CASSETTE INTERFACE
Assembly, Checkout, and Theory

© Interactive Products Corporation, 1977

PolyMorphic Systems

TABLE OF CONTENTS

		•	raye
1.	Introdu	uction	. 1
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Warranty Inspection Handling Precautions Soldering Tips Safety Diode Polarity Resistor Color Code, Capacitor Polarity Markings Loading Dual In-Line Packages	1 2 2 3 3 4
2.	Genera	l Information	6
	2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4	Recorder Model Recommendations Material Parts List and Check-Off BAG Ø Cassette Hardware BAG 1 BAG 2	7 7 7 8
3.	Compone	ent Installation - Install DIP Sockets	9
	3.2 3.3 3.4 3.5 3.6 3.7 3.8	Install Resistors Assembly Drawing Install Capacitors Install Transistor Install Potentiometers Install Connectors Examine Board Install Integrated Circuits Circuit Power Up and Adjustment Rear Panel Mounting	11 12 12 12 12 13 13
	3.9	Device Address Selection and Installation	15
	3.9.0 3.9.1	Byte Setup Polyphase Setup	

				Page
4.	Theory of Op	eration		18
	Fig 1b Byte	Character Format	, 	19
	Fig 2B Byte	Timing Waveforms		21
	Fig 1D Bloc	k Diagram		22
	4.1 Addr	ess Decoder		23
	4.2 Moto	r Control		24
	4.3 Mode	Selection		25
	4.4 Mult	iplexor		25
5.	Polyphase Th	eory		26
	Fig 2A Poly	phase Timing Waveforms		27
	Schematic Dr	awing		30
	Appendix A	Motor Control Circuitry		Al
	Appendix B	Recorder Operation		в٦
	Appendix C	Logic Probe Schematic		C1
	Appendix D	Chip Pinouts		D1
	Appendix E	Small Dumper Program		E1

1 Introduction

PolyMorphic Systems is pleased to have your order for POLY 88 series equipment. We have endeavored to supply the most thoroughly tested and documented material on the market. The system is modular and Altair compatible, and is designed to accept nearly every peripheral device available. We ask you scan this manual before assembly.

POLY 88 modules are designed for ease of assembly, use and durability. If, however, after having read the manual, you have any doubt of your faith in the project please return the kit(s) to us, in original condition, for a full no-questions-asked refund.

1.1

WARRANTY

KITS: All parts and materials are warranted to be free of defects at the time of shipment. Defective parts will be replaced free of charge if returned to the factory within ten (10) days of receipt of delivery or upon written statement by purchaser that the unit was unassembled or untested for up to ninety (90) days due to circumstances beyond his control. Completed units returned under similar circumstances will be repaired at a labor cost of \$20/hour, with defective parts replaced free. Should the estimated cost of repair exceed 20% of the original cost of the unit, the customer will be notified prior to repair.

THE WARRANTY IS VOID IF THE KIT IS SOLDERED WITH CORROSIVE FLUX.

ASSEMBLED: The assembled units are fully warranted to be free of defects for ninety (90) days from the time of shipment. If they are found to be defective in this period they may be returned to the factory for repair or replacement free of charge (including return shipping).

1.2 Inspection

If your package has arrived in poor condition please inspect the contents for damage. The units are shipped in damage resistant containers. In the unlikely event of damage or breakage, please return the kit to us in the original container for replacement.

1.3 Handling precautions:

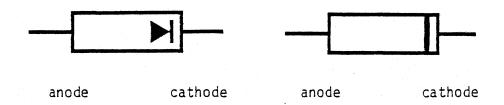
As with any sensitive MOS (metal oxide semiconductor) caution must be exercised to avoid damage to the chip. The most frequent problem is damage caused by static electricity. While handling the chips (Integrated Circuits) we recommend that cotton clothing be worn in preference to synthetic materials.

More importantly, these devices should never be handled by the leads. They should be handled only by the ends of the chips. Since they come packed to protect the leads, there is no reason to actually endanger the chip until it is time to install them in the IC sockets on the board.

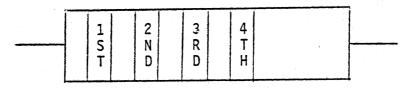
1.4 Soldering tips:

- 1. Use a soldering iron of 25 watts or less. Larger soldering tools such as soldering guns and bigger irons are too hot. The lower wattage irons do the job efficiently and reduce the risk of burning the printed-circuit board.
- Use a small, clean tip on the iron. Clean it after each use on a small piece of damp sponge.
- 3. Use the 60-40 rosin-core solder. This type is provided with your kit. Use the supplied solder or the smallest diameter available. Do not use acid-core solder or externally applied fluxes. <u>USE OF EXTERNAL FLUXES OR ACID CORE SOLDER VOIDS YOUR</u> WARRANTY.
- 4. To solder, first apply a light coat of solder to the tip of your iron. Place the tip against both the component lead and printed circuit juncture to be soldered. Add ample solder to the juncture of lead and printed circuit pad but not to the iron itself. The solder will melt when the unit to be soldered is sufficiently heated and will bond by forming a capillary film between the lead and pad.
- 5. Remove the solder after one or two seconds. The rosin will bubble (boil) out. Allow three to four bubbles then remove the iron. Do not keep the heat applied for more than ten seconds.

- 6. Solder bridges look very neat but are a constant source of trouble. Solder bridges are caused by an excess of solder being built up on one conductor and overflowing to another. Great care must be exercised to avoid the occurance of solder bridges. Use the minimum amount of solder possible. Inspect each IC socket and individual component after soldering. Solder bridges can be a constant source of trouble when boards of a high trace density are being assembled.
- 7. The best method of removing solder bridges is the use of a vacuum "solder-puller" available at most electronic supply houses. They are relatively inexpensive. The joint is heated and vacuum applied to the bridge. Another method is to remove the bridge with wick-type solder remover after heating the troublesome area.


Yet another assault on a solder bridge can be made by reheating the bridge with the iron and drawing or pulling the solder away until it is thin enough to be broken or cleaned with an X-acto knife or other keen tool.

8. Be careful not to burn through traces on the PC board.

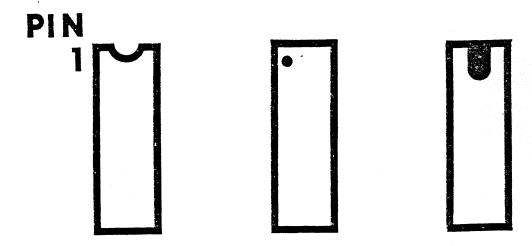

1.5 SAFETY:

We strongly recommend that after a component has been soldered, the excess lead be cut only with a pliers attached to the free end. This method of trimming, while a bit awkward at first but prevents small pieces of lead from flying into the eyes. If you do not wish to follow this procedure, we recommend wearing safety glases.

1.6 DIODE POLARITY:

1.7 Resistor Color Code (Values in Ohms)

	1st Band	2nd Band	3rd Band		4th Band (Tolerance)
Black	0	0	x 1	**************************************	
Brown	1	1	x10		
Red	2	2	x100		
Orange	3	3	x1000	or x1K	
Yellow	4	4	x10,000	or x10K	
Green	5	5	x100,000	or x100K	
Blue	6	6	x1,000,000	or xl meg	
Violet	7	7	x10,000,000	or x10meg	
Gray	8	8	x100,000,000	or x100 meg	
White	9	9	x1,000,000,000	or x1 giga	
Gold			x0.01		<u>+</u> 5%
Silver			x0.1		<u>+</u> 10%
No Band					+20%


Capacitor Polarity Markings

All tantalum and electrolytic capacitors must be oriented properly to prevent destruction. The positive terminal or lead is usually marked. The mark can be a plus sign (+), a dot or stripe down the side of the component nearest the positive lead. On larger "can" type electrolytic capacitors, the positive terminal is often marked by a red or white dot. Always trust the dot, not the markings on the can.

1.8 LOADING DUAL IN-LINE PACKAGES (DIP)

Most DIP have their leads slightly spread. They must be walked into the socket using the below mentioned procedure. We strongly urge that sockets be used for the installation of these integrated circuit packages because of the difficulty in installing them directly to the board. The use of sockets also relieves some of the damage hazard caused by static electricity.

Orient the device properly. Pin 1, always indicated by a notch on the assembly diagram, is sometimes indicated by an embossed dot instead of a notch on the IC itself. Refer to the drawing below for indication of pin 1. (Pins are counted counter-clockwise from pin 1.

To install a DIP into the socket, insert the pins on one side a very slight distance into the socket. Apply a slight sideways pressure on the pins of this side. Now, reverse the procedure. Bend the pins only until both sides begin to enter the socket holes.

Press the IC straight down until it seats in the socket. Use a gentle pressure in the center of a small chip or two pressure points of equidistant spacing on the larger units such as MCM6571A or 8212.

2. GENERAL INFORMATION

Here is your PolyMorphic Cassette Interface. It is a "minicard" which fits nicely in the backpanel of your Poly 88 system and operates through the serial port on the CPU board.

The PolyMorphic Systems Cassette Interface provides two recording techniques, Byte Standard and a special Polyphase. The Byte Standard is a technique which allows a great range of recorder quality, and is therefore the best for program exchange. However, Byte Standard is a relatively slow technique. It operates at 300 Baud (approx. 30 characters per second).

The Polyphase method allows a much faster rate but is not as tolerant to recorder quality. It operates at 2400 Baud (approx. 240 characters per second, 8 times faster than Byte Standard) which allows a much more satisfying system operation when used with a good quality recorder. It will read or write 1024 bytes in about 6½ seconds compared to 52 seconds for the same amount in Byte. (The last figure includes allowance for format overhead, including inter-record gap, sync characters, block type, memory address, block length, etc. as described in detail in the description of the 4.0 monitor.) The interface is controlled by the System monitor and the dumper program.

