
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

MACRO
ASSEMBLER
LANGUAGE
REFERENCE
MANUAL

ip = =: ::-:.= -= §~; :=
~ SYSTEMS, INC. -

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

MACRO
ASSEMBLER
LANGUAGE
REFERENCE
MANUAL

Second Edition

Revised

Documentation by: C. P. Williams
Software by: Timothy S. Williams

P : =: :;~:-= E:E; ==
~ SYSTEMS, INC.

_ 7700 EDGEWATER DRIVE SUITE 830

;;; OAKLAND, CALIFORNIA 94621 USA

PR·BFACE

This manual describes the OASIS MACRO Assembler Language. It assumes the reader is
familiar with computer software fundamentals and has had some exposure to assembly
language programing on micro-computers. The section "Additional and Reference
Material" below lists documents that may prove helpful in reviewing those areas.

The user who is unfamiliar with OASIS should first read or review those chapters of
interest in the OASIS System Reference Manual to become familiar with system
conventions.

Included in this manual is a chapter on "Interfacing to OASIS" which provides
information about writing device drivers, assembly language subroutines that are
called by a BASIC program, console class code drivers, etc.

This manual, named MACRO I like all OASIS documentation manuals, has the manual
name and revision number (f applicable) in the lower, inside corner of each page
of the body of the manual. In most chapters of the manual the last primary sUbJect
being discussed on a page will be identified in the lower outside corner of the
page.

Additional aad Rererenced Material

The following manuals and publications· were used in the creation of this manual and
contain additional information not included in this document.

-
ZILOG zaO us_bIer Manual

ZILOG zao-cpu Technical Manual

ZILOG zao-cpu Progr __ i Dg Ret"ereDCe Carel

OASIS Systell Rererence Manual

OASIS Text Editor Rererence Manual

OASIS BDC LaDguage Ref'erence Manual

OASIS DEBUG Rererence Manual

OASIS Diagnostic I: Conversion Ut:lli.ties Ref'erence Manual

- 111. -

TlBLB OF· COIt'Drs

SeCti.OD

CHAPTER 1 INTRODUCTION ••••••••••••••••••••• e ••••••••• CD ••••••• 0 " ••••••••••••••

1 • 1 Creating A Source File ..
CHAPTER 2 OASIS MACRO COMMAND •••••••••••••••••••••• 8 ••• 0.00 •• "' •••••••••• 80e ••

CHAPTER 3 MACRO INSTRUCTION SYNTAX ••• o •• o •••••• ooO •••••• G ••• O.O.G •• O~.O ••• oo.

3 f> 1 Line Numbers •• eo. " •• eo. 00 Q • e e • e • 0 • 0 0 G • e 0 0 e e eo. 0 ••• 0 G 0 <» 0 0 " GO" 0 e,G 0 0 0 CI (j) 0 G

302 Labels. 0 0 '0 ·0 0 <II •• 0 e e 0 • 0 0 <II 0 •• 0 •• 0 .. O ... " .. 0 00 " 0 0 0

3.3 Op..,codes e 0 0 ¢> c. G. e ell. 0 e ••• 0 0 4) 0 e e Q 4& ••• CI coo e <:I e " GOO Q 6) 0 G co • e «I 0 " 0 CD 0' 0-0 e 0 ¢I 0 e Q e Q Q Q

3 It If. Operands e 0 9 f) 0 • 0 0 " • c • " e e 0 0 co G e () " ~ & e 0 G Cl GOO 0 0 to G • Q Q G • e 0 -$ 0 a 0 e CO Q e • 0 0 CD 0 • 0 Q .. G· 0 •

3.4.1 Expressions o ••• oOOQQOOoc •••• oeoeooo •••••. eoeceOOCl6COeCOf)OOOOOCCf)O.

3 • 5 Comments ... e • 0 " " e " 0 .. GOO 0 0 e " 0 • 0 <II 0 0 0 0 0 (I 0 " •• () ...

CHAPTER 4 PROGRAM ADDRESS BLOCKS (PABS)· 0 0.0 .. 0 e " ", •••• " G ...

4.1 PAB Restrictions •••• ClG.1l0.~oeG) ••••••• e ••• Ct ••• oe •• e.eeeo •• C)o •••••• C)o •••

CHAPTER 5 MACRO DIRECTIVES & PSEUDO-OPS ••••••••• CI ••••••••••••••••••• e ••••••••

CHAPTER
6.1
6.2
6.3
6.4
6 .. 5
6 .. 6
6 .. 7
6.B
6.9
6.10

CHAPTER
7 .. 1

CHAPTER
8.1
8 .. 2
8.3

CHAPTER
9.1
9 .. 2
9.3
9.4
9.5
9.6
987-
geB

6 MA eROS". _ 15 • • • • 0 • • • • • 0 • • • 0 • 0 CD • • 0 • 0- • () • • • • • e • • o. 0 • • • • • • • ell). • • 0 • •

Preparing Macro Prototypes, .. .
Macro Call s ••••• " " .; " " "

••••••••••• ~g ••• o ••••• Ct ••• o.o.ofil ••• f).Clel) ••• CD •• CDoo •• o.eGO Macro Keywords
Labels ••••••••••••.••••••• 0 •••• 0 0 0 e • eo ••• ~ ., •• e C) ••• 0 IS 0 Q I) e e 0 0 0 G • 0 ••

Concatenation •••••• II •••• II 0 co

••••••••• o ••••••••• o ••••••• eo •••••••• Qo •• e0DCI)QII.C) •• ee. Macro Substrings
Macro Nest.ing ••••••••••••••••••••••• 0 " • e ••• 0 • e

Macro Reserved Variables ••••••• e.· ••• O ••••••• O ••••• O •••• CI ••••••••••••••

Macro Comments • ., ••••••••••••••••••••• e ••••• e e ••••• C) CI 0 •• 0. G •••••••• e· • o.e

M~cro Example

7 SYSTEM: CALLS ••• 0 • C) ••••• e ••••••• e Q 0 Q 0 •• 0 0 " 0 0 0 •• CD COG •••• 6 0 0 COl CD 0 • 0 0 C 0 e Q

Documentation Conventions e & c • e e ~ •• 49 0 0 0 6) •• " 0 <0 0 coo 0 C ~ 0 " 0 • 0 e e (j) 0 " •••• " G· f) G •

oC)oetDoe •• OGCDtaeeQoo.ooOOQOOGOOflC)oooeOeG"eQ8> •• eooeo.

COCltDQo •• eoooeOGGGoeeeeeeQooeoocaOG&ooeeOGJoc>acceeClCOO ••

8 Z80 CPU OVERVIEW
Addressing modes
Registers .. III ... EI " • 41 0 .. C!l 8 0 ,, <> 0 0 .. ., •• EI ••• 0 .. 0 .. " " " <> • 0 " •• G Q .. 0 0 ..

Flags •••• C!l •• ~ co ... ' " III .. " II •• III II ... III 0 " • ., 41 .. 0 0 0 EI • 0 ••••••• ., " III •

9 INTERFACING TO .OASIS .eoe •• oeQeoe.1l0e •• OO ••••••• Cl0e .. OOCi)c ••••••• GOo ••

General Information 0 •••• <> ... G •••••••.••••• ., ••••••••• 8 0 .. .

Peripheral Device Drivers
Disk Device Drivers •••••••••••••••••••••••••••• 0

••••••••• 0 •••••••••••• 8 •• 0 ••••••••••• 0 •••••••

Tape Device Drivers
Terminal Class Code Drivers 0 0 ••

••••••••••••••••••••••••••••• 0 ••••• 11$0 ••• 0 •• 0 ••• 00.

System Start-up Program ••••••••••••••••••••••••••••••••••• " •• 0

USH Pro~rams e, e

BASIC F1elds •••• o •••••••••••• ~ .. .

APPENDIX A SYSTEM CALL SUMMARY •••••••••••••••••••••••••••••••••••• o ••• o.~ ••••

APPENDIX B
APPENDIX C

APPENDIX D

APPENDIX E

ERROR MESSAGES ••• 00.00 •••• 0.

CONTROL BLOCK DEFINITIONS ••••••••••••••••••••••••• o ••••• OOOOOOtDOOO

PROGRAMMING EXAMPLES .OO ••••• &l~O •• II.O-0 ••• oo ••• e •• cGoo.QO ••• QOCl)OOctGO

CHARACTER SET ••••••• ·.OO ••••• OO ••••• OO.OOO ••• OO.OO •• O ••• O •••• O •• G.O

- 1'9' -

Page

1
1

2

5
5
-~
6
6
7

9
10

11

21
21
21
22
23
23

~n
24
24
24

25
25

87
-gA
89

91
91
92
94

§A
100
101
102

103

107

109

115

136

CBAP1'BR 1

IITIODUCTl:OB .

The OASIS MACRO Assembler (usually refered to as the Assembler) is a symbolic
assembly program for the Z80 CPU. It is a two-pass assembler (requiring the source
program to De read twice to complete the assembly process) designed to run under
the OASIS Operating System. It is, therefore device independent, allowing
complete user flexibility in the selection of standard input and output device
options.

The Assembler performs many functions! making machine language programming easier,
faster, and more efficient. Basical y, the Assembler processes tne. programmer's
source program statements bf translating mnemonic operation codes to the binary
codes needed for the appropr1atemachine instruction, relating symbols to numeric
valuee~ as~~gning me~ory addresses for program instructions and data, and prepari~
an out ut 11St1ng or the program ~hich includes any errors encountered during the
assemb y.

The MACRO Assembler may be used to generate either absolute or relocatable object
code from a source program file. The type-of object file produced is controlled by
the occurence of certain directives, in the source file. Both types of object
programs must be processed by the LINK command before they can be executed as
programs.

The value
recognized
separately
encountered
predefined,
example:

assigned to an instruction mnemonic is the binary bit configuration
by the processor for that instruction. Predefined symbols are kept
by MACRO and recognized as reserved symbols only when they are
in the proper context. In context other than that where their usage is
the symbol will assume whatever value the user may wish to assign. For

LX:

. LD
JP
ADD
CALL
JP

A 0
CALL
2
INPUT
XXXX

CALL:

The Assembler has no problem differentiating the two CALL symbols since the one in
the op-code field is predefined and the one in the label and operand fields are
user-defined.

Along with relating symbols to numbers, another major function of the Assembler is
to enable the programmer to reference a symbol that is defined later in the
program. This is called FORWARD REFERENCING, and is resolved by the second pass of
the assembly process (some directives res~rict the use of forward referencing).
References may be made to symbols defined in other programs (EXTERNAL REFERENCING).
The values of these symbols is resolved by the linking editor (LINK).

An optional function of the MACRO Assembler is that of producing a tabulated
listing of all user-defined symbols, their value and all references to them. This
CROSS-REFERENCE table seneration consists of recording all definitions of, and
references to, user-def1ned symbols, sorting the references, and merging them with
their values.

Another function of the MACRO Assembler is the maintenence of up to 16 PABs
(Program Address Blocks) which may be used to locate data and code at assembly
time. By using PABs the programmer gains the ability to write programs whose
actual execution addresses are determined at load time (relocatable programs).

A final function of the MACRO Assembler is to -maintain assembler macros, hence the
name MACRO' Assembler. A macro is a single user-defined instruction that is
replaced at assembly time with one or more assembler instructions and/or
directives.

1 • 1 CreatiDg.l Source File

An assembly language source file is created by using the system editor. Refer to
the OASIS System Reference Manual for complete details on using the EDIT program.

Assembly language source files usually have a file type of ASSEMBLE. When the
Editor is invoked and given a file description including a file type of ASSEMBLE,
MACRO or COPY, the Editor sets some of its global commands to the values associated
with an assembly source file. These values include setting LINEMODE OFF because
line numbers are not normally used in the source file; setting TABSET 10 16 29
which allows for the standard format of source statements; setting CASEMODE AM.

MACRO ley B - 1 -

CIllPUI 2

OASIS MACRO CCIIIWID

The MACRO command allows the user to translate Z80 source code and MACRO directives.
into machine object code. The format of the MACRO command is:

IlCBO <tlle-desc) [«option) ••• [)]]

Where: .

file-desc Indicates the file description of the source file to be assembled. When
the file type is omitted from this description the default file type of
ASSEMBLE is used.

MACHO CCIIIIID Opt1oDS

Options for the MACRO command include the following:

NOOBJ Indicates that no object file is to be produced.

!msll=fd]

, TYPE

Indicates that an object file is to be produced. This is a default
option. An fd following OBJ indicates that the object file is to be
writte~ to the disk whose directory has that label.

Indicates that the listing is to be displayed on the console terminal.
Specifying this option pre-sets LIST to on.

PRINTER[n] Indicates that the listing is to be displayed on the primary printer or
PRINTERn. Specifying this option pre-sets LIST to on.

DISK[=fd] Indicates that the listing is to be-written to a disk file with "LISTING"
as the filetype. An fd followins LIST indicat~s that the listigg file is
to be written to the disk whose d1rectory has that label~ Specifying this
option pre-sets LIST to on. The listing file created will be in p'acked
format, using ANSI forms control characters ..

.kIST Indicates that LIST is to be pre-set to on.. Any LIST directives in the
source program may change this setting~

NOLIST Indicates that LIST is to be preset to offo
source program may change this setting ..

Any LIST directives in the

l.REF

NOXREF

COpy

NOCOPY

DATA

NODATA

HACRO

Indicates that the symbol table is to be included in any listing. This
option may only be specified if an output device has been specified (TYPE,
P~INTER, or DISK).

I

Indicates that no symbol table listing is' to be produced. This is a.
default option ..

Indicates that a cross-reference table is to be produced. This option is
onlY' effective when a listing device has been specified (TYPE,.PRINTER, or
DISK) •

Indicates that no cross-reference table is to be produced. This is a
default option.

Indicates that the source and Object code produced from COpy files
included in the assembly are to be 1ncluded in any listing. This option
is only effective when a listing device has been specified.

Indicates that the source and object code produced from COpy files
included in the assembly are not to be included in the listing.. This is a
default option.

Indicates that data defined by DC and DW directives is to be fully
included in any object code listing.. This option is only effective when a
listing device has been specified. In addition to the DC and DW
directives this option specifies that code generated by a REPT directive
is also to be included in any listing.

Indicates that only the first four bytes of the data defined by DC and DW
directives is to be included in any object code listing. Also, code
generated by a REPT directive'is not liste.d when this option is in effect.

- This is a default option.

Indicates that macro expansions are to be included in any listing. This
option is only effective when·a listing device has been specieied.

- 2· - MACRO Rev B

NOMACRO

·l.F

EXTRN

NOEXTRN

CII1FIEI 2: OASIS MACRO C(IIWJ])

Indicates that only the macro calls, not the macro expan~ions, are to be
included in any listing produced.

Indicates tha t source code not assembled into object code due to·
conditional assembly and the corresponding conditional assembly pseudo
op-codes are to be included in any listing produced. This option is only
effective when a listing device has been specified.

Indicates that source code not assembled is to be omitted from any listing
produced~ This is a default option.

Indicates that all undefined symbols are to be treated as external symbol
references (16 bit) and are not to be reported as errors.

Indicates that all undefined symbols are to be treated and reported as
errors. This is a default option.

During the assembly process the segment names and line numbers are displayed on the
console during both passes, unless the option TYPE was specified.

At the end of the assembly the following statistic information is displayed on the
console:

OASIS MACRO version n.n (date) statistics

Source lines input:
Object records output:
Macro calls:
Machine instructions:
Symbols defined:
Pab summary:

Assembly errors:
Assembly rate:

MACRO Rev B

nnnn
nnnn
nnnn
nnnn
nnnn
Name Type Length Origin
aaaaaaaa aaa nnnn nnnnH
nn
nnnn lines per minute

- 3 -

nClo BEFBBBlCB MDUAL

(This page intentionally left blank)

- .II - MACHO ley B

An assembly language program consists pf a sequence of statements in the assembler
language. Each statement is written on one line, and terminated by a carriage
return. The MACRO Assembler is a free format assembler in the sense that tne
various statement elements are not placed at specifiQ numbered columns on the line.
The Editor does have default tab sett1~s for the elements but these are used only
for purposes of consistency of the listing and are not required by the Assembler.

There are four elements in an assembler statement separated from each other by
specific characters. These elements are identified ~y their order of appearance' in
the statement and by the· separating (delimiting)' character which follows or
proceeds the elements. Statements are written in tile general form:. .

l:1nel label: op..cocle operaDd 1 ,operaDd2 ; cc gent .

Not all or the elements are required for any specific instruction.

3.1 Line Ruabers

The line number field is completely optional. The Assembler will create line
numbers for the source statements if there are no line numbers on the statements.
When a line number is included on the source statement it must: be the first field,
use only digits, and be followed by a space character.

Line numbers may be used for' some of the source statements and not others. The
Assembler, when an unnumbered line is encountered, adds one to the line number used
for the previous statement. This facilitates identifying the lines associated with
a multi-segmented source file. The first line of each segment would be numbered by
the programmer and the following lines would be unnumbered.

3.2.Labels

The label field is an optional field that may be specified with any or all of the.
op-codes and directives. When used the label field must be the first field in the
source line (following the line number, if used).

Labels are used to reference a specific location during assembly. A label may be
used on a line that is not referenced or even on a line by itself.

A label is a sequence of one or more characters terminated by a colon (:)0 A.label
. must start with a letter character (local labels are an exception to this rule) and
may include only letters, digits, and the dollar sign ($). No embedded spaces are
allowed. .

Labels longer than eight characters' are tokenized internally to eight characters by
taking the first four characters and the last four characters of the actual label.
It is possible that this may cause a duplicate label error.

The dollar si~n character ($) used as a label by itself in the operand field, is
valid and ind1cates the current location counter. ~

Labels are of three types: global, local and external. A global label must be
uniquely defined within a source program and may be referenced from anywhere in the
program.

A local label may be duplicately defined within a source program but must be
uniquely defined' between two global labels, and has a value only between those two
glotial labels. Local labels are identified by preceding the label with a period
(.). All references to a local label must include the preceding period. The
character following the period in a local label must be alphabetic. Macro local
labels only have a value in the macro defining them. Macro local labels are
identified by preceding the label with an at-sign (@). Al.l references to a macro
local label must include the preceding at sign and these references may only be
from within the macro defining them. . . \ .

Local labels are maintained internally in the assembly process by appending the
most recent global label to the local label (macro labels are maintained by
appending the macro name and macro index to the label).

External labels are- labels whose value is defined outside of the source program.
The values of these external labels are resolved by the Link program.

l!:xamples:

LABEL DONE

MACRO Bev B - 5 -

III.CBO" DFIBBICB MII1JAL

LST05
NAME
OKAY
NOOBJECT
• INPUT

3.3 Op-codea

OBJECT
• OKAY
M0000010
• OUTPUT
@LABEL

The op-code field of a source statement may only include the directives and Z80
op-codes described in this manual. . An op-code is separated from a label bya
colon, space, or tab. An op-code is separated from any operands by a space or tab
character.

Op-codes must be spelled exactly as specified in this manual and they may not start
in column one.
3 $_ 0peraDda

Operands modify the op-codes and provide the information needed by the assembler to
perform the designated operation. Certain symbolic names are reserved as key words. '
in the assembly language operand fields. These are:

1. The contents of 8 bit registers are specified by the character
corresponding to the register names. The register names are A, B, C, D,

·E, H~ L, I, R.

2. The contents of 16 b~t double registers and register pairs consisting of
two 8 bit registers are specified by the two characters corresponding to
the register name or register pair. The names of double registers are
IX, IY and SP. The names of register pairs are AF, BC, DE, and HL.

3. The contents of the auxiliary register pairs consisting of two 8 bit
registers are specified by the two characters corresponding to the
register" pair names followed by an apostrophe. The auxilia~ register
pair names are AF', BC', DE', and HL'. Only the pair AFt .is actually
allowed as an operand, and then only in the EX AF,AF' instruction.

4. The state of the five flags is testable as follows:

FLAG ON OFF --.--------_ _ .. _-_ .. --_ .. ---Carry C He
Zero Z HZ
Sign M (minus) P (fositive)
Parity PE (even) PO odd) -
~~n~ V ~-

3.'.1 Bxpreaa10DB

Expressions in the operand may be simple or complex. A simple expression is an
expression that includes only one term. A complex expression includes more than
one term with logical, arithmetic, or relational operators joining them.

Expressions are allowed as operands whenever the symbols n, nn, or d are used in
the syntax of the instruction.

Expressions are analyzed in a left to right manner with no implied hierarchy except
that specified by parentheses or brackets.

Expre~sions wholly contained within parentheses are evaluated as an indirect
address reference. Expressions that contain sub-expressions in parentheses or
brackets are evaluated as' indicating a hierarchy of evaluation. Parentheses and
brackets are equivalent but not interchangable, that is, they must appear in pairs.

A term in an expression may be anyone of the followi~:

label Indicates the 'current value of the specified label.

numeric-constant May be any unsigned numeric value less than 65536
expressed in decimal (default or terminate with D), hexadecimal
(terminate with th~ character H), octal (terminate with the
character Q or 0) (Q assumes number is 16 bit octal; 0 assumes
number is two 8 bit octal numbers) binary (termina1;e with the
character B). All numeric constants must have a digit for the
first character. If necessary a hexadecimal value may have a
leading 0 such as OFFFFH.

- 6 - IU.CBO lev B

CBAPDR 3:· HlCBO DSDUCUOB· SDTU

string-constant One or two ASCII characters enclosed within·a pair of
single or double quotes. (Storage definition directives DC and
DW allow longer strings.)

The arithmetic operators allowed by the assembler include:

+ Addition or unary plus
Unary minus or binary subtraction (two's complement)

/ Division
.• Multiplication

The logical operators allowed by the assembler include:

• AND. Logical and' bit by bit
• OR.. Logical inclusive or, bit by bit
.IOR. Logical exclusive or, bit by bit . ,
.NOT. Unary one's complement
.MOD. Modulo (remainder function) .
• SHL. Logical shift left (vacated bits replaced by 0)
.SHR. Logical shift right (vacated bits replaced by 0)

The relational operators allowed by the assembler include:

.EQ. Test equality, arithmetic or string - both must be same

.GT. Test for grea~er than

.LT. Test for less than .
• NE. Test for not equal to
.UGT. Test for unsigned greater than
.ULT. Test for unsigned less than
.NUL. Empty string or value.

The following examples represent typical expressions:

BASE+2100H -
'A'-1
(LSTDSK)
LNKLIT+8
256
.LABEL1
$
tift

8 is a decimal number
256 is a decimal number
refers to the local label
indicates the current location counter

1232560 evaluated as: 0101001110101110B or 53AEH
123256Q evaluated as: 1010011010101110B or A6AEH
10110101B+324-12H/2Q evaluated as: 243 decimal or F3H

}~~3i~~~D~~~Ll)
(123+[45D-LABEL])

Further restrictions in the use of expressions are discussed in the chapter on
PABs.

3.5 eo-enta

Comments may be included on any source line. To indicate a comment use the
semi-colon character (;). All characters after the semi-colon will be ignored by
the assembler except for listing purposes. A comment may start in any column.

HlCBO Bev B - T -

HlCBO BBFEBBlCB IWI1JAL

(This page intentionally left blank)

- 8- II&CBO Bev B

CIIAPlBR J&

PIOGIWI ADDBBSS BLOCZS (PABS)

The concept_ of Program Address Blocks (PABs) may be used extensively when
programming with the MACRO Assembler. A PAB is a name assigned to an address
(either relative or absolute) that is referenced in a source program to define the
relationship between groups of code (instructions and/or data). .

The use of PABs allows the programmer to write several modules of code (each module
probably performing a small, but complete, function), each module defining the
instructions and data that it requires and accessing data defined in other modules,
that, when linked together, form a contiguous program and data blocks.

Absolute programs must use an absolute PAB. When no PAB
the Assembler" assumes that a relocatable PAB is implied.

is defined in a program

Normally a relocatable program would only have one or two PABs defined. One PAB
would probably contain nonvolatile instructions and another PAB containing
nonvolatile and volatile data to be used by the program. However, a complex
program such as an operating system or compilor might use several PABs. In this
complex program the PABs would be differentiated by major functions such as device
drivers, logical I/O, arithmetic package, etc.

There are essentially three types of PABs.

The Absolute PAB

The absolute PAB is the Program Address Block that most assembly language
pro~rammers are familiar with. An absolute PAB is one whose base address is
ass1gned by the programmer using the ABS directive. Symbols, instructions, and
data defined using an absolute PAB can be completely resolved by the Assembler into
executable machine code.

Instructions assembled in an absolute PAB can only be executed when the
instructions are loaded at the address they were assembled at (unless the
programmer uses position,independant programming methods).

Programs that use an absolute PAB may only have the one PAB defined.

Different segments of code using the same absolute PAB name would, when linked
together, form a contiguous bloCk of code, each segment being appended to the
previous.

The Beloeatable PAB

The relocatable PAB is one whose base address is assigned by the program loader at
load time. Symbols instructions, and data defined using a relocatable PAB are
only completely resoived when the program is loaded into memory for execution. The
relocatable PAB allows the user to write, assemble, and link programs that can be
executed at any address they may be loaded at.

A relocatable PAB is defined by the programmer using the REL directive. More than
one relocatable PAB may be defined and used in a program. (The MACRO Assembler
allows sixteen PABs per assembly, the LINK program allows 128 PABs per load module.

Different segments of code using the same relocatable,PAB name would, when linked
together, f9rm a contiguous block of code, each segment being appended to t~e
previous.

The Co..on Belocatable PAB

The common relocatable PAB is very similar to the relocatable PAB. Its base
address is assigned by the program loader at load time and the symbols,
instructions, and data defined usin~ a common relocatable PAB are only completely
resolved when the program is loaded 1nto memory for 'execution.

A common relocatable PAB is defined by the programmer using the COM directive.
More than one common relocatable PAB may be defined and used in a program.

The difference between a relocatable PAB and a common relocatable PAB is that when
different segments of code, using the same common relocatable PAB name, are linked
together the code from one segment overlays the previous segment's code.

This type of PAB is very useful for buffer definitions where several modules use
the same memory area for volatile working storage. Each segment would define the
layout of the buffer with the specific symbols and locations that it requires.
This sounds like the same result as using the EQU directive and in fact might

Ml.CBO Rev B - 9 -

lfJ.eBO BBFEBBIICE HDUAL
. ' ,

produce the same results. However when the common reloaatable PABs are used no
one segment would have to allocate the maximum buffer size that would be 'used: the
Linkage editor would create the PAB as large as required by the segment that
defined the largest area. Mainly, when a common relocatable PAB can 'be used and is
called for in the deSign of the program, 'it results in a more easily coded and
maintained program. '

The uses of 'PABs is probably be'st explained with a few exampleso Rather than
,invent some meaningless examples at this time it would be best to look at the
programs in the appendix "Program Examples"o

J& G 1 PAB BeatrlctJ.oDa

Programming with PABs provides more versatility and makes the programmi~ task more
dynami'c but it does carry some restrictions" These restrictions are mainly related
to the use of symbols that are defined in a reloaatable or common relocatable PABo

There are a few! but important, rules to keep in mind when'formulating expressions
containing symbo s. They are:

1. All relocatable symbols have full' word (16 bit) values. This means
that a relocatable symbol or expression can only be used when a 16
bit value can be used. ,

2. The sum or difference of a relocatable symbol and an absolute symbol
1s a relocatable value.

3. The difference between two relocatable symbols defined in the same
PAB is an absolute value.

4. The sum! difference, product, or, quotient of two absolute,symbols is
an abso ute value.

5. The difference between two relocatable symbols defined in different
PABs is an error. '

6. AII'other operations between two relocatable symbols defined in the
same PAB or in different PABs is an error.

7. All other operations between a relocatable symbol and an absolute
symbol are errors.

Another restriction in relation to relocatable PABs is that the 'execution address
is not known at assembly time. This seems obvious and of little importance except
when the 'program listi~ is taken into account: the addresses listed at the left
side of an assembly list1ng are not necessarily the execution addresses! ,

- 10 - MCBO BeY B

CBAPTBlI 5

MACRO DDBCUVES I: PSBODo-OPS

The OASIS MACRO Assembler provides many directives and pseudo-ops that make
programming in the Z80 assembler language easier by providing a means of assigning
values to labels, allocating and initializing storage, conditional assembly,
linking together several source files, incorporating source files into other files,
and access to powerful system subrout1nes incorporated in the operating system.

ABS Directive

The ABS directive defines an absolute PAB. The ABS directive unlike the ORG
directive discussed later, does not change the location counter of the instructions
following - the USING directive is responsible for that. The general format of the
directive is:

(label> ASS [exp] [; co.Il8Dt]

Although, as indicated, the label field is required for the ABS directive the
expression field is not. The label field is used bl the USING directive to specify
which PAB to use. The expression field, when specified, indicates the address that
the PAB is to start on.

A PAB definition, such as the ABS directive, implies a USING directive following.
It is not necessary for you to follow an ABS directive with a USING directive.

ILIGR Direct1ve

The ALIGN directive can not be used when relocatable PABs have been defined.

The ALIGN directive allows the programmer to set the location counter
defined boundary. The general format of the directive is:

[<label>] ALIGR (exp> [;ca.PPDt]

to· a user

All of the terms of (exp> must have been previously defined - no forward
references. (Exp> is evaluated and then the location counter is set to the value
of the current location counter plus current" location counter modulo (exp>. This,
in effect, advances the location counter to the next (exp> boundary. For instance
if the location counter is 315 and an ALIGN 256 is encountered then the location
counter is set to 512.

BP Pseudo-op

The BP pseudo-op allows a break-point to be assembled into a program. The general
format of the BP is:

[<label>] BP [;~ .. eDt]

When -assembled the BP directive occupies one byte of storage (a RST instruction).
During program execution this code will cause a jump into the DEBUG program. If
the DEBUG program has not been loaded then the instuction has no effect. Refer to
the OASIS Dynamic Debugging Reference Manual.

CCII D1rect1ve

The COM directive defines a common PAB. The general format of the directive is:

" (label) C(II [<exp)] [; ~_eDt]

As indicated, the label field is required for the COM directive, like all of the
PAB definition directives. The (exp> field, when specified, is not used for the
location of object code but only for listing pur~oses. A common PAB is a
relocatable PAB but differs from a relocatable PAB aef1ned by the REL directive in
that the Linkage editor overlays common PABs of the same name instead of appending
them. When several object files are being Linked that use common PABs each of the
common PABs define the same address area, starting with relative location zero.
(DS directives in a common PAB only cause previously undefined. storage in the PAB
to be set to zero.)

A PAB definition, such as the COM directive~ implies a USING directive following.
It is not necessary for you to specify a uSING directive immediately. following a
COM directive.

MACRO Rev B - 11 -

MACRO REPEBBICB IWIUAL

con Direct1: .. e
The COpy directive allows the programmer to specify that a sequence
be found in another source file. The general format of the directive

of code is to
is:

[<label>]COPl <rlle-desc> [;co..ent]
The COpy directive is not a macro! No parameter replacement is allowed. When the
COpy directive is encountered by the assembler the specified file is copied into
memory and assembled at the current location counter as if the code were_ included
in the source program. The copied code will be listed according to the
specifications of the LIST directive.

This directive allows the programmer to easily reference frequently used sequences
of code without entering the code in each program that references it.

When the <file-desc> only specifies a file name the default file type of COpy is
used •.

DB DJ.rect1.ve

The DB (Define Byte) directive is a synonym of the DC (Define Constant) directive
discussed next.

DC Direct1.ve

The DC directive is the most general form of the storage definition directives.
The general format of the directive is:

[<label>] DC <exp list> [;ca..ent]
Similar to the DW directive the DC directive allows the terms in the expression
list to be forward references. Each expression is evaluated independently of the
others. The individual expressions may be string literals (enclosed in quotes), 16
bit words (enclosed in parentheses), integer values, floating poInt values (dec1mal
point specified), floating point scientific format values (decimal point and
exponent specified).

The various forms of an expression are evaluated and assembled according to the
following rules:

strings strings Each ASCII character in the quoted string is evaluated and the 7
bit code is generated, one per byte. If the quotes are double quotes (n)
the last byte will have bit position 7 set (1). If the quotes are single
quotes (') the last byte is not altered.

words The expression- within the parentheses is evaluated identical to the DW
directive.

integers The expression is evaluated with the least significant· 8 bits assembled at
the current location counter. Overflow error results if the high order 8
bits are not zero or FFH.

floating pOint The expression is evaluated and the eight byte value is assembled at
the current location counter. Floating point values are formatted using
excess 128 format for the characteristic and binary coded decimal for the
mantissa, consistent with the way that BASIC maintaines its numeric
variables.

The value is first normalized to be a fraction less than +1, greater than
-1, with no zeros to the immediate right of the decimal p01nt , adjusting
the exponent accordingl!. The exponent is then added to 80H ~o form the
first byte. The sign of the floating point number determines the value of
the next nibble (four bits): 0 for positive, 8 for negative. The binary _
coded decimal (BCD) representation of the number follows this sign nibble
creating the eight byte value with thirteen digits of precision.

- 12 - MACRO lev B

CII1P1BR 5: HACBO DIlECt'IVES &: PSBIJDO-OPS

DC Bxaaplea

Addr Obj-Code Line ••• Source Statement •••

0000 00 1 DC ~ 1234H) 0001 ~412 2 DC
0003 1425n4F 3 DC 'ABSOLUTE'
0007 4C~55 45
OOOB 41 25~4F 4 DC "ABSOLUTE"
OOOF 4C555 C5
001~ 00010241 g DC 0p1,2,t A'
001 DS o H
0025 FFOO ~ DW 255
002~ 8~012~00 DC 123.
002 0 000 00
002F 83812300 9 DC -123.
00~1 00000000
00 81012345 10 DC 1.234567890123
003B 67890123
OOnF 6D012345 11 DC 1234.5678E-23
00 3 67800000
0047 7A098760 12 DC .. 0000009876
004B 00000000
004F 7B012340 13 DC .000001234
0053 00000000
0057 84012340 14 DC • 1234E+4
005B 00000000
005F 7D043210 15 DC .4321~-3
0063 00000000

DS D1recti.ve
The DS directive . allows the programmer to advance the location counter a specified
amount, thus reserving a storage area. The general format of the directive is:

[<label>] DS <up> [;~nt]

All of the terms used in <exp) must have been previously defined - no forward
references. <Exp) is evaluated and the location counter is advanced that many
bytes.

