Prime Computer, Inc.

DOC10001-1PA

Software Release
Document

Rev. 19.4

Software Release
Document

Revision 19.4

George W. Gove

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.4 (Rev, 19.4).

Prime Computer, Inc.
Prime Park |
Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and my be used or copied only in accordance with the terms of such
license.

Copyright © 1985 by
Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

FRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, MIDASPLUS, Electronic Design
Management System, EIMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PST 100, PW200, Bw150, 50 Series, 2250, 2550, 2650, 2750,
9950, 9955, PRIME MEDUSA, PRIME/SNA, THE PROGRAMMER'S COMPANION, and
PRISAM are trademarks of Prime Computer, Inc.

ii

PRINTING HISTORY —— Software Release Document

Edition Date Number Software Release
First Edition April 1985 DOC10001-1PA Rev 19.4

QUSTOMER SUPFORT CENTER

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Obtain an order form, a catalog, and a price list from one of the
following:

Inside U.S. Outside U.S.
Software Distribution Contact your local Prime
Prime Computer, Inc. subsidiary or distributor,

74 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053

iii

ABQUT THIS BOOK

1 INTRODUCTION

In This Chapter

Overview of Rev. 19.4
New Features for the User
New Features for the Operator
Changes for the System

Administrator

Installing Rev, 19.4

New Book Titles
PRIMOS and Utilities
Lanquages
Data Management
Communications

2 EXECUTABLE PROGRAM FORMATS

New Features and Changes

EXECUTABLE PROGRAM FORMATS
(EPFs)

A Brief Overview Of EPFs

A Brief Overview Of The
Enhanced Command Envirciment

EPFs - The New Program Format

What Is An EPF?

EPF Types

Program EPFs

Library EPFs

When To Use EPFs

How To Build An EPF

What BIND Does

Using BIND

How Do I Run an EPF?

Programming With EPFs

The Enhanced Command
Environment

Programs Calling Programs

How a Program Calls Another
Program

Mini~-Command Level

ICE
New Commands

1-1
1-1
111
14

1-5
1-6
1-7

1-8
1-8
1-9

2-1

2-1
2-2

2-3
2-3

2-5

2-5

2-14
2-17
2-17
2-17
2-18
2-19
2-19

2-20
2-23

2-25
2-27
2-28
2-29

Entrypoint Search List

Commands 2-30
LIST_MINI_COMMANDS 2-36

Copying Over an In-Use EPF 2-51
New User Attributes 2-53
Features 2-53
EDIT PROFILE Interface 2-54
Defaults 2-55
Special Notes About Dynamic

Segments 2-55
EDIT PROFILE USER 1 Dynamic

and Static Segment Handling 2-56
Calculation of Total Number of

Static and Dynamic Segments 2-56
Programming Restrictions 2-57
Error Detection And Handling 2-59
Exceeding Resource Limits 2-60
Linkage Fault Handling 2-61
System Administrator

Information 2-64
Converting Old Static Mode

Programs To EPFs 2-66

3 PRIMDS and Utilities

PRIMS and PRIMDS II 3-1
Modifications to LOGPRT and
PRINT SYSLOG to support ECCQU 3-3

Configuration Directives 3-3
LOGBAD 3-3
New AMLC Protocol 3-4
TT8BIT 3-4
Reverse Flow Control on the ICSl
and ICS2 Controllers 3-5
Additiomal Asynchronous Line
Support 3-5
Auto Speed Detect (ASD) 3-5
(ONFIG Parameters for ASD
Support 3-6
Operation of ASD 3-8
Half-duplex Support Over MDLC 3-9
PRIMDS Changes to WARM START
Handling 3-9
PRIMS Changes to Support the
PRIME/SNA -Product 3-10
Software Problems Fixed 3-10
Dynamic File Units 3-10
CHAP Command Enhancements 3-13
Functiomal Overview 3-13
CHAP Command Syntax 3-13
Batch 3-17
Batch EPF Support 3-17

Longer CPL Arguments 3-17

vi

Batch Support for Dynamic File
Units
Software Problems Fixed
BOOT_CREATE
Software Problems Fixed
BRMS
CMPF MRGF
New Features and Changes
QONCAT
QPY
CQOPY_DISK
DELETE
ED
EDB
Permanent Restrictions
EDIT_PROFILE
Software Problems Fixed
EMACS
New EMACS Functions
New EMACS Atoms
New Terminal Support
Command Line Argquments
The -save screen EMACS Command
Change in the Setup of the

PST100 CURSOR-FUNCI'ION/NUMBER

Pad in EMACS

Fundamental Mode

Cautions on the Use of the
PST100 PF/N Pad

The CURSOR-FUNCTION/NUMBER PAD
(CF/N) on the PT200

How to Get the PIr200 CF/N Pad
to Function as a NUMBER PAD

Disposition of Unused PT200

CF/N Pad Keys in SUI/SUIX and

Fundamental Modes
Changes to EMACS Which Are Not

Terminal-specific

Removal of the Limitations on
the PRIMDS INTERNAI, SCREEN
Command

New Global Switch Controlling
Level of User Feedback,
VERBOSITY_LEVELS

Optioml Change to Feedback

From QUIT Command When Buffers

are Unsaved

Optional Change to Feedback
From <CTRL>P

Change to Internals of COBOL
Mode

vii

3-18
3-18
3-19
3-19
3-21

3-23
3-25
3-27
3-29
3-31
3-33
3-35
3-35
3-37
3-37
3-39
3-40
3-45
3-45

3-47
3-48
3-48
3-49
3-49
3-50

3-50

3-51

3-52
3-52
3-53

Changes to the Standard User
Interface
Change to PRIMOS_(OMMAND
Substitution of the FIND _FILE
for the GET FILE Function
Addition of New Predefined

PRIMS Commands: LD, TLD, VLD

Changes to ATTACH and SFOOL
Commands
Miscellaneous Changes to
Internals of the SUI
Fundamental Mode Commands
Which are Replaced in SUIX
Mode
Horizontal Scrolling Has Been
Added to the SUI
Changes to the SUI HELP
Screens
SUI Support in Both Display
Modes for the Pr200 Terminal
Normal Operation of SUI/SUIX
on Pr200 Terminal
Changes in the EMACS* Directory
Contents of EMACS*
Contents of EMACS*>INFO
Contents of EMACS*>EXTENSIONS
Contents of
EMACS*>EXTENSIONS>SOURCES
Software Problems Fixed
Outstanding Problems
Permanent Restrictions
Installation and Build
Procedures
FIXRAT
FIX DISK
Software Problems Fixed
ICS1
Software Problems Fixed
Permanent Restrictions
ICS2
Softawre Problems Fixed
LD 3-77
Software Problems Fixed
LOAD
Permanent Restrictions
LOGFRT
MAGSAV MAGRST
New Features and Changes
Software Problems Fixed
PHYSAV PHYRST

viii

3-54
3-54

3-55
3-55
3-56
3-56

3-59
3-60
3-61
3-62
3-62
3-62
3-62
3-63
3-63

3-63
3-64

3-68
3-68

New Features and Changes 3-87

Software Problems Fixed 3-87
PRINT._NETL.OG 3-89
PRINT._SYSLOG 3-91
Spool 3-93
New SFOOL Options 3-93
Changes to SFOOLS 3-95
Changes to SPPHN 3-95
Changes for OAS 3-96
Changes to PROP 3-97
SFOOL'$ 3-99
Files That Reside in SPOOLQ 3-102
Change of Mode Commands Within
the Spooler 3-103
Format of Accounting Buffer
Passed by Spooler Phantam 3-104
Format of Accounting Buffer 3-104
Software Problems Fixed 3-106
Software Problems Outstanding 3-107
SYSQOM 3-109
PRIMDS II 3-101
New Features and Changes 3-101
Documentation Correction 3-101
4 LANGUAGES
Utilities 4-1
New Features and Changes 4-1
SEG 4-3
Software Problems Fixed 4-3
DBG 4-5
Software Problems Fixed 4-5
Outstanding Problems 4-6
Permanent Restrictions 4-6
Environment 4-7
Installation and Build
Procedures 4-7
Libraries 4-9
CBL_LIBRARY 4-9
CLIB 4-11
Software Problems Fixed 4-12
Permanent Restrictions 4-12
Installation and Build
Procedures 4-13
PASCAL,_LIBRARY 4-15
PL1G_LIBRARY 4-17
RFINLIB 4-19
SYSTEM_LIBRARY 4-21
Software Problems Fixed 4-22
Software Problems Fixed 4-23
Installation and Build
Procedures 4-23
VREG_LIBRARY 4-25

Compilers 4-27

ix

New Features and Changes
Software Problems Fixed
CBL
New Features and Changes
Software Problems Fixed
Outstanding Problems
Installation and Build
Procedures

CcC

Software Problems Fixed

Permanent Restrictions

Installation and Build
Procedures

QOBOL

New Features and Changes

Software Problems Fixed

Envirormment

F77

Software Problems Fixed

Outstanding Problems

Envirorment

Installation and Build
Procedures

FIN

PASCAL

Software Problems Fixed

Outstanding Problems

Permanent Restrictions

Envirorment

Installation and Build
Procedures

PL1G

Software Problems Fixed

Enviromment

Installation and Build
Procedures

PMA
Softawre Problems Fixed
Outstanding Problems
Permanent Restrictions
REG
Installation and Build
Procedures
VREG
New RPG-II Language Features
New Compiler Options
Software Problems Fixed
Outstanding Problems
Enviromment
Installation and Build
Procedures

4-27
4-28
4-29
4-29
4-29
4-31

4-31
4-33
4-34
4-36

4-36
4-37
4-37
4-38
4-38
4-39
4-49
4-51
4-52

4-52
4-53
4-55
4-61
4-63
4-63
4-63

4-63
4-65
4-71
4-72

4-72
4-73
4-73
4-73
4-73
4-75

4-75
4-77
4-81
4-83
4-86
4-87
4-87

4-87

5 DATA MANAGRMENT SYSTEMS

DBMS 5-1
F77 Interface 5-1
DMLCP 5-2
MODIFY Performance
Optimization 5-5
SCHEMA Compiler 5-5
Mixed Mode Transactions 5-5
Schema Subfiles 5=7
DBACP 5=7
DMLCP 5-8
CSUBS FSUBS 5-9
DBUTL 5-9
Other Changes 5-10
Environment 5-10
Installation and Build
Procedures : 5-11
Files on System Tape 5-11
Instructions for Initial
Installation of DBMS 5-15
Upgrading an Existing DBMS
Installation 5-16
Data Administrator
Authorization 5-17
Introductory Message Control 5-17
Reloading Products 5-17
DMLCP Installation 5-18
Creation of a DML Application
Program 5-18
ROAM Conversion 5-19
DISCOVER IBMS 5-23
Software Problems Fixed 5-23
Outstanding Problems 5-24
Envirorment 5-25
Installation and Build
Procedures 5-25
PRISAM SELECT Performance
Issues 5~-28
DBMS SELECT Performance Issues 5-33
Glossary 5-46
Example Schema 5-49
Example QOBOL Subschema 5-51
DISCQOVER_PRISAM 5-53
Outstanding Problems 5-54
Envirorment 5-54
Installation and Build
Procedures 5-55
PRISAM SELECT Performance
Issues 5-58
DISQOVER_UPGRADE 5-65
USAGE 5-65
Other Considerations 5-65

MIDASPLUS 5-67

xi

Support of More File Units
Software Problems Fixed
Outstanding Problems
Enviromment
Installation and Build

Procedures

Password Directories
PIELIB
New Features and Changes
Software Problems Fixed
Installation and Build

Procedures
PRIME FOWER
New Features and Changes

POWER Passwords

Private Procedure Files
Display Using Screen

DESTROY -DELETE Option

Table Skip

LIST SYSTEM Command

NULL Commands

Display FILLER Fields

Numeric Field Names
List Validation

RANGE Function

Interactive RANGE Function
PST100 & PT200

Terminals Supported
Software Problems Fixed
Documentation Modification
Enviromment
Installation and Build

Procedures
PRISAM
Software Problems Fixed
Outstanding Problems
Envirorment
Installation and Build
Procedures
Files on System Tape
Instructions For PRISAM
Installation
ROAM
Software Problems Fixed
Outstanding Problems
Permanent Restrictions
Enviromment
Installation and Build
Procedures
Files on System Tape
Instructions For Initial
Installation Of ROAM
Instructions for
Re—installation of ROAM

5-67

5-68
5-69

5-69
5-69
5-75
5-75
5-75

5-76
5-77
5-77
5-77
5-77
5-78
5-79
5-79
5-80
5-80
5-80
5-80

5-81
5-81
5-82
5-82
5-83
5-85
5-85

5-85
5-87

5-91
5-92

5-92
5-93

5-94
5-97
5-97
5-99
5-100
5-100

5-100
5-100

5-102
5-104

6 INFORMATION

INFORMATION 6-1
Software Problems Fixed 6-1
Problems Fixed in Release
5.4.1 6-1
Problems Fixed in Release 5.5 6-2
Enviroment 6-4
Installation and Build
Procedures 6-4
Installing an Update Release 6-5

7 FORMS AND FED

FORMS 7-1
Software Problems Fixed 7-1
FED 7-3

Software Problems Fixed 7-3

8 COMMUNICATIONS

New Features and Changes 8-1
WARM START handling 8-1
Terminal Emulation (PTDSC) 8-1
PST100 P200 Differences 8-2
Error Messages 8-8

Software Problems Fixed 8-10

EM1004 8-11

EM200UT 8-13

EM7020 8-15

EMGRTS 8-17

EMHASP 8-19

EMX80 8-21

EMXBM 8-25
PRIME/SNA Interactive

Subsystem 8-27

New Features and Changes 8-27
PRIME/SNA Server Subsystem 8-29

New Features and Changes 8-29

xiii

ABQUT THIS BOOK

This book summarizes the new features and changes in Prime's user
software at Rev. 19.4 of PRIMS. One chapter is Gevoted to each of the
following:

® Executable Program Formats (EPFs) (Chapter 2)

e FPRIMS and Utilities (Chapter 3)

e Languages (Chapter 4)

® Data Management Systems (Chapter 5)

& INFORMATION (Chapter 6)

® FORMS and FED (Chapter 7)

e Communications (Chapter 8)
Within each chapter, the information on each product (e.g. (DBOL,
MIDAS, RJE) begins on a new richt-hand page. ©Pages can thus be
extracted from this book and placed in other manuals as necessary.

Note
This book is designed to supplement other manuals. Its pages

are not replacement pages, and its pagimation does not
correspond to the pagination of other books.

For each individual product, this book provides the following
information (where applicable):

® New features and changes in the software
e Documentation corrections and a&ditions
e Software problems fixed

e Software problems outstanding

In all cases, this information refers to Rev. 19.4. If you want
information on earlier versions of Rev. 19, see:

e The Rev. 19.3 Software Release Document (MRU4304-011)

® The Rev. 19.2 Software Release Document (MRU4304-010)

® The Rev. 19.1 Software Release Document (MRU4304-009)

e The Rev. 19.0 Software Release Document (MRU4304-008)

Note

This book contains ocorrections and additions to other Prime
software manuals, It is assumed that you have access to our
most recent documentation. Lists of new books and updates can
be found in the following places.

e The section New Book Titles, in Chapter 1, for titles new at
Rev. 19.4.

® The Rev. 19.3 Software Release Document for titles new at
Rev, 19.3.

@ An online file, accessible by typing HELP DOCUMENTS, for a
cumulative list of manuals, updates, etc.

CHAPTER 1

INTRODUCT ION

IN THIS CHAPTER

This chapter provides:
@ An overview of Rev. 19.4
e Information on installation of Rev. 19.4

® A list of new book titles from Prime's Technical Publications
Department

OVERVIEW OF REV, 19.4

Rev, 19.4 contains many new features of interest to Prime users,
operators, and Administrators. The following lists only the
highlights, arranged according to the intended audience.

New Features for the User

The following will interest the Prime user:
® Executable Program Formats (EPFs)
e BIND, Prime's new linker

1-1 First Edition

Software Release Document

® Search rules

® An enhanced Command Enviromment, and several new commands to
utilize and control the enviromment

e Changes to the Spooler Subsystem
e Auto Speed Detect

EPFs: EPFs (Executable Program Formats) are dynamic runfiles
(programs) that are assigned by PRIMS at runtime to any segments.
EPFs can be suspended and re-invoked without loss of data by running
the EPFs in different "command levels" of PRIMS. The number of
command levels, number of program invocations per command level, and
number of private static and private dynamic segments you can have is
limited by the System Administrator via EDIT PROFILE. EFPFs are created
with BIND, Prime's new linker. For more information on EPFs see
Chapter 2. EPFs are more fully documented in the Programmer's Guide to
BIND and EPFs and in the Advanced Programmer's Guide.

BIND: Prime's new linker, BIND, creates dynamic runfiles (or EPFs).
BIND's subcommands can be entered on the command line or BIND can be
run interactively. For more information on BIND, see Chapter 2. BIND
is fully documented in the Programmer's Guide to BIND and EFPFs.

Search Rules: At Rev. 19.4 there is a new file, ENTRY$.SR, in the
directory SYSTEM. ‘This required file oontains names of system
libraries, one per line. The order in which these libraries are listed
is the order in which the libraries will be searched to find a match to
the subroutine entrypoints. You can define your own library search
list in a file in your own directory and request that PRIMOS follow the
system list with your own list.

New Commands: Several new oommands have been added at Rev. 19.4 to
support EPFs and library search lists. They are:

INITIALIZE_COMMAND ENVIRONMENT
Restore your command enviromment to the state it is
in when you first log in.

LIST_EPF List information about any or all of the EPFs you are
currently using.

LIST_MINI_COMMANDS
List those commands you can use if you reach Mini
Command Level.

LIST LIBRARY_ENTRIES
List the entrypoints in library EPFs.

LIST LIMITS Display your command enviromment limits.,

First Edition 1-2

INTRODUCT ION

LIST _SEARCH RULES
Display the contents of your library search list.

LIST_SEGMENT List segments you are using.
REMOVE,_EPF Remove an EPF from your address space.

SET_SEARCH RIJLES
Set your own search rules.

These commands are described in Chapter 2.

Enhanced Command Environment: At Rev. 19.4 you are no longer limited
to a maximum of 127 file units per user. Because the maximum number of
file wmnits per system has been increased from 3247 to 32,762, there is
no longer a need to be ooncerned with an individuml's number of
reserved file units.

Spooler Subsystem Enhancements: The Spooler can now handle lines up to
400 characters in length. However, T$LMPC, the parallel printer
driver, still truncates lines to 140 characters.

Several new options have been added to the SFOOL command to allow you
to modify your own print requests and to list files spooled to remote
spool queuwes, The options are:

-DISK Allows you to specify the partition name of the SFOQLQ
you wish to use.

-LIST There are three new options available:

* list all spool queues on all partitions that
have been added to your system. v

AT list only the SPOOLQ specified by AT,
OWN list only your own entries in the queue.
-MODIFY Modify your own print request.

-NOTIFY Tells the Spooler phantamn to send a message to your
terminal when your print request has printed.

-TRUNCATE Print only the first n characters in each line.
These options are described in Chapter 3.
Auto Speed Detect (ASD): If the line to which you are oonmecting is
ASD emabled, and 1f your terminal generates either ™"mark" or "odd"

parity, PRIMDS can now determine the following terminal line speeds
autamatically: 110, 300, 1200. PRIMS can also determine the

1-3 First Edition

Software Release Document

following terminal 1line speeds if your System Administrator has
configured your system to do so: 2400, 4800, and 9600.

New Features for the Operator

The following will interest the Prime operator:
@ Disk Controller enhancement
e Changes to the Spooler Subsystem
e Changes to the CHAP command
Disk Controllers: Controllers at addresses '22 and '23 can now contain

paging partitions. These controllers are accessible under RIMS 1II,
however, you cannot use MAKE for these controllers under PRIMIS II.

Changes to the Spooler Subsystem: There are three new options to the
SPFOOL: command that are of interest to the operator. They are:

-MODIFY Allows you to change the parameters of a print request.

-RUSH Allows you to give a file high priority so that it will
be printed before other files in that SFOQLQ.

-NORUSH Cancels the priority given previously with the -RUSH
option.

Changes to the PROP Command: A new option has been added to the PROP
command.

—(OMPRESS Renumbers the entries in a designated spool queue and
removes gaps between entries in the queue.

Changes to the CHAP Command: IDLE and SUSPEND are two special-purpose
new priority levels. A process CHAPped to IDLE will be serviced only
when no other process requires service from the CPU. SUSFEND blocks
the suspended process from access to the CPU until it is explicitly
CHAPped otherwise.

First Edition 1-4

INTRODUCTION

Changes for the System Administrator

Changes to Confiquration Directives: There are four new configuration
rectives:

LOGBAD Message will be printed at the supervisor terminal if an
wmnsuccessful login attempt is made.

MEMHLT Under certain circumstances will log out a process
incurring an uncorrectable memory parity error instead of
halting the machine.

NVMFS Defines the system-wide number of Virtual Memory File
Access segments for EPFs.

SYNC Can be used as a synonym for SMLC.

The FILUNT directive has changed because the number of seagments per
user has changed to a maximm of 32,762 ('77772). It is no longer
necessary to reserve file units on a per user basis.

The NUSEG directive has been replaced by EDIT PROFILE subcommands at
REV. 19.40 '

MONITOR NET: The MONTTOR NET command replaces the MONITOR RING
command, MONITOR NET displays error and traffic information about
RINGNET, synchronous lines, and virtual circuits for your system. You
can select any one of three monitors (RING, SYNCHRONOUS LINE, or
VIRTUAL CIRCUIT) from the Main Menu. Each of these monitors has an
overview screen and one or more detailed screens,

Changes to Synchronous Support: At Rev. 19.4, dial-up half duplex
support for Prime-to-Prime links is now available over MDLC.

256 Lines Supported: At Rev. 19.4, up to 256 lines can be connected to
a system. The maximum line number is '377 (255 decimal). These lines
may exist on AMLC, ICS1, or ICS2 controllers. No more than 128 lines
may be on AMIC ocontrollers, For ICS? controllers, the async line
adapter cards may be distributed over up to four ICS2s, even if the
total number of ICS2 lines is less than 256. Lines '376 and '377 can
only be used as assignable lines if the formula user number = line
number + 2 is maintained.

EDIT_PROFILE: Four attributes have been added to EDIT PROFILE at
Rev. 19.4 to define a user's (or a project's) command enviromment,

1-5 First Edition

Software Release Document

These attributes allow specification of the following characteristics.

e Number of command levels

e Number of live program invocations per command level

e Number of private static segments

e Number of private dynamic segments
Changes to the Spooler Subsystem: Revision 19.4 supports a number of
new Spool s stem features. It now fully supports Prime's Office
Automation System, Multiple SFOOLQ directories are now allowed on one
system, You can now choose between two algorithms for how a Spooler
phantom on a networked system searches SPOOLQs for print requests. You
can define those users who should be able to modify the prop

enviroment in a new file, L.USER. These features are described in
Chapter 3.

INSTALLING REV. 19.4

The Rev. 19.4 Master Disk contains all Master Disk software, including
the softwear that has not changed since Rev. 19.0. Rev. 19.4 can
therefore be installed without prior installation of other Rev. 19
versions.

If you are installing from tape, you should delete the following files
before restoring the tapes.

CMDNCO>BOOT._ATTACH. CPL HELP*>FTOP. HELP LIB>SPLLIB.BIN
CMDNCO>BOOT_IMP(ODE.CPL HELP*>FTGEN.HELP LIB>PFINLB.BIN
CMDNCO>BOOT_TREE. CPL HELP*>FTS. HELP LIB>NPFINIB. BIN
CMDNCO>BOOT._CREATE. CPL HELP*>FTR. HELP LIB>NSPLLIB.BIN
CMDNCO>BOOT_SAVE, CPL

Because the new files are of a different file type, MAGRST will not
restore them over another file of the same name.

The PRIMS.OOMI file and Shared Segments: Check your PRIMDS.COMI (or
C_PRID) file against the file PRIMDS,OOMI.TEMPLATE in the FRIRUN
directory of the Master Disk Revision 19.4 software., FINLIB, COBQL,

and SPLLIB are now EPFs and are no longer shared using the SHARE
command,

First Edition 1-6

INTRODUCT ION

NEW BOOK TITLES

The following technical publications are new at Rev. 19.4.

PRIMS and Utilities

The System Operator's Guide, Volume II has been broken up into the
following series of books, designed for ease of use.

DOC9298-1LA,1PA Operator's System Overview

DOC9299-1IA,1PA Operator's Guide to System Monitoring
DOC9300-1LA,1PA Operator's Guide to File System Maintenance
DOC9301-1LA,1PA Operator's Guide to System Backups
DOC9302-1LA,1PA Operator's Guide to the Batch Subsystem
DOC9303-1LA,1PA Operator's Guide to the Spooler Subsystem
DOC9304-1LA,1PA Operator's Guide to System Commands

For operators of Prime computers. These books assume some knowledge of
how to start up and use a Prime computer.

This series of books was designed and written to help operators and
System Administrators of Prime oomputer systems do their jobs. The
series covers the techniques and commands necessary for the smooth
functioning and operation of Prime computers to facilitate the tasks of
the systems' users.

DOC8691-1LA,1PA Programmer's Guide to BIND and EPFs

For all users of Prime ocomputers who write programs in compiled,
high-level languages (such as QOBOL and FORTRAN) or in assembler (rMa),
all of which require the use of a linker. This book assumes that the
reader knows how to write and compile a program in a Prime-supplied
language and has read the Prime User's Guide.

This book introduces the user to BIND, a linker new at Rev, 19.4, and
Executable Program Formats (EPFs), the type of runfile generated by
BIND. The differences between BIND and its predecessors, SEG and LOAD,
are examined, as are the differences between EPFs (which are dynamic
runfiles) and static runfiles generated by SEG and LO2ZD.

The following series of books has been written for the Advanced
programmer.

DOC9229-1LA,1PA Advanced Programmer's Guide, Volume 0

DOC10055-1LA,1PA Advanced Programmer's Guide, Vol. I: BIND and EPFs

DOC10056-1LA,1PA Advanced Programmer's Guide, Vol. II: File System

DOC10057-11A,1PA Advanced Programmer's Guide, Vol. III: Command
Environment

The Advanced Programmer's Guide is a series of books that deals with
system—-level programming concepts in—depth. Most of the information

1-7 First Edition

Software Release Document

pertains specifically to the 50 Series, although same topics apply to
operating systems or computing systems in general.

For Rev. 19.4, the series consists of four volumes, Volume 0 describes
the notation used in other volumes in the series and oontains
appendixes on new features for Rev. 19.4 that are particularly
important for a systems-level programmer and on PRIMS error codes and
their meanings. The other three volumes examine specific topics in
detail: BIND and EPFs, the File System, and the Command Enviromment.

This series is for users of Prime oomputers who write programs in
compiled, high-level languages (such as PL/I Subset G and FORTRAN) or
in assembler (PMA), all of which require the use of a linker. This
series assumes that the reader knows how to write, compile, link, and
execute a program written in a Prime-supplied language as an EPF using
BIND, and that the reader has read the Prime User's Guide, Programmer's
Guide to BIND and EPFs, and the Subroutines Reference Guide. Portions
of this series also assume that the reader understands the Prime 50
Series architecture, particularly the procedure call, virtual memory,
shared memory, memory segmentation, and dynamic linking mechanisms.

The following updates to existing documents are available:
PRIMS and Utilities

DOCA130-4LA,4PA Prime User's Guide
FDR3108-5LA,5PA PRIMDS Commands Reference Guide
DOC5037-2LA,2PA The System Administrator's Guide

Lanquages

UPD3621-31A Subroutines Reference Guide
UPD5040-11A RPG II Programmer's Guide
UPD5039-11A (DBOL 74 Reference Guide
UPD3058-13A BASIC/VM Reference Guide
UPD4031-13A PL/I subset G Reference Guide
UPD4303-21A Pascal Reference Guide
UPD4029-31A FORTRAN 77 Reference Guide
UPD7534-11A C Reference Guide

UPD4033-21A Source Level Debugger User's Guide

Data Management

UPD6292-11A DBMS Administrator's Guide

UPD7345-11A Data Management File Administrator's Guide
UPD5308-11A DBMS ML Reference Guide

UPD5717-11A DBMS DII. Reference Guide

DOC7999-2LA,2PA PRISAM User's Guide, Rev. 19.4

First Edition 1-8

INTRODUCT ION

Communications

UPD3710-31A PRIMENET Guide
DOC7532-2LA,2PA Network Planning and Administration Guide
UPD4035-21A Distributed Processing Terminal Executive Guide

1-9 First Edition

CHAPTER 2
EXECUTABLE PROGRAM FORMATS

NEW FEATURES AND CHANGES
EXECUTABLE PROGRAM FORMATS (EPFs)

The introduction of EPFs and the enhanced command enviroment makes it
easier for programmers to build and maintain software. The enhanced
command enviromment provides programmers with new tools with which to
build small, medium, and large programs. These tools are tailored
towards increasing the capabilities of programs and may also increase
the programming speed of developers.

This chapter presents software developers and System Administrators
with an overview of the EPF product. This chapter also discusses
differences between programming in the old enviromment (only static
mode programs) and programming in the new envirorment (EPFs and an
enhanced command enviromment).

This chapter discusses the various aspects of the EPF product. The
order of the sections is designed to take the programmer through the
various steps needed to understand EPFs and then to program with EPFs.
The final section relates information that a System Administrator will
need when installing the new system., The sections are:

® A brief overview of EPFs and the enhanced command envirorment

® A discussion of building and running EPFs

® A discussion of the enhanced command enviromment

2-1 First Edition

Software Release Document

e A discussion of programs calling programs
e A discussion of EPF libraries

e An explanation of the new commands that allow full utilization
of the enhanced command environment

e A discussion of new user attributes
e A discussion of programming restrictions
e Information for the System Administrator

e A discussion and examples of oconverting existing static mode
programs to EPFs.

For the beginning programmer, the sections on building and running an
EPF are all that is needed. For the programmer who is concerned with
putting together software packages, the sections on EPFs, Enhanced
Command Envirorment, New User Attributes, and Error Detection,
Handling, and Recovery are appropriate., For the programmer who will be
converting static mode programs to EFFs, Programming Restrictions and
Converting 01d Static Mode Programs To EPFs will be useful, System
Administrators should read the section discussing System Administrator
Information.

A Brief Overview Of EPFs

There are two basic kinds of EFFs, the program EPF and the library EFF.
A am EPF is an executable object that is invoked with RESUME. A
liEr EPF 1s an executable object that contains en%ints that are

ically linked at run time, Library EPFs cannot invoked with
RESUME.

EPFs are not statically bound to segments via LOAD or SEG as are static
mode programs. Prime's new linker, BIND, produces EPFs, and is much
friendlier than either SEG or LOAD. (An entire BIND session can be
performed from the command 1line.) BIND is described in the section
EPFs - The New Program Format.

As BIND is easier to use than both SEG or LOAD, so EPFs are easier to
use than static mode programs. Since EPFs take care of all addressing,
the programmer need not remember where a program, or a structure within
a program, is placed. Because the operating system takes care of
loading EPFs into memory, it is now possible to have many different
programs in memory at the same time. The operating system makes sure
that these programs do not overwrite each other.

Command writing is easy with EPFs. Because EPFs run on the same stack
as the command processor, it is easy for the command processor to
execute EPFs. Only a simple procedure call instruction is needed.
This means that EPFs appear to the operating system to be no more than
another subroutine. This, in turn, makes it possible to pass arguments
to and from a command.

First Edition 2-2

EXECUTABLE PROGRAM FORMATS

A Brief Overview Of The Enhanced Commend Enviromment

The enhanced command environment brings three new major features to
PRIMDS:

® The ability to create persomalized 1libraries of entrypoints,
This aids the developer in both the development and maintenance
phases of a project., It also makes it possible to put together
software packages in a manner which was, up until this time,
impossible,

® The ability to create commands which can directly interface with
the PRIMS command envirorment. These new commands can be
directly passed from the command line entered by a user and can
return their status directly to the ocommand enviroment, 1In
addition, ocommand functions can now be written by the

programmer,

e The ability to have programs call other programs, It allows
programmers to write a transaction processor which runs user
chosen transactions as separate programs which can be debugged
as separate pieces,

As rart of the enhanced command enviromment, special user attributes
were developed, These attributes help a System Administrator to manage
a system's resources. For further information, consult the section on
New User Attributes.

Since EPFFs run in a set of segments called dynamic segments (which is
part of a user's DTAR2 segment), more segrents have been added to
DTAR2. A user can now be assigned up to 512 DTAR2 segments,

EPFs — The New Program Format

When Prime introduced processors containing full virtual addressing
capabilities (paging and segmentation), the need to generate and use
the V-mode ocode which supports this architecture was fulfilled by the
language translators and SEG, The translators generate object oode
that can be 1loaded by SEG. This loaded image is known as a run file.
It is this file which can be invoked by RESUME. In many cases, SEG
needs special instructions about where and how to organize this file,
With the advent of EPFs, the need for these instructions vanishes, The
object code generated by the translators is no longer loaded together
intoa run file. Instead, BIND puts the object code into a form which
is loaded by the operating system at run time.

In the past, Prime had two program formats, the R-Mode image and the
SEG image. An R-Mode image is created by either LOAD or by SEG. (For
SEG to create an R-Mode image, special SEG commends are reeded.) The
SEG image may only be created by SEG. The R-Mode image may be invoked
with RESUME. The SEG image may only be run from SEG. Both of these
program formats are static mode formats. All of their addressing

2-3 First Edition

Software Release Document

requirements, with the exception of dyramic linking, are fulfilled
before they are executed. EPFs bring a new program format, This
program format is built using BIND. Its image is known as a RUNfile.
This file may be invoked with RESUME. The RUN file is a dynamic mode
format., Many of its addressing requirements are not fulfilled until it
is executed.

This chapter contains all the information that directly relates to the
construction and types of EPFs, using, building, and executing EPFs,
and programming with EPFs.

What Is An EPF?

The executable program format (EPF) implements a new program object
representation for V- and I-mode programs. Unlike both SEG files and
R-Mode SAVE files, which represent a memory image of both procedure and
data, an EPF is a file that contains both an image of the procedure and
a descripcion of the data (linkage) for a given program. This
description can be thought of as a set of templates that the operating
system uses when it RESUMEs the EPF to build the linkage and resolve
the addressing requirements, Since it is doing address resolution at
execution time, the operating system places the EPF in a segment of the
user's address space that it finds free. This capability allows the
operating system to keep many EPFs in memory at the same time; EPFs
will not write over each other.

DAM files were chosen to contain EPFs because their structure (indixes
which point to the data records of the file) has two important
features. The first is the speed with which the data records of the
file can be found. One only has to go through an index to find any
data record. The second has to do with how the operating system reads
the data from an EPF file.

EPFs are special with regard to the manner in which the operating
system reads their data. The operating system takes the information in
the DAM index and stores it in the paging system data bases. Since
paging data bases relate to where on disk the virtual memory for a page
may be found, remembering the DAM index means that a mapping is made
between the EPF file and the virtual memory it will occupy. More
simply put, EPFs are directly paged in from their file system
partition. No special copy is made on the paging partition as is done
for a static mode file. This paging from the file system is known as
Virtual Memory File Access or VMFA. One restriction is placed on this
new form of paging: the address space associated with the EPF must be
read only.

Since EPFs may contain read-only data only, they must not ocontain any
code or data areas which need to be modified. In other words, EPFs
must be e code. Pure code is reentrant and EPFs may contain only
pure code. The system takes advantage of this fact by mapping the same
file to different users' address spaces whenever different users
execute the same EPF; that is, EPFs are shared.

First Edition 2-4

EXECUTABLE PROGRAM FORMATS

Since an EPF contains only pure code and templates which describe the
linkage associated with the EPF, the operating system must dynamically
allocate space in which it can build the actual linkage for the EPF,
It does this at initialization time, A1l linkage for an EPF is
initialized when it is first placed into memory by the operating
System. Since the system keeps EPFs mapped into memory even after the
EPF completes, the next time the EPF is to be executed, only the
linkage, which needs to be set up for every run, will be initialized,
No action will be taken for the rest of the linkage. This gives an
advantage to EPFs that are executed many times, such as the LD command:
they run faster., On the other hand, you may lose some initialization
which SEG did for you; make sure you follow the lanquage rules
closely.

When an EPF is built, no instructions about where the stack for the EPF
is to be placed are made. This is left up to the operating system.
The system uses the same stack for the EPF that it is currently running
on. Specifically, the system uses its ocommand processor stack for
EPFs, An EPF will look just like any other subroutine to the system,
This is handy to know when debugging an EPF.

EPF Types
There are two types of EPFs:
® The program EPF is executed via a main entrypoint,

® The library EPF contains entrypoints to which dynamic links may
be made,

Program EPFs

You may invoke Program EPFs with RESUME, Program EPFs have one main
entrypoint to which flow of control is passed. These are the typical
program images which you build,

You use a Program EPF whenever you would have used a SEG program. The
enhanced command enviromment allows one program to "call" another
program: a running program may RESUME another run image., If the
programs calling each other are EPFs, a series of sequential calls can
be made. Many EPFs may reside in memory at the same time without
overwriting each other. However, only one static mode program may
appear in this sequence of calls,

linkage, per-user and per-system. The per-system linkage is shared and
the per-user 1linkage is not, Progran EPFs support only per-user
linkage,

EPF programs may also be executed as commands or command functions., A

command interface for EPFs has been defined allowing EPFs to pass
information back to the command enviromment,

2-5 First Edition

Software Release Document

Simple EPF Calling Sequence: You may be building EPFs to run your own
programs that do not need any information at initial execute time.
These programs should use the following calling sequence:

dcl your_epf entry();
call your_epf;

Many programs that have already been written would use this calling
sequence. An example is a TIC-TAC-TOE program. This program has no
need of any user supplied information before it starts. It simply puts
up the playing board on the screen and then asks the player for a move.

EPF Command Calling Sequence: You may be writing programs that need
Information from the ocommand line. That is, whenever anyone invokes
these programs, they will enter added information on the command line.
The EPF product will autamatically pass this command line information
to the invoked program. We call these programs commends,
Additionally, the EPF product also allows the oommand to pass its
status back to the operating system whether or not it has oompleted
successfully. The calling sequence for commands follows:

dcl your_epf entry(char(1024) var, fixed bin(15);

call your_epf (command_args, command_status) ;

commend args is the entire command line as entered by the user.

command_status is the command status returned by the program to
operating system. Values returned are:

= 0 - no error
> 0 - fatal error
< 0 - soft error or warning

There are many examples of programs that can be called commands. In
the present version of FRINDS, commands such as LD, COPY, and DELETE
need information from the command lire. In fact, these commands are
already EPFs and use the EPF calling sequence.

EPF Command Calling Sequence With CPL Local Variables: Commands may be
executed from within a CPL file. The CPL file may oontain some local
variables that are needed by the command. To get these variables, the
following interface has been defined.

First Edition 2-6

EXECUTABLE PROGRAM FORMATS

dcl your_epf entry(char(1024) var, fixed bin(15),
1, 2 char(32) var,
2 fixed bin (15),
2 ptr);

call your_epf (command args, command_status, command state);

command args is the entire command line as entered by the user.

command status is the command status returned by the program to the
operating system. Values returned are:

- no error
hard error
soft error or warning

=0
>0
<0
command state is information relative to this invocation, Its
contents, in the order specified, are:

command name is the command name as entered by the user,

version is the current version of command state structure;
currently this value is = 0.
vch_ptr is a 2 word pointer to CPL local variables.

When you write a command that needs to reference CPL local variables,
use the vch ptr as the argument to be passed to the CPL routines LVSGET
and IVS$SET to retrieve and set the value of CPL local variables
respectively. For example:

dcl 1lvSget entry (ptr options(short), char(32) var,
char(1024) var, fixed bin(15), fixed bin(15));

call lvsget (vch ptr, var_name, var_value, var_size, err_oode);

vch ptr is a pointer to CPL local variables.

var_name is a CPL local variable name,

var_value is the value of the CPL local variable,

var_size is the maximum length in chars of the user buffer,
var_size,

code is the standard return error code (0 for success).

dl 1v$set entry (ptr options(short), char(32) var,
char(1024) var, fixed bin(15));

call lv§set (vch ptr, var_name, var_value, err_code);

2-7 First Edition

Software Release Document

vch_ptr is a pointer to CPL local variables.
var_name is a CPL local variable name.

var value is the value of the CPL local variable.
code is the return error code.

EPF Command Calling S nce With Command Processor Features: You may
find it necessary to £termine whether or not the operating system
command processor has performed any preprocessing. Preprocessing is
autamatically done by the command processor whenever certain command
line arquments such as '~file' and '-no_verify' are given, The
preprocessor options fall into three categories:

e Date restrictions
e Type of objects being used by the command
e Command processing options

To find out if any preprocessing has been done, use the following
calling sequence:

dcl your_epf entry(char(1024) var, fixed bin(15),

1, 2 char(32) var,

2 fixed bin (15),

ptr,
fixed bin(31),
fixed bin(31),
fixed bin(31),
fixed bin(31),
bit(l),
bit (1),
bit(1),
bit(1),
bit(1),
bit(11),
bit(1),
bit(1),
bit(14),
fixed bin(15),
fixed bin(15);
bit(1),
bit(1),
bit (1),
3 bit(13);

2
2,

WWWWWWWWwWwWwwwwwuwwww

call your_epf (command args, command_status, command_state) ;

First Edition 2-8

EXECUTABLE PROGRAM FORMATS

These arguments are defined as follows:

command_args The entire command line as entered by user

command_status The command status returned by the program to
the operating system:

=0 : NO error

>0 s fatal error

<0 : soft error or warning
command_state Information relative to this invocation. It

contains, in the order specified:

command name — command entered by user

version - current version of the structure of
the command state (1 at Rev. 19.4)

vch_ptr — pointer to CPL local variables

preprocessing info — information relating to
what has been preprocessed:

mod_after_date — if nonzero, then the
command processor has found something
modified after the given date

mod before date — if nonzero, then the
command processor has found samething
modified before the given date

bk_after_date — if nonzero, then the
command processor has found something
backed up after the given date

bk before date — if nonzero, then the
command processor has found samething
backed up before the given date

type_dir — a directory has been found
which matches a wildcard

type_segdir — a segment directory has
been found that matches a wildcard

type_file — a file has been found that
matches a wildcard

2-9 First Edition

Software Release Document

type_acat — an access category has been
found that matches a wildcard

type_rbf — a ROAM based file has been
found that matches a wildcard

mbzl — 11 bits that are undefined
verify _sw — the -VERIFY option has been
given

botup_sw — perform full treewalk before
executing program

mbz2 — 14 bits that are undefined

walk_from — the tree level at which the
present treewalk started

walk_to — the present treewalk level

in iteration — command processor is
currently in an iteration sequence

in wildcard — command processor is
currently in a wildcard sequence

in treewalk — command processor is
currently in a treewalk sequence

mbz3 — 13 bits that are undefined

To determine if any of the options has been used, you need only check
the appropriate field in the 'command state' parameter. This
information is set up at the execution time of the EFPF.

EPF Command Function Calling Sequence: You may want to create programs
that pass back information to their callers. The information is
normally passed directly back to the caller via an assignment
statement. An example of this type of program is the string function,
IENGTH., IENGTH takes as its arqument a target string. It passes back
a count of the number of characters in the string. For example:

number_of _characters in_string = length(target string);

EPFs allow this kind of activity at command level. In other words, you
can write a program that directly passes same result back to the
operating system. This is in addition to the command's status. To do
this use the interface below.

First Edition 2-10

EXECUTABLE PROGRAM FORMATS

dcl your_epf entry(char(1024) var, fixed bin(15),
1, 2 char(32) var,

2 fixed bin (15),

2 ptr,

2, 3 fixed bin(31),
fixed bin(31),
fixed bin(31),
fixed bin(3l),
bit(l),
bit(1),
bit(1),
bit(1),
bit(1),
bit(11),
bit(l),
bit(1),
bit(14),
fixed bin(15),
fixed bin(15),
bit(l),
bit(1),
bit(1),

3 bit(13);
1, 2 bit(1),
2 bit(1),
2 bit (14),
1, 2 bit(1),
2 bit(15),
ptr);

call your_epf (command args, command status, command_state,
command_fen_flags, rtn_fon ptr);

WWWWWWwWwWwwWwwwwwwwww

These arquments are defined as follows:

command_args The entire command line as entered by user

command_status The command status returned by the program to
the operating system:

no error
fatal error
soft error or warning

Av I
(=N o Ne]
o oo oo

command_state Information relative to this invocation. It
contains, in the order specified:

command name — command entered by user

2-11 First Edition

Software Release Document

version - current version of the structure of

the

command state (1 at Rev. 19.4)

vch_ptr — pointer to CPL local variables

preprocessing_info — information relating to
what has been preprocessed:

First Edition

mod_after_date — if nonzero, then the
ocommand processor has found something
modified after the given date

mod before date — if nonzero, then the
command processor has found something
modified before the given date

bk _after_date —— if nonzero, then the

command processor has found samething
backed up after the given date

bk_before date — if nonzero, then the
ocommand processor has found samething
backed up before the given date

type_dir — a directory has been found
which matches a wildcard

type_segdir — a segment directory has
been found that matches a wildcard

type_file — a file has been found that
matches a wildcard

type_acat — an access category has been
found that matches a wildcard

type_rbf — a ROAM based file has been
found that matches a wildcard

mbzl -~ 11 bits that are undefined

verify_sw — the -VERIFY option has been
given

botup sw — perform full treewalk before
executing program

mbz2 — 14 bits that are undefined

walk_from — the tree level at which the
present treewalk started

2-12

EXECUTABLE PROGRAM FORMATS

walk_to — the present treewalk level

in iteration — command processor is
currently in an iteration sequence

in wildcard — command processor is
currently in a wildcard sequence

in treewalk — command processor is
currently in a treewalk sequence

mbz3 — 13 bits that are undefined

command_fon_flags — information relative to
this ocommand function invocation. Its
oontents in the order specified are:

command _fon_call — indicates that this
program has been called as a command
function

no eval_vbl fons — when set, this
indicates that ocommand function and
global variable references are not to be
evaluated

mbz — 14 bits that are undefined

rtn fon ptr — pointer to a structure that
describes the values returned to the caller
of the EPF function. This structure is
itself defined as:

dcl 1 rtn fon_struc,
2 version fixed bin(15),
2 value_str char(*) var;

Where:

version — 1is the structure's version
(see ensuing discussion)

value_str — is a string of 1 to 32767
(or any lanquage-imposed limit)

characters holding the value to be
returned.

2-13 First Edition

Software Release Document

First obtain the value of rtn fon ptr by calling ALCSRA (or ALSS$RA).
After the call to ALCSRA, your program must set the version number of
rtn fon_struc to 0 and copy the value of that structure into value str.
Then the interface sets rtn fon ptr in its main entrypoint's calling
sequence and returns to the calling program. To get the space needed
for rtn fen_struc use the following:

dcl alc$ra entry(fixed bin(31), ptr options(short));
call alc$ra(space_needed, rtn _fon ptr);
space_needed is the total amount of space needed for rtn fon struc in

words, It is the sum of the space needed for your return value and the
rtn_fcn_struc version.

Note that ALCSRA provides you with the value for rtn fon ptr which you
can then pass back to the command processor.

Library EPFs

Libraries are sets of subroutines that have been bound together into
one file, Each subroutine within the file is known an an entrypoint
and is available to the PRIM)S dynamic linking mechanism. Therefore,
programs external to a library may call subroutines within the library
at run time., An example of a library is the FORTRAN library which
contains entrypoints for the SINE and COSINE functions.

EPF libraries, like static-mode shared libraries, are linked via the
dynamic linking mechanism. This is the main difference between program
and library EPFs.

EPF libraries have all of the same properties as EPF programs with the
exception of how they are started, Addressing is autamatically
handled; the library is mapped into memory; its program image may be
shared; its linkage is autamatically allocated; and so on.

EPF libraries may be created as your own persomal libraries. These
libraries have the same properties as the standard shared language
libraries. The space used for the linkage comes entirely out of your
address space. Linkage is generally initialized the first time a 1link
is made to an entrypoint within the 1library. More about linkage
initialization is discussed later,

EPF libraries are not SHARED into memory as are static mode libraries.
The normal EPF mechanism is used by the dynamic linking mechanism to
bring EPF libraries into memory. This means that an EPF library is not
put into your address space until the first time the dymamic linking
mechanism needs to look in the library for an entrypoint.

First Edition 2-14

EXECUTABLE PROGRAM FORMATS

Since EPF libraries are created by you as RUN files, you can restrict
access to them by using the file system access control mechanism. That
is, you can give certain users valid access rights to your file while
denying access richts to others. To take this idea to the extreme, you
can create a library that is truly private by only giving yourself
access rights to the EPF library.

There are two different types of EPF libraries, Program Class and
Process Class. The types are differentiated by when their linkage is
initialized. The next three sections discuss the two library classes
and the rules involved in linking to libraries. ’

Program Class Libraries: Program class libraries are directly
comparable to the old static mode language libraries. The linkage for
these libraries is initialized the first time a link is made to an
entrypoint within the library from a new program invocation.

