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Abstract 
There are two styles of bitmapped-display per­

sonal workstation system architectures, those 

with the display frame buffers in main memory, 

and those with separate frame buffer memories. 

Machines with frame buffers resident in main 

memory (frame-buffer resident) must provide 

enough memory, and large enough memory 

bandwidth, to meet the demands of the displays 

as well as to maintain satisfactory CPU perfor­

mance. A workstation with two independent bit­

mupped displays, one color and one black-and­

white, appears to offer many advantages to users 

performing engineering or design tasks. Al­

though the cost/performance tradeoffs of these 

two design styles have not been quantified, this 

paper will show that the cost and complexity of a 

frame-buffer resident machine Simultaneously 

driving two independent bitmapped displays is 

substantial. A prototype of such a system has 

been built and tested. This paper discusses the 

cost and performance implications of the frame­

buffer-resident design style in some detail. 

1. Introduction 
The current popularity of personal workstations 

utilizing bit-mapped raster-scan displays is tes­

timony to both the usefulness of these displays as 

well as their relative economy of implementation. 
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First-generation workstations such as the Perq 

Systems Corporation Perq 1 [3], Xerox's Alto [7], 

Apollo's Domain [4], and Sun Microsystem's Sun 

workstation [6], all provide a bitmapped high­

resolution black-and-white display as the primary 

output device, and in each case the display in­

fluences system design in significant ways. For 

instance, to manage the screen constructively, a 

pointing device (such as a mouse) is required and 

often special hardware mechanisms such as Ras­

terOp [5] are also provided. More importantly, a 

bitmapped display is sufficiently difficult to design 

into a system that it can have a profound in­

fluence on the overall system architecture [8]. 

The Perq, the Alto, and the more recent Syte 

[2] workstations refresh their displays directly 

from main memory (frame-buffer resident, or 

FBR), while the Apollo and Sun machines provide 

separate frame buffer memories for screen 

refresh. This architectural decision is of singular 

importance and has profound implications on 

such system aspects as performance, cost, ex­

pandability, and operating system design. A 

thorough discussion of the ramifications of this 

choice would be of great value, but that topic is 

too large to be adequately dealt with here. In this 

paper it is assumed that all frame buffers must 

reside in main memory, maximizing compatibility 

of the new design -with the -existing Perq CPU, 

RasterOp, and operating system. 

The basic design goal of the (llILlI-display Perq 

was to have a machine with two bit-mapped dis­

plays: a standard portrait B& W display (768 x 

1024 pixels, 1 bit/pixel, 60 Hz noninterlaced), and 

a high-resolution color display (1280 x 1024 

pixels, 8 bits/pixel, 60 Hz interlaced refresh 1). 

This configuration appears to offer Illany ad­

vantages to workstation users performing en­

gineering or design tasks, for the 8& W screen is 

naturally suited to text and command-level inter­

actions, while the color screen can maintain a 

constant image of the design in progress [1]. 

From these and other constraints this paper will 

show how a feasible system architecture was 

derived. We conclude that FBR systems present 

a formidable challenge to the system architect in 

terms of memory bandwidth, the cost of an FBR 

system capable of driving two high-resolution bit­

mapped displays is high, and that the primary 

problem is probably one of future expandability. 

2. Design Constraints 
To understand the system design implications 

of FBR machines we will review the requirements 

of raster-scan bitmapped displays. Typical of 

most workstation displays, a Perq B& W portrait 

monitor displays one frame, 1024 lines of 768 

pixels eac'h, 60 times each second. A display 

frame consists of the visible portion plus horizon­

tal retraces (one per line) and vertical retrace 

(one per frame). Retrace times are specified by 

the manufacturers of the cathode ray tube drive 

electronics. Equation 1 describes the interaction 

of all of these parameters [8]. 

tf = nl(nptp + thrt) + tvrt (1) 

t
f 

: time per frame (l/refresh rate) 

11nterlacing is a technique whereby a display frame (the set 
of all visible pixels) is split into two "fields": one field consists 
of all even lines, and the other consists of the odd lines. A 
given refresh scan from the top of the display to the bottom 
will refresh one of the fields, and the next scan will refresh the 
other. 
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III : number of visiule lines 
11 : number oi pixels pcr line 
I P : tilllo per vertical retrace 

Vlt • • 
t : tltilO per pixel 
t~rt: time per horizontal retrace 

For the Perq B& W portrait monitor, thrt = 3.76 

p.S, t t = 672 I"'S, so t = 15.4 nS. This implies vr p 
that, in order to keep the screen stable, a stan-

dard Perq memory- system must provide at least 

one bit of video data every 15.4 nS (a pixel rate of 

64.788 MHz). To ensure this, the Perq main 

memory is dual-cycled: every other 340 nS 

memory cycle is dedicated to the display. 

