
PERQ FORTRAN

September 1983

Thi s manual is for use wi th FORTRAN Version 02.1 and~~~'ubsequent
releases until further notice.

Copyright(C) 1982, 1983
PERQ Systems Corporation
2600 Liberty Avenue
P. O. Box 2600
Pittsburgh, PA 15230
(412) 621-6250

This document is not to be reproduced in any form or transmitted in
whole or in part, without the prior written authorization of PERQ
Systems Corporation.

The information in this-document is subject to change without notice
and should not be construed as a commitment by PERQ Systems
Corporation. The company assumes no responsibility for any errors that
may appear in this document. ."

PERQ Systems Corporation will make every.effort to keep customers
apprised of all documentation changes"a$ quickly as possible. The
Reader's Comments card is distributed with'this document to request
users' critical evaluation to assist us in preparing future
documentation.

PERQ and PERQ2 are trademarks of PERQ Systems Corporation.

September 20, 1983

PREFACE

This document describes the PERQ FORTRAN 77 language. It is a
reference publication primarily intended for users with previous
experience of FORTRAN programming. The document includes information
on running FORTRAN 77 programs with the PERQ operating system.

The information in this publication may be accessed at random through
the index. Chapter 1 is a general introductory chapter which describes
the basic elements of the language, and Chapters 2 and 3 describe the
various types of data, their values and how they are stored. Chapter 4
is concerned with expressions and Chapter 5 with assignment statements.
Chapters 6 and 7 describe the transfer of control within and between
the units of a program respectively. Chapter 8 is concerned with format
specifications, which are used in conjunction with the input and output
facilities described in Chapter 9. Chapter 10 describes extensions to
the language as defined in ANSI X3.9-1978, and certain implementation
limits. Chapter 11 explains how to use PERQ FORTRAN 77 in conjunction
with PERQ Pascal programs. Chapter 12 describes how to compile and run
PERQ FORTRAN 77 programs.

Appendix A gives a description of intrinsic functions.

Appendix B gives release information on the availability of the
facilities describe~ in this publication.

This document is divided intochapters,and each chapter is subdivided
into sections. A section's level in the hierarchy is indicated by its
number. Therefore, within Chapter n, .. first level section headings are
numbered n.l, n.2 and so on; second level headings are numbered n.1.1,
n.1.2, ..• , n.2.1 and so on; third level headings are numbered n.l.1.1,
n.l.l.2, ... , n.l.2.1 and so on.

The contents list and index, and cross-references in the text, all
refer to section numbers.

Pages are numbered within chapters, in the form c-p, where c is the
chapter number and p the page number within that chapter. Figures ~and
tables, where they appear, are also numbered within chapters, so that
Figure n.2 is the second figure in Chapter n, and Table n.2 is the
second table in that chapter.

Section numbers, page numbers and figure and table numbers in
appendices are preceded by the letter of the appendix.

Exponents are shown in the text as n**(e) where n is a number and e is
an exponent.

- iii -

September 20, 1983

Amendment lists will be issued when the manual is revised to correct
errors in the manual or to enhance the manual itself. Release changes
will be issued when technical changes take place. Each amendment list
or release change will contain one or more numbered instructions to
replace or discard existing pages or to add new pages.

The following rules apply to both amendments and release changes:

a) When a page is re-issued, significant technical changes
will be indicated on the re-issued page by amendment
lines (vertical lines in the margin beside the changed
passages); '.

b) The date on the re-issued page will be the date of the
amendment or release change;

c) Any lines that remain from a previous amendment or release
change will be removed from re-issued pages;

d) The date on unchanged backing pages will not be updated,
nor will the old amendment lines on these pages be
removed.

e) New chapters will not be marked with amendment lines.

f) In completely revised chapters, 0nly significant technical
changes will be marked with amendment lines.

- iv -

Table of Contents

TABLE OF COmENTS

Preface

IN1RODUCTION

Character Set

Program Structure

Program Unit Structure

Lines

Initial line

Continuation lines

Comment lines

Statements

END statement

Statement labels

Categories-pf statement

Executable statements

Non-executable statements

Order of statements and lines

Names

Coding a Program

- v -

September 20, 1983

iii

Chapter 1

1 . 1

1.2

1.3

1 .3. 1

1.3.1.1

1.3.1.2

1.3.1.3

1.3.2

1.3.2.1

1.3.3

1.3.4

1.3.4.1

1.3.4.2

1.3.5

1.4

1.5

Table of Contents

DATA

Data Values and Types

Constants, Variables and Arrays

Constants

Integer constants

Real constants

Double precision constants

Complex constants

Logical constants

Character constants

S)~bolic constants

Variables

Arrays

Array elements

Type Specification

_Predefined specification

The IMPLICIT statement

Explicit type specification statement

Arithmetic and logical type statements

The CHARACTER statement

The PARAMETER statement

STORAGE OF DATA

Storage Requirements

Constants

Variables

- vi -

September 20, 1983

Chapter 2

2.1

2.2

2.2.1

2.2.1.1

2.2.1.2

2.2.1.3

2.2.1.4

2.2.1.5

2.2.1.6

2.2.2

2.2.3

2.2.4

o 2.2.4.1

2,,3

2.3.1

2.3.2

2.3.3

2.3.3.1

2.3.3.2

2.3.4

Chapter 3

3.1

3.1.1

3.1.2

Table of Contents September 20, 1983

Arrays

Character storage

Character substring

Allocation of Storage

General considerations

Variables

Arrays

The DIMENSION statement

The C0M110N statement

Common block names

Storage of variables

Multiple references within a program unit

Using the COMMON statement

The EQUIVALENCE statement

Arrays in EQUIVALENCE statement

Equivalencing items of different types or length

Equivalencing common block items

Assignment of Initial Values

The DATA statement

Value lists

Implied-DO in a DATA statement

Character values

Examples of initial value assignment

Block data subprogram

- vii -

3.1.3

3.1.4

3.1.5

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.2

3.2.3

3.2.3.1

3.2.3.2

3.2.3.3

3.2.3.4

3.2.4

3.2.4.1

3.2.4.2

3.2.4.3

3.3

3.3.1

3.3.1.1

3.3.1.2

3.3.1.3

3.3.1.4

3.3.2

Table of Contents

Example

EXPRESSIONS

Arithmetic Expressions

Arithmetic elements

Arithmetic operators and parentheses

Rules

Order of evaluation

Examples of arithmetic expressions

Determination of the type of an expression

Integer arithmetic

Arithmetic constant expressions

Integer constant expressions

Character Expressions

Character elements

Character operator and parentheses

Logical Expressions

LogIcal elements

Relational expressions

Logical operators and parentheses

Rules

Order of evaluation

Examples of relational and logical expressions

- viii -

September 20, 1983

3.3.2.1

Chapter 4

4.1

4.1. 1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.2

4.2.1

4.2.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

Table of Contents

ASSIGNMENT STATEMENTS

Arithmetic Assignment Statements

Logical Assignment Statements

Character Assignment Statements

CONTROL STATE1ffiNTS

GO TO Statements

Unconditional Cl) TO

Computed GO TO

Assigned GO TO and ASSIGN statements

IF Statements

Arithmetic IF

Logical IF

Block IF

The block IF statement and IF-blocks

The ELSE statement and ELSE-blocks

The ELSE IF statement and ELSE IF blocks

The END IF statement

DO Loops

00 statements

Terminal statements

Nested DO loops

Transfer of control in DO loop

CONTINUE Statements

STOP Statements

PAUSE Statements

- ix -

September 20, 1983

Chapter 5

5.1

5.2

5.3

Chapter 6

6.1

6.1.1

6.1.2

6.1.3

6.2

6.2.1

6.2.2

6.2.3

6.2.3.1

6.2.3.2

6.2.3.3

6.2.3.4

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.4

6.5

6.6

Table of Contents September 20, 1983

PROGRAM UNITS AND THE 1RANSFER OF CONTROL
BETWEEN THEM Chapter 7

Procedures 7.1

Differences between function and
subroutine subprograms 7.1.1

Functions. 7.1.2

Intrinsic functions 7.1.2.1

External functions 7.1.2.2

Statement functions 7.1.2.3

Subroutines 7.1.3

External subroutines 7.1.3.1

Transfer of Control Between Program Units 7.2

Functions 7.2.1

Transfer of control to a function subprogram 7.2.1.1

Return of control from a function subprogram 7.2.1.2
I

Example of an external function 7.2.1.3

Subroutines 7.2.2

Transfer of control to a subroutine subprogram

Return of control from a subroutine subprogram

Example of a subroutine subprogram

Correspondence between Dummy and Actual Arguments

Use of constants and expressions

Use of variables

Use of arrays and array elements

Adjustable arrays

Use of functions and subroutines as arguments

- x -

7.2.2.1

7.2.2.2

7.2.2.3

7.3

7.3.1

7.3.2

7.3.3

7.3.3.1

7.3.4

Table of Contents September 20, 1983

The INTRINSIC statement 7.3.5

Transfer of Values Between Program Units 7.4

Common block items 7.4.1

Dummy and actual arguments 7.4.2

Argument reference 7.4.2.1

Multiple Entry into a Subprogram 7.5

The ENTRY statement 7.5. !

Referencing an ENTRY statement 7.5.2

Entering the subprogram 7.5.3

Exit from the subprogram 7.5.4

SAVE Statement 7.6

FOru,~T SPECIFICATION Chapter 8

Format Specifications 8.1

Field separators 8.1.1

Slash editing 8.1.1.1

Repetition of descriptors 8.1.2

Format Specification Methods 8.2

The FOIDl~T statement 8.2.1

Character format specification 8.2.2

Effect of FORMAT statements and character fo~~
specifications 8.2.3

Edit Descriptors 8.3

Format codes 8.3.1

The I conversion code 8.3.1.1

- xi -

Table of Contents

The F conversion code

The E and D conversion codes

The G conversion code

The scale factor

The L conversion code

The A conversion code

The H format code and character data

The X format code

The T format codes

The S format codes

TI1e B format codes

Colon editing

Examples of Format Specification

INPUT AND OUTPUT

Introduction

Format of records

Unform~~ted records

Formatted records

Accessing records

Sequential access

Direct access

Input/Output Statements

Input/output lists

Correspondence between input/output lists
and format codes

- xi i -

September 20, 1983

8.3.1.2

8.3.1.3

8.3.1.4

8.3.1.5

8.3.1.6

8.3.1.7

8.3.1.8

8.3.1.9

8.3.1.10

8.3.1.11

8.3.1.12

8.3.1.13

8.4

Chapter 9

9.1

9.1.1

9.1.1.1

9.1.1.2

9.1.2

9.1.2.1

9.1.2.2

9.2

9.2.1

9.2.1.1

Table of Contents September 20, 1983

Implied DO loops 9.2.1.2

Sequential Access Input and Output 9.3

REA~ and ~~ITE statements 9.3.1

Formatted sequential access input and output 9.3.1.1

Unformatted sequential access input and output

File positioning input/output statements

Direct Access Input and Output

READ and ~RlTE statements

Formatted direct access input and output

Unformatted direct access input and output

List Directed Input and Output

The READ statement

Input data

Output statements

The WRITE statement

The PRINT statement

Output data

Internal Files

Auxiliary Input/Output Statements

Unit and file connection

Fi Ie exi stence

File properties

The OPEN statement

Changing the properties of a connection

- xi i i -

9.3.1.2

9.3.2

9.4

9.4.1

9.4.1.1

9.4.1.2

9.5

9.5.1

9.5.2

9.5.3

9.5.3.1

9.5.3.2

9.5.4

9.6

9.7

9.7.1

9.7.1.1

9.7.1.2

9.7.2

9.7.2.1

Table of Contents

The CLOSE statement

The INQUIRE statement

INQUIRE by Unit

INQUIRE by File

The INQUIRE specifiers

LANGUAGE EXTENSIONS AND IMPLEMENTATION
CHARAC1ERISTICS

Language Extensions

Lower case

Hollerith constants

Symbolic names

Calling Pascal

Character length

Integer*2

Implementation Characteristics

_Storage of constants and variables

Integer

Real

Double precision

Complex

Logical

Character

Input/output record lengths

Code' and data limitations

Run time file access

- xiv -

September 20, 1983

Chapter

9.7.3

9.7.4

9.7.4.1

9.7.4.2

9.7.4.3

10

10.1

10.1.1

10.1.2

10.1.3

10.1.4

10.1.5

10.1.6

10.2

10.2.1

10.2.1.1

10.2.1.2

10.2.1.3

10.2.1.4

10.2.1.5

10.2.1.6

10.2.2

10.2.3

10.2.4

Table of Contents

F i 1 e connect ions

File types

Console input/output

Opening files

Length of program unit names

Block data

STOP and PAUSE

MIXED LANGUAGE PROGRAMMING

Introduction

Referencing Pascal from FORTRAN 77

Valid argument correspondence

Valid function result correspondence

Pascal Input and Output

September 20, 1983

10.2.4.1

10.2.4.2

10.2.4.3

10.2.5

10.2.6

10.2.7

10.2.8

Chapter 11

11 . 1

11.2

11.2. 1

11.2.2

11.3

RUNNING A PERQ FORTRAN 77 PROGRAM Chapter 12

FORTRAN Programming 12.1

Utilities 12.2

Compilation 12.3

Using the compiler 12.3.1

Compiler switches 12.3.2

Listings (!LIST, /CROSSREFERENCE, /SHOWCODE) 12.3.2.1

Diagnostic options (/NORANGE, INOCHECK 12.3.2.2

Program scan (/SYNTAXCHECK) 12.3.2.3

Quiet (fQUIET) 12.3.2.4

- xv -

Table of Contents

Help (!HELP)

Using Pascal or FORTRAN externally
defined routines (!EXTERNAL)

Initialization of data to zero (IZERO)

File inclusion

Argument mismatch (!MISMATCH)

Error file (IERRORFILE)

Compile time diagnostics

Consolidation

Using the consolidator

Partial consolidation

Linking

Running the Program

Run time diagnostics

Setting Up the Software

INTRINSIC FUNCTIONS

PERQ OPERATING SYSTEM AND FORTRAN 77 P£LEASES

Incompatible Changes Between Version 01 and
Version 02.1 of PERQ FORTRAN 77

File types

Pause

Existing FORTR4N programs

FORTRAN 77 I NPUT/OUf PUT ERRORS

Index

- xvi -

September 20, 1983

12.3.2.5

12.3.2.6

12.3.2.7

12.3.2.8

12.3.2.9

12.3.2.10

12.3.3

12.4

12.4.1

12.4.2

12.5

. 12.6

12.6. 1

12.7

Appendix A

Appendix B

Bl.1

Bl . 1 . 1

Bl. 1.2

Bl.2

Appendix C

Introduction

CHAPTER ONE

I NlRODUCTION

June 30, 1982

This chapter provides general FORTRAN information. The chapter
introduces basic terminology and outlines the structure of a FORTRAN
program.

Fortran is a programming language designed primarily for the
mathematical or scientific user. You write a FORTRAN program as a
series of statements using symbolism analogous to that used in algebra.
Many of these statements are readily intelligible to a programmer with
mathematical training. For example, the FORTRAN expression

(A+B)/C

resembles a line of algebra and has a similar meaning. Each statement
occupies at least one line of coding and can extend onto subsequent
lines if necessary. Statements can be given identifying labels.

FORTRAN provides facilities for the evaluation of common mathematical
functions. The programmer need only write

Y=SIN (x)

and FORTfu\N evaluates the sine function. Appendix A lists the standard
procedures. The programmer can write similar procedures for himself as
external functions.

A FORTRAN program normally executes in the order in which statements
are written, but various control statements enable the programmer to
specify that control branches to another statement with an identifying
label, either unconditionally or if certain conditions are satisfied.

You can write FORTRAN programs as one or more program units and compile
each program unit separately. One program unit is designated as the
master program unit. This program unit controls the running of the
program and passes control to other program units.

1 - 1

Introduction June 30, 1982

1.1 Character set

The set of 49 characters used in writing FORTRAN programs is:

alphabetic
numeric
special characters

ABCDEFGHIJKLMNOPORSTIJVWXYZ
0123456789
+-*I=,.:()#$ and the space

(or blank) character

No character other than these may be used except in character constants
(see section 2.2), and in comment lines (see section 1.3.1.3).

Alphabet i c and numer;i c characters are referred to collect i vely as
alphanumeric characters.

1.2 Program structure

A program consists of program units. A program always has at least one
program unit, called the main program, and may have one or more other
program units that are called subprograms. Execution of the program
starts in the main program and then control is passed between the main
program and subprograms or among subprograms. For further details of
transfer of control between program units see Chapter 7.

There are three classes of subprogram:

1 Function subprograms

2 Subroutine subprograms

3 Block data subprograms

Function and subroutine subprograms provide a mechanism to assist the
programmer in structuring programs in a meaningful way, and to allow
common code to be conveniently accessed. These subprograms are
described in detail in Chapter 7.

Block data subprograms are used to give initial values to variables and
arrays used in more than one program unit. They differ from other
subprograms in that they can contain only certaiILnon-executable
statements (see section 1.3.4.2) and in that control is never passed to
them. Block data subprograms are described in detail in section 3.3.2.

1 - 2

Introduction June 30, 1982

1.3 Program unit structure

1.3.1 Lines

A line in a program unit consists of 72 character positions. The
character positions are numbered from 1 to 72. A statement occupies
positions 7 to 72 of one or more lines.

There are three classes of FORTRAN line:

1 Initial lines

2 Continuation lines

3 Comment lines

1.3.1.1 Initial lines

An initial line has the following form:

Positions 1 to 5 may contain a statement label
(see section 1.3.3 below);

Position 6 contains a space or the digit 0;

Positions 7 to 72 can contain the statement.

1.3.1.2 Continuation lines

A continuation line has the following form:

Positions 1 tQ~5 are blank

Position 6 contains any character other than 0 or a space. It is usual
to number continuation lines consecutively from 1

Positions 7 to 72 contain the continuation of a statement

1 - 3

Introduction June 30, 1982

1.3.1.3 Comment lines

Comment lines may be included in a program; such lines do not affect
the program in any way but can be used by the programmer to include
explanatory notes. The letter C or an asterisk in position 1 of a line
designates that line as a comment line; a line containing only blank
characters in positions 1 to 72 is also a co~ment line.

The comment text is written in positions 2 to 72.

1.3.2 Statements

A statement consists of an initial line and, where necessary, up to 19
continuation lines.

Except as part of a logical IF statement, no statement may begin on a
line that contains any part of the previous statement.

Blank characters may appear preceding, within or following a statement
without changing the interpretation of the statement, except when they
appear within character constants or the H or apostrophe format codes
in FORMAT statements.

1.3.2.1 END statement

An END statement marks the end of a program unit. The statement
consists of the three characters END, in that order, in any of
positions 7 to 72 of an initial line. All other positions from 1 to 72
must contain spaces. No other statement may have an initial line that
appears to be an END statement.

1.3.3 Statement labels

Any statement in a FORTRAN program may be identified by preceding it by
a statement label.

A statement label is an unsigned integer in the range 1 to 99999. The
numbers used as labels have no sequential significance. For example,
the label 7 may occur after the label 9853. Labels may appear anywhere
within columns 1 to 5. Blanks and leading zeros have no significance in
labels.

All statement labels within anyone program unit must be unique. Labels
may be referred to only in the program unit in which they occur.

1 - 4

Introduction June 30, 1982

1.3.4 Categories of statements

Each statement is classified as executable or non-executable.

Executable statements specify actions and form an execution sequence in
a program.

Non-executabl.e statements specify characteristics, arrangement, and
initial values of data; contain format editing information; specify
statement functions; classify program units; and specify entry points
within subprograms. Non-executable statements are not part of the
execution sequence. They may be labelled, but such statement labels
must not be used to control the execution sequence.

1.3.4.1 Executable statements

The following statements are classified as executable:

1 Arithmetic, logical, statement label (ASSIGN), and
character assignment statements

2 Unconditional GO TO, assigned GO TO, and computed
GO TO statements

3 Arithmetic IF and logical IF statements

4 Block IF, ELSE IF, ELSE, and END IF statements

5 CONTINUE statement

6 STOP and PAUSE statements

7 DO statement

8 READ, ~RITE, and PRINT statements

9 REWIND,BACKSPACE, ENDFILE, OPEN, CLOSE, and
INQUIRE statements

10 CALL and RETURN statements

11 END statement

1 - 5

Introduction

1.3.4.2 Non-executable statements

The following statements are classified as non-executable:

1 PROGRAM, FUNCTION, SUBROUTINE, ENlRY, and
BLOCK DATA statements

2 DIMENSION, COMMON, EQUIVALENCE, IMPLICIT,
PARAllIETER, EX1ERNAL, IN1RIN8IC and SAVE
statements

3 INTEGER, REAL, DOUBLE PREe 181 ON, COMPLEX,
LOGICAL, and CH~~CTER type-statements

,4 DATA statement

5 FOP~\T statement

6 Statement function statement

1.3.5 Order of statements and lines

June 30, 1982

Table 1.1 is a diagram of the required order of statements and comment
lines for a program unit. Vertical lines delineate varieties of
statement.s that may be interspersed. For example, FORMAT statements may
be interspersed with statement function statements and executable
statements. Horizontal lines delineate varieties of statements that
must not be interspersed. For example, statement function statements
must not be interspersed with executable statements.

1 - 6

Introduction

Comment
Lines

Table 1.1

Required order of statements and comment lines

PROGRAM, FUNCTION, SUBROUfI NE , or
BLOCK DATA statement

FORMAT
and
EN1RY
Statement's

PARAMETER
Statements

DATA
Statements

END Statement

IMPLICIT
Statements

Other
Specification
Statements

Statement
Function
Statements

Executable
Statements

June 30, 1982

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements except
PARMJETER statements. Any specifion statement that specifies the type
of a symbolic constant must precede the PARAMETER statement that
defines that particular symbolic constant; the PARAMETER statement must
precede all other statements containing the symbolic constants that are
defined in the PARAMETER statement.

ENTRY statements may appear anywhere except between a block IF
statement and its corresponding END IF statement, or between a DO
statement and the terminal statement of its DO-loop.

The last line of a program unit must be an END statement.

All specification statements must precede all DATA statements,

1 - 7

Introduction June 30, 1982

statement function statements, and executable statements.

All statement function statements must precede all executable
statements.

1.4 Names

In FORTRAN various items are identified by names chosen by the
programmer. A name is a string of up to six alphanumeric characters of
which the first must be alphabetic. Sometimes the first character has
special significance (see section 2.3.1). Spaces normally have no
significance in FORTRAN programs and so, for example, the names NA1ffi1,
N Alffil and NAME 1 are identical.

A name, in general, has only one meaning within a program unit. The
same name used in different program units does not in general refer to
the same object except when it refers to a subprogram or common block
name. There are three exceptions to these rules:

1 A common block name may also be a variable, array or
statement function name

2 A function subprogram name must also be a variable name
within the function subprogram (see section 7.1)

3 The name of a variable used as the DO-variable of an
impl ied-DO

/
· in a DATA statement may have any other

meaning outside the implied-DO list

Note: The term symbolic name may be used instead of name.

1.5 Coding a program

FORTRAN program statements and co~~ents may be written on a FORTRAN
coding sheet. The program can then be entered directly at the keyboard.

FORTRAN coding sheets are divided into lines with 80 positions numbered
from 1 to 80. The first 72 positions correspond to the 72 character
positions in a line of a FORTRAN statement. Positions 73 to 80 can be
used to identify the line or to give the line a sequence number.
Characters written in positions 73 to 80 will not affect the program in
any way.

1 - 8

Data

CHAP1ER no
DATA

June 30, 1982

This chapter is concerned only with the organization of data in a
FORTRAN program. The three permissible types of data are described,
together with the possible methods of data specification. Data storage
and input/output are described in Chapters 3 and 9 respectively.

2.1 Data values and, types

Values in FORTRAN can be classified as follows:

1 Arithmetic values. These can be further subdivided into:

(a) Integer values, which are whole numbers. Such values are
said to be of type integer and are held exactly in fixed
point form in store.

(b) Real values, which are numbers expressed as decimal
fractions with exponents. Such values are said to be
of type real and are held approximately in floating
point form in store.

(c) Double precision values are numbers held in the same form
as real values, but to a greater precision.

(d) Complex values, representing complex numbers. Such values
are said to be of type complex and are held in store as a
pair of real values, the first representing the real part
and the second representing the imaginary part.

2 Logical values, representing the values true or false. Such
values are said to be of type logical.

3 Character values, representing strings of characters. Such values
are said to be of type character and their length is under the
control of the programmer.

2 - 1

Data June 30, 1982

2.2 Constants! variables and arrays

Values can be made available for use in calculations in one of four
ways:

1 As a constant value which can be written at the point
in the program at which it is required (see section 2.2.1)

2 As a symbolic constant which has previously been named
and defined with a value in a PARAMETER statement (see
section 2.3.4)

3 In a variable. This is a named area of storage which can
contain one item of data of a particular type, the type
being determined by the variable name (see section 2.2.3)
or by a type specification statement (see section 2.3)

4 In an array. This is a named area of storage which can
contain a set of items of data of a particular type, the
type being determined by the array name or by a type
specification statement (see section 2.3). Each item of
data within the set is called an array element (see
sect ion 2.2.4).

Variables, arrays and array elements may be assigned initial values by
use of DATA statements (see section 3.3.1) and may be assigned new
values during execution of the program. .

2.2.1 Constants

There are six types of constant that can be used: integer, real, double
precision, complex, logical and character. Integer, real, double
precision and_~omplex constants are grouped together as arithmetic
constants.

2.2.1.1 Integer constants

An integer constant is an optionally signed whole number written as a
string of digits with no decimal points or exponents. Unsigned integer
constants are assumed to be positive.

2.2.1.2 Real constants

Real constants are numbers written containing a decimal point, an
exponent or both. They may be signed or unsigned. If they are unsigned
they are assumed to be positive. Exponents are written as the letter E

2 - 2

Data June 30, 1982

followed by a one or two digit signed or unsigned integer. The integer
represents a power of ten to which the constant is to be raised.

TI1US real constants may take any of the following forms:

+n.m +n.mE+a

+n. +n.E+a

+.m +.mE+a

where nand m are strings of digits, a is a one or two digit integer
constant and + is an optional sign.

2.2.1.3 Double precision constants

Double precisi~n constants are numbers written containing an optional
decimal point and an exponent. They may be signed or unsigned. If they
are unsigned they are assumed to be positive. Exponents are written as
the letter D followed by a one or two digit signed or unsigned integer.
The integer represents the power of ten to which the constant is to be
raised.

Double precision constants take any of the following forms:

+n.mD+a

+n.D+a

+.mD+a

where nand m are strings of digits, a is a one or two digit integer
constant and + is an optional sign.

2.2.1.4 Complex constants

Complex constants are pairs of real or integer constants; the first
constant corresponds to the real part of a complex number and the
second corresponds to the imaginary part.

Complex constants have the form

(a,b)

2 - 3

Data June 30, 1982

where a and b are constants and (a,b) represents the complex number
a+ib.

The form -(a,b) is not a valid complex constant, and would have to be
written (-a, -51.

2.2.1.5 Logi~al constants

There are two logical constants, representing the values true and
false. They have the forms

.1RUE •

• FALSE.

2.2.1.6 Character constants

A character constant is a non-empty string of any characters, delimited
by being enclosed in apostrophes.

If a string enclosed in apostrophes itself contains an apostrophe, this
must be represented by two apostrophes to distinguish it from a
delimiting apostrophe.

The length of a character constant is the number of characters which
appear between the delimiting apostrophes, except that each pair of
consecutive apostrophes counts as a single character.

The following are examples of valid character constants:

'C(1)= '
'MUSTARD AND CRESS'
, ISN' 'T'

2.2.2 Symbolic constants

A symbolic constant is a constant value that is identified by a name
(see section 1.4). The value associated with the symbolic constant is
defined in a PAJUUAETER statement (see section 2.3.4) which must appear
before any use is made of the name to represent a value. The type of a
symbolic constant is determined in the same way as for a variable (see
sections 2.2.3 and 2.3).

2 - 4

Data June 30, 1982

2.2.3 Variables

A variable is an item of data that is identified by a name (see section
1.4). Values can be assigned to variables during the execution of a
program. The value assigned to a variable at any time is made available
to the program when a reference is made to the variable name.

In general, a particular variable will be available in only one program
unit. A name -used for a variable in one program unit may be used for an
entirely different variable in another program unit.

There are six types of variable: integer, real, double precision,
complex, logical or character.

The ranges of values these types can take are the same as for the
corresponding types of constant (see sections 2.2.1.1 to 2.2.1.6).

If the name chosen for a variable begins with one of the letters I to N
inclusive, then the variable will be assumed to be of type integer.
Otherwise it will be assumed to be of type real. However, the
programmer can override this convention by specifying, in a type
specification statement, the type the variable is to be (see section
2.3) .

For example, variables with names such as INT, LIST, NUMBER or J322
would be assumed to be of type integer unless otherwise specified.
Variables with names such as AREA, SUM or R147 would be assumed to be
of type real unless otherwise specified.

2.2.4 Arrays

Sets of data items of the same type can be processed as arrays. A
single name, the array name, is chosen to identify the set, and
individual items are called the array elements (see section 1.4 for
further' detai Is concerning names).

Arrays may have one or more dimensions. For example, the matrix A wher'e

A = A(l,!) A(l,2) A(1,3) A(1,4)
A(2,1) A(2,2) A(2,3) A(2,4)

could be treated as a two-dimensional array with eight elements. Arrays
may have up to seven dimensions.

There are six types of array: integer, real, double precision, complex,
logical and character. The type of an array is determined in the same
way as the type of a variable, and each element of the array has this
same type.

2 - 5

Data June 30, 1982

2.2.4.1 Array elements

In some contexts an array may be referred to as a whole by specifying
the array name. In other contexts individual elements may be referred
to by an array element reference which takes the form of the array name
followed by a subscript list enclosed in parentheses. A subscript list
is an ordered set of subscript expressions separated by co~~as, one
subscript expression for each dimension of the array. A subscript
expression may be an arithmetic expression (see Chapter 4) of type
integer.

The compiler allocates storage to the array as instructed by an array
declarator (see section 3.2.2). The array declarator and the subscript
expressions given in the array element reference are used to calculate
the position in store that is occupied by the specified element. The
order in which array,elements are held in store is specified in section
3.1.3.

Each subscript expression, when evaluated, must have a value within the
declared bounds for that subscript.

The following are examples of valid array element references, with
explanations:

TABLE(7)

MAT(I,I+l)

VECTOR(IFUN(J,3»

Element (7) of the one dimensional array TABLE

If I is an integer variable with the value 7,
this reference is to element (7,8) of the
two-dimensional array MAT

~bere IFUN is an integer external function or
statement function requiring two actual
arguments and VECTOR is a one dimensional
array. The function is evaluated to give
the array element required.

2.3 T\pe specification

In FOR1RAN all constants, symbolic constants. variables, arrays and
functions must be identified as being of particular types so that they
can be stored and processed correctly. The type of a constant is
indicated by the way the constant is written.

2 - 6

Data June 30, 1982

The type of a symbolic constant, variable, array or function may be
defined in any of three ways:

1 Predefined specification

2 IMPLICIT specification

3 Explicit specification statements

Explicit statements override IMPLICIT specifications, which in turn
override predefined specifications.

2.3.1 Predefined specification

Any symbolic constants, variables, arrays or functions whose names are
not mentioned in a type specification statement and whose initial
letter is not mentioned in an IMPLICIT statement (see section 2.3.2)
will be assumed to be of type integer or real according to the
following rules:

1 If the name of the symbolic constant, variable, array or
function begins with any of the letters I, J, K, L, M or N
the compiler assumes the symbolic constant, variable, array
or function to be of type integer

2 If the name beg}ns with any other letter the quantity is
assumed to be of type real

Some examples of predefined type variable names are given in section
2.2.3.

2.3.2 The IMPLICIT statement

The IMPLICIT statement provides a means of overriding the FORTIt\N
convention of predefined specification for the types of symbolic
constants, variables, arrays and functions. This takes effect for the
whole of the current program unit unless overridden by explicit type
statements.

The statement takes the form:

IMPLICIT typel{al,a2, ••.), •.. ,typen(am,an, •..)

where

type is one of: INTEGER, REAL, OOUBLE PRECISION, COMPLEX, LOGICAL or
CHARACTER *s.

2 - 7

Data June 30, 1982

a1,a2, ... and am,an, ..• are lists of single alphabetic characters
separated by cowmas, or a range of alphabetic characters in sequence,
separated by a minus sign. The same letter may not appear singly, or
within a range of characters, more than once in a subprogram.

s is the length of the character entities and is either an unsigned,
non-zero integer constant, or an integer constant expression enclosed
in parentheses and with a positive value. s (together with the
preceding *) is optional and, if omitted, the length is one.

After this statement has been processed, all symbolic constants,
variable, array or function names beginning with the characters
a1,a2 ... are implicitly of type t~~e1 and all s~~bolic constants,
variable, array or function names beginning with am,an ... are
implicitly of type typen unless the specification is overridden by an
explicit specification statement.

A program unit may contain more than one IMPLICIT statement, but
IMPLICIT statements must precede all other specification statements
except PAR~\mTER statements. For a subprogram, IMPLICIT statements can
specify the type of the parameters to the subprogram, and of the
function name for a function subprogram, unless their types are
specified in an explicit type specification statement.

Example 1

IMPLICIT REAL(A-D,X,Z),LOGICAL(L)

This statement specifies that all variables whose names begin with A,
B, C, D, X or Z that do not appear in explicit type statements are to
be real. Similarly all variables whose names begin with L are assumed
to be logical.

Example 2

COMPLEX FL~CTION BACH(THEME,FUGUE)
IMPLICIT DOu~LE PRECISION(A-H)

The overall effect of these two statements is that the parameter FUGUE
will be of type double precision and the function BACH will be of type
complex. The parameter THEME is assumed to be type real by virtue of
its initial letter T.

2 - 8

Data June 30, 1982

2.3.3 Explicit t\~e specification statements

Explicit type specification statements are used to confirm or override
the predefined or implicit tJ~e specification, and optionally to give
dimension information for arrays.

The appearance of the name of a symbolic constant, variable, array,
external function or statement function specifies the data type for
that name for all appearances in the program unit. Within a program
unit a name must not have its type explicitly specified more than once.
A type statement which confirms the t)~e of an intrinsic function
(listed in Appendix A) is permitted, but is not necessary. The
appearance of a generic function name (see section 7.1.2.1) in a type
statement does not necessarily remove the generic properties of that
function.

