUT UNITS).

OWWN~=O

TYPE = 9: FIRST CARD

The very first card of each program to be loaded must
be a Type-9 card. The use of Type-9 cards allows several
programs to be stacked on an external tape for batch
execution. SYMB of the Type-9 card specifies the control-
ling unit for initial loading. 1If SYMB is blank or 0, the
standard input unit is the controlling unit.

CONTROLLING AND ALTERNATE INPUT UNITS

Generally all sets exist in sequence on a single
input unit. However, it is possible to have more complex
arrangements. In any case, there will be a single

-227-

.7

18.8

controlling input unit which contains the header cards of

all sets in order. (This unit is specified by SYMB of

the first Type-9 card.) If SYMB of a particular header
card is blank, then the associated set follows immediately
on the controlling unit. If SYMB of the header card refers
to an alternate input unit, then the set associated with

the header card is read from the alternate unit. The header
card on the controlling unit completely specifies the
input mode, type of input, destination in storage, output
mode and unit; header cards on the alternate unit are
ignored. Discrepancy between the header card on the con-
trolling unit and the actual information on the alternate
input unit causes a loading error. The set on the alter-
nate unit is terminated by a blank record or by a header
card, at which time the next header on the controlling
unit is read. Any non-Type-0 cards on the alternate unit
are printed like Type-1 cards.

18.8 ASSEMBLY LISTING

It is possible to obtain an assembly listing of the
program being loaded when specified by LINK of the Type-5,
6, 7, or 8 header card. This consists of a replica of
the cards being input alongside the machine locations they
correspond to with the assembled contents in decimal. The
assembly listing of Type-0 and Type-1 cards can be sup-
pressed for any set by a signal in the LINK of the header
card. Other Type cards are printed under all conditions.

18.9 LOADING DECK

The IPL deck for initial loading consists of the
following parts in order:
1. One Type-9 card.

2. All Type-2 cards with exact limits, if any, in
any order.

-228~

18.

3. All Type-3 cards with exact limits, if any, in

any order.
4. All Type-2 cards giving only region size, if any,
in any order.

5. All Type-3 cards giving only block size, if any,
in any order.

Only regions and blocks defined by these cards

(plus the H, J, W, and $§ regions) exist for the
IPL computer this run. The Type-2 and 3 cards

with exact limits must go first to insure that

their cells will be available.

6. Sets of data and routines, in any order.

Each set is preceded by an appropriate Type-5,
6, 7, or 8 card. For IPL standard and IPL com-
pressed cards, the end of the set is signaled by
the next Type-5, 6, 7, or 8 card. For binary
and machine modes, a special termination signal
is required in the last card (see machine system
write-ups for details).

The input unit named by SYMB of the Type-9 card

is the controlling unit for initial loading. If a
Type-5, 6, 7, or 8 card on the controlling unit
indicates in SYMB that a set is to come from an
alternate input unit, then after that set is loaded
from the alternate unit, the next header card is
picked up from the controlling unit.

7. The start card: A final Type-5 card on the con-
trolling unit with a regional symbol for SYMB to

start the program at SYMB.

Any violation of this order will result in an
on-line printed error message.

(It may be noted that the process of loading an IPL program
is a one-pass symbolic assembly, hence the need to declare
regions at the beginning.)

In loading Type-O cards, the IPL computer assigns
locations from available space to represent local symbols.
A list of local symbol definitions is kept. The list is
cleared whenever a regional or internal symbol is en-
countered in NAME (the start of a new list structure).

When internal symbols are treated as pure symbolics
rather than as absolute machine locations, they are like-
wise represented by locations assigned from available space

-229-

18.9

and thus redefined. A list of internal symbol definitions
is kept. This list is cleared upon the appropriate signal
from a header card (see Q of Type-5, 6, 7, 8 cards). The
programmer knows the correspondence of input symbols and
their redefinitions only by means of the assembly listing.
Any subsequent output of internal symbols will be in terms
of their redefinitions. (Internals O through 9 are always
defined and absolute, however.)

Regional cells may be defined more than once in the
loading sequence. The latest occurring definition is the

effective one. (This is often useful in making corrections.)

=230~

19.0 IN-PROCESS LOADING

More routines and data can be loaded during inter-

pretation of an IPL program. All options as to mode,

unit, etc., available during initial loading are present

during in-process loading. No new regions or blocks can

be specified during in-process loading. (Not all object

machines have full flexibility, so the machine system

write-ups should be consulted.)

J165

LOAD ROUTINES AND DATA. More routines and
data are read, with the input unit specified
by 1W18 as the controlling unit. The load
deck consists of header cards (Type-5, 6, 7,
or 8), each followed by a set of routines or
data (except when the headers specify a set
from an alternate input unit), and terminated
by a start card (a Type-5 card with a regional
SYMB). The routine named as SYMB on the start
card is taken as the next routine to be inter-
preted. If there are no routines or data,

or if there is no start card following the
sets, then interpretation continues with the
instruction following J165.

-231-~

19.0

20.0

20.0 SAVE FOR RESTART

A primitive process is provided that allows a run-
ning program to be terminated at any point, read out on
tape or cards, and restarted again by reading the tape or
cards back into the machine. This process may be initi-
ated externally at a monitor point (see § 15.0, MONITOR
SYSTEM) or may be put in the program at any point.

J166 SAVE ON UNIT (0) FOR RESTART. The entire con-
tents of maln and auxiliary storage are written
onto a single external tape (or punched on cards,
according to the unit named by data term (0)).
Identification of the auxiliary units and
external tapes being used by the IPL computer
are printed out. Then H5 is set + and the
program continues. If the specified auxiliary
units and external tapes are provided, and
the tape (deck) is loaded under control of a
Type-5 card with P = 4 (restart mode), sub-
sequent runs will commence at the instruction
following J166, with H5 set -

Since J166 sets H5+ and the restart process sets H5-,

the instruction following J166 can take different action
depending on whether this is the original run (H5+) or

a restart run (H5-). For example, if the external inter-
rupt cell, W14, named the routine X1, below, and the con-
sole signaled an external interrupt, then the run would
save for restart and terminate when the next monitor
point occurred. Restart runs, since H5 is set - , would
restore the original sign of H5 and resume execution at

the monitor point.

NAME SIGN PQ SYMB LINK COMMENTS
X1 40 H5 Save current sign of H5.
10 9-1
J166 Save for restart on unit 3,
70 J7 then terminate this run.
30 H5 0 Restore H5 on restart runs.
9-1 + 01 3 Integer 3.

J166 does not save external tapes. The programmer

saving for restart must provide routines to record the

-232-

20.0

position of external tapes before executing J166 and to
reposition those tapes when continuing after restart.
An additional primitive is provided for use in reposi-

tioning external tapes:

J167 SKIP LIST STRUCTURE. A single list structure
on cards or external tape (as specified by
1W18) in any of the admissible forms--IPL,
compressed, binary--(as specified by 1W16) is
skipped over, and H5 set + . A blank record
is treated as an end-of-list-structure mark.
Immediately subsequent blank records are ignored.
If there is no list structure (card hopper empty
or end-of-file), then H5 is set - . J167 be-
haves as does J140, except that the structure
is not entered into storage.

Save for restart is used to provide a fast-loading
version of checked-out routines, to which additional
routines to be debugged can be added by J165.

-233-

21.0

21.0 ERROR TRAP, J170

Many different error conditions can occur during
processing by the IPL computer--for example: available
space exhausted; specifying other than a data term as
operand for an arithmetic process; etc. These conditions
cause a system error trap to occur. The action taken
upon trapping depends on the routine currently
associated with the particular error condition. When
an error condition occurs, the following steps take

place:

-The safe storage cell W27 is preserved and the CIA
at the time of the trap is stored as 1W27. This

is the name of the instruction word designating the
trapped process, except for primitives executed as
links, when it is the name of the primitive.

-The safe storage cell W28 is preserved and the sym-
bol associated with the trapping condition, the
trap attribute, is stored as 1W28.

-The description list of W26 (that is, the list 1W26)
is searched (as by J10) for the trap attribute. If
the trap attribute exists as an attribute of W26,
its value names the routine to be executed as the
trapping action. That routine is executed. If no
value is associated with the trap attribute, the
routine associated with the attribute 'internal
zero' (the'symbol 0) is executed as the trapping
action. If no value is associated with 'internal
zero', no trapping action is taken.

The trapping action is executed as a subprocess of
the trapped process--that is, as though it were
designated directly in the trapped process. Because
HO, H5, and the W's are not disturbed by the error
trap mechanism, the trapping action can repeat the
trapped process under its own control, if desired.
If the trapping action is marked with Q = 4, it will
trace conditionally.

-When the trapping action terminates, W27 and W28 are
restored and interpretation continues with the pro-
cess following the trapped process.

=23~

21.0

The machine system write-ups should be consulted for
the normal error condition and trap actions. However, the
traps described below are standard for all machine systems.

TRAP ON AVAILABLE SPACE EXHAUSTED: 'H2'.

W32 holds the name of an integer data term which
specifies the number of cells to be removed from H2
before execution of the program begins. If available
space becomes exhausted during execution, these cells
are returned to H2 to enable trapping on the attribute
H2. The trap action routine to regain space must
be provided by the programmer, and may include eras-
ing data structures or routines (J72, J201), or
filing data on auxiliary space (J106 or J107). Upon
return from the trap, 1W32 cells are again removed
from H2 and the program continues. 1W32 initially
specifies ten cells, but may be changed by the pro-
grammer at any time. The change becomes effective
at the next monitor point, after the next H2 trap
has been executed, or whenever a start card is en-
countered by the loader.

TRAP ON INTERPRETATION CYCLE COUNT: 'H3'.

Traps when H3 (cycle count) is equal to W33. W33
is an integer data term that is compared to H3 each in-
terpretation cycle, after H3 has been incremented. When
H3 is equal to W33, the action associated with the
symbol H3 on 1W26 is executed and the program con-
tinues. W33 is initially zero, so no trapping will
occur until the programmer sets W33 to a non-zero
value.

The standard description list form of W26 allows any
trapping action to be modified or disabled by assigning
a different value to the trap attribute. Also, additional

trap attributes and associated actions can be added. A

primitive process is provided to take trapping action at

any point in the program.

J170 TRAP ON (0). J170 preserves W27 and W28, stores
the appropriate CIA in W27 and (0) in W28,
searches the description list of W26 for the
attribute (0), and executes as a subprocess of
the process designating J170 the routine named
by the associated value. If (0) is not an
attribute of W26, the routine associated with
'internal zero' is executed. If 'internal
zero' is not an attribute of W26, no trapping
action is taken. J170 then restores W27 and
W28 and terminates.

-235-

22.0

22.0 LINE READ PROCESSES, J180 to J189

The line read primitives provide a means of reading

a BCD card under control of an IPL-V program and trans-

lating selected fields into IPL symbols or data terms.
Control Cells:

-1W1l8 names the input unit for J180. 1W1l8 = 0 means
the normal input tape.

-1W24 names the current read line. (''Read lines"
and ''print lines' are identical and interchangeable.
Lines for either or both purposes are specified by
Type-3 cards with Q = 1.)

-1W25 is a decimal integer data term specifying the
left column of the current input field.

-1W30 is a positive decimal integer data term specify-
ing the size (number of columns) of the current
input field.