2.1 IMPORTANT! We have used the following recorders with this interface:

Superscope	C101
Superscope	C102
Superscope	C103
Superscope	C104
Sears	799.21682501
Panansonic	RQ - 309DS & RQ - 413S
Sony	TC110B

Of these, only the Superscope models C103 and C104 are recommended for reliable Polyphase use. All tested models work reliably with the Byte mode. A minimal requirement for Byte use is a tone control.

2.2 MATERIAL

In addition to this manual, you should have the following bags of hardware -

Part No.	<u>Unit</u>
L 101101	Byte-Biphase Circuit Board
101102	Cassette Bag Ø
-101103	Cassette Hardware (inside Bag 1)
2-101104	Cassette Bag 1
101105	Cassette Bag 2

2.3 Parts list and check-off sheet.

Check the contents of each package against each list.

2.	3.	1		

Check	Quantity	Part Number	Description
(4)	1	018008	8-pin IC sockets
(H)	2	018014	14-pin IC sockets
(1)	4	018016	16-pin IC sockets
(4)	1	031086	74LS86
(4)	1	031257	74LS257
(4)	1	034227	8T20
(4)	1	034263	CD4013
(4)	1	034277	CD4027
(4)	1	034520	96L02
(c)	1	034530	75453

BAG Ø

2.3.2 Cassette Hardware

101103

Cassette Hardware

2	2-56 x3/8" F. H.	machine	screw
2	#2 lock washer		
2	#2 hex nuts		
3'	Solder		
6"	#24 wire		

2.3.3 BAG 1

	Check	Quantity	Part Number	Description
	Hty	1	012515	68pF capacitor
	LAN	1. I	012545	0.001#F +20% ceramic disc cap
2	> (W	1	012560	.01μF cap (mylar)
1	> LH	1	012562	0.01 _{\mu} F +20% 100V ceramic disc cap
		1	012585	$.047\mu F$ cap (mylar)
	(1)	8	012600	$0.1\mu F/16V$ capacitors (ceramic)
	(4)	1	017330	25-pin connector
	(4)	1 - 1	012550	0.0047#F <u>+</u> 20% capacitor
	(4)	1 (1 - 1	017329	Hardware for connector
	(4)	1	047202	20K single-turn trimpot
	W	1	047205	100K single-turn trimpot
	(y)	1	053519	15Ω w carbon comp. resistor
	(4)	2	053547	220Ω W carbon comp. resistor
	(i)	14	053571	$2200\Omega_{4}^{2}$ w carbon comp. resistor
		2	053573	2.7K ½w carbon comp. resistor
	(H)	2	053587	10K ⅓w carbon comp. resistor

D		(
- 1	ŧ	•

PolyMorphic Systems Byte/Biphase Cassette Interface

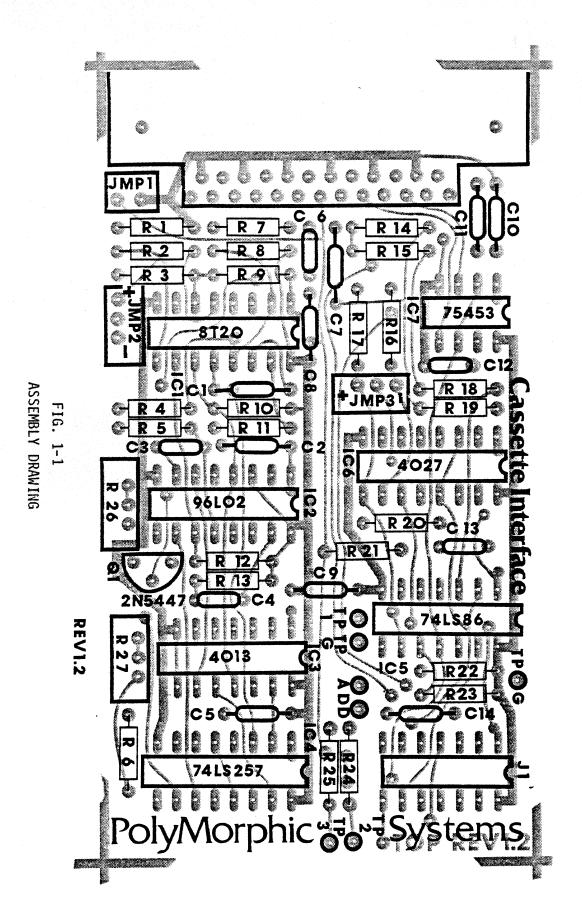
(4)	1	053591	15K w carbon comp.
(4)	3	053616	100K w ear, comp. resistor
W	1 .	072185	2N5447 transistor (pnp)
14	1	079100	Ribbon Cable (14 cond - 2 pluds)

2.3.4 BAG 2

1 101105 Small Dumper on cassette tape

3. Install DIP sockets:

Orient the PC board so that the word "TOP" is on the right side of the board.


According to figure 1-1 and the check-off list, install sockets on top of the PC board.

Install IC sockets

Check	Location	Component
	IC1	16 pin socket for 8T20
	IC2	16 pin socket for 96LO2
	IC3	14 pin socket for 4013
	IC4	16 pin socket for 74LS257
(2)	IC5	14 pin socket for 74LS86
(F)	IC6	16 pin socket for 4027
(2)	IC7	8 pin socket for 75453

3.1 Install resistors:

Number	Description	Color
-1	15Ω ½w	brown-green-black
2	2.7K 4w	red-violet-red
3	220Ω ¹ aw	red-red-brown
4	2.2K 4w	red-red-red
5	2.2K 4w	red-red-red
6	15K 4w	brown-green-orange
CALLEGO TO THE PARTY OF THE PAR	220s2 4w	red-red-brown
	2.2K ¼w	red-red-red
·9	2.7K 4w	red-violet-red
10	2.2K ¹ 4W	red-red-red
Control of the Contro	2.2K 4w	red-red-red
12	2.2K ¼w	red-red-red
	100K 4w	brown-black-yellow
¹⁰⁰ от по загазавительной развительной раз	10K law	brown-black-orange
15	10K 1/2W	brown-black-orange
16	2.2K ¼w	red-red-red
17	2.2K ½w	red-red-red
18	100K 14W	brown-black-yellow
19	100K 14W	brown-black-yellow
20	2.2K 4W	red-red-red
21	2.2K 14W	red-red-red
-22	2.2K 4w	red-red-red
23	2.2K ¹ 4W	red-red-red
24	2.2K ¹ _{4W}	red-red-red
-25	2.2K 4w	red-red-red

II d

3.2 Install capacitors:

			•
Number	<u>Description</u>		
		MYLAR	The state of the s
N.K.	.047µF 100V mylar		The state of the s
-2 *	.01µF 100V mylar		
3	.001µF ceramic disc		
4	68pF ceramic disc	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5-9	.lµF 16V ceramic disc		4 5 5
10 /	.0047µF 100V ceramic disc		
311	.lµF 16V ceramic disc	CERAMIC -	
12	.01µF 100V ceramic disc		
13-14	.1µF 16V ceramic disc		

 \rightarrow 3.3 Install 2N5447 transistor following the assembly drawing (fig. 1-1)

> 3.4 Install pontentiometers

Orient the potentiometers so that the screw adjustments are toward the outside of the board.

	R26	201	′
Visit Committee of the	R27	100k	

3.5 Install connectors.

Mount the 25 pin connector on the top of the card. You will probably need a thin, stiff tool such as an awl or screwdriver or needlenose pliers to align each pin with its hole in the PC card. Begin at one end and work toward the other, partially inserting each pin. Do not force the connector into position; it will slide into place with slight pressure if all 25 pins are oriented properly. Fasten the connector to the card with 2-56 screws, nuts, and lockwashers. Solder the pins.

Orient the card so that the 25 pin "D" connector is on the left edge. Insert the cable plug, on the component side of the board, so that the colored wire (usually red) is at the top, and the cable extends

to the right. Notice that pin 1 of the plug is in the upper left hand corner. Solder the pins.

3. 6 Examine the board very carefully for:

solder bridges unsoldered joints cold solder joints

3. 7 Install integrated circuits. Note: The ICs marked * are MOS, and can sometimes be damaged by the voltages present on your hands. Do not touch the pins on these chips any more than is absolutely necessary.

<u>Check</u> <u>Layout Position #</u>		Description		
76)	IC1	8T2Ø bidirectional one shot		
	IC2	96LØ2 retriggerable one shot		
7	IC3*	4013 D flip flop		
	IC4	74LS257 QUAD 2-1 Multiplexor		
(1)	IC5	74LS86 exclusive OR gate		
(A)	IC6*	4027 J-K flip flop		
\bowtie	IC7	75453 OR gate		

3.8 Circuit power up and adjustment:

First use an ohmmeter to check +5V and -5V to ground. Pin 14 to pin 10 of the ribbon cable should give a reading of approximately 1000Ω in the forward direction and 450Ω in the reverse. Pin 11 to pin 10 should give 1000Ω forward and $20K\Omega$ reverse. These are typical values and will vary between different ohmmeters. Connect the ribbon cable to the serial port; make sure pin one is down when installing the DIP plug in the CPU board. Check for +5V $\pm 0.25V$ on the highest numbered pin (8, 14 or 16) on each of the IC's. Check for $-5V \pm 0.25V$ on IC1 pin 4.

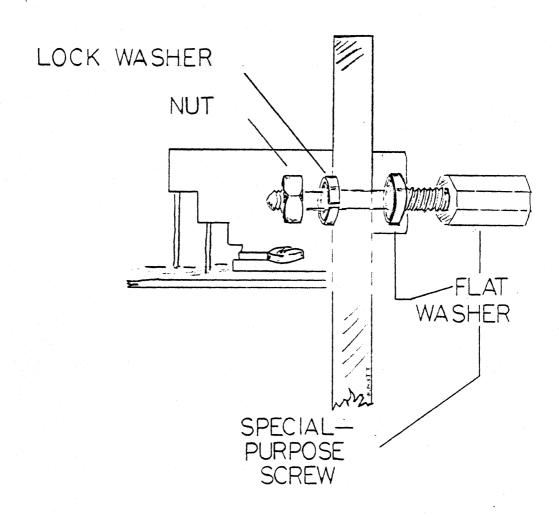


FIG. 1-2

3.9 Device Address Selection and Installation

As supplied, the cassette board is set up to be serial device $\#\emptyset$. Device \emptyset is used as the bootstrap loader device when the Poly 88 system is powered up.

