
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

BASIC
LANGUAGE
REFERENCE
MANUAL

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

BASIC
LANGUAGE
REFERENCE
MANUAL

Second Edition

Documentation by: C. P. Williams
Software by: Timothy S. Williams

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA
7700 Edgewater Drive, Suite 830

Oakland, California 94621
Telephone (415) 562-8085

TWX 910-366-7139

Second edition, First printing: March, 1980

PROPRIETARY NOTICE

The software described in this manual is a proprietary product developed by Timothy
S. Williams and distributed by Phase One Systems, Inc., Oakland, California. The
product is furnished to the user under a license for use on a single computer
system and may be copied (with inclusion of the copyright notice) only in
accordance with the terms of the license.

Copyright (C) 1980 by Phase One Systems, Inc.

Previous editions copyright 1978, 1979, and 1980 by Phase One Systems, Inc. All
rights reserved. Except for use in a review, the reproduction or utilizati~n of
this work in any form or by any electronic, mechanical, or other means, now known
or hereafter invented, including xerography, photocopying, and recording, and in
any information storage and retrieval system is forbidden without the written
permission of the publisher.

Z80 is a registered trademark of Zilog, Incorporated.

BASIC is a registered trademark of the Trustees of Dartmouth College.

PREFACE

This manual describes the OASIS BASIC programming language interpreter/compiler
available with the OASIS Operating System.

It is intended to be a reference manual, that is, the user is assumed to have
general programming skills. When this is the case this manual can instruct the
user on the features and uses of OASIS BASIC.

The OASIS BASIC language conforms to, and is an extension of, the American National
Standard for Minimal BASIC, BSR X3.60.

The experienced BASIC programmer may find the appendices sufficient for his use.
However, OASIS BASIC offers many features not found in standard Dartmouth BASIC,
ANSI minimal BASIC or other dialects of BASIC.

This manual, named BASIC, like all OASIS documentation manuals, has the manual name
and revision number in the lower, inside corner of each page of the body of the
manual. In most chapters of the manual the last primary subject being discussed on
a page will be identified in the lower outside corner of the page.

Related Documentation

The following publications provide additional information that may be required in
the use of the OASIS BASIC language:

OASIS System. Reference Manual

OASIS Text Editor Reference Manual

OASIS EXEC Language Reference Manual

OASIS MACRO AsseJabler Language Reference Hanual

- iii -

TABLE OF CONTENTS

Section Page

CHAPTER 1
1.1
1.2
1.3
1.4
1.5
1.6

INTRODUCTION ·
Organization of This Manual •••
Documentation Standards ••• · BASIC Command Modules
BASIC Program File Types ..
Loading BASIC ...
BASIC and RUN Commands · .. .

CHAPTER 2
2.1
2.2
2.3
2.4
2.5
2.6

FEATURES OF THE LANGUAGE ...
Data Files ..
Cursor Control ••
Chaining and Linking ••
User Defined Control Keys •••
Compatibility
Other Features

... ..
CHAPTER 3

3.1
3.2
3.3
3.4

BECOMING FAMILIAR WITH BASIC
Some Basic BASIC Concepts ...
BASIC Uses Upper Case · · Typing to BASIC
Consistency in Listing · .. .

CHAPTER 4 PROGRAMMING IN BASIC ...
4.1 Structure of a BASIC Program ••

4.1.1
4.1.2
4.1.3

Syn tax•.............•...........................•.......
Character Set ••
Line Format ..

4.2 Statements ..
4.3
4.4
4.5

4.2.1 Single Statement~ Multi-Statement Lines
Line Labels ...
Documenting Procedures ••
Entering and Modifying Programs •••••••••••••••••••••••••••••••••••••••

CHAPTER 5 ELEMENTS OF THE BASIC LANGUAGE
5.1 Constants ·

5.1.1 Numeric Constants
5.1.2 Integer Constants
5.1.3 String Constants

· .. . · .. .
5.2 Variables ·

5.3

5.2.1
5.2.2
5.2.3

Numeric Variables
Integer Variables
String Variables

· .. .
·

Array Variables ·
5.4 Functions ·

5.4.1
5.4.2
5.4.3

Intrinsic Functions ..
User Defined Functions •••
USR Func t ions ••

5.5 Expressions ...
5.5.1
5.5.2
5.5.3

Arithmetic Expressions •••
String Expressions •••
Logical Expressions ••

- iv-

1
1
1
2
2
2
3

5
5
5
5
5
5
6

7
7
8
8

10

13
13
13
13
14
14
14
15
16
16

17
17
17
18
18
19
20
20
21
21
23
23
24
24
24
25
26
27

Sect:l.on

5.5.4
5.5.5

CHAPTER 6

TABLE OF COJITEHTS

Relational Expressions •••
Expression Evaluation ••

FORMATED OUTPUT ..
6.1 Numeric Field Masks ...

6. f.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8

Specifying Number of Digits
Decimal Point Specification

· ·
Comma Specification ..
Dollar Field Specification
Asterisk Fill Specification

....................................... ·
Sign Specification Exponential Field Specification
Field Specification too Small

6.2 String Field Masks ..

6.3
6.4
6.5

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Single Character · · Left Justified Field
Right Justified Field
Center Justified Field

.. ...
Extended Field •••

Multiple Fields In One Mask ...
Re-using Mask Fields ·
Using Errors · .. .

CHAPTER 7
7.1
7.2
7.3
7.4
7.5

USING FILES · .. .
Access Mode ...
Access Methods ••
File Formats ••
Record Allocation Requirements ••
Multi-User File Protections •••

CHAPTER 8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21

COMMANDS ...
AUTO Command · .. . · .. . Bottom Command
BREAK Command
CHANGE Command
CONTINUE Command

· ·
DELETE Command · .. . · .. . Down Command
HELP Command
INDENT Command

· .. . · .. . · · LENGTH Command
LIST Command
LOAD Command
LOCATE Command

· ·
LPLIST Command
LPXREF Command

· ·
MODIFY Command ·
N.AM.E Command •••
NEW Command · .. . · QUIT Command
RENUMBER Command ...
RUN Command · .. .

-v-

Page

30
31

35
36
36
37
38
38
39
39
41
41
42
42
43
43
43
44
44
45
45

48
48
49
49
50
50

51
53
55
56
59
61
62
63
64
65
67
69
71
73
75
76
77
79
80
81
82
84

Section

8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29

CHAPTER
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42

TABLE OF CONTENTS

SAVE Command
STEP Command

· ·
Top Command ..
TRACE and UNTRACE Commands ...
UNBREAK Command · .. .
Up Command •••
VARS Command
XREF Command

·

9 STATEMENTS · .. . CASE Statement
CEND Statement
CHAIN Statement
CLEAR Statement
CLOSE Statement
COMMON Statement

· · · · .. .
CSI Statement
DATA Statement

· · .. .
DEF Statement •••

DELETE Statement ·
DIM Statement ••••••••••••••••••••••••• ~ •••••••••••••••••••••••••••••• · ELSE Statement
END Statement
FNEND Statement

· .. . · .. .
FOR Statement · .. . · .. . GET Statement
GOSUB Statement
GOTO Statement

· .. . · · IF Statement
IFEND Statement
INPUT Statement

· .. .
LET Statement
LINK Statement · · LINPUT Statement
LINPUT USING Statement ...
MAT Statement · .. .
MAT INPUT Statement
MAT PRINT Statement
MAT READ Statement
MAT WRITE Statement

· .. . · · .. .
MOUNT Statement
NEXT Statement

· .. . ·
ON ERROR Statement ...
ON GOSUB and ON GO TO Statements · OPEN Statement
OPTION Statement
OTHERWISE Statement

· · .. .
PRINT Statement ••
PRINT USING Statement ..
PUT Statement · .. . · QUIT Statement
RANDOMIZE Statement · .. .

-v:l-

Page

85
87
88
89
91
92
93
94

97
99

101
102
104
105
106
107
108
109
112
113
114
115
116
117
120
122
124
125
127
128
130
134
136
138
141
142
144
146
148
150
151
153
155
157
161
163
164
168
170
172
173

Secti.on

9.43
9.44
9.45
9.46
9.47
9.48
9.49
9.50
9.51
9.52
9.53
9.54
9.55
9.56
9.57
9.58

CHAPTER
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

TABLE OF CONTENTS

READ Statement •••
READNEXT Statement REM Statement
RESTORE Statement
RESUME Statement

·
RETURN Statement •••
RUN Statement ••
SELECT Statement ...
SLEEP Statement
STOP Statement

·
THEN Statement •••
UNLOCK Statement •••
WAIT Statement •••
WEND Statement
WHILE Statement
WRITE Statement

... · .. . · .. .
10 FUNCTIONS ...
Numeric Functions · .. .
Trigonometric Functions ••
String Functions •••
Input/Output Functions •••
Logical Functions ••
File Function ••
Error Functions ••
USR Function •••

Page

174
176
178
179
180
182
184
186
187
188
189
190
191
193
194
196

199
201
206
208
214
215
216
217
218

APPENDIX A RESERVED WORDS •• 219

APPENDIX B USER DEFINABLE KEYS ...
Control Key Values ••

APPENDIX C COMMAND SUMMARY

APPENDIX D STATEMENT SUMMARY ...
APPENDIX E FUNCTION SUMMARY

APPENDIX F ERROR MESSAGES · .. .
F.1
F.2
F.3
F.4

Command Errors ••
Edit Errors •••
Compile Errors ••
Execution Errors ••

APPENDIX G PROGRAM EXAMPLES ..
G.1
G.2
G.3
G.4
G.5
G.6
G.7

Example
Example
Example
Example
Example
Example
Example

One •••
Two String Conversion •••••••••••••••••••••••••••••••••••••••
Three - Sine Wave •••
Four - Bill of Materials ••••••••••••••••••••••••••••••••••••••
Five ••
Six - Sequential File I/O
Seven - Indexed File I/O - Sequential Access

- vi.i -

220
221

223

225

229

233
233
234
234
235

239
239
239
240
241
242
244
245

TABLE 01' COI!ITEITS

Sect~on Page

G.8 Example Eight - Indexed File Create ••••••••••••••••••••••••••••••••••• 246

- viii -

CHAPTER. 1

INTK.ODUcnOH

This reference manual describes the BASIC language as implemented in the OASIS
Operating System. It is an interpreter/compiler language. This means that the
advantages of an interpreter exist (ability to make changes to the source program
and immediately re-execute, immediate mode, etc.) along with the advantages of a
compiler (faster execution, smaller program size on disk and in memory, and source
program protection).

1.1 Organization of This Hannal

This manual discusses each command or statement in a separate section of the
appropriate chapter ("COMMANDS", "STAT.EMENTS", or "FUNCTIONS").

Each command or statement is described in four subsections:

1. General form: defines the specific syntax of the statement or
command. This section is enclosed in a box at the top of the page.
Also included here is a "See also" reference listing commands or
statements that have a similar or related function and might be used
instead of the command or statement specified.

2. Purpose: one or two sentences that summarize the purpose or general
function of the statement or command.

3. Comment: detailed description of the statement or command specifying
any restrictions, exceptions or errors that may occur.

4. Examples: general examples
command, if applicable.
meaningful.

of the various forms of the statement or
Invalid examples are also included, if

In addition, the appendices at the end of this manual give summaries of the
statements, commands, functions, error messages and some general examples of BASIC
programs.

1.2 Documentation Standards

In this documentation, the following standards will be used:

* All verbs are spelled out even though BASIC only requires the first
three characters of a verb.

* Fields enclosed with angle brackets <> are required for correct BASIC
syntax-

* Fields enclosed with brackets [] are optional and not required for
valid syntax.

* Fields grouped in vertical columns or separated by vertical bars
indicate that all are valid forms.

* Any parenthesis shown are required for valid syntax-

* The term <CR> indicates the entry of the key CARRIAGE RETURN.

BASIC - 1 -

BASIC JlEI'ERENCE MANUAL

1.3 BASIC Command Modules

The OASIS BASIC and RUN programs are held on disk in seven separate files. This is
required due to the fact that program overlays are used. The five files containing
the BASIC program must all reside on one disk. The two files containing the RUN
program must both reside on one disk. The files and their primary functions are as
follows:

BASIC.COMMAND
BASIC.OVERLAYl
BASIC.OVERLAY2
BASIC. OVERLAY 3
BASIC.OVERLAY4

RUN.COMMAND
RUN.OVERLAYl

1.4 BASIC Program. File Types

Initialization and set up.
Editor and syntax analyzer.
Compiler.
Cross-reference generator.
Program execution and debugger.

Initialization and set up.
Run time monitor.

OASIS BASIC uses three different file types for programs. These file types are
BASIC, BASICOBJ, and BASICCOM.

A BASIC program with a file type of BASIC is a file in ASCII format and is usable
by TEXTEDIT and EDIT as text files. A program with a type of BASIC may be loaded
with the BASIC interpreter but may not be RUN, CHAINed, or LINKed to.

A BASIC program with a file type of BASICOBJ is a file generated by the BASIC
interpreter after the program has been syntax checked. This type of a file cannot
be used by other system programs (except COPYFILE). A BASICOBJ file is a program
that is "pseudo-compiled", that is, all keywords have been coded to reduce the
storage requirements and to increase execution speed. Even though this type of a
file is pseudo-compiled it is still listable by BASIC and still has all remarks,
variable names and line labels in it. This file type should be used for all source
programs and is the default type used by the SAVE command.

A BASIC program with a file type of BASICCOM is a file generated by the BASIC
compiler after the program has been compiled. This type of file cannot be used by
other system programs (except COPYFILE) and may only be executed with the RUN
command. A BASICCOM file is a program that has had all remarks removed from it and
all variable names have been reduced to codes (variables defined as COMMON are not
affected) and all line label references have been changed to a shorted method of
branching.

1.5 Loading BASIC

The BASIC command is a program module that is accessed by the Operating System
through the OASIS Command String Interpreter (CSI). After CSI has displayed it's
prompt character (», the operator may enter a BASIC command as described below.
CSI will load the BASIC interpreter and enter the edit mode, allowing you to load,
execute, or edit any BASIC program.

In the edit mode
or a numbered
immediately, a
time.

of BASIC, acceptable input is a command, an immediate statement,
statement. An immediate statement is one that is executed
numbered statement is stored in memory for execution at a later

- 2 - BASIC

CHAPTER. 1: IBTRODUCTIOB

1.6 BASIC and RUN Commands

The OASIS BASIC command allows the user to access the BASIC interpreter/compiler to
create, change, debug, execute or compile BASIC programs. The format of the BASIC
command is:

BASIC [<program-na.me> [(<ccmpile options> [)]]

Where:

program-name Specifies the name of a BASIC program file that the user wishes to
compile. This operand has the format <fn[.ft] [:fd]>, where:

fn Indicates the file name of the BASIC program to be compiled. If
omitted (i.e., the entire program-name operand is omitted), then
BASIC is invoked in the immediate mode.

ft Indicates the file type of the program to be compiled. Only
BASIC programs with file type BASICOBJ can be compiled.

fd Indicates the label of the directory or the name of the disk
that the program file resides on. When omitted the normal
search sequence for user programs is used.

BASIC Compile Options

PRINTER[n] Indicates that the program listing is to be output to the printer.

TYPE Indicates that the program listing is to be output to the console.

Indicates that the cross reference table is to be generated and output
with the program listing.

Note 1: Compiled programs are saved on disk with file type BASICCOM.

Note 2: The COMMON statement must be used to specify variables that are used by
more than one segment of a compiled program.

Since a compiled program does not have line numbers the listing from the compiler
will include the relative address of each line. These address values are in
hexadecimal and are displayed during execution if an error occurs.

The OASIS RUN command allows the user to execute a compiled, BASIC programs. The
format of the RUN command is:

RUN <program name>

The RUN command can only execute compiled programs--there is no immediate or
command mode available to the user when this command is in control.

BASIC Prompting Character

When the BASIC interpreter/compiler is in immediate or command mode a hyphen (-) is
displayed at the left side of the terminal, indicating that BASIC is awaiting a
command. This is the prompting character for OASIS BASIC.

BASIC - 3 -

BASIC REnRERCE HANUAL

For example:

>BASIC

>BASIC GAMES

In the second example no prompting hyphen is displayed because the program GAMES
was compiled and saved as GAMES.BASICCOM:S.

- 4 - BASIC

CHAPTER. 2

FEATURES OF THE LANGUAGE

2.1 Data Files

OASIS BASIC supports three types of files: Sequential, Direct, and Indexed
Sequential. Sequential files are character files in that they contain only ASCII
characters and are generally used for print or report files. This file type can be
used for INPUT or OUTPUT but cannot be updated. Records in this file type are of
variable length.

DIRECT files are binary files in that they contain any information, character or
otherwise. This file type requires fixed length records due to the fact that
records are accessed by using their relative record number.

INDEXED Sequential files are binary files similar to DIRECT files and they have
fixed length records but the records are accessed randomly or sequentially by using
an ASCII key.

2.2 Cursor Control

Many types of terminals are "known" to BASIC and their various types of cursor
control are handled by common functions (AT and CRT). Refer to the OASIS System
Reference Manual, "ATTACH COMMAND", and the "Terminal Class Codes" Appendix for
details.

2.3 Chaining and Linking

Chaining and linking allows very large programs to be segmented for execution in a
system with a relatively small amount of memory. Chaining transfers control to the
named segment and closes all open files. Linking transfers control to the named
segment without closing any files.

2.4 User Defined Control Keys

User programs can test whether one of several different control keys were entered
as input, and take appropriate action in the program. Refer to the chapter on User
Definable Keys in this manual for details.

2.5 Compatibility

BASIC is upward compatible
American National Standard

with Dartmouth BASIC and conforms to the proposed
for Minimal BASIC, BSR X3.60. Refer to Appendix H for

information regarding this standard.

BASIC - 5 -

BASIC REFERENCE HARUAL

2.6 Other Features

OASIS BASIC provides many other features not normally found in other micro-computer
BASICs such as:

* Multiple statements on one line.
* Multiple line user defined functions (DEF FN-FNEND).
* Line length of up to 255 characters.
* Long variable names.
* Line labels.
* Error trapping (ON ERROR GOTO).
* Complex IF THEN ELSE statements.
* Multiple line IF-IFEND structure.
* Multiple line WHILE-WEND structure.
* Multiple line SELECT-CASE-CEND structure.
* String handling with string length of up to 255 characters.
* String arrays.
* Matrix (array) input/output and assignment.
* Formatted output (PRINT USING).
* Formatting function.
* Formatted input (LINPUT USING).
* Interface to user written assembly subroutines (USR).
* Interface to system commands (CSI).
* Interface to any device (GET, PUT, WAIT).
* Bit manipulating logical functions.
* Thirteen digit precision BCD (binary coded decimal) arithmetic.
* Floating point values in range lO~126 to lO~-126
* Integer arithmetic (-32767 to +32767).
* Program debugging aids such as single step, break-points, etc.
* Automatic line number entry.
* Syntax analysis on statement entry.
* Extensive set of string functions.
* Compile option to compress and protect the program.
* Cross reference listing of variables.

- 6 - BASIC

CBAPTEIl 3

BECOHIBG FAHILIAR WITH BASIC

This section assumes that you have loaded BASIC and that you have received the
BASIC prompting character (-), indicating that BASIC is waiting to perform whatever
instuction you give. In order to make the most efficient use of your sessions with
BASIC, you need to know several things abount communicating with the system.

For the time being the specific statement, command and line syntax will be ignored.
These concepts are discussed in the next chapter.

You will communicate with the system by using its primary input/output (I/O)
device, called the CONSOLE TERMINAL. This device will include either a printing
mechanism or a video screen (CRT), as well as a keyboard, similar to that found on
a typical electric typewriter. On a console terminal keyboard, however, there are
a few symbols and extra keys which may be new to you. Note the position of "extra"
keys, especially the ones marked "CONTROL" (or "CTRL", or "CNTRL" or something
similar), "RETURN" (or "CARRIAGE RETURN", or "NEW LINE" or something similar),
"RUBOUT" (or "DEL", or "BACKSPACE", or something similar), "ESC" (or "ESCAPE", or
"ALTMODE") •

3.1 Some Basic BASIC Concepts

OASIS BASIC has two modes of operation:

IMMEDIATE MODE or command mode, in which lines typed to the system are
executed without delay;

EXECUTION MODE or program mode, in which the system executes instructions
which have been stored previously in the form of a PROGRAM.

Prior to learning how to work with BASIC in these modes, you must understand
certain concepts and terminology, which are explained in this section.

A COMMAND is a special type of BASIC instruction which may be executed in immediate
mode, not as part of a program. Commands generally provide services which are not
meaningful or useful while a program is executing.

For example, the command LIST generates a listing of the program currently in the
BASIC program/data area of memory. (This is called the CURRENT PROGRAM.) It is a
rare application which requires a program to list itself, and so the LIST function
is a command.

A STATEMENT is a BASIC instruction which may be used as part of a PROGRAM or in
IMMEDIATE MODE. Typical among statements is PRINT, which causes information to be
output to the console terminal. Statements begin with a VERB from which the
statement derives its name. The verb may be followed by ARGUMENTs and keywords.
An argument is a piece of information on which the statement operates, or which is
used to modify the operation of the statement. For example, the string literal
''HI'' is the argument of the following statement:

PRINT "HI"

A BASIC program is structured as a sequence of LINEs, each containing one or more
statements. A line starts with a LINE NUMBER, which is an INTEGER (that is, a

I whole number) in the range of 1 to 9999. A statement follows the line number, and
the combination is called a PROGRAM LINE. A typical line is:

BASIC 7 -

BASIC REFERENCE HAlmA!.

70 PRINT "THIS IS ONE STATEMENT."<CR>

More than one statement may exist on a program line, as long as individual
statements on that line are separated by a backslant (\) character. Here is an
example of a multiple-statement program line with three statements:

100 LET A = 0 \ LET B = 1 \ PRINT A,B

All statements may be executed in immediate mode in order to get immediate results.
This is accomplished by typing a statement without preceding it with a line number.
Such a statement is called an IMMEDIATE STATEMENT, and is executed as soon as it
has been completely typed (indicated by striking the RETURN key). For example, if
you type:

PRINT 3+3<CR>

into BASIC, you will immediately get back 6 on the terminal. This ability to
execute statements in immediate mode greatly facilitates debugging by allowing you
to examine (PRINT) and modify (LET) the contents of variables when a bug occurs.

Each command and statement has its own rules as to what constitutes its proper
syntax and when it can be used correctly.

3.2 BASIC Uses Upper Case

BASIC requires that the instructions it executes be in upper case characters. To
facilitate this, instructions typed in BASIC are translated to upper case before
being stored for execution. For example, the following line is typed to BASIC:

10 if a1 > 25 then print "Greater than" else goto 100<CR>

That line is stored in memory in the following format:

10 IF Al>25 THEN PRINT "Greater than" ELSE GOTO 100

Note that all of the "keywords" have been translated to uppercase but the literal
is left as is. Because of this you will not have to worry about the case mode of
the instructions you type.

3.3 Typing to BASIC

Try typing some nonsense to BASIC:

-ABCDEFGHIJK<CR>

Be sure to strike the RETURN key after you
denoted by the <CR> symbol above. This is
process what you've typed. If you fail to
patiently wait forever for you to type more!

finish typing a line to BASIC, as
the signal for BASIC to accept and
strike the RETURN key, BASIC will

BASIC should respond to your nonsense with the message:

Unrecognized command

In general, this message is BASIC's way of saying "I don't understand you". It
usually means that you typed" the right thing incorrectly, or (as in this case) the

-8- BASIC

CHAPTER. 3: BECOllIRG I'AHILIAR. VITH BASIC

wrong thing altogether. This is an example of an ERROR MESSAGE. Such messages are
sent to you in order to alert you to any difficulties which BASIC encounters as it
attempts to carry out your instructions. The error message should provide a clue
as to the nature of the problem, and imply the possible steps you might use to
correct it. (Correcting computer problems is called "debugging". A problem itself
is referred to as a "bug".)

Let's type something which BASIC will understand:

-PRINT 25/2<CR>

(Remember that the <CR> means to strike the RETURN key.)

You should get the answer displayed on the terminal.

Commands may be entered with abbreviations (such as LEN for the LENGTH command) but
incorrect syntax or spelling errors will not be allowed and you will have to
re-enter the command.

Statements (immediate or stored) may also use abbreviations for the statement verb
(such a PRI for PRINT). Statements, different from commands, do not have to be
re-entered to correct spelling or syntax errors, just modified to the correct form.

For example, try typing the statement:

10 FOR I=lTOX<CR>

BASIC will respond by displaying:

Keyword Missing or mis-spelled
0010 FOR I=lTOX

The underscore character will be used to identify the cursor position. BASIC is
"saying" that it recognizes the statement as a FOR statement but it can't find the
keyword TOX. This is due to the fact that variable names may be more than one
character long and the letters TOX could be a variable name. You must surround
keywords and verbs with some delimiting character, usually a space.

To correct the error in this statement, enter an I, space, <CR>, space, space, I,
space, <CR>, <CR>. This is explained below.

When an error is detected by the syntax analyzer the error message is displayed as
above and an implied MODIFY command is executed with the cursor pointing to the
location of the error. The correction just specified causes MODIFY to go into
insert mode (the I character), insert a space at that location, exit the insert
mode (the <CR», advance two places (the space, space characters), go into insert
mode again and insert a space, exit the insert mode, then exit the modify mode (the
last <CR».

BASIC - 9 -

BASIC RERRENCE HAlfUAL

The following display illustrates this correction:

0010 FOR I=lTOX Enter I
0010 FOR I=lTOX Enter space
0010 FOR 1=1 IOX Enter <CR>
0010 FOR 1=1 TOX Enter space
0010 FOR 1=1 TOX Enter space
0010 FOR 1=1 TO,! Enter I
0010 FOR 1=1 TO,! Enter space
0010 FOR 1=1 TO X Enter <CR>
0010 FOR 1=1 TO X Enter <CR>

Enter <CR> (display command)
0010 FOR I = 1 TO X

When you exit the implied MODIFY command the syntax of the statement is re-examined
for errors. If no more errors are detected the statement is saved (or executed if
an immediate statement) and control of BASIC returns to the mode it was in (in the
above case it returns to the command mode).

As another example, consider the following:

-10 PRI SQR(23jNOW IS THE TIMEjAB<CR>
Missing parentheses
0010 PRI SQR(23~NOW IS THE TIMEjAB Enter I
0010 PRI SQR(23~NOW IS THE TIMEjAB Enter)
0010 PRI SQR(23)~NOW IS THE TIMEjAB Enter <CR>
Comma required
0010 PRI SQR(23)jNOW ~S THE TIMEjAB Assumes NOW is variable name
0010 PRI SQR(23)jNOW ~S THE TIMEjAB Enter back space
0010 PRI SQR(23)jNOW_IS THE TIMEjAB Enter back space
0010 PRI SQR(23);NQW IS THE TIME;AB Enter back space
0010 PRI SQR(23) j!!OW IS THE TIMEjAB Enter I
0010 PRI SQR(23);NOW IS THE TIME;AB Enter "
0010 PRI SQR(23)j"B,OW IS THE TIMEjAB Enter Fj
0010 PRI SQR(23);"NOW IS THE TIMEiAB Enter I
0010 PRI SQR(23)j"NOW IS THE TIMEiAB Enter "
0010 PRI SQR(23)j"NOW IS THE TIME "iA$B $ Enter <CR><CR>
Comma required
0010 PRI SQR(23)j"NOW IS THE TIME" jAB Enter I
0010 PRI SQR(23)j"NOW IS THE TIME" jAB Enter
0010 PRI SQR(23)j"NOW IS THE TIME" jA$;].$ Enter <CR><CR>

Enter <CR>
10 PRINT SQR(23)j"NOW IS THE TIME"jAjB

3.4 Consistency in Listing

Because OASIS BASIC is an interpreter/compiler it saves statements in a compact,
coded format. When a program listing is requested (or even a single line
displayed) the coded format must be expanded to a display format. It does this
expansion in a very consistent manner--consistency is desirable in programming:

* All keywords and verbs are always spelled out fully.
* All keywords and verbs are surrounded by spaces.
* Multi-statement line separators are surrounded by spaces.

- 10 - BASIC

CHAPTER. 3: BECOHIBG I'AHILIAR. VITH BASIC

* Lists of variables, expressions, and line references are separated by
their proper punctuation.

* I/O channel specifications are surrounded by spaces.
* Commas are added when the statement syntax requires.
* Expressions are displayed without any embedded spaces.
* The assignment operator is surrounded by spaces.
* Any leading spaces in a line are maintained.
* String literals are always surrounded with the double quotation mark

character (").

For example, the following is performed (entry and display):

-AUTO <CR>
10 REM This is a remark<CR>
20 IF (A$ > B$) * 5/ (5+ VALUE%) THEN GO SUB 1000\STOP<CR>
30 A=23 * B<CR>
40<CR>

-LIST<CR>

10 REM This is a remark
20 IF (A$>B$)*5/(5+VALUE%) THEN GOSUB 1000 \ STOP
30 A = 23*B

BASIC - 11 -

BASIC REFERENCE HABUAL

- 12 - BASIC

CHAPTER. 4

PIlOGRAMMTRG IN BASIC

4.1 Structure of a BASIC Program

A BASIC program consists of a set of
elements and syntax described in the
numbers, labels, and statements are joined
line containing instructions to BASIC.

statements constructed with the language
following chapters. Expressions, line
to solve a particular problem, with each

4.1.1 Syntax

Syntax is a term refering to the structure of the parts of a statement and the
punctuation characters separating those parts. As an example, the syntax of a
sentence in the English language is: <subject> <verb> <object> <punctuation>.
Unfortunately for elementary school children (and university professors) the syntax
of sentences has many acceptable variations with each variation having variations
and options and exceptions.

On the other hand, computer languages are very structured with very specific syntax
requirements for each statement (sentence). There may be options to the structure
but there are ~ exceptions.

4.1.2 Character Set

OASIS BASIC uses the full ASCII (American Standard Code for
Interchange) character set for its alphabet. This set includes:

* Letters A through Z
* Letters a through z
* Numbers 0 through 9
* Special characters (see ASCII character set in appendix).

Information

This character set enables you to include any ASCII character as part of a program.
BASIC translates the characters that you type into machine language; some
characters are processed and some are left as entered.

The BASIC editor translates characters in the following manner:

* Letters A through Z - left as entered.
* Letters a through z - left as entered if in a statement remark or

string literal (enclosed in quotation marks); translated to upper case
equivelent in all other contexts.

* Non displayable characters (BELL, DCI, FS, etc) - ignored.
* Other control characters -

BS treated as editing character (backspaces one position); is not
entered into the actual line.

RT when entered after line number and before the start of the
statement: translated to five (5) spaces; when entered in middle of
statement translated into one space.

LF ignored.
VT ignored.
FF ignored.
CR treated as end-of-line character. In auto entry mode the next line

number will be displayed.

BASIC - 13 -

BASIC REFERENCE HABUAL

* Special characters:
; When entered at start of statement is translated into REM.
Statement separator for multi-statement line.

4.1.3 Line Format

The general format of a program line is as follows:

line number label verb operand

1010 LABEL: PRINT SQR (X""2+Y'"2)

All lines in a BASIC program must begin with a line number. This number must be a
positive integer within the range of 1 through 9999. A BASIC line number is a
label that distinguishes one line from another within a program and determines the
placement of that line in the program.

Leading zeroes (as well as leading and trailing spaces) have no effect on the
number. However, you cannot have embedded spaces within a line number.

4.2 Statements

BASIC statements consist of keywords that you use in ~onjunction with the elements
of the language set: constants, variables, and operators. These statements divide
into two major groups: executable statements and non-executable statements.

At least one space or tab must follow all statement keywords in order for BASIC to
recognize the keyword as such. For example:

Acceptable
Unacceptable

10 PRINT CUR.DATE$
10 PRINTCUR.DATE$

Some keywords consist of two words such as PRINT USING, ON ERROR, MAT INPUT. These
keywords must also be separated by at least one space or tab character. Two
exceptions to this are the GO TO and GO SUB keywords. It is acceptable to use the
keywords GOTO or GOSUB without a separating space.

Statement keywords are reserved, and therefore, cannot be used as a variable name
(see appendix "Reserved Keywords"). However, keywords can be used as line labels.

4.2.1 Single Statement, Multi-State.ent Lines

You have the option of typing either one statement on one line or several
statements on one line.

A single statement line consists of:

* A line number (from 1 to 9999).
* An optional line label followed by a semicolon (:).
* A statement keyword.
* The body of the statement.
* A line terminator.

This is an example of a single statement line:

10 PRINT A,BETA*TODAY+3.

- 14 - BASIC

CHAPTER 4: PROGBAHHIliG IB BASIC

To enter more than one
each complete statement
separator. You must
multi-statement line.
PRINT statements:

statement on a single line (multi-statement line), separate
with a backslant (). The backslant symbol is the statement
type it after every statement except the last in a
For example, the following line contains three complete

10 PRINT ALPHA$;BETA; \ PRINT CUR.DATE$ \ PRINT "Total =";TOTAL

The line number labels the first statement in a line. Consequently, you must take
this into consideration if you plan to transfer control to a particular statement
within a program. For instance, in the previous example, you cannot execute just
the statement

PRINT CUR.DATE$

without executing PRINT ALPHA$;BETA; and PRINT "Total =";TOTAL

All executable statements can appear in a multi-statement line.

The rules for structuring a multi-statement line are:

* Only the first statement in a series has a line number.
* Only the first statement in a series can have a line label.
* Successive statements must be separated with a backslant.

4.3 Line Labels

All OASIS BASIC lines
statements using the
have a line label.

have line numbers and the line may be referenced by other
line number of the line (GOSUB, GOTO, etc.). Lines may also

Line labels are useful for referencing lines when the line number is unknown, when
you wish to "document" the function of a line or sequence of lines, etc.

A line label consists of one or more letters, digits, or periods with the first
character being a letter. There is no limit on the length of a line label but you
should use labels that are short, but still meaningful (you have to type the entire
label each time it is referenced).

A line label must be unique within a program. When a line label is defined it must
precede any statements on the line and be separated from the first statement by the
colon character (:).

The following lines are all acceptable uses of line labels:

10 MAINLINE: WHILE CONTROL = 0
20 GOSUB INPUT.ROUTINE
30 IF INPUT$ = "" GOTO ERRORS
40 INPUT.ROUTINE: REM Subroutine to accept input

It is permissible for a line label to be a keyword (no confusion arises due to the
context in which a line label appears), however a label may not start with the
letters REM.

BASIC - 15 -

BASIC REl'ER.ERCE IWWAL

4.4 Documenting Procedures

BASIC allows you to document your methods, insert notes and comments, or leave
yourself messages in the source program. This type of documentation is known as a
remark or comment. There is only one way of inserting comments within a BASIC
source program: the REM statement.

BASIC ignores anything in a line following the keyword REM including a backslant
character. The only character that ends a REM statement is a line terminator.
Therefore, a REM statement must be the only statement on a line or the last
statement in a multi-statement line.

10 LET A=B REM Variable A receives current value of B

You can use the semicolon character (;) instead of the keyword REM. BASIC will
translate this into the keyword REM and display it as such whenever a listing is
produced.

You can use the line number of a REM statement in a reference from another
statement, i.e. GOSUB.

Another method of documentation, used in conjunction with remarks, is indentation.
Any spaces or tabs entered between the line number and the first character of the
line will be maintained by BASIC for listing purposes. This allows you to show the
structure or hierarchy of the program.

Remarks and/or leading spaces have no impact on a program after it is compiled (one
of the functions of compilation is to remove these from the program).

Refer to the appendix
documentation techniques.

containing

4.5 Entering and Modifying Programs

program examples for illustrations of

OASIS BASIC allows programs to be entered, debugged, and modified while in the
BASIC environment. Refer to the chapter on "BASIC Commands" for information on the
use of the commands in editing a program (AUTO, CHANGE, DELETE, DISPLAY, DOWN,
LIST, LOCATE, MODIFY, and UP).

It is important to note that BASIC performs syntax analysis when the statement is
entered, not when the statement is executed. This not only increases the speed of
execution but also prevents any syntax errors from being entered. The main
advantage of this pre-execution syntax analysis is that the program is free of all
syntax errors even though some of the lines in the program have never been
executed.

- 16 - BASIC

CHAPTER 5

KI.DtENTS OF THE BASIC LANGUAGE

In order to write programs in BASIC you must be familiar with the terms and phrases
used to describe the program elements. You will probably recognize most of these
terms from previous experience; however, the following sections define these terms
within the context of OASIS BASIC.

5.1 Constants

A constant is an element whose value does not and cannot be changed during the
execution of a program.

There are three types of constants in BASIC:

* Numeric (also called floating point numbers)
* Integer (whole numbers)
* String (alphanumeric and/or special characters)

5.1.1 Numeric Constants

A numeric constant is one or more decimal digits, either positive or negative, with
a decimal point specified. (The decimal point may be omitted when the constant is
a whole number outside of the range +32767 to -32767.)

The following are all valid numeric constants:

25.
-1234.01
12345678901.23

3.14159
.000002
-9876543210123

Numeric constants cannot contain any embedded space characters.

234567
32760.
.1234567890123

BASIC accepts and maintains numeric constants within a range of 13 significant
digits.

When you type a numeric constant with more than 13 significant digits specified the
excess, least significant digits will be truncated.

It is possible to enter and maintain a number that is outside the range of
precision by using an alternate format:

<+ or ->x.xxxxxxxxxxxxE<+ or ->nnn

Where:

<+ or -> is the sign of the number. The plus sign is optional with positive
numbers; the minus sign is required with negative numbers.

x is the number with up to 13 significant digits.

E represents the words "times 10 to the power of"

nnn is the exponential value (the power of 10) in the range of +126 to -126

This method of mathematical shorthand is called E format, floating point notation,
or scientific notation. It is BASIC's way of representing scientific notation. To

BASIC - 17 -

BASIC REl'ERENCE HAlflJAL

use this format, append the letter E to the number, follow the E with an optionally
signed integer constant. This constant is the exponent--it can be 0 but never
blank.

The following are all valid numeric constants, E format:

1.2568E10
-1.234567890123E-126

8.254681325257E-120
2358.256824798E2

1235E-30
1.2E60

All E notation numeric constants are normalized after entry, that is, the decimal
point (and the nnn value) is adjusted to be after the first significant digit. For
example, entry of the constant 12345.58E10 will be normalized to be 1.234558E+014.
If a number entered in E notation can be expressed in normal notation, it will be.
For example, entry of the constant 1.25E6 will be printed as 1250000.

5.1.2 Integer Constants

An integer constant is a special type of numeric constant that is a whole number
(no fractional part) written without a decimal point and in the range of +32767 to
-32767. For example, the following numbers are all integer constants:

1
25
32767

o
-15
-32767

-1234
100
10000

Integers, though normally entered in decimal format (base 10) may be entered in
hexadecimal format (base 16). When this is done the integer constant must be
terminated with the letter H. Hexadecimal values may use the digits 0 through 9
and the letters A through F. A hexadecimal constant must start with a digit (use a
zero if necessary).

The following are all acceptable hexadecimal integer constants:

1234H
OFFFFH

OABH
-1234H

245H
OFH

The following are all unacceptable integer constants:

12AB
OFFFGH
123456
1.24
12E10

5.1.3 String Constants

Invalid decimal or missing uH u

G is not valid hexadecimal character
Outside of range of integer
Not an integer
Outside of the range of an integer

A string constant (also called a string literal) is one or more alphanumeric and/or
special characters, enclosed in a pair of double quotation marks (U) or single
quotation marks ('). Include both the starting and ending delimiters when typing a
string constant in a program. These delimiters must be of the same type (both
double quotation marks or both single quotation marks).

Each character in a string constant can be a letter, a number, a space, or any
ASCII character except a line terminator. The value of the string constant is
determined by all of its characters. BASIC maintains every character between the
delimiters exactly as you entered it into the source program.

- 18 - BASIC

CHAPTER. 5: ET.F.HKRTS 01' THE BASIC LAHGUAGE

BASIC does not normally print the delimiting quotation marks when a string constant
is printed on the console, printer, or file.

Quotation marks may be included as part of the text of a string constant by either:
using the opposite type of delimiting quotation marks (i.e. single within double,
double within single); or by doubling the embedded quotation mark ('"' or ").

The following are all acceptable string constants:

String constant

"This is a string constant"
'This is also a string constant'
"Look at Spot's spots."
'Look at Spot"s spots.'
"He said, ""Open the book."""

Internal representation

This is a string constant
This is also a string constant
Look at Spot's spots.
Look at Spot's spots.
He said, "Open the book."

5.2 Var1.ables

Variables differ from constants in that their values may change during the
execution of the program. For this reason variables are refered to by their name,
not their current value. BASIC uses the most recently assigned value of a variable
when performing calculations. This value remains the same until a statement is
encountered that assigns a new value to that specific variable.

BASIC allows three types of variables:

* Numeric variables (name terminated with letter, digit, or period)
* Integer variables (name terminated with %)
* String variables (name terminated with $)

The type of a variable is determined by the name of the variable. BASIC allows
variable names to be of unlimited length (a reasonable maximum is about two hundred
characters due to the line length restriction of 255 charactes).

Variable names for the three types of variables have a common syntax:

* First character must be a letter (A - Z)
* Subsequent characters are optional and may consist of letters (A - Z),

digits (0 - 9) or the period character (.).
* The space character cannot be used as part of a variable name.
* The variable name cannot be a reserved word.

The following are all acceptable variable names:

BASIC

TOTAL
SUB.TOTAL
SUB.TOTALI
A

SUM
SUMI
CUST.NAME$
INDEX%

- 19 -

INTEREST
PRIME. INTEREST
P.INT
BO

BASIC REFERENCE HARUAL

The following are all unacceptable variable names:

I23A
A$ONE
PRINT
SQR

Must start with letter
Only special character allowed is period
Reserved word
Reserved word

A variable name is identified as one of the three types of variables by a
terminating type character. This type character is part of the name and makes the
name different from a variable name with a different type character. For example,
the following three variable names each refer to a different variable:

CUSTOMER
CUSTOMER%
CUSTOMER$

5.2.1 Numeric Variables

(numeric variable)
(integer variable)
(string variable)

A numeric variable is a named location in which a single numeric value is stored.
Numeric variables contain numeric (floating point) values. A numeric variable is
identified by a variable name (discussed above) without a terminating type
character (last character is a letter or digit).

The following are all acceptable numeric variable names:

A
COUNT
MAXIMUM

Al
INDEX
MINIMUM

The following are all unacceptable numeric variable names:

6
9TOTAL

TOTAL.
IA

B9
RECORD.NUMBER
TOTAL

RECORD*COUNT
TWO/3

When a numeric variable is first defined its value is set to zero (0). Execution
of the RUN instruction clears all variables. If you require an initial value other
than zero you must assign it with the LET statement.

Note: Because other BASIC languages may not set all
variables to zero before program execution you should
not rely on this feature. Good programming practice
dictates that you initialize all variables at the
beginning of the program.

5.2.2 Integer Variables

An integer variable, similar to a numeric variable, is a named location in which a
single integer value is stored. Integer variables contain integers (whole,
non-fractional values). An integer variable is identified by a variable name
(discussed above) with a terminating type character of a percent (%) symbol.

The following are all acceptable integer variable names:

A%
RECORD%

Al%
RECORD.NUMBER%

- 20 -

INDEX%
CODE%

BASIC

CHAPTER. 5: EI·DlENTS OF mE BASIC LAlIGUAGE

The following are all unacceptable integer variable names:

A
TOTAL 1 $

B2
NAME$ONE

1 TOTAL %
REC.INDEX

When an integer variable is first defined its value is set to zero (0). Execution
of the RUN instruction clears all variables. If you require an initial value other
than zero you can assign it with the LET statement.

