
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

BASIC
LANGUAGE
REFERENCE
MANUAL

'P ;.:=: ::~= -= § §; :=
~ SYSTEMS, INC. -

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

BASIC
LANGUAGE
REFERENCE
MANUAL

Second Edition

Revised

Documentation by: C. P Williams
Software by: Timothy S. Williams

------------== ~=-==.-- ---- ----- -----------------

_ 7700 EDGEWATER DRIVE SUITE 830

;;; OAKLAND, CALIFORNIA 94621 USA

PRBPACB
I

This manual describes the OASIS BASIC programming language inter'preter/comp!ler
available with the OASIS Oper~t1ng System.
It is intended to be a reference manual!' that is, the user is -assumed, to have
general programming skills. 'When this s the case this manual can instruct the
user on, the features and uses of OASIS BASIC." . ,

The OASIS BASIC lanrage conforms t06 and is an extension of, the American National
Standard for Minima BASIC., BSR X3.6 • . ' _' ,

The experienced BASIC programmer may fi~d the appendices sufficient for his use.
However, OASIS BASIC· offers many feat~res not found in standard Dartmouth BASIC,
ANSI, JIlinimal BASIC or other dialects of .. BASIC.. ',..

This manual, named BASIC ,like all OASIS documentation manuals, has' the manual
name and revision number (if applicable) in the lower, inside corner of each page
of the body of the manual. In most chapters of the manual the last primary subject
being discussed on a page will'be identified- in the lower outside corner of the
page.

Belated Doca.entatlOD

The following publications provide additional information that may be required in
the use of the OASIS BASIC language:

- 111-

tABLE OF CCM'filts

SeoUOD

CHAPTER 1 INTRODUCTION ••••••••••••••••••••••••••• -e ••••••• ' ••••••••••••••••••••

1 • 1 Organization of This Manual ••••••••••••••••••.•• ., .•••• .; •••••••••••••••••
1.2 Documentation Standards •••••••••••••••••••••••••••••••••• e ••• -•••••••••

1.3 BASIC Command Modules ".,
1 "li BASIC Program File Types ••• " •••••• " .. 0 0 • 0'0 0 ... II • 00 0 II " 0 ••• " •

1 • 5 Loading BASIC ~ •••.• 0 ••• ,; " • 0 eo" " • ••. • " ••••••••• ., ., •• e ••

1.6 BASIC and RUN Commands · oo •• o •••••••••••••••• oee ••••

1 .6.1 BASIC Interpreter o. e •• '! e •• cu> 0 • eEl •• ., •• e' e • ., ••• 0 .00 ••••••• 00 •••••

1,,6.2 BASIC Compiler .o ••• o •• ., •••••••••••••••• o,,"~ .. o.o ••••• e •• oeoo •••• o.

:1 .6., 3 Execution of Compiled Programs • ., • ., •• e •• ., 0 ••• 0 e e' ••••••• 0 e • " 0 • \) ••••

1.1 European Format tor Numbers ••••••••••••••• " •••••• 0"" •••••••••• &0 ••••••

CHAPTER 2 FEATURES OF THE LANGUAGE 0 e ••• 0' •••• 0 •••• eo •• 0 0 •• & ••••••• ., ••••• (I •• " ••

2 .. 1 Data Files ••••••• c .. e •• 0.0 •••• e •• · •• 0 e .'0 eo. o. e e." e •• e •. '"., •• 0'. e e ... «>." •••.•••
2.2 Cursor Control .c." • ., •• e ••••• e ••••• e ••••• " •••••••••••••••••••• " •• o ••• ~.
2 • 3 Chaining and Linking •••••••••••••••• ., ••••••••• 0 ••••••••••••••••••••• , ••

2.4 User Defined Control Keys ••••••••• 0 ••••••• ~ ••••••••••• o •••.• " ••••••••••

2.5 Compatibility ••••••••••••• ~ •••
2.6 Other Features •••••••••••••••••••••••••..•••••••••••••••••••••••••••••••

3 BECOMING FAMILIAR WITH BASIC •••••••••••••••• ., ••.••••••••••• ., ••••••••
Some Basic BASIC Concepts •••••••••••• .,,, •••• " ••••• 00" ,, ••••••••••

BASIC Uses Upper Case •••••••••••••••••••••••••••••••••.••••••••• ·0." ••• e •

~ping to BASIC ••••••••••••••••••••••• .,
Consistency in Listing •••••••••••••••••••••• ~ •• ,0 ••••••••• : •••••••• C!' ••••

CHAPTER 4 PROGRAMMING IN BASIC ••••••• 0 ••••••••••••••••••••••• '

4.1 Structure of a BASIC Program ." 0 0 ••••••• e •••• ~ 0, ••••••••••••••••••• -.

4. 1 • 1 Syntax •••••••••••••••••••• e •• 0 ••••••• o. 0

4.1.2 Character Set ••••• ".e" ••• " •• oe.e ••••• o.o •••••••• e ••••••••••••••••

, 4. 1 .3 Line FOl"llla t ••••• " ••••••••••••• e •• 0 ., ., ••• 0 ., " ••••••••••••••••••••• , ••

4.2 Statements •••••••••••••••••• GlClO ••••• CI •••• " •• iJ •••• e ••••••••••••••••••••

4.2.1 Single Statement, Multi-Statement Lines •••••••••••••••• ., •••••••••
4.3 Line Labels
4.4 Documenting Procedures •• O •••••••••••••••••••••••• CI ••••••••• & ••••••••••

4.5 Entering and M~difying Programs

••••••• ·.·.O •••• G •••••• OQOCl ••••• O ••••• COO ••••••••••••••••••••

••••••••••••• o •••• e ••••••••• · •••••••••••

CHAPTER 5 ELEMENTS OF THE BASIC LANGUAGE •••••••••••••••••••••••••••••••••••••
5·. 1 Constants 0 ••••••• " " •• · •••••••••••••••••••• 0 ••••••••••••••••••

·5.1 • 1 Numeric Constants ..•••••••••••••••••••• 0 5.1.2 Integer Constants
5. 1 .3 -String Constants .. .

5.2 Variables ... e·· ••

5.2.1 Numeric Variables ••• " ••••
••••••• · ••••••••••••••••••••••••• "'e •• " ••••• oo •••• 5.2.2 Integer Variables

5.2.3 String Variables •••••••••••••••••••••••••••••• " •• 00 •••• " •••••••••

5.3 Array Variables •••••••••••••••••••••••••••••• .- •••••••• 0 •••••••••••••••

5 .li Functions •••••.•••••••••••• & •••••••••••• " ••••••••••••••••• iii ••• e

5.'4. 1 Intrinsic Functions ••••••••••••••.•••••••••••••••• 0 " 0 •••• 0 0 •••••••

5.4.2 User Defined Functions •••••••••••••••••••••••••••••• 00 ••• " •••••••

5.4.3 USR Functions ••••••••••••••••••••••••••••••••••••••• ,,~ •• & ••••••••

5.5 Expressions ••••••• 0 •••••••• 0 " 0 ••• iii 0 " ••• "

•••••••••••• -e ••••••••••••••• e ••••• e 0 0 0 eo., e 0 5.5.1 Arithmetic Expressions
5.5.-2 String Expressions •• 0".
5.5.3 Logical. Expressions ••• " ••
5.5.4 Relational Expressions ••••••••••••••••••••• " ••••••• " •••• " ••••••••
5.5.5 Expression Evaluation ••••••••••••••••••••••••••••••••• " ••••••••••

CHAPTER 6 FORMATED OUTPUT •••••••••••••••• : •••••••••••••••• " •••••••••• 0 •••••••

6.1 NumeriC Field Masks •• " ••••••••••
6 • 1 • 1 Specifying Number of Digi ts ••••••••••• " •••••••••••••••• ' ••••••••••
6" 1 • 2 Decimal Point Specification ••••••••••••••••••••••••••••••••• 0 0 •• '.

6.1.3 Comma Specification ••
6.1.li Dollar Field Specification •••••••••••••••••••••••••••••••••••••••
6.1.5 Asterisk Fill Specification ••••••••••••••••••••••••••••••••••••••
6.1.6 Sign Specification ••• ".
6.1.7 Exponential Field Specification ••••••••••••••••••••••••••••••••••
6.1.8 Field Specification too Small ••••••••••••••••••••••••••••••••••••

6 .2 String Field Masks· •••••••.•• 0

6.2.1 Single Character •••
6.2.2 Left Justified Field •••

- iY-

1
1
1
1
2
2
2
2
2
4
4

6
6
6
6
6
6
7

8
8
§

10

12
12
12
12
12
13
13

~n
14

15
15
15
~g
16
17

lb
18
19
20
20
20
20
21
22
22
25
25

~~
28
28
29
29
30
30'
31
31
32

~~

TABLB ,. COiiiliS

6.2.3 Right Justified Field ••••••••••••••••••••••.•••••••••••• ___ •••••••••
6.2.li Center Justified Field ••••••••••••••••••••••••••••••.•••••••••••••
6.2.5 Extended Field •••••••••••••••••••••••••••.••••••••••••••••••••••••

6.3 Multiple Fields In One Mask •••
6.4 Re-usigg Mask Fields
6.5 Using Errors •••.•••••• ,; ••••••••

(

CHAPTER 7 USING FILES ••• G

7 • 1 Access Mode .. ,; ••••••••••••••
7.2 Access Methods - File Formats •••
7.3 Record Allocation Requirements
7 .4 Nul ti-User File. Protections •••

..
CHAPTER 8 CO~NDS •••••••••• ~ ••••••••••.••••••••••••••••••••••••••••••••••••• 0 •

8. 1 AUTO I Command •••••••••••••••••••••••• 0 •••••••••• ' •••••••••••••••••••••••

8.2 Bottom Command ~ ••••••••• Ii 0

8.3 BREAK Command ••••••••••••••••••••••••••••• 0 •••••••••••••••••••••••••••

8 • 4 CHANGE Command •••••••••••••••••••••••••••• -II •••••••••••••••••••••••••••

8 • 5 CONTINUE Command •••• 0 •••••••• ' ••••••••• 0 0 .• 0 ••••• 0 ••••••••••• 0 •••••• II> •••

8.6 DELETE Command· e •••.•• ,; ••••••••••••••••.•••••• Ii •

8.1 Down Command •••• ! •••••••••••••••••• ' •.•••• " •••••••••••••••••••••••••••••
8.8 HELP Command ••••••••••••••••••.•••••••••• OJ •• e ••• -•••••••.••••••••••••••••

8 .9 INDENT Command •••••• ' •••••••••••••••••••• 1/ •••••••••••••••••••••••••••••
8.10 LENGTH Command •••••••••••• ~ ••• e ••••••••••••••••••••.••• -••••••• e •••••••
8.11 LIST Command ••••••••••••• 0 0 .. .

8. 12 LOAD Command ••••••••••• .•• e ••• ... · .. -... . ·
8.13 LOCATE Command
8.14 LPLIST Command
8.15 LPXREF Command
8 • -16 MOD IF! Command ••••.••••••••••••••••••••••••••• •••••••.•••••••••••••••••
8.17 N.AME Command .. e •••

8 • 1 8 NEW Command •••••••••••• •• G •••••••••••• 0 ••.••••••••••••••••••••••••••••

8. 19 QUIT Command •••••••••••••••••••••••••••••• _ •••••••••••••••••••••••••••
8.20 RENUMBER Command •••
8.21 RUN Command 0 •••••••• e 0 0 •

8 • 22 SAVE. Command •••••••••••••••• 0 ••••••••••••••••••• 0 •• II> G ••••• e •••••• G • 0 •

8.23 STEP Command ••••••••.•••••••••••••••.••••••••••••••••••••••••.•••••• e •••

8.24 Top Command ••
8.25 TRACE and UN TRACE Commands •••

\, 8 • 26 UNBREAK Command ••• '.
8 • 21 Up _ Command ••••••• ~ ••••••••••••••••.•••••••••••••••••••••••••• 0 ••••••••

8.28 V ARS Command •••••••••••••••••••••••• 0 '.' ••••••• " •• 0 ••••••.••••••••••••••

8.29 -XREF Command •••••••••• i • ... ' •••••

CHAPTER
9.1
9.2
9.3
9.4
9.5
9.6
9 .. 7
9.8
9.9
9.10
9.11
9.12

. 9.13
9.14
9.15
9.16
9.11
9.18
9.19
9.20
9.21
9.22
9.23
9.211
9.25
9.26
9.27

9 STATEMENTS •••
CASE Statement ..
CERD Statement •••••••••••••••••••••••••••••••••••• 0 •••••••••••••••••••

CHAIN Statement
CLEAR Statement

· .. . · -. " .. .
CLOSE Statement •••••••••••••••••••••••.••••••••••.•••••••••.•••••••••••••
CO*ON S ta tement ••• ' ••.••••••••••.•
CSI Statement ••••••••••••••••••• Ii a/

DATA Statement .'
DEF Statement ••••••••••••••••••.•••••.••.••••••••••••••••••••••••••••••••

DELETE Statement •••
DIM Statement •.•••
ELSE Statement · .. .
END Statement .. « ••••••. · ' .. . FNEND Statement
FOR Statement ...
GET Statement ••
GOSUB Statement
GOTO Statement

· .. . ·
IF Statement ••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••
IFEND Statement
INPUT Statement

· .. , .. '. · .. '.
LET Statement ••
LINK Statement ••• e .•••••••••••••

LINPUT Statement •••
LINPUT USING Statement ...
MAT Statement ••
MAT INPUT Statement e .••••••••••••••••••••••••••••••••••••• 0 ••••••••• ' ••

-y-

33
33
~~
34
34

~i
37
37

H~
42
44

~~
ft~
49
50
51
§~
~~
57

S6
6'1
62
64

~~
gb
70
71
72

,73

75
77
~6-
81
82

8~
g~
88
89
§~
92
93
95
§~

16f
102
104
106
107
108
110
111

9.28
9.29
9.30
9.3'1
9.32
9G33
9.34
9.35
9.36
§:~h

" 9.39
9.JJO
9.41
9.42'
9 .. ·43
904li
9045
9046
9.41
9.48
9.49
9.5.0
9.51
9.52
9.53
9.54
9.55
9.56
9 .. 57
9.58

CHAPTER
10.1
1002
10.3
1004
10.5
10.6
10.7
10.8

TDLB OF cc:.'fats

MAT PRINT statement .. '. • • •• 112
MAT READ .Statement •••••••••••••••• 0 •••••••••••••• s .'0 0 114
MAT WRITE statement ••••••••• ,~ · •••••••••• O ••••••••••••••••• 115
MOUNT Statement •••••••••••••••• ~ •• ~ •• ~ •••• 0 e •••• · 0 , •• 0 e .••• · •• 116
NEXT Statement ••••••• 0 0 41 tlto. 41 •••• 418 e I)" 0.0" 11111
ON ERROR Statement •• " ••.••••••••••••••••• 0 •••• '/18 •• <11 ••••• ·0:,<11 •.•••• 0.0.00,Go. 8
ON GOSUB and ON GOTO Statements •••• OG0"." ... 0 •••••• 0." •• 0" •••• 000g'0 •• 120
OPEN· Statement •••• 111 ••.•• e ell' • e • 0 111 " .•• e Cl • 0 0 • 0 Cl 0 G 4) .. eo. •• 0 ... e .. 0 0 e " .. " .. 0 • .., G iii" 12'1
OPTION statement ... e " 03 (I •• 03 e <II e ... ' 0 " Q" •• 0. " 8 •• ~ e <II f).' 11~64
OTHERWISE S tat emen t • 0 <II ... o 0 4) 0 .. 0 8 eo" ... e <9 40 0 GO •• 0 • 0 0 • 0 0 •• II ~. 0 0 0 e. e Q

PRINT Statement ••. 0'. O. O'G .. O ••• 0 0 0 •• -8 " <II •••• ., ••• <iii 0.80 •• 0 •••• 0 Of 0 •• 0 e e 00 •• () 0 12-1
PRINT USING Statement •••••• O .. "·.·.00 ••••• "oeoe.o ... O ••• 0GQO •• f/I.OO .. 00 •• .,. 130
PUT Statement 0"". f) 0 0 •••• e ·.·0 • 0". Gl • 0 0 f) e • 0 •• e 0 •• '0 f/I ... e •• e • Q •• 0.0 .. 0 ., e'. 0 0 • e 132
QUIT Statement •• · •. 0., • 6 '" .. <9 .00 • ., •• 6 •• 'G'" 6 e 0 f) .. <!l, ••• 'e e·e o-e • ., ... 8 0 •• e • " <9 0 • e. 133
RANDOMIZE Statement Of/lO •••• .,O ••• 8e •• 0 ••• ".f) e •••••••••••• e 134
READ Statement ... 0.0 CI • 0 0 • e ~ •••••• 6 ••• 6 ••. 0 ••••• ''; ••• 0 f/I ... CI CI •• CI .'. • ... • • • • • •• 135

~AD~~!ie~;~~~~~: .: :: : : : : : :: : : :: :: : : : : : : : : : : :: : : : : : : : : :: :.: : : : : :: :: : : :1 ~b
RESTORE Statement e ••••••• e • e ••••• 0 ., ••••.• ~ ••••••••• 8 • • • • • • • • •• • • • • • • •• 139
RESUME Statement .0 •• 08 •• ·.~.0" •••• 0e ••••••• ., •••••• e.e.~ ••••••••••• 0I> ••• 140

-RETURN Statement ••••• oo.· •••••••••.•••• e ••••• oo ••••••• o •• -.......... o 141
RUN Statement e, • e " • e _ •• 0 ... e e G. e e e, ••••• e 142
SStELEEECpTS' Statatetmemeenntt •••••••••.•••• " ••••• eo 0 0 • e ••• • • • • 8 • "e 1

1
4
4

3
•••••••••••• 0 00.000 •••• Ii

STOP Statement e 0 • ", e .•••••• 0 e • 0 eo.. 145
THEN' Statement •••• 8 .. 0.,0."81'46
UNLOCK 'Statement ... " •••••• ,,"!'''. '147
WAIT 'Statement ••••••••••••••• 0.· e 8 · .. O. 148
WEND Statement " •••• " o •••• 1> 0 f'- •. e 0'. •• •.• • • • •.• 149
WHILE Statement ; •• 41 • e 0 e •••••• ~ .. 0 • ' •• " (t·O 0: 0 • • • • ... 150
WRITE Statement ••• 8 •••••••••• ~ O O ••• O OC08 ••• 151

10 FUNCTIONS ••••••• 8 •••••• e ee 8 8 ... e
Numeric Functions c • " 0 " .0 • e " 0 ... " • 0 8 .. e e e •• 01> • ., Oil ... 0 •• 0 ... " GI ••.•

Trigonometric Functions .. e 0·0 •••• II> 0" 0 •• 0 .. 0 e·

String Functions -0 0 0 • " " e e GI 0 e • " 0 0 • 8 • e

Input/Output Functions •••• " ... e e' .. 0 ••• e ., 0 0'. ••• GI 0 • 0 0 • 8 41

Logical Functions •• e 41 • 0 ... 0 0 e • 01> •••••••••••••

File Function e, <I> 8 •• 41 e •••

Error Functions •• 41 8 0 41 • 41 " G ••••••.•

USR Function ... G· •••••••••• " 0 • ~ ••••• .- 41 • ~ ••••••• -••••••••••••••••••••••••

1~~
l66
l~g
166

l~A·
APPENDIX A RESERVED WORDS • GO •••••••••••••••••••••••••••••• / ••••••••••••••••••• 169

170
110

APPENDIX B USER DEFINABLE KEYS ••••••••••• e' ••• ,. 41 " •

B.l Control Key Values ." .,41 •••• ~ •• 0· •••••••••••••• ~ ••••••••••••••••••••••••••

APPENDIX C COMMAND SUMMARY •••••••••••••••••••••••••••• ~

APPENDIX D STATEMENT SUMMARY •••••••••••••••••••••••••••• ' •••••••••••••••••••• 41

APPENDIX E FUNCTION SU~RY " •••••• _ ••••••••••• "' 41 •

APPENDIX F RUN2STATEMENT AND FUNCTION EXCEPTIONS •••••••••••••••••••••• 41 •••••

F .1
F.2

Statements Omitted ••• 41 41 •••••••••••••••.• " •••••••••••• '41 ••• " •• 41 • 41 " •

Functions Omitted 41

APPENDIX G ERROR MESSAGES .41 41 •••••••• 800 41.41

G.l
G.2
G.3
G.4

Command Error s ". 0 ••••••••• '. 41 ••• 0 •• 0 8 •••• " " •

Edi tError s 0 •••••••• " •.• 41 ••••• 41 •••••• 0 e " •••• 0 •••••••

Compile Errors ••• 0 41 •• 41 41 41 ~ 41 ••• 41 0 0' 41 ••••••••• 0 •

Execution Errors ••••• 41 •••••••••••••••••• 41 41 ••••••••••• '0 •.•••••• 0 • " ..

APPENDIX H ,PROGRAM EXAMPLES •••••••• !'. 41 •••••• 0 " ., •••••••••••• 41 • 41 • ., ••

H. 1 Example One 41 ••••••• ' ••••••••••••••••••••

H.2 Example Two - String Conversion ' ••••••• e •••••••••••••••••••••
H.3 _Example Three - Sine Wave ••• 8.
H.4 Example Four ~ Bill of Materials 0 0

H.5 Example Fi ve •••••••.•• 41 • 0

.H.6 Example Six - Sequential File I/O •••••••••••••••••••••••••••••••••••••
H.7 Example Seven - Indexed File I/O - Sequential Access " •••••• ~ ••••
H.8 Example Eight - Indexed File Create ••••••••••••••••••• ~ •••• ~ •••••••• o.

-ri-

'172

174-

111

119
179
179

180
180
180
181
183

181
181
181
~g~
189
190
191
192

SeOt:101l

APPENDIX I

APPENDIX J

TlBLB ~ COitilYS

ANSI MINIMAL BASIC .o •••••• e •••••••••••••••••••••••••••• · •••••••••••

CHARACTER CODES •• 0 • 0 •••••••••• , •• 0 •••• 0 ••••••••••••••••••••••••••••

- Yi1-

193·

194

CBlPUI 1

DDODUCfiOR

This reference manual, describes the BASIC language as implemented in the OASIS
Operating System. It is an interpreter/compiler language. This means that the
advantages of an interpreter exist {ability to make cnanges to the source program
and immediately re-execute, immediate mOde, etc.>. along with the advantages of a
compiler (faster execution, smaller program size on disk and in memory, and source
program protection). - '

1. 1 Organ1zat:lon of This HaDual

This manual discusses each command or statement in a separate
appr~priat,e chapter ("COMMANDS", "STATEMENTS"" or "FUNCTIONS").

Each ~ommand or statement is described in four SUbsections:
,.

section of the

, 1. General fora: defines 'the specific syntax of· the statement or
command. This section is enclosed in a box at the top of the page.
Also included here ·is a "See also" reference listing commands or
statements that have a similar or related function and might be used
instead of the command or statement specified.

2. Purpose: one or two sentences that summarize the purpose or general
function of the statement or command.

3. ec-ent: detailed description of the statement or command specifying
any restrictions, exceptions or errors that may occur.

II. baaplea: ~eneral examples of the various forms of the statement or
command,~f applicable. Invalid examples are also included, if
meaningful. .

In addition, the appendices at the .end of this manual give summaries of the
statements, commands, functions, error messages and some general examples of BASIC
programs.,

1.2 Documentat:lon StaDdards

In this documentation, the following standards will be used:

'. All keywords are spelled out even though BASIC normally only requires
the first three characters of a keyword. '

• Fields enclosed with angle brackets <> are required for correct BASIC
syntax.

• Fields enclosed with brackets [] are optional and not required for
valid syntax.

• Fields' grouped in vertical columns or separated by vertical bars
indicate .that all are valid forms.

• Any parenthes~s shown are required for valid syntax ..

• The term <Cft> indicates the entry of the key CARRIAGE RETURN ..

1 .3 'BASIC C",.,ncI Modules

The OASIS BASIC and RUN programs are held on disk in several separate files. This
is required due to the fact that program overlays are used. The five files
containing the interpretive BASIC program must all reside on one disk. The four
files containing the RUN program must both reside on one disk. The files and their
primary functions are as follows:

BASIC. COMMAND
BASIC.OVERLAY1
BASIC.OVERLAY2
BASIC.OVERLAY3
BASIC.OVERLAYfJ
BASIC. LOADFILE
BASIC2.LOADFILE

RUN .-COMMAND
RUN2.COMMAND
RUN. OVERLAY 1
RUN.OVERLAY2

BASIC Rey B

Initialization' and set upo
Editor and syntax analyzer.
Compiler.
Cross-reference generator.
Program execution and debugger.
Re-entrant run time module (multi user only).
Re-entrant run time module for RUN2 (multi user only).,

Initialization and set up.
Initialization and set up for RUN2.
Run time monitor (single user only).
Run time monitor for RUN2 (single user only).

- 1 -

BASIC BBFEBDCB JWlUAL

1.' BASIC Prograa File rypea

OASIS BASIC uses three different file-- types for programs. These file types are
BASIC, BASICOBJ, and BASICCOM.

A BASIC program with a file ,type of BASIC is a file in ASCII format and' is usable
b~ TEITEDIT and EDIT as text ·files. A program with a type of BASIC may be loaded
w1th the BASIC interpreter but may not be RUN, CHAINed, or L~NKed to.

A BASIC program with a,file type of BASICOBJ is a file generated by the BASIC
interpreter after the program has been syntax checked .. ,This ty~e of a file cannot
be used by other" system programs (except COPYFILE). A BASICOBJ file is a program
that is "pseudo-compiled", that is, all keywords have been coded to reduce the
storage requirements and to increase executipn speed. Even though this type of a

,file is pseUdo-compiled it is still listable.by BASIC and still has all remarks,
variable names and line labels in it. This file type sho~ld be used for all source
programs and is the default type used by the SAVE command. ,~

A BASIC program with a file type of BASICCOM is a file generated by the BASIC"
compiler after . the program has been compiled.. This type of file cannot be used by
other system programs (except COPYFILE) and may, only be executed with the RUN
command. A BASICCOM file is a program that has had all remarks removed from it and
all variable names have been reduced to codes (variables defined as COMMON are not
affected) and all line label references have been changed to a, shorter and faster
method of branching.

1 .5 Loadins BASIC

The BASIC command is a program module that is accessed by. the Operating System
through the OASIS Command String· Interpreter (CSI). After CSI has displayed it's
prompt character (» the operator may enter a BASIC command as described 'below.
CSlwill . load the BASIC interpreter and enter the edit mode, allowing you to load,
execute, or edit any BASIC program.__ .

In the edit mode of BASIC, acceptable input is a command, an immediate statement,
or a numbered statement... An immediate statement is pne that is executed
immediately, a numbered statement is stored in memory for execution at a later
time ..

1 .6 BASIC and ROR CoMIanda

The OASIS BASIC command allows the user to access -the BASIC interpreter/compiler to
create,' change, debug, execute or compile BASIC programs.

-,

1 .6. 1 BASIC Interpreter

The OASIS BASIC interpreter is invoked by using the
the interpretive BASIC co~and is:

BASIC [(COMMl[)]]

Where:

command BASIC. The format of

COMMA Indicates that ,numbers input or output during execution of BASIC programs
are to use the European format for number representation (see below) •

. When the BASIC interpreter is invoked the prompt character· for. BASIC will be_
displayed (-) and you will be allowed to enter any valid BASIC command to develop,

'test, or execute your interpretive programs (file type of BASICOBJ or BASIC)G

1.6.2 BASIC co.piler

The OASIS BASIC compil e1" is invoked by using ..the sam·a command BASIC as the -
interpreter but with the additional specification· of the program name to be
compiled •. The format of the BASIC compiler comm~nd is:

BASIC [<progr __ D8IIe> [(<co.plle opti.ou>[j]]

Where:

program-name Specifies the name of a BASIC program file that the user wishes to
compile. This operand has the format <fn[.ft][:fd]>, where:

fn Indicates the file name of the BASIC program to be compiled. I~
omitted (i.e., the entire program-name operand is omitted), then

- 2 -- BASIC Rev B

I

CII1P1BR 1: IJIDO])UCUOR

ft

BASIC is invoked in the immediate_mode.

Indicates .the file type of the program to be compiled.
BASIC programs with file type BASICOBJ can be compiled.

·O,nly

Note: Programs written and compiled under . a version of BASIC
prior to version 5.5 may be recompiled by specifying. the file
type of BASICCOM. This feature allows those users who do not
have the sourc.e (BASICOBJ) -to programs to compile' them with the
current version of BASIC. ,. ' .

'.
fd' Indicates the label of the directory or the name of the disk

that the program file resides on. When omitted the normal
search. sequence for user programs is used.

BASIC eo.pile Opt:l.ODS

PlIIIITD(n] Indicates that the progr~ listing is to be output' to the printer.'

LIST Indicates that the program listing is to be output t~·the console.

I·

IfOLIST Indicates that rio program listing is to be 'output to the console .. This is
a defaul t option •.

IBIP Indicates that the cross'reference table is to be generated and output
with the program listing.

IfOIBEF Indicates that no cross reference table is to be included in the program
listing. This isa default option.

OBJ=drv Indicates that the compiled program is to be output to the'specified
drive. When this option is not specified and the NOOBJ option .is not

. specified the compiled pro~ram will -be output to the same drive as the
~ource program currently res1des on.

1l00BJ Indicates that the compilation is for test or listing purposes only--no
compiled program will be output to disk.

Indicates that ·the compilation is
mode--display' of compile statistics
displayed if encountered.

to be performed in 'silent'
is suppressed--only _errors are

, Compiled programs are saved on· disk wi-th file type BASICCOM. ._
~ .

The COMMON statement must be used to specify variables that are used by more than
one segment of a compiled program.

The program listing generated by the BASIC compiler (option PRINT or LIST) includes
the relative address in hexadecimal of each statement-listed. This information is
-important incase an error is encountered during execution of the compiled program.
Since line numbers are removed by the compiler the location of an error is
indicated by ,its relative address. -

At the end Qf the compilation process statistics about the program compiled are
displayed . on the console, (unless option NOTYPE is specified J ,0 This display
included the following information:

Oasis BASIC compiler
.Input source lines:
Input source size:
Output object size:
Source reduction:
Compiler errors:
String variables:
Float variables:
Integer variables:
Compile rate:

BASIC Bey B

ver n.n (date) statistics. -
nnnn
nnnnn
nnnnn
nn%
nnn
nnnn
nnnn
nnnn
nnnn lines per minute.

- 3 -

BASIC BBFEIEIICB IWIOAL

1 .6.3 ExecuUOD of Ccapiled Progras

The OASIS RUN command allows ,the user to execute a compiled, BASIC program. The
format of the RUN command is:

JDI<prograa aa.e> [«OPt~OD>[)]]

Where:

program-name Specifies'the file name of the program to be executedc The file type
may be specified, however it must be BASICOBJ. The file disk may be

. specified but w.hen it is not specified all attached disk drives will be
searched for the programc '

1lOII'OptioDS

COMMA Indicates that numbers input or output during execution of the compiled
programs are to use the European format for number representation (see
below) ..

TRACE Indicates that the hexadecimal addres.s, of each st'atement executed is to be
displayed on the console. These hexadecimal addresses are the same as
those listed when the program was last compiled with a TYPE or PRINT
option.

The RUN command can only execute compiled programs--there is no immediate or
command mode available to the user when this command is in control.

A smaller version of BASIC may be used to execute a compiled program. This smaller
version is invoked by used 'the command RUN2 instead of RUN. Refer to the appendix
on "RUN2 Statement and Function Exceptions" in the back of this manual.

BASIC ProaptiDg Character

When the BASIC interpreter/compiler is in immediate or command mode a hyphen (-) is
displayed at the left side of the terminal, indicating that BASIC is awaiting a
command. This is the prompting character for OASIS BASIC.

1. T European Fo t for a .. bers

The OASIS BASIC interpreter and run time monitor support the European format for
number representation for input and output of numbers in ASCII format (i.e.,
to/from the console). The European format is invoked by using the COMMA option on
the command line to BASIC or RUN or by using the OPTION COMMA statement from within
the program being executed. , . '

When the European format is invoked all input and output of numbers in their ASCII
format (INPUT'and PRINT statements) will conform to the European standard for the
remainder of the session in BASIC or RUN. The only way to revert to the 'American'
format is to.,exit from BASIC or RUN and return control to the operating system.

The European format as used by OASIS BASIC, denotes a 'decimal pOint' with the
character comma {,j and denotes the division of thousands with the decimal
character (.). This is the exact opposite of the 'American' format.- An additional
convention used in OASIS BASIC is the separation of elements in a list of numbers
is the semicolon character (;).

For some clarification exami,ne the following examples:

American format

1
1,000

10.23
1,0001.000.00

1e1 , ~o4, 3.5

European format

1
1.000

10,23
1.000.0001.00

1,1 ;,2,Q ; 3,5

As stated above, the COMMA option applies to all input and output of ASCII numberse
This means that a file created with PRINT statements when the COMMA option was' not
in effect will not be ~nput properly with the COMMA option in effect.

In addition to input and output of ASCII numbers the COMMA option affects the
operation of those functions that operate on numbers in ASCII. formate The
functions affected include: NBR, STR$, and VAL.

The operation of the COMMA option does not change how programs are coded; i.e., the
.... II - BASIC lev B

PRINT USING mask is code~ using the 'American' format.

BASIC Bev B - 5 -

2.1 Data Piles

CBAF.rBR 2

FBAmBBS· OF 'lIIB LUGUAGE

'OASIS BASIC supports 'four types of files: Sequential~ Directl Indexed Sequential,
and Keyed. All tour file types ,may contain ASCII aata or Dinary data, depend1ng-'
upon how the individual records were created.' Good 'programming practice will
restrict you from mixing ASCII and binary data within one file. Records created
with the PRINT statement are ASCII and may only be read with the INPUT or LINPUT
statements. Records created with the WRITE statement are binary and may only be
read with the READ or READNEXT statements. '

,SEQUENTIAL f~les are variable in length with variable length records--only as much
space is used as is needed. Sequential files are accessed sequential, from the
beginning of the file to the end. In order to read any specific record in the file
all preceding records must be read.

DIRECT files are fixed in' size with fixed length records. This file type is
accessed randomly by relative record number'.

INDEXED Sequential files are similar' to DIRECT files' in that they are fixed in size
and length and the records are accessed r'andomly but - with an, ASCII key or index.
This file type also allows you to read the file sequentially, 1n the ASCII
collating sequence of the keys. - _

KEYED files are similar to INDEXED with the exception that the file, when accessed
sequentially, fa in the physical sequence of the file on diSK, not in ASCII
collating sequence.

2'.2 Cursor Control

- Many types of terminals are "known" to BASIC and their various types of cursor
control are handled by common functions (AT and CRT). Refer to the OASIS System
Reference -Manual-, "ATTACH COMMAND", and the "Terminal Class Codes" Appendix for
details. ,

, 2.3 ChaiDiDg aDd Li DId ng

,Chaining and linki~ allows very large programs to be segmented for execution in a
system with a relat~vely small amount of memory. Chaining transfers control to the
named segment and closes all open files. Linking-transfers control to the named
segmeQt withou~ closing any files. -

2.11 User De1'1Ded Control Keys

User programs can test whether one of several different - control keys were entered
as input, and take appropriate action in the program. Refer to the chapter on User
Definable Keys in th1s manual for det~ils.

2.5 ca.patlb111ty

BASIC is upward compatible with Dartmouth BASIC and conforms to the American
National Standard for Minimal BASIC, BSR X3.60.

- 6 - BASIC lev B

2.6 Other Features

CIlAPDI 2: FUTOBIS OF 'lIIE LAIIGUAGB
~

OASIS BASIC provides many other features not normally found in other micro-computer
BASICs such as:

• Multiple statements on one line.

• Multiple line user defined functions (DEF FN-FNEND).

• Line length of up to 255 characters.

• Long variable names.

'. Line labels.

• Error trapping (ON ERROR,GOTO).

• 'Complex IF THEN ELSE statements.

• Multiple line IF-IFEND structure.

• Multiple line WHILE-WEND structure.

• Mult~ple line SELECT-CASE-OTHERWISE-CEND structure ..

• String handling with string length of up to 25'5 characters ..

• String arrays ..

• Matrix (array) input/output and assignment ..

• Formatted output {PRINT USING) 0

• Formatting func,tion ..

• Formatted input (LINPUTUSING).

• European format for numbers.

• Interface to user written assembly subroutines (USR).

• Interface to system commands (CSI)o

• Interface to any device (GET, PUT, WAIT) ..

• Bit manipulating logical functions.

• Thirteen digit precision BCD (binary coded decimal) arithmetic.

• Floating point values in range 10"126 to 10"-126'

• Integer arithmetic (-32767 to +32767).

• Program debugging aids' such as single step, break-points, etc ..

• Automatic line number entry.

• Syntax analysis on statement entry ..

• Extensive set of string functions.

• Compile option to compress and protect the program.

• Cross reference listing of variables.
, \

'BASIC Bey B - 1 -

CBAPrBB 3

BECCImIG FAMILIAl VIm BASIC

This section assumes that you have loaded BASIC and that you have received the
BASIC prompting .character (-J, indicating that BASIC is waiting to perform whatever
instuction you give. In order to make tne most efficient use of your sessions with
BASIC, you need to know several things about communicating with the system.

For th~ time being the specific statement, command and line syntax will be. ignored ...
These concepts are discu~sed in the next chapter. '

You will communicate with the system by using its primary inputloutput (I/O)
device~ called the CONSOLE TERMINAL. This device will include either a printing
mechan1sm or a video screen (CRT), as well as a keyboard, similar to that found on
a typical electric typewriter. On a console terminal keyboard, however, there are
a,few symbols and extra keys which may be new to you. Note the position of "extra".
keys especially the ones marked "CONTROL" (or "CTRL"· or "CNTRL" or something
Simiiar". "RETURN" (or "CARRIAGE RETURN", or "NEW LINE" or something similar),
"RUBOUT {or "DEL", or "BACKSPACE", or something similar), "ESC" (or "ESCAPE", or
"ALTMODE"). .

3. 1 Soae Basic BASIC Concepts

OASIS BASIC has two modes of operation:

IMMEDIATE MODE or command mode, in which lines typed to the system are
executed without delay;

EXECUTION MODE or program mode, in which the system executes instructions
which have been stored previously in the form of a PROGRAM.

Prior to learning how to work with BASIC i'n these modes, you must understand
certain concepts and terminology, which are explained in this section.

A COMMAND is a special ~ype of BASIC instruction which maf be executed in immediate
mode, not as part of a program. Commands generally prov1de services which are not
mean1ngful or useful while a program is executing.

For example, the command LIST generates a listing of the program currently in the
BASIC program/data area of memory. (This is called the CURRENT PROGRAM.) It is a
rare application which requires a program to list itself, and so the LIST function
is a command.

A STATEMENT is a BASIC instruction which may tre used as part of a PROGRAM or in
IMMEDIATE MODE. Typical among statements is PRINT, which causes information to be
output to the console terminal. Statements begin with a VERB from which the
statement derives its name. The verb may be followed by ARGUMENTs and keywords.
An argument is a piece of information on which the statement operates, or which is '
used to modify the operation of the statement. For example, the sering literal
"HI" is the argument of the following statement:

PRINT "HI"

A BASIC program is structured as,a sequence of LINEs, each containing ~ne or more
statements·. A line starts. with a LINE NUMBER, which is an INTEGER (that is, a
whole number) in the range of 1 to 9999. A statement follows the line number, and
the combination is called a PROGRAM LINE. A typical line is: .

70 PRINT "THIS ts ONE STATEMENT."<CR}

More than one statement may exist on a program line as long as individual
statements on that line are separated by a backslant (\j character. Here is an
example of a multipl~-statement program line with three stat~ments:

100 LET A.= 0 \ LET B = 1 \ PRINT A,B

All statements may be executed in immediate mode in order to get immediate results.
This is accomplished by typing a statement without preceding it with a line number.
Such a statement is called an IMMEDIATE STATEMENT, and is executed as soon as it
has been completely typed (indicated. by striking the RETURN key). For example, if
you type:

PRINT 3+3<CR>

into BASIC, you will immediately get back 6 on the terminal. This ability to
execute statements in immediate mode greatly facilitates debugging by allowing you
to examine (PRINT) and modify (LET)· the contents of variables when a bug occurs.

- 8 - BASIC lev B

CBlPDII 3:_ BEC(llDG,F.lHILIlB VIm B.ISl:C

Eacn command and statement'has its own rules as tO,what constitutes ~ts proper
syntax and when it can be used correctly.

3.2 ' BJSl:C Usea Upper Case

BASIC requires that the instructions it executes be in upper case characters. To
facilitate this, instructions typed in BASIC are translated to upper case before
being stored for execution. For ex~ple, the following line is typed to BASIC:

10 if a1 > 25 then print "Greater than" else goto 100<CR>

That ,line 1s sto~ed in memory in the following format:

10 IF A.1>25 THEN PRINT "Greater than" ELSE GOTO 100

Note that all of the "ke~ords" have been translated to uppercase but the literal
is left as is. Because of ,this you will not have to worry about the case mode of
the inst~uctions you type.

3.3 Typiag to BASIC

Try typing some nonsense to BASIC:

-ABCDEFGHIJK<CR>

Be sure to ,strike the RETURN key after you
denoted by the <CR> symbol above. This is
process what you've typed. If you fail to
patiently wait forever for you to type more!

BASIC should respond to your nonsense with the

Unrecognized command

finish typing a line to BASIC, as
the signal for BASIC to accept and
strike the RETURN key, BAStC will

message:

In general, this message is BASIC's way of saying "I don't understand you". It
usually means' that you typed the right thing incorrectly,or (as in this case) the
wrong thing altogether. This is an example of an ERROR MESSAGE. Such messages are
sent to you in order to alert you to any d1fficulties which BASIC encounters as it
attempts to carry out your instructions. The error message should provide a clue
as to the nature of the problem, and imply the possible steps you might use to
correct it. (Correct1ng computer problems is called "debugging". A problem itself
is referred to as a "bug".)

Let's type something which BASIC will understand:

-PRINT 25/2<CR>

(Remember that the <CR> means' to strike the RETURN key.)

You should get the answer displayed on the terminal.

Commands may be entered with abbreviations (such as LEN for' the LENGTH command) but
incorrect syntax or spelling errors will not be allowed and you will have to
re-enter· the command.

Statements (immediate or stored) may also use abbreviations for the statement verb
{such a PRI for PRINT). Statements, different from commands do not have tO,be
re-entered to correct spelling or syntax errors, just modified to the correct form.

For example, try typing the statement:

10 FOR I=1TOX<CR>

BASIC will respond by displaying:

Keyword Missing or mis-spelled
0010 FOR I=1TOX

The underscore character will be used to identify the cursor position. BASIC is
"saying" that it recognizes the statement as a FOR statement but it can't find the
keyword TaX. This is due to the fact that variable names may be more than one
character long and the letters TaX could be a variable name., You must surround
keywords and verbs with some delimiting character, usually a space •

. To correct the error in this statement, enter an I, space, <CR>" space, space, I,
space, <CR>, <CR>. This is explained below.

BASIC Be'Y B - 9-

BASIC RD'BIIBIICB HDOAL

When "an error is detected by the "syntax analyzer.the error message 1s displayed as_
above and an . implied MODIFY command is executed'with the cursor pointing to the
location of the error. The correction just specified causes MODIFY to go into
insert mode (the I character) insert a space at that location - ex! t the insert
mode (the <CR», advance two piaces (the space, space characters), go into insert
mode again and 1nsert a space, exit the insert mode, then exit the modify mode (the
last <CR». '

The following display illustrates this correction:

(

0010 FOR 1=1TOX
001 (} FOR I=.1'10x
0010 FOR I:110X
0010 FOR 1=1 _OX
0010 FOR 1=1 TaX
0010 FOR 1=1 TOX
0010 FOR I=1 TaX .
0010 FOR 1=1 TO X
0010 FOR I='1 TO I
0010 FOR I = 1 TO X

Enter I
Enter space
Enter <eR) ,
Enter, space
Enter space
.Enter. I
Enter space
Enter <CR)
Enter <CR)
Enter <CR) (display command) .

When you exit the implied MODIFY commarid the syntax of the statement is re-examined
for errors.. If no more errors are detected the statement is saved (or executed if
an immediate statement) and control of BASIC returns to the mode it was in (in the
above case it returns to the .command mode).

As another examQ..le, consider the following:

-10 PRI SQR(23;NOW IS THE TIME;AB<CR>
Missinl parentheses .

gg~g ~Ri ~8~~~~~f:~g~ I~ iU~ iI~~*~* Enter I
Enter)
Enter (CR)

-
0010 PRI SQR~23 ~NOW IS THE TI~;AB
Comma required

.0010 PHI SQH 23 ;NOW ~S THE TlME;AIBI 0010 PRI SQR 23 ;NOW IS THE TIME;A B
Assumes NOW is variable name

0010 PRI SQR 23 ;NOW IS THE TIME;A B
0010 PHI SQR 23 ;NOW-IS THE TlME;A B
0010 PRI SQR 23 ;NOW IS THE TlME;A B
0010 PHI SQR 23 ;VOW IS THE TI~iA B
0010 PHI SQR 23 ·WNow IS THE TI~OA!B!
0010 PRI SQR 23 ;"NOW IS THE TlMElA B

gg18 ~~i ~8~ '~~ i:~g~ I~ iU~ i!~*iA~B$
Comma required .
0010 PHI SQR~23l;"NOW IS THE TlME";A!!!
gg18 ~~I~8~t~~ i:~g~ I~ tU~ iI~:it$1i$

10 PRINT SQR(23);"NOW IS THE TIME";A$;B$

3$4 CoD818tenC~ in Listing

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

Enter
Enter
Enter
Enter

back space
back space
back space
I
" F"
I'
" <CH><CR)

I

~CH><'CR>
<CR>

Because OASIS BASIC is an interpreter/compiler it saves statements in a compact,
coded format. When a program listing is requested (or even a single line
displayed) the coded format must be expanded to a display format. It does this
expansion in a very consistent manner--consistency is desirable in programming:

• All keywords and verbs are always spelled out fully.
• All keywords and verbs are surr.ounded by spaces.

-. MUlti-statement line separators are surrounded by spaces.
• Lists of variables1 expressions, . and line references are separated by

their proper punctua~ion. '
• I/O channel specifications are surrounded by spaces ..
• Commas are .added when.the statement syntax requires.
• Expressions are displayed without any embedded spaces.
• The assignment operator is surrounded by spaces.
• Any leading spaces in a line are maintainedo
• String literals are always surrounded with the double quotation mark

character (H).

For example, the following is performed (entry and display):

- 10 - BASIC leY B

CIIlPrBB 3: BBCCIIII'G FAllILUB VIDI BASIC

-AUTO<CR>
10 REM This is a remark<CR>
20 IF (A$ > B$) * 5/ (5+ VALUE%) THEN GO SUB 100Q\STOP<CR>
30 A=23 * B<CR>
40<CR>

;'LIST<CR>

10 REM This isa remark
20 IF (A$>B$)*5/(5+VALUE%) THEN GOSUB 1000 \-STOP
30: A = 23*B .

BASIC Bev B - 11 -

CB.lPDI 11

PROGIWMDIG D BASl:C

1&.1 Structure o~ a BASIC Prograa

A BASIC program consists of a set of statements constructed with the language
elements and syntax described in the following chapters. Expressions, line
numbers, labels, and statements are joined to solve a particular problem, with each

-line containing instructions-to BASIC.

1& 0- 1 • 1 Syntax

_ Syntax is a term refering to the structure of the parts of a statement and the
punctuation characters separating those parts.. As an example, the syntax of a
sentence in the English language is: <subject> <verb> <object> <punctuation>Q
Unfortunately tor elementary school children (and university professors) the syntax
of sentences has many acceptable variations with each variation having variations
and opt-1ons and exceptions ..

On the other hand, computer languages are very structured with very specific syntax /
requirements for each statement (sentence). There may be options to the structure
but there are ~ exceptions.

1&.1.2 Character Set

OASIS BASIC uses the full ASCII (American Standard Code for
Interchange) character set for its ,alphabet. This set includes:

• Letters A through Z
• Letters a through z
• Numbers 0 through 9
• Special characters tsee ASCII character set in appendix).

Information

This character set enables you to include any ASCII character as part of a program ..
BASIC translates the characters that you type into machine language; some
characters are processed and some are left as entered ..

The BASIC editor translates characters in the following manner:

• Letters A through Z - lett as entered.
• Letters a through z - left as entered if in a statement remark or

string literal (enclosed in quotation marks); translated to upper case
equivelent in all other contexts. -

• Non displayable characters (BELL, DC1, FS, etc) - ignored.
• Other control characters -

BS treated as editing character (backspaces one position); is not
entered into the actual line.

HT when entered after line number and before the start of the
statement: translated to five (5) spaces; when entered in middle' of
statement translated into one space.

LF ignored.
VT ignored ..
FF ignored ..
CR treated as end-of-line character. In auto entry mode the next line

number will be displayed.
• Special characters:

i When entered at start of statement is translated into REM ..
;'jtatement separator for mUlti-statement line.

'.1.3 Line Ponat

The general format of a program line is as follows:

line number

1010

label

LABEL:

verb

PRINT

operand

SQ.R(XA 2+yA 2)

All lines in a BASIC program must begin with a line number. This number must be a
positive integer within the range of 1 through 9999. A BASIC line number is a
label that distinguishes one line from another within a program and determines the
placement of that line in the program.

Leading zeroes (as well as leading and"trailing spaces) have no eff~ct on the
number. However, you cannot have embedded spaces within a line number.

- 12 - BASIC Rey B

CBAPDI Ji: -PBOGIWIIDG D BASIC

Ji.2 Stateaents

·BASIC statements consist of keywords that you use in conjunction with the elements
of the language set: constants! variables, and operators. These statements divide
into two major groups: executab e statemen~s and non-executable statements.

At least one space or tab must follow all statement keywords in order for BASIC to
recognize the keyword as such. For example:

Acceptable 10 PRINT CUR.DATE$
Unacceptable 10 PRINTCUR.DATE$

Some keywords consist of two words such as PRINT USING, ON ~RROR, MAT INPUT. These
keywords must also be separated by at least one space or tab character. Two
exceptions to this are the GO TO ana GO SUB keywords. It is acceptable to use the
keywords GOTO or GOSUB without a sepa~ating space.

Statement. keywords are reserved, and therefore, cannot be used as a variable name
(see appendix "Reserved Keywords"). However, k~ywords can be used as line labels.

'.2. 1 Single Stat.ent, Hul. ti-State.ent Linea

You have the option of typing either one statement
statements on one line.

A single statement line consists of:

• A line number (from 1 to 9999).

on one line

• An optional line label followed by a semicolon (:).:
• A statement keyword.
• The body of the st.atement.
• A line terminator.

This is an example ofa single statement line:

10 PRINT,A,BETA*TODAY+3.

or several

To enter more than one statement on a single line (mUlti-statement line)! separate
_ each complete statement with a backslant (\). The backslant symbo is the

statement separator. You must type it after every statement except the last in a
mUlti-statement line. For example, the following line contains three complete
PRINT statements:

10 PRINT ALPHA$;BETA; \ PRINT CUR.DATE$ \ PRINT "Total =";TOTAL

The line number labels the first statement in a line. Consequently, you must take
this into consideration if you plan to transfer control to a particular statement
within a program. For instance, in the previous .example, you cannot execute just
the statement .

PRINT CUR.DATE$

without executing PRINT ALPHA$jBETAj and PRINT "Total =";TOTAL

All executable statements can appear in a mUlti-statement line.

The rules for structuring a mUlti-statement line are:

• Only the first statement in a series has a line number.
• Only the first statement in a series can have a line label.
• Successive statements must be separated with a backslant.

Ji.3 LiDe Labels

All OASIS BASIC lines have line numbers and the line may be referenced by other
statements using the line number of the line (GOSUB, GOTO, etc.). Lines may also
have a line label.

Line labels are useful for referencing lines when the line number is unknown, when
you wish to "document" the function of a line or sequence of lines, etc.

A line label consists of one 'or more letters, digits, or periods with the first
character beipg a letter. There is no limit on the length of a line label but you
should use labels that are_shortt but still meaningful (you have to type the entire
label each time it is referenced).

BASIC Bey B - 13 -

BASIC BEFEBBlCB HDUAL

A line label must be unique within a program. When a line label is defined it must
precede any statements on the line and be separated-from the first stateme~t by the
colon character (:).
The following'lines are all acceptable uses of line labels:

10 MAINLINE: WHILE CONTROL = 0
20 GOSUB INPUT. ROUTINE
30 IF INPUT$ ="" GOTO ERRORS
40 INPUT. ROUTINE: REM Subroutine to accept input

It is permissible for a line label to be a keyword (rio confusion arises due to the
context in which a line label _appears), however a label may not start with the

. letters REM ..

-, ,

BASIC,allows you 'to document your methods insert notes and comments, or leave
yourself messages in the source program. T~is type of documentation is known as a
remark or comment .. ' There is only one way of inserting comments within a BASIC
source program: the REM statement. '

BASIC ignores anything in ,'a line following the keyword REM including a backslant
character. The only character that ends a REM statement is a line terminator.
~herefore, a REM statement must be the only statement on a line or the last
statement in a mUlti-statement line.

,1.0 LET A=B REM Variable A receives current value of B

You can use the semicolon character (;) _instead of the keyword REM. BASIC will
translate 'this into, the keyword REM and display it as :such whenever a listing. is
produced. .

You can use the line number of a REM statement in a r~ference from another
statement, i.e. GOSUB.