If this is your second cassette board the address should be set to 1. This is accomplished by breaking the printed trace connecting the two pads labeled ADD on the assembly drawing. The trace is located on the bottom side of the PC card, and may be easily cut with an X-acto knife.

Using the hardware supplied, (P/N 017329) install the card in the cassette connector cutout (above transformer) on the back panel of the Poly 88 (see Fig. 1-2). Then plug the free end of the ribbon cable into one of the two serial I/O connectors in the upper right hand corner of the CPU card. Make sure that pin^*1 of the DIP plug corresponds to pin 1 of the socket. If installed backwards the cassette card may be destroyed when power is applied to the system.

3.9.0 Byte Setup.

For setup the Byte/Polyphase cassette card you will need a logic probe, a voltmeter, three clip leads and a 1-10uF capacitor.

Make sure JMP1 is shorted by a trace on the bottom of the board. Temporarily connect a 1-10uF capacitor from pin 1 of IC6 (+ end) to pin 5 of IC1 (- end). Connect a voltmeter (6-10V scale) to test point 1 and ground (TPG). Adjust pot R27 fully clockwise. Check test point 1 with a logic probe It should be continuously high. Now measure the voltage on TP1. It should be 2 and 5 volts. Now multiply this value by 3/4 for use in the next step.

Connect a temporary jumper between IC5 and pin 9 and ground (TPG). Set pot R27 to give the voltage previously calculated on TP1. With a logic probe check the RXC- is low with positive pulses. This gives you 75% duty cycle at TP1.

3.9.1 Polyphase Setup

Remove the jumper from IC5 pin 9 to ground. Remove the short on JMP1 (cut the trace on the bottom of the board). Make sure the

power is still off and carefully remove the 8T20 from its socket. Turn on the power and press P on the keyboard. This will enable the cassette board. Measure the voltage at TP3. It should be between 2 and 5 volts. Multiply the measured value by \(\frac{1}{4} \). This value will be needed later in the setup procedure. Turn off the power and reinsert the 8T20.

Load the following program* into onboard RAM at ØDØØ:

ADDR	DATA		PROGRAM	
ØDØØ	2118ØD	BIPH:	LXI	H, TISR
ØDØ3	2216ØC		SHLD	SRA4
ØDØ6	CDADØ2		CALL	SETUP
ØDØ9	Ø5		DB	ØØ5H
ØDØA	AA		DB	ØAAH
ODOB	4Ø		DB	Ø4ØH
ØDØC	ØC		DB	ØØCH
ØDØD	E6		DB	ØE6H
ØPØE	E6		DB	ØЕбН
ØDØF	ØØ		DB	øøøн
ØD1Ø	3E21		MVI	A,Ø21H
ØD12	D3Ø1		OUT	Ø٦
ØD14	76	LOOP:	HLT	
ØD15	C314ØD		JMP	LOOP
ØD18	3E 55	TISR:	MVI	A,55H
ØD1 A	D3ØØ		OUT	Ø
OD1 C1.	C364ØØ		JMP	IORET

^{*} Note: This program is set up to run with a 4.0 monitor ROM.

PolyMorphic Systems Byte/Biphase Cassette Interface

This program sets up the USART for Polyphase operation, and outputs a string of alternate ones and zeros. Run the program starting at address ØDØØ. Turn the Polyphase setup pot (R26) fully counterclock wise. Place your voltmeter on TP3 and turn the trimpot slowly clockwise until the voltage calculated in the first part of the procedure is reached. Be careful because there are two settings of the pot that will give you this value. The correct one is the one furthest counterclockwise. Check TP3 with the logic probe. It should be low with positive pulses. Check TP2. It should be half ones and half zeros. This completes the Polyphase setup procedure. Remove the temporary 1 to 10μ F capacitor.

Note: The best final trim of both the Byte and Polyphase setup is to read data and adjust the appropriate potentiometer (R27 for Byte, R26 for Polyphase) one way and then the other, until errors result, then center the pot in the range found.

PLEASE READ THIS

To insure proper operation, read the Theory of Operation section thoroughly. This section contains important setup information.

4. Theory of Operation.

The function of the byte standard cassette interface is to enable the recording and playback of digital data on average or better audio cassette recorders with the POLY 88 system using the Provisional Audio Cassette Data Interchange Standard as described in Byte Magazine (February, 1976, pp. 72 & 73).

This standard was developed to provide a common, reliable, and inexpensive means of software exchange and mass storage. It defines a character oriented, serial, frequency shift modulation method at a nominal transfer rate of 300 Baud. A logical one is defined as eight cycles of 2400 Hz and a logical zero as four cycles of 1200 Hz. A character consists of a start bit (a zero), eight data bits and two (or more) stop bits (ones). See figure 1b. Intervals between characters are unspecified amounts of time filled with one bits.

The POLY 88 system, controlled by its ROM monitor, outputs and inputs this character format through the serial port in NRZ (non-return to zero) form. It also provides a syncronized 16X clock, TXC- (16 clock cycles per bit = 4800 Hz) during output to the tape interface. The interface in the write mode must convert this NRZ data plus the clock to the Byte format and present this, at the proper level, to the AUX input of the recorder.

IC5, IC6, R14, R19, C7 and C12 accomplish this. When the data input (TXD+) is a one, IC5 forces the inputs to the first flop of IC6 to zero. Also TXD+ is applied to IC6's set terminal forcing its output to a one. This output is connected to the input of the second flop causing it to toggle with each rising clock edge. This action

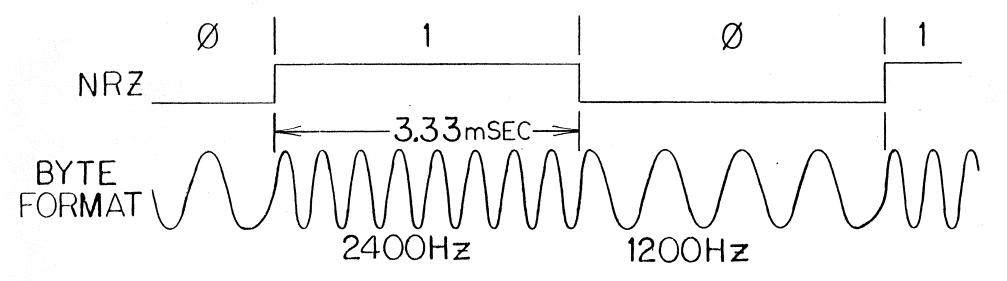


FIG1a. NRZ and Byte format per bit.

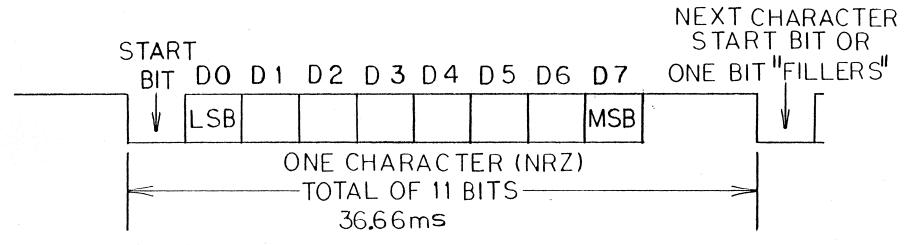
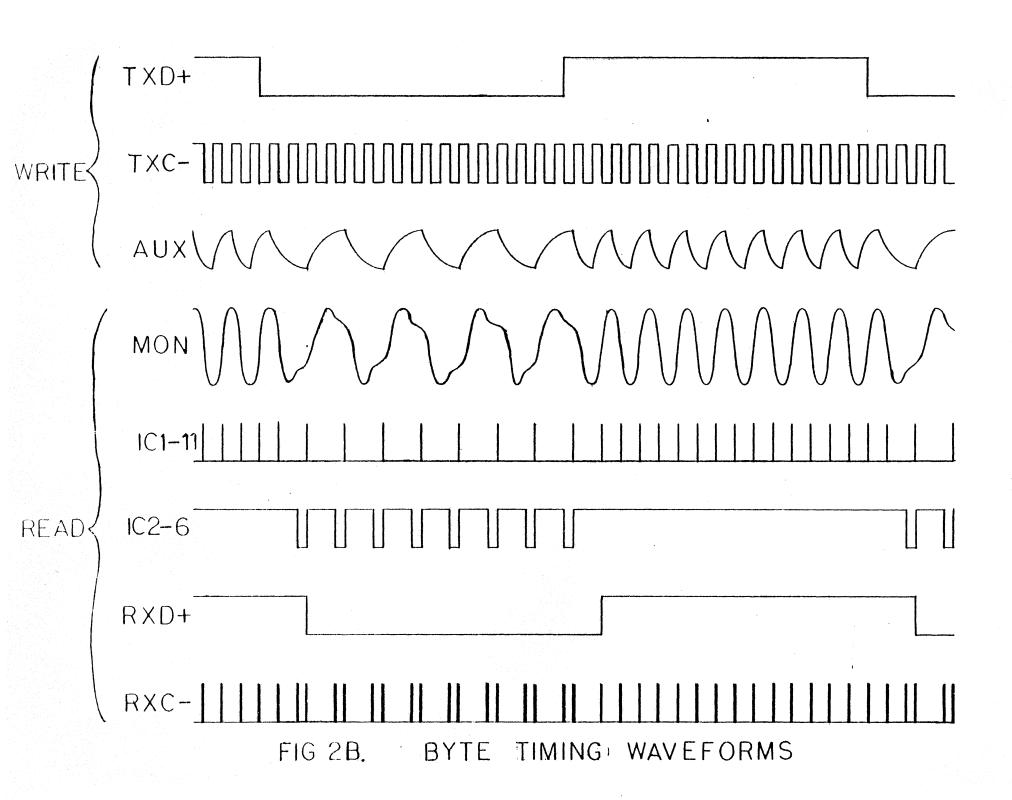



FIG1b. Byte character format.

divides the clock by two at the second flop's output creating 2400 Hz for the one level input. For a one bit, exactly eight cycles are produced because exactly 16 clocks are given. When TXD+ is a zero, the set is removed and the inputs are forced to one on the first flop. So the output of flop one is divided by two and the second flop divides by two again so its putput is 1200 Hz. For a zero input exactly four cylces are produced because 16 clocks were input. Resistors R14, and 19 form a resistive divider to reduce the 5V output of the flop to 500mV for the AUX input. C7 and C12 roll off the high frequency components of the square wave output to better match the bandwidth of the recorder. Figure 2 shows the relationship between TXD+, TXC- and the signal for the AUX input to the recorder.

