
PASCAL USERS GROUP

Pascal News
NUMBER 21

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

APR I l., 19.81

If this isn't APRIL ...

~(

does that mean we're late 7

' - ;

~ u ·-0
ll.

POLICY: PASCAL NEWS (15-Sep-80)

*Pascal News is the official but informal publication of the User's Group.

* Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately ~uccumb to the reality of:

l. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls ·or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 times during a year; usually in March, June,
September;-and December.

* ALL THE NEWS THAT 1 S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 cm lines!) --

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews) ,
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION ~OTES -,reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descrip.t.icins and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

s10.oo .

PASCAL UsERS GROUP

Pascal News
Communications about the Programming Language Pascal by Pascalers

• Pascal Processor Validation Procedure

• A Better Referencer

• Use of Generic Capsules

• Implementation Reports

• Validation Suite Reports

• Announcements

Number

25
APRIL 83

-- ---------------

POLICY: PASCAL NEWS (Jan. 83)

• Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de
signed to be non political, and as such, it is not an "entity" which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher, main
tainer, implementor, distributor, or just plain fan. Memberships from
libraries are also encouraged. See the COUPON for details.

• Pascal News is produced 4 times during a year; January, April, July October.

• ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single
spaced and camera-ready (use dark ribbon and i 5.5 cm lines!)

• Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

• Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION-passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

APPLICATIONS - presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES - contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts for maintainers, implemen
tors, distributors, and documentors of various implementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

VALIDATION SUITE REPORTS - reports performance of various compilers against standard Pascal
ISO 7i85.

'

Pascal News
Communications a~out the Programming Language Pascal by Pascalers

APRIL 1983

2 EDITORS NOTES

3 PASCAL USERS GROUP (UK)
3 LT. and M.I.S.S. By Phillip Darrington
4 Pascal-An Effective Language Standard By Brian Wichmann
6 Pascal Processor Validation Procedure By David Blyth

SOFTWARE TOOLS
12 A Better Referencer By J. Yavner

Number 25

16 The Use of Generic Capsules with the University of Minnesota Pascal 6000 Compiler
By Frank L. Friedman, Alessio Giacomucci, Carol A. Ginsburg and Anita Girton

ANNOUNCEMENTS
24 PACS Computer Game Festival
24 Oh! Pascal!
24 New Modula-2 Versi01;1
25 New Ticomm Microcomputers
25 Edison on IBM Personal Computer
25 JRT Pascal
27 Pascal Compiler for IBM Mainframe
28 Great Plains Announcement
28 INMOS Announces OCCAM
30 Tiny Pascal Plus
30 Help Wanted
30 Ridge Thirtytwo Graphics

32 VALIDATION SUITE COUPON

33 IMPLEMENTATION REPORTS
45 Machine Index

47 VALIDATION SUITE REPORTS
47 HP 3000 Series 33
51 Intel 8085, Zilog 80 (Cogitronics)
52 IBM 370 (AAEC)
56 Pascal 1100
58 IBM 4341
60 VAX 11-780

62 BACK ISSUE COUPON

64 MEMBERSHIP COUPON

, .·

Good Members Hello;

I now have control of most elements of Pascal
News and future submission articles, comments and
good jokes should be addressed:

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Our United Kingdom and European elements are
thriving and boisterous.

PUG(UK)
P.O. Box 52
Pinner
Middlesex HAS 3FE
U.K.

PUG (Eur)
ARGE Pascal
Hellmut Weber
Degenfeldstrasse 2
D - 8000 Mtinchen 40

These groups should be exe.ellent sources of local
and international information.

We have lost an element and have no successor.
PUG (Aus) has experienced increased costs and de
cided PUG (USA) could support them with little loss
of timeliness. I would like to thank them for their past
performance. I am sorry I did not have the opportunity
to work with them.

PUG (USA) will now serve various needs.
We now serve inside USA and outside USA mem-

Dear Pascalers,

here we are reopening PUG Europe:
Lor + Martha+
Erwin + Hellmut +
Jlirgen + Manfred +
U rf (Korbinian).

We are Pascal fans and users from the university
and industry who are organizing in our spare time the
distribution of Pascal News for the European region.

From our viewpoint, being mainly Pascal users, we
would like to encourage you to help in keeping Pascal
News a living forum, a market place for all Pascal users.
So here again is a call for papers and programs. There
are certainly many tools, especially for textprocessing,
which are of interest for the Pascal community, maybe
for simple use, maybe in order to compare ideas about
problems which many of us may already have encoun
tered. And think about all the programs for solving the
daily commercial problems.

Another subject which we think important is doc
umentation. If you have to (or like to) use non-standard
features mentioning those increases portability. An ex
treme example of the necessity of documentation are

2

bers and also provide an air mail option for those who
need Pascal News as quick as possible.

Writing of timeliness I am reminded that the news
letter has deadlines. These are January 1st, April 1st,
July 1st and October 1st. When you have material for
the newsletter please send it as quick as possible. Do
not worry about the deadlines but keep in mind news
loses its value as it matures.

I will continue to publish implementation notes and
announcements of the trade. I encourage members and
vendors to test drive their new compilers with the
"Validation Suite". Send the reports to me and then we
will all know the best performing compilers.

I have been asked if we would pay for articles. I
have thought about this and worried where I would get
the money.

I have decided to accept advertising and use this
money to pay honorariums to writers of good articles.

A reminder that back issues will reflect higher re
printing costs and have a $25 per set price after July 1st

Its still a bargain at $15 now.
One more thing. Thank you for your renewals and

lovely comments. I have been encouraged by your
thoughts.

Charlie

two Pascal implementations which use one name (ap
pend) for two non-standard predefined procedures doing
different things (append one string to another versus
open a text:file for appending text).

To increase the market place function of Pascal
News we should like to ask everybody who provides
a Pascal source for publication to state whether he/she
is willing and/or able to distribute this source in ma
chine readable form (or even as a well readable listing)
and if so at what cost.

Lastly we would like to ask all those wishing to
contact us to use our official address:

ARGE Pascal
Hellmut Weber
Degenfeldstrasse 2
D - 8000 Mtinchen 40

and not to send registered letters. (We had some prob
lems, as there is no Mr. Pascal to claim them.) If you
want to send us money for subscription please use our
postgiro account. Munchen 51589-801 or send an Eu
rocheque and please take note that any other form of
payment means additional paperwork for us.

Stay happy with Pascal!

Compilers Notes

d ~ ~~ (0/1.Yt) {!JaJcd ~ ~~ (O/!.Yt) {!JaJcd ·~ ~~ (0/1.Yt) {!JaJcd ~ ~~ (0/1.Yt)

Pascal Users Group (U.K.)

Pascal News 23a is a supplement, to plug the
lengthening gap between US originating 23 and 24.
Readers will note that its contents are quite different
from those of previous editions. There is a shift of em
phasis from matters of concern at leading edge Uni
versity level, to those of concern to producers and users
of inexpensive standardized products.

That shift has been wholly dictated by the content
of material submitted for publication. Whether it is a
temporary side-step or a permanent change, will also
be decided by contributors (to future editions).
PUG(UK) is the servant of you the subscribers and as
such, will publish material originating from any section
of the user community.

We are all indebted to each contributor but Tony
Heyes' s generosity in offering his Bibliography suite of
programs for refinement through the medium of PN is
particularly appreciated. Constructive critiques are
welcome. ·

There is a widening of the user base and an overdue
deployment of resources to that end, evidenced by the
complementary nature of articles from widely differing
sources. Read on and judge for yourselves. Although
you will find that 23a is pitched at quite a different level
from that of your usual expectations of PN, I sincerely
hope that you will welcome it as a stop-gap until 24 be
comes available from Rick, Andy, and Co.

The following is offered as an illustration of the
scene which prompted the production of a supplement.

Intrigued by advertising which referred to "mere
humans", I went along to the personal computer show
at the Barbican on September 12th.

Imagine the disappointment at failing to find any
thing innovative or even mildly interesting. Discovered
that with a single exception, exhibitors did not know
whether standard Pascal was implemented on the ma
chines offered to the public. More than one of those
asked, replied "Yes, it's called UDCS or something like
that". At one stand, sponsored by British Petroleum,
the Department of Trade and Industry, the Council for
Educational Technology, and others, an 'expert'.merely
looked blank and suggested that I ask someone else.
'Someone Else' replied "We are only interested in
things for use in Education''. At the National Comput
ing Centre stand, another expert, when asked if his
stand offered any information about standard Pascal
and its implementation or use in a microcomputer en
vironment, replied "No, there is no demand", deftly
followed by ''Can I help you sir?'' to someone standing
behind me. In some instances, the initial answer was
"Yes", followed by misrepresentative flannel when a
demonstration was requested.

Met a guy who holds a powerful position in the
largest education authority in Britain. He believes that
BASIC is an "appropriate" language for the "mass"
of young people who ''won't bother'' to become seri
ously interested in the technology. I should admit at this
point, that had my first experience of a perception of
machine intelligence been through the medium of BASIC
(or COBOL, FORTRAN, etc.), I might easily have
joined the ranks of those who either ''won't bother'' or
are suitably unimpressed by obscure combinations of
hunches, guesses, and a dash of perceptual skill which
only occasionally fails. PUG

I. T. and M.l.S.S.
From Wireless world.

Reproduced with Phillip Darrington's permission

One of the aims of Information Technology Year
and the Microelectronics Education Programme is to
involve schoolchildren in the use of microcomputers
and related electronic devices. There are the M.E.P.,
the Micros in Schools Scheme, exhibitions and events
throughout the year and beyond. It is, perhaps, fortun
ate that Mr. Callaghan happened to be watching tele
vision on the evening the programme "Now the Chips
are Down" was broadcast and was spurred into action
then, or we would probably find the propaganda even
more frenetic than that now being put out by the en
ergetic Mr. Baker, the prophet of IT.

Information Technology is a curiously diffuse name
for a Year. The official definition, "the acquisition, pro
cessing, storage, dissemination and use of vocal, pie-

PUG(UK)

torial, textual and numerical information by a micro
electronjcs-based combination of computing and
telecommunications" appears to encompass most of
the activities of the average person, except eating and
one or two other processes, although the use of a com
puter is not often considered essential to the more basic
of these.

So far as its involvement of schoolchildren is con
cerned, the publicity is decidedly shrill, the Minister's
aim being to have a computer in every secondary school
by the end of the year and even to think about providing
them for primary schools.

There can be no argument that young people must
be aware of computers and how to use them, but it does
seem possible that the present blaze of publicity tends

3

/

to obscure the point that computers are a means, not
an end. There is also the question of how the micros are
to be used in schools.