Remaining memory cycles are available for the 

CPU or DMA devices. The widest data word avail­

able per fetch is 64 bits, and since 680 nS/64 bits 

= 10.625 nS/bit, enough memory bandwidth ex-

ists to keep the screen stable. 

The memory bandwidth required for the color 

system described above is much higher. Equa­

tion 1 still holds, but now n, = 1024/2 (due to 

interlacing), n = 1280, th t = 7 p.S, and t t = 700 p r vr 
p.S2, so the time per pixel, t , is 18.9 nS (a pixel 

p 
rate of 53 MHz). However, the color screen re-

quires eight bits for each pixel, not just one bit as 

for the B&W screen. 

Since the color and B& W screens are to have 

the same number of lines, and the color screen is 

interlaced, two B& W lines will be refreshed for 

every color line. A B& W line takes 768 

pixelsx15.4 nS/pixeJ + 3.76 p.S = 15.62 p.S/line. 

So a color line will take 2x 15.62p.S = 31.24 p.S. 

What do these numbers imply about FBR 

memory architecture? It is already obvious that 

64 bits/fetch is insufficient to drive the color 

screen. The next choice, 128 bits/fetch, is also 

too small: 680 nS/128 bits- = 5.3 nS/bit, so a 

pixel's worth of data will take 5.3 nS x 8 = 42 nS 

to collect. Since color pixels are only 18.9 nS 

2These specifications are for the Hitachi HM3619 color 
monitor. 



lony that is too slow. But, as will be seen, 256 

bits/fetch is sufficient not only to drive the color 

screen but the B& W simultaneously. 

256 bits is 32 color pixels. so the number of 

memory fetches required per color line is (1280 

pixels/line) / (32 pixels/fetch) = 40 memory 

fetches. The B&W screen requires 768/256 = 3 

fetches/B&W line, or 6 fetches per color line. So 

the total number of memory fetches to refresh 

both screens is 46. At this point, two observations 

can be made. 

1. There is not enough time to fetch color 
data "on the fly". 680 nS/32 pixels per 
fetch = 21.25 nSipixel. Since the color 
pixel period is 18.9 nS, we would fall be­
hind a little more on each fetch. 

2. But there are enough memory fetches 
per line to get all the data out of memory 
for both B& Wand color displays. 46 
fetches x 680 nS/fetch = 31.28 p.S: ex­
actly enough memory fetches to retrieve 
all the video data needed for both 
screens. 

This implies that some prefetching is required 

(hence temporary storage is necessary), but also 

shows that 256 bits/fetch is a high enough 

bandwidth to meet the requirements. Another im­

plication is that B& W cursor data, color cursor 

data, and colormap data cannot be fetched 

during frame refresh since all memory accesses, 

including those occurring during horizontal 

refresh, are being used to keep up with the dis­

plays. As a consequence, temporary buffers must 

be provided for the cursors, which are loaded 

during vertical retrace, and unloaded as required 

during visible scan. The color map is also 

reloaded during vertical retrace. 

Another important result of the design specifica­

tion is the amount of memory required. A Perq 

portrait B& W screen requires 768 x 1024 / 8 = 

lOOK bytes of memory. The color display requires 

1280 X 1024 = 1.31 MBytes, so the frame buffers 
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alone rcquirel.'l MBytes. Since 256 uils/fetch 

are needed, and dynamic nAMs are one bit wide, 

at least 256 RAMs must be provided in the 

memory system (not countillfJ parity HAMs). 256 

641( RAMs are 2 MBytes, so that is the amount 

installed in the prototype, although at least twice 

as much is needed to make system performance 

competitive. 

Note that the memory bandwidth required for 

the color display is so much higher than the B& W 

that the color frame buffer design would have 

been the same even if the B& W display had not 

been included. This is because the design con­

straint that the color frame buffer reside in main 

memory forces a quantization of memory 
bandwidth that leaves some of the memory cycles 

unused by the color display. Given this des.ign 

constraint, the additional cost of supporting a 
B& W screen beside the color display is almost nil. 

On the other hand, if the B&W screen were of 

higher resolution, say 1280 pixels per line instead 

of 768, the basic drawback of the FBR style is 

strongly manifested: the overall memory 

bandwidth would probably have to be at least 

doubled, so that more bits per lookup would be 
available. 