. .
EPF proaram class libraries

1 . L
—_ie Vel Wl e b, Uc‘_*'Ar than static de 1lur

e Wiadn Scatll moae aries in
that multiple programs can link to a library simultaneously. Remember,
the enhanced command enviromment allows a program to "call® another
program. Both programs may wish to use the same library. If the
library were a static mode library, the first time the second program
linked to the library, the library would be initialized. Since there
is only one linkage area for any static mode library, this
initialization would corrupt the linkage with respect to the first
program's use of the library. If the library were an EPF program class
library, it would be given a new linkage area for every program that
linked to it. There would be no ocorruption of linkage as in the

previous example.

Process Class Libraries: EPFs allow you to build libraries which are
only initialized once during a login session. These libraries are
known as process class libraries. The linkage area for a process class
library is allocated only the first time the dynamic linking mechanism
looks for an entrypoint within that library.

Process class libraries are useful for sets of entrypoints that only
need static data initialized once or that don't need static data at
all. The latter case would be a set of entrypoints whose actions are
determined solely by their input argquments, oonstant data, and any
local variables (variables that are kept on the stack).

Linking Rules: Since the 1linkage for the various libraries is
initialized at different times, certain kinds of links may not be made.
For example, a process class library cannot link to a program class
library. This is best shown by a scenario:

2-15 First Edition

Software Release Document

Program Pl links to process class library Ll

Il has its linkage initialized

L1 links to program class library 12

I2 has its linkage initialized

L2 returns to Ll which returns to Pl

Pl calls program P2

P2 links to process class library Ll

Ll links to program class library L2

I2 has its linkage initialized again
This second initialization of I2 may yield different results for Ll
than did the first link to L2. I1 would not know this and would
generate results based upon the value returned from L2. L1 would then
pass this invalid result back to P2, P2 would then generate bad
results. The user might never realize anything bad ever happened; not
a nice thing to do to a user. Even worse, the programmer would have an
even harder time of tracking down this kind of an error.

The following table shows which links are valid:

PROGRAM PROGRAM CLASS PROCESS CLASS STATIC MODE

FROM/TO LIBRARY LIBRARY LIBRARY

PROGRAM | NA | VALID | VALID | VALID |
PROG, LIB. | NA | VALID | VALID | VALID |
FROC, LIB. | NA | INVALID | VALID | INVALID |
STAT, LIB. | NA | VALID | VALID | VALID |

In addition, there is one other rule:

Whenever a static mode library is in use, linking to it is only
valid within the same program or library invocation.

Specifically, if program Pl or program class library Ll or static mode
library 12 links to static mode library I3, no other program may link
to I3 until all program and libraries are fully exited. Fully exited
means that the original command level is returned to. Entering a

First Edition 2-16

EXECUTABLE PROGRAM FORMATS

terminal quit or taking an exception that increases the current command
level does not fully exit a program or library. Entering a terminal
quit or taking an exception and then releasing to or past the program
angor libraries in question does fully exit the program and/or
libraries.

When To Use EPFs

Both program and 1library EPFs may be used at all times. Their
introduction removes the need to build any new static mode programs or
libraries. The only exception to this statement is the kuilding of
libraries that need to have per-system linkage. Currently, only
specially hand-built static mode libraries handle this situation.

How To Build An EPF

EPFs are built in the exact same manner as static mode programs except
that you d not have to worry about addressing. You perform all the
normal design, editing, and ocompiling steps. Nothing is different
until it is time to load the compiled modules. Instead of using SEG to
load your program, you use BIND. If the program requires LOAD, BIND
can not handle it; that is, it is probably in R-mode or in S-mode.

What BIND Does

BIND is the new linker for EPFs. It takes the place of SEG; SEG

cannot produce EPFs. It is much easier to use than SEG. This is
because:

e BIND has only one command that specifies an address. This is
the SYMBOL command.

e BIND provides you the ability to tell the system's oommand
processor which of its extended features such as wildcarding or
treewalking it should perform.

e BIND can be run either as a subsystem taking its commands one at
a time or directly from the command line.

e BIND allows you to build your own persomal EPF libraries.
e BIND has a built-in HELP facility.

2-17 First Edition

Software Release Document

Using BIND

BIND may either be run from the command line or as a subsystem
comparable to SEG. To run BIND from the command line enter:

BIND [epf_filename] arquments

epf_filename is the name of the file into which BIND places the loaded
EPF; if not specified, the EPF takes the mame of the first bimary
loaded
arquments are as follows:

-I0AD, -I0 list_of pathnames

-LIBRARY, -LI [list_of_ pathnames]

-RELOAD, -RL list_of_ pathnames

-ENTRYNAME, -EN list_of_ names

-LIBMODE, -LM ~PROGRAM | —-PROCESS
-SYMBOL:, -SY symbol_name definition

definition is the <symbol _name> or absolute virtual address
<segno>/<wordno>

symbol_name must not be an already defined symbol, or an error results.
For example, to build an EPF named MY_EPF from binaries named MY_PROGL

and MY_PROG2 that need standard libraries functions enter:
BIND MY _EPF -I0 MY_PROG1 MY_PROG2 -LI
This will generate an EPF named MY_EPF.RUN,
To build a program class library named MY _EPFLIB from a binary named
MY_ENTRY that contain the entrypoints ENT1, ENT2, and ENT3 enter:

BIND MY_EPFLIB -LO MY_ENTRY -LIBMODE —PROGRAM —ENTRYNAME ENT1 ENT2 ENT3

This will generate a program class EPF library named MY_EPFLIB.RUN.

To run BIND as a subsytem enter:

BIND [epf_filename]

First Edition 2-18

EXECUTABLE PROGRAM FORMATS

All arquments are now entered when the BIND prompt is given in exactly
the same manner as commands would be given to SEG. The arquments are
as above except that the "-" is not needed. That is, at the BIND
prompt, enter LOAD rather than -IOAD. Running BIND in this manner will
generate epf filename, RUN.

How Do I Run An EPF?

Running a program EPF is no different than running any static mode
program; just issue the RESUME command for the EPF in question, For
example, if you want to run MY_EPF enter:

RESUME MY_EPF

The operating system will autamatically detect that MY EPF is an EDF
rather than an R-Mode image and execute the file as an EPF. The system
is able to do this because all EPFs must use the RUN suffix.

Library EPFs are executed in a very different manner. They are
dynamically linked to at run time. This happens when a reference is
made to an entrypoint within the library. The dynamic linking
mechanism autamatically detects that the entrypoint is within an EPF
library and executes the library as an EPF.

Programming With EPFs

As has been previously mentioned, programming with EPFs is much easier
than programming with static mode images because you do not have to
worry about addressing, ‘The entire edit, ocompile, load, execute
sequence is faster because the EPF loader, BIND, is much easier to use
than either LOAD or SEG. EPFs allow you to write commands much more
readily than in the past. Even command functions can now be written,

EPFs give you a choice of writing large applications in two distinct
ways; the application may be one large program image or the
application may be broken into many different EPF libraries.

The former choice is very much comparable to how applications are built
by you today. This can be a very good way to build an application.
Using EPFs will make this job go faster because EPFs are faster to
develop than are static mode programs.

The latter choice lends itself to programming in a structured
enviromnment, You can use EPF libraries to hold all the pieces of your
application that you have already debugged. These pieces never have to
be reloaded. ‘The current part can be worked on separately as either a
program EPF or as another library EPF. You can also structure you
application into a set of clearly ordered libraries that can be worked

2-19 First Edition

Software Release Document

on separately. Simply put, EPF libraries give you much more
flexibility in how you build an application than was ever available
before.

The Enhanced Command Environment

One of the main objectives of the EPF product is compatibility. Every
program that used to run under PRIMOS must still run under PRIMDS. The
command enviromment should look the same as it always did. To the
everyday user, only small changes in the command enviromment will be
evident., Only the more advanced user, and the programmer who makes
heavy use of the new features provided with EPFs, will be able to
detect all of the new features.

The small changes that the everyday user will see come in two areas;
1imits on their resource utilization and a slightly higher visibility
for command levels. When a users log in, they are placed at command
level 1. Whenever an exception is seen or a terminal quit is entered,
a new command level is created. The limits on resources are discussed
in this chapter. The visibility of command levels is discussed in the
section on the Mini-Command Level.

Entrypoint Search List: With the introduction of EPF libraries,
especially the ability to define private, per-user libraries, PRIMIS
needs a way to find out where the various kinds of libraries may be
found. The Entrypoint Search List fulfills this need.

What's A Search List?: A search list is a set of rules that tell the
User of the search list where to look for an item. In the context of
EPFs, the Entrypoint Search List will tell PRIMOS where in the file
system hierarchy to look for a library.

Search List Format: On our system, a search list is an editable ASCII
file that contains the rules, one per line, telling the system where to
look for the object in question. In other words, to create a search
list, all one needs to do is create a file, with any editor, that
contains a list of rules, one per line, Comments may also be placed
within a search list. Comments must begin with the characters n/kn,

A distinction must be made between a search list template file and the
current, in-memory version of the search list. A template exists as an
editable ASCII file of pathnames. The in-memory version of the search
list is updated from the search list template file via a command.

First Edition 2-20

EXECUTABLE PROGRAM FORMATS

Entrypoint Search List Rules: The Entrypoint Search List may contain
three kinds of rules.

® EPF Library Pathname - a pathname to an existing EPF library
tells the system to look in that library for the entrypoint.

® Static Mode Library - the string -static mode_libraries tells
the system to scan the set of shared static mode libraries for
the entrypoint.

® Use System Default Entrypoint Search List - the string -SYSTEM
tells the system to embed the entire system default entrypoint
search list at this point in the search list. This search rule
is useful onlyf if the -NO_SYSTEM option of the Set_Search Rule
command is used. This command is explained in detail below.

Duplicate rules are not allowed and will be flagged as duplicates.
Most search list rules will be complete EPF pathnames, although full

pathnames for library EPFs are not necessary.

I
The EPF runfile suffix of .RIN may or may not be indicated.

The search list facility will not detect whether or not the EPF library
exists,

When the dynamic linking mechanism finds that either a library EPF does
not exist or that the user in question does not have the necessary
access rights to the library EPF, the search rule which identifies the
library will be ignored. No error will be reported. The next search
rule in the entrypoint search list will be processed.

System Default Entrypoint List: In order to maintain the basic
ocompatibility of the EPF product, it must be possible for the average
user to reach the EPF libraries that are provided with the basic system
without having to create their own entrypoint search 1list. This is
acoomplished via the System Default Entrypoint List. This list is
named ENTRYS.SR and is kept in the directory SYSTEM. It is provided
with the master disk software. This file should be ACLd so that it may
be altered only by the System Administrator.

Search List Commands: There are two commands that manipulate
entrypoint search lists:

Set_Search _Rules [<search_list_pathname> | [-List_NAMe ENTRYS,
—No_System]
-DeFauL.T ENTRYS

List_Search Rules [ﬂgltgs]

2-21 First Edition

Software Release Document

The Set_Search Rules command is used to update the in-memory copy of a
user's search list from the file template <search list_pathname>. The
entryname portion of <search list pathname> must end in the suffix
ENTRYS.SR but may include any other file name components., An exception
to this rule is, if the -LIST_NAME ENTRYS option is used, the entryname
portion of <search list pathname> does not need to end in the suffix
ENTRYS.SR. The .SR suffix does not need to be included on the command
line with this command.

If a user does not explicitly set up an ENTRYS search list, the
entrypoint search rules will be set up from the system default f£file,
If a user desires to restore the entrypoint search rules to the system
default rules, the -DEFAULT ENTRYS option to the Set Search Rules
command should be used.

The default oondition is to force the inclusion of the search rules as
defined in the system default search list at the head of the user's
search list, This will have the effect of forcing the search of the
system libraries, as defined in the system default search 1list
SYSTEM>ENTRYS.SR, to be searched before any user private library EPFs.
This condition will take effect for those users who either d not
change their dynamic 1linking search list or who issue the
Set_Search Rules command without the —-ND_SYSTEM option.

The -NO_SYSTEM option is meant to allow the user to install the search
list without having the search rules, as defined in the system default
search list, inserted at the head of the search list. If a user issues
the SSR command without this option, the system default search rules
for that search list will be inserted at the head of the list
independent of whether they have included the -SYSTEM search rule as
the first search rule in their search list template., If a user issues
the SSR command with this option, the user may indicate that the

ivate libraries are to be searched before any of the system
libraries. If this option is present on the command line, the system
default search rules may be inserted anywhere in their search list by
including the -SYSTEM search rule in their template file, If the
-ND_SYSTEM option to the SSR command is used and the —SYSTEM search
rule is missing, the user will not be able to access any of the system
default libraries, unless of course the user specifies the individual
library pathnames in the private search list.

Initialization of Dynamic Linking Name Space: Both the user and the
system ocomponents of a user's dynamic linking name space are
initialized each time a process' command enviromment is initialized:
for example, at the issuance of ICE or at process login time or
whenever the dynamic linking name space is reset., Therefore, after a
process' enviromment is initialized, its per-process library search
list consists entirely of system-wide library entries,

First Edition 2=-22

EXECUTABLE PROGRAM FORMATS

Sample Entrypoint Search Lists: The following sample entrypoint search
list is actually an example of a system default entrypoint search list,
ENTRYS. SR:

/* Unless the -N)_SYSTEM option to the Set_Search_ Rules
/* command is used, the system default entrypoint search
/* rules will be inserted here by default.

/* Search my own library EPFs.
myuf d>myepflibs>mylibl, run
myuf &>myepflibs>mylib2. run
myufd>myepflibs>mylib3. run

The following is an example of a tailored entrypoint search list:

/* First search my own EPF libraries.
myuf d>myepflibs>mylibl. run
myuf >myepflibs>mylib2. run
myufd>myepflibs>mylib3. run
/* Next search all the libraries contained within the
/* system default entrypoint search rules.
—-system

Because the user desires to have his own library EPFs searched before
any of the system libraries, this search list would need to be set up
using the -NO_SYSTEM option to the Set_Search Rules command.,

Interaction With Static Mode Libraries: In order for the system to
find any static mode shared library, the -static mode_libraries rule
must be included in either the file SYSTEMMENTRYS.SR or in your
individually defined entrypoint search list,

Programs Calling Programs

One of the best new features of the EPF product allows a currently
executing program to actually call another program that is not a
library entrypoint without returning to command level. This is done
without affecting the calling program's environment., When the called
program finishes, execution will continue within the intial program.

When Might A Pro%ram Call Another Program: There are basically two
different reasons for a program to use this feature:

e To execute an external command as an order from a user. For

example, a purchasing system might be created wherein a user is
given the commands needed to order various products. When the

2-23 First Edition

Software Release Document

user runs the system, a program is executed that reads the
user's commands. Each command is kept as an external program in
some directory known to the purchasing system program. Whenever
the user enters a command, the command reading program calls the
appropriate external program to service the user. Since each
command is a separate piece, each piece can be altered without
affecting any other piece. Also, new commands can be easily
added.

e To start another subsystem from within the current subsystem.
For example, an engineering development enviromment subsystem
may need to interact with the purchasing system noted above when
engineers need to buy parts for their projects. The development
enviromment calls the purchasing system which then asks the
engineers for their orders. When all orders have been made, the
engineer returns to the development enviromment,

Limitations On Programs Calling Programs: Since programs may be either
RESUMEd or executed as libraries, limitations must be defined for both
enviromments,

Limitations On RESUMEd Programs: Basically, if the programs to be
called are EPFs, the only limitation on programs calling programs is
defined by the System Administrator on a per-user, per-project, or
per-system basis. You can find out what your limit is with the command
LIST LIMITS. These limits are discussed in more detail in the section
on New User Attributes. A program can call another program repeatedly
and can call as many different programs as it wishes. A program can
call another program which can call another program and so on. This
all stops as soon as any static mode program is called.

Only one static mode program may be active at any time. Please note
that static mode shared libraries are samewhat of an exception to this
rule, Static mode programs cannot call static mode programs as the
second program would likely overlay the first,

Static mode programs may call EPFs. These EPFs can then call other
EPFs. An EPF program may call a static mode program. This static mode
program can then call EPF programs,

Limitations On Libraries: Generally the limitations on libraries are
the same as those on RESUMEd programs with the addition of the linking
rules noted in the section Library EPFs. There is one major exception.

It may be the case that a program called from another program or from a
library needs to use a library that is already in use. If this library
is not an EPF program class library, then the called program may not
use the library since it is already in use. Thismay be a difficult
problem to foresee as the programmer of the caller may not know about
the libraries needed by the callee and vice versa.

First Edition 2-24

EXECUTABLE PROGRAM FORMATS

How A Program Calls Another Program

There are three ways for one program to call another:
e via a simple and friendly interface, CP$
® via a second less friendly interface, EPFS$RUN
® via a more complex mechanism which uses the EPF$ routines

For most applications, the CP$ or the EPFSRUN interface will be enough,
The first two examples noted above will most likely use the CP$
interface. CP$ can perform all wildcarding, treewalking, and iteration
but will not perform abbreviation expansion. If the externmal program
is an EFF and does not need any of these command processor features,
EPFSRUN is suitable. Only a few applications need to use the EPF$
routines, Please note that the EPF$ routines can only be used to
execute EPFs.

CPS Interface: The CP$ interface is designed for most applications
that need to call external programs., It is designed with ease of use
in mind. It permits arquments to be passed to and from the called
program. All a programmer has to do is call CP$ with an arqument that
represents a ocommand line, This pseudo oommand line will be a
character string representation of the external program to be called.
The following is the full calling sequence for CPS: :

dcl cp$ entry (char(1024) var, fixed bin(15), fixed bin(15),
1, 2 bit(1), 2 bit(14), ptr, ptr);

call cp$ (command line, status, command status, command flags,
local_variable ptr, rtn function ptr);

These arguments have the same meanings as those mentioned previously on
the EPF calling sequence. Therefore you need only pass the arquments
that your program requires, Remember, you must pass command line,
status, and command_ status.

For example, a user may have a purchasing program that allows several
different commands, each of which calls an external program that can be
called by CPS. The purchasing program prompts the user to insert a
command-line; the user inputs ORDER WRENCH (or the longer form below).
ORDER is the name of the external program that does the ordering. Part
of the purchasing program would therefore resemble the following:

/* At this point the User is prompted to input a command., */

/* The User now wants to ORDER WRENCH. But, unless ORDER */
/* is in OMDNCO, the RESUME command must be added to execute */
/* ORDER, which is probably one of several programs within a */
/* subdirectory of programs: RESUME PROGS>ORDER WRENCH., */

2-25 First Edition

Software Release Document

/* The subroutine CLSGET is called to gather the termimal input. */
call cl$get(command line, command line length, status);

/* Now CP$ uses that command line to fetch */
/* the program that will honor this request. */

call cp$('RESUME PROGRS>ORDER WRENCH', status, command _status);

Again, remember that CP$ can perform all wildcarding, treewalking, and
iteration but will not perform abbreviation expansion.

Using EPFSRUN: The EPFSRUN interface is designed for those
applications that need to call external EPF programs. It has also been
designed with ease of use in mind., It permits arguments to be passed
to and from the called EPF. Basically, all a programmer has to & is
open the EPF file and then call EPF$RUN with the arquments needed by
the EPF. The following is the full calling sequence for EPFSRUN:

dcl epfSrun entry (fixed bin(15), fixed bin(15),
fixed bin(15), char(1024) var, fixed bin(15),
1, 2 char(32) var,

2 fixed bin(15),

2 ptr,

2, 3 fixed bin(3l),
fixed bin(31),
fixed bin(31),
fixed bin(31l),
bit (1),
bit (1),
bit(1),
bit (1),
bit(1),
bit(11),
bit(1),
bit(1),
bit(14),
fixed bin(15),
fixed bin(15),
bit(l),
bit(1),
bit(1),
bit(13),

1, 2 bit(1),
2 bit(15),
ptr);

epf_id = epf$run (key, unit, status, command args,
command_status, command_state,
ocommand_flags, rtn _function ptr);

WWWWWWWwWwWwWwWwWwwwwwwwww

First Edition 2-26

EXECUTABLE PROGRAM FORMATS

key is used to tell EPFSRUN how far to go with the execution of the
EPF, It has three values:

k$invk run, and encache, upon completion, the EPF; this
is the key you will normally use

k$invk_del run and delete upon completion but do not encache
the EPF; you may use this key upon occasion

k$restore_only only map, allocate linkage for, and initialize the
EPF but do not invoke it; you will probably never
need this key
unit is the file on which the EPF is open for VMFA read.
The rest of the argquments have the same meanings as those noted in the
previous sections on the EPF calling sequence., Therefore, you need
only to pass the arquments that your program requires, Remember you
must pass command line, status, and command_status.
If the EPF you wanted to run was named MY_EPF and MY _EPF needed no
arguments, you would use the following code sequence:
/* First open the EPF, */

call srsfx$(k$vmr, 'MY_EPF', src unit, type, n suffixes,
suffix list, basename, suffix used, status);

/* Now run the EPF, */

epf_id = epf$run (k$invk, unit, status, command_args,
ocommand_status, command state);

Mini-Command Level

As has already been mentioned, the EPF product provides the user with a
much better command enviromment in which to build and run programs,
Another improvement has also been made which helps the system control
the allocation of memory, a very valuable resource.

Whenever any program is run, the program needs memory in which to
execute. This memory comes from the system and is shared among all
users. As the EPF product allows more than one EPF to be suspended at
one time, it is possible for a user to use up a lot of memory without
even noticing. Remember, a program is suspended every time you enter a
quit or whenever a program exception, such as an access violation, is
taken. In addition, EPF libraries use up valuable space in a way that
was previously impossible. Therefore, to remind users that they are
using a lot of memory, only a fixed number of suspended programs are
allowed. (This number is set by the System Administrator and may vary

2=-27 First Edition

Software Release Document

from user to user. Please see the section on New User Attributes for
further information.) When this number is exceeded, the user enters
the Mini-Command level.

The Mini-Command level is just like a normal command level except that
a fixed subset of PRIMS commands are allowed. These commands allow
users to free up the memory in use by the suspended programs. They
prevent any more memory from being used. In addition, private command
level abbreviations are disabled at the mini-command level.

When you exceed your allocated number of command levels the following
message is printed:

You have exceeded your maximum number of command levels.,

You are now at mini-command level. Only the commands shown below are
available. Of these, RLS -ALL should return you to command level 1.
If it does not, type ICE. If this problem recurs, contact your System
Administrator.

Valid mini-commands are:

Abbrev Full name Abbrev Full name

C CLOSE QM QOMUT

IMSTK DUMP_STACK

ICE INITIALIZE _COMMAND ENVIRONMENT LE LIST EPF

LL LIST LIMITS LMC LIST MINTI_COMMANDS
LS LIST SEGMENT IOGIN LOGIN

1.0 LOGOUT P ™

R PRERR RDY RDY

REN REENTER RLS RELEASE,_LEVEL
REMEFF REMOVE_EPF S START

If you try to enter another quit, the following message is printed:

Terminal QUIT invalid now. (listen)

The subset of PRIMS commands that are permitted may be obtained by
entering List_Mini Commands (LMC) as follows:

First Edition 2-28

EXECUTABLE PROGRAM FORMATS

Abbrev Full name Abbrev Full name

C CLOSE QM QOMOUT

IMSTK DUMP_STACK

ICE INITIALIZE _COMMAND ENVIRONMENT LE LIST EPF

LL LIST LIMITS LMC LIST MINI_COMMANDS
LS LIST SEGMENT IOGIN LOGIN

1O LOGOUT P m

R PRERR RDY RDY

REN REENTER RLS RELEASE LEVEL,
REMEPF REMOVE_EPF S START

OK,

At this point, the oommands that you will use
RELEASE_LEVEL and CLOSE. You should probably use bo

C -ALL;RLS -ALL

This frees all of the memory that you have used for program EPFs and
Closes all open file units. Library EPFs remain mapped to your user
process.

If you want to return to your initial attach point and run your LOGIN
program when you reach the Mini-Command level, just enter the
INITTALIZE, COMMAND ENVIRONMENT (ICE) command,

If your program became suspended because of an exception, such as
access violation, you may wish to try diagnosing the problem before
releasing the program. Commands such as PM, DMSTK, and QOMD are useful
for this kind of debugging.

If your program became suspended because you ran out of memory, you may
wish to try returning some memory that is not currently in use to the
system and then REENTER your program. LIST EPF (LE) and LIST_SEGMENT
(LS) allow you to see what EPF is in which segment and which segments
are currently in use. With this information available, you can then
use the REMOVE_EPF (REMEPF) command to delete an EPF which will free up
its associated memory. You can then try a REENTER (REN) command.

New Commands

Many new commands have been added to the system for use with EPFs.
Some of these commands relate to entrypoint search lists, some relate
to the enhanced command enviromment, and same relate directly to EPFs.
In addition, the QOPY command has been modified to allow copying an
in-use EPF.

2-29 First Edition

Software Release Document

Entrypoint Search List Commands

Set_Search Rules:

SET SEARCH RULES [search_list pathname | [-List NaMe ENTRYS,
-No_sSystem]
-DeFaul.T ENTRYS
~Help

Abbreviation: SSR

This command updates the in-memory copy of a user's search list from
the file template <search list_pathname>.

search_list pathname Name of an entrypoint search list. The
search list file template name must end
in the suffix ENTRY$.SR but may include
any other file name components. The .SR
suffix does not need to be included on
the command line with this command.

For example:

SET_SFEARCH_RULES MY_UFD>ENTRYS.SR

List_Search Rules:

List_Search Rules [EtgeﬂlzgS]

Abbreviation: LSR

This command 1lists the in-memory copy of a user's search list. For
example:

LIST SEARCH RULES
Search list template file: <DCHL>SYSTEM>ENTRYS.SR
LIBRARIES*>SYSTEM LIBRARY.RUN

LIBRARIES*>FORTRAN_IO_LIBRARY. RN
—~STATIC _MODE_LIBRARIES

First Edition 2-30

EXECUTABLE PROGRAM FORMATS

Command Enviromment Commands:

LIST _LIMITS
LL

You use this command to display information on various attributes
affecting your command envirorment. The LIST_LIMITS command displays
the following attributes:

¢ The number of command levels you can use

e The number of programs you can invoke at any command level

® The number of private dyramic segments you can use

® The number of private static segments you can use
LIST_LIMITS is useful when you think you may have exceeded one of these
limits, For example, if you have used up all the ocommand 1levels
allocated to you and have reached mini-command level, you can use this
command to check your limit,

The System Administrator sets all these attributes either in your user
profile or on a systemwide basis.

The following example shows how LIST LIMITS displays this information.

OK, LIST LIMITS
Maximum number of command levels: 10
Maximum number of program invokations: 10

Maximum number of private static segments: 100
Maximum number of private dynamic segments: 150

OK,

INITIALIZE_COMMAND FENVIRONMENT:

Initialize Command Enviromment
ICE

This command re~-initialize the user's Ring 3 command enviromment and
will close all open files including any open (OMOUTPUT file, reset the
Ring 3 command enviromment to an initial state, and execute a user's
login file,

2-31 First Edition

Software Release Document

LIST_SEGMENT:

LIST SEGMENT [segno-l ... segno-8]| -STATIC -DYNAMIC -NAME

-ST -DY
-BRIEF -NO_WAIT -HELP
-BR -NW -H

Abbreviation: LS

The LIST SEGMENT command displays information about the private
segnents of the current user which are in use. The command displays
only the DIAR2 private segments. The DIAR2 segments are defined within
a range from '4000 to '5777.

Segment numbers are displayed in ascending numerical order. If you
give the command with no options, then LIST SEGMENT displays only the
segment mumber and the access rights assigned to each segment. Three
possible combinations of access rights may be assigned:

Access Code Access Allowed

Null No access allowed
RX Read and execute access
RWX Read, write, and execute access

The following example shows the output of a LIST SEGMENT command
without options.

OK, LIST SEGMENT

3 Private static segments.
segment access

4000 RWX
4001 RWX
4002 RWX

4 Private dynamic segments.
segment access

4340 RX
4341 RX
4375 RWX
4377 RWX

First Edition 2-32

EXECUTABLE PROGRAM FORMATS

You use seqgno-l ... seqno-8 to specify up to eight octal segment
numbers on which you want information. You cannot include wildcards in
the segment numbers or use iteration with them. If you do not give any
segment numbers, LIST _SEGMENT displays information for each segment
that is currently in use in the static and dynamic segment ranges,

The following examples show two uses of LIST SEGMENT with specified
segment numbers.

OK, LIST_SEGMENT 4000 4001 4005 4377

2 Private static segments.
segment access

4000 RiX
4001 RWX

1 Dynamic Segments,
segment access

4377 X

Private static segment 4005 is not currently in use.

OK, LIST_SEGMENT 4374 4376 4372

3 specified private dynamic segments are not currently in use.

ion Meaning

[~STATIC] Displays information only about static
-ST private segments.

[~DYNAMIC] Displays information only about dynamic
-DY private segments.,

[-NAME] Displays the name of any EPF file which
is associated with the segment, (An EPF
may be associated with a segment if the
procedure or the linkage areas for that
EPF are assigned to that segment.,) This
option is valid only for your own
private, dynamic segments,

If more than one EPF is associated with a
given segment, as may happen if the
linkage areas of several EPFs are
allocated within the same segment, the
EPF pathnames are displayed
alphabetically by filename, one per line.

2-33 First Edition

Software Release Document

If a given EPF uses more than one
segment, the EPF pathname will appear
alongside the segment number/access right
mrir for each segment.

If a dynamic segment is not associated
with an EPF, the word "none" appears by

that segment.
[-BRIEF Displays only total number of segments
-BR which are currently in use in each
segment range.

The following example shows the use of the -NAME option.

OK, LIST SEGMENT -NAME

3 Private static segments,
segment access

4000 RWX
4001 X
4002 RWX

4 Private dynamic segments.
segment access epf

4340 RX <DEN>LIBRARIES*>SYSTEM_LIBRARY. RUN

4341 RX <DEN>LIBRARIES *>FORTRAN_LIBRARY . HUN

4375 RiX (none)

4377 WX <DEN>LIBRARIES*>FORTRAN LIBRARY. KIN
<DEN>LIBRARIES *>SYSTEM LIBRARY.RIN

The next example shows the summary display provided by the -BRIEF
option,

OK, LIST_SEGMENT -BRIEF

3 Private static segments.

4 Private dynamic segments.

To control screen scrolling, use the ~-NO_WAIT option. To remind
yourself of the syntax of the command, use the -HELP option.

First Edition 2-34

EXECUTABLE PROGRAM FORMATS

Option Meaning
[-NO_WAIT Enables termimal screen scrolling, This
-NW option suppresses the —More— prompt

that is otherwise given at the end of
each 23 lines of display.

If you do not specify -NO_WAIT, PRIMDS
prompts you before scrolling the termminal
screen. To display the next screen of
output, respond Y, YES, OK, NEXT, or
press RETURN, To exit from the command,
respond N, N0, Q, or QUIT.

-HELP] Displays the syntax of LIST SEGMENT.

The -HELP display is also printed if
PRIMOS encounters an error while rarsing
the command,

List Mini_Commands:

LIST MINI_COMMANDS [command match]
Abbreviation: IMC

LIST_MINI_COMMANDS displays the names of PRIM)S commands that you can
use after you reach mini-command level, as explained earlier.

A command match is possibly a wildcard-laden character string that is
used as a pattern match for mini-commands to be listed, If you leave
out this argument, LIST MINI_COMMANDS displays the names of all the
PRIMDS commands that you can use at mini-command level.

For example, if you do not specify a command match:

OK, LIST _MINI COMMANDS

Abbrev Full name Abbrev Full name

C CLOSE 60, 0] QOMUT

IMSTK DUMP_STACK

ICE INITIALIZE_COMMAND ENVIRONMENT LE LIST EPF

LL LIST LIMITS LMC LIST._MINI_COMMAND
S

LS LIST_SEGMENT LOGIN LOGIN

LO LOGOUT P M

R PRERR RDY RDY

REN REENTER RLS RELEASF, LEVEI,
REMEPF REMOVE_EPF S START

2-35 First Edition

Software Release Document

If you specify the- command match LIST@E:

OK, LIST MINI COMMANDS LIST@@

Abbrev Full name Abbrev Full name
LE LIST EPF LL LIST LIMITS
LMC LIST MINI_QOMMANDS LS LIST SEGMENT
OK,

EPF Commands :

LIST EPF [pathname-l ... pathname-8]

-ACTIVE -NOT_ACTIVE -NOT MAPEED
[]
-AC -NA -NM

~PROGRAM -LIBRARY sacms]
-LI -SEGS

—~COMMBND_PROCESSING]
-ED

-DETAIL
~DET

[
=
[-EPF_DATA]
[
[

-NO_WAIT —HELP]

Abbreviation: LE

You use this command to display information on EPFs. The LIST _EPF
command can display information about EFFs whether or not the EFF is
currently mapped to your address space. That is, the command works on
two domains:

1.

2.

Your address space. You can display information on any or all
of the EPFs that are mapped into your address space. For
example, if you quit from a running EPF, it remains mapped into
your space.

The file system. You can display information on any EPF by
giving its pathname. If you want to find out about an EPF
that's not mapped to your address space, use the ~NOT._MAPFED
option, described below.

First Edition 2-36

EXECUTABLE PROGRAM FORMATS

Unless you use the —NOT _MAPPED option, LIST EPF looks for an EPF that
is already mapped into your address space. If you give the pathname of
an EPF that is not mapped, without specifying the -NOT MAPFED option,
LIST_EPF displays no information about that EPF.

You can use pathname-1 ... pathname-8 to specify up to eight pathnames
of EFFs. You need not include the EFF suffixes .RUN or .RPn, (where n
is one of 10 decimal digits). These pathnames may be simple filenames
or full pathnames.

You may include wildcards within the entryname portion (that is, the
final component) of the pathname but LIST EPF does not support
treewalking or iteration.

This example shows how to use LIST EPF with a pathname:

OK, LIST EPF <MAGNUM>LIBRARIES*>@Q

2 Process-Class Library EFPFs.

(not_active) <MAGNUM>LIBRARIES*>FORTRAN LIBRARY.RJN
(active) <MAGNUM>L IBRARIES*>SYSTEM_LIBRARY.RUN

1 Program-Class Library EPF.

(not_active) <MAGNUM>LIBRARIES*>FORTRAN IO I.IBRARY, RUN

OK,
If you give the command with no options, LIST EPF displays the full
pathname of the EFPF file or files, and sorts the files by Yype. This
type may be one of:

® Process-Class Library EPF

® Program-Class Library EPF

® Program EPF
Within these types, LIST EPF displays the names in alphabetical order
based on the filename of the EPF. The names of the EPFs displayed
include the .RUN or any of the .RPn suffixes, whichever applies.

LIST_EPF also displays the status of each EPF. The status of an EPF
may be one of these three: active, not active, or not mapped.

Active: PRIMDS treats an EPF as active if it is mapped to a user's
address space and:

1. The EFF is a program or program—class library EPF that has been
suspended while executing or

2-37 First Edition

Software Release Document

2. The EPF is a process—class library and has been initialized.
This is also called an in-use EFF.

Not active: PRIMDS treats an EPF as not active, or inactive, if it is
mapped to the user's address space but is neither a suspended EPF nor
an in-use process-class library EPF.

Not mapped: PRIMS classifies all other EPFs as not mapped.

If you use LIST EPF with a filename, rather than a pathname, the

command displays the full pathnames of all the EPFs with that filename,
as this example shows:

OK, LIST_EPF LD

2 Program EPFs.
(active) <DEN>CMDNCO>LD. RUN
(active) <DEN>TIM>LD. RUN

If you do not specify a pathname, LIST EPF displays information for all
EPFs currently mapped to your address space, as shown in the following
example:

OK, LIST _EFF

1 Program—Class Library EPF.

(not active) <DEN>LIBRARIES*>FORTRAN_IO_LIBRARY.RUN

1 Process—Class Library EPF.

(active) <DEN>LIBRARIES*>SYSTEM_LIBRARY.RUN

3 Program EPFs.

(active) <DEN>CMDNCO>LD. RN

(active) <DEN>TIMMLD. FUN
(not active) <DEN>TIM>SUBL>SUB2>SUB3>SUB4>SUB5>SUB6>MY_PROGRAM. RUN

If the file you specify in pathname does not exist, you see the message
shown in the following example:

OK, LIST EPF SPENSER>FAERIE_QUEEN

No entries selected.
OK,

First Edition 2-38

EXECUTABLE PROGRAM FORMATS

To select the kind of EPF to be listed, by type or status, you can use
the following options:

Option Meaning
[~ACTIVE] Selects only active EPFs.
_AC ’
[-I»UI,‘_ACI‘IVE Selects only non-active EPFs,
-NA
~NOT_MAPPED Displays information for the EPF file
-NM given by pathname., If no mathname is

specified, displays information for all
EPF files in the user's current (working)

directory.
[~PROGRAM] Selects only program EPFs,
L -PRG
[~LIBRARY] Selects only library EPFs.
~LI

The following examples show the use of the -ACTIVE and ~NOT_ACTIVE
options.

OK, LIST EPF —-ACTIVE

1 Process-Class Library EFF.

(active) <DEN>LIBRARIES*>SYSTEM_LIBRARY.RJN
2 Program EFFs,

(active) <DEN>CMDNCO>LD. RUN

(active) <DEN>TIMMLD, RUN

OK, LIST EPF -NOT ACTIVE

1 Program—Class Library EPF,

(not active) <DEN>LIBRARIES*>FORTRAN_IO_LIBRARY.RJN

1 Program EFF.

(not active) <DEN>TIM>SUB1>SUB2>SUB3>SUB4>SUBS>MY._PROGRAM. RUN

To find out. what segments and 1linkage areas your EPFs are using,
specify the -SEGMENTS option.

2-39 First Edition

Software Release Document

ion Meaning
[~SEGMENTS] For all EPFs that are currently mapped
—SEGS into your address space, displays:

1. The type of the EPF
2. The status of the EPF
3. The full pathname of the EPF

4, The number of procedure segments
being used by the EPF

5. For each procedure segment in use,
two numbers separated by a colon.
The number to the left of the colon
is an even integer greater than or
equal to zero, preceded by a + sign.
The number to the right of the colon
shows the actual segment number used
for the EPF procedure. The integer
on the left relates the actual
segnent number to the imagimary
segrent number indicated by the same
even integer in the BIND map for the
EPF.

6. The number of linkage areas being
used by the EPF

7. For each linkage area in use, two
numbers separated by a oolon. The
number to the left of the colon is an
even integer less than zero, preceded
by a - sign. The number to the right
of the colon shows the segment/word
number pair of the linkage area used
for the most recent invocation of the
EPF. The integer on the left relates
the actual segment number to the
imaginary segment number indicated by
the same integer in the BIND map for
the EPF.

If procedure segments or linkage
areas have not yet been allocated to
the EPF, the phrase "not allocated"
is displayed.

The following examples show the use of the -SEGMENTS option, both
without and with a pathname.

First Edition 2-40

EXECUTABLE PROGRAM FORMATS

OK, LIST _EPF —SEGMENTS

1 Process-Class Library EFPF,

(active) <DEN>LIBRARIES*>SYSTEM LIBRARY.RUN
7 procedure segments: +0: 4370 +2: 4373
+4: 4374 +6: 4375
+10: 4376 +12: 4377
+14: 4402
3 linkage areas: -2: 4365/55342 -4: 4366/0

-6: 4367/176503
1 Program-Class Library EPF,
(not active) <DEN>LIBRARIES*>FORTRAN_IO_LIBRARY,RUN
2 procedure segments: +0: 4320 +2: 4322
1 linkage area: -2: 4377/25637
3 Program EPFs.

(active) <DEN>CMDNCO>LD. RUN
1 procedure segment: +0: 4370

1 linkage area: (not allocated)
(active) <DEN>TIMPLD. RUN
1 procedure segment: +0: 4045
5 linkage areas: -2: 4046/176500 -4: 4047/5251
—-4: 4047/40454 -10: 4050/52510
-12: 4052/0
(not active) <DEN>TIM>SUB1>SUB2>SUB3>SUB4 >SUB5>MY_PROGRAM. RUN
3 procedure segments: +0: 4015 +2: 4020
+4: 4021
2 linkage areas: (not allocated)

OK, LIST EPF QOPY —SEGMENTS

No entries selected.

The following example shows the use of the -SEGMENTS and the
~NOT_MAPPED options together, for a user attached to the directory
QIDNCO.

OK, LIST EPF QOPY -NOT MAPPED -SEGMENTS

1 Program EPF,
(not mapped) <DEN>CMDNCO>COPY,RUN

2 procedure segments: (not allocated)
2 linkage areas: (not allocated)

2-41 First Edition

Software Release Document

To look at the state of command processing features for a program EFF,
use the —COMMAND_PROCESSING option.

Option Meaning
[~(DMMAND_PROCESSING]
"CP

Displays the full pathname of the EPF
and, for a program EPF, examines command
processing features, such as:

1. The type of file system objects on
which the EPF may operate.

2. Whether the command processor should
process wildcarding, treewalking, or
command iteration for the EPF
concerned.

3. The name generation position for the
EPF.

For the first two categories, the
presence of the terms indicates that the
feature is enabled. Command processing
information is not relevant for library
EPF, and is not displayed.

For example:

OK, LIST_EPF —COMMAND PROCESSING

1 Process-Class Library EFF.
(active) <DEN>LIBRARIES *>SYSTEM_LIBRARY, RUN
1 Program~Class Library EPF.
(not active) <DEN>LIBRARIES *>FORTRAN_IO_LIBRARY. RUN
3 Program EPFs.
(active) <DEN>CMDNCO>LD. RUN
command options: wlderd,trwlk,iter file,dir,segdir,acat, 1
(active) <DEN>TIM>LD. RIN
command options: wldcrd,trwlk,iter file,dir,seqdir,acat, 1l

(not active) <DEN>TIM>SUBL >SUB2>SUB3>SUB4>SUB5 >MY__PROGRAM., RUN
command options: (none) (none) 5

First Edition 2-42

EXECUTABLE PROGRAM FORMATS

Option Meaning
[-EPF_mTA] For the specified EPF or EPFs, displays
-ED the following information:

1. The type, status, and full pathname
of the EPF

2. The version of BIND used to Ccreate
the EPF

3. The date on which the EPF was bound
4. The program name of the EPF

5. The user version of the EPF

6. The contents of the EPF comment field

7. The number of debugger segments being
used by the EPF

If the EPF was bound by a version of BIND
which cannot supply data on items 2
through 6, the following message is
displayed instead:

EPF data not available,

For example, some PRIMS commands were
created as EPFs prior to Rev. 19.4: the
BIND used to create them may not supply
this information.

2-43 First Edition

Software Release Document

For example:

OK, LIST EPF —-EPF_DATA
1 Process—Class Library EPF.

(active) <DEN>L IBRARIES*>SYSTEM_LIBRARY. RUN
bind version: 19.4.1
date of binding: 01 Jan 84 00:00:01
program name: system_library
user version: 2.7.my_release
comment : This library is guaranteed to be bug-free.
debug segments: (none)

1 Program-Class Library EFPF.

(not active) <DEN>LIBRARIES *>FORTRAN_TO_LIBRARY. RUN
bind version: 19.4.1
date of binding: 12 Oct 83 16:25:56
program name: fortran io library
user version: 2,7.my_release
comment : Copyright (c) 1983, Prime Computer, InC.,
Natick, MA 01760 All Rights Reserved
debug segments: 5

3 Program EPFs.

(active) <DEN>CMDNCO>LD. RUN
bind version: 19.4.1
date of binding: 09 Sep 83 11:23:59
program name: 1d
user version: {none)
comment ¢ (none)
debug segments: (none)

(active) <DEN>TIM>LD. RUN

bind version: 19.4.1

date of binding: 05 May 83 05:05:05

program name: 1d

user version: 20.0.my_release

comment This EPF had better fix the bug in the
installed version of LD.RUN.

debug segments: (none)

(not active) <DEN>TIM>SUB1>SUBZ>SUB3>SUB4>SUB5>SUB6>MY__H§CBRAM. RIN

bind versions 19.4.1

date of binding: 03 Mar 83 00:00:09

program name: 1d

user version: 20.0.1

comment : No specific comment to place here now.
debug segments: (none)

First Edition 2-44

ion

[-DETATL]
-DET

For example:

EXECUTABLE PROGRAM FORMATS

Meaning

Displays all attributes for each entry
selected. These attributes include the
ones displayed by the options
—COMMAND_PROCESSING, -EPF._DATA and
-SEGMENTS.

OK, LIST _EPF -DETAIL

1 Process-Class Library EPF.

(active) <DEN>LIBRARIES*>SYSTEM LIBRARY.RIJN

7 procedure segments: +0: 4370 +2: 4373
+4: 4374 +6: 4375
+10: 4376 +12: 4377
+14: 4402

3 linkage areas: -2: 4365/55342 -4: 4366/0
-6: 4367/176503

bind version: 19.4.1

date of binding: 01 Jan 84 00:00:01

program name: system_library

user version:
comment :
debug segments:

2.7.my_release
This library is guaranteed to be bug-free,
(none)

1 Program—Class Library EPF.

(not active) <DEN>L]BRARIES*>FOR[‘RAN_]D_LIBRARY. FUN
2 procedure segments: +0: 4320 +2: 4322

1 linkage area:
bind version:

-2: 4377/25637
19.4.1

date of binding: 12 Oct 83 16:25:56

program name:
user version:
ocomment :

debug segments:

3 Program EPFs,

fortran_io library

2.7.my_release

Copyricht (c) 1983, Prime Computer, Inc.,
Natick, MA 01760 All Rights Reserved

5

(active) <DEN>CMDNCO>LD. RJN
1 procedure segment: +0: 4370

1 linkage area:
bind version:
date of binding:
program name:
user version:
comment s

debug segments:
command options:

(not allocated)
19.4.1
09 Sep 83 11:23:59
14
(none)
(none)
(none)
wlderd, trwlk,iter file,dir,seqdir,acat,rbf 1

2-45 First Edition

Software Release Document

(active) <DEN>TIMMLD. RUN

1 procedure segment: +0: 4045

5 linkage areas: -2: 4046/176500 ~-4: 4047/5251
-6: 4047/40454 -10: 4050/52510
-12: 4052/0

bind version: 19.4.1

date of binding: 09 Sep 83 11:23:59

program name: 1d

user version: 20.0.my_release

comment : This EPF had better fix the bug in the
installed version of LD,.RUN.

debug segments: 1

command options: wldcrd,trwlk,iter file,dir,seqdir,acat,rbf 1

(not active) <DEN>TIM>SUB1>SUB2>SUB3>SUB4>SUB5>SUB6>MY_PROGRAM. RIN

3 procedure segments: +0: 4015 +2: 4020
+4: 4021
2 linkage areas: (not allocated)

bind version: 19.4.1

date of binding: 03 Mar 83 00:00:09

program name: 14

user version: 20.0.1

comment : I do not really have a specific comment to
place here now.

debug segments: 29

command options: (none) (none) 1

To control screen scrolling, use the -NO_WAIT option. To remind
yourself of the syntax of the command, use the -HELP option.

[

[

First

ion Meaning
-NO_WAIT] Enables terminal screen scrolling. ‘This
~NW option suppresses the —More— prompt

that is otherwise given at the end of
each 23 lines of display.

If you do not specify -NO_WAIT, PRIMDS
prompts you before scrolling the terminal
screen, To display the next screen of
output, respond Y, YES, OK, NEXT, or
press RETURN. To exit from the command,
respord N, NO, Q or QUIT,

—HELP] Displays the syntax of LIST EPF. This

HELP display is also printed if PRIMOS
encounters an error while parsing the
command,

Edition 2-46

EXECUTABLE PROGRAM FORMATS

REMOVE_EPF [pathname] [-ACTIVE —I\DT_ACI'IVE]

Abbreviation: REMEPF

You use this command to remove an EPF from your address space. That
is, if an EPF is mapped to your address space, REMOVE_EPF will nmap
it., REMOVE_EPF does not remove suspended EPFs.

REMOVE_EPF does not delete the EPF file itself. The command is useful
if:

® You want to delete an EPF that is currently mapped to your
address space. Before you can use the DELETE command, you have
to remove the EPF. If you try to delete the EPF without first
removing it, you will get the error message 'File in use!',

e While you have been using one version of an EPF, another user
has replaced it (using the REPLACE function of QOPY or BIND).
If you want to use the new version, you must first remove the
old one,

e If you want to use a new version of an EPF, but have the 0ld one
mapped into your address space. You d not always have to use
REMOVE_EPF in this case: for example, if you rebind an EPF,
BIND autamatically removes the previous version. Removal is
also autamatic if you are using the debugger.

You can specify the pathname of the EPF file you want to remove, You
can use a simple filename or a full pathname. You & not have to
include the EPF .RUN or .RPn suffixes. Because REMOVE_EPF supports
command processor iteration, the pathname can include wildcards, The
command does not, however, support treewalking.

