
OPERATING SYSTEM SORWARE

MAKES MICROS RUN LIKE MINIS

DYNAMIC
DEBUGGING
REFERENCE
MANUAL

rp = =: ::~= _= ii ii; :=
~ SYSTEMS, INC. -

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

DYNAMIC
DEBUGGING
REFERENCE
MANUAL

Second Edition

Revised

Documentation by: C. P. Williams
Software by: Timothy S. Williams

_ 7700 EDGEWATER DRIVE SUITE 830

;;; OAKLAND, CALIFORNIA 94621 USA

PIB,ACB

This manual describes the. OASIS assembly language Debugger.; It provides
sufficiently detailed information necessary to the use of this Debugger in
conjunction with the OASIS Operating System.
This manual, named DEBUG like all OASIS documentation manuals, has the manual
name and· revision number (It applicable) in the lower, inside corner of each page
of the body of the manual. In most chapters of the manual the last primary subject
being discussed on apage will be identified in the lower outside corner of the
page.

/

Related Documentation

The following publications provides additional information that may be required in
the use of the OASIS Debugger:

OASIS Spte.. I~.reace Mam'a!

OASIS Hl.CIO las..,ler ~arence Mamal

- 111-

TlBLI' OF COlT_iS

SeOU-OIl

CHAPTER 1 INTRODUCTION •••••••••••••• 0 • 0 ••••••••••• "0 ••••••••••••••••• o· • 0 • iii ••••

1 iii 1 DEBUG Prompti~ Character ••••••• III ••• III • III •••••••• III () 41 co' III, ••

1.2 System Control Keys ••••••••• ,.O •••••••• · •••••••••• O' O.~ •.• IIICDO ••

1.3 Protected Memory •••••••••••••••••••••••• 000 •••••••••••••••• 0000.11101110 ••

1 04 DEBUG Commands 0 III •••• <'> 0 co • 0 e •••• " III e,,, 0 <) 0 0 e 0 0 • 0 • " 0 " " ••

1.5 Numeric Expressions .G01> •••••••••••••••••• 0 •• eo ••••••• OOO."O ••• 0.OO •• 000

CHAPTER 2 DEBUG CO~NDS .0.0 0 0 .. III • III • e " III ••• CD <21 III <PI III ••• III III 0 ••• " 4> 0 •• 0 III II 0 •• 0" e • 0 <21 • 0 GO.

2 III 1 Assemble Command,. 0 t ... 0 " co co • 0 " 0 • 0 • 4> eO 0 " co 0 .. 0 • 0 • 0'0 0 ... o·.! ... 0 0 .. III .' eo ,,' 0 0 ••

2 0 2 Base Command "e 0 •• ~ 0" ., 01> " 0 0 0 • 0 0 fa .. 0 ... " • 0 0 G G a e <9 G co;~ •• 0 -0 .. G G .. " • e e 13

2 .. 3 Calculate Command •••• eOQoae •• " O.O.O G.eo ~e o"eo

2 .. 4 Dump Command o. 0 G • " 0 6 e e G e 0 13 0 0 0 e <21 ... " Q 0 •• Q •• 0 «> .. 0 " •

2 G 5 Fill Command eo .. " G 0 0 .. <:) 0 • e G' ' 0 .. Cil .. «> e 0 .. e .j • • " G .. e 0 G GOO III eo

2 .6 Go Command Q 0 " e • 0 " e III • Cae <:) ••• 0 0 •• e (I " ... (I 0 •• " ••• e " " ... <I) ... 0 0 e <:) <» •

2 G 7 Inpu t Command (;) e • Q e • III <:) e •• 0 0 • e •••••• ., ... 0 ••.•• " G •• 0 ~ G • co 0 ••• e 0 0 " '" • "

2 .. 8 List Command G G •• e e ... Q •• e • e ••• e " • e e •• ~/'. ·e· 0 " III •••

2.9 Load Command ••• 0 0 e ... o •• 0 ... 0 ... 0' ••• 0 • " .. " 0 .. 0 " .. " •••••••• 0 •• 4>, ••••••••

2 e 1 0 Move Command • III ••••• fl 0 •••••••••••••• fl " G • 0 ... 0 ••• q 0 i~ " • e •••••• III •

2.11 Output Command •••••••••••• O •• fI •••••••• lllfI ••• OO •• <1 •••• .,O •••• OO 011l ••••

~: 1 ~ ~~~t La~~~~r~~? . : : : : : : : : : : : : : : : : :: ::: : : : :: : : : :,::: : : ::: : : : : : :: ::: : : ::
2.14 Quit Command
2.15 Read Disk Command, •••••••••••••••••••••••••
2.16' Register Command ••••••••• "0, ••••••••

2.17 Save Program Command ••••••••••••••••••••• 4> ••••• ".0
2.18 Search Command •••••••••••••• " •••••••••••••••••• e oo •• eo e

2. 19 Disk Select Command e.' •• '0 •••••••• 0 " • e ••••• 0 ••• " 0 ••• .,

2 .. 20 Set Memory Command ... e •••••••••••••••• " •• 0 e 0 0 III " •• 0 CII ••••••••••