According to the fifth edition of the Concise Ox
ford Dictionary (now, admittedly, modified), a com
puter is "a calculator - an electronic calculating ma
chine'' - an unfortunate description, taken too literally
by at least some of those responsible for introducing
youngsters to computing, with the result that the school
micro is often given to the senior math teacher to guard
with his life, presumably on the grounds that computers
are electronically mathematical and possess no rele
vance to any other subject.

In other schools, the computer is treated as a kind
of totem, and the pupils are taught "Computer Stud
ies". As a subject, computing (meaning programming)
is a singularly empty one, unless the pupil learning it
intends to become a programmer. A computer is an aid
to the process in which it is used - in this instance,
learning - and an element of transparency to the user
rather than an obscuring of the subject by undue atten
tion to the computer must be the aim.

Clearly, an overnight transformation, after which
every teacher would be using a micro as to the manner
born, is hardly feasible. But, until the school micro (or

one of its terminals or even a micro owned by a pupil
or teacher) can be used naturally, as is a dictionary or
pocket calculator or a video recorder, it will dominate
the learning process. Utmost priority should be given
to teachers from all disciplines, from home economics
to athletics, to use the computer as an aid, rather than
as a distraction, so that pupils who are not to specialize
in science or engineering can see that it is of advantage
to them to be at ease with computers, but no more than
that.

The Inner London Education Authority is aware
of these problems and is educating teachers in the use
of computers so that, even though there may be only
one micro or terminal in the classroom, the pupils will
learn the place of a computer by, to use ILEA' s word,
"osmosis". However, there is evidence aplenty that
education authorities in other areas are either hypno
tized or revolted by the new equipment and, accord
ingly, either enshrine it or pass it to the school computer
fanatic to impress people with.

In short, a computer is a useful tool, but that is all
it is: it can help or it can dangerously hinder learning,
and only the education of teachers in its natural use as
an aid can decide which. PUG

Pascal - An Effective Language Standard
Brian A. Wichmann,6/5/82

Over the last few years, the programming language
Pascal has grown in popularity very greatly. It is widely
used for teaching in Universities, is available on most
micro-processors and main-frames as well. In fact, Pas
cal is one of the few languages that form a bridge be
tween microprocessor systems and the main-frame
world.

Until recently, there has been one drawback to
Pascal as a general purpose software tool. The defini
tion of the language was not very precise and in con
sequence, the portability of Pascal programs was prob
lematic. The British Standards Institution (BSI set up
a group under Dr. Tony Addyman to produce a standard
definition of the language. This was later superseded by
an ISO group also under Tony Addyman. Last October,
ISO agreed to the standardization of Pascal, and after
editorial work on the document, BSI published the
Standard in February of this year (BS 6192).

What does this mean for users of Pascal? The port
ability of Pascal programs should be much improved
provided suppliers implement the Standard and users
write their programs to conform to the Standard. One
might think that the position with Pascal is no different
from that of COBOL or FORTRAN and yet portability
problems arise with these languages. There are several
reasons for believing that Pascal is different:

Article formed the basis of piece in Computer Weekly
·by Phillip Hunter, 11th Feb. 1982 page 14

4

1. The Pascal standard is more comprehensive than
that of COBOL or FORTRAN. For instance, the
COBOL and FORTRAN standards do not require
that an invalid program is rejected by a compiler.
The Standard for these languages is just a definition
of a language rather than a set of requirements for
a compiler. This is clearly not very satisfactory since
we all write incorrect programs on occasions.

2. The Pascal Standard is simple and devoid of a mul
titude of options. If the language has lots of options,
then program portability is reduced because a pro
gram may not be valid without a specific option.
COBOL has a large number of options and FOR
TRAN 77 has. two major levels (essentially distinct
languages) whereas Standard Pascal has just one
option, affecting only one part of the language. This
option is to allow procedures to handle arrays whose
size varies from call to call. This option, level 1 Pas
cal, would allow Pascal programs to call FORTRAN
routines in many systems.

3. The Pascal test suite is more searching than that of
COBOL and FORTRAN. This is essentially a con
sequence of the definition of the language. The Na
tional Physical Laboratory has been collaborating
with the University of Tasmania on the construction
of this suite for over two years. About 400 copies of
the test suite have been sold worldwide. A new ver
sion of this suite has recently been issued to corre
spond to the new ISO Standard. Unlike the COBOL
and FORTRAN test suites, the one for Pascal in-

PUG(UK)

eludes incorrect programs which must be rejected:
ones to examine the error-handling capability of a
compiler, and the ''quality'' of an implementation.
The quality tests indicate if there is any small limit
to the complexity of programs that a system can han
dle and also assesses the accuracy ofreal arithmetic ..

All the major components to make Pascal a. good
Standard are now available, that is, a Standard defim
tion and tests to verify conformance of a compiler to
the Standard.

A Standard and tests to check conformance to the
Standard are not alone quite sufficient. The test pro
cedures must be used and results made known to those
using Pascal compilers. This can be achieved by inde
pendent testing of compilers which is currently being
investigated by BSI (Hemel Hempstead). BSI have a
wealth of experience with testing other goods but this
is their first venture into computer software. For this
reason, both NPL and NCC are assisting BSI in this
important development.

The last step in this process is to encourage users
to request a Standard compiler from the suppliers and
for suppliers to meet that demand. As a contribution to
this last step, NPL held a conference on this topic with
its collaborators. Professor Arthur Sale from the Uni
versity of Tasmania addressed the conference making
it an international event. The other key speakers were
John Charter from BSI who described how a validation
service run by BSI would work. Professor Jim Welsh
from UMIST who described how the Standard can be
implemented and Lyndon Morgan from NCC who de
scribed a guide written to support the test procedures.
Also Barry Byrne, from ICL explained how the.pro
vision of a standard compiler for Pascal is advantageous
in both marketing and for internal use. Mr. Ken Thomp
son from the European Commission explained the use
fulness of international standards within the Commu
nity and some of the problems in their effective
exploitation.

This program contains five errors, often
undetected by compilers. Can you spot them?

program test;
con st

nil • '0';
begin

if nil I •o• then
writeln('WRONG', +nil, .123)

else
writeln('RIGHT')

end.

Try it on your •ystem and •ee hov aany error•
are detected,

PUG(UK)

.!rrors
l. program mu•t contain output a. par ... ter.
2, nil cannot be u•ed a. an identifier (it i• a

re•erved vord) .
3. I is written a. <> (not equal•).
•· nil cannot follov a •ign.
5. a decimal point •uat follow a digit.

nie corrected program is:

program test(output);
const

nill = '0';
begin

if nill <> '0' then
writeln('WRONG', nill, 0.123)

else
writeln('RIGHT')

end.

Although this test is only an illustration, it does
show the wide ranging capabilities of current compi
lers. The results of compilers tested so far can be sum
marized thus:

Compiler Errors Accuracy of Recovery from
detected error messages last error

A 4 3 4
B 2.5 2 3
c 2 2 ·2
D 1 2
E 2.5 3 2
F 3.5 3 3
G 4.5 4 3
H 5 4 4
I 3,5 2

All the marks are out of 5. The half marked for de
tecting an error indicates that the error message was
confusing enough for it to be unclear if the error was
properly detected. Naturally, the last two columns are
subjective. PUG

5

PASCAL PROCESSOR VALIDATION PROCEDURE

By David Blyth
Standardization Office,

National Computing Centre

1 Introduction

Few Pascal users can be unaware of the recent pub
lication of the British Standard for the language which
will shortly be adopted internationally. Many users
have heard of the suite of validation programs, devel
oped by the University of Tasmania and the National
Physical Laboratory, which can be used to check on the
standard-conformance of an implementation. This suite
is readily available and any user who has a copy can
use it to test his own compiler or interpreter. For those
brave users who undertake such testing this article pre
sents a brief guide to the steps involved and draws upon
experience gained at NCC in a joint NPL/NCC/BSI
project to develop and document the validation
procedures.

2 The Pascal Standard and Validation Suite

The Pascal standard defines the language itself and
the manner in which Pascal programs are to be ·handled
by an implementation. The validation suite contains
over 400 test programs whose purpose is to check
whether or not an implementation accepts the language
as defined in the standard and whether or not programs
which are accepted behave as the standard says they
should. The standard and the validation suite have been
developed in parallel with the result that the suite will
provide an exceptionally strenuous test of any imple
mentation. An implementation which performs well
under test can be used with confidence in its conform
ance and reliability.

The suite contains eight types of test program
which investigate respectively, conformance, devi
ance, implementation-defined features, implementa
tion-dependent features, error handling conformance
arrays, quality and extensions. These classes of tests
are quite distinct and are used in characteristic ways.

2.1 Conformance Tests

Conformance test programs attempt to check that
an implementation provides those features required by
the standard and that it does so in the manner which the
standard specifies. These programs are all correct stan
dard Pascal. If the implementation conforms to the
standard these programs all compile and execute. If a
conformance test program fails then it is an indication
that the implementation does not conform to the
standard.

2.2 Deviance Tests

Deviance test programs check whether

(i) the implementation provides an extension of Pascal;
(ii) the implementation fails to check or limit in an ap

propriate manner some feature of Pascal;

6

(iii) the implementation incorporates some common
error.

No deviance test program is standard Pascal. Each
such program contains exactly one such deviation.
When a deviance test is run the results are inspected
for evidence that the implementation does in fact detect
the deviation. If it does not then the implementation
does not conform with the standard.

2.3 Implementation-Defined Features

The standard defines an implementation-defined
feature as one which may differ between implementa
tions but which is defined for any particular processor.
A conforming implementation must be accompanied by
a document that provides a definition of all its imple
mentation-defined features. The test programs for im
plementation-defined features are intended to show
how these features are handled in any particular imple
mentation. If they aren't handled in the manner claimed
then the implementation does not conform.

2.4 Implementation-Dependent Features

An implementation-dependent feature may differ
between implementations and is not necessarily de
fined for any particular implementation. Here the im
plementor can either state in his documentation that use
of such features is not reported or else have the imple
mentation issue some diagnostic for which such a use
is encountered. The test programs in this area are de
signed to determine the behaviour of the implementa
tion. The implementation conforms only if it behaves
as claimed or reports implementation-dependent usages.

2.5 Error-Handling

An error is defined, in section 3 .1 of the standard,
to be a violation by a program of the requirements of
the standard that the implementation is not obliged to
detect. An implementation only fails to conform in re
spect of error-handling if it fails to process an error in
the manner claimed in the documentation. The error
handling tests each present the implementation with
one error with the aim of determining exactly what the
implementation does with it.

2.6 Conformant Arrays

An implementation may conform with the standard
at level-0 or at level-1. In plain terms it can either have
conformant arrays or it can't. If conformant arrays are
provided then all of the features specified for them must
be provided according to the standard.