When reading data, the recorder output looks like the MON waveform shown in Figure 2B. This signal is adjusted to a nominal 2Vp-p with the volume adjust on the recorder. IC1, the 8T20, is a bi-directional oneshot. It accepts analog inputs and, as configured here, outputs short pulses at each zero crossing (both positive and negative going). RI is a line termination resistor. R2, 7, 9 and 3 provide positive feedback to give a wide noise margin. R11 and C1 set the width of the output pulse. It is nominally 7004s. See Figure 2B. ICI-11 waveform. These pulses trigger IC2, a retriggerable one shot. It is set to a nominal 312 μ s (3/4 of the period of 1200 Hz zero's waveform). If ones are being received, IC2 gets a new trigger every 208 \u03c4 s, so it is constantly retriggered and makes its output a constant one. If a zero is being received, it gets a new trigger every 416μ s and therefore times out. This output is applied to IC3, a D flip-flop. Since this flop is clocked by the positive edge of ICl's output, ones are shifted through when 2400 Hz is being received and since its input is zero at each clock pulse during 1200 Hz, zeroes are output. IC3's output is now an NRZ reproduction of recording. It is buffered to the serial port by a multiplexor, IC4, as RXD+. It is also necessary to output 16 clocks per data bit back to the serial port. The negative

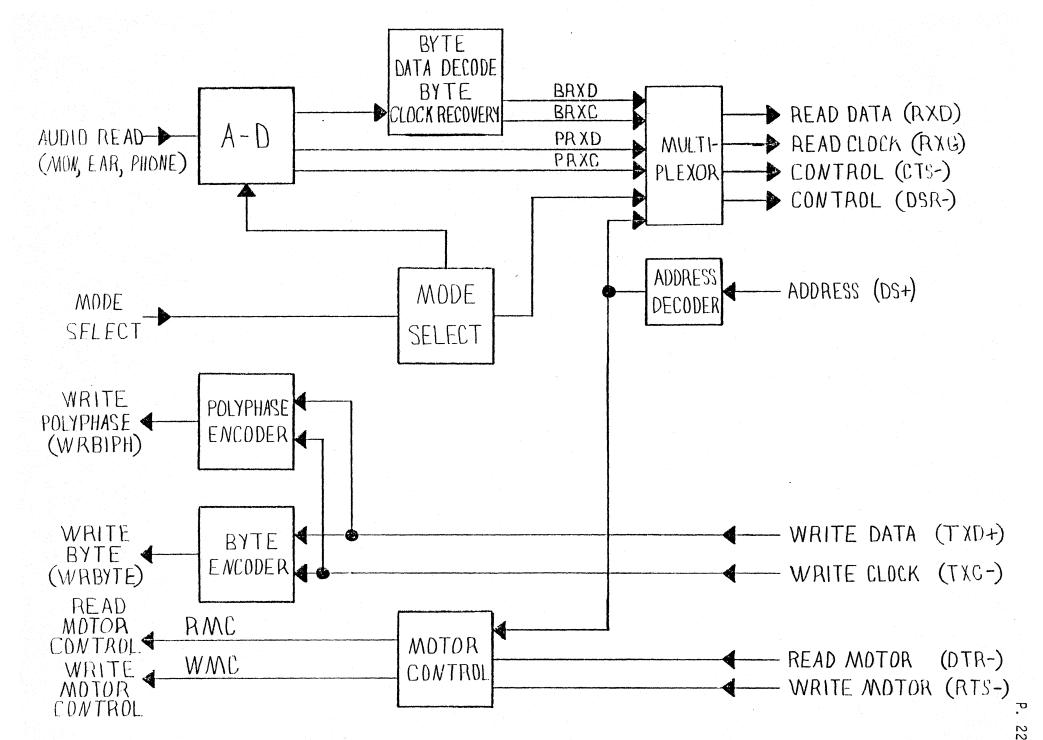


FIG 1D. CASSETTE INTERFACE BLOCK DIAGRAM

outputs of IC1 and IC2 are connected to the second one shot in IC2 in a manner that it produces a nominal 1μ s pulse for each IC1 pulse and each IC2 timeout. During the 1290 Hz zero 16 clocks are produced; eight from IC1 and eight from IC2. They are not evenly spaced but they do fill the requirements. This pulse train is buffered out to the RXC- line by a section of IC4. See Figure 2B.

4.1 Address decoder

The address decoder is needed because there are two serial ports on the CPU board which share the USART and therefore can only be operated one at a time. The cassette interface is normally set to address Ø with its jumper selection. The monitor expects tape operations to be there. But the other serial port, address 1 may be implemented as a second cassette, therefore the need for the jumper.

The DS+ signal is the device select input. When the ADD jumper is installed, output is enabled for DS+ equal to zero. This allows the POLY 88 to software select one of two devices plugged into the serial port.

The address logic is part of IC5, a 74LS86 exclusive OR used as a comparator.

The address jumper (ADD) is normally connected through by a printed trace on the PC card. This forces a logic Ø on pin 12 of IC5, an exclusive OR gate. Cutting this trace causes pin 12 to be pulled up to a logic I level by resistor R22. The output of IC5 (pin II) is the enable line for the cassette board. When at a logic I level the outputs of IC4 are tri-stated and the motor controls are disabled (IC7). A logic Ø will enable the board, placing

data on pin 2 of Jl, clock on pin 8 and logic Ø (ground) on pins 4 and 6 the clear to send and data set ready inputs to the USART. The cassette board is enabled when DS+ (device select) goes low if the ADD jumper is in place or high if the jumper is removed.

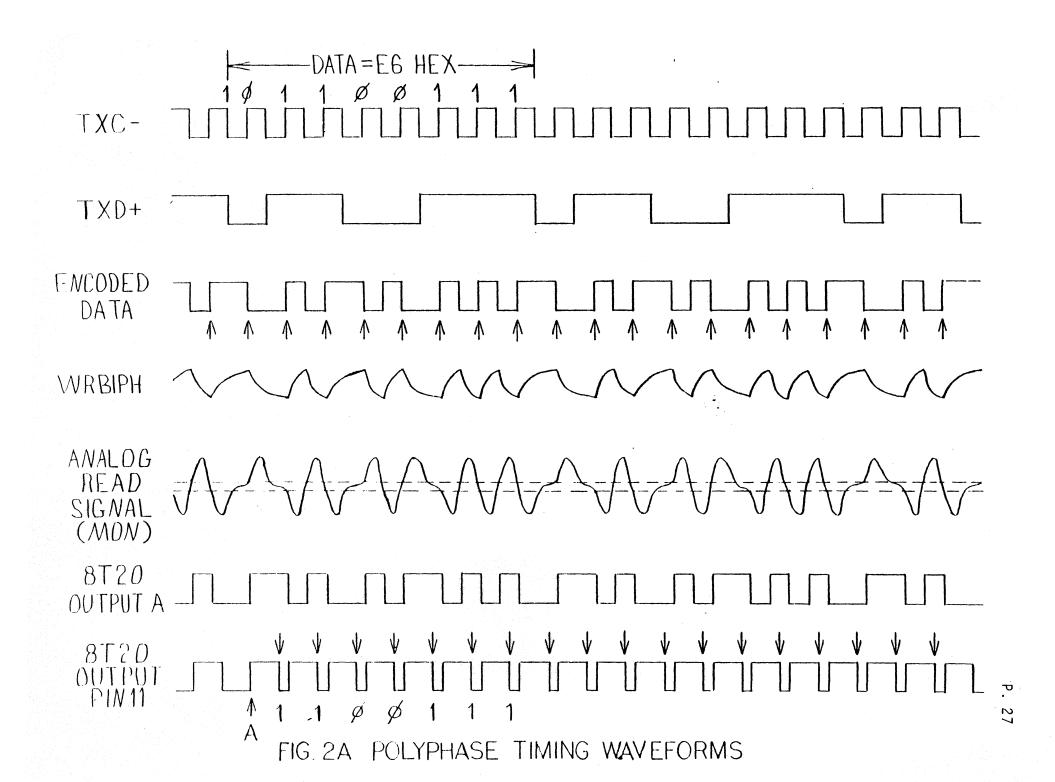
4.2 The Motor Control circuit IC7 takes the logic level USART outputs, Request to Send (RTS-) and Data Terminal Ready (DTR-), as controlled by the Monitor, and converts them to open collector current sink outputs. Write Motor Control (WMC-) and Read Motor Control (RMC-), which are directly capable of controlling the motor of the recorder used if it is of the type with a positive motor voltage source, and the remote jack between the motor and ground. The other recorder types described in Appendix A may be used with appropriate level shift circuitry or a relay. Attempted use of recorder types other than that described above will destroy the 75453 chip, IC7.

The 75453 driver has an open collector output which will sink 330ma and handle up to 30VDC.

Caution: See the appendix before connecting the motor control output to your recorder.

4.3 The Mode Select block switches the interface from the Byte Standard mode to the Polyphase mode. Jumper 1 controls the selection. A jumper installed puts the board in the Byte Standard mode (a jumper is printed on the solder side of the board when it is produced). No jumper puts the board in the Polyphase mode. The jumper connections are brought out to the recorder connector so that a switch may be installed at the recorder or a switch may be put on the Poly 88 backpanel in the hole over the video connector and wired to the jumper pads. A closed switch gives Byte and an open Polyphase.