An integer variable always contains an integer value (see integer constants for
restrictions). If a numeric constant or variable is assigned to an integer
variable, BASIC first truncates the fractional part of the floating point number.
If the resulting whole number is outside the range of an integer (+32767 to -32767)
the number is set to 32767 with the proper sign and an error occurs (refer to the
ON ERROR GOTO statement and the appendix on error codes).

When you assign an integer variable or constant to a numeric variable BASIC will
print the numeric value as an integer but maintains it as a floating point number
internally.

5.2.3 String Variables

A string variable is a named location in which a single alphanumeric string of
characters is stored. A string variable is identified by a variable name
(discussed above) with a terminating type character of the dollar sign ($).

The following are all acceptable string variable names:

A$
CUST.NAME$
CUST.CITY.STATE.ZIP$

B5$
CITY$
DEBIT.CREDIT$

The following are all unacceptable string variable names:

A
CUST-NAME$

IB
$ NAME

NAME $
DESC$

COUNT%
AB

Strings have a value and a length. BASIC initializes all string variables to a
length of zero--referred to as a null string--when a string variable is first
referenced. During the execution of a program the length of a character string
associated with a string variable can vary from zero to a limit of 255.

5.3 Array Variables

An array is a list or table of numeric, integer, or string variables with one or
two subscripts. The subscript is a pointer to a specific location in a list or
table in which a value is stored. You designate the pointer with either one or two
subscripts enclosed by parentheses. When there are two subscripts they are
separated by a comma. The value stored may be a numeric, integer, or string value,
depending upon the array type.

BASIC - 21 -

BASIC REFEB.ERCE HARUAL

To name an array start with a numeric, integer, or string variable name:

ITEMS ITEMS % ITEMS $

Then add the subscript reference:

ITEMS (4) ITEMS%(2,10) ITEMS $ (15)

ITEMS(4) refers to the fifth value in the array ITEMS. It is the
because the first value has a subscript of zero (a number base of 0).
changed by the OPTION statement.

fifth value
This may be

ITEMS%(2,10) refers to the value "indexed" by row two, column ten in the table
ITEMS%.

As mentioned, an array may have one or two subscripts. The number of subscripts is
refered to as the number of dimensions of the array (see DIM statement). An array
defined with one dimension must always be referenced with only one subscript.
Likewise, an array defined with two dimensions must always be referenced with two
subscripts.

Array names must be unique from variable names (the subscript references are not
actually part of the name). This means that after the array ITEMS has been defined
all references to a variable ITEMS are unacceptable because the name ITEMS is an
array and must have subscripts. (The MAT statements are an exception to this
because they only operate on arrays.) An attempt to use a variable name as an array
and a non-array will result in an "Inconsistent usage" error.

Arrays are defined either explicitly with the DIM statement, or implicitly by using
the array name in an assignment statement (LET) or as a term in an expression.
When an array is defined implicitly it is automatically dimensioned with an upper
subscript of ten with one or two dimensions, depending upon the number of
supscripts in the array reference. For example:

LET ITEMS(4) = 1234

will dimension the array ITEMS to have eleven elements with subscripts: 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, and 10.

LET ITEMS%(2,7) = 23

will dimension the array ITEMS% to have two dimensions with maximum subscripts of
10 in each dimension. This equates to 121 elements (OPTION BASE 0) or 100 elements
(OPTION BASE 1).

If it is desired to have either fewer or more elements in an array you must use the
DIM statement.

References to an array with a subscript greater than the size that the array was
defined as will cause an error to occur (see ON ERROR GOTO statement and the
appendix on error message's).

Most people find it inconvenient to work with a subscript number base of zero. For
that reason the OPTION BASE 1 statement is provided. Refer to the OPTION statement
for details on its use.

- 22 - BASIC

CHAPTER. 5: ELEMENTS OF THE BASIC LANGUAGE

Note: It is always a good practice to use the DIM
statement to define the size of an array to avoid
wasting storage space and to document the arrays and
dimensions in use.

Array Example

As an example let the array ITEMS% be dimensioned to a size of 4 rows by 8 columns.
To accomplish this you would use the statement: DIM ITEMS%(3,7) and the layout of
the array would be:

COL U M N S

° 1 2 3 4 5 6 7

R ° 1 (0,0) 1 (0,1) 1 (0,2) 1 (0,3) 1 (0,4) 1 (0,5) 1 (0,6) 1 (0,7) 1
1-------1-------1-------1-------1-------1-------1-------1-------1

o 1 1 (1,0) 1 (1,1) 1 (1,2) 1 (1,3) 1 (1,4) 1 (1,5) 1 (1,6) 1 (1,7) 1
1-------1-------1-------1-------1-------1-------1-------1-------1

w 2 1 (2,0) 1 (2,1) 1 (2,2) 1 (2,3) 1 (2,4) 1 (2,5) 1 (2,6) 1 (2,7) 1
1-------1-------1-------1-------1-------1-------1-------1-------1

S 3 1 (3,0) 1 (3,1) 1 (3,2) 1 (3,3) 1 (3,4) 1 (3,5) 1 (3,6) 1 (3,7) 1

5.4 Functions

A function, in BASIC, is a special type of variable or constant.
predefined (or user defined) series of numeric and/or string operations.

It is a

A function name looks very much like an array name except that instead of one or
two subscripts the function has zero or more "arguments". The arguments of a
function are values that the function operates on or returns to the statement
referencing it.

There are three types of functions:

* Intrinsic functions
* User defined functions
* USR functions

A function is used just like a variable or constant with one exception: a function
cannot be assigned a value.

The following are all acceptable function names:

SQR(25)
INT(TOTAL)
FNA$(A1$,B2)
USR(3,A$)

5.4.1 Intrinsic Functions

Intrinsic - return square root of 25
Intrinsic - return integer value of TOTAL
User defined function
USR subroutine function

Intrinsic functions are functions that are an integral part of BASIC and need not
be defined by the programmer.

The intrinsic functions provided with OASIS BASIC include functions to perform
trigonometric operations, algebraic operations, general string operations, general

BASIC REl'ERERCE IWlUAL

numeric operations, logical operations, and screen control operations.

For a detailed description of the intrinsic functions refer to the chapter
"Functions" later in this manual.

Intrinsic function names are all reserved words and as such, cannot be used as
variable names. (See appendix on "Reserved Words".)

5.4.2 User Defined Functions

A user defined functions is one that must be defined by the programmer in each
program.

A user defined function name always starts with the letters FN.

For a description of how to write a user defined function refer to the DEF
statement.

When a reference is
defined with a DEF
reference. This may
subs crip ts •

made to a user defined function name and that function is not
statement the reference will be interpreted as an array
cause an error when the function arguments are analyzed as

5.4.3 usa Functions

A USR function is a call to a user written, assembly language, subroutine.

There can only be one USR function available at anyone time, although it may have
several "entry points".

Refer to the
OASIS MACRO
function.

OPTION USR statement for details on the USR function.
Assembler Language Reference Manual for details on

5.5 Expressions

Refer to the
writing a USR

Expressions are used extensively throughout this manual and within BASIC itself.
Basically an expression is the specification of a series of operations to be
performed on variables, constants, and functions, resulting in one value.

The use of an expression in BASIC is similar to expressions you use in your
everyday work. For example, the term "work week" is used in estimating the time it
takes to do a particular job. To determine the meaning of the term ''work week" you
normally multiply the number of hours a person works in a day by the number of days
he works in a calendar week (normally 8 hours by 5 days). That is an example of an
expression. Of course, in BASIC, you don't exactly use the same wording but it is
quite similar:

LET WORK. WEEK = HOURS * DAYS

In BASIC there are several types of expressions:

* Arithmetic expressions
* String expressions
* Logical expressions
* Relational expressions

- 24 - BASIC

CHAPTER. 5: ELEHKNTS OF THE BASIC LANGUAGE

The type of an expression is determined by the type of operations it performs and
the type of the constants, variables, or functions that it performs the operations
on.

An expression can be as simple as a single constant or as complex as several
hundred terms and operators.

The following are examples of expressions in BASIC:

2.345
A*SQR(GIRTH%)
NAME$&"abcdefg"
"Name: "&SPACE$(4)&NAME$
A OR B
NOT TRUE%
NAME1$ > NAME2$
CAT <= (BIRD AND DOG)

Arithmetic expression
Arithmetic expression
String expression
String expression
Logical expression
Logical expression
Relational expression
Relational expression with
logical subexpression

An expression is composed of terms (constants, variables, and/or functions) and
operators (+, *, &, etc.). Operators are either binary operators (operate on two
terms) or unary (operate on one term). An example of a binary operator is the
multiplication operator (*). An example of a unary operator is the negative
operator (-). Some operators can be either binary or unary such as the plus
operator (+).

Expressions are frequently used in BASIC assignment statements (LET) but there are
many other uses for expressions. The syntax of each of the statement descriptions
specifies where an expression can be used and what type of expression is allowed.

Although there are four distinct types of expressions many expressions used in a
BASIC program are generally a combination of two or more types of expressions.

5.5.1 Arithmetic Expressions

The arithmetic expression is the most common type of expression. An arithmetic
expression has an arithmetic value (integer or floating point) and is defined as:

<arithmetic term> [<arithmetic operator> <arithmetic term>]

Arithmetic term

An arithmetic term may consist of any of the following:

BASIC

Numeric constant
Integer constant
Numeric variable or array
Integer variable or array
Numeric function
Integer function
Logical expression
Relational expression
Arithmetic expression

- 25 -

BASIC REl'ERERCE HANUAL

Arithmetic operators

Operator

*
/
+

Function

Exponentiation
Multiplication
Division
Addition (or unary positive)
Subtraction (or unary negative)

English

raised to the power
times
divided by
plus
minus

An arithmetic expression whose terms are mixed in type (both integer and floating
point) yields a floating point value. ,An arithmetic expression whose terms are the
same type (all integer or all floating point) yields a value of the same type.

You cannot place two arithmetic operators together unless the second operator is a
unary minus or unary plus.

The following are examples of valid arithmetic expressions:

A% Integer result
A%+23 Integer result
SUB.TOTAL+CURRENT*UNIT.PRICE Numeric result
ONE%*THREE Numeric result
+1/-4 Numeric result
PI*RADIUS+2 Numeric result
3*4/(PI*R2) Numeric result

Note that the last example uses parentheses. Parentheses may be used anytime to
clarify' the sequence of operations or to change the sequence (see section on

, "Evaluating Expressions" below).

5.5.2 String Expressions

A string expression has a string value and operates only on string terms.

String terlll

A string term may consist of any of the following:

String constant
String variable or array
String function
String expression

String operator

A string operator may consist of:

Operator

&
[n:m]

Function

Concatenation
Substring

English

is concatenated with
from character n

through m (unary operator)

- 26 - BASIC

CHAPTER. 5: ET.EHRNTS OF THE BASIC LANGUAGE

The concatenation operator allows two strings to be joined
"ABCDEF"&"GHIJKLMN" produces ABCDEFGHIJKLMN. The concatenation
operates on two terms (binary operator).

together. Thus
operator always

The substring operator extracts characters from a string. The n in the operator
represents the starting character position; the m in the operator represents the
ending character position. The result of a substring operation is always a string
of length m-n+l, even when one or both of nand m are greater than the current
length of the string being operated on. The m value must be greater than or equal
to the n value. The substring operator is a unary operator that operates on the
preceding term, rather than the following term like other unary operators. The
substring operator may be followed by the concatenation operator.

The following are examples of string expressions: (assume all string variables
contain the constant "ABCDEFGH")

Expression

NAME $
"John Doe"
A$&"Message"
CITY$&", "&ST$&" "&STR$(ZIP%)
A$ [2: 4]
''''&ALPHA$ [4:9] &ALPHA$ [11: 12]&''''
(A$&B$[5:9]) [3:10]

Result

ABCDEFGH
John Doe
ABCDEFGHMessage
ABCDEFGH, ABCDEFGH 12345
BCD
"DEFGH
CDEFGHEF

"

Note that in the last example parentheses were used. Parentheses are discussed in
the section "Evaluating Expressions" below. In this example the parentheses are
used to produce a "sub-expression" for the second substring operator.

The following are invalid string expressions:

A$/"ABCD"
A$ [4: 1]
A$>B$
A$&123
A$[2:3]&

5.5.3 Logical Expressions

Cannot include arithmetic operator
Invalid substring reference
Relational expression (see below)
Cannot include arithmetic term
Concatenation requires two terms

A logical expression operates on integer values and produces an integer value. A
logical expression is defined as:

<arithmetic term> <logical operator> <arithmetic term>

Arithmetic term was defined above in the section "Arithmetic Expressions".

BASIC - 27 -

BASIC IlD'EIlERCE IlARUAL

Logical operators

A logical operator is any of the following:

Operator

NOT
AND
OR
XOR
IMP
EQV

Function

Invert bit in one term (unary)
Bit on in both terms
Bit on in either term
Bit on in only one term
Bit on in second term only if on in first term
Bit either on in both terms or off in both terms

Logical expressions are comparisons between the corresponding Ubits"
terms of the expression. A bit is a binary (either on or off)
information. An integer value is composed of sixteen bits. A decimal
expressed in bits by converting the number to base two notation and
leading binary zeros, if necessary. The following is a list of some
values in decimal and binary:

Decimal

o
1
5

23
100

32767
-32767

-1

Binary bits

00000000 00000000
00000000 00000001
00000000 00000101
00000000 00010111
00000000 01100100
01111111 11111111
10000000 00000000
11111111 11111111

of the two
piece of

integer is
adding any
equivalent

Note that a decimal zero has all zero bits and a decimal
bits. This relationship between decimal and binary is
relational expressions, discussed in the following section.

minus one has all one
used in the result of

The terms of a logical
point in value BASIC
performed.

expression must be integers. When
will integerize them before the

the terms are floating
logical operation is

Logical expressions are valid wherever arithmetic expressions are allowed in BASIC,
however, both terms must be integers (floating point terms will automatically be
ufixedU) •

The following tables are called truth tables. They show graphically the results of
the logical operations for every possible combination of two bits.

- 28 - BASIC

A%
0
1

A% B%
0 0
0 1
1 0
1 1

A% B%
o 0
o 1
1 0
1 1

CHAPTER. s: EI.DfKN'rS 01' TIlE BASIC LABGUAGE

Logica1 Truth Tab1es

NOT OR

NOT A% A% B%
1 0 0
0 0 1

1 0
1 1

.ABD XOB.

A% AND B% A% B%
0 0 0
0 0 1
0 1 0
1 1 1

IHP EQV

A% IMP B%
1
1
o
1

A%
0
0
1
1

B%
0
1
0
1

A% OR B%
0
1
1
1

A% XOR B%
0
1
1
0

A% EQV B%
1
0
0
1

The following are examples of valid logical expressions:

NUMl% OR NUM2%
I% AND 23
I% AND (NUMBER XOR TOTAL) IMP TEST%
(A AND B) OR (A AND C)
STRING$ >= "A" AND STRING$ <= "z"

Note that in the next to the last example parentheses were used.
discussed in the section "Evaluating Expressions" below. In
parentheses are used to specify the sequence of evaluation.

The following are all unacceptable logical expressions:

Parentheses are
this example the

STRING$ OR "HELP"
NUMl% AND OR NUM2

Must be arithmetic terms
Binary operators cannot be
adjacent

Logical expressions are normally used to evaluate terms that are the result of
relational expressions (bits all on or all off); however, since the logical
expression does compare all sixteen bits of each of the terms there are many other
uses for logical expressions. One of the more common of these other uses is binary
coded information or "bit swtiches".

BASIC - 29 -

BASIC REFERENCE HABUAL

Some examples will illustrate how the logical operators work on non-relational
values:

15 AND 14 . 0000000000001111 (15)
AND 0000000000001110 (14)

----~-----------
0000000000001110 (14) (True)

10 OR 23 0000000000001010 (10)
OR 0000000000010111 (23)

0000000000011111 (31) (True)

NOT 153 NOT 0000000010011001 (153)

1111111101100110 (-154) (True)

25 XOR 13 0000000000011001 (25)
XOR 0000000000001101 (13)

0000000000010100 (20) (True)

29 XOR 29 0000000000011101 (29)
XOR 0000000000011101 (29)

0000000000000000 (0) (False)

234 EQV 3429 0000000011101010 (234)
EQV 0000110101100101 (3429)

1111001001110000 (-3472) (True)

56 IMP 720 0000000000111000 (56)
IMP 0000001011010000 (720)

1111111111010111 (-41) (True)

As you can see there doesn't appear to be a relationship between the decimal terms
and the decimal result of the expression; however, using the binary representations
of the integers (as BASIC does) there is a definite, Boolean, relationship. This
can be utilized to make an integer value contain sixteen, binary (on/off) switches.
When using binary switches the logical expressions can be utilized to set or mask
the number to expose the bit switch desired.

5.5.4 Relational Expressions

A relational expression operates on numeric or string terms and produces a sixteen
(16) bit integer value of -1. (true - all bits on) or 0 (false - all bits off). A
relational expression is defined as:

<arithmetic term> <relational operator> <arithmetic tera>

or

<string term> <relational operator> <string tera>

- 30 - BASIC

CIIAPTEIl 5: E1.DfENTS OF THE BASIC LABGUAGE

Arithmetic and string terms were defined above under the sections "Arithmetic
Expressions" and "String Expressions" respectively.

Relational operators

A relational operator is any of the following:

Operator

>
>=
<
'<=

<>

Function

Greater than
Greater than or equal to
Less than
Less than or equal to
Equal to
Greater than or less than (unequal to)

The following are all acceptable relational expressions:

STRING$ > "HELLO"
NUMI <= NUM2
NUMBER% <> 225*(5-0NE)

539 = ONE

String relation
Numeric relation
Numeric relation with
arithmetic sub-expression

Numeric relation (not assigment)

The following are all unacceptable relational expressions:

"Goodbye" <> 25
NUMI II NUM2

5.5.5 Expression Evaluation

Can't mix string with numerics
Invalid operator

BASIC evaluates expressions according to operator precedence. Each arithmetic,
string, logical, and relational operator joining an expression has a predetermined
position in the hierarchy of operators. The operator's position tells BASIC when
to evaluate the operator in relation to the other operators in the same expression.

Parentheses may be used to change the sequence of evaluation of an expression.
Nested parentheses (one set of parentheses within another) may be used to cause the
innermost subexpression to be evaluated first.

Parentheses may also be used as a documentation aid to clarify a complex
expression.

The following table lists all of the expression operators in the hierarchy of
evaluation.

BASIC - 31 -

BASIC BD'EIlERCE IWWAL

Operator Precedence

I Operator I Hierarchy

() 0
(exponentiation) 1

functions 2
substringing 2
+ (unary) 3
- (unary) 3
* (multiplication) 4
/ (division) 4
+ (addition) 5
- (subtraction) 5
& (concatenation) 5
> (greater than) 6
>= (greater or equal) 6
< (less than) 6
<= (less then or equal) 6
= (equal) 6
<> (unequal) 6
NOT 7
AND 8
OR 9
XOR 10
EQV 11
IMP 12

Notice that some operators have the same hierarchy number. This means that they
are equivelent in precedence and will be evaluated in a left to right manner. This
also applies to an expression with more than one occurence of the same operator.

As an example, consider the following expression:

A = 152+122-35*8

BASIC evaluates this expression in five, ordered steps:

1. 152 = 225 Exponentiation (left most)
2. 122 = 144 Exponentiation (next)
3. 35*8 = 280 Multiplication
4. 225+144 = 369 Addition
5. 369-280 = 89 Subtraction

Result is 89

Arithmetic expressions with mixed arithmetic types (floating point and integer)
will "float" all of the terms before expression evaluation.

As mentioned, parentheses can alter the sequence of evaluation (and possibly, the
result). Consider the following, similar expressions and evaluations:

- 32 - BASIC

252+302/2

1. 252 = 625
2. 302 = 900
3. 900/2 = 450
4. 625+450 = 1075

Result is 1075

CBAPTKR. 5: ELEHENTS OF THE BASIC LANGUAGE

(252+302)/2

1. 252 = 625
2. 302 = 900
3. 625+900 = 1525
4. 1525/2 = 762.5

Result is 762.5

Note that in the above precedence table the relational operators have precedence
over the logical operators.

Consider the following expression and evaluation:

"A">"B" OR "A"<="D"

1. "A">"B" = 0
2. "A"<="D" = -1
3. 0 OR -1 = -1

BASIC - 33 -

0000000000000000 (false)
1111111111111111 (true)
1111111111111111 (true)

BASIC REFERENCE MARUAL

- 34 - BASIC

CBAPTEIl 6

FORHATED OUTPUT

Sometimes the format of output is as important as the content. BASIC provides a
means of controlling this format with the PRINT USING statement and the FORMAT$
function. Both the statement and the function allow you to control the appearance
of data, thus enabling you to create formatted list, tables, reports, and forms.

The following example programs print a series of numbers. One program uses the
PRINT statement and the other uses the PRINT USING statement.

0010 PRINT 1
0020 PRINT 10
0030 PRINT 123.5
0040 PRINT 100
0050 PRINT .23433
0060 PRINT 1000000
0070 PRINT -3

-RUN
1
10
123.5
100
0.23433
1000000

-3

0005 MASK$ = "11,11111111111111.1111-"
0010 PRINT USING MASK$,l
0020 PRINT USING MASK$,10
0030 PRINT USING MASK$,123.5
0040 PRINT USING MASK$,100
0050 PRINT USING MASK$,.23433
0060 PRINT USING MASK$,1000000
0070 PRINT USING MASK$,-3

-RUN
1.00

10.00
123.50
100.00

0.23
1,000,000.00

3.00-

As can be seen the PRINT statement left justifies numbers, performs no rounding,
and indicates negative values with a leading, floating, minus sign; PRINT USING
(and the FORMAT$ function) allows you to format numbers in several ways, making it
easier to read and intepret the output.

There are several number formatting functions that the PRINT USING statement and
the FORMAT$ function allows you to specify:

* Number of significant digits.
* Location of decimal point.
* Exponential format.
* Inclusion of special symbols (asterisk fill, dollar sign, commas, leading

zeros) •
* Alternate methods of indicating negative values (trailing sign, < >,

trailing DB or CR).

There are also several string formatting functions that the PRINT USING statement
allows you to specify:

* Number of characters.
* Left justified format.
* Right justified format.
* Center justified format.
* Extended format.

All of the formatting functions for the PRINT USING statement and FORMAT$ function
are specified by using a mask that contains the formatting information. For
details on the general syntax of the PRINT USING statement and FORMAT$ function

BASIC - 35 -

BASIC REDB.ERCE MARUM.

refer to their respective sections.

PRIRT US DIG and FORMAT Masks

PRINT USING and FORMAT$ masks are string expressions that contain formatting and
non-formatting characters that control the format of the field output.

A PRINT USING mask may contain the format information for more than one field; a
FORMAT$ mask contains the format informattion for only one, numeric field.

Non-formatting characters include any, and all, characters not specified here as
formatting characters and act as literal information and field separators. These
non-formatting characters will be included in the output field. Formating
characters that operate in pairs (\\ $$ ** DB CR ~~ ~~~ ~~~~ ~~~~~) will act as
non-formatting characters if they appear separately ($ * D B C R ~). Additionally,
the formatting characters comma, period, minus, DB, CR, +, and > act as
non-formatting characters if they appear separate from a numeric field
specification.

For example:

0010 PRINT USING "Example 1: 1111",1
0020 PRINT USING "This is a DB record 99",1
-RUN
Example 1: 1
This is a DB record 01

6.1 Humeric Field Masks

Numeric field masks may be used for both the PRINT USING statement and the FORMAT$
function. A numeric field mask requires a numeric value as input. When an attempt
is made to use a numeric field mask with a string field the error "Invalid using"
will occur.

The output of a numeric field specification mask will always be the same length as
the length of the specification mask (unless there is insufficient space--see
"Field Specification too Small"). If necessary, the number to be output is rounded
by truncating digits to the right of the decimal point not specified in the mask or
rounding the last digit specified to the right of the decimal point if the next
digit was five or greater. When a number must be rounded to make it fit in the
specified mask rounding·will be performed on the absolute value of the number. For
example:

0010 PRINT USING "//11",1.4,1.5,1.6
RUN

1
2
2

6.1.1 Specifying Humber of Digits

0010 PRINT USING "/11/",-1.4,-1.5,-1.6
RUN
-1
-2
-2

All of the numeric, formatting characters are used to specify the total length of
the output field; however, only the #, 9, comma, **, and $$ are used to specify the
number of digits to be included. Conventionally, the # and/or 9 characters are
used to specify the number of digits.

- 36 - BASIC

CIIAPTER. 6: FOBHATED OUTPUT

The 9 character reserves space for one digit and, if it appears before the decimal
point specification, indicates that leading zeros are not to be suppressed. The 9
character cannot be used to format negative values.

The # character reserves space for one digit and indicates that leading zeros are
to be suppressed.

The # and 9 characters may be mixed; however, if one or more 9 characters appear
before the decimal point specification, leading zeros will not be suppressed.

When no sign specification is used and a negative value is output, a leading,
floating, minus sign will be output, using one of the digit positions (as stated
earlier, the output field will always be the same length as the mask field).

For example:

0010
0020
0030
0040
0050
0060
-RUN

1
1
1

00001
-1
23

PRINT USING" "",I
PRINT USING" 111''',1
PRINT USING "/11111111''',1
PRINT USING "91111111''',1
PRINT USING "/11111111'''-1
PRINT FORMAT $ (23," 11111111")

Decimal Point Specification

0010 PRINT USING " 9",1
0020 PRINT USING " 99",1
0030 PRINT USING "99999",1
0040 PRINT USING "#91/9#",1
0050 PRINT USING "99999-",-1
0060 PRINT

1
01

00001
00001
00001-
00023

FORMAT $ (23, "91111111/ ff
)

You can specify the number of digits to the left and right of the decimal point by
using a period embedded in the number field specification. The number of digits to
the right of the decimal point specification will always be printed, even if zeros
are required to do so.

If one or more digits are specified to the left of the decimal point there will
always be at least one digit output, even if a zero is required to do so, unless
there is only one place specified, the number is negative and less than one, and
there is no sign specification used, in which case the negative sign will be output
immediately before the decimal point.

Specifying fewer places to the right of the decimal point than the number actually
contains will cause rounding to occur to allow the number to fit. Specifying fewer
places to the left will cause an error (see Specification too Small).

Only one decimal point may be specified in a numeric field mask.
second decimal point will indicate the end of the mask field and
another numeric field.

BASIC - 37 -

Specifying a
the start of

BASIC REFERENCE HANUAL

For example:

0010 PRINT USING " .1111",0
0020 PRINT USING" 11.1111",1
0030 PRINT USING" 1111.1111",1.2345
0040 PRINT USING "1111111111.11111111",1.24
-RUN

.00
1.00
1.23
1.2400

6.1.3 Comma Specification

0010 PRINT USING" .99",0
0020 PRINT USING" 9.99",1
0030 PRINT USING "99.99-",-.2
0040 PRINT USING" 9.999",-.234569
-RUN

.00
1.00

00.20-
%-.234569

Commas may be inserted in the output field by using the comma character anywhere in
the field, to the left of the decimal point specification, if used.

When the comma character is used the output field will be formatted with a comma
appearing every third digit from the decimal point (or least significant digit if
the decimal point specification is not used), working from right to left.

The comma character is also a digit specifier.

More than one comma may be specified for easier reading of the format mask:
11,111111111111111111 has the same effect as 111111,111111,111111 although the second form is more
graphic in its meaning.

For example:

0010 PRINT USING "11,11111111",1
0020 PRINT USING "11,1111111111111111111111", 1E 9
0030 PRINT USING "1111,111111111111.1111",1234.56
-RUN

1
1,000,000,000

1,234.56

6.1.4 Dollar Field Specification

0010 PRINT USING "1111,111111",12345
0020 PRINT USING "11,111111,111111,111111", 1E 9
0030 PRINT USING "11,/11/11,111111.1111,"1234.56
-RUN
12,345
1,000,000,000

1,234.56

A number may be formatted with a dollar sign immediately before the most
significant digit by using the floating dollar sign specification of two dollar
sign characters together. (To format a number with a dollar sign before the field
use a single dollar sign character and it will be treated as a non-formatting
character.)

The double dollar sign
fill specification,
specification) •

characters must be at the start of the field (the asterisk
if used, must be before the floating dollar sign

The double dollar sign characters indicate that a floating dollar sign is to be
generated and one position is to be reserved for a digit.

If the number to be formatted is negative you must use the sign specification,
otherwise a using error will occur.

The numeric field specification character 9 may not be used in a field with

- 38- BASIC

CHAPTER 6: !'OIDIA.DD OUTPUT

floating dollar sign specification. When it is it will be interpreted as the end
of the field and the start of the next numeric field.

Extra dollar sign characters may be used instead of the n character. For instance,
$$$$$$$$ is the same as $$######.

For example:

0010 PRINT USING "$$111111.#11",12
0020 PRINT USING "$$111111.1111",1234
0030 PRINT USING "$$111111.1111-", -1234
-RUN

$12.00
$1234.00
$1234.00-

6.1.5 Asterisk Fill Specification

0010 PRINT USING" $$",1
0020 PRINT USING "$$,1111111111.1111",12345
0030 PRINT USING "$$111111111111.1111-", -12345
-RUN

$1
$12,345.00
$12,345.00-

A number may be formatted with leading asterisk instead of leading zeros by using
the asterisk fill specification of two asterisk characters.

The asterisk fill specification, if used, must appear at the very start of a
numeric field specification.

The double asterisk characters indicate that any leading zeros are to be replaced
with asterisks and that two positions are to be reserved for digits.

If the number to be formatted is negative you must use the sign specification,
otherwise a using error will occur.

The numeric field specification character 9 may not be used in a field with
asterisk fill specification. When it is it will be interpreted as the end of the
field and the start of the next numeric field.

Extra asterisk characters may be used instead of the II character. For instance,
******** is the same as **111111111111.

For example:

0010 PRINT USING "**1111.1111",123
0020 PRINT USING "**1111.1111-",-123
0030 PRINT USING "**$$$$$-",-2
-RUN
*123.00
*123.00-
*****$2-

6.1.6 Sign Specification

0010 PRINT USING "****.1111",123
0020 PRINT USING u**$$.1111",1
0030 PRINT USING "****",.5678
-RUN
*123.00
**$1.00
***1

BASIC provides several methods of specifying how to print signed values. As stated
above, when the mask field does not specify how to format a negative value, a
leading, minus sign is generated. This is unacceptable in many cases and BASIC
will not allow it if the format specification includes leading zeros (9), floating
dollar sign ($$), or asterisk fill (**). In these situations you must use one of
the sign specification characters.

BASIC - 39-

BASIC llERIlDlCE IWmAL

All of the sign specification characters, when used, must appear at the end of
format field (if they appear at the beginning or middle of a format field they will
be treated as non-formatting characters or field separators, respectively).

Tra~1iDg Sign Speci£~cat~OD

A plus sign character (+) at the end of a format specification indicates that
the sign of the field (+ or -) is to be output at the end of the number.

Trai.1f.ng Hinus S~gn Speci£~cat~OD

A minus sign character (-) at the end of a format specification indicates that
the sign of the field (-) is to be output at the end of the number if the
value of the number is less than zero.

Tra~1iDg Deb~t S~gn Spec~f~cat~OD

Debit specification characters (DB) appearing at the
specification indicate that a literal DB is to be output
number if the value of the number is less than zero.

Tra~1ing Credit S~gn Spec~f~cat~on

Credit specification characters (CR) appearing at the
specification indicate that a literal CR is to be output
number if the value of the number is less than zero.

Angle Bracket Specif~cat~on

end of a format
at the end.of the

end of a format
at the end of the

An angle bracket
the the number

character (» at the end of a format specification indicates
is to be surrounded with angle brackets if the value of the

number is less than zero.

Note that this specification is somewhat different from the other sign
specifications in that not only is a character added at the end of the number
output but also at the beginning of the number.

This sign specification may not be used with the numeric field specification
characters 9, $$, or **.

Negative value specifications may be used with any of the other numeric field
formatting characters with the exception of exponential field specification.

- 40- BASIC

Examples:

0010 PRINT USING
0020 PRINT USING
0030 PRINT USING
0040 PRINT USING
0050
0060
-RUN

123+
123
123
123
123

PRINT
PRINT

12.00

USING
USING

II 11111111+" , 123
II 11111111- II , 12 3
II IIIIIIIID B II , 12 3
II IIIIIIIICR II , 123
II 11111111> II , 12 3
II 11I1I1I1I1t1 • 1111> II , 12

0010 PRINT USING
0020 PRINT USING
0030 PRINT USING
0040 PRINT USING
0050 PRINT USING
0060 PRINT USING
-RUN

123-
123-
123DB
123CR

<123>
<12.00>

CHAPTER. 6: FORHATED OUTPUT

II 11111111+ II , -123
II 11111111-" ,-123
II IIIIIIIIDB ", -123
II IIIIIIIICR ", -123
"11111111>", -123
II 11I1I1I1I1t1 • 1111>" , -12

6.1.7 Exponent~al F~eld Spec~f~cat~on

BASIC normally prints a number in E format only when it is larger than 13 digits
long, for example: 123456789012345 would be printed as 1.234567890123E+014.
However, with PRINT USING or the FORMAT$ you can force a number to be output in E
format. This is done with the exponential field specification: ~~~~~.

When a number is to be formatted in E format you cannot specify any other
formatting characters other than the number of digits (#) or the decimal point
position (.).

The exponential field specification, when used, must be at the end of the numeric
field specification: ##.####~~~~~.

The exponential
characters when
specification.

For example:

field specification
it is known that

For example:

may be used with fewer than five up-arrow
the exponent will fit in the smaller

allows for exponents from -126 to +126
allows for exponents from -99 to +99
allows for exponents from -9 to +9
allows for exponents from a to 9

0010 PRINT USING "#.##~~~~~",124
0020 PRINT USING "11I1I1I1I1I1I1t1~~~""'~", 123445
0030 PRINT USING "1111111111. 11I1t1t1~""'~""''', 12345678
0040 PRINT USING "#.11t1l1l1l/~~",1234567

-RUN
1.24E+002
12344500E-002
12345.6780E+03
1.23456E6

6.1.8 F~eld Spec~f~cat~on too S.all

When a number field specification does not specify sufficient digit to allow the
number to be output a percent symbol character (%) will be output followed by the
number, unformatted.

BASIC - 41 -

BASIC REFERERCE IWWAL

This situation can happen for several reasons:

* Field isn't large enough: mask= ### number = 1234
* Field isn't large enough to include the commas specified: mask= #,###

number= 12345
* Field isn't large enough to include floating dollar sign: mask= $$###

number= 12345
* Field isn't large enough to include leading minus sign: mask= H## number=

-123

In the following examples a double field mask is used to print two numbers, the
first number won't fit in the first field but the second, identical number will fit
in the second field.

0010 PRINT USING "111111 11111111.1111",1234,1234
0020 PRINT USING "/1,111111/1111111/1",12345,12345
0030 PRINT USING "$$111111 1111111111",12345,12345
0040 PRINT USING "**111111 1111111111",12345,12345
0050 PRINT USING "111111 111111-" ,-123,-123
0060 PRINT USING "11.1111 1111.1111 ", -1,-1
0070 PRINT USING "11./11, 11.11I1 ",lE+12,lE+12
-RUN
% 1234 1234.00
% 12345 12345
% 12345 12345
% 12345 12345
%-123 123-
%-1 -1.00E+000
% 1000000000000 1.00E+12

6.2 String Field Masks

String field masks may only be used for the PRINT USING statement, not in the
FORMAT$ function. A string field mask requires a string value as input. When an
attempt is made to use a string field mask with a numeric value the error "[26]
Invalid using" will occur.

The output of a string field specification mask will always be the same length as
the length of the specification mask with one exception: extended fields. When a
string value is longer than the string field mask BASIC will print as much of the
string as will fit and truncate the remaining.

6.2.1 Single Character

You can specify that only the first character of the string value is to be printed
by using the single quote character as a single character string mask field.
Alternately the exclamation mark (1) may be used.

0010 PRINT USING "1","ABCDEFGH"
RUN
A

0020 PRINT USING "''',''XYAX''
RUN
X

- 42 - BASIC

CHAPTER. 6: I'ORHATED OUTPOT

6.2.2 Left Justified Field

If you specify a left justified string field, BASIC prints the string starting at
the left most position. If there are any unused places, BASIC prints spaces after
the string. If there are more characters in the string value than in the string
mask, BASIC truncates the string and does not print the excess characters.

To specify a left justified string field use the single quote lead in character (')
followed by one or more L characters. The number of L characters (upper or lower
case) plus the lead in quote specify the length of the left justified field.

Alternately you may use the back slant character to mark the beginning and end of
the string mask. In this form spaces must be used between the two back slant
characters. The number of spaces plus the two back slant characters specify the
length of the left justified field to be printed.

With either method the minimum string length is two.

For example:

0010 PRINT USING "'L","ABCDEF"
0020 PRINT USING "'LLL","1234567"
0030 PRINT USING "\ \","ABC"
RUN
AB
1234
ABC

6.2.3 Right Justified Field

0010 PRINT USING "'LLLLL","1234567890"
0020 PRINT USING "'LLLLL","AB"
0030 PRINT USING "\ \","ABCD"
RUN
123456
AB
ABCD

If you specify a right justified string field, BASIC prints the string so that the
last character of the string is in the right most place of the field. If there are
any unused places before the string, BASIC prints spaces to fill the string. If
there are more characters in the string value than in the string mask, BASIC
truncates the string and does not print the excess characters.

To specify a right justified string field use the single quote lead in characters
(') followed by one or more R characters. The number of R characters (upper or
lower case) plus the lead in quote specify the length of the right justified field.

For example:

0010 PRINT USING "'RRRRRR","ABCD"
0020 PRINT USING "'RRRRRR","AB"
0030 PRINT USING "'RRRRRR","ABCDEF"
0040 PRINT USING "'RRRRRR","ABCDEFGHIJKLMNOP"
RUN

ABCD
AB

ABCDEF
ABCDEFG

6.2.4 Center Justified Field

If you specify a centered field, BASIC prints the string so that the center of the
string is in the center of the field. If the string cannot be exactly centered,

BASIC - 43

BASIC 1lEFERERCE MANUAL

such as a two character string in a five character field, BASIC prints the string
one character off center to the left. If the length of the string is longer than
the mask field the string will be truncated.

To specify a center justified string field use the single quote lead in character
(') followed by one or more C characters. The number of C characters (upper or
lower case) plus the lead in quote specify the length of the center justified
field.

For example:

0010 PRINT USING "'CCCCCCCCCC","ABC"
0020 PRINT USING "'CCCCCCCCCC","ABCDEF"
0030 PRINT USING "'CCCCCCCCCC","A"
0040 PRINT USING "'CCCCCCCCCC","ABCDE"
0050 PRINT USING "'CCCCCCCCCC","ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN

ABC
ABCDEF

A
ABCDE

ABCDEFGHIJK

6.2.5 Extended Field

The extended field is the only field that automatically prints the entire string.
When you specify an extended field, BASIC left justifies the string as it does for
a left justified field, but, if the string has more characters than there are
places in the field, BASIC extends the field and prints the entire string. This
extension may cause other items to be misaligned.

To specify an extended field use the single quote lead in character (') followed by
one or more E characters. The number of E characters (upper or lower case) plus
the lead in quote specify the minimum length of the extended field. The resulting
output field will always be at least the length of the mask field.

For example:

0010 PRINT USING "'E-","ABCDEF"
0020 PRINT USING "'EEEE-","ABCDEF"
0030 PRINT USING "'EEEEEEEEEEEEEEEEEEE-","ABCDEFGHIJKLMNOP"
RUN
ABCDEF-
ABCDEF-
ABCDEFGHIJKLMNOP

6.3 Multiple FieldS In One Mask

The PRINT USING statement allows mUltiple fields to be specified in one mask. When
this is done the values of the expressions in the PRINT USING statement are matched
in a one to one relation with the fields in the mask. (The FORMAT$ function only
allows one numeric field to be specified in the mask. A second field, if
specified, will be used to mark the end of the mask.)

- 44 - BASIC

For example:

0010 PRINT USING "111111 11111111 11111111 1111%",1,2,3,4
0020 PRINT USING "999 9999 9999 99%",100,123,5,2

CBAPTEIl 6: F01DIATED 01rlPOT

0030 PRINT USING "'RRRRRRRRRR 111111 'E", "ITEM", 23, "THIS IS THE DESCRIPTION"
RUN

1 2 3 4%
100 0123 0005 02%

ITEM 23 THIS, IS THE DESCRIPTION

As mentioned earlier, any non-formatting characters in the mask field are treated
as literal characters to be included in the output:

0010 PRINT USING "ITEM 9999 Amount each: $$$$$$.1111",23,15.40
RUN
ITEM 0023 Amount each: $15.40

6.4 Re-using Mask Fields

The PRINT USING statement will re-use the mask field if there are more values
specified as input than there are fields in the mask. BASIC will output a carriage
return, line feed each time that the mask is re-used.

For example:

0010 PRINT USING "$$$$$$, $$$.1111",1,23.4,34,234,5467.2,1235.924
RUN

$1.00
$23.40
$34.00

$234.00
$5,467.20
$1,235.92

6.5 Using Errors

A using error occurs (and a message is displayed) if:

BASIC

* The format string is not a legal string expression.
* There are no valid fields in the format string.
* A string is printed in a numeric field.
* A number is printed in a string field.

- 45 -

BASIC REFERERCE HARUAL

PJtDIT USIRG and POBHAT$ I'onaat Characters - lI1merlc I'f.elds

Character 1 Function 1
==1

9 1 Reserves place for one digit. Also specifies no zero 1
1 suppression. 1

--1
1 Reserves place for one digit, with leading zeros 1

1 suppressed.

$$ 1 Reserves place for one digit and floating dollar sign.

** 1 Causes leading asterisks to be printed instead of
1 spaces. Also reserves place for two digits.

Causes a comma to be printed between every third digit
starting from the decimal point and proceeding from
right to left. Also reserves place for one digit.

1 Specifies location of decimal point.

1 Causes a trailing minus sign to be printed when number
1 is negative.

+ 1 Causes a trailing minus or plus sign to be printed
1 depending upon the sign of the number

DB 1 Causes a trailing DB to be printed when number is
1 negative.

CR 1 Causes a trailing CR to be printed when number is
1 negative.

> 1 Causes a leading, floating < and a trailing > to be
1 printed when number is negative.

1 Causes the number to be printed in E format. Only
1 allows for single digit, unsigned exponent.

1 Causes the number to be printed in E format. Only
1 allows for single digit, signed exponent.

1 Causes the number to be printed in E format. Only
1 allows for double digit, signed exponent.

1 Causes the number to be printed in E format.

- 46 - BASIC

BASIC

CHAPTEll 6: FOllHADD OUTPOT

PRIRT USIRG Foraat Characters - String F~elds

I Character I Function
I===========================~==
I I Single character field printed.

\ I Marks beginning or ending of a left justified field
I and reserves one place for a character.

-----------~--,
I
I
I

Single character field printed or treated as the
lead in character for following four format
characters and reserves one place for a character.

L I Causes string to be left justified and reserves place
I for one character. Also lower case 1.

R I Causes string to be right justified and reserves place
I for one character. Also lower case r.

C I Causes string to be center justified and reserves
I place for one character. Also lower case c.

