PRINTING HISTORY — Subroutines Reference Guide

Edition Date Number Software Release
*rirst Edition March 1979 PDR3621 16.3
Second Edition January 1980 PDR3621 17.2.
Update 1 December 1980 PTU2600-078 18.1
Third Edition July 1982 DOC3621-190 19.0
Update 1 April 1985 UPD3621-31A 19.4

*This edition is out of print.

A vertical bar in the margin of the Table of Contents indicates an
addition since the last printing.

CUSTOMER SUPFORT CENTER

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HON TO ORDER TECHNICAL DOCUMENTS

Obtain an order form, a catalog, and a price 1list from one of the
following:

Inside U.S. Outside U.S.
Software Distribution Contact your local Prime
Prime Computer, Inc. subsidiary or distributor.

74 New York Ave,
Framingham, MA 01701
(617) 879-2960 X2053

iii

Contents

About This Book xi
Suggested References xi
Prime Documentation Conventions xi
Additiomal Documentation Conventions xiii
PART I - OVERVIEW
1 INTRODUCTION
Document Organization 1-1
Major Changes in the Rev. 19
Subroutine Documentation i-2
What Is Not in This Book 1-3
2 OVERVIEW OF SUBROUTINES
Overview of Subroutine Use 2~1
Location of Libraries 2-5
Overview of the Libraries - 2-5
PART IT - THE LANGUAGE INTERFACE
3 THE BASIC/VM INTERFACE
Introduction 3-1
Data Types 3-4
Other Things to Know 3-6
Sample Programs 3-7
4 THE (QOBOL: INTERFACE -
Introduction 4-]1
Data Types 4-1
Other Things to Know 4-5
Sample Programs 4-6
5 THE FORTRAN INTERFACE
Introduction 5-1
Data Types 5-1
Using SYSQOM Tables 5-7
Sample FIN (FORTRAN IV) Programs 5-7
Sample F77 (FORTRAN 77) Program 5-11
Sample File System Programs 5-12

6

7

8

10

11

12

THE PASCAL INTERFACE

Introduction

Data Types
Using SYS(OM Tables
Sample Programs

THE PL/I SUBSET G INTERFACE

Introduction

The OPTIONS (SHORTCALL) Declaration
Data Types

Using SYSCOM Tables

Sample Programs

THE PMA INTERFACE

Introduction

Data Types

Using SYS(OM Tables

Direct—-entrance Calls to FRIMOS —
The PCL Instruction

Sample Programs in V-mode

Sample Programs in R-mode

PART IIT - PRIMOS SUBROUTINES

FILE MANAGEMENT SUBROUTINES

Definitions
Subroutine Descriptions

SYSTEM SUBROUTINES

PART IV — MATH, SORT, AND APPLICATIONS
LIBRARY SUBROUTINES

FORTRAN MATRIX LIBRARY (MATHLB)

Scope of MATHIB
Subroutine Conventions
Subroutine Descriptions

APPLICATIONS LIBRARY

General Description

APPLIB Routines

Naming Conventions

Library Implementation and Policies
String Manipulation Routines

User Query Routines

vi

7-1
7-2

7-6
7-1

8-1
8-4
8-6

8-6
8-7
8-11

9-1
9-6

111
111
11-3

13

14

16

17

18

19

File System Routines
Description of Subroutines
Format Summary
SYSQOM>ASKEYS

SORT LIBRARIES

Sort Subroutines Overview

VSRILI (V-mode) — Subroutine

Descriptions

Cooperating Merge Subroutines
Cooperating Sort Subroutines

Sample User Input Procedure

SRILIB (R-mode) — Subroutine

Descriptions

MSORTS and VMSORT — Subroutine

Descriptions

12-6
12-8
12-69
12-71

13-1
13-7
13-13
13-17
13-23
13-26

13-28

PART V - INPUT/OUTPUT LIBRARY SUBROUTINES

INTRODUCTION TO IOCS

How to Use Part V

Arquments to IOCS Subroutines

DEVICE ASSIGNMENT

Temporary Device Assignment
Permanent Device Assignment

DEVICE-INDEPENDENT DRIVERS

Data Formats

Arquments for Device—independent

Drivers
Descriptions of Subroutines

DISK SUBROUTINES

Arquments
Driver Subroutines
Obsolete Disk Subroutines

14-1
14-2

15-1
15-2

16-2

16-2
16-3

17-2
17-2
17-4

USER TERMINAL AND PAPER-TAPE SUBROUTINES

Overview
List of Subroutines

OTHER PERIPHERAL DEVICES

Line Printer Subroutines
Printer/Plotters

vii

18-1
18-1

19-1
19-11

Card Processing Subroutines 19-15
Magnetic Tapes 19-23

PART VI - QOMMUNICATIONS CQONTROLLERS AND
REALTIME SUBROUTINES
20 SYNCHRONOUS AND ASYNCHRONOUS CQONTROLLERS

Synchronous Controllers 20-1
Asynchronous Controllers 20-18

21 SEMAPHORES AND TIMERS

Realtime and Interuser Communication

Facilities 21-1
Semaphores 21-1
PRIME Semaphores 21-7
Coding Considerations 21-9
Pitfalls and How to Avoid Them 21-10
Locks 21-13
Description of the Subroutines 21-16

PART VII - (ONDITION HANDLING

22 QONDITION MECHANISM SUBROUTINES

Introduction 22-1
Creating and Using On—units 22-3
Examples of Programs 22-6
Additional Example Programs 22-9
Crawlout Mechanism 22-16
Condition Mechanism Subroutines 22-16
System—def ined Conditions 22-25
Data Structure Formats 22-43

PART VIII - LIBRARY BUILDING AND MANAGEMENT

23 LIBRARY MANAGEMENT

LIBEDB 23-1
23-2
Examples 23-5
APPENDIXES
A NEW FILE MANAGEMENT SUBROUTINES
FOR REV, 19
New Features in Rev. 19 A1l
Description of the Subroutines A-3

viii

]

MESSAGE FACILITY SUBROUTINES

Introduction B-1
KEYS (SYSCOM>KEYS, INS)

Introduction c-1

ERROR HANDLING

Introduction D-1
Error Codes D-1
File System Error-handling

Conventions D6

The Error-handling Routine ERRPRS D-7

ERROR HANDLING FOR I-O SUBROUTINES

Introduction E-1
Subroutines for Error Handling E-1
Description of ERRVEC E-4

FORTRAN INTERNAL SUBROUTINES

Internal Subroutines -1
Intrinsic Functions F-4
Floating-point Exceptions F-4

ARITHMETIC ROUTINES CALLABLE FROM PMA

Introduction G-1
Format and Arguments G-1
Single—arqument Subroutines G-5
Two—-arqument Subroutines G-7

SVC INFORMATION

SVCs Called by PRIMDS Subroutines B-1
SVC Interface for 1/0 Calls B-1
SVC Interface Considerations B-1
Operating System Response to SVCs B-4

FILE MANAGEMENT SYSTEM (QONCEPTS

Purpose of the File System I-1
Using the File System I-2
File Types I-5
File Directories I-10
Disk Structures I-12
File Access I-12
Command Files I-15
File Maintenance (FIX_DISK) I-16

Internal File Formats
(Before Rev, 19) I-17

ix

Record Header Formats I-17

UFD Header and Entry Formats I-19
Segment Directory Format I-21
DAM File Organization I-22

J OBSOLETE INDICATION AND
CONTROL SUBROUTINES

Overview J-1
Subroutine Descriptions J-1
K TABLE OF SUBROUTINES BY FUNCTION K-1

L EPF SUBROUTINES

Introduction -1
List of Subroutines L-1
Subroutine Descriptions L4

M OTHER NEW SUBROUTINES
AT REVISION 19.4

List of Subroutines M-1
Subroutine Descriptions M-2

N THE C INTERFACE

Introduction N-1
Data Types N1
The -NOCONVERT Option N-6
The FORTRAN Storage Class N-6
More About C N-6
Using SYSQOM Tables N-6
Sample Programs N-7
O (ORRECTIONS 01

P SUBRUTINES FROM MRUs

Introduction P-1
Subroutine Descriptions

for Rev. 19.1 P-3
Subroutine Descriptions

for Rev, 19.2 P-10
Subroutine Descriptions

for Rev. 19.3 P-20

INDEXES
GENERAL INDEX INDEX-1

| INDEX OF SUBROUTINES BY NAME Sx-1

About
This Book

This book describes the subroutines that can be called from Prime's
high-level languages or the Prime Macro Assembler (PMA). It also
discusses how to call these subroutines from languages supported by
Prime,

Procedures relating to building and modifying libraries and changing
Input/Output Control System device assignments are included for user
convenience. Use of Prime's ocondition mechanism is discussed in
detail. An overview of pre-Rev. 19 PRIMOS file system concepts and
usage is in Appendix I.

SUGGESTED REFERENCES

The Prime User's Guide (PDR4130) contains information on system use,
directory structure, the condition mechanism, CPL files, ACLs, global
variables, and how to load and execute files with external subroutines.
Lanquage programmers will also need the reference gquide for their
particular language. Programmers who wish more advanced information on
library management or I/O manipulation should consult the System
Administrator's Guide (PDR3109).

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Terminal input may
be entered in either uppercase or lowercase.

Convention

UPPERCASE

lowercase

underlining
in
examples

Brackets
[]

Braces

{1}

Ellipsis

Parentheses

()

Hyphen

Explanation

In command formats, words in
uppercase indicate the actual

names of commands, statements,

and keywords. They can be
entered in either uppercase
or lowercase.

In command formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

In examples, user input is
underlined but system prompts
and output are not.

Brackets enclose a list of
one or more optional items,
Choose none, one, or more of
these items (0-n).

Braces enclose a vertical
list of items. Choose one
and only one of these items.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must be
entered exactly as shown,

Wherever a hyphen appears in
a command line option, it is
a required part of that
option,

xii

Example
SLIST

LOGIN user-id

OK, SEG -LOAD

CQALL xxx (key [,altrtn])

CLINEQ
(ALL LINEQ
DLINEQ

ite'ﬂ—x [r itGR—Y] es e
CALL TIMDAT(array, nh)

SFOOL -LIST

ADDITIONAL DOCUMENTATION CONVENTIONS

Notation Conventions

Convention Explanation Example
Angle Brackets Angle brackets must be used as <FOREST>BEECH>LEAF4
<> shown to separate the elements
of a pathname.
Colon A colon before a number :100
: indicates that octal notation
follows.
Apostrophe An apostrophe before a number '100
! indicates that octal notation
follows.

Filename Conventions

Convention Explanation
filename.languagename or Source file (for example, MYPROG.FIN)
filename
filename.BIN or Binary (object) file
B filename
filename.LIST or Listing file
L_filename
filename.SEG or Saved executable runfile (V-mode)
#filename
filename.SAVE or Saved executable object image (R-mode)
*filename

Filenames may be comprised of 1 to 32 characters inclusive, the first
character of which must be nonnumeric. Names should not begin with a
hyphen (-) or underscore (). Filenames may be composed only of the
following characters: 2A-%Z, 0-9, _ # $& - * ., and /.

See the manual for each language for an explanation of how the various
names for source, object, listing, and runtime files relate to each
other, A general explanation is also in the Prime User's Guide.

Xiii

Note

On some devices, the underscore (_) may print as back arrow
(«).

xXiv

PART I
Overview

Introduction

DOCUMENT ORGANIZATION

This guide is divided into eight parts which are detailed in the Table
of Contents. They cover the following topics:

I Overview
II Language interfaces to standard subroutines

I11 PRIMOS subroutines

v Math, applications, and sort library subroutines

\Y Input/output library subroutines

VI Subroutines that support communications controllers and
semaphor es

VII Subroutines that support the condition-handling mechanism

VIII Library management for object libraries
In addition, the Appendixes contain tables, new Rev. 19 subroutines,

and some information of use only for revisions of PRIMOS before 19.
There is a general index, and also an index of subroutine names only.

1-1 Third Edition

DOC3621-190

MAJOR CHANGES IN THE REV. 19 SUBROUTINE DOCUMENTATION

Chapters 1 and 2 have been rewritten. Chapters 3 through 8, the
language interfaces, have been added. These additions have caused old
Chapters 3 through 17 to be renumbered and, in some cases, reorganized,
0ld Chapter 3 is incorporated into Appendix I. Chapters 21 (SEMAPHORES
AND TIMERS) and 23 (CONDITION-MECHANISM SUBRQUTINES) have been
rewritten. Appendixes A, B, and K have been added. The index of
subroutines by name has been expanded to include a one-line description
of each subroutine. 1In chapters not mentioned above as new or
rewritten, change bars in the margin mark significant changes in
content.

The chapters and appendixes have been renumbered as follows:

o1d New

1 1

2 2

3 Appendix I

4 9

5 10

6 5

7 FORTRAN guides

8 FORTRAN guides

9 Appendix G

10 11

11 12

12 13

13 14, 15

14 17, Appendix E
15 16

16 14, 17, 18, 19
17 17

18 18

19 19

20 20

21 21

22 23

23 22

A F

B

C H

D C

E I

F Deleted

G D

Third Edition 1-2

INTRODUCTION

The following subroutine descriptions have been added in this edition
of the Subroutines Reference Guide:

The new ACLs, file maintenance, and date-retrieval subroutines
in Appendix A.

The message-support subroutines in Appendix B,
APSFX$ - Append a suffix to a pathname.

ASNINS - Assign AMLC line.

CLSPIX - Parse command line.

FNCHKS - Check a filename for valid format.
GCHAR - Get a character from an array.

GVSGET - Retrieve the value of a global variable,
GVSSET -~ Set the value of a global variable.
ISAA12 - Read ASCII from terminal or input stream.
IDCHKS - Check an id for valid format.

LONSCN - Enable or disable logout notification,
LONSR - Retrieve logout notification information.
MKONSP - Create an on—unit from F77 or PL1G.
MRG2$S - Return ﬁext merged record.

MRG3$S - Close merged input files.

PHNTMS - Start a phantom,

PWCHKS - Check a password for valid format.,
QSREAD - Read quota information.

QSSET - Set quota maximum.

SCHAR - Store a character in an array.

SEMSCL - Close named semaphore,

SEMSOU - Open named semaphore by file unit.

1-3 Third Edition

DOC3621-190

® SEMSTW - Timed wait for named semaphore.

® OSRSFXS$ - Search for a file with any of a list of suffixes.

® TNCHKS - Check a pathname for valid format.

WHAT IS NOT IN THIS BOOK

Only subroutines that are useful for programmers are discussed in this
guide. Libraries such as QOBOL (VCOBLB), RPG (RPGLIB), or PLIG
(PL1GIB) contain subroutines that are used exclusively by the
appropriate compiler, The use of these libraries is not discussed
here, nor is the use of FORTRAN library subroutines such as IFIX or INT
that are generated and used only by the FORTRAN ocompiler. Thus, old
Chapters 7 and 8 have been omitted, and the material is in the relevant
FORTRAN quide. In addition, the obsolete subroutines ATTACH, CMREAD,
CNAMES, COMINP, PRWFIL, RESTOR, RESUME, SAVE, and SEARCH have been
deleted.

Third Edition 1-4

Overview of
Subroutines

OVERVIEW OF SUBROUTINE USE

This is a reference guide and is intended for users who already know
how to call subroutines from a high-level language or from PMA., The
following overview merely summarizes conventions for calling
subroutines., For more information, see the chapter on your particular

langquage.

A subroutine is a module of code that may be called from another
module., It is useful for performing operations that cannot be
performed by the calling language, or for performing standard
operations faster. Users may write their own subroutines to supply
customized or repetitive operations, However, this guide discusses
only standard subroutines provided with the PRIMOS operating system or
in standard libraries.

Functions and Subroutines

In this quide, a function is a call that returns a value. It must be
called by being assigned to a variable, for example:

VALUELl = DELES$A(argl, arg2)

2-1 Third Edition

DOC3621-190

A subroutine returns values only through its arquments., It is called
this way:

CALL GVSGET(argl, arg2, arg3, argd)

However, the word subroutine is also used as the collective term for
both of these modules.,

Direct Entry Calls

All recent standard subroutines are direct entry calls., A direct entry
involves execution of a routine within PRIMDS, the Prime operating
system, The library call in this case contains only an interlude or
call to the PRIMOS routine. This feature is of direct use only to the
PMA programmer, who may use the PCL (procedure call) instruction rather
than CALL to call the subroutines. For programmers in all languages,
the feature means that repeated calls to the subroutine are faster, but
the call is only available in V-mode and I-mode. A list of direct
calls is supplied in Chapter 8.

Subroutine Arguments

Subroutines usually expect one or more arguments from the calling
program. These arguments must be of the data type expected, and be
passed in the order expected. Table 3-1 in Chapter 3 shows how a data
type named in one language should be described in your calling language
in order to be acceptable to the subroutine. All standard Prime
subroutines are written in FORTRAN, PMA, or a system version of PL/I
Subset G (PL1G). Chapters 3 through 8 discuss how to translate the
data types expected by these languages into other Prime languages.

It is necessary, however, that arguments be passed in the same order as
expected by execution, If too few arguments are passed, execution
causes an error message such as POINTER FAULT or ILLEGAL SEGNO. If too
many arguments are passed, the subroutine ignores the extra arguments,
but will probably perform incorrectly.

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of
bits that must be set on or off.

A data item is stored in a computer as a collection of bits, which can
each have one of two values, off or on. On Prime computers, off is
arbitrarily equated to 0 or false, and on is equated to 1 or true.
(This is not the same as the FORTRAN values ,FALSE. and .TRUE., which
are the logical data type.) When bits are stored as part of a group,
the position of the bit gives it another value in addition to 1l or 0.

Third Edition 2=2

OVERVIEW OF SUBROUTINES

Its position equates it to a power of 2. Consider an arqument that
contained only two bits, represented in Figure 2-1.

bit 1 bit 2

2#%] 2%%Q

Values of Bit Positions —— Two Bits
Figure 2-1

The low-order bit would be in the position of 2 to the 0 power, and its
value, 1f ON, would be 1. The high-order bit would be in the position
of 2 to the first power, and its value, if ON, would be 2. (If OFF,
the value of a bit is always 0.) By convention, the low-order bit is
called the rightmost bit and the high-order bit is called the leftmost
bit,

In an arqument containing 16 bits, choose the bits that you want to set
ON, compute their value by position, and add these values, The
resulting decimal value is what you should assign to the subroutine
argument for the options you want., For example, if you want to set the
sixteenth and the seventh bit, compute 2 to the 0 power plus 2 to the
ninth power, which amounts to 1 plus 512, or 513. Fiqure 2-2
illustrates values of bit positions in a 16-bit argument.

Values of Bits in a 16-bit Argument
Fiqure 2-2

2=-3 Third Edition

DOC3621-190

Key Names and Code Names

Many subroutine descriptions in this guide use data names for numeric

values, These names are in the form x$yyyy, where x is either K, A, or
E, and yyyy is a combination of letters. Examples are:

KSCURR

ASDEC

ESFNTF

The values of these Kkeys are included in various files in the UFD
called SYSOOM. It is recommended that programs use these data names
rather than the numeric values for clarity. How to insert the key
values in a program is discussed for each language in Chapters 3
through 8.

Loading Subroutines

A subroutine may be written in a different language from that of the
calling program; in any case, the call only causes the object or
binary code to be called. This code is in machine language, as is the
object code that calls it at runtime. In PRIMOS, all subroutines must
be loaded in the runtime module (memory image) in order to be found
when they are called., Loading is done with the SEG utility for V-mode,
and with the LOAD utility for R-mode. All object files loaded into one
runtime file must be in the same mode, which means that not all
subroutines can be used with all languages. Loading of all system
subroutines in the FINLIB, PFINLIB, and PRIMOS libraries is done with
the LI command of SBEG or LOAD, with no operands. Loading of
subroutines in the other libraries must be done by the pregrammer with
the coomand LI plus the library name after SEG or LOAD is invoked.,
Examples of the loading process are given in Chapters 3 through 8.

If you try to execute a program that calls subroutines and get a
runtime error message, reload and, after the LI command, use the MAP 3
command to see whether any missing subroutine names are displayed., If
necessary, refer to the section on LOCATION OF LIBRARIES below to find
where the missing subroutine is stored. (MAP 3, along with other load
options, is explained in detail in the LOAD and SEG Reference Guide).

The loading process is different for BASIC/VM, which takes care of
editing, compiling, loading, and execution within the special
enviromment it creates,

The examples at the end of Chapters 3 through 8 show how to load
programs that include subroutines,

Third Edition 2-4

OVERVIEW OF SUBROUTINES

LOCATION OF LIBRARIES

The object ocode for the standard library subroutines is contained in
the UFD named LIB, and is loaded with the command LI for LOAD or SEG.
Other libraries such as VSRILI and VAPPIB must be loaded separately
with the LI command followed by the library name. To get a list of all
the libraries in the UFD LIB, use the commands:

ATTACH LIB
LISTF

(or LD for an alphabetical listing)

The libraries described in this gquide are:

Library R-mode File V-mode File
PRIMOS including LIB>FINLIB.BIN LIB>PFINLB.BIN

file system,

condition mechanism,

controllers,

semaphore handlers,

and IOCS
Application LIB>APPLIB.BIN LIB>VAPPIB.BIN
In-memory sorts LIB>MSORTS>BIN LIB>VMSORT.BIN
Matrix LIB>MATHIB.BIN not available
Sort LIB>SRILIB.BIN LIB>VSRTLI.BIN
Spool LIB>SPOCLS.BIN LIB>VSPOOS .BIN

Note

The R-mode libraries are not being updated. MNewer subroutines
(such as GPATHS or LOGOSS) are in the V-mode libraries only.

FINLIB.BIN has been duplicated as SVCLIB.BIN.

There are other libraries in LIB that are not described in this quide.
The subroutines in some of these libraries, such as PRIMENET, FORTRAN,
the Block Device Interface, (BDVLIB), and MIDAS (KIDAIB and VKDALB) are
discussed in other gquides. The calls to subroutines in other
libraries, such as RPG, are generated automatically by compilers. The
details need never concern the programmer.

OVERVIEW OF THE LIBRARIES

FORTRAN Library

The FORTRAN library contains many subroutines that are discussed in the
following sections, such as the IOCS library. However, this library is
also very important because it is the basis for most other libraries,
including language libraries. This is why, except with PMA, loading of
any program usually includes the command LI with no operand, whether
the program contains subroutine calls or not. The command LI loads the
FORTRAN library and checks that all subroutines called are present.

2-5 Third Edition

DOC3621-190

The FORTRAN library file also contains FORTRAN function subroutines and
math subroutines. They are described in the FORTRAN Reference Guide
and the FORTRAN 77 Reference Guide.

The FORTRAN library also contains arithmetic subroutines that the
FORTRAN compiler uses. Some of these subroutines can also be called
from PMA. These routines perform arithmetic operations on single-
precision integers, single- and double-precision floating point, and
complex numbers. They are listed in Appendix F.

File-handling Subroutines

All file handling is done by a collection of special subroutines, some
internal to PRIMOS, and others available as application library
routines, PRIMOS file-handling subroutines are described in Chapter 9.

All the PRIMOS file-handling subroutines called by the user are loaded
with the FORTRAN library.

File Handling in User Programs: The file-handling subroutines simplify
communication between the PRIMOS file structure and user programs,
They can be used, for example, to verify the existence of a file before
the program accesses it, to delete a file, or to check for a valid
filename entered by a user.

Many of these subroutines allow a program to access files directly
through file unit numbers, which is faster than access by filenames.
File units are explained in Chapter 9. For example, at the program
level the filename TEXT and the file unit number 4 can be associated by
the PRIMOS subroutine SRCHSS:

CALL SRCHSS$ (KSWRIT, 'TEXT', 1, 4, type, code)

Afterwards, other subroutines can access the file by unit number rather
than by name, which is faster.

See Chapter 9 for a more thorough discussion of SRCHSS.

As another example, with the aid of the PRIMOS subroutine PRWFS$, the
FORTRAN user can bypass formatted I/0 and write directly from memory
arrays to the file system, as in:

CALL PRWFSS (KSREAD, 1, LOC(TEXT), 36, POS, WORDS, CODE)

This subroutine call reads 36 words from the file associated with file
unit 1 to the array TEXT. WORDS and CODE are returned values (number
of words transferred and error code). POS is the position in the file,

The use of file system subroutines has its advantages and

disadvantages. For a PL1G program that does a great deal of 1I/0, the
programmer can save on runtime by calling these subroutines instead of

Third Edition 2-6

OVERVIEW OF SUBROUTINES

using PL1G I/O statements. However, the program with its subroutine
calls is not transportable to a non-Prime machine, and new programmers
will not be able to understand or maintain the nonstandard program
easily.

General PRIMOS Subroutines

General PRIMOS subroutines include those listed in Chapter 10.
(Chapters 9 and 19 through 22 also discuss PRIMOS subroutines with
specialized functions.) PRIMDS subroutines are loaded when the FORTRAN
library is loaded with LI, They include subroutines for:

® Management of system information

® Glcbal variable management

a

- e Lo e Y 2

wentom handling

[
lav}

¢ ACL system management (See Appendix A.)

Matrix Library

MATHIB (FORTRAN matrix subroutines) contains subroutines to perform
matrix operations, solve systems of simultaneous linear equations, and
generate permutations and combinations of elements. They are available
only in R-mode. (See Chapter 11 for the scope and use of this
library.)

Applications Library

The Applications library provides users with an easy-to-use library of
service routines (Chapter 12). They range from the very simple, which
do little more than call a lower-level routine, to relatively
high-level functions such as:

@ String-handling routines

e User query routines

® System information routines

e Mathematical routines

e Conversion routines

@ File system routines

@ Parsing routines

2-7 Third Edition

DOC3621-190

Subroutines in this library often duplicate the work of subroutines in
the File System library, or even call those routines. For example, to
delete a file, you may use SRCHS$S or TSRCSS in the File System library,
or you may call DELESA in the Applications library. If you compare
those routines, you will see that DELESA requires fewer arquments, and
is simpler to call. Of course, it may be slightly slower because it
makes calls to three subroutines.

Sort Libraries

There are four libraries containing sort subroutines, all presented in
Chapter 13:

® VSRTLI subroutines are used to perform most file sorting and
merging operations,

® SRTLIB is the R-mode version of VSRTLI.

® VMSORT contains several specialized in-memory sort subroutines
and a binary search subroutine.

® MSORTS is the R-mode version of VMSORT.

I/0 Subroutines

The I/0 subroutines are those relating to data transfers and device
operations, The subroutines are managed by the Input/Output Control
System (IOCS). The IOCS subroutines perform input/output between the
Prime computer and the disks, terminals, and peripheral devices within
the system configuration. Many of these calls have been outmoded by
newer PRIMOS subroutines. The I/O subroutines include:

® Device-independent drivers that route an I/0O request to the
independent driver, thus allowing the user to maintain device
independence. (See Chapter 16.)

e Disk subroutines that perform disk input/output operations,
(See Chapter 17.)

® Subroutines that transfer data between a user terminal or paper-
tape device and memory. These are helpful, among other things,
for using nonprinting characters., (See Chapter 18.)

® Peripheral device routines that oontrol 1line printers, a

printer/plotter, serial and parallel card readers, 7-track, and
9-track tapes. (See Chapter 19.)

Third Edition 2-8

OVERVIEW OF SUBROUTINES

Synchronous and Asynchronous Controllers

These subroutines perform the movement of raw data for assigned AMIC or
SMIC lines. (See Chapter 20.)

Semaphore-handling Subroutines

PRIMOS supports user applications that have realtime requirements or
the need to synchronize execution with other user programs. This
support is a set of subroutines that provide access to Prime's
semaphore primitives and to internal timing facilities. (See Chapter
21.,)

Condition-mechanism Subroutines

The condition mechanism is activated when a program encounters such
unexpected occurrences as end of file, illegal address, an attempt to
divide by 0, or use of the BREAK key from a terminal.

The condition mechanism's goal is either to repair the problem and
restart the program, or to terminate the program in an orderly manner.
To achieve this goal, the condition mechanism activates diagnostic or
remedial code blocks called on—-units.

Users writing in FORTRAN IV, FORTRAN 77, PL1G, or PMA can define their
own on-units, However, all these users are automatically protected by
PRIMOS system on-units., When an error condition occurs, the condition
mechanism looks for on—units within the executing procedure., If it
finds none, or if the procedure's on—units call for further help, the
condition mechanism searches first through any calling procedures'
on—units and then through the system's on-units, activating the first
appropriate on-unit it finds.

The system or default on-units, and how to write individualized
on-units, are described in Chapter 22 of this quide.

2-9 Third Edition

PART 11

The Language Interface

The BASIC/VM

Interface

INTRODUCTION

BASIC/VM has only two types of operand, strings and double-precision
(64-bit) floating point. However, when a subroutine is declared in
BASIC, several arqument types may be declared for the subroutine. The
BASIC/VM compiler then handles all conversions of BASIC operands to and
from the subroutine argqument types.

External functions may not be called from BASIC/VM. However, most
functions in this manual may also be called as subroutines.

Table 3-1 summarizes the argument types of FORTRAN and PL1G subroutines
that can be called from BASIC/VM, and how to declare these arguments.

To declare a subroutine argument type, use the statement:

SUB FORTRAN sub-name [(type, type...)]
The possible types are INT, INT*4, REAL, and REAL*8. The following is
a detailed discussion of FORTRAN and PL1G argument types, as well as
some generic types, and how they relate to the BASIC/VM data types.
To call a subroutine, use the statement:

Literals may be used as arguments in BASIC/VM subroutine calls.

3-1 Third Edition

DOC3621-190

Table 3-1
Data Types
GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM QOBOL v 77 PASCAL PL1G
(1)
1 bit —*— —*- —%— —*— it Bit
Bit(1)
(2) (2) (3)
16-bit INT CoMP INTEGER INTEGER*2 | Integer Fixed Bin
Half-word INTEGER*2 |LOGICAL*2 | Boolean Fixed
LOGICAL Bin(15)
INTEGER (4)
32-bit INT*4 —K— INTEGER*4 | INTEGER*4 | Subrange |Fixed
Word LOGICAL Bin(31)
LOGICAL*4
64-bit
Double - —_K— — — —F —
Word
Float
32-bit REAL REAL REAL Real Binary
Float single —%— REAL*4 REAL*4 Float
precision Bin (23)
64-bit
Float double | REAL*8 aithe REAL*8 REAL*8 —%— Float
precision Bin(47)
DISPLAY (5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER CHARACTER | ARRAY Char(n)
(Max. 32767) PIC 9(n) *n [1..n] OF
PIC X(n) CHAR
Varying (6) (6) (6) (6) (6)
character -k Char(n)
string Varying
(7) . (8)
48-bits —%= —*— —*— iehe <type> Pointer
3 Half-words

* Not available,

Third Edition 3-2

(1)

(2)

(3)

(5)

(6)

(7

(8)

THE BASIC/VM INTERFACE

Notes to Table 3-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PL1G, '1'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively, This 1is not directly compatible with Pascal or
PL1G.

Boolean data in Pascal is represented in 16 bits where the
sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PL1G,

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PL1G is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard
Pascal type.

3-3 Third Edition

DOC3621-190

DATA TYPES

INTEGER*2 or FIXED BIN(15)

The INTEGER*2 expected by FORTRAN subroutines is PL1G's FIXED BIN(15),
also called just FIXED BIN. It must be declared as INT in BASIC/VM's
subroutine declarations, In the BASIC program, the variable or
constant to be passed is the normal numeric operand, which is
double-precision floating point, and is not explicitly declared.

Sample Program 2 illustrates passing an INTEGER*2 argument.

INTEGER*4 or FIXED BIN(31)

The INTEGER*4 expected by FORTRAN subroutines must be declared as INT*4
in BASIC/VM's subroutine declarations., In the BASIC program, the
variable or constant to be passed is the normal numeric operand, which
is double~precision floating point, and is not explicitly declared,

Sample Program 3 below illustrates use of an INTEGER*4 argument with
the subroutine RNUMS$A.

RFAL*4

The REAL or REAL*4 arqument expected by FORTRAN subroutines must be
declared as REAL in BASIC/VM's subroutine declarations. In the BASIC
program, the variable or oonstant to be passed should be used as the
normal numeric operand, which is double-precision floating point, and
is not explicitly declared.

RFAL*8

The REAL*8 argument expected by FORTRAN subroutines must be declared as
REAL*8 in BASIC/VM's subroutine declaration. In the BASIC program, the
variable or constant to be passed should be the normal numeric operand,
which is double-precision floating point, and is not explicitly
declared.

Third Edition 3-4

THE BASIC/VM INTERFACE

Integer Arrays

Integer arrays in FORTRAN may contain either numbers or characters. An
integer array should be declared in the BASIC/VM subroutine declaration
as INT or INT*4, depending on what the subroutine expects. 1In the
BASIC program, it should be declared either as the array x(y), where x
is the variable name and y is the dimension, or as the string X$ with
the proper number of characters, again depending on which data type is
expected.

Sample Program 1 below illustrates receiving an integer array
containing two data types from the subroutine TIMDAT.

Caution

Multidimensional arrays cannot be passed to FORTRAN from other
languages, because FORTRAN is the only language to use a
column—-row format.

ASCII Character (String)

A CHARACTER arqument expected by a FORTRAN 77 subroutine should be
declared in the BASIC/VM subroutine declaration as INT. In the BASIC
program, it should be used as a character string (X$), which is not
explicitly declared but must have the number of characters expected by
the subroutine.

Sample Program 1 below illustrates receiving a character string from
the subroutine TIMDAT,

CHARACTER (n) NONVARYING

This PL1G type, usually declared simply as CHARACTER(n), may be passed
as a character string of n characters. The argument should be declared
in the BASIC/VM subroutine declaration as INT. In the BASIC program,
it should be used as a character string (X$) with the expected number
of characters.

String Arrays

String arrays in BASIC cannot be passed as arguments to FORTRAN
subroutines.

3-5 Third Edition

DOC3621-190

LOGICAL

IOGICAL or LOGICAL*2 arguments expected by a FORTRAN subroutine should
be declared as INT in the BASIC/VM subroutine declaration. 1In the
program, variables or constants to be passed to the subroutine should
be used as normal mumeric operands (not explicitly declared). They
will have a value of 0 (false) or 1 (true).

Sample Program 4 below illustrates accepting a logical argument from
the subroutine TEXTOS.

CHARACTER (*) VARYING, POINTER

These arguments expected by FORTRAN or PLIG subroutines cannot be
passed from a BASIC/VM program.

BIT(1

This arqument expected by a PL1G subroutine cannot be passed from a
BASIC/VM program unless it is declared as BIT(l) ALIGNED. In the
latter case, the argument may be treated as an INTEGER*2 whose value is

OTHER THINGS TO KNOW

System Subroutines Not Recognized by BASIC/VM

If a FORTRAN subroutine is in VAPPLB, it may not be recognized by the
BASIC/VM compiler. This is because only some of the subroutines from
this library have been included in the BASIC/VM compiler so that they
may be called by various BASIC/VM commands. Others were omitted
because of size considerations. If you make a subroutine call to a
routine in VAPPIB (Chapter 12), and it compiles correctly but gives the
runtime error message, Entry name xxx not found, then the subroutine is
missing from the BASIC/VM compiler and must be installed. Your System
Administrator may install more subroutines from VAPPLB (or user-written
subroutines) in the BASIC/VM compiler, as explained in the System
Adminjstrator's Guide or the BASIC/VM Programmer's Guide.

Sample Program 3 below uses a VAPPIB subroutine, RNUMSA, that is not in
the standard BASIC/VM compiler.

Third Edition 3-6

THE BASIC/VM INTERFACE

SYSCOM Tables

This guide uses names instead of values of certain subroutine
arquments. There are three classes of value-names, as described below.

Subroutines in VAPPLB sometimes make reference to codes with names in
the format A$xxxx. BASIC cannot accomodate these names, and so the
BASTIC program must check for the numeric equivalents of these oodes.
The numeric equivalents are in the table at the end of Chapter 12,
They are also listed in the file SYSCOM>ASKEYS.INS.FIN, which can be
read or spooled from the teminal.

Some subroutines require keys, which are listed with names in the
format K$xxxx. The numeric equivalents of these keys must be read from
one of the SYSQOM>KEYS.INS.language files. They are also listed in

Appendix C,

Finally, a subroutine may return an error code in the form ESxxxX. The

meaning of the numeric error code returned is listed in Appendix D, or
may read from one of the SYSCOM>ERRD, INS, language files,

Sample Program 2 below illustrates use of a numerical equivalent for

the key in SYSCOM>KEYS.INS.FIN. Sample Program 3 illustrates the use
of ASKEYS,

SAMPLE PROGRAMS

Program 1 — Accepting an Integer Array or Character String

10 !THE FOLLOWING PROGRAM ILLUSTRATES A CALL USING A CHARACTER
20 ISTRING. IT CALLS THE PRIMDS SUBROUTINE TIMDAT, WHICH RETURNS
30 !AN ARRAY OF MIXED ASCIT AND INTEGER FORMAT ELEMENTS .,

35 ITO CAPTURE BOTH TYPES IN BASIC, THE SUBROUTINE IS CALLED

40 !'IWICE:ONCEWI'IHARRAYAAS'IHERE‘IURNARGUMENT,ANDTI—IEN
50 IWITH STRING A$ AS THE RETURN ARGUMENT. NOTE ALSO:

60 ! 1) VALUES RETURNED START AT A(0).

70 ! 2) STORAGE SPACE MUST BE ALLOCATED FOR AS$ BEFORE
80 ! THE CALL.

90 !

110 SUB FORTRAN TIMDAT (INT, INT)

120 DIM A(15) REM INTEGER DEFINITION
130 CALL TIMDAT(A(), 28)

140 !

150 AS = SPA(30) REM CHARACTER DEFINITION
lgO CALL TIMDAT(AS,28)

170 !

180 IBEFORE PRINTING THE RETRIEVED INFORMATION, NOTE THAT THE

190 IFIRST THREE AND LAST RETURNED ARRAY ELEMENTS ARE IN ASCII
200 !FORMAT, SO THEY ARE PRINTED AS RETRIEVED THROUGH AS.

210 !OTHER RETURNED ELEMENTS ARE INTEGERS, SO THEY ARE PRINTED AS
220 !RETRIEVED THROUGH ARRAY A,

230 !

3-7 Third Edition

DOC3621-19C

240 PRINT '‘MONTH: ':LEFT(AS,2)

250 PRINT 'DAY: ':MID(AS,3,2)

260 PRINT VYEAR: ':MID(A$'5'2)

270 PRINT 'TIME IN MINUTES SINCE MIDNIGHT: ':A(3)
275 PRINT 'TIME IN SECONDS: ':A(4)

280 PRINT 'TIME IN TICKS: ' :A(5)

290 PRINT 'LOGIN NAME: ':RIGHT(AS, 25)

300 END

To run this program, use the dialog below.

OK, BASICV
BASICV REV19.0
>0LD TIMDIB
SRON

timdtb.basic THU, DEC 17 1981 10:57:32

TIME IN SECONDS: O

MONTH: 12

DAY: 17

YEAR: 81

TIME IN MINUTES SINCE MIDNIGHT: 657
TIME IN TICKS: 134

IOGIN NAME: ANNE

>

Program 2 — Using INT*2 and SYSCOM>KEYS

10 ITHIS SUBROUTINE CALL ILLUSTRATES USE OF THE SYSCOM>KEYS.F
20 IKEYS IN A LANGUAGE THAT CANNOT INVOKE THE SYSCOM TABLE.
30 !

40 PRINT 'BEGINNING OF BASIC PROGRAM'

50 F$ = 'CTRLFL'

60 !

70 IN = KSEXST+KS$IUFD+no argument

80 ITHEREFORE N = 6 + 0

90 !

100 N=6
110 L=6
120 F=1
130 T=0

140 SUB FORTRAN SRCHS(INT, INT, INT, INT, INT, INT)
150 CALL SRCHS$$(N,F$,L,F,T,C)

160 PRINT 'OODE IS: ',C

170 END

Third Edition 3-8

THE BASIC/VM INTERFACE

To run this program, use the following dialog. If the file CIRLFL
exists, the code displayed will be 0, as explained in Appendix D.

OK, BASICV

BRASICV REV19.0

>OLD SRCH

RN

srch.basic THU, DEC 17 1981 11:01:23

BEGINNING OF BASIC PROGRAM
CODE IS: 0
>

Program 3 — Using an INTEGER*4 Argument

Before this program will work, the s
in BASIC/VM, as explained in the System Administrator's Guide. RNUMSA

format.

10 !THIS SUBROUTINE CALL ILLUSTRATES USE OF THE INT*4
20 !PARAMETER AND ALSO OF SYSCOM>ASKEYS

30 !

40 PRINT ‘BEGINNING OF BASIC PROGRAM'

50 F$ = 'ENTER A NUMBER'

100 L =14
111 !
112 ! NUMERIC KEY IS ASDEC, EQUAL TO 1

113 N=1

140 SUB FORTRAN RNUMSA(INT, INT, INT*4, INT)
150 CALL RNUMSA(F$,L,N,V)

160 PRINT 'CODE IS: ',V

170 END

Program 4 — Accepting a Logical Argument

Before this program will work, the subroutine TEXTOS$ must be installed
in BASIC/VM, as explained in the System Administrator's Guide.

10 REM A PROGRAM TO CALL SUBROUTINE TEXTOS TO
20 REM VERIFY THAT A FILENAME ENTERED BY A USER
30 REM HAS A VALID FORMAT

40 REM

50 NS =" !

60 SUB FORTRAN TEXTOS(INT, INT, INT, INT)

70 PRINT

80 INPUT "ENTER NAME OF FILE TO BE CREARTED: ", NS
90 PRINT

100 L1 = LEN(NS)

3-9 Third Edition

DOC3621~190

110 CALL TEXTOS(NS$, L1, L2, T)

120 IF T = 1 GOTO 210

130 REM

140 REM LOGICAL T IS FALSE
150 REM

160 PRINT "INVALID NAME - TRY AGAIN"
170 GOTO 80

180 REM

190 REM LOGICAL T IS TRUE
200 REM

210 PRINT "LENGTH IS", L2

220 PRINT "TRUTH VALUE IS", T

230 PRINT "END OF RUN"

240 END

Third Edition 3-10

The COBOL

Interface

INTRODUCT ION
To call a subroutine from CORCL, use the format:
CALL 'sub-name' [USING data-name-l [, data—name-2] ...]

The sub-name must be the literal subroutine name enclosed in quotes.
The data-names must be described in the DATA division with level-number
01 or 77. Argquments may not be passed to or returned from a subroutine
as literals in COBOL. The sample programs below illustrate subroutine
calls.

External functions may not be called from COBOL., However, most
functions in this book may also be called as subroutines,

DATA TYPES

Table 4-1 summarizes the argument types of FORTRAN and PL1G subroutines
that can be called from COBOL. The following is a discussion of
FORTRAN and PL1G argument types, as well as some generic types, and how
they relate to COBOL data types and structures.

4-1 Third Edition

DOC3621-190

Table 4-1
Data Types
GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL v 77 PASCAL PL1G
(1)
1 bit —%— —*e ~%— —— —*e Bit
Bit (1)
(2) (2) (3)
16-bit INT CoMp INTEGER INTEGER*2 | Integer Fixed Bin
Half-word INTEGER*2 |LOGICAL*2 | Boolean Fixed
LOGICAL Bin(15)
INTEGER (4)
32-bit INT*4 —*— INTEGER*4 | INTEGER*4 | Subrange [Fixed
Word LOGICAL Bin(31)
LOGICAL*4
64-bit
Double —F —F - —_ - —_—r
Word
Float
32-bit REAL REAL REAL Real Binary
Float single —*— REAL*4 REAL*4 Float
precision Bin (23)
64-bit
Float double | REAL*8 —%= REAL*8 REAL*8 - Float
precision Bin(47)
DISPLAY (5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER CHARACTER ! ARRAY Char(n)
(Max., 32767) PIC 9(n) *n [1..n] OF
PIC X(n) CHAR
Varying (6) (6) (6) (6) (6)
character —F Char(n)
string Varying
(7) (8)
48-bits —*- —*— —%- —k— “<type> Pointer
3 Half-words
* Not available,
Third Edition 4-2

(1)

(2)

(3)

—~
i~
N

(5)

———
[2))]
~-

(7

(8)

THE COBCL INTERFACE

Notes to Table 4-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PL1G, '1'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively. This is not directly compatible with Pascal or
PL1G.

Boolean data in Pascal is represented in 16 bits where the
sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PLIG.

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PL1G is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten,

Where <type> is either a user-defined type or a standard
Pascal type.

4- 3 Third Edition

DOC3621-190

INTEGER*2 or FIXED BIN(15)

The INTEGER*2 expected by FORTRAN subroutines is PL1G's FIXED BIN, also
called FIXED BIN(15). It must be declared in COBQL programs as COMP,

signed or unsigned.
Sample Program 1 illustrates a call to the FORTRAN subroutine TNOUA,

which has an INTEGER*2 argument. Sample Program 4 has a call to the
PL/I subroutine GV$GET, which expects a FIXED BIN(15) arqument.

INTEGER*4, FIXED BIN(31), REAL*4, REAL*8, POINTER

Subroutines that expect arguments of these data types may not be called
by COBOL.

BIT(1)

PLIG subroutines that expect arguments of this type may not be called
by COBOL, unless the argument is declared in PL1G as BIT(1) ALIGNED.
In this case the argument may be passed as COMP, with a value of -1 for
false,

Integer Arrays

An integer array in FORTRAN may contain either character or numeric
data, The corresponding COBOL operand should be set up as a table of
the correct data type to receive the information expected. Sample
Program 5 illustrates retrieval of a FORTRAN integer array from the
subroutine TIMDAT. Since the array contains both character and numeric
data, two OOBOL arrays are used.,

Multidimensional arrays may not be passed to a FORTRAN subroutine.

ASCII Character String

An ASCII string expected by a FORTRAN subroutine may be declared as
PIC 9, PIC X, or PIC A. Sample Program 2 illustrates passing an ASCII
string to the subroutine SRCHSS.

Third Edition 4-4

THE COBOL INTERFACE

LOGICAL

IOGICAL or LOGICAL*2 arguments expected by a FORTRAN subroutine should
be declared as COMP in COBOL. The arguments must have a value of 0
(false) or 1 (true).

Sample Program 3 illustrates accepting a logical value from the
subroutine TEXTOS.

CHARACTER (*) VARYING

This PL1G data type is implemented as a record structure, with the
actual number of characters followed by those characters. The two
elements may be represented as follows:

0 5 |A B C D E |
11
COUNT CHARACTER STRING

To declare a comparable structure in COBOL, therefore, requires a
two-element record. The record consists of a COMP item containing the
actual number of characters, plus a PIC X(n), where n is also the
number of characters., The PIC X contains the name to be passed.

Sample Program 4 calls a PL1G subroutine, GVSGET, with two CHAR(*)VAR
arguments,

CHARACTER (n) NONVARYING

This PL1G data type, usually declared simply as CHARACTER(n), may be
passed as a PIC A or PIC X item of n characters.

OTHER THINGS TO KNOW

Subroutine descriptions in this guide sometimes make reference to codes
with names in the format x$yyyy. COBOL cannot accomodate these names,
and so the COBOL program must check for the numeric equivalents of
these codes. There are three categories of these names.

e Same have the format ASyyyy. The numeric equivalents are in the
table at the end of Chapter 12 on VAPPIB. The equivalents are
also listed in the file SYSCOM>ASKEYS.INS.FIN, which can be read
or spooled from the terminal.

4-5 Third Edition

DOC3621-190

® Same subroutines require keys, which are listed with names in
the format KSyyyy. The numeric equivalents of these keys may be
read from one of the SYSCOM>KEYS.INS.x files. They are also
listed in Appendix C.

® Finally, a subroutine may return an error code in the form
ESyyyy. The meaning of the numeric error code returned is
Iisted in Appendix D, or may be read from one of the
SYSCOM>ERRD, INS.x files.

The listings of keys in this quide use decimal numbers, while the files
KEYS,INS.X and ASKEYS.INS.X sometimes use octal notation (marked by a
colon).

Sample Program 2 shows how COBOL may handle the K$EXST code used by
SRCHSS.

SAMPLE PROGRAMS

Program 1 — Using an INTEGER*2 Argument

ID DIVISION,
PROGRAM-ID. CALC.,
ENVIRONMENT DIVISION.

*

CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER, PRIME.,

DATA DIVISION.
WORKING-STORAGE SECTION,
01 DISPLAY~TOTAL PIC X(8).
01 INTERMED-TOTAL PIC X(8) JUSTIFIED RIGHT.
01 TOTAL-WORK PIC S9(6)V99.
01 TOTAL-DISPLAY PIC ——9.99.
01 DISPLAY-LINE.
05 TRANS-CODE PIC X VALUE 'A'.
05 TRANS-AMT PIC X(8).
01 TRANS-INTERMED PIC X(8) JUSTIFIED RIGHT.
01 TRANS-WORK PIC 9(6)99Vv99.
01 ERRBUFF PIC XX VALUE '"207'.
01 COUNTER COMP VALUE 1.

*

PROCEDURE DIVISION.
000-INITIALIZE.

DISPLAY ' '.

DISPLAY 'THIS IS A PROGRAM TO ADD AND SUBTRACT FRCM AN INITI
- 'AL TOTAL.'.

DISPLAY ' ‘.

DISPLAY 'WHAT IS INITIAL VALUE OF TOTAL?'.

DISPLAY ' ** NOTE FORMAT MUST NOT USE DECIMAL POINT.'®

DISPLAY ' ** EX: TO REGISTER $45.25, ENTER 4525.'.

Third Edition 4-6

THE COBOL INTERFACE

ACCEPT DISPLAY-TOTAL.

UNSTRING DISPLAY-TOTAL DELIMITED BY SPACE INTO
INTERMED-TOTAL.

MOVE INTERMED-TOTAL TO TOTAL-WORK.

DIVIDE 100 INTO TOTAL~WORK.

DISPLAY 'ENTER AMOUNT< PRECEDED BY : A FOR ADDITION'.
DISPLAY ' S FOR SUBTRACTION'.
DISPLAY ' Q FOR QUIT'.

ACCEPT DISPLAY-LINE.

PERFORM 013-CONVERT.

PERFORM 010-PROCESS UNTIL TRANS-CODE = 'Q'.

PERFORM 030-PRINT-BALANCE.

STOP RUN,

010-PROCESS.

IF TRANS-CODE = 'S' PERFORM 011-SUBTRACT,
ELSE IF TRANS-CODE = 'A' PERFORM 012-ADD,
ELSE PERFORM 050-PROCESS-ERROCR.

ACCEPT DISPLAY-LINE.
PERFORM 013-CONVERT.

i AR Valla s

EXIT,

011-SUBTRACT.
SUBTRACT TRANS-WORK FROM TOTAL-WORK.
MOVE TOTAL~WORK TO TOTAL-DISPLAY.
DISPLAY 'BALANCE SO FAR:', TOTAL-DISPLAY.
DISPLAY 'ENTER CODE AND AMOUNT (Q TO QUIT).'.
EXIT.

VAT
L=0ULJe

ADD TRANS-WORK TO TOTAL-WORK.
MOVE TOTAL-WORK TO TOTAL-DISPLAY.
DISPLAY 'BALANCE SO FAR:', TOTAL-DISPLAY.
DISPLAY 'ENTER CODE AND AMOUNT (Q TO QUIT).'.
EXIT.
013-CONVERT.
UNSTRING TRANS-AMT DELIMITED BY SPACE INTO TRANS-INTERMED.
MOVE TRANS-INTERMED TO TRANS-WORK.
DIVIDE 100 INTO TRANS-WORK.
030-PRINT-BALANCE.
DISPLAY 'BALANCE IS:'
DISPLAY TOTAL-DISPLAY.
EXIT,
050-PROCESS-ERROR.
DISPLAY 'FIRST CHARACTER MUST BE A, S, ORQ.'.
DISPLAY 'ERROR!’.
CALL 'TNOUA' USING ERRBUFF, COUNTER.
DISPLAY 'MAKE ENTRY AGAIN - Q TO QUIT.'.

N1
v

4-7 Third Edition

DOC3621-190

To compile, load, and run this program, stored as CALC.COBQL, use the
following dialog:

COBOL: CALC

Phase I
Phase II
Phase III
Phase IV
Phase V
Phase VI

No Errors, No Warnings, Prlme V-Mode COBCL, Rev. 19.0 <CALC>

OK, SEG -LOAD
[SEG Rev, 19.0]
$ LOAD CALC
$ LI VCOBLB
SLT

LOAD COMPLETE
$Q

OK, SEG CALC
THIS IS A PROGRAM TO ADD AND SUBTRACT FROM AN INITIAL TOTAL.

WHAT IS INITIAL VALUE OF TOTAL?
** NOTE FORMAT MUST NOT USE DECIMAL FOINT.
** EX: TO REGISTER $45.25, ENTER 4525.
4525
ENTER AMOUNT PRECEDED BY : A FOR ADDITION
S FOR SUBTRACTION
Q FOR QUIT
A475
BALANCE SO FAR: 50.00
ENTER CODE AND AMOUNT (Q TO QUIT).
M2
FIRST CHARACTER MUST BE A, S, OR Q.
ERROR!
kkkkkkkkhhkhkkkhkhhkkkrhkhrhhrkkhkhhkkhkhkkkkkkkkhdkhhhk

HERE THE BEEP SQUNDS
dkkkkkkkkhkkkkhhkhhhhhkkkrhkhrkhkkhhkhkkkrkkkdkkhkkkhdkk
MAKE ENTRY AGAIN - Q TO QUIT,
A5000
BALANCE SO FAR: 100.00
ENTER CODE AND AMOUNT (Q TO QUIT).
9
BALANCE IS:
100.00
OK,

Third Edition 4-8

THE COBOL INTERFACE

Program 2 —— Using SYSCOM Keys

Since COBOL cannot use the SYSOOMMKEYS files, the following program
uses the equivalent value for KSEXST.

IDENTIFICATION DIVISION.

PROGRAM-ID., SRCH-SUB.

khkkkkkkhhkkhkhkkkkhkkkhkhkhkkkkkhkhkkhkkhhkkhkhhkhkkhhhkkrkkhhkkhkhkkk

REMARKS. THIS PROGRAM CALLS THE SUBROUTINE SRCHS TO
CHECK ON THE EXISTENCE OF A FILE,

kkkkhkkhkkkhkhkhkhkkhkkhhkhkkhkhkkkkkrkhkkkhhkhkkhkhkkhkkhhkhkhhhkhhhkik

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER, PRIME.

OBJECT-COMPUTER. PRIME.

%

DATA DIVISION.

WORKING-STORAGE SECTION.

01 K-EXST COMP VALUE 6.

01 NAME PIC X(6) VALUE 'CIRLFL'.
01 NAMELENGTH COMP VALUE 6.

01 FUNIT COMP VALUE O.

01 TYPE COMP VALUE 0.

01 CODE CoMP.

*

PROCEDURE DIVISION,
01 0-PERFORM~ITPDATES

Vo bdd AN S A iR @

020-BOUSEREEPING.,
CALL 'SRCHSS' USING K-EXST, NAME, NAMELENGTH, FUNIT, TYPE,
CODE.
DISPLAY 'CODE IS: ', CODE.

To compile and load this program, stored as SRCH.COBOL, use the
following dialog:

OK, OGOBOL SRCH

Phase I
Phase II
Phase ITI
Phase IV
Phase V
Phase VI

No Errors, No Warnings, Prlme V-Mode QOBOL, Rev. 19.0 <SRCH-S>

OK, SEG -LOAD
[SEG rev 19,0]
$ LO SRCH

$ LI VCOBIB
SLT
LOAD COMPLETE

4-9 Third Edition

DOC3621-190

If the file CIRLFL exists, the runtime dialog will be the following (a
code of 0 indicates no error):

$ EXEC
CODE IS: 00000+

If the file CIRLFL does not exist, the error code will be 15 and the
dialog may be the following:

OK, SEG SRCH

CODE IS: 00015+

Program 3 —— Using a Logical Value

OR, SLIST LOGICAL.COBOL

JDENTIFICATION DIVISION,
PROGRAM-ID. TEXT-COK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. PRIME,
OBJECT-COMPUTER. PRIME.
*

DATA DIVISION.
WORKING—-STORAGE SECTION.

01 FILENAME PIC X(32).

01 NAMELENGTH COMP VALUE 32.

01 TRUELENGTH COMP.

01 TEXTOK COMP.

01 VALID PIC XXX VALUE 'NO '.

*

PROCEDURE DIVISION.
010-VERTFICATION,
DISPLAY 'ENTER NAME OF FILE TO BE CREATED'.
ACCEPT FILENAME.
PERFORM 015-NAME-ENTRY UNTIL VALID = 'YES'.
STOP RUN,
*
015-NAME-ENTRY.
CALL 'TEXTO$' USING FILENAME,NAMELENGTH, TRUELENGTH, TEXTOK.
DISPLAY 'FILE NAME IS ', TRUELENGTH, ' CHARACTERS LONG'.
EXHIBIT TEXTOK.
IF TEXTOK NOT EQUAL 1 DISPLAY 'INVALID FILE NAME-TRY AGAIN',
ACCEPT FILENAME,
ELSE MOVE 'YES' TO VALID.

Third Edition 4-10

THE COBOL INTERFACE

This program, stored as LOGICAL.COB(OL, may be compiled, lcaded, and run
with the following dialog:

OK, COBCOL LOGICAL
Phase I
Phase II
Phase III
Phase IV
Phase V
Phase VI

No Errors, No Warnings, Prlme V-Mode COBOL, Rev. 19.0 <TEXT-O>

OK, SEG -LOAD

[SEG rev 19.0]

$ LO LOGICAL

$ LI VCOBLB

SLIT

LOAD COMPLETE

$ EXEC

ENTER NAME OF FILE TO BE CREATED
123

FILE NAME IS 00000+ CHARACTERS LONG
TEXTOK= 00000+

INVALID FILE NAME - TRY AGAIN
AANGH

FILE NAME IS 00005+ CHARACTERS LONG
TEXTOK= 00001+

OK,

Program 4 — Using A CHAR(*)VAR Argument

IDENTIFICATION DIVISION.
PROGRAM-ID. CHARVAR.
L T T L L e Lty
REMARKS. THIS PROGRAM CALLS THE SUBRQUTINE GVSGET TO
CHECK THE VALUE OF A GLOBAL VARIABLE BEFORE
FURTHER PROCESSING. GVSGET HAS CHAR(*)VAR ARGUMENTS.
B T T T e e e T T L T e T L2y
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
*
DATA DIVISION.
WORKING—STORAGE SECTION.
L T T e e e e e T

*FOLLONING ARE THE TWO CHARACTER-VARYING STRUCTURES
T T T T T T e s T e T ey

4-11 Third Edition

DOC3621-190

01 CHAR-VAR.
05 NCHARS COMP VALUE 4.
05 STRINGL PIC X(4) VALUE '.MAX'.
01 VAR-VALUE.
05 NCHARS2 COMP VALUE 6.
05 STRING2 PIC X(6) VALUE SPACES.
hhkkkkkhhhkkhhkhkhkkhkhkhkkkkhkkhkhkkhkhkkkkkkkkkkkkkk
01 VAR-SIZE COMP VALUE 6.
01 CODE COMP.
*
PROCEDURE DIVISION,
020~HOUSEKEEPING.
CALL 'GVS$GET' USING CHAR-VAR, VAR-VALUE, VAR-SIZE, CODE.
EXHIBIT STRING2.
EXHIBIT CODE.
STOP RUN.

Before this program is run, global variables must have been defined
with dialog such as this:

OK, DEFINE _GVAR ANNE>GVARFILE

OK, LIST VAR

+MIN 1
MAX 100
OK,

Running the program, stored as CHARVAR.COB(L, would give this result:

OK, SEG CHARVAR

STRING2 = 100
CODE= 00000+
OK,

Program 5 — Using an Integer Array

IDENTIFICATION DIVISION,
PROGRAM-ID., TIMEDATE,

L T T T T T T T E T
REMARKS. THIS PROGRAM CALLS THE SUBROUTINE TIMDAT, WHICH RETURNS
AN INTEGER ARRAY. IN COBOL, THIS ARRAY MAY BE RETRIEVED

EITHER AS A CHARACTER ARRAY (PIC X) OR AS A NUMERIC ARRAY
(COMP) . AS THE ELEMENTS OF THE ARRAY ARE MIXED CHARACTER
AND NUMERIC, BOTH FORMS OF ARRAY ARE USED BY COB(L.

L e T T T e e T 2

ENVIRONMENT DIVISION,

CONFIGURATION SECTION.,

SQURCE-COMPUTER. PRIME.

Third Edition 4-12

OBJECT-COMPUTER. PRIME.
*
DATA DIVISION.
WORKING~STORAGE SECTION.
01 ARRAY,

05 TABLE PIC X(30).

THE COBQL INTERFACE

L g e L e
* THIS TABLE IS NOW REDEFINED TWICE, ONCE AS A CHARACTER ARRAY,

* AND ONCE AS A NUMERIC ARRAY:

05 CHAR-ARRAY REDEFINES TABLE OCCURS 15,
05 NUM-ARRAY REDEFINES TABLE OCCURS 15,

PIC X(2).

kkkkkkkkkkkkkhkkkkkhkkhkkhkkdkkrhkkhhkhkhhkhhkhhhkhkhkhhkrhhkhhkkkdkdx

01 NUMBER COMP VALUE 15.
*

PROCEDURE DIVISION.
010-PERFORM-UPDATES.
020-HOUSEKEEPING.

CALL 'TIMDAT' USING ARRAY,

NTADPTAY MO TC. ' CUAR
Nk AL 3N

INARS N o WE FAJINLIL daJe r

DISPLAY 'MINUTES SINCE MIDNIGHT:

STOP RUN.

NUM-ARRAY (4).

This program, stored as TIMDTC.COBQL, may be compiled, loaded, and run

with the following dialog:

OK, COBQL TIMDTC
Phase I

Phase II

Phase III1
Phase IV

Phase V

Phase VI

No Errors, No Warhings, Prlme V-Mode COBQL, Rev. 19.0 <TIMEDA>

OK, SEG -LOAD
[SEG rev 19.0]
$ LO TIMDIC

$ LI VCOBLB
SIT
LOAD COMPLETE
$ EXEC

MONTH IS: Ol

MINUTES SINCE MIDNIGHT: 00564+
OK,

4-13

Third Edition

The FORTRAN

Interface

INTRODUCTION
To call a subroutine from FIN or F77, use this format:
CALL sub-name[(identifier [, identifier]...)]

where the sub-name is the subroutine name (not in quotes) and the
identifiers may be either literals or data-names.

To call a function, use formats such as:
data-name = function-name[(identifier [,identifier]...)]
IF logical-function[(identifier [, identifier])]... GO TO 100

The sample programs below illustrate subroutine and function calls from
both FIN and F77.

DATA TYPES
Table 5-1 summarizes the argument types of FORTRAN and PL1G subroutines

and functions that can be called from FORTRAN IV (FIN) and FORTRAN 77
(F77).

5-1 Third Edition

DOC3621-190

Table 5-1
Data Types
GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL A% 77 PASCAL PL1G
{1)
1 bit —*— —*e —*— =% —e Bit
Bit (1)
(2) (2) (3)
16-bit INT coMp INTEGER INTEGER*2 | Integer Fixed Bin
Hal f-word INTHGER*2 |LOGICAL*2 | Boolean Fixed
: LOGICAL Bin(15)
INTEGER (4)
32-bit INT*4 —*— INTEGER*4 |INTEGER*4 | Subrange ' | Fixed
Word LOGICAL Bin(31)
LOGICAL*4
64-bit
Double —_ — — —_—— — -
Word
Float
32-bit REAL REAL REAL Real Binary
Float single —%- REAL*4 REAL*4 Float
precision Bin (23)
64-bit
Float double | REAL*8 —*— REAL*8 REAL*8 —*— Float
precision Bin(47)
DISPLAY (5) (5) (5) ~(5)
Byte string NT PIC A(n) INTEGER CHARACTER | ARRAY Char (n)
(Max. 32767) PIC 9(n) *n {l1..n] OF
PIC X(n) CHAR
Varying (6) (6) (6) (6) (6)
character —*— Char (n)
string Varying
))
48-bits —*= —*— % —*— <type> Pointer
3 Half-words
* Not available.
Third Edition 5-2

(1)

(2)

(3)

(4)

(5)

(6)

(7

(8)

THE FORTRAN INTERFACE

Notes to Table 5-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PL1G, 'l'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or =32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and O,
respectively. This is not directly compatible with Pascal or
PL1G.

Boolean data in Pascal is represented in 16 bits where the
sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PL1G.

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PL1G is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard
Pascal type.

5-3 Third Edition

D0C3621-190

Most older subroutines are written in FORTRAN IV (FIN), so the data
types used by FIN are used as the norm in this chapter. The following
discussion concentrates on how to make any conversions necessary for
F77, and how to handle in FORTRAN the data types that are expected by
PL1G subroutines.

The Data Type INTEGER

Beware of using integer arguments that are not explicitly declared as
INTEGER*2 or INTEGER*4. By default, FORTRAN IV stores such arguments
as INTEGER*2, while FORTRAN 77 stores them as INTEGER*4, This is true
of constants as well as variables. Thus it is safer to pass all
numeric arguments as explicitly declared variables.

You may also avoid the contradiction by using the ~INTS (short integer)
option when compiling an F77 program. In this case, you must remember
to add the option every time you recompile.

Note

In this gquide, if an argument is described as integer, it
should be treated as INTEGER*2,

INTEGER, INTEGER*2, FIXED BIN(15)

The first two names are the same data type in FIN. The equivalent for
F77 is INTEGER*2, or INTEGER if the program is compiled with the —INTS
(short integer) option. FIXED BIN and FIXED BIN(15) are equivalent in
PLIG, The data is stored as a 16-bit half-word.

INTEGER*4, FIXED BIN(31)

These are the same data type. The equivalent for F77 is INTEGER*4, or
INTEGER if the program is compiled without the —INTS option., The data
type is stored as a 32-bit word. (If FORTRAN IV is compiled with the
—INTL option, INTEGER may be used as INTEGER*4.)

LOGICAL
The equivalent for F77 is LOGICAL*2. The data type is stored as a

16-bit half-word. Sample Program 3 illustrates a call with LOGICAL
arguments,

Third Edition 5-4

THE FORTRAN INTERFACE

BIT(1)

PL.1G programs using this data type may not be called from FORTRAN
unless the arqument is declared in PL1G as BIT(1l) ALIGNED. Then it may
be used in FORTRAN as an INTEGER*2 and will have a value of -1 if
false.

REAL, REAL*4, REAL*8

REAL*4 is a single—precision (32-bit) floating-point number. REAL*8 is
a double-precision (64-bit) floating-point number. REAL is equivalent
to REAL*4 in both FORTRANS.

ASCII Character Data

A FIN subroutine that expects an ASCII string will accept INTEGER*2 or,
from F77, CHARACTER*n.

CHARACTER (*) VARYING

This P11G data type is implemented as a record structure, with the
actual number of characters followed by those characters. The two
elements may be represented in the following way:

b 5 |IA B C D E|
I

1
COUNT CHARACTER STRING

To declare a comparable structure in FORTRAN, therefore, requires a
two-element record., The record oconsists of an INTEGER*2 item
containing the actual number of characters, plus a field for the
Character string, This field may be CHARACTER*n in F77, or INTEGER*2
in FIN, and should contain the characters to be passed.

A good way to set up such a record is by using the EQUIVALENCE
statement to assign different parts of a data name to different items.
Consider the following FIN example:

INTEGER*2 STRING(10), LENGTH
INTEGER*2 VARSTRING(11)

EQUIVALENCE (LENGTH, VARSTRING(1))
EQUIVALENCE (STRING(1), VARSTRING(2))

This code sets up a record that may be represented this way.

5-5 Third Edition

DOC3621-196

| l

| LENGTH | STRING

l | _
{~—————~——VPRSTRING

NV ———

The data names may then be given values and the PL1G subroutine may be
called with this code:

STRING (1) = 'MY'
STRING(2) = 'FI'

STRING (3) = 'LE'

LENGTH = 6

CALL PL1G-SUB (VARSTRING)
CALL EXIT

The value 6 is assigned to LENGTH because six characters are actually
assigned to STRING.

In F77 the code can be a little simpler because all of STRING can be
assigned at once:

INTEGER*2 LENGTH, VARSTRING(11)
CHARACTER*20 STRING

EQUIVALENCE (LENGTH, VARSTRING(1))
EQUIVALENCE (VARSTRING (2) , STRING)
STRING (1:6) = 'MYFILE'

LENGTH = 6

CALL PL1G-PROG(VARSTRING)

CALL EXIT

Sample Programs 4 and 5 below call a PL1G routine, GVSGET, with two
CHAR (*) VAR arguments,

CHARACTER (n) NONVARYING

This PLIG data type, usually declared simply as CHARACTER(n), may be
represented in FORTRAN 77 simply as CHARACTER*n. In FORTRAN IV it
should be represented as an integer array and the data name should be
followed by the number of words (one-half the value of the (n) in
CHARACTER(n), rounded). An example is INTEGER*2 STR(N/2 + 5).

Array

When a FORTRAN subroutine expects an array, an ASCII character array
(data type INTEGER*2 or CHARACTER*n) may be used. Sample Program 2
shows how to use an integer array returned to FIN.

Third Edition 5-6

THE FORTRAN INTERFACE

Note

CHARACTER*n does not necessarily allocate data on word
boundaries. Thus not all routines called from VAPPIB will work
with this data type.

POINTER

PL1G subroutines that expect this data type should not generally be
called from FORTRAN. For experienced programmers, the expression
LOC(name) may be passed to a subroutine that expects a pointer., See
note 6 to Table 5-1.

USING SYSCOM TABLES

In this gquide, numeric values are often represented by a name in the

form y$xxxx, where y and x are characters of the alphabet. The code
name or Kkey name may be used instead of a numeric value. There are
three files in the SYSCOM UFD that are of use in handling these names.
SYSCOM>ASKEYS. INS. FIN, SYSCOM>KEYS. INS.FIN, and SYSCOM>ERRD, INS,FIN
contain keys that should be used instead of numeric values for codes.

To use these key names in a FORTRAN program, use SINSERT SYSCOM>xxx at
the beginning of each program module with the declarations of other
data names, The file ASKEYS.INS.FIN also contains declarations for all
of the subroutines in VAPPIB or APPLIB.

Sample Program 1 illustrates use of the keys from SYSCOM files.

SAMPLE FIN (FORTRAN IV) PROGRAMS

Program 1 —— Using SYSCOM Keys

OK, SLIST SRCH.FIN

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCcceccececcecece
C THIS PROGRAM CALIS THE SUBROUTINE SRCHS$S TO CHECK C
C ON THE EXISTENCE OF A FILE, THE PROGRAM ALSO USES C
C THE SYSCOM FILES FOR KEY CODES. C
CCccecece

INTEGER*2 CODE, TYPE,FUNIT, FOS
SINSERT SYSCOM>KEYS.INS.FIN

WRITE(1,100)

FUNIT = 4

POS = 0

CALL SRCHSS (KSEXST+KSIUFD, 'CTRL', FUNIT, POS, TYPE, CODE)

IF (CODE .NE. 0) WRITE(1l, 200)CODE

WRITE(1,300)

5-7 Third Edition

DOC3621-190

CALL EXIT
100 FORMAT('THIS IS FORTRAN')
200 FORMAT('CODE IS ', I2)
300 FORMAT('END OF RUN')

END

This program, stored as SRCH.FIN, may be compiled, loaded, and run in
R-mode with the following dialog. If the file CTRL does not exist, the
return code will be 15 (ESFNTF).

OK, FIN SRCH
0000 ERRORS [<.MAIN,>FIN-REV18.4]

OK, LOAD

[LOAD rev 19.0.1]
$ LO SRCH
SIT

LOAD COMPLETE

$ s

$ EXEC

THIS IS FORTRAN
CODE IS 15

END OF RUN

OK,

OK,

Program 2 — Integer Arrays

The subroutine TIMDAT returns an array containing both ASCII characters
and integers. The following program handles these two types, both in
STRING, differently by means of the EQUIVALENCE statement. It prints
STRING(13) through STRING(15) as NAME, in A format, and prints
STRING(1) through STRING(6) as TIME, in I format.

INTEGER*2 STRING (28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, TIMEl, TIME2, NAME(16)
EQUIVALENCE (STRING(1l), DATE)
EQUIVALENCE (STRING(4), TIME)
EQUIVALENCE (STRING(5), TIMEl)
EQUIVALENCE (STRING(6), TIME2)
EQUIVALENCE (STRING(13), NAME)
NUM = 28
CALL TIMDAT(STRING, NUM)
WRITE (1, 300) DATE
WRITE (1,400)
WRITE(1,200) TIME, TIMEl, TIME2
WRITE(1,150) NAME

200 FORMAT (I6, 16, I6)

150 FORMAT ('USER IS ',3A2)

300 FORMAT ('DATE IS ',3A2)

Third Edition 5-8

THE FORTRAN INTERFACE

400 FORMAT ('TIME SINCE MIDNIGHT IN MINUTES+SECONDS+TICKS: ')
CALL EXIT
END

This program, stored as TIMDTF.FIN, may be compiled, loaded, and run in
V-mode as follows:

OK, FIN TIMDTF —-64V

0000 ERRORS [<.MAIN.>FIN-REV18.4]
OK, SEG -LOAD

[SEG rev 19.0.1]

$ LO TIMDTF

SLT

LOAD COMPLETE

$ EXEC

DATE IS 121781
TIME SINCE MIDNIGHT IN MINUTES + SE

ERS R e B R LU R R R T A B AL 5N el

692 57 75
USER IS ANNE
OK,

Program 3 — Using a Logical Function

This program calls DELESA to delete a file and return a truth value
according to its success.

OK, SLIST LOGICAL.FIN

INTEGER*2 LENGTH
LOGICAL*2 DELESA
LENGTH = 6
IF (DELESA('CTRLFL', LENGTH)) GOTO 50
WRITE(1,200)
CALL EXIT
50 WRITE(1,100)
CALL EXIT
100 FORMAT ('DELETE WAS SUCCESSFUL')
200 FORMAT ('NO GO')
END

This program may be compiled, loaded, and run with the following
dialog:

OK, FIN LOGICAL -64V

0000 ERRORS [<.MAIN,>FIN-REV18.4]
OK, SEG -LOAD

[SEG rev 19,0.1]

$ LO LOGICAL

5-9 Third Edition

DOC3621-190

$ LI VAPPIB
SIT
LOAD COMPLETE
$ EXEC

DELETE WAS SUCCESSFUL

If this program is run when CIRLFL does not exist, the following will
happen:

OK, SEG LOGICAL

Not found. CTRLFL (DELESA)
NO GO

OK,

Program 4 — Using CHAR (*)VARYING Argquments

This program calls GVSGET to return the value of a PRIMOS (CPL) global
variable.

OK, SLIST GVAR.FIN

INTEGER*2 CODE
CCCCCOCCCCCCCCOCCCCCCCCCCCCceecceceecceeeeee
C The next 7 lines define two CHAR*VARs. C

INTEGER*2 STR1(10), STR2(10), LEN1, LEN2

INTEGER*2 VARNAM(11)

INTEGER*2 VARVAL(11)

EQUIVALENCE (LEN1, VARNAM(1))

EQUIVALENCE (LEN2, VARVAL(1))

EQUIVALENCE (VARNAM(2), STR1(1))

EQUIVALENCE (VARVAL(2), STR2(1))
(066006066606606606060008000000060000006600000006¢

STR1(1) = '.M'
STR1(2) = 'AX'
LEN1 =

CALL GVSGET (VARNAM,VARVAL, 20, CODE)
WRITE(1,100) CODE
WRITE (1,200) STR2
100 FORMAT('QODE IS',I3)
200 FORMAT('.MAX IS ', 10A2)
CALL EXIT
END

This program may be ocompiled, loaded, and run with the following
dialog, providing that the global variable file has previously been
established as explained in the CPL User's Guide.

DEFINE_GVAR GVARFILE -CREATE
OK, SET VAR .MAX = 100
OF,

Third Edition 5-10

THE FORTRAN INTERFACE

Note
This program may only be compiled in V-mode, because it calls a
V-mode subroutine,

OK, FIN GVAR -64V
0000 ERRORS [<.MAIN.>FIN-REV18.4]

OK, SEG -I0AD
[SEG rev 19.0.1]
'$ LO GVAR
SIT

LOAD COMPLETE

$ EXEC

MA

Xy x V4N

DE IS 0
IS 100

OK,

SAMPLE F77 (FORTRAN 77) PROGRAM

The sample programs above may be used unchanged with F77 if the -INTS
compile option is used., ‘These programs demonstrate the use of
integers, characters, and codes from SYSCOM files included with
S$INSERT. The following program may be used only with F77.

Program 5 — Using CHAR(*)VARYING with F77

OK, SLIST GVAR.F77

INTEGER*2 QODE, LEN1, LEN2, VARLEN
CHARACTER*20 STR1, STR2

INTEGER*2 VARNAM(11)

INTEGER*2 VARVAL(11)

EQUIVALENCE (LEN1, VARNAM(1))
EQUIVALENCE (LEN2, VARVAL(1))
EQUIVALENCE (VARNAM(2) , STR1)
EQUIVALENCE (VARVAL(2) , STR2)

LEN] = 4
VARLEN = 20
STR1 = '.MAX'

CALL GVS$GET (VARNAM, VARVAL, VARLEN, CODE)
WRITE(1,100) CODE
WRITE(1,200)STR2
100 FORMAT('CODE IS',I4)
200 FORMAT('.MAX IS ', A20)
CALL EXIT
END

5-11 Third Edition

DOC3621-190

This program, stored as GVAR.F77, may be compiled, loaded, and run with
the following dialog:

OK, F77 GVAR
[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN,> F77-REV19.0]

OK, DEFINE_GVAR ANNE>GVARFILE

OK, SEG -LOAD
[SEG rev 19.0.1]
$ LO GVAR
SIT

ILOAD COMPLETE

$ EXEC

CODE IS 0
MAX IS 100

OK,

SAMPLE FILE SYSTEM PROGRAMS

This section contains sample programs illustrating the use of the file
system subroutines in Chapter 9. The programs are:

e Writing a SAM file

e Writing a DAM file

e Reading a SAM or DaM file

e Creating a segment directory

e Reading a logical record from a file
® Reading a file in a segment directory

The programs also illustrate the use of PRWFS$$, SGDR$SS, and SRCHSS to
read and write to a file,

Third Edition 5-12

THE FORTRAN INTERFACE

Program 6 — Writing a SAM File

OK, SLIST SAMWRITE.FIN

C SAMWRT BIN PROGRAM TO WRITE A SAM DATA FILE
C THE FILE IS 1000 WORDS LONG WRITTEN FRCM ARRAY BUFF
C RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE PROGRAM IS RUN
C
INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 SAMFIL /* FILE TYPE FOR SAM FILE
INTEGER*2 BUFLNG /* BUFFER LENGTH
PARAMETER (SAMFIL~0, BUFLNG=1000)
INTEGER*2 BUFF (BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* CONTAINS FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFS$S
INTEGER*2 I
INTEGER*2 CODE /* HOLDS ERROR RETURN CODE
SINSERT SYSCOM>KEYS. INS.FIN
C INITIALIZE BUFFER CONTENTS
DO 10 I= 1, BUFLNG
BUFF(I) = I
10 CONTINUE
C
C OPEN A NEW SAM DATA FILE CALLED 'SAMFIL' IN CURRENTLY ATTACHED
C UFD FOR WRITING ON FILE UNIT FUNIT1

C
CALL SRCHSS (KSWRIT+KSGETU+KS$NSAM, ' SAMFIL' ,6,FUNITL ,TYFE,
X CODE)
IF (CODE.NE.Q) GO TO 9010
IF (TYPE. NE. SAMFIL) GO TO 9000 /* ERROR
C
C WRITE 1000 WORDS FROM BUFF INTO THE NEW DATA FILE
C
CALL PRWFS$S (KSWRIT, FUNITL,LOC (BUFF) ,BUFLNG, INTL (0) ,NMRERD,
X CODE)
IF (CODE.NE.0) GO TO 9010
C

C CLOSE FILE. THIS RELEASES UNIT FUNIT1 FOR REUSE AND ASSURES
C ALL FILE BUFFERS HAVE BEEN WRITTEN TO DISK.
C NOTE PRIMOS WILL NOT AUTOMATICALLY CLOSE FILES ON 'CALL EXIT'.

