
A DisrJ1ay Architecture for
Driving ''"V\lO Different Bit~J1apped
DislJlays Frorn One Frame Buffer

Robert P. Colwell
Dept. of Electrical and Computer Engineering

Carnegie-Mellon University
Pittsburgh, Pa. 15213

Perq Systems Corporation
2600 Liberty Ave

Pittsburgh, Pa. 15230

Abstract
There are two styles of bitmapped-display per­

sonal workstation system architectures, those

with the display frame buffers in main memory,

and those with separate frame buffer memories.

Machines with frame buffers resident in main

memory (frame-buffer resident) must provide

enough memory, and large enough memory

bandwidth, to meet the demands of the displays

as well as to maintain satisfactory CPU perfor­

mance. A workstation with two independent bit­

mupped displays, one color and one black-and­

white, appears to offer many advantages to users

performing engineering or design tasks. Al­

though the cost/performance tradeoffs of these

two design styles have not been quantified, this

paper will show that the cost and complexity of a

frame-buffer resident machine Simultaneously

driving two independent bitmapped displays is

substantial. A prototype of such a system has

been built and tested. This paper discusses the

cost and performance implications of the frame­

buffer-resident design style in some detail.

1. Introduction
The current popularity of personal workstations

utilizing bit-mapped raster-scan displays is tes­

timony to both the usefulness of these displays as

well as their relative economy of implementation.

CH2228-5/85/0000/0030$01.00 © 1985 IEEE
30

First-generation workstations such as the Perq

Systems Corporation Perq 1 [3], Xerox's Alto [7],

Apollo's Domain [4], and Sun Microsystem's Sun

workstation [6], all provide a bitmapped high­

resolution black-and-white display as the primary

output device, and in each case the display in­

fluences system design in significant ways. For

instance, to manage the screen constructively, a

pointing device (such as a mouse) is required and

often special hardware mechanisms such as Ras­

terOp [5] are also provided. More importantly, a

bitmapped display is sufficiently difficult to design

into a system that it can have a profound in­

fluence on the overall system architecture [8].

The Perq, the Alto, and the more recent Syte

[2] workstations refresh their displays directly

from main memory (frame-buffer resident, or

FBR), while the Apollo and Sun machines provide

separate frame buffer memories for screen

refresh. This architectural decision is of singular

importance and has profound implications on

such system aspects as performance, cost, ex­

pandability, and operating system design. A

thorough discussion of the ramifications of this

choice would be of great value, but that topic is

too large to be adequately dealt with here. In this

paper it is assumed that all frame buffers must

reside in main memory, maximizing compatibility

of the new design -with the -existing Perq CPU,

RasterOp, and operating system.

The basic design goal of the (llILlI-display Perq

was to have a machine with two bit-mapped dis­

plays: a standard portrait B& W display (768 x

1024 pixels, 1 bit/pixel, 60 Hz noninterlaced), and

a high-resolution color display (1280 x 1024

pixels, 8 bits/pixel, 60 Hz interlaced refresh 1).

This configuration appears to offer Illany ad­

vantages to workstation users performing en­

gineering or design tasks, for the 8& W screen is

naturally suited to text and command-level inter­

actions, while the color screen can maintain a

constant image of the design in progress [1].

From these and other constraints this paper will

show how a feasible system architecture was

derived. We conclude that FBR systems present

a formidable challenge to the system architect in

terms of memory bandwidth, the cost of an FBR

system capable of driving two high-resolution bit­

mapped displays is high, and that the primary

problem is probably one of future expandability.