Another method of documentation, used in conjunction with remarks, is indentation. '
Any spaces or . tabs entered between the line number and the first character of the
line will be maintained by BASIC for listing purposes. This allows you to show the
structure or hierarchy of the program.

Remarks and/or leading spaces have no i~pact on a program after it is compiled (one
of the functions of compilation is to remove these from the program). ,

Refer to the appendix containing program examples for illustrations of
documentation techniques. '

11.5 EnteriD8 aDd Hodi1)iDg Progra.a

OASIS BASIC allows programs to be entered debugged, and modified while in the
BASIC environment. Refer to the chapter on bBASIC Commands" for information on the
use of the commands in editing a program (AUTO, CHANGE, DELETE, DISPLAY, DOWN,
LIST, LOCATE, MODIFY, and UP).

It is important to note that BASIC performs syntax analysis when the statement is
entered, not when the statement is executed. This not onlf increases the speed of
execution but also- .prevents any syntax errors from be1ng entered. The main
advantage of this pre-execution syntax analysis is that the- program is free of all
syntax errors, even though some of the lines in the program have never been
executed.

BASIC lev B

CBAPrBIl .5

BLIHIIITS OF DIE BASIC LDGUAGB
-

In order to write programs in BASIC you must be familiar with the terms and phrases
used to describe ,the program elements. You will probably recognize most of these
terms from previous experiencei however, the following sections define these terms
within the context of OASIS BAS~C. '-

5.1 CoDatants

A constant is an element whose value does not and cannot be changed during the
execution of a program.

There,are three types of constants in BASIC:

• Numeric (also called floating point numbers)
• Integer (whole numbers)
• String (alphanumeric and/or special characters)

5. 1 • 1 Ruaeric Coutants

A numeric constant is one or more decimal digits, either ~ositive or negative, with
a decimal - point specified. (The decimal point may be om1tted when the constant is
a whole number outside of the range +32767 to -32767~)

The following are all valid numeric constants:

25.
-1234.01
12345678901.23

3.14159
·-.000002
-9876543210123

234567
32760.

-.1234567890123

Numeric constants cannot contain any embedded ~pace characters.

BASIC accepts and' maintai.ns numeric . constants wi thin a range of' 13 signifi.cant
digits.

When you type a numeric constant with more than 13 significant digits specified the
excess, least significant digits will be truncated.

It is possible to enter and maintain a number that/iS outSide the range of
precision by using an alternate format:

<+ or ->x.xxxxxxxxxxxxE<+ or ->nnn

Where:

<+ or -> is the sign of the number. The plus sign is optional with positive
numbers; the minus sign is required with negative numbers.

x is th~ number. with' up to 13 significant digits.

E represents the words "times 10 to the -power of"

nnn is the exponential value (the power of 10) in the range of +126 to -126

. This method of mathematical shorthand is called E format, floating point notation,
or scientific notation. It is BASIC's way of representing scientific notation. To
use this format, append the letter E to the number, follow the E with an optionally
signed integer constant. This constant is the exponent--it can be 0 but never
blank. .

The following are all valid numeric constants, E format:

1.2568E10
-1.234567899123E-126

8.254681325257E-120
2358.256824798E2

1235E-30
1 ~2E60

All E notation numeric constants are normalized after entry, that is . the decimal
point (and the nnn value) is adjusted to be after the first significant digit~ For
example, entry of the constant 12345.58E10 will be normalized to be 1.234558E+014.
If a number entered in E notation can be expressed in normal notation, it will be.
For example, entry of the constant 1.25E6 will be printed as 1250000.

5~1.2 Integer Constanta

An integer constant is a special type of numeric constant that is a whole number
(no fractional part) written without a decimal point and in the range of +32767 to
-32767. For example, the following numbers are all integer constants:

BASIC Bev B - 15 -

" .

BASIC BBFBBBlCB MDUAL

1
25
32767

a
-15
-32767

-1234
100
10000

Integers, though normally entered in decimal format (base 10) may be entered in
hexadecimal format (base 16). When this is done the integer constant must' be
terminated with the letter H. Hexadecimal values may use the digits 0 through 9
and the letters A through F. A hexadecimal constant must start with a digit (use a
zero if necessary). . _ - .

The following.are all acceptable hexadecimal integer constants:

1234H
OFFFFH

The following are all unacceptable

12AB
OFFFGa
123456
1.24
12E10

5.1 ~3 StriDg CoD8tub

OABH
-1234H

integer, constants: '

245H
OFH

Invalid decimal or missing "an
G iS,not valid hexadecimal character
Outside of range of integer
Not an integer
Outside of the range of an integer

A string constant (also called a string literal) is one or more alphanumeric and/or
special characters, enclosed in a pair of double quotation marks (II) or single
quotation marks ('). Include both the starti~ and ending delimiters when typing a
string constant in a program. These delim1ters must be of the, same type (both
double quotation marks or both single quotation marks).

Each character in a string con~tant can be a letter, 'a number a space, or any
ASCII character exce{>t a line terminator. The value of the string constant is
determined by all of 1tS characters. BASIC maintains every character between the
delimiters exactly as you entered it into the source program.

BASIC does not normally print the delimiting quotation.marks when a string constant
is printed on the console, printer, or file. - _ ,

Quotation marks may be included as part of the text of a string constant by either:
using the opposite type of delimiting guotation marks (i.e. single within double,
double within single); or by doubling tne embedded quotation mark (n" or 't).

The following are all acceptable string constants:

String constant
I --------------------------------"This is a string constant"

'This is also a string constant'
"Look at Spot's spots."
'Look at Soot" s spots.'
"He said, h"Open the book."""

5.2 Variables

Internal representation
-~----------------------------This is a string constant
This is also a string constant
Look at Spot's spots.
Look at S~t's spots.
He said, Open the book."

Variables differ from constants in- that their values may change during the
execution of the program. For this reason variables are refered to by their name,
not their current value. BASIC uses th~ most recently assigned value of a variable
when performing calculations. This value remains the same until a stat~ment is
encountered that assigns a new value to that specific variable.

BASIC allOWS three types of variables:

• Numeric variables (name terminated with letter, digit, or period)
• Integer variables (name terminated with ')
• String variables (name terminated with $)

The type of a variable is determined by the name of the variable. BASIC allows
variable names to be of unlimited length (a reasonable maximum is about two hundred
characters due to the line length restriction of 255 characters).

- 16 .. BASIC ley B

· CBAPDIl 5: BLIIIIITS OF '11IB. BJSl:C UllGtJAGB

Variable names for the three types o'f variables have a common syntax:

The

The

• First, character must be a letter (A - Z)
• . Subsequent characters are optional and may consist of letters (A - Z),

digits (0 - 9) or the period character (.). .
• The space character cannot be used as part of a variable name.
• The variable name cannot be a reserved word.

following are a~l

TOTAL
SUB. TOTAL
SUB. TOTAL 1
A

following are
123A .
A$ONE
PlIINT
SQR.

all

acceptable variable names:

unacgel2table

SUM INTEREST
SUM1 PRIME. INTEREST
CUST.NAME$ P.INT
INDEX% ' BO

variable names:

Must start with letter
Only special character allowed is period
Reserved word
Reserved word

A variable name is identified as one of the three types'of variables by a
terminating type character. This type character is part of the name and'makes the
name different from a variable name with a different type character. For example,
the following three variable,names each refer to a different variable:

CUSTOMER
CUSTOMER%
CUSTOMER $ ~

numeric variable)
integer variable)
string variable)

5.2.1 RUlleric Variables

A numeric variable is a n~ed location in which a single numeric value is stored.
Numeric variables contain numeric (floating point) values 0 ·A numeric variable is
identified by a vari,able name (discussed above) without a terminating type
character (last character is a letter, digit, or period).

The following are all acceptable numeric variable names:

A At B9
COUNT! INDEX RECORD .. NUMBER .
MAXIMUM MINIMUM TOTAL

The following are all unaccel2table numeric variable names:

·6 TOTAL-TALLY RECORD-COUNT
9 TOTAL 1A TWO/3

When a numeric variable is first defined its value is set to zero (0). Execution
of the ~UN instruction clears all variables. If you require an initial value other
than zero you must assign it with ·the LET statement.

Note: Because other BASIC languages may not set all
variables to zero before program execution you should
not rely . on this feature. Good programming practice
dictates that you initialize all variables at the
beginning of the program.

5.2.2 . Integer Variables

An integer variable! similar to a numeric variable, is a named location in which a
Single integer va ue is stored. Inte~er variables contain integers (whole,
non-fractional values). An integer varl.able is identified by a variable name
(discussed above) with a terminating type character of a percent (%) symbol.

The following are all acceptable integer variable names:

A% A1% INDEX%
RECORD% RECORD. NUMBER% CODE%

The following are all unaccel2table integer ~ariable names:,

A B2 1 TOTAL%
TOTAL1$. NAME$ONE BEC.INDEX

BASIC Bev B - 17 -

BASIC IBFBBDCB HOUR

-, When an integer variable is first defined its value is set to zero (O) It Execution'
of the RUN instruction clears all variables. If you require an initial value other
than zero you can assign it with, the LET_statement.
An integer variable always contain~ an integer value (see integer constants for
restrictions). If a numeric constant or variable is assigned to an integer
variable, BASIC first truncates the fractional part of the floa.ting point number.
If the resulting whole number is outside the range ot an integer (+32767 to -32767)
the number is set to 32767 with the' proper sign and an error occurs (refer to tbe
ON ERROR GOTO statement and the appendix on error codes) ..

When you assign an integer variable or con~tant to a numeric variable BASIC will
print the numeric valqeas an integer but maintaj,ns it as a floating point number
internally ..

5.2.3 StriDs 'ar1abl~8
A string variable. ,...is a named location in which a single alphanumeric string of
characters is stored. A string' variable is identified by a variable name
(discussed above) with a terminating type character of the dollar s~gn ($).

The following are all acceptable string variable names:

A$- B5$,
CUST .. NAME$- - CITY$' ,
CUST.CITY.STATE~ZIP$ DEBIT.CREDIT$

The following are all unacceptable string variable names:

A 1B
CUST-NAME$ $NAME

NAME$
DESC$

COUNT%
AB

Strings have a value and a length. BASIC initializes all string variables to a
length of zero--referred to as a null string--when a stri~ variable is first
referenced. - During the execution of a program the length of a character string
associated with a string variable can vary from zero to a limit of 255.

5.3 lrra7 Variables

An array is a list or table of numeric, integer, or string variables with one or
two subscripts. The subscript is a pOinter to a specific location 'in a list or
table in which a value is stored. You designate the pOinter with either one or two
subscripts enclosed by parentheses~ When there are two subscripts they are
separated by a comma. The value stored may be a numeriC, integer, or string value,
depending ~pon the array type. .

To name an array start with a numeric, integer, or string variable name:

ITEMS ITEMS% I TEMS $

Then add the subscript reference:

ITEMS(4) ITEMS% (2, 1 0) ITEMS$(15)

ITEMS(4) refers to the fifth value in the array ITEMS. It is the fifth value
because the first value has a subscript of zero (a ~umber base of 0). This may be,
changed by the OPTION statement.

ITEMS%(2,10) refers to the value DindexedD by row two, column ten in the table
ITEMS% .~

As mentioned, an array may have one or two subscripts. The number of subscripts is
refered to as the number of dimensions of the array (see DIM statement). An array
defined with one dimension must always be referenced with only one subscript.
Likewise, an array defined with two dimensions must always be referenced with two·
subscrip~s.

Array names must be unique from variable names (the subscript references are not
actually part of the name). This means that after the array ITEMS has been defined
all references to a variable ITEMS are unacceptable because the name ITEMS is an
array and must have subscripts. (The MAT statements are an exception to this
because they only operate on arrays.) An attempt to use a variable name as an array
and a non-array will result in an "InconSistent usageD error.

, Arrays are defined either explicitly with the DIM statement, or implicitly by using
the array 'name in an assignment statement (LET) or as a term in an expression.

- 18 ;.. BASIC Bey B

CII1PDI 5: ILBIIBITS OF' DIE BJSI:C LAllGtJAGE

When an arral!. is defined implicitly it is ,automatically dimensioned with an upper
subscript of ten with one ,or two dimensions, depending upon. the 'number of
s~pscripts in the array reference. For example:

LET ITEMS(4),= 1234

will dimension the array ITEMS to have eleven, elements with subscripts: 0, 1,,2,3,
4, 5, ~, 7, 8, 9, and 1 ° .

LET ITEMS~(2,7) = 23

will dimension the array ITEMS~ to have 'two dimensions' with maximum subscripts of
10 in each dimension. This equates to 121, el~ments (OPTION BASE 0) or 100 elements
(OPTION BASE 1). '

If it is desired to have either' fewer or more elemen,ts in an- array you must use the
DIM statement.

References to an 'array with a subscript greater than the size that the array was '
defined as will cause an error to occur (see ON ERROR GOTO statement and the
appendix on error messages). '

Most people find it inconvenient to work with a subscript number base of zero. For
that reason the OPTION BASE 1 statement is provided. Refer to the OPTION st'atement
for details on its use.

Note: It is alwa~s a good practice to use the DIM
statement to define the size of an array to avoid
wasti~,. storage space and to document the arrays and
dimens10ns in use •

.I.rrar Ezaaple

As an example let the array ITEMS~ be dimensioned to a size of 4 rows by 8 columns.
To accomplish this you would use the statement: DIM ITEMS~(3,7) and the layout of
the array would be:

R

o
w
s

°
1

2

3

COL U M N S

° 1 2 3 4 5 6
---; (0.0)' ; (0,1) ; (0,2) ; (0,3) ; (0,4) I (0,5) ; (0,6) ; (0,7) ;
I-------,-------I-------,-------I-------,------~I-------I -------,
I (1,0) I (1,1) I (1,2) I (1,3) I (1,4) I (1,5) I (1,6) I (1,7) I

,-------,-------,-------,-------J-------·,------~I-------,-------1 I (2,0) ,(2,1) I (2,2) I (2,3) I (2,4) t (2,5) I (2,6) I (2,7) I
I---~---,--------,-------,-------,------~I-------,-------1-------1
1 (3,0) 1 (3,1) I, (3,2) 1 (3,3) ~ (3,4) 1 (3,5)- 1 (3,6) 1 (3,7) 1

5.' ' PunctioDS

A function, in BASIC, is a speCial type of variable' or constant ..
predefined (or user defined) series of numeric and/or string operations ..

I

It is a

A function name looks very much like an array name except that instead Qf one or
two subscripts ,the function has zero or more "arguments". The arguments of a
function are values that the function operates on or returns to tfie statement
referencing it. ' -

There are three types of functions:

• 'Intrinsic fun'ctions
• User defined functions
• U~R functions

A function is used just like a variable or constant with one exception: a function
cannot be assigned a value.

The· rollowi~ are all acceptable function names:

SQR(25)
INT~TOTAL)
FNA (A1$tB2)
USR 3,A$)

BASIC lev B

Intrinsic - return square root of 25
Intrinsic - return integer value of TOTAL
User defined function
USR subroutine function

- 19 -

'\

BASIC IBFBIEICB IIDOAL

5.11.1 IDtriDaic FuDct~o~
Intrinsic functions are functions that are an irltegral part of BASIC and need not
be defined by the programmer.

The intrinsic functions provided with OASIS BASIC include functions to perform
trigonometric operations, algebraic operations, general string operations, general
numeric operations, logical operations, and screen control operations.

For a detailed description of the intrinsic functions refer to the chapter
"Functions" later in this manual.

,
Intrinsic function names are all reserved words and as such, cannot be used as
variable-names. (See appendix on "Reserved Words"o)

5 .11.2 User Det'1necl Functiou-

A user defined ,functions is one that must be defined by the programmer in each
program.

A user defined function name always starts with the letters FH.

For a description- of how to write a user defined function refer to the DEF
statement.

When a reference is made to a user defined function name and that function is not
defined with a DEF statement the reference will be interpreted as an array
reference. This may cause an error when the function arguments are analyzed as
subscripts.

5.11.3 USB Funct~oDS ~

A USR function is a call to a user written, assembly language, subroutine._

~here can only be one USR function available at anyone time, although it may have
several "entry points".

Refer to the OPTION USR statement for details on the USR function. Refer to the
OASIS MACRO - Assembler Language Reference Manual for details on writing a USR
function.

5.5 izpres8ioDS

Expressions are used extensively throu~hout this manual and- within BASIC itself.
Basicall~ an expression is the spec1fication of a series of operations to be
performea on var1ables, constants, and functions, resulting in one value.

The use of an expression in BASIC is similar to 'expressions you use in your
everyday work. For example, the term "work week" is used in estimating the time it
takes to do a particular JOD. To determine the meani~ of the term "work week" you
normally multiply the number of hours a person works in a day by the number of days
he works in a calendar week (normally 8 hours by 5 days). That is an example of an
expression.. Of course, in BASIC, you don't exactly use the same wording but it 1s
quite,siDiilar:

LET WORK. WEEK = HOURS • DAYS
In BASIC there are several types of expressions:

.• Arithmetic expressions
• String expressions
• Logical expressions
• Relational expressions

The type of an expression is determined by the type of operations it performs and
the type of the constants, variables, or functions that it performs the operations
on.

An expression can be as Simple as a single constant or as complex as several
hundred terms and operators.

- 20 - BASIC Bey B

CIIlPrBI 5: BLBIIIITS OF !lIB BASIC LAlrGUAGI

The following are. examples of expressions in BASIC:

2.345
A*SQR(GIRTH%)
NAME$&"abcdefg"
"Name: "&SPACE$(4)&NAME$
A OR B
NOT TRUE%
NAME 1 $ > NAME2$
CAT <= (BIRD AND DOG)

Arithmetic expression
Arithmetic expression
String expression
.String expression
Logical expression
Logical expression
Relational expression
Relational expression with
~ogical subexpression

An expression is composed of terms (constants, variables, and/or "functions) and
operators (+, *, &, .etc.). Operators are either binary- operators (operate on two
terms) or unary (operate on one term). An example of a binary operator'is the
mUltiPlicatton operator (*). An example ora unary operator is the negative
operator (-. Some operators can be either binary or unary such as the plus
operator (+ • .

Expressions are frequently used in BASIC assignment statements (LET) but there are
many other uses for expressions. The slntax of each of the statement descriptions
specifies where an expression can be usea and what type of expre~~ion is allowed.

Although there are four distinct types of expressions many expressions used 'in a
BASIC program are generally a combination of two or more types of expressions.

5.5.1 Ari~tlc BzpreaaloDB

The arithmetic 'expression is the most common type of expression. An arithmetic
expression has an arithmetic value (integer or floating point) and is defined as:

<ar1~~lc tera> [(ar1.taetlc operator) <ar1tlDletic terII>]

Ar1tt.etlc tera

An arithmetic term may consist of any of the following:

Numeric constant
Integer constant
Numeric variable or array
Integer variable or array
Numeric. function
Integer function
Logical expression
Relational expression
Arithmetic expression

.lr1tt.etlc operators

Operator

* /
+

Function

Exponentiation
Multiplication
DiviSion
Addition (or unary positive)
Subtraction (or unary negative)

English

raised to the power
times
divided by
plus
minus

An arithmetic expression whose terms are mixed in type (both integer and floating
point) yields a floating point value. An arithmetiC expression whose terms are the
same type (all integer or all floating point) yields a value of the same type.

You cannot place two arithmetic operators together unless the second operator is a
unary minus or unary plus.

The following are examples of valid arithmetic expressions:

A% Integer result
A%+23 Integer result
SUB.TOTAL+CURRENT*UNIT.PRICE Numeric result
ONE%*THREE Numeric result
+1/-4 Numeric result
PI*RADIUSA +2 Numeric result
3*4/(PI*R A 2) Numeric result

/
Note that the last example uses parentheses. Parentheses may be used anytime to
clarify the sequence of operations or to change the sequence (see section on

BASIC Bey B - 21 -

BASIC BBFBBIICB IIDDAL

"Evaluating Expressions" below).

5.5.2 String BzpressioDa

A string expression has a string value and operates only on string termso

String tent

A string term may consist of any of the following:

String constant
String variable or array
String function'
Stri~g expression

String operator

A string operator may consist of:

Operator

&
, [n:m]

Function

Concatenation
Substring

English

is' concatenated with
from character n

through m (unary operator)

The concatenation operator allows two strings to be joined together. Thus
-- "ABCDEF"&"GHIJKLMN" produces ABCDEFGHIJKLMN. The concatenation operator always

operates on two terms (binary operator).

The substring operator extracts characters from a string'. The n in the operator
represents the starting character position; the m in the operator represents the
endi!l8 character 'position. The result of a substring operation is always a string
of length m-n+1, even when one or both of nand m are greater than the current
length of the string bei~ operated on. The m value must De greater than or equal
to the n value. The substring operator is a unary operator that operates on the
preceding term l rather than the following term like other unary operators. The
substring opera~or may be followed by the concatenation operator.,

The following are examples of string expressions: (assume all string variables
contain the constant "ABCDEFGH")

Expression ' Result

NAME$ ABCDEFGH
John Doe "John Doe"

A$&"Messa£e"
CITY$&", w&ST$&" "&STR$(ZIP%)
A$[2:4]
'"'&ALPHA$[4:9]&ALPHA$[11:12]&'"'

, ABCDEFGHMessage
ABCDEFGH, ABCDEFGH 12345
BCD

(A$&B$[5:9])[3:10]' ,
"DEFGH "
CDEFGHEF'

Note that in the last example parentheses were used. Parentheses are discussed in
the section "Evaluating Expressions" below. .In this example the parentheses are
used to produce a "sub-expression" for the second substring operator.

The following are invalid

AI/RABCD" A [4:1]
A >B$.
A &123
A [2:3]&

string expressions:

- Cannot include arithmetic operator
Invalid substring reference
Relational expression (see below)
Cannot include arithmetic term
Concatenation requires two terms

5.5.3 Logical ExpressiOns

A logical expression operates on integer values and produces' an integer value. A
logical expression is defined as: . ' ,

(aritt.et:l.c ter.> (logical operator> (arltbaetic tent>

Arithmetic 'term was defined above, in the section "Arithmetic Expressions" ..

- 22 - BASIC Bey B

CBAPr.II 5: ELBIIBIITS OF !lIB BASIC LDGUAGB -

,LoSical operators
-

A logical operator is any of the following:

Operator Function

NOT
AND
OR

Invert bits (on -> offi off -> on) in one term. (unary)
Tests for bit on in bo~h terms '
Tests for bit on in either term '

~ XOR Tests for bit on in either but not both terms
IMP
EQV

Test first term--if bit on then bit bust be on in second te
Tes~s for equality--both bits on or both off

Logical expressions are comparisons between the corresponding "bits" of the two
terms of the expression. ,A bit isa binary (either on or off) piece of
information. An integer value is'composed of sixteen bits. A decimal integer is
expressed in bits by converting the number to base two notation and adding any
leading binary zeros, if necessary. The following is a list of some equivalen~
values in decimal and binary: '

DeCimal Bi~ry bits
-----~- ~~~~~~~E~~~~~~~~~

1 00000000'00000001'
5, 00000000 00000101

23 00000000 00010111
10G, 00000000 0110010a

- 32767 01111111 1111~111
-32767 10000000 00000000

-1 111~1111,11111111

Note that a decimal zero has all' zero bits and a decimal minus one has all one
bits. This relationship between 'decimal and binar¥ is used in the result of
relational expressions, disc~ssed in the following sect10n.

The terms of a logical expression must be integers. When the terms are floating ,
point in value BASIC will integerize them before the logical operation 1s'
performed.

Logical expressions are valid wherever arithmetic expressions are allowed in BASIC,
however ~ both terms must be integers (floating point terms will automatically be ,-
"fixed"). - "

The following tables are called truth tables. They show graphically the results of
the logical operations for every possible combination of two bits.

BASIC ley,B

LoSical Truth, Tables

aar
----------------------------A% NOT A% o 1

1 0

OJ)

----------------------------A% B% A% AND B% '
000
o 1 0
100
1 1 1

IMP '\

----------------------------A% B% A% IMP B%
0- 0 1
o 1 1
1 0 _ 0
1 1 1

/

01

----------------------------I A% B% A% OR B% I

I I
I 0 '0 0 I
I' 0 1 1 1
1 1 0 1 I
I 1 1 1 I

1:01

----------------------------A% B% A% XOR B%
0 0 0
0 1 1
1 0 1
1 1 ' 0

----------------------~-----
EQY

----------------------------A% B% A% EQV B% I

I o ' 0 1 I 0 1 0 1 1 0 0 1-1 1 1 I

---------------------------- ----------------------------

- 23 -

\ '

BASIC BBFBBBlCB MDUAL

The following ~re examples of valid logical expressions:

NUM1~ OR NUM2~ \ '
Ii iNB f~UMBER lOR/TOTAL) IMP TEST~
(A, AND B) OR (A AND C)
STRING$ >= "A" AND STRING$ <= ,HZ"

Note that in the next to the last example parentheses w~re usedoParentheses are'
discussed in the section "Evaluating Expressions" below. In this example the
parentheses are used to specify the sequence of evaluation.

The following are all unacceptable 10g1cal expressions:

STRING$ OR "HELP"
NUM1~ AND OR NUM2 '

Must be arithmetic terms
Binary operators cannot be
adjacent

Logical expressions are normally used to evaluate terms that are the result 'of
relational expressions (bits all on or all off)- however, since the logical
expression does compare all sixteen bits of each of the terms there are many other
uses tor 10g1cal expressions. One of the more common/of these other 'uses is binary
coded information or "bit swtiches". . /

Some examples will illustrate how the logical operators' work on non-relational
values:

000000-0000001111 ~~~~ ANIT 0000000000001110
15 AND 14

----------------0000000000001110 (14) (True)

0000000000001010 ~1~~ . OR 0000000000010111
10 OR 23

~-----------.. ---0000000000011111 (31) (True) .

NOT 153 NOT 0000000010011001 (153)
--~--~--~---~~--1111111101100110 (-154) (True)

0000000000011001 ~ ~~~ XOR 0000000000001101
25 XOR 13

--------~----~--0000000000010100 (20) (True)

29 XOR 29 0000000000011101
XOR 0000000000011101 ~~§~

----------------0000000000000000 (0) (False)

0000000011101010 ~ 2~4) -EQV 0000110101'100101 3 29)
234 EQV 3429

----------------1111001001110000 (-3472) (True)

56 IMP 720 0000000000111000 ~ 56) IMP 0000001011010000 720)
----------------1.111111111010111 (-41) (True)

As you can see there doesn·t appear to be a relationship between the decimal terms
and the decimal result of the'expression; however, using the binary representations
of the intesers (as BASIC does) there is a definite, Boolean, relationship. This
can be util~zed to make an integer value contain Sixteen, binary (on/off) switches.
When using binary switches the· logical expre·ssions can be utilized to set or mask
the number to expose the bit switch desired. .

BASIC Bey B

CIIlPDI 5: BLBIIBI'lS OF !lIB BAsIC LDGUAGB

5.5.' Belat~oD8l Expreaa~oD8'
\ "

A relational expression operates on numeric or string terms and produces a sixteen
(16) bit integer value of -1 (true -all bits on) or 0 (false - all bits off). A
relational expression is defined as:

<ar1.tllaet~c .tara> <relat~oDal operator) <ar1.thaet~c tara>

or

<striDg terll) <relat~opa1 operator) <atriDg tena>

Ari thmetic and string terms were defined above unde'r
Expressions" and "String Expressions" respectively. ,

BelatloDBl operators

A relational Qperator is any of the following:,

Operator

>
>=
(,

<=

Function

Greater than
Greater than or equal to
Less than

the sections "Arithmetic

<>
Less than or equal to
:Equal to
Greater than or less than (unequal/to)

The following are all acceptable

STRING$ > "HELLO" .
NUM1 <= NUM2
NUMBER% <> 225*(5-0NE)

539 = ONE

relational expressions:

'String relation
Numeric relation
Numeric relation with
'arithDletic sub-expression
Numeric relation (not assigment)

The following are all unacceptable relational~xpressions:

"Goodbye" <> 25 Can't mix string with numerics
NUM1 I NUM2 Invalid operator

5.5.5 Expression EYa1uat~on

BASIC evaluates expressions according to operator precedence. Each arithmetiC,
string, logical, and relational operator joining an expression has a predetermined
position in the hierarchy of operators. The operator's position tells BASIC when
to evaluate the operator in relation to the other operators in the same expression.

Parentheses may be used to change the sequence of evaluation of an expression.
Nested parentheses (one set of parentheses within another) may be used to cause the
innermost subexpression to be evaluated first.

Parentheses may also be used as a documentation aid to clarify a .complex
expression.

The following table lists all of the expression operators in the hierarchy of
evaluation.

BASIC Bey B - 25 -

. Operator Precedence

--"----------------------_._------------_ .. f Opera tor '- . I . Hierarchy I
-I)--------~--------------i-----O-----I .

. (exponentiation) t 1 I
functions . 2 I
SUbstrirrng 2 ,

-+. unary . 3 I
- unary· .. 3 I
• multiplication) 4· .
I division) ,4
+ addition) 5
- ~ubtraction) 5
& concatenation) .. 5
) greater than) 6
>= {greater.or· equal) 6
< (less than) I 6
<= (less then or equal)'. I 6
;: (equal)1 . 6 <> (unequal) I ' .. 6
NOT I 7.-AND 8
OR I 9

I' XOR I 10

I ~~ I ~~

Notice that some operators have the same hierarchy number. This means that they
are equivelent in precedence and will be evaluated in a left to right manner. This
also applies to an expression with more than one occurence of the same operator.

As an example·, consider the -following expression:

A = 15A2+12A2-3S*8 .

BASIC evaluates this expression in five, ord~red steps:

1. 15A 2 = 225 Exponentiation (left most) _
2., 12A2 = 144 . Exponentiation (next) ,
3., 35*8 = 280 . 'Multiplication
~. 225+144 : 369 Addition
5. 369-280 : 89 Subtraction·

Result is 89

Arithmetic expressions with mixed arithmetic types (floating point and integer)
will "float" all of the terms before expression evaluation.

\ ,/

'As mentioned, parentheses can alter the sequence of evaluation (and pOSSibly, the
result). Consid.r the following, . similar· expressions and evaluation~: , .

2SA2+30A2/2 (2SA2+30 A 2)/2

1~ 2SA2 =625 1.· 25 A 2 : 625
2., 30 A

2 = 900 2 .. 30 A 2 : 900
30 900/2 : 450 3. 625+900 : 1525
4,. 625+450 = 1015 4. t52512 = 762.5

Result is 1015 Result is 762.5

Note that in the above precedence table the relational operators have precedence
over the logical operators.

Consider the following expression and evaluation:

"A">"B" OR "A"<="D"
. 1. " A " > "B " = 0
2. "A"<:"D" = -1
3. 0 OR -1 = -1

-26-

0000000000000000 Iralse.)
1111111111111111 true)
1111111111111111 true}

BASIC Bey B

CIllPDR 6

, POBll&TED OUTPUT

Sometimes the format of output is as important as the content.' BASIC provides a
means of controlling this format with the PRINT USING statement~·and the FORMAT$
function. Both the statement and the function allow you to contr,ol the appearance
of data, thus en~bling'you to create formatted list, tables, reports, and forms •.

The following example programs print a· series ot numbers. O~e program uses the
PRINT statement and the other uses the PRINT USING statement.

0005 MASK$ = nl~IIIIIII.II_n
gg~g ~~j~f 10 gg~g ~~i~f 8~j~~ ~~~ '10 .
0030 PRINT 123.5 0030 PRINT USING MASK :123.5
0040 PRINT 100 0040 PRINT USING MASK ,100

gg~g ~RI~f '1g~g~~~ gg~g ~RI~f g~I~g ~~I :1g~g~ao
0070 PRINT -3' 0010 PRINT. USING MASK ,--3

-RUN
1
10
123.5
H)O

-RUN

0.23433
1000000

1.00
10.00

123.50
100.-00

0.23
~ '1,000,000.00

3.00-~ -3 , - (

As can be seen the PRINT statement lett justifies. numbers, performs no rounding,
and indicates negative values with a leading floating, minus sign; PRINT USING
(and the FORMAT$ function) allows you to format numbers 1n several ways, making it
easier- to read and intepret the output. - \'

There are several number formatting functions that the PRINT USING statement and'
the FORMAT$ function allows you to specify:

• Number of significant digits.
.• Location of decimal point.

• Exponential format.
• Inclusion of special symbols (asterisk fill, dollar sign, commas, leading

zeros). . .
• Alternate methods of indicating negative values (trailing sign" < >,

trailing DB or CR).

There are also several string formatting functions that the PRINT USING statement
allows you to specify:

• Number of characters.
• ' Left justified format.
• Right justified format.
• Center justified format.
• Extended format.

All of the formatting functions 'tor the PRINT USING statement and FORMAT$ function
are specified by using a mask that contains the formatting information. For
details on the general syntax of the PRINT USING statement and FORMAT$ function
refer to their respective sections.

PlIIIT USDa aDd FOIlMlT Haaka

PRINT USING and FORMAT$ masks are string expressions that contain formatting and
~on-formatti~ characters that control the format of the field output.

A PRINT USING mask may contain the format information for more than one field;' a
FORMAT$ mask'contains the format informattion for only one, numeric field.

Non-formatting characters include any, and all,characters not specified here as
formatting characters and act as literal information and' field separators. These
non-formatting characters will' be' included in the outRu~ field. .Formating
characters that operat.e in pairs (\ \ $$ •• DB CR AA AAA A A AAAAA) will' act as
non-formatting characters if they appear separately ($.• D B C R A). Addit~onally,
the formatting characters comma period, minus, DB, CRi' +, and > act as
non-formatting characters, if - they appear separate trom a numeric field
specification. .

BASIC ley B -Zl-

BASIC urBIDCZ HOUR

For example: .

0010 PRINT USING "Example 1: 11",1
0020 PRINT USING "This is a DB record 99 ft ,1
-RUN
Exam pI e \1: 1
This is 'a DB record 01

6.1 Ru.er1c Field H8akB
\

Numeric field masks may be used for both the PRINT USING statement an~ the FORMAT$
function.. A numeric field mask requires a numeric value as input" When an attempt
is. made to use a numeric field mask with a string field the error "Invalid using"
will occuro .

. .' -

The output of a numeric field specification mask wili always be the same length as
the length of the specification mask (unless there 1s insufficient space--see
"Field Specification too Small") .. It necessary! the number to be output is rounded
by truncati~ digits t~ the right of the decima point not specified in the mask or
rounding ·the last digit specified to the right of the decimal point if the next
digit was five or greater. When·a.number must be rounded to make it fit in the
specified mask rounding will be performed on the absolute value of the number. For
example:

0010 PRINT USING "11", 1 .4,1.5,.1 .6
RUN

t
2
2

6,.1.1 Spec1f)iDg babe .. of Digits

0010 PRINT USING "11",-1.4,-1.5,-1.6
RUN
-1
-2
-2

All of 'the numeriC, formatting characters' are used to SjeCifY the total length 0, f
the ou'tput field; however, only the I 9, comma, •• , and $ are used to specify the
number of digits to be included. Conventionally, the and/or 9 characters are.
used' to specify the number of digi ts • .

The 9 character reserves space for one digit and, if it appears before the decimal
point specification, indicates that leading zeros are not to be suppressed.. The 9
character cannot be used to format negative values.

The I character reserves space for one digit and indicates that leading zeros are
to be suppressed ..

The I and 9 characters may be'mixed; however, if one or more 9 characters appear
before the decimal point speCification, leading zeros will not be suppressed ..

When no sign speCification is' used and a '~negative value is output, a leading,
floating, minus sign will be output, using one of the digit positions (as stated
earlier, the output field will always be the same length as the mask field).

For example:

0010 PRINT USING" I" 1
gg~g!~~!~~ g~i~g :",::::1
0040, PRINT USING "91Itl": 1
0050 PRINT USING "11111"-1
0060 PRINT FORMAT$(23," 1111")
-RUN , 1 .

1
1

00001
-1
23

6.1.2 Dec~ Point SpeCification

0010 PRINT USING " 9" 1
0020 PRINT USING" 99":'
0030 PRINT USING "99999" 1
0040 PRINT USING "'9191"~1
0050 PRINT USING "99999-" -1
0060 PRINT FORMAT$(23,"9Iill")

1
01

00001
00001
00001-
00023

You can specify the number of digits to the left and right of the decimal point by
using a p~riod embedded in the number field specification. The number of digits to
the right of the decimal point specification will always be printed, even-if zeros
are required to do so. -

If one or more digits are specified to the left of the decimal point there· will
always be at least one dig1t output, even if a zero is required to do so, unless

- 28 - BASIC ley B

CBlP!II6: FOJHl!ID OUYPOT

there is only one place specified, the number is -'negative and less than one, and
there is no sign specification used in which case the negative sign will be output
immediately before the decimal pOint.

Specifying fewer 'places to the right of the decimal point than the number actually
contains will cause rounding to occur to allow the number to fit. Specifying fewer
places to the left will cause an error (see Specification too Small)., ,

Only one deCimal point may be specified in a numeric field mask. Speoifying a
second deCimal point will indicate the end of the mask field and the start of
another numeric field.

For example:

0010 PRINT USING" .11" 0
0020 PRINT USING" 1.11"'1
0030 PRINT USING" '1.,,"'1.2345
0040 PRINT USING, "11111'.11111" , 1 .24
-RUN

.00
1.00
1 .. 23
1 .. 2400

-6.1.3 ~ Spec1f1cat~oD

0010 PRINT USING
0020 PRINT USING
0030 PRINT USING
0040 PRINT USING
-RUN

.00
1 .. 00

00 .. 20-
%-.23456-9

" .99" 0 -
" 9.99"~1
"99.99- ,-.2
" 9.999",-.234569

Commas may be inserted in the output field by using the comma character anywhere in
the field" to the left of the decimal point specification, if' ,used.

When the comm~ character is ' used the output field will be formatted with a comma
appearing every third digit from the decimal point (or least significant digit if
the decimal point specificati~n is not used), working from right to left. '

"

The comma character is al~o a digit specifier.

More than one comma may be specified for easier reading of the format "mask:
1,111111111 has the same effect as 111,111,111 although tne-second form is more
graphic in its mean1ng.

For example:

0010 PRINT USING "I 111/1'" 1 '
0020 PRINT USING "'~111111IIIIII"11E~9
0030 PRINT USING "lg,IIIIII.II",1234.56
-RUN' -

, 1
1,000,000,000

1 ,234.56
6.1._ Dollar Field Speciricat~OD

A number may be formatted' with a dollar sign immediately before the most
significant digit by ,using the floating dollar sign specification of two dollar
sign characters together. (To format a number with a dollar sign before the field
use a single dollar sign character and it will be treated as anon-formatting
charac ter.) I

The double dollar sign characters must be at the start of the field ',(the asterisk
fill specification, if used, must be before the floating dollar sign
specification).

The double dollar sign characters indicate that a floating dollar sign 1s to be
generated and one position is to be reserved,for a digit.

If the number to be formatted is negative you must use the sign specification,
otherwise a using error will occur.

The numeric field specification character 9, may not be used in' a field with
floating dollar sign specification. When it is it will be interpreted as the end
of the field and the start of the next numeric field.

Extra dollar sign characters maI be used instead of the I character. ' For instance,
$$$$$$$$ is the same as $$#11111. ,

BASIC ley B - 29-

BASIC 'DFEBBIICB HUUAL

For. example:

0010. PRINT USING "ii'II.,I" 12 0020 PRINT USING" 111.1,,,'1234
0030 PRINT USING" 111# .11-", -1234
-RUN . .

$12.0~ -
$1234.00
$1234.00-

6 e 1 .5 J.aterisk Pul Speci~1catlon

8g~8 ~Hj~t g~I~g =$$ IIII$:~Jl" '12345
0030 PRINT USING "$$111111.11-',-12345
-RUN
. $1
$12,345.00
$12 ,34S-~00 ..

/

A number may be formatted-with leading asterisk' instead of leading zeros by using
the asterisk fill specification of two asterisk characters.

~ .
The asterisk fill specification,
numeric field specification.

if ~sed, -must appear ~t the very start ofa

The double asterisk characters indicate that any le~ding zeros ~re 'to be replaced
with asterisks and that ~wo positions are to be reserved for digits.

If the number to be formatt.ed· is negative you must use the sign speCification,
otherwise a us;ng error will occur. '.'

The nUmeric field specification character 9 may not be used in a field with
asterisk. fill specification. When it is it will be interpreted as the end of the
field and the st~rt of the next numeric field.

Extra asterisk characters may be
•••••••• is the same as 1."'1".
For example:

0010 PRINT USING "··".11" 123
0020 PRINT USING " •• ".,1-',-123
0030 PRINT USING "·.$$$$$_",_2.
-RUN
·123.00 -
·12~.00-
···'·$2-

6.1.6 Sign Spec1t1catloD

used instead of the I charactere

0010 PRINT USING "····.11";123
0020 PRINT USING " •• ss II" 1
0030 PRINT USING ".lii~,.5&78 .

_ -RUN
- ·123 .. 00

•• S1000 ···1

For instance,

BASIC provides several methods of speCifying how to print signed values. As stated
above, when the mask field does not specify how to format a negative value a
leading minus sign is generated. This is unacceptable in many cases and BASIC
willnQt allow it if the format ~pecification includes leading zeros (9), floating
dollar sign ($$), or asterisk fill (••). In these situations you must use one of
the sign spec1fic~tion characters. ' . '

All of the sign specification characters, when used, must appear at the end of
format field (if they appear at the beginning or middle of a format'field they will
be treated as non-formatting characters or field separators, respectively).

trailing. Sign Spec1~1catioD
-

A plus sign' character (+) at the end of a format specification/indicates that
the sign of the field (+ or -) is to be output at the end of the numb.er.. .

Trailing If1nua Sign SpeCification

A minus sign character (-) at the end of a format specification indicates that
the -sign of the field (-) is to be output at the end of the number· if the_
value of the number is less than zero.

Trailing Debit Sign Speci~lcatloD

Debit specification characters (DB) appearing at the
specification 'indicate that a literal DB is to be output
number if the value of th~ number is less than'zeroe

TrailiDg cr8cU.t Sign Spec1~1cat1oD

Credit specification characters (CR) appearing at the
speCification indicate that a literal CR is to be output
number if the value of the number is less than zero.

- 30 -

end of a format
at.the end of the

end of a format
at the end of the

BJSl:C Bey B '

CIIAPDI 6: FOBlllftD (lJyPOT

Angle Bracket Spec~icat~oD

An angle bracket character ,(» at the end of a format specification indicates,
the the number is to be surrounded with angle brackets if the value of the
number is less than zero. . . /

. Note that this specification is somewhat diffe~ent from the other ' sign
specifi'cations in that not only is a character added at the end of the number "
output but also at ,the beginning of the number. , ' ,

/ This sign specification may not be used with the numeric 'field specification
characters 9, $$,or **. .

I

Negative value' specifications may be used with any, of the other numeric field
formatting characters with the exc~ption of exponential field specification~

Examples:
,

0010 PRINT USING "11#1+",123
0020 PRINT USING "#111_" 123
0030 PRINT USING "IIIIDB' 123 '
0040 PRINT USING "1IIICR":123
0050 PRINT USING' "1111>" 123
0060 PRINT USING "11111':">",12
-RUN

123+
123
123
12~
123

12.00

. 6.1 .1' BxpoDeDt1.al Field Speci1'1cat1.0D

0010 PRINT USING "1111+",-123
0020 PRINT USING "##11_" -123
0030 PRINT USING "'IIIDBA,-123
0040 PRINT USING "1IIICR",-123
0050 PRINT USING "11#I>"·,-12~
0060 PRINT USING 1f'111111.II>Tt,_12
-RUN

123'-
123-
123DB
123CR

<123>
<12.00>

BASIC normally prints a, number ,in E format only when it is larger than 13 digits
long, for example: 12345678901-2345 would be printed as 1.234567890123E+014.
However, with PRINT, USING or the FORMAT$ you c-an force a number to be output in E
,format. This.1s done with the exponeptial field specificat1-on: IAAAAA. _

When a number is to be formatted in E' format you cannot specify any other
formatting characters other than the number of digits (Il or the decimal point
position l.).

The exponential field speCification, when used, must be at the end of the numeric
field specification: II.IIIIAAA~~.