C

9000 CALL SRCHS(K$CLOS, 0, 0, FUNIT1, O, QODE)
IF (CODE.NE.0) GO TO 9010

9010 WRITE(1,9012)

9012 FORMAT('ERROR!')

C
C RETURN TO PRIMOS
C
CALL EXIT
END

5-13 Third Edition

DOC3621-190

This program, stored as SAMARITE.FIN, may be compiled, loaded, and run
with the following dialog. It will create the data file SAMFIL.

OK, FIN SAMWRITE

0000 ERRORS [<.MAIN,>FIN-REV18.4]
OK, LOAD

[LOAD rev 19.0.1]

$ LO SAMARITE

SIT

LOAD COMPLETE

$ SA

$ EXEC

OK,

Program 7 — Writing a DAM File

OK, SLIST DAMARITE.FTN

C DAMIRT BIN PROGRAM TO WRITE A DAM DATA FILE

C

C NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL IS THE

C '"NBW FILE' KEY SUPPLIED TO SRCH$S IN CREATING THE FILE

C

C RESTRICTION: DAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM
C

INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 DAMFIL /* FILE TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* DATA BUFFER LENGTH IN WORDS

C
PARAMETER (DAMFIL=1, BUFLNG=1000)

c
INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFS$S
INTEGER*2 CODE /* ERROR CODE RETURNED FROM FILE SYSTEM
INTEGER*2 I

C

SINSERT SYSCOM>KEYS.INS.FIN
SINSERT SYSCOM>ERRD. INS.FTN

C
C INITIALIZE BUFFER
C
DO 10 I = 1, BUFLNG
BUFF(I) = I
10 CONTINUE
C

C ASSURE THAT THE FILE 'DAMFIL' DOES NOT ALREADY EXIST

C
CALL SRCHS (KSEXST+KSIUFD, 'DAMFIL',6,FUNIT1,TYPE,CODE)
IF (CODE .NE. ESFNTF) GO TO 9000 /* FILE ALREADY EXISTS

C
C OPFEN A NEW DAM FILE CALLED 'DAMFIL' IN THE CURRENT
C UFD FOR WRITING ON FILE UNIT FUNITL

Third Edition 5-14

THE FORTRAN INTERFACE

C
CALL SRCHSS (KSWRIT+KSGETU+KSNDAM, 'DAMFIL',6,FUNITL, TYPE,
X CODE)
IF (CODE.NE.C) GO TO 9010
IF (TYPE .NE. DAMFIL) STOP /* WILL NEVER STOP
C
C WRITE THE BUFFER INTO THE FILE
C
CALL PRWFSS (KSWRIT,FUNIT1,IOC (BUFF) ,BUFLNG, INTL (0) ,NMREAD,
X CODE)
IF (CODE.NE.Q) GO TO 9010
C
C KSCLOS THE FILE AND EXIT
C

9000 CALL SRCHS(KSCLOS, 0, 0, FUNIT1, TYPE, CODE)
IF (CODE.NE.C) GO TO 9010

CALL EXIT
ant N ra) [« ITHTAT Y
9010 CALL ERRPRS (K$NRTN,CODE,0,0,0,0)

)
E

E

This program, stored as DAMARITE.FIN, may be compiled, loaded, and run
with the following dialog. A data file called DAMFIL will be created.

OK, FIN DAMARITE
0000 ERRORS [<.MAIN.>FIN-REV18.4]

OK, LOAD

[LOAD rev 19.0.1]
$ LO DAMARITE
$IT
LOAD COMPLETE

$ SA

$ EX

CK,

Program 8 — Reading a SAM or DAM File

OK, SLIST SAMREAD.FIN

C REDFIL BIN READ SAM/DAM FILE, PRINT LARGEST INTEGER
C
C THIS PROGRAM SHOWS HOW TO USE THE 'QODE' ERROR RETURN
C MECHANISM AND SUBROUTINE ERRPRS TO PRINT ERROR MESSAGES.
C
C NOTE THAT PROGRAM DOESN'T CHECK IF THE DATA FILE IS SAM OR DAM.
C TO USER'S PROGRAM, SAM OR DAM FILES ARE FUNCTIONALLY EQUIVALENT
C EXCEPT FOR ACCESS TIME TO RAMDOM FOINTS IN THE FILE
Cc
C RESTRICTIONS: NONE
C
INTEGER*2 FUNIT /* FILE UNIT TO BE USED

5-15 Third Edition

DOC3621-190

INTEGER*2 DAMFIL /* TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER IN WORDS

PARAMETER (FUNIT=2, DAMFIL=2, BUFLNG=100)

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM
INTEGER*2 LARGST /* LARGEST UNSIGNED INTEGER IN FILE
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTEGER*2 I,N

C
INTEGER*4 POSIIN /* 32BIT INTEGER POSITION FOR PRWFSS

C

SINSERT SYSCOM>KEYS. INS.FIN

SINSERT SYSCOM>ERRD, INS.FTN

C

C INITIALIZE AND GET FILE NAME FROM TERMINAL

C
LARGST = -32767 /* LARGEST UNSIGNED INTEGER

10 WRITE(1,1000) /* FORTRAN UNIT 1 IS TERMINAL

1000 FORMAT ('TYPE FILE NAME')

C

READ(1,1010) (FNAME(I), I=1,16)
1010 FORMAT (16A2)
C
C OPEN FNAME IN CURRENTLY ATTACHED UFD FOR READING ON FILE UNIT 1
C (NOT THE SAME AS FORTRAN UNIT 1). CHECK FOR ERRORS.
C NOTE THAT THE NAME NEED NOT ACTUALLY BE 32 CHARACTERS LONG AS
C TRAILING BLANKS ARE IGNORED.
C
CALL SRCHS (KSREAD+KSIUFD, FNAME, 32, FUNIT, TYPE, CODE)
IF (CODE .EQ. 0) GO TO 100 /* NO ERRORS

PRINT THE SYSTEM ERROR MSG AND IMMEDIATELY RTRN TO THIS PROGRAM
IF THE ERROR IS 'FILE NOT FOUND', GET ANOTHER NAME,
GIVE UP ON ALL OTHER ERRORS

eXeXeNeoXe!

CALL ERRPRS (KSIRTN, CODE, FNAME, 32, 'REDFIL', 6)
IF (CODE.EQ.ESFNTF) GO TO 10 /*NOT FOUND-GET ANOTHER NAME
GO TO 9010 /* ANOTHER TYPE OF ERROR - GIVE UP
C
C THE FILE HAS BEEN OPENED.
C MAKE SURE THE FILE IS NOT A DIRECTORY
C
100 IF (TYPE .GT. DAMFIL) GO TO 9000 /* IS A DIRECTORY
C
C READ AN 'OPTIMAL' NUMBER OF WORDS UP TO BUFLNG WORDS FRCM FILE.
C SET LARGST TO THE LARGEST UNSIGNED INTEGER IN THE FILE.
C CHECK FOR END-OF-FILE.
C
30 CALL PRAFS$S (KSREAD+K$CONV, FUNIT, LOC(BUFF),BUFLNG,
X INTL (0) ,NMREAD, CODE)

Third Edition 5~16

THE FORTRAN INTERFACE

IF (CODE .EQ. ESEOF) GO TO 31 /* END-OF-FILE
IF (CODE .NE. 0) GO TO 9010 /* SCME OTHER ERROR
WRITE(1,3)BUFF(I)
3 FORMAT (16)
31 DO 40 I= 1, NMREAD /* FOR EACH WORD ACTUALLY READ
IF ((LARGST.LE.0).AND, (BUFF(I).GE.0)) LARGST = BUFF(I)
IF (LARGST .LT. BUFF(I)) LARGST = BUFF(I)
40 CONTINUE
IF (CODE .NE. ESEOF) GO TO 30 /* MORE DATA IN FILE

C
C FIND OUT IF THE DATA FILE IS EMPTY

C GET CURRENT FILE POINTER POSITION WHICH IS NOW AT END-OF-FILE.
C IF THE POSITION IS 0, THE FILE IS EMPTY

C

CALL PRWFSS (KSRPOS, FUNIT, 0, 0, POSITN, NMREAD, CODE)
IF (CODE .NE. 0) GO TO 9010 /* ERROR
IF (POSIIN .GT. 0) GO TO 50 /* NOT A NULL FILE
WRITE(1,1030)

1030 FORMAT ('FILE EMPTY')
GO TO 9000 /* EXIT

C

C FILE NOT EMPTY. PRINT LARGEST INTEGER

c

50 WRITE(1,1020) LARGST

1020 FORMAT ('LARGEST INTEGER IN FILE IS ',I6)
GO TO 9000 /* EXIT

C

C KSCLOS FILES EXIT

C PRINT ERROR MESSAGE IF NECESSARY

C

9010 CALL ERRPRS(KSIRTN, CODE, 0, 0, 'REDFIL', 6)

o

9000 CALL SRCHS$S(KS$CLOS, 0, 0, FUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 9010
CALL EXIT
END

This program may be compiled, loaded, and run to read the file SAMFIL
created by the first program in this section with the following dialog:

OK, FIN SAMREAD
0000 ERRORS [<.MAIN.>FIN-REV18.4]

OK, LOAD

[LOAD rev 19.0.1]
$ LO SAMREAD

$ LI

LOAD COMPLETE

$ SA

$ EXEC

TYPE FILE NAME
SAMFIL

5-17 Third Edition

DOC3621-190

16
200
300
400
500
600
700
800
900
1000
LARGEST INTEGER IN FILE IS 1000
OK,

Program 9 — Creating a Segment Directory

OK, SLIST SEGWRITE,FTN

C CRTSEG BIN CREATE A SEGMENT DIRECTORY

C AND WRITE DATA FILE IN IT

C

C RESTRICTIONS: SEGDIR SHOULD NOT EXIST BEFORE PROGRAM IS RUN
C

INTEGER*2 BUFLNG /* DATA BUFFER LENGTH

INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
INTEGER*2 SGUNIT /* FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 FUNIT /* FILE UNIT FOR DATA FILE

PARAMETER (BUFLNG=10, SAMSEG=2, SGUNIT=1, FUNIT=2)

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRAFSS
INTEGER*2 I
INTEGER*2 CODE /* RETURN CODE STORED HERE
INTEGER*2 CODEA /* SCRATCH CODE

o

SINSERT SYSCOM>KEYS.INS.FIN

SINSERT SYSCOM>ERRD. INS.FTN

c

C INITIALIZE DATA BUFFER CONTENTS

C
DO 10 I= 1, BUFLNG
BUFF(I) = I
10 CONTINUE
C

C OPEN A NEW SAM SEGMENT DIRECTORY CALLED 'SAMDIR' IN CURRENTLY
C ATTACHED UFD FOR READING AND WRITING ON FILE UNIT SGUNIT.
C NOTE: SEGDIRS OPEN FOR WRITE ONLY WILL NOT BE HANDLED CORRECTLY
C

CALL SRCHSS (KSRDWR+KSNSGS+KS$IUFD, 'SAMDIR' ,6 , SGUNIT, TYPE,

X CODE)
IF (CODE.NE.Q) GO TO 9500
IF (TYPE.NE.SAMSEG) GO TO 9500 /* ERROR—MUST HAVE EXISTED

Third Edition 5-18

THE FORTRAN INTERFACE

ENTER A NEW SAM DATA FILE (I.E. OPEN SAM DATA FILE FOR WRITING)
IN THE SEGMENT DIRECTORY JUST CREATED. THE NEW DATA FILE
WILL BE ENTRY 0 IN THE SEGMENT DIRECTORY.

OO0

CALL SRCHSS (K SWRIT+KSNSAM+KSISEG, SGUNIT, 0,FUNIT, TYPE , CODE)
IF (CODE.NE.0) GO TO 9500

C

C WRITE THE DATA BUFFER INTO THE SAM FILE JUST CREATED.

C KSCLOS THE DATA FILE.

C
CALL PRWFSS (KSWRIT, FUNIT, LOC (BUFF) ,BUFLNG, INTL(0) ,NMREAD,
X CODE)
IF (CODE.NE.Q) GO TO 9500
CALL SRCHSS(KS$CLOS, 0, 0, FUNIT, 0, CODE)
IF (CODE.ME.C) GO TO 9500
C

C REPLACE BUFF WITH NEW DATA
C

N~

DO 20 I= 1, BUFLNG
BUFF(I) = I * 10
0 CONTINUE

OPEN A DIFFERENT NEW SAM DATA FILE ON FUNIT FOR WRITING

(I.E. ENTER ANOTHER FILE IN SEGMENT DIRECTORY). THIS IS DONE

IN TWO STEPS. FIRST THE FILE POINTER OF THE SEGMENT DIR UNIT IS
POSITIONED TO THE ENTRY NUMBER DESIRED, THE SRCHSS IS

CALLED AS ABOVE.

OO0 ann

CALL SGDRSS (KS$SPOS,SGUNIT, 1, I, CODE)
IF (CODE.NE.Q) GO TO 9500
IF (I .NE. -1) GO TO 9500 /* ERROR EXIT

C
C NOTE THAT THE SEGMENT DIRECTORY OPEN ON SGUNIT HAS ONLY 1 ENTRY
C (ENTRY 0) AT THIS TIME. THUS, POSITIONING TO ENTRY 1
C WILL POSITION TO END-OF-FILE (NOT BEYOND) AND THE FOLLOWING
C CALL TO SRCHS$$ WILL CAUSE THE SEGMENT DIRECTORY TO BE EXTENDED
C IN LENGTH BY ONE ENTRY.
C
CALL SRCHSS (K SWRIT+KSNSAM+KSISEG, SGUNIT,0,FUNIT, TYPE,CODE)
IF (CODE.NE.C) GO TO 9500
C
C WRITE DATA INTO THE SAM FILE THE K$CLOS THE FILE
Cc
CALL PRAFSS (KSWRIT,FUNIT,LOC (BUFF) ,BUFLNG, INTL (0) , NMREAD,
X CODE)
IF (CODE.NE.0) GO TO 9500
CALL SRCHSS(K$CLOS, 0, 0, FUNIT, 0, CODE)
IF (CODE.NE.C) GO TO 9500
C
C REPLACE THE BUFFER WITH NEW DATA
C

DO 30 I= 1, BUFLNG
BUFF(I) = I * 100

5-19 Third Edition

DOC3621-190

0 CONTINUE

MAKE THE SEGMENT DIRECTORY ITSELF LARGE ENOUGH TO CONTAIN
10 ENTRIES. PLACE A SAM FILE IN THE 10TH ENTRY.

a0 w

CALL SGDRSS(K$MSIZ, SGUNIT, 10, 0, CODE)
IF (CODE.NE.0) GO TO 9500

THE FILE POINTER ASSOCIATED WITH SGUNIT IS NOW AT END-OF-FILE,
A CALL TO SRCHS$$ WITHOUT FURTHER POSITIONING THE SEGMENT
DIRECTORY'S FILE POINTER WOULD EXTEND THE SEGMENT DIRECTORY
AND ENTER THE NEW FILE AS TH 11TH ENTRY. THEREFORE, SGDRSS
MUST BE CALLED TO POSITION TO THE 10TH ENTRY.

aooaoaan

CALL SGDR$S(KSSPOS, SGUNIT, 9, I, CODE)
IF (CODE.NE.0) GO TO 9500
IF (I .NE. 0) STOP /* FILE CANNOT BE PRESENT

CALL SRCHSS (KSWRIT+KSNSAM+KSISEG, SGUNIT, 0,FUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 9500
CALL PRWF$$(KSWRIT,FUNIT,LOC (BUFF) ,BUFLNG, INTL (0) ,NMREAD,
X CODE)
IF (CODE.NE.0) GO TO 9500
CALL SRCHS$(KS$CLOS, 0, 0, FUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 9500
C
C KSCLOS SEGMENT DIRECTORY EXIT
C ,
CALL SRCHSS(K$CLOS, 0, 0, SGUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 9500
CALL EXIT
C
C ERROR EXIT. K$CLOS ALL UNITS. PRINT ERROR MESSAGE AND DO NOT
C ALLOW RESTART. ESNULL IS THE NULL SYSTEM ERROR, I.E.,
C NO SYSTEM ERROR MESSAGE IS PRINTED.
C
9

500 CALL SRCHS$S(KSCLOS, 0, 0, FUNIT, TYPE, CODEA)

CALL SRCH$$(KSCLOS, 0, 0, SGUNIT, TYPE, CODEA)

CALL ERRPRS (K$NRIN,CODE, 'UNEXPECTED ERROR',16,'CRTSEG',6)
C

END

This program, stored as SEGWRITE.FIN, may be compiled, loaded, and run
with the following dialog. It will create an empty segmented file
called SAMDIR.

OK, FIN SEGWRITE

0000 ERRORS [<.MAIN.>FIN-REV18.4]
OK, LOAD

[LOAD rev 19.0.1]

$ LO SEGWRITE

SIT

Third Edition 5-20

THE FORTRAN INTERFACE

LOAD COMPLETE
$ S

$ EXEC

OK,

Program 10 — Reading a Logical Record from a File

OK, SLIST LOGICREAD,FIN

C RDLREC BIN READ A LOGICAL RECORD FROM A FILE

C

C PROGRAM READS LOGICAL RECORD 'N' FROM A FILE CONSISTING

C OF FIXED LENGTH RECORDS

C

C IN THIS PROGRAM, THE FILE ACCESSED IS CONSIDERED TO CONTAIN AN
C UNLIMITED NUMBER OF LOGICAL RECORDS. EACH RECORD CONTAINS 'M'
C WORDS. THE PROGRAM READS AND PRINTS TO THE TERMINAL THE

C CONTENTS OF RECORD NUMBER N AS M INTEGERS. THE FIRST RECORD
C OF A FILE IS RECORD NUMBER 0.

C NOTE THAT A LOGICAL RECORD IS MERELY A GROUPING OF WORDS IN A
C FILE. THE LOGICAL RECORD SIZE HAS NO RELATION TO THE PHYSICAL
C RECORD SIZE OF THE DISK.

C

o
%

RECORD SIZE MUST BE BETWEEN 1 AND BUFFER LENGTH
RECORD NUMBER MUST BE BEWEEN 0 AND 32767

THE RECORD MUST BE IN THE FILE

THE FILE MUST PREVIOUSLY EXIST

THE FILE MUST BE A DATA FILE (SAMFIL OR DAMFIL)

a0 nn
G W N

INTEGER*2 FUNIT1 /* PRIMOS FILE UNIT USED FOR DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER

(@]

PARAMETER (FUNIT1=2, BUFLNG=1000)

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 FNAME (16) /* FILE NAME BUFFER
INTEGER*2 RECSIZ /* NUMBER WORDS IN A LOGICAL RECORD
INTEGER*2 RECNUM /* LOGICAL RECORD NUMBER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ, RETURNED BY PRWFS$S
INTEGER*2 CODE /* ERROR STATUS RETURNED BY FILE SYSTEM
INTEGER*2 I

C
INTEGER*4 POSIT™N /* 32BIT WORD NR USED AS POS TO PRWFSS

C

SINSERT SYSCOM>KEYS.INS.FIN

SINSERT SYSCOM>ERRD, INS.FIN

o

C ASK FOR FILENAME

C

10 WRITE(1,1000) /* FORTRAN UNIT 1 IS TTY

5-21 Third Edition

DOC3621-190

1000 FORMAT ('TYPE FILE NAME')
C
C READ FILE NAME
C
READ(1,1010) (FNAME(I),I=1,16)
1010 FORMAT (16A2)
C
C OPEN FNAME IN CURRENT UFD FOR READING ON FILE UNIT FUNIT2
C
CALL SRCHSS (KSREAD+KSIUFD, FNAME, 32, FUNIT1, TYPE, CODE)
IF (CODE.NE,.0) GO TO 2000
C
C ASK FOR LOGICAL RECORD SIZE
C
20 WRITE(1,1020)
1020 FORMAT ('TYPE RECORD SIZE')
READ(1,1030) RECSIZ
1030 FORMAT (I6)
IF (RECSIZ .GE. 1 .AND, RECSIZ .LE, BUFLNG) GO TO 30
WRITE(1,1040)
1040 FORMAT ('BAD RECORD SIZE')
GO TO 20
C
C ASK FOR RECORD NUMBER, FIRST RECORD IS NUMBERED 0
C
30 WRITE (1,1050)
1050 FORMAT ('TYPE RECORD NUMBER')
READ (1,1030) RECNUM
IF (RECNUM .GE. 0) GO TO 35
WRITE(1,1051)
1051 FORMAT ('BAD RECORD NUMBER')
GO TO 30
C
C CALCULATE THE 32-BIT WORD NUMBER OF THE FIRST WORD IN THE
C DESIRED RECORD. NOTE THAT IF RECSIZ AND RECNUM ARE BOTH
C POSITIVE 16BIT NUMBERS, THE 32BIT WORD NUMBER MUST ALSO BE
C POSITIVE.
C
C POSITIONING MAY BE DONE TO AN ABSOLUTE WORD NUMBER OR RELATIVE
C TO THE CURRENT POSITION. SINCE A JUST OPENED FILE IS ALWAYS
C POSITIONED TO TOP-OF-FILE AND THE CALCULATED WORD NUMBER WILL
C NEVER BE NEGATIVE, THE ARGUMENT FOR POSITION TO PRWFS$S WILL
C BE T™HE SAME FOR BOTH CALLS IN THIS PROGRAM.
C
5 POSITN=INTL (RECSIZ) *INTL(RECNUM) /* POSITN IS INTEGER*4
IF (POSITN .GT. 32767) GO TO 100 /* ABSOLUTE POSITIONING

3

C

C RECORD LESS THAN 32767 WORDS FROM THE BEGINNING, USE RELATIVE
C POSITIONING.

C NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A

C RECORD ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORDS

C BEYOND WORD 32767. RELATIVE IS SHOWN HERE ONLY FOR EXAMPLE,

C

C NOTE ALSO THAT RELATIVE POSITIONING OOULD BE USED TO POSITION

Third Edition 5-22

THE FORTRAN INTERFACE

TO ANY WORD IN THE FILE, GIVEN THE RESTICTIONS ON RECSIZ AND

%

WHEN REL POSITIONING IS USED, THE POS ARGUMENT (POSIIN HERE)
IS CONSIDERED TO BE A SIGNED 32-BIT INTEGER.

a0 n

CALL PRWFSS$ (KSREAD+KSPRER, FUNIT1 ,LOC (BUFF) ,RECSIZ, POSIIN,
X NMREAD, CODE)
GO TO 200 /* SKIP OVER ABSOLUTE FOSITION EXAMPLE

C
C RECORD IS MORE THAN 32767 WORDS FROM THE BEGINNING OF FILE, USE
C ABSOLUTE POSITIONING.

C

C WHEN ABSCLUTE POSITIONING IS USED, POSITION ARGUMENT (POSITN)

C IS CONSIDERED TO BE AN SIGNED 32-BIT INTEGER.

C NOTE THAT THE ESBOF ERROR (BEGINNING OF FILE) CAN OCCUR.

C

100 CALL PRWFSS(KSREAD+KSPREA, FUNIT1,LOC (BUFF) ,RECSIZ, POSIIN,

X NMREAD, CODE)
C
200 IF (CODE .NE. 0) GO TO 300 /* ERROR DETECTED
C
C HAVE READ RECORD, NOW DISPLAY IT.
C

WRITE(1,1060) RECNUM,RECSIZ
1060 FORMAT('RECORD ',I6,' CONTAINS ',I6,' ENTRIES AS FOLLOWS')
WRITE(1,1070) (BUFF(I), I=1,RECSIZ)
1070 FORMAT (10I7)
C
C RETURN TO PRIMOS AFTER CLOSING THE FILE
C
250 CALL SRCHS$$(KS$CLOS, 0, 0, FUNIT1, TYPE, CODE)
IF (CODE.NE.0) GO TO 1000
CALL EXIT
GO TO 10 /* START COMMAND RESTARTS PROGRAM
C
C ERROR WHILE ATTEMPTING TO READ THE RECORD

C
300 CALL ERRPRS$(KSIRIN, CODE, 0, 0O, 'RDLREC', 6)
IF (CODE .NE. ESEOF) GO TO 250 /* EXIT IF NOT END-OF-FILE
C
C END-OF-FILE REACHED.
C REWIND FILE AND TRY AGAIN

C
CALL PRWFSS (KSPOSN+KSPREA, FUNIT1,0,0, INTL (0) ,NMREAD,
X CODE)
IF (CODE.NE.0) GO TO 1000
GO TO 20
C

2000 CALL ERRPRS (K$NRIN,CODE,0,0,0,0)
END

5-23 Third Edition

DOC3621-190

This program, compiled, loaded, and stored as LOGICREAD, SAVE, may be
run with the following dialog:

OK, R LOGICREAD
TYPE FILE NAME

SAMFIL

TYPE RECORD SIZE

1

TYPE RECORD NUMBER

0

RECORD 0 CONTAINS 1 ENTRIES AS FOLLOWS
1

OK, R LOGICREAD
TYPE FILE NAME
SAMFIL,

TYPE RECORD SIZE

1

TYPE RECORD NUMBER
8

RECORD 8 CONTAINS 1 ENTRIES AS FOLLOWS
9

OK,

Program 11 — Reading a File in a Segment Directory

OK, SLIST SEGREAD,FTN

C REDSEG BIN READ FILE IN A SEGMENT DIRECTORY

C

C THIS PROGRAM READS FILE NUMBER N IN SEGMENT DIRECTORY AND
C TYPES WORD NUMBER M IN THAT FILE. THE FIRST FILE IN THE
C DIRECTORY IS FILE NUMBER 0. THE FIRST WORD IN THE FILE IS
C WORD NUMBER 0.

C

C RESTRICTIONS:

1. THE SEGMENT DIRECTORY FILE MUST EXIST

2. THE FILE NUMBER MUST BE BEIWEEN 0 AND 32767

3. THE FILE MUST BE IN THE SEGMENT DIRECTORY

4. THE WORD NUMBER MUST BE BETWEEN 0 AND 32767

5. THE WORD MUST BE IN THE FILE.

OO0 n

INTEGER*2 FUNIT /* PRIMOS FILE UNIT FOR DATA FILE
INTEGER*2 SGUNIT /* PRIMOS FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
INTEGER*2 DAMSEG /* FILE TYPE OF DAM SEGMENT DIRECTORY

PARAMETER (FUNIT=2, SGUNIT=1, SAMSEG=2, DAMSEG=3)
INTEGER*2 BUFF /* DATA BUFFER

INTEGER*2 SEGDIR(16) /* NAME OF SEGMENT DIRECTORY BUFFER
INTEGER*2 FILNUM /* FILE NR (ENTRY NR) OF FILE IN SEGDIR

Third Edition 5-24

THE FORTRAN INTERFACE

INTEGER*2 WRDNUM /* WORD NUMBER IN DATA FILE TO BE READ
INTEGER*2 CODE /* ERROR OODE RETURNED BY FILE SYSTEM
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NR WORDS READ/WRITTEN/RTRNED BY PRWFSS
INTEGER*2 I

C

$INSERT SYSCOMDKEYS.INS.FIN

SINSERT SYSCOM>ERRD, INS.FIN

o]

C

C ASSURE FILE UNITS TO BE USED ARE KSCLOSD

C ASK FOR AND READ SEGMENT DIRECTORY NAME FROM TERMINAL

C

10 CALL SRCHSS(KSCLOS, 0, 0, SGUNIT, 0, CODE)
IF (CODE,.NE.0) GO TO 100
CALL SRCHSS(KSCLOS, 0, 0, FUNIT, 0, CODE)
IF (CODE.NE.0) GO TO 100
WRITE(1,1000)

VDM Lyt nd Y i 8ILS) T
1000 FORMAT ('TYPE SEGMENT DIRECTORY NAME')

READ (1,1010) (SEGDIR(I), I=1,16)
1010 FORMAT (16A2)
C
C OPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT

(@]

CALL SRCHSS (KSREAD+KSIUFD, SEGDIR, 6, SGUNIT, TYPE, CODE)
IF (CODE.NE.C) GO TO 100

TYPE OONTAINS THE FILE TYPE OF THE FILE JUST OPENED.
MAKE SURE THE FILE IS EITHER A SAM OR DAM SEGMENT DIRECTORY.
ALLONABLE TYPE VALUES ARE 2 AND 3.

OO0 n

IF (TYPE .EQ. SAMSEG) GO TO 20
IF (TYPE .BEQ. DAMSEG) GO TO 20
C
C NOT A SEGMENT DIRECTORY - TRY AGAIN
Cc
WRITE(1,1020)
1020 FORMAT('FILE IS NOT A SEGMENT DIRECTORY')
GO TO 10
Cc
C ASK FOR FILE (ENTRY) NUMBER IN SEGMENT DIRECTORY
C
20 WRITE(1,1030)
1030 FORMAT ('TYPE FILE NUMBER')
READ (1,1040) FILNUM
1040 FORMAT (I6)
IF (FILNUM .LT. 0) GO TO 20
C
C ASK FOR WORD NUMBER IN DATA FILE TO READ
C
30 WRITE(1,1035)
1035 FORMAT ('TYPE WORD NUMBER')
READ (1,1040) WRDNUM
IF (WRDNUM .LT. 0) GO TO 30

5-25 Third Edition

DOC3621-190

C
C TRY TO POSITION TO WORD NUMBER IN THE SEGMENT DIRECTORY.
C IF END-OF-FILE REACHED, FILE IS NOT IN SEGMENT DIRECTORY.
C SGDR$$ RETURNS THE VALUE 1 IN THE 4TH ARGUMENT (TYPE) IF A
C FILE IS ENTERED IN THE ENTRY POSITION. THIS PROGRAM DOES NOT
C CHECK THE VALUE, SINCE SRCHSS WILL RETURN THE PROPER ERROR CODE
C (ESFNTS - FILE NOT FOUND IN SEGMENT DIRECTORY) ANYHOW.
C
CALL SGDR$$(K$SPOS, SGUNIT, FILNUM, TYPE, CODE)
IF (CODE .EQ. ESEOF) CODE = ESFNTS /* FILE NOT FOUND
IF (CODE .NE. 0) GO TO 100

C

C OPEN FILE IN SEGMENT DIRECTORY FOR READING

C
CALL SRCHSS (K$READ+KSISEG, SGUNIT, 0, FUNIT, TYPE , CODE)
IF (CODE .NE., 0) GO TO 100

C

C PRINT THE WORD, K$CLOS THE FILES, AND RETURN TO PRIMOS
C

WRITE(1,1050) WRDNUM, FILNUM, (SEGDIR(I), I= 1,16),BUFF
1050 FORMAT ('WORD',I6,' OF FILE (',I6,') IN ',16A2,

X 'CONTAINS',I6)
50 CALL SRCH$$(K$CLOS, 0, 0, FUNIT, 0, CODE)

CALL SRCH$$(K$CLOS, 0, 0, SGUNIT, 0, CODE)

CALL EXIT

GO TO 10 /* START COMMAND RESTARTS PROGRAM
C
C COMMON ERROR HANDLER
C
100 IF (CODE.BEQ.ESFNTS) GO TO 110 /* FILE NOT FOUND IN SEGDIR

IF (CODE .EQ. ESEOF) GO TO 120 /* END-OF-FILE

CALL ERRPRS (KSIRTN,CODE,0,0,'REDSEG',6) /* PRINT ERROR MSG

GO TO 50 /* K$CLOS FILES EXIT
C
C FILE NOT FOUND IN SEGMENT DIRECTORY
C LET THE USER TRY AGAIN
C
110 WRITE(1,1060) FILNUM, (SEGDIR(I), I=1, 16)
1060 FORMAT ('FILE (',I6,') NOT FOUND IN ',16A2)

GO TO 10 /* RE-IRY
C
C END-OF-FILE
C CODE WILL CONTAIN E$EOF ONLY WHILE TRYING TO READ
C THE DATA FILE, ALLON RE-TRY,
C
120 WRITE(1,1070) WRDNUM,FILNUM, (SEGDIR(I),I=1,16)
1070 FORMAT ('WORD',16,' NOT IN FILE (',I6,') IN ',16A2)

GO TO 10 /* RE-TRY
C

END

Third Edition 5-26

THE FORTRAN INTERFACE

This program, stored as SEGREAD,FIN, may be compiled, loaded, and run
with the following dialog:

OK, FIN SEGREAD
0000 ERRORS [<.MAIN.>FIN-REV18.4]

OK, LOAD

[LOAD rev 19.0.1]

$ LO SEGREAD

SIT

LOAD COMPLETE

$ SA

$ EXEC

TYPE SEGMENT DIRECTORY NAME
SEGDIR

TYPE FILE NUMBER

0

TYPE WORD NUMBER

1

WORD 1 OF FILE (0) IN segdir CONTAINS 0
OK,

5=27 Third Edition

The Pascal

Interface

INTRODUCTION

To call a standard subroutine from Pascal, first declare it as an
external procedure in the format:

PROCEDURE sub-name[([VAR] argstype[; [VAR] arg:typel...)];EXTERN;
Call it with its name and the argument-names used in the program:

sub-name[(data-name [,data-namel...)]:

Note
In the rest of this guide, subroutine call formats are always

given as CALL sub-name [(identifier)...]. From Pascal,
however, the word CALL must be omitted.

To declare a function, include the type of value returned by the
function:

FUNCTION function—name[([VAR] arg: type; [arg:typel...)]: type;
EXTERN;

6—-1 Third Edition

DOC3621-190

Call it with a format such as one of the following:
IF function—name(data-name ...) = X THEN ...;

X = function—name (data-name...):

Note

Remember that any arguments that are supplied or changed by the
subroutine must be declared as VAR.

DATA TYPES

Table 6-1 summarizes the argument types of FORTRAN and PL1G subroutines
and functions that can be called from Pascal. The following is a
discussion of these argument types, as well as some generic types, and
how they relate to Pascal data types and structures.

INTEGER*2 or FIXED BIN(15)

The INTEGER*2 expected by FORTRAN subroutines is PL1G's FIXED BIN, also
called FIXED BIN(15)., It must be declared in Pascal programs as
INTEGER.,

Sample Program 1 illustrates a call to the FORTRAN subroutine SRCHSS,

which expects an INTEGER*2 arqument. Sample Program 4 calls the PL1G
subroutine GVS$GET, which needs a FIXED BIN arcument,

INTEGER*4 or FIXED BIN(31)

The INTEGER*4 expected by FORTRAN subroutines is PL1G's FIXED BIN(31).
Since the INTEGER type in Pascal has a length of only 16 bits, these
longer integers must be declared as a subrange. For example, such an
operand might be declared as:

TYPE INT4 = [-65565 .. +65565];
To define a 32-bit integer, the numbers within brackets must have an
absolute value greater than 32768. The absolute value may range as
high as 2147483647.

Sample Program 2 calls the FORTRAN subroutine RNUMSA, which expects an
INTEGER*4 argument.,

Third Edition 62

THE PASCAL INTERFACE

Table 6-1
Data Types
GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM QOB v 77 PASCAL PL1G
(1)
1 bit —%— —*— —*— —%=- e Bit
Bit(1)
(2) (2) (3)
16-bit INT CoMP INTEGER INTEGER*2 | Integer Fixed Bin
Half-word INTHGER*2 |LOGICAL*2 | Boolean Fixed
LOGICAL Bin(15)
INTEGER (4)
32-bit INT*4 =% INTEGER*4 | INTEGER*4 | Subrange |Fixed
Word LOGICAL Bin(31)
LOGICAL*4
64-bit
Double —— — —t— - —K ——
Word
Float
32-bit REAL REAL REAL Real Binary
Float single —*— REAL*4 REAL*4 Float
precision Bin (23)
64-bit
Float double | REAL*8 —%= REAL*8 REAL*8 —%=— Float
precision Bin(47)
DISPLAY (5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER CHARACTER | ARRAY Char (n)
(Max. 32767) PIC 9(n) *n [l..n] OF
PIC X(n) CHAR
Varying (6) (6) (6) (6) (6)
character - Char(n)
string Varying
(7) . (8)
48-bits —%— —*— —*— —%— <type> Pointer
3 Half-words

Not available.

6-3 Third Edition

DOC3621-190

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Notes to Table 6-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN., 1In PL1G, 'l'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PL1G may
always be represented as decimal 0.

IOGICAL data in FORTRAN represents true and false as 1 and O,
respectively. This is not directly compatible with Pascal or
PL1G.

Boolean data in Pascal is represented in 16 bits where the
sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PL1G.

To define a 32-bit integer in Pascal, use an integer array
whose positive 1limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard
Pascal type.

Third Edition 6-4

THE PASCAL INTERFACE

Integer Arrays

An integer array expected by a FORTRAN subroutine should be declared as
an array of numbers or of characters in Pascal, depending on the type
of information expected. Sample Program 6 calls the subroutine TIMDTP,
which returns an integer array with information of both data types.

Multidimensional arrays should not be passed between FORIRAN and
Pascal, because columns and rows will be reversed.

ASCII Character (String or Array)

An ASCII string expected by a FORTRAN subroutine should be declared as
a literal or an array of characters in Pascal. Sample Program 3
illustrates passing an ASCII string to the subroutine DELESA,

LOGICAL

IOGICAL arguments expected by a FORIRAN subroutine should be declared
in Pascal as INTEGER. The arguments must have a value of 0 (false) or
1 (true).

Sample Program 3 illustrates a call to the function DELE$A, which
returns a logical value. The example for YSNOSA in Chapter 12 also
illustrates a call to a logical function from Pascal.

REAL, REAL*4, or FLOAT BIN(23)

This data type should be declared as REAL in Pascal. Constants passed
as real arguments to FORTRAN functions should be in scientific format

(x. XEyy) .
Sample Program 5 passes a REAL arqument to the subroutine RNDSA,

REAL*8

FORTRAN subroutines that expect arguments of this type may not be
called from Pascal.

6-5 Third Edition

DOC3621-190

CHARACTER (n) NONVARYING

This arqument type, usually declared simply as CHARACTER(n), may be
declared in Pascal as ARRAY [l..n] OF CHAR. A call from Pascal using a
CHAR (80) NONVAR argqument is given in the example for CLSGET in Chapter
10.

CHARACTER (*) VARYING

This PL1G data type is implemented as a record structure, with the
actual number of characters followed by those characters. Thus the
structure of a CHAR(*)VAR argument may be represented by the following
box:

0 5 |]A B C D E |

SR S N S Y Y
COUNT CHARACTER STRING

To declare a comparable structure in Pascal, therefore, requires a
record, containing a 16-bit character count plus a character array.

Because of the argument format expected by P11G, CHAR(*)VAR arquments
may never be passed as literals.

As an example, if the character string to be passed to PLIG is 28
characters long, then the Pascal operand might be constructed this way:

RECORD

BCOUNT: INTEGER;

VARNAME: ARRAY[1..28] OF CHAR;:
END;

Sample Program 4 calls the Pl1G subroutine GVS$GET, which expects two
CHAR (*)VAR arguments,

POINTER

A POINTER type expected by a PL1G subroutine may be declared as a
pointer in Pascal also, Sample Program 7 calls a subroutine that
expects a pointer.

BIT(1)

PL1G subroutines that use this argument type may not be called from
Pascal programs, unless the argument is BIT(1)ALIGNED. Then the
arqument may be passed as a Boolean operand. PL1G's '0'Bmay then be
read as 0 in Pascal, and PL1G's '1'B as -1.

Third Edition 6—6

THE PASCAL INTERFACE

USING SYSCOM TABLES

Subroutine descriptions in this gquide sometimes refer to codes with
names in the format x$yyyy, where x and y are letters. There are three
groups of these codes.

Error codes have names in the format ESyyyy. These equivalents should
be inserted in the Pascal program with the statement:

$INCLUDE ‘'SYSCOM>ERRD, INS.PASCAL' ;

This statement should be inserted into the CONST declaration, The
equivalents for these error codes are in Appendix D and in the file
SYSCOM>ERRD, INS.PASCAL.

— U N - - L7 & o Dy et mciatmemT ceade el e —_
CO s in nat KSyyyy. These equivalents should be
inserted in the program with the statement:

%INCLUDE 'SYSCOM>KEYS,INS.PASCAL';

This statement should also be inserted into the QONST declaration. The
equivalents for these key codes are in Appendix C and in the file
SYSCOM>KEYS, INS,PASCAL,

Some subroutines in VAPPIB use argument codes in the form ASyyyy.
These equivalents should be inserted in the Pascal program with the
statement:

$INCLUDE 'SYSCOM>ASKEYS,. INS.PASCAL';
following the CONST declaration. The numeric equivalents of these
codes are listed in the table at the end of Chapter 12 and in the file
SYSCOM>ASKEYS. INS. PASCAL.

Sample Program 1 illustrates the use of key codes.

SAMPLE PROGRAMS

Program 1 — Using INTEGER*2 and SYSOOM Keys

PROGRAM SRCH_CAL;
{
{THIS PROGRAM CALLS THE SUBRQUTINE SRCHS$S TO CHECK
{ON THE EXISTENCE OF A FILE.
{
CONST
$INCLUDE 'SYSCOM>KEYS.INS.PASCAL';
$INCLUDE 'SYSCOM>ERRD, INS.PASCAL';
TYPE STRING = ARRAY[1l..6] OF CHAR;

Nt N N At

6-7 Third Edition

DOC3621-190

VAR CODE: INTEGER;
PROCEDURE SRCHS$S (A:INTEGER; B:STRING; C:INTEGER; D:INTEGER;
E:INTEGER; VAR F:INTEGER) ; EXTERN;
BEGIN
SRCHSS (KSEXST+KSIUFD, 'CTRLFL', 6, 0, 0, CODE);
WRITELN ('SEARCH CODE IS: ', CODE);
END.

This program may be compiled, loaded, and run with the following
dialog. If the file CTRLFL is not found, the resulting return code
will be 15, as shown below.

OK, PASCAL SRCH
0000 ERRORS (PASCAL~REV19.0)

OK, SEG -LOAD
[SEG rev 19.0]
$ LO SRCH

$ LI PASLIB

$ LI VAPPLB
SIT
LOAD COMPLETE
S EXEC

SEARCH CODE IS: 15
OK,

Program 2 — Using an INTEGER*4 Arcgument

OK, SLIST INT4.PASCAL

1{7ROGRAM INT4; }
{THIS PROGRAM CALLS THE SUBROUTINE RNUMSA TO VERIFY AN INTEGER*4, }
{ }
CONST
$INCLUDE 'SYSCOM>ASKEYS.INS,PASCAL';
TYPE STRING= ARRAY[1l..14] OF CHAR;
VAR MSG: STRING;

CODEVALUE: INT4:
PROCEDURE RNUMSA (M:STRING;L : INTEGER;N: INTEGER; VAR V:INT4) ; EXTERN;
BEGIN

MSG := 'ENTER A NUMBER';

RNUMSA (MSG, 14, ASDEC, CODEVALUE);

WRITELN('NUMBER IS: ', CODEVALUE);

END.,

Third Edition 6-8

THE PASCAL INTERFACE

This program, compiled and stored as INT4.PASCAL, may be loaded and run
with the following dialog:

OK, SEG -LOAD
[SEG rev 19.0]

ENTER A NUMBER: Q
Illegal number (RNUMSA)

ENTER A NUMBER: 11223344556677889900
Too many digits (RNUMSA)

ENTER A NUMBER: 123456789

NUMBER IS: 123456789

n
Uiy

Program 3 —— Calling a Logical Function

PROGRAM SUBCALL;
t
{THIS PROGRAM CALLS THE LOGICAL FUNCTION DELE$A TO DELETE A FILE.
{
TYPE STRING= ARRAY[1..6] OF CHAR;
VAR FILENAME: STRING;
THE,_COUNT : INTEGER;
{

{THE NEXT FUNCTION WILL RETURN A
{VALUE OF EITHER 1 (DELETE SUCCESSFUL)
%OR 0 (UNSUCCESSFUL)
FUNCTION DELESA(A:STRING; K:INTEGER) :INTEGER;EXTERN;
BEGIN
FILENAME := 'CIRLFL';
THE_COUNT := 6;
IF DELESA (FILENAME, THE _COUNT) = 1 THEN
WRITELN('FILE DELETED')
ELSE WRITELN('NO GO'):;
WRITELN ('"END OF RUN')
END.

v g Nt

Ny g g Sy Nt

6-9 Third Edition

DOC3621-190

This program, stored as LOGICAL.PASCAL, may be compiled, loaded, and
run with the following dialog. If the file CTRLFL exists, the first
message will be displayed; otherwise the second message will appear.

OK, PASCAL LOGICAL

0000 ERRORS (PASCAL-REV19.0)
OK, SEG -LOAD

[SEG rev 19,0]

$ LO LOGICAL

$ LI PASLIB

S LI VAPFIB

SLT

LOAD COMPLETE

$ EXEC

FILE DELETED

END OF RUN

OK, SEG LOGICAL

Not found. CTRLFL (DELESA)
NO GO

END OF RUN

OK,

Program 4 —— Using CHAR(*)VAR Arguments

The following program returns the value of a global variable set with
DEFINE_GVAR. For more information, see the CPL User's Guide or the
chapter on CPL files in the Prime User's Guide,

OK, SLIST CHARVAR.PASCAL

PROGRAM CHRVR;
TYPE CHARVAR = RECORD
NCHARS: INTEGER;
STRING1: ARRAY[l..4] OF CHAR
END;
VAR VARSIZE, QODE, K: INTEGER;
VARVALUE, VARNAME: CHARVAR;
PROCEDURE GVSGET(A:CHARVAR; VAR B:CHARVAR; C:INTEGER; D:INTEGER);
EXTERN;
BEGIN;
VARNAME .NCHARS := 4;
VARNAME, STRING1 := '.MAX';
VBARSIZE := 4;
GVSGET (VARNAME, VARVALUE, VARSIZE, CODE);
K :=1;
WRITE('SIZE OF MAX IS ');

Third Edition 6-10

THE PASCAL INTERFACE

FOR K := 1 TO VARVAL.NCHARS DO
WRITE (VARVALUE. STRING1 [K]) ;

WRITELN;

WRITELN('ERROR CODE IS ',CODE);

END.

To compile and load this program, stored as CHARVAR.PASCAL, use the
following dialog:

OK, PASCAL CHARVAR

0000 ERRORS (PASCAL~REV19.0)
OK, SEG -LOAD

[SEG rev 19.0]

$ LO CHARVAR

$ LI PASLIB

S LI '

MAaETY TYTTTY

COMELISLE

n

Before this program is run, a global variable file containing the
variable .MAX must be defined:

OK, DEFINE_GVAR ANNE>GVARFILE

0K, SEG CHARVAR

SIZE OF MAX IS 100
ERROR QODE IS 0
OK,

Program 5 — Using a REAL*4 Arqument

OK, SLIST RANDOM.PASCAL

I{’ROGRAM RANDOM;
{ THIS PROGRAM GENERATES TEN RANDOM NUMBERS, STARTING
{ FROM A SEED INCLUDED IN THE PROGRAM
{
VAR SEED1, THISONE: REAL;

K: INTEGER;
FUNCTION RANDSA(VAR SEED: REAL): REAL; EXTERN;
BEGIN

SEED]1 := 1.2E-1;

K := 0;

FOR K := 1 to 10 DO

BEGIN

Nred Vg Ayl g

6-11 Third Edition

DOC3621-190

THISONE := RANDSA(SEED]);
WRITELN(K, ':', THISONE):
END

END.

This program, compiled and stored as RANDOM.BIN, may be loaded and run
with the following dialog:

OK, SEG -LOAD
[SEG rev 19.0]

$ LO RANDOM
$ LI PASLIB
S LI VAPPLB
SLT
LOAD COMPLETE
$ EXEC
0: 7.216268E-01
1: 3.840753E-01
2: 1.552343E-01
: 2.418942E-02
4: 5.516532E~01
5: 6.372356E~01
: 1.963481E-02
7: 2.397342E-03
8: 2.921368E-01
9: 9.439590E-01
OK,

Third Edition 6-12

THE PASCAL INTERFACE

Program 6 — Using an Integer Array

This program calls the subroutine TIMDAT to retrieve system and user
information, Since the array CHARARRAY will return both character and
numeric data, it is defined twice by means of the CASE statement.

OK, SLIST TIMDTP.PASCAL

PROGRAM TIMDTP;

TYPE CHARARRAY = ARRAY[1l..30] OF CHAR;
CASEVALUE = (Al,A2);
(* *)
TABLE = RECORD CASE I : CASEVALUE OF
Al (J1 : CHARARRAY):;
A2 (J2 : RECORD MMDDYY: ARRAY[1..6] OF CHAR;
TIME _MIN : INTEGER;
TIME_SEC : INTEGER;
TIME TCK : INTEGER;
CPU_SEC : INTEGER;
CPU_TCK: INTEGER;
DISK _SEC : INTEGER;
DISK TCK : INTEGER;
TCK_SEC : INTEGER;
USER_NUM : INTBGER;
USERNAME : ARRAY [1..32] OF CHAR;

oo oo

END;)
END;
(* *)
VAR TABLEl : TABLE;
I : CASEVALUE;
PROCEDURE TIMDAT(VAR A:CHARARRAY; B:INTEGER) ; EXTERN;

(* *)
BEGIN .
I :=Al; (*CHARACTER ARRAY*)
TIMDTP (TABLE1.J1,28);
I := A2; (*RECORD, CHAR and INTEGER¥*)
WITH TABLEl.J2 DO
BEGIN
WRITELN ('DATE IS ', MMDDYY):
WRITELN (' SECONDS ELAPSED ', TIME_SEC) ;
WRITELN ('TICKS ELAPSED ', TIME_TCK) ;
WRITELN('CPU SECONDS USED ', CPU_SEC);
WRITELN('CPU TICKS ', CPU_TCK);
WRITELN('DISK SECONDS USED ', DISK _SEC);
WRITELN ('"USER NAME ', USERNAME) ;
END
mD‘

6-13 Third Edition

DOC3621-190

To compile, load, and run this program, stored as TIMDTP.PASCAL, use
the following dialog:

OK, PASCAL TIMDTP
0000 ERRORS (PASCAL-REV19.0)

OK, SEG -LOAD

[SEG rev 19.0]

$ LO TIMDTP

$ LI PASLIB

$ LI

LOAD COMPLETE

$ EXEC

DATE IS 012082
SECONDS ELAPSED 15
TICKS ELAPSED 102
CPU SECONDS USED 44
CPU TICKS 223
DISK SECONDS USED 57
USER NAME ANNE
OK,

Program 7 —— Using a Pointer Argument

OK, SLIST PTR.PASCAL

I{JR(I;RAM ACLCTL;
{ THIS PROGRAM CREATES AN ACL FOR THE FILE
{ RISKFILE, OR, IF AN ACL ALREADY EXISTS,
% RETURNS AN ERROR MESSAGE.
TYPE STRING = ARRAY[1..7] OF CHAR;
TYPE CHARVAR = RECORD
NUMBER: INTEGER;
FILENAME: STRING;
END;
TYPE ACL = RECORD
VERSION: INTEGER;
ENTRY_COUNT : INTEGER;
ENTRIES: ARRAY[1 .. 2] OF CHARVAR;
TYPE ACI, PTR = “ACL;

A gl At \rg? Smnd

Third Edition 6-14

VAR KEY: INTEGER;
NAME: CHARVAR;
CODE : INTEGER;
THISPIR : ACL PTR;
RISKFILE: ACL;

THE PASCAL INTERFACE

PROCEDURE ACS$SET (A:INTEGER;B:CHARVAR ;C*ACL,_PTR; D:INTEGER);

EXTERN;

{
BEGIN

NAME,.FILENAME :
RISKFILE,VERSIN := 2;
RISKFILE,ENTRY COUNT:= 1;
RISKFILE,ENTRIES[1] .NUMBER := 7;
RISKFILE,ENTRIES[1] .FILENAME :=
NEW (THISPIR) ;

THISPTR" := RISKFILE;

ACQCRT /RERV. NAMR S MOITaDTR . (NDR) .

LN id \ividl p ANy 4ll oL LiNy NAJSLILL |

}

This program, stored as PIR.PASCAL, may be compiled,

executed with the following dialog:

OK, PASCAL PTR

0000 ERRORS (PASCAL~REV19.0)
OK, SEG -LOAD

[SEG rev 19.0.1]

$ LO PIR

$ TI PASLIB

SIT

LOAD COMPLETE

$ EXEC

CODE 1IS: 0
OK,

6-15

loaded, and

Third Edition

The PL./I Subset G

Interface

INTRODUCTION

To call an external subroutine from PL/I subset G (PL1G), first declare
the subroutine as an external procedure in the format:

DECLARE sub-name EXTERNAL ENTRY[(type [,typel...)]:

where sub-name is the subroutine name without quotes, and type is the
type of the argument expected.

To call the subroutine, use the format:
CALL sub-name[(identifier [,identifier]...)];
where identifier may be a constant or a data name.
To declare a function, use this format:
DECLARE function—-name EXTERNAL ENTRY][(type ...)] RETURNS (type):
Call it as an expression in a format like one of these:
IF logical-function[(identifier...)] = 0 THEN ...;

IF function—name[(identifier...)] = X THEN ...;

7-1 Third Edition

DOC3621-190

THE OPTIONS (SHORTCALL) DECLARATION

The OPTIONS(SHORTCALL) declaration is useful for calling PMA procedures
with the PMA instruction JSXB instead of the more common PCL
instruction. A procedure call of this type is faster than one using
PCL. However, the called procedure must be written to expect this kind
of call. In Rev. 18 and Rev. 19, the only system subroutine that can
(and must) be declared in this way is MKONUS.

The format of this declaration is:

DECLARE procedure-name ENTRY OPTIONS(SHORTCALL [stack-size]):

stack-size specifies the extra space needed for the calling
procedure's stack. The default size is 8.

The call does not generate a new stack for storage, as does PCL. The
calling procedure's stack space is used. Thus it may be necessary to
specify stack size in the declaration in order to enlarge the calling
stack, For example, MKONU$ requires an 28-word stack, so the user's
stack must be large enough to accomodate this requirement., If stack
size is not large enough, the return from the subroutine will cause
unpredictable error messages.

Arquments may be used with the SHORTCALL option., The computer will set
up the L register to point to a vector containing the addresses of the
arguments, or, in the case of one argument, to the address of the
argument itself. No type checking is done. For Rev. 19, there are no
standard subroutine calls that require both SHORTCALL and argument

passing.

DATA TYPES

Table 7-1 summarizes the arqument types of FORTRAN subroutines and
functions that can be called from PL1G. The following is a discussion
of these argument types, as well as some generic types, and how they
relate to PL1G data types and structures. The PL1G CHAR(*)VARYING
argument type is discussed briefly.

INTEGER*2
The INTEGER*2 expected by FORTRAN subroutines is PL1G's FIXED BIN, also

called FIXED BIN(15). Sample Program 1 includes a call to the
subroutine SRCH$S, which expects an INTEGER*2 arqument.

Third Edition 7-2

THE PL/I SUBSET G INTERFACE

Table 7-1
Data Types
GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL v 77 PASCAL PL1G
1)
1 bit —*— =k ~*— % - Bit
Bit(1)
(2) (2) (3)
16-bit INT coMp INTEGER INTEGER*2 | Integer Fixed Bin
Half-word INTEGER*2 |LOGICAL*2 | Boolean Fixed
LOGICAL Bin(15)
INTEGER (4)
32-bit INT*4 —%- INTEGER*4 | INTEGER*4 | Subrange |Fixed
Word LOGICAL Bin(31)
LOGICAL*4
64-bit
Double —e —K — —— — —K
Word
Float
32-bit REAL REAL REAL Real Binary
Float single —*— REAL*4 REAL*4 Float
precision Bin (23)
64-bit |
Float double | REAL*8 —% REAL*8 REAL*8 K Float
precision Bin(47)
DISPLAY(5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER CHARACTER | ARRAY Char (n)
(Max. 32767) PIC 9(n) *n [l..n] OF
PIC X(n) CHAR
Varying (6) (6) (6) (6) (6)
character =% Char(n)
string Varying
(7 L(®
48-bits —%- —%e =% e <type> Pointer
3 Half-words

Not available.

7-3 Third Edition

DOC3621-190

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Notes to Table 7-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PL1G, 'l'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal O.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively. This is not directly compatible with Pascal or
PL1G.

Boolean data in Pascal is represented in 16 bits where the
sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PL1G.

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where ™" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PL1G is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user—defined type or a standard
Pascal type.

Third Edition 7-4

THE PL/I SUBSET G INTERFACE

INTEGER*4
The INTEGER*4 expected by FORTRAN subroutines is PL1G's FIXED BIN(31).

Sample Program 2 calls the FORTRAN subroutine RNUM$A, which expects an
INTEGER*4 argument.,

REAL. or REAL*4

This FORTRAN data type should be declared as FLOAT BIN, also called
FLOAT BIN(23) in PL1G., Constants passed to a FORTRAN function that
expects REAL arquments should be in scientific format (x.xEtyy).

Sample Program 3 calls RANDSA, which expects a real number,

NIOAT Q0
RESAS ™ O

The REAL*8 arqument expected by a FORTRAN subroutine should be declared
in PL1G as FLOAT BIN(47). It should be in scientific format (x.xEtyy).

Integer Arrays

An integer array expected by a FORTRAN subroutine should be declared,
according to the kind of information passed, either as a FIXED
BINARY(15) array or as a character array in PL1G:

DECLARE X(1l:n) FIXED BIN(15);

DECLARE X(1l:n) CHAR;

DECLARE X CHAR(n);

Multidimensional arrays cannot be passed between FORTRAN and PL1G.

ASCII Character (String or Array)

An ASCII string expected by a FORTRAN subroutine should be declared in
PL1G as a literal or as CHAR(n)NONVARYING.

LOGICAL

LOGICAL arguments expected by a FORTRAN subroutine should be declared
in PL1G as FIXED BIN(15). The arcquments must have a value of 0 (false)
or 1 (true). Note that FORTRAN logical functions cannot be called as
functions in PL1G for this reason, and must be called as subroutines.

7-5 Third Edition

DOC3621-190

Sample Program 4 calls the function DELE$A, which returns a logical
value,

CHARACTER (*) VARYING

This argument is expected only by PLIG subroutines. It should be
declared as CHAR(n)VARYING, and passed only as a data name, not as a
literal. No other special steps are needed to pass CHAR(*)VARYING from
a PL1G program.

Sample Program 5 calls the Pl11G subroutine GVS$GET, which expects a
CHAR (*) VARYING argument.,

CHARACTER (n) NONVARYING, POINTER, BIT(1)

These arguments are expected only by PL1G standard subroutines. They
should be declared the same way in the calling routine,

USING SYSOOM TABLES

Subroutine descriptions in this quide sometimes refer to codes with
names in the format xSyyyy, where x and y are letters. The code names
may be used in the program instead of numeric values. There are three
groups of these codes.

Error codes have names in the format ESyyyy. These equivalents should
be inserted in the PL1G program before the subroutine declaration with
the statement:

%INCLUDE 'SYSCOM>ERRD. INS.PL1';

The equivalents for these key codes are in Appendix D and in the file
SYSCOM>ERRD, INS.FL1.

Rey codes have names in the format K$yyyy. These equivalents should be
inserted in the program with the statement:

$INCLUDE 'SYSQOM>KEYS,INS.PL1';

The equivalents for these key codes are in Appendix C and in the file
SYSCOM>KEYS. INS.PL1.

Some subroutines in VAPPIB use argument codes in the form ASyyyy.
These codes should also be inserted with the statement $INCLUDE
' SYSCOM>ASKEYS.INS,PL1'. They are listed in the table at the end of
Chapter 12 on VAPPIB, or in the file SYSCOMM>ASKEYS.INS.PLl.

Third Edition 7-6

THE PL/I SUBSET G INTERFACE

SAMPLE PROGRAMS

Program 1 — Using INTEGER*2 and SYSCOM Keys

with the following dialog.
15 will be returned.

SUBS: PROCEDURE OPTIONS (MAIN) ;
/*

Sample Program 1 illustrates the use of key codes.

*/

/* A PROGRAM TO CALL THE SUBROUTINE SRCHS$ TO VERIFY THE */

/* EXISTENCE OF FILE CTRLFL
/-k

*

$INCLUDE 'SYSCOM>KEYS.INS.PL1';

$INCLUDE 'SYSCOM>ERRD. INS.PL1';
DCL CODE FIXED BIN;

*/

DCL SRCHSS EXTERNAL ENTRY (FIXED BIN, CHAR(6), FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

/*

CALL SRCHSS (KSEXST+KSIUFD, 'CIRLFL', 6, O,
PUT SKIP LIST ('CODE IS: ', CQODE);

END SUBS;

OK, PL1G SRCH
0000 ERRORS (PL1G-REV19.0)

OK, SEG —-LOAD
[SEG Rev 19.0]
$ LO SRCH

$ LI PLIGIB

$ LI VAPPLB
SLT
LOAD COMPLETE
$ EXEC

CODE IS: 15
OK,

Program 2 — Using INTEGER*4

RNSM: PROCEDURE OPTIONS (MAIN) ;

*
/*A PROCEDURE TO CALL SUBROUTINE RNUMSA TO
/*VERIFY A LONG INTEGER
/*

*/
0, CODE);

This program, stored as SRCH.PL1G, may be compiled, loaded, and run
If the file CTRLFL does not exist, the code

Third Edition

DOC3621-190

$INCLUDE 'SYSCOM>ASKEYS,.PLL';

DCL QODE FIXED BIN(31);

DCL RNUMSA EXTERNAL ENTRY (CHAR(14), FIXED BIN, FIXED BIN,
FIXED BIN(31));

CALL RNUMSA ('ENTER A NUMBER', 14, ASDEC, CODE);

PUT SKIP LIST ('NUMBER IS', CODE);

END RNUM;

This program, stored as INT4.PL1G, may be compiled, loaded, and run
with the following dialog:

OK, PL1G INT4
0000 ERRORS (PL1G-REV19.0)

OK, SEG -LOAD
[SEG rev 19.0]
$ LO INT4

$ LI PLIGIB

S LI VAPPLB

$ LI

LOAD COMPLETE
$ EXEC

ENTER A NUMBER: Q
Illegal number (RNUMSA)

ENTER A NUMBER: 123456789123456789
Too many digits (RNUMSA)

ENTER A NUMBER: 12345

NUMBER IS 12345
OK,

Program 3 — Using REAL*4

OK, SLIST RANDOM,PL1G
RANDOM : PROCEDURE OPTIONS(MAIN);

/*
/* A PROGRAM TO CALL RAND$A TO GENERATE RANDOM NUMBERS y
/*

DCL: K FIXED BIN;
DCL SEED STATIC FIXED BIN(31) INITIAL (1);
DCL REAL4 FLOAT;
DCL RANDS$A EXTERNAL ENTRY (FIXED BIN(31)) RETURNS (FLOAT)}
/* *
DOK=1T0 10;
REAL4 = RANDSA (SEED) ;
PUT SKIP LIST(REAL4):
END;
END RANDOM;

Third Edition 7-8

THE PL/I SUBSET G INTERFACE

This program may be compiled, 1locaded, and run with the following
dialog:

OK, PL1G RANDOM

0000 ERRORS (PL1G-REV19.0)
OK, SEG -LOAD

[SEG rev 19.0C]

$ L.O RANDOM

$ LI PLI1GIB

S LI VAPPIB

SIT

LOAD COMPLETE

$ EXEC

7.826369E-06
1.315377E-01
7.556052E-01
4.586501E-01
5.327672E-01
2.189591E-01
4,704461E-02
6.788645E~01
6.792963E~-01
9.346929E~01
OK,

Program 4 — Calling a Logical Function

LOGI: PROCEDURE OPTIONS(MAIN) ;

/% */
/*A PROCEDURE TO CALL FUNCTION DELESA TO */
/ *DELETE A FILE AND VERIFY THAT IT DID */
/% */

DCL DELESA EXTERNAIL. ENTRY(CHAR(6) ,FIXED BIN) RETURNS(FIXED BIN);
IF DELESA ('CTRLFL', 6) = 1 THEN
PUT SKIP LIST ('FILE DELETED');
ELSE PUT SKIP LIST ('NO GO');
END LOGI;

This program, stored as LOGICAL.PL1G, may be compiled, loaded, and run
with the following dialog if CTRLFL does not exist.

OK, PL1G LOGICAL
0000 ERRORS (PL1G-REV19.0)

OK, SEG -LOAD
[SEG REV19.0]
$ LO LOGICAL

$ LI PLIGIB

7-9 Third Edition

DOC3621-190

$ LI VAPPLB
S LI

LOAD COMPLETE

$ EXEC
Not found.

NO GO
OK,

CTRLFL (DELESA)

Program 5 — Using CHAR(*)VARYING Arguments

OK, LIST GVAR.PL1G

GVAR: PROCEDURE OPTIONS(MAIN) ;

/*

/* A PROGRAM TO ASCERTAIN THE VALUE OF A GLOBAL VARIABLE

/*

*/

DCL VAR_NAME STATIC CHAR(4)VAR INIT('.MAX'):

DCL VAR_VALUE CHAR(4)VAR;

DCL VALUE_SIZE STATIC FIXED BIN INITIAL(4);

DCL CODE FIXED BIN; '

DCL GVSGET EXTERNAL ENTRY (CHAR(*)VAR, CHAR(*)VAR,

/*
CALL GVSG

FIXED BIN, FIXED BIN);

ET(VAR_NAME, VAR VALUE, VALUE_SIZE, CODE);

PUT SKIP LIST ('MAX IS', VAR _VALUE);
PUT SKIP LIST ('CODE IS: ', CODE);

END GVAR;

This program,

compiled and stored as GVAR.PL1, may be loaded and run

with the following dialog, providing that a global variable file has

been defined as

explained in The CPL User's Guide.

OK, SEG ~LOAD

[SEG REV1O.
$ LO GVAR

$ LI PLIGIB
STI -

0]

LOAD COMPLETE

$ EXEC
MAX IS 100

CODE IS:
OK,

Third Edition

7-10

The PMA

Interface

INTRODUCT ION

Table 8-1 summarizes the argument types of FORTRAN and PL1G subroutines
that can be called from PMA, PRIMOS subroutines are particularly
useful to the PMA programmer for doing device 1/0, for displaying data
on the terminal, and for doing file manipulation.

To call a subroutine, simply write:

CALL sub-name
Then, on succeeding lines, list the arguments to be passed, preceded by
AP for V-mode or DAC for R-mode and followed in V-mode by S or SL as
discussed below.

External functions should not be called from PMA, However, most
functions in this guide may also be called as subroutines.

Calling Subroutines from V-mode and I-mode PMA

When PMA calls an external subroutine in V-mode or I-mode, arguments
are passed by reference using the AP instruction. Each AP instruction
uses S as its second operand, except the last, which uses SL. Examples
of V-mode calls are given in the first set of sample programs below,
The same programs may be used in I-mode with SEGR instead of SEG at the
beginning.

8-1 Third Edition

DOC3621-190

Table 8-1
Data Types
GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL v 77 PASCAL PL1G
(1)
1 bit —%*— = =% —%e —Fe Bit
Bit(1)
(2) (2) (3)
16-bit INT coMP INTEGER INTEGER*2 | Integer Fixed Bin
Half-word INTEGER*2 |LOGICAL*2 | Boolean Fixed
LOGICAL Bin(15)
’ INTEGER (4)
32-bit INT*4 - INTEGER*4 |INTEGER*4 | Subrange |Fixed
Word LOGICAL Bin(31)
LOGICAL*4
64-bit
muble - —_—— —r . —_— —
Word
Float
32-bit REAL REAL REAL Real Binary
Float single - REAL*4 REAL*4 Float
precision Bin (23)
64-bit
Float double | REAL*8 =% REAL*8 REAL*8 —*— Float
precision Bin(47)
DISPLAY (5) (5) (5) (5)
Byte string | INT |PIC A(n) INTEGER |CHARACTER | ARRAY Char (n)
(Max. 32767) PIC 5(n) *n {l..n] OF
PIC X(n) CHAR
Varying (6) (6) (6) - (6) (6)
character it Char(n)
string Varying
(7))
48-bits =% —%*— —%- —%— <type> Pointer
3 Half-words

* Not available.

Third Edition 8-2

(1)

(2)

(3)

(4)

(5)

o—
[2))
St

(7)

(8)

THE PMA INTERFACE

Notes to Table 8-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. 1In PL1G, 'l'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLI1G may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively. This is not directly compatible with Pascal or
PL1G.

Boolean data in Pascal is represented in 16 bits where the
sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PL1G.

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PL1G is subject to change;
a program that passes pointers or receives them may have tc be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user—-defined type or a standard
Pascal type.

8-3 Third Edition

DOC3621-190

Calling Subroutines from R-mode PMA

When PMA calls an external subroutine in R-mode, arguments are passed
by reference using the DAC instruction. If there is more than one
argument, the last DAC instruction is followed by DATA 0. (This is a
convention of the operating system, and not an architectural feature.)
If there is only one argument, DATA 0 must not be used. Examples of
R-mode calls are given in the second set of sample programs below.

DATA TYPES

Refer to the Assembly Language Programmer's Guide for more details on
the following data types.

INTEGER*2 or FIXED BIN(15)

FORTRAN's INTEGER*2 is PLIG'S FIXED BIN(15), also called just FIXED
BIN. This 16-bit argument is the one-word (single-precision) data type
that is defined by default with the BSS, DYNM, BSZ, CCT, or DATA
statement in PMA,

Sample Programs 2 and 7 use INTEGER*2 arquments,

INTEGER*4 or FIXED BIN(31)

This 32-bit argument expected by FORTRAN or PLIG is the double~word,
double-precision data type that is defined with BSS 2, DYNM x (2), or
DATA xxxxXL. Sample Programs 3 and 8 use this data type.

REAL*4 or REAL

This 32-bit arqument expected by FORTRAN is the single~precision
floating-point data type that is defined by any DATA item with a
decimal point or scientific notation (mnEmn), BSS 2, or DYNM x (2).

REAL*8

This 64-bit argument expected by FORTRAN is the double-precision
floating-point data type that is defined by any DATA item with a
decimal point or scientific notation and with D appended to it, by
BSS 4, or by DYNM x (4).

Third Edition 8-4

THE PMA INTERFACE

Integer Array

This may be passed as any data type.

LOGICAL

This FORTRAN data type is a 16-bit integer, with a value of 1 for true
or 0 for false, Sample Program 4 uses a LOGICAL data type.

BASCIT Characters (String)

ASCIT characters can be passed as a oonstant string enclosed in
apostrophes after the DATA statement plus the letter C, for example,
DATA C'STEP 1'. It may also be enclosed in any delimiter after the BCI
statement. The maximum number - of characters after C is 32. The
maximum after BCI is the number that will fit on the same statement
line.

CHARACTER (*) VARYING

This PLIG data type is implemented as a record structure, with the
actual number of characters followed by those characters. The elements
may be pictured as follows:

0o 5 |lA B C D E |

|1
COUNT CHARACTER STRING

Sample Program 5 uses a CHAR(*)VAR data type.

CHARACTER (n) NONVARYING

This PL1G data type, usually declared simply as CHARACTER(n), consists
of n characters. It may be coded in PMA as DATA C'xxX...', or may be
passed as a literal. Either item should be n characters long.

BIT(1)

PLIG programs that expect arguments of this type should not be called
from PMA unless the argument is declard in PL1G as BIT(1) ALIGNED. In
this case it may be treated as a 16-bit integer, with a value of -1 for
false.

8-5 Third Edition

DOC3621-190

USING SYSOOM TABLES

Many subroutine descriptions in this gquide use, instead of numeric
codes, key names in the form x$yyyy where x and y are letters. There
are three files in the SYSOOM UFD that are of use in handling these
names,

SYSCOM>KEYS.INS.PMA and SYSCOM>ERRD, INS.PMA contain the equivalents of
keys and error codes. They should be used instead of numeric values
for codes. These keys are explained in Chapter 2. To use these key
names in a PMA program, use SINCLUDE SYSCOM>xxxx or SINSERT SYSOOM>XXXX
anywhere in a program,

There is no ASKEYS file for PMA, so the numeric values of the codes
must be used instead. These codes are in Chapter 12 of this quide, or
may be read from the SYSCOM>ASKEYS.INS.FIN file.

Sample Programs 1, 6, and 8 illustrate use of these SYSCOM tables.

DIRECT-ENTRANCE CALLS TO PRIMOS — THE PCL INSTRUCTION

V-mode supports direct—entrance calls to certain procedures. Routines
such as SRCHSS, TNOU, or PRWF$$ can be invoked directly by this
mechanism. In V-mode, the CALL instruction is really a pseudo—-op that
contains an EXT (external) declaration and a PCL (procedure call)
instruction, The PCL first searches to see whether the called routine
is a name in PRIMOS' gate segment. If so, the subroutine code does not
have to be loaded into the user's memory space. If the procedure name
is not in the gate segment, PCL looks in the libraries loaded by SEG.
Direct-entrance calls are available only from V-mode and I-mode
programs and will be correctly set up by loading the V-mode FIN library
with LI after SEG is invoked.

Direct-entrance calls are through ECBs (entry control blocks) that are
contained in the gate segment of the supervisor. 1Invalid calls or
other references to the gate segment will cause the error messages
UNDEFINED GATE or ILLEGAL PAGE REF,

Sample Program 4 illustrates a call using the PCL. instruction. 'There
is no advantage to using this method rather than using CALL. The
distinction between these calls and normal subroutine calls is
presented only for background.

Under R-mode memory images on PRIMOS II or PRIMDS III, all operating
System subroutines use the SVC interface described in Appendix H. 1In
R-mode, only experienced programmers should use direct-entry calls in
programs, as discussed in the Assembly Language Programmer's Guide.

Third Edition 8-6

THE PMA INTERFACE

SAMPLE PROGRAMS IN V-MODE

Program 1 — Using SYSCOM Keys

This program calls SRCHSS to verify the existence of the file CIRLFL,
using the key KSEXST. The program then calls TOVFD$ to print the error
code returned by SRCHSS.

SEG THIS IS V-MODE
MAIN CALL TNOUA DISPLAY CHARACTERS:

AP =C'CODE ‘',S FIRST ARGUMENT

AP =5,8L SECOND ARGUMENT
S$INSERT SYSCOM>KEYS, INS.PMA

CALL SRCHSS CALL SEARCH:

AP =K$EXST+KSIUFD, S KEY ARGUMENT

AP =C'CIRLFL',S FILENAME ARG

AP =6,S LENGTH ARG

AP =0,S FUNIT ARG

AP =0,S8 TYPE ARG

AP CODE,SL LAST ARG

CALL TOVFDS$ PRINT INTEGER

AP CODE,SL ONLY ARG

CALL TONL NEWLINE

CALL EXIT END GRACEFULLY

LINK DEFINE DATA:
CODE BSS 1 16-BIT INTEGER
ECBS ECB MAIN

END ECB$

To assemble, load, and run this program, stored as SRCHV.PMA, use the
following dialog:

OK, PMA SRCHV
0000 ERRORS (PMA-REV19.0)

OK, SEG -LOAD
[SEG rev 19,0]
$ LO SRCHV

$ LI VAPPIB
SIT
LOAD COMPLETE
$ EXEC

QODE 0
OK,

8-7 Third Edition

DOC3621-190

Program 2 — Using INTEGER*2 Arquments

This program calls ES11 (Appendix G) to do exponentiation, then calls
TOVFDS to print the 16-bit result. The program uses the DYNM data
definition to put 16-bit integers on a stack.

SEG THIS IS V-MODE
DYNM ITEM,Y 16-BIT INTEGERS
MAIN DA =5 PUT 5 IN REGISTER A
STA ITEM
LbA =2
STA Y
LDA ITEM LOAD NUMBER TO BE SQUARED
STRT CALL ES$11 CALL SUBROUTINE FOR EXPONENTIATION
AP Y,SL Y IS POWER TO BE USED
STA ITEM STORE RESULT IN ITEM
CALL TNOUA CALL SUBROUTINE TO PRINT MESSAGE
AP =C'RESULT ',S FIRST ARG (MESSAGE)
AP =7,SL SECOND ARG (NO. OF CHARS)
CALL TOVFD$ CALL SUBROUTINE TO PRINT INTEGER
AP ITEM,SL (NLY ARGUMENT
CALL TONL CALL SUBROUTINE FOR NEW LINE
CALL EXIT END GRACEFULLY
LINK
ENTCB ECB MAIN
END ENTCB

To assemble, load, and run this program, stored as T™OUVA.PMA, use the
following dialog:

OK, PMA TNOUV
0000 ERRORS (PMA-REV19.0)

OK, SEG -IL0AD
[SEG rev 19.0]
$ LO ™NOUV
SIT
LOAD COMPLETE
$ EXEC

RESULT 25
CK,

Program 3 — Using INTEGER*4

This program calls RNUMSA to accept a 32-bit integer.
SEG THIS IS V-MODE

STRT CALL RNUMSA CALL SUBROUTINE TO ACCEPT NUMBER
AP =C'ENTER A NUMBER',S

Third Edition 8-8

THE PMA INTERFACE

ITEM BSS 2 32-BIT INTEGER
ASBIN DATA 9 ACCEPT BINARY ONLY

To assemble, load, and run this program, stored as INT4V.PMA, use the
following dialog. Since the key ASBIN specifies that a binary number
must be entered (See Chapter 12.), an entry of anything but 1's or 0's
generates an error message from RNUMSA.

OK, PMA INT4V

0000 ERRORS (PMA-REV19.0)
OK, SBEG -LOAD

[SEG rev 19.0]

$ LO INT4V

$ LI VAPPLB

$LT

LOAD COMPLETE

$ EXEC

ENTER A NUMBER: Q
Illegal number (RNUMSA)

ENTER A NUMBER: 23
Illegal number (RNUMSA)

ENTER A NUMBER: 0110

OK’

Program 4 — Using Logicals

This program calls TEXTOS$ to check whether a filename is wvalid., It
also illustrates use of the PCL instruction,

OK, SLIST LOGICAL.PMA

SEG

TEXTOS$

TEXTOS$

=C'CIRLFL',S

=6,S

LEN, S

OK, SL

TOVFDS CALL SUBROUTINE TO PRINT OK
OK'SJ

CALL TONL CALL SUBROUTINE FOR NEW LINE

BEERRERE

8-9 Third Edition

DOC3621-190

CALL EXIT

LINK
LEN DATA 6 16-BIT INTEGER
CK BSs 1 16-BIT INTEGER (LOGICAL)
ECBS ECB MAIN

END ECB$

To assemble, load, and run this program, stored as LOGICAL.PMA, use the
following dialog. If the file CTRLFL exists and is successfully
deleted, the return code will be 0. Otherwise the code will be 1.

OK, PMA LOGICAL
0000 ERRORS (PMA-REV19.0)

OK, SEG —LOAD
[SEG rev 19.0]
$ LO LOGICAL
$ LI VAPPLB
STT
LOAD COMPLETE
S EXEC

1
OK,

Program 5 — Using CHAR(*)VARYING

This program calls GVSGET, which reads a previously defined global
file, Before this program will execute correctly, the global variable
file must have been defined with DEFINE_GVAR.

GVSGET can only be called from a program running in V-mode.

OK, SLIST CHARVAR.PMA

SEG
MAIN CALL GVSGET
AP NAME,S CHAR*VAR ARG
AP VAL, S CHAR*VAR RETURN ARG
AP SIZE,S ONE-WORD ARG
AP CODE. SI, ONE-WORD RETURN ARG
CALL INCU PRINT CHARACTERS:
AP =C'COLE IS ',S
AP =8,SL
CALL TOVFDS PRINT NUMBER
AP CODE, SL
CALL TONL NEWLINE
CALL TMNOQU
AP =C'MAX IS ',S
AP =7,8L

Third Edition 8-10

THE PMA INTERFACE

CALL "INOU
AP VAL+1,S ONLY PRINT SECOND PART OF VAL
AP VAL, SL
CALL. TONL
CALI. EXIT
LINK
NAME DATA 4 ONE-WORD INTBEGER +
BCI '.MAX' FOUR—-CHAR NAME
VAL DATA 4 ONE-WORD INTEGER(SUPPLIED) +
BSS 2 FOUR-CHARACTERS RETURNED
SIZE DATA 4 16-BIT INTEGER
CODE BSS 1 16-BIT INTEGER
ECBS ECE MAIN
END ECBS

To assemble, load, and run this program, stored as CHARVAR.PMA, use the

_y 3 = Lo e 12N PO £112717 1 Al
following dialog. Before the program can be run successfully, a global

variable file containing .MAX must have been defined with the command

=G aT aaaT VAl a Al 134 & VW d T

DEFINE_GVARFILE filename, as explained in the CPL User's Guide.