The conformant array tests are a collection of con
formance, deviance, implementation-defined, imple
mentation-dependent, error-handling and quality tests

PUG(UK)

designed to test the conformant array features in
isolation.

2.7 Quality

Many aspects of an implementation are beyond the
scope of the standard, but it is still useful to investigate
them. Quality tests explore these areas and investigate:

(a) The limits on the size and complexity of programs
imposed by the implementation

(ii) the amount of store needed to perform certain
well-defined tasks

(iii) the accuracy of real arithmetic
(iv) the meaningfulness of diagnostics for common

types of error
(v) the speed of the code produced.

Quality tests often throw up some surprising results!

2.8 Extensions

Many implementations offer extensions to the
standard. The extension tests see whether common ex
tensions (egthose approved by PUG) are implemented.

Together the test programs provide a very thor
ough test of an implementation.

3 Using the Validation Suite

3.1 Distribution Format

The validation suite is distributed on 9 track mag-
netic tape with characteristics as follows:

Recording density : 800 or 1600 bpi
Recording mode : NRZI or PE
Character code : ISO 646 or EBCDIC
1200 bytes/block, 80 characters/record.

A purchaser of the tape can specify which density,
recording mode and character code he wants.

Thereare 49 files on the tape. Three of these con
tain documentation. The rest contain the validation
programs.

3.2 Media Conversion

Users whose machines have tape drives should
experience no significant problems in reading the dis
tribution tape. Their only concern will be with lexical
conversion if necessary.

Users with floppy disc based systems need to do
a media transcription to get the suite in a form in which
they can use it. This conversion can be tricky, and is
almost always done on an ad hoc basis for the particular
system concerned.

3.3 Lexical Conversion
There are two character sets to consider when us

ing the suite - the one used to encode the test pro
grams, and the one used to represent "char-type" val
ues on the target computer.

Roughly speaking any consistent set oflexical sub
stitutions can be made, but some may render specific
lexical test programs, and some programs which test
the char type, irrelevant in validation.

Care is needed to ensure that lexical conversion is
consistent throughout. This is particularly important if

PUG(UK)

media conversion affects character code
representations.

3.4 Integrity Checking

Following media and lexical conversion it is advis
able to check that no corruption has occurred. For this
purpose a program called the Checktext program is
supplied. It produces a 96-bit binary check pattern us
ing an algorithm originally developed for use in data
transmission (CCITT Rec. V.41)

The Checktext program operates on a standard
ized internal representation of the program and will not
be affected by legal lexical substitutions. Certain parts
of the program may need customization for use on par
ticular systems and the source code is marked to show
where such changes should be made.
_ The results of the Checktext program should be

compared with standard results contained in the User
Guide to the suite (supplied with the distributrion tape)
and if there is any discrepancy then transcription has
introduced errors.

3.5 Checking Validation Suite Assumptions

A validation suite must necessarily make certain
assumptions about the nature of the implementations
which it will be used to test. The Pascal validation suite
assumes that

• text files
• character-strings
• the real-type
• local files

are all implemented, also that

• lines up to 72 characters long can be accepted
• lines up to 72 characters long may be output
• the value of maxint is> 32,000
• the relative precision for reals is< 0.001
• the characters needed to encode the test pro

grams are all accepted as distinct by the
implementation

• the "largest" procedure in the test suite is ac
cepted by the implementation (except for certain qual
ity test procedures).

A further implicit assumption is that the real arith
metic system is susceptible to investigation by certain
types of method.

The validation suite contains a program called the
"Check Assumptions" program which enables the user
to determine whether or not the implementation vio
lated any of the assumptions listed above.

4 Planning and Running the Tests

4.1 Planning is Important

Testing an implementation is not just a matter of
running all the test programs. The test suite is large and
on some machines it is not possible to run all the tests
without breaking the suite into batches. Furthermore
close attention must be paid to ensure that the behav
iour of the implementation is accurately recorded
throughout the test procedure. Finally provision must

7

be made to make it easy to re-run any particular test
after preliminary interpretation oftest results.

Choice of the method of working can have a
marked effect on the overall time taken to run the tests.
There are two areas to consider. First some method
must be chosen to extract test programs from the files
which contain them. Second the organization of the
jobs which run the test programs must be decided. The
User Guide illustrates three approaches for each of
these methods which will cover most cases on a wide
range of machines.

Some programs may prove to be rogues on certain
implementations. There is no way of knowing in ad
vance which programs will behave in this way for any
given implementation. The user should take care so that
such programs do not cause the loss of accumulated test
results.

In any event some programs will need re-running
because the results on the first run may have been in
conclusive. The circumstances in which a re-run is
needed are given in the Guide.

5 Reporting Results

It is desirable to adhere to a standard form of pres
entation when reporting the results of a validation. This
offers two main advantages.

First, when a formal validation is being done, a
standardized report:

Dear Nick,

After our phone conversation the other week, I
was rather more relieved to feel that here in the UK
there are other Pascalers at work and that PUGUK is
viable again. The gap has been too long, and I wish you
well in trying to get it going again. I shall try and do
what I can and particularly with public domain soft
ware, but at the moment, I don't have a great deal of
time to spare, nor any telecomms equipment to plug
into my computer.

I enclose a cheque for 9 pounds for subscription.
On the question of back numbers, I have copies of 12-
16, and any subsequent or previous issues would be
very welcome. I would have thought that for 17-21
which you already have, it would be worth while put
ting a note in the next issue to see how many people
want them, and then have your printer print adequate
copies in total. Much better than spending your time
collating everyones' needs and doing individual pho
tocopies of bits and pieces. Perhaps if other people
were able to lend you some of the older copies, the same
could be done. I'd certainly fend you 12-16 if you like.
After all, its the information that matters, not whether
the issue is an original or not unless we have an collec
tors among us. Anyway, mark me down for any back
issues you can get your hands on, please.

I am now using Pro-Pascal from Prospero Software
as my major programming tool, as well of course as
Wordstar to compose programs and write letters. The

8

1 Processor Identification
2 Test Conditions
3 Conformance Test Results
4 Deviance Test Results
5 Error-Handling Test Results
6 Implementation Defined Test Results
7 Implementation-Dependent Test Results
8 Level 1 Test Results
9 Quality Test Results

10 Extension Test Results

Guidance on the content and presentation of these
sections is included and a sample validation report is
included as an Appendix.

6 Practical Use

The present article offers only a brief sketch of the
validation procedure. At first sight it may look some
what daunting. In practice the key is attention to. detail.
The User Guide gives fairly detailed advice on tran
scription and test job organization, and will be found
helpful by most people undertaking tests of implemen
tations. Once transcription and organization have been
sorted out the tests usually run smoothly. Carrying out
a full test is a rewarding exercise which offers many
lessons to language implementors. It is hoped that users
arid implementors alike will use the test suite and help
to promote rapid practical standardization of Pascal.

PUG

hardware is OEM kit from Sirton Computers in Purley,
by the name of Midas and is in essence an Integrand
10-slot SlOO case with PSU, Ithaca IEEE SlOO cards
(MPU-80, FDC-2, 64KDR and VIO boards) giving 64k
and 4Mhz Z80A with CP/M, plus 2*YE-DATA 174D
1Mb drives. The printeris aQume (a luxury really), and
a Volker-Craig VC404 completes the outfit.

I will try and compose a critique of Pro-Pascal as
soon as possible, but version 1.4 is due out soon with
8 byte longreals among other goodies. I have written to
Charles Foster of Pascal/Z User Group asking if he or
his contributors would permit the distribution of any of
their Pascal somces to PUGUK members appropri
ately modified to BS 6192, or if indeed there is any other
Public Pascal around in the States. I think we ought to
be prepared to reciprocate on this, don't you?

In converting from programming mainly on main
trames in Fortran and having a nodding acquaintance
with Cobol, Basic and other languages, there are times
when even Standard Pascal has its limitations. There
fore, I've thoug~t of two ways of improving the lan
guage. As PUG may have some influence with the pow
ers that be, I've taken the liberty of including the
suggestions - by all means put them in a news-letter
if you like. I don't believe in trying to persuade com
piler-writers to augm~nt their compilers as their job is
to implement the standard. If the language is to grow,
and if any such need is identified, then it's the standard
that must mature. Now BS 6192 is published, it will be

PUG(UK)

some time before any further thought is applied to the
subject I expect, if ever, so perhaps now is the time to
see if anyone is interested.

I

John R Logsdon
18 Darley Road

Manchester M16 ODQ

Tongue-in-cheek Pa•cal Language enhancement•.

11} Structured constants.

Program make-up to be for examJ'le:

PROGRAI-! example;
CONST onehundred·l~O;

etc
TYPE

•calar'type•(cof fee, jam, bread »tea, biscuit, suicide);

extype•RFCORD
a:integer;
b,c:char;
d:array[0 •• 3] of integer;
f:scalartype;
g:ae~ of scalartype;
h:Rrray[l ••• 20) of char

FND:
, ...•............. etc

TARLF. exl:extvpe•
one hundred, 'a', chr(20), (0, 25, 50, 7 5), .1am,
[coffee,tea,hread],'cholesterol':

VAR exvar:extype;di1playl:char;

RF.GIN
exvar:•exl;
dieplayl:•exl.h(4];

.••.....•........•... etc

Note the use of the 'chr' function to set up unprint
able characters, the absence of any delimiter other than
those already used in Pascal and the access of a cop.;
stant array element. There is no reason why 'ord'
should not also be included so that portability is en
hanced. The syntax follows closely on that of Pascal as
it is and involves no ambiguity in type declaration im
plicit where structured constants are declared in the
constant section as in some implementations. Pointers
declared in the correspnding type declaration may be
set to whatever internal value represents nil, however
they are named and uncompleted arrays of char ini
tialized to spaces.

Such a feature will provide geniune structured
read-only constants without the ugly initiation pres
ently necessary in Pascal. In fact, in practice it is easier
to put records for initialization in a parameter file and
read them in, which does not seem an elegant solution.
For micros with restricted memory, initializing a record
from constants needs up to two copies of every element
- one dynamic and one in the constant area, which is
rather wasteful of space.

h) Tvre-change function.

Svntax to he, for e~Rmple:

PROr:~AH another;

CO!IST, etc

TYPE score-(tirst,second,third,fourth);
fruit•(apples,pears,oranges,grapes);

PUG(UK)

VAR thisscore:score;thisfruit:fruit;

{calculate thieecore somehow)

thlsfruit:•fr11it(thisscore);

........................ etc

This facility will provide a logical completion to the
built-in functions 'ord', 'chr' and provide a much more
readable altemative to the use of variant records. Al
though there is no reason why the method should not
be available for records if the matching of record
lengths were entirely the programmers responsibility,
there is an objection in that the internal representation
of variables will be machine-dependent. I envisage this
type-change function purely for scalar variables be
tween scalars and perhaps for pointers between point
ers. It is of course really a mechanism to cause the com
piler not to check types.