If you do not give a pathname, REMOVE EPF assumes that you want to
remove all the non-suspended EPFs in your address space., The command
asks you which EPFs you wish to remove, as shown in the following
example., To remove the EPF, answer Y or YES. To leave the EPF alone,
answer N or NO,

2-47 First Edition

Sof tware Release Document

OK, REMOVE_EPF

Ok to remove EPF file <OSGRPO>LIBRARIES*>FORTRAN_IO_LIBRARY,RUN? NO
Ok to remove EPF file <OSGRPO>LIBRARIES*>FORTRAN LIBRARY,RUN? NO
Ok to remove EPF file <OSGRPO>LIBRARIES*>SYSTEM LIBRARY,RUN? NO

No EPFs removed (REMOVE_EPF).
OK,

If the EPF file you specify does not exist, or is not already mapped
into your address space, you will get the message shown in this
example:

OK, REMDVE_EPF MISTARE

No EPFs removed (REMOVE_EPF).
OK,

The options for REMOVE_EFF are:

ion Meaning

[-ACTIVE] Terminates only imuse process-class

| -AC library EPFs. You cannot use REMOVE_EPF
to remove suspended EPFs.

[—NOT_ACTIVE Terminates only non-active EPFs. These

| -NA are EPFs which are currently mapped to
the user's address space hut which are
neither suspended EPFs nor in-use
process—class library EPFs.

[~VERIFY Requests the user to verify all EPF

-VFY terminations. By default, you are asked
to verify terminations only when you
include wildcards in pathname.

-NO_VERIFY Suppresses verification checking when you

-NVFY include wildcards in the pathname. You
cannot use the -VERIFY and -NO_VERIFY
options together,

[—QUERY] Requests the user to verify that an EPF
is to be removed if the EPF is currently
in use within the user's address space.
This is the default.

-NO_QUERY] Suppresses user verification if the EPF

-ND is currently in use within the user's

address space. You cannot use the —-QUERY
and -NO_QUERY options together.

First Edition 2-48

EXECUTABLE PROGRAM FORMATS

[—HELP] Displays the syntax of REMOVE_EPF. The

help display is also printed if PRIMDS
encounters an error while parsing the
command.

In the following example, the user MAGGIE lists her EPFs, removes a
FORTRAN library EPF, and finally removes all her inactive EPFs.

OK, LIST EPF

1 Process-Class Library EPF.

(active) <DEN>LIBRARIES*>SYSTEM L.IBRARY.RUN

1 Program—Class Library EPF.

(not active) <DENDLIBRARIES*>FORTRAN_IO_LIBRARY.RJN

3 Program EPFs,

(active) <DEN>CMDNCO>LD. RUN

(active) <DEN>MAGGIE>LD. RIN

(not active) <DEN>MAGGIE>SUB1>SUB2>SUB3>SUB4>SUBS5>

MY_PROGRAM. HUN

OK, REMDVE_EPF FORTRANQ@
Ok o remove EPF <DENSLIBRARIES*>FORTRAN IO_LIBRARY.RUN? YES

OK, REMOVE_EPF @@ -NOT ACTIVE

Ok to remove EPF <DEN>LIBRARIES*>FORTRAN_IO_I.IBRARY,.RJN? YES

Ok to remove EPF <DEN>MAGGIE>SUB1>SUB2>SUB3>SUB4>SUBS>
MY_PROGRAM. RIN? YES

List_Library Entries:

LIST_LIBRARY_ENTRIES [pathname-l ... pathname-8]

[:gmmm entryname-1 ... entryname—8]

[-NO_WAIT -HELP]
N4 -H

Abbreviation: LLENT
This command displays alphabetically-sorted selected entrypoints in a

library EPF where pathname identifies the library EPF. You can use the

optional entrynames to select the library entrypoints to display. The
entrynames can include wildcards.,

2-49 First Edition

Software Release Document

You can use pathname-l ... pathname-8 to specify up to eight pathnames
of library EPFs. Wildcarding is supported only within the entryname
portion of the pathnames, which means that treewalking is not
supported. You do not have to include the suffixes .RUN or .RPn.

If you d not specify a pathname, information is displayed for all EFFs
currently mapped to your address space.

The options for LIST LIBRARY_ENTRIES are:

Option Meaning
[—~ENTRYNAME] entryname~l ... entryname-8
-EN

Displays selected entrypoints within a
library EPF. You use the entrynames,
which may include wildcards, to specify
which entrypoints you want displayed. If
you do not specify entrynames, or do not
use the -ENTRYNAME option, all of the
entrypoints within the library EPF are
displayed.

By default, LIST LIBRARY ENTRIES displays entrypoints in seven colums
per line of display. If the mame of an entrypoint runs into an
adjacent column, fewer than seven names are displayed on the affected
line, For example:

OK, LIST LIBRARY ENTRIES LIBRARIES*>FORTRAN_IO_LIBRARY —FN Fsee

(not active) <DENDLIBRARIES*>FORTRAN_IO_LIBRARY.RUN.

Program-Class Library EPF, 104 Total Entrypoints, 12 Selected Entrypoin
ts.

FSABCDEFG FS$BCDEFG FSCDEFG FSDEFG
FS$E F$F FSGHILJKLMNOPQRSTUVWX
FS$HILJKLMNOPQRSTUVWXYZ ABCDEFGHIJK FSLIKLMNOP

FRIKLM FSKLMNOP

To control screen scrolling, use the -NO_WAIT option. To remind
yourself of the syntax of the command, use the -HELP option.

ion Meaning
[-NO_WAIT] Enables terminal screen scrolling. This
= option suppresses the —More— prompt

that is otherwise given at the end of
each 23 lines of display.

First Edition 2-50

EXECUTABLE PROGRAM FORMATS

If you do not specify -NO_WAIT, PRIMS
prompts you before scrolling the terminal
screen, To display the next screen of
output, respond Y, YES, OK, NEXT, or
press RETURN, To exit from the command,
respord N, N0, Q or QUIT.

[~HELP] Displays the command syntax. This HELP

display is also printed if PRIMS
encounters an error while parsing the
command,

Copying Over An In—-Use EPF

No new options have been added to the (COPY command for EPFs., However,
you can use (@OPY to replace one EPF with another. The format of the
command is:

(OPY pathname [new-pathname] [options...]

thname identifies the object you wish to copy (source object), and
I;w—LpafEname identifies the destination and name of the copied object
(target object). (The PRIMOS Commands Reference Guide describes the
options to the QOPY command.)

If the target object, identified by new-pathname, is open, the QOPY
command fails unless the target is an EPF. This example shows what
happens when a user tries to copy the file ELEANOR to the open file
FRANKLIN:

OK, QOPY ELEANOR FRANKLIN

"FRANKLIN" already exists, do you wish to overwrite it? YES
File open on delete. Unable to delete file "FRANKLIN" (copy)
ER!

Using QOPY to Replace an Open EPF File: At Rev. 19.4, the COPY command
allows you to specify a target file that is open, provided that the
target is an EPF. When you give the command, QOPY performs a REPLACE
operation in two stages:

1. First, QOPY changes the name of an open EPF file, which you
specify as the target object.

2, (OPY then replaces this file with the file you specify as the
source object,

For this REPLACE operation to work, the target object must be an EFF,
and you must include its .RUN suffix on the command line.

2-51 First Edition

Software Release Document

To replace an open EPF file, you would give a command like:
COPY MYLIB>BETTER EPF.RJN LIBRARIES*>OLD_EPF.RUN

where OLD EPF is the (possibly open) file you want to replace and
BETTER EPF is the file you are putting in its place.

In this example, REPLACE works as follows:

1. The name of the target EPF file is changed. That is, the
suffix ,RON is replaced by the suffix .RPn, where n is one of
the 10 decimal digits in the range 0 to 9. In the above
example, OLD_EPF.RUN might be renamed OLD_EPF.RPO.

2. The source EPF file is then copied to new-pathname, 1In the
example, BETTER EPF.RUN would be copied to
LIBRARIES*>OLD_EPF.RUN

By default, QOPY tells you that the target EPF file is open, and asks
whether or not you want the REPLACE operation completed. QOPY also
displays the name of the replaced file. These messages are shown in
the following example:

OK, QOPY TIM>FORTRAN IO_LIBRARY.RJN LIBRARIES *>=

Ok to replace EPF file LIBRARIES *>FORTRAN_IO_LIBRARY.RUN? YES
New version of EPF file FORTRAN IO_LIBRARY.RUN now in place.
01d version of active EPF file now named FORTRAN_IO_LIBRARY.RPO.

To prevent the display of these messages, use the -NO_QUERY option of
the QOPY command.

Once you have replaced the EPF, anyone who invokes it will get the new
version. However, if people were using the old version at the time
that you replaced it, that version remains mapped into their address
spaces., You may want to tell them what you have done, and suggest that
they use REMOVE_EPF and invoke the new version if they wish.

REPLACE Files: PRIMS does not delete REPLAXCE files when they are no
longer mapped into the address sppce of any users. If you create
REPLACE files, then you are responsible for deleting them once they are
no longer needed.

NMumbering: The suffix numbering sequence starts at .RP0, and continues
to .RP9. This means there are up to 10 possible REPLACE files. If all
possible files exist, PRIMDS asks you whether it can delete one of the
REPLACE files which is not currently mapped to any user's address
space, as shown in the following example,

First Edition 2-52

EXECUTABLE PROGRAM FORMATS

OK, QOPY TIM>LD.RUN CMDNCO>LD.RUN

Ok to replace EPF file OMDNCO>LD.RUN? YES

Ok to delete EPF file QMDNCO>LD.RP2? YES

New version of EPF file LD.RUN now in place.
01d version of active EPF file now named LD.RP2.

Using the -NO_QUERY option suppresses both the prompts shown in the
above example.

If all ten REPLACE files are still mapped into the address spaces of
some users, then the REPLACE operation cannot be completed, as the
following example shows.

OK, QOPY TIM>LD.RUN CMDNCO>LD.RJN

Ok to replace EPF file CMDNCO>LD.RUN? YES
EPF replace files are all in use.

Unable to complete file copy. (copy)

New User Attributes

The EPF product provides the user with many new features. Some of
these features may indirectly cause the user to utilize more resources.
This can happen oompletely without the users knowledge in same
situtations. Therefore, this revision of the system allows the System
Administrator to limit some of the command enviromment resources given
to users on a per user hasis.

This section is divided into three parts. The first part defines the
command enviromment features that may be controlled. The second notes
the EDIT PROFILE interface to these features. The third lists the
defaults.,

Features

All of the command enviromment features that can be controlled on a per
user basis are stored for each user in the System Administration
Directory (SAD) as are user passwords and initial attach points. These
new attributes are stored on a per project basis like the initial
attach points rather than on a per system basis as are passwords.

The new attributes are divided into two types, segment usage limiters
and command enviromment limiters., The segment limiters take the place
of the NUSEG QUNFIG parameter. The enviromment limiters are new.

Number of Dymamic Segments: The first new attribute is the number of
dynamic segments that a user may receive in DIAR2. The dynamic
segments are a set of segments into which PRIMOS command envirormment

2-53 First Edition

Software Release Document

information, all program EPFs, process and program class library EPFs,
and the process, EPF, subsystem, and user class dynamic storage heaps
are placed. The process, EPF, and subsystem heaps are used by PRIMS
while the user storage heap may be used by any programmer., These
segments may be found at the high end of the user's DTAR2, The DTAR2
segments are defined within a range from '4000 to '5777.

Number of Static Segments: The second new attribute is the number of
static segments a user may receive in DTAR2, These segments are used
by static mode programs and may be found at the low end of the user's
DIAR2. This attribute takes the place of the (ONFIG parameter NUSEG.

Command Level Depth: The third new attribute is command level depth.
This attribute controls the number of command levels that a user may
receive. When 1logging in, a user is placed at command level ore.
Everytime a program takes an exception or a user enters a terminal
quit, a new command level is entered., This attribute limits the number
of times one of these events may occur by imposing a highest command
level. At this command level, only certain designated PRIMOS commands
may be used and terminal quits are ignored. This command level is the
mini-command level,

Command Level Breadth: Command level breadth is used to ocontrol how
many times programs can execute other programs. Remember that with
EPFs, more than one program can be in memory at the same time,

Edit_Profile Interface

Edit_Profile has been modified to wenable system and project
administrators to set the new user attributes., This is done via the
EDIT PROFILE commands ADD PROJECT, CHANGE PROJECT', ADD USER, and
CHANGE, USER. The latter two must be used in oonjunction with a
project. This is the basically same as adding and changing initial
attach points.

When a user logs in, the attributes for that user are set up. It is
possible for a user to log in without having had these new attributes
set up. If a user has had these attributes set up, then the user will
be assigned these limits. If no limits can be found, then the default
limits from the current project will be used. If the current project
does not have these attributes set up, then the default system limits
will be used.

Setting up these 1limits for a project is a two step process. First,
EDIT_PROFILE will ask you to set up the project maximums., Then you
will be asked to set up the project default. These defaults are given
to users within this project that are not specifically assigned these
attributes. This maximums are used as a check when setting the limits
for either the project or any user within that project.

First Edition 2-54

EXECUTABLE PROGRAM FORMATS

EDIT_PROFILE is now compatible in two ways with respect to these new
attributes, Rev. 19.4 EDIT PROFILE can use any SAD made from Rev., 19.2
to Rev. 19.4. The SAD does not have to contain this new profile
information. Additiomally, the data has been placed into the SAD in
such a manner as to allow any revision of PRIMIS to read the SAD.
Therefore, from Rev. 19.2 onward, oompatability is supported both
upwards and dowrwards with respect to revisions.

It is also possible to set these limits on a system wide basis via
EDIT_PROFILE's CHANGE_SYSTEM DEFAULTS command. The limits can be set
to change the default limits that come with PRIMOS. Additiomally,
these system limits can be used to override the per user and per
project limits by using EDIT PROFILE's SYSTEM DEFAULTS command,

Defaults

There are two kinds of defaults for these new attributes; project and
system, If a user does not have these limits set on a per user basis,
then the user will get the limits set for the current project. If the
current project does not have limits set, then the user will get the
limits set for the system, These limits oome with PRIMDS and are
compiled into it.

The default limits for projects are set in the SAD by either the System
Administrator or by project administrators. The system limits from
PRIMS for Rev. 19.4 are:

Attribute Recommend Minimum Maximum
Command levels 10 1 100
Live invocations per level 5 1 100
Private dymamic segments 40 16 504
Private static segments 40 8 49

Note that the total number of segments that a user may obtain is 512,
This is 256 more segments than before. Also note that the number of
dynamic segments takes precedence over the number of static segments.

Special notes about Dymamic Segments

The Linkage area of a program or library EPF is created using DTAR 2
~segments in the '4000 range. The procedure code of an EPF is shared
among users but each user will get his own copy of the 1linkage area.
Once an EPF is mapped into the user's address space, it stays mapped in
mtil it is explicitly removed via the REMOVE EPF command or the
command breadth is exceeded. At Rev., 19.4, there exist per-user
attributes which limit the amount of virtual memory a user may acquire.
One attribute limits the number of dynamic segments a user may own and

2-55 First Edition

Software Release Document

it can be set by a project/System Administrator via the EDIT PROFILE
subsystem., The default on this new attribute is set at 32 segments.
If many EPFs have been mapped in to the user's address space (using
per-user DTAR 2 segments), it is conceivable that the default limit of
the number of dynamic segments is exceeded before another EPF can be
mapped in, If this limit is exceeded the message "No more Segments" is
displayed and the user can contact the System Administrator to increase
his limit on dynamic segments. For more detailed information on these
new attributes and dynamic virtual memory management, refer to PRIMOS
documents for Rev. 19.4.

EDIT PROFILE/USER 1 Dynamic and Static Segment Handling

It is now possible to change the default attributes for USER 1. To &
this, the user must enter EDIT_PROFILE and issue the
CHANGE_SYSTEM DEFAULTS (CSD) command. In changing the system defaults,
all users who do not have specific EPF attributes set will acquire the
system default attributes. For users to acquire the new 1limits they
must logout and login again. For USER 1 to acquire the new limits, the
system must be cold started.

Calculation of Total Number of Static and Dynamic Segments

The sum of combined static and dynamic segments for normal users may
not exceed 512. For USER 1, the sum of oombined static and dynamic
segments may not exceed 256, Therefore, if you issue the CSD command
and change the number of static and dynamic segments to a number which
exceeds 256, users will acquire limits equal to the value entered, For
USER 1, the amount that you exceed the 256 limit by will be evenly
subtracted from both the number of static segments and the number of
dynamic segments, For example, if you enter 200 static segments and 58
dynamic segments, you will have exceeded the 1limit of 256 by 2.
Therefore, the number of static segments will be changed to 199 and the
number of dynamic segments will be changed to 57. If there is a wide
range between the number of static segments entered and the number of
dynamic segments entered, then the number of static and dymamic
segments for USER 1 will be set to default values of 32 (given to the
smaller segment value entered) and 224 (given to the larger segment
value entered). For example, if you enter 33 static segments and 425
dynmamic segments, the number of static segments will be changed to 32
and the mumber of dynamic segments will be changed to 224, The new
system limits for USER 1 can be seen by issuing the LIST LIMITS command
at the supervisor terminal,

First Edition 2=-56

EXECUTABLE PROGRAM FORMATS

Programming Restrictions

When programming with EPFs, there are certain rules you must follow in
order to meet the requirements of the EPF format. For example, since
EPFs allow only reentrant code, your program cannot be self modifying.
These rules have been put in place to ease the programmer's job.
Sometimes this may mean changing a programming habit or two but, by
using EPFs and following the rules, the end result will be a much
better program.

This section is divided into four parts. The first part oompares and
contrasts EPFs versus static mode programs. The second part discusses
the use of a few routines that were originally built for static mode
programs, The third tells you what happens when you try running a
remote EPF. The final part discusses same of the things you can and
can not do via dynamic linking.

Compatability With Old Static Mode Programs: In general, most static
mode programs can be made into EPFs by simply running them through
BIND. The ocommand enviromment for EPFs has been changed to be
compatible with most of the program styles that can be found in static
mode programs. This means that a program does not have to be fully
structured to be an EPF, It is advised to program in a structured
manner wherever possible, Remember, to the system your EPF looks like
a subroutine. Therefore, if you write your programs such that they
always return through their main entrypoint, vou will have the most
luck with EPFs,

Al]l EPFs must be reentrant code. Reentrant code is always produced Ly
Prime's compilers. This means that EPFs are generally better suited to
high level languages rather than to PMA. It is possible to program in
PMA and make EPFs as long as you do the following:

® Make sure your code is not self modifying.

e Make sure your non-constant data areas (linkage and common data)
and your executable ocode are separated using the LINK
pseud0-operation.

e If you have impure code, make sure to flag it as such via the
PMA pseudo—operation, SEG IMPURE,

One other area to watch out for when using EPFs is the interaction of
command lines and EPFs. If you have an EPF which is to be passed by
the command line as an argqument, you cannot use the RDTKS$S interface.
You should use the passed command line argument together with the
CLSPIX routine, If your EPF does not take the command line arqument,
then is is all right to use the RDTKS$ interface. The system dJetects
whether or not to pass the command line to your program. This is
another example of how the EPF product has been made compatible with
static mode programs.

2-57 First Edition

Software Release Document

Using The Static Mode Interfaces: A few routines that have been in the
system for a long time were specifically built to allow termination of
static mode programs. They are:

e EXIT
® ERRPRS with the KSNRIN key
¢ ERRSET

If you call these routines from an EPF, the system will recognize this
fact and handle the termination in a manner different from handling
termination of a static mode program. In other words, no adverse
effects will be felt by an EPF that uses these routines, It must be
noted that the system signals STOPS for EPFs when these routines are
called., It then cleans up the EPF's stack. The use of these routines
from inside of EPFs is strongly discouraged for three reasons:

e The signalling of the STOPS$ condition happens unknown to the
EPF. It is possible that the program may have set up a handler
for this condition. This handler may then get invoked at the
wrong time,

e The signalling of the STOP$ condition prevents program restart.
e Use of these routines promotes unstructured code.

Since FIN does not allow a return from the MAIN module, the last
statement within the MAIN module should be a STOP statement., The same
is true for OB and CBL. All other languages should use a return
statement, In addition, the EPF may itself use the SIGNLS$ routine to
signal the STOPS$ condition.

Use of EXIT to pause a program is also disallowed. To pause a program
use a PAUSE statement, use the SIGNLS routine with the PAUSES
condition, or use ERRPRS with the KSSRIN key. Use of ERRPRS with the
KSIRIN key is always allowed.

Remote EPFs: Running a program EPF from a remote partition is allowed
although the system will not use VMFA to read the EPF into memory.
Rather, the EPF will be copied onto the paging partition and will be
read from there. The startup time for a remote EPF is longer than that
for a local EPF because of the copying needed. Also, since the EPF
will be on the paging partition, it will not run as fast as an EPF
using VMFA. This is because VMFA is not always in contention for the
same disk drive which contains the paging partition.

A remote program EPF once oopied onto the paging partition can do
anything any other EPF can do such as call an external program, gets
its arquments directly from the system, and return directly to the
system,

First Edition 2-58

EXECUTABLE PROGRAM FORMATS

ynamic Linking: Once again there are certain rules to be followed
hen building and using libraries., The following table shows which
links are valid:

D
wi

PROGRAM PROGRAM CLASS PROCESS CLASS STATIC MODE

FROM/TO LIBRARY LIBRARY LIBRARY

PROGRAM | NA | VALID | vALID | VALID |
PROG. LIB. | NMA | VALID | VALID | VALID |
PROC. LIB. | NA | INVALID | VAD | INVALID |
STAT, LIB. | NA | VALID I VALID | VALID |

In addition, there is one other rule:

Whenever a static mode library is in use, linking to it is only
valid within the same program or library invocation.

This means that only one active invocation of a static mode library is
allowed at any given time. In other words, if a program uses the DBMS
static mode library and then calls another program which wants to use
DBMS, the second program will not be permitted to use DBMS because it
is active only for the first program. So watch out for the libraries
being used by extermal programs that haved been called by other

programs,

It should also be mentioned that the changing of levels due to a
terminal quit or an exception does not free up an in-use static mode
library. The same restrictons apply here as for when programs call

programs,

Error Detection And Handling

This section describes any policies used for reporting or handling
error conditions. Error processing may be broken down into three
areas:

@ Returning PRIMS defined error codes to application software

e Displaying error text to a user's terminal and either continuing
processing or re-initializing the user's command envirorment

® Signalling a condition to be handled by user software or, in

most cases, by the oommand enviromment (system defined
condition)

2-59 First Edition

Software Release Document

Exceeding Resource Limits

Users of the EPF product will run up against both system and per-user
resource limitations. System limits will be set up by cold start
QONFIG directives and dedicated System Administrator commands.
Per-user limits will be set up via project administrator or System
Adninistrator control of the user profile mechanism.

System Resources: The primary system resource for the product is
Virtual memory segments. Two categories of segments exist: non-VMFA
and VMFA segments. Additiomally, paging disk sppce may be a scarce
resource,

® If there are no non-VMFA segments available, users may not
perform useful work until a system segment is freed by some
user.

e If the system runs out of those segments allocated to EPF
procedure code (VMFA segments), users who wish to execute EPFs
may have to wait until another VMFA segment is freed., Users are
cautioned that each installed EPF library will use up at least
one VMFA segment.

e If the system runs out of paging disk space, the user may have
to wait until more disk space is made available as user's
de-activate segments or the user may have to contact the System
Administrator and request more paging space be allocated for the
next system cold start.,

In each case, users of the EPF product will be returned an error code
indicating the cause of the problem, Under most oonditions, the
program will need to prompt the user for some help in freeing the
scarce resource,

User Resources: There exist per-user resource limits on the ocommand
envirorment, The primary goal is to limit the effect any one user may
have on the overall performance of the system., Limits exist on both
the depth and breadth of the command enviromment and the number of both
static and dynamic private segments.

e Upon reaching the "high water mark" for the command envirorment,
a user will be allowed to issue only a restricted set of
commands, This "high water mark" is what has been previously
referred to as the mini-command level. This set of commands
will be displayed once a user exceeds the command level high
water mark. The command LIST MINI_COMMANDS, (ILMC), will also
display these commands, Please refer to earlier sections of
this document for more information on the mini-command level.

e If the per-user limit on the number of simultaneous program

invocations at one ocommand level; that is, the breadth of the
command enviromment, is exceeded, the error code "ESECEB" 1is

First Edition 2-60

EXECUTABLE PROGRAM FORMATS

returned to the user software. It is the responsibility of the
application programmer to perform any necessary cleanup
operations, such as closing of file units.

In order to minimize this difficulty, there exists a program
callable interface in order to determine this command
enviromment limit,

dcl rdsced entry (fixed bin(15));
call rds$ced(current_ocommand enviromment. breadth);

e If a user has run out of private, dynamic segments, the user
will be notified of the resource problem in one of three
possible methods:

1. The error code ESNMIS may be returned to the running
program,

2, The condition name "STORAGE" may be signalled.
3. The user's Ring 3 enviromment may be re-initialized.

Again, in most cases, the problem will need to be solved by the
user at command level,

e If a user runs out of private, static seaments, the oondition
name ILLEGAL SEGNOS$ will be signalled within the user process.

If a user runs out of resources (segments), the user will be able to
display the memory resources used by program invocations in the address
space with either the LIST_EPF or LIST SEGMENT commands.

For most cases, user segments are also using up systemwide resources,
Therefore, freeing up per-user segments will help alleviate any
system-wide resource scarcity. There no longer exists any
functiomality to de-allocate specific dynamic segments such as with the
DELSEG command., The REMOVE EPF command will allow a wuser to
de-allocate any memory resources used by an active EFF. The
RELEASE _LEVEL command will allow users to return to previously
suspended command levels, thereby releasing any memory resources
utilized at the command levels being released. The ICE oommand will
allow a user to oompletely re-initialize their command enviromment,
causing all of a users's private, dynamic segments to be de—allocated.

Linkage Fault Handling

The information provided at command level to a user in the advent of a
linkage fault includes the name of the faulted entrypoint and the name
of the procedure from which the fault had originated (if the name is
attainable).

2-61 First Edition

Software Release Document

Attempting Invalid Link Types: The dynamic linking mechanism does not
correct attempts to create unsupported 1link types but detects such
cross references among library classes and library types. Unsupported
dynamic link types are detected by the dynamic linking mechanism and an
appropriate system defined condition is signalled. User software may
set up onrunits to handle the specified conditions. About all that may
be done is to display an informative error message and temporarily
abort the program session. The only permanent solution is:

e If the invalid link type is related to EPF library class,
oconvert the EPF library to the proper class.

e If the invalid link type is related to an in use static-mode
library, convert the static-mode library to an EPF library.

Dymamic links to static-mode 1libraries that are currently in use by
programs at lower command levels are allowed. Programs at previous
command levels that are currently using these libraries will be marked
as not restartable. This is similar to invoking a static image over a
suspended static image. An informative error message will be displayed
if an attempt is made to restart a program at a previous command level
that is using these libraries.

New Error Codes: The following new error codes have been added for the
EPF product:

eSepft: Invalid EPF type

eSepfs: Invalid EPF search type

e$iltd: 1Invalid EPF LTD linkage descriptor
eSilte: Invalid EPF LTE linkage descriptor
eSeceb: Exceeding command enviromment breadth
e$epfl: EPF file exceeds file size limit
es$nta: EPF file not active for user

e$swps: EPF file suspended within current program session
eSswpr: EPF file suspended within this process
eSadcm: System Administrator command only

New Keys: The following new keys have been added for the EPF product:

kScopy : Copy EPF file into temporary segments

ksdbg: Map DBG information into memory from EPF
kSinitall: Initialize all of the linkage areas

kSreinit: Only reinitialize linkage areas

k$invk: Invoke and do not de-allocate EPF from memory

k$invk _del: Invoke and delete EPF
kSrestore_only: Restore but do not invoke EPF

ksfrc _del: Force terminate EPF

k$no_frc del: Do not force terminate EPF
k$vmr : Open EPF file for reading
kSany: Any segment(s) acceptable

First Edition 2-62

EXECUTABLE PROGRAM FORMATS

kSdupl : Duplicate segments requested
kScnsc: Consecutive segments required
kSr: Read access only

kSrx: Read/execute access only

New %stem Conditions: The following new system defined condition name
S been a for the EPF product:

1) LINRAGE_ERRORS:

An error occurred while attempting to
resolve a dymamic link. The type of
error will be obvious from the text
of the error message being displayed,

New System Error Messages: The following EPF error messages have been
added to the file EPF_ERROR TABRLE in the UFD SYSOVL::

dealloc_procedure_segs

An error was encountered while attempting to de-allocate EPF
procedure segments for

circular_epf level cache

Internal EPF error: the EPF 1level cache has become
circularized. Please contact your System Administrator.,

circular_list_of_epfs

Internal EPF error: the list of active EPFs for this process
has become circurlarized. Please ocontact your System
Administrator,

circular_entry search list

Internal EPF error: the ENTRY search list for this process has
become circularized. Please contact your System Administrator.

epf_smt._not, found

Internal EPF error: the segment mapping table for EPF file $%v
could not be retrieved, ©Please contact your System
Adnministrator,

epf_storage_class corrupted

Internal dymamic storage error: the EPF dynamic storage class
has been ocorrupted. Please contact your System Administrator.

2-63 First Edition

Software Release Document

e user_storage_class corrupted

Internal dynamic storage error: the USER dynamic storage class
has been corrupted. Please contact your System Administrator.

e level storage class corrupted

Internal dynamic storage error: the LEVEL dynamic storage class
has been corrupted. Please contact your System Administrator.

e program_session depth_invalid

Internal EPF error: the depth of the program session for this
user is invalid. Please contact your System Administrator.

e oommand level depth_exceeded
You have exceeded your maximum number of command levels.
You are now at mini-command level. Only the commands shown
below are available. Of these, RLS -ALL should return you to
command level 1. If it does not, type ICE. If this problem
recurs, contact your System Administrator.
Valid mini-commands are:

e circular_command level list

Internal EPF error: the command enviromment level structure is
invalid. Please contact your System Administrator.

e circular_epf smt_active ents

Internal EPF error: the EPF segment mapping table for %v has
become invalid. Please contact your System Administrator.

System Administrator Information

For the System Administrator there are four main areas of concern,
(ONFIG parameters, the Edit _Profile interface, the system entrypoint
search list, and the LIBRARIES* directory.

CONFIG Parameters: Two CONFIG parameters are affected by the EPF
product, NUSEG and NVEMS.

NUSEG, the number of segments that a user may acquire, no longer
applies. If it is used a diagnostic will be printed. It has been
superceded by the new number of dynamic segnents and number of static
segnents user attributes.

First Edition 2-64

EXECUTABLE PROGRAM FORMATS

NVMFS, the number of read only VMFA segments, is new with the EPF
product. EPFs are placed into read-only VMFA segments. This parameter
controls the total number of these segments that may be active on a
system. When setting this number remember that these segments are
shared between users., The default for NVFMS is 64 ('100). The minimum
is 0 and the maximum is 1024 ('2000).

EDIT_PROFILE Interface: The new user attributes have been discussed
previously. System Administrators and project administrators should
understand that none of these new features need to be used. PRIMS
will work perfectly well using the predefined system defaults. If you
do want to make use of these features, EDIT PROFILE must be used to set
up these new user resource limits, The EDIT PROFILE commands that are
importrant are:

ADD_PRQJECT
CHANGE,_PRQJECT
ADD_USER

(.—I i E-E-r. F.LT -’E-s——l. R
CHANGE,_SYSTEM_DEFAULTS
SYSTEM_DEFAULTS

The EDIT_PROFILE part of the EPF product has been built to insure both
upward and dowrward compatability. This means that any Rev. 19.2 or
later SAD can be used on any Rev. 19.2 or later system no matter what
attributes are used. This capability will be maintained in the future.

Entrypoint Search List: The entrypoint search list is used to tell
PRIM)S where to resolve dynamic links. A default list will come with
PRIMOS in the SYSTEM directory. It contains rules that tell the system
when to search the static mode libraries and when to search the system
EPF libraries, It also tells where these libraries can be found. It
is an editable ASCII file,

If you need to change the order of this list or need to add new items
to it, you can simply edit the file. Remember, currently logged in
users will not reflect the changes you make until either they login
aqain, initialize their command enviromment, or issue a

SET_SEARCH RIJLES command.

LIBRARIES*: LIBRARIES* is the directory which contains the EPF
libraries provided by Prime. It is new with the EPF product. It is
also a good place to put any public EPF libraries that you create,

2-65 First Edition

Software Release Document

Converting Old Static Mode Programs To EPFs

As we have stated all along, the EPF product is fully compatible with
the old static mode programs. In fact, it is so compatible that most
static mode programs can be converted into EPFs by simply using BIND
instead of SEG. Of course, there are a few exceptions and some catches
that can make cornversion a little bit harder.

This section will present you with the reasons why you should convert
your present programs into EPFs. The kind of programs that cannot be
oconverted will be discussed and you will be provided you with a
step-by-step example of how to convert a static mode program into an
EFF.

Why Would You Want To Convert?: The major reason to convert your
programs to EPFs is the ease with which EPFs are built and maintained.
Not having to use SEG is a real blessing. BIND is a much cleaner
interface.

The second most important reason to comnvert your programs to EPFs is
that, by converting, you make them callable from other programs,
Remember, EPFs will not overlay one another. They are maintained in
memory by the operating system,

Another reason to oonvert your programs to EPFs is for expandability.
The nature of the interaction of an EPF program image with the system
allows you to forget about how big a program is, where its data goes,
and so forth., You can write as much code as you want without having to
worry about space limitations. You don't have to worry about whether
your code will £it into the memory allocated to it or whether another
segment must be added by the programmer.

Furthermore, if you d a good job converting your programs to EPFs, the
result will be well-structured code which is much easier to maintain
than wnstructured code. Any savings in the maintainence phase of a
program may well be worth the effort of conversion.

Finally, you may wish to convert your program into an EPF as the first
step in building up an EPF library of similar programs.

what You Can Not Convert: The main class of static mode programs which
are not amenable to oonversion are shared static mode programs which
use the PBECB option. PBECB shares link frames with executable code.
This mixes writable storage with read-only storage. EPFs can only have
read-only storage. Therefore, you can not oonvert these programs
unless you can drop the -PBECB option.

The second class of programs which can not be converted are programs in
which some linkage has been made public. By pwblic is meant that it
resides in a shared segment. This is usumally done to minimize the
working set of a program. The EPF product presently does not have the
ability to put linkage into shared segments.

First Edition 2-66

EXECUTABLE PROGRAM FORMATS

The next class of programs which can not be converted easily are
typical PMA programs. Most often you will find executable code and
data well mixed within a PMA program. This makes it impossible for
BIND to separate code and data into pieces that it can make into an
EPF, It should be added that some PMA programs may be converted with
some effort. It all Gepends on how well the programs were originally
written,

Another kind of program that can not be converted is the one which has
self-modifiying code. This means that ocode will change while the
program is running. EPFs must be pure code. Therefore, these programs
cannot be converted.,

Finally, some programs have been built to fit into a very small amount
of memory for one reason or another. If they were converted into EPFs,
they might take up too much space. They will definitely find
themselves in more than one segment with the program in one segment and
linkage in another.

Sampie Conversion: This section will take you through the conversion
of R-mode and S-mode programs into an EPF. The conversion will take
place in a step-by-step manner. The approximate time it took to
perform the conversion will also be noted, The example will convince
you that it is worth your time to convert some programs into EPFs,

The Static Mode Program: The following is a static mode program which
determines if a file exists in the current directory or, optiomally, in
a UFD. It is a command with this syntax:

FILE_EXISTS <filename> [<ufdname>]

The program verifies that the proper arguments have been entered, tells
the user when any errors were made, and states whether or not the file
exists,

file exists: proc;

dcl info (8) fixed bin, /* info vector for rdtks$$ */
filename char(32), /* file to check existance of */
filename len fixed bin,
ufdname char(32), /* where to look */
ufdname_len fixed bin,
ercode fixed bin, /* standard error code */
pathname char(65), /* pathname of file to look for */

pathname len fixed bin,

chrpos (2) fixed bin, /* info vector for tsrc$$ */
unit fixed bin, /* unit file opened on */
type fixed bin; /* type of file */

2-67 First Edition

Software Release Document

sreplace rdtk key by 1, /* read next token and convert to
uppercase */
k$nrtn by 0, /* no return */
eSmisa by 170, /* missing argument */
kSexst by 6; /* check file existance */
dcl rdtksS entry(fixed bin, (8) fixed bin, char(¥*), fixed bin,
fixed bin),
errpr$ entry(fixed bin, fixed bin, char(*), fixed bin, char(*),
fixed bin),

tsrc$$ entry(fixed bin, char(*), fixed bin, (2) fixed bin,
fixed bin, fixed bin),

tnoua entry(char(*), fixed bin),

tnou entry(char(*), £ixed bin),

exit entry;

/* **/

/* Get the name of the file and its length, */

call ratks$(rdtk key, info, filename, 32, ercode);
filename len = info(2);

/* Make sure file argument was given and is ok. */

if ercode = 0 & filename len = 0 then
ercode = eSmisa;
if ercode = 0 then
do; /* file arg is ok */

/* Get the name of the ufd and its length. */

call rdtk$${rdtk key, info, ufdname, 32, ercode):
ufdname_len = info(2);

/* Make sure ufd arqument is ok if given. */

if ercode = 0 then
do; /* ufd arg is ok */

/* Make a pathname up out of the ufd name and the file name.
Remember, the ufd name may not have been given. */

if ufdname len > 0 then
do;
pathname = substr (ufdname, 1, ufdname_len) || > |l
substr (filename, 1, filename len);
pathname_len = ufdname len + 1 + filename_len;
end;
else
do;
pathname = substr (filename, 1, filename_len);
pathname_len = filename len;
end;

First Edition 2-68

EXECUTABLE PROGRAM FORMATS

/* Now set up for and see if file exists. */

chrpos(l) = 0;

chrpos(2) = pathname len;

call tsrc$$(kSexst, pathname, unit, chrpos, type,
ercode) ;

/* Tell user results, */

if ercode = 0 then
do;
call tnoua(filename, filename len);
call tnou(' exists.', 8);
else
call errpr$(kénrtn, ercode, filename, filename len,
'FILE EXISTS', 11):

end; /* ufd arg is ok */
else
call errpr$(k$nrtn, ercode, 'ufd arqument', 13,
'FILE_EXISTS', 11);

end; /* file arg is ok */
else

call errpr$(ké$nrtn, ercode, '

'FILE_EXISTS!, 11

14

file arqument', 13,
)

call exit;

end;

The First Conversion Step: The first conversion step is nothing more
than using BIND on the program's object instead of using SEG. 'The
compatability built into the EPF product allows this program to execute
as an EPF. To BIND this program you would enter this command line:

BIND FILE EXISTS -lo FILE EXISTS.BIN

BIND produces FILE_EXISTS.RUN which you could then RESUME. The time
needed here to convert is equal to the time needed to run BIND.

The Second Conversion Step: The second oconversion step involves
remembering that EPFs are called as subroutines of the operating system
and should directly return to the system., The final call to EXIT in
the program prevents this direct return so the next oonversion step
involves removing the call to EXIT. This is demonstrated below. Note
that the declaration for EXIT has also been removed.

2-69 First Edition

Software Release Document

file exists: proc;

dcl info (8) fixed bin, /* info vector for rdtk$$ */
filename char(32), /* file to check existance of */
filename len fixed bin,
ufdname char(32), /* where to look */
ufdname_len fixed bin,
ercode fixed bin, /* standard error code */
pathname char(65), /* pathname of file to look for */

pathname_len fixed bin,
chrpos (2) fixed bin, /* info vector for tsrc$$ */

unit fixed bin, /* unit file opened on */
type fixed bin; /* type of file */
greplace rdtk _key by 1, /* read next token and convert to
uppercase */
k$nrtn by 0, /* no return */
eSmisa by 170, /* missing arqument */
kSexst by 6; /* check file existance */
dcl rdtks$ entry(fixed bin, (8) fixed bin, char(*), fixed bin,
fixed bin),
errpr$ entry(fixed bin, fixed bin, char(*), fixed bin, char(*),
fixed bin),

tsrc$$ entry(fixed bin, char(*), fixed bin, (2) fixed bin,
fixed bin, fixed bin),
tnoua entry(char(*), fixed bin),
tnou entry(char(*), fixed bin);
/* **/
/* Get the rame of the file and its length. */

call rdtk$s(rdtk key, info, filename, 32, ercode);
filename len = info(2);

/* Make sure file argument was given and is ok. */
if ercode = 0 & filename len = 0 then

ercode = eSmisa;
if ercode = 0 then

do; /* file arg is ok */
/* Get the name of the ufd and its length. */

call rdtk$s(rdtk_key, info, ufdname, 32, ercode);
ufdname_len = info(2);

/* Make sure ufd arqument is ok if given. */

if ercode = 0 then
do; /* ufd arg is ok */

First Edition 2-70

EXECUTABLE PROGRAM FORMATS

/* Make a pathname up out of the ufd name and the file name,
Remember, the ufd name may not have been given, */

if ufdname_len > 0 then
do;
pathname = substr (ufdname, 1, ufdname_len) || '>' []
substr (filename, 1, filename len);
pathname len = ufdname_len + 1 + filename len;
end;
else
do;
pathname = substr(filename, 1, filename len);
pathname len = filename len;
end;

/* Now set up for and see if file exists. */

chrpos(1l) = 0;

chrpos(2) = pathname len;

call tsrc$$(kSexst, pathname, unit, chrpos, type,
ercode) ;

/* Tell user results, */
if ercode = 0 then
&

’
call tnoua(filename, filename len);
call tnou(' exists.', 8);
end;
else
call errpr$(k$nrtn, ercode, filename, filename len,
'FILE_EXISTS', 11);

end; /* ufd arg is ok */
else
call errpr$(kénrtn, ercode, 'ufd arqument', 13,
'FILF,_EXISTS', 11);

end; /* file arg is ok */
else
call errpr$(k$nrtn, ercode, 'file arqument', 13,
'"FILF_EXISTS', 11):;

end;

This conversion took only about five minutes. To make an EPF out of

this source code, you need to compile the source code and execute BIND
which takes another few minutes.

2-71 First Edition

Software Release Document

Conversion Step Three: If you take a careful look at what we now have,
you will encounter calls to the error printing routine, ERRPRS.
calls use the KSNRIN key. This key causes ERRPR$ to never return to
the program. If this is the case, the program cannot directly return
to the system. Since it is better for EFFs to directly return, change

the key to KSIRIN,

file exists: proc;

dcl info (8) fixed bin,
filename char(32),
filename len fixed bin,
ufdname char(32),
ufdname_len f£ixed bin,
ercode fixed bin,
pathname char(65),
pathname_len fixed bin,
chrpos (2) fixed bin,
unit fixed bin,
type fixed bin;

sreplace rdtk key by 1,
k$irtn by O,

eSmisa by 170,
k$exst by 6;

/* info vector for rdtks$$ */
/* file to check existance of */

/* where to look */

/* standard error code */
/* pathname of file to look for */

/* info vector for tsrc$$ */
/* unit file opened on */
/* type of file */

/* read next token and convert to
uppercase */

/* immeadiate return */

/* missing arqument */

/* check file existance */

dcl ratk$sS entry(fixed bin, (8) fixed bin, char(*), fixed bin,

fixed bin),

errpr$ entry(fixed bin, fixed bin, char(*), fixed bin, char(*),

fixed bin),

tsrc$$ entry(fixed bin, char(¥*), fixed bin, (2) fixed bin,
fixed bin, fixed bin),

tnoua entry(char(*), fixed bin),

tnou entry(char(*), £ixed bin);

/* *************'k*****************'k**********************/

/* Get the name of the file and its length. */

call rdtkss(rdtk key, info, filename, 32, ercode);:

filename len = info(2);

/* Make sure file argument was given and is ok. */

if ercode = 0 & filename len = 0 then

ercode = eSmisa;
if ercode = 0 then
do;

First Edition

/* file arg is ok */

2-72

These

EXECUTABLE PROGRAM FORMATS

/* Get the name of the ufd and its length., */

call rdtk$$(rdtk_key, info, ufdname, 32, ercode);
ufdname_len = info(2);

/* Make sure ufd argqument is ok if given, */

if ercode = 0 then
do; /* ufd arg is ok */

/* Make a pathname up out of the ufd name and the file name.
Remember, the ufd name may not have been given, */

if ufdname len > 0 then
do;
pathname = substr (ufdname, 1, ufdname_len) || '>' ||
substr (filename, 1, filename len);
pathname len = ufdname_len + 1 + filename len;
end;
else
do;
pathname = substr(filename, 1, filename_ len);
pathname_len = filename len;
end;

/* Now set up for and see if file exists, */

chrpos(l) = 0;

chrpos(2) = pathname len;

call tsrc$$(kSexst, pathname, wnit, chrpos, type,
ercode) ;

/* Tell user results., */

if ercode = 0 then
do;
call tnoua(filename, filename len);
call tnou(' exists.', 8);
end;
else
call errpr$(k$irtn, ercode, filename, filename len,
'FILE_EXISTS', 11);

end; /* ufd arg is ok */
else
call errpr$(kSirtn, ercode, 'ufd arqument', 13,
'FILE_EXISTS', 11);

end; /* file arg is ok */
else
call errpr$(k$irtn, ercode, 'file arqument', 13,
'FILE_EXISTS', 11);

end;

2-73 First Edition

Software Release Document

This conversion took another five minutes. Again, you must now compile
and BIND the program.

Please note that many programs do not have the inmate structure of
FILE_EXISTS. Without the structure, this step may take much longer.
Remember, this step is not needed; the program will run without it,
It all depends on how much work you wish to put into your conversions,
Converting and structuring your programs will make future maintainence
much easier.

Conversion Step Four: In this step it is noted that EPFs, as
subroutines of the system, are passed arquments. One of the arquments
is always the command line, Therefore, the program is modified to
accept this argument. In doing so, the program is changed to call the
command line parsing routine CL$PIX. This conversion took about an
hour.

file exists: proc(command_line, command status, command name);

dcl command_line char(80) var,
command_status fixed bin,
command_name char(ll) var;

dcl pix char(18) var static init('entry; entry; end;'), 1 struc,
2 filename char(32) var, /* file to check existance of */
2 ufdname char(32) var, /* where to look */
pix_idx fixed bin,
bad_idx fixed bin,
pathname char(65) var, /* pathname of file to look for */
chrpos (2) fixed bin, /* info vector for tsrc$$ */

unit fixed bin, /* unit file opened on */
type fixed bin; /* type of file */
dcl 1 cvs based, /* overlay for a varying string */

2 len fixed bin,
2 chars char(l);

$replace cl$pix key by '0002'b4,

kS$irtn by 0, /* immeadiate return */
eSmisa by 170, /* missing arqument */
kSexst by 6; /* check file existance */

dcl cl$pix entry(bit(16) aligned, char(*) var, ptr, fixed bin,

char (*) var, ptr, fixed bin, fixed bin, fixed bin),

errpr$ entry(fixed bin, fixed bin, char(*), fixed bin, char(*),
fixed bin),

tsrc$$ entry(fixed bin, char(*), fixed bin, (2) fixed bin,
fixed bin, fixed bin),

tnoua entry(char(*), fixed bin),

tnou entry(char(*), fixed bin);

/* **/

First Edition 2-74

EXECUTABLE PROGRAM FORMATS

/* Get the name of the file and the ufd, */

call cl$pix(cl¥pix key, command name, addr(pix), length(pix),
command_line, addr(struc), pix idx, struc_idx,
command_status) ;

/* Make sure arguments are ok and file argument was given, */

if command status = 0 & length(struc. filename) = 0 then
command _status = e$misa;

if command status = 0 then
do; /* file arg is ok */

/* Make a pathname up out of the ufd name and the file name.
Remember, the ufd name may not have been given, */

if length(struc.ufdname) > 0 then

pathname = struc,ufdname || '>' || struc,filename;
else

pathname = struc.filename;

/* Now set up for and see if file exists. */

chrpos(l) = 0;

chrpos(2) = length(pathname);

call tsrc$$(kSexst, addr(pathname) -> cvs chars, unit,
b

/* Tell user results, */
if command status = 0 then
&.

call tnoua(addr (struc.filename) -> cvs,chars,
length (filename));
call tnou(' exists.', 8);
end;
else
call errpr$(k$irtn, command_status,
addr (struc. filename) -> cvs, chars,
length(filename), 'FILE EXISTS', 11);
end; /* file arg is ok */
else
call errpr$(k$irtn, command status, 'file arqument', 13,
'FILE_EXISTS', 11);
end;

Note that by using CLSPIX, the argument-checking logic within the
program was simplified. Also, since CLSPIX uses varying length strings
by default, our program was converted to use the same type and the
extra SUBSTR calls needed to remove the blank padding from the end of
the fixed length strings was eliminated,

Remember, you must still compile and BIND the program,

2-75 First Edition

CHAPTER 3
PRIMOS and Utilities

PRIMDS AND PRIMDS II

PRIMOS

REQOVERABLE MACHINE CHECK FUNCTIONALITY

Current Prime processors allow correctable main-memory parity errors to
be retried without affecting the operation of the system. However,
parity errors in other places in the processor, such as the main-memory
cache, cause the system to immediately halt. Some of the new
processors now under development allow other transient errors to be
corrected thereby providing improved system availability.