OK, PMA CHARVAR
0000 ERRORS (PMA-REV19.0)

OK, SEG -LOAD
[SEG rev 15.0]
$ LO CHARVAR
SIT
LOAD COMPLETE
$ EXEC

CODE IS

0

MAX IS
100

OK,

SAMPLE PROGRAMS IN R-MODE

Program 6 — Using SYSCOM KEYS

This program does the same thing as Sample Program 1 above.

REL, THIS IS R-MODE
MAIN
CALL SRCHSS CALL SUBROUTINE SRCH
DAC =KSEXST+KSIUFD KEY ARG
DAC =C'CTRLFL' FILENAME ARG
DAC =6 LENGTH ARG
DAC =0 FUNIT ARG

8-11 Third Edition

DOC3621-190

DAC =0 TYPE ARG

DAC OODE CODE ARG

DATA 0 END OF ARGS

CALL TOVFDS DISPLAY CODE

DAC CODE ONLY ARGUMENT

CALL TONL NEW LINE

CALL EXIT END GRACEFULLY
CODE BSS 1 DEFINE 16-BIT INTEGER
SINCLUDE SYSCOM>KEYS.INS.PMA

END

To assemble, load, and run this program, stored as SRCH.PMA, use the
following dialog. If CTRLFL does not exist, an error code of 15 is
returned. (See Appendix D.)

OK, PMA SRCH
0000 ERRORS (PMA-REV19.0)

OK, LOAD

[LOAD rev 19,0]
$ LO SRCH

$ LI APPLIB

$ LI

LOAD COMPLETE
$ EXEC

15
OK,

Program 7 — Using INTEGER*2

This program does the same thing as Sample Program 2 above.

REL THIS IS R-MODE

MAIN LDA ITEM LOAD NUMBER TO BE SQUARED

STRT CALL E$11 CALL SUBROUTINE FOR EXPONENTIATION
DAC Y Y IS POWER TO BE USED
STA ITEM STORE RESULT IN ITEM
CALL TNOUA (ALL SUBROUTINE TO PRINT MESSAGE
DAC =C'RESULT ' FIRST ARG (MESSAGE)
DAC =7 SECOND ARG (NO, OF CHARS)
DATA O NO MORE ARGUMENTS
CALL TOVFDS CALL SUBROUTINE TO PRINT INTEGER
DAC ITEM ONLY ARGUMENT
CALL TONL CALL SUBRQUTINE FOR NEW LINE
CALL EXIT

ITEM DATA 5 16-BIT INTEGERS

Y DATA 2
END

Third Edition 8-12

THE PMA INTERFACE

To assemble, load, and run this program, stored as TNOUR.PMA, use the

following dialog:

OK, PMA TNOUR
0000 ERRORS (PMA-REV19.0)

OK, LOAD

[LOAD rev 19.0]
$ LO T™NOUR
SIT
LOAD COMPLETE
$ EXEC

reream QO . Tt TAIMEYIED %A anAd ACZLEUVO
v WOkl LINLLIAJLUN "2 Gl DwpiNadlo

This program uses the values in ASKEYS to call RNUMSA, which accepts a
32-bit integer and checks that the integer is in the right format., In

this case, the key value is set to 9 for binary input,
entered by the user may consist only of 1's and 0's.

OK, SLIST INT4R.PMA

REL R-MODE
STRT CALL RNUMSA
DAC =C'ENTER A NUMBER'

so the number

CALL SUBROUTINE TO ACCEPT NUMBER

CALL SUBROUTINE FOR NEWLINE

DAC =14 MESSAGE LENGTH

DAC ASBIN SYSCOM>ASKEY FOR BINARY
DAC ITEM

DATA O END OF ARGUMENTS

CALL TONL

CALL EXIT

ITEM BSS 2
ASBIN DATA 9
END

To load this R-mode program, compiled and stored as INT4R.BIN, use the

following steps:

OK, LOAD

[ILOAD rev 19.0]
$ LO INT4R

$ LI APPLIB
$LT
LOAD COMPLETE
$ SA

$ EXEC

32-BIT INTEGER
16-BIT INTEGER

8-13 Third Edition

DOC3621-190

When this program is run, RNUMSA produces messages similar to the
following:

ENTER A NUMBER: Q
Illegal number (RNUMS$A)

ENTER A NUMBER: 1122334455
I1legal number (RNUMSA)

ENTER A NUMBER: 11100000000000001

Third Edition 8-14

PART II1

PRIMOS Subroutines

File Management
Subroutines

DEFINITIONS

This section describes some concepts and arqument names that are used
in Chapter 9. More discussion on file management is provided with
SRCH$S below, Refer to Appendix I for a discussion of file
organization prior to Rev. 19.

The subroutines discussed in this chapter are listed on the following
page.

Keys

Many subroutines require a key argqument, which is numeric. However,
all keys to be input by the programmer are specified in this quide in
symbolic, rather than numeric, form. These symbolic names are defined
in files in the UFD named SYSCOM on the master disk. The key
definition files are named KEYS.INS.language. The exact name of the
relevant file, if one exists, and how to insert it in a program, is
explained for each language in Chapters 3 through 8. The keys are also
listed in Appendix C. The programmer is urged to use these symbolic
names where possible,

Adding Keys: In call formats, keys may be added, as in this example:
CALL SRCHSS (action + ref + newfil, filmam...)

9-1 Third Edition

19

DOC3621-190

Table 9-1
File Management Functions

Open Files
SRCHSS
TSRCSS

Close Files
SRCHSS

Delete Files
SRCHSS

Search for File
SRCHSS
SRSFXS$

Manage File Attributes

SA'IR$$

Find Open Filename
GPATHS

Compare Filenames
NAMEQS

Change Filename
CNAMSS

Manage Suffixes
APSFXS
SRSFXS$

Read/MWrite
FORCEW
PRWFSS
RDLINS
WILINS

Manage Passwords
GPASS$
SPASSS

Manage Segment Directories
SGDRSS

Manage Command Files
OOMISS
COMOS$

Manage R-mode Runfiles
RESTSS
RESUSS
SAVESS

Manage UFDs
QSREAD

Q$SET

ATCHSS

CREASS

RDENSS

UPDATE (PRIMOS II)

Third Edition

FILE MANAGEMENT SUBROUTINES

Since the key names represent numeric values, they may be used as
arithmetic expressions, as in this Pascal call:

SRCHSS (KS$READ + KSCACC)
Keys may be omitted from these expressions unless they are required.

The keys may be used in the expression in any order. They are always
INTEGER*2.

Error Code or Return Code

The integer return code is a symbolic name for the code returned by a
subroutine. It is usually referred to as the error code, but if no
errors are encountered the code is returned as 0. The symbolic names
are defined in files in the SYSCOM UFD, named ERRD.INS,lanquage. The
exact name of the relevant file, if one exists, and how to insert it in
a program, 1is explained for each language in Chapters 3 through 8.
Definitions are also given in Appendix D. Frror codes are always
INTEGER*2.

File System Object

Afile system object may be a file, UFD or sub-UFD, a seguent
directory, or an access category.

Filenames, Pathnames, MFDs, and UFDs

Filenames may be 1 through 32 characters in length, the first character
of which must be nonnumeric. Filenames may be composed only of the
following characters: A through Z, 0 through 9, _ # $& * -, /.,
Names should not begin with a dash (-~) or underscore (). Filenames
may not contain embedded blanks.

A UFD (User File Directory) is a directory or subdirectory of files.

A pathname is the name of a file, preceded by as many of its superior
UFD-names as is necessary to identify the location of the file. It may
be up to 128 characters long. In a pathname, names of all groups
except the lowest are followed by a symbol >. If the pathname begins
with the MFD (Master File Directory or partition name), this name
starts with the symbol <., A complete pathname might be:

<TPUBS>ANNE>SQURCE >GVAR . COB(L,

The general form is a starting directory specifier, zero, one, Or more
subdirectory specifiers, and then the filename.

9-3 Third Edition

DOC3621-190

The starting directory specifier has the following formats. Square
brackets ([]) indicate an optional item,

1. UFDname [password]>

2, *

3. <volumename>UFDname [password]>

4, <logical-disk-number>UFDname [password]>

In form 1, all MFDs are searched for the named directory in logical
disk order.

In form 2, the home directory is the starting directory.

In form 3, the volume with the specified name is searched for the
specified UFD name. If the volume name is a single asterisk (*), the
MFD in the home volume is searched.

In form 4, the volume with the specified octal logical disk number is
searched for the specified UFD name.

A subdirectory specifier has the following format:

ufdname>subname [password]

Spaces are not significant except that they may not occur within a name
and must separate a UFD from its password., If a name is longer than
128 characters, it may cause an error message when passed to a
subroutine. Trailing blanks are not allowed in names that are passed
as CHAR(*)VARYING strings.

Pathnames specified as parameters to external commands should not
contain spaces, as the space or comma is used to separate one parameter

from another. If a space must be specified due to a password, enclose
the entire pathname in single quotes.

Examples: The following expressions illustrate pathnames, including
the required passwords.

ABC File named ABC in home directory.
XYZ>ABC File named ABC in UFD named XYZ.
KINV>XYZ>ABC File named ABC in UFD named XYZ on partition named INV.

<*>XYZ>ABC File named ABC in UFD named XYZ on home partition or
MFD.

<5>XYZ>ABC File named ABC in UFD named XYZ on logical disk 5.

Third Edition 9-4

FILE MANAGEMENT SUBROUTINES

*>XYZ >ABC File named ABC in sub—UFD named XY¥Z in home directory.

*>XYZ>IJK>ABC File named ABC in sub-UFD IJK in sub-UFD named XYZ in
home directory.

XYZ DEF>ABC File named ABC in UFD named XYZ with password DEF.
XYZ>ABC File named ABC in UFD named XYZ.

<INV>XYZ>ABC File named ABC in UFD named XYZ on volume named INV.
<*>XYZ>ABC File named ABC in UFD named XYZ on home volume,
<5>XYZ>ABC File named ABC in UFD named XYZ on logical disk 5.

*>XYZ >ABC File named ABC in sub—UFD named X¥Z in home directory.

*>XYZ>IJK>ABC File named ABC in sub-UFD IJK in sub-UFD named XYZ in
home directorv.

41U Lo LTV Y e

XYZ DEF>ABC File named ABC in UFD named XYZ with password DEF.

File Units (Funits)

A file unit is a logical unit that PRIMOS associates with an open file.
A user may have 126 file units open at once. When files are opened by
high-level languages other than FORTRAN, the programmer is not aware
which file unit number is associated with the file at runtime.
Subroutines, however, may be called to open a file with a specified
file unit number. (The exact number chosen does not matter as long as
it is between 1 and 126.) The file may be accessed through its file
unit number. This kind of access may be faster than access by
filename, and is more flexible than the file access allowed by the
Pascal, PL1G, and PMA languages. A file unit also has a position and
an access method, so that when a user reads from a file or writes to
the file using the file unit, it is not necessary for the user program
to keep track of the file's position and access. Examples of file unit
strategy are given with SRCH$S in this chapter.

Buffer

A buffer is an area of memory addressed by a data name. It is usually
defined as an integer array in FORTRAN, and may contain both numbers
and characters. It is of variable length, and so is followed by an
argument specifying the number of words or characters in buffer.

If separate words or characters of the buffer can be addressed by
number, the buffer can be called an array or vector.

9-5 Third Edition

DOC3621-190

Array or Vector

An array is an integer array, with the same characteristics as buffer
above., Arrays are sometimes called vectors in this guide.

Home Directory and Current Directory

There is a distinction between home directory and current directory
which is made by subroutines, but is not made at PRIMOS command level.
For a file management subroutine, the current directory is the one to
which the process is currently attached. The home directory, however,
is either the one first attached to, or the one defined by a subroutine
such as ATSHOM. So that the author of a program may be sure that a
process is attached to a certain directory after a series of subroutine
calls, including possible failures, routines that handle pathnames
always close the specified file unit, then attach to the user's home
UFD before attempting any action. If the user's home UFD differs from
the current UFD before the call, the process will be attached to the
home UFD following the call. In addition, the home directory is the
UFD or sub-UFD used as the starting point when the asterisk (*) is used
in a pathname by a subroutine call.

0l1d Partitions

When this chapter refers to old partitions, it means those established
under the pre-Rev. 14 file system. Systems that are running under
Rev. 18.4 or higher do not support old partitions, so the user can
ignore these references.

SUBROUTINE DESCRIPTIONS

The file-manipulation subroutines are described below in alphabetical
order. See Table 9-1 for a summary of functions provided.

Caution

Do not omit any arguments in calls to the subroutines described
in this section. Do not specify as 0 (or any constant) any
arquments returned by the subroutines, such as the error code
(integer return code). Always check the error code to see if
the subroutine call was successful. It is essential to refer
to Appendix D which covers the error-handling scheme for these
subroutines.

Third Edition 9-6

FILE MANAGEMENT SUBRCUTINES

P APSFXS

Purpose

The PL1G subroutine APSFX$ appends a specified suffix to a pathname.
It is designed for use with the file-naming convention starting with
Rev. 18 that appends standard suffixes to a name by means of a period,
such as MYPROG,COBCL. The pathname is checked for the prior existence
of the suffix to avoid overwriting an existing file.

Usage

DCL APSFX$ ENTRY (CHAR(128)VAR, CHAR(128)VAR, CHAR(32)VAR,
FIXED BIN) ;

CALL APSFX$ (in—pathname, out-pathname, suffix, status)

in-pathname Pathname input to check for suffix (128 character
maximum) .

out-pathname Pathname returned to caller with desired suffix
appended (128 character maximum).

suffix This is the suffix to be added to the pathname. It
should include the period, and be in capital
letters, for example, ".F77" (input; 32 character

maximum) .

status code The code returned has the following possible

meanings:
-1 Suffix already present, pathname
remained untouched.
0 Suffix appended OK.

ESNMIG Pathname+suffix is more than 128
characters or filename+suffix is longer
than 32 characters (FIXED BIN (15)).

Discussion

APSFXS$ does not permanently change the name of the file, only the name
returned in out—pathname. It is most often used after SRSFXS$ is
called., After SRSFXS finds a file and determines its suffix, APSFXS$
may add a suffix to the name found.

9-7 Third Edition

18.1

18.1

19

DOC3621-190

APSFXS$ is often helpful because SRSFXS$ returns two parts to a name -——

the basename and a

suffix. APSFXS$ ensures that the name in outpathname

bhas the proper suffix if one is required.

p ATCHSS

Note

ATCHSS is obsolete and has been replaced by ATS, ATSABS,

ATSANY, ATSHOM,

Purpgse
ATCHSS attaches to

ATSOR, and ATSREL.

a UFD and, optionally, makes it the home UFD., In

attaching to a directory, the subroutine ATCHSS specifies where to look

for the directory.

ATCHSS specifies that a User File Directory (UFD)

is in the Master File Directory (MFD) on a particular lecgical disk, in
a subdirectory in the current UFD, or in the home UFD.

Usage

CALL ATCHSS (ufdnam, namlen, 1disk, passwd, key, code)

ufdnam

namlen

1disk

Third Edition

The name of the UFD to be attached (integer array).
If key is KSIMFD and ufdnam is the key K$HOME, the
home UFD is attached. If the reference subkey is
KSICUR, ufdnam is the name of an array that
specifies the name of the UFD to attach to.

The length in characters (1-32) of ufdnam
(INTEGER*2) . namlen may be greater than the length
of ufdnam provided that ufdnam is padded with the
appropriate number of blanks. If ufdnam = K$HOME,
namlen is disregarded.

The number of the logical disk to be searched for
ufdnam when key = KSIMFD (INTEGER*2)., The parameter
1disk must be a logical disk that is started up.
Other values for ldisk are:

KSALID Search all started-up logical devices
in logical device order, and attach to
the UFD in which ufdnam appears in the
MFD of the lowest numbered logical
device,

9-8

FILE MANAGEMENT SUBROUTINES

KSCURR Search the MFD of the disk currently
attached.

passwd A three—word integer array containing one of the
passwords of ufdnam. passwd can be specified as 0
if attaching to the home UFD. If the reference
subkey is KSIMFD or K$ICUR, passwd must be the name
of a three-word array that specifies one of the
passwords of ufdnam. If passwd is blank, it must be
specified as three words, each containing two blank
characters.

key Composed of two subkeys whose values are added
together, a REFERENCE subkey and a SETHOME subkey
(INTEGER*2) . The REFERENCE subkey values are as

follows:
amn a3 MM ~ae 1 .32 &l
K$IMFD Attach to ufdham in MFD on 1di K o

K$ICUR Attach to ufdnam in current UFD (ufdnam
is a subdirectory).

The SETHOME subkey, KSSETH, may be added to the
REFERENCE subkey as KSIMFD+KSSETH, which will set
the current UFD to the home UFD after attaching. If
the REFERENCE subkey is K$ICUR, or if ufdnam is 0O,
ldisk is ignored, and it is usually specified as 0.

code An INTEGER*2 variable set to the return code.

Discussion

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
As an option, this information may be copied to another place in the
system, referred to as the home UFD., The ATCHSS subroutine does not
change the hame UFD unless the user specifies a change in the
subroutine call. The user gets owner status or nonowner status
according to the password used. The owner of a file directory can
declare, on a per-file basis, what access a nonowner has over the
owner's files., The nonowner password may be given only under PRIMOS
and PRIMOS III. (Refer to the description of the commands SPASS$S and
SATRSS in this chapter for more information.)

9-9 Third Edition

DOC3621-190

A BAD PASSWD error condition does not return to the user's program.
PRIMOS command level is entered. Other errors leave the attach point
unchanged.

Examples
1. Attach to home UFD:

CALL ATCHS$S (K$HOME, O, O, O, O, CODE)

2. Attach to UFD named 'G.S.PATION', password 'CHARGE' in current
UFD:

CALL ATCHS$S('G.S.PATTON', 10, KSCURR, 'CHARGE', KSICUR, CODE)

P CNAMSS

Purpose
CNAMSS changes the name of a file in the current UFD.

Usage
CALL CNAMSS(oldnam, oldlen, newnam, newlen, code)

oldnam The name of the file to be changed (integer array).

oldlen The length in characters of oldnam (INTEGER*2).

newnam The new name of the file (integer array).

newlen The length in characters of newnam (INTEGER*2).

code An INTBGER*2 variable set to the return code.
Discussion

The user must be the owner of the UFD of the file to change the name.
CNAMSS does not change the last modified date/time of the file or any
of the other attributes of the file. However, the last modified
date/time of the UFD in which the file resides is changed. (NAMS$S may
cause the position of the file in the UFD to change with respect to the
other files if the new name is longer than the old name. It is illegal
to change the name of the MFD, BOOT, or BADSPT. An ESNRIT error
message is generated if this is attempted.

Third Edition 9-10

p oomMiss
Purpose

FILE MANAGEMENT SUBROUTINES

CQOMISS switches the command input stream from the user's teminal to a
command file, or from a command file to the terminal.

Usage

CALL OOMIS$S(filnam, namlen, funit, code)

filnam

namlen

funit

code

The name of the command file to receive the command
input stream (mteger array). If filmam is TTY, the
command stream is switched back to the termimal and
funit is closed. If filnam is PAUSE, the command

.
stream is switched to the termimal but the file unit
filnam

specified by funit is not closed. If filnam is
CONTINUE, the command stream is switched to the file
already open on funit., The values -TTY, —~PAUSE, and
~CONTINUE cannot be used as option names.

The length in characters (1-32) of filnam (16-bit
integer).

The file unit (1-126 or 1-15 under PRIMOS II) on
which to open the command file specified by filnam,
Normally, file unit 6 is used (16-bit integer),

An integer variable set to the return code (16-bit
integer).

9-11 Third Edition

19

DOC3621-190

> coMoss
Purpose

COMOS$ switches terminal output to file or terminal.

Usage
CALL COMOS$$(key, filnam, namlen, xx, code)

key A 16-bit word of flags specifying the action to be
taken:
:000001 Turn TTY output off,
:000002 Turn TTY output on.
:000004 Reserved.
:000010 Turn file output off.
:000020 Turn file output on.

2000040 Append to filnam if filnam is being
opened; close filnam if turning file

output off.
:000100 Truncate filnam if filnam 1is being
opened.
filnam An inteder array containing the name of the file to
be opened or 0.
namlen The length in characters (1-32) of filmam or 0
(16-bit integer).
XX Reserved, Should be specified as 0 (16-bit
integer).
code Return code from the file system (16-bit integer).
Discusssion

Routing of the terminal output stream is modified as indicated by the
key. If TTY output is turned off, all printing at the terminal is
suppressed until TTY output is reenabled or until a unit-127 (command
output file) error message is generated. If a filename is specified,
any current command output file is first closed. The new file is
opened for writing on the command output unit '177, and all subsequent

Third Edition 9-12

FILE MANAGEMENT SUBROUTINES

terminal output is sent to the file. TTY output ocontinues unless
explicitly suppressed. Unless the APPEND option bit is set, the
current contents of the file are overwritten. The parameter can be
omitted by specifying a pair of blanks or a length of 0.

Error messages (from ERRRIN, ERRPRS) force TTY output on, but leave the
command output file open so the error message will appear both on the
terminal and in the file, Disk error messages force TTY output on and
file output off for the supervisor user (the file is left open).
Unrecovered disk errors will do likewise for the user to whom the disk
is assigned.

The command output unit depends on the FILUNT directive in the CONFIG
file at cold start.

P> CREASS

Purpose

CREASS creates a new sub~UFD in the current UFD and initializes the new
entry. The new sub-UFD is of the same type (ACLL or non-ACL) as the
current UFD,

Usage

DCL CREASS ENTRY (CHAR NONVARYING(32), FIXED BIN, CHAR NONVARYING(6),
CHAR NONVARYING(6) , FIXED BIN)

CALL CREASS (filnam, namlen, owner-pw, nonowner-pw, code)

filnam The name to be given the new UFD (input).

namlen The length in characters (1-32) of filnam (16-bit
integer).

owner—pw A six-character array containing the owner password

for the new UFD. If opwner-pw(l) = 0, the owner
password is set to blanks. owner-pw is ignored if
an ACL directory is being created.

nonowner—pw A six-character array <containing the nonowner
password for the new UFD. If nonowner-pw(l) is 0,
the nonowner password is set to zeros. Any password
given to ATCHSS matches a nonowner password of

Zeros, nonowner- is ignored if an ACL directory
is being created,

code A 16-bit integer variable to be set to the return
code from CREASS. Possible values follow.

9-13 Third Edition

18.1

19

19

19

19

DOC3621-190

ESBNAM The supplied name is illegal.
ESBPAR The name length is illegal.

ESEXST An object with the given name already
exists,

ESNRIT Add rights were not available on the
current directory.

ESWTPR The disk is write-protected.

ESNINF An error occurred, and list rights were
not available on the current directory.

ESNATT The current attach point is invalid.

Discussion

CREASS creates a new subdirectory in the current directory. The new
subdirectory is of the same type as its parent. Thus, if CREASS is
used in an ACL directory, it will create an ACL directory. If used in
a password directory it will create a password directory.

Password directories may be explicitly created with the CREPWS routine,
There is no special routine to create ACL directories, since CREASS
will always create an ACL directory within an ACL directory, and an ACL
directory may not have a password directory as its parent,

Passwords can be set such that the password cannot be entered from the
keyboard and the directory is accessible only from a program. In any
case, passwords can be at most six characters long. Passwords shorter
than six characters must be padded with blanks for the remaining
characters., Passwords are not restricted by filename conventions and
may contain any characters or bit patterns. It is strongly recommended
that passwords do not contain blanks, commas, or the characters = ! !
@ {}[1(): ™ <>or lowercase characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

Since the subroutine SRCHSS does not allow creation of a new UFD,
CREASS must be used for this purpose. Under program control, CREASS
allows the action of the PRIMOS CREATE command.

CREASS requires add access on the current UFD,

Third Edition 9-14

FILE MANAGEMENT SUBRQUTINES

Example

To create a new UFD with default passwords of blanks for owner and 0
for nonowner:

CALL CREASS ('NEWUFD', 6, 0, 0, CODE)

P FORCEW

Purpose

The FORCEW subroutine immediately writes to the disk all modified
records of the file that is currently open on funit. Normally this
action is not needed, since the system automatically updates all
changed file system information to the disk at least once per minute,
Under PRIMOS II, the FORCEW routine has no effect.

Usage
CALL FORCEW (key, funit [,codel)

key Must be 0 (INTEGER*2).

funit The file unit (1-126) on which a file has been
opened (integer array).

code Standard return code that is ESDISK when a disk
error occurred on the file referenced by funit
(INTEGER*2)., If code is not supplied as an
arqument, then disk errors will not be reported.

Discussion

FORCEW may be used to obtain the status of disk write operations to a
file. When a disk write error occurs, all units open on the file are
specially marked, When FORCEW is called with the error code parameter
included, if an error condition exists, E$DISK is returned and the
error mark is reset. If code is not supplied, no action is taken and
the error mark is not reset, so it may be sensed at a later time,

Note

The error mark is set in all units associated with the file
reqgardless of which one of them caused the actual error.

9-15 Third Edition

19

19i

DOC3621~-190

P GPasss
PurEse

GPASSS returns the passwords of a SUBUFD in the current UFD.

Usage

CALL GPASS$ (ufdnam, namlen, opass, npass, code)

ufdnam

namlen
| opass

npass

Discussion

The name of the UFD with passwords to be returned,
ufdnam is searched for in the current UFD (integer

array) .

The length in characters (1-32) of ufdnam (16-bit
integer).

A three-word array that is set to the owner password
of ufdnam.

A three-word array that is set to the nonowner
password of ufdnam.

A 16-bit integer variable set to the return code.

GPASSS requires protect rights to the current UFD.

Example

To read both passwords of SUBUFD:

CALL GPASSS$ ('SUBUFD', 6, PASS(1), PASS(4), CODE)

Third Edition

9-16

P CrATHS

Purpose

FILE MANAGEMENT SUBRQUTINES

GPATHS obtains a fully qualified pathname for an open file unit, or for
current, home, or initial attach points. GPATHS operates in V-mode

only.

Usage

CALL GPATHS (key, funit, buffer, bufflen, pathlen, code)

key

funit

buffer

bufflen

pathlen

code

A 16-bit integer variable specifying the pathname to
be returned (INTEGER*2). Possible values are:

KSUNIT Pathname of file open on file unit
specified by funit will be returned

(KS$UNIT = 1).

KSCURA Pathname of current attach point will
be returned (KSCURA = 2).

KSHOMA Pathname of home attach point will be
returned (KSHOMA = 3)

L I A L ~] e
KSINIA Initial attach point (origin).

Specifies file unit number if key is K$UNIT,
otherwise ignored (16-bit integer).

The buffer (data name) where the pathname is to be
returned,

Specifies maximum buffer length in characters
(16-bit integer). If the pathname exceeds bufflen
characters, data in buffer is meaningless and a code
of ESBFTS is returned.

Specifies the length in characters of the pathname
returned in buffer. Characters beyond pathlen in

buffer contain no useful information (16-bit
integer).

Return code (16-bit integer). Possible values are:
0 No errors.
ESBKEY A bad key was specified.
ESBUNT A bad unit number was specified in

funit.

9-17 Third Edition

DOC3621-190

ESUNOP Unit specified in funit is closed and
name cannot be returned.

ESNATT Not attached to any UFD (keys KSCURA,
KSHOMA) .

ESBFTS The buffer specified with character
length bufflen is too small to contain

full pathname. The buffer contains no
valid data.

Examples

The following are examples of information returned as the result of
using GPATHS. The lowercase names define what information the examples
(in uppercase) actually represent.

<disk_name>MFD
<SPOOLD>MFD

<disk_name>ufd name
<SPOCLD>SPOCLQ

<disk_name>ufd namel>ufd name2>file name
<SALESDXWEST. COAST>YTD. 1979>MARCH

<disk_name>ufd name>segment directory name
<OPSYST>PR4 .64 >VPRMOS

<disk_name>ufd_name>segment._directory_name>entry_number >entry_number
<DBDISK>DICTIONARYDWORDS>22>68

P NAMEQS
Purpose

NAMEQS is a logical function that ocompares two filenames for
equivalence. ’

Usage
log = NAMEQS (filnaml,namlenl,filnam2,namlen2)

filnaml The first filename for comparison (integer array).
namlenl The length in <characters of filnaml (16-bit
integer).

Third Edition 9-18

FILE MANAGFMENT SUBROUTINES

filnam2 The second filename for comparison (integer array).
namlen2 The length in characters of filnam2 (16-bit
integer).
Discussion

NAMEQS performs a character-by—-character comparison of filnaml and
filnam2 for the 1length of namlenl or namlen2, whichever is shorter.
The names supplied must be valid filenames.

NAMEQS will work correctly on numeric fields only if namlenl = namlen2.

P DRAFSS

Purpose
PRWFSS reads, writes, positions, and truncates SAM or DAM files.

Usage
CALL PRWF$$ (rwkey+poskey+modekey, funit, LOC(buf), nw, pos, rnw, code)

rwkey This INTEGER*2 Key, which cannot be amitted,
indicates the action to be taken. Possible values
are;

KSREAD Read nw words from funit into buf.

KSWRIT Write nw words from buf to funit.

KSPOSN Set the current position to the 32-bit
integer in pos.

KSTRNC Truncate the file open on funit at the
current position.

ESRPOS Return the current position as a 32-bit
integer word number in pos.

poskey An INTEGER*2 key indicating the positioning to be

performed (if omitted, same as KSPRFR). Possible
values are the following.

9-19 Third Edition

DOC3621-120

modekey

funit

LOC (buf)

pos

Imw

Third Edition

KSPRER Move the file pointer of funit the
number of words specified by pos
relative to the current position before
performing rwkey.

KSPOSR Move the file pointer of funit the
number of words specified by pos
relative to the current position after

performing rwkey.

KSPREA Move the file pointer of funit to the
absolute position specified by pos
before performing rwkey.

KSPOSA Move the file pointer of funit to the
absolute position specified by pos
after performing rwkey.

An INTEGER*2 key that may be used to transfer all or
a convenient number of words (if omitted, read/write

). Possible values are:

KSCONV Read/write a convenient number of words
(up to the number specified by the
parameter mw).

KSFRON Perform a write to disk from buffer
before executing next instruction in
the program.

A file unit number (1 to 15 for PRIMOS II, 1-126 for
PRIMOS) on which a file has been opened by a call to
SRCHSS or by a PRIMOS command. PRWFSS$ actions are
performed on this file unit.

The data buffer to be used for reading or writing.
If buffer is not needed, it can be specified as
INTL(0) .

The number of words to be read or written (mode=0)
or the maximum number of words to be transferred
(mode=KSCONV). 1w may be between § and 65535
(INTEGER*2) .

A 32-bit integer (INTEGER*4) specifying the relative
or absolute positioning value depending on the value

of poskey.

A 16-bit unsigned integer set to the number of words
actually transferred when rwkey = KSREAD or KSWRIT.
Other keys leave rnw unmodified. For the Kkeys
KSREAD and KSWRIT, rnw must be specified
{INTEGER*2) .

9-20

FILE MANAGEMENT SUBRCQUTINES
code An INTEGER*2 variable to be set to the return code.

Discussion

pos is always a 32-bit integer, not a <record-number, word-number>
pair. All calls to PRWFSS must specify pos even if no positioning is
requested. An INTEGER*4 0 can be generated by specifying 000000 or
INTL(0) in FIN, OL in PMA or Pascal.

poskey is observed for all values of rwkey except KSRFOS, for which it
is ignored (the file position is never changed).

If rwkey = K$POSN, nw and rnw are ignored, and no data are transferred,

A call to read or write nw words causes nw words to be transferred to
or from the file, starting at the file pointer in the file. Following
a call to transfer information, the file pointer is moved to the end of
the data transferred in the file., Using poskey of KSPREA or KS$POSA,
the user may explicitly move the file pointer to pos before or after
the data transfer operation. Using a poskey of KSPRER or K$POSR, the
user may move the file pointer backward pos words from the current
position if pos is negative, or forward pos words if pos is positive.
Positioning takes place before or after the data transfer, depending on
the key. If mw is 0 in any of the calls to PRWFS$S, no data transfer

takes place, and PRWFS$S performs a pointer position operation.

The modekey subkey of PRWFS$$ is most frequently used to transfer a
specific number of words on a call to PRWFS$S. In these cases, the
modekey is 0 and is normally omitted in PRWFS$S calls., In same cases,
such as in a program to copy a file from one file directory to another,
a buffer of a certain size is set aside in memory to hold information,
and the file is transferred, one buffer-full at a time. 1In the latter
case, the user doesn't care how many words are transferred at each call
to PRWF$S, so long as the number of words is less than the size of the
buffer set aside in memory.

Since the user would generally prefer to run a program as fast as
possible, the K$CONV subkey is used to transfer nw words or less in the
call to PRWFS$S. The number of words transferred is a number convenient
to the system, and therefore speeds up program runtime, The number of
words actually transferred is set in rnw. For examples of PRWFS$$ use
in a program, refer to the file-manipulation examples in Chapter 5.

The subkey KSFROW gquarantees that PRWFSS will not return until the disk
record(s) involved are written to disk., The write to disk will be
performed before executing the next instruction in the program. Since
the KSFROW defeats the disk buffering mechanism, it should be used with
care as it increases the actual amount of disk I/0. It should only be
used when it is necessary to know that data is physically on a disk (as
when implementing error recovery schemes).

9-21 Third Edition

DOC3621-190

The programmer is responsible for ensuring that only one process (user)
is involved in the PRWFSS call concurrently. The file may be open for
use by several processes. The forced write applies only to the data
written by the process performing the operation. See an example of the
use of the key KSFROW later in this chapter.

On a PRWFSS BEGINNING OF FILE error or END OF FILE error, the parameter
rnw is set to the number of words actually transferred.

On a DISK FULL error, the file pointer is set to the value it had at
the beginning of the call to PRWF$S. The user may, therefore, delete
another file and restart the program (by typing START after using the
DELETE command). This feature does not work with PRIMOS II,

During the positioning operation of PRWF$$, PRIMOS maintains a file
pointer for every open file. When a file is opened by a call to
SRCHSS, the file pointer is set in such a manner that the next word
that is read is the first word of the file. The file pointer value is
0, for the beginning of file, If the user calls PRWFS to read 490
words, and does no positioning at the end of the read operation, the
file pointer is set to 490,

Note

In V-mode, PRWFSS only transfers words into the same segment as
buffer. An attempt to read across a segment boundary will
cause a wraparound instead and read into the beginning of the
segment, This is also true of writing from the address space.

Examples
1. Read the next 79 words from the file open on unit 1:

CALL PRWF$S (KSREAD, 1, LOC(BUFFER), 79, 000000, NMREAD, CODE)

2. Add 1024 words to the end of the file open on UNIT (10000000 is
just a very large number to get to the end of the file):

CALL PRWFSS (KSPOSN+KS$PREA, UNIT, LOC{0), C, 1000CC0C, NMW,
CODE)

CALIL PRWF$$(KSWRIT,UNIT, LOC(BFR), 1024, 000000, NMW, CODE)
3. See what position is on file unit 15 (INT4 is INTEGER*4):
CALL PRWF$$ (KSRFPOS, 15, LOC(0), 0, INT4, O, QODE)

4. Truncate file ten words beyond the position returned by the
above call:

CALL PRWFS$$ (KSTRNC+KS$PREA, 15, LOC(0), 0, INT4+10, O, CODE)

Third Edition 9-22

5.

6.

FILE MANAGEMENT SUBROUTINES

Position the file open on unit number UNIT to the tenth word
used in the file and the first ten words of ARRAY will be
written to it.

INTEGER*2 ARRAY (40), CODE,UNIT,RET
SINSERT SYSCOM>KEYS.F
CALL PRWFSS (K SWRIT+KSFROMKSPREA, UNIT, LOC(ARRAY),
X 10,INTL(10) ,RET, CODE)
IF (CODE .NE. Q) GOTO error_processor

The above FORTRAN call will cause the file that is open on unit
number UNIT to be positioned to the tenth word in the file, and
the first ten words of ARRAY will be written to it. The next
instruction in the user's program will not be executed until
the data has actually been written to disk. If an error is
encountered while writing to disk, the error code ESDISK (disk
I/0 error) is returned. If more than one oconcurrent user of
the dlsk record 1is detected, the error code ESFIUS (file in
is returned. _Ln this case, the write is not lost, but
1ot be performed immediately.

The next program reads and writes SAM and DAM files using
PRWFSS.

/**/
/* Copy SAM and DAM files */

CpSSfl:

proc(sunit, tunit, err_info, code);

ginclude 'syscom>keys.pll’';
g¢include 'syscom>errd.pll’';

greplace maxsiz by 1024; /* maximum record size in words */

dcl sunit fixed binary(15), /* unit source file is open on */

tunit fixed binary(15), /* unit target file is open on */
err_info fixed binary(15), /* if code "= 0, indicates which

/* file caused error;l = source,*/

/* 2 = target */

code fixed binary(15); /* standard error code */

dcl recbuf (maxsiz) fixed binary(15); /* I/0 buffer
dcl words_read fixed binary(15); /* actual words read by prwf$S */
dcl words written fixed binary(15); /* actual words written by prwf$$*/

dcl eof bit(1);

dcl recbuf ptr pointer options(short);

dcl addr builtin;

dcl errpr$ entry(bin, bin, char(*), bin, char(*), bin);
dcl user_proc entry;

dcl prwfss entry (fixed binary(15),

/* keys (rwkey+poskey+mode) */
fixed binary(15), /* unit to perform action on */
pointer options(short),

9-23 Third Edition

DOC3621-190

/* address of data buffer */
fixed binary(15), /* words to read or write */
fixed binary(31), /* position value */
fixed binary(15), /* actuval words read or written*/
fixed binary(15)); /* standard error code */

/**/

err_info = 0;

code = 0;
recbuf_ptr = addr (rechuf);
eof = '0'b;

do while (“eof);
call prwfs$(kSread, sunit, recbuf ptr, maxsiz, 0, words_read,
code);
if code "= 0
then if code "= eSeof
then do;
err_info = 1;
return;
end;
else eof = '1'b;

a:
call prwfs$$ (kSwrit,tunit, recbuf _ptr,words_read,C,words _written,code);
if code "= 0

then if code = eS$dkfl

then do;
call errpr$(k$irtn, code, '', 0, 'cpSSfl', 6);
call user_proc; /* Wait for response */
go to a;
end;
else do;
err_info = 2;
return;
end;
end;
return;

end cp$$fl;

/**/

More examples of the use of PRWFS$$S are given with the file-system
examples in Chapter 5.

Third Edition 9-24

FILE MANAGEMENT SUBROUTINES

P> QSREAD
Purpose

This routine returns information about quota counters and the
time-record product of disk record usage for the current quota UFD.
These concepts are explained in the System Administrator's Guide.

Usage

DCL Q$READ ENTRY (CHAR(128)VAR, FIXED BIN (31), FIXED BIN, FIXED BIN
FIXED BIN)

CALL QSREAD (pathname, quota-info, max-entries, type, code)

pathname Name of the di
ad i

r

(input), List access must be availabl
e1ther on the directory itself or on its parent, If
pathname is null, information for the current
directory is returned.

quota-info An array returning the quota information:

quota-info(l) Data size of disk record (440 or
1024 words).

quota-info(2) Directory records used.

quota-info(3) Max number of records of quota (0
if nonquota).

quota-info(4) Total records used.

quota-info(5) Time-record product (computed in
record-minutes) (0 if nonquota).

quota-info(6) Date/time last updated (0 if
nonquota) .

Date format is word one:
YYYYYYYMMMMDDDDD,

Time is word two (seconds since
midnight divided by four).

quota-info(7) Reserved for future use.
quota-info(8) Reserved for future use,

max-entries Number of entries in quota—-info (input).

9-25 * Third Edition

19

19

DOC3621-190

type Type of directory (input):

0 Quota Directory

1 Non—quota Directory
code Standard return code:

ESNINF Insufficient access to read quota.

Discussion

When this call is invoked on a nonquota directory, the arguments
detailed below will have the following information returned. The type
will be 1 and quota-related information (max, time-record product, and
date/time) will be 0. Directory records used will indicate the sum of
the records used by the files in that directory plus the records used
by the directory file itself. Total records used will indicate the sum
of the records used for all files inferior to this directory mode.

Quota directories will return a type equal to 0, and all of the quota
information., Directory records used and total records used will be the
same as in the nonquota directory case.

The routine will enter as many values into the array buf as is

specified by buflen, up to a maximm of eight. Entries which are
reserved for future use will have an undefined value.

Use of the Accounting Meter Returned by QSREAD

The system keeps an accounting usage meter in each quota directory.
This meter is a summation of the time intervals that each disk record
has been in use.

The accounting meter is a counter that acts as an unsigned number,
which is to say that it counts to all ones and then goes to 0. The
system also indicates when the last update occurred.

The calculation used is given below. The USAGE is ocomputed in
record-minutes.

TIME = (Current date/time) - (Date/time quota last modified)
USAGE = USAGE + (Records used) * TIME

An accounting program would use a similar algorithm to calculate the
current record-time product.

Third Edition 9-26

P QSSET
Purpose

FILE MANAGEMENT SUBROUTINES

This routine sets a maximum quota on a SUBUFD in the current directory.
If the named directory is not already a quota directory, it will become

one,

Usage

DCL QS$SET ENTRY (FIXED BIN, CHAR(128)VAR, FIXED BIN (31), FIXED BIN)

CALL QSSET (key, pathnam, max-quota, code)

code

Must be KS$SMAX (set maximum quota) (input).

-
An array containing the name of the sub-UFD to

receive the quota (input). Protect access must be
available on the directory's parent.
Maximum quota for the directory and its subtree
(input). If this is 0, any existing quota is
removed,.
Standard return code:
ESNRIT Insufficient access to set quota.
ESIMFD Quota not permitted on MFD.

ESQEXC Used records greater than new maximum
(WARNING) »

ESFIUS Directory in use during attempt to
convert from nonquota to quota.

9-27 Third Edition

i
O

DOC3621-190

P> RDENSS
Purgse

RDENSS positions in or reads from a UFD.

19

Note

For Pascal and PL1G programmers, RDENSS is obsolete and has

been replaced with DIRSRD and ENTSRD.

Usage

CALL RDENSS (key, funit, buffer, buflen, rnw, filnam, namlen, code)

key A 16-bit integer variable specifying the action to

be taken.
K$READ

KSNAME

KSGPOS

KSUROS

KSPOSN

Possible values are:

Advance to the start of the first or
next UFD entry and read as much of the
entry as will fit into buffer. Set rnw
to the number of words read.

Position to the start of the entry
specified by filnam and namlen. Read
as much of the entry as will fit into
buffer. Set rnw to the number of words
read, If the entry is not in the
directory, the code ESFNIF is returned,
If namlen is 0, the next entry is
returned.,

Return the current position in the UFD
as a 32-bit integer in filnam,

Set the current position in the UFD
from the 32-bit integer in filnam.
This key should be used only with a
position of 0.

Return access category entries.

funit A unit on which a UFD is currently opened for
reading (INTEGER*2), (A UFD may be opened with a
call to SRCHSS.)

UFD are read., If the key is 3, the first word of

I buffer A one-dimensional array into which entries of the

buffer will have bit 1 set on if the object is not
| default-protected.

Third Edition

9-28

FILE MANAGEMENT SUBROUTINES

buflen The length, in words, of buffer (INTEGER*2).

rnw An INTEGER*2 variable that will be set to the number
of words read.

filnam An INTEGER*4 variable used for keys of KS$GPOS and
KSUPOS, or a name (character string) for use with
KSNAME.

namlen An INTEGER*2 variable specifying the 1length in

characters (0-32) of filnam. This variable is only
used with KSNAME,

code An INTEGER*2 variable to be set to the return code:
ESFNTF The entry is not in the directory.
ESEOF No more entries.

ESBFTS Buffer is too small for the entry.

Discussion

RDENSS is used to read entries from a UFD. rnw words are returned in
buffer, and the file unit position is advanced to the start of the next
entry.

Caution

Directory positioning is obsolete and should not be necessary.

In the file management system, UFDs are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file
is not necessarily found at the end of a UFD.

The complete format of currently defined entries is given in Figure 9-1

and discussed below for Revs before 19. (For Rev. 19 format, see
DIRSRD.) All numbers are decimal unless preceded by a colon (:).

9-29 Third Edition

19

DOC3621-190

17 | PROTEC |
18 |RESERVED|

19 | FILTYP | File type

Entry Control Word (type/length)

Filename (blank-padded)

Protection (owner/nonowner)
Reserved for future use

<—- (end of entry for type=1)

20 | DATMOD | Date last modified
21 | TIMMOD | Time last modified
22 |RESERVED| Reserved for future use
23 |RESERVED| Reserved for future use
File Entry Format
Figure 9-1
BCW Entry Control Word. An EOW is the first word in any

FILENAME

Third Edition

entry and consists of two 8-bit subfields. The
high-order eight bits indicate the type of the
entry, the low-order eight bits give the 1length of

the entry

in words including the ECW itself.

Possible values of the ECW are as follows:

:000001

1000424

:001030

Type=0, length=1. This entry indicates
either a UFD header or a vacant entry.
No information other than the ECW is
returned. :

Type=1, length=20, Type=1 indicates an
old partition UFD entry. Words 0-19 in
the diagram above are returned.

Type=2, length=24, Type=2 indicates a
new partition UFD entry. All the above
information is returned. Reserved
fields should be ignored.,

User programs should ignore any
entry-types that are not recognized.
This allows future expansion of the
file system without unduly affecting
old programs.

Up to 32 characters of filename, blank-padded.

9-30

PROTEC

FILTYP

FILE MANAGEMENT SUBROUTINES

Owner and nonowner protection attributes, The owner
rights are in the high-order eight bits, the
nonowner in the low-order eight bits. The meanings
of the bit positions are as follows (a set bit
grants the indicated access right):

1-5,9-13 Reserved for future use
6,14 Delete/truncate rights
7,15 Write—access rights
8,16 Read-access rights

On a new partition, the low-order eight bits
indicate the type of the file as follows:

SAM file

DAM file

SAM segment directory
DAM segment directory
UFD

= whh -HOoO

On an old partition, the file type is invalid, The
file must be opened with SRCHSS to determine its

type.

Of the high-order eight bits, six are currently
defined as follows:

bit 1 Set only for the BOOT and DSKRAT files,
if they are on a storage module disk.

bit 2 The dumped bit., This bit can be set by
a call to SATRSS and is reset whenever
the file is modified. This bit is used
by the utility program that dumps only
modified files to magnetic tape. Users
are normally not interested in this
bit.

bit 3 This bit is set by PRIMOS II when it
modifies the file and reset by PRIMOS
(and PRIMOS III) when it modifies the
file. If this bit is set, the
time-date field for the file will not
be current because PRIMOS 1II doesn't
update the date/time stamp when it
modifies a file,

9-31 Third Edition

DOC3621-190

bit 4 This bit is set to indicate that this
is a special file. The only special
files are ROOT, MFD, BADSPT, and the
DSKRAT file which has the name
packname. This bit, and this bit only
is valid on both new and old-style

partitions,
bits 5-6 Setting of the read/write lock. (See
below,)
DATNMOD The date on which the file was last modified. The

date, which is valid only on new partitions, is held
in the binary form YYYYYYYMMMMDDDDD, where YYYYYYY
is the year modulo 100, MMMM is the month, and DDDDD
is the day.

TIMMOD The time at which the file was last modified. The

time, which is valid only in new partitions, is held
in binary seconds-since-midnight divided by four.

The Read/Write Lock

The PRIMOS file system supports individual values of the read/write
lock (RWIOCK) on a per—-file basis, for those files residing on new
partitions. The read/write lock is used to regulate concurrent access
to the file, and was formerly alterable only on a system—wide basis.

The meaning of the lock values is:

Value Bits 5,6 Meaning
0 0,0 Use system-wide RWLOCK to regulate
concurrent access,
1 0,1 Allow arbitrary readers or one writer,
2 1,0 Allow arbitrary readers and one writer,
3 1,1 Allow arbitrary readers and arbitrary
writers.

New files are initially created with a per-file read/write lock of 0.
UFDs do not have user-alterable read/write locks, though segment
directories do. Files in directory have the per-file read/write lock
of the segment directory.

The per—-file read/write lock value is read by RDENSS. It isset by a
SATRSS call with a key of KSRWLK. The desired value is supplied in

Third Edition 9-32

FILE MANAGEMENT SUBROUTINES

bits 15 and 16 of ARRAY(1l), the remaining bits of which must be 0. On
old partitions, the SATRSS call fails with an error code of ESOLDP.
Owner rights to the containing UFD are required, otherwise the call
fails with an error code of ESNRIT. An attempt to set the lock value
of a UFD fails with an error code of ESDIRE. If the SATRSS call
requests a lock value which is more restrictive than the current usage
of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested are
governed by the new lock value. It is unspecified what happens when
bits 1-13 of ARRAY(1l) are not 0.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write
locks of 0, so the system~wide RWLOCK setting continues to control
-access to such files. }

The COPY command with the —RWLOCK option copies the per-file read/write
lock setting along with the file.

Examples
1. Read next entry from new or old UFD:

100 CALL RDEN$$ (KSREAD, funit, ENTRY, 24, RNW, 0, 0, CODE)
IF (CODE .NE. 0) GOTO <error handler>
=RS (ENTRY(1),8) /* GET TYPE OF ENTRY JUST READ
IF (TYPE.NE.1l.AND.TYPE.NE.2) GOTO 100 /* UNKNOWN

2, Position to beginning of UFD:
CALL RDENSS (KS$UROS, funit, 0, 0, 0, 000000, O, code)

3. This program reads directory entries sequentially using RDENSS.

/********************-k'k***/
rdsdir:
proc (dunit, rden ptr, code);

dcl dunit bin, /* unit directory is open on */
rden_ptr pointer, /* pointer to rden buffer */
code bin; /* standard error code */

g$include 'syscom>keys.pll';
$include '*>insert>parameters.ins.spl';

dcl rdens$s entry(bin,bin, (24)bin,bin,bin,char (*),

bin, bin),
rden buffer (24) bin based(rden ptr),

9-33 Third Edition

19

DOC3621-190

rden _name ext char (32) defined rden huffer(2),
rden_name_local char (32);

del i bin;

del trim builtin;

/**/

call rden$s(kSread, dunit, rden buffer, 24, i, '', 0, code);

rden buffer(23)
rden _buffer (19)
rden name_local

rden_buffer(19); /* Copy non_default acl bit*/
rden buffer(18); /* Copy protection keys */
rden name_ext; /* Copy name for trim (Since
the strings overlap). */

rden ptr -> rden buffer_.filename = trim(rden_name local,'0l'b);

return;
end rdsdir; /* rdsdir */

/***/

o

4., The next example reads directory entries by name using RDENS$S.

/***/

rd$ent:
proc(treename, rden ptr, code);

dcl treename char(128) var, /* file info is wanted for */
rden_ptr pointer, /* pointer to rden buffer */
code bin; /* standard error code */

%include 'syscom>keys.pll';
%$include '*>insert>parameters.ins.spl’';

dcl rdenSs entry(bin, bin, (24) bin, bin, bin, char(¥*),
bin, binj,
rden_buffer (24) bin based(rden ptr),
rden_name_ext char(32) defined rden buffer(2),
rden_name_local char (32);
dcl srch$$ entry(bin, bin, bin, bin, bin, bin);
dcl tatch$ entry(char (*) var, bin);
dcl path$ entry(char (*) var) returns(char(128) var);
dcl entry$ entry(char(*) var) returns(char(32) var);
dcl home$ entry();
dcl close$ entry(bin);
del (i,
icode, :
unit) bin;
dcl tree bit(l) aligned,
filename char (32) var;
dcl (length,
trim,
addr,
index) builtin;

/***/

Third Edition 9-34

FILE MANAGEMENT SUBROUTINES

tree = (index(treename, '>') "= 0);
if tree
then do;
call tatch$(path$(treename), code);
if code "= 0
then go to clean up;
end;

call srch$$(ksread + k$getu, k$curr, 0, unit, i, code);
if code "= 0
then go to clean up;

filename = entry$(treename);
call rdens(ksname, unit, rden buffer, 24, i, (filename),
length(filename), code);

call close$(unit);
rden_buffer (23)

rden_buffer (19)
rden_name_local

rden buffer(19); /* Copy non_default_acl
rden_buffer (18); /* Copy protection keys */
rden name ext; /* Copy name for trim (Since
the strings overlap). */
rden ptr -> rden buffer_,filename = trim(rden_name_local, '0l'b);

Clean up:
if tree
then call home$;
return;

end rd$ent;

P> RDLINS

Purpose

RDLINS reads a line of characters from a compressed or uncompressed
ASCII disk file,

Usage
CALL RDLINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be read is
open (INTEGER*2),

buffer An array of count words in which the 1line of
information from the disk file is to be read.

count The size of buffer in words (INTEGER*2) .

9-35 Third Edition

DOC3621-190

code A return variable set to 0 for no errors, or to an
error code for an error (INTEGER*2). See PRWFSS$ for
a list of possible error codes.

Discussion

A line of characters from funit is read into buffer, two characters per
word. Lines on the disk are separated by the NEWLINE character,
Compressed files are treated this way: the character DC1 (221 octal)
followed by a count when read from the disk is replaced by that many
blanks.

1f the line on the disk is less than 2*count characters, the remaining
space in buffer is filled with blanks. If the line on the disk is
greater than 2*count characters, only 2*count characters f£ill buffer

.

and the remaining characters on the disk file line are ignored. In all
cases, the NBALINE never appears as part of the line in buffer.

RDLINS is the same routine as I$ADO7 except that the altrtn argument
has been replaced by the code argument.

P> RESTSS

Purpose

RESTSS reads R-mode executable code from a file in the current UFD into
memory. The SAVE'd parameters for a file previously written to the
disk by the SAVE or SAVESS subroutine or the SAVE command are loaded
into the nine-word array vector. The code itself is then loaded into
memory using the starting and ending addresses provided by wvector(l)
and vector (2).

Usage
CALL RESTS$S(vector, filnmam, namlen, code)

vector A nine-word array set by REST$$. vector(l) is set
to the first location in memory to be restored.
vector (2) is set to the last location to be
restored, The rest of the array is set as follows:
vector (3) Saved P register
vector (4) Saved A register

vector (5) Saved B register

Third Edition 9-36

FILE MANAGEMENT SUBROUTINES

vector (6) Saved X register
vector (7) Saved keys
vector (8) Not used

vector (9) Not used

filnam The name of the file containing the executable image
(integer array).
namlen The length in characters (1-32) of filnam
(INTBGER*2) , -
code An INTEGER*2 variable set to the return code.
Note
Use the PRIMOS command SEG to restore V-mode runfiles from a
file.
P> RESUSS
Purpose

RESUSS restores R-mode executable code from a file in the current UFD,
initializes registers from the saved parameters, and starts executing
the program,

Usage
CALL RESUS$(filnam, namlen)

filnam The name of the file containing the code.
/
namlen The length (1-32) in characters of filnam,
Discussion

RESU$S does not have a code argument. If an error occurs, an error
message is displayed and control returns to command level.

9-37 Third Edition

DOC3621-190

P SATRSS
Purpose

¢ Password protection
e Date/time modified
19 e Dumped bit

® Read/write lock

o Delete-protect switch

Usage

SATRSS allows the setting or modification of an object's attributes in
its UFD entry. The attributes that may be set include:

CALL SATRSS (key, object, namlen, attributes, code)

key A 16-bit integer variable specifying the action to
take. Possible values are:

KSPROT

K$DTIM

KSDMPB

KSRWLK

Third Edition

Set password protection attributes from
attributes(l). attributes(2) is

ignored for old partitions and must be

0 for new partitions. (It is reserved
for expansion.) The meaning of the
protection bits in attributes{i) is
given under the description of RDENSS.

Set date/time modified from attri-
butes(l) and (2). The format of the

date/time is given under the

description for RDENSS.

Set the dumped bit. This bit is set by
the utility program that dumps modified
files and is reset by the operating
system whenever the file is modified.
Users should not use this key.

Set the read/write lock on a per-file
basis, Bits 15 and 16 of attributes(l)
are set by the user for specific lock
values., Refer to RDENS for further
information on the read/write lock.

9-38

FILE MANAGEMENT SUBROUTINES

KSSDL Set the delete switch (for use with
ACLs). If attributes(l) is not 0, the
delete switch is set. If attributes(l)
is 0, the switch is cleared,

Note

The date/time modified and the dumped bit are changed by
PRIMOS. When PRIMOS changes these fields for a file, the
corresponding fields of the file's parent UFD are not
changed, However, when the name or protection attributes
of the file are changed, the date/time-modified and the
dumped bit of the parent UFD are updated, and the dumped
bit for the file is reset.

Since a «call to SATRSS modifies the UFD, the
date/time-modified of the UFD itself is updated.

object The name of the object (file or other item) whose
attributes are to be modified. The current UFD is
searched for object (CHAR NONVARYING(32)).

namlen The length in characters of filnam (16-bit integer).

attribute Field containing the attributes; variable,
depending on key:

e For KSPROT, a 16-bit structure defining the
password protection rights for the object.
This structure is defined below.

e For KSDTIM, a 32-bit structure containing the
date/time to set in FD standard format, which
is described below.

e For KSDMPB, this field is ignored,

® For KSRWIK, one of the following sub—keys as
a FIXED BIN(15):

KSDFLT Use system default value.
KSEXCL Unlimited readers CR one writer,
KSUPDT Unlimited readers AND one writer,
KSNONE Unlimited readers and writers.

e For K$SDL, a 16-bit quantity. If nonzero,

the delete—protect switch is set on., If
zero, it is set off.

9-39 Third Edition

FILE MANAGEMENT SUBROUTINES

/* do copies */
if type < 2

then call cp$$fl(sfunit, tfunit, err_info, code)
else call cp$$sd(sfunit, tfunit, err_info, code)

.
’
.
’

/* close the entries just copied */

call srch$$(kSclos + k$iseg, sunit, 0, sfunit, trash,

tcode) ;
call srchs$$(kSclos + k$iseg, tunit, 0, tfunit, trash,
tcode) ;
if code "= 0
then return;
end;
end;
err_rtn l:
err_info = 1;
return;
err_rtn 2:
err_info = 2;
return;

end cpSsd;

P SPASSS

Purpose

SPASSS sets the passwords of the current UFD.

Usage

CALL SPASSS (owner-pw, nonowner—pw, code)

owner—pw A six-character array that contains the password to

set as the owner password.

nonowner-pw A six—character array that contains the password to

code

set as the nonowner password.

A 16-bit integer variable set to the return code.

9-47 Third Edition

19

DOC3621-190

code A 16-bit integer variable set to the return code:

ESBKEY An illegal key value was passed.

ESBNAM Object name is illegal.

ESBPAR namlen is less than 0 or greater than
32.

ESNATT The current attach point is invalid.

ESNRIT Protect access (delete access for
K$SDL) was missing from the current
directory.

ESWTPR The disk is write-protected,

ESNINF An error occurred during search of the
directory, and list access was not
available,

ESFNTF The object does not exist.

ESIXCL The object was an access category, and
a key other than K$DT'IM was used.

ESDIRE The object was a directory, and the

Discussion

KSRWLK key was used.

The password protection structure is as follows:

dcl 1 pw_protection,
2 owner_rights,
3 ignored bit(5),
3 delete bit(1l),
3 write bit(l),
3 read bit(1),
2 non owner_rights,
3 ignored bit(5),
3 delete bit(1),
3 write bit (1),
3 read bit(1);

Third Edition

9-40

FILE MANAGEMENT SUBROUTINES

The standard FS—-format date structure is:

dcl 1 fs date,
2 year bit(7),
2 month bit(4),
2 day bit(5),
2 quadseconds fixed bin(15);

The meaning of these elements is:

year Year modulo 100, with the exception that years
100-128 mean 2000-2028.

month Month, from 1 for January to 12 for December,

day Day of the month, from 1 to 31.

quadseconds Number of quadseconds (groups of four seconds)
elapsed since midnight of the date described by the
three preceding fields.

Note

SATRSS does not check the validity of the supplied date and
time. Users must assure that the date/time passed is legal.

Owner rights are required on the UFD containing the entry to be
modified, except with K$SDL, which requires delete access.

An attempt to set the date/time-modified, the dumped bit, or the

read/write lock on an o0ld partition will result in an ESOLDP error
(error message 'CLD PARTITION').

Examples

1. Set default protection attributes on MYFILE:
ARRAY (1)=:3400 /* OWNER=7, NON-CWNER=0
ARRAY (2)=0 /* SECOND WORD MUST BE 0
CALL SATRSS (KSPROT, 'MYFILE', 6, ARRAY (1), OODE)

2. Set both owner and nonowner attributes to read-only (note
carefully the bit positioning in two-word octal constant):

CALL SATRS$S (K$PROT, 'NO-YOU-DON''T', 12, :100200000, CODE)

9-41 Third Edition

19

DOC3621-190

3. Set date/time modified from UFD entry read into ENTRY by
RDENSS:

CALL SATRSS (KSDTIM, FILNAM, 6, ENTRY(21), CODE)

P SAVESS

Purpose

SAVESS is used to save an R-mode executable image as a file in the
current UFD.

Usage
CALL SAVESS(vector, filnam, namlen, code)

vector A nine-word array the user sets up before calling

SAVESS. vector (1) is set to an integer which is the
first location in memory to be saved and vector (2)
is set to the last location to be saved. The rest
of the array is set at the user's option and has the
following meaning:

vector (3) Saved P register

vector (4) Saved A register

vector (5) Saved B register

vector (6) Saved X register

vector (7) Saved keys

vector (8) Not used

vector (9) Not used

filnam The name of the file to contain the code (integer
array).

namlen The length in characters (1-32) of filnam (16-bit
integer).

code A standard return code (16-bit integer).

Third Edition 9-42

P SGDRSS
Purpose

FILE MANAGEMENT SUBROUTINES

SGDR$S positions in a segment directory, reads entries, and allows
modification of a directory's size.

Usage

CALL SGDRS$S (key, funit, entrya, entryb, code)

key A 16-bit integer specifying the action to be

performed.

KS$SSPOS

KSFULL

KSFREE

KSGOND

KSGROS

Possible values are:

Move the file pomter of funit to the

o 4]
position given by the value lue of entrya.

Return 1 in entrvb if entrvya contains a
file, return 0 if entrya exists but
does not ocontain a file, return -1 if
entrya does not exist (is beyond EOF).
If EOF is reached on K$SPOS, the file
pointer is left at EOF. The directory
must be open for reading or both
reading and writing.

Move the file pointer of funit to the
position given by the value of entrya.
If the position contains a file, set
entryb to the value of entrya. If the
position is empty, search for the first
nonempty entry following the position
specified. If a nonempty entry exists,
set entryb to the position of that
entry. If the EOF is reached and an
entry with a file has not been found,
then return -1 in entryb. If EOF is
reached on KS$FULL, the file pointer is
left at EOF.

Act in the same manner as KSFULL, but
find an entry that does not contain a
file,

Move the file pointer of funit to the
end-of-file position and return in
entryb the file entry number of the end
of the file.

Return in entryb the file entry number

pointed to by the file pointer of
funit.

9-43 Third Edition

DOC3621-190

K$MSIZ Make the segment directory open on
funit entrya entries long. The file
pointer is moved to the end of file,
The directory must be open for both
reading and writing.

KSMVUNT The entry pointed to by entrya is moved
to the entry pointed to by entryb. The
entrya entry is replaced with a null
pointer, Errors are generated Ly
KQMVNT if there is no file at entrya,
if there is already a file at entryb,
or if either entrya or entryb are at or
beyond EOF, The file pointer is 1left
at an undefined position. The
directory must be open for both reading
and writing.

funit The file unit on which the segment directory is open
(16-bit integer).

entrya An unsigned 16-bit entry number in the directory, to
be interpreted according to key.

entryb An unsigned 16-bit integer set or used according to
key.

code A 16-bit integer variable set to the return code,

according to the key used.

Discussion

When SGDRS$$ is called, the segment directory must not be opened for
write-only access.

A KMSIZ call with entrya equal to 0 causes the directory to have no
entries, If the value of entrya is such that it truncates the
directory, all entries including and beyond the one pointed to by
entrya must be null. See SRCH$SS for more segment directory
information,

Note

When a directory is read sequentially (K$SFOS, entrya =
entryatl, K$SPOS, ...), entryb = -1 indicates the end of the
directory, not the return code ESEOF. ESEOF is returned when
entrya indicates a position beyond EOF, that is, the entry
following the first K$POS to return -1 in entryb.

Third Edition 9-44

FILE MANAGEMENT SUBROUTINES

Examples

1.

Read sequentially through the segment directory open on 6:

CURPOS=-1
100 CURFOS=CURFOS+1
CALL SGDR$S (K$SFOS, 6, CURFOS, REIVAL, CODE)
IF (RETVAL) 200,300,400 /* BOTTOM, NO FILE, IS FILE

2. Make directory open on 2 as big as directory open on 1:

CALL SGDRS$SS (KSGOND, 1, 0, SIZE, CODE)

IF (CODE.NE.0) GOTO <error handler>

CALL SGDRSS (K$MS1Z, 2, SIZE, 0, CODE)

This program reads and writes segment directories using SGDR$S.

/***/
it, tunit, err_info, code) recursive;

ginclude 'syscom>keys.pll';
g¢include 'syscom>errd.pll’;

dcl sunit fixed bin(15),
tunit fixed bin(15),
err_info fixed bin{15},
code fixed bin(15);

dcl (entrya,

entryb,

entry no) fixed bin(15);
decl (sfunit,

tfunit) fixed bin(15);
dcl (newfil,

trash,

tcode,

rtnval,

type) fixed bin(15);

dcl errpr$ entry(bin, bin, char(*), bin, char(?*), bin);
dcl srch$$ entry(bin, bin, bin, bin, bin, bin);
dcl cpS$sfl entry(bin, bin, bin, bin);
/* cp$Sfl is defined in example 6 for PRWF */
dcl sqdr$$ entry /*read segdir entries*/ (fixed binary(15),
/* key */
fixed binary(15), /* unit on which segdir is
/*open*/
fixed binary(15), /* entrya */
fixed binary(15), /* entryb */
fixed binary(15)); /* standard error code */

set_target _size: /* make target segdir same number
/* of entries as source */

9-45 Third Edition

DOC3621-190

err_info = 0;
call sgdrs(k$gond, sunit, entrya, entry_no, code);
if code "= 0

then go to err_rtn 1;
call sgdrS$s(kSmsiz, tunit, entry_no, entryb, code);
if code "= 0

then go to err_rtn 2;

main_loop:

do

entry no = 0 repeat (entry _no + 1);

/* position segdirs */

call sgdrss(k$spos, sunit, entry_no, rtnval, code);
if code "= 0
then go to err_rtn 1;
if rtnval < 0
then return; /* end of file */
call sgdrs(k$spos, tunit, entry_no, entryb, code);
if code "= 0
then go to err_rtn 2;
if entryb < 0
then do;
call errpr$(k$irtn, eSnull, 'Unrecoverable
error', 19, 'cp$$sd', 5);
stop;
end;

if rtrwal = 1
then do;

/*found a nonnull entry in source, */

/*

Third Edition

open it and same entry in target*/

call srchs$s(k$read + k$iseg + kSgetu, sunit, 0,
sfunit, type, code);
if code "= 0
then go to err_rtn 1;
newfil = k$nsam;

if type = 1

then newfil = kS$ndam;
if type = 2

then newfil = k$nsgs;
if type = 3

then newfil = k$nsqd;
call srch$s(kSrdwr+ks$iseg+k$Sgetutnewfil, tunit, 0,
tfunit, trash, code);
if code "= 0
then do;
call srchs$$(k$clos + kSiseg, sunit, 0,
sfunit, trash, tcode);
go to err_rtn 2;
end;

19

DOC3621-190

Discussion

SPASS$ requires owner rights to the current UFD. Passwords intended to
be typed from the terminal should not start with a mumber nor should
they contain blanks or the characters=1! , @{ } [] () "~ <or >.
Passwords should not contain lowercase characters but may contain any
other characters including control characters.

Passwords which are not intended to be typed from the termimal but
accessed through programs only can have any bit pattern.

P> SRCHSS
Purpose
SRCH$S is used to open a file, close a file, delete a file, or check on
the existence of a file,
Note

At Rev. 19, the delete functions of SRCHSS are handled by
FILSDL and SGDSDL.

Usage
CALL SRCHS$$ (actiontref+newfil, filnam, namlen, funit, type, code)

action A 16-bit subkey indicating the action to be
performed. Possible values are:
KSREAD Open filnam for reading on funit.
KSWRIT Open filnam for writing on funit.,

KSROWR Open filnam for reading and writing on
funit,

KSCLOS Close file.
K$DELE Delete file filnam,
KSEXST Check on existence of filnam.
ref A 16-bit key modifying the action key as follows:

KSIUFD Search for‘file filnam in the current
- UFD. (This is the default.)

Third Edition 9-48

filnam

namlen

funit

FILE MANAGEMENT SUBROUTINES

KSISEG Perform the action specified by action
on the file that is a segment directory
entry in the directory open on file
unit filnam,

KSCACC Change the access mode of the file
already open on funit to action

(K$SREAD, KSWRIT, KSRDWR only) .

KSGEIU Open filnam on an unused file-unit
selected by PRIMOS. (This is the
PRIMOS file unit, not the FORTRAN
unit.) The unit number is returned in
funit. When this key is used, SRCHSS
supplies a unit number not currently in
use., See example 6 below for use of
this key.

he type of file to create

1
ad & AR ke ag [N 93 - i de e

&
v \'1
if filnam does not exist. Possible values are:

[

KSNSAM New threaded (SAM) file. (This is the
default.,)

KSNDAM New directed (DAM) file.
KSNSGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM) segment directory.

Note

It is not possible to generate
a new UFD with SRCHSS; use
CREASS instead.

Name of the file to be opened (integer array, two
characters per word). KSCURR can be used to open
the current UFD (action keys KSREAD, KS$WRIT, or
KSRDWR only). If ref is K$ISEG, filnam is a file
unit from 1 to 126 (1 to 15 under PRIMOS II) on
which a segment directory is already open.

The length in characters (1-32) of filnam (16-bit
integer).

The number (1-15 under PRIMDS 1II, 1-126 under

PRIMOS) of the file unit to be opened or closed, or
returned arqument with KS$GETU key (16-bit integer).

9-49 Third Edition

DOC3621-190

type A 16-bit integer variable that is set to the type of
the file opened. type is set only on calls that
open a file — it is unmodified for other calls.
Possible values of type are:
0 SaM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 UFD
code An integer variable set to the return code.

Discussion

SRCHSS is a complex subroutine that has multiple uses. The most common
use is to open and close files,

Opening and Closing Files

Opening a file consists of connecting a file to the file unit. After a
file is opened, the file may be accessed to transfer information to or
from the file, or to position the current position pointer of a file
unit (file pointer). These actions are accomplished by other
subroutines, which reference the file through the attached file unit,
such as PRWFS$$, SGDR$$, RDENSS, RDLINS, WILINS, ISADO7, OSADO7, RDASC,
and WRASC. Information is also transferred through the I/O statements
in all languages.

On opening a file, SRCHSS specifies:

1. Allowable operations that may be performed by PRWFSS and other
routines., (These operations are read-only, write-only, or both
read and write,)

2. Where to look for the file, or where to add the file if the
file does not currently exist., SRCH$S either specifies a
filename in the currently attached user file directory or a
file unit number on which a segment directory is open. In the
segment directory reference, the file to be opened has its
beginning disk address given by the entry at the current
position pointer of the file unit.

Each file in a UFD has associated with it two sets of access rights,
one for the owner and one for the nonowner of the UFD. These access
rights are initially owner has all, nonowner has none. They can be
changed using the PROTECT command or the SATRSS subroutine. These
access richts (read, write, delete, etc.) are checked on any attempt
to open a file, A NO RIGHT error code (ESNRIT) is set if the user does
not have the required rights,

Third Edition 9-50

FILE MANAGEMENT SUBROUTINES

If the file cannot be found on open for reading, SRCHSS generates the
file-not-found error code (ESFNTF). If the file unit is already in
use, SRCHS$S generates the unit-in-use error code (E$UIUS).

The Read/Write Lock

Under default oconditions, the system allows any number of readers or a
single writer and no readers for the same file. The system prevents
one user from opening a file for writing when another user has the file
open for reading or writing. The system prevents one user from opening
the file for reading or writing while another user has the file open
for writing. These locks also hold for a single user attempting to
open a file on multiple file units. If the lock is violated, the FILE
IN USE error code is generated (ESFIUS).

This lock may be changed on a per-file basis., (Refer to RDENSS.)

On closing a file, it is possible to close by name or by file unit.
SRCHSS attempts to close by filnam unless filnam is spec1f1ed as 0, in
which case it closes the file unit specified, If filnam is not found,
an error is generated (code = ESFNTF), but if the file unit is
specified, SRCHS$S ensures that the file unit specified by funit is
closed and never generates an error code (unless funit is out of
range). If the file has been modified while it was open, , the date/time

stamp of the file is updated when the file is closed.

Changing the Access Mode of an Open File

A user may change the access mode of a file that is open on funit to
open—for-reading, open-for-writing, or open for both reading and
writing, using the KSCACC key. Note that access rights and the
read/write lock rules from the file are checked and the attempt to
change access may fail.

Adding and Deleting Files in UFDs

A call to SRCHSS to open a file for writing or both reading and writing
causes SRCHSS to look in the current UFD for the file., If the file is
not found in the UFD, a new file is created of zero length and an entry
for the file is put in the UFD. The date/time of the file is set to
the current date/time, the access rights are set to
owner-has-all-rights, nonowner-has-none, the read/write lock is set to
the system standard read/write lock and the file type to that file type
specified in the SRCH$S call. If the file type is not specified, it is
a SAM file, Note that nonowners cannot generate new files. (The error
code returned is ESNRIT.)

9~-51 Third Edition

DOC3621-190

A call to delete a file must specify a legal funit, although the file
system does not use that file unit during the delete. Deleting a file
returns the records of the file to the DSKRAT pool of free records and
erases the entry from the UFD leaving a vacant hole, Vacant holes in
UFDs will be reused for new files if of the right size, so new files do
not always appear at the end of your UFD. These vacant holes take very
little room on the disk in most cases. These holes are compressed out
of UFDs when the FIX DISK maintenance program is run by the system
operator. See the System Administrator's Guide,

Checking the Existence of a File

If the user wishes to find out whether or not a certain file exists in
the current ufd or segment directory, the KSEXST key can be used. The
file is not affected in any way and access rights and the read/write
lock are not checked,

Operations on Files That Are UFDs

Files in the current UFD that are sub-UFDs can be opened only for
reading. The contents of entries of sub-UFDs can be read through calls
to RDEN$S and GPAS$S once the sub-UFD is open. The current UFD can be
opened for reading by specifying the key KSCURR in the filnam field of
the SRCH$S call. Calls to the SATR$S or SPASSS subroutines require
that the current UFD not be open or the FILE IN USE error is generated.
Mew UFDs can only be created using the CREASS subroutine, not SRCHSS.
UFDs may be deleted with SRCHSS only if the UFD contains no files. The
DELETE command can delete a nested structure of UFDs, provided they are
not protected.

Operations Involving Segment Directories

Segment directories are directories in which the files are referenced
by their position in the directory rather than by a name. Furthermore,
the directory entry associated with a file contains the attributes,
such as date/time, protection, or the read/write lock, of the highest
level segment directory in the UFD. Segment directories are not
attached but are operated on using SRCHSS and SGDRSS.

To create a segment directory, use SRCH$S to open a new file for
reading and writing with the file type specified as SAM segment
directory or DAM segment directory.

With the file open, use SGDR$S to make the segment directory contain a
Certain number of null file entries (KSMSIZ key).

To create a file in a segment directbry, first open the directory for

reading and writing on a funit (e.g. SUNIT), if it is not already
open. Next, use SGDRS to position to the null file entry desired,

Third Edition 9-52

FILE MANAGEMENT SUBRCUTINES

Next, use SRCH$S to open a new file for writing, or reading and
writing, in the segment directory by using the KSISEG reference key and
placing the SUNIT number of the segment directory in the filnam
arqument, The file unit of the new file goes in the usual field
(fnit). SRCH$S will create the new file and place a pointer to the
new file in the segment directory entry of SUNIT.

Use SRCHSS to close by unit or name (with KS$ISEG) a file in a segment
directory.

To open a file that already exists in a segment directory, use SRCHSS
and SGDR$S to open the segment directory and position to the desired
entry as explained above. If the directory entry already contains a
pointer to the file, that file will be opened. If not, and the attempt
is to open for reading, the FILE NOT FOUND error is generated. Any
type of file except a UFD may be created in a segment directory.

To delete a file in a segment directory, open the segment directory,
position to the file desired, and then use SRCH$S with the KS$ISEG and
KSDELE keys., SRCH$S returns the record of the file to the DSKRAT and
replaces the pointer to the file with a null pointer in the segment

directory entry.

Finally, to delete a segment directory, the user must first delete all
files in the directory, set the size of the directory to 0 using
SGDRSS, close the directory, and then delete it with SRCH$S. The
ELETE subcommand of the SEG command may be used to delete a segment
directory.

Files in a segment directory have the protection attributes of the

directory. The date/time field of the directory reflects the latest
change made to the directory or any file in the directory.

Filenames and Pathnames

For a discussion of filenames and pathnames, see the introduction to
this chapter.

Examples
1. Open new SAM file named RESULTS for output on file unit 2:

CALL SRCH$S (KSWRIT, 'RESULTS', 7, 2, TYPE, CODE)

2. Create new DAM file in the segment directory open on SGUNIT and
open for reading and writing on DMUNIT:

CALL SRCHSS (KSRDWR+KSISEGHKSNDAM, SGUNIT, 1, DMUNIT, TYPE,
CODE)

9-53 Third Edition

DOC3621-190

6.

Close and delete the file created in the above call:

CALL SRCH$S(KSCLOS, 0, 0, DMUNIT, 0, CODE)
CALL SRCHSS (KSDELE+KSISEG, SGUNIT, 0, 0, 0, CODE)

See if filename 'MY.BLACK.HEN' is in current UFD:

CALL SRCH$S (KSEXST+KSIUFD, 'MY.BLACK.HEN', 12, 0, TYPE, OODE)
IF (CODE.BQ.ESFNTF) CALL TNOU ('NOT FOUND', 9)

Create a new segment directory and a new SAM file as its first
entry:

CALL SRCHSS (KSRDWR+KSNSGS, 'SEGDIR', 6, UNIT, TYPE, CODE)
CALL SRCHSS (KSWRITH+K$NSAM+KSISEG, UNIT, 0, 7, TYPE, OODE)

Open the file named 'FILE' in the user's currently attached
UFD:

CALL SRCHSS (KSREAD+KSGETU, 'FILE', 4, UNIT, TYPE, CODE)
IF (CODE .NE. 0) GOTO error_processor

The above FORTRAN call will attempt to open the file named
'FILE' in the user's currently attached UFD. If successful,
the file unit number on which 'FILE' has been opened is
returned in UNIT. The type of the file opened is returned in
TYPE, and CODE is set to 0 if there are no errors. If there
are any errors, CODE will be nonzero, and the values of TYPE
and UNIT are undefined.,

If no file units are available, the error code ESFUIU (all
units in use) is returned. This code is returned if either the
user process has exceeded the maximum mumber of file units
allowed, or the total number of file units in use for all
processes exceed the maximum number of file units available.

Open file by name.