2.21 Trace Command ••••••••••••••••••••• ., •••• " •• .,00 •••••••••••••• 0 •••••••••

2.22 Trace Call Command ••••••••• " •••••••••••••••••• e ••••••••• o ••••••••••••

2.23 Verify Memory Command •••• .,00,0 0.0 ••••••• 0 •••••••••••
2.24 Write Disk Command e •••• "."O fI.OOflfl oe •• o •••••••••

2.25 Immediate Instruction Command • .. • • • • • o. • • • .. • • • .. <» 0 0 • • 0 e .. • • • " • " • fI " • • • <II • " •

APPENDIX A
APPENDIX B

APPENDIX C

USING BASE REGISTERS •• ".' •• e •• .,oeoo.oooofl •• oo ••• oo.oeo •• eeo ••• oe •••

DEBUGGING DEVICE DRIVER ROUTINES •• "O •••• oo.o •••••• ~.o ••• ~" ••••••••

DEBUG COI-D4AND SU~RY • eo _ ••• ' •• 0 ••••••• 0 ••••• CD e G I) 0 ••••••• ' •••••

- 1'Y -

1
1
1
1
2
2

3
3
3
~
Ii

~
i
7
7
7

~
8
8

~
10
10
10
11
11

13

15

16

CIIAPIBB 1

IIDOJ)UcrICil

The DEBUG command allows you to perform on-line, interactive debugging' of a
program. The format of the DEBUG command is:

HBUG
When this command is executed the DEBUG program is loaded into high memory and
executed. When the DEBUG program is first executed it will display on the console:

OASIS Z80 Debugger version n.n

To exit DEBUG, use- ESC-Q; to re-enter, use ESC-D.
Type "HELP" to list command syntax.

1.1 DBBUG PrC.pt1Dg Cbaracter

When the DEBUG command is in control the equal sign (=) character will be displayed
at the left side of . the console. This is the prompting character for the DEBUG
program and indicates that the DEBUG program is waiting for operator input~

Once the Debugger has been loaded the user may return control to the CSI by using
the GO command. When the user wishes to re-enter the Debugger he must type the
System Debug-key. This will transfer control to the D.ebugger and the program·
counter (PC) will be displayed.

1.2 '.!pte. Control K.,.a

When the Debugger is in control the System Debug-key is inoperative as this would
cause a breaK- into the Debugger itself. Instead, the Program Cancel-key may be
used to quit the current operation of the Debugger and return to the Debug command
mode. For example, a Trace of several thousand instructions can be aoorted by
typing the Program Cancel-key.

The System Cancel-key should be used to quit the program being debugged, return
control to the CSI but leave the Debugger loaded in memory. The Debugger may be
re-entered by using the System Debug-key.

It is not advised that you use the GO 0 command to return control to the CSI
be.cause the program. that was being debugged may have set a QET to perform required
clean-up duties. The best procedure for returning control· to the CSI is to issue a
GO command followed by the entry of the .System Cancel-key. .

1.3· Protected ite.ol7

The Debugger will not allow you to examine or change memory areas outside of the
user area. (The user area is the contiguous memory area trom· the end of the
NUCLEUS to the beginning of device drivers, the Debugger.L etc.) When an attempt is
made to access these areas with the commands: ASM -DU~, FILL LIST, MOVE, READ,
SAVE, SEARCH, SET, TRACE

l
VERIFY, WRITE, the Debugger will not perform the

operation but instead disp ay "Protected Area". .

DIBUG Bey B - 1 -

DBBUG BBPBlDCB ·MDUAL

1. _ DBB1JCI Ct: ...

The commands available to the ·user when . the DEBUG command is in oontrol ot the
system are:

ASH addr
~ASE [num[~org]] I A

kALC expr ops:+,-,*,I,\,&,I, ,<,>, ,-,@)
UHF [addr
ILL start,end1value o [addr/*[,orkcoo]

PUT port[~start,end] _
1ST LaddrJ

AD name [addr] _
¥E start end,to
TPUT port,.lvalue/start, end]

AGE .
INT
T

Wr.oiAD sect,addr[,count]
~G [name value]
SAVE name start, end
'S!'ARCH start ,end, valu~

I
EeT drive

'addr[lvalueoo.]
ACE [addrl,][count]]

RCALL
IF! start, end to

RITE sect,addrf,count]
~Z80inst (immediate execute)

The above list of commands' comprises the HELP message and will be displayed in
response to the user typing HELP.

1.5 8uaeric Exp 1ou

The OASIS DEBUG utility allows the user to use numeric expressions wherever a
numeric value may be used. Numeric expressions may contain numeric literals
(assumed hexadecimal base), string literals (one or two characters enclosed within
quotes), and arithmetic and logical operators (listed under the CALC command).
Numeric ex~ressions in the debugger have no hierarchy: strict left to right
evaluation ~s performed.' .