The exponential field specification may be used with fewer than five up-arrow
characters wheni t is known that the exponent will. fit in the smaller
specification. For example: " _ '

~~~AA allows for exponents from -126 to +126 
~AA~ allows for exponents from -99 to +99 
AAA allows for exponents from -9 to +9 
AA allows for exponents from 0 to 9 

For example: 

0010 PRINT USING "1.IIAAAAA"124 
0020 PRINT USING "1IIIIIIIAAlAA" 123445 
0030 PRINT USING "'IIII.IIIIAAAA't12345678 
0040 PRINT USING "1.IIII, AA",1234,67 
-RUN - '. 
1.24E+002 
12344500E-002 
12345.6780E+03 
1.23456E6 

6.1.8 'Field Specit1cat~oD too s.all 

. When a number field specification does not specify suffiCient digi t to allow the 
number to be output a percent symbol ,character (%) will be output followed by the 
number, unformatted. -, 

This situation can happen for several reasons: 

BASIC Rev B - 31 -



BJSIC BBFBIBICB HllUAL 

• Field isn't large enough: mask: III number = 1234 
• Field isn't large enough to include the commas specified: mask: 1,111 

number= '12~45 " , _,' .' 
• Field isn1 t large enough to include floati~g dollar sign: mask: $$111 

number = 12345 . 
• Field isn't large enough to include leading minus sign: mask: III number: 

-123 
In the following examples a double field mask 1s used to 'print two numbers the 
first number won't fit in the first mask but the second, ,identical number will fit 
in the second mask. " 

0010 PRINT USING "III 1111.11" 1234,1234 
0020 PRINT USING "I III 111/11'" 12345,12345 
0030 PRINT USING "s&,11 11111"'12345,12345 
0040 PRINT USING nii'll IIIII":12345j12345 
0050 PRINT USING "'" 111_" -123 -12 0060 PRINT USING "'.IIAA,.AA'II.t!AAA An -1 -1 
0070 PRINT USING "I.IIAA I.IIAA ",1E+12,1£+12 
-~N I 

% 1234 1234.00 
% 12345 12345 
% 12345 12345 
% 12345 12345 
%-123 123-
%-1 -1.00E+000 
% 1000000000000 1.00E+12 

6.2 Striug Field MaaIaJ 

String field masks may only be used for the PRINT USING statement, not in the 
FORMAT$ function. A string field mask requires a string value as input. Whenan 
attem~t is made to use a string field mask with a numeric value the error "[26] 
Inval~d using" will occur. , 

The output ot a string field specification mask will always 'be the same length as 
the length of the specification mask with one exception: extended fields. When a 
string value is longer than the string field mask BASIC will print as much of the 
string as will fit and truncate the remaining. . 

6.2. 1 SiDgle Cbara~ter 

You can specify that only the first character of the string value is to be printed 
by using the single quote character as a- single character string mask field. 
Al,ternately the exclamation mark (!) may be used. 

0010 PRINT USING "!","ABCDEFGH~ 
RUN 
A 

6.2.2 Lett JU8t1t~ed Pleld 

0020 PRINT USING "'","XYAX" 
RUN 
X 

If you specify a left justified string field, BASIC prints the string starting at 
the left most position. If there are any unused places, BASIC prints spaces after 
the string. If there are more characters in the string value than in the string 
mask, BASIC truncates the string and does not print the excess characters. 

To specify, a left justified string field use the single quote lead in character (') 
followed by one or more L characters. The number of L characters (upper or lower 
case) plus the lead in quote specify the length of the left justified field. 

/ / . 

Alternately you may use the back slant character to mark the beginning and end of 
the string mask. In this form spaces must be used between the two back slant 
characters. The number of spaces,plus the two back slant characters specify the 
length of the left ··justified field to be printed. 

With either method the minimum string length is two. 

- 32 - BASIC ley B 



For example: 

0010 PRINT USING "'L" "ABCDEF" 
0020 PRINT USING "'LLL" "1234567" 
0030 PRINT USING "\ ~","ABC" 
RUN 
AB 
1234 
ABC 

6·.2.3 Il1ght JuatUied Field 

CIIIPTBB 6: POllllrBD ClJTPUT 

0010 PRINT USING "'LLLLL" "1~~4567890" 
-0020 PRINT USING " 'LLLLL" , "ABli _ 
0030 PRINT USING "\\",'ABCD" 
RUN . 
123456 
AB 
'ABCD 

If you specify a' right justified string 'field, BASIC prints the string SQ that'the 
last character of the string is in the right most place of the,field. If there are 
any unused places before the string, BASIC prints spaces to fill the string. If 
there are more characters in the string value than in the string mask, BASIC 
truncates the string and does not print the excess characters. 

To specify a right justified string field use the single quote lead in characters 
(') followed by one or more R characters. ;rhe number of R characters (upper' or 
lower case) plus the lead in quote specify the length of the right justified field" 

For example: 

0010 PRINT USING "'RRRRRR" "ABCD" 
0020 PRINT USING "'RRRRRRn'"AB" 
0030 PRINT USING "'RRRRRRn'"ABCDEF" 
0040 PRINT USING "'RRRRRR":"ABCDEFGHIJKLMNOP" 
RUN 

ABCD 
AB 

AB CD EF 
ABCDEFG 

6.2.' Center JuatUied ~ield 

If you specify a centered field, BASIC prints the string so that the center of the 
string is in the center of the field. If the string cannot be exactly centered, 
such as a two character string in a five character field, BASIC prints the string 
one character off center ·to the left. If the length of ~he string is longer than 
the mask field the string will be truncated. 

To specify a cen~er justified string field use the single quote lead in, character 
( , ) followed by one or more C charac ter s: The number of . C charac ters. (~pper or 
lower case) plus the lead in quote spec1fy the length of the center justified 
field. . ' 

For example: 

0010 PRINT USING" 'CCCCCCCCCC" "ABC"' 
0020 PRINT USING "'CCCCCCCCCC"'"ABCDEF" 
0030 PRINT USING "tCCCCCCCCCC"'"A" 
0040 PRINT USING· "'CCCCCCCCCC"'"ABCDE" 
0050 PRINT USING n'CCCCCCCCCC":"ABCDEFGHIJKLMNOPQRSTuvwxyzn 
RUN / 

ABC 
ABCDEF 

A 
ABCDE 

ABCDEFGHIJK 

6.2.5 ExteDded Field 

The extended field is the onlI field that automatically prints the entire string. 
When you specify an extended field, BASIC left justifies the string as it. does for 
a left justified .field but, if ~he string has more characters than there are 
places in the field, BASIC extends the field and prints the entire string. This 
extension may cause other items to be misaligned. 

To specify an extended field use the single quote lead in character ('> fOllowed by. 
one or moreE characters. The number of E characters (upper or lower case) plus 
the lead in:quote specify the minimum length of the extended field. The resulting 
output field will always be at least the ~ength of the mask field. 

BASIC Bev B - 33 -



BASJ:C JIBFBRBICB IlDUAL 

For example: 

gg~g ~~I~f g~i~g ::~Ei!:!B~~EF" -
0030 PRINT USING "'EEEEEE!EEEEEEEEEEEE-","ABCDEFGHIJKLMNOP" 
RUN .; 
ABCDEF-
ABCDEF-
ABCDEFGHIJKLMNOP '-

6.3 Hult:1ple F1elda In ODe'Mask 
The PRINT USING statement allows multiple fields to be specified in one mask.. When 
this 1s done ,the values of the expressions in the PRINT USING statement are matched 
in a one to one relation with the· fields in the mask.. (The FORMAT$ function only 
allows one numeric field -to be specified in the mask. .A second field, if 
specified, will be used to mark the end of the mask.) 

For example: 

gg~g ~~i~4 g~i~g -:~~~ ;~~~ ~~~~ ~~~:'1oa'12~,S 2 
/' 0030 PRINT USING" 'RRRRRRRRRR III 'EA., "ITEMtt ,23, "THIS IS THE DESCRIPTION" 

·RUN ' 
1 2 3 4% 

100 0123 0005 02% 
ITEM 23 THIS IS THE DESCRIP.TION 

As mentioned earlier, any non-formatting characters in the mask 
as literal characters to be, included in the output: 

0010 PRINT USING "ITEM 9999 Amount each: $$$$$$,.11",23,15.40 
·RUN 
ITEM 0023 Amount each: - $15~40 

6.11 Ie-using Mask F1elds 

field are treated 

The PRINT USING statement will re-use the mask field if there are more values 
'specified as input than there are ~ields in the mask. BASIC will output a,carriage 
return, line feed each time that the mask is re-used. , . 
For example: 

0010 
RUN 

PRINT USING "$$$$$$,$$$.11",1,23.4,34,234,5467.2,1235.924 

$1.00 
$23.40-
$34000 

$234 .. 00 
$5,'467.20 
$1,235.92 

6.5 '-081118 Errors 

A using error occux:-s (and a message is displayed) it: 

• The format string 1s not a legal string expression .. 
• There are no valid fields in· the format string. 
• A string is printed in a nUmeric field. ' 
• A number is printed in a string field. 

- 3"_ ... BASl:C ley .8 



. CII1P!BI 6: FOIlllDD OUTPUT 

PIIIft USDG aDd FOBaT. POrllllt Characters - . ~c Fi.lela 
__________________________________ ~-----------------------------~_~ ___ I 

I=;~:~:~;:~=~=;~~;;~~=======~==========~====================~=======I ,9 , Reserves place for one digit. Also specifies no zero' I 
I . 1 _~uppression. . ,I 
I-------------------------------------~------------------------------, I # I Reserves place for one digi t, with -leading zeros· ,. 
I. 'I suppressed.· - I 
I--------~----------------------~-----~---~---~----------------------, I ,$$.. ". Reserves place tor one d1git and floating dollar sign~ I ,-------------------.----------------------------------------------.--
I .•• I Causes leading -asterisks to be printed instead of 
I' spaces. Also reserves place for two digits. 
I-----------------------------------~-----~--------------------------I' , Causes a comma to be printed between every third digit 
I I - starti~ from the decimal point and-proceeding from 
I 1 right to left. Also reserves place for one digit. 
I--------~----------------------------------~------------------------'. '( Specifies location of decimal pOint.- ", 

I Caus~s atra1ling minus sign-to be printed when number 
I is nega~ive." - , 

+ t Causes a trailing minus or plus sign to be printed 
. I depending upon the sign of the number 

--------------------------------------------------------------------DB .1 Causes a trailing DB to be printed when number is 
, ' negative. _ -. 

----------------------------------------~---------------------------CR - _, I Causes a trailing CR to be printed when number is i 
_ 1 negative. _ -' , - I 

------------------------------------------------------------~-------·I 
> I Causes a_leading, floating < and a trailing> to be I 

1 printed when number is negative. , 
---~-----... --------------------------------------------------------- 1--,.,. I Causes the number to be printed in E format. Only , I 

1 allows for single digit,. unsigned exponent. . I 
--------------~----------.------------------------------------------1 ,.,.,. - !,Causes the number to be printed in E format. Only I 

I allows for single digit, s,igned exponent. . I 
-------~------------------------------------------------------------1 ,.,.,.,. I Causes the number to be printed in E format. Only , I 

1 allows for double 'digit, signed exponent. I _ 
----------------------~-----~--------------------------------------, ,.,.,.,.,. I Causes the number to be printed in E format. 1 

----------------------------------------------------------------------PBDr USDG FOrllllt Cbaractera - StriDS Flelda 

Character ( -Function 
---------:--------------------------------------------------------------j---- -1-Singi;-~h;~;ct;~-f1;id-P;1~t;d:------------------------

--------------------------------------------------------------~-----\ ! Marks beginning or ending of a left justified field 
,land reserves one place tor-a character. 

--------------------------------------------------------------------, I Single character field printed' or treated as the -
I lead in character for following four format . 
1 characters and reserves one place for a character., 

----------------~---------------------------------------------------L ! Causes string to be lett justified and reserves place 
I for one character. Also lower case 1. 

--------------------------------------------------------------------R I Causes string to be right justified and reserves place· 
1 for one character. Also lower case r. 

I-----------------------------------~-------------~------------------I C i Causes string to be center justified and ' reserves 
I 1 place for one character. Also lower case c. . 
"---------------------------------------------------------------------
I E I Causes string to be left justified, reserves-place for 
I lone character, and causes entire string to be 
1 1 printed. Also lower case e. 

RlSIC levB - 35 -



CBAPDit 1 

USDG.FILBS 

BASIC supports file input and output to the on-line disk drivesL console~9printers, 
and other devices. Various file access methods are supported: SEQU~TIAL (one 
record after another from beginning of file); DIRECT (ranaom by relative record 
number); INDEXED (random by key); KEYED (random by key}. ..' 

Files have both an external name by which it is known within the system and an 
internal file' designator used within,the BASIC program. For example, a tile might 
exist on a disk, with the name INiEN.MASTER. This is the external name (ioee,' 
INVEN.MASTER:A). In the BASIC program it might be opened on channel' •. This is 
done through the OPEN statement. All further references to the file in the program 
will be to 11 not to the file name of 'INVEN.MASTER:A'o . 

There are sixteen (16) channel numbers available to the user program, and all 
sixteen may be in use at one time. This means that there can be sixteen data files 
available for use at anI one time in the BASIC program. Each open I/O channel 
requires buffer space ana a. small amount of space used for pointers, etc. ·The. 
amount of buffer space needed varies, depending upon the device. 

A seventeenth channel is always open to the CONSOLE. . This channel is' only accessed 
with INP and EOF functions, and the INPUT, LINPUT, and PRINT statements. 

The sequence of 'statements in a BASIC program that 'uses a file is: 

OPEN 
INPUT, LINPUT, PRINT, READ, WRITE, etc. 
CLOSE 

OPEN This statement must be used before other file access statements to specify 
the file to be used, the internal channel to use for the file, the access 
mode and method, and various options that are to be used with ~he file. 

INPUT, PRINT These statements perform the input and output to the file. They are . 
performed as often as necessary to accomplish the function of the program. 
The specific statement to be used depends upon the access mode used in the 
OPEN statement and the file format. ,-

last to designate that the ope,rations to that file CLOSE This statement is used 
are complete. 

1.1 Access Mode 

There are of access 
statement. 

three types modes that may be specified with the BASIC OPEN 

INPUT This mode indicates that the file is to be used for input operations only. 
When this mode is in effect BASIC will not allow output type operations to 
be perform~d on the file's 1/0 channel. 

) 

OUTPUT This mode indicates that the file is to be used for output operations 
only. BASIC will not allow input type operations to be performed on this ~ 
file's I/O channel. This mode is normally used when a file is first being 
built or created or on output only devices like a printer. 

UPDATE This mode allows both input and output operations to be performed on the 
file. 

1.2 Access Methods - Flle ForE.u' 

The OPEN statement requires that you specify the access method of the files This 
is the same as the file's format. 

SEQUENTIAL Indicates that the records in the file are to be read or written 
sequentially, one. after the other, starting at the beginning of the file. 
With this access method, to access any specific record, all records before
that record must be accessed. 

Records in this type ot file are of variable length and the file does' not 
have to be pre-allocated before it is used. 

DIRECT Indicates that the records in the file are to be read or written randomly, 
by record number. This access method allows any record in the file to be 
accessed without accessing any other record in the file (i.e., directly). 

This file format is quite useful for frequently accessed master files that 

- 36 - BASIC Bey B 



INDEXED 

KEYED 

CBlPDR 7: USDG FILlS 

have sequentially numbered keys such as a customer file or, a vendor fileo 
Access to this type of file is fast, as the system can compute the address 
of the record on the disk without searching a separate index. 

Direct files are only supported on disk devices, and must be created with 
the CSI command .CREATE. 

Indicates that the records in the file are to be read or written randomly; 
b~ record key. . This access, similar to DIRECT, allows any record in the 
f1le to be accessed without accessing any other record. in the file; 
however, the record is accessed ,using a 'generic key,. or name, of the 
record. This type of file is also maintained in alphabetic sequence by 
key and may be read in the sorted order. 

Because of the necessity of. keeping the index in sequence, updating this. 
type of file is slower 'than using the direct or keyed file format. 

Indexed files are onlY: supported on disk devices,and must be created by 
the CSI command CREATE.... . ' 

Indicates that. the records in the file are to be read or written randomly, 
by record key. This access is identical to INDEXED except tha~ the file 
is ,not maintained or accessible in any sorted order. 

lecord !llocatf.OD Beqm.r-enta 

Since indexed, direct, and keyed files must be preallocated by the user before the 
BASIC program can access them it is necessary for the user to calculate the maximum 
record.sizerequired for each file. To do this the user must determine the field 
types to be written to the file. 

For each string field in a record the user must allocate space for the length of 
the longest field plus 2. 

For each floating point field in a record the user must allocate space for 9 
positions. 

For each integer field in a record the user must allocate space for 3 positions. 

Thus the record size for the following direct file must be 32: 

WRITE 11,N:"RECORD",1,2,A,~ 

7.ll Hultf.-User Pile Protectf.OD8· 

A BASIC program run on a multi-user OASIS system will operate the same as on a 
single user OASIS system, except that file contention may occur. This means that 
two users may attem~t to access the same file or the same record in a file at the 
same time. This s1tuation may, or may not be allowed, depending on the file 
protections used by the two programs. 

A program that does extensive input and output to a file should lock the entire 
file from other user's use. This is done by specifying the LOCK option in the OPEN 
statement. . . . . 

If a file is not locked in its entirety other users may access' the file (unless the 
other user attempts to lock the entire file which w~uld not be allowed). . 

When a file is opened for INPUT or OUTPUT no record looking will be performed and 
it is possible th~t a record read by your program might be updated by another 
user's program without your program's knowledge. This could result in errors in 
the file •. 

When programming in a multi-user system. the programmer must always ask the 
question: What happens if another user wants this record? and program accordingly. 

BASIC Bev B -31-



(This page intentionally lett blank) 

- 38-- BASIC Bey B 



CIIlPI'D 8 

CClMDDS 

BASIC commands are used, , to e,nter, change" and. debug programs. They only may be 
used in the command mode. Command mode is when BASIC prompt character is displ'ayed 
(-) . 
BASIC command functions may be divided into four categories: 

A. General 

B. 

HELP 

, LENGTH 

NAME 

NEW 

Editing 

AUTO 

BOTTOM 

CHANGE 

DELETE 

DOWN 

INDENT 
LIST' , 

LOCATE, 

LPLIST 

LPXREF 

MODIFY 

-Display list of commands available. 

- Display current memory utilization of. program. 

- Display or change name of program in memory. 

- Initialize BASIC work area, new program. 

Automatic line number prompting for new line entry. 

- Position to the last line in the program. 

- Change string in one or more lines of code. 

- Remove line ( s) of code from program., 

- List next line. 

- Perform, standard program' indentation. 

- List one or more- lines of program. 

- Locate line containing str~ng. 

- List one or more lines of program on printer. 

- List cross reference table on printer. 

- Character by character change ot one or more lines. 

RENUMBER - Renumber all or part of program. 

TOP - Position to the first, line in the program. 

UP - List prior line'. 

XREF List cross reference table on terminal. 

C. Disk programs 

LOAD - Retrieve program from disk. 

RUN - Execute program from disk or already in memory. 

SAVE - Save current program on disk. 

Do Debugging 

BREAK - Specify condition to break on. 

CONTINUE - Resume execution. 

STEP - Execute next statement and stops. 

TRACE - Display line numbers executed and optionally variables changed. 

UNTRACE - Discontinue trace mode. 

UNBREAK - Remove one or all breakpoints set. 

VARS - Display contents of all variables defined. 

BASIC ley B - 39 -



BASIC BBFBDICB MOUAL 

8.1 AUTO ca--and 

------------------------~--------------------~------------~-----~---~-~~--~--~---~~ - I 

1 AtrrO 

2 AUTO (start) 

3 AUTO (start) (1nc.--ent) 

Where: 

-<start> :: = <line number>' 
<increment> ::= <line increment value> 

1-

, 
I 
I 
I 
I 
I 
I 
I, 
I 

t 
I 

~~------~~~~----------~------------~--------~-~-----~~-~~~-~~~~-----------~-----~-
Purpose: 

The AUTO command allows you to enter new lines to the program with automatic line 
numbering. 

The AUTO command cannot be used if a program in memory is read protected (see LOAD 
command). 

The AUTO command is intended to be used for creating new programs or adding new 
sections,to an existing program in memory. 

The. <increment> value, . when specified! sets the current increment value for this 
AUTO and subsequent executions of the AUTO command. 

When the AUTO command is executed BASIC will display the current line number plus 
the current increment on the console (or the <start line number>, when specified) 
followed by a space. You may then enter a program line. After a program line has 
been entered and terminated by a carriage return, the line number is incremented by 
the current increment and the process is repeatedo 

To terminate the line input process enter a carriage return when BASIC prompts you 
with the line number. No blank line will be added to the program. Lines entered 
with this command cannot replace any line in the program with the same line number 
nor can it be used to ada multiple lines that merge around existing lines. In 
order to add lines that merge aroundexising lines you must enter tnem one at a 
time. 

=================================================================================== 
Examples: 

-LIST, . 
10 INPUT ftRADIUS OF CIRCLE",RR 
20 PRINT ftDIAMETER =ft i 2*R 
30 PRINT ftAREA =ft;PI*ffA 2 
~O PRINT ftCIRCUMFERENCE =ft;2*PI*R 

-DELETE 10 20 
TOF: 
-AUTO 

10 PRINT ftHELLOft 
20 LET R=55 

AUTO cannot replace or merge lines 

-LIST 
10 PRINT ftHELLOft 
20 LET R=55 
30 PRINT ftAREA =""PI*RA 2 
~O PRINT ftCIRCUMFERENCE =ft;2*PI*R 

-AUTO 50,3 
50 PRINT ftAGAINft;\INPUT Yi 
53 IF Yi=ftYft THEN 20 
56 END 
59 / 

======================================-============================================= 

AUTO BASIC Bey B 



. CBAPDB ·8: CCIIIDDS 

8.2 Botto. C==and 

-----------------------------.------------------------------------------------~---~ . I 

I 
I 

. BOftCII 

Purpose: 

The bottom command positions to the last line in the program and displays that line 
of code. 

CIl eDt: 

The bottom command cannot be used if the program in memory is read protected (see 
LOAD command). 

=======================================================================~=========== 
Examples: 

stop at line 0020 
-BO 

999 END 

=================================================================================== 

BASIC ley B - 111 -



BAUC BBFEIBICB HDOlL 

8.3 BRBII COM-and 

--~-------~---------~-~-~--~-~-----~------------------------------~~~--~~---~-~~~~8 
1 BIBII: 

2 BIBII: [AT] <1i.De reference> 

3 BIBII:. [.1.1'] <l1ne reference> [AFTER] (count> 

II BRBH [a.] (v&r1able) 

5 BIBII: [0.] (variable> ClWlGE 

6 BIBB [0.] <variable> AFTBI (count) 

7 BBBH [0.] <variable> ClWlGE D"lBI (count) 

8 BIBB [0.] (variable> <relat:1on) <value) 

Where: 

<linereterence>' ::= <line number> 
-<line label> 

<relation> ::= <relational operator> 
<value> ::= <numeric literal> 

<quoted string literal> 
<numeric variable> 
<string variable> 

See also: STEP, TRACE, UNBREAK, UNTRACE, and VARS commands 

I 
I 
8 
I 

I 
I 

. I 
I 
I 
I 
I 
I· 
I 
,-
I 
I 
I 
f 

~---------------------~---------~----------------~------------~~--~--~-------~~-~--
Purpose: 

The BREAK command provides the capability of dynamic debugging of the BASIC 
program. 

ec..ent: 

(count) is a numeric ~alue referring to the number of times that the specified 
break condition is to occur before a break is actually performed. 

<variable> is a simple numeric variable, not a subscripted variable. An array name 
is acceptable. 

Format 1 of the BREAK command will display the current break table. 

Format 2 will cause a break to OCcur at the next execution of the statement on the 
line referenced,'betore the statement is executed. 

Format 3 will cause a break to occur at the (count) execution of the statement on 
the line referenced, before the statement is executed. 

Format 4 will cause a break to occur the next time that the <variable> is used, 
after the statement using the variable is exe'cutedo 

Format 5 will cause a break to occur the next time that the <variable> is changed 
by a statement, after the statement changing the variable is executedo 

Format 6 will cause a break to occur after the (variable) is referenced <count) 
times, after the statement referencing the variable the <count> time is executedo 

Format 7 will cause a break to occur after the <variable) is changed <count> times, 
after the statement changing the variable the- <count> time is executed. -

Format 8 will cause a break to occur when the relationship is true, after the 
statement causing the relationship to become true is executed. 

The BREAK command may be abbreviated to the letter B. 

When a break occurs, execution of the program stops and the message "Break at •••• " 
or "Break on.... is displayed. Control returns to the command mode. When a 
break occurs on a variable reference or change the statement causing the break will 
be completly executed. Executing a CONTINUE command will· cause the statement 

BIBII: - _2 - BlSIC ley B 



CBAPrBI 8: CCBlDDS 

following to be executed. 

Only one break will be set for a specific variable or line at one time. When 
multiple break pOints are attempted to be set for a variable or a line only the 
last one specified will be 1n effect. 

" " 

Note: Break points are only cleared by.the UNBREAK, NEW, and LOAD commands. During 
execution, if a different program is brought into memory the old break pOints will" 
still exist. The RENUMBER command does not change the line numbers specified 1n 
any break pOints. ". '.' 

==============~====~=============================================================== 

Example: 

-LIST 
10 FOR Ii=1 TO 4 
20 l?RINT Ii 
30 GOSUB SUM 
40 NEXT 
50 GOTO 9999 
60 SUM: TOTAL% = TOTAL%+I% RETURN 

9999 END 

-BREAK AT SUM 
-BREAK ON 1%' CHANGE AFTER 4 
-BREAK 
Break at SUM 
Break on I% changed after 4 
-RUN 
Break at line 60 
-VARS TOTAL% 
TOTAL% = 0 
-VARS 1% 
1% = 1 
-UNBREAK AT SUM 
-CONTINUE 
Break on I% at line 40 
-VARS I%,TOTAL% 
I% = 4 
TOTAL% = 6 

. . =================================================================================== 

BASIC ley B - 113 - BUll: 



B.lSXC· BBFEIIBIICB MDUAL 

8.lI ClWlGB CceeaJMI 

~------------------------~-----------------------------------------~----~------~-~ • - D 

~ 
I 
I 

I 
I 
I 

1 CIWIGB 

2 CRIWGB (charX&o. atriDsXcharXto atrJ.DgXchar) 
, 

3 CIWIGB (charX&o. striDsXcharxto striDsXcharXraDge) 

Where: 

<char> ::= <delimiting character> 
<from string> ::= <string> 
<to string) ::= <string> 
<range> ::= <line number>[ <line number>] 

See also: MODIFY command 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-----------------------------------------------------------------------------------
Purpose: 

The CHANGE command allows you -to make a change to an existing line, or lines, of 
code without re-entering the entire line. 

eo-eDt:' 

The CHANGE command cannot be used if a program in memory is read protected (see 
LOAD command). 

Format 1 of the CHANGE command will execute the last executed CHANGE command on the ' 
current 11ne~ 

Format 2 of the CHANGE command will change all occurrences of the <from string> on 
the current line to the <to string>. 

Format 3 of the CHANGE command will change all occurrences of the <from string> on 
each line of the lines within <range) to the <to string)c 

The <trom string> and <to string> must be delimited by the same character, similar 
to the CHANGE command in the system editor. The delimiters must be quotat10n marks 
if you wish to change from or to a mixed or lower case string. You may not change 
troma mixed case string to a mixed case string. To do that you must use tlie 
MODIFY command. 

Each time that the CHANGE command actually makes a change on a line the line will 
be displayed with the change made. 

Note: To change only one occurrence on a line use the MODIFY command. 
, ' 

===================================================================================~ 

Examples: Explanation: 

-LIST 
10 INPUT nItem 1n,R 
20 PRINT R 
30 INPUT nItem 2n,R1 
40 PRINT.R1 

-CHANGE /INPUT/LINPUT/ 10 40 
10 LINPUT nItem 1n R 
30 LINPUT nItem 2n'R1 

-CHANGE nltemnVALUEft'10 
10 LINPUT nVALUE 1n,R 

======~============================================================================ 

- '" - BASIC Bey B 



CBlP1BI 8: CCIIIDDS-

8.5 CCMrUUB Co-end 

-------------------------------~------------~-------------------------~-----------I 
1 CCMrDUB I 

I-
I 

----------------------------~~-----------------------------------------------------
Purpo_: 

The CONTINUE command allows you to' resume exe.cution of a program that was 
interrupted. 

ec..ent: 

The CONTINUE command, when executed.! will continue the execution of a program whose 
execution was interrupted by a STuP statement, an error, or entry of the Program 
Cancel-Key. 

When a program has a normal exit, i.e., execution of the END stateme~t, the 
CONTINUE command has no 'effect. 

The CONTINUE command is a valuable debugging aid. If a "bug" is suspected in a 
portion of a prog~aml STOP statements may be inserted at strategic positions of the. 
program. When the ~TOP is executed, you may use the commands to examine variables 
and/or change statements in the program and continue execution. If an error 
occurs, you may examine the suspected statement and change it as required and 
continue execution. 

When an error occurs, a CONTINUE command will re-execute the line that contained 
the statement that was interrupted. If the error occurs ina mUlti-statement line, 
the CONTINUE command re-executes the entire line. . 

If a STOP occurs t a CONTINUE command will execute the statement following the STOP 
statement, even iI- that statement is on the same line. 

Note: Executing, an immediate instruction after a stop or error 
prevent you from using the CONTINUE command. An immediate 
executed, causes the line pOinter to be lost. 

BASIC Rev B - 115 -

has occurred will 
instruction, when 

COIrUUE 



BASIC BlFElDCB MDDIL . 

8.6 DBLErB Ccw=aftd 

-----------------------------------~-~-------~--~----------------------------~--~~8 
1 DBLErB 

2 DBLErB <raage) 

Where: 

<range> ::= 

Purpose: 

<line number> <line number> 
<line number>,<line number> 

I 
.1 
I 
I 
I 

-·1 
I 
I 
I 
I 

The DELETE command allows. the user to remove a line or group of lines from the 
program. 

ec-ent: 
Format 1 of the DELETE command removes the current line from the program in memory. 

Format 2 of the DELETE command removes all lines from the program in memory whose 
line numbers are included in the range specified. 

The DELETE command cannot be used if the program in memory i's read protected (see 
LOAD command.). 

The restrictions for first and last line numbers as described for LIST apply to the 
DELETE command; however, the DELETE command must have at least one operand. 

Using the first example in Appendix G as the program in memory: 

=================================================================================== 
Examples: 

-DELETE 40 

-DEL 15,45 

-LIST 

10 INPUT "RADIUS OF CIRCLE",R 
50 END 

Explanation: 

Line 40 is removed from the 
program. 
Lines 20 and 30 are removed 
from the program. 

-----~-------------------------------------------------------------------~-------~~ 
Incorrect Examples: 

-DELETE 50,20 
Invalid co~and syntax 

Explanation: 

Last line number must be greater 
than or equal to first line number. 

===================================================================~=============== 

DBLBD -116- BJSl:C Bey B 



CBAPDI 8: CCIIIIIDS 

8.1 Down ec-and 

(l1De teed) 

---~--~---------------------------------------------~---------~~------------------~ 
Purpose: 

The down command advances and displays the next line of source code. 

Cc ent: 

The down command cannot be used if the program in memory is read protected (see 
LOAD command). 

When the down command is entered the current line pointer is adjusted one line 
forward and the current line is displayed. -

Attempting to executed the down command when the current line -is at the last line 
of the program the message EOF: is displayed indi~ating that you are at the end of 
file. 

BASIC ley B - 111·- DOIIII 



BJSI:C IIFBIDCB HDDAL 

8.8 BBLP C __ nd 

~----------------------------------~----------------------------------------------~ . . D·' 

I 
! . 1 BILP 

-----------------~---------------------~------------------------------------~----~-
Purpose: 

The HELP command displays the commands available to the operator in BASICe 

When the HELP command 1s .executed the help message ot command names and general 
syntax is displayed on the screen, one page at a time. 

============================================================================'======= 
Example: 

-HELP 
AUTO [<start>[,<incr>ll· . 
BOTTOM 
BREAK [AT <line> [AFTER <count>1l 
BREAK ON <var> [CHANGE] [AFTER <count>]] 
BREAK ON <var <relat> <value>] 

=================================================================================== 

BBLP - Ji8 - BASIC Bey B 



CIIlPDI 8: CCIIIDDS 

----------------------------------------------------~------------------------------I 
1 DDIft [<1Ddent value>] I 

I 
~---~----------------------------~-------------------------------------------------
Purpose: 

The INDENT command provides an easy' and consistent method of performing ·program 
line indentation for documentation purposes. 

ec..ent: 

When the INDENT command is executed' the program currently in memory is modified by 
strippigg all current line 'indentation and performing new indentation according to 
a set of rules: 

• Indent level initiall!: set to <indent value> or, when not specified, 
to the default value of 5. 

• The statements· CASE, CEND, ELSE, IF END , REM, and THEN cause· the 
indent level to be adjusted -<indent value> before the statement. 

• The statements CASE,' multiline DEF ELSE, FOR, REM, THEN, WHILE" and 
line label cause the indent level to be adjusted +<indent value> 
after the statement or label. 

• The statements CEND, FNEND, IFEND NEXT, and WEND cause the indent 
level to be adjusted -<indent value~ after the statement. 

• The statements IF and SELECT cause the indent level to be adjusted 
+2*<indent value> after the statement. 

• All other statements perform no adjustment on the indent level. 

=================================================================================== 
Example: 

-LIST 
10 
20 

~8 

REM This is a comment 
FOR 1=1 TO 10 
PRINT I 
NEXT I 

SELECT A 50
0 6 CASE 1 RETURN 

70
0 

CASE 2 STOP 
8 CEND 
90 REM This is a subroutine 

100 RETURN 
.... INDENT 
-LIST 

10 REM This is a comment 
20 FOR 1=1 TO 10 
30 PRINT I 
~O NEXT I 
50 SELECT A 
60 CASE 1 RETURN 
70 CASE 2 STOP 
80 CEND 
90 REM This is a subroutine 

100 RETURN 

=================================================================================== 

BASIC ley B - 119 - DDBft 



BASIC DFBDllCE IIDOAL 

8 f> 10 LIIIG!B Ccweand 

--~---------------------------------------~---------------------------------------7 I 
I 
I 

-~--------------------------------------------------------------------------------~ 
Purpose: 

The LENGTH command allows the user to determine the current memory utilizationo 

Ccl Bent: 

The LENGTH command displays thirteen quantities: 

• Length of source program in byteso 
• Memory space used oy symbol table, numeric and integer variables, ,in 

,bytes. 
• Memory space used by string variable storage area in bytes. 
• Memory space used by subroutines in process. 
• Memory space used by FOR/NEXT loops in, process'. 
• Memory space used by SELECT/CASE/CEND structures in process. 
• Memory space used by WHILE/WEND structures 1n process. -
• Memory space used by debugging break pOints. 
• Memory space used by 110 channels used (266 bytes per channel). 
• Memory space available for program and work usage. The expression 

analyzer requires about 512 bytes of this area during execution. 
• USR program name if loaded. 
• USR program length, if loaded. 
• USH program load address, in hexadecimal, if loaded. 

Some programs may use all of memory. This command informs the user how much memory 
is available for modifications, how much memory was made available by modifications 
(by using the length command before and after). 

=================================================================================== 
Examples: 

-LENGTH 
Source: 3110 
Symbol: 118 
String: 236 
GOSUB: 0 
FOR/NEXT: 0 
CASE: 0 
WHILE: 0 
Debug: 4 
Buffers: 532 
Free: 19193 

-OPTION USR "PRINT1" 
-LEN 
Source: 3110 
symbol: 118 
String: 236 
GOSUB: 0 
FOR/NEXT: 0 
CASE: 0 
WHILE: 0 
Debug: 4 
Buffers: 53,2, 
Free: 18784 

USR NAME: PRINT1 
Le~th: 409 
Addr: F6A2 

Length of source program code. 
-Symools and numeric variable values. 
String variable values. 
No open subroutines . 
No open FOR/NEXT loops. 
No open SELECT/CASE/CEND structures. 
No open WHILE/WEND structures. 
One breakpoint set. 
Two I/O channels defined. 

Load USR program named PRINT1 

===========================~======================================================= 

- 50 ... BASIC ley B 



CIIAPrBB 8: CCIIIDDS 

8.11 LIST Cc==and 

-----------------------------------------~----------------------------------------. 
1 Lnrr 

2 LIST <ruse> 
3· <line Duaber> 

II <carriage return> 

Where: 

<range> ::= <line number> 
<line number> -<line number> 
<line number>,<line number> 

See also: Down, LPLIST, LPXREF, and XREF commands 

Purpose: 

The.LIST command allows you to display a line, or group of lines, of the program. 

·ec..ent: 

I 
I 
I 

1 

The LIST command cannot be used if the program in memory is read protected (see 
LOAD command). 

Format 1 of the LIST command will list the entire pro.gram. 

Format 2 of the LIST command with one line number will list only that line, if it 
exists. 

/ 

When a program is in memory you may list a line by entering its line number (format 
3), "followed by' a carriage return. This not only causes the specified line to be 
·displayed but assigns that line number to an internal line displal pOinter. 
Entering a line feed character causes the line display pOinter to be advanced to 
the next line and causes that line to be displayed. This provides an easy means of 
stepping through the display of a program. Additionally, the line display pOinter 
is affected by an error during execution. When an error is detected and a message 
displayed on the console, you need only enter a carriage return to cause the error 
line to be displayed. -. . 

A carriage return only entry (format'4) will act in one of two ways: when it is the 
first entry of the carriage return the current line will be displayed; subsequent 
entries of a carriage return only will cause the internal line display pOinter to 
be incremented causing the next program line to be displayed, acting like a line 
feed entry. 

Format 2 of the LIST command with two line numbers will list all lines within the 
range of the operands, inclusive. The beginning and ending line numbers need not 
be line numbers that exist in the program. The last line number must be greater 
than or equal to the first line number. 

When more lines are specified to be displayed than will fit on the console at one 
time and the console screen wait is enabled (see System Control Keys in the OASIS -
srstem Reference Manual), BASIC will display one page of the program, display a 
c rcumtlex (") at the lower left Side of the. page and wait for the operator to 
respond. A . response of any character will cause BASIC to display the next page of 
the program, if included in the line number range. The Program Cancel-key will 
cause the listing to be terminated immediately. 

BASIC Bev B - 51 - LIST 



BJ8IC IBPJ5IlI8CB IlDUAL 
- : . 

=======================================-===================================.========= 
Examples: Explanation: 
-LIST Entire ~rogram 1s listed on terminal. 

10 INPUT "RADIUS OF CIRCLE",R 
20 . PRINT "DIAMETER =" ii-R 
30 ~ PRINT "AREA ="·PI*H 2 
~O PRINT "CIRCUMFERENCE =";2*PI*R . 
50 END . 

-LIST 20 Line 20 is listed. 
20 PRINT "DIAMETER =";2*R 

-LIST 0 15 Lines 0 through 15, inclusive, are listed. 
10 iNPUT "RADIUS OFCIRCLE",R 

~~----~~-----~-------~--~~--------------~-----~~-~-----~-------~--~-~---~~--------~ 
Incorrect Examples: 

-LIST 15 

-LIST 20,10 

Explanation: 

Since there is no line 15 nothing will 
be listed. 
Last line number must be greater than or 
·equal to first line number. . 

======================================================.============================= 

LIST - 52 - B.lSIC Bey B 



CB.IPI'BIl 8: CCIIWIDS 

8.12 LOAD Cc=='nd 

------~-~-~~-::::~-------------------------------------------------------j 

Where:. 

<program name>::= [<file name>][.<file type>][:<file disk>] 
<file type> ::= BASIC . 

BASICOBJ . 

See also: RUN command 

I 
I. 
J 
I 
I' 

I 
I 
I 

-----------------------------------------------------------------------------------
Purpose: 

,-- ~ 

The L.OAD command allows the user to retrieve a program previously saved on disk. 

ec-nt: 

A program name must be specified but the program file type is optional. The 
program file type, if specified, m~y only be BASICOBJ or BASIC--no other program 
types are allowed. 

The program file type defaults to BASICOBJ and BASIC: 

When no file type is specified then a search is made for a program with 
the file type BASICOBJ. If one is found it is loaded. 

If a program with a file type of BASICOBJ is not found then a search is 
made for a program with the file type of BASIC. If one is found then it 
is loaded with syntax analysis of each and every line. 

It is much faster to 'load programs saved with a file type of BASICOBJ because no 
syntax analysis is performed. 

When no program 4isk is specified the search for the program includes all attached 
disk drives. 

If the specified program is not found then the error message "File not found" is 
displayed and no- program is loaded. However, any program that was in memory before 
will have been erased. . 

The LOAD command can load a read protected program file; however most other 
commands will not operate it the program in memory is from a read protected file. 
Specifically, the following commands will inform you that they cannot be used when 
the program is read protected: AUTO~ BOTTOM, CHANGEL DELETE, INDENT, LIST, LOCATE, 
LPLIST, LPXREF, MODIFY, NAME, RENuMBER, SAVE, TO~, XREF, carriage return, line 
feed, up-arrow. 

=================================================================================== 
Examples: 

-LOAD TEST 

-LOAD TEST:S 

Explanation: 

The program named TEST.BASICOBJ or 
TEST.BASIC will be located and loaded 
into memory. ' 
The program named TEST.BASICOBJ:S or 
TEST.BASIC:S will be located and ioaded 
into memory. 

-------------------------------------------------------------~-----------------~---
Incorrect examples: 

-LOAD 
-LOAD TEST:T 
-LOAD PROGRAM. TEST 

Explanation: 

Program name must be specified. 
Invalid unit specified. 
Invalid file type. 

=================================================================================== 

BASIC Bey B - 53 -



BASXC IBFBIBICB IIDU.IL 

8.13 LOCATE Ccwpencl 

-~~-~--~---------------------------------------~~----~----~~-~---~--------------~~7. 
1 LOCAD 

~'LOCl!B (striDs> 

3' LOCATE (str1Dg> <ruge> 

Where: 

(string) ::= <delimited string> 
<range> ::= <line number> . 

(line number> <line number> 
(line number>,<line number> 

I 

~--~-----~~---------------~-----~~----------~~-~~~~----~-~~~~------------~--~----~~ 
Purpose: 

The LOCATE command allows you to quickly find a line of the program that contains a 
specified sequence of characters. 

The LOCATE command cannot .be used if the program in memory 'is read protected (see 
LOAD command). 

The LOCATE command searches the program in the specified range of line numbers for 
the sequence of characters specified. 

" 

A LOCATE command with no arguments (format 1) will cause a LOCATE to be performed 
using the string specified in the last LOCATE or CHANGE, from the current line to 
the end of the program 0 . . 

Format 2 ot the LOCATE command causes the program to be searched from the line 
after the current line to the end of the .program. 

Format 3 of the LOCATE command with onl! one line number specified causes· the 
program to be searched from the line specified to the end of the program. 

Format 3 of the LOCATE command with two line numbers specified causes the program 
to be searched only within the range indicated. 

If the sequence of characters is found the line containing them will be displayed. 
and the current line pOinter will be positioned at that line. . 

If the sequence of characters is not found nothing will be displayed and the 
current l1ne pointer will not be changed. 

The search is performed independent of the case mode of the characters in the 
program. 

====================.=============================================================== 
Example: 

0010 FOR I=1 TO 20 
0020 PRINT "Now is the time for all good men to come to the aid of" 
0030 PRINT "country." 
0040 NEXT I 

-LOCATE "y" 10 #0 
0030 PRINT "country." 
-LOCATE ITI ' 
0040 NEXT I 
-LOCATE III 10 40 
0010 FOR I=1 TO 20 
-LOCATE 
0020 PRINT "Now is the time for all good ~en to come to the aid of" 

=================================================================================== 

LOCArB BASIC Bey B 



CIIlPDI· 8: CCIIIDDS 

. . 

----------------------------~---------------------------------------------------~-~ 
1 LPLIST 

2 LP<D>LISr 

Where: 

<n> ::= 1 
2 

n 
See also: Down, and LIST commands 

-----------------------------------~------------------~-----------------------~----
Purpose: 

--
The LPLIST command allows the user to list the current program on the list device 
(usually the line printer). 

ec..ent: 
The LPLIST command cannot be used if the program in memory is read protected (see 
LOAD command). 

The LPLIST command functions identically to the LIST command except the output is 
placed on the listing device (PRINTER1) instead of the console and no line number 
range is allowed. 

The alternate form of the-command (LP<n>LIST) specifies that one of the alternate 
listing devices is to be used (PRINTER1, PRINTER2, PRINTER3, or PRJ;NTER4), if 
attached. ' 

BASJ:C Rey B - 55 - LPLIST 



· ) 

BASIC· 'BBFBBBICB HD1JAL 

8.15 LPDBF Cc==pncJ 

1 LPDBF 

2 LP<n>DBF 

Where: 

<n> :: = 1 
2 

n 
See also: XREF command 

~~---------~-----------~-----------------~~------~------------~---------------.---~ 
Purpose: 

The LPXREF command produces a listing of the program followed by a cross reference 
listing of the source program in memory on a printer. 

cc..ent: 

The LPXREF command cannot be used if the program 1.n memory is read protected. (see 
LOAD comm~nd). 

The LPXREF command functions identically to the XREF command except the output is 
placed on the listing device (PRINTER1) instead of the console. 

The.alternate form of the command (format 2) specifies that one of the alternate 
listipg devices is to be used (PRINTER1, PRINTER2, PRINTER3 or PRINTER4), it 
attached. 

LPDBF -56- BASIC Bey B 



CBlPTBI 8 :CCHlDDS 

8.16 MODIFY C,..e'"' 
. " 

--------------------------------------------------------------------~------------~~ 
1 MODIFY 

2 MODIFY <r811Se) 

Where: 

<range> : : = '<line number>" 
<line number> <line number> 
<line number>,<line number> 

See also: CHANGE command / 

----------------------------------------------------------------------------------~ 
Purpose: 

The MODIFY command allows you to,make changes to a line or lines of code without 
re-entering the entire line. 

ec-ent: 
The MODIFY command cannot be used if the program in memory is read protected (see 
LOAD command). 

The MODIFY command operates very similar to the MODIFY command in the OASIS system 
EDIT' program. 

When no· <range> is specified the current line displayed and you are allowed to 
modify it. After finishing the modification o~ that line control returns to the 
command mode of BASIC. 

When <range> is specified the first line included in the range of lines specified 
is di'splayed and you are allowed to modify it. After finishing the modification of 
that line the next line included in the range of lines specifies is displayed, 
etcc, until the last line in the range is modified, at which point control returns 
to the command mode. ' 

While in the modify mode of BASIC there is a certain set of sub-commands available 
to facilitate modification of each line: 

I 

D 

B 

Allows you to insert characters at the current cursor position. All' 
characters typed after the I has been entered are added to the line 
before the current character. As each character is added to the line 
the remainder of the line ,is re-displayed. 

To exit from the insert character command type a carriage return. 

While in'the. insert character command you may backup one character 
position by typing the RUBOUT key. This backs the cursor up one 
position an~ deletes that character. It is possible to backspace 
past the position'that the insert command was given. 

Allows you to delete the current character from the line. Every time 
a D is typed the current character is deleted from the line and the 
character is erased from the screen.-

Allows you to replace characters in the line. All, characters typed 
after the R has been entered will replace the characters in the line. 

iTo exit from the replace character command type a carriage return. 

While in the replace character command you may backup one character 
position, by typing the RUBOUT key.. This backs the cursor up one 
position without deleting that character. It is possible to 
backspace past the position that the replace command was given. 

(sp) Allows you to advance the current character one position to the 
right. You may not advance past the end of the line, however, you , 
may insert new characters at the end of the line or replace 
characters at the end of the line. 

The right arrow key has the same effect as the space character. 

BASIC RevB -57- MODIFY 



BASIC DFBIBICB IWIDAL 

F 

u 

L 

Allows you to advance the current character pOinter to . a specified, 
character. ' The F character is followed by the character- to f1nd~ 
When the second character is entered the cursor is advanced to the
next occurrence of that character in the line. 

Allows you to convert characters to their upper case value. When the 
U is entered the current character is converted and ra-displayed in 
its upper case form, and the cursor is advanced to the next 
charactere 

Allows you to convert characters to their lower case'value. When the 
L is entered the current character is, converted and re-displayed in 
its lower case form, and the cursQr is advanced to the next 
character. This command is only effective within a quoted string 
literal or a remark statement. .. . 

(BOB) Allows you to backspace the current character one position to ,the 
left. You may not advance past the beginning of the line. 

The lett arro:w and CTRL/H have the same effect as the RUBOUT_~key 0 

B Allows you to quickly poSition to the beginning of the line. 

B Allows you to quickly post.tion t'o the end of the line. 

(CI) Terminates the modification of the .line. 

sse, C Terminates· the modific'ation of the line and restores the line to its 
original, unmOdified, contents. 

Due to the graphic, and character by character nature. of the modify command no 
example will be sivenhere. Instead it is suggested that you experiment with it. 

HODIF!' - 58 - BASIC Bey B 



CBlPrIR 8:: C(IIIUDS 

. 8. 11 R1MB Ca.epnd _____________________________ ~ ___________________ ~i _______ ~ ________ ~ ______________ _ 

1 R.IMB 

2 R.IMB (prograa D8II8) 

Where: / 

<program name> ::= [<file name>l[.<file type>[:<file disk>]] 
<file type> ::= BASIC. . 

. BASICOBJ ' . 

See also: SAVE· command 

I 

I 
I 
.1 
I 
I 

'1 
I 
I 
l 
I 
I 
I 
I 
I 

~-----------------------------------------------------------------~----------------
Purpose: 

The NAME. command allows you to change the name of the program in memory. 

,ec-ent: 

The NAME command operates in two' modes: display current name (format 1); change 
current name (format ,2). ,- -

Format 1 of the NAME command causes the current program name, type, and disk to be 
displayed. 

Format 2 of the NAME command causes the current program name to be changed to the 
name specified. If the program type is omitted the program type 'will be changed to 
BASICOBJ. If the program disk is omitted the current program disk will be 
retained. - .. , 

The file type of a read protected program should not be changed from BASICOBJ. 

Note: The OASIS command RENAME should not be used ,to change the file type of a 
BASIC' program due to unpredictable results. 

------.----------------------------------------------------------------------------~ -----------------------------------------------------------------------------------
Example: 

-NAME TEST.BASIC:A 
-NAME 
TEST.BASIC:A 
-NAME TESTIT 
-NAME 
TESTIT.BASICOBJ:A 

=================================================================================== 

BASIC lev B - 59 - R.IMB 



BASIC IBFEIBICB HDOAL 

8. 18 IBV Co=-ancl 

-------~--~-----~-----------------------~---------------------------------~--~~~~~1 
1 IBV I 

I 

----------------------------------------------------------------------------~-~---~ 
Purpose: 

The NEW command allows the user ,to enter a new program. 

Cc:l_ent: 

The NEW command effectively clears memory. In actuality all oftha BASIC pOinters 
are reset to indicate that there is no program in memory. All of the BASIC work 
area is available-for use by the new program to be enterea. Additionally the name 
of the program is cleared" 

A NEW command is executed automatically when BASIC is'loaded and 'executed by the 
Operating System. 

The NEW command is the only method of unloading a USB program without exiting 
BASIC. 

Specifically, the NEW command performs the following actions: 

• All files are closed. 
• All file buffers are deleted from memory. 
• The current program and program name are erased • 
• - Any USB program is erased and memory restored • 
• , All variables, constants, and internal tables are initialized. 

, . =================================================================================== 
Examples: 

-NEW Memory is initialized. 

---------------------------------------------~-----------------------------------~-
Incorrect examples: 

-NEW TEST1 No operand is allowed. 

=============================================='===================================== 

REV - 60 - BASIC BevB 



CIIlPID 8: CCIIWIDS 

8.19 Qurr Cc==and 

-~-------------------------------------------------------------------------------~ 
1 QUn: 

2 Qun: (striDS literal>· 

3 Qun: <mDaerio literal> 

Purpose: 

The QUIT command allows the user to exit from the BASIC environment. 

C!M8Dt: 

When the QUIT command is executed all open I/O channels are closed. 

I 

I 
I 
I 
I' 
I 
I 
I 
I 

The QUIT command always exits from BASIC. If BASIC was invoked by a keyboard 
command then control is returned to the Command String Interpreter environment. If 
BASIC was invoked by ·an EXECutive Qrocedurethen control is returned to the 
EXECutive procedure that called it. The EXEC resumes control with the. statement 
that followed the BASIC commando. In.,either case the return code is set to zero. 

To exit BASIC without returning control directly to the environmen~ that it was 
invoked from one of the optional literals is specified. 

A numeric value indicates the value that the return code is to be set to. This 
return code may then be examined by the EXEC that invoked BASIC. If BASIC was not 
invoked by an EXEC then setti~ the return code will have no usable effect. 

A string value indiCates a CSI command to be executed. ., The value must specify the 
command name and all arguments· and options desired. After the command has 
completed execution the return code is set by that command. If BASIC was invoked 
by an EXECutive procedure and a string value is specified with the QUIT command,
control . will return to the EXEC program. after the CSI command has completed 
execution. 

When the first character of the string value is the character R>R the string will 
be displayed on the console terminal, just as if it had been entered from the 
keyboard. , 

=================================================================================== 
Examples: 

-QUIT 

-QUIT LIST DAILY REGISTER 

Explanation: 

Control returns to the environment 
from which BASIC was invoked. 

BASIC is eXited and the file named 
DAILY REGISTER is listed on the console. 

===========================================================================~======= 

BASIC Rev B - 61 - QUIT 



BASIC DPBBIIICB HDUAL 

8.20 BBIIUMBEB Cceeand 

7----------------------------------------~-------------------~-----------~-----~~-8 
I . 1 BBIIUMBBI I t I 

I 
I 
I 
I 
I 
I 
I 

2 BBlUMBD '<first> 

3 BBlUMBEB <f:l.ratXchar~iDOre.8Dt> 

_ . BBIOHBEB <t1rstXoharXincre.8ntXcharXatart). 
. " 

'5 BIIRJHBD <tiratXcharXlDor.entXoharXatartXcbarXencl> 

Where: 

(ohar) ::: <space> 
<comma> 

(first') ::= <line number> 
<increment) : :=<line number> 
<start> :: = <line number> 
<end> :: = <line number> : 

---------------------------------------------------------------~-------------------
PurpoSe: 

The RENUMBER command allows you to resequence all or part of the program in memory. 

Cc:_ent: 

Format 1 of the RENUMBER command will resequence all of the program in memory, from 
the beginning of the program through the end of the program., Tne resulting-program 
will have its first line numbered using the default increment value (default is 10) 
with each subsequent line incremented.oy the-current increment value. 

Format 2 of the RENUMBER command will resequence all of the program in memory from 
the beginning of the program through the end of the programQ The resulting program 
will have its first line numbered according to the <first) line number as specified 
with each subsequent line incremented by the default increment value. ~ 

Format 3 of the RENUMBER command will resequence all of the program in memory from 
the l beginning of the ~rogram through the elld of the program.. The resulting program 
will have its first l1ne numbered according to the <first> line number as specified 
with each subsequent line incremented by' the <increment> ~s specified. . 

Format 4 of the RENUMBER command will resequence that portion of the program in 
memory as specified by the <start> parameter through the end of the program. The 
resulting program will have that (start> line numbered according to toe <first> 
line number as specified with each subsequent line incremented by the current 
increment value .. 

Format 5 of the RENUMBER command will resequence that portion of the progarm in 
memory as specified by the <start> parameter through the line specified by the 
<end> parameter. The resulting program will have that <start> line numbered 
according to the <first> line number as specified with each subsequent line 
incremenfed by the <increment> as specified. 

Formats 4 'and 5 of the .... RENUMBER command will not allow you to resequence a program 
such that the result would cause lines to be mergedQ For example, a program with 
lines consecutively numbered from 10 through 100 could not be renumbered with 
RENUMBER 20 5 50 laO as this would cause lines 50 through 100 to collide with other 
existing lines. When this is attempted the error message "Renumber Range Error" is' 
displayed. 

All of the formats of the RENUMBER command will adjust all references in the 
program from the old line numbers to the new line numbers. This includes 
references made by the statements: ELSE GOSUB, GOTO, IF, ON ERROR ON GOTO ON 
GOSUB, RESTORE, RESUME,' RETURN, and / THEN. Additionally, relationai expressIons 
with the funct10n ERL on the left of the relation with a integer literal on the 
right (-line number) will be adjusted. 

Statements that previously referenced an undefined line number will be adjusted to 
reference an undefined line in the same relative location as before. For example, 
a program with lines consecutively numbered from 10 through 100 by lOs with a line 
reference to line 11 (non-existent) that is renumbered will have that line 

BBII1JHBBI - 62 - BAsIC BeY B 



CIIlPDI 8: CCIIIDDS 

reference adjusted to line 15. 

Because good, complete examples of program renumbering would be quite lengthy none 
will be given. Instead, it is suggested that you "play" with the command on one of 
your own programs. Be sure to save the program on disk if it is a program that you 
00 not want renumbered. 

BASIC Bev B - 63 - RBlUMBD 



BASIC BD'BIBIICB HIlUM. 

8.21 HIJII C~end 

---------~---~-----~--------------~-~----------------~----------------------------~ - I 

1_ 
2 .. (prograa naae> 
3- lIDII (atarttDg l1De) 

, DR (prograa uaae> (atartlDg l1De) 

Where: 

<program name> ::=·(f11e name)[o(f11e type>][:(file disk>] 
<file type> ::= BASICOBJ 
<starting line> ::= <line number> 

See also: LOAD command 

I 
I 

- I 

I 
I 
I 

-------------~--------------~-------------~----------------------------------------
Purpose: 

The RUN command allows the user to execute a program already in memory or one 
stored on disk. 

ec:-nt: 
When <program name> is not specified, the program currently in memory is executed, 
starting with the first line of the program, or at the line number specified. 

Before the RUN command is executed, a CLEAR command is automatically executed. 

<program name>, when specified, may be a string literal or an unquoted string 