2.3.3.1 Arithmetic and logical tyPe statements

The statements take the form:

type a(kl),b(k2), ... ,c(kn)

where

type is one of: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.

a,b, ... ,c are symbolic constant, variable, array, function or du~~y
procedure names (see section 7.1).

(kl),(k2), ... ,(kn) are optional and give dimension information for
arrays (see section 3.2.2).

Example 1

REAL A,B(10),C,D

This statement declares

A, C and D to be real

B to be a real array with 10 elements

Example 2

INTEGER FRED,JIM,UNCLES(S)

2 - 9

Data June 30, 1982

This statement declares the variables FRED and JI~f, of type integer. In
addition, the integer array UNCLES is declared, which has five
elements.

Example 3

DOUBLE PRECISION HEXNO,INTNO

This statement declares two real variables, HEXNO and INTNO.

Example 4

LOG I CAL L, BOOLE

10is statement declares two logical variables, L and BODLE.

2.3.3.2 The CfIuillACTER t)/pe statement

This statement is written:

where

s,sl,s2 9 ••• ,sn are length specifications (numbers of characters) of a
character variable, character array element, character symbolic
constant, or character function. Each s is one of the following:

1 _ An unsigned, non-zero, integer constant

2 An integer constant expression enclosed in parentheses
and with a positive value

3 An asterisk in parentheses.

The value of s may be up to 32,767.

An s irr~ediately following the word CHARACTER is the length
specification for each entity in the specification not having one of
its own. A length specification immediately following an entity applies
only to that entity: for an array the length specification is for each
element of that array. If a length is not specified for an entity, its
length is one. If a length is specified for an entity declared in the
statement, the length specification must be a positive non-zero integer
constant expression, unless the entity is an external function, a dummy
argument of an external subprogram or a character symbolic constant.

2 - 10

Data June 30, 1982

If a dummy argument has a length (*) declared, the du~~y argument
assumes the length of the associated actual argument for each reference
of the subprogram. If the associated actual argument is an array name,
the length assumed by the dummy argument is the length of an array
element in th~associated actual argument array.

If an external function has a length (*) declared in a function
subprogram, the function name must appear as the name of a function in
a FUNCTION or ENTRY statement in the same subprogram. When a reference
to such a function is executed, the function assumes the length
specified in the referencing program unit.

The length specified for a character function in the program unit that
references the function must be an integer constant expression and must
agree with the length specified in the subprogram that specifies the
function. There is always agreement of length if <*) is specified in
the subprogram that specifies the function.

If a character symbolic constant has a length <*) declared, the
symbolic constant assumes the length of its corresponding constant
expression in a PARAMETER statement.

The length specified for a character statement function or statement
function dummy argument of type character must be an integer constant
expression.

a,b,c are variable, symbolic constant, function or dummy procedure
names.

(kl),<k2), ... ,(kn) are optional and give dimension information for
arrays.

Example

CHARACTER CHAR,BUFF*80

This statement declares two character variables BUFF and CHAR. CHAR
occupies one character (the default length) and BUFF occupies 80
characters.

2.3.4 The PARAMETER statement

A PARAMETER statement is used to define the value of a symbolic
constant. The statement has the form:

PARAMETER (a=e,a=e, .••)

2 - 11

Data

where

a is a symbolic constant name.
e is a constant expression.

June 30, 1982

If a is of type integer, real, double precision or complex, the
corresponding e must be an arithmetic constant expression. If a is of
type character or logical, the corrresponding e must be a character
constant expression or a logical constant expression respectively.

Each a is the name of a symbolic constant that is defined by the value
of its corresponding e in accordance with the rules for assignment
statements (see Chapter 5). No a may be defined more than once in any
program unit.

If any a is not to have the type specified implicitly then its type
must be specified by a type-statement (see section 2.3.3) or an
IMPLICIT statement (see section 2.3.2) before its appearance in a
PAR4METER statement. If the length specified for a symbolic constant of
ty~e character is not the default length of one, then its length must
first be given in an IMPLICIT or type statement. Its length cannot be
changed subsequently.

Once a symbolic constant has been defined it may be used in any
subsequent statement in the same program-unit as an element of an
expression or in a DATA statement, but not as part of a format
specification or as part of another constant.

2 - 12

Storage of Data

CHAPTER TImEE

STORAGE OF DATA

June 30, 1982

This chapter deals with the storage of data. It describes how
quantities are held in store according to their type and then describes
the various non-executable statements concerned with allocating storage
and assigning initial values to variables.

Specification of type is described in Chapter 2 and the order in which
the non-executable statements described in this chapter must occur is
given in section 1.3.5.

3.1 Storage requirements

The standard unit of storage is a byte, which consists of 8 binary
digits.

The amounts of storage required by the various types of data are
defined below.

3.1.1 Constants

The number of bytes reserved for each type of constant is defined in
sections 10.2.1.1 to 10.2.1.6.

-
3.1.2 Variables

The number of bytes reserved for each type of variable is defined in
sections 10.2.1.1 to 10.2.1.6.

3.1.3 Arrays

Arrays can take the same types as variables. Each of the array elements
has the same type as the array and is allocated the standard amount of
storage for a variab'le of that type. The type of the array depends on
its name (see section 2.3) unless otherwise specified.

The number of dimensions of each array and their sizes must be
specified once, and only once, in a DltffiNSION statement, COMMON
statement (see sections 3.2.2 and 3.2.3) or an explicit type statement
(see section 2.3.3).

3 - 1

Storage of Data June 30, 1982

Individual array elemen~s may in general be referred to by giving the
array name and a list of subscript expressions, one subscript
expression for each dimension (see section 2.2.4.1).

However, it is sometimes necessary for the programmer to know how the
elements of an array are arranged in store. They are stored
consecutively so that the left-hand subscript varies most rapidly and
successive subscripts vary less rapidly.

For example, the array A declared as DI~ffiNSION A(3,2) would be stored
as follows:

A(I,I) A(2,1) A(3,1) A(I,2) A(2,2) A(3,2)

and array B, declared as DI~lliNSION B(4,3,2) would be stored:

B(I,I,!) B(2,1,1) B(3,1,1) B(4,1,1) B(1,2,1) ••.• B(4,2,1)
B(I,3,1) B(4,3,1) B(I,I,2) B(4,1,2) B(I,2,2)
.... B(4,2,2) B(I,3,2) B(4,3,2)

3.1.4 Character storage

Characters may be held in a variable or array element of type
character. Character values may be given to variables or array elements
in four ways:

By assigning a character value in a DATA statement
(see section 3.3.1)

2 By specifying a character constant as an actual argument
of a subroutine call or of a function reference

3 By using an A format description in conjunction with a
READ statement (see section 8.3.1.7)

4 By specifying a character constant or expression on the
right-hand side of a character assignment statement

3 - 2

Storage of Data June 30, 1982

3.1.5 Character substring

A character substring is an unbroken portion of a character scalar or
array element and is a variable of type character. It may be assigned
values and referenced, and is identified by a substring name of the
form:

c(pl:p2)
a(k,k, ...)(pl:p2)

where

cis a character var/i able name.

a(k,k, ...) is a character array element name

pI and p2 are integer expressions and are known as substring
expressions.

The value pI specifies the leftmost character position of the
substring, and p2 specifies the right most character position. The
values of pI and p2 must be such that

1 <= pl <= p2 <=s

where s is the length of the character variable c or the array element
a(k,k ...).

If pI is omitted then the value of 1 is assumed, and if p2 is omitted
then the value of s is assumed: both pI and p2 may be omitted.

3.2 Allocation of storage

3.2.1 General considerations

This section discusses various statements used for storage allocation.

CO~WON statements (see section 3.2.3) allow the same area of storage to
be accessed by a number of different program units. This allows values
assigned in one program unit to be used in other I1nits.

EQUIVALENCE statements (see section 3.2.4) allow the same storage space
to be used for more than one variaQle or array within one program unit.

DIMENSION statements (see section 3.2.2) are used for declaring arrays
(see also section 3.1.3).

3 - 3

Stor'age of Dat a June 30, 1982

3.2.1.1 Variables

It is not necessary to specify every variable name in a non-executable
statement in order that storage will be reserved for it. Variable names
may be mentioned in various non-executable statements but this will
always be for some purpose other than merely informing the compiler of
the existence of the variable. If a variable name is not mentioned in a
non-executable statement, when the name is first encountered in an
executable st.atement, the compiler will assume the variable to be of
the type given by its initial letter (see section 2.3.1) and will
implicitly allocate the amount of storage accordingly.

3.2.1.2 Arrays

l~rays must be specifically defined so that the compiler is informed of
the number of dimensions and the size of each dimension. TI'le definition
is given by means of an array declarator, whose form is specified in
section 3.2.2. Array declarators may be given in t)~e specification
statements, COMMON statements and DIMENSION statements, but a
particular array declarator may only be given once in each program
unit. An array name on its own does not constitute an· array declarator
and thus, for example, the array name on its own could occur in a
COMMON statement and a t)~e specification statement if the declarator
were given in a DIMENSION statement.

3.2.2 The DIMENSION statement

Th~ DIMENSION statement is used to declare names as being array names
and to specify the number of dimensions of the array and the size of
each dimension, so that the appropriate amount of storage can be
allocated to,tbe array.

The statement has the form

DIMENSION arrayname1(k1),arrayname2(k2), .•. ,arrayna.men(kn)

where

arraynamel,arra)~ame2' ..• tarraynamen are array names.

kl,k2, ... ,kn are parameters that give the sizes of each dimension of
the corresponding array.

k takes the form

11 :u1, l2:u2, .•. lz:uz

3 - 4

Storage of Data June 30, 1982

where land u are the lower and upper dimension bounds respectively.
The dimension bounds are arithmetic expressions in which all constants,
symbolic constants, and variables are of type integer. Integer
variables may appear in dimension bound expressions only for adjustable
array specifications. A dimension bound expression must not contain a
function or array element reference. The upper dimension bound of the
last dimension in an assumed size specification may be an asterisk.

Tne value of either bound may be positive, negative or zero provided
that the upper bound is not less than the lower bound. If the lower
bound is not specified it is assumed to have the value one. An upper
bound specified as an asterisk always has a value greater than or equal
to the lower bound.

z is a number between 1 and 7 inclusive.

Each arrayname(k) is an array declarator.

A declarator fer each array used in a program unit must be given once
and only once in that program unit, in either a DIMENSION statement, a
type specification statement or a COMMON statement. A declarator
appearing in a COMhION statement may not contain dimension sizes
specified by integer variable names or an asterisk.

Example

The statement

DIMENSION A(10) ,B(1 :500,0:9)

declares A as a one-dimensional array with ten elements and B as a two
dimensional array, one dimension having 500 elements and the other
dimension having ten elements.

3.2.3 The CO~~~ON statement

The CO~~10N statement enables areas of storage, known as common blocks,
to be used in more than one program unit of a program. Thus, values
obtained in one program unit can be used in other program units (see
section 3.2.3.4).

The statement has the form:

CO~~10N/cbnamel/a(kl),b(k2}, ••• ,/cbname2/c(k3),d(k4), •••

where

3 - 5

Storage of Data June 30, 1982

Icbnamel is an optional parameter giving a common block name (see
section 3.2.3.1 below).

atb, ... are variable or array names. In a subroutine or function these
must not be dummy arguments (see section 7.1).

If any variable or array is of type character then all variables and
arrays in that conunon block must a1 so be of type character.

(kl),(k2), ... are optional parameters giving dimension information for
arrays.

An optional co~~a may appear after a list of variable or array names
and before the slash (/) prefacing another common block name.

3.2.3.1 Co~~on block names

Any number of common blocks may be used in at program. If desired, one
common block may be used without a name: such a block is referred to as
the blank common block. All other blocks must be given a block name
chosen to obey the rules for names, given in section 1.4. No intrinsic
function name (see Appendix A) may be used as a common block name nor
may the name of a constant or of any program unit of the program be
used.

TIlere are no other restrictions on co~~on block names (and thus
duplication of variable and other names by common block names is
permi ss i bIe) .

If a blank common block is used, two consecutive slashes (II) must
precede the names of variables and arrays in the block unless the blank
common block is the first block given in the COMMON statement, in which
case the two slashes may be omitted.

The same block name may appear more than once in a CO~~10N statement or
in a subprogram; see section 3.2.3.3 below.

Example 1

COMMON !BLOCK IIVALUE,ARRAYIBLOCK 21X, Y ,Z

The variable VALUE and the array ARRAY are held in a common block named
BLOCK 1, and variables X,Y,Z are held in a common block named BLOCK 2.

The dimensions of the array ARRAY must be declared in a type statement
or a DIMENSION statement, since they have not been given in the CO~JON

3 - 6

Storage of Data

statement.

Example 2

COMMON COUNT, TABLE, RESULT I AREA/SUB, ITEM
C01flJON IAREA/SUB,ITEMIICOUNT,TABLE,RESULT

June 30, 1982

These two statements have the same effect; COUNT, TABLE, RESULT are
held in the blank common block and SUB and ITEM are held in common
block AREA.

Example 3

COI~fON A,B(20)/COMMID(40),E,IIIX,Y,Z

This statement declares the variables A,B,X,Y,Z to be in the blank
common block, and D,E,I to be in the block COMM.

If later, the statement

COMMON ICOMM/AI,A2,A3(17)/ONIBA,BC

occurs, then the variables AI, A2, A3 are added to the end of block
CO}~ and a new block ON is created with variables BA, BC (see section
3.2.3.3).

3.2.3.2 Storage of variables

The size of a common ~lock is the sum of the storage requir"ed for each
element within it. However, program units which are to be executed
together must specify the same sizes for named co~mon blocks which they
share.

Variables are allocated consecutive units of storage in the order in
which they occur in the program.

3.2.3.3 Multiple references within a program unit

It is permissible for a common block name (or a reference to the blank
common block) to occur more than once in a COMMON statement or in more
than one C01ruON statement in the same program unit.

For example, the statement

CO~10N X,Y,CHECKlRESULT/A(lO)IISUM,AREAIP£SULTIB(lO),C

3 - 7

Storage of Data June 30, 1982

is equivalent to the following two statements occurring in the same
program unit:

C01llAON X,Y,CHECKIRESULT/A(lO)
COMMON SUM,AREAIRESULTIB(10) ,C

Either of these examples will have the same effect as the statement

CO~~AON X,Y,CHECK,SUM,AREAIRESULT/A(lO),B(lO),C

TIlat is, variable and array names are allocated to the common block
indicated in the order in which they occur in the program unit.

3.2.3.4 Using the COMMON statement

The common block is an area of storage that will be used in more than
one program unit of the program. The name of the block must appear in a
COM1fON statement in each program unit in which the block is to be used.
The names of the variables and arrays within the block may be the same
in different program units, but need not be.

Thus if the two statements

COM1fON X,Y,CHECKIRESULT/A(lO)
COMMON XCOORD, YCOORD ,CHIRESUL T I ARIt4 Y (10)

occurred in two different program units, the variables X,Y,ClffiCK used
in the first program unit would occupy the same storage area as XCOORD,
YCOORD and CH used in the second program unit. The storage area is
called the blank common block. Similarly A(tO) in the first program
unit and ARRAY(lO) in the second program unit will share the storage
area of common block RESULTS.

Usually, the variable and array names included in a given common block
in one program unit will correspond in number and type to those used in
all other program units in which the block is referenced.

For the initialization of named common blocks, see section 3.3. For the
equivalencing of conwon items, see section 3.2.4.3.

3 - 8

Storage of Data June 30, 1982

3.2.4 The EQUIVALENCE statement

The EQUIVALENCE statement enables variables and array elements of the
same or different types used in one program unit to share storage
space. Thus, the amount of storage used by a program unit can be
reduced. There is no mathematical equivalence, simply a sharing or
saving of space.

The statement has the form

EQUIVALENCE (a1,a2,a3, .•.), ..• ,(n1,n2,n3, ...)

where

al,a2,a3, ... ,n1, ... are variables, array elements, arrays or character
substrings. They must not be function names or du~~y arguments of
functions or subroutines.

This statement causes all the elements of each list of variables, a1 to
am and n1 to nm to share the same storage area. That is al,a2,a3, ... ,am
will share one area and nl,n2,n3, ... ,nm will share another.

The subscripts of an array element used in this statement must be
integer constant expressions and must correspond in number to the
dimensions of the array.

3.2.4.1
• I

Arrays In EQUIVALENCE statement

Since array elements are stored in a fixed order, an equivalence
between two elements of different arrays effectively defines an
equivalence between other elements. It is important not to contrad-ict
these equivalences by further EQUIVALENCE statements.

3.2.4.2 Equivalencing items of different types or length

Variables, arrays and array elements except of type character may be
equivalenced with other such items of different types, but wherever one
of the equivalenced items of type type! is assigned a value of type
type1 then the value of another item of type type2 that is equivalenced
to the first item becomes undefined and should not be referred to in an
expression until it has been assigned a value of type type2.

If equivalenced items occupy different amounts of store (for example if
a real variable and a complex variable are equivalenced), the starts of
the items are aligned. For example, the statement

EQUIVALENCE(A,B)

3 - 9

Storage of Data June 30, 1982

where A is of ty~e complex and B is of type real will cause B to share
the first four bytes of the storage allocated to A.

An entity of type character may only be equivalenced to another entity
of type character. The lengths of the equivalenced entities do not need
to be the same.

3.2.4.3 Eauivalencing common block items

If one of the items given in the EQUIVALENCE statement appears in a
common block then none of the other items given in the same list in the
EQUIVALENCE statement may appear in the same or any other COli~on block
in the program unit.

Since an array element may be equivalenced to a variable in co~~on, the
implicit equivalencing of the rest of the array may extend the size of
the corr~on area. Such lengthening of a common block can take place only
beyond the last entry in the block and not before the first entry.

For example, the following series of statements:

C01WONIBLOCK/A(10},B,C,I,J

DIMENSION TABLE(3,4),ARRAY(4,4)

EQUIVALENCE(A(l),TABLE(l,l»

would result in the 12 real elements of TABLE sharing the corr~on
storage area with the 10 real elements of array A and the two real
variables Band C. If the EQUIVALENCE statement were replaced by

EQUIVALENCE(A(l),ARRAY(I,l»

then AJrnAY would share storage with A,B,C,I and J, and the common block
would be extended to hold the remaining elements of ARRAY. The
EQUIVALENCE statement could not validly be replaced by

EQUIVALENCE(ARRAY(2,2),A(S»

since if this were implemented it would result in the common block
BLOCK being extended before the first item in the block. Element
ARRAY(2,2) is the sixth item of array ARRAY; if it were to be
equivalenced with A(S) then ~~Y(2,l) would by implication be
equivalenced with A(t) and the block would have to be extended before
A(l) to give storage to ARRAY (1,1). This therefore is an invalid
EQUIVALENCE statement.

3 - 10

Storage of Data June 30, 1982

3.3 Assignment of initial values

Initial values may be assigned to variables, arrays, array elements and
substrings by using DATA statements.

Initial values may not be assigned to the dummy arguments of function
or subroutine subprograms nor to a variable in a function subprogram
whose name is also the name of the subprogram or an entry to the
subprogram. If initial values are to be assigned to variables or arrays
that form part of a common block (or are equivalenced to items in a
co~~on block), this must be done in the block data subprogram (see
section 3.3.2) and not in any of the other program units in which the
comrr~on block is used. Initial values may only be assigned to named
common blocks, and not to the blank common block.

Initialization is carried out when a program unit is loaded, and not
when control enters the program unit. Thus when a subroutine or
external function is to be entered several times it cannot be assumed
that the initial values apply on each occasion of entry.

In the case of character and logical values the type of a value must be
the same as that of the variable or array element to which it is being
assigned. For arithmetic values, the type of a value should be the same
as that of the variable or array element to which it is to be assigned.
However, the compiler will perform a conversion between integer and
real values if necessary.

3.3.1 The DATA statement

The DATA statement has the form

DATA name!istl/valuelist1/,namelist2/valuelist2/
, ... ,namelistn/valuelistn/

where

namelistl,namelist2, ... are lists of names of variables, arrays, array
elements or substrings, and implied DO lists, separated by commas. The
comma after a slash (/) and before a list is optional.

valuelistl,valuelist2, ••• are value lists as described in section
3.3.1.1 below.

The values given in valuelist are assigned in order to the items given
in the corresponding namelist. When an array name appears in namelist
it is treated as a list of all the elements of the array, in the order
given in section 3.1.3.

3 - 11

Storage of Data June 30, 1982

The number of items listed in each namelist (counting each array
element of any arrays named as one item) must be the same as the number
of initial values given in the associated valuelist.

3.3.1.1 Value lists

Values are given in the form of lists of items separated by commas:
these items may take either of the forms

where j is a constant or the symbolic name of a constant and r a
non-zero unsigned integer constant or the symbolic name of such a
constant. The latter form is equivalent to specifying r copies of the
constant j. Thus the list

1,3;-4.975, .1RUE. ,4*8,3E-2

will have the same effect as the list

1,3,4.975,.1RUE.,8,8,8,8,3E-2

3.3.1.2 Implied-DO in a DATA statement

The implied-DO list in a DATA statement has the form:

(dlist, i = pl,p2,p3)

where

dlist is a list of array element names and implied-DO lists.

i is the name of an integer variable, known as the implied-DO-variable.

pI, p2 and p3 are integer constant expressions, except that the
expressions may contain implied-DO-variables of other implied-DO lists
that have this implied-DO list within their ranges.

The range of an implied-DO list is the list dlist. An iteration count
and the values of the implied-DO-variable are found from pl,p2 and p3
as for a DO-loop (see section 6.3.1), except that the iteration count
must be positive. p3 together with the preceding co~~a may be omitted.

When an implied-DO list appears in a DATA statement, the list items of
dlist are specified once for each iteration of the implied-DO list with

3 - 12

Storage of Data June 30, 1982

the appropriate substitution of values for any occurrence of the
implied-DO- variable i. The appearance of an implied-DO-variable in a
DATA statement does not affect the definition of a variable of the same
name elsewhere in the same program unit.

Each subscript expression in the list dlist must be an integer constant
expression, except that the expression may contain implied-DO-variables
of implied-DO lists that have the subscript expression within their
ranges.

Example

DATA «A(J,I), I=I,J), J=I,5) I 15*0. /

3.3.1.3 Character values

Initialization with character values is restricted to variables and
array elements of type character and character substrings. Character
values are held as strings of eight bit characters. One byte of storage
will hold one character.

If a character constant contains fewer characters than the number
required to fill the variable, array element or substring to which it
is being assigned as an initial value, space characters will be added
to the right-hand end of the string to make the number of characters
equal to the length of the variable, array element or substring.

If a character constant contains more characters than the number
required to fill the variable, array element or substring to which it
is being assigned as an initial value, the surplus rightmost characters
in the constant are ignored.

For example, the character constant

'HEAD '

could be assigned as an initial value to a character variable of length
4, and would fill it exactly. If the character constant

, ARRA Y#ELEMENTS'

were assigned as an initial value to an element of a character*8 array,
the element would hold APJRAY#EL.

3 - 13

Storage of Data

3.3.1.4 Examples of initial value assignment

The effect of the statement

DATA I/l/,J/1,3*0,1,3*2,11

June 30, 1982

where J is a 3 x 3 array, is to assign to I the initial value 1, and to
assign to J the values:

102
012
021

The effect of the statement

DATA A,B,C,D/4*O.OI,HEAD/'VALUES'1

is to assign the initial value 0.0 to each of real variables A,B,C and
D, and to insert the characters VALUES## in the character*8 variable
HEAD.

3.3.2 Block data suborogram

Block data subprograms are used to give initial values to items in
named common blocks by means of DATA statements. A block data
subprogram must start with a BLOCK DATA statement and end with an END
statement and may only contain the following kinds of statement:

IMPLICIT statements

PAR~JETER statements

Type specification statements

DIMENSION statements

C01n~ON statements

EQUIVALENCE statements

DATA statements

A block data subprogram is never executed.

If variables and arrays from a common block are named in a COMMON
statement in a block data subprogram, then the total storage area in
the common block must be specified completely_ For example, an array
must have its dimension information specified in the CO~lON statement

3 - 14

Storage of Data June 30, 1982

or in a DIMENSION or a type statement in the subprogram, even if it is
not named in DATA statements.

If any part of a common block is being given an initial data value then
a complete set of specification statements for the whole block must be
included before any part is initialized. This means that DIMENSION,
COMMON, EQUIVALENCE and type specification statements must come before
DATA statements for each common block.

A FORTRAN program may contain more than one block data subprogram but
any one co~~on block can be referred to in only one block data
subprogram. Initial data values may be entered into more than one
co~~on block in a single block data subprogram. Items in the blank
common block (see section 3.2.3.1) cannot be given initial values.

The block data subprogram may be given an optional name, in which case
the name must not be the same as any local name in the subprogram, nor
the same as the name .of any external procedur'e, main program, common
block or other block data subprogram in the same executable program.
There must not be more than one unnamed block data subprogram in an
executable program.

3 . 3 • 2. 1 Ex amp 1 e

The following block data subprogram gives initial values to some items
of the corr~on blocks ERC and RCC. All the items in each block are
specified completely.

BLOCK DATA
REAL B (4) ,Z (3)
DOUBLE PRECISION Z (3)
COMPLEX C
COMMONIERC/C,A,BIRCCIZ,Y
DATA B,Z,C/l.O,1.2,2*1.3,3*7.654321DO,(2.4,3.76)1
END

3 - 15

Storage of Data June 30, 1982

3 - 16

Expressions

CHAPTER FOUR

EXPRESSIONS

June 30, 1982

In FORTPAN, expressions may be used in many different statements in a
variety of contexts. Tnere are three kinds of expression: arithmetic
expressions, logical expressions and character expressions. Arithmetic
expressions have numerical values; logical expressions have logical
values; and character expressions have character values: this chapter
gives the rules for forming and evaluating these kinds of expression.

4.1 Arithmetic expressions

An arithmetic expression is a sequence of arithmetic elements of type
integer, real, double precision or complex, combined by arithmetic
operators and parentheses. The type of an arithmetic expression depends
upon those of its constituents; see section 4.1.6.

4.1.1 Arithmetic elements

An arithmetic element can be a numerical constant, an arithmetic
symbolic constant name, a variable name, an array element reference or
a function reference (see section 7.2.1.1). For example, the following
are valid arithmetic elements:

7E23 VARI A(1,3) SIN(X)

The simplest arithmetic expression is one that consists of only one
arithmetic element: the expression is then of the sarae type as the
element. The term expression is used in this manual to include elements
as well as more complex expressions.

4 - 1

Expressions June 30, 1982

4.1.2 Arithmetic operators and parentheses

Arithmetic operators are used to combine arithmetic elements or other
arithmetic expressions to give more complex arithmetic expressions. The
arithmetic operators are:

Operator

+

/

**

Meaning

Addition

Subtraction or negation

Multiplication

Division

Exponentiation

Some simple examples of arithmetic expressions using only one operator
are:

-A
A+B
A*B equivalent to the algebraic expression

a x b or ab
A~H~B equivalent to the algebraic expression a~nHb)

Parentheses are used to enclose arithmetic expressions which form part
of a more complex arithmetic expression. The parenthesized expressions
are evaluated as separate entities; this usage of parentheses is
therefore equivalent to normal mathematical usage.

4.1.3 Rules

~ben writing arithmetic expressions, the following rules must be
observed:

1 Arithmetic elements must be separated by an
arithmetic operator

2 No two operators may be adjacent

3 The operators + and - must be followed by an element:
the other operators must be both preceded and followed
by elements

4 - 2

Expressions June 30, 1982

Thus the following are not valid arithmetic expressions:

A.B (Rule 1: A multiplied by B must be written as A*B)
(Rule 2: A to the power -B must be written as A**(-B»
(Rule 3: this on its own is meaningless, while -B is

valid)

4.1.4 Order of evaluation

Arithmetic expressions are evaluated in general from the innermost set
of parentheses outwards. Within each set of parentheses or each
unparenthesized expression, the order of evaluation is from left to
right, except when the precedence of operators dictates otherwise. This
precedence is:

1 Function references

2 Exponentiations

3 Multiplications and divisions

4 Additions and subtractions

This order of precedence determines the sequence of operations in the
evaluation of an expression. The first two operators are compared and,
if the first takes precedence over or is equal to the second, then the
first operation is performed. If the second takes precedence over the
first, the third operator is compared with the second and so on. When
the end of the expression is reached, any remaining operations are
performed, reading from right to left.

For example, in the expression

the operations are performed as follows:

1

2

3

4

C*E2 = E3

El+E3

(intermediate result) (E1+C*D**I)

(intermediate result) (El+C*E2)

(intermediate result) (El+E3)

(final operation)

If one exponentiation operator follows i~mediately after another, the
evaluation is from right to left. Thus

4 - 3

Expr'ess ions June 30, 1982

is evaluated as follows:

(intermediate result)

2 A1a~El (final operation)

A series of multiplications and divisions is evaluated from left to
right. Under some circumstances this could lead to results that are
inaccurate owing to rounding errors or to a lack of precision in the
values of the elements in use. If such errors are possible, the
progra~~er may use parentheses to control the order of evaluation so as
to produce the most precise result.

Where part of an expression is contained within parentheses, that part
is evaluated first, and the result obtained is used in evaluation of
the expression as a whole. Wnere nested parentheses occur, that part of
the expression contained within the innermost set is evaluated first.

The sign of a signed quantity takes the same precedence
or subtraction sign. Thus

A = -B is treated as A = ° -B
A = -B~..c is treated as A =-(B~)

A = -B+C is treated as A =(-B) + C

4.1.5 Examples of arithmetic expressions

The expression

ARRAY(2,10)-COS(Z)/(2*PI)

is evaluated as follows:

as the addition

COS(Z)
7.2.1.1)

= E1 Function reference (see section

(2*PI)

E11E2

ARRAY (.2, 10) -E3

The expression

= E2

= E3

= fi-nal resul t

parenthesized expression

Division

Subtraction

4 - 4

Expressions June 30, 1982

A+B~~ID*(P-1)-3.0**(Q+R)+2.0/X**2

is evaluated as follows:

B~~ = E1

EllD = E2

P-1 = E3

E2*E3 = E4

A+E4 = E5

Q+R = E6

3. 0~H~E6 = E7

E5-E7 = E8

X~B~2 = E9

2.01E9 = E10

E8+E10 = final result

Although the order in which expressions are evaluated in these examples
may not be exactly that described, it will be mathematically
equivalent. However, the order of evaluation implied by the presence of
parentheses will be followed.

4.1.6 Determination of the type of an expression

The value of an arithmetic expression can be of any of the types
integer, real, double precision or complex. The evaluation of an
expression is carried out in simple steps (as in the example in section
4.1.5). The types of the elements involved in each step determine the
type of the value produced by that step. The t~~e of the final
expression can be found by following through the steps of the
evaluation, noting the types of the intermediate values at each stage.

Table 4.1 gives the type of an expression composed of two simpler
expressions of type A and type B.

4 - 5

Expressions June 30, 1982

4.1.7 Integer arithmetic

The following special considerations apply when both the arguments of
an arithmetic operation are of type integer:

A result of type integer is that integer obtained by truncating
the mathematical result towards zero:

15/4
-15/4
4;BH -1)

=
=
=

3
-3
o

(3.75)
(-3.75)
(0.25)

2 A series of multiplication and division operations on integer
quantities will always proceed from left to right

4.1.8 Arithmetic constant expressions

An ar'ithmetic constant expression may contain only arithmetic constants
and arithmetic symbolic constants.

The exponentiation operator is not permitted unless the exponent is of
type integer.

Arithmetic constant expressions may be used in PAPJL~TER or DATA
statements.

4.1.9 Integer constant expressions

An-integer constant expression is an arithmetic constant expression in
which each constant or symbolic constant is of type integer.

Integer constant expressions may be used in PARM.ffiTER statements, as a
character length or array bound specifier in a specification statement
or as an array element subscript or character substring position
expression in EQUIVALENCE or DATA statements.

4 - 6

Expressions June 30, 1982

Table 4.1

Expression types

I
I

Type of A I Integer

TYQe of B

Integer

Real

Double precision

Complex

I
I

Integer

Real

Double
precision

Complex

4.2 Character expressions

Real Double precision Complex

Real Double precision Complex

Real Double precision Complex

Double Double precision Prohibited
precision

Complex Prohibited Complex

A character expression is a sequence of one or more character elements
separated by character operators.

4.2.1 Character elements

A character element can be a character constant, a character symbolic
constant name, a character variable name, a character array element
reference, a character substring reference or a character function
reference. For example, the following are valid character elements:

'SOME TEXT' CVAR NAME(I)

provided that CVAR has been specified as of type character and that
NMtffi has been specified as a one-dimensional array of type character,
or is a function of type character.

4 - 7

Expressions June 30, 1982

4.2.2 Character operator and parentheses

The concatenation operator, II, is a character operator that is used to
concatenate two character elements to produce a character string of
type character whose length is the sum of the lengths of the two
elements. Except in a character assignment statement, a character
expression must not concatenate a character element whose length
specification is an asterisk in parentheses unless the element is the
symbolic name of a constant. Parentheses may have a cosmetic effect on
a character expression but they do not affect the value found.

Example

'AN'II('AESTHETIC'/I'ALLY')

is the same as

('AN'I/'AESTHETIC')II'ALLY'

each producing

'~~AESTHETICALLY'

4.3 Logical expressions

A logical expression is a sequence of logical elements and relational
expressions combined by logical operators and parentheses. The value of
a logical expression is always either .TRu~. or .FALSE ..

4.3.1 Logical elements

A logical element is a constant, a symbolic constant, a variable, an
array element or a function reference of type logical (see section
2.1). The value of a logical element must be either . TRUE. or .FALSE.
For example, the following are valid logical elements:

.1RUE • LVAR STATIJS(1,3) OK(B)

provided that LVAR has been specified as of type"logical, that STATIJS
has been specified as a two dimensional array of type logical, and that
OK is a function of type logical. The simplest logical expression is
one that consists of only one logical element.

4 - 8

Expressions June 30, 1982

4.3.? Relational expressions

A relational expression has the form

e1 r e2

where

The operands -e1 and e2 are both arithmetic expressions or are both
character expressions.

r is one of the following relational operators:

Operator

.LT.

.LE.

.EQ.

.h~ .

. GT.

.GE.