E Causes string to be left justified, reserves place for
one character, and causes entire string to be
printed. Also lower case e.

- 47 -

CBAPTEIl 7

USIBG FILES

BASIC supports file input and output to the on-line disk drives, console, printers,
and other devices. Various file access methods are supported: SEQUENTIAL (one
record after another from beginning of file); DIRECT (random by relative record
number); and INDEXED (random by key).

Files have· both an external name by which it is known within the system, and an
internal file designator used within the BASIC program. For example, a file might
exist on a disk, with the name INVEN.MASTER. This is the external name (i.e.,
INVEN.MASTER:A). In the BASIC program it might be opened on channel 1. This is
done through the OPEN statement. All further references to the file in the program
will be to #1 not to the file name of 'INVEN.MASTER:A'.

There are sixteen (16) channel numbers available to the user program, and all
sixteen may be in use at one time. This means that there can be sixteen data files
available for use at anyone time in the BASIC program. Each open I/O channel
requires buffer space and a small amount of space used for pointers, etc. The
amount of buffer space needed varies, depending upon the device.

A seventeenth channel is always open to the CONSOLE. This channel is only accessed
with INP and EOF functions, and the INPUT, LINPUT, and PRINT statements.

The sequence of statements in a BASIC program that uses a file is:

OPEN

OPEN
INPUT, LINPUT, PRINT, READ, WRITE, etc.
CLOSE

This statement must be used before other file access statements to specify
the file to be used, the internal channel to use for the file, the access
mode and method, and various options that are to be used with the file.

INPUT,PRINT These statements perform the input and output to the file. They are
performed as often as necessary to accomplish the function of the program.
The specific statement to be used depends upon the access mode used in the
OPEN statement and the file format.

CLOSE This statement is used last to designate that the operations to that file
are complete.

7.1 Access Hode

There are three types of access modes that may be specified with the BASIC OPEN
statement.

INPUT

OUTPUT

This mode indicates that the file is to be used for input operations only.
When this mode is in effect BASIC will not allow output type operations to
be performed on the file's I/O channel.

This mode indicates that the file is to be used for output operations
only. BASIC will not allow input type operations to be performed on this
file's I/O channel. This mode is normally used when a file is first being
built or created or on output only devices like a printer.

- 48- BASIC

UPDATE

CBAPTEIl 7: USIBG I'ILES

This mode allows both input and output operations to be performed on the
file.

7.2 Access Methods

The OPEN statement requires that you specify the access method. Do not confuse
this with the file's format even though the same adjectives are used for both. The
access method specifies the type of access to be performed on the file which may be
quite different from the format of the file.

SEQUENTIAL Indicates that the records in the file are to be read or written
sequentially, one after the other, starting at the beginning of the file.
With this access method, to access any specific record, all records before
that record must be accessed.

DIRECT Indicates that the records in the file are to be read or written randomly,
by record number. This access method allows any record in the file to be
accessed without accessing any other record in the file (i.e., directly).

INDEXED Indicates that the records in the file are to be read or written randomly,
by record key. This access, similar to DIRECT, allows any record in the
file to be accessed without accessing any other record in the file;
however, the record is accessed using a generic key, or name, of the
record.

7.3 File Formats

A file's format is determined when the file is first created. The OASIS operating
system supports three types of data file formats:

SEQUENTIAL This file format is similar to a tape file, that is, a record can only
be added at the end of the file and a record can only be accessed after
all records preceding it have been accessed sequentially.

DIRECT

Sequential files exist naturally on CONSOLE terminals, PRINTERs, TAPEs,
and COMMs.

A direct file is a file of fixed length, fixed number of records. Records
are accessed in a completely random sequence by specifying a relative
record number.

This file format is quite useful for frequently accessed master files that
have sequentially numbered keys such as a customer file or a vendor file.
Access to this type of file is fast, as the system can compute the address
of the record on the disk without searching a separate index.

Direct files are only supported on disk devices, and must be created with
the CSI command CREATE.

Direct files may be accessed with SEQUENTIAL or DIRECT access methods.

INDEXED The indexed file format is essentially an indexed file type in addition to
a sequential access mode. Records are maintained and accessed with a
string key of variable length. Records can also be accessed in a
sequential method by use of the READNEXT statement.

BASIC ltEFERERCE HARUAL

Because of the necessity of keeping the index in sequence, updating this
type of file is slower than using the direct file format.

Indexed files are only supported on disk devices, and must be created by
the CSI command CREATE.

Indexed files may only be accessed with INDEXED access methods.

7.4 Record Allocation Requirements

Since indexed and direct files must be preallocated by the user before the BASIC
program can access them it is necessary for the user to calculate the maximum
record size required for each file. To do this the user must determine the field
types to be written to the file.

For each string field in a record the user must allocate space for the length of
the longest field plus 2.

For each floating point field in a record the user must allocate space for 9
positions.

For each integer field in a record the user must allocate space for 3 positions.

Thus the record size for the following direct file must be 32:

WRITE IIl,N:"RECORD",1,2,A,B

7.5 Hulti-Dser File Protections

A BASIC program run on a multi-user OASIS system will operate the same as on a
single user OASIS system, except that file contention may occur. This means that
two users may attempt to access the same file or the same record in a file at the
same time. This situation may, or may not be allowed, depending on the file
protections used by the two programs.

A program that does extensive input and output to a file should lock the entire
file from other user's use. This is done by specifying the LOCK option in the OPEN
statement.

If a file is not locked in its entirety other users may access the file (unless the
other user attempts to lock the entire file which would not be allowed).

When a file is
it is possible
user's program
the file.

opened for INPUT or OUTPUT no record locking will be perfor.med and
that a record read by your program might be updated by another

without your program's knowledge. This could result in errors in

When programming in a multi-user system the programmer must always ask the
question: What happens if another user wants this record? and program accordingly.

- 50- BASIC

CBAPDIl 8

COIIHAImS

BASIC commands are used
used in the command mode.

to enter, change, and debug programs. They only may be
Command mode is when BASIC prompt character is displayed

(-) .
BASIC command functions may be divided into four categories:

A. General

HELP - Display list of commands available.

LENGTH - Display current memory utilization of program.

NAME - Display or change name of program in memory.

NEW - Initialize BASIC work area, new program.

B. Editing

AUTO - Automatic line number prompting for new line entry.

BOTTOM - Position to the last line in the program.

CHANGE - Change string in one or more lines of code.

DELETE - Remove line(s) of code from program.

DOWN - List next line.

INDENT - Perform standard program indentation.

LIST - List one or more lines of program.

LOCATE - Locate line containing string.

LPLIST - List one or more lines of program on printer.

LPXREF - List cross reference table on printer.

MODIFY - Character by character change of one or more lines.

RENUMBER - Renumber all or part of program.

TOP - Position to the first line in the program.

UP - List prior line.

XREF - List cross reference table on terminal.

BASIC - 51 - COHHARDS

BASIC REFEIlERCE HABUAL

C~ Disk programs

LOAD

RUN

SAVE

- Retrieve program from disk.

- Execute program from disk or already in memory.

- Save current program on disk.

D. Debugging

BREAK - Specify condition to break on.

CONTINUE - Resume execution.

- Execute next statement and stops. STEP

TRACE - Display line numbers executed and optionally variables· changed.

UNTRACE - Discontinue trace mode.

UNBREAK - Remove one or all breakpoints set.

VARS - Display contents of all variables defined.

COlUWIDS - 52 - BASIC

CIIAPTEIl 8: COJIHANDS

8.1 AD'l'O em.and

1 AIJ'lO

2 AD'l'O <start>

3 AUtO <start> <~cre.ent>

Where:

<start> ::= <line number>
<increment> ::= <line increment value>

Purpose:

The AUTO command allows you to enter new lines to the program with automatic line
numbering.

C~nt:

The AUTO command cannot be used if a program in memory is read protected (see LOAD
command) •

The AUTO command is intended to be used for creating new programs or adding new
sections to an existing program in memory.

The <increment> value, when specified, sets the current increment value for this
AUTO and subsequent executions of the AUTO command.

When the AUTO command is executed BASIC will display the current line number plus
the current increment on the console (or the <start line number>, when specified)
followed by a space. You may then enter a program line. After a program line has
been entered and terminated by a carriage return, the line number is incremented by
the current increment and the process is repeated.

To terminate the line input process enter a carriage return when BASIC prompts you
with the line number. No blank line will be added to the program. Lines entered
with this command cannot replace any line in the program with the same line number
nor can it be used to add multiple lines that merge around existing lines. In
order to add lines that merge around exising lines you must enter them one at a
time.

BASIC - S3-

BASIC REl'ERERCE IWWAL

===

Examples:

-LIST
10 INPUT "RADIUS OF CIRCLE",RR
20 PRINT "DIAMETER ="j2*R
30 PRINT "AREA ="jPI*R 2
40 PRINT "CIRCUMFERENCE ="j2*PI*R
50 END

-DELETE 10 20
TOF:
-AUTO

10 PRINT "HELLO"
20 LET R=55

AUTO cannot replace or merge lines

-LIST
10 PRINT "HELLO"
20 LET R=55
30 PRINT "AREA =";PI*R 2
40 PRINT "CIRCUMFERENCE ="j2*PI*R
50 END

-DELETE 50
40 PRINT "CIRCUMFERENCE ="j2*PI*R

-AUTO 50,3
50 PRINT "AGAIN"j\INPUT Y$
53 IF Y$="Y" THEN 20
56 END
59

-LIST
10 PRINT "HELLO"
20 LET R=55
30 PRINT "AREA ="jPI*R 2
40 PRINT "CIRCUMFERENCE ="j2*PI*R
50 PRINT "AGAIN"j\INPUT Y$
53 IF Y$="Y" THEN 20
56 END

-AUTO
59 REM Exit routine
62 QUIT 4
65

Note that the current line and the
increment value are unchanged because no
start line nor increment value was
specified.

===

AUTO - S4 - BASIC

CHAPTER 8: COHHANDS

8.2 Bottom Com.and

BOTTOM

Purpose:

The bottom command positions to the last line in the program and displays that line
of code.

Comment:

The bottom command cannot be used if the program in memory is read protected (see
LOAD command).

===

Examples:

Stop at line 0020
-BO

999 END

===

BASIC - SS -

BASIC REFERERCE HABUAL

8.3 BREAK Command

1 BREAK

2 BREAK [AT] <line reference>

3 BREAK [AT] <line reference> [AFTER] <count>

4 BREAK [OR] <variable>

5 BREAK [OR] <variable> CHARGE

6 BREAK [OR] <variable> AFTER <count>

7 BREAK [OR] <variable> CHARGE AFTER <count>

8 BREAK [OR] <variable> <relation> <value>

Where:

<line reference> ::= <line number>
<line label>

<relation> ::= <relational operator>
<value> ::= <numeric literal>

<quoted string literal>
<numeric variable>
<string variable>

See also: STEP, TRACE, UNBREAK, UNTRACE, and VARS commands

Purpose:

The BREAK command provides the capability of dynamic debugging of the BASIC
program.

Comment:

<count> is a numeric value referring to the number of times that the specified
break condition is to occur before a break is actually performed.

<variable> is a simple numeric variable, not a subscripted variable. An array name
is acceptable.

Format 1 of the BREAK command will display the current break table.

Format 2 will cause a break to occur at the next execution of the statement on the
line referenced, before the statement is executed.

Format 3 will cause a break to occur at the <count> execution of the statement on
the line referenced, before the statement is executed.

Format 4 will cause a break to occur the next time that the <variable> is used,

BREAK - 56 BASIC

CHAPTER. 8: COIIHAIIDS

after the statement using the variable is executed.

Format 5 will cause a break to occur the next time that the <variable> is changed
by a statement, after the statement changing the variable is executed.

Format 6 will cause a break to occur after the <variable> is referenced <count>
times, after the statement referencing the variable the <count> time is executed.

Format 7 will cause a break to occur after the <variable> is changed <count> times,
after the statement changing the variable the <count,> time is executed.

Format 8 will cause a break to occur when the relationship is true, after the
statement causing the relationship to become true is executed.

The BREAK command may be abbreviated to the letter B.

When a break occurs, execution of the program stops and the message "Break at "
or "Break on •••• " is displayed. Control returns to the command mode. When a
break occurs on a variable reference or change the statement causing the break will
be completly executed. Executing a CONTINUE command will cause the statement
following to be executed.

Only one break will be set for a specific variable or line at one time. When
multiple break points are attempted to be set for a variable or a line only the
last one specified will be in effect.

Note: Break points are only cleared by the UNBREAK, NEW, and LOAD commands. During
execution, if a different program is brought into memory the old break points will
still exist. The RUNUMBER command does not change the line numbers specified in
any break points.

BASIC ~57 - BREAK

BASIC 1lD'EIlDICE IW1UAL

===

Example:

-LIST
10 FOR 1%=1 TO 4
20 PRINT 1%
30 GOSUB SUM
40 NEXT
50 GOTO 9999
60 SUM: TOTAL% = TOTAL%+I% RETURN

9999 END

-BREAK AT SUM
-BREAK ON 1% CHANGE AFTER 4
-BREAK
Break at SUM

. Break on 1% changed after 4
-RUN
Break at line 60
-VARS TOTAL%
TO TAL % = 0
-VARS 1%
1% = 1
-UNBREAK AT SUM
-CONTINUE
Break on 1% at line 40
-VARS I%,TOTAL%
1% = 4
TOTAL% = 6

===

- 58- BASIC

'.. .~

CIIAPUR. 8: COIMABDS

8.4 CHARGE Com.and

1 CHARGE

2 CHARGE <Char><from string><Char><to string><char>

3 CHARGE <Char><from string><Char><to string><char><range>

Where:

<char> ::= <delimiting character>
<from string> ::= <string>
<to string> ::= <string>
<range> ::= <line number>[<line number>]

See also: MODIFY command

Purpose:

The CHANGE command allows you to make a change to an existing line, or lines, of
code without re-entering the entire line.

Comment:

The CHANGE command cannot be used if a program in memory is read protected (see
LOAD command).

Format 1 of the CHANGE command will execute the last executed CHANGE command on the
current line.

Format 2 of the CHANGE command will change all occurrences of the <from string> on
the current line to the <to string>.

Format 3 of the CHANGE command will change all occurrences of the <from string> on
each line of the lines within <range> to the <to string>.

The <from string> and <to string> must be delimited by the same character, similar
to the CHANGE command in the system editor. The delimiters must be quotation marks
if you wish to change from or to a mixed or lower case string.

Each time that the CHANGE command actually makes a change on a line the line will
be displayed with the change made.

Note: To change only one occurrence on a line use the MODIFY command.

BASIC 59 - CHANGE

BASIC JlEDRElICE IWroAL

===

Examples: Explanation:

-LIST
10 INPUT "Item 1",R
20 PRINT R
30 INPUT "Item 2",R1
40 PRINT R1

-CHANGE /INPUT/LINPUT/ 10 40
10 LINPUT "Item 1",R
30 LINPUT "Item 2",R1

-CHANGE "Item"VALUE" 10
10 LINPUT "VALUE 1",R

===

CHARGE - 60 - BASIC

CIIAPTER. 8: COHHABDS

8.5 mN"rIBUE CoDIand

1 CON'tIBUE

Purpose:

The CONTINUE command allows you to resume execution of a program that was
interrupted.

C~t:

The CONTINUE command, when executed, will continue the execution of a program whose
execution was interrupted by a STOP statement, an error, or entry of the Program
Cancel-Key.

When a program has a normal exit, i.e., execution of the END statement, the
CONTINUE command has no effect.

The CONTINUE command is a valuable debugging aid. If a "bug" is suspected in a
portion of a program, STOP statements may be inserted at strategic positions of the
program. When the STOP is executed, you may use the commands to examine variables
and/or change statements in the program and continue execution. If an error
occurs, you may examine the suspected statement and change it as required and
continue execution.

When an error occurs, a CONTINUE command will re-execute the line that contained
the statement that was interrupted. If the error occurs in a multi-statement line,
the CONTINUE command re-executes the entire line.

If a STOP occurs, a CONTINUE command will execute the statement following the STOP
statement, even if that statement is on the same line.

Note: Executing an immediate instruction after a stop or error has occurred will
prevent you from using the CONTINUE command. An immediate instruction, when
executed, causes the line pointer to be lost.

BASIC - 61 - COIlt'IBUE

BASIC :REFER.ERCE HARUAL

8.6 DELETE COlIIIII8.Ild

1 DELETE

2 DELETE <range>

Where:

Purpose:

<range> ::= <line number> <line number>
<line number>,<line number>

The DELETE command allows the user to remove a line or group of lines from the
program.

C01IIIIIent:

Format 1 of the DELETE command removes the current line from the program in memory.

Format 2 of the DELETE command removes all lines from the program in memory whose
line numbers are included in the range specified.

The DELETE command cannot be used if the program in memory is read protected (see
LOAD command).

The restrictions for first and last line numbers as described for LIST apply to the
DELETE command; however, the DELETE command must have at least one operand.

Using the first example in Appendix G as the program in memory:

===

Examples:

-DELETE 40

-DEL 15,45

-LIST

10 INPUT "RADIUS OF CIRCLE",R
50 END

Incorrect Examples:

-DELETE 50,20
Invalid command syntax

Explanation:

Line 40 is removed from the
program.
Lines 20 and 30 are removed
from the program.

Explanation:

Last line number must be greater
than or equal to first line number.

===

DELETE - 62- BASIC

CIIAPDIl 8: (XMWIIDS

8. 7 Down eo-and

<l1.ne £eed>

Purpose:

The down command advances and displays the next line of source code.

Cou.ent:

The down command cannot be used if the program in memory is read protected (see
LOAD command).

When the down command is entered the current line pointer is adjusted one line
forward and the current line is displayed.

Attempting to executed the down command when the current line is at the last line
of the program the message EOF: is displayed indicating that you are at the end of
file.

BASIC - 63- DOWII

BASIC REl'ERERCE IWmAL

8.8 HELP Command

-----~--~------~--~-------------------~-------------------------~------------------

Purpose:

The HELP command<displays the commands available to the operator in BASIC.

Comment:

When the' HELP command is executed the help message of command names and general
syntax is displayed on the screen, one page at a time.

===

Example:

-HELP
AUTO [<start>[,<incr>]]
BOTTOM
BREAK [AT <line> [AFTER <count>]]
BREAK [ON <var> [CHANGE] [AFTER <count>]]
BREAK [ON <var <relat> <value>]

===

HELP -,64 - BASIC

CIIAPTEIl 8: COIMABDS

8.9 IlIDmrr C~d

1 IlIDERT [<indent va1ue>]

Purpose:

The INDENT command provides an easy and consistent method of performing program
line indentation for documentation purposes.

C01IIIIIeIlt:

When the INDENT
stripping all

command is executed the program currently in memory is modified by
current line indentation and performing new indentation according to

a set of rules:

* Indent level initially set to <indent value> or, when not specified,
to the default value of 5.

* The statements CASE, CEND, ELSE, IFEND, REM, and THEN cause the
indent level to be adjusted -<indent value> before the statement.

* The statements CASE, multiline DEF, ELSE, FOR, REM, THEN, WHILE, and
line label cause the indent level to be adjusted +<indent value>
after the statement or label.

* The statements CEND, FNEND, IFEND, NEXT, and WEND cause the indent
level to be adjusted -<indent value> after the statement.

* The statements IF and SELECT cause the indent level to be adjusted
+2*<indent value> after the statement.

* All other statements perform no adjustment on the indent level.

===

Example:

-LIST
10
20
30
40
50
60
70
80
90

100

BASIC

REM This is a comment
FOR 1=1 TO 10
PRINT I
NEXT I

SELECT A
CASE 1 RETURN

CASE 2 STOP
CEND

REM This is a subroutine
RETURN

- 65 - IBDERT

BASIC REFERENCE HANUAL

-INDENT
-LIST

10 REM This
20 FOR
30
40

is a comment
1=1 TO 10

PRINT I
NEXT I

50 SELECT A
60
70
80

CASE 1 RETURN
CASE 2 STOP
CEND

90 REM This is a subroutine
100 RETURN

===

INDEBT - 66 - BASIC

CHAPTER 8: COHHARDS

8.10 LENGTH Command

LENGTH

Purpose:

The LENGTH command allows the user to determine the current memory utilization.

Comment:

The LENGTH command displays thirteen quantities:

* Length of source program in bytes.
* Memory space used by symbol table, numeric and integer variables, in

bytes.
* Memory space used by string variable storage area in bytes.
* Memory space used by subroutines in process.
* Memory space used by FOR/NEXT loops in process.
* Memory space used by SELECT/CASE/CEND structures in process.
* Memory space used by WHILE/WEND structures in process.
* Memory space used by debugging break points.
* Memory space used by I/O channels used (266 bytes per channel).
* Memory space available for program and work usage. The expression

analyzer requires about 512 bytes of this area during execution.
* USR program name, if loaded.
* USR program length, if loaded.
* USR program load address, in hexadecimal, if loaded.

Some programs may use all of memory. This command informs the user how much memory
is available for modifications, how much memory was made available by modifications
(by using the length command before and after).

===

Examples:

-LENGTH
Source: 3110
Symbol: 178
String: 236
GOSUB: 0
FOR/NEXT: 0
CASE: 0
WHILE: 0
Debug: 4
Buffers: 532
Free: 19193

BASIC

Length of source program code.
Symbols and numeric variable values.
String variable values.
No open subroutines
No open FOR/NEXT loops.
No open SELECT/CASE/CEND structures.
No open WHILE/WEND structures.
One breakpoint set.
Two I/O channels defined.

- 67- LERGTH

BASIC IlEI'ERERCE IWWAL

-OPTION USR "PRINT1"
-LEN
Source: 3110
symbol: 178
String: 236
GOSUB: 0
FOR/NEXT: 0
CASE: 0
WHILE: 0
Debug: 4
Buffers: 532
Free: 18784

USR NAME: PRINT1
Length: 409
Addr: F6A2

Load USR program named PRINT1

===

LERGTB - 68- BASIC

8.11 LIST eo..and

1 LIST

2 LIST <range>

3 <Ii.ne number>

4 <carri.age return>

Where:

<range> ::= <line number>
<line number> <line number>
<line number>,<line number>

See also: Down, LPLIST, LPXREF, and XREF commands

Purpose:

CBAPrER 8: O'MfABDS

The LIST command allows you to display a line, or group of lines, of the program.

Comment:

The LIST command cannot be used if the program in memory is read protected (see
LOAD command).

Format 1 of the LIST command will list the entire program.

Format 2 of the LIST command with one line number will list only that line, if it
exists.

When a program is in memory you may list a line by entering its line number (format
3), followed by a carriage return. This not only causes the specified line to be
displayed but assigns that line number to an internal line display pointer.
Entering a line feed character causes the line display pointer to be advanced to
the next line and causes that line to be displayed. This provides an easy means of
stepping through the display of a program. Additionally, the line display pointer
is affected by an error during execution. When an error is detected and a message
displayed on the console, you need only enter a carriage return to cause the error
line to be displayed.

A carriage return only entry (format 4) will act in one of two ways: when it is the
first entry of the carriage return the current line will be displayed; subsequent
entries of a carriage return only will cause the internal line display pointer to
be incremented causing the next program line to be displayed, acting like a line
feed entry.

Format 2 of the LIST command with two line numbers will list all lines within the
range of the operands, inclusive. The beginning and ending line numbers need not
be line numbers that exist in the program. The last line number must be greater
than or equal to the first line number.

BASIC 69 - LIST

BASIC REI'EIlERCE IfARtJAL

When more lines are specified to be displayed than will fit on the console at one
time and the console screen wait is enabled (see System Control Keys in the OASIS
System Reference Manual), BASIC will display one page of the program, display a
circumflex (~) at the lower left side of the page, and wait for the operator to
respond. A response of any character will cause BASIC to display the next page of
the program, if included in the line number range. The Program Cancel-key will
cause the listing to be terminated immediately.

===

Examples:

-LIST
10
20
30
40
50

INPUT "RADIUS OF CIRCLE",R
PRINT "DIAMETER =";2*R
PRINT "AREA =";PI*R 2
PRINT "CIRCUMFERENCE =";2*PI*R
END

-LIST 20
20 PRINT "DIAMETER =";2*R

-LIST 0,15
10 INPUT "RADIUS OF CIRCLE",R

Incorrect Examples:

-LIST 15

-LIST 20,10

Explanation:

Entire program is listed on terminal.

Line 20 is listed.

Lines 0 through 15, inclusive, are listed.

Explanation:

Since there is no line 15 nothing will
be listed.
Last line number must be greater than or
equal to first line number.

===

LIST - 70 - BASIC

CHAPTER 8: COItHANDS

8.12 LOAD C01IID8.nd

1 LOAD <program name>

Where:

<program name> ::= [<file name>] [.<file type>] [:<file disk>]
<file type> ::= BASIC

BASICOBJ

See also: RUN command

Purpose:

The LOAD command allows the user to retrieve a program previously saved on disk.

Comment:

A program name must be
program file type, if
types are allowed.

specified but the program
specified, may only be BASICOBJ

file type is optional. The
or BASIC--no other program

The program file type defaults to BASICOBJ and BASIC:

When no file type is specified then a search is made for a program with
the file type BASICOBJ. If one is found it is loaded.

If a program with a file type of BASICOBJ is not found then a search is
made for a program with the file type of BASIC. If one is found then it
is loaded with syntax analysis of each and every line.

It is much faster to load programs saved with a file type of BASICOBJ because no
syntax analysis is performed.

When no program disk is specified the search for the program includes all attached
disk drives.

If the specified program is not found then the error message "File not found" is
displayed and no program is loaded. However, any program that was in memory before
will have been erased.

The LOAD command can load a read protected program file; however, most other
commands will not operate if the program in memory is from a read protected file.
Specifically, the following commands will inform you that they cannot be used when
the program is read protected: AUTO, BOTTOM, CHANGE, DELETE, INDENT, LIST, LOCATE,
LPLIST, LPXREF, MODIFY, NAME, RENUMBER, SAVE, TOP, XREF, carriage return, line
feed, up-arrow.

BASIC - 71 - LOAD

BASIC llEFERERCE IWWAL

===

Examples:

-LOAD TEST

-LOAD TEST:S

Incorrect examples:

-LOAD
-LOAD TEST:T
-LOAD PROGRAM. TEST

Explanation:

The program named TEST.BASICOBJ or
TEST.BASIC will be located and loaded
into memory.
The program named TEST.BASICOBJ:S, or
TEST.BASIC:S will be located and loaded
into memory.

Explanation:

Program name must be specified.
Invalid unit specified.
Invalid file type.

===

LOAD - 72 - BASIC

8.13 LOCATE Command

1 LOCATE

2 LOCATE <strlng>

3 LOCATE <string> <range>

Where:

Purpose:

<string> ::= <delimited string>
<range> ::= <line number>

<line number> <line number>
<line number>,<line number>

CHAPTER. 8: COIMARDS

The LOCATE command allows you to quickly find a line of the program that contains a
specified sequence of characters.

Comment:

The LOCATE command cannot be used if the program in memory is read protected (see
LOAD command).

The LOCATE command searches the program in the specified range of line numbers for
the sequence of characters specified.

A LOCATE command with no arguments (format 1) will cause a LOCATE to be performed
using the string specified in the last LOCATE or CHANGE, from the current line to
the end of the program.

Format 2 of the LOCATE command causes the program to be searched from the line
after the current line to the end of the program.

Format 3 of the LOCATE command with only one line number specified causes the
program to be searched from the line specified to the end of the program.

Format 3 of the LOCATE command with two line numbers specified causes the program
to be searched only within the range indicated.

If the sequence of characters is found the line containing them will be displayed
and the current line pointer will be positioned at that line.

If the sequence of characters is not found nothing will be displayed and the
current line pointer will not be changed.

The search is performed independent of the case mode of the characters in the
program.

BASIC - 13 - LOCATE

BASIC IlD'ERERCE IlARUAL

===

Example:

0010 FOR 1=1 TO 20
0020 PRINT "Now is the time for all good men to come to the aid of"
0030 PRINT "country."
0040 NEXT I

-LOCATE "y" 10 40
0030 PRINT "country."
-LOCATE ITI
0040 NEXT I
-LOCATE III 10 40
0010 FOR 1=1 TO 20
-LOCATE
0020 PRINT "Now is the time for all good men to come to the aid of"

===

LOCATE - 14 - BASIC

8.14 LPLIST Command

1 LPLIST

2 LP<n>LIST

Where:

<n> :: = 1
2
3
4

CHAPTER. 8: aHfANDS

See also: Down, and LIST commands

Purpose:

The LPLIST command allows the user to list the current program on the list device
(usually the line printer).

CODIIIlent:

The LPLIST command cannot be used if the program in memory is read protected (see
LOAD command).

The LPLIST command functions identically to the LIST command except the output is
placed on the listing device (PRINTERl) instead of the console and no line number
range is allowed.

The alternate form of
listing devices is
attached.

BASIC

the command (LP<n>LIST) specifies that one of the alternate
to be used (PRINTERl, PRINTER2, PRINTER3, or PRINTER4), if

- 15- LPLIST

BASIC REI'EIlENCE IWWAL

8.15 LPDEI' COIIID8Dd

1 LPDEI'

2 LP<n>XREI'

Where:

<n> :: = !
2
3
4

See also: XREF command

Purpose:

The LPXREF command produces a cross reference listing of the source program in
memory on a printer.

CQ1IIIlent:

The LPXREF command cannot be used if the program in memory is read protected (see
LOAD command).

The LPXREF command functions identically to the XREF command except the output is
placed on the listing device (PRINTER!) instead of the console.

The alternate form
listing devices is
attached.

LPXREI'

of the
to be

command (format 2) specifies that one of the alternate
used (PRINTER!, PRINTER2, PRINTER3 or PRINTER4), if

- 76 - BASIC

CHAPTER 8: COIIDNDS

8.16 MODIFY ComIand

1 MODIFY

2 HODIFY <range>

Where:

<range> ::= <line number>
<line number> <line number>
<line number>,<line number>

See also: CHANGE command

Purpose:

The MODIFY command allows you to make changes to a line or lines of code without
re-entering the entire line.

C01IIIlent:

The MODIFY command cannot be used if the program in memory is read protected (see
LOAD command).

The MODIFY command operates very similar to the MODIFY command in the OASIS system
EDIT program.

When no <range> is specified the current line displayed and you are allowed to
modify it. After finishing the modification of that line control returns to the
command mode of BASIC.

When <range> is specified the first line included in the range of lines specified
is displayed and you are allowed to modify it. After finishing the modification of
that line the next line included in the range of lines specifies is displayed,
etc., until the last line in the range is modified, at which point control returns
to the command mode.

While in the modify mode of BASIC there is a certain set of sub-commands available
to facilitate modification of each line:

I Allows you to insert characters at the current cursor position. All
characters typed after the I has been entered are added to the line
before the current character. As each character is added to the line
the remainder of the line is re-displayed.

BASIC

To exit from the insert character command type a carriage return.

While in the insert character command you may backup one character
position by typing the RUBOUT key. This backs the cursor up one
position and deletes that character. It is possible to backspace
past the position that the insert command was given.

- 77 - HODIn

BASIC REI'EIlERCE HABUAL

D Allows you to delete the current character from the line. Every time
a D is typed the current character is deleted from the line and the
character is erased from the screen.

R Allows you to replace characters in the line. All characters typed
after the R has been entered will replace the characters in the line.

To exit from the replace character command type a carriage return.

While in the replace character command you may backup one character
position by typing the RUBOUT key. This backs the cursor up one
position without deleting that character. It is possible to
backspace past the position that the replace command was given.

<sp> Allows you to advance the current character one position to the
right. You may not advance past the end of the line, however, you
may insert new characters at the end of the line or replace
characters at the end of the line.

The right arrow key has the same effect as the space character.

F Allows you to advance the current character pointer to a specified
character. The F character is followed by the character to find.
When the second character is entered the cursor is advanced to the
next occurrence of that character in the line.

U Allows you to convert characters to their upper case value. When the
U is entered the current character is converted and re-displayed in
its upper case form, and the cursor is advanced to the next
character.

L Allows you to convert characters to their lower case value. When the
L is entered the current character is converted and re-displayed in
its lower case form, and the cursor is advanced to the next
character. This command is only effective within a quoted string
literal or a remark statement.

<RUB> Allows you to backspace the current character one position to the
left. You may not advance past the beginning of the line.

The left arrow and CTRL/H have the same effect as the RUBOUT key.

B Allows you to quickly position to the beginning of the line.

E Allows you to quickly position to the end of the line.

<CR> Terminates the modification of the line.

ESC,C Terminates the modification of the line and restores the line to its
original, unmodified, contents.

Due to the graphic and character by character nature of the modify command no
example will be given here. Instead it is suggested that you experiment with it.

MODIFY - 78 - BASIC

CHAPTER 8: COIIHARDS

8.17 NAME Command

1 NAME

2 NAME <program name>

Where:

<program name> ::= [<file name>] [.<file type>[:<file disk>]]
<file type> ::= BASIC

BASICOBJ

See also: SAVE command

Purpose:

The NAME command allows you to change the name of the program in memory.

Comment:

The NAME command operates in two modes: display current name (format 1); change
current name (format 2).

Format 1 of the NAME command causes the current program name, type, and disk to be
displayed.

Format 2 of the
name specified.
BASICOBJ. If
retained.

NAME command causes the current program name to be changed to the
If the program type is omitted the program type will be changed to

the program disk is omitted the current program disk will be

The file type of a read protected program should not be changed from BASICOBJ.

Note: The OASIS command RENAME should not be used to change the file type of a
BASIC program due to unpredictable results.

===

Example:

-NAME TEST.BASIC:A
-NAME
TEST.BASIC:A
-NAME TESTIT
-NAME
TESTIT.BASICOBJ:A

===

BASIC - 19 - HAIlE

BASIC RD'ERERCE HABUAL

8.18 NEW Command

1 JIEW

Purpose:

The NEW command allows the user to enter a new program.

Comment:

The NEW command effectively clears memory. In actuality all of the BASIC pointers
are reset to indicate that there is no program in memory. All of the BASIC work
area is available for use by the new program to be entered. Additionally the name
of the program is cleared.

A NEW command is executed automatically when BASIC is loaded and executed by the
Operating System.

The NEW command is the only method of unloading a USR program without exiting
BASIC.

Specifically, the NEW command performs the following actions:

* All files are closed.
* All file buffers are deleted from memory.
* The current program and program name are erased.
* Any USR program is erased and memory restored.
* All variables, constants, and internal tables are initialized.

===

Examples:

-NEW Memory is initialized.

Incorrect examples:

-NEW TESTl No operand is allowed.

===

- 80- BASIC

CHAPTER. 8: CfJIMARDS

8.19 QUIT Command

1 QUIT

2 QUIT <string litera1>

3 QUIT <numeric litera1>

Purpose:

The QUIT command allows the user to exit from the BASIC environment.

COIIIIIleIlt:

When the QUIT command is executed all open I/O channels are closed.

The QUIT command always exits from BASIC. If BASIC was invoked by a keyboard
command then control is returned to the Command String Interpreter environment. If
BASIC was invoked by an EXECutive procedure then control is returned to the
EXECutive procedure that called it. The EXEC resumes control with the statement
that followed the BASIC command. In either case the return code is set to zero.

To exit BASIC without returning control directly to the environment that it was
invoked from one of the optional literals is specified.

A numeric value indicates the value that the return code is to be set to. This
return code may then be examined by the EXEC that invoked BASIC. If BASIC was not
invoked by an EXEC then setting the return code will have no usable effect.

A string value indicates a CSI command to be executed. The value must specify the
command name and all arguments and options desired. After the command has
completed execution the return code is set by that command. If BASIC was invoked
by an EXECutive procedure and a string value is specified with the QUIT command,
control will return to the EXEC program after the CSI command has completed
execution.

When the first character of the string value is
be displayed on the console terminal, just as
keyboard.

the character u>u the string will
if it had been entered from the

===

Examples:

-QUIT

-QUIT LIST DAILY REGISTER

Explanation:

Control returns to the environment
from which BASIC was invoked.

BASIC is exited and the file named
DAILY REGISTER is listed on the console.

===

BASIC - 81 - QUIT

BASIC 1tEFERERCE HABUAL

8.20 RER1lHBKit eou.and

1 RER1lHBER

2 RERDHBER <f~rst>

3 RER1lHBER <f~rst><char><incre.ent>

4 RERDHBER <first><char><increment><Char><start>

5 RERDMBER <first><char><increment><Char><start><char><end>

Where:

Purpose:

<char> ::= <space>
<comma>

<first> ::= <line number>
<increment> ::= <line number>
<start> ::= <line number>
<end> ::= <line number>

The RENUMBER command allows you to resequence all or part of the program in memory.

Comment:

Format 1 of the RENUMBER command will resequence all of the program in memory, from
the beginning of the program through the end of the program. The resulting program
will have its first line numbered using the default increment value (default is 10)
with each subsequent line incremented by the current increment value.

Format 2 of the RENUMBER command will resequence all of the program in memory from
the beginning of the program through the end of the program. The resulting program
will have its first line numbered according to the <first> line number as specified
with each subsequent line incremented by the default increment value.

Format 3 of the RENUMBER command will resequence all of the program in memory from
the beginning of the program through the end of the program. The resulting program
will have its first line numbered according to the <first> line number as specified
with each subsequent line incremented by the <increment> as specified.

Format 4 of the RENUMBER command will resequence that portion of the program in
memory as specified by the <start> parameter through the end of the program. The
resulting program will have that <start> line numbered according to the <first>
line number as specified with each subsequent line incremented by the current
increment value.

Format 5 of the RENUMBER command will resequence that portion of the progarm in
memory as specified by the <start> parameter through the line specified by the
<end> parameter. The resulting program will have that <start> line numbered
according to the <first> line number as specified with each subsequent line

82 - BASIC

CHAPTER. 8: COHHARDS

incremented by the <increment> as specified.

Formats 4 and 5 of the RENUMBER command will not allow you to resequence a program
such that the result would cause lines to be merged. For example, a program with
lines consecutively numbered from 10 through 100 could not be renumbered with
RENUMBER 20 5 50 100 as this would cause lines 50 through 100 to collide with other
existing lines. When this is attempted the error message "Renumber Range Error" is
displayed.

All of the formats of the RENUMBER command will adjust all references in the
program from the old line numbers to the new line numbers. This includes
references made by the statements: ELSE, GOSUB, GOTO, IF, ON ERROR, ON GOTO, ON
GOSUB, RESTORE, RESUME, RETURN, and THEN. Additionally, relational expressions
with the function ERL on the left of the relation with a integer literal on the
right (line number) will be adjusted.

Statements that previously referenced an undefined line number will be adjusted to
reference an undefined line in the same relative location as before. For example,
a program with lines consecutively numbered from 10 through 100 by lOs with a line
reference to line 11 (non-existent) that is renumbered will have that line
reference adjusted to line 15.

Because good, complete examples of program renumbering would be quite lengthy none
will be given. Instead, it is suggested that you "play" with the command on one of
your own programs. Be sure to save the program on disk if it is a program that you
do not want renumbered.

BASIC - 83-

BASIC REF.ERERCE HABUAL

8.21 IWN eo..and

1 RUB

2 RUB <program name>

3 RUN <starting line>

4 RUB <program rume> <starting line>

Where:

<program name> ::= <file name>[.<file type>] [:<file disk>]
<file type> ::= BASICOBJ
<starting line> ::= <line number>

See also: LOAD command

Purpose:

The RUN command allows the user to execute a program already in memory or one
stored on disk.

Comment:

When <program name> is not specified, the program currently in memory is executed,
starting with the first line of the program, or at the line number specified.

Before the RUN command is executed, a CLEAR command is automatically executed.

<program name>, when specified, may be a string literal or an unquoted string
literale <program name> may not be a variable.

When the <program name> is specified, a search is made for the program. If the
program is not found, the error message 'File Not Found' is displayed. If the
program is found, a NEW command is executed and the specified program is loaded.
Execution begins with the smallest line number, or at <starting line>, if
specified.

<starting line> may be a line number that does not exist in the referenced program,
in which case execution will begin at the first line greater than or equal to the
specified line number.

===

Examples:

-RUN
-RUN TEST

Explanation:

Program in memory is executed.
Program "TEST" is loaded and executed.

===

ROB -84- BASIC

CIIAPTEIl 8: COIIIfARDS

8.22 SAVE eo-at1d

1 SAVE

2 SAVE <program rume>

Where:

<program name> ::= [<file name>] [.<file type>] [:<file disk>]
<file type> ::= BASIC

BASICOBJ

See also: LOAD and NAME commands

Purpose:

The SAVE command allows the user to save a program as a disk file.

CODDeD.t:

The entire <program name> operand is optional, and when omitted, the program will
be saved under the name that it was LOADed, CHAINed, LINKed, or RUN under. If a
name is not currently defined and the operand is omitted, an "Invalid Program Name"
error will result.

<File disk> is
defaults to
BASIC.

optional--when not specified drive A will be used.
BASICOBJ unless the program already has a name with

The <file type>
a file type of

The program name, type, and disk will be displayed on the terminal after the
program has been successfully written to disk.

BASIC - 85- SAVE

BASIC REl'ERERCE IIOUAL

===

Examples:

-SAVE TEST:A
"TEST.BASICOBJ:A" save
-SAVE
••••• SAVE

-SAVE TEST:S
"TEST.BASICOBJ:S" saved

Incorrect Examples:

-SAVE

-SAVE TEST:T

Explanation:

The program in memory will be written to
disk and given the name 'TEST.BASICOBJ:A'.
The program w'ill be saved under the same
name as loaded, i.e., the program will be
updated on disk.
The program in memory will be written
to disk and given the name 'TEST.BASICOBJ:S'

Explanation:

Program name must be specified if there is
no prior LOAD, CHAIN, LINK, or RUN executed.
Invalid unit specified.

===

SAVE - 86- BASIC

CHAPTER. 8: COIIKANDS

8.23 STEP Command

1 STEP

2 STEP <count>

See also: BREAK, TRACE, UNBREAK, UN TRACE , and VARS commands

Purpose:

The STEP command allows the program to "single step" through the execution of the
program.

Comment:

Format 1 of the STEP command causes the next statement in the program to be
executed and a debugging break occurs.

Format 2 of the STEP command causes the next <count> statements in the program to
be executed and a debugging break occurs.

Note that the STEP command operates on statements, not lines. Therefore it is
possible to single step through each statement in a multi-statement line.

===

Example:

-LIST
10 FOR 1%=1 TO 3
20 PRINT 1%
30 NEXT

-STEP
Break at line 20
-STEP

1
Break at line 30
-STEP
Break at line 20
-STEP 3

2
3

Break at line 30

===

BASIC - 87- STEP

BASIC 1lD'ERERCE IWWAL

8.24 Top eo..and

TOP

Purpose:

The top command positions to the first line in the program and displays that line.

Coaaent:

The top command cannot be used if the program in memory is read protected (see LOAD
command) •

===

Examples:

Stop at line 0020
-<CR>

20 MIDDLE% = LINE(0)/2.
-TOP

10 REM Program: SAMPLE

===

TOP - 88- BASIC

CIIAP"lEIl 8: COHHABDS

8.25 TRACE and UNTRACE C01IIIIIands

1 TRACE

2 TRACE VAKS

3 UNTRACE

Purpose:

The TRACE and UN TRACE commands allow the programmer to trace the line numbers being
executed by a program.

COIIIIDent:

Format 1 of the TRACE command turns the line number display on during execution.

Format 2 of the TRACE command turns the line number display on during execution and
causes the display of all variables changed during the execution of each statement.

The UNTRACE command turns the line number display off during execution. This is
the normal mode of program execution.