DV D1recti.ve
The DW directive allows the progr~er to define words of storage to be specific
values. The general format of the directive is:

[<label>] DV <up li.st> [;~nt]

The expressions in the list are separated by commas. Each expression is evaluated
independently of the other expressions in the list. The terms of the expressions
may include forward references. Each expression is evaluated and assembled at the
current location counter. The word is assembled with the least significant 8 bits
(LSB) first followed by the most significant 8 bits (MSB). The location counter is
advanced by two for each expression evaluated.

EJECr·D1recti.ve

The EJECT directive indicates that a page eject is to be generated in the listing.
The general format of the directive is:

EJECT [ico..entJ

The EJECT directive is only effective when a listing is being generated. The
directive, when encountered, causes an immediate page eject to be generated in the
listing. The EJECT directive itself is not listed in the listing, although it does
advance the line number.

MACRO Rev B - 13 -

HAem BBFEBBIICB IWIUAL

ELSE D1recti.Y8

The ELSE directive allows the p~ogrammer to specify an alternate set of
instructions to be assembled when the (exp> of an IF directive is evaluated to be
false. The general format of the directive is:

[<label>] ELSE [; C4C .ent]

The ELSE directive is an extension of a prior IF (or ELSEIF) directive and
therefore the ELSE ,directive may only be used between an IF and ENDIF ENDIF
directive or between an ELSEIF and ENDIF directive.

When the (exp> of an IF or ELSEIF directive is evaluated to be false the assembler
searches forward for an ELSE (or ELSEIF) directive. The instructions following the
ELSE directive are then assembled. When the (exp) is evaluated to be true the
instructions following the ELSE directive are not assembled.

a.sUF Directive

The ELSEIF directive provides ReaseR statement conditional assembly capability.
The general format of the directive is:

[<label>] RJ.$RJP <exp> [; cc.aent]

When used, the ELSEIF directive must be between an IF, ELSEIF or ELSE directive and
an ELSE ELSEIF, or ENDIF directive. All terms in the (exp> must have been
previously defined.

Only one ELSE statement is allowed per IF statement but there may be several ELSE IF
statements following an IF statement.

During the analysis of an IF - ELSEIF ••• ELSEIF - ENDIF statement group assembly of
source statements is suppressed until a true condition is detected for one of the
IF ELSEIF or ELSE statements. When this occurs the statements are assembled
until an ELSE, ELSE IF, or ENDIF statement is encountered--then the statements are
skipped until the matcning ENDIF is encountered.

Examples

LABEL 1 : EQU 1
LABEL2: EQU 0
LABEL~: EQU LABEL2*LABEL1
LABEL : EQU LABEL2.AND.LABEL3

IF LABELl
This code will be assembled

ELSEIF LABEL2
This code will not be assembled

ELSE
This code will be assembled

ENDIF
IF LABEL3

This code will not be assembled
ENDIF
IF LABEL4

This code will not be assembled
ELSE

This code will be assembled
ENDIF

This code will be assembled

BID) Directiye

The END directive specifies the physical end of the source code. In addition this
directive may specify the entry point address. The general format of the directive
is:

[<label>] BID [<uP>] [;~ went]

It is not necessary to terminate the source pro~ram with the END directive,
however, it is recommended and when 'used, it w~ll be the last line of code
analyzed.

When the (exp> is specified it indicates the address to be used for the entry
pOint. That is the address at which execution will begin when the program is
executed.

-l' - HACBO ley B

CIIAPDB 5: MACRO DIIBCrlVBS I: PSBIJDO-OPS

ElDIF D1rect:1Ye

The ENDIF directive is required to terminate the instructions that are to be
conditionally assembled. The general format of the directive is:

[<label>] BlDIF [;~nt]

Every IF directive must have a matching ENDIF directive.

EIDII Direct1.Ye

The ENDM directive indicates the physical end of a macro prototype definition. The
general format of the directive is:

DDII [; cc.aent]

The usage of this directive is explained in the chapter on Macros.

BI'fD D1rect:iYe

The ENTER directive is identical to the VALUE directive except that the <exp> is
entered from the keyboard during pass one of assembly. The general format of the
directive is:

<label> III'rBR [<quoted str1.ug prc.pt)] [; cc.aent]

When the ENTER directive is encountered during pass one of the assembly the <quoted
string prompt> is displayed on the console. If the <quoted string prompt> is
omitted the <label> name is displayed for prompting purposes. At this time the
operator enters the expression to be assigned to <label>.

The ENTER directive must have a label. When the ENTER directive is encountered 'by
the' assembler during pass one the operator is allowed to enter the value (this
value may be in the form of an expression using literal and previously defined
labels. The label being defined, with the ENTER directive may have been previously
defined and used.

Examples

DEBUG:
LABEL1 :

ENTER 'Is this a debugging assembly? (YIN)'
ENTER 'Please type the value of LABEL 1 ,

.
IF DEBUG.EQ.'Y'

.
ENDIF

IIITBY D1rect:1Ye

The ENTRY directive allows you to specify that a label, defined in the current
assembly, is an external reference (EXTRN) of another assembly. The general format
of the Q1rective is:

EITIY <label>[,<label>] ••• [;~nt]

The list of labels may be forward references to labels defined later in the
assembly but the labels must be defined at some time during the current assembly.
This directive is the logical inverse of the EXTRN directive.

The ENTRY directive would be used in a module of source code that defines a
label(s) whose value will be needed in another module(s) that is not to be
assembled with this one but will be LINKed with the current module.

For more explanation of the use of this directive and the EXTRN directive see the
OASIS LINK Editor Reference Manual.

MACRO Rey B - 15 -

Hl.CRO BBFBIIIICB HAllJAL

IQU D1rect:1ve

The EQU directive allows the programmer. to assign a value to a label. The general
format of the directive is:

<label) BQU (up) [;CCl_Dt]

The EQU directive must have a label. All terms in (exp> must have been previously
defined - no forward references are allowede

When the EQU directive is encountered by the assembler <exp> is evaluated and
assigned to <label>. -

A label that has been equated with the EQU directive may not have been defined by
. any other directive or instruction in the program.

BIll D1rect:1ve

The ERR directive is used to display an error message during the assembly process.,
Normally this would be used in conjunction with the conditional directives when an
invalid condition has been detected. The general format of the directive is:

DB '_saase' [; eel.reDt]

When the ERR directive is encounted the message is displayed on the console along
with the line number and the error message is included in any listing file being
generated. . This directive does not cause the assembly process to be cancelled but
it will cause the return code to be set to a non-zero value. This return code can
be displayed when the RDYMSG has been set ON and it can be tested by an EXEC
program.

BI Pseudo-ope

The EX pseudo-op provides a convenient method of expressing some frequently used
register exchanges with the Z80 registers.

MACRO Pseudo-op Equivalent Z80 Instruction

EXA
EX AF AF
EX HL'DE
EX BCDEHL,BCDEHL'

EX AF AF'
EX AF'AF'
EX DE:HL
EXX

As can be seen the pseudo-ops are more versatile in their use and would be very
meaningful for the programmer who is unfamiliar with the Z80 exchange instructions.
DrIll D1rect:1ve

The EXITM directive is used in a macro prototype, usually in conjunction with the
conditional directives, to skip to the ENDM directive. The general format of the
directive is:

DrIll [;~.LeDt]

The EXITM directive is discussed in the chapter on Macros.

BHd D1rect:1ve

The EXTRN directive allows you to specify that a label is defined externally to the
current assembly. The general format of the directive is:

EIT.II [<label)[,<label)] •••] [;co..eDt)

The list of labels specified in the operand field cannot include any labels defined
during the current assembly, either before or after this directive.,

Omitting a label specification indicates that all undefined label references in the
program are to be treated as externally defined.

For more information regarding the use of this directive and the ENTRY directive
see the OASIS LINK Editor Reference Manual.

- 16 - MACRO Bev B

CIIAPDR 5: MACHODIRBctTIES & PSBDDO-OPS

IF Direotive

The IF directive allows the programmer to include code that is assembled only when
an expression is true. The general format of the directive is:

[<label>] IF <exp> [ioc.Mnt]

All terms referenced in <exp> must have been defined previously in the program. No
forward references are allowed.

The <exp> is evaluated and, if true, the instructions following are assembled.
When the value of the <exp> is false the instructions following, up to. the next
ELSE, ELSEIF, or ENDIF, are not assembled.

LD Pseudo-ope

The LD pseudo-op provides a convenient method of performing some ·frequently used
double register loads that are not available in the Z80 instruction set. The
general format of.the pseudo-op is:

Where:

rr Is

rr' Is

ii Is

d Is

any of the

any of the

[<label)] LD <rr>,<rr> [ico..ent]

[<label)] LD <rr'>,«11+d» [;ca..8nt]

[<label>] LD «1i+<l», <rr' > [; co.aent]

[<label>] LD' <rr'>,(BL) [;co..ent]

double register pairs: BC, DE, HL, IX,

double register pairs: BC, DE, or HL.

either of the index register pairs: IX or IY.

a Signed displacement value.

or IY.

The LD pseudo-op is the same op-code as the Z80 LD instruction except in its
permissible syntax. The LD pseudo-op generates the corresponding instructions to
perform the desired load. For example- the pseudo-instruction: LD HL,DE will
generate the Z80 instructions: LD H,D and LD L,E.

LIB: Direotive

The LINK directive provides a means of segmenting the source program into more
workable units. The general format of the directive is:

LIB: <:tlle-desc> [; cCI_ent]

When the LINK directive is encountered by the assembler the specified file is used
for the next line of source code. Obviously the LINK directive should be the last
line of code in the current file as any code following the LINK directive will be
ignored.

When the <file-desc> only specifies a file name the file type used in the OASIS
MACRO command is used - that command had a default file type of ASSEMBLE.

LIST Directive

The LIST directive specifies how (and if) the assembler is to list the source
program. The general format of the directive is:

LIST [<option list>] [; C4C_ent]

The LIST directive is only effective when one of the listing output options. was
specified in the OASIS MACRO command. The LIST directive may be used more than
once in a source program to change the listing options. Similar to the USING and
ORG directives, when the option list is specified the current list options are
pushed onto an 8 level, internal LIST stack. When the option list is omitted the
previous list options are popped from this LIST stack.

The options that may be specified include:

ON Indicates that a listing is to be created.

MACRO Bev B - 11 -

HAcm RBFEBBIICB IWIUAL

~ Indicates that-no listing file is to be created.

~OPY

~OPY

Indicates that code found ina "COPY" file is to be included in the
listing.

Indicates that code found in a "COPY" file is not to be included in the .
listing. This option does not affect the object program generated.

Indicates that source code not assembled due to conditional assembly is
included in the listing.

BQlF -Indicates that source code not assembled due to conditional assembly is
not included in the listing.

DATA Indicates that all data generated by the storage definition directives is
to be included in the listing.

~ATA Indicates that only the first four bytes of data generated by each storage
definition directive is to be included in the listing.

~CRO Indicates that macro expansions are t9 be included in the listing.

NOMACRO Indicates that macro expansions are not to be included in the listing.

The options specified in the CSI MACRO command initially set the various list
options, however (assuming a listing output device was specified) the LIST
directive may override these options.

HACLm . D1rectJ..Ye

The MACLIB directive allows the programmer to specify that a file of macro
definitions is to be located and remembered. The general format of the directive
is:

[<label>] HlCLm <~lle 118118>[.(~lle tlpe>][:<~ile d1sk>][jCCl_ent]

When the MACLIB directive is encountered by the assembler the specified file
(default file type of MACLIB) is located. The macro definitions contained in the
file are noted and the macros may be used by the program just as if the macro were
defined by the program.

No listing of the MACLIB file will be produced. The MACLIB file may only contain
macro definitions.

HACIO Directiye

The MACRO Directive specifies that the code following (up to and including the ENDM
directive) is a macro prototype definition. The general ·format of the directive
is:

MACRO [iCC2_nt]

The MACRO directive, along with the other macro related directives, is discussed in'.
the chapter on Macros.

OBO D1recu'ye

The ORG directive allows the programmer to change the value of the location
counter. This location counter is used to determine the address at which to
assemble the next instruction. The general format of the directive is:

[<label>] OIG [(exp>] [i co.aent]

The ORG directive always specifies that the location counter is to be changed.
When the ORG directive is encountered in an ABS PAB the expression speciffing the
new location counter is absolute. When the ORG directive is encountered ~n a REL
or COM PAB the expression specifying the new location counter must be a relocatable
expression.

All of the terms in (exp> must have been previously defined - no forward references
are allowed. When the ORG directive is encountered (exp> is evaluated and assigned
to the location counter and (label>, when specified.

When (exp> is specified with the ORG directive the current location counter is
placed on an internal 8 level ORG stack. When' (exp> is omitted the previous

- 18 - MACRO Bey B

CBAFrBR ·5: MACRO DDBcrlVlm I: PSBIJDO-OPS

element on the internal ORG stack is popped off.

This feature allows the programmer to place the code defining the working storage
near the code referencing this storage even though in rac~ the address of the
working storage may be any place in memory.

For example:

Addr Obj-Code Line ••• Source Statement •••
~

1 MAIN: ABS
4000 2 ORG 4000H
4000 ~20090 n LD ~LABEL1),A
400~ 7~ EX SPln.HL
400 5 LD ~l. ()
400~ 23 6 INC
400 ~i45 ~ EX (SP)EHL
4007 CP VALU 2
4009 3805 9 JR C LABEL2
400B 3A0090 10 LD A: (LABEL1)
400E 8~ 11 SCF
400F ,.2 RET
9000 ~~ ORG (000
9000 0000 LABEL1 : DC 0)

4002 00 16 LABEL3: DC 0
010 . ORG

4010 17 LABEL2:

BEL Directiye

The' REL directive is used to define the relocatable PAB. The general format ot the
directive is:

[<label>] BIL [<exp>] [i~nt]

Unlike the ABS directive, the label field is not required when there is only one
REL PAB in a program. When the label field is omitted the PAB will be assigned the
name of the program. When the label field is specified it is used b~ the USING
directive to specify which PAB to use for assembling code. The (exp> field, when
used, specifies an address relative to the load address of the program that the PAB
is ~o start on for listing purposes only. Obviously, since this. define~ a
relocatable PAB, the actual addresses used during execution time may be different.

A PAB definition, such as the REL directive~ implies a USING directive following.
It is not necessary for you to specify a uSING directive immediately following a
REL directive.

BBPr Directiye

The REPT directive allows you to duplicate a line of source code several times
without coding several times; The general format of the directive is:

RBPr [<exp>] [; eel_eDt]

When the REPT directive is encountered by the Assembler the next sequential line of
code will be duplicated the number of times specified by (exp>. (exp> must be in
the range of 1 - 65535. No forward referencing is allowed.

The line that follows the REPT directive cannot have a label in the label field as
that label would be duplicated along with the rest of the code. This, of course,
would cause a duplicate label error. _

The listing of the duplicated lines of code is controlled by the DATA/NODATA option
of the LIST directive.

SC Paeudo-op

The SC allows the assembly language programmer to utilize various portions of the
operating system. The'general format of a System Call is:

[<label>] SC <exp> [ic-.ent]

The (exp> specifies which system routine control is to be transferred to. Although
(exp> may have a value between 0 and 255 the actual number of system routines
~plemented is less. Reference to a system call number not implemented will cause
system call number 0 to be executed. SC 0 will cause control to return to the

MACHO Rey B - 19 -

III.CIO IBFDBlCB HDUAL

OASIS operating system.

When assembled the SC occupies two bytes of storage.

The system routines implemented and the requirements for usage are discussed in the
chapter on System Calls.

SOBT D1recti:ve

The SUBT directive allows the programmer to specify a sub-heading to be printed on
each page. The general format of the directive is:

SUBT (quoted striD8> [iM_ent]

The <quoted string> replaces the second heading line message at the . top of each
subsequent page of the listing.

r:nLB: DirectlYe

The TITLE directive allows the programmer to specify the heading to be printed at
the top of each page in the listing. The general format of the directive is:

. UrLB (quoted striD8> [joc_nt]

The TITLE directive is only effective when a listing is being generated. When the
TITLE directive is encountered by the assembler the heading for the 'next pa~e of
the listing is chansed to be the <quoted string> (exlusive of the delim~t1ng
quotes) and a page eJect is generated in the listing. The TITLE directive itself
~s not listed in the listing, however the line number is incremented.

USDG Directiye

The USING directive is used' in conjuntion with the ABS, COM or BEL directives to
specify the PAB that instructions following belong to. The general format of the
directive is:

USDG [<label>] [;~ ent]

The USING directive can not have a label. The label specified in the operand
portion of the directive must be of a' previously defined PAB (no forward
references). When label is used in the operand position the current "USING PAB" is
pushed onto an 8 level USING stack. When <label>· is omitted the last "USING PAB"
is popped from this USING stack.

When a PAB is defined by the ABS, COM or BEL directive a USING directive is
implied. There 1s no need for you to follow a PAB definition with a USING
directive unless fOU wish to specify some code "using" a different PAB than the one
just defined. Th~s implied USING performs a push onto the USING stack just as if
you had specified the USING directive yourself. In fact, when you specify the
USING directive following a PAB definition there will be two pushes onto the USING
stack. .

VALUBD1rect:lYe

The VALUE directive is similar to the EQU directive with the added ability of
redefining a previously defined label in the program. The general format of the
directive is:

<label> VALUE (exp) [; CCl_nt]

The VALUE directive must have a label. All terms in <exp> must have been
previously defined - no forward references are allowed.

-20- MACRO ley B

CBAPrD 6

MICROS

Macros are predefined sections of source code which maI be used to facilitate the
coding of commonlI used procedures. Macro source cooe is modified by the MACRO
Assemoler to incluoe labels and expressions passed as arguments by the main body of
source statements. Macro definitions are called nMacro Prototypes" and are saved
for later access by the MACRO Assembler.

The OASIS MACRO Assembler allows macro prototypes to be defined either within a
source file (must be defined before referenced); in an external macro source file
(file type of MACRO, one per file), in an external macro library file (file type
MACLIB L one or more per file), or in a COpy file that was copied. before the macro
was reI"erenced.

6.1 PrepariDs Macro Protot7P88

Macro prototypes must be defined in the following format:

MACRO [·comment]
[&<label>] name [&<symbol>[«default»]][,&<symbol)[«default»]] •••

one or more assembly language statements and macro directives
ENDM

Each prototype must start with the MACRO directive and end with the ENDM directive.

The second statement of each prototype. is called a "Macro Prototype Header" and
defines the name of the macro and any labels and symbols that may be replaced
during assembly. The name may be any 1 to 8 character symbol that is not already
predefined by the MACRO Assembler (Z80 op-codes and MACRO directives). All
arguments shown in brackets are optional and may be omitted if not needed.

Notice that the label and symbols are preceded by the ampersand character. This is
also true of the assembly statements within a macro. The ampersand character
always precedes a substitution label or symbol.

Labels and symbols shown in the prototype header define items in the statements
that follow that may be replaced at assembly time. Following each sImbol in the
header a default expression may be defined. The default will be useo if a macro
reference in the source program fails to supply a replacement expression for the
preceding symbol. Spaces or commas may be used to separate the times in the listo

More than one macro may be defined in a program.

6.2 Macro Calla

Code from a macro prototype is included in assemblies by the means of "macro
calls". The general form of macro calls is:

[<label>] na.e [<exp>[,<exp>] •••] [;CC"SDt]

The name used in the instruction field will be assumed to be a macro name if it is
not a reco~nizable MACRO Assembler instruction mnemonic or directive. The label
and express10n arguments in brackets are optional. Arguments defined in the
expression field are positional and must be defined in the same order as related
symbols in the macro's prototype header (except keywords).

Notice that a macro call does not use the ampersand character.

There is a purposeful similarity between the format of a macro call and macro
prototype header. They are closely related and determine the final code that will
be included in the assembly.

Header: [&<label>] name [&<sym>[«def»][,&<sym>[«def»] •••]]
Call: [<label>] name [<expression> [,<expression>] •••]

The label for the call will re~lace the occurrences of the header label in
prototype code during expansion. The first expression in the call will replace the
first header symbol in the prototype code, the second expression will replace the
second symbol, and so forth.

Arguments may be omitted in each list of macro call expressions by coding only the
trailins comma to indicate the misSing expression. Trailing commas after the last
express10n included in a list are not required.

The rules for substitution are:

MACRO Bev B - 21 -

HiCBO BEFDIIICB HDOAL

Macro Call Prototype Header Action
===
Label

Label

No label
No label
Symbol
Symbol

No symbol

No symbol

No label

Label

No label
Label
No symbol
Symbol

Symbol-no default

Symbol-default

Expansion example:

Macro prototype:

Label is defined normally before
expanded macro code is processedc

Call label substituted in
expanded macro .codeo

No change.
Prototype label is omitted.
Call symbol ignored.
Call symbol substituted tor

occurrences in macro code.
Header sImbol disappears in

expanCled code.
Default substituted for

occurrences in macro code.

MACRO
&LABEL: CLEAR

&LABEL: LD

&FIELD,&SIZE(80)
; Clear &FIELD to
B &SIZE
Hl.l.&FIELD

zeros for length &SIZE
Get field length
Point to &FIELD
Set byte to zero
Point next
Repeat till done

LD
LOOP: LD

Macro Call:

INC
DJNZ
ENDM

(H) ,0 .
HL
LOOP

LOOP: CLEAR BUFFER

Expansion:

LOOP:

LOOP:

LD
LD
LD
INC
DJNZ

; Clear BUFFER
B 80
Ht.JBUFFER
(HJ..) ,0
HL
LOOP

to zeros for length 80
; Get field length
; Point to BUFFER
;. Set byte to zero
, Point next
; Repeat till done

In the above
replaced by
not have a
substituted.

examole the symbols &LABEL and &FIELD in the prototype have been
"LOOP" and "BUFFER" provided by the macro call. The sImbol "SIZE" did
replacement expression in the macro call so the oefault "80" was

6.3 Macro J[eJVOrda

The MACRO Assembler prov1des an alternate format for prototype headers and macro
calls to allow easier implementation of macros with long symbol lists. This
alternate format uses the keyword feature.

As described above the symbols in a prototype header and a macro call are
pOSitional, meaning that a one to one match is made between the first BImbol
defined in the header and the first pOSition of the call, the second symbol defined
in the header and the second position of the call, etco

When the keyword feature 1s used the symbols are no longer pOSitionally defined and
called. This is important when a long list of~ymbols and defaults are defined in
a header but only a few are used in the call.

A symbol is defined as a keyword in a macro call by using the symbol with an equal
sign (=) followed by the value.

-22- MACIO Rev B

Example:

Macro Prototype:

MACRO
&LABEL: TEST
&LABEL: DC

Macro Call:

DC
DS
DC
ENDM

&A(1),&B(2),&C,&D(256),&E(O),&F(5),&G(1)
&A,&B
&C
&D
&E,&F,&G

VALUE: TEST ,5,5,G=128

Expansion:

VALUE: DC
- DC

6.4 Labels

DS
DC

1,5
5
256
0,5,128

CB.&PrBI 6: MACIOS

Labels within a macro are of three types: global, local, and macro local. The
global label within a macro functions the same as it does outside of a macro: it
can be referenced from anywhere in a program. A global label defined within a
macro is different from a global label defined outside of a macro in that the
definition of the global label does not affect local labels.

The local label defined within a macro functions the same as it does outside of a
macro: it can only be referenced from locations between two global labels (global
labels defined outside of the macro.

The macro local label is a label that has a value only when reference from within
the macro defining it. A macro local label is a label whose first character is a
@.

6.5 CoDCatenatioD

The concatenation character vertical bar (I) is used in inner macro calls and
macro prototype expressions to separate a macro symbol from a literal that is to be
concatenated to the replaced value· of the symbol. Macro symbols may be
concatenated by merely concatenating the symbol references in the prototype.

Example:

Macro prototype:

MACRO
MSG

MSG&AAA: DC
DC
DC
ENDM

Macro Call and Expansion

MSG

MSG024: DC
DC
DC

&AAA &BBB
&BBB1LOC &BBBISIZE
'ERROR I' PHASE DCT&AAA'
(&BBB&AAA)

024,PHS4

PHS4LOC PHS4SIZE
'ERROR iN PHASE DCT024'
(PHS4024)

In order to include the vertical bar character as part of a macro or macro call you
must duplicate it: I I
6.6 Macro SUbatr1Dg8

Substrings of macro variables can be used by specifying the starting and ending
character positions of the variable" within parenthesis, immediately following the
variable name. For example: &NAME(3 5) indicates the sUDstring of the value of the
variable &NAME from position three through position five (three characters). Any
time a variable name is used followed by a left parenthesis character the assembler
will try to substing the variable. When the left parenthesis character is used and

MACRO lev B - 23 -

MelO BBFEBBIICB HllUAL

substring1ng is not desired you must use the concatenation character described
above.

6.1 Macro ReatJ.ag

The OASIS MACRO Assembler allows· the nesting of macro calls within macro calls up
to eight levels deep. Macro Local labels cannot be passed as arguments to inner.
macros. Local labels may be passed as arguments to inner macros but this usage may
be restricted by the definition of global labels (same as non-macro code). The
passage of global labels and other arguments is unrestricted.

6.8 Macro Reaeryed Yar.1ablea

Within a macro prototype or macro call there are four reserved variables available
to the user. These variables allow you to access the current date-and time, the
program name, and the current macro index value. If these variables are to be used
as labels then they should be concatenated with other characters to generate unique
labels. The variables are as follows:

&DATE
&TIME
&PROG
&INDEX

current date in mm/dd/yy format
current time in hh:mm:ss format
current source program name
current macro call index number

Comments may be included in a macro prototype in the same manner as comments in the
main program. Macro symbols may be included as part of a comment and these will be
expanded.

A comment may be included in a macro prototype that is not to be expanded or even
listed in any listing· file created. This type of comment (macro comment) 1s
indicated by pairing the comment delimiter (;;).

6.10 Macro Ezaaple

MACRO , Create FeB
&LABEL: FCB &CHANNNEL &MODE,&BUFFER

IF .NUL.&LABEL·; Asm only if &LABEL is empty
ERR 'Label field required for FCB'
EXITM
END IF
IF &CHANNEL.LT.0.OR.&CHANNEL.GT.16
ERR 'ACB channel number out of range'
EXITM
END IF

&LABEL: DC &CHANNEL

@BUFF:

IF • NUL. &MODE
ERR 'Access mode required'
EXITM
ELSE ;; Test the access mode specified
IF '&MODE(1,3)'.EQ.'INP'
DC 90H
ELSEIF '&MODE(1,1)'.EQ.'O'
DC 88H
ELSEIF '&MODE(1,1)'.EQ.'D'
DC 40H
ELSEIF '&MODE(1,3)'.EQ.'IND'
DC 20H
ELSE
ERR
EXITM
END IF
ENDIF
IF
DC
DS
ELSE
DC
ENDIF
ENDM

'Access mode undefined'

1 &BUFFER' .EQ. ' ,
(@BUFF)
255

(&BUFFER)

MCiO ley B

CII1PDB T

SYSDII CALLS

This chapter describes all of the system calls implemented in this version of the
MACRO Assembler. They are described because they do exist and are available for
use, not because they should be used by the programmer. In fact, some of these
sys~em calls should not be used: 10, 11, 271 28~ 50, and 51. These slstem calls
are related to physical disk I/O and, iI- usea indiscreetly, may oestroy the
resident operati~ system or the conten~s of a disk or disks. Any consequential
damages caused by the use of these specific system calls are the responsibility of
the user.

7.1 Documentat~OD CoDvent1oDB
This chapter describes the syntax and operation of the system calls available to
the programmer using the OASIS MACRO Assembler. Each system call is presented 1n
the same format:

1. System call heading, centered on the page.

2. Function of the system call.

3. Input parameters. This area defines all of the parameters that are
required to be defined before the system call is invoked.

4. Output parameters. This area defines any parameters that are
returned to the calling program.

5. Description. A general descriptive text of the function of the
system call.

6. Other system calls used. This area specifies if any other system
calls are used to perform the function and what· they are.

7. Other registers altered. Any registers that may be changed by the
system call, excluding those specified as output parameters, are
listed in th1s area.

8. Example. A specific example of the calling sequence and result of
the system call is given. An example is not given if the system call
is obvious or trivial.

System control blocks are referenced frequently through this chapter. Refer to the
appendix on System Control Blocks for information regarding the content and format
of each of the control blocks.

MACRO Bev B - 25 -

MACRO BBFEIBICB MOOAL

=== SC 0 QUIT
===
Function: Reload the Command String Interpreter - restarto

Input parameters:
"

Reg A - Return Code

Output parameters: none ...
Description:

The Command String Interpreter is reloaded and control is passed to the
CSlo This system call is generally used when an assembly program is
finished its execution and control is to return to the operating systewe

Certain statuses and switches are reset by this system call: ESC,Q and
ESC,S are reset; DET and QET are reset; the stack pOinter is reset to top
of memory· any TEBs owned by this partition are cleared- all ACBs are
closed; ali known resources locked by this partition are reieased; and all
files and records locked by this partition are releasedo ,

The value in the A register is the return code. This return code is
displayed if RDIMSG is set ON and is accessible by the EXEC language.

Other system calls used: SYSIN (6), SYSOUT (7)t MOUNT (9l L RD1(10).a, GETSCR (48)J.
RD (50) 1. SYSDISP (52)j, TIMER (53) 1. GETMEM (55), PUTQET (,7), PUTDE]," (74), .GETACJ:S .
(77), NuTONLY (85), UN~XCLUS (90), tiETWORK (91), COMPARE (93)
Other registers altered: all (control returns to operating system)

Example Calling Sequence:

LD
SC
END

A,16
o

Return code
He-load CSI & exit

===
SC 1 D!III

===
Function: Accept a line of input from the console keyboard.

Input parameters:

Reg B - Max line length to accept
Reg DE - Address of buffer to store line

Output parameters:

Reg A - Actual line length accepted

Description:

Up to B characters are accepted from the console input device (CONIN).
All characters will be echoed to the console output device, dependent upon
the controls set in the console control byte. Entry is terminated by
entry of B characters or a carriage return. (The console control byte may
specify that any control character terminates input.) When the input is
terminated a carriage return, line feed is echoed to the console output
device. -

If the input is not terminated by a carriage return (B characters entered)
then a carriage return is appended to the end of the character string in
the buffer. For this reason the buffer length should be B+1.

Note: When there is information available from the EXEC stack this system
call will retrieve characters from that stack and echo it to the console
if the stack display switch is in effect.

Other system calls used: CONIN (4), CONOUT (5), CRLF (18), GETSCR (48)

Other registers altered: C, D, E, H, L

SC 1 DiD -26- MICRO Rey B

CII1PI'D T: SYSrDI CALLS

Example Calling Sequence:

AREA:

LD
LD
SC

.
DS

B 64
DE, AREA
1

65

Length
Input buffer
Get line from console

; Buffer

===
SC 2 DISPLAY

===
Function: Display characters on console output device.

Input parameters:

Reg DE - Address of -first character to o~tput

Output parameters:

Reg DE - Address of last char output plus one

Description:

Characters from the buffer addressed by register pair DE are displayed on
the console output device. A null character (00) terminates output to the
console and returns from the system call.

A carriage return will be displayed as a Qarriage return, line feed and
the system call will be exited. A line feed will be displayed as a
carriage return, line feed, output continues. An HT character (09H) will
be displayed as the ~roper number of spaces accordipg to the Tab Set Block
(TSB). All other ed1ting is done by the CONOUT system calIon a character
by character basis.

Other system calls used: CONOUT (5), CRLF (18)

Other registers altered: A

Example Calling Sequence:

MSG:

LD
SC

.
DC

DE,MSG
2

Point to message string
Display on console

'Any old thing', ODH

===
sc 3 cOIIsr

===
Function: Get status of console input device.

Input parameters: none

Output parameters:

Flag Z - set if no character ready; reset otherwise

Description:

The console input device is queried: the zero flag (Z) is reset if at
least one character is available for input, the zero flag is set if no
characters are available.

Other system calls used: GETSCR (48), DEVST (62)

Other registers altered: A

Example Calling Sequence:

MACHO Hey B

SC
JR

3
-Z,NOTRDY

; Test console ready
; Jump if no char ready

-Zl- sc 3 cmsr

HAem BD'BDICB HOUAL

===~========~==============
SC Ji COlD

===
Function: Accept one character from the console input device.

Input parameters: none

Output parameters:

Reg A - contains character input

Description:

One character is accepted from the console input device. Characters
accepted from the console device or EXEC stack are edited according to the
set values for UP, DOWN, etc, and the console class code, if any. The
underscore character is always translated to a HUBOUT character by this
system call. Return from this system call is performed only after a
character is accepted. The character will be echoed to the console output
device with editing performed according to the switches set for
upper/lower case, rubout, graphic display. etc. This system call never
echos control characters \values < 32 or > 128). .

Note: When there is information available from the EXEC stack this system
call will retrieve a character from that stack and echo it to the console
if the stack display switch is in effect.

Other system calls used: CONOUT (5), GETSCH (48), GETMEM (55), PUTMEM (56), DEVIN
(63)

Other registers altered: none

Example Calling Sequence:

SC 4 ; Read & echo char from console

===
SC 5 COROUT

--------~----------~-------------~-------------------~----------~---~---------------------------

Function: Display one character on console output device.

Input parameters:

Reg C - character to be displayed

Output parameters: none

Description:

The character contained in register C is displayed on the console output
device (CONOUT) with editing performed according to the console control
byte: graphics~ printer echo, etc. Output to the console is suppressed if
there is EXE~ stack data present ana the NOSTACK option is in effect.
When the character is displayed on the console the current cursor location
in the nucleus is maintained and auto new line is simulated if the
character is to be displayed past the end of 'the attached line length.

Other system calls used: SYSOUT (7), PHTOUT (8)

Other registers altered: A

Example Calling Sequence:

LD
SC

C,'?'
5

; Load a question mark
; Display on console

===
SC 6 SYSD

===
Function: Accept one character from console.

Input. parameters: none

SC 6 SYSD - 28 - HACIO Rey B

CIIlPDI 7: SYSDII CALLS

Output parameters:

Reg A - contains character input

Description:

One character is accepted from the console input device. Return from this
system call is performed only after a character is accepted. The
character will· always be echoea to the console output device (status of
Console Echo-key ignored) with editing performed according to the switches
set for upper/lower case, rubout, graphic display, etc. The character
will never be echoed to the printer device (status of Printer Echo-key
ignored) •. This system call never echos control characters (values < 32 or
> '28). In other respects this system call performs the same editing as
the CONIN system call.