(This facility is similar to one available in AAEC Pascal
8000 for the IBM 360/370 series, and attributed to ·
K.ludgeamus)

If any readers have any comments for or against,
perhaps PUG can help to~ views?

HELP!

Dear Nick;

Systems Used

(i) Apple (II) UCSD Pascal.
(ii) To be delivered December 1982: Burroughs B21-5

(384 K Byte). Pascal ISO draft 5.

Special Interests

Business systems. Particularly rapid access to un
sorted data items. Data base management systems.

Information Please

We would be interested in knowing of a Pascal
compiler to interim ISO standard or UCSD for Bur
roughs B1955 with 0.5M Byte working store. Manufac
turer does not support Pascal for.

Dear Nick,

CET TELESOFI'WARE PROJECT

Mr. P A E Herring
MAPAC

17 Market Square
Leighton Buzzard

Bedfordshire
LU77EU

Thank you for your letter of 6th December.
I think you must have got the wrong impression

from my letter of 3rd December. We certainly do not
want to see a different telesoftware format for PAS
CAL. As I understand it, the only problem with the cur-

9

rent format is the TAB character wfuch lies outside the
PRESTEL character set. You may be interested in our
recent extensions to the format (copy enclosed) which
overcome this.

As far as including PASCAL programs in our li
brary is concerned, all I am saying is that we need to
learn how to walk before we can run. We are keen to
include programs in languages other than BASIC, in
cluding PASCAL, but need to be sure there are people
who can receive them on our system and will find them
useful, before putting them up.

If you know of PASCAL programs which will run
on the micros mo1'!t used in educations, ie 380Z, Apple,
Pet, Acorn and TRS 80, I would be interested in re
ceiving details.

Chris Knowles
Telesoftware Project Manager

Council for Educational Technology
3 Devonshire Street, London WlN 2BA

Dear Pascal User,

Please find enclosed details regarding Version 3 .1
of the Pascal Validation Suite which was released on
the first of October 1982. Should you wish to receive
a copy of the suite, please fill in the enclosed application
form for a license and send it together with your re
mittance to:

Dr. Z. J. Ciechanowicz
Division of Information Technology & Computing
National Physical Laboratory
Teddington
Middlesex TW 11 OLW England

10

On receipt of the form and remittance we will send
a magnetic tape containing the suite.

The cost of the package is £ 100 sterling (+ 15%
VAT for UK users) and cheques should be made pay
able to "The National Physical Laboratory" quoting
our reference number NPS 2/01.

Z. J. Ciechanowicz
Division of Information Technology & Computing

Department of Industry
National Physical Laboratory

Teddington, Middlesex TWll OLW

PS When requesting the suite please supply the tape
format you require:

i.e. 1600/800 b.p.i.
ISO/EBCVDIC code

We generally write our tapes with fixed length
blocks, 15 records per block, 80 characters per record.

Dear Nick,

l. Can you recommend a PASCAL for XENIX? (LSI
II UNIX)

2. Do you know who distributes the Dutch 'Pres Uni
versity' version of PASCAL? (in the UK)

Brian Kirk
Robinson Systems

Engineering Limited
Red Lion House, St. Mary's Street,

Painswick, GL6 6QR
Telephone: (0452) 813699

VAT Registration: 302 3124 28

PUG(UK)

APPLICATION FOR LICENSE TO USE VALIDATION SIDTE FOR PASCAL

Name and address of requester (com
pany name if requester is a company)

Signature of requester

Date

Name and address to which information
should be sent (write 'as above' if the
·same)

In making this application, which should be signed by a responsible person in the case of a company, the requester
agrees that:

(a) The copyright subsisting in the validation suite is recognized as being the property of the British Standards
Institution and A.H.J. Sale;

(b) The requester will not distribute machine-readable copies of the validation suite, modified or unmodified, to any
third party without permission, nor make copies available to third parties.

In return, the copyright holders grant full permission to use the programs and documentation contained in the vali
dation suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative
reports, and similar purposes, and the provision of listings of the results of compilation and execution of the programs
to third parties in the course of the above ctivities. In such documents, reference shall be made to the original copyright
notice and the source.

OFFICE
USE
ONLY On behalf of A.H.J. Sale and the British Standards Institution

National Physical Laboratory Teddington Middlesex TW11 OLW Telephone 01-977-3222 Telex 262344

Pascal Compiler Validation Suite
NPL issued version 3.1 of the above suite of test programs on 1 October 1982. These programs permit a user to
check the compliance of a Pascal compiler and run-time system with the ISO standard for Pascal (ISO 7185, also
BS 6192). The new suite is an extensive revision of version 3.0 and the work has been undertaken in conjunction
with Professor A.H.J. Sale of the University of Tasmania. Subsequent revisions to the test suite are likely to be of a
minor nature.

The British Standards Institution will shortly be launching a pilot validation service base upon the test suite together
with other material.

The test suite consists of about 17,300 lines of Pascal programs plus addition comments on each of the 553 test
programs. The programs themselves are divided into a number of classes as follows:

PUG(UK)

182 programs checking that the features of the Standard are available;
157 programs checking that illegal constructs are rejected by a compiler;

82 programs checking the error-detection capability of a Pascal system;
60 programs checking the quality of an implementation;
40 programs checking for Level 1 Pascal ('conformant arrays')'
16 programs checking the variations permitted by the Standard;
13 programs checking for features defined for each implementation;
3 programs checking for extensions. S.A. Wichmann

Z.J. Ciechanowicz, extension 3977
For BSI, J. Hatton-Smooker, telephone 0442-3111

11

~ :T~ y~ :T~ y~ :T~ y~ :T~ y~ :T~ y~ :T~ y~ :T~

A Better Referencer
By J. Yavner

Money Management Systems Inc.

The program which follows was developed from
the Currie/Sale procedure cross-referencer published
in Pascal News #17. Of course, any programmer who
looks at someone else's program thinks he could do a
better job, but I think that by almost any standard I suc
ceeded, though it took me much longer than Sale's
three days. I have an excuse, however: prior to this
one, I had never written a Pascal program; my experi
ence with the language comes solely from the articles,
standards proposals, and validation suite which have
been published in PN.

The program is shorter, simpler, and almost cer
tainly faster: It has half as many source lines as the
Currie/Sale version, but the format is different, and the
number of statements in only 25% smaller. The HP
1000/2015 compiler generated 4604 words of code and
static data (the 1000 is not stack-oriented). The proce
dure descriptor is 25% smaller; the reference descriptor
is 97% smaller. The syntax analyzer is more tolerant:
missing semicolons do not faze it. The program needs
29.80 seconds and 1376 words of heap to process itself,
356.80 seconds and 5780 words to process the 103-pro
cedure, 4000-line P4 compiler.

The improvement stems from the use of a different
data structure: The Currie/Sale referencer is optimized
for programs of virtually infinite size, using trees and
stack and rings of procedure descriptors and chains of
reference descriptors, which allow the procedure da
tabase to grow very large with the program's taking all
the memory ever manufactured and all the time till
doomsday to process it. This referencer, on the other
hand, is optimized for small programs, and uses an ar
ray of procedure descriptor pointers whose size is fixed
bYa constant, a quick-and-dirty replacement sort, and
sets of reference descriptor :flags (two sets, since the
program prints the reference data from both view
points, caller and callee). As the program to be pro
cessed increases in size, memory use increases quad
ratically, eventually surpassing the Currie/Sale
referencer, which started out higher but rises only lin
early. Execution time, I imagine, ought to expand sim
ilarly. It might be interesting to determine where the
cross-over point is.

The program uses the CASE ... OTHERWISE
construct which many processors don't recognize yet.
The solution for this problem is to upgrade the proces
sor! An interim fix is to replace the CASE's with
IF ... ELSEIF constructs.

Optional lines

Those lines which begin with the null comment are
not vitally necessary to the program and can be re
moved without seriously affecting its operation. They
serve primarily to handle HPlOOO extensions.

12

Lines 19, 21-24, 49-51, 68-71, 522-526, and551-564
make use of implementation-dependent intrinsics to
print processing time and heap usage information.
These lines can of course be replaced with the appro
priate code to do the job at the target installation or sim
ply left out - like most statistics, they're not really
necessary.

Lines 113-116 ignore compiler directives. HP Pas
cal/1000 has its directives bounded by dollar signs. The
format is like strings or comments, and thus is in the
spirit of Pascal, but nonetheless the construct must be
handled separately.

Line 1 is a compiler directive (another is on line
71). The default output line width is 128, which causes
132-character lines to wrap around even though there
are still empty columns on the page.

Lines 307-308 and 345-346 add the HPlOOO intrin
sics to the pre-defined procedure table. They can be
replaced with the appropriate constants for the target
installation or removed to make the program conform
to the pure standard. The format is as follows: Each
procedure name is followed by a space. A hyphen ter
minates each constant. The last string ends with a pro
cedure name, space, and hyphen, and is then padded
with trailing spaces to ConstLen. As many strings as
necessary can be added at 307 as long as they have cor
responding calls at 345.

The directive "external" is recognized by the re
ferencer. Lines 8, 149, 237-238, and 477 could be mod
ified to allow the it to recognize the target installation's
directives. The implementation dependency was in
cluded primarily to show how this is to be done. The
nature of the dependency is such that it can be left in
even if the target doesn't recognize it.

Options

This referencer contains a much more efficient
Addintrinsics procedure than does the Currie/Sale ver
sion (because intrinsics inclusion is not the default for
that referencer, while it is for this one). The feature can
be disabled by setting Intrinsics false. The procedure
itself is quite small and can be left in even if inactivated.

The program is designed to print the reference in
formation from the standpoint both of caller and callee.
Naturally, twice as much information takes twice the
space and twice the time to print. Either table can be
disabled separately by means of CallsTable or
CallersTable. Almost all the code for printing the tables
is common. As an aside, when both tables are printed
it is sometimes difficult to figure out which direction is
represented by which table, even though the table's ti
tle says "calls" or "callers." One table contains only
a single procedure defined at level 0: the main program.

Software Tools

Obviously no procedure can call the main program.
Similarly, the other table contains the intrinsic proce
dures. Obviously they don't make any calls.

The identifiers in the input file are truncated if they
are too long to fit into the identifier arrays. The length
of these arrays is specified by ldentLen. Changing this
constant requires corresponding modification to the
constants defined on lines 5-8, 83-87, and 210-211.

LineWidth can be set to any appropriate value.
Setting it to 80 gives two columns of reference data,
which is somewhat hard to read (try setting your ter
minal width to 2 some time). Setting it to 56 forces the
tables to have one reference per line, which is rather
vertical but still readable.