2. Design Constraints
To understand the system design implications

of FBR machines we will review the requirements

of raster-scan bitmapped displays. Typical of

most workstation displays, a Perq B& W portrait

monitor displays one frame, 1024 lines of 768

pixels eac'h, 60 times each second. A display

frame consists of the visible portion plus horizon­

tal retraces (one per line) and vertical retrace

(one per frame). Retrace times are specified by

the manufacturers of the cathode ray tube drive

electronics. Equation 1 describes the interaction

of all of these parameters [8].

tf = nl(nptp + thrt) + tvrt (1)

t
f

: time per frame (l/refresh rate)

11nterlacing is a technique whereby a display frame (the set
of all visible pixels) is split into two "fields": one field consists
of all even lines, and the other consists of the odd lines. A
given refresh scan from the top of the display to the bottom
will refresh one of the fields, and the next scan will refresh the
other.

31

III : number of visiule lines
11 : number oi pixels pcr line
I P : tilllo per vertical retrace

Vlt • •
t : tltilO per pixel
t~rt: time per horizontal retrace

For the Perq B& W portrait monitor, thrt = 3.76

p.S, t t = 672 I"'S, so t = 15.4 nS. This implies vr p
that, in order to keep the screen stable, a stan-

dard Perq memory- system must provide at least

one bit of video data every 15.4 nS (a pixel rate of

64.788 MHz). To ensure this, the Perq main

memory is dual-cycled: every other 340 nS

memory cycle is dedicated to the display.

Remaining memory cycles are available for the

CPU or DMA devices. The widest data word avail­

able per fetch is 64 bits, and since 680 nS/64 bits

= 10.625 nS/bit, enough memory bandwidth ex-

ists to keep the screen stable.

The memory bandwidth required for the color

system described above is much higher. Equa­

tion 1 still holds, but now n, = 1024/2 (due to

interlacing), n = 1280, th t = 7 p.S, and t t = 700 p r vr
p.S2, so the time per pixel, t , is 18.9 nS (a pixel

p
rate of 53 MHz). However, the color screen re-

quires eight bits for each pixel, not just one bit as

for the B&W screen.

Since the color and B& W screens are to have

the same number of lines, and the color screen is

interlaced, two B& W lines will be refreshed for

every color line. A B& W line takes 768

pixelsx15.4 nS/pixeJ + 3.76 p.S = 15.62 p.S/line.

So a color line will take 2x 15.62p.S = 31.24 p.S.

What do these numbers imply about FBR

memory architecture? It is already obvious that

64 bits/fetch is insufficient to drive the color

screen. The next choice, 128 bits/fetch, is also

too small: 680 nS/128 bits- = 5.3 nS/bit, so a

pixel's worth of data will take 5.3 nS x 8 = 42 nS

to collect. Since color pixels are only 18.9 nS

2These specifications are for the Hitachi HM3619 color
monitor.

lony that is too slow. But, as will be seen, 256

bits/fetch is sufficient not only to drive the color

screen but the B& W simultaneously.

256 bits is 32 color pixels. so the number of

memory fetches required per color line is (1280

pixels/line) / (32 pixels/fetch) = 40 memory

fetches. The B&W screen requires 768/256 = 3

fetches/B&W line, or 6 fetches per color line. So

the total number of memory fetches to refresh

both screens is 46. At this point, two observations

can be made.

1. There is not enough time to fetch color
data "on the fly". 680 nS/32 pixels per
fetch = 21.25 nSipixel. Since the color
pixel period is 18.9 nS, we would fall be­
hind a little more on each fetch.

2. But there are enough memory fetches
per line to get all the data out of memory
for both B& Wand color displays. 46
fetches x 680 nS/fetch = 31.28 p.S: ex­
actly enough memory fetches to retrieve
all the video data needed for both
screens.

This implies that some prefetching is required

(hence temporary storage is necessary), but also

shows that 256 bits/fetch is a high enough

bandwidth to meet the requirements. Another im­

plication is that B& W cursor data, color cursor

data, and colormap data cannot be fetched

during frame refresh since all memory accesses,

including those occurring during horizontal

refresh, are being used to keep up with the dis­

plays. As a consequence, temporary buffers must

be provided for the cursors, which are loaded

during vertical retrace, and unloaded as required

during visible scan. The color map is also

reloaded during vertical retrace.