/***/’

opensS:
proc{key, treename, unit, type, code);

$include 'syscom>keys.pll';

greplace sam_file by 0,
dam_file by 1,
sam_segdir by 2,
dam_segdir by 3,
directory by 4;

dcl key bin,
treename char(128) var,
unit bin,

Third Edition 9-54

dcl

dcl
dcl
dcl
dcl
dcl

dcl

type
code
srchs$$
newfil
tatch$
paths$
entry$
home$
tree

filename

(length,
index)

FILE MANAGEMENT SUBROUTINES

bin,

bin;

entry(bin, char(*), bin, bin, bin, bin),
bin;

entry(char (*) var, bin);

entry(char (*) var) returns(char(128) var);
entry(char (*) var) returns(char(32) var);
entry()

bit (1) aligned,

char (32) var;

builtin;

/**/’

code
tree

nn

0;

(index(treename, '>') "= 0);

if tree

+hen dn

livis WA

call tatch$(path$(treename), code);

filename

newfil
if key

if code "= 0
then go to clean up;
end;

entry$ (treename) ;

k$nsam;
kSwrit | key = kSrdwr

then if type = dam _file

then newfil = kS$ndam;

else if type = sam_segdir

then newfil = kénsgs;

else if type = dam_segdir

then newfil = k$nsad;

call srchss (key+newfil+k$getu, (filename),length(filename),

clean up:
if tree
then call home$;

return;

end openS$;

unit, type, code):

9-55 Third Edition

18.1

DOC3621-190

P> SRSFXS$

Purpose

The subroutine SRSFXS searches for a file according to the filenaming

standards of Rev.
possible suffixes,

Usage

18 and higher., The caller supplies a list of

DCL SRSFX$ ENTRY (FIXED BIN, CHAR(*)VAR, FIXED BIN, FIXED BIN,
: FIXED BIN, CHAR(32)VAR, CHAR(32)VAR,
FIXED BIN, FIXED BIN)
[RETURNS(FIXED BIN(31));]

CALL SRSFX$ (key, pathname, unit, type, n-suffixes, suffix-list,
basename, suffix-used, status);

chrpos = SRSFX$ (key, pathname, unit, type, n—suffixes,
suffix-list, basename, suffix-used, status);

key
pathname
mit

type

n—-suffixes
suffix-list

basename

suffix-used

Third Edition

Rey(s) to use for the search — same as for SRCHSS
(input),

Pathname to use for search (remains unchanged)
(input).,

File unit opened (returned with K$GEWU) or file unit
to use for SRCHS$$ action without KS$GETU (input).

File type opened (output).

Number of suffixes in suffix-list (input). A value
of 0 indicates not to use the file-naming standards
with suffixes for the search.

List of desired suffixes to use (input). Each
suffix should include the period and be in capital
letters, for example, suffix-list(i) = ".F77".

This is the base filename, that is, without a suffix
according to the suffix-list. This is useful to
callers who want to append a different suffix to the
base filename., For example, FIN PROG.TEST.FIN would
produce output files with "PROG.TEST" as the
basename used, such as "PROG.TEST.BIN" (output) .

This is the index, in the suffix-list given, of the

suffix used for the search. As mentioned, a value
of 0 denotes that the null suffix was used (output) .

9-56

FILE MANAGEMENT SUBRCUTINES

status Status returned from the search operation (same as
for APFSXS).

chrpos When SRSFX$ is used as a function call, this is
returned, The first word points one character past
the pathname component that caused the error. The
second word is the pathname length.

Discussion

SRSFXS$ is intended for use with the filenaming convention, starting
with Rev. 18, that appends a standard suffix by means of a period, as
in MYPROG.PASCAL. The suffix 1list defines both the suffixes to scan
for and the search order. If the suffix already exists at the end of
the filename, then a tree search is performed with the pathname as is.

If none of the desired suffixes are found, a tree search is performed
in the following manner: the subroutine attaches to the appropriate
directory, each suffix in the list is appended to the filename, and a
search is done. In this way the suffix list defines the search orcer.
The routine returns when a "filename.suffix" is found or the suffix
list is exhausted.

If a file is found, the index (in the suffix list) of the last suffix
in the filename is returned; if no file is found, or if none of the
suffixes in the 1list is on the found filename, an index of 0 is
returned.

SRSFX$ can be combined with APSFXS to force a name to have a suffix
according to the current filenaming conventions, even if the file did
not originally have one. For example, the ACL command SET_ACCESS looks
for an access category with the suffix .ACAT, If SRSFX$ finds a file
with no such suffix, APSFX$ may then be used to return the filename
plus the suffix required for the next step.

Restrictions:

e The null string is not allowed as an element of the suffix list.
The null suffix is assumed if no desired suffix is found. In
this case the suffix index is set to 0 and a processor may then
choose to use the old prefix conventions B , I, , etc., for its
output files.

e If the suffix-list oontains ".F77", a pathname such as

"oathname>.F77" will be treated as a valid suffix found, i.e.,
" F77". The filename returned will be '', the null string.

9-57) Third Edition

18.1

DOC3621-190

e If the filename + suffix exceeds 32 <characters or the
pathname + suffix exceeds 128 characters, a search with suffix
will not be done and the next suffix is attempted. For example,
a filename of 32 characters will simply be searched for as is.

18.1
® The suffixes in the suffix list provided by the caller must
contain the period and be all capital letters, for example,
".F77".
P> TSRCSS
Note
18.1

TSRCSS is obsolete and has been replaced with SRSFXS.

Purpose

TSRCSS is a subroutine to open a file anywhere in the PRIMOS file
structure.

Usage
CALL TSRCSS (actiomtnewfil, pathname, funit, chrpos, type, code)

action A 16-bit key indicating the action to be performed.
Possible values are:
KSREAD Open pathname for reading on funit.
KSWRIT Open pathname for writing on funit.

KSRDWR Open pathname for reading and writing
on funit.

KSDELE Delete file pathname.
KSEXST Check on existence of pathname.

KSCLOS Close pathname (not funit).

KSGETU Open pathname on an unused file unit
selected by PRIMOS. The unit number is
returned in funit.

w3 TATH on 9-58

newfil

pathname

funit

chrpos

code

FILE MANAGEMENT SUBROUTINES

A 16-bit key indicating the type of file to create
if pathname does not exist. Possible values are:

K$NSAM New threaded (SAM) file. (This is
default.,)

KSNDAM New directed (DAM) file,
KNSGS New threaded (SAM) segment directory.
KNSGD New directed (DAM) segment directory.

An array specifying a file in any directory or
subdirectory, packed two characters per word.

The number (1-126) of the file unit to be opened or
deleted (16-bit integer). funit is closed before
any action is attempted.

A two-element integer array for character position
set up as follows:

chrpos(l) On entry, set to contain the position
in the array pathname occupied by the
first character of the filename. (The
count starts at 0.) On exit, it will
be pointing one past the last
character that was part of the
pathname. A comma, new line, or
carriage return will terminate the
name, as will end of array. In case
of error, chrpos(l) points one past
the pathname component that caused the
error. chrpos(l) is always modified
by this subroutine, so it must be set
up before each call.

chrpos(2) The number of characters in the
pathname array (16-bit integer).

An integer variable set to the type of the file
opened. ¢t is set only on calls that open a file;
it is ummodified for other calls. Possible values
for type are:

SAM file

DAM file

SAM segment directory
DAM segment directory
UFD

=W -O

A 16-bit integer variable set to the return code.
If no errors, code is 0.

9-59 Third Edition

DOC3621-190

Caution

Do not use TSRCSS to perform a change of access (K$CACC).

p> UPDATE

Purpose
Under PRIMOS II, this subroutine updates the current UFD.

Usage
CALI, UPDATE (key, 0)
key Value must be 1 to update current UFD, send DSKRAT

buffers to disk, if necessary, and undefine DSKRAT
in memory (INTEGER*2).

Discussion

This call is effective only under PRIMOS II, Under PRIMOS III or
PRIMOS it has no effect.

» WILINS

Purpose

WILINS writes a line of characters in ASCII format to a file in
compressed ASCII format.,

Usage

CALL WTLINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be written
is open for writing (16-bit integer).

buffer An integer array of count words from which the line

of characters is to be written. It should contain
two characters per word.

Third Edition 9-60

FILE MANAGEMENT SUBRCOUTINES

count The size of buffer in words (16-bit integer).
code A 16-bit return code.
Discussion

Information is written on the disk in ocompressed ASCII format.
Multiple blank characters are replaced by the character DC1 (221 octal)
followed by a character count., Trailing blanks are removed and the end
of record is indicated by adding a NEWLINE character, or a NEWLINE
character followed by null, WILINS is the same routine as OS$ADO7,
except that the altrtn arqument has been replaced by the code argqument.

9-61 _ Third Edition

System Subroutines

This chapter describes subroutines that perform PRIMDS system I
functions. For explanations of the arqument names used (such as
funit), see Chapter 2.

Table 10-1 summarizes the functions available.

P> BREAKS

Purpose
BREAKS inhibits or enables CONTROL~P for interrupting a program.

Usage
CALL BREAKS (logic~value)

logic-value A 16-bit integer whose value can be 1 for .TRUE. or
0 for .FALSE. (LOGICAL).

10-1 Third Edition

19

DOC3621-190

Table 10-1
Operating System Subroutines

Phantam Management

PHANTS Start a phantom (obsolete).

PHNTMS Start a phantan (same login name only).

ILONSCN Enable or disable logout notification.

LONSR Retrieve logout notification information.

Read or Write

C1INS Get one character from command file or
terminal.

CLSGET Read a line of text from command file or
terminal.

CNINS Move characters.

COMANL: Read a line of text.

GCHAR Get a character from an array.

SCHAR Store a character in an array.

Error Checking

CLSPIX Parse a command line.

ERRPRS Interpret a return code.

RDTKSS Parse a command line,

Manage User Enviromment

BREAKS Inhibit or enable CONTROL-P.

DUPLX$ Return terminal configuration word.

ERLKSS Read or set erase and kill characters.

EXIT Return to PRIMOS.

GINFO Check operating system being used.

GVSGET Retrieve the value of a global variable.

GVSSET Set the value of a global variable.

LOGOSS Log out a user or process.

RECYCL, Pass control to next user.

TIMDAT Return system and user information.

Manage File Access

FNCHKS Check a filename for valid format.

IDCHKS Check an id for valid format.

PWCHKS Check a password for valid format.

TEXTOS Check a filename for valid format (obsolete),

TNCHKS Check a pathname for valid format.,

Third Edition

10-2

SYSTEM SUBROUTINES

Discussion

The LOGIN command initializes the user terminmal sc that the CONTRCL-P
or BREAK key causes an interrupt (QUIT). Under PRIMOS III and PRIMOS,
the BREAKS routine, if called with the argument .FALSE., enables the
CONTROL~P or BREAK key to interrupt a running program.

On the other hand, the BREAKS routine called with the argument .TRUE.
inhibits the CONTROL—~P or BREAK characters from interrupting a running
program,

This routine maintains a master list of the QUIT status for each user.
Each call to BREAKS to inhibit or enable QUIT increments or decrements
a counter, respectively. OQUITs are enabled only when the counter is 0;
the counter goes positive with inhibits and cannot be decremented below
0.

Under PRIMOS II, BREAKS has no effect.

p Clims
Purpose

This routine gets the next character from the teminal or a command
file, depending upon the source of the command stream.

Usage
CALL Cl1INS$(char)

Discussion

The next character is read or loaded into char (right-justified and
zero—-filled)., If the character is .CR., char is set to NEWLINE.

Line feeds are discarded by the operating system, and are not detected
by the C1IN subroutine.

10-3 Third Edition

DOC3621-190

P> CLSGET

Purpose

CLSGET reads a single line of input text from the currently defined
command input stream (terminal or command file). The line is returned
as a varying character string without the NEWLINE character at the end.
An empty command line or one consisting of all blanks will compare
equal to the null string.

Usage
CALL CLSGET (comline, comlinesize, status)

comline Varying character string into which the text will be
read from the ocommand input stream (CHARACTER(*)
VAR) .

comlinesize Maximum length, in characters, of comline. Because
comline is a varying string, it is not blank-padded
to this size (FIXED BIN(15)).

status Return code (FIXED BIN(15).

Example
OK, SLIST CLGET1.PASCAL

{<readtty.pascal> Reads text from the user terminal using the external
{ PRIMOS routine CLSGET
{

}

!
{Thisprogram provides an example on how define a suitable Pascal }
{structure for implementing the character varying datatype found in }
{PL1G. Since standard Pascal prohibits reading string data from files }
{without subscripts, this example will provide an alternate }
{solution for reading strings from the user terminal, without }
{explicit subscripting. }
{ }
{ The simple cbject of the program is to read 3 strings from the }
{ terminal and display them in complete reverse order. }
{ }
program readTTY;

type

char80varying =
record
1 : integer;
s : array[l .. 80] of char;
end;

Third Edition 10-4

SYSTEM SUBRCUTINES

var
cmdline : char80varying;
table : array[l .. 3] of char80varying;
i,] : integer;

status : integer;

procedure cl$get(var cmdline: char80varying; {Command line input buffer}
lenBytes: integer; {Length of cmdline in bytes}

var status : integer); {Return error code status }
extern; {External PRIMOS procedure}
begin

{ Loop to input the text entered from the user terminal using the }
{ PRIMOS routine defined above (cl$get). }
{ }
for i :=1 to 3 do
begin

write(i:l,'> ");
clSget (cmdline, 80, status);
if status <& 0
then
writeln('Bad status code returned, status =',status);
table[i] := cmdline; { save the command line }
end;

{ Display the lines just typed in reverse order. }
writeln; '

for i :=3 downto 1 do
begin
write(i:1,'< ');
for j := table[i].l downto 1 do
write(table[i].s[i]);
writeln; end;
end,

This program, stored as CLGET1.PASCAL, may be compiled, loaded, and run
with the following dialog:

OK, PASCAL CLGETL
0000 ERRORS (PASCAL~REV 19.0)
OK, SEG -LOAD
[SEG rev 19.0]

$ LO CIGETL

$ LI PASLIB

$ LI

LOAD COMPLETE

$ EXEC

1> ABCDE

2> SEQOND

3> MADAMIMADAM

10-5 Third Edition

19

DOC3621-190

3< MADAMIMADAM
2< DNOCES

1< EDCBA

OK,

P CLS$PIX
Purpose

This subroutine parses ocommand argquments according to a character
string "picture" of the command line. It allows a program to process
arquments on a command line, using the rules explained for arguments in
Chapter 13 of the CPL User's Guide.

The caller supplies the command argument picture, the command arguments
to parse, an output structure whose shape corresponds left-to-right
with the picture, and other parameters., CL$PIX parses the picture and,
if the picture is valid, parses the command arguments into the supplied
structure. At that point, the individual arguments have been validated
to be of the correct data type, oconverted if necessary, and are
accessible to the program in a straightforward manner,

Usage

DCL CLSPIX ENTRY (BIT(16) ALIGNED, CHAR(*)VAR, PTR, FIXED BIN,
CHAR (*) VAR, PIR, FIXED BIN, FIXED BIN, FIXED BIN, PIR);

CALL CLSPIX (keys, caller-name, picture-ptr, pixel-size,
com—-args, struc-ptr, pix-index, bad-index,
code, local-vars—-ptr)

keys A 16-bit word that is input to oontrol certain
details of processing. The bits of keys have the
following structure:

[11 2f ... | 13| 141 15| 16|

Third Edition 10-6

caller_name

picture-ptr

pixel-size

SYSTEM SUBROUTINES

The structure may be used in any language as a
16-bit integer with a value equivalent to setting on
the bits desired. The PLIG data description for
this structure is:

1 keys,
2 debug bit (1)
2 mbz bit(1l), /* must be '0'b — 11 bits*/
2 keep_guotes bit(1),
2 cpl_flag bit(1),
2 pll_flag bit(1),
2 no print bit(1);

If no print is 'l'b, no error messages will be
printed by CLS$PIX; only error code information will
be returned. If no print is '0'b, caller-name is
used to format the error message. (See below.)

If pll_flag is 'l'b, the Pl/I data type "bit(l)
aligned" will be used for control_argument presence
flags in the output structure. (See below.) I
pll_flag is '6'b, the FORTRAN data type LOGICAL
(PL1G data type "bit(16) aligned") is used instead.,

If cpl flag is 'l'b, CLSPIX operates in CPL mode;
otherwise, it operates in normal mode. These modes
are explained below., Most callers will want to use
normal mode.

If keep quotes is 'l'b, CLSPIX will not strip quotes
from parsed string arguments; otherwise, it will
remove one layer of quotes. This flag is ignored in
CPL mode, and quotes are never stripped.

If debug is '1'b, CLSPIX will print on the terminal
a dump of the parsed arqument picture. This is not
useful for most applications programmers.

The name of the calling routine (input). This name
will be used to format error messages, if no print
is '0'b. :

A pointer to a varying character string containing
the ocommand argqument ©picture (input). If
dimensioned, the array must be connected
(contiquous), The syntax and semantics of the
picture are defined below.

The maximum length in characters of the element(s)
of the object pointed to by picture-ptr (input).
This provision allows an arbitrarily large array of
strings to be passed and circumvents compiler
restrictions on character-string length.

10-7 Third Edition

19

19

DOC3621-190

com—-args

struc-ptr

pix-index

bad-index

code

Third Edition

A string containing the ocommand arguments to be
parsed (input). It is not necessary to translate
this string to uppercase only, or do any other
preprocessing on it. All syntactic conventions of
the PRIMOS Command Languade, including the "/*"
comment delimiter, are supported.

A pointer to an output structure whose members will
be filled in with the results of a valid picture
parse of the supplied ocommand arguments. (This
arqument is used only in normal mode; in CPL mode,
local-vars-ptr determines the destination of the
output of the parse.) The format of this structure
is determined by the components of the picture, and
is described below (input, addresses output).

This is valid only when code is nonzero (returned).
When valid, pix-index is 0 if the error applies to
the command arguments string, and is i if the error
applies to element (pixel) i of the picture itself.
Errors in the picture are fatal in the sense that no
attempt is made to parse the command arguments if
the picture cannot be parsed.

The character index (counting from 1) of the first
character of the token (word or expression) causing
the error (returned). The value of pix-index must
be consulted to determine whether bad-index is
relative to the command arguments or to a pixel of
the picture. bad-index is valid only if code is
nonzero. ' '

A nonstandard return code, which can take on the
following values:

0 No error,

1 Null argqument group (two successive
semicolons) in picture.

2 Missing or illegal delimiter in
picture.

3 Illegal option argument name in
picture.

4 Illegal repeat count in picture.

5 Unknown data type name in picture,

6 Implementation error in picture parse.
10-8

SYSTEM SUBROUTINES

7 A token was longer than 1024 characters
in picture.

8 Option arguments precede object
arquments in picture.

11 Too many object arguments in command
line.

12 Option argument appears in command line
that is not specified in the picture,

13 Object or parameter on command line
does not have the correct format for
its data type.

14 Default value not in proper format in
picture,

15 Default value may not be given for this
data type.

16 Too many instances of an option in
command line,

17 A default value expression contains an

undefined variable reference or a
format error. (CPL mode only.)

18 The data type UNCL has been given more
than once or has been given for an
option argument parameter.

local-vars-ptr A pointer used only in CPL mode (input and return).

In this case, it is a pointer to the Local Variable

Control Block that identifies the 1local variable
area to be used to hold the parsed argquments.
local-vars—-ptr should be null if not in CPL mode.
See the description of CPL mode below.

The Picture in Normal Mode

This mode is used by most callers of CL$PIX. It is intended to be used
by a command to process its command-level arquments into a form that it
can use for decision making or further processing., It is a CHAR(*)VAR
string, and must be scalar (singly-dimensioned).

Basic Format: The syntax of the normal mode picture is very similar to
that of the CPL &ARGS directive, the major difference being that no
variable names are allowed (because the results are not being stored in
local command variables).

10-9 Third Edition

[

\0

19

DOC3621-190

The picture looks like:
argument group [; argument group]; ...; end

Each arqument group defines either an object argument, or an option
arqument and its associated objects if any. The end token is required
to delimit the end of the picture string, and must be last in the
string.

First, a word about 1lexical format, Upper- and lowercase are
equivalent anywhere except inside quotes. Extra blanks may appear
anywhere that a single blank is allowed or required. Blanks are not
required to precede or follow other delimiters, such as ";", but they
may be present if desired. Single character string tokens that contain
blanks or delimiters must be enclosed in quotes, but the quotes are not
part of the token itself. The delimiter characters are:

blank , ¢+ =() * %
Other punctuation or special characters should also be quoted.

If the picture is supplied in the form of an array of varying strings,
an implicit lexical blank separates elements of the array. That is,
when the end of any element is reached, a blank is recognized,
regardless of the length of that particular element,

Object Argument Groups: As in the CPL &ARGS directive, all <argument
groups> that define object arguments must appear before the first
<argument group> that defines an option arqument,

The simplest <argument group> simply declares the data type of the
object arqument. CLSPIX supports the following data types:

char Arbitrary character string up to 80 bytes long,
mapped to uppercase.

charl Arbitrary character string up to 80 bytes long, not
mapped.

tree PRIMOS pathname up to 128 bytes 1long, mapped to

uppercase. Wildcard characters are allowed,

entry Filename, up to 32 bytes long, mapped to uppercase.
Wildcard characters are allowed.

id PRIMOS user or project identifier, up to 32 bytes
long, mapped to uppercase. Must begin with a
letter, and contain only letters, digits, or the
special characters "$", ".", or "_".

Third Edition 10-10

password

date

ptr

file

SYSTEM SUBROUTINES

PRIMOS user login password, up to 16 bytes long,
mapped to uppercase., May contain any characters
except PRIMOS reserved characters.

Decimal integer with optional sign, in the range
(2%*31 = 1) to (-2**31 + 1),

Octal integer with optiomal sign, in the range
(2*%*3]1 - 1) to (—2**31 + 1),

Hexadecimal integer, unsigned, in the range 0 to
(2%*32 - 1),

A calendar date and time in one of the standard
formats:

IsO (YY-MM-DD. BH: MM :SS. dow)
USA (MM/DD/YY. HH:MM:SS. dow)
Visual (DD Mmm YY HH:MM:SS day-of-week)

The day of week field is always ignored (but checked
for legality); time fields default to 0; omitted
YY defaults to current year; if entire date and "."
are omitted, defaults to current date, The
converted representation is the PRIMDS file system
format.

PRIMOS virtual address in the form S/W, where S is
the octal segment number and W is the octal word
number.

Rest of command line, up to 160 bytes long. (See
below for explanation.) Upper- and lowercase are
distinguished. See the discussion of data type REST
below.

String of "unclaimed" tokens; that is, all tokens
on the command line not accounted for elsewhere in
the picture. Up to 160 bytes long. Upper and lower
case are distinguished. See the discussion of data
type UNCL below.

Primos filename.,

A simple picture might then be:

char; end

which defines a command line consisting of a single character string
arqument that will be mapped to uppercase. A more complex picture
might be the following.

10-11 Third Edition

=

(V4]

19

DOC3621-190

tree; dec; charl; end

This specifies three arguments: a treename, followed by a decimal
integer, followed by a character string (unmapped).

Assignment to the Output Structure: When the command line is parsed
against the picture, the structure pointed to by struc-ptr is filled
in, The shape of the structure is determined by the picture: each
object argument, option argument, or option arqument parameter
generates a member of the structure. The data type of each member is
determined by the corresponding data type in the picture. The
correspondence is:

Data Type PLIG Type FORTRAN Type
char char(80) var INTEGER(41)
charl char (80) wvar INTEGER(41)
tree char(128) var INTEGER(65)
entry char(32) var INTEGER(17)
id char (32) var INTEGER(17)
password char(16) var INTEGER(9)
dec fixed bin(31) INTEGER*4
oct fixed bin(31) INTEGER*4
hex fixed bin(31) INTEGER*4
date fixed bin(31) INTEGER*4
ptr ptr options(short) INTEGER*4
rest char(160) var INTEGER(81)
UNCL char(160) var INTEGER (81)
file char (128) var INTEGER (65)

Examples are:
Picture Structure

char; end dcl 1 struc,
2 char_arg char(80) var;

tree; dec; charl; end dcl 1 struc,
2 tree arg char(128) var,
2 dec_arg fixed(31l),
2 charl_arg char(80) var;

Third Edition 10-12

SYSTEM SUBROUTINES

Use of Data Types REST and UNCL: These two data types cause special
processing to occur,

The UNCL data type can only be used with an object argument, not an
option argument. Any token on the command line that does not match (is
not "claimed" by) any part of the picture is added to the UNCL argument
if one has been defined. A single blank separates each token added.

If no UNCL argument is defined, unclaimed tokens are erroneous and the
user's command line is in error. An example is shown under the option
arqument section, since with only object arguments in the picture and
on the command line, the REST and UNCL arguments perform the same
function. This is because scanning proceeds left to right, and all
arquments on the command line that also appear in the picture must
necessarily be claimed.

The REST data type can be used with either kind of argument; option
arguments are explamed below. When used with an object argument, if

the REST argument is reached in the plcture and more text remains on
) Ty & as cai gpcﬂ to the REST

AT~] Tana +h andd ra romaininag fove 1
1 LCaL Lo

CoMmmnana LALIS y wie Cliedi L© LKA IILIg

<
argument, For example, in:

dec; tree; rest (picture)

dcl 1 struc, (structure)
2 dec_arg fixed(3l),
2 tree arg char(128) var,

~

2 rest_arg char(160) var;
786 a>b>c>d foo 99 zot>nil (command line)

786 is assigned to struc.dec_arg, adb>c>d to struc.tree arg, and foo 99
zot>nil to struc.rest_arg.

Default Values: What happens if an argument specified in the picture
is not supplied by the user? 1In the absence of contrary instructions,
the corresponding structure element is assigned a "default default"”
value, which is the null string for string types, 0 for arithmetic
types, and null () for the pointer type.

The picture may specify some other default value. The syntax is:
data type = default-value;
For example:
tree = @,list; dec = 99; date = 81-1-1; end
dcl 1 struc,
2 tree_arg char(128) var,
2 dec_arg fixed(31),
2 date arg fixed(31);

(null command line)

10-13 Third Edition

19

19

DOC3621-190

would assign @.LIST (note uppercase conversion) to struc.tree arg, 99
to struc.dec arg; and 81-01-01.00:00:00 (in file system format) to
struc.date_arg.

Repeat Counts: To save typing, a repeat count feature is included in
the syntax. To use it, simply prefix the <argument group> to be
duplicated with the repeat count followed by "*", For example:

5 * dec = =1; 2 * char = foo; end

dcl 1 struc,
2 dec_args(5) fixed(3l),
2 char_args(2) char(80) wvar;

The repeat count must be positive and less than 1000.

Note the use of arrays in the structure above., This is not required;
one could employ five scalar fixed(31) members with different names in
place of dec_args, for example.

Option Arquments: CLSPIX allows convenient handling of PRIMDS command
line option arguments. An <argument group> that specifies an option
argument is distinguished from an object argument group by beginning
with a "-", The general form is:

-namel, -name2, ..., —-namen {<objl> <obj2> ...};
The -names are the names of the option argument as the user will use
them on the command line. Multiple names are allowed to enable the
definition of synonyms and abbreviations.
The simplest option argument has no parameters. An example is:
-listing, -1 ;

dcl 1 struc,
2 listing arg bit(l) aligned;

Note

The data type used for all option arguments is controlled by a
flag in the keys argument to CLSPIX. (See above.,) Here,
assume that keys.pll flag is '1'b,

The struc.listing arg will be set to '1'b if -LISTING or -L appears on
the command line; otherwise it is set to '0'b. There is no default
value for a simple option argument: it either is or is not on the
command line. Hence the "=" syntax is not relevant here.

Third Edition 10-14

SYSTEM SUBROUTINES

If an option argument is to have parameters, they are the objs in the
general form, and are specified using the syntax for object <argument
group>s. Suppose that option -LISTING is to accept a treename
parameter. The following could be used:

-listing, -1 tree = listing.list; end

dcl 1 struc,
2 listing bit(1) aligned,
2 listing tree char(128) var;

If a treename follows -LISTING on the command line, it is assigned to
struc,listing tree; otherwise struc,listing tree is assigned
TISTING.LIST. Note that the default values are assigned to parameters
of an option even if that option is not given on the command line.

As another example, an option -RANGE is to take two integer parameters:

and

-T2 .
18 H 410

ange dec = 0; dec

1}

n
Ve

9999

dcl 1 struc,
2 range bit(l) aligned,
2 range_lower fixed(31),
2 range upper fixed(31):

-range 7 (command line)

struc.range is 'l'b, struc.range lower is 7, and struc.range upper 1is
99999 (the default).

Using the REST Data Type with Option Arguments: The REST data type can
be used as the data type of the rightmost parameter of an option
argument, For example:

char; -string rest; -page dec = 1; end

del 1 struc,
2 char_arg char(80) var,
2 string flag bit(l) aligned,
2 string rest char(160) var,
2 page_flag bit(1l) aligned,
2 page number fixed(31);

When the option —-STRING is seen on the command line, the entire
remainder of the command is assigned to the REST argument, in this case
struc.string rest, For example:

foo —page 17 -string abc def -page 0

assigns 'FOO' to struc.char_arg, 'l'b to struc.string flag, 'abc def
-page 0' to struc.string rest, 'l'b to struc.page flag, and 17 to
struc.page_number.

10~15 Third Edition

19

19

DOC3621-190

Note that CLSPIX (at least) is not confused by the second occurrence of
-page: it is part of struc.string rest because it follows the —string
option,

Using the UNCL Data Type with Option Arauments: The data type UNCL may

only be assigned to an object arqument, not to the parameter of an
option arqument., However, it is possible for option arguments to be
unclaimed and hence added to the UNCL araument.

Consider the problem: write a ocommand interface that accepts a
treename object argument and the option argument -time with an integer
parameter, but which accepts and passes on all other arguments to some
other interface.

A picture to do this is:
tree; UNCL; -time dec; end

dcl 1 struc,
2 tree arg char(128) var,
2 UNCL_arg char(160) var,
2 time flag bit (1) aligned,
2 time_number fixed(31):

Then the command:
a>b>c zot -lines 78 —-time 88 def -zilch a b ¢

sets struc.tree arg to 'A>BXC', struc.UNCL_arg to 'zot -lines 78 def
-zilch a b ¢', struc.time_flag to '1'b, and struc.time number to 88.
Note particularly that def is not a parameter of —time but an object
arqument, Since the TREE argqument was already accounted for, def was
unclaimed, the command:

-limits abc def -time 90 a>b)>c

sets struc.tree arg to 'A>B>C', struc.UNCL_arg to '-limits abc def',
struc.time_flag to '1'b, and struc.time_number to 90.

Note

Why did struc.tree arg not get assigned the value 'ABC' or
'def'? Because of the rule given for UNCL above:

All parameters that follow an unclaimed option argument will be
considered unclaimed. This is because the picture contains no
information about an unclaimed option argument, and hence
CLSPIX cannot know how many parameters may follow it.

Third Edition 10-16

SYSTEM SUBROUTINES

Thus all object arquments following an unclaimed option argument are
taken as parameters of that option, until a claimed option argument is
found.

Multiple Instances of an Option Arqument: A picture may contain more
than one instance of the same option argqument, It is recommended that
each instance contains exactly the same synonym or abbreviation names
for the option, though CLS$SPIX does not check for this.

When multiple instances are used, the semantics are that multiple
instances of the option on the command line are permitted, and will
appear in successive slots of the output structure. The usual use of
this capability is best illustrated by an example.

Suppose that a command accepts an option -select with one parameter,
say a string to search for in a file, It seems reasonable to allow the

command to search for multiple strings at once; hence the desire for
1y a i 3 1

T 4 o A i 4 3 4=
multiple instances of the option. A picture might be:

~-select charl; -select charl; -select charl; end
which allows for three instances of -select. The structure is:

dcl 1 struc,

select_1 bit(l) aligned,
select_l-char char(80) var,
select_2 bit(l) aligned,
select_2-char char(80) var,
select_3 bit (1) aligned,
select_3-char char(80) var;

NNNNDNDMNDND

The first —-select encountered goes into struc.select_l, the second into
struc.select_2, and the third into struc.select 3. Note that the three
instances need not follow each other directly in the picture; and, if
they do not, they will not follow each other in the structure. Thus
the existence of multiple instances of an option does not alter the
usual left-to-right assignment of argument groups to structure member
slots,

Any option arqument that appears only once in the picture may appear at
most once on the command line.

Using Repeat Counts with Option Arquments: Repeat counts can be used
with option arguments in a fashion analogous to their use with object
arquments, They are simply a typing saver. Consider the "-select"
example above. An equivalent picture is:

3 * —select charl; end

10-17 Third Edition

19

19

DOC3621-190

That is, a repeat count used in this way declares multiple instances of
an option argument, together with its parameters. It is also possible
to use repeat counts on the parameters. Consider the following
picture:

3 * -1limits 2 * dec = 0; end
It is the same as:

-limits dec = 0 dec = 0; =-limits dec = 0 dec = 0;
-limits dec = 0 dec = 0; end

The Picture in CPL Mode

Syntax Differences: The syntax of the picture accepted in CPL mode is
exactly the same as that accepted by the CPL &RGS directive. (In
fact, CPL uses CLSPIX in CPL mode to process the &ARGS directive.) See
the CPL User's Guide for full details.

The salient differences between normal and CPL mode syntaxes are:
® Repeat counts are not allowed in CPL mode.

e Each object argument and option argument must be preceded with
the syntax:

<variable-name>:

where <variable-name> is a legal CPL local variable name. The
value of each arqument will be assigned to the 1local variable
whose name is prefixed to that argument.

¢ The maximum size of any arqument value in CPL mode is 1024
Characters, unlike normal mode where the limit depends on the
data type (80 characters for CHAR and CHARL, 160 for REST, and
SO on),

Local Variable Storage Management: In CPL mode, it is quite possible

for CLSPIX to run out of roamn in the supplied Local Variables Area
while attempting to set the values of all the local variables involved.
If this happens, CLSPIX will return the error code ESROOM,

It is the caller's responsibility at this point to allocate more space
for the Local Variables Area, and to call CLSPIX to redo the parse from

the start. This process may have to be repeated in a loop until enough
storage has been added to accommodate the values of all the local
variables involved.

Third Edition 10-18

SYSTEM SUBROUTINES

Usage Differences: In CPL mode, the "end" keyword is not required to
appear at the end of the picture. For this reason, a picture array is
not allowed: the picture must be supplied as a one-dimensional
[scalar) varying string up to 1024 characters long.

Calls Made by CLSPIX

TNCHKS, FNCHKS, IDCHKS, PWCHKS.

P CNINS
Purpose

This subroutine is the raw-data mover used to move a specified number
of characters from the termimal or command file to the user program's
address space.

Usage
CALL CNINS (buffer, char-count, actual-count)

buffer A buffer in which the string of characters read from
the input stream is to be placed, two characters per
word (integer array).

char-count The number of characters to be transferred from the
input stream to buffer (INTEGER*2),

actual-count A returned arqument (INTEGER*2). It specifies the
number of characters read by the call to CNINS. If
reading continues until a NEWLINE character is
encountered, the count includes the NEWLINE
character.

Discussion

CNINS reads from the input stream until either a NEWLINE character is
encountered or the number of characters specified by char—count is
read, Characters are left-justified, and if an odd number of
characters is read, the remaining character space is not zero- or
blank-filled. The line-delete and character—delete characters are not
interpreted.

10-19 Third Edition

19

18.1

DOC3621-190

Input to CNINS is obtained from the terminal unless the user has
previously given the COMINPUT or PHANTOM commands, and these commands
are still in oontrol. The COMINPUT or PHANTOM commands switch the
input stream so that it comes from a file rather than the temminal.
(Refer to the Prime User's Guide for further information.)

P COMANL

Note

For PL1G and Pascal programmers, this subroutine is obsolete
and has been replaced by CLSGET.

Purpose

COMANL causes a line of text to be read from the terminal or from a
command file, depending upon the source of the command stream.

Usage
CALL COMANL

The line is read into a supervisor text buffer. This buffer may be
accessed by a call to RDOTK$SS. The supervisor text buffer holds 80
characters., The supervisor text bhuffer is also used by CNINS and
TSAMLC., The contents of this buffer must be picked up by RDTKSS after
a call to COMANL and before calls to CNINS$ or TSAMLC.

Third Edition 10-20

p DUPLXS

Purpose

SYSTEM SUBROUTINES

The DUPLXS subroutine is called to ocontrol the manner in which the
operating system treats the user termimal.

Usage
CALL DUPLXS (tcw)

int*2 = DUPLXS (tcw)

tcw Terminal configuration word:
bits have the
output) :
Bit Mask
1 100000
2 040000
3 020000
4 010000
5
6
7

10-21

following

a 16-bit integer whose
meanings (input and

Meaning if Bit is SET

Half duplex.

Do not echo LINEFEED after
CARRIAGE RETURN.

Turn on XOFF/XON character
recognition,
Output currently suppressed

(XOFF received).

Detect DATA SET BUSY Dbefore
output to AMLC line., (See AMLC
Functions below.)
Handle reverse channel
functionality. (See AMLC
Functions below.)
Data Set Sense Bits
(INA '0054) Bit 6=1 Bit 6=0
1 (off) XOFF XON
0 (on) XON XOFF
Check for certain error oon—
ditions:
e Overflow of the input
buffer
Third Edition

DOC3621-190

® Parity error

If one of these conditions is
present, the character found is
replaced with '225,

8 Indicates a parity error (output).
Overflow of the input buffer is
flagged when there is only roam
for one more character.

9-16 000377 Internal buffer number
(read-only) .

Discussion
DUPLXS has no effect under PRIMDS II.

DUPLX$ returns the terminmal configuration word and internal buffer
number as the value of the function., DUPLXS must be declared as a
16-bit INTEGER function if the returned value is to be used by the
calling program,

If the terminal configuration word passed to DUPLXS is equal to -1, no
updating of the configuration word takes place. 1In this case, the
current value is returned.

The tcw input from a user termimal is not affected by the LOGIN or
LOGQUT commands. The tow of the user termimal may also be set at the
supervisor terminal by using the AMLC command. Users may also use the
PRIMOS command TERM to change their terminal characteristics,

AML.C Functions

Certain devices require a reverse channel protocol to signal BUSY or
READY, For these cases, the carrier detect line is used for the
signal, Bit 5 of the terminal configuration word will instruct the
AMLDIM to interrogate the carrier signal for that line before
outputting. If a BUSY is detected, then the AMIDIM will simulate an
XOFF received for that ine. When the carrier signal goes to the READY
state, the AMLDIM will flag it as an XON, and output will resume, For
example, if the device signals BUSY as DATA SET off (1), then the
terminal configuration word bit setting would be:

Bit 5 = 1 (detect DATA SET sense)
Bit 6 = 1 (if DATA SET sense is off, then simulate XOFF, else set
XON.,)

Third Edition 10-22

SYSTEM SUBROUTINES

P> ERKLSS

Purpose
The ERKLSS subroutine reads or sets erase and kill characters.

Usage
CALL ERKLS$S (key, erase, kill, code)

key An INTEGER*2 specifying the action to be taken,
Possible values are:

KSWRIT Set erase and kill characters.
KSREAD Read erase and kill characters.

erase With key KSWRIT, the character oontained in the
- right byte of erase replaces the user's erase

character. If erase is 0, no action takes place.

On key KSREAD, the user's current character is

placed in erase, right-justified with leading zeros.

kill With key = KSWRIT, the character oontained in the
right byte of kill replaces the user's Kkill
character. On KSREAD, the current user's Kkill
character is placed in kill, right-justified with
leading zeros.

code An INTEGER*2 variable set to the return code.
Possible values are:

0 No errors.

ESBPAR Attempt to set characters is improper.

Discussion

Erase and kill characters are interpreted by commands to the operating
system and through the subroutines COMANL, RDTK$S, RDASC, ISAAl2, and
I$SAAO0l. All language processors and I/0 statements call RDASC to get
terminal input and, therefore, are affected.

Note: RDASC, 1IS$AAl12, and IS$AAOl are library subroutines that read the

user's erase and kill characters only once when they are first invoked.
Therefore, changing the erase and kill characters after a call to those

10-23 Third Edition

DOC3621-190

subroutines does not affect erase and kill processing in these
subroutines until the next program is invoked. Thus, the main purpose
for users calling the ERKLS$S subroutine is to read or set these
characters when the user programs do their own erase and kill
processing.

Under PRIMOS II, the erase and kill characters may be read but any
attempt to set them is ignored.

The erase and kill characters may be set at command level by the PRIMDS
TERM command. The characters are reset to default values upon an
explicit logout or login.

P> ERRPRS

Purpose

ERRPRS interprets a return code and, if it is nonzero, prints a
standard message associated with the code, followed by optionmal user
text, See Appendix D for more details on error handling.

Usage
CALL ERRPRS (key, code, text, txtlen, filnam, namlen)

key An INTEGER*2 specifying the action to take after
printing the message. Possible values are:

KSNRIN Exit to the system, never return to the
calling program.

KSSRIN Exit to the system, return to the
calling program following an 'S’
command,

KSIRIN Return immediately to the calling
program.

code An INTEGER*2 variable containing the return code
from the routine that generated the error. If code
is 0, ERRPRS always returns immediately to the
calling program and prints nothing.

text A message to be printed following the standard error

message. Text is omitted by specifying both text
and txtlen as 0 (integer array).

Third Edition 10~-24

SYSTEM SUBRQUTINES

txtlen The length in characters of text (INTEGER*2).

filnam The name of the program or subsystem detecting or
reporting the error., filnam is omitted by
specifying both filnam and nam namlen as 0 (integer
array) .

namlen The length in characters of filnam (INTEGER*2).

Discussion

More explanation of the use of ERRPRS is given in Appendix D.

p EXIT
Purpose

The EXIT subroutine provides a way to return from a user program to
PRIMOS; it prints OK, (or OK:) at the terminal and PRIMOS awaits a
user command., Then the user may open or close files or switch
directories, and restart a program at the next statement by typing S
(START) .

Usage
CALL EXIT

P> FNCHKS

Purpose

This function checks the name passed for validity as a filename. This
means that the name may not oontain PRIMOS reserved characters,
lowercase letters, or control characters, may not start with a digit,
and must be between 1 and 32 characters long. The keys passed to
FNCHKS may modify these restrictions.

10-25 Third Edition

19

18.1

DOC3621-190

Usage
DCL FNCHKS ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(1));

name—ok = FNCHKS (key, filename);
key Defines restrictions on filename. Keys may be added
together:
KSURRC Mask name to uppercase before checking.
KWILDC Allow wildcards in name.
KSNULL Allow null names.

KSNUM Allow numeric names (segment directory
entry names).

filename Name to be checked (input only unless KS$UPRC is
used; in that case, input/output).

name—ok Set to PL1G true if the name is valid given the
restrictions of the keys.

P> GCHAR
Purpose

GCHAR gets a character from an array. This subroutine is helpful, for
example, in retrieving character information for a FORTRAN program.

Usage
char = GCHAR (LOC(array), index)

array Array of characters.
index Index of the location of character in array (INT*2),
Discussion

The pointer (index) must be initialized by the user to 0 and is
incremented by 1 after the operation is complete,

Third Edition 10-26

SYSTEM SUBROUTINES

P GINFO

Purpose
GINFO indicates whether or not the user program is running under PRIMOS

II. If so, GINFO shows where PRIMOS II is loaded in the user address
space.

Usage
CALL GINFO (xervec, h)

GINFO returns n words from the supervisor into a buffer specified by
Xervec.,

Information for PRIMOS II:

xervec Word Content

1 Low boundary of PRIMOS II buffers (77777 octal if
64K PRIMOS II)
2 High boundary of PRIMOS II (77777 octal if 64K

TMN TTY
AUAJD 1 d)

3 Reserved

4 Reserved

5 Low boundary of PRIMOS II and buffer (64K for PRIMDS
IT only)

6 High boundary of 64K PRIMOS II

Information for PRIMOS:

xervec Word Content

1l 0
2 0
3-6 Reserved

10-27 Third Edition

18.1

DOC3621-190

P> GUSGET
Purpose

GVSGET retrieves the value of a global variable.

Usage

DCL GVSGET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN)

CALL GVSGET (var-name, var-value, value-size, code)

var-name

var-value

value~size

code

Discussion

The name of the global variable whose value is to be
retrieved, The name must follow the rules for CPL
global variable names and must be in uppercase. It
must be in the global variable file last invoked
with DEFINE GVAR.

The returned value of variable var—-name.

The length of the user's buffer var-value in
characters.

A return code:
ESBFTS The user buffer var-value is too small

to hold the current value of the
variable.

ESUNOP The global variable storage is
_ uninitialized or in bad format,

ESFNTF The variable is not found.

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called. For more information
on global variables, see the CPL User's Guide.

Third Edition

10-28

SYSTEM SUBROUTINES

P GUSSET

Purpose
GVSSET sets the value of a global variable.

Usage
DCL GVSSET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN)
CALL GVSSET (var-name, var-value, code)
var-name The name of the global variable to be set., This
name must follow the rules for CPL global variable
names, All letters must be uppercase.
var-value The new value of the variable var-name.
code A return error code:
ESBFTS The specified value is too big.

ESUNOP The global variable area is bad or
uninitialized,

ESROOM An attempt by the variable management
routines to acquire more storage fails.

Discussion

The PRIMOS command DEFINE GVAR must be used to define the global
variable file before this subroutine is called. For more information
on global variables, see the CPL User's Guide.

P> IDCHKS

Purpose

This function checks that the name passed is a legal user or project
id. This means that the name must be between 1 and 32 characters long,
start with an uppercase letter, and contain only uppercase letters,
numbers, and the special characters . $ and _ .

10-29) Third Edition

18.1

19

19

DOC3621-190

Usage

DCL IDCHKS ENTRY(FIXED BIN, CHAR(*)VAR) RETURNS (BIT (1)):

id-ok = IDCHKS (key, id);

key Restrictions on the name. Keys may be added
together:
KSUPRC Mask id to uppercase before checking.
KSWLDC Allow wildcard characters in the id.
(See the Prime User's Guide.)
KSNULL Allow null id's.
id The id to check (Input unless key is KSUPRC; in

that case, input/output.)

id-ok Set to PL1G true if the name is wvalid given the
restrictions of the keys.

P LOGOSS
Pur Qse

IOGOSS logs out a user,

The routine can be used by the supervisor

terminal (user 1) to log out any user, or a user program may log out

any process it may have started.

Usage

CALL LOGOS$ (key, user, usrnam, unlen, reserv, code)

key Operation to be performed (INTEGER*2). Possible
values are the following.

-1
0

Third Edition

Log out all users (supervisor only).
Log out self (same as LOGOUT command).

Log out specific user by number (same
as LOGAUT -MNN).

Log out specific user by name
(supervisor or its phantoms only).

10-30

SYSTEM SUBROUTINES

user User number to be logged out. This value 1is
examined only if key > 0 (INTEGER*2).

usrnam Name of user to be logged out; must correspond to
number supplied in user. This value is examined
only if key is 2 (integer array).

unlen Length of usrnam in characters. This value is
examined only if key is 2 (INTEGER*2).
reserv Reserved for future use (INTEGER*4).
code Return code (INTEGER*2). Possible values are:
0 No error.

ESBKEY Bad key.
ESBPAR Invalid number is specified in user.
FSBNAM Username does not correspond to user,

ESNRIT Attempt to log out user with name
different from caller.

P> LONSCN
Purpose

This PL1G subroutine is used to turn off or turn on logout
notification, When notification is turned off, phanton logout
information is queued (first—-in first-out). When notification is
turned on, dqueuing is not performed, and the default on-condition,
PH_IOGOS, is raised if there is any logout notification data to be
received.

See the discussion of LONSR for more information,

Usage
CALL LONSCN (key):

key Software interrupt status key (FIXED BIN(15)):
0 Notify off.
1 Notify on.

10-31 Third Edition

18.1

18.1

DOC3621-190

P> LONSR

This PL1G subroutine fetches or transfers 1logout information from
storage to a designated target area. It will do this unless it finds
no information to transfer. The target area is designated by the
argument msgptr. The size of the area pointed to by msgptr is
designated by the argument msglen. The area should be at 1least six
words in length. If it is shorter than this, LONSR will only fetch as
much information as msglen can hold.

LONSR also passes back to its caller an indication whether there have
been more phantom 1logouts with their information stored in a queue.
This indication is contained within the argument more.

An error code is returned to the user via the argument code.

Usage
CALL LONSR (msgptr, msglen, more, code);

msgptr Area of memory in which to store message (POINTER
type). 1Its format is shown below.
msglen Length of area in which to store message (FIXED
- BIN(15)).
more BIT(1):
0 Indicates no more messages left on
queue.,
1 Indicates more messages left on queue.
code Return code (FIXED BIN(15)):

ESNDAT No data found in queue.
ESBFTS Same information lost during transfer
(msglen less than actual message

length).

Third Edition 10-32

SYSTEM SUBROUTINES

MSGPTR Area Format

Word Number Information
1 Phantom's user number (fixed bin(15))
2 Time of day of logout (fixed bin(15))
3 Connect time in minutes (fixed bin(15))
4 CPU time in seconds (fixed bin(15))
5 I/0 time in seconds (fixed bin(15))
6 Logout condition code (fixed bin(15)):
0 Normal logout
1 Abnormal logout
Discussion

A phantom is a process that can operate separately from its creator
process, and can continue working after the user has logged out.
Phantoms are discussed in detail in the Prime User's Guide.

Logout Notification for Phantoms

Logout notification provides the creator of a phantom process with
information about the phantom's activities, This information is
compiled at phantom logout time and sent to the creator. This is known
as notification,

Normally, the information will be displayed upon the creator's
terminal, The information contains the phantoam's user number, the time
of day of logout, the elapsed time, CPU time, I/O time spent by the
phantom, and an error code indicating normal or atnormal logout.
Normal logout occurs when a phantam completes with a LOGOUT command.
All other logout will generate abnormal logout.

Logout information will be compiled at this time and sent to the
creator. If a user is logged into more than one terminal, the
information will only be sent to the terminal from which the phantom
was created, If the creator of the phantom has logged out while the
phantom was running, the information will not be sent., This means that
once a user has logged out, the phantom will not notify the user of
logout even if the user logs back in.

10-33 Third Edition

18.1

DOC3621-190

Saometimes it may become necessary for a user to record the phantam
logout information via a program. The logout notification system
provides two subroutines that allow for this event. The first
subroutine, LONSCN, allows a user to turn logout notification off or
on, The second subroutine, LONSR, allows a user to fetch phantom
logout information instead of having the information written to a
terminal.

When LONSCN 1is requested to turn off logout notification, phantom
logout information is automatically queued for future access. This
allows users to turn off notification without having to worry about
either the condition of their terminal screen or the loss of the status
of their phantoms.

When LONSCN is requested to turn on logout notification, any enqueued
logout information is written on the user's termimal.

As mentioned above, a user may fetch phantom logout information by
invoking LONSR. Normally, logout notification is enabled and invoking
LONSR will gain the user nothing. Therefore, when using LONSR, logout
notification should be turned off by invoking LONSCN.

When logout notification occurs, a system default condition handler or
on-unit named PH IOGOS 1is invoked to write the information upon the
creator's terminal., This on-unit is also invoked when LONSCN is
requested to turn on logout notification. Therefore, users who do not
ever wish to see logout information written upon their terminal should
Create their own on-unit and name it PH_IOGOS. This user—defined
PH_LOGOS should usually call LONSR to fetch phantom logout information,
since the default PH_IOGOS does this. On-units are discussed in
Chapter 22,

P> puaNTS
Note

This subroutine may be used only for non—CPL phantoms. It has
been replaced with PHNIMS.

Purpose
PHANTS starts a phantom user.

Third Edition 10-34

Usage

SYSTEM SUBRCUTINES

CALL PHANTS (filnam, namlen, funit, user, code)

filnam

namlen

funit
user

code

P> PHNTMS

Purpose

Name of command input file to be run by the phantom
(integer array).

Length of characters of filnam (16-bit integer).

File unit on which to open filnam. If funit is O,
unit 6 will be used (16-bit integer).

A variable returned as the user mumber of the
phantom (16-bit integer).

The return code (16-bit integer). If it is 0, the
phantom was initiated successfully. If code is
ESNPHA, no phantoms were available, Other values of
code are file system error indications,

This subroutine allows a process to start up a phantom using either a
command input file or a CPL file. See LONSR for a discussion of

pPhantoms,

Usage

DCL PHNTMS ENTRY (BIT(16) ALIGNED, CHAR(32), FIXED BIN, FIXED BIN,

FIXED BIN, FIXED BIN, CHAR(128), FIXED BIN)

CALL PHNIMS (cplflg, filename, name—-LEN, funit, phant-user,

cplflg

filename
name-len
funit

user

CODE, ARGS, ARGSL)

Source of process: if true ('l'b), then a CPL
program is being started as a phantom; if false
('0'b), then a cominput file is being started as a
phantom., (BIT(16) aligned = LOGICAL.)

The name of the file to be started as a phantam.

The number of characters in filename.

The file unit on which to open the phantom file.

The user number of the phantom (returned).

10-35 Third Edition

19

19

DOC3621-190

code A return code; 0 means no error,

args The arquments for a CPL phantom; a dumy argument
must be given for non—~CPL phantoms.

argsl The number of characters in args; a dummy argument
must be given for non-CPL phantoms.

Discussion

A phantom is a process that can operate separately from its creator
process, and can continue working after the creator has logged out.
Phantoms are discussed in detail in the Prime User's Guide. See LONSR
for a discussion of phantoms also.

P> DPWCHKS

Pur pose

This function makes sure that the password supplied is a legal login
password.

Usage
DCL PWCHKS ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(1)):;

pw—ok = DWCHKS (key, password);
key An INTEGER*2 user option to restrict values of
password. Keys may be added together:

KSUPRC Change password to uppercase before
checking.

KSNULL Allow null passwords.

password Must be 1 to 16 characters long, and may not contain
lowercase letters or PRIMOS reserved characters.

pPw—ok Set to PL1G true if the password is legal.

Third Edition 10-36

SYSTEM SUBROUTINES

P> RDTKSS

Note

For PL1G and Pascal programmers, RDTKSS is obsolete and has
been replaced with CLSPIX above.

Purpose

The subroutine RDTKSS parses the command line most recently read by a
call to COMANL. If no previous calls to COMANL have taken place,
RDTKS$S parses the last command line typed at PRIMOS command level by
the user. Parsing proceeds token by token. A command line consists of
tokens (defined below) separated by delimiters. The current delimiters
are space, comma, /*, and NEWLINE. The characters
() [11{};""2:~|\.DEL. are reserved in command lines for future use.
However, one of these characters may be included in a token by
enclosing the token in single quotes; for example, 'naughty(so to
speak)'. The characters /*, if unquoted, begin a comment field that
extends to the end of the line and are ignored by RDTKS$S.

Each call to RDTKSS reads a single token from the command line. RDIKSS
returns the literal text of the token, together with some additional
information about it, If the token is mumeric, RDTKSS will provide
results of decimal and octal oconversion attempts., RDTKSS will also
inform the caller if a numeric token can be interpreted as a register

setting (octal parameter) under the old PRIMOS command line structure.

Do not make calls to TSAMLC or CNINS or to subroutines that call these,
such as FORTRAN formatted READ statements to the terminal, before
parsing the command line. These subroutines cause the replacement of
the information in the buffer holding the command line.

Usage
CALL RDTKSS (key, info, buffer, buflen, code)

key The action to be taken by RDTKSS (INTEGER*2).
Possible values are:
1 Read next token, convert to uppercase.
2 Read next token, leave in lowercase.
3 Reset to start of command line,
4 Read remainder of command line as raw
text,

10-37 Third Edition

19

DOC3621-190

5 Initialize the command line.
info An eight-word integer array set to oontain the
following information, (Only info(2) is set for a
key value 4.)
info(l) The type of the token. Possible values
are:

1l Normal token. (Results of
numeric oonversions are
returned,)

2 Register setting para-
meter,

5 Null token.

6 End of line.

info(2) The length in characters of the token.
A null token has a 0 length.

info(3) Further information about the token.
The following bits of info(3) have the
indicated meaning when set:

bit 1 (:100000) - Decimal
conversion successful (no
overflow), value returned

in info(4).
bit 2 {:040000) - Octal
conversion successful,

value returned in info(5).
This bit is always set
when token type is 2.

bit 3 (:020000) — Token begins
with unquoted minus sign,
thus token may be a
keyword argqument.,

bit 4 (:010000) -— An explicit
position for a register

setting was given;
position value is returned
in info(4).

bits 5-16 Reserved.,

Third Edition 10-38

SYSTEM SUBROUTINES

info(4) Contents depends on flags set in
info(3). If bit 4 is set, info(4) is
the position number for the register
setting. (Note that if token type is 2
and bit 4 is not set, the position is
implicit and must have been remembered
by the caller.) If bit 1 is set,
info(4) is the converted decimal value.
Otherwise info(4) is undefined.

info(5) Contents depend on flags in info(3).
If bit 2 is set, info(5) is the
converted octal value, Otherwise
info(5) is undefined.

info(6)-(8) Reserved.

buffer An integer array into which the literal text of th
token is written by RDTKSS, two characters

RDOTKS$ S per wor

and blank-padded to length buflen (words).

vaialaGwe o

buflen Is the specified length, in words, of buffer
{(INTGER*2), buflen must be >= 0.
code A standard return code (INTEGER*2), Possible values
are:
0 No errors.

ESBKEY Value of key is illegal.
ESBPAR Bad parameter; buflen is less than 0.
ESBFTS Buffer is too small to contain the full

text of the token. The token 1is
truncated,

Delimiters
Delimiter characters have four functions: token separation, content
indication, literal text delineation, and line temination. The set of
delimiter characters is:

SP, ' NL /*

The meanings of these characters are discussed in the next paragraphs.

10-39 Third Edition

DOC3621-190

Blank Interpretation (SP): A single blank terminates a token. A
multiblank field is precisely equivalent to a single blank. Blanks
surrounding another delimiter are ignored. Leading and trailing blanks
on the command line are ignored,

Comma Interpretation: A single comma terminates a token and is
equivalent to a blank. Two or more commas in succession, however, will
generate null tokens., If a comma is the first or last character on the
command line, a null token will be generated, A command line
consisting of only n commas (with no text) will generate ntl null
tokens.

Literal Text Character ('): Literal text strings start and end with
single apostrophes. Any characters, including delimiters but excluding
a NBALINE, can appear inside a literal string; the entire string is
treated as a single token. Rules for literal apostrophes are the same
as ODBOL's or FORTRAN's: each literal apostrophe in the string must be
doubled:

'"HERE''S A LITERAL ''.’

A token can be partially literal, for example, ABC'DEF'. Numbers in
literal text are interpreted as textual characters. (See token
definitions below.) A literal string is ended either with a single
apostrophe or by a NEWLINE.

Newline Delimiter (ML): A NBWLINE character terminates the preceding
token. 1If the NBWLINE is in a literal text field, the literal is
terminated., If a NBWLINE is encountered before any token text or
delimiter, an end-of-line token is generated.

Camment Delimiter (/*): When the character pair /* is encountered, all
Subsequent text on the command line is ignored. A /* in the beginning
of a command line will cause an immediate end-of-line token to be
generated.

Third Edition 10-40

SYSTEM SUBROUTINES

Tokens

A token is any string of characters not containing a delimiter. A
token can be from 0 to 80 characters in length. The following are
examples of valid tokens:

FIN

LONG-FILENAME

1/707

6

98

String.even, longer.than. thirty-two, characters
[path]name

.NULL, (null string)

Literal text including delimiters can be entered in apostrophes using
FORTRAN rules:

'STRING WITH EMBEDDED BLANKS'

'HERE''S A LITERAL APOSTROPHE'

Token Types
Associated with each token is a type. ©Possible token types are
discussed in the following paragraphs.

Normal Token: A normal token is any string of characters except a
register-setting token, The string may or may not include literal
text, Examples of normal tokens are:

FIN

ADOO1

This.is.a.token,
PARTIALIY' LITERAL'

'8'xxx (Note: '8' is treated as a nonnumeric,)
IEEERERN] (= lll)

Register—setting Token: Register-setting tokens (explained in the LOAD
and SEG Guide) are now considered obsolete, They are handled by RDTKSS
solely to permit existing software and command files to continue to
function. New software should not use such parameters; symbolic

keywords should be used instead, for example, FIN XX —64V instead of
FIN XX 2/400.

10-41 Third Edition

DOC3621-190

The rules for recognition of a register-setting parameter as such are
as follows. A token of the form octal/octal is always recognized as a
register setting (unless enclosed in quotes). Initially, unembellished
octal integers are also recognized as implicit-position register
settings. If a token beginning with an unquoted minus sign, and which
does not successfully convert as a decimal integer, is found,
recognition of implicit-position register settings is disabled.
Recognition is reenabled only by a subsequent occurrence of an
explicit-position register setting: octal/octal.

Null Token: A null token is generated when two delimiters are
encountered in a row (except for multiple context characters). Command
lines generating null tokens are the following:

’ (Start of line is a delimiter in this case.)
X,,Y

End-of-line Token: This token is generated when the end of the
command line 1is reached,

Strategy

RDTKSS maintains an internal pointer that points to the next character
in the command line to be scanned. This pointer is set to the start of
the command line by COMANL. It can also be reset to the start of the
line with a RESET (key=3) call to RDTKSS.

Following a PRIMOS command, the internal pointer is positioned after
the main command., If RESUME was the command, it is positioned after
the RESUME filename,

Regardless of the token type, RDTKSS always returns the literal text of
the token. Delimiter characters (unless inside apostrophes) are never
returned.

If a token is truncated (too long to fit in buffer), the next call to
RDTKSS will return the next token, not the truncated text.

For register-setting tokens (octal parameters), the octal position
number is returned by RDTKSS only if explicitly given in the token
(e.qa. 6/123). Hence, the current register-setting position must be
remembered by the caller,

A buflen of 0 can be used to skip over a token. The error code ESBFTS
will be returned.

Third Edition 10-42

SYSTEM SUBROUTINES

For a key of 4 (read raw text), all text between the current RDTKSS
pointer and the end of the command line (NEWLINE) is returned. No
checking is done for any delimiters or special characters other than
NEWLINE. No forcing to uppercase is performed.

P RECYCL

Purpose

The RECYCL. subroutine is called under PRIMOS to tell the system to
cycle to the next user. It is an "I have nothing to do for now" call.
Under PRIMOS II, RECYCL does nothing.

Usage
CALL RECYCL
Caution
Do not use this subroutine to simulate a time delay.
P> SCHAR
Purpose

This subroutine stores a character into an array location., It is
useful, for example, in storing character data from a FORTRAN program.

Usage
CALL SCHAR (LOC(array), index, char)

array Array of characters
index Index of the location of character in array (INT*Z)
char Character to be stored (one word)

10-43 Third Edition

18.1

18.1

19

DOC3621-190

Discussion

The pointer (index) is initialized to 0 and is incremented by 1 after
the operation is complete,

The right half of the character word is used for storage, so for
storing one character, the form of char should be ' A', for example.

P> TEXTOS

Note

For PL1G and Pascal programmers, this subroutine is obsolete
and has been replaced with FNCHKS.

Purpose

TEXTOS checks a filename for valid format.

Usage

CALL TEXTOS$ (filnam, namlen, trulen, textok)

filnam

namlen

trulen

textok

An integer array containing the filename to be
checked.

The length of filnam in characters (INTEGER*2),
An (INTEGER*2) set to the true number of characters

in filnam, trulen is valid only if textok is
.TRUE. .

trulen is the number of characters in filnam
preceding the first blank, If there are no blanks,
trulen is equal to namlen. See SRCHSS for filename
‘construction rules,

A LOGICAL variable set tc .TRUE. if filpam is a
valid filename, otherwise set to ,FALSE..

Names longer
message.

Caution

than 32 characters are truncated with no warning

Third Edition

10-44

SYSTEM SUBROUTINES

Example

To read a name from the terminal, check for validity, and set trulen to
the actual name length:

CALL ISAA12 (0, BUFFER, 80, $999)

CALL TEXTOS$ (BUFFER, 32, TRULEN, OK) /* SET TRULEN
IF (.NOT. OK) GOTO <bad-name>

p TIMDAT

Purpose
TIMDAT returns the date, time, CPU time, and disk I/O time used since

login, the user's unique number on the system, and the user id in an
array.

Usage

CALL TIMDAT (array, num)

array An integer array:

1 Two ASCII characters representing
month,

2 Two ASCII characters representing day.

3 Two ASCII characters representing year.

4 Integer time in minutes since midnight.

5 Integer time in seconds.

6 Integer time in ticks.

7 Integer CPU time used in seconds.

8 Integer CPU time used 1in ticks,
(Standard is 330 ticks/second.)

9 Integer disk I/O time used in seconds.

10 Integer disk I/O time used in ticks,

11 Integer number of ticks per second.

10-45 Third Edition

-~

19

19

19

DOC3621-190

12 User number.
13-28 Login name, left-justified,

num Must be 28 (INTEGER*2).

Discussion
This routine does not return any useful information under PRIMOS II.
Disk I/O time is from start of seek to end of transfer, including both

explicit file I/O and paging operations. CPU time used in controlling
the transfer is counted under CPU time, array(7), and array(8).

Examples

Use of TIMDAT is illustrated in sample programs in
Chapters 3 through 8.

P> TNCHKS

Purpose
This function checks the name passed for validity as a pathname.

Usage
DCL INCHKS ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(1)):

name-ok = INCHKS (key, pathname);
key Determines the restrictions to be placed on the
name. Keys may be added together:

KSUPRC Change name to uppercase before
checking.

KSWILDC Allow wildcard characters in name.
(See the Prime User's Guide.)

KSNULL Allow a null pathname.

pathname Must follow the rules for pathnames in Chapter 9 of
this guide or in the Prime User's Guide, modified by
the key above,

Third Edition 10-46

SYSTEM SUBROUTINES

name—ok Set to PL1G true if the name is wvalid given the
restrictions of the keys.

Discussion

Iegal pathnames are discussed in Chapter 9. Filenames within the
pathname are checked by FNCHKS, described earlier.

10-47 Third Edition

19

PART IV

MATH, SORT, and Applications
Library Subroutines

11

FORTRAN
Matrix Library
(MATHLB)

SCOPE OF MATHIB

MATHIB provides a set of subroutines that perform matrix operations,
solve systems of simultaneous linear equations, and generate
permutations and combinations of elements. See Table 11-1 for a
summary.

These subroutines are available in R-mode only, so they may only be
called from FORTRAN IV and PMA,

SUBROUTINE CONVENTIONS

The following conventions are used in the subroutine descriptions in
this chapter.

Names

All calls are shown with their single-precision name, followed by, as
applicable, the double-precision, integer, and complex counterparts.
For example, if the single-precision name is XXXX, the
double-precision, integer, and complex names respectively are: DXXXX,
IXXXX, and CXXXX.

11-1 Third Edition

DOC3621-190

Table 11-1
Summary of Available Matrix Operations

» Single Double
Operation Integer Precision Complex Precision

Setting matrix to identity matrix IMIDN MIDN CMIDN DMIDN

Setting matrix to constant matrix IMCON MQON CMOON IMOON

Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL
Matrix addition IMADD MADD CMADD DMADD
Matrix subtraction IMSUB MSUB CMSUB IMSUB
Matrix multiplication IMMLT MMLT CMMLT DMMLT

Calculating transpose matrix * IMIRN MTRN CMTRN DMTRN
Calculating adjoint matrix * IMADT MADJ CMADJ DMADJ
Calculating inverted matrix * MINV CMINV DMINV

Calculating signed cofactor * IMCOF MQOF CMQOF DMCOF

Calculating determinant * IMDET MDET CMDET DMDET
Solving a system of linear LINEQ CLINEQ DLINEQ
equations

Generating permutations PERM

Generating combinations coMB

* For square matrices only

Third Edition 11-2

FORTRAN MATRIX LIBRARY

Argu_ments

All arquments must be specified. Variables and arrays are assumed to
be of the same mode as the subroutine (REAL, DOUBLE PRECISION,
INTEGER*2, or COMPLEX). Matrix sizes and error flags must be declared
as INTEGER*2,

Arrays

Arrays are expected by MATHIB subroutines to be doubly subscripted
arrays. The dimensions passed as arguments must agree with the array
sizes declared in the calling program, or the elements cannot be
properly accessed, Except where otherwise noted, when more than a
single array is passed as an argument, the arrays may be the same array
as in the calling program. For example, in matrix addition, it is
permissible to specify: A=A+ A,

Work Arrays

Work arrays must always be distinct arrays in the calling program.

SUBROUTINE DESCRIPTIONS

» oovB

Purpose

COMB computes the next combination of nr out of n elements with a
single interchange each time it is called. The first call to COMB
returns the combination 1, 2, 3,...,nr. This subroutine is self-
initializing and proceeds through all n!/(nrl*(n-nr)!) combinations,
At the last combination, it returns a value of last = 1 and resets
itself. The COMB subroutine may be reinitialized by the user by
passing a restrt value of 1 along with new values for n and nr. (The
restrt parameter is optional; if reinitialization is not desired,
either omit this parameter from the calling sequence or set it to a
value of 0).

Usage
CALL OOMB (icomb, n, nr, iwl, iw2, iw3, last, restrt)

11-3 Third Edition

DOC3621-190

Mode Subscript (s) Dimension(s) Comments

icomb Integer 1 nr Return
n Integer Pass
nr Integer Pass
iwl Integer 1 n Work
iw2 Integer 1 n Work
iw3 Integer 1 n Work
last Integer Return
restrt Integer Pass
(optional)
Note

The calling program should not attempt to modify icomb,
iwl, iw2, or iw3. For further details, see Gideon
Ehrlich, “Loopless Algorithms for Generating
Permutations, Combinations, and Other Combinatorial
Configurations," Journal of the ACM, vol., 20, no. 3,
July 1973, pp. 500-513.

> LINEQ

Purpose

LINEQ solves the set of n linear equations in n unknowns represented by
(cmat) (xvect) = (yvect) where cmat is the nxn square matrix of

coefficients, yvect is the nxl column vector of unknowns in which the
solution is stored.,
Note

For complex and double-precision numbers, use CLINEQ and
DLINEQ, respectively.

Usage
CLINEQ

CALL {LINEQ } (xvect, yvect, cmat, work, n, npl, ierr)
DLINEQ

Third Edition 11-4

FORTRAN MATRIX LIBRARY

Mode Subscript(s) Dimension(s) Comments
xvect * 1 n Returned
yvect * 1 n Passed
cmat * 2 n,n Passed
work * 2 npl,npl Wor k
n Integer Passed
npl Integer Passed (=nt+1)
ierr Integer Returned

* A1l of the same mode which determine the subroutine used

Discussion

The user is required to provide as a work area a nplxnpl matrix (npl =
n+l), The integer error flag ierr returns one of three possible
values:

ierr Meaning

0 Solution found satisfactorily
1 Coefficient matrix sinqular

2 mpl < > n+l

If ierr < > 0, no modifications are made to xvect.

P MADD

Purpose
MADD adds the nxm matrix mat2 to the nxm matrix matl and returns the
sum in a nxm matrix mats, In component form: mats (i,3) = matl (i,j)
+ mat2 (i,3) as i goes from 1 to n and j goes from 1 to m.

Note

For integer, complex, and double-precision numbers, use IMADD,
CMADD, and DMADD, respectively.

11-5 Third Edition

DOC3621~-190

Usage
DMADD
CMADD
CALL) IMADD ((mats, matl, mat2, n, m)
MADD
Mode Subscript(s) Dimension(s) Comments
mats * 2 n,m Returned
matl * 2 n,m Passed
mat2 * 2 n,m Passed
n Integer Passed
m Integer Passed

* All of the same mode which determines the subroutine used

P MADT
Purpose

This subroutine calculates the adjoint of the nxn matrix mati and
stores it in the nxn matrix mato. Each element of the output matrix is
the signed cofactor of the corresponding element of the input matrix,

Note

For integer, complex, or double-precision numbers, use IMADJ,
QMADJ, or IMADJ, respectively.

Usage
/M‘
IMADJ
CALL)OMADY (' (mato, mati, n, iwl, iw2, iw3, iw4, ierr)
DMADT

\

Third Edition 11-6

FORTRAN MATRIX LIBRARY

Mode Subscript(s) Dimension(s) Camments
mato * 2 n,n Returned
mati * 2 n,n Passed
n Integer Passed
iwl * , 1 n Work
iw2 * 1 n Work
iw3 * 1 n Work
iwd * 1 n Work
ierr Integer Returned
* All of the same mode which determines the subroutine used

Discussion

The error flag, ierr, may have one of two values:

ierr Meaning
0 Adjoint successfully constructed
1 n<2 - no adjoint may be constructed

Note

mato and mati must be distinct.

p MCOF

Purpose

Calculates the signed cofactor of the element mat (i,j) of the nxn
matrix mat and stores this value in CF. If i =0 and j = 0 the
determinant of mat is calculated.

Note

For integers, complex, or double-precision numbers, use IMCOF,
(MCOF, or DMQOF, respectively.

11-7 Third Edition

DOC3621-190

Usage

IMCOF
CMCOF
CALL (MCOF
DMQOF

cof

mat

iwl
iw2
iw3
iwd
i
j

ierr

(cof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

Mode
*

*
Integer
*

*

*

*
Integer
Integer

Integer

Subscript(s) Dimension(s) Cauments

Returned

2 n,n Passed
Passed

1 n Work

1 n Work

1 n Work

1 n Work
Passed
Passed
Returned

* All of the same mode which determines the subroutine used

Discussion

The integer error flag ierr has two possible values:

ierr

0
1

Third Edition

Meaning

Cofactor calculated successfully
No cofactor calculated for any of the
following reasons:

1.
2'
3.

4.

n<2 - no cofactor possible
i=3j=n=0- no determinant
i=0andj<>0ori<>0andj=0-

subscript error
i>n and/or j>n - subscript error

11-8

FORTRAN MATRIX LIBRARY

P MOON

Purpose

This subroutine sets every element of the nxm matrix mat equal to a
constant CON.

Note

For integer, complex, or double-precision numbers, use IMCON,
CMCON, or DMCON, respectively.

Usage

| o)
MCON

CA.._._”-{ “‘03N> (mat, n, m, con)

(orcon)
Mode Subscript(s) Dimension(s) Comments

mat * 2 n,m Returned
n Integer Passed
m Integer Passed
con * Passed

* A11 of the same mode which determines the subroutine used

P MDET
Purpose

Calculates the determinant of the nxn matrix mat and stores it in det.

Note

For integer, complex, or double-precision numbers, use IMDET,
(MDET, or IMDET, respectively.

11-9 Third Edition

DOC3621-190

Usage
IMDET
MDET
CALL) MDET ((det, mat, n, iwl, iw2, iw3, iw4, ierr)
DMDET
Mode Subscript(s) Dimension(s) Comments
det * Returned
mat * 2 n,n Passed
n Integer Passed
iwl * 1 n Work
iw2 * 1 n Work
iw3 * 1 n Work
iwé * 1 n work
ierr Integer Returned

* All of the same mode which determines the subroutine used

Discussion

The integer error flag ierr may have one of two values:

ierr Meaning
0 Determinant formed successfully
1 n =0 - no determinant possible
> MIDN
Purpose

This subroutine sets the nxn matrix mat equal to the nxn identity
matrix., That is:

MAT (IIJ)=011<>J
=1, I=J

Third Edition 11-10

FORTRAN MATRIX LIBRARY

Note

For integer, complex, or double-precision numbers, use IMIDN,
CMIDN, or IMIDN, respectively.

Usage
g IMIDN
MIDN
CALL) CMIDN ((mat, n)
DMIDN
Mode Subscript(s) Dimension(s) Camments
mat * 2 n,n Returned
n Integer Passed

* The mode of this argument determines which subroutine
is used and the representation of 1 in matrix.

Mode Subroutine Representation of 1
Integer IMIDN 1
Single—-precision MIDN 1.(Sp)
Complex | QMIDN (1.,0) (each SP)
Double-precision DMIDN 1. (DP)

P MINV

Purpose

Calculates the inverse of the nxn matrix mati and stores it in mato, if
successful. The inverse of mat1 is mato if and only if:

mati*mato = mato*mati =
where * denotes matrix multiplication and I is the nxn identity matrix.

The user must supply a npl x npn scratch matrix work area, where npl =
n+l and npn = nin.

11-11 Third Edition

DOC3621-190

Note

For complex or double-precision numbers use the subroutines
MINV or DMINV, respectively. There is no integer form of this
subroutine as there is no gquarantee that the inverse of an
integer matrix will be an integer matrix.

Usage
} (mato, mati, n, work, npl, npn, ierr)

Mode Subscript(s) Dimension(s) Camments
mato * 2 n,n Returned
mati * 2 n,n Passed
n Integer Passed
work * 2 npl,npn Work
npl Integer Passed
npn Integer Passed
ierr Integer Returned

* All of the same mode which determines the subroutine used

Discussion

The integer error flag ierr will return one of the following values:

ierr Meaning

0 Matrix inverted - inverted matrix stored in mato.

1 Matrix is singular - no inversion possible, mat: mato is
filled with zeroes,

2 npl < > n+l and/or npn < > n+n - return from

‘subroutines with no calculations performed

Third Edition 11-12

FORTRAN MATRIX LIBRARY

P MLT

Purpose

This subroutine multiplies the nlxn2 matrix matl (on the left) by the
n2xn3 matrix matr (on the right) and stores the resulting nlxn3 product
matrix in magg

Note

For integers, complex, or double-precision numbers, use IMMLT,
OMLT, or DMMLT, respectively.

Usage

(TVML,
) M

T
T
CALL? S(mtp, matl, matr, nl, n2, n3)

Note
lau: must be distinct from matl and matr, althcugh matl and

matr may be the same. For example:

CALL MMLT (A, B, C, N1, N2, N3) LEGAL

CALL MMLT (A, B, B, N, N, N) LBGAL

CALL MMLT (A, A, A, N, N, N ILLEGAL
CALL MMLT (A, A, B, N, N, N) TLLEGAL
CALL MMLT (A, B, A, N, N, N) ILLEGAL

Mode Subscript(s) Dimension(s) Comments

matp * 2 nl,m Returned
matl * 2 nl,n2 Passed
matr * 2 n2,n3 Passed
nl Integer Passed
n2 Integer Passed
n3 Integer Passed

* A1l of the same mode which determines the subroutine used

11-13 Third Edition

DOC3621-190

p MSCL
Purpose
This subroutine multiplies the nxm matrix mati by the scalar constant
SOON and stores the resulting nxm matrix in mato., By components,

scalar multiplication is understood to be: mato (i,j) = scon*mati
(i,3) for i from 1l to n, j from 1 to m.

Note

For integers, complex, or double-precision numbers, use IMSCL,
CMSCL, or DMSCL, respectively.

Usage
IMSCL
MSCL
CALL) CMSCL { (mato, mati, n, m, scon)
DMSCL
Mode Subscript(s) Dimension(s) Canments
mato * 2 n,m Returned
mati * 2 n,m Passed
n Integer Passed
m Integer Passed
scon * Passed

* All of same mode which determines the subroutine used

Third Edition 11-14

FORTRAN MATRIX LIBRARY

P MSUB
Purpose

Subtracts the nxm matrix mat2 from the nxm matrix matl and stores the
difference in the | nxm matrix matd.

Note

For integers, complex, or double-precision numbers, use IMSUB,
CMSUB, or DMSUB, respectively.

Usage
e
MSUR

CALL | CMSUB ((matd, matl, mat2, n, m)
(pMsuB)

Mode Subscript(s) Dimension(s) Camments
matd * 2 n,m Returned
matl * 2 n, Passed
mat2 * 2 n,m Passed
n Integer Passed
m Integer Passed

* All of the same mode which determines the subroutine used

P MIRN

Purpose

Calculates the transpose of the nxn matrix mati and stores it in the
nxn matrix mato. The relatlonshlp between mati and mato is as follows:
mato (i,3) = = mati (jsi) for i, j =1 to n. mato and mati must be
distinct.

Note

For integers, complex, or double-precision numbers, use IMIRN,
CMTRN, or DMTRN, respectively.

11-15 Third Edition

DOC3621-190

Usage
IMIRN
MIRN
CALL)} CMIRN ((mato, mati, n)
DMTRN
Mode Subscript(s) Dimension(s) Comments
mato * 2 n,n Returned
mati * 2 n,n Passed
n Integer Passed

* A1l of the same mode which determines the subroutine used

P> PERM

Purpose

PERM computes the next permutation of n elements with a single inter-
change of adjacent elements each time it is called. The first call to
PERM returns the permutation 1, 2, 3,..., n. This subroutine is
self-initializing and proceeds through all n! permutations., At the
last permutation it returns a value of last = 1 and resets itself. The
PERM subroutine may be reinitialized by the user by passing a new value
of n or by passing the restrt parameter with a value of 1. (The restrt
parameter is optional. ~If reinitialization is not desired either omit
this parameter from the calling sequence or set it to a value of 0.)
The calling program should not attempt to modify iperm, iwl, iw2, or
iw3.