The status of th~ EXEC stack and the stack display switch is ignored by'
this system call (character is always accepted from CONIN and displayed on
CONOUT). .

Other system calls used: SYSOUT (7), GETSCR (48)

Other registers altered: none

Example Calling Sequence:

SC 6 ; Get char from CONIN

===
SC T SYSCIJT

===
Function: Display one character on console output device.

Input parameters:

Reg C - character to be output

Output parameters: none

Description:

The character contained in register C is diaplayed on the console output
device (CONOUT) with editing performed according to the console control
byte: graphics, etc. The status of the Console Echo-key and the Printer
Echo-key is ignored.

Other

The status of the EXEC stack and the stack display switch is
(character is always displayed on the CONOUT).

system calls used: CRLF (18), DEVOUT (64)

Other registers altered: A

Example Calling Sequence:

LD
SC

C,12H
7

; Load DC2 char
; Output to console

ignored

===
SC 8 PlrooT

===
Function: Output one character to Printer 1.

Input parameters:

Reg C - character to be output

Output parameters: none

Descri pti·on:

If Printer 1 is not attached then this system call is exited. If the
printer is attached then the character in the C register is output to that
device along with any editing or options specified in the attachment of

OeRO lev B - 29 - SC 8 PJrlOOT

,HleBO Dr_CB HOUAL

that device ..

Other system calls used: DEVOUT (64)
Othe~ registers altered: A

Example Calling Sequence:

LD
SC

C,OCH
8

; Form feed
; Output to PRINTER1

=== scglllJft-
===~=============================
Function: Allow change of diskette on a specified drive.

Input parameters:

Reg B - logical drive code (O - 7) = (S - G)

Output parameters: none

Description:

Internal switches are set to indicate that the next read or write to this
disk must first read the diskette ID. If the drive code in the B register
specifies a drive that is not attached or is invalid then nothing is done
by this system call.

Other system calls used: GETUCB (21)

Other registers altered: A

Example Calling Sequence:

LD
SC

B,1
9

; Drive code for A
; Perform mount on A

================================~== SC 10 1D1
=============================="===
Function: Read one sector from a diskette.

Input parameters:

Reg B - logical drive code (O - 7) = (S - G)
Reg DE - sector address, relative to 0
Reg HL buffer address

Output parameters: none

Description:

Specified drive is selected, if legal~ and the indicated sector is read
into the location specified by the ttL register pair. If the drive or
sector is illegal or an error is detected during the read no error status
is returned--disk errors are reported to the operator for handling (see SC
74).

This system call~ when used- in a multi-user environment, checks the Sector
Lock Table {SLT, and waits if the requested sector is locked by another
partition.

Caution: Use of this system call 1s not advised.

Other system calls used': RD (50)

Other registers altered: A, C

SC 10 BD1 - 30 - Hl.CBO ley B

CIIlP!BB 7: SYSrBII CALLS

Examp~e Calling Sequence:

LD BEO Drive S
LD D 1 Sector 1
LD HL:BUFFER Memory address
SC . 10 Read a sector

.
BUFFER: DS 256

==:'
Be 11 VB1

===
Functi~n: Write one sector to a disk.

Input parameters:

Reg B - logical drive code (0 - 7) - (S - G)
Reg DE - sector number, relative to 0
Reg HL - buffer address

Output parameters: none

Description:

Other

Other

The specified drive if legal, is selected and the data at the location
indicated by register pair HL is written to the specified sector. If the
drive or sector number is illegal or an error is detected during the write
operation no error status is returned--disk errors are reporated to the
operator for handling (see SC 74).

This system call t when used in·a multi-user environment, checks the Sector
Lock Table (SLT) and waits if the requested sector is locked by another
partition.

Caution: Use of this system call is not advised.

system calls used: WR (51)

registers altered: A, C

Example Calling Sequence:

LD B 1 Drive A
LD DE, (SECT) Sector address
LD HL,DMA Memory address
SC 11 Write a sector

.
SECT: DC (112) ; Must be 16 bit word
DMA: DS 256

===
Be 12 GITVEI

===
Function: Return nucleus version number.

Input parameters: none

Output parameters:

Description:

REG H
REG L

- Binary Coded Decimal version number
Alphabetic version suffix

This system call returns the system version number in the HL register
pair. The version number of the nucleus is always in the form of nna
where nn is the version number and 'a' is the version suffix letter (i.e.:
54F, 50B or 55). The version suffix may be blank. The 'nn' portion of
the version number is returned in the H register in BCD format (i.e., when
version is 54F the H register will contain 54H). The 'a' suffix portion

MACRO Bey B - 31 - SC 12 GETYD

HACBO RBFBRBIICB HOUR

is returned in the L register as an ASCII oharaoter (i.e.,' when version 1s
54F the L register will oontain 46H).

Other system calls used: none

Other register altered: none

========-===~=
SC13VBFDIR

===
Function: Write file directory entry.

Input parameters:

Reg B Logical drive code (0 - 1) = (8 - G)
Reg DE - Address of DEB

Output parameters:

Desoription:

Flag C - Set if error; reset otherwise
Flag Z - Reset if error; set otherwise

The direotory entry addressed by the DE register pair is written to the
direotory of the drive addressed by the B retister. The directory entry
blook '(DEB) must be completely filled in (all 2 bytes). If the direotory
is full or if the direotory entry is a dupl oate of an entry already on
file the oarry flag is set and the zero flag is reset; otherwise the oarry
flag is reset and the zero flag 1s set.

The user is advised to not use. this system oall to oreate direotory
entries. When files are oreated using the other appropriate system oalls
the direotory entry is automatioally created.

Other system calls used: WR1 (11), LOOKUP (20), GETSCR (48), ONEONLY (84), NONTONLY
(85), GETWORK (91)

Other registers altered: A

====== = = ======= = == == = = ==== === === == = == sc=" =8Di== = = === = = = = === == = === = = =.== == === == = ===
===
Function: Convert hexadeoimal number to 16 bit binary.

Input parameters:

Reg DE - Address of hex string

Output parameters:

Description:

Reg DE - Address of byte following string
Reg HL - BinarI result
Flag C - Set if overflow; reset otherwise

The string of oharaoters addressed by the DE register pair is oonverted to
a binary value, conversion stopping on the first non-hexadeoimal digite
The resultant value is placed in the HL register pair, the DE register
pair is adjusted to point to the oharaoter following the last hexadeoimal
oigit or trailing 'H'. The system oall is exited.

Other system calls used: none

Other registers altered: A

- 32- MACRO Bey B

CBAPrD 7: SYSDII CALLS

Example Calling Sequence:

AREAH:

LD
SC

.
DC

DE,AREAH
14

, ABCDH'

Point ASCII hex
Convert to binary

; Hex value

=== SC 15 DECI
===
Function: Convert decimal number to 16 bit binary.

Input parameters:

Reg DE - Address of decimal string

Output parameters:

Description:

Reg DE - Address of byte following
Reg HL - Result
Flag C - Set if overflow; reset otherwise

The decimal string of characters addressed by the DE register pair is
converted to an unsigned binary integer value and placed in the HL
register pair. Conversion sto~s when a non-numeric character is
encountered. The DE register p~r is adjusted to point to the first
character following the digits or trailing 'D' character. The. system call
is exited.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

AREAD:

LD
SC

.
DC

DE,AREAD
15

'12345 '

Point ASCII Decimal
Convert to binary

; Decimal value

=====================================sc='6=eiio====================================
==============================="==
Function: Convert 8 bit value to hexadecimal characters.

Input parameters:

Reg B - Byte to be converted
Reg DE - Address of storage area

Output parameters:

Reg DE - Address of next location following

Description:

The 8 bit value in the B register is converted to the . two hexadecimal
character equivalent. These two characters are ~laced in the storage area
addressed by the DE register pair. The DE reg1ster pair is adjusted to
point to the location following the second character. The system call is
exited.

Other system calls used: none

Other registers altered: A

HAcm Rev B - 33 - SC 16 BBlO

HAem RBnBIIICB HOUR

Example Calling Sequence:

AREAH:

LD
LD
SC

.
DS

B (HL)
DE,AREAH
16

2

Get byte to convert
Conversion area
Conver.t binary to hex

; Conversion area

=====================================sc=,y=»iCO====================================
===
Function: Convert 16 bit unsigned value to decimal st~ing.

Input parameters:

Reg DE - Address of storage area
Reg HL - Value to be converted

Ou.tput parameters:

Reg DE - Address of location following

Description:

The 16 bit value in the HL register pair is converted to the ASCII
character decimal equivalent (leading /zeros are suppressed). The
resul tant string is placed in the storage area ' addressed by the register
pair DE and tne register pair DE is adjusted to point to the following
location. The system call is exited.

Other system calls used: none

Other registers altered: A, B, C, H, L

Example Calling Sequence:

LD DE AREA
LD HL: (NUMBER)
SC '17
LD A ODH
LD (DE),A

e

AREA: DS 6
NUMBER: DC 256

Work area
; Get number
; Convert to decimal

Get a CR
Mark end

=====================================sc=,s=cRLF====================================
=======================================~===============~===========================
Function: Display carriage return, line feed on console.

Input parameters: none

Output parameters: none

Description:

A carriage return and a line feed character are displayed on the console
output ci.evice.

Other system calls used: CONOUT (5)

Other registers altered: none

Example Calling Sequence:

SC 18

SC 18 CBLP

Display CR/LF

Hl.CBO Bev B

CIIlPDR T: SYSDII CJLLS

=====================================sc=l;=MSiC===~================================

=== .
Function: Wait specified number of milliseconds

Input parame~ers:

Reg A - Number of milliseconds

Output parameters: none

Description:

The number of milliseconds indicated by the contents of the A register are
"waited". An instruction sequence is performed that requires exactly one
millisecond to execute. The content of the A register is then
decremented. If the A register is not zero then the loop- is executed
again. If the A. register is zero then control is returned to the
instruction following the system call.

Note: If the A register contains a zero upon entry then 256 msec will
elapse before control is returned. Any interrupts that occur while this
routine is executing will cause minor inaccuracies in the actual elapsed
time.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

LD
SC

LD
SC
SC
SC
SC

tg10

A,232·
19
19
19
19

Get count
Wait for 1'0 msec
Wait for 1 second
Initial value
Wait 232 msec
Wai t 256 msec
Wai t 256 msec
Wait 256·msec

~==================:================sc=2o=LOOiDp===================================

===
Function: Locate directory entry of specified file.

Input parameters:

Reg DE - Address of DCB
Reg HL - Address of 256 byte work area

au tpu t parameters:

If found- Flag Z - Set
Flag C - Set
Reg A - 0 ,
Reg B Logical drive number (0 - 7) = (S - G)
Reg DE - Sector address of directory block.
RegHL - Address within work area of entry

If not found- Flag Z - Reset
Flag C - Reset if directory not full

Set if directory full
Reg A - 01 if directory not full

FF if directory full

Description:

The specified file description is searched for in the directory of the
drive indicated. If the directory entry for .the file is found then the
relevant information is placed in the indicated registers and the. system
call is exited.

If the directory entry for the file is not found then the relevant
information is placed in the indicated registers and the system call is

MACRO Bev B - 35 - SC 20 LOOmP

MACHO UFBIIBIICB HDUAL

exited. In this situation the calling program should create a directory
entry for the file at the location within the work area and-write the work
area to disk using the WRFDIR (13) system call.

This method of creating file entries is not intended to be used for
general purpose file creation - the system utilities provide this ability
with proven .safety •. Be very carefull if you do use this system calli

Other system calls used: RD1 (10), DIV (38), GETSCR (48), TSTDEV (58), GETUSER
(101)

Other registers altered: C

Example Calling sequence:

LD
LD
SC
JP

.
WORK: DS
FDFTFD: DC

DE,FNFTFD
HL,WORK
20
NZ,NOFND

256
1, 'TEST

Point DCB
Point work area
Directory lookup
Branch if not found

','FILE , ; TEST.FILE:A

===
SC21GJmJCB

========.===
Function: Get address of UCB (Unit Control Block).

Input parameters:

Reg B - Logical device number

Output parameters:

Reg HL - Address of UCB for physical device
Reg C Physical device number
Flag C - set if no attachment .

Description:

The logical device indicated is tested for an attachment to a physical
device. If no attachment then the carry flag is set and the system call
is exited. If the device is attached then the address of the Unit Control
Block is placed in the HL register and the physical device number that the
logical device 1s attached to is placed in the C register.

Other system calls used: TSTDEV (58)

Other registers altered: A

Example Calling sequence:

LD
SC
LD
ADD
LD

B,9
21
DE,10
HL DE
(iii.),0

; Log device number
; Point UCB of CON OUT
; Displacement to delay
; Point delay value
; Reset to zero

===.================== SC 22 LOAD .
--------------------------------------~-------~--~---~
Function: Load a program.

Input parameters:

Reg HL - Load address
Reg DE - Address of DCB

SC 22 LOAD - 36 - MACRO ley B

Output parameters:

Reg A - Return code:
01 relocatable program loaded
02 absolute program loade,d

CIIlPrBI T: SYS1III CALLS

04 program not found
05 absolute program - load address different
06 insufficient memory

Reg B - Drive code that file was found on
Flag C - reset if program loaded successfully

set if program not loaded

Description:

The program specified by the directory control block pOinted to by the DE
register pair is loaded into memory at the load address referenced by the
HL register pair.

Other system calls used: RD1 (10), LOOKUP (20), GETSCR (48), RD (50), GETWORK (91)

Other registers altered: none

Example Calling sequence:

LD
LD
SC
CALL

.
SUBRNAME :DC
SUBR: EQU

DE, SUBRNAME
HL,SUBR
22
SUBR

0, 'USER
$

Point to name
Memory address
Load ito.
Execute the program

','PROGRAM' ; USER.PROGRAM:S
; Load here

:::::::::::::::::::::::::::::::=:::::::::::::::::::=::=============================
sc 23 PBII'l

--
Function: Output a line to printer 1

Input parameters:

Reg DE - Address of line to print

Output parameters: none

Description:

The characters in the buffer addressed by the register pair DE are
transmitted to printer 1 until a carriage return or null is encountered.
Carriage returns and line feed characters are printed as a carriage
return, line feed sequence. Other editing is performed according to the
options associated with the attached printer.

Other system calls used: PRTOUT (8)

Other registers altered: A, C

Example Calling sequence:

LD
SC

.

--DE, LINE
23

Point to message
Output to PRINTER1

LINE: DC 'Now is the time',10,'for all etc.',13

===
SC2JfASSZGR

===
Function: Store ACB (Assign Control Block)

MACHO In B - 31 -

HlCllO RBFIDICB IWIUAL

Input parameters:

Reg B --ACB number (0.-- 16)
Reg DE - Address of formatted ACB

Output paramters:

Reg A Set to 255 if error
Flag C - Set if error; rese-t· otherwise

Description:

The ACB number is verified to be in the range 0-16, if not the value 255
is placed in the A register and the system call 1s exited. The formatted
ACB referenced by the DE register pair is placed in the specified ACE.
The A register is set to zero and the system call is exited.

Other system calls used: GETACB (77)
Other registers altered: C, H, L

Example Calling sequence:

LD
LD
SC

.

B 6
DE,ACB
24-

Channel 6
Point to my copy of ACB
Store assign control block

ACB: DC 1,'FILENAME','FILETIPE',1

o ===
Be 25 ADD

===
Function: Convert logical drive code to logical drive number.

Input paramters:

Reg B - Logical drive code (8 - G, *)

Output parameters:

Description:

Reg A - Logical drive number (0 - 7, 255)
Flag C - Set it error.

The drive code (alphabetic) is converted-into a number in the range of 0
thru 7. If the drive code is an asterisk (*) the number is 255.

Other system calls used: GETLUB (87)

Other registers altered: none

Example Calling sequence:

LD
8e

B, 'A'
25

; Load- drive code
; Convert to number

=====================================SC=22=BDiY====================================
----------------~-------~-~-----------------------~-----------------------~-~---------------------------------------~---
Function: Convert logical drive number to logical drive code.

Input parameters:

Reg B - Logical drive number (0 - 7, 255)

Output parameters:

Reg A - Logical drive code (8 - G, *)

SC-26 BDIY - 38 .. HlClO Bey B

CIIJPIBI 1: SYSDII cALLs
Description:

The logical drive number is converted to the external logical drive code
(alphabetic) ._

Other system calls used: TSTDEV (58)

Other registers altered:. none

Example Calling sequence:

FD:

LD
LD
SC

DC

A, (FD)
~~A

. 1

Get logical' drive number
Move to B
Convert to drive code

==='========================
SC Zl ALLOC

==='==================================
Function: Allocate disk space.-·

Input paramters:
Reg B - Logical drive number (0 - 7) = (S - G)
Reg DE - Number of 1K disk blocks to allocate

Output parameters:

Description:

Reg HL - Sector' address of first block.
Reg A. - 00 if space allocated

FF it disk full or write protected
Flag Z - Set if space allocated

reset if disk full for wri.te protected
Flag C - Set if space allocated .

Reset if disk full or write protected

The specified disk' allocation map is searched for a contiguous block of
unallocated disk space equal to the number of disk blocks desired. If
insufficient space is available the Z flag is reset. If space is
available the Z flag is set, the allocation map is updated and written to
the disk, and the first sector address of the allocated disk space is
loaded in~o the HL register pair.

Caution: Use of this system call is not advised.

Other system calls used: RD1 (10), WR1 (11), TSTDEV (58), ONEONLY (84), GETWORK
(91), CALLOC (99)

Other registers altered: none

Example Calling sequence:

LD
LD
SC
JP
LD

B 0
DE,1
27
NZ FULL
(SECT),HL

Drive S
One block
Allocate
Branch if full
Else save sector address

===
SC 28 DBlLL·

===
Function: Deallocate disk space

Input parameters:

Reg B Logical disk drive number (0 - 7) = (S - G)
Reg DE - Number of 1K blocks to deallocate
Reg HL - Starting sector number

III.CIO Bev B - 39 - SC 28 DBlLL

IIICIO ~CB HDUAL

Output parameters:

Flag Z

Description:

Status:
set - okay
reset - error

The specified disk allocation map is searched for the indicated allocated
space. It the indicated space is not already allocated the Z flag is
reset and the system call is exited. OtherwIse the allocation map is
updated and written to disk; the Z flag is set and the system call is
exited.

Caution: Use of this system call is not advised.

Other system calls used: RD1 (10), WRl (11), GETUCB (21), TSTDEV (58), ONEONLY
(84), NOTONLY (85), GETWORK (91)

Other registers altered: H, L

Example Calling sequence:

LD
LD
LD
se

Drive S
lK bytes
Sector address
Return to avail status

=== SC 29 RlISE

===
Function: Erase logical file from a disk.

Input parameters:

Reg DE - Address of DCB
Output parameters:

Description:

Reg A - Return Code:
00 Successful
FF File protected

Flag Z - Status:
set - okay
reset - error

Flag e - reset if successful
set it tile or disk protected

The directory for the specified disk drive is searched for a match with
the file description. When a match is tound the file disk space is
deallocated

l
the directory entry is placed in a delete status and the

directory b oak is updated on disk.

Other system calls used: RDl (10), WR1 (11), LOOKUP (20), GETUCB (21) DEALLOC .(28),
GETWORK (91), GETUSER (101)

Other registers altered: 'none

Example Calling sequence:

FN:

LD
se

.
DC

DE,FN
29

1, 'TEST

; Point to DCB
; Erase file if it exists

','FILE

=== SC30nrca
===
Function: Load program into memory, execute and return to CSI.

sc 30 FftCB MACRO ley B

CIIlP!'BIl T: SYSTIII CALLs
Input parameters:

Reg B -- Logical drive code
Reg DE - Directory entry pointer

Output parameters: none

Description:

The eventual return address is replaced with the address of the boot
loader; system call 22 is executed with control returned to the boot
loader upon completion of the program execution.

Other system calls used: RD1 (10), LOAD (22), GETSCR (48), RD (50), GETMEM (55),
TSTESCC (69), GETWORK (91), ERRQUIT (97)

Other registers altered: B, C
Example Calling Sequence:

LD DE DCB ; Point to DCB
LD HL:WORK ; Point work space
SC 20 ; Get directory entry
EX DE HL ; DE points directory
LD A, ~DCB) ; Point to drive
LD ~OA ;
SC Load & execute

.
DCB: DC 1, 'MYPROG ','COMMAND'
WORK: DS 256

=== sc 31 BDDE
==:::::::::::::::::::::::::::::
Function: Rename a logical disk file.

Input parameters:

Reg DE - Address of DCB
Reg HL - Address of new DCB

Output parameters:

Description:

Flag,Z - Status:
Set if successful
Reset if error

Reg A - Return code:
00 if okay
04 if old file not found
08 if new file description exists
OA Protected file or disk

The new drive code is set equal to the old drive code. The directory for
the specified disk is searched for the old file description. If the
directory entry cannot be found then the A register is set to 04 and the
system call is exited. - If the file is found then the directory is
searched for the new file description. If the directory entry is found
then the A register is set to 08 and the system call is exited.

If the old file description does exist and' the new file description
doesn't exist then the old file entry is placed in delete status, the
directory block is updated, the new file entry is created (duplicating the
attributes of the old f11e), and the directory block is updated. The
system call is exited.

Other system calls used: WR1 (11), WRFDIR (13 r, LOOKUP (20), GETUCB (21), GETWORK
(91), GETUSER (101)

Other registers altered: H, L

III.CBO Rev B - _1 - sc 31 IDAIII

MICRO DFBIIBICB HDUlL

Example Calling Sequence:

ERROR:

OLD:
NEW:

LD
LD
se
JR

• .
DC
DC

DE, OLD
HL,NEW

~~OKAY

1, 'OLD
1, 'NEW

; Point to old name
; Point to new name
; Rename it
; Error?

"FILE '
, : 'DESCRIPT'

===
SC 32 OPBII

==========-===
Function: Open a logical tlleo

Input parameters:

Reg DE - Address of FCB

Output parameters:

Reg A

Reg B
Flag Z

- Return code:
00 Successful
01 Already open
04 Invalio file definition
08 Invalid file number
OA File protected
10 Disk full
20 Directory full
40 File not found

- Device assigned to file
Status:
set - okay (Reg A = 0)
reset - error lReg A <> 0)

Description:

The file specified by the FCB is opened in the mode indicated-with -the
appropriate return code set if the open is unable to be accomplished.
Register B is set to the logical drive code that a new sequential file was
opened to if the drive was not specified explicitly in the ACB.

This system call- checks the File Lock Table (FLT) and waits if the file is
locked by another partition. When the file . is not locked by another
partition or is released by that partition this system call will lock the
file if specified by the FCB.

Other system calls used: RDl (10), WR1 (11)~ WRFDIR (13), LOOKUP (20), GETUCB (21),
ALLOC (27) 1 DEALL (28)6 ERASE (29), DA-l"EPACK (46), TSTDEV (58), DEVOUT (64),
GETWORK (91), GETUSER (1 1)

Other registers altered: C, H, L

Example Calling Sequence:

LD B 16 Assign I/O ch 16
LD DE,ACB16
SC 24
LD DE,FCB1 Point to FCB-
SC 32 o~en the file
JR NZ,ERROR B IF error

.
FCB1: DC 16 ACB = 16

DC 10001100B se~, append
DC (BUFFl) I/ buffer

BUFFJ: DS 256
ACB1 :- DC 1,'REPORT ','LISTING'

DC 1

sc 32 OPEl - _2 - IIlCBO Bey B

CIIlPI'BI 1: SYSDII ~

=====================================SC=33=Ci.OSB=====================,=============~

==.===========~===

Function: Close a logical, file.

Input parameters:

Reg DE - Address of FCB

Output parameters:

Description:

Reg A - Return code
00 Successful
08 Invalid file number
10 Disk full

Flag Z - Status: .
set - okay (Reg A = 0)
reset - error lReg A <>~O)

The specified file is logicallY' and phys"ically closed with the appropriate
return code set. Closing a file involves the updating of the disk file
with the I data in the I/O buffer; updating the directory entry for the
file; flagging the ACB as closed.

When the file,being closed is a console file a CR, LF is output to the
console. When the file being closed is a printer file a CR, LF', US is
output.

This system call unLocks the file and all related sectors from the FLT and
SLT. ' ,_

Other system calls used: WR1 (11), LOOKUP (20), DATEPACK (46), DEVOUT (64), ONEONLY",-.
(84), NOTONLY. (85), GETWORK (91). '

Other registers altered: B, C, H, L

Example Calling Sequence:

FCB1:

'BUFF1 :

LD
SC
JR

.
DC
DC
DC
DS

DE, FCB1

N~,ERROR

16
10001000B
(BUFF1)
256

USing current assign
Open FC~1

;. BRIF error

; seg' output
; I/ buffer

===== == = = = = = == == =,= = = === == == == ==:; = = == =sc= 3' =iDSiQ =,= ===== = = === = == === = = === == == = = === = = =
===
,Function: Get a logical reco~d from a sequential file.

Input parameters:

. Reg DE - Address of FCB
Reg HL - Address of record area

Output parameters:,

Re~ AF -

Flag Z -

HlCIO ley B

Return code
00 Successful
01 End of File .

. 08 Invalid file number
FF File not open
Status: '
set - okay (Reg A = 0)
reset - error lReg A <> 0)

MCiO BBFiIBICB MlI1JAL

Description:
-

The ACB is validated for: open, sequential, and input. The A register is
set to 255 if ACB invalid. The ACB is tested for an EOF condition and the
appropriate return code is set if true and the slstem callis exited. If
everythi~ is. okay the next record is passea to the record buffer
addressed by the HL register pair with file input performed as required.
ASCII sequential file records are always terminated with a 'carriage return
charac ter (ODH).

This system call, like all logical record input/output
maintains the Sector Lock Table(~LT) according to the FCB.

Other system calls used: INPUT (1), RD1 (10), DEVIN (63)

Other registers altered: B, C

Example Calling Sequence:
/

. FCB1:

BUFF 1 :
BUFF:

LD
LD
SC
JR

.
DC
DC
DC
DS
DS

DE, FCB1
.HL,BUFF
34 '.

.. HZ, CHKERR

10
10010000B
(BUFF1)
256
128

/

Get record from file
; Put in BUFF buffer
; Do·it
; ·Analyze error routine

I/O -ch 10
Seq input
I/O buffer

Max rec length = 128

system calls,

========================.=== SC35VBSBQ
=== . .
Function: Write a logical re'cord to a sequential file.

Input. parameters:

Reg DE --Address of FCB
Reg HL - Address of record

Output parameters:

Description:

Reg AF - Return code·
00 Successful
08 Invalid file- number
10 Disk full
FF File -not open, etc._

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The ACB is validated: open, sequential and output or append. The
appropriate return code 1s set when invalId and the sysem call is exited.
The record is transferred to the file buffer and physical output is
performed as required. When, the file is a disk file and the file requires
more allocation to perform the -physical output then the file is expanded.

When .- the FeB is for PRINTER1, PRINTER2, PRINTER3, or PRINTER4 logical
device, the output record is assumed to contain an ANSI forms control
character as the first character of each record.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Note: Be sure that the record addressed by the HL register pair contains a
carriage return character (ODH) as the terminating character.

Other system calls used: CONOUT (5), WR1 (11), ALLOC (27), WAIT (49), DEVOUT (64)

Other registers.altered: B, C

sc 35 1IBSBQ - -- - MCBO Bey B

CBAPDII T: SYSDII CALLS

Example Calli~ Sequence:

LD DE, FCB2 Write se~ record
LD HL,BUFF From BUF buffer
SC 35 JR 0

o Zo OKAY ; Skip if oka:y . 0 CP , 1 H ; Check for d1sk full
JR Z,DFULL ; BRIF full .

o 0 else ignore error
OKAY:

,

.
FCB2: DC- 2 I/O channel 2

DC . lOO01000B se~ out~ut DC o BUFF2) 1/ buf er
BUFF2: DS 256
BUFF: DS 128

==.===================================== - - SC 36 GftDATB
==:-============================
Function: Get formatted date.

Input parameters:

Reg DE - Address for storage

Output parameters:

Reg DE - Address of byte following formatted date.

Description:

The packed system date is unpacked and placed in the storage location
addressed by the DE register pair. The format of the resulting date
string is determined by the currently set date format (see the "SET
COMMAND", DATEFORM option in the OASES System Reference Ma~ual). The DE
register" pair is adjusted- to poln to the byte follow ng the last
character of the date string.

Other system calls used: DATEOUT (106)

Other registers altered: A

Example Calling Sequence:

LD
SC
LD \

; Point to work area
; Get system date
; Get CR

LD
LD
SC

; Mark end
; Point to beginning of message
; Display on console

MSG:
WORK:

.
DC
DS

'The current date is '
9

===
SC 3T GBTTIHI

===
Function: Get formatted time.

Input parameters:

Reg DE - Address of storage
Output parameters:-

Reg DE - address of byte following formatted time

HACllO Rev B -0'5 _ sc 37 GBftIIII

HACBO BBFEBBIICB HDUAL

Description:

The current packed system time is unpacked and placed in the storage
location addressed by the DE register pair. The colon character is used
to separate the hours, minutes, and seconds. The DE register pair is
adjusted anq the system call is exited.

Other system calls used: HEIO (16)

Other registers alt.ered: A

Example Calling Sequence:

LD
se
LD

-LD
LD
se

o

DE, WORK
i1
(Di1 L A
DE,M.sG
2

; Point to work area
; Get system time
; Get CR
;' Mark end
; Point to message
; Display on console

MSG: DC
DS

'The- current time is '
WORK: 9 .

====~=================================SC=38=DIV====================================

===~=======~~============================

Function: 16 Bit, binary, unsigned divide.

Input parameters:

Reg DE - Divisor
Reg HL Dividend

Output parameters:

Description:

Reg DE - Remainder
Reg HL - Quotient
Flag C - Set if divide by zero; reset otherwise

The divisor is tested. If-zero the HL reSister pair is set to zero) the
carry flag is set and the system call 1S exited. The value -in tne HL
register pair is divided by the value in the DE register pair. The result
is placed in the HL register pair and any remainder is placed in the DE
register pair. _ .

Other system calls used: none

Other registers altered! A
Example Calling Sequence:

LD -
LD
SC
JR

.

DE, (VALUE1)
HL, (VALUE2)
38
C,DIVZERO

VALUE1: DS 2
VALUE2: DS 2

Divide value1
into value2

Divide by zero. err?

==========~== sc 39 IiDL
====-===
Function: 16 bit, unSigned, integer multiply.

Input parameters:

sc 39 MOL

Reg DE ~ Multiplier
Reg HL - Multiplicand

-u - MICRO 1ft B

CIU.PI'D 7: SYSDII· CALLS

Output parameters:

Reg HL -Product
.Flag C - Set if overflow; reset otherwise

Description:

The value' in the HL register pair is muftiplied by the value in the DE
register pair. The result is placed in the HL register pair. If overflow
occurs (more than 16 bits of product) t.he carry flag is set. The sytem
call is exited. .

Other system calls used: none

Other regis;ers altered: A

Example Calling Sequence:

LD
LD
SC
JR

.
VALUE1: DC
VALUE2: DC

DE,(VALUE1)
, HL, (VALUE2)

e~OVERFLO

Multiply value1
by value2

BRIF errQr

========================~============SC='O=iDDii===================================

-----------~---~-------------------------------~------------------
Function: Read logical record from a direct disk file.

Input parameters:

Reg BC - Record number
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Reg A

, Flag Z -

Description:

Return code
00 Successful
08 Invalid ACB number
80 Invalid record number
FF File not open, etc.
Status:
set - okay'(Reg A = 0)
reset - error {Reg A <> 0)

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open, direct file and the appropriate return code is set if invalid.
The record number and the file_' s filesize are compared •. If the record is
outside of the filesize the appropriate return code is ~et. The record is
'transferred from the- file buffer with physical input performed as
required.

This system call ,like all logical record input/ou~put system calls,
maintains 'the Sector Lock Table (SLT) according to the FCB.

Other system calls used: RD1 (10)

Other registers altered: none

HlCJlO ley B - liT SCIIO IDDD

HACBO BBFBDICB HDOJL

Example Cailing Sequence:

LD ~LH(RECNUM) ; Get record number
LD ; Copy t'o BC reg
LD C'L ;
LD HL,BUFF ; Point to record buffer
LD DE,FCB1 Point to FCB, ch 1
SC 40 Get the record
JR NZ,RDERR Jump on error

0

RECNUM: DS 2 Current record number
FCB1 : DC 1601011000B ; Direct I/O with record lock

DW I BUFF1 . ; I/O butfer addr
BUFF: DS 32- ; Record buffer
BUFF1 : DS 256 ; I/O'Bufter

===
SC'1 VlDD

===
Function: Write.a logical record to a direct disk file.

Input parameters:

Reg BC - Record number
Reg DE - Address of FCB
Reg HL - Address of record to be wri t.ten

Output parameters:

Description: .

Reg A Return code
00 Successful
08 Invalid ACB number
OA Protected file
80 Invalid record number
FF File not open

Flag Z - Status: ..
$et - okay (Reg A = 0)
reset - error {Reg A <> '0)

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open direct. file and the appropriate return code is set if invalid.
The file's filesize is compared to the record number specified and the
appropriate return code is set if the record number is invalid. The
recoro is transferred to the file bufter with physical output performed as
req uired. ' ' !

This system call like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Note: The record will be truncated or padded with zeros as necessary to
make the record the length specified for the file's DEB.

Other system calls used: RD1 (10), WR1 (11)

Other registers altered: none

Example Calling Sequence:

RECNUM:
FCB1 :

BUFF1 :
BUFF:

SC lI1 VBDD

LD
LD
LD
LD
LD
SC
JR

.
DS
DC
DW
DS
DS

~LH(RECNUM)
C'L
HL,BUFF
DE,FCB1
41
NZ,WRERR

2
1 J.01 011 OOOB
BuFF1
256
32

i Get record number
; Copy to BC reg
i
i Point to record storage
i Point to FCB, ch 1
iWrite it

Jump on erro~

Record to be accessed
i Ch 11 direct I/O with record lock
; I/O Duffer address
i I/O buffer
;. Record buffer

- Jt8 - MCIO Bey B

CII.APID 1: SYS1'III· CALLS

== = = ==== = = = = = = == = === == = = = =~= = = === == =~ ='2 = __ = = == == = === ===== ====.=== == = =,== ==== ==.=
==~=========: - .'

Function: Convert numeric string (hex or dec) to 16 bit value.