MaxProc determines the size of the array of point
ers to procedure descriptors, and thus the maximum
allowable complexity of the input program and the re
ferencer' s static size. If it is set to 64 and the HP-spe
cific intrinsics are removed, there is room for 34 pro
cedures, more than most programs published in PN
need - more than most programs executable on a pro
cessor that can't handle large sets probably need.

StackDepth specifies how many BEGIN/END and
CASE/END structured statements imbedded inside the
body of a procedure the referencer can handle. Few
programmers can create code more complicated than
16 nested structures (the referencer never goes deeper
than four), but if desired the stack can be extended eas
ily, since each element in the stack takes only one
integer.

Offset is the distance from upper case to lower. The
program may be set for EBCDIC by changing this con
stant to the appropriate value.

One final note: no numbers larger than 32767 are
needed by the program. On some processors (such as
the HP 1000), significant space can be saved by assign
ing Maxlnt to 32767 in the referencer's global constant
section.

&PREF T=00003 IS ON CR00031 USING 00011 BLKS R=OOOO

C H·LINESIZE 132~

label 99991
con st

Blankident
Prostldent
Fwd I dent
Extident
Intrinsics
Ca 11 sTab I e
Ca I I ersTab I e
ldentLen
Li new I dth

HaxProc

StackDerth
Of'f'set

CJGeTi1te
type
{)QneMord
C Jinf'oRec
C JTi 11eRec
()

Who le
Stacie.Ran Se
ErrorTYPes

IdentRan9'e
IdentSet
IdentStr inst
IdentPtr

PracRanste
LowProcRanste
Pree Set
ProcDesc

narte
namecases
I 1We I
scope
def'l lne

= ,
1 Prostra~ 1 1
1 forward 'i
1 extern a I / i
true C Pre-define intrinsic Procedures Ji
true C Print table of references FROH ProcedUr~s Ji
true C Print table of references TO Procedures Ji

16 C Sisnificance 11.Jrit -for identifiers. li
132 C Deter•tines nu•1ber of' identifiers Per I ine:)

C (LineWidth-IdentLen-22) DIV <IdentLen+2))J
74 C Ha'xiA1U«i nu11ber of Procedures. This-should)

C be set to a convenient set size.)i
16 C Haxi11.ui1 block nestinsf within a Procedure li
32 C Distance f"ro•1 UPPer- to lower-case)i
11 C RTE return-ti«1e-of-daY code);

-32768 .• 3276?;
record a1toh1b1initoh1c1d1e1f OneMord endi
record i1 I I I i secs 1secs1 .. i nutes 1hours1 daYs: OneMord en di

o., Haxinti
1. . StackDeP th J
(N0Pro!:frai11 Redef in It I on 1ToaHanYProcs1 Hi sp I aced 1

TooDeeP 1LostEnds1 LostPer i ad) i

1. , Iden tlen i
= set of IdentRanSei

packed arraYCidentRanseJ o-f CharJ
""'Identstr i nsi

1. .HaxProci
O., HaxProci
set of ProcRan9ei
record

IdentStrinsi
IdentSetJ
LowProcRansfei
LowProcRan9'e C O
Hho I ei

Duti 1 In! ll Occluded)i

Software Tools

var

bodY Ii ne
calls1 callers
en di

Oinf'o
Otl11e
C)sec1 id I

I i·ne1 Paren
alpha1alphadisit

-1.. HaxintJ
ProcSeti

InfoRec i
Tll'leRecJ
Inte9eri

Hhol ei
set of' Chari

1 Identstr i n!O
J IdentSeti

jdent1 PrDS'
Iden teases
heap I dent
i dentYPe

IdentPtrJ
l(InProcess10ther1Def1Directive1DPen1CaseOpen1Close)J

Procnuin
block
I ist
sort.list

bl"acket
·stack ·

()

ProcRansfeJ
LowP1•ocRansei
arraY[ProcRansfe] of ""'ProcDesci
arr·ay[ProcRans:eJ of ProcRanse1

StackRans:eJ
array[SlackRan!:fe] of HhnleJ

()p1•oc.edure Exec(code:OneHordi var tiK1el,Ti111eRec)i externali
()

()procedure Getlnfo $ALIAS '@GHSl 1 $ <var info:Inf'oRec) i external i

Procedure ReadJ TorwardJ

Procedure ReadldentJ
C Re-ad next identifiel" fl"oK& inPut1 keePins track of Parenthesis)
C and skiPPins co~ments1 ~uotations1 punctuation marks1
C nur1bers1 and coK1Pi !er directives.)
CG:alPha1alPhadisit1Blankldent1Extldent1Fwdldent1Mident1Midentcases1
C IdentLen1IdentRanSe1KidentYPe1inPut10ffset1*Paren1!Read

canst
Procldent 'procedure
Funcident 'function
Bes i nldent 'bes in
Caseldent 'case
Endident 'end

var
j ; IdentRansei
ch : Chari

Pl"ocedure SkiPDisitsi
C SklP nu11eric charactet•s
CG I! Read)

'I
'!
'I
'!
'I

beSin while CinPut"'>='O'> AND (inPut"'<= 1 9 1) do Read endi

besin C Readident)
ident ·- Blankidenti
identcases := CJJ
identYPe := InProcessi
repeat

ch := i nPut" i
if ch='C' then beSin C Parenthesis or co~ment)

Readi
if inPut"'C)'*' then paren := paren+l else besin C Comment)

Readi
ch 1= 1 C';
endi

endi
if ch= 1) 1 then Paren := Paren-1i
if ch= 1111 then l"ePeat Read until input""'= 1111 i

() i-f ch='S' then repeat C Compiler directive)
() repeat Read until (input"'=1$ 1) OR Cinput."= 1111)i
() if input""'='''' then repeat Read until inPut"'=''''i
C) unti I inPut."'= 1"$ 1 i

if' ch= 1 C1 then repeat C Comment)
while Cinrut""'() 1) 1) AND Cinput"()'Kl) do Readi
if lnPut"'= 1M1 then ReadJ
until Cinput""'= 1) 1) OR Cinput""'=')l)J

if Cch)= 10 1) AND CchC= 19 1) then besin C Nu1r1ber)
Ski PD i 51' its i
if input"'=t,1 then be9in C Decimal)

ReadJ
Skip Di sf its i
endi

if' CinPut"'='E'> OR (input~='e'> then beSin C Exponent J
Readi
Readi
SklPDlsltsJ
endi

end
else if input""' IN aJphadisit then besin C Identifier)

J l= 1J
repeat

if identC1J() 1 / then j := j+1J
ident[j] := inPut""'i
Rea di
until NOT CinPutn IN alPhadisit) OR CJ=IdentLen)J

f'or J := J downto 1 do if identCJJ IN alpha
then beS'in C Convert to lower case J

ident[j] := chl"CordCident[JJ)+Of'fset);
i dentceses i= l dentcases+(j] J
en di

identYPe 1= O~theri
if inPut""' IN alphadi~it
then repeat Reed until NOT (input"" IN alPhadis:it)
e I se if C i den t=Proc Iden t> OR C i den t=Fun c Iden t) then i den tYP e: =Def
e I se if' (i den t=Fwdident) OR (i den t=Extiden tl

theR ldentYPe:=Directlve
else if ident=BeSinident then identYpel=Open
e I se if I dent=Caseident then i dentYPe: =CaseOPen
else if ident=Endldent then identYPel=CloseJ

end
else if' ch() 1 (1 then ReedJ

unt.11 identYPe{)InProcessJ
en di

Procedure Error(el"ror:ErrorTYPes>i

13

C Print error 11'1essa5le and 'terll'1inate }
CG:99991Mbracket1ErrorTYPes1I lne1HaxProC1*outPut1stack1StackDepth

be Sin
write(output1'****lU Er1•or at'Jfine:51' **lHM*: ')i
case error of

NoPr•o9rall'1:
writeln(outrut1'Flle does not besin with "prosraR1" 1)i

Redefinition:
writeln(output1'Procedure defined twice at sa~e scope')J

TooHan~Procs:
writelnCoutput1'Too manH Procedures1 ~ax'1HaxProcl4)J

Hispl'aced:
wrlteln(out1•ut1 1Hisrlaced reserved word')J

TooDeer:
writeln(outPut1 1Too ~anH nested btocks1 max 11StackDePth:J)J

Lost.Ends:
writeln(outrut1'End-of-file -- 1nissin9" END"s? 1)J

Los tPer i od:
writeln(outPut1'Unmatched END''s or ~issins EDF reriod')J
en di

if bracket)! then writetn(outrut1 1 Unter~inated blocks:')J
while bracl!.et)i do bes in CPrint I ine t's of unn1atched BEGIN/CASE's}

bracket := bracket-ii
writeln<outrut1stackCbracket):19)i
en di

Soto 9999 i
~n..-l!

functton Formatidenl<var ldenl:IdenlStrlnsJ
var i den teases: Iden tSet) : Iden tPtr i

C Restore upper-case fo1• Prtntin9". Pointe1·~ are used because the }
C result of a function must be either ordinal or rointer.)
CGlheaP1dent1ldentlen1IdentPtr1IdentRanse1IdeobSet1IdenLStrln9"10ffset

var j: IdentRan~ei
beg in

ForR"1atidenl I= hearidenti
heaPident" := identi
f'or j := 1 to ldentLen do if j IN 1dentcases then

heap i dent .. •(j J : =ch r Cord Cheap i den t"C J J) -Offset) i
en di

PT'Ocedure PrinTableCcal lstable:Doolean) i
C For•R"1atted output of co\ lected reference data. If several
(procedu1·es have the sa~e na~1e1 theY aprear in order of definition
CG:Boolean1 !For111at!dent1IdentLen1LineHidth1 I ist1M-outp.ut1 J
(P rocn\JA'uProcRan9e / ProcSetJP ro9'1 sor~ I i st)

0:

con st
IdentHidth
Indent

18
38

Identlen+2 { two sPaCt?s before idenl.))J
cont i nu at ion i nden tat ion: l1jentlen+22) i

var

Proc1 ref
refset

1 .. Line~idthi
ProcRan9'ei
ProcSeti

bes in
wr iteln <output) i
write In {output) i
write(outrut1 1 def body level Table of ') i
if cal I stable then write<outrut1 1cal Is')
else write(outPut1 1ca/ ters') i

1.friteln(outrut1' for 1 JPro9")i
write In (output);
for rroc:=l to rrocnunr do with I ist[sortl ist[ProcJJ ... do
if cal !stable AND (cal ls()[J) OR NOT cal !stable AND
((cal lers()[J) OR (level }0)) then bes in C Include each Procedure