Usage
CALL PERM (iperm, n, iwl, iw2, iw3, last, restrt)

Mode Subscript(s) Dimension(s) Canments
iperm Integer 1 n Returned
n Integer Passed
iwl Integer 1 n Work

Third Edition 11-16

iw2
iw3
last

restrt

Discussion

Integer
Integer
Integer

Integer

For further details,

Generating Permutations,
Configurations," Journal of the ACM, vol.

500-513.

see Gideon Ehrlich,
Combinations,

11-17

FORTRAN MATRIX LIBRARY

Work
Work
Returned

Passed
(optional)

"Loopless Algorithms for

and Other Cambinatorial
20, no., 3, July 1973, pp.

Third Edition

Applicatibns Library

GENERAL. DESCRIPTION

This is a user-oriented library that provides a set of service
routines, designed for ease of use., In many cases, the APPLIB or
VAPPLB routines call a lower-level routine, filling in argquments that
the caller isn't concerned about. The routines may also reformat the
data that the lower-level routine returns. The use of APPLIB or VAPPLB
routines avoids a duplication of effort and provides a consistent
interface for the terminal user.

All of these routines are written as FORTRAN functions that return one
of the following: a status indication (logical .TRUE. or .FALSE.), an
appropriate value, an alternate value or format of a returned argument,
or a code which must then be decoded. All error detection, reporting,
and, if possible, recovery are performed by the routine, which returns
only an indication of success or failure, This simplified
error—-reporting scheme assures the user that the error is reported and
all possible recovery procedures have been tried.

These routines may be used either as subroutines or as functions that
return a value. If they are used as functions, when a logical value is
returned it will be ,TRUE. or .FALSE., according to FORTRAN
conventions, Programmers in other languages should consult Chapters 3
through 8 to see how to handle these values.

12-1 Third Edition

DOC3621-190

APPLIB RQUTINES

The categories of functions provided by the Applications 1library are:

String Manipulation Routines
User Query Routines

System Information Routines
Mathematical Routines
Conversion Routines

File System Routines
Parsing Routines

The following is a detailed list of Applications subroutines Ly

function, String manipulation routines, user query routines, and file
system routines are discussed in subsequent pages of this chapter.

String Manipulation Routines

Compare two strings for equality. CSTRSA
Compare two substrings for equality. CSUBSA
Fill a string with a character. FILLSA
Fill a substring with a given character. FSUBSA
Get a character from a packed string, GCHRSA
Left-justify, right-justify, or center a JSTRSA
string within a field.
Locate one string within another. LSTRSA
Locate one substring within another. LSUBSA
Move a character between packed strings. MCHRSA
Move one string to another. MSTR$A
Move one substring to another. MSUBSA
Determine the operational length of a string. MLENSA
Rotate string left or right. RSTR$A
Rotate substring left or right. RSUBSA
Shift string left or right. SSTRSA
Shift substring left or right. SSUBSA
Test for pathname. TREESA
Determine string type. TYPESA

User Query Routines

Prompt and read a name. RNAMSA

Prompt and read a number (binary, decimal, RNUMSA
octal, or hexadecimal)., INTEGER*4

Ask question and obtain a YES or NO answer. YSNOSA

Third Edition 12-2

APPL.ICATIONS LIBRARY

System Information Routines

CPU time since login. CTIMSA
Today's date, American style. DATESA
Today's date as day of year ("Julian" date). DOFYSA
Disk time since login, DTIMSA
Today's date, European (military)style. EDATSA
Time of day. TIMESA

Mathematical Routines

Generate random number and update "seed," based RANDSA
upon a 32-bit word size and using the Linear
Congruential Method.

Initialize random number generator "seed," RNDI SA

Conversion Routines

Convert a string from lowercase to upper- CASESA
case or uppercase to lowercase.

Convert ASCII number to binary. CNVASA

Convert binary number to ASCII, CNVBSA

Make a number printable if possible. ENCDSA

Convert the DATMOD field (as returned by RDENSS) FDATSA
in format DAY, MON DD YYYY

Convert the DATMOD field (as returned by RDENSS) FEDTSA
in format DAY, DD MON YYYY,

Convert the TIMMOD field (as returned by RDENSS). FTIMSA

File System Routines

Close a file. CLOSSA
Delete a file. DELESA
Check for file existence. EXSTSA
Position to end-of-file, GENDS$A
Open supplied name, OPENSA
Read name and open. OPNPSA
Open supplied name with verification and delay. OPNVSA
Read name and open with verification and delay. OPVPSA
Position file. POSNSA
Return position of file. RPOSSA
Rewind file. RANDSA
Open a scratch file with unique name. TEMPSA
Truncate file., TRNCSA
Scan the file system structure. TSCNSA
Check for file open. UNITSA

12-3 Third Edition

DOC3621-190

Parsing Routine

Parse PRIMOS command line. CMDLSA

NAMING CONVENTIONS

All APPLIB and VAPPIB routines follow a consistent naming convention
designed to avoid the possibility of a conflict with user-written
routines and system routines. They all have a four-letter mnemonic
name and the suffix $A. For example, the routine to open a temporary
file is named TEMPSA.

Subroutines that are used internally by APPLIB routines have a suffix
of $$A. These should not be called by programmers under ordinary
circumstances.

Keys

Many routines have options which are specified by named parameter keys
which all begin with the prefix AS. All parameter keys are defined in
a SINSERT file named SYSCOM>ASKEYS.INS.language. The key names
following the AS$ prefix are three— or four-letter mnemonics specifying
the allowable options for the various routines. They are INTEGER*2
data types. In addition, the FORTRAN version of this file supplies all
the appropriate FUNCTION type declarations for the application
routines, A complete listing of SYSCOM>ASKEYS is included at the end
of this chapter. Please read the chapter on your language interface to
see how to use this file,

LIBRARY IMPLEMENTATION AND POL ICIES

VAPPIB and its R-mode version, APPLIB, exist as independent libraries
in the UFD LIB.

The routines have been coded to make them easily callable from most
other languages, including PL1G and 1977 ANSI FORTRAN, both of which
can automatically generate string length argquments following string
arquments., As a result, in the argument pair name, namlen, the name is
often updated by an application routine, but the namlen argument is
never modified., If the namlen argument is not 0 or positive, an error
message is displayed on the user terminal. Where applicable, the
function value returned is .FALSE.. The function NLEN$A can be used to
determine the operational length of a returned name.

All application routines that either accept keys as arguments, or call
other routines which do, use the SYSCOM>ASKEYS file to define those
keys, Also, these routines do not take advantage of any particular
numerical values these keys may have, in case it should become

Third Edition 12-4

APPLICATIONS LIBRARY

necessary either to change these values or to add new keys with
numerical values which do not fit the previous pattern. For example,
there are no computed GOIOs on keys and no range checks for validity of
a key. In this way, if a new SYSCOMM>ASKEYS file is created, both the
user programs and the routines they call will always agree on the
meaning of a given key. The same is true of the declared types of the
application functions.

Library Building

All routines are compiled into a single binary file which is then
converted into the appropriate library file with the EDB utility. At
present, the only difference between the R-mode and V-mode build
procedures is the FIN compile option used., For APPLIB, all routines
are compiled for 64R-mode loading (LOAD). For VAPPLB, all routines are
compiled for 64V-mode 1loading (SEG). In addition, all routines
included in VAPPIB are pure procedure and may be loaded into the shared
portion of a shared procedure.

STRING MANTPULATION ROUTINES

The string manipulation routines operate on packed strings, unless
stated otherwise. Most of the routines in this section require that
the maximum length of a string (in characters) be passed as an
arqument, The maximum length is the actual storage allocated for that
string in bytes or characters (including any trailing blanks). The
operational length of a string does not include trailing blanks, so it
may be shorter than the maximum length. (See Figure 12-1.) Since the
length of a string is specified as an INTEGER*2 variable, the maximum
possible length is 32767 characters.

MY |[N|AIMIE | | | |

<{—operational length—>

{————————maximum length >

Maximum Length and Operational Length
Figure 12-1

The majority of routines that operate on entire strings first truncate
them to their operational length., The routines that operate on
substrings treat any trailing blanks as part of the substring.

12-5 Third Edition

DOC3621-190

All string-length specifications and substring—delimiting character
positions are checked for validity and must conform to the following
rules:

e Maximum string-length specifications must be greater than or
equal to 0. A value of 0 indicates a null or empty string,

e Substring-delimiting character positions must be greater than or
equal to 0. The length of the substring must be less than or
equal to the physical string length. The beginning character
position must be less than or equal to the ending character
position, A value of 0 for either the starting or ending
character position indicates a null substring.

If these rules are violated, an error message will be displayed and the
logical functions will be .FALSE..

USER QUERY ROUTINES

These routines provide a convenient means to input data from the user's
terminal. Each routine can prompt the terminal user with a customized
message, and then process the user's response.

FILE SYSTEM ROUTINES

The file system routines in the Applications library give the user a
simple and consistent way to specify the most common file system
operations. Accordingly, the Applications library does not provide the
user with the full capabilities of the file system routines since for
detailed operations it is best to use the file system routines
themselves (Chapter 9). This library supports both Sequential Access
Method (SAM) and Direct Access Method (DAM) files. There is no support
for segment directory files as the MIDAS subsystem provides the higher
level functions with these files.

All routines except Open, Delete, and Check for File Existence use only
the file unit and not the filename. File units are explained in
Chapter 9. Also, each routine carries the name of its function, as
above, with arquments oconsisting of only the relevant information,
usually only the file unit number. Note that all filenames, except
scratch files, may be pathnames.

The only complicated routines are the five OPEN routines, because of
the many ways programs can obtain the name of the file they wish to
open and the various options for verification or error recovery. Five
different routines exist to perform the varying levels of complexity.
In this way, the simple operations are represented by simple calling
sequences. Only complex operations need complex argument lists.

Third Edition 12-6

APPLICATIONS LIBRARY

All OPEN routines allow selection of the file type (SAM or DAM) and all
but TEMPSA allow specification of the open mode (READ, WRITE, or
READ/WRITE). TEMP$A (scratch) files are always opened for READ/WRITE.
Table 12-1 shows the routines available for opening.

Table 12-1
Ways to Open a File
Open name, OPENSA
Open funit. OPNP$A
Open name, verify, and delay. OPNVSA
Open funit, verify, and delay. OPVPSA
Open scratch file. TEMPSA

All OPEN routines can choose the file unit number upon which a file
will be opened. The ASGETU key is used for this purpose and the PRIMOS
file unit selected by the routine will be returned to the user (in the
arqument funit). If ASGETU is not used, the user must provide the
routine with a usable file unit number.

Several of these subroutines have arguments called verkey, which allows
verification of the validity of the file operation requested.
Verification provides the following options:

1. Verify that the file is new; otherwise, verify that it is all
right to modify a file which already exists.

2. Verify that the file may be modified and determine whether an
existing file is to be overwritten or appended.

3. Verify that the file exists; that is, do not allow creation of
a new file. Note that if the open mode is READ, this is the
only possible verification option,

In case of failure of an operation, the argument wtime allows the
subroutine to delay the time specified, then try again the number of
times allowed by retries. Delay provides the following options:

1. If and only if the file is "IN USE", wait a supplied number of
seconds (elapsed time) and try again.

2. Repeat step 1 a specified number of times.

12-7 Third Edition

DOC3621-190

DESCRIPTION OF SUBROUTINES

P CASESA

Purpose

CASESA is a logical function that converts a string from uppercase to
lower, or from lowercase to upper. The function will be ,FALSE, if
length is less than 0, otherwise .TRUE..

Usage
log = CASES$A (key, string, length)

CALL CASES$A(key, string, length)

key An INTEGER*2 option for the following conversions:

ASFUPP Convert all alphabetic characters in
string from lowercase to uppercase.

ASFLON Convert all alphabetic characters in
string from uppercase to lowercase,

string Array containing character string to be converted,
packed two characters per word, any data type.

length Length of string in chafacters (INTEGER*2) ,

APPLIB calls: GCHRSA, MCHRSA

p Crossa

Purpose
CLOSSA is a logical function that closes the file open on funit., If

the operation is successful, the function is .TRUE.; otherwise, the
function is .FALSE.. (This is FORTRAN logical .TRUE. and .FALSE..)

Usage
log = CLOSSA (funit)

CALL CLOSS$A(funit)

Third Edition 12-8

APPLICATIONS LIBRARY

funit File unit (INTEGER*2),

APPLIB calls: None

p CDLSA

Note

For Pascal and Pl1G programmers, CMDLSA is obsolete and has 19
been replaced with CLSPIX.

Purpose

CMDLSA is a logical function for parsing a PRIMOS command line. CMDLSA
is designed to facilitate the design and implementation of user
interfaces in a program. It provides a means to break a character
string into tokens (words or expressions) and return information
regarding each token.

Usage
log = ODLSA(key, kwlist, kwindx, optbuf,buflen, option, value,kwinfo)
CALL QMDLSA(key,kwlist,kwindx,optbuf,buflen,option,value,kwinfo)

key An INTEGER*2 value specifying the following
subroutine actions:

ASREAD Return the next keyword entry in the
command line,

ASNEXT Call COMANL to get the next command
line, turn on default processing, and
return the first keyword entry in the
new command line.

ASRSET Reset the command line pointer to the
beginning of the command line and turn
on default processing, Use of this key
does not return a keyword entry.

12-9 Third Edition

DOC3621-190

kwlist

kwindx

optbuf

buflen

Third Edition

ASRAWI Return the remainder of the command
line as raw text and turn on the
end-of-line indicator. Text starts at
the token following the option (if
present) of the last keyword entry
read,

ASNKWL Turn on default processing and return
the next keyword entry in the command
line., This key allows the «calling
program to switch keyword lists in the
middle of a command line.

ASRCMD Permits the use of a keyword without a
preceding minus sign as the first token
on a line (may only be used for lines
subsequent to the initial command
line).

A one—dimensional integer array containing control
information, a table of keyword entry descriptions,
and a list of default keywords. See Kwlist Format
later in this chapter for a complete description.

A keyword index returned as an INTEGER*2 variable
identifying the keyword in an entry. Possible
values are:

<0 Unrecognized keyword or QMDLSA was
called with a key of ASRSET or ASRAWI.
0 End of line.
>0 Valid keyword.

Packed array that normally contains the text of a
keyword option. However, if an unrecognized keyword
is encountered, optbuf contains the text of that
keyword. The data type does not matter.

Specified 1length of optbuf in characters
(INTEGER*2)., This must be 0 or greater,

12-10

APPLICATIONS LIBRARY

option Returned INTEGER*2 variable that describes the
option following a keyword., Possible values are:

ASNONE No option, or option was null, optbuf
will be blank.

ASNAME option was a name.

ASNUMB option was a number, result of numeric
conversion returned in value.

ASNOVF option was a number and conversion
resulted in overflow (decimal numbers

only).
value Returned INTEGER*4 variable equal to the binary
value of an option if it was a number. Otherwise,
it is 0.
kwinfo A ten-word integer array that returns miscellaneous
information and must be dimensioned in the calling

program. kwinfo(l) is equal to the number of
characters in optbuf and kwinfo(2) through
kwinfo(10) are reserved for future use,

APPLIB calls: CNVASA, (NVB$A, CSUBSA, FILLSA, JSTRSA, MSUBSA, MSTRSA,
NLENSA, SSUBSA.

Discussion

CMDLSA was designed to simplify the processing of a PRIMOS command line
while, at the same time, providing the user with a great deal of
flexibility in defining the command envirorment.

This routine will parse a command line, one keyword entry at a time,
and return information about each entry it encounters. A keyword entry
is defined as a —keyword followed by an option. A default keyword
entry is defined as an option that is not preceded by a —keyword but,
by virtue of its position in the command 1line, implies a specified
-keyword (e.g., FIN SNARF, where SNARF implies the default keyword
-INPUT) . Defaults may only occur at the beginning of a command line.

CMDLSA returns the following information for each keyword entry in the
command line:

® Integer that identifies the —keyword (kwindx)
e Text of the keyword option, if present (optbuf)

e Option type (option)

12-11 Third Edition

DOC3621-190

® Results of numeric conversion, if option was a number (value)

e Number of characters in the text of an option (kwinfo(l))

Note that OMDLSA does not perform any action other than returning
information about the command line.

The following is a list of considerations that should be taken into
account when defining a command environment:

1.
2.

10.

A keyword may have, at most, one option following it.

A keyword must begin with a dash (-).

A keyword may not be a decimal number (e.g., -99).
Register—setting parameters (described with the R-mode EXECUTE

command in the ILOAD and SEG Reference Guide) are not
recognized.

Default keywords are only allowed at the beginning of a command
line. The first -keyword encountered turns off default
processing and all remaining options on the command line must
be preceded by a -keyword. (This restriction can be
circumvented by using a key of ASNKWL; however the user must
be aware of the fact that when default processing is in effect
each option is treated as if it were preceded by a -keyword.)

A key of ASRAWI (or an option type of ASRAWI) will turn on the
end-of-line indicator and any further attempts to read from the
current command 1line will return an end-of-line condition. To
turn off the end-of-line indicator, CMDLSA must be called with
a key of ASRSET or ASNEXT.

A buffer length that is too small to contain the text of an
option will cause that option to be truncated and an error
message to be displayed.

Default keyword entries that have a numeric option should be
avoided as PRIMOS may intercept them as register settings.

A negative hexadecimal option that consists only of alphabetic
characters (such as -FF) will always be interpreted as a
—keyword,

Keyword entries in the keyword table with the same keyword
index are considered synonyms. A keyword may have any number
of synonyms, each with different option specifications.
However, if a Kkeyword with synonyms is also a default and
default processing is in effect, the option specifications for
the synonyms will be ignored. (In other words, a default
keyword option always implies the first keyword in a synonym
chain.)

Third Edition 12-12

APPLICATIONS LIBRARY

11. Null entries in the command line are only permitted for
keywords that have an option status of ASOPTL. All other null
entries will be treated as either a missing option or an
unrecognized keyword.

12, Calls to OMDLSA and RDTKSS on the same command line should be
avoided, as QMDLSA uses RDTKSS to perform a look ahead when a
-keyword is encountered.

13, All text is forced to uppercase unless enclosed in quotes or
read as raw text (ASRAWI).

Kwlist Format

The kwlist array consists of three sections, The first section
contains control information, the second contains the keyword entry

table, and the third contains the default list.

Control Information

Word 1 Number (n) of keyword entries in table, must be
greater than 0.

Word 2 Maximum length of keyword text in characters, must
be greater than or equal to 2 and not more than 80.
All keywords must have the same length and therefore
it may be necessary to pad them with blanks.

Keyword Entry Table

Words 1 ton Text of keyword. The actual number of
characters must be equal to the maximum
keyword length.

Word n+l Keyword index, must be greater than 0.

Word n+2 Minimum number of characters in the keyword to
match, including leading minus sign. The number
must be no less than 2 and no greater than the
maximum keyword length. A 0 or negative value
causes the keyword to be ignored when the table is
searched. This allows keyword text to exist as
documentation.

12-13 Third Edition

DOC3621-190

Word n+3 Option status; possible values are:
ASNONE No option may follow keyword.

ASOPTL
ASREQD
Word n+4 Option type;

ASNONE
ASBIN
ASDEC
ASOCT
ASHEX
ASNAME,
ASNBIN

ASNDEC
ASNOCT

ASNHEX

ASRAWI

Third Edition

option may or may not follow keyword.
option must follow keyword,

possible values are:

If status is ASNONE.
option must be a binary number.
option must be a decimal number.
option must be an octal number.
option must be a hexadecimal number,
option must be a name,

optionmay be a name or a binary
number.,

optionmay be a name or a decimal
number.

optionmay be a name or an octal
number.

option may be a name or a hexadecimal
number, If the option consists of all
alphabetic characters, which also
constitute a valid hexadecimal number,
it will be interpreted as such — for
example, FACE.

option is the remainder of the command
line after the current -keyword is read
as raw text, Use of this option will
turn on the end-of-line indicator in
the same manner as a key of ASRAWI,

12-14

APPLICATIONS LIBRARY

Default List

Word 1 Number (n) of default keywords, must be greater than
or equal to 0.

Words 2 to n+l List of keyword indices, previously defined in the
keyword entry table, which will be used when default
processing is in effect. A default keyword entry
may not have an option status of A$NONE.

Error Messages

The function value will be false if ahy of the following errors occur:

BAD KEY
BUFFER LENGTH LESS THAN ZERO
NAME T TR {namea +ovi)

INOWIE 1WA LAAVT e VA LCAT

UNREQOGNIZED KEYWORD. (keyword text)

BAD KEYWORD OPTION. (option text)

MISSING KEYWORD OPTION.

NO. OF KEYWORD ENTRIES MUST BE .GT. ZERO.

MAX KEYWORD LENGTH MUST BE .GE. 2 AND .LE. 80.

1ST CHARACTER OF KEYWORD MUST BE '~-'. (keyword text)

KEYWORD MAY NOT BE A NUMBER., (keyword text)

KEYWORD INDEX MUST BE .GT. ZERO. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.
(keyword text)

INVALID OPTION STATUS. (keyword text)

INVALID OPTION TYPE. (keyword text)

NO. OF DEFAULTS MUST BE .GE. ZERO.

DEFAULT NOT DEFINED IN KEYWORD LIST. (default index)

INVALID DEFAULT OPTION STATUS. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .GE. 2. (keyword text)

UNDETERMINED ERROR> (text of last keyword or option read)

CMDLSA Sample Program

C TEST PROGRAM FOR CMDLSA
C

IMPLICIT INTEGER*2 (A-Z)

INTEGER*4 VALUE

DIMENSION BUFFER(10),KWLIST(128),INFO(10)
SINSERT SYSCOM>ASKEYS
C

DATA KWLIST /ll 14,
'*any text',1,0,ASREQD, ASDEC,
_NDECIMAL '2 2'A$OPI.L,A$NDEC,
'-wI‘AL' '4,2'A$REQD'Am'
'-I‘DCI'AL' '4'3 ’AwPIlL’AsNOCI"
|-HEXADECIMAII' '5,2’A$REQD'A$HEX,

* * * *

12-15 Third Edition

DOC3621-190

* '-M‘IEXADECIMAL"613'A$OPIL'A$NHEX'
* "'NAME',?,S,AsRmD’AsNAME,
* "‘MYBE',S,G,A%PI’L,AsNA.ME'
* '-WEl,g'S’AstE'AstE'
* "QUIT' ,10,2,A$NQ‘]E,A$NONE,
* '_TI'ITJE"99,2,AmPII|,A$RMI'
* 4,1,2,8,7/
C
C
BUFLEN = 20
KEY = ASREAD
10 IF (CMDLSA(KEY,RWLIST,KWINDX,BUFFER,BUFLEN,TYPE,VALUE, INFO))
*GO TO 15
PRINT 99 |
99 FORMAT(/'TRY AGAIN,TURKEY !')
CALL EXIT

15 IF (KWINDX.EQ.10) CALL EXIT
IF (KWINDX.NE.ASNONE) GO TO 20
KEY = ASNEXT
GO TO 10
2 KEY = ASREAD
PRINT 100 BUFFER,KWINDX,TYPE,VALUE,INFO(1)
100 FORMAT(/10A2/'RWINDX TYPE VALUE CHARS'/2X,4(I3,6X))
GO TO 10
END

P CNVASA

Purgse

CNVASA is a logical function that converts an ASCII digit string into
its binary value for decimal, octal, and hexadecimal numbers. The
numbers may be explicitly signed. Leading and trailing blanks are
ignored, as well as blanks between the sign and the number. However,
blanks within the number are not allowed. If the number converts
successfully, the function is .TRUE. and value is the converted binary
value. If conversion, is not successful, the function is .FALSE. and
value is 0, Note that for decimal conversions overflow will be
considered as unsuccessful, whereas for octal and hexadecimal
conversions overflow is ignored.

(.TRUE. and .FALSE. are the FORTRAN logical values,)

Usage
log = CNVASA (numkey, name, namlen, value)

CALL, CNVASA(numkey, name, namlen, value)

Third Edition 12-16

APPLICATIONS LIBRARY

numkey An INTEGER*2 option specifying the data type of the
number to be converted:

ASDEC Decimal

ASBIN Binary

ASOCT Octal

ASHEX Hexadecimal

name Array containing ASCII digit string, packed two

characters per word. Data type does not matter.
Maximum lengths are: Dbinary, 31; octal, 11;
decimal, 10; hexadecimal, 8. Maximum does not
include leading signs or blanks,

namlen Length of name in characters (INTEGER*2).

value Returned converted binary value (INTEGER*4).

APPLIB calls: GCHRS$SA, MLENSA

B CNVBSA

Purpose

CNVBSA is an INTEGER*2 or INTEGER*4 function used to convert a binary
number to an ASCII digit string.

Usage
T*2 = CNVBSA(numkey, value, name, namlen)

CALL CNVBSA(numkey, value, name, namelen)
numkey Number base to convert to (INTEGER*2); possible
values are:
ASBIN Binary number with leading blanks
ASBINZ Binary number with leading 0s

ASDEC Signed decimal nmnumber with leading
blanks

ASDECU Unsigned decimal number with leading
blanks

12-17 Third Edition

e

DOC3621-120

ASDECZ Signed decimal number with leading 0Os
ASOCT Octal number, leading blanks

ASOCTZ Octal number, leading Os

ASHEX Hexadecimal, leading blanks

ASHEXZ Hexadecimal, leading 0Os

hame Array containing returned ASCII digit string packed
two characters per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2), Maximum
length for binary is 31, octal is 11, decimal is 10,
and hexadecimal is 8. Maximum does not include
leading signs or Os.

value Binary number to be converted (INTEGER*4).

Discussion

CNVBSA will convert a binary number into an ASCII digit string for
decimal, octal, and hexadecimal numbers. The returned digit string
will be right-justified in name and preceded by leading blanks or 0s
depending upon numkey specification,

If value is negative and the number is to be treated as signed decimal,
the digit will begin with an initial minus sign., If value is negative,
binary, octal, and hexadecimal numbers will be in two's-complement
form. If the number converts successfully, the function value is the
number of digits and if not, it is 0.

APPLIB calls: FILLSA, MCHRSA

Third Edition 12-18

APPLICATIONS LIBRARY

P CSTRS$A

Purpose

CSTRS$A is a logical function used to compare two strings for equality.
The function will be .TRUE. if each character in string a matches the
corresponding character in string b, or if both strings are null
(length equal to 0). Otherwise, the function will be .FALSE.. Only
the operational lengths are used in the comparison. (Trailing blanks
are ignored,) If the two strings are not of equal length, the result
will be LFALSE.. (.TRUE. and .FALSE, are the FORTRAN logical

values.)

Usage
log = CSTR$A(a, alen, b, blen)

a String to be compared, packed two characters per
word. Data type does not matter.

alen Length of a, in characters (INTEGER*2). Length must
be 0 or greater.

2 o e -~ - e
String to be compared against, packed two characters

per word., Data type does not matter.

o

blen Length of b, in characters (INTEGER*2). Length must
be 0 or greater.

APPLIB calls: CSUBSA, NLENSA

12-19 Third Edition

DOC3621-190

P cCsuBsa

Purpose
CSUBSA is a logical function used to compare substrings for equality.

Usage
log = CSUBSA(a, alen, afc, alc, b, blen, bfc, blc)

a Array containing substring to be compared, packed
two characters per word. Data type does not matter.

alen Length of a, in characters (INTEGER*2). Length must
be 0 or greater.

afc : First character position of substring in a
(INTBEGER*2) ,

alc Last character position of substring in a
(INTEGER*2) ,

b Array containing substring to be compared against,
packed two characters per word. Data type does not
matter.

blen Length of b, in characters (INTBEGER*2), must be 0 or
greater,

bfc First character position of substring in b
(INTEGER*2) .

blc Last character position of substring in b
(INTEGER*2) .

Discussion

If each character in the a substring matches the corresponding
character in the b substring, or both substrings are null (1length equal
to 0), the function will be .TRUE.. If two corresponding characters do
not match, or if the lengths of the substrings are not equal, the
function will be .FALSE.. (.TRUE. and ,FALSE. are the FORTRAN
logical values.)

Figure 12-2 is a representation of the arguments to CSUBSA.

Third Edition 12-20

APPLICATIONS LIBRARY

a |rRlOIM]IAYL | | V| I 1

afc alc
< alen >

b |[alrR]OIM]AlTIIICI] | |

bfc blc
< blen >

Arquments to CSUBSA
Figure 12-2

APPLIB calls: Non

p Crimsa

Pur pose

CTIMSA is a double—precision function that returns CPU time elapsed
since login, in seconds as the function value, and as centiseconds in
the cputim argument.

Usage
R*8 = CTIMSA (cputim)

CALL CTIMS$A(cputim)

cputim CPU time in centiseconds (INTEGER*4) — character
string format.

Discussion
The function value will be CPU time elapsed since login, in seconds.

This value may be received as either REAL*4 or REAL*8.

APPLIB CALLS: None

12-21 Third Edition

DOC3621-190

P> DATESA

Purpose
DATESA is a double-precision function that returns the date in the

arqument date in the form "DAY, MON DD YYYY" (for example, TUE, FEB 23
1982).

The value of the function is the date in the form "MM/DD/YY" (for
example, 02/23/82). This value must be received as REAL*8.

Note that this routine is good for the period January 1, 1977 through
December 31, 2076.

Usage
R*3 = DATESA (date)
CALL DATESA (date)
date Date in the form DAY, MON DD YEAR. The data type

does not matter as long as it is at 1least 16
characters long.

APPLIB CALIS: None

P> DELESA

Purpose

DELESA is a logical function that deletes the file named in name. If
the operation is successful, the function is ,TRUE., otherwise the
function is .FALSE.. (.TRUE. and .FALSE. are the FORTRAN logical
values.)

Usage
log = DELESA (name, namlen)

CALL DELES$A(name, namlen)
name Filename (may be a pathname) packed two characters
per word, Data type does not matter.
namlen Length of name in characters (INTEGER*2),.

APPLIB calls: TREE$A, UNITSA, NLENSA

Third Edition 12-22

APPLICATIONS LIBRARY

p> DOFYSA

Purpose

DOFYSA is a double-precision function that returns the day of the year
in the form "DDD" in the dofy argument. The value of the function is
the date in the form YR.DDD suitable for printing in FORMAT F6.3. This

value can be received as either REAL*4 or REAL*8, This routine is good
for the period January 1, 1977 through December 31, 2076.

Usage
R*8 = DOFYSA (dofy)
CALL DOFY$A (dofy)
dofy Day of year in the form "DDD" ("Julian" date). The

data type does not matter as long as it is at least
four characters long.

APPLIB calls: None

p DTIMSA
Purpose

DIIM$A is a double-precision function that returns disk time since
login as centiseconds is the dsktim argument. The function value will
be disk time since login in seconds. This value may be received as
either REAL*4 or REAL*8,

Usage
R*8 = DTIMSA (dsktim)

CALL DTIMSA(dsktim)

dsktim Disk time in centiseconds (INTEGER*4),

APPLIBR calls: None

12-23 Third Edition

DOC3621-190

p> EDATSA

Purpose

FDATSA is a double-precision function. It returns the date in the
European (military) £form 'DAY, DD MON YEAR' in the argument edate (for
example, TUE, 23 FEB 1982).

The value of the function is the date in the form DD.MM,YY (for
example, 23.03.82)., This value must be received in a REAL*8 variable.

The routine is good for the period January 1, 1977 through December 31,
2076.

Usage
R*8 = EDATSA (edate)

CALL EDATSA (edate)

edate Date in the form "DAY, DD MON YEAR".

Discussion
The type of the edate array does not matter as long as it is at least
16 characters long.

APPLIB calls: DATESA

P ENCDSA

Purpose

FENCD$A is a logical function that converts a numeric value to a FORTRAN
format.

Usage
log = ENCD$A(array, width, dec, value)
CALL ENCD$A(array, width, dec, value)

array Array to receive value, packed two characters per
word, Data type does not matter.

Third Edition 12-24

APPLICATIONS LIBRARY

width Field width as in format Fw.d (should be even)
(INTHGER*2) .
dec Places to right of decimal point as shown in format
Fw.d (INTEGER*2).
value Double-precision value to be encoded (REAL*8).
Discussion

ENCD$A attempts to encode value in the supplied Fw.d format if it will
fit. If not, the dec arqument is decremented (moving the decimal point
to the ricght) until it will fit., If dec reaches 0, or is originally
supplied as 0, value will be encoded in Iw Iw format if the number will
fit into a 32-bit integer. If not, and if the field is wide enough
(width > 7), the value will be encoded in E format. If the field is
not wide enough, it will be filled with asterisks.

Here is an explanation of the formats:

F A number that includes a decimal fraction. The d is
the number of digits after the decimal point, and w

is the total mumber of positions (including the
decimal point) in the field. The maximm is 32767.

I An integer, with w digits, Maximum is 32767.
E A flcating point mumber in scientific format

(xxEtyy) , where xx represents the characteristic and
Yy is the mantissa or exponent.

Examples are:
Fw.d: 123.4
I: 12345
E: 1.23456E+99

Note that the largest value of width is 16. If it is larger than 16,
only the first 16 characters of array will be used.

The function value will be .TRUE. if the encoding was successful, and
FALSE, if the field was filled with asterisks., (.TRUE. and .FALSE.
are the FORTRAN logical values.) Note that array is the only argument
that is actually modified in the calling program.

12-25 Third Edition

DOC3621-190

APPLIB calls: None

P> EXSTSA

Purpose

EXSTSA is a logical function that returns ,TRUE. if the file exists
and .FALSE. if the file does not exist or if an error was encountered,
(.TRUE, and .FALSE, are the FORTRAN logical values.)

Usage
log = EXST$A (name, namlen)

name Filename (may be a pathname) packed two characters
per word. Data type does not matter,

namlen Length of name in characters (INTEGER*2),

APPLIB calls: TREES$SA, UNITSA, NLENSA

P FDATSA

Purpose

FDATSA is a REAL*8 function that converts the datmod field, returned as
word 20 of buffer by RDENSS, to the format DAY, MON DD YYYY (for
example, TUE, FEB 23 1982).

The function value is the datmod field converted to MM/DD/YY (for
example, 02/23/82). It must be received in a REAL*8 variable. The
routine is good for the period January 1, 1972 to December 31, 2071.

RDENSS must be called before this subroutine,

Usage
CALL FDATS$A(datmod, date)

R*8 = FDAT$A(datmod, date)

datmod Date returned by RDENS$S. This is the date the file
was last modified and is in the format

Third Edition 12-26

APPLICATIONS LIBRARY

YYYYYYYMMMMDDDDD. YYYYYYY is the year modulo 100,
MMMM is the month, and DDDDD is the day (INTEGER*2).

date Array containing the date as a character strlng,
packed two characters per word, Date is in the
format 'DAY, MON DD YEAR'., Data type does not
matter as long as the array is at least 16
characters long.

APPLIB calls: CNVBSA

p> FEDTSA
Purpose

FEDT$A converts the datmod field, returned as word 20 of buffer by
RDENSS, to the format 'DAY, MON DD YEAR' in date (for example, TUE, 23
FEB 1982). The function value is datmod converted to MM,DD.YY (for
example, 23.02.82). It must be received in a REAL*8 variable. The
routine includes the period January 1, 1972 through December 31, 2071.

RDENSS must be called before this subrouiin~.

Usage
CALL FEDT$A(datmod, date)

R*8 = FEDT'$A (datmod, date)

datmod Date returned by RDENSS. This is date the file was
last modified and is in the format YYYYYYYMMMMDDDDD.,
YYYYYYY is the year modulo 100, MMMM is the month,
and DDDDD is the day (INTEGER*2).

date Array containing the date as a character string,
packed two characters per word. Date is in the
format 'DAY, MON DD YEAR'. Data type does not
matter as long as the array is at least 16
characters long.

APPLIB calls: FDATSA

12-27 Third Edition

DOC3621-190

P> FILLSA
Purpose
FILLSA is an INTEGER function that fills the name buffer with the f£fill

character supplied. The function is INTEGER*2 or INTEGER*4, but its
value is always 0.

Usage
int = FILLSA(name, namlen, char)

CALL FILLSA(name, namlen, char)

name Name of buffer to f£ill, packed two characters per
word, Data type does not matter.

namlen Length of name in characters (INTEGER*2).

char Fill character in FORTRAN Al format. Data type does

not matter.

APPLIB calls: None

p FSUBSA
Purpose

FSUBSA is a logical function used to £ill a character substring with a
specified character. The substring delimited by fchar and lchar is
filled with the character specified in filchar. The string parameters
are checked for validity. If an error is found, the function is
.FALSE. and a message is printed, If all parameters are valid, the
function will be .TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical
values,)

Usage
log = FSUBSA(string, length, fchar, lchar, filchar)

CALL FSUBS$A(string, length, fchar, lchar, filchar)

Third Edition 12-28

APPLICATIONS LIBRARY

string String containing substring to be filled, packed two
characters per word. Data type does not matter.

length Length of string in characters (INTEGER*2).

fchar First character position of substring (INTEGER*2).

1char Last character position of substring (INTEGER*2).

filchar Fill character in FORTRAN Al format. Data type does
not matter.

APPLIB calls: None

p FTIMSA
Purpose

FTIMSA is a REAL*4 or REAL*8 function that converts the timmod field,
returned as word 21 of buffer by RDENSS, to the format 'HH:MM:SS'. The
function value is the timmod field converted to decimal hours and may
be received as either REAL*4 or REAL*S,

Usage
CALL FTIMSA(timmod, time)

R*8 = FTIMSA(timmod, time)

R*4 = FTIMSA(timmod, time)

timmod Time at which a file was last modified, in the
format 'seconds since midnight' divided by four
(INTEGER*2) .

time Array containing the time a file was last modified,

as a character string in the format '"HH:MM:SS'.
Data type does not matter as long as array 1is at
least eight characters long.

APPLIB calls: CNVBSA

12-29 Third Edition

DOC3621-190

P GaHRr$A

Purpose

GCHR$A is an INTEGER*2 or INTEGER*4 function which extracts a single
character from a packed string, It is intended for use only by FORTRAN
programmers. The function value will be the accessed character in

FORTRAN Al format (with blank padding on the right). The character
returned will be left-justified and padded with blanks.

Usage
int = GCHR$A(farray, fchar)

CALL GCHR$A (farray, fchar)

farray Source packed array. Data type does not matter,
fchar Character position in farray to be returned
(INTEGER*2) .
Discussion

This routine replaces the FORTRAN statement:

CHAR = FARRAY (FCHAR)
where FARRAY is declared LOGICAL*1 (IBM FORTRAN) or of a one-character
data type.

APPLIB calls: None

P> GENDSA

Purpose

GEND$A is a logical function that positions the file open on funit to
end-of-file., If the operation is successful, the function is .TRUE.,

otherwise, the function is ,FALSE.. (.TRUE. and .FALSE., are the
FORTRAN logical values.)

Third Edition 12-30

APPLICATIONS LIBRARY

Usage
log = GENDSA (funit)

CALL GENDSA (funit)
funit PRIMOS file unit (INTEGER*2),

APPLIB calls: None

p JSTRSA
Purpose

JSTRS$A is a logical function used to left-justify, right-justify, or
center a string within itself.

Usage
log = JSTRSA(key, string, length)

CALL JSTRSA(key, string, length)
key Determines direction of justification (INTEGER*2).
Possible values are:
ASRGHT Right-justify
ASLEFT Left-justify
ASCNTR Center

string String to be justified, packed two characters per
word. Data type does not matter.

length Length of string in characters (INTEGER*2)., It must
be greater than 0.

Discussion

The function will be .TRUE. if justification is successful, .FALSE.
if the string length is less than 0 or if a bad key is used. (.TRUE.
and ,FALSE. are the FORTRAN logical values.)

APPLIB calls: MNLENSA, FILL$SA, MSUBSA, GCHRSA

12-31 Third Edition

DOC3621-190

P> LSTRSA
Purpose

ISTRSA is a logical function used to locate one string within another.

Usage
log = LSTRSA(a, alen, b, blen, fcp, lcp)
CALL ISTRS$A(a, alen, b, blen, fcp, lcp)

a String to be located, packed two characters per
word. Data type does not matter.

alen Number of characters in a (INTEGER*2).

b String to be searched, packed two characters per
word. Data type does not matter.

blen Length of b, in characters (INTEGER*2).

fcp First character position in b of substring that

matches string a (INTEGER*2).

1cp Last character position in b of substring that
matches string a (INTEGER*2).

Discussion

LSTR$A will search string b for the first occurrence of string a. If
string a is found, the function will be .TRUE. and fcp and 1cp will be
equal to the character p051t10ns of the substring in b that matches
string a. If string a is not found or if either string is null (length
equal to 0), the function will be .FALSE. and fcp and lcp will be
equal to 0. Each string is logically truncated to its operational
length before the search is performed (trailing blanks are ignored).

APPLIB calls: LSUBSA, NLENSA

Third Edition 12-32

P> LsuBSA

Purpose

APPLICATIONS LIBRARY

ISUBSA is a logical function used to locate one substring within

another,

Usage

log = LSUB$A(a, alen, afc, alc, b, blen, bfc, ble, fcp, lcp)

CALL LSUBSA(a, alen, afc, alc, b, blen, bfc, blc, fcp, lcp)

blen
bfc

blc

fep

lcp

Discussion

Array containing substring to be located, packed two
characters per word. Data type does not matter.,

Length of a, in characters (INTEGER*2).

First character position of substring in a
(INTEGER*2) .

Last character position of substring in a
(INTBGER*2) .

Array containing substring to be searched, packed
two characters per word., Data type does not matter.

Length of b, in characters (INTEGER*2).

First character position of substring in b
(INTEGER*2) ,
Last character position of substring in b

(INTEGER*2) .

First character position in b of substring that
matches substring in a (INTEGER*2).

Last character position in b of substring that
matches substring in a (INTEGER*2).

LSUBSA searches the substring contained in b for the first occurrence
of the substring contained in a. If a match is found, fcp and lcp will
be equal to the character positions in b of the matching substring and
the function is ,TRUE..

12-33 Third Edition

DOC3621-190

If a matching substring cannot be found or if either substring is null
(length equal to 0), the function will be .FALSE. and fcp and lcp will
be equal to 0. (.TRUE. and .FALSE. are the FORTRAN logical values.)
A representation of the arguments to LSUBSA will be found with the
description of CSUBS$A.

APPLIB calls: None

P> MCHRSA
Purpose

MCHRSA is an INTEGER function that moves a character from one packed
string to another.

Usage
CALIL MCHRS$A(tarray, tchar, farray, fchar)

I*2= MCHRSA(tarray, tchar, farray, fchar)

I*4= MCHRSA(tarray, tchar, farray, fchar)

tarray Returned array of characters, packed two per word,
first character on the left. Data type does not
matter.

tchar Character position in tarray of received character
(INTBEGER*2) .

farray Source string. Data type does not matter.

fchar Character position in farray of character to be

moved (INTEGER*2).

Discussion
This routine replaces the FORTRAN statement:
TARRAY (TCHAR) = FARRAY (FCHAR)

when TARRAY and FARRAY are declared LOGICAL*1 (IBM FORTRAN) or of a
one-character data type. Only one character in TARRAY is replaced.

The function value will be the character that was moved in FORTRAN Al

Third Edition 12-34

APPL.ICATIONS LIBRARY

format, that is, the character in the left-most byte, ricght padded with
blanks.

APPLIB calls: None

P> MSTRSA

Purpose

MSTRSA is an INTEGER*2 or INTEGER*4 function used to move the source
string to the destination string.

Usage
int = MSTR$A(a, alen, b, blen)

CALL MSTRSA(a, alen, b, blen)

a Source string, packed two characters per word., Data
type does not matter.,
alen Length of a, in characters (INTEGER*2).
b Destination string, packed two characters per word.
Data type does not matter.
blen Length of b, in characters (INTEGER*2).
Discussion

If the source string is longer than the destination string, it will be
truncated, If it is shorter, it will be padded with blanks. The
source and destination strings may overlap. The function value will be
equal to the number of characters moved (excluding blank padding). If
either string is null (length equal to 0), no characters are moved and
the function value will be equal to O.

APPLIB calls: MSUBSA

12-35 Third Edition

DOC3621-190

P MSUBSA

Purpose

MSUBSA is an integer function used to move the source substring
contained in a to the destination substring contained in b.

Usage

int = MSUBS$A(a, alen, afc, alc, b, blen, bfc, blc)

CALL, MSUBSA(a, alen, afc, alc, b, blen, bfc, blc)

blen
bfc

blc

Discussion

Array containing source substring, packed two
characters per word. Data type does not matter.

Length of a, in characters (INTEGER*2),

First character position of substring in a, packed
two characters per word., Data type does not matter.

Last character position of substring in a
(INTEGER*2) .

Array containing destination substring, packed two
characters per word. Data type does not matter.

Length of b, in characters (INTEGER*2).

First character position of substring in b
(INTEGER*2) .
Last character position of substring in b

(INTEGER*2) .

If the source substring is longer than the destination substring, it

will be truncated.

If it is shorter, it will be padded with blanks.

The source and destination substrings may overlap.

If either substring is null (length equal to 0), no characters are
moved and the function will be equal to 0. Otherwise it is equal to
the number of characters moved (excluding blanks used for padding).

APPLIB calls:

Third Edition

MCHRSA

12-36

APPLICATIONS LIBRARY

P NLENSA

Pur pose

NLENSA is an INTEGER*2 function that returns, as its function value,
the actual 1length (not including trailing blanks) of the name in name.

Usage
I*2= NLENSA (name, namlen)

CALL NLENS$A (name, namlen)
name Name buffer to be tested, packed two characters per
word, Data type does not matter.

namlen Length of name in characters (INTEGER*2).

APPLIB calls: None

B> OPENSA

Pur pose

OPENSA is a logical function that opens a file of the given name on
funit. If the operation is successful, the function value is ,TRUE.,
and if the operation is unsuccessful, the function value is ,FALSE..
(.TRUE. and .FALSE. are the FORTRAN logical values.)

Usage
log = OPENSA (opnkey+typkey+untkey, name, namlen, unit)

CALL OPENSA (opnkey+typkey+untkey, name, namlen, unit)

opnkey INTEGER*2:
ASREAD Open for reading.
ASWRIT Open for writing.
ASRDWR Open for reading and writing.

12-37 Third Edition

DOC3621-190

typkey INTEGER*2:
ASSAMF SAM file
ASDAMF DaM file
untkey INTEGER*2:
ASGEIU Choose a PRIMOS file unit number to be

returned in funit. Omission of this
key requires 'that the routine be

provided with a unit number
(INTEGER*2) .
name File name (may be a pathname) packed two characters

per word, Data type does not matter.
namlen Length of name in characters (INTEGER*2),
funit PRIMOS file unit. This value is returned if

untkey = ASGETU; if not, the caller must provide a
legal file number in this argument (INTEGER*2).

APPLIB calls: TREES$SA, UNITSA, NLENSA

p> OPNPSA

Purpose

OPNPSA is a logical function that gets a name from the user and opens
it on funit., If the operation is successful, the function value is
.TRUE. ~and if the operation is unsuccessful or no name is supplied,

the function wvalue is .FALSE.. (.TRUE., and .FALSE, are the FORTRAN
logical values.,)

Usage
log = OPNPS$A(msg, msglen, opnkey+typkey+untkey, name, namlen, funit)
CALL OPNPS$A(msg, msglen, opnkeyttypkeyt+untkey, name, namlen, funit)
msg Array containing prompt for name message, packed two
characters per word, Data type does not matter.

msglen Length of msg in characters (INTEGER*2).

Third Edition 12-38

APPLICATIONS LIBRARY

opnkey INTEGER*2:
ASREAD Open for reading.
ASWNRIT Open for writing.
ASRDNR Open for reading and writing.
typkey INTEGER*2:
ASSAMF SAM file
ASDAMF DaM file
untkey INTEGER*2:
ASGETU Choose a PRIMOS file unit number to be

returned in funit. Omission of this
key requires “that the routine be

prov1ded with a unit number.

name Filename (may be a pathname) packed two characters
per word, Data type does not matter,

namlen Length of name in characters (INTEGER*2).

funit PRIMOS file unit returned if untkey is ASGETU, If

not, user must provide a legal file number in this
argument (INTEGER*2).

APPLIB calls: RNAM$A, NLENSA, TREESA, UNITSA

p omwsa

Purpose

OPNVSA is a logical function that opens a file of the given name on
funit. Note that the functions of verification and delay as described
here and in the section FILE SYSTEM ROUTINES above are independent of
each other.

Usage

log = OPNVS$A (opnkey+typkey+untkey, name, namlen, funit, verkey, wtime,
retries)

CALL. OPNVSA (opnkey+typkey+untkey, name, namlen, funit, verkey,
wtime, retries)

12-39 Third Edition

DOC3621-190

opnkey

typkey

untkey

name

namlen

funit

verkey

wtime

retries

Third Edition

INTEGER*2:
ASREAD
ASWRIT

INTEGER*2;
ASSAMF
ASDAMF

INTEGER*2.:

ASGETU

Open for reading.
Open for writing.

Open for reading and writing.

SAM file

DAM file

Choose a PRIMOS file unit number to be
returned in funit. Omission of this
key requires that the routine be
provided with a unit number,

Filename (may be a pathname) packed two characters
per word. Data type does not matter.

Length of name in characters (INTEGER*2). If namlen
is 0 or less, the function value is .FALSE..

PRIMOS file unit returned if untkey =ASGEIU. If
not, user must provide a legal file number in this
argument (INTEGER*2).

INTEGER*2:
ASNVER
ASVNEW

ASOVAP

ASVOLD

No verification.

Verify new or ask if OK to modify old
file.

Same as ASVNEW except user is prompted
to "OVERWRITE" or "APPEND" if file
already exists.

Verify old; return .FALSE. if not old
file.

Number of seconds to wait if FILE IN USE

(INTEGER*2) .

Number of times to retry if FILE IN USE (INTEGER*2),

12-40

APPL.ICATIONS LIBRARY

Discussion

If wtime and retries are specified as nonzero and the file to be opened
is IN USE, the open will be retried the specified number of times, with
wtime seconds (elapsed time) between each attempt. If the number of
retries expires, or if either wtime or retries is initially 0 and the
file is IN USE, the function returns .FALSE..

APPLIB calls: RNAMSA, TIMESA, NLENS$A, EXSTSA, UNITS$A, TREESA, GENDSA

Verification

If verification is not requested (verkey = ASNVER), OPNVSA is identical
in function to OPENSA., If verification is requested (verkey other than
ASNVER), the following actions will be taken according to the value of

lr ey
N

Y e

ASVNEW If the file already exists and opnkey is either
ASARIT or ASRIWR, the user will be asked if it is OK
to modify the old file., If the answer is "NO", the
function returns .FALSE.. If the answer is "YES",
the file is opened.

ASOVAP This is the same as ASVNEW except that if an old
file is to be modified, the user is also asked if
the file should be overwritten or appended. If the
answer is "APPEND", the file will be positioned tc
end of file.

ASVOLD This is the default case if opnkey = ASREAD. If any
other key is specified, and if the named file does
not already exist, a new file will not be created
and the function returns .FALSE..

Errors

If any errors not ocovered above occur while opening the file or
positioning it (ASOVAP), the function returns .FALSE.. If the open is
ultimately successful, the function returns .TRUE.. (,TRUE. and
.FALSE, are the FORTRAN logical values.)

12-41 Third Edition

DOC3621-190

P ompsa

Purpose

OPVPSA is a logical function that gets a filename from the user and
opens it on funit., Note that the functions of verification and delay
as described below, and in the section FILE SYSTEM ROUTINES above, are
independent of each other.

Usage

log = OPVP$A(msg, msglen, opnkey+typkey+untkey, name, namlen, funit,
verkey, wtime, retries)

CALL OPVP$A(msg, msglen, opnkey+typkey+untkey, name, namlen, funit,
verkey, wtime, retries)

msg Array containing prompt message, packed two
characters per word. Data type does not matter.

msglen Length of msg in characters (INTEGER*2),

opnkey INTEGER*2:

ASREAD Open for reading.

ASWRIT Open for writing.

ASRDWR Open for reading and writing.

typkey INTEGER*2:

ASSAMF SAM file

ASDAMF DAM file

untkey INTEGER*2:

ASGETU Choose a file wnit mumber to be
returned in funit. Omission of this
key requires that the routine be
provided with a unit number.

name Array containing filename (may be pathname), packed
two characters per word., Data type does not matter.

namlen Length of name in characters (INTEGER*2). If namlen
is 0 or less, the function value is .FALSE..

Third Edition 12-42

APPLICATIONS LIBRARY

funit File unit returned if untkey = ASGEIU. If not, user
must provide a legal file unit in this argument
(INTEGER*2) .

verkey INTEGER*2:

ASNVER No verification.

ASVNEW Verify new file or ask if OK to modify
old file,

ASOVAP Same as ASVNEW except user is prompted
to "OVERWRITE" or "APPEND" if file
already exists.

ASVOLD Verify cld. Function value is ,FALSE.

if not old.
wtime Number of eeconde to wait if FILE 1IN USE
(INTBEGER*2) .
retries Number of times to retry if FILE IN USE (INTEGER*2).
Discussion

If wtime and retries are specified as nonzero and the file to be opened
is IN USE, the open will be retried the specified number of times, with
wtime seconds (elapsed time) between attempts. If the number or
retries expires, or if either wtime or retries is initially 0 and the
file is in use, the function returns .FALSE..

APPLIB calls: RNAM$A, TIMESA, MLENSA, EXSTS$A, UNITS$A, TREESA, GENDSA

Verification

If verification is requested, the following are the possible actions,
according to the value of verkey:

ASVNEW If the file already exists and opnkey is ASWRIT or
ASRDR, the user will be asked if it is OK to modify
the old file. If the answer is "NO", the function
returns .FAISE.. If "YES", the file is opened.

ASOVAP If an old file is to be modified (as answered "YES"
for ASVNEW), the user is also asked if the file
should be overwritten or appended. If the answer is
"APPEND", the file will be positioned to end of
file.

12-43 Third Edition

DOC3621-190

ASVaLD Default case if opnkey = ASREAD. If any other key
is specified, and if the named file does not already
exist, a new file will not be created and the prompt
message will be repeated.

Errors

If any errors not covered above occur while opening the file or
positioning it (ASOVAP), or a name is not supplied when requested, the
function returns .FALSE.. If the open is ultimately successful, the

function returns .TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical
values.,)

P> POSN$A

Purpose

POSNSA is a logical function that positions the file open on unit to
the specified position. If the operation is successful, the function
is ,TRUE. and if unsuccessful, the function is .FALSE.. (.TRUE. and
.FALSE. are the FORTRAN logical values.)

Usage
log = POSN$A (poskey, funit, pos)

CALL POSNS$A(poskey, funit, pos)

poskey INTEGER*2:
ASABS Absolute position
ASREL Relative position
funit PRIMOS file unit (INTEGER*2)

pos Postion (relative or absolute) (INTEGER*4)

APPLIB calls: None

Third Edition 12-44

APPLICATIONS LIBRARY

P> RANDSA
Purpose
RANDSA is a random—number generator.

Usage
R*4 = RANDSA (seed)

R*8 = RANDS$A (seed)
CALL RANDSA (seed)

seed Input is previous seed, output is new seed
(TINTEGER*A)

ESAFRES e et)

Discussion

RANDSA is a double-precision function that updates a seed to a new seed
based upon the following linear congruential method:

U(I)=FLOAT(K(I))/M
K(I) B*K (I-1) modulo M
B 16807.0
M 2**31-1 = 2147483647.0
B and M are from Lewis, Goodman, and Miller, "A Pseudo-random Number

Generator for the System/360," IBM Systems Journal, vol. 8, no. 2,
1969, pp. 136-145.

K(I-1) is the input value of seed and K(I) is the returned valuve.

The value of the function is U(I) which represents a probability and is
between 0.0 and 1.0. This value may be received as either REAL*4 or
REAL*8.,

For examples, see Chapters 4 through 8.

APPLIB calls: None

12-45 Third Edition

DOC3621-190

P RNAMSA

Pur pose

RNAMSA is a logical function that prints the supplied message prompt
and appends a colon (:) to it. It then reads a user response from the
command stream, If the response is not a legal name, or if the name
provided is too long for the supplied buffer, an error message will be
typed and the message prompt will be repeated. If no name is provided,
the value of the function will be .FALSE.. If a legal name is
provided, the function value will be .TRUE.. (.TRUE. and .FALSE. are
the FORTRAN logical values.) The caller should be aware that COMANL
and RDTKSS (Chapter 9) are called to read the user response, and
therefore the previous command line entered is unavailable,

Usage

log = RNAMSA(msg, msglen, namkey, name, namlen)

msg Message text, packed two characters per word., Data
type does not matter.

msglen Message length in characters (INTEGER*2),

namkey An INTEGER*2 option key. Keys cannot be combined.

ASFUPP Force uppercase.
ASUPIW Do not force uppercase.

ASRAWI Read line as raw uninterpreted text.

name Returned name, packed two characters per word. Data
type does not matter.

namlen Length of name buffer in characters (maximum 80)
(INTEGER*2) .

APPLIB calls: None

P> RNDISA
Purpose
RNDISA is a double-precision function that returns the time of day in

centiseconds. The function value will be the time of day in seconds.,
This value may be received as either REAL*4 or REAL*8.

Third Edition 12-46

APPLICATIONS LIBRARY

Because this function is used to initialize a random number generator,
if the value is exactly 0, 1234567 and 12345.67 will be returned
instead.

Usage
R*4 = RNDISA (seed)

R*8 = RNDISA (seed)

CALL RNDISA(seed)

seed Time of day in centiseconds (INTEGER*4)
APPLIB calls: None
P> RNUMSA
Purpose
RNUMSA is a logical function used to accept numeric data from the user
terminal.
Usage
log = RNUMSA (msg, msglen, numkey, value)
msg Message text, packed two characters per word. Data
type does not matter.
msglen Message length in characters (INTEGER*2).
numkey An INTEGER*2 key specifying the data type to be
verified:

ASDEC Decimal
ASBIN Binary
ASOCT Octal

ASHEX Hexadecimal

value Returned value (INTEGER*4).

12-47 Third Edition

DOC3621-190

Discussion

The routine prints the user-supplied message and appends the colon (:)
to it. It then reads a user response and if the response is not a
legal number or if the number provided has too many digits for an
INTEGER*4 value, the error will be reported and the message will be
repeated., If no number is provided, the value of the function will be
.FALSE. and value will be 0, If a legal number is provided, the
function will be .TRUE. and the value will be returned in value.
(.,TRUE. and .FALSE. are the FORTRAN logical values.)

Numbers may be immediately preceded by "+" or "-". Binary numbers may
have a maximum of 31 digits, octal a maximum of 11 digits, decimal a
maximum of 10 digits, and hexadecimal a maximum of 8 digits. Negative
binary, octal, or hexadecimal should not be entered in two's
complement, but the same as a negative decimal number.

The caller should be aware that COMANL and RDTKSS (Chapter 10) are
called to read the user response, and therefore the previous ocommand
line is unavailable,

Examples of calls to RNUMSA are given in Chapters 3 through 8. The
operation of this subroutine is shown in Figure 12-3.

APPLIB calls: None

P> RPOSSA

Purpose

RPOSSA is a logical function that returns the current absolute position
of the file open on unit. If the operation is successful, the function
is .TRUE.; otherwise the function is .FALSE.. (.,TRUE. and LFALSE.
are the FORTRAN logical values.)

Usage
log = RPOSS$A(unit, pos)

CALL: RPOSS$A(unit, pos)

unit PRIMOS file unit (INTEGER*2).

pos Returned absolute position (INTEGER*4).

APPLLIB calls: None

Third Edition 12-48

ACCEPT MESSAGE

APPEND “:” TO MESSAGE

DISPLAY MESSAGE

ERROR
MESSAGE

>y

A

ACCEPT INPUT

A:s\

NO

NO

INPUT OF

NO

CORRECT
LENGTH

RETURN

How RNUMSA Works
Fiqure 12-3

12-49

APPLICATIONS LIBRARY

Third Edition

DOC3621-190

P> RSTRSA

Purpose

RSTRSA is a logical function used to rotate a character string left or
right, The string is truncated to its operational length before the
rotate is performed; therefore, trailing blanks are not included in
count. If length is less than 0, the function will be ,FALSE.,

otherwise the function will be .TRUE.. (.TRUE. and .FALSE. are the
FORTRAN logical values,)

Usage
log = RSTR$A(string, length, count)

CALL RSTR$A(string, length, count)

string String to be rotated, packed two characters per
word. Data type does not matter.

length Length of string in characters (INTEGER*2).

count Number of positions to rotate string., Negative

count causes left rotate, positive count right
rotate (INTEGER*2),

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character is moved directly from its
original position to its final destination position. Figure 12-4 shows
the results of two calls to RSTRSA.

Third Edition 12-50

APPLICATIONS LIBRARY

1121 1415]6]

< string >

l4151611121] |

after RSTR$A(string, 6, -3)

1121415161 |

after RSTRSA(string, 6, 2)

Use of RSTR$A

Figure 12-4

Example

The following example performs the operations diagrammed above.

OK, SLIST ROTATE,COBCL

IDENTTFICATION DIVISTION.
PROGRAM—-ID. ROTATE.
ENVIRONMENT DIVISION,
DATA DIVISION.
WORKING—STORAGE SECTION.
01 STRING1 PIC X(32) VALUE '12 456
01 LENGTH COMP,
01 CNT coMP.
PROCEDURE DIVISION.
001-BEGIN.
MOVE 6 TO LENGTH.
MOVE -3 TO CNT.

CALL 'RSTRSA' USING STRING1l, LENGTH, CNT.

EXHIBIT STRINGI1.
MOVE 2 TO CNT.

CALL 'RSTRSA' USING STRING1l, LENGTH, CNT.

EXHIBIT STRING1.
STOP RUN.

OK, COBOL: ROTATE
Phase I

Phase II

Phase III
Phase IV

Phase V

Phase VI

12-51

Third Edition

DOC3621-190

No Errors, No Warnings, Prlme V-Mode COBQL, Rev 18.4 <ROTATE>

OK, SEG -LOAD
[SEG rev 18.4]
$ LO ROTATE

$ LI VOOBLB

$ LT VAPPLB
$LT
LOAD COMPLETE
$ EXEC
STRING1
STRING1
OK,

45612
12456

P> RSUBSA

Purpose

RSUBSA is a logical function used to rotate a character substring left
or right., Only the characters of the substring contained in string are
affected, The parameters are checked for validity. If there is an
error, a message is printed and the function will be .FALSE.. If no
error occurs, the function will be .TRUE.. (.TRUE. and .FALSE., are
the FORTRAN logical values.)

Usage
log = RSUBSA(string, length, fchar, lchar, count)

CALL RSUBS$A(string, length, fchar, lchar, count)

string String containing substring to be rotated, packed
two characters per word, Data type does not matter,

length Length of string in characters (INTEGER*2).

fchar First delimiting character position of substring
(INTEGER*2) ,

1char Last delimiting character position of substring
(INTEGER*2) .

count Number of positions to rotate substring., Negative

count causes left rotate, positive ocount causes
right rotate (INTBEGER*2).

Third Edition 12-52

APPLICATIONS LIBRARY

Discussion

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string., A character is moved directly from its
original position to its final destination position.

APPLIB calls: MCHRSA

RWNDSA is a logical function that rewinds the file open on unit. If

1 onnracafial +ha £111 v arvet oa Fha

AR - bk
SUCCESSEUL , e Luneo e LU, § COUICIWLISE WiE

1S 1 is
ISE,. (. TRUE. and ,FAISE, are the FORTRAN logical

109 = RWNDSA {unit)
CALL RWNDSA (unit)

unit PRIMOS file unit (INTHGER*2)

APPLIB calls: None

P> SSTRSA

Purggse

SSTRSA is a logical function used to shift a character string left or
right, The string is shifted the specified number of characters and
the vacated positions are padded with the specified fill character.
Trailing blanks are not included in the shift. If length is less than
0, an error message is printed, the function is L,FALSE., and no
characters are shifted. If no error occurs, the function is .TRIE..
(.,TRUE. and .FALSE. are the FORTRAN logical values.)

12-53 Third Edition

DOC3621-190

Usage
log = SSTRS$A(string, length, count, filchr)

CALL SSTRS$A(string, length, count, filchr)

string Character string to be shifted, packed two
characters per word., Data type does not matter,

length Length of string in characters. Must be greater
than or equal to 0 (INTEGER*2).

count Number of positions to shift string. Negative count
causes left shift, positive count causes right shift
(INTEGER*2) ,

filchr Fill character which will pad the vacated positions.,

filchr is specified in FORTRAN Al format (two
characters per word and blank-padded on the right).
Data type does not matter.

APPLIB calls: FSUBSA, MCHRSA, NLENSA |

p sSsuBsa

Purpose

SSUBSA is a logical function used to shift a character substring left
or right, The substring is shifted the specified number of characters
and the vacated positions are padded with the specified f£ill character.
Any trailing blanks are included in the shift. The parameters are
checked for wvalidity. An error will cause a message to be printed and
the function will be .FALSE.. If no error occurs, the function will be
.TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical values.) If the
substring is null, or length is equal to 0, there will be no shift.

Usage
log = SSUBSA(string, length, fchar, lchar, count, filchar)

CALL SSUBSA(string, length, fchar, lchar, count, filchar)
string String containing substring to be shifted, packed
two characters per word., Data type does not matter,

length Length of string in characters (INTEGER*2).

Third Edition 12-54

APPLICATIONS LIBRARY

fchar First delimiting character position of substring
(INTEGER*2)

1char Last delimiting character position of substring
(INTEGER*2) .

count Number of positions to shift substring. Negative

count causes left shift, positive count causes right
shift (INTEGER*2).

filchar Fill character with which to pad the vacated
positions., filchar is specified in Al format (two
characters per word and right-padded with blanks).
Data type does not matter,

APPLIB calls: FSUBSA, MCHRSA

p TEMPSA

Purpose

This routine opens a unique temporary file in the current UFD for
reading and writing. This file will be named TS$xxxx where xxxx is a
four-digit decimal number between 0000 and 9999 inclusive., The actual
name opened will be returned in the name buffer. If the operation is
successful, the function value is .TRUE. and if the operation is
unsuccessful, the function value is ,FALSE. (These are the FORTRAN

logical values.)

Usage
log = TEMPSA (typkey+untkey, name, namlen, funit)

CALL TEMPSA(typkey+untkey, name, namelen, funit)

typkey INTEGER*2:
ASSAMF SAM file
ASDAMF DaM file
untkey INTEGER*2
ASGETU Choose a file unit mumber to be
returned in funit. Omission of this
key requires that the routine be

provided with a unit number
(INTEGER*2) .

12-55 Third Edition

DOC3621-190

name Returned name (six characters, packed two characters

per word)., Data type does not matter,

namlen Length of name buffer in characters (must be at
' least six) (INTEGER*2).

funit File unit (INTEGER*2).

APPLIB calls: FILLSA

p TIMESA
Purpose
TIMESA is a double-precision function that returns the time of day in

the form HR:MN:SC, The value of the function is the time of day in
decimal hours., This value may be received as either REAL*4 or REAL*S,

Usage
R*8 = TIMESA(time)

CALL TIMESA(time)

time Time of day in the form HH:MM:SS, packed two
characters per word. Data type does not matter as
long as it is at least eight characters long.

APPLIB calls: None

P> TREESA

Purpose

TREESA is a logical function that scans a file name and determines if
it is a pathname. If it is a pathname, the function is ,TRUE. and if
not, it is ,FALSE.. In addition, the location of the final name (or
entire name if not part of a pathname) may be determined from the
values returned in fst and flen. Note that if the name is empty, fst
and flen are both 0.

Third Edition 12-56

APPLICATIONS LIBRARY

Usage
log = TREESA (name, namlen, fst, flen)

name Array containing filename, packed two characters per

word (input). Data type does not matter.

namlen Length of name in characters (INTEGER*2 — input).

fst Character position in name of first character in
final name (INTBEGER*2 — returned).

flen Length of final file name in characters

(INTEGER*2 — returned).

APPLIB calls: GCHR$A, NLENSA

'
1=
2
]
]
[
()
|
w
-
tn
W)

ig -5 is a representation of the arquments to TREESA,

Example
OK, SLIST TREE.COBCL

TDENTIFICATION DIVISION.
PROGRAM-ID. TREE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING~STORAGE SECTION.
01 NAME PIC X(32) VALUE SPACES.
01 NAMLEN COMP.
01 FSTART COMP.
01 FLEN COMP.
01 ASCIILEN PIC S99.
PROCEDURE. DIVISION.
001-BEGIN,
DISPLAY 'ENTER FILENAME'.
ACCEPT NAME.
DISPLAY 'ENTER LENGTH OF NAME'.
ACCEPT ASCIILEN,
MOVE ASCIILEN TO NAMLEN,

CALL 'TREESA' USING NAME, NAMLEN, FSTART, FLEN.

EXHIBIT NAME.
EXHIBIT NAMLEN,
EXHIBIT FSTART.
EXHIBIT FLEN.
STOP RUN.

OK, SEG TREE
ENTER FILENAME
ANNE>SUBS>TREE

12-57 Third Edition

DOC3621-190

ENTER LENGTH OF NAME
14

NAME= ANNE>SUBS>TREE
NAMLEN= 00014+
FSTART= 00011+
FLEN= 00004+

OK,

IAININIE[>IDIAITIA|>ISIAIMIDIA|TIA|>IHIO|UIR|SIWIOIRIKIE|D]

< nameln— >
< flen >
fst

Arguments to TREESA
Figure 12-5

P TRNCSA

Purpose

TRNCSA is a logical function that truncates the file open on funit. If
the operation is successful, the function is .TRUE.; otherwise the
function is .FALSE. (These are the FORTRAN logical values.)

-

Usage
log = TRNCS$A(funit)

CALL TRNC$A(funit)
funit PRIMOS file unit (INTEGER*2)

APPLIB calls: None

P TscNsA

Purpose

TSCNSA is a logical function that scans the file system tree structure
(starting with the home UFD). It uses the file subroutines RDENSS and
SGDR$$ to read UFD and segment directory entries into the entry array.

Third Edition 12-58

Usage

APPLICATIONS LIBRARY

log= TSCN$A(key, funits, entry, maxsiz, entsiz, maxlev, lev, code)

CALL TSCNS$A(key, funits, entry, maxsiz, entsiz, maxlev, lev, code)

key

funits

entry

INTEGER*2:
ASTREE
ASNUFD
ASNSEG
ASCUFD

ASDLAY

Scan full tree,

Do not scan sub-UFDs.

Do not scan segment directories.,
Scan current UFD only.

Pause when popping up to directory.

Array of unit numbers maxlev long (INTEGER*2).

Array maxsiz * maxlev long (INTEGER*2).

This two-dimensional array may be passed
from a FORTRAN program only.

Caution

maxsiz
entsiz
maxlev
lev

code

APPLIB calls:

Size of each entry in entry array (INTEGER*2).

Set to size of current entry (INTEGER*2).

Maximum number of levels to scan (INTEGER*2),

Current level (INTEGER*2).

Return code (INTHEGER*2).

None

12-59 Third Edition

DOC3621-190

Discussion

Each call to TSCNSA returns the next file on the current level or the
first file on the next lower level of the structure, The variable lev
is used to keep track of the current level. For example, after the
first call to TSCN$A (with lev=0), lev will be returned as 1, and
entry(1,1) will contain the UFD entry describing the first file in the
home UFD. If this file is a sub~UFD, following the next call to TSCNSA
lev will be 2, and entry(1,2) will contain the entry for the first file
in the sub-UFD. Thus, for the UFD represented in Figure 12-6, TSCNSA
in a loop would return the names in the order shown in Figure 12-7,

The values of key (INTEGER*2) have the following meanings:

ASTREE All entries in the directory structure are returned
up to maxlev levels deep. (Levels below level
maxlev are ignored.)

ASNUFD When a sub~UFD is encountered (in the home UFD), its
entry is returned, but no files under that sub-UFD
are returned. In the absence of segment
directories, this effectively limits the scan to the
home UFD.,

ASNSEG Files inside segment directories are not returned.

ASCUFD This is a logical combination of ASNUFD and ASNSEG
— only files in the home UFD are returned.

ASDLAY This key is identical to ASTREE except that
directory entries are returned twice, once on the
way down (as for ASTREE), and again on the way up.
(This is necessary, for example, to implement a
tree—delete function since a directory cannot be
deleted until it has been emptied.)

Third Edition 12-60

SUBROUTINES

APPLICATIONS LIBRARY

SOURCE

GATE

BLUE GREEN OBSOLETE

A UFD to be Searched by TSCNSA

REFRIED

Figure 12-6

SOURCE
SQURCE > BLUE
SQURCE > GREEN
GATE
GATE > OBSOLETE
NONEOISONOUS
REFRIED
OK,

NONPOISONOUS

Result of TSCNSA Sample Program on Figure 12-6
Fiqure 12-7

12-61

Third Edition

DOC3621-190

The following items should be considered when using TSCN$A:

1.

For the first call of TSCN$A, lev should be equal to 0.
Thereafter it should not be modified until BOF is reached on
the top level UFD at which point lev will be reset to 0.

The entries in the entry array are in RDEN$$ format., For
entries inside a segment directory, all information from the
directory entry is first copied down a level. Entry(2,lev) is
set to 0 and entry(3,lev) is then set to a 16-bit entry number,
For nested segment directories, the type field of the entry is
set appropriately by opening the file with SRCH$S. (The file
is then immediately closed again.)

The parameter entsiz is set to the number of words returned by
RDENSS. Inside segment directories, it should be ignored.

The type fields in the entry array — entry(20,1) — should not
be modified. (TSCNSA uses them to walk up and down the tree.)

When TSCN$A requires a file unit, it uses units(lev). By using
the RDENSS$ and SGDRSS read-position and set-position functions
carefully, it is possible to reuse file units dynamically.

TSCNSA returns .TRUE. until a nonzero file system code is
returned or until ESEOF is returned with lev=0 (top level).
ESEOF on lower levels of the structure is suppressed, and code
is returned as 0.

TSCNSA requires owner rights in the home UFD.

Third Edition 12-62

Example

APPLICATIONS LIBRARY

The following FORTRAN program illustrates how TSCNSA can be used to
perform a directory LISTF. Figures 12-6 and 12-7 show the results of
the program run in a sample directory. Figure 12-8 diagrams how the
program works.

SINSERT SYSCOM>ERRD, INS.FTN
SINSERT SYSCOM>KEYS, INS.FIN
SINSERT SYSCOM>ASKEYS.INS,FIN

Cc

10
100

105

150

170
200

INTEGER MAXLEV,MAXSIZ

PARAMETER (MAXLEV=16) /* MAXIMUM LEVELS TO SCAN

PARAMETER (MAXSIZ=24) /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I,L,ENTRY(MAXSIZ,MAXLEV) ,UNITS (MAXLEV) ,CODE,NLEVSA
LOGICAL TSCNSA

DATA UNITS/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16/

1=0 /* INITIALIZE LEVEL COUNTER
IF (TSCNSA (ASTREE, UNITS , ENTRY, MAXSIZ , I,MAXLEV, L, OODE)) GOTO 105
IF (CODE.NE.ESEOF) CALL ERRPRS (ESNRIN, CODE, 0, 0, 0, 0)

CALL EXIT /* ALL DONE IF ESEOF
GOTO 10 /* RESTART IF 'S' TYPED
DO 200 1I=1,L /* CONSTRUCT PATHNAME

GOTO 150/* BRANCH IF SEGDIR

IF (ENTRY(2,I).EQ.0)
Y(2,I), NLENSA(ENTRY(2,I), 32))

CALIL TNOUA(ENTR
GOTO 170

CALL T™NOUA('(', 1) /* FORMAT SEGDIR ENTRY NUMBER
CALL TODEC (ENTRY(3,I))
CALL T™OUA(")', 1)

IF (I.NE.L) CALL ™OUA(' > ', 3)/* PATHNAME SEPARATOR
CONTINUE

CALL TONL

GOTO 100

END

12-63 Third Edition

DOC3621-190

L=0
key = ASTREE

NO

YES RETURN

ERROR

FOR1 = 1tolev-no DO

YES SEG DIR
?
y

DISPLAY NUMBER DISPLAY FILE OR SUBUFD
NAME

BOTTOM LEVEL ‘
?
ADD >TO
YES

DISPLAY

Y

REPEAT

Using TSCNSA to List Files on Directories
(See sample program.)
Figure 12-8

Third Edition 12-64

APPLICATIONS LIBRARY

P TYPESA
Purpose

TYPESA is a logical function that tests a character string to
determine if it can be interpreted as the type specified by key.

Usage
log = TYPESA (key, string, length)

key String type to be tested for (INTEGER*2).
Possible keys are:

ASNAME Can string be interpreted as a

name?

ASBIN Can string be interpreted as a
binary number?

ASDEC Can string be interpreted as a
decimal number?

ASOCT Can string be interpreted as an
octal number?

ASHEX Can string be interpreted as a
hexadecimal number?

string String to be tested, packed two characters per
word. Data type does not matter.
length Length of string, in characters (INTEGER*2).
Discussion

A string is interpreted as a name if it contains at 1Jleast one
alphabetic or special character other than a leading plus or minus; a
binary number if it contains only the digits 0 through 1; a decimal
number if it contains only the digits 0 through 9. It is an octal
number if it contains only the digits 0 through 7, and is hexadecimal
if it contains only the digits 0 through 9 and the characters A through
F (uppercase only). A number may have a leading sign and any number of
blanks between the sign and the first digit. However, embedded blanks
within the number itself are not allowed. A number must also have at
least one digit.

12-65 Third Edition

DOC3621-190

Leading and trailing blanks are ignored., The function is .TRUE. if
string satisfies the conditions required by the key used; otherwise it
is .FALSE.. A null string (length equal to 0) will return a function
value of .TRUE. only if key is ASNAME.

APPLIB calls: GCHRSA, NLENSA

P> UNITSA
Purpose
UNIT$A is a 1logical function that returns .TRUE., if a file unit is

open and .FALSE. if it is not open. (.TRUE. and .FALSE. are the
FORTRAN logical values.,)

Usage
log = UNITSA(funit)

funit PRIMOS file unit (INTEGER*2)

APPL.IB calls: None

P YSNOSA

Purpose

YSNOSA is a logical function that prints the supplied message and
appends the character "?" to it. It then reads a user response. If
the answer is "YES" or "OK", the function value is .TRUE.. If the
answer is "NO", the function value is ,FALSE.. If an illegal answer is
provided or if no default is accepted, the message will be repeated.
User responses may be abbreviated to the first one or two characters.

Usage
log = YSNOS$A (msg, msglen, defkey)
msg Message text, packed two characters per word, Data
type does not matter,

msglen Message length in characters (INTEGER*2).

Third Edition 12-66

APPLICATIONS LIBRARY

msglen Message length in characters (INTEGER*2).
defkey An INTEGER*2 key specifying the default:
ASNDEF No default accepted.,
ASDNO Default is "NO".
ASDYES Default is "YES".

APPLIB calls: None

Example

OK, SLIST YESNOL.PASCAL

program main; }
{

{ FORTRAN logicals are incompatible with Pascal boolean data types.}
{ Therefore, interfacing to the applications library from Pascal }
can be a problem. The following program shows the easiest way to }
determine True and False when calling FORTRAN subroutines with
logicals.

Lanen Yanen Yana Wane

{ Note: This program assumes that the type of logical returned is
{ a LOGICAL*2, and only occupies two bytes of memory.

[T UNIDY P I S S T Sew)

const
$INCLUDE 'SYSCOM>ASKEYS.INS.PASCAL';

type
string8 = array [1 .. 8] of char;

stringlé = array[l ..16] of char;

var
msg : stringlé6;
date: stringlé6;
time: string8;
function ysnoS$a(var s : char; {Pass by ref, first loc of the msg}
1 : integer; {Pass by value, length of msg }
k : integer) {Pass by value, default keys }

:integer; extern; {Returns FORTRAN logical as integer}
begin
writeln;
msg := 'Yes | No 's
if ord(True) = ysnoS$a(msg[l],8, asSndef)

then

12-67 Third Edition

DOC3621-190

writeln('ok!")
else
writeln('Absolutely NO!');
end,

This program, stored as YESNO1.PASCAL, may be compiled, loaded, and
executed with the following dialoque.