Input parameters:

,Reg DE - Address of character str'ing

Output. parameters:

Description:

Reg DE - Address· of character following
Reg HL - Result
Flag C - Set if overflow; reset otherwise

The string of characters is examined and the number-base is determined,
The appropriate' conversion routine is used to produce the equivalent 10
bit value in the HL register pair.

Other system calls used: DECI (15), HEXI (14)

Other registers altered: A

Example Calling Sequence:

INPUT:
. NUMB:

LD
SC
JR
LD

.
DC
DS

DE, INPUT
42
CJ.CONERR .
(NUMB),HL

'12345D'
2

Point to number string
Convert it
Jump on overflow
Save value

Number to convert
Value'

=====================================sc=,;=iDii====================================
==~==========
Function: Read a logical record from an indexed disk file.

Input parameters:

RegBC - Address of key
Reg DE - Address of FCB
,Reg HL Address of record storage area

Output parameters:

Reg A

Flag Z

Description:

- Return code
00 Successful
01 Record not found
08 Invalid ACB number
FF File not open
Status:-
set - okay (Reg A = 0)
reset - error lReg A <> 0)

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The record
key is searched for in the file. If the record key is found the record is
transferred to the- record address specified in the HL register pair and
the return code is set. If the record key is not found the return code is
set and the relative record number of the next record that would logically
collate after the specified key is saved in.the ACB. '

This system call, like all logical record input/output. system calls,
maintains the Sec~or Lock Table (SLT) according to the FCB. '

Other system calls used: RD1 (10), ONEONLY (84), NOTONLY (85), GETWORK (91)

Other registers al tered: AF', BC', DE', HL'

MACRO Bey B - Jig -

HACBO BBPBDICB HDU.IL

Example Calling Sequence:

LD
LD
LD
LD
LD
se .
JR.

.

:l.liKEY
e'L

. Hi, BUFF
DE:FCB1

~~,NOFIND

; Point to key string
; Copy to BC reg
;
; Point to input buffe~
j FCB for· ch 1

. j Read the record
; Jump it record not found

FCB1:
/ BUFF 1 :

De
DW
DS
DS
DS

1 J.20111 OOOB
But"F1
256

; Ch 1, . Indexed 1/0 with record-lock·
,; I/O Dutter address, .
; I/O buffer '

KEY: 10
BUFF: 122

; Key of 10 characters
; Rec of 122 'characters

~ -

=====================================sc=,,=Bi)RiX==='================================
===~=================

Function: Read the next logically sequential record of indexed file.

Input parameters:

Reg Be - Address of key storage area
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Reg. A

Flag i -

Description:

Return code
00 Successful
01 End of file
08 Invalid ACB number
FF File not open
Status:
set - okay (Reg-A. = 0)
reset - erro,r lReg A <> 0)

The required I/O overlay is loaded, if necessary~ The ACB is tested for
an open, indexed file and the appropriate return code 1-s set. Using the
relative record number in the ACB indicati~ the disk address of the next
logically sequential record in the file, the record and keI are read into
the file buffer_ and transferred to ~he key and recoro storage areas
specified by the BC and HL register pairs.' The following logically
sequential record is located and the relative record number is saved in
the ACB. The return code is cleared and the system call is e~ited.

This system call, like all logical record input/output system calls,
maintains the Sec'tor Lock Table (SLT) a~cording to the FCB.

Other system calls used: RD1 (10), DIV (38), RDIX-(43), ONEONLY (84), NOTONLY (85),
GETWOR{C (91)

Other registers altered: AF", BC' '0 DE', HL'

Example Calling Sequence:,

FCB1:

BUFF1 :
KEY:
BUFF:

SC " DID

LD
,LD
LD
LD
LD
SC
JR

• DC
DW
DS
DS
DS

~LHKEY
C'L
H~,BUFF
DE,FCB1
44
NZ,NOFIND

1 J.QO 11 OOOOB
But"F1
256
10
122

Point to key string
Copy to BC reg

Point to input butfer
FeB for ch 1
Read the next record
Jump if record not found

Ch 1, Indexed Input
I/O Duffer address
I/O buffer
Key of 10 characters
Rec of 122 characters

- 50 - HACBG Bey B

CIIAPID 1: SYSrBII CALLS

==== == ==== = = = === = ===== = =:= ====== === == = SC = '5= DD = = = = == = = = === = = ==== = = =;= = = = = = = ====== ==.
=================='==========~==

Function: .W~ite.a logical record to an indexed disk file.

Input parameters:

Reg BC - Address of key
Reg DE - Address of FCB
Reg BL - Address of record

Output parameters:

Reg A

- FlagZ

- Return code
00 Successful
OA Protected file
10 Fi·le full - record. not written
FF File not open
Status: .
set - okay (Reg A = 0) .
reset - error (Reg A <> 0)

Description:

The required IIO overlay is loaded, if necessary. The ACB is tested f'or
an open, indexed file and the appropriate return code is set. The file .is
searched for a current record with the same key. If a record does exist.
the record is overwritten with the new record the return code is cleared
and the system call is exited •. If a record does not exist a location for
the. neJi record is f9und and the record is written_ to the fil&. The return
code is cleared and the system call is exited. If no space is available
for the new record. the return code is set .·to 10B and the sIstem call is
exited. No attempt is made to write the record to the file in this
situation.

mThaiinStaSYnsstemtheCsalelc'orlLikoeck all; logical record input/output system calts, ,
i ~ ~able (SLT) according to the FCB.

Other system calls used': RD1 (10), WR1 (11), DIV (38), -ONEONLY (84), NOTONLY (85), -
GETWORK (91)

Other registers altered: AF', BC' DE' ,.- , HL'

Example Calling Sequence;

LD ~LHKEY Point to key string
LD . Copy to BC reg _ LD -,- C'L

,
;

LD Hi.,BUFF' ; Point to input buffer
LD' DE,FCB1 ; FCB for ch 1
SC 45 ; Wri te- the record
JR NZ,ERR ; Jump if error .

FCB1: DC 1l&0101000B Ch 1~Indexed output
DW B F1 IIO uffer address

BUFF 1 : DS 256 IIO buffer .
KEY: DS 10 Key of 10 characters
BUFF: ' DS 122 Ree of 122 characters

======~====================~=======SC="=DAtiPAc[=============~=====~==============

===
Function: Pack system date and time into 24 bit value.

Input parameters:

Reg-DE - Address of storage area

MACRO Rev B - 51 - SC '1I6 DArBPACI:

Output p~amete~s:

Reg DE - Address of location following
3 byte sto~age area - .

Descri ption·:

4 bits of month (1 - 12)
5 bits of day <f - 31)
4 bits of year year - 1977)
5 bits of hour 0 - 24)
6 bits of minute (0 ~ 59)

The system date and system time are converted, formatted, and packed .into
a 24 bit (3 byte) format 0 The result is placed in the location addressed
by the DE register pair and the DE register pair is adjusted.

This system call is normally only used' for converting'the date and time
tor use in a file's directory entry, although it can be used for other
purposes. There is no corresponding unpack system call.

Other system calls used: none

Other registers alter'ed: A, B, C

Example Calling· Sequence:

LD
SC

, .
DS

DE,DIR+25
46 '

32

POint to storage
, ; Get date and time

Directory entry buffer

===
SC '1 LABEL

===
Function: Find disk with specific label.

/

Input parameters:

Reg DE - Address of 8 character label

Output parameters:

Description:

Reg A· Logical drive number (0 - 7) = (S - G)
Flag C - Set if not mounted; reset otherwise

The disks mounted in the attached disk drives are interrogated for a match
with the specified disk label. Th~dr1ve code of the first match found 1s
placed in the A register. If no match is found the carry flag1s set.

Other system calls used: RD1 (10), GETUCB (21), GETLUB (87), GETWORK (91), COMPARE
(93)

Other registers altered: none

Example Calling Sequence:

LD DE, LABEL Point to desired label
SC 41 Find disk with label
JR C ERR Check if found
LD (bRIVE),A Save drive number

• LABEL: DC 'WORK
DRIVE: DS 1

- 52 - MACRO ley B

CBAPTBB 1: SYSrBH CALLS

====================================sc=_a=aiiSci===================================
===
Function: Get base address of your System Communication Region.

Input parameters: none

Output parameters:

Reg II SCR address

Description:

The first address of your SCR is placed in· the II index register and the
system call is exited.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC
LD

48
(BASE) , II

; Get SCR base
; Save base address

===
SC Ilg·VAIT

--.--
Function: .Wait for operator to release current console page.

'Input parameters: none

Output parameters: none

Description:

The Console S~reen Wait-key status is tested and, if disabled, the system
call is exited. When _the Console' Screen Wait-key is enabled the page
pause prompt character (~). is displayed at the lower left hand corner of
the console output device (CONOUT) (unless the console terminal class is
0) and processing is suspended until the operator types a key to indicate
that the page may be released. At this .time a CR .is displayed on the
console and control is returned to the calling program.

Other system .calls used: CONOUT _(5), SISOUT (7), GETSCR (48), GETPL (59), DEVIN
(63)

Other registers altered: A

Example Calling Sequence:

.
SC 49

Code to output 'page' '
of information

Wait at bottom if enabled

=== SC 50 ID
===
Function: Read multiple sectors of a disk.

Input parameters:

Reg B - Logical drive number (0 - 7) = (S - G)
Reg C - Number of sectors to read
Reg DE - First sector address.
Reg HL - Storage address

Output parameters': none

MACRO Rev B - 53 - SC 50 ID

-MACHO DFEDICB IWIUAL

Description: 0

The specified dr! ve is selected, if legal,- ana the sector specified by the
contents of the DE register pair is read into the location indicated by
the HL . register pair. The sector count is decremented, the DE register
pai,r is incremented, ' the HL register pair is adjusted, and, if the count
is greater t~an zero the next sector is read"

If any errors are reported- by the disk driver this' system call passes
control to the user DET if any or reports them toth~ operator on the
console screen and awaits a reply. _ ' '

Thissystt9m call t when'used in a multi user environment, checks the Sector
Lock Table (SLT J and - wa! ts if the requested' sector 'is locked by' another,
pattitiono . -,Caution: Use of this system call .. is not advised.

Other system calls used: QUIT (0) SYSIN (6) SYSOUT (1), HEXO (16) DECO (17)
GETUCB (21) J. BDRV (2621. DIV (38) ~SYSDISP (52), SNU (79), ONEONLY (A4), NOTONL!
(85)~ GETWORK (91), CON~C_(102)' ,

Other registers altered: A, C

Example Calling Sequence:

LD B,O
LD DE1256
LD C 6
LD Hl.,BUFFER
SC 50

Drive S
Starting at sector 256
For 16 sectors
Read into buffer
Read the sectors

BUFFER:
REPT 16
DS 256

; Buffer for 16 sectors
/'-

===
SC51VR

====.=======================================~=======================================
Function: Write multiple sectors to disk.

Input parameters:

Reg B - Logical drive number (0 - 7) = (S - G)
-Reg C Sector count
Reg DE First sector address
Reg HL Address of data to be written

Output parameters: none

Description:

The specified drive is selected, if legal. The data stored at the
location referenced by the HL registe'r pair is wri tten to the sector
specified by the DE register pair. The DE register pair is incremented t the HL register pair~is adjusted, and the sector count in decrementedo If
the sector count is not zero then the next sector is written.'

If any errors are reported by the disk driver this system call passes
control to the user DET if any or reports them to the operator on the
console screen and awaits-a reply.

This system call t when used in a mul ti-.user environment, checks the Sector
Lock Table (SLT.) and waits if the requested sector is locked by another
parti tion. _'

Caution: Use of this system call is not advised.

Other system calls used: QUIT (0),' SYSIN (6), SYSOUT (7), HEXO (16) DECO (17)
GETUCB (21)L BDRV (26)1 DIV (38), SYSDISP (52), SNU, (79), ONEONLY ~A4), NOTONL! /
(85), GETWORK.(91), CONE~C (102)

Other registers altered: A, C

SC 51 VB IIlCBO Rev B

~ 7,: SYSDII CALLS

, Example Calling Sequence:

LD
LD
LD
LD
SC

• BUFFER:
REPT

, DS

B a
Di

i
25'6

C 6
iii, ; BUFFER
51 '

-16
256

Drive S
Starting at sector 256 '
For 16 sectors
Write from buffer
Write the sectors,

'; Burfer for 16 sectors

=== sc 52, SYSDISP
===~=====================

Function: Display characters on console output device.

Input parameters:

Reg DE - Address of first character to output

Output parameters:

Reg DE -Address of last character' output plus one

Description:

Characters from the buffer addressed by register pair DE are displayed on
the console output device. A null character (00) terminates output to the
consol~ and returns from the system call.

A carriage return will be-displayed as a carriage return, line feed and
the system call will be exited. A line feed will be displayed as a
carriage retur'n, line feed, output continues. An HT character (09H) will
be displayed as the proper number of spaces according to the Tab Set Block
(TSB). '

This system call, unlike SC 2 (DISPLAY) will always display the characters
on the console and never- echo them to_the printer (the status of CO,nsole
Echo-key and Printer Echo-key is ignored).

Other system calls used: DISPLAY (2), SYSOUT (7)

Other registers altered: A

Example Calling Sequence:

MSG:

LD
SC

DC

DE,MSG
52

Point to message string
Display on co~sole

'This is a message',13,

=============================,== sc 53 rnmR
---~----------~--~--~~---------~-----------~------------------
Function: Set up for a clocked ,interrupt (event)

Input parameters:

Reg DE -Number of ftticksft
Reg HL Address of TEB

Output parameters: none

II&CBO· lev B , - 55 - sc 53 UIIEI

_IU.CIO IBFBRBIICB HDIJAL

Description:

This system call initiates a Timer Event. The contents of -·the DE register
pair are stored in the TEB (Timer Event Block) specified by the contents
of the HL register pair. The required links are made to other TESs and
control is returned to the instruction following the system call.

\

When the number of "ticks" specified by the DE register pair have elapsed
the interrupt service routine is executedo The service routine must
physically follow and be continguous to the TEB. Upon entry interrupts
are enabled. -

It is the responsibility of the interrupt service routine to save any and
all registers -used and to execute a RET when servioe is complete (not a
RETI). ' .

The TEB should in no' way be modified by the user until the, interrupt
service routine ha~ been entered. Any changes to this TEB or any other
TEB still in process will cause the operating system to act, erratically,-
at best. ,

The. length of time for a "tick" is dependent upon' the system. Reter to
the Supplemental documentation supplied with the OASIS System Reference
Manual tor the specific length of time for a "tick" on your machine.

Other system calls used: GETSYTE (104), PUTBYTE (105)

other registers altered: none

Example Calling Sequence:

LD
LD
SC

•
• LABEL1: DS

DE,60
HL,LABEL1 '
53_ '

6

;Set up for timed interrupt'

;Start the clock

; TEB tor above~must be 6 bytes
;Code for interrupt service
;must follow the TEB

;Resume normal proceSSing'

===
SC 5' Dam ==.=====================================

Function: Execute a command.

Input parameters:

Reg DE - Address of CSI command text

Output par~eters: none

Description:

The Command String Interpreter is loaded and the command
l

with options,
spectfied by the DE register is executed. ,The command s translated to
upper case before interpretation. Upon completion of the command the
syste~ oall is exited back to the CSI level.

When the first character of the string of characters addressed by the DE
register pair 1s a ,>, the string will be displayed on the user's console
befor~ it is executed.

Other system calls used: 1?1??

Other registers al tered :'

Example Calling Sequence:

LD
SC

COMMAND: DC
. END

all (No Return)

DE, COMMAND ; Point to command string
54 • Transfer control
'ERASE -.BACKUP:A (NOQUERY NOTYPE) ',13

-56- Dem Bey B

CIIlPrBI 1: SYSDII CALLS
- . .

=== . SC 55 GBDIBII
===~========~================

Function: Get stored memory size.

Input parameters: none

Output parameters:

Reg HL - Address of"end of' memory'

Description:

The currently stored value of' the address of' the end of' memory' is placed
in the HL register pair'and the system call is exited. This value may not
be the actual address of' the physical end' of' memory determined when the
system was f'irst IPL'd. The value is the currently saved address. This
address can be changed by system call 56.

Other system calls used:

Other registers altered:

Example Calling-Sequence:

SC
LD
LD
ADD
SC

GETSCR (48)
none

55 -
(EOM)l HL
DE,-1uOO
HL,DE
56

Get current EOM
Save current EOM,

Compute new EOM
Protect it

=== Be _ 56 P1rIIIIII
=========.==
Function: Store memory size.

Input parameters:

Reg HL

Output parameters: none

Description:

Address of' end of' memory

The value in the HL register pair updates the currently
the address of' the end of' memory. This system call is the
of' system call 55. . .

, Other system calls used: GETSCR (48)

Other registers altered: none

Example Calling Sequence: see SC 55 (GETMEM)

stored value of'
logical inverse

===
SC 51 P1J1QBr

=========================.==
Function: Set quit error trap (System Cancel-key).

Input parameters:

Reg HL - Address of' break routine

Output parameters: ,none

Description:

The value in the HL register is loaded into the quit error trap vector and
the system call is exited. This routine addressed by HL will be given
control whenever the System. Cancel-key is typed. An -address of' zero
(0000) in the HL register pair indicates that the user QET is to be_
disabled. -

II&CBO Bey B -51- Be 51 P1rfQBr

IIlCRO BBPBIBICB HDUlL

An/ex~ple of the use ot this system call 1s the BASIC interpretere' The
BASIC interpreter sets the quit error trap to execute .. a routine that
closes all open files before ex~ting •.

Other system calls used: GETSCR (48)

Other registers altered: none ;

ExaJllple Calling Se9uence:

LD HL,QETSERVC 0; Point to service routine
BC . 57 ; Set trap

QETSERVC: ; Routine to handle
; System Cancel-key-entry

====================================sc=ss=iSiDBi===================================
===================================;===
Function: Test device attachment.

Inpu t parameters:

Reg B - ,LOgical device number

Output parameters:

Reg A - Physical device number
Flag Z - Set if not attached; reset otherwise
Flag C - Set if not attached; reset otherwise

Description:

The specified device· is tested for attachment. If the device is attached
the physical device number that it is attached to is placed in the A
register, the Z flag is reset and the system call is exited. If the
device is not'attachea to anything then the A register is set to FF, the Z
flag is set and the system call is exited.'

Other system calls used: GETLUB (87)

Other registers altered: none

Example Calling Sequence: '-

LD
BC
JR

-B 16 5A
Z,NOCOMM

Point to COMM1 de~ice
Test if attached
Jump if, not

=====================================SC=S9=OBtPL===================================
=============~=================================~===================================
function: Get console/printer page and line parameters 0

Input parameters: '

Reg B - Logical device number

Output parameters:

Description:

Reg B - Line length
'Reg C - Page length
Reg A - Class code

The device number specified in the B register 'is validated to determine if
it is the console or one of the printer devices. If the device .number is
invalid the system call is exited. It the device 'number is valid then the'
ATTACHed line and page' size parameters are loaded into the Band C
register, respectively and the class code is loaded into the A register.

SC 59 GftPL 58 - IIlCBO ley B

Other

Other

CB.lP!'BI 7: SYSDII CALLS

If the specified device is not attached then zero values are returned in
the registers •.

system calls used: GETUCB (21)

registers altered: none

Example Calling Sequence:

LD B,9 ; Point to CON OUT device
SC ~9 . ; Get parameters
LD CLASS) ,A ; Save class code
LD "A B ;
LD (tINE) ,A ; Save line l~ngth
LD A C ;

./ LD' (PAGE) ,A ; Save. page length

====================================~SC=60=DBLIi===================================

===
Function: Delete record from indexed file'.

Input parameters:

Reg BC - Address of key
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Description:

Reg" A - Return code
00 Successful
08 Invalid ACB number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error {Reg A <> 0)

The required I/O overlay is. loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The record
key Is searched for in the file. If the record key' 1s found the record is
transferred to the record address specified in the . HL register Pair! the
record key buffer is modified to indicate that the record is de eted

. (first character changed to OFFH value) and the record is written back.
The record linkages are updated to reflect the deleted record.

If, the record key 1s not found ,the relative record number of the. next
record that would logically collate after the specified key is saved in
the ACB.

This system call like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB. If any of the
sectors needed for the search and deletion of the record are locked by
another partition this system call will wait for the sector to be
released.

Other system calls used: RD1 (10), WR1 (11), DIV (39), RDIX (43), ONEONLY (84),
NOTONLY (85), GETWORK (91)

Other registers altered: none

MACRO ley B - 59 - sc 60 DBLU

II&CIO Dr_a IlDUAL

Example Calling Sequence:

LD BL,KEY Point to record key
LD B,B ; Copy to BC reg
LD C L ;
LD . Hi, BEe ; Point to record buffer
LD DE:FCB1 ; Point to channel 1 file
SC 60 ; Delete the record
JR NZ,DELERB ; Jump on error'

.
Indexed t ch '1 with FCB1: DC 16OO111000B ; record lock

DC B FFER ; 1/0 bur er address
BUFFER: DS 256 ;
KEY: DS 32 ; Key is 32 character lonf
REe: DB 32 0 Record is 32 character ong ,

====================================SC="=DEVIiIr==================================
======================="==
Function: Initialize a device driver.

Input parameters:

Re& B - Logical device number

Output parameters: none

Description:

The physical device driver attached to the logical device specified in the
B register is entered at its initialization entry point. The aotual
process of in1tiatization is device dependent. However, W.hen the devioe
number is 12-15 PRINTERs) the UCB is initialized for current line, last
oharacter, and side. '

The address of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

Note: This system call is used by the ATTACH command when a devioe is
first attached and should not be used by user programs.

Other sy stem calls used: GETUCB (21)·, CONESC (78)

Other registers altered: all

Example Calling Sequence:

LD .B,17
BC 61

•

; Point to COMM2 device
; Init driver

=====================================SC='2=DDsr===================================
============~==

Function: Get status of device driver.

Input parameters:

Reg B - Logical device number

Output parameters:

Flag Z - Set if input character not ready; reset otherwise
Flag C - Set if ready for output; reset otherwise

Description:

The attachment of the specified device is tested. If the device is not
attached the system call is exited. It the device is attached the status
of the physical device attached to the logical device specified in the B
register is returned in the Z flag.

SC 62 DDsr - 60 - HlClO ley B

CBlPDI T: SYSDII c.au.s
The address of the UCB associated with this device is loaded'into the II
register and passed to the device driver along with the B register.

If the device driver is user written (see chapter on Interfacing to OASIS)
the status of the device is dependent upon the device driver subroutine
accessed by entry point 1.

Other sys-tem calls used: GETUCB (21), CONESC (78)

Other registers altered: A

Example Calling Sequence:

LD
ISC
•

B,17
62 _

Point to COMM2 device
Get driver status

=====================================SC=63=»Biii===================================
===
Function: Get input of device driver.

Input. parameters:

Reg B - Logical device number

Output parameters:

Reg A - Character input

Description:

Other

Other

The attachment of the specified device is tested. If no device is
attached the system call is exited. If a device is attached the physical
device driver attached to the logical device specified in the B register
is entered at the input entri point. OASIS physical device drivers will
not return to the caller unt 1 a character is ready. Use system call 62
to test if a character is ready.

The address of the UCB associated with this device is loaded into the II
register and passed to the device driver along with the B register.

system calls used: GETUCB (21), CONESC (78)

registers altered: none

Example Calling Sequence:

LD B,17 Point to COMM2 device
BC 63 Get device input

===
SC 6' DBYCIJ'l

===.========================
Function: Put output to device driver.

Input parameters:

Reg B - Logical device number
Reg C - Character to be output

Output parameters: none

Description:

The attachment of the specified device is tested. If not attached the
system call is exited. If attached the physical device driver attached to
the logical device specified in the B register is given the character in
the C register. The communication of the character to the device is
dependent upon the specific device driver.

II&CllO Bey B --61 sc 6' DBYCIIT

III.CIO RlPIBIICB IWIUlL

The address of the UCB associated with this device is loaded into the II
register and passed to the device driver along with the B register.

This system call performs special processi~ when the device is the
console or one of the printers. When the device is the console any LF
and/or FF delay specifieCl in the device attachment is performed when the
character output is a CR or LF (LF delay) or FF (FF delay). In addition,
this ,system call handles any character delay specified by the operator
wi th the Console Display-fast and Console Display-slow keys., -

When the device is the primary printer (PRINTER1) 'and the spooler is
active the character is passed to the spooler, not the device driver.
When the device, is the primary printer and the spooler ,1s not-active or
when the device i~ one of the secondary printers (PRINTER2-PRINTER4)
special processing may oc~ur if the character output is: '

CR If last character was not CR or the printer is not performing ALF then
a CR is output and any LF delay specified 1s performed; if the last
character was a CR and the printer-is performing ALF then an LF is
output with any LF delay; otherwise the charcter is ignored. .

LF Maintains line count; suppresses output of the LF when the previous
character was a CR and the printer is performing automatic line feeds;
performs any LF delay specified.

FF Maintains page side and line count; it printer is incapable of form
feeds will simulate with proper number ot CR, LF to advance printer to
top of form; 'performs any FF delay specified.

US Translates to FF and processes as such.

Other system calls used: SISOUT (7), GETUCB (21), DELAY (76)

Other registers altered: A

Example Calling Sequence:

LD - B 17
LD C'A
sc 64
o

Point to· COMM2 device .
Get character to output
Output char to device

====================================sc=,,=oiii.iB===================================
===
Function: Get disk label of a drive.

Input parameters:

Reg B - Logical drive number (0 - 1) = (S - G)
Reg DE - Address of storage area (8 bytes)

, Output parameters: none

Description:

The drive code is tested for validity: if greater than 1 then the sIstem
call is -.exi ted 0 The specified drive's UCB is tested to determine if the
disk 1 abel- must be read from the disk - if so then the label is read. The
disk 'label is transferred to the storage area addressed by the DE register
pair and the ' system call is exited.

Other system calls used: GETUCB (21)

Other registers al tered: A .

SC 66 GftUB - 62 - IIlCiO ley B

CIIlPrBI T:, SYSTIII CILLS,

Example Calling Sequenoe:

LABEL:

LD
LD '
SC

• DC

B a DE, LABEL,
66

,- ',0

Point to system disk
;
; Get disk label

===
SC6TPUTDBY

================'======================================~============================

Function: Store device driver .address.,

Input parameters:

.Reg B - Physical device number
Reg HL Address of device driver

Output parameters: none-

Description:

The device number is verified to be in the range 8-32, if not the ~ystem
oall is exited. The address speoified is loaded into the device table,
overlaying any ourrent devioe address in that 10cat1.on of the table. An
address of zero (0000) in the HL register pair indioates that the
specified device has been unloaded.

This system oall is normally only used by the ATTACH command. It will be
a lot easier for the user to allow that command to set the driver address
as all of the other' related house-keeping is performed by the command at
that time. This system call might be used by the user for a program that
uses a devioe 1n a manner different from :all other programs and has its
own driver for the devioe embedded in its code.

Other system calls used: none

Other registers altered: A,. D, E, H, L
Example Calling Sequence:

LD
LD
SC

B 11
~~,ENTRY

Point to COMM2
Point to device driver
Set driver address

===================================SC=6S=DBvuii8ii=================================
==================~========~===
Function: De-initialize a device driver.

Input parameters:

Reg B - Logical device number '

Output parameters: none

Description:

The attachment of the speoified device is tested. If not attached the
system call is exited. If attached the physical devioe driver attached to
the logioal device speoifed in the B 'register is entered at the
de-initialize entry pOint.

The address of the UCB associated with this devioe is loaded into the· IY
register and passed to the device driver along with the B register.

Upon return from the un-init routine of the driver the assooiated terminal
class code file is unloaded from memory (if currently at top of memory)
and the device driver is unloaded from memory (if currently at top of
memory) •

HICBO Rev B - 63 - sc 68 DBVUlDIT

II&CllO DrBIIIICB IlDUAL

Note: This system call is used by the ATTACH command when a device 1s
detached and should not be used by user programs .•

Other system calls used: GETUCB (21), GE~M (55), PUTMEM (56), CONESC (78)
Other registers altered:

Example Calling Sequence:

LD
se

can be all

Point to COMM2 device
Un-in! t driver

====================================sc=6;=iSiiSCC==================================
=========~===.===============

Function: Test if Program Cancel-key entered.

Input parameters: none

Ou tpu t parameters:

Flag Z - Status
Set: Not entered
Reset = Entered

Description:

The system control fl~ is tested to determine it the Program Cancel-key
has been entered. Tne Program Cancel-key is detined in the System
Reference Manual. If the Program Cancel-key has been entered then the Z
flag is set and the A register contains a non-zero value. The control
flag is cleared by this test process. It the key has not been entered
then the Z flag is reset and the A register is set ~o zero.

The status ot the control tlag is also cleared by System Call 30 and by
the CSI.

The Program Cancel-key is only used by OASIS language products such as the
BASIC interpreter, Text Editor, and the Debugger. It would be consistent
to use it in . user programs that are iterative and/or interactive in
function.

Other system calls used: CONST (3), GETSCR (48)

Other registers altered: A

Example Calling Sequence:

SC
JR

69
HZ, NOCAN

Test program cancel
Jump if_not

====================================sc=To=BiCiDi===================================
==-===================
Function: Execute a program and return.

Input parameters:

Reg HL - Return address
Reg DE - Address of command string buffer

Output parameters: none

Description:

This is the system call used by the system programs BASIC and EDIT when a
CSl sub-command is executed. The DE register contains the address of a
work area which is the CSI command string along with any optiOns deSired,
terminated by a CR (13).

When this system call is executed high memory is set to the address in the

Be TO BlQlDI - '" - IIlCBO ley B

CIIlPDI 7: SYSDII CIU.S

HL register L the CSI is loaded and it interprets the command in the work
area speciried by the DE register pair. This- command may be any valid
command (including an EXEC) that can fit in the memory available with the
exceptions of: DEBUG and ATTACH when_ the device beIng ATTACHed is not
currently attached to a logical device. These exceptions are due to the
fact that those commands would normally cause a program to be loaded into
high mem9ry and "protected" at that location. -

After the command has completed its execution control returns to the
current high memory location.

Execution of this system call will disable any and - all timer -tasks whose
TEBlocation is not- included in the "protected" memory area, and a disk
error trap set. up by SETDET (SC 74).

Other system calls used: EXCHn (54)
Other registers altered: all (unknown)

Example Calling Sequence: not recommended for use by end user.'

===
SC 11 BUFFI

===
Function: Get character from buffer.

Input parameters:

Reg HL - Address of buffer prefix
Prefix: Byte 0 = buffer length

1 = current size
2 = current location

Prefix followed by buffer st.orage.

Output parameters:

Reg A - Next character from buffer
Flag C - Set if buffer empty

Description:

Other

Other

This system call gets the next character ready for output from a FIFO
buffer, probably loaded by system call 72 (BUFFO). The two system calls
should be used in conjunction with each other to assist you in maintaining
a FIFO stack of up to 256 byte length.

This routine and the BUFFO routine are designed to be operated by
interrupt service routines although they could be used for normal
processIng.

system calls used: none

registers altered: none

-Example Calling Sequence:

LD HL,BUFFER Point to buffer
SC 71 Get a byte

• BUFFER: DC 128 ; Buffer length
DC 0 ; Currentl~ used
DC 0 ; Current yte
DS 128 ;

===
SC 72 BUPPO

===
Function: Add character to buffer.

Hl.CIO ley B - 65 - sc 72 BUFFO

MACHO' BIP_CB MDlJAL

Input parameters:

Reg A
Reg HL -

character to be added to buffer
address of buffer prefix
Prefix: Byte 0 = buffer length

1 = current_size
, 2 = current location

Prefix followed by buffer storage.
/

Output parameters: none

Description:

Other

Other

This system call adds one character to a FIFO bufter maintainins,the
buffer pOinters, etc. This routine should be used in conjunction with the
BUFFI system ,call and is designed to be' the buffer management for an
interrupt service routine, although it could l)e used for, normal
programming.

When there is no room in the buffer tor the character to be added the
routine "hangs" until space becomes available. If the characters are not
being removed by an interrupt routine the routine will continue in a
two-instruction loop.

system calls used: none

registers altered: none

Example Calling Sequence:

LD HL , BUFFER Point to buffer
SC 72 Put a byte
•
G>

BUFFER: DC 128 ; Buffer length
DC 0 ; currentlb used
DC 0 ; Current yte
DS 128 ;

============================:~===

===
Function: Get/set console control byte.

Input parameters:

Reg B - Enable mask
Reg C - Disable mask

Output parameters:

Reg A - Result

Description:

The console control byte is' a bit-mapped byte controlling the console
display and keyboard. The byte in the B register is logically ORed with
the control byte and the byte in the C register is logically 1's
complemented and ANDed with the control bIte. The resulting control byte
status is returned in the A register. If-the Band C registers contain
zero then the control byte is not changed and the system call merely
returns the status of the control byte.

The bit-mapping of the control byte is as follows:

Bit Function

7 Echo, on/off. When this bit set then all non-control characters
typed on CONIN are displayed on CONOUT, after conversion due to
the status of the other bits in this control byte.

6 'Fold to upper. When this bit is set then all lowercase
characters typed on CONIN are converted to uppercase.

,SC 73 P1J!COI '- 66 - III.CBO 1ft B '

5

4

3

2

1

, CIIlP1BR 1: SISDII C.ILLS

Fold to lower. When this bit is set and bit 6 is off then all
characters typed on CONIN are converted to their - inverse
casemode (only letter characters are affected).

Bits 5 and'6 function as a unit:

6 5

OFF OFF
ON X
OFF ON

Function,

No translation
Translate to upper
Translate to inverse

CTRL stop. When this bit is set then' entry of any control
character (value less than 32) will terminate the input.

CTRL delete. When this bit is set then all control characters
ty~e4 on CONIN are ignored (except BS (8), TAB (9), CR (13), and
CAN (24».
CTRL graphic. When this bit is set and bit i 1s set then all -
control characters typed on CONIN are diS!lay, ed on CON OUT 'in
their graphic equivalent (an up arror (A followed by the
character equal to the control character + 64 •
Not used.

o Stack. Indicates EXEC stacked data available. This bit is not
changeable by the system call.

Other system calls used: GETSCR (48)

Other registers altered: none

Example Calling Sequence:

; The following instructions will set the console
; control byte to perform the following:
; set echo on
; no case translation
; accept and display CTRL char in graphics

iD B,10000100B; Enable mask
LD C1 01111010B; Disable mask
SC 7 j , ' ; Set console control

===
SC l' POTDBT .

===
Function: Trap disk errors before message displayed.