literal. <progr~ name> may not be a variableo 

When the (program name> is specified, a search is made for the program. If the 
program is not found~ the error message 'File Not Found' is displayede If the 
program is found, a NEW command is executed and the specified program is loadede 
Execution begins ~ith the smallest line· number, or at (starting line>, if 
specified. 

<starting line> may be a line number that does not exist in the referenced program, 
in which case execution will begin at the first line greater than or equal to the 
specified line number. 

=================================================================================== 
Examples: 

-RUN 
-RUN TEST 

Explanation: 

Program in memory is executed. 
Program "TEST" is loaded and executed. 

==============================================~=======~============================ 

-" .,:.. 



CII1PDII ·8: C(IIIO])S 

8.22 SAVE Cc==pncl 

------------------------~----------------------------------------------------------
1 SAVE 

2 SAVE <prograa u.e> 
Where: 

<program name> ::= [<file name>][.<file type>][:<file disk>] 
<file type> ::= BASIC . 

BASICOBJ 

See also: LOAD and NAME commands 

-----------------------------------------------------------------------------------
Purpose: 

The SAVE command allows th~~ser to save ,a program as a disk file. 

Cc..ant: 

The entire <program ~ame> operand is optional, and when omitted, the program will 
be.saved under the name that -it was LOADed, CHAINed, LINKed or RUN under. If a 
name is not currently defined and the operand is omitted, an "invalid Program Name" 
error will result. 

<File disk> isoptional--when not specified drive A will be used. The <file type> ~ 
defaul ts to BASICOBJ unless the program already has a name wi,th a file type of ' 
BASIC. 

The program name, type, and disk wil~ be displayed on the terminal after the 
program has been successfully written to disk. 

When a file already exists with the same file description that file will be renamed 
to have a file type of BACKUP. . _ 

==========================================================.========================= 
Examples: 

-SAVE TEST:A 
"TEST.BASICOBJ:A" save 
-SAVE 

••••• SAVE 

-SAVE TEST:S 
"TEST.BASICOBJ:S" saved 

Explanation: 

-The program in memory will be written to 
disk and given the name 'TEST.BASICOBJ:A'. 
The program will be saved under the same 
name as loaded, i.e., the program will be 
updated on diSK. . 
The program in memory will be written 
to disk and given the name 'TEST.BASICOBJ:S' 

-----------------------------------------------------------------------------------
-Incorrect Examples: 

-SAVE 

-SAVE TEST:T 

Explanation: 

Program name must be specified if there is 
no prior LOAD, CHAIN, LINK, or RUN executed. 
Invalid unit speoified. 

=================================================================================== 

BASIC lev B - 65- SAD 



BASIC DFIBBIICB HDOAL· 

8.23 STEP Ccweancl 

~------~------------------------------------------~~-----------------------------j 
I I 
I 1 STEP ·1 

.1 2 S!BP (count) I 

. I See also =. BREAK, TRACE, UNBREAK, PNTRACE, and VARS commands i 
I I 

-------------~------~---~-----~------~-~-------~--------~~-----~~-----------~~~-~~~ 
Purpose: 

The STEP command allows the program to ·~ingle step· through the execution of the 
program. 

ec-ent: 
Format 1 of the STEP command causes the next statement 1n the program to be 
executed and a debugging break occurs. 

Format 2 of the STEP command causes the next <count> statements in the program to 
be executed and a debugging break occurs. 

Note that the STEP command operates on statements, not lines. Therefore it is 
possible to single step thr~ugheach statement in a mUlti-statement line. 

=================================================================================== 
Example: 

-LIST 
10 FOR I%=1 TO 3 
20 PRINT IJ 
30 .. NEXT 

-STEP 
Break at line 20 
-STEP 

1 
Break at line 30 
-STEP 
Break at line 20 
-STEP 3 

2 
3 

Break at lirie 30 

", 

=======================================================================~=========== 

..... 

- 66 BASIC ley B 



CBlPI'BI 8:' CCIIIDDS 

8.2' 'Top ec-encl 

~----------------------------------------------------------------------------------
fOP 

, I 

·1 
I 
I 

---------------------------.-------~------------------------------------------------
Purpose: 

The top .command positions to the first line in the program and displays that line. 

eo..ent: 

The top command cannot be used if the program in memory is read protected (see LOAD 
command) • 

~===========~==================~====~=================~======================~===== 
Examples: 

Stop at line 0020 
.... <CR)· 

. 20 MIDDLE% = LINE('O)/2~ 
. -TOP , 

'0. REM Program: SAMPLE 

=============================================================================~===== 

··BASIC ley B - 67- TOP 



BisIC BErBDIICB HDUAL 

8.25 TJII.CB aDd 1JI'lB.lCE Cm-anda 

I--~---------~----------~-----------------------~~----~--~~--------------------~--I 
I 1TUCB I , I 
I I 
I 2 TJlACK VIIS I 
I 31J1'lB.lCB I I I 
I 8 ------"----__________________ .;. ________________________ tet _________ aD __ a:o ________ CO __ c.J_aroa.e.:I 

Purpoae= 

The TRACE and UNTRACE commands allow the- programmer to trace the line numbers being 
executed by a program. 

ec..ent: 
FOrIDat1 of the TRACE command turns the line number display on during execution. 

Format 2-of the TRACE command turns the line number display on during execution and 
causes the display of all variables changed during the execution of each statement. 

The UNTRACE command turns the line number display off during execution. This is 
the normal mod~of program execution. _ 

When a program is being- traced each statement that is executed causes the line 
number of the statement to be displayed on the left hand sided of the console, in 
angle brackets. When TRACE VARS is in effect and a variable is changed oy a 
statement the variable name and value that it was set -to will be displayed on the 
lert hand side of the console, in angle brackets. 

Each statement of a mUlti-statement line, when executed, causes the line number to 
be displayed. The second and subsequent statements in a multi-statement line will 
be indicated by an offse.t count after the line number,. indicating the relative 
offset of the start of that statement, from the start of the line. This offset 
value relates to the offset in the compressed

l 
internal format, not the displayed 

format of the line. Nevertheless, this va ue is helpful in determining which 
statement of the mUlti-statement line is being executed. ~ -

==================================~================================================ 

Example: 

0010 GOSUB 100 \ PRINT TOTAL 
0020 FOR I~ = 1 TO 3 
0030 PRINT I% 
OOliO NEXT 
0050 STOP 
0100 TOTAL = 4.34 \ RETURN 
-TRACE 
-RUN 
<10> 
<100> 

~lg~.5~8~.34 
<20> 
<30> 1 
<40> 
<30> 2 
<liO> 
<30>. 3 
<40> 
<50> 
Stop at line 50 

TJlACB/1JIID.lCB 

Explanation: 

Execute line 1°6 GOSUB statemen-t 
It " 10 , LET statement 
It " 100, RETURN statement 
It " 10, PRINT statement 
It It 20, FOR statement 
" It nO' PRINT statement, 1st time 
It " 0, NEXT statement

t 
1st time 

It It nO' 2nd time, prin s 2 
It It 0, 2nd time 
It " ijO' 3rd time, prints 3 
" " 0, ~rd time 
" It 50, TOP statement 

- 68 - BASIC ReYS 



-TRACE VARS 
-RUN 
<10) 
<100> . 

<TOTAL = 4.34> 
<100 18> 
<10 1 5> 4.34 
<20~ 

<IS = 1 > 
<30> 1 
<lJO> 

<IS = 2> 
<30> 2 
<1l0> 

<IS = 3> 
<30> 3 
<ljO) 

<IS = 4> 
- <50> 

StolL at line 50 
-UNTRACE 

CIIlPrBB 8: CCIIIDDS 

_Execute line 101 GOSUB statement 
n n _ 1 Ou, LET statement 

Variable changed 
Execute line. 100, RETURN statement 

n n 10, PRINT statement 
n n 20, FOR statement 

Variable changed 
Execute line 30, 

n n 40, 
Variable Ch. anted Execute· line 0, 

n n 0 

PRINT statement, 1st time 
NEXT statement, 1st time 

2nd tim·e, prints 2 
2nd time 

Variable chanted 
Execute line' 0, 3rd time, prints 3 

n n 0, 3rd time 
Variable changed 
Execute line .50, STOP statement 

=================================================================================== 

BASIC lev B - 69 -



BASIC IBFBlDCB IfDUAL 

8.26 tJIIBRBB Cc=mnd -

.----~---~-------------------~-------~--------~--~---------~~-~----~----~~--------7 
I' I I 1 OIIBRBK I 

I ' 
I ' 2 UllBRBH AT <U.De- ~erence> 

I 3 UlBBBB 08 <variable> 
t 
I 
I' 
I 
I 
I 
I 
I 
I 

Where: 

(line referenoe> ::= (line number> 
, (line label) 

- ' 

Seeals'o:BREAK, STEP, TRACE, UNTRACE, and VARS commands 

---------------------~---------------------------------~----~---------------------~ .-
Purpose:- -

The UNBREAK oommand clears break pOints set by the BREAK command. - , 

~ •• eDt: 

Format lof the UNBREAK command will clear all break points currently set. 

Format 2 will clear all break pOints referring to the specified line reference. 
/ 

Format 3 'will clear all break pOints currently set, referenoing the specified 
variable. 

For an example see the BREAK command. 

OIBBBH - 10 - BASIC ley B 



CBlPDR 8: CCIIIDDS 
I 

8.21 Up em-end 
. -

-------------~--------------------------------------------------------------~----I 
1 (up arrow> 

2 (control/Z> 

See also: Down, and LIST commands 

, . I 
I . 
t ., 
I 
I 
I 

-----------------------~------------------------------~----------------~-----------
Purpose: 

The Up command allows you to backup and display the previous line in the program •. 

ec-nt: 
The up command cannot be used if the program in m~mory is read protected (see LOAD· 
command). 

The actual k~y that you should enter to perform this function is dependant upon the 
currently set value for the UP key (refer the the OASIS SYstem Reference Manual, 
"SET Comman~") and the console class code. 

When the up command is 'entered the current line pOinter is adjusted one line 
backward and· the current line'is displayed. 

Attempting to executed the up command when the current line is at the first line of 
the program the message TOF: is displayed indicating that you are at the top of 
file. I . • 

BASIC Bey B - 11 - UP 



BASl:C Dr_CB HUOAL 

8.28 VABS C~JMI 
. ... . . ~ 

--------------------------------------------------~---~~----~~~~-~~~-~~-----~-~----i 

I 
I 
1 
I 
I 
I 
I 

I 
I 
I 

1 V.IBS 

2 V.IBS (variable list). 

Where: 

. <variable 11st> :: = <variable name>[ ,<variable list>] 

See also: BREAK, ST~P, TRACE, UNBREAK, and UNTRACE commands 

Purpose: 

The VARS command allows the programmer to easily see the status of all variables 
defined in a program. 

Format 1 of the VARS comand causes each variable currently defined in the program 
to be displayed on the console! one variable per line, along with the contents of 
the variable. The sequence 1n which the variables are listed is the inverse 
sequence that the variaoles were initially defined in. 

Format 2 of" the VARS coinmand causes each variable in the list to be displayed, one 
variable per line, along with the contents of the variable. 

Dimensioned, arrays are displayed one element per line. 

===========================================================================.======== 
Example: 

-VARS 
A$ = "ABCDEFG" 
I~ = 12 
R1 = 12.34 
R1$ = "TOTAL" 
Rl = 10234567 

i ~~ : ~ y 3 - 3 
Y 11 ; 22 

-VARS A$J.R1$J.R3 
A$ = "ABl,;DEFli" 
R1 = 12.34 
R3 = 1.234567 

====~==============================================================.================ 

VABS - 72 - BASIC Bev B 



CBlPDI 8: CCIIIIDDS .. 

8.29 DBF Co=wtncl 
, . 

-------------------------------------------~---------------------------------~-----I 

I 
I 
I 
·1 
I 

1 IBBF 

See also: LPXREF command 

Purpose: 

I 

I 
. I 
I 
I 
I 

The XREF command allows you· to display all of the variables and lines used or 
referenced in the program. 

ec:-ent: 

The XREF command c~nnot be used if the program in memory is read protected (see 
LOAD command). 

The XREF command lists the program in memory on the console and then lists two 
tables of cross 'references tor the program. 

The first table lists all line numbers referenced and line labels defined or 
referenced along with the line number of the statement referencing the· line number 
or label. In the table of ·references to line labels the line number of the line 
defining the label will have a colon following the line number. 

The second table lists all variables and constants referenced in the program, in 
alphabetic order, followed by the line number of the statement with· the reference 
to' the variable or constant. A statement with multiple references to the same 
variable or label will have multiple occurrences of the line number in the table. 

Array names are deno,ted by a pc tr of parentheses following the array name. 

Each of. the line number references in the second table will be followed by a single 
letter code indicating the type of reference to the variable or constant: 

B Term used in an input type statement (INPUT, LINPUT, LINPUT USING, 
MAT INPUT, MAT READ, READ, READNEXT, and GET). 

V Term used in an output type statement (DELETE, MAT PRINT, MAT WRITE, 
PRINT, PRINT USING, PUT, and WRITE). . 

H Term was modified by statement (LET, FOR, and MAT)" 

All other, types of statements are unmarked. 

The variables and constants are listed in the following sequence: variables, string 
constants, floating p~int constants, and integer constants. 

=====================.============================================================== 
Example: 

-XREF 

10 OPEN 11: "NAME.DATA"t INPUT SEQUENTIAL 
20 LOOP: PRINT CRT$("C"J; 
30 I~ = 0 
110 I~PUT: LIN PUT 11: A$ . 
gO IF EOF(1) THEN GOTO EXIT, 

78 ~~i~~ 1il~~'i~!~~~~iit~1t,~,g~~ 
BOIS = I~+5 ,'Il" I%~5<23 THtN'GOtO INPUT 
go ' WAIT 

100 GOTO LOOP 
110 EXIT: END 

Line/Label 

EXIT: 
INPUT: 
LOOP: 

BASIC Bey B 

References 

50 0110: 
40: 80 
20: 100 

- 13 -



JWD:C BIFBBIICB MODAL 

Variable/Constant 'References 

AI 40R 60W 10W 
80M le" 30M - ,60W 10W 80 80 

20W 
"NAME.DATA" _. 10 
0 30 60W 10W 
1 10 40R 50 60W 

·n, 
60W 
~gw g 80 
60W 70W 10W 

23 80 

=================================================================================== 

- Til - BASIC Bey B 



CBlP!BI 9 
$'lATDlBlrs 

This chapter discusses each statement in a separate section. Each statement 1s 
described in fouE:' subsections: 

1. GeDeral tora: defines -the syntax of the specific statement. For 
visibility this, information is placed in a box at the to~ of the page. 
Note: the characters ::= should be read as, "is defined as • 

2. Purpose: one or two sentences that summarizes the purpose' or general 
function of the statement.,. -

3. ec:..i.ent: detailed description of the statement- specifying any 
restrictions," ~xceptions or errors that ,may occur; 

,. Bza.Dlea: general examples of' the various forms of the statment if 
applicable. 

For the convenience of novice programmers the BASIC statements 'are listed below by 
logical ~roups. In the body of this chapter, however, the statements are listed in 
alphabetl.c sequence, for quick reference purposes. ' 

-
An appendix at the back of this manual lists all~or the statements with,their. 
general syntax requirements. 

A. Control and/or' Brancning' Statements 

CASE 
CEND 

'ELSE 
END 
FNEND 
FOR 
GOSUB 
GOTO 
IF 
IFEND 
NEXT 
ON ERROR 
ON GOSUB 
ON GOTO 
OPTION 
OTHERWISE 
QUIT ' 
RESTORE 
RESUME 
RETURN 
SELECT 
SLEEP 
STOP 
THEN 
WAIT 
WEND, 
WHILE 

Used with SELECT 
Used'with SELECT 
Used with IF 
Exits program 
Marks end of user defined- .function 
Loop control 
Execute subroutine 
Unconditional branch 
Test expression-branch or execute depending on result 
Marks end of multi-line IF 
Used with FOR 
Invokes user written error handling routine 
Selects subroutine depending upon value 
Sel~cts branch depending upon value 
Set various options 
Used with SELECT 
Exits BASIC 
Resets DATA pOinter 
Exits user written error~handl1ng routine 
Exits subroutine 
Specifies value that determines statements to be executed 
Suspends processing for period of time 
Exits program 
Used with IF ' , 
Pauses at bottom of screen display 
Marks end of WHILE structure -
Executes statements while expression is true 

Bo ASSignment and Declaration Statements 

CLEAR 
COMMON 
DATA 
DEF 
DIM 
LET 
MAT 

Co File Input and 

CLOSE 
DELETE 
GET 
INPUT 
LINPUT 
LINPUT USING 

-MAT INPUT 
MAT PRINT 
MAT READ 

BASIC Bey B 

Erase variables from memory 
Defines variables used between program modules 
Defines data constants 
Defines user defined function 
Allocates array space 
Assigns value to variable 
Assign values to arrays 

Output Statements' 

Closes file 
Erase record from file 
Get data from I/O devices 
Accepts ASCII data from file 
Accepts line of ASCII data from file 
Accepts line of ASCII data with control 
Accepts ASCII data from file-assigns to array 
Outputs ASCII data to file from array 
Accepts data from file-assigns to array 

- 75 --



BASJ:C BlFBBDCB MDU.IL 

MAT WRITE 
MOUNT 
OPEN 
POKE 

Outputs data to file from array 
Allows change of disk 
Opens file for subsequent input and output 
Modifies memory . -

PRINT 
PRINT USING 

. PUT -
READ 
READNEXT 

. UNLOCK 

Outputs ASCII data to file. 
Outputs formatted ASCII data to file 
Puts data to I/O devices 

WRITE 

Accepts data from file 
AQcepts data from indexed file 
Release record for other users use 
Outputs data to file 

Do Program Lirikage Statements 

CHAIN 
CSl 
LINK 
RUN 

Eo Other Statements 

Branches ~o another program 
Executes system program 
Branches to another program 
Branches to another program 

empty or null statement 
RANDOMIZE 
REM 

STA1DIIIts - 16. -

\ 



CIIAPrBI g: , STA'tlliilfS 

9.1 CASE Stat-.nt 

---------------------------~---------------------------------------------~--------~ , . \' I 

I 1 CISE (~zpres81on> I 

See also: CEND,. OTHERWISE and SELECT statements I 
I 

~-------------------------------------------~-----------~---------------~----------
Purpose: 

The CASE -statement is part of the SELECT-CASE-CEND programming structure that ' 
allows conditional execution of s~atements in a structured manner. 

, ec..ent: 

The form arid function of the CASE statement depends upon which format of the SELECT 
statement was used at the beginning of the SELECT-CASE-CEND structure. Format 1 of 
the SELECT statement requires that the CASE statements have'" relational expressions; 
format 2 of the SELECT statement requires that the CASE statements have expressions 
the match in type to the expression-used in the SELECT statement--numeric with 
numeric, string, with string. . 

When the CASE statement is used with format l' of the SELECT statement the 
relational expression of the' CASE, statement is evaluated and, if true, the 

·statements following the CASE statement will be executed. 

When the CASE statement is used with format 2 of the SELECT statement the 
expression of' the CASE statement is compared to the expression of the SELECT 
statement and,. if true, the statements following the CASE statement will be 
executed. 

When the evaluation of the CASE 'statement causes the statements following the CASE 
statement to be executed, execution will continue until another CASE, CEND, or 
OTHERWISE statement is encountered at the same l~vel. 

When the comparison is false the statements following are skipped until another 
CASE, CEND, or OTHERWISE statement is encountered for this SELECT-CASE-CEND 
structure. 

SELECT-CASE-CEND structures may be nested to any level~ 

It is best to use different levels of indentation to illustrate the 
nested SELECT structure--the' CASE statement does not indicate 
expression is being used--only the BASIC execution module "knows" 
some form of documentation. 

structure of a 
which SELECT 

unless you use 

This programming' structure should be used to replace complex IF-THEN-ELSE 
statements, ON-GOTO, and ON-GOSUB statements to produce a more structured program. 
It is much. more versatile than the ON statement because the conditional execution 
is determined by a general expression rather than an integer expression with only 
positive, sequential values. 

This structure is particularly useful for a menu tree when t~e controlling 
expression is a string.. . 

Note: Any statements between a SELECT statement and the first CASE statement 'will 
never be executed unless they are branched to. 

Note: The program should never branch out of a SELECT-CASE-CEND structure without 
executing the CEND statement as the internal SELECT stack will not be cleaned up 
which will result in un-necessary memory usage. 

BASIC Rev B - 11 - CISE 



BASIC BBFBBBIICB HDUlL 
. . 

=================~=====================================================~~========== 

Example: 

0010 INPUT CONTROL$ 
0020 SELECT CONTROL$ 
0030 CASE "" 
0040" PRINT CONTROL$ 
0050 GOSUB 1000 
0060 CASE -HELP" 

GOSUB 2000 
QUIT 

CASE CONTROL$ If control = 
." PRINT "Inv8:lid input";" 

CEND 
SELECT 

0010 
0080 
0085 
0081, 
0090 
0100 
0110 
0120 
0130 _ 
0140 
0150 
0160 ' 
0110 
0180 

'0190 

CASE CONTROL$="" 
PRINT CONTROL$ 
GOSUB tOOO 

CASE' CONTROL$="HELP" 
GOSUB 2000 
QUIT 

OTHERWISE ' 
PRINT "Invalid input" 

CEND 

Explanation: ' 
Accept control value 
Using this control value/then: 
It·control is null execute following 

else skip to line 6~ 
Only executed when CONTROL$ is empty 
" /" "" . 

It control is "HELP" execute following 
else skip to 'next CASE or CEND 

Only executed when'CONTROL$="HELP" , 
" ." " " control (always,true) 

End of select structure 
Same as above 

=================================================================================== 

/' 

CASB - 18- BASIC ley B 



_ ,CBAPrD 9: .Sf.l.TIIIIftS 

9.2 CHID Sta~Dt; 

-----------------------------------------------------------------------------------. '-

1 caD 

See also: CASE, OTHERWISE and SELECT statements 
-

I 

I 
'1 
I 
I 
I 

~------------------------------------------------------------------~-~-------------
Purpose: 

The CEND_ statement is part of the SELECT-CASE-CEND programming structure that 
allows conditional execution of ~tatements in a structured manner. 

ec-nt: 

, The CEND statement marks the end of the SELECT structure. 

There is only one CENDfor each SELECT. 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Example: 

1010 SELECT OPTION$ 
1020 CASE "HELP" 
1030 GOSUB DISPLAY.HELP 
1040 CASE "INIT" 
1050 GOSUB INIT.VAR 
1060 GOSUB INIT.FILE 
1070 ·CASE "PRINT" 
1080 DEVICE.NUM% = 16 
1090 CASE "TYPE" . 
1100 DEVICE.NUM% = ·15 
1110 CEND 
1120 RETURN 

- Explanation: 

Using variable OPTION$ 

Perform if dPTION$="HELP" 

Perform if OPTION$="INIT" 
" " " 

Perform if OPTION$="PRINT" 

Perform if OPTION$="TYPE" 
Perform always 

/ 

=================================================================================== 

BASIC Bey B - 79 -

,-



BASJ:C IBFBDIICB HDU.IL 

9.3 CHAD·State.ent 

---~-------------------------~----------~-------~---------~---------------------~~~ 
1 CHAD <prograa DaIa8 upr) 

Where: 

(program name expr> ::= <file name>[.<file type>][:<file disk>] 
<file type) ::= BASICOBJ (with BASIC) 

, BASICCOM (with RUN) , 

See also: CLEAR, LINK and RUN statements 

u 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
8 

-----------~-~~----~~------~------~---------~~---~~~~--~--~~-~~-------------~---~-~ . . 

Purpose: 

The primary use of the CHAIN statement is to link, together BASIC program segments., 

ec-ent: 

The CHAIN statement terminates the execution of the program in which it is 
encountered, loads the program indicated, and continues exeoution at the beginning 
of the program segment. 

The CHAIN. statement will close all open channels (files) and all variables that 
have not been defined as COMMON variables will be cleared from memory. 

Previous versions of OASIS BASIC su'pported a <line number> operand. The 
recommended method of transferring control to another program at a specific line is 
the use of a control variable (defined as COMMON) that is tested by an ON-GOTO 
statement at the start of the program transferred to. " 

The <program name> must be a valid string expression. ~f the program cannot be 
found in the direc.tory, a non-trapable error will occur., 

Note: When the RUN version of BASIC is being used (execution of compiled programs 
only) only programs that have been compiled and have a file type of BASICCOM will 
be searched for by this command. 

The CHAIN statement will "wrap up" all active programming structures: FOR-NEXT, 
WHILE-WEND, IF-THEN-ELSE, IF-lFEND, SELECT-CASE-CEND, and the ON ERROR will be 
turned off 0 . /. 

The CHAIN, RUN, and LINK statements all perform similar tasks, but with significant 
differences: 

Prograa l,iMage Stat-.enta 

--------------.... ----------.--_ .. _----.... --------------------I Statement : I/O Channels : Variables I COMMON ; 
I-------~------------------------~---------------------I I RUN I Closed I Cleared' i Cleared I 
I CHAIN I Closed I Cleared I Not cleared I 
I LINK . I Not closed I Cleared I Not cleared I _____________________ . ______ .. ____ ... ___ -..: _____ .... __________ CKt., 

========================0=========================================================== 
Examples: 

0010 CHAIN "SEGM01" 

0030 CHAIN "SEGMO"&NUM(I)&":S" 

Explanation: , 

Program named 'SEGM01' will be 
loaoed, all files will be closed, 
& control will pass to the first 
statement of • SEGM01-' 0 

When I equals 1, this statement 
is the same as example 10. 
If I is equal to 3, program 
'SEGM03' will be executed, etc. 

=================================================================================== 

-80- BASIC ley B 



9.- CLJWl StateaeDt 

----------------------~------------------------------------------------------------
1 CLJWl 

2 CLJWl (yar.lable 1~8t> 

Where·: 

<variable list> ::= <numeric variable>[,<variable list>] 
<string variable>[,(variable list>] 
<array name>[,<var1able list>] 

I 

See also: CHAIN, COMMON, LINK and RUN statements 

The CLEAR statement initializes the working. storage area.· 

eo..ent: 

The CLEAR statement effective.ly erases all variable names· and their contents from 
memory. 

Variables defined as COMMON variables are .DQ.k erased by this command. 

This operation is performed automatically whenever a CHAIN, LINK, LOAD, . NEW, or RUN 
command is executed. It may be necessary to use this separate command when there 
are many variables defined in working storage that are not going to be used again, 
and there are no variables whose loss would be detrimental to program execution. 

The main advantage gained 1s a fresh work area that may allow the program to 
continue execution that, without it, ~ight have required more memory than 
available. 

Optionally this statement may clear specific variables (or complete arrays) from 
memory when they are no longer needed by the program. 

=================================================================================== 
Examples: 

0010 CLEAR 
0020· CLEAR A,B,INDEX% 

0030 CLEAR ARRAY1$,A,B 

Ex,planation: 

All variables are cleared from memory •. 
Only the variables A Band INDEX% are 
cleared from memory (unless they were 
defined as COMMON). "-
The entire array ARRAY1$ is erased from 
memory along with the variables A and B. 

=================================================================================== 

BASIC Bey B - 81 -



BASIC IBFBBBlCB HDOAL 

9.5 CLOSE Sta~t 

I------------~---~----~---~---------~------------~---~----------~---~-------------, 
I - --1 CLOSE I(cbamlel) I 
I I 
I Where: I I I I '(channel) :: = (integer ~xpression) -i 
I .- I I See also: -CHAIN, CSI, END, MOUNT, OPEN, QUIT and RUN eta temen ts , 
I n 

------------~--~-~-----~~--~-------~-~~----~---~---~-------~~~--~~~~---------~--~-~ 
Purpose: 

The CLOSE statement is 
flle.. -

used,to terminate I/O between • the BASIC program and a data 

eo..ent: 

The -CLOSE statement causes the output of t.he last block 
Execution of -a- CHAIN, END!- or CSI statement automatically 
The RUN command automatica 1y closes any open files before 
QUIT c-ommand will close any <?pen files. before exiting BASIC. 

of data to the r1Ie~
closes all open files. 
execution begins. The 

The <channel> must have the same value as that used with the OPEN statement .. 

Once a file has been closed-, it maybe reopened on any available channel number. 

If the user should - happen to abort a BASIC program (-by _ an IPL, or power failure) 
when indexed or sequential files are ,open, errors may exist in the file directory 
or in the file itself. It ,is acceptable 'Co abort the program by using the Program 
Cancel-key or the System Cancel-key, but exiting by a system-reset button or power 
failure can be disasterous. -

=============~======================~========.================~===================== 

Examples: 
\ 

0010 CLOSE 11 
0020 CLOSE IINPU!% 

Explanation: -

File opened on channel one is'closed. 
File opened on channel corresponding 
to value of variable INPUT% is closed. 

---------------------------------------------~--~------~~-------------------------~ 
Incorrect examples: 

0010 CLOSE ftIVY MASTER Aft 
0020 CLOSE 14~15,#6,/10 
0030 CLOSE Il(. 

Explanation: 

File names are not allowed. 
Multiple channels not allowed. 
Channel 17 is invalid. 

/ -

======================~=========~===========~====================================== 

. " 

CLOSE - 82 ;.. 



CBAPr.II 9: STAtililitS 

9.6 CCHIII Statt.ent 

I 
'I 
I 
I 
I 
I 
I 
I 
I 
1 
I, 
I 
I 

1 CCHIII (variable list) 

Where: 

See 

<variable list> ::= <simple variable>[,<variable list>] 
<dim variable>[,<variable list>] 

,<dim vari-able> :: = <array name> ( <dimension> [ , <dimension>]) 
<dimension> "::= <numeric expression> 

, ,. . 

also: CLEAR, DIM, OPTION, and RUN statements 

I 
I 
I 

I 
-I 
I 
1 
I 
I 
I 
I 
I 

----------------~-----------------------------------------------------------~------
Purpose: 

The COMMON statement allows you to specify that certain variables ~ are shared, 
between segments of a program and are, therefore, not to be cleared. 
ec-nt-:, 

The COMMON statement must be the first statement 'on a line--there can be no line 
label specified on the same l,ine as a COMMON statement. 

The COMMON statement is an executable statement, similar to the DIM statement--in 
fact, it must be executed before any references are made to the variables it is 
defining as common. 

When a program is RUN, CHAINed to or' LINKed to, the _ entire program is scanned for' 
any and all COMMON statements. When one ,is found the variables specified on that 
stateme,nt are searched for in the COMMON variable storage. When a variable is 
found it will be left as is •. When a variable is not found in the COMMON variable 
storage area it will be' defined or dimensioned in that area. . 

Note: If a variable was'used in a previous program but not defined as COMMON be'tore 
its use, the value will not be retained at the time it is defined as COMMON. 

, Al though it is not .necessary -to, re-define all of the variables that are COMMON 
between programs it is definitely a good programming practice. It is also not 
necessary to specify the variables in a COMMON statement in the same sequence as 
they might have been' defined in a previous program's COMMON statement--variables 
are accessed by name, not l?cation or sequence~ , . 

===============================================-==================================== 
Examples: 

0010 CO~ON-A,B,A% 

-0020 COMMON ARRAYi( 5 ,22), CONTROL 

Explanation: 

The variables A, B, and A% were defined, 
or will be used, by another program. 
Simllar ,to above but also dimensions ARRAY$ 

\ -

=================================================================================== 

BASIC ley B - 83 -



BASIC DFBDIICB IWIOJL 

9.1 CSZ State.eDt 

---------------------------------------------~---------~--------------~---------~-~ I I -
, 1 ·csz (atriDg-exp> I 

.I-

Purpose: ' 
/ 

The CSI statement allows the BASIC program_to'execute any OASIS command, resuming 
execution of the BASIC program afterwards. . 

C4c •• '8nt: 
All I/O channels will be closed when the CSI statement 1s executedc 

<String-exp) is any valid OASIS command, with all arguments and options required by 
the specific command. Refer to the OASIS System Reference Manual for complete 
specifications of these commands. 

When the first character of <string-exp> is the It>". character! the string will be 
displayed on the console device t otherwise the string wil not be displayed 
·{command executed in "silent" mode). -

When the CSI statement is executed your BASIC program and all of i,ts work areas are 
marked as protected memory. A special call to the operating system passes the 
string ex~ression to the Command String Interpreter which executes the desired 
program. Upon oompletion of that program the operating system reloads the BASIC or-, 
RUN command, it necessary, unprotects the memory area containing your program, and 
continues execution of your program •. 

i 

The CSI statement should not be used to execute large OASIS commands because of the 
restricted memory available. Add1tionallywhen the followi~ commands are 
executed the result will be unpredictable: :6EBUG ASSEMBLE, BASIC, and RUN. The 
ATTACH program cannot be called to attach a new Aevice driver; however,. it may be 
called to change some options on a currently attached device. In addition the 
stack of the EXEC language must be empty. 

============.=======~=============================================================== 

Examples: Explanation: 

0010 CSI "LIST CUSTOMER MASTER (PRINT NOHEAD) n 

0015 A$=">t1Ielist a (exec append)" 
0020 CSI A$ 

The file CUSTOMER MASTER is printed without
headings. 

Command is displayed. The tile 
named SELECTED. EXEC is appended with the 
-current filelist from the directory of 
the A disk. 

======================~============================================================ 

-M- BASIC Bey B 



CBlPIBI 9: STADliilfS 

9.8 DATA Statt.ent 

~--------------------------------------------------------------------~-------------
1 DATA (data list) 

Where: 

<data list) ::= <data element)[,<data list)] 
<data element) ::= <numeric constant) 

<quoted string constant) 
<unquoted string constan~> 

See also: READ and'RESTORE statements 

-----------------------------------------------------------------------------------
Purpose: 

The DATA statement is used to define information to be read by the READ statement. 
The DATA and READ statements are useful for defining the initial contents of an 
array, etc. 

ca-ent: 

The DATA statement must be the first, and only statement on a line--there can be no 
line label specified on the same line. 

The data elements in one or more DATA statements are used sequentially, in tpe 
order that they appear in the line, in the order that the lines appear in the 
program. (It is possible to re-use data elements--see RESTORE statement.) 

When a data element is to contain leading or trailing spaces or embedded commas it 
must be defined as a quoted string constant. 

This statement, along with the READ and MAT READ statement, is very useful for 
'defining the 1nitial values to be used for variables and array elements. It is 
much faster to perform a READ or MAT READ than it is to use the LET statement. 

=================================================================================== 
EXaiDples: 

10 DATA 1.23.,2.34,3.45
I

LITERAL,ANOTHER LITERAL 
20 DATA "He said ""Br ng the glass.""","T. J. Collins, Jr." 
30 DATA 1,1,2,1,i,1,0,1,1,5,1,16,1,-1 

=================================================================================== 

BASIC Bev B - 85 - DATI, 



BJSI~ BBFBRBICZ -lIDUlL 

9.9- DEF State.ent 
, 

---------------------------------------~-----------~-~-~-~--------------,--------~-~ I I 1 »., ~n<vari.able>«ar_nts» = <expression) 

I 2 ,DBF n<variable) = <expreaa:1on) 

l 3 DEF n(var:1able>( (arguaents» 

'DEF FI(variable) 
Where: 

<variable> :::: <simple variable name>' 
(arguments> ::= <simple variable name>[~<arguments>] 

See also: FNEND and .LET statements 
- " . , .-

I 
I 

f 
I 
I· 
I 
• 

----~---~------------~----------------------------------~---~---------------------~ 
Purpose: 

The DEF statement allows' the programmer to define a user defined function. 

eo..ent: 
In some programs you may want to execute the same sequence of statements in several 
places. You can define a sequence of operations asa user-defined function and use 
this function like you use~tne functions BASIC provides. 

The DEF-statement has two basic forms:-single line (formats 1 and 2); multi-line 
(formats 3 and 4). -

The DEF statement must be the first statement on a line--there can be no line label 
specifl~d on the same line as the DEF statement. 

The <variable) following the characters 'FN' is independent from the program. 
function is referenced by the complete name, ,including the FN characters.-

The 

Any variable referenced in the expression which is not an. argument of that function 
has its current value in the user program. -

The expression' may include any valid element. It shQuld be noted that ~ single 
line function should not reference itself as this causes an infinite loop. 

The (argument> is a dummy argument: -it nas no relation to the pro$ram and cannot be 
changed by the program. If the dummy / argument is also a varl.able used by the 
program, they are independent of each other. 

The argument must be a simple variable name, that is, array referrences are 
invalid~ , _ 

In the single line format of the DEF statement, the variable and the expression 
must match. in type, i.eo., string variable wi~h string _ expression, or numeric 
variable wl.th numeric expressiono -

During execution the expression is analyzed and the value is assigned to the 
function.. This value takes the place of the function call in the expression that 
references the function. 

In the multi-line forms of the DEF statement there must be a corresponding FNEND 
statement to mark ~he end of the function definition" 

In the multi-line forms of the DEF 'statement the statement following the DEF 
statement are executed until the FNEND statement is encountered) at which time the 
value of the function is returned ,and execution resumes at tne location of the 
function referenceQ' The value of the function is assigned by a LET statement in 
the function definition: LET FN<variable> = (expression). There can be more than 
one of these assignment statements in a function definition but only the last one 
executed will be the assignment used. ' . - . 

There can be only one FNEND statement for each multi-line function definition. 

Most statements can be used within the function definition (between the DEF and 
FNEND statements). However, transfers into or out of the definition (with GOTO.or 

DEr - 86 - BASIC Bey B 



CIIAPDR. 9: STA!'IIIIftS 

GOSUB) should. not be used. (There are no restrictions in this regards except that 
the FNEND statement cannot be executed without performing a mul ti--line' function-
reference.)'" . 

DATA statements may, be READ from a statement within a function definition. 

A multi-line function definition that does not execute an assignment statement 
assigning the value of the function will return the last defined value' of the 
function. ' 

The DEF statement may be placed anywhere in the program, however, it is executed 
only·when referenced by another statement. 

You may not re-define a D~F function. No error occurs when this is attempted but 
only the first definition is used. . 

============================================================~====================== 

Examples: 

0010 DEF FNA(X) = SQR(XA2+yA2»_SQR(X) 

0020 B = 2 
0030 C -= 5 
0040 Y = 10 
0050Z = FNA(B)/FNA(C) 

Explanation: 

X is the dummy argument. The value of Y 
is taken from the program, 10 in this 
example. Each of the two calls to this 
fUnction. in line 50 cause the value of 
the argument, 2 in the first 'call and 5 
in the second call, to'take the place of 
any and all references to that dummy 
variable in the expression of the 
function. The function is evaluated. Line 
100 is an equivalent statement as line 

. without using the function calls. 
0100 Z = (SQR(BA2+yA2)-SQR(B»/(8QR(CA2+yA2)_SQR(C» . " . 

. ' As can be seen this is not only more 
, . . . difficult to read, but when there are 

more references to the same function 
there will be more code involved. 

1000 DEF FNX%(A B) . l Multi-line def, ,arguments of A, B 
1010 IF A>S THEN FNX%=A*B+3.4 GOTO 1030 . 

1020 FNX% ~ A*B 
1030 FNEND 
1040 PRINT FNX%(3.1,2.3) 

Incorrect examples: 

0010 DEF FNA(SA2) = 2*S+8 
0020 DEF FNA$(B) = 2*B 

Defines value of function and exits. 
Define value of function 
End of definition' 
Will; pririt 10.-

Explanation: 

Dummy argument must be a simple variable. 
Functton name must match expression in 
type string or numeric). . 

=====================================~============================================~ 

BASIC ley B . - 81 - DBF 



BASIC BBFBIIIICB HDUAL 

9.10 DBLftB state.ent 
_____ .. ____________ . _______ -. ___________ -. _______ ~_ .. _..,a:t_8> .. ___ ClD ______ ,.. __ ~ ___ -.» __________ .;,'1I:I:S 

. I ' .\ .. . . 
I ' . 
I 1 DBLftB I(tlle>,<ker), 

I Where: 
I 
I 
I 
I 
I 

(file> ::= <integer expression> 
<key>: : =. (string expression> . 

. <numeric expression> 

---~-~--~-----~----------~~-----------------~----~~------~~-~--~~-~~------------~-~ \ 

Purpose: -

The DELETE s'tatement deletes, a specified indexed or direct record from an . open 
file. 
ec..ent: . 

(tile> is the channel number of an open, indexed or direct, disk file, with access 
mode of OUTPUT or UPDATE, and an access method of DIRECT or INDEXED. 

<key> i~ a string expression representing the key of the indexed record to be 
deleted or a numeric expression representing the record number of the direct record 
to be deleted. --A string key is required if the 1/0 channel was opened with access 
method INDEXED~ and a numeric key is required if the 1/0 channel was opened with 
access method vIRECT. 

The record specified by the <key> is removed from the file and the EOF indicator is 
set off~ . 

When the record is not found the sequential access pOinter and the EOF indicator 
will be the same as if the record were found and deleted. 

=================================================================================== 
Examples: 

gg~g g~~~. :~; ~fi~b~~I¥EI~¥~~~¥ 
0030 DELETE 11,"Ou01" 
OO~O DELETE 12,30 

EXplanation: 

Record with key "0001" is deleted. 
Record number 30 is deleted. 

--------------------------~------------~~-----------------------------------~----~ 
~ncorrect Examples: 

0020 DELETE 11,25 
0030 DELETE 11,K$:A1$,A2$ 

Explanation: 

Indexed files use string keys. 
Record variables not allowed. 

===================================================================================. I 

DBLBrB - 88 ... BASIC Bey B 



CIIlPIBR 9,: STATIIIIftS 

-----------------------------------------------------------------------------------, 
I 
I 
I 
I 

I 
I 

I 
I 

1 DIH <dia variable list> 

Where: 

<dim variable list> ::= <dimvariable>[,<dim variable list>] 
<dim variable> ::= <simple variable>{<num expr>[,<num expr>]) 

See also: COMMO~.&. MAT, MAT INPUT, MAT PRINT, MAT READ, MAT WRITE, 
, and OYrION statements . 

Purpose: 

The DIM statement instructs the system to reserve storage space for an array' by 
specifying a maximum subscript (dimension). , 

ec-ent: 
The DIM statement is an execu·table statement. In fact, it has to be executed in 
order to be effective. 

Numeric or string variables may be dimensioned with one or two dimensions. The 
maximum value for each dimension is 32767, however, the restraints of memory size 
usually limit this to a much lower value. An array may not be re-dimensioned. 

When a variable is dimensioned a reference·to the same variable name will refer to 
the array. "This is only allowed with certain types of statements (i.e., MAT). In 
other statements the error "Inconsistent usage" will occur. ' 

Any reference to an array beyond the allocated size will cause a subscript errore 

Arrays are created with a zero element in each dimension, unless OPTION BASE 1 is 
in effect. For instance, if the array X were dimensioned XeS), there would be six 
elements in the array with subscripts of 0, 1, 2, 3, 4, and S. 

=~================================================================================= 

Examples: 

0010 DIM X(20),Y{2,S),A${S,S) 

Explanation: 

Array X has 21 elements array Y has 18 
elements, string array A$ has 36 elements. 

~-------------------~--------------------------------------------------------------
Incorrect Examples: 

0010 DIM X{2,2,2) 
0020 DIM Y(99999) 

Explanation: 

Can have only 2 dimensions e 
Maximum dimension is 32767. 

=============================================================~===================== 

BASIC Rey B - 89 - DIH 



. B.ASl:C DFBIBIICB-IlDUAL -

9.12 ELSE Stat_nt . 

-------------------------------------------------------~------~-~--~---------~-~--~ . I 

See also: IF, . IFEND and THEN statements 

I 
I 
I 
I 

I 
~----~-~-------~-----~~-----------~~---~---~---~-~~--~--------~-----~---------~--~-
Purpose: 

The ELSE statement specifies the action to be taken when a multiline.IF statement' 
relation is not trueG . 

. ~_eDt: 

The ELSE.statement 1s only valid as part of a multi ... line IF statement, howeve~, the 
ELSE verb may be used in a single line IF statement. 

<statement>may be any valid statement or statements, ~ncluding another IF 
statement. It should not, however, be an,IFEND statement. 

. , 

=================================================================================== 
Examples:~ 

0010 IF A 
0020 THEN GOSUB 2000 
0030 PRINT USING "III", A 
0040 , GOTO TOP. OF. PAGE 
0050 IFEND 

Explanation: 

Test A for non zero 
Perform if A<>O 

n· " " 
n " " End of conditional. execution 

0010 IF VALUE> CONTROL Test expression 
0020 THEN IF VALUE ). LIMIT Perform if expr is true 
0030 THEN GOSUB ERROR Perform if both expr are true 
0040 GOTO EXIT "" " n " " 
0050 ELSE IF ERR.NUM < ERR. LIMIT THEN QUIT 

'PertoJ;'ID only if first expr is true 
and second expr is false 

,0060 IFEND End conditional execution from second expr 
0070 IFEND End of conditional execution . . 

\ 

------------------------~-----~---------~-----------------------------------~------
Incorrect Example: Explanation: 
0010 IF CONTROL(LIMIT THEN WAIT 
0020 ELSE PRINT "ERROR" Not in multi-line IF statement 

=================================================================================== 

90- BASIC Bey'B, 



CBlPDR 9: BrJ.!'DiiIIYS 

-------------~---------------------------------------------------------------~-----I . I 

r 1 laID) I 
I I , I See also: STOP and QUIT statements f 
I 8 

/, 

,Purpose: . 

The END statement te'rmina'tes exeoution of the ,progr~. 

, eo-.tnt: 

The END statement, unlike the STOP statement, not only terminat~s exeoution of the 
program but also oloses all open I/O channels and, if the RUN command is being used 
(-not BASIC), ex~ts from the BASIC environment; otherwise control returns to the 
command mode. ,- - . 

The END statement should be the last statement in a program. 
required by OASIS BASIC it is required by ANSI and is a good 
because it can serve a~ an indicator that you intended it 
program. 

You cannot CONTINUE after an END statement has been executed. 

BASIC'Bey B - 91 -

Although this is not 
programming praotice 
to oe the end of the 

BID 



BASIC BD'BIIICB MOU.IL 

9.14 I'IBID Stat_at 

--~----~--------------------------------------------------------------------~-~--~I 
11'1B1D 1 

I 

See also: DEF statement I 
8 

-~-~--~~~~--~~-----~-.----~-------~-------~--~--~--~-~-~~-----~---~~---~-~~~~----~-~ 

Purpose: 

The FNENDstatement marks the end of a mUlti-statement user defined'function. 

ec..ent: 

The .FNEND statement may only. be used, and must be used, in a multi-line user, 
definied function. 

There may only be one FNEND 'statement for each multi-line function. 

The statement between and including the DEF and FNEND statements are not executed 
unless referenced from a statement in the body of the-program. 

=:================================================================================= 
Example: 

0010 DEF FNTEST(A) 
0020 FNTEST=PI*A*A 
0030 FNEND 

Explanation: 

Start of function definition 

End of function definition 

'0040 DEF FNCENTER$(STRING$,LENGTH) Start of function definition 
0050 IF LENGTH=O THEN FNCENTER$=nn GOTO 110 
0060 IF LEN(STRING$)=O THEN FNCENTER$ = SPACE$(LENGTH) GOTO 110 
0070 FILL· = LENGTH-LEN ( STRING$) 
0080 IF MOD(FILL 2) =0 -
0090 - - THEN FACENTER$ = SPACE$(FILL/2)&STRING$&SPACE$(FILL/2) 
0100 ELSE FNCENTER$ ~ SPACE$(FILL/2)&STRING$&SPACE$(FILL/2+1) 
0110 IFEND . 
0120 FNEND End of function definition 

=================================================================================== 

- 92 - BASIC Bey B 



CIIlPrBIl 9: S1.'A!IIIIIITS 

----------------------------------------------------------------------------------7 
1 FOI <nua iDdex>=<start> TO <~t> I 
2 FOB <nua iDdex>=<8~t> TO <~t> S1.'BP <1Dcre.eDt> I 
3 FOB <lDdex>=<expressloD list> 

Where: 

<num index> ::= <simple numeric variable> 
<start> ::= <numeric expression> 
<lim! t> :: = <numeric expression>. .' 
<increment> ::= <numeric expression> 
<index> ::= <simple variable> 
<expression list> ::= <num expr list> 

. <string expr list> . 
<num expr list> ::= <numeric expr>[ <num expr list>] 
<string expr list> ::= <string expr$[,<string expr list>] 

See also: NEXT statement 

---~-------------------------------------------------------------------------------
Purpose: 

The FOR statement define a program loop and execute that loop until a terminating 
condition is met. 

ec-ent: 

The FOR statement assigns an initial value, <start>, to the index and saves the 
limiting value <limit>. 

The STEP increment (format 2), is saved for use by the corresponding NEXT 
statement. If the STEP value is not specified (format 1), a value of +1 is used. 

The following paragraphs pertain to formats 1 and 2 ot the FOR statement: 

Upon initial execution of the FOR statement, the index variable is assigned its 
initial value. The index variable is then compared to the limiting value and, if 
the index has not surpassed· the limit, execution is passed to the statement 
following the FOR statement. When the index has surpassed the limit, execution is 
passed to the statement following the matching NEXT statement. If there is no 
matching NEXT statement an error occurs: "FOR witnout NEXT"& 

The STEP value when specified, may be a negative value. When the STEP1s 
positive, the limiting value must be greater than or equal to the initial value. 
When the STEP is negative the limiting value must be less than or equal to the 
ini tial value. . , , 

-The vafue of the index variable surpasses the limiting value when it is more 
positive (for a positive STEP value) or more negative (for a negative STEP value). 

A FOR NEXT loop is defined b~ the FOR and NEXT .~tatements, with each statement 
marking the beginning and end of the loop. 

FOR NEXT loops may be nested to any depth. 

If a FOR NEXT loop is nested, it must .be completely contained within the next 
higher FOR NEXT loop. An error will- occur if the system detects an illegal form of 
nesting. A common practice to determine if your FOR NEXT loops are legal is to 
draw lines between the matching FOR and NEXT statements (see examples). If a line 
crosses another then .. it is an illegal form of nesting. . . 

The FOR NEXT loop may be exited with a GOTO statement. When this is done, the FOR 
NEXT loop will remain open until another FOR NEXT loop is executed using the same 
index. variable or when this loop is re-entered. 

Upon termination of a FOR NEXT loop the index variable will retain the first value 
that exceeded the limiting value. For instance, the first example belOW will have 
the value +11 upon termination. 

Format 3 of the FOR statement allows the loop to operate on a "set" of values with 

BASIC Bev B - 93 - POI 



BASIC DFBDICB MDUAL 

the, set being defined ,by'the expression list. In. this form the expressions must . 
match in type (numeric or string) with. the index variable. 
In this format the index . variable is initialized to the value of the first· 
expression. There is no limit testing as there is no limit defined., Rather, the 
FOR NEXT lo.op is performed until the ,list of expressions is. exhausted'l with each 
execution of the matching NEXT statement causing the next express on to be 
evaluated and ,assigned to the index variable. . ' " ' 

==============================================================='==================== 
Examples: 

10 FOR. I=1 TO 10 

. 
50 NEXT I 

10 FOR I%=C+3 TO R.2 STEP .2 

. 
50 NEXT I% 
60 • • • 

----- 10 FOR I% • I· 7- 20 FOR J% • 
I I .. 
I I 50

0 
NEXT J% 

II I 6 FOR J'% • 
I 

I I 

I 
I 

ioo ~EXT J% 
150 NEXT 1;' 

'. . 

. Explanation: 

Loop will execute 10 times • 

Initial value is 3 plus the 
current ,'value of C. Limiting 
value is current value of 
R times 2~. If limi t is less than 
initial value ,the loop is not excuted 
and control will pass, to line 60. . 
It variables C or R are changed within 
the loop initial value and limiting 
value will not be affected as-they are 
evaluated only once. 

This illustrates a correct form 
of nesting. 

. 
10 FOR INDEX$="A","B","ABCD"&SPACE$(2) Loop will execute 3 times. 

Variable must match FOR index variable, 
if used •. 
Will execute 7 times. 
Will execute 3 ti~esfor each of the 
seven major loops. 
Terminate current loop 
Terminate current loop (major) 

-----------------------~-~-----------------~---------------~-------------~--------~ 
Incorrect examples: 

10- FOR 1 TO- 50 STEP 2 . 
20 FOR X = 1 STEP -3 
30 FOR J = 5 TO 1 STEP 2 
~O FOR K = 1 TO 4 STEP -5 

------ 10 FOR I 
20 FOR J • 

.. 
---+-- 50 NEXT I I 

I .-
90 NEXT J 

~xplanation: 

. Index variable missing. 
Limiting expression is missing. 
Loop will fail initial test. 
Loop will fail initial test. 

Illegal nesting. 

Note that lines cross here. 

• 

==========================================~======================================== 

FOB BASIC Bey B 



CIIAPID 9: STJ.!IIIIIITS 

9.16 . GET S~~Dt 

.-------------------------------------------------------~---------------------------1 . . 'I 

I I I 1 GET DEVICE <device, IlUIIber>~<Yariable . list> I 
I '1 1 2 GET HIIIORY <address> t <nriable. l1at> I 

3 GET PORT <port>,<Yariable list> I 
. Where: 

See 

<device number> :':= <numeri<l expression> 
<address> ::= <numeric expression> 
<port> ::= <numeric expression> . . , 
<variable list> ::= <numeric variable>[,.<variable list>] 
-, <string variable>J,<variable list>] 

" 

also: PUT and WAIT statements 

I 
I 

" I 
I' 
I ,t 

- t 
. ; 

I 

--~--------------------------------------------------~-------~-,--------------------
Purpo.ae: 

The GET s-tatement allQws you to accept a single byte or list of by-tes from an I/O 
device such as an analog to digital converter. The GET statement is also useful 
for accepting· keyboard input, if available, and without any prompting or waiting 
for, the operator. . . . . ' 

ec-nt: 

This statement is, not available when uS'ing the RUN2 version of BASIC. 

<device, number>, '<address>, or '<port> is a numeric expression which is rounded up 
and integerized. <Device number> must be in the range of 9 through 32. This 

'number i~ the address of a logi~al device (PONIN, CONOUT, PRINTER1, etc.). <Port> 
mu~t be 1n the range: 0-255. Th1S number is the address of the I/O'port. _ 

<address> must be in the range: -32767 - +32767. 'This value, 'unlike other 
integers, is evaluated as an unsigned integer which adjusts its-range to 0 - 65565. 
It is best to use hexadecimal values for <address> as they are easily interpreted 
as unsigned integer values. 

The data accepted from the . port, device, or memory is mapped in·a one to one 
relation with the variable list. ,If the variable is numeric i t receives an eight 
bit integer.- If the variable is a string, only, one character is 'assigned to it. 
When more than one variable is specified each variable is evaluated independently 
of the others. When GET MEMORY is used with multiple variables the memory address 
is incremented by 1 for ea~h byte accepted. 

BASIC does not test to see if the I/O device is ready before accepting the. input. 
When the device is not ready the data "accepted" will be null or zero. 

The GET statement along with the PUT and ,WAIT- statements discussed in their 
respective sections, provides a means of communicating with any device in the 
system. These statements would normally be used to access devices that are not 
supported by the operating system although there is no restriction in .thiS regards. 
In fact, these statements may be used to destroy the system, so please ••• don't. 

The GET DEVICE statement accepts a byte or bytes of data from the logical device 
driver specified. A table of the logical device driver numbers is included'in the 
OASIS System Reference Manual. If your system is not interrupt driven you should . 
not use this statement. If the device has no information ready a null or zero byte -
is returned. 

The GET MEMORY statement reads the _random access memory in the system. This 
statement could be used to read data stored by your own use~ written device driver. 
Because of the interpretation of the <address> as an unsigned value it is easiest 
to use hexadecimal values (see section on "Integer Constants" at the beginning of 
this manual and the section on "Numeric Functions"). ' 

The GET PORT statement accepts a byte or bytes of information from a physical port. 
All devices have port numbers, usually determined by the hardware interface 
electronics. If you have a reason to use this statement you would already know the 
port numb~r of the' device that you wished to access. If the port has no 
information ready a null or zero. value is returned. 

BASIC Bey B - 95 - GIr 



BASIC IBFBRBIICB MODAL 

The GET DEVICE stateme~t is useful on system with an interrupt driven .. console. 
Sometimes you need to accept a reply from the operator that he wasn't expecting to 
be asked (error message response). In this situation it would be desirable to make 
sure that the -type ahead buffer" was cleared before asking for the operator 
response. See example line 50 for a method "of doing this. 

===========================================================~=====~=================. 
Examples: 

0010 GET MEMORY 0800H,A$,B$ 

0020 GET DEVICE 32,A,B,C,D 
/" 

0030 GET DEV 9,A$ 

0050 GET DEV 9,A%IF A% THEN 50 

Explanation: 
\. 

Two bytes of data from memory address 
OeOOand 0801 hex are assigned to A$ and 
B$, respectively. /" 
Four bytes of data from device 132 are 
assigned to the numeric variables A,B,C, 
andD respectively. 
Gets one character from the console and . 
assignes it to A$. 
This line will get information s~ored in 
the console input buffer until that 
buffer is empty (null returned). 

=================================================================================== 

-96- B.lSIC ley B 



9.11 GOSUB Sta~t 

------~-~-~~-::;::::::~---------------------------------------------------~i 

2 GO SOB <llDe ~> I 
Where: I 

<line reference> ::= <line number>, 
<line label> 

I 
I 

I See also: ON and'RETURN statements 
I 

-------------------------------------------------------------------------~--------~ 
Purpo_: 

The GOSUB statement transfers control to the specified line. 

The GOSUB statement eliminates the need to repeat freguently used groups of code in 
a program. Such a group of statements is a suoroutine. The subroutine must 
logically end with a RETURN statement. 

The subroutine may contain GOSUB statements, even a GOSUB to itself. This is 
called a recursive subroutine. There is no limit on the number of unreturned 
subroutines in _ progress, however, each unreturned subroutine requires 5 bytes of 
memory~ 

When a GOSUB statemerit (or an ON-GOSUB statement) is executed, BASIC saves the 
location of the statement that physically follows. Upon execution or the RETURN 
statement; control transfers to the statement whose location was saved. 

========================================.=========================================== 
Example: 

0010 GOSUB 100 \ A = A+1 

· 0100 PRINT A 

· 0150 RETURN 

1000 GOSUB INPUT 

Explanation: 

Subroutine starting at line 100 will be 
executed. Upon return from the subroutine th 
the variable A will be incremented. 

Control will be transfered to the statement 
following the ' GOSUB' tha t called this . 
subroutine. ' 
The subroutine starting with the label INPUT 
will be executed with execution resuming 
with the line following 1000 when the
subroutine's RETURN statement is executed. 

---~-------------------------------------------------------------------------------
Incorrect example: 

0010 GOSUB 100 \ A = A+1 
0020 LET X = SQR{Y(4/7» 

· , · 0100 PRINT A 
0110 GOTO 20 

Explanation': 

Should not exit from a subroutine except 
with a 'RETURN' statement. 

=====================~============================================================= 

BASIC Bey B -91-



BASIC BBPDaCB IlDUAL 

9.18 GOrO Sta~t 
. -

------------------------~---------------------~------------------------------------,_. I 

1 GOrO <i1D.e rel'erence) 

2 GO TO <llDe rel'erellCe) 

Where: 

(line reference> ::= <line- number> 
<line label> 

See also ON and ON ERROR statements 

I 

I 

--.. --.------~--------------------------am------------.. -____________ . _____ ~-----------~ 
Purpose: 

The GOTO statement transfers control, unco.nditionally·, to a specified line. 

ec-nt: 

GOTO must be followed. by a line reference of a line that- exists~ This line 
reference may be of a line of a non-executable statement. It so, control will pass 
to the first executable statement following the referenced line. When the line 
referenced does not exist, an error will occur. 

A GOTO statement should not be used to jump into the middle of a FOR-NEXT loop 
because a "NEXT without FOR" error will occur. If it is necessary to branch into a 
FOR-NEXT loop to save coding, a switch should be used that will bypass the NEXT 
statement.-

~~t~~~D :n~~~LE~¥~~lgE-g~D b:tr~~~er;~. jump into the middle of a subroutine, 

The GOTO statement can be entered as the two words GO T9. 
======~~================================~========================~================= -
Examples: 

0010 GOTO 1020 

0020 GOTO BEGIN 

Explanation: 

Control is unconditionally transferred 
to line 1020. 
Control 1s unconditionallly transferred 
to the line with the label BEGIN. 

-----------------------~----------------------------------------------------------~ 
Incorrect examples: 

0020 GOTO·20 

0030 IF I > 4 THEN I 

Explanation: 

Infinite loop - this is not detectable 
by BASIC. = 1-1 \ PRINT I \ GOTO 30 Valid single line loop. 

====~=============~=============================================~================== 

- 98 .. BASIC ley B 



CIIIPDI 9: STAtiIIIIYS 

9.19 IF State.eDt 

-----------------~--------------------~------------~-----~------------------------i·, 