Another important result of the design specifica­

tion is the amount of memory required. A Perq

portrait B& W screen requires 768 x 1024 / 8 =

lOOK bytes of memory. The color display requires

1280 X 1024 = 1.31 MBytes, so the frame buffers

32

alone rcquirel.'l MBytes. Since 256 uils/fetch

are needed, and dynamic nAMs are one bit wide,

at least 256 RAMs must be provided in the

memory system (not countillfJ parity HAMs). 256

641(RAMs are 2 MBytes, so that is the amount

installed in the prototype, although at least twice

as much is needed to make system performance

competitive.

Note that the memory bandwidth required for

the color display is so much higher than the B& W

that the color frame buffer design would have

been the same even if the B& W display had not

been included. This is because the design con­

straint that the color frame buffer reside in main

memory forces a quantization of memory
bandwidth that leaves some of the memory cycles

unused by the color display. Given this des.ign

constraint, the additional cost of supporting a
B& W screen beside the color display is almost nil.

On the other hand, if the B&W screen were of

higher resolution, say 1280 pixels per line instead

of 768, the basic drawback of the FBR style is

strongly manifested: the overall memory

bandwidth would probably have to be at least

doubled, so that more bits per lookup would be
available.

Fetching 256 bits for every memory read neces­
sitates some additional memory data registers for

CPU accesses. A decoder· enables the ap­

propriate registers onto a bus to the CPU based

on the width of the CPU's requested access (16-

bit word, double word, or quad word read) and

the value of two low-order address bits. Since the

memory is never written by the video display sys­

tem, bl:Jt only by the CPU, the data path into the

memory needs to be only 64 bits wide, not 256.

On the other hand, there are some good

reasons why the memory write data path ought to

be as wide as possible. Writing many contiguous

pixels to the same value is a common operation

for bitmapped displays (e.g., clearing the screen).

It would be trivial to include a new finite-state

10 n&W display circuitry

GRHN VIDEO OUT

I UE VIDEO OUT

32 bits/85 nS

~'EMORY 256
'-..,...- (to CPU Reg/Mux)

Figu re 2-1: System Block Diagram

machine (FSM). controlled by the CPU, which

could load up a 256-bit register with the desired

pattern and then write large blocks of memory

with that pattern. In an FBR system this same

mechanism could be used to initialize or clear out

user memory such as data arrays very inexpen­

sively. Such a mechanism was not incorporated

in this prototype.

3. A rchitectu re
Figure 2-1 shows the overall display system ar­

chitecture for the dual-display Perq.

The 256 bits retrieved per video fetch are mul­

tiplexed, 32 bits at a time, onto a synchronous

backplane bus running at 85 nS (twice the CPU

clock rate). This data can be B&W video, color

video, cursor data, or colormap data (as dis­

cussed earlier, during visible refresh this data will

either be B&W video or color video). For color

video data, two operations must be performed:

the data must be stored temporarily in FIFO order,

and it must be read out of temporary storage at a

different clock rate than that used in loading. The

reason is that the color display pixel rate is fixed

by physical constants such as retrace times, num­

ber of visible lines, and refresh rates, while the

33

CPU and memory clocks are related to the B& W

display rates determined when the Perq 1 was

designed. Thus the timebases of these two sub­
systems are inherently unequal and

asynchronous. The line buffers in Figure 2-1 per­

form both of these required functions.

3.1. Line Buffers and Queueing

The line buffers are small (1 K x 32) memories,

sufficient to store enough color pixels for one dis­
play line. While one line buffer is being loaded

with the next line's pixel values, the current line is

being read out of the other buffer at a multiple of

the color pixel clock (18.9 nS/pixel x 4 is ap­

proximately 80 nS).

Even if this color system memory were not re­

quired to reside in main memory, queueing would

still be necessary for transfers of data between

main memory and the frame buffer. The FBR ar­

chitecture makes this queueing much more dif­

ficult, since the screen refresh depends on the

timing of the transfer.