Input parameters:

Reg HL - ~ddress of user erro~ routine

Output parameters: none (see description)

Description:

This system call, does not have any output parameters upon return to the
calling prosram; however, when a disk error does occur certain registers
do have def1ned values:

MACHO Bey B - 61 - SC1'PU'lDBT

RegB - disk drive number
Reg DE - relative sector number
Reg HL - memory location of disk buffer - -

. Reg A - disk-error code
1 = Disk not ready
2 = Disk write protected
3 = Disk not initialized
IJ = Data eRC error
5 = Invalid parameters
6 = Disk label changed
7 = Sector not found
8 = Track not found
9 = Address (sector/track header) CRe error

When the disk error occurs control is transferred to the address specified
in the HL register pair. Atter your routine has done its processing and
is readr to return control to OASIS the A register should be set to one of
the fol owing values:

To disable your disk
register containing
theCSI is loaded.)

00 Ignore error
01 - FE Retry operation (no change)

FF Quit - return to CSI

error routine then use this system
o. (Your rout~ne will automatically

call with the HL
be disabled when

An example of the use of this system call is the VERIFY command. That
command performs disk readability diagnostics and therefore needs to gain
control when a disk error occurs. t

Other system calls used: GETSCR (48)

Other registers altered: none (see description)

Example Calling Sequence:

LD
Be

HL,DISKERR
14

; Point to error routine
; Inform OS

=== Be 15 _ IBVSYS
===
Function: Change system disk.

Input parameters:

Reg B - new physical drive number (0 - 1)

Output parameters: none

Description:

This system call performs the same operation as the ATTACH command when
the system disk is to be changed. Register B is loaded with the new
physical drive number of the system disk. When the system call is
executed the current system disk is accessed to read in apy necessary
overlays, a message is displayed to the operator asking for the new system
disk to be mounted in the specified drive. _ (No message is displayed if
the new system disk is in a oifferent drive then old system d1sk) 0 After
the operator loads the disk and responds to the message the new system
disk 1s accessed, the necessary SYSTEM files (NUCLEUSL CSI, EXECLANG,
EXEC1, and ERRMSG) are located and control returns to the ~SI.

The new system disk must contain a SYSTEM. NUCLEUS of the same version as
the current system disk. The results will be unpredictable if the version
1s different.

Other system calls used: QUIT (O), CONIN (4)~ SYSOUT (7)8 MOUNT (9)2 RD1 (10), WR1
b~i, (~~~U~u~~t'{7~f:U~Li~1~76)~Ea~¥f~4~At)~DG~~bRK f~~f~PERkguit ~~~fT \62),

Other registers altered: none

sc 15 DlfSYS - 68 - IIlCllO 1_ B

Example Calling Sequence: .

LD
SC
•

Point to drive 0
Change system disk

CBAP.rBI 1: SYSDII CILLS

===
SC 16 DBLlY

===
Function: Delay proc.essing for specified period of time.

Input parameters:

Reg A - forma ted delay time. .
Bit 7,6 - Unit of meas~re

00 = 1/1000 (millisecond)
01 = 1/100 second
10 = 1/10 second
11 = 1 second

Bit 5-0 - count (1 - 63)
Output parameters: none

Description: '

Other

Other

This is a general purpose processing delay routine. It was developed· for
the timing delay required by serial IIO devices but can be used for any
purpose. When the system call is executed the formated delay factor in
the A register is decoded into milliseconds and a TEB is initiated for the
specified time. Then the system call waits for the TEB to be exhausted
before returning control to the calling program.

Although you have access to the TEB syscall and MSEC this is a much easier
and straight-forward method of long delays (up to a minute).,

Processi~ of your program is suspended for the specified length of time
but all interrupt service routines are still enabled.

system calls used: MSEC (53)

registers altered: none

Example Calling Sequence:

LD ~~ (DELAY) Set up for delay
SC Delay processing

.
DELAY: DC ·,,000101B 5 second interval

========.=========:===
-SC 11 GBrACB

===
Function: Point to ASSign Control Block entry.

Input parameters:

Reg B - ACB number (O - 16)

Output parameters:.

Reg HL - Address of ACB

Description:

The address of ·any ·assigned Assign Control Block for the number specified
by the contents of the B register is returned in the HL register pair.
This ACB is not the ACB address used in system call 24 but the internal
copy of that ACB. ..

Other system calls used: none

Other registers altered: A·

KlClO Bey B - 69- sc 11 GBrACB

MCBO BBFBIIIICB HDUAL

Example Calling Sequence: not recommended for use by end user.

====================================;c=ys=COiiSC===================================
===
Function: Analyze escape sequence and execute it system defined.

Input parameters:-

Reg A

Output parameters:
Reg A

Description:

~ Second character of escape sequence

• Status:
00 System handled

unchanged = undefined

This system call first changes the character in the A register to 'its
uppercase equivalent and checks it agafnstAthe defined system escape keys
(1, B, C, D, II 0, P, Q, S, w,], and I. When a match is found the
appropria~e act on 1S ~aken and control is returned to the calling program
with the A register cleared and the Z flag set. If a match is not found
the Z flag is reset and the A register is left as is (folded to
uppercase).

This system call is used by the SYSTEM.CLASSnn files' fo cause the system
to act on a system defined escape sequence" When an escape character is

- detected the next character received is loaded into the A register and
this system call is executed.

This system call could be used by a program to force a system defined
function such as toggling the printer echo feature, etc. Merely load the
A register with the character corresponding to the second character of the
escape sequence that would be used to invoke the function from the
keyboard", For - a listing of-these fUnctions and character see the OASIS
System Reference Manual, "System Control Keys".

Other system calls used: CONST (3l 1 SYSIN (6.) I PRTOUT (8) 1. CRLF (18), GETUCB (21),
GETSCR (48), SYSDISP (52), TSTDEV (~8), DELAY \76), SNU (7~), GETWORK (91)

Other registers altered: none (may not return if A reg contains a 'Q' or 'I')
Example Calling Sequence:

LD
SC

A 'P' 7A
Toggle the PRT echo

===
SC 19 SIU

=========~===================~===

Function: Select· next user..

I~put param~ters: none

Output parameters: none

Description:

The next active user partition is selected and control of the system
transfers to it.

Although this system call is used by all other system calls that are
wafting for action (input/output operations) you should use it in any code
that is performing a waft without a system call. (The next user will be
selected automatically when your time slice elapses but the performance of
the' system will be enhanceQ if you can give up control· instead of just
looping.)

When your user partition is activated again your program will continue
execution at the instruction after this system call.

sc 19SIU - 10 - MACRO ley B

CBlPrBJl 7: SYftBII CJLLS

Note: On single user system this system call returns immediately.

Other system calls used: none

Other registers altered: AF', BC'.' DE', HL'

Example Calling Sequence:

SC 79 Select. next user

====================================SC=ao=Oit8ASB=========================~========

==== == = = = = = = = == = = == == == == = = == = = = = = == == === .. == == ="= = = = = ==== = == == = = === === = = ===== = = === = ==
Function: Get monitor (NUCLEUS) location.

Input parameters: none'

Outpu~ parameters:

Reg II - Monitor address
Description:

The first address of the SYSTEM. NUCLEUS is placed in the II index register
and the system call is· exited.

Other system clls used: none

Other registers altered: none

Example Calling Sequence:

SC
LD

80
(BASE),!Y

; Get NUCLEUS base
; Save

====================================sc=a,=oiiMPG===================================
===
Function: Get manufacturer number of system.

Input parameters: none

Output parameters:

Reg A Manufacturer number

Description:

Each computer manufacturer that supports the OASIS operating system is
aSSigned a unique value. This value can be accessed with this syste~ call
and used to determine if the manufacturer is the same as required by the
program requesting it (some programs may use hardware dependant code). By
using this system call a program can determine what type of computer it is
running, on. - ,

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC
LD

81
(MFG) ,A

; Get MFG number
; Save

===~======== SC82GBrPD
===
Function: Get your user partition numbe~.

Input parameters: none

- 11 - sc 82 GBrPD

IIlCJlO IBFBIIICB IIDD.IL

Outpu t parameters:

Beg A . - Your user partition identification number (PIN)

Description:

Your user partition identification number is return in the A registerG

Note: On single user systems this system call will always return a 00

Other system calls used: none

Other -registers altered: none

Example Calling Sequence:

Be 82 ; Get PIN

====================================sc=s3=UiLOCi===================================.
==========================="==
Function: Release a file record for another partition's use.

Input parameters:

Beg BC - Address or-key, indexed files or
Record number~ direct files

Reg DE - Address of FC~

Output parameters: none

Description:

Other

Other

The sectors of the record currently locked in the file referenced by the
FCB are unlocked i allowing other users to access itc If the record is not
currently' locked or the system is a single-user system then nothing is
performeo except the return from ,the system call.

system calls used: none

registers altered: none

Example Calling Sequence:
LD BC,(RECNUM) Get record humber
LD DE,FCB1) . Point to FCB, ch 1 ,
SC 83 ; Unlock the record

• BECNUM: DS 2 Current record' number
FCB1: DC 1601011000B Direct I/O

DW I BUFF1 I/O butfer address

====================================sc=,,=OiiOiLy===============================F==
==:=a================================
Function: To indicate that your partition has exclusive use ot a function/resourcee

Input parameters:

Reg HL - Address of semaphore

OUtput parameters: none

Description:

The byte addressed by the HL registers is tested to determine if another
user has exclusive control ot it. If no other user has control then the
byte is fl~ed to'indicate that you have control and the system call 1s
exited. If another user does have control then the next user is selected;
upon return to your partition the byte is tested again, etc.

The byte addressed by the HL registers must be in true global memory

SC M CII"ay - 12'- IIlCBO ley B

CII1P1BIl 7: SYSDII CJLLS

(non-bank selectable).

Note: On a single user, system this system call returns immediately.

Other system calls used: SNU (79)
Other registers altered: none

Example .calling Sequence:

LD
SC

LD
SC

HL,USERFLAG
84

HL,USERFLAG
85

Point to your user communication flag
Get exclusive use of flag

; Point to your user communication flag
; Release exclusive use of flag

::::::::::::::::::::::::::::::::::::~:!!:!~!::::::::::::::::::::::::::::::::::
Function: To release exclusive use of a function/resource.

Input parameters:

Reg HL - Address of semaphore

Output parameter: none

Description:

The byte addressed by the HL registers is tested to determine if another
user has exclusive control of it. If your partition has exclusive control
of the byte then that control is released. If your partition does not
have exclusive control of the byte then the system call is exited with no
action taken.

The byte addressed by the HL- registers must be in true global memory
(non-bank selectable).

Note: On a single user system this system call returns immediately.

Other' system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
SC

• LD
SC

HL,USERFLAG
84

HL,USERFLAG
85 .

Point to your user communication flag
Get exclusive use of flag

; Point to your user communication flag
; Release exclusive use of flag

===
SC 86 ACUYAD

===
Function: To activate another, specific partition to execute some code.

Input parameters:

Reg A -, Partition number to activate
Reg HL - Address to start execution at

Output parameters: none

Description:

This system call is 'used by the system and the multi-user commands START,
STOP, FORCE, and MSG to cause another partition to become active and
execute some code.

IIlCIO ley B - 73 - SC 86 ACrIY AD

HlClO DFBIBICB HDOAL

It 1s advised that the end user does not use this system call.

Other system calls u$ed: none

Other registers altered:' none

=====:=~=======~=====~==============SC=8T=GBtLOB===================================

=====================.==
Function: Get base address of LUB table.

Input parameters: none

Output parameters:

Reg II - Base address of LUB table

Description:

This system call is used in some system commands. The user should not use
it. ' ,

Other system calls used: GETSCR (48)

Other registers altered: A

======================================sc=aa=MSG====================================
===
Function: Send a message to another user's console.

Input parameters:

Reg A - Partition number to send message to
Reg DE - Address of message to send

Output parameters: none

Description:

This system call is not intended for general usage.

The message addressed by the DE register pair is displayed on the user's
console owned by the partition specified in the A register. If the
partition is invalid, or inactive the system call will return immediatelYe
If the destination's message switch is set off the message will still be sent. . . ,.

Note: On a single user system this system call returns immediately.

Other system calls used:, CONOUT (5), SNU (79), OIEONLY (84), NOTONLY (85), ACTIVATE
(86)

Other registers altered: none

===
SC 89 UCLUSIYE

===
Function: To gain exclusive control of key system tables, etc.

Input parameters: none

Output parameters: none

Description:

Certain critical system tables are locked so that other partitions cannot
access them, thu~ allowing your program to alter them in some way without
damage to o~her user's processes.

The system tables locked by this system call includ'e: PCB table, schedule
table, mailbox file, etc.

SC 89 E1CLUSIYB - 111 - HlCBO ley B

CBAPDB 1: SYS'lIII- CALLS

Note: On a single user system this system call returns immed,1ately.

Other system calls used: ONEONLY (84)

Other registers altered: none

Example Calling Sequence:

SC 89 Get exclusive use of system tables

.
SC 90 ; Release exclusive use of system tables

~

=== SC 90 -UIIBICLUSIYB
===
Function: Release exclusive control of system tables.

Input parameters: none

Output parameters: none

Description:

The critical system.tables locked by SC 89 are released for other user's
use.

The system tables released by this system call include: PCB table,
schedule table, mailbox file, etc.

Note: On single user systems this system call returns immediately.

Other system calls used: NOTONLY (85)
Other registers altered: none
Exampl e Calling Sequence:

SC 89 ; Get exclusive use of system tables

.
SC 90 -; Rel~ase exclusive use of system tables

\ ======================================.=== sc 91 GftIlOBl:
=============="===
Function: Get base address of your SCR work area.

Inpu-t parameters: none

Output parameters:

_ Reg HL - Address of 256 byte SCR work area

Description:

The first address of the start of the 256 byte work buffer used by your
partition's System Communication Region is return in the HL register pair.

Other system calls used: GETSCR (48)

Other registers altered: none

===============.=== sc 92 GBTPIIV
=='===============
Function: Get the current pt:'ivilegelevel of user.

Input parameters: none

MACRO Bev B -75 - SC92GBTP1lY

IlACBO BBFBIBIICB IlDUlL

Output parameters:

Reg A - Privilege level of user

Description:

The current privilege level of the user is returned in 'the A registere

Other system calls used: GETSCR (48)

Other registers altered: none

Example Calling Sequence:'

se
CP
JR
se

92
3
NC,OKAY
o

Get privilege level
Compare with 3
BRIF less
Else exit

===
SC 93 CCIIP1IB

==:'============================
FUnction: Perform string comparison.

Input parameters:

Reg BC - Length
Reg DE - Address of string 1
Reg HL - Address of string 2

OUtput parameters:

When string 1 = string 2:

Reg Be - 00
Reg DE - Address of byte following string 1
Reg HL - Address of byte following string 2
Flag Z - Set
Flag C - Reset

When string 1 <> string 2:

Description: ,

Reg Be - Count of bytes remaining
Reg DE - Address of string 1 byte not equal
Reg HL - Address of string 2 byte not equal
Flag Z - Reset
Flag C - Set if string 2 > string 1; reset otherwise

The string of characters addressed by the DE register is compared with the
string of characters addressed by the HL register for the number of
characters specified by the BC register. If the two sequences of
characters exactly equal each other tnen the Z flag is set and the C flag
1s reset. If the two strings do not equal each other then the Z flag is
reset and the C flag is set if the second string is greater in value than
the first string.

Other system calls used: none

Other registers altered: A

sc 93 CCllPDB - 76 .. ,Ml.CBO leY B

Example Calling Seque~ce:

LD
LD
LD
LD
LD
SC
JR
•
•
• STRING1: DC

STRING2: DC

A,(STRING1) Get length
C,A ; Copy to C reg

Et?(STBING1+1);; POint to string
HL,(STRING2+1) ; Point to string
93 '; Compare strings
Z,.MATCH ; BRIF equal

5 'ABCDE'
5: '~Cde'

=====================================sc=9'=iDBii====~==============================

===
F~nction: Get binary data stream from seque,ntial file.

Input parameters:

Reg B - Byt~ count to get
Reg HL - Storage area
Reg DE - Address of FCB

Output parameters:

Reg A

Flag Z

Description:

- Return code
00 Successful
01 End of file

, 08 Invalid file number
FF File not open
Status:
set - okay (Reg A = 0)
reset - error lReg A <> 0)

The required I/O overlay is load~d, if necessary. The ACB is validated:'
open t sequential, and input. The A register is set to 255 if ACB invalid.
The ACB is tested for an EOF condition and the appropriate return code is
set if true and the system call is exited. If everything - is okay the
number of bytes indicated is read in from the file and transferred to the
buffer designated by the HL register pair.

This system call, like all logical record input/output system calls,
maintains the Sec~or Lock Table (SLT) according to the FCB.

Other system calls used: KEYIN (1), RD1 (10), DEVIN (63)

Other registers altered: B, C
Example Calling Sequence:

LD B 25 Get next 25 bytes from file
LD DE,FCB1 Point to file on ch 1
LD HL,BUFF Put in BUFF buffer
SC &~,CHKERR JR ' Jump if read error

· FCB1: DC 1tJ.0010000B S~uential input, ch 1
DW B F1 1/ buffer -

BUFF1 : DS 256 ;
BUFF: DS 25 ; Input buffer

===~=============
SC 95 1IBBD

===
Function: Put binary data stream to sequential file.

MACHO Bey B -11 - sc 95 VBBD

III.CIO IBFBIIRCB HllUAL

Input parameters:

Reg B - Byte count to write
Reg DE - Address of FCB
Reg HL - Address of data to write

Output parameters:

Reg A Return code
00 Successful
08 Invalid file number
10 Disk full
FF File not open

Flag Z - Status:
, set - okay (Reg A = 0),

rese~ - error (Reg A <>'0)

Description: . /

The required IIO overlay is loaded, if necessary. The ACB is validated:
open, sequential, and output or append. The appropriate return code is
set when invalid and the system call is exited~ The number of bytes
specified in the l! register are writen to the file buffer and physi.cal
output is performed as required. When the file is a disk file and the
file requires more allocation to perform the physical output then the file
is expanded.. '

m
Tha1inStaSiYnsstemtheCSae1Ic'orlLikoeCk all logical record input/output system calls,

~ Table (SLT) according to the FeB.

Other system calls used: DISPLAY (2), WR1 (11), ALLOC (27), DEVOUT (64)

Other registers altered: B, C

Ex~p1e Calling Sequence:

LD B 25 ; Write 25 bytes to file
LD D2,FCB1 ; On ch 1
LD HL,BUFF ; From buffer BUFF
se &~,CHKERR ;
JR ; Jump on error

.
FCM1: DC 1tJ.0001000B ; Ch 1, seq

DW B F1 . ;
BUFF1: DS 256 ; IIO buffer
BUFF: DS ,25 ; Data buffer

====================================sc=;6=i8iDiS===================================
===
Function: Display error message on console

Input parameters:

Reg DE - Tokenized parameter list
Reg HL - Error number

Output parameters: none

Description:

This system call is used by all system programs to display error and
standard information messages 'kept in the SYSTEMoERRMSG file (see System
Reference Manual).

The DE register pair need only be loaded with the address of the token1zed
parameter list if the message contains parameter replacement codese ,The
tokenized parameter list is a list of parameters in ASCII, each parmeter
eight (8) bytes in length with no delimiting characters. Use trailing
spaces if the parameter is not eight characters.

Other system calls used: CONOUT (5), RD1 (10), CRLF (18), GETSCR (48), GETWORK (91)

Other registers altered: none

sc 96 IIIDIS - 18 - IIlCiO B B

CBlPDI 1: SYSTIII ClI,IJJ

Example Calling Sequence:

LD DE, PAR AM ;. Point to parameters
LD HL,47 t Display message I 47
SC 96 ;
• .

PARAM: DC ' 123 HELLO

=========:==:=======:==:=:=======:==:====:==::===::=:=:=====:=::==:=:::::=========:
. SC 91 BUQurr

======.===
Function: Display error message and re-boot.

Input parameters:

Reg DE - Address of parameter list
Reg HL - Message number
Reg A Return code

Output parameters: none

Description:

This system call 1s identical to system call 96 (ERRDIS) except that
control does not return to the calling program. After the message is
displayed 'control will return to the CSI with the return code set to the
value in the A register. J

Other system calls used: QUIT (O),ERRDIS (96)

Other registers altered: all (no return)

Example Calling Sequence:

LD
LD
SC

HL1. 23
~1q

; Message 11 23
; Return code : 4
; / ,

=== sc 98 OYEILAY'
===~=============================

Function: Program overlay load (for system use only).

Input parameters:

- Directory type (1 = re10catab1e, 2 = absolute)
Drive code

Reg A
Reg B
Reg DE -
Reg HL

Out~t parameters: none

Description:

Starting disk address of program
Address of overlay list:
0-1 Memory address to load into
1-3 Length to load, in bytes
4 Numoer of sectors to load
5-6.Sectop,number, relative to program-start

The overlay segment of· your program indicated by the input parameters is
loaded into memory at the address indicated. This system call always
performs the overlay even if it is the same overlay as is already in
memory. Therefore, it is .the responsibility of your program to test
whether the overlay is needed~

The drive code and starting sector number of your program used in the
input registers B and DE respectively are available when your program is
first invoked by the CSI., For more information refer to the chapter
"Interfacing to OASIS" in this manual.

When the overlay is relocatable the sector count of' the overlay must
include the relocation table.

IlACBO 1ft B - 19- SC980YB11L.lY

II.lCBO BBPBIBICB IlDUlL

Other system calls used: RD1 (10), GETSCR (48), RD (50), GETWORK (91)

Other registers altered: none
Example Calling Sequence:

LD
CP
JR
LD
LD
LD
LD
se
JR

.

A, (OVERLAY)
1
Z,OVERLAY+1
A 1
B'(PRGDRIVE)
DE, (PRDSECT)
HL,SEG1TABLE
98
OVERLAY. 1

; Get current overlay number
; Test if already loaded
; BRIF is
; Segment is relocatable
; Drive code of program
; Starting sector of program
; Overlay table 1
; Get overlay
; Continue in overlay

SEG1TAB: DC
DC
DC
DC

(OVERLAY) - • Address of overlay region
(OVEREND-OVERLIY+1) ; Overlay region length
4 ; Sector count, including reI table
23 ; Relative sec~or , of segment

=== sc 99 C1LLOC
===
Function: Conditional allocation.
Input parameters:

Reg B- Logical drive code (0 - 7) = (S - G)
Reg DE - Maximum desired blocks of allocation
Reg HL - Minimum desired blocks of allocation

Output parameters:

Reg A - 00 successful; FF unsuccessful
Reg DE - Actual number of blocks allocated
Reg HL -.Sector number of first block allocated
Flag Z - Set it able to allocate minimum; reset otherwise
Flag C - Set if error; reset if okay)

Description:

The disk is tested for its largest contiguous area available. It this
area is smaller in size than that requested for the minimum allocation the
Z flag will be reset and the system call exited. It this area is at least
the size ot the minimum allocation requested space will be allocated! up
to the maximum space· requested._ The . return registers are set to ref ect
the amount and location of the space actually allocated.

Other system calls used: RD1 (10), WR1 (11), TSTDEV (58), ONEONLY (84), GETWORK
(91)

other registers altered: A

Example Calling Sequence:

LD
LD
LD
SC
JR
LD
LD

•

B,!.1 .
Dt;,20
HL,4

~!iNOSPACE
(S ZE) ,DE
(SECT) ,HL

Point to A drive
; Maximum· of 20 blocks
; Minimum of 4 blocks
; Allocate space
; Insufficient space
; Save actual alloc size
; Save first sect number

===
SC .100 DDJP.lfCB

==-=================
Function: Perform table lookup.

SC 100 DISPArcJI 80- IIlClO ley B

Input parameters:

Reg DE -' Address of string to lookup
Reg HL - Address of start of table

Table: Minimum spelling
Match striIJ.g
Related address

Output parameters:

Description:

Reg HL Related address if match found
Flag Z - Set if match found

reset otherwise

CIIlPIBI 1: SYSI'III CILLS

The table designated by the HL register pair is searched for a match with
_ the string addressed by the DE register pair. If a match is found the Z
fl~ is set and the HL register pair is loaded with the third field in the
matching table entry. If no match is found the Z flag is reset and the HL
register pair is unoefined.

The string addressed by the DE register pair and the strings in the table
are of variable length. The string to look up is terminated by a
non-alphanumeric non dollar sign character. The last character of the
strings in the table is marked with the parity bit (bit 7 on). This is
automatically performed by the assembler when the double quote mark is
used (see DC directive). -

The end of the table is marked with a binary zero entry.

Other system calls used: none

Other registers altered: A, B, C

Example Calling Sequence:

LD
LD
SC
JR

-JP

.
STRING: DC
TABLE: DC

DC
DC
DC
DC
DC
DC

DE, STRING
HLITABLE
lOu
N~JNOTFOUND
(w..)

Point to string
Point to table
Lookup
BRIF not found
Else branch to related address

'THIS IS A STRING',O
1 ; Minimum spelling
nFILELISTn ; Match string
{FILELIST} 1 Related routine
4,nFILT8080nL(~·ILT8080)
2 nFORCEn (FuRCE) _
10,nTHIS is A STRINGn,(EXIT)
o ; End of table

===
SC- 101 GJmJSD

===
Function: Get the current user account number.

Input parameters: none

Output parameters:

Reg A - User account number id

Description:

The user id number currently logged onto this partition is returned in the
A register. The user id number is the number- used by the system to
distinguish different owning accounts. The system accounts have an id
number of zero; user accounts have an id number in the range 1 - 254.

Other system calls used: GETSCR (48)

Other Registers altered: none

HI.CJlO ley B - 81 - SC 101 GJmJSBI

IlACBO BBFBIBICB HDD.IL

Example Calling Sequence:
se,
LD

. .
•

101
(CUR$USER),A

Get·user id
Save it

= ====:: = = = = ==== == ===:: == = ====.==== == ===SC =, 02 =CBDD=:: = ===:: =;: = = ==:: :::::: == = =:: = = = == = ======

===
Function: Perform console input character translate and escape sequence actionso

Input parameters:
-..

-Reg A - Character input
Reg IY - Address of UCB

Output-parameters:

Description:

Reg A - Character to be used
Flag C - Set if character to be ignored by driver

reset otherwise

This system call provides a simple and consistent method for a dev~ce
driver to-make sure that the OASIS system console escape sequences are
handled properly. It is advised that all user written device drivers that
accept input from a device and that might be attached as' a console device
use this system call for each character that is input. (The driver should
check to see it it is the console first to improve performanceo)

This system call tests to see it the device is -the conole input device.
If not then the system call is eXited with the carry flag reset. When the
device is the console the system call checks to see if there is a
SYSTEM.CLASSnn file loaded--if so then the character-is passed to that
routine. If not then the character is checked to see if it is part of an
escape sequenceo When the I character is part of an escape sequence from
the console input device the appropriate action is taken and the carry
flag is set before the system call is exited •. ,

Other system calls used: GETSCR (48), CONESC (78)
Other registers altered: A .

For an example see the appendix on programing examples.

==============================~====================.================================ SC 103 P01VECT
===
Function: To insert an interrupt vector address into the system tablee

Input parameters:

Reg A Relative vector number
Reg DE - Vector transfer address

Output parameters: none

Description:

This system call is used to inform the operating system where an interrupt
service routine is located at. It is mandatory that this system call be
used for this purpose in a multiuser, multi-memory bank system and it
should be used in all other types of systems fo~ convenience and
consistency.

The relative vector number in the A register is/a number in the range of 2
- 6 (mode 0) 0 - 7 (mode 1) or 0 - 127 (mode 2), corresponding to the
desired priority of the interrupt (mode 1) or the vector number that the
Interrupti~ device will give to the system when it interrupts (mode 0 or
2). The interrupt service routines for the three modes of interrupts are
similar except the mode 1 service routine must first poll its device to

, SC 103 PUnBCT - 82 -' III.CBO Bey B

Other

Other

, CB1PDB 7: SYSTIII CALLS
determine if it was the device causing the interrupt; 'if not then the
routine performs a return without enablipg 'interrupts ,(the system will
call the next routine in the ,vector table). The relative' vector number
for mode 1 d~termines the "priority" or sequence that- the service routine
will be called when an interrupt occurs. ' .

The vector transfer address in the DE register pair'is the address of the
interrupt service routine for the vector number in the A register. When
the system has multiple memory banks available to it the operating system
will keep track of which bank that particular address is in.

system calls used: none

registers altered: none

Example- Calling Sequence:

LD A 2 Vector number 2
LD DE3INT In~~t interrupt
SC 10 Pu vector,

===================================sc=;o,=oiiBiri==================================
--------------~---
Function: Transfer byte(s) from another partition space.

Input parameters:

Reg A - Partition identification number of partition to get from
Reg BC - Count of bytes to- get
Reg DE - Address of buffer ,to transfer bytes to (your partition)
Reg HL - Address of buffer to transfer bytes from (his partition)

Output parameters:

Reg BC 0
Reg DE - Address following bytes transferred (your partition)
Reg HL - Address followi~ bytes transferred (his partition)

Int~rrupts are disabled

Description:

This system call functions similar to an LDIR instruction in a single user
'system.

In a multi-user system this system call allows you to transfer a character
or string of . characters from another partition to your partition, even
though that other partition may be in different bank of memory.

Note: Upon return from this system call interrupts have been disabled. It
is your responsibility to re-enable them if they should be on.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
LD
LD
LD
SC
EI

!J 2 .
HL,5000H
DE,4FOOH
BC,.20H
10q

From partition two
From his location 5000
To my location 4FOO
For 32 bytes
Transfer
Enable interrupts

===
SC 105 PO'IBrrB

===
Function: Transfer byte(s) to another partition space.

HlClO Bev B - 83 - ',-
SC 105 PU'lBrrB

lII.elO BBFBIIIICB IID1JAL

Input parameters:

Reg A - Partition identification number of partition to put to
Reg BC - Count of bytes to put
Reg DE - Address of buffer to transfer bytes to (h1s parti tion) .

. Reg HL - Address of buffer to transfer bytes from (your partition)
Output parameters:

,Reg BC - 0
Reg DE - Address following bytes transferred (his partition)
Reg HL - Address following bytes transferred (your partition)

Interrupts are disabled
Description:

This system call functions similar to an LDIR instruction in a single user
system.

In a multi-user system this system call allows you to transfer a character
or string of characters to another partition from your partition, even
though that other partition may be in aifferent bank of memory.

Note: Upon return from this system call interrupts have been disabled. It
is your responsibility to re-enable them if they should be on.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
LD
LD
LD
SC
EI

A 2
HL,5000H
DE,4FOOH
BCj.20H
10,

; To partition two
; From my location 5000
; To his location 4FOO
; For 32 bytes
; Transfer
; Enable interrupts

---~----------------~-----~~------------~-----------~~~~--------~------~--------~~~ -~-~-----------.-----~-----------~--------------------~---~--------------------~~~~~ SC 106 DAtBOUy
---~--------------------------------~~~ --~---------------------------------~
Function: Translate a packed BCD date to string format.

Input parameters:

Reg C - Month number (BCD)
Reg H - Day number (BCD)
Reg L - Year number (BCD)
Reg DE - storage area

Output parameters:

Reg DE - End of formatted·date plus one

Description:

The date specified by the C, H, and L registers is converted and formatted
according to the currently set DATEFORM.

Note: This system call does not validate the date input.

Other system calls used: HEXO (16), GETSCR (48)

Other registers altered: none

Example Calling Sequence:

sc 106 DAUOUY

LD
LD
LD
LD
SC

C,03
H,22
L 93
DE,.BUFFR
100

Month. 3 - March
Day 22
Year 1993
Storage area
Convert to string form

-A- IIlCIO Bey B

CIIAPDI T: SISDII ~

======================================.===
SC10TVlIUft

===
Function: Deactivate current partition until interrupt occurs.

Input parameters: none

OUtput parameters: none

Description:

This system call is similar to system call 79 (SNU) in that the next user
partition. is activated. Unlike SC 79' this system call informs' the
operating system that the current partition is not to be activated again'
until an interrupt occurs that ·needs this partition to be serviced.

This system call allows greater throughput for a multi~user system in that
any partition using it that· is waiting for an event to happen (i.e.
waiting for the operator to type another key) will not waste a lot of cp6
time merely determining that it is still wai tinge

When this system call is used (as it is' in all OASIS supplied device
drivers) control will return to the instruction following the call when
aAY interrupt occurs from a device attached to this partition. However,
the interrupting device may not be the event that was required by your
partition. Therefore upon return to your program you should re-check the
status of the device that you were waiting for. .

Other system call used: SNU (79)
Other registers altered: none

·Example Calling Sequence:

IN: CALL

IN1:

JR
SC
JR

STATUS
NZ

t
IN1

10
IN

Check status of device
Skip if ready
Else deactivate
Re-check status

===
SC 108 PDDPGM

===
Function: Return address of a loaded, re-entrant program.

Input parameters:

Reg DE - Address of program name desired (8 characters)

Output parameters:

Description:

Flag Z - Set if found
Reset otherwise.

Reg HL - Address of program if found

This system call searches the Re-entrant Program Table (RPB) for a match
with the program name specified by the DE register pair. If the program
is found in the table the starting address is loaded into the HL register
pair, the Z flag is set and the system call exited.

When· the program name specified by the DE register pair is not found in
the RPBthe Z flag is reset and the system call is exited.

Other system calls used: COMPARE (93)

Other registers altered: none

BelO ley B - 85 - SC 108 PDDPGII

HACHO BBFERIICB HUUlL

Example Calling Sequence:

LD
SC
JR
JP

NAME: DC

DE "NAME
100
fru.rOADIT
'BASIC

; Point to program name
• Find program
; BRIF not found .
; Else branch to loaded program

==,================================= SC 109 Pur.roD
===
Function: Pass system time of day to user supplied time of day routine.

Input parameters: none

Output parameters: none

Description:

The currently set system time of day is passed to a user supplied routine
that will initialize a time of day clock.

Other system calls used:, none .

Other Registers altered: none

==~==== SC 1"0 PU'rDAY
===.==========
Function: Pass system date to user supplied date routine.

Input parameters: none

Output parameters: none

Description:

The currently set system date 1s passed to a user supplied routine that
will initialize a calendar/clock.