C if it cal led or was cal led1 but include al I user-define1:fs
C in the table of callers in order to find never-useds

j :=Indent;
if de.fl ine=O then write(output1' 1 :12) else beSin CNon-intrinslcs)

write(output1defl ine:5) i
case bod!:!' I ine of

write(outPut1 1 none?') CBod!:I of forward Procedure not found}i
-1:

write Coutput1 1 extern');
Hax!nt:

write(output1' fori:r1al')i
otherw I se

write(output1bod!:1l ine:7) i
en di

en di
write(outrut1 level :7, 1 1 1For111atident(na1r1e1na1oecases)~, 1 : 1) i
if cal I stable then re-fset:=cal Is else r·efset:=cal lersi
for ref:=! to Procnu.11 do if sort I istCrefJ IN refset then bes in

if IdentWidth)LineWidth-J then be9in C No rooru left on I lne }
write In (output) i
write(outPut1' : 1 :Indent> i
J:=IndentJ
endJ

with I i st(sort Ii st(ref]J"' do write (out.rut, / / /
For1r1atiden t (n ;:u·re / n as:r1ecases) '") ;

J:=j+!dentWidthi
end}

write In (output);
en di

endi

Tunction FindProc(var Proc: ProcRanSe): Booleani
C Set ar9 to I ist(J ete1oent that points to the }
C ProcDesc for· ident. If none1 result is false.)
CG:Baolean1 ident1 I ist1Procnulf11ProcRan9e }

be9in if I lstC1J=NIL then FindProc:=false e.lse besin
Proc :=procnurd
while ((list[rrocJ"'.nan1e()idenU OR (list(ProcJ".scoPe=O)) AND

(proc)i) do proc:=rroc-1i
FindProc:=truei
with I ist[ProcJ"' do if(scope()1)0R(na1ue()ident.)then FindProc:=falsei
end endJ

rrocedure AddProci
C Add a ProcDesc for ident }
CGlblock1 !Error1 !FindProc1 ident1 identcases1
C I ine1MI ist1HaxProc1MProcnuir11ProcRans:e

14

var proclProcRansei
bes in

if FindProc(Proc) then if I ist[procJ .. •. Jevel=block
then Error(Redefinition)J

if rrocnu~=HaxProc then Error(TooHan~Procs)i
if I istC1J()NIL then Procnu•1:=procnus:rr+1i
new (Ii st[pr:ocnumJl i
with I istCrrocnu1r1J"' do be9'in C Initialize }

name ·- i den ti
namecases
I eve I
scope
def I ine
bod~line
ca 11 s
c.a I I ers
en di

en di

identcasesi
.- blocki
·- u
·- Ii nei
·- Oi
:= [J.j
. - [] i

procedure AddlntrlnsicsJ
C Add the Pre-defined Procedures to the procedure I !st
CG:Blankldent1M-ident1*identcases1IdenlRanSe1M-I ine }

con st
ConstLen 53 C Lensth of the intrinsics-definition constant$)J
Consti 'abs arctan chr cos.disrose eof eo[n exr Set In new o-'
Const2 'dd ord pack Pase pred rut read readln reset rewrite-'
Const3 1 round sin s~r s~rt sUcc trunc unpack write writeln - /

(} Const4 'append close halt I inepos n1ark maxpos open overprint··'
(} Const5 1 Position Pro~pt readdir release seek wrltedir -

tHPe
Cons tRanse 1, , Cons tLen i
ConStrin9 Packed arraH(ConstRanseJ of Chari

var l' .. :IdentRan.Sei

Procedure Addintrinsics(nameslConStr1ns>J
C Do the real work of the Procedure. NecessarH ~ince the intrinsics
C definition constant 1s sectioned·· inner proc ls r.al led for each.
CG:!AddProc1Blankident1ConString1ConstRan9"e1~ident1*k}

var jJCon$tRanSei
be!:! in

j: =1 j
rereat

if nairres(J]::. 1 / Lhen begin C Add Procedure)
AddPr·oc J
j J+ii
k l= 1J
ident := B!ankldentJ
end

else if names()'-' then be9in C Read next. char }
identCkJ ·- na111es[j]j

r.. : = r..+li
:= J+li

endi
unti I na111es[jJ='-' i

endJ

beS"in C Addintr1nslcs (outer)
ident ·- Blankidenti
identcases := [JJ
I ine : = Oi
y, =~ i;
Addintrinsics<Consti)i
Addintrinsics(Const2);
Addintrinsics(Const3)i

C} Addintrinsics(Const4> i
C} Addintrinsics<Const5);

I j ne := 1 i
en di

Procedure ProcessBlocki
C Process a procedure, function1 or proS1·aru block }
CG:! AddProc / M-b I ock1 Ext. i dent, ! Fi ndProc 1 ! For111at!den ti i dent1 i den teases /
C identHpe1 I ine1 I ist1LowProcRan9e1*0UtPut1lfParen1rrocnut111ProcRan9e

var
Proc : ProcRanSei
current1JocalrDot : LowProcRan9'ei

procedure ScanArgu~ents;
C Read ar9"u~ents1 checklns for scope occlusions and fori1al Procs }
CG: !AddPr•oc1block1 !Error1 !FindProc1 !For•1atident1 ident1 identcases1
C identHPe1 I ine1 I ist1M-output.1*Paren1M-Proc1 !Readident

be9in C ScanArsu~ents }
Par~n:=O C Should be an!:l'Wl3!:11 but ~ake sure)J

-Readiden t;
while Paren)O do be9tn C Inside arsu1r1ent I ist

lf ident~pe=Other then if FtndProc(proc)
then I ist[proc]".scopel=block
else else if ident!:l'Pe(}Oef then ErrorCHlsPlaced)
else besin C For~al Procedure/function }

Readlden t;
writeln(output1J ine:51' / :bJockM21

For111a tlden t (i den t1 i den teases)") i
writeln(outrut1 I ine:51' 1 : (block+1>*21'formal 1) i
AddProci
I ist[procnumJ"',bodHline:=Hax1ntJ
en di

Readldenti
if Paren)i then rereat Readldent unti I paren(2J
endJ

end}

procedure ScanDefsJ
C Read definittons1 check.ins for scope occlusions and local Procs
CG:block1 !FindProc1 !Fonratldent1 ident1 identcases1 identllPe1 I ine1)
C Ml istdtoutput1*Proc1 !ProcessBlock1 !Readldent }

be9in while (identHPe00Pen) AND (identHPeODirective) do beSin
if identHpe=Other then if FindProc(~roc)
then list[procJ",scope!=block
else else if ldent!:l're=Def then besin C Local Procedure
Readlden t;
writeln<output, I ine:s, 1 / lb!ocklif21

For1uatiden t (i dent, i den tc ases) '') i

Software Tools

ProcessBlocki
en di

Readldenti
end endi

Procedure ScanBodyJ
C Check bod!:I for references to Procedures J
CB:bracket1current1!Error1!FindProc1MidentYPe1input1line1list1
C Mproc1 !Read1 !Readident1

procedure Pushi
C Stack a 'beS'in' or 'case' statement-bracket I ine-number J
CGntbracket1 !E~ror1 I ine1Mstack1StackDepth

bes in
stackCbracketJl=I inei
if bracket=StackDePth then Error CTooDeep) i
bracket: =bracket+! i
endi

Procedure PoPi
CG:bfock1Kbracket1IError1inPut

be~in if Cinrµtn= 1 • 1) AND CCbracket)2) OR Cblockli))
then Error <LostEnds) e I se bracket ==bracket-1 endi

be9ln C ScanBod~ J
I ist[currentJ"',bodYI ine:=I inei
Pushi
repeat

Readidenti
case identYPe of

Def1Dlrectlve:
Error<Hisplaced)i

Qpen1CaseOpen:
PushJ

Close:
Popi

Other:
besin C Possible rel-erence or asslSnlflent to a -function J

wh i I e · 1 nPut =' ' do Rea di
if Input"'='=' then be~in C 1 := 1 possible J

Readi
if Jnput"'= 1 = 1 then ldentYPel=Def (AssiS'nJ1ent Ji

endi
if 1dent!fPe=Other then if FindProc(pro.c) then besin C Ref

with I ist.[currentJ"• do cal JsJ=cal ls+[procJJ
with list[ProcJ"' do callers:=callers+[currentJi
endi

endJ
endi

unt i I bracket= ii
en di

Procedure DeleteDefsJ
C Set local Procedures out-of··scope and re-·instate occluded ones)
CGlblock1list1localroot1Procnu~1ProcRanse

var Proc:ProcRansei
bes in

if localroot(procnum then for proc:=localroot+l to Procnum do
list(procJ~.scope:=01

for Procl=Jocalroot downto 1 do
if I istCProcJ"',scope=block then I ist[ProcJ ,scoPel=1i

endi

besin C ProcessBJock J
current := o;
if FindProc (proc) then with I istCProcJ"' do
if Clevel=block) AND (bod"line=Ol
then cur1•ent :=proc (Bod!:I for a forward-dee I a red Procedur•e)i

if current=O then besin C Add new procedure)
AddProci
current.: =p rocnu•d
en di

localroot:=procnu~J

b I ock :=b I ock+U
ScanArSu•1en ts i
Sc:anDefsi
writeln(output1I inelS1 1 1 :bloc:k*21For~at.IdentCident1identcases)"')i
if' identype=OPen then ScanBod!:I
else if ident=Extident then listCcurrentJ ,bod~line:=-1J

De I eteDefs i
block•=block-1!
en di

Dear Rich:
The software tools section of Pascal News is ex

tremely useful. We have implemented Prose on the HP
3000 and we enjoy using Prose to do our text formatting.

This letter includes one enhancement to Prose and
one bug-fix. The enhancement provides a new terminal
type: DIABLO. This terminal-type provides for pro
portional spacing on DIABLO terminals .. The changes
are as follows:

Lines 167 to 173 become:

{ THE FOLLOWING ARE NOT DIRECTIVES, BUT IT IS CONVENIENT
{ TO INCLUDE THEM IN THIS TABLE.