The periods are essential.

Meaning

Less than

Less than or equal to

Equal to

Not equal to

Greater than

Greater than or equal to

A complex operand is only permitted when the relational operator is
.EQ. or .NE.

If e1 and e2 are character expressions of different lengths then the
shorter operand is considered as if it were extended with blanks on the
right to the length of the longer operand.

If the relation indicated by the relational operator between the two
arithmetic expressions is true, then the value of the relational
expression is .TRUE .. Similarly, if the relation is false, the value of
the expression is .FALSE ..

A relational expression is equivalent to a logical element for the
purpose of constructing further logical expressions; it need not be
enclosed in parentheses.

4 - 9

Expressions June 30 t 1982

4.3.3 Logical ooerators and parentheses

Logical operators are used to combine logical elements, relational
expressions or other logical expressions to give more complex logical
expressions. The logical operators are defined as follows, where a and
b are logical expressions:

Operator

NOT. a

a.MID.b

a.OR.b

a.EQV.b

a.NEQV.b

Meaning

This expression has the value . TRUE. if a has
the value .FALSE. and has the value .FALSE. if
a has the value .1RDE.

This expression has tha value . TRUE. if both
a and b have the value .1RUE .. It has the value
.FALSE. if either a or b or both have the value
.FALSE.

This expr'ession has the value .1RUE. if either
a or b or both are .1RUE .. It has the value .FALSE.
if both a and bare .FALSE.

Tnis expr'ession has the value .1RUE. if a and b
both have the same value .TRu~. or .FALS~ .. It
has the value .FALSE. if a and b have different
truth values

This expression has the value .TRL~. if a and b
do not both have the same value .TRUE. or FALSE.
It has the value .FALSE. if a and b have the same
truth value.

TIle periods are essential.

Parentheses may be used to enclose logical expressions which form part
of more complex logical expressions. Their usage here Is analogous to
their usage in arithmetic expressions. An e~pression enclosed in
parentheses must satisfy the rules given below.

4 - 10

Expressions June 30, 1982

4.3.4 Rules

When writing logical expressions, the following rules must be observed:

1 If arith~~tic expressions appear, they must be in pairs
separated by relational operators

2 Logical elements (and relational expressions) must be
separated by logical operators

3 No two logical operators may be adjacent unless the first
is one of .AND., .OR., .EOV. or .NEOV. and the second is
.NOT.

4 The logical operator .NOT. must be followed by, but must not
be preceded by, a logical element. The logical operators
. AND. , .OR., .EQV. and .NEQV. must be preceded by a logical
element and must be followed either by a logical element or
by the operator . NOT.

Thus the following are not valid logical expressions:

A.AND.7.0

A+C

(Rule 1: A.AND.7.0.GT.B is valid if B is an
arithmetic element and A is of type logical)

(Rule 2: A.AND.C is valid if A and C are of
the type logical. A+C is, of course, a valid
arithmetic expression if A and C are arithmetic
elements)

A.ANn .. OR.C

A.NOT.C

(Rule 3: A.AND .. NOT.C is valid)

(Rule 4: .NOT.C.AND.A.OR .. NOT.D illustrates the
various possible valid uses of operators)

4.3.5 Order of evaluation

Logical expressions are in general evaluated starting at the innermost
set of parentheses and working outwards. Within one set of parentheses
or within one expression the order of evaluation is as follows:

1 Evaluation of functions

2 Exponentiation

3 Multiplication and division

4 Addition and subtraction

4 - 11

Expressions June 30, 1982

5 Relational expressions

6 . NOT. operations

7 .AND. operations

8 .OR. operations

9 .EQV. or .NEQV. operations

Rounding errors (see section 4.1.4) cannot occur with logical
expressions since these may only take the values . TRUE. or .FALSE ..

No more code than necessary is actually obeyed when evaluating an
expression. Some parts of a logical expression may not be evaluated
every time the expression occurs. In the following example

A.OR.LGF(.TRUE.)

the LGF function need not be called to evaluate the expression when A
has the value .TRUE ..

4.3.6 Examples of relational and logical expressions

The expression

B~B~2 • GT • 4 . *A*C

is a relational expression. The arithmetic expressions are evaluated as
described in section 4.1.4. Then the relational operation is performed.
The resulting value will be . TRUE. or .FALSE .•

The expression

JOB.EQ.3.AND.AGE.LT.18

is evaluated as follows:

JOB.EQ.3 = El

AGE.LT.18 = E2

El.AND.E2 = final result

The expression

Relational expressions

Logical expression

A.OR.B.OR.C.AND.(P.OR.Q).AND.(I.LT.l.0R.J.EQ.O)

4 - 12

Expressions

is effectively evaluated as follows:

A.OR.B = E1

P.OR.Q = E2

C.AND.E2 = E3

I .LI.1 = E4

J.EQ.O = E5

E4.0R.ES = E6

E3.AND.E6 = E7

E1.0R.E7 = final result

June 30, 1982

However, certain stages are sometimes unnecessary. For example in the
above expression

If A is .TRL~. then the result is . TRUE.

If A is .FALSE., B is .FALSE. and C is .FALSE.
the result is .FALSE.

The order of evaluation in these examples may not be exactly as shown,
but will be logically equivalent.

4 - 13

Expressions June 30, 1982

4 - 14

Assignment Statements

CHAPIER FIVE

ASSIGNMENT STATEMENTS

June 30, 1982

Assignment statements are used in FORTRAN to assign new values to
variables or array elements, replacing any existing values. Assignments
are executable statements. There are three types of assignment
statements: arithmetic assignment, logical assignment and character
assignment. The rules for forming assignment statements are given in
this chapter.

5.1 Arithmetic assignment statements

An arithmetic assignment statement is used to assign a new value to a
variable or an array element of type integer, real, double precision or
complex. The statement takes the form:

name = expression

where

name is the name of the variable or array element of type integer,
real, double precision or complex.

expression is an arithmetic expression (see section 4.1).

When an assignment statement is encountered in a program the expression
part is evaluated and the resulting value is assigned to the variable
or array element with the name name. The variable or arr~ay element then
retains this value until it is assigned a new value. Any previous value
of the variable or array element is lost.

The variable or array element name need not be of the same type as the
expression. The expression is evaluated according to the rules given in
section 4.1 and the resulting value is assigned to the variable or
array element after any necessary type transformations as indicated in
the table below.

5 - 1

Assignment Statements June 30, 1982

Type of
expression Integer Real or Complex

Type of
name

Integer Assign

Double precision

Fix and assign Fix and assign
real part

Real or Float and assign Assign Assign
Double precision real part

Complex Float and assign Assign real part, Assign
real part, set set imaginary
imaginary par part to zero
to zero

Notes:

1 Assign means assign the unchanged result to the variable or array
element name. I

2 Float means convert the result to type real.

3 Fix means truncate towards zero any fractional part of the result
and convert the remaining value to type integer. An overflow error
condition will occur if the result is outside the range of integer
values.

4 ~bere real and double precision numbers of different lengths are
involved, as much precision is preserved as possible. If a double
precision value is assigned to a real variable or array element
name, then the value is truncated as necessary. If a real value is
assigned to a double precision variable or array element name,
then the mantissa is extended with zeros.

Some examples of arithmetic assignment statements follow:

VALUE = 38. 7654
COUNT = COUNTl
NEXT = lTEM(3,1)
MATRIX(7) = V~TRIX(4*I) + ~~TRIX(3)
M = (2*M-l)/Q-M

5 - 2

Assignment Statements June 30, 1982

5.2 Logical assiQnment statements

A logical assignment statement assigns a new value to a variable or
array element of type logical.

The statement takes the form:

name = express~on

where

name is the name of a logical variable or array element.

expression is a logical expression (see section 4.3).

When a logical assignment statement is encountered in a program, the
logical expression is evaluated and the resulting value is assigned to
the variable or array element with the name name. The variable or array
element then retains this value until it is assigned a new value. Any
previous value of the variable or array element is lost.

Some examples of logical assignment statements follow:

COURSE = . TRUE •
QU!ill = B**2.GT.4*A*C
STATUS = PUPIL.AND.AGE.LT.21
RES = A.AND.(B.OR.(C.AND .. NOT.D)

5.3 Character assignment statements

A character assignment statement assigns a new value to a variable,
substring or array element of type character. The statement takes the
form:

name = expression

where

name is the name of a character variable, substring or array element.

expression is a character expression (see section 4.2).

Note that no character position in name may be referenced in
expression.

The variable, substring or array element need not be of the same length
as the character expression. If the expression is shorter, then spaces
are added to the right on assignment; but if the expression is longer,

5 - 3

Assignment Statements June 30, 1982

then truncation will occur on the right. An example of a character
assignment statement is

eH = "TEST DATA"

5 - 4

Control Statements June 30, 1982

CHAPTER SIX

CON1ROL STATEMENTS

Execution of a FORTRAN program begins at the first executable statement
of the mai n program. Subsequent statements al~e exe·cuted in the order in
which they occur until a control statement is encountered. Control
statements are used to transfer control from one part of a program to
another. This chapter describes those statements used for transferring
control within a program unit. Statements used to transfer control from
one program unit to another are described in Chapter 7.

6.1 GO TO statements

A GO TO statement is an executable statement that is used to transfer
control to another executable statement in the same program unit. There
are three types of GO TO statements: unconditional CD TO, computed GO
TO and assigned GO TO.

6.1.1 Unconditional GO TO

An unconditional GO TO statement has the form:

GO TO label

where label is the label of the executable statement to which control
is.to be transferred (see section 1.3.3).

Each time a GO TO statement of this form is encountered, control is
transferred to the statement with the label label. This statement must
be in the same program unit as the GO TO statement. The first
executable statement after the GO TO statement should be labelled
unless it is an ELSE IF, ELSE or END IF statement, otherwise control
can never reach it.

The following is an example of an unconditional GO TO statement:

GO TO 3

6 - 1

Control Statements June 30, 1982

6.1.2 Compute~ GO TO

A computed GO TO statement transfers control to one of a list of
statements, depending upon the computed value of an expression. The
statement has the form:

GO TO (labell,labe12, ... ,labeln),i

where

each label is the label of an executable statement in the same program
unit as the GO TO statement.

i is an integer expression: the preceding comma is optional.

When a computed GO TO statement is encountered i should have a value in
the range 1 to n. If i has the value j, then control is passed to the
executable statement with label labelj.

The same label may appear more than once in the list.

If i is not in the required range, then the next statement in sequence
will be executed, as the GO TO statement has no effect.

An example of the use of a computed GO TO statement follows:

COUNT = 3

.
GO TO(14,21,20,15,20),COUNT

Control is transferred to the statement with label 20, the third label
in the list.

6.1.3 Assigned GO TO and ASSIGN statements

An assigned GO TO statement transfers control to one of a list of
labelled executable statements depending on the value assigned, by an
ASSIGN statement, to an integer variable. The statement has one of the
forms :.

where

GO TO i,(labell,labe12, ... ,labeln)
GO TO i

i is an integer variable.

6 - 2

Control Statements June 30, 1982

each label is the label of an executable statement in the same program
unit as the assigned GO TO statement. If present, the bracketed list of
labels must contain all those labels that may be assigned to the
variable.

1be ASSIGN statement has the form:

ASSIGN labelj TO i

where

labelj is the label of an executable statement in the same program unit
as the ASSIGN statement:

i is the integer variable to be used in an assigned GO TO statement.

Each time an assigned GO TO statement is encountered, control is
transferred to the statement with label labelj where labelj is the
value last assigned to the variable i in an ASSIGN statement. 1f t when
the statement is encountered, the variable i has not been assigned a
value by an ASSIGN statement in the same program unit, then the effect
of the GO TO statement is unpredictable.

A variable may have, at different times, a statement label value
assigned by an ASSIGN statement or an integer value assigned in any
other w?y. An attempt to use a variable which has a statement label
val ue ·when an integer '-val ue is requ ired, or vice versa, wi 11 have an
unpredictable effect. The label list when present enables the compiler
potentially to check that an appropriate label has been aSSigned.

For example, the statements

ASSIGN 57 TO MEANS

.
GO TO MEfu~St(92,3,9999,57)

will result in a transfer of control from the GO TO statement to the
statement with label 57. If the GO TO statement were written

GO TO MEANS

the same result would be achieved.

6 - 3

Control Statements June 30, 1982

6.2 IF statements

An IF statement allows the program to take different actions depending
on a particular condition. Thus an IF statement may have one result the
first time it is executed in a program and a different result on a
subsequent execution if the relevant condition has altered. Tnere are
three types of IF statement: arithmetic IF, logical IF and block IF.

6.2.1 Arithmetic IF

An arithmetic IF statement transfers control to one of three statements
dependjng on the valq~ of an arithmetic expression. It has the form:

IF(expression)labell,label2,label3

where

expression is an ar'ithmetic expression of type integer, real or double
precision.

labell,label2,labe13 are the labels of executable statements in the
same program unit as the IF statement. The same label may be used more
than once.

The statement causes control to be transferred to the statement with
label labell, labe12 or labe13 depending on whether the value of the
expression is less than, equal to, or greater than zero respectively.

For example, the statement

IF(B*B-4.0*A~~) 100,101,102

would have the following effects:

If B**(2) - 4AC<O, control is transferred to the statement
wi th label 100.,.

If B~a(2) = 4AC,
wi th label 101.

control is transferred to the statement

If B**(2) - 4AC>0, control is transferred to the statement
with label 102.

Note: Real expressions rarely evaluate exactly to zero.

6 - 4

Control Statements June 30, 1982

6.2.2 Logical IF

A logical IF statement tests whether a logical expression has the value
.TRUE. or .FALSE.; if it has the value . TRUE. then a particular
executable statement included in the IF statement is executed. The
statement has the form:

IF (expression) statement

where

expression is a logical expression.

Statement is any executable statement except a DO, block IF, ELSE, ELSE
IF, END IF, E~~ statement or another logical IF statement.

If expression, when evaluated, has the value .TRUE., statement is
executed; if expression, when evaluated, has the value .FALSE.,
statement is not executed.

For example, if the statement

IF(B*B.LT.4/.0*A~-C) GO TO 100

is executed when B**(2) < 4AC, control is transferred to the statement
wit~ label 100. Otherwise the GO TO statement is ignored.

Some other examples of logical IF statements follow:

IF(SUM+TERM.GE.9E7.0R.TERM.LT.IE-2)CALL CHECK
IF(COUNT.EQ.60) IF(COu~Tl-14)26,27,28
IF(I.LT.O)I = -1

6.2.3 Block IF

A block IF statement is used with the END IF statement and optionally
with the ELSE and ELSE IF statements to control the execution of a
block of consecutive executable statements. The block of statements is
divided into IF-blocks, ELSE-blocks and ELSE-IF blocks. The block IF
statement and IF-blocks, the ELSE statement and ELSE-blocks, and the
ELSE IF statement and ELSE IF blocks are described in sections 6.2.3.1,
6.2.3.2 and 6.2.3.3 respectively. The END IF statement is described in
section 6.2.3.4.

Every statement in an IF-block, an ELSE block or an ELSE-IF block has
an IF- level. The IF-level of a statement s is nl,-n2, where nl, is the
number of block IF statements from the beginning of the program unit
down to and including s, and n2 is the number of END IF statements in

6 - 5

Control Statements June 30, 1982

the program unit down to but not including s.

The IF-level of every statement must be non-negative, the IF-level of
each block IF, ELSE, ELSE IF and E~TI IF statement must be positive: the
IF-level of the END statement must be zero.

Example

· IF (expression) THEN)
)
) IF-block

·)

ELSE)

IF (expression) THEN)
)
) IF-block
)

ELSE IF (expression) THEN)
)
) ELSE IF-block

·)
END IF)

· END IF

6.2.3.1 The block IF statement and IF-blocks

The block IF statement has the form:

IF (expression) THEN

where 'expression is a logical expression.

IF-level

o
1
1
1
1
1
1

2
2
2
2

ELSE-block 2
2
2
2
2
1
1
o

An IF-block consists of all the executable statements following the
block IF statement down to but not including the next ELSE, ELSE IF or
END IF statement that has the same IF-level as the block IF statement.
An IF-block may be empty.

When the block IF statement is executed, expression is evaluated and if
it has the value .TRUE. then the IF-block is executed. If the IF-block

6 - 6

Control Statements June 30, 1982

is empty and the value of expression is .1RUE. then control passes to
the next END IF statement at the same IF-level as the block IF
statement. If the value of expression is .FALSE. then cont ELSE IF or
END IF statement that has the same IF-level as the block IF statement.

Control cannot be passed into an IF-block. If the last statement in an
IF-block does not pass control elsewhere then control passes to the
next END IF statement that has the same IF-level as the block IF
statement preceding the IF-block.

6.2.3.2 The ELSE statement and ELSE-blocks

The ELSE statement has the form:

ELSE

An ELSE-block consists of all the executable statements following the
ELSE statement down to but not including the next END IF statement that
has the same IF-level as the ELSE statement. An ELSE-block may be
empty.

An E~ID IF statement of the same IF-level as the ELSE statement must be
included before an ELSE IF or another ELSE statement of the same
IF-level.

Control cannot be passed into an ELSE-block. No reference may be made
to the statement label, if any, of the ELSE statement.

6.2.3.3 The ELSE IF statement and ELSE IF blocks

The ELSE IF statement has the form:

ELSE IF (expression) TIffiN

where expression is a logical expression.

An ELSE IF-block consists of all the executable statements following
the ELSE IF statement down to but not including the next ELSE, ELSE IF
or END IF statement that has the same IF-level as the ELSE IF
statement. An ELSE IF-block may be empty.

When the ELSE IF statement is executed, expression is evaluated and if
it has the value .TRUE. the ELSE IF-block is executed. If the ELSE
IF-block is empty and expression has the value .TRL~. then control
passes to the next END IF statement that has the same IF-level as the
ELSE IF statement. If the value of expression is .FALSE. then control
passes to the next ELSE, ELSE IF or END IF statement that has the same

6 - 7

Control Statements June 30, 1982

IF-level as the ELSE IF statement.

Control cannot be passed into an ELSE IF-blocl~. No reference may be
made to the statement label. if any, of the ELSE IF statement.

6.2.3.4 Tne END IF statement

The END IF statement has the form:

END IF

Each block IF statement must be matched by a separate END IF statement.

6.3 DO loaDs

A DO loop is a series of statements that is to be executed several
times. It is headed by a DO statement which specifies the number of
times the loop is to be executed and also specifies the last statement
included in the loop. The range of a DO loop is the series of
statements from the statement after the DO statement down to and
including the terminal statement.

If a DO statement appears within an IF-block, ELSE-block or ELSE
IF-block, then the range of the DO-loop must be wholly within that
block.

6.3.1 DO statements

The DO statement has the form:

DO label i = pl,p2,p3

where

label is the label of the terminal statement (see section 6.3.2 below
for further details)

i is the DO-variable.
pI is the initial parameter.
p2 is the terminal parameter.
p3 is the incrementation parameter and may be omitted, together with

the preceding comma.

The terminal statement must be in the same program unit as the DO
statement and must occur later in the program unit than the DO
statement. The DO-variable must be an integer, real or double precision

6 - 8

Control Statements June 30, 1982

variable. The-~hree parameters must all be integer, real or double
precision expressions. The incrementation parameter must not be zero at
the time of execution of the DO loop. If the incrementation parameter
is omitted, it is assumed to have a value of 1.

When a DO statement is encountered in a program, the values of the
three parameters are calculated and, if necessary, converted according
to the rules given in section 5.1 to be of the same type as the
DO-variable.

The value of pI is assigned to the DO-variable and the iteration count
is found thus:

~~(INT«p2 - pi + p3)/p3), 0)

If this count is non-zero then execution of the first statement in the
range of the DO-loop begins. When the terminal statement is reached the
DO-variable is incremented by p3. The iteration count is decremented by
one. If it is non-zero, control then returns to the first statement in
the range of the DO-loop. If it is zero, the DO-statement is satisfied:
the DO-variable retains its current value and control passes to the
next executable statement following the terminal statement.

Variables and array elements used in the expressions for the parameters
pI, p2 and p3, and the DO-variable i, may be referenced within a DO
loop, but the value of i must not be altered by any statement within
the range of the DO statement. .

For example, in the series of statements

SUMSQ = 0.0
SUM = 0.0
DO 27 J = 1,MAX,2
S1Thi = SUM + PART(J+1)
27 SUMSQ = SUMSQ + PART(J)*PART(J)

the range of the DO statement is the two statements following it. The
effect of the sequence is to set SUM equal to
PART(2)+PART(4)+ ... +PART(x+l), where x is the greatest odd integer less
than or equal to l~, and to set SUMSQ equal to the sum of the squares
of ~~~T(1),PART(3), ... ,PART(x).

Control may be transferred out of a DO loop before the DO statement is
satisfied (for example, by use of a GO TO statement): in this case the
control variable retains its current value (see section 6.3.4).
Transfer into the range of a DO loop from outside the range is
forbidden.

Execution of a function reference or a CALL statement that appears

6 - 9

Control Statements June 30, 1982

within the range of a DO-loop is permitted. If control is returned from
the subprogram by means of an extended form of the RETURN statement
(see section 7.2.2.2) to a statement not in the range of the DO-loop,
then control cannot be transferred into the range of the DO-loop.

6 - 10

Control Statements June 30, 1982

6.3.2 Terminal statements

The terminal statement must not be any of the following statements:

1 Unconditional GO TO

2 Assigned GO TO

3 RETIJRN

4 STOP

5 DO

6 Arithmetic IF

7 Block IF

8 ELSE

9 ELSE IF

10 END IF

11 END

12 Logical IF containing anyone of the following:

(a) DO

(b) Block IF

(c) ELSE

(d) ELSE IF

(e) END IF

(f) END

(g) Another logical IF

A labelled CONTINL~ statement may be used as the terminal statement to
overcome this restriction (see section 6.4).

6 - 11

Control Statements June 30, 1982

6.3.3 Nested DO loops

The statements included in the range of a DO statement may include
other DO statements; the DO loops are then said to be nested. In a
system of nested 00 loops, the range of any inner DO statement must be
completely contained in the range of any outer DO statements. However,
DO statements may share a terminal statement. If two or more DO
statements share the same terminal statement then the DO-variable for
any outer DO ·is not increased and tested until all inner DOs are
satisfied.

For example the sequence of statements

DIMENSION A(lO,lO),B(lO,lO),C(10,10)
.
00 20 J = 1,10
DO 20 I = 1,10

20 C(I,J) = A(I,J)+B(I,J)

forms the elements of array C by adding together the corresponding
elements of arrays A and B. ~ben the first DO statement is encountered
J is set equal to 1. Then the second DO statement is encountered, and
the inner DO loop islperformed with J equal to 1 and I varying from 1
up to 10. Only after that is J increased to 2.

6.3.4 Transfer of control in DO loops

Any transfers of control may occur within the range of a DO statement
except that, if a statement is the terminal statement for more than one
DO-statement, then control can be transferred to it only from the range
of the innermost DO having that terminal statement. A CONTINUE
statement (see section 6.4) may be used to overcome this restriction.

Any transfers of control from inside to outside a DO loop are allowed.
The DO- variable retains its current value.

For example, the sequence of statements

SUM = 0.0
DO 25 J = 1,100
IF (A(J).GT.50)GO TO 80

25 SUM = SL~ + A(J)

80 statement

forms the sum of the elements of an array, except that if any element
is greater than 50, control passes to statement 80 outside the DO loop.

6 - 12

Control Statements June 30, 1982

6.4 CONTI~~ statements

The CONTI~1ffi statement is a du~~y statement and causes no action. It
has the form

CONTINUE
;

This statement is most often used to give distinct terminal statements
to a nest of DO loops. It is also useful for avoiding the statements
forbidden in section 6.3.2.

For example, in the sequence of statements

x = 0
DO 200 I = 5, 100, 5
Y = A(I,1)
IF(Y.LT.O.O)GO TO 200
X = X + Y
DO 300 J = 2, 150

300 X = X + A(I,J)
200 CONTINUE

the CONTIWJE statement is necessary to allow the IF statement to
transfer control to the terminal statement of the outer loop without
also transferring control to the terminal statement of the inner loop.

6.5 STOP statements

A STOP statement terminates the execution of the program. It has one of
the following forms:

where

STOP
STOP n
STOP 'message'

n is a string of one to five digits

'message' is a literal constant enclosed in apostrophes.

When a STOP st~tement is encountered in a program, no further
statements are
executed, the run is terminated and a message of one of the following
forms:

6 - 13

Control Statements

STOP
STOP n
STOP message

is reported to the user.

6.6 PAUSE statements

June 30, 1982

A PAUSE statement causes the program to output a message, and then
continue.

The statement has one of the following forms:

where

PAUSE
PAUSE n
PAUSE 'message

n is a string of 1 to 5 decimal digits.

'message' is a literal constant enclosed in apostrophes.

Execution of this statement causes a message of one of the following
forms to be reported to the user:

PAUSE
PAUSE n
PAUst: message

Execution continues.

6 - 14

Program Units and Transfer of Control June 30, 1982

CHAPTER SEVEN

PROGRAM UNITS AND lRANSFER OF CON'TROL BETIVEEN TIIEM

As described in Chapter 1 a program is made up .of program units: one
mai n program and, poss i bly, other program uni ts called sUbprograms. The
block data subprogram, described in section 3.3.2, contains only
non-executable statements and control never enters it. The remaining
subprograms, called procedures, are described below in section 7.1.
Section 7.2 describes the transfer of control between program units,
involving the use of CALL and RETURN statements and function
references. The following sections describe the transfer of values
between program units, the correspondence between dummy and actual
arguments of procedures (see also section 7.1) and the facility of
multiple entry into a subprogram.

7.1 Procedures

Procedures normally contain sequences of statements that carry out a
process that is likely to be repeated in the execution of the program.
It is conven!ent for the programmer to write out such a sequence only
once, so he writes a procedure using dummy arguments and declares it in
the program once in that form.

A dummy argument is a name that is used in a procedure at the
declaration stage. Dummy arguments represent the values that will be
associated with the procedure when it is actually called later in the
program. At each call of the procedure, the values required in that
particular call are substituted for the dummy arguments; these
substituted values are called the actual arguments.

Besides avoiding the need to write out repeated processes each time,
procedures also form logical subdivisions of the program. These
subdivisions may be written and tested quite separately from the main
body of the program if deired.

The location of the procedure declaration, the scope of the validity of
the use of the procedure and how to call the procedure depend on the
kind of procedure. There are four kinds of procedure:

7 - 1

Program Units and Transfer of Control June 30, 1982

1 . -' I ntr ins i c funct i on

2 External function

3 Statement function

4 External subroutine

Each of these is described in detail in sections 7.1.2 and 7.1.3.

7.1.1 Differences between functiofl and subroutine subprograms

A function subprogram is used to evaluate a specific function and to
substitute a value for the function reference in the calling program
unit. This class of subprogram would not normally be used to change the
value of any variables or array elements in the referencing program
unit though facilities are available for the programmer to do so if
desired.

A subroutine subprogram is not specifically used for the calculation of
a single value but may perform any series of operations. From this
basic difference some others follow:

1 Function subprograms are entered by function references;
subroutine subprograms are entered by CALL statements.

2 Function subprograms have a t~~e; subroutine subprograms
do not.

3 Results from a function subprogram are returned principally
via the function value; results from subroutine subprograms
are returned only via dummy arguments and common blocks.

7.1.2 Functions

7.1.2.1 Intrinsic functions

The Fortran compiler provides a number of standard functions. These are
called intrinsic functions and include certain standard mathematical
functions, such as sine and cosine, and type conversion functions.

Use of a function name in an EXTERNAL statement (see section 7.3.4),
will mean that the name will not be recognized as an intrinsic function
name.

Intrinsic function names are either generic or specific. General
function names provide an automatic function selection facility. This

7 - 2

Program Units and Transfer of Control June 30, 1982

facility allows the programmer to use a single generic name when
requesting a Fortran-supplied function which has several specific
names, depending on argument type. The proper function is selected by
the Fortran Compiler, based on the type of the arguments of the
function. With this facility the programmer can, for example, use the
generic name SIN to refer to any sine routine, rather than explicitly
calling SIN for REAL arguments, DSIN for DOUBLE PRECISION arguments or
CSIN for COMPLEX arguments.

Generic function names may have specific function names associated with
them. If a specific name is used, then the arguments must be of the
correct type otherwise a compile time fault will be reported. Some
functions do not have a generic name. The specific names that identify
the intrinsic functions, their generames, function definitions, types
of arguments and types of results are given in Appendix A.

A specific name of an intrinsic function that appears in an INTRINSIC
statement (see section 7.3.5) may be passed as an actual argument to an
external procedure with the exception of intrinsic functions for type
conversion, lexical comparison, and maximum/minimum functions.

An intrinsic function can be called at any point in any program by
means of a function reference (see section 7.2.1.1), in which the
function name is given and the dummy arguments are replaced by actual
arguments.' .

Actual ~rguments can be any expressions of the correct type and
therefore may contain~function references to other function subprograms
(see Example 4 beloW).

Ex~mples

1 SIN(ANGLEA)
2 A + SQRT(B)
3 A**2 + 2.0* COS(BETA + PI/2.0)
4 A + SIN(ALOG(A+B+C)**3 + SQRT{Z+SORT{Y»

7.1.2.2 External functions

Any functions required in a particular program that are not intrinsic
functions can be written as external functions for that program.
External functions are independently written subprograms that are
executed whenever a function reference (see section 7.2.1.1) to their
name is encountered in any program unit.

An external function is identified as such by the first statement being
a function declaration statement. This statement has the form:

7 - 3

Program Units and Transfer of Control June 30, 1982

type Fm~CTION functionname(xl,x2, ••• ,xn)

where

type i s an opt i onal parameter and is one of I N1EGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL or CHARACTER (optionally followed by a
length specification, which can be any of the forms specified in
section 2.3.3.2). In its absence the function will be given its type by
the predefined convention (see section 2.3.1).

functionname is the name of the function being declared; the name by
which it will be called elsewhere in the program by a function
reference.

xl,x2, ... ,xn is a dummy argument list which may be empty, although the
enclosing brackets must be specified. The items represent variable,
array or dummy procedure names.

The FUNCTION statement is followed by the statements that make up the
required process. The function declaration itself finishes with an END
statement (see section 1.3.2.1).

A function can be invoked as a variable anywhere in the program by a
function reference (see section 7.2.1.1) giving its name, functionname,
with actual arguments (al,a2, •.• ,an).

Within the function subprogram, the function name can be used as a
variable (of the specified type) and must be assigned a value at least
once before a RETURN or END statement is executed.

A function must not reference itself: recursion, either direct or
indirect, is not allowed.

Example

LOGICAL FUNCTION lMEAN(A,D)
REAL MEAN ,A(10, 10)
MEAN = °
DO 4 I = 1, 10
DO 4 J = 1, 10

4 MEAN = MEAN + A(I ,J)
MEAN = MEAN/lOa
TMEAN = MEAN. GT. D
END

7 - 4

Program Units and Transfer of Control June 30, 1982

7.1.2.3 Statement functions

I f a mathemat i ca I funct i on can be \~,rr i t ten inane statement then it may
be written as a statement function. The statement function is declared
by a statement function statement which takes the form:

sfname(xl ,x2, ..• xn) = expression

where

sfname is the name given to the function.

xl,x2, ..• xn is a dummy argument list which may be empty, although the
enclosing brackets must be specified.

The names used as dummy arguments in this list may be used elsewhere in
the same subprogram as variables of the same type.

expression is an arithmetic, logical or character expression. It may
contain references to external functions or previously defined
statement functions. It may be a logical expression only if sfname is
defined as type logical and a character expression only if sfname is
defined as type character.

All statement function declarations must preceoe the first executable
statement of the program unit and the statement function can be invoked
only within that program unit.

A statement function is invoked by using sfname, with actual arguments
replacing the dummy arguments in an expression. The actual arguments
mu~t correspond in number and type to the dummy arguments.

Example

FORTRAN program

VOL(R,H) = 3. 14*R**2*H

TOTAL = O.
00 11 I = 1,15
READ(S,12)D,X

12 FOIDl~T(2FI0.3)

.
11 TOTAL = TOTAL + VOL(O.5*D,X)

Explanation

Declaration of statement
function VOL(R,H)

First executable statement

Other executable statements

Reference to statement function
VOL with actual argument O.5*D
replacing dummy argument Rand
X replacing H

7 - 5

Program Units and Transfer of Control June 30, 1982

7.1.3 Subroutines

7.1.3.1 External subroutines

A subroutine subprogram fulfils a similar purpose to a function
subprogram but returps any results in a different way.

A subroutine is declared by a SUBROUTINE statement, which takes the
form:

SUBROUTINE subroutinename(x1,x2, ..• xn)

where

subroutinename is the name of the subroutine.

x1,x2, ... xn is a dummy argument list. The list may be empty, in which
case enclosing brackets may be omitted. The list items can represent
variable, array or dummy procedure names or can take the form *. The
character * represents a label in the calling program unit (see section
7.2.2.2).

The SUBROUTINE statement is followed by the statements that carry out
the desired processes and the subroutine declaration is finished by an
END statement (see section 1.3.2.1).

m another program unit by use of the CALL statement (see section
7.2.2.1). Control is returned to this position when the RETURN or END
statement of the subroutine is encountered.

A subroutine must not contain a call to itself; recursion, either
direct or indirect, is not allowed.

7.2 Transfer of control between program units

Every executable Fortran program contains at least one program unit,
the main program. The first statement of the main program may be a
program statement. This statement has the form:

PROGRAM programname

where programname is the name of the program and must be of the form
specified in section 1.4.

Execution of the program begins at the first executable statement of
the main program. Control stays in the main program until either a

7 - 6

Program Units and Transfer of Control June 30, 1982

function reference or a CALL statement is encountered, when control
'will be transferred to another program unit: a function from a function
reference or a subroutine from a CALL statement. Control will then be
passed between the main program and the other program units and between
the program units themselves until either a STOP statement is executed
or the END statement of the main program is reached.

The ways of entering and leaving function and subroutine subprograms
are described in the sections below.

7.2.1 Functions

7.2.1.1 Transfer of control to a function subprogram

Control is passed to a function subprogram by a function reference.
This function reference takes the form:

name(a1,a2, ... ,an)

where

name is the name of an external function, an intrinsic function or a
statement function.

a1,a2, ... ,an is a list of actual arguments that replace the dummy
arguments xl,x2, ... ,xn given in the function declaration. They must
agree in order, number and type with the dummy arguments. If the
referenced function has no parameters, the reference to it must still
include a pai~of brackets.