Once the price has been paid for this com·

plexity, however, a useful function becomes

feasible: real-time conversion from one display

'forlllat to another. A brief description of the

mechanism for performing this conversion fol­

lows. A PAL-based finite-state-machine

generates addresses for the static RAM arrays in

the line bufrers. These addresses are not neces­

sarily sequential, nor are they necessarily the

same for each RAM in the array for a given ac-
t

cess. In fact, by suitably scrambling these ad-

dresses upon loading, and by using a 32-bit barrel

shifter in the datapath, the video data can be con­

verted in real time from one format to another.

For shaded images, the most natural data for­

mat is a packed representation, where a 16-bit

word in memory contains two adjacent 8-bit dis­

play pixels. This format is preferred when a

program manipulating the color image is operat­

ing on groups of contiguous pixels, such as a rec­

tangular region. It is also the easiest format to

use in a machine which shares the main memory

between the CPU and the displays, since the CPU

is fetching its instructions from this same memory,

and instruction opcodes are designed for con­

tiguous bit encodings.

The bit-plane format is another popular

representation. In this format, a 16-bit memory

word constitutes one bit each of 16 consecutive

display pixels, and each plane must be fetched

and their data combined to form the pixels dis­

played. The bit-plane format is preferred in ap­

plications where the display image is organized as

planes stacked parallel to the screen's surface, or

where hardware constrains the design. For

images which easily separate into planes, the bit­

plane format can offer significant speed improve­

ments to image manipulations, since the image is

then likely to be operated on a plane at a time.

RasterOp is already optimized to operate on this

type of data.

Since the optimum data format depends on the

application, real-time conversion can make the

workstation much more flexible. It is important to

realize, however, that this conversion requires

significant prdelchinu in order to work. A single

video memory fetch yields 256 bits, which in bit­

plalH~ formal belon~J to 256 adjacent pixels. Thus,

eight separate Illemmy fetches must transpire be­

fore enough data has been collected to display

even one pixel. The design discussed here

prefetches an entire color line, so enough time is

available to construct the pixels.

34

Note that this data conversion mechanism is not

restricted to use in FBR systems. If it is included

in FBR systems it can be done in real time with

only a small amount of additional complexity, but

non-FBR systems can provide this operation in

their video data queueing or as a co-processor.

When a line buffer is loading the next display

line's data, it is clocked at a rate synchronized to

the memory system's clock. At the same time, the

other line buffer is unloading the current display

data at a rate synchronized to the color display

rate. This is accomplished by clocking the line

buffer controllers through multiplexers which are

switched only during a (rare) otherwise unused

memory cycle, once per color display line.

A pipeline multiplexer/register selects the ap­

propriate line buffer to read, and its outputs

traverse the backplane and are clocked into a

register. This data stream is used to load the

color cursor during vertical retrace, but normally

the data are converted to ECl levels, multiplexed

down to a pixel stream of 8 bits arriving every 18.9

nS, and converted through the color map to red,

green, and blue output values with fast video

digital-to-analog converters.

3_2. The Color Cursor

The color cursor buffer is Q temporary store

capable of holding a color cursor of size 64 x 64 x

2 bits (8K bits). This buffer is required because

the only free memory cycles available to perform

color cursor fetches are during vertical retrace,

while color cursor data is required at visible dis-

play lines for which the cursor is to appear. The

need for a temporary store for tile cursor is not

just due to tile FUH design style, however. Cursor

information must be available in a high-bandwidth

form, since this data is required at the high pixel

clock rates.

The FBR style does not appreciably complicate

the cursor store controller Tile FSM controlling

the cursor store is implemented in the same way

as those controlling the line buffers. The

moderately difficult challenge represented by the

color cursor is that it must be visibly locatable to

within a pixel. Since pixels occur every 18.9 nS, a

fast pixel counter is included in the cursor con­

troller, which is loadable via a double buffer by

the operating system's mouse-handling code.