OK, PASCAL YESNOlL

0000 ERRORS (PASCAL-REV 19.0)
OK, SEG -LOAD

[SEG rev 19.0]

$ LO YESNO1

$ LI PASLIB

$ LI VAPELB

$ LI

LOAD COMPLETE

$ EX

Yes | No? YES
Ok!
OK, SEG YESNO1l

Yes | No? NO

Absolutely NO!
OK,

Third Edition 12-68

FORMAT SUMMARY

APPLICATIONS LIBRARY

Below is a brief summary of the calling sequences for all the VAPPLB

and APPLIB routines.

. Group

File System

Type Code
L
I
I*2
R

1)

il

Name

TEMPSA
OPENSA-
OPNPSA

OPNVSA
OPVPSA

CLOSSA
RWNDSA
GENDSA
TRNCSA
DELESA
EXSTSA
FUNITS$A
RPOSSA
POSNSA
TSCNSA

The type codes are defined as:

Description
LOGICAL
INTEGER*2 or INTEGER*4

INTEGER*2

k|

DOIRL.E PRECTCTON
AN - b

o R fy e

Type Arquments

[l el

()

ol ol o o e o o o o =

(TYPKEY, NAME , NAMLEN , FUNIT)

(OPNKEY+TYPKEY+UNTKEY , NAME , NAMLEN,, FUNIT)

(MSG, MSGLEN , OPNKEY+TYPKEY+UNTKEY , NAME ,
NAMLEN, FONIT)

(OPNKEY+TYPKEY+UNTKEY , NAME , NAMLEN , FUNIT,
VERKEY, WTIME, RETRYS)

(MSG, MSGLEN , OPNKEY+TYPKEY+UNTKEY, NAME,
NAMLEN, FUNIT, VERKEY , WTIME , RETRYS)

(FUNIT)

(FUNIT)

(FUNIT)

(FUNIT)

(NAME , NAMLEN)

(NAME , NAMLEN)

(FUNIT)

(FUNIT, FOS)

(POSKEY, FUNIT, FOS)

(KEY, FUNITS , ENTRY, MAXSIZ,
ENTSIZ,MAXLEV, LEV, CODE)

12-69 Third Edition

DOC3621-190

Group Name Type

String FILLSA I
NLENSA I*2
MCHRSA I
GCHRSA I
TREESA I
TYPESA L
MSTRSA I*2
MSUBSA I*2
CSTRSA L
CSUBSA L
LSTRSA L
LSUBSA L
JSTRSA L
FSUBSA L
RSTRSA L
RSUBSA L
SSTRS$A L
SSUBSA L
User Query YSNOSA L
RNAMSA L
RNUMSA L
Information TIMESA DP
CTIMSA DP
DTIMSA DP
DATESA DP
EDATSA DP
DOFYSA DP
Mathematical RNDISA DP
RANDSA DP
Conversion ENCDSA L
CNVASA L
CNVBSA I
Parsing QDLSA L

Third Edition

Araquments

(NAME, NAMLEN , CHAR)

(NAME, NAMLEN)

(TARRAY, TCHAR, FARRAY , FCHAR)

(FARRAY , FCHAR)

(NAME , NAMLEN,, FSTART, FLEN)

(KEY, STRING, LENGTH)

(A,ALEN,B, BLEN)

(A, ALEN, AFC, 2LC, B, BLEN, BFC, BLC)

(A, ALEN, B, BLEN)

(A, ALEN, AFC, ALC, B, BLEN, BFC, BLC)

(A, ALEN, B, BLEN, FCP, LCP)

(A,ALEN, AFC, ALC, B, BLEN, BFC, BLC, FCP, LCP)

(KEY, STRING, LENGTH)

(STRING, LENGTH , FCHAR,, LCHAR, FILCHAR)

(STRING, LENGTH , COUNT)

(STRING, LENGTH , FCHAR , LCHAR , COUNT')

(STRING, LENGTH , COUNT, FILCHAR)

(STRING, LENGTH , FCHAR , LCHAR , COUNT, FILCHAR)

(MSG, MSGLEN, DEFKEY)

(MSG, MSGLEN, NAMKEY , NAME, , NAMLEN)

(MSG, MSGLEN,, NUMKEY , VALUE)

(TIME)

(CPUTIM)

(DSKTIM)

(DATE)

(EDATE)

(DOFY)

(SEED)

(SEED)

(ARRAY, WIDTH , DEC, VALUE)

(NUMKEY, NAME,, NAMLEN , VALUE)

(NUMKEY, VALUE, NAME , NAMLEN)

(KEY, KWLIST, KWINDX, OPTBUF, BUFLEN
OPTION, VALUE, KWINFO)

12-70

APPLICATIONS LIBRARY

SYSCOM>ASKEYS

This is a listing of the file SYSCOM>ASKEYS, as needed for FORTRAN
programs., Pascal and PL1G programmers should use the
ASKEYS.INS.language file that is applicable.

This listing uses decimal values for keys. The listings from the
SYSCOM UFD use octal values.

C ASKEYS.INS.FIN, APPLIB>SOURCE, TRANSLATOR DEPT, 05/29/81
R T e e e L e i b L bt i

/* %/
/* KEY DEFINITIONS (TABSET 6 11 28 69) */
* */
/*********** OPENSA, OPNPsA, OPNV$A, TEMP$A kkkkkkkkkkkk */
/********************* OPNKEY kkkkkhkkkkhkkdkkkkdkkkhkkkkkk */
ASREAD = 1, /* READ */
A OLTOTM — /¥ TIDTMD * /
APWKRLL = 4, / WRLLLE /
ASRIWR = 3, /* READ/WRITE */
/* *kkkkk TYPDKEY **k%kk% */
ASSAMF = 0, * OPEN NEW SAM FILE */
ASDAMF = 1024 , /* OPEN NEW DAM FILE */
/* kkkkkk UNTKEY kkkkkk */
ASGETU = 16348, /* OPEN AND RETURN UNIT */
/-k *%%kk%% JERKEY kkkkkk */
ASNVER = 1, /* NO VERIFICATION | */
ASVNEW = 2, /* VERIFY NEW FILE (OK TO MODIFY) */
ASOVAP = 3, /* ASVNEW + OVERWRITE/APPEND OPTION */
ASVOLD = 4, /* VERIFY OLD FILE (DO NOT CREATE NEW) */
* * /
;********************* RPOS$A khkhkkkkkkhkkkkhkkkkkkkkhkkkkhkhkhkkkkkk f/
/* *kkkkk POSKEY *kkkkk */
ASABS =1, /* ABSCLUTE POSITION */
ASREL, = 2, /* RELATIVE POSITION *;

* *
/********************* YSND$A kkkkkkkkhkkkkkkkkkrkkkrkhkkkkkkdkdk g/
/* kkkkkk DERFKEY **k%x%% */
ASNDEF = -1, /* NO DEFAULT */
ASDNO = 0, /* DEFAULT = 'NO' */
ASDYES = 1, /* DEFAULT = 'YES' */
/* */

/********************* RNUMsA kkkkkhkkkkkkkkhkkkkkkhkkhkkhkthixk */
/********************* CNVA$A kkkhkkkkkkkkkkkkkhhkhkkkkkkkhhkkkk */

/* kkkkkk NUMKEY *kkkkk */
ASDEC =1, /* DECIMAL */
ASOCT = 2, /* OCTAL */
ASHEX = 3, /* HEXADECIMAL */
ASBIN =9, /* BINARY */

/% */

/* */

/********************* CNVBsA kkkkkkkkhkkkkkkkkkkkkk */

/* *kkkkk NUMKEY kkkkkk */

/* ASDEC =1, /* DECIMAL,LEFT PADDED WITH BLANKS */

12-71 Third Edition

DOC3621-190

/* ASOCT = 2, /*
/* AsHEX = 3’ /*
/* ASBIN = 9, /*
ASDECZ = 4, /*
ASOCTZ = 5, /*
ASHEXZ = 6, /*
ASDECU = 7’ /*
/*
ASBINZ = 8, /*
/*
/*
/*********************
/* kkkkkk
/* ASREAD = 1, /*
ASNEXT = 2, /*
ASRSET = 3, /*
/* BASRAWI = 4, /*
ASNKWL = 5, /*
ASRCMD = 6, /*
/* kkkkkk
/* AsDEC = l' /*
/* ASOCT = 2, /*
/* ASHEX = 3, /*
/* ASRAWI = 4, /*
ASNDEC = 5, /*
ASNOCT = 6, /*
ASNHEX = 7, /*
ASNAME = 8, /*
/* A$B]N = 91 /*
ASNBIN =10, /*
/* kkdkkkk
ASNONE = O, /*
/* ASNAME = 8, /*
A$NUMB = 9' /*
AsNM = lO, /*
/* kkkkkk
/* A$NQ‘]E = 01 /*
ASOPIL = 1, /*
ASREQD = 2, /*
*
/*********************
/* kkkikd
ASFUPP = 1, /*
ASUPIW = 2, /*
ASRAWI = 4, /*
/*
/*
/*********************
/* kkkkkk
ASTREE = 1, /*
ASNUFD = 2, /*
A$NSEG = 3' /*
ASCUFD = 4, /*
ASDLAY = 5, /*

Third Edition

OCTAL, LEFT PADDED WITH BLANKS

HEXADECIMAL, LEFT PADDED WITH BLANKS

BINARY, LEFT PADDED WITH BLANKS
DECIMAL, LEFT PADDED WITH ZEROS
OCTAL, LEFT PADDED WITH ZEROS
HEXADECIMAL, LEFT PADDED WITH ZEROS
UNSIGNED DECIMAL, LEFT PADDED WITH
BLANKS

BINARY, LEFT PADDED WITH ZEROS

CM)LsA dkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkk

KEY *kkkkk

READ NEXT ENTRY IN COMMAND LINE
READ FIRST ENTRY IN NEXT LINE
RESET TO BEGINNING OF COMMAND LINE
READ REMAINDER OF LINE AS RAW TEXT
ACCEPT NEW KEYWORD LIST

FIRST TOKEN IS COMMAND (NO '-')
OPTYPE kkkkkk

DECIMAL: OPTION

OCTAL OPTION

HEXADECIMAL OPTION

OPTION IS RAW TEXT

NAME OR DECIMAL OPTION

NAME OR OCTAL OPTION

NAME OR HEXADECIMAL

NAME

BINARY OPTION

NAME OR BINARY OPTION

OPTION *#*%%%%k

NO OPTION PRESENT OR NULL OPTION
OPTION IS A NAME

OPTION IS A NUMBER (DIGIT STRING)
NUMERIC OVERFLOW

STATUS kkkkkk

NO OPTION TO FOLLON KEYWORD

OPTION MAY OR MAY NOT FOLLOW KEYWORD

OPTION MUST FOLLON KEYWORD

RNAMSA ***kkkkkkkkkkkkhhhkrhkrkihdhhhk

NAMKEY **#%%&%
FORCE UPPER CASE
READ UPPER AND LOWER CASE
READ REST OF LINE

TSCN$A dkhkkkkkhkkkkhkkkkkkkkkhkhkkkhhkkk

KEY *kkkkk

ALL ENTRIES IN A TREE

DO NOT SCAN SUBUFDS

DO NOT SCAN SEGDIRS

DO NOT SCAN SUBUFDS OR SEGDIRS

STAY AT DIRECTORY WHEN GOING UP TREE

12-72

APPLICATIONS LIBRARY

ASBACK = 6, /* BACK UP ONE LEVEL (FOR ERROR HANDLING) *5
/* *
/********************* JSTR$A dhkkkkkhkkkkhkkkkkkhkkhkkkkkkkhkkhkkkikkx */
/* *kkkk%k KRY khkkkk */

ASRGHT = 1, /* RIGHT JUSTIFY */

ASLEFT = 2, /* LEFT JUSTIFY */

ASCNTR = 3, /* CENTER %/

* */
/********************* CASE$A kkkkkkkkkkkkkhkkkkkkkkhkkkkkhkkkkk */
/* *kkkkk KEY kkkkk%k */
/* ASFUPP = 1, /* FORCE UPPER CASE */

ASFLOW = 5 /* FORCE LONER CASE */
/* */
/********************* TYPEsA khkkkkhkkkkkkkkkkkhkkkkkkkkdkkkkkkk */
/* *kkkkk KEY *kkkkk */
/* ASBIN = 9, /* BINARY NUMBER */
/* ASDEC =1, /* DECIMAL NUMBER */
/* ASOCT = 2, /* OCTAL NUMBER */
/* ASHEX = 3, /* HEXADECIMAL NUMBER */
/* ASNAME = 8 /* NAME */

* */

/*** */
LIST

12-73 Third Edition

Sort Libraries

SORT SUBROUTINES OVERVIEW

PRIMOS contains many routines for performing disk or internal sorts.
The subroutines are contained in the four libraries described below. A
detailed description of each subroutine follows later in this chapter.

VSRTLI is the V-mode sort library. It contains the disk sort routines
ASCSRT (also called ASCS$S), which can sort on five key types and can
merge sorted files, and SUBSRT, which will sort one file on an ASCII
key. These routines handle larger records and more Key types and
record types than the R-mode version. VSRTLI also has a set of
cooperating subroutines which provide for the user's own input and
© output procedures. Their strateqy is described in the sections on
COOPERATING MERGE SUBROUTINES and QOOPERATING SORT SUBROUTINES below.

SRTLIB is the R-mode sort library. It contains two subroutines that
perform a disk sort operation. SUBSRT will sort one file on multiple
ASCII keys; ASCSS$S can sort on five key types and can also merge
sorted files.

The VMSORT library contains several in-memory sort subroutines
(heapsort, bubble, partition exchange, radix exchange, straight
insertion, binary search, and diminishing increment)., It also has a
binary-search and table-building subroutine.

MSORTS is the R-mode version of VMSORT.

Table 13-1 shows the subroutines by function, Table 13-2 shows which
subroutines are in each sort library.

13-1 Third Edition

18.1

DOC3621-190

Table 13-1
Sort Routines by Function

Sort one file on ASCII key(s).

Sort or merge sorted files (multiple key types).
Merge sorted files.

Return next merged record to sort.

Close merged input files.

Sort one or several input files,
Prepare sort table and buffers.
Get input records.
Sort tables prepared by SETUSS.
Get sorted records.

Close all sort units.,
Heap sort.

Partition exchange.
Dimishing increment.
Radix exchange.

Insertion sort.
Bubble sort.
Binary search or build binary table,

SUBSRT
ASCSRT, ASCSS$
MRG1S$S
MRG2SS
MRG3$S

SRTFSS
SETUSS
RLSESS
CMBNSS
RTRNSS

CLNUSS
HEAP
QUICK
SHELL
RADXEX

INSERT
BUBBLE
BNSRCH

Third Edition 13-2

SORT LIBRARIES

Table 13-2

Sort Subroutines by Library
SRTLIB VSRILI MSORTS VMSORT
SUBSRT SUBSRT HEAP HEAP
ASCSSS ASCSSS QUICK QUICK

ASCSRT SHELL SHELL

SRTFSS RADXEX RADXEX

SETUSS INSERT INSERT

RLSESS BUBBLE BUBBLE

QBNSS BNSRCH BNSRCH

RTRNSS

CINUSS

MRG1S$S

MRG2S$S

MRG3S$S

Record Types

The following record types are handled by the VSRILI library routines.

Compressed Source: Record with compressed blanks, delimited by a
NEWLINE character (:212). Compressed source lines cannot contain data
which may be interpreted as a blank compression indicator (:221) or
NEWLINE character.

Uncompressed Source: Record with no blank compression, delimited by a
NEWLINE character (:212). Uncompressed source lines cannot contain
data which may be interpreted as a NEWLINE character.

Variable Length: Record stored with length (in words) in the first
word, This length does not include the first word which contains the
count., Files containing records of this type are also called binary
files (not the same as object files produced by a compiler).

Fixed Length: Record containing data but no length information. The
length must be defined as the maximm line size, (If a NEWLINE
character is appended to each record to make the file acceptable input
to EDITOR (ED), the character must be included in the length.)

13-3 Third Edition

18.1

18.1

DOC3621-190

Default Record Type: The default depends upon the key types specified,
(See Key Definitions, below.) The input type defaults to wvariable
length if the key specifies a single-precision (16-bit) integer,
double-precision (32-bit) integer, or single- or double-precision real
number. Otherwise, the default is compressed source. If the output
type is not specified, it is assumed to be the same as the input type.

SRTILIB routines use only compressed-source and variable records.,
Note

If multiple input files are used, they must all contain records
of the same type.

Record Length

The maximum record length allowed is 508 characters in R-mode and 32760
characters in V-mode. "WARNING-LINE TRUNCATED" is printed whenever the
data (not including record delimiters) exceeds the maximum record
length and the excess data is ignored., Output record length defaults
to the input record length.

Collating Sequence

ASCII keys may be sorted using the EBCDIC rather than the ASCII
collating sequence. This option is specified in the spcls(2) parameter
of SRTF$S and SETUSS.

Key Definitions

A sort key is a portion of the record, called the record field, on
which the records are to be sorted. Each key must start and end on a
byte boundary. An improperly defined key (e.g., with record 1length
less than ending byte number of key) will produce indeterminate
results, With compressed source records, the key is padded with
spaces. In R-mode, 20 keys with a maximum length of 312 characters may
be specified. In V-mode, up to 64 key fields may be specified and the
total length may not exceed maximum record length. For fixed-length
records, key fields are verified to be within record length. The
following are the key types which are specified as a parameter in the
sort subroutines.

BSCII Reys: Character strings, stored one character per byte. ASCII
keys are limited only by the length of the record.

Third Edition 13-4

SORT LIBRARIES

Signed Numeric ASCII Keys: Require one byte per digit and include the
following types:

Numeric ASCII, leading separate sign
Numeric ASCII, trailing separate sign
Numeric ASCII, leading embedded sign
Numeric ASCII, trailing embedded sign

A space will be treated as a positive sign. Signed numeric ASCII keys
may be as long as 63 digits plus sign.

When the sign is separate, a positive number has a plus sign(+) and a
negative number has a minus sign(-). If the sign is embedded, a single
character is used to represent the digit and sign. Embedded sign
characters are:

Digit Positive Negative
0 Or=ptrl -
1 1A J
2 . 2B K
3 3C L
4 4D M
5 5E N
6 6 F 0
7 76G P
8 8 H Q
9 91 R

Unsigned Numeric ASCII Keys: Stored one digit per byte and are limited
only by the length of the record.

13-5 Third Edition

18.1

18.1

DOC3621-190

Integer and Real Keys: Include the following types:

Key Byte Length Range
Single-precision integer 2 -32767 to +32767
Double-precision integer 4 -2*%%3] to +2%*3]1-1
Single-precision real 4 +(10**-38 to 10**38)
Double-precision real 8 +(10%*-9902 to 10**9825)
Unsigned integer 2 0 to 65535

Packed Decimal Keys: Stored two digits per byte. The last byte
contains the final digit plus sign. A negative field has a hex D in
the sign nibble, All other four-bit combinations in the sign nibble
represent a positive sign. A packed field must have an odd number of
digits and may have up to 63 digits plus sign.

Arquments

Numeric parameters are INTHGER*2 unless otherwise noted. Names are
received as integer arrays, so the data type does not matter in the
calling program.

Tag Sort

When a sort cannot be done completely in the memory allocated, it
Creates temporary work files in which it stores sorted pieces of the
data. These sorted pieces are then merged to create the output file,

A tag sort will store the input records separate from the key data.
After all the keys have been sorted and merged, the corresponding
records are then 1located and output. The more records there are, the
longer this may take, and so this last phase may be time-consuming for
a very large file,

A nontag sort will store each input record with its sort key. This
eliminates the search for each record after merging, but requires more
disk space. However, a nontag sort will not always be faster, since
more I/O must be done to merge records and keys than to merge keys
only,

Third Edition 13-6

SORT LIBRARIES

Some selection criteria, in probable order of importance, are:
e If disk space is a problem, use a tag sort,
e If the input file is small, it doesn't matter.
e If the input file is big, use a nontag sort.
e If the input file is partially ordered, use a nontag sort.

e If the input file is not ordered, use a tag sort.

VSRTLI (V-MODE) — SUBRQUTINE DESCRIPTIONS

VSRTLI routines follow a consistent naming convention to avoid possible
conflict between user-written routines and system routines. All entry
points end with the suffix $S — except SUBSRT and ASCSRT which remain
the same for compatibility with earlier versions of the library.
Subroutines used internally by VSRTLI routines which have a suffix of
$$S should not be called from user routines. All parameters for all
the routines are INTEGER*2 unless otherwise stated. Up to 64 keys may
be specified. The maximum record length is 32760 bytes.

P> SUBSRT

Purpose

SUBSRT is used to sort a single input file containing compressed source
records on ASCII keys in ascending order, Maximum record Ilength is
32760 bytes (characters); maximum key length is 312 characters.

Usage
CALL SUBSRT (path-1,len-1,path-2,len—2,numkey,nstart, nend, npass,nitem)

path-1 Input pathname.

len-1 Length of input pathname in characters, up to 80.
path-2 Output pathname,

len-2 Length of output pathname in characters, up to 80.
numkey Number of keys (pairs of starting and ending

colums) — starting and ending bytes if binary.
Maximum is 64, default is 1.

13-7 Third Edition

18.1

18.1

|18.1

18.1

18.1

DOC3621-190

nstart Vector containing starting columns/bytes of keys
(must be greater than or equal to 1).

nend Vector containing ending columns/bytes of keys.
Each ending column must be no greater than linsiz.

npass Number of passes (returned).

nitem Number of items returned in output file (INTEGER*4).

P> ASCSRT (ASCS$S)

Purpose

ASCSRT (which can also be called as ASCSSS) is the V-mode subroutine
that handles larger records and more types of sort key fields than the
R-mode version. Maximum record length is 32760 bytes.

ASCSRT sorts or merges ocompressed-source oOr variable~length records
from and to disk files. Any of the supported key types (specified in
ntype) may be used, and there may be ascending and descending keys
within the same sort or merge. When sorting equal keys, the input
order is maintained.

Usage

CALL {ASCS$$, (path-1,len-1,path-2,1len-2,numkey, nstart,nend, npass,
ASCSRT nitem,nrev,ispce,mgcnt,mgmff,len,mc(buffer),msize,
ntype,linsiz,nunits,units)

path-1 Input pathname.

len-1 Length of input pathname in characters, up to 80.
path-2 Output pathname.

len-2 Length of output pathname in characters, up to &80.
numkey Number of pairs of keys (starting and ending

columns). With binary keys, specifies number of
pairs of starting and ending bytes. Maximum is 64,
default is 1,

nstart Vector containing starting ocolumns/bytes of keys.
Each starting column must not be less than 1.

nend Vector containing ending columns/bytes of keys.
Each ending column must be no larger than linsiz.

Third Edition 13-8

npass

nitem

ispce

mgent

mgbuff

len

LOC (buffer)

msize

ntype

SORT LIBRARIES

Number of passes (returned).

Number of items in output file (returned) —
INTEGER*4,

Vector containing sort order for each key:
0 Ascending
1 Descending
Default is 0 (ascending in Rev 19).
Option to specify treatment of blanks:
0 Include blank lines in sort (default).
1 Delete blank lines.
Number of merge files (up to 10).

Array dimensioned (40*mgcnt) containing merge
filenames.

Vector containing length of merge filenames in
characters, up to 80.

Obsolete — specify as O.

Size (<65536) of common block for sort in words
(INTEGER*2). It should be record size times maximum
number of records expected., If nonzero, msize must
be at least 1024 (one page) and no more than 64
pages., If larger, the message "WARNING-PRESORT
BUFFER SHOULD NOT BE LARGER THAN ONE SEG " is
issued, and the default is used, Default is one
segment (65536 words).

Vector containing type of each key:

1 ASCII

2 16-bit integer

3 Single-precision real

4 Double—-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign
7 Numeric ASCII, trailing separate sign

13-9 Third Edition

18.1

18.1

DOC3621-190

linsiz

nunits

units

8 Packed decimal
9 Numeric ASCII, leading embedded sign
10 Numeric ASCII, trailing embedded sign
11 Numeric ASCII, unsigned
12 ASCII, lowercase sorts equal to
uppercase
13 Unsigned integer

Default is all ASCII keys.

Maximum size of record in characters (bytes).
Default is 32760.

Obsolete,

Obsolete,

Notes

1. Last four items are optional and may be omitted,

2. Files specified as merge files will be merged with the

input file,

P SRIFSS
Purpose

Pathnames may be used for merge files.

SRIFSS will sort input files (maximum 20) into a single output file.
It is called by the previous two sorts.

Usage

CALL SRTFS$S(inbuff,inlen, inunts, incnt, path2,len2,outunt,
numkey, nstart, nend, nrev,ntype,
ercode, inrec, outrec, spcls, msize)

inbuff

inlen

Third Edition

Array dimensioned (40, incnt) containing input
filenames,

Vector containing lengths of input pathnames in
characters, up to 80.

13-10

inunts

inent
path2
len2
outunt

numkey

ntype

SORT LIBRARIES

Vector containing input file units (if open units
are used).

Number of input files (up to 20).

Output file pathname.

Length of output pathname in characters, up to 80.
Output file unit (if an open unit is used).

Number of keys (pairs of starting and ending
columns — starting and ending bytes if binary), up

to 64, Default is 1.

Vector containing starting columns/bytes of keys.
Fach starting column number must be at least 1,

Vector oontaining endina onlimng /by
VECTOr containing enaing Ccolumns/oy
ar
>

Fach ending column must be no
maximum input line size,

toa of kova
tes

i NTyCe

eater than the

Vector containing sort order for each key:

0 Ascending (default)
1 Descending

Vector containing type of each key:

1 ASCII
2 16-bit integer
3 Single-precision real

Double-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trailing separate sign

8 Packed decimal

9 Numeric ASCII, leading embedded sign

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to
uppercase.

13-11 Third Edition

18.1

18.1

DOC3621-190

inrec

outrec

spcls

Third Edition

13 Unsigned integer
Default is all ASCII keys.
Return code.
Five-word array containing input record information:

inrec(1) Input record type:

1 Campressed source
(blanks compressed)

2 Variable length

3 Fixed length (inrec(2)

must be specified)

4 Uncompressed source (no
blank compression)

Default depends on the
key types specified in
argument ntype.
inrec(2) Maximum input record size in
characters (bytes). Default is
32760. Required for sorting
fixed-length records.

inrec(3-5) Must be 0, and are reserved for
future use.

Five-word array containing output record
information:

outrec(l) Output record type. (See inrec.)

outrec(2) Maximum output record size in
characters (bytes).

outrec(3-5) Must be 0, and are reserved for
future use.

Five-word array containing special options:
spcls(l) Space option:

0 Include blank lines in
sort (default).

1 Delete blank lines.

13-12

SORT LIBRARIES

spcls(2) Collating sequence:

0 : Default (ASCII at Rev,
19)

1 ASCII

2 EBCDIC

spcls(3) Tag/nontag option:

0 Default (tag sort at
Rev. 19)
1 Tag sort
2 Nontag sort
spcls(4-5) Must be 0, and are reserved for
future use.
msize Size of presort buffer in pages (units of 1024

words), not greater than 64. Note that the units
used here are pages which differ from the words used
by ASCSRT. Default is one segment (64 pages).

COOPERATING MERGE SUBROUTINES

To merge two or more sorted files with no special processing, use
MRG1SS.

If postprocessing of the merged records is desired, the three merge
subroutines in this chapter may also be used together in the following
way. MRGLS$S accepts specifications about the operation to be performed
and the files and records to be used. The program should then call
MRG2$S to get the merged records one at a time. Finally, the program
calls MRG3$S to close units and delete temporary files opened by the
other subroutines,

Many of the remarks about cooperating sort subroutines also apply to
these merge routines. However, merging allows only output procedures.
If MRG1SS is called with an output file (no output procedure), it calls
MRG2$S and MRG3SS itself., If output is to a file, MRG2$S and MRG3$S
should not be called.,

13-13 Third Edition

18.1

18.1

DOC3621-190

P MRG1SS
Pur@se

MRG1SS merges two to eleven previously sorted files into a single

output file.

Usage

CALL MRG1S$S(inbuff,inlen,inunts, incnt,tree2,len2,outunt, numkey,

inbuff

inlen

inunts

inent
tree2
len2
outunt
numkey

nstart

nend

ntype

Third Edition

nstart,nend, nrev,ntype, ercode, inrec, outrec, spcls, oproc)

Array dimensioned (40, incnt) «containing input
filenames.,

Vector containing lengths of input pathnames in
characters, up to 80.

Vector containing input file units (if open units
are used).

Number of input files (up to 20).

Output file pathname.

Length of output pathname in characters, up to 80.
Output file unit (if an open unit is used).

Number of pairs of Kkeys (starting and ending
columns — starting and ending bytes if binary), up
to 64. Default is 1.

Vector containing starting columns/bytes of keys.
Each starting column number must be at least 1.

Vector containing ending columns/bytes of keys.
Fach ending column must be no greater than inrec(2).

Vector containing sort order for each key:
0 Ascending (default)
1 Descending

Vector containing type of each key:

1 ASCII
2 16-bit integer
13-14

O 0 ~N &

SORT LIBRARIES

Single-precision real
Double-precision real

32-bit integer

Numeric ASCII, leading separate sign
Numeric ASCII, trailing separate sign
Packed decimal

Numeric ASCII, leading embedded sign
Numeric ASCII, trailing embedded sign
Numeric ASCII, unsigned

ACCTT 1xaorcace acnrta ecnial
& B S e , e TV N de WAL NS L oS \—\n\“ﬂ.

uppercase.

g
(@]

Unsigned integer

Default is all ASCII keys.

ercode Return code.
inrec Five-word array containing input record information:
inrec(1) Input record type:
1 Compressed source
(blanks compressed)
2 Variable length
3 Fixed length (inrec(2)
must be specified)
4 Uncompressed source (no
blank compression)
Default depends on the key type
specified in ntype.
inrec(2) Maximum input record size in

characters (bytes). Required for
sorting fixed-length records.
Default is 32760.

inrec(3-5) Must be 0, and are reserved for

future use.

13-15 Third Edition

18.1

DOC3621-190

outrec

spcls

18.1

oproc

> MRG2$S

Pur@se
18.1

files,

Third Edition

Five-word array containing output record
information:

outrec(l) Output record type. (See inrec.)

outrec(2) Maximum output record size in
characters (bytes).

outrec(3-5) Must be 0, and are reserved for
future use.

Five-word array containing:
spcls(l) Space option:

0 Include blank lines in
sort (default),

1 Delete blank lines,

spcls(2) Collating sequence:

0 Default (ASCII at
Rev. 19)

1 ASCII

2 EBCDIC

spcls(3-5) Must be 0, and are reserved for
future use,

Output data destination (for use by MRG2$S):
0 Output file

1 Output procedure

This subroutine is used only after MRG1$S has been called to set up the
merge area, record and file specifications, and collating keys. MRG2S$S
returns the next merged record. MRG2SS should not be called for output

13-16

SORT LIBRARIES

Usage
CALL MRG2$SS (rtbuff, length)

rthuff Buffer containing next merged record (returned),
Should be 1large enough to hold longest record
merged.
length Length of record (in characters) returned. Once all
records have been returned, calls to MRG2SS return a
length of 0.
P MRG3SS
Purpose

This subroutine is called after MRG1SS and MRG2SS. MRG3$S closes all
units opened by the other merge routines. MRG3$S should not be called

for output files.,

Usage
CALL MRG3SS

COOPERATING SORT SUBROUTINES

The following five routines allcw the user's own input and output
procedures, These routines must all be called and in the order given,
to assure that the sort is done correctly. These subroutines are
available in V-mode only. All parameters are INTEGER*2.

A program can call the routines to work together in this way. SETUSS$
sets up a table in which the sort is to be done, setting record size,
record type, and other attributes. It also determines whether the
records are to be read directly from the input files into the sort
area, or whether they are to be accepted from an input procedure. It
determines whether, after sorting, the records are to be sent directly
to the output file or are to be postprocessed by an output procedure,

After calling SETUSS and giving it the necessary information, the
program should call RLSESS. If SETUSS has been told that there is to
be a preprocessing input procedure, RLSESS will take the record from
its buffer. The 1input procedure is written by the user; it should
call RLSESS once for each record@ to be sorted. Otherwise, the
arquments to RLSE$SS will not be used, and RLSE$S will simply read the
records from the input file(s) into the sort area.

13-17 Third Edition

18.1

18.1

DOC3621-190

Next, the program should call the sort procedure, CMBNSS, to do the
actual sorting., Since SETUS$S should already have stored all
information about record size, type, and ocollating sequence. CMBNSS
accepts no parameters.

After OMBNSS, the program must call RIRNSS to take care of the sorted
records. RIRNSS will either return records in the buffer specified in
its parameter for postprocessing by an output procedure, or write them
to the output file, according to the information already supplied to
SETUSS.

Finally, the program calls CLNUSS to close files opened by RLSESS and
RTRNSS and to delete temporary sort files.

This combination of subroutines allows great flexibility in a sort
operation, as the program that calls them can do a great deal of
processing of the records before and after sorting. There is a
tradeoff however; if you use input or output procedures, there is a
procedure call for every single record, and the pre- or postprocessing
itself adds time, so these routines will slow the sort.

An example of combined use of these subroutines is given below.

P> SETUSS

Pur pose

SETUSS checks the parameters supplied by the user and sets up all
tables for the particular sort being defined.

Usage

CALL SETUSS (inbuff,inlen,inunts,incnt,path2,len2,outunt,
numkey,nstart, nend, nrev,ntype, ercode, inrec,
outrec, spcls,msize, iproc, oproc)

inbuff Array dimensioned (40, incnt) containing input
filenames.

inlen Vector containing lengths of input pathnames in
characters, up to 80.

inunts Vector containing input file units (if open units
are used),

inent Number of input files (up to 20).

path2 Output file pathname.

Third Edition 13-18

len2
outunt

numkey

nstart

nend

ntype

ercode

SORT LIBRARIES

Length of output pathname in characters, up to 80.
Output file unit (if an open unit is used).

Number of pairs of keys (starting and ending columns
or starting and ending bytes if binary), up to 64.
Default is 1.

Vector containing starting columns/bytes of keys
(must be 1 or greater).

Vector containing ending columns/bytes of keys (must
be no greater than inrec(2)).

Vector containing sort order for each key:
0 Ascending (default)

1 Descending

Vector containing type of each key:

1 ASCII
2 Single-precision integer
3 Single-precision real
4 Double-precision real
5 Double-precision integer
6 Numeric ASCII, leading separate sign
7 Numeric ASCII, trailing separate sign
8 Packed decimal
9 Numeric ASCII, leading embedded sign
10 Numeric ASCII, trailing embedded sign
11 Numeric ASCII, unsigned
12 ASCII, lowercase sorts equal to
uppercase,
13 Unsigned integer

Default is all ASCII keys.

Return code.

13-19 Third Edition

18.1

| 18.1

18.1

DOC3621-190

inrec

outrec

spcls

Third Edition

Five-word array containing input record information:

inrec(l) Input record type:

1 Campressed source
(blanks compressed)

2 Variable length

3 Fixed length (inrec(2)

must be specified)

4 Uncompressed source (no
blank compression)

Default depends on the key types
specified in ntype.

inrec(2) Maximum input line size in
characters (bytes). Default is
32760, Required for sorting
fixed-length records.

inrec(3-5) Must be 0, and are reserved for
future use,

Five-word array containing output record
information:

outrec(l) Output record type. (See inrec.)

outrec(2) Maximum output line size in
characters (bytes).

outrec(3-5) Must be 0, and are reserved for
future use.

Five-word array containing:
spcls(l) Space option:

i} include blank lines in
sort (default).

1 Delete blank lines,

spcls(2) Collating sequence:

0 Default (ASCII at Rev.
19)

1 ASCII

2 EBCDIC

13-20

SORT LIBRARIES

spcls(3) Tag/nontag option:

0 Default (tag sort at
Rev. 19)
1 Tag sort 18.1
2 Nontag sort
spcls(4-5) Must be 0, and are reserved for
future use.
msize Size of common presort buffer in pages (units of

1024 words), no greater than 64. The size should be
at least the product of the size of one record and
the maximum number of records expected.

Default is one segment (64 pages).

iproc Input data source (used by RLSESS):
0 Input file
1 Input procedure
oproc Output data destination (used by RTRNSS):
0 Output file
1 Output procedure
P> RLSESS
Purpose

RLSESS transfers records from the buffer specified in the program or
from an input file to the initial phase of the sort, according to the
value of iproc in the SETUSS call.

Usage
CALL RLSESS(rlbuff,length)

rlbuff Buffer containing next record for sort.

length Length of record in characters or bytes. This is
not necessarily the full length of rlbuff,

13-21 Third Edition

DOC3621-190

Discussion

If an input procedure is used, RLSESS should be called once for each
record released.

If an input file is used instead of an input procedure, RLSESS should
be called only once., If input is from a file, multiple calls to RLSESS
would result in multiple occurrences of each record when sorted,

Source records passed from an input procedure (when inrec(l) = 1 in the
SETUSS call) must end with a NEWLINE character (:212). Otherwise, the
message "WARNING-LINE TRUNCATED" is issued and the last character is
overwritten by a NEWLINE character. It is often easier to sort a text
file as fixed-length records by reading them into the program with
ROLINS rather than sorting them as source records.

P OBNSS

Purpose

(MBNSS performs the intermal sort. It uses the records provided by
RLSESS and the tables, ocollating sequence, and other information
provided by SETUSS. If the sort cannot be done within allocated
memory, CMBNSS merges the strings previously sorted.

Usage
CALL CMBNSS

P RTRNSS

Purpose

RIRNSS returns the records sorted by QMBNSS — to an output procedure
or an output file, depending on the value of the oproc argument to
SETUSS.

Usage
CALL RTRNSS (rtbuff, length)

rtbuff Buffer containing next sorted record (returned). It
should be large enough to hold the 1longest record
sorted,

Third Edition 13-22

SORT LIBRARIES

length Length of record in characters or bytes (returned).
When all records have been returned, calls to RLSESS
to return a record length of 0.

Discussion

If an output procedure is used, each call to RTRNSS obtains the next
sorted record. The record is placed in rtbuff and must then be written
to an output file, if it is to be saved.

If an output file is specified, RIRNSS is called only once.

If output is to a file, RIRNSS arquments are not used,

D> CILNUSS

Purpose

CLNUSS closes all units opened by the sort routines and deletes any
temporary files.

Usage
CALL CLNUSS

SAMPLE USER INPUT PROCEDURE

The following sample program demonstrates the use of an input procedure
with the sort subroutines. This input procedure selects from INPUTFILE
only those records beginning with AA for sorting.

OK, SLIST SAMPLE,.FIN

C——-SAMPLE PROGRAM WHICH CALLS SORT

C——TO DEMONSTRATE THE USE OF AN INPUT PROCEDURE BEFORE SORTING
C

C

SINSERT SYSQOM>KEYS.INS.FIN

$INSERT SYSCOM>ERRD, INS.FIN

C
C
INTEGER
& BUFFER(10), /* Buffer for reading file
& ERCODE, /* Error code
& INREC(5), /* Input record information
& QUTREC(5), /* Output record information
& SPCLS(5), /* Flags for special options

13-23 Third Edition

DOC3621-190

& TYPE /* File type returned when file opened
C
Cc
DATA
C Input records are fixed length (20 characters)
& INREC / 3, 20, 0, 0, 0 /,
C Output records are uncompressed source (so the file can be
C Edited)
& OUTREC / 4, 20, 0, 0, O /,
C No special options
& seCLls /0, 0,0,0,0/
C
C
C——Cpen the input file
CALL SRCHSS (KSREAD, 'INPUTFILE',9,1,TYPE,ERCODE)
IF (ERCODE .NE. 0) CALL ERRPRS (K$NRIN,ERCODE,0,0,0,0)
C
C———Initialize sort tables
C
CALL SETU$S
& (0, /* no input filenames
& 0, /* no lengths of filenames
& 0, /* no input file units
& 0, /* no input filenames
& '"CUTPUTFILE', /* this is the output filename
& 10, /* 'QUTPUTFILE' is 10 characters long
& 0, /* no output file unit is specified
& 1, /* sort file on one key
& 1, /* starting at column one
& 20, /* ending at column twenty
& 0, /* sort in ascending order
& 1, /* the key is all ASCII characters
& ERCODE, /* an error code will be returned
& INREC, /* input record information
& OUTREC, /* output record information
& SPCLS, /* no special options requested
& 0, /* use default value for presort buffer
& 1, /* input data is from procedure
& 0) /* output is to file.
IF (ERCODE .NE. 0) CALL ERRPRS(K$NRTN,ERQODE,0,0,0,0)
C
C——Read records from input file
C

100 READ (5,200,END=300) BUFFER
200 FORMAT (10A2)

Cc
C——-Select records to be sorted,
C——— and pass them to sort with the record length
C——— (which is 20 characters)

IF (BUFFER(1) .BEQ. 'AA') CALL RLSES$S (BUFFER,20)

GO TO 100 /* Go read next record

C
C——Hit end of the input file, so finish up the sort
300 CALL CMBNS$S /* do the sort

Third Edition 13-24

C

SORT LIBRARIES

CALL RTRNSS (0,0) /* send records to the output file
CALL CLNUSS /* clean up after sorting

C——-Close input file

CALL SRCH$S (K$CLOS,0,0,1,0,ERCODE)

IF (ERQODE .NE. 0) CALL ERRPR$ (K$NRIN, ERCODE,O0,0,0,0)
CALL EXIT

END

This program may be compiled, loaded, and run with the following
dialog:

OK, FIN SAMPLE -64V -DCLVAR
0000 ERRORS [<.MAIN,>FIN-REV1S8.4
OK, SEG -LOAD

[SEG rev 18.4

$ L.O SAMPLE

S LI VSRTLI

S_i.'I"" 1Ll

LOAD COMPLETE

S EXEC

following listings show INPUTFILE and the sorted QUTPUTFILE.

OK, SLIST INPUTFIL
AA EMPLOYEE1
BB EMPLOYEES
BB EMPLOYEE3
CC EMPLOYEE4
AA EMPLOYEE2
AA EMPLOYEE6
CC EMPLOYEE?
AA EMPLOYEEO

OK, SLIST QUTPUTFILE
AA EMPLOYEEQ

AA EMPLOYEEL

AA EMPLOYEE2

AA EMPLOYEE6

OK,

13-25 Third Edition

DOC3621-190

SRILIB (R-MODE) — SUBROUTINE DESCRIPTIONS

P> SUBSRT

Purpose
SUBSRT is used to sort a single input file, oontaining compressed

source records, on ASCII keys in ascending order. Maximum record
length is 508 characters. Maximum keylength is 312 characters.

Usage
CALL SUBSRT (path-1,len~1,path-2,len-2,numkey,nstart,nend, npass,nitem)

path-1 Input pathname.

len-1 Length of input pathname in characters, up to 80.
path-2 Cutput pathname.

len-2 Length of output pathname in characters, up to 80.
numkey Number of keys (pairs of starting and ending

columns — starting and ending bytes if binary).
Maximum is 1, default is 1.

nstart Vector containing starting columns or bytes of keys.
nend Vector containing ending columns or bytes of keys.
npass Number of passes (returned).
nitem Number of items returned in output file (INTEGER*4).
P Ascsss
Purpose

ASCS$S is the R-mode subroutine that sorts or merges ocompressed or
variable~-length records depending on the type of data specified in
ntype. When sorting on binary files, starting and ending columns mean
starting and ending bytes. When sorting equal keys, the input order is
maintained, Maximum record length is 508 characters and maximum key
length is 312 characters.

Third Edition 13-26

Usage

SORT LIBRARIES

CALL ASCSS$S (path-1,len-1,path—2,len-2,numkey,nstart,nend,npass,
nitem,nrev, ispce,mgcnt, mgbuff, len, 10C (buffer) ,msize,
ntype,linsiz,nunits,units)

path-1
len-1
path-2
len-2
numkey

ispce

mgcnt
mgbuff

len

LOC (buffer)
msize

ntype

Input pathname.
Length of input pathname in characters.
Output pathname.
Length of output pathname in characters.
Number of keys (pairs of starting and ending
columns — starting and ending bytes if binary).
Maximum is 20, default is 1.
Vector containing starting columns or bytes of keys.
Vector containing ending columns or bytes of keys.
Number of passes (returned).
Number of items returned in output file (INTEGER*4).
Vector containing order for each key:

0 Ascending

1 Descending
Whether to take blanks into account:

0 Sort blank lines.

1 Delete blank lines.
Number of merge files (up to 10).

Array dimensioned (40*mgcnt) containing merge
filenames.

Vector containing lengths of merge filenames in
characters.

Location of presort buffer,

Size of presort buffer in words.

Vector containing type of each key:
1 ASCII (default)

13-27 Third Edition

DOC3621-190

2 16-bit integer
3 Single-precision real
4 Double-precision real
5 32-bit integer
linsiz Maximum size of record in characters —— optional.
(Default is 508 characters.)
nunits Number of file units available. (Optional — four
will be used.)
units Vector containing available file units (optional).
Discussion

The last four items are optional and may be omitted. Default value of
ntype is ASCII,

Pathnames may not exceed 80 characters in length.

Files specified as merge files will be sorted and merged with the input
file. Pathnames may be used for merge files, but only 10 merge files,
each no more than 80 characters in length, may be used.

The presort buffer size should be as large as possible on P100 and P200

systems, On virtual memory systems, the best size must be determined
by experimentation.

MSORTS AND VMSORT - SUBROUTINE DESCRIPTIONS

These libraries contain several in-memory sort subroutines and a
binary-search and table-building routine., MSORTS is the R-mode
version, and VMSORT is the V-mode version. FEach library contains the
same subroutines.

The reference for most of the algorithms and timing studies is Donald
Knuth, "Sorting and Searching," The Art of Computer Programming, vol.
3, Reading, MA: Addison-Wesley, 1973. It should be pointed out that
the timing figures quoted are based upon Knuth's algorithms on his
fictional machine (MIX). Since these routines are more general, the
timing formulas quoted here should be used only as an indication of the
relative merits of each algorithm and not as exact computational tools.

Third Edition 13-28

SORT LIBRARIES

The routines included in MSORTS and VMSORT are:

HEAP Heap sort - based upoﬁ binary trees
QUICK Quicksort - partition-exchange
SHELL Shell sort - diminishing increment
RADXEX Radix exchange sort

INSERT Straight insertion sort

BUBBLE Bubble sort - interchange

BNSRCH Binary search

The binary search routine (BNSRCH) can be used either for table lockup
in an ordered table or for building a sorted table.

All routines accept multiword entries and multiword Kkeys located
anywhere within the entry. The restrictions are that all entries are
equal length and keywords are contiguous (no secondary keys). An
attempt has been made to keep the calling sequences as similar as
possible. However, each sort has slightly different requirements.,
Except for RADXEX, all routines have the same first five parameters
(arquments) .

—— e

Parameters Common to More Than One Subroutine

ptable Pointer to the first word of the table., (This is not a
PL/I pointer.) For example, if the table is in an array
TABLE(a,b), the parameter ptable = LOC (table). For
routines in MSORTS, ptable is a full 16-bit pointer and
can be in the upper 32K of memory. For VMSORT, ptable is
a two-word pointer.

nentry Number of table entries (not words) in the table. (That
is, items to be sorted or searched,) This is a full
16-bit count, since there can be more than 32K entries in
the table,

rwds Number of words per entry. nwds must be more than 0 .
Obviously if mwds is greater than 32K, there can be only
a single entry.

fword First word within the entry of the key field.

nkwds Number of words in key field. nkwds must be greater than
0 and less than or equal to nwds. fword + nkwds - 1 must
be no more than nwds. (In other words, the key field
must be contained within an entry.)

13-29 Third Edition

DOC3621-190

npass Number of passes made (0 if error).

altbp Alternate return for bad parameters (used only with
FORTRAN — use 0 for other langquages).

RADXEX replaces the nkwds parameter with the following:

fbit First bit within fword of key. fbit must be greater than
0 and fword + (nbit+fbit - 2)/16 must be no more than
mwds. (In other words, the key field must be contained
within an entry.)

nbit Number of bits in key. The key field must be contained
within an entry.

Also, the routines HEAP, QUICK, RADXEX, and BUBBLE require temporary
arrays of sizes:

HEAP,QUICK tarray (nwds)
RADXEX tarray (2nbit)
BUBBLE tarray (nkwds)

All routines except RADXEX sort the table in increasing order where the
key is treated as a single, signed, multiword integer. Therefore, the
numbers 5, -1, 10, -3 would be sorted to -3, -1, 5, 10. RADXEX, since
the key need not begin on a word boundary, treats the key as a sindle,
unsigned multiword (or partial word) integer. Thus, the same four
numbers would be sorted by RADXEX to 5, 10, -3, -1.

P> BNSRCH

Purpose
BNSRCH sets up a binary table and performs a binary search.

Usage

CALL BNSRCH (ptable, nentry, nwds, fword, nkwds, skey, fentry,
index, opflag, altnf, altbp)

Most of these parameters are explained on the preceding page. The
additional parameters are explained below.

Third Edition 13-30

SORT LIBRARIES

skey Search key array (nkwds).
fentry Found entry array (nwds).
index Entry number of found entry.
opflag Operation key:
0 Locate.
1 Locate and delete,
2 Locate or insert,
3 Locate and update.
altnf Alternate return.
Discussion

Simple binary searching (opflag=0) tests each entry's key field for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the
alternate return (altnf) is taken. If altnf is not specified, the
normal return is taken, and the entry is deleted from the table as well
as returned in fentry. In this case, index specifies where the entry
was,

Opflag=2 is the same as opflag=0 if the entry is found. If, however,
the entry is not found, the contents of fentry will be inserted into
the table and index will indicate the position of the new element.
Also, altnf will be taken.

Opflag=3 is the same as opflag=0 if the entry is not found. If the
entry is found, the contents of fentry and the found entry are
interchanged, thus updating the table and returning the old entry.

13-31 Third Edition

DOC3621-190

P> BUBBLE
Purpose

Bubble sorting is a simple interchange sort.

Usage

CALL BUBBLE (ptable, nentry, nwds, fword, nkwds, tarray, npass,
altbp, incr)

Please read Parameters Common to More Than One Subroutine above.

incr Used to sort nonadjacent entries. (See INSERT below.)
Default is 1 (sort adjacent).

tarray Must have nkwds words,

Discussion

Running Time: If N is the number of entries, the average running time
1s proportional to N**2, Bubble sorting is good only for very small N,
but is not as good as insertion sorting.

P HEAP

Purpose

Heap sort is based on a nonthreaded binary tree structure. The
algorithm consists of two parts: convert the table into a "heap", and
then sort the heap by an efficient top—down search of the tree. The
formal definition of a heap is:

The keys K(1), K(2), K(3),+.., K(N) constitute a "heap" if
K(J/2)>K(J) for 1<J/2<I<N.

Usage
CALL HEAP (ptable, nentry, nwds, fword, nkwds, tarray, npass, altbp)

Please read Parameters Cammon to More Than One Subroutine above.

tarray Must have nwds words.

Third Edition - 13-32

SORT LIBRARIES

Discussion

Runrung Time: If N is the number of entrles, the average running time
is proportional to 23*N*InN and the maximum is 26*N*1nN., Heap sort
tends to be inefficient if N<2000, but for N>2000 it “outperforms all
other sorts except QUICK.

P> INSERT

Purpose

Straight insertion sorting is based upon "percolating" each element
into its final position.

Usage

CALL INSERT (ptable, nentry, nwds, fword, nkwds, npass, altbp,
incr)

Please read Parameters Common to More Than One Subroutine above,

incr Used to sort nonadjacent entries,

Discussion

The incr parameter is used to sort nonadjacent entries. If, for
example, incr = 3, every third entry will be included in the sort. The
default is 1. For example, with incr equal to 3:

input: 10987654321 0
output: 1 98465732100

Runrung Time: Let N be the number of entries. Although the average
running time is proportional to N**2, insertion sorting is very good
for small tables (N<13) and tends to be very efficient for nearly
ordered tables, even for large N.

13-33 Third Edition

DOC3621-190

P QUICK
Pur Ese

Quick is a partition exchange sort. QUICK is a variation of the basic
quicksort called a median—-of-three quicksort.

Usage

CALL QUICK (ptable, nentry, nwds, fword, nkwds, tarray, npass,
altbp)

Please read Parameters Common to More Than One Subroutine above,

tarray Must have nwds words.

Discussion

Running Time: If N is the number of entries, the average running time
is proportional to 12*N*1nN, but the maximum time is on the order of
N**2, QUICK, on the average, is the fastest sort in MSORTS, but in the
worst case, 1is about the slowest. In fact, the worst case is a
completely ordered table. QUICK should not be used on tables that are
already well-ordered. '

P> RADXEX

Purpose

RADXEX is a radix-exchange sort that treats the key as a series of
binary bits. It is based both on the method of radix sorting (like a
card sorter) and partitioning. As noted before, RADXEX does not sort
signed numbers and will sort the numbers 5, -1, 10, -3 to 5, 10, -3,
-1. RADXEX has the advantage that the key need not start on a word
boundary nor be an integral number of words long.

Usage

CALL RADXEX (ptable, nentry, nwds, fword, fbit, nbit, tarray,
npass, altbp)

Please read Parameters Cammon to More Than One Subroutine above.

tarray Must have 2*nbit words; is used as partition stack.

Third Edition 13-34

SORT LIBRARIES

Discussion

Runnmg Time: If N is the number of entries, the average running time
is proportional to 14*N*InN. Radix exchange is very fast for large N
(on the order of QUICK), but it is inefficient if equal keys are
present,

p» SHELL

Purpose
SHELIL, sort (named after Donald Shell) is a diminishing increment sort.
SHELL utilizes the straight insertion sort (INSERT) on each of its

masses to order the nonadiacent elements that are one INC apart. INC

I i KaT

is then decreased on each pass. Increments are chosen by the formula.
INC=(3**k~-1)/2

where the initial increment is chosen so that INC(k + 2)>N and
subsequent increments by decrementing K.

Usage
CALL SHELL (ptable, nentry, nwds, fword, nkwds, npass, altbp)

Please read Parameters Cammon to More Than One Subroutine above,

Discusion

Runnlng Time: If N is the number of entrles, the average running time
is proportional to N**1,25 and the maximum time is N**1.5, A complete
t1m1ng analysis on the SHELL sort is not possible, but for N<2000, it
is very good, For N>2000, the HEAP sort is better.

13-35 Third Edition

PART V
Input/Output Library Subroutines

Introduction to IOCS

HON TO USE PART V

IOCS (the Input/Output Control System) is a group of subroutines that
perform input/output between the Prime computer and the disks,
terminals, and other peripheral devices in the system. These
subroutines have mostly been outdated by the ones in Chapters 9 and 10.
Generally, these functions may be grouped into three levels:

Level 1 Device-independent drivers are routines that read
and write ASCII or binary and perform control
functions such as opening a file,

Level 2 Device-specific drivers issue the correct format for
a particular device, but allow the output to be read
later by device—independent drivers,

Level 3 The lowest level of IOCS functions are routines that
perform raw data transfers.

The chapters in Part V are organized in the following manner:

Chapter 14 Device, unit, and arqument definitions and tables

for use with following chapters

Chapter 15 How to change device assignments

14-1 Third Edition

DOC3621-190

Chapter 16 Device-independent driver subroutines (which call
the device-dependent routines in the following
chapters, depending on the device specified)

Chapter 17 Disk (non-file system) subroutines

Chapter 18 Subroutines for the user termimal and paper tape
(Many subroutines may be used for both peripherals.)

Chapter 19 Subroutines for other peripheral devices (printers,
Plotters, card processors, and magnetic tape)

The level-1 device drivers are presented in Chapter 16. Routines of
levels 2 and 3 are grouped in the following chapters by device type
rather than by level of the subroutine.

Table 14-1 shows all IOCS routines discussed in Chapters 16-19. It
shows the relationship of level-l (device-independent) drivers to the
others, FEach column of this table represents an I/0 function, and each
horizontal row a certain physical device. All drivers in a single
column are designed to be compatible in internal data format.

Tables 14-2 and 14-3 show the physical and logical device assigmments,
for use in changing device assignments as discussed in Chapter 15.

Figure 14-1 shows all the device-dependent drivers supported by Prime.

ARGUMENTS TO IOCS SUBRQUTINES

The following argument names are used throughout Part V.,

altrtn An INTEGER*2 variable assigned the value of a
numeric label in the user's FORTRAN program, to be
useG as an alternate return from the subroutine in
case of error, The label mumber should be
preceded by a $. FORTRAN calls may omit the
argument or give it the value of 0 if no alternate
return is wanted, Other calling languages should
omit the argument (not use 0).

buffer The name of a data area to or from which data is
moved (integer array).

count The number of words to be transferred, or the
length of a buffer or filename (INTEGER*2).

buffer-size The record size associated with the logical unit.
Must be as large as the maximum record size.

logical-device Same as logical-unit below.

Third Edition 14~2

logical-unit
name

physical-device

physical-unit

file unit

sub-unit

INTRODUCTION TO IOCS

The FORTRAN logical unit (Table 14-3).
A filename,

The position in the device-type table (Table
14-2). A physical device is a device type such as
magnetic tape or a user terminal,

The sub-unit number of a physical device having
more than one unit (Table 14-3). A physical unit
designation distinguishes among the units of a
physical device that has multiple units, such as a
magnetic tape ocontroller, For disk (the file
system), the physical unit corresponds to the file
unit (below). If the device has only one unit,
its sub-unit number is 1. If it 1is a
multiple-unit device such as disk or tape,
sub-units 1 through 8 may be specified., (On disk,
a sub-mit is actually processed as file 1-8.)

The PRIMOS file-unit (funit) number from 0 through
127. (Users may assign 2 through 126.) File
units are discussed in Chapter 9.

The unit for multiunit devices (for disk, file

unit number). This is the same as the physical
unit (Table 14-3)

~j e

14-3 Third Edition

18.1

DOC3621-190

Table 14-1

Device-dependent Driver Selected by
Each Independent Driver According to Device

Independent Drivers

RADSC WRASC ROBIN WRBIN CONTRL
Device Dependent Drivers

User terminal ISAAO01(6) OSAA01(1) ISBAD1(2) OSBAOL(2) CSA01(2)
Input command

stream ISAAL2(1)

Paper—tape reader IS$SAP02(5) ISBP02(2) CS$P02(5)
Paper—tape punch OSAPQ2(5) OS$BP02(2)

MPC card reader ISAC03(3) OS$AC03(3)

Serial line prtr. OSAL04 (3)

9-track mag.tape ISAMO5(4) OS$AMOS5(4) ISBMOS5(7) OSBMOS(7) CS$MO5(4)
MCP line printer OSALO6 (4)

PRIMOS file sys-—

tem compressed I$ADO7(1) OS$ADO7(1) 1ISBDO7(1l) OS$BDO7(1) SEARCH(1)
PRIMOS file sys-

tem uncompr. ISADO7 (1) OS$ADO08(1l) 1ISBDO7(1) O$BD07(1) SEARCH(1)
Serial card rdr. I$AC09(3)

7-track mag.tape ISAMIO(4) OS$AMLO(4) ISBMIO(7) OSBMLO(7) C$M10(4)
7-track mag,tape

BCD ISAML1(7) O$AM11(7) CM11(7)
9-track mag. tape

EBCDIC ISAMI3(7) OSAML3(7) CM13(7)
Versatec

printer/plotter OSAL14(3)
MPC card

processor ISAC15(3) OSAC15(3)

* Numbers in parentheses refer to the following notes.

Third Edition

14-4

7.

INTRODUCTION TO IOCS

Notes to Table 14-1

Available in R-mode and V-mode. Listed in QONIOC (Chapter 15) and
may be called directly or via the device-independent drivers.

Available in R-mode only. Listed in QONIOC (Chapter 15) and may
be called directly or via the device-independent drivers.

Available in R-mode only. Listed in FULCON but not CONIOC
(Chapter 15)., May not be called via the device-independent
drivers, unless FULCON is assembled and loaded before the library
is loaded.

Available in R-mode and V-mode., Listed in FULCON (Chapter 15).
In V-mode programs, these routines may be called directly or via
the device-independent drivers if the default FORIRAN library
(PFINLB) is loaded, If the R-mode or the nonshared V-mode library
(NPFINLB) is loaded, the routine may not be called via the
device-independent drivers unless FULCON is assembled and 1loaded
before the library is loaded. See Chapter 15 for a more complete
discussion of IOCS table usage. Routine may be called by name
without specific procedures.

Available in R-mode and V-mode. For R-mode, routine is listed in
CONIOC (Chapter 15) and may be called directly or via the
device-independent drivers., For V-mode, routine is listed in
FULOON (Chapter 15) and may be used in same manner as R-mode as
long as the default FORTRAN library (PFINLB) is loaded. In
R-mode, or V-mode when the nonshared FORTRAN library (NPFINLB) is
loaded, the routine may not be called via the device-independent
drivers unless FULOON is assembled and loaded before the library
is loaded, See Chapter 15 for a more complete discussion of ICCS
table usage.

Available in R-mode and V-mode, but is not in CONIOC (Chapter 15)
or FULCON. To call the routines via the device-independent
drivers, the appropriate table must be modified, assembled, and
loaded before the library 1is loaded. (See Chapter 15.) The
routine may be called specifically without any special procedures.

Available in R-mode and V-mode. V-mode is listed in FULCON but
not in CQONIOC (Chapter 15). R-mode is not in CONIOC or FULCON.
In V-mode, if the nonshared FORTRAN library (NPFINLB) is loaded,
the routine may not be called via the device—independent drivers
unless FULKON is assembled and loaded before the library is
loaded. In R-mode, the appropriate table must be modified,
assembled, and loaded before the library is loaded. In both
modes, the routine may be called specifically without any special
procedures.

14-5 Third Edition

DOC3621-190

LINE PRINTERS

PRIMOS SERIAL PARALLEL VERSATEC
FILE SYSTEM (CENTRONICS) (MPC) PRINTER/PLOTTER

CL

)]
OSALO6
0$ALO4 OSAL14
1SADO7 (ASCII) 1$BDO7 (BINARY)
OSXDXX
0$ADO7
(ASCIt COMPRESSED) MAGNETIC TAPES
0SADO8
ASCII FIXED LENGTH RECORDS)
0$8D07
(BINARY)
C$MO5
- GOMMAND FILE _
4
,
L}
SERIALY
‘\ QSAMIS > 9-TRACK
AL PR ————] Csm13 -
- ISAM1I3 EBCDIC
CARD READERS
- USER -
MEMORY
PARALLEL | I$ACO3 - -«
(MPC) O3AMI0
csmo |7 aoACK
ISAMI0
/___ 3 AA
ISAC09
SERIAL
OﬁMﬁ
[comn 7-TRACK
PAPER TAPE ISAMT1 BCD
1SAP P!
C3P02 SAP02/1SBPO2
READER| = __—===ad XSAMXX
PUNCH B OSAPO2/0SEP02 TRANSFER ASCI DATA
CsPo2 - XSBMXX
_/__4 TRANSFER BINARY DATA
0$BAO1
e Q8AR0! 1$BA01 ‘
1SAAG!
y
C$AO! csao
USER ASR
TERMINAL READER/PUNCH

Transfer of Data to and from High-speed User Memory
Figure 14-1

Third Edition 14-6

INTRODUCTION TO IOCS

Table 14-2
Physical Device Numbers

Physical Device Device

1 User terminal

2 Paper—tape reader or punch

3 MPC card reader

4 Serial line printer

5 9-track magnetic tape ASCII/BINARY

6 MPC line printer

7 PRIMOS file system (compressed ASCII)

8 PRIMOS file system (uncompressed ASCII)
9 ? Serial card reader
10 7-track magnetic tape ASCII/BINARY

11 7-track magnetic tape BCD

12 (User terminal/command file) command input
13 9-track magnetic tape EBCDIC

14 Versatec Printer/Plotter

14-7 Third Edition

18.1

DOC3621-190

Table 14-3

Logical Devices, Physical Devices, and File Units

FORTRAN Default
Logical Unit Number

Physical Device or Unit

W N

User terminal

Paper-tape reader or punch

MPC card reader

Serial line printer (system option

controller or SOC)
PRIMOS file unit 1
PRIMOS file unit 2
PRIMOS file unit 3
PRIMOS file unit 4
PRIMOS file unit 5
PRIMOS file unit 6
PRIMOS file unit 7
PRIMOS file unit 8
PRIMOS file unit 9
PRIMOS file unit 10
PRIMOS file unit 11
PRIMOS file unit 12
PRIMOS file unit 13
PRIMOS file unit 14
PRIMOS file unit 15
PRIMOS file unit 16
9-track magnetic tape
9-track magnetic tape
9-track magnetic tape
9-track magnetic tape
7-track magnetic tape
7-track magnetic tape
7-track magnetic tape
7-track magnetic tape
PRIMOS file unit 17
PRIMOS file unit 18
PRIMOS file unit 19

PRIMDS file unit 127
MPC printer 0 (AMLC)
MPC printer 1 (AMLC)

unit
unit
unit
unit
unit
unit
unit
unit

WNHHOWNHO

Third Edition

14-8

15

Device Assignment

TEMEORARY DEVICE ASSIGNMENT

The user may assign any device by calling the ATTDEV subroutine.
ATTDEV controls mapping of logical units into physical devices and
controls the record size associated with the logical unit. Nonsharable
devices may also be assigned on command level with -the PRIMOS command
ASSIGN. If a permanent device assignment is desired, the reader should
go on to the next section of this chapter.

p> ATTDEV

Purpose

ATTDEV attaches specified devices by associating logical-device with
physical-device and associating the logical-device with a specific unit
or file of the device.

Usage

CALL ATTDEV (logical—-device, physical-device, physical-unit,
buffer-size)

15-1 Third Edition

DOC3621-190

Note

For more discussion of arguments, see Chapter 14.

logical-device The device~independent 1logical I/0 unit (Table
14-3). This number cannot be changed.

physical-device The position in the device-type tables (Table
14-2).

physical-unit The unit for multiunit devices (Table 14-3).
buffer-size The record size associated with the 1logical unit.

Must be as large as maximum record size.

- For the given logical-device, set the physical-device, unit, and
buffer—-size so that the logical unit has a current mapping.

Example

To reassign a card reader (logical unit 3) to physical device 2 (which
has no sub-units) with the ability to read 80-column cards, enter:

CALL ATTDEV(3, 2, 0, 80)
Errors
If device is incorrect, ATTDEV returns the message:

ATTDEV BAD UNIT (unit—number)

PERMANENT DEVICE ASSIGNMENT

Users whose programs need to use devices other than the user teminal,
the disks, or paper-tape reader or punch, or who wish to change the
assigmnment of logical to physical devices must consult their System
Administrator. The following discussion is an overview of the System
Administrator's work.

To facilitate changes to device assignments, the tables used by I0CS

(such as LUTBL and PUTBL) are in the following files on the master
disk.

Third Edition 15-2

DEVICE ASSIGNMENT

V-mode VFINLIB>SQURCES >CONIOC, INS.PMA
R-mode RFTNLIB>IOCS>CONIOC. PMA

Ask your System Administrator how to locate the master disk on a
multidisk system,

Note that the R-mode CONIOC.PMA in the RFINLIB supports only the user
terminal, the paper—tape reader, paper—tape punch, and the PRIMOS file
system. An attempt to perform I/O to a physical device not supported
by CONIOC will fail. The default QONIOC for V-mode supports the user
terminal and PRIMOS file system only.

IOCS Tables

If a computer installation requires that user programs use devices not
supported by CONIOC, the System Administrator must modify the GONIOC
tables RATBL, RBTBL, WATBL, and WBTBL, and then rebuild the FORTRAN
library. There is a version of CONIOC that contains all the available
I0CS drivers set up in the appropriate tables. This file is
SOURCES>FULCON. INS.PMA in VFINLIB, or IOCS>FULCON.PMA in RFINLIB. The
System Administrator can use FULCON as an example of how to set up

CONIOC. The table entries that are not required can be set to 0.

The System Administrator may also change the default
logical-to-physical-device association as given in Tables 14-2 and 14-3
by changing the IOCS tables RATBL, TBTBL, WATBL, and CNTBL in CONIOC.
For example, the fifth entry of LUTBL (indicating logical device 5)
contains 7. Entry 7, the RATBL, contains I$AD07, which is a driver for
the PRIMOS file system. Other numbers indicate physical devices, as
shown in Table 14-2, DPUTBL is the sub-unit table., The sub-unit table
contains the individual wnit or file numbers as required for multifile
devices, For example, IUTBL contains the same number of logical
devices 21, 22, 23, and 24, indicating 9-track magnetic tape. PUTBL
contains 0, 1, 2, and 3 for 1logical devices 21, 22, 23, and 24
indicating unit 0, 1, 2, and 3 of 9-track magnetic tapes.

Modifying CONIOC to Change Device Assignment

Changing a device assignment is a System Administrator's responsibility
and not a user function. The System Administrator may add or delete a
device to any of the following tables.

15-3 Third Edition

19

19

DOC3621-190

RATBL
RBTBL
WATBL
WBTBL

CNTBL

Read ASCII table,
Read binary table,
Write ASCII table.
Write binary table.

Perform control function (endfile, rewind, etc.).

Input-only Devices

Input—only devices such as the card reader do not need WATBL and WBTBL
entries. Furthermore, an ASCII-only device (such as a 1line printer)
does not need RBTBL and WBTBL entries.

Order of Entries

The order of

entries in the above-mentioned tables corresponds to

physical-device numbers defined in Table 14-2,

R-mode Procedures

(V8]

Attach to RFINLIB>IOCS of Master disk A.
Edit the appropriate tables within CONIOC.PMA.

Replace the 0 with the corresponding subroutine name for
the desired device.

Rebuild the RFINLIB library. (See below.)

V-mode Procedures

Third Edition

Attach to VFINLIB>SQURCES of Master Disk A.
Edit the appropriate tables within the CONIOC.INS.PMA,

Replace the word NULIDEVICE with the appropriate device
subroutine name.,

Rebuild the VFINLIB Library. (See below.)

15-4

DEVICE ASSIGNMENT

How to Rebuild the FORTRAN Library after Modifying CONIOC

R-mode Procedures: The R-mode FORTRAN library must be rebuilt after
QONIOC has been modified:

1 Attach to RFINLIB on Master Disk A.

2 Run RFINLIB.BUILD,.CPL.

3 Run INSTALL FINLIB.CPL.

4 Share the new library (a System Administrator
procedure) .

V-mode Procedures: The V-mode FORIRAN library must be rebuilt after
(ONIOC has been modified:

1 Attach to UFD = VFINLIB on Master Disk A.

2 Run VFINLIB,BUILD,.CFL.

3 Share the new library (a System Administrator
procedure) .

15-5 Third Edition

19

16

Device-independent
Drivers

This chapter presents the subroutines listed in the top (horizontal)
row of Table 14-1. They have the following functions:

Routine Function

WRASC Write ASCII

RDASC Read ASCII

WRBIN Write binary

RDBIN Read binary

CONTRL Other control functions

To maintain device independence, all data transfers can be accomplished
through these five device-independent drivers in IOCS. These device-
independent or first-level drivers route the I/O request to one of the
device~-dependent drivers, as shown in Table 14-1 and Figure 14-1. The
device-dependent drivers are presented in the fellowing chapters (17
through 19). Each column of Table 14-1 represents an I/0 function, and
each row a specific physical device. All drivers in a single column
are designed to be compatible in terms of internal data format.

16-1 Third Edition

DOC3621-190

DATA FORMATS

All first- and second-level device drivers are uniform in the internal
representation of data. All ASCII data, for example, has the same
internal format regardless of the physical device.

ASCII Data

Data associated with logical I/0 functions RDASC (Read ASCII) and WRASC
(Write ASCII) are represented internally as an ASCII string in card
image format, This string is of 1length N words with each word
containing ASCII-coded characters. (N is defined in the «calling
sequence to the driver.)

Notes

1. The NEWLINE (octal 212) must not be used as data because it
is the end-of-record indicator.

2, ASCII drivers should only be used to transfer printable
ASCII characters.,

Binary Data

Binary data is transferred using RIBIN and WRBIN. The external format
varies considerably from device to device, but the internal format
remains the same. Binary data can consist of anything and is not
interpreted by the driver in any way.

The parameter buffer (buffer address) in a call to RDBIN (Read Binary)

or WRBIN (Write Binary) defines the first word of the binary data. The
word count on output must be defined by the user,

ARGUMENTS FOR DEVICE-INDEPENDENT DRIVERS

The device-independent drivers all have the same argquments. The
arquments are defined in Chapter 14.

Third Edition 16-2

DEVICE-INDEPENDENT DRIVERS

DESCRIPTION OF SUBROUTINES

P> WRASC
Purpose

WRASC writes ASCII characters to any output device.

Usage
CALL WRASC (logical—-device,buffer,count,altrtn)

Discussion

The contents of huffer are moved from memorv to the outmut device

ERLN = s P | T Ve TV . a8

format of the da on the output medium is device-specific. Memory is
assumed to consist of ASCII, two characters per word.

P RDASC

Purpose
RDASC reads ASCII characters from any input device.

Usage
CALL RDASC (logical—-device,buffer,count,altrtn)

Discussion

One record is brought into memory. Buffer is always filled with count
ASCII characters, two per word. If the record is longer than count
words, buffer contains the first count words in the record and the next
successive read will give the first count words of the next record, not
the remaining words of the long record. If the record is less than
count words, the remainder of the buffer will be blank-filled.

16-3 Third Edition

DOC3621-190

P WRBIN

Purpose
WRBIN writes binary data to any output device.

Usage
CALL WRBIN (logical—-device,buffer,count,altrtn)

Discussion

The number of words specified by count are written from buffer to the
specific output device. The format of the data is device—dependent.

P RBIN

Purpose
RIBIN reads binary input from any input device.

Usage
CALL RDBIN (logical-device,buffer,count,altrtn)

Discussion

A record is read into memory. Count is the maximum number of words
that will be read into buffer. If the record is less than count long,

then count will be set to the number of words actually read. If the
record is longer than count, only the first count words will be read.

Third Edition 16-4

DEVICE-INDEPENDENT DRIVERS

P> CONTRL
Note
This subroutine is obsolete, and has been replaced with SRCHS$S
(Chapter 9).
Purpose

Certain nondata transfer functions, such as opening a PRIMOS file for
reading, are provided by use of the CONTRL subroutine.

Usage
CALL: QONTRL (key, name, logical—-device, altrtn)

key A numeric option code that may have the following
values:
1 Open for reading.
2 Open for writing.

Open for read/write.

4 Close.

5 Delete file.

6 Move forward one file mark (MT only).
7 Rewind to beginning of file,

8 Select device and read status (MT

) only). Status is returned in the
A-register, and must be read by a
user-written PMA subroutine.

-1 Write file mark (MT only).

-2 Backspace one record (MT only).

-3 Backspace one file mark (MT only).

-4 Rewind to beginning of tape (MT only).

16-5 Third Edition

DOC3621-190

Note

For calls to disk files, key
may have many other values.
See SRCHSS. Keys other than
1-4 are not device-independent,
name Filename (0 if none).
logical-device See Chapter 14.

altrtn See Chapter 14.

Discussion
Functions not applicable to a particular device are ignored;

therefore, functions can be requested in a device-independent way. See
Table 16-1 for operation effects.

Third Edition 16-6

DEVICE-INDEPENDENT DRIVERS

Table 16-1
List of Keys and Operating Effects for CONTRL
Paper—tape
Rey Terminal Reader/Punch Magtape Disk
(CsA01) (C$P02) (CSMxx) (SEARCH)
1 a a a a
2 q q b b
3 q q c c
4 r r d p
5 —_— —_— h e
q q 1 z
7 s s n f
8 _ —_ k g
-1 — — 1 z
-2 — — m z
-3 - —_ n z
-4 —_ - (o} z
a Open for read.
b Open for write.
c Open to read and write.
d Rewind and close file.
e Delete file.
f Position to beginning of file.
g Truncate file,
h Move forward one record.
i Move forward one file mark.
k Select device and read status.,
1 Write file mark.
m Backspace one record,
n Backspace one file mark.
o Rewind to BOT (beginning of tape).
P Close file.
q Turn on punch and punch leader.
r If device was open for output, punch trailer
and turn off paper-tape punch and reader.
s Halts allowing operator to rewind tape.
Type 'START' to continue.
A Abort (BAD KEY error).
Keys other than 1 through 4 are not device-independent.

16-7 Third Edition

17

Disk Subroutines

This chapter defines the subroutines for non-file-system disk I/O
operations. The first set is a subset of the device-dependent drivers
listed in Table 14-1. They comprise the drivers listed in the rows for
the PRIMOS file system, except for SRCHSS, which is presented in
Chapter 9. Most users will find that other subroutines, in Chapters 9
and 12, will perform I/0 functions faster and with more options than
these drivers.

The second section of the chapter lists some obsolete disk subroutines:
DSINIT, WRECL, and RRECL.

These are the subroutines presented in this chapter:

Routine Meaning

O$ADO7 Write ASCII to disk.

ISADO7 Read ASCII from disk.

O$BDO7 Write binary to disk.

ISBDO7 Read binary from disk.

OS$ADOS Write ASCIT to disk (fixed-length records).

DSINIT Initialize disk (obsolete).

17-1 Third Edition

DOC3621-190

RRECL Read one disk record (obsolete).

WRECL Write one disk record (obsolete).

ARGUMENTS
The arguments for these subroutines are defined in Chapter 14.

DRIVER SUBROUTINES

P> OSADO7
Note
This subroutine is obsolete, and has been replaced with WILINS
(Chapter 9).
Purpose

OSADQ7 writes ASCII from buffer onto a disk file open on file-unit.

Usage
CALL O$AD07 (file—unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

Discussion

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced with the character DC1 (221
octal) followed by a word count. Trailing blanks are removed and the
end of record indicated by the NEWLINE character, or NEWLINE followed
by null,

Third Edition 17-2

DISK SUBROUTINES

P> I3AD07

Purpose

ISAD07 reads information from the disk file open on file-unit, in
compressed ASCII format,

Usage
CALL I$AD0O7 (file-unit, buffer, count, altrtn)

For an explanation of arquments, see Chapter 14.

P 0$BDO7

Purpose

O$BD07 writes binary information to the file open on file-unit.

Usage
CALL O$BD0O7 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

P ISBDO7

Purpose
IS$SBD07 reads binary information from the file open on file-unit.

Usage
CALL ISBD0O7 (file-unit, buffer, count, altrtn)

For an explanation of arquments, see Chapter 14.

17-3 Third Edition

DOC3621-190

P> O0SAD08

Purpose
O$AD08 writes ASCII from buffer onto the disk file open on file-unit.

Usage
CALL O$AD08 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

Discussion

Information is written on the disk in fixed-length records., Each
record consists of count words followed by a word containing NI and
NULL (105000 octal). This driver is not in the standard CONIOC
supplied by Prime,

OBSOLETE DISK SUBROUTINES

These subroutines are not in FINLIB. They were intended for use by the
System Administrator.

P> DSINIT
Purpose

The DSINIT routine is called to initialize disk devices.

Usage
CALL DSINIT (pdisk)

pdisk The physical disk number to be initialized., (See
RRECL, below.)
Discussion

DSINIT initializes the disk controller and performs a seek to cylinder
0 on pdisk. DSINIT must be called prior to any RRECL or WRECL calls.

Third Edition 17-4

DISK SUBROUTINES

isk must be assigned by the PRIMOS ASSIGN command before calling this
routine, DSINIT was intended by use only by outdated system utilities,

P> RRECL
Purpose

Subroutine RRECL, reads one disk record from a disk into a buffer in
memory. Before RRECL is called, the disk must be assigned by the
PRIMOS ASSIGN command and DSINIT must be called to initialize the disk.

The RRECL. routine was intended for use only by now outdated system
utilities such as FIXRAT, MAKE, and the old disk COPY.

TMMTeana

Vm:\—

CALL RRECL (LOC(buffer), length, option-word, ra, pdisk, altrtn)

buffer An array into which length words from record ra will
be transferred.
length The number of words to be transferred.

option-word A 16-bit word with the following options:

Bit 1 set Perform current record address
check,

Bit 2 set Ignore checksum error.