The indirect address operator (@) may be used in one Of two wa~s: prefix and
postfix. When the operator 1s used with prefix notation i.e., @6000) it means
that the following numeric literal is the address of the value to be used. When
the operator is used with postfix notation (i.eo, 123+6000@) it means that the,
previous numeric expression is the address of the value to be used (123+6000@ is
identical to @6123). '.

-2- DEBUG BeY B

2.1 Aaaa.ble Ccppand

CIW'rBI 2

DEBUG CCIIIIDDS

The DEBUG ASM command allows the user to assemble ZSO code directly into memory
without using the system assembler. The format of the ASM command is:

J.SH (addr-exp>

Where:

addr-exp Indicates the address that the assembled code is to be saved at.

When the ASM command is executed the Debugger will prompt the user with the address
that the next instruction will be saved at. The user then may type the ZSO
assembly code that_ he wishes assembled. The opcode and operand must be separated
by at least one space. Labels are not allowed. Only one instruction per line is
allowed. When the user is finished entering code a carriage return with no
instruction preceding it will transfer control out of the assemble command.
2.2 _ Cc==eDd

The DEBUG BASE command provides a means of debugging relocatable programs. The
format of the BASE command is:

)lASE [<11>[t (adclr-ezp>]]

Where:

n Indicate the "base register" number to be used. Base register numbers are
in the range of 0 - S. When the Debugger is first entered base register 0
is set with a base address of OOOOH. Omitting the base register number
will cause the display of all base registers defined with an asterisk (*)
by the register number currently in use.

addr-exp Indicates the address that the base register indicated by the preceding
number is to be set to.

For information describigg the use of base registers see the appendix "Using Base
Registers" at the back of this manual.

2.3 Calculate COPPanct
The DEBUG CALC command allows the user to perform hexadecimal arithmetic and
logical functions on hexadecimal numbers. The format of the CALC command is:

[CALC]

Where:

nnnn Indicates a number
- performed on.

(or ASCII characters) that the operation is to be

op Indicates the arithmetic or logic operation to be performed. Do not
separate with spacesl

The available operators in the CALC command include:

Op Function
==J + Addition

- Subtraction
* Multiplication
/ Division
\ Modulo
< Shift left (second value indicates number of bits to shift)
> Shift right (second value indicates number of bits to shift)
I OR
& AND
A lOR Exclusive OR

Unary two's complement
Unary one's complement

@ Unary indirect address contents

DEBUG lev B - 3 - CALC

DEBUG DPDaCB HDDAL

For example:

=C 23*15
002DF L 735T, '
=C 23 vl'*15T
00159~ 345T, '.Y'
=C 23-15+3/2
00171, 36 9T , '. q ,
=C 'A'
00041 1 65T, 'A'
=C' ,
02041, 8257T,. ' A'
=C ' A
02041, 8257T, ' A'
=C -12
OFFEEL 655.18T,' ,
=C -1,
OFFED~ 65511T, '
=C 7\j
00001 1 1 T, v 0 t

=C @4uOO
OFEC9, 65225T, '
=

2.' Dtap Co==and

The DEBUG DUMP command allows the user to display the contents of memory on the
console terminal. The format of the display is identical to the CSI DUMPDISK
command except that the header information is not displayed in the Debugger. The
format of the DUMP command is:

llUIIP [<acldr-exp>]

Normally the user will specify the address that he wishes the display to start ato
If the address is omitted then the dump will display memory starting with the last
address DUMPed, LISTed, or ASseMbled. The DUMP command wil~ display one screen of
information,. or 16 11nes, whichever is less. A down arrow indioates that the dump
is to continued; an up arrow indicates that the previous block of memory is to be
displayed.

The format of the display of a memory dump is divided into three sections. The
first section 1s the address of memorI being displayed on that line. This address
is the address of the first byte of data displayed on each 1ineo The second
section is the contents of memory for that address. The data is broken by spaces
every four bytes for readabl1ty. The third section is the conversion to ASCII ot
the line of data. Aor byte that cannot be converted to an ASCII character will be
displayed as a period (.).

For example:

=D 4000
4000: C9FE1F20 13CDD19B 1820FD36 0049FD23 ' ••• 00 •••• 6.I.#'
4010: C9FD3600 52FD23C9 FEBF2005 CDD89B18 ' •• 6.R.I ••••• 00.'
4020: 09E6F01F 1F1F1FCD 419C8941 E60FCA4C ' •••••• e.A.vGoooL'
4030: 9B4FFD36 002CFD23 78FE1A20 06CDB59B '.0.60,.lx.o •••• '
4040: C34C9BFE 1C2006CD D19BC34C 9BFE7E20 '.L •• l ••• o.L •• -·
4050: 06CDD89B C34C9B19 FEOF2018 CDOF9EC3 ' ••••• L.y.o ••••• '
4060: 4C9BFD36 0028FD23 CDC59CFD 360029FD 'L •• 6.(.lo ••• 6.).'
4070: 23C34C9B CD419CC3 4C9B3D5F 81835F16 v'.L •• A •• L.=}_ •• _.'
4080: 0021509C 193ABDAF E9C31D9C C3829CC3 '.!P •• : •• oo ••••• '