J180

J181

J182

READ LINE. The next record on unit 1W18 is

read to line 1W24. (The record is assumed to

be BCD, 80 cols.) Column 1 of the record is
read into column 1 of the read line, and so
forth. H5 is set + . If no record can be read
(end-of-file condition), the line is not changed
and H5 is set -

INPUT LINE SYMBOL. The IPL symbol in the field

starting in column 1W25, of size 1W30, in line
1W24, is input to HO and H5 is set + . The
symbol is regional if the first (leftmost) column
holds a regional character; otherwise, it is
absolute internal. All non-numerical characters
except in the first column are ignored. If the
field is entirely blank, or ignored, there is
no input to HO, and H5 is set - . 1In either
case, 1lW25 is incremented by the amount 1W30.
(J181 turns unused regional symbols into empty
but used symbols.)

INPUT LINE DATA TERM (0). The field specified

as 11 J1I81 1s taken as the value of a data term.
Input data term (0) is set to that value and
left as output (0). H5 is set + . The data
type of input (0) determines the data type of
the output. If the input (0) is a decimal or
octal integer, or BCD, the read line field is
interpreted as that type. Any other data type
is treated as BCD. In composing BCD data terms,

~236-

22.0

the field is left-justified and the full data
term completed with blanks on the right, if
necessary. If the specified field exceeds

five columns, the rightmost five columns are
taken as the field. In composing decimal and
octal integer data terms, non-numerical charac-
ters are ignored. If the resulting information
exceeds the capacity of the data term, the
rightmost digits are retained. If the read
line field is entirely blank (or non-numerical,
for integer data types), (0) is cleared (to
blanks for BCD; to zero for integer) and H5 is
set - . In either case, 1W25 is incremented
by the amount 1W30.

J183 SET (0) TO NEXT BLANK. (0) is taken as a decimal
Integer data term. Line 1W24 is scanned, left
to right, starting with column 1W25+1, for a
blank. One is added to (0) for each column
scanned, including that in which the scanned-
for character ('blank' in J183) is found. (0)
is left as output (0). H5 is set + if the
character is found in the line, and - if it
is not. (Thus, if input (0) = 1W25, after
scanning, output (0) will specify the column
holding the scanned-for character. If input
(0) = decimal integer 0, after scanning, out-
put (0) will be the size of a field beginning
in column 1W25 and delimited on the right by
the next occurrence of the scanned-for character.)

J184 SET (0) TO NEXT NON-BLANK. Same as J183, ex-
cept scans for any non-blank character.

J185 SET (1) TO NEXT OCCURRENCE OF CHARACTER (0).
Same as J183, except scans for character (0),
counting into decimal integer data term (1).
Input (1) is left as output (0). If input
(05 is a regional symbol, its region character
is the character scanned for, if input (0) is
internal, its last (low-order) digit is the
character scanned for.

J186 INPUT LINE CHARACTER. The character in column
IW25 of Tine 1IW24 1is input to HO, H5 is set + .
If the character is numerical, that internal
symbol is input; if the character is non-numeri-
cal, the zeroth symbol in the region designated
by that character is input; i.e., A — AO,
3 » 3. If the character is a blank, there is
no input and H5 is set - . 1In either case,
1w25 is not advanced.

-237-

22.0

J189 TRANSFER FIELD. The field in line 1W24, start-
ing i1n column 1W25, and of size 1W30, is
transferred to line (0), starting in column
1w21. H5 is set + . 1If the entire field can-
not be transferred (line (0) is too short), as
much is transferred as can be, and H5 is set
- . In either case, 1W25 is set to the last
column transferred plus one.

-238-

23.0 PARTIAL WORD PROCESSES, J190 to J197

These primitives allow manipulation and testing of
the P, Q, SYMB, or LINK of IPL words. The words are as-
sumed to be standard words, not data terms. The P, Q,
SYMB, or LINK is input to, or output from, the symbol
portion of HO, and may be treated as any other IPL symbol.

J190

J191

J192

J193

J194

J195

J196

J197

INPUT P OF CELL (0) TO HO. After J190, the
symbol in HO will be an absolute internal
symbol between zero and seven.

INPUT Q OF CELL (0) TO HO. After J191, the
symbol in HO will be an absolute internal
symbol between zero and seven.

INPUT SYMB OF CELL (0) TO HO. The symbol input
will be regional if covered by a region control
word; otherwise, it will be internal. That is,
the Q of the cell (0) is not used to determine

the type of symbol.
INPUT LINK OF CELL (0) TO HO. The symbol input

will be regional if covered by a region control
word; otherwise, it will be internal.

SET (1) TO BE THE P OF CELL (0). (1) is an

absolute internal symbol between zero and
seven.

SET (1) TO BE THE Q OF CELL (0). (1) is an

23.0

absolute internal symbol between zero and seven.

SET (1) TO BE THE SYMB OF CELL (0). Q of cell
(0) is unchanged.

SET (1) TO BE THE LINK OF CELL (0).

~230~

24.0

24.0 MISCELLANEOUS PROCESSES, J200 to J209

J200 LOCATE THE (0)th SYMBOL ON LIST (1). (0) is
an integer data term whose sign is ignored,
and whose value, n, specifies that the name of
the nth list cell of list (1) be output in HO,
with H5 set + . Output (0) names the last
cell if H5 is set - , indicating that less than
n symbols exist on list (1). (Note that private
termination cells are not list cells.)

J201 ERASE ROUTINE (0). Return the space to the
available space list, 1W34. (0) is assumed to
be a regional cell and is set empty rather
than being returned to available space. If
(0) contains Q = 6 or 7, it is assumed to be
an auxiliary routine and J201 does nothing.

For J201 all non-regional symbols appearing in the
SYMB of a routine are treated as sublists to be erased.
Thus, mentioning local or internal data terms, working
cells, or data lists in the routine will cause unpredict-
able erasure. A regional LINK is equivalent to LINK = O,
signaling the end of the sublist. If a routine is loaded
after J171 has been executed, an unused regional cell from
the middle of a regional block may be used in its con-
struction. Since J201 considers this cell to be regional
and hence the termination of a sublist, a portion of the
routine may not be returned to available space.

J202 PRINT POST MORTEM AND CONTINUE. (See § 15.4,
POST MORTEM, for complete definition of J202.)

240~

25.1

25.2

25.3

25.0 CHANGES AND EXTENSIONS

The modifications described in this section have
originated from users' experience with IPL-V in the two
years since publication of the first edition of the Manual.
Sections 25.1 through 25.3 describe changes to previously
defined features of the system; they are reported separ-
ately because in some cases they may impose minor modifi-
cations to previously checked out programs. The extensions
of IPL-V are described in Sections 25.4 through 25.8; they
impose no modifications to existing programs. The modifi-
cations are not described in full in this section, but are
simply listed with references to the appropriate sections
of the Manual.

SYSTEM CELL CHANGES (See § 4.2)

W14 External interrupt cell; holds name of routine
executed at return to Q = 3 point. (See § 15.3,
EXTERNAL INTERRUPT.)

W15 Post mortem routine cell; holds name of routine
executed atter the post mortem lists have been
printed. (See § 15.4, POST MORTEM.)

PRIMITIVE PROCESS CHANGES

J166 SAVE ON UNIT (0) FOR RESTART. The program does
not terminate when J166 1is executed. J166 sets
H5+, and restarting causes H5 to be set -
(See § 20.0, SAVE FOR RESTART.)

CHANGES IN LOADING CONVENTIONS

TYPE = 3: BLOCK RESERVATION CARDS (See § 18.3)
NAME is the regional symbol naming the line for Q = 1.

(The earlier edition of the Manual erroneously stated that
SYMB specified the name.)

241~

25.3

25.4

TYPE = 6 or 7: HEADER CARDS (See § 10.2)

When a single Type-6 or Type-7 header precedes several

routines, the entire set of routines is loaded into con-
secutive cells of the buffer and written to auxiliary as
a single unit when the next header is encountered. A set
of routines too large for the buffer overflows into main
memory, using cells from H2. The entire set of routines
is brought into main memory when any one of them is executed.
Mutual calls between routines in the same set do not
result in accesses to auxiliary.

TYPE = 9: FIRST CARD (See §§ 18.6, 18.7)

SYMB of the first Type-9 card specifies the control-

ling unit; comments on Type-9 cards are restricted to the
COMMENTS field of the coding form.

J171 RETURN UNUSED REGIONAL CELLS TO H2. (See &
17.0, BLOCK HANDLING PROCESSES.,)

Unused regional cells are not automatically returned

to available space at the end of initial loading; they
are returned only when J171 is executed.

25.4 EXTENSIONS TO LIST OF SYSTEM CELLS

The cells W30 through W43 have been assigned system

functions as described in § 4.2.

25.5 EXTENSIONS TO THE LIST OF BASIC PROCESSES

The following processes have been added; their full
descriptions are found in the indicated sections:
LIST PROCESSES (% 9.8)

*J103 Gen cells of block (1) for (0).

AUXILIARY STORAGE PROCESSES (8 10.1)
J109 Compact auxiliary data storage system (0).

PRINT PROCESSES (§ 16.2)
*J162 Enter (0) according to format W43.

-2L2-

25.6

BLOCK HANDLING PROCESSES (§ 17.0)
J171 Return unused regionals to H2.
J172 Make block (0) into a list.
*J173 Read into block (0).
*J174 Write block (0).
*J175 FIND region control word of regional symbol (0).
J176 Space (0) blocks on unit 1W19.

LINE READ PROCESSES (§ 22.0)
*J180 Read line.
*J181 Input line symbol.
*J182 Input line data term (0).
*#J183 Set (0) to next blank, leave (0).
*J184 Set (0) to next non- blank leave (0).
*#J185 Set (1) to next occurrence of character (0),
leave (0).
*J186 Input line character.
*J189 Transfer field to line (0).

PARTIAL WORD PROCESSES (§ 23.0)
J190 Input P of cell (0).
J191 Input Q of cell (0).
J192 Input SYMB of cell (0).
J193 Input LINK of cell (0).
J194 Set (1) to be P of cell (0).
J195 Set (1) to be Q of cell (0).
J196 Set (1) to be SYMB of cell (0).
J197 Set (1) to be LINK of cell (0).

MISCELLANEOUS PROCESSES (§ 24.0)
*J200 LOCATE (0)th symbol on list (1).
J201 ERASE routine (0).
J202 Print post mortem and continue.

25.6 EXTENSIONS TO THE LOADER

TYPE = 2: REGION CARDS (See §§ 18.2, 17.0)

A block control word for a region is created by a
Type-2 card, and this region control word is accessible by
J175. The loader defines the first symbol of those regions
the programmer did not define. The $ region is reserved
for system routines and data unique to local installationms.

TYPE = 3: BLOCK RESERVATION CARDS (See §§ 18.3, 17.0)
The loader creates a block control word in the cell

appearing in NAME of all Type-3 cards.

-243-

25

.7

25.7

25.8

TYPE = 5, 6, 7, 8: HEADER CARDS (See §% 18.5, 19.0
14.0, 17.0)

The loading processes load into the available space
list 1W34. Sets of data or routines going into main
storage may be loaded into cells from the standard avail-
able space list H2 (by NAME = blank, 1W34 = H2) or into
specific blocks of cells (by NAME = name of block).

A Type-8 editing header inhibits loading of its as-
sociated set of routines or data but allows output and
listing options; it is intended for skipping sets on an

alternate input unit.

INPUT MODE (See §§ 18.5, 20.0, 13.3)
Header cards with P = 3 indicate machine code; headers

with P = 4 indicate restart mode.

OUTPUT MODE (See §§ 18.5, 13.3)
The integer 3 indicates machine code output; the

integer 9 indicates output in IPL standard form.

EXTENSIONS TO THE MONITOR SYSTEM

The three externally imposed trace conditions may
also be imposed internally by setting the data term 1W3l
appropriately. (See § 15.5, TRACING.)