The switch grounds the mode select line which causes the multiplexor to output the Byte output and 01 to change the time constant of the A/D stage to the short value necessary for the Byte operation.


When the mode select line is shorted (logic \emptyset), transistor Ol will conduct (due to current flowing from the emitter through R4 to ground) causing resistor R26 to be shorted out. R26 is the polyphase timing adjustment and is not needed for Byte operation. When the mode select goes high (unshorted) Q1 ceases to conduct (base and emitter voltages are nearly equal) and R26 is switched into the circuit.

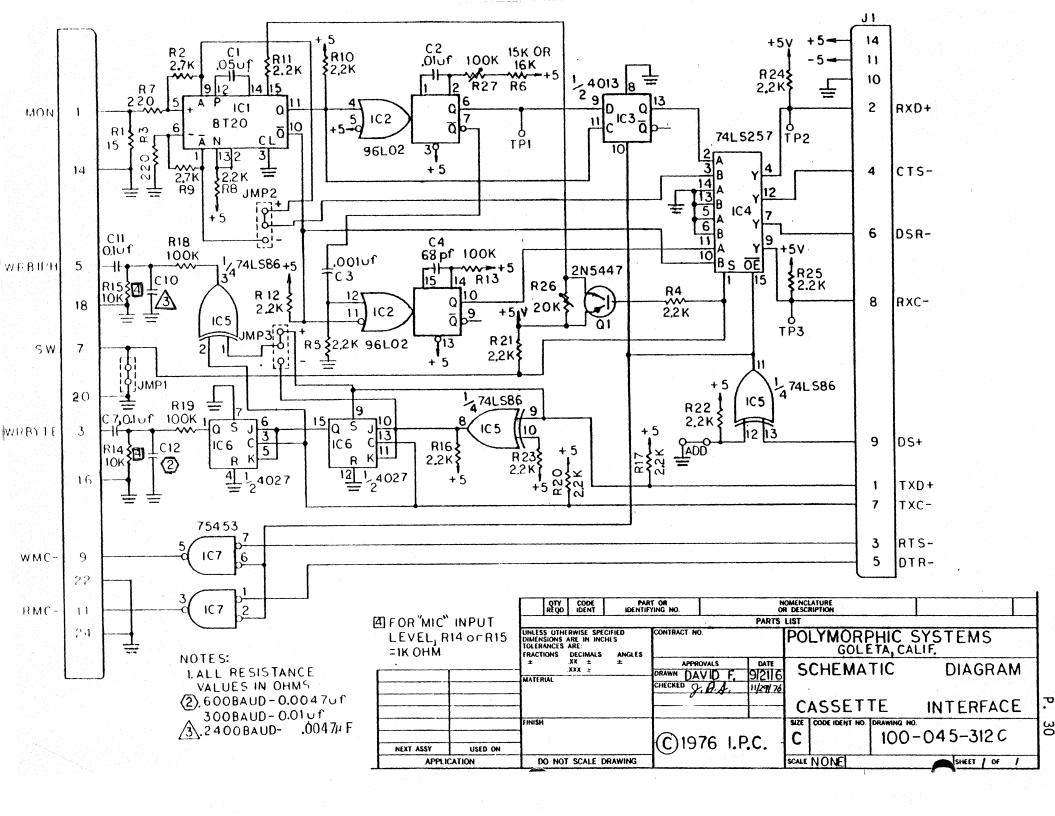
The multiplexor, IC5, is basically a four pole 2-position switch. 4.4 When pin 1 (mode select) is low for Byte, the "A" inputs (pins 2, 5, 11 14) are connected to the output and when high the "B" inputs (pins 3, 6, 10, 13) are connected. Pin 2 is Byte data and pin 11 Byte clock. Pins 3 and 10 are Polyphase data and clock, respectively. puts are tristate and are put in the high impedance state if the interface address is not selected. When it is selected by the address decoder, it also outputs a low active state for the Clear To Send (CTS-) and Data Set Ready (DSR-) control lines in both modes.

5. The Polyphase technique is the PolyMorphics implementation of Phase encoded (P.E.), or Biphase, or Manchester encoding scheme. It is more efficient than the Byte method in that it encodes each bit of information into one cycle length of the clock frequency. Therefore the necessary clock frequency is 1% the data rate. The USART in the POLY 88 CPU may be programmed to operate in this mode. The encoding rules are simple; a "one" bit is a cycle in phase with the clock a "zero" is a cycle 180 degrees out of phase with the clock. This is implemented by a single exclusive OR gate, section a of IC5, the 74LS86. Data is applied to pin 1 of IC5 and the clock to pin 2. When the data is low the clock is passed through IC5 without inversion. When pin 1 goes high the clock is complemented or shifted in phase 1800. JMP 3 is provided to invert the data using section C of IC5 (pin 8, 9, 10). As supplied JMP 3 is wired to the + position. R15 should be 10K for most applications but if your recorder does not have an auxiliary input jack, R15 may be changed to 1000 ohms and used with the mircophone input. The auxiliary input should be used whenever possible as it produces the most reliable recordings. The waveshaping network (C10, C11, R15, R18) adjusts the TTL level out of IC5 to one compatible with the AUX input of the recorder, and filters out the high frequency components converting the wave form to a semi-sawtooth which fits the bandwidth of the recorder better.

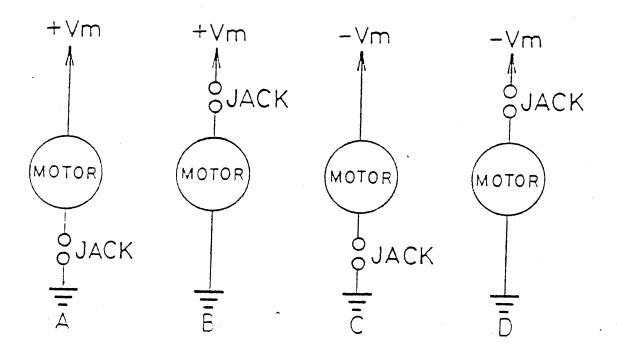
Here is the first place a higher quality recorder is required. It must have sufficient fidelity to record this waveform without excessive phase shift. 2400 Baud was chosen because it produces waveforms with 2400 and 1200 Hertz primary frequency components which are most nearly centered in the audio freq. range of most recorders. But lesser quality recorders have narrow bandwidths which introduce phase shift in the important harmonics which make it difficult to reproduce the original waveform with sufficient accuracy to produce error free recordings.

Upon read back, the MON output of the recorder is applied to the 8T2O, ICl. It is a bidirectional one-shot which will produce a timed pulse out for each zero crossing of the input. It also has an

PolyMorphic Systems Byte/Biphase Cassette Interface

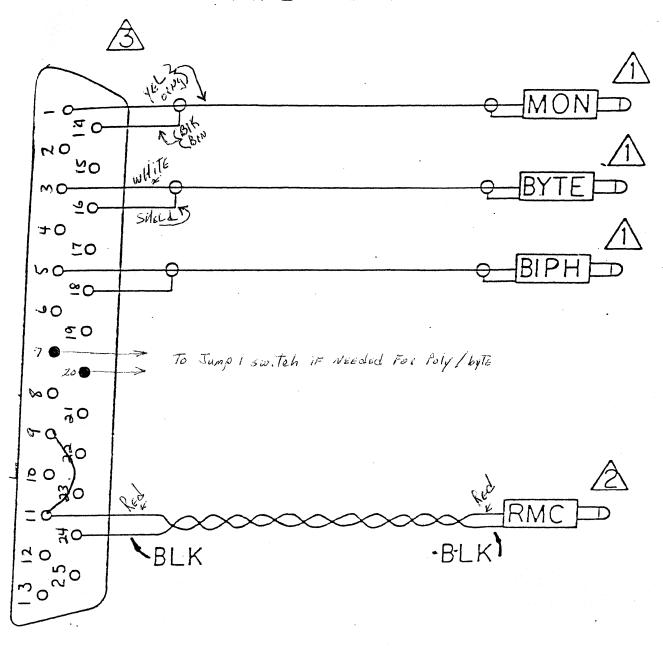

output from the first analog comparator stage. By setting the timed output to 3/4 of the bit period. ICl will recover the clock with its negative going edge strobing the comparator output into the USART at the data level times. This is a sufficient set of inputs for the Poly 88 USART.

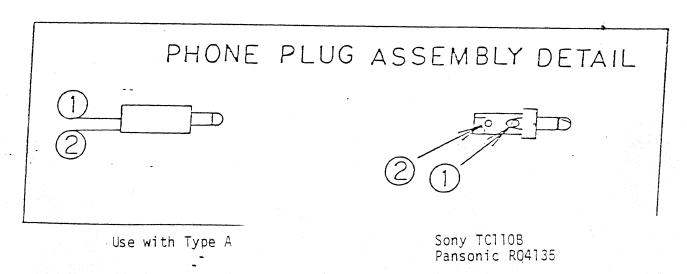
Going into more detail, R1 is a termination resistor to get rid of noise. R7, R2, R3 and R9 form a feedback circuit to cause hysteresis in IC1 to further increase noise margins. C1 and R11 plus pot R26 set the time constant for the one-shot. R26 needs to be adjusted for 3/4 of a bit period or 312 usec for 2400 Baud.