When a function reference to an intrinsic function or a statement
function is encountered in a program unit, the function is evaluated
using the actual arguments supplied by the function reference. This
value is then substituted where the function reference occurs and
execution of the program unit continues.

When a function reference to an external function is encountered in a
program unit, control enters the function at the first executable
statement of the function subprogram. Within the body of a function,
the function name must be assigned a value at least once.

External function names must have an associated type. The type of the
external function may be declared in the FUNCTION statement; otherwise
its type is defined by the initial letter of its name, as described in
section 2.3.1. In any program unit in which the external function is
referenced, the t~~e must be declared in a type specification statement
unless the predefined type is correct. The type assumed by the
referencing program unit must agree with that defined in the external

7 - 7

Program Units and Transfer of Control June 30, 1982

function. An external function name must not be assigned an initial
value in a DATA statement.

7.2.1.2 Return of control from a function subprogram

In the case of a statement function or an intrinsic function, control
is returned automatically to the position of the-~unction reference in
the calling program unit. In the case of external functions, control is
returned from the external function to the calling statement when
control reaches a RETURN or the END statement and the function value is
returned to the calling program unit.

The RETURN statement takes the form:

RETURN

An extended form of this statement is available for use in a subroutine
subprogram only (see section 7.2.2.2).

7.2.1.3 Example of an external function

The following is an example of an external function showing how the
function is referenced in the calling program unit and how control is
returned to the statement containing the function reference.

The function TMEAN has the value .TRUE. if the mean of the elements of
a 10 x 10 array is greater than D.

LOGICAL FUNCTION TMEAN(A,D)
REAL MEAN, AN = 0
DO 4 I = 1, 10
D04J=I,10

4 MEAN = MEAN + A(I ,J)
MEAN = MEAN/1 00
TMEAN = MEAN. GT. D
RETURN
END

TMEAN could be referenced by any statement which may contain a logical
expression. For example:

IF(TMEAN(ARR,50.0»GO TO 48

The effect of this statement is to test whether the mean of the 10 x 10
array ARR is greater than 50. If it is, control passes to the statement
labelled 48.

7 - 8

Program Units and Transfer of Control June 30, 1982

7.2.2 Subrout"fnes

7.2.2.1 Transfer of control to a subroutine subprogram

Subroutine subprograms are called from another program unit by a CALL
statement.

1be CALL statement has the form:

CALL subroutinename (a1,a2, ••. ,an)

where

subroutinename is the name of the subroutine being called.

al,a2, ... ,an is a list of actual arguments. These must agree in order,
number and type with the dummy arguments given in the subroutine
declaration for subroutinename. If the referenced subroutine has no
arguments the CALL to it may omit the brackets.

To correspond with a dummy argument of the form*, an actual argument
must take the form

where n is the label of an executable statement in the calling program
unit (see section 7.2.2.2).

When a CALL statement referring to a subroutine is executed, control is
transferred to that subroutine, which is entered at its first
executable statement.

Subroutine names do not have an associated type.

7.2.2.2 Return of control from a subroutine subprogram

Control is returned from a subroutine subprogram to the calling program
unit when control reaches a RETURN or the END statement within the
subroutine. There may be any number of RETURN statements in a
subroutine but only one of these will be executed in anyone execution
of the,~ubroutine.

The RETl~ statement has two possible forms:

RETURN
RETURN e

where e is an integer expression.

7 - 9

Program Units and Transfer of Control June 30, 1982

The simple form, RETURN, has the effect of returning control to the
statement following the CALL statement in the calling program unit.

The extended form, RETURN e, provides a means of returning to any
labelled statement in the calling program unit. The expression e has a
value, say n, and this value denotes that return is to be made to the
nth statement label in the argument list. If e is less than one or
greater than .the number of statement labels in the argument list then
control is returned to the statement following the CALL statement in
the calling program unit.

For example, if a CALL statement of the form

is made to a program unit whose first statement is

and this subroutine contains the following RETURN statements:

RETURN 2
RETIJRN
RETURN 1

then RETURN 2 will return control to the statement labelled 10 in the
calling program unit.

RETURN 1 will return control to the statement labelled 3

RETURN will return control to the statement following the CALL
statement in the calling program unit.

7 - 10

Program Units and Transfer of Control June 30, 1982

7.2.2.3 Example of a subroutine subprogram

The following is an example of a subroutine subprogram showing how it
is called and how control is returned to the calling program unit by
means of a simple RETURN statement.

Subroutine ADD is required to add the elements of matrix I.

SUBROUTINE ADD(I,J)
DIMENSION 1(10)
J = 0
00 2 K = 1,10

,2 J = J + IO~l
RETURN
END

If this subroutine is to be entered, then the CALL statement must give
the subroutine name ADD. For example, if it is required to add together
the elements of an array IARR and to hold the result in N, the calling
program unit would contain the following statements:

.
DIMENSION IARR(10)

.
CALL ADD(IARR,N)

7.3 Correspondence between dummy and actual arguments

A dummy argument (see section 7.1) must be one of the following:

1 A dummy variabl~ name

2 A dummy array name

3 A dummy function or subroutine name

Actual arguments may be any of the following:

1 An expression except a character expression involving
concatenation of a character element whose length
specification is an asterisk in parentheses (unless
it is a symbolic constant). Note that an expression
may be a constant or a symbolic constant

7 - 11

Program Units and Transfer of Control

2 An array name

3 An intrinsic function name

4 An external procedure name

5 A dummy procedure name

6 A statement label

Examples of actual arguments

FA

A
A(2,3)

Z
A(4,5)
SIN(Z)

3.16
X+4*Y+3/Z

(where FA is the name of an
intrinsic or external function)

(an array name)
(an array element, see below)

(a variable)
(an array element)
(ah expression comprising a
function reference)
(a constant)
(an expression)

June 30, 1982

However, several rules apply for correct correspondence between dummy
and actual arguments. These rules are as follows:

1 Actual and dummy arguments must correspond in number,
order and type

2 If the dummy argument is a function, the actual argument
that replaces it must be the name of an intrinsic or
external function

3 If the dummy argument is a subroutine, the actual argument
that replaces it must be the name of a subroutine subprogram
(see section 7.4.2)

4 If the du~~y argument is an array, the actual argument that
replaces it must be an array or an array element

5 If the dummy argument is a variable, the actual argument that
replaces it may be a constant, a variable, an array element
or any other expression

The transfer of values between program units by means of dummy and

7 - 12

Program Units and Transfer of Control June 30, 1982

actual arrays is described in section 7.4.

7.3.1 Use of constants and expressions

If a dummy argument is assigned a value within the function or
subroutine subprogram and this is used to return a result, then the
corresponding actual"argument may not be a constant or an expression.

7.3.2 Use of variables

Dummy variables must not occur in COMMON, DATA, EQUIVALENCE, PARAMETER
or INTRINSIC statements; they may occur in type specification or
DIMENSION statements (as bounds of dummy arrays).

7.3.3 Use of arrays and array elements

If a dummy argument is an array then the array must be declared in the
subroutine or function subprogram in which the dummy array is used (see
section 3.2.2). The size of each dimension may be given as an integer
or as a variable of type integer. Dummy array names must not occur in
COW JON , DATA, EQUIVALENCE, PARMlffiTER or INTRINSIC statements.

If the actual argument is an array name, it is made available to the
called subprogram starting at its first element. That is, if the du~~y
array has n elements then the first n elements of the actual argument
will be used as the n elements of the dummy array.

An_array element used as an actual argument may replace a dummy
argument that is either a variable or an array. If an array element
replaces a variable, only that one element is made available to the
called program unit. If an array element replaces an array, the
specified actual element is used as the first element of the dummy
array, and subsequent elements of the actual array form the remaining
elements of the dummy array.

Thus if the actual argument is an array element, say A(x), and the
dummy array is specified as having n elements then the n elements of
array A from A(x) to A(x+n-1) are used as the n elements of the dummy
array.

The actual argument specified must at least be large enough to cover
the dummy array completely. That is, if the actual argument is an
array, it must have at least as many elements as the dummy array. If
the actual argument is an array element, that part of the actual array
from and including the element given as the actual argument to the last
element must contain at least as many elements as the dummy array.

7 - 13

Program Units and Transfer of Control June 30, 1982

Care must be taken when arrays having more than one dimension are used
because of the order in which array elements are stored (see section
3.1.3).

An example of the use of arrays and array elements as actual arguments
follows:

FUNCTION F~~l(A,B}
REAL A(500),B(10)
DO 4 1=1, 500

· 4 CONTINUE
DO 5 J=l, 10

· 5 CONTINUE
FUN!= ...
RETIJRN
END

A reference to this external"function could be included in an
expression as follows:

REAL LIST(540)

· X=4*FUN1(LIST,LIST(531»

In this case, the first 500 elements of array LIST will be used as
array A in the function and the elements LIST(531) to LIST(540) will be
used as array B.

7.3.3.1 Adjustable arrays

A dummy array declared using one or more integer variables is an
adjustable array. This method of declaration is only permissible for
dummy arrays, but it allows the dummy array to have dimensions of
different size each time the subprogram is executed, though the number
of dimensions must remain constant. Each integer variable which
specifies a dimension of an adjustable array must appear either in a
common block or as a dummy argument in every dummy argument list which
contains the array name.

7 - 14

Program Units and Transfer of Control June 30, 1982

For example, the subroutine ADD given in section 7.2.2.3 could be
rewritten to add together the elements of an array of variable size.

SUBROUTINE ADD(I,J,L)
DIMENSION I(L)
J=O
DO 2 K=I,L

2 J=J+I(K)
RETIJRN
END

When the subroutine is called, the CALL statement will specify the size
of the actual array to be used. For example

CALL ADD(IARR,N,20)

would add the elements of a one dimensional array IARR with twenty
elements.

7.3.4 Use of functions and subroutines as arguments

If a dummy argument is used as a subroutine or function name, the
corresponding actual argument must be the name of a subroutine
subprogram if the dummy argument appears in a CALL statement, or the
name of an intrinsic or external function if the dummy argument appears
in a function reference. .

Any subroutine or external function name used as an actual argument in
a CALL statement or function reference must be given in an EXTERNAL
statement in the program unit in which the name is used as an actual
argument.

The EXTERNAL statement has the form:

EXTERNAL namel,name2, .•. ,namen

where each name is the name of a subroutine or an external function
that is used as an actual argument in the program unit containing the
EXTERNAL statement.

For example, if the subroutine

SUBROUTINE GREEN(FUN,X,Y,Z)
X=FUN(YIZ)
RETIJRN
END

is to be called, giving an external function name as actual argument to

7 - 15

Program Units and Transfer of Control June 30, 1982

replace the dummy argument FUN, the calling program unit could contain
the following statements:

EXTERNAL FUN 1 , FUN2

.
CALL GREEN(FUN2,A,B,C)

.
CALL GREEN(FUNl,Al,Fl,EXP(C»

7.3.5 The INTRINSIC statement

An INTRINSIC statement is used to identify a name as representing an
intrinsic function (see section 7.1.2.1). It also permits a name
representing a specific intrinsic function to be used as an actual
argument. The INTRINSIC statement has the form:

INTRINSIC namel,name2, ••• ,namen

where each name is an intrinsic function name.

The use of a name in an INTRINSIC statement declares that name to be an
intrinsic function name. If a specific name of an intrinsic function is
used as an actual argument in a program unit, it must appear in an
INTRINSIC statement in that program unit. The names of intrinsic
fUDctions for type conversion (INT, IFIX, IDINT, FLOAT, SNGL, REAL,
DBLE, CMPLX, ICHAR AND CHAR), lexical relationship (LGE, LGT, LLE and
LLT) and for choosing the largest or smallest value (MAX, MAXO, AMAXl,
D~~I, AMAXO, MAXI, MIN, MIND, AMINI, DMINl, AMINO and MINI) must not
be used as actual arguments.

The use of a generic name in an INTRINSIC statement does not cause that
name to lose its generic property.

A name must not be used in more than one INTRINSIC statement in a
program unit. Note that a name must not be used in both an EXTERNAL and
an IN~INSIC statement in a program unit.

7.4 Transfer of values between program units

Values can be transferred between program units by use of:

1 Function values (see section 7.1.2.2)

7 - 16

Program Units and Transfer of Control June 30, 1982

2 Common block items

3 Dummy and actual arguments

If either of the latter two methods is used for returning results from
external functions, care must be used if the actual arguments also
appear elsewhere in the calling statement. For example in the statement

the function FUN must not alter the values of its arguments, otherwise
the results obtained will be unpredictable.

The second and third methods of transferring values are described in
the sections below.

7.4.1 Common block items

A common block is an area of storage that may be referred to in any
program unit which mentions the name of the block in a COMMON
statement. This facility is discusssed fully in section 3.2.3. If in
one program unit a value is assigned to an item which forms part of a
common block and control is then transferred to another program unit
which also refers to that common block, the value assigned in the first
program unit becomes the value of the item occupying the same area of
storage in the second program.

Items in named cow~on blocks may be given initial values in block data
supprograms by means of the DATA statement. This is described in
section 3.3.2.

7.4.2 Dummy and actual arguments

~ben a transfer of control is made to a subroutine or a function
subprogram, actual arguments are supplied in the CALL statement or the
function reference, and the actual arguments are substituted for the
dummy arguments in the function or subroutine on entry to the
subprogram.

The actual arguments given in the CALL statement or the function
reference must agree in number, order and type with the dummy arguments
that they replace in the subroutine or function subprogram. The
correspondence rules for dummy and actual arguments are described more
fully in section 7.3.

The form of the duwmy argument affects the way the corresponding actual

7 - 17

Program Units and Transfer of Control June 30, 1982

argument is referenced.

7.4.2.1 Argument reference

If the dummy argument has the form name, where name is the name of a
variable or a subprogram, the corresponding actual argument will be
referenced by value. This means that the dummy argument is assigned a
storage location in the subprogram, to which the value of the actual
argument is brought from the calling program unit at execution time.
During execution all intermediate values are also stored in this
location. On return to the calling program unit the final value is
transferred from the,qummy argument to the actual argument. Final
values· in the storage location corresponding to expressions or
constants as actual arguments are lost.

If a dummy argument is an array name, the corresponding actual argument
will be referenced by location.

7.5 Multiple entry into a suborogram

It is possible to enter a function or a subroutine subprogram at a
statement other than the first executable statement. This is done by
using a CALL statement or function reference that references an ENTRY
statement within the subprogram. Control will enter the subprogram at
the first executable statement following the ENTRY statement.

7.5.1 The ENTRY statement

The ENTRY statement has the form:

ENTRY name (xl,x2, .•• ,xn)

where

name is the name of the entry point.

xl,x2, ... xn is a list of dummy arguments corresponding to the actual
arguments given in the CALL statement or function reference.

The names used as dummy arguments in the list may be used elsewhere in
the same subprogram as variables of the same type.

The ENTRY statement is non-executable and does not affect control
sequencing during the execution of the subprogram.

The appearance of an ENTRY statement does not affect the rule that

7 - 18

Program Units and Transfer of Control June 30, 1982

statement functions in a subprogram must precede the first executable
statement of that subprogram.

7.5.2 Referencing an ENTRY statement

The ENTRY statement is referenced by a CALL statement if it is in a
subroutine subprogram or by a function reference if it is in a function
subprogram. .

A subprogram must not reference itself directly or through any of its
own entry points.

The actual arguments in the CALL statement or function reference must
agree in order, number and type with the dummy arguments in the ENTRY
statement being referenced. However, the dummy arguments of the ENTRY
statement need not agree in order, type or number with the dummy
arguments in the SUBROUTINE or FUNCTION statement or in any other ENTRY
statement in the subprogram.

In a function subprogram the types of the function name and entry point
name are determined by the FUNCTION and ENTRY statements. If an entry
name in a function subprogram is of type character then each entry name
and the name of the function subprogram must be of type character. If
not of type character the types of the function name and entry point
names can be different; whether they are or not, they are treated as
variables equivalenced by means of an EQUIVALENCE statement "(see
section 3.2.4). After one of these variables is assigned a value in the
subprogram, the others become undefined.

If_ information for an array is passed in the reference to an ENTRY
statement, the array name and all its dimension parameters (except any
that are in a common area or are constant) must appear in the dummy
argument list of the ENTRY statement.

7.5.3 Entering the subprogram

Entry into a subprogram assigns new values to the dummy arguments of
the referenced ENTRY statement. Thus, all appearances of these
arguments in the whole subprogram are affected.

Reference to an ENTRY statement will not transmit new values for the
arguments not listed in that ENTRY statement.

Entry cannot be made into an IF-block or the range of a DO statement.

7 - 19

Program Units and Transfer of Control June 30, 1982

7.5.4 Exit from the subprogram

On exit from the subprogram, the value returned to the calling program
is the last value assigned in the subprogram to the entry point name
before control is returned. A value may be returned via a name other
than the one used to enter the subprogram. If this is done the two
names must be of the same type, otherwise the value returned will be
undefined.

7.6 SA\~ statement

Values assigned to local items or items held in a common block normally
retain any values held in them between execution of a RETUFU~ or END
statement and a subsequent re-entry to the subprogram, except in the
case of common items which are assigned a new value elsewhere. However,
the FORTRAN 77 standard does not require all implementations to retain
values automatically in such circumstances.

The SAVE statement is used to specify which items are to retain their
values after the execution of a RETURN or END statement and should be
used in any program which is required to be run using other FORTP~ 77
implementations. The SAVE statement has the form:

SAVE name 1 , name2, .•. ,namen

where each name is a named common block name preceded and followed by
an oblique, a variable name, or an array name. A name may not occur
more than once in a SAVE statement within a particular program unit.

Dummy argument names, procedure names and names of items in a common
block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained the
names of all allowable items in that program unit.

The appearance of a common block name preceded aria followed by an
oblique in a SAVE statement has the effect of specifying all of the
items in that common block.

If a particular common block name is specified by a SAVE statement in a
subprogram it must also be specified by a SAVE statement in every other
subprogram in which that common block appears. Note however, that if a
named common·block is used in the main program unit it is effectively
saved for all subprograms referenced by the main program.

The execution of a RETURN or END statement within a subprogram may not
retain the values of items other than the following in some
implementations of FORTRAN 77.

7 - 20

Program Units and Transfer of Control

1 Items specified by SAve statements;

2 Items in blank common;

3 Items defined with an initial value and not assigned
a new value;

4 Items in a named common block that appears in the
subprogram and in at least one other program unit
which is referencing, either directly or indirectly,
that subprogram.

7 - 21

June 30, 1982

Program Units and Transfer of Control June 30, 1982

7 - 22

Format Specification

CHAPTER EIGHT

FOR1~T SPECIFICATION

June 30, 1982

In FORTRAN 77 all input and output data are handled in the form of
records.

Records can be output to:

1 The display

2 A printer

3 Files on magnetic media

4 Internal files consisting of character variables or arrays

Records can be input from:

1 The keyboard

2 Files on magnetic media

3 Internal files

Two kinds of records are recognized: formatted records and unformatted
records.

A formatted record is a string of characters which might, for instance,
be- input on one punched card or output as a line of print. Each record
can be regarded as being split into fields, where each field contains
one or more characters and normally represents the value of one
variable or array element.

An unformatted record is essentially in internal machine form and is
normally used for re-input to the computer rather than for examination
by the programmer. Unformatted records are most appropriately used on
magnetic media.

If formatted records ,'are being used the input or output of records may
be controlled by a format specification. The format specification can
be given either in a FORMAT statement (see section 8.2.1) or as values
of character arrays, character variables, or other character
expressions.

The format specification defines the form of one or more external or
internal records and specifies the conversion of values between the

8 - 1

Format Specification June 30, 1982

internal form and the fields of the record. Formatted input records are
read in the format given in the format specification and are converted
from character codes on the input medium to internal machine form.
Formatted output data is converted from internal machine form to
records in the character code used by the output medium and ar'e output
in the format given in the format specification.

The individual fields within a record and the conversions to be applied
to them are specified within a format specification by means of edit
descriptors, which take the forms described in section 8.3. Thus, for
example, the edit descriptor 14 describes an integer field four
character positions wide. The way in which edit descriptors can be
combined to form complete format specifications are described below,
and the use of edit descriptors in FORMAT statements and arrays is
discussed in sections 8.2.1 and 8.2.2.

Input normally involves assigning the value represented in each field
to a variable or array element in store, output normally involves
placing the value of a variable or array element in store into the
appropriate field. Some descriptors have other effects such as allowing
for spacing between fields. The edit descriptors of a format
specification are associated with items in an input or output list in a
READ or WRITE statement as described in section 8.2.3. The first
character in a record to be output to a line printer is taken as a
print control character (see section 8.3.1.8).

8.1 Format specifications

A format specification consists of a series of edit descriptors (see
section 8.3) surrounded by parentheses. The specification describes one
or more records which are to be input or output. Apart from the edit
descriptors, the following may appear in the specification:

commas
parentheses
repeat counts and group repeat counts

8.1.1 Field separators

Consecutive edit descriptors and groups of edit descriptors enclosed in
parentheses (see below) must be separated by a comma, except

1 Between an edit descriptor containing a P and an
immediately following edit containing an F,E,D or G
descriptor

8 - 2

Format Specification June 30, 1982

2 Before or after a slash

3 Before or after a colon

Other slashes may appear before or after a series of edit descriptors.
A comma marks the end of a field.

8.'1.1.1 Slas.h editing

A slash marks the end of a field and the end of a record. Thus, when
one slash is present, the edit descriptor following initiates a
transfer to the next.pew record, and if a series of n slashes is
present, n - 1 records will be omitted on input or n - 1 blank records
will be created on output, and the next edit descriptor will initiate a
transfer to the next new record.

For example, the format specification

(Fl ,F2IF3, I I IF4)

where each F is an edit descriptor, describes a series of records in
the following order:

1 A record containing two fields corresponding to Fl and F2

2 A record containing one field corresponding to F3

3 Two blank records (or two records to be omitted on input)

4 A record containing one field corresponding to F4

The parentheses at the beginning and end of the format specification
may be considered to initiate a new record and terminate a record
respectively. For example, the specification

(IIIFIII)

where F is an edit descriptor, describes a series of records in the
following order:

1 Three blank records

2 A record containing one field corresponding to F

3 Three blank records

8 - 3

Format Specification June 30, 1982

8.1.2 Repetition of descriptors

An edit descriptor or a group of edit descriptors (that is a series of
descriptors enclosed in parentheses) may be repeated by preceding it
with an integer r. The effect will be as if the descriptor or group was
repeated r times. Non-repeatable edit descriptors (see section 8.3) may
be repeated only if they are enclosed in parentheses.

The repeat count or group repeat count r must be a positive (and
non-zero) integer. If a group enclosed in parentheses is not preceded
by a group repeat count, a count of one is assumed.

Any group of descriptors enclosed in parentheses may have among its
items other groups of descriptors enclosed in parentheses but these
must not be nested more than seven deep.

For example, the specification

(Fl,3F2/SF3,6(1F4,FS,),2F6)

where each F is an edit descriptor, describes a series of records in
the following order:

1 A record containing one field described by Fl and
three described by F2

2 A record containing "five fields described by F3

3 Five records each containing one field described by F4
and one by FS

4 A record containing one field described by F4, one by F5
and two by F6

8.2 Format specification methods

Format specifications as described in the earlier part of this chapter
may be either specified in FOPu~T statements or as values of character
arrays, character variables, or other character expressions. When a
format specification is to be used to control the input or output of
data, either a reference is made to the label of the FORMAT
specification or the name of the character array or character variable,
or a character expression is used. Information on the use of format
statements or character format specifications for input and output is
given in Chapter 9.

8 - 4

Format Specification June 30, 1982

8.2.1 The FORMAT statement

A FOR1~T statement is a non-executable statement and has the form:

label FORMAT specification

where

label is a statement label; every FORMAT statement must be labelled.

specification is a format specification as described earlier in the
chapter.

The following are examples of FOill[~T statements, where the Fi are edit
descriptors as described in section 8.3. Complete examples of FORMAT
statements including the use of edit descriptors are given in section
8.4.

16 FORMAT (Fl)

3049 FORMAT (F2,3F31F4)

4 FORMAT (F5,F6,6(1F7,3F8)1F9)

8.2.2 Character format specification

A format specification may be held in a character array, or within a
character variable, or may be specified as a character expression. The
specification must include the parentheses at the beginning and end. It
may have been read into a character array or character variable by
means of an A conversion code (see section 8.3.1.7) or may have been
set by an initialization or assignment statement. Character data may
follow the right parenthesis that ends the format specification and
will be ignored.

For example, the format specifications given in the examples in the
previous section could be held in arrays instead· of being given in
FORMAT statements. If the specification given in the statement labelled
3049 were held in a character*4 array named ARR, the first element of
the array would hold the left parenthesis followed by some or all of
the.characters that make up the edit descriptor F2. The succeeding
character positions would hold the comma, the figure three, the
characters mak~ng up the field descriptor F3, the slash, the figure
three, the characters making up the edit descriptor F4 and, finally,
the right parenthesis, using as much of the remainder of the array ARR
as is required.

A character format specification can be used for input or output in the

8 - 5

Format Specification June 30, 1982

same way as one given in a FO~~T statement. For example, a reference
to the array ARR mentioned in the previous paragraph would have the
same effect as a reference to the statement labelled 3049 in the
previous section.

Formats may be varied at run-time either by assigning new values to, or
using A format codes (see section 8.3.1.7) to read values into
character array elements or character variables.

8.2.3 Effect of FORMAT statements and character format specifications

A READ or WRITE statement (see sections 9.3.1 and 9.4.1) referencing a
FORMAT statement or character format specification normally contains a
list of variable names and array elements known as an input or output
list. These are associated in order with the descriptors in the format
specification, except that non-repeatable edit descriptors are not
associated with variables or array elements. Thus if a list of names in
a READ statement was

Y,Z

and the FORMAT specification was

(Fl,W,F2)

where Fl and F2 are repeatable edit descriptors and W is a non
repeatable edit descriptor, then the variable Y will be associated with
edit descriptor Fl and Z with edit descriptor F2.

Ea~h action performed during the execution of a formatted READ or WRITE
statement is determined by the next descriptor in the format
specification and the next item, if any, in the input or output list.
If the descriptor is a non- repeatable edit descriptor, then it is
acted upon and the next descriptor examined; the process is repeated
until a repeatable edit descriptor is encountered.

The descriptor must be one which is permitted with a variable or array
element of the type under examination (see section 8.3 below). On input
the value represented in the field is converted according to the edit
descriptor and is assigned to the variable or array element; on output
the value of the variable or array element is output to the field in
the format specified. The next item from the list in the READ or WRITE
statement and the next edit descriptor are then selected, and the
process repeated.

When the last named variable or array element has been operated upon,
the next descriptor is examined. If it is a non-repeatable edit
descriptor it will be acted upon and the next descriptor will be

8 - 6

Format Specification June 30, 1982

examined in the same way. This process is repeated until a repeatable
edit descriptor is encountered.

When the last edit descriptor has been acted upon or when an edit
descriptor not of the types given above is encountered, execution of
the statement ceases.

A special case of a formatted READ .or WRITE statement is one that does
not contain a list of variable and array element names; the first or
only descriptor in the corresponding format specification must be a
non-repeatable edit descriptor otherwise the corresponding record is
skipped. If the READ or WRITE statement does contain a list of names,
the corresponding format specification must contain at least one
repeatable edit descriptor.

If, when the format specification has been completely scanned, there
are still items left in the list of names, a new record will be started
and the format specification will be re-scanned as follows:

1 If there are no internal parentheses, scanning will be
repeated from the beginning of the specification

2 If there are internal parentheses, scanning will be
repeated from the left parenthesis corresponding to
the right-most internal right parenthesis. If this
left parenthesis is preceded by a group repeat count,
the repeat count is taken into account

When rescanning is completed by the closing parenthesis of the format
specification being reached again, the rescanning as described above is
repeated if further items still remain.

The arrows in the following examples show where scanning would be
restarted:

FORMAT(.•.•....) ,.

FORMAT(... ,(.•• » ,.

FORMAT(.•. , (••. (•.•) ••.) .•.) ,.

FORMAT(.•. (..•) •.• 3(• (•). (• » .•) ,.

Examples of complete FORMAT statements and their effects are given in
section 8.4.

8 - 7

Format Specification June 30, 1982

8.3 Edit descriptors

The edit descriptors are used to specify the external format of fields
in a record, and are classified into two types:

1 Repeatable edit descriptors

2 Non-repeatable edit descriptors

Repeatable edit descriptors may be preceded by a repeat count which is
an unsigned, non-zero, integer constant and which specifies the number
of times the edit descriptor is to be repeated. If the repeat count is
omitted a value of one is assumed. A repeatable edit descriptor is one
containing one of the following format codes:

A,D,E,F,G,I,L

A repeatable edit descriptor indicates the manner in which a variable
or array element is to be edited.

Non-repeatable edit descriptors, slashes and colons must not be
preceded by a repeat specification, and they operate independently of
any items in the input or output list. A non-repeatable edit descriptor
is one containing one of the following format codes:

H,literal,T,TL,TR,X,S,SP,SS,P,BN,BZ

A non-repeatable edit descriptor indicates the manner in which a field
is to be edited. The use of the colon to terminate format control if
there are no more items in the input or output list is described in
section 8.3.1.13.

The different edit descriptors, the types of internal variables with
which they correspond, and their actions, are listed below. A reference
is given to the section in which each descriptor is discussed.

8 - 8

Format Specification June 30, 1982

Edit Internal Action Section
descriptor data type

Iw Integer Numeric conversion 8.3.1.1
Iw.m

Fw.d Real or part complex Numeric conversion 8.3.1.2
Dw.d 8.3.1.3
Ew.d 8.3.1.3
Ew.dEe 8.3.1.3
Gw.d 8.3.1.4
Gw.dEe 8.3.1.4

kP Scaling real numbers 8.3.1.5

Lw Logical Logical value conversion 8.3.1.6

A Character Character conversion 8.3.1.7
Aw 8.3.1.7

nHliteral Write text 8.3.1.8
, literal'

nX Alter position in record 8.3.1.9
Ic where transfer of data 8.3.1.10
TLc should begin 8.3.1.10
'IRc 8.3.1.10

S Control of optional plus 8.3.1.11
SP characters in numeric 8.3.1.11
SS output fields 8.3.1.11

BN Control of the 8.3.1.12
BZ interpretation of blanks 8.3.1.12

in numeric input fields

In the above list of edit descriptors, the capital letters I, F, E, D,
etc., are called format codes and it is these format codes that
indicate in what way the record is to be converted either from external
format to internal machine form on input, or from internal machine form
to external format on output. w is the total width of the field in
charact1ers in the external format. d is the number of character
positions in the fractional part of a number. m is the number of
significant digits in the field. e is the number of digits in the
exponent. k is an optionally signed integer constant. w, e, nand care
non-zero, unsigned, integer constants.

Since complex values can be considered as two real values for the
purposes of input and output, they are transferred by means of two D,

8 - 9

Format Specification June 30, 1982

E, F, or G format codes.

8.3.1 Format codes

The following sections describe the various format codes and their
effects on data on input and output. The term conversion code is used
interchangeably with format code for those codes which are directly
concerned wit.h converting data between its external format and its
internal machine form.

8.3. 1 • 1~ The I conver-s i on code

The I conversion code is used to transfer integer data. The edit
descriptor has one of the following forms:

Iw

Iw.m

where

w is an unsigned positive integer that gives the external width of the
field in characters.

m is an unsigned integer that gives the minimum number of digits to be
output.

Input

The Iw.m edit descriptor is treated identically to the Iw edit
descriptor. When this conversion code is used for input, the edit
descriptor causes the next w characters in the current record to be
read as an integer and the converted value to be assigned to the
relevant item in store.

The characters in the external field may be a signed or an unsigned
integer; unsigned numbers will be assumed to be positive. Spaces before
the first digit are ignored but must be included in the character count
w, as must the sign, if any. All other spaces are treated as zeros or
are ignored as determined by a combination of any BLANK= specifier that
is currently in effect for the unit (see Chapter 9), and any BN or BZ
edit descriptors (see section 8.3.1.12). Unless specified otherwise
spaces, other than leading spaces, are treated as zeros. A field of all
spaces is treated as a field of zeros. The field must not contain a
decimal point or an exponent.

8 - 10

Format Specification June 30, 1982

The following table gives some examples of the effects of the I code on
input. The symbol # represents a space.

Edit descriptor External number Internal number

15 #+376 +376

16.2 ####-2 -2

16 ####-2 -2

14 34## +3400

13 ### 0

Note: If a number that has been read in is too large or too small for
the associated variable, the maximum or minimum value respectively for
that type of variable is substituted, namely 2,147,483,647 or
-2,147,483,648 for integer.

Output

i~en this conversion is used for output, the edit descriptor will cause
the value of the relevant item in store to be output as an integer
occupying w character positions in the current record; the number will
be right justified. The effect of using the Iw.m edit descriptor is the
same as Iw except that the unsigned integer constant consists of at
least m digits and if necessary, has leading zeros.

The value of m must not exceed the value of w. If m is zero and the
value of the output item is zero then the output field consists only of
blank characters regardless of the sign control that is currently in
effect. Negative numbers will be preceded by a minus sign which
occupies one of the w character positions specified; positive numbers
will be unsigned. The field of w characters will be space filled on the
left if necessary. If the integer to be output, including any minus
sign, exceeds w characters, the output field is filled with asterisks.

8 - 11

Format Specification

Some examples follow of the effect of the 1 code on output:

Edit descriptor Internal number

IS

16

13

16.4

15.3

Example

The following:

+3659

-987
I

+3659

-123

24

I = 20
J = -236
K = 9872
WRITE(6,lOO)I,J,K

100 FORMAT('0',14.3,218)

.

External

#3659

##-987

#-0123

##024

causes the following line to be printed:

#020####-236####9872

8.3.1.2 The F conversion code

number

June 30, 1982

The F conversion code is used to transfer basic real numbers, that is
those numbers written without an exponent, namely real or one part of a
complex value. The edit descriptor has the form:

Fw.d

where

w is an integer giving the width in characters of the external field.

d is the number of digits in the fractional part of the number. w must
always be greater than or equal to d.

8 - 12

Format Specification June 30, 1982

Input

Vihen this conversion code is used for input, the edit descr.iptor causes.
the next w characters in the current record to be read as a real number
and the converted value to be assigned to the relevant item in store.
If the item is of type complex then two edi t descr'iptors are r·equired.