A post mortem may be printed at any point in the pro-
cessing by J202, without terminating the program. A
terminal post mortem is still given automatically. (See
§ 15.4, POST MORTEM.)

EXTENSIONS TO THE INTERPRETIVE SYSTEM

The interpretation cycle count in H3 is compared each
cycle to the number set by the programmer in cell W33.
Trapping on the attribute H3 occurs on equality. (See §
21.0, ERROR TRAP.)

When available space is exhausted, a number of cells
of reserved space is added to H2 and trapping on the at-

tribute H2 occurs. (See § 21.0, ERROR TRAP.)
=244~

LIST OF IPL-V BASIC PROCESSES

* Indicates processes which set HS5

General Processes (§ 5.0)
JO No operation

J1 Execute (0) after restoring HO
*J2 TEST (0) = (1)

*J3 Set H5-

*J4 Set H5+

*J5 Reverse sense of HS5

J6 Reverse (0) and (1)
J7 Halt, proceed on GO
J8 Restore HO

J9 ERASE cell (0)

Description Processes (% 6.0)
*J10 FIND value of attribute (0) of (1)

J11 Assign (1) as value of attribute (0) of (2)
J12 Add (1) at front of value list of attribute

(0) of (2)

J13 Add (1) at end of value list of attribute

(0) of (2)
J14 ERASE attribute (0) of (1)
J15 ERASE all attributes of (0)
*J16 FIND attribute of (0) randomly

Generator Housekeeping Processes (§ 7.1)

J17 Gen set up: context (0), subprocess (1)

*J18 Execute subprocess of Gen
*J19 Gen clean up

Working Storage Processes (§ 8.0)
J2n MOVE (0)-(n) into WO-Wn
J3n Restore WO-Wn
J4n Preserve WO-Wn

J5n Preserve WO-Wn; MOVE (0)-(n) into WO-Wn

List Processes ({ 9.8)
*J60 LOCATE next symbol after cell (0)
*J61 LOCATE last symbol on list (0)

*J62 LOCATE §0) on list (1) (lst occurrence)

J63 INSERT (0) before symbol in cell (1)
J64 INSERT (0) after symbol in cell (1)
J65 INSERT 0 at end of list (1)

J66 INSERT at end if not on list (1)

J67 Replace (1) by (0) on list (2) (lst occur.)

*J68 DELETE symbol in cell (0)

*J69 DELETE (0) from list (1) (1lst occurrence)

*J70 DELETE last symbol from list (0)
J71 ERASE list (0

J72 ERASE list structure (0)

J73 COPY list (0)

J74 COPY list structure (0)

J75 Divide list after location (0); name of

remainder is output (0)

*J76 INSERT list (0) after (1), locate last symbol

*J77 TEST if (0) is on list (1)

*J78 TEST if list (0) is not empty
*J79 TEST if cell (0) is not empty
*J8n FIND the nth symbol on list (0)

*J100 Gen symbols on list (1) for (0
*J101 Gen cells of list structure (1
*J102 Gen cells of tree (1) for (0)

*J103 Gen cells of block (1) for (0)

J9n Create list of n symbols, (n-1§ to (0)
for (0)

Auxiliary Storage Processes (§ 10.1)

0
0

J106 File list structure
J107 File list structure

*J105 MOVE list structure goi in from auxiliary

Arithmetic Processes (% 11.0)
J110 $1) + (2) - 0;, leave 0;
J111 (1) - (2) = (0), leave (0
J112 21) x (2) = (0), leave 0;
Ji13 (1) / (2

) = (0), leave (0
*J114 TEST if 20) = (1)
*J115 TEST if (0) > (1)
*J116 TEST if 50) < (1)
*J117 TEST if (0) = O
*J118 TEST 1if 50) >0
*J119 TEST if (0) <

J120 COPY (0)

J121 Set (0) identical to (1), leave (0)

J122 Take absolute value of (0), leave (0)

J123 Take negatlve of §0), leave (0)

J124 Clear (0), leave

J125 Tally 1 in 503, leave (0)

J126 Count list (0

*J127 TEST if data type (0) = data type (1)

J128 Translate (0) to be data type of (1),
leave (0)

J129 Produce random number between O and (0)

in fast-auxiliary
in slow-auxiliary
*J108 TEST if list structure (0) is on auxiliary
J109 Compact auxiliary data storage system (0)

pata Prefix Processes (§ 12.2)

*J130
*J131
*J132
*J133
*J134
J135
J136
J137
J138
J139

TEST if (0) is regional symbol
TEST if O; names data term

TEST if (0) is local symbol

TEST if list (0) has been marked processed
TEST if (0) is internal symbol

Make (0) local, leave (0)
Mark list (0) processed, leave (0)
Make (0) internal, leave (0)

Read and Write Processes ({ 14.0)

*J140
*J141
J142
J143
J144
J145
J146

Read list structure
Read symbol from console
Write list structure (0)
Rewind tape (0)

Skip to next tape file
Write end-of-file

Write end-of-set

Monitor System (% 15.6)

J147
J148
J149

Print
J150
J151
J152
J153
J154
J155

*J156

*J157

*J158

*J159
J160
J161

*J162
J163
J164

Mark routine (0) to propagate trace
Mark routine (0) to not trace

Processes (§ 16.1, 16.2)

Print list structure (0)

Print list (0)

Print symbol (0)

Print data term (0) w/o name or type
Clear print line

Print line

Enter symbol (0) left-justified
Enter data term (0) left-justified
Enter symbol (0) right-justified
Enter data term (0) right-justified
Tab to column (0)

Increment column by (0)

Enter (0) according to format W43

Mark routine 20; to trace

In-process Loading (§ 19.0)

J165

Load routines and data

Save for Restart (§ 20.0)

*J166
*J167
J168
J169

Error
J170

Block
J171
J172

*J173

*J174

*J175

J176
J177
J178
J179

Save on unit (0) for restart
Skip list structure

Trap (% 21.0)
Trap on (0)

Handling Processes (} 17.0)
Return unused regionals to H2
Make block (0) into a list
Read into block (0)
Write block (0)
EI?D region control word of regional symbol
0
Space (0) blocks on unit 1Wl9

Line Read Processes (§ 22.0)

*J180
*J181
*J182
*J183
*J184
*J185

*J186
J187
J188

*J189

J190
J191
J192
J193
J194
J195
J196
J197
J198
J199

Read line

Input line symbol

Input line data term (0)

Set (0) to next blank, leave (0)

Set (0) to next non-blank, leave (0)
Set (1) to next occurrence of character
(0), leave (0)

Input line character

Transfer field to line (0)

Input P of cell (0)
Input Q of cell (0)
Input SYMB of cell §0)
Input LINK of cell (0)

Set (1) to be P of cell 20)
Set (1) to be Q of cell (0)
Set (1) to be SYMB of cell EO)
Set (1) to be LINK of cell (0)

Partial Word Processes §§ 23.0)

Miscellaneous Processes (§ 24.0)

*J200
J201
J202

LOCATE (0)th symbol on list (1)
ERASE routine (0)
Print post mortem and continue

IPL DATA: PQ SYMB LINK
Q = 0 Standard list cell:

IPL INSTRUCTION: PQ SYMB LINK
P is operation code

P = 0 Execute S P is irrelevant
P = 1 Input S (after preserving HO; SYMB is symbol
g = g gutgut t% S (thfnsrestore HO LI?K is address of n§xt list cell
= estore (pop up 0 for end of list
P = 4 Preserve (push down) § Q = 1 Data term: 4PQ SYMB LINK
P =5 Replace (0) by S Decimal integer 1 dddd dddd
P =6 Copy (0) in S Floating point 11 ddddd d tee
P = 7 Branch to S if H5- Alphanumeric 21 aaaaa
Q és dgsignatiom code Octal 31 ddddd ddddd
Q= % S = symgol in cell named SYMB TYPE CARDS
= - i —_—
Q gamegyzY;; n cell named in cell 0 (blank) Routines and data
Q =3 S = SYMB; start selective trace % Commentg i
Q =4 S = SYMB; continue selective Region definition
trace NAME = Regional symbol
Q = 5 Machine language routine SYMB = Origin (if given)
Q = 6 Routine in fast-aux. storage 3 B%gg& :e§:§5ation
Q = 7 Routine in slow-aux. storage NAME = Block control word (if given)

SYMB is symbol operated on by Q

LINK is address of next instruction SYMB = Origin (if given)

LINK = Size

(0 for end of routine) Q = 0 Reserve regional symbols
SYSTEM STORACE CELLS Q = 1 Reserve print line
— Q = 2 Reserve block
HO Communication cell Q = 3 Reserve auxiliary buffer
H1 Current instruction address cell Q = 4 Specify available space

H2 Available space list 4 Listing cards
H3 Tally of interpretation cycles 5 Main storage header
H4 Current auxiliary routine cell 6 Fast-auxiliary storage header
H5 Test cell 7 Slow-auxiliary storage header
8 Editing header; inhibits loading

WO-W9 Common working storage

W10 Random number control cell
W1l Integer division remainder P = Input mode
W12 Monitor start cell (Q = 3) P = 0 IPL standard
W13 Monitor end cell (Q = 3) P = 1 IPL compressed
W14 External interrupt cell P = 2 IPL binary
W15 Post mortem routine cell P = 3 Machine code
W16 Input mode cell P = 4 Restart mode
W17 Output mode cell Q = Type of input
W18 Read unit cell Q = 0 Routines; internals
W19 Write unit cell symbolic
W20 Print unit cell Q = 1 Data; internals
W21 Print column cell symbolic
W22 Print spacing cell Q = 2 Routines; internals
W23 Post mortem list cell symbolic; reset inter-
W24 Print line cell nal ?ymbol table
W25 Print entry column cell Q = 3 Data; internals sym-
W26 Error trap cell bolic; reset internal
W27 Trap address cell symbol t?ble
W28 Trap symbol cell Q = 4 Routines; internals
W29 Monitor point address cell abso}ute
W30 Field length cell Q=5 Datai internals
W31 Trace mode cell absolute
W32 Reserved available space cell SYMB = 31terﬂ8te input Unii .
W33 Cycle count for trap cell 1 {Blgﬂk) = controlling unit
W34 Current available space cell - i Internal tapezi
W35 Slow-aux. obsolete structure cell Regional SYMB n:mes rss
W36 Used slow-auxiliary space cell i routined(germ n;te lggbigg)
W37 Slow-auxiliary storage density cell LINK g“EP“C mode: 1°f g{m by c
W38 Slow-auxiliary storage compacting Output unit: ank = unit
routine cell 1wW19; 1-10 = unit 1-10
W39 Fast-aux. obsolete structure cell c = 01 (blank) if assembly
W40 Used fast-auxiliary space cell listing .
W4l Fast-auxiliary storage density cell = 1 or any character if no
W42 Fast-auxiliary storage compacting assembly listing
routine cell d (blank) if no output
W43 Format cell IPL compressed output

-24,6-

NAME = Name of storage block

IPL binary output
Machine code output
IPL standard output

VWO

9 First card

SYMB = Controlling unit (0 or blank
= normal input unit)

INDEX

(Index references are to the section numbers of Part
Two, except where noted by the letter "p'", in which
case the reference is to a particular page. The Index

is for Part Two only.)