Looking at figure 2A we can see how the decoding process works. Each bit cell begins and ends with a transition. (Lines below encoded data delineate the bit cells.) If we send a long string of ones or zero's in biphase we end up with a 2400HZ square waves with in or out of phase with the original carrier. Two transitions occur during each bit cell with one exception - when we change from 1's to Ø's. There is no transition in the middle of this bit cell. This can be used to synchronize the one-shot ICl. At the beginning of each data record in polyphase is a string of bytes containing hexidecimal E6. (See Fig. 2A). IC1 may trigger on any of the transitions but upon excounting a 1 to \emptyset transition can trigger only at the edge of a bit cell. (Point A in Fig. 2A) Thereafter it will trigger only at the edges of a cell because we have selected the period of the oneshot to time out 3/4 of the way through the bit cell. Thus transitions in the middle of the bit cell are ignored. We now have a reference with which to compare the phase of the signal we are decoding. The USART samples the polarity of the phase encoded data once every bit cell. This occurs on the trailing edge of the output of the oneshot. If a one has been recorded the signal will be positive at this point. If zero has been recorded the phase will be reversed and the signal will be negative at this point. The output of the voltage comparator (pin 1 or 9 of IC1) is high or low depending upon signal polarity and is fed into the USART data input.

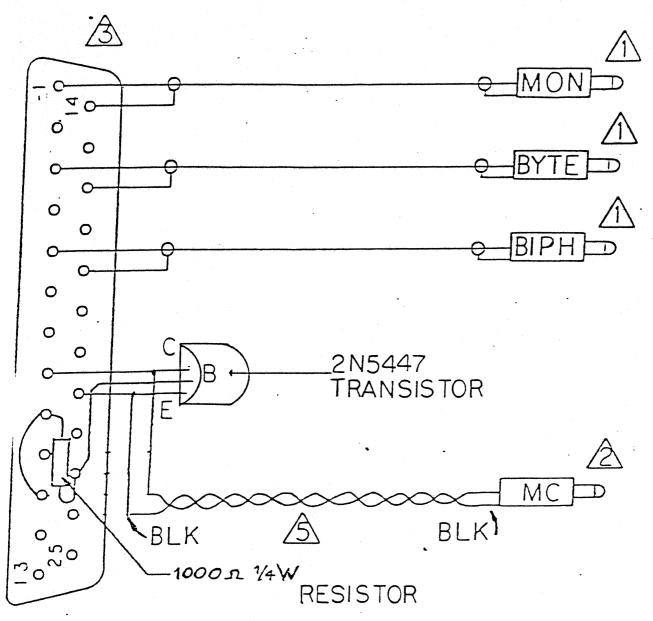
Note that the decoding process is sensitive to the polarity of the signal. If in Fig. 2d, the polarity of the analog read signal was inverted the data recovered would also be inverted. Since we are using phase modulation to encode data the system is sensitive to phase inversions. Some recorders may invert the phase of signals when playing back while others don't. Jumper area 2 (JMP 2) is provided to remedy this situation. If the recorder you are using inverts phase on playback, the center pad of JMP 2 may be wired to the pad marked negative and the trace from the center to positive may be cut. This re-inverts the data. When the recording circuitry inverts the phase going to onto a tape, JMP 3 may be reconnected similarly. When JMP 2 and JMP 3 are configured properly data recorded on one cassette recorder may be interchanged between recorders as the polarity of the flux changes on the tape are all consistent.

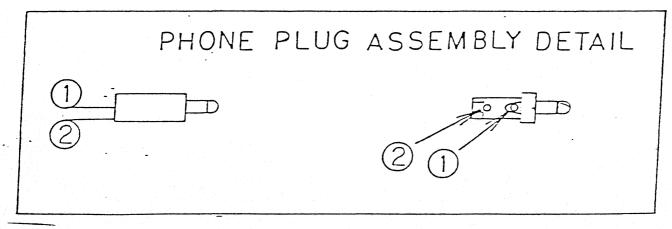
The Polyphase technique is controlled by the dumper program for recording and the loader in the monitor for playback. The format of the block structure is discussed in the monitor documentation.


<u>Caution</u>; Before attempting to use the motor control, determine the circuit location of your remote switch jack. Only one configuration can be connected directly to the cassette interface motor control circuitry. You can use a direct connection if the motor supply voltage is positive and the jack is between the motor and ground (Figure A). The other three possible configurations require a buffer circuit consisting of resistors and a transistor or relay.



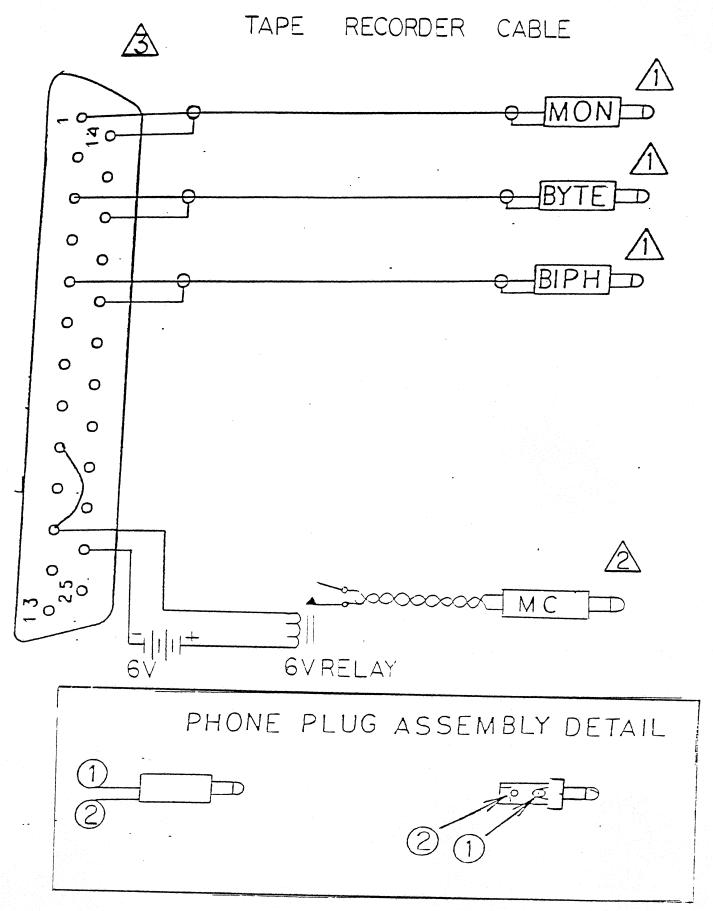
To determine which configuration your recorder employs, insert a shorted sub-miniature plug, put the recorder in the play mode, and measure the voltage between the plug and the recorder ground. You can usually trust the outside of the microphone jack (or MIC cable shield) to be ground. If the voltage is zero plus or minus a few millivolts, you have configuration A or C. If this is the case, separate the sub-miniature plug leads (remove the short) and measure the voltage on each lead -- one should be at ground; the other will be a positive or negative


voltage. A positive voltage indicates configuration A and a negative voltage indicates configuration C. If the initial measurement (shorted plug) yielded a positive voltage, your recorder uses configuration B. If the initial measurement yielded a negative voltage, your recorder uses configuration D.


The following three pictorial diagrams show suggested circuits for connection to the 4 different types of recorders.

^{*} See page six for model recommendations.

Use with Type A or B


Superscope Lius

ears 7

Sears 799.21682501 Panasonic RQ4135

TC110B

* See page six for model recommendations

TYPE A.B,C OR D RECCEDER

If you have any questions about monitor commands for cassette usage, refer to the appropriate Poly 88 manual section.

Recorder controls must be set properly for reliable operation. The two controls of importance are TONE and VOLUME.

Tone Control. The tone control(s) must be set for flat response over the frequency range used by the interface. On most portable recorders with a single tone control, adjust the control to full treble. This keeps the treble circuit from clipping higher frequencies. With higher quality recorders having two or three tone controls, set all controls to the center of their range.

Volume control. The cassette interface input requires a nominal 2 volt p-p signal. At this level, the interface has sufficient input to recover the signal without clipping it.

The required volume setting varies from recorder to recorder. To determine the optimum setting for your recorder with an oscilloscope find the setting for a 2 volt p-p signal at the speaker output (labeled monitor output on some recorders). Use a prerecorded digital tape. If you do not have access to an oscilloscope, you must use a trial and error method. Start with a low volume setting and try to read a prerecorded digital tape. If errors occur (question mark on the screen), stop the tape and rewind it. Turn up the volume control slightly and repeat until you can just recover data without mistakes. Make note of this setting. Continue increasing the volume in small steps as above until mistakes occur again. Note this setting and use the setting half way between the two noted.

To LOAD INTO COMPUTER

Press T B SMD (CR)

TAPE LOADED WHEN SCIEEN CLEARS

SMD is a simple absolute dumper which runs entirely within the onboard monitor RAM from C6AH to D9CH. Its starting address is C6A hex. When run, it clears the screen and expects an encoding specification and filename just as the 4.0 resident loader. After these are input, the starting and ending hex addresses are input as shown in the following example where the SMD \checkmark is used to copy itself: \cancel{Key} $\cancel{N} \Rightarrow \cancel{SPTC6A}$ (CR) \cancel{G} (Screen Cleared, Cursor in Upper Left)

B
SMD (CR)

C6A,D9D(cR)* (D9D used for safety)

C6A

D6A

D6A

(This last is an endrecord)

(Screen clears again, ready for another dump)

*Before data is dumped, the cassette recorder should be setup with the proper plug in the microphone jack. The Byte/Biphase cassette card has two plugs for writing - one for byte and one for biphase. The read plug (labelled usually "EAR" or "SPKR") should not be plugged in. Also make sure that enough tape runs before typing the final carriage return on the end address specification so that non-recordable leader gets a chance to pass by before dumping starts.

The onboard dumper was hand optimized to fit inside the free space on system RAM, but the system stack also resides there. This means that the stack may over-run the dumper, erasing part of it. If the dumper has been in RAM while BASIC has been run, for example, the stack has probably squashed it at some time. If there is doubt, check the byte at D9 \mathbf{e} H. It should be a C9 (return instruction). If it is not, or you just want to make sure, reload the dumper just before using it.

When the dumper is dumping, each record will be displayed as a hex number on the screen. The hex number represents the address of the data being dumped on each record. That address is put on the header of the record so the 4.0 resident loader will know where to put it when it is read back in.