Bit 3 set Read an entire track (beginning at
ra) into a buffer 3520 words long,
beginning at the buffer pointed to
by ra. (This feature may be used
only if RRECL is running under
PRIMOS II, is reading a disk
connected to the 4001/4002
controller, and is a 32-sector
pack.)

Bit 4 set Format the track. This bit is only
significant for storage . module
disks.

Bits 5-8 Reserved.

Bits 9-16 Must be set on (1).

17-5 Third Edition

DOC3621-190

ra A 32-bit integer (INTEGER*4) specifying a disk

record address. Legal addresses depend on the size
of the disk.

Size ra Range

Floppy disk 0-303

1.5M disk pack 0-3247

3.0M disk pack 0-6495

30M disk pack 0-64959

128K fixed-head disk 0-255
256K fixed-head disk 0-511
512K fixed-head disk 0-1023
1024K fixed-head disk 0-2047
pdisk The physical disk number of the disk to be read.
pdisk numbers are the same numbers available for use
in the ASSIGN and STARTUP commands of PRIMDS.
altrtn An integer variable in the user's program to be used
as an alternate return in case of uncorrectable disk

errors. If this argument is 0 or omitted, an error
message is printed. (See Chapter 14.)

Discussion

If an error is encountered and control goes to altrtn, ERRVEC (Appendix
E) is set as follows:

Code Message Meaning
ERRVEC(1) = WB On supervisor terminal: 10 times Disk hardware
ERRVEC(2) =0 DISK RD ERROR pdisk ra status WRITE PROTECT

error

On user terminal: UNRECOVERED ERROR

Third Edition 17-6

DISK SUBROUTINES

ERRVEC(1) = WB On user terminal: 10 times {Current record}

ERRVEC(2) = CR DISK RD ERROR pdisk ra status
followed by
UNRECOVERED ERROR

address error

See the System Administrator's Guide for a description of status error
codes.

Notes

Length must be between 0 and 448 unless pdisk is a storage
module, in which case length must be between 0 and 1040, If
this number is not 448 and pdisk is 20-27 (diskette), a
checksum error is always generated; bypassing can be
accomplished by setting the option—word's bit 2 to 1. No

check is made for legality of ra.

On a DISK NOT READY, RRECL does not wait for the disk to
become ready under PRIMOS III or PRIMOS. Under PRIMOS 1II,
RRECL prints a single error message and waits for the disk to
become ready.

On any other read error, an error message is printed at the
systam teminal, followed by & seek to c¢ylinder 0 and a
reread of the record. If 10 errors occur, the message
UNRECOVERED ERROR is typed to the user or altrtn is taken.

P> WRECL

Purpose

Subroutine WRECL writes the disk record to a disk from a buffer in
memory. The arquments and rules of the WRECL call are identical to
those of RRECL except for bits 1 and 2 of optionword, which have no
meaning on write., For a call to write a record on the diskette, the
buffer length must be 448 words.

DSINIT must be called before a call to WRECL.

17-7 Third Edition

DOC3621-190

Usage
CALL WRECL (LOC(buffer), length, option-word, ra, altrtn)

The meaning of the parameters is the same as described above in RRECL,
except that the function of the command is to write rather than read
the specified records, The user of WRECL is responsible for being
careful to write only on areas of the disk that do not contain
significant user or operating system information. An attempt to write
on a write-protected disk generates the message:

DISK WT ERROR pdisk option-word status
WRITE PROTECT

on the supervisor terminal and the message:
UNREQOVERED ERROR

at the user terminal. ERRVEC(1l) will contain error code WB, unless
altrtn is taken., Other write errors are retried ten times in a manner
similar to read errors. (Refer to RRECL.)

Third Edition 17-8

User Terminal and
Paper-Tape
Subroutines

OVERVIEW

This chapter defines subroutines used to transfer data to and from a
user terminal or card reader/punch (ASR). Same are a subset of the
device—dependent IOCS drivers shown in Table 14-1, in the rows for the
user terminal and for paper tape. Other subroutines in this chapter
are of general use for these devices., They are listed elsewhere, and
referenced here for completeness of the user-terminal and paper-tape
chapter.

The subroutines in this chapter are listed in Table 18-1.

LIST OF SUBROUTINES

P> BREAK

Purpose
BREAK inhibits or enables CONTRCL-P.

Usage

For the calling sequence and discussion, see Chapter 10.

18-1 Third Edition

DOC3621-190

Table 18-1

Subroutines for User Terminal and Paper Tape

Device

Routine

Function

User terminal BREAK

Cl1IN

CNINS

COMANL

ERKLSS

TNOUA

TOVFD$

T1IB

T10B

T1IN

T100

TIDEC

TIOCT

TIHEX

TODEC

Inhibits or enables CONTRCL-P.

Gets next character from terminal or
command file.

Moves characters from temminal or
command file to memory.

Reads a line of text from the terminal
or from a command file.

Reads or sets erase and kill characters.
Outputs count characters to the user
terminal followed by the LINEFEED and
carriage return.

Outputs count characters to the user
terminal.

Outputs the 16-bit integer num to the
terminal,

Reads one character from the user
terminal into Register A,

Writes one character from Register A
to the user terminal.

Reads one character from the user
terminal.

Outputs char to the user terminal.
The data type must be a 16-bit integer
in F77.

Inputs decimal number.

Inputs an octal number.

Inputs a hexadecimal number.

Outputs a six—character signed
decimal number,

Outputs a six—character unsigned
octal number.,

Third Edition

18-2

USER TERMINAL AND PAPER-TAPE

Table 18-1 (continued)
Subroutines for User Terminal and Paper Tape

Device Routine Function

TOHEX Outputs a four-character unsigned
hexadecimal number.,

TONL Outputs carriage return and LINE-
FEED,

CSA0l1 Controls functions for user terminmal,

User terminal or O$AA01 Outputs ASCII to the user termimal or

ASR punch ASR punch.
Keyboard or ISAA01 Inputs ASCIT from terminal or ASR
ASR reader reader.

I$AA12 Performs the same function as ISAAQL
but also allows the input to be from a
cominput file.

Paper tape I$AP02 Inputs ASCII from the high-speed
paper-tape reader.

P1IB Inputs one character from the high—-speed
paper-tape reader to Register A.

O$BP02 Outputs binary data to the high-speed
paper—tape punch.

P10B Outputs one character to the high—speed
paper-tape punch from Register A.

jale] Outputs one character to the high—speed
high-speed paper-tape punch.

P1IN Inputs one character from paper tape,
sets high-order bit, ignores line feeds,
sends a line feed when carriage return
is read.

C$P02 Controls functions for paper tape.

18-3 Third Edition

DOC3621-190

P csaol
Purpose

C$A0l provides control functions for the user terminal.

Usage
CALL CSAOl (key, name, physical-unit [, altrtn])

Arguments are explained in Chapter 14; key is in Table 16-1.

P cCspo2
Purpose

CSP02 provides control functions for paper tape.

Usage
CALL CSP02 (key, name, physical-unit [,altrtn])

Arquments are explained in Chapter 14; key is in Table 16-1.

ClIN gets the next character from the terminal or command file.

Usage

For the calling sequence and discussion, see Chapter 10.

P CNINS
Pu@se

CNINS moves characters from the terminal or a command file to memory.

Third Edition 18-4

USER TERMINAL AND PAPER-TAPE

Usage

For the calling sequence and a discussion, see Chapter 10.

P> COMANL

Pur pose

COMANL reads a line of text from the terminal or from a command file.

Usage

For the calling sequence and a discussion, see Chapter 10.

P> ERKLSS

Purpose
ERKLSS reads or sets the erase and KILL characters.

Usage

For the calling sequence and a discussion, see Chapter 10.

P> 1saa01

PurEse
IS$AAQ0]l reads ASCII from the terminal or ASR reader.

Usage
CALL ISAAO0l (sub-unit, buffer, count [,altrtn])

For a discussion of arguments, see Chapter 14.

18-5 Third Edition

18.1

DOC3621-190

Discussion

The kill and erase characters (question mark and quote mark by default)
may modify the input line, as with the PRIMOS IIT command line. The
characters NUL, DEL, DLE, DC2, DC3, and DC4 are ignored. The character

EXT (octal 203) indicated the end of file and is used for reading tapes
through the user terminal.,

Note that I$AA0l is not the entry for the user teminal in the
Prime-supplied CONIOC (Chapter 15). ©Put ISAAO1 in the table as
explained in Chapter 15 to read paper tapes with user programs, The

editor should be used to read in the tape, and then the user may read
the file from disk.

P 15AA12

Purpose

I$AA12 performs the same function as ISAAOL but also allows the input
from a cominput file,

Usage
CALL I$AA12 (sub-unit, buffer, count[, altrtn])

For a discussion of arguments, see Chapter 14.

P 13AP02

Purpose
ISAPO2 reads ASCII from the high-speed paper—tape reader.

Usage
CALL ISAP02 (sub-unit, buffer, count[, altrtn])

Discussion

The KILL and ERASE characters (question mark and double quote by
default) modify the input. NUL, DEL, DLE, DC2 r DC3, and DC4 are
ignored. The character ETX (octal 203) indicates end of file.

Third Edition 18-6

USER TERMINAL AND PAPER-TAPE

P> 0saAR0l

Purpose
OSAA0]l outputs ASCII to the user terminal or ASR punch.

Usage
CALL OS$AAO1 (sub-unit, buffer, count[, altrtn])

For a discussion of arguments, see Chapter 14.

Discussion

This subroutine calls the driver ™OJ.

P> 0$BP02

Purgse

0O$BP02 writes binary data to the high—-speed paper—tape punch.
Usage

CALL OS$BP02 (sub-unit, buffer, count[, altrtn])

For a discussion of arguments, see Chapter 14.

Discussion
The format of the paper—tape output can be found in a listing of this

driver. Ask your System Administrator how to obtain a copy of the
listing.

p riIB

Purpose

P1IB reads one character from the high-speed paper-tape reader to
Register A.

18-7 Third Edition

DOC3621-190

Usage
CALL P1IB

This subroutine has no argquments; the calling program must have access
to Register A,

p PIIN

Purpose
P1IN reads one character from paper tape.

Usage
CALL P1IN (char)

Discussion

The subroutine sets the high-order bit, ignores line feeds, and sends a
line feed when a carriage return is read.

» rPiB
Purpose

P10B writes one character to the high-speed paper-tape punch from
Register A.

Usage
CALL P10B

This subroutine has no arguments; the calling program must have access
to Register A.

> riw
Purpose

P1QU writes one character to the high-speed paper—tape punch.

Third Edition 18-8

USER TERMINAL AND PAPER-TAPE

Usage
CALL P1QU (char)

Zzero the high—order bit before punching. Mo special action is taken on
carriage returns or line feeds.

p mm
Purpose

T1IB reads one character from the user terminal into Register A,

Usage

MAATT M1 TR
LNl 1110

This subroutine has no arquments; the calling program must have access
to Register A.

Pp TiB
Purpose

T1OB writes one character from Register A to the user termimal.

Usage
CALL T10B

This subroutine has no arguments; the calling program must have access
to Register A.

p TN

Purpose

T1IN reads one character from the user terminal.

Usage
CALL T1IN (char)

18-9 Third Edition

DOC3621-190

Discussion

If a carriage return is read, a NEWLINE is output and char is set to
NEWLINE. If a NBALINE is read, a carriage return is output and char is
set to NEWLINE.

If .XOF. is read, a carriage return and NEWLINE are expected to

follow. TI1IN ignores the .XOF., reads the carriage return and line
feed, then sets char to NEWLINE. The .XOF. characters are expected on

paper tape.

P Tiw

Purpose

T1QU writes a character to the user terminal.

Usage

CALL T1QU (char)
The data type of char must be a 16-bit integer in 'FORTRAN IV or FORTRAN

77. 1If char is NEWLINE, the characters carriage return and NEWLINE are
output to the user terminal.

P> TIDEC

Purpose
TIDEC reads terminal input as a decimal number.

Usage
CALL: TIDEC (variable)

Third Edition 18-10

USER TERMINAL, AND PAPER-TAPE

Discussion

The number may be preceded by a minus to indicate that it is negative,
but must not be preceded by a plus sign. Numbers may be terminated by
a carriage return or a space. A question mark or other error message
is displayed if a numeric input is improper, and more input will then
be accepted. A space or carriage return will then be accepted as a 0.

P> TIHEX

Purpose
TIHEX reads terminal input as a hexadecimal number.

Usaa
vsage

CALL TTHEX (variable)

Discussion

The number may be preceded by a minus to indicate that it is negative,
but must not be preceded by a plus sign. Numbers may be terminated by
a carriage return or a space. A question mark or other error message
is displayed if a numeric input is improper, and more input will then
be accepted, A space or carriage return will then be accepted as a 0,

P TIoCT

Purpose
TIOCT reads terminal input as an octal number,

Usage
CALL TIOCT (variable)

Discussion
The number may be preceded by a minus to indicate that it is negative,

but must not be preceded by a plus sign, Numbers may be termimated by
a carriage return or a Space. A question mark or other error message

18-11 Third Edition

DOC3621-190

is displayed if a numeric input is improper, and more input will then
be accepted. A space or carriage return will then be accepted as a 0.

p moU
Purpose

TNOU writes count characters to the user terminal followed by a
L.INEFEED and carriage return.

Usage
CALL ™OU (buffer, count)

Buffer is expected to contain two characters per word.

This subroutine is especially useful for the transfer of nonprinting
characters.

p mNoUA
Purpose

TNOUA writes count characters to the user terminal.

Usage
CALL TNOUA (buffer, count)

Discussion

This subroutine is especially useful for transfer of nonprinting
characters.,

Example
For an example, see the first sample program of the COBQL chapter.

Third Fdition 18-12

USER TERMINAL AND PAPER-TAPE

P> TODEC

Purpose
TODEC outputs a six-character signed decimal number.

Usage
CALL TODEC (variable)

CALL TOHEX (variable)

p TOOCT
Purpose

TOOCT outputs a six-character unsigned octal number.

Usage
CALL TOOCT (variable)

> ToL

Purpose

TONL: outputs a carriage return and line feed,

Usage
CALL TONL

18-13 Third Edition

DOC3621-190

P TOVFDS

Purpose
TOVFD$ writes a 16-bit integer to the termimal.

Usage
CALL TOVFDS (number)

Discussion

This subroutine writes number, which should be a 16-bit integer, to the
terminal without any spaces (for example, 123 or -17).

Third Edition 18-14

Other Peripheral

Dewvi
This chapter, describes subroutines that oontrol 1line printers,
printers/plotters, card readers, and magnetic tapes. These subroutines

are used for both formatted and raw data. Not all are in IOCS. They
are listed in Table 19-1.

LINE PRINTER SUBROUTINES

TOCS contains subroutines to control three types of line printers.
They are: OSALO4 to print on a Centronics Line Printer oconnected to
the system option controller (SOC); O$ALO6 to print on a parallel-
interface line printer connected to the MPC Line Printer Controller;
and OSAL14 to print on a Versatec Printer/Plotter connected to a
Versatec-SOC Controller. This section also includes SPOOES for queuing
files to be printed, and TSLMPC to move data to the MPC line printer.

19-1 Third Edition

DOC3621-190

Table 19-1
Peripheral-handling Subroutines

Line Printers

OSAL04 Centronics LP.

OSALO6 Parallel interface to line printer (MPC),
OSAL14 Versatec printer,

TSLMPC Move data to MPC line printer.

SPOOLS Insert a file in spooler queue.

Printer/Plotter
TSVG Versatec.
OSAL14 Versatec,

Card Reader/Punch

ISACO3 Input from parallel card reader.

ISAC09 Input from serial card reader.

ISAC15 Read and print card from parallel interface reader.
TSCMPC Input from MPC card reader.

OSAC03 Parallel interface to card punch.

OSAC15 Parallel interface to card punch and print on card.
TSPMPC Raw data mover.

Magnetic Ta

cﬁgos Control functions for 9-track ASCII/binary.
csM10 Control functions for 7-track ASCII/binary.
CsM11 Control functions for 7-track EBCDIC.

coMl3 Control functions for 9-track EBCDIC.
OSAM05 Write ASCII to 9-track.

OSAM10 Write ASCII to 7-track.

ISAMO5 Read ASCII from 9-track.

ISAMI0 Read ASCII from 7-track.

O$BM05 Write binary to 9-track.

OSBMI0 Write binary to 7-track.

ISBMOS Read binary from 9-track.

ISBMIO0 Read binary from 7-track.

OSAMI1 Write BCD to 7-track.

O$AM13 Write EBCDIC to 9-track.

ISAM11 Read BCD from 7-track.

ISAM13 Read EBCDIC from 9-track.

TSMT Raw data mover.

Third Edition 19-2

OIHER PERIPHERAL DEVICES

P OSALxx

Pur@se

These subroutines provide an interface to the line printers. OS$ALl4 is
discussed separately below.

Usage
CALL OSALxx (physical-unit,buffer,count[,altrtn])

physical-unit Line printer unit number:

0 PRO, first controller
1 PR1, first controller
2 PR2, second controller
3 PR3, second controller
buffer The name of the buffer where the text to be printed

resides. Print text is placed in the buffer, two
characters per word,

count The number of 16-bit words of data to be printed.
altrtn Never taken and is an optiomal calling sequence
parameter,
Discussion

For more information on arguments, see Chapter 14.

Printer Control

The action taken by O$ALxx depends on the data in the buffer, and the
current vertical control mode. Certain characters within the data
control the manner in which the data is printed, These characters
(codes) are described in the following paragraphs.

19-3 Third Edition

DOC3621-190

Vertical Control Modes

O$ALxx has three vertical control modes:

e forms control

e Header line and pagination control

@ No—control
O$ALxx checks the first character in the data buffer for a .SOM. or
start-of-message character (ASCII :001). This character signifies a
change in the control mode. If the first character in the buffer 1is

not .SOM., the 1line is printed according to the current control mode.
The default mode is forms control.

Forms Control Mode

The first character in the buffer is not printed; instead, it is used
for forms control. The character interpretations are as follows:

Character Interpretation
0 Skip a line,
1 Eject to top of next page.
+ Overprint last line (ALO6 only).
Any character
other than No action,
0, 1, +

Header Line and Pagination Control Mode

In header line and pagination mode, O$ALxx causes a header line to be
printed, followed by three blank lines, followed by 38 text lines. The
header line consists of up to 43 characters followed by a page count
that is generated by O$ALxx when printing in this mode.

For OSALO6 and OS$ALl4, enter pagination mode with a first word of
1000001 in buffer. In pagination mode with O$ALO4, a form feed (octal
14 or 214) may be anywhere in the buffer line. All characters
preceding the form feed are printed, and all characters after it are
ignored. With OS$ALO4, the form feed must be in column 1 or 3.

Third Edition 19-4

OTHER PERIPHERAL DEVICES

No—control Mode

In No~control mode, no actions are taken by O$ALxx. A line containing
an ASCII formfeed character (FF, :214) causes the line preceding it to
print, followed by a page eject. Carriage return (CR, :215) will cause
the line preceding it to print with no spacing. LINEFEED (LF, :212)
will cause the line preceding it to print followed by a line spacing
operation. Any characters following a CR, LF, or FF are ignored.

Change of Mode Commands

Any data buffer beginning with a .SOM. character causes OSALxx to take
some action to change control mode. The control mode change is
determined by the character following the .SOM.. The character
interpretations are:

Character Interpretation
000 Enter no-control mode.
001 Enter control mode.
036 New header line - DO NOT reset page count.
037 Enter new page size specified by the 16-bit

number contained in the next computer word.

All other Enter header control mode characters.

Early Buffer Termination

A LINE FEED (LF, :212) character temmimates the print line in the
buffer, regardless of the count parameter,

Frrors

None

Load Information

OS$AL04 calls no other subroutines. OSALO6 calls TSLMPC.

19-5 Third Edition

DOC3621-190

P> OSAL14

Purpose
O$AL14 provides the IOCS interface to the Versatec printer.

Usage

CALL, O0S$SALl4 (buffer,count,altrtn)

buffer Buffer to/from which data are moved.
count Number of words to be transferred,
altrtn Never taken and is an optional calling sequence.

(See Chapter 14.)

Discussion

The action taken by OSALl4 depends upon the data in the buffer and the
current vertical control mode (first character of kuffer).

OSAL14 has three vertical ocontrol modes:

1. Forms control

2. Header line and paginate control

3. No-control
The default mode is forms control. OSALl14 checks the first character
in the data buffer for a .SM. (ASCII :001). This character signifies
a change in the control mode, If the first character is not a .SOM.,

the line is printed according to the current ocontrol mode. Mode
descriptions follow.

Forms Control: 1In this mode, the first character in a buffer is never
printed but is used for forms control. The character interpretations
are:

0 Skip one line.

1 Eject to top of next page.

+ Print over last line (if printer model allows).
Other No action,

Third Edition 19-6

OTHER PERIPHERAL DEVICES

Header Line and Pagination: In this mode OSAL14 permits a header line
followed by three blank lines, followed by 56 text lines. The header
line is 42 characters followed by a page count which is kept
automatically by O$AL14 when in this mode.

No-control: In this mode no automatic actions are taken except that
any line containing a form-feed character will cause a page eject with
no further action,

Any data buffer beginning with a .SOM. will cause an internal change
by OSAL14. The change is determined by the character following the
«S0M. :

000 Enter no-control mode.

001 Enter control mode.

036 New header line but do not reset page count.

037 Enter new page size specified by the 16-bit number

contained in the next computer word.
All others Enter header control mode.
When entering header control mode, the characters following the .SOM.
are stored internally in OSALl4 for use as the header line,

All change of mode commands cause a pagde eject before any further
action,

Load information: This subroutine calls TSVG.

P TSLMEC
Purpose

The TSLMPC routine is the raw data mover that moves information £from
the user to one line on the MPC line printer.

The user normally prints lines under program control using either
FORTRAN WRITE statements or a call to O0$AL06, which in turn calls
TSLMPC. However, it is possible to call TSLMPC directly.

19-7 Third Edition

DOC3621-190

Usage
CALL TSLMPC (logical-unit, LOC(buffer), count, instr, status)

logical-unit Line printer unit.

buffer A pointer to a buffer to hold information to be
printed on the 1line printer. Information is
expected to be packed two characters per word.

count Number of words to print on the current line,

instr The instruction required to be sent to the line
printer, Valid instructions are:

Instruction (Octal) Meaning

100000 Read status.

40000 Print a line,

20012 Skip a line.

20014 Skip to top of page.

20100-20113 Skip to tape channel 0-11.

20120-20137 Skip from 1 to 15 lines,

status A three—-word vector that contains device code,

status of printer, and a space. Possible printer
status is:

Octal Value Condition

200 Online

100 Not busy

Discussion

Under PRIMOS, line printer output is buffered., If TSLMPC is called and
the buffer is full, the user is placed in output-wait state., Later,
when the buffer is no 1longer full, the user is rescheduled, and the
TSLMPC call is retried, The user may issue a status-request call to
check if the buffer is full. If the buffer is full, then the not-busy
status is reset. Using this feature, a user program may check that the
buffer is not full, then output one line, or do another computation if
the buffer is full. ©Under PRIMDS II, output is not buffered, and

control does not return to the user until printing is complete.

Third Edition 19-8

OTHER PERIPHERAL DEVICES

P SPOOLS
Purpose

A user program can insert a file into the spool directory by calling
the SFOOLS subroutine,

Usage
CALL SPOOLS (key, name, namlen, info, buffer, buflen, code)

key User option:
1 Copy named file into queue.
2 Open file on unit info(2) for writing.
name File to be copied (if key=1), or name to appear on
header page (if key=2).
namlen Length of name, in characters (1-32).
info Information array, 12 to 29 words, as follows:
1 Reserved after Rev. 17.
2 Temp file unit 2 (may range from 1-126

for Rev. 17 and above),
3 Print option word. (See below.)

4-6 Form type (6 ASCII characters).
(Equivalent to -FORM on PRIMDS command

line,)

7 Plot raster scan size (plot only).
This represents number of words/raster
scan.

8-10 Spool filename (returned).

11 Deferred print time (valid only if
defer bit specified in option word) -
an integer specifying minutes after
midnight. (Equivalent to -DEFER in
PRIMOS command line.)

12 File size, returned if key is 1.

13-20 (Optional) Logical destination name —
must be blank-padded (equivalent to -AT

19-9 cenTR BT

DOC3621-190

buffer

buflen
code

on command line). If these words are
used, bit 10 of word 3 must be set to
1.

21-28 (Optional) Substitute filename to be
: used -— must be blank-padded
(equivalent to -AS on ocommand 1line).
If these words are used, bit 11 of word
3 must be set to 1.

29 (Optional) Number of copies (equivalent
to -COPIES on command line). If this
word is used, bit 12 of word 3 must be
set to 1.

Scratch buffer - this is used to set up control info
and to copy the file to the spool queue if key is 1.
It must be at least 40 words long. Copy time is
1nverse1y proportional to buffer size. Naminal size
is between 300 and 2000 words.

Length of buffer.

Return code (nonzero for file system error).

Word 3 of the information array (print option word) is defined as

follows:
Bit

1

w

w N & U

Third Edi#* ~n

Meaning If Set to 1

Format control. (Column 1 contains carriage control
information.)

Expand compressed listing.

Generate line numbers at left margin.
Suppress header page.

Don't eject page when done.

No format control.

Plot file —— info(7) must be specified.

Defer printing to specified time —— info(11l) must be
valid.

Print on local printer only — Not used after Rev.
17.

If 1, use the logical destination name specified in

info(13-20).

19-10

OTHER PERTPHERAL DEVICES

11 If 1, use the substitute filename specified in
info(21-28).
12 If 1, spool the number of oopies specified in
info(29).
13-16 Reserved.
PRINTER/PLOTTERS

The printer/plotter subroutines are used to drive and oontrol the
Versatec printer/plotter.

P TG
Purpose

TSVG moves raw data from a buffer and prints the data on the Versatec
printer via a oontroller designed for wuse with the Versatec
printer/plotter.

Usage
CALL T$VG (physical-unit,LOC(buffer),nwds,instruction,status)

physical-unit Currently always 0, since the controller supports
only one device.
LOC(buffer) Address of user's buffer.

nwds The number of words in the buffer. The maximum is
512.

instruction A number from 0 to 10 that specifies an action that
the device is to take. These instructions are
described in detail in the following paragraphs.

status A two-word status array. Device status is returned

to status(2). status is returned only on a status
request instruction.

19-11 Third Edition

DOC3621-190

The interpretation of the bits that are set in
status(2) is as follows:

Bit Meaning
1 Always 0.
2 If=1, then paper is low.
3 If=0, then printer/plotter is ready.

If=1, printer/plotter is not ready.

4 If=0, printer/plotter is online
otherwise, printer/plotter is offline.

5-16 Always 0.

Printer/Plotter Instructions

Instructions to the printer/plotter are specified in the instruction
field of the calling sequence. They are a number from 1 to 10
interpreted as follows:

Third Edition

Return printer/plotter status in status(2). ‘The
contents of the status vector, status, are described
in the calling sequence description. T$VG waits
until the output buffer is empty or until there is a
timeout before returning status.

End-of-transmission. This instruction initiates a
print cycle and a paper advance. If the paper on
the printer/plotter is installed in roll form, this
roll is advanced eight inches; if the paper is
fanfolded, it is spaced to the top of the next form.

Reset. The reset instruction clears the buffer and
initializes all logic in the printer/plotter.

Form feed, The form feed initiates a print cycle
and a paper advance.

If the paper on the printer/plotter is installed in
roll form, the paper is advanced 2-1/2 inches; If
the paper is fanfolded, it is advanced to the top of
the next form,
Clear buffer,

Reserved.

19-12

OTHER PERIPHERAL DEVICES

6 Print the contents of buffer. (Print mode only —
see below.)
7 Make a plot, using the contents of buffer. (Plot
mode only — see below.)
8 Simultaneous print/plot PRINT. (SPP mode only —
see below.)
9 Simultaneous print/plot PLOT. (SPP mode only — see
below.)
10 Return status of output queue in status(2.) If

there is no room for the number of words specified
by the parameter nwds, set status(2) to 0. If there
is room for the number of words specified by nwds,
set status(2) to a nonzero value.

Print Mode: The Versatec printer/plotter may be operated as if it were
a line printer. The printer/plotter accepts 6— or 8-bit ASCII code.
Control commands are transmitted by using the instructions described
for the calling sequence or by transmitting the following ASCII control
codes:

ASCII Code
(Octal) Meaning

004 End of transmission.

014 Form feed.

012 LINEFEED, The transmission of a LINEFEED code
causes a print cycle and a paper advance of one
line, except when the 012 code follows either
the printing of a full buffer or a carriage
return (015).

015 Carriage return. A carriage return causes a

print cycle and a paper advance of one line,
provided the buffer has at least one character
entered and provided the buffer is not full.

When the 8-bit (128-character) ASCII character set is used, there are
no ASCII control codes.

Plot Mode: The printer/plotter performs plot operations that are
standard to all printer/plotter devices connected via the controller to
the Prime computer. Plot data consists of 8-bit, binmary, unweighted
bytes. Each dot that is plotted at the printer/plotter corresponds to
a single bit in the buffer. If bit is 1, a black dot is plotted at the

19-13 Third Edition

DOC3621-190

point corresponding to the bit position in the buffer, Bit 1 of a
memory word (2 bytes) is the most significant (leftmost) bit, and bit
16 of memory word is the least significant (rightmost) bit.

Simul taneous Print/Plot (SPP) Mode: SPP mode operation permits direct
overlay of character data which is generated by an internal matrix
character generator, with plotting data, which is generated on a
bit-to-dot correspondence. The SPP mode is an optional feature on same
printer/plotters, The SPP process makes use of both a print buffer and
a plot buffer, both specified in calls to T$VG, For example, using the
Versatec Printer/Plotter Model 1100A in SPP mode, the SPP operation
consists of first, placing up to 132 ASCII characters in the PRINT
buffer (Instruction = 8); and then placing 128 bytes of plot data in
the buffer (Instruction = 9) ten times., When the plot data is
transmitted to the printer/plotter, the plot buffer is scanned, and a
single row of dots, corresponding to the blnary content of the plot
buffer, is printed. During the scanning process, the print buffer is
also scanned. The corresponding dots of each prmt character are OR'd
with the plot buffer output; thus an overlay is formed consisting of
the printed and plotted data. Since the vertical height of an ASCII
character for the Model 1100A Printer/Plotter is ten raster scans, the
user must make ten calls to plot data before the print huffer is
completely printed and ready for new data. Table 19-2 shows the number
of raster scans per print line for the various models of Versatec
printer/plotter optionally available with Prime computer
configurations.

Caution

For SPP mode, do not attempt to transfer more than the maximum
number of characters to the print buffer.

SPP mode requlres a series of calls to the T$W driver. For
instance, in the example given, each print instruction was
followed by ten plot instructions. Do not interrupt such a
sequence with other instructions, because printer/plotter
output will be incorrect.

Third Edition 16-14

OTHER PERTPHERAL DEVICES

Table 19-2
Maximum Buffer Length for Versatec Printer/Plotters
PRINT
PLOT No. Scans/Print Lines

Model Bits Bytes Chars. 64 Chars. 96 or 128 Chars.

220a 560 70 80(70 in spp) 8 10

1100a 1024 128 132 10 12

1600a 1600 200 100 20 20

2000a 1856 232 232 10 12

2160a 2880 360 180 20 20

CARD PROCESSING SUBROUTINES

Card-reader subroutines drive and control serial and parallel interface
card readers.

Card Reading Operation

The user must insert the card deck in the card reader and give the
command:

ASSIGN CRn

n =0 or 1 for the device sub-unit number
The user then fills the input buffer from the card reader by calling
subroutines TSCMPC, TSPMPC (operating system library), or ISACO3,
ISAC15 (FORTRAN library). :
The user may issue a status request call to check if the input buffer
is empty. If the buffer is empty, the online status bit (bit 9 in the
status word) is reset.

Note

Under PRIMOS II, the card reader is never offline,

19-15 Third Edition

DOC3621-190

P 1%ACO3

Purpose
Reads ASCII input from the parallel interface card reader.

Usage
CALL I$ACO3 (physical-unit, buffer, word-count, altrtn)

physical-unit Device to or from which data is to be moved:

0 CRO, first controller
1 CR1, second controller
buffer Buffer which receives data from card reader.

word count Number of words to be transferred.

altrtn Alternate return in case of end of file or other
error. (See Chapter 14.)

Discussion

Card Format: Cards are expected to be in 029 format. '026' cards may
be read by preceding the deck by a card containing '$6' in columns 1
and 2. The conversion done for '026' cards is shown below.

Card Code Converted to
(026 Symbol) (Character)

=
2 (
<)
@ '
& +

The driver can be switched back to '029' format by '$9' in columns 1
and 2.

Load Information: This subroutine calls TSCMPC.

Third Edition 19-16

OTHER PERIPHERAL DEVICES

P ISAC09

Purpose

The subroutine I$AC09 reads ASCII input from a serial interface card
reader.

Usage
CALL ISAC09 (unit, buffer-name, word-count, altrtn)

Discussion

ISAC09 translates card codes to characters in memory as follows:

Card Code Converted to
(026 Symbol) (Character)

=
% (
<)
+ &
& +
Q '

Card codes read are either 026 or 029. The last card in the deck is
oQo.

Errors: The ERRVEC(3) may have the following octal values. (See
Appendix E for a discussion of ERRVEC,) Combinations are possible.

200 Online
40 I1legal ASCII
20 DMX overrun
4 Hopper empty
2 Motion check
1 Read check

19-17 Third Edition

DOC3621-190

Load Information: ISAC09 calls F$AT to fetch the arguments.

P 1%AC15

Purpose

Reads and interprets (prints) a card from a parallel interface card
reader,

Usage
CALL I$AC15(physical-unit, buffer, word-count, altrtn)

physical-unit Card-reader sub-unit:

0 CRO, first controller
1 CRl, seocond controller
buffer Data name into which card is to be read.

wor d-count Number of words to be read.

altrtn Alternate return in case of error. (See Chapter
14,)

Load Information

This subroutine calls TSPMPC.

P TSCMPC
Purpose

The TSCMPC routine is the raw data mover that moves a card of
information from the MPC card reader to the user's space.

T$SCMPC is called by the IOCS card-reader driver ISAC03. The user
normally reads cards under program control using either FORTRAN READ
statements or a call to ISAC03. However, it is possible to call T$CMPC
directly.

Third Edition 19-18

OTHER PERIPHERAL DEVICES

Usage
CALL TS$CMPC (physical-unit, LOC(buffer), word-count, instr, status)

physical-unit Card-reader number.

LOC (buffer) A pointer to a buffer to hold a card of information
read from the card reader.

wor d—count The number of words to be read from the current
card.

instr The instruction required to be sent to the card
reader, Valid instructions are:

Instruction Meaning

100000 (octal) Return status.

40000 (octal) Read card in ASCII format,

60000 (octal) Read card in binary format.

100001 (octal) Return status of hardware.

statusg A three-word vector:

status(l) Not used.

status(2) Card-reader status: If status is
explicitly requested by instr
(2100000), this word returns a value
indicating the state of buffer (not of

the hardware). Otherwise the status
bits returned are defined as follows:

Octal value Condition
200 Online
40 Illegal ASCII
20 DMX overrun
4 Hopper empty
2 Motion check
1 Read check

status(3) Number of words moved.,

19-19 Third Edition

DOC3621-190

Example

40
50
60
70

D070 I =1, 23

CALL TSCMPC (0, LOC(CARDS), 40, :40000, STATUS)
CALL OS.... /*SAVE CONTENTS OF CARDS

CONTINUE

The above example reads an 80-character card of ASCII data and places
the contents in CARDS.

P 0saco3
Purpose

OSACO3 punches output to the parallel interface card punch.

Usage

CALL OSACO3(physical-unit,buffer,word-count,altrtn)

physical-unit Card punch sub-unit number:

buffer
wor d—-count
altrtn

0 CRO, first controller

1 CR1, second controller
Data name containing line to be punched.
Number of words to be punched.

Alternate return in case of error — never taken in
Rev. 19. (See Chapter 14.)

Load Information

This subroutine calls TSPMPC,

P 03AC15

PurEse
Punches output

Third Edition

to the parallel interface card punch and prints on card.

19-20

OTHER PERIPHERAL DEVICES

Usage
CALL O$AC15 (physical-unit, buffer, word-count, altrtn)

physical-unit Card punch sub-unit number:

0 CRO, first controller
1 CR1, second controller
buffer Data name containing line to be punched.

wor d-count Number of words to be punched.

altrtn Alternate return in case of error. (See Chapter
14.)

Load Information

This subroutine calls TSPMPC.

P TSPEMEC
Purpose
TSPMPC is the raw data mover for the card punch. It is called by

O$AC03, OSAC15, and ISAC1S, the card punch drivers. These routines may
also be called by the user.

Usage
CALL T$PMPC (physical-unit, LOC(buffer), word count, inst, status)

physical-unit Card punch sub-unit.
LOC(buffer) A pointer to a buffer that holds data to be punched.

In ASCII mode, data are packed two characters per
word.

19-21 Third Edition

DOC3621-190

In binary mode, card punches are mapped into a
16-bit word as follows:

Bit Punch Row
1-4 Not used
5 12

6 11

7-16 0-9

word count Number of words to punch on a card from buffer.

inst Instruction required to be sent to card punch
(INTEGER*2), Instructions are:

Bit Set Instruction Meaning

1 :100000 Read status.

3 £20000 Process in binary mode.
4 £10000 Feed a card.

5 14000 Read a card.

6 :2000 Punch a card.

7 :1000 Print a card.

8 :400 Stack a card.

To punch a card, inst would be an octal 12400
meaning:

1. Feed a card.

2. Punch a card.

3. Stack a card.
status Three word status vector:

status(1l) Not used.

Third Edition 19-22

OTHER PERIPHERAL DEVICES

status(2) Device status returned for a read
request (instr = :4000):

value Condition
:200 Online
4 Illegal code
:10 Hardware error
24 Operator
: intervention
required

status(3) Number of words read.

MAGNETIC TAPES

The magnetic tape subroutines drive and control 7-and 9-track magnetic
tape devices. Their functions are shown in Table 19-3.
Note

Most of the following subroutines are obsolete and have been
replaced with TSMT,

Table 19-3)
Functions of Magnetic Tape Subroutines

9-Track
C$SM05 Control for 9-track ASCII and binary.
CSM13 Control for 9-track EBCDIC.
OSAMOS Write ASCII.
ISAMOS Read ASCII.
O$BMO5 Write binary.
ISBMO5 Read binary.
OS$AML3 Write EBCDIC.
ISAM13 Read EBCDIC.

7-Track
CSM10 Control for 7-track ASCII and binary.
coMll Control for 7-track BCD.
OS$AMLO Write ASCII.
ISAM10 Read ASCII.
OSBM10 Write binary.
ISBM10 Read binary.
0SAM11 Write BCD.
ISAM11 Read BCD.

19-23 Third Edition

DOC3621-190

Restrictions

PRIMOS supports record sizes up to 6K words for 9- and 7-track tapes.
Under PRIMOS II, larger records may be used only if the program
declares its own labeled common area called MIBUF7. The common area
must have an array as its first entry, which is used as an expansion
buffer when reading or writing 7-track magnetic tapes. The array must
be 1.5 times as large as the biggest record the user intends to use.
Alternately, the subroutine MIBUF7 in UFD IOCS can be modified
appropriately and the FORTRAN library rebuilt. (See Chapter 15.)

Since the subroutines are similar, they are described in groups.

P C$MO5, CSMLO, CSM1l, C$M13
Purpose

These subroutines provide control functions for tape as shown in Table
19_30

Usage
CSMO5
CsM10
CALL |CSM11((key, name, physical-unit, altrtn)
csM13
key User option:
-4 Rewind to BOT (Beginning of Tape).
-3 Backspace one file mark.
-2 Backspace one record.
-1 Write file mark.
1 Open to read,

Open to write.

3 Open to read/write,

4 Close. (Write file mark and rewind).
5 Move forward one record,

6 Move forward one file mark.

Third Edition 19-24

OTHER PERIPHERAL DEVICES

7 Rewind to BOF (Beginning of file).
8 Select device and read status.
name Not used (may be anything).

physical-unit 0-7 (0-3 for PRIMOS II), depending on which device
is ASSIGNed).

altrtn The alternate return. (See Chapter 14.)

Discussion

These routines call TSMT and ERRSET.,

Error Messages

Message Meaning ERRVEC(1) ERRVEC(2)
C$Mxx EOF End of file IE 1
CSMxx EOT End of tape D 2
CSMxx MTNO Magtape not operational D 3
CSMxx PERR Parity error D 4
CSMxx HERR Hardware error D 5
CSMxx BADC Bad call D 6

P 0SAMxx, ISAMxx, OSBMxx, ISBMxx

Pur pose

These subroutines provide read and write functions for magnetic tape as
shown in Table 19-3.

19-25 Third Edition

DOC3621-190

Usage

These subroutines all have the same calling sequence:

CALL subroutine (physical-unit, buffer, n, altrtn)

physical-unit Sub-unit number = 0, 1, 2, or 3.

buffer

altrtn

Error Messages

Data name from or to which information
tranferred,

Number or words to be read or written, If n =
then the subroutine is to write a file mark.

FORTRAN alternate return. (See Chapter 14.)

(See Appendix E for ERRVEC.)

Message Meanin ERRVEC(1) ERRVEC(2)
Subroutine EOF End of file IE 1
Subroutine EOT End of tape D 2
Subroutine MINO Magtape not operational D 3
Subroutine PERR Parity error D 4
Subroutine HERR Hardware error D 5
Subroutine BADC Bad call D 6

Parity error,

Discussion

Note

PERR, occurs only after 25 parity or raw errors.

These subroutines all call TSMT and ERRSET.

Third Edition

19-26

is

0,

OTHER PERTPHERAL DEVICES

P TMT
Purpose

The TSMT routine is the raw data mover that moves information £from
magnetic tape to user address space, or from the user space to tape.
TSMT also performs other tape operations, such as backspacing, forward
spacing, and density setting. If T$MI is called without the code
arqument, and an error condition is encountered, T$MT exits to the user
command level, rather than to the calling program, If TSMT is called
with the code argument, the appropriate error code will be returned to
the calling program.

Usage
CALL TSMT (unit, buff, rw, instr, statv [, code])

unit Magnetic tape drive — 1logical drive number O
through 7 (INTEGER*2),.

buff Location of the buffer from which to read or write a
record of information (INTEGER*4). It must be an
octal number. If neither a read or write operation,

L 2o N
LlL 1O Us

w Number of words to transfer. This number must be
between 0 and 6K words (INTEGER*2). 6K words can be
transferred under PRIMOS only if the buffer starts
on a page boundary. Otherwise, the maximum size is
reduced by the offset of the buffer from the page
boundary.

instr The instruction request to the magnetic tape drivers
(INTEGER*2) . Valid instructions are:

Octal Hexadecimal Meaning

000040 0020 Rewind to BOT, 7- or 9-track.
022100 2440 Backspace one file mark, 9-track.
020100 2040 Backspace one file mark, 7-track.
062100 6440 Backspace one record, 9-track.
060100 6040 Backspace one record, 7-track.
022220 2490 Write file mark, 9-track.

020220 2090 Write file mark, 7-track.

19-27 Third Edition

DOC3621-190

062200 6480 Forward one record, 9-track.

060200 6080 Forward one record, 7-track.

022200 2480 Forward one file mark, 9-track.

020200 2080 Forward one file mark, 7-track.

100000 8000 Select transport, 7- or 9-track, and get
status,

042220 4490 Write record, one character per word,
9-track,

042620 4590 Write record, two characters per word,

042200 4480 Read record, one character per word,
9-track,

042600 4580 Read record, two characters per word,
9-track,

052200 5480 Read and correct record, one character
per word, 9-track.

052600 5580 Read and correct record, two characters
per word, 9-track.

040220 4090 Write binary record, one character per
word, 7-track.,

040620 4190 Write binary record, two characters per
word, 7-track.

044220 4890 Write BCD record, one character per word,
7-track,

044620 4990 Write BCD record, two characters per

040200 4080 Read binary record, one character per
word, 7-track.

040600 4180 Read binary record, two characters per
word, 7-track.

044200 4880 Read BCD record, one character per word,
7-track.,

044600 4980 Read BCD record, two characters per

word, 7-track.

Third Edition 19-28

OTHER PERTPHERAL DEVICES

140000 C000 Return controller id. (See the section
on controller id below.)

Note

The following instructions are only valid with version 2 or 3
(in some cases both versions) magnetlc tape controllers, In
error situations, if no code argument is given, use of these
instructions with older versions of the controller will cause
an error message to be printed and the program will be aborted.
A description of use of these commands is found later in this
chapter.

Octal Hexadecimal Meaning

100020 8010 Erase a three-inch gap on the tape
(version 2 and 3 controller).

100040 8020 Unload. Rewind tape and place drive offline

(version 2 and 3 controller).

100060 8030 Set density to 800 bpi (version 2 controller
only).

100100 8040 Set density to 1600 bpi (version

2 and 3 controller).

100120 8050 Set density to 6250 bpi (version 3
controller).

100140 8060 Emable front panel density select switch
(version 3 controller).
Set density to 3200 bpi (for future use).

100160 8070 Set speed to 25 IPS (for future use).
100200 8080 Set speed to 100IPS (for future use).
043500 4740 Read record backwards (version 3 controller)

19-29 Third Edition

18.1

19

18.1

DOC3621-190

statv 6-word status vector., If this is the last argument,
g then only the first three words are set., If the
code arqument follows, then additional words may be
'set, depending on the controller being used. The
words are:

statv(l) Status flag:

Bits Meaning
1 Operation in progress
0 Operation finished

statv(2) Hardware status word from oontroller.
Possible values are:

Bits Meaning

01 Vertical parity (read)
error

02 Runaway

03 CRC error

04 LRC error

05 False gap or insufficient
DMA range

06 Uncorrectable error

07 Read and correct
operation failed

08 File mark detected

09 Transport ready

10 Transport online

11 End of tape detected

12 Selected transport re-
winding

13 Selected transport is at
load point (beginning of
tape)

14 Tape write-protected

(file- protected)

Third Edition 19-30

code

OTHER PERIPHERAL DEVICES

15 DMX overrun or no
formatter
16 Rewind complete (This bit

has no function with
version 2 controller.)

statv(3) Number of words transferred (read and
write operations only).

statv(4) Hardware status for version 1, 2, and
3 controllers. Bits 0 and 1 specify
density of tape:

00 800 bpi
10 1600 bpi
11 6250 boi
11 6250 bpi

statv(5-6) Reserved.

Specifies that the appropriate error code is to be
returned to the calling program. If this argument
is omitted, then any illegal instructions will
result in an error message being printed, followed
by a return to command level (PRIMOS). If this
arqument is used, then statv must be a six-word
array.

The possible error codes returned are:

ESNASS Device specified in physical-unit, not
assigned,

ESIVCM Invalid command (e.g. attempt to set
density on version 0 controller).

ESDNCT Device specified in physical-unit not
connected, or no controller,

ESBNWD Invalid number of words (nw <=0 or
>6144).

19-31 Third Edition

l891

18.1

DOC3621-190

Discussion

Magnetic tape I/0 is not buffered under PRIMOS. A call to TSMT returns
immediately before the operation is complete, When the magnetic tape
operation is completed, the status flag in the user space is set to 0.
Therefore, a user program may do another computation while waiting., If
a user initiates another call to TSMI' before the first call has
completed its magnetic tape operation, the second call does not return
to the user until the first magnetic tape operation has been completed.

Density Selection

Tt is assumed that tapes are written with one density. This assumption
is enforced by only permitting changes in density at the load point.
For this reason, it is not necessary, or possible, to set the density
when reading a tape. When the first record is read, the density of the
tape is determined. The rest of the tape will be read (or written)
using that density. The drive should be set to the right density
first.

For example, if the user set the density to 6250 bpi with the ASSIGN
command and read the first record of a 1600 bpi tape, then the rest of
the tape would be read using 1600 bpi. If after reading that record, a
record was written onto the tape (without rewinding to the load point),
then that record would also be written at 1600 bpi. If the tape was
rewound and then a record was written, the density would be switched to
6250 bpi. Although the density setting of 6250 bpi is remembered, it
will not go into effect until a record is written at the load point.

If the user assigns a tape without specifying a density, the unit will

be left at the density from the previous use. The default density (at
system initialization time) is 1600 bpi.

Read Record Backwards

This request causes the tape to read a record while moving the tape
backwards, It is sometimes possible to read a record backwards when a
bad tape prevents reading the record in the forward direction. After
the record is read, it will be necessary to reorganize the data., The
words of the record will be in reverse order. Each word will have the
bytes reversed. The bits within each byte will be in correct order.

Instruction to Get Controller 1d

The controller id may be used by software that intends to support all
tape drives, but takes advantage of special features that are available
only with a particular controller. For example, the ERASE command is
only available with version 2 and 3 controllers.

Third Edition 19-32

OTHER PERIPHERAL DEVICES

Figure 19-1 shows how buf(l) must be set up for this instruction
(:140000) .

[0 819 16|

] not used | Contr. ID* |

* ID from Table 19-4

BUFF(2) When instr is :140000

Figure 19-1
Table 15-4
Controller Id
Version Device ID Controller # Drive Type
0 '014 2081 Pertec
1 '114 2081 Kennedy, separate formatter
2 214 2269/2270 Kennedy, two-board integrated
» controller
3 '314 2023 Telex(1600/6250 bpi)

Use of the T$MT Wait Semaphore

While waiting for an operation to complete (that is, for status-word 1
to go to 0), a process can do one of several things. It can loop while
checking the status-done word, do another operation (such as get
status), or use a wait semaphore.

Looping on the status done word uses up CPU time while the process
waits for the tape operation to complete., This is not a good practice
for two reasons, First, it ties up the CPU needlessly and slows down
system performance in general. Second, it causes the process to waste
some of its time slice without doing useful work. This will result in
the process being scheduled extra time and the real time of program
execution will be longer than necessary.

This problem can be solved by using a semaphore. If the process waits
on a semaphore, the wait time is not counted against its time slice.
Therefore, as soon as the tape operation completes, the process will be
scheduled to run again to finish up its time slice.

19-33 Third Edition

18.1

DOC3621-190

The program TSMT contains a wait semaphore that can be used for this
purpose, This semaphore is used to queue tape requests., If the
process makes a tape request when the controller is busy with another
operation, the process is put on the wait semaphore. See Chapter 21
for a discussion of semaphores.

When the program wants to wait for a tape operation to complete, it can
call TSMT with a request for status. Since the tape controller is
already busy with the previous operation, the process will be put on
the TSMT wait semaphore.

Since the status request is fast and doesn't affect the tape, it is a
convenient tape operation to use to provide the semaphore wait. A
scratch status vector should be used so that the status from the
original call is not destroyed. Example of wait code:

INTEGER QODE, CODE2 /* RETURN CODES

INTEGER STATV(6) /* STATUS VECTOR SET BY TS$MT
INTEGER UNIT /* MAG TAPE DRIVE NUMBER (0-7)
INTEGER BUF (1024) /* OUTPUT BUFFER

INTEGER XSTATV (6) /* SCRATCH VECTOR FOR WAIT

CALL TSMT (UNIT, LOC(BUF), ,:042620,STATV, CODE)
/*WRITE 1024

o« o » /* OVERLAP EXECUTION WITH IO
C WAIT FOR TAPE WRITE TO COMPLETE.
100 IF (STATV(1).BEQ.0) GOTO 120 /* SEE IF IO IS ALREADY DONE
CALL TSMT (UNIT,LOC(O),0,:100000,XSTATV, CODE2) /* WAIT

GOTO 100
120 ...

Error Recovery on Writing

There are many possible error recovery schemes., The two that are
described here are based on different record formats. The first
algorithm can be used when records contain only data. The other scheme
requires that the records contain extra information for error recovery.

The following schemes are provided as alternatives to using the IOCS
routines that FORTRAN uses. The error recovery provided in the IOCS
routines correspond to that described for Simple Write Error Recovery.

Third Edition 19-34

OTHER PERIPHERAL DEVICES

Simple Write Error Recovery: The aim of the simple error recovery
program is to get by a possible bad spot on the tape by erasing part of
the tape where the error occurred and rewriting the record after that
gap.

The program does not try to rewrite the record on the same spot on the
tape even though repeated tries on the same spot may improve the tape
enough to permit the write to succeed. The tape is considered marginal
at that spot and may not be readable at a later date,

Only the version 3 controller (MPC-3), which supports the 6250 bpi tape
drives, has an ERASE command. On other controllers, the tape can be
erased by writing a file mark and then backspacing over the file mark.
This will cause three inches of tape to be erased.

Program steps for write error recovery:

1. Check if error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file-protected.

2. Erase a three-inch gap on the tape:
® Write a file mark.

® Backspace a record and check that the file-mark-detected
bit is set in the status word.

3. Attempt to rewrite the record.

4, TIf the record was not written successfully, repeat steps 2 and
3up to twenty times (a maximum of five feet of erased tape).

Write Error Recovery with Sequence Numbers: There is a drawback to the
first scheme. Since the tape is bad at the spot where the error
recovery is being done, it is possible for errors to occur while
backspacing. For example, if the bad record has a gap in the middle of
it, the program might detect two short records when backspacing. If
the program has some way of identifying records, the program can be
sure that it has not lost position during error recovery.

One way to do this is to include a sequence number with every record.
Then when error recovery is attempted, the program backspaces two
records and then reads a record. This record should contain the
sequence number of the last good record before the error record.,

Pregram steps for error recovery:
1. Check if error recovery is possible, Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file-protected.

2, Position the tape after the last good record.

19-35 Third Edition

DOC3621-190

® Backspace two records. This will place the tape before
the last good record.

® Read a record and verify that its sequence number
matches the one expected for the last good record.

e If the 'good' record can't be read, then it is possible
that the tape is not positioned correctly. Backspace
several records and read those records to find the
sequence number of the last good record written.

Erase a three-inch gap on the tape.
® Write a file mark.

® Backspace a record and check that the file-mark-detected
bit is set in the status word,

Attempt to write the record again.

If the record was not written successfully, repeat steps 1-4 up
to twenty times, lengthening the gap each time,

Error Recovery on Reading

Error recovery when reading a tape involves repeatedly rereading the
record. The problem of losing position can occur when doing error
recovery. Therefore, the procedure can be improved by verifying the
Sequence number each time a record is read.

Program steps for read error recovery:

1.

Check that error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready.

Backspace and reread the record eight times.

If unsuccessful, backspace eight records (or to the load point
if less than eight records away), space forward seven records
and then read the problem record. This sequence draws the tape
over the tape cleaner and could dislodge a possible dirt
particle,

Repeat steps 1-3 eight times,

Third Edition 19-36

PART VI
Communications Controllers and
Realtime Subroutines

20

Synchronous and
Asynchronous
Controllers

This chapter presents the following subroutines:

Routine Function

TS$SLCO Communicate with SMLC driver.
ASNLNS Assign AMLC line.

TSAMLC Communicate with AMLC driver.

SYNCHRONQUS CONTROLLERS

This section defines the raw data mover for the assigned SMLC line.
See the System Administrator's Guide for a discussion of SMLC lines.

P TSSLCO
Purpose

The SMLC driver is loaded in PRIMOS. A user program communicates with
the driver via FORTRAN-format calls to TSSLCO. The driver communicates
with the user address space via buffers in the user address space
specified by the user program. The data structure used by the driver
is a control block created by the user in the user address space. It

20-1 Third Edition

19

DOC3621-190

contains pointers to the user status buffer and to buffers containing a
message to be transmitted or set to receive a message. A separate
control block is required for each line,

Usage

CALL TS$SLCO (key,line,LOC(block),rwds)

key

Third Edition

Stop line. Only key + line required.

Define control block. The block is structured as in
Table 20-1, It defines an area to store status
information and, optionally, a message chain for
reception or transmission,

Array block contains five words which are to be
output to the ocontroller. See Tables 20-2 through
20-11 for details,

Array block contains a word which is to be used as
the next data set control word. See Table 20-12 for
details.

Array block contains two words which are to be used
as the next receive/transmit enable words, See
Table 20-13 for details.

The calling user process will go to sleep. It will
waken at the next SMLC interrupt or after
approximately one second. It will run with a full
time slice interval. The value line is ignored, as
are LOC(block) and nwds. If, however, the user
process does not own any SMLC lines, the call will
return immediately.

Return model number. Model number will be returned
in block. When using this key, nwds must equal 1.
The possible model numbers and their associated
protocols are the following.

20-2

CONTROLLERS

Model Number (Octal) Protocols
0 HSSMLC
5646 BISYNC and HDLC
5647 BISYNC and PACKET
5650 BISYNC and 1004/UT200/7020
5651 HDLC and 1004/UT200/7020
5652 PACKET and 1004,/UT200/7020
5653 HDL.C and PACKET
5654 BISYNC and GRIS
line Octal line number 0-7.
LOC(block) Address of user's block. User's block must reside
entirely within one page,
nwds Number of words in block,
Discussion

Before calling T$SLCO to configure a line (key = 3), a call with (key =
7) should be made to see if the Multiline Data Link Controller (MDLC)
contains the proper protocol and to determine what the line
confiquration should be. If an error occurs during initialization, the
following error messages are printed:

No SMI.Cxx -(controller address)
No OONTROLLER CONFIGURED for SMLCyy (logical number)
UNDEFINED CONTROLLER ID for SMLCxx (controller address)

It is the responsibility of the caller to see that the line
configuration is correct for the model of MDLC being used.

Timing

The user space program runs asynchronously with message transfers. A
call to TSSLCO returns immediately after executing whatever control
function was required. The progress of the communication must be
monitored by the user program by examination of the user space status
buffer contents.

20-3 Third Edition

[

]

DOC3621-190

Assigning Communication Lines

The communications lines must be assigned to a user space before they
can be used, The proper command is:

SML.CO0
SML.CO1
SML.CO2
SMLCO3
SML.C04
SMLCO5
SMLCO6
SML.CO7

ASSIGN

given at the user terminal. One or more lines may be assigned to a
given user,

Third Edition 20-4

CONTROLLERS

Table 20-1
Key = 2 SMILC Control Block

Word O

Word 1

Word 2

Issue DSQD, wait for (DS status .AND. DSSM) = RDSS, then
issue line-enable order.

word 3
Word 4
Word 5

Word 6

The status buffer must be completely contained in the
same page as the control block.

Last receiver/transmitter enable word sent to the
HSSML.C by the driver. (This word is written into
but not read by the driver.)

Bit 15 =1 Transmitter on

Bit 16 =1 Receiver on

Bit 1 Valid line-enable order in bits 2-16
Bits 2-16 Line-enable order. See Table 20-4,

Word 0.

Bits 1-4 Data set status mask (DSSM)

Bits 5-8 Required data set status (RDSS)

Bit 9 Set: No data set order - ignore Word 2
Bits 13-16 Data set control order (DSQD)

Note

Spare

Pointer to top of status buffer

Pointer to bottom + 1 of status buffer

Pointer to next word in status buffer to receive

the status information. (This word is written
into but not read by the driver.)

Note

20-5 Third Edition

DOC3621-190

Table 20-1 (continued)
Key = 2 SMLC Control Block

Word 7 Bits 1-2 '01' there exists a continuation
control block
Bits 3-6 Word count of next block - 8
Bit 7 0
Bits 8-16 Offset in current 512 word page
of next block

Note

The continuation block must reside in the same page as
the control block from which it was continued.

Word 8 Bit 16:
1 Transmit

0 Receive

Note

If Word 8 is given (nwds > 8) then at least one DMC
address pair must be given.

Words 9-10 DMC start and end address pointers. Up to four
11-12 pairs may be specified to allow for channel

13-14 chaining.
15-16

Note

Transmit/receive buffers may reside in any page, but
their starting and ending address pointers must reside

in the same page.

Third Edition 20-6

CONTROLLERS

Table 20-2

Key=3 Line Configuration Control Block (Bits 10-16)

Word 0

Bits 10 through 16 are constant for all controllers
and protocols. Bits 1 through 9 for each controller
follow.

Bit 10

Bit 11

Bits 12-14 12 13 14

Enable formatter option (BISYNC, UT200,
ICL7020, 1004, PACKET, SWITCH depending
on HSSMLC options)

Enable reporting of data set changes by
interrupt and status word.

| | L-Automatic parity-enable

a3 .

| ———Parity-select 0 = odqg,*
Parity-enable

Bits 15-16 15 16

Number of bits per character

If automatic parity is enabled

enabled, no parity will be generated or checked (i.e.,

no 9-bit data formats).

with 8-bit data

*Automatic

byte.

parity-enable appends a parity bit to the data
while parity-enable steals the most significant bit of each data

20-7 Third Edition

DOC3621~-190

Table 20-3
Key=3 Line Configuration Control Block (HSSMLC, bits 1-9).

HSSML.C
Word 0 l 2 3 4546 7 8 9
||
Select formatter mode:
0 EBCDIC
1 ASCIiI
Select BCC:
1 IRC (for use with ASCII mode only)
0 CRC-16

Unused control bits

Third Edition 20-8

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

Table 20-4
Key = 3 Line Configuration Control Block (5646, Bits 1-9)

5646
BISYNC
Word 0 1 2 3 4 5 6 7 8 9
0 0 o0 0 O 0 l
0 EBCDIC
1 ASCII
]l Enable LRC
- 0 CRC16
Enable "X.25" operation
HDL.C
Word 0 l1 2 3 4 5 6 7 8
1 0
Tx: End message on
left byte.
I—'I‘x: 0 = FLAG line during
idle periods.
-1 = MARK line during
idle periods,

Enable GO—~-AHEADS
(loop mode) .

Tx: Start on right byte.

Rx: Start on right byte
and generate encoded
status if message
ends with the left

byte.
HDLC enable.

Enable all-parties
address mode.

Enable secondary station
mode.

Secondary station mode, HDLC mode, loop mode, and all-parties address
mode are enabled on a line-pair basis only.

20-9 Third Edition

DOC3621-190

Table 20-5
Rey = 3 Line Configuration Control Block (5647, Bits 1-9)
5647
BISYNC
Word 0 1 2 3 456 7 8 9
0 00 0 0 OO
0 EBCDIC
1 ASCII
1 Enable LRC
0 GRC16
Enable "X,25" operation
PACKET
Word 0 1 23 456 7 89
0 0 00 0 0O
Enable CRC24
Enable upper bank

Third Edition 20~10

CONTRCLLERS

Table 20-6
Key = 3 Line Configuration Control Block (5650, Bits 1-9)

5650

BISYNC
Word 0 1 2 3 45 6 7 8 9
0 00 0O 0 L
0 EBCDIC
1 ASCII
1 Enable LRC
0 CRCl6
Enable "X.25" operation
ICL7020/0UT200/1004
Wword 0 l1 2 3 4 7 8 9
01 1

-
o
o
ow

—

Enable ICL7020%*

Recommended Configurations

1004 '140722
UT200 '40723 (Add '40 to enable DSS
ICL7020 '42723 interrupts.)

* Default protocol is UT200

20-11 Third Edition

DOC3621-190

Table 20-7
Key = 3 Line Configuration Control Block (5651, Bits 1-9)
5651
ICL7020/UT200/1004
Word 0 l1 2 3 45 6 7 8 9
0 0 0O 0 11
Enable ICL7020%*
Enable 1004*
Recommended Configurations
UNIVAC '100722
UT200 ¥723 (Add '40 to enable DSS interrupts.)
ICL7020 12723
HDLC
Word 0 1 2 3 4 5 6 7 8 9
1 O

Tx: End message on

left byte.

Tx: 0 = FLAG line during
idle periods,

-1 = MARK line during
idle periods.

————FEnable GO-AHEADS
(loop mode).

Tx:
Rx:

Start on right byte,
Start on right byte
and generate encoded
status if message
ends with the left
byte,

HDI.C enable,

Enable all-parties
address mode.

*Default protocol is UT200

Enable secondary station
mode.

Secondary station mode, HDLC mode, loop mode, and
all-parties address mode are enabled on a line-pair basis only.

Third Edition 20~-12

CONTROLLERS

Table 20-8
Key = 3 Line Configuration Control Block (5652, Bits 1-9)
5652
ICL7020/UT200/1004
Word 0 1 2 3 4 5 6 7 8 9
0 0 0 O o 1 1
Enable ICL7020
Enable 1004 (UT200=Default)
Recommended Configurations
1004 '100722
UT200 1723 (Add '40 to enable
ICL7020 12723 DSS interrupts.)
PACKET
Word 0 1 2 3 4 5 6 7 8 9
0 | o 0 0 O 0 O
Enable CRC24
|—Enable upper bank

20-13 Third Edition

DOC3621-190

Table 20-9
Key = 3 Line Configuration Control Block (5653, Bits 1-9)

5653
HDLC
Word 0 l1 2 3 4 5 6 7 8 9
0 0
Tx: End message on
left byte.
Tx: 0 = FLAG line during
idle periods,
-1 = MARK line during
idle periods.

Enable GO-2HEADS
(loop mode) .

Tx: Start on right byte,

Rx: Start on right byte
and generate encoded
status if message
ends with the left

byte.
HDLC enable,

Enable all-parties
address mode.

Enable secondary
station mode.

Secondary station mode, HDLC mode, loop mode, and
all-parties address mode are enabled on a line-pair basis only.

PACKET
Word 0 1 2 3 4 5 6 7 8 9
0 1 0 06 0 0 0 O
' Enable CRC24

Third Edition 20-14

CONTROLLERS

Table 20-10
Key = 3 Line Configuration Control Block (5654, Bits 1-9)

5654
BISYNC
Word 0 1 2 3 4 5 6 7 8 9
0O 0 0 0 O 0
0 EBCDIC
1 ASCII
1 Enable LRC
0 Enable CRC16
- Fnable "X.25" operation
GRTS
Word 0 1 2 3 4 5 6 7 8 9
6 1 0 0 O 0 |
0 EBCDIC
1 ASCII
| GRTS uses ASCIT
1 Enable LRC
0 Emable CRC16
——— GRTS uses LRC

Enable "X,25" operation
not used in GRTS

20-15 Third Edition

DOC3621-190

Table 20-11
Key = 3 Line Configuration Control Block (Words 1-4)

Word 1 Word configuration - Transmitter bit settings
as for Word 0.
Word 2 Special character (OTA '00 : function '10)
Bits 7-8 00 Character 1
01 Character 2
10 Character 3
11 Character 4
Bits 9-16 Character
Word 3 ‘ Special character bit settings as for Word 2
Word 4 Clock selection:

0 Reset internal clock to default 9.6 Kbps.
1 Switch internal clock to 62.5 Kbps.

Third Edition 20-16

CONTROLLERS

Table 20-12
Key=4 Data Set Control Bits (OTA '00:Function '00)
Bit 13 Not used
Bit 14 Speed Select
Bit 15 Request to send (RTS)
Bit 16 Data Terminal Ready (DTR)
Table 20-13

Key=5 Receive/Transmit Enable (OTA '00:Function '15)

word 0 Bit 11 Select internal as receive clock
Bit 12 Select internal as transmit clock
Bit 13-14:

00 Normal (transmit out, receive in)
01 Loop full duplex (transmit out,
receive in)
10 Echo full duplex (receive in,
transmit out)
11 Loop half duplex (pair combinations
must be: 1-2, 2-1, 3-4, 4-3)
Bit 15:
Enable transmitter
Disable transmitter

1
0
Bit 16:
1 Enable receiver
0 Disable receiver
Word 1 Bit 16:
1 Enable transmitter
0 Enable receiver

Note

Transmitter and receiver must be enabled/disabled
separately.

20-17 Third Edition

19

DOC3621-190

ASYNCHRONOUS CONTROLLERS

The following describes the raw data movers for assigned AMLC lines.
Refer to the System Administrator's Guide for the AMLC command and how
to assign AMLC lines.

P> ASNINS$ (Assign AMLC line)
Purpose

ASNINS allows user programs to request the assignment of a line
directly.

Usage:

DCL ASNLNS (FIXED BIN, FIXED BIN, CHAR(*), FIXED BIN, FIXED BIN,
FIXED BIN);

CALL ASNLNS (key, line, protocol, config, lword, status)

status Error status returned to caller,
key Assignment option:
0 Unassign AMLC line.
1 Assign AMLC line.
2 Unassign all AMIC 1lines owned by
caller,
line Desired line number,
protocol Desired protocol (input and output). Blanks

indicate no change desired. The default is TRAN
(transparent).

config Desired config setting. 0 indicates no change
desired.
lword Desired line characteristics. The buffer number

used for the 1line cannot be changed by a user
program using this interface.

Third Edition 20-18

CONTROLLERS

Description

This routine is a new direct entrance call available to users. It
performs the assignment and unassignment of AMLC lines for a caller. A
user may own more than one assigned line., The caller may also set line
characteristics, protocol, etc. This routine will only allow a caller
to assign a line that has a corresponding IBT entry of 0, which means
that the 1line is assignable. The buffer used for the assigned line is
dynamically chosen within ASNINS.

Refer to the System Administrator's Guide for protocol, config, and
lword values.

p TSAMLC

Purpose

TSAMLC is a direct entrance call. It performs raw data movement,
provides status information about assigned AMLC lines, and transfers
characters between the caller's buffer and a desired a531gr1ed line's
buffer. The caller must own the desired line, that is, the
corresponding IBT entry must contain the caller's user number.

Usage

DCL T$AMIC (FIXED BIN, PTR, FIXED BIN, FIXED BIN, FIXED BIN,
: FIXED BIN, FIXED BIN);

CALL TSAMIC (line, user-buf-addr, char—-count, key, stat-vec,
char-pos—arg, errcode)
line Desired AMLC line number,
user-buf-addr Address (pointer) to the caller's buffer.

char-count Desired number of characters to move. No maximum
limit is enforced.

key Desired function:
1l Input char—count characters.
2 Input char-count characters or until

.NL., 1s encountered, stat-vec(l) will
be the actual mnumber of characters
read.

20-19 Third Edition

19

19

19

DOC3621-190

Third Edition

10
11

Output char-count characters. Maximum
is char-count. This key assures the
caller that char-count characters will
be output. For example, an error is
not returned if the 1line's input or
output luffer is smaller than
char-count. TS$SAMLC will output blocks
of data from the caller's buffer into
the available room in the line's output
buffer until char-count is exhausted,
A one-second wait 1is issued between
output chunks to allow time for the
line's output buffer to clear. In most
cases, the entire char-count should be
output at once.

stat-vec(l) = number of characters in
input buffer. stat-vec(2) = state of
carrier, 0 = carrier, not 0 = no
carrier,

Return status of output buffer,
stat-vec(l) = 1 if room for char-count

in output buffer. stat-vec(l) = 0 if

not enough room for char—count.
stat-vec(2) = state of carrier.

Input all available characters in the
input buffer., Maximum = char-count.
This key will place all the available
characters in the line's input buffer
into the caller's buffer. stat—vec(l)
= number of characters actually input.

Return additional output buffer status.
(Refer to key 5.) stat-vec(l) = amount
of character space remaining in the
output buffer,

Flush input buffer,
Flush output buffer.
Flush both output and input buffers.

Output characters to available roan in
output, This key will output as many
characters as possible into the line's
output buffer. A wait will not be done
to exhaust char-count. stat-vec(l) =
char-count minus the number of
characters actually output.,

20-20

stat-vec

char-pos—-arg

CONTRCLLERS

stat-vec(1l) = number of chars that were
not successfully output. If
stat-vec(l) = 0, this means all
characters were output.

Two-word status vector used by certain keys.

The caller may wish to indicate a starting position
within the buffer addressed by user-buf-addr.
Char-pos—-arg applies for both input and output keys.
This is an optional argqument. If amitted, the
default is to start with the first character., Note:
if char-pos—arg is used, the first Ccharacter
position should be indicated by 1 (there is no
character at position 0). Also, char—-pos—arg is not
updated within TSAMLC,

Optional argument to return error status, If
errcode is present, error messages will not be
printed at the caller's temminal.

20-21 Third Edition

19

21

Semaphores and
Timers

REALTIME AND INTERUSER COMMUNICATION FACILITIES

PRIMOS supports user applications that have realtime requirements or
that need to synchronize execution with other user programs. Part of
this support is the ability to modify the priority and timeslice
duration of any user via the CHAP command. Program support for
realtime applications and interuser synchronization is in the form of a
set of subroutines that provide access to Prime's semaphore primitives
(wait and notify) and to internal timing facilities.

Table 21-1 lists the subroutines available for handling these
facilities.

SEMAPHORES

On timesharing systems where more than one process can be active at the
same time, there is often a need to ooordinate the execution of
multiple processes with one another. Such coordination is required
when two or more processes cooperate to solve a common problem, or when
multiple processes must use a common, limited resource.

21-1 Third Edition

DOC3621-190

Table 21-1
Semaphore Subroutines by Function

Open (Request) Semaphore
SEMSOP (by filename) (2)
SEMSOU (by file unit) (2)

Notify Semaphore
SEMSNF

Wait
SEMSWT

Test Counter
SEMSTS

Drain (Reset Counter or Notify)

SEMSDR

Set Timer
SEMSTN (1)

Timed Wait
SEMSTW (2)

Close Semaphore
SEMSCL (2)

Suspend Process
SLEEPS

Notes to Table 21-1

1. For numbered semaphores only
2. FPor named semaphores only

Third Edition 21-2

SEMAPHORES AND TIMERS

When multiple processes are working together as part of a larger system
or to solve a common problem, it sometimes happens that one or more of
the processes encounter a situation in which they cannot do any further
work until some event, external to the process, happens. An example of
this is a spooler which picks up print requests from a queue. When
there are requests in the queue, the spooler services them; however,
when the queue becomes empty, it can no longer do useful work and must
wait for another process to give it something to do.

There are many resources on a timesharing system that must be shared by
all of the running processes. Included in the list are such things as
devices that can have only one user at a time (such as a paper-tape
punch), a section of code that performs a single operation, or files
that are updated and read simultaneously by several programs.

The semaphore facility provides a means to coordinate multiple
processes, providing that the processes involved all use the facility
in the same way.

The semaphore facility consists of same blocks of memory, which are
called semaphores, and a set of software routines or hardware
instructions that perform various operations on these blocks. There is
no real connection between a semaphore and the event or resource with
which it is associated. The use to which a semaphore is put is
determined solely by the application programs that use it. All of the
cooperating programs must agree on the meaning (or use) of a semaphore
and use it the same way.

21-3 Third Edition

DOC3621-190

How a Semaphore Works

A semaphore consists of two parts: a counter and a queue.

Counter -1

Queue

Resource Semaphore at Start
Figure 21-1

When a process wishes to wait for an event to happen or a resource to
become available, it issues a wait call for the semaphore associated
with that event or resource. The wait call will increment the ocounter
for that semaphore and test its value. If the counter is less than or
equal to 0, the process is allowed to proceed immediately and is not
placed on the semaphore's queue.

Third Edition 21-4

SEMAPHORES AND TIMERS

Counter 0

Resource Semaphore After Call by One Process
TTotvmow Ll DasaArs o e 8
Ublil o

the Resource, No Proce

Figure 21-2

If, however, the counter is greater than or equal to 1 after being
incremented, then the process is placed on the wait queue for the
semaphore. The process will not run again until it leaves this queue.
Processes are placed on the queue in priority order with higher
priority processes being placed closer to the head of the queue.
Within a given priority, the processes are treated as a real dqueue -

first in, first out.

Counter 1

Process 2

Queue

Resource Semaphore After Call by Second Process
(First Process is Using the Resource)

Figure 21-3

21-5 Third Edition

DOC3621-190

When a process wishes to report that an awaited event has occurred, or
that a resource has become available for use by other processes, it
will call a notify routine for the semaphore associated with that event
or resource. The notify routine will first test the value of the
counter for that semaphore, If the counter is greater than 0
(indicating that one or more processes are in the semaphore's queue),
then the routine will remove one process from the top of the queue,
thereby allowing that process to run again. Whether a process was
dequeued or not, the routine will then decrement the counter by one.

Counter 0

Resource Semaphore After Notify by One Process
(Process 2 is Now Using the Resource)

Figure 21-4

Normally, a semaphore's counter is preset to some value before the
semaphore is used by any process. The value to which it is set depends
on the nature of the software that will use the semaphore and on the
purpose of the semaphore. Typical initial values are -1 and 0. A
‘value of -1 allows the first process that waits on the semaphore to
proceed immediately without being queued, as shown in Figures 21-1
through 21-4. This effect is desirable if the semaphore is used to
coordinate the use of a shared resource. The resource is _.congidered
available until a process indicates its intent to use it, A value of 0
is appropriate for wait situations in which a process must wait until
some condition exists or until an event occurs. The process that must
wait for an event to happen does a wait operation on the semaphore, and
is immediately put on the queue since the counter becomes greater than
0. When another process determines that the awaited event has
occurred, it will notify the same semaphore, thus allowing the queued
process to run.

Third Edition 21-6

SEMAPHORES AND TIMERS

When a process opens a named semaphore, and that process is the first
to open that semaphore, then the SEMSOP routine will preset the
semaphore's counter to a value of 0. If an initial value of -1 is
required, then the process should notify the semaphore once after
opening it, For named semaphores, SEMSOU also allows opening
semaphores with initial values that are negative or 0. The minimum
value is -32767. If the semaphore must be reset to its initial value
of 0 at a later time, then a call can be made to the drain routine (see
SEMSDR below) .

Cooperation of Processes

Tt should be remembered that a semaphore is a structure that
cooperating processes can use to control their access to resources, or
to coordinate their execution. The operating system does not verify
that the semaphore is being used correctly since the association
between the semaphore and the event or resource is merely a convention
adopted by the processes involved.

In order for the semaphore facility to work correctly, all processes
that want to wait for an event or a resource must first wait on its
associated semaphore before using the resource or assuming that the
awaited event has occurred. There is nothing to stop the careless
programmer from using a shared resource without first waiting on the
appropriate semaphore, Such coding practices will most likely cause
the entire subsystem of processes to malfunction.,

PRIME SEMAPHORES

On Prime computers, a semaphore consists of two (16-bit) consecutive,
nonpageable words of memory. The wait and notify operations are
implemented in firmware and are usable by supervisor software only. So
that users can use the semaphore facility, four calls have been created
that perform the wait and notify operation on a set of semaphores that
are reserved by the operating system for user programs:

® SEMSWT
® SEMSTW
® SEMSIN
e SEMSNF

In Rev. 19 there are 1024 mnamed semaphores available to user
_processes, and 65 numbered sema‘;”xTGres. T

e e B v i o ST o K

21-7 Third Edition

DOC3621-190

Numbered Semaphores and Timers

Internal to PRIMOS is an array of 65 numbered semaphores reserved for
the use of user processes. All reference to these semaphores is by the
index of the semaphore, an integer from 1 to 65. Other than ensuring a
valid semaphore number, PRIMOS makes no stipulations for semaphore use
such as which users can access which semaphores, etc., Allocation and
cooperative use of the semaphores is strictly under user control.

Of the 65 user semaphores, up to 15 can be used at any time as timed
semaphores, that is, semaphores that are periodically notified by the
system clock process. (See the SEMSIN routine.) Again, allocation of
timed semaphores is on a first-come first-served basis, and nothing is
done to prevent incorrect use of a timed semaphore.

Numbered semaphores are assigned by the operating system as wait or
notify calls are made involving those numbers., No open or close
request is necessary. It is the programmer's responsibility to use the
number that has been agreed upon for a particular resource.

Named Semaphores

The operating system maintains a pool of semaphores which it can assign
to user processes., When a process wishes to use one or more named
semaphores, it must first ask the operating system to assign them to
the process. The process requests access to named semaphores via an
open routine. The user can request that multiple semaphores be
assigned to it in a single call to this routine. The operating system
will return a set of numbers to the process if it decides that the
requested semaphores can be assigned to that process. The process will
use these numbers in all subsequent calls to semaphore routines to
indicate on which semaphore to perform the semaphore operation.,

The operating system can tell when different processes wish to use the
same set of semaphores by examining the parameters that they include in
the call to the open routine.

(See SEMSOP and SEMSOU below for more details on how to use the open
call.,)

After a process has opened a set of semaphores, it can do any number of
operations on those semaphores. The possible semaphore operaticns are
described in the section entitled DESCRIPTION OF THE SUBROUTINES.

When a process has finished using the named semaphores that were
assigned to it, it requests that the operating system close those
semaphores, thus making them inaccessible to the process. When all
processes that were using a semaphore close it, then the space in the
Ooperating system taken up by that semaphore is returned to the
operating system's free pool and may be assigned to other processes at
a later time.