1 IF <expreaa1on) ma <then clause> BLSB <elae clause> I ' 
2 IF <ezpreaa1.0D> 'IIIBII <tIleD olawIe> I 
3IF <expreaa1on) I 
Where: I 

<expressio~> ::= <arithmetic expression> 
<logical expression> 
<relational expression> 

<then clause>::: <statement> 
<line number> 
<empty- statemen·t> 

<else clause> :: = <statement>. . 
<line number> 

<line reference> :: =' <line number> 
<line· label> 

See also: ELSE and THEN statements 

I 
t 
I 
I 
I 
I 
I 
I 

I 
-l 

I 
I 

-------------~--------~---------------~----------------~--------------------------
Purpose: 

-The IF statement provides for the conditional execution of a statement or 
statements or·. the conditional branching to a' different section of code. 

ec..eDt: 

<statement> may be ~ny valid BASIC statement. 

In the IF statement, . formats 1 and 2, the <expression> is first tested. If the 
result is non-zero, then the THEN clause receives .control. Since <statement> may 
be multiple statements separated by backslants! control will. be retained by these 
statements until the end 'of line or a match ng ELSE.1s encountered. When this 
occurs,control will pass. to the lin~ following tne IF statement. 

If the result is- zero, a search is made for a matching ELSE; when found, control 
will pass to the statement or l1nenumber following th~ ELSE term. When no 
matching ELSE is found, control will pass to the line following the IF statement. 

Any ELSE term encountered. by BASIC is assumed to match to the most. previous, 
unmatched THEN clause. Tabs and indentation are not considered by BASIC in 
determining matching THEN ELSE clauses, they are only for use as a programming aid-
in the intended struc. ture of the code. . - . - -

Format 3. of the IF" statement provides for complex, multi-line IF statements, where 
the other lines contain THEN and/or ELSE statemen~s. This ·multi-line struc~ure is 
terminated by the IFEND statement. . 

In any format, the IF statement may be nested' up to 127 levels. 

===:====================&=============================================.============= 
Examples: 

0010 IF A=l THEN PRIN.T n A = 1 n 

0020 IF A=l THEN. PRINT 'OK' ,ELSE 30 

0030 IF INP THEN GOSUB 1000 

BASIC -ley B 

Expl'ana1fion: 

When variable A is equal to 1 
the literal fA = l' 1s printeA; 
otherwise control passes to the 
line following. 
When variable A is equal to 1, 
the literal 'OK' is printed; 
otherwise line 30 is executed. 
When the value of the function 
INP is greater than zero, the 
subroutine at line 1000 1S 
executed; otherwise control is 
passed to the line following. 

- 99 - IF 



BASIC IBFBIIIICB HDIJAL 

0050 IF VALUE>O THEN PRINT "POSITIVE" 

0060 IF "A"="A " THEN 70 

1010 IF A. 
1020 THEN GOSUB'2000 
1030 PRINT USING "III",! 
10~0 GOTO TOP. OF. PAGE 
1050 IFEND 

ELSE PRINT "NEGATIVE" , 
When the variable VALUE is P9sitive, 
the literal 'POSITIVE' will be ' 
frintedl otherwise the literal 

NEGATIvE' is printed. 
Unequal lensth strings being 
compared. W1ll test false. 
Test A for non zero 
Perform if A<>O 

" " " 
it " " End of conditional execution 

1210 IF VALUE > CONTROL Test expression 
1220 THEN IF VALUE> LIMIT Perform if expr is true 
1230 THEN GOSUB ERROR Perform if both expr are true 
12~0 GOTO EXIT n,,"" ." " 
1250 ELSE IF ERR~NUM < ERR.LIMIT THEN QUIT Single line IF, 

/ Perform only it first expr is true 
and second expr is false ~ 

1260 IFEND End conditional execution from second expr 
1270 IFEND End of conditional execution 

---~---------------------------------~--------------------------------------------~ 
Incorrect examples: 

0010 IF D THEN X = A+D GOTO 100 

0020 IF Q=50 ELSE X=10 \ PRINT Y 
0030 IF 1>1 THEN 200 \ I = I+1 

Explanation: 

Statement separator (\) missing 
between A+D and 'GOTO'. 
The 'THEN" clause is missing. 
Statement I = 1+1 will never 
be executed. Error undetected by 
BASIC. 

====================================================================.=============== 

IF - 100 - BASIC ley B 



CB.lP!BI 9: ST&iDiiIiS 

9.20 IFBIID Sta~t ' 

-------------------------------------------------------------~~-------------------~ 

1 IFBIID 

See also: ELSE, IF, and THEN statements 

-----------------------------------------------------------------------------------
'Purpose: 

- The IFEND statement marks the end of a multi-line IF-THEN-ELSE struoture. 

Ccl_ant: 

The IFEND should not be part of a THEN or ELSE statement. 
The IF END statement oanonly be used in oonjunotion with a multi-line IF statement~ 

The IFEND statement olosesoff the oorresponding IF statement, marking the end of" 
the oonditionally exeouted statements ,of the THEN. and ELSE sta'&ements. 

======="============================================================================ 
Examples: 

0010 IF A 

Explanation: 

0020 THEN GOSUB 2000 
Test A for non zero 
Perform if A<>O ' 

0030 PRINT USING "III",A 
0040 GOTO TOP. OF. PAGE " " " 

" " n 0050 IFEND ' End of 'oonditional exeoution 
, 0010 

0020 
0030 
0040 
0050 

0060 
0070 

I~VALUE > CONTROL Test expression 
THEN IF VALUE > LIMIT Perform if expr is true 

THEN GOSUB ERROR Perform if both expr are true 
GOTO EXIT """""" ELSE IF ERR.NUM < ERR.LIMIT THEN QUIT' 

Perform only if first expr is true . 
and seoond expr is false 

IFEND End oonditional exeoution from seoond expr 
IFEND End of oonditional exeoution 

=================================================================================== 

BASIC ley B - 101 -



BASZC DFDBICB HOUAL 

9.21 DP1rl State.ent 

-----------------~--------------------~-------~~------------~--------------------~-- - I 

- 1 'DP1rl (variable list> I 

t 
I 

2 DP1rl (proapt>,(var.1able list> 

3 I1,PO! '(ohannel>: (variable list> 

Ji DPOT '(channel>,<ke~~: (variable list) 

Where: 

See 

(channel) ::=-~numeric expression) . 
<prompt) ::= <string literal expression) -
<variable list) ::=-<numeric variable)[ .. <variable list.>] 

. <string variable>[, <variable list>] 
<key> :~= <string expression> -

<numerIc expression> 

also: CLOSE~ LINPUT, MAT INPUT, MAT READ, OPEN, OPTION, READ, 
and R~ADNEXTstatements . 

------------------------------------------------------~----------------------------
Purpose: 

The INPUT statement allows data to be entered through the console, device, or disk 
file during program execution. 

Co_ent: 

The various formats of the INPUT statement provide different capabilities with one 
function in common: input fields are always ASCII characters even when the input 
field is numeric. 

Format 1 of the INPUT statement accepts one or more fields of data from the console 
terminal device. 

Format 2 of the INPUT statement accepts one or more fields of data from the console 
terminal device after displaying the prompting message. 

Format 3 of the INPUT statement accepts one or more fields of data from a 
sequentially accessed.device or disk file. 

Format 4 of the INPUT statement accepts one or more fields of data from a device or 
disk file with either direct, indexed, 'or keyed access. 

Format 3 and 4 'of the _INPUT statement may only be used when the I/O channel has 
been opened with INPUT or UPDATE access, not OUTPUT. 

The <prompt>, when used! must be a string literal expression. That is, the string 
expression must start w1th a string literal. When the <prompt> is used the system 
will evaluate the expr. ession and display the restil t at the current cursor location 
followed by the prompt character(s) (see OPTION statement). When the <prompt) is 
not used, (format 1 J, the prompt character(s) 'will be displayed at the current 
cursor position. . ' 

The <variable list) is the list of variables that the input is to be assigned to. 
This list may be as long as the line allows and may contain a mixture of variable 
types .(numeric, integer, string, array). 

When'more than one variable is to be entered, each element of data entered must be 
separated by a comma from the previous element. (Note: when OPTION COMMA is in 
effect the elements must be separated with a semicolon·character.) 

When fewer data fields are entered than reguested by the list of a format 1 or 2 
INPUT an "Insufficient data" message will be displayed and all data mus·t be 
re-entered from the beginni~ of the list. When fewer-data fields are entered than 
requested by the list of a format 3 or 4 INPUT, an "Insufficient data" error occurs 

_ (trappable) and execution stops if no ON ERROR is defined. 

Input is terminated with a <CR> or end of record indicator. 

When using format 1 or 2 and the first character of the first field is a control 

- 102 - BAS1'C ley B 



CIIlPIBI 9': ftAtiIIiIYS 

character (ASCII value less than 32) the input- will be terminated immediately and_ 
the value of the control character wiil be saved in the INP,function. Refer to the 
INP function and the User Definable Keys for more information in this situation •. 

. . 
When the input characters are not enclosed in quotation marks, leading and trailing 
spaces will be ignored, ~nd embedded.commas will be treated as ,field separators. 

The error "Illegal number"' will occur when the input variable is numeric and ~he 
operator (or file) inputs a non-numeric entry. The system will stop execution if 
no.oN ERROR is·defined. 

The Line Cancel-key and the backspace key may be used to make corrections to the 
data being input from the console with INPUT'formats 1 and 2. 

When the BASIC program was executed from an EXEC program and data was placed in the 
EXEC Stack, these statements, along with other-BASIC statements that accel)t, 
information from the system console, retrieves the next element from that EXEC" 
Stack. When the EXEC Stack is empty tne data m~st come from the console. 

======================================================================~=;==~======~ 
Examples: Ex~lanation: 

0010 INPUT N Aquestionmark space is displayed on 
the terminal, the program supends execution . 
until the operator types .a return or , 

0020 INPUT "NAME",CUST.NAME$,A,B 
enters a control character only. 
The prompt NAME? is displayed and three 
fields are accepted, one string and two 
numeric. '. 

0030 
00Ii-0 

OPEN 11: "CONSOLE",INPUT SEQUENTIAL ,- . 
INPU. T '·1: A$,B, C - . Again,. three fields are accepted from 

. . .. ,. tne operator one string and two numeric. 
, . ·No prompt will be displayed and no control 

characters are allowed •. _ 
0050 
0060 

OPEN 12: "DATE.FILE",UPDATE DIRECT -
INPUT 12,13:RECORD$ The 13th record in the file 1s read 

- into the variable RECORD$. 
- /: . 

-----------------------------------------~-----------------------------------------
Incorrect examples: Explanatio~: 

0020 INPUT A,B,2.3,D Only variables may be INPUT. 
0030 INPUT . At least one variable must be specified. 
00Ii-0 INPUT "FLD1"LF1~"FLD2"LF2 . Only one prompt is allowed. 
0050 OPEN 11: "DATA.¥ILE",INPUT DIRECT . 
0060 INPUT 11,"ABCDE": A$IBi Must use numeric key for- direct access. 
0070 'OPEN 12: "DATA.FILE2n OUTPUT INDEXED . ' 
0080 INPUT 12,"ABCDEn: A$,B$ _ Access must be INPUT, not OUTPUT. ' 

=======================~======================================.===================== 

BASIC ley B - 103 - DPU'!' 



BASIC BBFBDlCB IlDUAL 

9.22 LBr State.eDt 

----------------------------------------------------------~-------------------~-~--.. I 

1 [LBr] <maeric variable) = <nuaer1.c upreaaion) 

2 [LBr] <striq var:J.able) = <striq expreaa:loD> 

3 [LEr] <striq variableXsubatr1Dg> :: (atriDg expreaa:1oD> ' 

, [Lft] <user deriDed tlmct:J.on) = . <expreaaton)' 

5 [Lft] DB = <Duaer1c expreas.1on) 

Where: 

(substring> ::= [<numeric expression>:<numeric expression>] 

I 
I 
I-
I 
I' 
I 
I 
I 
I 
I 
r 
I 
I 
I 
I 
I 
I 
I 

---------~------------------------------------------------------------------------~-
Purpose: 

The LET statement assigns a value to a variable. 

ec-ent: 

This is the only statement where the statement verb (LET) is not required for 
proper syntax. 

For all of the forms of the LET statement the expression is evaluated and assigned 
to the element on the left of the first equal sign (may be m.ore, than one equal sign 
because of relational expressions). The previous contents of the element are lost 
but only after the· expression has been evaluated. Therefore, the variable may be 
an element in the expression. . 

Formats 1 and 2 of the LET statement are the standard forms of the assignment 
statement used by all BASIC implementations. The type of the expression (string or 
arithmetic) must match the type of the variable on. the left side of the assignment 
operator. . -' 

The third format 
string variables 
substring is: 

of the LET statement provides a powerful method of modifying 
by means of the substring operator. The general form of this 

<atriq varlable>[<rra.>:<to)] 

Beplace.ent When <from> is less than or equal to <to> a character replacement 
is performed on the variable from column <from> to column <to>. The 
string expression on the right side of the assignment operator will be 
padded with spaces or truncated to a length of <to} minus <from> plus one. 

Deletion When <from> is greater ·than <to> a character deletion is performed 
on the string variable. The contents of the variable on the left side of 
the assignment operator is first modified by deleting the characters from, 
but not including, column <to> through column <from>. The string 
expression on the right side of the assignment operator is then inserted 
into the variable after the <to> column. . 

IDaert~OD When the <from> is zero the string expression on the right side of 
the ~ssignment operator is inserted after the <to> character position o 

These rules and operations are best explained by example: 

Assume that A$ contains ABCDEFGHIJ 

AI!4:6! = "123" A 6:4 = "" 
A 6:4 = "01234" 
A 0:6 = "0123" 
A 0:0 = "0123456" 

ABC123GHIJ 
ABCDGHIJ 
ABCD01234GHIJ 
ABCDEF0123GHIJ 
Q123456ABCDEFGHIJ 

Format 4 of the LET statement is the user defined function assignment statement and 
may only be used within a multi-line user defined function and the function name 
used on the left side of the assignment operator must be the same as the DEF 
statement of the user defined function that the LET is a part of. For an example 
see the DEF and FNEND statements. 

- 10Ji - BASIC Bey B 



CIIlPIBI, '9: sTArBIIBftS 
"-Format 5 of the LET statement provides the capability of testing' error handling 

routines during the development phase of a program. This format of the'LET allows 
you to assign a value to the ERR function (error number). When this statement is 
executed the system will act e~actly like it would act if an error occurred. The 
type of error . is determined by the value of the numeric expression on the right 
side of the assignment operator. 

It is advised that this format of the LET statement, when used, should be used in a 
multi-line statement on the same line as the statement that might cause the same 
error. For example, use ERR=30 on the same line as an OPEN statement. This is 
advised because there is no method of setting the ERL function to have a different 
value than the value of the line number that the LET statement is on. " ' 

================================================~================================== 

Examples: 

0005 LET A = 1.23 

0010 A = 1.23 
0020 LET A =' A+1 

0030 LET A$ = "ABCDEF" 

0040 LET A$ = A$&"GHIJ" 

Explanation: ' 

The constant 1.23 is assigned to the 
variable A. 
Same as previous example. ',,' 
The current va1ue.of the variable A is 
incremented by 1. ' '\, 
The string variable, A$ is assigned the 
ASCII string 'ABCDEF'. 
The string variable Ai is concatenated 
with the string 'GHIJT and;, afterwards 
will contain 'ABCDEFGHIJ'. 

0050 ERR =,30 OPEN 11: F$,INPUT SEQUENTIAL Your error handling routine is 
invoked, if an ON ERROR statement has 

, been used. When the routine is entered 
ERR = 30 and ERL = 50. 

e' 

---------------~-------------------~-----------------------------------------------
Incorrect Examples: 

0010 LET A$ = B+2 
0020 LET B-A = C 

0030 LET +1 ~ A 

Explanation: 

Cannot mix string and numeric expressions. 
Must have a single variable on the left 
of the assignment operator. 
Cannot aSSign a value to a constant. 

=================================================================================== . 

' .... 

BASl:C ley B - 105 -



lWIIC ,IBPBIIICB IlUUAL 

9.23 LIB Statc.ent 

~---------------------------------------------------~----~~~--~---~---~-~--------I I 1 LIB (prosraa --> I 
I Where: r 
I <program name> ::: (file name>[.(fI1e type>][:(file disk>] i 
I (file type> ::: BASICOBJ (wIth BASIC) , I 

'I BASICCOM (with ,RUN) , I 
I I I See also: CHAIN, CLEAR,. LINI< and RUN statements _, ! 

.' -. ::: 

-----~-------------~-------~------~--------------------~--~-~---~------~----~~-----
Purpose: 

The primary use of the LINK statement is to link together the segments of a BASIC 
programs 

0-:. eDt: 

The LINK statement terminates the execution of the program in which it is 
encountered, loads the program ind~cated, and continues execution at the beginning 
of the program segment. , 

The LINK statement does not close any, files, howeve~, all variables that have not 
been defined as COMMON varIables will be cleared from memory. 

-~ 

Previous versions of OASIS BASIC supported the (line number> operand. The 
recommended method of transferring control to another program at a specific line is 
the use of a control variable '(defined as COMMON) ,that is tested by an ON-GOTO 
statement at the.start of the program transferred to. 
(Program name> is a string expression.' If (program;..name> cannot be found in the 
directory', a non-trappable error will occur. 

, The CHAIN, RUN, and LINK statements all perform similar tasks, but-with significant 
differences: ' ' 

Prograa Linkage Stat-.enta, 

T-St;t;;;~t-i-iio-Ch;~~;i;-1-v;i;bi;;--~1-cOMMON------i , ______________________________________________________ J 

I RUN ' I Closed I Cleared I Cleared I 
_ 1 CHAIN - I Closed I Cleared I Not cleared I 

I LINK I Not closed • Cleared I Not cleared I 

----~----------.. --.;..---------------.... --------------------
:::==::===:==~:=:::::====::=:=:=:===:=======::=::::==:=:==:::=:::::=::::=:=:==:==:: 

Examples: 

0010 LINK "SEGM01" 

0020 LINK NAME$(IND~XJ) 

0030 LINK "SEGMO"&NUM(I)~":Sft 

Explanation: 

Program named 'SEGM01' will be loaded 
and execution resumes at the first line. 
The program indicated by the contents 
of the string array variable NAME$ 
subscript INDEX will be loaded an~ 
execution will resume at the first line. 
'When I equals 1, this statement ' 
is the same as example 10 .. When I equals 
3_program 'SEGM03' will be,executed; etc. 

-------------------------~------------------~----------------------------~--------
Incorrect example: 

0010 LINK "SEGMENT-1" 

Explanation: 

Program name can only be 8 characters 
long. Also, - is invalid. 

=================================================================================== 

- 106 - BASIC lev B 



ClIlPIBIl 9: STlfiiJBi'tS 

-

---------------------------------------------~------------------------------------. . 

1 LDPUT <atrillS variable> 

2 LIIPUT <praapt>, <~triDg variable> 
( 

3' LDP1JT '<channel>: <atriDg variable> 

• LDP1JT '<cb.aDDel> , <key>: <atriDg variable> 

Where: 
; 

<channel> :: = <numeric expression> . , 
<prompt>::= <string literal expression> 
<key> ::= <numeric expression> . , 

. <string expres~ion> 

I 
I-

I 
I-

I 
I 

I 
I 

I 
I 

- I 
See also.: INPUT, LINPUT USING , HiT INPUT, MAT READ, READ, and-READNEXT state I 

I 

-----------------------------------------------------------------------~-----------( 

Purpose: 

The LINPUT statement allows 'entry or-an entire line of data as a single character 
string, including spaces and p~nctuation. 

eo-ent: 
The LINPUT statemen~ operates identically to the INPUT statement with one 
exception: only one yariable.may be specified for input and the variable must b~ a 
string variable. ,_ . 

=================================================================================== . . 

Examples: Explanation: 

0010 LINPUT A$ Prompt character(s) is displayed at the 
current cursor position, program execution 
is suspended until the operator term.inates 
the 'input. . . , 

0020 LINPUT "NAME",A$ . The literal "NAME? " is displayed, execution 
is suspended until the operator terminates 
input. 

0030 OPEN 11: "CONSOLE", INPUT SEQUENTIAL . 
0040 LINPUT 11: STRING$ Similar to line 10 but no prompt nor 

INP capabilities. -
0050 OPEN 12: "DATA.FILE", INPUT DIRECT 
0060 LINPUT 11,5: RECORD$' . Record number 5 of file is read into 

variable RECORD$ / 

-----~-------------------------~---------------------------------------------------~ 
Incorrect Examples: 

0020 LINPUT A 1 
0030 LINPUT A$',B$,C$ 

Explanation: 

Must be a string variable. 
Only one.variable is allowed. 

=================================================================================== 
'-

r 

BASIC ley B - 101 - LDPUr 



BASIC IIFBRIIICB HDUAL 

9.25 LDP1J'l uSDa Statc.eDt 

~-----~----------------------~---------------------------------~-~~~---------------
1 LDPOT USDG <str1Dg literal expreaaloD>,<str1D8 Y8riable) 

I 

2 LDP1J'l <prcapt) ,USDa <atriDs literal expreaa:l.oD>, (str1Dg Yar:l.able) 

3 LDPtrr USDG <atr:l.Dg expreaa1on>, <striDg variable) 

J& ,LDPtrr <prcapt>,USDG (striDg expresaloD>,<atriDg variable) 

Where: 

<prompt> ::= (string expression> 

See- also: INPUT~ LINPUT, MAT INPUT, MAT READ, READ, and 
READN~XT statements 

1- . 

----------------------~--------------------------------~-~~--------~-~-------------
Purpose: 

TheLINPUT USING statement allows' entry of an entire line of data from the console 
as a single character stri~, including spaces and. punctuation, with length control 
and the ability to "modify" an existing field. . 

The LINPUT USING statement, similar to the LINPUT statement discussed previously, 
allows entrr of an entire line of text!. including any embedded quotes and commas, 
as one str ng field'. Similarly, the L.LNPUT USING allows a prompting message ,to be 
displayed before accepting input. 

However, unlike the LINPUT statement! the LINPUT USING statement provides greater 
control of the terminal display by imiting xhe number of characters input. The. 
most significant feature of the LINPUT USING statement is that the operator can~ 
make corrections to the line being entered without re-entering the entire line. 

Formats 1 and 2 of the LINPUT USING .statement use a <string literal expression> as 
the using mask. A <string literal eXDression) is a string expression that starts 
with a stri~ literal. For example: ~"&SPACE$(10) is a string literal expression 
of length 10". 

With either of these formats the statement will display the prompting message if 
specified. The input area is the area from the starting position for a length 
specified by the length of the string literal expression. 

I~ the first character of the string literal expression is an exclamation mark (I), 
BASIC will perform an, auto carriage return when the input area if filled. This is 
generally used on single character input lengths. 

Formats 3 and 4 of the LINPUT USING statement use a <string expression> as the 
using mask. With either of these formats the statement will display the prompti~ 
message if specified, then display the string expression in the input area. The 
input area is the area from the starting position for a length specified by the 
length of the string expression. Additionally, these formats of the LINPUT USING 
statement will' copy the string expression into the input variable before accepting 
input. 

At this point all four formats of the LINPUT USING statement act the same with the 
difference being that formats 3 and 4 have ~re-filled the input area with the using 
mask and - formats 1 and 2 have a null strl.ng in the input area. The operator may 
enter any ASCII character into the input area.· A carriage return will cause the 
contents of the variable to be saved ana exe9ution of the program resumes. 

Certain keys are available to the operator ,to make editing.changes: 

<carriage return> Terminates entry. 

<right arrow> Is a non-destructive advance. When this key is entered (or its 
equivalent: CTRL/F) the cursor will be advanced over the next character. 

<left arrow> Is a non-destructive back space. When this key is entered (or its 
equivalent: CTRL/H) the cursor will be backed over·the current character. 

LDPUT USIIIG - 108 - BASIC Bey B 



CIIlPDI 9: SrA~ 
'. .' 

<ru·b out> lsa destructive back space. When this key is entered ,the cursor is 
backed up one position and that Qharacter is replaced with a space. 

<CTRL/D> Is a destructive . delete. When this key is entered the current character 
is deleted and the remaining characters in the input area are shifted one 
character to the left. . 

<CTRL/I> Is a "destructive" insert. When this key is entered (or its equivalent-: 
<tab» the remaining characters in the. input area are shifted one 
character to. the right and a space character is inserted at the current 
position. If a character shifting to the right would exceed the input 
area length it will be deleted. . 

Any other character entered by the operator will replace the current character. 

Unfortunately, this statement is difficult to illustrate with a printed example. 
Therefore, the following program is provided for you to execute so that you may see 
its uses. Keep in mind that what you see on the terminal in the input area is what 
is actually in the field being entered. 

Any control character (ASCII value less than 32) will terminate the entry and will 
set the INP function to that value. This implies that the control characters 4, 6", 
8, 9, 13 cannot be used as user defined control keys from a LINPUT USlliG statement. 
This does not apply to the INPUT or LINPUT statements. _ ' 

===============f===============-======-===================================="=========== 
0010 OPTION PROMPT ""L CASE "M" 
0020 PRINT CRT$("CLEAH") 
0030 PRINT "The following is a Simple illustration of the LINPUT USING" 
OOijO PRINT "statement in both of its primary forms. The first input re~uest" 
0050 PRINT "will use the statement with a string literal expression of 
0060 PRINT "length 30. The secon. d input request will use the statement with" 
0070 PRINT "a string expression of length 30. The contents of the string" 
0080 PRINT "expression will be the field entered by the first' input request," 
0090 PRINT "padded to the proQer length." 
0100 OPTION CASE "M" PRINT AT$(1,10)-CRT$("EOS")-
0110 PRINT AT$("1,l10)i"Input 1: ["i§PACE$(30);"1";AT$(11,10);, 
0120 LINPUT USINu ""&SPACE$(30) F.u;LD$ . 
0130 PRINT AT$(1.112)i·"Input 2: t"iSPACE$(30);"1";AT$(11,12); 
01ijO LINPUTUSINu RPAD$(FIELD$ 30),FIELD$ 
0150 PRINT AT$(1,14);"The fielA ~ou entered contains:" -
0160 PRINT" I"-FIELD$-"."- -
0170 OPTION CASE nun ' .' , 
0180 LINPUT ""&AT$(1~16)&"OkaI to repeat (YIN)? N"&CRT$("L") ,USING "I",ANSWER$ 
0190 IF ANSWER$="Y" IHEN 100 ELSE END 

========================================-=========================================== 

BASIC In B - 109 - LDPUT USDG 



I----~ _____________________ " ________________ ~ _____________________ " ___________ ., ____ CilD. 

1· 1I1lr<~-->=~--> I. 

I 2 MAT ~ -> = «ezpre.ud.0D» ~ 
I -' See also: LET statement I. 

~~--------------------------------------------------~-----~------------~--~~----~ 
Purpose: 

. The MAT statement allows y,ou to either copy one ar~ay to another or to assign one 
value to all of the elements of an array. 
Cc_nt: 

Format 1 of the MAT statement copies one array to another. Both arrays must have 
the same dimensions or a "Subscript Range" error will occur. 

Forrmat 2 of the MAT statement sets all elements of the array' to a specific value. 
-. . 

=================================================================================== 
Example: 

0010 DIMA$(S).z.B$(S),C(20) 
0020 FOR I~=O IO S 
0030 a$(I') = STR(I%) 
0040 NEXT 
0050 MAT A$ = B$ 
0060' MAT B$' = ("") 
0070 MAT C = (1) 

Explanation: 

Define size of arrays A$, B$, and C 
Set, array B$ to. initial values 

Copies B$ into A$ (B$ unchanged) . 
Sets all 6 elements in B$ to be empty. 
Sets a1121 elements of C to be 1. _ 

--------------~------------------------------------------------------------------~-" 
_ Incorrect Example: 

0010 DIM Aj<S)IB$(6l,C$(S,2) 
0030 MAT A = B . . 
0020 MAT A = \i) . 
0040 MAT B = C 

-

Explanation: 

Defines size of arrays A$, B$, and C$. 
- Expression must match array in type. 
, Arrays are Qf different size' 
""- n " 

===========================.==================~==================================== 

HAT - ·110 - BASl:C ley B 



CIIlP!'BI 9: STAr_iS 

9.21 lIAr DPUr Sta~t 

----------------------------------------------------------------------------------. 
1 HiT BlUr <~ .... > 
2 ,lIlr DPUr '<channel>: <~ aaa8> 
3 HiT,DPUr '<cbannel>,<ke~>: <~ ..-> 
Where: 

<channel> ::= <numeric expression> 
<key>~- : : = <numeric expression> . 

<string expression> 

See also: COMMON, DIM, INPUT, LINPUT, LINPUT USING, MAT' READ, and 
, READ· s~atements 

-

I-
I . I 

I 
I 
I 
I I, 
I 
I 

-----------------------------------------------------------------------------------
Purpoae: 

The MAT'INPUT statement allow~ an- entire array to be input at one time. 

ec-eD~: 

Format 1 of the MAT INPUT statement accepts input from the console, assigning each 
field input to the elements of the array specified. It fewer fields are entered
than the remaining elements in the 'array will be set to zero or null, depending 
upon the type or tne array... The zero subscript of the array will not be input to. 

Format 2 of the MAT INPUT statement is identical to format 1 except that the input 
comes from. the file specified by the I/O channel. 

Format 3 of the MAT INPUT statement accepts ASCII input from a direct, indexed, or 
keyed data file. A numeric key must be used if the I/O channel has been-opened 
with access method DIRECT. A string· key must be used if the I/O channel has been 
opened with access method INDEXED. If the wrong type of key is used an "Invalid' 
Key" error will occur. .-

Formats 2 and 3 may only be used if the I/O channel was opened with access method 
INPUT or UPDATE. If the channel was opened with access method OUTPUT a "Wrong 
Access" error will occur. . 

It is important. to note that only one record will be input. If there are fewer 
fields in the record than there are data elements in the array the remaining 
elements will be set to zero· or null. Zero subscripts will never be input to. 

=================================================================================== 
Examples: 

0010 OPTION BASE 1 
0020 DIM ARRAY(4) 

Explanation: 

0030 MAT INPUT ARRAY Accept 4 fields from console 

0040 INPUT ARRAY(1) ,ARRAY(2) ,ARRAY(3),ARRAY(4l, .. 
- This' statement is identical in function 

/ . . ' to line 30 

======'============================================================================= 

BASIC Bey B - 111 -



· B.lUC IIFIIBICB MDDAL 

9.28 Ill!' pRIft Sta~~ 

~i-----------------------------------~---~--------------------------------------~-~7 I 1 -IIII' nnrr <array -- l1at) I 
I I 
I • 2 IIII' PIID!' '<ohannel): <array ~. lJ.a~) I 3Jfl'f nnrr l<cIIaDMl>.<key>: <array - liBt> 

I Where: 
I 
I 

I 
I 
I 
I 

<array name list> ::= <array name><punct>[,<array 
<channel> ::= (numeric expression> . 
<key> ::= (numer1cexpression> 

, <string expression> 
,<punct) :: = <comma> 

<semicolon) 

name list>] 

I 
I 

See also: COMMON, DIM, MAT WRITE, PRINT, PRINT USING, and WRITE 
statements 

I 

The MAT PRINT statement allows an entire array or arrays to be output at one time. 

Co ent: 
\ 

Format 1 of the MAT PRINT statement outputs the arrays to the console. 

Format 2 of the MAT ,PRINT statement outputs the arrays to the file designated by 
<channel> that was opened for SEQUENTIAL acoess method. 

Format 3 of the MAT PRINT statement outputs the arrays to the file designated by 
<channel> that was opened for DIRECT, INDEXED, or KEYED access method. A numeric -
key is required for DIRECT! a string key is required for INDEXED and KEYED. Usi~ 
the wrong type of key wil result in a "Wrong Access R error. This format of the . 
print statement outputs only one record conta1ni~ all of the elements in the 
arrays that will fit with the files allocated record length. . 

Formats 1 and 2 of the MAT PRINT statement may output multiple records. In these 
formats, the number of records output depends upon the number of dimensions of each 
array and the number or arrays specified in the list. Additionally, the 
punctuation char~cter used may cause additional, records to be output. 

A comma character afer an array name indicates that the array is to be output using 
print zones, similar to the PRINT statement. A simicolon character after an array 
name indica~es that the array is to be output in a "packed" format similar to the 
'PRINT statement. When' no punctuation is used the array will be ou~put one element 
per record. ' 

When outputting two dimension arrays using format 1 or 2 of the MAT PRINT statement 
the second dimension varies fastest. A new record (line) will be started when the 
first dimension changes. ' 

When multiple arrays are specified a new record will be started for each array. 
Again, this applies only to format 1 and 2 of the statement. 

The zero subscripts of an array are never output with this statemente 

- 112' - BASIC Bey· B 



CBlPlD 9: STADIIIftS 

=====~==========================================================~==========:======= . 
Examples: E~planation: 

gg~g ~5~ ~i5~'~(t6~g) A(I,)-: I' NEXT I 
0030 MAT PRINT A· 
0040 ,PRINT A(1);A(2)-;A(3);A(4);A(5) Statement 1s identical to line 30 
0050 PRINT 
006 0 MAT B = (1) Ini,tial1zes array B 
0010 MAT PRINT B; 
-RUN 

123 4, 5 
1, 2 3 ,4 5 

1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 -1 1 1 1 
11 ,1 1 1 1 1 1 1 1 

Output trom line 3
0
0 

Output trom line 4 

'Elements B~1'1~ ,- B~1'10~ Elements B 2,1 - B 2,10 
Elements B 3,1 -B 3,10 

=====================~============================================================= 

BASIC Bev B - 113 - lIAr PBIft 



BISl:C or_CB- IlDUJL 

9.29 lIAr IBID Stat.ent 

----------------------------------------------------------~---~----------~---~~-~~ - I 
-

1 111'1' IBID <&rraJ" __ > 
2 lilT JUW) '<ob8n"81>: <&rraJ" ~> 

3 111'1' JUW) '<ob8n"81>,<ke,.>: (arrq'_> 
Where: 

<channel> ::=-<numeric expression> 
(key> ::= (numeric expression> 

(stringexpress1on> ' 

-See:: also: ,COMMON J. DIM, INPUT" LINPUT , LINPUT USING, 
READNEAT statements 

READ, and 

I 
I' 

I 
I 
I 

f 

I 
I 

- I , 
I 

------------------------~-----------------~--------------------~----------~--------
Purpoae: 

The MAT READ statement allows an entire array to be read at one time. 

Cc_ent: 

Format 1 of the MAT'READ statement accepts data from the DATA statements in the 
program. ,If there are fewer DATA elements remaining than there are elements in the 
array an "Out of Data" error occurs. 

Format 2 o'f the, MAT READ statement accepts data from the file opened on the I/O 
channel specified. Only one record will be read. It there are fewer data elements 

- in that record than there are elements in the array the remaining elements will be 
set to zero or null, 'depending upon their type. _ 

The data file used by the second for.mat of the MAT READ statement must have been 
opened wi th access ,_ method SEgUENTIAL ~ '_' , 

Format 3 of the MAT READ statement accepts input from a direct, indexed, or keyed 
data file. A numeric key,must be used it the I/O channel 'has been opened with 
access method DIRECT. A string key must be used if the I/O channel has been opened 
with access method INDEXED or KEYED. It the wrong ,type of key is used an "Invalid 
Key" error will occur. ' '.' 

Formats 2 and 3 may only be used if thellO channel was opened with access method 
INPUT or UPDATE. If the channel was opened with access method OUTPUT a "Wrong 
Access'" error will occur. " 

It 1s important- to ,note that only one record wilr be input. It there are fewer 
fields in the record than there are data elements in the array another record will 
not be read automatically--the remaini~ array elements will be set to zero or 
null, depending upon the array type. Additionally, the. zero subscript will not be 
read into. -

Althou~ there is not MAT READNEXT statement available performing a READNE~T 
followed by a MAT READ of the same'key will perform the same function. 

===========================?========================~============================== 

Examples: Explanation: 

0010 OPTION BASE 1 
0020 DIM ARRAY(4)rA${2,5) 
0030 MAT READ ARRAY Accept 4 fields from DATA statement 

0040 READ ARRAY(1),ARRAY{.2),ARRAY{3)JARRAY{4) Same function as above 
0050 DATA 1.23,45L1234561S'S,12335345b45EA23 
0060 OPEN 11: DArA.FILE", INPUT DIRECT 
0010 MAT READ 11,1: A$ Ten -elements will be read from the, 

first record in DATA. FILE 

0080 READ 11,1: A${1,1),A${1,2),A$(1,3)LA${1,4),A${1,5),A${2,1), 
A${2,2) ,A$(2,3) ,A$\2,4) ,A$\2,5) 'J:h1s sta'&emen'& is identic8:l to line 10., 

=============================================================~===================== 

MIT IBID - 11" - USIC ley B 



CIIlP1BI 9: ftA1Diiits 

9.30 HIT VirrB Statt.ent 
, -

------------------------------~------------------.----------------------------------I" - I 

1 1 HIT VBrrB I<chuinel>: <arr&7 __ >' I I I " I 2 HAT VIrIB l<chaDDel> , <key>: <array -->, I ' ' 
I - Where: I 

I' II' <channel> ::= <numeric expression> 
<key> :-:= <numeric expression> ' I ~st~ing expr~ssion> I 

1 ' , 
,I See also: COMMON, DIM, MAT PRINT~ PRINT. PRINT USING, ,nd WRITE 1 
1 statements'" I 
I I 

----------~~----------------~-----------------------------------------------~-~---
Purpoae: 

The MAT WRITE statement allows an entire 'array to be output at one time. 

Cc_at: 

Format -1 of the MAT WRITE statement outputs data to the file opened on the I/O 
channel specified. Only one record will be, output. 

The data file used by this format of the MAT WRITE statement must have been opened 
'with access method,SEQUENTIAL. ' 

Format 2 of the'MAT WRITE statement outputs data to a direct, indexed, or keyed 
data file. A numeric key must be used if the I/O channel has been opened with' 
access method DIRECT. A string key must be used if the I/O channel has been opened 
with access method INDEXED or' KEYED. ,If the wrong type of key is used an "Invalid 
Key" error will occur. ,,' , 

Formats 1 and 2 may only be used if the I/O channel was opened with access method 
OUTPUT or UPDATE. If the channel, was opened with access method INPUT a "Wrong 
Access" error will occur. 

It is important to note that only 'one record will be written. 
insufficient space allocated for the record it will be truncated. 

The,zero subscript of the array will never be written. 
I, . -

If there is 

=================================================================================== 
Examples: Explanation: 

0010 OPTION BASE 1 : 
001S OPEN 11: "TEST.FILE:A", OUTPUT SEQUENTIAL, -'EXTEND 
0020 DIM ARRAY(4),A$(2 rS) 
0030- MAT WRITE 11: ARR~Y Outputs 4 f:relds to the file on channel 1 

0040 WRITE 11: ARRAY(1),ARRAY{2),ARRAY(3)lARRAY(4) 
'. ,Th s statement is identical in function 

to line 30 
0060 OPEN 12: "DATA. FILE", INPUT DIRECT 
0070 MAT WRITE 12,1: A$ Ten elements will be written to the 

'first record in DATA. FILE 

0080 WRITE 12 1: A${1,1),A$(1,2),A${1,3).A$(1 4),A$(1,S),A$(2 1), 
, A$(2,2),1$(2,3),A$(2,4),A$(2,S) This, statement is identical to line 70. 

=================================================================================== 

BASIC ley B -115 - HIT VIID 



BASl:C DFBDICB IfDOAL-

9.31 IIDIIIIr State.eDt 

------~---~---------------------------------------------------------------------~-7 
1 IIDIIIIr <atriDg up> I 

I 

See also: CLOSE statement I 
I 

---~----------------~------------------~-------------------------------~~-------~-~ 

The MOUNT statement allows the operator-to change a disk without returning to the 
operating system. 

ec-eDt: 
The MOUNT statement may only be used to change a privately owned disk. (In single 
user OASIS all disks are privately owned.) 

When OASIS is in BASIC} or any program, a record is kept of the disk labels and in 
which drive' these disKS are loaded.' By doing this the _operating system is 
protecting the user from inadvertantly chang1ng disks without the express 
permission of the program being given. In BASIC this permission is given by the 
MOUNT statement. . 

The MOUNT statement instructs the operating system that the program 1s prepared for 
a change' of disk. No messages are displayed .by the operating system at this time: 
any prompting messages to the operator must be handled by the BASIC program. 

The string expression specifies which drive is to be ~ounted (A, B, C, etc.). 

When BASIC executes the MOUNT statement a check is made to insure that·there are no, 
open files on the specified disk. If there are any open files the statement is not
executed and an error message is displayed: 'File Error at Line nnnn'. 

Atter the MOUNT statement has been executed the disk may be changed (with 
exception of the system disk). 

the 

=================================================================================== 
~ 

Example: 

0010 MOUNT "A" 

Explanation: 
SIstem checks for any open files on disk A. 
If' no files are open then pointers are set 

. to indicate that the disk. may be changed. 

=================================================================================== 

- 116 - BASIC ley B 



CBlPrBI 9: 8rAtiIIiIts 

9.32 orr Statc.eDt 

----------------------------------------------------------------------------------.~ I ' ' f 

: ' 1 orr (yanable) , I 
I 2DlT I 
, I See also: FOR s ta tement I 
--------------------------------------------------~--------------------------------
Purpose: 

The NEXT statement marks the outer limit of control of a FOR statement and causes 
the loop to be repeated if the limit has not been reached. 

Ccl_eDt: 

The variable, if specified must be the same variable in use as an index variable 
for a currently open FOR ioop. When the variable is not ,specified the current FOR 
index variable is used. 

When the NEXT statement is ,executed control of the program returns to the FOR 
statement indicated, at which time the index variable will get its next value, the 
value ' will be tes~ed against the limit, and the program will continue depending 
upon the result of the test. 

An attempt to execute a NEXT statement when no FOR loop is open (or the variable 
specified does not./match any FOR loop that is open) will cause an error to occur: 
"NEXT without FOR". 

Caution: Format 2 of , the NEXT' statement should not be used if it is possible that 
another, unfinished, FOR-NEXT loop might be in existence--control will. be 
transferred to that other unfinished loop. This situation is ~ifficult to debug 
when it. occurs. 

=================================================================================== 
Examples: 

0010 FOR IJ=1 TO 5' 
0020 PRINT IJ . 
0030 NEXT IJ 

0060 FOR IJ=1 TO 5 STEP 1 
0070 PRINT IJ 
0080 NEXT 

0100 FOR 
0110 
0120 
0130 
0140 
0150 

I$="A" "B" "C" PRINT'I$ , 
FOR I~=1 TO 5 

~RINT I% 
NEXT IJ 

NEXT 

Explanation: 

Repeats folloWing instructions five times. 

This marks the end and causes repeat 

Same as above. 

Performs loop 3 times. , 

Performs this loop 5 times 
for, each of the 3 major loops. 
Marks end and repeat of sub-loop. 
Marks end and repeat of major_loop. 

==================================================================================: 

BASIC Bey B - 117 -



"BASIC ID'IIIICB MDUAL 
" \ 

9.33 (II BOOB Stat.eDt 

-------------------------------------------~-----~~-------------------------------~ . , I 

1(11 BIUlOB ooro <l1De ~erence> I, 

2' (II BIROB GOfO 0 I 
Where: I 

(line ~reterence>- :: = (line number> 
(li'ne label> 

See also: RESUME statement 
- '. I ." 

I 
I 
'I 
I 
I 
I 

~-----~--------------------------~----~-----------~~-----~--~~------~~----~------~~ 
Purpose: 

The ON ERROR statement allows you to. specify the error subroutine to be used f'or 
trappable errors. 

' .. 
Normally BASIC. detec.ts an· error while' executing a program and either terminates 
execution or prints a warning message. However, if you plan ahead, you can prepare 
alternatives which can save you time in the event of an error (and avoids confusion 
on the part of the operator). You can build an error handling routine that is 
activated when, and if, BASIC finds an error. This routine takes contror away from 
the·normal sys~em errors and gives it to your epror handling routine. 

The ON' ERROR statement instructs BASIC that a user error handling routine exists at' 
a certain line or that the currently defined error handling routine is to be 
disable<t. 

Format 1 indicates that the specified line is to receive control; format 2 
indicates that BASIC is to handle all errors. 

When an error 'occurs before the execution of a format 1 ON ERROR statement or after 
the execution of a format 2 ON ERROR statement, BASIC.proceed~ with normal system 
error- handling. 

When format 1 of the ON ERROR statement is executed and a trappable error occurs, 
control will be transferred~to the line specified. That line should be the star~ 
of your error handling routine. 

An error handling routine can make deciSions about how' to handle the error by 
interpreting the error functions ERR and ERL which return the number ot the error 
and the line number that the error occurred on. 

Note: When an error handling routine is being executed errors will not be trapped. 

Note: An error handling routine will always be disabled by RUN, CHAIN, or 
LINK--each segment must redefin~ the error handling routine. 

An error handling routine may be tested by using one of the formats of the LET 
statement ·to invoke the error routine. 

The ON ERROR statement may be used within an error handling .routine. 

The error "ESC-C" is not trapped while interpretive BASIC is running a 
program--only du.ring execution of a compiled program. This allows the programmer 
to stop a program wnile he is still developing it. 

(II BIIOB - 118 - B.ISl:C ley B 



CIIlPDI 9: ftAl'iiiilts. 

================:================~==========~======================================' 

Example: Explanation: 

0010 ON ERROR GOTO ERROR. ROUTINE Trappable errors will be handled by user • 
. 

9010- ERROR. ROUTINE: , 
9020 SELECT ERR Using error functin, select error routine. 
9030 CASE 1 Perform if ERR=1 (escape C) 
9040 IF ERL<1000 OR ERL>1999 THEN RESUME Ignore If not of interest 
9050 GOSUB CLOSE. REPORT else do this. 
9060 RESUME MENU . 
9070 CASE 20 , .. Perform if ERR=-20 (on range) 
9080 IF ERL=990 THEN RESUME 9,91 ' ' 
9090 RESUME - . ' . 
9100 ' CASE 30 Perform if ERR=30 (file not found) 
9110 PRINT AT$(1,24);"Invalid file name";CHRS(7); 
9120 LINPUT " Type <return> to continue: ",USING "I",ANSWER$ 
9130 RESUME . 
91140 CEND 
9150 RESUME 0 

================================================================'=================== . . 

BASIC ley' B - 119 - (II. IDOR 



BASIC 'IBFBIBIICB IlDUAL 

9.3'" (II G08IJB aDd a. GOTO State.eDta 

------~-~-~-~~-~-:;;::-~~~--------------------------------------------j 

2 (II <nua expr) GOSUB <l1De Hat) 

Where:' 

<line list> ::= <statement reference>[j<11ne list>] 
<statement reference> ::= (line number.) 

. (line label> . 

See also: ON ERROR, GOTO, GOSUB and RETURN statements 

~ 

I 
I 
I 

I 
I 
I 
I 
I 
I 

--------------------------------~---~------------------~-~--------------------~~-~-
Purpose: 

These statements transfer control to a line selected from a list by the integer 
. value of an expression. 

Cc_eut: 

The k~ywords GOTO and GOSUB may be entered as GO TO and GO SUB. 

The expression following ON is evaluated and the value is integerized. The integer 
is then used to select the first, second, third, etc., line reference. A trappaole 
error occurs when the value of the integer is less than or equal to zero, or the 
value of the integer is greater than the number of line references. 

The subroutine given control by an ON GOSUB statement should be exited only with a 
RETURN statement. When the RETURN statement is executed, control returns to the 
statement following the ON GOSUB statement. This is further explained in the 
descriptions of the GOSUB and RETURN statements. ' 

The line references following GOTO or GOSUB must be separated by commas· or spaces. 

There may be any number of line references in the list, (limit of 255 characters 
per line). 

Line references may be omitted by using the comma separator as a place holder. 
When this is done and the value of the expression corresponds to that line 
~reference place then control will be transferrea to the statement following the ON 
statement. 

It the value of the <numeric expre~sion> is less than one or ~reaterthan then 
number of line references in the <line. list> an "ON range" error w111 occur. 

=================================================================================== 
Examples: 

0010 ON I GOTO 100,110,120,130 

0020 ON 1+1 GOTO'1QO,120 

0030 ON I GOSUB 100,200,300 

0040 ON INDEX+4 GOTO LINE1"L1~E3, 

Explanat'1on: 

When 1=1 control passes to line 
100, I=2 then line 110, I=3 
then line 120, I=4 then line 130. 
When 1=0 control passes to line 
100, 1=2 then line 120. 
When 1=1 the subroutine starting 
at line 100 is executed, 1=2 the 
subroutine at 200 is executed etc. 
When INDEX=-3 control passes to LINE1; 
INDEX=-2 control ~asses to line 
~~!;~:i~~ t~i~~. I A~~X~t~e~,O~~l~!s of 
INDEX will cause an error to occur. 

------------------------------------------------------------------------------~--~~ 
Incorrect example: Explanation: 

0020 ON 1$ GOTO 1.00,200,300 Expression must be numeric. 

=================================================================================== 
(If GOrO/GOSUB . - 120 - BJSZC Bey B 



CIIlftBII 9: ST.ltiiiilfS 

9.35 OPBI State.ent 
. 

-----------------------------------------------------------------------------------I 
1 OP.BI I<cbannel>: <t1le>,<acceaa .ode> <aeceaa .. tbod>[,<opt1ona>] 

I 
I 

1 2 0... l<cbaDDel>: <dnioe>, <aoc_ aocte>' <acceaa _thod>[, <opt:lona> ] 

3 OP.BI l<cbaDDel>: <null>, <acceaa .ode> <aee __ thod>[, <opt1.oJia>] 
I , 
I· 

Where: t 

See 

Purpose: 

<channel> ::= <numeric expression> 
<tile> ::= <string expression> 
<device> ::= <string expression> 
<access mode> ::= INPUT 

·'OUTPUT 
UPDATE . 

<access method> ::= SEQUENTIAL 
DIRECT 
INDEXED 
KEYED 

<options> ::= <option>[,<options>] 
(option> ::= EXTEND . 

. QUOTE 
FORMAT 
LOCK 

<number> ::= <integer constant> 

also: CLOSE and UNLOCK statements 

, I 

I 

The OPEN statement provides you with the initial means ot accessing I/O devices 
other than the console. 

ec-ent: 

<channel> must De a number with a value between 1 and 16. This number is the 
channel number that the file is aSSigned to. 

.. 
<tile> represents the tile description ot the disk file to be opened. 

<device> represents the device name of the device to be opened. The table at the 
end ot this section defines the allowable device names. The device name must be 
spelled out (no appreviations or synonyms). 

The <tile> must .include the file name (tn) and tile type (tt), but the tile disk 
(td = A, B, S, etc., or the disk label) is optional. The proper separators must be 
used: a period betore tile type and a colon before the tile disk. If the tile di·sk 
is omitted the system will search the directories,ot the disks attached in the 
default search sequence. ' . 

When the ~<file> or <device> is a null string (tormat 3) the channel is opened for 
the device or file that was last opened on tftis same channel number. This feature, 
in conjunction with the ASSIGN command in OASIS, allows you to write BASIC programs 
that are device independant. For example I/O channel 16 might be used for report 
files. An ASSIGN command (see OASIS' Ssstem Reference Manual} might assign channel 
16 to PRINTER1. In the BASIC program cannel ,6 is opened to a null string. BASIC 
opens PRINTER1 on channel 16. 

<aeceaa .ode> represents an unquoted literal indicating the primary access mode or 
direction of the device or file: 

INPUT 

OUTPUT· 

UPDATE 

indicates that the tile or device is to be used as an input source of an 
existing data base. No record locking will be performed on a tile 
opened for INPUT. 

indicates that the tile is to be used as an output storage base. No 
record locking will be performed. 

indicates that the file 
input and output. Input 
cause the specific record 

is to be used as a general data base tor both 
operations (input and reads) on this tile will 
to be locked. This record will be released by 

BASIC Bey B - 121 - OP.BI 



-BASIC IBFBDICB IIDDAL 

a subsequent read or write to the file, an UNLOCK of the,file, or,by 
closing the file. 

'I - , 

<access mode> 'restricts how a file will be used: INPUT mode only allows the 
statements INPUT, L.INPUTJ• MAT INPUT, MAT READ, READ, and READNEXT to be executed on 
the specified channel; OuTPUT mode only allows the statements MAT PRINT, MAT WRITE', 
PRINT, PRINT USING, and WRITE tQ be executed on the specified channel; UPDATE mode 
allows all file access statements to be executed on the specified. channel. 

(acceaa .. thad) specifies what access method is to be used: 

SEQUENTIAL indicates that records will be accessed in a seq'Uential manner, ODe 
after the other. This applies to both input and output ~o the file .• 

DIRECT indicates that records will be accessed in a random manner by relative 
. number 0 ' 

INDEXED indicates that records will be accessed in a random manner by key and 
that the file wi];l be maintained in th~ 'ASCII collating sequence of the 
keys. 

KEYED indicates that records will be accessed in a random manner by key. 

<access method) also refers to ~he file format. 

Note: a file opened for OUTPUT SEQUENTIAL will erase any existing_ file with the 
same description and create a new file. 

The specific. access method- specified in the'OPEN statement affects the required, 
syntax of the file access statements. For example a file opened with access 
method INDEXED or KEYED will require that all statements accessing that channel use 
a string key; Similarly, access·method- DIRECT will require that all statements 
accessing tha~ channel use a numeric key; access method SEQUENTIAL will require 
that all statements accessing that channel not use a key. 

The access mode in combination with the access method have other implications and 
corresponding requirements: ' 

INPUT SEQUENTIAL implies that the file already exists. 

OUTPUT SEQUENTIAL implies that the file is to-- be created by this program (unless 
option EXTEND is used). ' 

UPDATE SEQUENTIAL is the same as OUTPUT SEQUENTIAL. 

<opt~oa> specifies additional functions to be performed by the OPEN statement: 

EXTEND indicates that the sequential format file's disk allocation is to be 
extended. 

QUOTE indicates that string fields output with the PRINT statement, as part of 
a record,. are to be surrounded with quotes if the string contains any 
embedded quotes or commas, or leading or trailing spaces. ' A comma will 
always be output between f1elds. 

FORMAT indicates that the SEQUENTIAL access method file is to use ANSI forms 
control characters supplied by each PRINT or-PRINT USING statement. 

LOCK indicates that the entire file is to be locked from other users use 
untiL the file is closed by this program. -

An error occurs when a nonexistent file is/opened for mode INPUT or access methods 
DIRECT, INDEXED, or KEYED. 

An error occurs when the channel number is still in use by another file. 

When a file is opened for SEQUENTIAL, the record pOinter is set to the first 
record. This is the only statement that sets, the record pOinter to the· beginning 
of a file opened for access method SEQUENTIAL. . 

When a disk file is opened for OUTPUT SEQUENTIAL the file is first erased and 
then created. When a disk file is-opened for OUTPUt SEQUENTIAL with option EXtEND, 
and the file eXists, the output record pOinter will be positioned to the end of the 
file where records will be added. 

A file with delete protection may not be opened for OUTPUT. If this occurs, the 

OPa - 122 - BASIC Bey B 



CIIlPDR 9: ST.lDlllftS, 

error message "Protected File" will-be di·splayed • --.: 

. ~ce/llocle lelat:l.oD8b1pa 

========================================-
; access mode I INPUT I OUTPUT I UPDATE 
I~~~!~~~-~~---!---!---!-~-~----!--!~~-~
I-CONSOLE--~--l---x---l---x----l---x----
1 PRINTER [ n] 'I X I X I 
1 TAPE[n] 1 I X 1 
1 *~~~R] _ 1 i 1 X 1 
I PUNCH 1 I. X I 
1 DUMMY t X 1 X . I' X 

X 

----------------------------------------------------------------------------------
Pi_ P11e ~o ..... t/Mocl., Method lelatioaab1pa 

i=~~d~====="=~~th~d_=i= = =/;~q~~.~ti~i ==== i=d1~~~t= i= 1~d~~~d =i=k~;~d=-
----------------------------------------------------------------INPUT 'SEQUENTIAL file must exist 

INPUT DIRECT N/A 'X 
INPUT INDEXED N/A X 
INPUT KEYED HI A X 
OUTPUT SEQUENTIAL /f1le recreated 
OUTPUT DIRECT N/A X 
OUTPUT INDEXED H/A X 
OUTPUT KEYED H/A X 
UPDATE SEQUENTIAL file recreated 
UPDATE DIRECT H/A X 
UPDATE INDEXED NI A -X 
UPDATE KEYED H/A X 

================================================================== 
=========?========================================================================= 
Examples: 

0010 OPEN 11: "HAST.DATA:A"LINPUT SEQUENTIAL 
gg~g g~~~ :~i :;~¥:gIT~~~!l;6uTPUT DIRECT 
0040 OPEN II: "PRINTER"~OUT~UT SEQUENTIAL,FORMAT 
gggg g~~ :~~:F!~~~~~L~"D~ij¥pij~D~~~g~~iiL _ 
0070 OPEN 115: "PRINTER,,'OUTPUT SEQUENTIAL . 
0080 OPEN 14: "PRINTER.FiLE:S"J.0UTPUT SEQUENTIAL,EXTEND,FORMAT 
0090 OPEN 116: "CUSTOMER.MASTEH"jUPDATE KEYED . 

=================================================================================== 

• 
BASIC' ley B - 123 - OPBII' 



BASl:C IBF_CB IlDuAL 

9.36 OPUS State.eDt 

i---------------------------------------------------------------------------------1 
1 OPUS BJSB <baae value> I 

2 OPUOI CASE <case aode atriDg expreaaloa) 

3 OPr.ICII PBCIIP!' <p .... pt> 

5 opuo. PIIY<pr1vlev) 

6 OPUCII SDllle <aerial-JlUIIbep) 

1 OPrIGa CCIIIl 

Where: 

<base value> ::: 0 I 1 
<case mode string expression> ::: "M" "U· "L" 
<prompt>::: (string expression) 
<usr-name> ::= <stri~ expression> 
<privlev> ::= 0 I 1 I 2 I 3 I 4 I 5 
<serial-number> ::= <unsigned int 1>-<unsigned int 2> 
<unsigned int 1> ::: 0 - 255 . 
<unsigned int 2> ::= 0 - 65535 

See also: USR function 

I 
I 
I 

I 
I 
I 

I 
I 
I 
I 

----------------------------------------------------------------------------------~ 
Purpose: 

The OPTION statement allows the programmer to specify the status of certain global 
options: array subscript base value, input casemode, and input prompt character(s). 

Ce_aDt: 

The OPTION BASE statement must be in a position to be executed before any variables 
are dimensioned or defined. This also means that the subscript base cannot be 
changed after COMMON has been defined •. Normally the OPTION BASE statement would be 
the first statement ot the first ,segment ot the program. 

When the OPTION BASE statement is not used the default base is O. 

Since most programmers do not use the zero element of arrays the OPTION BASE 1 
allows for a saving in the memory space used for working storage. 

More than one option may be specified in an OPTION statement by separating the 
options with a comma. For example: 10 OPTION BASE 1,PROMPT CHR(O),CASE "M" ' 

The OPTION CASE and OPTION PROMPT statements may be used in any location of the 
program that a BASIC statement is allowed. The OPTION CASE statement specifies the 
casemode for characters entered trom the console input device (CONIN). When the 
casemode is not set by the programmer the default mode of upper is ~sed. 

" OPTION CASE "U" indicates that all alphabetiC characters entered from 
CaRIN are to be translated to their uppercase equivalent before display 
and before the character(s) are transferred to the BASIC program. 

OPTION CASE "M" indicates that all alphabetiC characters entered from 
CaRIN are not to be translated Q 

OPTION CASE "L" indicates that all -alphabetic characters entered from 
CONIN are to be translated to their inverse casemode equivalent before 
display and before the character(s) are transferred to the BASIC program. 

When BASIC or RUN is first invoked the casemode of input is nun. In order to use 
mixed or lowercase characters for input to the BASIC program an OPTION CASE "M" or 
CASE "L" statement must be.executed. This may be done in the immediate mode. 

The OPTION PROMPT statement changes the prompt literal. The default prompt literal 
is the question mark followed by a space. By using this statement you can change 
the prompt to be any character, or sequence of characters, or you can change the 

OPrlCli - 12' - USIC ley B 



CB1PDI 9: 8r&DiiilfS,' 

prompt to be a null string not tollowed by a spaoe. OPTION PROMPT "ft· and OPTION 
PROMPT CHR$(O) are equivalent and indioate that no prompt literal is to be used tor 
INPUT and LINPUT statements to the console. . 

Format 4 ot the OPTION statement loads a USR assembly language subroutine into 
memory. Note: this is the only way that a USR program is loaded for use by the 
BASIC program. ' 

When the USR program referenced is already in memory no action will be·takenby 
this statement. 

Format 5 of the OPTION statement specifies the lowest privilege level allowed to 
executed the compiled program. (Privilege level is not checked in the interpretive 
mode.) 

Format 6 of the OPTION statement specifies the serial number of the operating 
system that may execute the compiled progr~. (Serial number is not checked ~n the 
interpretive mode.) . \ 

Note: Formats 5 and 6 of the OPTION statement if used, must be the first executable 
statement in a program. 

Format 7 of the OPTION statement specifies that input and output of nwribers. in 
their ASCII format is to conform to the European standard regarding commas and 
periods. (See chapter "Introduction" in this manual.) 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Examples: 

0001 OPTION SERIAL 3-12345, PRIV 3 
0010 OPTION BASE 1 
0020 OPTION CASE "M" 
0030 OPTION PROMPT CHR$(O) 
OO~O OPTION PROMPT "Enter:", CASE "L" 

1000 CLEAR \ OPTION BASE 1 
1010 OPTION PROMPT "What? ",USR "XX" 

Explanation: 

Set index base for arrays to 1. 
Accept input with no translation 
No prompting character or space. 
The input prompting literal changed to 
the cha~acters: Enter: followed oy a 
space; the-case mode of input set to invert. 
Array subscript base set to 1. 
Prompt literal changed to What? and the 
USR program named'XX is loaded into memory. 

~=====================~==============================~============================= 

BASIC ley B - 125 -



BJSJ:C IBPBIBICB- IlDUAL 

9.31 QmBIIIISI Stat.eat 

~----------------------~---------------~-------------------------------~------~--, 
1QmB111IS1 I 

I See also: CASE, CEND and SELECT statements . I ' 
I 