4090: 269DC32D 9DC3459D C38E9DC3 9E9DC3AA '& •• - •• E ••••••• o.'
40AO: 9DC3Bl9D C3Cl9DC3 E69DC3FC 9DC3C59C ' •••• 0.000 ••••••• '
40BO: C~029EC3 0~9EE638· 1F1F1FE6 07FE0620 ' 000.800 •••••• '
ftg~g; ~J~i~~~ ~FI~1~ g~~~lg~ ~~~~git : I: ~ : ~ : 't (:.;.: : tit ~ : :
40EO: 5E16003E 2BCB7B28 067BED44 5F3E2nFD ,A •• >+. (.{.D >-.'
40FO: 77 OOFD 23 CD4F9DFD 360029FD 23 C93ABE 'w • • 1.0 •• 6 •) • #. : .. '
:::

2.5 Pll1 C~JMI

The DEBUG FILL command allows you to fill a section ot memory with a constant. The
format of the FILL command is:

I.ILL <atart-exp> , <eDd-exp> , <Yalue. up>

. PILL -, - DBBUG ley B

CIIlPDB 2: DEBUG CCIIIDDS

Where:

start-exp Indicates the first address to be filled.

end-exp Indicates the last address to be filled.

value-exp Is the value that the memory space is ,to be filled with.

2.6 Go C

The DEBUG GO command allows the user a means of specifying that execution is to be
resumed or started~ The format of the GO command is:

JlO [<aclclr-up>.- [<brk-exp> •••]]

Where:

addr-exp Indicates the address that control is to be transfered to. This may be an
asterisk or blank, indicating that execution is to continue at the point
that it was interupted by the Debugger. An address of 0 will return
control to the CSI (the Debugger will remain in memory). •

Indicates a breakpoint address. Up to eight breakpoints may be set at any
one time. When the Debugger detects that a breakpoint address is about to
be executed a break ,will occur--control will return to the Debugger and
the breakpoint addre'ss will be displayed on the console. Breakpoints must
be reset every time a GO command is executed because the Debugger clears
all unused breakpoints when it regains control.

The GO command can be used to set a breakpoint that will be encountered when a
COMMAND program is loaded and executed from the CSI.

To specify this tYDe of breakpoint is to occur the Debugger is invoked and the
operator types: , GO,. In this command the * is a special indicator that tells the
Debugger to break at the entry point address of the next COMMAND executed from the
CSI. -

2.1 IDput C~encl

The' INPUT comand provides an easy method of getting data from an input port. The
format of the INPUT command is:

.lIP1JT <port-exp>[, <start-up>, <eDCI-exp>]

Where:

port-exp Indicates the port number (physical device number) that the input, is to
come from.

start-exp Indicates the starting address of memory to be used for storage of th~
data input. When this field is not specified the data is displayed on the
console and only one byte of data is accepted.

entt-exp Indicates the ending address of memory to be used for storage of the data
input. This field is used to determine the number of bytes of data to be
input. '

- When the INPUT command is executed the port specified by <port> is read and the
byte(s) is either displayed on the console or saved in memory.

2.8' List C~ncI

The DEBUG LIST command allows the user to "dis-assemble" machine code into Z80
mnemonics. The format of the LIST command is:

.LIST [(adclr-up>[, <I liDea>]]

Where:

addr-exp Indicates the address that the dis-assembly is to begin at. If this field
is not specified then the list will begin at the last °address DUMPed,
LISTed, or ASseMbled. '

I lines Indicates the number of dis-assembled lines of code to be displayed. When
this field is not specified sixteen lines will be displayed.

,DIBOG 1ft B - 5 -

DEBUG IBFBIBICZ HDUAL

The LIST command assumes that the starting address is the address of a Z80 opcodec
Since almost all values could be interpreted as an opcode no error will be detected
if the wrong address is specified. However the listing may be meaningless.

When the list command is executed one screen ot dis-assembly will be displayed on
the console devicee The display is divided into four columns ot informationc The
first column is the address of the opcode tor that line. The second column
contains the machine code representation of the instruction. The third column is
theZ80 mnemonic of the opcode. The forth' column is the operand of the
instruction. Labels are displayed as absolute addressese

All values displayed are hexadecimal.

Refer to the appendix "Using B~se Registers" in the back of this manual for
addition information regarding the LIST commando
For example:

=L 4000
4000 C9 RET
4001 FE7F CP 7F
ftgg~ ~~198 gfLL ~~b~018
4008 1820 JR 402A
400A FD360049 LD (IY+0),49
400E FD23 INC II
4010 cg RET
4011 FD360052 LD (IY+0),52
4015 FD23 INC II
4011 C9 RET
4018 FEBF CP OBF
401A 2005 JR NZL4021
401C CDD89B CALL 9Bv8
401F 1809 JR 402A
4021 C9 RET
=
2.9 Load Coreend

The LOAD command provides an easy means of loading a program to be tested e The
format of the command is:

.LaD ~d [adctr-exp]

Where:

fd Is the tile description of the program to be ·loaded.

addr-exp Indicates the load address to be used. When this field is not specified
the program will be loaded in its normal location.