Other system calls used: none

Other Registers altered: none

-86- If&CIO Hey B

. 8. 1 AclclreaaillS lIOdea

CB.IPDR 8

zao CPO OYBRVIEV

Most of the Z80 instructions operate on data stored in internal CPU registers,
external memory or in the I/O ports. Addressing refers to how the address of this
data is generated in each instruction. This section gives a brief summary of the
types of addressing used in the Z80. .'. .

z..ediate - In this mode 'of addressing the byte following the op-code in memory)
contains the actual operand. Examples of this type of instruction would be to
load· the accumulator with a constant, where the constant is the byte
immediatlely following the op-code. ~ .

,~ A,25

z..ediate Bncmdecl - This mode is merely an extension of immediate addressing in
that the two bytes following the OP code are the operand. Examples .of this . ai~:. of instruction would De to l~ad t~e HL register pair with 16 bits of

LD HL,LABEL --
HOd1tied Page Zero AdclreaaiDS - The Z80 has a special single byte call instruction

to any of 8 locations in page zero of memory_ This instruction (referred to
as a restart) sets the· Program Counter (PC) to an effective address in page
zero~ The value of this instruction is that it allows a single byte to
specifl a complete 16 bit address where commonly called. subroutines are
located, thus saving memory space.

RST 38

lelatf.Ye AdelreaaillS - Relative addressing uses one byte of data following the
op-code to specify_a displacement from the existiD2-program to which a program
jump can occur. This displacement is a signed twoTs complement number that is
added to the address of ~he' op-code of the following instruction. .

JR LABEL

The value of relative addreSSing is that it allows jumps to n~arby locations
while only requiring two bytes of memory space. For most progams, relative
jumps are by far the most prevalent type of jump due to the proximity of
related program- segments. The Signed displacement can range between +127 and
-128. Ano~her advantage is that it allows for relocatable code. .

BxteDded Adclreaai~ - Extended addressing provides for two bytes (16 bits) of
address to be included in the instruction. This data can be an address to
which a program can jump or it can be an address where an operand is located.
Extended addressing is required for jumps with a displacement greater than
127. .

LD HL,(.LABEL)

When extended addressing is used to specify the source or destination address
of an operand! the- notation (nn) is used to indicate the content of memory at
nn, where nn- s the 16 bit address specified in the instruction. This means
that the two bytes of address nn are used as a pOinter to a memory location.
The use of the parentheses always means that the value enclosed within them is
used as a pOinter to a memory location. For example, (1200) refers to the
contents of memory at location 1200.

lDdexed Addreaaing - In this type of addressing the byte I of data following the
op-code contains a displacement which is added to one of the two index
re~isters (the op-code specifies which index register is used) to form a
p01nter to memory. The contents of the index register are not altered by this
operation. An example of an indexed instruction would be to load the contents
of the memory location (Index Register + displacement) into the accumulator.
The displacement is a signed two's complement number.' Indexed addressing
greatly simplifies programs using.tables of data since ,the ind~x register can
point to the start of any table. Two index registers are prov1ded since very
often operations require two or more tables. Indexed addressing also allows
for relocatable code.

LD HL; (IX+3)

To indicate indexed addressing the notation: (IX+d) or (IY+d) is used. Here d

IIICBO ley B -87-

IIlCIO IBFBIIIICB IlDUAL

1s the displacement specified after the OP code. The parentheses. indicate
that.th1s value is used as a pointer to external memory.

legl.ater AdcIreaaiDg ... Many of the zao op-codes . contain bits of' information that
specify whicn CPU re~ster is to be used for an operation. An example of
register addressing would be to load the data from register B into'registerC.

LDA,B

lJIpl1ec1/Addreaa~ - Implied addressing refers' to operations where the op-code
automatically implies one or more CPU reigi~ters as containing the operands.
An example ,is the set of arithmetic operations where the accumulator 1s always
implied to be the destination of th~ results.

ADD C

leglater IDd1reot .ldcJreaaiDs .. This' type. of addressing specifies a 16 bi t CPU
register pair (such as BL) to be used as a pOinter to any location in memory.
This type of instruction is very powerful and it is used in a wide range of
applications. The symbol (HL) specifies that the contents of the HL register
are to be used as a pOinter to a memory location.

LD A,(HL)

Bit AddreaaiDg - The Z80 contains a large number of bit set, reset and test
instructIons. These instructions allow any memory location or CPU register to
be specified for a bit operation through one of three previous address1~
modes (register, register indirect and indexed) while three bits in the
op-code specify which of the eight bits is to be manipulated. .

SET 3,D '

Many instructions· include more than one operand (such as arithmetic instructions or
loaos). In these cases, two types of addressing modes may be employed.

BIT 7, (IX)

8 .. 2 lIeglaters

The Z80 CPU contains 208 bits of Read/Write static memory that are acces1ble to the
programmer. This memory is configured into eighteen 8 bit registers and four 16
bi t registers.

GeIIera1 Purpose legl.atera

There are two matched sets of general purpose registers, each set containigg six 8
bit registers that may be used individually as 8 bit registers (B, CL D~ E, H, L)
or as . 16 bi t register pairs by the programmer. . On~ set is called Bt,;, vE and HL
while the complementary set is called BC', DE' and HL'. At anyone' time the
programmer can select only one set of registers to work with, althrough a siggle
exchange command exchanges the contents o~ the entire set. In systems where fast
interrupt response is reguired, one set of general purpose registers '. and an
accumlator/~lag register may be reserved for handling this very fast routine. Only
a simple exchange command need be executed to go between the routines. .

.lccuaulator aDd nag Registers

The CPU includes two independent 8 bit accumulators (A and A') and associated 8 bit
flag registers (F and Ft). The accumulator holds the results of 8 bit arithmetic
or logical operations while the flag register indicates specific conditions for a
or 16 bit operationst such as indicating whether or not the result of an operation
i.s equal to zero. he programmer selects the accumulator and flag pair that he
wishes to use with a single exchange instruction so that he may easily work with
the contents of either pair.

Special Purpose leg1aten

1. Prosra- CoaDter (PC). The Program Counter holds the 16 bit addr~ss of the
current instruction being fetched from memory. The PC is automatically
incremented' after its contents have been transferred to the address lines.
Whe~ a program jump occurs the new value is placed in the PC, overriding the
incrementer.

2. StackPoiDter (SP). The stack pOinter holds the 16 bit address of the current
top of a stack located anywhere in external system RAM memory. The external
stack memory is organized as a last-in, first-out (LIFO) file. Data can be

- 88 - HlCBO ley B

,CIIlP!'BR 8: Z80 CPO OVBRVIBII

pushed onto. the stack from specific CPU registers or popped o'ff of the stack
into specific CPU registers through the execution of PUSH and P.OP inStructions •.
The data popped from the stack is always the last data pushed onto it. The
stack allows simple implementation of multiple level interrupts,· unlimited
subroutine nesting and simplification of many types of data manipula~ion. .

3. !Mo Index Registers (II aDd lY). The two independent index registers hold a 16
bit base address that is used in indexed addressing modes. In this mode, an
index register is used as a base to point to a region in memory from which data
is to be stored or· retrieved. An additional byte is included in indexed'
instructions to specify a displacement from this base. This displacement is
specified as a two's complement signed integer. This mode of addressing
greatly simplifies many types of programs., espeCially where tables of data are
used. .

,. Interrupt Page Addreaa Register (I). The Z80 CPU can be operated in a mode.
where an indIrect call to any memory location can be achieved in response to an
interrupt. The I Register Is used for this purpose to store the high order 8
bits of the indirect address while the interrupting device provides tne lower 8
bits of the address. This feature allows interrupt routines to be dynamically
located anywhere in memory with absolute minimal access time to the routine.

Caution: The Interrupt Page Address Register is used extensively by the OASIS
Operating System. Any change to this register will cause unpredictable and
prob~bly disastrous results.

5. He.or,r Refresh Register (R). The Z80 CPU contains a memory refresh counter to
enable dynamic memories to be, used with the same ease as static memories. This
7 bit register is automatically incremented after each instruction fetch. The
data in the refresh counter is sent out-on the lower portion of the address bus
along with a refresh control signal while the CPU is decoding and executi~ the
fetched instruction. This mode of refresh is totally transparent to the
programmer and does not slow down the CPU operation. The programmer can load
the R register for testing purposes, but this register is normally not used by
the programmer.

8.3 n_
The flag register (F and F') supplies information to the user regarding the status
of the CPU at any given time. The bit positions for each flag is shown belOW:

Where:
S
Z
H

P/V
N
C

7 6 - 5 - 4 3 2 1 0

S Z X H X P/V N C

= Sign flag
= Zero flag
= Half-Carry fl§lg
= Parity·/OVerflow flag
= AddlSubract flag
= Carry flag

X· = Not used

Each of the two CPU flag registers contains 6 bits of status information which are
set or reset by CPU operations. Four of these bits are testable (C1P/V,z and S)
for use with conditional jump~ call or return instructions. Two f ags are not
testable (H,N) and are used for ~CD arithmetic.

CarI7 Flag (C)

The carry flag is sometimes referred to by the symbolCY.

The carry bit is set or reset depending on the operation being performed. For ADD
instructions· that generate a carry and SUBTRACT ,instructions that generate no
borrow, the carry flag will be set. The carry flag is reset by an ADD that does
not generate a carry and a SUBTRACT that generates a borrow. Also theDAA
instruction will set the carry flag if the conditions for making the decimal
adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the
LSB and MSB . for any register or memory location. During instruci tons RLCA, RLC s
and SLA s, the carry contains the last value shifted out of bit 7 of any register
or memory location. During instructions RRCA, RRC s SRA sand SRL s the carry
contains the last value shifted out of bit 0 of any regIster or memory location.

MACRO ley B - 89 -

III.CllO DFBIIBICB IIlIUAL

For the logical instructions AND s, ORs and XOR s, the carry will be; rese,t.

The carry flag can also be set (SCF} and complemented (C~F) •
./

Add/SUbtract Flag (X)

This flag" 1s used by the decimal adjust accumulator instruction (DAA) to
disti~ish between ADD and SUBTRACT instructions. For all add instructions, N
will be set to O. ' For all subtract instructions N will be set to 1. .

Par.1t:r/Oyepfiov Fl.ag (P/V)

This flag 1s set to a particular sta~e d~pending on the operation being performed.

For arithmetic operations, this flag indicates an overflow condition when the
result in the Accumulator is greater than the maximum possible number (+127) or 1s

'less. than the minimum possiole number (-128). This overflow condition can be
determined by examining the sign bits of the operands ..

This flag is also used with logical operations and rotate instructions to indicate
the parity of the result. The number of '1' bits in a byte are counted. If the
total ~s odd, then? is set to O. If the total is even then P is set tOl1.

When inputting a byte from an I/O device, the flag will be adjusted to indicate the
parity of the data. '

Zero nas (Z)

The zero flag is set or reset if the \ resul t generated by the execution of certain
. instructions is a zero.

For 8 bit arithmetic and logical operations,' the Z flag will be set to a 1 if the
resulting byte in the. Accumulator is zero. If the byte is not zero,· the Z flag is
reset to 00 . .

For compare and search instructions, the Z flag will be set to a 1 if a comparison"
is found between the value in the accumulator and the memory location pOinted to by
the contents of the register pair HL.

When testing a bit in a register 'or memory location, the Z flag will contain the
complemented state of the indicated bit.
5ipFlag (5)

The sign flag stores the state of the most significant bit of the accumulator.
When the CPU performs arithmetic operations on signed numbers binary two's
complement notation is used to represent and process numerIc information.
Therefore bit·7 of the accumulator indicates the sign of the result.

When inputting a byte from an I/O device to a register, the 8 flag will indicate
either positive (S=O) or negative (8=1) data.

-90- HlClO Bey B

9. 1 GeDeral lDt'or.au'OD

CJWIDR 9

Drl'BBFACDG TO OASIS

. All programs to be accessed by the Command string Interpreter should be written- as·
a "large" subroutine using a RET instruction when finished or, preferably, SC 0
(QUIT). ' .

When a program is'executed by the CSI the HL register pair will contain the address
of the first character of the tokenized command string (the program name is
excluded); th~ IX index register will contain the address of the list o,f .delimiters
us~d in ~he command string; the B register will contain . the drive code that the
program came from; the DE register pair will contain the starting sector number of
the program on diSK. , ', -

The tpkenized command string ,is a list of the .'words used in the command,,, ~ach word
translated to upper case and -filled out (or truncated) to eight cnaracters
(trailing spaces are added when necessary). The open parentheses at the beginning
of an option list is considered to be a word by itself and , the list is terminated
bya token of a carriage return (ODH). " , ,

The list of delimiters used is merely .a list of the characters that were used to
separate the words in the command string. This list matches in a one-to-one
relation to the tokenized command string starting with the delimiter between the
program name and the first word following. When multiple characters (spaces) are
used to separate two words only the first character is placed in the list of
delimiters. An open parentheses is assumed to be followed by a space character
even when no de~im1ter is actually used. The .list is always terminated by a CR
charcter.

For example:

>PROG NAME.TYPE:LABEL (OPT1 OPT2,OPT3

When control is passed to the program named PROG the HL
addressing the following character strings:

(Bt): 4E414D45 2020202054595045 20202020 'NAME TYPE
4C414245 4C202020 28202020 20202020 'LABEL, (
4F505431 20202020 4F505432 20202020 'OPT10PT2
4F505433 20202020 OD202020 20202020 'OPT3

(IX): 202E3A20 20202COD • : , , .

and IX registers will be

, -

The quotes used in the tokenized list are only for documenting the trailing spaces
and are not actually in_ the list .• -

Note: The list of tokens -is always terminated by a CR token.

The information provided by these two registers. allows the program to access all of
,the dat~ and options specified in the command.

The -information provided in the B and DE registers al1ow~ the program to get any
program overlay segments,' if used.

MACRO Bey B - 91

Hl.CBO DFBIBIICB MDUAL

9.2 Per1.pheral Derice Drivera

The OASIS operating system contains many of the device drivers that are normally
needed. For special ~eripherals or applications it might be desirable for you to
wri te your own devLce oriver

A user written device driver should be written using the same format and'protocalls
as the OASIS device drivers, even when you don't plan to interface OASIS to your
driver--you may want to in the future.

OASIS device drivers are written· as relocatable subroutines. Each device driver
~as five entry point vectors, one for each major function of the driver. The
sequence of these entry poin~ vectors is as follows:

JP ST ST is entry pOint of device status ,subroutine
JP IN ; IN is entry point of input byte routine
JP OUT ; OUT,is' entry point of output byte routine
~p INIT ; INIT is entry point of device initialization
JP UNINIT j UNINIT is entry point of device de-intialization

-
It is not necessary, to actually use the jump instructions at these entry points but
each entry point vector must be three bytes in length.

Each of 'the five routines in a device driver 1's a subroutine that i~ __ ----called by
certain system calls. These subroutine functions, requirements, an~ system calls
are described below.

:rr Accessed by system call 62'. Input to this .routl.ne is the physical
device number in the B register' an~ ~e UCB address in the IY
register. The responsibilitI of thrs routine is to return the status
of the device in the Z and C flags. This routine should not actually
read the byte of data. If it is necessary to read the byte, to
determine the status then the byte should be saved in an input buffer

D

mIr

area. ' ,
,/

z
z
C
C

Set = no input available
Reset = input available
Set = output ready
Reset = output not ready

,If the device is an output only device then this routine should always
set the Z flag, indicating that there is no data to be read in from the
device.

Accessed by system call 63. Input to this routine is the PhYSiCal,
device number in the B register, and the UCB address in the IY
register. The res~onsibility of this routine is to return one byte of
input from the dev1ce in the A register. If no byte is available from
the device this routine should wait (use SC 101 for interrupt driven
device or SC 79 for non-interrupt driven devices). It should be the
responsibility of the calling program to test if a byte was available
or not. When register A is set to zero it means that a data byte of
zero was input, not that there was no byte available.

If the device driver is for an output only device then this entry point
should return immediately.

This routine (non-interrupt system) or the interrupt input routine
should use system call 102 (CHARIN) for every character input to trap
any escape sequence entered and to perform character translations.

Accessed by s~stem call 64. Input to this routine is the physical
device number 1n the B register, the UCB· address in the IY register,
and the character to be output in register C. This routine accepts a
byte of output from register C and outputs the byte to the device.' An
interrupt driven device might just store the byte in its buffer and
return control to the c-aller, allowing an interrupt service routine to
actually output the byte. However, this routine should handle all
error conditions relating to output to the device.

Accessed by system call 61. Input to this routine is the physical
device number in the B register, and the UCB address in the IY
register. The responsibility of this routine is to initialize the
device driver and the device. The OASIS ATTACH command calls this
entry point once when the device is attached to a logical name.

- 92 - MACRO Bey B

/'
CIIAPI'BI 9: IITBRFACDG TO OASIS

I~ the device is an interrupt driven device this routine would
establish the interrupt vector using SC 103, initialize theI/Obufter,
etc.

UlIIIT Accessed by system call, 68. Input to this r.outine is the physical
. device number in the B register and the UCB address in the IY

register •. The responsibility of t~is routine is to un-intiialize the
device. The OASIS ATTACH command calls this entry point once when the
device is detached from a logical name •

. If the device is an interrupt driven device this routine would probably
make sure that the I/O buffer was empty, disable the interrupt for this
routine using SC 103, etc.-
When an interrupt service. routine is entered the interrupts are
disabled. The routine must enable the interrupts before an RETI
instruction is executed. The interrupts may be enabled any time atter
entry to the routine but make sure that the routine is prepared for
another interrupt to itself when the interrupts ·are enabled.

All routines, interrupt,1 or otherwise, should restore the status of any
registers used and not specified as part of the input or output
parameters.

Multi-user note: an interrupt -driven device driver must take into I
account the fact that the owning partition may not be the active I
partition when the calling interrupt occurs. It may be necessary to I
:;;t!:t~ar~: g~nf~EOMr~r:t§5n(~gT8~fi),t~n~e~6i(~ET~~i)i~~;r~~~ist ~~~ I
in this task. I .

IDter~aciDS uaer vr1.tten dn1.ce ·cIr1. ... era to OASIS

To interface a user written device driver to the OASIS operating system
you must follow these steps:

1. Decide upon a device number. OASIS references physical device'
drivers by their number. The numbers used by OASIS for the device
drivers supplied may be- found by listing the file SYSTEM.DEVNAMES.
If- your device driver is to replace the one provided with the
operating system then you should use the same number as that (you
may want to save the OASIS driver by renaming it).

• 1

2. After you have decided upon a number for your device driver then
IOU must give it a name that OASIS will recognize as a device
ariver. All device drivers have a file name of SYSTEM and a file
type of DEVnn where nn is the device number. The OASIS LINK
command has an option (SYSTEM) that will cause the load image
program generated to have a name of SYSTEM and a file type equal
to the file name of the object file being processed.

The device number that you use to give a name to your device
driver also determines the UCB number that it uses. Keep in mind
that external device numbers (device names, attach numbers; etc.)
are base 1 and the internal device numbers are base o.

3. If you are not replacing an existing device driver you will
probabli have to add an entry to the SYSTEM.DEVNAMES file so that
the dr ver can be loaded bI the ATTACH command by specifying a -
name rather than a number. The format of this file is discussed
in the OASIS System Reference Manual in the appendix "System
Files".

4. Attach your device· to a lo~ical device name using the ATTACH
command. Your device driver 1S now available for other programs
to use by referencing the logical name or number attached to the
device. If the system is re-booted the driver will not be
reloaded automatically _~nless a SYSGEN was performed while your
device was ATTACHed. To reload your driver all that is necessary
is that it be re-ATTACHed.

For an examvle listing of a peripheral device driver refer to the appendix on
"Program Examples".

HlCRO ley B - 93 -

HACRO BBFEDIICE IWIUlL

9.3 Disk Dev:1ce Drivera
, '

The OASIS operating system contains at least one disk device driver to handle the
disk(s) that the operatiM system resides on. Disk drivers t'o handle other types
of disk drives and controllers can be written by the end user or distibutor and can
be loaded with the ATTACH command to make multiple disk drivers -on-line at one
time. '

A'user written disk device driver- should Qe written using the same format and
protocalls as the OASIS 4~sk device driver. ' ,

OASIS disk drivers a're wri'tten as relocatable subroutines. Each disk driver has
four entry point vectors,'one for each major function of the driver. The sequence
of these entry point vectors is as follows: - .

JP SELECT ; -SELECT is entry point of disk select subroutine
- JP RESTORE ; RESTORE is entry point of disk' restore subroutine

JP READ ; READ is entry point of disk read subroutine
JP WRITE WRITE'is'entry point of ~1sk write subroutine

It is not ne,cessary to actually use the jump instructions at these entry' pOints but
each entry pOint-vector must be three bytes in length. ' /

Each 'of the four routines in a disk device driver is' a subroutine that is called by
certain system calls. These subroutine functions, requirements, and system calls
are described below.

SBLBCr Accessed by system calls 50 and 51. Index register IY contains the
, address of 'the UCB of the disk to be selected; register A contains the

physical drive number (0 -' 7) of the, drive to be selected. This
physical drive number may have to be adjusted to properly address the
drive(s) associated with this device driver.. This routine doesn't '
perform any function with the disk drive or controller--it merely
specifies which drive subsequ~nt operations are to be performed on.

RBSrORB Accessed by system calls 50 and 51. Index register II contains the
address of the UCB of the disk to be restored,. This routine's function
is to "recalibrate" the drive--position the heads on track 0 with the
assumption that it is unknown where the 'heads are currently located at.

It 1s probable that this routine would perform no direct function other
than setting a switch indicating that the next read or write operation
,to, this dr~ve is t~, first perform the restore operation. .

RIID Accessed bI system call 50. Index register II contains the address of
the UCB of the disk to be read from; register A contains the number of
consecutive sectors to be read; register B contains the head number;
register C contains the. -sector number; register pair DE contains the
cylinder number; register pair HL contains the address in memory that
the information is to be read into •. All values are base zero.

This routine should perform the physical I/O required to read the
specified sectors into the memory area indicated. Sectors are always
considered 256 bytes long~ independant of the actual sector size .Of the
disk. It is the responsibility of this routine to adjust the number
and location of the sectors desired to correspond with the 'physical
sector size of the disk, if different.

This .routine should not perform any error recovery procedures. If an
error occurs the operation should be stopped" the pertinent registers
adjusted to reflect the location of the error~ the A register should be
set to reflect the type -of error, and the"iA flag should b~ reset to
indicate that an error occured~ Any retry or recovery operations will
be handled by system software outside of this device driver. '

When the disk read is succesfull the pertinent registers should be
adjusted to point to the sector following that whi.ch was just,read, the

. A register should be set to zero and the Z flag Should" be set.

This routine, as called by the OASIS system call., never asks to 'read
consecutive sectors that cross a cylinder or head ooundary.

VB1T.I Accessed by system call 51. Index regist~r IY contains the address of
the UCB of the disk to be written to; register A contains the number of
consecutive sectors to be written; register B contains the head number;
register C contains the sector n~berf register pair DE contains the

MACHO ley B

CBAPTEII 9: :nr.mBFACDG TO OASIS
, .

cylinder number; register pair HL contains the address 1n memory that .
the information i,s to be written from. All values are base 'zero. "

rhis routin~ should perform the physical I/O required to write the
specified sectors from the memory area indicated. Sectors are always
considered 256 bytes long, independant of ,the actual sector size of the
disk. It is the responsibility.of this routine to adjust the number
and location of the sectors 'desired to correspond witn the physical
sector size of the dis~, if different. '

This routine should not perform any error recovery procedures. If an
error occurs the operation should be stopped, the ·pertinent registers
adjusted to.reflect the location of the error~ the A register should be
set to reflect the type of error, and the l. flag should be reset to
indicate that an error occured. Any retry or recovery operations will
be hand}ed by system software outside of this device driver. ,

When the disk write is succesfull the pertinent registers should·be
adJusted to point to the sector following that which was just written,
the A register should b~ set to zero and the'-Z flag should be set.

This routine, as called by th~ OASIS system call, never asks to write
consecutive sectors that cross a cylinder or ~ead boundary.

Note,that there· is no initialization entry point. It is the responsibility of the
select routine to check if the device needs initialization (maybe a DC of zero is
coded--when routine is first loaded that location will still be zero--that the
select routine sets to a one after the device is initialized).

~1ak error codes

The-following standard error codes should ~e returned by a disk device driver when
an error occurs:

1 - Disk not ready
2 - Disk write protected
3 - Disk not initialized possibly a time out or wr9ng density dete
4 - Data CRC error
5 Invalid parameters -- can't happen
6 -Disk label changed -- or disk changed or door opened
7 ~ Sector not found
8 - Track not found
9 - ·Address CRC error

Interfacing user written diak device drivers to OASIS

To interface a user written disk device ·driver to the OASIS operating system you
must follow these steps:

1. Decide upon a device number--OASIS references the disk drivers by their _
number. The numbers used by OASIS for disk devices are in the range of
1 through 8. however do not use a number associated with the disk
driver included in the' bASIS NUCLEUS (generally 1 thru 4).

2. After you have decided upon a number for your driver then you must give
it a name that OASIS will recognize as a device '. driver. All device

, drivers have a file name of SYSTEM and a file type of DEVnn where nn is
-the device number. ·The OASIS LINK command has an option (SYSTEM) that
will cause the load image program generated to have a name of SYSTEM
and a file type equal to the file name of the object file being linked.

3. Add the device name of your driver to the SYSTEM.DEVNAMES file. A disk
driver may have multiple entries in this file to reflect the multiple
disks that it controls. A record in this· file for a disk device driver
has the following format:

<logical name> <devicenumber>D <other numbers shared>

The <logical name> is a two to eight character name that you will use
when you ATTACH a drive code to a disk. It is best if the name also
identifies the disk drive in some meaningful manner. For example, a
disk driver for a XY~ hard disk drive should probably be named XYZ1 or
XYZ2, etc.

The ·<device number> is the number that you decided upon in step 1.

MACHO lev B - 95 -

IlACIlO IIBFBDIICB IlllUJL

<Other numbers shared) is a list ot device numbers that 'are controlled
by this one disk driver. This is best explained by an example. 'Say
that you have written a disk driver for a disk controller that
interfaces to four arives, numbered 5, 6, 7, and 8. You would probably
use the number 5 for the dfsk driver ' number and the name XYZ5 for 1 ts
logical name. The entries in the SYSTEMoDEVNAMES file would then look
like this:

XYZ5 5 D 5 6 7 8
XYZ6 6 D 5 6 7 8
Ii~,~ ~ E ~ g t g

The above example indicates that device numbers 5, 6, 7, and 8 are all '
controlled by device driver number 5. There will only be one copy of
the driver loaded into memory for all tour drives that maybe attached
to ~t. , '. '

4 .. Attach your device to a logical name using the ATTACH command
l

similar
to the way you. attach logical names to the OASI.S. suppl ed disk
driver--A, B" etc., - .

Note that there is no .·un-initializeentry point in a disk device driver. This
means that the device driver will not be unloaded from memory when all disks are
detached from it. Once this auxilIary disk driver is loaded into memory the only
way to recover the memory used by the driver is, to re-boot'the system (assuming
that it was not sysgened)".

\

For an example listing of a disk device driver refer to the appendix on "Program
Examples" ..

-96- MACRO Bev B

CBlPID 9: D'tBJlli'ACIIG ·ro OASD .

9.11 Tape Device Drivers

Tape drivers that interface to certain tape controllers are available with -the
OASIS operating system. For other tape controllers it might be desirable for you
to write your own device driver. -

A user written tape device driver should ·be· written using the same format and
protocalls as the OASIS device drivers, even when you don't plan to interface OASIS
to your driver--you may want to in the· future.

OASIS device drivers are written as relocatable subroutines. Each tape device
driver has six entry point vectors, with the first five being dummy entr~ pOints
corresponding to the five entry pOints for general peripheral device arivers.
These first five en·try pOints merely clear the carry flag, set the zero flag and
return. The- six entry point -- is the only real entry to the tape driver. Uponentry
to this rou·tine the A register contains the commana to be performed by the driver:

80
81
82
g~
85
86
g~
89

Select drive and' track
Rewind .selected drive
Read from selected drive
Write to selected drive
Backspace selected drive one record
Forspace selected drive one record
Write record gap on selected drive
Write tape mark on selected drive
Stop the selected tape ~
Return status of selected tape

The return status from the driver is in the Z flag and the A register:
•

Z 00
HZ 01
HZ 02
HZ 03
NZ 04
HZ 05
NZ 06
NZ 01

Success - okay
Drive not ready .
Drive write protected
Tape mark sensed
eRe error detected
End of tape sensed
Start of tape sensed
Data late

Intert'aciug user written tape drivers. to OASIS

Refer to the section 'Peripheral Device Drivers' in this chapter for information
about interfacing your tape driver.

For a listing of a model that can be used to write your tape driver routine refer
to the appendix on "Program Examples".

HAem Bev B -91-

Hl.CBO BIFBIIIICB HDUlL

9.5 Ter-inal Class Code.Driyers

The OASIS operati1 system provides a uniform interface to the console terminal
cursor controls.' ecause most terminal 'manufacturers use a slightly'different and
Unique codi~. sequence to control the actions of the terminal it is cumbersome for
an application program to be. coded such that it is capable. of communicating with
different types of terminals • In OASIS an appllc'ation program is coded using an
internally defined standard (another, unique standard) for cursor ·control. The
characters used in the standard are described in the OASIS System Reference Manual,
appendix ftTerminal Class Codes".

The translation between the OASIS internal standard and'the control codes used by
the actual .' .. terminal is performed in a small subroutine that interfaces betwe,en the
operating system and the device driver. Several different terminal class code
subroutines are supplied with the operating system .• ' .' .

If your terminal uses a set of cursor control . codes that is not handled by one of
the class code subroutines supplied you will have to write your own or not use
cursor control. However it is very easy to write your own subroutine to handle
:your particular terminal.due' to the macro definitions supplied in the file
CLASS.MACLIS .. -

To ,write your own terminal class code subroutine create an assembly program with
the name CLASSnn where the nn is the class code number you wish to use. Use the
MACLIS pseudo op-code to get the macro definitions .in CLASS.MACLIB file into your
program. 'The three macros you will be using are desoribed below: .

!lIT Performs the subroutine initialization required of a class code
subroutine. This macro reference must be the first code in your program.
This macro routine has all the code in it to handle any character
translations undefined with the following macro (DEFINE) and handles all
of the standard,. OASIS input escape sequences (see OASIS System Reference
Manual, chapter nSystem Control Keysft).

This macro also allows you to speci.fy up t·o eight characters that are to
be translated and the values that they are translated to. To use this
feature merely specify the ·translation list in the operand field (see
example ·six in the appendix. of program examples in this manual).

DEPDB Defines the relationship between the internal codes and the codes used by
the terminal. The first argument to this macro is the name of the
internal code such as CLEAR, HOME, EOL, etcG Subsequent arguments to this
macro are the characters to be sent to the terminal to per.form the desired
function. .. All of the ASCII control characters are defined with the
appropriate value so that you may use names. such as ESC, DC1, etc ..

The DEFINE macro reference is used as many times as is necessary to define.
the functions of the terminal. No speCial sequence is required and any
undefined funct1~ns may be omitted. .

Any function that your- terminal is not' capable of perrormi~ (i.e., BON)
should be defined with no output list (see example six again).

Any function that your terminal is' not capable of performing but can be
simulated by the operating system (EOL 'and EOS only) should not be defined
in your program. When thi~ is done the ~perating system will simulate the
function by outputting spaces and repostioning the cursor to the orginal
location.

Any function that should be followed with the ATTACHed form feed delay
should have its definition end with the argument 8CH which will be
interpreted by the macro as indicating the form feed delay is to be added
atter the output of the function.

DCA Indicates the start of the cursor address coding routine. The DCA macro
name may be followed by a numeric operand specifying the pre-defined class
code number that uses the exact same cursor control algorithm.

- 98 - MiCRO Bey B

CIIJ.PDR 9: UrBiFACDG TO OASIS

The DCA macro' call is followed by the routine that will output to the
terminal the proper codes to perform the addressi~ of the/cursor. Upon
entry to the routine the following registers will be defined: .

_A Control cha·racter to translate {not used by your cursor address
. routine} - .-

B Device number of the console terminal (always a 9)
C Same as register A

-8 Column number to position to) base 0
L Line number to position to, Dase 0

When your routine outputs the codes to the terminal you must use system
call 64. (Using system call 2, 5, 7, or 5.2 might cause' an infinite loop.}

After you have output the proper codes to the_ terminal clear the carry
flag_and perform a return. If the carry flag . is set' when you return it,
will indicate to OASIS that the function could ,not be performed and that·
OASIS is to try to simulate it with software. This may be done by
performing a HOME followed by line feeds and non-destructive c~rsor.
advances. .

Example six in the appendix of program examples lists a terminal class code
subroutine for the SOROC IQ 120 terminal.

MACRO Bev B '. - 99-

HACBO BBrBIDCB IWIUlL

9.6 _atea Start-up Prop-aa

The OASIS operating system provides the capability ofloading~and executing a
Qrogram (machine l~uage) automatically whenever the operatl:p.g system is "booted"c>
The program that is loaded must be named SYSTEM. STARTUP! must resige on the system
disk, be owned by the system' (public) account, and be re' ocatable. .

The SYSTEM.STARTUP program may do "anythIng" that you may' require this type of
{>rogram.to do {i.e., automatically interface to calendar circuitrY)e This program
18 loaded after memory 1s sized by the operating system but betore any device
drivers are loadede The program is loaded into current high memory and is called
by the op~rating system. The program should do whatever is necessary at this time
and exit by executing a RET instructiono .

- .
It is the 'responsibility of this program to protect itself when you want' it to be
in memory after the system is startede Use' system call 55 and 56 to protect the
~emory that the program needs. I .

If you are using the SYSTEMQSTARTUP program capability to interface a
calendar/clock device you, should be aware of four locations in the SYSTEM.NUCLEUS
tha t help you in this regards: - -

BASE+O'04AH Should contain the address of your subroutine that will return the
current time of day.

BASE+004CH Should contain the address of your subroutine that will return the
current date.

BASE+0062H Should contain the address of your subroutine that will program your
clock to the currently set system time. This location is used by Be
109 and the SET TIME command to program your clock.

BASIC+0064H Should contain the address of your subroutine that will program your
calendar to the currently set system date. This location is used by SC
110 and the SET DATE command to program your calendar.