This pixel counter is loaded during horizontal

retrace from the first buffer register. When the

underflow condition is reached the FSM is al­

lowed to proceed and color cursor data begins to

flow out of the cursor store.

For each pixel located under ..the cursor, the

color cursor buffer supplies two bits of data.

These bits are used as address bits <9:8) into the

color map. Bits <7:0) are, of course, the pixel

value. By convention, when the color cursor bits

are 00 (quadrant 0 of the color map) the cursor is

not visible. If the user desired a solid red cursor,

for example, the color cursor could be loaded

with 01 for all 64x64 cursor pixels, and quadrant 1

of the color map written to red for all 256 loca­

tions of that quadrant. Thus, no matter what the

pixel value is. for pixels under the cursor, they

would still be mapped into red in the color map.

For suitable choice of color cursor data bits, any

3-color pattern can be superimposed on the un­

derlying image. At the cost of real-time computa­

tion, the CPU can even compute a function be­

tween the display and the cursor overlay, for cur­

sors of arbitrary complexity and coloring. Since

the cursor is reloaded during vertical retrace (60

times per second) it is possible to switch cursor

35

patterns or colors dynamically while moving tile

mouse.

3.3. The Color Map

Using a color lookup table to map a few bits of

pixel data into 24 bits of color data (8 bits each for

red, green, and blue) is a standard technique in

color display systems, and is employed here.

Since the color map must be fast enough to keep

up with the pixel stream of 18.9 nS, it is imple­

mented in ECL. For the same reasons as before,

the map is reloaded only during vertical retrace,

so it can be reloaded as often as 50 times per

second.

3.4. The Bitslice Video State Machine

A bitslice microprogrammed controller

generates video addresses for both B&W and

color displays, both cursors, and the color map,

as well as control signals such as blanking,

retrace, and line buffer enables. This bitslice

machine is known as the Video State Machine, or

VSM, and is composed of a 16-bit AlU and a

microstore of 1 K x 40 bits. The ALU only needs to

be 16 bits because the Perq generates 20-bit

physical addresses, and video fetches only occur

on 255-bit boundaries. The VSM is programmed

in micro-assembly code. Since the VSM is

clocked at the same rate as the Perq CPU (170

nS), the control bits are only available at time

increments of 170 nS. This necessitates a non­

trivial amount of local queueing for time-critical

signals such as blanking or retrace. A high speed

phase-locked-loop generates a color video clock

that is synchronized to a multiple of the CPU

clock. Control signals that have to be passed

from one timebase to the other are constrained to

occur only at the points where these different

clocks coincide. This also makes local delays for

time-critical signals necessary.

This VSM represents a large amount of circuitry

and cost, and is provided for several reasons.

Due to tho FBH desiun style, there are lTIultiple

sources of addresses into main memory (CPU,

B&W display, IJ&W cursor, color display. color

cursor, and color m~p). All of these accesses

must occur in their proper order. In the standard

Perq, video addresses are generated by HW

counters, with a small FS,M governing their

memory accesses. The Color Perq has an inter­

laced screen, so at the end of a display line the

color display address must be adjusted to skip the

next line's data (which will not be displayed until

the next display field is refreshed). The VSM

regulates the memory accesses and performs the

necessary address manipulations to make the in­

terlacing work correctly.

In the bitplane display mode the VSM generates

eight separate addresses, one for each plane.

These addresses are kept in the VSM's external

register file. In addition, copies of the base ad­

dress for each plane is kept so that the address

counters can be re-initialized once per frame.

The VSM interrupts the CPU at the beginning of

each vertical retrace, and then enters a Quiescent

period during which the operating system can al­

ter any of the VSM's registers. This provides the

means to switch cursors or the color map very

Quickly.