2. 10 Hove Cc--encl'

The MOVE command allows the user to. move blocks of data in memory. The format of
the MOVE command is:

Where:

start-exp Indicates the first address that is to be moved.

end-expo Indicates the last address that is to be moved.

to-exp Indicates the destination address that the data is to be moved to.

When the MOVE command is executed the block of data starting with the start address
is move to the area starting with to address, one byte at a time.

-6- DBBUG Bey B

CBlP!BI 2: DISUG CCIIIies
For example:

=D 5000
5000: 01020304.05060708 090AOBOC ODOEOF10
5010: 090AOBOC ODOEOF10 00000000 00000000
5020: 00000000 00000000 00000000 00000000

.
=M 5000 500F 5008
=D 5000
5000: 01020304 05060708 01020304 05060708
5010: 01020304 05060708 00000000 00000000

•

2.11 Output C==end

· · ·

• •• 0 •••••••••••• ·

The OUTPUT command provides an easy method of outputting data to a port. The
format of the command is:

JIItPOr <port-exp> , <Y8lue-exp> I «start-up>, <eDCl-exp>-exp>

Where:

port-exp Indicates the port number (physical device number) to be accessed.

value-~xp Indicates the 8-bit value to be output to the port.

start-exp Indicates the 16-bit memory address of the first byte to be output to the
port.

end-exp Indicates the 16-bit· memory address of the last byte to be output to the
port.

When the OUTPUT command is executed no device drivers are accessed.

When only one number is specified following the port address the OUTPUT command
will output that number «value» to the specified port. When two numbers are
specified following the port address then these numbers are interpreted as memory
addresses for the <start> and <end>. In this later situation the data in the
locations specified is output to the port.

2.12 Pap List C~end

The DEBUG PAGE command, similar to the LIST command, disassembles and displays a
portion of the program in memory. The PAGE command will display one full console
screen of disassembled ·code. (The LIST command always displays sixteen lines of
code.) The format of the PAGE command is:

DOB

, Refer to the DEBUG LIST command for information regarding the display format.

2.13 Print Co==end
The DEBUG PRINT command allows the user to specify that output from the debugging
process is to be output on the printer device. The format of the PRINT command is:

.lJIIft
When this command is executed the first time all subsequent output generated by the
debugger will be output to the device PRINTER1. The next time this command is
executed the output from the debugger will be displayed on the console. The output
generated by the program being debugged is not affected by this command.

2.1' Quit Car-!MI

The DEBUG QUIT command allows the user to unload the system Debugger and return
control to the CSI. The format of the QUIT command is:

,RUU

When this command is executed the memory used by the Debugger is released and
control returns to the Command String Interpreter. Any program in the memory area

DIBUG Bey B - 1 - QUIr

DEBUG BBPIDICB IIDDAL

will be lost (the process of reloading the Debugger causes most,_ or all, of the
user memory to be changed).

It is possible that no memory will be returned to the user area by this commandG
This would happen if a new device was attached while the Debugger was loaded. This
can be avoided (if known in advance) by first detaching any~device drivers loaded
since the DEBUG command was first loaded, then entering the debugger and executing
the QUIT sub-command. -

2015 lead Disk Cernsnd

The READ command allows you to read a sector or sectors of data from the disk into
memory 0 The format of the READ command is:

.IBID <aect-exp> (addr-exp) [(C011Dt-exp>]

Where:

sect-exp Indicates the relative sector number of the disk to be read. The disk
drive number is specified by the SELECT commandG

addr-exp Indicates the address in memory that the data is to be read into.

count-exp Indicates the number of contiguous sectors to be read. If this field is
not specified then a value of one is assumed.

2.16 lelister Cernend

The REG command allows you to display or set the Z80 registers. The format of the
REG command is:

.IIIi [<DB.> <Y8lue-exp>l-
Where:

name Indicates the name of the register to set. If this field is not specified
then all of the registers will be displayed.

value-exp Indicates the value that the reg~ster is to be set to.

For example:

=REG'
E ZP AF=0044 BC=0901 DE=1F1D HL=3108 PC=34BC XOR A

I=10 AF'C898 BC'FFFF DE'FFFF HL'FFFF SP=9083 IX=OOOO 1Y=OOOO

~
BC~: 01020304 0506070.8. 090AOBOC ODOEOF10 ' ••••• 0 G ••••••••• '

DE : 2100113E C3180403 C30811BE 20151803 '1 •• >.0 ••••• 0 ••• '
HL : 7100FD23 CD4F9DFD 360029FD 23C93ABE 'w •• I.O •• 6.).#.:.'
SP : EC31 . .

=REG AF 5A5A
= REG
E Z AF=5A5A BC=0901 DE=1F7D HL=3108 PC=34BC XOR A

I=10 AF'C898 BC'FFFF"'DE'FFFF HL'FFFF SP=9083 IX=OOOO IY=OOOO

~
BC~: 01020304 05060708 090AOBOC ODOEOF10 , •••••••••••••••• ,
DE : 2100113E C3180403 C30811BE 20151803 'I •• > •••••• t ••• G'
HL : 7700FD23 CD4F9DFD 360029FD 23C93ABE 'w •• #.0 •• 6.).#.:.'
SP : EC31

As can be seen from the examples the REG command displays all of the registers,
including the alternate set

l
the stack pOinter, index registers, program counter,

the status of the flags, nterrupt enable s~atus, and the mnemonic of the nex~
instruction to be executed.