AST,
LPT,

Software Tools

{ ASCII TERMINAL
{ LINE PR INTER

Procedure Sorti
C Since there are so few Procedures to sort, there
C is no need for a co1r1P Ii cated a I osr i thm
CG: I ist1Procnu•11ProcRan9'e1Msortl ist J

var
Proc1j1k
status

ProcRansei
<InProcess1Fin ished) i

bes in
sortlistC1Jl=1i
for Proc :=2 to ProcnUln do bes in

k:=proc DIV 2;
status:=InProcessJ
with I ist[procJ"' do
if I istCsortl istCkJJ naJr1e)naJr1e then repeat
if k=i then status>=Flnished
e I se if I 1 stCsor t I i stCk-1 J J••, nan1e)naJ1e then k: =k-1
else status:=Finished

unt 11 status=F in i shed
else repeat
if k=Prac· then statusl=Finished
else if I ist(sortl istCkJJ na1ne<=na•1e then k:=k+1
else statusl=Finished

4'1ti I status=Finishedi
for j:=proc downto k+1 do sortlist[jJ:=sortl istCJ-1Ji
sortlistCkJl=proci
en di

endJ

Procedure Readi
C Check each char froK1 inPut for end-of-I ine)
CG:winPut,~line)

besiin
S'et < i nPut) i
if eoln<inPut) then I ine:=f ine+1i
endi

be!!!l'in C Pref' J
C JExec CGeT i Kie 1 t I A'1e) i
()with tiJ1e do besin C Save start tiJ1e J
C) sec : = daYsM86400+hoursM-3600+•• i nutesK60+secs;
CJ rril := •iillisecsi
C) endi

alpha

aJphadisit

:= C1 A1 1 1 D1 1 1 C1 1'D'1'E 1 1 1 F1 1 1 G1 1 1 H1 1 1 I 1 1 1 J 1 1'K'1'L'1'H'1
1 N 1 1 1 0 1 1 1 ? 1 1 1 G 1 1 1 R 1 1 1 8 1 1'T~1 1 U 1 1 1 V 1 1'H'1 1 X 1 1 1 Y 1 1 1 Z 1 JJ

:= a1Pha+C 1 a' 1'b' 1'c' 1'd' 1 1 e' 1'f'1 1 91 1 1 1 h 1 1 1 i}1IJI 1 'k',,, I I

'•1' 1'n'1 101 ' 1 P 1 1 1 <t 1 1 1 r 1 i's'1 1 t 1 1'u' 1'v'1'w' 1'x',
lyl I I zl I IOI•, I 91) j

I lstC1J •= NIU
paren l= o;
bloc~. •= O!
bracket := ii
I ine := ii
ProcnU1r1 l= ii
new(hearldent>i
if Intrinsics then Add!ntrinsicsi
Readidenti
if' ident<>ProS'Ident then Error CN0Pros1·a1r1) i
Read!denti
ProS'l=For~atident(ident1identcases> i
writeln<outPut1·1 line Table of definitions for 11Pro9)i
wr itel n <output) i
P~ocessBlock C Phase 1 - Process inPut Ji
if' inPutA() 1 , 1 then Error(LostPeriod)J
Sort C Phase 2 J;
If CallsTable then PrinTableCtrue) Phase 3A l!
If Ca I I ersTab I e then Pr in Tab I e C fa I se) C Phase 39 l;

CJwriteln(output)i
C lGetin fo (Info) J
[)£xecCGeTi~e1ti~e)i

CJwith info1ti~e do be91n { Print statistics J
C) sec : = daYs*B6400+hoursM3600+•1 i nutes*60+secs-sec i
C) •ii I : = •ii I I i secs-•li I J
CJ i-f •iil<O then besin C Correct -for borrow fron1 Jnilliseconds
CJ .-ii I :=•ii 1+100i
CJ sec := sec-iJ
C) en di
{) wrlte(outpu~1'Heap = 11initoh-tohll1' words. Time
() If ~i 1(10 then write(outPut1 10')J

'1sec:11', 1) i

CJ Wt'iteln(outPut1•ii I :11 1 seconds, 1)i
C) en di

paSe(output)i
9999:

end.

AJT,
DIA,
ILT);

ANDERSON/JACOBSON TERMINAL
DIABLO TERMINAL
ILLEGAL

Lines 789 to 793 become:

CASE TERMINALTYPE OF
AJT,
DIA,
AST: WRITEl(CRl;
LPT: BEGIN

END

WRITELNCOUTPUT);
CARRIAGECONTROL: =PLUS

END

Lines 82~ to 825 become:

END { IF TERMINALTYPE = AJT
ELSE
IF TERMINALTYPE = DIA THEN

BEGIN
X2 : = O;
FOR XI :: 1 TO LEN DO

PUG

15

END
ELSE

WITH STR(X1] DO
IF C <> BLANK THEN

BEGIN
IF X2 <> 0 THEN

BEGIN
IF (X2 MOD CHARWIDTH = 0) THEN

FOR X3 :: 1 TO (X2 DIV CHARWIDTH) DO
WRITE1 (BLANK)

ELSE·

END;

BEGIN
FOR X3 :: 1 TO (X2 DIV CHARWIDTH) DO

WRITE1 (BLANK);
X2 :: X2 MOD CHARWIDTH;
WRITE1 (ESC);
WRITE1 (THREE);
FOR X3 := 1 TO X2 DO

WRITE1 (BLANK);
WRITE1 (ESC);
WRITE1 (FOUR);

END

X2 : = Oj
WRITE1(C)

END
ELSE X2 := X2 + NB1 <I

FOR X 1 : = 1 TO LEN DO

Lines 1852 to 1860 become:

AJT,
DIA: BEGIN

WHILE INCHAR = BLANK DO
NEXT CH;

CHARWIDTH := NUMBER(10, -1, O, INFINITY, 1013);
IF NOT (CHARWIDTH IN (10, 12]) THEN

BEGIN
ERRO.R(1013);
CHARWIDTH := 10

END;
IF (TERMINALTYPE = DIA) AND (CHARWIDTH = 12) THEN

BEGIN
WRITE1(ESC); (Write out the HHI)
WRITE1(US);
WRITE1 (FF);

CH~~~fnTH : = 60 DIV CHARWIDTH; .
OUTLINE(1].NB1 := LEFTHARGIN 1 CHARWIDTH

END

Lines 3439 to 3440 become:

IF ERRORS THEN WRITELN(' PROSE ERRORS DETECTED.');
IF (TERHINALTYPE = DIA) AND (CHARWIDTH = 5) THEN

BEGIN (RESET PITCH)
WRITEl (ESC);
WRITE1(S);

END
END. (PROSE }

The version of Prose published in PN # 15 contains
a bug concerning index entries. If an index entry is
underlined, Prose starts referencing the NIL pointer.
The problem is that the function UPPER returns an in
correct value for underlined characters. A new UPPER
function is introduced in the SORT procedure.

Lines 2169 to 2170 become:

X1 : INTEGER; (GENERAL INDEX VARIABLE

(UPPER - SPECIAL VERSION OF UPPER. DOES NOT RETURN
• UNDERLINED CHARACTERS.

. }
PARM CH = CHARACTER TO CONVERT TO UPPER CASE.

FUNCTION UPPER(CH : ASCIIX) : ASCIIX;
BEGIN (UPPER)

IF ODD(CH DIV 128) THEN
CH := CH - 128;

IF CLASS(CH].LETTER THEN
IF CH >= SHALLA THEN

UPPER : = CH - 32
ELSE

UPPER : = CH
ELSE

UPPER : = CH;
END [UPPER};

BEGIN (SORT)

I encourage all Prose users to send their changes
to Pascal News. With such an excellent tool it would
be unfortunate if widely varying versions were to start
appearing.

Yours truly,
David J. Greer

The Use of Generic Capsules
with the

University of Minnesota Pascal 6000 Compiler
by Frank L. Friedman

Alessio Giacomucci
Carol A. Ginsberg

Anita Girton
Temple University

I. INTRODUCTION

This document contains a description of a data
type abstraction facility, a capsule, that has been im
plemented as an extension to the University of Min
nesota Pascal 6000 Series compiler. The facility pro
vides an encapsulation that establishes a static scope
of identifiers with controlled visability. Data objects
and a set of operations on these objects may be en
closed. The document is intended to provide sufficient
information for those who wish to use the general cap
sule facility and library. A more complete description
of capsules may be found in the paper "Capsules: A

Department of Computer and Information Sciences,
Computer Users Document 81-01, February, 1981, Rev.
1, September, 1981, Rev. 2, December, 1981

16

Data Abstraction Facility for Pascal," CIS-TR 81-01,
Temple University C & IN SC Department Technical
Report.

II. WHAT IS A CAPSULE?

A capsule is an additional Pascal type which is syn
tactically similar in structure to the Pascal record. The
syntax diagrams for the Pascal type definition (with the
capsule added)-may be specified as

type
definition

identifier

Software Tools

type
type identifier

scaler type

subrange type

pointer type

capsule type

array type

record type

file type

set type

The capsule type is defined by the diagram

CAPSULE export declaration

constant declaration

type declaration

variable declaration

procedure declaration

function declaration

END

with the export declaration defined as

export
declaration

EXPORTS

Software Tools

export list

The export list is a list of variable, procedure and
function identifiers which may be referenced outside
the scope of the capsule. All.protection of the data ob
jects encapsulated in the capsule is provided at compile
time. Thus, if capstype is a capsule, and the variable X
is declared to be of type capstype, then all external ref
erences to identifiers, id, appearing in the export list for
capstype must be of the form

X$id

Exported variables are read only, and identifiers not
appearing in the export list may not be referenced out

, side the scope of the capsule. There is no explicit import
facility, such as provided in Modula and Euclid.

The Pascal scope rules for capsules are the same
as the rules for all other Pascal objects. Only a single
copy of the operations (procedures and functions) de
fined within a capsule is created, regardless of the num-

. ber of variables declared to be of the capsule type.
When a procedure (or function) containing the decla
ration of a capsule-type variable is called and the var
iable declaration is elaborated, the capsule's global var
iables are placed on the runtime stack as a record. This
record remains on the stack as long as the called pro
cedure (function) remains active. Operations on the
abstract objects are thus performed via calls of the ap
propriate capsule procedures or functions.

An example of a capsule in parameterized (generic)
form is shown in Figure 2. An illustration of the use of
this capsule is shown in Figure 1.

A.

B.

{A non-recursive expression rarser}

var

{SG ('capstk'/'cnpsal1', charstackc0,20,charl:
v

stack: charstack20;

C. begin {initialize} stackSinit;

'{
stack$push (cursym);

stack$pop (rightoperand);
stack$pop (operator);
stack$pop (leftoperand)

end {parser};

Figure 1:

Use of a simple stack capsule

E. capstk

F. (pname, psi::e, ptype) {list of capsule parameters}

pname = capsule

{stack capsule definition (in generic form)
*
* parameters:
* pname - name of capsule
* psi:o:e - number of elements in the stack
* ptype - base type of stack arra}'

17

G. exports (pop, push, ini(;: {expcrt<'J ~Jent ifit-r~)

~ stadqiointer = v •• rsi::C';

H. var {global ca:rsule \·ariables}
a: ~ (1 .. r$i:c] of ptype; ~:<tad:~
top: staclq1ointer; {pointer to tO!' cf :<tack}

procedure pop (var item: ptype);
{pop an i tan of the stack and ~ave ir. i tern)

end {pop)

procedure push (item: ptype);
{ptL•J1 item 0nto .'tad.}

end {push];

I. prccedure init;
{perfcms re,;uircd initiali:aticn i;:.f ;;i<+:i; l•l-_1£·.:t~ :·
begin

top = 0
end {init}

J. procedure print;
{print out the data]

~
("$1 IF(I P1YPE' ='REAL')IBE>-'*)
writeln (datavalue:S:Z)

(" SY ELSEIF ('PTYPE I = I Il\'TEGER I)")
~-riteln (datavalue:S);

(*SY ELSE insert the next line to infonn user of error•)
to the user: ptype must be type integer or real, only.