With most existing Prime processors, PRIMDS halts the system if there
is a parity error in either the cache or the STIB. This is because
previous Prime processors may have unrecoverably damaged the "machine
state” as a oonsequence of taking the check or attempting to use the
bad data. This can be true even if one attempts to warmstart the
system, Therefore, the PRIMIS action is to attempt to log the error
and then halt the system.

With the introduction of new hardware, logic will be able to
effectively correct the problem without affecting the processor
microcode. When the hardware detects a parity error in either the
cache or the STB, it forces a cache or STLB "miss" which causes the

3-1 First Edition

Software Release Document

erroneous location to be relcaded from main memory. This operation is
completely transparent to the microcode.

The obvious reason for implementing recoverable machine checks is for
higher availability on future processors. It is felt that a very high
percentage of cache parity errors are transient in nature. Thus,
allowing complete recovery from these errors can markedly increase the
amount of time the system is operatiomal.

Future machines will have faster processors than the P9950 and the
main-memory cache, the branch cache, and the STIB may be larger. The
increase in size of these elements oould be accomplished by using
denser logic, ‘There is some oconcern that these ocomponents may
experience a higher rate of failure than current parts and thus a way
to improve the situation is desired. The ooncept of recoverable
machine checks is the answer. It should be emphasized that cache and
STIB parity errors are not especially frequent today.

The functiomality of the addition of ocorrectable machine checks is
completely transparent to a typical user. The system will not stop
when a correctable parity error occurs. In fact, except for the log
entry, there will be no external indication that an error occurred at
all.

However, a system administrator or field service person would be able
to look at the PRIMDS event log files and tell that the system had been
having correctable machine checks. The same information that is
currently returned on unrecoverable machine checks will still be
returned to one examining the machine history using either LOGERT or
PRINT SYSIOG. The only difference is that a corrected machine check
will say so. :

Another point about recoverable machine check handling should be made,
It can be relatively expensive to log large numbers of these errors.
If all such errors were logged, it is conceivable that some significant
performance degradation would be experienced. 1In fact, the logging of
errors would degrade performance far more than simply correcting the
original problem. This problem will be addressed similar to
correctable memory parity errors. A count of the number of correctable
machine checks will be kept in PRIMOS and when this number exceeds a
certain arbitrary number, 1024, PRIMS will cause the hardware to
suppress reporting of recoverable machine checks,

In order to support the recoverable machine check interface, changes
had to be made to the machine check handler in PRIMOS and to those
routines that output the event log information generated by ERINDS.

Since a conscious decision was made to choose the approach that had the
least effect on the check handling code, the changes here are quite
simple, A new check header has been put into segment 4 at location
320. This check header invokes code that very easily merges with the
code that already counts correctable main memory parity errors and then
restarts PRIMS. The only change was to add a separate counter for
corrected machine checks.,

First Edition 3-2

PRIMDS and Utilities

Modifications to LOGPRT and PRINT SYSLOG to support ECCU

There are two programs that print out the contents of the PRIMDS event
log files, These programs have the same functionality. Both LOGERT
and PRINT_SYSLOG have been changed to recognize recoverable machine
checks, They have been modified so that the routine that decodes the
contents of DSWSTAT checks to see if bit 26 of DSWSTATL is set. If it
is, these utilites have been modified to indicate that the machine
check was recovered.

An error will be put into the NETLOG and PRINT SYSIOG when a bad HDX
restart packet is received by the DIE,

CONFIGURATION DIRECTIVES

LOGBAD

If a login attempt is unsuccessful (due to an unrecognized userid or a
bad password or project) and the directive:

LOGBAD YES

appears in the CONFIG file, one of the following messages is printed at

the supervisor terminal, depending on the login type.

Login Was Local and Terminal Line Number is Known:

Failed login <day-of-week> <date> <time>: line# <line>,
UserId <userid>.

Login Was Local and Terminal Line Number is Unknown:

Failed login <day-of-week> <date> <time>: line# UNKNOWN,
Userld <userid>.
Note
This case would only occur if the userid did not appear in

LWORD, a table mapping userid's to termminal line numbers.
This case should never occur.

3-3 First Edition

Software Release Document

Login Was Remote and Remote Node Was a PRIMENET Node:

Failed login <day-of-week> <date> <time)>: UserId <userid>,
from PRIMENET system <primenet node_name>.

Login Was Remote and Remote Node Was Not a PRIMENET Node:

Failed login <day-of-week> <date> <time>: Userld <userid>,
from X.25 address <X.25_address>.

Login Was Remote and Remote Login Was From an Unknown Node:

Failed login <day-of-week> <date> <time>: Userld <userid>,
from UNKNOWN network address.

Notes
e This case should never occur.
e If the failed login attempt occurred before the date and

time was set, then "<day-of-week> <date> <time>" is replaced
by "At system startup".

The appearance of LOGBAD NO in QONFIG results in no failed login
messages appearing on the supervisor terminal., The absence of LOGBAD
YES|NO in QONFIG is equivalent to the presence of LOGBAD NO.

NEW AMLC PROTOCOL

TT8BIT

TT8BIT, the eight bit protocol, allows for recognition of character
sets which require the use of 8 bits to represent each character. It
was written to provide support for the Arabic character set.
Essentially, the protocol behaves in the same manner as the TIY
protocol with the exception that the eighth bit (ASCII parity bit) is
not forced on for each character input from the terminal. This is to
allow the eighth bit to be used as part of the character., All control
characters are handled in the same manner as the TTY protocol.

First Edition 3-4

PRIMDS and Utilities

The protocol requires special firmware support from the terminal and
may be run only from locally attached terminals. Remote login can not
be used. The special terminal sends 8 bits of character and 1 bit of
rarity. This requires that parity be enabled on the Prime as specified
below.

In order to use this protocol the user must specify the protocol name
TT8BIT in the AMLC command and set bit 13 of the line configuration
word to 0 to enable parity. For example:

AMLC TT8BIT 0 2403 /* Line 0, odd parity enabled, 9600 baud,

REVERSE FLOW CONTROL ON THE ICS1 AND ICS2 CONTROLLERS

PRIMS support is provided for reverse flow control on the ICS1 and
ICS2 controllers. Users can now enable this feature via the AMIC

command for use while running certain block mode terminals on the ICS1
and ICS2.

ADDITIONAL ASYNCHRONOUS LINE SUPFORT

At Rev, 19.4, the maximm number of asynchronous lines which can be
supported on a single system has been raised from 128 to 256. On a
single system there may be a mix of AMLC, ICS1, and ICS2 asynchronous
lines, There has not been a change in the number of AMLC controllers
that may be in a single system; the limit remains at eight AMLC
controllers and, therefore, 128 AMLC lines. PRIM)S now supports up to
four ICS controllers, which may be any mix of ICS1 and ICS2.

Since there are only 255 processes supported by PRIMS, one of which is
reserved for the supervisor terminal, only 254 asynchronous lines may
be configured for user login, The remaining two lines can be
confiqured as assignable lines,

There have been no syntax changes in the commands or directives
applicable to asynchronous lines as a result of this new functiomlity.

AUTO SPEED DETECT (ASD)

This enhancement to PRIMS provides the capability to automatically
adjust current asynchronous commmnications hardware (AMLC, ICS1, ICS2)
to operate at the speed of a terminmal attached to a loginmable line.
The supported terminal speeds are 110, 300, 1200, 2400, 4800 and 9600
baud,

3-5 First Edition

Software Release Document

QONFIG Parameters for ASD Support

A terminal line must be explicitly set to ASD protocol for this
enhancement to be operable. This is done by giving the AMILC ASD
command from the supervisor temminal, normally at cold start of PRIMS.
The AMLC ASD command may be issued for a line with a logged in user but
will not take effect until one of the conditions that cause a return to
ASD protocol occurs.

In order for the speed detect algorithms to work, the following
hardware configuration is necessary:

e The programmable clock speed must be set to 9600 baud. (This is
the default speed and corresponds to a CONFIG word of X4XX.)

® The first jumperable speed must be set to 2400 baud. (This
corresponds to the CONFIG word X5XX.)

e The second jumperable speed must be set to 4800 baud. (This
corresponds to the CONFIG word X6XX.)

e The third jumperable speed (corresponding to the C(ONFIG word
X7XX) is not used by ASD and may be set to any speed desired.

The AMLC requires modification to hardware jumpers to set these line
speeds, The ICSl and ICS2 controllers require that the following
directive be issued: ’

ICS JUMPER 04540 11300 <ANY NUMBER>

Without performing the jumpering modification or issuing the ICS JUMEER
directive, only line speeds of 110, 300 and 1200 baud are supported.
Attempted operation at other line speeds cause failure to establish
correct line speed, resulting in loss of the use of that line. At same
speeds, no line characters may be seen resulting in the ASD process
waiting forever for the next character, The third numeric parameter
for the ICS JUMEER directive must be given but it's value is not used
by ASD processing.

The number of stop bits at each line speed is not modifiable by a
command issued from the supervisor terminal, Simple modifications to
the source module AMLDIM.PMA allow a field amalyst or knowledgable
custamer to adjust the stop bits as necessary. The standard stop bit
configuration for lines configured for ASD is two stop bits at 110 baud
and one stop bit at all other speeds.

The AMLC ASD command is only applicable to current asynchronous
implementations. Support is provided for the AMLC, ICSl and ICS2
controllers.

The AMLC ASD command may only be issued for unassigned lines. The
command is rejected if issued for an assigned line.

First Edition 3-6

PRIMS and Utilities

Any protocol can be used with lines configured for ASD. This is done
by issuing the 'AMLC <protocol> line' command prior to the 'AMLC ASD
line' command.

ASD operation on a line may be terminated by issuing any AMLC command
for that line that does not specify ASD protocol.

There are a number of system wide configquration directives that affect
the operation of ASD.,

e The 'DISLOG YES' Configuration Directive should be given to
ensure the return to ASD protocol if a user disconnects without
logging out.

® The 'disctime' parameter of the AMLTIM oonfiquration directive
controls how often a user's line is checked for loss of carrier.

® The ‘gracetime’ parameter of the AMLTIM configuration directive
controls the delay in return to ASD protocol for users not
logged in,

Caution

It is very important that neither the 'disctime' nor the
'gracetime’ parameters be set to zero. Setting either
of these parameters to zero prevents recovery from
certain error conditions and may result in loss of the
use of ASD lines,

® The 'disctime' parameter must be at least twice as large as the
'ticks' parameter on systems using ICS1 or ICS2 controllers, If
'disctime' is set to a smaller number, disconnect checking will
occur at every tick interval and gracetime processing will never
occur, That is, gracetime processing occurs at all tick
intervals that disctime processing does not occur.

AMLC ASD Cammand Syntax: The following are the commands to start and
end ASD operations:

AMLC ASD line [QONFIG] [lword]

AMILC [protocol] line [CONFIG] [lword]

Refer to the System Administrator's Guide (DOC5037-2PA) for definitions
of the parameters.

3-7 First Edition

Software Release Document

Note

If a protocol is not specified for an ASD line with a prior
'AMLC <protocol> line' command, the default TTY protocol will
be enabled when speed detect processing has completed. If a
prior AMLC command is issued for an ASD line but does not
specify a protocol, TRANS protocol is enabled on the completion
of speed detect processing., This is compatible with the
current implementation of the AMLC command.

Compatability: This implementation of ASD is intended to operate with
the AMLC hardware (both DMT and DMQ versions) and both ICS1 and ICS2
controllers using current software,

The user interface to a line in ASD mode can not be ocompatible with
previous user interfaces due to the nmature of ASD, that is, speed must
be determined before any other interaction with a user terminal can
take place.

Operation of ASD

A user attempting to login on a line that has been defined for ASD
would repeatedly type (in upper case only) the character 'A' until the
prompt 'Login please.' appeared on his terminal screen. The prompt
would indicate:

e The terminal support software had detected the user's terminal
speed

e The asynchronous hardare had been programmed to operate at that
speed on the line to which the user was attached

e The line protocol had been changed from ASD to that 1line's
normal protocol

If the user is running at a speed other than one of those supported for
ASD or if the user types characters other than upper case A's, the line
remains in ASD protocol, Character echo never occurs while in ASD
protocol.

The users terminal must be configured to generate either 'mark' or
'odd' parity. The speed detect algorithms will not work with either
'space' or 'even' parity.

The line will be returned to ASD protocol under the following
conditions:

e A local user's line returns to ASD protocol when the user logs
out. Note that a local user performing login over login does
not have his or her line returned to ASD protocol.

First Edition 3-8

PRIMS and Utilities

® A logged-through user's line returns to ASD protocol when the
local host receives a ‘'call clearing' packet. This packet is
sent from the remote host to the local host to indicate that the
connection between them is being broken. This normally occurs
when the logged-through user logs out from the remote host.
This packet may also be received under certain error conditions
that cause disruption of the link between the hosts. Note that
a local user who had netlinked to a remote host and logged in
there (Remote Login) does not have ASD enabled on logout from
the remote system.

® Gracetime (see the AMLTIM Configuration Directive) has expired
and the user has not successfully logged in.

® Carrier loss is detected for a non-logged in user. ILogged in
user's lines are returned to ASD by the logout on disconnect
processing.

For users who are logging out, the message "Auto speed detect is
emabled, Type "A"S until a login message appears.” is printed on the
user's terminal, The line's speed is then set to 1200 baud. Messages
from external logout routines are garbled or not printed if the
terminal speed is not also 1200 baud.

Conditions other than logout that cause a return to ASD protocol do not
print a message at the user's teminal.

HALF-DUPLEX SUPFORT OVER MDLC

Dialup half duplex support for Prime—-to-Prime links is now available
over the MDLC only. This is functiomally equivalent to and compatible
with the half duplex protocol that was supported prior to Rev. 19.3 but
was temporarily dropped.

PRIMDS CHANGES TO WARM START HANDLING

A new software interrupt that occurs at warmstart has been defined.
The software interrupt causes all logged in processes to receive a
condition WARMSTARTS signal. The default PRIMS on-wnit simply
displays the following message and then returns:

ek kkk WARM START *%%*x%

User software with ANYS on-units should preferably ignore (continue to
signal) this condition and let PRIMOS display the usual message and
then resume normal execution. If the user ANYS on-unit desires, it may
deal with WARMSTART$ itself but it should, in all cases, display same
message so the user is informed of the warmstart.

3-9 First Edition

Software Release Document

The visible effect of this change to warmstart is that logged out
terminals no longer have the **¥*%* WARM START ***** message displayed
but phantans now see this message (in M files) and logged in
terminals see the message not only on the terminal but also in a QOMD
file if one is in use,

PRIMDS CHANGES TO SUPFORT THE PRIME/SNA PRODUCT

Other changes to PRIMS for PRIME/SNA are largely internal and should
have no effect on users not running PRIME/SNA. These changes include:

e ICS2 support has been added for synchronous lines for use by
FRIME/SNA; this enhancement includes a new configuration
directive to specify that the synchronous SDLC protocol should
be down-line-loaded to the ICS2.

e Several ICS2 initialization error messages have been improved
for clarity.

e Several new Ring 0 entrypoints have been added to FRIMS to
support PRIME/SNA and a new DIZR 0 segment has been added to
contain the PRIME/SNA Ring 0 databases.

e Three new free storage classes have been added to the storage
pools used by the commmications software.

SOFTWARE PROBLEMS FIXED

The following non-reported bugs were fixed:

e The test to distingquish between normal status and marker status
was reversed,

e The line number and loop ocounter were not being ocorrectly
incremented when a controller was skipped.

e An index register was not being initialized correctly in same
cases in two loops.

DYNAMIC FILE UNITS

Dynamic File Unit allocation (DFU) has increased the number of file
wnits within PRIMS. The Rev. 19.3 limit of 3247 units per system and
127 per user are increased such that there are no internal system
limits. To do this, file units are allocated dynamically from shared
memory. The prior DFU limitation of 3247 file units is a reslut of the
size of the Unit Tables Entries (UTE) that fit into one segment (64K
words). DFU changed this limitation by using more than one segment

First Edition 3-10

PRIMDS and Utilities

worth of storage and changed the file system routines to use double
word pointers to access multiple segments.

DFU has not changed the basic unit table structures hut the FORTRAN
modules have been recoded to take advantage of the pointers in PLP and
use the Dynamic Storage Allocators to allocate wnit tables. Each user
has a single pointer in his PUDOOM area that points to the start of the
unit table (UTBL). There is a unique unit table for each user process.

3-11 First Edition

Software Release Document

First Edition 3-12

PRIMS and Utilities

CHAP COMMAND ENHANCEMENTS

Functiomal Overview

The new scheduler enhancements add two special purpose priority levels
to the current scheduler. The first, called IDLE 1level, defines a
class of users that use spare system resources. Processes relegated to
the IDLE priority level run only when no other process at any other
priority is eligible to run, that is, when the system is idle. IDLE
processes comprise a queue that is conceptually below the low priority
queves. The second new priority level, called SUSPEND level, defines a
class of users that are temporarily blocked from receiving service.
Processes at SUSPEND priority level are ineligible for service for an
indefinite period of time during which they are not subject to the
system idle time limit., This facility may be used by the System
Administrator to speed very high priority jobs through a loaded system
or to synchronize the execution of large jobs that thwart the system by
thrashing against each other.

Movement between existing priority levels and the two new levels is
controlled by the CHAP ocommand. Both the supervisor version and the
normal user versions of the command have been modified to accommodate
the new levels. The new form of the supervisor command may be employed
to place users on either the IDLE or SUSPEND queue. Processes remain
idle or suspended until they are explicitly placed back on one of the
existing priority levels (0-3) by CHAP., The new form of the user
command allows a user process to CHAP itself into the IDLE level only
and to return itself to the default user priority level.

In addition, the routine SPAWNS is enhanced to allow phantams to be
spawned directly into the IDLE priority level. This involves
implementing the priority argument to SPAWNS, which currently exists
but is ignored. A privileged process is allowed to spawn phantams into
any priority level except SUSPEND.

CHAP Command Syntax

Supervisor Cammand: This section presents the revised syntax of the
supervisor version of the CHAP command and describes the new options in
detail. Refer to the System Operator's Guide for a discussion of the
existing CHAP parameters.,

The new form of the CHAP command is:

CHAP l-userno -IDLE
ALL ~SUSPEND
priority [timeslice]

3-13 First Edition

Software Release Document

userno is the target process' user number. If ALL is specified, all
processes except certain privileged or special purpose processes; such
as user 1, NETMAN, and slaves, are affected.

IDLE places the specified process at IDLE priority level. SUSPEND
places it at SUSPEND level. (Refer to the previous section for a
description of the IDLE and SUSPEND priority levels). The new priority
level remains in effect until it is explicitly changed adain.

IDLE may not be specified if the target process is a terminal user; an
attempt to & so results in an error message. When a terminal process
is suspended, a warning message is issued. Any characters typed before
the process is made eligible again may be lost, Neither IDLE nor
SUSPEND is valid for time-critical processes, which have their
timeslices set to -1. The timeslice must be reset to a normal value
before the process can be made idle or suspended. IDLE and SUSPEND are
only valid for normal terminal users and phantams. If the requested
priority change is not valid for the specified user when the -userno
argument is supplied, an error message is issued. If the ALL option is
specified, processes for which the priority change is invalid are
simply skipped and a warning message giving the mnumber of processes
that were not affected by the command is issued. This form of the CHAP
command can only be issued from the supervisor terminal.

User Command: The syntax of the user version of the CHAP command is:

up
DOWN
CHAP { LOWER [timeslice]
IDLE
| DEFAILT)

UP moves the user's priority up one level but no higher than the
current default user priority 1level (The default user priority level
may be reset by the system operator through the supervisor termimal
version of the CHAP command). The UP option has no effect if the
process is at IDLE level.

DOWN moves the user's priority down one level but no lower than the
lowest normal priority level confiqured (usually 0). The DOWN option
can not be used to move the process into the IDLE or SUSFEND levels,
CHAP DOWN is equivalent to CHAP LOWER 1 (see below).

LOWER lowers the user's priority by nnn levels, but no lower than the
lowest normal priority level confiqured (usually 0). nnn must be an
integer value in the range 1 through 7. timeslice is optioml; it
specifies a new timeslice value in octal in units of tenths of a
second. The new timeslice value must be smaller than the users's
current timeslice value; in other words, the user may shorten his
timeslice but may not lengthen it. The LOWER option can not be used to
move the process into IDLE or SUSPEND level.

First Edition 3-14

PRIMOS and Utilities

IDLE places the user at IDLE priority level. This option may only be
issued from a phantam. Terminal users may not make themselves IDLE,

DEFAULT resets the user to the current default user priority The
default user priority level may be reset by the system operator through
the supervisor terminal version of the CHAP command,

SPAWNS Interface Changes: The priority arqument to SPAWNS is an
element of a structure describing various characteristics of the new
process. Currently, the priority field is ignored. A phantam is
assigned a priority of 1 if the spawner is User 1; otherwise it is
assigned the priority of the spawning process. SPAWNS allows phantams
to be spawned into any priority level except SUSPEND. This is
implemented through the priority arqument as follows:

Value of
Priority Meaning
-2 Place phantam at IDLE level
-1 If the caller is user 1, assign the phantan to
priority level CURLEV (currently 1). Otherwise,
assign the phantam to the spawner's priority level
0-3 Assign the phantam to priority level 0-3 or the

spawner's priority level, whichever is lower.

All other priority values are invalid and result in an ESBPAR error
code being returned from SPAWNS. Note that the default action (taken
when the priority is -1) is different for user 1 than it is for other
users.

3-15 First Edition

Software Release Document

First Edition 3-16

PRIMS and Utilities

NEW FEATURES AND CHANGES

Batch EPF Support

® The Batch subsystem was modified to save the EPF attributes of
the process submitting a request and passing them on to the
actual job.

o The size of the batch queue entry has been expanded.

Prior to Rev. 19.4 Batch, there was no way to limit the EPF attributes
of a Batch job. These EPF attributes include the maximum number of
private static and dynamic segments the process is permitted, as well
as the maximum number of cammand levels and program invocations. These
limits are set when a terminal process logs in. For phantams, however,
they are copied from the process which creates the phantam. This means
that every Batch job would inherit the same EPF attributes as the Batch
monitor which creates all Batch rhantams. ‘Therefore, Batch was
modified so that the EPF attributes are aocquired from the process
submitting a Batch job and passed on to the Batch phantam when the job
is run.

Since there is a delay between the time a Batch job is submitted and
the time it is run, the new EPF attributes must be stored in the Batch
job queue entry. This resulted in a change in the overall length of
each Batch job queue entry. Since the old entry lengths are
incompatible with the new entry lengths, all Batch jobs submitted prior
to Rev. 19.4 Batch must be either executed or deleted before upgrading
to Rev. 19.4 Batch. A new error code has been added to Batch which
checks through all active Batch job queues to see if there are any
queues with active job entries of the old length, If there are, a
message is sent to the supervisor terminal informing the operator that
the Batch queues are not completely Rev. 19.4 commatible.

Note
Rev. 19,3 Batch will oontinue to function with Rev, 19.4

Primos. However, there is no Batch support for EPFs prior to
Rev. 19.4 Batch.

Longer CPL Arguments

Prior to Rev. 19.4 Batch, the length of the argument to be passed to a
CPL Batch job was limited to 80 characters., With Rev. 19.4 Batch, this
limit has been doubled to 160 characters.

3-17 First Edition

Software Release Document

Batch Support for Dynamic File Units

Prior to Rev. 19.4, a user could specify that a Batch job open its
input file only on units 1less than 126. With Rev. 19.4 Batch, this
restriction has been removed.

SOFTWARE PROBLEMS FIXED

Open CPL Files: A major problem fixed at Rev. 19.4 is the situation
where queuves hang for no apparent reason. The problem was that CPL
jobs have always kept the temporary file they use for command input
open until termination of the job. (OMI jobs, on the other hand,
closed the temporary file before the job terminated. This led to the
occasional situation where a CPL job from one queue used the same
temporary filename as a QOMI job from a second job queue. When the
(OMI job finished it would try to delete the temporary file. However,
this file was already held open by the CPL job. Therefore, the QOMI
job would have to wait until the CPL job terminated before it could
finish. This effectively hung the queue where the COMI job had been
submitted.

Monitor Attaches to BATCHQ Directory: Another problem fixed at
Rev. 19.4 is that of the BATDEF file not being found even though it
existed in the BATCHQ directory. The problem was that the Batch
monitor was not always attached to the right directory before trying to
open the BATDEF file,

The Batch monitor now does an explicit attach to the BATCH) directory
before opening the BATDEF file (SPAR 3002389).

File Units and Monitor Waiting: File unit handling was modified to
support dymamic file units up to 128. Also, to avoid hanging queues,
OMI jobs no longer close their temporary files until the job is
finished.

On a heavily loaded system, there are certain situations where race
conditions develop between the Batch monitor and Batch jobs. The
length of time that the Batch monitor waits for a Batch job to reach a
certain stage in its processing was not always sufficient. With
Rev, 19.4 Batch, the length of time that the monitor waits has been
increased. This should provide a more stable and more reliable Batch
product (SPAR 2004578).

First Edition 3-18

PRIMDS and Utilities

NEW FEATURES AND CHANGES

SOFIWARE PROBLEMS FIXED

Password Prompt: The option -NOPASS has been replaced by the option
-NO_QUERY (-NQ). ‘This option prevents any prompts for passwords being
given during a BOOT CREATE session (SPAR 3003495) .

Access Rights: If SEGSAM or SEGDAM type files were explicitly named in

e list file for BOOT_CREATE, then in attempting to check the access,
error conditions were always raised. This was due to BOOT_CREATE
attempcing to open each sub—entry of the SEGDIR to check its aceess
rights, BOOT_CREATE now checks access rights by opening only the top
level of the SEGDIR (SPAR 3007629).

Correction to List File: Files of the type SEGSAM were not supported,
when explicitly named, in the list file of BOOT CREATE, The file type
was isolated as an attribute and checked against a list of supported
filetypes. The 1list held a name SEGAM instead of SEGSAM (SPAR
3007630) .

Options: If multiple options are given for one of the files in the
list file of BOOT CREATE, then BOOT CREATE tells the user that it will
default to the -YES option instead. It then goes on to test that the
~CHECK option has been used and takes -CHECK in preference to -YES
(SEAR 3007631) .

If multiple options have been used, BOOT CREATE useS -YES by default.
The -CHECK Option: The -CHECK option does not present blank lines to
MAGSAV. This prevents the "Syntax error" message from being displayed

for each blank 1line. -CHECK still has the rest of its previous
functionality (SPAR 3008138).

3-19 First Edition

Software Release Document

First Edition 3-20

PRIMDS and Utilities

BRMS

NEW FEATURES AND CHANGES

At Rev, 19.4, BRMS attempts to replace any in-use EPF's encountered
during restore operations (archive_restore, transport_restore and
backup restore). The functiomality is similar to that of QOPY and
involves restoring the EPF into a temporary file and then replacing the

target EPF, The old file is renamed from name.RUN to name.RPn, where n
is a diqgit.

3-21 First Edition

Software Release Document

First Edition 3-22

PRIMS and Utilities

NEW FEATURES AND CHANGES

QIFF was fixed so that it does not clear the last digit of control
characters.

3-23 First Edition

Software Release Document

First Edition 3-24

PRIMDS and Utilities

QONCAT

SOFTWARE PROBLEMS FIXED

Missing Keyword: -If NEW_TITLE is not specified with the TITLE
subcommand, the user receives the message 'Missing keyword
option(cmdl$a)' (SPAR 3002103).

3-25 First Edition

Software Release Document

First Edition

PRIMOS and Utilities

NEW FEATURES AND CHANGES

At Rev, 19.4, the (OPY command, used on EFF files, attempts to remove a
mapped EPF from a user's address space before performing the QOPY
operation, This is done to ensure that the EPF is removed from the
disk and from the user's address space.

The QOPY command also allows the copying of an in-use program EPF or
EPF library. The suffix on the command (.RUN) is incremented to the
next revision (RPO) to allow the old version of the EPF to continue to
function. The newer version of the EPF is then used and the older
version can be deleted either when the EPF is removed from the user's
address space or the user logs out. There may be up to nine versions
of an EPF with suffixes from .RPO to .RP9.

3-27 First Edition

Software Release Document

First Edition 3-28

PRIMDS and Utilities

QOPY_DISK

NEW FEATURES AND CHANGES

(OPY_DISK messages have been converted to upper/lower case.
The routine YESNO, which obtains yes or no answers from the current

input stream, has been modified to be case insensitive. The acceptable
responses are (in either upper or lower case) YES, Y, YE, ND, and N.

3-29 First Edition

Software Release Document

First Edition 3-30

PRIMOS and Utilities

DELETE

NEW FEATURES AND CHANGES

At Rev. 19.4, the DELETE command used on EPF files attempts to remove a
mapped EPF from a user's address space before performing the DELETE
operation. This is done to assure that the EPF is removed from the
disk and from the user's address space.

3-31 First Edition

Software Release Document

First Edition 3-32

PRIMS and Utilities

1B

SOFIWARE PROBLEMS FIXED

ACCESS VIOLATIONS error message was raised when issuing the command
MOLE I.. This problem has been fixed (SPAR 3009488).

The problem with using MOV STRA INLIN or MOV STRA /FOO/ has been
corrected (SPAR 3009542). This SPAR duplicates SPAR 3007868.

3-33 First Edition

Software Release Document

First Edition 3-34

PRIMS and Utilities

NEW FEATURES AND CHANGES

EDB now displays up to 32 characters in entry names so that users can
see the part of the names that BIND is dealing with. No method exists
to display only 8 or 6 characters. Since 32 characters take up a large
portion of the screen, only two names are output per line.

PERMANENT RESTRICTIONS

EDB does not search binary files for the .BIN suffix; it must be
supplied by the user.

3-35 First Edition

Software Release Document

First Edition 3-36

PRIMOS and Utilities

EDIT PROFTLE

NEW FEATURES AND CHANGES

Four new user, or project, and system dJdefault attributes, and new
conversion procedures were added for Rev. 19.4.

The LIST SYSTEM ocommand has been modified to display system default
attrihutes.

SOFTWARE PROBLEMS FIXED

The -DEFAULT option of EDIT _PROFILE now works correctly (SPAR 3002167).

EDIT PROFILE no longer accepts null user ids or null project ids (SPAR
3003324/3002290) .

EDIT PROFILE no longer accepts invalid default project names, If the
user enters an invalid default project name, EDIT _PROFILE returns an
error message followed by the EDIT _PROFILE prompt. The rebuild now
runs smoothly (SPAR 3004176) .

In initialization mode, if the user responds to the question 'PROJECTED
NUMBER OF USERS' with a number larger than the size that EDIT_PROFILE
can handle, EDIT _PROFILE responds with the error message "SIZE MUST BE
A NUMBER BETWEEN ZERO AND 28004" (SPAR 3005232).

When changing a user's initial attach point, EDIT _PROFILE now allows
the user to enter 'none' in the retry loop (SPAR 3004845).

Quits are now inhibited during the ADD PRQJECT command (SPAR 3003327).

If the user shuts down the partition, from the supervisor termimal,
that he or she is attached to and then enters EDIT_PROFILE, the user
now receives just one error message when exiting from EDIT _PROFILE
using QUIT (SPAR 3002595).

If EDIT PROFILE is aborted during the entry of a project and then a

list of projects is requested, EDIT PROFILE no longer terminates with
the message "END OF FILE., PVF HEADER" (SPAR 3001396/3003327).

3-37 First Edition

Software Release Document

First Edition 3-38

PRIMS and Utilities

NEW FEATURES AND CHANGES

The following summarizes the new features and changes.

e New EMACS functions

¢ New EMACS Atoms

® New terminal support: the Prime PT200

Command line arguments —-TTP Pr200 and —TTP PT200W
Saving/Restoring the state of PT200 Screen Display Mode

New command line option: -SAVE_SCREEN for PT200 in 80x48
mode

Change in the setup of the PST100 CURSOR-FUNCTION/NUMBER
Pad in EMACS Fundamental Mode and its relation to the
PT200 PF/NUMBER Pad

e Changes to EMACS which are not terminal-specific

Removal of the limitations on the PRIM)S_INTERNAL,_ SCREEN
command

New global switch controlling level of user feedback:
VERBOSITY_LEVELS

OPTIONAL change to feedback from quit ocommand when
buffers are unsaved

OPTIONAL change to feedback from <CTRL>P
Slight change to internals of COBOL mode

New Command or macro: fundamental for reestablishing
Fundamental Mode bindings

e Changes to the Standard User Interface (SUI)

Change to PRIMDS COMMAND command

Substitution of the FIND FILE for the GET FILE function
Addition of new predefined PRIMS commands: LD, TLD, VLD
Changes to attach and spool commands

Miscellaneous changes to internals of the SUI

3-39 First Edition

Software Release Document

Horizontal scrolling has been added to the SUI
Changes to the SUI HELP screens

SUI support in both 80x24 and 132x27 display modes for
the Pr200 terminal

Normal operation of SUI/SUIX on PT200 terminal

A note on the BS and DEL keypaths in SUI/SUIX versus
Fundamental Modes

e Changes in the EMACS* directory

Contents of EMACS*

Contents of EMACS*>INFO

Contents of EMACS*>EXTENSIONS

Contents of EMACS*>EXTENSIONS>SCURCES
Contents of EMACS*>EXTENSIONS>SUI
Contents of EMACS*>EXTENSIONS>SUI>SOURCES

Contents of EMACS*>EXTENSIONS>SUI>UNSHARED

Unless your user process has been allocated an adequate number
of dynamic segments at Rev, 19.4, you will be plagued by EMACS
telling you 'NOT ENOUGH SEGMENTS' and having many of your
commands aborted. To run EMACS without getting such errors,
you should have your System Administrator set your allowed
number of dynamic segments to at least 100. This should only
be done by the System Administrator using EDIT_PROFILE.

Caution

New EMACS Functions

The following previously-undocumented functions are documented here in
a format similar to that used in EMACS*>INFO>DESCRIBE EMACS where
functions can be accessed via the describe command,

autoload_lib Extended command that fasloads a file and executes

First Edition

the given command,

(autoload_lib atam string)

3-40

clerical$

PRIMS and Utilities

The two required arguments are an atam which is the
ocommand to be executed and a string which is the
pathname of the file oontaining the command. The
file must be in "fasload" format., (See fasdump,
fasload, and dump file.)

This is another user type similar to programmer$ (see
EMACS Reference Guide (IDR5026)) but it is much
simpler. All files are lcaded with f£ill mode on.

create_text_save buffer$

cursor_info

decimal_rep
def_auto

Goes to or creates the next buffer in a circular list
of ten buffers, deletes the contents of that buffer,
and inserts the string argument into that buffer. It
saves the text in a temporary buffer.

(create_text_save buffer$ string)

% 1. oo : T
where the arcument is a string of text to be saved.

Returns the asked for property of a cursor.

(cursor_info cursor prop {new_value})

Valid properties are buffer_name, line num, char_pos,
and sticky. new_value is only valid for sticky and
is ignored for the other properties. If an illegal
property is asked for, the string $ERRORS is returned
and an informational message appears.

Same as integer_to_string

Creates a function object stub before the function is
loaded. This makes functions available with their
description strings without actually 1loading the
function. When the function is invoked, then it is
actually loaded. This was used prior to Rev. 19.2 to
create the 1libraries to be lcaded. It may be useful
for loading persomal libraries.

(def_auto atam string string)

atam is the name by which the function is to be
invoked, the first string is the help description
string, and the second string is the pathname of the
file containing the function.

3-41 First Edition

Software Release Document

found_file_hook

This is the function that checks the suffix when a
new file is brought into a buffer and then turns on
the mode associated with that suffix. (See BEMACS
Reference Guide (IDR5026), Appendex A.)

get_cursor Returns a list of the cursor properties.
(get_cursor {cursor})
The list is of the form ("buffer_name" 1line num
char_pos sticky); for example, ("main" 1 1 true)
go_to buffer Like select_buf but returns a cursor to the first
line of the buffer and positions the user at the
first line,
(go_to_buffer "buffer_name")
1d Does a PRIMIS LD command at the current attach point.
(Operative in SUI only)
lead lib Fancy fasload with message and bit to tell if the
load was successful.
make cursor Returns a cursor generated from the argqument.
(make_cursor buf_name lnum cpos {sticky})
The sticky bit defaults to true if not specified.,
nthcar Returns the nth car of the list,
(nthcar list number)
The car to return is specified by the number.
pending reenter
Same as suppress redisplay.
primos smsgl Send a PRIMDS message.

First Edition

(primos_smsgl any string)

3-42

Programmer$

reset_tabs

rest$

PRIM)S and Utilities

any is either the addressee's name or process number
and string is the message to be sent.

This is a user type. It sets the mode of the bhuffer
depending on the suffix of the file name read into
the buffer., (See EMACS Reference Guide (IDR5026)
under Changing File Hooks.)

SUI tab function to set the tabs to every five spaces
up to column 130,

Same as suffix$,

restrict_to_sui$

scan_errors

Bound to functions appropriate only when using the
SUI. Further documentation below.

(scan_errors language) Special function which scans
the current buffer for errors in the format for
language. language is a nomquoted atan. The list
of languages currently is: C, REG, FIN, PMA and TSI,
TSI refers to all of Prime's ocommon envelope
compilers; PL/1, PL/1G, Pascal, (BL, VREG, and SPL.

search_back_first_charset_line

Same as search_bk_in line.

search back first_not_charset_line

Same as verify bk_in line,

search_charset,_backward

Same as verify_bk.

search_charset_forward

Same as forward search.

search _for_first_charset _line

Same as search_fd_in line.

search for_first_not _charset line

Same as verify fd in line,

search_not,_charset backward

Same as verify_bk.

search_not_charset_forward

Same as verify_fd.

share library$

(share_library$ pathname)

3-43 First Edition

Software Release Document

Shares an efasl file. It is used in init _emacs when
sharing EMACS. The shared efasl file must have only
defun's and defcom's in it.

show_lib alc$ Prints at the terminal what the current shared EMACS
library segments are. It is used in init_emacs when
sharing EMACS.

sublist (sublist list number {how_many}) Sublist is a list
equivalent to substr. It returns the list starting
at the numbered car. If the optiomal how many is
specified, it returns the 1list with that number of
items starting at the numbered car.

suffix$ returns the substring after the rightmost '.' in the
name of the current huffer or the passed treename,
If the string has no periods or there is a '>' after
the rightmost period, this returns a string
consisting of a single space,

(suffix$ [string])

sl:ring is an optiomal argqument and is assumed to be a
P

sui_exchange_mark
SUI version of exchange mark command. More user
feedback is provided.

sui_horiz left
ST version of horiz left command.

sui_primos command
SUI version of primos command command.

sui_set_tabs Establishes TAB settings for SUI users.

tld Does a PRIMDS ID -IONG -SRTD command at the current
attach point. (Operative in SUI only.)

unused_key_feedback$
Bound to unused keys in SUI,

unused _mb_key._feedback$
In mb_mode, bound to unused keys in SUI.

vlid Does a PRIMDS LD -IONG -SRIN command at the current
attach point, (Operative in SUI only.)

First Edition 3-44

PRIM)S and Utilities

New EMACS Atoms

verbosity_level$
Controls level of user feedback from quit function
and OONTROL~P Handler. The default value is 2,
Further documentation below.

sui_info message time$
Controls length of time that ocertain SUI error
messages are displayed at the bottam of the screen.
The initial value is 3000, measured in milliseconds.
Further documentation below.

A new QOMPILE ocommand has been installed that is much faster than the
previous one in scanning and displaying errors. It allows a user to
include language options on the COMPILE oommand line. Languages
supported are C, (OB, FIN, PMA, REG, PL/1, PL/1G, Pascal, (BL, VREG,
and SFL.

New Terminal Support

The Prime PT200 is now supported.

Command Line Arquments

EMACS now recognizes two new arguments to the —TTP Command Line option:

-TTP PT200
~TTP PT200W

When given with no additiomal -WIDTH or -HEIGHT qualifications, -TTP
Pr200 enters EMACS with normal support for the PT200 terminal., (See
below for details on SUI support.) EMACS assumes you wanted its screen
defaults for the PT200, which are -WIDTH 80 and —~HEIGHT 24.

If you enter EMACS with -TTP PT200W, EMACS comes up in 132x27 display
mode. 132 character-wide files can be displayed with no need for
horizontal scrolling. The text display area is 24 lines high with the
normal 3 lines for mode line and minibuffer,

Normal use of —HEIGHT and -WIDTH Command Line Options: If you add only
the option -WIDTH N to the EMACS command line and N is less than 81,
EMACS starts up after having set the PT200 terminal into 80x24 display
mode. If N is greater than 80 and less than 133, EMACS starts up on
the Pr200 terminal after having set the terminal's display into 132x27
mode. In both cases, the actual EMACS display window is N characters
wide, which may be smaller than 132 characters.

3-45 First Edition

Software Release Document

If you add only the option —HEIGHT N to the EMACS command line, and N
is greater than 5 and less than 25, EMACS starts up in normal 80x24
display mode. If N is between 25 and 27, and -WIDTH is greater than
80, EMACS starts up after having placed the PT200 in 132x27 mode. In
both cases, the EMACS display window is N lines high, including mode
line and EMACS MiniBuffer lines.

Thus the —TTP PT200W Command Line Option is simple shorthand for the
text:

=TTP PT200 -HEIGHT 27 -WIDTH 132

on the command 1line. In fact, if your command line contains -TTP
PT200W, any arquments to —-HEIGHT or -WIDTH are ignored. If you want
any nonstandard screen height or width, use -TTP Pr200 and go from
there.

Limjtation — No PT200 Display Mode Switching: It is not posmble at
this release to issue any EMACS command that switches a given EMACS
session between the PT200's 132-column and 80-column modes. To switch
display modes, the user must exit EMACS and return in the other mode.

Savmg/Restormg the State of PT200 Screen Dlsplay Mode: The PT200 can
operate in any of four oonfiqurations of its own intemal display
memory: 80x24, 80x48, 132x27, and 160x24.

When EMACS is in control of the terminmal, it is either in 80x24 mode or
in 132x27 mode. This is because EMACS makes no use of within-terminal
display scrolling capabilities, either horizontal or vertical. EMACS
handles all of the scrolling responsibility itself. When you are not
using the SUI, the total size of your EMACS screen may be between 6 and
27 lines in height and between 10 and 132 columns in width.

The user can call EMACS from the Pr200 teminal at PRIMDS level when it
is operating in any of the four configqurations of its intermal display
memory.

In all cases, upon normal exit from EMACS, the PT200 is returned to the
going-in state of its internal display memory.

New Command Line Option: -save screen for PT200 in 80x48 Mode: The
normal behavior of EMACS upon the termination of an EMACS session is to
clear the contents of the termimal display memory and leave the user
with the PRIMS prompt at the top of the screen.

Users are now able to invoke EMACS with the addition of the new Command
Line Option -save screen, This does’ not have any effect on any
terminal other than the Pr200 (and its Prime terminal successors).

First Edition 3-46

PRIMOS and Utilities

The -save_screen option has an effect only when the PT200 terminal is
in 80x48 mode before going into EMACS and the 132x27 mode is not used
inside of EMACS. The save_screen option is accepted without error bhut
has no effect if the user invokes EMACS when the PT200 terminal is in
any state other than 80x48 screen display.

When the above conditions are satisfied at EMACS invocation, EMACS asks
the terminal to remember the current location of the cursor within its
display memory. Upon exit from EMACS's control, EMACS restores the
PT200 display to its going-in state and then, if that state was 80x48
and -save_screen was given, EMACS instructs the temminal to restore the
cursor to where it was at the start of the session (unless the user
executes a primos internal screen command during that EMACS session, as
will be documented further).

The result of this new feature is that the second page of display
memory (if any) is saved and restored after the EMACS session is
completed., Since EMACS does all its work in the first page of display
memory when it places the terminal in 80x24 mode during a normal
session, nothing on the second terminal page is touched during the
EMACS session (assuming the user does not give the
primos_internal_screen command). Therefore, upon exit from EMACS, the
user sees the Pr200 screen as it appeared just as EMACS was being
invoked. The few lines above the EMACS invocation are still there on
the screen, If the user scrolls the PT200 back to the first page of
display memory, the page will be blank., EMACS was doing all of its
work in that page and EMACS clears it prior to exit.

Relation Between the -save screen EMACS Command Line Option and the
primos_internal screen EMACS Command: This restoration of cursor
positioning outside of EMACS has a considerable benefit for users of
the primos_internal screen command.

When the primos internal screen command is operating, EMACS normally
restores the PT200 display mode to its going-in state and only then
issues the PRIMIS command the user entered. (This command can now be
external as discussed later.) Just before the beginning of the
execution of the desired command, therefore, the screen has the
appearance it did when EMACS was invoked. In fact, the screen appears
as it would have at the oonclusion of the EMACS session, had the
primos_internal screen command not been given,

An EMACS user with -save _screen in operation sees the display and
cursor restored to their going-in state prior to the execution of the
internal PRIMS command. The user sees the last few command lines
given at PRIMS level prior to their invocation of EMACS. Intermal
PRIMS commands that result in output lines cause the original EMACS
invocation command to scroll upward, possibly off the screen.

3-47 First Edition

Software Release Document

Sucoessive operations of the primos intermal screen command produce
output at the bottam of this second page of display memory. Thus,
PT200 user context can be saved in successive primos internal_screen
commands .,

Upon exit from EMACS, the -save_screen user retains the last 24 lines
of display memory even if these were executed from inside EMACS via the
primos_internal_screen command.

Limitations on the Usefulness of -save screen: The -save_screen
command line option is of benefit to the user if (and only if) the
PT200 cursor was somewhere in the second page of display memory when
EMACS was invoked. Because the cursor is at the bottam of display
memory for the great majority of times that EMACS is called, the
benefit of context-saving is obtained most of the time.

-save screen or -ss Command Line Abbreviation: To save typein, the
EMACS command line abbreviation -ss may be used to obtain this feature.
A PT200 user should keep in mind that, to get the benefit of the
-save_screen functiomality, the user must add it to the PRIMOS command
line (or abbreviation) used to invoke EMACS; -ss or -save _screen are
not defaults.

Change in the Setup of the PST100 CURSOR-FUNCTION/NUMBER Pad in EMACS
Fundamental Mode

To avoid disrupting current PST100 users' EMACS Fundamental Mode
" interfaces at this release, the default handling of the PST100 PF/N pad
has not been changed. For Fundamental Mode, the PF/N pad setting is
not affected at startup. SUI/SUIX users' PF/N pads are, however,
forced into PF mode at startup. The PST100 commands which force the
PF/N Pad into one or the other mode have also been removed from the
respective refresh functions used in both Modes.

Thus, the EMACS Fundamental Mode user wishing to bind functions onto
the PF/N pad can easily include in their library file the following
EMACS command which switches the pad into PF mode.

(send_raw_string "“c[[>10h")

The comand stays in effect for the balance of the session unless
countermanded by a similar raw string terminating in "101" (the final
character is a lowercase L). The PST100 (refresh) function does not
affect the mode setting of the PF/N pad.

The PST100 SUIX user gets the switch into PF mode in the initialization

sequence used for that mode. The PST100 (sui_refresh) function does
not affect the mode setting of the PF/N pad.

First Edition 3-48

PRIMDS and Utilities

Cautions on the Use of the PST100 PF/N Pad with the
primos _internal screen Command

One major but subtle exception to this policy is important for SUI/SUIX
users only in the control sequences given to the PST100 when returning
from the primos intermal screen command. (This command is accessible
either by name or by prefixing !! to the argqument of a primos command
command. It is also used in the STAT, LD, TLD, and VLD commands noted
elsewhere in this document.) When EMACS is repainting the SUI/SUIX
screen, the control sequence forcing the PF/N pad back into PF mode is
invariably given. ‘Thus, if the SUI/SUIX user for some reason had the
PF/N pad in N mode prior to such a command, the pad would be back in PF
mode after it.

The PF/N pads of Fundamental Mode users of the PST100 terminal are not
affected on returning from these commands but they are affected upon
exit to PRIMS level. If the user starts EMACS Fundamental Mode with
the PF/N pad in N mode, it remains in N mode inside EMACS. If the pad
is switched to PF mode within the session, it remains so through normal
refresh functions, However, if a primos internal screen oommand is
given, the terminal is reset to its going-in state, including N mode
for the PF/N pad, for that command and it is not forced back into PF
mode upon return to EMACS Fundamental Mode.

The CURSOR-FUNCTION/NUMBER PAD (CF/N) on the PT200

The pad corresponding to the PST100's PF/NUMBER pad is the
CURSOR-FUNCTION/NUMBER (CF/N) pad. (The old PF keys have moved
elsewhere on the PT200 keyboard.) The CF/N pad can be toggled between
these two modes from PRIMIS level, using the NUM LOCK key. When in
NUMBER mode, the NUM LOCK LED is lit. When in CURSOR-FUNCTION mode,
the pad sends several different ESC sequences to the host, which EMACS
SUT uses for cursor control and the like.

Behavior of Pr200's CF/N Pad in EMACS: At this release of EMACS for
the PT200 terminal, the default behavior of the CF/N pad is similar to
the PF/N pad of the PST100. It is placed in CURSOR-FUNCTION mode as
SUI/SUIX modes are started and is untouched in the startup of
Fundamental Mode. This facilitates users' binding their own functions
" to the CURSOR-FUNCTION pad in both SUI/SUIX and Fundamental Modes.
Under default oonditions for Pr200 Fundamental Mode users, the
coming-in value of their PF/N pad switch determines whether it is
possible to type in numbers on the CF/N pad. If it came in in number
mode, that's what it produces inside EMACS. If it came in in CF mode,
it produces 1Invalid command: feedback, and occasioml inserted
characters, from CF keys not bound to anything useful.