The four lines following the register display are partial dumps of memory
corresponding to the values contained in the BC, DE, HL, and SP register pairs.

Refer to the chapter "Z80 CPU Overview" in the MACRO Assembler Language Reference
!ftnu,lforinformation regarding these registers and flags. Also refer to lOG's
__ 0 _echnical Hanualfor more detailed information.

2.11 ,Sue_ Prosraa CC'""8'"'
The SAVE command provides an easy method of saving a program written with the
debugger. The format of the command,is:

SAYE . -8- DBBUG ley B

CIlIPDI 2: DEBUG CCIIIlIDS

Where:

fd Is the file description of the program to be saved.

start-exp Indicates the starting address of the program in memory.

end-exp Indicates the ending address of the program in memory.

2.18 Search ca--end
The SEARCH command provides a method to search memory for a specific value. The
format of the command_is:

.DlICB <Start-up), (.DCl-up). (walue-exp) •••

Where:

start-exp Indicates the starting address of the block of memory to be searched.

end-exp Indicates the ending address of the block of memory to be searched.

value-exp Is the value(s) to be searched for.

When the SEARCH command is -executed the block, of memory specified by the <start>
and <end> fields will be searched for the <value> list. When a match occurs the
address of the location that matched will be displayed on the console. When there
is more than one match found in the block of memory searched the question 'Again?'
will be asked. Any response other than an N will be interpreted-as a yes response
and the next matching location address will be displayed on the console. When no
match occurs the DEBUG prompt character will be displayed.

2.19 Dlak Select Cc: eM

The SELECT command provides the user with the ability to specify the disk drive
that future reads or writes by the Debugger are to be performed on. The format of
the SELECT command is:

Where:

drv. Indicates the logical disk drive code (A, B, etc.) that future disk reads
or writes are to access.

2.20 Set tao.., eo-end

The DEBUG SET command allows the user to change the contents of memory. The format
of the SET command is:

JJ:'f <addr-exp> [. (Yalue-exp)] •••

'Where:

addr-exp Indicates the starting address to set.

value-exp Indicates a list of values, separated by commas (or spaces)J. that the
addresses are to be set to. When values are specified the ~ET command
executes in immediate mode, returning to the command level when done.
When a value is not specified the SET command will be in "set" mode.· In
this latter mode the Debugger will display the address to be set, followed
by the current contents in hexadecimal and ASCII. At this point the
Debugger awaits input from the user. The user may type the value that the
address is to be set to or he may use the arrow commands to change the
address to be set:

The up key
up)

(default CNTRL/Z) will decrement the address by one (back

The down key (default CNTRL/J) will increment the address by one
(advance)

The right key (default CNTRL/F) will increment the address by one
(advance)

DBBUG ley B - 9-

DEBUG IBPBIIIICI IlDUAL

The carriage return will exit from the nsetft modeo

Any or the above commands may be preceded with a value indioating that the
ourrent address 1s to be set to that value and then the address is to be
changed according to the command.

2.21 Trace C+ rncl

The TRACE command' allows the user to fttrace" the flow ot execution of a program.
The format of the TRACE command is:

%lAC! [<addr-exp>[,][(couat-exp>]]

Where:

addr-exp Indicates the address that execution and tracing 1s to begin at. When
this field is not specified execution will begin at the current program
counter. A comma may be used as a positional filler to allow the user to
specify a count & . -,

count-exp Indicates the number of consecutive instructions to be traced. When this
field is not specified a value of one 1s assumed (single step mode).

When. the TRACE command is 1n effect an instruction will be executed and then an
abbreviated REG wilL be displayed. If the count has not been reached this sequence
will. be repeated. '

The Debugger normally does not allow the tracing of the execution of a system call
(SC) instruction as most of these are time critical.

For example:

>@15EO'
=T 1.5 -
E z~ AF=0044 BC=3F3E DE=4D97 HL=0017
E ZP AF=0044 BC=3F~E DE=4D97 HL=0017
E ZP AF=0044 BC=3F E DE=4D97 HL=0017
E ZP AF=0044 BC=3F E DE=4D97 HL=0017
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017

2.22 Trace Call C..-encl

PC=15D2' LD A (15FA')
PC=15D5' OR A'
PC=15D6' RET
~g:1~~5: ~~LL ~~~~~O'

The DEBUG TRCALL command provides an easy method of tracing through a call toa
subroutine without tracing the subroutine itself. The format of the THeALL command
is: /

When the THeALL command is exeouted and the PC is addressing a CALL instruction, the
call will be traced but the subroutine called will not. If the PC is addressing an
instruction that is not a CALL the THeALL command acts like a TRACE command.

2.23 Ver1.tJ' a-ory ec-end

The VERIFY
equality.