The external .field must contain w characters including:

1 A sign (optional)

2 A string of digits which may contain a decimal point

The external" field may also contain an exponent.

Unsigned numbers are assumed to be positive. Spaces occurring before
the first digit are ignored. All other spaces are treated as for I
editing. All spaces must be included in the character count. A field of
all spaces is treated as zero.

If the field does not contain a decimal point,thanumber is treated as
though a point occurred before the last d digits of the string. This is
the number that any scale factor can be considered to operate on (see
section 8.3.1.5). If the external field contains a decimal point, this
will override the decimal point implied by the value d in the
descriptor.

Some examples follow of the effects of the F code on input. The symbol
representsalspace.

Edit descriptor External number Internal number

F6.2 ##1234 12.34

F6.2 1.2300 1.23

F6.2 #-2345 -23.45

F6.2 #123E1 12.30

Output

U~en this conversion code is used for output, the edit descriptor
causes the value of the relevant item in store to be output as a
decimal fraction, rounded to d decimal places and made up by trailing
zeros if necessary. The number is right justified and if it is negative
it is preceded by a minus sign. The field will be space filled on the

8 - 13

Format Specification June 30, 1982

left to make up the w characters. If the number has no integral part
and if the field width specified is large enough, the decimal point
will be preceded by a zero. If the item is of type complex, two
descriptors are required to output it.

The number of characters to be output should not exceed the field
width. If it does, the output field is filled with asterisks.

'The decimal point and minus sign must be included in the character
count w.

Some examples follow of the effects of the F code on output. The symbol
represents a space.

Edit descript~ Internal number External number

FI0.4 +5227.3278 #5227.3278

FI0.4 -345.6789 #-345.6789

FI0.4 +12.3 ###12.3000

FI0.4 -3.21989623 ###-3.2199

Example

The following statements:

X=-3.7690
Y=I.55
2=12345.69
WRlTE(6,100)X,Y,2

100 FORMAT(lH#,FIO.4,FS.6,FS.3)

would produce the following line:

###-3.76901.550000********

The value for 2 requires five positions before the decimal point but
since only four are available the value is represented by ********,
that is asterisks in all eight positions of the field.

8 - 14

Format Specification June 30, 1982

8. 3. 1 .3 The· E·" and D convers i on codes

The E and D conversion codes are used to transfer real numbers.

The edit descriptors have the following forms:

where

Ew.d
Dw.d
Ew •. dEe

w is an integer giving the width of the external field in characters.

d is an integer giving the number of digits in the fractional part of
the number. w must always be greater than or equal to d.

e is an integer giving the number of digits in the exponent: e must be
greater than zero. This has no effect on input.

Input

When the E or D conversion code is used for input, the edit descriptor
causes the next w characters in the current record to be read as a real
number and the converted value to be assigned to the relevant item in
store. If the item is of type complex then two edit descriptors are
required.

The external field must contain w characters including:

1 A sign (optional)

2 A string of digits which may contain a decimal point

3 An exponent (optional)

The exponent may have one of the following forms;

1 A signed integer constant

2, E or D followed by a signed integer constant

3 E or D followed by an unsigned integer constant

Unsigned numbers and exponents are assumed to be positive. Spaces
occurring before the first digit are ignored. All other spaces are
treated as for I editing. All spaces must be included in the character
count. A field of all spaces is treated as zero.

8 - 15

Format Specification June 30, 1982

If the field does not contain a decimal point, the number is treated as
though a point occurred before the last d digits of the string. This is
the number that any exponent or scale factor can be considered to
operate on. If the external field contains a decimal point, this will
override the decimal point implied by the value d in the descriptor.

Note: If the mqdulus of the external real number to be input is
greater than .the maximum real (the largest possible real value that can
be assigned to the variable) then the maximum real is assigned to the
variable together with the appropriate sign.

Some examples follow of the effects of the E code on input. The symbol
represents a space.

Edit descriptor External number Internal number

E7.3 7654321 +7654.321

E7.3 #+137-3 +.000137

E7.3E2 #+137-3 +.000137

E7.3 1.234E2 +123.4

E7.3 -123E02 -12.3

Output

Wh~n the E or D conversion code is used for output, the edit descriptor
causes the value of the relevant item in store to be output as a
decimal fraction with an exponent. If the exponent field e exists then
the exponent will be output with e digits.

The fractional part, f, of the external number will be in the range

0.1 <= f < 1

and will be rounded down to d digits and will be output preceded by a
minus sign (if the number is negative), a zero (if the field width
specified is wide enough) and a decimal point. If the item is of type
complex then two edit descriptors are required.

The exponent will have one of the forms:

1 E+dld2 or E-dld2 if Ew.d or Dw.d is used
and lexpl<=99

8 - 16

Format Specification

2 +d1d2d3 or -d1d2d3 if Ew.d or Dw.d is used
and 99<lexpl<=999

3 E+dld2 .•• dn or E-d1d2 ••• dn if Ew.dEe is used

June 30, 1982

where d1 d2 ... dn are digits. The number will be right justified.

The fractional part f will be signed only if it is negative. The
exponent part will always be signed. The scale factor can be used to
alter the range of the fractional part f of the external number from
the limits defined above.

If necessary, the fi~ld will be space filled on the left to w
characters. The number of characters, including the minus sign if any,
should not exceed the field width. If it does, the output field is
filled with asterisks.

Some examples follow of the effects of the E code on output. The symbol
represents a space.

Edit descriptor Internal number

E14.5

E14.5

E14.5

E14.5

E14.5E4

Example

The following:

+12345678

-1.23

+eOO0123

-.003

-.003

A=4764.732
B=-21.5E-4
C = .003210
D = -99.9E3
WRlTE(6,100)A,B,C,D

External number

###0. 12346E+08

##-0. 123ooE+01

###0. 12300E-03

##-0.3OOOOE-02

-0.30oooE-0002

100 FORMAT('0',E15.8E3,E13.6,E12.4,E9.4)

causes this line to be printed out:

8 - 17

Format Specification June 30, 1982

0.47647320E+OO4-0.215000E-02##0.3210E-02*********

The value for D requires at least ten positions (-.9990E+05) and as
only nIne are specified, the field is set to ****~****

The following:

DOUBLE PRECISION X,Y,Z
X=-3.66D2 .
Y=123456.12345
Z=155.151
WRlTE(6,lOO)X,Y,Z

100 FO~~T('0',DI0.3,D16.8,D18.7)

causes this line to be printed out:

-0.366E+03##0.12345612E+06#####O.1551510E+03

The edit descriptor for Y specifies only eight significant figures; in
this case rounding occurs.

8.3.1.4 The G conversion code

The G conversion code is a code that can be used to transfer real
values.

Edit descriptors using the G conversion code have the format:

where

GW.d
~.~e

w is an integer giving the width, in characters, of the external field.

d is an integer giving the number of digits in the fractional part of
the number: w must always be greater than or equal to d.

e is an integer giving the number of digits in the exponent. This has
no effect on input.

Input

For input the G conversion code has the same effect as if it were Ew.d,

8 - 18

Format Specification June 30, 1982

Dw.d or Fw.d (see sections 8.3.1.3 and 8.3.1.2).

Output

When this conversion code is used for output the edit descriptor causes
the value of the relevant item in store to be output either in fixed
point form (without ~n exponent) or in floating point form (with an
exponent). .

The magnitude of the value determines the form in which it is output as
follows:

1 If the number, for example x, is outside the range
O.l<=x<lO**d, then the number is output with an exponent
in the same manner as the E edit descriptor (see section
8.3.1.3)

2 If the number is inside the above range, then the d
most significant digits of the number are output as
a decimal fraction without a decimal exponent and
will be justified towards the left by a fixed number
of spaces

If the Gw.dEe conversion code is used then e+2 spaces will be produced
at the right of the field; four spaces will be produced if the Gw.d
conversion code is used. The field width w must allow for these
additional characters.

If a scale factor (see section 8.3.1.5) is operating, it will have no
effect unless the value being output is outside the range O.l<=x<lO**d.
If the value is outside this range, then the effect of the scale factor
will be as for the E conversion code (see section 8.3.1.3).

Some examples follow of the effects of the G code on output. The symbol
represents a space.

Edit descriptor Internal number External number

Gll.4 +10.3456 ##10.35####

G11.4E4 +10.3456 10.35######

Gl1.4 -0.000367 -0. 3670E-03

G11.4El -0.000367 #-0. 3670E-3

Gll.4 +4958.67 ##4958.####

8 - 19

Format Specification

Gl1.4

2PGll.4

2PGl1.4

Example

+49586.7

+10.3456

-.00036

#0. 4959E+05

##10.35####

#-36.00E-05

The following:

REAL A,R, S, T
COMPLEX C
READ(5,4) A,C,R,S,T

4 FORMAT(2G8.3,G6.2,Gl1.8E2,G4.0,GI5.12)
VffilTE(6,41) A,C,R,S,T

41 FORMAT(IH ,GIO.3,Gl1.4,2G14.7E3,G15.8,G7.1)

and a data card of this form:

June 30, 1982

#33854##2000.E-4-12775##-96612E-8768#+###105########

would produce a printed output line as follows:

#O.339E+04#O.2000####-127.7S00#####-.9661200E-Ol1##7680.

OOOO####O.IE-Ol

8.3.1.5 The scale factor

The scale factor is used to change the position of the decimal point in
real numbers. It has the form:

kP

where k is an integer, optionally preceded by a minus sign.

A scale factor of zero is assumed in any format specification until a
scale factor is specified. Once a scale factor is specified it operates
on all real or complex values converted in that FO~~T statement by F,
E, D or G edit descriptors (see sections 8.3.1.2, 8.3.1.3 and 8.3.1.4)
until a new scale factor is encountered. A scale factor of the form

OP

cancels the operation of any previous scale factor.

8 - 20

Format Specification June 30, 1982

Effects on input

A scale factor affects only real numbers without an exponent. The scale
factor is ignored for any other type of number.

The effect of the scale factor on a real number input is that the
number will be divided by the kth power of 10, as it is converted from
an external value to the internal value.

That is:

1 If the input data is in the form ab.cde and it is required
to use this data internally in the form .abcde, the edit
descriptor necessary would be 2PF6.3

2 If the input data is in the form ab.cde and it is required
to use this data internally in the form abcd.e, the edit
descriptor would be -2PF6.3

Effects on output

The scale factor can be used to modify the effect of edit descriptors
containing F, D, E or G conversion codes. It has no effect on
descriptors other than these.

Its effects are as follows:

1 F CONVERSION CODE The internal number is multiplied by
the kth power of 10 as it is output

2 E or D CONVERSION CODES The internal number is multiplied
by the kth power of 10 as it is output but the exponent is
adjusted to compensate. Therefore, the number is changed
in form but not in value. Note that in this instance the
scale factor k must be restricted to the range -d<k<d+2,
where d is an integer giving the number of digits in the
fractional part of the number

3 G CONVERSION CODE If the number is output without an
exponent, the scale factor has no effect. Otherwise, the
effect is the same as for the E or D descriptors

Examples

The following table shows the effect of a scale factor on field
descriptors used for input:

8 - 21

Format Specification June 30, 1982

Edit descriptor External number Internal value

-3PF6.3 99.99 99990.0 .

3PF6.3 99.99 .09999

2PF12.2 4120.0 41.2

OPF5.2 21.2 21.2

2PE7.1 8642.0 86.42

2PE7.1 86.42E2 8642.0

The next table shows the effect of a scale factor in format codes
for output:

Edit descriptior Internal value External number

2PF11.0 12345.0 ###1234500.

-3PEll.5 12345.0 0.00012E+08

2PE11.3 12345.0 ##12. 34E+03

4PGll.3 12345.0 ##1234.E+Ol

-IPGll.3 . 12345.0 ##0.012E+06

8.3.1.6 The L conversion code

The L conversion code is used to transfer logical values. The edit
descriptor has the form

Lw

where

used

w is an integer giving the width in characters of the external field.

Input

When this conversion code is used for input, the edit descriptor will
cause a field of w characters to be read and converted to the internal
representation of . TRUE. or .FALSE.; the converted value is assigned to
the corresponding item in the input list. The external field consists
of w characters as follows:

8 - 22

Format Specification June 30, 1982

1 Optional spaces, optionally followed by a decimal point,
followed by T (representing the value .TRUE), optionally
followed by any other characters

2 Optional spaces, optionally followed by a decimal point,
followed by F (representing the value .FALSE.), optionally
followed by any other characters

Output

When this conversion code is used for output it will cause w-1 spaces
to be output followed by the character T if the relevant item has the
value . TRUE. or by the character F if the item has the value .FALSE.

Example

The following:

LOGICAL X, Y
X = • TRUE.
Y = .FALSE.
N = 250
A = 27.4
WRlTE(6,4)N,X,A,Y

4 FORMAT("O-it, 15,L6,F6.2,L3)

will cause the following line to be output:

##250#####T#27.40##F

8.3.1.7 The A conversion code

The A conversion code is used to transfer character fields. The edit
descriptors have the form:

Aw

A

where w gives the width, in characters, of the external field. If no
width is specified then the number of characters in the external field
is the length of the item in the input/output list.

8 - 23

Format Specification June 30, 1982

The number of characters transferred depends partly on the length of
the corresponding variable in the input/output list.

Input

If the field width w is greater than or equal to the length of the item
(len), then the rightmost len characters will be taken from the input
field. If the field width is less than len then w characters will be
left justified in the field with len-w padding spaces to the right.

Example

The following:

CHARACTER*4 A,B,C,X,Y,Z
P£AD(5,3)A,B,C,X,Y,Z

3 FORMAT(A4,A,A,AS,A2,AS)

and this data card:

would cause the character strings to be assigned to the variables,
A,B,C,X,Y,Z as follows:

Variable String

A HOT*

B AND+

C COLD

X OT*A

Y ND##

Z COLD

Output

When this conversion code is used for output, the edit descriptor will
cause w characters to be output. If w is 'less than or equal to len,
then the w leftmost characters are output and the rest are ignored. If
w is greater than len then w-Ien blank characters will be output

8 - 24

Format Specification June 30, 1982

followed by the characters of the list item.

8.3.1.8 The H format code and character data

Edit descriptors using the H format code are used to transfer character
strings between the format specification and the current record. They
do not involve program variables. They have the form:

nHstring

'stri ng'

where

n is the width of the character string.

string is the character string to be transferred.

If character data within apostrophes contains an apostrophe, that
apostrophe must be represented by two apostrophes, for example, 'DONuT'
and 5HDON'T are equivalent.

Both forms can be used in format specifications.

For example, the following two formats are equivalent:

Input

100 FORMAT{ , ANNUAL TOTAL')
100 FORMAT{ 13H ANNUAL TOTAL)

Edit descriptors using apostrophes or the H format code may not be used
on input.

Output

When used for output, this edit descriptor will cause the n characters
of string to be output as part of the current record. For example,
either of the examples quoted above would cause

ANNUAL TOTAL

to be written to the output stream.

A formatted record that is to be printed must begin with a print
control character of the form

8 - 25

Format Specification June 30, 1982

IHx or 'x'

where x can be one of the characters listed below with the effects each·
has on the printing of the record.

Print control character Effect
-----------------r---
Space

o
1

+

Any other character

Feed one line before printing

Feed two lines before printing

Feed to head of a new page

No line feed (this facility is not
available on all line printers)

As for space

The print control character is never printed, although it is held on
the record. Thus an output line of 132 characters actually occupies 133
character positions on the record.

8.3.1.9 The X format code

The X format code is used to omit characters in the input or output
re~ord. The edit descriptor has the form:

nX

where n is an integer giving the number of characters to be skipped.
The X code is not concerned with transfer of data to or from a variable
or array element in store.

Input

When this format code is used for input, the edit descriptor will cause
n characters on the external record to be omitted.

Output

When this format code is used for output the edit descriptor will cause
the next character that is to be transmitted to the record, to be

8 - 26

Format Specification June 30, 1982

written at a position n characters forward from the current position.
Any unfilled positions will be filled with spaces.

8.3.1.10 The T format codes

The T format codes are used to specify the position in the record where
the transfer of data is to begin. Their use may result in the
overwriting of data already in the record.

The edit descriptor takes one of the forms:

Tc

lic

mc

where c specifies the character position at which the transfer should
begin.

The Tc edit descriptor indicates that the next 'character is to be
transferred to or from the cth character position within the record,
counting the first character position in the record as one.

The TLc edit descriptor indicates that the next character to or from
the current record is to be c character positions backward from the
current position. If the current position is less than or equal to
position c, then the transmission of the next character to or from the
record would'occur at position one.

The mc edit descriptor indicates that the next character to or from
the current record is to be c character positions forward from the
current position.

Note that on output, T format codes do not in themselves cause any
characters to be. transferred and therefore do not affect the length of
the record. However if characters are subsequently written beyond any
unfilled positions, then those positions will be filled with spaces.

Example 1

The format specification:

100 FORMAT (T16, 'OF', Tl '#THE', T19, 'FILEX', T6, 9HBEGINNING)

causes the following line to be written to the output stream:

8 - 27

Format Specification June 30, 1982

THE BEGINNING OF FILEX

Example 2

The format specification:

200 FORMAT(T19, 'lNG' ,1L8, '#EDIT' , T6, '8M' ,lL8-t "#mAN" ,TR2, "ISSION")

causes the following line to be written to the output stream

TRANSMISSION EDITING

8.3.1.11 The S format codes

The S format codes control the outputting of plus characters in numeric
output fields.

The edit descriptors take one of the forms

s
SP
SS

If an SP edit descriptor occurs in a format specification then a plus
sign will be produced in any subsequent position which normally
contains an optional plus.

If an SS edit descriptor occurs in a format specification then a plus
sign will not be produced in any subsequent position which normally
cODtains an optional plus.

If an S edit descriptor occurs then the option is restored to the
compiler default, which in 2900 FORTRAN 77 is the same as for the SS
edit descriptor.

8.3.1.12 The B format codes

The B format codes control the interpretation of spaces other than
leading spaces in numeric input fields.

The edit descriptors take one of the following forms

BN
BZ

If a BN edit descriptor occurs in a format specification all spaces in
succeeding numeric input fields are ignored. The effect of this is to

8 - 28

Format Specification June 30, 1982

treat the input field as if the spaces had been removed and the field
right justified. A field of all spaces has the value zero.

The following example

READ(S,10) I,J,K
10 FOru~T(BN,216)

with data ##2#34#1#2#3######

would cause the following values to be assigned:

I to be assigned the value 234

OJ to be assigned the value 123

K to be assigned the value 0

If a BZ edit descriptor occurs in a format specification all such space
characters in succeeding numeric input fields are treated as zero. In
the example above with BZ specified:

I would be assigned 2034

J would be assigned 10203

K would be assigned °
BN and BZ edit descriptors affect only I, F, E, D and G editing during
execution of an input statement. They have no effect during execution
of_an output statement.

8.3.1.13 Colon editing

When a colon is encountered in a format specification and there are no
more items in the input/output list then format control is terminated.
If there are more items in the input/output list then the colon has no
effect. °

8.4 EXamples of format specification

1 A READ statement (see Chapter 9) could refer to the
format statement

16 FORMAT(E7.3)

If the first seven characters of the next record on

8 - 29

Format Specification

the file specified in the READ statement contain the
characters

1.234E2

June 30, 1982

and a real variable X is specified in the READ statement,
X will be assigned the value +123.4

If this .record also contains other fields, the information
given in these subsequent fields will not be read.

If the READ statement is executed again, X will be assigned
the value corresponding to the first seven characters of
another record

2 The CHARACTER*8 array AX(4) holds the following characters:

element 1
element 2
element 3
element 4

(3 P GIl • 4
, 0 P E 7 • 3 ,
3 (/ E 7 • 3)
) X 3 /)) . ,

The first three elements and the first character of the
fourth element form a format specification; the final seven
characters of the fourth element are irrelevant. A reference
in a READ statement to the array name AX is equivalent to a
reference to statement label 101 where statement 101 reads
as' follows:

101 FORMAT(3PG11.4,OPE7.3,3(1E7.3»

If the READ statement contains a list giving the following
names:

A,B,C,D,E

in that order, where all the names are those of real
variables, the first eleven characters of the next record
(say the nth card of a punched card file) will be read
according to the G conversion code with a scale factor of 3,
and the value assigned to variable A. The next seven char
acters of the card will be read according to the E conversion
code with a scale factor of zero and the value assigned
to variable B. The first seven characters of each of the
(n+1)th, (n+2)th and (n+3)th cards will be read according
to the E conversion code with a scale factor of zero and the
values assigned to variables C, D and E respectively

3 The FORMAT statement

8 - 30

Format Specification June 30, 1982

11 FORMAT(Gll.4,2(E7.3,E8.5»

is used in conjunction with a WRITE statement which lists the
following real variables:

A,B,C,D,E,F,G,H

in that .order. The output records contains the values of the
following variables:

Record Characters Variable Format

1 1 to 11 A Gl1.4

12 to 18 B E7.3

19 to 26 C E8.5

27 to 33 D E7.3

34 to 41 E E8.5

2 1 to 7 F E7.3

8 to 15 G E8.5

16 to 22 H E7.3

As the output list is not exhausted when the format specification has
been completely scanned, rescanning takes place as described in section
8.2.3.

8 - 31

Format Specification June 30, 1982

8 - 32

Input and Output

CHAPTER NINE

INPtIT AND OUTPUT

June 30, 1982

This chapter describes the input and output facilities available in
FORTRAN 77.

9.1 Introduction

Reading data into and writing data out from main store is controlled by
input/output statements.

The general form of these statements is discussed in section 9.2 where
references to details of each statement can be found.

Each external file is identified in an input/output statement by a
unique number, a unit number, which takes the form of an unsigned
integer.

The identification of internal files is described in sections 9.3.1 and
9.6 below.

Items of data for input or output are grouped into records which can be
either formatted or unformatted.

The records within an external file are either all unformatted or they
are all formatted. These two types are described in more detail in
se~tions 9.1.1.1 and 9.1.1.2 below and the formats of input/output
statements for each are referenced in those sections.

Each input/output operation begins at the start of a record. The method
of access to a file may be either serial or direct depending on the
type of input/output device used. These methods"of access are described
in sections 9.1.2.1 and 9.1.2.2 respectively and~he input/output
statements available for each method are described in sections 9.3 and
9.4 respectively.

9.1.1 Format of records

9.1.1.1 Unfo~matted records

Unformatted records are input and output under the control of a READ or
WRITE statement with no associated format specification. The records
are representations of the internal machine form. Unformatted records
will normally be output by the computer and used subsequently for

9 - 1

Input and Output June 30, 1982

re-input rather than for examination by the programmer.

Details of input/output statements for unformatted records are found,
for sequential access, in section 9.3.1.2, and, for direct access, in
section 9.4.1.2.

9.1.1.2 Formatted records

Formatted records are input and output under the control of a READ or
WRITE statement in conjunction with a format specification. The records
are character representations of the internal values.

Some special considerations apply when punched cards are used to hold
formatted records, and when records are output to a line printer. These
are described in the following sections.

Details of input/output statements for formatted records are found, for
sequential access, in section 9.3.1.1 and, for direct access, in
section 9.4.1.1.

Punched cards

A formatted record on punched cards is one 80 column card.

Line printer

A formatted r~ord output to the line printer is a line of characters.
The maximum length of the record depends on the type of printer being
us~d. Typical maximum line lengths are 120 and 132 characters. A record
that is to be printed must begin with a print control character (see
section 8.3.1.8).

9.1.2 Accessing records

9.1.2.1 Sequential access

In sequential access, each record is read or written in sequence
starting with the first record on the file.

Records on any type of input/output device may be read or written
sequentially. Records on some types of device must be accessed
sequentially, for example, records on a printer. However, on certain
types of input/output device such as disk it is possible to space
backward past one or more records and to position at the first record
on the device. Input and output using sequential access is described in
section 9.3.

9 - 2

Input and Output June 30, 1982

9.1.2.2 Direct access

In direct access, any record can be ~ccessed directly in an order
chosen by the user.

It is only possible to use direct access on certain types of
input/output devices known as direct access devices. A typical direct
access device is a magnetic disk. Input and output using direct access
is described in section 9.4.

9.2 Input/output statements

The most important input/output statements are the READ and i~ITE
statements.

The READ statement has the effect of making values from external data
records available to the program by assigning them to specified
variables and array elements. The WRITE statement has the effect of
forming external records from the values of specified variables and
array elements.

The READ and WRITE statements can take various forms depending on the
kind of record to be handled, the kind of file on which it is held, and
the facilities used to control the handling of the record.

The most general forms of the READ and WRITE statements are:

where

READ(parameters)list
WRITE(parameters)list

parameters is a list of parameters which varies according to the kind
of record being handled and the file being used.

list is an input/output list, which specifies the names of the items to
have their values input or output (see section 9.2.1). A list parameter
may appear for formatted or unformatted records (see section 9.2.1.1
for details of the correspondence between list items and the format
specification).

The effects of the various READ and WRITE statements are described in
sections 9.3 to 9.5.

There are three input/output statements, known as auxiliary
input/output statements which may be used to describe, terminate, and

9 - 3

Input and Output June 30, 1982'

inspect a conn~ction between a unit number and an external file. The
statements are:

OPEN see section 9.7.2
CLOSE see section 9.7.3
INQUIRE see section 9.7.4

Other input/Qutput statements, known as file positioning input/output
statements, are available for limited forms of input/output device. The
following statements are available for certain sequential access
input/output devices:

ENDFILE
REWIND
BACKSPACE

They are described in detail in section 9.3.2.

Other statements, called list directed statements (see section 9.5) are
available. In these statements the format of the input or output data
need not be specified.

9.2.1 Input/output lists

An input/output list is normally required in a READ or 'RITE statement.
The list has the form:

i teml , i tem2, ••. , i temn

where each item can be the name of a variable, array, array element,
character substring or an implied DO loop (see section 9.2.1.2).
Additionally in a WRITE statement, an item may be any other expression
that is not a character expression which involves concatenation of a
character element whose length specification is of assumed size unless
the character element is a symbolic constant. Any item or series of
items may be enclosed in parentheses. An array name in an input/output
list represents the whole array and thus corresponds to n separate
items in the input/output list, where n is the total number of elements
in the array taken in their order of storage (see section 3.1.3). Note
that the name of an assumed-size dummy array must not appear in an
input/output list.

An input/output list is normally required with all REft~ and WRITE
statements, whether the data is to be transferred formatted or
unformatted and whether the access method is sequential or direct.

9 - 4

Input and Output June 30, 1982

9.2.1.1 Correspondence between input/output lists and format codes

When a READ or WRITE statement is executed, successive items in the
input/output list are transmitted according to successive format codes.
Where the format code is of a specific type, for example, the I code
for integer values and the L code for logical values, then the
corresponding item in the input/output list must be of the same type.

If, in an input/output statement, there are more items than format
codes, then a new record is started and control is transferred to one
of the following:

1 If there is a group format specification: to the group
format specification repeat count that is terminated
by the penultimate right hand parenthesis of the FOPj~T
statement

2 If there are no group format specifications: to the
beginning of the FORMAT statement.

The same series of format codes is then used for the next items in the
input/output list.

9.2.1.2 Implied DO loops

An impl)ed 00 loop is, a series of list elements, usually array
elements, that is to 'be repeated for different values of a DO-variable.
An implied 00 loop is used to simplify the specification of array
elements required in input/output operations.

It-takes the form:

(el ,e2, ... ,en, i=ml ,m2,m3)

where

each e is a list element as defined in section 9.2.1. e may be another
implied DO loop.

i is the DO-variable.

ml is the initial parameter.

m2 is the terminal parameter.

m3 is the incrementation parameter, which may be omitted in which case
it is assumed to have the value 1.

9 - 5

Input and Output June 30, 1982

The DO-variable and parameters are analogous to those of a DO statement
(see section 6.3.1). As with DO statements, implied DO loops may be
nested.

i may be the name of an integer, real or double precision variable; ml,
m2 and m3 may be any integer, real or double precision expression
except that any functions referenced must not themselves carry out
input or output operations.

The effect of the implied DO loop is the same as if the list el, ... ,en
had been written down once for each iteration of the implied DO loop
with appropriate substitution of values for any occurrence of the
DO-var j:able i.

For input lists, i, ml, m2 and m3 must not appear within the implied DO
loops except in subscripts to array names.

If one e in an implied DO loop is a variable rather than an array then,
on output, the same value will be output several times, and on input,
several values will be assigned successively to the same variable, each
value overwriting the previous value.

Example 1

A simple implied DO loop of the form

(A(I),I = -1,10,1)

would have the same effect as the input/output list

A(-I),A(O),A(I), ... ,A(IO)

Example 2

An implied 00 loop of the form

N,(A(I),B(I),I = 1,N),ALPHA(2)

transfers the data in the following order:

N , A (1) , B (1) ,A (2) , B (2) , ••. ,A (N) ,B (N) ,ALPHA (2)

Note that, in this example, N appeared in the same input/output list as
an implied DO loop using it for indexing information. It also shows a
specific array element, ALPHA(2), appearing in the input/output list

9 - 6

Input and Output June 30, 1982

Example 3

The input/output list

A,M,MOD,«CAB(J,L),B(L), L = 1,N),J = 1,35,2)

causes the variables to be accessed in the following order:

A, M, MOD, CAB (1. , 1) ,B (1) ,CAB (1 ,2) , B (2) , ..• , CAB (1 ,N) , B (N) ,CAB (3, 1) ,
B(1), •.. ,CAB(35,N-1),B(N-1),CAB(35,N),B(N)

Note that because of the position of array B in the nested implied DO
loops, every element of B is accessed a total of 18 times

Example 4

(1,1 = 1,10)

If used in a WRITE statement this implied DO loop would output integer
numbers 1,2, ..• ,10. However, this list would be invalid in a READ
statement.

9.3 Sequential access input and output

Reading from and writing to sequential access input/output devices are
carried out by READ and WRITE statements. The form of these statements
is described below and the use of these statements for formatted and
unformatted data is described in sections 9.3.1.1 and 9.3.1.2
re?pectively. Other sequential input/output statements are described in
section 9.3.2.

9.3.1 READ and WRITE statements

The basic forms of these statements for sequential access are as
follows:

where

READ(k,l)list
WRlTE(k,l)list

k is either an integer variable or integer expression giving the unit
number of the external file to be used in the input/output operation,
or it is the name of a character variable, character array, character
array element or character substring to be used in an internal file
operation (see section 9.6).

9 - 7

Input and Output June 30, 1982

The unit identifier may also be an asterisk which identifies an
installation defined primary input or output channel that is the
keyboard or the display. This form of unit identifier may only be used
to read or write formatted records in a sequential manner.

I is normally a FOR1L\T statement label (see section 8.2.1) or a
character variable or array name (see section 8.2.2). Other permissible
forms are des.cribed in section 9.3.1.1.

If the records to be input or output are formatted the READ or WRITE
statement must contain an I parameter, and if they are unformatted the
statement must not contain an 1 parameter.

list is an input/output list as described in section 9.2.1.

9.3.1.1 Formatted sequential access input and output

Input

The appropriate form of the READ statement for formatted sequential
input is

READ(UNIT=k,FMf=1,END=x1,ERR=x2,IOSTAT=m)list

where

UNIT=k is an unsigned integer constant, variable or expression that
represents the unit number of the input/output file involved; or it may
be_an asterisk signifying input/output on an installation defined unit
(see section 9.3.1). The characters UNIT= may be omitted, in which case
the unit identifier must be the first item.

FMT=l identifies a format specification. A format identifier may be one
of the following:

9 - 8

Input and Output June 30, 1982

1 The statement label of a FORMAT statement

2 An integer variable that has been assigned the statement
label of a FO~~T statement that appears in the same
subprogram as the READ statement

3 A character array name

4 Any character expression that does not involve the
concatenation of a character element which has a length
specification of assumed size unless the character element
is a symbolic constant

5 An asterisk, signifying list directed formatting

The characters FMT= may be omitted, but only if the format identifier
is the second item in the list and if the first item is the unit
identifier without the optional characters UNIT=.

END=xl is optional, and xl is the statement label to which control is
transferred if an attempt is made to read data beyond the end of the
file on unit number k.

ERR=x2 is optional, and x2 is the statement label to which control may
be transferred when an error condition is detected.

IOSTAT=m is optional, and m is an integer variable or array element
which is known as the input/output status specifier. Once the
input/output s~atement has been completed it is assigned a value which
indicates the-existence of any abnormal condition encountered as
follows:

1 If an end of file condition is encountered, m is assigned a value
of -1

2 If an error condition is encountered, m is assigned a positive
value which identifies the corresponding error message.

3 If no end of file condition or error condition exists, m is
assigned a value of zero

If the input/output status specifier is omitted, program execution will
terminate if either an end of file condition is encountered and the
END= specifier is omitted, or if an error condition is encountered and
the ERR= specifier is omitted.

list is optional and is an input/output list.

This READ statement reads in the items listed in list, under the

9 - 9

Input and Output June 30, 1982

control of the format specification identified by 1, from the file with
unit number k.

An example of a formatted sequential READ statement is

READ(S,12)A,B,(C(I),I=1,10),J

In this example, data is read from a file with uni~ number Sunder
control of the format specification in the format statement labelled
12. The variables A,B,C(1),C(2), •.• ,C(10),J are given values in that
order.

An alternative form of the READ statement is:

REAlL 1 , list

where

1 identifies a format specification as in the READ statement above; it
may not be preceded by the optional characters FMT=.

list is optional, and is an input/output list. If the input/output list
is omitted then the preceding comma must also be omitted.

This form of the READ statement specifies an installation defined unit
which is the same as the unit identified by an asterisk in the READ
statement above.

Output

The appropriate form of the WRITE statement for formatted sequential
output is

WRITE(UNIT=k,FMT=l ,ERR=x2, IOSTAT=m) list

where k,l,x2,m and list are as for the READ statement above.

The WRITE statement outputs to the file with unit number k the items
listed in list under the control of the format specification identified
by 1.

An example of a formatted sequential WRITE statement is

WRITE(6,lOl)X,«Y(I,J),I=1,10),J=1,S)

Data is written to the file with unit number 6, under the control of
the FORMAT specification labelled 101, in the order
X,Y(1,1),Y(2,1), .•. , Y(10,1),Y(1,2), ••• ,Y(10,S).