When a program is being traced each statement that is executed causes the line
number of the statement to be displayed on the left hand sided of the console, in
angle brackets. When TRACE VARS is in effect and a variable is changed by a
statement the variable name and value that it was set to will be displayed on the
left hand side of the console, in angle brackets.

Each statement of a multi-statement line, when executed, causes the line number to
be displayed. The second and subsequent statements in a multi-statement line will
be indicated by an offset count after the line number, indicating the relative
offset of the start of that statement, from the start of the line. This offset
value relates to the offset in the compressed, internal format, not the displayed
format of the line. Nevertheless, this value is helpful in determining which
statement of the multi-statement line is being executed.

BASIC - 89 -

BASIC llDERBBCE HABUAL

===

Example:

0010 GOSUB 100 \ PRINT TOTAL
0020 FOR 1% = 1 TO 3
0030 PRINT 1%
0040 NEXT
0050 STOP
0100 TOTAL = 4.34 \ RETURN
-TRACE
-RUN
<10>
<100>
<100,18>
<10,5> 4.34
<20>
<30> 1
<40>
<30> 2
<40>
<30> 3
<40>
<50>
Stop at line 50
-TRACE VARS
-RUN
<10>
<100>

<TOTAL = 4.34>
<100,18>
<10,5> 4.34
<20>

<1% = 1>
<30> 1
<40>

<1% = 2>
<30> 2
<40>

<1% = 3>
<30> 3
<40>

<1% = 4>
<50>
Stop at line 50
-UN TRACE

Explanation:

Execute line 10, GOSUB statement

" " 100, LET statement
" " 100, RETURN statement
II " 10, PRINT statement
II 20, FOR statement
II 30, PRINT statement, 1st time
" 40, NEXT statement, 1st time
II 30, 2nd time, prints 2
II 40, 2nd time
" 30, 3rd time, prints 3
II 40, 3rd time
II 50, STOP statement

Execute line 10, GOSUB statement
II "100, LET statement

Variable changed
Execute line 100, RETURN statement

" "10, PRINT statement
" "20, FOR statement

Variable changed
Execute line 30, PRINT statement, 1st time

" "40, NEXT statement, 1st time
Variable changed
Execute line 30, 2nd time, prints 2

" "40, 2nd time
Variable changed
Execute line 30, 3rd time, prints 3

" "40, 3rd time
Variable changed
Execute line 50, STOP statement

===

TRACE/URTRACE - 90- BASIC

8.26 UHBREAK Command

1 UNBREAK

2 UNBREAK AT <1ine reference>

3 UNBREAK ON <variab1e>

Where:

<line reference> ::= <line number>
<line label>

See also: BREAK, STEP, TRACE, UNTRACE, and VARS commands

Purpose:

CHAPTER. 8: COHHABDS

The UNBREAK command clears break points set by the BREAK command.

C01lJDen1::

Format 1 of the UNBREAK command will clear all break points currently set.

Format 2 will clear all break points referring to the specified line reference.

Format 3 will clear all break points currently set, referencing the specified
variable.

For an example see the BREAK command.

BASIC

BASIC IlEFERERCB IlARUAL

8.21 Up C~d

1 <up arrow>

2 <control/Z>

See also: Down, and LIST commands

Purpose:

The Up command allows you to backup and display the previous line in the program.

CODDeI1t:

The up command cannot be used if the program in memory is read protected (see LOAD
command) •

Both forms of the up command operate identically.

When the up command is entered the current line pointer is adjusted one line
backward and the current line is displayed.

Attempting to executed the up command when the current line is at the first line of
the program the message TOF: is displayed indicating that you are at the top of
file.

UP - 92 - BASIC

CIIAPTEIt 8: COIIHARDS

8.28 VAKS Command

1 VAKS

2 VAKS <variable list>

Where:

<variable list> ::= <variable name>[,<variable list>]

See also: BREAK, STEP, TRACE, UNBREAK, and UNTRACE commands

Purpose:

The VARS command allows the programmer to easily see the status of all variables
defined in a program.

Comment:

Format 1 of the VARS comand causes each variable currently defined in the program
to be displayed on the console, one variable per line, along with the contents of
the variable. The sequence in which the variables are listed is the inverse
sequence that the variables were initially defined in.

Format 2 of the VARS command causes each variable in the list to be displayed, one
variable per line, along with the contents of the variable.

Dimensioned arrays are displayed one element per line.

===

Example:

-VARS
A$ "ABCDEFG"
1% = 12
R1 = 12.34
R1$ = "TOTAL"
R3 = 1.234567
Y(1) = 1
Y(2) 2
Y(3) 3
Y (4) 22

-VARS A$,R1$,R3
A$ "ABCDEFG"
R1 = 12.34
R3 = 1.234567

===

BASIC - 93 - VAllS

BASIC 1lEI'ERERCE IWiUAL

8.29 DEI' eo-nd

1 DEI'

See also: LPXREF command

Purpose:

The XREF command allows you to display all of the variables and lines used or
referenced in the program.

Comment:

The XREF command cannot be used if the program in memory is read protected (see
LOAD command).

The XREF command lists the program in memory on the console and then lists two
tables of cross references for the program.

The first table lists all line numbers referenced and line labels defined or
referenced along with the line number of the statement referencing the line number
or label. In the table of references to line labels the line number of the line
defining the label will have a colon following the line number.

The second table lists all variables and constants referenced in the program, in
alphabetic order, followed by the line number of the statement with the reference
to the variable or constant. A statement with multiple references to the same
variable or label will have multiple occurrences of the line number in the table.

Array names are denoted by a pair of parentheses following the array name.

Each of the line number references in the second table will be followed by a single
letter code indicating the type of reference to the variable or constant:

R Term used in an input type statement (INPUT, LINPUT, LINPUT USING,
MAT INPUT, MAT READ, READ, READNEXT, and GET).

W Term used in an output type statement (DELETE, MAT PRINT, MAT WRITE,
PRINT, PRINT USING, PUT, and WRITE).

H Term was modified by statement (LET, FOR, and MAT).

All other types of statements are unmarked.

The variables and constants are listed in the following sequence: variables, string
constants, floating point constants, and integer constants.

- 94- BASIC

CBAPTEIl 8: COIMABDS

===

Example:

-XREF

10 OPEN til: "NAME.DATA", INPUT SEQUENTIAL
20 LOOP: PRINT CRT$("C");
30 1% = 0
40 INPUT: LINPUT til: A$
50 IF EOF(l) THEN GOTO EXIT
60 PRINT AT$(6,I%+3);EXT$(A$,1,0);
70 PRINT AT$(6,I%+6);EXT$(A$,4,0);
80 1% = 1%+5 \ IF 1%+5<23 THEN GOTO INPUT
90 WAIT

100 GOTO LOOP
110 EXIT: END

Line/Label References

EXIT: 50 0110:
INPUT: 40: 80
LOOP: 20: 100

Variable/Constant References

A$ 40R 60W 70W
1% 30M 60W 70W 80M 80 80
"C" 20W
"NAME.DATA" 10
0 30 60W 70W
1 10 40R 50 60W
3 60W
4 70W
5 80 80
6 60W 70W 70W
23 80

===

BASIC - 95 -

BASIC RD'EIlERCE HAlmA!.

- 96 - BASIC

CHAPTER. 9

STATFJIEHTS

This chapter discusses each statement in a separate section. Each statement is
described in four subsections:

1. General form: defines the syntax of the specific statement. For
visibility this information is placed in a box at the top of the page.
Note: the characters ::= should be read as "is defined as".

2. Purpose: one or two sentences that summarizes the purpose or general
function of the statement.

3. Comment: detailed description of the statement specifying any
restrictions, exceptions or errors that may occur.

4. Examples: general examples of the various forms of the statment if
applicable.

For the convenience of novice programmers the BASIC statements are listed below by
logical groups. In the body of this chapter, however, the statements are listed in
alphabetic sequence, for quick reference purposes.

An appendix at the back of this manual lists all of the statements with their
general syntax requirements.

A. Control and/or Branching Statements

CASE
CEND
ELSE
END
FNEND
FOR
GOSUB
GOTO
IF
IFEND
NEXT
ON ERROR
ON GOSUB
ON GOTO
OPTION
OTHERWISE
QUIT
RESTORE
RESUME
RETURN
SELECT
SLEEP
STOP
THEN
WAIT
WEND
WHILE

BASIC

Used with SELECT
Used with SELECT
Used with IF
Exits program
Marks end of user defined function
Loop control
Execute subroutine
Unconditional branch
Test expression-branch or execute depending on result
Marks end of multi-line IF
Used with FOR
Invokes user written error handling routine
Selects subroutine depending upon value
Selects branch depending upon value
Set various options
Used with SELECT
Exits BASIC
Resets DATA pointer
Exits user written error handling routine
Exits subroutine
Specifies value that determines statements to be executed
Suspends processing for period of time
Exits program
Used with IF
Pauses at bottom of screen display
Marks end of WHILE structure
Executes statements while expression is true

- 97 - STATEHERTS

BASIC KDERDCE HABUAL

B.

C.

D.

E.

Assignment and Declaration Statements

CLEAR
COMMON
DATA
DEF
DIM
LET
MAT

File Input and

CLOSE
DELETE
GET
INPUT
LINPUT
LINPUT USING
MAT INPUT
MAT PRINT
MAT READ
MAT WRITE
MOUNT
OPEN
POKE
PRINT
PRINT USING
PUT
READ
READ NEXT
UNLOCK
WRITE

Program Linkage

CHAIN
CSI
LINK
RUN

Erase variables from memory
Defines variables used between
Defines data constants
Defines user defined function
Allocates array space
Assigns value to variable
Assign values to arrays

Output Statements

Closes file
Erase record from file
Get data from I/O devices
Accepts ASCII data from file

program modules

Accepts line of ASCII data from file
Accepts line of ASCII data with control
Accepts ASCII data from file-assigns to array
Outputs ASCII data to file from array
Accepts data from file-assigns to array
Outputs data to file from array
Allows change of disk
Opens file for subsequent input and output
Modifies memory
Outputs ASCII data to file
Outputs formatted ASCII data to file
Puts data to I/O devices
Accepts data from file
Accepts data from indexed file
Release record for other users use
Outputs data to file

Statements

Branches to another program
Executes system program
Branches to another program
Branches to another program

Other Statements

empty or null statement
RANDOMIZE
REM

STATBHERTS - 98- BASIC

CHAPTER. 9: STATDlKNTS

9.1 CASE Statement

1 CASE <expression>

See also: CEND, OTHERWISE and SELECT statements

Purpose:

The CASE statement is part of the SELECT-CASE-CEND programming structure that
allows conditional execution of statements in a structured manner.

Comment:

The form and function of the CASE statement depends upon which format of the SELECT
statement was used at the beginning of the SELECT-CASE-CEND structure. Format 1 of
the SELECT statement requires that the CASE statements have relational expressions;
format 2 of the SELECT statement requires that the CASE statements have expressions
the match in type to the expression used in the SELECT statement--numeric with
numeric, string with string.

When the CASE statement is used with format 1 of the SELECT statement the
relational expression of the CASE statement is evaluated and, if true, the
statements following the CASE statement will be executed.

When the CASE statement
expression of the CASE
statement and, if true,
executed.

is used with format 2
statement is compared to
the statements following

of the SELECT statement the
the expression of the SELECT
the CASE statement will be

When the evaluation of the CASE statement causes the statements following the CASE
statement to be executed, execution will continue until another CASE, CEND, or
OTHERWISE statement is encountered at the same level.

When the comparison is false the statements following are skipped until another
CASE, CEND, or OTHERWISE statement is encountered for this SELECT-CASE-CEND
structure.

SELECT-CASE-CEND structures may be nested to any level.

It is best to use different levels of indentation to illustrate the structure of a
nested SELECT structure--the CASE statement does not indicate which SELECT
expression is being used--only the BASIC execution module "knows" unless you use
some form of documentation.

This programming structure should be used to replace complex I F-THEN-ELSE
statements, ON-GOTO, and ON-GOSUB statements to produce a more structured program.
It is much more versatile than the ON statement because the conditional execution
is determined by a general expression rather than an integer expression with only
positive, sequential values.

This structure is particularly useful for a menu tree when the controlling
expression is a string.

BASIC - 99- CASE

BASIC REl'ERERCE HANUAL

Note: Any statements between a SELECT statement and the first CASE statement will
never be executed unless they are branched to.

Note: The program should never branch out of a SELECT-CASE-CEND structure without
executing the CEND statement as the internal SELECT stack will not be cleaned up
which will result in un-necessary memory usage.

===

Example:

0010 INPUT CONTROL$
0020 SELECT CONTROL$
0030 CASE ""

0040
0050
0060

PRINT CONTROL$
GOSUB 1000

CASE "HELP"

Explanation:

Accept control value
Using this control value then:
If control is null execute following

else skip to line 60
Only executed when CONTROL$ is empty
" " " "

If control is "HELP" execute following
else skip to next CASE or CEND

0070
0080
0085
0087
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190

GOSUB 2000 Only executed when CONTROL$="HELP"
QUIT " " " "

CASE CONTROL$ If control = control (always true)

CEND
SELECT

PRINT "Invalid input";

CASE CONTROL$=""
PRINT CONTROL$
GOSUB 1000

CASE CONTROL$="HELP"
GOSUB 2000
QUIT

OTHERWISE
PRINT "Invalid input"

CEND

End of select structure
Same as above

===

CASE - 100 - BASIC

CHAPTER. 9: STATDIEHTS

9.2 CKRD State.ent

1 cmm

See also: CASE, OTHERWISE and SELECT statements

Purpose:

The CEND statement is part of the SELECT-CASE-CEND programming structure that
allows conditional execution of statements in a structured manner.

Ca.aent:

The CEND statement marks the end of the SELECT structure.

There is only one CEND for each SELECT.

===

Example:

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

SELECT OPTION$
CASE IIHELp lI

GOSUB DISPLAY.HELP
CASE IIINITII

GOSUB INIT.VAR
GOSUB INIT.FILE

CASE IIpRINTII

DEVICE.NUM% 16
CASE IITYPE II

DEVICE.NUM% = 15
1110 CEND
1120 RETURN

Explanation:

Using variable OPTION$

Perform if OPTION$=IIHELp lI

Perform if OPTION$=IIINITII
II II II

Perform if OPTION$=IIPRINTII

Perform if OPTION$=IITYPEII

Perform always

===

BASIC - 101 - CElID

BASIC B.EI'EllERCE IfABUAL

9.3 CHAIR Statement

1 CHAIR <program DaIle expr>

2 CHAIR <prograa name expr>>> <1:1ne nllllber»

Where:

<program name expr> ::= <file name>[.<file type>] [:<file disk>]
<file type> ::= BASICOBJ (with BASIC)

BASICCOM (with RUN)

See also: CLEAR, LINK and RUN statements

Purpose:

The primary use of the CHAIN statement is to link together BASIC program segments.

CODDeD.t:

The CHAIN statement terminates the execution of the program in which it is
encountered, loads the program indicated, and continues execution at <line number>
or at the beginning of the program segment.

The CHAIN statement will close all open channels (files) and all variables that
have not been defined as COMMON variables will be cleared from memory.

The <line number> operand, when used, should be a valid line number in the program
specified. The <line number> operand should not be used for two reasons: it is
difficult to maintain a set of programs when it is used and, most importantly, this
feature will not be supported in future versions of OASIS BASIC. The recommended
method of transferring control to another program at a specific line is the use a
control variable (defined as COMMON) that is tested by an ON-GOTO statement at the
start of the program transferred to.

The <program name> must be a valid string expression. If the program cannot be
found in the directory, a non-trapable error will occur.

Note: When the RUN version of BASIC is being used (execution of compiled programs
only) only programs that have been compiled and have a file type of BASICCOM will
be searched for by this command.

The CHAIN statement will
WHILE-WEND, IF-THEN-ELSE,
turned off.

"wrap up" all active programming structures: FOR-NEXT,
IF-IFEND, SELECT-CASE-CEND, and the ON ERROR will be

- 102 - BASIC

CHAPTER. 9: STATEHENTS

The CHAIN, RUN, and LINK statements all perform similar tasks, but with significant
differences:

Program Linkage Statements

/ Statement / I/O Channels / Variables / COMMON /

/--/
/ RUN / Closed / Cleared / Cleared /
/ CHAIN / Closed / Cleared / Not cleared /
/ LINK / Not closed / Cleared / Not cleared /

===

Examples:

0010 CHAIN "SEGMOl"

0030 CHAIN "SEGMO"&NUM(I)&":S"

Incorrect example:

0010 CHAIN "SEGMENT-I"

0020 CHAIN "PROGRAM" LABEL

Explanation:

Program named 'SEGMOl' will be
loaded, all files will be closed,
& control will pass to the first
statement of 'SEGMOl'.
When I equals 1, this statement
is the same as example 10.
If I is equal to 3, program
'SEGM03' will be executed, etc.

Explanation:

Program name can only be 8
characters long. Also, - is invalid.
Line labels are not allowed.

===

BASIC - 103 -

BASIC B.EFERERCE HANUAL

9.4 CLEAR Statement

1 CLEAR

2 CLEAR <variable list:>

Where:

<variable list> ::= <numeric variable>[,<variable list>]
<string variable>[,<variable list>]
<array name>[,<variable list>]

See also: CHAIN, COMMON, LINK and RUN statements

Purpose:

The CLEAR statement initializes the working storage area.

Comment:

The CLEAR statement effectively erases all variable names and their contents from
memory.

Variables defined as COMMON variables are not erased by this command.

This operation is performed automatically whenever a CHAIN, LINK, LOAD, NEW, or RUN
command is executed. It may be necessary to use this separate command when there
are many variables defined in working storage that are not going to be used again,
and there are no variables whose loss would be detrimental to program execution.

The main advantage
continue execution
available.

gained
that,

is a fresh
without it,

work area that may allow the program to
might have required more memory than

Optionally this statement may clear specific variables (or complete arrays) from
memory when they are no longer needed by the program.

===

Examples:

0010 CLEAR
0020 CLEAR A,B,INDEX%

0030 CLEAR ARRAYl$,A,B

Explanation:

All variables are cleared from memory.
Only the variables A, B, and INDEX% are
cleared from memory (unless they were
defined as COMMON).
The entire array ARRAYl$ is erased from
memory along with the variables A and B.

===

CLlWt - 104 - BASIC

CIIAPTER. 9: STATIIIERTS

9.5 CLOSE Statement

1 CLOSE '<channel>

Where:

<channel> ::= <integer expression>

See also: CHAIN, CSI, END, MOUNT, OPEN, QUIT and RUN statements

Purpose:

The CLOSE statement is used to terminate I/O between the BASIC program and a data
file.

C~t:

The CLOSE statement causes the output of the last block of data to the file.
Execution of a CHAIN, END, or CSI statement automatically closes all open files.
The RUN command automatically closes any open files before execution begins. The'
QUIT command will close any open files before exiting BASIC.

The <channel> must have the same value as that used with the OPEN statement.

Once a file has been closed, it may be reopened on any available channel number.

If the user should happen to abort a BASIC program (by an IPL or power failure)
When indexed or sequential files are open, errors may exist in the file directory
or in the file itself. It is acceptable to abort the program by using the Program
Cancel-key or the System Cancel-key, but exiting by a system reset button or power
failure can be disasterous.

===

Examples:

0010 CLOSE 111
0020 CLOSE IIINPUT%

Incorrect examples:

0010 CLOSE "IVY MASTER A"
0020 CLOSE 114,115,116,1110
0030 CLOSE 1117

Explanation:

File opened on channel one is closed.
File opened on channel corresponding
to value of variable INPUT% is closed.

Explanation:

File names are not allowed.
Multiple channels not allowed.
Channel 17 is invalid.

===

BASIC - lOS - CLOSE

BASIC BEFERERCE MANUAL

9.6 COBMON Statement

1 COMMON <variable list>

Where:

<variable list> ::= <simple variable>[,<variable list>]
<dim variable>[,<variable list>]

<dim variable> ::= <array name>«dimension>[,<dimension>])
<dimension> ::= <numeric expression>

See also: CLEAR, DIM, OPTION, and RUN statements

Purpose:

The COMMON statement allows you to specify that certain variables are shared
between segments of a program and are, therefore, not to be cleared.

Comment:

The COMMON statement must be the first statement on a line--there can be no line
label specified on the same line as a COMMON statement.

The COMMON statement is an executable statement, similar to the DIM statement--in
fact, it must be executed before any references to the variables it is defining as
common are made.

When a program is RUN, CHAINed to, or LINKed to, the entire program is scanned for
any and all COMMON statements. When one is found the variables specified on that
statement are searched for in the COMMON variable storage. When a variable is
found it will be left as is. When a variable is not found in the COMMON variable
storage area it will be defined or dimensioned in that area.

Note: If a variable was used in a previous program but not defined as COMMON before
its use, the value will not be retained at the time it is defined as COMMON.

Although it is not necessary to re-define all of the variables that are COMMON
between programs it is definitely a good programming practice. It is also not
necessary to specify the variables in a COMMON statement in the same sequence as
they might have been defined in a previous program's COMMON statement--variables
are accessed by name, not location or sequence.

===

Examples:

0010 COMMON A,B,A%

0020 COMMON ARRAY$(5,22),CONTROL

Explanation:

The variables A, B, and A% were defined,
or will be used, by another program.
Similar to above but also dimensions ARRAY$

================~==

COHHON - 106 - BASIC

CHAPTER 9: STATDIERTS

9.7 CSI Statement

1 CSI <St~-ezp>

Purpose:

The CSI statement allows the BASIC program to execute any OASIS command, resuming
execution of the BASIC program afterwards.

CODDDeut:

All I/O channels will be closed when the CSI statement is executed.

<String-exp> is any valid OASIS command, with all arguments and options required by
the specific command. Refer to the OASIS System Reference Manual for complete
specifications of these commands.

When the first character of <string-exp> is the ">"
displayed on the console device, otherwise the
(command executed in "silent" mode).

character, the string will be
string will not be displayed

When the CSI statement is executed your BASIC program and all of its work areas are
marked as protected memory. A special call to the operating system passes the
string expression to the Command String Interpreter which executes the desired
program. Upon completion of that program the operating system reloads the BASIC or
RUN command, if necessary, unprotects the memory area containing your program, and
continues execution of your program.

The CSI statement should not be used to execute large OASIS commands because of the
restricted memory available. Additionally, when the following commands are
executed the result will be unpredictable: DEBUG, ASSEMBLE, BASIC, and RUN. The
ATTACH program cannot be called to attach a new device driver; however, it may be
called to change some options on a currently attached device. In addition the
stack of the EXEC language must be empty.

===

Examples: Explanation:

0010 CSI "LIST CUSTOMER MASTER (PRINT NOHEAD)"

0015 A$=">filelist a (exec append)"
0020 CSI A$

The file CUSTOMER MASTER is printed without
headings.

Command is displayed. The file
named SELECTED.EXEC is appended with the
current filelist from the directory of
the A disk.

===

BASIC - 107 - CSI

BASIC JlEI'ERERCE IWWAL

9.8 DA7& Statement

1 DATA <data Hst>

Where:

<data list> ::= <data element>[,<data list>]
<data element> ::= <numeric constant>

<quoted string constant>
<unquoted string constant>

See also: READ and RESTORE statements

Purpose:

The DATA statement is used to define information to be read by the READ statement.
The DATA and READ statements are useful for defining the initial contents of an
array, etc.

CODDeD.t:

The DATA statement must be the first, and only statement on a line--there can be no
line label specified on the same line.

The data elements in one or more DATA statements are used sequentially, in the
order that they appear in the line, in the order that the lines appear in the
program. (It is possible to re-use data elements--see RESTORE statement.)

When a data element is to contain leading or trailing spaces or embedded commas it
must be defined as a quoted string constant.

This statement, along with the READ and MAT READ statement, is very useful for
defining the initial values to be used for variables and array elements. It is
much faster to perform a READ or MAT READ than it is to use the LET statement.

===

Examples:

10 DATA 1.23,2.34,3.45,LITERAL,ANOTHER LITERAL
20 DATA "He said, ""Bring the glass. 111"', liT. J. Collins, Jr."
30 DATA 1,1,2,1,1,1,0,1,1,5,1,16,1,-1

===

DATA - 108 - BASIC

CHAPTER. 9: ST.ATI!JIER'lS

9.9 DEF Statement

1 DEF FN<variab1e>(<arguments» = <expression>

2 DEF FH<variab1e> = <expression>

3 DEF FH<variab1e>(<arguments»

4 DEF FH<variab1e>

Where:

<variable> ::= <simple variable name>
<arguments> ::= <simple variable name>[,<arguments>]

See also: FNEND and LET statements

Purpose:

The DEF statement allows the programmer to define a user defined function.

COJIIIIlent:

In some programs you may want to execute the same sequence of statements in several
places. You can define a sequence of operations as a user-defined function and use
this function like you use the functions BASIC provides.

The DEF statement has two basic forms: single line (formats 1 and 2); multi-line
(formats 3 and 4).

The DEF statement must be the first statement on a line--there can be no line label
specified on the same line as the DEF statement.

The <variable> following the characters 'FN' is independent from the program. The
function is referenced by the complete name, including the FN characters.

Any variable referenced in the expression which is not an argument of that function
has its current value in the user program.

The expression may include any valid element. It should be noted that a single
line function should not reference itself as this causes an infinite loop.

The <argument> is a dummy argument: it has no relation to the program and cannot be
changed by the program. If the dummy argument is also a variable used by the
program, they are independent of each other.

The argument must be a simple variable name, that is, array referrences are
invalid.

In the single line format of the DEF statement, the variable and the expression
must match in type, i.e., string variable with string expression, or numeric
variable with numeric expression.

BASIC - 109 - DEF

BASIC REI'EIlENCE HANUAL

During execution the
function. This value

expression is analyzed
takes the place of the

references the function.

and the value is assigned to the
function call in the expression that

In the multi-line forms of the DEF statement there must be a c~rresponding FNEND
statement to mark the end of the function definition.

In the multi-line forms of the DEF statement the statement following the DEF
statement are executed until the FNEND statement is encountered t at which time the
value of the function is returned and execution resumes at the location of the
function reference. The value of the function is assigned by a LET statement in
the function definition: LET FN<variable> = <expression>. There can be more than
one of these assignment statements in a function definition but only the last one
executed will be the assignment used.

There can be only one FNEND statement for each multi-line function definition.

Most statements can be used within the function definition (between the DEF and
FNEND statements). However t transfers into or out of the definition (with GOTO or
GOSUB) should not be used. (There are no restrictions in this regards except that
the FNEND statement cannot be executed without performing a multi-line function
reference.)

DATA statements may be READ from a statement within a function definition.

A multi-line
assigning the
function.

function definition that does not execute an assignment statement
value of the function will return the last defined value of the

The DEF statement may be placed anywhere in the program t however, it is executed
only when referenced by another statement.

You may not re-define a DEF function. No error occurs when this is attempted but
only the first definition is used.

DEI' - 110 - BASIC

CHAPTER. 9: STATDIENTS

===

Examples: Explanation:

0010 DEF FNA(X) SQR(X~2+Y~2))-SQR(X)

0020 B
0030 C
0040 Y
0050 Z

2
5
10
FNA(B)/FNA(C)

X is the dummy argument. The value of Y
is taken from the program, 10 in this
example. Each of the two calls to this
function in line 50 cause the value of
the argument, 2 in the first call and 5
in the second call, to take the place of
any and all references to that dummy
variable in the expression of the
function. The function is evaluated. Line
100 is an equivalent statement as line
without using the function calls.

0100 Z = (SQR(B~2+Y~2)-SQR(B))/(SQR(C~2+Y~2)-SQR(C))

1000 DEF FNX%(A,B)
1010 IF A>B THEN FNX%=A*B+3.4

1020 FNX% = A*B
1030 FNEND
1040 PRINT FNX%(3.1,2.3)

Incorrect examples:

0010 DEF FNA(S~2) = 2*S+S
0020 DEF FNA$(B) = 2*B

As can be seen this is not only more
difficult to read, but when there are
more references to the same function
there will be more code involved.
Multi-line def, arguments of A, B

GOTO 1030
Defines value of function and exits.
Define value of function
End of definition
Will print 10.

Explanation:

Dummy argument must be a simple variable.
Function name must match expression in
type (string or numeric).

===

BASIC - III - DEI'

BASIC RDEREBCE HAlmA!.

9.10 DELETE Statement

I
I 1 DELETE #<fi1e>. <key>
I
I Where:
I
I <file> ::= <integer expression>
I <key> ::= <string expression>
I <numeric expression>
I

Purpose:

The DELETE statement deletes a specified indexed or direct record from an open
file.

C01IIIIII!Ilt :

<file> is the channel number of an open, indexed or direct, disk file, with access
mode of OUTPUT or UPDATE, and an access method of DIRECT or INDEXED.

<key> is a string expression representing the key of the indexed record to be
deleted or a numeric expression representing the record number of the direct record
to be deleted. A string key is required if the I/O channel was opened with access
method INDEXED, and a numeric key is required if the I/O channel was opened with
access method DIRECT.

The record specified by the <key> is removed from the file and the EOF indicator is
set off.

When the record is not found the sequential access pointer and the EOF indicator
will be the same as if the record were found and deleted.

===

Examples:

0010 OPEN #1: F$,UPDATE INDEXED
0020 OPEN #2: Fl$,UPDATE DIRECT
0030 DELETE #1,"0001"
0040 DELETE #2,30

Incorrect Examples:

0020 DELETE #1,25
0030 DELETE #1,K$:Al$,A2$

Explanation:

Record with key "0001" is deleted.
Record number 30 is deleted.

Explanation:

Indexed files use string keys.
Record variables not allowed.

===

DELETE - 112 - BASIC

CHAPTER. 9: STATEIlEBTS

9.11 DIH Statement

1 DIH <dim variable list>

Where:

<dim variable list> ::= <dim variable> [,<dim variable list>]
<dim variable> ::= <simple variable>«num expr>[,<num expr>])

See also: COMMON, MAT, MAT INPUT, MAT PRINT, MAT READ, MAT WRITE,
and OPTION statements

Purpose:

The DIM statement instructs the system to reserve storage space for an array by
specifying a maximum subscript (dimension).

COJIIIDent:

The DIM statement is an executable statement. In fact, it has to be executed in
order to be effective.

Numeric or string variables may be dimensioned with one or two dimensions. The
maximum value for each dimension is 32767, however, the restraints of memory size
usually limit this to a much lower value. An array may not be re-dimensioned.

When a variable is dimensioned a reference to the same variable name will refer to
the array. This is only allowed with certain types of statements (i.e., MAT). In
other statements the error "Inconsistent usage" will occur.

Any reference to an array beyond the allocated size will cause a subscript error.

Arrays are created with a zero element in each dimension, unless OPTION BASE 1 is
in effect. For instance, if the array X were dimensioned X(5), there would be six
elements in the array with subscripts of 0, 1, 2, 3, 4, and 5.

===

Examples:

0010 DIM X(20),Y(2,5),A$(5,5)

Incorrect Examples:

0010 DIM X(2,2,2)
0020 DIM Y(99999)

Explanation:

Array X has 21 elements, array Y has 18
elements, string array A$ has 36 elements.

Explanation:

Can have only 2 dimensions.
Maximum dimension is 32767.

===

BASIC - 113 - DIH

BASIC REI'EIlERCE HABUAL

9.12 ELSE Statement

1 ELSE [<statement>]

2 ELSE [<statement>]

See also: IF, IFEND and THEN statements

Purpose:

The ELSE statement specifies the action to be taken when a multiline IF statement
relation is not true.

Coaaent:

The ELSE statement is only valid as part of a multi-line IF statement.

<statement> may be any valid statement or statements, including another IF
statement. It should not, however, be an IFEND statement.

===

Examples:

0010
0020
0030
0040
0050

0010
0020
0030
0040

IF A

IF

THEN GOSUB 2000

IFEND

PRINT USING "11111'" ,A
GOTO TOP.OF.PAGE

VALUE> CONTROL
THEN IF VALUE > LIMIT

THEN GOSUB ERROR
GOTO EXIT

Explanation:

Test A for non zero
Perform if A<>O

" " "
" If If

End of conditional execution

Test expression
Perform if expr is true
Perform if both expr are true

" .. " "
0050 ELSE IF ERR.NUM < ERR.LIMIT THEN QUIT

Perf orm only if first expr is true
and second exp r is false

0060 IFEND End conditional execution from second
0070 IFEND End of conditional execution

Incorrect Example: Explanation:

0010 IF CONTROL<LIMIT THEN WAIT
0020 ELSE PRINT If ERROR" Not in multi-line IF statement

expr

===

ELSE - 114 - BASIC

CHAPTER 9: STAT.I1IIERTS

9.13 END Statement

1 END

See also: STOP and QUIT statements

Purpose:

The END statement terminates execution of the program.

Comment:

The END statement, unlike the STOP statement, not only terminates execution of the
program but also closes all open I/O channels and, if the RUN command is being used
(not BASIC), exits from the BASIC environment; otherwise control returns to the
command mode.

The END statement should be the last statement in a program. Although this is not
required by OASIS BASIC it is required by ANSI and is a good programming practice
because it can serve as an indicator that you intended it to be the end of the
program.

You cannot CONTINUE after an END statement has been executed.

BASIC - liS - EBD

BASIC Ul'ERERCE IWIUAL

9.14 P.RIRD Statement

1 P.RIRD

See also: DEF statement

Purpose:

The FNEND statement marks the end of a multi-statement user defined function.

Co.aent:

The FNEND statement may only be used, and must be used, in a multi-line user
definied function.

There may only be one FNEND statement for each multi-line function.

The statement between and including the DEF and FNEND statements are not executed
unless referenced from a statement in the body of the program.

===

Example: Explanation:

0010 DEF FNTEST(A) Start of function definition
0020 FNTEST=PI*A*A
0030 FNEND End of function definition

0040 DEF FNCENTER$(STRING$,LENGTH) Start of function definition
0050 IF LENGTH=O THEN FNCENTER$="" GOTO 110
0060 IF LEN(STRING$)=O THEN FNCENTER$ = SPACE$(LENGTH) GOTO 110
0070 FILL = LENGTH-LEN(STRING$)
0080 IF MOD(FILL,2)=0
0090 THEN FNCENTER$
0100 ELSE FNCENTER$
0110 IFEND
0120 FNEND

SPACE $ (FILL/2) &STRING$&SPACE$ (FILL/2)
SPACE$(FILL/2)&STRING$&SPACE$(FILL/2+1)

End of function definition

===

- 116 - BASIC

CHAPTER 9: STATEHERTS

9.15 FOR Statement

1 lOR <num index>--<star~> TO ~~>

2 lOR <num index>==<s~ar~> TO <limit> STEP <increment>

3 lOR <index>==<expression list>

Where:

<num index> ::= <simple numeric variable>
<start> ::= <numeric expression>
<limit> ::= <numeric expression>
<increment> ::= <numeric expression>
<index> ::=.<simp1e variable>
<expression list> ::= <num expr list>

<string expr list>
<num expr list> ::= <numeric expr>[,<num expr list>]
<string expr list> ::= <string expr>[,<string expr list>]

See also: NEXT statement

Purpose:

The FOR statement define a program loop and execute that loop until a terminating
condition is met.

Comment:

The FOR statement assigns an initial value, <start>, to the index and saves the
limiting value <limit>.

The STEP increment (format 2), is saved for use by the corresponding NEXT
statement. If the STEP value is not specified (format 1), a value of +1 is used.

The following paragraphs pertain to formats 1 and 2 of the FOR statement:

Upon initial execution of the FOR statement, the index variable is assigned its
initial value. The index variable is then compared to the limiting value and, if
the index has not surpassed the limit, execution is passed to the statement
following the FOR statement. When the index has surpassed the limit, execution is
passed to the statement following the matching NEXT statement. If there is no
matching NEXT statement an error occurs: "FOR without NEXT".

The STEP value, when specified, may be a negative value. When the STEP is
positive, the limiting value must be greater than or equal to the initial value.
When the STEP is negative the limiting value must be less than or equal to the
initial value.

The value of the index variable surpasses the limiting value when it is more
positive (for a positive STEP value) or more negative (for a negative STEP value).

BASIC - 117 - FOR

BASIC REI'EJlENCE HARUAL

A FOR NEXT loop is defined by the FOR and NEXT statements, with each statement
marking the beginning and end of the loop.

FOR NEXT loops may be nested to any depth.

If a FOR NEXT loop is nested, it must be completely contained within the next
higher FOR NEXT loop. An error will occur if the system detects an illegal form of
nesting. A common practice to determine if your FOR NEXT loops are legal is to
draw lines between the matching FOR and NEXT statements (see examples). If a line
crosses another then it is an illegal form of nesting.

The FOR NEXT loop may be exited with a GOTO statement. When this is done, the FOR
NEXT loop will remain open until another FOR NEXT loop is executed using the same
index variable or when this loop is re-entered.

Upon termination of a FOR NEXT loop the index variable will retain the first value
that exceeded the limiting value. For instance, the first example below will have
the value +11 upon termination.

Format 3 of the FOR statement allows the loop to operate on a "set" of values with
the set being defined by the expression list. In this form the expressions must
match in type (numeric or string) with the index variable.

In this format the index variable is initialized to the value of the first
expression. There is no limit testing as there is no limit defined. Rather, the
FOR NEXT loop is performed until the list of expressions is exhausted, with each
execution of the matching NEXT statement causing the next expression to be
evaluated and assigned to the index variable.

===

Examples:

10 FOR 1=1 TO 10

50 NEXT I

10 FOR I%=C+3 TO R*2 STEP .2

50 NEXT 1%
60 • • •

FOR

Explanation:

Loop will execute 10 times.

Initial value is 3 plus the
current value of C. Limiting
value is current value of
R times 2. If limit is less than
initial value the loop is not excuted
and control will pass to line 60.
If variables C or R are changed within
the loop, initial value and limiting
value will not be affected as they are
evaluated only once.

- 118 - BASIC

10 FOR I% •
20 FOR J% •

50 NEXT J%
60 FOR J% •

100 NEXT J%

150 NEXT I%

CBAPTD 9: SUDIIIIiTS

This illustrates a correct form
of nesting.

10 FOR INDEX$="A","B","ABCD"&SPACE$(2) Loop will execute 3 times.

40 NEXT INDEX$

10 FOR I%= 1,2,3,6,8,22,99
20 FOR A$="A","B",X$

40 NEXT
50 NEXT

Incorrect examples:

---+--
I

?

10 FOR 1 TO 50 STEP 2
20 FOR X = 1 STEP -3
30 FOR J = 5 TO 1 STEP 2
40 FOR K = 1 TO 4 STEP -5

10 FOR I .
20 FOR J

50 NEXT I

90 NEXT J

10 FOR I •

60 FOR I .
90 NEXT I

100 NEXT I

Variable must match FOR index variable,
if used.
Will execute 7 times.
Will execute 3 times for each of the
seven major loops.
Terminate current loop
Terminate current loop (major)

Explanation:

Index variable missing.
Limiting expression is missing.
Loop will fail initial test.
Loop will fail initial test.

Illegal nesting.

Note that lines cross here.

Illegal nesting.

There is no open FOR loop

===

BASIC - 119 - FOB.

BASIC BEI'EIlERCE IWmAL

9.16 GET State.ent

1 GET DEVICE <devi.ce number>, <vadable list>

2 GET HEHORY <address>,<vadable Ii.st>

3 GET PORT <port>,<vadab1e list>

Where:

<device number> ::= <numeric expression>
<address> ::= <numeric expression>
<port> ::= <numeric expression>
<variable list> ::= <numeric variable>[,<variable list>]

<string variable>[,<variable list>]

See also: PUT and WAIT statements

Purpose:

The GET statement allows you to accept a single byte or list of bytes from an I/O
device such as an analog to digital converter. The GET statement is also useful
for accepting keyboard input, if available, and without any prompting or waiting
for the operator.

Coaoent:

<device number>, <address>, or <port> is a numeric expression which is rounded up
and integerized. <Device number> must be in the range of 9 through 32. This
number is the address of a logical device (CONIN, CON OUT , PRINTERl, etc.). <Port>
must be in the range: 0-255. This number is the address of the I/O port.

<address> must be in the range: -32767 +32767. This value, unlike other
integers, is evaluated as an unsigned integer which adjusts its range to 0 - 65565.
It is best to use hexadecimal values for <address> as they are easily interpreted
as unsigned integer values.

The data accepted from the port, device, or memory is mapped in a one to one
relation with the variable list. If the variable is numeric it receives an eight
bit integer. If the variable is a string, only one character is assigned to it.
When more than one variable is specified each variable is evaluated independently
of the others. When GET MEMORY is used with multiple variables the memory address
is incremented by 1 for each byte accepted.

BASIC does not test to see if the I/O device is ready before accepting the input.
When the device is not ready the data "accepted" will be null or zero.

The GET statement along with the PUT and WAIT statements discussed in their
respective sections, provides a means of communicating with any device in the
system. These statements would normally be used to access devices that are not
supported by the operating system although there is no restriction in this regards.
In fact, these statements may be used to destroy the system, so please ••• don't.

GET 120 - BASIC

CHAPTER. 9: STATDIER'I'S

The GET DEVICE statement accepts a byte or bytes of data from the logical device
driver specified. A table of the logical device driver numbers is included in the
OASIS System Reference Manual. If your system is not interrupt driven you should
not use this statement. If the device has no information ready a null or zero byte
is returned.

The GET MEMORY statement reads the random access memory in the system. This
statement could be used to read data stored by your own user written device driver.
Because of the interpretation of the <address> as an unsigned value it is easiest
to use hexadecimal values (see section on "Integer Constants" at the beginning of
this manual and the section on "Numeric Functions").

The GET PORT statement accepts a byte or bytes of information from a physical port.
All devices have port numbers, usually determined by the hardware interface
electronics. If you have a reason to use this statement you would already know the
port number of the device that you wished to access. If the port has no
information ready a null or zero value is returned.

The GET DEVICE statement is useful on system with an interrupt driven console.
Sometimes you need to accept a reply from the operator that he wasn't expecting to
be asked (error message response). In this situation it would be desirable to make
sure that the "type ahead buffer" was cleared before asking for the operator
response. See example line 50 for a method of doing this.

===

Examples:

0010 GET MEMORY 0800H,A$,B$

0020 GET DEVICE 32,A,B,C,D

0030 GET DEV 9,A$

0050 GET DEV 9,A%IF A% THEN 50

Explanation:

Two bytes of data from memory address
0800 and 0801 hex are assigned to A$ and
B$, respectively.
Four bytes of data from device #32 are
assigned to the numeric variables A,B,C,
and D respectively.
Gets one character from the console and
ass ignes it to A$.
This line will get information stored in
the console input buffer until that
buffer is empty (null returned).

===

BASIC - 121 - GET

BASIC 1lEFEIlERCE IfABUAL

9.17 GOSUB Statement

1 GOSUB <line reference>

2 GO SOB <line reference>

Where:

<line reference> ::= <line number>
<lille label>

See also: ON and RETURN statements

Purpose:

The GOSUB statement transfers control to the specified line.

Co.mIeD.t:

The GOSUB statement eliminates the need to repeat frequently used groups of code in
a program. Such a group of statements is a subroutine. The subroutine must
logically end with a RETURN statement.

The subroutine may contain GOSUB statements,
called a recursive subroutine- There is no
subroutines in progress.

even a GOSUB to itself. This is
limit on the number of unreturned

When a GOSUB statement (or an ON-GOSUB statement) is executed, BASIC saves the
location of the statement that physically follows. Upon execution of the RETURN
statement, control transfers to the statement whose location was saved.