~~~~-~-------------------------------~--------~--------~-----~--------------------~ - . , 

. Parpoae:

The OTHERWISE . statement specitied the act~on. to be taken in a SELECT-CASE-CEND
structure if none of the previ~us cases were true.

Ctc_nt:

The OTHERWISE statement functions similar to the CASE statement except that there
is no expression specitied--the OTHERWISi statement 1s always true.,

The OTHERWISE statement allows you' to specity an action (sequence of statements) to·
be executed when none ot the cases is true in a SELECT-CASE-CEND programming
structure. .

There should only be one OTHERWISE statement in any particular SELECT structure
(only one will be executed) •. ' " -.

The OTHERWISE statement should tollow all CASE statements in a SELECT structur.e (no
CASE statements will be evaluated atter the OTHERWISE statement 1s encountered) •.

====~===~=================================~==
Examples:

3000
3010
3020
~g~g
3050
3060

~g~1
3070
3080
3090
3100
3110
3120
3130

SELECT RAD*2.*PI
CASE 0

SELECT SUBV'ALUE~
CASE 20

CASE 1-14

CASE j%
CEND

CASE·32

OTHERWISE,

CEND

Explanation:

Perform only it RAD*2.*PI=0-

Perform only if RAD*2.*PI=O and SUBVALU~=20

Perform only it RAD*2.*PI=0 and SUBVALU~=3,
= 32

Perform it neither ot the above cases
is true
End of nested SELECT structure

Perform only it RAD*2.*PI=I-14
• "" n n

Perform onlI/it RAD*2.*PI=J~
End of SELECT structure

===.============

- 126 - BASIC In B

CBAPrBI 9: Br.lDllilYS

9.38 PBIft Stat.eDt

I

I
I

-I
I

I
I

1 PBIft

2' PBII1' <apreaa:1on liatXpmctuat1.oD>

. 3 PIII'r '<oban-l>

, PIIIT I<obannel>t<k.~>
. \

5 PIIft I<cballDel>: <aprea.lon llatXpmctuat:lon)

6 PRIll I<obaDnel>t<t.~>:<ezpreaa10D 11at>
Where:·

<expression list> ::= <expression>[<punct><ex~ression list>
TAB{<numexpr>J[<punct>~expression list>

. <punctuation>: : = <comma>
<semi-colon>. .

<channel> ::= <numeric expression>
<key> ::: <numeric expression> .

<string expression>

See also: CLOSE, MAT PRINT, MAT WRITE, OPEN, PRINT USING, and
WRITE statements

I
I
~ .

--~----------------------------
Purpose:

The PRINT statement allows, text, numbers, . results, etc., to be displayed on the
console or output to a file.

Cc ent:

The various formats fo the PRINT statement provide different capabilities with one·
function in common: output is always ASCII, even when the. output field is numeric.

,---= .
Format 1 of the PRINT statement prints a carriage return on the console.

~ .".. .. " . '

Format 2 of the PRINT statement prints one or more' fields of data on the console.

Format 3 of the PRINT~tatement outputs a .null or empty record on the sequentially
accessed device or disk file. .'

Format 4 of the PRINT statement outputs a null or empty record on the direct or
indexed accessed disk file.

Format 5 of the PRINT statement outputs one or more. fields of data to the
sequentially accessed device or disk file.

Format 60f the PRINT statement outputs one or more fields .of data to the direct or
indexed accessed disk file.

The PRINT statement, formats 3 through 6, may only be used on an I/O channel that
was opened with access mode OUTPUT or UPDATE. An attempt to ex~cute a PRINT
statement on a channel opened for INPUT will cause the error "Wrong access~ to
occur.

The expressions (formats 2, 5, and 6) will be output in the order that they are
listed.

Using the expression feature (e.g., 2*RA 3-B) can' be very valuable in saving
programming time, execution time, and memory usage. For instance: if the result of
an eXDression is only calculated in order to be output} and there is no repetition
of it's output; it. is best to use .the expression in tne PRINT statement. In this
case line 20 below is the more ef.ficient way to code: .

10 LET A ~ 2*R A 3-B \ PRINT A
20 PRINT 2*RA 3-B ..

Both statements will yield the sam~ results.

BASIC Ie. B PIIft

B.l8IC BBFBIIICB MDIJ.IL

All numeric expres.Sions (li terals ~ fields, and expresSions.) will be ;pr1n~ed with
leading zero suppression~ left Justification, leading sign or .space, ,and one
trailing space. . ' '._
The term "print head", used bellow, refers to the cursor (terminals), the print
mechanism (printers) or the record pointer (disk files), whichever is applicable.

"

An output record is considered to be divided into print zones of twenty one spaces
each. To use these zones for tabulation, the punctuation character is a comma. In
the PRINT statement, an expression followed by a comma will cause the value of the
expression to be printed at the current print position. Atter printing, ·the "print
head" will bemoved to the next available print zone (from 1 to 21 spaces away).
If the last print zone on a line' ·is filled, the _"print head" will move to the first
print zone of the next line. -

In the PRINT statement, an expression followed by' a-semicolon (;) will cause'the
value of the expression to be output at the current print position with no movement
of the ·print head" atter printing.' ~

Any PRINT statement which ends with no punctuation causes the ·print head" to move
to the first· column of the next line after output.

Printing to an I/O channel (formats 3, 4" 5, and 6) may require the use of ANSI
forms control characters, depending upon whether or not the option FORMAT was used
in the open statement for that challnel. The FORMAT option should only be used for
terminal or printer files. When it is' used it means that the PRINT statement will
supply the forms control character as the first character of each record output.
When it is not used it means that each record output is to start 'a new line on the
output device. For a list of these forms control characters refer to the ~
System Reference Manual, appendix on ·ANSI Forms Control". These characters arrow
you to specify single, double, triple spacing, forms eject, or no line spacing
(overprint) •

If the option QUOTE was used on the open statement -for the I/O channel used by a
PRINT statement, the fields output to the device or file will be enclosed in a pair
of quotation marks if the field contains any of the following: leading spaces',
trailing spaces. embedded comma, or embedded quotation mark. It it is unknown
whether this will happen it is best to use the QUOTE option--no action is taken
unless needed. Additionally, the QUOTE option causes multiple fields to be
separated by commas in the ou~put record. - .

The QUOTE option causes punctuation in the expression list to be ignored (commas
are used as stated above). /

Ir the QUOTE optio~is not used then leading-and tra1li~ spaces will be removed.
from the fields before output. Additionally, when a field is output that contains
an embedded comma a subseguent INPUT of that record will treat the comma as a field
separator, not as an emoedded comma (LINPUT will not be concerned with this).
Embedded quotes in afield might also cause a problem for the INPUT statement.

In general, the output rules for the PRINT statement are:

1. Suppression of leading and trailing zeros to the right of a decimal
point •.

2'. Where a number can be represented a" an integer, printing of the
decimal point is suppressed.

3. At most, thirteen signif1cant digits are printed.

4. Most numbers are printed in decimal format. Numbers too large or too
small to· be printed _ in decimal format are printed in exponential
format.

5. Extra commas cause print zones to be skipped.
is in effect.)

(Unless option QUOTE

6. A semicolon at the end of the list indicates that no carriage return,
line feed is to be printed~

7. Leading and trailing spaces in string expressions are removed (unless
option QUOTE is in effect).

8. NumeriC fields are output with a leading sign (negative values) or
space (positive values) and a trailing space (unless option QUOTE is
in effect).

- 128' - B&SIC ley B

· CBlPDI 9: STU'llliliS
I

The examples are followed by the printout oaused by their exeoution. ;

===
Examples:

0010 LET A = 1.23 \ B = 34.56· \ .C = 345.678 -
0020 LET A$ = nABCDEFG" \ B$ = nHIJKLMNn \ C$ = A$+B$
0035 OPEN #1: npRINTER" ,OUTPUT SEQUEN,TIAL,FORMAT
0030 PRINT #1: n A =n;A;nB,=n;B;nc =n;c
0040 PRINT #1: n A =n.,.nB =n·B·nc =n-c
0050 PRINT 11: n n;A+~+~,A.B,~.l,B/A,l/B
0060 PRINT #1: n n·A$·B$-C$-
0070 PRINT 11: n ' n -:8$- ' , _
0080 PRINT 11: n n-A1' . \
0100 OPEN 12: nDATl.FlLE:AnLOUTPUT DIRECT~QUOTE ,
0110 PRINT 12,5: A$,B$,C,D,J!i. FiI-th reoord is. output to the file
A = 1.23 B = 34.56 C ~ 345.678
A = 1.23 B = 34.56 C = 345.678
381.467999998 42.5087999999
355902777778E-02

ABCDEFGHIJKLMNABCDEFGHIJKLMN HIJKLMNABCDEFG
28.0975609756

---~-------------------------------------
Inoorreot examples:

0010 PRINT nABCDEF
0020 PRINT A,B:C

Explanation:

Expression illegal.
Invalid punotuation.

:.=====:==

IWD:C Bey B - 129 -

BASIC' IBPBIDCB HDUlL

'.39 PBIft DSDO State.eat·

------------~---~---------~~----------------------------------~-------~---------~-~ t
I

~ I

I
~ I

I
I
I

I ,
I
I

1 PBIft USDG (.at> , <expresa1oa li.atXpmctuaUoD>

2 PUIr '<cbaaMl): USDG <aak>,<expreaa1oD UatXpmctuat1oD>

3- PBIft I<cbannel>',<k:e~>: USDa <aaak>,<upreaai.OD l1atX~tuau.oa>

Where:

(mask> ::= <string expression> . - ,
~ (expression list) :-: = -(expression>[, <expression list>
<punctuation> ::= <semi-colon>
<channel> ::= (numerio expression)
(key> ::= <numerio expression>

<string expression)

See also: MAT PRINT, MAT WRITE, PRINT, and WRITE statements
- .

I·
I
•• I
J
I
I

I
I
I

--"-------_-._--------.-------------------------- -

Purpo_:

The PRINT USING statement allows text, numbers, results, etc., to be displayed on
the console or output to a file.

0: aDt:

The PRINT USING statement operates similar to the PRINT statement except that:
fields must'be output; output is formatted.

Format 1 of the PRINT USING statement outputs formatted data to the console
terminal.

Format 2 o·t the PRINT USING statement outputs formatted data to a device or disk
file opened for S~QUENTIAL access.

Format 3 of the PRINTUSING'statement outputs formatted data to a disk file opened
for DIRECT or INDEXED access. -.

The PRINT USING statement may only output to an I/O channel opened for OUTPUT or _
UPDATE access. An attempt to access a channel opened for INPUT will cause the
error "Wrong access" to occur.

The expressions will be displayed in the order that they are listed,. in the format
specified by the'mask expression. For details on the mask specifications refer to
the ohapter on "Formatted Output" in this manual. Expressions oan be string or
numeric literals, variables, expressions, or functions, as long as they matcfi in
type to the formatting masks specification types. .

Option QUOTE of the O~EN statement has no effect on the PRINT USING output;
however, option FORMAT has the same effect as it does for the PRINT statement.

In the PRINT ·USING statement all expressions must be separated by commas. A
semicolon is allowable as the terminating punotutation and, if used, operates the
same way the semicolon punctuation character operates in the PRINT statement.

A PRINT USING statement which ends with no punctuation causes the print head to
move to the first column of the next line atter printingo

The examples' are followed by the printout caused by their execution.

For examples of the PRINT USING statement and its output oapabilities refer to the
chapter on "Formatted Output".

The following program example, when entered and executed, will show some
uses of the PRINT USING statement.

of the

plIft OSDG - 130' - JWlIC ley B

CIIlP1BI 9: ftArlliilfS
. ~ ,.' ..

===============~=============~=~===================~================~====~~========

. 0010, OPTION PROMPT"" BASE 1
0020 D,IM NUMBER (5) SriING$(5) -
0030 OPTION CASE "M" PRINTCRT$("CLEAR")
0040 PRINT "PRINT USING example program"
0050 LINPUT ""&AT${1 4}&"Numerio mask: ",MASK$
0060 LINPUT. ""&AT$(40,4)&"String/mask: ",MASK1$
0070 PRINT
0080 PRINT "Enter five numbers:";TAB(40);"Enter five strings:"
0090 FOR II : 1 TO 5
0100 ~RINT AT$(5L I%+1);I%;
0110 INPUT NUMBEH{I%)

_ 0120 NEXT 1%
0130 FOR II : 1 TO 5
0140 ~RINT AT$(45L IS+1);I%;.
0150 LINPUT StRINu$(IS)
0160 NEXT II . .
0170 MASKS : MASK$&" "&MASK 1 $ - -
0180 PRINt AT${1,14);"The formatt. ed output of: "&MASK$.

g~6g ~~I=i ~§i~J'M~ic$,NUMBER,(1} fSTRING${ 1) ,NU.MBER(2) fSTRING$(2) ,NUHBER(3) ,STR
. ING$(3) .1.NUMBER(4) ,STRING$(4} ,NUMBER(5) ,STRING$(5J' "
0210 OPTION l,;ASE nun . . .
0220 LINPUT ""&AT$(1L2~)&"Okay to repeat (YIN)?" USING "I",ANSWER$
0230 IF ANSWER$:"t" IHBN 30 . ,
'0240 END _

===

,BASIC leV B - 131 - PIIft USDa"

/ .

------------------------------------~-------~----------------------------------~-~~
1 PUr DBYICB <deri.ce DUaber>,<ezpreaa1oD l1a~>

2 PUT JIIIIORY <addreaa) , <ezpreaa1oD l1at)

3 POT POBr <port), (ezp 1oa l1at>

Where:

(device number> ::= (numeric expression>
<address> ::: (numeric expression>
<port> ::: <numeric expression> ,

_(expression'list> ::= ~numericexpression>[,<exp list>]
<string expression>[,(explist>J

See, also: GET and WAIT statements

I
i
I ,
I
I
I
I
I

~---------------------~-----------------------------------~----------------~-------
Purpoae:

The PUT statement allows the_user to output a single byte or a list of bytes to an
I/O device such as an digital to analog (D/A) converter or some other device.

Cal. aRt:

<Port>, <device>, and (address> are numeric expressions which are rounded up and
-- integerized. <port> must be in the range: 0 - 255. This number is the address of

the I/O port. ~device> must be in 'the range of 9 - 32. This number is the logical
device number (see OASIS SYstem Reference Hanual).

<address> must be in the range -32761 - 32761. This value, unlike other integer
values g is interpreted as an unsigned value

l
which automatically adjusts the range

to 0 -- 65535. It is best to use nexadecima values for <address> as they are more
easily interpreted as unsigned values. - -

The expressions in the expression list are evaluated. It the expression is
numeric, it must be in the range 0 - 255. If the expression is a stri~, only the
first byte is used. When more than one expression 1s specified each is evaluated
independently of the others. When PUT MEMORY is used with multiple expressions the
memory address is incremented by 1 for,each byte transmitted.

BASIC does not test to see if the I/O device is ready before transmitting the byte.
This is the responsibility of the user (see WAIT statement).

The PUT statement is identical to the GET statement except that data is output to
the logical device driver (DEVICE), port address (PORT)L or memory locations
(MEMORY), instead -of input. When the PUT PORT or PUT MEMuRY statements are used
you must be careful not to destroy the operating system. It is very easy to do.

===
Examples:

0010 PUT DEVICE 10,65,66,"C"

0020 PUT PORT 1 "An
0030 PUT MEMORy'3000H,0,O,OFFH

Explanatio,n:

On the console output device (number 10),
the characters A, B, and C are output.
The letter "An is written to port 1. .
At memory locations 30001 3001, and 3002
hexadecimal, the values u, 0, and 255 are
placed, respectively.

=============~===

- 132 - IWSIC ley B

CIIAPDI"9: 8rJ.!DiiIifS

i---i
I 1QUrr '1" I 2 Q1JI'1' <atriDg uprua1oa> I
I I I See also: END statement and QUIT command I
--------~-------------------------.------------.-------------------------------------

Parpoae:

The QUIT statement allows the user to exit from the BASIC environment.

Ce E aDt:

When the QUIT statement is encountered by BASIC all open I/O channels are closed.

The QUIT statement always exits from BASIC. If BASIC (or RUN) was invoked' by a
keyboard command then control is returned to the Command String Interpreter'
environment. If BASIC (or RUN) was invoked by an EXECutive procedure then control
is returned to the EXECutive procedure that called it. The EXEC resumes control
with the statement that followed the BASIC command. In either case the return code
is set to zero.

To exit BASIC without returning control directly to the environment that i·t was
invoked-from one of the optional expressions is specified.
A numeric expression indicates the value that the return code is to be set to.
This return code may then be examined by the EXEC that invoked BASIC. If BASIC was
not invoked by an EXEC then setting the retu~n code will have no usable eff~ct. .

A string expression indicates a CSI command to be executed. The expression must
specify the command name and all arguments and options desired. After the command
has completed execution the return code is set by that command. If - BASIC was
invoked by an EXECutive procedure and a strigg expression is specified with the
QUIT statement· control will return to. the EXEC program after the CSI command has
~ompleted execution.,

When the first character of the string expression is the character ">" the string
command will be displayed on the console terminal.

=====.==
Examples:

0900 QUIT
9998 QUIT ~
9990 QUIT LIST DAILY REGISTER"

Explanation:

Control exits BASIC
Return code set to 3j BASIC is exited.
BASIC is exited and LIST executed.

=====================;===

JWlIC I.. B - 133 -

BASIC IIFDIICB HOUlL .

9.'2 JWID(IIIZB Sta~t

--------~--~--------~~-------------~~ , . .. - D

1 BDl)(IIiZB I
I
I

-----------~-------------------~--~-~---~-------------~---~------~------~---~------

The RANDOMIZE statement causes the RND function to use a random starting value.
Co_ant: -

.;. ,

The RANDOMIZE statement is used when a program that uses the RND function is to
have a d1tfere~t set of random numbers each ~ime the program is run.

The iND function does not produce truly random numbers: it has a "table" of
p~eudorandom numbers available to it. Using the last random num.ber generated, .the
RND function chooses another 'random' number. Every time that· BASIC is loaded into
memory __ it has the same starting pointer to the pseudorandom number "table". The
RANDOMIZE statement causes - this pointer to start at a different location each
execution of the program. -

It is a good practice to debug a program completely before inserting the RANDOMIZE
statement.

The RANDOMIZE statement is normally used only once in a program, generally at the
beginning of the logic •

. ===
Examples:

00.10 RANDOM
0020 PRINT INT(RND*10.)

Explanation: '

Choose a random starting pOint.
Print a random number between 0 and 10'.

---~------~~------~--------------------~-----.
Incorrect examples:

0010 RANDOMISE
0020 RANDOM (I)

Explanation:
Misspelled. -
No operands allowed.

===~====:

-
IDDCIIIZB BjSIC ley B

CIWTBI 9: STArBIIIftS

'. .
------------------------------------~--------~------------------------------------,

1 IBID (Y8riable,l1at>'

2 IBID '(cbannel): (yariable l1at)

Where:

<variable list>::= <variable>[,<variable list>]
<channel> :::;: <numer-ic expression>
<key> ::= <numeric expression>

<string expression>

See also: DATA" INPUT, LINPUT, MAT INPUT, MAT READ, OPEN, READ NEXT ,
and ltES~ORE statements,

I
I

.1

I
I

I

I
I
I

---~-------~---------------------~-----
Purpose:

The READ statement is used to: accept data from DATA statements (format 1); accept
data from a sequentially formatted file (format 2); accept data from an indexed or'
direct formatted file (format 3). '

ec-ent:
The READ statement, format 1, causes the variables listed to be aSSigned values
from the next data elements of the DATA statement. If there is more than one DATA
statement in the-program, then! when the first DATA statement's elements are used
up, the next data element wil come from the next DATA statement in the program.
When there are no more DATA statements in the program, an "Out of data" error will
occur when a..,.READ is executed.. _

When it becomes necessary to use the same da.ta more than once in a program, the
RESTORE statement makes it possible to recycle through the complete . set of DATA
statements in the program or a partial set. _ ' _

. " . .

The other two formats of the READ 'statement operate'similar to the INPUT statement ,
discussed earlier. The primary difference between the READ statement and the 'INPUT
statement (and LINPUT) is that the INPUT accepts ASCII data onlI (i.e. quoted
stri~s and characters) and the READ'statement accepts fields of aata in Internal.
BASIC format. ,--',

Formats 2 and 3 of the READ statement accept data from a file that was created with
its complementar-y WRITE statement. - ,- ,

The READ statement can only access an, I/O channel that was opened with access mode
INPUT or UPDATE, not OUTPUT. ,

Format 2 of the READ statement accesses arile opened with SEQUENTIAL access
method.

Format 3 of the READ statement accesses a file opened with DIRECT or INDEXED access
method. A numeric key is used for a file opened with DIRECT access and a string
key is used for a file opened w;th INDEXED access.. "

After a. format 2 or 3 READ is performed the EOF function will indicate whether or
not· the read was successful. The EOF function will return a·truevalue on a
SEQUENTIAL access READ if the end of file was encountered; on an INDEXED access
READ if the record with the specified key could not be found; on a DIRECT access
READ if the record read was deleted or never written to.

On a DIRECT access READ the '- trappable error "Invalid key"' will occur when an
attempt is made to access a negative or zero record number or a record number,
greater than the maximum number of records in the tile.

BASIC Rey B - 135 -

BASXC IBPDDCB IlDUlL _
, -

====================================~==========================~=========:=========
Examples: ('

0010 READ A,

0040 READ B, C
•

Explanation:
-The value 1.23 is-assigned to A.

The value 2.34 is assigned to B,
the.value 3.~5 is assigned to C •

0050 RESTORE 9010

0100 READ A$

Next data element will come from
line number ·9010 e -

The lite~al '1023' is assigned to A$~
•

0130 RESTORE 8000 Next data element will come from
line number 9010.

8000 • • 0 .

9010 DATA Ja23 t 2.3~ 3.45~ITERALL2ND LITERAL
9020 DATA 2.234, AB~vEF,AB~vE FGH~JK," ABCDE FGHIJK

OPEN 11: "DATA.FILE" INPUT DIRECT
OPEN 12: "TEST.FILE":UPDATE SEQUENTIAL,EXTEND
OPEN 13: "FILE.DATA" INPUT INDEXED
READ '1,13: A$,B$,C,i>$ - The 13th record is read

0010
0020
'0030
00110
0050
0060

READ '2: B$ C$ A - The next record 1s read
READ '3,KEY!: #LD1$,FLD2$,TOTAL Record with key matching contents of
. KEY$ is read. _

------------------------~-------------~-------------~---------------------~-~~--~~~
Incorrect examples:

0010 READ A

0040 READ B
9000 DATA ABCD

Expl ana t.1on:

First data element 1s alpha -
'Conversion Error' will occur.

No data elements left.

-~-~-------~~-----~--------~-------------------~------------~--------~-~---~~---------------------------~--~~~-----~

-.

- 136 - JWIl:C 1_ B

9." IBIDDrl Sta~Dt

Where:

<channel> ::= <numeric expression>
<key> ::= <string expression>
<variable list> ::= (variable>[,<variable list>],

CIIlPIBI 9: SJ;'Ai&iiIiS'

See also: INPUT, LINPUT, MAT INPUT, MAT READ, and READ statements

--~--~---
Purpoee:

The READNEXT statement wil~ access the next record following the previous READ,
WRITE, or READNEXT from an indexed file.

Co eDt:

'This statement is very similar to the READ statementL however-this statement only
operates on a file opened with access method INDEX~D. The key must be a string
variable, not an expression.

When the READNEXT statement is, executed the indexed disk file specified by the
<channel> is read in a sequential manner. The record read by the READNEXT
statement is the record whose key is the next key greater than the last record key
accessed in this file. If there are no records whose key is greater than the last
record accessed then the file pointer is considered to be at end-of-file and the
EOF function may be ~sed to detect this condition.

If a record is read by the READNEXT statement then the contents of that record's
key is placed into the variable <key> and the contents of the individual fields of
that record are placed into the variables specified in the <variable list>.

When an" indexed file is first OPENed the file pointer is positioned before the
first record in the file. Therefore If the first access to an indexed file is a
READNEXT statement then that statement will retrieve the first record in the file,
if any exist. Each access of an indexed file by a READNEXT statement causes the
file pointer to be ad~anced to the next record. Access to an indexed file by the
READ statement causes the file pointer to be positioned to the record specified by
that READ statement. (If the READ statement is unsuccessful the file pOinter is
positioned to the place that the record would have been at, if it had eXisted!
therefore a READNEXT statement! followi~ an unsuccessful READ statement, wil
retrieve the next record that ogically follows the record searched for wi~h the
READ statement.) ,

An attempt to use the READNEXT statement to access a record created with a'PRINT
statement will cause an "Invalid file format" error. The READ and READNEXT
statement can only access records created with the WRITE statement.

===
Examples: Explanation:

If a indexed file contains records with the following keys:

000100
000124
001001
003234
003235
004000

then the following statements will print the string "003234"

0100 READ 11,"002000":A$ Position after record 001001
0110 READNEXT 11,KEY$:A$ Get record following, i.e. 003234
0120 PRIN'T KEY$ \

====================================.===

JWD:C ley B - 131 -

BASIC BIFBIiICB IIDDAL

9.J&5 ... Stat.ent

-------------------------------~-,-------~----~---------~--------~--~-~---~---------. '.- I

. 1 BIll . f I

2 ... <uaquotecl -trills llteral.
I
I

. I

I
~~---------------------------------------~-------------~--------~--~------------~--
Purpose:

The REM statement allows .the insertion of a comment or remark into a program.

C- eDt:

REM-statements are valid BASIC statements and may be used a~ywhere that a statement
can be used. They are saved as part of the program and appear whenever the program
1·s listed, however they 'are ignored "when the program is executed.

All characters after REM are ignored by the BASIC statement analy-zer., For "this
reason, the REM statement must always be the last statement on a line.

The REM statement should never be used on the same line as a DATA statement. This
is explained in the section on the DATA statement. . .

===
Examples: Explanation:

0010 REMARK: THIS IS A REMARK
0020 REM: THIS IS A REMARK
0040 LET A = B \REM THIS IS A REMARK Recommended syntax for using a REM on the

same line as a statement.

~-----------~-----------------------~------~--------------~-~-~-------~-----~--~---
Incorrect examples:

0010 DATA 1',2,3,4,5, \REM ABCDEF
0020 LET~=B 'REM This is a remark

Explanation:

The REM will be treated as a DATA element.
Statement separator missing.

=============================~==================~=================~================

l1li 138 - BJSIC Bey-B

CIIlPDI 9: STA!lllBliS

,. \

---I
I

1 RBSrOBB

,2 IBSrOBB <HDe mabel-)

See also: READ -and DATA statements I-

I
-------------------~-------------------------------~---~--------~-------~---------- ~
Purpoae:

The RESTORE statement is used to, roe-use data elements from the DATA statements.

ec..ent:
When it is neccessary to use the same data elements from the DATA statements more
than once in a program the RESTORE statement makes it possible to recyle through
the complete set or a partial set of the DATA statements.

If the line'number option. is used the referenced line need not be of a DATA
statement.

When the RESTORE sta-tement is executed the internal pointer used for accessing the
data elements, of a program is set to point to the beginning of the program (line
reference option not used) or to the line referenced. ,In either case the next READ
statement will read the first data e~ement at, or following, the statement pointed
to. -

Note: The interpretive mode of OASIS BASIC does not allow the RESTORE statement to
be used with a line label reference. However, since the compiler translates all
line label references to statement address references a program-usi~ the RESTORE
statement with a line label reference would execute using tfie compiled version of
the program. _ " _' . ,,-

==~==

Examples:

,0050 RESTORE

0060 RESTORE 1
0070 RESTORE 9000

0080 RESTORE 9900

Explanation:

Th~ next READ will read the first data
element of the first DATA statement in the
program.
Same as line 50.
The next READ will read the first data
element of the first DATA statement at or
following line 9000.
The next READ will read the first data
element of the first DATA statement at or
following the line number 9900.

===

BASIC ley B 139 -

B.lSIC DrBIIICB IIDOAL

'."1 IBSOHISta~t·

~--1

I :=0 I
I 3 IBSOHI (l.1De ~erence> I

I Where: I
II (line re~erence> ::= (line number> "

(line l~bel>

I See also: ON ERROR statement I
------------------------------~-------~---~---------------------------------------~
.Parpoae:

The RESUME statement ,terminates an error handling routine and specifies what to do
. next. '

~_8Dt:

The RESUME statement acts like a RETURN statement except that it may only be used
in an error handling routine.

A~ter an error handling routine has performed the tasks required for the specific
error (see ON ERROR statement) the routine must return control to' BASIC. '. The
RESUME statement performs this task. The RESUME statement - must be used to return
control from' an error handli~ routine. If the error routine does not use the
RESUME statement then BASIC will continue executing the program but no errors will
be trapped (the program becomes a "large" error routine).

At this time BASIC needs to know what was done and what to do. There are three
possible situations that might exist: 1) the error was corrected by the error
routine and the statement that caused the error is to be re-executed; 2} the error
could not be corrected by the routine and the system is to handle the error; 3) the
error was corrected by the routine but a different statement is to be execu~ed.

-These three ,Situations correspond to the three formats of the RESUME statement:

RESUME with no line reference (format 1) indicates that BASIC is to
ignore the error and to re-execute the statement causing the error.

RESUME 0 (format 2) indicates that BASIC is to handle the error. In this
event BASIC will display the error message corresponding to the error
along with the line number otthe statement causing the error (ERL). It
the program was executed from the RUN environment then BASIC will be
exitedi it the program was executed from the BASIC environment then the
commana mode of BASIC will be entered (prompt character of "_").

RESUME (line reference> (format 3) 'indicates that the error was corrected
but control 1s to be transferred to·the line specified.

===~=

Examples:

9000 IF ERR=2 THEN 9020
9005 IF ERR=1 THEN 9030
9010 RESUME '0

9020 RESUME

9030 RESUME EXIT

Explanation:

Error cannot be handled - this lets
BASIC handle it.
Error was corrected (or ignored) and
the program resumes execution-at the
statement causing the error.
Error was corrected (or ignored) and'
control is to be transferred to the
line with the label EXIT.

=='===

JWD:C 1_ B

CIIlPDI 9: STA1iHiIfS

-----------------------~---------------------------------------~------------------i
1 DtUIl

2 DtUD <l1De NrereDC8)

Where:

<line reference> ::= <line number>
<line label>

See als9 GOSUB and ON GOSUB statements

Purpoaa:

The RETURN statements terminates the execution of ,subroutine and transfers
control back to the statement following the call (GOSUB) to the subroutine.

Ccl ,at:

There may be more than one RETURN statement in a subroutine, hOWe!:~J the first one
executed causes the subrouti·ne to terminate. It is a good progr ng practice to
have only one RETURN statement in a subroutine and it multiple exit pOints are
needed, branch to that one statement from the varIous parts of the subroutine.
This makes the routine easier to read ~nd maintain.

The RETURN statement cannot be executed without a previous execution of a GOSUB
statement. When this is attempted a "Return stack empty· error occurs.

When a line is-referenced on the RETURN statement' the referenced line must exist in
the program (same as the GOTO statement).

, ,The RETURN statement with the optional line number reference used causes. the
location of the statement following the GOSUB call to be discarded and control
transfers to the line referenced.

It is 'bad practice to use the line reference option except in unusual or
exceptional cases. A betterL and approved method or performing a similar function,.
is to use the SELECT or WHIL~ statement structures.

=================================.==
Examples:

0010 GOSUB 30
0020 PRINT A$ GOTO 9000
0030 REM Subroutine entry

•
0090 RETURN

0100 GOSUB INPUT

· 0500 INPUT: REM Input subroutine

· 0590 RETURN CLOSE.UP

Explanation:

Execute subroutine at line 30
Statements executed after RETURN
Beginning of subroutine

Exit subroutine

Execute subroutine a label INPUT

,Beginning of subroutine

Exit subroutine and transfer control
to CLOSE.UP label.

===~===

BASIC ley B - 1'1 - iBiUlI

BASZC IBFBIIIIICB HDOlL

9.'9 - Stat.eat
__ .. _________ , ____________________ ~ _______ .. __________ GlJatIC!lDGD~"-.. ~----'!I-----------·------r

1 .. -

2 .. <Progriaa __ > /

Where: .
, .

<program name) ::; <file name>[.,<tile type)] [:~tile disk>]
<file type>': =: BASICO.BJ (with BASIC) " . '

BASICCOM (with RUN),)
-

See also: CaAIN, CLEAR and LINK statements

~ , I
I
I
I
f
I ,
1
I
I

I
------~---~-~---------------~~--------~
Purpoee:

The RUN statement allows the user to execute a program already in memory or, one
stored on disk.

Ceil.SDt:
When <program name> is not-specified, the program currently in memory is executed,
starting with the first line of the 'program.

Before the RUN statement is executed, a CLEAR command is automatically executed.

<program name>,'when specified, must be a string expression. When BASIC is being
used (not the compiler RUN time command) only BASICOBJ files will be searched for.
When RUN is being used (not the. interactive- interpreter) only BASICCOM files will
be searched for. --

When the (program name> is specified, a search is made for the program. If the
program is found, a NEW command 1s executed and the specified program is loaded.
Execution begins with the sma~les~ line numbe~. , _
Previous versions of OASIS BASIC supported the (line number> operand. The
recommended method of transferring control to another program at a specific line is
the use of a control variable (defined as COMMON) that is tested by an ON-GOTO
statement at the start ot the program transf~rred to.

, - /

The CHAIN, RUN, and LINK statements all perform similar tasks, but with significant
differences:

--I Statement 11/0 "Channels I Variables I COMMON I
I----------~----------------------~------~-------------, I RUN· ; Closed i Cleared I Cleared I

I CHAIN I Closed I Cleared I Not cleared I
I LINK I Not closed I Cleared I Not cleared I

--
===
Examples:

-LOAD TEST
-RUN
-RUN TEST

1000 RUN
1010 RUN "JOE"

Explanation:

Program "TEST" is loaded,
then executed.
Same ,as above.

Re-execute program in memory.
Execute program named "JOE"

-----~---~-------
Incorrect examples

10 RUN PROGRAM
20 RUN "PROGRAM" LABEL

Explanation

Program name must be an expression.
_ Line labels not allowed.

=== - BAUC leY B

,CBlPDI 9: Sl'A1'IIIII1S

9.50 SBLBCr Sta~nt , "

.' I . -.- .

-----------~-----------------~-------------------------~--------------------------~-I I

I I I 1 SBLBCr 'I "

I, ~ SILICr (expreaa1oD>, " I See also: CAsE, CEND and OTHERWISE statements I
'-- ' , " .

Purpose:

The SELECT statement defines the start of a SELECT-CASE-CEND programming struoture.
'Cc ent':

Format 1 of the SELECT statement speoifies that subsequent, matohing CASE
statements will speoify the oomplete relational expression that must evaluate true
for the statements following to be exeouted.

Format 2 of the SELECT statement speoifies the express!~n that is to be oompared
with the expression of subsequent, matohing CASE statements.
SELECT struotures'may be nested to any depth. _

The SELECT-CASE~CEND programming struoture is a powerful aid to the programmer
wishing to' write-struotured programs in BASIC, a language that doesn't lend itself
to struotured programming teohniques. (Also see ON ERROR, FOR-NEXT, IF-IFEND, and
WHILE-WEN'D struotures.). _ '

============================"=== ~ . " .

Examples:

SELECT RADIUS*2.*PI
, CASE 0

Explanation:

Define VALUE 3000
3010
3020
~g~8

SELECT Perform only if VALUE=O
CASE SUBVALUE,1=20 "

30g0
~g6g
3064
3070
3080
3090
3110
3120
3130

'CASE 1-14
- .

CASE J

CEND

CASE·ERRORJ

CEND

Perform only if VALUE=O and SUBVALUE,1=20

Perform only if VALUE=O and SUBVALU!%>32

Perform only if VALUE=O and ERRORJ<>O
End of nested SELECT struoture

Perform only if VALUE=I-14

Perform only if VALUE=J%
End of SELECT struoture

===-======================

B~C ley B

BJ8IC iDBldCB IlDUAL

9.51 SLDPstat.e.,

--1
1 SLBBP <1atepp upreaalOD> I

Parpoae:

The SLEEP statement causes BASIC to pause 'for a periodot time, allowing the
operator time to read a message, etc~

Cc IDt:

. The value ot (integer expression) 1s rounded up and Integerized. The value of this
expression must be between 0 and 32767 (approximately 9 hours), inclusive 0

The minimum time ,that the SLEEP statement will pause is one second. Specifying any
value less than one will be interpreted as the. default, one second.

=:=:::===::===::=::::=:::::==:::=:::===:==:===::=::==:===============~=============

Examples

10 SLEEP 10
95 SLEEP 1/4

200 SLEEP .5

Explanation

Suspend processing for 10 seconds.
Wait for one fourth of I value.
Wait for one second.

=~===

BJSIC leY B

CIIlPDI 9: 8r&l&iiIiS

9.52 srop Sta~Dt

1 sm. I

I
I

2 sm. (expreuioa)

See also: END and QUIT statements I
I

-----------------~-~--~
Purpoae:

The STOP statement terminates execution of a program without cloSing any files nor
altering working storage.

eo..ent:
The STOP, END and QUIT statements all terminate execution of a program. The·QUIT
and END statements are the normal termination of a program in a non-development

- mode.