9 - 10

Input and Output June 30, 1982

An alternative form of the WRITE statement is:

PRINT l,list

where

I identifies a format specification as in the WRITE statement. above.

list is optional, and is an input/output list. The preceding comma must
be omitted if the input/output list is not specified.

The unit identified by the PRINT statement is installation defined, and
is the same as the unit identified by an asterisk in the WRITE
statement above.

9.3.1.2 Unformatted sequential access input and output

Input

The appropriate form of the READ statement for unformatted sequential
input is

READ(UNIT=k,END=xl,ERR=x2,IOSTAT=m)list

where

UNIT=k is either an integer constant, integer variable or integer
expression whose value is either zero or positive, and it represents
the unit number of the external file involved; k may not be an
asterisk.

The' characters UNIT= are optional, and if they are omitted the unit
specifier k must be the first item.

END=x1 is optional, and xl is the statement label to which control is
transferred if any attempt is made to read data beyond the end of the
file on unit number k.

ERR=x2 is optional, and x2 is the statement label to which control may
be transferred when an error condition is detected.

IOSTAT=m is optional, and specifies an input/output status specifier m
where m is an integer variable or array element. After the input/output
statement has been executed it may be examined to determine whether any
abnormal condition was encountered as follows:

I value of -1 indicates that an end of file condition

9 - 11

Input and Output

was encountered

2 A positive value indicates that an error condition
was encountered and the value corresponds to an
appropriate error message identifier

June 30, 1982

3 a value of zero indicates that no end of file condition
nor error condition was encountered

If an end of file condition is detected while performing the READ
statement and no end of file specifier (E~~) nor input/output status
specifier (IOSTAT=) is defined, then program execution will terminate.
Similarly if an error condition exists and no error specifier (ERR=)
nor input/output status specifier is defined, then program execution
will also terminate.

list is optional, and is an input/output list.

When this READ statement is executed, the next record will be read and
the values will be assigned in order to the variables listed in the
input/output list. The number of items in the input/output list may be
equal to or less than the number of values in the external record but
it must not be greater than this number. If there is no input/output
list, one external record is skipped.

An example of an unformatted sequential READ statement is as follows:

READ(8)X,(Y{2,K),K=1,S)

This statement causes data to be transferred from an input file to
X,Y(2,1),Y(2,2), ..• ,Y(2,S) in turn.

Output

The appropriate form of the WRITE statement for unformatted sequential
output is

WRITE(UNIT=k,EP~=x2,IOSTAT=m)list

where

k, x2, m and list are as for the READ statement above.

When an unformatted sequential i~ITE statement is executed, the values
of the items listed in list will be output to the file associated with
the unit k in the order in which they occur, in internal machine form.
Each unformatted WRITE statement will cause one, and only one, new
record to be created.

9 - 12

Input and Output June 30, 1982

The WRITE statement

WRITE(9)A,B,C

causes variables A,B,C to be written, in that order, to the file with
unit number 9.

9.3.2 File positioning input/output statements

These statements are for use with magnetic input/output devices only.

The ENDFILE statement

This statement has the following forms

ENDFILEi

ENDFILE (UNIT=i,ERR=e1,IOSTAT=s)

where

UNIT=i is an i.nteger constant or expression, or an integer variable
whose value must be zero or positive and represents a unit number. The
unit specifier may not be an asterisk.

The characters UNIT= are optional, and if they are omitted then the
unit specifier must be the first item in the list.

ERR=e1 is optional, and e1 is the statement label to which control is
transferred if an error condition is detected. el is known as the error
specifier.

IOSTAT=s is optional, and s is an i.nteger variable or array element
which becomes defined with a zero value if no error condition exists.
If an error condition does exist it becomes defined with a positive
value which identifies the corresponding error message. s is known as
the input/output status specifier.

If an error condition is detected, and if both the error specifier and
the input/output status specifier are omitted, then program execution
terminates. The ENDFILE statement defines the end of the data on a
particular output file, with unit number i, by outputting an
end-of-file record to that file.

After an ENDFILE statement has been executed, the file must be
repositioned using either a REWIND or BACKSPACE statement prior to

9 - 13

Input and Output June 30, 1982

executing a subsequent READ or WRITE on that file.

The REWIND statement

This statement has the following forms:

REWINDi

REWIND (UNIT=i ,ERR=e1, IOSTAT=s)

where i,e1 and s are as for the ENDFILE statement above.

When a REWIND statement is executed, the effect is that the next READ
or WRITE statement referencing the same file will operate on the first
record of the file.

Note that no input or output is performed. The file is positioned at
its initial point.

The BACKSPACE statement

This statement has the following forms:

BACKSPACEi

BACKSPACE (UNIT=i,ERR=el,IOSTAT=s)

where i, el and s are as for the ENDFILE statement above.

When a BACKSPACE statement is executed, the effect is that the next
READ or WRITE statement referencing the same file will operate on the
previous recor-d of the file. If the file was positioned at its first
record before a BACKSPACE statement is encountered, then the statement
will have no effect.

If the BACKSPACE statement occurs immediately after an ENDFILE
statement, it has the effect of back-spacing over the end-of-file
marker.

Backspacing over records which have been written using list-directed
formatting (see section 9.5) is prohibited. Also prohibited is
backspacing a file that is connected (see section 9.7.1) but does not
exist.

9 - 14

Input and Output June 30, 1982

9.4 Direct access input and output

Reading from and writing to a direct access input/output device is
carried out by READ and WRITE statements of the form described below.
At any time, any record may be read or written; there is no requirement
to start at the first record. Writing to an output file alters only
each record written, without destroying any record before or after it.
Data items are not written across record boundaries, nor are they read
from across record boundaries.

Data can be accessed directly only on direct access devices, usually
magnetic disks.

Each record in a direct access file is assigned a number, called its
record number, by which it can be referenced. The first record of a
file is numbered one and the rest are numbered consecutively in steps
of one. Record numbers appear in direct access input/output statements.

Note that all the records of a direct access file have the same length.

The READ and WRITE statements that are used for reading from and
writing to direct access files are described in section 9.4.1 below.

9.4.1 READ and WRITE statements

The basic forms of these statements for direct access are as follows:

where

READ(k,REC=r)list
WRITE(k,REC=r)list

k is an integer variable, or integer constant or integer expression and
gives the unit number to be used in the input/output operation. The
unit number must be zero or positive.

r is an integer expression whose value is positive. It specifies the
number of the first record that is to be read or written.

list is optional and is an input/output list as described in section
9.2.1.

9 - 15

Input and Output

9.4.1.1 Formatted direct access input and output

Input

June 30, 1982

The appropriate form of the READ statement for formatted direct access
input is

.READ(UNIT=k,F~IT=f,REC=r,ERR=x2,IOSTAT=s)list

where

UNIT=k is an integer expression whose value is zero or positive, and it
identifies a unit number. The characters UNIT= may be omitted provided
that the unit identifier is the first item.

FMT=f identifies a format specification. A format identifier may be one
of the following:

The statement label of a FORMAT statement

2 An integer variable that has been assigned the statement
. label of a FORMAT statement that appears in---the same

subprogram as the READ statement

3 A character array name

4 Any character expression that does not involve the
concatenation of a character element operand which has
a length specification of assumed size unless the
characte~element is a symbolic constant

The characters FMT= may be omitted, but only if the format identifier
is the second item in the list and if the unit identifier is the first
item without the optional characters UNIT=.

REC=r is an integer expression whose value must be positive. It
represents the record number of the first record which is to be read.

ERR=x2 is optional and x2 is the label of the statement to which
control may be transferred when an error condition is encountered while
executing the input/output statement.

IOSTAT=s is optional, and specifies an input/output status specifier. s
is an integer variable or array element which becomes defined with a
zero or positive value when the input/output statement has been
executed. If no error condition exists then a value of zero is
assigned, otherwise the value assigned is the number of the error
message which corresponds to the error detected.

9 - 16

Input and Output June 30. 1982

If the input/output status specifier and the error specifier are both
omitted. program execution will terminate when an error condition is
encountered.

list is optional and is an input/output list as defined in section
9.2.1.

This READ statement causes data to be transferred-from a file on a
direct access device into internal storage. The file from which data is
being read must be a direct access file.

Output

The appropriate form of the WRITE statement for formatted direct access
output is

WRITE (UNIT=k.FMT=f.REC=r.ERR=x2. IOSTAT=s)list

where k.f,r.x2,s and list are as for the READ statement above.

This WRITE statement causes data to be transferred from internal
storage to a direct access device. The writing of the data starts at
record r of the direct access file. The file to which data is written
must be a direct access file.

If the input/output list is omitted the only data that will be written
will be any character data that may appear at the beginning of the·
format specification. Each record to be written is completed with
blanks if necessary.

9.4.1.2 Unformatted direct access input and output

Input

The appropriate form of the READ statement for unformatted direct
access input is:

READ(UNIT=k,REC=r.ERR=x2.IOSTAT=s)list

where

UNIT=k identifies the unit number of the file involved, and must be an
integer expression whose value is either zero or positive. The
characters UNIT= are optional. and if they are omitted the unit
specifier must be the first item in the list.

REC=r is an integer expression that represents the relative position of

9 - 17

Input and Output June 30, 1982

a record withi~ the file: its value must be greater than zero.

ERR=x2 is opt.ional, and x2 is the label of the statement to which
control is passed when an error condition is detected during data
transfer to storage.

IOSTAT=s is optional, and defines an input/output status specifier
where s is the name of an. integer variable or array element. When the
READ statement has been completed s may be examined to determine
whether any abnormal condition exists. If no error condition exists
then it has the value zero. Otherwise it is defined with a positive
value which identifies an error message that corresponds to the fault
detected. Program execution will terminate with appropriate diagnostics
if an error is detected while performing the READ statement and both
the input/output status specifier and the error specifier are omitted.

list is optional and is an input/output list as defined in section
9.2.1.

This statement causes the items of data in list to be transferred from
a direct access device on unit number k into internal storage; only one
record is read and so the input/output list must specify more values
than can be contained in one record. The file from which the data is
being transferred must be a direct access file.

Output

The appropriate form of the WRITE statement for unformatted direct
access output is:

WRITE(UNIT=k,REC=r,ERR=x2, IOSTAT=s)1 ist

where k,r,x2,s and list are as for the READ statement above.

This statement causes the data items of list to be transferred from
internal storage to a direct access file on unit number k. Writing
commences at the rth record within the file.

The input/output list must not specify more values than can fit into a
single record. If the values specified do not fill the record, the
remainder of the record becomes undefined. If the input/output list is
omitted then the entire output record becomes undefined.

An example of an unformatted direct access WRITE statement is

WRITE(ERR=999,UNIT=30,REC=I+J) IARRAY,(A(I,K),K=4,S)

This statement will write a record to the file with unit number 30. The
value of the expression I+J identifies the particular record within the

9 - 18

Input and Output June 30, 1982

file to which the variables IARRAY, A(I,4), A(I,S), A(I,6), A(I,7),
A(I,8) are to be written. Control will be transferred to the statement
labelled 999 should an error condition occur (for example if the record
specifier (REC=) has a negative value).

9.5 List directed input and output

The use of list directed input/output statements allows data to be read
or written without the restrictions imposed by format specifications.

9.5.1 The READ statement

The list directed READ statement may take one of the following forms:

READ(UNIT=k,FMT=*,END=x1,ERR=x2,IOSTAT=s)list READ*,list

where

UNIT=k gives the unit number of the file to be used in the input/output
operation. It takes the form of an integer expression whose value is
zero or positive. The characters UNIT= are optional, and if they are
omitted the unit specifier must be the first item in the list.

FMT=* specifies that list directed formatting is to be used. The
charact,ers FMT= may be omitted, but only if the asterisk is the second
item ih the list and;the first item is the unit specifier without the
optional characters UNIT=.

ENO=x1 is optional, and xl is the statement label to which control is
to be transferred if an attempt is made to read beyond the end of the
file on unit number k.

ERR=x2 is optional, and x2 is the statement label to which control is
to be transferred if an error condition is detected.

IOSTAT=s is optional, and s is an integer variable or integer array
element which becomes defined with a value that specifies the existence
of some abnormal condition as follows:

1 If no abnormal condition exists, s is assigned the
value zero

2 If an end of file condition exists, s is assigned
the value of -1

3 If an error condition exists, s is assigned a positive
value which identifies an appropriate error message that

9 - 19

Input and Output June 30, 1982

describes the fault

s is known as the input/output status specifier.

list is an input/output list as defined in section 9.2.1.

If an abnormal condition exists after the Gompletion of the READ
statement program execution is not terminated if an input/output status
specifier is defined. Nor will program execution be terminated if an
end of file condition exists and an end of file specifier is defined,
or if an error condition exists and an error specifier is defined.
'-~

Execution of the READ statement causes values to be read from external
records and given to the items of the input list in order. In the case
of an array name the elements are given values in order of storage
(that is, with the leftmost subscript expression varying most rapidly).
A value is terminated by a value separator which may be one of the
following:

1 A comma optionally preceded by one or more spaces and
optionally followed by one or more spaces

2 A slash optionally preceded by one or more spaces and
optionally followed by one or more spaces

3 One or more spaces between two values or following the
last value

The input operation is terminated by the satisfaction of the input list
or_by the reading of a slash.

Items of the input list are not redefined if null data items (see
below) are encountered or if a slash is encountered before their values
are read.

The type of each item from the input list must correspond with the form
of data from the external medium.

Each READ statement starts with a new record, and reads as many records
as are necessary to provide data to fill the input/output list.

9.5.2 Input data

When a list directed READ statement is executed, reading begins at the
start of the next unaccessed record on the input file and continues
until eithel' each item in the input list has been given a value or a
slash (I) is encountered in the input. Any data in the last record

9 - 20

Input and Output June 30, 1982

accessed by a READ statement which follows a slash or is not required
for input cannot be accessed. Any input list items not given a value
before a slash is reached retain their current value (or remain
undefi ned).

The input stream consists of a series of data items which are
associated in their order of occurrence with the items of the input
list. Data items are separated by one or more spaces or by a single
comma optionally preceded and optionally followed by spaces. Note that
the end of a record has the effect of a space, except when it appears
within a character constant (see below). An item may be:

1 A NUMERIC CONSTANT This may take any of the forms listed
in section 2.2.1 except Hollerith constants. Numeric constants
may not contain any embedded spaces except between the parts
of a complex constant, in which case any number of spaces is
permissible. The end of a record may not appear within a
constant unless the constant is a complex value, in which
case the end of record may occur between the real part and
the comma or between the corr~a and the imaginary part.

The type of the constant must be the same as that of the
corresponding rist item, but there need be no correspondence
of length

2 A LOGICAL CONSTANT If the corresponding item is of type
logical, the data item may be any value acceptable to L
editing (see section 8.3.1.6). However commas or slashes
are not permitted as optional characters

3 _ A CHARACTER CONSTANT A data item may be a non-empty string
of characters enclosed within apostrophes. Note that the form
nH ... is not permitted. Each apostrophe that is part of the
character value must be represented by two consecutive apos
trophes. The constant may be continued on as many records as
needed and an end of record does not cause a space or any other
character to become a part of the value.

The corresponding input list item need not be of type character,
and there need be no correspondence of length. Note that the
constant is assigned in the same manner as if the constant
appeared in a character assignment statement (see section 5.3)

4 A ~~L ITEM A null item may take one of the following forms:

(a) No characters appearing between two successive value
separators

(b) No characters preceding the first value separator in

9 - 21

Input and Output June 30, 1982

the first record input by a READ statement

The value (or undefined status) of the corresponding list
item is left unchanged.

5 REPEATED ITEMS Any of the above items may be preceded by
a basic positive integer constant and an asterisk (n*).
n* must not co~ain any embedded spaces and may not e~tend
over a record. A repeated null item occurs if the next
character after * is a value separator.

The effect of a repeated item is that the next n items from
the input list have the same value read into them; they must
all have the same type as the value. If a null item is repeated,
the next n items from the input list are left unchanged

A constant is terminated by the first space, end of record, or comma
after its syntactic completion (that is, after a closing bracket for a
complex constant or the closing apostrophe for a character constant).

Note that spaces are never used as zeros, and all spaces are considered
to be part of some value separator except in the following
circumstances:

1 Spaces embedded within a character constant

2 Spaces which precede or follow the real or imaginary part of
a complex 'constant

3 Leading spaces in the first record input by a READ statement
unless they are immediately followed by a comma or a slash

As an example, if the next records on an input medium with record
length 40 characters are

1056#198765, #####,####, ####5D*#######t!l##
50~H 4E1 ,5E1)###T, 'ONE' 'S '# ']WO' , /##4561{#

and the file is accessed by the statement

READ*,I,J,K,L,(A(M),M=1,50),(B(M),M=1,50),P,X,Y,N

I is given the value 1056, J the value 198765, K, L and A are
unchanged, th~first 50 elements of B are each given the complex value
40+50i, P the value true, X the value ONE'S and Y the value TWO. N
remains unchanged and the value 456 is not accessed since the slash
intervenes.

9 - 22

Input and Output June 30, 1982

9.5.3 Output statements

Execution of the list directed form of the VffilTE or PRINT statements
causes the values of the items of the output list to be output in order
to external data sets, for example, line printer, disk and magnetic
tape data sets.

9.5.3.1 The ·WRITE statement

This statement has the form:

WRlTE(UNIT=k,FMT=*,ERR=x2,IOSTAT=s)list

where k,x2,s and list are as for the READ statement above.

The WRITE statement causes data to be written to an external data set
identified by the integer expression k.

9.5.3.2 The PRINT statement

This statement has the form:

PRliIT*, list

where list is an input/output list as defined in section 9.2.1.

The PRINT statement causes data to be shown on the display. The unit
will be the same as if an asterisk had been specified in a list
directed WRITE statement. The following is an example of a list
directed PRINT statement

PRINT*,I,J,K,(A(I),I = 1,100)

9.5.4 Output data

When a list directed WRITE or PRINT statement is executed, the values
of all elements of each list item are output in order. Each record
starts with a single space and contains at least one space between each
value output and no embedded spaces within items (other than spaces
within character values). A record may end with no spaces or with one
or more spaces.

The forms of output are as follows:

1 For integer values, all digits are output except for leading

9 - 23

Input and Output June 30, 1982

zeros. If negative, the value is preceded by a minus sign.
No exponent is used

2 For real values, all significant digits are output. If the
value to be output contains d significant digits, and the
value is greater than or equal to 0.1 and less than 10**d,
the number is output in a form which is si@ilar to the effect
of using an F edit descriptor (see section 8";-3.1.2) with a
zero scale factor, that is, without an exponent; otherwise,
the number is output with an exponent in a form that is similar
to the effect of using an E edit descriptor (see section
8.3.1.3) with a scale factor of 1. The value is preceded by
a minus sign if it is negative

3 For complex values, an opening parenthesis output followed
by the value of the real part, followed by a comma, followed
by the imaginary part, followed by a closing parenthesis. The
real and imaginary parts are output as for real values

4 For logical values, the single character T or F is output

5 For character values, all the characters are output without
spaces preceding or following the characters other than any
spaces that may be part of the character value. Character
values that are output are not delimited by apostrophes

As many records as are necessary will be written but the end of a
record will not occur within a value, apart from a complex or character
value. The end of a record may appear within a complex value between
the comma and the imaginary part only if the entire constant is as long
as, or longer than an entire record. Character values will be extended
across as many records as required and each such new record will have a
space character inserted at the beginning for carriage control.

Note that slashes, as value separators, and null items are not produced
by list directed formatting.

9.6 Internal files

If the first parameter to a sequential READ or WRITE statement (see
section 9.3.1) is the name of a character variable, character array
element, or character array, or if it is a character substring, then
the input/output operation is to be carried out on an internal file
consisting of that variable, array element, array, or substring.

An internal file has the following properties:

9 - 24

Input and Output June 30, 1982

1 A record-of an internal file is a character variable or
character array element or character substring

2 If the file is a character variable, character array element,
or character substring it consists of a single record whose
length is that of the variable, array element, or substring,
respectively. If the file is a character array it is treated
as a sequence of character array elements, each of which is
a record of the file. Each record of the file has the same
length, namely the defined array element length

3 If the number of characters being written to the file is less
than the length of the record, the remaining portion of the
record is filled with blanks

4 An internal file is always pOSitioned before the first record
at the start of a READ or WRITE statement accessing that file

5 Reading and writing records may only be performed using
sequential access formatted input/output statements that
do not specify list-directed formatting

The character variable, character array element, or character array
being used as an internal file must not appear in the input/output list
nor contain the format being used when accessing that file.

Example

In the following code

CHARACTER*16 TEXT

.
WRITE (TEXT, 10) I

10 FORMAT(·VALUE OF I =·,14)

if I contains the value of 136 when the WRITE statement is obeyed the
effect will be equivalent to assigning the character string 'VALUE OF I
= 136#.- to the character variable TEXT.

9.7 Auxiliari input/output statements

The input/output statements above decribe the manner in which data may
be transferred between internal storage and external media, and between
internal storage and internal files. They also describe file

9 - 25

Input and Output June 30, 1982

positioning statements. Auxiliary inputloutput statements may be used
to manipulate the external medium, or to interrogate or describe the
manner in which an external medium may be accessed, that is they
operate upon the properties of the connection between a given unit and
an external file.

9.7.1 Unit and file connection

The physical association of a unit to an external file is known as a
connection. Prior to program execution a connection may either be
defined externally by some job control statement, or be predefined by
the system. This is known as preconnection. For example, the list
directed input statement

READ *,list

makes use of the preconnection to the primary input medium which is
installation defined.

Internal to a program a connection may be established by means of the
OPEN statement (see section 9.7.2)

A connection is between a unit and a file. No unit may be connected to
more than one fife at the same time and similarly no file may be
connected to more than one unit at the same time. However, means are
available to terminate a connection (see section 9.7.3), and to connect
a unit,'to a different'/-file. A READ, WRITE, or PRINT statement cannot be
executed without a connection to the specified unit.

The properties of a connection include the following:

1 The type of access, either direct access or sequential access

2 The kind of records, either formatted or unformatted

3, The length of the records if the file is to be accessed with
direct access inputloutput statements

File existence is totally independent of a connection, that is a file
may be connected but not exist (see section 9.7.1.1). An example is a
preconnected new file.

9.7. 1 . 1 F II e ex i stence

A file is said to exist for a program if it may transfer data either to
or from the file, provided that it does not have to be created first.
For example, for security reasons a program may be denied access to a

9 - 26

Input and Output June 30, 1982

file that physically exists; such a file is said not to exist for the
program. Note that a connection to a file does not imply that the file
exists. -

A new file may be created by executing an OPEN statement (see section
9.7.2) or by writing a record to the file when the file is
preconnected.

Such a file i.s then said to exist.

9.7.1.2 File properties

A file property is a characteristic of an external file which exists
for the life-span of the file. Taken together a file#s properties
describe the permissible methods that may be used to access the file.

Within the context of FORTRAN 77 a file is attributed the following
properties:

1 A file may exist, or it may not exist. If it does not exist,
then it has no other property

2 Its records may either be all formatted, or all unformatted.
A file may not contain both types of record

3 It may be accessed with direct access input/output statements,
or it may be accessed with sequential access input/output
statements. Some files may be accessed with either type of
statement, but note that a given connection is only for a
single type of access

4 A file may have a name. If it has no name then it is a
temporary file which will cease to exist after program
termination

When a connection is, defined (see section 9.7.2) between a unit and a
file, the prqperties of the connection must be compatible with the
properties of the file. For example, it is not valid to define a
connection for direct access when the file to be connected is a line
printer.

9.7.2 The OPEN statement

The OPEN statement provides a means of accessing files that are not
preconnected. If a file does not exist then it will be created. TI1e
OPEN statement may also be used to create a new file that is
preconnected, or to alter certain properties of a connection between a

9 - 27

Input and Output June 30, 1982

file and a unit.

Once the OPEN statement has established a correspondence between a
given unit number and a specified file then both the unit and the file
are said to be connected, and hence a READ or a \VRITE statement can be
executed on the unit and hence the file. Without a connection (or
preconnection) a READ or WRITE statement cannot be executed.

The general form of the OPEN statement is:

where

OPEN(UNIT=u,IOSTAT=ios,ERR=x2,FILE=fn,STATUS=sta,ACCESS=acc,
FORM=fm,RECL=rl,BLANK=blk)

UNIT=u identifies a unit number where u is an integer expression whose
value is either zero or positive. The characters UNIT= are optional and
if they are omitted the unit specifier must be the first item in the
list; otherwise its position in the list is not fixed.

All other specifiers may be omitted, and if they are specified they may
appear anywhere within the list. The specifiers are described below
together with any as~umed value that may be used if a specifier is not
defined.

IOSTAT=ios defines an input/output status specifier which may be the
name of either an integer variable or integer array element. It will
become defined with either a positive value or a value of zero. If an
error condition exists the input/output status specifier is assigned
the identifier of an error message which corresponds to the error; if
no_error condition is detected it is assigned the value zero.

Program execution will terminate if an error condition is detected and
neither an input/output status specifier nor an error specifier (see
below) is defined.

ERR=x2 is an error specifier and defines a statement label to which
control is transferred if an error condition exists. If the error
specifier is omitted, and also the input/output status specifier (see
above), then program execution will terminate when an error condition
is detected.

FILE=fn specifies the name of a file to be connected to the defined
unit. fn is a character expression whose value must represent a valid
filename once any trailing spaces have been removed. If the file
specifier is omitted then the value assumed by fn depends whether the
specified unit is connected. Should the unit be connected, then the
name of the file to which it is connected is assumed; otherwise the
default value used for the file specifier is dependent upon the value

9 - 28

Input and Output June 30, 1982

of the status specifier (see below).

STATUS=sta is a status specifier sta is a character expression whose
value may be one of the following:

OLD
NEW
SCRATCH
UNKNOWN

Any trailing spaces in the value are ignored. The status specifier
defines the existence of the file to be connected. If OLD is specified
the named file must exist. Conversely if NEW is specified the named
file must not exist but it will be created by the OPEN statement
provided no error occurs. The values OLD or NEW may only be used if a
file specifier is defined; while the value SCRATCH may only be used if
no file specifier is defined. SCRATCH causes the specified unit to be
connected to a temporary file which exists only until either that unit
is closed (see section 9.7.3) or the program terminates.

If the status specifier is omitted, the default value is UNKNOWN.
UNKNOWN assumes the status of the named file if a file specifier has
been defined (that is either NEW or OLD) or the status of the file to
which the unit is connected if no file specifier has been defined. If
there exists no connection and the file specifier is omitted then
UNKNOWN assumes the value SCRATCH.

Once the OPEN statement has successfully established a connection, the
status of the connected file becomes OLD unless the file is a temporary
file.

ACCESS=acc defines the manner in which the connection is to access the
file. acc is a character expression whose value may be either
SEQUENTIAL or DIRECT; any trailing spaces in the value will be ignored.
The value SEQUENTIAL specifies sequential input/output and the value
DIRECT specifies direct access input/output. Whe!l a new file is created
the specified access method becomes a property or-the file, that is the
file is created as a sequentiql or direct access file; while for an
existing file the specified access method must be among the properties
of the file. A value of SEQUENTIAL will be assumed if the access
specifier is omitted.

FORM=fm specifies whether the file is to be accessed with either
formatted or'Hflformatted input/output statements. fm is a character
expression whose value when trailing spaces have been removed is either
FORMATTED or UNFORMATTED. If FORMATTED is specified the connected file
may contain no unformatted r~ecords, and if UNFORMATfED is specified the
connected file may contain no formatted records. Note that the type of
the records is a file property. If the form specifier is omitted, a

9 - 29

Input and Output June 30, 1982

value of UNFORMATTED is assumed if the connection specified is for
direct access, while a value of FORMATTED is assumed if the connection
is for sequential access.

RECL=rl is a record length specifier. rl is an integer expression whose
value must be positive. It specifies in units of bytes the length of
each record in a file being connected for direct access. For an
existing file the specified length must not be· greater than the actual
record length of the file. For a new file, the OPEN statement creates
the file with a record length of rl. If the connection defined is for
sequential access, the record length specifier must be omitted;
otherwise it must be specified.

BLANK=blk may only be specified for a connection which is to be used
for formatted input/output, and defines the interpretation to be
applied to space characters within numeric input fields. blk is a
character expression whose value when any trailing spaces have been
removed is either ZERO or NULL. If ZERO is specified then all spaces in
numeric input fields read from the specified unit are treated as zeros
apart from leading spaces. If NULL is specified all spaces are ignored.
A field which consists entirely of spaces always has the value zero.
NULL is the assumed value if the blank specifier~l-s omitted.

Example 1

OPEN(UNIT=273,FILE='FILOOl ')

defines a connection between unit 273 and the file FILOOI. In the
absence of other specifiers the connection is specified for sequential
formatted input/output and any spaces which are read in numeric fields
ar~ to be ignored. As the status specifier has not been defined a value
of ~~O~~ is assumed and the file will be created if it does not
exist.

Example 2

OPEN(ACCESS='DlRECT',RECL=160,NREC=25,UNIT=lO,
FILE='DFX',STATUS='OLD')

connects the file DFX to unit 10 for direct access. The file is
specified as having 25 records each of which is unformatted and 160
bytes long. The file is also assumed to exist.

Example 3

OPEN(1,STATUS='UNKNOWN',BLANK='ZERO')

9 - 30

Input and Output June 30, 1982

either refers to an existing connection to unit 1 and changes the
interpretation of spaces within formatted numeric input fields to ZERO;
or if no connection exists a temporary file is created and connected to
unit 1 for formatted input/output.

Example 4

OPEN (22,.ACCESS= 'DIRECT' ,BLANK= "NULL")

is not a valid statement as the record length specifier is not defined.
In addition because the form specifier is omitted. the assumed access
form is unformatted input/output which is incompatible with the
specification of the blank specifier.

9.7.2.1 Changing the properties of a connection

When a unit becomes connected to a file, the same unit may appear in an
OPEN statement to either define a new connection or to change certain
properties of the current connection.

A new connection is defined when the filename specified in an OPEN
statement is not the same file as the file to which the specified unit
is already connected. The effect is as if an implicit CLOSE statement
(see section 9.7.3) without a status specifier is executed immediately
prior to the OPEN statement. .

When the file specifier is the same as the name of the connected file
then the current connection is specified. If the file is a file that is
preconnected and does not exist, the values specified by the OPEN
statement become a part of the connection and the file is also created.
Otherwise, should the connected file exist then only the BLANK=
specifier may have a value that is different from the one currently in
force. Note that if the file specifier is omitted then the assumed
filename is the name of the connected file unless STATUS=SCRATCH was
specified.

A file which is already connected to a unit may not be connected to
another unit unless its current connection is first terminated by a
CLOSE statement (see section 9.7.3).

9 - 31

Input and Output

Example 1

The sequence

OPEN(73,FILE='DATA3', .••
· OPEN(73,FILE='DATA4', .••

June 30, 1982

will first connect unit 73 to the file DATA3. At the second OPEN
statement, unit 73 becomes connected to the file DATA4 after first
terminating the original connection.

Example 2

The sequence

OPEN(2000,FILE='RESULTS')
· OPEN(2000,BLANK='ZERO')

will perform the connection of file RESULTS to unit 2000. The
connection will be defined for sequential formatted input/output wi~h
any spaces in numeric fields being ignored apart from such fields which
consist entirely of spaces. The effect of the second OPEN statement is
to change the interpretation of the spaces. No other property of the
connection is affected.

Ex~mple 3

The sequence

OPEN(10,FILE='OUTPUT', •••

· OPEN(44,FILE='OUTPUT', ••.

is not permitted as it attempts the simultaneous connection of the file
OUTPUT to two units.

9 - 32

Input and Output June 30, 1982

9.7.3 The CLOSE statement

The CLOSE statement terminates the connection of a unit, and hence
terminates the connection of the file to which it is connected. After a
CLOSE statement has been executed no input/output statement may refer
to the given unit unless the unit is connected again by an OPEN
statement.

The CLOSE statement may be used to op~ionally destroy the associated
file, that is, to cause it not to exist after the statement has been
executed. Note that once a file has been disconnected it will be free
to be connected again (provided that it still exists), either to the
same unit or to another unit.

The general form of the CLOSE statement is:

CLOSE(UNIT=u,IOSTAT=ios,ERR=x2,STATUS=sta)

where

UNIT=u is an integer expression that identifies the unit to be
disconnected. Its value must be zero or positive. The characters UNIT=
may be omitted but in this case the unit specifier must be the first
item in the list, otherwise the position of the specifier is not fixed.

Note: the remaining specifiers are optional, and if they are defined
they may appear anywhere in the list. The specifiers are described
below -together with any assumed value or action that may be taken if a
specifier is not defined:

IO$TAT=ios is an input/output status specifier that defines an integer
variable or integer array element which becomes assigned with a
positive or zero value. When an error condition exists the input/output
status specifier is assigned a positive value which corresponds to an
error message which describes the error. When no error exists it is set
to zero.

ERR=x2 defines a statement label to which control is transferred if an
error condition is detected. If both the error specifier and the
input/output status specifier are omitted then program execution will
terminate when an error occurs.

STATUS=sta is a status specifier. sta is a character expression whose
value may be either KEEP or DELEtE; any trailing spaces are ignored. If
DELETE is specified the connectedrfile will cease to exist; DELETE is
the only value that may be specified for a file which is a temporary
file, that is one whose status was SCRATCH before the CLOSE statement.
If KEEP is specified for a preconnected file which does not exist, the
file will still not exist after the CLOSE; otherwise if it is specified

9 - 33

Input and Output June 30, 1982

for an existing file ~hen the file will continue to exist.

If the status specifier is omitted the assumed value is KEEP, unless
the file status prior to the CLOSE statement was SCRATCH in which case
the assumed value is DELETE.

It is quite permissible in a CLOSE statement to specify a unit which is
not connected. It has no effect on the unit and it affects no file.

When program execution terminates, each unit that is still connected is
closed with STATUS=KEEP, unless the file to which it is connected is a
temporary file, that is one which was created with STATUS=SCRATCH, in
which case it is closed with STATUS=DELETE. Note that the effect is the
same as if the unit was specified in a CLOSE statement with no status
specifier defined.

9.7.4 The INQUIRE statement

The INQUIRE statement is used to interrogate the properties of a
particular file or the properties of the connection to a particular
unit. The given file or unit need not be connected.

There are two forms of the INQUIRE statement:

INQUIRE by unit
INQUIRE by file

An INQUIRE by unit statement interrogates a specified unit and the file
to which it is connected if any; while the INQUIRE by file statement
interrogates the properties of a specified file which mayor may not
exist.