===

Example:

0010 GOSUB 100 \ A = A+1

0100 PRINT A

0150 RETURN

1000 GOSUB INPUT

GOSUB

Explanation:

Subroutine starting at line 100 will be
executed. Upon return from the subroutine th
the variable A will be incremented.

Control will be transfered to the statement
following the 'GOSUB' that called this
subroutine.
The subroutine starting with the label INPUT,
will be executed with execution resuming
with the line following 1000 when the
subroutine's RETURN statement is executed.

- 122 - BASIC

Incorrect example:

0010 GOSUB 100 \ A = A+1
0020 LET X = SQR(Y(4/7))

0100 PRINT A
0110 GOTO 20

CHAPTER. 9: STATJilHERTS

Explanation:

Should not exit from a subroutine except
with a 'RETURN' statement.

===

BASIC - 123 - GOSUB

BASIC REI'E1lERCE IWmAL

9.18 GOto Statement

1 COTO <1ine reference>

2 GO TO <line reference>

Where:

<line reference> ::= <line number>
<line label>

See also ON and ON ERROR statements

Purpose:

The GOTO statement transfers control, unconditionally, to a specified line.

C01llllent:

GOTO must be followed by a line reference of a line that exists. This line
r~ference may be of a line of a non-executable statement. If so, control will pass
to the first executable statement following the referenced line. When the line
referenced does not exist, an error will occur.

A GOTO statement should not be used to jump into the middle of a FOR-NEXT loop
because a "NEXT without FOR" error will occur. If it is necessary to branch into a
FOR-NEXT loop to save coding, a switch should be used that will bypass the NEXT
statement.

Similarly, a GOTO should not be used to jump into the middle of a subroutine,
WHILE-WEND and SELECT-CASE-CEND structures.

The GOTO statement can be entered as the two words GO TO.

===

Examples:

0010 GOTO 1020

0020 GOTO BEGIN

Incorrect examples:

Explanation:

Control is unconditionally transferred
to line 1020.
Control is unconditionalily transferred
to the line with the label BEGIN.

Explanation:

0020 GO TO 20 Infinite loop - this is not detectable
by BASIC.

0030 IF I > 4 THEN I = I-I \ PRINT I \ GOTO 30 Valid single line loop.

===

- 124 - BASIC

9.19 IF State.ent

1 IF <expression> TBER <then clause> ELSE <else clause>

2 IF <expression> TBER <then clause>

3 IF <expression>

Where:

<expression> : : = <arithmetic expression>
<logical expression>
<relational expression>

<then clause> : : = <statement>
<line number>
<empty statement>

<else clause> ::= <statement>
<line number>

<line reference> ::= <line number>
<line label>

See also: ELSE and THEN statements

Purpose:

CHAPTER g: STA.D:HERrs

The IF statement provides for the conditional execution of a statement or
statements or the conditional branching to a different section of code.

Comment:

<statement> may be any valid BASIC statement.

In the IF statement, formats 1 and 2, the <expression> is first tested. If the
result is non-zero, then the THEN clause receives control. Since <statement> may
be multiple statements separated by backslants, control will be retained by these
statements until the end of line or a matching ELSE is encountered. When this
occurs, control will pass to the line following the IF statement.

If the result is zero, a search is made for a matching ELSE; when found, control
will pass to the statement or line number following the ELSE term. When no
matching ELSE is found, control will pass to the line following the IF statement.

Any ELSE term encountered by BASIC is assumed to match to the most previous,
unmatched THEN clause. Tabs and indentation are not considered by BASIC in
determining matching THEN ELSE clauses, they are only for use as a programming aid
in the intended structure of the code.

Format 3 of the IF statement provides for complex, multi-line IF statements, where
the other lines contain THEN and/or ELSE statements. This multi-line structure is
terminated by the IFEND statement.

In any format, the IF statement may be nested up to 127 levels.

BASIC - 125 - IF

BASIC JlEI'ERERCE IlARUAL

===

Examples:

0010 IF A=l THEN PRINT "A = 1"

0020 IF A=l THEN PRINT 'OK' ELSE 30

0030 IF INP THEN GOSUB 1000

Explanation:

When variable A is equal to 1,
the literal 'A = l' is printed;
otherwise control passes to the
line following.
When variable A is equal to 1,
the literal 'OK' is printed;
otherwise line 30 is executed.
When the value of the function
INP is greater than zero, the
subroutine at line 1000 is
executed; otherwise control is
passed to the line following.

0050 IF VALUE>O THEN PRINT "POSITIVE" ELSE PRINT "NEGATIVE"

0060 IF "A"="A " THEN 70

1010 IF A
1020 THEN GOSUB 2000
1030 PRINT USING "111111" ,A
1040 GOTO TOP.OF.PAGE
1050 IFEND

1210
1220
1230
1240
1250

IF VALUE > CONTROL
THEN IF VALUE > LIMIT

1260
1270 IFEND

Incorrect examples:

THEN GOSUB ERROR
GOTO EXIT

ELSE IF ERR.NUM <

IFEND

0010 IF D THEN X = A+D GOTO 100

0020 IF Q=50 ELSE X=10 \ PRINT Y
0030 IF 1>1 THEN 200 \ I = 1+1

When the variable VALUE is positive,
the literal 'POSITIVE' will be
printed; otherwise the literal
'NEGATIVE' is printed.
Unequal length strings being
compared. Will test false.
Test A for non zero
Perform if A<>O

" " "
" " "

End of conditional execution

Test expression
Perform if expr is true
Perform if both expr are true

" """ " "
ERR.LIMIT THEN QUIT Single line IF
Perform only if first expr is true
and second expr is false
End conditional execution from second
End of conditional execution

Explanation:

Statement separator (\> misSing
between A+D and 'GOTO'.
The 'THEN' clause is missing.
Statement I = 1+1 will never
be executed. Error undetected by
BASIC.

expr

===

II' - 126 - BASIC

CIIAPTEIl 9: SrATDIER'rS

9.20 IFKHD Statement

1
1 1 IFERD
1
1 See also: ELSE, IF, and THEN statements
I-

Purpose:

The IFEND statement marks the end of a multi-line IF-THEN-ELSE structure.

Comment:

The IFEND should not be part of a THEN or ELSE statement.

The IFEND statement can only be used in conjunction with a multi-line IF statement.

The IFEND statement closes off the corresponding IF statement, marking the end of
the conditionally executed statements of the THEN and ELSE statements.

===

Examples:

0010
0020
0030
0040
0050

IF A
THEN GOSUB 2000

PRINT USING "111111" ,A
GOTO TOP.OF.PAGE

IFEND

Explanation:

Test A for non zero
Perform if A<>O

" " "
" " "

End of conditional execution

0010 IF VALUE > CONTROL Test expression
0020 THEN IF VALUE > LIMIT Perform if expr is true
0030 THEN GOSUB ERROR Perform if both expr are true
0040 GOTO EXIT """"""
0050 ELSE IF ERR.NUM < ERR.LIMIT THEN QUIT

Perform only if first expr is true
and second expr is false

0060
0070

IFEND End conditional execution from second expr
IFEND End of conditional execution

===

BASIC - 127 - lPEBD

BASIC Ul'EREllCE IWlUAL

9.21 IRPOT Statement

1 IRPOT <variab1e 1f.st:>

2 IRPOT <pra.pt:>,<varfab1e l1st>

3 IRPOT #<chaDne1>: <variab1e l1.st>

4 IRPOT #<cbsDDe1>,<key>: <variab1e 1f.st>

Where:

<channel> ::= <numeric expression>
<prompt> ::= <string literal expression>
<variable list> ::= <numeric variable>[,<variable list>]

<string variable>[,<variable list>]
<key> ::= <string expression>

<numeric expression>

See also: CLOSE, LINPUT, MAT INPUT, MAT READ, OPEN, OPTION, READ,
and READNEXT statements

Purpose:

The INPUT statement allows data to be entered through the console, device, or disk
file during program execution.

COIIIIIeD.t:

The various formats of the INPUT statement provide different capabilities with one
function in common: input fields are always ASCII characters even when the input
field is numeric.

Format 1 of the INPUT statement accepts one or more fields of data from the console
terminal device.

Format 2 of the INPUT statement accepts one or more fields of data from the console
terminal device after displaying the prompting message.

Format 3 of the INPUT statement accepts one or more fields of data from a
sequentially accessed device or disk file.

Format 4 of the INPUT statement accepts one or more fields of data from a device or
disk file with either direct or indexed access.

Format 3 and 4 of the INPUT statement may only be used when the I/O channel has
been opened with INPUT or UPDATE access, not OUTPUT.

The <prompt>, when used, must be a string literal expression. That is, the string
expression must start with a string literal. When the <prompt> is used the system
will evaluate the expression and display the result at the current cursor location
followed by the prompt character(s) (see OPTION statement). When the <prompt> is

INPUT - 128 - BASIC

CHAPTER. 9: STATEllERTS

not used, (format 1), the prompt character(s) will be displayed at the current
cursor position.

The <variable list> is the list of variables that the input is to be assigned to.
This list may be as long as the line allows and may contain a mixture of variable
types (numeric, integer, string, array). Each variable must be separated by a
comma from the preceding variable.

When more than one variable is to be entered, each element of data entered must be
separated by a comma from the previous element.

When fewer data fields are entered than requested by the list of a format 1 or 2
INPUT, an "Insufficient data" message will be displayed and all data must be
re-entered from the beginning of the list. When fewer data fields are entered than
requested by the list of a format 3 or 4 INPUT, an "Insufficient data" error occurs
(trappable) and execution stops if no ON ERROR is defined.

Input is terminated with a <CR> or end of record indicator.

When using format 1 or 2 and the first character of the first field is a control
character (ASCII value less than 32), the input will be terminated immediately and
the value of the control character will be saved in the INP function. Refer to the
INP function and the User Definable Keys for more information in this situation.

When the input characters are not enclosed in quotation marks, leading and trailing
spaces will be ignored, and embedded commas will be treated as field separators.

The error "Invalid numeric, re-enter" will occur when the input variable is numeric
and the operator (or file) inputs a non-numeric entry. For formats 1 and 2 the
system will redisplay the prompt character and accept input again. (Format 3 and 4
will stop execution if no ON ERROR is defined.)

The Line Cancel-key and the backspace key may be used to make corrections to the
data being input from the console with INPUT formats 1 and 2.

When the BASIC program was executed from an EXEC program and data was placed in the
EXEC Stack, these statements, along with other BASIC statements that accept
information from the system console, retrieves the next element from that EXEC
Stack. When the EXEC Stack is empty the data must come from the console.

BASIC - 129 -

BASIC IlEI'ERERCE IWIUAL

==c============

Examples: Explanation:

0010 INPUT N A question mark, space is displayed on
the terminal, the program supends execution
until the operator types a return or

0020 INPUT "NAME",CUST.NAME$,A,B
enters a control character only.
The prompt NAME? is displayed and three
fields are accepted, one string and two
numeric.

0030 OPEN Ill: "CONSOLE", INPUT SEQUENTIAL
0040 INPUT #1: A$,B,C Again, three fields are accepted from

the operator, one string and two numeric.
No prompt will be displayed and no control
characters are allowed.

0050 OPEN 112: "DATE.FILE",UPDATE DIRECT
0060 INPUT #2,13:RECORD$ The 13th record in the file is read

into the variable RECORD$.

Incorrect examples: Explanation:

0020 INPUT A,B,2.3,D Only variables may be INPUT.
0030 INPUT At least one variable must be specified.
0040 INPUT "FLD1",F1,"FLD2",F2 Only one prompt is allowed.
0050 OPEN Ill: "DATA.FILE",INPUT DIRECT
0060 INPUT 111,IABCDE": A$,B$ Must use numeric key for direct access.
0070 OPEN 112: "DATA. FILE 2" , OUTPUT INDEXED
0080 INPUT 112,"ABCDE": A$,B$ Access must be INPUT, not OUTPUT.

===

9.22 LET Statement

1 [LET] <numeric varf.ab1e> == <numeric expression>

2 [LET] <string varf.ab1e> == <string expression>

3 [LET] <String varf.ab1e><Substring> :II: <string expression>

4 [LET] <user defined function> == <expression>

5 [LET] ERR == <numeric expression>

Where:

<substring> ::= [<numeric expression>:<numeric expression>]

Purpose:

LET - 130 - BASIC

CHAPTER. 9: STArFJmlTS

The LET statement assigns a value to a variable.

Comment:

This is the only statement where the statement verb (LET) is not required for
proper syntax.

For all of the forms of the LET statement the expression is evaluated and assigned
to the element on the left of the first equal sign (may be more than one equal sign
because of relational expressions). The previous contents of the element are lost
but only after the expression has been evaluated. Therefore, the variable may be
an element in the expression.

Formats 1 and 2 of the LET statement are the standard forms of the assignment
statement used by all BASIC implementations. The type of the expression (string or
arithmetic) must match the type of the variable on the left side of the assignment
operator.

The third format
string variables
substring is:

of the LET statement provides a powerful method of modifying
by means of the substring operator. The general form of this

<string variab1e>[<from>:<to>]

Rep1acement When <from> is less than or equal to <to> a character replacement
is performed on the variable from column <from> to column <to>. The
string expression on the right side of the assignment operator will be
padded with spaces or truncated to a length of <to> minus <from> plus one.

De1etion When <from> is greater than <to> a character deletion is performed
on the string variable. The contents of the variable on the left side of
the assignment operator is first modified by deleting the characters from,
but not including, column <to> through column <from>. The string
expression on the right side of the assignment operator is then inserted
into the variable after the <to> column.

Insertion When the <from> is zero the string expression on the right side of
the assignment operator is inserted after the <to> character position.

These rules and operations are best explained by example:

Assume that A$ contains ABCDEFGHIJ

A$[4:6] = "123" ABC123GHIJ
A$ [6: 4] = Ilfl ABCDGHIJ
A$[6:4] = "01234" ABCD01234GHIJ
A$[0:6] = "0123" ABCDEF0123GHIJ
A$[O:O] = "0123456" 01 23456ABCDEFGHIJ

Format 4 of the LET statement is the user defined function assignment statement and
may only be used within a multi-line user defined function and the function name
used on the left side of the assignment operator must be the same as the DEF
statement of the user defined function that the LET is a part of. For an example
see the DEF and FNEND statements.

Format 5 of the LET statement provides the capability of testing error handling

BASIC - 131 - LET

BASIC REl'ERERCE HAJmAL

routines during the development phase of a program. This format of the LET allows
you to assign a value to the ERR function (error number). When this statement is
executed the system will act exactly like it would act if an error occurred. The
type of error is determined by the value of the numeric expression on the right
side of the assignment operator.

It is advised that this format of the LET statement, when used, should be used in a
multi-line statement on the same line as the statement that might cause the same
error. For example, use ERR=30 on the same line as an OPEN statement. This is
advised because there is no method of setting the ERL function to have a different
value than the value of the line number that the LET statement is on.

LET - 132 - BASIC

CBAPDIl 9: STATEHElrrS

===

Examples:

0005 LET A = 1.23

0010 A = 1.23
0020 LET A = A+l

0030 LET A$ = "ABCDEF"

0040 LET A$ = A$&"GHIJ"

Explanation:

The constant 1.23 is assigned to the
variable A.
Same as previous example.
The current value of the variable A is
incremented by 1.
The string variable A$ is assigned the
ASCII string 'ABCDEF'.
The string variable A$ is concatenated
with the string 'GHIJ' and afterwards
will contain 'ABCDEFGHIJ'.

0050 ERR 30 OPEN #1: F$,INPUT SEQUENTIAL Your error handling routine is
invoked, if an ON ERROR statement has
been used. When the routine is entered
ERR = 30 and ERL = 50.

Incorrect Examples: Explanation:

0010 LET A$ = B+2
0020 LET B-A = C

Cannot mix string and numeric expressions.
Must have a single variable on the left
of the assignment operator.

0030 LET +1 = A Cannot assign a value to a constant.

===

BASIC - 133 - LEr

BASIC REl'EBDlCE HAIlUAL

9.23 LINK Statement

1 LINK <program. n.a.e>

2 LINK <prograa name>, <line number>

Where:

<program name> ::= <file name>[.<file type>] [:<file disk>]
<file type> ::= BASICOBJ (with BASIC)

BASICCOM (with RUN)

See also: CHAIN, CLEAR, LINK and RUN statements

Purpose:

The primary use of the LINK statement is to link together the segments of a BASIC
program.

COJIIIBe1lt:

The LINK statement terminates the execution of the program in which it is
encountered, loads the program indicated, and continues execution at <line number>
or at the beginning of the program segment.

The LINK statement does not close any files, however, all variables that have not
been defined as COMMON variables will be cleared from memory.

The <line number> operand, when used, should be a valid line number in the program
specified. The <line number> operand should not be used for two reasons: it is
difficuolt to maintain a set of programs when it is used and, most importantly,
this feature will not be supported in future versions of OASIS BASIC. The
recommended method of transferring control to another program at a specific line is
to use a control variable (defined as COMMON) that is tested by an ON-GOTO
statement at the start of the program transferred to.

<Program name> is a string expression. If <program-name> cannot be found in the
directory, a non-trappable error will occur.

Note: When the RUN version of BASIC is being used (execution of compiled programs
only) only programs that have been compiled and have a file type of BASICCOM will
be searched for by this command.

<line number> may reference a line that does not exist in the referenced program,
in which case execution will resume with the first line whose number is greater
than or equal to the specified line.

The CHAIN, RUN, and LINK statements all perform similar tasks, but with significant
differences:

LDII: - 134 - BASIC

CHAPTER. 9: STATEItENTS

Program L~ge Statements

1 Statement 1 I/O Channels 1 Variables 1 COMMON 1

1--I
1 RUN 1 Closed I Cleared I Cleared 1

1 CHAIN 1 Closed 1 Cleared 1 Not cleared 1

1 LINK 1 Not closed 1 Cleared 1 Not cleared 1

===

Examples:

0010 LINK "SEGMOl"

0020 LINK NAME $ (INDEX%)

0030 LINK "SEGMO"&NUM(I)&":S"

Incorrect example:

0010 LINK "SEGMENT-I"

Explanation:

Program named 'SEGMOl' will be loaded
and execution resumes at the first line.
The program indicated by the contents
of the string array variable NAME$,
subscript INDEX will be loaded and
execution will resume at the first line.
When I equals 1, this statement
is the same as example 10. When I equals
3 program 'SEGM03' will be executed, etc.

Exp lana tion :

Program name can only be 8 characters
long. Also, - is invalid.

===

BASIC . - 135 - LIBx:

BASIC 1lDERBRCE IWfOAL

9.24 LIRPOr State.ent

1 LIRPOr <string var:iable>

2 LIRPOr <prOllpt>. <string varf.able>

3 LIRPOr '<channel>: <string varf.able>

4 LIRPOr '<channel>. <key>: <str1.Dg varf.able>

Where:

<channel> ::= <numeric expression>
<prompt> ::= <string literal expression>
<key> :: = <numeric expression>

<string expression>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

See also: INPUT, LINPUT USING, MAT INPUT, MAT READ, READ, and READNEXT state/
/

Purpose:

The LINPUT statement allows entry of an entire line of data as a single character
string, including spaces and punctuation.

Co...ent:

The LINPUT statement operates identically to the INPUT statement with one
exception: only one variable may be specified for input and the variable must be a
string variable.

===

Examples: Explanation:

0010 LINPUT A$ Prompt character(s) is displayed at the
current cursor position, program execution
is suspended until the operator terminates
the input.

0020 LINPUT "NAME",A$ The literal "NAME? " is displayed, execution
is suspended until the operator terminates
input.

0030 OPEN 111: "CONSOLE", INPUT SEQUENTIAL
0040 LINPUT #1: STRING$ Similar to line 10 but no prompt nor

INP capabilities.
0050 OPEN 112: "DATA. FILE" , INPUT DIRECT
0060 LINPUT #1,5: RECORD$ Record number 5 of file is read into

variable RECORD$

LIRPUT - 136 - BASIC

Incorrect Examples:

0020 LINPUT Al
0030 LINPUT A$,B$,C$

CIIAPTER. 9: STATllllERTS

Explanation:

Must be a string variable.
Only one variable is allowed.

===

BASIC - 137 - LDIPD'r

BASIC REFERENCE IWWAL

9.25 LIRPUT USIRG Statement

1 LIRPOT USIRG <string l~teral ezpress~on>,<Str~ variable>

2 LINPUT <prompt>,USIRG <str~ l~teral ezpress~on>,<str~ va~ble>

3 LIRPOT USIBG <str~ ezpress~on>,<string va~ble>

4 LIRPDT <prompt>,USIRG <string express~on>,<string variable>

Where:

<prompt> ::= <string expression>

See also: INPUT, LINPUT, MAT INPUT, MAT READ, READ, and
READNEXT statements

Purpose:

The LINPUT USING statement allows entry of an entire line of data from the console
as a single character string, including spaces and punctuation, with length control
and the ability to "modify" an existing field.

COIIIIDe1lt:

The LINPUT USING statement, similar to the LINPUT statement discussed previously,
allows entry of an entire line of text, including any embedded quotes and commas,
as one string field. Similarly, the LINPUT USING allows a prompting message to be
displayed before accepting input.

However, unlike the LINPUT statement, the LINPUT USING statement provides greater
control of the terminal display by limiting the number of characters input. The
most significant feature of the LINPUT USING statement is that the operator can
make corrections to the line being entered without re-entering the entire line.

Formats 1 and 2 of the LINPUT USING statement use a <string literal expression> as
the using mask. A <string literal expression> is a string expression that starts
with a string literal. For example: ""&SPACE$(lO) is a string literal expression
of length 10.

With either of these formats the statement will display the prompting message if
specified. The input area is the area from the starting position for a length
specified by the length of the string literal expression.

If the first character of the string literal expression is an exclamation mark (1),
BASIC will perform an auto carriage return when the input area if filled. This is
generally used on single character input lengths.

Formats 3 and 4 of the LINPUT USING statement use a <string expression> as the
using mask. With either of these formats the statement will display the prompting
message if specified, then display the string expression in the input area. The
input area is the area from the starting position for a length specified by the

LIRPDT USIBG - 138- BASIC

length of the
statement will
input.

CHAPTER 9: STADIIERTS

string expression. Additionally, these formats of the LINPUT USING
copy the string expression into the input variable before accepting

At this point all four formats of the LINPUT USING statement act the same with the
difference being that formats 3 and 4 have pre-filled the input area with the using
mask and formats 1 and 2 have a null string in the input area. The operator may
enter any ASCII character into the input area. A carriage return will cause the
contents of the variable to be saved and execution of the program resumes.

Certain keys are available to the operator to make editing changes:

<carriage return> Terminates entry.

<right arrow> Is a non-destructive advance. l~en this key is entered (or its
equivalent: CTRL/F) the cursor will be advanced over the next character.

<left arrow> Is a non-destructive back space. When this key is entered (or its
equivalent: CTRL/H) the cursor will be backed over the current character.

<rub out> Is a destructive back space. When this key is entered the cursor is
backed up one position and that character is replaced with a space.

<CTRL/D> Is a destructive delete. ~en this key is entered the current character
is deleted and the remaining characters in the input area are shifted one
character to the left.

<CTRL/I> Is a "destructive" insert. When this key is entered (or its equivalent:
<tab» the remaining characters in the input area are shifted one
character to the right and a space character is inserted at the current
position. If a character shifting to the right would exceed the input
area length it will be deleted.

Any other character entered by the operator will replace the current character.

Unfortunately, this statement is difficult to illustrate with a printed example.
Therefore, the following program is provided for you to execute so that you may see
its uses. Keep in mind that what you see on the terminal in the input area is what
is actually in the field being entered.

Any control character (ASCII value less than 32) will terminate the entry and will
set the INP function to that value. This implies that the control characters 4, 6,
8, 9, 13 cannot be used as user defined control keys from a LINPUT USING statement.
This does not apply to the INPUT or LINPUT statements.

BASIC - 139 - LIBPOT USIBG

BASIC RD'ERERCE HABtJAL

===

0010 OPTION PROMPT 'UI, CASE "M"
0020 PRINT CRT$("CLEAR")
0030 PRINT "The following is a simple illustration of the LINPUT USING"
0040 PRINT "statement in both of its primary forms. The first input request"
0050 PRINT "will use the statement with a string literal expression of"
0060 PRINT "length 30. The second input request will use the statement with"
0070 PRINT "a string expression of length 30. The contents of the string"
0080 PRINT "expression will be the field entered by the first input request,"
0090 PRINT "padded to the proper length."
0100 OPTION CASE ''M'' PRINT AT$ (1,10) ;CRT$ ("EOS");
OllO·PRINT AT$(l,lO);"Input 1: [";SPACE$(30);"]";AT$(11,10);
0120 LINPUT USING ""&SPACE$(30),FIELD$
0130 PRINT AT$(1,12);"Input 2: [";SPACE$(30);"]";AT$(11,12);
0140 LINPUT USING RPAD$(FIELD$,30),FIELD$
0150 PRINT AT$(1,14);"The field you entered contains:"
0160 PRINT" I";FIELD$;" I";
0170 OPTION CASE "U"
0180 LINPUT ""&AT$(1,16)&"Okay to repeat (yIN)? N"&CRT$("Lff),USING "!",ANSWER$
0190 IF ANSWER$="Y" THEN 100 ELSE END

===

LIBPDT USDG - 140 - BASIC

CIIAPTEJl. 9: STATIIIEND

9.26 MAT Statement

1 MAT <array n.mae> :II: <array name>

2 MAT <array D.8BM!> = (<express1.on»

See also: LET statement

Purpose:

The MAT statement allows you to either copy one array to another or to assign one
value to all of the elements of an array.

COJllllleDt:

Format 1 of the MAT statement copies one array to another. Both arrays must have
the same dimensions or a "Subscript Range" error will occur.

Forrmat 2 of the MAT statement sets all elements of the array to a specific value.

===

Example:

0010 DIM A$(5),B$(5),C(20)
0020 FOR 1%=0 TO 5
0030 B$(I%) = STR(I%)
0040 NEXT
0050 MAT A$ = B$
0060 MAT B$ = ('III)
0070 MAT C = (1)

Incorrect Example:

0010 DIM A$(S),B$(6),C$(5,2)
0020 MAT A$ = (1)
0030 MAT A$ = B$
0040 MAT B$ = C$

Explanation:

Define size of arrays A$, B$, and C
Set array B$ to initial values

Copies B$ into A$ (B$ unchanged)
Sets all 6 elements in B$ to be empty.
Sets all 21 elements of C to be 1.

Explanation:

Defines size of arrays A$, B$, and C$.
Expression must match array in type.
Arrays are of different size

" " " "
===

BASIC - 141 -

BASIC BD'ERERCE IWIUAL

9.27 MAT DPUT Statement

1 HAT DPUT <array n.ue>

2 MAT DPUT '<channel>: <array 1UlJIle>

3 MAT DPUT '<channel>,<k.ey>: <array JUDIe>

Where:

<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>

See also: COMMON, DIM, INPUT, LINPUT, LINPUT USING, MAT READ, and
READ statements

Purpose:

The MAT INPUT statement allows an entire array to be input at one time.

COBlllent:

Format 1 of the MAT INPUT statement accepts input from the console, assigning each
field input to the elements of the array specified. If fewer fields are entered
than the remaining elements in the array will be set to zero or null, depending
upon the type of the array. The zero subscript of the array will not be input to.

Format 2 of the MAT INPUT statement is identical to format 1 except that the input
comes from the file specified by the I/O channel.

Format 3 of the MAT INPUT statement accepts ASCII input from a direct or indexed
data file. A numeric key must be used if the I/O channel has been opened with
access method DIRECT. A string key must be used if the I/O channel has been opened
with access method INDEXED. If the wrong type of key is used an "Invalid Key"
error will occur.

Formats 2 and 3 may only be used if the I/O channel was opened with access method
INPUT or UPDATE. If the channel was opened with access method OUTPUT a "Wrong
Access" error will occur.

It is important to note that only one record will be input. If there are fewer
fields in the record than there are data elements in the array the remaining
elements will be set to zero or null. Zero subscripts will never be input to.

HAT DPUT - 142 - BASIC

CHAPTER. 9: STATDlENTS

===

Examples:

0010 OPTION BASE 1
0020 DIM ARRAY(4)
0030 MAT INPUT ARRAY

Explanation:

Accept 4 fields from console

0040 INPUT ARRAY (1) ,ARRAY (2) ,ARRAY (3) ,ARRAY (4)
This statement is identical in function
to line 30

===

BASIC - 143 -

BASIC B.DEllERCE HABUAL

9.28 HAT PJl.IBT State.ent

1 HAT PJl.IBT <array DBIE Hst>

2 HAT PRIBT '<channel>: <array JUDIe If.st>

3 HAX PRIBT '<chsnnel>,<key>: <array name 1ist>

Where:

<array name list> ::= <array name><punct>[,<array name list>]
<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>
<punct> ::= <comma>

<semicolon>

See also: COMMON, DIM, MAT WRITE, PRINT, PRINT USING, and WRITE
statements

Purpose:

The MAT PRINT statement allows an entire array or arrays to be output at one time.

eo.nent:

Format 1 of the MAT PRINT statement outputs the arrays to the console.

Format 2 of the MAT PRINT statement outputs the arrays to the file designated by
<channel> that was opened for SEQUENTIAL access method.

Format 3 of the MAT PRINT statement outputs the arrays to the file designated by
<channel> that was opend for DIRECT or INDEXED access method. A numeric key is
required for DIRECT, a string key is required for INDEXED. Using the wrong type of
key will result in a "Wrong Access" error. This format of the print statement
outputs only one record containing all of the elements in the arrays that will fit
with the files allocated record length.

Formats 1 and 2 of the MAT PRINT statement may output mUltiple records. In these
formats, the number of records output depends upon the number of dimensions of each
array and the number or arrays specified in the list. Additionally, the
punctuation character used may cause additional records to be output.

A comma character afer an array name indicates that the array is to be output using
print zones, similar to the PRINT statement. A simicolon character after an array
name indicates that the array is to be output in a "packed" format, similar to the
PRINT statement. When no punctuation is used the array will be output one element
per record.

When outputting two dimension arrays using format 1 or 2 of the MAT PRINT statement
the second dimension varies fastest. A new record (line) will be started when the
first dimension changes.

- 144- BASIC

CHAPTER. 9: STATDIEIrlS

When multiple arrays are specified a new record will be started for each array.
Again, this applies only to format 1 and 2 of the statement.

The zero subscripts of an array are never output with this statement.

===

Examples:

0010 DIM A(5),B(3,10)
0020 FOR I
0030 MAT PRINT A$;
0040 PRINT A(I);A(2);A(3);A(4);A(5)
0050 PRINT
0060 MAT B = (1)
0070 MAT PRINT B;

1 2 3 4 5
1 2 3 4 5

111 1 111
111 1 1 1 1
1 1 1 1 1 1 1

111
111
111

Explanation:

= 1 TO 5 A(I) = I NEXT I

Statement is identical to line 30

Initializes array B

Output from line 30
Output from line 40

Elements B(l,l) -B(1,10)
Elements B(2,1) - B(2,10)
Elements B (3,1) - B (3, 10)

===

BASIC - 145 -

BASIC RD'EIlERCE HABUAL

9.29 MAT READ Statement

1 MAT BEAD <array name>

2 MAT BEAD '<channel>: <array naJDe>

3 MAT BEAD '<channel>, <key>: <array name>

Where:

<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>

See also: COMMON, DIM, INPUT, LINPUT, LINPUT USING, READ, and
READNEXT statements

Purpose:

The MAT READ statement allows an entire array to be read at one time.

C01IIIIIent:

Format 1 of the MAT READ statement accepts data from the DATA statements in the
program. If there are fewer DATA elements remaining than there are elements in the
array an "Out of Data" error occurs.

Format 2 of the MAT READ statement accepts data from the file opened on the I/O
channel specified. Only one record will be read. If there are fewer data elements
in that record than there are elements in the array the remaining elements will be
set to zero or null, depending upon their type.

The data file used by the second format of the MAT READ statement must have been
opened with access method SEQUENTIAL.

Format 3 of the MAT READ statement accepts input from a direct or indexed data
file. A numeric key must be used if the I/O channel has been opened with access
method DIRECT. A string key must be used if the I/O channel has been opened with
access method INDEXED. If the wrong type of key is used an "Invalid Key" error
will occur.

Formats 2 and 3 may only be used if
INPUT or UPDATE. If the channel
Access" error will occur.

the I/O channel was opened with access method
was opened with access method OUTPUT a "Wrong

It is important to note that only one record will be input. If there are fewer
fields in the record than there are data elements in the array another record will
not be read automatically--the remaining array elements will be set to zero or
null, depending upon the array type.

Additionally, the zero subscript will not be read into.

HAT BEAD - 146 - BASIC

CIlAPTER. 9: STATEHERTS

===

Examples: Explanation:

0010 OPTION BASE 1
0020 DIM ARRAY(4),A$(2,s)
0030 NAT READ ARRAY Accept 4 fields from DATA statement

0040 READ ARRAY(1),ARRAY(2),ARRAY(3),ARRAY(4)
This statement
to line 30

0050 DATA 1.23,4s,1234s6788,1233s34564sE~23
0060 OPEN 1/1: "DATA.FILE", INPUT DIRECT

is identical in function

0070 MAT READ #1,1: A$ Ten elements will be read from the
first record in DATA. FILE

0080 READ 1/1,1: A$(1,1),A$(1,2),A$(1,3),A$(1,4),A$(1,s),A$(2,1),
A$(2,2),A$(2,3),A$(2,4),A$(2,s) This statement is identical to line 70.

===

BASIC - 147 -

BASIC REFERERCE IWmAL

9.30 HAT ~TE Statement

1 HAT ~TE #<channel>: <array 1l8DIe>

2 MAT liBITE #<channel>,<1tey>: <array 1UlJIe>

Where:

<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>

See also: COMMON, DIM, MAT PRINT, PRINT, PRINT USING, and WRITE
statements

Purpose:

The MAT WRITE statement allows an entire array to be output at one time.

Comment:

Format 1 of the MAT WRITE statement outputs data to the file opened on the I/O
channel specified. Only one record will be output.

The data file used by this format of the MAT WRITE statement must have been opened
with access method SEQUENTIAL.

Format 2 of the MAT WRITE statement outputs data to a direct or indexed data file.
A numeric key must be used if the I/O channel has been opened with access method
DIRECT. A string key must be used if the I/O channel has been opened with access
method INDEXED. If the wrong type of key is used an "Invalid Key" error will
occur.

Formats 1 and 2 may only be used if
OUTPUT or UPDATE. If the channel
Access" error will occur.

the I/O channel was opened with access method
was opened with access method INPUT a "Wrong

It is important to note that only one record will be written.
insufficient space allocated for the record it will be truncated.

The zero subscript of the array will never be written.

HAT lDUTE - 148-

If there is

BASIC

CHAPTEIl 9: SrATllllER'rS

===

Examples: Explanation:

0010 OPTION BASE 1
0015 OPEN 111: "TEST.FILE:A", OUTPUT SEQUENTIAL, EXTEND
0020 DIM ARRAY(4),A$(2,5)
0030 MAT WRITE 111: ARRAY Outputs 4 fields to the file on channel 1

0040 WRITE #1: ARRAY(1),ARRAY(2),ARRAY(3),ARRAY(4)

0060 OPEN 112: "DATA. FILE" , INPUT DIRECT

This statement is identical in function
to line 30

0070 MAT WRITE 112,1: A$ Ten elements will be written to the
first record in DATA. FILE

0080 WRITE #2,1: A$(1,1),A$(1,2),A$(1,3),A$(1,4),A$(1,5),A$(2,1),
A$(2,2),A$(2,3),A$(2,4),A$(2,5) This statement is identical to line 70.

===

BASIC - 149 -

BASIC REFEKERCE MARUAL

9.31 MOUNT Statement

1 MOUNT <string exp>

See also: CLOSE statement

Purpose:

The MOUNT statement allows the operator to change a disk without returning to the
operating system.

Comment:

The MOUNT statement may only be used to change a privately owned disk. (In single
user OASIS all disks are privately owned.)

When OASIS is in BASIC, or any program, a record is kept of the disk labels and in
which drive these disks are loaded. By doing this the operating system is
protecting the user from inadvertantly changing disks without the express
permission of the program being given. In BASIC this permission is given by the
MOUNT statement.

The MOUNT statement instructs the operating system that the program is prepared for
a change of disk. No messages are displayed by the operating system at this time:
any prompting messages to the operator must be handled by the BASIC program.

The string expression specifies which drive is to be mounted (A, B, C, etc.).

When BASIC executes the MOUNT statement a check is made to insure that there are no
open files on the specified disk. If there are any open files the statement is not
executed and an error message is displayed: 'File Error at Line nnnn'.

After the MOUNT statement has been executed the disk may be changed (with the
exception of the system disk).

===

Example:

0010 MOUNT "A"

Explanation:

System checks for any open files on disk A.
If no files are open then pointers are set
to indicate that the disk may be changed.

===

MOURT - ISO - BASIC

CHAPTER. 9: STA.TF.HEfrrS

9.32 NEXT Statement

1 NEXT <variable>

2 NEXT

See also: FOR statement

Purpose:

The NEXT statement marks the outer limit of control of a FOR statement and causes
the loop to be repeated if the limit has not been reached.

Comment:

The variable, if specified, must be the same variable in use as an index variable
for a currently open FOR loop. When the variable is not specified the current FOR
index variable is used.

When the NEXT statement is executed control of the program returns to the FOR
statement indicated, at which time the index variable will get its next value, the
value will be tested against the limit, and the program will continue depending
upon the result of the test.

An attempt to execute a NEXT statement when no FOR loop is open (or the variable
specified does not match any FOR loop that is open) will cause an error to occur:
"NEXT without FOR".

Caution: Format 2 of the NEXT statement should not be used if it is possible that
another, unfinished FOR-NEXT loop might be in existence--control will be
transferred to that other unfinished loop. This situation is difficult to debug
when it occurs.

BASIC - 151 -

BASIC REFERElfCE HABUAL

===

Examples:

0010 FOR 1%=1 TO 5
0020 PRINT 1%
0030 NEXT 1%

0060 FOR 1%=1 TO 5 STEP 1
0070 PRINT 1%
0080 NEXT

0100 FOR I$="A","B","C"
0110 PRINT 1$
0120 FOR 1%=1 TO 5
0130 PRINT 1%
0140 NEXT 1%
0150 NEXT

Explanation:

Repeats following instructions five times.

This marks the end and causes repeat

Same as above.

Performs loop 3 times.

Performs this loop 5 times
for each of the 3 major loops.
Marks end and repeat of sub-loop.
Marks end and repeat of major loop.

===

- 152 - BASIC

9.33 OR ERROR Statement

1 OB ERKOR com <line reference>

2 OB ERROR GOTO 0

Where:

<line reference> ::= <line number>
<line label>

See also: RESUME statement

Purpose:

CHAPTER. 9: STADHElft'S

The ON ERROR statement allows you to specify the error subroutine to be used for
trappable errors.

Comment:

Normally BASIC detects an error while executing a program and either terminates
execution or prints a warning message. However, if you plan ahead, you can prepare
alternatives which can save you time in the event of an error (and avoids confusion
on the part of the operator). You can build an error handling routine that is
activated when, and if, BASIC finds an error. This routine takes control away from
the normal system errors and gives it to your error handling routine.

The ON ERROR statement instructs BASIC that a user error handling routine exists at
a certain line or that the currently defined error handling routine is to be
disabled.

Format 1 indicates that the specified line is to receive control; format 2
indicates that BASIC is to handle all errors.

When an error occurs before the execution of a format 1 ON ERROR statement or after
the execution of a format 2 ON ERROR statement, BASIC proceeds with normal system
error handling.

When format 1 of the ON ERROR statement is executed and a trappable error occurs,
control will be transferred to the line specified. That line should be the start
of your error handling routine.

An error handling routine can make decisions about
interpreting the error functions ERR and ERL which
and the line number that the error occurred on.

how to handle the error by
return the number of the error

Note: when an error handling routine is being executed errors will not be trapped.

Note: an error handling routine will always be disabled by RUN, CHAIN, or
LINK--each segment must redefine the error handling routine.

An error handling routine may be tested by using one of the formats of the LET

BASIC - 153 - OR KRBOR

BASIC REFERERCE HARUAL

statement to invoke the error routine.

The ON ERROR statement may be used within an error handling routine.

===

Example: Explanation:

0010 ON ERROR GOTO ERROR.ROUTINE Trappable errors will be handled by user.

9010 ERROR.ROUTINE:
9020 SELECT ERR Using error functin, select error routine.
9030 CASE 1 Perform if ERR=l (escape,C)
9040 IF ERL<1000 OR ERL>1999 THEN RESUME Ignore if not of interest
9050 GOSUB CLOSE.REPORT else do this.
9060 RESUME MENU
9070 CASE 20 Perform if ERR=20 (on range)
9080 IF ERL=990 THEN RESUME 991
9090 RESUME
9100 CASE 30 Perform if ERR=30 (file not found)
9110 PRINT AT$(1,24);"Invalid file name";CHR$(7);
9120 LINPUT " Type <return> to continue: ",USING "!",ANSWER$
9130 RESUME
9140 CEND
9150 RESUME 0

===

ON ERllOR - 154 - BASIC

9.34 OR GOSUB and OR GOTO State.ents

1 OR <num expr> COTO <1i.ne li.st>

2 OR <num expr> COSUB <line l:I.st>

Where:

<line list> ::= <statement reference>[,<line list>]
<statement reference> ::= <line number>

<line label>

See also: ON ERROR, GOTO, GOSUB and RETURN statements

Purpose:

CHAPTER. 9: STATDIEI'rS

These statements transfer control to a line selected from a list by the integer
value of an expression.

Coanent:

The keywords GOTO and GOSUB may be entered as GO TO and GO SUB.

The expression following ON is evaluated and the value is integerized. The integer
is then used to select the first, second, third, etc., line reference. A trappable
error occurs when the value of the integer is less than or equal to zero, or the
value of the integer is greater than the number of line references.

The subroutine given control by an ON GOSUB statement should be exited only with a
RETURN statement. When the RETURN statement is executed, control returns to the
statement following the ON GOSUB statement. This is further explained in the
descriptions of the GOSUB and RETURN statements.

The line references following GOTO or GOSUB must be separated by commas or spaces.

There may be any number of line references in the list, (limit of 255 characters
per line).

Line references may be omitted" by using the comma separator as a place holder.
When this is done and the value of the expression corresponds to that line
reference place then control will be transferred to the statement following the ON
statement.

If the value of the <numeric expression> is less than one or greater than then
number of line references in the <line list> an "ON range" error will occur.

BASIC - 155 - 011 GOTO/GOSUB

BASIC REFERDCE HARUAL

===

Examples:

0010 ON I GOTO 100,110,120,130

0020 ON 1+1 GOTO 100,120

0030 ON I GOSUB 100,200,300

0040 ON INDEX+4 GOTO LINE1"LINE3

Incorrect example:

0020 ON 1$ GOTO 100,200,300

Explanation:

When 1=1 control passes to line
100, 1=2 then line 110, 1=3
then line 120, 1=4 then line 130.
When 1=0 control passes to line
100, 1=2 then line 120.
When 1=1 the subroutine starting
at line 100 is executed, 1=2 the
subroutine at 200 is executed, etc.
When INDEX=-3 control passes to LINE1;
INDEX=-2 control passes to line
following this; INDEX=-l control
passes to LINE3. All other values of
INDEX will cause an error to occur.

Explanation:

Expression must be numeric.