The STOP statement is Used when an abnormal exit from the program is desired, as
needed during the development and debuggi~ of a program. When it is executed, the
status of tne program remains unchanged and the message-nSTOP at Line nnnn" is
~~~~~ayedOn the terminal. BASIC will enter the command mode (prompt character of 

If a STOP statement was executed l a CONTINUE. command will resume execution at the 
statement following the STOP sta~ement. This allows the programmer to examine or 
alter portiOns of the program or to. change the value -of some variables. 

When an expression is ' specified' after the STOP verb that expression will be 
evaluated and displayed with the stop message: "STOP <value of expression> at line 
XXXX". This allows the programmer to put identifying messages on the screen to 
assist in the debugging. 

=================================================================================== 
Examples: 

0010 STOP 

0020 STOP A$ 

Explanation: 

Program stops execution and allows 
maintenance. 
Program stops execution, as above and 
displays the current Vaiue of the 
string A$. 

=================================================================================== 

B&Sl:C ... B 



BASIC IBFBIIaCB _II. 

9.53 . !BIll Stat.eDt. 
" 

i-~------------~-----~------------------~-----------------------------------------1 
11m.. [<atat.eDt)] I 
I I I 2 !BIll [<l1Demaber>] ,. 

I See also: ELSE and IF stat~ments I 
I 8 

---------~-------~-~----------------------------------~-~-~-------~~-----~~-~~-~--~ 
Purpo_: 

The THEN statement specifies' the action to be taken . when a multiline IF' statement 
relation is true. 

ec..eat: 

The THEN sta'tement is only -a statement when used in conjunction with the multi.-line 
format of-the ,IF statement. When used in this manner the verb THEN i~ optional. 

<statement> may be any statement or statements, including another IF statement. 

Format 2 of the THEN statement is an implied THEN GOTO <line number> statement. 

==~==================================================================~===~========= 
Examples: 

0010 IF A 
0020 THEN GOSUB 2000 
0030 PRINT USING "III",A 
0040 , GOTO \ TOP. OF. PAGE 
0050 IFEND 

Explanation: 

Test A for non zero 
__ Perform if I A <>0 

" " " " " " End of conditional execution , 

0010 
0020 
0030 
0040 
0050 

IF VALUE > CONTROL Test expression 
THEN IF VALUE > LIMIT Perform if expr is true 

THEN GasUB ERROR Perform if both expr are true 
GOTO EXIT n" " " " " 

0060 
0070 

ELSE IF ERR.NUM< ERR.LIMIT THEN QUIT 
, Perform only if first expr is true 

and second expr is false 
IFEND End conditional execution from second expr 

. IFEND End of condit1ona~ execution 
.. 

--------------------------------------------------------~---~----------------------
Incorrect Examples: Explanation: . 

/ 0010 IF V ALUE>5 THEN 100 
0020 . THEN PRINT "lIZ" Not in a multi-line IF statement 

========~========================================================================== 

- 1~- BUl:C •• y B 



CIIlPDI 9: 8rA,1DiiiiS 

-----------------~--------------------------------~--~------------------------~-~-i 
1 UILOC('(cb8nnel> I 
Where: 

, <channel> :: = <numeric expression> 

I 
- I 

I 
I 

.1 

------------------------------------~----------------------------------------------
Parpo_: 

The UNLOCK' statement operates in multi-user OASIS only and allows a program to 
release a record for other users u~e. 

Cc eDt: 

The UNLOCK statement is only effective when the channel was opened with UPDATE 
access, not INPUT or OUTPUT. 

The UNLOCK statement releases the record read from the channel with an INPUT, MAT 
INPUT, -MAT READ, READ, or- READNEXT, statement. After the UNLOCK statement is 
execuced another user partition may read the, record just released. 

An unlock function is performed automatically when any of the following statements 
is executed: CLOSE, DELETE, INPUT LINPUT, MAT INPUT, MAT PRINT, MAT READ, MAT 
WRITE, PRINT, PRINT USING, READ .. iEADNEXT, and WRITE. Note that the input type, 
statements may lock another record. 

===========================:=============================~========================= 

Examples: Explanation: 

0010 OPEN'11: ftDATA.FILEft,UPDATE SEQUENTIAL 
0020 READ 11: RECORD' - Read the first record and locks it. 
0030 UNLOCK 11 / Releases the- record for othe~s use. 

==================.==================~=======================================~====== -

. BASl:C I .. B 



B.ISl:C IBPBIBICB IlDUlL 

9.55 - VAU Stat.eat 

-~-------------------------------------~---------------------------~----------~~~~~ 
1 van 
2 VAn DBlICB <derioe a1aber> 

3 vm HlllDIY (8ctdreaa),<ud __ >[,~_ .. __ >] 

_ VAn !'Oft <port>,<aad __ >[,<%or __ >] 

Where: 

(device number> ::=(numeric expression> 
<address> ::= (numeric expression> 
<port> ::=<numeric expression> 
<and mask> ::= <numeric expression) 
<xor mask> ::= <numeric.expression> 

See 'also: GET and PUT statements 

" ------------------------~----.-----~-----~---------------~--------------------------
Purpose: 

The WAIT statement suspends execution until some event has occurrede 

Cc: lilt: 

The most frequent use of this statement (format 1) is to suspend operation until 
the operator has typed any key on the console keyboard. This use is the same as
the ,systems when it displays a page ot information and then waits tor the ,operat2r 
to release that page before displayi~ the next page. An up-arrow character ( ) 
will be displayed 1n the bottom, lett hand corner ot the screen while the system is 
waiting tor the operators response. This is a conditional. wait determined by the 
status of the System Screen-wait key (see OASIS System Reference Manual). -

This statement causes BASIC to test a byte from the specified device (format 2), 
-memory address (format 3) or port (format 4), logically AND it with <and mask> and 
logically eXclusive OR it with <xor mask>. The statement 1s re-executed if the 
resul t is not zero (true). . . -, 

The <port) expression must evaluate to an integer between 0 and 255; the <device 
number> expression must evaluate to an integer between 9 and 32· ~he <address> 
expression must evaluate to an integer in the range -32767 - +3276t. (This value, 
unlike other integers, is interpreted as an unsigned value, which automatically 
adjusts its range to 0 - 65535.) 

If' <xor mask> is om1tt~d, it is assumed to be equal to 'zero. 

This statement can be very useful for waiting for an IIO device to become ready for 
output, or waiting for a character to be input from a device. 

The WAIT DEVICE has no masks available because it returns control to BASIC as soon 
as any change (non zero) occurs with the deviceo 

The WAIT statement does not read the data from the port or device, only the status 
ot the device or port is tested. This statement would normally be used -to 
determine the time that an event happened in order to sync~ronize two processes. 

I 

=================================================================================== 
Examples: 

0010 WAIT DEVICE 9 

0020 WAIT PORT 25,OFH 

0030 WAIT 

Explanation: . 

The program suspends execution until a key 
is entered from the console keyboard. When 
any key is typed the program will continue 
execution with the sta-tement following. -
The program suspends execution until 
a byte Is input on port 25 that has the 
four low-order bits oft. 
Wait for operator to release current 
page of data on screen._ 

==============~==================================================================== 
BASIC Ray B 



CIIlPDI·9: .ftA1ihiiiS 

9.56 1IBIID Sta~t 

-----------------------------------------------------------------------~-----------

I ' VIID I . See also: WHILE statement 

--------------------~--------------------------------------------------------------
Purpose: 

The WEND statementi. marks the end of a WHILE-WEND programming structure. 

~ eat: 
The WEND statement requires that a corresponding WHILE statement exists and that 
the WHILE statement must have been executed prior to the WEND statement. 
The WEND statement· performs two functions: marks the end of' a WHILE-WEND 
structure--the statement following the WEND statement is executed when the 
expression in the WHILE statement is false; causes the corresponding WHILE 
statement to be re-executed when the expression of that WHILE statement was. true , 
th~ last time. 

WHILE-WEND structures may 'be nested to any depth. 

======.============================================================================= 
Example: 

0010 WHILE CONTROL' 
0020 GasUB 1000 
0030 GOSUB 1200 
OO~O' WHILE OPTION$=wHELpw 
0050 GOSUB HiLP.ROUTINE 
0060 OPTION$=wW 
0070 WEND 
0080 WEND 

Explanation: 

Test the variable CONTROL' 
Perform if CONTROL' 1s non-zero 

W W n 
W W n 

Perform if CONTROL'<>O AND OPTION$=wHELpw 
n W.. W. n 

Go back to 10 if CONTROL' was non-zero 

=========================================~====~==================================== 

IWIXC 1ft B ,., - DID 



BASIC -IBFBIBIICB ,HDDlL 

9.51 lIIIILB -Stat-Dt 
F • I • 

----------------------------~------------------------------~----------~~~--~~~-~-~~ I ' I 
I 1 lIIIILB <m1IIeric axpreaad.oa) I 
I I r 2 lIIIILB <1OSioal ezp....u~D> I 
I 3- 1DIILB <relatloaal upreaaloD> I 
I See also: WEND statement I 
-------------~----~-----------~---~-----~-~-~~-------~-~----~------~~-~--~--------~ 
Purpoae: 

The WHILE statement· marks the 
programming structure~ 

~_8Dt: 

beginning and qualifying condition of a WHILE-WEND 

The WHILE statement requires ,a corresponding ~END statement, which marks the end of 
the WHILE-WEND structure. 

When the 'WHILE statement is encountered the expression is evaluated. If the result 
ot the expression is non-zero or true the statements following are executed. It 
the result of the expression is zero or false then the statements following, up to' 
and includlng,- the-corresponding WEND statement are skipped. _ 

It the expression was true and the statements were executed, when BASIC encounters 
the corresponding WEND statement control will be transferred back to - this WHILE 
statement for expression re-evaluation. Because of this looping feature, there 
should be some statement within the loop that could modify the results ot the 
expression evaluatio~l or a statement that will transfer control out ot the loop; 
otherwise the loop w~l be executed indefinitely. 
WHILE-WEND structures may be nested to any depth. 

- , 

=================================================================================== 
Example: 

0010 WHILE A'<10 
0020 A, = A'+I" 
0030 FOR 1'=1 TO 5 
0040 PRINT I' 
0050 . NEXT I, 
0060 WEND 
0010 PRINT A' 

- 0010 IF NOT (A'<10) THEN 70 
0020 AS = A'+Ii 
0030, FOR 1'=1 TO 5 
0040 PRINT I' 
0050 - NEXT 
0060 GOTO 10 
0070 PRINT A, 

I 

Explanation: 

Test the expression 
Perform only if true. 

" " tI 

" " " 
." " tI 

It exp was true then go back to 10 . 
Otherwise perf~rmth1s and continue •. 

This 1s the ,.same as above example. 

=========================~=====================.======~==========:================== 

/ 

- 150 - BASIC .... B 



CJIlPIBI g: ftAtiliii1S 

----------------------------------------------------------~----------------------1--
1 VIlD I<cbannel>: <expreaalon liat> I 
2 VIlD I<cbannel> f <key>: <ezpreaalon liat> I 

Where: I 
<channel> ::=_<numeric expression> 
<expression list) ::= <expression>[,<expression list>] 
<key> ::= <numeric expr.ession> 

<string expression> ' - -

See also: DELETE, MAT PRINT, MAT WRITE, .PRINT,and PRINT USING statements· 

- I 

I 
I 

I 
I 
I 

I 
-----------.----'-------------------------------~-------------------------------------

Purpoae: 

The WRITE statement allows the user to create or update sequential, direct or 
indexed file records. 

, 

ec-nt; 
\ 

<channel> is the internal ,I/O channel number ,of' a channel that was opened for 
OUTPUT or UPDATE that does not have write protect st-atus. If an attempt is made· to 
write to a protected file, the error message/"Protected File" will be displayed. 

Format 1 of the WRITE statement is used for sequential format files opened with 
access methQd of SEQUENTIAL. This format causes tbe next record in sequence to be 
written to the file (i.e. if the last record written to the file was the 11th 
record then this statement will write the 12th record to the· file). 

Format 2 of the WRITE statement is used for files opened with acc"ess method of 
DIRECT or 'INDEXED. A file opened with access method DIRECT will require a numeric 
,key expression;' a file opened with access method INDEXED will require a string key 
expression. In either case the record specified by the key will be written to the 

'file, replacing any existing record with the same key. 
- / . -

When the key is numeric i.ts value must be greater than zero and less than or equal 
to the number of records allocated to the file. Using a key outside of this range 
will cause an "Invalid key" error. 

The WRITE statement always locks the record-before writing 'it to the file. The 
WRITE statement also unlocks any record that was locked in the file by this program 
(unless option LOCK was used with the OPEN statement). 

The only proper way to retrieve a record written to a disk file with the WRITE 
statement is with a READ or READNEXT statement. Using an INPUT or LINPUT statement 
on a record that was outputw1th a WRITE statement will cause ~n "Invalid file 
format" error. 

==================================='================================================ 
-Examples: 

0010 OPEN 11: "DATA.FILE" OUTPUT SEQUENTIAL • 
0020 OPEN, 12: "CUSTOMER.MASTER" UPDATE INDEXED 
0030 OPEN 13: "TRANSACT.DETAIL:l"lUPDATE DIRECT,LOCK 
0040 WRITE 11: DATA1,DATA2 STRINGop 1*34+5 . 
0050 WRITE 12,"Name": ADDR!,CITY$,!TATE$,FORMAT$(ZIP,"99999"),BALANCE 
0060 WRITE 13,24: A,B,C,D,E,F,TOTAL,LINK~ 

-----------------------------------------------------------------------------------
Incorrect Examples: 

0070 WRITE '1,23: ALB1C,D 
0080 WRITE 12: A$ B~T $ C 
0090 WRIT·E #3, "REe" &STH ( I'): A, B 

Explanation: 

-Not valid for sequential access. 
Indexed access requires key. 
Direct access requires numeric key. 

======================================================~============================ 

USIC ley B - 151 -



BJSl:C IIPBIIBICB HDU.IL 

(This page intentionally left blank) 

- 152 -' BASIC ley B 



·~1.0 

ru.CUCIIS 
A function is a relation between two variables such that for each value of the 
independent variable there is.one l and only one, value ot the dependent variableo 
When a function is used (called) in' BASIC, ~he independent variable{s) is the 
parameter and the dependent variable is the value of the function. For example: 

100 LET Y = SQR{X) 

X is the independent variable and must be defined before the function, SQR,is 
called. The value of the function, SQR(X) is the dependent variable and, in ~his 
example, is assigned to the variable Y. 
Functions are not statements. 

BASIC .provides many predefined functions for the programmer's use. These include 
thirty numeric functions (including trigonometric), twenty six string functiOns, 
four input/output functiOns, one file function, four logical functions, two e~ror 
functions, and one user function. Specifically they are: - ' 

Jluaerf.c twlet1.olUl: 

ABS 
ASC 
ATN 
BIN 
COS 
DAY 
EIP 
FIX 
FLOAT 
HEX 
INT 
LEN 
LOG 
MATCH 

Absolute value 
Decimal value of character 
Arctangent -
Convert, from binary base 
Cosine 
Convert from ext date format 
Exponential . 
Integerize number 
Float integer number 
Convert from hexadecimal base 
Return integer portion 
Return length of string 
Natural logarithm 
Compare string with mask 

stri.Dg tuDctlolUl: 

AT$ Cursor control ' 
BINOF$ Convert to binary base 
CHRI Return ASCII of number 
CRT Cursor control 
DAT $ Convert to ext date 
DELI Delete sub-string field 
DTE Validate string for date 
EXT Extract sub-string field -
FORMA T$ Format string . 
HEXOF$ Convert to hexadecimal ,base 
INS$ Insert sub-string field 
LEFT$ Return lett portion of string 
LPAD$ Add leading spaces 

IDput/Oatput hD.ctlo .. : 

Return maximum of two numbers MAX 
MIN 
MOD 
NBR 
OCT 

. Return minimum of two numbers 
Perform modulo of number 

PI 
RND 
ROUND' 
SCH 
SEC 
SGN 
SIN 
SQR 
TAN 
VAL 

Test string for numerics 
Convert from octal base 
Constant: 3.141592653590 
Pseudorandom number 
Round' number 
Search string for sub-string 
Convert from ext time format 
Return sign of value 
Sine 
Square root of number 
Tangent 
Numeric value of string number 

LTRIM$ Remove leading spaces . 
MIDi Return middle of string 
OCTOF$ Convert to octal base 
OVR$ Overlay string with string 
REP$ Replace sub-string field 
RIGHT$ Return right-portion of string 
RPAD$ Add trailing spaces 
RPT$ Generate string of characters 
RTRIM$ Remove trailing spaces 
SPACE$ Generate string of s~aces 
STR$ Return ASCII value of character 
TIME $ Convert to ext time format 
TRIM$ Remove leading & trailing spaces 

INP Value of control char entered PAGE Return page length of channel ' 
LINE Return line length of channel pas Position of output rec pointer 

Losic8J. tunct1.0Da 

LRL Logical rotate left 
LRR Logical rotate right 

F11e hDctlon: 

EOF Test for end of file 

Error hactioD8: 

ERL Line number of error 

u .... tuDctlon: 

LSL 
LSR 

ERR 

Logical shift left 
Logical shift right 

Error number of error 

USB User written asse~bly language subroutine call. 

- 153 - ru.cuars 



BASIC IIFIBIIICB HUOAL 

The followi~ functions always return an- integer- vaIue: ASCl EOFJ•· ERL', BRR, ,FIX, 
HEX, INP, LEN, LINE,_ LRL, LBR, LSL, LSR; MATCH, NBB, PAGE, PO~, SCH, -SGNe-

The following functions return an integer value when the parameter to the function 
is an integer: INT and USRe - ' 

-
All other numeric functions return tl~atingpoint values. 

A function call has the general form of: 

(funotion name>[$](parameters) 

In addition to the ,pre-defined funotions listed above, the user may define his own 
functions with the DEF statement. These functions are only defined while the 
program defining them is in memory. 

, 
The parameters-passed to a function are not changed by the funct10ne 

Function names cannot be abbreviated and function names cannot be used as variable 
names. 

References to string functions do not require the dollar sign charactere 
example, SPACE(5) is acceptable for SPACE$(5). 

For 

PDCUCIIS _- 15" - BASIC ley B 



10.1 

JSC( (atriDa-exp» 

BD( (atriDa-exp» 

- DAY( <atri.Dg-exp» 

BIP( <nua-exp» 

PD(<n ..... xp» 

FLOAT( <mm-exp» 

BEI( (striDa-exp» .. 

CBlPDI 10: FUllCUOE ~ 

The numeric expression is evaluated and its absolute value 1s 
assigned· to the function. 

Example: PRINTABS(23);ABS(-23) 
23 23, 

The string ,expression is evaluated and tbe ASCII, integer value 
of the first character in the resulting string is returned. 

Example: PRINT ASC(A$) 
65 . 

The string expression is evaluated and the resulting string is 
interpreted as a binary value with its equivalent decimal, 
integer value· returned. Remember that binary values only use 
the digits 0 and 1. 

Example: PRINT BIN( "0101010101010101") ;BIN( "0000111100001111") . 
21845, 3855 . ' 

The string expression is evaluated and interpreted as a date' 
field, according to the currentl~ set DATEFORM (DATEFORM 3 is 
interpreted as, DATEFORM 2). 'Non numeric characters in the 
string expression are interpreted as' delimiters between the 
month, day, and year. ~he number of days since December 31,1899 
to tnat Qate is returned. An invalid date atring expression 
will cause the function tQ return a -1.· . 

Example: PRINT DAY("5/17/77"),DAY("1-1-0") 
-28261 1 

The express10nis evaluated; the constant e is raised to the
value of the expresion and assigned to the function. 

The fractional portion of the value of the expression is 
truncated; the resulti~ integer portion is assigned to the 
function \32767 to -32767). ' . 

Example: PRINT FIX(1.5);FIX(.5);FIX(S.S);FIX(-43.S) 
1 0 S -43 .. _. 

The numeric expression is evaluated and converted"if necessary, ' 
to a floating point value. - _ 

Example: PRINT 1/4;1/FLOAT(4);1/4. 
o .25 .25 " 

The string expression is evaluated and the resulting string is 
intepreted as a hexadecimal value with its equivalent deciJDal, 
integer value ,returned. Remember that hexadecimal values use 
the digits 0 through 9 and the letters A through F. . 

Example-: PRINT HEX( "'OFF") ·HEX( "100") 
255 256 ' 

The expression is evaluated and the greatest 
that value is assigned to the function. 

-function is an integer or floating point, 
argument of the function. , 

Example: PRINT INT(1.5);INT(.5);INT(-4.6) 
1 0 -5' -

signed integer of 
The result of this 
depending upon the 

LII«striDa-ezp» The string expression is evaluated and its length is returned as 
an integer. - , 

BJSZC .ey B· 

Example: PRINT LEN("ABCDEF");LEN(" X ");LEN~SPACE$(10»' 
6 10 10 

The expression is evaluated and the natural logarithm of that 
value is assigned to the function.' (Natural logarithms are 
logarithms to base e). 
The common logarithm (base 10) may be computed by ,dividing the 

- 155 - IUllDIC PUIIcr.tCIIS 



BASIC IIFBIIIICB IlDUAL 

natural logarithm by LOG( 10), i.e.: LOG10(X) = LOO(X)/LOG( 10). 

Hl!CB(<atr1as-exp1>t<a~-ezp2» The two string expressions are evaluated and the 
second expression is used as a mask for match purposes. If the 
first string does match the mask a true value is returned -1); 
if the string does not match the mask a false value is returned 
(0). The masK characters are interpreted as follows: 

• Any alphapetic character or space 1n this position is a 
match •. ' 

I Any numeric digit in this position is a-match. 
? Any character in this position 1s- a match. . 
., One or more alphabetic characters 1n these positions will 

at~. . 
., One or more numeric digits 1n these position will match • 
• , One or more characters in these positions will match. 
S This is the 'escape' character: the special character 

following (@, I, ?, * or %) is treated as a literal match 
character). 

All other ch~racters are treated as literal match characters, 
i.e., the corresponding position in the first string mus~ 
contain the specific character. _ 

The following are example masks along with a description of what 
they will match: - _ : , 

Mask: "ABC?" 
Matches: Any four character string starting with the uppercase 

letters A, B" and C. The followi~ strings will match 
this maSK: _ABCX", "ABC1", "ABC-". Tne following 
stripgs will not match this mask: "ABDE" '0 "X-XXI", 
"ABCDEFGH" , "ABC", "WIYZ" • 

Mask: 
Matches: 

Mask: 
Matches: 

Mask: 
Matches: 

Mask: 
Matches: 

Mask: 
Matches: 

"ABC*?" 
Any tour or more character stri~ starti~ with the 
uppercase- letters A, -B, and C. The following stri~s 
will match this mask: "ABCDEF" "ABCI*$$234". The 
followinR strings will not match t&is mask: "A", "234", 
" ABDXLKJ 1f' • -

"ABC*?DEF" 
AnI string whose first three letters are At B, and C, 
and whose last three-letters are D, E, and-F. One or 
more characters between these are acceptable. The 
following strings will match this mask: "ABCXDEF" , 
"ABCXXXXXDEF"l "ABC12433ABCDEF". The following strig§s 
will not ma~ch this mask: "ABC", "ABCD", "ABCDE, 
"ADEF", "ABCDEF". , 

"111-1#-#111" 
Any -eleven character string with: three digits a 
hyphen, two digits~ a hyphenL and four digits (liice a 
SOCial Securi ty Number) • ",l"he following string will ~ 
match this mask: "123-45-6789-. The followi~ stri~s 
will not match this mask: "123456789", "123/45/6789 , 
"12ABD".-

"@@@I#I" 
Any six character string whose first three characters 
are letters or spaces and whose last three characters 
are difits. The following strings will match this 
mask: abc123", "AB 123" "Iyz002". -The followigg 
stri~s 'will not match thIs mask: "123ABC","AB1234", 
"XXXIXI", ftABCX123". 

"%*%*%*111" 
Any six character string whose first three characters 
are asterisks and whose last three characters are 
digits. The following strings will match this mask: 
" •• *123" "***738ft • The following striggs will not 
match this mask: "***ABC" "*.*1234". "112456" 
"** ABCDEFG". -. ' ,., 

HI%(~exp1>t<aa.-ezp2» The two expressions are evaluated and. compared to each 
other. The value of the expression whose value is greatest is 

n.nC . FDCUCIIS - 156 - BJSIC aeY B 



-returned. 

Example: 

Example: 

CIIlP!'BI 10: I'1JIICUCIIS 

PRINT MAX(51 21)lMAX(PI,3.14);MAX(1,1) 
21 3.1415~265j590 1 . , 

PRINT MIN(5,21);MIN(1,-1);MIN(3*23,70) 
5 -1 69 ' , 

to-each 
smallest is 

HDD(<auarezp1>,<auar~2» The two numeric expressions are evaluated. The value of 
the first expression. is divided by the value of the second 
ex~ression and the remainder is a~signed to the function. ' 

DB( <atnaa-ezp» 

acr( <atriDs-exp» 

PI: 

BID 

EXaJllple: PRINT MOD(11,4);MOD(2.2,.8) 
3 .6 

Analyzes the string expression to determine if it could be 
converted to a number. The string expression is first 
evaluated. If the' resulting string contains any non-numeric 
characters (other than digits, plus or minus Sign, period (or 
comma if OPTION COMMA is in effect), leading ortr8l.1ing spaces, 
or letter E) an integer 0 is returned (false). If the resulting 
string is -a valid decimal or hexadecimal number then an integer 
-1 is returned (true). -

Example: PRINT NBR(ft123ft);NBR(ftOABCHft);NBR(ft1.23E23ft) 
-1 0-1 

PRINT HBR(ftNAMEft) 
a 

The string expression is evaluated and the resulti~ stri~ is 
interpreted as a octal value with its equivalent decimal, 
integer value returned. Remember that octal values only use the 
digi ts a through 7'. -

Example: PRINT OCT( ft071 ft );OCT( ft 100ft ) 
57 64 

The constant 3.141592653590 is assigned to the function. 

The value of the next pseudorandom number is assigned to the 
function. The value is a floating point number between zero and 
one. 

RODID«~1>t~2» The two numeric expressions are evaluated and the 
first expression is rounded to the number ot places specified by 

,the value of the second expression. Positive values for the 
second expression indicate the number of digits to the right of 
the decimal point; negative values for tne second expression 
indicate the number ot digits to the left of the decimal point. 

Example: PRINT ROUND(PI,4);ROUND(1234.567,-2) 
3.1416 1200 

PRINT ROUND(1.234567,4);ROUND(2.34,O) 
1.2346 2 

SCB«aa. exp>,<atriDs-exp1>t<atr1Dg~» The expressions are all evaluated. A 
search is made of the resulting <string one>, starting at the 

- character position <number one>, for the sub-string <string, 

BJSIC Bey B 

two>. ' ' 

If <string two> is found in <stri~ one> then the starting 
position in <string one> is returned. If <string two> is not 
found in <string one> then the integer value zero is returned 
(~~L . 
When <string two> i~ the null string (equal to ftft) the integer 
value one is always returned. The null string is a proper 
substring of any string and is treated conventionally as the 
first element ot every string. ' 

- 151 - IOIIIIIC PUlICUCIIS 



B&SZC IIFEIBICB IlAlUAL 

Example: ,P~IN§ SCH( 1, "ABCDEFG~", ~Dn) ;SCH( 3,"ABCD_EFGHft ,"EFG,") 

PRINT SCH(l"ABCDEFGH" "X")·SCH(1 "ABC" .... ) 
0, 1 _ " -' ' J ,,' , 

S1C«str1Ds-ezp» The string . expression , is evalu",ted ~and interpreted as 'a 
normalized time of day ,(hh:mm:ss) & The value of the number of 
seconds since midnight (00:00:00) to the time represented by the 
string expression is returned. The times input to this function 
may use any non-numeriocharacter for delimiters between hours, 
minutes! and seconds (except semicolon and comma). For example, 
valid nput to this function includes: "1.1.1", "1-1+1", 

_ "1H1M1S·, "1 1", "1", etc. 

so.( <Da-exp> ) 

IUHDIC F1JlIC!ICIIS 

Example: PRINT SEC( "12:00: 00") ·SEC( "Ol-: OS: OS") -SEC( "2.3") , ' 
43200 3908 7380 ~ , ' \ '-' 

Note: To get the current time of day in se'conds use: 
SEC(TlME$(O» 

The numeric expression is evaluated and 'the Sign ( + 1-, 0 o~ -1) 
of the value is assigned to the functio~. 

Example: PRINT SGN(PI);SGN(-1.0/-2 .. 0);SGN(-43);SGN(PI-PI) 
. 1 ~~1,0 

The expression is evaluated and the square root of'the resulting 
value is assigned to the function. 

Example: PRINT SQR(4)jSQR(25);SQR(11) 
2 5 3.31602479161 ••• 

The string expression is evaluated and interpreted as a numeric 
constant. If the string contains any non-numeric characters 
(see section on "Numeric Constants") a trappable error occurs. 
If the string is a valid-number then the value of that number is 
assigned to the function.' -' 

Example: PRINT VAL("123")jVAL("1.234E23") 
-1231 .23 4E+023 

PRINT VALC"ABCD") 
Illegal number-

- 15~-



CIIlPDI 10: I'URcrICIIS 

10~2 -~ ... tri.c ,...u.ou 
AD«up» The'expression is evaluat-ed and the arctangent of that value is 

assigned ~o the function. 

COS«up» The expr~ssion is evaluated --and the cosine of that value is-
assigned to the functio~. 

SD«up» The expression is evaluated and the sine of that value is 
assigned to the function. 

TD«exp» The -expression-is evaluated and the tangent of that value is 
assigned to .the function. 

The argument for the SINe, COSine -and TANgent- functions- is an angle expressed in 
radians,. Although any angle wili be accepted as a valid argumenf, some accuracy 
will be lost if the angle is outside the range of plus or minus 2PI. This is 
because the function routine must first reduce the angle to the first quadrant 
before evaluating the function. - If the angle is known in degree~, it must be_ 
converted to radians before it is used as the function argument. Th1smay be done 
as part of the expression. - - ._ 

The argument of the ArcTaNgent function may be any number (the tangent of any 
angle)./ The result will be an angle in the range plus-or minus PI/2 radians. 

The following identities may be used to compute trigonometric functions other than 
Sine, cosine, tangent, and arctangent: -

=========.=========================~===========================:~=================== _Function Identity 
------------------------------~--.---~----~---------------------------------------~-
Cotangent 

Secant 

Cosecant 

Arcsine 

Arccosine 

Arccotangent 

Arcsecant 

Arccosecant 

Degrees to Radians 

Radians to Degrees· 

DEF FNCOT(ANGLE) = 1/TAN(ANGLE) 

DEF FNSEC(ANGLE) = 1/COS(ANGLE) 

DEF FNCOSEC(ANGLE)' =< 1/SIN(ANGLE.) 

DEF FNARCSIN(ANGLE) = ATN(ANGLE/SQR(f-ANGLEA 2» 

DEF FNARCCOS{ANGLE). = ATN(SQR( 1-ANGLEA 2)/ANGLE) 

-DEF FNARCCOTAN(ANGLE) = ATN(l/ANGLE) 

DEF FNARCSEC(ANGLE) = ATN(SQR(ANGLEA 2-1» 

DEF FNARCCOSEC(ANGLE) = ATN(1/SQR(ANGLE A 2-1» 

DEF FNRAD(ANGLE) = ANGLE.PI/180 

DEF FNDEG(ANGLE) =-ANGLE.180/PI 

======================================================::=:::::::::::==::::::::::::: 
Hyperbolic Function Identity 
--------------------------------------~--------------------------~--------~--------

DEF FNHS~N(ANGLE) (EXP(ANGLE)-EXP(-ANGLE»/2 Hyperbolic sine = 
Hyperbolic cosine DEF FNHCOS(ANGLE) ;: (EXP(ANGLE)+EXP(-ANGLE»/2 

Hyperbolic tangent DEF FNHTAN(A) = (EXP(A)-EXP(-A»/(EXP(A)+EXP(-A» 

Hyperbolic secant DEF FNHSEC(ANGLE) = 1/FNHCOS(ANGLE) 

Hyperbolic cosecant DEF FNHCOSEC(ANGLE) = 1/FNHSIN(ANGLE) 

Hyperbolic cotangent DEF FNHCOTAN(ANGLE) = 1/FNHSEC(ANGLE) 

=================================================================================== 

BJ8l:C Ie. B - 159 - DIG PUIICrICIIS 



BASIC JIBF_CI IIDIJAL 

10.3 StrlDs FuaeUoDa 

In the examples, assume that A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
A!$(<aaa ezp1>,<an. ezp2» Generates a string of oharaoters representing the cursor 

oontrol -'oommands for the terminal designated by the oonsole 
terinal attaohment. The first expression is interpreted as the 
!lor1zontal ooordina te. The second ,. expression is interpreted as 
,the vertical coordinate. Both ooordinates are relative to onee 
For example t the upper left corner ot the soreen 1s referenced 
as AT$(1,1}. Only values that are within the range of the 

- attached oonsole may be used. Any values greater than the 
maximum or less than one will cause the f~ction call to be 
ignored .. 

S!'.III8 PUIIcr:tCIIS 

The numerio expression is evaluated, integerized 'and translated 
into the string of oharaoters representing the value in binaryo 
A sixteen charaoter string is always generated. 

Example: PRINT BINOF$(123)i" "jBINOF$(23129) 
0000000001111101 u101101001011001 

Generates a one oharaoter string whose ASCII value is the-valUe 
of the expression (see appendix on "Charaoter Codes"). 

Example: PRINT CHR$(65) 
A -

This is a synonym for the AT$ funotion (see above). 

Generates, a string of oharaoters representing the cursor control 
commands for the terminal'designated by the CONO attachment. 
Correot values for string expression and their funotions are: 

HOME Move- cursor to upper left oorner. 
CLEAR Clear soreen. 
EOS Erase to end of soreen. 
EOL Erase to end of line. 
UP Move oursor up one line. 
DOWN Move oursor down one line. 
LEFT Hove oursor one pOSition to left. 
RIGHT Move cursor one position to right. ' 
BELL Sound the buzzer or bell on the console. 
IL Insert line. . 
DL Delete' line. 
IC Insert oharacter. 
DC Delete character. 
PaN Following oharacters are to be soreen proteoted. 
POFF Following oharacters are not'soreen protected. 
EU Erase unprotected. 
KON Keyboard unlook. 
KOFF Keyboard lock. 
FON Format on. 
FOFF Format off. 
BON Following oharacters are to "blink". 
BOrF Following oharacters are normal (no blink). 
ULON Following oharacters are to be underlined. 
ULOFF Following oharacters are not to be underlined. 
RVON Following oharacters are to be displayed in reverse video 

(black on white background). 
RVOFF Following oharacters are to be displayed in normal video 

(white on black backgrQund). 

Note: The oontrol codes generated by this funotion are the 
internal codes used to perform the funotion. -The code is only 
translated to the proper oharacter sequence when it is output by 
the 'system. ' 

- 160' - BASIC Hew B 



CIIlPDI 1~: IWcrICIIS 

Returns a string of characters in normalized date format 
according to the currently set DATEFORM (DATEFORM 3is 
interpreted the same sa DATEFORM 2) representing the expression 

. interpreted as the number of days since December. 31, 1899. : The 
value ° (zero) is interpreted as the current system date. . 

Example: PRINT DATE$(10)i" "iDATE$(O);" ";DATE$(28262) 
01/10/00 05/15/18 0,/18/77 . I 

DBL$(<atr1ai-ezp>,~ezp1>,~ezp2» Returns the string expression with the 
. subfield whose position in string is indicated by the values of 

. the two numeric expressions deleted. The string deleted is the 
subfield of the string whose position is the <num-exp2> subfield 
of <num-exp1> subfield, including its delimiter. 

DTB$( <atr1Ds-ezp» 

~.ample: B$ = AAAAABBBBAC1C1C1]C2C2C2]C3C3C3 ADDDD 

iffIIc~~r~~,~~~~g~]C3C3C3ADDDD 

i:ffIBR~fit~~~;~;~6~C2C2ADDDD 
i~ffIBR~titbE~D3,0) 

As illustrated, when the, second numeric expression is zero the 
entire field referenced by the first numeric expression is 
deleted. When the field designated by two numeric expressions 
does not exist in the string, the string ,expresion is returned 
unmodified.' . 

Note: Field and subfield' delimiters are not really the characters 
A and ] because the. parity bit is turned on to indicate that the 
character is a delimiter and not a normal ASCII character. 

Validates the stri~ expression tor a'valid date accordigg to the 
currently set DATEFORM (DATEFORM 3 is the same as DATEFORM 2). 
It the string is valid, the standard date format 1s created for 
that date. If the string is invalid, a null string is generated. 
A date may use any non-numeric character as a delimiter between 
month, day, and year except for the semicolon or comma. . 

Example: PRINT DTE$( "7/6/76") ,DTE$("'2/30/76") ,DTE$.( "112154") 
07/06/16 ' 11/21/54 

Err.«atr1Ds-ezp>,~exp1>,~ezp2» Returns with the subfield of the string 
expression whose position 1n string is indicated by the values of 
the two numeric expressions. The string returned is the subf'ield 
of the string whose position is the <num-exp2> subfield of 

. <num-exp1> subfield. 

JW[[C ley B 

Example: B$ = A~AAABBBBAC1C1C1]C2C2C2]C3C3C3ADDDD 
PRINT EXT$(B$,2,0) 
BBBB 

PRINT EXT$(B$,3,3) 
C3C3C3 

'b~~~a1~~~~~~j~3g§C3 
PRINT EXT$(EXT$(B$,3,0),1,2) 
C2C2C2 

As illustrated, when the second numeric expression 1s zero the 
entire field referenced by the first numeric expression 1s 
extracted. When the field oesignated by two numeric expressions 
does not exist in the string, a null string is returned. 

Note: Field and subfield delimiters are not really the characters 
A and ] because the parity bit is turned on to indicate that the 
character is a delimiter and not a normal ASCII character. 

- 161 - SDIIIG FUIIcrICIIS 



B.ISl:C IIFDIICB IIDOAL 
/ -

FOJIIIArt(<mu.-exP>,<a~-exp» This function has the same c~pab1lies as,the PRINT 
USING statement in regards to the format1ng of numeric values. 
The two expressions .are _evaluated and' toe numeric value is 

'f-ormated according to the . masking . characters in the string , 

BBlOP$C <maa-exp» 

expression. . . ' 

•• L~ading asterisk .fill. '. . 
**8' Leadi~ floating dollar, sign .. 
1)8 Trailing literal of DB for,negative values only .. 
CI Trailing literal ot CR for negative values only •. 
> Number surrounded with angle brackets «» tor negative 

values only C), ./ 

I Digit position with leading zero suppression .. 
9 Digit position with leading zero fill. 
.. Trailing sign for positive and negative.values .. 

Trailing minus sign for negative values only .. ' 
&. Normalize number with commas every three digits. 

Use exponenti,al format with single unSigned- digit 
••• exponent •• 
•••• Use exponential format with signed single digit exponent. 
•• Use exponential format with signed' double digit exponent .. 

• •• Use exponential format with signed triple digit exponent. 

Example: PRINT FORMAT$(23,"99999")jFORMAT$(23,"#"II") 
00023 23. . 

PRINT FORMAT$(23
t
' ".·'11") j" "jFORMAT$( 123456 .18, "$$',1 

- ···23 $123,456. 8 ' 

PRINT FORMAT$(12345,"I.IIII,AA,,) 
1.2345E4 

PRINT FORMAT$(-12345.61,"I,IIIIII.#I>") 
<12,345-.67> _ 

For more information and examples see the chapter "Formatted 
Input & Output" in this manual. 

The numeric expression is evaluated,' integerized and translated 
into the stri~ ot characters representing the value in 
hexadecimal., A four character string is always generated. 

Example: PRINT HEXOF$(94)j" "jHEXOF$(23129) 
005E 5A59 . 

DS$(<atr1.Dg-eXP1>,<mu.-exp1>1<mu.-e~2>,<atriDs-UP2» This function. is the 
inverse OI" the BlE$ function, that is, it inserts a subfield 

. into a string. The substring <string-exp2> will be inserted 
. after the subfield deSignated oy the values of the two numeric 

expressions. 'It is important to-note that, the field is inserted 
after the one deSignated. 

Example: B$ = AA~AABBBBAC1C1C1]C2C2C2]C3C3C3~DDDD 
PRINT INS~(B$ 2,0,"NEW") . 
AAAAABBBB NEW1C1C1C1]C2C2C2]C3C3C3~DDDD 

PRINT INS$(B$ 0,0 "NEW") 
NEWAAAAAABBBBIC1C;C1]C2C2C2JC3C3C3ADDDD 

PRINT INS!(B$,3,1,"NEW") , 
AAAA"'BBBB,C1C1C1]NEW]C2C2C2]C3C3C3 ADDDD 

PRINT INS~( B$ 3 -1 "NEW") , 
AAAA ABBBB NEWj C i c 1 ~ 1 ] C2C2C2] C3C3C3, ADDDD 

PRINT INS!(B$,7,2 "NEW") 
AAAA"'BBBB C1C1C1]C2C2C2]C3C3C3ADDDDAAAA]]NEW 

Note: Field and s~bfield' delimiters are not really the 
characters A and ] because the parity b1t 1s turned on to 
ind1catethat the character is a delimiter and not a normal 
ASCII character. 

- 162- BASIC I.. B 



CII1PDR 10: I'Ullcuoa 
LBrl$(<atr1D&-exp>,<nua-~» Indicates a substring of the string ~xpression from 

. the first character ~hrough the nth character where'n is the 
value~of the numeric expression. 

Example: PRINT LEFT$(A$~7) 
ABCDEFG . ,'. 

f' 

LPJD$«atr1D&-exp>,<au. exp» Adds leading spaces to a· st~ing •. The two expressions 
, are evaluated and the resl1lting string expression is expanded t~· 

, the length indicated by the value of the numeric expression by 
_. 'adding sufficient leading spaces. If the stri~ expression is 

, . alreadI greater than or equal to the length indicated no spaces 
are added and the string is returned, unmodified. \ 

Example: ,PRINT "#"-LPAD$("1234" 6)-"1" 
# 12341' " ' 

PRINT "#"-LPAD$("1234" 3)-"1" '1234# " , , 
) . 

L!III$«atr1D&-exp» Removes leading spaces from a string. The string expression 
is evaluated and any leading spaces are removed. ' 

-
Example: PRINT LTRIM$(" ABC DEF "); "I" 

ABC DEF I 

MID$«atr1D&-exp>,<uu.-ezp1>t<aa.-ezD2»-Indicat~s a substring of the string 
expression starting with character N1, for N2 characters where 
N1 and N2 are the values of the two numeric expreSSions. The 

- - length of the string returned will be at most N2-N1+1 
characters. 

OCIOF$(·<uu.-up» 

Example: PRINT MID$(A$,15,5) 
OPQRS 

The numeric expression is evaluated, integerized and translated 
into the string of characters representing the value of the 
number in ,octal. A_six charac~er string is always generated~ 

,Example: PRINT OCTOF$(123)j" "jOCTOF$(94) 
000175 000156 ' 

0YI$(<atr1D&-exp1>,<n __ ~1> <uu.-exp2> <atr1D&-exp2» Truncates or expands the 
second strIng expressIon to exactly-N2 characterst where N2 is 
the value of the second numeric expression. hen the, first 

, ' string expression is . overlaid by the second string expression, 
, - from position N1 fo~ N2 characters. -, 

Example: PRINT' OVR$(A~~2L3L"0123456") 
A012EFGHIJKLMNO~QHSTUVWXYZ ' 

OP$«atr1D&-UP1>,<-. ~1> <uu.-exp2>,<atriDg-exp2» This function is similar to 
the INS, lunctionexcept that it replaces a subfield instead of-

, inserting the ' subfield. The substring (string-exp2)· will 
replace the subfield deSignated by the values of the two numeric 
expressions. If there is no subfield to be replaced then the 
the substring will be inserted in its proper place. If the 
value of the second numeric expression is zero, the replacement 
is for the entire field deSignated by the first numeric 

, expression. 

BAUC ley B 

If the first string expression does not have sufficient' 
subfields, sufficient null fields will be added. 

The string expression must not contain,any characters whose 
value is greater than 127 or the results will be unpredicatable. 

,Using the character A as the field aelimiter and ] as the 
subfield delimiter:. 

Example: B$ = AAAAABBBB AC1C1C1]C2C2C2]C3C3C3 ADDDD 

PRINT REPi(B$,6,0,"HERE") 
AAAA~BBBB C1C1C1]C2C2C2]C3C3C3 A DDDDAAHERE 

PRINT REP$(B$,3,2,"NEW") 

- 163 -



BJSl:C IBFBIIIICB IlDUAL 

AAAAABBBBAC1C1C1]NEW]C3C3C3 A DDDD 

nf~IB=~K'~=A~i~i~~'~~62C2]C3C3C3ADDDD 
Note: Field and subtield delimiters are not really the 
characters A and ] because the parity bit is turned on to 
indicate that the character is a delimiter - and not a normal 
ASCII character. 

IIGRr$(<atrias-exp>,<au. ~» Returns the substring of the string expression from 
. ~he nth character through 'the, last character in the string 

. expression where n is the value of the numeric expression. 

Example:, PRINT RIGHT$(A$,20). 
: TUVWXYZ -

1P1D$(<atrias-ezp>,<Du.-ezp» Adds trailing spaces to a string. - The two 
. . expressions are evaluated and the resulting string expression 1s 
, expanded to the length indicated by the value of the numeric 

expression by adding sufficient trailing spaces. lfthe string 
. expression is already greater than or equal to the lengtn 

indicated no spaces are adged and the string is returned, 
unmodified. ,'-

Example: PRINT ftlfteRPAD$(ft1234ft 6)·ft,ft 
11234 #' , , 

PRINT "1" jRPAD$( "1234" 3)· "1" 
112341 " , 

RPr$«aa. ezp>,(atriDg-exp» Generates a string of <num-exp> repetitions of the 
- . <st"ring expression>. . 

EXample: PRINT RPTi( 3, "ABCD") 
ABCDABCDABCD _ 

1!IIB$(<atrias-exp» Removes trailing spaces from a string. The string expression 
. is evaluated and any trailing spaces are removed. 

Example: PRINT nl"jRTRIM$(" ABC DEF lI)jll#" 
1- ABC DEFI 

Returns a string of spaces of <num-exp> length. 

Example: PRINT LEFT$(A$,3)&SPACE$(4)&MID$(A$,4,5) 
ABC DEFGH 

IDd1catea a' -trias o~ nuaerio characters repreaenti.q the ftlue 
or the...no up ..... 10.. !here are DO leadiDg or trail i ns 
blaaka. 

Example: PRINT "ABC"oSTR$(1.23)oftDEF" 
ABC1.23DEF ' , 

PRINT "ABC"·1.23"IIDEF" 
ABC 1.23 DE~ . ' 

Indicates a string of characters in normalized time format 
(1.e., bh:mm:ss) representing the numeric expression interpreted 
as the number of seconds since midnight of the current day. The 
value 0 (zero) is interpreted as the current time ot day. The 
numeric e~pression must be in the range of 0 - 86399 or the 
function will return the time "00:00:00-. 

Example: PRINT TlME$(7199),TlME$(0) 
01:59:59 15:24:32 

!IlI$«atP.lD&-ezp» Removes any leading or trailing spaces and reduces all embedded ' 
. multiple spaces to a single space. 

Example: PRINT "I""TRIM$(" 
IABC DEF HIJI . 

ABC DEF HIJ ")j"l" 

BJSl:C In B 



CIIlPID 10: IOcrICIIS 

10.1& IDpu~/Oa~pu~ FuaeUOIUI 

Dr 

BASXC ley B 

Returns the ASCII, integer value of the first 'character ot the 
last input, if the first character was a control character or a 
user defined key. When the first character was not acontrol 
character, the value of the function is O. For example: it the' 
last inpu~ was a CTRL/D the value of the INP is 4. It the last 
input was a CTRL/Z the value of INP is 26. If the last input 
_was ABCDEFG the value of INP is O. _ 

"-

Also see the appendix on "User Definable Keys". 

Returns the integer value of. the ATTACHed line length of device 
opened on the I/O channel whose value is <num-exp>. I/O channel o may be used to indicate the console device. 

Example: PRINT LINE(O) REM Console terminal 
79 

Returns the integer value of the ATTACHed page length of device 
opened on the I/O channel whose value is <num-exp>. I/O channel 
o may be used to indicate the console device. 

Example: PRINT PAGE(O). REM Console terminal 
23 . 

Returns the integer count of the number of characters output on 
the I/O channel indicated by the numeric expression. 

Example: PRINT "123456";POS(O) 
. 123456 6 

- 165 - VO FUllCUCIIS 



BJSI:C IIFBIIIICB IlDUAL 

10.5 Logical PUDot:1ou' 

The following functions allow the programmer to manipulate the bits of an integer 
value (binary word--16 bits). All of_ the arguments are numeric expressions whose 
value will be integ~rized. 

LIL« __ exp1>,<Jma-exp2>1 If the valqe for either of the expressions is negative .-
, tnen it is replaced with the value O. -If the first exprression 

is greater than 65535 then it is replaced with the value 0. If 
the second expression is greater than 15 then it is replaced 
with the value O. A logical rotate lett is perfor.med on the 
first integer tor (num-exp2> bit-positions. ' . 

LII«~ezp1>,<a~2» If the value tor either of-the expressions is negative 
then it is replaced with the value O. It the first expression 
is greater than 65535 then it 1s replaced with the value O. It 
the second expression is greater than 15 then it is replaced 
with the value 9. A logical rotate right is performed on the 
value of (num-exp1> for (num-exp2> bit positions. . . 

LSL(~exp1>,<mDl exp2» If the value for either of the expressions is negative 
then it is replaced wi th the value O. " If the first expression 

, is greater than 65535 then it, is replaced with the value 0., If 
the second expression is greater than 15 then it is replace¢ 
with the value 9. A logical shift lett is performed on the 
value .of' (num-exp1> for <num-exp2> bit positions. 

LSI(<ua.-exp1>,<au. ~2» If the value tor either of the expressions is negative 
then it is replaced with the value O. If the first expression 
is greater than 65535 then it is replaced with the value O. If 
the second expression is greater than 15 then it is replaced 
with the value 9. A 1081cal shift right is performed on the 
value O't <num-ex·p 1> -for <num-exp2> bi t -posi tions. 

10.6 Plle P1mct:10D . 

IOP( (DU. exp» The numeric expression is evaluated and the I/O channel 
corresponding to that value is checked for end-of-file
condition. If the channel has not reached end-of-file the value 
of the function is 0 (false). If the Qhannel has reached 
end-of-file the value of the function is -1 (true) •. 

Channel zero (console) is never at end-Of-file and will cause an 
error if tested with this function. Use the INP function to 
test for a CTRL/Z. 

-. 166 - BJSl:C ley B 



. CIIlPDI 10: F1JJICUc.s 

1 0 ~ 1- Error FuacU.oDa 

The following two functions do not have any arguments and should only be used in an 
error handling routine (see ON ERROR and RESUME statments). 

I. BIL R b eturns the integer line num er. of the statement causing the 

BASI:C ley B 

error to occur. A value of zero is returned if no error has 
. occured. 

Note: When this - function is used on the left side of a 
relational expression and an unsigned integer is used on the 
right side - of the same relational expression the RENUMBER 
command will assume that the unsigned integer is a line number 
~nd adjust it accordingly. .. _ 
Note 2: When this function is used in a compiled 'program the 
value returned will be that of the hexadecimal address of the 
statement causing the error. This address is the same as that 
listed when the program-was compiled. This should not affect· 
the programmer except when th~ value of ·this function is 
displayed on the screen. . 

Retur~ the integer error number of the error that occured. ' A 
value of zero is returned if no error has occured. For a list 
of error numbe~s, their meanings and what might cause them see 
the app~ndix nErro~ Messages". . 

This function may be assigned a value with the LET statement in 
order that error handling routines may be tested. 

- 161 - BOOR FUllCUCIIS 



BASIC IBPBIIICB IIDOJL 

10.8 1J8JI PuDcu'OIl 
. " 

The USR function allows the BASIC programmer to interface a assembler language 
subroutine to the BASIC language program. 

When the user requires a procedure t~ be accomplished that requires real-time 
processing or can only be d.one with the features of the CPU that are not available 
to the-BASIC program, he must write an assembler language program. In many cases 
it 1s advantageous to only have apart of the procedure written in assembler code 
wit~ the more routine processes accomplished with a BASIC langu~e program. In 
order to' transfer control and data between the user written subroutine ,and the 
BASIC program the USH function is used. -

OSI«addr>,<au.ezp» 
USB(<adclr>,<atr.1Da-4xp» 
(addr) 

(num-exp> 

(string-exp> 

refers to the entry point address, relative to the load address 
of the assembler subrouti·ne. 

when evaluated and rounded to .the nearest integer, is the 
sixteen bits of Signed integer data to be transmitted to the 
assembler subroutine via the HL registers. When the subroutine 
is ready to return control back to BASIC the numeric value to be 
assigneCi to the function should be placed in the HL register 
pair. . 

when evaluated, is left in the ftstring accumulatorft. The 
address of this string accumulator is placed in the HLregister 
pair before control is given to the user subroutine. The string 
accumulator is a 256 byte area that contains a one byte lengtn 
followed by up to 255 characters. This area may be used by the 
subroutine as long as care is taken not ·to exceed the 256 byte 
limit. When the subroutine 1s ready to return control back to . 
BASIC1 it should load the HL. register pair with the address of 
the s~ring that is to be re.turned. 

The USH function is a standard function call and may be used in any pos1tion of a 
BASIC statement that the other functions may be used. 

Only one user written assembler language subroutine may be in memory while BASIC is 
executing however the one subroutine may in fact· be several subroutines 
concatenated. together. Information may be found regarding assembly language 
programming in the OASIS MACRO Assembler ~anguage Reference Manual. . 