Where:

command provides an easy means of comparing two blocks
The format of the oommand is:

.DID'! <Start1-exp>,-<eDd-up),<atart2-exp>

of memory for

at'art 1-exp Indicates the starting address of the block of memory to compare_
against.

end-exp Indicates the ending address of the block of memory to compare against.

st~rt2-exp Indicates the starting address of the block of memory to be compared.

When the VERIFY command is executed the Debugger compares the first byte of each
block to the other. If the two bytes equal each other the address pointers for the
blocks are incremented and the test continues. When the two bItes do not equal
each other their respective addresses and contents are displayea on the console
before the address pOinters are incremented.

- 10 - DBBUG In B

CBlPDI ·2: DBBUG CCBIDDS

For example:

=v 3900 A390464900

~~g~i ~~: ~~o~i ~~
3902: ~~, 4902: B3
3903: 45,4903: B2
3904: 42, 490~: FD

=
The above example indicates a total mismatch between the locations 3900H and 4900H
for 5 bytes.

2.2' Write Dlak C~JMI

The WRITE command allows the user to write a sector or sectors of data from memory
onto disk. The format of the WRITE command is:

.IBID <aect-up> <acldr-ezp) (COUDt-up>]

Where:

sect-exp Indicates the relative sector number that the data is to be written to.
The disk drive is selected with the SEL command.

addr-exp Indicates the first address of data that is to be written to ~isk.

count-exp Indicates the number of contiguous sectors to be written.
is not specified then a value of one is assumed.

It this field

=9: 18~ J.tesrit 7 o~· the cI1ak 18 " tile reapoJUd.b1l1t7 o~ the user vIleD w.a

2.25 z-cu.ate lDatrucUon 0 ncI

. The OASIS Debugger allows any valid . Z80 instruction to be executed in immediate
mode. To execute an immediate instruction you type a period followed by the Z80
mneumonic of the instruction to be executed. Use a space to separate the opcode
from the operand. Any synonyms described in the MACRO Assembler Reference Manual
are not valid as immediate instructions (i.e. ADD D is okay, not ADD A,D).

If the instruction is valid' it will be executed, the primary registers will be
displayed and the Debug prompt character will be displayed again.

For example:

= REG
E AF=OOOO BC=OOOO DE=OOOO HL=OOOO PC=1100 JP 02393

I=10 AF'OOOOBC'OOOO DE'OOOO HL'OOOO SP=A2D& IX=OOOO IY=OOOO

I
BCj: .2100113E C3180403 C30811BE 2015180.3 'I •• > •••••••••••• '
DE : 2100113E C3180403 C30811BE 20151803 'I •• > ••••••••••• a'
HL : 2100113E C3180403 C30811BE 20151803 '1.0> •••••••••••• '
SP : EC31 .

=.LD A,FF
Invalid Command .
=.LD AtOFF
E AF=FFOO BC=OOOOO DE=OOOO HL=OOOO PC=1100JP 02393
=

DIBUG In B Irradiate

(This page intentionally ~eft blank)

T .Uate - 12 '- DBBUGIeY B

lPPBDD A

USDG' BASE IBGISDIS

The OASIS MACRO Assembler supports the-generation of relocatable programs. This is
a very convenient and powerful feature but causes difficulties during the
development and debugging of the relocatable programs as the listing generated by
the assembler displays addresses relative to the origin of the program and not the.
addresses that the program will be executing at.

There are two features of the OASIS dynamic debugging program that greatly ease
this problem. One is the GO command used with a breakpoint of. (i.e.~ GO,.).
This causes a breakpoint to be set at the origin of the next commana to be
executed. Whenever a breakpoint is encountered by the debugg,er the break a,ddress
is displayed on the console. At this PQint you will know the origin address of the
program to be debugged and you could use this address to debug your program by
always adding it (plus 3 for the jump instruction .placed at the oeginning of your
program bi tlie linkage editor) to the addresses listed by the assembler. This is
not too aifficult to do and most systems that support relocatable programs require
you to do so. .

However, a second feature in the OASIS debugger alleviates this regulrement. The
BASE command gives you access to nine internal base registers witn eight of them
settable by the user (base register 0 is always defined with an address of OOOOH).

Say that the GO,. command was used followed by the execution of the program to be
debugged. Assuming that the breakpoint address displayed was 02E008 you would then
enter the command: BASE 1 2E03.From this point onl until you specified another
base register to be used, all instructions listed oy the LIST or TRACE command
would be displayed with the same addresses as those listed in the assembly listing
of your program. Any time that you wanted to know the absolute or execution
addresses merelI enter the command: BASE O. This resets the base register to zero
which has an offset address of zero.

To determine what the base registers are currently set to and which base register
is currently being used enter the command: BASE.

For example:

=BASE 1 ~~E03
=BASE 1 3FOO
=BASE 8 2FFO
=BASE
1 2E03
7 3FOO
8. 2FFO
=

The • in the
register.

above example indicates that base register 8 is the current base

The availability of multiple base registers provides the capability of debugging
programs with multiple program address blocks (PABs). In that situation a base
register would be defined for each PAB.