===

ON GOTO/GOSUB - IS6 - BASIC

CHAPTER 9: STATIOfttR"lS

9.35 OPES State.ent

lOPES '<channel>: <f:l.1e>. <access .mde> <access method> [. <opt:lons>]

2 OPEN '<channel>: <dev:ice>. <access .ode> <access .ethod> [, <opt:lons>]

3 OPEN I<channel>: <null>.<access .ode> <access .ethod>[,<opt:lons>]

Where:

<channel> ::= <numeric expression>
<file> ::= <string expression>
<device> ::= <string expression>
<access mode> ::= INPUT

OUTPUT
UPDATE

<access method> ::= SEQUENTIAL
DIRECT
INDEXED

<options> ::= <option>[,<options>]
<option> ::= EXTEND

QUOTE
FORMAT
LOCK
RECSIZE <number>
FILESIZE <number>
KEYSIZE <number>

<number> ::= <integer constant>

See also: CLOSE and UNLOCK statements

Purpose:

The OPEN statement provides you with the initial means of accessing I/O devices
other than the console.

COJIIIIIent:

<channel> must be a number with a value between 1 and 16. This number is the
channel number that the file is assigned to.

<file> represents the file description of the disk file to be opened.

<device> represents the device name of the device to be opened. The table at the
end of this section defines the allowable device names. The device name must be
spelled out (no appreviations or synonyms).

The <file> must include the file name (fn) and file type (ft), but the file disk
(fd = A, B, S, etc., or the disk label) is optional. The proper separators must be
used: a period before file type and a colon before the file disk. If the file disk
is omitted the system will search the directories of the disks attached in the
default search sequence.

BASIC - 157 - OPER

BASIC REFERERCE HAlWAL

When the <file> or <device> is a null string (format 3) the channel is opened for
the device or file that was last opened on this same channel number. This feature,
in conjunction with the ASSIGN command in OASIS, allows you to write BASIC programs
that are device independant. For example I/O channel 16 might be used for report
files. An ASSIGN command (see OASIS System Reference Manual) might assign channel
16 to PRINTER1. In the BASIC program channel 16 is opened to a null string. BASIC
opens PRINTER1 on channel 16.

<access mode> represents an unquoted literal indicating the primary access mode or
direction of the device or file:

INPUT indicates that the file or device is to be used as an input source of an
existing data base. No record locking will be performed on a file
opened for INPUT.

OUTPUT indicates that the file is to be used as an output storage base. No
record locking will be performed.

UPDATE indicates that the file is to be used as a general data base for both
input and output. Input operations (input and reads) on this file will
cause the specific record to be locked. This record will be released by
a subsequent read or write to the file, an UNLOCK of the file, or by
closing the file.

<access mode> restricts how a file will be used: INPUT mode only allows the
statements INPUT, LINPUT, MAT INPUT, MAT READ, READ, and READNEXT to be executed on
the specified channel; OUTPUT mode only allows the statements MAT PRINT, MAT WRITE,
PRINT, PRINT USING, and WRITE to be executed on the specified channel; UPDATE mode
allows all file access statements to be executed on the specified channel.

<access method> specifies what access method is to be used:

SEQUENTIAL indicates that records will be accessed in a sequential manner, one
after the other. This applies to both input and output to the file.

DIRECT indicates that records will be accessed in a random manner by relative
number.

INDEXED indicates that records will be accessed in a random manner by key.

<access method> also refers to the file format.

Note: a file opened for OUTPUT SEQUENTIAL will erase any existing file with the
same description and create a new file.

The specific access method specified in the OPEN statement affects the required
syntax of the file access statements. For example, a file opened with access
method INDEXED will require that all statements accessing that channel use a string
key; similarly, access method DIRECT will require that all statements accessing
that channel use a numeric key; access method SEQUENTIAL will require that all
statements accessing that channel not use a key.

The access mode in combination with the access method have other implications and
corresponding requirements:

INPUT SEQUENTIAL implies that the file already exists.

OPEN - IS8 - BASIC

CBAPDR. 9: STATRIIEITS

OUTPUT SEQUENTIAL implies that the file is to be created by this program (unless
option EXTEND is used).

UPDATE SEQUENTIAL is the same as OUTPUT SEQUENTIAL.

INPUT DIRECT implies that the direct format file already exists.

INPUT INDEXED implies that the indexed, sequential format file already exists.

OUTPUT INDEXED implies that the
by this program. The
ascending key sequence.

file, although it must exist, is to be "built"
records output to this file must be output in

<opt~on> specifies additional functions to be performed by the OPEN statement:

EXTEND indicates that the sequential format file's disk allocation is to be
extended.

QUOTE indicates that string fields output with the PRINT statement, as part of
a record, are to be surrounded with quotes if the string contains any
embedded quotes or commas, or leading or trailing spaces. A comma will
always be output between fields.

FORMAT indicates that the SEQUENTIAL access method file is to use ANSI forms
control characters supplied by each PRINT or PRINT USING statement.

LOCK indicates that the entire file is to be locked from other users use
until the file is closed by this program.

An error occurs when a nonexistent file is opened for mode INPUT or access methods
DIRECT or INDEXED.

An error occurs when the channel number is still in use by another file.

When a file is opened for SEQUENTIAL, the record pointer is set to the first
record. This is the only statement that sets the record pointer to the beginning
of a file opened for access method SEQUENTIAL.

When a disk file is opened for OUTPUT SEQUENTIAL, the file is first erased, and
then created. When a disk file is opened for OUTPUT SEQUENTIAL with option EXTEND,
and the file exists, the output record pointer will be positioned to the end of the
file where records will be added.

A file with delete protection may not be opened for OUTPUT. If this occurs, the
error message "Protected File" will be displayed.

BASIC - 159 - OPKB

BASIC IlD'EBEBCE 1WmAL

Device/Hode Relat~ODS~pS

===
1 access mode 1 INPUT I OUTPUT I UPDATE 1
1 device 1 I 1 ° I I/O 1
1=======================================1
1 CONSOLE I X 1 X 1 X 1
1 PRINTER[n] 1 1 xii
1 TAPE en] 1 X I xii
I COMM[n] 1 X 1 X 1 X 1
/ READER / X I 1 I
1 PUNCH 1 I xii
1 DUMMY 1 X 1 X 1 X 1
===

Duk l'~le fODl8.t/Hode, Hethod R.eI.at~ODShips

==
1 mode method / sequential format / direct format 1 indexed format /

/--1
/ INPUT SEQUENTIAL 1 file must exist 1 / 1
1 INPUT DIRECT 1 N/A / xii
/ INPUT INDEXED 1 N/A 1 1 X 1
/ OUTPUT SEQUENTIAL / file recreated 1 I I
/ OUTPUT DIRECT 1 N/A 1 xii
/ OUTPUT INDEXED / N/A / 1 X 1
1 UPDATE SEQUENTIAL 1 file recreated 1 1 1
/ UPDATE DIRECT 1 N/A 1 xii
1 UPDATE INDEXED / N/A 1 1 X /
==

===

Examples:

0010 OPEN 111: ''MAs T • DATA : A" , INPUT SEQUENTIAL
0020 OPEN 111: "",INPUT DIRECT
0030 OPEN 115: "TEST.DATA:C",OUTPUT DIRECT
0040 OPEN III: "PRINTER", OUTPUT SEQUENTIAL, FORMAT
0050 OPEN 118: F$&":S",UPDATE INDEXED,LOCK
0060 OPEN 1116: "CONSOLE",OUTPUT SEQUENTIAL
0070 OPEN 1115: "PRINTER", OUTPUT SEQUENTIAL
0080 OPEN 114: "PRINTER.FILE:S",OUTPUT SEQUENTIAL,EXTEND,FORMAT

===

OPES - 160 - BASIC

9.36 OPTION Statement

1 OPTION BASE <base value>

2 OPTION CASE <case mode string expression>

3 OPTION PROMPT <prompt>

4 OPTION usa <usr-name>

Where:

<base value> ::= 0
1

<case mode string expression> ::= ''M''
"U"
"L"

<prompt> ::= <string expression>
<usr-name> ::= <string expression>

See also: USR function

Purpose:

CHAPTER. 9: STATEMENTS

The OPTION statement allows the programmer to specify the status of certain global
options: array subscript base value, input casemode, and input prompt character(s).

Cm.ent:

The OPTION BASE statement must be in a position to be executed before any variables
are dimensioned or defined. This also means that the subscript base cannot be
changed after COMMON has been defined. Normally the OPTION BASE statement would be
the first statement of the first segment of the program.

When the OPTION BASE statement is not used the default base is O.

Since most programmers do not use the zero element of arrays the OPTION BASE 1
allows for a saving in the memory space used for working storage.

More than one option may be specified in an OPTION statement by separating the
options with a comma. For example: 10 OPTION BASE 1,PROMPT CHR(O) ,CASE M

The OPTION CASE and OPTION PROMPT statements may be used in any location of the
program that a BASIC statement is allowed. The OPTION CASE statement specifies the
casemode for characters entered from the console input device (CONIN). When the
casemode is not set by the programmer the default mode of upper is used.

OPTION CASE "U" indicates that all alphabetic characters entered from
CONIN are to be translated to their uppercase equivalent before display
and before the character(s) are transferred to the BASIC program.

OPTION CASE "M" indicates that all alphabetic characters entered from

BASIC - 161 - OPTIOJl

BASIC RDEIlERCE KA!WAL

CON IN are not to be translated.

OPTION CASE "L" indicates that all alphabetic characters entered from
CONIN are to be translated to their inverse casemode equivalent before
display and before the character(s) are transferred to th~ BASIC program.

When BASIC or RUN is first invoked the casemode of input is IIU". In order to use
mixed or lowercase characters for input to the BASIC program an OPTION CASE ''M'' or
CASE "L" statement must be executed. This may be done in the immediate mode.

The OPTION PROMPT statement changes the prompt literal. The default prompt literal
is the question mark followed by a space. By using this statement you can change
the prompt to be any character, or sequence of characters, or you can change the
prompt to be a null string not followed by a space. OPTION PROMPT "ff and OPTION
PROMPT CHR$(O) are equivalent and indicate that no prompt literal is to be used for
INPUT and LINPUT statements to the console.

Format 4 of the OPTION statement loads a USR assembly language subroutine into
memory. Note: this is the only way that a USR program is loaded for use by the
BASIC program.

When the USR program referenced is already in memory no action will be taken by
this statement.

===

Examples:

0010 OPTION BASE 1
0020 OPTION CASE ''M''
0030 OPTION PROMPT CHR$(O)
0040 OPTION PROMPT "Enter:", CASE "L"

1000 CLEAR \ OPTION BASE 1
1010 OPTION PROMPT "What? ",USR "XX"

Incorrect examples:

0020 OPTION BASE 10
0030 A$="DATA"
0040 OPTION BASE 1

Explanation:

Set index base for arrays to 1.
Accept input with no translation
No prompting character or space.
The input prompting literal changed to
the characters: Enter: followed by a
space; the case mode of input set to invert.
Array subscript base set to 1.
Prompt literal changed to What? and the
USR program named XX is loaded into memory.

Explanation:

Only base of Oor 1 allowed.

May not be used while variables are defined.

===

OPTIOIl - 162 - BASIC

CHAPTER. 9: STATEllERTS

9.37 OTHERWISE Statement

1 OTHERWISE

See also: CASE, CEND and SELECT statements

Purpose:

The OTHERWISE statement specified the action to be taken in a SELECT-CASE-CEND
structure if none of the previous cases were true.

Comment:

The OTHERWISE statement functions similar to the CASE statement except that there
is no expression specified--the OTHERWISE statement is always true.

The OTHERWISE statement allows you to specify an action (sequence of statements) to
be executed when none of the cases is true in a SELECT-CASE-CEND programming
structure.

There should only be one OTHERWISE statement in any particular SELECT structure
(only one will be executed).

The OTHERWISE statement should follow all CASE statements in a SELECT structure (no
CASE statements will be evaluated after the OTHERWISE statement is encountered).

===

Examples:

3000
3010
3020
3030
3040
3050
3060

3061
3062

3070
3080
3090
3100
3110
3120
3130

SELECT RAD*2.*PI
CASE 0

SELECT SUBVALUE%
CASE 20

CASE 32

OTHERWISE

CEND
CASE 1-14

CASE J%

CEND

Explanation:

Perform only if RAD*2.*PI=0

Perform only if RAD*2.*PI=0 and SUBVALUE%=20

Perform only if RAD*2.*PI=0 and SUBVALUE%=32
= 32

Perform if neither of the above cases
is true
End of nested SELECT structure

Perform only if RAD*2.*PI=I-14
It It It It It

Perform only if RAD*2.*PI=J%
End of SELECT structure

===

BASIC - 163 - O'J1lEll.VISE

BASIC RD'EBERCE HABtJAL

9.38 PRINT State.ent

1 PRIBT

2 PItIBT <expressf.on llst><punctuatf.on>

3 PRIBT '<Channel>

4 PItIBT '<channel>,<key>

5 PItIBT '<channe1>:<expressf.on If.st><punctuatf.on>

6 PItIBT '<Channel>,<key>:<ezpressf.on list>

Where:

<expression list> ::= <expression>[<punct><expression list>
TAB«num expr»[<punct><expression list>

<punctuation> ::= <comma>
<semi-colon>

<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>

See also: CLOSE, MAT PRINT, MAT WRITE, OPEN, PRINT USING, and
WRITE statements

Purpose:

The PRINT statement allows text, numbers, results, etc., to be displayed on the
console or output to a file.

COIIBent:

The various formats fo the PRINT statement provide different capabilities with one
function in common: output is always ASCII, even when the output field is numeric.

Format 1 of the PRINT statement prints a carriage return on the console.

Format 2 of the PRINT statement prints one or more fields of data on the console.

Format 3 of the PRINT statement outputs a null or empty record on the sequentially
accessed device or disk file.

Format 4 of the PRINT statement outputs a null or empty record on the direct or
indexed accessed disk file.

Format 5 of the PRINT statement outputs one or more fields of data to the
sequentially accessed device or disk file.

Format 6 of the PRINT statement outputs one or more fields of data to the direct or
indexed accessed disk file.

PRINT - 164 - BASIC

CHAPTER. 9: S'r.A'lEHER"rS

The PRINT statement, formats 3 through 6, may only be used on an I/O channel that
was opened with access mode OUTPUT or UPDATE. An attempt to execute a PRINT
statement on a channel opened for INPUT will cause the error "Wrong access" to
occur.

The expressions (formats 2, 5, and 6) will be output in the order that they are
listed.

Using the expression feature (e.g., 2*R~3-B) can be very valuable in saving
programming time, execution time, and memory usage. For instance: if the result of
an expression is only calculated in order to be output, and there is no repetition
of it's output, it is best to use the expression in the PRINT statement. In this
case line 20 below is the more efficient way to code:

10 LET A = 2*R~3-B \ PRINT A
20 PRINT 2*R~3-B

Both statements will yield the same results.

All numeric expressions (literals, fields, and expressions) will be printed with
leading zero suppression, left justification, leading sign or space, and one
trailing space.

The term "print head", used bellow, refers to the cursor (terminals), the print
mechanism (printers) or the record pointer (disk files), whichever is applicable.

An output record is considered to be divided into print zones of twenty one spaces
each. To use these zones for tabulation, the punctuation character is a comma. In
the PRINT statement, an expression followed by a comma will cause the value of the
expression to be printed at the current print position. After printing, the "print
head" will be moved to the next available print zone (from 1 to 21 spaces away).
If the last print zone on a line is filled, the "print head" will move to the first
print zone of the next line.

In the PRINT statement, an expression followed by a semicolon (;) will cause the
value of the expression to be output at the current print position with no movement
of the "print head" after printing.

Any PRINT statement which ends with no punctuation causes the "print head" to move
to the first column of the next line after output.

Printing to an I/O channel (formats 3, 4, 5, and 6) may require the use of ANSI
forms control characters, depending upon whether or not the option FORMAT was used
in the open statement for that channel. The FORMAT option should only be used for
terminal or printer files. When it is used it means that the PRINT statement will
supply the forms control character as the first character of each record output.
When it is not used it means that each record output is to start a new line on the
output device. For a list of these forms control characters refer to the OASIS
System Reference Manual, appendix on "ANSI Forms Control". These characters allow
you to specify single, double, triple spacing, forms eject, or no line spacing
(overprint) •

If the option QUOTE was used on the open statement for the I/O channel used by a
PRINT statement, the fields output to the device or file will be enclosed in a pair
of quotation marks if the field contains any of the following: leading spaces,

BASIC - 165

BASIC REl'ERERCE HANUAL

trailing spaces, embedded comma, or embedded quotation mark. If it is unknown
whether this will happen it is best to use the QUOTE option--no action is taken
unless needed. Additionally, the QUOTE option causes multiple fields to be
separated by commas in the output record.

The QUOTE option causes punctuation in the expression list to be ignored (commas
are used as stated above).

If the QUOTE option is not used then leading and trailing spaces will be removed
from the fields before output. Additionally, when a field is output that contains
an embedded comma a subsequent INPUT of that record will treat the comma as a field
separator, not as an embedded comma (LINPUT will not be concerned with this).
Embedded quotes in a field might also cause a problem for the INPUT statement.

In general, the output rules for the PRINT statement are:

1. Suppression of leading and trailing zeros to the right of a decimal
point.

2. Where a number can be represented as an integer, printing of the
decimal point is suppressed.

3. At most, thirteen significant digits are printed.

4. Most numbers are printed in decimal format. Numbers too large or too
small to be printed in decimal format are printed in exponential
format.

5. Extra commas cause print zones to be skipped.
is in effect.)

{Unless option QUOTE

6. A semicolon at the end of the list indicates that no carriage return,
line feed is to be printed.

7. Leading and trailing spaces in string expressions are removed (unless
option QUOTE is in effect).

8. Numeric fields
space (positive
in effect).

are output with a leading sign (negative values) or
values) and a trailing space {unless option QUOTE is

The examples are followed by the printout caused by their execution.

- 166 - BASIC

CHAPTER. 9: STATEHElfI'S

===

Examples:

0010 LET A = 1.23 \ B = 34.56 \ C = 345.678
0020 LET A$ = "ABCDEFG" \ B$ = "HIJKLMN" \ C$ = A$+B$
0035 OPEN Ill: "PRINTER",OUTPUT SEQUENTIAL,FORMAT
0030 PRINT Ill: " A =";A;"B =";B;"C =";C
0040 PRINT Ill: " A =";A;"B =";B;"C =";C
0050 PRINT Ill: " ";A+B+C,A*B,C*A,B/A,A/B
0060 PRINT Ill: " ";A$;B$;C$;
0070 PRINT Ill:" ";B$;
0080 PRINT Ill: " ";A$
0100 OPEN 112: "DATA.FILE:A",OUTPUT DIRECT,QUOTE
0110 PRINT 112,5: A$,B$,C,D,E Fifth record is output to the file

A = 1.23 B = 34.56 C = 345.678
A = 1.23 B = 34.56 C = 345.678

381.467999998 42.5087999999 425.183939999 28.0975609756
355902777778E-02

ABCDEFGHIJKLMNABCDEFGHIJKLMN HIJKLMNABCDEFG

Incorrect examples:

0010 PRINT "ABCDEF
0020 PRINT A,B:C

Explanation:

Expression illegal.
Invalid punctuation.

===

BASIC - 161 - PRIRT

BASIC REFERENCE MANUAL

9.39 PRINT USING Statement

1 PR.IHT USING <mask>, <expression 1ist><punctuation>

2 PR.IHT #<channe1>: USING <mask>,<expression Hst><punctuation>

3 PR.IHT l<channe1>,<key>: USIBG <mask>,<expression llst><punctuation>

Where:

<mask> ::= <string expression>
<expression list> ::= <expression>[,<expression list>
<punctuation> ::= <semi-colon>
<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>

See also: MAT PRINT, MAT WRITE, PRINT, and WRITE statements

Purpose:

The PRINT USING statement allows text, numbers, results, etc., to be displayed on
the console or output to a file.

Comment:

The PRINT USING statement operates similar to the PRINT statement except that:
fields must be output, output is formatted.

Format 1 of the PRINT USING statement outputs formatted data to the console
terminal.

Format 2 of the PRINT USING statement outputs formatted data to a device or disk
file opened for SEQUENTIAL access.

Format 3 of the PRINT USING statement outputs formatted data to a disk file opened
for DIRECT or INDEXED access.

The PRINT USING statement may only output to an I/O channel opened for OUTPUT or
UPDATE access. An attempt to access a channel opened for INPUT will cause the
error "Wrong access" to occur.

The expressions will be displayed in the order that they are listed, in the format
specified by the mask expression. For details on the mask specifications refer to
the chapter on "Formatted Output" in this manual. Expressions can be string or
numeric literals, variables, expressions, or functions, as long as they match in
type to the formatting masks specification types.

Option QUOTE of the OPEN statement has no effect on the PRINT USING output;
however, option FORMAT has the same effect as it does for the PRINT statement.

PBDlT USING - 168 - BASIC

CHAPTER. 9: STATEMERrS

In the PRINT USING statement, all expressions must be separated by commas. A
semicolon is allowable as the terminating punctutation and, if used, operates the
same way the semicolon punctuation character operates in the PRINT statement.

A PRINT USING statement which ends with no punctuation causes the print head to
move to the first column of the next line after printing.

The examples are followed by the printout caused by their execution.

For examples of the PRINT USING statement and its output capabilities refer to the
chapter on "Formatted Output".

The following program example, when entered and executed, will show some of the
uses of the PRINT USING statement.

===

0010 OPTION PROMPT 1111, BASE 1
0020 DIM NUMBER(5),STRING$(5)
0030 OPTION CASE "M" PRINT CRT$("CLEAR")
0040 PRINT "PRINT USING example program"
0050 LINPUT ""&AT$(l,4)&"Numeric mask: ",MASK$
0060 LINPUT ""&AT$(40,4)&"String mask: ",MASKl$
0070 PRINT
0080 PRINT "Enter five numbers:";TAB(40);"Enter five strings:"
0090 FOR 1% = 1 TO 5
0100 PRINT AT$(5,I%+7);I%;
0110 INPUT NUMBER(I%)
0120 NEXT
0130 FOR 1% = 1 TO 5
0140 PRINT AT$(45,I%+7);I%;
0150 LINPUT STRING$(I%)
0160 NEXT
0170 MASK$ = MASK$&" "&MASK1$
0180 PRINT AT$(l,14);"The formatted output of: "&MASK$
0190 PRINT AT$(l,16);
0200 PRINT USING MASK$,NUMBER(l),STRING$(l),NUMBER(2),STRING$(2),NUMBER(3),STR

ING$(3),NUMBER(4),STRING$(4),NUMBER(5),STRING$(5)
0210 OPTION CASE "u"
0220 LINPUT ""&AT$(l,23)&"Okay to repeat (yIN)? ", USING "!",ANSWER$
0230 IF ANSWER$="Y" THEN 30
0240 END

===

BASIC - 169 - PRDIT USIRG

BASIC REFERENCE HARUAL

9.40 PUT Statement

1 PUT DEVICE <device number>, <expression list>

2 PUT MEMORY <address>,<expression list>

3 PUT PORT <port>,<expression list>

Where:

<device number> ::= <numeric expression>
<address> ::= <numeric expression>
<port> ::= <numeric expression>
<expression list> ::= <numeric expression>[,<exp list>]

<string expression>[,<exp list>]

See also: GET and WAIT statements

Purpose:

The PUT statement allows the user to output a single byte or a list of bytes to an
I/O device such as an digital to analog (D/A) converter or some other device.

Ca.aent:

<Port>, <device>, and <address> are numeric expressions which are rounded up and
integerized. <port> must be in the range: 0 - 255. This number is the address of
the I/O port. <device> must be in the range of 9 - 32. This number is the logical
device number (see OASIS System Reference Manual).

<address> must be in the range -32767 - 32767. This value, unlike other integer
values, is interpreted as an unsigned value, which automatically adjusts the range
to 0 - 65535. It is best to use hexadecimal values for <address> as they are more
easily interpreted as unsigned values.

The expressions in the expression list are evaluated. If the expression is
numeric, it must be in the range 0 - 255. If the expression is a string, only the
first byte is used. When more than one expression is specified each is evaluated
independently of the others. When PUT MEMORY is used with multiple expressions the
memory address is incremented by 1 for each byte transmitted.

BASIC does not test to see if the I/O device is ready before transmitting the byte.
This is the responsibility of the user (see WAIT statement).

The PUT statement is identical to the GET statement except that data is output to
the logical device driver (DEVICE), port address (PORT), or memory locations
(MEMORY), instead of input. When the PUT PORT or PUT MEMORY statements are used
you must be careful not to destroy the operating system. It is very easy to do.

PUT - 110 - BASIC

CHAPTER. 9: STATFJIKRTS

===

Examples:

0010 PUT DEVICE 10,65,66,"C"

0020 PUT PORT 1,"A"
0030 PUT MEMORY 3000H,0,0,OFFH

Explanation:

On the console output device (number 10),
the characters A, B, and C are output.
The letter "A" is written to port 1.
At memory locations 3000, 3001, and 3002
hexadecimal, the values 0, 0, and 255 are
placed, respectively.

===

BASIC - 171 - POT

BASIC 1lEI'BBERCE IWmAL

9.41 QUIT Statement

1 QUIT

2 QUIT <string expression>

3 QUIT <nu.eric expression>

See also: END statement and QUIT command

Purpose:

The QUIT statement allows the user to exit from the BASIC environment.

eo..ent:

When the QUIT statement is encountered by BASIC all open I/O channels are closed.

The QUIT statement always exits from BASIC. If BASIC (or RUN) was invoked by a
keyboard command then control is returned to the Command String Interpreter
environment. If BASIC (or RUN) was invoked by an EXECutive procedure then control
is returned to the EXECutive procedure that called it. The EXEC resumes control
with the statement that followed the BASIC command. In either case the return code
is set to zero.

To exit BASIC without returning control directly to the environment that it was
invoked from one of the optional expressions is specified.

A numeric expression indicates the value that the return code is to be set to.
This return code may then be examined by the EXEC that invoked BASIC. If BASIC was
not invoked by an EXEC then setting the return code will have no usable effect.

A string expression indicates a CSI command to be executed. The expression must
specify the command name and all arguments and options desired. After the command
has completed execution the return code is set by that command. If BASIC was
invoked by an EXECutive procedure and a string expression is specified with the
QUIT statement control will return to the EXEC program after the CSI command has
completed execution.

When the first character of the string expression is the character ">" the string
command will be displayed on the console terminal.

===

Examples:

0900 QUIT
9998 QUIT 3
9990 QUIT "LIST DAILY REGISTER"

Explanation:

Control exits BASIC
Return code set to 3; BASIC is exited.
BASIC is exited and LIST executed.

===

QUIT - 172 - BASIC

CHAPTER. 9: S'!ATEHEB'rS

9.42 RANDOMIZE Statement

1 RANDOHIZE

Purpose:

The RANDOMIZE statement causes the RND function to use a random starting value.

Couaent:

The RANDOMIZE statement is used when a program that uses the RND function is to
have a different set of random numbers each time the program is run.

The RND function does not produce truly random numbers: it has a "table" of
pseudorandom numbers available to it. Using the last random number generated, the
RND function chooses another 'random' number. Every time that BASIC is loaded into
memory it has the same starting pointer to the pseudorandom number "table". The
RANDOMIZE statement causes this pointer to start at a different location each
execution of the program.

It is a good practice to debug a program completely before inserting the RANDOMIZE
statement.

The RANDOMIZE statement is normally used only once in a program, generally at the
beginning of the logic.

===

Examples:

0010 RANDOM
0020 PRINT INT(RND*lO.)

Incorrect examples:

0010 RANDOMISE
0020 RANDOM (I)

Explanation:

Choose a random starting point.
Print a random number between 0 and 10.

Explanation:

Misspelled.
No operands allowed.

===

BASIC - 173 -

BASIC REFERENCE IfANUAL

9.43 READ Statement

1 READ <var~able list>

2 READ '<channel>: <variable l~st>

3 READ '<channel>,<key>: <variable list>

Where:

<variable list> ::= <variable>[,<variable list>]
<channel> ::= <numeric expression>
<key> ::= <numeric expression>

<string expression>

See also: DATA, INPUT, LINPUT, MAT INPUT, MAT READ, OPEN, READNEXT,
and RESTORE statements

Purpose:

The READ statement is used to: accept data from DATA statements (format 1); accept
data from a sequentially formatted file (format 2); accept data from an indexed or
direct formatted file (format 3).

CODJa!nt:

The READ statement, format 1, causes the variables listed to be assigned values
from the next data elements of the DATA statement. If there is more than one DATA
statement in the program then, when the first DATA statement's elements are used
up, the next data element will come from the next DATA statement in the program.
When there are no more DATA statements in the program, an "Out of data" error will
occur when a READ is executed.

When it becomes necessary to use the same data more than once in a program, the
RESTORE statement makes it possible to recycle through the complete set of DATA
statements in the program or a partial set.

The other two formats of the READ statement operate similar to the INPUT statement
discussed earlier. The primary difference between the READ statement and the INPUT
statement (and LINPUT) is that the INPUT accepts ASCII data only (i.e., quoted
strings and characters) and the READ statement accepts fields of data in internal
BASIC format.

Formats 2 and 3 of the READ statement accept data from a file that was created with
its complementary WRITE statement.

The READ statement can only access an I/O channel that was opened with access mode
INPUT or UPDATE, not OUTPUT.

Format 2 of the READ statement accesses a file opened with SEQUENTIAL access
method.

- 174 - BASIC

CHAPTER. 9: STAT.l!'HERTS

Format 3 of the READ statement accesses a file opened with DIRECT or INDEXED access
method. A numeric key is used for a file opened with DIRECT access and a string
key is used for a file opened with INDEXED access.

After a format 2 or 3 READ is performed the EOF function will indicate whether or
not the read was successful. The EOF function will return a true value on a
SEQUENTIAL access READ if the end of file was encountered; on an INDEXED access
READ if the record with the specified key could not be found; on a DIRECT access
READ if the record read was deleted or never written to.

On a DIRECT access READ the trappable error "Invalid key" will occur when an
attempt is made to access a negative or zero record number or a record number
greater than the maximum number of records in the file.

===

Examples:

0010 READ A

0040 READ B,C

0050 RESTORE 9010

0100 READ A$

0130 RESTORE 8000

8000

Explanation:

The value 1.23 is assigned to A.

The value 2.34 is assigned to B,
the value 3.45 is assigned to C.

Next data element will corne from
line number 9010.
The literal '1.23' is assigned to A$.

Next data element will come from
line number 9010.

9010 DATA 1.23, 2.34, 3.45,LITERAL,2ND LITERAL
9020 DATA 2.234, ABCDEF,ABCDE FGHIJK," ABCDE FGHIJK "

0010 OPEN 111 : "DATA. FILE" , INPUT DIRECT
0020 OPEN 112: "TEST.FILE",UPDATE SEQUENTIAL,EXTEND
0030 OPEN 113: "FILE.DATA", INPUT INDEXED
0040 READ 111,13: A$,B$,C,D$
0050 READ 112: B$,C$,A
0060 READ 113,KEY$: FLD1$,FLD2$,TOTAL

Incorrect examples:

0010 READ A

0040 READ B
9000 DATA ABCD

The 13th record is read
The next record is read
Record with key matching contents of
KEY$ is read.

Explanation:

First data element is alpha -
'Conversion Error' will occur.

No data elements left.

===

BASIC - 115 -

BASIC REl'ERERCE IWmAL

9.44 READNEXT Statement

1 READBEXT #<Channel>,<key>: <variable list>

Where:

<channel> ::= <numeric expression>
<key> ::= <string expression>
<variable list> ::= <variable>[,<variable list>]

See also: INPUT, LINPUT, MAT INPUT, MAT READ, and READ statements

Purpose:

The REAnNEXT statement will access the next record folloWing the previous READ,
WRITE, or REAnNEXT from an indexed file.

Comment:

This statement is very similar to the READ statement, however this statement only
operates on a file opened with access method INDEXED. The key must be a string
variable, not an expression.

When the REAnNEXT statement is executed the indexed disk file specified by the
<channel> is read in a sequential manner. The record read by the READNEXT
statement is the record whose key is the next key greater than the last record key
accessed in this file. If there are no records whose key is greater than the last
record accessed then the file pointer is considered to be at end-of-file and the
EOF function may be used to detect this condition.

If a record is read by the READNEXT statement then the contents of that record's
key is placed into the variable <key> and the contents of the individual fields of
that record are placed into the variables specified in the <variable list>.

When an indexed file is first OPENed, the file pointer is positioned before the
first record in the file. Therefore if the first access to an indexed file is a
REAnNEXT statement then that statement will retrieve the first record in the file,
if any exist. Each access of an indexed file by a READNEXT statement causes the
file pointer to be advanced to the next record. Access to an indexed file by the
REAn statement causes the file pointer to be positioned to the record specified by
that READ statement. (If the READ statement is unsuccessful the file pointer is
positioned to the place that the record would have been at, if it had existed;
therefore a READNEXT statement, folloWing an unsuccessful READ statement, will
retrieve the next record that logically follows the record searched for with the
READ statement.)

An attempt to use the READNEXT statement to access a record created with a PRINT
statement will cause an "Invalid file format" error. The READ and READNEXT
statement can only access records created with the WRITE statement.

- 176 - BASIC

CHAPTER. 9: STATF..HElfrS

===

Examples: Explanation:

If a indexed file contains records with the following keys:

000100
000124
001001
003234
003235
004000

then the following statements will print the string "003234"

0100 READ Ill, "002000" :A$
0110 READNEXT 1I1,KEY$:A$
0120 PRINT KEY$

Incorrect Examples:

0200 READNEXT 112,A:A$,B,C
0210 READNEXT 112,"ABC":S
0220 READNEXT 115,K$,RECORD$,TOTAL
0230 READNEXT 1I1,A2$

Position after record 001001
Get record following, i.e. 003234

Explanation:

Key must be string variable.
Same.
Colon must separate key and list.
Input list missing.

===

BASIC - 177 -

BASIC REFKRERCE HAImAL

9.45 REH Statement

1 REM:

2 REM: <unquoted string literal.

Purpose:

The REM statement allows the insertion of a comment or remark into a program.

C01BIDent:

REM statements are valid BASIC statements and may be used anywhere that a statement
can be used. They are saved as part of the program and appear whenever the program
is listed, however they are ignored when the program is executed.

All characters after REM are ignored by the BASIC statement analyzer.
reason, the REM statement must always be the last statement on a line.

For this

The REM statement should never be used on the same line as a DATA statement. This
is explained in the section on the DATA statement.

===

Examples:

0010 REMARK: THIS IS A REMARK
0020 REM: THIS IS A REMARK
0040 LET A = B \REM THIS IS A REMARK

Incorrect examples:

0010 DATA 1,2,3,4,5, \REM ABCDEF
0020 LET A=B REM This is a remark

Explanation:

Recommended"syntax for using a REM on the
same line as a statement.

Explanation:

The REM will be treated as a DATA element.
Statement separator missing.

===

- 118 - BASIC

CHAPTER. 9: STATE'HERTS

9.46 RESTORE Statement

1 RESTORE

2 RESTORE <line number>

See also: READ and DATA statements

Purpose:

The RESTORE statement is used to re-use data elements from the DATA statements.

Comment:

When it is neccessary to use the same data elements from the DATA statements more
than once in a program the RESTORE statement makes it possible to recyle through
the complete set or a partial set of the DATA statements.

If the line number option is used the referenced line need not be of a DATA
statement.

When the RESTORE statement is executed the internal pointer used for accessing the
data elements of a program is set to point to the beginning of the program (line
reference option not used) or to the line referenced. In either case the next READ
statement will read the first data element at, or following, the statement pointed
to.

===

Examples:

0050 RESTORE

0060 RESTORE 1
0070 RESTORE 9000

0080 RESTORE 9900

Explanation:

The next READ will read the first data
element of the first DATA statement in the
program.
Same as line 50.
The next READ will read the first data
element of the first DATA statement at or
following line 9000.
The next READ will read the first data
element of the first DATA statement at or
following the line number 9900.

===

BASIC - 179 - RES'!OU

BASIC RD'ERDCE IWWAL

9.47 RESUME Statement

1 RESUME

2 USUHE 0

3 USUHE <line reference>

Where:

<line reference> ::= <line number>
<line label>

See also: ON ERROR statement

Purpose:

The RESUME statement terminates an error handling routine and specifies what to do
next.

CODBeD.t:

The RESUME statement acts like a RETURN statement except that it may only be used
in an error handling routine.

After an error handling routine has performed the tasks required for the specific
error (see ON ERROR statement) the routine must return control to BASIC. The
RESUME statement performs this task.

At this time BASIC needs to know what was done and what to do. There are three
possible situations that might exist: 1) the error was corrected by the error
routine and the statement that caused the error is to be re-executed; 2) the error
could not be corrected by the routine and the system is to handle the error; 3) the
error was corrected by the routine but a different statement is to be executed.

These three situations correspond to the three formats of the RESUME statement:

RESUME with no line reference (format 1) indicates that BASIC is to
ignore the error and to re-execute the statement causing the error.

RESUME 0 (format 2) indicates that BASIC is to handle the error. In this
event BASIC will display the error message corresponding to the error
along with the line number of the statement causing the error (ERL). If
the program was executed from the RUN environment then BASIC will be
exited; if the program was executed from the BASIC environment then the
command mode of BASIC will be entered (prompt character of "_").

RESUME <line reference> (format 3) indicates that the error was corrected
but control is to be transferred to the line specified.

RESUHE - 180 - BASIC

CHAPTER. 9: S'TATEHERTS

===

Examples:

9000 IF ERR=2 THEN 9020
9005 IF ERR=l THEN 9030
9010 RESUME 0

9020 RESUME

9030 RESUME EXIT

Explanation:

Error cannot be handled - this lets
BASIC handle it.
Error was corrected (or ignored) and
the program resumes execution at the
statement causing the error.
Error was corrected (or ignored) and
control is to be transferred to the
line with the label EXIT.

===

BASIC - 181 -

BASIC REFERENCE HARlJAL

9.48 RETORR Statement

1 RETURN

2 RETURN <line reference>

Where:

<line reference> ::= <line number>
<line label>

See also GOSUB and ON GOSUB statements

Purpose:

The RETURN statements terminates the execution of a subroutine and transfers
control back to the statement following the call (GOSUB) to the subroutine.

Coaaent:

There may be more than one RETURN statement in a subroutine, however, the first one
executed causes the subroutine to terminate. It is a good programming practice to
have only one RETURN statement in a subroutine and, if multiple exit points are
needed, branch to that one statement from the various parts of the subroutine.
This makes the routine easier to read and maintain.

The RETURN statement cannot be executed without a previous execution of a GOSUB
statement. When this is attempted a "Return stack empty" error occurs.

When a line is referenced on the RETURN statement the referenced line must exist in
the program (same as the GOTO statement).

The RETURN statement with the optional
location of the statement following the
transfers to the line referenced.

line number reference used
GOSUB call to be discarded

causes the
and control

It is bad practice to use the line reference option except in unusual or
exceptional cases. A better, and approved method of performing a similar function,
is to use the SELECT or WHILE statement structures.

- 182 - BASIC

CHAPTER. 9: STATEHKRTS

===

Examples:

0010 GOSUB 30
0020 PRINT A$ GOTO 9000
0030 REM Subroutine entry

0090 RETURN

0100 GOSUB INPUT

0500 INPUT: REM Input subroutine

0590 RETURN CLOSE.UP

Explanation:

Execute subroutine at line 30
Statements executed after RETURN
Beginning of subroutine

Exit subroutine

Execute subroutine a label INPUT

Beginning of subroutine

Exit subroutine and transfer control
to CLOSE.UP label.

===

BASIC - 183 -

BASIC llEI'ERElICE HABUAL

9.49 RUB State.ent

1 R1JR

2 RUB <prograa na.e>

3 RUB <starting line>

4 RUB <program name>,<Starting line>

Where:

<program name> ::= <file name>[.<file type>] [:<file disk>]
<file type> ::= BASICOBJ (with BASIC)

BASICCOM (with RUN)
<starting line> ::= <line number>

See also: CHAIN, CLEAR and LINK statements

Purpose:

The RUN statement allows the user to execute a program already in memory or one
stored on disk.

Comment:

When <program name> is not specified, the program currently in memory is executed,
starting with the first line of the program, or at the line number specified.

Before the RUN statement is executed, a CLEAR command is automatically executed.

<program name>, when specified, must be a string expression. When BASIC is being
used (not the compiler RUN time command) only BASICOBJ files will be searched for.
When RUN is being used (not the interactive interpreter) only BASICCOM files will
be searched for.

When the <program name> is specified, a search is made for the program. If the If
the program is found, a NEW command is executed and the specified program is
loaded. Execution begins with the smallest line number, or at <starting line>, if
specified.

<starting line> may be a line number that does not exist in the referenced program,
in which case execution will begin at the first line greater than or equal to the
specified line number. The <starting line> operand should not be used for two
reasons: it is difficult to maintain a set of programs when it is used and, most
importantly, this feature will not be supported in future versions of OASIS BASIC.

Note: When the RUN version of BASIC is being used (execution of compiled programs
only) only programs that have been compiled and have a file type of BASICCOM will
be searched for by this command.

The CHAIN, RUN, and LINK statements all perform similar tasks, but with significant

RUB - 184 - BASIC

CHAPTER. 9: STATDIDrl'S

differences:

Program Linkage State.ents

1 Statement 1 I/O Channels I Variables 1 COMMON 1

1--I
1 RUN 1 Closed 1 Cleared 1 Cleared I

1 CHAIN 1 Closed 1 Cleared I Not cleared 1

I LINK I Not closed I Cleared 1 Not cleared 1

===

Examples:

-LOAD TEST
-RUN

-RUN TEST

1000 RUN
1010 RUN "JOE"

Incorrect examples

10 RUN PROGRAM
20 RUN "PROGRAM" LABEL

Explanation:

Program "TEST" is loaded,
then executed.

Same as above.

Re-execute program in memory.
Execute program named "JOE".

Explanation

Program name must be an expression.
Line labels not allowed.

===

BASIC - 185 - ROB

BASIC REFERENCE HANUAL

9.50 SELECT State.ent

1 SELECT

2 SELECT <expression>

See also: CASE, CEND and OTHERWISE statements

Purpose:

The SELECT statement defines the start of a SELECT-CASE-CEND programming structure.

CODllllent:

Format 1 of the SELECT statement specifies that subsequent, matching CASE
statements will specify the complete relational expression that must evaluate true
for the statements following to be executed.

Format 2 of the SELECT statement specifies the expression that is to be compared
with the expression of subsequent, matching CASE statements.

SELECT structures may be nested to any depth.

The SELECT-CASE-CEND programming structure is a powerful aid to the programmer
wishing to write structured programs in BASIC, a language that doesn't lend itself
to structured programming techniques. (Also see ON ERROR, FOR-NEXT, IF-IFEND, and
WHILE-WEND structures.)

===

Examples:

3000
3010
3020
3030
3040
3050
3060
3062
3064
3070
3080
3090
3110
3120
3130

SELECT RADIUS*2.*PI
CASE 0

SELECT
CASE SUBVALUE%=20

CASE SUBVALUE%>32

CASE ERROR%

CEND
CASE 1-14

CASE J

CEND

Expianation:

Define VALUE

Perform only if VAI.,UE=O

Perform only if VALUE=O and SUBVALUE%=20

Perform only if VALUE=O and SUBVALUE%>32

Perform only if VALUE=O and ERROR%<>O
End of nested SELECT structure

Perform only if VALUE=I-14

Perform only if VALUE=J%
End of SELECT structure

===

SELECT - 186 - BASIC

CIIAP"lER. 9: SrATEIIEln'S

9.51 SLEEP Statement

1 SLEEP <integer expression>

Purpose:

The SLEEP statement causes BASIC to pause for a period of time, allowing the
operator time to read a message, etc.