Alternate input units (see also: Input units) ... 18.7, 18.9, 19.0
Arithmetic processes, J110 to J129icceeevecccrcncnacans 11.0
Assembly listing tecesessessescesansasens ceesenasen 18.8, 18.5
Attributes ...eceeeececcscce ceeescssssssccscsssee 2.5, 2.3-2.7, 6.0
Auxiliary routines buffer ceeesesecaens ... 10.2, 18.3, 17.0
Auxiliary storagecceeecececess cesesccsssen ceseecens 10.0, 1.11
density ..ceceecececceccccccccccsosns cesscsasesesssesessess 10.1
processes, J105 to JL109ccciceeeceeenracssoonscascnnse 10.0
for data structuresc.ccco. cecececcccecne 10.1, 18.5, 9.8

for routinesccccececccrrcccscnsonns ceeene 10.2, 18.3, 18.5
loading into ceseens ceececccccsenosanas 18.5, 19.0, 18.3
Available spaceccccveetcnccccccncs Ceescsnsesesnns ceesons . 1.9
amount Oofcc0ecerrieietnienns tesessseasenesecsossnas .. 18.3
counting, J126 ceeeereccscsesascsssesnses ceesesesasns 11.0
for loading, 1W34ccc00veeeee teesesennanses 18.5, 19.0, 4.2
private blocks of e 17.0, 18.5, 19.0
reserved, 1W32 ceeesesssetscesconsens oo 4.2, 18.0, 15.1
returning regionals to, JI71cciveieencccccnnns 17.0, 24.0
trap when exhausted tececeeecceesesetasesassceseas s 21.0
Blocks ...veeeeene ceeseaseeseasens teessacsescessnsesccesesese s 17.0
control words forcc0.e Cecteceeccrsecaans 17.0, 18.2, 18.3
generator for, JI03iiiiririeeccrrccrstnsssscnnssasnns 9.8
loading into e eeeescecscctececsossaetsanns 18.5, 19.0, 4.2
processes for handlingcoveeeeeeeennennccennncsonnsns 17.0
regionscc0000 Ceesesrssussssantessnsstasnenenoeas 18.2, 17.0
reserving, Type-3 cardsiiieiieeieceecccoocesronsnns 18.3

Buffer for auxiliary routinescccccevveennnn. 10.2, 18.3, 17.0

Buffer loading of auxiliary routinesccceeeccencocannss 10.2
Cells
CIA, HL ... ereoseossnooancasnssscssasooannnssasnonse 3.13, 4.2
communication, HO ...eceeseveeccccccreocsscssosonscsocscs 3.7, 3.8
REAd v v veeeecoeooaosssosocssssssssssseacsssoscsssecsssocs 1.13, 2.1
A8t e eveecceoooosesanocscssossssososssscnsnssssas 1.13, 2.1, 2.2
TNAIMES .« o esovsosesoseesasssssesasessssssassssesssnsssssocnssssss 1.12
push dOWncceeeevecesosccessooaccnossoacscccocsns 1.14, 1.15
private terminationccccciiiiiiiieiieenn 9.5, 1.13, 9.4
safe teoesecesecscscesssesessessens ceesesecsanane ee.. 3.6, 4.2
StOYaZEe ..ooeeeccsns Weocecesseescececessssensssscreseace 1.14, 1.15
SYSEEIM .4oveeeraooonaracsosossosossascasesesassocacsocscnsocs 4.2
terminationcccececcrscocccccsssosscoscsosasosccsons 1.13, 9.5
test, H5 ceececescessecsscescssssesseccsosans 3.9, 4.2, 5.0
Changes eesecesseescscsesesesasesssnsns ceesesessnens 25.1-25.3
CIA cell, HILcccceecns Ceecescscssecsseesassasns . 3.13, 15.6, 4.2
Coding form ceseanns ceceseesen cecssesccecscsessesasecas . 1.6
example (blank) cessecanss cesees Ceeecesencnases . 1.6
example (showing data terms) ceesecseaces cerees ceasa 1.7
Comment cards, Type-1l Ceeeesccecsscnesscsecosnes 18.1, 18.8
Communication cell, HOcecececcecccnccsccnnccnce 3.7, 3.8, 4.2
Compacting, 1W38 cecesesecsesecses Cecescsesasesenacans 10.1
Computer, IPL ...cuueeecacaccaneessnnaseneoceecsscanncnasccnnnne 1.2
Contextc.cecceee conconse S R R 7.0
COPY cevecoces cesesene S R R R R eees 9.7
cell of any kind, J120 cecessnonse ceccacseseecnsens . 11.0
data term, J120cccecvccasacccccns cecesssssssas cecssen . 11.0
list, J73 tceeervecccccne teeeseccssescaseseenes oo .. 9.8, 10.1
list structure, J74 Ceeeeesceccecssessssenessans 9.8, 10.1
parts of words ceectssssscsccecanas ceeccecseesessanns . 23.0

Create

an available space listcceceeccccccccnccccceees 17.0, 18.5
a block tececessessessscessesseceses ve... 17.0, 18.2, 18.3
a block control word ceecnns ceeeseesnns 17.0, 18.2, 18.3
@ Cell (J90) cuvvvevencececosonsossosncnsansesccnncnacccses 9.8
a data term (J90, J124) ...iveeceecscoccccccnnncccces 9.8, 11.0
a 1iSt (J9N) tevvveceesaenccsssscsssncccsasocscsnccccnsonss 9.8
a regioncevececsvnecscrocccaons Ceeseeccessessssessesns 18.2
a symbol (J90)ccceveevecnocnccn teeeescsencnses eeecnesens 9.8
Current auxiliary routinececeeeecccaccccss ceeesee 10.1, 4.2
Current available space list, 1W34ccc0.nn 18.5, 4.2, 19.0
Current column, 1W25cceceeccccccs ceoesccsessans ... 16.2, 4.2
Current instruction address cell, Hl 3.13, 15.6, 4.2
Cycles, interpretation
count for trap cell, W33cccerenreccncecccconncs 21.0, 4.2
explanation Oofccceveeenreienrariciciatearonnens 3.12-3.16
Flow Chart OF ¢.veeeeecocescseecosososassssossasssscsssccscons 3.16
rules Of ...ccceveresvecoscnscoscccns teeeescsssessesessans 3.14
tally of, H3 c.iuvieecneceneoncncnoccnccccsocns 3.16, 21.0, 4.2
trap on count of ceessessnnen cecesessacns ceee. 21,0, 4.2
Data
in auxiliary storagecccceceeveccee ceesssnanacs 10.1, 18.5
header cards for loadingcceeveceecccccccccccnccccns 18.5
initial loading of R R R 18.5
in-process loading ofcceceeieieaareriirireaceccennn 19.0
read-write processes for eoecscenssoe P 14.0, 22.0
in routines cevsenesssnoeus teeeescasassessenns 3.5, 24.0
sets of ceessessasececesnane ceceos cecesesaseaseccs 18.5
Data list (see also: Data list StTUuCture) ..ocecsecsocs oo 2.1

-249-

Data list StrUCLUTE ..uiiieieeennneneseeneonosencecnoennes 2.0, 2.8
auxiliary storage forceeeveenenncnnecnnnns 10.1, 18.5
formation rules forieiieieneenneeneenennrennnonnenes 2.8
loading o0f ... iietiienineeeneenononcononnnns 18.5, 19.0, 14.0
obsoleteiivieiiiiiinicenrannennas cecesecassannn 10.1, 4.2
printing of Ceceecceesssesesssenserseneccanes 16.0
processes for manipulating, J60 to JI104vevveeennnn. . 9.0

COPY eoeveconcnss Ceeecescesssesesse o et s enecacensn e p. 186
€YESE .uiveecesrcorcccenens Cececseseesesessserencnsn e p. 186
generatec00.. e cecssseressesacctsnonnon s pp. 188, 189

Data prefix processes, J130 to J139o0cv... 12.0, 12.2, 23,0

DAta LeIMS « vt vt nuuneeenuonseseseeeaeeoennooeeenconononnnnes 1.5
example on coding formoveieniennenrenenneonnnnnnns 1.7
P, data type 0f ...iiuttiiineenneneeennneeennnnenns 1.7, 11.0
processes for, JI10 to J129iueeereneerennocsonncannns 11.0
Q, prefix of ceceetsacans ceceesescscscctscansnse 12.0
reading and printing ofiiivttrnnnnn 22.0, 16.1, 16.2

0o T R 9.4, 9.5

Density of auxiliary storage, W37ceeeeeeeceeeoeenes eees 10.1

Describable 1iSts ...vieeeeeneneeeeeeonsonnoaooeennns 2.3-2.7, 6.0

Description listtiiiieineneneeeeneecosennnnnnas 2.6, 2.3-2.7
processes for, J10 to J16 tecssecsscsesescens 6.0

Description processes, J10 to J16veeereneeneeecooncenenes 6.0

Designated symbol, Sviieieneneeeennnans ceceseesnasae .. 3.10

Designation operation, Qceeeeeeeecesoocesses ceerecens 3.10

Editing header, Type-8 Ceeteescesnennnss ceeseccanas 18.5

Enter into printline, J156 to J162 cecceeccacseeasnes 16.2

i o - X teecsessenssscssannenn 9.6
Block, J172 ittt teeeennenneseenssosesansanennonennes 17.0
cell, J9 G et e it e et eseesesee sttt ae et eesceasnnnons 5.0

«250-~

Erase (continued)
list, J71 .iiireeeeeeccsccasasscsonnccns ceeeececccsssseness 9.8
list structure, J72ceeeeeeooocccsancss teeeecesccsssses 9.8
unused regionals, J171cccveveeen tevsesesesesseessess 17.0
routine, J201ceeeeeeccceccneccncns tesecesssseeececess 24.0
Error trap, J170cce..e S N ¢
EXtensSionscceceeessvecesesscscsosscssascssoccncsse .. 25.4-25.8
External
INterrupt ..ceeeeeseccscccccccssecscssesnccasns 15.3, 15.1, 4.2
BAPES «ecvesossoovooeasasassssssssasesssncaccnsossss 13.1, 14.0
trace mode, W3lceeeeeecceccccccsocccsssoncoscnocns 15.1, 4.2
Filed 1iSt SEYUCEUTE «.evvvveeecncasosoasaosnonssansssasssses 10,1
FANd o veveveveoeoeossasasesessssssssassssssessssssasnsasansese 2.0
attribute randomly, J16ccccveceeeccnccccne ceceeessess 6.0
nth symbol, J8N ...ceeveereeerrsscccsconecccccsscscoccascns 9.8
region control word, JLI75ceeeceinneecincscccccocccns 17.0
value of attribute, J10coecceececccrocssccsconscoancs 6.0
First card, Type=9 ...ccececeeceencococococooncns 18.6, 18.7, 18.9
Generators
O0f BLOCK, JL03 +eveevrerncasocssoooassscsnnssasssessesse Po 189
conventions for constructing ctertesncarsaesnens eee 7.3
conventions for uSingccecececrccrrrcccccrtccsanns ceees 1.2
housekeeping processSesccececeeccccccscns ceseoans Y A §
of list, J100veeeveeccocanococsocccns teeeeseseeees P. 187
of list structure, JI0Llc.ccceececocnnens veeoee.. p. 188
of tree, J102cceeeeeeecesoseessosssnssnsonsscscces Po 189
General processes, JO to J9 checseenne cesesenn ceeees 5.0
HO, communication cellceveeevercccncccacccnes 3.7, 3.8, 4.2
Hl, CIA cellcvuceereecsoncaccacncccnncnsns ... 3.13, 15.6, 4.2
H2, available space list (see also: Available space) 1.9, 4.2