9.7.4.1 INQUIRE by unit

The general form of ~n INQUIRE by unit statement is:

INQUIRE(UNIT=u,slist)

where

UNIT=u is the unit specifier which defines an integer expression. The
value of the integer expression must be either zero or positive and
specifies the unit number being inspec~d. The characters UNIT= may be
omitted in which case the unit specifier must occur in the position
indicated above; otherwise it may appear -anywhere within slist.

slist is a set of INQUIRE specifiers (see section 9.7.4.3) which may be

9-~

Input and Output June 30, 1982

an empty list. Each specifier which is not omitted inquires about a
particular property of the specified unit or file to which it is
connected.

9.7.4.2 INQUIRE by file

The general form of an INQUIRE by file statement is:

INQUIRE(FILE=fn,slist)

where

FILE=fn specifies the name of the file being interrogated and may
appear anywhere within slist. fn is a character expression whose value
represents a valid file name; any trailing spaces are ignored. The file
mayor may not either exist or be connected.

slist is a list of INQUIRE specifiers (see section 9.7.4.3) which may
be empty. Those specifiers which are defined inquire about a particular
property of the file.

9.7.4.3 The INQUIP£ specifiers

Any of the specifiers defined below may be used with either form of the
INQUIRE statement. Each specifier is optional, and may appear anywhere
within the list of INQUIRE specifiers. A description of the specifiers
follows:

IOSTAT=ios

where ios is an integer variable or array element which becomes defined
with a zero value if no error condition exists or with a positive value
if an err'or condition was detected. ios is known as an input/output
status specifier. If it becomes defined with a positive value then the
value identifies an error message which describes the error
encountered.

ERR=x2

where x2 is an error specifier that defines a statement label to which
control is transferred if an error condition exists. If no error
specifier nor input/output status specifier is defined then program
execution will terminate when an error occurs.

EXIST=ex

where ex is a logical variable or logical array element. For an INQUIRE

9 - 35

Input and Output June 30, 1982

by file statement it is assigned the value • TRUE. if the specified file
exists, otherwise it is assigned the value .FALSE. If the inquiry
relates to a unit, ex is always assigned the value .TRUE., that is, any
unit number that is zero or positive may be used for input/output. Note
that some implementations may provide a more restricted set of unit
numbers.

OPENED=op

where op is a logical variable or logical array element that is always
assigned a value when this specifier is defined. In an INQUIRE by file
statement it is assigned the value • TRUE. if the specified file is
connected to a unit and the value .FALSE. if it is not connected to any
unit. Similarly, in an .INQUIRE by unit statement it is assigned the
value • TRUE. if the specified unit is connected to a file, and the
value .FALSE. if it is not currently connected.

NUMBER=num

where num is an integer variable or integer array element which only
becomes defined wIth a value if the specified unit or file is currently
connected, in which case it is assigned the number of the connected
unit. If there is no connection num becomes undefined.

NAMED=nmd

where nmd is a logical variable or logical array element. For an
INQUIRE by unit statement nmd becomes undefined only if the unit is not
connected to a file, while for an INQUIRE by file statement it becomes
undefined only if the specified file does not exist. When nmd does
become defined, it is assigned the value .TR1~. if the file exists and
has a name; otherwise it is assigned the value .FALSE.

NAME=nm

where nm is a character variable or character array element which is
assigned the name of the file only if the NAMED= specifier may be
assigned the value .TRUE.; otherwise nm becomes undefined. Note that
the value assigned to nm may not necessarily be the same as that
defined by the FILE= specifier in an INQUIRE by~rle statement; however
it will always represent an acceptable value for the file specifier in
an OPEN statement. For example the file name may be qualified by a user
name.

ACCESS=acc

where acc is ,aLcharacter variable or character array element which only
becomes defined if a connection exists. ace is assigned the value
SEQUENTIAL if the connection is for sequential input/output, or it is

9 - 36

Input and Output June 30, 1982

assigned the value DIRECT if the connection is for direct access
input/output.

SEQUENTI~~=seq

where seq is a character variable or character array element. It is
assigned the value YES if sequential access is one of the permitted
forms of access method for the file. A value NO is assigned if the file
may not be accessed sequentially. If the access property of the file
cannot be determined, for example a new preconnected file, a value of
UNKNOWN is assigned.

DIRECT=dir

where dir is a character variable or character array element which is
assigned the value YES if direct access is one of the permitted forms
of access method for the file. If the file property precludes direct
access, for example the primary card input source, dir will be assigned
the value NO. A value of UNKNOWN is assigned if for some reason the
access property of the file cannot be determined.

FORM=fm

where fm is a character variable or character array element which
describes the form of the current connection. It is assigned the value
FORMATTED if the connection is for formatted input/output statements,
and the value U1{FORMATTED if the connection is for unformatted
input/output statements. fm becomes undefined if there is no
connection.

FORMATTED=fmt

where fmt is a character variable or character array element. It
describes whether formatted input/output statements may be used to
access the file. If the file consists of formatted records, fmt is
assigned the value YES, while if the file consists of unformatted
records it is assigned the value NO. In some circumstances it may not
be possible to determine the permitted form and fmt will be assigned
the value UNKNOWN.

UNFORMATTED=unf

where unf is a character variable or character array element that is
assigned the value YES if unformatted input/output statements may be
used to access the file. Otherwise it is assigned the value NO when
only formatted input/output statements may be used. In circumstances
when the permitted form cannot be determined unf becomes defined with
the value UNKNOWN.

9 - 37

Input and Output June 30, 1982

RECL=rl

where rl is an integer variable or integer array element which becomes
defined only if there is a connection and the connection is for direct
access, otherwise it becomes undefined. rl is assigned the value of the
record length of the file in units of characters (bytes).

NEX1REC=nr

where nr is an integer variable or integer array element. If the file
is connected and the connection is for direct access, nr is assigned
the record identifier of the record which follows the last record that
was written or read. Otherwise nr becomes undefined. Note that if no
record has been accessed since the file was connected a value of 1 is
assigned.

BLANK=blk

~here blk is a character variable or character array element and
applies only to a connection which is for formatted input/output. If
any spaces within a numeric input field are to be ignored then blk is
assigned the value NULL. If spaces other than leading spaces are
interpreted as zeros then blk is assigned the value ZERO. blk becomes
undefined if there is no connection or if the connection is for
unformatted input/output.

When using an INQUIRE by unit statement or an INQUIRE by file
statement, the following points should be noted:

1 Unless an error condition exists, the opened specifier
(OPENED=) and the exist specifier (EXIST=) always become
defined. If an error condition does exist then all the
INQUIRE specifier values become undefined.

2 No variable or array element may be defined more than once
in the list of INQUIRE specifiers

3 If the exist specifier and the opened specifier become
defined'with the value • TRUE. within an INQUIRE by unit
statement, then all the other specifiers become defined

4 Within an INQUIRE by file statement, if the opened specifier
is assigned the value .FALSE., that is if the file is not
connected, then the number, access, form, record length,
next record, and blank specifiers become undefined. Note
that if the file is connected the record length, next
record, and blank specifiers need not become defined

5 Within an INQUIRE by file statement, if the exist specifier

9 - 38

Input and Output June 30, 1982

is assigned the value .TRUE., then the named, name,
sequential, direct, formatted, and unformatted specifiers
become defined; otherwise they become undefined.

Example

Assume that the statement

OPEN(FILE='DATAFILE',ACCESS='DIRECT',RECL=80,UNIT=730)

has been successfully executed and has connected,an existing file
DATAFILE to unit 730. The properties of the connect.ion are defined as
direct access input/output with unformatted records whose length is 80
bytes. Also assume that no other connection or preconnection exists.

Then

INQUIRE(UNIT=9,EXIST=Ll,OPENED=L2,DIRECT=Cl)

will assign the value .FALSE. to L2 as unit 9 is not connected and
consequently Cl becomes undefined. Ll will be assigned the value .TRUE.
as the specified unit may be used for input/output.

INQUlRE(FILE='INPUTS',OPENED=LI,~ffiER=II)

will assign the value .FALSE. to Ll as the file INPUTS is not connected
to a unit and 11 will therefore become undefined. Note that the file's
existence has no effect on the values set.

_INQUIRE(BLANKS=Cl,NEXTREC=Il,ACCESS=C2,FORMATTED=C3,
FILE='DATAFILE',OPENED=LI,EXIST=L2)

interrogates the connection defined above and consequently Ll and L2
are assigned the value .TRUE., and C2 the value DIRECT. C3 is assigned
the value NO which causes Cl, the blank specifier, to become undefined
as the connection is for unformatted input/output. The value assigned
to 11 defines the current position within the file. If no records have
been accessed since the connection was defined 11 is assigned the value
1, otherwise it is assigned the record identifier of the record which
follows sequentially after the last record accessed.

9 - 39

Input and Output June 30, 1982

9 - 40

Language Extensions September 20, 1983

CHAPTER TEN

LANGUAGE EXTENSIONS AND IMPLEMENTATION CHARACTERISTICS

10.1 Language extensions

PERQ FORTPAN .77 adheres closely to the ANSI FORTRAN 77 standard as
defined in ANSI X3.9-1978. However, a few extensions to the language,
as described in the following subsections, are provided as a transition
aid from other FORTRAN dialects, and to allow PERC-specific features to
be exploited.

Such extensions are allowable within the ANSI77 standard since they do
not conflict with the standard definition, but they should not be used
in programs that are intended to be portable to other implementations
of FORTRAN 77. The use of an extension is flagged with a warning by the
compiler.

10.1.1 Lower case

Lower case may be used in a FORTRAN source program, but is treated as
equivalent to upper case everywhere except in character literals. (Note
that at run time, lower and upper case characters are not treated as
equivalent.)

10.1.2 Hollerith constants

HollerLth constants mgy be used for data initialization in DATA
statements and in the-argument list of a call statement. In data
statements, variables and array elements may be initialized by
Hollerith constants and each constant must have a length which is less
than or equal to the length of the item. If the constant is shorter
than the item, it is extended on the right with blanks.

When initialized with Hollerith constants, an integer, real, double
precision, complex, or logical array may be used as a format
specification.

An Aw edit descriptor may be used with Hollerith data when the
input/output list item is a type integer, real, complex, or logical.

An actual argument in a subroutine reference may be a Hollerith
constant. The corresponding dummy argument must be of type integer,
real, double precision, or logical. If the length of the constant is
one to four bytes then a four byte argument is passed (blank characters

10 - 1

Language Extensions September 20, 1983

being added to the right if necessary). If the length of the constant
is five to eight bytes then an eight byte constant is passed.

10.1.3 S\~bolic names

Symbolic names may include up to 32 alphanumeric characters all of
which are significant.

10.1.4 Calling Pascal

A PERQ FORTRAN 77 program can reference Pascal procedures and
functions. The names of the procedures and functions must be declared
in a special form of the EXTERNAL statement:

EXTERNAL/PASCAL/name1,name2, ••• ,namen

where name1,name2, .•. ,namen is the list of Pascal procedures and
functions to be referenced from FORTRAN. Once the procedures and
functions have been so declared, they may be referenced in FORT&4N as
if they were FORTRfu~ procedures and functions, but they may not be
passed as arguments (see Chapter 11 and sections 12.1 and 12.3.2.6).

10.1.5 Character length

The length of character variables, array elements, or constants may be
from 1 to 32767 characters.

10.1.6 Integer*2

Integer*2 may be used as a type specificaiton in IMPLICIT, FUNCTION
and type statements to define integer items which occupy two bytes
of storage.

Example:

INTEGER *2 12,I2ARRAY(10,10)

Integer*2 variables or array elements may not be used as:

1) A DO-variab1e in a DO statement or implied DO

2) An integer variable name in an ASSIGN statement

3) Any specifier in an input/output statement

10 - 2

Language Extensions

10.2 Implementation characteristics

10.2.1 . Storage of constants and variables

10.2.1.1 Integer

September 20, 1983

An integer constant or variable occupies four bytes. An integer value
is held in twos complement form, and may range from -2**(31) to
+2**<31-1), that is, from -2147483648 to +2147483647.

Some examples of valid integer constants are:

o
-2147483648
+0

10.2.1.2 Real

5678
-255
+5678

2147483647
-0
+2147483647

A real constant or variable occupies four bytes. A real value is held
as a normalized floating point number in accordance with the IEEE
floating point format (see An Implementation Guide to a Proposed
Standard for Floating Point, Computer, January 1980), and may range
from +2**(-126) to approximately +2**(+128), that is, approximately,
from +1. 1754945xl0**(-38) to +3.402823xl0**(+38).

Some examples of valid real constants are:

1.23
O.

1.23E2
123456.E5
1.23E+3
1.23E+03

-1.23E30
123456789E-34

-1.23
.0001234

+1.23E2
1.23E30
O.EO

-1.23EI0
123E-I0

Also see section 2.2.1.2.

10.2.1.3 Double precision

+1.23
667744.

-1.23E2
1.23E+33
1.23EO

+123EI0
OEO

A double precision constant or variable occupies eight bytes. A
double precision value is held as a normalized floating point
number in accordance with the IEEE floating point format and
may range from +2**(-1022) to +2**(1024), that is, approximately
from +2.22507385850720Oxl0~H:<-308) to +1. 797693134862315xlO**(308).

10 - 3

Language Extensions September 20, 1983

10.2.1.4 Complex

A complex number consists of a real part and an imaginary part. (The
word real, in the term real part, is not used in the sense of section
10.2.1.2.)

A complex constant, or variable, consists of either a pair of real (in
the sense of section 10.2.1.2) constants, or variables, or a pair of
integer constants, or variables; the first of the pair is the real part
and the second is the imaginary part.

Some examples of valid complex constants are:

(3.75,-2.100)
(0. ,0.)
(-2.75E+2,7.1E-2)

10.2.1.5 Logical

A logical constant or variable occupies 4 bytes.

10.2.1.6 Character

Each character in the character constant or variable occupies one b)~e.

A character constant or variable may comprise from 1 to 32767
characters.

10.2.2 Input/output record lengths

The maximum length of formated and unformatted records is (32K-5)
bytes.

When RECL is specified in an OPEN or INQUIRE statement, the record
length must be specified in bytes.

10 - 4

Language Extensions

10.2.3 Code and data limitations

Item

Character arrays

Non-character arrays

Character COMMON blocks

Non-character common blocks

Code per compilation unit

Code per program unit

Maximum number of C01rMON blocks

September 20, 1983

Limit

128 Kbyte

See note

128 Kbyte

See note

64 Kbyte

32 Kbyte

256

Note: The maximum size of non-character arrays and non-character
COM1fON blocks is determined by system limitations, usually the
space available for on disk swap files. If CO~~10N blocks or
arrays greater than a segment (128 Kbytes) are used, double
precision items must be aligned so that they do not cross a seg
ment boundary.

10.2.4 Run time file access

10.2.4.1 File connections

The default unit input file is pre-connected to the keyboard and the
default unit output file is pre-connected to the display before the
FORTRAN code,~ entered.

All other file connections are established after the FORTRAN code is
entered:

1 By the OPEN statement (see section 9.7.2)

2 By a run time routine if no OPEN statement is executed
before the unit is accessed. You are prompted for the
file name and properties on the display

When specifying the filename it is recommended that you give the full
name including any extension.

Note that the filename in the OPEN statement may be a string variable
and thus the actual file may be chosen dynamically if required.

10 - 5

Language Extensions September 20, 1983

10.2.4.2 File types

Files used only for formatted sequential access may be compatible
with Pascal and FORTRAN source files, and hence with PERQ Operating
System utilties such as the editor. In this case no special file
extension is necessary.

If a formatted sequential file is to be printed (that is, the
first character in each record is to be interpreted as a FORTRAN
format control character), it must have the extension .PRI (see
section Bl.l).

Files used for direct access or unformatted sequential access are
held in a format only accessible through a FORTRAN program. These
files are allocated a special file type in the PERQ Operating
System with extension .DTA, and the first block of each such file
is used to hold FORTRAN related administration information.

Note that .DTArfiles may also be used for formatted sequential
access in order that a single file may be accessed in different
modes at different times.

10.2.4.3 Console input/output

The console may be used directly for formatted input or output by
giving a filename of CONSOLE: in the OPEN statement or in response
to the prompt for a name. When CONSOLE: is used for output, the
first character of the line is treated as a format control character.
If_this character is new page, the user is prompted before the screen
is cleared.

10.2.5 Opening files

When a file is opened the FORTRAN system positions at the first record.

10.2.6 Length of program unit names

Program unit names (that is, the names of main programs, subroutines,
and ructions) should be restricted to 8 characters.

10.2.7 Block data

A block data subprogram, if required, must be included in or before
the first compilation unit entered at run-time which contains a

10 - 6

Language Extensions September 20, 1983

reference to any common blocks declared in the block data.

A block data subprogram must be compiled in a uni~ containing at
least one executable program unit.

10.2.8 STOP and PAUSE

Execution of a FORTRAN STOP or PAUSE statement causes a message to
be output to .the screen and the program to halt. Following a PAUSE
statement the user may resume the program by typing CONTROL Q.

10 - 7

Language Extensions September 20, 1983

10 - 8

Mixed Language Programming

11.1 Introduction

CIL.\PTER ELEVEN

MIXED LANGUAGE PR~I.ING

September 20, 1983

A PERQ FORTRAN 77 program can reference Pascal procedures and functions
provided that:

1 The names of the procedures and functions are declared
in a special form of the EXTERNAL statement (see section
10.1.4)

2 The names of the files containing the compiled Pascal
procedures and functions are supplied by use of the
/EXTERNAL switch and its associated file (see sections
12.1 and 12.3.2.6)

It is not possible to access directly any data exported by a Pascal
module. If such access is essential, a Pascal interface routine must be
written.

11.2 Referencing Pascal from FORTRAN 77

To reference a Pascal function or procedure from a FORTRAN program
unit, it is necessary to ensure that the arguments and, in the case of
functions, function results correspond to suitable items in the
program. In FORTRAN terms the correspondence must be in terms of type
and actual length.

Valid correspondences for arguments are given first in section 11.2.1
while correspondences for function results follow in section 11.2.2.
Invalid correspondence of arguments or results produces unpredictable
results.

Note that it is not possible to reference FORTRAN from Pascal.

11 - 1

Mixed Language Programming September 20, 1983

11.2.1 Valid argument correspondence

FORTRAN Pascal

ItITEGER Long integer

REAL Real

CHARACTER*n String of length n

INTEGER arrays Long integer arrays

REAL arrays Real arrays

INTEGER*2 Integer

INTEGER*2 arrays Integer arrays

Only one-dimensional arrays can be passed since FORTRAN and Pascal
store elements in different orders.

Function and subroutine names cannot be passed as arguments.

Arguments are passed by reference, thus if their values are changed
by the Pascal routine the FORTR4N argument is similarly changed.
This also implies that arguments in Pascal routines called from
FORTRAN must be declared as var.

I

11.2.2 Valid function result correspondence

FOR1RAN

INTEGER

REAL

INTEGER*2.

Pascal

Long integer

Real

Integer

11 - 2

Mixed Language Programming September 20, 1983

11.3 Pascal input and output

The default Pascal input and output channels may not be used in Pascal
routines called from FORTRAN since their use requires a Pascal main
program to be present.

11 - 3

Mixed Language Programming September 20, 1983

11 - 4

Running a PERQ FORTRAN 77 Program September 20, 1983

CHAPTER TVlEL VE

RUNNING A PERQ FORTRAN 77 PROGRAM

This chapter explains how a PERQ FORTRAN 77 source program is made into
a runnable program and describes the utilities required in this
process.

12.1 FORTRAN Programming

The FORTRAN compiler, given a source file, produces a segment (.SEG)
file. Segment files for programs can be linked to produce a run (.RUN)
file. The program is invoked by giving the name of the run file.

Since FORTRAN supports separate compilation, references may be made to
routines residing in other files. Where Pascal provides a mechanism
for specifying information about externally defined routines at compile
time, FORTP~ does not. A different method of resolving references must
be used in FORTRAN. There are two ways of doing this:

1. At compile time, the /EXTERNAL switch can be used.
Basically, a list of existing segment files is specified.
These segment files can be Pascal or FORTRAN generated.
They may contain unreferenced routines as well, but they
may not collectively define a routine more than once.
This method is the ONLY way to resolve references to Pascal
routines. Note that no distinction is made between exported
and private Pascal routines; all of these are available.
(See sections 10.1.4 and 11.1 for a further discussion of
Pascal routines.)

If existing segment files are used at compile time, all
references can be resolved in this manner and no further
action is necessary. The resultant segment file will be
complete and ready as input to the linker.

It is possible to arrange FORTRAN routines and references
in a way that prohibits some necessary segment files from
existing at compile time. If the FORTRAN compiler cannot
resolve all routine references at compile time, it will
produce a pre-segment (.PSG) file instead of a segment file.
In this case, the second method (described below) must be
used in place of or in addition to the IEX1ERI~AL switch.

2. After compile time, the Consolidate utility can be used.
Basically, a list of segment and pre-segment files is
specified. These files contain externally referenced

12 - 1

Running a PERQ FORTRAN 77 Program September 20, 1983

routines not specified with the /EXTERNAL switch at compile
time. The collection of routines defined in the files must
satisfy remaining .references in all pre-segment files
specified. They may contain unreferenced routines as well,
but they may not collectively define a routine more than
once. All files must be FORTRAN generated. References to
Pascal routines must be resolved with the /EXTERNAL switch
at compile time. Consolidate produces one complete segment
file for each pre-segment file. The segment files are ready
for input to the linker.

A combination of the above methods may be used--none, one, or both
may be necessary.

Note that when a FORTRAN unit is recompiled it must be recon
solidated with the .PSG (not .SEG) files for all units that
reference the recompiled unit; otherwise errors may occur •• PSG
files exist unless they have been deleted either explicitly or by
use of the INOSAVE switch during a previous consolidation.

Figure 12.1 illustrates the process for the program Calc.FOR, assuming
that it does not explicitly or implicitly reference any Pascal module
or any other independently compiled FOR·nRAN section. This means that
the compiler can resolve all the references and can therefore produce a
segment file directly.

Figure 12.2 illustrates the conversion of Plot.FOR, assuming that it
references the Pascal module OtherP, which must already have been
compiled. OtherP could also be a FORTRAN generated segment file.

Figure 12.3 illustrates the conversion of Stress.FOR, assuming that it
references the independently compiled FORTRAN unit OtherF. When
OtherF.FOR is itself compiled it will yield OtherF.SEG (or OtherF.PSG
if it too contains unresolved references). When consolidating
Stress.PSG, OtherF.FOR must have been compiled.

12.2 Utilities

The utilities used to prepare and run a PERQ FORTRAN 77 program are:

1 EDITOR This is used initially to input, and later to amend,
the source program. The EDITOR is described in the PERQ
Editor User's Guide.

2 FORTRAN This is the compiler. It takes a FORTRAN source
program (.FOR file) and produces a pre-segment or segment
file.

3 CONSOLIDATE This takes one or more pre-segment and segment

12 - 2

Running a PERQ FORTRAN 77 Program September 20, 1983

files and produces one or more .SEG files.

4 LINK This takes the necessary segment file (.SEG files)
and produces the run file (.RUN file) which, together with
the segment files, enables the program to be loaded.

5 RL~IP£RUN Once a program has been successfully linked, it
can be run in several ways, including by use of the RUN or
RERUN ut.i 1 ities (see section 12.5)

12 - 3

Running a PERQ FORTRL~ 77 Program September 20, 1983

Calc.FOR

FORTRAN

Calc.SEG

LINK

Calc.RUN

Figure 12.1 A Self-Contained FORTRAN Program

12 - 4

Running a PERQ FORTRAN 77 Program

Plot.FOR

FORTRAN

Plot.SEG

LINK

Plot. RUN

Other
P.SEG

..

(required at both stages)

September 20, 1983

Other
P.PAS

PASCAL

Figure 12.2 A FORTRAN Program Which References a Pascal Module

12 - 5

Running a PERQ FORTRAN 77 Program September 20, 1983

Stress.FOR

FORTRAN

Stress. PSG

CONSO LI DATE

either

or

Other
F.PSG

..... _--.....--.,..... Other F .SEG is created if

LINK

Stress.RUN

L..- _______ --,

input was Other F.PSG

Other
F.SEG

Figure 12.3 A FORTRAN Program Which Referen01

An Independently Compiled FORTRAN Unit

12 - 6

Running a PERQ FORTRAN 77 Program September 20, 1983

12.3 Compilation

The utility FORTRAN compiles a FORTRAN 77 source program (.FOR file)
into either a pre-segment file (.PSG file) from which it can be
consolidated, or into a segment file (.SEG file).

12.3.1 Using the compiler

The compiler is run by issuing the command line:

FORTRAN[<Ir~ile>][<OutFile>]{<switch>}

where

<InFile> is the source file to be compiled. If InFile is absent, the
current filename is used. If the file does not exist, .FOR is appended
to the filename and the search is repeated.

<OutFile> is the name of the file to contain the object code. The
extension .PSG or .SEG is appended as required. If <OutFile> is absent,
the compiler uses the source filename. If at the start of the
compilation the file already exists, it is deleted (whether it is a
.PSG or a .SEG file). If any errors are reported during the compilation
(as distinct from comments or warnings) no pre-segment or segment file
is produced.

Any number of switches may follow, as defined in section 12.3.2.

Example 1

EDIT Stress.FOR
FORTRAN

This compiles Stress.FOR into Stress.PSG

Example 2

FORTRAN Calc.FORILISI/CROSSREFERENCE/SHOWCODE

This compiles Calc.FOR into Calc.SEG and produces a listing,
with cross references and object code, in the file Calc.LSI.

Example 3

FORTRANIHELP

This presents general information on the use of the compiler,
and takes no other actions.

12 - 7

Running a PERQ FORTRAN 77 Program September 20, 1983

12.3~2 Compiler switches

12.3.2.1 Listings (ILIST, ICROSSREFERENCE, ISHOWCODE)

By default, the compiler does not produce a listing. This saves
compilation time, and furthermore, a simple listing is very similar to
the source program, which can easily be examined instead by using
EDITOR or the TYPEFILE utility. One advantage of a listing is that the
source program lines are numbered. A listing is obtained with the
switch:

ILIST[=<filename>]

If <filename> is present, the listing is sent to-a-file with name
<filename>.LST. If =<filename> is absent, the listing is sent to a
file of the same name as the source program, but with .LST as the
extension.

If a !LIST switch is present, two other listing options can be switched
on:

1 Addition of the ICROSSREFERENCE switch causes the generation
of a cross-reference and attribute listing, which records the
names of all identifiers in the program, their properties, and
the line numbers at which they are referenced

2 Addition of the ISHOWCODE switch causes the generation of an
object code listing.

3 Addition of the I1~P swtich causes the generation of a
listing giving information about the object program
structure.

If/CROSS REFERENCE t ISHOWCODE or /MAP is used without ILl ST ,
a warning is given and the listing is directed to the default
list file.

12.3.2.2 Diagnostic options (INORANGE, INOCHECK)

By default, the compiler will generate code to check that, at run time,
each array subscript and character substring position is within range.
The generation of such checks may be inhibited by use of the INORANGE
switch.

By default, the compiler will generate code to check that variables are

12 - 8

Running a PERQ FORTRAN 77 Program September 20, 1983

not accessed before being assigned a value. The--"~Deration of such a
check may be inhibited by use of the INOCHECK switch.

12.3.2.3 Program scan (/SYNTAXCHECK)

By default, the compiler produces a pre-segment or segment file (.PSG
or .SEG file). The use of the switch ISYNTAXCHECK suppresses the
production of~he file, but the source program is still checked for
syntactic and semantic validity. This saves compilation time when
er"rors are expected, for example, initial compi lations of large
programs.

12.3.2.4 Quiet (/OUIET)

By default, the compiler displays the name of each section as the
compilation proceeds. These displays may be inhibited by use of the
IQUIET switch.

12.3.2.5 Help (/HELP)

Inclusion of the /HELP switch causes any other information on the
command line to be ignored; instead general information on the use of
the compiler is presented.

12.3.2.6 Using Pascal or FORTRAN externally defined
rout i ne s (/EXTERNAL)

Thfs switch specifies a file which contains a list of filenames (one
per line) of segment files required by the compilation (see section
12.1). The switch must be supplied if the FORTRAN program references
any Pascal modules. The format of the switch is:

IEXTERNAL=[<filename>]

For example, if Plot.FOR references an item in the module OtherP, the
switch IEXTERNAL=Plot.EXT or the switch !EXTERNAL could be supplied,
where Plot.EXT contains the line:

OtherP.SEG

or just:

OtherP

since the compiler automatically appends .SEG if it is missing. All the

12 - 9

Running a PERQ FORTRAN 77 Program September 20, 1983

.SEG files mentioned in the list must exist.

12.3.2.7 Initialization of data to zero (IZERO)

This switch causes the initialization of all data to zero prior
to execution of the program. It may only be used when checks
are not required and hence the INOCHECK switch is also used
(see section 12.3.2.2). Its use is not generally recommended,
as programs relying on data initialization are not portable
under the ANSI77 standard.

12.3.2.8 File inclusion

The compiler may be directed to include the contents of secondary
source files in the compilation. The effect of using the file
inclusion mechanism is identical to having the text of the
secondary file or files present in the file being compiled.

The directive to include a file is a special form of FORTRAN
comment line:

*$INCLUDE filename

where *$INCLUDE must start in column 1 and must not contain any
spaces.

If the specified filename does not exist, .FOR will be appended
and the search repeated.

12.3.2.9 Argument mismatch (/MISMATCH)

In sta~dard FORTRAN77 the type of dummy and actual arguments
must match. This is 'checked:

1) at compile time, if the reference is in the same
compilation unit as the reference;

2) during consolidation, if the referenced procedure
is not in the same compilation unit as the reference.

These checks may be inhibited in PERQ FORTRAN 77 for 4 byte data
items of type integer, real and logical by use of the IMI~\TCH
switch. Use of !MISMATCH causes the type to be taken from the
dummy argument. A !MISMATCH switch is provided for both the
compiler and consolidator.

12 - 10

Running a PERQ FORTRAN 77 Program September 20, 1983

12.3.2.10 Error file (IERRORFILE)

By default when the compiler detects an error, a message
and, if appropriate, the line in error are displayed on the
screen. However, if the IERRORFILE switch is specified the
information is instead wr'itten to a file. The format of
the switch is:

IERRORFILE [=<filename>]

where <filename> is the name of the file to be written. The
extension .ERR is appended to the name if not already present.
If <filename> is omitted, the listing is sent to a file of the
same name as the source program with -the extension of .ERR.

If the error file already exists, it is overwritten by the new
file.

12.3.3~ Compile time diagnostics

The following categories of message are produced compile time:

1 C01llaENTS For example, constant has too great a precision and
has been truncated

2 WARNINGS For example, use of a non-standard feature

3 ERRORS For example, syntax error

The messages are output to the listing file, if used (see section
12.3.2.1), following the line which causes the error at the end of that
file if the error is detected after the first pass of the source.

Error messages only are also output to the display, preceded by the
relevant source line, if appropriate.

At the end of the compilation, a summary of the number of errors,
warnings, and comments is output to the display and to the listing
file, if used.

12 - 11

Running a PERQ FORTRAN 77 Program September 20, 1983

12.4 Consolidation

The utility CONSOLIDATE converts one or more pre-segment files (.PSG
files) into one or more segment files (.SEG files).

12.4.1 Using the consolidator

The consolidator is run by issuing the command line:

where

CONSOLIDATE <InFilel>,<InFile2>{,<InFile>}
[ILIBRARY=<filename>][n~OSAVE][ndISMATCH]

<InFilel> is the name of a pre-segment file for consolidation, or of a
segment file containing information required to resolve references in
the pre-segment files. You are recommended to supply filenames without
extensions, in which case the consolidator initially appends .PSG to
each filename, and changes this to .SEG if it cannot find such a file.

The library switch must specify a filename (a file which contains
a list of additional files, one per line, to be used as input to
the consolidation). The format of the names is as defined for
<Infile> and the effect is equivalent to all the libral~ files
being specified as input files to CONSOLIDATE. A library file must
have the extension .LIB although this may be omitted when specifying
<filename>.

A successful run of CONSOLIDATE converts all .PSG files to .SEG files.
By_default the .PSG files will remain after consolidation; they may be
deleted by the use of the INOSAVE switch. As the .PSG files may be
required if it is necessary to reconsolidate, the use of the INOSAVE
switch is not normally reco~~ended.

The IMI~~TCH switch inhibits argument checks during consolidation
(see section 12.3.2.9).

Examples

Consider again the example illustrated in Figure 12.3. The command to
the consolidator should be:

CONSOLIDATE Stress,OtherF

If OtherF could only be compiled into a .PSG file (because it
references sections in Stress), the consolidator would read Stress.PSG
and OtherF.PSG and output Stress.SEG and OtherF.SEG.

12 - 12

Running a PERC FORTRAN 77 Program September 20, 1983

If OtherF could be compiled directly into a .SEG file, the consolidator
would read Stress.PSG and OtherF.SEG, and output Stress.SEG.

12.4.2 Partial consolidation

It is not essential to consolidate all parts of a program at the same
time. For example, if you are writing a program which will comprise
A.SEG, B.SEG,. and C.SEG, in which A references B, which references C,
and C has no external references, you can either:

CONSOLIDATE A,B,C

or

CONSOLIDA~ B,C /NOSAVE

which converts B.PSG into B.SEG while reading C.SEG, then deletes
B.PSG, and later:

CONSOLIDATE A,B

which converts A.PSG into A.SEG, while reading B.SEG.

Partial consolidation can be useful in the development of large
programs when a set of routines form a self-contained unit.
However, it is recommended that the .PSG files are only deleted
(as in the example) when the unit is well tested, as they may be
required if it is necessary to repeat the partial consolidation.

12.5 Linking

Running a single program often requires pieces of several segment files
(.SEG files). It is the job of the LINK utility to produce a run file
(.RUN) containing information about the segment files.

To produce the run file, LI~~ must read the segment file for a main
program. Usually, the LINK utility can be issued without an input file
parameter, in which case it reads the segment file with the current
filename, by default. Wherever LINK finds an external reference, it
searches for the segment file referred to.