Ccmment:

The value of <integer expression> is rounded up and integerized. The value of this
expression must be between 0 and 32767 (approximately 9 hours), inclusive.

The minimum time that the SLEEP statement will pause is one second. Specifying any
value less than one will be interpreted as the default, one second.

===

Examples

10 SLEEP 10
95 SLEEP X/4

200 SLEEP .5

Explanation

Suspend processing for 10 seconds.
Wait for one fourth of X value.
Wait for one second.

===

BASIC - 187 - SLEEP

BASIC ItEl'EREllCE HABtJAL

9.52 smp State.ent

1 smp

2 smp <expression>

See also: END and QUIT statements

Purpose:

The STOP statement terminates execution of a program without closing any files nor
altering working storage.

Comment:

The STOP, END and QUIT statements all terminate execution of a program. The QUIT
an.d END statements are the normal termination of a program in a non-development
mode.

The STOP statement is used when an abnormal exit from the program is desired, as
needed during the development and debugging of a program. When it is executed, the
status of the program remains unchanged, and the message "STOP at Line nnnn" is
displayed on the terminal. BASIC will enter the command mode (prompt character of
"-").

If a STOP statement was executed, a CONTINUE command will resume execution at the
statement following the STOP statement. This allows the programmer to examine or
alter portions of the program or to change the value of some variables.

When an expression is specified after the STOP verb that expression will be
evaluated and displayed with the stop message: "STOP <value of expression> at line
XXXX". This allows the programmer to put identifying messages on the screen to
assist in the debugging.

===

Examples:

0010 STOP

0020 STOP A$

Explanation:

Program stops execution and allows
maintenance.
Program stops execution, as above and
displays the current value of the
string A$.

===

smp - 188 - BASIC

CHAPTER. 9: STATEHERrS

9.53 THER Statement

1 TIlER [<statement>]

2 THEN [<1ine nUJDber>]

See also: ELSE and IF statements

Purpose:

The THEN statement specifies the action to be taken when a multiline IF statement
relation is true.

Comment:

The THEN statement is only a statement when used in conjunction with the multi-line
format of the IF statement. When used in this manner the verb THEN is optional.

<statement> may be any statement or statements, including another IF statement.

===

Examples:

0010
0020
0030
0040
0050

IF A
THEN GOSUB 2000

IFEND

PRINT USING "llIfll" ,A
GOTO TOP.OF.PAGE

IF VALUE > CONTROL
THEN IF VALUE > LIMIT

THEN GOSUB ERROR
GOTO EXIT

Explanation:

Test A for non zero
Perform if A<>O

" " "
" " fI

End of conditional execution

Test expression
Perform if expr is true
Perform if both expr are true

" " " rr rr "

0010
0020
0030
0040
0050 ELSE IF ERR.NUM < ERR.LIMIT THEN QUIT

0060
0070

IFEND
IFEND

.Incorrect Examples:

0010 IF VALUE>5 THEN 100
0020 THEN PRINT "XYZ"

Perform only if first expr is true
and second expr is false
End conditional execution from second expr
End of conditional execution

Explanation:

Not in a multi-line IF statement

===

BASIC - 189 -

BASIC REFEJlERCE IWIUAL

9.54 UlLOCK Statement

1 UlLOCK #<channe1>

Where:

<channel> ::= <numeric expression>

See also: CHAIN, CLOSE, DELETE, INPUT, LINPUT, MAT INPUT,
MAT PRINT, MAT READ, MAT WRITE, OPEN, PRINT, PRINT
USING, READ, READNEXT, and WRITE statements

Purpose:

The UNLOCK statement operates in multi-user OASIS only and allows a program to
release a record for other users use.

Comment:

The UNLOCK statement is only effective when the channel was opened with UPDATE
access, not INPUT or OUTPUT.

The UNLOCK statement releases the record read from the channel with an INPUT, MAT
INPUT, MAT READ, READ, or READNEXT statement. After the UNLOCK statement is
executed another user partition may read the record just released.

An unlock function is performed automatically when any of the following statements
is executed: CLOSE, DELETE, INPUT, LINPUT, MAT INPUT, MAT PRINT, MAT READ, MAT
WRITE, PRINT, PRINT USING, READ, READNEXT, and WRITE. Note that the input type
statements may lock another record.

===

Examples: Explanation:

0010 OPEN Ill: "DATA. FILE" ,UPDATE SEQUENTIAL
0020 READ Ill: RECORD$ Read the first record and locks it.
0030 UNLOCK III Releases the record for others use.

===

- 190 - BASIC

9.55 WAIT Statement

1 WAIT

2 WAIT DEVICE <device number>

3 WAIT HEHORY <address>,<and mask>[,<xor .ask>]

4 WAIT PORT <port>,<and mask>[,<xor mask>]

Where:

<device number> ::= <numeric expression>
<address> ::= <numeric expression>
<port> ::= <numeric expression>
<and mask> •. - <numeric expression>
<xor mask> ::= <numeric expression>

See also: GET and PUT statements

Purpose:

CHAPTER. 9: STArEHKllITS

The WAIT statement suspends execution until some event has occurred.

Comment:

The most frequent use of this statement (format 1) is to suspend operation until
the operator has typed any key on the console keyboard. This use is the same as
the systems when it displays a page of information and then waits for the operator
to release that page before displaying the next page. An up-arrow character (~)

will be displayed in the bottom, left hand corner of the screen while the system is
waiting for the operators response. This is a conditional wait determined by the
status of the System Screen-wait key (see OASIS System Reference Manual).

This statement causes BASIC to test a byte from the specified device (format 2),
memory address (format 3), or port (format 4), logically AND it with <and mask> and
logically eXclusive OR it with <xor mask>. The statement is re-executed if the
result is not zero (true).

The <port> expression must evaluate to an integer between 0 and 255; the <device
number> expression must evaluate to an integer between 9 and 32; the <address>
expression must evaluate to an integer in the range -32767 - +32767. (This value,
unlike other integers, is interpreted as an unsigned value, which automatically
adjusts its range to 0 - 65535.)

If <xor mask> is omitted, it is assumed to be equal to zero.

This statement can be very useful for waiting for an I/O device to become ready for
output, or waiting for a character to be input from a device.

The WAIT DEVICE has no masks available because it returns control to BASIC as soon
as any change (non zero) occurs with the device.

BASIC 191 - WAl'!'

BASIC llDERERCE HAlmAL

The WAIT statement does not read the data from the port or device, only the status
of the device or port is tested. This statement would normally be used to
determine the time that an event happened in order to synchronize two processes.

===

Examples:

0010 WAIT DEVICE 9

0020 WAIT PORT 25,OFH

0030 WAIT

Explanation:

The program suspends execution until
a key is entered from the console
keyboard (device 9). When any key is
typed the program will continue
execution with the statement following.
The program suspends execution until
a byte is input on port 25 that has the
four low-order bits off.
Wait for operator to release current
page of data on screen.

===

WAIT - 192 - BASIC

CIIAPTEIl 9: STATEIIERTS

9.56 WEND State.ent

1 WERD

See also: WHILE statement

Purpose:

The WEND statement marks the end of a WHILE-WEND programming structure.

~nt:

The WEND statement requires that a corresponding WHILE statement exists and that
the WHILE statement must have been executed prior to the WEND statement.

The WEND statement performs two functions: marks the end of a WHILE-WEND
structure--the statement following the WEND statement is executed when the
expression in the wllILE statement is false; causes the corresponding WHILE
statement to be re-executed when the expression of that WHILE statement was true
the last time.

WHILE-WEND structures may be nested to any depth.

===

Example: Explanation:

0010 WHILE CONTROL % Test the variable CONTROL%
0020 GOSUB 1000 Perform if CONTROL% is non-zero
0030 GOSUB 1200 II II II

0040 WHILE OPTION$="HELP" II II II

0050 GOSUB HELP.ROUTINE Perform if CONTROL%<>O AND OPTION$="HELP"
0060 OPTION$="" " " " II " "
0070 WEND
0080 WEND Go back to 10 if CONTROL % was non-zero

===

BASIC - 193 -

BASIC REFERERCE MARUAL

9.57 WUn.E Stateaent

1 WHILE <numeric expression>

2 WHILE <logical expression>

3 WHILE <relational expression>

See also: WEND statement

Purpose:

The WHILE statement marks the beginning and qualifying condition of a WHILE-WEND
programming structure.

COJlllllent:

The WHILE statement requires a corresponding WEND statement, which marks the end of
the WHILE-WEND structure.

When the WHILE statement is encountered the expression is evaluated. If the result
of the expression is non-zero or true the statements following are executed. If
the result of the expression is zero or false then the statements following, up to
and including, the corresponding WEND statement are skipped.

If the expression was true and the statements were executed, when BASIC encounters
the corresponding WEND statement control will be transferred back to this WHILE
statement for expression re-evaluation. Because of this looping feature, there
should be some statement within the loop that could modify the results of the
expression evaluation, or a statement that will transfer control out of the loop;
otherwise the loop will be executed indefinitely.

WHILE-WEND structures may be nested to any depth.

WHILE - 194 - BASIC

CHAPTER. 9: STATEHKRTS

===

Example:

0010 WHILE A%<10
0020 A% = A%+I%
0030 FOR 1%=1 TO 5
0040 PRINT 1%
0050 NEXT
0060 WEND
0070 PRINT A%

0010 IF NOT (A%<10) THEN 70
0020 A% = A%+I%
0030 FOR 1%=1 TO 5
0040 . PRINT 1%
0050 NEXT
0060 GOTO 10
0070 PRINT A%

Explanation:

Test the expression
Perform only if true.

II II II

II " II

" " "
If exp was true then go back to 10
Otherwise perform this and continue.

This is the same as above example.

===

BASIC - 195 -

BASIC REFEllERCE IWWAL

9.S8 WRITE State.ent

1 WRITE '<channel>: <express:lon l:lst>

2 WlUTE '<channel>, <key>: <express:lon l:lst>

Where:

<channel> ::= <numeric expression>
<expression list> ::= <expression>[,<expression list>]
<key> ::= <numeric expression>

<string expression>

See also: DELETE, MAT PRINT, MAT WRITE, PRINT, and PRINT USING statements

Purpose:

The WRITE statement allows the user to create or update sequential, direct or
indexed file records.

CODIIDent:

<channel> is the internal I/O channel number of a channel that was opened for
OUTPUT or UPDATE that does not have write protect status. If an attempt is made to
write to a protected file, the error message "Protected File" will be displayed.

Format 1 of the WRITE statement is used for sequential format files opened with
access method of SEQUENTIAL. This format causes the next record in sequence to be
written to the file (i.e. if the last record written to the file was the 11th
record then this statement will write the 12th record to the file).

Format 2 of the WRITE statement is used for files opened with access method of
DIRECT or INDEXED. A file opened with access method DIRECT will require a numeric
key expression; a "file opened with access method INDEXED will require a string key
expression. In either case the record specified by the key will be written to the
file, replacing any existing record with the same key.

When the key is numeric its value must be greater than zero and less than or equal
to the number of records allocated to the file. Using a key outside of this range
will cause an "Invalid key" error.

The WRITE statement always locks the record before writing it to the file. The
WRITE statement also unlocks any record that was locked in the file by this program
(unless option LOCK was used with the OPEN statement).

The only proper way to retrieve a record written to a disk file with the WRITE
statement is with a READ or READNEXT statement. USing an INPUT or LINPUT statement
on a record that was output with a WRITE statement will cause an "Invalid file
format" error.

WBITE - 196 - BASIC

CHAPTER. 9: STA."rF.IIEIITS

===

Examples:

0010 OPEN 111: "DATA.FILE",OUTPUT SEQUENTIAL
0020 OPEN 112: "CUSTOMER.MASTER",UPDATE INDEXED
0030 OPEN 113: "TRANSACT.DETAIL:A",UPDATE DIRECT,LOCK
0040 WRITE 111: DATAl,DATA2,STRING$,1*34+5
0050 WRITE 112, "Name": ADDR$,CITY$,STATE$,FORMAT$(ZIP,"99999"),BALANCE
0060 WRITE 113,24: A,B,C,D,E,F,TOTAL,LINK%

Incorrect Examples:

0070 WRITE 111,23: A,B,C,D
0080 WRITE 112: A$,BETA$,C
0090 WRITE 113, "REC"&STR(I%): A,B

Explanation:

Not valid for sequential access.
Indexed access requires key.
Direct access requires numeric key.

===

BASIC - 197 - WRITE

BASIC REl'EREllCE HABUAL

WRITE - 198 - BASIC

CHAPTER. 10

FUNCTIONS

A function is a relation between two variables such that for each value of the
independent variable there is one, and only one, value of the dependent variable.
When a function is used (called) in BASIC, the independent variable(s) is the
parameter and the dependent variable is the value of the function. For example:

100 LET Y = SQR(X)

X is the independent variable and must be defined before the function, SQR, is
called. The value of the function, SQR(X) is the dependent variable and, in this
example, is assigned to the variable Y.

Functions are not statements.

BASIC provides many predefined functions for the programmer's use. These include
thirty numeric functions (including trigonometric), twenty six string functions,
four input/output functions, one file function, four logical functions, two error
functions, and one user function. Specifically they are:

Numeric functions:

ABS
ASC
ATN
BIN
COS
DAY
EXP
FIX
FLOAT
HEX
INT
LEN
LOG
MATCH

Absolute value
Decimal value of character
Arctangent
Convert from binary base
Cosine
Convert from ext date format
Exponential
Integerize number
Float integer number
Convert from hexadecimal base
Return integer portion
Return length of string
Natural logarithm
Compare string with mask

String functions:

AT$
BINOF$
CHR$
CRT$
DATE$
DEL$
DTE$
EXT$
FORMAT $
HEXOF$
INS$
LEFT$
LPAD$

BASIC

Cursor control
Convert to binary base
Return ASCII of number
Cursor control
Convert to ext date
Delete sub-string field
Validate string for date
Extract sub-string field
Format string
Convert to hexadecimal base
Insert sub--~ring field
Return left portion of string
Add leading spaces

MAX
MIN
MOD
NBR
OCT
PI
RND
ROUND
SCH
SEC
SGN
SIN
SQR
TAN
VAL

LTRIM$
MID$
OCTOF$
OVR$
REP$
RIGHT$
RPAD$
RPT$
RTRIM$
SPACE$
STR$
TIME$
TRIM$

- 199 -

Return maximum of two numbers
Return minimum of two numbers
Perform modulo of number
Test string for numerics
Convert from octal base
Constant: 3.141592653590
Pseudorandom number
Round number
Search string for sub-string
Convert from ext time format
Return sign of value
Sine
Square root of number
Tangent
Numeric value of string number

Remove leading spaces
Return middle of string
Convert to octal base
Overlay string with string
Replace sub-string field
Return right portion of string
Add trailing spaces
Generate string of characters
Remove trailing spaces
Generate string of spaces
Return ASCII value of character
Convert to ext time format
Remove leading & trailing spaces

FOIICTlOBS

BASIC REl'ERERCB 1WIUAL

Input/Output functions:

INP
LINE

Value of control char entered
Return line length of channel

Logical functions

LRL
LRR

Logical rotate left
Logical rotate right

File function:

EOF Test for end of file

Error functions:

ERL Line number of error

User function:

PAGE
POS

LSL
LSR

ERR

Return page length of channel
Position of output rec pointer

Logical shift left
Logical shift right

Error number of error

USR User written assembly language subroutine call.

The following functions always return an integer value: ASC, EOF, ERL, ERR, FIX,
HEX, INP, LEN, LINE, LRL, LRR, LSL, LSR, MATCH, NBR, PAGE, POS, SCH, SGN.

The following functions return an integer value when the parameter to the function
is an integer: INT and USR.

All other numeric functions return floating point values.

A function call has the general form of:

<function name> [$] (parameters)

In addition to the pre-defined functions listed above, the user may define his own
functions with the DEF statement. These functions are only defined while the
program defining them is in memory.

The parameters passed to a function are not changed by the function.

Function names cannot be abbreviated and function names cannot be used as variable
names.

References to string functions do not require the dollar sign character. For
example, SPACE(5) is acceptable for SPACE$(5).

FUNCTIONS - 200 - BASIC

CHAPTER. 10: FDBCTlOBS

10.1 Numeric Functions

ABS (<num-exp>) The numeric expression is evaluated and its absolute value is
assigned to the function.

Example: PRINT ABS(23);ABS(-23)
23 23

ASC(<string-exp» The string expression is evaluated and the ASCII, integer value
of the first character in the resulting string is returned.

Example: PRINT ASC(A$)
65

BIN (<string-exp» The string expression is evaluated and the resulting string is
interpreted as a binary value with its equivalent decimal,
integer value returned. Remember that binary values only use
the digits 0 and 1.

Example: PRINT BIN(fl OI01010101010101 f1);BIN(fl OOOOI11100001111 f1
)

21845 3855

DAY (<string-exp» The string expression is evaluated and interpreted as a date
field. The number of days since December 31,1899 to that date
is returned.

EXP (<num-exp»

FIX (<num-exp>)

FLOAT (<num-exp»

Example: PRINT DAy(fl 5/17/77"),DAY("1-1-0")
28261 1

The expression is evaluated; the constant e is raised to the
value of the expresion and assigned to the function.

The fractional portion of the value of the expression is
truncated; the resulting integer portion is assigned to the
function (32767 to -32767).

Example: PRINT FIX(I.5);FIX(.5);FIX(5.5);FIX(-43.5)
1 0 5 -43

The numeric expression is evaluated and converted, if necessary,
to a floating point value.

Example: PRINT 1/4;I/FLOAT(4);1/4.
o .25 .25

HEX (<string-exp» The string expression is evaluated and the resulting string is
intepreted as a hexadecimal value with its equivalent decimal,
integer value returned. Remember that hexadecimal values use
the digits 0 through 9 and the letters A through F.

INT (<num-exp»

BASIC

Example: PRINT HEX(fl OFFfI);HEX(fl100")
255 256

The expression is evaluated and the greatest signed integer of
that value is assigned to the function. The result of this
function is an integer or floating point, depending upon the

- 201 - NDHERIC FDBC'.rIOBS

BASIC RBFERERCE MAROA!.

argument of the function.

Example: PRINT INT(1.5);INT(.5);INT(-4.6)
1 0-5

LER(<string-exp» The string expression is evaluated and its length is returned as
an integer.

LOG (<num-exp»

Example: PRINT LEN(flABCDEFfI);LEN(fI
6 10 10

x ") ; LEN (SPACE$ (10))

The expression is evaluated and the natural logarithm of that
value is assigned to the function. (Natural logarithms are
logarithms to base e).

The common logarithm (base 10) may be computed by dividing the
natural logarithm by LOG(10), i.e.: LOG10(X) = LOG(X)/LOG(10).

MATCH(<string-expl>,<String-exp2» The two string expressions are evaluated and the
second expression is used as a mask for match purposes. If the
first string does match the mask a true value is returned (-1);
if the string does not match the mask a false value is returned
(0). The mask characters are interpreted as follows:

NDMKRIC FOBCTIORS

@ Any alphabetic character or space in this position is a
match.

Any numeric digit in this position is a match.
1 Any character in this position is a match.
*@ One or more alphabetic characters in these positions will

match.
*# One or more numeric digits in these position will match.
*1 One or more characters in these positions will match.
% This is the 'escape' character: the special character

following (@, #, ?, * or %) is treated as a literal match
character).

All other characters are treated
i.e., the corresponding position
contain the specific character.

as literal match characters,
in the first string must

The following are example masks along with a description of what
they will match:

Mask: flABC?"
Matches: Any four character string starting with the uppercase

letters A, B, and C. The following strings will match
this mask: flABCX", "ABC 1", "ABC-". The following
strings will not match this mask: "ABDE", "XXXX",
"ABCDEFGH", "ABC", ''WXYZ II •

Mask: "ABC*?"
Matches: Any four or more character string starting with the

uppercase letters A, B, and C. The following strings
will match this mask: "ABCDEF", "ABCII*$$234". The
following strings will not match this mask: "A", "234",
"ABDXL KJ" •

- 202 - BASIC

CHAPTER. 10: I'DRC'ITOBS

Mask: "ABC*?DEF"
Matches: Any string whose first three letters are A, B, and C,

and whose last three letters are D, E, and F. One or
more characters between these are acceptable. The
following strings will match this mask: "ABCXDEF",
"ABCXXXXXDEF", "ABC 12433ABCDEF". The following strings
will not match this mask: "ABC", "ABCD", "ABCDE",
"ADEF", "ABCDEF".

Mask: "11I1I1-11t1-1I11t11l"
Matches: Any eleven character string with: three digits, a

hyphen, two digits, a hyphen, and four digits (like a
Social Security Number). The following string will
match this mask: "123-45-6789". The following strings
will not match this mask: "123456789", "123/45/6789",
"12ABD" •

Mask: "@@@IIIIII"
Matches: Any six character string whose first three characters

are letters or spaces and whose last three characters
are digits. The following strings will match this
mask: "abc123", "AB 123", "Xyz002". The following
strings will not match this mask: "123ABC", "AB1234",
"XXXXXX", "ABCX123".

Mask: "% * % *% * 111111"
Matches: Any six character string whose first three characters

are asterisks and whose last three characters are
digits. The following strings will match this mask:
"***123", "***738". The following strings will not
match this mask: "***ABC", "***1234", "112456",
"**ABCDEFG".

MAX(<n~1>,<n~2» The two expressions are evaluated and compared to each
other. The value of the expression whose value is greatest is
returned.

Example: PRINT MAX(5,21);MAX(PI,3.14);MAX(1,1)
21 3.141592653590 1

MIR(<n~1>,<n~2» The two expressions are evaluated and compared to each
other. The value of the expression whose value is smallest is
returned.

Example: PRINT MIN(5,21);MIN(1,-1);MIN(3*23,70)
5 -1 69

MOD(<n~1>,<n~2» The two numeric expressions are evaluated. The value of
the first expression is divided by the value of the second
expression and the remainder is assigned to the function.

NBR(<string-exp»

BASIC

Example:

Analyzes
converted

PRINT MOD(11,4);MOD(2.2,.8)
3 .6

the string expression to determine if it
to a number. The string expression

could be
is first

- 203 - N1JHER.IC FDBCTIOBS

BASIC RDERERCE HAlmA!.

evaluated. If the resulting string contains any non-numeric
characters (other than digits, plus or minus sign, period,
leading or trailing spaces, comma, or letter E) an integer 0 is
returned (false). If the resulting string is a valid decimal or
hexadecimal number then an integer -1 is returned (true).

Example: PRINT NBR("123");NBR("OABCHIf);NBR(lf 1.23E23")
-1 0-1

PRINT NBR("NAMEIf)
o

OCT (<string-exp» The string expression is evaluated and the resulting string is
interpreted as a octal value with its equivalent decimal,
integer value returned. Remember that octal values only use the
digits 0 through 7.

PI

Example: PRINT OCT("071 1f);OCT(lf 100")
57 64

The constant 3.141592653590 is assigned to the function.

The value of the next pseudorandom number is assigned to the
function. The value is a floating point number between zero and
one.

ROUND(<n~1>,<n~2» The two numeric expressions are evaluated and the
first expression is rounded to the number of places specified by
the value of the second expression. Positive values for the
second expression indicate the number of digits to the right of
the decimal point; negative values for the second expression
indicate the number of digits to the left of the decimal point.

Example: PRINT ROUND(PI,4);ROUND(1234.567,-2)
3.1416 1200

PRINT ROUND(l.234567,4);ROUND(2.34,0)
1.2346 2

SCH(<n~>,<string-expl>,<string-exp2» The expressions are all evaluated. A
search is made of the resulting <string one>, starting at the
character position <number one>, for the sub-string <string
two>.

NUlllRIC P'DNCTIOIfS

If <string two> is found in <string one> then the starting
position in <string one> is returned. If <string two> is not
found in <string one> then the integer value zero is returned
(false) •

When <string two> is the null string (equal to Iflf) the integer
value one is always returned. The null string is a proper
substring of any string and is treated conventionally as the
first element of every string.

Example: PRINT SCH(1,"ABCDEFGHIf ,"D If);SCH(3,"ABCDEFGHIf ,"EFG")
4 5

- 204- BASIC

CHAPTER. 10: FDRC'ITOBS

PRINT SCH(1,"ABCDEFGH", flXfl);SCH(1, flABC","fI)
o 1

SEC (<string-exp» The string expression is evaluated and interpreted as a
normalized time of day (hh:mm:ss). The value of the number of
seconds since midnight (00:00:00) to the time represented by the
string expression is returned.

SGB (<n11lll-eXp>)

SQll (<n11lll-eXp>)

Example: PRINT SEC("12:00:00 fl);SEC(flOl:05:08")
43200 3908

Note: To get
SEC(TIME$(O»

the current time of day in seconds use:

The numeric expression is evaluated and the sign (+1, 0 or -1)
of the value is assigned to the function.

Example: PRINT SGN(PI);SGN(-1.0/-2.0);SGN(-43);SGN(PI-PI)
1 1 -1 0

The expression is evaluated and the square root of the resulting
value is assigned to the function.

Example: PRINT SQR(4);SQR(25);SQR(11)
2 5 3.31662479161 •••

VAL (<string-exp» The string expression is evaluated and interpreted as a numeric
constant. If the string contains any non-numeric characters
(see section on "Numeric Constants") a trappable error occurs.
If the string is a valid number then the value of that number is

BASIC

assigned to the function.

Example: PRINT VAL("123 f1);VAL("1.234E23")
123 1.234E+023

PRINT VAL("ABCD")
Illegal number

- 205 - NlDIERIC FDBC'ITOBS

BASIC REFER.ERCE HAlflJAL

10.2 Trigonometric Functions

ATN«exp»

COS «exp»

SIN «exp»

T.AN«exp»

The expression is evaluated and the arctangent of that value is
assigned to the function.

The expression is evaluated and the cosine of that value is
assigned to the function.

The expression is evaluated and the sine of that value is
assigned to the function.

The expression is evaluated and the tangent of that value is
assigned to the function.

The argument for the SINe, COSine, and TANgent functions is an angle expressed in
radians. Although any angle will be accepted as a valid argument, some accuracy
will be lost if the angle is outside the range of +-2PI. This is because the
function routine must first reduce the angle to the first quadrant before
evaluating the function. If the angle is known in degrees, it must be converted to
radians before it is used as the function argument. This may be done as part of
the expression.

The argument of the ArcTaNgent function may be any number (the tangent of any
angle). The result will be an angle in the range +-PI/2 radians.

The following identities may be used to compute trigonometric functions other than
sine, cosine, tangent, and arctangent:

===
Function Identity

Cotangent DEF FNCOT(ANGLE) l/TAN(ANGLE)

Secant DEF FNSEC(ANGLE) = l/COS(ANGLE)

Cosecant DEF FNCOSEC(ANGLE) = l/SIN(ANGLE)

Arcsine DEF FNARCSIN(ANGLE) ATN(ANGLE/SQR(l-ANGLE~2»

Arccosine DEF FNARCCOS(ANGLE) ATN(SQR(l-ANGLE~2)/ANGLE)

Arccotangent DEF FNARCCOTAN(ANGLE) = ATN(l/ANGLE)

Arcsecant DEF FNARCSEC(ANGLE) = ATN(SQR(ANGLE~2-1»

Arccosecant DEF FNARCCOSEC(ANGLE) = ATN(l/SQR(ANGLE~2-1»

Degrees to Radians DEF FNRAD(ANGLE) = ANGLE*PI/180

Radians to Degrees DEF FNDEG(ANGLE) = ANGLE*180/PI

TRIG FUNCTIONS - 206 - BASIC

CHAPTER. 10: FUBC'lIOBS

===
Hyperbolic Function Identity

Hyperbolic sine DEF FNHSIN(ANGLE) (EXP(ANGLE)-EXP(-ANGLE»/2

Hyperbolic cosine DEF FNHCOS(ANGLE) (EXP(ANGLE)+EXP(-ANGLE»/2

Hyperbolic tangent DEF FNHTAN(A) = (EXP(A)-EXP(-A»/(EXP(A)+EXP(-A»

Hyperbolic secant DEF FNHSEC(ANGLE) = l/FNHCOS (ANGLE)

Hyperbolic cosecant DEF FNHCOSEC(ANGLE) l/FNHSIN(ANGLE)

Hyperbolic cotangent DEF FNHCOTAN(ANGLE) l/FNHSEC(ANGLE)

===

BASIC - 207 - TRIG FDBC'lIOBS

BASIC 1lEI'ERERCE HAlIUAL

10.3 String Funct~ons

In the examples, assume that A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

AT$(<n~1>,<n~2» Generates a string of characters representing the cursor
control commands for the terminal designated by the console
terinal attachment. The first expression is interpreted as the
horizontal coordinate. The second expression is interpreted as
the vertical coordinate. Both coordinates are relative to one.
For example, the upper left corner of the screen is referenced
as AT$(l,l).

BIROF$(<n~» The numeric expression is evaluated, integerized and translated
into the string of characters representing the value in binary.
A sixteen character string is always generated.

CBR$(<n~»

Example: PRINT BINOF$(123);" ";BINOF$(23129)
0000000001111101 0101101001011001

Generates a one character string whose ASCII value is the value
of the expression (see appendix on "Character Codes").

Example: PRINT CHR$(65)
A

CRT$(<n~1>,<n~2» This is a synonym for the AT$ function (see above).

CRT$(<str!ng-exp» Generates a string of characters representing the cursor control
commands for the terminal designated by the CONO attachment.
Correct values for string expression and their functions are:

STR.ING FUNCTIONS

HOME Move cursor to upper left corner.
CLEAR Clear screen.
EOS Erase to end of screen.
EOL Erase to end of line.
UP
DOWN
LEFT
RIGHT
IL
DL
IC
DC
PON
POFF
EU
KON
KOFF
FON
FOFF

Move cursor up one line.
Move cursor down one line.
Move cursor one position to
Move cursor one position to
Insert line.
Delete line.
Insert character.
Delete character.

left.
right.

Following characters are to be screen protected.
Following characters are not screen protected.
Erase unprotected.
Keyboard unlock.
Keyboard lock.
Format on.
Format off.
Following characters are to "blink".
Following characters are normal (no blink).
Following characters are to be underlined.
Following characters are not to be underlined.

BON
BOFF
ULON
ULOFF
RVON Following characters are to be displayed in reverse video

(black on white background).

- 208 - BASIC

DATE$ (<num-exp»

CHAPTER. 10: mNCTIOIiS

RVOFF Following characters are to be displayed in normal video
(white on black background).

Note: The control codes generated by this function are the
internal codes used to perform the function. The code is only
translated to the proper character sequence when it is output by
the system.

This function always generates the internal code but it is only
meaningful when that code is output to the CONSOLE. Refer to the
QASIS System Reference Manual appendix on "Terminal Class Codes"
for the specific controls implemented for each type of terminal
class.

Returns a string of characters in normalized date format (i.e.,
mm/dd/yy) representing the expression interpreted as the number
of days since December 31, 1899. The value ° (zero) is
interpreted as the current system date.

Example: PRINT DATE$ (10);" ";DATE$ (0);" ";DATE$ (28262)
01/10/00 05/15/78 05/18/77

DTE$(<string-exp» Validates the string expression for a valid date. If the string
is valid, the standard date format is created for that date. If
the string is invalid, a null string is generated. A date may
contain: digits, ., /, -. The standard date format is mm/dd/yy •
The standard date format includes leading zeros.

Example: PRINT DTE$("7/6/76"),DTE$("2/30/76"),DTE$("112154")
07/06/76 11/21/54

EXT$(<String-exp>,<num-expl>,<num-exp2» Returns with the subfield of the string
expression whose position in string is indicated by the values of
the two numeric expressions. The string returned is the subfield
of the string whose position is the <num-exp2> subfield of
<num-exp1> subfield.

BASIC

Example: B$ =AAAA~BBBB~C1C1C1]C2C2C2]C3C3C3~DDDD

PRINT EXT$(B$,2,0)
BBBB

PRINT EXT$(B$,3,3)
C3C3C3

PRINT EXT$(B$,3,0)
C1C1C1]C2C2C2]C3C3C3

PRINT EXT$(EXT$(B$,3,0),1,2)
C2C2C2

As illustrated, when the second numeric expression is zero the
entire field referenced by the first numeric expression is
extracted. When the field designated by two numeric expressions
does not exist in the string, a null string is returned.

- 209 - STJl.IRG mNCTIOBS

BASIC REFERENCE HARUAL

FORMAT${<n~>,<String-exp» This function has the same capabilies as the PRINT
USING statement in regards to the formating of numeric values.
The two expressions are evaluated and the numeric value is
forma ted according to the masking characters in the string
expression.

HEXOF$ (<n~»

**
$$
DB
CR
>

I
9
+

, --

Leading asterisk fill.
Leading floating dollar sign.
Trailing literal of DB for negative values only.
Trailing literal of CR for negative values only.
Number surrounded with angle brackets «» for negative
values only.
Digit position with leading zero suppression.
Digit position with leading zero fill.
Trailing sign for positive and negative values.
Trailing minus sign for negative values only.
Normalize number with commas every three digits.
Use exponential format with single unsigned digit
exponent ••
Use exponential format with signed single digit exponent.
Use exponential format with signed double digit exponent.

----- Use exponential format with signed triple digit exponent.

Example: PRINT FORMAT $ (23, "99999") ; FORMAT $ (23, "1111111111")
00023 23

PRINT FORMAT $ (23, "**111111") ;" "; FORMAT $ (123456.78, "$$11, II
***23 $123,456.78

PRINT FORMAT$ (12345, "11.1111111111"'''''')
1.2345E4

PRINT FORMAT$ (-12345.67, "11,111111111111.1111>")
<12,345.67>

For more information and examples see the chapter "Formatted
Input & Output" in this manual.

The numeric expression is evaluated, integerized and translated
into the string of characters representing the value in
hexadecimal. A four character string is always generated.

Example: PRINT HEXOF$(94);" ";HEXOF$(23129)
005E 5A59

INS${<string-expl>,<n~I>,<n~2>,<String-exp2» This function
inverse of the EXT$ function, that is, it inserts
into a string. The substring <string-exp2> will
after the subfield designated by the values of the
expressions. It is important to note that the field
after the one designated.

is the
a subfielq
be inserted
two numeric
is inserted

STRING FUNCTIONS

Example: B$ = AAAA"'BBBB"'C1C1C1]C2C2C2]C3C3C3"'DDDD

PRINT INS$(B$,2,0,"NEW")
AAAA"'BBBB"'NEW"'C1C1C1]C2C2C2]C3C3C3"'DDDD

- 210 - BASIC

CHAPTER. 10: :rtJBcrIOBS

PRINT INS$(B$,O,O,"NEW")
NEW~AAAA~BBBB~C1C1C1]C2C2C2]C3C3C3~DDDD

PRINT INS$(B$,3,1,"NEW")
AAAA~BBBB~C1C1Cl]NEW]C2C2C2]C3C3C3~DDDD

PRINT INS$(B$,3,-1,INEW")
AAAA~BBBB~EW]C1CIC1]C2C2C2]C3C3C3~DDDD

PRINT INS$(B$,7,2,"NEW")
AAAA~BBBB~C1C1C1]C2C2C2]C3C3C3~DDDD~~~~]]NEW

LEFT$(<string-exp>,<n~» Indicates a substring
the first character through the
value of the numeric expression.

of the string expression from
nth character where n is the

Example: PRINT LEFT$(A$,7)
ABCDEFG

LPAD$(<string-exp>,<n~» Adds leading spaces to a string. The two expressions
are evaluated and the resulting string expression is expanded to
the length indicated by the value of the numeric expression by
adding sufficient leading spaces. If the string expression is
already greater than or equal to the length indicated no spaces
are added and the string is returned, unmodified.

Example: PRINT "1I";LPAD$("1234",6);"II"
II 123411

PRINT "1I";LPAD$("1234",3);"II"
11123411

LTREK$(<string-exp» Removes leading spaces from a string. The string expression
is evaluated and any leading spaces are removed.

Example: PRINT LTRIM$("
ABC DEF II

ABC DEF ");"11"

HID$(<String-exp>,<n~I>,<n~2» Indicates a substring of the string
expression starting with character N1, for N2 characters where
~1 and N2 are the values of the two numeric expressions. The
length of the string returned will be at most N2-Nl+1
characters.

Example: PRINT MID$(A$,15,5)
OPQRS

OCTOF$«n~» The numeric expression is evaluated, integerized and translated
into the string of characters representing the value of the
number in octal. A six character string is always generated.

BASIC

Example: PRINT OCTOF$(123);" ";OCTOF$(94)
000175 000156

- 211 - STRING FUBCTlOBS

BASIC REFERENCE HABUAL

OVR$(<String-expl>,<n~I>,<n~2>,<String-exp2» Truncates or expands the
second string expression to exactly N2 characters, where N2 is
the value of the second numeric expression. Then the first
string expression is overlaid by the second string expression,
from position N1 for N2 characters.

Example: PRINT OVR$(A$,2,3,"0123456")
A012EFGHIJKLMNOPQRSTUVWXYZ

REP$(<String-expl>,<n~I>,<n~2>,<String-exp2» This function is similar to
the INS$ function except that it replaces a subfield instead of
inserting the subfield. The substring <string-exp2> will
replace the subfield designated by the values of the two numeric
expressions. If there is no subfield to be replaced then the
the substring will be inserted in its proper place. If the
value of the second numeric expression is zero, the replacement
is for the entire field designated by the first numeric
expression.

If the first string expression does not have sufficient
subfields, sufficient null fields will be added.

The string expression must not contain any characters whose
value is greater than 127 or the results will be unpredicatable.

Using the character
subfield delimiter:

as the field delimiter and

Example: B$ = AAAA~BBBB~C1C1Cl]C2C2C2]C3C3C3~DDDD

PRINT REP$(B$,6,O,"HERE")
AAAA~BBBB~CICICl]C2C2C2]C3C3C3~DDDD~~HERE

PRINT REP$(B$,3,2,"NEW")
AAAA~BBBB~CICICl]NEW]C3C3C3~DDDD

PRINT REP$(B$,2,2,"NEW")
AAAA~BBBB]NEW~CICICl]C2C2C2]C3C3C3~DDDD

as the

Note: Field and subfield delimiters cannot be created except
with this function or the INS function. The field delimiters
are not really the characters ~ and] because the parity bit is
turned on to indicate that the character is a delimiter and not
a normal ASCII character.

RIGHT$(<string-exp>,<n~» Returns the substring of the string expression from
the nth character through the last character in the string
expression where n is the value of the numeric expression.

Example: PRINT RIGHT$(A$,20)
TUVWXYZ

RPAD$(<String-exp>,<n~» Adds trailing spaces to a string. The two
expressions are evaluated and the resulting string expression is
expanded to the length indicated by the value of the numeric
expression by adding sufficient trailing spaces. If the string

STRIBG FUBCTIORS - 212 - BASIC

CBAPTBR. 10: FOBCTIOIIS

expression is
indicated no

already greater
spaces are added

than
and

'or equal to the length
the string is returned,

unmodified.

Example: PRINT "1I"jRPAD$("1234",6)j"II"
111234 II

PRINT "1I"jRPAD$("1234",3)j"II"
11123411

RPT$(<n~>,<string-exp» Generates a string of <num-exp> repetitions of the
<string expression>.

Example: PRINT RPT$(3,"ABCD")
ABCDABCDABCD

RTRIK$(<string-exp» Removes trailing spaces from a string. The string expression
is evaluated and any trailing spaces are removed.

Example: PRINT "II" jRTRIM$ ("
II ABC DEFII

ABC DEF ") j "II"

SPACE$(<n~» Returns a string of spaces of <num-exp> length.

STR$(<n~»

Tnm$(<n~»

Example: PRINT LEFT$(A$,3)&SPACE$(4)&MID$(A$,4,5)
ABC DEFGH

Indicates a string of numeric characters representing the value
of the numeric expression. There are no leading or trailing
blanks.

Example: PRINT "ABC";STR$(1.23)j"DEF"
ABC1.23DEF

PRINT "ABC"j1~23;"DEF"
ABC 1.23 DEF

Indicates a string of characters in normalized time format
(i.e., hh:mm:ss) representing the numeric expression interpreted
as the number of seconds since midnight of the current day. The
value 0 (zero) is interpreted as the current time of day.

Example: PRINT TIME$(7199),TIME$(0)
01:59:59 15:24:32

TRIK$(<string-exp» Removes any leading or trailing spaces and reduces all embedded
multiple spaces to a single space.

BASIC

Example: PRINT "II" jTRIM$ ("
IIABC DEF HIJII

- 213 -

ABC DEF HIJ ") ; "II"

SDDTG FOBCTIOBS

BASIC REFERENCE HANUAL

10.4 Input/Output Functions

INP Returns the ASCII, integer value of the first character of the
last input, if the first character was a control character or a
user defined key. When the first character was not a control
character, the value of the function is O. For example: if the
last input was a CTRL/D the value of the INP is 4. If the last
input was a CTRL/Z the value of INP is 26. If the last input
was ABCDEFG the value of INP is O.

LINE (<num-exp»

PAGE (<num-exp»

POS (<num-exp»

I/O I1JBCTlOBS

Also see the appendix on "User Definable Keys".

Returns the integer value of the ATTACHed line length of device
opened on the I/O channel whose value is <num-exp>. I/O channel
o may be used to indicate the console device.

Example: PRINT LINE(O) REM Console terminal
79

Returns the integer value of the ATTACHed page length of device
opened on the I/O channel whose value is <num-exp>. I/O channel
o may be used to indicate the console device.

Example: PRINT PAGE(O) REM Console terminal
23

Returns the integer count of the number of characters output on
the I/O channel indicated by the numeric expression.

Example: PRINT "123456";POS(O)
123456 6

- 214 - BASIC

10.5 Log~cal Funct~ons

The following functions allow
value (binary word--16 bits).
value will be integerized.

CHAPTER. 10: I'DRCTIOBS

the programmer to manipulate the bits of an integer
All of the arguments are numeric expressions whose

LRL{<n~I>,<n~2» If the value for either of the expressions is negative
then it is replaced with the value O. If the first exprression
is greater than 65535 then it is replaced with the value O. If
the second expression is greater than 15 then it is replaced
with the value O. A logical rotate left is performed on the
first integer for <num-exp2> bit positions.

LRR{<n~I>,<n~2» If the value for either of the expressions is negative
then it is replaced with the value o. If the first expression
is greater than 65535 then it is replaced with the value O. If
the second expression is greater than 15 then it is replaced
with the value 9. A logical rotate right is performed on the
value of <num-expl> for <num-exp2> bit positions.

LSL{<n~xpl>,<n~2» If the value for either of the expressions is negative
then it is replaced with the value O. If the first expression
is greater than 65535 then it is replaced with the value O. If
the second expression is greater than 15 then it is replaced
with the value 9. A logical shift left is performed on the
value of <num-expl> for <num-exp2> bit positions.

LSR{<num-expI>,<n~2» If the value for either of the expressions is negative
then it is replaced with the value O. If the first expression
is greater than 65535 then it is replaced with the value O. If
the second expression is greater than 15 then it is replaced
with the value 9. A logical shift right is performed on the
value of <num-expl> for <num-exp2> bit positions.