H2 LYAP «cevevrcosoccecoocconansccconnns Ceeeccccsesannsan 21.0, 4.2

=251~

H3, interpretation cycle tallyeeveeeeeesenn 3.16, 4.2, 21.0

2 1K B o - o S oo 21.0, 4.2
H5, test celliietiernneeeeneoncosneeceennnes ... 3.9, 4.2, 5.0
Header cards, Type=5, 6, 7, OF 8 +.veeeeeaseococonnoeocnnnnnn 18.5
Heads of lists cocecsssossas cecsecesecscnsasasterees 1.13
Initial loading ceesessssssanens cessesnans ceesesatanans 18.0
order of deck for cecrssesessecans ceesescas cesenes 18.9
In-process loadingceeeeeneeensne Ceeeecetsesesesssasasanann 19.0
Input
deck for loadingceeveeee. cs s s esssctcccscnnnn 18.9, 18.0
line symbols, data terms, and characters, J180 to J189 ... 22.0
partial words, J190 to J193tiinnnrrnnnnrenencnanns 23.0
a symbol, P=1 t e e eeecececceetces st sessstsenaonenn 3.11
Input mode0000eeeeenn C e e ececeesecesessssassetereonnn 13.3
cell, W16civvvveeeceecennnns ceesscessacane eeess 4.2, 14.0
on header cards ceeeen cecssesseseas ceesennsses . 18.5
Input=-output cecesessceccsanns Ceecscecressesetsesosennn ... 13.0
conventionsc.0... C e e ceeeecetesesetetes 0 eaoannons 13.0

processes for

block handling, J171 to J176co00vvuu.. cesessans 17.0
initial loading cecesseseesssceseracncne cecesensens 18.0
in-process loading, J165 ...viiirrnnreneronoensnnnnnns 19.0

line read cecesseseses cetesececessacssannans 22.0
print, J150 to Jl62 ceecnns ceecens cacressecnse . 16.0

read and write, J140 to J146 Ceceeeenens ceseeess 14.0

save for restart, J166 cecescesssasensescccsess 20,0
representation mode tececscsnsse ctecccoanaana .. 13.3
unit codeivevvinncncccens. ceeess cevecssnncaas cesees 13.2
Inputs of routinesciiiiiniennnnneeeneennnnnnns ee. 3.7, 3.8

=252~

Input unit (see also: Input-output)
Qlternateeeceececcccoscsocssossssssecsses 18.7, 18.9, 19.0
cell, WI8 ...veveeeeeccovecosaasosassssnssessss 4.2, 19.0, 22,0
code £Or ..cveeeeeecrscesesessesososcsesosscsscsscsosscnscnsas . 13,2
controllingeceeeeeveeeecsesssssss 18.7, 19.0, 18.6, 18.9
normalccc0000000 P £
TINSEYE v evvvveoeoceoeccoosscacaascsesssssssssssssscssosssssces 9.3
processes, J63 t0 J66cessesceccnssscnnrosscsccscesses 9.8
INSEYUCELIONS tvvevvveossseeoecosocescsssssssacsssassssss 3.2, 23.0
Intermediate storage (tapes)ceeeeeeessssssassassss 13.1, 17.0
Internal SYmbOLlSeeeevsesscscscnoococosoasescsoancasss 1.3, 2.2
definitions, table ofcccvevevececsccccss ceeveceessess 18.9
detecting, J130 to J139 P B 0
symbolic or absolute for loading 18.5, 18.9, 14.0, 22.0
writing, rules fOr ...cieveerececnencecrensnceansasasssssss 1.6
Interpretationcceeeeeeececccccccsns G I 1
cycles of (see: Cycles, interpretation)
explanation Ofceeecureesccnecesececncsnceseesss 3.12-3.16
flow chart ofcetiiiieieereceenanss P R X
rules of .. .cciieececccncnens PP I 1
Interpretive system, IPL-Vc.cveeeeeocenosncosocnsnsasass 1.2
Interrupt, external ceescesessscennons eeeeseos 15.3, 15.1, 4.2
IPL binary representationccc000.n ceeecesesseseaeen .. 13.5
IPL compressed representationceceeeeeecnecnceccsaess 13.4
Language, IPL ...c.veceesocsoensescnsosossosscnsossnsosasssans Lal
Levels
in data list StrUCtUTeS ..c.ccceceecccoscccccncsns ceeeeees 2,10
IN TOULINES +eveveeeeereesaossssaossocssssscssssscsnnsscees 3.4
Lines, print and read

naming and reserving000.0. Ceeseesecsseaessnnoeens 18.3

Lines, print and read (continued)
Printingccceeevececcscccccccsosocsnns ceeeseseserenans 16.2
readingccc0.. cesesee ceesessesseresscas s s reesannau e 22.0
loadingceceveeeecens ceeecesens Ceresessessesanass ceeeen 18.3
LINK
of block control WOrdseeeeeeeeeeesece... 17.0, 18.2, 18.3
of cells .v.iveeenvenencnncennns cusscsnscsascassessanssen eee. 1.8
Of coding £Ormovvevececooceocncessconcosssasaneasnass 1.6
of data lists P |
of header cardseeceeeeesceocsssssssnsssasssesnssens 18.5
Of INStrUCLIONS +vveeveossooasoesscensosasssecsssessees 3.2, 3.3
of program 1istsS ...ecceveecececoseccoscsscscscssnnass ceesvs 3.3
of Type-2 cards Cecescscscsescesnens ceeeeees.. 18.2, 17.0
of Type-3 cardsoccv.. ceecescscsesescsssssasss 18.3, 17.0
List cells cecesecssesessasecsesonen ceeeoe 1.13, 2.1, 2.2
List processes, J60 to J104ccoveeeeecenns ceseveesscessss 9.0
List structure, datacceeeeececosscocsssessesnssesosns 2.0, 2.8
auxiliary storage for ceceeseesssssessss 10.1, 18.5
formation rules £Orcceeeeceencoscascsossssnesesnsseses 2.8
loading ofc0cveecececnnn teeeesesesssase 18.5, 19.0, 14.0
ODSOLEEE tveveeeeeoesoocncososnsoasseasesenceccssssses 10.1, 4.2
printing of ceesesene cececcesesns ceeeecssecess 16.0
processes for manipulating, J60 to J104 9.0
COPY cevovsescsssnossnons cesecccsssscsssacns ceesesessss P. 186
ETBSE +ovevseonsoenseeonscnnesesscasssssscsassasseess Po 186
ZeNEYateeoecessesocsccccssasassessenssssss Pp. 188, 189
List structure, Othereceeeeeesscscoscessssssnssonssss 2.11
List structure, Toutineeeececeeesceceesoesssssssss 3.0, 3.4
erasing, J201ceeeceecccnrecccosctcsosscnscascossse cees 24.0
Listing, assembly teeeeeeccsccscssssssesssss. 18.8, 18.5
Listing cards, TYPE~=4 ..ceeeececosascssseancsesnaaesass 18.4, 18.8

=254~

Lists

data (see also: List structure, data) Ceeee e . 2.1
describablecci0000ennnn Ceceeesceeesecsceaasns 2.3-2.7, 6.0
description Ceeeeserectesesesesaanas 2.6, 2.3-2.7, 6.0
non-describableciiiiiiitir ettt ceaecanenas 2.3
program ceteceeansens ceetessessssetassasasranecsees e 3.3
push down ceseas tececnssoneseans Ceceseeceansaseneneas 1.15
Loader ceesessessans .o ceseesccereenens . 1.2, 18.0, 19.0
Loading cesesas ceecsecesenas ceceseseesenann 18.0, 19.0
from alternate units ceeeenn ceeesenaen ceteeens 18.7
to auxiliary storage cecetcsenasnnsessnnn s 10.0, 18.5
of data only, JL40civereieeennecnnes Ceecessseseensans 14.0
initial cesescessesaesanns crecsasesssseransaaca . 18.0
o:der of deck fOrciieieieeeceensnceccncasons cee.. 18.9
in-piccessiecennnn ceeressasssasscnancss seecesssccanans 19.0
into specific blocks et eseccensesenas ceeeeen .. 18.5
Local symbols ceceesnas Ceeeenae Ceeceseceascatssses e ronen 1.3
in data list structures et ereesessseenanas ees 2.8
definitions, table ofccceeeenen eeesecccscseses 18.9
detecting, J130 to J139 caescsssssssasasss cheeeeen 12.0
domain of definition e eeesees et ccccsanenens 2.9
writing, rules forciiiiiiiiiiiiiiiiiiiiiiieiiiatanann 1.6
LoCate ...iveevoscroncncnens cesecnsene ceesees Chececesecaneaas 9.2
processes, J60 to J62, J200ccevtvenrnnncennnnns 9.8, 24.0
Main storage (see also: Available space) ceeea ... 1.2, 1.11
Marking
to not trace, J149 cesecssennans Ceseeescesescsenaans 15.6
processed, J137 ceeens ceesessseseseasnsne ceeaes 12,2
to propagate trace, J148 Cecesececacasenannn ceeess 15.6
to trace, Jl47 ..iuiviereeesescssoscoasassscosssssssscosssasnse 15.6

Memory (see: Storage)

Monitor point, Q = 3 ...cietierercccncansons ceseeseesssanseen 15.1
Monitor system, J147 to J149 Gt s eesccccasesseseeaaanns 15.0
Move
definitionccecieeeeeeesesesrssenescssecesncsososcacanns 5.0
from HO to working storage, J2n and J5ncevevvennevese 8.0
structure in from auxiliary, J105 ceesessescsnanes 10.1
NAME ...veceeessecacennsocnnannnnnns ees.s 1,12, 2,2, 1.6, 3.4, 2.1
Of DLOCKS tvvveveeeneeassooceocevensonnsannsas 18.3, 18.5, 17.0
of coding formcc0c0eeenns et eceeseseesseccacers s 1.6
of data list structures Chesesesereceenessseeseanans 2.8
Of data 1iStS ... ivineeesvenencncsenesocscesscsnsoanosnnsns 2.1
of header cardscveeeveevoccesesceccnoennsnsnnns 18.5, 17.0
of list cellsccvvvnen Ceecsseseesesesesees s eennnnnn 2.2
of regionscc00eititciicttannnn ceeeserteresearssssess 18.2
of routinesviuieiiiiiiiiiiiiiiiiiiiiiiiiiiieienenn 3.4
Of Type=2 cardseeeeeesssncocsnscosassssnsssssss 18.2, 17.0
of Type-3 cards e e esececeecsesscessr s 18.3, 17.C
Non-describable listsc....n. ceeeene ceeseseseessseaens 2.3
Obsolete data structures Ceeescesesenasnnn 10.1, 4.2
Operation code, Pcceeeececoncesacacseoccosoacconss 3.11, 23.0
Output (see also: Enter; Store; Create)
during loadingccceeveeeceonccncanns Cescsecctansasnns 18.5
from HO to newly created list, J9n00.. cesesesases 9.8
from HO to working cells, J2ncceeececncsnconncnns veees 8.0
of generator to subprocess Cetereseetecenns ees 7.3
of generator to superroutine cesessaseseasesenen 7.2, 7.3
Partial Wordscicitcrcrtceccrtccrsestsocsasasstaosons 23.0
of routinescccviiiiiitiiititttrettrtanrireeennns 3.7, 3.8
a symbol, P = 2i.iiieeiteeeracocsosseencsssssosasansas 3.11