The subroutine is loaded into memory by specifying it in an OPTION USR statement. 

The 9ASIS MACRO Assembler Language Reference Manual has an example of a USH 
routl.ne. . 

- 168 - B.lSZC 1_ B 



APPBlDD .l 

IBSBIItBD VODS 

The following words are reserved and may not be 'used for variable names. Tha 
notation [ ••• l means that a variable may not even start with the word indicated, if 
that variable is ever used with an implIed LET statement., . 

=================================================================================== 
ABS FIX MAX RIGHT 
AND FLOAT MID . RND 
ASC FNEND MIN ROUND 
AT FN[ ••• ] MOD RPAD 
ATN FOR MOUNT RPT 
BIN FORMAT NBR RTRIM 
BINOF GET NEXT RUN 
CASE GOSUB OCT' SCH 
CEND GOTO OCTOF SEC 
CHAIN HEX ON SELECT 
CHR HEXOF OPEN SGN 
CLEAR IF OPTION SIN 
CLOSE IFEND OR SLEEP 
COMMON IMP OTHERWISE SPACE 
COS INP OUTPUT SQR 
CRT INPUT OVR . STEP 
CSI INS PAGE STOP 
DATA INT PI STR 
DATE LEFT .POS TAN 
DAY LEN PRINT THEN 
DEF LET PROMPT TIME 
DEL LINE PUT TRIM 
DELETE LINK QUIT UNLOCK 
DIM LIN PUT QUOTE USR 
DTE LOG RANDOMIZE VAL 
ELSE LPAD READ WAIT 
END LRL READNEXT WEND 
EOF LRR REM WHILE 
EQV .LSL REM[ ••• ] WRITE 
ERL LSR REP XOR 
ERR LTRIM RESTORE 
EXP MAT RESUME 
EXT MATCH RETURN 

----------------------------------------------------------------------------------------------------------------------------------------------------~-----------~-----

• All "variables" 'that start with the 
reference to a user defined function. 

letters FN will ,lways be treated as a 
{See DEF statement. 

BJSl:C ley B - 169 - IISBIYBD VOIIDS 



APP.IJIDD B 

1l$D DBFDIBI.I 'DIS. 

OASIS BASIC allows the programmer to code programs in such a manner that he can 
test whether certain keys were entered and then take whatever action he has 
programmed. These certain keys are the control keys, usually refered to by CTRL/x 
where x 1s one of the standard alphabe'tic keys modified by the ,control key. 

, Wbe~ a program asks for keyboard input (MAT INPQT, INPUT, LINPUT, or LINPUT USING ) 
and the operator responds with a control key, program control will return to t~e 
BASIC program. The operator need not type a carriage return after the 'control keyo 
No oharacters will be displayed on the console devioe when the operator types a 
control key. c . ' , ' 

The program can test which control key, it any was entered by using the INP 
functioDo Only input from the console keyboard (iIO.channel 0) may be tested with 
the INP functIon. The programmer may specify whatever action he wishes when. the 
correct control key is ~nteredo -. 

This can be a very useful feature if the programmer is consistent in defining the 
meanings of the control keys. For instance he may define the CTRL/D to mean the 
current date. This is obviously .easier tor the operator to enter than ty·ping the 
current dateo It is also safer than programming a carriage return only to mean the 
current date or some other default value. ' -

Some terminals have additional keys available to the operator. These are 'generally 
called function or program keys. If these keys generate an 8 bit code that is not 
one of the displayable ASCII characters then these keys may also be used as user 
definable keys bI BASIC. The displayable ASCII characters have de.cima1 values 
between 32 and 127, inclUSive. 'To determine the exact values generated oy these 
keys refer to. the operators or users manual for the specific terminal. ' 

Example: 

The toll owing 1s a simple program that shows the user detinable key feature of 
OASIS BASIC 0 ' 

10 OPTION PROMPT CHR$(O) 
20 LOOP: PRINT "Please type a control key: "j 
30 LINPUT USING "I" KEY$\PRINT 
~O IF INP=O THEN IF'KEY$<>"" THEN GOTO ERROR 
50 PRINT "The key you typed has a value of";INPj 
60 PRINT "and was the .key ";CHR$(INP+64) . 
1

0
0 GOTO LOOP . 

8 ERROR: PRINT "You don't follow directions very well." 
go GOTO LOOP . 

B.1 . Control KeJ'Val.uea 
Key Value Key Value Key Value Key Value 

==~~==============~=============================.=================================== 
@ 0 H 8 • P 16 X 24 
A 1 I g • Q 17 Y 25' 
B 2 J 10 R 18 Z . 26 
C ~ K 11 S ~6 ~ ~~ •• D • L 12 T 
E 5 M ~~ U 21 29 
F,6 • N V 22 30 
G 7 0 15 W 23 31 ••• 

===============~======================================.============================ 

• These key values are used for editing by LINPUT USING, and/or INPUT statments • 

•• This is the escape code. Because, the system control keys are escape sequences 
entry of this key once is an indication. to OASIS that the next character may bea 
system request. To get a value 27 passed to the INP function the operator must 
type this key twice. When this is done one escape 'character 1s passed to BASIC 
which, if it is· the first character of an input field, will set the INP function to 
21. . -

••• This value may also bew generated by some terminals by a CTRL/DEL or CTRL/RUB. 

Some systems have other keys that may be tested by this function. If this 
situation is possible then you should use the above program to detect and determine 

usa DBFDIBLB brs - 110- BASIC leY B 



lPPBlDU .B: usa DIFDABI.I ors . 
the- value ot the specific keys •. 

It. is possible that a particular system may have other or different keys that are 
trapped by the operating system and never passed to the BASIC program. It 1s also 
possible that some keys may generate different values than those listed here. Both 
of these situations are dependent upon the SET values for: RUBOUT l LEFTl RIGH. T, UP, 
DOWN, CANCELJ, ESCAPE and the console class code. For more inr,-ormat on see the 
chap~er "SET ~OMMAND", in the OASIS System Reference Manual. 

BASIC ley B - 111 - USBII. DBFDlBLB DIS 



====================================.=======.===================================="==== 
AUTO [<start l1ne>[,<1ncrement value>]] 

-----------------~---------------------------~------------------------~-----------~ BOIDII 
.D,QTTOM 

-----~--------------~---------------------------~----~--------~-~-~------~---~~-~~-BIBB 

IIAK ~AT <l1ne reference> [AFTER <count>]] 
AI ON <variable> [CHANGE] [AFTER <count>]] 
AX ON <variable> (relation> (value>] 

-------~-------~----~-~~-~~------~--~~---~--~----~-~-~--~----~------~---~----~~----CR'MI 
~ANGE"/trom string/to string/ [<range>] 

~----~--~~--------------------------------------~----~---------~----~---~-----~-~~~ CCIIYDOB 
~NTINUE 

-~--~----------------------~---------~---------~-------------------------~-~------~ DBLBD 
aLETE [<range>] 

--~------------------~----~~----------------~~-~-----------------------------------
<11ne-teed> 
<down arrow key> 

-----------------------------------------------------------------------------------BlLP 
HELP 

---------------------------------------------------------------~-------------~-----DDIft 
~NDENT [<indent value>] 

-----------------------------------------------------~---------------~-------------
l&NGTH 

----------------~~----------------------------------~----~-~---~----------~--------
.LiST [<range)] 
<Carriage return> 

--~~--------------~~----------------~------~-------~-----~------~------------~-----
.L.Q.AD <program name> [<program type>] 

-----------------------------------~---~-------~---------~-------------------------
~OCATE l<string>1 [<range>] 

-----------------------------------------------------------------------~-----------LPLISr 
l.lInll,LIST [<range>] 

--------------------------------------------------------------------------------~--
.LiI n ]1.REF 

------~-----------------~----------------------------------------------------------IIODIPI 
MODIFY [<range>] 

---------------------~--------------------------------------------------------~----.... 
NAME [<program name>[. <program type> [ : <program disk>]]] 

------------------------------------~--------~-------------------------~-----------lEV 

---------------~---~---------------------------------------~~-~--------------------QUIT 
~T [<number>] . 
~T [<unquot~d string» 

---~------------~-------------------------------------~~----~~-~---------~---------
RENUMBER [<first> [<incr> [<start> [<end>]]]] 

-------~-----~------------------------------------~-~-------~-------~--------~-----.. 
RUN [ <program name>] [<start"ingline > ] 

---------------------------------------------------~--------------------~----------SAR 
SAVE [<program name> [<program type> [<program "disk>]]] 

-----------------------------------------------------~-----------------------~~-~--
~TEP [<count>] 

112 JWD:C ... B 



lPPBlDU C: CCBIDD' S1JIIIIU 

---------------------------------~-------------------------------------------------TOP 
IQP 

-----------------------------------------------------------------------------------DACE 
I.RACE 
DACE VARS 

-----------~----------------------------------------------------------------------~ UlBIBB. 
YBaREAK [AT <line reference>] 
YHaREAK [ON <variable>] 

-----------------------------------------------------------------------------------

UP 

lUiTRACE 

<up-arrow key> 
<control/Z> . 

~----------------------------------------------------------------------------------VDS 
YARS [<variable list>] 

-----------------------------------------------------------------------------------
IREF . . 

------------~---------------------------------------------------------------------------------------------------------------------------------------------------------

BASIC I .. B - 113 -



.lPPBlDU D 

ST.lDliilY SUIIWIY 

=================================================================================== 
CJSB _ 

[ <,line-no>] [<label> I CASE <expression>, _ 
---------------------------------~-------------------------------------------------caD - -

[<line-no>] [<label>] CEND 
----------~~~-------------------~~-~---------------------~--~-------~-~--~------~--CBlD 

[<line-no>] [<label>] CHAIN <string expre~sion> 
-----------~-------------------~--~---------~--------------------~-~-~-------~-----ClII. -

[<11~e-no)] [<label>] CLEAR_[<variable list>] 
-----------~~-----------------~----~--------------------~---~----------------------CLOSB ' 

[<line-no>] [<label)] CLOSE I<channel> 
---------------------------~-------------------------~-----------------------------
~line-no>] [<label>] COMMON '~variable list> 
-------------~----------~-----------~----------------------~-----------------------csx ' , 

[<line-no>] [<label)] CSI <string expression> , ' 
-------------------------------------------------------------------~---------------DAD. -

[<line-no>] [<label>] 'DATA<literal>[,<literal>]8o~ 
-----------~--------------~---------------------------~~--------------~------------DBf'- , ," 

[<line-no>] [<label>] DEFFN<s,imple variable>[ ( <arg list»] [ = <expression>] 
~ -------------------------~--------------~-----------------------------------------~ DBLBD.. , 

[<line-no>] [<label>] DELETE,I<channel>,<key> 
-----------------------------------------------------------------------------------DIll ' 

[<line-no>] [<label>] DIM <simple var>«numeric expr>[,<numeric expr>]» ••• 
----------------------------------~--------~---------------------------------------ILSI ' 

[<line, -no>] ELSE <statement> 
[<line-no>] ELSE <line number> 

---~---------------------~---------~------------------------------------~----------lID ' 
[<line-no>] [<label>] END 

-------------------------------------------------------------~--------------------~ PDIIJ) 
[<line-no>] [<label>] FNEND , 

--------------------------------------------------------~----------~---------------FCdI ' -, 
[<line-no>] [<label>] FOR <num var>=<num exp> T6 <num exp>[ STEP <num exp>] 
[<line-no>] [<label>] FOR <var> = <literal list> -

------------------------------------------~----------------------------------------GET " . 
[<line-no>] [<label>] GET <device> <numeric expr>,<variable- list> 

-----------------------------------------------------------------------------------'GQSUB " 
[<line-no>,] [<label>] GOSUB <line reference> 
[<line-no>l [<label>] GO SUB <line reference> _ 

-------------------------------------~------~--------------------------------------GOm ' . . 
[<line-no>] [<label>] GOTO, <iine reference> ' 
[<line-no>] [<label>] GO TO <line reterence> 

-----------------.--------~---------------------------~---------~-------------------IF 

~
-<line-no>~ ~<label>~· IF <relation> THEN <statement> [ELSE <statement>] 
<line-no> <label> IF <relation> THEN <line-ret> [ELSE <line-ret>] 
<line-no> <label> IF <rel> ' 

~---------------------------------------------~------------------------------------IFBID 
[<line-no>] [<label>] IFEND 

-----~--------------------------------------------------~----------------------~---DPIJT 

~
<line-no>~, ~<label>~ INPUT [<prompt expression>, ] <variable list> 
<line-no> ~label> INPUT I<channel>:<variable list> 

, <line-no> <label> INPUT I<channel>,<key>:<variable list> 

ft.lDllilf ,SOIIf.UY uuc .... B 



IPPBlDDD: S'lATBiiii ,SmIt&U 
, " 

----------------------------------------------------------------------------------~ Lft . ' . , ' 

t
<line-nO>fl<label>lILETl <string variable> = <string expres'slon> <line-no> <label> LET <numeric var> = <numerio ex r> -, 

'<line-no> <label> LET <string variable><substring~ = <string expr> 
, <line-no> <label> LET ' <user defined funotion> = <expression) 

<line-no> (label>. LET ERR = <numerio expression> , 
------------------------------~----------------------------------------------------tJOI[ " , 

,[<line-no>] ,[<label>] LINK <string expression> LD]' " <line-no> <label> LINPUT [<prompt:' expression>, ]<stri~ variable> 
<line-no> <label> LINPUT I<ohannel>:(string variable> 
<line-no>, <label>" LINPUT <ohannel>, <key>: <:stri variable> 

. <line-no>~ ~<label>I LINPUT t<promPt expr>,l USING~sk>.<string var> 
-----------------------------------------------------------------------------------HAT 

[<line-no>] [<label>] MAT <array' name> = <array name> 
[<line-no>] [<label>] MAT <array name> = «expression» 

----------------------~------------------------------------------------------------HAT DPUr ' -

~
<line-no>1 ~<label>1 MAT INPUT <array name>,' , 
<line-no> <label> MAT INPUT I<ohannel>: <array name> 
<line-no> <label-> MAT INPUT I<ohannel>,<key>: <array name·> ' 

------------------------------------------------------------------------------------IlAT PUft, ' 

~
<line-no>~ ~<label>~ MAT PRINT <array name list> <punot> ' ' 
<line-no> <label> MAT PRINT I<ohannel>: <array name list> <punot> 
<line-no> <label> MAT PRINT I<ohannel>,<key>: <array name list> <punot> 

--------~----------------~-----------------------~--------------------------------HAr IBID " 

~
,<line-no>1 ~,<label>~' MAT READ <array name> 
<line-no> <label> MAT READ I<ohannel>: <array name> 
<line-no> <label> MAT READ I<ohannel>,<key>: <array name> 

tl&T 1fII!B' ' , 
[<line-no>] [<label>] MAT WRITE I<ohannel>: <array name> 
[<line-no>] [<label>] MAT WRITE I<ohannel>,<key>: <array name> 

----------------------------------------------------------------~------------------'1IIJft 
[<line-no>] [<label>] MOUNT <string expression> 

---------------------------------~-----------------------------------------------~-orr 
<line-no>- NEXT [<variable>] 

-----------------------------------------------------------------------------------(I( 100. 
[<line-no>] [<label>] ON ERROR GOTO <line reference> 
[<line-no)] [<label>] ON ERROR GOTO 0, . 

-----------------------------------------------------------------------------------(I( , ' ' , 
[<line-no>] [<label>] ON <numerio expression> GOTO <line referenoe list> 
[<line-no>] [<label>] ON, <numerio expression> GOSUB <line reference list> 

-----------------------------------------------------------------------------------Oftm , 
[<line-no>] [<label>] OPEN I<channel>:, <string expr>,<mode> <method>[<options>] 

-----------------------------------------------------------------------------------OftICli , 
[<line-no>] [<label>]' OPTION <option list> 

-----------------------------------------------------------------------------------01IIIIlIIDI 
[<line-no>] [<label>] OTHERWISE 

iiiii-------------------------------------~----------------------------------------
. ~<line-no>1 ~<label>~ PRINT [<expression list><punot>] - ' , 

<line-no> <label> PRINT I<ohannel>[:<expression list><punot>] 
<line-no> <label> PRINT l<ohannel>,<key>[:<express1on list><punot>] 

-------------------------------------------------------------------~---------------PIIIIr USIirG ' . 

~
<line-no->~ ~<label>~ PRINT USING <mask> <expression list><punot> 
<line-no> <label> PRINT I<ohannel>: USING <mask>,<expr l1st><punot> 
<line-no> <label> PRINT I<ohannel>,<key>: USING <mask>,<expr list><punot> 

------------------------------------~--------~-~-----------------------------------PUr . 
[<line-no>] [<label>] PUT <device> <numerio expression>,<expression list> 

JWlIC In B - 115 -



BJSZC' DFDDCB IfDUlL 

----------------~----------------~----------~------------------------~----~~----~~~ QUl'f . 
[<line-no>] [<label>l QUIT [(expression>] 

-----------------------------------------------------------------------------~--~-~ 
'~-no>] [<label>] RANDOMIZE 
---------------------------------------------~-------------------------------------IBID, " '. 

~ <line-no>~ ~<label>~ READ <variable list> 
, <line-no> <label> READ I<channel>: <variable list> 

<line-no> <.label> READ '<channel> ,<key>: <variable list) 
---------~~----------------~----------------~---------~-~~---~-~~~----~~~~----~~---
IBIDr~Ine-no>] [<label)]' READ~EXT l<channel),<str1ng key): <variable list> ' 
-------~~-----~~~~--~~~~-~-----------------~-~~--------~~~~----~--~----~------~----- ' , [<line-no> I [<label.)] REM <any characters> 

-m~:::~~-~~~::~~~-;;;;-~~~~:-~:;~;----------------------------------
--------------------------------~---------~----------------------------------------IBS1DII 

[<line-no>] [<label>] RESUME '<line reference> 
[<line-no>] [<label>] RESUME 0 

-----------------------------------------------------------------------------------JlfiftI 
[<line-no>l [<label>] RETURN [<line ref>] 

-----~-------~----------------------------~~---------------------------------------- [<line-no>l [<label>] RUN [<string expression>] 
-------------------------~--------------------------------------------------------~ ~l1ne-no>] [<label>] SELECT [<expression>] 
~--------~-------~--~---------------------------~-------~-------~------------------
SLIIf<line-no>l [<labei>l SLEEP <numeriC expression> 
-------------------------~--~~------~~~--~--.------------~--~-------------------~--smp " 

[<line-no>] [<label>] STOP [<expression>] 
---------------~------~---------~---------~-~~-------------~-----------------------1')Ig -

[<line-no>] THEN <statement> 
[<line-no>] THEN <line number> 

------------------~--~-~----~--------~---------~---------------------------~-------1J&(J(Z . 

[<line-no>] [<label>] UNLOCK I<channel> 
~--------------------------------------~-------------------------------------------VArr 

~
<line-no>~ t<label>~ WAIT <line-no> <label> WAIT DEVICE <numeric expression> 
<line-no> <label> WAIT PORT ~numeric expr>l<numeric expr>[,<numer1c expr>] 

- <line-no> <label> WAIT MEMORY <numeric exp~,<numeric exp>[,<numeric exp>] 
------------------------------------~----------------------------------------~-----DID 

, [<line-no>] [<label>] WEND 
------------------------------------------------------------~----------------------VIIILB 

[<line-no>l [<label>] WHILE <numeric expression) 
~-----------------------~-----------------------~-------------------~---~---------~ 
VII!f<line-no>l [<label>] WRITEI<channel): <expression list> 

t<line-no>] [<label>] WRITE I<channel>,<key>: <expression list) 
=============================================================================~===== 

SftDliiiI SUIIID'I - 116 - IWIXC a. B 



lPPBlDIX B 

F1JlIcrza. S1JIIWlY 

In the following summary the ar~ents N, N1 and N2 all represent numeric 
expressions; the arguments A$ and B$ all represent string expressions. 

JBS(I) Returns the absolute value ofN. 

1SC(1$) Returns the ASCII value of the first character in A$. 

Ar$(R1,R2) Returns the string of characters that! if printed, would position 
the cursor.at N1,N2. (N1 is horizonta , N2 is ver~ical.) 

ADI(I) 

BD(A$) 
BDOP$CR) 
CO.CR) 
COS(I) 

CIlT.CA.) 
DAD$CI) 

D&Y(A.) 

DBL$CA.,R1,R2) 

DD$CA.) 

"CI) 
ElL 

ED' 

KIP(R) 

Bl'I'$(A.,.1,R2) 

F:O:CI) 

FOIIflr$C I,A.) 
BBI(A.) 

IIBIOF$CR) 

In 

Returns the arctangent ,of N (N in radians). 

Returns a decimal value for the binary A$. 

" Returns a string representing the binary value of N. 

Returns the character having the ASCII value of N. 

Returns the cosine of N (N ~n radians). 

Performs non x/y console output control. 

Internal date to external date. 

External date to internal date. 

Returns A$ with field designated by N1 and N2 removed. 

Test A$ for valid date. When valid converts to normalized format, 
else returns null st'ring. 

Returns End-Of-File flag.for I/O channel N. 

Returns line number of statement causing error. 

Returns number of error. 

Returns the value of eAN. 

Returns the substring of A$ for field N'1 of A$ and subfield N2 of 
field N1. 

Returns the integerized value of N. 

Converts integer N to floating pOint. 

Formats N according",to mask A$. 

Returns a decimal value for the hexadecimal A$. 

Returns a string representing the hexadecimal value of N. 

Returns the numeric value of the control character input" to 
console. ' 

IIS$CA.~."R2,B$) Returns the string of A$ with string B$ inserted after the 
substring of A$ for field N1 of A$ and suofield N2 of field N1. 

lIT(l) Returns the greatest integer which is less than or equal to N. 

urr$CA.,B) 

LIII(A.) 

LUB(I) 

LOG(I) 

LPID$C A.,B) 

LlLCI1,R2) 
LDCI1,R2) 

BJ8l:C 1_ B 

Returns A$ from the first character to the Nth character. 

Returns the length of string A$. 

Returns line length of device opened on channel N. 

Returns the natural logarithm of N. 

Adds leading spaces to \A$ to make string of length No 

Logical rotate left- N1 for N2 bit positions. 

Logical rotate right N1 for N2 bit positions. 

- 111 -



B&SIC IBtIlDCB 1IDD.lL 

LSL(R'-,82) 
LSI(R1,R2) 
LDDI$(.l$) 

III!CB(U,B$) 

HIX(.1,R2) 

HID$(U,R1,R2) 
IID(R1,B2) 

IIID(R1,1I2) 

.ICU) 

acrCU) 

Logi~al shift left N1 for N2 bit positions. 

Logical shift right N1 tor N2 bit positions • 

. "Remove leading spaQes trom string A$. 

. Tests string A$ against mask B$; returnS true/false (-1/0) e 

Returns the great~r value of N1 and N2. 

Returns A$ from the N1th character tor,N2 characters. 

Re~urns the lessor value of N1 and N2. 

Returns remainder of H1" divided by H2. " 

Test A$ for numerics. -Returns 0 it any non-numeric characters in 
Ait else returns -1 e , - , 

Retur~ a decimal value tor the octal A$. 

OCIOF$(R) Returns a string re~resenting the octal value of N. 

011$(1$,.1,82,8$) Returns A$ with B$ overlaid, starting at N1th character for N2 
characters. , . 

PMB(R) Returns page length ot device opened orf channel N. 

PI Returns the constant value 3.141592653590. 
POS(.) Returns'the current character position of output channel N. " 

1BP$(.1.$,81,R2,B$) ReturnS the string. 'Of A$ with string B$" replacing the substring 
of A$ for field N1 of A$ and subfield N2 of field N1. 

BIGBr$(.l$,R) Returns A$ from the Nth character to the end. 

lID 

....,(.1,R2) 

HAD$(U,.) 
BPr$(R1,.l$) 
BDIII$(.I$) 

SCB(R1,U,B$) 

SBCCU) 
SGI(J) _ 

SU(.) 
SP&CB$(.) 

SQI(.) 

SIB$C.) 

rO(.) 

rDI$(.) 

DDI$(.I$) 

0811(.1,R2) 

0.$(.,.1$) 

VAL(&$) 

, Returns a random number between 0 and " exclusive. 

Rounds ~1 to number of positions indicated by H2. 

Adds trailing spaces toA$ to make, string of length N. 

Returns the string ot N1 repetitions of A$. 

Removes trailing spaces from string A$. 

Returns the character Position of the string B$ within A$ with the 
search starting at character position N1. 

External time to internal time. 

Returns the algebraic sign ot N (+ or -). 

Returns the sine ot N (N in radians). 

Returns the string of N blanks. 

Returns the square-root qf N. 
• I 

Returns the string of characters representing the number N. 

Returns the tangent of N (N in radians). 

Internal time to externalt1me. 

Remove leading and trailing spaces from string A$. 

Calls assembly subroutine at relative location N1, passing N2 to 
the routine. . 

Cals assembly subroutine at relative location N, passing A$ to the 
routine. 

Returns the numeric value of A$. 

- 118· - BJSZC .... B 



APPBlDU F 

102 STAHllilr OJ) ,FOIICU" IICBPrIa.S 

RUN2, the smaller version of the OASIS BASIC, performs exactly like the standard 
RUN command except that certain statements and functions of OASIS BASIC have. been 
omitted. . Omitting these features reduces the overhead requirements of BASIC bl 
approximately 3 thousand bytes of memory .. ' . As can be seen the statements and 
~unctions that have been omitted ,from RUN2 are not normally used by most 
application programs and will c~use ~o problem~ for most users~ 

When a program ,is executed' using RUN2 and an attempt is made to execute one of the 
statements or functions. that have·tieen omitted from RUN2 a non-trappable error,44 
occurs. 

F .1 State.eDta OId.tted 

The statements that have been omitted 'from RUN2 are: GET, PUT, RANDOMIZE, an~ WAIT. 

"F .2. PaDot1.01U1 . OId.tted' , 

The functions that have been omitted from RUN2'are: ATN.,I. BIN" BINOF$l COSJ. DEL$, 
EXP, EXT$', HEX, HEXOF$, INS$, LOG, LRL, LRR, LSL, LSR, OC"l" , OCTuF$,' REP~, BRu, SIN, 
and TAN.. 

- 119-



0.1 eo-encl Brron 

11rl'O O8IIDOt replace or ...... i1aee 

APPBIDIJ: 0 

DIOI ItBSSIGBS 

Indicates that the AUTO command attempted to use a line number already in 
use or that there w~s a line whose -line number was between the last auto 
line number and the next auto line number to be used. 

Disk Pall 

Indicates that the disk used by the SAVE command 1s full. . Remember that 
saving an existing file causes the previous version of the file to be 
repamed BACKUP o 

~fic18Dt 1'-017 

An attempt was made to add another line to the program in memory that 
could not. fit into the available m~mory. 

IImll1d ~nc:' aptax 

Indicates that the command was recognized but a syntax error was detected. 

IImll1d Prosraa R-

An attempt was made to NAME, SAVE, LOAD, or COMPILE a program using an 
invalid name. The program name mus~ be a~ least two characters in length 
and start with a letter. . 

IImll1d Stat.eDt IIuaber 

An attempt was made to enter or display a line with an invalid line 
number. Line numbers/must be between 1 and 9999. 

BeDUUer IaDp Error 

Indicates that the line numbers that would be generated by the RENUMBER 
command would cause lines to change their relative location in the 
program. 

StriDs --iDa or iDyalld 

Occurs on a CHANGE or LOCATE command when no previous CHANGE or LOCATE 
command has been executed and no valid string arguments were specified. 

Oareoopizecl ___ _ 

Indicates that the command name was abbreviated too much or misspelled to 
an extent that the command desired could hot be discerned. c 

G.2 Bd1t Errors 

ea-a Bequired 

ColoD leq1d.red 

BDd ot L1De Beq1d.red 

Equal . Sip Bequired 

Bxp ..... 10D Bequired 

Pile Hark 1eq1d.red 

~.,.rd lI1aaiDa or Jd.a-apellecl 

JU.aaiDs PareDtbea1a 

1I1aer1c bpreaa10D Beq1d.red 

1Iuaer1c Yariable leq1d.red 

State.eDt IIuaber lequired 

BIIOJI IIBSSIGIS - 180 - BJSIC ley B 



Btrua Ezpreaa:l.oD Bequ1red 

StnDs Yariable Bequ1red 

Tend.Dat1Ds Quote Bequ1red 

'Too IIaDF Subaoript8, 

UDbal,8IICecl PareDthea:l.a 

UDNoop1 zecl Stat.eDt 

G.3 ec.plle Errore 

CJSB 1d.thout SBLBCr. 

CASE statements may only be used within a SELECT-CASE-CEND'structure. 

CJSBleaa SBLBCr. 

Each SELECT-C'ASE-CEND structure must have at least one 'CASE statement. 

CJSB ~ollOld.Dg ODIBIIIISB. 

CASE statements may not follow an OTHERWIS& statement as it will not be 
executed. 

CBID without SBLBCr. 

CEND statements may only be used to denote the end of a SELECT-CASE-CEND 
structure. ' 

a.sB without D'. 

ELSE statements may only be used in a multi-line IF-IFEND structure. 

FDIID without DBF. 

FNEND statements 'may only' be used to denote the end of a multi-line 
function definition. 

FDIID 1Iiaa:l.Ds. 
FNEND statements must be used to denote the end ot a multi-line function 
definition. 

FOB without orr. 
Every FOR statement must have one matching NEXT statement following it in 

,the program. 

POB Dested too deep. 

FOR-NEXT structures may only be nested to 32 levels. 

D' ,aeatecl too deep. 

IF-IFEND structures may only be nested to 32 levels. 

IPIID v:l.thout IF. 

IF END statements may only be used to denote the end of an IF-IFEND 
structure. 

Illepl DBF De8t1Ds. 

Multi-line function definitions may not be nested. 

D' without IPIID. -

Every multi-line IF-IFEND structure must have one matching IFEND statement 
following the IF in the program. 

Label 18 IIUlt:l. d~1Decl. . 

Line labels may only be de~ined once in a program. 

BJSIC Bey B - 181 - OIOB MlSSIGIS 



BASZCIlFBlBlCE IlDUAL 

lioN thaD ODe ODIBIIIISB. 

A·SELECT-CASE-CEND structure may only have one OTHERWISE statement. 
Bore tJIaD, ODe BLSB. 

An IF-IFEND structure may only have o~~ ELSE statement.' 

lEU without POB. 

The NEXT statement mal only be used r-o denote the end of a FOR-NEXT 
structure and ' the NEXT statement must physically follow the FOR statement 
in the _ program., "~_,, 

ODIBIIIISB without. SBLBCr. 

The OTHERWISE statement' may only be used within a SELECT-CASE":CEND 
structure • 

• .,. ... 1108 to 1IIIdeftDecl l1ne 

Line numbers referenced in a program must eXist in the program. 

BerereDOe to 1IIIdeftDecl ].abel 

Line labels referenced in a program must be defined i~ the program. 
_. LIIK, or CIIlD Iaaa l.1De m.ber. 

The' line number operand of the RUN" CHAIN, and LINK statements is no 
longer available. 

SBLBCr .. t8ci too deep. 

SELECT-CASE-CEND structures may only be nested to a level of 32 deep. 

SBLBCr 1d.thout CIID. 

SELECT-CASE-CEND,structures must be terminated with a CEND statement. 

,roo lOllS 
-A line may not exceed the 253 character limit during compilation. 

DID 1d.thout lDIILB. 

WEND statements may only be- used to denote the end of a WHILE-WEND 
structure. 

VBILB'. _ted too deep. 

WHILE-WEND structures may only be nested 32 levels deep. 

VBILB 1d.thout'VDD. 

WHILE-WEND structures must be terminated with a-WEND statemento 

- 182 .- USIC .... B 



B.' BzecUtJ.OD Errors 

The. following errors may occur during. the execution of a programfl They are all 
trappable by user written error routines unless stated 'otherwise. In general, the 
non-trappable errors indicate a programming logic error that could not De corrected 
at run time anyway. . 

1 ISC-C 

_ Operator typed an ESC,C during execution of the program. 
2 Dlylde _ Zero 

Occurs during expression analysis if an attempt is made to divide by zero. 

3 ()Yamov 

An integer . expression resulted in a val\1e outside the range -32767 to 
+32767 or a·floating Roint exprression resulted in a value outside the 
range of ~10A126 to +10 126.· . .. "-

, VDClernov 

A floa. ting point expression 
-10 A -126 . to + 1 0 A -126 • _ 

resulted in a value outside the range of 

5 D.legal a.ber 

Occurs on input type statements-or string to· numeric conversion type 
functions when the string of characters contains characters that are not 
allowed in numeric fields. 

6 SQB O~ Regat:!.Y. 

1 LOG O~ Zero 

8 LOG o~ Rept:!." 

9 IDauttlolent ~r.r (non-trappable) 

Occurs Cturing execution when a statement attempts to define additional 
working storage that exceeds the amount of memory available. 

10 LiDeaot FOUDd (non-trappable) 

Occurs on the sta tements: CHAIN, ELSE, GOSUB I GOTO, LINK.J ON ERROR,. ON, 
RESTORE RESUME, RETURN, RUN, or THEN when tne line numoer specified 1s 
not useA in the progr~. 

11 Label _t FOUDd (non-trappable) 

Occurs on' the statements: ELSE GOSUB, GOTO, ON ERROR ON, RESUME, and 
RETURN, when the line label specified is not defined in the program. 

12 leturD Stack BIlptJ' (non-£rapP,able) 

Occurs on the RETURN statement when there is no GOSUB in effect. 

13 VElD vlthout VBILB (non-trappable) 

Occurs on the WEND statement when there is no WHILE in effect. (A WHILE 
statement without a WEND ~s okay because the end of the program ~s 
encountered.) . , 

l' IBl'I' vlthout FOB (non-trappable) 

Occurs on the NEXT statement when there is no FOR in effect. (A FOR 
statement without a NEXT is okay because the end of the program is 
encountered.) 

15 IllauttlOl.Dt Data 

Occurs on the INPUT statement when multiple fields are to be input and 
fewer fields are ~ctually entered. 

BASIC In B - 183 -



BJSIC -IItBIDCB IlDUAL ---
, . 

16 IIlYal1d Pile II1aber (non-trappable) 
Can occur on any of tbe file I/O statements when the channel number 
expression is less than 1 or greater than 16. Can also occur on any of 
the tile functions. 

11 IBSUHB vlthout Bnor (non-trappable) 

Occurs on the RESUME statement when there is no error in effecto 

18 IIlYal1d Adclreaa (non-trappable) 
Can occur' on any of the statements or functions that access memory when 
the address1s out of range. 

19 IIlYal1d Separator 

Occurs on input statements. 

20 c.- laDs- Error 

Occurs in the ON GOSUB. or ON GOTO statement when the numeric expression is 
less than one or greater than the number of line references specified. 

21 CBIIJ? v1.tbout SILBC!' (non-trappable) 

Occurs on the CEND'statement when there is no SELECT in effect. 

22 Type Hlaatch (non-trappable) 

Occurs duri~ file reads when the variable type requested does not match 
the variable type actually read, or in a SELECT structure when the 
expression type of the expression selected does not match the type of the 
case testedc -

23 IIlYal1d Zero D1aeD8:ioD (non-trappable) 

Occurs if an OPTION BASE 1 has been executed and a reference 1s made to 
the zero· subscript of an array. 
/ 

2' IDeolUllatent Uaase (non-trappable) 
Occurs when a DIM or COMMON attempts to dimension a array with the same 
name as a .var1ble already defined or after an array is dimension and a 
reference is made to the same name in a variable. 

25 SUbacrlpt BaDge (non-trappable) 

Occurs on anI reference to a subscripted array less than or greater than 
the number of elements dimensione4 in the array. 

26 IIlYal1d V8iDa (non-trappable) 

Indicates that a PRINT USING statement mask specified string when the 
expression field was numeric or the mask specified numeric when the field 
was string. 

~ Pile 18 Cloaed 

Occurs on an attempt to CLOSE an I/O channel that 1s not currently open. 

28 Pile 18 OpeD. 

Occurs on an attempt to OPEN an I/O channel that is'currently in use. 

29 IIlYal1d Pile R_ 

Occurs on the OPEN, CHAIN, RUN, or LINK statement when the file or program 
name is invalid. File and- program names must start with a letter~ 
Program file types must be BASIC or BASICOBJ. Can also occur on the OPEN 
statement when the device name is mis-sp~lled. 

30 Pile DOt POUDd 

BOOB HlSSAGBS - 1M- BASIC ley B 



31 Disk Pall 

Indicates an attempt was made to add more data to the disk when there 
wasn't sufficient space available on'the disk. Can only'occur on 
sequential file format output. 

32 DiNotol7 Full 

33 Protected rlle 
~ . 

Indicates an attempt was made to OPEN a file that was read protected, or 
an attempt was made to re-create a file that was delete protected, or an 
attempt-was made to output to a file that was write protected. 

3' IIlYalld I:~ 
Indicates that an input or output type statement used a key on a 
sequential format file or did not use the proper type of key fora direct 
or 'indexed format file. 

35 Vroag' Acceaa 

Occurs on inp~t type statements when the file was opened for output or on 
an output type statement when the file was opened for input., 

36 Oat o~ DATA 

Occurs on the READ statement when there are no more DATA elements. 

3T OPrICli BASB _t prececle DIll (non-trappable) 

Occurs on the OPTION BASE statement when there are variables defined. 
Should perform a CLEAR first. 

38 .0 USB rrosr- (non-trappable) 

Indicates a reference to a USR function when there ~s no USH program 
loaded. 

39I1lYalld Dri.e Code (non-trappable) , 

Occurs on the MOUNT statement when the drive is invalid or not attached • 
. 

'0 Prograa DOt POUDd (non-trappable) 

Occurs on a CHAIN, LINK, or RUN statement if the specified program cannot 
be found. 

'1 IIlYalld rlle Po .... t (non-trappable) 
,Occurs on 'any attempt to input from a file created prior to version 5.3I 
OASIS and not converted with the FILECONV program; using READ on ,a record 
that was output with a PRINT; or using INPUT on a record that was output 
with a WRITE. 

'2 FIBID without DBF (non-trappable) 

Occurs when an FNEND statement is encountered outside of a user defined 
function definition. 

'3 DIP DOt ~0UDd (non-trappable) 

Occurs on any reference to a user defined function that is not defined in 
the current program. 

" UDillpl_tecl ~eature (non-trappable) 
Occurs dur.ing execution with-RUN2 when a reference is made to a statement' 
or function fhat is not available with the smaller version of OASIS BASIC. 

'5 Flle Pall (non-trappable) 

Occurs during an attempt to write more records to an indexed file than it 
can hold. 

BASIC I_B -,185 -



BJSIC IBPBIIIIICBHDDAL 

~ Deri.oe DOt Attachecl (DOll-trappabl.) -

Occurs-during an attempt to OPEN a channel to a device that is not 
.ttached. / 

- 186 - IWIIC ley B 



APPBlDU B . 

PROGUII BUIIPLBS 

B. 1 BDaple ODe 

-10 
-20 
:~g 
-50 

INPUT nRadius 'of circlen,R 
PRINT nDiameter :n·2 •• R 
PRINT nArea :niPI.AA 2. 
PRINT nCircumference :"i2 •• PI·R 
END 

-RUN 
Radius of circle? 2.5 
Diameter : 5 '. 
Area: 19.63495408493 
Circumference: 15.70796326795 

B.2 Bxaple r.o - StrlDs CoDYeraiOD 

The following example-illustrates a method of translating the individual characters 
of a ,string into the decimal equivalents. ' 

-AUTO 
10 
20 

n8 
.~g -

I ~g 
90 

100 
-RUN 

DIM X(3) 
LET STRING$ : "CATn 
X(O) : LEN(STRING$) 
FOR ,Ii : 1 TO X(O) 

XCIi) : ASC(MID$(STRING$,I%,1» 
N£X'l'I% . 

PRINT "STRING$ : "; STRING$" nLength of STRING$ 
PRINT X(0),X(1),X(2),X(3) END . 

STRING$: CAT 
3 

Le~th of STRING$ : 3 
67 , 65\ 

B.3 Bxaple Tbree - SiDe Vue 

:n;x(o) 

T~is example will produce a sine wave on the console terminal. 

10 MAGNITUDE% : LINE(0).3./8. 
20 HIDDLE,1 : LINE(0)/2. 
30 FREQUENCY: .175 -
40 FOR J : a TO 100 STEP FREQUENCY 
50 SINE: INT(HAGNITUDE,1.SIN(J» 
60 PRINT SINEiTAB(MIDDL!%+SINE)in.n 
70 NEXT' , 

BASIC ley B ... 181 -

84 



BASIC .... _CB IlDUAL 

B.' Baaple Poar - Bill o~ 1later18l.a 

-AUTO 
10 REM Acc~pt Bill of Materials 
20 PRINT "How many items"; 
30 INPUT ITEM. COUNTS 
40 FOR I' = 1 TO ITEM.COUNT% 
50 INPUT Q( 1%) , P( I')-
60 NEXT 
10 PRINT " 
80 REM Display Bill of Materials; extens1onL -and total 
90' PRINT "Item - Quantity ~r1ce Amount" 

1,00 PRINT 
110 MASK1.=" ""&SPACE$(11)&"IIIII"&SPACE$(9)&"$II'ell"&SPACE$(7)&"$1,111.11" 
120 FOR I~ = 1 TO' ITEM. COUNT% ' " . 
130 ,PRINT USING MASK1$J,.I'JQ(IS) JP(I') ,Q(I').P(I') .' .'" . 
1 flO LET TOTAL = TOTAL+\.l(I)ip(I~)' . / 

- 150 NEXT -
160 PRINT ~ 
110 LET MASK2$ =" TOTAL"&SPACE$(35)&"$I, III ell" 
180 PRINT USING MASK2$,TOTAL 
190 END 
200 

-RUN 
How many items? 5 
? 2 750 ' 
? 25,23.50 
? 10~85.35 
? 14~, .08 

, ? 15,2.35 
Item Quantity 

1 2 
2 25 

~ 10 
145 

5 75 

TOTAL 

Price 

rsoooo 23.50 
85.35 
0.08 
2.35 

Amount 

1
',500.00 

587e50 
853050 

11.60 
176.25 

$3,128.85 

IWnC Bey B 



jpPBIDD B: PIOGUII BUIIPLBS 

B.5 Bzaaple P:lYe 
The following' sample illustrates the use of three functfons (INP", INS, REP) and 
uses a disk file. . 

-AUTO 
10 OPEN 11: "NAME.DATA:A",OUTPUT SEQUENTIAL\REM Create file 
20 PRINT CRT ("C"); \REM Clear screen 
30 PRINT ATj 1,61; "Name"; \REM Display all the input fields 
~O PRINT AT 1,7 ; "Address"; 
50 PRINT AT 1 8 -"City"- -
60 PRINT AT 3~, J;"Stat~"; 
70 PRINT AT 53 8)-"ZiD"- " 
80 PRINT AT 1L 9)i"SSNh;' 
90 OPTION PROM.t'T n:" 

100 Ri = "" 110 paINT AT$(5L6); 
120 LINPUT USINu " 
130 IF INP = 26 THEN 999 
1~0 Ri = INS$(R$~O,O,A$} 
150 paINT AT$(8 "I)-
160 LINPUT USING ", 
110 Ri = INSI(R$A1,0,A$) 

,180 paINT AT (5 0)-
190 LINPUT UING ", 
200 "R$ = INS$(R$,2 t O,A$) 
210 PRINT AT$(38 8)-
220 LINPUT USING'n'n A$ 
230 R$ = INS$(R$,3 t 1,1$) 
2~0 PRINT AT$(56 a}-
250 LINPUT USING'n' n A$ 
260 Ri = REP$(R$13,3,A$)' 
270 paINT AT$(4 ~}. 
280 LINPUT USING .' 
290 R$ = REP$(R$,4,0,A$) 
300 PRINT 11:R$ 
310 GOTO 20 
320 END 
330 

\REM Initialize record 
\REM Position for first input field 

",' A$ . 
\REM Entry of CTRL/Z means end 

. \REM A$ is first field 
\REM Position for second input field 

" A$ -
\ REM Ai is second field 
\REM Position for third field 
", A$' 
\AEM A$ is third field -
\REM Position for fourth field 

\REM A$ is second subfield of third 
\REM Position for fifth field 

\REM A$ ,is subfield 3 of third field 
\REM·Position for sixth field 

ft, A$ / 
\REM A$ is fourth field 
\REM Create new record in file 
\REM Start over 

Lines 20 through 80, when executed, will display the field.names: 

Name 
Address 
City 
SSN 

State Zip 

Lines 110 through 280 L when executed, position the cursor after each field name and 
allow input. Each, rield input is saved in the string R$ with appropriate field 
delimiters. For instance: 

Name: JOSEPH E. BROWN 
Address: 1234 SeE. MAIN STREET 
City: SAN FRANCISCO 
SSN: 123-45-6789 

State: CA 

The above entry will produce a record that looks like this: 

Zip: 99999 

JOSEPH E. BROWNA1234 S.E. MAIN STREETASAN FRANCISCO]CA]99999 A 123-45-6789 

. The characters A and ] are the field delimiters. They differ from the normal ASCII 
character by having the parity bit turned on. 

BASIC ley B - 189 -



BASIC ..... CB IIDOAL 

B.6 IDaple Six - SequeaU,al Pl1e VO 

The following example illustrates file inpu~ 'and formatted output using the AT 
function. 

~AUTO " 
10 OPEN 11: "NAME.DATA",INPUT SEQUENTIAL' 
~g LOOP: PRI~i ~R5${"CIIJ; . 
40 INPUT: LINPUT 11: A$ ", ' 
50 . IF EOF!.1 . THEN GOTO EXIT, . 
60· . PRINT AT 6'IS+3~;EXTt~AI'1'O~; . 
~g . ~~I~t ti ~ 'II~f!~it$~f ,2,~~! \L = LER(EXT (A$ 1» 

. 90 PRINT AT 8':'L1I'~,) iEXT$ li~3~2) i \L = L+LENtEXTirA$,3,2» 
100 PRINT AT 10+1., IS+5'J tEXT {Aft ,3J; " 

l~g ~fI:TIt!5 ~'I~it!~X <$~~ t~~ 60TO INPUT . " '. 
130 WAIT 
1'IlO . GOTO' LOOP 
150 EXIT: END 
160 

~ 

Assuming that the file -NAME" contains the record from Example 5 the display will 
be.as tollows: 

JOSEPH E. BROWN 
1234 S.E. MAIN STREET 
SAN FRANCISCO CA 99999 
123-45-6789 

There will be four names per page with two' blank lines separating each name 'from .. -
the next,. 

- 190 - BASIC BeY B 



URDU B: -PBOGRIII BUIIPLIS 

8.1, ~l. SaY",~ IDdexecl I'U. VO - SequenUal Aooeaa 

The following example illustrates a simple sequential list to the primary p~inter 
of a name and address file, printing in l-a~el format. ." . 

The format of the file being read is: Kel = name, last name first l separated by a 
comma, space from first name; record = adaress, ci~y, state, zip, e~c. . . 

, . , 

-AUTO 1000 
1000 OPEN 11: "NAMES.ADDRESS" INPUT INDEXED 
1010 OPEN 12: "PRINTER1" OUT~UT SEQUENTIAL FORMAT -
1020. RJAD: READNEXT 't.L~~Y$: ADDR$,'CITY$,l§!lTE$,ZIP$ \REM Get next record 
1030 IF EOF( 1) TH!!iN 1110. \Jmr1 At end? 
10~0 C=SCH(KEY$ 1 " on). \REM Find end of last name 
1050 IF NOT C fAiN ~070 \REM Not found - assume okay . 
1060 KEY$=RIGHT*(KEYiJ.C+2) &LEFT$(KEYi. C-1 ) \REM~estructure name 
1070 PRINT t2: i ";[lt1$ \R!A Print the name . ' 
1080 IF LEN ADDR$~=O THEN 1100 \REM-If no address skip 
1090 PRINT 2:" ;ADDR: . , -
'~~~g i~~iNf~ip;l:~c~iN;~1;6sTATE~iiM if ~~~f~ilnth~~t~k~d state 
1120 ZIP$=FORMAT$(VAL(ZIP$),"99999") \REM Format Zip , 
1130 PRINT, 12: . ZIP$ . \REM Print the zip oode 

·1140 IF.LEN(ADDR$)=O THEN PRINT '2: " " \REM Acoount for lost line 
1150 PRINT '2: "_n \REM Trip;Le spaoe for next 'label' 
116 O' GOTO READ . . \REM Get another record -
1170 REM End of file - clean up 
1180 CLOSE 11 \ CLOSE #2 \QUIT 
1190 END 

In addition to illustrating the primary use of the. READNEXTstatement the above 
f~~~~~'ShOWS a method of fOrma~1ng_a number with leadi~ zeroes printing (~ee line 

, BJSIC '" B - 191 -



BJSl:C ar_cz IlDUAL 

B.8 Buaple Bisbt - ·lDduecl Plle ereau 
The following example illustrates a method of creating a new"indexed file from a 
BASIC program when the programmer 1sunsure of the amount of contiguous disk space 
available. This routine allows the operator to specify the number of records 
desired in the file .or allows the operator to specify that the file is to be 
allocated for the largest record count that, will fit in the available spaceo 

3550 C11=ATJ~1 ,PAGE(O)}&CRT$(ftEOS").· 
3552 C2 :AT '1tPAGE(0»&CRT$("EOS") 
3554C5$=CH () REM Bell code .. 
3560 REM Create new' file -' 
3561 REM S1 = record length 
3562 REM S2 = file size in records 
3563 REM Keylen = 30 - .,.' 
3564 REM S Is number ot bytes to be used for record+key+overhead storage 
3565 REM SO is number of bytes to be used tor seguential record pOinters 

. 3566 REM V1 is number ot contiguous bytes availatile on disk 
3510 OPTION CASE "U" .. . 

.3580 PRINT C1$j"Pleasemount the disk to contain the file";F$ 
3590 PRINT "in the apprQpriate drive (YIN)? ";R . V$="N" 
3600 81=158 \ REM 81=RECLEN ' 
3630 . LINPUT USING V$ V$- . - .. 
36110 IF INP=17 OR IN~=26 OR V$="" OR V$="N" THEN 3940 . 
3650 PRINT C1 $1· "How many records do you wish allocated? "; 
3660 LINPUT U8 NG " "V$ 
3670 IF V$="" THEN 8~=999999 \'GOTO 3100 
3680 IF NBR(V$)=O THEN PRINT C5$; \ GOTO 3650 ELSE 82=VAL(V$)+3 
3690 IF 82<=0 THEN 82=999999, ' 
3100 PRINT C2$i· "What is the largest area on the disk? "; 
3710 - LINPUT U8 NG " ." V1 $ 

. ·3120 IF V1$="" OR'NBk(V1$)=0 THEN PRINT C5$; \ GOTO 3700 
3730 . V1=VAL(V1$)·1024 \ REM Convert to bytes 
3740 83=81+32 \ REM KEYLEN=30L overhead=2, S3=KEYLEN+RECLEN+2 , 
3750 IF'82>V1/83 THEN 82=INT(v1/S3) \ REM 82 must be realistic 
3760 IF MOD(S2 4)<>3 THEN 82=82-1 \ GOTO 3760 
3770 IF 83.82+S2*2>V1 THEN S2=S2-4 \ GOTO 3770\REM Make more realistiC 
3779 REM Take into account the overhead of roundi~ up to nearest 1024 

.3780 8=82·83 \ IF MOD(S 1024»0 THEN 8=S+1024-MOD(S 1024) 
3790 80=82·2\ IF MOD(SO 512»0 THEN 80=SO+512-MOD(SO,512) , 
3800 IF 8.80)V1 THEN 82=S2-4 \ GOTO 3180\REM Make sure it will fit! 
3810 REM Make 82 a prime number. 
3820 FOR I=S2 TO 3 8TEP -4· -
3830 FOR J=3 TO 8QR(I) STEP 2 
3840 J1=I/J 
3850 IF INT(J1)=J1 THEN 3870 
3855 NEXT 
3860 GOTO 3880 
3870 NEXT 
3880 82=1 
3890 CLOSE 11 
3900 CSI "CREATE "&F$&" (IND KEY 30 REC "&STR(S1)&" FILE "&STR$(S2) 

/' 

Note that line 3570 will force input to'be upper case only. Line 3640 validates 
the YIN input--default to NG--and checks for eX1t (CTRL/Q or CTRL/Z indicate exit). 
Lines 3680 and 3720 validate the input tor a numeric value. , 
Line 3750 forces 82 to be a value that 1s close to the value to be used. Line 3760 
then forces 82 to be the next lowest value whoee remainder is 3 when divided by 4 ' 
(a requirement for indexed file sizes). Line 3770 then forces S2 to be a value 
that would tit in the available space but does not take into account any rounding 
to' the nearest 1K boundary. Lines 3780 through 3800 then adjust 82 to account tor 
rounding, keeping modulo 4 of 82 = 3 • 

. Lines 3810 through 3880 then torce 82 to be a prime number (another requirement of 
indexed file sizes). The 8TEP value of -4 keeps the modulo 4 of 82 = 3 • 

- 192 - . BASIC ley B 



lPPJaD)U -I 

.SI IIDIIW. BJSJ:C 

-----------------------------------------------------------------------------------DATA 
<line-no> DATA <literal>[,<literal>] ••• 

-----------------------------------------------------------------------------------DBF 
<line-no> ',DEF ~Nx [( <var> ) ] =<exp> 

------------------------------------------------------------------------------~----DIll 
<line-no> DIM <var>_«int>[,<i~t>])[,<var>«int>[,<int>])] ••• 

------------------------------------------------------------------------------~----POll 
<line-no> FOR <var>=<exp> TO <exp> [STEP <exp>] 

GQiii---------------------------------------------------------------~--------------
<line-no> GOSUB <line-no> 

GOiQ-------------------------------------------------------------------------------
<line-no> GOTO <line-no> 

-----------------------------------------------------------------------------------
<line-no> IF <rel> THEN <line-no> 

-----------------------------~~----------------------------------------------------DPft 
<line-no> INPUT <var>[,<var>] ••• 

-------------~---------------------------------------------------------------------
<line-no> LET <var>=<exp> 

---------------------------------~-------------------------------------------------
<line-no> NEXT <var> 

~----------------------------------------------------------------------------------
<line-no> ON' <exp> GOTO <line-no>[,<line-no>] ••• 

-----------------------------------------------------------------------------------0PrI. ' 
<line-no> OPTION BASE 0 
<line-no> OPTION BASE 1 

~------------------------------------~-~-------------------------------------------PBIIT 
'~ <line-no> PRINT [<exp>[<punct>[<exp>]] ••• ] 
-----------------------------------------------------------------------------------B.IIIDCIIIZB 

<line-no> RANDOMIZE 
----~------------------------------------------------------------------------------DID 

<line-no> READ <var>[,<var>] ••• 
-------------------~~--------------------------------------------------------------l1li , 

<line-no> REM ~characters> 
------------------------------------------------------------------------~---------~ HBiUd 

<line-no> RETURN 
( 

---------~-------------------------------------------------------------------------smp 
<line-no> STOP 

=================================================================================== 
ANSI Minimal BASIC-, BSR X3.60 only requires: string length of 18 characters· six 
significant digit accuracy; dimensioned arrays for numeric-variables (not string); 
string variable names have <letter><$> only; single statement lines. Keywords must 
be. separated from operands by at least one space and keywords may not be 
abbreviated. 

If you wish to write BASIC programs that are portable from machine to-machine, the 
above restrictions should be kept in mind to minimize the changes required. 

, BJSl:C Bey B - 193 - au JUSIC 



lPPBlDD J 

ClWlACDI CODES 

============================================================================== Value . ASCII Usage Value . ASCII Value ASCII Usage 
-------------------~-----------~-~------------------------------------------~-

0 NUL CTRL/@ :~. + 86 V 
1 SOH CTRL/A g~ W 

.. 2 BTl CTRL/B 45 I 
~ 'ETI CTRL/C 46 fI 89 y 

EOT CTRLlD ~b I Slash 90 Z 
'g ENQ CTRL/E 0 §~ ~ left bracket ACI{ . CTRL/F 49 1 ,. back slash 

~ BEL CTRL/G 50 2 §n I right bracket 
BS CTRL/H 51 • 

. circumflex 

16 HT CTRL/I 52 §g ...... underscore 
LF CTRL/J ~~ ~ back quote 

11 -VT CTRL/K §& a 
12 FF CTRL/L §~ ~ b 

~n Cll CTRL/M 99 c 
SO CTRL/H §b 9 100 d 

15 SI - CTRL/O . 101 e . 
16 DLE CTRL/P 59 ; 102 f 
1§' DC1 CTRL/Q 60 .< 1°i ft DC2 CTRL/R' 61 = 10 
19 DC~ CTRL/S 62 > 10~ i 
20 DC CTRL/T ~~ ? 10 d 21 NAK CTRL/U @ 10~ 22. SIN CTRL/V· ~g A 10 1 

~~ ETB CTRL/W B 109 m 
CAN CTRL/X gh . C 110 n 

~g EM CTRLIY D 111 0 
SUB CTRL/Z' 69 E 112 p 

~.~ ESC CTRL/[ 70 F 11~ , q 
FS CTRL/~ 71 G 11 r 

29 GS CTRL/I 72 H 11g s 
30 RS CTRLI .+n I 11 t 
31 US CTRLI J 11h u 
32 SP SPACE- +g I{ 11 v 

~i I L 119 w 
" t~ M 120 x 

~g I N 121 Y 

t ~6 0 122 z 

~~ P 12~ l left brace 
~persand 81 ~ 12 i vert/line 

n6 quote 82 125 rifht brace 

l g~ S 126 - ti de 
41 T 127 DEL rubout 
42 asterisk 85 U 

============================================================================== 
A more complete character set is documented in the QASI~ ~!stem Re(etence Manual. 

- 1!M'- BJ.SIC ..... B 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194