Fetching 256 bits for every memory read neces­
sitates some additional memory data registers for 

CPU accesses. A decoder· enables the ap­

propriate registers onto a bus to the CPU based 

on the width of the CPU's requested access (16-

bit word, double word, or quad word read) and 

the value of two low-order address bits. Since the 

memory is never written by the video display sys­

tem, bl:Jt only by the CPU, the data path into the 

memory needs to be only 64 bits wide, not 256. 

On the other hand, there are some good 

reasons why the memory write data path ought to 

be as wide as possible. Writing many contiguous 

pixels to the same value is a common operation 

for bitmapped displays (e.g., clearing the screen). 

It would be trivial to include a new finite-state 

10 n&W display circuitry 

GRHN VIDEO OUT 

I UE VIDEO OUT 

32 bits/85 nS 

~'EMORY 256 
'-..,...- (to CPU Reg/Mux) 

Figu re 2-1: System Block Diagram 

machine (FSM). controlled by the CPU, which 

could load up a 256-bit register with the desired 

pattern and then write large blocks of memory 

with that pattern. In an FBR system this same 

mechanism could be used to initialize or clear out 

user memory such as data arrays very inexpen­

sively. Such a mechanism was not incorporated 

in this prototype. 

3. A rchitectu re 
Figure 2-1 shows the overall display system ar­

chitecture for the dual-display Perq. 

The 256 bits retrieved per video fetch are mul­

tiplexed, 32 bits at a time, onto a synchronous 

backplane bus running at 85 nS (twice the CPU 

clock rate). This data can be B&W video, color 

video, cursor data, or colormap data (as dis­

cussed earlier, during visible refresh this data will 

either be B&W video or color video). For color 

video data, two operations must be performed: 

the data must be stored temporarily in FIFO order, 

and it must be read out of temporary storage at a 

different clock rate than that used in loading. The 

reason is that the color display pixel rate is fixed 

by physical constants such as retrace times, num­

ber of visible lines, and refresh rates, while the 
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CPU and memory clocks are related to the B& W 

display rates determined when the Perq 1 was 

designed. Thus the timebases of these two sub­
systems are inherently unequal and 

asynchronous. The line buffers in Figure 2-1 per­

form both of these required functions. 

3.1. Line Buffers and Queueing 

The line buffers are small (1 K x 32) memories, 

sufficient to store enough color pixels for one dis­
play line. While one line buffer is being loaded 

with the next line's pixel values, the current line is 

being read out of the other buffer at a multiple of 

the color pixel clock (18.9 nS/pixel x 4 is ap­

proximately 80 nS). 

Even if this color system memory were not re­

quired to reside in main memory, queueing would 

still be necessary for transfers of data between 

main memory and the frame buffer. The FBR ar­

chitecture makes this queueing much more dif­

ficult, since the screen refresh depends on the 

timing of the transfer. 

Once the price has been paid for this com· 

plexity, however, a useful function becomes 

feasible: real-time conversion from one display 



'forlllat to another. A brief description of the 

mechanism for performing this conversion fol­

lows. A PAL-based finite-state-machine 

generates addresses for the static RAM arrays in 

the line bufrers. These addresses are not neces­

sarily sequential, nor are they necessarily the 

same for each RAM in the array for a given ac-
t 

cess. In fact, by suitably scrambling these ad-

dresses upon loading, and by using a 32-bit barrel 

shifter in the datapath, the video data can be con­

verted in real time from one format to another. 

For shaded images, the most natural data for­

mat is a packed representation, where a 16-bit 

word in memory contains two adjacent 8-bit dis­

play pixels. This format is preferred when a 

program manipulating the color image is operat­

ing on groups of contiguous pixels, such as a rec­

tangular region. It is also the easiest format to 

use in a machine which shares the main memory 

between the CPU and the displays, since the CPU 

is fetching its instructions from this same memory, 

and instruction opcodes are designed for con­

tiguous bit encodings. 

The bit-plane format is another popular 

representation. In this format, a 16-bit memory 

word constitutes one bit each of 16 consecutive 

display pixels, and each plane must be fetched 

and their data combined to form the pixels dis­

played. The bit-plane format is preferred in ap­

plications where the display image is organized as 

planes stacked parallel to the screen's surface, or 

where hardware constrains the design. For 

images which easily separate into planes, the bit­

plane format can offer significant speed improve­

ments to image manipulations, since the image is 

then likely to be operated on a plane at a time. 