Output modeeeevesvsocecccocens ceseans Cecsesseeseesensaas . 13.3
cell, W17iiviureeececcocnccnnnns Ceecececeseecssess 4.2, 14,0
on header cardscccoeeveevevecscscssossscssossssansss 18.5
Output unit (see also: Input-output)
cell for printing, W20 ceeeceesesss 16,0, 18.5, 4.2
cell for writing, W19cceveeeceeens ceeesess 14.0, 18.5, 4.2
code for tecesecesnescens cesessesesenserssencaness ees. 13.2
for save for restart cecsssessssnsassesssesesasns 20.0
P, data type codecceevevenn cececreesesanstacasenonse 1.7, 11.0
P, operation codecice0euene cesccscsssecsssscsnse 3.11, 23.0
POP UP tvevuceccennoncasnses . ceeeceene 1.15, 8.0, 9.0
Post mortem, J202ccceeees Cececsecescssseerseansoas 24,0, 15.4
Prefix, P
in auxiliary data structure heads, P =1cccveveunen.. 12,2
in block control words, P=7ceeeeeeeese.. 17.0, 18.2, 18.3
in data list cells, P=0 ...cc00vus ceeeeeees 12,0, 12.2, p. 246
in data terms, P=0, 1, 2, 3 tessenee 1.7, 11.0, p. 246
in instructions, P = 0-7 ceeses cesseseas 3.11, 3.15, p. 246
as process mark, P=1 ceeesenns ceereeeescaeesess 12,2
in region control words, P =7c0ceuveecnnne veeses. 17.0, 18.2
Prefix, Q
in auxiliary data structure heads, Q = 6, 7 10.1, p. 246
in auxiliary routine heads, Q =6, 7c..... 3.16, p. 246
in block control words, Q = 7 ...eeeesccess ee.. 17.0, 18.2, 18.3
in data terms, Q = 1, 5 ..veeievecccnesansssesaasss 12.0, p. 246
in instructions
as designator operation, Q = 0, 1, 2 3.10, 3.16, p. 246
as primitive designator, Q =5ivinn.nn 3.16, p. 246
as trace mark, Q = 3, 4 3.16, 15.1, 15.6, p. 246
of internal symbols, Q = 4u.ivievrencesscacnessesnees Do 246
of local symbols, Q = 2 ...t eereensnccccansonncns ceeees P. 246
of regional symbols, Q =0 teececsecesnesseneeess P. 246

Preservecececectccccocssocscccesosacccccccecs 1.15, 8.0, 9.0
Primitive processSesccececececccsss 1.2, 3.1, 13.3, 18.3, 18.5
Print lines cteccesrscsesrscceneson e 16.0, 16.2, 18.3, 22.0
Print processes, J150 to J162ccececeecceconcccenancans 16.0
Private termination cells cecesecsneoee 9.5, 1.13, 9.4
Processes
arithmetic, J110 to J129ciceeececccaccenn ceeeiescans 11.0
auxiliary storage, J105 to J109 cecsesesscsansenns 10.1
basic system of cseseesessesscesesecssesntaennn 4.0
block handlingcceeeeereresecescsscnscasoscsoscsnoons 17.0
data prefix, JI130 to JI39iveveeerncoscocesocannnnns 12.0
description, J10 to JL16eceveeeeececoncscoceaccaoancnns 6.0
error trap, J170cieiiiierrinerettrecscecsasccoancnnns 21.0
general, JO to J9ccciereerncccrnccscccsscesscscsononns 5.0
generator housekeeping, J17 to J19civeeeereconveconenn 7.0
in-process loading, J165ccvitveerececcececencacnnnss 19.0
line read, J180 to J189cveveveneens cesersseaes ceees 22.0
list, J60 to J104ieieeeeeeeeeoaooaceceosooasessoosnss 9.8
miscellaneous, J200 to J209ccveeceeccenocreconcocenns 24.0
monitor system, J147 to J149ciiterrecrcacanns cevens 15.0
partial word, J190 to J199cccieeeeeecccccnnnnns eeees 23.0
print, J150 to J1620iiitieereneeocccroccccoasconnocnnse 16.0
read and write, J140 to J146iieveerennnconeeennnnns 14.0
save for restart, J166 to J167 Cecsesiseseerenas 20.0
working storage, J20 to J59 ...ieiiitrerrireconccnnccesocccnns 8.0
Program 1isStsciieeeeereeesoeessocsoceconsonnocanans 3.3, 3.4
Programsceeeeesecesseeseasasssesascsosesocnssonennncees 3.4
Program, rules forieeeeeeeeeceeoceocaoescssosasasonns 3.4
Push down ...iiiiieeeeeererneecscecaosenneoonsoneens 1.15, 8.0, 9.0
D o 1.15
Cellsttt ittt i ettt et cteaeannns 1.14, 1.15

Q, dAtA ...evevnverceeeocacessscsssnssccessssssesssssss 12,0, 23.0
Q, data prefix processes, J130 to JI39ccvieeeiennnnn 12.0
Q, of Type-3 and header cardsccec00veeveeeees.. 18.3, 18.5
Q, routinesceeeseccccocssccccns cecenesaens ceeeee.. 3.10, 23.0
Read and write processes, J140 to J146 e ceeeeee 14.0
RECUrSiONS ..veesesessososcsoencoccnoocnns et eseeseeseaseaanns 12.1
Region cards, Type-2 ceecesesesessaeeseson e .. 18.2, 17.0
Region control wordc.0.. Gt heeececsesasesesone 17.0, 18.2
Regional symbols
creatingceeeeeescscccoscanennns ceeens Ceceanan .. 17.0, 18.2
definitions, table ofciitiiteieennsn ceeesesss 17.0, 18.2
detecting ...ceeeeveseesscacossesssnnsssssassnsnosss 12,2, 17.0
writing, rules forc0.... ceseene cesesesnen 1.3, 1.6
Reserved available space Cececssensenasens 4.2, 18.0, 15.1
Restart ceceesesenans ccecsessesessnsesessesessessosenens 20.0
Restorecccocee ceeereccesanans teoeesessssessessss 115, 8.0, 9.0
Routines ceeeense ceeecececensens Ceeecseenseceacnaes 3.0, 3.4
auxiliary storage forc.... R ¢ I
data inc.viecererssicstctnctcnerosocaannnan ceeesss 3.5, 24,0
erasingceoeeecseccrceccccens teeeeccecsssancsaassssses 24.0
inputs and outputs of ittt et . 3.7, 3.8
rules forcc000eene. cestesessescarsarecsssses ceeeees 3.4
S, designated symbolc0c0ue.n ceececssecssssesssase 3.10
Safe cells cesesesseseans Cesesececsesssensenanenn 3.6
list of N Gt e eeeseaesesesseseaneannens 4.2
Save for restart, J166 to J167 cecceccssccessesscessnns 20.0
Set of input routines or data et eseseceseasnseanes 18.5
Set full word, J121iceeeeeeeeenereconcnccnsnosnnns cesens 11.0
Set partial word, J194 to JI197 ...t iieeeeeiannnancannsnes 23.0

-259-

Skip

block on unit IW19, J176vieeereeseecononnsnseonnnnnss 17.
list structure, J167ciceeececcccccnces ceeetsenenennn 20.
set during loading, Type-8 card cesenses cecesenes 18.

to
Start

Superroutine @ O & 6 ¢ 0 0 5 0 5 P ¢ O O S S O S O S N O OO 00 00 e e 0 s 0 o ® & & & 0 0 0 0 7'0, 15.
Subprocesscccctc0ccccane T A 0 O
Snapshotsc0000u ceesesesesesesssse st nanns ceessss 15.2, 15.

next file, J144 ceeeeens et s es e s e aeeseseneeeceans 14,
card Cececsccecencene ceeeeesees ceereaneone 18.9, 18.

= Ut O L1 O U O O

Storage

auxiliary cessesess . 1.11

for data list StrUCEUYeSceeeeooccoccns 10.1, 18.5, 9.8
densitycec0eeenccnnns cesecscsessasesanas ceesesesss 10.1
for routines ceteescsecsessessses. 10,2, 18.3, 18.5

intermediate (tapes) ceeesesesscascarenaaaann 13.1, 17.0

main (see also: Available space)cccevvueenn. 1.2, 1.11

working, WO to WOievivveevecesoccccsnanneseaaas 8.0, 4.2

Storage cellsccocvvveene cececene cececcessenenns .. 1.14, 1.15

SYMB
of
of
of
of
of
of
of
of
of

block control wordsccc000c000eeee... 17.0, 18.2, 18.3
cellscveevececee cececesessesssecsccssess l.4, 1.8, 1.14
coding formcoeceverevsecososeesosscnncssaccsassvnsas 1.6
data list headsciveeveeccnceccnans ceceeaesns 2.3-2.7
header cardsccevevreenceecnoseccessacssanssases 18.5
Instructionsccccieiievescerocenccsccsctsscnsanssna 3.2
Type-2 cardsceceeeeeessoccscssssssnasasessss 18.2, 17.0
Type~3 cards cesees teessessesesesessecssssesss 18.3, 17.0
Type-9 ca8rdsccveeevecccoscesacscacecsssssnss 18.6, 18.7

Symbols (see also: Internal; Local; Regional)00... 1.3

teminaticn ® 0 0 0 0 0 & 0 0 O 0 O 0 S S S 0000 OO 0P ee0> 1.13’ 2.1’ 2.2

-260-

System
CELLSE o v v voevvoseesnaessnsesanasnsasnssssssanssssneasnsses 4.2
IPL-V, components Ofc.cvuiierererecneraneccoccoccccnns 1.2
interpreterc.ceccccerrseccccctanrraceosenn 3.12-3.16
1OAAET « v vevveevesascessansseacssasssssssesseass 18.0, 19.0
MONILOY +vveeecsossoscoscccsscasssssnoccoccsns P
primitive processes, list of J R T2
YEZIOMS .ivteesevesoseosossosossnssssacassossescossos 4.1, 18.2

Tally of interpretation cycles, H3 (see also:
Cycles, interpretation)ceceeveeoeccacnes 3.16, 21.0, 4.2

Tapes, eXternalcceeceeecceccenccocscesccsaccnns 13.1, 14.0
Terminate program
after n interpretation cycles, W33 teeeeeeeessssss 21.0
because of internal errorscceeececcccccs e e... 15.4
for restart, J166cccccvccccccccccscccnnn ... 20.0, 15.3
NOTMAlly ...eveeoerocoacsosssocanosnoocsasscsccccnnns cee.. 3.14
via external interrupt, 1IWl4cccciveccceccncncans .. 15.3
Termination
CELLS o vvvvveseeoesensasesssossanessasssessasss 113, 9.5, 9.4
of data 1iStS ...ecevevsccoccoccsanas et casceseeeeee 2,1, 2.2
of each set during loadingccc00cnee cesseees .co.. 18.9
of each structure during loading teeereenneessesssss 14.0
of loading e e sseesececessascsessrensesnsancse ceeo. 18.9
of processing (see: Terminate program)
OF TOULITES v vvevevensesssessssesensssessssnsasonsas 3.3, 3.4
symbols ceeecenenn cesesscersssssssscsscss . 1.13, 2.1, 2.2
Test, definition ofccvecvenennansn tesesesenesensss 9.0
Test cell, H5 e ceeecesrenasens ceceens eeos. 3.9, 3.11, 5.0
Trace I I cheeennen 15.0
external mode of, 1IW3lcc.. e eeen 15.1, 15.5, 4.2

of generators, subprocesses, superroutines 15.6

~-261-

Trace (continued)
internal mode of ettt ecetesseeseean . 15.1, 15.5, 15.6
format of ceeesan I .
mark carried in Hlcicitiiiieenrnsensnnsnns P N
primitives, J147 to J149ccieeeeceneens cecessessesss 15,6
Trap, €XYOYr ...eeeesescocans ceeseseserecessesescenns cecsecnn 21.0
arbitrary trap conditions, J170cceeeveerrscaccanens 21.0
cells involved
W26 to W29 ...iiiiivnnsnceonnonnnnanns ceeteesesssasteanas 4.2
W32, W33 ...ittiiieennnnnns cececcesssecseess ceeeeeennes 4.2
standard trap conditions
available space exhaustedccv0vevceerseceeeseses 21.0
interpretation cycle countcoc0vevreccocccessces 21.0
Tree (JL102) ..ivevrireenenesososasosocosansnsnnnns et sesna ceeses 9.8
Type cardsceoeeeeccccsss cececessccsacsancons cereseesss 18.0
order of in input deckcccivtieriecrecencencnnnnns 18.9
Type-1l: comment cards P £ T
Typé-Z: region cards000..0 ceeereseenann 18.2, 17.0
Type-3: block reservation cards ceeesens 18.3, 17.0
Type-4: 1listing cardseeeveeeseesscocsscssnncaeseos 18.4
Type-5, 6, 7, 8: header cardscceeeeerecsncscccns . 18.5
Type-9: first cardcieeeveennnccancns ceescens 18.6, 18.7
Unit
code Ceecseceeseccesncecsesssenescsesessesesss 13.2, 18.5
input (see: Input unit)
output (see: Output unit)
Values of attributes ceeeseceesnnann 2.5, 2.3-2.7, 6.0
Words
IPL standardceceeencecocsssccs cessanes ceesesescees 1.4
IPL specialccieeeeeesceseseessoseasassnssnsssssnssas 1.5
block controlcieeveeecnnnse ceeense ceeseeasan ceeeans 17.0