The system startup program must set these locations in the NUCLEUS to the proper
addresses ot your subroutines (contained in the SYSTEM. STARTUP. program) if you want
OASIS and its ~tilities to use your calendar/clock hardwaree

- 100· - MACBO 1ft B

CII.&PIBI g: D'fBBtlCIIG ro ~IS
g. T USB Progr_

A USH program is an assembler language subroutine accessed by' a--BASIC' language
program through a special function call. Only one parameter is passed to the
subroutine ana only one parameter may be returned to the BASIC program. The input
and output parameter types must be the same: 16 bit numeric or a character string. ,

, '

The USH routine must be a relocatable program

A USH subroutine may have an unlimited number of entry pOints but each entry point
may only perform processing on one type of parameter.' This is due to the fact that
there is no way of detecting what the parameter type is. A USH routine may perform
processing independent of the input and/or Qutput parameter. -

The BASIC program accesses the various entry pOints of a USH routine by specifying
_ the address of the entry point relative to the load,address of the subroutine. It
is best to make the entry 'points Simple, such as: 0, 3 6, etc. To do this jump
vectors should be used, similar to the. device drivers Aiscussed above. This not

- only makes the entry point addressing simple but also allows for modificati.ons to
the program without requiring changes to the entry point addressing in the BASIC
program.

A USH routine may use, without restoring any and all of the registers. BASIC
makes ·no assumptions regarding the integrity of the registers (with the exception
of the HL register pair and the SPI). The USHroutine, in turn, should make no
assumptions about the integr,ity of the registers (except the HL register pair and
the SP!) as BASIC may use any and all of the registers bet~een calls to your USH.

A numeric parameter is passed to a USH routine via the HL register pair. If a
parameter is to be returned to the BASIC program it must be placed in the HL
register pair. This implies a limit of 16 bit numbers. .

A string parameter is ,passed to a USH routine via the BASIC string accumulator.
The string accumulator start address is in the HL register. The string accumulator
is a 256 byte buffer used by BASIC for all string manipulations. The first byte of
this buffer is a count of the number of characters following.' The string parameter
returned to the BASIC program may be in the string accumulator or in an internal
buffer (up to 256 bytes). In either case the HL register pair must address the
first byte of the buffer used when the return is made to BASIC and this first byte
must be the count of the characters in the buffer. If the string accumulator is
used care must be taken 'to insure that' the 256 bIte limit is not exceeded because
volatile information precedes and follows this buffer. '

When 'LINKing your USH routine be sure to use the USR option as it will cause the
file type of your load module to be BASICUSR, a requirement of the BASIC

_ interpreter.

For example listings of USH routines refer to the appendix on Program Examples.

,Hl.CBO Bev B - 101 -

Hl.CBO RBFBIIIICB IIDDAL

9.8 BASIC !'felda

It is not advised that you write programs that access the variables in a 'BASIC
program directly'. ,This is primarily due to· the' fact that the, v,ariable storage area
of BASIC is dynamic - even its base address. You should use. the ,USH feature of
BASIC to pass the field to your assembly program. ,However, it'may be necessary for'
you to know the format of v;ut'iables maintained by BASIC, internally to BASIC and/or
externally in a file.- "

Fonat ot BASIC_ Variables

BASIC variables are'for.matted the same whether maintained internally or on a disk
.J file",. However, file fields have an extra byte of information preceding the content

of the field. This-extra byte is a code indicating that the field is a string,
integer, or floati~ p01nt field. ' ' , '/

·String Pielda

String' fields are Simplistic in format: the code is a ~1nary 6 followed by the
length of the string (range of 0 to 255) followed by the individual characters of
the string ..

Integer Pielda
,-

An integer field has a code of a binary 4 followed by the 16 bit signed binary ,
number, most· significant byte ·first.

PloaU,DS Point Fielda

A floating _point field has a code of a binary 3 followed by a one bIte
characteristic in excess 128 format (characteristic in two's complement plus 128),
followed by a nibble (four bits) specifying the sign of the mantissa, followed by
52 bi ts ot the normalized mantissa in BCD ~ ,

A code field of 0 indicates the end of record.

BDaplea:
Field Type Contents
--~--------~----~-------------------~----------------~-----------------~--06055061616520 S
041234 I
04F.EA1 I
038202345618000000 F
031E812345678g0123 . F

- 102, -

Page
+4660
-3il5
+.2345618E+2
-. 1234567890 123E-2

HlCBO ley B

o QUIT
1 KEYIN
2 DISPLAY
3 CONST
II CONIN
5 CONOUT
6 SYSIN
7 SYSOUT
8 PRTOUT
9 MOUNT,

10 RD1
11 WR1
12 IPL
13 WRFDIR
111 HEXI
15'DECI
16 HEXO
17' DECO
18 CRLF
19 MSEC
20 LOOKUP
21 GETUCB
22 LOAD
23-PRINT
211 ASSIGN
25 ADRV
26 BDRV
27 ALLOC
28 DEALL
29 ERASE
'
30 FETCH
31 RENAME
32 OPEN
33" CLOSE
311 RDSEQ

~~ M~¥~~TE
37 GET TIME
38 DIV
39 MUL
1I0 RDDIR
41 WRDIR
42 NUMBER
43 RDIX
44 RDNIX
45 WRIX
46 DATEPACK
47 LABEL',_
48 GETSCR
49 WAIT
50 RD
51 WR
52 SYSDISP
53 TIMER
54 EXCMD
55 GETMEM
56 PUTMEM
57 PUTQET
58 TSTDEV
59 GETPL

, 60 DELIX
61 DEVINIT
62 DEVST
63 DEVIN
64 DEVOUT
66 GETLAB
67 PUTDEV
68 DEVUNINIT
69 TSTESCC
10 EXCMDR
11 BUFFI,
12 BUFFO
13 PUTCON
14 PUTDET

IIlCRO lev B

APPBlDII A

SYSDII CALL SUIIWII

Reload the 'Command String ,Interpreter - restart
Accept a line of input from the conSOle, keyboard
Display' characters on console output devioe '
Get status of console input device
Accept one character from the -console input device
Display one character on console output device '

, Accept one character from console, ignoring ESC 0 and ESCLP
Display one_ character on console, ignoring Esc,b and ESC,~
Output one character to PRINTER1 device
Allow change ,of diskette on a specified drive
Read'one sector from disk.
Write one sector to disk
Perform initial program load
Create new file directory entry . _
Convert hexadecimal number to 16 bitbinar~
Convert decimal number to 1'6 bi t binary -
Convert 8 bit value to hexadecimal characters
Convert 16 bit unsigned value to' decimal string
Display carriage returnL line feed on console
Wait specified number 01- milliseconds .
Locate directory entry of file
Get address ofUCB .'
Load a program , ' ,
Output a ll·ne to PRINTER1 device
Store ACB,
Convert logical drive code to drive number
Convert drive number to logical drive code
Allocate space for file on disk
Deallocate space. for file on disk
Erase logical file from a disk
Load program in memorYL execute, restart
Rename a logical disk rile
Open a logical file .
Close a "logical file '
Read a logical record from a -Bequential file
Write a logical record to a sequential file
Get formatted date'
Get formatted time
16 bit, binary, unsigned divide
16 bit, binary,unsigned, integer multiply
Read logical record from a direct disk file
Write a logical record to a direct disk file
Convert numeric stri~ to 16 bit value
Read a logical record from an-. indexed disk file
Read the next logical record, from an indexed disk file
Write a logical record to an indexed disk file
Pack system date and time into 24 bits
Find disk with specified label
Get base address of use~ System Communication Region
Wait for operator to release current console page
Read mul tiple sectors of a disk
Write multiple sectors to a disk
Display characters on console, ignoring ESC,O and ESC,P
Set up for a clocked interrup~
Execute a command '
Get current high memory
Set new high memory
Change routine for service of System Cancel-key
Test device attachment .
Get console/printer page and line parameters
Delete a record from an indexed file
Initialize a device driver
Ge.t status of device driver
Get input from device driver
Put output to device driver
Get label of specified disk drive
Store device driver address
Uninitialize a device driver
Test .if Program Cancel-key entered
Execute a program and return '
Get character from buffer
Put character to buffer
Get/set console control byte
Set address of disk error trap

- 103 -

HACIO BBPBBBIICB HDDAL

15 NEWSYS Change system disk .
16 DELAY Delay processing for specified period of time
17 GETACB Point to· Assign Control Block

l
8 CONESC Perform System Control-key function
9 SNU . Select next user . o GETBASE Get base address of NUCLEUS

81 GETMFG Get system manufacturer number
82 GET PIN Get your user partition id number
83 UNLOCK UnloCk record of file
84 ONEONLI Set flag for exclusive use of resource
85 NOTONLI . Release exclusive use of resource
86 ACTIVATE Activate specific partition
8.7 GETLUB Get Logical Unit Block table base address
88 MSG Send message to another user's console
89 EXCLUSIVE Get exclusive control of key resources
90 UNEXCLUSIVE Release exclusive control of key resources
91 GETWORK Get user System Communication work area address
92 GETPRIVLEV Get current privilege level . .
93 COMPARE Perform string comparison
94 RDBIN Get binary data stream from file
95 WRBIH Put binary data stream to file
96 ERRDIS Display error_ message .
97 ERRQUI Display error message and quit
98 OVERLAY Load overlay of program
99 CONDALL Conditional allocation

100 DISPATCH Perform table ·lookup
101 GETUSER Get current user account number
102 CHARIN Console input character analysis
103 PUTVECT Point vector to interrupt service routine
10~ GETBYTE Get bytes from another partition
105 PUTSYTE Put bytes to another partition
106 DATEOUT Convert BCD date .to standard format
107 WAITINT Deactivate partition until interrupt occurs
108 FINDPGM Get address of re-entrant program
109 PUTTOD Put time of day to clock device
110 PUTDAY Put date to calendar device

- 1011 - MACRO BeY B

SC
o QUIT
1 KEYIN
2 DISPLAY
3 CONST
4 CONIN
5 CONOUT
6 SYSIN
7 S'ISOUT
8 PRTOUT
9 MOUNT

10 RD1
11 WR1
12 IPL
13 WRFDIR
1!J HEXI
15 DECI
16 HEXO
17 DECO
18 CRLF
19 MSEC
20 LOOKUP
21 GETUCB
22 LOAD
23 PRINT
24 ASSIGN
25 ADRV
26 BDRV
27 ALLOC
28 DEALL
29 ERASE

_30 FETCH
31 RENAME
32 OPEN
33 CLOSE
34 RDSEQ
35 WRSEQ
36 GETDATE
37 GETTIME
38 DIV
39 MUL
40 RDDIR
41 WRDIR
42 NUMBER
43 RDIX
44 RDNIX
45 WRIX
46 DATEPACK
47 LABEL
48 GETSCR
49 WAIT
50 RD
51 WR
52 SYSDISP
53 TIMER
514 EXCMD
55 GETMEM
56 PUTMEM
57 PUTQET
58 TSTDEV
59 GETPL
60 DELIX
61 DEVINIT
62 DEVST
63 DEVIN
64 DEVOUT
66 GETLAB
67 PUTDEV
68 DEVUN INIT

- 69 TSTESCC
70 EXCMD'R
71 BUFFI
72 BUFFO
73 PUTCON
74 PUTDET

HlCRO Bey B

Inputs
A=return code
DE=addr,B=len
DE=addr '

C=char

C=char
C=char
B=drive
B=drive,DE=sect,HL=addr
B=drive,DE=sect,HL=addr
B=drive,DE=sect
B:drive;DE=DEB
DE=addr .
DE=addr
B=number DE=addr
DE=addr,HL=number

A=msec count
DE=DCB,HL=buffer addr
B=device
DE=DCB,HL=addr
DE=addr ,
B=ACB I,DE=ACB
B=ASCII drive I
B=bin drive I
B=drive,DE=block count
B=drive,DE=block count,HL=sect
DE=DCB .
B=drive DE=DEB
DE=old DCB,HL=new DCB
DE=FCB
DE;:FCB
DE=FCB,HL=addr
DE=FCB,HL=addr
DE=addr
DE=addr
DE=divisor,HL=dividend
DE=multiplier,HL=mulipl~cand
BC=key,DE=FCB,HL=addr
BC=key,DE=FCB,HL=addr
DE=addr
BC=key addr,DE=FCB,HL=addr
BC=key addr,DE=FCB,HL=addr
BC=key addr,DE=FCB,HL=addr
DE=ador
DE=label addr

lPPBlDIX A: SYSTIII CALL S1JIIIiBy
Outputs
no return
A=len,DE=next
DE=next
Z
A=char

A=char

HL=num,DE=next
HL=num, DE=next '
DE=nexT.
DE=next

ZJDE=sec,HL=addr
HJ..=UCB
CY,A=codetB=drive

,DE=next '

A=bin drive
A=ASCII drive
HL=sect '

no return

DE=next
DE=next
HL=quotient
HL=product

DE=next,HL=number

DE=next
A=drive
IY=SCR

B=drive,C=cotint,DE=sect,HL=addr
B=drive,C=count,DE=sect,HL=addr
DE=addr DE=next
DE=count,HL=TEB
DE=addr no return

HL=addr
HL=addr
HL=addr
B=device I
B=dev
BC=key,DE=FCB,HL=rec
B=dev
B=dev '
B=dev
B=dev,C=char
B=dev,DE=addr
B=phy dev,DE=addr
B=dev

DE=cmdLHL=ret addr
HL=bufr-er
A=char,HL=buffer addr
B=sets,C=clears
HL=addr

- 105-

NZ A=code '
B=line,C=page

NZ=in rdy,CF=out rdy
A=char

Z=no ESC,C
All regs modified
A=char

A=new mask

MACRO Dr_a HDUAL

,SC Inputa OUtputa
76 NEWSYS B=new phy S
7 DELAY A=time oode A=O
7~ GETACB B=ACB I ' HL=ACB addr
7 CONESC A=2nd eso ohar
~9 SNU o GETBASE IY=base
81 GETMFG A=MFG
82 GETPIN A=PIN
8~ UNLOCK ~ DE=FCB
8 ON EONLY HL=resouroe

'-" 8g NOTONLY HL=resouroe
8' ACTIVATE A=PIN,HL=addr
8
A

GETLUB IY=LUB
8 MSG A=PIN,DE=addr' DE:next
89 EXCLUSIVE
90 UNEXCLUSIVE
91 GETWORK HL=addr
92 GETPRIVLEV A=priv
9n COMPARE BC:lenbDE=lstgHL=2nd
9 RDBIN B=len, E=FCB; L=addr
95 WRBIN B=len,DE=FCB,HL=addr
96 ERRDIS DE=garms,HL=m;f I Sb ERRQUI A=R IDE=Earm, =msg I no return
9 OVERLAY B~dr ve, E:baseHfL=addr I
99 CONDALL B=dr1ve,DE=min, =max DE=aotualrHL=addr

100 DISPATCH - DE=string,HL=table Z,HL=arg rom table
101 GETUSER A=user ,
102 CHARIN '. A=char NC,A=new _ohar
10~ PUTVECT A=num,DE=addr
10. GETBYTE BC=len,DE=mI,HL=his DI, ·like LDIR
10~ PUTBYTE BC=len,DE=h s,HL=my DI, like LD!R
10 DATEOUT C=mm,H:dd,L=yy,DE=addr DE=next
107 WAITINT
108 FINDPGM DE=name Z,HL=addr
109 PUTTOn-
.110 PUTDAY

- 106 - - MACRO Hey B

Operator Cancelled

, lPPBIDIX B

BIRO. HBSS&GES

...Duplicate Label -or- PhaaeError •••

Indicates that the 'address of the instruction has a differ.ent· value, between
pass one and pass two.' Usually indicates that the label is defined more than
once.

an errors in progr_

Indicates the total number of detected errors in the program •

••• IDvalidEzpreaalon •••

••• Label Error •••

Indicates that an invalid'character was used in a label. Labels'must use only
the alphabetic characters . and the dollar sign character. Local labels must
start with a period character. Macro local labels must start with the at (@)
character.

••• Label Required •••

The label' field is' blank on a directive that reguires
directives inc~ude: ABS, CO~', ENTER, EQU, REL, and VALUE.

••• Macro DeriDition Error •••

a label. These

Indicates a construction or .syntax error in a macro definition. Usually
results from a missing ENDM directive or an attempt to define 'a macro within a

, macro definition.
••• Ifested too Deep •••

Indicates that an attempt was made to ~ush more than eight IF, ORG, USING,
LIST, or macro callaonto their respect1ve nestipg stacks or an attempt was
made to pop one of the above from their stack when no argument was on' their
stack.

••• OVerflow •••
-Indicates that more bits are required to contain value than are permitted in

exp~ession type. For example a relative jump of more than +127 or -128 •

••• Relocation Error/ •••

Indicates that . an expression containing relocatable symbols is in error.
Usually the error is one of the following: a difference between two relocatable
symbols of different PABs· the sum of two relocatable symbols; the product of
two relocatable symbols· the quotient of two relocatablesymbols; the product
or quotient of a relocatable symbol and an absolute ,symbol; a valid relocatable
expression used in an operand that may only have eight or seven bits of
precision.

••• sag.ent not F~ •••

Indicates that the file description of a COpy or LINK directive can not be
found in any of the attached directories.

••• State.ent·· S)"Dtax Error •••

Indicates that the operand is invalid for the op-code or that there is a
missing delimiter in the operand.

Spabol Table OVerflow

The size,of the symbol table is determined by the amount of available memory
during the assembly process. There are several things that can be done·to
remov.e this' error: add more memory; unload the system Debugger if loaded;
unload unused device drivers; unload anyloaded l re.entrant programs (SPOOLER L BASIC, etc.); remove unreferenced symbols from '&he program; reduce the use OI'
local labels; ,use shorter symbol names; segment the program to allow for
smaller assemblies (make the LINK program join them together).

MACRO Rev B - 101 - ..

DeJO IBFBIBICB HDDAL

••• UDdetiDed Operat~OD •••

Indicates an invalid op-code or directive was used or' a reference is made to.an
undefined macro. SpecificallI the Assembler searches its op-code table, its
directive table, internally aefined macros, external macro files. When the
op-code field does not match any of these it is determined to be an undefined
operation. ..

••• ODdet'ined Spbol •••
-

Indicates a reference was made to a symbol not defined.

- 108 - HlCBO lev B

APPBlDU C

COftIlOL BLOCK DBFDrrIORS

The following short diagram illustrates the bidirectional communication linkages
that are followed when a program (user or system) requests input or ,output toa
logical file. Non file input or output is similar except that the, program links
direc tly to the Logi cal Uni t Block. - , ,

MACRO leT B

rm-,' ' \1, "
File Control Block (PCB) '1\ .

\/
1aaip Control Block (ACB)

I \' /.
\ ,

Loglcal. UD1.t Block(LUB)

, ',1\" -
. \ ,

UD1.t Control Block (UCB) - '1\ \ ,
Praica1 ~ice DriTer , \

\ ,
I/O Port , '1\

\ ,
Peripheral])eric.

- 109 -

HAem DFBIIICB MUOlL

Unit Control Block (UCB)

Dnicea (8 - 31·)
. .

.===~================================~===~=============================== Byte Description
-~------------------~----~---------~--------~-~-------~-------~--~~-----00 Driver address .
02 Line length

0
03 P~e 'length

11 Class' code
05 Code Baud

05

06

----1 15
2110
3 134.5
JL· -. 150
5 300

Code Baud . ___ C8Z -=-___

6 600

~ --1200
2400

~o 4800
7200 .

CONIN device
ESC lead 1n received

g~

Bit 7 on indicates
Bit 6 on indicates
CR/LF delay
FF/EOS/EOL delay
Bit On Off

Code Baud

11 9600
12 . 1B200

r~ 1 00
2000

15 3600

(used by class

--- ---------~--~- --------------------'

09
OA
OB
OC
OD
OE
10
12
14
16
18.
1A
1C

1D
1F

7 Parity enable
6 Odd pari ty ,
5 8 bit' data
4 Syncronous
~' i~~ Eyity

No parity .
Even parIty
1 bit data
Asyncronous .
No page pari ty
No auto LF

1 No FF
o SDLC
Overflow count
CUrrent line
Reserved
Reserved

FF ability

Speed delay'
Device driver length'
Translate routine length
Input buffer address
Output buffer address
Translate routine address
Video base address/ i-o address
Video cursor address
Bit Output~busy

-----------o -DTR
1 IOFF/ION
2 ETX/ACK
3 -CTS
Work area (2 bytes)
Owner pin

Input-busy
.. _ .. -------
-DSR
IOFF/ION
ETI/ACK
-RTS

base

- 110 -

code files)

IIlCIO ley D'

lPPBlDIX c: COftIOL BI.OC(. DIPDrrIORS

Ddt Control Block (DCB)

Disk DeYicea (0 - T)

== Byte Description
--00 Driver address
02 Volume id label
OA Number of heads .
OB Number of cylinders
OD Number of sectors
OE . Directory size
10 Clusters available (blocks)
12 Interleave count
13 WP/IBM/Additional ~

Bit Meaning

1 Wri te protected .
6 Track 0 single density (IBM 2D)

1~
16

~b
19
1F

5-0 Number additional map sectors

Current cylinder
Head load delay
Step time delay
Settle time delay
Work area (6 bytes)
Owner (OFFH=public)

FlleControl Block (FCB)

--Byte Description
--00 ACB number (0 - 16).
01 File format and I/O mode

Bit On

Sequential
Direct
Indexed
Input .
Output .
Append - (sequential format only)
Reserved
File lock

Both bits 3 and 4 on means update with record lock.
Both bits 5 and 6 on means keyed format.

02-03 Address of I/O buffer
(same length as sector size)

laaiP Control Block (ACB)

== Byte Description
---~------------~-------00 . Drive code (0-1

1
255=all)

01-08 File name (trai ing blanks, if necessary)
09-10 File type (trailing blanks, if necessary)
11 .. Logical.device number, base 0

o = not assigned
1 = any disk
8 = console
10 - 23 .: logi cal ~ device number (i. e., PRINTER1, COMM2)

255 = dummy

. IIlCBO lev B, - 1'" -

MlCBO IIFBIIICB 'IWIUAL

12-1F System defined

Directol7 Control Block (DCB)

========================~=== Byte Description
--~---------~----------~----~~----------~~-~~---~---~----------~-~~-~--~ 00 Drive code (0-7 255=all)
01'708 File name (tra, iiing'blanks, if necessary)
09-10 File type ~tra1ling blanks, if necessary)

D1recto.,. 'Entry Block (DEB)

==.============================ Byte Contents
----------~~-------------------------------~~-~----------~-------------~ 00 File format:

11111111 - Deleted
00000000 = Empty - never used

, 10000000 = Synonym
••• 00001 = Relocatable
••• 00010 = Absolute
••• 00100 = Sequential
eQc01000 = Direct
• of) • 10000 = Indexed
.... 11000 = Keyed

01-08 File name.
09-10 File type. '
11-12 Record count.
13-14 Block count ..
15-16 Address ot 1st sector ..
17-18 Variable by file format:

IgK ' = Byte 17 is eight lab of rec len,
Byte 18 bO is msb of rec len; o1-b7 is key length

S = Record iength of longest record _
D = Allocated record length
A,R 1= Record length (sector length)

19-1B Date and time of update. r

1C Owner Id.
1D Shared from owner Id.
1E-1F Variable by file format:

I,K = Allocated file size
S = Disk address_of last sector in file
D :: Zero .
R = Program length
A = Origin',address

T1aer Event Block (DB)

==~=============== Byte Description . ,
--------------------------------------~-------------------~-----~--~~-~-00-01 Number of ticks remaining
02 Reserved
03 Partition id number of owner
04-05 Forward link to TEB (0 = node)

- 112 - MlClO ley B

lPPllDU c·: COftIIOL BLOCZ DIPDrrIOBS

Part:l.t:l.on Control Block (PCB)

===~============
Byte Description
--~---~-----------------------00-01 SCH address
02 Bank and activi ty flags:

Bit On

l
~

3-0

Not active
Waiting for disk
Waiting for interrupt
Waiting for resource
Bank number

BalIk Control Block (BCD)

=~== Byte Contents, /
---~-------------------~--------00-01 Nucleus origin (global bank)
02-03 Nucleus end + 1 -
04-05 Bank 0 low address
06-07 Bank 0 high address + 1
08-09 Bank 1 low address
OA-OB Bank 1 high address + 1

40':41 Bank 15 low address ..
42-43 Bank 15 high address + 1

He-entrant Progra Block (IPS)

==
Byte Contents
--00-07 Program 1 name, eight character, padded if necessary
08-09 -Program 1 star~ address
OA-11 Program 2 name, eight character, padded if necessary
12-13 Program 2 star~ address

46':4D Program: 8 name, eight character, padded if necessary
4E-4F Program 8 star~ address

Sector Lock Table (SLT)

==
Byte Contents
--

The following six byte entry is repeated as often as
necessary.

00 Drive and ACB number (OFF indicates end of table)

Bit Meaning

7 -3 ACB number
2-0 Drive number

01-02 Sector start address
03-04 Sector end address
05 Owner Partition id number (PIN)

HlCBO Bev B - 113 -,

MACIO IBFEBBICB MODAL
F1le Lock Table (PLT)

== Contents Byte , ~

---~--~~--------------------------------~------~-~~-~--~----~~-~---~~--~ . -

00
01-02
03

The following 'four byte entry is repeated a,s
necessary. "

Drive number (OFF indicates end ot table)
Sector number (from DEB)
Owner Part1tion id'number (PIN»

- 1111 -

often as

KlClO ley B

lPPBlDU D

PBOGUIIIDIG BUIIPLBS"
-

This appendix contains a listing of several working programs. The first example is
the-listing of the program VERIFY, which is an early version of the VERIFY" program
included w~,th the operating system. '

The second example is a USR subroutine to be used by a BASIC program. This routine
is not provided as part of the operating sIstem but IOU might wish to add it as it
is a useful routine t~ have available. The "basic function of the routine is to
translate a string of characters to, uppercase.

Example three is a sophisticated serial device driver (SIO)., This driver is
, probably more lengthy than the serial -driver on your system (although it may
actually be the, driver on your system) because it is, designed to interface to a
complex,- programmable, serial I/O integrated circuit. Included in the driver is
all the code necessary to analyze and support the various options that may be
specified with the, "" ATTACH command and the various primary devices that a serial
device may be u~ed as (CONSOLE, PRINTER, other). "

The forth example is a 'simple, parallel printer device driver. ,This driver
'performs the minimum tasks necessary to drive a parallel p~inter output port.

The fifth example is a disk driver fora hard disk drive. The particular drive and
controller that this driver was programmed for is relatively intelligent (performed
a lot of the detail work itself)" and included direct memory access, (DMA)
capability. ' " ,,-~

Example six is a terminal class code control character translator (SYSTEH.CLASS4:S
file). The example given is for a SOROC IQ 120 terminal. -

Please note the abundant use of comments in the examples. It is a good practice to
use a lot of comments, especially in assembly language codi~--no speeo or memory"
usage degradation occurs and you,' or another programmer, will appreCiate them at a
later date. "

Also note that most of the labels are coded on separate lines.
facilitates program maintenance.

IU.CIO Bev B - 115 -

This also-

II&CllO BIPBDICB HUOAL

Exaaple 1 - VBBIFr C~ncI

Addr Obj-Code Line ••• Source statement •••
1 CODE: REL

0000 2 VERIFY:,
0000 E5 ~ PUSH HL ; Save token loe
0001 113F01 LD DE

9
HELPL Point literal

0004 0609 ,i LD B, Len
0006 TESTH:
0006 1A

A
LD AtiDE) ; Ge~ mask byte

OOO~ BE CP () ; Com~are 000 200C 16 JR NZ,NOHELP ; BRI not HELP
OOOA 13 INC DE . Bump ,
OOOB 23 11' INC HL
OOOC 10F8 12 DJNZ TESTH ; Loop
OOOE 114801 1~ LD DE,HELPM ; Message
0011CF02 se 2 . ; Display
001~ AF 1~ XOR' A . Re = 0' ,
001 CFOO SC 0 ; QuIt
0016 l~ NOHELP: 0016 E1 POP HL ; Get loc-back
001~ 7E 19 LD A, (HL) ;. Get drive
001 47 20 LD ~5A Move
0019CF19 21 SC
001B 320501 22 LD (DRIVE) ,A ! Save drive
001E 3006 ~~ JR NC,OKFD , BRIF-ok
0020 11E 00 LD DE,MSG1 ; Else dis~lay err msg
002~ CF02 ~i SC 2 ; And qui - Re = 16
002 ~E10' LD A,16
0027 ·FOO ~b SC 0
0029 O~D:
0029 21B800 29 LD HL,QUIT Set System cancel-key
002C CF~9 30 SC 57 clean up ,
002E 21 100 31 LD HL,ERR Set disk error routine
0031 CF4! 32 SC 74
88~~ ~A0501 ~~ LD A, (DRIVE) ; Get drive 'code

00 7 ct09'
LD B,A ; Move

~g BC, 9 ; Mount drive
0039 CF15 SC 21 ; Get UCB
003B ES ~~ PUSH HL ; Save it
003C DDE1 POP IX ; Into IX
OO~E DD7E08 ~6 LD A, (1X+8) ; Get msb
00 1 07 RLeA ; Exchan~e bits 7-4
0042 07 41 RLCA ; with its 3-0
004~ 07 42 RLCA
004 0t ~~ RLCA
0045 E OF AND OFH Number surfaces
0047 B2FDOO ~i LD (SURF) gA Save
004A D6EOa LD L, ~ 1X+ ~ ; Get tracks/surface
004D DD7EO ~A LD AI' 1X+ ' ; 12 bit value
0050 E60F AND o H .. Mask ,
0052 67 49 . LD H A
005~ 220101 50 LD (tRACKS) ,HL Save number of track
005 ' DD7EOA 51 LD . A,(IX+10 Number sectors/track

. 0059 6F ' 52 LD L,A Move to HL
005A 2600 §~ LD H 0
005C 3AFDOO LD A: (SURF) Get number of surfac
005F SF 55 LD E,A Move to DE
0060 1600 56 LD DgO 0062 CF27 §A BC Multiply
0064 22FFOO LD {CYL) HL Store total sect/eyl
0067 ED5B0101 g6 > LD DE, (TaACKS) Get tracks/oyl
006B CF27 sc

{fOTLEN) ,HL
Compute sectldrive

006D 22F900 61 LD Total length
0070 210000 62 LD HL 0
007g 220301 ~~ LD ~TAACK)F£L Clear track/cyl
007 - 22FBOO LD SECT) , and sect/track
007~ CF12 g~ LOOP:

SC 18 CR/LF on console
"'- 007

007B OEOD ~~ LD C,13 Display CR only
007D CF05 SC 5 on console
OO~F 2A0301 69 LD HL, (TRACK) Get current track I
,00 2 113501 . 70 LD DE, WORK Convert to ASCII str
0085 CF11 71 SC 17
0087 AF 72 XOR A

- 116· - ' II&CIO ley B

APPBlDIJ: D: PBOG1WIIDG BUIIPLIS

0088 12 ti LD - {DE),A Mark end of string
0089 112E01 LD DE,MSG3 Display cur~ent track
008C CF02 . tg SC 2

Point to current track 008E 2A0301 LD - HL, (TRACK)
0091 23 t~ INC HL .' Add one
0092220301 LD {TRACK)tHL . Save -as next track I
009~ nA0501 ~6 LD A, (DRIV) . Drive code

,009 7 LD B A
0099 ~AFFOO . 81 ·LD A:{CIL) Cyl length'
009C F 82 LD C A
009D ED5BFBOO g~ LD Di,(SECT) Sector number
00A1 21C601 LD HL,BUFF
00A4CF;2 gg SC 50 Read
00A6 2A FOO LD· HL, (CIL) Get C{l len -'
00A9 19 gA ADD HL DE ;- Compu e next sect addr
OOAA 22FBOO LD (SiCT) ,HL ; Store
OOAD EB ~6 EX DE HL ; 'Put to DE
OOAE 2AF900 LD HL:(TOTLEN) ; Get total size
00B1 B7 9-1 OR A ; Clear CI .
00B2 ED52 92 SBC HL DE ; Test if done
00B4 20C5

§n
JR NZ:LOOP ; Loop if not

00B6 CF12 SC 18 ; Else CR/LF
00B8 95 QUIT: - 00B8 nA0501 96 LD . A,(DRIVE) Get drive code
OOBB 7

§A
LD B,A

OOBC CF09 SC 9 Mount it
OOBE AF 99 XOR A RC = 0
OOBF CFOO 100 SC 0 Quit
00C1 101 ERR:
00C1 F5 ' 102 PUSH AF Save all registers
00C2 C5 10~ PUSH BC

- OOC~ D5 10 PUSH DE
OOC Eg 10g PUSH HL

.00C5 F 10 . 10 OR '0'
00C7-- 32 801 10~ LD (ERRCD) ,A ; Save error code in msg
OOCA EB 10 EX DE HL ; Convert track, sect
OOCB 112401 109 LD DEiERRSECT ; for display
OOCE 44 110 LD ~~ OOCF CF10 111 SC
00D1 45 112 LD ~~L 00D2 CF10 11~ SC
00D4 3E48 11 . LD A 'H'
00D6 12 115 LD (DE) ,A-
OODA 13 116 INC DE
OOD 3EOD 11~ LD A 11 ;-Mark end of message
OODA 12 11 LD (DEMSA
OODB 110601 119 LD DE, G2 Display error mag
OODE CF02 120 SC 2
OOEO E1 121 POP HL Restore all register
00E1 D1 122 POP DE
00E2 C1 -.- 1~n POP BC
OOE~ F1 POP AF
OOE AF 126 XOR A Ignore
O{)Eg C~ 12 RET . ; Continue
OOE 4 726916 127 MSG1: DC 'Drive Code ~tlssing',13
OOEA 6~2043 F
OOEE 6 65204D
00F2 69137369
00F6 6E 70D

128 TOTLEN: 00F9 DS 2
OOFB 129 SECT: DS 2
OOFD 130 SURF: DS 2
OOFF 131 CIL: DS 2
0101 132 TRACKS: DS 2
0103 13~ TRACK: DS 2
010g \ 13 DRIVE: DS 1
010 4469736B 135 MSG2: DC 'Disk Error Code = '
010A 20457242
010E 6Fl220 3
0112 6F 46520

. 0116 3D20
136 ERRCD: 0118 DS 1

0119 2C205365 137 DC , Sector = '
011D 63746F72

,
0121 203D20

138 ERRSECT: 0124 DS 10

JIlCBO In'B - 117 -

IIICJlO 'BBnIIICB HAlUAL
-

Ot2E 54726163 139 MSG3: DC 'Track: •
0132 6B3A20

140 WORK: ' DS 10 01a5
00 D 141 CR: EQU' la OOOA ' 142 LF: EQU
01~F 48454C50 143 HELPL:, DC 'HELP , ,CR
01 Z 20202020 014 OD
014 46156E63 144,HELPM: DC- 'Function: Full disk read to check'
014C 74686F6E
0150' 6A2 4615
0154 C6C20 4
0158 6 ~36B20
01~C 1 ~6164
01 '0 20l 6F20
0164 6ti 86563
0168 6
0169' 20202020 145 DC disk errors 0 ',LF
016D 20202020
0171 20206469
0175 736B2065
0179 12726F72
01~D 132EOA

146 DC LF 01 0 OA .
0181 537a6E74 147 DC \ 'Syntax: VERIFY drive',LF
01'85 617 3A20
0189 2020~645
018D 524~ 629
0191 206 72 9
019§ 76650A

148 019 OA . DC LF
0199 576-86572 149 DC. 'Where:' ,LF
01,D 65~AOA

is the drive to be verified' 01 0 20 06472 150 DC , drive
01A4 69766520
01 A8 20206 al3
01AC 20146 5
01BO 20 47264 01B4 l66520l
01B8 F2062 5
01BC 20l665l2
01CO 6

4
669 5

01C4 6
01C5 00 151 DC ,0
01C6 "52 BUFF:
01C6 153 END

No assembly errors.