When a base register other than zero is defined all addresses displaIed by the
Debugger that- have been adjusted to reflect that base register will be followed by
a single quote character ('>' or a period character (.). Similarly, when you
specify an address that is to be treated as the address specified plus the base
register offset, you must follow the address with a single quote or period
character.

For example:

=BASE 0
=REG
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017 PC=15D2 JP 15D2
=BASE 1 1100
=REG
E ZP AF=0044 BC=3F3E DE=4F97 HL=0017 PC=04D2' JP 04D2'
=REG HL 17'
= REG
E ZP AF=0044 BC=3F3E DE=4F97 HL=1111 PC=04D2' JP 04D2'
=

The contents of the regist$rs, with the exception of the PC register, are not
offset by the base register as It is not determinable whether the contents are data
or addresses.

DEBUG ley B - 13 -

(This page intentionally lett blank)

-l' 0- DBBUG B

APPBIDU B

DBBUGGDG DBlICB DJIYII IOU'fDIS

Debugging devioe drivers presents difficulties for two reasons: the driver. 1.
relooated by the ATTACH oommand into high memory and is protected from access by
the debugger.

To properly debug a userwritten device driver you should link it together"with
your test program and debug it as a oommand, calling the entry points as
subroutines instead of using tne system oalls. ,,'

After a user written, device driver has been tested in the ",tand alo~" mode
desoribed' above you can re-link it as a system device driver lusing the SYSTEM
option of the LINK command) and it will be treated by the operating system as a
standard device driver.

DBaUG ley B - 15 -

- .

~',;: ... :;,~u C

~;',I)QMUD ·SUIIWlY
} .. ". _' ,', _ '~<. ," ··':~'~"·-:.""",: __ :-::':Sf _~ ... _.~~II:~~;;.:;~~ .. \ ... _ ... ~:::',1 . . t:,,' .•.•. :..: ___ ., ______ .. _~., .. ,_ __. ".;, ·.:_,; ... I.! ;.~""a;o .. _ ... cm_GDc.GDCD"~ .' \:.'l"'~;r~~~~I:~ ---... -,-----~~-.,~nl=--.. -~=;:=- .. =----:: -- ':" -------,~~:=- -= •••• --=----_ _ ""
4$!f '<aCldx-> .,..... ~;~Assemble Z80mnemoni08

-:~~%n}[:~ddr>'i]Setldii$Pl~ba8e reglatera· .,.

:~A~C t'(rinnri>. l[<op>J<nnnn> Calculate values

DUMP: [<.~dr>] ;Di~p~aY'~'lDory
'FILL'(start>,<"d>,<value>

'''tor <aadr>] [, <brk;'] •••

~PUT<~rt>[,,<8ta.rt>,<.nd>]
~l$'" ~'-[<a<1dr > [, <lines>]]

LOAD 'ltd> , [<addr>]

. Fill JaeJalory:wltho(',)_tarlt

Exeoute;;.w1,th' Qptlonal breatcpolnts

Input data fx-oJD I/Oport
" ;/ I" ~ ,

J:)is~~semble1Jl.~ry

Load program 1ntoi "lR,emof,.
HOVE <.tart>, <end),-:<to> Move data in memory

'."OUT~U'f;:<port>·, <vai~e>' I«s-tart>:i~<e~d>:> Output data to I/O port :.'

'.PAGE Dis.assemble one screen of~memory

PRUT -' Output d~bug1nfo on printer
I, •

QUIT

~'D <~e~t>·,,"~.~dr>[, <CQwnt > 1
REa r'~"fi.g), <value>] .

. S.!E'<f9>~"(.tart>, <~pd>
,~EARqf }~,t.rp>,,<end>.·, <value>

§~ECT ,.~drv>

S~T . (addl!>f, <value>l_, ~
TRicE· :~:<addr >l".]~','·~d~t>]

"THCALL, .
, - ," .

VERI" ,(stal"t> ,<.nd> , <W1th> . ' .. '. :.;.. ;: ... ' .. "., :. . , -.~ ...

WRITE,~.c~>;·<a,ddr,>[i·~<Qount.>j ,., .. ,.

Ex! t and,unloa~ Debugger

R~a(f;'data from disk ..
.. ,',- ' I ,~', ' I,. , ' I ' ,t .'[

" '~et/d~,p+,y, Z80 . re~$ters
Save pro~a,mfrom memory.

Search "m~pr~ for data

'~,lect~1s!F dr~ve to be used

S.t meJllQl'Y to value
,',;,.'

Trace execution of proSram

"'Tll'8Ce tbrough subrout'1.d& (!al~

CODlpare two regions of memory
('I . '.

"Wr1t,e' d'ata <to di-sk
'f. ;;;t,": ,/.> '" "

• <1rust> , ExecutEflmmediate mneaiOn1c lutruction
• . '. I, ... :~' '_. <. • • • ,.' •

=~:====:~~~~;~.~,~~===:;==~~================="=:~=:;~~"";:===========fY ::7"=="====================

- 16 - DIB. 1ft' B