3-49 First Edition

Software Release Document

How to Get the Pr200 CF/N Pad to Function as a NUMBER PAD in
Fundamental or SUI/SUIX Modes: If you are a Fundamental Mode user who
wishes to use the CF/N pad in NUMBER mode, simply cause the execution

of the following PL codes:

(send_raw_string "~c[[>101") to turn number mode ON. The last
character in the command string
above is a lowercase L

(send_raw_string "“c[[>10h") to turn number mode OFF

You can bind functions which generate the above raw strings to the
PT200 function key(s) of your choice.

Note that the Pr200's NUM LOCK key, for SUI/SUIX modes, is bound to
functions that do one of two things. If the CF/N pad is in CF mode,
the key runs the DELETE FORWARD function, for either characters or
words, depending on the CHAR/WORD switch., If the pad is in Number mode
(with the NUM LOCK's LED on), it runs a function that turns CF mode on
and turns off the LED.

See above for a discussion of the effects of the primos internal screen
command's effect on the current setting of the Pr200's CF/N pad. What
applies to the PST100's PF/N pad applies equally to the Pr200
terminal's CF/N pad.

Disposition of Unused PT200 CF/N Pad Reys in SUI/SUIX and Fundamental
Modes: All keys on the CF/N }_:aé wﬁiéﬁ are not bound to useful
Tunctions have been bound, for SUI and SUIX users only, to a simple
EMACS function that echoes ‘This key is not used’ in the minibuffer for
a fixed 1 second of time-out, but which does not ring the terminal's
bell, This function is bound to all members of CF/N pad when the
SUI/SUIX user presses them with the SHIFT, QONTRQL, or both SHIFT and
CONTRQL: keys held down.

This is not true for Fundamental Mode on the PT200 terminal., This
means that all keys on the CF/N pad, in all augmentations, produce the
'Undefined key' EMACS feedback if pressed in Fundamental Mode with the
CF/N pad in CF mode.

CHANGES TO EMACS WHICH ARE NOT TERMINAL~SPECIFIC

Removal of the Limitations on the PRIM)S INTERNAI, SCREEN Command

It is now no longer necessary to restrict the commands given via the
primos_internal screen command to intermal commands., Since EMACS is
now running as a shared library, there are no longer any conflicts with
other software. The only exception to this rule is that you still can
not invoke a second EMACS from within the surrounding EMACS. Bowever,

First Edition 3-50

PRIMS and Utilities

you can run internal commands, NETLINK, compilers, and so forth, via
the primos internal screen command, interact with your screen as if you
were running the subordinate software at the PRIMDS level, and return
at the conclusion with your full EMACS editing context undisturbed.

New Global Switch Controlling Level of User Feedback, VERBOSITY LEVELS

At this revision of EMACS, a new global variable, verbosity level$, has
been added to control some of the behavior of the EMACS user interface.
The value of this variable is initially used only in controlling the
user feedback given by the QUIT command and by the handler for <CTRL>P,
documented below. Command writers are free to write macros that
consult this variable and make their user feedback contingent on its
value or to change the value of the variable itself, thus ocontrolling
the behavior of commands using it. Of course, if they do change it,
they must take care to make its new value a valid ore.

There are four logical levels for the new verbosity level$ variable
They are all entered as integers:

0 This signifies the old-style feedback or the lowest possible
level of user feedback for newly-written functions.

1 This signifies a low level of feedback.

2 This signifies a medium level of feedback and is the new default
value for the verbosity level$ global variable.

3 This signifies a high level of feedback and, while it is not
used at present, it could be used in the future.

It is the intent that EMACS command writers test the value of this
variable to do particular actions based on the value of
verbosity level$.

With reference to the two commands below, if users wish to reinstate
the original behavior of the QUIT command or of the response to the
<CTRL>P key, all they have to do is incorporate the following into
their user library file:

(setqg verbosity_level$ 0) where the arqument is an unquoted
Zero

As uswmal, users can write macros that control the value of
verbosity_level$ in a more autamated, user-friendly manrer,

3-51 First Edition

Software Release Document

Optional Change to Feedback From QUIT Command When Buffers are Unsaved

One of the more cryptic pieces of user feedback that EMACS used to
produce was given if the user attempted to quit EMACS via the
<CTRL>X<CTRL>C command in Fundamental Mode or by the key labeled EXIT
(PT45) or QUIT EMACS (PST100/PT200) in the SUI mode.

If there are no buffers with unsaved changes at the time of this
command, EMACS simply halts with no errors and no problems.

However, if there are buffers with unsaved changes, that is, there are
buffers for which the * is shown on the mode line between buffer name
and the associated pathname, a question appears in the Minibuffer. The
language of the question has been changed. The new default behavior of
EMACS is to prompt:

Above list of modified huffer(s) not saved to file(s). OQuit
anyway?:

If the user wishes to retain the old form of the question in this case,
the only thing required is to set verbosity_level$ back to 0.

Optional Change to Feedback From <CTRL>P

At previous EMACS releases, typing <CTRL>P produced clearing of the
screen and display of the text:

Type REN to abort command, START to continue.

The newly added default version of EMACS's feedback in this case makes
the distinction between REN and START much clearer and also prevents
the unintentioml erasing of an entire EMACS editing context.

The first thing that happens is that the terminal's bell is rung and
the EMACS screen is cleared. All typeahead is flushed and the teminal
display memory is restored to its going-in state. Then the following
text appears on the screen.

CONTROL-P typed.

To really Quit from EMACS, type Q

To return to EMACS and Abort the current command (if any), type A
To return to EMACS and Continue with no interruption, type C

Confim your choice with the RETURN key.
Typing RETURN without making a choice is the same as Continue.

First Edition 3-52

PRIMDS and Utilities

(If no EMACS command was executing when you pressed CONTRCL-P,
then Abort is the same as Continue.)

You may need to refresh the screen if you choose to re-enter EMACS.

C, A, or Q:

All responses other than a RETURN or Q, A, or C preceding a RETURN,
result in the repetition of the last prompt line,

Thus, if <CTRL>P is mistakenly typed, the user does not lose the entire
editing context and return to PRIMS level without a hearing a bell,
getting the typeahead flushed, and then typing Q and then RETURN. The
distinction between returning after Aborting an ongoing EMACS command,
and simply Continuing, is also somewhat clarified.

Note
The user is told to refresh the screen after returning control
to EMACS because it will probably be necessary. SUI users need

to press <CTRL>L or their CLEAR or RESET keys to reestablish
the SUI's reverse-videoed area at the bottam of the screen.

If the user wishes to retain the old form of the dialog, the only thing
required is to set verbosity level$ back to 0.

Change to Internals of (DBOL Mode

There is a new macro, disabled in_cobol_mode$, that replaces the
previous function named not_defined. Any user calls to not_def ined
will still execute the old function, which is still shared; however,
all code in COBOL.EM and COBOL2.EM within EMACS*>EXTENSIONS>SOURCES has
been changed to call the new disabled in cobol mode$ macro.

New Command or Macro for Reestablishing Fundamental Mode Bindings

If the user has been working in some EMACS enviromment in which the
terminal's function keys or ESCAPE or (ONTRAL~key bindings have been
changed from their Fundamental Mode bindings, the fundamental command
can be given to return to Fundamental Mode. This has two effects:

® It removes the bindings from all function keys on the terminal,
if it has any. (The only exceptions to this rule are any
terminal function keys which happen to send characters identical
with Fundamental Mode keybindings. For example, the PT45 "SEND"
key emits <CTRL>W. After the fundamental command, this key will
be bound to the kill_region macro.)

3-53 First Edition

Software Release Document

e It reestablishes the Fundamental Mode keybindings for the ESCAFE
and CONTRCOL-key commands.

The fundamental command does not destroy any macros currently defined.
All it does is break any bindings between those macros and the ESCAFE
and CONTROL-key keyraths.

A partial 1list of Fundamental Mode keybindings and associated
Fundemental Mode macros is given in EMACS*>INFO>KEY_ASSIGNMENTS.EM.
Note that if the user's library file has redefined any of the
Fundamental Mode macros named in this file or bound by the other
internal procedures used in the initialization of Fundamental Mode, the
EMACS enviromment assigns the new definition to the Fundamental Mode
keypath rather than to any other keypath being used before the
fundamental command.

The new fundamental command may be given when the user is prompted by
the extend command command or with the syntax (fundamental) from the FL
level.

See the related documentation on the new SUI and SUIX commands below.

CHANGES TO THE STANDARD USER INTERFACE

Change to PRIMDS COMMAND Command

There is a new function, sui_primos command, that has been bound to the
<CTRL>X<CTRLOE keypath in SUIX. It has two advantages over its subset,
the primos_command command:

e It displays an informative message:

No prefix = Phantam; ! = intermal, to file output; 1! = primos i
nternal_screen

This at least partially explains the means by which users can
execute the primos internal como or primos internal screen
commands by prefixing the argument to this command with either
one ! or two 1! characters, respectively. See the earlier
discussion of the primos internal screen command.

e Upon completion of whatever command was given, the new command

executes the appropriate highlight function, restoring the
reverse videoed screen command area.

First Edition 3-54

PRIMOS and Utilities

Substitution of the FIND FILE for the GET FILE Function

The get_file function has been removed from the SUI. The Fundamental
Mode find file function has been put in its place.

With the newly available find file function, SUI users are now able to
inspect many files simultaneously without having to save one before
looking at another., They are also able to use PRIMDS-level wild cards
(@-signs) as arquments to the Find file: prompt and load several found
files simultaneously.

SUIX users have more reason to take advantage of the <ESCO>P, <ESCON,
<CTRL>Xb, and so on, commands,

The corresponding key of the Pr200 SUI template is labeled FIND FILE
instead of the old GET FILE, Pr45 and PST100 users are encouraged to
revise the GET FILE labels of their SUI templates.

The pros and cons of find file vs, get file are summarized in the new
FIND FILE screen which replaces the GET FILE screen in the SUI HELP
system.

The old get_file PEEL code has been left in the shared EMACS library so
that any user wishing to keep on using it can reestablish the old
keybinding., If the user wishes to return temporarily to the use of the
old GET FILE function on the appropriate key, the set_get file ocommand
is issued after pressing the (OMMAND MODE key. Return with the
set_find file command. To permanently retain the binding of the
unsupported get_file function to the GET FILE key on the terminal, add

the following to the EMACS library file:

(set_get _file)

Addition of New Predefined PRIMS Commands: LD, TLD, VLD

Previous releases of the SUI allowed the user to give the commands L or
LISTF to the Command: prompt raised by pressing the (OMMAND key.
Either of these two inputs results in EMACS running the PRIM)S LISTF
command as a primos internal screen., The LISTF is done at the current
directory attach point.

Three new commands have been added to this release of SUI:
Name Underlying PEEL

1d (primos_internal screen 1d)
Thus this command simply runs the PRIMOS LD function at

the current attach point and, when it is complete, the
screen is restored to its state within EMACS,

3-55 First Edition

Software Release Document

tld (primos_internal screen 1d -long -srtd)

This command gives a time-ordered LD at the current
attach point and then returns control to EMACS at its
conclusion,

vld (primos_internal screen 1d -long -srtn)

This command gives a Verbose LD at the current attach
point and then returns oontrol to EMACS at its
oconclusion,

Of course, EMACS runs the appropriate command no matter if the user
types in 1ld, ID, tILD, or VLd at the Command: prompt. EMACS is not
case-sensitive when prompting for command names in the extend command
function,

All the above commands have one added innovation at this release. They
add, to the above underlying PEEL, a prompt shown on the PRIMOS-level
screen, at their conclusion. This instructs you to Press CONTRAL-G to
repaint the EMACS screen.,

Changes to ATTACH and SPOOL Commands

The user feedback from the ATTACH command has been improved., If the
attach is made successfully, the feedback to that effect is removed
after sui_info message time$ milliseconds, If the user enters a
directory which does not exist or can otherwise not be attached to, the
screen is autamatically cleared and the user gets a second chance to
enter the directory name.

The SFOOL. command has been similarly improved. If the file named in
response to the Filename to spool: prompt does not exist, the user is
given another chance. If the file does exist, the user is asked for
additiomal SFOOL optlons to be given to PRIMS. With this information,
SUI proceeds to give the oomposite SFOOL ocommand to PRIMS as a
primos command that is executed as a phantam.

The SUI SFOOL command duplicates the actions of the S option in EMACS's
EXPLORE display.

Miscellaneous Changes to Internals of the SUI

New Global Variable sui_info message time$: Many commands in the SUI
display informatiomal messages on the screen using the PL (info message
"text appearing on bottam line of screen") construct. A few of these
messages, once displayed, remain there indefinitely, being removed only
upon the next use of a function key. Other SUI commands display their
info message for a fixed length of time and then clear it away.

First Edition 3-56

PRIMDS and Utilities

At this release of the SUI, the user can control -the length of time
that these info messages remain on the screen. The ocontrolling
variable is named sui_info message time$ and it is set to a default
value of 3000 milliseconds (3 seconds). Experienced users of SUI or
SUIX may wish to shorten this value because it is a true time-out.
During the time that this type of info message is being displayed, user
typeahead is often flushed depending on the function being used. To
shorten the timeout period, for example to 1 second, add the following
PL. to your library file:

(setqg sui_info message_time$ 1000)

New Macro UNUSED KEY FEEDBACKS and Its Relatives: Previous releases of
the SUI had a macro that was misnamed do_nothing$. It performed the
same type of thing that the new macro unused key feedback$ now does.
Any user-written PL calling for the do_nothing$ macro will still find
it available. All places within the SUI that used to call do_nothing$

now execute unused key_feedbacks.

There is a new macro, unused mb key feedback$, that is bound to many
function keys in mb _mode (that is, when they are pressed while the
cursor is in the MiniBuffer). There is a new macro,
eat_keystroke_no_feedback$, whose function is to accept an input
keystroke with no error message or feedback of any type. Any
user-written PL calling for the old null function macro can still run
the old function, which remains available, but all relevant SUI code
now runs the new eat _keystroke no feedback$ macro.

Restriction on SUI Function Keys in the MiniBuffer: At this
release, several SUI function keys on the PSTL00 and PT200 are bound to
the newly-coined unused mb key feedback$ macro for the purpose of
restricting the types of actions that SUI or SUIX users can take while
in the MiniBuffer. The original impetus for this was to eliminate the
problem that occurred when the user pressed the HELP key when already
in the HELP function. Previously, a user could invoke the SUI HELP
while in the MiniBuffer, which is too small to hold the many display
lines required.

The prohibition against use of certain functions in the MiniBuffer has
been extended to the disabling of other keys that can potentially
confuse the SUI or SUIX user if used there. Included in the disabled
list are the CURSOR UP, CURSOR DOWN, INSERT FILE, SAVE FILE, WORD/CHAR,
and several others. RIGHT and LEFT CURSOR, BEGIN/END LINE, DELETE and
RUBOUT CHAR are not disabled so the user can edit MiniBuffer commands
normally.

The user should oonsult the @BINDINGS.EM files in the
EMACS*>EXTENSIONS>SUIDUNSHARED subdirectory for the full list of
restricted function keys and change them in the private user library in
order to use the MiniBuffer.

3-57 First Edition

Software Release Document

SUIX users who dislike the restrictions have another, simpler way
around them. Use the Fundamental Mode keypaths, rather than the
prohibited function keys, to navigate within the MiniBuffer.

Changes t%ﬂs%aport Terminal Modes: It is possible, through mishap,
that the 0 terminal might get placed into its INSERT mode. In this
case, the LED on the key etched INSERT (the SUI's OPFEN LINE key) on the
CF/N pad is lit up and the word INSERT appears on the PT200 terminal's
System Line. If this happens, any depression of the OFEN LINE key is
autamatically bound to a new function to correct this wrong insert
mode. It also does a screen clear to fix up any misdisplays that the
wrong mode might have caused (EMACS normally operates in the terminal
screen's default overlay mode).

It is also possible that the Pr200 terminal might get placed into its
NUM LOCK mode. In this case, the LED on the key etched NUM LOCK (the
SUI's DEL FWD key) on the CF/N pad is lit up and the pad sends numbers
instead of running EMACS functions. If this happens, any depression of
this key is autamatically bound to a new function to correct this wrong
NUM LOCK mode. (If you are a Fundamental Mode EMACS user, or if you
are writing your own EMACS interface, see the earlier discussion of the
CF/N Pad's possible mode settings in Fundamental Mode.

It is also possible that the PST100 or PT200 terminals might receive an
incorrect escape sequence from the host. This normally results in the
terminal's bell sounding and the addition of INVALID CMD to the
terminal's system line. At this release, there is a macro called
remove_invalid cmd$ that is bound to the RESET key on the PST100 and to
the CLEAR key on the PI200. For the Pr200 terminal only, the
controlled augmentation of the PT200's CLEAR key sends <ESC>? that, in
SUIX or Fundamental Modes only, is bound to the explain key command.
This saves a keystroke if all the user wants is to get a keypath
gxplained. It is not necessary to type <CIRL>_C to get the same
unction.

The corresponding PST100 key, RESET, in its controlled augmentation,
does a complete local screen clear, The RESET key, unaugmented, or
<CTRLOL must be pressed to refresh the screen after that. This macro
removes the error message from the terminal's system line and does a
screen repaint so that any display that may have prompted the keypress
is removed.

New Macro RESTRICT TO _SUI$: All shared SUI macros that should not be
run by non-SUI users have had a call to the new restrict to sui$ macro
added to their code. Users without the proper internal variables set
are not able to execute those SUI-specific macros if they bind them to
keys or even if they invoke them by name. The reason for this is that
the newly-restricted commands would fail less gracefully for the lack
of atams, which are available for SUI users but not for nom-SUI users.

First Edition 3-58

PRIMS and Utilities

New Macro SUI_HIGHLIGHT: To facilitate the highlighting of the bottam

ree lines € SCreéen, a new PL—callable command, sui_highlight,
has been added. This macro knows about the three physical and four
logical terminals on which the SUT can be realized: PT45, PST100,
PTr200, and Pr200W. It can be called without restriction on these four
terminals., When called by a user without the proper underlying
variable, keybinding$, set to either PT45, PST100, or PT200, this macro
has no effect on the screen.

This new macro is called by the sui_refresh function. It is provided

as a separate call for technical reasons that may be seen in various
Places in the EMACS*>EXTENSIONS libraries.

Fundamental Mode Commands Which are Replaced in SUIX Mode

The SUIX mode user will encounter some slight differences on certain
Fundamental Mode keybindings. The SUIX user is accustamed to a certain
type of service when the MARK key is pressed and probably would
appreciate the same service when the <CTRL>@ key is pressed. In pure
EMACS Fundamental Mode, this keypath is bound to the (setmark)
function., However, for SUI, there exists the new function
(mod_setmark). This latter function is assigned to the <CTRL>@ key in
SUIX mode,

The TAB key, which always sende <CTRL>T to the host ; and the BACK-TAB
key (including whatever characters are emitted by this key on the three
terminals supporting the SUI) are bound to TAB-related functions
specific to the SUI and not those that are available to Fundamental
Mode users. More of the differences are given in the following table.

h SUIX Mode Fundamental Mode
Pa Binding Binding
<CTRL:>@@ (mod_setmark) (setmark)
<CTRL>X<CTRL>X (sui_exchange mark) (exchange_mark)
<CTRL>X1 (one_file mode) (mod_one_window)
<CTRL>X2 (two_file mode) (mod_split_window)
<CIRL>X0 <UPPERcase 0> (mod_other_window) (other_window)
<CIRL>X0 <lowercase o) (mod_other_window) (other_window)
<CTRL>X { (sui_horiz_left) (horiz_left)
<CTRL>L (sui_refresh) (refresh)
<CTRL>X<CTRL>E (sui_primos_command) (primos_command)
<ESC>% (query_replace forward) (query_replace)
<ESC>w <lowercase w> (sui_copy region) (copy_region)
<ESCW <UPFERcase W>(But not on

the Pr45 terminal, because
of a conflict with the key
etched FORMS, which sends
<ESCOW and is bound to the
SUI's global replace
function,)
(sui_copy_region) (copy_region)

3-59 First Edition

Software Release Document

The bulk of the above changes are simply the replacement of a rather
uninformative Fundamental Mode command with a SUI command that puts up
a relevant info_message (mod_setmark, sui_exchange_mark,
sui_horiz_left, sui_primos command, sui_copy_region). The remainder of
the above are real changes from the Fundamental Mode bindings done to
improve consistency in the type of service expected (one_file mode,
two_file mode, mod _other_window, sui_refresh, query_replace_forward).
The last one, especially, is a substantial change from Fundamental Mode
in that the fundamental mode query replace is normally sensitive to the
EMACS region, where the SUI's query_replace_forward command goes from
point to the end of the buffer, recardless of the current region.

Horizontal Scrolling Has Been Added to the SUI

Background: One of the functiomal areas lacking in the SUI as
originally released was horizontal scrolling bound to function keys.
This has been now been corrected.

When EMACS SUI now comes up, the SCROLL LEFT and RIGHT functions are
already bound to the function keys of all three SUI-supporting
terminals.

PTAS and PST100 SUI users who don't add any customized keybindings will
have to add some labels to their templates in the positions indicated
by the keyboard maps shown in the HELP system and also in the
newly-added HORIZONTAL SCROLLING item in the help menu. If users of
these terminals don't do this, they may be surprised if they press the
newly-active keys by mistake.

Terminal SCROLL LEFT Key SCROLL RIGHT Key
PT45 E-AUX AUX-ON
PST100 PF4 PF6

PT200 SUI users' keys are already legended and all they reed is
documentation on the new keys' functions, which is also provided in the
HORIZONTAL SCROLLING item in the HELP menu.

Users who have already made some additions to the PT45 or PST100 SUT or
SUIX via -ulib files may have conflicts between their own keybindings
and the keys which have been newly-assigned to SCROLL LEFT and RIGHT.
There are two issues that must be addressed and both are trivially
resolved. Since the new bindings are pre-shared, any user ooming up
through a private -ulib which binds samething to the affected keys sees
no change in those keybindings.

This is because the user's changes are done after the publicly-shared
bindings are established in the product. Of oourse, they lose the
newly-available ability to SCROLL LEFT and RIGHT on those keys but at
least their custambuilt interfaces are not disrupted.

First Edition 3-60

PRIMS and Utilities

An existing -ulib user, with conflicts on the assigned scrolling keys,
dets horizontal scrolling by:

® Moving their own functions off the newly-assigned SCROLL LEFT
and RIGHT keys and allowing the shared bindings to take effect

® Binding these sui_horiz_left and horiz_right functions to unused
keys on their termimals

If the user wants to bind the horiz_richt and sui_horiz_left functions
to keys of their own choosing, see below for descriptions of files
containing lists of the preshared EMACS variable names to use in doing
these bindings. (The sui_horiz left function is to be assigned to the
SCROLL RIGHT key. The name conflict is because the FUNCTION NAME is
talking about moving the WINDOW rather than moving the TEXT, which is
the naming standard used in the SUI.)

Functional Specification of SCROLL LEFT and SCROLL RIGHT Keys: The
basic specification is given in the following excerpt from one of the
HELP scCreens.

SCROLL LEFT: Means "Push the TEXT to the LEFT so I can see more toward
the right end of the lines." Unless you say otherwise, the horizontal
offset changes by 40 columns. If you prefix the SCROLL LEFT key with
ESC followed by a number — e.g., ESC 23 SCROLL LEFT — you will get
put on "hcool 24."

SCROLL RIGHT: Means the opposite. This key also takes the ESC-number
prefix.

If hool is very large and you want to scroll RIGHT "all the way,"
press ESC 1 and then the SCROLL RIGHT key, and hcool will be set back
to 1.

When hool is greater than 122 at the oconclusion of a SCROLL RIGHT
command, a helpful hint appears for a period of time equal to
sui_info message_time$ milliseconds telling the user how to get back to
zero offset without many additiomal SCRQLL RIGHT keystrokes.

Change in SUIX RPG Mode on PT45 Terminals: Due to the addition of the
SCROLL LEFT and RIGHT keys to the Pr45 SUI, there has been a
displacement of the RPG Mode function key which used to be bound to the
rpg_wnplate$ function. This used to be bound to the E-AUX key; it has
now been moved to the PAGE key.

Changes to the SUI HELP Screens

HELP screens and function key maps appropriate for the Pr200 in its
80x24 display mode have been added to the HELP system. There are

3-61 First Edition

Software Release Document

changes in several of the "Explanation of Key Functions" screens,
including substitution of a FIND FILE screen for the old GET FILE
screen, including some of the advantages of FIND FILE over the old GET
FILE function,

SUI Support in Both Display Modes for the PT200 Terminal

SUI/UIX is designed for display widths of only 80 or 132 and nothing
in between. SUI/SUIX is designed for display heights of only 24 or 27
and nothing in between.

Normal Operation of SUI/SUIX on PT200 Terminal

SUI/SUIX operates (virtually) identically in both 80- and 132-column
display modes. The only major difference is that what is normally seen
in 80-column display mode is seen compressed in 132-column mode.

Keyboard Layout for PT200 SUI: This is available, for the most part,
by inspection of the Pr200 SUI keyboard template, Read the SUI
template legends, not the keytop etchings.

CHANGES IN THE EMACS* DIRECTORY

The major user-visible changes in the structure and content of the
top-level EMACS* directory are presented here,

Contents of EMACS*

TEACH-EMACS Available for SUIX Mode: The only files in this top-level
directory are the TEACH-EMACS@ files, computer-assisted instruction of
EMACS's Fundamental and SUIX Modes. At this release, the older @FUNDE
files have been renamed, reorganized, and rewritten. Additiomally,
there is a whole new group of several @SUIX@ files, similar in content
to the @UNDQ files but designed for training users on the SUIX.

Subdirectories for Special Use: Below this directory are the
subdirectories EXTENSIONS, INFO, and TERMINAL,_HANDLERS1. The latter
directory is for the use of the local EMACS maintainer and user
community as a place where custamized terminal drivers are kept.

If the LIB subdirectory is also present, it is for the use of the local
EMACS maintainer and community.

First Edition 3-62

PRIMS and Utilities

Caution

The contents of EMACS*>LIB may be erased as new versions of
EMACS are installed, although the newer versions of the EMACS
installation files are designed to prevent this,

Contents of EMACS*>INFO

All files in this subdirectory whose names termimate in _INFO are
screen files used by the EMACS SUI HELP system. The only exception to
this rule is the describe emacs file, There have been several
PT200-related additions. The obsolete sample library file.em file has
been deleted at this release,

Contents of EMACS*>EXTENSIONS

The .EFASL. files found in this subdirectory comprise the shared code
that is used in EMACS Fundamental Mode and in many language-specific
Modes. All .EFASL. files in EMACS*>EXTENSIONS may be oconsidered
resident in shared memory.

Contents of EMACS*>EXTENSIONS>SOURCES

All the source files that produce the .EFASL files above are in this
subdirectory. This code can be an extremely valuable tutor on the fine
points of the Prime EMACS Extension Language, PEEL, or PL. Many users
have reported that EMACS's PL was obscure until they saw the library
sources.

The EMACS*>EXTENSIONS>SOURCES subdirectory now contains the files:

PST100_FUNCTION_KEYS.EM, PT200_FUNCTION KEYS.EM, PT45_FUNCTION_KEYS.EM.
These are the PEEL source files giving the symbolic names of the
function keys for the three Prime terminals supporting SUI/SUIX.

These files make it considerably easier for users to create their own
custanized EMACS interfaces because their purpose is to save the user
the work of f£finding out exactly what each terminal key sends to the
host. In the shipped version of EMACS, the actual keybindings in SUI
and Fundamental Mode are not done with these symbolic files. They are
established by an autamatic setup procedure. However, the intentions
of the files have in fact been executed as part of mMACS's
initialization sequence, and therefore the user can establish custam
bindings to those variables in the way described in the beginnings of
each of the above noted files.

3-63 First Edition

Software Release Document

SOFIWARE PROBLEMS FIXED

Executing a PRIMDS Command no longer requires attribute modification
rights in the current directory. All intermediate phantam or comoutput
files used during this operation are put into the user's initial login
directory (SPAR 3000531).

The EMACS allocator aborts the command but stays in EMACS if given a
request for more than 32K words (SPAR 3002340) .

The redisplayer is now fixed to oorrectly display the first screen
position if the window is horizontally scrolled and the character in
the first screen position is the last character on the line in the
window (SPAR 3002380).

User error (SPAR 3002713).

REG mode, as of Rev., 19.3, uses VREG as the default and 0ld REG as a
request option. (OBOL mode defaults to OBOL (0old CQOBAL). An
extension of .CBL defaults to new (OBCOL (CBL) (SPAR 3003545).

The forced logout condition causes EMACS to save all modified huffers
into the user's initial login directory (no change from previous
versions) but the mechanism has been changed to allow the user name and
the initial login directory to be different. A new message is output
giving the pathname of the file to which each buffer was saved. The
CPL file output to copy the buffers to their originmal places in the
file system hierarchy has been fixed to work correctly (SPAR 3004514).
Abug of SpeedType has been fixed., If a user added the same
abbreviation twice without deleting it, an Access Violation occured.
This has been fixed. This was also SPAR 3007420 (SPAR 3004517).

The closing of LISP expressions by the reader, which is what occurs in
the minibuffer and when a buffer is compiled, is oconsidered a feature
and not a bug (SPAR 3004519).

The new QOMPILE mode uses an improved error scanner which can interpret
the output from PL/1, PL/1G, SPL, (BL, VREG, Pascal, C, REG, PMA,
QOBQL, F77, and FIN (SPAR 3004521).

In FORTRAN mode, ocontinuation of comment lines longer than 72
characters was incorrect. This has been fixed (SPAR 3004556) .

The new COMPILE mode allows users to add or override established
compile options by including new options on the compile command line
(SEAR 3004559).

EMACS now clears protect mode on a MNL8009 terminal during
initialization (SPAR 3004600).

The PL. command now gives the error 'Cannot PL, buffer too big' if the
buffer is too big (more than 32000 characters) (SPAR 3005943).

First Edition 3-64

PRIMDS and Utilities

GET_FILE incorrectly handles rereading a file with the same name as the
current file in another UFD. Read the information on GET_FILE in this
document; it is oconsidered obsolete (SPAR 3006014).

The &repeat option works as documented (SPAR 3006091).

The problems with search have been fixed. The user should be warned
that code written to use the old search functions may now stop working
(SPAR 3006092). :

The complete list of changes follows:

The primitives:

verify_ fd (formerly search not charset forward)
verify_ bk (formerly search not charset backward)
verify fd in line (formerly search for_first_not_charset line)
verify bk in line (formerly search back first not. charset. line)

previously returned false only if all the characters to end of
the buffer (line for "..._in line" functions) were members of
the character set specified. 1In this case, the cursor was moved
to the end of buffer (line). All other cases returned the value
true, recardless of whether the cursor was moved or not.

The documentation states that these primitives "...return a
boolean that indicates whether or not the appropriate character
[in the set] was found.™ All the verify_ primitives now return
true if a character in the specified set was found and false
otherwise. Note that this leads to the oorrelary that
true equals cursor moved; false equals cursor statiomary.

This returned value is consistent with the set of "search ..."
routines, which also return true if an appropriate character in
the specified set was found and false otherwise.

The fixes here also affect the return value of the following
primitives, which call upon the "verify ..." routines
and return their returned value:

skip over_white
skip back_over_white

The primitives:
verify_fd (formerly search not charset forward)
verify bk (formerly search not charset backward)

verify_fd in line (formerly search for_first_not charset line)
verify bk _in line (formerly search back first_not. charset line)

3-65 First Edition

Software Release Document

previously ignored a NewLine ""n" character within the buffer,
implicitly including it in the character set to be verified.
They no 1longer include the NewLine character implicitly and
will perform correctly when it is included explicitly.

The fixes here affect the following internal primitives since
they directly use the "verify_..." routines:

skip over_white
skip back _over_white

Previously, these routines implicitly included the NewLine as a
white-space character to be skipped over even though the default
value for the whitespace global did not include it. This was
contrary to the Emacs documentation. Now they work as
documented.

The primitives:

search _fd (formerly search charset forward)
search bk (formerly search charset backward)
search fd in line (formerly search for_first charset line)
search bk_in line (formerly search back first charset line)

previously ignored a NewLine character within the huffer,
implicitly excluding it in the character set to be searched for,
even if that character set explicitly included a NewLine. They
no longer exhibit this implicit behavior and will honor an
explicit NewLine correctly.

The fixes here affect the following internal primitives since
they directly use the "search ..." routines:

skip_to_white
skip back _to white

Only if the whitespace (global) string contained a NewLine is
their behavior now different. Since the whitespmce string
defaults not to include a NewLine, their behavior should not
normally be affected.

The primitives:

forward_search
reverse_search

previously would behave unpredictably and inconsistently when a

NewLine character was included as the first character of a
search string, They now work properly.

First Edition 3-66

PRIMOS and Utilities

The following primitives are directly affected:

“g forward _search_command
forward search command
reverse_search command
query_replace

replace

The primitives:

forward_search
reverse_search

previously ocould not locate the last (first with reverse_search)
text in a buffer when the NewLine character was included as the
first (last) character in the search string and remaining
characters spanned the last (first) character in the huffer,
Both primitives now behave correctly at buffer boundaries.

The following primitives are directly affected:

“s forward_search_command
forward _search_command
reverse_search_command

query_replace

renlace

A~

Get_file is obsolete., Find file, on the same function key, correctly
loads a file in two file mode after a pathname error on the first try.
Read the information on GET_FILE in this documentation (SPAR 3006770,
3008712, 3008806) .

Fixed a bug which allowed "gutters" in fill mode (SPAR 3009063).

Fixed call to ROLNSP in READF, User no longer gets remainder of old
read buffer after aborting find file (or read file, insert file) (SPAR
3006090) .

Fixed dumpfile to correctly determine the pathname of the file to be
dumped (SPAR 3006258).

Fixed so successive yank_replaces separated by blanks d not behave the
same as those separated by other characters (SPAR 3007488).

OQUTSTANDING PROBLEMS

Incomplete documentation in PRIMER and REFERENCE GUIDE (SPAR 3001737).

On a PT45 in VIEW mode, tabbing past the end of the line locks the
keyboard, rings the bell, and displays an error message (SPAR 3003146).

3-67 First Edition

Software Release Document

QUIT during initialization leaves the terminal in half duplex mode
(SPAR 3003437).

Documentation bug in the extensions guide incorrectly states that the
PEEL function make array produces an array with bounds (0..N) when in
fact the bounds are (0..N-1),that is, an array of N elements (SPAR
3004515).

Pericom78 terminal driver switches the numeric keypad to function keys
(SPAR 3004605) .

Problem in COMPILE if level 'd' errors occur (SPAR 3006256) .

When a library .efasl file is not found while installing EMACS, it
causes the operator oonsole process to get a fatal error and be
reinitialized (SPAR 3006785).

If the command line arqument -HEIGHT is given an arqument greater then
the physical height (or diplay height) of the screen, the EMACS display
may act strangely. A similar situation holds for the -WIDTH argument
(SPAR 3009068) .

PERMANENT RESTRICTIONS

PL can only compile buffers with less than 32000 characters in them,
This is a permanent restriction (SPAR 3005943).

Rebinding of the function forward place holder to a printing key
incorrectly removes the place holder (SPAR 3006257).

Forward kill_sentence and forward kill clause cannot collect successive
kills even if the cursor is not moved between them. These are library
functions and the cursor does, in fact, move, processing them even
though that motion is not displayed (SPAR 3006599).

INSTALLATION AND BUILD PROCEDURES

Standard.
Note

EMACS uses segments in the 2000 range for its libraries, At
Rev. 19.4, EMACS allocates storage in the dynamic segments,

First Edition 3-68

PRIMDS and Utilities

FIXRAT

NEW FEATURES AND CHANGES

The readablity of the user HELP frame is improved.

3-69 First Edition

Software Release Document

First Edition 3-70

PRIMDS and Utilities

FIX DISK

NEW FEATURES AND CHANGES

New error oode has been added for use by DAM WALK to report to parent
that a zero record was added (a warning code only).

SOFIWARE PROBLFMS FIXED

Added checking for correct value of dam index level in non-dam files
(SPAR 3007446) .

The record-time product is correctly calculated (SPAR 3009239).

A file is now always marked as truncated by FIX DISK if zero records
are added to the file (SPAR 300564l).

3-71 First Edition

Software Release Document

First Edition 3-72

PRIMS and Utilities

ICsl

NEW FEATURES AND CHANGES

The ICS1 now performs asynchronous reverse flow oontrol thus
controlling flow of data from terminals.

SOFIWARE PROBLEMS FIXED

Outbound flow control support was added to the ICSl.

Code was added to mask out unused bits when less than 8 bits are
received from the terminal.

The state of the RIS value is changed in to RTS on.
Code was added to count the number of receiver overruns on each line.

Code was added to reschedule the queueing of an entry into an event
queuve.

All fixes included in Rev, 19.3 fix releases up to 19.3.2 have been
included.

PERMANENT RESTRICTIONS

Flow control cannot be used with terminals that do not support the
standard XOFF and XON characters., If it is used with any of those
terminals, data from those terminals might be lost during a flow
control situation., Up to 16 characters per terminal are buffered when
lines get flow controlled. If all 8 lines become flow controlled, the
last line is only able to buffer 15 characters.

3-73 First Edition

Software Releass Document

First Edition 3-74

PRIMS and Utilities

NEW FEATURES AND CHANGES

Asynchronous reverse flow control is added.

SDLC and combined SILC/asynchronous protocols are now supported,

The following multiple download files for different protocol
combinations are added:

ICS2_01.DL (async)
ICs2_02.01 (SDLC)
ICS2_05.DL (async + SDLC).

The buffer server process returns transmit buffers on the high priority
queue to prevent deadliock.
There is console monitor support for PT200 terminal.

The following new console monitor commands are supported:

® SIO/SCC read register (RR)
e Display synchronous lines (SY)
e Display physical line (PL)

® Display free pool(s) (FP)

SOFTANRE PROBLEMS FIXED

The following software problems are remedied:

e Asynchronous initialization on the second through the fourth
ICS2 controller

® Bad status reporting to PRIMDS (SPAR 3004717, 3005114, 3005117)
e Character handling with or without parity enabled
¢ RTS handling holds RTS high instead of low

e Problems with asynchronous loopback and echoback modes
® Problem with SDLMIR line statistics

3-75 First Edition

Software Release Document

e Master logical connection for reverse notifies when queuve in
Primos goes from full to not full

e The queuing routines for one specific case
e A potential one word status buffer write by the IBC

e Additiomal error handling for invalid IBC program counter
implemented

First Edition 3-76

PRIMS and Utilities

5

NEW FEATURES AND CHANGES

Output formats have been changed to take up less space. No entry ever
requires more than two lines, The -DIM, -DTB, and -SIZE options use
only one line when invoked individually. Some combinations of options
only require one line as well.

"Date time saved" is changed to "Date time backedup” (-SORT DIB,
~SORTB). This feature is reserved for future use. A "Date time
backedup” column containing '#* dtb not set **' is currently displayed.

The size and quota fields are expanded to seven digits to support
future expansion of maximum file size,

A new option, ~NO_COLUMN_HEADERS (~NCH), is added to allow suppression
of column headers in detailed output modes.

SOFIWARE PROBLEMS FIXED

Fixed bug which would output 'No entries selected' randomly even when
the UFD oontained data, Initialized F,_FULL variable
(SPAR 3009226) .

The selection of an output format string is now a simple array

operation not a massive SELECT statement. A few flags were removed and
comments were properly indented.

3-17 First Edition

Software Release Document

First Edition 3-78

PRIMDS and Utilities

SOFIWARE PROBLEMS FIXED

There is a new method for determining if the map file is already open.

PERMANENT RESTRICTIONS

IOAD does not always return a severity code for all problems.

3-79 First Edition

Software Release Document

First Edition 3-80

PRIMS and Utilities

LOGERT

NEW FEATURES AND CHANGES

The following changes were made:

An error is entered in the network event-log file when a bad HDX
restart packet is received by the DTE,

Support is added for 9955 and 9750,
The ECQULO event type is supported.
Messages for ICS2 are updated.

In addition, LOGPRT is changed to recognize recoverable machine checks.
It is modified so that the routine that decodes the contents of DSWSTAT
for P9950's checks if bit 26 of DSWSTATL is set. If the bit is set,
these utilites have been modified to indicate that the machine check
was recovered, The decode routine for the P9950 will also be used by
future processors.

3-81 First Edition

Software Release Document

First Edition 3-82

PRIMOS and Utilities

MAGSAV MAGRST

NEW FEATURES AND CHANGES

In-use EPF's are restorable with the in-use copy having its suffix
changed to .RPn (n ranges from 0 throuch 9).

The existing -QUERY command line option tells the user which replace
file has been created. If all ten in-use EPFs with the filename suffix
.RPn exist, one will be overwritten if the user does not use the -QUERY
option. With -QUERY, the user is prompted for which o0ld replace file
is to be deleted. Users should delete the .RPn files as they
accumulate.

The list of index filetypes has been extended to cover the filetypes
DAM-RBF, SAM-RBF, SEGSAM-RBF and SEGDAM-RBF,

The warning message for no write-ring on the tape has been altered from
'Tape is file protected' to 'Tape is write protected'.

Spelling corrections were made to usage text.
The message 'We are ignoring it', to indicate that a ROAM file from

tape is not being written to disk, is replaced by the message 'File not
restored’,

SOFTWARE PROBLEMS FIXED

The test for the BADSPT file has been improved so that MFD files which
begin with the characters BADSPT, such as BADSPI.FIN, are restorable
and files named BADSPT are restorable at UFD level or lower. The
BADSPT file on the MFD is still not restorable (SPAR 3002715).

If the -TTY option is used and the tape unit is off line or write
protected, the program loops back to the 'Tape wnit:' prompt for
command input files and CPL files (SPAR 3002990).

Unrecoverable write errors during the save of a SEGDIR formerly
restarted the save from the beginning of the SEGDIR. When MAGRST
encountered a situation of being in one SEGDIR and finding another, it
attempted to attach down a level and failed.

On an unrecoverable error during a save of a SEGDIR, the save is
restarted from the subfile before the one in which the error occurred.
On restoring a SEGDIR which spans reels, re-initialization is
performed, preventing any bad attaches (SPAR 3003287).

A space is not taken to be equivalent to <RETURN> for the ‘'Enter
logical tape number:' and 'Revno:' prompts (SPAR 3003890).

3-83 First Edition

Software Release Document

Partial restores of ROAM files using a full treename formerly caused
fatal errors because of an attempt to attach to the ROAM file itself.,
If the user does a partial restore of just a ROAM file, the attaching
routine MGATCH is not used, preventing the bad attach (SPAR 3004875).

Files of the types SAM-RBF and DAM-RBF can be created if the files did
not previously exist and if the logical file bit is set as an
attribute,

If an RBF file of the same type exists, the file is not restored and an
"Improper access of restricted file" message is given. If the file
exists, but only one of the disk and tape files has its RBF bit set, a
mismatch error message is displayed and the file is not restored. This
enables the ROAM system files to be saved and restored in the event of
disk reformatting (SPAR 3005056) .

Duplicate copies of the same file, identical in all respects, formerly
produced an error message of "Unit not open” on alternate copies. This
was caused by the name checking algorithm believing the second copy to
be a sub-entry of the first. The routine then attempted a SEGDIR
search for that sub—entry, the SEGDIR being the not open unit,

The algorithm has been modified and all identical copies of a file are
now restorable (SPAR 3006149).

The variable holding the severity to be returned is initialized to zero
on entry to MAGSAV. This prevents the program from being run once with
a bad tape unit being supplied and finishing with an ER! prompt
followed by the same set of commands returning to an OK, prompt.

If such a sequence of commands were in a CPL file, which caught errors
and summed them up, the first run would be registered as an error hut
subsequent invocations would not register as errors (SPAR 3006239).

Partial restores of an existing tree structure, containing ROAM files
on lower levels, failed to work due to incorrect building of the full
relative pathname and due to the ROAM routine DLSDSU always attaching
back to the home directory.

The required portion of the restored file's pathname is now built.
This allows the DLSDSU routine to delete the existing ROAM file from
the disk. When this routine returns, MAGRST attaches back to the
correct location for restoring the master file (SPAR 3006574).

If ROAM is not shared and the user attempts to restore a ROAM file, the
correct filename is given and the ROAM library routines are not called
at all, This prevents a fatal LINKAGE _FAULT$ condition from occurring
(SPAR 3006842) .

If, for some reason, a ROAM file is not restored, a routine is used to
scan through the tape until either a treename or an end of tape is
found. At this point, the routine returns to the main program and
processes data as before. This routine was written to ignore all
MASTER records and all SLAVE records.

First Edition 3-84

PRIMS and Utilities

However, if there were consecutive ROAM files on tape and the first was
ignored, the second file would also be totally ignored. The routine
now ignores only MASTER records until the end of the current ROAM file
on tape (SPAR 3007096).

Nested SEGDIRS are not currently supported. Introduction of this
feature is anticipated at a later date (SPAR 3003639).

3-85 First Edition

Software Release Document

First Edition

PRIMS and Utilities

PHYSAV _ PHYRST

NEW FEATURES AND CHANGES

The routine AYENAY, for obtaining yes/no responses, has been modified
to accept answers in upper or lower case or a mixture of both, Most of
the messages and prompts are now given in lower case.

Other instances of character string interpretation; for example, the
RESTORE/VERIFY option of PHYRST or the QUIT option on the tape wnit
number prompt, are also no longer case sensitive.

The PHYSAV utility now uses the non-pure FORTRAN library. It formerly
used the default library, LI, which is now an EPF; the EPF libraries
reside on the command disk. This enables the command device to be
saved via the process of starting PHYSAV and naming the ocommand disk
using its pdev. This causes the error message "Disk not assigned" to
be displayed and the user is returned to PRIMDS. The disk should then
be shut down, added to the assignable disks table, and assigned.
PHYSAV can then be restarted using the START command and the save
progresses normally. At the end of the save, the disk should be added
back to the system using the ADDISK command.

SOFTWARE PROBLEMS FIXED

A space is no longer taken to be equivalent to <RETURN> for the
'Restore partition nnnnnn as partition:', 'Logical tape:', and
'Phys.Dev.No:' prompts (SPAR 3006575).

When the -TTY option is used, PHYRST takes its magtape unit number from

the terminal rather than from the current oommand stream
(SPAR 3007945).

3-87 First Edition

Software Release Document

First Edition 3-88

PRIMDS and Utilities

PRINT_NETLOG

NEW FEATURES AND CHANGES

An error 1is put into the network event-log file when a bad HDX restart
packet is received by the DTE.

3-89 First Edition

Software Release Document

First Edition 3-90

PRIMDS and Utilities

PRINT_SYSLOG

NEW FEATURES AND CHANGES

PRINT_SYSLOG has been changed to recognize recoverable machine checks.
It has been modified so that the routine that decodes the contents of
DSWSTAT for Prime 9950's checks to see that bit 26 of DSWSTAT, is set,
If the bit is set, these utilites indicate that the machine check was
recovered, The decode routine for the Prime 9950 will also be used by
future processors.

3-91 First Edition

Software Release Document

First Edition 3-92

IRIMS and Utilities

SFOOL

NEW FEATURES AND CHANGES

A number of enhancements have been made to the spooler at Rev. 19.4 to
overcome problems experienced in the past. In addition, a number of
bug fixes have been incorporated. The most fundamental change has been
to incorporate the OAS spooler rphantam into the standard spooler
phantan., This has resulted in a few more printer types in the PROP
enviromment and an additional file. L.TYPE, in SFOOLQ.

For those users who wish to operate with massworded SFOOLQs, the
password needs to be changed in only one place and the spooler
reloaded, There is a CPL program, CHG PWD.CPL, to perform this
function. It prompts for the new password, edits the single source
program, and reloads the spooler. The spooler then has to be
reinstalled and SPOOLS$ has to be reshared.

New SPOOL: Options

Eight new spool options have been added to the SFOOL command and to the
SFOOL$ subroutine and some improvements to existing options have been
made.

-DISK diskname or ldev: This feature allows the user to specify which
partition to spool a file on, allowing multiple SFOOLQs on a system and
thus removing the limitation of 200 entries in a system's spool queue.
This option can be used to spool files on both local disks and remotely
added disks, providing the disk contains a SPOOLQ directory. Using
1dev is the faster of the two methods.

=MODIFY PRT filenumber or -MOD filenumber: This option allows the user
to modify an existing entry in the SFOOLQ. All normal spool options
are permitted to be used with -MODIFY., The format of the command is:

SFOOL: -MODIFY PRT002 [options]

or
SFOCL -MOD 2 [options]
The options are the normal SPOOLL command options with the usual
restrictions, Please note that only the options that are specified
with -MODIFY are changed in the print request.

~NODEFER or -NOD: Used in conjunction with -MODIFY, <-NODEFER removes
the -DEFER attribute from a job.