Working storage processes, J20 to J59i0evevenneeasees 8.0
-262-

LIST OF IPL-V BASIC PROCESSES

* Indicates processes which set H5

General Processes (! 5.0)
JOo No operation
J1 Execute (0) after restoring HO
*J2 TEST (0) = (1)
*J3 Set H5-
*J4 Set H5+
*J5 Reverse sense of H5
J6 Reverse (0) and (1)
J7 Halt, proceed on GO
J8 Restore HO
J9 ERASE cell (0)

Description Processes (¥ 6.0)
*J10 FIND value of attribute (0) of (1)
J11 Assign (1) as value of attribute (0) of (2)
J12 Add (1) at front of value list of attribute
(0) of (2)
J13 Add (1) at end of value list of attribute
(0) of (2)
J14 ERASE attribute (0) of (1)
J15 ERASE all attributes of (0)
*J16 FIND attribute of (0) randomly

Generator Housekeeping Processes (¥ 7.1)

J17 Gen set up: context (0), subprocess (1)
*J18 Execute subprocess of Gen

*J19 Gen clean up

Working Storage Processes (§ 8.0)
J2n MOVE (0)-(n) into WO-Wn

J3n Restore WO-Wn

J4n Preserve WO-Wn

JS5n Preserve WO-Wn; MOVE (0)-(n) into WO-Wn

List Processes (§ 9.8)
*J60 LOCATE next symbol after cell (0)

*J61 LOCATE last symbol on list (0)

*J62 LOCATE 50) on list (1) (1lst occurrence)
J63 INSERT (0) before symbol in cell (1)

J64 INSERT (0) after symbol in cell (1)

J65 INSERT (0) at end of list (1)

J66 INSERT (0) at end if not on list (1)

J67 Replace (1) by (0) on list (2) (lst occur.)
*3J68 DELETE sgmbol in cell (0)

*J69 DELETE (0) from list (1) (1st occurrence)
*J70 DELETE last symbol from list (0)

J71 ERASE list (O

J72 ERASE list structure (0)

J73 COPY list (0)

J74 COPY list structure (0)

J75 Divide list after location (0); name of

remainder is output (0)

*J76 INSERT list (0) after (1), locate last symbol
*J77 TEST if (0) is on 1list (1)

*J78 TEST if list $O) is not empty

*J79 TEST if cell (0) is not empty

*J8n FIND the nth symbol on list (0)

J9n Create list of n symbols, (n-1) to (0)
*J100 Gen symbols on list (1) for (0)

*J101 Gen cells of list structure (1) for (0)
*J102 Gen cells of tree (1) for (0)

*Jigz Gen cells of block (1) for (0)

J

Auxiliary Storage Processes (§ 10.1)

*J105 MOVE list structure (0) in from auxiliary
J106 File list structure 0; in fast-auxiliary
J107 File list structure (0) in slow-auxiliary

*J108 TEST if list structure (0) is on auxiliary
J109 Compact auxiliary data storage system (0)

Arithmetic Processes (§ 11.0)
J110 §1; + (2 *'50;, leave (0
J111 1) - (2) =~ , leave (0
J112 (1) x (2) = (0), leave (0
J113 (1) / (2) = (0), leave (0)

*J114 TEST if -

*J115 TEST if (0) >

*J116 TEST if 50) <

*J117 TEST if -

*J118 TEST if (0) >

*J119 TEST if (0) <
J120 cCoPY (0)
J121 Set (0) identical to (1), leave (0)
J122 Take absolute value of (0), leave (0)
J123 Take negative of SO), leave (0)

J124 Clear (0), leave (0)
J125 Tally 1 in 50), leave (0)
J126 Count list (0)

*J127 TEST if data type (0) = data type (1)

J128 Translate (0) to be data type of (1),
leave (0)
J129 Produce random number between O and (0)

-263-

pata Prefix Processes (! 12.2)

*J130 TEST if (0) is regional symbol
*J131 TEST if $0) names data term

*J132 TEST if (0) is local symbol

%J133 TEST if list (0) has been marked processed
*J134 TEST if (0) is internal symbol
J135

J136 Make (0) local, leave (0)

J137 Mark list (0) processed, leave (0)
J13g Make (0) internal, leave (0)

J13

Read and Write Processes (¢ 14.0)
*J140 Read list structure

*J141 Read symbol from console
J142 Write list structure (0)
J143 Rewind tape (0)

J144 Skip to next tape file
J145 Write end-of-file

J146 Write end-of-set

Monitor System (% 15.6)
J147 Mark routine (0) to trace
J148 Mark routine (0) to propagate trace
J149 Mark routine (0) to not trace

Print Processes (§ 16.1, 16.2)

J150 Print list structure (0)

J151 Print list (0)

J152 Print symbol (0)

J153 Print data term (0) w/o name or type
J154 Clear print line

J155 Print line
*J156 Enter symbol (0) left-justified
*J157 Enter data term (0) left-justified
*J158 Enter symbol (0) right-justified
*J159 Enter data term (0) right-justified
J160 Tab to columm (0)

J161 Increment columm by (0)

*J162 Enter (0) according to format W43
J163

J164

In-process Loading (§ 19.0)
J165 Load routines and data

Save for Restart (§ 20.0)

*J166 Save on unit (0) for restart
*J167 Skip list structure

J168

J169

Error Trap (§ 21.0)
J170 Trap on (0)

Block Handling Processes (% 17.0)

J171 Return unused regionals to H2

J172 Make block (0) into a list
*J173 Read into block (0)
*J174 Write block (0)
*J175 FIND region control word of regional symbol

(0)
J176 Space (0) blocks on unit 1W19
J177
J178
J179

Line Read Processes (§ 22.0)

*J180 Read line

*J181 Input line symbol

%3182 Input line data term (0)

*J183 Set (0) to next blank, leave (0)

*J184 Set (0) to next non-blank, leave (0)

*J185 Set (1) to next occurrence of character
(0), leave (0)

*J186 Input line character

J187

J188

*J189 Transfer field to line (0)

Partial Word Processes (§ 23.0)

J190 Input P of cell

J191 Input Q of cell

J192 Input SYMB of cell (0)

J193 Input LINK of cell (0)

J194 Set (1) to be P of cell (0)
J195 Set (1) to be Q of cell (0)
J196 Set (1) to be SYMB of cell 20)
J197 Set (1) to be LINK of cell (0)
J198

J199

Miscellaneous Processes (§ 24.0)

%3200 LOCATE (0)th symbol on list (1)
J201 ERASE routine (0)

J202 Print post mortem and continue

IPL INSTRUCTION: PQ SYMB LINK

P is operation code
Execute S
Input S (after preserving HO)
Output to S (then restore HO)
Restore (pop up) S
Preserve (push down) S
Replace (Og by S
Copy (0) in S
Branch to S if H5-
signation code
S = SYMB
S = symbol in cell named SYMB

o]

]
NV P DO NN WN O

d

named SYMB
- S = SYMB; continue selective
trace
Machine language routine
Routine in fast-aux. storage
Routine in slow-aux. storage
SYMB is symbol operated on by Q
LINK is address of next instruction

(0 for end of routine)

OO OO Lo YUY
]

SYSTEM STORAGE CELLS

HO Communication cell

Hl Current instruction address cell
H2 Available space list

H3 Tally of interpretation cycles
H4 Current auxiliary routine cell
H5 Test cell

WO-W9 Common working storage

W10 Random number control cell

W1l Integer division remainder

W12 Monitor start cell (Q = 3)

W13 Monitor end cell (Q = 3)

W14 External interrupt cell

W15 Post mortem routine cell

W16 Input mode cell

W17 Output mode cell

W18 Read unit cell

W19 Write unit cell

W20 Print unit cell

W21 Print column cell

W22 Print spacing cell

W23 Post mortem list cell

W24 Print line cell

W25 Print entry column cell

W26 Error trap cell

W27 Trap address cell

W28 Trap symbol cell

W29 Monitor point address cell

W30 Field length cell

W31l Trace mode cell

W32 Reserved available space cell

W33 Cycle count for trap cell

W34 Current available space cell

W35 Slow-aux. obsolete structure cell

W36 Used slow-auxiliary space cell

W37 Slow-auxiliary storage density cell

W38 Slow-auxiliary storage compacting
routine cell

W39 Fast-aux. obsolete structure cell

W40 Used fast-auxiliary space cell

W4l Fast-auxiliary storage density cell

W42 Fast-auxiliary storage compacting
routine cell

W43 Format cell

S = symbol in cell named in cell

S = SYMB; start selective trace

-264-

IPL DATA: PQ SYMB LINK

Q = 0 Standard list cell:
P is irrelevant
SYMB is symbol
LINK is address of next list cell

(0 for end of list)

Q = 1 Data term: 1PQ SYMB LINK
Decimal integer 1 dddd dddd
Floating point 11 ddddd d tee

Alphanumeric 21 aaaaa
Octal 31 ddddd ddddd
TYPE CARDS

0 (blank) Routines and data
1 Comments
2 Region definition

NAME = Regional symbol

SYMB = Origin (if given)

LINK = Size
3 Block reservation

NAME = Block control word (if given)

SYMB = Origin (if given)

LINK = Size

Q= Reserve regional symbols
- Reserve print line
- Reserve block
- Reserve auxiliary buffer
Specify available space
Listing cards
Main storage header
Fast-auxiliary storage header
Slow-auxiliary storage header
Editing header; inhibits loading
NAME = Name of storage block
P = Input mode

P = 0 IPL standard

JoVaVoVeo
HPONHO

O~ OV

P = 1 1IPL compressed

P = 2 IPL binary

P = 3 Machine code

P = 4 Restart mode

Q = Type of input

Q = 0 Routines; internals
symbolic

Q = 1 Data; internals
symbolic

Q = 2 Routines; internals
symbolic; reset inter-
nal symbol table

Q = 3 Data; internals sym-

bolic; reset internal
symbol table
Q = 4 Routines; internals
absolute
Q = 5 Data; internals
absolute
SYMB = Alternate input unit
0 (blank) = controlling unit
1-10 = Internal tapes
Regional SYMB names first
routine (terminate loading)
LINK = Output mode: of form bbbcd
b = OQutput unit: blank = unit
1wl9; 1-10 = unit 1-10
c =0 (blank) if assembly
listing
1 or any character if no
assembly listing
(blank) if no output
IPL compressed output
IPL binary output
Machine code output
IPL standard output