The last record is an "END" type record. It is put on automatically. It will display as a record with dump address equal to the address of the record before it. Optimization of the dumper's code requires some strangeness such as this, but in any case, the last record (dump finished) will be signaled by the screen clearing. This puts the dumper back in its initial mode, just as if it had been restarted at C6AH. More data may be dumped if desired.

```
****** ONBOARD DUMPER FOR 4.0 ******
                       THIS IS A POLYFORMAT DUMPER FOR ABSOLUTE
               ;DATA WHICH RUNS FROM C6A TO D9F (OR SO), START ADDRESS
               ;C6AH. WHEN RUN, IT ACTS LIKE 4.0 MONITOR TAPE LOAD IN
               ;THE WAY IT ACCEPTS ENCODING SPECIFICATION (B OR P) AND
                            THEN IT EXPECTS TWO HEX NUMBERS FOR
               ; FILE NAME.
               ;START AND END DUMP ADDRESSES.
                                                 EACH RECORD DUMPED SHOWS
               ; ADDRESS USED IN HEX ON SCREEN. WHEN DONE, IT PUTS OUT
               ; AN "END" TYPE RECORD AND CLEARS SCREEN, READY
               ; FOR ANOTHER DUMP.
               ;ORIGINAL 2.2 DUMPER SYSTEM WRITTEN BY DAVID FAIMAN
               ; REWRITTEN, DOCUMENTED AND CONVERTED TO ONBOARD FOR 4.0
               BY R.L.DERAN
ØC20
              WHØ
                       EQU
                                ØC2ØH
ØC24
                                ØC24H
              WH1
                       EQU
ØC16
              SRA4
                       EQU
                                ØC16H
Ø2AD
              SETUP
                       EQU
                                Ø2ADH
              HEXC
Ø3AA
                       EQU
                                Ø3AAH
Ø3D1
              DEOUT
                       EQU
                                03D1H
ØC5A
                       ORG
                                ØC5CH-2
ØC5A
              LENGTH: DS
                                2
ØC5C
              WNAME:
                       DS
                                8
ØC64
              WRN:
                                2
                       DS
ØC66
                                1
                       DS
              WLEN:
ØC67
                       DS
                                2
              WADR:
ØC69
                                1
              WTYPE:
                       DS
0C6A 21450D
              START:
                       LXI
                               H.TISR
ØC6D 2216ØC
                       SHLD
                               SRA4
ØC70 3EØC
               STAR2:
                       IVM
                                A, ØCH
                                        ; FORM FEED
0C72 CD240C
                       CALL
                               WHL
                                        ;CLEAR SCREEN
ØC75 CD200C
                       CALL
                                WHØ
ØC78 CD24ØC
                       CALL
                                WHI
ØC7B FE42
                       CPI
                                'B'
ØC7D CA92ØC
                       JZ
                                BITE
0C80 FE50
                                'p'
                       CPI
ØC82 C2700C
                                STAR2
                       JNZ
ØC85 CDADØ2
               POLY:
                       CALL
                                SETUP
ØC88 Ø5
                       DB
                                005H
0C89 AA
                       DB
                                ØAAH
ØC8A 40
                                949H
                       DB
ØC8B ØC
                       DB
                                00CH
ØC8C E6
                       DB
                                ØE6H
ØC8D E6
                       DB
                                ØE6H
ØC8E ØØ
                       DB
                                000H
ØC8F C39AØC
                       JMP
                                NAMER
ØC92 CDADØ2
                       CALL
               BITE:
                                SETUP
ØC95 Ø6
                                Ø 3 6 H
                       DB.
ØC96 AA
                                MAAH
                       DB
ØC97 40
                       DB
                                Ø40H
```

```
2C98 CE
                      DB
                             ØCEH
 ØC99 ØØ
                      DB
                            000H
              ;
                     NAMEING ROUTINE
ØC9A 210000 NAMER: LXI
                            н, Ø
                          DUM
M,A
H
 ØCBA CAC3ØC
ØCBD 77
                     JZ
                            DUMPC
                     MOV
 ØCBE 23
                     INX
 ØCBF ØD
                     DCR
 ØCCØ C2B2ØCJNZØCC3 AFDUMPC: XRA
                     JNZ NAMØ
ØCC3 AFDUMPC:XRAAØCC4 3269ØCSTAWTYPEØCC7 CD18ØDCALLCRLFØCCA CDAAØ3SIZE:CALLHEXC
 ØCCD 2267ØC
               SHLD
                           WADR
                            A,B
 ØCDØ 78
                     VOM
 ØCD1 CD24ØC
                     CALL
                            WHI
 ØCD4 EB
                     XCHG
                   CALL HEXC
CALL CRLF
 ØCD5 CDAAØ3
 ØCD8 CD18ØD
 ØCDB 7D
                    MOV A,L
 ØCDC 93
                    SUB
                            E
 ØCDD 6F
                            L,A
                           A,H
                    VOM
 ØCDE 7C
 ØCDF 9A
MOV H,A
SHLD LENGTH

ØCE4 CDF6ØC CALL DUMPR

ØCE7 3EØ2 ENDC: MVI A,2

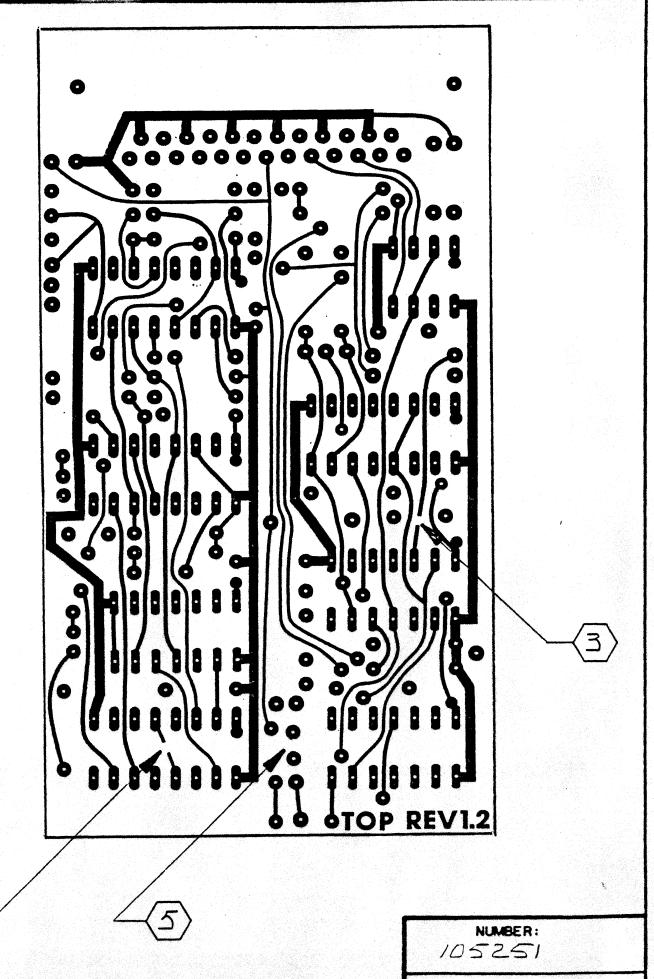
ØCE9 3269ØC STA
                    SBB
                     DCR
STA
 ØCED 3266ØC
                             WLEN
 0CED 32660C
0CF0 CD540D
0CF3 C36A0C
                     CALL
                             DUMP
 ØCF3 C36AØC
                     JMP
                              START
                     DUMP DATA RECORDS
              ;
              DUMPR: LXI H, LENGTH+1
 ØCF6 215BØC
 ØCF9 7E
                            A,M
A
             VOM
 ØCFA B7
                     ORA
                    JZ
DCR
 OCFB CA100D
                             OVER
 OCFE 35
                             M
 JCFF AF
                    XRA
                             A
                  STA WLEN
 @D@@ 3266@C
```

```
0D03 CD540D
                    CALL
                            DUMP
ØDØ6 2A67ØC
                    LHLD
                           WADR
ØDØ9 24
                    INR
                          H
ØDØA 22670C
                    SHLD
                           WADR
ØDØD C3F6ØC
                    JMP
                           DUMPR
ØD1Ø 2B
           OVER:
                          H
                    DCX
ØD11 7E
                   MOV
                          A,M
ØD12 32660C
                    STA
                           WLEN
ØD15 C3540D
                    JMP
                            DUMP
ØD18 3EØD
            CRLF:
                    MVI A, ØDH
ØD1A CD24ØC
                    CALL
                           WHl
ØDID C9
                    RET
             ;
                    ROUTINE TO OUTPUT A RECORD
             ;
                                  ;CLEAR CHECKSUM
ØD1E Ø6ØØ
            PUT:
                          В,0
                    MVI
ØD2Ø 4F
                    VOM
                          C,A
                                  ; PUT LENGTH OF RECORD IN C
ØD21 7E
                          A,M
           PUTØ:
                    MOV
ØD22 23
                    INX
                           H
ØD23 F5
                    PUSH
                           PSW
ØD24 80
                    ADD
                           В
ØD25 47
                   MOV
                           B.A
ØD26 F1
                   POP
                          PSW
ØD27 CD34ØD
                    CALL
                            TO
ØD2A ØD
                            С
                   DCR
ØD2B C221ØD
                    JNZ
                           PUTØ
ØD2E 78
                    VOM
                           A,B
ØD2F 2F
                    CMA
ØD3Ø 3C
                    INR
                            Α
ØD31 C334ØD
                    JMP
                            TO
             ;
                    TAPE OUTPUT ROUTIME
             ;
ØCØ8
             TBUFF
                    EQU
                            ØCØ8H
ØD34 E5
                    PUSH
                            H
             TO:
ØD35 21080C
                    LXI
                            H, TBUFF
ØD38 F5
                    PUSH
                           PSW
ØD39 7E
            TO1:
                   VOM
                          A, M
ØD3A B7
                           Α
                    ORA
                          TOl
ØD3B C239ØD
                    JNZ
ØD3E 23
                    INX
                          H
ØD3F F1
                    POP
                          PSW
ØD4Ø 77
                          M,A
                    VOM
ØD41 2B
                          H
                    DCX
ØD42 34
                    INR
                           M
ØD43 E1
                   POP
                            H
ØD44 C9
                    RET
                   TISR IS A SIMPLE USART READER WHICH WILL
                    RE-TRANSMIT THE CHARACTER IN TBUFF IF IT HAS NOT
             ;
                    BEEN REPLACED BY THE WORMHOLE ROUTINE. IT
                    DOES NOT CHECK THE FLAG, BECAUSE IT ASSUMES
                    THAT THE PROGRAM CALLING THE WORMHOLE IS FASTER
                    THAN THE USART AND SO IT ALWAYS HAS A VALID
                    CHARACTER FOR US TO TAKE.
            TISR: XRA
0D45 AF
                            Α
```

```
ØD46 3208ØC
                                                              STA
                                                                                     TBUFF
ØD49 3AØ90C
                                                              LDA
                                                                                     TBUFF+1
ØD4C D3ØØ
                                                              OUT
                                                                                     Ø
ØD4E E1
                                       IORET: POP
                                                                                    H
ØD4F D1
                                                             POP
                                                                                    D
ØD5Ø C1
                                                                               В
                                                             POP
ØD51 F1
                                                            POP PSW
                                                            EI
ØD52 FB
ØD53 C9
                                                           RET
                                                     DUMP PUTS OUT ONE COMPLETE RECORD.

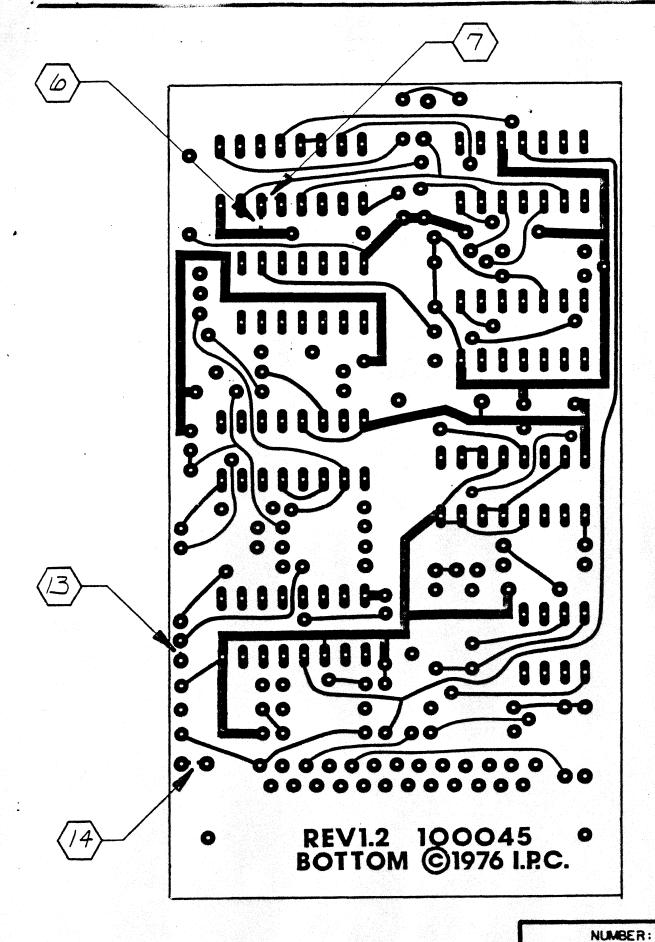
IT TURNS ON USART AND MOTORS, WAITS A WHILE
FOR AN IRG, PUTS OUT 64 SYNCH CHARACTERS,

DUMPS A RECORD ACCORDING TO THE WRITE CONTE
BLOCK AT WNAME (IT ALSO PUTS THE WCB

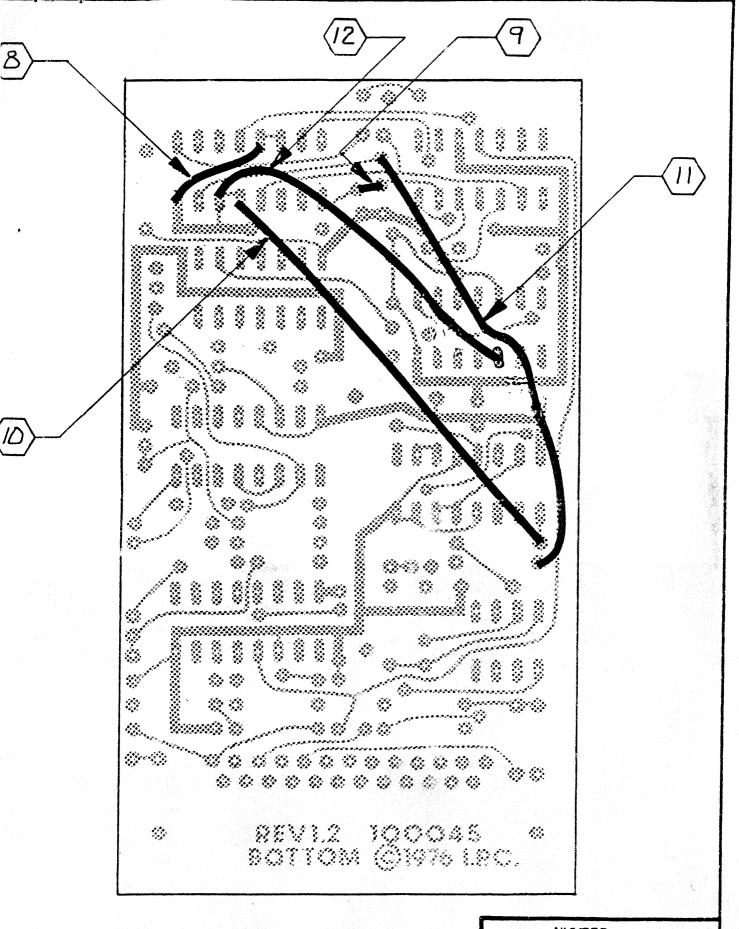

ON THE RECORD AS HEADER), INCREMENTS
                                                             DUMPS A RECORD ACCORDING TO THE WRITE CONTROL
                                                             ON THE RECORD AS HEADER), INCREMENTS THE RECORD
                                                           NUMBER, STOPS USART AND MOTORS, AND RETURNS.
ØD54 3E21
                                       DUMP: MVI
                                                                                    A,021H
                                                       TUO
ØD56 D3Ø1
                                                                                    1
ØD58 2A670C
                                     XCHG
CALL DEOU
CALL CRLF
LXI H,08
DELAY: DCX H
MOV A,H
ORA A
                                                           LHLD
                                                                                    WADR
ØD5B EB
0D5C CDD103
                                                                                    DEOUT ; DISPLAY THE ADDRESS WE'RE DUMPI
ØD5F CD18ØD
                                                                                    CRLF
ØD62 21FF8F
                                                                                    H,Ø8FFFH
ØD65 2B
ØD66 7C
ØD67 B7
                                                             JNZ DELAY
MVI C,64
MVI A,0E6E
ØD68 C2650D
ØD6B ØE4Ø
0D6D 3EE6
                                                                                    A, ØE6H ; SYNC CHARACTER
0D6F CD340D DUMP0: CALL
                                                                                    TO
0D72 0D
                                                                                    C
                                                              DCR
0D73 C26F0D
                                                              JNZ
                                                                                    DUMPØ
ØD76 3EØ1
                                                              IVM
                                                                                     A,001H ;START OF HEADER
ØD73 CD34ØD
                                                              CALL
                                                                                     TO
                                        ;
                                                       DUMP HEADER AND DATA RECORDS
                                        ;
9D7B 3E0E
                                                                                     A, ØØEH ; LENGTH OF HEADER RECORD
                                                             IVM
ØD7D 215CØC
                                                             LXI
                                                                                     H, WNAME
ØD8Ø CD1EØD
                                                          CALL
                                                                                     PUT
ØD83 3A66ØC
                                                          LDA
                                                                                     WLEN
                                                        LHLD
CALL
LXI
ØD86 2A670C
                                                                                     WADR
ØD89 CD1EØD
                                                                                    PUT
0D8C 21640C
                                                                                    H, WRN
                                     INR MACALL TO CALL TO 
0D8F 34
0D90 AF
ØD91 CD340D
                                                                                                         ;THESE PUSH OUT LAST BYTES FROM
ØD94 CD34ØD
                                                                                                      ;THE USART AND WH BUFFER PIPELIN
ØD97 CD340D
                                                                                                        TURN OFF MOTOR AND TRANSMITTER
ØD9A D3Ø1
                                                          OUT
                                                                                     1
ØD9C C9
                                                             RET
0000
                                                               END
```