Cross Reference List

Symbol--- Value Ty~e Line... References •••
'-BUFF . 01C6 R 00 ',2 84
CR OOOD A 00 , 1 1~~ CIL OOFF R 00 131 81 86

96 DRIVE 0105 R 00 134 '22 33 79
ERR 00C1 R 00 101 31
ERRCD 0118 R 00 136 107

. ERRSECT 0124 R 00 1n8 104 . HELPL 01~F R 00 ~4n HELPH 01 8 R 00 13
LF OOOA A 00 142 145 146 147 148 149
LOOP 007B R 00 66 ~~ MSGl 00E6 R 00 127
MSG2 0106 R 00 135 1+4' MSG3 012E R 00 139
NOHELP 0016 R 00 ~k 9 OUD 002a R 00 23
QUIT OOB R 00 95 g~ SECT OOFB R 00 129 gi 88
SURF OOFD R 00 130 45
TESTH 0006 R 00 6 12
TOTLEN 00F9 R 00 128 61 S~ TRACK 0103 R 00 133 63 76 78
TRACKS Ol01 R 00 132 50 59

- 118· - IIlCIO leY B

- .APPBlDD D: PBOGIWIIIIIG- BUHPLBS

VERIFY 0000 R 00 2
WORK 0135 R 00 140 70

HlCBO Bev B - 119 -

HAClIC) BBFIIBICB HII1JAL

BDaple 2 - .. BASIC USB SubrouUne

Addr Obj-Code Line ••• Source statement •••

2 UPPER: - REL
0000 C30300 ~ ENTRYO:

JP ENTRYO ; Convert to upper case only
0003
OOO~ E5 ~ PUSH· HL. ;'Save current HL
000 IE LD A,(HL) ; Getstri~ length
OOO~ 7 ~ LD B,A ; Copy to B reg
000 oLOOP:
0006 2i 9 INC HL _ Point next character
OOO~ t 10 LD A, (HL) Get character
000 E61 11 CP ..,.la' . Test lowercase a
OOOA j807 12 JR CroNOTLOW Ignore if not lowercase
OOOC E7B ~~ CP , , Test lowercase z
OOOE ~OO~ JR NC,oNOTLOW Ignore -if not lowercase
0010 62 16 SUB (~) ~A Translate to u~percase
0012 77 LD Restore to strl.ng .
0013 ~~ .HOTLOW:
0013 10F1 DJNZ • LOOP -Repeat '
001~ E1 19 POP HL Restore HL register
001 20 STRIP:
0016 E5 21 PUSH HL ; Restore

22 \ .. The following code will stl' ,
~~ ; trailing blanks from the st

. 001k 4E LD A,(HL) Get string length
001 7 ~g LD B,A Copy to B reg
0011 85 ADD L Compute end address
001 3001 ~~ JR NC, .NOC
001C 211 INC H
001D 29 .NOC:
001D 6F ·30 LD L,A
00lE 31 .LOOP:
001E 7E 32 LD A, (HL) Get ending character
001F FE20 ~~ CP I , Test it space
00212003 JR NZ,eRET
002~. 2B ~g DEC HL Point prior
002 10F8 DJNZ • LOOP
0026 3~ .RET:
0026 1:8 LD kB 002b 1 b POP
002 77 LD (HL) ,A Store adjusted count
0029 C9 41 RET Return to caller
0000 42 END
No errors in program

- 120 - IfACBO ley B

APPBlDD D: PBOGIWIIDG EIAIIPLBS

Ezaaple 3 - Serial Device Driver
Addr Obj-Code Line ••• Source Statement •••

1
2 DEV17: REL relocatable

0000 C30FOO n JP ST get status
OOOS C35DOO g JP IN get byte
000 'C37FOO JP OUT put 'byte
0009 C39COO

A
JP INIT initialize

OOOC C35401 JP UNIN un-initialize
9

OOOF .' . 10 ST:
11

SIO status 12 get

OOOF ~A5C01 . ~~ LD A, (BUFI) fet count
0012 7 19 OR A est if any
001n F5 PUSH AF · save .,
001 DB13 ~~ IN A, (DA+2) ; fet port status
0016 CB~7 BIT 2,A ; est txrdy
0018 28 1 19 JR Z,.NOTRDY ; brif not ready
001A FD7E1C 20 LD A,(IY+28) · ~et enab type ,
001D CB47 21 BIT O,A ; TS/DTR
001F 202D 22 JR NZ,.ENAB1 ;
0021 CB4F ~n BIT 1 A
0023 2021 JR NZ, .ENAB2 brif DC1/DC3
0025 CB57 25 BIT 2,A test
0027 282F 26 JR Z, .RDY' brif not ETX/ACK
0029 ~A .ENAB3:
0029 F1 POP AF get in flags
002A Fa 29 PUSH AF re-save
002B 2 10 30 JR b·TEST3 brif no char rdy
002D F1- ' 31 Pop, else, throwaway
002E CD6600 32 CALL INCH get char
0031 E67F ~n AND 7FH mask
0033 FE06 CP ACK test ACK
0035 20D8 ~6 JR NZ ST brif not
0037 FD~61DOO LD (It+29) ,0 store
003B 18 2 . ~~ JR ST go around
003D • TEST3:

t2bIY+29) get busy OO~D FDAE1D ~6 LD
00 0 FE 0 CP wai t for ACK?
0042 2014 41 JR NZO·RDY brif ready
0044 1815 42 JR .N TRDY else, busy
0046 ~~ .ENAB2:
0046 FD7E1D LD A,(IY+29) fet busy flag
0049 B7 45 'OR A est .
004A 200F 46 JR NZb·NOTRDY brif busy
004C 180A ~A JR .R Y
004E .ENAB1 :
004E 3E10 49 LD A 10H ;
0050 D313 50 OUT (bA+2)2A ; reset ext/status int
0052 DB13 51 IN A,(DA+) · fet re, 0 ,
0054 CB5F 52 BIT 3,A ; est D R
0056 2803 ~n JR Z,.NOTRDY ;
0058 .RDY:
0058 F1 ~g POP AF fet input status
0059 e7 SCF urn on cy
005A 9' ~A RET return
005B .NOTRDY:
005B F1 59 POP AF get input status
005C C9 60 RET return .

61
005D 62 IN:

~n get byte from SIO
65

005D CDOFOO 66 CALL ST get status
0060 2004 ~~ JR NZtINCH brif some char
0062 CF6B SC 10 deactivate until interrup.t
0064 18F7 69 JR IN loop
0066 70 INCH: -
0066 C5 71 PUSH BC save regs
0067 D5 72 PUSH DE

HlCRO Rev B - 121 -

- "-

HACHO BBFDlllCE HDVlL'

0068 E5 +~ PUSH HL
0069 215C01 LD HL,BUFI ; point buffer
006C F~ tg, DI ; ~

006D ~ DEC (HL) ; decr lenfth ,006E E'
t~ LD c, CHL} ; get leng h

006F 0600 LD ~l.0 ; zero msb
0071 2t &6 INC ; ~oint first char
0072·7 ' LD A,(HL) ; oad it
0073 2805 81 JR ZE eMT ; brif buffer now empty
0075 545D 82 LD D ,HL ; copy register
007~ 23 g~ INC HL
007 EDBO LDIR compress the buffer
007A 85 .MT:
007A FB 86 EI ; turn on lnts
007B E1 g~ POP HL ; restore regs
007C D1 POP DE ;
007D C1 89 POP BC ;

'return - 007E cg 90 RET ;
91

007F . 92 OUT:
§~ put byte to device

OO~F CDOFOO §g CALL ST ; ~et status "
00 23804 §A JR ~90UT1 ; rif output ready
0084 CF4F SC ; snu (non interrupt output)
0086 18F7 99 JR OUT ; loop
0088 100 OUT1:

(IY+29) 0088 FD341D 101 INC ; bump count
008B FD~E1D 102 LD t~&IY+29) ; load
008E FE 0 10~ CP ; max?
0090 2006 10 JR NZI:0UT2 ; no
()092 ~E03 lag LD A TX ; else, send ETX
0094 ~11 10 OUT (:OA),A ; write "
0096 1 E7 10~ :JR OUT ; wait for ACI{
0098 10 OUT2:
0098 79 109 LD A C ; get char
0099 D311 110 OUT CDA) pA ; write
009B C9 111 RET ; return
009C- '112 INIT:
00ge FD229D01 11~ LD (UCB) ,IY " save ucb address I
OOAO ~E18 11 - LD A 1aH ;
00A2 31~ 11 g OUT (DA+2)SA ; reset device
00A4 FD7 05 11 LD At(!Y+) 0 get baud rate ,
00A7 E6FO 11~ AND o OH ; mask
0'0A9 47 11 LD B,A ; save enab
OOAA FD7E05 119- LD AF.(IY+S) ; load ,again
OOAD E60F 120 AND O.H ; mask
OOAF 2006 121 JR NZ,.SOMEB ; brif some
OOBt 3EOB 122 LD A,11 ; default to 9600
OOB~ BO 12~ OR B ; merge
OOB FD77 05 12 LD (1Y+5),A
00B7 " 125 .SOMEB:
00B7 E60F 126 AND OFH ; mask
00B9-FEOE 12~ CP 14 ; too bi~?
OOB~ 3806 , 12 JR C, .. OKB ; brif 0
OOBD 3EOB 1'29 LD A,11 ; else, 9600
OOBF BO 130 OR B ; merge
OOCO FD770S 131 LD (IY+5),A ;
00C3 132 .OKB:
00C3 E60F "13n AND OFH ; mask
00C5 3D 13 DEC A ; less one
OOC6 aF ~~g LD E,A ; save
OOC~ 7 ADD A ; times two
OOC 83 13~ ADD E ; times three
00C9 5F 13 LD E,A ;
OOCA 1600 1~9 LD D,O zero high
OOGC 219F01 " 0 LD HL,BAUD point table

, OOCF 1~ 141 ADD HL DE offset
OODO 0 25 - 142 LD C,CT.C ; 00D2 0602 14~ LD B,2 ; two bytes
00D4 EDB3 14 OTIR ; program it

·00D6 E5 14i PUSH HL ; save PQinter,
OOD~ F~ 14 D1 ; turn off ints·
OOD 3 08 14A LD· A 8 . vector/2 "

DE,RETI
,

OODA 11CA01 14 LD dummy addr

- 122 - nCRO ley B

. AP,aDIX D: . PBOGIWIIDG BUMPUS

OODD CF67 149 SC 103 ; put vect
OODF aC 150 . INC A ;
'OOEO F67' 15'- SC 103 ; put vect
00E2 11 CD01 152 LD DE, INTI ; input interrupt
OOES eC 15

n
INC A ;

00E6 F67 15 . SC 103 ; put vect
00E8 eC 155 INC A ;
00E9 . F67 156 SC 103 · , OOEB ~E02 15~ LD A- 2 . ; reg 2
OOED ~13 15 OUT (OA+2),A ;
OOEF ~ 10 169 LD A 010H · int vector

(:6A+2) ,A
,

00F1 313 ,1 0 OUT ;
OOFn E1 161 POP HL . ; get poInter .
OOF ~E04 162 LD A 4 ; wr 4
00F6 ~13 16~ OUT (DA+2) ~A _ .. ,
00F8 F CB087E 16 BIT -!, (IY+) ; garity enabl.e?
OOFC 280C 16~ JR , (NOPAR ; rif none
OOFE FDCB0876 16 . BIT 6 IY+8) ; test even/odd
0102 3EOD 16~ . LD AiOOO01101B ; even
0104 2006 16 r JR N .OUT ;
0106 3EOF 169 LD Abbo001111.B ; odd
0108 1802, 170 JR • UT ;
010A 171 .NOPAR:
010A 3EOC 172 LD A,0000110PB noparity
010C 17~ .OUT:
010C B6- 17 OR ~HL) merge clocks
010D D~13 176 . OUT DA+2),A

-010F 3 03 17 LD A 3 wr 3 (rev logic)
0111 D313 17~ . OUT (OA+2)AA ;
0113 FDCB087E 17 BIT 7, (IY+) ; paritr?
0117 3EC1 1~9 LD A,11000001B ; defau t
0119°2802 1 0 JR Z, .NP ; brif ok
011B 3E41 181 LD A,01000001B ;. else, 7 bits
011D 182 .NP:
011D FDCB1C66 18~ BIT 4, (IY+28) ; auto enable?
0121 2802 18 JR Z,.NOEN· ; no
0123 CBEF 185

.NOEll:
SET 5,A ; else, turn on

0125 186
0125 D~1l 18~ OUT (DA+2),A- ;

wr'1 (control) 0127 3 0 18 LD A 1 ;
0129 D~1e 189 OUT (:OA+2) 'A · , 012B ~ 1 190 LD A:00001i100B ; int mask
012D ~13 191 OUT (A+2),A . ;

wr 5 (trns) 012F ~ 05 192 LD A 5 ;
0131 ~13 19

n
OUT (:OA+2)AA ;

0133 F CB087E 19 BIT 7 (IY+)' test rarity
0137 3EEA 199 LD A:11101010B defau t
0139 2802 19 JR Z, .NTP br1f ok
013B 3EAA 19b LD A,.1 010101 OB else parity = 7 bits
013D 19 .NTP:
013D D313 199 OUT (DA+2),A
01~F FB 200 EI ; allow ints now
01 0 AF 201 XOR A ;~leave pointing to 0
0141 Dti13 202 OUT ~DA+2) A · ,
014~ F 711D 20~ LD IY+29~,A ;
014 FD771E 20 LD IY+30 A · , 0149FDCB1C6E 2°6 BIT 5, (IY+2A) ; test enable 2
014D C8 20 RET Z ;.
014E 3EFF 20~ LD A OFFH · (iY+30),A

,
0150 FD771E .20 LD ; set sw
0153 C9 209 RET ; return

210
0154 211 UNIN:
0154 AF ·212 XOR A
0155 D31~ 21~ OUT (DA+2),J\.
0157 3E1 21 LD A

O
OO011000B reset channel

0159 D313 215 OUT (A+2),A
015B C9 216 RET return

217
015C 00 218 BUFI: DC ° buffer length
015D . 219 DS 64 the buffer itself

- 220 /

0011 221 DA: EQtJ. 11H port address
0025 222 CTC: EQU 25H
019D 22~ UCB: DS 2
0011 .22 DC1: EQU 11H

MACRO Bev B - 123 -

HACRO· RBFDIIICB HDOAL

0013- 225 DC3: EQU 13H
0006 226 ETX: EQU O~H 000 22~ ACK:' EQU o H

22
019F - 229 BAUD:

- 019F 076680 230 DC 7,102 80H ; 75 = 32x16x102.4 timer
01A2 074680 231 DC 7, 70 ,~OH ; ,110 = 32x16x699.8181 timer
01A~ 07S980 232 DC 7757 f80H ; 13405': ~2x16x57.1003 timer
01A 47 OCO 23i DC 4 H, 28 OCOH ; 150 = 6 x128
01AS 4740CO 23 DC 47H,64,QCOH ; 600 = 64x64
01AE 4720CO 236 DC 47H,32,OCOH; 00 = 64x32
01Bl 47l0CO 23 DC 47H~1660COH ! 1200 = 64x1~
01B4 4708CO 23~ DC 47H,8, COH ,2400 = 64x8
01B1 4104CO 23 DC 4'7H,4 , OCOR ; 4800 = 64x4
01BA 470580 2~9 DC 47H,5,80H ; 7200 = ~2X503333
01BD 4702CO 2 0 DC 47H,2,OCOH ; 9600:: 4x2-
01CO 4701CO 241 DC 47H,1,OCOH ; 1~200 = 64x1
01C3 470240 242 DC 47H,2,40H ; 3 400 = 16x2

24~ 24
01C6 245 SIORET:
01C6 C1 246 POP BC restore regs
01C7 FDE1 24A POP II
01C9 F1 24 POP AF restore a,flag
01CA 249 RETI:·
01CA FB 250 EI turn on ints
01eB ED4D 251 RETI return

252
01CD 25~ INTI:

25
25~ 25

service receiver interrupt

01CD FB 25~ EI turn on ints'
01CE F5 25 PUSH AF save reg A,F

- 01CF FDE5 259 PUSH II
01D1 FD2A9D01 260 LD II, (ttCB) ~ point to ucb
01D~ C5 261 PUSH BC , save B,C
OlD tiE01 262 LD A 1 . ; read reg 1
01D8 313 26i OUT (i>A+2)2A ;
01DA DB13 . 26 IN A,(DA+) .; get second status
01DC 47 266 LD B A ; save it '
01DD DB11 26 . IN A'~DA) ; §et char
01DF FDCB086E 26~ BIT 5' 1Y+S) ; bit char
01E3 2002 26 JR NZ1·EIGHT ; {es 01E5 CBBF 269 RES 7, . urn off parity ,
01E7 270 .EIGHT:
01E7 4F' 271 LD C,A save char

272
27~ test parity
27

parity even 01ES CB60 275 BIT 4,B test for
01EA 2806 276 JR Z, • NOPE brif not
01EC OE3F 27~ LD C '?' ; replace char
01EE 3E30 27 LD A'30H ;
01FO D313 2~9 OUT (bA+2),A ; reset parity error
01F2 2 0 .. NOPE:
01F2 AF 281 XOR A reset to zero
01F3 D31~ 282 OUT (DA+2),A
01F5 CF6 28~ SC 102 translate input char
01F7 ~8CD 28 JR C,SIORET ignore it?
01F9 F 285 LD C A save char
01FA tA~C01 286 LD ti(BUFI) fet prev count
01FD E 0, 28~ CP est full
01FF 28C5 28 JR Z,SIORET full?, ignore
0201 289 ROC:

see if enab2 0201 FD7E1E 290 LD A, (IY+30)
0204 B~ -291 OR A
0205 2 14 292 JR Z, • NOENAB not
020~ 7~ 29~ LD AtC 020 . E 7F 29 AND 7 H
020A FE11 295 CP DC1
020C 280A 296 JR Z~.CTLQ
020E FE13 29~ CP D 3,
0210 2009 29 JR NZ,.NOENAB
0212 299 .CTLS:
0212 FD771D 300 LD (II+29),A set the busy sw

- 1211 - DeJO Rev B

APPBlDIX D: PBOG~ EUIIPLBS

0215 C3C601 301 JP- SIORET
0218 _ 302 .CTLQ:
0218 AF 30~ XOR A reset
0219- 18F7 30 . JR .CTLS turn off busy sw
021B 30g .NOENAB:

t.D 021B 79 30 A,C get this char
021C ~g~ R2: I>E 021C D5 PUSH save DE and HL regs
021D E5 309 PUSH HL
021E 215C01 310 LD HL,BUFI ; ~oint buffer
0221 F~ 311 DI ; urn off ints
0222 3 312 INC (HL) ; incr count
022~ 5E 31~ LD E,(HL) ; load it
022 1600 31 LD D 0 ; zero high
0226 1~ ~~g

ADD Hi.,DE ; point next
022~ F EI
022 77- l~ LD (HL) ,A store the character
0229 E1 POP HL restore regs
022A D1 319 POP DE
022B C3~601 ~20 JP SIORET return

21
022E 322 END

No. assembly errors.

MACHO Bev B - 125 -

nelo RBFEUIICB MOUAt

'Bxaaple , -' Parallel Printer Deri.ce Dr1;ver

Addr Obj-Code Line ••• Source Statement •••

0000
0000 C30FOO
0003C31900
0006 C31AOO
0009 C31900 oooe C32300

OOOF
OOOF DB01
0011 E601
0013 2002
0015 31
0016 C9
0017
0017 AF
0018 C9

0019
0019 C9

001A
001A CDOFOO
001D 30FB
001F 79
0020 D300
0022 C9

0019

0023
0001
0000
0001

1 REL
2 BEGDEV:
3 JP STATUS -Return status
ll, JP INPUT ; Get input from-device
5 JP OUTPUT ; Put output to device
6 JP INIT ; Initialize driver
A " JP DEINlT ; Deini tialize driver

9'; Status routine - o~tput only device
10 •
11 STATUS:
12

~~,
15
16
~l . BUSY:

IN
AND
JR
SCF
RET

lOR
RET

A.r..(STATO)
S-.rAMSK
NZ,.BUSY

A

Get device status byte
Test for busy
BRIF not ready

; Turn on carry flag
; Return with Z and C set

Set Z flag - reset C flag
19
20 ;
~j ;_ Input routine - output only device
22 ; --
2
2
3 INPUT:
4 RET

25 ; -
26 ; Output routine

~A bUTPUT:
29 CALL STATUS
~~ i~ ~CCOUTPUT
32 OUT (DATAO),A
~~ RET
~5 Initialization routine
36 &

31 iN!T: EQU INPUT
38 ;
39 ; Deinitialization routine
40 •
41 DEINIT: EQU INPUT
42 STATO: • EQU 1
43 DATAO: ' EQU 0
.4~ STAMSK: EQU 01
45 END

- .-
Get device status
Loop till ready
Copy character to A reg
Output the character
Return to caller

No initialization needed

No deinitialization
Printer status port
Printer data port
Mask to get status bit

No assembly errors.,

Cross Reference List

Shmbol- - Value ~pe Line ••• References ••• EGDEV 0000 C 00 2
.. BUSY 0017 C 00 17 14

DATAO 0000 A 00 43 32
DEINIT 0019 C 00 41 l INIT 0019 R 00 37
INPUT .0019 C 00 ~~ 4 37
OUTPUT 001A C 00 5 30
STAMSK 0001 A 00 44 13
STATO 0001 A 00 .42 12
STATUS OOOF C 00 11 3 29

- 126 - , MACIO lev B

Addr Obj-Code

0000

0000 C30COO
0003 C31700
0006 C31900
0009 C32000

OOOC
OOOC E603
OOOE 327FOO
0011 3E07
0013 328AOO
0016 cg

0017
0017 AF
0018 cg

0019
0019 328300
001C 3E60
001E 1805

0020
0020 328300
0023 3E01

0025
0025 DDE5
0027 DD217BOO
002B DD7701

002E DD7105
0031 DD7202
0034 DD7303

0037 DD7406
003A DD7507

003D C5 _ ,
003E D5
003F E5 -
0040 CD7700
0043 E1
0044 D1
0045 C1

0,046 DD4E05

MICRO Bev B

IPPBlDIX D: PBOGIWIIDG BI.IIIPLBs
Ezaaple 5 - Disk Device Driver

Line ••• Source Statement .**
2 N$DISKIO: REL

~ ENTRY DISK
5

. 6 DISK:
7 ;
8 ; transfer vector
9 ; ;

10 JP
11 JP

·12 JP
13 .JP
111 ;
15 ; s~lect drive
16 •
1~ SEL: AND

LD .

SEL
RES
READ
WRITE

~DESC+4),A
A 7 .

mask
store
force controller to select

19
20
21
22

~~ , rez.ero

LD
LD
RET

O'>ESC+ 15) , A
; return

25 •
26 bs:
~~
29;
30 ; read
31 •
3-2 bAD:"

~~
.~~: .
37 ; write
38 ; n6 WRITE:
41
42 ;
43 ; common
44' •

. 45 60M:
46

ftA

XOR
RET

LD
LD
JR

LD
LD

A

(DESC+8),A
A O'
COM

(DESC+8),A ;
A,1 ;.

PUSH IX
LD IX DESC
LD (IX+1) ,A

49
50 store head, cyl and sector
51

§5~ tE ~ii:~l:~
4 LD ~IX+3 ,E

§g i-store mem address

LD
LD

(IX+6) ,H
(IX+7) ,L

§A
gO ;
61 ; perform operation
62 ;

~n
65
66

~~
69
70

PUSH
PUSH
PUSH
CALL
POP
POP
POP

71 restore regs
72
73 LD .

BC
DE
HL
DESC-4
HL -
DE
BC

C,(IX+5)

121 -

not implemented

store
get cmd
go common

store
cmd

save ix

store

sector
msb cyl
lsb cyl

msb mem
lsb

save regs

jump to vector
restore regs

sector

IIlCBO· REFDBlCB HDDAL

0049 DD6606 1ll LD H, (IX+6) mem
tg ;

test for error ;

004C DDkEOO tb ;
LD ti(lX) get status· ;

004F DD1 ~6 'POP ; restore ix reg
0051 B~ OR A ; test
0052 C 81 ' RET Z return no error

82
g~ decode the error

0053 CB6F gg BIT 5 A ' ; test illegal
0055 2018 JR ~flERR5 ; brif is
0057 CB5F ~A BIT ; test format error
0059 200C JR ~ZlERR3 005B CB51 89 BIT test Checksum
005D 200C 90 JR NZAERR4
005F CB67 91 BIT 4 t test seek
0061 2010 92 JR NZ,ERR7

§~ else, disk fault - overrun
-95

0063 3E01 96 LD AA1 0065 180E §A ERR3:
JR E R

0067
0067 3E03 99 LD AA3
0069 180A 100 JR E R
006B 101 ERR4:
006B 3E04 102 LD AA4 006D 1806 10~ JR E R
006F 10 ERR5:
006F 3E05 105 LD AA5
0011 1802 ,106 JR E R
0013 10b ERR7:
0073,3E07 10 LD A,7
0075 109 ERR:
0076 B7 110 OR A set nz
007 C9 111 RET return

112 ; .
11~ ; descriptor follows

0017 CD40F4
11 ;
115 CALL OF440H ; prom address

007A C9 1,.6, RET ; return
007B 00 11b DESC: DC 0 ; status
007C 00 11 DC 0 ; command (0=read,1=write)
007D 00 119 DC 0 ; msb track
007E 00 120 DC 0 c lsb track ,
OO~F 00 121 DC 0 ; head
00 0 00 122 DC 0, ; sector
0081 00 12~ DC 0 ; msb mem addr
0082 00 12 DC 0 ; lsb mem addr
008~ 00 125 DC O· ; sector count
008 00 126 DC 0 c· unit ,
0085 01 12~ DC 1 ; option
0086 00 12 DC 0 . max head ,
008~ Os 129 DC 1000.SHR.8 ; max track mab.
008 E 130 DC 1000oAND.OFFH ; max track lsb
0089 40 131 DC 64 ; max sector
008A 01 132 DC 7 ; curl' unit
OOBB 00 13~ DC o ; curr track msb
008C 00 13 DC o ; curr track lab
008D 00 1.35 DC o ; error count
008E 00 136 DC o ; err track
008F 00 137 DC o ; err track
0090 00 138 DC o ; err head
0091 00 139 DC 0 err sector
0092 FF 140 DC OFFH bad track table

141
0093 14.2 END
No assembly errors.

- 128 - IIlClO ·Bev B

APPBlDIX D: PIOGIWIIDG BuHPLBS
I

Bxaaple 6 - Class Code Conversion-

TITLE 'Class Code 4 (SOROQ IQ) Term~nal Conversion'
;
; Entry parameters:
;

MACLIB

INIT
DCA
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

END

>ASM CLASS4 (/ SYSTEM

>MACRO CLASS4

>LINK CLASS4 (SYSTEM

; A - control character to translate·
; B - console device number
; C -, control character to translate

H - cursor address column number
L - cursor address line number

6LASS ; Get MACRO definitions

; Translate value 11 to 26 (UP ARROW) .
; Translate value 12 to 6 (RIGHT ARROW)
; Translate value 30 to 1 (HOME)

OBH,1AH,OCH,06H,1EH,01H
4 "i Use class 4 ~ursor controls
~£~A R~C . , .• , SCH
EOS,ESC, 'ft ,8~H
EOLtESC, 'T' ,8CH
LEF BS
RIGHT,FF
UP,VT
EU,ESC1.+,8CH

~g~F~~C~~~H
FON ~C ~6H
FOFF,ES~ 27H
BON ; Function not availabl~
BOFF ; Function not available
RVON ; Function not available
RVOFF ; Function not available
ULON ; Function not available
ULOFF ; Function not available

>ATTACH CONSOLE SI01 (B19200 C4 FF6

MACRO Rev B - 129 -

MACRO ·IBFBDIICB MODAL-

TITLE
TAPEDRV: REL-

lxaaple 1 - Tape DriYv Hodel

. 'Tape Driver Model'

;, '

; fake transfer vector

~AKESEL; XOR A
RET
NOP

FAKEIH: JP FAKESEL
FAKEOUT: JP FAKESEL
FAKEIHIT: JP FAKESEL
FAKEUNIN: JP FAKESEL
o , -

e now the cmd vector ! - ---
TAPEDRV:

enter with a = cmd code

set nc,z
return
filler

80 :: select drive and track

· ,
;
; · ,

81
82
g~
gg
~b
89

I

= = = = = = =
::
:;

rewind
read
write
back space record
forward space record
write fap (erase)
write. ape mark
stop the tape
return tape stat~s ;

;
; return codes:
;
; · /.,
;
! ,
; · ,

00 Z success
01 HZ not ready ,
02 HZ write protected
03 HZ tape mark
all HZ crc error _
05 HZ end of tape -
06 HZ begin of tape
07 HZ data. late

! ••••••••••••••••••••••••••••••• *.* •••••••••• * •••••••••• , .

;
; test cmd code

_CP
RET
CP
CCF
RET

80H
C'
89H+1

C
;
; dispatch to proper· routine
;

SUB 80H ;
~USH HL ;
PUSH DE ;
ADD A ;
LD E,A ;
LD D 0
LD HL,DISPTAB ;
ADD HL-DE ;
LD EJ(HL) ;
INC H1.
LD DJ.,(HL)
EX Dt;,HL
POP DE
EX (SP) ,HL
RET

;
; dispatch table · DISPTAB:

min
return no' good
max
-invert
return no good

strip orf msb
save hI -
and de
times two
to de

point table
sum
load address

msb
to hI
restore de
~et hI -
Jump indirect

-- - 130 -

DC RDB
DC WRB
DC BSR
DC FSR
DC GAP
DC WTM
DC STOP)
DC GETST)
SUBT 'Select unit, track'

SEL:

on entry:
D = unit (0 - 3)
E = track (0 - 3)

••• INSERT CODE HERE
SUBT 'Rewind

REW:
;

•••
routine'

; rewind tape to loadpoint

possible errors:
00 success
01 not ready.

;
; ••• INSERT CODE HERE .•••

SUBT 'Read block'
RDB: .
;
; on entry:
; D.E = . block length >= 80
; HL= buffer location · / ~' , possible errors:
; 00 success

01 not ready or not select
03' tape mark

, O~ crc
05 eot (not an error)
07 late

••• INSERT CODE HERE •••
SUBT 'Write block routine'

WRB: . · , ; on entry:
; DE = block size (min 80)
; HL = buff address
;
; possible errors:
; 00 success'
; 01 not ready
; 02 write protect
; 04 crc error
; 05 eot (warning)
; 07 late
;
; ••• INSERT CODE HERE •••

~UBT 'Backspace record'
BSR:
;
; backspace one record · ; .••• INSERT CODE HERE •••

SUBT 'Forward space record'
FSR:
; ••• INSERT CODE HERE •••

SUBT 'Write gap'
GAP:
; ••• INSERT CODE HERE •••

WTM:
SUBT 'Write tape mark'

; ••• INSERT CODE HERE ••• -
SUBT 'Stop tape'

STOP:
; ••• INSERT CODE HERE •••

MICRO lev B - 131 -

MACHO BBFBIBICB HDUAL

GETST:
SUBT'Get tape status'

;
; return coded status in A:
;
;
;
;
;
;
; .

bit

l
~
3

meaning if high
selected
ready
BOT
EOT .

,
, ;

2
1&0

write protected
busy
max number of tracks (base zero)

;
; D E -,

has last unit selected
has'last track s~lected

END

- 132 -, MACHO Bev B

lPPBlDD B

ClWll.CDB SET

j== = \ = Msni=='o==i = =, == i= = 2 = = i = =3 = = i== 4= =i = = 5 = = i == 6 ==i==7= ==
ILSD \\ I 000 I 001 I 010 I 011 I 100 I 101 I 110 I 111
1--l-o-oooo-I-NUL-1-DLE-1-sp--l--o--1--@-~1--p--1--'--1--i)--
I 1 0001 I SOH I DC1 " I I 1 I A , Q I ,a I q
, 2 0010 I STX I DC2 I n I 2 I B I Rib I r
I 3 0011 I ETX I DC3 I = I 3 I CIS I CIS

I------------------------~------------------------~------I 4 0100 i EOT I DC4 I $ I 4 I D I Tid I t
t g g~~6 I i~~ 1 ~~~ rl 1 -I 6 I ~ I ~ , ? I ~ I 7 0111 I BEL ! ETB I " ! 7 ! G ! wig ! w ,---------------------------.-----------------------------
1 8 1000 ; BS I CAN; , ; 8 IH 1 X I' hi- x ,
I 1 ~g~6 I ~i I ~~B I , I ? I J r! I 3 I ~ I I B 1 011 ! VT ! ESC! + ! ; ! K ! . [! K I { I
,--I I C 1100 I FF I FS I " ; < I L i \ ill J I
1 D 1101 I CR I GS I I' - 1 M , 1 , m I 1. I
'I E 1110 I SO ,RS I • I ?> \ IN, I n I DEL I
I F 1111 I SI I US I / I I 0 I I 0 I :

==~=

A more complete character set chart is available in the OASIS System Reference
Manual.

MACRO Bev B - 133 -

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133