For example, if, as illustrated in Figure 12.3,··sou have just compiled
and consol i dated Stress • FOR (so that Stress is tne--" current fi lename),
the command:

LINK

12 - 13

Running a PERO FORTRAN 77 Program September 20, 1983

or

LINK Stress

reads Stress.SEG, OtherF.SEG, and any other .SEG files which they
reference, and generates Stress.RUN, containing the table. Note that
references are often implicit, for example, FORTRA~ input or output
statements automatically reference PERO Operating System procedures.

For a detailed description of LINK, see the PERQ Utility Programs
manual.

12.6 Running the program

A program can be run in one of three ways:

1 Issue its name as a command, for example:

Myprog

2 Issue the RUN command, with the program#s name as the
first parameter, for example:

RUN Myprog

The sole advantage of using RUN is that, by default, it
uses the current filename as the name of the program to be
run. Thus if you are repeatedly editing, compiling,
consolidating and running one program during its testing
phase, you need only mention its name once if you use RUN

3 Issue the command RERUN, with new parameters, after a previous
run, either of type 1 or 2 above, for example

RERm~ paral,para2

Details of RUN and HERUN are given in the PERQ Utility Programs manual.

12.6.1 Run time diagnostics

The following categories of error can occur at run time:

1 HARDWARE DETECTED For example, floating point overflow

-2 MATIIEMATICAL LIBRARY

3 I NPUf /OTITPUT

12 - 14

Running a PERQ FORTRAN 77 Program September 20, 1983

4 SOFTWARE DETECTED (see section 12.3.2.2)

On detection of an error, an error message is output, execution is
halted and the FORTRAN 77 debugger is entered. This outputs a trace of
each currently active FORTRAN or PERQ Operating System procedure, and
the byte offset within the procedure.

You may then .select more detailed diagnostics by typing one of the
following and pressing RETURN:

1 ? This provides help on the debugger.

2 f This requests that the diagnostics are output to the
file instead of to the display. You are prompted for
the filename.

3 I This outputs local scalars for active FORTRAN
procedures.

4 c This outputs local and common scalars for all active
FORTRAN procedures.

5 a This outputs local and common scalars and arrays for
all active FORTRAN procedures. You are prompted for
the maximum number of array elements to be output.
You may respond either with a number, or by typing
a (or all) to output every element.

6 q This quits the diagnostics.

After selecting any of the options 1 to 5 you may make another
selection.

All the diagnostics are expressed in source language terms.

12.7 Setting up the software

PERQ FORTRAN 77 is supplied on one or more floppy disks, with details
of how to set up the software.

12 - 15

Running a PERQ FORTRAN 77 Program September 20, 1983

12 - 16

Intrinsic Functions

Instrinsic Definition
function

APPENDIX A

INTRINSIC FUNCTIONS

Generic Specific No. of Type of
Name Name Arguments Argument

June 30, 1982

Type of
Function

--

Type Conversion to
conversion integer

Conversion to
real

Convert to
double

Conversion to
complex

Conversion to
character

Convers i on to
integer

Truncation See Note 1

INT

REAL

DBLE

CMPLX

AINT

INT
IFIX
IDINT

REAL
FLOAT

SNGL

CHAR

I CHAR

AINT
DINT

A-I

1
1
1
1

1

1

1
1

1
1
1
1

1
1
1
1
1

1
1
1
1

or 2
or 2
or 2
or 2

Real
Real
Double
Complex

Integer
Integer
Real
Double
Complex

Integer
Real
Double
Complex

Integer
Real
Double
Complex

Integer

Character

Real
Double

Integer
Integer
Integer
Integer

Real
Real
Real
Real
Real

Double
Double
Double
Double

Complex
Complex
Complex
Complex

Character

Integer

Real
Double

Intrinsic Functions

Nearest
whole
number

Nearest
integer

See Note 2

See Note 2

Absolute x
value

Remainder See Note 3

Transfer See Note 4
of sign

Positive See Note 5
difference

Double
length
product

Largest
value

xl * x2

max(xl,x2, •••)

ANI NT

NINI

ABS

MOD

SIGN

DIM

MAX

ANINI I
DNINT 1

NINT I
IDNINT I

lABS
ABS
DABS
CABS

MOD
AMOD
DMOD

ISIGN
SIGN
DSIGN

IDIM
DIM
DDIM

DPROD

MAXO
AMAXI
DMAXI

AMAXO

MAXI

A - 2

1
1
I
I

2
2
2

2
2
2

2
2
2

2

>=2
>=2
>=2

>=2

>=1

Real
Double

Real
Double

Integer
Real
Double
Complex

Integer
Real
Double

Integer
Real
Double

Integer
Real
Double

Real

Integer
Real
Double

Integer

Real

June 30, 1982

Real
Double

Integer
Integer

Integer
Real
Double
Real

Integer
Real
Double

Integer
Real
Double

Integer
Real
Double

Double

Integer
Real
Double

Real

Integer

Intrinsic Functions

Smallest
value

Length

. Index
of a
substring

Imaginary
part of
complex
argument

min(xl,x2 •.•.)

Length of
character entity

Location of
substring a2 in
string a1

Conjugate (x - iy)
of a
complex
argument

Square
root

x

Exponential ex

MIN

SQRT

EXP

MINO
AMINI
DMINI

AMINO

MINI

LEN

INDEX

AI MAG

CONJG

SORT
DOORT
CSQRT

EXP
DEXP
CEXP

A - 3

>=2
>=2
>=2

>=2

>=2

1

2

1

1

1
1
I

1
1
1

June 30. '1982

Integer Integer
Real Real
Double Double

Integer Real

Real Integer

Character Integer

Character Integer

Complex

Complex

Real
Double
Complex

Real
Double
Complex

Real

Complex

Real
Double
Complex

Real
Double
Complex

Intrinsic Functions

Natural loge(x)
..Logarithm

Common logIO(x)
Logarithm

Cosine cos (x)

Sine sin(x)

Tangent tan(x)

Arccosine arcos(x)

Arcsine arcsin(x)

Arctangent arctan(x)

arctan(xl/x2)

Hyperbolic cosh(x)
cosine

Loo

LoolO

COS

SIN

TAN

ACOS

ASIN

ATAN

ATAN2

COSH

ALOO
DLOG
CLoo

ALOGIO
DLOGIO

cos
OCOS
CCOS

SIN
DSIN
CSIN

TAN
DTAN

ACOS
DACOS

ASIN
DASIN

ATAN
DATAN
ATAN2
DATAN2

COSH
DCOSH

A - 4

1
1
1

I
1

1
1
1

1
1
1

1
1

1
1

1
1

1
1
2
2

1
1

Real
Double
Complex

Real
Double

Real
Double
Complex

Real
Double
Complex

Real
Double

Real
Double

Real
Double

Real
Double
Real
Double

Real
Double

June 30, 1982

Real
Double
Complex

Real
Double

Real
Double
Complex

Real
Double
Complex

Real
Double

Real
Double

Real
Double

Real
Double
Real
Double

Real
Double

Intrinsic Functions

Hyperbol ic sfnh(x)
sine

Hyperbolic tanh(x)
tangent

Lexically See Note 6
greater
than or
equal

Lexically See Note 6
greater than

Lexically See Note 6
less than
or equal

Lexically See Note 6
less than

,SINH

TANH

SINH
DSINH

TANH
DTANH

LGE

LGT

LLE

LLT

A - 5

1
1

1
1

2

2

2

2

Real
Double

Real
Double

June 30, 1982

Real
Double

Real
Double

Character Logical

Character Logical

Character Logical

Character Logical

Intrinsic Functions June 30, 1982

Notes:

1 int(x)

2 int(x + 0.5) if x > 0

int(x - 0.5) if x < 0

3 , xl=i nt(xl/x2H~x.2

4 Ixll if x2 > 0

-lxl1 if x2 < 0

5 xl - x2 if xl > x2

o if xl < x2

6 The value . TRUE. is returned if the condition is satisfied according to
the ASCII collating sequence, otherwise the value .FALSE. is returned. If
the operands are of unequal length the shorter operand is considered as if
it were extended on the right with blanks to the length of the longer
operand.

A - 6

PERQ Opr System and FORTRAN 77 Releases September 20, 1983

APPENDIX B

PERQ OPERATING SYSTEM AND FORTRAN 77 RELEASES

All the facilities described in this publication are available
in the PERQ operating system versions G.3 and later, with version
02. 1 of PERQ .FORTRAN 77.

B1.1 Incompatible Changes Between Version 01 and Version 02.1
of PERQ FORTRAN 77

B1.1.1 File tvpes (see section 10.2.4.2)

In version 01 of PERQ FORTRAN 77, formatted sequential files not
explicitly given a .DTA extension were assumed to contain a
FORTRAN format control character as the first character in the
record. In version 02.1, this is only applicable to .PRI files.
Therefore any formatted sequential files created under version
01 must be renamed to include a .PRI extension if they are to
be read under version 02.1

B1.1.2 Pause (see section 10.2.8)

In Version 02.1, Pause causes the program to halt until the user
types CONTROL 0, unlike version 01 in which the program continued
after the message had been output to the screen.

B1.2 Existing FORTRAN programs

It is recommended that any existing FORTRAN programs be recompiled
under version 02.1 to take advantage of the performance improvements
offered by this release.

B-1

PERQ Cpr System and FORTRAN 77 Releases September 20, 1983

B-2

FORTRAN 77 Input/Output Errors September 20, 1983

APPENDIX C

FORTRAN 77 INPUT/OUTPtIT ERRORS

Error Error Statement
number text Explanation ~

118 File already An attempt was made to OPEN Open
connected a file on one unit while it

was still connected to another

119 ACCESS conflict When a file is to be connected Open
to a unit to which it is already
connected, then only the BLANK
specifier may be re-defined.
An attempt has been made to Positional
re-define the ACCESS specifier. Read
This message is also used if an Write
attempt is made to use a direct-
access I/O statement on a unit
which is connected for sequential
I/O or a sequential I/O statement
on a unit connected for direct-
access I/O.

120 RECL conflict When a file is to be connected Open
to a unit to which it is already
connected, then only the BLANK
specifier may be re-defined. An
attempt has been made to re-define
the RECL specifier.

"-
121 FORM conflict When a file is to be connected to Open

a unit to which it is already
connected, then only the BLANK
specifier may be re-defined. An
attempt has been made to re-define
the FORM specifier.

122 STATIJS confl ict When a file is to be connected to Open
a unit to which it is already
connected, then only the BLANK
speqi,fier may be re-defi ned. An
attempt has been made to re-define
the STATIJS specifier.

123 Invalid STATUS STATIJS=KEEP has been specified in Close

C - 1

FORTRAN 77 Input/Output Errors September 20, 1983

a CLOSE statement for a unit which
is connected to a scratch file.

124 FORM not Either a file with unformatted Open
suitable records has been opened for

formatted I/O or a file with
formatted records has been opened
for unformatted I/O.

125 Specifier not A specifier value defined by the Open
recognized user has not been recognized.

126 Specifiers Within an OPEN statement one of Open
inconsistent the following invalid combinations

of specifiers was defined by the
user:

1 FILENAME= was specified when
STA TIlS=SCRA TCH

2 REeL= was specified when
ACCESS=SEQUENTIAL.

3 BLANK= was specified when
FORM=UNFORMATIED.

127 Illegal The value of the RECL specifier Open
specifier was not a positive integer.
value

128 Invalid The name of the file in an Inquire Inquire
filename by file statement is not a valid

fi le'name.

129 No filename In an OPEN statement, the STATUS Open
specified specifier was not SCRATCH and no

filename was defined

130 Record length The RECL specifier was not defined Open
not specified although ACCESS=DlRECT was specified.

132 Value separator A complex or literal constant in List-
missing the input stream was not terminated Directed

by a delimiter (that is, by a space, Read
a comma or a record boundary).

133 No digits The current input field contained a Read with
specified real number in which either the format

exponent part or the fixed point List-Directed
part contained no significant digits. Read

C - 2

FORT&\N 77 Input/Output Errors September 20, 1983

134 Invalid
scaling

If d represents the decimal field Write with
of a format description and k format
represents the current scale factor,
then the ANSI Standard requires that
the relationship -d< k<d+2 is true
when an E or D format is used with
a WRITE statement. This requirement
has been violated.

135 Invalid logical A logical value in the input stream
value was syntactically incorrect.

136 Invalid
character
value

137 Value not
recognized

138 Invalid
repetition
value

139 Illegal
repetition
factor

140 Invalid
integer

141 '. Inval i d real

143 Invalid
complex
constant

148 Invalid
character

A literal constant with the value;
was found in the input stream; this
is prqhibited by the ANSI Standard.
This 'message is also used if a
character constant did not begin with
a quote.

An item in the input stream was not
recognized.

The value of a repetition factor
found in the input stram is not a
positive integer constant.

A repetition factor in the input
stream was immediately followed by
another repetition factor.

The current input field contained
a real number when an integer was
expected.

The current input field contained
a real number which was syntactically
incorrect.

The current input field contained
a complex number which was syn
tactically incorrect.

A character has been found in the
current input stream which cannot
syntactically be part of the entity

C - 3

List
Directed
Read

List
Directed
Read

List
Directed
Read

List
Directed
Read

List
Directed
Read

Read with
format

List-Directed
Read

Read with
format

List-Directed
Read

List
Directed
Read

Read with
format

FORTRAN 77 Input/Output Errors September 20, 1983

being assembled.

150 Literal not A literal constant in the input file List-
terminated was not terminated by a closing quote Directed

before the end of the file. Read

151 Channel not An I/O request was made on a unit Read
defined for which no definition has been Write

supplied. Positional

152 File does An attempt has been made to open Open
not exist a file which does not exist with

STA TIJS=OLD.

153 Input file All the data in the associated Read
ended internal or external file has been

read.

154 Wrong length The record length as defined by a Read
record FORMAT statement, or implied by an Write

unformatted P~AD or WRITE, exceeds
the defined maximum for the current
input or output file.

155 Incompatible A format description was found to be Read with
format incompatible with the corresponding format
descriptor item in the I/O list. Write with

format

156 Read after An attempt has been made to read Read
Write a record from a sequential file

after a WRITE statement.

157 Write after An attempt has been made to write Write
Endfile a record to a sequent i al f i 1 e

after an ENDFILE statement.

158 Record number The record number in a direct-access Direct-
out of range I/O statement is not a positive Access Read

value or is greater than 32767. Direct-
Access Write

159 No format No corresponding format code exists Read with
descriptor for in a FORMAT statement for an item format
data item in the I/O list of a READ or WRITE Write with

statement. format

C - 4

FORTRAN 77 Input/Output Errors September 20, 1983

160 Read after An attempt has been made to read a Read
Endfile record from a sequential file which

is positioned at ENDFILE.

164 Invalid The unit specified in an Auxiliary Auxi I iary
channel number I/O statement is a negative value.

168 File already An attempt has been made to OPEN Open
exists an existing file with STATUS=NEW.

169 Output file An attempt has been made to write Read
capacity to an internal or external file Write
exceeded beyond its maximum capacity.

171 Invalid An I/O request was not consistent Positional
operation with the file definition; for Read
on fi Ie example, attempting a BACKSPACE Write

on a unit that is connected to the
screen.

184 Format text An array or character variable Read with
too large which is longer than 2048 characters run-time

has been specified as a run-time format
format. Write with

run-time
format

188 RECL too The value of the REeL specifier in Open
large an OPEN statement is greater than

the record length of the direct
access file opened or is greater than
the maximum allowed record length.

190 Fi Ie not Either a file has been opened for Open
suitable direct-access but it does not contain

fixed length records; or an attempt
has been made to OPEN a file for
either unformatted or direct-access
I/O but the specified filename. suffix
is not .DTA.

191 Workspace Workspace for internal tables has Open
exhausted been exhausted.

192 Record too The record length of the file to be Open
large opened is greater than the maximum

permitted size.

C - 5

FORTRAN 77 Input/Output ErrQrs

193

194

195

197

198

199

Not connected
for
unformatted
I/O

Not connected
for
formatted
I/O

Backspace
not
allowed

System Open
Failure

Constant
not
repeatable

Field too
large

An attempt has been made to access
a formatted file with an unformatted
I/O statement.

An attempt has been made to access
an unformatted file with °a formatted
I/O statement.

An attempt was made to BACKSPACE a
file which contains records written
by a List-Directed output statement;
this is prohibited by the ANSI Stan
dard.

Either a failure occurred to physi
cally open a nominated file, or the
file to be opened was specified as
a DTA type file but the internal file
header was either found not to exist
or has been corrupted.

This message applies only when the
current un it is connected to the.
screen and when a repeated constant
has been specified on more than one
line. The message is given if the
value of the repetition factor is
greater than the number of elements
associated with the current lID
item. This is an implementation
restriction.

An item in the input stream was found
to be more than 1024 characters long
(this does not apply to literal
constants) .

Other errors reported by lID statements:

101 to 116

101

102

103

Errors in run-time formats

Missing left bracket

Missing right bracket

Negative sign incorrect

C - 6

September 20, 1983

Unformatted
Read

Unformatted
Write

Formatted
Read

Formatted
Write

Backspace

Open

List
Directed
Read

List
Directed
Read

FORTRAN 77 Input/Output Errors September 20, 1983

104

lOS

106

107

108

109

110

111

112

114

115

116

401

Invalid format

Decimal field too wide

Format width zero invalid

Repetition factor invalid

Null literal invalid

Integer field too large

No width field allowed

Literal in input format

MinimunLdigits too large

Non-repeatable edit disk

Comma required

Decimal point not allowed

Either unassigned variable in an output list
or unassigned specifier in an I/O statement

Notes:

1. The I/O statements OPEN, CLOSE, and INQUIRE are classified as
Auxiliary I/O statements.

The 1/0 statements REWIND, E~~FILE, and BACKSPACE are classified
as Positional I/O statements.

2. Any of the errors listed above will force a jump to the label
given by the ERR= specifier (if defined).

Any of the errors documented above will cause any defined IOSTAT
variable to become defined with the corresponding error number.

C - 7

FORTRAN 77 Input/Output Errors September 20, 1983

C - 8

Index

Accessing records

Actual arguments

INDEX

correspondence with dummy arguments

reference

Adjustable dummy arrays

Alignment of variables in store

Allocation of storage

Arguments

actual

correspondence between dummy and actual
functions and subroutines as

mismatch

valid correspondence between FORTRAN
and Pascal

Arithmetic

assignment statement

constant expressions

elements

expressions

IF statement

integer

operators

1-1

September 20, 1983

9.1.2

7.1
7.4.2
10.1.2

7.3

7.4.2.1

7.3.3.1

3.2.4.2

3.2

7.1
7~4.2

10.1.2

7.3
7.3.4

12.3.2.9
12.4.1

11.2.1

5.1

4.1.8

4.1.1

4.1

6.2.1

4.1.7

4.1.2

Index

values

Array

and format specification

declarator

dimensions

elements

in EQUIVALENCE statement

names

storage

ASSIGN statement

Assigned GO TO statement

Assignment of initial values

Assignment statements

arithmetic

character

logical

BACKSPACE statement

Blank

common blo,ck

lines

Block

common

data subprogram

1-2

September 20, 1983

2.1

2.2.4

8.2

2.2.4.1
3.2.1.2
3.2.2
2.2.4
10.2.3
2.2.4.1
7.3.3
3.2.4.1

2.2.4

3.1.3
3.2.1.2

6.1.3
10.1.6

6.1.3

3.3

Ch. 5

5.1

5.3

5.2

9.3.2

3.2.3.1

1.3.1.3

3.2.3
10.2.3

1.2

Index

IF

CALL statement

Calling Pascal

Character

array limits

constants

elements

fields

length

storage

strings

substring

values

CHARACTER statement

CLOSE statement

Code and data limitations

Colon editing

Comment lines

Common block

1-3

September 20, 1983

1.3.4.2
3.3.2
10.2.7

6.2.3
6.2.3.1

7.2.2.1
10.1.2

10.1.4

10.2.3

2.2.1.6
3.3.1.3
10.2.1.6

4.2.1

8.3.1.7

10.1.5

3.1.4
10.2.1.6

8.3.1.8

3.1.5

2.1
3.3.1.3
8.3.1.8

2.3.3.2

9.7.3

10.2.3

8.3.1.13

1.3.1.3

3.2.3
3.2.3.2

Index

blank

correspondence of items

equivalencing of items

items

names

CO~WtON statement

Compilers

Complex

arrays

constants

constants, storage of

values

variables

Computed GO TO statement

Console input/output

Consolidation

Constants

arithmetic

character

complex

1-4

September 20, 1983

10.2.3

3.2.3.1

3.2.3.4

3.2.4.3

7.4.1

3.2.3

3.2.3

Ch. 1
12.3

2.2.4

2.2.1.4
10.2.1.4

3.1 .1
10.2.1

2.1
8.3.1.4

2.2.3
10.2.1.4

6.1.2

10.2.4.3

12.2
12.4

2.2.1

2.2.1

2.2.1.6
3.3.1.3
10.2.1.6

2.2.1.4

Index

double precision

Hollerith

integer

logical

real

storage of

symbolic

use of

Continuation lines

CONTINUE statement

Control statements

Conversion code

Correspondence of common items

Data

character

storage of

DATA statement

Data values

initial

1 imitations

1-5

September 20, 1983

10.2.1.4

2.2.1.3
10.2.1.3

10.1.2

2.2.1.1
10.2.1.1

2.2.1.5
10.2.1.5

2.2.1.2
10.2.1.2

3.1.1
10.2.1

2.2.2

7.3.1

1.3.1.2

6.4

Ch. 6

8.3.1

3.2.3.4

Ch. 2

8.3.1.8

Ch. 3

3.3.1
10.1.2

2.1

3.3
10.1.2

10.2.3

Index

Declarator, array

Diagnostics

compile time

options

run time

DIMENSION statement

Dimensioning of arrays

Direct access

formatted READ and VmITE statements

unformatted READ and i~ITE statements

DO

statement

variable

DO loops

implied

nested

terminal statement

transfer of control in

variable

DO statements

Double precision numbers

1-6

September 20, 1983

2.2.4.1
3.2.1.2
3.2.2

12.3.3

12.3.2.2

12.6.1

3.2.2

2.2.4
2.3.3
3.2.2

9.1.2.2
9.4

9.4.1.1

9.4.1.2

10.1.6

10.1.6

6.3

3.3.1.2
9.2.1.2

6.3.3

6.3 .. 2

6.3.4

6.3.1

6.3.1

2.1
8.3.1.3
10.2.1.3

Index

DOUBLE PRECISION statement

Dummy arguments

Edit descriptors

Elements

arithmetic

array

character

logical

ELSE

ELSE IF

END statement

ENDFILE statement

END IF

ENTRY statement

referencing an

EQUIVALENCE statement

Equivalencing items

in common block

of different type of length

Error file

Executable statements

Existing FORTRA1~ programs

1-7

September 20, 1983

2.3.3.1

7.1
7.4.2

8.3
10.1.2

4.1.1

10.1.5
10.1.6

4.2.1

4.3.1

6.2.3.2

6.2.3.3

1.3.2.1

9.3.2

6.2.3.4

7.5.1

7.5.2

3.2.4

3.2.4.3

3.2.4.2
10.1.5

12.3.2.10

1.3.4.1

App. B

Index

Explicit type specification statement

Expressions

arithmetic

arithmetic constant

character

integer constant

logical

relational

use of

External

functions

statement

subroutines

.FALSE. value

Field separators

File connections

File inclusions

File positioning statements

File types

I - 8

September 20, 1983

2.3.3

Ch.4

4.1

4.1.8

4.2

4.1.9

4.3
4.3.5

4.3.2
4.3.5

7.3.1

7.1.2.2
7.2.1.3

7.3.4
10.1.4
11. 1

7.1.3.1

2.2.1.5
4.3.1

8.1.1

10.2.4.1

12.3.2.8

9.3.2

10.2.4.2
App. B

Index

Format codes

A conversion code

B format code

D conversion code

E conversion code

F conversion code

G conversion code

H format code

I conversion code

L conversion code

S format code

T format code

X format code

Format specifications

FOR1fAT statement

Formatted

direct access input and output

records

sequential access input and output

1-9

September 20, 1983

8.3.1

8.3.1.7

8.3.1.12

8.3.1.3

8.3.1.3

8.2.1.2

8.3.1.4

8.3.1.8

8.3.1.1

8.3.1.6

8.3.1.11

8.3.1.10

8.3.1.9

Ch. 8
10.1.2

8.2.1

9.4.1.1
10.2.4.3

Ch. 8
9.1.1.2
10.2.2

9.3.1.1
10.2.4.2
App. B

Index

FORTRAN

basic elements

program conversion

program units

routines

Function

declaration statement

reference

result correspondence between FORTRAN
and Pascal statement

Functions

external

generic

intrinsic

specific

statement

transfer of control between

used as arguments

Generic function names

GO TO statements

Group repeat count

Help

Hollerith constants

I - 10

September 20, 1983

Ch. 1

Ch. 1

12.1

1.2

12.3.2.6

7.1.2.2

7.2.1.1

10.1.6
11.2.2

7.1 .1
7.1.2

7.1.2.2
7.2.1.3

7.1.2.1
App. A

7.1.2.1

7.1.2.1
App. A

7.1.2.3

7.2.1

7.3.4

7.1.2.1
App. A

6.1

8.1.2

12.3.2.5

10.1.2

Index

IF level

IF statements

Implementation characteristics

IMPLICIT statement

Implied DO loop,

September 20, 1983

6.2.3

6.2

10.2

2.3.2
10.1.6

3.3.1.2
9.2.1.2
10.1.6

Incompatible changes between Versions 01 and 02 App. B

6.3.1 Incrementation parameter

Initial

lines

parameter

values

Initialization of data to zero

Input data

list directed

Input/output

console

errors

list

list directed

Pascal

record lengths

stat.ements

INQUIRE statement

I-II

1.3.1.1

6.3.1

3.3

12.3.2.7

9.5.2

Ch. 9

10.2.4.3

App. C

9.2.1

9.5

11.3

10.2.2

9.2

9.7.4

Index

Integer

arithmetic

arrays

constants

constants, storage of

values

variables

Internal files

Intrinsic functions

IN1RINSIC statement

Labels, statement

Language extensions

Length o~data in store

Length of input/output records

Length of program unit names

Line printer

Lines, types of

Linking

List directed input

data

I - 12

September 20, 1983

10.1.6

4.1.7

2.2.4

2.2.1.1
10.2.1.1

3.1 .1
10.2.1

2.1
8.3.1.1
8.3.1.4

2.2.3
10.2.1.1

9.6

7.1.2.1

7.3.5 .

1.3.3

10.1

3.1

10.2.2

10.2.6

8.3.1.8
9.1.1.2

1.3.1

12.2
12.5

9.5

9.5.2

Index

'statement

List directed output

data

statements

Listings, compiler

Logical

arrays

assignment statements

constants

constants, storage of

elements

expressions

IF statement

values

variables

Lower case

Mismatch, argument

Mixed language programming

Multiple

entry to a subprogram

references in a program unit

I - 13

September 20, 1983

9.5.1

9.5

9.5.4

9.5.3

12.3.2.1

2.2.4

5.2

2.2.1.5
10.2.1.5

3.1.1
10.2.1

4.3.1

4.3

6.2.2

2.1
8.3.1.5
8.3.1.6

2.2.3
10.2.1.5

10.1.1

12.3.2.9
12.4.1

Chap. 11

7.5

3.2.3.3

Index

Names

Nested 00 loops

Non-executable statements

Null data items

Omission of characters

OPEN statement

Opening files

Operators

arithmetic

character

logical

relational

Order of evaluation

arithmetic expressions

logical expressions

Order of statements and lines

Ouput data

list directed

Output statements

list directed

PARAMETER statement

Parentheses

I - 14

September 20, 1983

1.4
10.1.1
10.1.3

6.3.3

1.3.4.2

9.5.2

8.3.1.9

9.7.2
10.2.4.1
10.2.4.3

10.2.5

4.1.2

4.2.2

4.3.3

4.3.2

4.1.4

4.3.5

1.3.5

9.5.4

9.2

9.5.3

2.3.4

Index

arithmetic expressions

character expressions

logical expressions

Partial consolidation

Pascal

PAUSE statement

Predefined specification

Print control character

PRINT statement

list directed

Procedures

Program conversion

Program scan

PROGRAM statement

Program units

multiple references in

structure

transfer of control between

transfer of values between

Punched cards

Quiet

I - 15

September 20, 1983

4.1.2

4.2.2

4.3.3

12.4.2

10.1.4
Chap. 11
12. 1
12.3.2.6

6.6
10.2.8
App. B

2.3.1

8.3.1.8
9.1.1.2

9.3.1.1

9.5.3.2

7.1

12.1

12.3.2.3

7.2

1.2
Ch. 7

3.2.3.3

1.3

7.2

7.4

9.1.1.2

12.3.2.4

Index

READ statement

formatted direct access

formatted sequential access

1 i s.t directed

unformatted direct access

unformatted sequential access

Real

arrays

constants

constants, storage of

values

variables

REeL

Record number

Referencing Pascal

Relational expressions

Repeat count

Rescanning

RETURN statement

functions

I - 16

September 20, 1983

9~2
9.3.1
9.4.1

9.4.1.1

9.3.1.1

9.5.1

9.4.1.2

9.3.1.2

2.2.4

2.2.1.2
10.2.1.2

3.1.1
10.2.1

2.1
8.3.1.2
8.3.1.3
8.3.1.4

2.2.3
10.2.1.2

10.2.2

9.4.1

11.2

4.3.2
4.3.5

8.1.2

8.2.3

7.2.1.2

Index

subroutines

REWIND statement

Rounding errors

Run time

diagnostics

file access

Running the program

SAVE statement

Scale factor

Sequential access

formatted FEAD and WRITE statements

unformatted READ and WRITE statements

Slash editing

Specific function name

Specification, predefined

Standard functions

Statement

functions

labels

Statements

arithmetic IF

ASSIGN

assigned GO TO

I - 17

September 20, 1983

7.2.2.2

9.3.2

4.1.4

12.6.1

10.2.4

12.6

7.6

8.3.1.5

9.3.1.1

9.3.1.2

8.1.1.1 .

7.1.2.1
App. A

2.3.1

7.1.2.1
App. A

7.1.2.3

1.3.3

6.2.1

6.1.3
10.1.6

6.1.3

Index September 20, 1983

Statements (cont.)

assignment Ch. 5

BACKSPACE 9.3.2

BLOCK DATA 3.3.2

blqck IF 6.2.3.1

CALL 7.2.2.1
10.1.2

categories of 1.3.4

CHARACITR 2.3.3.2

CLOSE 9.7.3

COMMON 3.2.3

COMPLEX 2.3.3.1

computed GO TO 6.1.2

CONTINUE 6.4

control Ch. 6

DATA 3.3.1
10.1.2

DIMENSION 3.2.2

DO 6.3.1
10.1.6

DOUBLE PRECISION 2.3.2
2.3.3.1

ELSE 6.2.3.2

ELSE IF 6.2.3.3

I - 18

Index

Statements (cont.)

END

END IF

ENDFILE

ENTRY

EQUIVALENCE

executable

explicit type specification

EXTERNAL

file positioning

FORMAT

FUNCTION

function declaration

IF

IMPLICIT

implied DO

input/output

INQUIRE

IN1EGER

INTRINSIC

I - 19

September 20, 1983

1.3.2.1

6.2.3.4

9.3.2

7.5.1

3.2.4

1.3.4.1

2.3.3

7.3.4
10.1.4

9.3.2

8.2.1

7.1.2.2
10.1.6

7.1.2.2

6.2

2.3.2
10.1.6

3.3.1.2
9.2.1.2
10.1.6
10.2.2

9.2

9.7.4
10.2.2

2.3.3.1

7.3.5

Index

Statements (cont.)

label

LOGICAL

non-executable

OPEN

order of

PARAMETER

PAUSE

PRINT

PROGRAM

READ

REAL

RETURN

REWIND

SAVE

Statement function

STOP

SUBROUflNE

I - 20

September 20, 1983

1.3.3

2.3.3.1

1.3.4.2

9.7.2
10.2.4.1
10.2.4.3

1.3.5

2.3.4

6.6
10.2.8
App. B

9.3.1.1

7.2

9.2
9.3.1
9.4.1
9.5.1

2.3.3.1

7.2.1.2
7.2.2.2

9.3.2

7.6

7.1.2.3

6.5
10.2.8

7.1.3.1

Index September 20, 1983

Statements (con'd)

terminal 6.3
6.3.2

type specification 2.3
10.1.6

unconditional GO TO 6.1.1

WRITE 9.2
9.3.1
9.4.1
9.5.3.1

STOP statement 6.5
10.2.8

Storage Ch. 3

allocation 3.2

arrays 3.1.3
3.2.1.2

constants 3.1.1
10.2.1

character data 3.1.4

requirements 3.1

variables 3.1.2
3.2.1.1
3.2.3.2
10.2.1

Subprograms 1.2
Ch. 7 ,

block data 1.2
1.3.4.2
3.3.2

function 1.2
7.1.2

multiple entry to 7.5

I - 21

Index

subroutine

SUBROUTINE statement

Subroutines

used as arguments

Subscript expressions

Symbolic constants

Symbol names

Terminal

parameter

statements

Transfer of control between program units

functions

subroutines

Transfer of values between program units

. TRUE. value

Truncation

Type specification

Unconditional GO TO statement

Unformatted

direct access input and output

I - 22

September 20, 1983

1.2
7.1.3
7.2.2

7.1.3.1

7.1.1
7.1.3
7.2.2

7.3.4

2.2.4.1

2.2.2

10.1.3

6.3.1

6.3
6.3.2

7.2

7.2.1

7.2.2

7.4

2.2.1.5
4.3.1

4.1.7
S.1

2.3
10.1.2
10.1.6

6.1.1

9.4.1.2

Index

records

sequential access input and output

Unit number

Using the consolidator

Using Pascal routines

Utilities

Valid argument correspondence

VG\.1id function correspondence

Value lists

Values, types of

Variables

storage of

use of

WRITE statement

formatted direct access

formatted sequential access

list directed

unformatted direct access
I

unformatted sequential access

I - 23

September 20, 1983

Ch. 8
9.1.1.1

9.3.1.2

9.1

12.4.1

12.3.2.6

12.2

11.2.·1

11.2.2:'

3.3. 1. 1

2.1

2.2.3

3.1.2
3.2.1.1

.' 3.2.3.2
10.2.1

7.3.2

9.2

9.4.1.1

9.3.1.1

9.5.3.1

9.4.1.2

9.3.1.2

Index September 20, 1983

I - 24

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24