3-93 First Edition

Software Release Document

~NOEJECT or -NOJ: If specified in the command line, —NOEJECT disables
the form feed that normally occurs after the file has completed
printing. Please note that a form feed is never performed before the
banner page and thus this option should only be used in circumstances
where the banner page is inhibited with the -NOHEADER option.

~NOTIFY or -NFY: Notifies the user when the user's file has completed
printing. Notification is done by the spooler phantan by first
attempting to send the user an immediate message. If the message is
not received, it will be resent as a deferred message. Since the
notification is done by the phantam, the user will be notified only if
a Rev, 19.4 or later spooler phantam prints the job.

-RUSH/-NORUSH: The spooler phantam, while scanning a SPOOLQ directory,
first checks to see if there are any priority files in this particular
SPOOLQ. If there is one, that file will be printed next regardless of
size restrictions or its location in this SPOOIQ. Form type and
printer destination are adhered to. Where more than one priority file
exists in a SPOOLQ, the priority files will be printed in the order
spooled., This option can only be used in conjunction with the -MODIFY
option. Since the rush is done by the phantam, the file will be rushed
only if a Rev. 19.4 or later spooler phantam prints the job.

For example:

SPOQL filel -FORM WHITE (assume it becomes PRT001)
SFOOL, -MOD 1 -RUSH (to set priority)
SFOOL -MOD 1 -NORUSH (to remove priority)

Only user SYSTEM and those users listed in the files L,USER and
L.enviroment are permitted to use -RJSH and -NORUSH.

-TRUNCATE or —TRU: Prevents a file containing long lines from printing
on the platen. Truncation is performed by sending only the first n
characters of each line to the printer. n is defined by the PROP WIDTH
ocommand. Since the truncation is done by the phantam, the file will be
truncated only if a Rev. 19.4 or later spooler phantam prints the job.

SPOOL -LIST AT <printer_name>: Lists those files which are spooled to
a specific printer. This can be used in conjunction with the -LIST *
command

SFOOL, ~LIST * AT <printer name>

First Edition 3-94

PRIMDS and Utilities

Cancelling a Print Request: If a SPOOL —-CANCEL command is issued and
the file 1s printing on the local system, a DROP command will be issued
to the printer concerned. Please note that files that are printing on
a remote system cannot be dropped; in that case, the following error
message is displayed:

File is printing on a remote system — unable to drop it.

Changes to SPOOLS

The size of the INFO array has been extended to allow the inclusion of
the extra SPOOL options, All the additiomal spool options are
available under direct calls to SPOOLS. The details on the clling
sequence for SPOCL$ are included at the end of this document. Please

note that Rev, 19.4 SPOOLS$ is totally ocompatible with all previous

versions of SPOCLS.

Ona key of 2 (open file), SPOOLS$ finds an available unit number to
open the file on if the value supplied in INFO(2) is zero.

An additiomal key of 4 has been included that closes the unit opened by
a previous invocation of SPOOLS with a key of 2, Users formerly had to
close the unit manually by calling SRCHSS after writing to the open
unit. This second invocation of SPOOLS also notifies the spooler
phantam semaphore.

Changes to SPPHN

If the QSCAN parameter in the PROP enviromment is set to 1, all SFOOIQs
are now accessed equally. This means that, having printed an item from
the first SPOOLQ on the system, SPPHN scans the next SPOOLQ for a file
eligible to be printed on that printer. This significantly speeds up
the printing of those files which reside on SPOOLQs other than the
first queue and this option should be selected at sites where more than
one SPOOLQ exists to be scanned. Please note that this can cause
delays of a few seconds between printing files if secondary SPOUIQs are
on remote systems since the SPHHN phantam has to d a remote attach
between the printing of the files. This can be avoided by the
judicious use of the UPEER and LOWER values in the PROP enviromment.

Please note that for those sites where the old method of searching is
sufficient, QSCAN should be set to 0 (the default).

An ETX/ACK protocol has been incorporated for OAS printers.
If OM ON is specified, the command output file is protected for n

readers and ore writer (as long as the phantan has protect rights).
This allows users to list the QOMD file while the printer is printing.

3-95 First Edition

Software Release Document

If the phantam is unable to assign the AMLC line at startup, an error
message is output and the phantam is logged out.

Trailing blanks are stripped from output lines., This prevents needless
output of characters and removes the vertical bars that are the
representation of a space on Printronix printers using plot packages.

Lines up to 400 characters in length are now printed.

WARNING

For printers on MPC boards, the PRIM)S subroutine TSLMPC
truncates lines at 140 characters.

On completion of printing a file, a call is made to a routine ACCING.
A 200 word buffer oontaining information on the just completed print
file is passed to this routine. The actual structure of the buffer is
defined at the end of this document, but among the information passed
is the number of pages printed, the number of lines printed, and the
start and stop time for printing., It is intended that users write
their own routine to extract the information pertinent to them and
store it in any format or file they require.

Adding Electronic Vertical Format Units (EVFU) to a printer enviromment
is now performed correctly.

Characters without parity set are now converted to uppercase. This
required a change to UPCASS.PMA,

A bug was fixed that caused files spooled in NOFMT mode to start on the

secord line of a page. Files spooled with -NOF,-NOH,-NDE are now
printed without a blank line between them.

Changes for OAS

An OAS printer is recognized by a PROP TYPE specification ranging from
10 through 15. Currently there are three OAS types:

10 - OAS, Manual
11 - 0as, Cut sheet feeder
12 - 0AS, Tractor Feed (Continuous)

In MANUAL mode, all form feeds (FF) are replaced with a null and the
STOP code sequence for the printer is output. The printer pauses and
the operator is then free to change or insert new paper and continue
the print operation in the normal manner as defined by OAS.

First Edition 3-96

PRIMS and Utilities

In the case of a printer defined as a KSR (see file L.TYFE), the signal
to continue is taken as a character input from the keyboard of the
printer,

For a cut sheet feeder, the very first FF in the file is not output
unless a header has already been output. This prevents a blank sheet
of paper from being thrown out each time a file starts printing. All
other FFs are acted on normally. A tractor feed (continuous) printer
is the same as a standard line printer.

OAS uses the ETX/ACK protocol rather than XON/XOFF. A new driver value
of 6 indicates that the ETX/ACK driver is to be used. This is set by
SPPHN after checking the printer type. '

The normal spooler outputs these messages (in large letters) to the

printer. For OAS printers, they will be output only if the printer is
a type 12 (continuous),

Changes to PROP

Compressing the Queue: A new facility exists that allows printer
operators to tidy up the SFOOLQ on any disk. Printer operators are
defined as those users listed in the file L.USER. The new facility is
designed to perform several functions:

® Remove any entries from the queue that & not have a
corresponding PRTnnn file

® Delete any PRTnnn file that does not have a corresponding entry
in Q.CTRL

® Reorganize the queue to maximize the use of available slots

e Make the secondary entry area for Rev., 18 entries nulls and
spaces; that is, make it as a Rev. 19 entry

The file Q.CIRL is held open during the entire running of this program,
Thus no user or spooler phantam is able to access the queve while this
program runs. This facility provides welcome relief to the age old
problem of 'No roam' when in fact there are far less than 200 entries
in the queuve.
To invoke this facility, type:

PROP —COMPRESS [diskname]

1dev

If no diskname or ldev is supplied, PROP defaults to the first SEOOLQ.

3-97 First Edition

Software Release Document

Naming the Phantam: PROP has been modified to start the phantam via a
call to BAICHS. This allows the phantam to be named explicitly; it is
given the name of the printer enviromment, If the oommand is not
issued from the supervisor terminal and therefore fails due to 'no
access rights', the phantam is started directly. (See the WARNING on
the next page.)

WARNING

This may affect access oontrol lists if ACLs are used on the
SFOOLQ.

PROP now makes provision for a passworded SFOOLQ and performs an
'ATTACH SPOOLQ xxxxxx' in the command file to start the phantam.

Printer Control: To allow the System Administrator to exercise more
control over which users are permitted to control the printers, two new
files can be created in the SPOOLQ UFD. L.USER is a general file that
contains usernames (upper case) of those users who are permitted to
START, STOP, MDIFY and CREATE the printer enviromments. An
L.enviromment file can also be used to restrict access even further for
that specific printer. The L.enviromment file is checked first and, if
it does not exist, the L.USER file is checked. If neither file exists,
only the user SYSTEM is permitted to START, STOP, MODIFY and CREATE the
printer environments.

No change has been made to the length of the printer enviromment files;
thus printer envirorments are compatible with all Rev. 19 enviromments.

To overcome the problem of PROP commands timing out when using slow
printers, a change was made in the spooler phantam. The phantan now
checks for PROP commands every 16 lines for normal printers and every 8
lines for OAS printers.

Printer ?Es: Some additiomal printer types have been added.
Permit values of TYFE are now 0, 1, 10, 11 or 12. These types are:

0 Printronix (300 lpm printer/plotter)
1 Dataproducts (band printer)

10 OAS, Manual

11 OAS, Cut sheet feeder

12 OAS, Tractor Feed (Continuous)

PROP Options: PROP -ABORT, PROP -DROP, or PROP —RESTART clear pending
hangs and cause an implicit —CONTINUE, They also cause a pending —STOP
or -MODIFY to take place immediately.

First Edition 3-98

PRIMDS and Utilities

PROP -MODIFY NOW causes the file currently printing to be aborted. The
modification then takes place and the next applicable file starts to
print (it could be the same one depending on what has been modified).

PROP Subcommands: The default values of WIDTH, LINES, and LENGTH have
been changed. The default values are now 132, 66, and 60,
respectively. These values are commonly used with the wide, 14 by 11
inch, paper. A new entry in the PROP enviromment permits the user to
suppress the printing of the warning messages on the printer relating
to stopping, aborting, dropping, and so forth. The new entry is
WARNING and takes a value of ON or OFF.

An additiomal entry has been made to the PROP enviromment to determine
how the spooler phantam should access systems where there are more than
one SFOOLQ. The entry is QSCAN and takes the value 0 or 1.

If OSCAN is set to 0, the SPOOLQs will be scanned as follows. Files
spooled to the local, or first, SPOOQ are printed first. When this
queue is empty, the second SPOOLQ is accessed. If a file exists in
this queue, it is printed. The first SPOQLQ is rechecked and any files
in it are printed before the second SFOOLQ is rechecked. When both the
first and the second SPOOLQs are empty, the third SPOOLQ is checked,
and so on. This method is not recommended for systems with multiple
SPOOLQs.

If OSCAN is set to 1, all SPOOLOs will be accessed equally. This means
that having printed an item from the first SPOO.Q on the system, SPPHN
will then scan the next SPOOLQ for a file eligible to be printed on
that printer. This significantly speeds up the printing of those files
which reside on SPOOLQs other than the first queue and this option
should be selected on sites where more than one SPOOLQ exists.

SPOOL:$

Below is the new definition of SPOOLS that includes all the extra
features incorporated in the Rev. 19.4 version of the spooler.

A user program can insert a file into the spool directory by calling
the SPOOLS$ subroutine:

CALL SFOOLS$ (key, name, namlen, info, buffer, buflen, code)

key User option
1 Copy named file into queue.
2 Open file on unit info(2) for writing.

If info(2)=0 then SPOOLS will find an
available wnit and return the value in
info(2).

3-99 First Edition

Software Release Document

namlen
info

8-10
11

12
13-20

21-28

29

Modify the attributes of a file already
spooled.

Close file on unit info(2) in queue and
notify semaphore,

File to be copied (if key = 1), or name to
appear on header page (if key = 2).

Length of name, in characters (1-32)
Information array, 40 elements, as follows:

Reserved after Rev, 17.

Open print file on this wnit (key=2)

If unit number is zero then SFOOLS$
will return the unit number here.

Print option word. (See below.)

Form type (6 ASCII characters).

This must be entered and blank filled
(equivalent to -FORM on PRIMDS command
line,)

Plot raster scan size (plot only).

This represents number of words/raster
scan.,

Spool filename (returned).

Deferred print time (valid only if
defer bit specified in option word) -
an integer specifying minutes after
midnight (equivalent to -DEFER in
PRIMS command line.)

File size, returned if key is 1.
(Optioml) Logical destination name -
must be blank padded {equivalent to -AT
on PRIMS command line). If these

words are used, bit 10 of word 3 (option
word) must be set to 1.

(Optiomal) Substitute filename to be used -
must be blank padded (equivalent to -AS
on command line). If these words are used
bit 11 of word 3 must be set to 1.
(Optiomal) Number of copies (equivalent
to ~(OPIES on command line). If this is
used bit 12 of word 3 must be set to 1.

The remaining 11 words are for the extended array. If the extended
array is used then bit 16 of info(3) MUST be set.

30
31

32-40
buffer

Additional option word. (See below.)

Disk number of the SPOOLQ to attach to

for the -DISK option. If this word is used
bit 1 of word 30 must be set.

Reserved.

Scratch buffer - this is used to set up control
info and to copy the file to the spool queue (key=l).

First Edition 3-100

buflen
code

PRIMDS and Utilities

It must be at least 40 words long. Copy time
is 1nversely proportloml to buffer size,
Nominal size is between 300 and 2000 words.
Length of buffer.

Return code (nom-zero if error occurred).

The print option word (info(3)) specifies various print(/plot)
information and is defined as follows:

Bit

WO UTLE WN Ll

10

Designation (If set to 1)

Fortran format control. (Column 1 contains carriage control
information.)

Expand compressed listing.

Generate line numbers at left margin,

Suppress header page.

Do not eject page when done.

No format control.

Piot this fiie - 1nto(7) specifies words/raster scan.
Don't print this file until the time specified in info(11).
Print on local printer only — Not used after Rev. 17.
Print/plot file at location specified by string in
info(13-20).

Replace name with strmg in 1nfo(21—28) .

Spool the number of copies specified in info(29).

Reserved.

Inform user when file has completed printing.

Equivalent to -NOTIFY option on command line.

Extended array used - MIST be set if words 30 - 40 of

info are used.

The extended prmt option word (info(30)) specifies additiomal
information and is set up as follows:

Bit

9-16

Designation (If set to 1)

Attach to the SFOOLQ on disk number in info(31).

This file is a PRIORITY file. Can only be used in
conjunctlon with the -MODIFY key.

Used in conjunction with -MODIFY to remove the PRIORITY
attribute from this file,

Allow spool$ to place a message in name when code is not
0, designed to be passed as input to errpr$, which is what
the spool command has always done.

Reserved.

Truncate all lines to value defined by PROP WIDTH command.
Used in oconjunction with -MODIFY to remove the DEFER
attribute from a file,

Reserved,

3-101 First Edition

Software Release Document

Files That Reside in SPOCOLQ

Various files reside in SFOOLQ whose function are sometimes difficult
to comprehend. Listed below are explanations that resolve this.

L.FORM: This file contains one form type per line in upper case
characters only., If this file is present, it specifies all synonyms
for the SFOOL -FORM option; if absent, any form name is allowable.

L.DEST: This file contains one destination name per line in upper case
characters only. If this file is present, it specifies all allowable
synonyms for the SFOOL -AT option; if absent, any destination name is
allowed.

L.DFLT: This file contains only one destination name that becomes the
default destination for the SFOOL -AT option. If this file does not
exist, the default destination is left blank and a file to be spooled
goes to the first printer that matches the FORM subcommand criteria.

L.enviroment: This file ocontains one user id per line, in upper case
only. It is a list of those users who are permitted to START, STOP,
CREATE, MODIFY, and so forth, this particular printer enviromment. If
this file is not present, the file L.USER is checked to see if a user
is permitted to control the printer.

L.USER: This file ocontains one user id per line, in upper case only.
Tt is a list of those users who are permitted to START, SIOP, CREATE,
MODIFY, and so forth, the printer enviromments, If this file is not
present and there are no L.enviromment files, only user SYSTEM is
permitted to control the printers.

Note

The use of both the L.enviromment file and the L,USER file
allows the System Administrator to globally restrict access to
the printers and to then restrict specific printers to specific
users with the L.enviromment file,

L.TYPE: This is a new file for OAS users. It defines the type of
printer for each enviromment file, The information should be entered
in upper case as follows:

PRINTERNAME1 TYFE
PRINTERNAME2 TYPE

First Edition 3-102

PRIMDS and Utilities

Current allowable types are QUME (or 3185), NEC, DIABLO, and KSR, The
KSR type is for those users who are printing in MANUAL mode and wish to
give the PROP (ONTINUE command by entering any character from the

keyboard.

NETWORK_INFORMATION,SPOCL:: This file oonsists of one or two ASCII
lines, The first line should contain the mame of the system on which
the SFOOLQ UFD resides. If the SPOOLQ is on a Rev. 18 system, the
second line should be REV.18. On Rev. 19 and later systems, no second
line is required.

The first line (node name information) is used only by SFOOL -LIST.
The text "System:" will be put in front of the first line before the
queve is listed but only if entries in the queue will be displayed;
that is, there is a list of PRTnnn files to display.

cin s .
Change of Mode Commands Within the Spooler

Any data line starting with an 001 (or "201) causes the spooler to
take some action to change control modes. The control mode change is
determined by the character(s) following the oontrol character. The
character interpretations are as follows:

Mode Control Sequences Within File (Words 1-3 of Record)

WD 1 WD 2

OCTAL: BINARY

001 - FF then turn on PAGINATE mode (no page header)
001 000 - NO-FORMAT mode

001 001 - Turn on Single FIN control mode (-FIN)

001 002 - Turn on Double FIN control mode (—C(OB)

001 004 - Set PAGINATE mode but do not output page

heading or page number,
001 036 data Use data for new page heading, keep same
page number, set PAGINATE mode and perform a FF
001 037 nnnn Use data word for new PAGINATE page size
000 001 data Use data for new page heading, reset page
number, set PAGINATE mode and perform a FF

Please note that the control sequence "001 004", outlined above, is new
at Rev, 19.4.

3-103 First Edition

Software Release Document

Format of Accounting Buffer Passed by Spooler Phantam

The subroutine ACCING is called by the spooler phantam on completion of
printing the file. The calling sequence is:

CALL ACCING (BUFF)

BUFF is a 200 word INTEGER*2 array. The format of this buffer appears
to be in a somewhat haphazard order because it has purposely been made
compatible with the entries in Q.CIRL. The first 40 words (BUF(1l) to
BUF (40)) are from the first file entry area in Q.CTRL and the next 122
words (BUF(4l) to BUF(162)) are from the file entry's second area in
the Q.CIRL file,

Format of Accounting Buffer

BUF(1) The first 6 characters of user name (ASCII) 6 bytes
BUF (4) 32 character name to be used in banner, usually
filename, 32 bytes
BUF(20) FORM type spooled with. 6 bytes
BUF(23) Date spooled (as returned by TIMDAT) 6 bytes
BUF (26) Time spooled in minutes past midnight. 2 bytes
(Note that seconds are held in BUF(101))
BUF(27) Options used 2 bytes

Bit Designation (If set to 1)

1 Fortran format control (Column 1 contains
carriage contrcl information)

2 Expand compressed listing

3 Generate line #'s at left margin

4 Suppress header page

5 Don't eject page when dore

6 No format control

7 Plot this file - BUF(33)) specifies words/raster scan

8 Don't print this file until the time specified in
BUF (28)

9 Force this file to print on home printer (Not used
after rev 17)

10 Print/plot file at location specified by string at
BUF(30) (6 chars) + BUF(33) (remaining 10 chars)

11 Spooled with —-AS option — banner name in BUF(4)

12 Output the number of copies specified in BUF(39)

13-14 Reserved
15 Notify user when file has completed printing
BEquivalent to -NOTIFY option on command line
16 Extended array used when calling SFOOLS$

BUF(28) Deferred print time (minutes after midnhight) if 2 bytes
-DEFER option used.

First Edition 3-104

PRIMDS and Utilities

BUF(29) Size of file in records. 2 bytes
BUF (30) First 6 chars of printer printed on 6 bytes
BUF(33) Raster scan if -PLOT used 2 bytes
BUF(34) Last 10 chars of printer printed on 10 bytes
BUF (39) Number of copies requested if -QOP option used 2 bytes
BUF(40) Reserved, 2 bytes
BUF (41) 32 char user name 32 bytes
BUF (57) Date-time file last modified as returned by 4 bytes
RDENSS. (0 if invalid)
BUF (59) Length of treename of file spooled 2 bytes
BUF(60) Treename of file spooled 80 bytes

BUF (100) Key used in call to SPOOLS$, one if copy, two if 2 bytes
open, zero if invalid,

BUF(101) Seconds file spooled. (BUF(27) already used) 2 bytes

BUF (102) Additiomal option word if extended array used 2 bytes
for call to SPOOLS

Bit Designation {If set to 1)

L2 D Leme iean o

ed by user., Disk

-
>
r
)

number held in
This file is a PRIORITY file. Can only be used

in conjunction with the -MODIFY key.

Used in conjunction with ~MODIFY to remove the PRIORITY
attribute from this file,
Allow spool$ to place a message in name when code is not
0, designed to be passed as input to errpr$, which is what
the spool command has always dore.
56 Reserved.,

7

8

[T S B N)

Truncate all lines to value defined by PROP WIDTH command.
Used in conjunction with -MODIFY to remove the DEFER
attribute from a file,

9-16 Reserved,

BUF (103) Disk number of SPOOLQ to be attached to — 0 if 2 bytes
default (first) queue in system.

BUF (104) Nodename of system spooled from 6 bytes
BUF(107) Length of nodename in BUF(104) 2 bytes
BUF(108) to BUF(162) Reserved 110 bytes

BUF(163) Date & time printing commenced in TIMDAT format 10 bytes
BUF(168) Date & time printing completed in TIMDAT format 10 bytes

BUF(173) Printer control word 2 bytes
Bit Designation (If set to 1)
1 File was 'aborted' during printing.
2 File was 'dropped' during printing.
3 File was 'backed up' during printing.
4 File was 'restarted' during printing.
5-16 Reserved
BUF(174) to BUF(180) Reserved 14 bytes

BUF(181) Number of pages printed (including restarts, 4 bytes
backups and copies). This is an INTEGER*4 number

3-105 First Edition

Software Release Document

BUF (183) Number of characters printed (including 4 bytes
restarts, backups and copies). This is an
INTEGER*4 number

BUF (185) Number of lines printed (including restarts, 4 bytes
backups and copies). This is an INTEGER*4 number

BUF(187) to BUF(200) Reserved 28 bytes

SOFTWARE PROBLEMS FIXED

In FIN mode, lines longer than 132 characters were sent with two extra
blank characters, causing problems on printers that have wrap-around
capabilities. This has been fixed (SPAR 2000377).

EVFU channel numbers between 15 and 28 are now checked to support the
use of EVFU on serial lines. Additiomally, setting up EVFU is now
performed correctly (SPAR 3001256).

The destimation field length in the banner message was fixed
(SPAR 3001303).

The EVFU subcommand was fixed to take the command EVFU -NAME ' ' as an
error to force the user to give a non-null filename (SPAR 3007947).

The display for EVFU was fixed so that users can differentiate EVFU -ON
from EVFU -NAME ON and EVFU -OFF from EVFU -NAME OFF (SPAR 3007942).

Trailing blanks are stripped from output lines. This prevents needless
output of characters and, on Printronix printers using plot packages,
removes the vertical bars that are the representation of a spaces.

If the phantam is unable to assign the AMIC lire at startup, an error
message is output and the phantam is logged out.

Characters without parity set were not converted to uppercase. This
problem has been fixed.

Formerly, files spooled in -NOFMT mode started on the second line of a
page. Files spooled with -NOFMT, —-NOHEADER ,-NOEJECT are now printed
without a blank line between them.

The problem that caused the last line of each file to print only when
the next job started printing was remedied (SPAR 2001904).

The spool phantam now tries for a longer time to open the SFOCLQ>Q.CTRL
queues (SPAR 3000619) .

The calling sequence to OS$ALNN was changed, but not all callers were
updated (SPAR 3007883).

First Edition 3-106

PRIMS and Utilities

SOFTWARE PROBLEMS OUTSTANDING

Users are able to specify control sequences in the destination (SFOOL
-AT), alias (SPOOL -AS) and form (SPOOL -FORM) fields. This can cause
problems when other users do a SPOOL -LIST (SPAR 3008035).

3-107 First Edition

Software Release Document

First Edition 3-108

PRIMS and Utilities

SYSQOM

NEW FEATURES AND CHANGES

A new key, KSOOMD, is added for GPATHS.

3-109 First Edition

Software Release Document

First Edition 3-110

PRIMOS and Utilities

PRIMDS II

NEW FEATURES AND CHANGES

Disk controllers at addresses '22 and '23 can now contain maging
partitions. These controllers are accessible under PRIMOS II, however,
you cannot use MAKE for these controllers under PRIMDS II.

DOCUMENTATION CQORRECTION

The following correction should be made to the System Operator's Guide,
Volume I,

In Appendix E, page E-3, Step 6. Restart PRIMS II:
For the P2550, P9650, PS750 i P9955 the command issued should

T _.

an
. This is correctly documented in the
50

3-111 First Edition

CHAPTER 4
LANGUAGES

UTILITIES

BIND

NEW FEATURES AND CHANGES

BIND is a new linker that produces EPFs. BIND usage is discussed
briefly in Chapter 2, EPFs., See also the Programer's Guide to BIND and
EPFs.

4-1 First Edition

Software Release Document

First Edition

LANGUAGES

NEW FEATURES AND CHANGES

Created dynamic entries (DYNTs) can be as long as 32 characters,
although the symbol names are still limited to eight characters.

SOFTWARE PROBLEMS FIXED

QMDSEG now ignores LISTNER ORDERS and is no longer required to be run
at command level 1 (SPAR 2000638, 2006053, 2002648).

C internal routines are now called properly when relocaded.

New storage allocator calls are used for map sorts.

4-3 First Edition

Software Release Document

First Edition

LANGUAGES

NEW FEATURES AND CHANGES

DBG now offers full support of EPFF programs, that is, programs 1linked
and loaded by BIND. The user should notice no. difference in DBG's
behavior, as it is indistinquishable from debugging a static mode
program, that is, a program linked and lcaded by SEG.

Touse DBG on a Library EPF, compile the library as a program EPF.

When you no longer need to use DBG recompile the program as a library.
Note

When a user invokes DBG on a program that exists both as a KU

™,

and a .SBEG file and does not use the .HIN or .SEC suffix, B
defaults to the .RJIN file.

Q=

The C Dollar Extent Operator (§): The dollar extent operator is used
to display C arrays of character as a string. It is used in the same
manner as the star extent operator. Instead of displaying the entire
dimension of the array, however, it displays the array's elements up to
the null C character, For more information on the star extent
operator, see The Source Level Debugger User's Guide (DOC4033-193) ,
The dollar extent operator is implemented only for C data evaluation.

For C, DBG now supports array operations on pointers, This is useful
for evaluating C function arquments that are arrays.

SOFIWARE PROBLEMS FIXED

Certain instances of Pascal abstract-type arrays were not interpreted
correctly by IBG. This is now fixed (SPAR 3002646).

DBG now prints the filename involved in a file I/O error in PL1/G
programs (SPAR 3002201:).

DBG would crash if one tried to UNWATCH two WATCHLIST entries in a
rarticular order. This is now fixed (SPAR 3005625) .

In Pascal, one could not assign or compare the value of a function to
an array element. This now works.

Numerous bugs that occurred when using brackets within actionlists have
been fixed,

4-5 First Edition

Software Release Document

The following apply to the C language:

In C, all bugs with self-referential, recursively-def ined structures
have been fixed.

C arrays within structures are now evaluated correctly.
C indirection (* operator) from structure members now works ocorrectly.

A C structure pointer operator (->) following a structure member now
works corrctly.

Very large C programs containing many user-defined declarations caused
DBG to atnormally terminate, This no longer occurs.

Invoking the POINTER (or PIR) function with C data now returns the
correct result.

Occasionally, the address of C data containg no bit offset had a bit
of fset assigned to it. This no longer occurs.

Using the C ARGUMENTS command from within nested braces did not work
correctly. This is now fixed.

Using the C ARGUMENTS command on user-defined arguments did not work
correctly. This is now fixed.

Labels contained within nested braces were not always found. This is
now fixed.

DBG was improperly handling C constants of the form 0.1 or .J. This is
now fixed.

The C ARGUMENTS command did not work correctly when used from an inner
C block or for user-defined datatypes. Both problems are now fixed.

OUTSTANDING PROBLEMS

The C escape character (\) and its associated special characters are
not yet supported. Support is planned (SPAR 3000086) .

In C, displaying of UNSIGNED LONG integers with the low order bit on

displays a negative number, However, the internal representation and
handling is correct. This will be fixed (SPAR 3000013).

PERMANENT RESTRICTIONS

All ARITHMETIC exceptions detected by hardware cause IBG to lose the
user program's environment.

First Edition 4-6

LANGUAGES

DBG stack areas still remain unprotected from being overwritten by a
user procedure that, due to its own errors, has developed bad
addresses. Users should thoroughly investigate this possibility before
assuming that DBG has a bug in it.

Rev. 19.4 IBG does not support operations on Pascal SET datatypes in
programs that have been compiled with a pre~Rev. 19.4 Pascal ocompiler.
This is because of the changes and improvments made in Pascal SET

handling for Rev. 19.4., This only effects Pascal SETs. All other
Pascal datatypes are compatible,

ENVIRONMENT

Rev. 19.4 of IBG requires a Rev. 19.4 or later version of PRIMDS.

INSTALLATION AND BUILD PROCEDURES

Standard.

Note

DBG uses segments 4037 and 4036 and allocates temporary
segments not occupied by the user program dowrward from 4037.

4-7 First Edition

Software Release Document

First Edition

4-8

LANGUAGES

LIBRARIES

Prime's language libraries have been converted to library EPFs. There
is a nrew system directory, LIBRARIES*, in which the libraries are
stored.

CBL,_LIBRARY

NEW FEATURES AND CHANGES

The (OBOL: library is now an Executable Program Format (EPF) Library,
The .RUN file for the 1library is the Program Class Library -
CGBL_LIBRARY in the UFD LIBRARIES*, This library gets referenced when a
user issues the Library command LIBRARY CBLLIB with BIND. Users can

reference their own libraries by modifying their ENTRYS search list.

The unshared COBOL library is referenced with the library command
LIBRARY NCBLLIB. Both CBLLIB and NCBLLIB can be used with SEG. The
files LIB>VOOBLB.BIN and LIB>NVOOBIB.BIN are identical to
LIB>CBLLIB.BIN and LIB>NCBLLIB,BIN, respectively,

4-9 First Edition

Software Release Document

First Edition 4-10

LANGUAGES

CQ.IB

NEW FEATURES AND CHANGES

The Rev. 19.4 C library introduces the EPF library for C, CLIB. An
EPF library is a major change in functionality compared to previous
shared and non-shared static mode libraries., Using the new loader,
BIND, C programs can now be loaded much faster,

Some users may wish to continue using SEG. Users who use SEG must
continue using OCLIB and cannot switch to CLIB. Those users will not
enjoy the improved performance and reduced loading time that BIND users
will notice,

If you use the C EPF library (the recommended practice), you must
include the C library in your search rules, The file,
SYSTEM>ENTRYS,.SR, contains the standard search list for each user.
These search rules include the C library, once it has been installed,
The following is what SYSTEM>ENTRYS.SR may look like for the average
system:

LIBRARIES*>TTYINS.RUN
LIBRARIES*>SYSTEM_LIBRARY, RIN
LIBRARIES*>FORTRAN_I0_I.TRRARY, RIN
LIBRARIES*>APPLICATION _LIBRARY.RUN
LIBRARIES*>CC_LIBRARY, RN

—STATIC MODE_LIBRARIES

For optimal performance, the user should create his own private copy of
the search rules by copying them to an ENTRYS.SR file in his own
directory and instruct PRIMS to use this copy of the search rules via
the SET SEARCH RULE ocommand upon logging in. This file should also be
edited so that the OC_LIBRARY.RIN entry occupies the highest place in
the search 1list, 1In other words, the library that you are ‘likely to
call most often should appear at the head of the list., The 1libraries
that you are least likely to call should appear later in the list,
Many C users will want to put the C library after the system library,
The following is an example of the search list for a typical C user:

LIBRARTES*>TTYINS. RUN
LIBRARIES*>SYSTEM_LIBRARY. RUN
LIBRARTES *>CC_LIBRARY, RIN
LIBRARIES*>FORTRAN_I0O_IL.IBRARY. RIN
LIBRARIES *>APPLICATION LIBRARY.RUN
—STATIC_MODE_LIBRARIES

4-11 First Edition

Software Release Document

For Internals Specialists: The dynamic entries (DYNTs) that are formed
Tn order to interface between a C program and the C EPF library contain
a OC$ prefixed onto the name of the C library entry. The actual entry
in the C EPF library also contains this prefix. For example, PRINTF'S
DYNT gets changed to CCSPRINTF to match its entry in the C EPF library.
The user never sees this through normal use of the C compiler and the C
EPF library., The change takes place within BIND upon issuing the
LIBRARY C_LIB command. In fact, the only time this appears is if a
LINKAGE_FAULT were encountered when trying to dynamically link to an
entry in the C EPF library. As long as the C EPF library has been
jnstalled and the proper search rules effected by following the above
procedures, the user is never aware of this internal naming convention,

Note
This convention is a function of the C EPF library, CLIB, not

the C ocompiler. Therefore, this does not occur when using the
old, unshared library, CCLIB, or when using SEG.

SOFTWARE PROBLEMS FIXED

There are fixes in various library routines to support ERIMOS file
wnits whose number is greater than 128, The C library routines do not
support more than 128 files, although there can be 128 binary files
(referenced thru READ, WRITE, OPEN, LSEERK, and so forth) and 128 ASCII
files (referenced thru FOPEN, FRERD, TS, and so forth) (SPAR
3005365) .

The floating oconstant 1.000 is now printed correctly by PRINTS with
%x.zf format (SPAR 3005367).

The routine EXIT now dumps any buffered TTY data before a return to
PRIMS (SPAR 3005369).

The ¢p format in PRINTF is modified to produce the standard Prime
format (SPAR 3005370).

PERMANENT RESTRICTIONS

The C user should be aware that there are conflicts between same of the
rames in the FORTRAN and System Libraries and those in the C 1library.
One of those routines is EXIT, C(OBCL and FORTRAN routines, that use
STOP or STOP-RUN statements, call EXIT. If a C program were loaded
with other languages, the user must be careful that the routine
expected to be called is obtained. Te C 1library routines are not
compatible with those from the other lanquages.

First Edition 4-12

LANGUAGES

To avoid possible oconflicts when modules written in C and other
languages are mixed within a .RUN or .SEG file, the user should 1load
those routines written in C and the C libraries before those of other
languages., To illustrate:

[BIND rev 19.4]
: lo c_module_l.bin
¢ 1lo c_module 2.bin

: 1i ¢ 1ib /* resolves calls to C

specific libraries */
lo ftn_module_1.bin
lo ftn module 2.bin

e o0

s 1i /* resolves calls to all
other libraries */

The above insures that the C modules call the oorrect C library
routines before attempting to load other modules that call a library
routine with a potentially conflicting name.

INSTALLATION AND BUILD PROCEDURES

CCLIB is supplied with OC comprising two directories, CC and CCLIB. To
install OCLIB, the user must run the install file, CCLIB.INSTALL,QOMI
in UFD CCLIB. CCLIB and CC are built separately.

4-13 First Edition

Software Release Document

First Edition 4-14

LANGUAGES

PASCAL,_LIBRARY

NEW FEATURES AND CHANGES

The Pascal 1library is now an Executable Program Format (EPF) Library.
The .RUN file for the library is the ©Program Class Library,
'PASQAL _LIBRARY in the UFD LIBRARIES*, This library gets referenced
when a user issues the Library command LIBRARY PASLIB with BIND. Users

can reference their own libraries by modifying their ENTRYS search
list,

The unshared Pascal library is referenced with the Library command
LIBRARY NPASLIB. Both PASLIB and NPASLIB can be used with SEG.

4-15 First Edition

Sof tware Release Document

First Edition 4-16

LANGUAGES

PL1G LIBRARY

NEW FEATURES AND CHANGES

The PLIG library is now an executable program format (EPF) library.
The .RUN file for the library is the program class library PL1G LIBRARY
in the UFD LIBRARIES*, This library gets referenced when a user issues
the library commend LIBRARY PLIGIB with BIND. Users can reference
their own libraries by modifying their ENTRYS search list.

The unshared PL1G library is referenced with the Library command
LIBRARY NPLIGIB. Both PLIGIB and NPLIGIB can be used with SEG.

4-17 First Edition

Software Release Document

First Edition 4-18

LANGUAGES

RFINLIB

SOFTWARE PROBLEMS FIXED

The incorrect exponent overflow problem has been fixed. The R-Mode
routine that processes floating point exception interrupts contained a
V-Mode instruction which caused the P9950 to go into floating round
mode and incorrectly generate an exponent overflow (SPAR 3003012).

4-19 First Edition

Software Release Document

First Edition » 4-20

LANGUAGES

SYSTEM_LIBRARY

NEW FEATURES AND CHANGES

The FORTRAN libraries are now Executable Program Format (EPF)
Libraries. The .RUN files for the libraries are in the UFD LIBRARIES*.
They consist of the Process Class Library, SYSTEM LIBRARY, and the
Program Class Library, FORTRAN IO_LIBRARY, These libraries are
autamatically referenced when a user issues the Library command with
BIND. Users can reference their own libraries by modifying their
ENTRYS search list.

The new ACTION= clause for the F77 OPEN statement is now supported.
The ACTION has to be READ or READ/WRITE to backspace a file with the
current implementation.

Izgmmic File Units: F77 now supports 141 file units open at the same
time. Users should use the following code sequence to translate PRIMS
units to FORTRAN unit numbers instead of computing the numbers,

CALL SRCHSS (KSGETU + KSRDWR + KSNDAM , FILENM(I), NAMELN,
+ FUNIT, FILTYP, (QODE)

CALL ATTDEV (LUNIT, PDEV, FUNIT, BUFLEN)

OPEN (UNIT= LUNIT, FILE= FILENM(I), ACCESS= 'DIRECT’',

+ FORM= ‘FORMATTED' , RECL= 30)

LUNIT is the unit number that FORTRAN uses; that is, the OPEN
statement, FUNIT is the file unit that PRIMOS uses. The key KSGETU
causes SRCHSS to open the file name, FILENM(I), on an wnused file unit
selected by PRIMDS, FUNIT.

F77 support now conforms to the BANSI standard for FORTRAN77. This
required changes that could be user visible. When the exponent of a
number exceeded the exponent field on output, the printing of a = or a
$and the most significant exponent digits were an extension.
(Reference FORTRAN77 Reference Guide (DOC4029-183L), page 4-26). The
entire field is filled with asterisks as required by the standard, If
the width of the exponent field is unspecified and the exponent
requires three digits, the E, D, or Q is implied before the sign of the
exporent.,

The backspacing of a variable length record on a binary disk file is
now supported.

4-21 First Edition

Software Release Document

SOFTWARE PROBLEMS FIXED

The 'T" FIN carriage control is supported (SPAR 2000105).

These related B-FORMAT problems have been fixed (SPARs 2000537,
2000623, 2001275, 2002652, 2002860, 2002971, 2005126, 3002524,
3002558) .

A file protected with 'UR' can be opened with the FORTRAN OPEN
statement without an error (SPAR 2005421).

EXP and DEXP do not give a size error when the arqument is less than
-22713 (SPAR 2004808, 2003037).

A real zero raised to the real zero power returns a diagnostic as
suggested by Cody and Waite, Software Manual for the Elementary
Functions, Page 87 (SPAR 2001064, 2001220).

TU and TL give ocorrect results when the next T is backwards from the
previous T in the FORMAT string (SPAR 2002366).

The routines FS$SCIPWR and F$SCCPWR are loaded with the library for a
routine compiling with the —INTS option (SPAR 2002292).

The following routines were added as direct entrance calls to the
operating system: TEXTOS, CHGSPW, ASNLNS, USER$, ILONSCN, and LONSR
(SPAR 3001475).

MAMELIST, used to input from the terminal, works correctly both the
first time and subsequent times (SPAR 3002057).

Reading into a REAL*8 variable using an F20.2 format with FIN and
entering the character string -0, the REAL*8 variable now has the
correct value of 0.0 (SPAR 3001490).

The output of a character*l variable with an even value of 10 or
greater correctly indicates overflow with an internal file (SPAR
3002217) .

A double precision integer with the smallest negative value of
-2147483648 is represented correctly internally in binary (SPAR
3005964) .

The smallest double precision negative integer, with the sion bit on
and all the other bits off, correctly outputs -2147483648 (SPAR
2001147, 2000122).

F77 B format now works correctly when only one dollar sign precedes a
comma (SPAR 2004579).

The Fortran OPEN statement returns to the calling program when IOSTAT
is specified without ERR (SPAR 3005895) .

First Edition 4-22

LANGUAGES

In a program class library, modified IPs are now reinitialized
correctly after the library is reinvoked (SPAR 3010175).

SOFTWARE PROBLEMS FIXED

Performance Improvement: Performance has been improved for the input
and output of single precision, double precision, and quad precision
floating point numbers.

The performance and accuracy of the Transcendental Functions has been
improved.,

INSTALLATION AND BUILD PROCEDURES

The following have changed from SAM files to DAM files which means that
MAGRST will not copy the new versions over the old ones:

SPLLIB,BIN
PFINLB.BIN
NPFINLB. BIN

4-23 First Edition

Software Release Document

First Edition 4-24

LANGUAGES

VREG_LIBRARY

NEW FEATURES AND CHANGES

The V-Mode REG library is now an Executable Program Format (EPF)
Library. The .RIN file for the library is the Program Class Library,
VRPG_LIBRARY, in the UFD LIBRARIES*, This library gets referenced when
a user issues the Library command LIBRARY VREGLB with BIND, Users can
reference their own libraries by modifying their ENTRYS search list.

The unshared VREG library is referenced with the Library command
LIBRARY NVRFGIB. Both VRFGIB and NVRPGIB can be used with SEG.

The shared FORMS library is now autamatically loaded when loading the
VREG library. ‘Therefore, the load of any VRPG program that interfaces
with the Prime Forms Management System (FORMS) does not have to load
VFORMS.

4-25 First Edition

Software Release Document

First Edition 4-26

LANGUAGES

(OMPILERS

BASICV

NEW FEATURES AND CHANGES

IOF (Length Of File): IOF, length of file, is a built-in function.
The syntax is L. = LOF(channel_number), This function returns the
number of records in the direct access file opened on the specified
channel number,

ANSI Minimal BASIC Support: The -MIN option provides ANSI minimal
BASIC support. The following lists exception handling:

e Division by zero is a non-fatal exception. Machine infinity
with sign of the numerator is provided.

e Underflow is a non-fatal exception. Zero is provided.

® An overflow is a non—fatal exception. Positive or negative
infinity is provided.

® 0 raised to 0 power is a nonfatal exception. 1 is provided,

e 0 raised to a negative power is a non-fatal exception. Positive
machine infinity is provided.

e ON-GOTO control expression greater than the number of
line-numbers in the list is a fatal exception.

e Subscript of -1 is a fatal exception.

The following changes in functiomality to the existing BASICV apply
only if you use the -MIN option.

Ex_ggessions: Comparison of string variables and constants are equal if
and only if the strings are equal in length and contain identical
sequences of characters, Trailing spaces are significant.

INT Function: For negative numbers, INT(x) provides the largest number
ot greater than x.

ON-GOTO Statement: Expression in an ON-GOTO statement is rounded to
the nearest integer.

4-27 First Edition

Software Release Document

OPTION BASE Statement Added: Defines default lower bound on array
dimensioning to be 0 or 1.

PRINT Statement: The following apply:

e Consecutive commas prints a TAB character (PRINT A,,B)
® DPositive numeric output is preceded by a space
e Negative and positive numeric output is followed by a space

Subscripts: Subscripts are rounded to the nearest integer.

TAB Function: The following apply:

e TAB arqument is rounded to the nearest integer.

e TAB less than 1 gives an error diagnostic and is replaced by 1.

User-Defined Functions: The following are changes to user—defined
functions:

e Reference to an undefined function gives an error.

e A recursively defined function gives an error.

SOFTWARE PROBLEMS FIXED

The ENTER statement destroys the value of a variable from a previous
INPUT statement (SPAR 3007556).

An external call to RDTKSS takes an access violation (SPAR 3001516).

When the MASK 1 option of CVT$$ is used, the parity bit is not turned
off for spaces (SPAR 3009204).

The RND function without the RANDOMIZE statement produces an unchanging
implementation—defined sequence of pseudo-random numers. '

Cammas within a quoted string in the INPUT statement are accepted.

First Edition 4-28

LANGUAGES

Rev, 19.4.1 CBL follows the 19.3.3 IPR, Ad&ditiomal changes may be
made, See the file (BL.RUND in the INFO directory for complete
information,

NEW FEATURES AND CHANGES

The following are new features and changes:
® EXTERNAL files and working storage items are now supported.

e The primary key is no longer restricted to the first characters
of a record.

SOFTWARE PROBLEMS FIXED

Figurative constant and all literal moves and compares work incorrectly
for fields greater than 256 characters long. (SPAR 2002180, 3001097,
3003753, 3003848, 3003850, 3005780)

Partial key searches work incorrectly on bit string keys (SPAR
2005240) .

An empty error file is created when OBSERVATIONS only are generated and
the ~SILENT option is used (SPAR 2006056) .

Amove of one element of a 250 element field destroys the field
following the table (SPAR 3000262).

An extremely large procedure division aborts oompilation with no
diagnostic issued (SPAR 3000329, 3001007).

Compound conditiomal expressions with negated 88s evaluate incor rectly
(SPAR 3000330).

A misleading diagnostic is issued for linkage section items referenced
within the procedure division but not in the procedure division USING
clause (SPAR 3000779, 3002409).

The compiler terminates compilation and leaves T$nnnn open when a (OPY
library is not found (SPAR 3000784, 3002594).

A STRING statement imbedded in an IF statement assumes a period after

the STRING statement (logically termimates the IF) (SPAR 3000815 ’
3000830) .

4-29 First Edition

Software Release Document

A (OMPUTE with multiplication of non—integers works incorrectly (SPAR
3000827) .

No diagnostic is issued for a SEARCH of a non-occurring item (SPAR
3001006) .

The user cannot specify the same filenames with SORT when both the
USING and the GIVING options are used (SPAR 3001011).

Non—Prime ANSI tapes with odd record lengths are read incorrectly (SPAR
3001034).

(OMPUTE truncates the hich order digit if the result is larger than
s9(6)v99 COMP-3 (SPAR 3001656) .

A program with two sorts aborts with SRT# not found (SPAR 3001672).

An IF statement with multiple abbreviations executes incorrectly (SPAR
3001858).

'compute result = field a / 100' produces a zero result if field a is
defined as COMPUTATIONAL (SPAR 3002348).

An illegal MWVE ORRESIONDING (elementary receiving field) is not
diagnosed (SPRR 3002386) .

Multiple SET statments in a called program cause values from the first
SET statement to be overwritten (SPAR 3002501).

The ocompiler aborts when processing compound corditiomals with
subscripts (SPAR 3002519).

DECLARATIVES are not invoked correctly when the I/O verb is part of a
conditioml (SPAR 3002816) .

An item that redefines itself causes the compiler to loop (SPAR
3002828) .

The compiler aborts when a multi-dimensional table is referenced and
one of the subscripts is an arithmetic expression (SPAR 3002985).

Moving a OMP-1 field to a field with '-' editing symbols works
incorrectly (SPAR 3003316).

An index file key defined as a bit string in CREATK works incorrectly
(SPAR 3003548).

Numeric editing with zero suppression is not done correctly (SPAR
3003695).

Zero suppression in a table larger than ‘49,163 characters works
incorrectly (SPAR 3003700).

First Edition 4-30

LANGUAGES

Binary files produced by previous versions of (OBOL or CBL execute
incorrectly when rewriting with an alternate key (SPAR 3004151).

Compound conditiomals cause the oompiler to generate erroneous
diagnostics (SPAR 3004210).

A 'find node' internal compiler error occurs for compound conditiomals
with subscripting (SPAR 3004220),

A START statement on a partial key works incorrectly (SPAR 3004925).
The INSPECT statement with the replacing option replaces data in the
field adjacent to the target field when the target is an element of a
group item (SPAR 3005157).

A problem was corrected relative to opening PRISAM files when the

length of the filename to be opened was less than the dataname of the
file (SPAR 3008091).

OUTSTANDING PROBLEMS

In SUBTRACT statements with the CORRESFONDING option, if a data item in
ore or both of a pair of matched fields contains a 'P' in its picture
clause, no more matches will be found.

In MOVE CQORRESFONDING statements containing the SIZE ERROR clause, only

the first matched pairs have their data moved. If a size error occurs,
all receiving fields retain their origimal data,

INSTALLATION AND BUILD PROCEDURES

CBL is now supplied as two directories: CBL and CBI,_LIBRARY. To
install CBL, the user must run the following two files:

1. CBL.INSTALL,OMI from CBL
2. CBL_LIBRARY. INSTALL,(MI from CBL, LIBRARY

4-31 First Edition

Software Release Document

First Edition 4-32

LANGUAGES

13

NEW FEATURES AND CHANGES

CC is Prime's V-mode compiler for the C language. The PRIME C is a
true, 32 bit, two pass compiler, that generates object code in the 64V
mode format. This release of the compiler contains numerous bug fixes
and optimizations and will execute somewhat faster.