RasterOp is already optimized to operate on this 

type of data. 

Since the optimum data format depends on the 

application, real-time conversion can make the 

workstation much more flexible. It is important to 

realize, however, that this conversion requires 

significant prdelchinu in order to work. A single 

video memory fetch yields 256 bits, which in bit­

plalH~ formal belon~J to 256 adjacent pixels. Thus, 

eight separate Illemmy fetches must transpire be­

fore enough data has been collected to display 

even one pixel. The design discussed here 

prefetches an entire color line, so enough time is 

available to construct the pixels. 
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Note that this data conversion mechanism is not 

restricted to use in FBR systems. If it is included 

in FBR systems it can be done in real time with 

only a small amount of additional complexity, but 

non-FBR systems can provide this operation in 

their video data queueing or as a co-processor. 

When a line buffer is loading the next display 

line's data, it is clocked at a rate synchronized to 

the memory system's clock. At the same time, the 

other line buffer is unloading the current display 

data at a rate synchronized to the color display 

rate. This is accomplished by clocking the line 

buffer controllers through multiplexers which are 

switched only during a (rare) otherwise unused 

memory cycle, once per color display line. 

A pipeline multiplexer/register selects the ap­

propriate line buffer to read, and its outputs 

traverse the backplane and are clocked into a 

register. This data stream is used to load the 

color cursor during vertical retrace, but normally 

the data are converted to ECl levels, multiplexed 

down to a pixel stream of 8 bits arriving every 18.9 

nS, and converted through the color map to red, 

green, and blue output values with fast video 

digital-to-analog converters. 

3_2. The Color Cursor 

The color cursor buffer is Q temporary store 

capable of holding a color cursor of size 64 x 64 x 

2 bits (8K bits). This buffer is required because 

the only free memory cycles available to perform 

color cursor fetches are during vertical retrace, 

while color cursor data is required at visible dis-

play lines for which the cursor is to appear. The 

need for a temporary store for tile cursor is not 

just due to tile FUH design style, however. Cursor 

information must be available in a high-bandwidth 

form, since this data is required at the high pixel 

clock rates. 

The FBR style does not appreciably complicate 

the cursor store controller Tile FSM controlling 

the cursor store is implemented in the same way 

as those controlling the line buffers. The 

moderately difficult challenge represented by the 

color cursor is that it must be visibly locatable to 

within a pixel. Since pixels occur every 18.9 nS, a 

fast pixel counter is included in the cursor con­

troller, which is loadable via a double buffer by 

the operating system's mouse-handling code. 

This pixel counter is loaded during horizontal 

retrace from the first buffer register. When the 

underflow condition is reached the FSM is al­

lowed to proceed and color cursor data begins to 

flow out of the cursor store. 

For each pixel located under ..the cursor, the 

color cursor buffer supplies two bits of data. 

These bits are used as address bits <9:8) into the 

color map. Bits <7:0) are, of course, the pixel 

value. By convention, when the color cursor bits 

are 00 (quadrant 0 of the color map) the cursor is 

not visible. If the user desired a solid red cursor, 

for example, the color cursor could be loaded 

with 01 for all 64x64 cursor pixels, and quadrant 1 

of the color map written to red for all 256 loca­

tions of that quadrant. Thus, no matter what the 

pixel value is. for pixels under the cursor, they 

would still be mapped into red in the color map. 

For suitable choice of color cursor data bits, any 

3-color pattern can be superimposed on the un­

derlying image. At the cost of real-time computa­

tion, the CPU can even compute a function be­

tween the display and the cursor overlay, for cur­

sors of arbitrary complexity and coloring. Since 

the cursor is reloaded during vertical retrace (60 

times per second) it is possible to switch cursor 
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patterns or colors dynamically while moving tile 

mouse. 

3.3. The Color Map 

Using a color lookup table to map a few bits of 

pixel data into 24 bits of color data (8 bits each for 

red, green, and blue) is a standard technique in 

color display systems, and is employed here. 

Since the color map must be fast enough to keep 

up with the pixel stream of 18.9 nS, it is imple­

mented in ECL. For the same reasons as before, 

the map is reloaded only during vertical retrace, 

so it can be reloaded as often as 50 times per 

second. 