The VSM also makes it possible to support other

color display screen formats, as long as the re­

Quired video bandwidth does not exceed that dis­

cussed earlier. The reprogrammability of the VSM

was of critical importance in debugging the over­

all system.

4. Conclusions
The major drawback of the frame-buffer resi­

dent architecture is that all memory bandwidth re­

Quirements in the system are cumulative. To meet

the design specification for the FBR Color Perq,

the memory had to be designed so that it could

fetch 256 bits every 340 nS: a very high memory

bandwidth of 753 MBits/second. While meeting

36

that requiremellt was nOll-trivial, Ileither was it an

overwhelming obstacle (the cost is approximately

-100 integrated circuits system-wide).

The harder challenge was to synchronize the in­

terleaved fetches from 0& Wand color video sys­

tems, and to provide the temporary storage they

require. For example, a standard Perq fetches

cursor data as required, on a line-by-line basis, so

much less temporary storage is needed (only a

few FIFO chips). Since memory bandwidth is be­

ing saturated here, the entire cursors must be

prefetched, so much larger, faster, more expen­

sive, and more capable temporary stores had to

be provided.

Perhaps the biggest drawback to an FBR ar­

chitecture is that it cannot easily accommodate

additional demands on memory bandwidth. Ad­

ding the color system to the Perq, for example,

necessitated a redesign of the Perq's memory

boards and a substantial amount of complex

clock synchronization. If a new system were

proposed, sayan array co-processor, the ad­

ditional memory bandwidth required might have

to come out of the CPU's allocation, degrading its

performance. (As it is, the CPU must wait to ac­

cess memory if its requests conflict with a

scheduled video fetch, although this loss in CPU

performance has not been quantified.)

The original design goal of having RasterOp

work unchanged in the color system was met, and

the performance loss of having to move eight

times more bits for the color CHsplay is not as bad

as it might seem at first, since all pixels are now

byte-aligned and no shifting or masking is ever

required. The high degree of architectural com­

patibility achieved has made software conversion

from the B& W Perq to the dual-display Perq quite

straightforward.

Although the cumulative memory bandwidth re­

quirements of an FBR system are stringent, they

can still be met with existing technology for high

performance display systems. Nevertheless, the

additional expense and complexity of the tem­

porary storage needed, and especially the

problems of future expandability, are serious dis­

advantages to the frame-burter resident system

design style. Future research should be directed

at the performance tradeoffs of this. architectural
style.

5. Acknowledgements
The substantial contributions of the following in­

dividuals to the design presented here is grate­

fully acknowledged: Dave Stoner, Stan Kriz,

Pradeep Reddy, Dave Hile, John Strait; and Brian
Rosen.

References

1. Clifford Barney. "Work station integrates
deSign, layout". Electronics 56, 11 (May 31 1983).

2. B.E. Hamilton, M.A. Fischer. "A High­
Performance Workstation Using a Closely
Coupled Architecture". IEEE Computer Graphics
and Applications 4, 4 (1984), 67.

3. F.R.A. Hopgood, R.W. Witty. "PERQ-and Ad­
vanced Raster Graphics Workstations". IEEE
Computer Graphics and Applications 2, 7 (1982).

4. D.L. Nelson, P.J. Leach. "The Architecture
and Applications of the Apollo Domain". IEEE
Computer Graphics and Applications 4, 4 (1984),
58.

5. W.M. Newman, R.F. Sproull. Principles of In­
teractive Computer Graphics. McGraw-HiII,1979.
(chapter on RasterOp).

6. Andy Rappaport. "Workstations feature UNIX­
optimized architectures". EON (November 24
1983).

7. D. Siewiorek, G. Bell, A. Newell. Computer
Structures: PrinCiples and Examples. McGraw­
Hill, 1982. (Chapter on the Alto personal
computer).

37

8. Mary C. V'Jhillon. "Memory Design for Raster
Graphics Displays". IEEE Computer Graphics
and I\pplications 4, 3 (1984), 48.