C now supports an EPF library named C LIB. The C EPF library, C LIB,
will not work when loaded with SEG. Use BIND to create .RIN files of
programs (instead of .SEG files) and to utilize C_LIB.

Some users may wish to oontinue using SEG. Users who use SEG must
continue using CCLIB and cannot switch to C_LIB. Those users will not
enjoy the improved performance and reduced loading time that BIND users
will notice.

If you use the C EPF library (the recommended practice), you should
read the discussion of the C library in the Libraries section of this
chapter,

The following are examples of using BIND to create C programs. Suppose
a user wished to load three C routines whose filenames are XX.B N,
YY.BIN, and ZZ.BIN into a C program which would be called XXX.RUN. The
command to BIND would be:

BIND XXX -lo XX YY 2Z -1i C_LIB -1i

This procedure works very well provided that the main program is not
expecting to receive the command argquments in the uswual UNIX style. If
your program does start with a main program that expects to receive the
command arguments from the command line, you must use the LI option to
BIND to first lcad CCMAIN. Remember that in this case, your main
program must be ramed MAIN. The following is an example of the BIND
command which would bind the C program if one of the above files has a
main routine which took such arquments:

BIND XXX ~1i OCMAIN -lo XX YY 2ZZ -1i C LIB -1li

Please note that if you do include CCMAIN in the locad list, it must be
included first and that the routine which first gets oontrol must be
named MAIN. If you did not include CCMAIN, the first routine you load
is considered to be the main program and, if it takes arquments, you
will probably get a pointer fault.

4-33 First Edition

Software Release Document

The above examples illustrate the use of BIND with a single command
line performing the entire load. &As with SEG, BIND also works
interactively by issuing the BIND command. See the appropriate BIND
documentation for more information.

The CCLIB file is the unshared library. It is oopied to the LIB
directory for users who, for same reason, do not wish to use the C EPF
library or who wish to continue to use SEG.

Buffered binary update files are now supported by the C library. This
is now the default when opening any update file (+ modes). Unbuffered
binary update files can still be forced by an explicit call to SETBUF.
Use of buffered binary update files is approximately 20 to 30 times
faster than unbuffered binary update files.

The compiler now accepts both .C and .CC suffixes for input files. The
abbreviations —SOF and ~NSOF have been added for —STORE_OWNER FIELD and

-NO_STORE_OWNER_FIELD,

There is added support for the -PBECB and -IBECB compile line options.
-IBECB is the default. -PBECB puts the ECBs in the procedure frame.
If the user is not using CCMAIN, the main C routine (the first one to
be loaded) must not be compiled with -PBECB. Use of -FBECB will
enhance the performance of large programs by reducing a program's
locality of reference.

SOFTWARE PROBLEMS FIXED

Assignment using an array as an array subscript did not always work
correctly (SPAR 3006958).

BIG code for a structure was not autamatically generated when a member
of that structure caused its size to be greater than a segment (SPAR
3007023) .

A bug that caused a byte of precision to be dropped when casting an
integer to a pointer_to_a_named type renaming char (SPAR 3006689).

First Edition 4-34

LANGUAGES

There was a problem with the generation of external names whose length
was longer than eight characters (SPAR 3002494).

A DO statement without the corresponding WHILE termimator had poor
error recovery (SPAR 3002496) .

Constant casting to a pointer_to a function generated spurious error
messages (SPAR 3002497).

A character array indexed by a character expression assigned to a
character array does not generate the correct code (SPAR 3002498) .

External names were generated whose length was longer than eight
characters (SPAR 3003148).

The option -EXPLIST no longer overrides a previous -L TTY and forces
output to a disk (SPAR 3005371).

A problem with the redeclaration of a defined local function in an
inner scope was fixed (SPAR 3005373).

A problem involved with the skipping of commented out preprocessor
commands was fixed (SPAR 3005374).

The severity of errors concerning extraneous tokens following #IFLEF,
#IFNDEF, and #UNDEF was lowered. The processing of an #UNDEF is now
completed (SPAR 3005375).

The continuation of define macros now works correctly if the line
continuation character immediately follows the macro name (SPAR
3005376) .

Code generation for oonstant indexing into character arrays was
improved. This also affects character pointers (SPAR 3005377).

The C program compiled with the -STAT option no longer aborts because
of the PLIG library routine PSPUTF not being on the system (SPAR
3007409) .,

The compiler is now invoked with a .SAVE file rather than .CPL file.
This solves a problem with command line processing of equal names,
Also, the compiler now responds slightly faster (SPAR 3008371).

The code generated for short and long unsigned divide and modulus has
been corrected (SPAR 3008917).

The inefficient ocode being generated for most character pointer
assignments has been corrected. The oode generation problem for
expressions of the form: A.TEXT[A.IEN] = CHARACTER has also been
corrected. Generating an unneeded temporary is no longer used (SFAR
3009227).

4-35 First Edition

Software Release Document

The severity of a program with no procedures defined has been lowered
to warning (SPAR 3009285).

PERMANENT RESTRICTIONS

All CHAR arquments are promoted to INT arguments when they are passed
and they are expected to be used when they are received,

If a constant value is to be passed to a function which expects that
parameter to be of type pointer, the constant value should be
explicitly cast to type pointer in the function call. The particular
case where this is important is in the use of the oconstant NULL (as
defined in STDIO.H) to represent a NULL pointer value. This is because
the constant will cause only two 16-bit words to be reserved on the
stack for that value, rather than the necessary three,

INSTALLATION AND BUILD PROCEDURES

CC is supplied as two directories, CC and CCLIB. To install CC, the
user must run **two** install files, CC.INSTALL.COMI in UFD CC and
CCLIB. INSTALL.MI in UFD CCLIB, and CC.SHARE,OMI in UFD SYSTEM. CC
and CCLIB are built separately.

First Edition 4-36

LANGUAGES

COBOL

WARNING

SEG should be used as the loader for COBOL programs that use a
DECLARATIVE section. Using BIND as the lcader may result in
incorrect flow of control when declaratives are invoked.

NEW FEATURES AND CHANGES

This section describes the changes in functiomlity of the old COBOL
product.

The COBOL compiler will continue to be released. However, there is now
only one set of (OBOL libraries (a nonshared and a shared version) that
supports both new QOBOL (CBL) and old QOBOL (QOBOL). The libraries are
CBLLIB.BIN (shared) and NCBLLIB.BIN (nonshared). The CBLLIB.BIN file
is simply a 1list of DYNTs that are loaded into the run file and
resolved at runtime,

For users who do not recompile and reload their programs, the runtime
DYNTs will be resolved as always and programs should operate the same.

For users who recompile and reload their programs, either VOBLB or
CGBLLIB will satisfy the load sequence as before. It is recommended
that users begin to use CBLLIB when loading programsso that users are
aware that new QOBOL (CBL) is Prime's primary QOBOL compiler and is
becoming increasingly more so. The VQORIB.BIN file will continue to
exist for custamers who d not want to change the application build
files. The NVOOBLB.BIN no longer exists because it is replaced by
NCBLLIB.BIN; thus users who wish to load their applications with the
nonshared library must use NCBLLIB.BIN.

The QOBAL: directory that contains the run files for the product and is
used to install the product has changed. The subdirectory LIB is no
longer present and the files QDBOL>SYSTEM> (C2014A, C22014B, C4000) have
been deleted. The (OBOL.INSTALL.QOMI file no longer installs the
library. The QOBOL.SHARE.®OMI file no longer shares the library.
Installing and sharing of the Q@BOL library are done by separate
procedures. The SHARE command line for the CBLLIB in the system
startup file PRIMDS.MOMI (or C_PRMD) should be removed.

Basically, the QOBOL library is considered as a separate product used
by both the old and the new COBOL and comes as a separate package. New
(OBOL and old COBOL both use this one library.

The QOBOL shared library is replaced by an EPF COBQL library.

4-37 First Edition

Software Release Document

SOFTWARE PROBLEMS FIXED

Some users experienced UII$ conditions being raised while executing
QOBOL programs doing MagTape I/O on P9950 machines. This problem has
been fixed (SPAR 3002199).

When using the UNSTRING statement without a TALLYING clause on a P9950,
some users experienced the UII$ condition. This problem has been fixed
(SPAR 3002194).

ENVIRONMENT

The QOBOL. product uses the EPF libraries. At Revision 19.4, CBLLIB is
an EPF. The nonshared library NCBLLIB.BIN is, as before, simply a
binary file containing all the runtime code.

First Edition 4-38

LANGUAGES

NEW FEATURES AND CHANGES

Compiler Options: Changes have been made in the area of compiler
options for Rev. 19.4. These changes include new options that have
been added to implement new functiomlity, new syntaxes that are
intended to replace older syntax forms of already existing options, new
abbreviations of options, and others. These changes were implemented
in an effort to make Prime's Common Backend-based translator products
more standardized in their user interface among themselves and with
other Prime software products. The list that follows this discussion
describes all the options that are supported by the ocompiler at
Rev. 19.4, including new options. The other categories of changes are
more fully explained in the next few paragraphs.

Note that same of the changes that replace current compiler option
functiomlity or specification imply that the current forms that they
replace are now considered obsolete, This means that at some
particular revision in the future these older forms will be in error
and will not work. Depending on the functiomlity, this will either be
Rev. 20 or Rev. 21, However, the obsolete forms will be supported
until then but use of them will cause a warning to be issued by the
compiler,

New option syntaxes have been introduced that are intended to replace
older forms of some already existing options. For example, the new
syntax -OPTimize n, where n is a decimal number that signifies a level
of optimization to be performed, is intended to replace the older
syntax of the options -OPTIMIZE, -NOOPTIMIZE, and so on. (See below
for a fuller discussion of this particular option).

Most currently existing options now have new abbreviations that are
intended to replace the older abbreviations, whether they have been
documented or not. For example, the older abbreviation for -RANGE has
been previously documented to be -R but -RA would also act to turn on
range checking. Beginning at Rev. 19.4, each compiler option will have
one full specification and, at most, one abbreviation. In the list
that follows this discussion, the proper abbreviation for each option
is indicated by capitalized letters in the full option specification.,
As an example, the full specification for turning on range checking is
-RAnge and the abbreviation, indicated by the capital letters, is -RA.

Formation of the negated forms of those options that have them (for
example, -DEBUG and -NODEBUG) is now done by prefixing the name of the
positive form with -No_ (-DeBuG and ~No_DeBuG) . To form the
abbreviated name of a negated option, prefix the positive abbreviated
name with -N (in this case, -DBG and -NDBG). The older form of option
negation will no longer be supported in the future.

Processing of ocompiler options has previously allowed such anamalous
behavior as duplicate and conflicting options on the same command line

4-39 First Edition

Software Release Document

(such as specifying an option twice or specifying ~PRODUCTION and
—NOPRODUCTION for the same ocompiler invocation). In the case of
conflicting options, the one that had been specified last on the
command line was the one that took control. This behavior is now
considered obsolete and will no longer be supported beginning at
Rev. 20. Note that redundant specification of any source, bimary, or
listing files has never been supported by Prime's translator products.

Special note must be made about listing files and the use of options
that imply that a listing file be produced. To begin with, options
that specify that a listing is to be produced (-Listing, -No_Listing or
-Listing NO) must be distinguished from those that specify what is to
go into a 1listing if one is produced (such as —XRef, -MAp). If an
option like -XRef is specified during a compiler invocation, a 1listing
file is produced in the absence of an explicit -Listing option.
However, if -No Listing happens also to be specified at the same time
as -XRef, there is a conflict. Beginning at Rev. 19.4, production of a
listing file is based upon a hierarchical order:

1. If -Listing [pathname] or -No Listing appear on the oompiler
command line, those switches determine whether a listing is
produced or not, independent of the appearance of any options
that specify what goes into a listing. This means that -L -EXP
produces a listing and that -NL -EXP does not.

2. If -Listing or -No_Listing was not explicitly set and the
positive form of an option that controls the ocontents of the
listing is specified, a listing file will be produced. Note
that the sole appearance of the negative form of such an
option, for example -No MAp, does not imply a listing and
therefore none will be produced.

3. 1If no options relating to a listing are specified on the
command line, a listing is produced only if -Listing is set as
the default at a particular installation.,

Following is a list of the options supported by the oompiler and a
brief statement of their purpose. Compiler-supplied default options
are noted by an asterisk. The full name of each option is listed along
with the name of its opposite, or negated, form if it has one. Proper
abbreviations are indicated by capitalized letters. Abbreviations now
considered obsolete are listed as such. The initial default settings
will be stated for each compiler option. These can be changed at the
user's particular installation.

—32I: Generates 32I mode code. No abbreviation. Obsolete: -3 (was
documented) ,-32.

-32IX: New. Generates 32I mode code that gives improved performance
when accessing large data objects (such as segment-spanning arrays or
common blocks). No abbreviation.

First Edition 4-40

LANGUAGES

Note

A program compiled with -32IX can be run only on a P2550, a
P9650, and a P9750 system, or on a P9950 system that has been
modified for this purpose, or on any P9955. If it is run on
any other Rev. 19.4 system, unimplemented instruction (UIIS)
faults will occur.

=64V(*): Generates 64V mode code, No abbreviation. Obsolete:)
(was 'db-cmnented), —64., Default: -64V.

—-Allow_PREconnection(*); -No ow_PREconnection: New. If this option
is specified, preconnection of the listing output to a pre-opened unit
2, or of the binary output to a pre-opened unit 3, is allowed. If the
negative form is specified, the compiler always opens and closes the
listing and binary files (and will use dynamic file units). Default:
=Allow_PREconnection.

—BIG; -No BIG(*): New: -nbig, Handles array addressing calculations
for all arrays passed as arquments as though the array spans segment
boundaries, These calculations need to be more complex and therefore
execute more slowly. Obsolete: -NOB, -nobi, -nobig. Default:
"'NO_BIGo

-Binary [arg](*); -No Binary: New: -no_binary, -nb. Specifies binary
object file. Obsolete: -bi, -bin, -bima, -binar, -nob, -nobi, -NOBIN,
-nobina, -nobinmary., In addition, it is now considered obsolete to use
argequal to NO to specify that no bimary file is to be produced and
equal to YES to indicate that a binary file is to be produced, though
this form will be supported for Rev. 19.4 only. This also applies to
YES. At subsequent releases, binary files with those names would be
created, Use the -No Bimary option instead of -Binary ND. Default:
-Binary,

—(LUster: New. This option is used to specify that the source oode
being compiled constitutes a cluster that is to be optimized together,
At Rev, 19.4, this option is taken to imply that the source code is a
complete program. At later revisions it will be extended to include
libraries of routines. cluster is the term chosen to name a collection
of program units that have been compiled together in order to maximize
the optimizations that can be performed. Use of this option means that
the compiler can make certain assumptions that are relevant to
optimization. The compiler checks the validity of these assumptions
when possible but the responsibility for their validity rests with the
user.

4-4] First Edition

Software Release Document

The assumptions are the following:

e The file compiled with the —-CLUSTER option is assumed to be a
program with a single entry point. If the file has a main
program in it, then that is the entrypoint. If the user has
used the -MAIN option to specify a main entry procedure, then
that routine is the program entrypoint. Otherwise, the first
routine is taken to be the program entrypoint.

e The compiler need not make any procedure or data entry points of
the cluster visible outside the cluster except the main
procedure entrypoint. All other procedures may be QUICK-called
or expanded inline. The user should also specify -OPT 4 when
using -CLUSTER for this purpose. See the discussion of
Optimization Levels in this document. The binary files from
such a oompilation cannot be combined with other modules that
expect to call these procedures.

e At later revisions, this list of assumptions will be expanded as
further optimization options are added. For example, support

will be added for clusters that are libraries of routines in
which some are private and some are externally callable.

-DClvar; -No DClvar(*): New: -ndc. Flags undeclared variables.
Obsolete: -dcl, —dclv, —dclva, -NODC, -nodcl, -nodclv, -nodclva.

-DeBuG; -No _DeBuG(*): New: -ndbg, Generates full debugger (DBG)
-nodebu, -nodebug.

-DO1; -No DO1(*): Performs ore-trip DO loops according to the way FIN
performs them, Obsolete: -NODO.

Note

The 1 is not included in the abbreviations.

%

Allocates local storage dynamically. The opposite of ~SAVE.
Obsolete: -dyn.

~FRRList; -No FRRList(*): New: -nerrl. Prints errors-only listing.
Obsolete: -errli, =-errlis, -NOERK., -noerrli, -noerrlis, -noerrlist.

—ERRTty (*); -No ERRTty: New: -no_errtty, -nerrt. Prints error
messages at e user terminal. Obsolete: -—errtt, -NOE, —NOERRT,
-noerrtt, -not, -nott, -NOTTY, -notty, -nottyd, -nottydi, -nottydia,
-nottydiag, -nottydiags.

First Edition 4-42

LANGUAGES

-EXPlist; -No EXPlist(*): New: —exp, -no explist, -nexp. Prints
listing including assembler-like output. Obsolete: -EX, -expl,
-expli, -explis, -NOEX, -NOEXP, -noexpl, -noexpli, -noexplis,

-FRN; -No FRN(*): New: -no_frn, -nfrn. Generates special oode to
improve accuracy of single-precision floating-point calculations
(Floating RouNd on stores). Obsolete: -F, -fr, -nof, -nofr, -NOFRN.

-FIN_Entry; -No FIN _Entry(*): New. Means that all procedures passed
as actual marameters are to be passed in the FIN way. Use this option
only if the routine you are calling is known to be a FIN module, If
you use this to call an F77 routine, you will get an error,

-Full Help: New. This option is similar to the -help option, except
that in addition to the usage summary, a description of the meaning of
each compiler option is given,

-Full OPTimize: New. This option is used to ensure that the maximum
amount of optimization available is used. This my mean that in
succeeding revisions, if more optimizations are available, compilation
may slow down. The program listing tells what optimization 1level is
implied by the use of this option. This level may vary from language
to language. It is currently set to optimization level 4 for the F17
compiler,

—Help: New. This option will produce information on using the invoked
compller including a 1list of all compiler options. However,
descriptions of the options are not given, The user is referred to the
System HELP command to obtain full information about the installed
compiler and to the -Full Help option for full information about the
invoked compiler.

If the user makes a mistake in specifying the options or if only the
name of the compiler is given on the command line, the user is referred
to the -help option after the error message is given,

—Input pathname: This is an alternmate way of specifying the source of
the input file, If pathname is 'tty', input comes from the user
terminal, Obsolete: =-in, -inp, -inpu.

—INTL(*): Makes INTEGER default to INTEGER*4.

—INTS: Makes INTEGER default to INTEGER*2.

4-43 First Edition

Software Release Document

-ICase: Distinguishes lower and uppercase Ccharacters in the source
program. Keywords must be in uppercase in F77. Obsolete: -lca,
-lcas.

-Listing [filel; -No Listing(*): New: -no_listing, -nl. This option
s used both to specily that a source file listing is to be produced
and, optiomally, to specify where the listing is to go. Obsolete:
-1i, -lis, -LIST, -listi, -listin. In addition, several keywords used
for the file specification have special meanings. SFOOL specifies that
the listing is to go directly into the spool queue; TTY specifies that
the listing is to go to the temminal; YES means that a listing is
desired; and NO means that a listing is not desired., Note that uses
of file equal to YES or NO are now oonsidered obsolete. At the next
release, the compiler would create listing files with those names. The
-Listing NO form is replaced by the -No_Listing option, and the YES in
-Listing YES is redundant.

-IOGL(*): Makes LOGICAL default to LOGICAL*4.
-10GS: Makes LOGICAL default to LOGICAL*Z,

-MAIN program—entry-name: New. This option is used in conjunction
with the —CLUSTER option to specify the top level routine that is the
main program entry for those cases where there is no main program that
is distinguished by the source program.

-MAp(*); -No MAp: Produce a listing with a map of data and procedure
names, Obsolete: -no_m.

—-OFFset; -No OFFset(*): This option causes a map of the code location

each executable statement to be produced in the listing, New:
-no offset, -noff. Obsolete: -o, —of, —offs, -offse, -noof, -nooff,
-nooffs, —nooffse, —nooffset.

-OPTimize [dec—intggr]: New: the decimal integer. This option is

e same as the existing optimize option except that it may be followed
by a decimal integer that specifies an optimization level. If the
decimal integer is not specified, a default value that depends on the
language is supplied. The new option -Full OPTimize is equivalent to
~OPTimize n, where n is the maximum effective level of optimization for
the given language being compiled. The default level is -OPT 2 and
-Full OPTimize is optimization level 4. To turn optimization off,
—OPT 0 should be used. Note that a space is required between “the
option (-OPT), and the value. Obsolete: -NO_OPTIMIZE -OP, —OPT1,
-OPT2, -OPI3, -NOOP, -NOOPTIMIZE.

First Edition 4-44

LANGUAGES

Following is a brief description of what types of optimzations are
rerformed at each level. Each optimization level performs all the
optimizations of the next lower level Plus those that are listed., Note
that the functiomality associated with some levels at Revision 19.4 may
change in the future and that more levels of optimization may be added
at later revisions.

0 Perform no optimizations. This level replaces the option
~NOOPTIMIZE.

Pattern replacement

N

Common subexpression elimination

w

Loop invariant removal

4 Strength reduction of some common operations including
indexing of large arrays and elimination of unreachable code

Internally-nested procedures are made quick, that is, called
by a Jump to Subroutine instruction rather than a Procedure
Call if conditions allow. Basically, the oonditions under
which a procedure are made quick are that it be called
simply, that is, called from one place. For example,
procedure C can be quick if it's called from procedure A,
But if it's also called from B where B is a separate
procedure from A, then C can't be quick.

When -CLUster is specified on the command line for F77 in
addition to optimization level 4, all the subroutines in the
file being compiled become candidates to be made quick.

—OVerFlow; -No OVerFlow: New. This option enables integer exception
conditions including overflow and division by zero. Default:
-No_OVerFlow, Obsolete: -OVE, -OVER, -OVERF, -OVERFL, ~OVERFLO,
-NOOV, -NOOVE, -NOOVER, -NOOVERF, —NOOVERFL, -NOOVERFLO, —NOOVERFLOW.
Default: -No OVerFlow.

—~PBECB; -No PBECB(*): Generates code to lcad Entry Control Blocks
(ECBs) into the procedure frame. Obsolete: -PB, -pbe, -pbec.

—PRODuction; -No _PRODuction(*): New: -prod, =-no_production, -nprod.
Generates code for partial gger functiomality. Obsolete: -P, -pr,
~Pro, -produ, -produc, -product, -producti, -productio, -NOP, -nopr,
-nopro, -NOPROD, -noprodu, -noproduc, -noproduct ' -noproducti,
-noproductio, -noproduction.

4-45 First Edition

Software Release Document

-RAnge; —-No RAnge(*): New: -ra, —no_range, —nra. Generates runtime
ode that checks subscript ranges. Obsolete: -R, -ran, -rang, -NOR,
-nora, -noran, -norang, -—norange.

—SAve: Allocates local storage statically. The opposite of -DYNM.
Obsolete: -sav.

-SIlent [integer]: New with decimal arqument. The decimal argument is
The severity level such that errors of that severity and less are not
reported. If no value is given, a value of 1 is assumed. The default
severity level is 0. Note that a space is required between the option
and the value. Obsolete: -SIL, -SIL1, -SIL2, -s113, -sile, -silen,
—~SILENT, —SILENT1, —SILENTZ, —~SILENT3.

-Source pathname: This is an alternate way of specifying the source of
the input file. If pathname is 'tty', input comes from the user
terminal. Obsolete: -so, -sou, —sour, =—sourc,

-SPACE: New. This option specifies that space is to be given
preference over runtime speed in optimization oonsideration. The
opposite of —SPACE is -TIME, which means that optimization is to favor
runtime speed over space.

—STATistics; -No STATistics(*): New: -NO_STATISTICS. Displays
compilation statistics at the terminal. Obsolete: -STATI, -STATIS,
—-STATIST, —-STATISTI, -STATISTIC, -NOST, -NOSTA, ~-NOSTAT, -NOSTATI,
-NOSTATIS, -NOSTATIST, —-NOSTATISTI, -NOSTATISTIC, -NOSTATISTICS, -TO,
".]DT, "'IOTA' —'IOTNJ' "TOTAIJS.

—Store Owner_Field; -No Store Owner Field(*): Causes the identity of
The current routine to be stored in a known place for use by trace back
routines. This obsoletes the -NO_OWNERID and -NOOWNERID options of
CBL. Obsolete: =-STO, -STOR, =-STORE, -STORE_, —STOREO, —~STORE_OW,
—~STORE_OWN, —STORE_OWNE, —STORE_OWNER, ~STORE_OWNER , -STORE_OWNER_F,
—-STORE_OWNER FI, -—STORE_OWNER FIE, —STORE, OWNER_FTEL, -NO_STO,
-NO_STOR, -NO_STORE, -NO_STORE,_, -NO_STORE, O, ~ND_STORE, OW,
-NO_STORE, OWN, -NO_STORE_OWNE, -ND_STORE, OWNER, —NO_STORE_OWNER _,
~NO_STORE_OWNER_F, ~NO_STORE_OWNER FT, -NO_STORE_OWNER_FIE,
-m_stE_mR_FIEL ’ "IBO r -m_m’ —m_mN 2 —m_mNE [4 "m_mNER'
-NO_OWNERI, -NO_OWNERID.

—~TIME(*): New. Means optimization is to favor runtime speed over
space, The opposite of -TIME is —-SPACE, which specifies that space is
to be given preference over runtime speed in optimization selection.

First Edition 4-46

LANGUAGES

“UPcase(*): Map source program to uppercase (except for quoted
Titerals). Obsolete: -U, -UPC, -UPCA, -UPCAS,

—XRef; -No XRef (*): Produce listing with cross reference of
data/procedure names. Obsolete: -X, -XRE, ~NOX, -NOXRE, -NOXREF,

Output of Numerical Data: There are some changes in the way that the
runtime I/0O library edits numerical data on output (via a WRITE or
PRINT statement), When the number of characters that represent
numerical data exceeds the specified field width or when an exponent
exceeds its specified length using the Ew.dEe or Gw.dEd edit
descriptors, the entire field is now filled with asterisks. Note that
when numbers that contain three-digit exponents are output, the letter
E that precedes the exponent is dropped in an attempt to fit the
representation into the specified field width before resorting to
filling the entire field with asterisks.

This functiomality breaks with Prime's traditioml approach to this
~ situation. That approach was that a numerical value was right
truncated and either a dollar sign ($) or equals sign (=) was output as
the first character of the mumber if the specified field width was
insufficient to represent it. However, this new approach conforms with
ANST X3,9-1978 FORTRAN 77.

Floating Point Libraries: The assembly language mathematical routines
in the runtime libraries are now built with the -ROUND option. This
option causes floating point literals used in these routines to
potentially have up to one half bit of increased accuracy. Programs
written in F77 may produce different results when they use the
libraries' mathematical routines. In most cases, the differences will
be improvements in precision. In a small number of cases, cancellation
could reveal rounding errors in previous parts of a calculation,
Generally, this change ensures better accuracy for many computations
with the same number.

OPEN Statement Extension: A Prime extension to the OFEN statement has
been implemented for Rev. 19.4 that allows files to be opened for
reading only, writing only, or both. The syntax of the new specifier
is:

ACTION=act

act is a character expression whose value is READ, WRITE or READ/WRITE.
READ specifies that only input and file positioning operations may be
performed on the file opened as such. WRITE specifies that only
writing and file positioning operations may be performed. READ/WRITE
permits all types of I/O operations, The default action (if ACTION= is
omitted from an OPEN statement), as it has been in the past, attempts

4-47 First Edition

Software Release Document

to first open the file for both reading and writing and then open the
file for either reading or writing if any errors are encountered.

A file opened with the READ attribute allows multiple readers. A file
must be explicitly closed and re—opened by the FORTRAN CLOSE and OFEN
statements to give it a different ACTION attribute if this is so
desired.

Note that a user must have read rights, given by the file system, to
BACKSPACE a file opened ACTION=WRITE by F77.

DO Loops: The code to implement FORTRAN-77 DO loops has been changed
at this revision in an effort to produce more efficient DO loop control
code. DO loops in programs compiled with the -DOl option are not
affected; the compiler continues to generate the same code it always
has for these loops.

The main differences in the way FORTRAN-77 DO statements are executed
beginning at Rev. 19.4 as opposed to the way they were executed in
previous revisions of F77 are outlined here:

e The iteration count (number of times to execute the body of the
DO loop) is calculated during processing of the DO statement.
This cont is determined by the following expression:

INT ((e2-el+e3)/e3)

el, e2 and e3 represent the values of the initial, temminal, and
increment parameters of the DO statement, respectively. If the
iteration count is zerc or less, the body of the DO loop will
not be executed (this same behavior was effected previously in a
different way than by calculating the iteration count). Note
that the increment parameter of a DO statement cannot be zero
(0) .

e If the type of the DO variable is INTEGER, the expected final
value that it will contain upon satisfaction of the DO loop is
calculated. This value is used to determine when to temminate a
DO loop that is controlled by an INTEGER DO variable. If the
type of the DO variable is REAL, this final value is not
calculated and determination of satisfaction of the loop is done
by the iteration count.

e The code that controls incrementation of the DO variable and
termination the DO loop now appears at the bottom of loops
rather than at the top. For loops controlled by DO variables of
type INTEGER, the value of the DO variable is oompared against
the expected final value to determine when to terminate the DO
loop. For loops controlled by a variable of type REAL, the
jteration count is decremented by one and the loop terminates
when this count reaches zero (0).

First Edition 4-48

LANGUAGES

This new approach to implementing FORTRAN-77 DO loops reduces the
number of instructions executed during each iteration of a loop in all
cases except for some loops controlled by a variable of type REAL, In
these cases, though, the number of instructions remains the same, The
largest reduction of instructions occurs for loops that have a variable
specified for an increment parameter.

DOl Loops: Though F77 still implements DO loops in programs compiled
with the -DO1 option the same way as it always has, some restrictions
on such loops have been lifted, The FIN restrictions for the formation
of the DO statement are no longer strictly enforced so that any 1legal
FORTRAN-77 DO statement is compilable under the -DO1 option.

It is recommended that adherence to the FIN restrictions be maintained,
however, in a conversion from FIN to F77, especially where
extended-range DO loops are involved, F77 allows these in programs
when compiled with the -DO1 option only when the terminal and increment
parameters are scalar variable references or constants. Therefore FIN
programs, when converted to F77, do not behave the same if any DO
statements have been modified to include expressions as terminal or
increment parameters. F77 issues a warning when it encounters such a
situation,

SOFTWARE PROBLEMS FIXED

An ACCESS VIOLATION occurred from F77 when compiling very large program
units. The programs submitted with these SPARs were actually too large
for F77 to compile and the ACCESS VIOLATION occurred because of that.,
A proper error message is now produced by the ocompiler for this
situation (SPAR 2000162, 2004094, 2005239, 3003224).

Business-style formatting now operates correctly (SPAR 2000623,
2001275, 2002652, 2005126, 3004891, 3007167).

F77 generated code that incorrectly indexed multi-dimensiomal arrays
when the array subscripts were of differing lengths, for example,
INTEGER*2 and INTEGER*4. This was only a problem when F77 optimized
the code and could previously have been worked around by compiling with
~NOOPT. The problem has now been fixed (SPAR 2002024).

An incorrect answer was generated when writing to internal files, The
problem was due to an improper decision by the optimizer to eliminate a
common subexpression and, similar to the above problem, could have been
worked around by compiling with -NDOPT. This problem has also now been
fixed (SPAR 2002672).

List-directed, implied-do READ of an array now works oorrectly (SPAR
2005708) .

The nesting of $INSERT files is illegal. This is now properly detected
with an appropriate error message of Severity 4 (SPAR 2005762).

4-49 First Edition

Software Release Document

The compiler now properly allows the legal use of an assumed-size dummy
array in an I/0 implied DO loop (SPAR 3000154).

CABS intrinsic function yields correct results in all instances (SPAR
3000975) .

F77 programs using simple REAL*4 constants no longer get ocompilation
error messages about bad conversions (SPAR 3000976, 3003225, 3005068,
3007484).

Indexing into an array or calculating a substring with a noninteger
expression causes a Severity 1 error message to be issued (SPAR
3001565, 3001577, 3001895) .

The F77 OPEN statement now allows specification of READ-ONLY access.
Please refer to new functionality mentioned earlier in this document
(SPAR 3001788).

Cascading error messages for I/O statements with incomplete argquments
are now avoided (SPAR 3002058).

The compiler was issuing a severity 4 error message for a certain legal
implied DO loop that appeared in a WRITE statement. This problem has
been fixed (SPAR 3002329).

F77 no longer aborts with an ERROR 32 when a subroutine statement has
an arqument that is an assumed size array (SPAR 3002526).

The leqal use of an assumed size dummy array in an I/0 implied DO loop
was incorrectly flagged as an error by F77. The compiler now properly
allows this (SPAR 3002549).

The compiler generated incorrect code for an implied DO loop in an I/0
statement when the list item was an array of type CHARACTER*(*). This
problem has been fixed (SPAR 3002753).

The data statement for one element of an array, using constants, now
compiles correctly (SPAR 3003558, 3006316).

Subroutine CHGSPW is now available (SPAR 3003913).

A READ statement with no input list no longer generates an error
message (SPAR 3004161).

Attempts to redeclare variables with the same data type and precision
are now caught at compile time and a Severity 2 error message is issued
(SPAR 3004892) .

An OPEN statement with no ERR= clause that has an IOSTAT= clause will
no longer abort the program execution (SPAR 3005895) . ‘

F77 compilations with several compile-line options should no longer
issue ERROR 230 (SPAR 3005924, 3006144, 3006649, 3006968) .

First Edition 4-50

LANGUAGES

A READ statement using list-directed I/O on a character array now works
correctly (SPAR 3006049).

The illegal use of two commas in a row to indicate missing parameters
to the INQUIRE statement is now detected at compile time (SPAR
3006312) .

The I-O routine now processes floating point constants during Intermal
File Reads the same way it currently processes them during reqular
reads,that is, they are now rounded not truncated (SPAR 3006409) .

The lack of a continuation character for the second line of a FORMAT
statement no longer causes the compiler to abort (SPAR 3006502).

Array subscript calculations involving a mixture of integer precision
expressions and variables are now evaluated correctly (SPAR 3006503,
3007126) .

Logical expressions compiled under 32I-mode are now correctly evaluated
(SPAR 3006666, 3007801).

Past incompatibilities in parameter passing between F77 and FIN have
been eliminated with the new compile-line option -FIN_ENTRY (SPAR
3006845) .

F77 now correctly assigns an integer*2 value to variable in a
character#328 function (SPAR 3006876).

0dd elements of character*l arrays are now properly handled in intermal
reads and writes (SPAR 3007647).

Logical expressions are now correctly evaluated in 32I mode (SPAR
3007801) .

The compiler now detects a common block name with the same symbolic
name as an externally-named entity (SPAR 3008293).

If there was a Gumy arqument when using -OPT 4 and —CLUSTER with
assumed-size attributes to a subroutine which could be quick-called, a
RESTRICTED INSTRUCTION could be raised during program execution. This
was caused by not allocating space for dope vector information and
having the same space used for return processing. It has been
corrected.,

F77 does not currently generate code that detects integer zero divide
at run time. This has been corrected. (SPAR 2003949).

OQUTSTANDING PROBLEMS

DBG does not currently recognize F77 alternate entry points (SPAR
2003741, 2001604).

4-51 First Edition

Software Release Document

A legal DIMENSION statement causes the compiler to give an erroneous
error message when the DIMENSION statement follows an ENTRY statement
that immediately follows a SUBROUTINE statement (SPAR 2002923).

ENVIRONMENT

The F77 compiler requires the top level directory LIBRARIES* to ocontain
the file COMMON_ENVELOFE.RUN.

INSTALLATION AND BUILD PROCEDURES

Standard.
CMDNCO>F77.SAVE is no longer needed and should be deleted.

SYSTEM>FT (2046 2047 2052 2067 2322) are no longer rneeded and should be
deleted.

SYSTEM>F77.SHARE.®OMI is no longer needed and should be deleted.

Additiomally, the lines to share these files should be removed from the
system start-up file, PRIMDS.(OMI (or C_FRMD).

First Edition 4-52

LANGUAGES

NEW FEATURES AND CHANGES

The assembly langquage mathematical routines in the runtime 1libraries
are now built with the -ROUND option. This option causes floating
point literals used in these routines to potentially have up to one
half bit of increased accuracy. Programs written in FIN may produce
different results when they use the libraries' mathematical routines.,
In most cases, the differences will be improvements in precision. In a
small number of cases, cancellation oould reveal rounding errors in
previous parts of a calculation. Generally, this change ensures better
accuracy for many computations with the same number.

4-53 First Edition

software Release Document

First Edition 4-54

LANGUAGES

PASCAL

NEW FEATURES AND CHANGES

The runtime execution speed of all SET operations has been improved by
more than 50%.

The runtime execution speed of ASCII file I-O operations has been
improved by almost 50% (excluding I-O on the data type, CHAR).

The compile line option, -RANGE, now works for enumerated type and
subrange, as well as subscript, range violations.

The compile time options -NOOPT1 and -NOOPT3 have been removed.

Compiler Options: Changes have been made in the area of compiler
options for Rev. 19.4. These changes include new options that have
been added to implement new functiomality, new syntaxes that are
intended to replace older syntax forms of already existing options, new
abbreviations of options, and others. These changes were implemented
in an effort to make Prime's Common Backend-based translator products
more standardized in their user interface among themselves and with
other Prime software products. The list that follows this discussion
describes all the options that are supported by the oompiler at
Rev. 19.4 including new options. The other categories of changes are
more fully explained in the next few paragraphs.

Note that same of the changes that replace current compiler option
functiomlity or specification imply that the forms that they replace
are now considered obsolete., This means that at some particular
revision in the future these older forms will be in error and will not
work. Depending on the functiomality, this will either be Rev. 20 or
Rev. 21. However, the obsolete forms will be supported until then and
use of them will cause a warning to be issued by the compiler.

New option syntaxes have been introduced that are intended to replace
older forms of some already existing options. For example, the new
syntax -OPTimize n, where n is a decimal number that signifies a level
of optimization to be performed, is intended to replace the older
syntax of the options -OPT'IMIZE, -NOOPTIMIZE, and so forth. (See below
for a fuller discussion of this particular option.) The older form of
specification will no longer be supported beginning at Rev., 21.

Most currently existing options now have new abbreviations that are
intended to replace the older abbreviations, whether they have been
documented or not., For example, the older abbreviation for -RANGE has
been previously documented to be -R but -RA would also act to turn on
range checking. Beginning at Rev. 19.4, each compiler option has one
full specification and at most one abbreviation. In the 1list that
follows this discussion, the proper abbreviation for each option is
indicated by capitalized letters in the full option specification. As

4-55 First Edition

Software Release Document

an example, the full specification for turning on range checking is
-RAnge and the abbreviation, indicated by the capital letters, is -RA,
The older abbreviations will no longer be supported beginning at
Rev, 21.

Formation of the necated forms of those options that have them (such as
-DEBUG and -NODEBUG) is now done by prefixing the name of the positive
full specification with -No_ (-DeBuG and -No DeBuG). To form the
negation of an abbreviated option, prefix the positive abbreviated name
with -N (in this case, -DBG and -NDBG). The older form of option
negation will no longer be supported beginning at Rev. 21. Note,
however, that the option forms -Listing NO and -Binary NO will still be
retained for compatibility reasons, though a note will be issued by the
compiler encouraging the use of the newer forms -No Listing and

Processing of compiler options has previously allowed such anamalous
behavior as duplicate and conflicting options on the same command line
(for example, specifying the same option twice or specifying options
like ~PRODUCTION and -NOPRODUCTION during the s=me oompiler
invocation). In the case of conflicting options, the one that appeared
last on the command line was the one that took control. This behavior
is now considered obsolete. Note that redundant specification of any
of the source, binmary, or listing files has never been supported by
Prime's translator products.

Special note must be made about listing files and the use of options
that imply that a 1listing file be produced. To begin with, options
that specify that a listing is to be produced (-Listing, -No Listing or
-Listing NO) must be distinguished from those that specify what is to
go into a listing if one is produced (such as —XRef, -MAp). If an
option like -XRef is specified during a compiler invocation, a listing
file is produced in the absence of an explicit -Listing option.
However, if -No Listing happens also to be specified at the same time
as -XRef, there is a conflict. Beginning at Rev. 19.4, production of a
listing file is based upon a hierarchical order:

1. If -Listing [pathname] or -No_Listing appears on the ocompiler
command line, that switch determines whether or not a listing
is produced independent of the appearance of any options that
specify what goes into a 1listing, This means that -L -EXP
produces a listing, and that -NL. -EXP does not.

2. If -Listing or -No_Listing was not explicitly set and if the
positive form of an option that controls the contents of the
listing appears, a listing file is produced. Note that the
sole appearance of the negative form of such an option, for
example -No MAp, does not imply a listing and therefore nore is
produced.

3. If no options relating to a listing were specified on the

ocommand line, a listing is produced only if -Listing is set as
a default at a particular installation.

First Edition 4~56

LANGUAGES

Following is a list of the options supported by the ocompiler with a
brief description of each. The full name of each option is listed
along with the name of its opposite, or neqated, form if it has one.
Proper abbreviations are indicated by capitalized letters.
Abbreviations now considered obsolete are listed as such. The initial
default settings will be stated for each compiler option. These can be
changed at the user's particular installation.

—64V: Generates 64V mode code. No abbreviation. Obsolete: -6 (was
‘documented), -64. Default: =64V,

-Allow_PREconnection; -No Allow PREconnection: New. If this option is
specified, preconnection of the listing output to a pre-opened unit 2
or of the binary output to a pre-opened wunit 3 is allowed. If the
negative form is specified, the compiler always opens and closes the
listing and binary files and uses dymamic file units. Default:
~Allow_PREconnection.

—BIG; -No BIG: New: -MBIG. Handles arrays that span segment
boundaries in situations where the compiler cannot tell from the
program itself that segment boundaries are spanned. Obsolete: -NOB,
-NOBI, -NOBIG. Default: -No BIG.

-Binary [arg]; -No Binary: New: -NO_BINARY, -MNB. Specifies bimary
Object fi].eo 0bSOlet62 -'BI' -'BIN' -B]NA, -BINAR, -I\DB, -’mBI' -DUBIN,
-NOBINA, —-NOBINARY, In addition, it is obsolete to use arg equal to NO
to specify that no binmary file is to be produced and equal to YES to
indicate that a binary file is to be produced, though this form will be
supported indefinitely., Use the -No Binary option instead of
-Binary NO. Default: -Binary.

—@OPy; -No ®OPy: -MPY means that, when constants are passed by
reference, copies of the constants are made to prevent them from being
changed if the called procedure modifies that parameter. -NO_COPY
means that a copy need not be performed, presumably because the
programmer has been careful not to pass constants as actual parameters
to formals that get modified. Default: -QOPy.

=DeBuG; -No DeBuG: New: -NDBG. Generates full debugger (DBG)

-ERRList; -No ERRList: New., Prints errors-only listing. Default:

4-57 First Edition

Software Release Document

-ERRTty; -No ERRTty:f New: -NO_ERRTTY, -NERRT. Prints error messages
at a user terminal. Obsolete: =-ERRTT, —-NOE, -NOERRT, —-NOERRTT, (CBL)
-NOT, -NOTT, -NOTTY, -NOTTY, -NOTTYD, -NOTTYDI, —NOTIYDIA, -NOTTYDIAG,
~NOTTYDIAGS. Default: -ERRTty.

~EXPlist; -No EXPlist: New: -EXP, -NO_EXPLIST, -NEXP. Prints listing
including assembler-like output. Obsolete: -EX, -EXPL, -EXPLI,
~EXPLIS, -NOEX, -NOEXP, -NOEXPL, -NOEXPLI, -NOEXPLIS. Default:

~EXTernal; -No EXTernal: New: -NEXT. Allows object file to be linked
to and from other Pascal procedures and functions. Obsolete: -EXTE,
-EXTER, -EXTERN, -EXTERNA, -NOEXT, -NOEXTE, -NOEXTER, —NOEXTERN,
~NOEXTERNA, —NOEXTERNAL.

-FRN; -No FRN: New: -NO_FRN, -NFRN., Generates special code to improve
accuracy of single-precision floating-point calculations (Floating
RouNd on stores). Obsolete:-F, -FR, -NOF, -NOFR, -NOFRN, Default:
-NO_FRNc

-Full Help: This option is similar to the -HELP option except that, in
addition to the usage summary, a description of the meaning of each
compiler option is given.

-Full OPTimize: New. This option is used to ensure that the maximum
amount of optimization available is used. ‘This may mean that, in
succeeding revisions, if more optimizations are available, compilation
may slov down. The program listing tells what optimization level is
implied by the use of this option. This level may vary from Ilanguage
to lanquage. Full OPTimize is equivalent to -OPFT 3 at Rev. 19.4.1.
Default: -OPT 3.

-Help: This option produces information on using the invoked compiler
including a list of all compiler options. However, descriptions of the
options are not given. The user is referred to the system HELP command
to obtain full information about the installed compiler and to the
-Full_Help option for full information about the invoked compiler.

If the user makes a mistake in specifying the options or if the name of
the compiler only is given on the ocommand line, the user will be
referred to the -HELP option after the error message is given.

-Input pathname: This is an alternate way of specifying the source of
the Input file, If pathname is 'TTY', input comes from the user
terminal. Obsolete: -IN, —-INP, -INFU.

First Edition 4-58

LANGUAGES

-Listing [arg]; -No Listing: New: -NO_LISTING, -ML. This option is
used both to specify that a source file listing is to be produced and,
optionally, to specify where the 1listing is to go. Obsolete: -LI,
-LIS, -LIST, -LISTI, -LISTIN. In addition, several keywords used for
the arg specification have special meanings. SPOOL specifies that the
listing is to go directly into the spool queue; TTY specifies that the
listing is to go to the terminal; VYES means that a listing is desired;
and NO means that a listing is not desired. Note that uses of arg
equal to YES or NO are now considered obsolete (though they will be
supported indefinitely). The -Listing N0 form is replaced by the
-No_Listing option and the YES in -Listing YES is redundant,

-MAp; -No MAp: Produce a listing with a map of data and procedure
names. Obsolete: -NO_M. Default: -No MAp.

—OFFset; ~No OFFset: This option causes a map of the code location of
each executable statement to be produced in the listing. New:
-NO_OFFSET, -NOFF. Obsolete: -0, -OF, -OFFS, -OFFSE, -NOOF, -NOOFF,
~NOOFFS, -NOOFFSE, —NOOFFSET,

-OPTimize [dec-integer]: New: the decimal integer. 'This option is
the same as the existing optimize option except that it may be followed
by a decimal integer that specifies an optimization 1level, If the
decimal integer is not specified, a default value is supplied. The new
option ~Full_OPTimize is equivalent to -OPTIMIZE n, where n is the
maximum effective level of optimization. To turn optimization off,
-OFT 0 should be used. Note that a space is required between the
option and the value. Obsolete: -OP, -OPTl, -OPT2, -OPT3, -NOOP,
-NOOPTIMIZE -NO_OPTIMIZE.

Following is a brief description of what types of optimzations are
performed at each level. Each optimization level performs all the
optimizations of the next lower level plus those that are listed. Note
that the functiomality associated with some levels at Rev. 19.4 may
change in the future and that more levels of optimization may be added
at later revisions.

0 Perform no optimizations. This level replaces the option
~NOOPTIMIZE,

1 Pattern replacement

2 Common subexpression elimination

3 Loop invariant removal

4-59 First Edition

Software Release Document

~PRODuction; -No PRODuction: New: -NO_PRODUCTION, -NPROD. Generates
code for partial debugger functiomality. Obsolete: -P, -PR, -IRO,
-PRODU, -PRODUC, —-PRODUCT, —PRODUCTI, -PRODUCTIO, -NOP, -NOFPR, -NOPRO,
—NOPROD, -NOPRODU, -NOPRODUC, -NOPRODUCT, -NOPRODUCTI, -NOPRODUCTIO,
-NOPRODUCTION.

~RAnge; -No RAnge: New: -RA, -NO_RANGE, -NRA. Generate runtime code
that checks subscript ranges. Obsolete: -R, -RAN, -RANG, -NOR, -NORA,
—NORAN, —NORANG, —NORANGE.

-SIlent [dec]: New with decimal argument, The decimal arqument is the
severity level such that errors of that severity and less are not
reported., If no value is given, then a value of 1 is assumed. Note
that a space is required between the option and the value. Obsolete:
-1, -SII1, -SII2, -SIL3, —-SILE, —SILEN, —SILENT, —SILENT1l, -SILENT2,
-SILENT3.

-Source pathname: This is an alternate way of specifying the source of
the input file., If pathname is 'TTY', input comes from the user
terminal. Obsolete: -9, -S0U, —-SOUR, —-SOURC.