THE FOLLOWING MODIFICATION IS REQUIRED TO THE CASSETTE BOARD FOR REVISIONS UP TO 1.2.

- 1. Remove R17, R19, R14, C7 and C12
- 2. Change R18 from 100K to 82K W
- 3. Cut trace from pin 3 of IC5 to R18 SHT.3
- 4. Cut trace from pin 5 to pin 13 on IC4 SHT.3
 - 5. Cut trace from pin 6 of JI to pin 7 of IC4 SHT.3
- √6. Cut trace from pin 6 to common on IC4 SHT.4
- 7. Cut trace from pin 5 to pin 6 on IC4 SHT.4-
- $\sqrt{8}$. Jumper pin 8 to pin 13 on IC4 SHT. 5
- \39. Jumper pin 1 of IC4 to pin 6 of JI SHT. 5
- -10. Jumper pin 5 of IC4 to pin 1 of IC6 SHT. 5
- 11. Jumper pin 7 of IC4 to R18 top SHT. 5
- ✓ 12. Jumper pin 6 of IC4 to pin 3 of IC5 SHT. 5
- 13. Cut trace at Jumper #1 SHT. 4
 - 14. Cut trace at Jumper #2 SHT. 4


NUMBER: 105251

PAGE 2 OF


4

PAGE 3 OF

105251

PAGE 4 OF

NUMBER: 105251

PAGE 5 OF