VW =O

9 First card
SYMB = Controlling unit (0 or blank
= normal input unit)

LIST OF IPL-V BASIC PROCESSES

* Indicates processes which set HS

General Processes (§ 5.0)
No operation
J1 Execute (0) after restoring HO
*J2 TEST (0) = (1)
*J3 Set HS5-
*J4 Set H5+
*J5 Reverse sense of H5
J6 Reverse (0) and (1)
J7 Halt, proceed on GO
J8 Restore HO
J9 ERASE cell (0)

Description Processes (§ 6.0)
*J10 FIND value of attribute (0) of (1)
J11 Assi%n (1) as value of attribute (0) of (2)

J12 Add (1) at front of value list of attribute
(0) of (2)

J13 Add (1) at end of value list of attribute
(0) of (2)

J14 ERASE attribute (0) of (1)
J15 ERASE all attributes of (0)
*J16 FIND attribute of (0) randomly

Generator Housekeeping Processes (§ 7.1)

J17 Gen set up: context (0), subprocess (1)
*J18 Execute subprocess of Gen

*J19 Gen clean up

Working Storage Processes (§ 8.0)
J2n MOVE (0)-(n) into WO-Wn

J3n Restore WO-Wn

Jén Preserve WO-Wn

JSn Preserve WO-Wn; MOVE (0)-(n) into WO-Wn

List Processes (§ 9.8)

*J60 LOCATE next symbol after cell (0)

*J61 LOCATE last symbol on list (0)

*J62 LOCATE gO) on list (1) (lst occurrence)
Jé3 INSERT before symbol in cell (1)

J64 INSERT (0) after symbol in cell (1)

J65 INSERT (0) at end of list (1)

J66 INSERT (0) at end if not on list (1)

J67 Replace (1) by (0) on list (2) (1lst occur.)
*J68 DELETE symbol in cell (0)

*J69 DELETE (0) from list (1) (1lst occurrence)
*J70 DELETE last symbol from list (0)

J71 ERASE list (O

J72 ERASE list structure (0)

J73 COPY list (0)

J74 COPY list structure (0)

J75 Divide list after location (0); name of

remainder is output (0)

*J76 INSERT list (0) after (1), locate last symbol
*J77 TEST if (0) is on list (1)
*J78 TEST if list §0) is not empty
*J79 TEST if cell (0) is not empty
*J8n FIND the nth symbol on list (0)

J9n Create list of n symbols, (n- 1) to (0)
*J100 Gen symbols on list (1) for (0)

*J101 Gen cells of list structure (1) for (0)
*J102 Gen cells of tree (1) for (0)

*Jigz Gen cells of block (1) for (0)

J

Auxiliary Storage Processes (% 10.1)

*J105 MOVE list structure (0) in from auxiliary
J106 File list structure Og in fast-auxiliary
J107 File list structure (0) in slow-auxiliary

*J108 TEST if list structure (0) is on auxiliary
J109 Compact auxiliary data storage system (0)

Arithmetic Processes (% 11.0)
J110 51) + (2) --go , leave (0
J111 1) - (2) = (0), leave (0

J112 21) 2; - (0), leave (0
J113 1) / (2) = (0), leave (0)

*J114 0) = (1)

*J115 TEST 1f 0) 1

*J116 TEST if 50)

*J117 TEST if

*J118 TEST if éO)

*J119 TEST if
J120 COPY (0)

J121 Set (0) identical to (1), leave (0)
J122 Take absolute value of (0), leave (0)
J123 Take negative of 20), leave (0)

J124 Clear (0), leave (0)-

J125 Tally 1 in EO), leave (0)

J126 Count list (0)

*J127 TEST if data type (0) = data type (1)
J128 Translate (0) to be data type of (1),

leave (0)
J129 Produce random number between 0 and (0)

—
s

=]

~—r
AVIEIAY

[}

-265-

Data Prefix Processes (§ 12.2)
*J130 TEST if (0) is regional symbol
*J131 TEST 1f 0) names data term
*J132 TEST 0) is local symbol

*J133 TEST if 1list (0) has been marked processed
*J134 TEST if (0) is internal symbol
J135

J136 Make (0) local, leave (0)

J137 Mark list (0) processed leave (0)
J138 Make (0) internal, leave (0)

J139

Read and Write Processes (§ 14.0)
*J140 Read list structure

*J141 Read symbol from console
J142 Write list structure (0)
J143 Rewind tape (0)

J144 Skip to next tape file
J145 Write end-of-file

J146 Write end-of-set

Monitor System (% 15.6)
J147 Mark routine (0) to trace
J148 Mark routine 0; to propagate trace
J149 Mark routine (0) to not trace

Print Processes (§ 16.1, 16.2)

J150 Print list structure (0)

J151 Print 1list (0)

J152 Print symbol (0)

J153 Print data term (0) w/o name or type
J154 Clear print line

J155 Print line

*J156 Enter symbol (0) left-justified
*J157 Enter data term (0) left-justified
*J158 Enter symbol (0) right-justified
*J159 Enter data term (0) right-justified
J160 Tab to columm (0)

J161 Increment column by (0)

*J162 Enter (0) according to format W43
J163

J164

In-process Loading (% 19.0)
J165 Load routines and data

Save for Restart (% 20.0)

*J166 Save on unit (0) for restart
*J167 Skip list structure

J168

J169

Error Trap (% 21.0)
J170 Trap on (0)

Block Handling Processes (% 17.0)

J171 Return unused regionals to H2

J172 Make block (0) into a list

*J173 Read into block (0)

*J174 Write block (0)

*J175 FIND region control word of regiona- symbol

(0)
J176 Space (0) blocks on unit 1W19
J177
J178
J179

Line Read Processes ({ 22.0)
*J180 Read line
*J181 Input line symbol
%J182 Input line data term (0)
*J183 Set (0) to next blank, leave (0)
*J184 Set (0) to next non-blank leave (0)
*J185 Set (1) to next occurrence of character
(0), leave (0)
*J186 Input line character
J187
J188
*J189 Transfer field to line (0)

Partial Word Processes (§ 23.0)
J190 Input P of cell (0)

J191 1Input Q of cell (0)

J192 Input SYMB of cell EO)
J193 Input LINK of cell (0)

J194 Set (1) to be P of cell (0)
J195 Set (1) to be Q of cell (0)
J196 Set (1) to be SYMB of cell EO)
J197 Set (1) to be LINK of cell (0)
J198

J199

Miscellaneous Processes (§ 24.0)

*J200 LOCATE (0)th symbol on list (1)
J201 ERASE routine (0)
J202 Print post mortem and continue

IPL INSTRUCTION: PQ SYMB LINK
P is operation code

IPL DATA: PQ SYMB LINK
Q = 0 Standard list cell:

P = 0 Execute S P is irrelevant
P =1 Input S (after preserving HO) SYMB is symbol
g = % gutgut t% S (thfnsrestore HO) LINK is address of next list cell
= estore (pop up 0 for end of list
P = 4 Preserve (push down) S Q=1 Daéa term: iPQ) SYMB LINK
P =5 Replace (0) by S Decimal integer 1 dddd dddd
P=6 Copy (0) in S Floating point 11 ddddd d tee
P = 7 Branch to S if H5- Alphanumeric 2] aaaaa
Q és dgsignation code Octal 31 ddddd ddddd
8 - % g = sym:o} in ceii nameg EYMB 1 TYPE CARDS
namegnggB ncell named Tn ce 0 (blank) Routines and data
Q =3 S = SYMB; start selective trace 1 Comments
Q =4 S = SYMB; continue selective 2 Region definition
trace NAME = Regional symbol
Q = 5 Machine language routine SYMB = Origin (if given)
Q = 6 Routine in fast-aux. storage 3 B%ggg ;esézsation
Q = 7 Routine in slow-aux. storage NAME = Block control word (if given)

SYMB is symbol operated on by Q

LINK is address of next instruction SYMB = Origin (if given)

LINK = Size
(0 for end of routine) q = 2 Recorve re%i°“ii symbols
Q= Reserve print ne

SYSTEM STORAGE CELLS Q = 2 Reserve block
HO Communication cell Q = 3 Reserve auxiliary buffer
H1l Current instruction address cell Q = 4 Specify available space
H2 Available space list 4 Listing cards
H3 Tally of interpretation cycles 5 Main storage header
H4 Current auxiliary routine cell 6 Fast-auxiliary storage header
H5 Test cell g Slow-auxiliary storage header
WO-W9 Common working storage Editing header; inhibits loading
W10 Random number cgntrol gell NAME = Name of storage block
W1l Integer division remainder P = Input mode
W12 Monitor start cell (Q = 3) P = 0 IPL standard
W13 Monitor end cell (Q = 3) P =1 IPL compressed
W14 External interrupt cell P = 2 1IPL binary
W15 Post mortem routine cell P = 3 Machine code
W16 Input mode cell P = 4 Restart mode
W17 Output mode cell Q = Type of input
W18 Read unit cell Q = 0 Routines; internals
W19 Write unit cell symbolic
W20 Print unit cell Q = 1 Data; internals
W21 Print column cell symbolic
W22 Print spacing cell Q = 2 Routines; internals
W23 Post mortem list cell symbolic; reset inter-
W24 Print line cell nal symbol table
W25 Print entry column cell Q = 3 Data; internals sym-
W26 Error trap cell bolic; reset internal
W27 Trap address cell symbol table
W28 Trap symbol cell Q = 4 Routines; internals
W29 Monitor point address cell absolute
W30 Field length cell Q = 5 Data; internals
W31 Trace mode cell absolute
W32 Reserved available space cell SYMB = Alternate input unit
W33 Cycle count for trap cell 0 (blank) = controlling unit
W34 Current available space cell 1-10 = Internal tapes
W35 Slow-aux. obsolete structure cell Regional SYMB names first
W36 Used slow-auxiliary space cell routine (Eerminate loading)
W37 Slow-auxiliary storage density cell LINK = Output mode: of form bbbed
W38 Slow-auxiliary storage compacting b = Qutput unit: blank = unit

routine cell 1W19; 1-10 = unit 1-10
W39 Fast-aux. obsolete structure cell ¢ =0 (blank) if assembly
W40 Used fast-auxiliary space cell listing
W4l Fast-auxiliary storage density cell =1 or any character if no
W42 Fast-auxiliary storage compacting assembly listing

routine cell d = 0 (blank) if no output
W43 Format cell 1 IPL compressed output

-266-

2 IPL binary output
3 Machine code output
9 IPL standard output

9 First card

SYMB = Controlling unit (0 or blank
= normal input unit)

IPL-Y CODING SHEET

Problem No. Progrommer Date _ Poge _ of _____
COMMENTS El | NaME (GlPo| svme LINK | | COMMENTS LD

(9995 11050730572835228431711887008{aa 8¢ d4e80330ag7 a8t iasavessTInizetals

) X) . N . 1 1 !

. X 1 1)

. . \ . . . 11] !

\ 11 ! !

N N A L N N | 1 1

2 1 2 L 1 2 | i I

) s N s s " i | |

. N . . . , L 1 L

L) s N L N 1 | | .

. . . . X A !]

.]

I 1 1 L 4 1 1 A~

. A A . . . 1

1 s s 1 1 N |

. , N A : . |

. R 1 .

1 | | | [}] | a

. . X A A . 1

1 1 1 1 1 1 | .

: N . A . N ,]

. \ A . s A L N

. i

, 1

1 N 1 N L L I

X . . X o . il I 1

678901 2345678901 2345678901 23456789012 4567 89012348567 890 1234567890 123495678290

	00000
	00001
	00002
	00003
	00004
	00005
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	133
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267