-SPACE: New. This option specifies that space is to be given
preference over runtime speed in optimization consideration. The
opposite of —~SPACE is -TIME, which means that optimization is to favor
runtime speed over space,

-STANdard; -No STANdard: New: -NO_STANDARD, —NSTAN. Generates
warning for variance from appropriate standard(s). Obsolete: ~STAND;

-STANDA, -STANDAR, -NOSTAN, -NOSTAND, -NOSTANDA, -NOSTANDAR,
-NOSTANDARD.
—STATistics; -No STATistics: New: -NO_STATISTICS. Displays

compilation statistics at terminal. Obsolete: -STATI, -STATIS,
-STATIST, —-STATISTI, -STATISTIC, -NOST, -NOSTA, -NOSTAT, -NOSTATI,
~NOSTATIS, -NOSTATIST, -NOSTATISTI, -NOSTATISTIC, -NOSTATISTICS, -T0O,
-.IOT’ "']DTA, -'IOTAT-I, -TOTALS.

-Store_Owner_Field; -No Store Owner_Field: Causes the identity of the
current routine to be stored 1in a known place for use by trace-back
routines., This obsoletes the -NO_OWNERID and -NOGWNERID options of
(BL. Obsolete: =-STO, -STOR, -STORE, -STORE , —-STORE O, —STORE_OW,
~STORE, OWN, —-STORE_COWNE, —STORE_OWNER, -STORE OWNER , -STORE OWNER F,
—STORE_OWNER _FI, -STORE_OWNER FIE, —STORE,_OWNER_F1IEL, -NO_STO,
-NO_STOR, -NO_STORE, =NO_STORE,_, =NO_STORE,_O, =NO_STORF, OW,
-NO_STORE, OWN, -NO_STORE, OWNE, ~-NO_STORE _OWNER, -NO_STORE_OWNER ,
~NO_STORE, OWNER_F, —NO_STORF, OWNER_FT, -NO_STORF, OWNNER_FIE,

First Edition 4-60

LANGUAGES

-NO_STORE_OWNER _FIEL, -NSO, -NO_OW, -NO_OWN, -NO_OWNE, -NO_OWNER,
-NO_OWNERI, -NO_OWNERID., Default: -Store Owner Field.

~TIME: New. Means optimization is to favor runtime speed over space.
The opposite of -TIME is ~SPACE, which specifies that space is to be
given preference over runtime speed in optimization selection.
Default: -TIME,

—UPcase: Map source program to uppercase (except for quoted literals).
OkSOlete: —U' -m' -m’ -UP(AS,

—-XRef; -No XRef: Produce 1listing with Cross reference of
data/procedure names. Obsolete: -X, -XRE, -NOX, -NOXRE, —NOXREF.

SOFTWARE PROBLEMS FIXED

The functions SUCC and PRED now generate an error for out of range
results if compiled with -RANGE. Variables out of range are caught at
run time while oonstants out of range are caught at compile time
whether or not -RANGE is used (SPAR 2000353,2000905).

Assigning an illegal value to a subrange type now generates an error if
compiled with ~RANGE (SPAR 2000354, 3004739, 3004401).

Using the name of an enumerated type as part of the enumeration list
now gives a compile time error message (SPAR 2004367).

Set operations have been improved by 50% (SPAR 2005060) .

The occurrence of intermittent and erroneous error messages regarding
files of INTERACTIVE type has been corrected (SPAR 3000388, 2005528).

An external switch set Jjust following the program heading in a main
program is now processed correctly (SPAR 3001335).

Set computations have been improved by 50% (SPAR 3001338).

The debugger can now correctly understand the PASCAL construct ARRAY
[CHAR] of ... (SPAR 3001339).

Structures which span segments are now handled correctly (SPAR
3001930).

A case statement based on logical comparisons of chars works correctly
now (SPAR 3002610).

4-61 First Edition

Sof tware Release Document

The functiomality of the built-in function, UNSIR, now matches the
documentation. In addition, error messages are now delivered for
illegal uses of STRINGs and UNSTRs in built in functions (SPAR
3003798) .)

Violations of SUBRANGE can now be detected for variables if the -RANGE
compile line option is used. The use of oconstants which violate
SUBRANGE bounds are caught at compile time (SPAR 3004401).

A named constant may now have the value -2147483648 (SEAR 3004061).

An element of an array of STRINGs declared inside a record may be
written out (SPAR 3004414).

An extra left parentheses in the argument list of a procedure call is
ignored and an attempt is made to correct the error.

An external subprogram with any external switches other than the
initial one results in an error messagde.

The compiler now requires that a function's body contain an assignment
to the function.

The compiler now prohibits assigning or passing by value objects that
are either files or structures containing files.

The compiler now prohibits the use of a FOR statement control variable
as an arqument to READ within the body of the FOR statement.

The compiler now prohibits the use of a formal parameter as a FOR
statement control variable.

The compiler now prohibits passing a FOR statement control variable as
a VAR parameter from within the FOR statement,

The compiler now prohibits the modification of a FOR statement control
variable within the FOR statement.

The compiler now requires that nested FOR statements have unique
ocontrol variables.

The compiler now requires that arquments to TRUNC and ROUND be of type
REAL, or IONGREAL, as the standard specifies. Argquments to TRUNC and
ROUND that are of type INTEGER or LONGINTEGER cause severity 1 errors
while arquments that are of other illegal types cause severity 3
errors.

The compiler now requires that the body of a CASE statement be
nonempty.

The compiler now prohibits SET types of base type STRING.

First Edition 4-62

LANGUAGES

OUTSTANDING PROBLEMS

Integer expressions whose results are greater than maxint are not
processed as longintegers, regardless of the data type they are being
assigned to (SPAR 3005126).

Erroneous severity 1 warnings are issued about type conversions even
when no conversions are necessary (SPAR 3005127).

PERMANENT RESTRICTIONS

Sparse CASE statements will have longer compile times than non-sparse
CASE statements., The oompile time is linear with respect to the
sparsity.

ENVIRONMENT
Standard.

COMMON_ENVELOPE,.RUN is required to run the PASCAL compiler.

INSTALLATION AND BUILD PROCEDURES

Standard. PASCAL is now supplied as two directories: PASCAL. and
PASCAL_LIBRARY. In order to use PASCAL, you must run two install
files, PASCAL,INSTALL.(OMI from the UFD PASCAL and, from the UFD
PASCAL,_LIBRARY, PASCAL,_ LIBRARY.INSTALL.COMI.

Note
The following files are not needed at Rev. 19.4 and, if they
exist, they should be deleted:

CMDNCO>PASCAL, SAVE
SYSTEM>PASCAL. SHARE, COMI
SYSTEM>PA2064, PA2065, PA2066, PA2141, PA2147

The lines to share PASCAL in the system start-up file
PRIMDS.(MMI (or C_PRMD) should also be deleted.

4-63 First Edition

Software Release Document

First Edition 4-64

LANGUAGES

NEW FEATURES AND CHANGES

On loc condition: The ON ERROR statement is now used to catch the
raised condition when a locked record of a MIDAS file is referenced.
The corresponding value returned by bif oncode() is 1130 and it can be
used to distinguish the special condition from the other conditions.

Compiler Options: Changes have been made to compiler options for
Rev. 19.4. These changes include new options that have been added to
implement new functiomality, new syntaxes that are intended to replace
older syntax forms of already existing options, new abbreviations of
options, and others. These changes were implemented in an effort to
make Prime's Common Backend-based translator products more standardized
in their user interface among themselves and with other Prime software
products. The list that follows this discussion describes all the
options that are supported by PL1G at Rev. 19.4 including new options.
The other categories of changes are more fully explained below.

Note that some of the changes that replace current PLIG compiler option
functiomality or specification imply that the forms that they replace
are now considered obsolete. This means that at some particular
revision in the future these older forms will be in error and will not
work, However, the obsolete forms will be supported until then and use
of them will cause a warning to be issued by the compiler.

New option syntaxes have been introduced that are intended to replace
older forms of some already existing options. For example, the new
syntax -OPTimize n, where n is a decimal number that signifies a level
of optimization to be performed, is intended to replace the older
syntax of the options -OPTIMIZE, —NOOPTIMIZE, and so forth. (See below
for a fuller discussion of this particular option.) The older form of
specification will no longer be supported at some time in the future.

Most currently existing options now have new abbreviations that are
intended to replace the older abbreviations, whether they have been
documented or not, For example, the older abbreviation for -RANGE has
been previously documented to be -R but -RA would also act to turn on
range checking. Beginning at Rev. 19.4, each compiler option has one
full specification and at most one abbreviation. 1In the 1list that
follows this discussion, the proper abbreviation for each option is
indicated by capitalized letters in the full option specification. As
an example, the full specification for turning on range checking is
—RAnge, and the abbreviation, indicated by the capital letters, is —RA.
The older abbreviations will no longer be supported in the future.

Formation of the negated forms of those options that have them (such as
-DEBUG and -NODEBUG) is now done by prefixing the name of the positive
full specification with -No_ (-DeBuG and -No DeBuG). To form the
neqation of an abbreviated option, prefix the positive abbreviated name

4-65 First Edition

Software Release Document

with -N (in this case, -DBG and -NIBG). The older form of option
negation will no longer be supported in the future. Note, however,
that the option forms -Listing NO and -Binary NO will still be retained
for compatibility reasons, though a note will be issued by the compiler
encouraging the use of the newer forms -No_Listing and -No Bimary.

Processing of compiler options has previously allowed such anamalous
behavior as duplicate and conflicting options on the same command line
(for example, specifying the same option twice or specifying options
like ~—PRODUCTION and -NOPRODUCTION during the same compiler
invocation). In the case of conflicting options, the one that appeared
last on the command line was the one that took control. This behavior
is now considered obsolete and will no longer be supported in the
future. Note that redundant specification of any of the source,
binary, or listing files has never been supported by Prime's translator
products.

Special note must be made about listing files and the use of options
that imply that a listing file be produced. To begin with, options
that specify that a listing is to be produced (-Listing, -No_Listing or
~Listing NO) must be distinguished from those that specify what is to
go into a listing if ore is produced (such as -XRef, -MAD). If an
option like -XRef is specified during a PL1G invocation, a listing file
will be produced in the absence of an explicit -Listing option.
However, if -No Listing happens also to be specified at the same time
as -XRef, there is a conflict. Beginning at Rev. 19.4, production of
a listing file is based upon a hierarchical order:

1. If -Listing [pathname] or -No_Listing appears on the ocompiler
command line, this switch determines whether or not a listing
is produced independent of the appearance of any options that
specify what goes into a listing. This means that -L -EXP
produces a listing and that -NL —-EXP does not.

2. If -Listing or -No_Listing was not explicitly set and if the
positive form of an option that controls the contents of the
listing appears, a listing file is produced. Note that the
sole appearance of the negative form of such an option, for
example -No MAp, does not imply a listing and nore is produced.

3. If no options relating to a listing were specified on the
command line, a listing is produced only if -Listing is set as
a default at a particular installation.

Following is a list of the options supported by PLIG with a brief
description of each. The full name of each option is listed along with
the name of its opposite, or negated, form if it has one. Proper
abbreviations are indicated by capitalized letters, Abbreviations now
considered obsolete are listed as such. The initial default settings
will be stated for each compiler option. These can be changed at the
user's particular installation.

First Edition 4-66

LANGUAGES

=64V: Generates 64V mode oode. No abbreviation., Obsolete: -6 (was
‘documented), -64. Default: -64V.

-Allow_PREconnection; -No Allow_PREconnection: If this option is
specified, then preconnection of the listing output to a pre—opened
unit 2 or of the binary output to a pre-opened wnit 3 is allowed. If
the neqative form is specified, PLIG always opens and closes the
listing and binary files (and uses dynamic file units). Default:
-Allow_PREconnection,

—BIG; -No BIG: Handles arrays that span segment boundaries in
situations where the compiler cannot tell from the program itself that
segment boundaries are spanned, Obsolete: -NOB, -NOBI, -NOBIG.
Default: -No BIG.

-Binary [arg]; -No_Binary: New: -NO_BINARY, -MB. Specifies binary
Object file. OkBOlete: "BI' -BIN, '-BINA, -BINAR' "FDB, —I‘DBI, "I\DBIN,
-NOBINA, -NOBINARY. In addition, it is now considered obsolete to use
arg equal to NO to specify that no binary is to be produced and equal
to YES to indicate that a bimary file is to be produced, though this
form will be supported indefinitely. Use the —-No_Binary option instead
of -Binary NO. Default: -Bimary.

~Py; -No (OPy: -QOPY means, when constants are passed by reference,
copies of the constants are made to prevent them from being changed if
the called procedure modifies that parameter. -NO_(OPY means that such
copy need not be performed, presumably because the programmer has been
careful not to pass constants as actual parameters to formals that get
modified. Default: -Py.

~DeBuG; -No DeBuG: New: -NDBG. Generates full debugger (DBG)
—NODEBU, -NODEBUG. Default: -No_DeBug,

—“ERRList; -No FRRList: New: -ERRLIST, -NERR.. Prints errors-only
listing. Obsolete: -ERRLI, -ERRLIS, -NOERRL, -NOERRLI, -NOERRLIS,
~NOERRLIST, Default: -No ERRList.

ERRTty; -No ERRTty: New: -ERRTTY, -=NO_ERRTTY, -NERRT, Prints error
messages at user terminal, Obsolete: -ERRTT, -NOE, -NOERRT, -NOERRTT,
(CBL) -NOT, -NOTT, -NOTTY, -NOTTY, -NOTIYD, -NOTIVDI + -NOTIYDIA,
-NOTTYDIAG, -NOTTYDIAGS. Default: -ERRTty.

4-67 First Edition

Software Release Document

-EXPlist; -No EXPlist: New: -EXP, —NO_EXPLIST, —NEXP. Prints listing
including assembler-like output, Obsolete: -EX, -EXPL, -EXPLI,
-EXPLIS r "‘I\DEX, "mEXP, -mEXPL, "'I‘DEXPLI, -NOEXPLIS. DefaUlt H
-No_EXPlist.

—FRN; -No FRN: New:-NO_FRN, -NFRN. Generates special code to improve
accuracy of single-precision floating-point calculations (Floating
RouNd on stores). Obsolete:-F, -FR, -NOF, -NOFR, -NOFRN. Default:
-No_FRN.

-Fulé ;@;p: This option is similar to the —HELP option, except that,
In aadition to the usage summary, a description of the meaning of each
compiler option is given.

-Full OPTimize: New. This option is used to ensure that the maximum
amount of optimization available is used. This may mean that, in
succeeding revisions if more optimizations are available, compilation
may slow down. The program listing will tell what optimization level
is implied by the use of this option. This level may vary from
lanquage to language, Default: The full optimization level is 3 at
Rev. 19.4.1.

—Help: New. This option produces information on using the PL1G
compiler, including a list of all ocompiler options. However,
descriptions of the options are not given. The user is referred to the
system HELP command to obtain full information about the installed
compiler and to the -Full Help option for full information about the
invoked compiler.

If the user makes a mistake in specifying the options or if only the
name of the compiler is given on the command line, the user will be
referred to the —HELP option after the error message is given.

—EM pathname: This is an alternate way of specifying the source of
e input file. If pathname is 'TTY', input oomes from the user
terminal, Obsolete: -IN, -INP, —-INPU.

-ICase: Distinguishes lower case and upper case characters in the
source program., System calls must be in upper case. Obsolete: ~-LCA,
-LCAS.

-Listing [arg]l; -No Listing: New: -NO_LISTING, -NL.. 'This option is
used both to specify that a source file listing is to be produced and,
optionally, to specify where the listing is to go. Obsolete: -LI,
-LIS, -LIST, -LISTI, -LISTIN. In addition, several keywords used for
the arg specification have special meanings. SFOOL specifies that the
listing is to go directly into the spool queve. TIY specifies that the

First Edition 4-68

LANGUAGES

listing is to go to the terminal, YES means that a listing is desired
and N0 means that a listing is not desired. Note that uses of arg
equal to YES or NO are now considered obsolete (though they will be
supported indefinitely). The -Listing N0 form is replaced by the
-No_Listing option, and the YES in -Listing YES is redundant.

-MAp, -No MAp: New. Produce a listing with a map of data and
procedure names. Obsolete: -ND_ M. Default: ~No_MAp.

-NEsting; -No NEsting: New: -NO _NESTING, -MNE. Adds nesting level
numbers in program listing., Obsolete: -NONE, -NONES, -NDNEST,
-NONESTI, ~-NONESTIN, -NONESTING. Default: -No_NEsting. Default:
-No_NEsting.

—OFFset; -No OFFset: This option causes a map of the code location of
each executable statement to be produced in the listing. New:
-NO_OFFSET, -NOFF. Obsolete: -0, -OF, -OFFS, -OFFSE, -NOOF, -NOOFF,
-NOOFFS, -NOOFFSE, -NOOFFSET. Default: -No OFFset. Default:

-OPTimize [dec-integer]: New: the decimal integer. This option is
the same as the ex1E sting optimize option except that it may be followed
by a decimal integer that specifies an optimization level, If the
decimal integer is not specified, the default value 0 is supplied, The
new option -Full OPTimize is equivalent to —OPTimize n, where n is the
maximm effective level of optimization for PL1G. To turn optimization
off, ~OPFT 0 should be used. Note that a space is required between the
option and the value. Obsolete: -OP, -OPT1, -OPT2, -OPI3, -NOOP,
~NOOPTIMIZE -NO_OPTIMIZE.

Following is a brief description of what types of optimzations are
performed at each level. Each optimization level performs all the
optimizations of the next lower level plus those that are listed, Note
that the functiomality associated with same levels at Rev, 19.4 may
change in the future and that more levels of optimization may be added.

0 Perform no optimizations, This level replaces the option
=NOOPTIMIZE.
1 Pattern replacement

2 Common subexpression elimimation (default optimization
level)

3 Loop invariant removal

4-69 First Edition

Software Release Document

Internally-nested procedures are made quick,that is, called by a Jump
to Subroutine instruction rather than a Procedure Call if conditions
allow. Basically, the conditions under which a procedure is made quick
are that it be called simply, that is, called from one place, For
example, procedure C can be quick if it's called from procedure A, But
if it's also called from B where B is a separate procedure from A, then
C can't be quick,

—-OVerFlow; -No OVerFlow: New. This option enables integer overflow
conditions. Obsolete: -OVE, —OVER, —-OVERF, -OVERFL, —OVERFLO, -NOOV,
-NOOVE, -NOOVER, -NOOVERF, -—NOOVERFL, -NOOVERFLO, -NOOVERFLOW.
Default: =-No OVerFlow. Default: -No OVerFlow.

-PRODuction; -No PRODuction: New: -NO_PRODUCTION, -NPROD. Generates
Code for partial detugger functiomality. Obsolete: -P, -IR, -FPRO,
-PRODU, -PRODUC, -PRODUCT, -PRODUCTI, -PRODUCTIO, -NOP, —-NOFR, -NOPRO,
~NOPROD, -NOPRODU, -NOPRODUC, -NOPRODUCT, ~NOPRODUCTI, —-NOPRODUCTIO,
-NOPRODUCTION. Default: -No PRODuction.

-RAnge; -No RAnge: New: -RA, -NO_RANGE, ~NRA. Generate runtime code
that checks subscript ranges. Obsolete: -R, —-RAN, —RANG, -NOR, -NORA,
~NORAN, -NORANG, —~NORANGE., Default: -No_RAnge.

-SIlent [dec]: New with decimal arqument, The decimal argument is the
severity level such that errors of that severity and less are not
reported. If no value is given, a value of 1 is assumed. Note that a
space is required between the option and the value, Obsolete: -=SIL,
-SI11, -Sm2, =SIL3, -SILE, -SILEN, -SILENT, -SILENT1, ~SILENT2,
—-SILENT3., Default: -SIlent 0

—Source pathname: This is an alternate way of specifying the source of
the inpat file, If pathname is 'TIY', input oomes from the user
terminal. Obsolete: -S0, -S0U, —SOUR, —SOURC.

—SPACE: New. This option specifies that spce is to be given
preference over runtime speed in optimization oonsideration. The
opposite of —SPACE is -TIME, which means that optimization is to favor
runtime speed over space. Default: -TIME (that is, =-SPACE 1is
disabled).

-STATistics; -No STATistics: New: -NO_STATISTICS. Displays
compilation statistics at the termimal, Obsolete: -STATI, —-STATIS,
—~STATIST, —-STATISTI, -STATISTIC, -NOST, -NOSTA, -NOSTAT, -NOSTATI,
"I‘DSI'ATIS, "'N)SI’ATIST, -mSTATIS'fI, "'I\DSI'ATISTIC, —IDSTATISTICS, -']D'
-10T, -T0TA, ~TOTAL, -TOTALS. Default: -No_STATistics,

First Edition 4-70

LANGUAGES

-Store Owner_Field; -No Store Owner Field: New. Causes the identity

the current routine to be stored in a known place for use by trace
back routines. This obsoletes the —NO_OWNERID and -NOOWNERID options
of (BL. Obsolete: -STO, -STOR, -STORE, —STORE_, —-STORE_O, —STORE OW,
—-STORE_OWN, —STORE_OWNE, —STORE OWNER, -STORE_OWNER_, —STORE_OWNER _F,
—-STORE. OWNER_FI, -STORE OWNER FIE, —STORE_OWNER_FTEL, -NO_ST0O,

-NO_STOR, -NO_STORE, =NO_STORE _, —-NO_STORE,_O, —NO_STORE_OW,
-NO_STORE_OWN, -NO_STORE OWNE, -ND_STORE OWNER, -NO_STORF, OWNER _,
—NO_STORE, OWNER_F, -NO_STORE, OWNER_FI, —NO_STORE, OWNER_FIE,

-NO_STORE_OWNER_FTEL, -NSO, -NO_OW, -NO_OWN, -NO_OWNE, -NO_OWNER,
-NO_OWNERI, -NO_OWNERID, Default: -Store Owner_ Field.

—TIME: New. Means optimization is to favor runtime speed over space.
The opposite of -TIME is -SPACE, which specifies that space is to be
given preference over runtime speed in optimization selection.
Default: -TIME enabled,

—UPcase: Map source program to uppercase (except for quoted literals).
ObS()lete: -U' _UR-:, —m' —UP@S. Defalﬂ.t: -UP(:a.&o

-XRef; -No XRef: Produce listing with cross reference of
data/procedure names. Obsolete: -X, -XRE, -NOX, -NOXRE, -NOXREF,
Default: -No XRef.

SOFTWARE PROBLEMS FIXED

A procedure's argument declared as data type (*) bit(*) now works
correctly when the passed subscript value is larger than 64k (SPAR
3000678) .

FORMAT statement with label in the beginning now works correctly
whether it is backward or forward referenced (SPAR 3000605).

When a procedure's arqument is declared as data type of bit array
aligned it works correctly.

Multiple concatemations involving aggregate members and character
scalars now work correctly (SPAR 3007492).

Successive function calls caused floating point inconsistencies in
nested invokations. This has been corrected (SPAR 3007975).

An aggreqate, no matter how complex, can now be assigned to an array
member of equally declared aggregates (SPAR 3006663) .

4-71 First Edition

Software Release Document

ENVIRONMENT
Standard.
Note

The EPF library COMMON_ENVELOPE.RUN is necessary to run PL1G.

INSTALLATION AND BUILD PROCEDURES

PL1G is now supplied with two directories: PL1G and PLIG LIBRARY, In
order to use PLIG, the wuser must run two install files,
PL1G>PL1G. INSTALL.OOMI and PL1G LIBRARY>PL1G LIBRARY. INSTALL, (OMI,

The PL1G. INSTALL.CQOMI file now uses the PRIM)S QOPY command instead of

FUTIL. Since PL1G is now an EPF compiler, CMDNCO>PL1G.SAVE and the
following shared segment files from SYSTEM should be deleted:

PG2044 PG2045 PG2050 FG2051 PG2216 PG2217

Also the files SYSTEM>PL1G,SHARE.(OMI and TOOLS>PL1GDF.SAVE should be
deleted and the 1line in the system start-up file PRIMIS.(MOMI (or
C_PRMD) file that invokes the share of PL1G should be deleted.

The directory PL1G>SYSTEM has also been deleted.

All else is standard.

First Edition 4-72

LANGUAGES

NEW FEATURES AND CHANGES
The opcode for SSSN is added to the opcode tables,

SOFTAWRE PROBLEMS FIXED

If the user set his own link base instead of the default in the ECB
then he got an erroneous error message. This was regression at 19,2
(SPAR 3006919).

Use of the —ROUND option caused B register to be set. This could have
caused erroneous conditional assemblies (SPAR 3007018).

External reference for common and external entries oould have caused

PMA to leave files open.

External reference for entries and DYNTS sometimes caused PMA to leave
all of its files open.

OUTSTANDING PROBLEMS

A regression occurred between Rev, 19.1 and Rev. 19.2 in that R mode no
longer recognizes @+ as a stack manipulation expression (SPAR 3001077) .

PERMANENT RESTRICTIONS

A comment line after a PMA END statement generates error and causes SEG
to reset the top of the procedure segment to 177777. This is not
really a bug but is the result of the way PMA handles its input files
(FOLER 46341) .

4-73 First Edition

Software Release Document

First Edition 4-74

LANGUAGES

SOFIWARE PROBLEMS FIXED

FOLER 56265 has been corrected. The execution of a marticular REG
program resulted in an incorrect runtime error during the opening of
files, The problem was occuring when a non-disk file was defined on a
file specification form following a MIDAS file,

INSTALLATION AND BUILD PROCEDURES

Standard,

Note

This is the last time that the RIG procduct will be supplied to

customers.

Custamers with maintenance agreements for RPG are

entitled to receive the VREG product and should already have
been informed of this upgrade. Contact your Prime analyst or
salesman for more information.

4-75 First Edition

Software Release Document

First Edition 4-76

LANGUAGES

NEW FEATURES AND CHANGES

Several new features and changes have been made to VREG at this
Revision, Many correspond to features in RPG II of IBM System/34,
making VREG more compatible with System/34 REG., The new functionality
is described in detail below. In summary, the System/34 features
include:

The specification of output fields without an end position
An implied SR within subroutines
Arithmetic statements with no factor 1

Programs with no primary files

Output only programs

Deletion of indexed file records

Duplicate naming allowed for a files, subroutines, and labels
*ZERO and *BLANK

/OOPY and $%INCLUDE capability

DATE runtime option

TREENAME runtime option

SFOOL runtime option with -ALIAS, -AT, -FORM, and —(OPIES
Larger local data area (1024 characters)

Specification of a program name in the Header Specification

At Rev. 19.4, a number of new compile-time options have been added to
the VRPG compiler. These include the following:

-MAP —NO_MAP

—OFFSET -NO_OFFSET

—PRODUCTION ~NO_PRODUCT ION

—RANGE ~NO_RANGE

-UPCASE -LCASE
—ALLOW_PRECONNECT ION =~NO_ALIOW_PRECONNECT ION
=OPTIMIZE [n] =FULL_OPTIMIZE

—SPACE -TIME

4-77 First Edition

Software Release Document

—~STORE_OWNER_FIELD —NO__STORE, OWNER_FIELD
-NO_STATISTICS

—~HELP -FULL, HELP

-NO_BINARY ~NO_LISTING

~SILENT (with a decimal argument)

Detailed descriptions of each of these options are included here.

A number of abbreviations for compiler options have been modified. The
old abbreviations will still be accepted at this revision but will not
be accepted in the future.

Formation of the neqated forms of those options that have them (such as
-DEBUG and -NODEBUG) is now done by prefixing the mame of the positive
full specification with -NO_ (-DEBUG and -NO_DEBUG). To form the
negation of an abbreviated option, prefix the positive abbreviated name
with =N (in this case, -DBG and -NIBG). Note that the option forms
-LISTING NO and -BINARY NO will still be retained for compatibility
reasons, thouch a note will be issued by the compiler encouraging the
use of the newer forms -NO_LISTING and —-NO_BINARY. Also, this is the
last revision that accepts the -OBDATA and -NOOBDATA options. They are
the same as the -EXPLIST and -NO_EXPLIST options, which are the more
acceptable forms.

Special note must be made about listing files and the use of options
that imply that a listing file be produced. To begin with, options
that specify that a listing is to be produced (-LISTING, —NO_LISTING or
-LISTING NO) must be distinguished from those that specify what is to
go into a listing if one is produced (such as -XREF, -MAP). If an
option like -XREF is specified during a compiler invocation, a listing
file is produced in the absence of an explicit -LISTING option,
However, if -NO_LISTING happens also to be specified at the same time
as -XREF, there is a conflict. Beginning at Rev. 19.4, production of a
listing file is based upon a hierarchical order:

1. If -LISTING [pathname] or —-NO_LISTING appears on the compiler
command line, that switch determines whether or not a listing
is produced independent of the appearance of any options that
specify what goes into a 1listing. This means that -L -EXP
produces a listing, and that -NL -EXP does not.

2. If -LISTING or -NO_LISTING is not explicitly set and if the
positive form of an option that controls the contents of the
listing appears, a listing file is produced. Note that the
sole appearance of the negative form of such an option, for
example —-NO_MAP, does not imply a listing, and therefore none
is produced.

3. If no options relating to a listing are specified on the

command line, a listing is produced only if -LISTING is set as
a default at a particular installation.

First Edition 4-78

LANGUAGES

Following is a list of VREG compiler options and their official

abbreviations.

Option

*

*

*
*

-64V
=ALLOW_PRECONNECTION
~NO_ALLOW_PRECONNECT ION
—BANNER

-NO_BANNER

-BINARY [pathname]
=NO_BINARY

-DEBUG

-NO_DEBUG

-ERRLIST
-NO_ERRLIST

-ERRTTY

=NO_ERRTTY

-EXPLIST
-NO_EXPLIST
-=FULL,_HELP

~FULL, OPTIMIZE
<HELP

~INFUT pathname
-LCASE

~LISTING [pathname]
=NO_LISTING

~MAP

~NO_MAP

=OFFSET

-NO_OFFSET
-OPTIMIZE [dec-integer]
~PRODUCTION
=NO_PRODUCTION
~RANGE

=NO_RANGE

~SEQCHK

-NO_SEQCHK

—SILENT [dec-integer]
=SOURCE pathname
—-SPACE

-STATISTICS
~NO_STATISTICS
=STATUS

-NO_STATUS
—STORE,_OWNER_FIELD
~NO_STORE, OWNER_FIELD
-TIME

-UPCASE

-XREF

-NO_XREF

4-79

Default options are preceded by an asterisk (*).

Abbreviation

-OPT [dec-integer]
-PROD
~NPROD

]\BEQ

=SI [dec—integer]
=S pathname
(none)

~STAT

~NSTAT

(none)

~NSTATUS

-SOF

First Edition

Software Release Document

The VREG compiler now recognizes two default program suffixes, .VRFG
and .RPG, in that order. When invoking VRPG with VRFG TEST, the
compiler looks first for the file TEST.VRFG, then for TEST.RFG, and
finmally for TEST, to decide which program to compile.

The user will notice two differences in the way VRPG reports errors.
The banner, which is printed after the number of errors, has changed
slichtly. Also, if there are any errors, a MAX SEVERITY IS $# message
appears after the number of errors indicating the highest severity
error produced, either 1, 2, 3 or 4.

The VREG library now comes in two varieties, NVRPGLB and VRFGLB.
NRPGIB is a nonshared 1library, which in previous revisions had been
called VREGIB., VREGIB is a new shared EPF library.

The shared FORMS library is now autamatically loaded when loading the
VREG library. Therefore, the lcad of any VREG program which interfaces
with the Prime Forms Management System (FORMS) does not have to lcad
VFORMS.

For users of local data area, there are a couple of things to note, At
previous revisions, the local data area was stored in segment 4030 and
the user was responsible for initializing the segment before beginning.
At Rev. 19.4, the local data area is dynamically allocated processed
storage that remains accessible to the user while the user is logged
in. The user is no longer required to initialize the storage himself,
The storage is deallocated when the user reinitializes his ocommand
envirorment or when he logs out.

Note

Because of changes in VREG compiler and library formats at this
revision, any program that is to be relcaded with the VRFG
library must first be recompiled. Any programs that used local
data area at Rev. 19.3 and that are to share local data with
VREG programs compiled with Rev. 19.4 must be recompiled and
reloaded with Rev. 19.4 VREG.

At Rev. 19.4, the user has the choice of building and executing his
runfile in two different ways, either using SEG or using BIND, BIND
creates an executable program called an EPF with a .RUN suffix that is
executed with RESUME rather than SEG. For further details, refer to
BIND and EPF documentation.

First Edition 4-80

LANGUAGES

New RPG-II Language Features

The following are new language features:

Output fields may now be entered without the end position
specified. The end position for that field is calculated to be
the largest previously defined end position plus the current
field's length. A severity 2 warning message is given,

The statements within a subroutine, between the BEGSR and the
ENDSR statements, may now be identified by SR or blanks in
columns 7 and 8.

The arithmetic opcodes ADD, SUB, MULT, and DIV may now be used
without factor 1 specified. In such cases, the result field is
substituted for factor 1, the operation is performed, and the
resulting value is placed back in the result field, .

The Primary file, the main input file in an RPG program, is no
longer required. Previously, programs were assumed to be single
file processing by defining a primary file or multiple file
processing by defining a primary file and secondary files., The
program execution would normally end when one or all of these
files had all records processed, If the primary file is not
used, the program should provide another means of exit by
turning on the last record indicator (IR) within the
calculations. If a primary file is not specified in a program
and one or more secondary files are specified, the first
secondary file is processed as the primary file.

The specification of multiple primary files within a program is
now also allowed. It is assumed that external indicators are
used to determine which primary file is to be used during the
program execution. If an attempt is made to use more than one
primary file during execution, one is treated as the primary
file and the other files are assigned as secondary files. If no
primary file is used during execution and secondary files are
used, the first secondary file is treated as the primary file.

It is now possible to write output-only programs. Note that the
program should provide some means of exiting, preferably by
turning on the LR indicator within the calculation section.

VREG now supports deletion of records for indexed files. In
order to delete records from a file, the file must be specified
as an update file. Deletion is specified in the output
specifications by entering DEL in columns 16-18 of the main line
in an output description, along with the filename, the type of
output, and any output indicators.

The method for deleting records is similar to the method for
updating records. The deletion must be preceded by the
retrieval of a record. It is this record that is deleted. A
chained file or a demand file can be deleted at detail time, at

4-81 First Edition

Software Release Document

total time, or at exception time. However, all other disk files
should be deleted only at detail or exception output time during
the same program cycle in which the record is read. A runtime
error is given if the program attempts to delete a record when
there was no successful preceding read. The user has the option
of continuing the execution and ignoring that particular
deletion attempt.

OR lines may be used to condition the deletion but DEL should
only be specified in the first line of the specification., DEL
applies to all of the OR lines. No field specifications should
given for a deletion.

e Filenames are no longer required to be unique names. A filename
may have the same name as a field, array, table, subroutine, or
label used within a program. For program clarity, it is
recommended that unique names be used.

Subroutines and labels are no longer required to have unique
names. An internal subroutine (defined with BEGSR) or a label
may have the same name as a file, field, array, or table used
within a program, If the Source Level Debugger, DBG, is used
when a label or subroutine name has the same name as a field,
table, or array, the label or subroutine should be referenced by
its name prefixed with an ampersand (&). A compiler warning
message appears if a non-unique name is used and the program is
compiled with the -DEBUG option. For program clarity and ease
of debugging, it is recommended that unique names be used.

e Four new fiqurative constants are now allowed in RPG programs,
*7FRO, *ZEROS, *BLANK, and *BLANKS. These may be used only on
calculation statements as either factor 1 or factor 2. They may
not be used with move zone operations, bit operations, or the
DEBUG, DSPLY, or SORT opcodes. *ZERO/*ZEROS is a field of all
zeros and may be used with mnumeric or alphanumeric fields.
*BLANK/*BLANKS is a field of all blanks, and may be used only
with alphanumeric fields. The length of the figurative constant
is assumed to be equal to the length of the other factor field,
if present. Otherwise, it is assumed to be equal to the length
of the result field. Fiqurative constants are considered to be
elementary items and, if used with an array, act like a field.
For example, MOVE *ZEROS ARRL would f£ill the entire array with
Zeros.

e /OOPY or $INCLULE file capability is now available with VREG,
Enter /OOPY or $INCLULE starting in column 7 followed by a space
and the filename or pathname of the file to be included in the
source code. INCLUDE files may be used anywhere in the program
and may themselves contain INCLUDE files. The included text can
be seen in the listing file.

e A new runtime option, -DATE or -D, has been added to allow the

user to set the system date. The date wanted must be entered
following -DATE in the format MM/DD/YY. Any other format will

First Edition 4~-82

LANGUAGES

cause a warning message and the current date will be substituted
for the one given.

® An altermate way, ~-TREENAME or -T, is now available for
requesting runtime file assignments. This may be used instead
of using T in column 52 of the header specifcation.

e Printer output files may now be sent directly to the spooler by
the use of the -SPOOL runtime option. This option can
optionally be used with any or all of the following runtime
options:

-ALIAS <alias-name>-AT <destination>,
-FORM <form-type>-(OPIES <number>

Accepted abbreviations are -S for -SFOOL, -AS for -ALIAS, -A for
-AT, -F for -FORM, and -C for -(OPIES, If -SPOCL is used, all

output printer files are spooled and they are not written on
disk.

® Auser's local data area now has a maximumn size of 1024
characters.

® A user may now assign a name to his program in columns 75
through 80 of the header specification. If nore is assigned or
if there is no header specification, the program name defaults
to REGSMAIN. This name must be unique in your program. The
program name now appears on the cross reference listing of your
program even if none is assigned. The source level debugger,
DBG, uses the program name as the main program block of an REG

program.

New Compiler Options

—-MAP/-NO_MAP Options: The -MAP option produces information similar to
the —XREF option but without the source line references. See the VREG
Reference Guide (IDR5040) for an example of output produced by the
-XREF option. When you specify -MAP, you autamatically have a 1listing
file produced. Conversely, when you specify -L, you autamatically get
the map information. If you d not want your listing file to have the
map information, you need to specify -L with -NO_MAP,

—OFFSET/-ND_OFFSET Options: The —-OFFSET option appends an offset map
to the end of the listing file. The use of -OFFSET implies -L. For
each statement in the source program, the offset map gives the offset
in the object file of the first machine instruction generated for that
statement, The -NO_OFFSET option means that no offset map is created
and is the default.

4-83 First Edition

Software Release Document

—PRODUCTION/-NO_PRODUCTION Options: These options are alternative
options controlling code for Prime's Source Level Debugger, DBG. The
-PRODUCTION option is similar to -DEBUG except that no statement
information is produced. You may not breakpoint at individual
statements nor step through your program with -PRODUCTION. The
execution time of a program compiled with —PRODUCTION is better than
the execution time of a program ocompiled with -DEBUG. The
~NO_PRODUCTION option is the default.

-RANGE/-NO_RANGE Options: These ocompiler options control runtime
subscript range checking. When -RANGE is specified on the compile
line, any variable array subscript is checked for out-of-range
conditions and, if any occurs, a runtime error is issued and the
program halts. The use of —RANGE increases both the compile time and
the execution time of a program and therefore should be used only as a
debugging tool. The -NO_RANGE option suppresses this capability and is
the default option.

~UPCASE/-ICASE Options: These compiler options control the compiler's
autamatic conversion to upper case. When -UPCASE is used, everything
in the source program, except literals, is translated to upper case.
When -LCASE is used, the source program (except for reserved words) is
left as is. A program can therefore have two data items, 'X' and 'x'
for example, which are treated as separate items with -LCASE. The
~UPCASE option is the default.

-ALLOW_PRECONNECTION/-NO_ALIOW PRECONNECTION Options: If this option
Is specified, preconnection of the listing output to a pre-opened file
wmit 2 or of the binary output to a pre-opened file unit 3 is allowed.
If the negative form is specified, the compiler always opens and closes
the listing and the binary files (and uses dynamic file units). The
negative form is the default.

-OPTIMIZE [n] Option: The VREG compiler now allows for optimization of
object code. Optimization may be specified at one of three different
levels indicated by the decimal number n, which can be either 1, 2, or
3. Optimization level 1 does code pattern replacement. Optimization
level 2 performs code pattern replacement and redundancy elimination.
Optimization level 3 does ocode pattern replacement, redundancy
elimination, and also takes invariant code out of loops. If the
decimal integer is not specified, a default value of 2 is used. If no
optimization is desired. a value of O should be used. It should be
remembered that optimized code runs more efficiently than non-optimized
code but that it takes samewhat longer to compile.

-FULI, OPTIMIZE Option: This option indicates that the highest possible
optimization should be used and is equivalent to —OPTIMIZE 3.

First Edition 4-84

LANGUAGES

—-SPACE and -TIME Options: The —SPACE option specifies that the size of
the optimized code (space) is to be given preference over the speed of
the optimized code (time) in optimization consideration. The opposite
of -SPACE is -TIME, which means that optimization is to favor time over
space. The -TIME option is the default.

—-STORE,_ OWNER_FIELD/-NO_STORE OWNER FIELD Options: The
~STORE,_OWNER_FIELD option causes the identity of the current program to
be stored in a known place for use by trace back routines such as
DMSTK. This option is the default. Using the —NO_STORE OWNER_FIELD
option does not save this information.

—-NO_STATISTICS Option: This compiler option suppresses ocompile time
statistics, which may be generated by the -STATISTICS option. See the
VRPG Reference Guide (IDR5040) for information on the statistics
generated by the -STATISTICS option. The -NO_STATISTICS option is the
default.

~HELP Option: This new option produces information on using the
compiler, including a list of all compiler options. When this option
is used, the help information only is issued and the compiler is not
invoked.

~FULI_HELP Option: This new option is similar to the -HELP option but,
in addition to the usage summary, a description of the meaning of each
ocompiler option is also given.

=NO_BINARY Option: This option takes the place of using -BINARY NO,
which will soon be obsolete, to specify that no bimary file is to be
produced.,

-NO_LISTING Option: This option takes the place of using -LISTING NO,
which will soon be obsolete, to specify that no listing file is to be
produced. The default is to not produce a listing file.

—SILENT [n] Option: This option has been modified to accept a decimal
arqument, which indicates an error severity 1level., When n is
specified, all errors with that severity and less are not reported. If
n is omitted, a severity level of 1 is assumed, as in the past., ‘There
must be a space between the option and the value. A level of -1 means
that -SILENT was not specified and that all error messages will appear.
This is the default.

4-85 First Edition

Software Release Document

SOFTWARE PROBLEMS FIXED

RPG programs generated extra code, which was a problem with some very
large programs. At this revision of VREG, most unused information is
no longer written into the binary file (SPAR 3001747).

The source level debugger, DBG, was unable to evaluate the table index
for a table having a name less than 6 characters long. This has been
corrected (SPAR 3002283).

A problem with output of a data structure subfield using an edit word
has been fixed and now works correctly (SPAR 3003556) .

An illegal entry in factor 2 of an EXIT statement is now reported as an
error (SPAR 3004236).

An overflow indicator is now properly set in a program in which an
overflow indicator is assigned but not used to condition output (SPAR
3004320) .

The use of conditioning indicators in calculation and output statements
is now properly handled. Prior to Rev. 19.4, if an indicator in any of
these positions was not previously defined in the program, the
indicator was generally off and no calculation or output occurred. The
indicators 01-99, L1-19, HI-H9, GA-OV, and KA-KY should be defined
elsewhere in the program to be used as conditioning indicators. If
they are not, a severity 1 warning is now issued (SPAR 3004395).

VREG programs can now have two primary files (SPAR 2004544).

More incorrect entry errors are now reported. For example, a severity
3 error message reports the use of a subroutine name on an output
field., sSimilarly, an error is reported if an array subscript is not a
numeric field or a literal oonstant. Also, if a semantic error is
reported on a field within an input or an output record, the rest of
the fields within the input or the output record are examined. For
same cases in the past, no other semantic errors were reported for the
following fields in the record (SPAR 3004805) .

A data structure subfield is now accessible for evaluation or
modification during a DBG session. Also, if a program does not specify
a data structure name, one is assigned by the compiler in the form of
ds_1l, ds_ 2, and so on in the order the structures are defined in the
program (SPAR 3004806) .

VREG now follows the standard Prime suffix convention for filenames,
To be oompatible with previous revisions, VRFG recognizes and accepts
either the .VREG or .REG suffix, in that order (SPAR 3006985).

If a lookahead record was defined before other input record types,
usually numeric sequence types, reading from the file caused the status
of the reocord id indicators to be invalid and subsequent calculations
and output conditioned by those indicators never occurred, This has
been corrected (SPAR 3007426).

First Edition 4-86

LANGUAGES

OUTSTANDING PROBLEMS

It is not possible to set a break point on all TAG statements in VREG
programs. A temporary workaround is to set the break point on the next
executable calculation statement (SPAR 3006403) .

ENVIRONMENT

The VRPG compiler needs the file COMMON_ENVELOPE.RUN in the LIBRARIES*
directory to run.

INSTALLATION AND BUILD PROCEDURES

VREG is now supplied in two directories, VREG and VRPG_LIBRARY. In
order to use VRRG, the wuser must run two install files,
VREG, INSTALL,OMI from the UFD VRRG and VRPG_LIBRARY, INSTALL.COMI from
the UFD VRPG _LIBRARY.

The default options of the VRFG compiler may be changed by your System
Administrator by running TOOLS>RFGDF.CPL. When this is done, the name
of the error file to be used is now called VRFGDATA instead of RPGDATA,
See the System Administrator's Guide for further information on
changing compiler options.

Note that the following files are no longer needed and should be
deleted by your System Administrator:

CMDNCO>VREG, SAVE SYSTEM>VREG, SHARE, (OMI,

SYSTEM>VR2142 SYSTEM>VR2143
SYSTEM>VR2144 SYSTEM>VR2145
SYSTEM>VR2146 TOOLS>REGDF. SAVE

The line sharing the compiler in the system start-up file PRIMDS.(OMI
should also be deleted.

4-87 First Edition

CHAPTER 5

DATA MANAGEMENT SYSTEMS

NEW FEATURES AND CHANGES

F77 Interface

This release provides an interface between DBMS and the F77 compiler.
If you have F77 installed on your system and plan to use it for writing
DBMS DML programs, you must obtain the UFD DBMSF77 from the system
tape. DBMSF77 has a structure identical to that of DBMSFIN; see FILES
ON SYSTEM TAPE of this document.

The utilities are invoked in the same manner for DBMS F77 subschemas
and DMI. applications as they are for DBMS FIN subschemas and
applications. See CREATION OF A DML APPLICATION PROGRAM for a
description of how to create F77 DML application programs.

Features of F77 include support for long variable names, the CHARACTER
data type, ILOGICAL*4 default for 1logical data type declaration, and
INTEGER*4 default for integer data type declaration. F77SUBS (F77
subshema compiler) and F77DML (F77 preprocessor) support these features
in the following manner (note the distinctions between F77 and the DBMS
support of F77):

® Data names may be up to 30 characters in length (versus F77's 32

character name length support) and may include the $ (dollar
sign) and _ (underscore) characters.

5-1 First Edition

Software Release Document

e Character strings are supported with a new syntax; for example,
CHARACTER*14 FIRST NAME as opposed to FIN's CHARACTER FIRST NAME
= FNAME (7).

Note

Character string length must be declared as an even
number,

e Variables declared as INTEGER or LOGICALL in an F77 subschema
will be stored as half-words; that is, 16 bits versus F7/'s
default to full 32-bit words, and variables declared as
INTEGER*4 in an F77 subschema will be stored as full words (32
bits). ;

DMLCP

Two new formats of the FIND/FETCH IMI. statements have been added to
support partial key processing:

Format 7 — Partial Key Search:

FETCH
{ } record VIA [CURRENT OF] SET set SUBKEYED item-list.
FIND

This statement bases selection on the values contained in item-list,
The items in item-list are implicitly qualified by record and must
oonstitute a leftmost subset of a search or sort list in set ocontaining
record. No nonkey items are allowed. DBMS then selects a record
having values for items in the item—list that are greater than or equal
to the values in the User Work Area. If more than one record
occurrence meets these criteria, DBMS selects the first record it
finds. (The set is searched in the NEXT direction.)

If the CURRENT phrase is used, IBMS bases record selection on the
current set occurrence of set. If the CURRENT phrase is not used, DBMS
bases record selection on the SET OCCURRENCE SELECTION clause defined
for the named record and set.

Though this format is similar to Format 5, some important differences
should be noted:

® The statement will not fail if no equality match is made. It
only fails with a 'No Record Satisfies Find' exception if the
values in the User Work Area are beyond all entries in the
search list for the designated set occurrence.

First Edition 5-2

DATA MANAGEMENT SYSTEMS

e The SUBKEYED clause is required in all cases, The items in
item-list must oonstitute a leftmost subset of a search or sort
key in set. No nomkey items are allowed.

For example, assume the following set structure having a SEARCH list
with concatenated key items HIRE-DATE, LAST-NAME:

| DEPARTMENT

R

;§s

#FETCH EMPLOYEE VIA CURRENT OF SET DEFPT-EMP SUBKEYED H LA LT,

Assume the HIRE-DATE field in the User Work Area was assigned the value
'06/01/83'. The above DML statement will retrieve the employee record
for the first employee in the current department who was hired on or
after June 1, 1983. If no employees h