3.4. The Bitslice Video State Machine 

A bitslice microprogrammed controller 

generates video addresses for both B&W and 

color displays, both cursors, and the color map, 

as well as control signals such as blanking, 

retrace, and line buffer enables. This bitslice 

machine is known as the Video State Machine, or 

VSM, and is composed of a 16-bit AlU and a 

microstore of 1 K x 40 bits. The ALU only needs to 

be 16 bits because the Perq generates 20-bit 

physical addresses, and video fetches only occur 

on 255-bit boundaries. The VSM is programmed 

in micro-assembly code. Since the VSM is 

clocked at the same rate as the Perq CPU (170 

nS), the control bits are only available at time 

increments of 170 nS. This necessitates a non­

trivial amount of local queueing for time-critical 

signals such as blanking or retrace. A high speed 

phase-locked-loop generates a color video clock 

that is synchronized to a multiple of the CPU 

clock. Control signals that have to be passed 

from one timebase to the other are constrained to 

occur only at the points where these different 

clocks coincide. This also makes local delays for 

time-critical signals necessary. 

This VSM represents a large amount of circuitry 

and cost, and is provided for several reasons. 



Due to tho FBH desiun style, there are lTIultiple 

sources of addresses into main memory (CPU, 

B&W display, IJ&W cursor, color display. color 

cursor, and color m~p). All of these accesses 

must occur in their proper order. In the standard 

Perq, video addresses are generated by HW 

counters, with a small FS,M governing their 

memory accesses. The Color Perq has an inter­

laced screen, so at the end of a display line the 

color display address must be adjusted to skip the 

next line's data (which will not be displayed until 

the next display field is refreshed). The VSM 

regulates the memory accesses and performs the 

necessary address manipulations to make the in­

terlacing work correctly. 

In the bitplane display mode the VSM generates 

eight separate addresses, one for each plane. 

These addresses are kept in the VSM's external 

register file. In addition, copies of the base ad­

dress for each plane is kept so that the address 

counters can be re-initialized once per frame. 

The VSM interrupts the CPU at the beginning of 

each vertical retrace, and then enters a Quiescent 

period during which the operating system can al­

ter any of the VSM's registers. This provides the 

means to switch cursors or the color map very 

Quickly. 

The VSM also makes it possible to support other 

color display screen formats, as long as the re­

Quired video bandwidth does not exceed that dis­

cussed earlier. The reprogrammability of the VSM 

was of critical importance in debugging the over­

all system. 

4. Conclusions 
The major drawback of the frame-buffer resi­

dent architecture is that all memory bandwidth re­

Quirements in the system are cumulative. To meet 

the design specification for the FBR Color Perq, 

the memory had to be designed so that it could 

fetch 256 bits every 340 nS: a very high memory 

bandwidth of 753 MBits/second. While meeting 
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that requiremellt was nOll-trivial, Ileither was it an 

overwhelming obstacle (the cost is approximately 

-100 integrated circuits system-wide). 

The harder challenge was to synchronize the in­

terleaved fetches from 0& Wand color video sys­

tems, and to provide the temporary storage they 

require. For example, a standard Perq fetches 

cursor data as required, on a line-by-line basis, so 

much less temporary storage is needed (only a 

few FIFO chips). Since memory bandwidth is be­

ing saturated here, the entire cursors must be 

prefetched, so much larger, faster, more expen­

sive, and more capable temporary stores had to 

be provided. 

Perhaps the biggest drawback to an FBR ar­

chitecture is that it cannot easily accommodate 

additional demands on memory bandwidth. Ad­

ding the color system to the Perq, for example, 

necessitated a redesign of the Perq's memory 

boards and a substantial amount of complex 

clock synchronization. If a new system were 

proposed, sayan array co-processor, the ad­

ditional memory bandwidth required might have 

to come out of the CPU's allocation, degrading its 

performance. (As it is, the CPU must wait to ac­

cess memory if its requests conflict with a 

scheduled video fetch, although this loss in CPU 

performance has not been quantified.) 

The original design goal of having RasterOp 

work unchanged in the color system was met, and 

the performance loss of having to move eight 

times more bits for the color CHsplay is not as bad 

as it might seem at first, since all pixels are now 

byte-aligned and no shifting or masking is ever 

required. The high degree of architectural com­

patibility achieved has made software conversion 

from the B& W Perq to the dual-display Perq quite 

straightforward. 

Although the cumulative memory bandwidth re­

quirements of an FBR system are stringent, they 

can still be met with existing technology for high 

performance display systems. Nevertheless, the 

additional expense and complexity of the tem­

porary storage needed, and especially the 

problems of future expandability, are serious dis­

advantages to the frame-burter resident system 

design style. Future research should be directed 

at the performance tradeoffs of this. architectural 
style. 
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