Third Edition 21-8

SEMAPHCRES AND TIMERS

When a process logs out, all named semaphores that were opened by the
process but not closed are closed automatically., If this process was
the last user of a semaphore, the space used by the semaphore is
returned to the free pool.

CODING CONSIDERATIONS

Named vs. Numbered Semaphores

There are two methods by which a process can specify which semaphores
it intends to use. Also, there are two sets of semaphores maintained
by the operating system. One set is available to any process that
wishes to use it, and its semaphores are identified by number. When a
process wishes to use one of these semaphores, it specifies the number
of the desired semaphore in the parameter 1list of the semaphore
routines. This set of semaphores is called numbered semaphores.
Numbered semaphores are easy to use, but they have a major drawback:
there is nothing to prevent other processes from using the same
semaphore for different purposes. Therefore, all users of the system
must agree on the usage that each numbered semaphore will have;
otherwise, confusion will result.

To eliminate the problems caused by the sharing of numbered semaphores,
a second set of user semaphores was created., These are called named
semaphores because they are associated with a file. Semaphores in this
set cannot be used by a process until they are opened., Opening a
semaphore means that the process must call the routine SEMSOP or
SEMSOU, which will assign semaphores from the pool for the process to
use. Each routine returns a set of numbers which can be used instead
of numbered semaphore numbers in all other semaphore routine calls.
Only valid semaphore numbers that have been assigned to a process by
SEMSOP or SEMSOU can be used in subroutine calls that manipulate named
semaphores. An attempt to use any other numbers will result in an
error return from the routine.

To open a set of named semaphores, a routine must associate them with a
file system object. SEMSOP will open a set of named semaphores and
associate them with the name of a file in the current UFD of the
process performing the open operation., SEMS$OU will open a set of named
semaphores and associate them with a file open on a particular file
unit. In both cases, the process must have read access to the file,

Timers and Timeouts

When a process waits on a semaphore, it anticipates that it will be
notified within a reasonable amount of time. If, for some reason, the
process that is going to notify the semaphore fails to do so, all
processes waiting on that semaphore will continue to wait, possibly for
a very long time.

21-9 Third Edition

DOC3621-190

To guard against processes waiting forever, a timer mechanism is used.

Named Semaphore Timers: To prevent a process from waiting forever on a
named semaphore, a special wait routine exists (called SEMSIW) which
takes a semaphore number and a time value as parameters. The process
will wait on the specified semaphore until the semaphore is notified or
until the specified amount of realtime has passed. The routine returns
a value to the process that indicates why the process was allowed to
continue. A value of 0 means that the semaphore was removed from the
wait queue because of a notify by another process. A value of 1 means
that the process was allowed to continue because the specifed time had
elapsed without a notify on that semaphore. It is also possible for a
value of 2 to be returned; this return value indicates that the
process was stopped by someone pressing the BREAK key or CONTRCL-P at
the terminal controlling the process, and then typing START. This
sequence causes the operating system to abort the process, thus
removing it from the semaphore on which it was waiting, followed by a
restart of the process at the wait call.

Numbered Semaphore Timers: The timer facility for numbered semaphores
allows a semaphore to be automatically notified after a certain amount
of time has passed. A user process tells the operating system, via a
subroutine call, that a timer is to be associated with a numbered
semaphore, The process also specifies the amount of time that should
pass before the operating system notifies the semaphore. When this
amount of time has passed, the operating system notifies the semaphore.

Much care is needed when coding programs that use semaphores with this
kind of timer, If another method is not used besides the semaphore to
indicate that the awaited event has actually occurred, then a notify
caused by a timer cannot distinguished from a notify caused by a
process. The processes using the semaphore should, therefore, be coded
so that they can verify that a notify by another process has occurred
before using the resource protected by the semaphore. The action that
is taken when a timer notifies the semaphore should be agreed upon by
all of the processes using the timed semaphore.

PITFALLS AND HOW TO AVOID THEM

External Notifies

When a semaphore is notified for some reason other than an explicit
call to the notify routine, that notify is called external; that is,
it originated from a source external to the processes that are using
the semaphore. Same of the reasons that an external notify may occur
are listed here.

Expiration of a Timer: When a timer is set for a numbered semaphore,
and that timer expires, the operating system will notify the semaphore.

Third Edition 21-10

SEMAPHORES AND TIMERS

This semaphore will look like an external notify to the processes that
use the semaphore; the fact that the notify is external can be
detected if the processes are coded properly. (See Coding Suggestion
below.)

The notify caused by a timeout can be useful in cases when the process
that is supposed to notify the semaphore is prone to being aborted.
The notify initiated by the operating system will prevent processes
from waiting forever.

Use of timers with named semaphores causes a code to be returned to the
process that indicates when a timeout has occurred.

Malfunctioning Process: Processes that are supposed to be using a
semaphore, like all other programs, sometimes do not behave properly.
Malfunctioning programs can do extra notify calls, and cause what
appear to be external notifies, Also, processes that are not supposed
to be using a numbered semaphore may decide to use it anyway. Unless
the semaphore can be protected from such interference, then what
appears to be an external notify will result.

Process Quit: The semaphores that a user process can access on a Prime
system are called quittable semaphores. This means that a process that
is waiting on a semaphore can be stopped by pressing the BREAK key or
CONTROL-P at the terminal controlling the process. When a process is
stopped by this means, and then continued (by using the PRIMOS START
command), the process will reexecute the wait operation,

Coding Suggestion: Since semaphores can be notifed by breaks and
timeouts as well as by explicit calls to SEMSNF, and since this could
cause malfunctions in a subsystem, it is always best to code in such a
way that this situation can be detected. This means that a process
should not rely solely on the semaphore to indicate that a resource is
really available or that an event has actually occurred. A good
practice is to have one additional method, besides the semaphore, to
indicate what the current state of the resource or event is,

One such method is to have a word in shared memory (accessible by all
cooperating processes) which is set to indicate that the event has
really occurred or that a resource is free, Before a process notifies
a semaphore, it sets this word to an agreed value. When the process is
allowed to proceed from a semaphore wait, it should check the value
contained in that word. If the word contains the value, it will know
that the semaphore was notified by a cooperating process, and not by
the operating system. In this case, the process will clear the word,
do its processing, and reset the word to the agreed upon value Jjust
before notifying the semaphore. If a process proceeds from a wait call
and the word is not set to the agreed upon value, it can assume that
the operating system notified the semaphore and can reissue the wait
call,

21-11 Third Edition

DOC3621-190

Infinite Waits

It is possible to create a situation in which one or more processes are
waiting on a semaphore, and there are no processes running that will
ever notify that semaphore. The following are methods of creating this
situation.

Multiple Waits: If a process issues a wait call, and is not queued,
and then continues to reissue the wait call without intervening
notifies, that process will eventually cause the semaphore ocount to
become greater than 0 and the process will wait. This of course
assumes that there is not another process somewhere doing multiple
notifies,

In the case of a resource—protection semaphore, if all other processes
obey the rules, they will wait on this semaphore before they notify it.
They will therefore queue up behind the multiple-waiter process.,
Eventually, all the processes of the subsystem will become queued on
the semaphore queue, and no process will remain to notify the
semaphore.

Aborted Notifiers: Another way of causing infinite waits is to abort a
process that would, under normal circumstances, notify a semaphore. If
this is the only process that will do notifies on the semaphore, then
all other processes that wait on it will wait forever.

Coding Suggestion: Infinite waits can be avoided by associating a
timer with the semaphore. This will guarantee that one or more
processes will eventually be removed from the wait queue. Extra coding
must be done in the processes, however, so that a timeout can be
identified as such, and so that appropriate action can be taken. This
code should determine whether the process that should have notified the
semaphore is still running or not, If it is running, the notify is
considered external and the process reissues the wait call., If the
potential notifiers have all been aborted, appropriate recovery action
should be initiated.

Deadly Embrace

When multiple semaphores are being used, a situation called deadly
embrace can occur. Ths happens when two processes each gain rights to
use a resource by waiting on the appropriate semaphore for that
resource, and then each attempts to acquire the resource that is being
used by the other process., Clearly, neither process will ever notify
the semaphore for the resource it holds (it is waiting to get access to
a second resource), and no other process will ever notify the
semaphores (since each resource is held already by one of the two
processes). Therefore, both processes will wait forever,

Third Edition 21-12

SEMAPHORES AND TIMERS

This situation can neither be detected nor prevented by the semaphore
facility. It can be prevented, however, by the processes using the
semaphores, if the following procedure is used.

Each semaphore that a system of processes will use is assigned a
different number; this number will be called the semaphore's level
number. Processes can only issue a wait call for a semaphore whose
level number is greater than the level number of any semaphore it has
waited on but has not yet notified, For example, if the level numbers
for three semaphores are 1,2, and 3, and a process has waited on the
second semaphore (level 2), but has not yet notified it, then the
process can legally issue a wait for the third semaphore (level 3) but
not for the first, since level 1 is numerically less than level 2.

This technique, if strictly followed, makes deadly embrace situations
impossible. It is sometimes practical for processes to call a routine
which checks for level number violations before issuing a wait call.
If all processes use this routine instead of the wait routine then
deadly embrace is prevented.

LOCKS

Locks, like semaphores, are a method which programs or processes can
use to coordinate their usage of some resource. Before a process
attempts to use a resource that is protected by a 1lock, it calls a
routine that grants or denies permission to use the resource or causes
the process to wait until the resource becomes free. When the process
has been given permission to use the resource, it is said to hold the
lock on that resource. When the process is through using the resource,
it calls another routine to indicate that it is done. This operation
is called giving up the lock, or releasing the lock on that resource.

Various types of locks exist, some of which will be discussed in this
section,

Saome types of locks behave very much like semaphores and, in fact, many
types of locks: can be coded with the use of semaphores. Semaphores,
unlike locks, allow a small, well-defined set of operations to be
performed while the uses and types of locks that can be coded vary
greatly.

Mutual Exclusion

Mutual-exclusion locks are used when only one or a few processes are
allowed to use a resource at any given time. When a process requests
ownership of a lock for the resource, it is given the lock if no other
process currently holds it. If the lock is held by another process,
all others must wait until the one holding the lock gives it up.

21-13 Third Edition

DOC3621-190

This type of lock can be implemented directly with the use of
semaphores. Requesting the lock is equivalent to a wait operation on a
semaphore; giving up the lock is equivalent to a notify of that
semaphore,

Since external notifies may occur, it is a good practice to expect them
and to code in such a way that they can be detected and ignored,

Nl Locks

N1 locks are used to protect objects that can be both read and modified
simultaneously, such as files and data bases. This type of lock allows
any number of users to read the object, or one process to modify the
object. When a process requests permission to read the object, such
permission is granted immediately, as long as there is not currently a
process modifying it. Requests to gain access to the object for
modification are granted only if there are no other readers or writers
using the object. If another process is using the protected object,
the writer is placed on a queue and must wait until all current users
of the resource indicate that they are done. If a writer is waiting to
use the resource, then no other requests for use of the object are
granted until that process has used the object. This prevents readers
from gaining access to the object and causing the writer's request to
be delayed indefinitely.

When a writer is given access to the object, all other requests for
access are dqueued. When the writer finishes, the other requests are
processed.,

Use of an N1 lock on a file eliminates data loss that can sometimes

occur when multiple processes are allowed to update the same file
simul taneously.

Producers and Consumers

In many computer systems, certain processes create work which must be
processed, such as device drivers that read data from a device which
must be routed to the correct place, or print programs that place data
files into spool queues to be printed. These work-producing processes
are called producers.

Other processes in a system process the work created by the producers.
These processes are called consumers. Examples of consumers include a
user process that manipulates data coming into the system from a
peripheral device, or a spooler that prints files in response to a
user's print requests.

The coordination required between producer processes and their

corresponding consumer processes can be achieved with the use of
producer—consumer locks.

Third Edition 21-14

SEMAPHORES AND TIMERS

Producers call a routine that indicates that there is work to process.
The routine keeps track of the number of producers that have called it;
each call indicates that another unit of work is available. Consumers,
on the other hand, call a routine that checks to see if there is
any-work-to-do. If there is no work, the routine causes the consumer
process to wait until there is work, that is, a producer calls the
"T-have—work-to-do" routine., If there is work to do, the consumer
process is allowed to continue, and the counter of units of work left
to do is decremented,

This lock can be coded directly with semaphores. A semaphore, with its
counter initialized to 0, serves as the locking mechanism. Producers
notify the semaphore, causing it to become negative; consumers wait on
the semaphore, causing it to rise toward 0. If there is no work to do
(semaphore counter equal to 0) then a consumer will be queued, when it
waits on the semaphore, until work becomes available.

Note that there can be any number of producers or consumers. If
multiple consumers wait for work, and there is none to do, then the
semaphore counter will contain a value equal to the number of gueued
consumer processes. A notify by a producer will allow one of the
consumers to proceed.

Since semaphores are subject to external notifies, it is advisable that
a counter, other than the counter that is a part of the semaphore, be
maintained to indicate how much work is available for consumer
processes. Producers will increment this counter; consumers will take
work from the work queue and decrement this counter, If a consumer is
notified out of the semaphore queue and the counter does not match the
semaphore counter, then it can assume that an external notify has
occurred.

Record Locks

When many processes must update a file, and speed is important, it is
not practical to use a lock which protects the entire file, since any
update request would lock all other processes out of the file.
Considerable overlap in processing can usually be achieved if just the
portion of the file that is being updated by a process is locked.
Usual units to lock are the record or the page being updated.

If the file is large, then it becomes impractical or impossible to have
an individual lock for each record or page to be protected. One way of
overcoming this difficulty is to assign locks from a pool ona
temporary basis. When a process wishes to update a record, for
example, it requests a lock by passing the record number in question to
the lock routine. If there is currently no one holding a lock on that
record (the lock routine scans its list of locks being held by other
processes), then a lock is assigned from a free pool and the record
number supplied is remembered. If a lock is requested for a record
that is currently locked by another process, then the second and

21-15 Third Edition

DOC3621-190

subsequent requesters of the lock are forced to wait. When the last
holder of a lock gives up the lock, and there are no other processes
waiting to use the record protected by that lock, then the lock itself
is returned to the pool of free locks. It can then be used for other
record locks.

In general, the pool of locks needs to be as 1large as the expected
maximum number of records that can be locked at any given time. It is
the lock routine's responsibility to manage the lock pool and to deal
with the problems that arise when there are no more free locks in the
pool. One method of dealing with this situation is to use a
"no-free-locks" semaphore, If there are no free locks in the pool, the
process requesting the 1lock is forced to wait on this semaphore. The
lock routine notifies this semaphore when a lock becomes available.

Notice that record locks are really mutual-exclusion locks; however,
the object that is being protected by any given lock changes with time.
The lock routine must include a small data base that is used to
remember what is being protected by each lock,

DESCRIPTION OF THE SUBROUTINES

The following semaphore operations are available to user processes,
Table 21-1 shows the subroutines by function.

P> SEMSOP

P SEMSOU

Purpose

These routines open a semaphore.

Usage
CALL SEMSOP (fname, namlen, snbr, ids, code)

or

CALL SEMSOU (funit, snbr, ids, init-val, code)

funit The number (1-127) of a file unit that has been
opened (FIXED BIN).

Third Edition 21-16

SEMAPHORES AND TIMERS

fname A filename, discussed below (char(32)).
namlen The number of characters in fname (FIXED BIN).
snbr A number that specifies how many semaphores are to

be opened by this call (FIXED BIN).

ids(x) An array of semaphore numbers; one number is
returned for each semaphore that was successfully
opened (FIXED BIN).

init-val The initial value (-32767 to —-1) to be assigned to
the semaphore.
code A success/failure code (FIXED BIN):
0 Success.,
nENDAD A 3T 1meral 3 A v2aTlita rrna a1l s A3 £FAr b
LD £2All Ailvallilww v W waod ou EJ.J.C\J LU DIAUJL o

ESIREM A file that is on a remote disk was
specified in the fname parameter -—
remote files <cannot be used as
parameters to this call,

ESFUIU Either the user has all available file
units opened, or that there are no
available named semaphores.,

ESUNOP Unopened file unit.

ESBUNT Bad file unit. (Units 1 through 127
are allowed; 127 is the COMOUTPUT file
unit.)

It is also possible that code will be set to any
error code that can be returned by the SRCHSS

routine.

Discussion

To open a set of named semaphores, a call must associate them with a
file system object. SEMSOP will open a set of named semaphores
associated with the name of a file in the current UFD of the process
performing the open operation. If the process has at least read access
rights to the file, it will be assigned the semaphores. Each semaphore
will be initialized to 0. SEMSOU will open a set of named semaphores,
associating with them a file open on a particular file unit. As
before, if the process has at least read access rights to the file, it
will be assigned the semaphores. Unlike SEMSOP, SEMSOU allows each
semaphore within the set to be initialized to a nonpositive value, not

21-17 Third Edition

DOC3621-190

less than -32767 decimal., All calls to either SEMSOP or SEMSOU which
use the same file will result in the same semaphore numbers being
returned,

On Rev, 19 or higher of PRIMOS, it is possible for a number of
processes to have access to a set of semaphores while other processes
are denied access to the same semaphores. These semaphores are called
protected or named semaphores and are discussed above.

To access a named semaphore, a call must be made to SEMSOP, which
grants or denies access to the semaphore. The process supplies a
filename to the call., If the specified file can be accessed for read
access, subject to file system and ACL protections, then the user is
given access to the requested semaphores. Multiple semaphores can be
opened in a single call by supplying the number of semaphores needed in
the snbr parameter,

If access is granted to the semaphores, then the call will return an
array of semaphore numbers in the ids parameter. One number will be
returned for each semaphore requested in snbr, assuming enough
semaphores exist in the system pool. A semaphore number of 0 will be
returned.if a semaphore could not be assigned. In addition, code will
be nonzero if one or more semaphore numbers could not be assigned. The
values returned in ids should be examined to determine which semaphores
were opened (nonzero value returned), and which were not (0 value
returned).

The semaphore numbers returned should be used in all other semaphore
calls as the semaphore number parameter. SEMSOP takes a filename and
returns semaphore numbers; SEMSOU takes a file unit; the rest of the
calls accept only a semaphore number,

If different processes call SEMSOP or SEMSOU and specify the same
filename or file unit, the same semaphore numbers will be returned to
each process. This allows multiple processes of a subsystem to
reference common semaphores.

If a call to the open routine specifies the same filename or unit
number as a previous call to open, and a larger number of semaphores is
requested, then new semaphores are acquired from the system pool to
make up the difference between the number currently open (with that
filename or unit number) and the number requested in the call. Other
processes cannot use these newly assigned semaphores unless they
explicitly open them via a call to the open routine,

When the first process opens a named semaphore, the operating system
will set the value of the semaphore counter to 0 or to the number
specified by SEMSOU. Subsequent opens of the semaphore do not alter
the value of the counter, If a process opens the same semaphores more
than once, then the same semaphore numbers will be returned for each
call. No matter how many times a process opens a semaphore, it need
only close that semaphore once. This removes the burden of counting to
be sure that equal numbers of open and close calls are done.

Third Edition 21-18

SEMAPHORES AND TIMERS

Named semaphores can only be opened for files that reside on a local
computer system. Attempts to open named semaphores with filenames that
are on remote disks will result in failure; no semaphore numbers will
be assigned and code will be set to ESIREM.,

If a file that was used in a call to SEMSOP or SEMSOU is deleted or
renamed while the semaphores assigned by such a call are still open, or
if the disk on which that file resides is shut down, then the open
semaphores will continue to be accessible to the processes that already
have them open. New processes will not be given access to those
semaphores, even if the disk is added again, or if a file is created
with the same name as the one that was renamed or deleted. Processes
that have the semaphores open can continue to use them until they are
closed via a call to SEMSCL.

If a process logs out before all named semaphores have been closed,

then those that are still open will be automatically closed by the
operating system,

P SEMSNF

P> SEMSWT
Pur gse

SEMSNF releases the next process waiting on a semaphore, SEMSWT places
a process in the queue for a semaphore.

Usage
CALL SEMSNF (snbr, code)
CALL SEMSWT (snbr, code)
snbr A semaphore number; it can be either a number in
the allowable range for numbered semaphores (0-64),
or it can be a number assigned to a named semaphore

by the SEMSOP or SEMSOU routine (FIXED BIN).

code A success/failure code returned by the routine
(FIXED BIN) :

0 Success.,

ESBPAR Indicates that an invalid value was
supplied for snbr.

21-19 Third Edition

DOC3621-190

ESBDAT Indicates bad data supplied; the
System Administrator should be
notified,

Discussion

As explained in an earlier section, the notify and wait operations are
the basic functions that can be performed on a semaphore, Notify
decrements the semaphore's counter and will release the first process
from the wait queue, if there are any processes waiting.

Wait increments the semaphore's counter and places the process on the
semaphore's queue if the counter becomes greater than 0. Processes are

queued first-in-first-out within process priority; higher priority
processes are queued before those with lower priority.

P> SEMSTS
Pur mse

SEMSTS tests the counter for the number of processes waiting in the
queue for a semaphore.

Usage

sval = SEMSTS (snbr, code)
sval The current value of the specified semaphore's
counter word (FIXED BIN).
snbr A semaphore number; it can be either a number in
the allowable range for numbered semaphores (0-64),
or it can be a number assigned to a named semaphore
by the SEMSOP or SEMSOU routine (FIXED BIN).

code A success/failure ocode returned by the routine
(FIXED BIN) :

0 Success.,

ESBPAR An invalid value was supplied for snbr.

Third Edition 21-20

SEMAPHORES AND TIMERS

Discussion

This operation returns the current value of the counter, for semaphore
numbered snbr in the variable sval.

P> SEMSDR
Purpose

SEMSDR resets the specified semaphore counter to 0 (drains it).

Usage
CALL SEMSDR (snbr, code)

snbr A semaphore number; it can be either a number in
the allowable range for numbered semaphores (0-64),
or it can be a number assigned to a named semaphore
by the SEMSOP or SEMSOU routine (FIXED BIN).

code A success/failure code returned by the routine

(1XAnD BINj ¢
0 Success.

ESBPAR An invalid value was supplied for snbr.

Discussion

If, at the time of the SEMSDR call, the semaphore's oounter is less
than or equal to 0, the counter is set to 0. If, however, the counter
is greater than 0, then notifies are done on the semaphore until the
counter reaches 0. This causes all processes that were waiting on the
semaphore to be removed from the wait queue of the semaphore,

It is possible for processes to be placed on the wait queue while this

call is executing; these added processes may not be removed when the
SEMSTS call returns to its caller.

21-21 Third Edition

DOC3621-190

P SEMSTN
Purpose
This operation causes the operating system to notify the specified

semaphore on a periodic basis, This timer is set only for numbered
semaphores.

Usage
CALL SEMSTN (snbr, intl, int2, code)

snbr A semaphore number; it must be a number in the
allowable range for numbered semaphores (0-64)
(FIXED BIN).

intl The amount of clock time in milliseconds that will

pass before the system notifies the semaphore the
first time (FIXED BIN).

int2 The amount of clock time that will pass before the
semaphore is notified the second and subsequent
times (FIXED BIN). If int2 is 0, then the semaphore
will only be notified once =~ after intl
milliseconds. Specifying both intl and int2 as 0
will remove a previous timer request from the
semaphore. This is necessary when a previous SEMSTN
call was made with intl and int2 both nonzero.

If a call is made to SEMSIN which specifies a
semaphore that already has an active timer request,
then the values of intl and int2 specified in the
latter call will overwrite the values stored in the
active timer, Note: it is possible to delay a
notify caused by a timeout indefinitely by making
repeated calls to SEMSIN.

code A success/failure code returned by the routine. The
values of the code are the same as those returned by
SEMSWT and SEMSNF (FIXED BIN).

Discussion

The operating system maintains a limited number of timers for numbered
semaphores. Currently, there are a total of 15 such timers per system.

Third Edition 21-22

SEMAPHORES AND TIMERS

P SEMSTW
Purpose

This routine allows a process to wait on the specified semaphore until
it is taken off the wait queue by a notify, or until a specified amount
of realtime has elapsed, whichever comes first. It is used only for
named semaphores.

Usage
CALL. SEMSTW (snbr, intl, code)

snbr A semaphore number; it must be a number assigned to
a named semaphore by the SEMSOP or SEMSOU routine
\

{BTYETD RTN
\L Larius SaN

] e

intl A time interval expressed in tenths of a second of
clock time (FIXED BIN).
code A value that indicates why the process was allowed
to continue (FIXED BIN):
0 The process was notified by a call to
SEMSNF.
) The specified amount of time has

elapsed and the process has not yet
been notified out of the wait queue.

P SEMSCL
PurEse

SEMSCL, releases (closes) a semaphore.

Usage
CALL SEMSCL (snbr, code)

snbr A semaphore number; it must be a number assigned to
a named semaphore by the SEMSOP or SEMSOU routine
(FIXED BIN).

code A success/failure code returned (FIXED BIN). Values

are the same as for SEMSOP and SEMSCU.

21-23 Third Edition

DOC3621-190

Discussion

When a process no longer needs a named semaphore, it can tell the
Operating system that it is done with it by calling SEMSCL, to close
the semaphore. After this call, the specified semaphore number cannot
be used again by the process, unless that same number is reassigned by
another call to SEMSOP or SEMSOU.

When a process logs out, all semaphores that were opened by that

process but not explicitly closed are automatically closed by the
operating system.

P> SLEEPS
Purpose

SLEEP$ suspends a process for a specified interval.

Usage
CALL SLEEPS$(interval)

interval A variable containing the interval in milliseconds
for which execution is to be suspended (INTHGER*4).

Discussion
Execution of the user process is suspended for the specified interval.

An interval less than 0 will have no effect. A QUIT and START from the
user terminal will cause immediate reexecution of the SLEEPS call.

Note

Although the sleep interval is specified in milliseconds,
SLEEP$ truncates it to an accuracy of tenths of seconds.

Third Edition 21-24

PART VII

Condition Handling

22

Condition
Mechanism
Subroutines

INTRODUCT ION

This chapter describes the subroutines used in the implementation of
the condition mechanism. A condition is an unscheduled software
procedure call (or block activation) resulting from an "unusual event.”
Such an unusual event might be a hardware-defined fault, an error
situation which cannot be adequately defined to the subroutine, or an
external event such as a QUIT from the user's terminal. The condition
mechanism has been created to:

® Provide a consistent and useful means for system software to
handle error conditions.

e Provide the capability for programs to handle error conditions
without forcing a return to command level.

® Provide support for the condition mechanism of ANSI PL/I.

When such an unusual event occurs, its ocorresponding on-unit (a
procedure or a block of code) is executed. The subroutines described
in this chapter allow the programmer to create and use on-units. These
features are available to programmers using FIN, F77, PL1G, and PMA.
The descriptions below use mostly PL/I terminology, with special advice
for FORTRAN users.

This chapter contains a list of system—defined conditions. Because

PRIMOS error handling uses conditions, the list of condition names is
helpful in interpreting error messages printed by PRIMOS.

22-1 Third Edition

DOC3621-190

Table 22-1
Subroutines Appropriate to Various Languages
Programming Language (1)

Action FIN F77 PL1G PMA
Create an MKONSF MKONSP MRONSP (2) MKONUS (3)
on—-unit
Signal a SGNL SF SGNL SF SIGNLS SIGNLS
condition
Cancel (revert) RVONSF RVONSF RVONUS (4) RVONUS
an on-unit
Nonlocal GOTO PL1SNL PL1$NL (5) PL1$NL
Make PL/I-com- MKIBSF MKIBSF (5) MKLBSF
patible label

Numbers in parenthesis refer to the following notes.

Third Edition

The CPL language, not shown in this table, also supports
the condition mechanism, but without the use of these
subroutine calls, See EXAMPLES OF PROGRAMS below.

MKONSP required for programmer-named condition. Several
predefined conditions are supported by the language's ON
statement. It is also possible to use MKONU$ instead of
MKONSP. See MKONUS under CONDITION MECHANISM SUBROUTINES,
later in this chapter.

The user must provide extended stack area, and, while the
condition handler is active, must not modify the
character-varying variable which holds the condition name.
Or use the language-supplied REVERT statement.

Supported directly by the programming language.

22-2

CONDITION MECHANISM

CREATING AND USING ON-UNITS

Condition handlers are called on—units. They may be procedures or PL/I
begin blocks, A begin block results from a PL/I on statement while a
procedure results from the use of the following subroutines:

MKONU$
MKONSF
MRONSP

The use of these subroutines is the only way to create an on-unit in a
non-PL/I enviromment, See Table 22-1 to determine which subroutine to
use.

All users are automatically protected by PRIMOS system on-units. When
a condition is raised, the ocondition mechanism searches within the
existing procedure for on-units for the specific condition., If none is
found, but if an on-unit for the special condition ANYS does exist, the
MANY$ on-unit is selected as the default on-unit.

An on-unit may be invalidated by the PL/I revert statement or by using
the subroutines:

RVONUS

RVONSF
Again, use Table 22-1 to select the proper subroutine,
The condition mechanism is activated whenever a condition is raised. A
condition is raised implicitly by some exception being detected during

reqular program execution. A condition may be raised explicitly by the
PL/I signal statement or by a call to the subroutines:

SIGNLS
SGNL SF

Every on—unit has the name of the condition it is handling. A
condition name is a character string (up to 32 characters) and may
represent a system—defined condition if the name is one reserved for
system use, or it may be a user-defined condition. The system—defined
conditions are described later in this chapter.

It is extremely important that any on-unit procedure take at least one
argument.

22-3 Third Edition

DOC3621-190

On-unit Actions

An on-unit has several options on action it may take. An on-unit may:

e Perform application-specific tasks (such as closing or updating
files).

® Repair cause of condition and resume execution.

e Decide that normal flow can be interrupted and program reentered
at a "known point" by performing a nonlocal GOTO to some
previously defined label,

® Signal another condition,

e Transfer process to command level.

® Continue search for more on-units.

e Run diagnostic routines.

FORTRAN Considerations

The use of on-units and of nonlocal GOTOs from FORTRAN is somewhat
restricted, since there are no internal procedures or blocks.
Therefore:

¢ FORTRAN on-units must be subroutines which, by definition, are
not internal to the subroutine or main program creating the
on-unit.

® Nonlocal GOTOs will work only to a previous stack level since
the target statement label belongs to the caller of the
subroutine performing the nonlocal GOTO.

A full function nonlocal GOTO requires that the target label identify
both a statement and a stack frame of the program that contains the
statement., The subroutine MKIBSF will create a PL/I compatible label
and the subroutine PLISNL will perform a nonlocal GOTO to a specified
target label. Labels produced by MKLBSF are acceptable to PL1SNL.

This chapter documents subroutines in PL/I notation. FORTRAN users may
convert between PL/I and FORTRAN data types by using Table 22-2.

Third Edition 22-4

CONDITION MECHANISM

Table 22-2
Conversion of PL/I to FORTRAN Data Types
PL/I FORTRAN

char(n) var INTEGER(((n+1) /2) +1)
char (n) INTEGER((nt1) /2)
fixed bin(15) INTEGER*2
fixed bin(31) INTEGER*4
label ‘ REAL*8
entry variable REAL*8
ptr options (short) INTEGER*4
bit(n) INTEGER*2 (1<=n<=16)

The PL/I interfaces use the PL/I data type "character(*) varying".
This data type is not available in FORTRAN, but 1977 ANSI FORTRAN (F77)
includes a data type ‘"character*n" which is the equivalent of PL/I
"character (n) nonvarying". Interfaces are provided which use the
nonvarying character strings. It is possible to simulate varying
character strings in FORTRAN with an INTBGER*2 array in which the first
element contains the character count, and the remaining elements
ocontain the characters in packed format. For example:

PL/I
dcl name char(5) varying static initial ('QUITS');

FORTRAN
INTEGER*2 NAME (4)
DATA NAME/5, 'QUITS'/

On-units must be carefully designed not to require reentrancy, which is

not supported by FORTRAN. See how I/O must be handled in EXAMPLES OF
PROGRAMS, below.

Default On—unit

The default on-unit, ANY$, may be created to intercept any condition
that micht be activated during a procedure. (The ANYS on—-unit is
created by a call to MKONUS or MRONSF.)

22-5 Third Edition

DOC3621-190

When a condition is raised, the condition mechanism first searches for
an on-unit for the specific condition., If a specific on-unit exists,
it is selected. Otherwise, if an ANY$ on-unit exists, the ANYS on-unit
is selected.

User programs should avoid the use of the ANYS on-unit. A user's ANYS
on-unit should not attempt to handle most system—defined conditions,
and should pass them on by simply returning. Whenever an ANYS on—unit
is invoked, the continue switch is set and the user ANYS on-unit must
return with the continue switch still set. Failure to do so can cause
problems with PRIMOS.

The continue switch indicates to the condition mechanism whether the
on-unit that was just invoked (or any of its dynamic descendants)
wishes the backward scan of the stack for on-units for this condition
to continue upon the on-unit's return. The subroutine CNSIGS is used
to request that the switch be turned on. This switch is cleared before
each on-unit (except ANYS$) is invoked. See the discussion of the
continue switch at cflags.continue sw under DATA STRUCTURE FORMATS
later in this chapter.

EXAMPLES OF PROGRAMS

Below are sample programs in FORTRAN 66 (FIN), FORTRAN 77 (F77), PL/I
Subset G (PL1G), and CPL which use an on-unit to trap the QUITS
condition. The programs are similar, but not identical, in operation.

Note

In both FORTRAN examples (FIN and F77), the on-unit must avoid
using standard FORTRAN I/0, and instead uses TNOU. The
condition has arisen in the middle of FORTRAN input, and since
FORTRAN I/0 is not reentrant, use of FORTRAN I/O by the on-unit
would destroy the enviromment to which it eventually returns.
PL1G supports reentrancy, and does not require this precaution,

FORTRAN Example

C Program to demonstrate on—unit in FIN
c
EXTERNAL CATCH
INTEGER*2 BREAK(3), BREAKL, I
DATA BREAK/'QUITS'/
BREAKL = 5
CALL MKONSF (BREAK, BREAKL, CATCH)
WRITE (1,300)
300 FORMAT ('Please enter an integer, then RETURN. ‘)
100 CONTINUE

Third Edition 22-6

200
330

CONDITION MECHANISM

READ(1,200) I

FORMAT (18)

WRITE(1,330)

FORMAT ('Again, 0 to exit, BREAK to test on-unit.')
IF (I .NE. 0) GOTO 100

STOP

END

SUBROUTINE CATCH(PNTR)

INTEGER*4 PNTR

CALL TNOU('We caught a quit!',17)

PAUSE 1

CALL TNOU('You''re back into the input loop again.',38)
RETURN

END

FORTRAN 77 Exambple

N AP A B s

C Program to demonstrate on—unit in F77

C

100

external catchit

integer*2 break length

character*5 break/'QUITS'/

break length = 5

call mkonSp(break,break length,catchit)

print*, 'Please enter an integer, then RETURN,'
continue

read(l,*) i

print*, 'Again, 0 to exit, BREAK to test on-unit.'
if (i.ne.0) goto 100

end

subroutine catchit (pntr)

integer*4 pntr

call tnou('We caught a quit!',ints(17))

pause 1

call tnou('You''re back into the input loop again.',ints(38))
return

end

PL/I Subset G Examples

/* Program to demonstrate on-unit in PL1G */

ex pllg: procedure options (main);

dcl mkonSp entry(char(*), fixed bin, entry);

dcl (break length, i) fixed bin(15);

dcl (break) character(5) static initial ('QUITS'):
break length = 5;

call mkon$p(break, break length, catchit);

put skip list ('Please enter an integer, then RETURN.');

22-7 Third Edition

DOC3621-190

get list (i);

do while (i "= 0);
put skip list ('Again, 0 to exit, BREAK to test on—unit.');
get list (i);

end;

stop;

catchit: proc (pntr);
dcl pntr pointer;
put skip list ('We caught a quit!'):;
put skip list('You''re back into the input loop again.'):
return;
end;
end;

/* Modified program to demonstrate on—unit in PLIG */
/* Shows use of MKONUS (instead of MKONSP) */

ex_pllg: procedure options (main);
declare mkonu$ entry(character(32) varying, entry)
options(shortcall(20));

declare (break) character(32) static initial ('QUITS') varying;

declare i fixed binary(15);

call mkonuS(break, catchit);

put skip list ('Please enter an integer, then RETURN.'):

get list (i);

do while (i "= 0);
put skip list ('Again, 0 to exit, BREAK to test on—unit.');
get list (i);

end;

stop;

catchit: procedure (pntr);
declare pntr pointer;
put skip list ('We caught a quit!');
put skip list('You''re back into the input loop again.');
return;
end;
end;

CPL_Example

/* Program to demonstrate on-unit in CPL.
Note that CPL cannot call a make-on—unit
subroutine., Instead, we show the use of

/the ON statement provided by CPL.
*

&on QUITS &routine catchit

type 'Please enter an integer, then RETURN,'

&set_var i := [response '']

Third Edition 22-8

CONDITION MECHANISM

&do &while %i% "= 0
type 'Again, 0 to exit, BREAK to test on—unit.'
&set_var i := [response '']

&end

&stop

&routine catchit

type 'We caught a quit!’

type 'You''re back into the input loop again,'
&return

ADDITIONAL EXAMPLE PROGRAMS

Several programs presented below show strategies for using the
condition mechanism. The examples include:

e CPL programs to do on-unit handling for a program which does not
itself use on—units.

® A FORTRAN 77 (F77) program to show reentering a program with the
PRIMOS REN command. The program also shows the use of nonlocal
GOTO.

e A FORTRAN 66 (FIN) program handling QUITS and showing nonlocal
GOT1O,

e A PL/I Subset G (PL1G) program handling end of file.

e A FORTRAN 66 program which demonstrates the CLEANUPS condltlon,
which is raised during processing of a nonlocal GOTO.

Two Protecting Programs in CPL

Below are two programs each of which protects a FORTRAN program called
SORT against being interrupted by the BREAK (or CONTROL-P) key. They
demonstrate both a simple and a more sophisticated means by which
programs can avoid having to use the condition mechanism subroutines.
When the language in which a program was written does not support
on-units, or when condition handling is to be added as an afterthought,
CPL can sometimes be used to handle conditions.

/* PROTECT.CPL
/* Trap the BREAK key with an on-unit in CPL.
/*
&ON QUITS &ROUTINE BREAK EANDLER
&DATA SEG SQRT
&TTY
&END
&RETURN

22-9 Third Edition

DOC3621-190

&ROUTINE BREAK HANDLER
TYPE
TYPE
TYPE You have typed the break key.
&SET_VAR EXIT FLAG := ~
[QUERY 'Do you wish to exit from the program']
&IF © <
&THEN ~ .
TYPE Continuing program.
&ELSE ~
&D0
TYPE Exiting program.
&STOP
&END
SRETURN

The program PROTECT2.CPL can better handle the user's typing several
BREAKs in a row.

/* PROTECT2.CPL
/* Trap the BREAK key with an on-unit in CPL.
/* Do not allow multiple breaks.,
/*
&ON QUITS &ROUTINE BREAK HANDLER
&ATA SEG SQRT
&TTY
&END
&RETURN

SROUTINE BREAK HANDLER
&ON QUITS &ROUTINE DUMMY_HANDLER
TYPE
TYPE
TYPE You have typed the break key.
SLABEL ALTERNATE ENTRY
&SET VAR EXIT FLAG := ~
[QUERY 'Do you wish to exit from the program']
&IF © ~
&THEN ~
TYPE Continuing program.
&ELSE ~
&DO
TYPE Exiting program.
&STOP
&END
SRETURN

&ROUTINE DUMMY_HANDLER
TYPE
TYPE Please answer the question!
&GOTO ALTERNATE_ENTRY
&RETURN

Third Edition 22-10

CONDITION MECHANISM

Here is the FORTRAN source for the SQRT program invoked by PROTECT and
PROTECT2.

SORT, FIN
This is a small interactive FORTRAN program which is to be

protected from BREAKs (the QUITS condition) by an enveloping
program written in CPL.

QOO0

REAL INVAL, QUTVAL

(@]

1000 WRITE (1, 1005)
1005 FORMAT (/, 'WHAT IS THE NUMBER:')
READ (1, 1010) INVAL
1010 FORMAT (F5.0)
IF (INVAL .FQ. 0.) GOTO 9999
QUTVAL = SQRT (INVAL)
WRITE (1, 1020) INVAL, OUTVAL
1020 FORMAT ('THE SQUARE ROOT OF ', F5.0, ' IS ', F5.2)
GOTO 1000

9999 WRITE (1, 9000)

9000 FORMAT (/ , 'END OF PROGRAM')
CALL EXIT
END

The REENTERS Condition from F77

C REENTER.F77
C
C This program creates an on-unit for the REENTERS condition.
C If the user breaks out of the program during its operation, and
C then reenters it through the PRIMOS REN command, the on-unit
C will be invoked to start the program from the proper place.
C

EXTERNAL RENHDLR

EXTERNAL MKONSP

EXTERNAL, MKLBSF
C

CHARACTER*8 CONDITION_NAME/'REENTERS'/

CHARACTER*80 CHAR_STRING

REAL*8 REENTRY_POINT

INTEGER*2 INDEX, CONDITION LENGTH/8/
C

COMMON /REENTRY/ REENTRY_POINT
C

C The "$1000" on the next line refers to statement 1000
CALL MKIBSF ($1000, REENTRY_PFOINT)
CALL MRONSP (CONDITION_NAME, CONDITION LENGTH, RENHDLR)

22-11 Third Edition

DOC3621-190

1010

WRITE (1, 1010)

FORMAT ('Enter a character string:')
READ (1, 1020) CHAR_STRING

FORMAT (A80)

DO 9999 INDEX = 1, 500
WRITE (1, 1030) CHAR_STRING
FORMAT (A80)

CONTINUE

END

SUBROUTINE RENHDLR (CP)
INTEGER*4 CP

EXTERNAL PL1S$NL

COMMON /REENTRY/ REENTRY_FOINT

WRITE (1, 1010)

FORMAT ('** Reentering subsystem #**')
CALL PLISNL (REENTRY POINT)

RETURN

END

Handling QUITS from FIN

QO OO0 an

C

PROSQRT . FIN
This program creates an on unit for the BREAK key. The on-unit
prevents BREAK from exiting the program, and instructs the user
how to exit.

In FIN the on—unit must be declared as an external routine.

EXTERNAL BKHNDL:

REAL, INVAL, OUTVAL
REAL*8 BRKRTN

COMMON /BRKLBL/ BRKRTN

CALL MKONSF ('QUITS', 5, BKHNDL)

C The "$1000™ in the next line refers to statement 1000

1000
1005

1010

1020

CALL MKIBSF ($1000, BRKRIN)

WRITE (1, 1005)

FORMAT (/, 'WHAT IS THE NUMBER:')

READ (1, 1010) INVAL

FORMAT (F5.0)

IF (INVAL .BQ. 0.) GOTO 9999

QUTVAL = SQRT (INVAL)

WRITE (1, 1020) INVAL, QUTVAL

FORMAT ('THE SQUARE ROOT OF ', F5.0, ' IS ', F5.2)

Third Edition 22-12

CONDITION MECHANISM

GOTO 1000

C

9999 WRITE (1, 9000)

9000 FORMAT (/ , 'END OF PROGRAM')
CALL EXIT
END

This subroutine handles the QUITS condition when it is raised.

Ordinarily, it would be incorrect to use FORTRAN I/0 from inside
this on-unit, because FORTRAN is not reentrant, and we would

be disturbing the keyboard I/0 which was in progress when QUITS
was raised. In this case, however, we use a nonlocal GOTO to
return to statement 1000 of the main program, and never return
to the I/0 which was in progress.

SUBROUTINE BKHNDL (CP)

QO o0 nn

INTEGER*4 CP
REAL*8 BRKRTN
CQOMMON /BRKLBL/ BRKRTN
WRITE (1, 1000)
1000 FORMAT ('YOU MUST TYPE ZERO TO EXIT THIS PROGRAM!')
CALL PL1SNL (BRKRIN)

Handling End of File from PL1G

/* EOF.PLIG */

/* This program creates on-units for both the ENDFILE and QUITS
conditions., The on—unit for the end-of-file condition is
set up by PL/I's "ON" statement, while the on-unit for quits
is set up by calling MKONSP. The on—unit for quits closes
all files and exits the program.

*/
EXAMPLE: PROCEDURE OPTIONS (MAIN) ;

DCL EMPLOYEE_NO FIXED DECIMAL(5);

DCL (GROSS_PAY, HOURLY RATE) FIXED DECIMAL(5,2);

DCL HOURS WORKED FIXED DECIMAL(2) ;

DCL FIXED DECIMAL(5,2);

DCL. NUMBER_OF._EMPLOYEES FIXED BIN(15);

DCL (REPORT, DATAFILE) FILE;

DCL. CONDITION_NAME CHAR (5) STATIC INITIAL ('QUITS'):
DCL MRONSP ENTRY (CHAR (5), FIXED BIN, ENTRY);

BREAK_HANDLER: PROC (CP);

DCL CP PTR;
PUT SKIP LIST ('** Aborting program **');

22-13 Third Edition

DOC3621-190

CLOSE FILE (DATAFILE);

CLOSE FILE (REPORT);

GOTO ABORT_PROGRAM;
END;

ON ENDFILE (DATAFILE)

BEGIN;
PUT SKIP LIST ('** End of File Encountered **');
GOTO END FILE;

END;

CALL MKONSP (CONDITION NAME, 5, BREAK HANDLER);
OPEN FILE (DATAFILE) TITLE ('DATAFILE') STREAM INPUT;
OPEN FILE (REFORT) TITLE ('REPORT') STREAM QUTPUT;
NUMBER_OF EMPLOYEES = 0;

DO WHILE ('1'B);
GET FILE (DATAFILE)

LIST (EMPLOYEE NO, HOURLY_RATE, HOURS WORKED) ;
NUMBER_OF_EMPLOYEES = NUMBER _OF EMPLOYEES + 1;
GROSS_PAY = HOURS WORKED * HOURLY_RATE;

PUT FILE (REFORT)
LIST (EMPLOYEE_NO, HOURLY_RATE,
BOURS_WORKED, GROSS_PAY);
PUT FILE (REPORT) SKIP;
END;

END_FILE:
PUT FILE(REPORT) LIST(NUMBER OF_EMPLOYEES) SKIP(3):

ABORT._PROGRAM:

END EXAMPLE;

A CLEANUPS On—unit from FIN

The following programs demonstrate the QUITS and CLEANUPS on—units.
When the BREAK key is typed, a nonlocal GCIO is executed, which causes
CLEANUPS to be raised in the routine SUBA.

C
C
C
C
C
C

CLEANUP, FIN

This program creates on-units for the QUIT$ and CLEANUPS
conditions.

EXTERNAL BKHNDL

REAL*8 BRKRTN
COMMON /BRKLBL/ BRKRTIN

CALL MKONSF ('QUITS', 5, BKHNDL)
CALL MKLBSF ($1000, BRKRIN)

1000 WRITE (1,1010)

Third Edition 22-14

1010

1000

1000
1010
1020

QOO0 n0

1000
1010

anan

1000

CONDITION MECHANISM

FORMAT (/, 'In the routine: MAIN')
CALL SUBA

CALL EXIT

END

SUBROUTINE SUBA

EXTERNAL ACLUP

WRITE (1, 1000)

FORMAT ('In the routine: SUBA')
CALL MKONSF ('CLEANUPS', 8, ACLUP)
CALL SUBB

RETURN

END

SUBROUTINE SUBB

INTEGER DUMMY

WRITE (1,1000)

FORMAT ('In the routine: SUBB')

WRITE (1, 1010)

FORMAT ('Type RETURN to exit, BREAK to test on-units')
READ (1, 1020) DUMMY

FORMAT (A2)

RETURN

END

HDLRS,FIN
On-units for the module CLEANUP, FTN

The routine ACLUP is invoked when a non—local goto is
aborting SUBA.

SUBROUTINE ACLUP (CP)

INTEGER*4 CP, I

WRITE (1, 1000)

FORMAT ('In the cleanup routine: ACLUP')
DO 1010 I =1, 50000

CONTINUE

RETURN

END

The routine BKHNDL is invoked when the QUITS condition is
raised by the user hitting the BREAK key.

SUBROUTINE BKHNDL (CP)

INTEGER*4 CP

REAL*8 BKRTN

COMMON /BRKLBL/ BRKRTN

WRITE (1, 1000)

FORMAT ('In the routine: BKHNDL')
CALL PLI1SNL (BRKRIN)

RETURN

END

22-15 Third Edition

DOC3621-190

CRAWLQUT MECHANISM

An event known as a crawlout occurs whenever the condition mechanism
reaches the end of an inner ring stack (a ring other than 3) without
finding a selectable on-unit for the condition that has been raised.
(Protection rings are described in the System Architecture Reference
Guide.,) A crawlout can occur even when the inner ring has an on-unit
for the condition, if that on-unit signals another condition, or if the
on-unit calls CNSIGS and returns, causing a resumption of the stack
scan, The scan for on-units resumes on the stack of the ring which
invoked the inner ring. The outer ring receives a copy of the machine
state at the time the condition was raised.

CONDITION MECHANISM SUBROUTINES

The user-level subroutines for the condition mechanism are described
below in alphabetical order,

P CNSIGS

Purpose

CNSIGS instructs the condition mechanism to continue scanning for more
on-units for the specific condition that was raised after the calling
on-unit returns, CNSIGS is called when an on-unit has been unable to
completely handie the condition., The continue-to-signal switch,
cfh.cflags.continue_sw, is set in the most recent condition frame.

Usage
DCL CNSIGS ENTRY (FIXED BIN);

CALL CNSIGS {(status);

status Standard system error code: will be nonzero only if
there was no condition frame found in the stack.

Discussion
The continue-to-signal switch is automatically set whenever an ANYS

on-unit is invoked, Therefore, an ANY$ on-unit need not issue a call
to CNSIGS to continue to signal.

Third Edition 22-16

CONDITION MECHANISM

P> MKIBSF
Purpose

MKIBSF converts a FORTRAN statement label or an integer variable with a
statement label value into a PL/I-compatible label value. This label
value can then be used with a call to the subroutine PLISNL to perform
a full function nonlocal GOTO in a FORTRAN program,

Usage

INTEGER*2 stmt
REAL*8 label
CALL MKIBSF (stmt, label)

0
et

Variable to which a FORTRAN statement number has

- A iNTRN 2L -

been assigned by an ASSIGN statement, or is a
statement number constant in the format S$Sxxxxx.

label Contains PL/I-compatible label value for stmt
returned by call to MRLBSF.

P MRONSF
Purpose

MRKONSF creates an on-unit for a specific condition and is intended for
the FORTRAN user.

Usage

The FORTRAN usage is:
EXTERNAL unit

INTEGER*2 cname(—), cnamel
CALL MKONSF (cname, cnamel, unit)

cname Array containing name of condition for which on—unit
is to be created,

cnamel Length (in characters) of cname.

22-17 Third Edition

DOC3621-190

unit Your external subroutine which is to be the on-unit
handler, Your subroutine must take an argument,
since the PRIMOS condition mechanism calls your
subroutine as follows:

INTEGER*4 CP
CALL UNIT (CP)

where CP 1is a pointer to the condition frame header
(CFH) that describes the condition.

Discussion

FORTRAN cannot directly access the CFH through CP. A subroutine
written in PL1IG or PMA would be required to pass the desired CFH
information.

Cname and cnamel may be overwritten by the caller once MRONSF has
returned, since they are copied into a stack frame extension.,

Caution

MRONSF cannot be called from FORTRAN 77. FORTRAN 77 requires
MKONSP.

P> MRONSP
Purpose

MRONSP creates an on-unit for a given condition. It may be used in
FORTRAN 77 and PL1G programs. :

Usage
The PL1G usage is:

DCL. MRONSP ENTRY (CHAR(*), FIXED BIN, ENTRY);

CALL MKONSP (condname, namelen, handler);

Third Edition 22-18

CONDITION MECHANISM

condname The name of the condition for which an on-unit is
desired. The name should not contain any blanks
(input).

namelen The length of condname, in characters (input).

handler The internal or external entry (subroutine) value

which is to be invoked as the on—unit. If the value
is an intermal procedure, it must be immediately
contained in the block calling MRONSP (input). The
subroutine must take at least one argument.

An on—unit for the specified named condition is created for the calling
block., If the block already has an on-unit for that condition, the
on-unit is redefined.

The F77 usage is:

EXTERNAL: handler

INTEGER*2 namelen
CHARACTER*namelen name/'condname’/

CALL MKONSP(name, namelen, handler)

condname The name of the condition for which an on—unit is
desired, The name should not contain any blanks
(input).

namelen The length of condname, in characters (input).

name A variable to hold condname. Its value should not

be altered while the condition is active.
handler The name of the external subroutine which is to

become the on-unit. This subroutine must take at
least one argument.

Discussion

Caution

MKONSP cannot be called from FORTRAN (FIN)., FORTRAN requires
MKONS$F.

22-19 Third Edition

DOC3621-190

P MKONUS

Purpose
MKONUS creates an on-unit for a specific condition or creates a default
on-unit for the ANY$ condition. MRONUS can be called only from PMA and

PL1G. PL1G programmers may use either MKONSP or MKONUS. From PL1G the
declaration OPTIONS (SHORTCALL) is required for MKONUS. See below.

Usage
DCL MRONUS$ ENTRY OPTIONS(SHORTCALIL stack increase) (CHAR(*)VAR, ENTRY);

CALL MKONUS (condition name, handler):

stack_increase Additional space needed for the calling
procedure's temporary storage. OPTIONS(SHORTCALL)
provides 8 words of stack by default., MRONUS
requires 28 words of stack, and thus requires
stack_increase of 20. If the stack size is not
large enough, the return from MKONUS will cause
unpredictable results,

condition name Name (no trailing blanks) of condition for which
on—unit will be created. Any previous on-unit for
this condition within the activation will be
overwritten,

handler Entry value representing on—unit procedure to be
invoked when condition name is raised and this
activation is reached in the stack scan. Since
MKONU$ does not save the display pointer
associated with on-unit entry, the entry value
must be externmal or declared in the block calling
MKONUS. (An entry constant declared in the block
containing the call to MKONUS will satisfy these
restrictions.) The handler must take at least one
argument,

Discussion

The stack frame of the caller is lengthened, if necessary, to add the
descriptor block for the new on—unit.

The caller must guarantee that the storage occupied by condition name
will not be freed until the caller returns, or the activation is
aborted by a nonlocal GOTO.

Third Edition 22-20

CONDITION MECHANISM

OPTIONS (SHORTCALL) causes the PMA instruction JSXB to be used instead
of the PCL instruction. PCL generates a new stack. JSXB does not, and
is faster, but requires that there be sufficient space on the caller's
stack. MKONUS is the only Rev 18 or 19 system subroutine that can (and
must) be declared this way.

P PLISNL

Purpose

PLISNL. performs a full function nonlocal GOTO to the statement
identified in the call. Label values created by MKIBSF are suitable
arguments for PL1SNL.

Usage
REAL*8 label
CALL PL1SNL (label)

label PL/I - compatible label value.

P> RVANSF
Purpose
RVONSF disables an on-unit for a specific condition. Its effect is

identical to RVONUS but is designed for the FORTRAN user. RVONSF is
used from FORTRAN and FORTRAN 77. :

Usage
CALL RVONSF (cname, cnamel)

INTEGER*2 cname(—), cnamel

chame Name of condition for which the on-unit is to be
disabled.
cnamel Length (in characters) of cname.

22-21 Third P%ition

DOC3621-190

Discussion

There is no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled.

P RVANUS

Purpose

RVONUS disables (reverts) an on-unit for a specific condition. Once
disabled, the on-unit will be ignored during stack—frame scanning. The
on-unit may be reinstated only by another call to MKONUS or MKONSF. A
call to RVONUS affects only on—units within its own activation. RVONUS
is used from PL1G and PMA programs.

Usage
DCL RVONUS ENTRY (CHAR(*) VAR):

CALL, RVANUS (condition_name);

condition name Name of condition for which the on—unit is to be
disabled.

Discussion
There is no effect if an on-unit does not exist for the named

condition, or if the on-unit has already been disabled. A call to
RVONUS will not affect on-units in any other activation,

P> SGNLSF

Purpose
SGNLSF signals a specific condition and supplies optional auxiliary

information. SGNLSF is the FORTRAN equivalent of SIGNLS. It is used
from FORTRAN and FORTRAN 77 programs.

Third Edition 22-22

Usage

CONDITION MECHANISM

INTEGER*2 cnhame(—), cnamel, mslen, infoln, flags
INTEGER*4 msptr, infopt
CALL SGNLSF (cname, cnamel, msptr, mslen, infopt, infoln, flags)

cname

cnamel

msptr

infoln

flags

p siens

Purpose

Name of condition to be signalled.

Length of cname in characters.

Pointer to location of stack-frame header describing
machine state at time the specific oondition was
detected. User does not wusually know this
information and should pass the null pointer value
of :1777600000 (octal).

Length (in words) of stack-frame header.

Pointer to location of user-supplied auxiliary
information array. If no information supplied user
should pass null pointer (:1777600000).

Length, in words, of array pointed to by infopt.

Action array specifying control action.

Bit Meanin

1 If =1, on-unit may return.

2 If =1, on-unit may return without
taking action.,

3 If =1, call is result of crawlout.
This bit should never be set by the
user.

4 If =1, signal PLIO condition, User

program should not set.

5-16 Must be O.

SIGNLS is called to signal a specific condition. The stack is scanned
backwards to find an on-unit for this condition or a default (ANYS)
on-unit. SIGNLS is used from PL1G and PMA programs.

22-23 Third Edition

DOC3621-190

Usage

DCL SIGNL$ ENTRY (CHAR(*) VAR, PTR, FIXED BIN, PIR, FIXED BIN,

BIT(16) ALIGNED);

CALL SIGNLS (condition name, ms ptr, ms len, info ptr,
info len, action);

condition name Name of condition to be signalled.

ms ptr

ms_len

info _ptr

info_len

action

Third Edition

Pointer to stack—frame header structure defining the
machine state at the time the specific condition was
detected. If mg ptr is null, a pointer to the
condition frame header produced by this call to
SIGNLS will be used.

Length (in words) of the structure named in ms ptr.
Not examined if ms ptr is null,

Pointer to structure containing auxiliary
information about the ocondition. If no auxiliary
info is available, info ptr should be null.

Length (in words) of structure in info ptr. Not
examined if info ptr is null.

A 16-bit word that defines action to be taken:

DCL 1 action,
2 return_ok bit(1),
2 inaction_ok bit(l),
2 crawlout bit(1),
2 specifier bit(1),
2 mbz bit(12);

return ok If = '1'b, on-unit is to be allowed
to return.

inaction ok If = '1'b, on-unit may return
without taking corrective action and
still expect "defined" results,
(return_ok must also be 'l'b.)

crawlout If = '1'b, call to SIGNLS is result

of crawlout. Should never be set by
user,

specifier If = '1'b, signals PL/I I/O(PLIO)
condition., User program should not
use,

mbz Must be zero,

22-24

CONDITION MECHANISM

SYSTEM-DEFINED CONDITIONS

The following are the standard system—defined conditions., The meaning
of each oondition is given, followed by a description of the
information available in the condition frame header structure produced
by that condition.

The standard PL/I information structure is:
dcl 1 info based,

2 file ptr, ptr options (short), /*PL/I file control block*/
2 info struct_len fixed bin, /*Length in words of*/

/*structure*/

2 oncode_value fixed bin, /*unique error code */

2 ret_addr ptr options (short); /*Points to statement causing*/
/*error.*/

ructures used by the ocondition mechanism, including the

A A
ame Header (CFH), the Stack Frame Header (SFH), the Fault

Frame Header (FFH) and the on-unit descriptor block; are discussed

A\ =2i F (1801 S <

later in this chapter under DATA STRUCTURE FORMATS.

198
g
g
78

In the descriptions below, software means that the machine state frame
pointed to cfh.ms ptr is a condition frame header, and hardware
means that thJ.s frame is a fault frame header. The notations "ffh."
and "cfh.," below refer to the fault frame header or condition frame
header that is pointed to by f£fh.ms ptr or cfh.ms ptr. The information
structures referred to below are pointed to by cfh.info ptr.

Unless otherwise noted below, the system default on-unit for each
condition prints an appropriate diagnostic message on the user's
terminal, terminates program execution, and returns to PRIMOS command
level.

P> ACCESS VIOLATIONS

(hardware, returnable)

The process has attempted to perform a CPU instruction which has
violated the access control rules of the processor. No information is
readily available to differentiate between write violation, read
violation, execute violation, and gate violation.

ffh.fault-type Value '44'b3.

ffh.fault addr Contains the virtual address whose access is
improper.

22-25 Third Edition

DOC3621-190

ffh.ret b Points to the instruction causing the violation.

No information structure is available.

P ANYS

(pseudo—condition)

An activation's on-unit for ANYS is invoked if that activation does not
have a specific on-unit for the condition that was raised., The
condition frame header for the condition ANYS will describe the
original condition directly; there is no separate condition frame

header for the condition ANY$ unless ANYS has been explicitly raised by
a call to SIGNLS (not a recommended practice).

P> AREA

(software, not returnable)

This condition is raised when a storage area has been damaged, or when
the target area for an attempted copy from one area to another was too

small. (Generally raised by full PL/I only. Not available through
PL1G.)

P> ARITHS
(hardware, returnable)

The process has encountered an arithmetic exception fault,

ffh.fault_type Value '50'b3.

ffh.fault code Hardware-defined exception code which partially
identifies the cause of the fault.

ffh.ret pb Points to the next instruction to be executed upon
return. There is no way in general to obtain a
pointer to the faulting instruction,

No information structure is available.

Third Edition 22-26

CONDITION MECHANISM

The static-mode default on—unit for this condition will simulate Prime
300 fault handling for arithmetic exception if the appropriate word of
segment '4000 is nonzero. (See the System Architecture Reference Guide
for the exact location.,) If a static-mode program is not in execution
when the fault occurs, or if the Prime 300 vector word is 0, the
standard default handler for this condition will resignal the
appropriate arithmetic condition (size, fixedoverflow, etc.) with the
appropriate information structure.

P> BAD_NONLOCAL_GOTO$
(software, not returnable)

The nonlocal GOTO processor has been asked to transfer control to a
label whose display (stack) pointer is invalid, or whose target
activation has already been cleaned up. There is also a possibility
that the user's stack may have been overwritten.

Information Structure:

DCL 1 info based,
2 target label label,
2 ptr_to_nlg call ptr,
2 caller_sb ptr;

info.target label Label to which the nonlocal GOIO was
attempted.

info.ptr_to nlg call Pointer to the call to PLISNL that requested
this nonlocal GCTO.

info.caller_sb Pointer to the activation (stack frame)
requesting this nonlocal GOTO.

P> BAD_PASSWORDS

(software, not returnable)

This condition is raised by the ATCHSS primitive when attempting to
attach with an incorrect password to a directory requiring a password.
This condition is signalled nonreturnable in order to increase the work
function of machine-aided password penetration. :

No information structure is available.

22-27 Third Edition

DOC3621-190

P> CLEANUPS

(software, returnable)

The nonlocal GOTO processor (UNWIND) is in the process of invoking
on-units for the condition CLEANUPS in each activation on the stack,
prior to actually unwinding the stack. The on-unit for this condition
should return, unless it encounters a fatal error. Calls to CNSIGS
from a CLEANUPS on-unit have no effect.

No information structure is available.

D> CoMI_FOF$
(software, returnable)
End of file occurred on the command input file,

The default on-unit prints a diagnostic message and returns to the
point of interrupt.

P> CONVERSION

(software, returnable)

This condition is raised when the source data for a data-type
conversion contains one or more characters that are invalid for the

target type. For example, nonnumeric characters appear in a character
string which is to be converted to integer.

Information Structure: Standard PL/I information structure.

P> ENDFILE (file)
(software, returnable)

This condition is raised when an end of file is encountered while
reading a PL/I file with PL/I I/O statements. The value of the
ONFILE() built-in function identifies the file involved. ~

The standard PL/I condition information structure is provided., The
value of info.oncode value is undefined, and info.file ptr identifies
~ the file on which end of file occurred.

The default on-unit for this ocondition prints a diagnostic and then
resignals the ERROR condition with an info,oncode value of 1044.

Third Edition 22-28

CONDITION MECHANISM

P> ENDPAGE (file)
(software, returnable)

This condition is raised when end of page is encountered while writing
a PL/I file using PL/I I/0 statements. The value of the ONFILE()
built-in function identifies the file on which the end of page was
encountered,

The standard PL/I condition information structure is provided., The
value of info,oncode_value is undefined; info.file ptr identifies the
file in question,

The default on-unit for this condition performs a PUT SKIP on the file,
and then returns.

Pmpnp

e e Wl

(software, varies)
This condition is a catch-all error condition defined in PL/I. The
default on-unit for most PL/I-defined conditions (such as KEY) results

in the ERROR condition being resignalled. Hence, the programmer has
the choice of handling a more— or less—specific case of the ocondition.

P> ERRRINS
(software, not returnable)

A nonring-0 call to the ring-0 entry ERRRTN was made, as the result of
an ERRRTN SVC or a call to ERRPRS with certain values of the key.

No information structure is available.
The default on-unit for this condition simulates a call to EXIT;

hence, this condition should be signalled only while executing in a
static-mode program.

22-29 Third Edition

DOC3621-190

P EXITS

(software, returnable)

The process has made a call to the EXIT primitive, via a direct call or
an EXIT SVC. This condition should not be handled by user programs,
since it is used by certain PRIMOS software to monitor the execution of
static-mode programs.

No information structure is available,

The default on-unit for this condition simply returns.

» FINISH

(software, returnable)

This condition is signalled before process termimation. It closes any
open files and returns to the point at which the condition was
signalled. It is not signalled if the process is prematurely exhausted
or destroyed. (Generally raised by full PL/I only. Not available
through PL1G.)

The default on-unit simply returns.

P> FIXEDOVERFLOW

(hardware, not returnable)

This condition is detected by hardware and is raised when a fixed-point
decimal or binary result is too large to fit into the hardware register
or decimal field.

The standard PL/I condition information structure is provided.,

P> ILLEGAI, INST$
(hardware, returnable)

The process has attempted to execute an illegal instruction.

ffh.fault _type Value '40'b3.

ffh.ret pb Points at the faulting instruction,
No information structure is available.

Third Edition 22-30

CONDITION MECHANISM

P> ILLEGAL ONUNIT RETURNS
(software, not returnable)
An on-unit for some condition has attempted to return, when that has

been disallowed by the procedure that raised the condition.

Information Structure: The standard-format condition frame header that
Jdescribes the oondition whose on-unit has illegally attempted to
return,

P> ILLEGAL, SEGNO$
(hardware, returnable)

The process has referenced a virtual address whose segment number is

ffh.fault type Value '60'b3.

ffh.ret po Points to the faulting instruction.
ffh.fault addr The virtual address that is in error,

No information structure is available.

P KEY (file)
(software, returnable)

The KEY condition is raised when reading or writing a keyed PL/I file
with PL/I I/0 statements, and the supplied Key does not exist (READ) or
already exists (WRITE). The value of the ONFILE() built-in function
identifies the file in question; the value of the ONKEY() built-in
function contains the key in error.

Information Structure: The standard PL/I condition information
structure. The value of info.oncode value is undefined; the value of
info.file ptr identifies the file in question.

The default on-unit prints a diagnostic and resignals the ERRCR
condition, with an info.oncode_value of 1045.

22-31 Third Edition

DOC3621-190

P> LINKAGE FAULTS
(hardware, returnable)
The process has referenced through an indirect pointer (IP) which is a
valid unsnapped dynamic link, but the desired entry point could not be
found in any of the dynamic link tables.

ffh.fault type Value '64'b3.

ffh.fault addr Points to the faulting indirect pointer.

ffh.ret pb Points to the faulting instruction.

Information Structure:

DCL 1 info based,
2 entry name char(32) var;

info.entry_name Name of the entry point that could not be found.

P> LISTENER_ORDERS

(software, varies)

This condition is used internally by the command loop to manage its
recursion. Users should never make on-units for this condition, and

user default on—units (ANYS$) should always pass this .condition on by
returning.

P LOGQUTS
(software, returnable)

This condition is raised when a user or the operator is trying to force
log out a process,

Information Structure:

DCL 1 logout_info
2 reason fixed /* reason for logout;
codes available in PRIMOS source */

The default on-unit logs out the process. When LOGQUTSB is signalled,

the intercepting process has between one and twc minutes to & its
cleanup before being force-logged out.

Third Edition 22-32

CONDITION MECHANISM

P NAME
(software, returnable)

This condition occurs only during data-directed input. It occurs when
stream assignment in a GET statement is read whose variable does not
match the variable name in the data 1list., After execution of the
on-unit, the process returns to the data-directed input as if the "bad"
input were processed. (Generally raised by full PL/I only. Not
available through PL1G.)

P> NO_AVAIIL, SEGSS$
(hardware, returnable)

The process has referenced a virtual address that refers to a segment
that has not yet been created. At the mament, the system has no free
page tables to assign to the segment. If the on-unit for this
condition returns, the reference will be retried, with some possibility
of success if this or some other process has in the meantime deleted a

segment,

ffh.fault_type Value '60'b3.
ffh.ret pb Points to the faulting instruction.

ffh.fault addr Virtual address that is causing the attempted
segment creation,

No information structure is available.

P> NONLOCAL_GOTOS
(software, returnable)

This condition is signalled by the PL/I nonlocal GOTO processor PL1SNL
just prior to setting up the stack unwind (and hence prior to the
invocation of any CLEANUP$ on-units). This condition exists to enable
certain overseer software (such as the debugger) to be informed that
the nonlocal GOTO is occurring. The default handler for this condition
simply returns. When a procedure handling this condition wishes to let
the nonlocal GOTO occur, it should simply return (without
continue~to—-signal set). :

22-33 Third Edition

DOC3621-190

Information Structure: Same as for the BAD NONLOCAIL, GOTOS condition.

P> NPX_SLAVE _SIGNALEDS
(software, not returnable)

A condition has been raised in your NPX slave running on some remote
system. The following message is printed:

Condition signalled in NPX slave on nodename
ERROR: Condition "condition name" raised at segment no./word no.

Information Structure:

DCL 1 npx_slave_info
2 node fixed, /* npx node number on which
slave is running */
2 orig condition char (32) var, /* condition
raised in slave */
2 orig info data (129) fixed; /* info
structure from slave */

When the slave detects a signalled condition, it transmits to the
master, which signals the condition NPX SLAVE SIGNALEDS. Its result is
the printout of the message shown above. The slave transmits to the
master almost all types of conditions signalled except the following:

EXITS

FINISH

LINKAGE FAULTS

NONLOCAL,_GOTOS

REENTERS

STRINGSIZE
These conditions are handled differently by slave's on-unit. They are

returned without transmitting to the master, that is, the master side
will not get the condition NPX_SLAVE_SIGNALEDS.

P> NULL _POINTERS
(hardware, returnable)

The process has referenced through an indirect pointer or base register
whose segment number is '7777'b3. This is considered to be a reference

Third Edition 22-34

CONDITION MECHANISM

through a null pointer, although user software should always employ the
single value '7777/0 for the null pointer.

ffh.fault type Value '60'b3.

ffh.ret pb Points to the faulting instruction,

ffh.fault addr Null pointer through which a reference was made.

No information structure is available.

The default on-unit for this condition resignals the ERROR condition
with the appropriate information structure.

(hardware, returnable)
The process has referenced a page of some segment that has been defined
as not referencible in any ring (i.e. no main memory or backing
storage is allocated for that page, and allocation is not permitted).
ffh.fault type Value '10'b3.
ffh.ret _pb Points at the faulting instruction.

ffh.fault addr The offending virtual address.

No information structure is available.

P> OVERFLOW
(hardware, not returnable)

This condition is raised when the result of a floating-point binary
calculation is too large for representation, It may occur within a
register or as a store exception. The default on-unit prints a message
and signals the ERROR condition. User on—units may not return to the
point of interrupt. However, if the default on-unit is invoked, and if
the user types START, the register or memory location affected will be
set to the largest possible single-precision flcating-point number, and
calculation will continue.

22-35 Third Edition

DOC3621-190

P> PAGE FAULT ERR$
(hardware, returnable)
The process has encountered a page fault referencing a valid virtual
address, but due to a disk error, the page control mechanism has not
been able to load the page into main memory. If the on-unit for this
condition returns, the reference will be retried, and there is some
likelihood that the disk read will succeed and the reference thus' be
completed,

ffh.fault _type Value '10'b3.

ffh.ret b Points at the faulting instruction,

ffh.fault addr Virtual address, the page for which cannot be
retrieved.

No information structure is available,

P> PAUSES

(software, returnable)

The process has executed a PAUSE statement in a FORTRAN program. This
condition should not be handled by user programs since it is used by
Prime software to ensure the proper operation of the FORTRAN PAUSE
statement.

No information structure is available.

The default on-unit for this condition prints no diagnostic, but calls
a new command level,

P> PH_LOGOS
(software, returnable)

This condition is raised when a phantam which you spawned is logging
out,

No information structure is directly available, Use the subroutine
LONSR, described elsewhere in this book.

Third Edition 22-36

CONDITION MECHANISM

P> POINTER FAULTS
(hardware, returnable)
The process has referenced through an indirect pointer (IP) whose fault
bit is on, but that pointer did not appear to be a valid unsnapped
dynamic link.
Note
This error condition is frequently caused by making a
subroutine call with too few argquments. The condition is

raised when the called subroutine attempts to access one of its
arquments through a faulted pointer.

ffh.fault type Value '64'b3.

ffh.fault addr Points to the faulting indirect pointer,
ffh.ret_pb Points to the faulting instruction,

No information structure is available.

> QurT$

(hardware, software, returnable)

The user has actuated QUIT (BREAK key or CONTRCL-P) on the terminal.

If this is a hardware signal, then ffh,fault type has the value '04'b3.

cfh.ret_pb or ffh.ret pb points to the next instruction to be executed
in the faulting procedure,

No information structure is available,
The default on-unit flushes the input and output buffers of the user's

terminal, prints the message "QUIT." on the terminal, and calls a new
command level.

P> RECORD
(software, returnable)
This condition is raised when record size is different from the

variable defined in the PL/I source. (Generally raised by full PL/I
only. Not available through PL1G.)

22-37 Third Edition

DOC3621-190

P> REENTERS

This condition is raised by the PRIMOS REENTER (REN) command and
reenters a subsystem that has been temporarily suspended due to another
condition (such as a QUITS signal).

If the interrupted operation can be aborted, the subsystem's on-unit
should perform a nonlocal GOTO back into the subsystem at the
appropriate point.

If the QUITS occurred during an operation that must be completed, the
on—unit should set the info,.start _sw to 'l'b, record the QUITS request
within the subsystem and return. The REN command will then execute a
START command which will restart the subsystem at the point of
interrupt. When the operation is complete, the subsystem should then
honor the recorded QUITS request.

The default on-unit returns without setting the info.start _sw. The REN
command will then print a diagnostic and return since it assumes the
stack held no subsystem able to accept reentry.

Information Structure:

DCL 1 info based
2 start _sw bit(l) aligned;

P> RESTRICTED_INST$S

(hardware, returnable)

The process has attempted to execute an instruction whose use is

restricted to ring-0 procedures. Certain of these instructions (in the

I/0 class) can be simulated by ring 0. An instruction which causes

this condition to be raised could not be simulated by this mechanism.
ffh.fault type Value '00'b3.

ffh.ret-pb Points to the faulting instruction,

P> RO_ERRS
(software, returnable)

A ring-0 call to ERRPRS or ERRRTN has been made, as the result of some
fatal error condition having been detected.,

No information structure is availabie.

Third Edition 22-38

CONDITION MECHANISM

The default on-unit for this condition prints no diagnostic, but calls
a new command level.

P sSIZE
(software, not returnable)

This condition is raised when a program tries to do an arithmetic
conversion and the value is too large to fit into the target data type.
It can occur when converting either a floating-point number or a
decimal integer to a binary integer,

The standard PL/I condition information structure is provided.

B> STACK OVF$
(hardware, returnable)

The process has overflowed one of its stack segments, but the condition
mechanism was able to locate a stack on which to raise this condition.

ult type Value '54'b3,
ffh.fault addr The last stack segment in the chain of stack
segments of the stack that overflowed. It is this
segment that contains the zero extension pointer
that caused the stack overflow fault.

ffh.ret pb Points to the faulting instruction.

No information structure is available,

The static-mode default on—unit will attempt to simulate the Prime 300
fault handling for stack overflow fault if the appropriate word of
segment '4000 is nonzero. (See the System Architecture Reference
Guide,) If this word is zero or if no static-mode program is in
execution, the standard default handling occurs.

P stops

(software, not returnable)

The process has executed a STOP statement in a higher-level-language
program. This condition should not be handled by user programs, as it

is used by Prime software to ensure the proper operation of the STOP
statement in the various languages.

22-39 Third Edition

DOC3621-190

No information structure is available.
The default on-unit for this condition performs a nonlocal GOTIO back to

the command processor which invoked the procedure which (or one of the
dynamic descendants of which) executed the STOP statement,

P STORAGE
(software, returnable)
This condition occurs when your program attempts to allocate storage

and none is available. (It is generally raised by full PL/I only and
is not available through PL1G,)

P STRINGRANGE
(software, returnable)

One argqument of the SUBSTR function is out of range of the string.

P> STRINGSIZE

(software, returnable)

The target of a string assigmment is too small to contain the value.
The default on-unit simply returns.

Information Structure: -

The standard PL/T condition information structure is provided,

P> SUBSCRIPTRANGE

A subscript is out of range.

Information Structure: Standard PL/I information structure.

Third Edition 22-40

CONDITION MECHANISM

P SVC_INSTS
(hardware, returnable)
The process has executed an SVC instruction, but the system has not
been able to perform the operation. If the user is in "SVC virtual”
mode, all SVC instructions result in this condition being raised.
ffh.fault type Value '14'b3.
ffh.ret _pb Points to the location following the SVC

instruction,

Information Structure:

DCL 1 info based,

7 raacon fivad h
et de N WAAINIE L de e DN A W,

info.reason values 1 Bad SVC operation code or bad argument(s).
2 Alternmate return needed but was 0.

3 Virtual SVC handling is in effect in this
process.

For the case of virtual SVC's only (info.reason code of 3), the
static-mode default on-unit will simulate the Prime 300 fault handling
for the SVC fault, if the appropriate word of segment '4000 is nonzero.
If this word is 0 or if there is no static-mode program in execution,
the standard default handler prints a diagnostic and calls a new
command level. (See the System Architecture Reference Guide for the
exact location.)

P> TRANSMIT
(software, returnable)
This condition occurs when data cannot be transmitted reliably between

a data set and PL/I storage. (It is generally raised by full PL/I only
and is not available through PL1G.)

22-41 Third Edition

DOC3621-190

p UIIS
(hardware, returnable)

The process has executed an unrecognized instruction that nevertheless
caused an unimplemented instruction fault, or else the system UII
handler detected an error in processing the valid UII,

The fault frame header that accompanies this condition is nonstandard
in that ffh.regs is not valid: the registers at time of fault are

unavailable,

ffh.ret pb Points to the next instruction to be executed in the
faulting procedure.

P> UNDEFINEDFILE (file)
(software, not returnable)
This condition is raised when an OPEN statement cannot associate an

input file with an existing PRIMOS file or device. The default on-unit
prints a message and signals the ERROR condition,

P> UNDEFINED GATES
(software, not returnable)

This condition is signalled when the process has called an inner ring
gate segment at an address within the initialized portion of the gate
segment, but there was no legal gate at that address., This error can
arise because gate segments are padded, from the last valid gate entry
to the next page boundary, with "illegal"™ gate entries.

No information structure is available.

P> UNDERFLOW
(hardware, returnable)

This condition is signalled when the result of the floating—point
binary or decimal calculation is too small for representation. The
default on-unit sets the floating-point accumulator to 0.0e0. If the
underflow occurred as a store exception, the affected portion of memory
is also set to 0.0e0. The default on-unit returns and the calculation
proceeds, using the 0.0e0 value.

The standard PL/I condition information structure is provided.

Third Edition 22-42

CONDITION MECHANISM

P> ZERODIVIDE
(hardware, not returnable)

This condition is signalled when a division by 0 (floating-point or
fixed-point) occurs, The d