BASIC - 215 - LOGICAL FUBCTIOBS

BASIC 1lEFERERCE HARUAL

10.6 File Function

EOF (<nUlll-elqJ>)

FILE P'OBCTIOR

The numeric expression is evaluated and the I/O channel
corresponding to that value is checked for end-of-file
condition. If the channel has not reached end-of-file the value
of the function is 0 (false). If the channel has reached
end-of-file the value of the function is -1 (true).

Channel zero (console) is never at end-of-file and will cause an
error if tested with this function. Use the INP function to
test for a CTRL/Z.

- 216 - BASIC

CHAPTER. 10: I'IJIICTlORS

10.1 Error Functions

The following two functions do not have any arguments and should only be used in an
error handling routine (see ON ERROR and RESUME statments).

BASIC

Returns the integer line number of the statement causing the
error to occur. A value of zero is returned if no error has
occured.

Note: When this function is used on the left side of a
relational expression and an unsigned integer is used on the
right side of the same relational expression the RENUMBER
command will assume that the unsigned integer is a line number
and adjust it accordingly.

Returns the integer error number of the error that occured. A
value of zero is returned if no error has occured. For a list
of error numbers, their meanings and what might cause them see
the appendix "Error Messages".

This function may be assigned a value with the LET statement in
order that error handling routines may be tested.

- 211 - ElUWR FDRCTIOBS

BASIC RD'ERERCE HARUAL

10.8 USR Function

The USR function allows the BASIC programmer to interface a assembler language
subroutine to the BASIC language program.

When the user requires a procedure to be accomplished that requires real-time
processing or can only be done with the features of the CPU that are not available
to the BASIC program, he must write an assembler language program. In many cases
it is advantageous to only have a part of the procedure written in assembler code
with the more routine processes accomplished with a BASIC language program. In
order to transfer control and data between the user written subroutine and the
BASIC program the USR function is used.

USR(<addr>,<n~»

USR(<addr>,<String-exp»

<addr>

<num-exp>

<string-exp>

refers to the entry point address, relative to the load address
of the assembler subroutine.

when evaluated and rounded to the nearest integer, is the
sixteen bits of signed ~nteger data to be transmitted to the
assembler subroutine via the HL registers. When the subroutine
is ready to return control back to BASIC the numeric value to be
assigned to the function should be placed in the HL register
pair.

when evaluated, is left in the "string accumulator". The
address of this string accumulator is placed in the HL register
pair before control is given to the user subroutine. The string
accumulator is a 256 byte area that contains a one byte length
followed by up to 255 characters. This area may be used by the
subroutine as long as care is taken not to exceed the 256 byte
limit. When the subroutine is ready to return control back to
BASIC, it should load the HL register pair with the address of
the string that is to be returned.

The USR function is a standard function call and may be used in any position of a
BASIC statement that the other functions may be used.

Only one user written assembler language subroutine may be in memory while BASIC is
executing, however the one subroutine may in fact be several subroutines
concatenated together. Information may be found regarding assembly language
programming in the OASIS MACRO Assembler Language Reference Manual.

The subroutine is loaded into memory by specifying it in an OPTION USR statement.

The OASIS MACRO Assembler Language Reference Manual has an example of a USR
routine.

un I'DRCTIOR - 218 - BASIC

APPENDIX A

RESERVKD WORDS

The following words are reserved and may not be used for variable names. The
notation [••• l means that a variable may not even start with the word indicated, if
that variable is ever used with an implied LET statement.

===

ABS FIX MAX RIGHT
AND FLOAT MID RND
ASC FNEND MIN ROUND
AT FN [••• 1 MOD RPAD
ATN FOR MOUNT RPT
BIN FORMAT NBR RTRIM
BINOF GET NEXT RUN
CASE GOSUB OCT SCH
CEND GOTO OCTOF SEC
CHAIN HEX ON SELECT
CHR HEXOF OPEN SGN
CLEAR IF OPTION SIN
CLOSE IFEND OR SLEEP
COMMON IMP OTHERWISE SPACE
COS INP OUTPUT SQR
CRT INPUT OVR STEP
CSI INS PAGE STOP
DATA INT PI STR
DATE LEFT POS TAN
DAY LEN PRINT THEN
DEF LET PROMPT TIME
DEL LINE PUT TRIM
DELETE LINK QUIT UNLOCK
DIM LINPUT QUOTE USR
DTE LOG RANDOMIZE VAL
ELSE LPAD READ WAIT
END LRL READNEXT WEND
EOF LRR REM WHILE
EQV LSL REM [••• 1 WRITE
ERL LSR REP XOR
ERR LTRIM RESTORE
EXP HAT RESUME
EXT MATCH RETURN

===

* All "variables" that start with the letters FN will always be treated as a
reference to a user defined function. (See DEF statement.)

BASIC - 219 - RESERVED WRDS

APPENDIX B

USER. DEFINABLE KEYS

OASIS BASIC allows the programmer to code programs in such a manner that he can
test whether certain keys were entered and then take whatever action he has
programmed. These certain keys are the control keys, usually refered to by CTRL/x
where x is one of the standard alphabetic keys modified by the control key.

When a program asks for keyboard input (MAT INPUT, INPUT, LINPUT, or LINPUT USING,)
and the operator responds with a control key, program control will return to the
BASIC program. The operator need not type a carriage return after the control key.
No characters will be displayed on the console device when the operator types a
control key.

The program can test which control key, if any, was entered by using the INP
function. Only input f.rom the console keyboard (I/O channel 0) may be tested with
the INP function. The programmer may specify whatever action he wishes when the
correct control key is entered.

This can be a very useful feature if the programmer is consistent in defining the
meanings of the control keys. For instance he may define the CTRL/D to mean the
current date. This is obviously easier for the operator to enter than typing the
current date. It is also safer than programming a carriage return only to mean the
current date or some other default value.

Some terminals have additional keys available to the operator. These are generally
called function or program keys. If these keys generate an 8 bit code that is not
one of the displayable ASCII characters then these keys may also be used as user
definable keys by BASIC. The displayable ASCII characters have decimal values
between 32 and 127, inclusive. To determine the exact values generated by these
keys refer to the operators or users manual for the specific terminal.

Example:

The following is a simple program that shows the user definable key feature of
OASIS BASIC.

10 OPTION PROMPT CHR$(O)
20 LOOP: PRINT "Please type a control key: If;
30 LINPUT USING "!",KEY$\PRINT
40 IF INP=O THEN IF KEY$<>"" THEN GOTO ERROR
50 PRINT "The key you typed has a value of";INP;
60 PRINT "and was the key "; CRR$ (INP+64)
70 GOTO LOOP
80 ERROR: PRINT "You don't follow directions very well."
90 GOTO LOOP

USER. DEFINABLE KEYS - 220 - BASIC

APPENDIX B: USER DD'IRABLE KEYS

B.l Control Key Values

Key Value Key Value Key Value Key Value
===

@ 0 H 8 * P 16 X 24
A 1 I 9 * Q 17 y 25
B 2 J 10 R 18 Z 26
C 3 K 11 S 19 [27 **
D 4 * L 12 T 20 \ 28
E 5 M 13 U 21] 29
F 6 * N 14 V 22 30
G 7 0 15 W 23 31 ***

===

* These key values are used for editing by LINPUT USING, and/or INPUT statments.

** This is the escape code. Because the system control keys are escape sequences
entry of this key once is an indication to OASIS that the next character may be a
system request. To get a value 27 passed to the INP function the operator must
type this key twice. When this is done one escape character is passed to BASIC
which, if it is the first character of an input field, will set the INP function to
27.

*** This value may also bew generated by some terminals by a CTRL/DEL or CTRL/RUB.

Some systems have other keys that may be tested by this function. If this
situation is possible then you should use the above program to detect and determine
the value of the specific keys.

It is possible that a particular system may have other or different keys that are
trapped by the operating system and never passed to the BASIC program. It is also
possible that some keys may generate different values than those listed here. Both
of these situations are dependent upon the SET values for: RUB OUT , LEFT, RIGHT, UP,
DOWN, CANCEL and ESCAPE. For more information see the chapter "SET COMMAND" in the
OASIS System Reference Manual.

BASIC - 221 - USER. DEFDiABLE IEYS

BASIC B.EFERENCE HANDA!.

USER. DEPD1ABLE KEYS - 222 - BASIC

APPENDIX C

CmtHAND SDHHARY

===

AUTO

BOTTOM

BREAK

CHANGE

CONTINUE

DELETE

DOWN

HELP

INDENT

LENGTH

LIST

LOAD

LOCATE

LPLIST

LPXREF

MODIFY

BASIC

AUTO [<start line>[,<increment value>]]

BOTTOM

BREAK [AT <line reference> [AFTER <count>]]
BREAK [ON <variable> [CHANGE] [AFTER <count>]]
BREAK [ON <variable> <relation> <value>]

CHANGE /from string/to string/ [<range>]

CONTINUE

DELETE [<range>]

<line-feed>
<down arrow key>

HELP

INDENT [<indent value>]

LENGTH

LIST [<range>]
<carriage return>

LOAD <program name> [<program type>]

LOCATE /<string>/ [<range>]

LK[n]LIST [<range>]

LP[n]XREF

MODIFY [<range>]

- 223 - COHHABD SlJIIIWlY

BASIC 1lD'ERERCE HARUAL

QUIT

BENUHBER.

SAVE

STEP

TOP

TRACE

URTRACE

UP

VARS

NAME [<program name>[.<program type>[:<program disk>]]]

QUIT
QUIT

[<number>]
[<unquoted string>]

RENUMBER [<first> [<incr> [<start> [<end>]]]]

~~ [<program name>] [<starting line>]

SAVE [<program name> [<program type> [<program disk>]]]

STEP [<count>]

TOP

'XRACE
.'KRACE VARS

UNBREAK [AT <line reference>]
UNBREAK [ON <variable>]

U~TRACE

<up-arrow key>
<control/Z>

VARS [<variable list>]

XREF
===

COIDfAIID SUHHAIlY - 224 - BASIC

I'"

"-~/

APPDlDIX D

===
CASE

[<line-no>] [<label>] CASE <expression>

CERD
[<line-no>] [<label>] CEND

CHAIR
[<line-no>] [<label>] CHAIN <string expression>[,<line-no>]

CLEAR.
[<line-no>] [<label>] CLEAR [<variable list>]

CLOSE
[<line-no>] [<label>] CLOSE II<channel>

COHHOB
[<line-no>] [<label>] COMMON <variable list>

CSI
[<line-no>] [<label>] CSI <string expression>

DATA
[<line-no>] [<label>] DATA <literal>[,<literal>] •••

DEI"
[<line-no>] [<label>] DEF FN<simple variable>[«arg list»] [= <expression>]

DELETE

DIH

ELSE

[<line-no>] [<label>] DELETE #<channel>,<key>

[<line-no>] [<label>] DIM <simple var>«numeric expr>[,<numeric expr>]» •••

[<line-no>]
[<line-no>]

ELSE <statement>
ELSE <line number>

[<line-no>] [<label>] END

I'NEND

FOR.

GET

[<line-no>] [<label>] FNEND

[<line-no>] [<label>] FOR <num var>=<num exp> TO <num exp>[STEP <num exp>]
[<line-no>] [<label>] FOR <var> = <literal list>

[<line-no>] [<label>] GET <device> <numeric expr>,<variable list>

GOSUB
[<line-no>] [<label>] GOSUB <line reference>
[<line-no>] [<label>] GO SUB <line reference>

BASIC - 225 - S"lATDfEBT S1JHHAIlY

BASIC REFERENCE MANUAL

COTO

IF

[<line-no>] [<label>] GOTO <line reference>
[<line-no>] [<label>] GO TO <line reference>

[<line-no>] [<label>] IF <relation> THEN <statement> [ELSE <statement>]
[<line-no>] [<label>] IF <relation> THEN <line-ref> [ELSE <line-ref>]
[<line-no>] [<label>] IF <reI>

IFEND
[<line-no>] [<label>] IFEND

INPUT

LET

LINK

[<line-no>] [<label>] INPUT [<prompt expression>,]<variable list>
[<line-no>] [<label>] INPUT #<channel>:<variable list>
[<line-no>] [<label>] INPUT #<channel>,<key>:<variable list>

[<line-no>] [<label>] [LET] <string variable> = <string expression>
[<line-no>] [<label>] [LET] <numeric var> = <numeric expr>
[<line-no>] [<label>] [LET] <string variable><substring> = <string expr>
[<line-no>] [<label>] [LET] <user defined function> = <expression>
[<line-no>] [<label>] [LET] ERR = <numeric expression>

[<line-no>] [<label>] LINK <string expression>[,<line-no>]

LINPUT
[<line-no>] [<label>] LINPUT [<prompt expression>,]<string variable>
[<line-no>] [<label>] LINPUT #<channel>:<string variable>
[<line-no>] [<label>] LINPUT #<channel>,<key>:<string variable>
[<line-no>] [<label>] LINPUT [<prompt expr>,]USING<string expr>,<string var>

HAT
[<line-no>] [<label>] MAT <array name> = <array name>
[<line-no>] [<label>] MAT <array name> = «expression»

HAT INPUT
[<line-no>] [<label>] MAT INPUT <array name>
[<line-no>] [<label>] MAT INPUT #<channel>: <array name>
[<line-no>] [<label>] MAT INPUT #<channel>,<key>: <array name>

HAT PRINT
[<line-no>] [<label>] MAT PRINT <array name list> <punct>
[<line-no>] [<label>] MAT PRINT #<channel>: <array name list> <punct>
[<line-no>] [<label>] MAT PRINT #<channel>,<key>: <array name list> <punct>

HAT READ
[<line-no>] [<label>] MAT READ <array name>
[<line-no>] [<label>] MAT READ #<channel>: <array name>
[<line-no>] [<label>] MAT READ #<channel>,<key>: <array name>

HAT WR.I.TE
[<line-no>] [<label>] MAT WRITE #<channel>: <array name>
[<line-no>] [<label>] MAT WRITE #<channel>,<key>: <array name>

STATEHERT S1JHHA1lY - 226 - BASIC

APPENDIX D: STATEHERT SUHHAIlY

HOUNT
[<line-no>] [<label>] MOUNT <string expression>

<line-no> NEXT [<variable>]

ON ERROR

ON

OPEN

[<line-no>] [<label>] ON ERROR GOTO <line reference>
[<line-no>] [<label>] ON ERROR GO TO 0

[<line-no>] [<label>] ON <numeric expression> GOTO <line reference list>
[<line-no>] [<label>] ON <numeric expression> GOSUB <line reference list>

[<line-no>] [<label>] OPEN #<channel>: <string expr>,<mode> <method>[<options>]

OPTION
[<line-no>] [<label>] OPTION <option lis t>

OTHERWISE
[<line-no>] [<label>] OTHERWISE

PRINT
[<line-no>] [<label>] PRINT [<expression list><punct>]
[<line-no>] [<label>] PRINT #<channel>[:<expression list><punct>]
[<line-no>] [<label>] PRINT #<channel>,<key>[:<expression list><punct>]

PRINT USING
[<line-no>] [<label>] PRINT USING <mask>,<expression list><punct>
[<line-no>] [<label>] PRINT USING #<channel>: <mask>,<expr list><punct>
[<line-no>] [<label>] PRINT USING #<channel>,<key>: <mask>,<expr list><punct>

PUT
[<line-no>] [<label>] PUT <device> <numeric expression>,<expression list>

QUIT
[<line-no>] [<label>] QUIT [<expression>]

RANDOHIZE
[<line-no>] [<label>] RANDOMIZE

[<line-no>] [<label>] READ <variable list>
[<line-no>] [<label>] READ #<channel>: <variable list>
[<line-no>] [<label>] READ #<channel>,<key>: <variable list>

READNEXT
[<line-no>] [<label>] READNEXT #<channel>,<string key>: <variable list>

[<line-no>] [<label>] REM <any characters>

RESTORE
[<line-no>] [<label>] RESTORE [<line reference>]

I

BASIC 227 - S"I.ATEHEIrr SUHHAIlY

BASIC JlEI'ERERCE JWmAL

IlESUHE
[<line-no>] [<label>] RESUME <line reference>
[<line-no>] [<label>] RESUME 0

JlETOD
[<line-no>] [<label>] RETURN [<line ref>]

RUB
[<line-no>] [<label>] RUN [<string expression>] [,<line number>]

SELECT
[<line-no>] [<label>] SELECT [<variable>]

SLEEP

STOP

WAIT

[<line-no>] [<label>] SLEEP <numeric expression>

[<line-no>] [<label>] STOP [<expression>]

[<line-no>]
[<line-no>]

THEN <statement>
THEN <line number>

[<line-no>] [<label>] WAIT
[<line-no>] [<label>] WAIT DEVICE <numeric expression>
[<line-no>] [<label>] WAIT PORT <numeric expr>,<numeric expr>[,<numeric expr>]
[<line-no>] [<label>] WAIT MEMORY <numeric exp>,<numeric exp>[,<numeric exp>]

[<line-no>] [<label>] WEND

WHILE
[<line-no>] [<label>] WHILE <numeric expression>

WJl.ITE
[<line-no>] [<label>] WRITE #<channel>: <expression list>
[<line-no>] [<label>] WRITE #<channel>,<key>: <expression list>

===

STATEMENT SUHHAB.Y - 228 - BASIC

APPENDIX E

FUNCTION SUHHARY

In the following summary the arguments N, Nl, and N2 all represent numeric
expressions; the arguments A$ and B$ all represent string expressions.

ABS(B)

ASC(A$)

AT$(Nl,N2)

ATH(N)

BIN (A$)

BINOF$(N)

CHR$(N)

COS(N)

CRT$(A$)

DATE$(N)

DAY (A$)

Returns the absolute value of N.

Returns the ASCII value of the first character in A$.

Returns the string of characters that, if printed, would position
the cursor at Nl,N2. (Nl is horizontal, N2 is vertical.)

Returns the arctangent of N (N in radians).

Returns a decimal value for the binary A$.

Returns a string representing the binary value of N.

Returns the character having the ASCII value of N.

Returns the cosine of N (N in radians).

Performs non x/y console output control.

Internal date to external date.

External date to internal date.

DKL$(A$,NI,N2,B$) Returns the string of A$ with field designated by Nl and N2
removed.

DTE$(A$)

EOF(R)

ERL

EXP(N)

EXT $ (A$,RI,N2)

FIX(R)

FLOAT(R)

FOItHAT$(R,A$)

BEX(A$)

BEXOF$(R)

BASIC

Test A$ for valid date. When valid converts to normalized format,
else returns null string.

Returns End-of-File flag for I/O channel N.

Returns line number of statement causing error.

Returns number of error.

Returns the value of e~N.

Returns the substring ~f A$ for field Nl of A$ and subfield N2 of
field Nl.

Returns the integerized value of N.

Converts integer N to floating point.

Formats N according to mask A$.

Returns a decimal value for the hexadecimal A$.

Returns a string representing the hexadecimal value of N.

- 229 - FOBCTIOB SDIIHAIl.Y

BASIC :REFERENCE MANUAL

IRP Returns the numeric value of the confrol character input to
console.

INS$(A$,NI,R2,B$) Returns the string of A$ with string B$ inserted after the
substring of A$ for field Nl of A$ and subfield N2 of field Nl.

INT(R)

LEFT $ (A$,N)

LER(A$)

LIBE(N)

LOG (B)

LPAD$(A$,R)

LRL(BI,R2)

LRR(Rl,N2)

LSL(Rl,B2)

LSR(BI,B2)

LTRIH$(A$)

MATCH(A$,B$)

HAX(BI,B2)

KID$ (A$,BI,B2)

MIB(BI,N2)

MOD (BI,B2)

BBI.(A$)

OCT (A$)

ocml' $ (B)

Returns the greatest integer which is less than or equal to N.

Returns the substring of A$ from the first character to the Nth
character.

Returns the length of string A$.

Returns line length of device opened on channel N.

Returns the natural logarithm of N.

Adds leading spaces to A$ to make string of length N.

Logical rotate left Nl for N2 bit positions.

Logical rotate right N1 for N2 bit positions.

Logical shift left N1 for N2 bit positions.

Logical shift right N1 for N2 bit positions.

Remove leading spaces from string A$.

Tests string A$ against mask B$; returns true/false (-1/0).

Returns the greater value of N1 and N2.

Returns the substring of A$ from the N1th character for N2
characters.

Returns the lessor value of N1 and N2.

Returns remainder of N1 divided by N2.

Test A$ for numerics. Returns 0 if any non-numeric characters in
A$, else returns -1.

Returns a decimal value for the octal A$.

Returns a string representing the octal value of N.

OVR$(A$,RI,B2,B$) Returns A$ with B$ overlaid, starting at N1th character for N2
characters.

PAGE (B) Returns page length of device opened on channel N.

PI Returns the constant value 3.141592653590.

POS(B) Returns the current character position of output channel N.

FOBcnOB SUHllAR.Y - 230- BASIC

APPENDIX It: FDBCTIOR SlJIMA1l.Y

REP$(A$,NI,N2,B$) Returns the string of A$ with string B$ replacing the substring
of A$ for field N1 of A$ and subfield N2 of field N1.

RIGHT $ (A$,N)

RND

ROUND (NI ,N2)

RPAD$(A$,N)

RPT$(NI,A$)

RTRDI$(A$)

SCH(NI,A$,B$)

SEC (A$)

SGN(R)

SIN(R)

SPACE$(N)

SQR(N)

STR$(N)

TAN(N)

TIHE$(N)

TRIH$(A$)

USR(NI,N2)

USR$(N,A$)

VAL (A$)

BASIC

Returns the substring of A$ from the Nth character to the end.

Returns a random number between 0 and 1, exclusive.

Rounds N1 to number of positions indicated by N2.

Adds trailing spaces to A$ to make string of length N.

Returns the string of N1 repetitions of A$.

Removes trailing spaces from string A$.

Returns the character position of the string B$ within A$ with the
search starting at character position N1.

External time to internal time.

Returns the algebraic sign of N (+ or -).

Returns the sine of N (N in radians).

Returns the string of N blanks.

Returns the square root of N.

Returns the string of characters representing the number N.

Returns the tangent of N (N in radians).

Internal time to external time.

Remove leading and trailing spaces from string A$.

Calls assembly subroutine at relative location N1, passing N2 to
the routine.

Cals assembly subroutine at relative location N, passing A$ to the
routine.

Returns the numeric value of A$.

- 231 - FOJICTIOR SUHlWtY

BASIC RD'ERERCE HANUAL

FURCTIOB S1JHHAB.Y - 232 - BASIC

APPENDIX F

ERIlOR HESSAGES

F.l Co..and Errors

AUTO cannot replace or merge lines

Indicates that the AUTO command attempted to use a line number already in
use or that there was a line whose line number was between the last auto
line number and the next auto line number to be used.

Disk Full

Indicates that the disk used by the SAVE command is full. Remember that
saving an existing file causes the previous version of the file to be
renamed BACKUP.

Insufficient IleJmry

An attempt was made to add another line to the program in memory that
could not fit into the available memory.

Invalid cOJlllllal1d syntax

Indicates that the command was recognized but a syntax error was detected.

Invalid Prograa Hame

An attempt was made to NAME, SAVE, LOAD, or COMPILE a program using an
invalid name. The program name must be at least two characters in length
and start with a letter.

Invalid Statement Humber

An attempt was made to enter or display a line with an invalid line
number. Line numbers must be between 1 and 9999.

Renumber Range Error

Indicates that the
command would cause
program.

line numbers
lines to

that would be generated by the RENUMBER
change their relative location in the

String missing or invalid

Occurs on a CHANGE or LOCATE command when no previous CHANGE or LOCATE
command has been executed and no valid string arguments were specified.

Unrecognized command

BASIC

Indicates that the command name was abbreviated too much or misspelled to
an extent that the command desired could not be discerned.

- 233 - EJUlOR :MESSAGES

BASIC REFERERCE MARUAL

F.2 Edit Errors

Comma Required

Colon Required

End of Line Required

Equal Sign Required

ExpresSion Required

File Mark Required

Keyword M1ssing or mis-spelled

M1ssing Parenthesis

Numeric Expression Required

Numeric Variable Required

Statement Bumber Required

String Expression Required

String Variable Required

Terminating Quote Required

Too Many Subscripts

Unbalanced Parenthesis

Unrecognized Statement

F.3 Compi1e Errors

Undefined Line

The compiler detected a reference to a line number that was never used in
the program. The reference will be adjusted to the first line number used
that is greater than the line referenced.

Undefined Label

The compiler detected a reference to a line label that was never defined
in the program. The reference will be adjusted to the first line number
used in the program.

ERROR KESSAGES - 234 - BASIC

APPENDIX F: ERIlOB. MESSAGES

F.4 Execution Errors

The following errors may occur during the execution of a program. They are all
trappable by user written error routines unless stated otherwise. In general, the
non-trappable errors indicate a programming logic error that could not be corrected
at run time anyway.

1 ESC-C

Operator typed an ESC,C during execution of the program.

2 Divide by Zero

Occurs during expression analysis if an attempt is made to divide by zero.

3 Overflow

An integer expression resulted in a value outside the range -32767 to
+32767 or a floating point exprression resulted in a value outside the
range of -lO~126 to +lO~126.

4 Underflow

A floating point expression resulted in a value outside the range of
-lO~-126 to +lO~-126.

5 Illegal Number

Occurs on input type statements or string to numeric conversion type
functions when the string of characters contains characters that are not
allowed in numeric fields.

6 SQR of Negative

7 LOG of Zero

8 LOG of Negative

9 Insufficient Memory (non-trappable)

Occurs during execution when a statement attempts to define additional
working storage that exceeds the amount of memory available.

10 Line not Found (non-trappable)

Occurs on the statements: CHAIN, ELSE, GOSUB, GOTO, LINK, ON ERROR, ON,
RESTORE, RESUME, RETURN, RUN, or THEN when the line number specified is
not used in the program.

11 Label not Found (non-trappable)

BASIC

Occurs on the statements: ELSE, GOSUB, GOTO, ON ERROR, ON, RESUME, and
RETURN, when the line label specified is not defined in the program.

- 235 - EllROB. HESSAGES

BASIC REI'EIlERCE HANUAL

12 Return StaCk Empty (non-trappable)

Occurs on the RETURN statement when there is no GOSUB in effect.

13 Vend without Whi1e (non-trappable)

Occurs on the WEND
statement without a
encountered.)

statement when there is no
WEND is okay because

14 Next without For (non-trappable)

Occurs on the NEXT
statement without a
encountered.)

15 Insufficient Data

statement when
NEXT is okay

there is
because

WHILE in effect. (A WHILE
the end of the program is

no FOR in effect. (A FOR
the end of the program is

Occurs on the INPUT statement when multiple fields are to be input and
fewer fields are actually entered.

16 Inva1id Fi1e Humber (non-trappable)

Can occur on any of the file I/O statements
expression is less than 1 or greater than 16.
the file functions.

17 Resume without Error (non-trappable)

when the channel number
Can also occur on any of

Occurs on the RESUME statement when there is no error in effect.

18 Inva1id Address (non-trappable)

Can occur on any of the statements or functions that access memory when
the address is out of range.

19 Inva1id Separator

Occurs on input statements.

20 ON Range Error

Occurs in the ON GOSUB or ON GOTO statement when the numeric expression is
less than one or greater than the number of line references specified.

21 Cend without Se1ect (non-trappable)

Occurs on the CEND statement when there is no SELECT in effect. (A SELECT
statement without a CEND is okay because the end of the program is
encountered.)

22 Type Mismatch (non-trappable)

23 Inva1id Zero Dimension (non-trappable)

Occurs if an OPTION BASE 1 has been executed and a reference is made to

DROR MESSAGES - 236 - ~IC

APPENDIX 1': ER1lOR. MESSAGES

the zero subscript of an array.

24 Inconsistent Usage (non-trappab1e)

Occurs when a DIM or COMMON attempts to dimension a
name as a varib1e already defined or after an array
reference is made to the same name in a variable.

array with the same
is dimension and a

25 Subscript Range (non-trappab1e)

Occurs on any reference to a subscripted array less than or greater than
the number of elements dimensioned in the array.

26 Inva1id Using (non-trappab1e)

Indicates that a
expression field
was string.

PRINT USING statement mask specified string when the
was numeric or the mask specified numeric when the field

27 Fi1e is not Open

Occurs on an attempt to CLOSE an I/O channel that is not currently open.

28 Fi1e is Open

Occurs on an attempt to OPEN an I/O channel that is currently in use by
another file.

29 Inva1id File Bame

Occurs on the OPEN, CHAIN, RUN, or LINK statement when the file or program
name is invalid. File and program names must be at least two characters
in length and start with a letter. Program file types must be BASIC or
BASICOBJ. Can also occur on the OPEN statement when the device name is
mis-spelled.

30 File not Found

31 Disk Fu11

Indicates an attempt was made to add
wasn't sufficient space available on
sequential file format output.

32 Directory Fu11

33 Protected Fi1e

more data to the disk when there
the disk. Can only occur on

Indicates an attempt was made to OPEN a file that was read protected, or
an attempt was made to re-create a file that was delete protected, or an
attempt was made to output to a file that was write protected.

BASIC - 237 - EJUlOR. MESSAGES

BASIC REP'ERDlCE lfARUAL

34 Invalid Key

Indicates that an input or output type statement used a key on a
sequential format file or did not use the proper type of key for a direct
or indexed format file.

3S Wrong Access

Occurs on input type statements when the file was opened'for output or on
an output type statement when the file was opened for input.

36 Out of Data

Occurs on the READ statement when there are no more DATA elements in the
program.

37 Option Must be First (non-trappable)

Occurs on the OPTION BASE statement when there are variables defined.
Should perform a CLEAR first.

38 80 USR Program (non-trappable)

Indicates a reference to a USR function when there is not a USR program
loaded.

39 Invalid Drive Code (non-trappable)

Occurs on the MOUNT statement when the drive is invalid or not attached.

40 Program not Found (non-trappable)

Occurs on a CHAIN, LINK, or RUN statement if the specified program cannot
be found.

41 Invalid File Format (non-trappable)

Occurs on any attempt to input from a file created prior to version 5.31
OASIS and not converted with the FILECONV program; using READ on a record
that was output with a PRINT; or using INPUT on a record that was output
with a WRITE.

42 FNEND without DEF (non-trappable)

Occurs when an FNEND statement is encountered outside of a user defined
function definition.

43 DEl not found (non-trappable)

Occurs on any reference to a user defined function that is not defined in
the current program.

ERROR MESSAGES - 238 - BASIC

APPENDIX G

PROGRAM EXAMPLES

G.l Example One

-10 INPUT IIRadius of circlell,R
-20 PRINT IIDiameter =11; 2. *R
-30 PRINT IIArea =";PI*R 2.
-40 PRINT IICircumference =1I;2.*PI*R
-50 END
-RUN

Radius of circle? 2.5
Diameter = 5
Area = 19.63495408493
Circumference = 15.70796326795

G.2 Example TWo - String Conversion

The following example illustrates a method of translating the individual characters
of a string into the decimal equivalents.

-AUTO
10
20
30
40
50
60
70
80
90

100
-RUN

STRING$
3

BASIC

DIM X(3)
LET STRING$ = "CATII
X(O) = LEN(STRING$)
FOR 1% = 1 TO X(O)

X(I%) = ASC(MID$(STRING$,I%,l»
NEXT 1%

PRINT IISTRING$ = ";STRING$,"Length of STRING$ =";X(O)
PRINT X(0),X(1),X(2),X(3)
END

CAT Length of STRING$
67

3
65

- 239 -

84

BASIC :REFKRKRCE MANUAL

G.3 Example Three - Sine Wave

This example will produce a sine wave on the console terminal.

10 MAGNITUDE% = LINE(0)*3./8.
20 MIDDLE% = LINE(0)/2.
30 FREQUENCY = .175
40 FOR J = 0 TO 100 STEP FREQUENCY
50 SINE = INT(MAGNITUDE%*SIN(J))
60 PRINT SINE;TAB(MIDDLE%+SINE);"*"
70 NEXT

EXAHPLES - 240 - BASIC

APPENDIX G: P1WGB.AH EXAIIPLES

G.4 Example Four - B~ll of Materials

-AUTO
10 REM Accept Bill of Materials
20 PRINT "How many items";
30 INPUT ITEM.COUNT%
40 FOR 1% = 1 TO ITEM.COUNT%
50 INPUT Q(I%),P(I%)
60 NEXT
70 PRINT
80 REM Display Bill of Materials, extension, and total
90 PRINT "Item Quantity Price Amount"

100 PRINT
11 0 MAS K 1 $ = " 1111" & S P AC E $ (11) &" 1111111111" & S PAC E $ (9) &" $ 111111 • 1111" & S PAC E $ (7) &" $ II , 111111 .11
120 FOR 1% = 1 TO ITEM.COUNT%
130 PRINT USING MASKl$,I%,Q(I%),P(I%),Q(I%)*P(I%)
140 LET TOTAL = TOTAL+Q(I%)*P(I%)
150 NEXT
160 PRINT
170 LET MASK2$ =" TOTAL "&SPACE$ (35) &" $11,111111.1111"
180 PRINT USING MASK2$,TOTAL
190 END
200

-RUN

How many items? 5
? 2,750
? 25,23.50
? 10,85.35
? 145,.08
? 75,2.35

Item

1
2
3
4
5

TOTAL

BASIC

Quantity

2
25
10

145
75

Price

$750.00
$ 23.50
$ 85.35
$ 0.08
$ 2.35

Amount

$1,500.00
$ 587.50
$ 853.50
$ 11.60
$ 176.25

$3,128.85

- 241 - EXAHPLES

BASIC REFERERCE MANUAL

G.5 Examp1e Five

The following sample illustrates the use of three functions (INP, INS, REP) and
uses a disk file.

-AUTO
10 OPEN Ill: rrNAME.DATA:A",OUTPUT SEQUENTIAL\REM Create file
20 PRINT CRT$(IIC II); \REM Clear screen
30 PRINT AT$(1,6); "Name"; \REM Display all the input fields
40 PRINT AT$(1,7);"Address";
50 PRINT AT$(1,8);"City";
60 PRINT AT$(33,8);"State ll

;

70 PRINT AT$(53,8);"Zip";
80 PRINT AT$(1,9);"SSN";
90 OPTION PROMPT II:"

100 R$ = II"
110 PRINT AT$(5,6);
120 LINPUT USING II
130 IF INP = 26 THEN 999
140 R$ = INS$(R$,O,O,A$)
150 PRINT AT$(8,7);
160 LINPUT USING II
170 R$ = INS$(R$,l,O,A$)
180 PRINT AT$(5,8);
190 LINPUT USING "
200 R$ = INS$(R$,2,0,A$)
210 PRINT AT$(38,8);
220 LINPUT USING" If, A$
230 R$ = INS$(R$,3,1,A$)
240 PRINT AT$(56,8);
250 LINPUT USING" If, A$
260 R$ = REP$(R$,3,3,A$)
270 PRINT AT$(4,9);
280 LINPUT USING "
290 R$ = REP$(R$,4,0,A$)
300 PRINT III :R$
310 GOTO 20
320 END
330

\REM Initialize record
\REM Position for first input field

II, A$
\REM Entry of CTRL/Z means end
\REM A$ is first field
\REM Position for second input field

II, A$
\REM A$ is second field
\REM Position for third field
If, A$
\REM A$ is third field
\REM Position for fourth field

\REM A$ is second subfield of third
\REM Position for fifth field

\REM A$ is subfield 3 of third
\REM Position for sixth field

If, A$
\REM A$ is fourth field
\REM Create new record in file
\REM Start over

field

Lines 20 through 80, when executed, will display the field names:

Name
Address
City
SSN

EXAMPLES

State Zip

- 242 - BASIC

APPENDIX G: PlWGRAH EXAHPLES

Lines 110 through 280, when executed, position the cursor after each field name and
allow input. Each field input is saved in the string R$ with appropriate field
delimiters. For instance:

Name: JOSEPH E. BROWN
Address: 1234 S.E. MAIN STREET
City: SAN FRANCISCO
SSN: 123-45-6789

State: CA

The above entry will produce a record that looks like this:

Zip: 99999

JOSEPH E. BROWN~1234 S.E. MAIN STREET~SAN FRANCISCO]CA]99999~123-45-6789

The characters ~ and] are the field delimiters. They differ from the normal ASCII
character by having the parity bit turned on.

BASIC - 243 - EXAHPLES

BASIC REFERERCE HABUAL

G.6 Exa.p1e Six - Sequential Pile I/O

The following example illustrates file input and formatted output using the AT
function.

-AUTO
10 OPEN Ill: "NAME.DATA",INPUT SEQUENTIAL
20 LOOP: PRINT CRT$("C");
30 1% = 0
40 INPUT: LINPUT Ill: A$
50 IF EOF(l) THEN GOTO EXIT
60 PRINT AT$(6,I%+3);EXT$(A$,1,0);
70 PRINT AT$(6,I%+4);EXT$(A$,2,0);
80 PRINT AT$(6,I%+5);EXT$(A$,3,1);\L = LEN(EXT$(A$,3,1»
90 PRINT AT$(8+L,I%+5);EXT$(A$,3,2);\L = L+LEN(EXT$(A$,3,2»

100 PRINT AT$(10+L,I%+5);EXT$(A$,3,3);
110 PRINT AT$(6,I%+6);EXT$(A$,4,0);
120 1% = 1%+5 \ IF 1%+5 < 23 THEN GOTO INPUT
130 WAIT
140 GOTO LOOP
150 EXIT: END
160

Assuming that the file "NAME" contains the record from Example 5 the display will
be as follows:

JOSEPH E. BROWN
1234 S.E. MAIN STREET
SAN FRANCISCO CA 99999
123-45-6789

There will be four names per page with two blank lines separating each name from
the next.

EXAMPLES - 244 - BASIC

APPENDIX G: PIlOGllAH EXAMPLES

G. 7 Example Seven - Indexed File I/O - Sequential Access

The following example illustrates a simple sequential list to the primary printer
of a name and address file, printing in label format.

The format of the file being read is: Key name, last name first, separated by a
comma, space from first name; record = address, city, state, zip, etc.

-AUTO 1000
1000 OPEN Ill: "NAMES.ADDRESS", INPUT INDEXED
1010 OPEN 112: "PRINTER1", OUTPUT SEQUENTIAL, FORMAT
1020 READ: READNEXT 1I1,KEY$: ADDR$,CITY$,STATE$,ZIP$ \REM Get next record
1030 IF EOF(l) THEN 1170 \REM At end?
1040 C=SCH(KEY$,l,", ") \REM Find end of last name
1050 IF NOT C THEN 1070 \REM Not found - assume okay
1060 KEY$=RIGHT$(KEY$,C+2)&LEFT$(KEY$,C-1) \REM Restructure name
1070 PRINT 112: " ";KEY$ \REM Print the name
1080 IF LEN(ADDR$)=O THEN 1100 \REM If no address skip
1090 PRINT /12: " ";ADDR$
1100 PRINT /12: " ";CITY$;" ";STATE$;" "; \REM Print city and state
1110 IF LEN(ZIP$)=5 THEN 1130 \REM If zip full then skip
1120 ZIP$=FORMAT$(ZIP$,"99999") \REM Format Zip
1130 PRINT 112: ZIP$ \REM Print the zip code
1140 IF LEN(ADDR$)=O THEN PRINT /12: " " \REM Account for lost line
1150 PRINT /12: "-" \REM Triple space for next ' label'
1160 GO TO READ \REM Get another record
1170 REM End of file - clean up
1180 CLOSE III CLOSE 112 \QUIT
1190 END

In addition to illustrating the primary use of the READNEXT statement the above
program shows a method of formating a number with leading zeroes printing (see line
1120).

BASIC - 245 -

BASIC REFERENCE HANDA!.

G.8 Example Eight -,Indexed File Create

The following example illustrates a method of creating a new indexed file from a
BASIC program when the programmer is unsure of the amount of contiguous disk space
available. This routine allows the operator to specify the number of records
desired in the file or allows the operator to specify that the file is to be
allocated for the largest record count that will fit in the available space.

3550 Cl$=AT$(I,PAGE(O»&CRT$("EOS")
3552 C2$=AT$(I,PAGE(0»&CRT$("EOS")
3554 C5$=CHR$(7) REM Bell code
3560 REM Create new file
3561 REM SI = record length
3562 REM S2 = file size in records
3563 REM Keylen = 30
3564 REM S is number of bytes to be used for record+key+overhead storage
3565 REM SO is number of bytes to be used for sequential record pointers
3566 REM VI is number of contiguous bytes available on disk
3570 OPTION CASE "U"
3580 PRINT Cl$;"Please mount the disk to contain the file";F$
3590 PRINT "in the appropriate drive (Y /N) ,? ";R V$="N"
3600 SI=158 \ REM SI=RECLEN
3630 LINPUT USING V$,V$
3640 IF INP=17 OR INP=26 OR V$="" OR V$="N" THEN 3940
3650 PRINT Cl$;"How many records do you wish allocated? If;
3660 LINPUT USING" ",V$
3670 IF V$="" THEN S2=999999 \ GOTO 3700
3680 IF NBR(V$)=O THEN PRINT C5$; \ GOTO 3650 ELSE S2=VAL(V$)+3
3690 IF S2<=0 THEN S2=999999
3700 PRINT C2$;"What is the largest area on the disk?- If;
3710 LINPUT USING" ",Vl$
3720 IF Vl$="" OR NBR(Vl$)=O THEN PRINT C5$; \ GOTO 3700
3730 Vl=VAL(Vl$)*1024 \ REM Convert to bytes
3740 S3=SI+32 \ REM KEYLEN=30, overhead=2, S3=KEYLEN+RECLEN+2
3750 IF S2>Vl/S3 THEN S2=INT(Vl/S3) \ REM S2 must be realistic
3760 IF MOD(S2,4)<>3 THEN S2=S2-1 \ GOTO 3760
3770 IF S3*S2+S2*2>Vl THEN S2=S2-4 \ GOTO 3770\REM Make more realistic
3779 REM Take into account the overhead of rounding up to nearest 1024
3780 S=S2*S3 \ IF MOD(S,1024»0 THEN S=S+1024-MOD(S,1024)
3790 SO=S2*2 \ IF MOD(SO,512»0 THEN SO=SO+512-MOD(SO,512)
3800 IF S+SO>Vl THEN S2=S2-4 \ GOTO 3780\REM Make sure it will fit!
3810 REM Make S2 a prime number
3820 FOR I=S2 TO 3 STEP -4
3830 FOR J=3 TO SQR(I) STEP 2
3840 Jl=I/J
3850 'IF INT(Jl)=Jl THEN 3870
3855 NEXT
3860 GOTO 3880
3870 NEXT
3880 S2=I
3890 CLOSE #1
3900 CSI "CREATE "&F$&" (IND KEY 30 REC "&STR(SI)&" FILE "&STR$(S2)

Note that line 3570 will force input to be upper case only. Line 3640 validates
the yiN input--default to NO--and checks for exit (CTRL/Q or CTRL/Z indicate exit).
Lines 3680 and 3720 validate the input for a numeric value.

EXAMPLES - 246 - BASIC

APPENDIX G: PllOGRAH EXAHPLES

Line 3750 forces S2 to be a value that is close to the value to be used. Line 3760
then forces S2 to be the next lowest value whose remainder is 3 when divided by 4
(a requirement for indexed file sizes). Line 3770 then forces S2 to be a value
that would fit in the available space but does not take into account any rounding
to the nearest 1K boundary. Lines 3780 through 3800 then adjust S2 to account for
rounding, keeping modulo 4 of S2 = 3.

Lines 3810 through
indexed file sizes).

BASIC

3880 then force S2 to be a prime number (another requirement of
The STEP value of -4 keeps the modulo 4 of S2 = 3.

- 247 - EXAHPLES