(*$Y ENDIF*)

end {print) ;

end {generic fonn of stack}

Figure 2:

Stack capsule: generic form

The major features of the capsule facility are in
dicated by the letters A-Hin the left hand margins of
these figtires. These features are discussed next.

A. Generic (Parameterized) reference: Generic refer
ences in a Pascal program are processed by the Ge
nerics Preprocessor (see Section III). This program
searches a library of generic capsules (caps all in this
case) for the named capsule record (capstk), and
copies the capsule text into the program, substitut
ing the designated arguments (charstack20, 20 and
char) for the generic parameters (pname, psize and
ptype) listed in the capsule header (see line F.). The
syntax for specifying a reference to a generic cap
sule is patterned after the syntax for the INCL UDE
facility provided by the Minnesota Pascal
Compiler.+

B. Instantiation of a data element of type charstack20
all about one stack: This creates an instance of the
capsule: a copy of the global variables of the capsule
will be placed on the run-time stack when this dec
laration is elaborated during execution.

C. Call to initialization: The global capsule variable,
top, will be initialized to zero when this call is
executed.

+See the University of Minnesota Pascal 6000 Release
3 document.

18

D. References to exported identifiers: An exported
identifier is referenced by prefixing it with the cap
sule name followed by a dollar sign.

E. Capstk is the name of the capsule record as refer
enced in the generic statement (see A.).

F. Capsule J»arameter List: Generic arguments (char
stack20, 20 and char in this case) are substituted for
the parameters (pname, psize and ptype) each time
the capsule is referenced in a generic statement. As
illustrated in the capsule header statement in the line
following the parameter list, the use of the param
eter pname permits the user to assign different
names to each different stack capsule that is needed.

G. Export list: The export list is a list of all capsule
identifiers (variables, procedures, functions) that
may be referenced from outside the capsule.

H. Declaration of global (permanent) objects: For each
variable declared to be of the capsule type, a copy
of these objects is placed on the run-time stack.

I. The initialization procedure: If the initialization of
global capsule data is required, such a procedure
must be called explicitly by the user for each de
clared instance of the capsule.

The examples in Figures 1 and 2 also illustrate
some of the shortcomings of the current capsule imple
mentation. For example, there is no provision for the
automatic execution of initialization statements, such
as provided in Concurrent Pascal. There is also no pro
vision for the direct specification of variable initializa
tion in a declaration, a feature that is provided by Ada,
Euclid, and CLU. Rather, any initialization required for
the encapsulated data object must be done via an ex
plicit reference to an initialization procedure (such as

· init) defined within the capsule.

ID. GENERIC CAPSULE PREPROCESSOR

A. Introduction

The Generic Capsule Preprocessor (GCP) is a pro
gram that may be used to allow a programmer to insert
Pascal source text anywhere in a Pascal source pro
gram. The GCP is patterned after the Pascal INCLUDE
facility (see the document Pascal 6000 Release 3) and
is used primarily for the insertion of Generic Capsules
into the type declaration section of a user program, pro
cedure, or function.

B. Use of the GCP

1. To use the GCP, the programmer must first create a ·
capsule library either in the form of a sequential file
of capsules [with each capsule separated by an end
of-record (7/8/9 or *EOR], or a user library file of
capsules (using the CDC Modify source library
maintenance system).

If the sequential file approach is taken, the file
must appear as shown in Figure 3. Such a file may
easily be created and maintained using SENATOR
(see TUCA documents E601 or E602).t For large
collections of capsules 1 the CDC Modify system is

tTemple University Computer Activity, introductory
and advanced level documents on interactive
computing.

Software Tools

recommended for creation and maintenance of the
capsule library (see the CDC Manual on Modify for
additional details).

In Figure 3, the :first line of each record indicates
the record name. The second line contains the list
of parameters (n1 ~ 9) to be replaced when the cap
sule is copied from the library. If there are no pa
rameters, this line may be omitted.

recnam1
(par 1 , par 2, ... parnl)

{ capsule body

*EOR
recnam2.
(par1 , par 2 ,

f capsule body

*EOR

Figure 3:

Structure of a Sequential File of Capsules

2. Capsules may be retrieved from a capsule library
(and copied into a Pascal module) through the use
of the Pascal G compiler option:

$G('recnam' /'libfilnam')
or

$G('recnam'/'lib:filnam', arg1, arg'i2, ... , argJ

where
• recnam - the name of the capsule record to

be inserted
• libfilnam - the name of the capsule library

file containing the record
• arg1, ... , argn - the actual parameters to be

substituted (via text string substitution) for
the dummy parameters in the definition of the
capsule record.

Remember that Pascal compiler options must be in
serted inside a comment, and may contain no blanks.

3. Example

The generic stack capsule shown in Figure 2 con
tains three parameters, pname, psize, ptype which can
be used to specify the capsule name, the size of the ar
ray to represent the stack, and the type of the infor
mation to be stored in each element of the stack.

When encountered by the GCP, the statement

(*$G(' capstk' /' capsall', charstack20, 20, char)*)

causes an instance of the stack capsule to be copied into
the user's text at the point of reference. During the
copy, each occurrence of the parameters pname, psize

Software Tools

and ptype would be replaced by the corresponding ar
guments, charstack20, 20, and char. The result, in this
case, would be a capsule named charstack20 which
uses a 20-element array of elements of type char. Given
this capsule definition, variables such as x,y,z declared
as

var x,y,z; charstack20;

would represent character stacks of size 20 which could
be manipulated using the pop, push, and init functions
specified in the capsule.

The reference

(*$G('capstk'/'capsall',instack1000,1000,integer)*)

could be used to establish a capsule definition for a
stack consisting of an array of 100 integers. The
delcaration

var w,z: intstacklOOO;

would establish variables w and z each representing in
teger stacks of size 1000.

C. Restrictions and Other Comments

l. A generic reference $G ... may not be the :first state
ment of an input program, since a program statement
is expected here.

2. Only one capsule library file may be accessed at a
time.

3. If no substitution is desired for a particular param
eter, pari, in a capsule record, use a null argument
(indicated by consecutive comm!ls) in the position
corresponding to pari· Thus

$G('capstk'/'capsall',charstack20,,char)
would have the effect of leaving psize untouched
when the stack capsule is copied into the user
program.

4. No capsule parameter (appearing in a generic cap
sule record) may exceed 10 characters in length.

5. A maximum of 9 parameters is allowed for a given
generic capsule.

D. Use of conditional inclusion within a capsule

1. a. Any conditional statement may be included within
a generic capsule which is part of a capsule li
brary. There must be at least one capsule param
eter which will be the basis for testing the con
dition. A conditional statement must never
precede the capsule parameter statement, but it
must procede the EOF marker of the capsule
within the library. (Refer to Fig. 2, the stack
capsule).

b. The permissible conditional statements may be
gin with only one of the following: 'IF', 'ELSE',
'ELSEIF', 'ENDIF'. One 'end.if' stateuent is
required for. each 'if', statement. No 'elseif'
statement may logically follow an 'else'
statement.

c. The only relational operators permitted are as
follows:

< > <= >= < >
d. No blanks are permitted in the formal part of the

statement, except the one which follows the 'Y'

19

as noted in part 2 below. Alternatively, the space
may be used to note the level number of nested
statements, for readability.

2. Conditional inclusion of text within a generic cap
sule may be instituted through use of the PASCAL·
Y compiler option:

$Ykeyword
or

$Ykeyword ('paramname' op'paramvalue')
or '----'

$Y3keyword
or

$Y3keyword (' paramname' op 'paramvalue ')
where__,

• keyword - the word IF or ELSE or ELSEIF
or ENDIF.
• paramname - a parameter name, exactly as

it appears in the capsule parameter list.
• op - one relational operator chosen from the

set:
=,< >,<,>,< =,> =

(Note: ONLY= and< > may be used in com
paring alphabetic operands).

• paramvalue - a parameter value to be com
pared against the corresponding argument in
the generic capsule call statement ($G
statement).

Remember that the Pascal compiler option must be
inserted within comment markers, and may contain
no blanks except as specifically stated. User com
ments may immediately precede the closing com
ment marker.

3. Remarks

The generic stack processing capsule in Figure 2
provides an example of the use of conditional inclusion.
As shown, the condition inclusion feature was used to
determine the type of data to be printed by procedure
"print." The feature may also be used to restrict the
use of a capsule based on a capsule user's knowledge
of parameter values. At times, the feature may be uti
lized to insert a variety of comments in the output pro
grain, depending on substituted parameter values.

The form of the conditional statement which in
cludes a numerical digit following the 'Y' may be used
to help distinguish among IF-THEN-ELSE statements
which are nested. For example:

(* $YlIF ('P1YPE' ='REAL')TI-IEN*)

(*$Y2IF('PCOLORS' '9;) *)

(* $Y2ELSE*)

20

(*$Y2E.~IF of coior checking~)

(* $Y1ELSE*)

(*$Y1ENDIF*)

ACKNOWLEDGEMENT

The authors would like to thank Professor Giorgio
P. Ingargiola of the Temple Computer Science Depart
ment for many helpful comments and suggestions con
cerning the design of the capsule facility.

BIBLIOGRAPHY

[Barnard 78] Barnard, David T., W.D. Elliott and David
H. Thompson, "Euclid and Modula," SIGPLAN
Notices (13,3), pp. 70-84, March, 1978.

[Brand 78] Brand, D. "A Note on Data Abstractions,"
SIGPLAN Notices (13,1), pp. 21-24, January 1978.

[Brinch-Hansen 75] Brinch-Hansen, P., ''The Program
ming Language Concurrent Pascal," IEE Transac
tions of Software Engineering (1,2), June 1975. ·

[Chand 78] Chand, D.R. and S.B. Yadav, "On the Ap
plications of Data Abstraction Facilities,'' Proceed
ings of the 1978 ACM Annual Conference, Decem
ber, 1978, pp. 639-645.

[Chang 78] Chang, E., N. Kaden and W. Elliot, "Ab
stract Data Types in EUCLID," SIGPLAN Notices
(13,3) pp. 34-40 (March, 1978).

[Coleman 78] Coleman, Derek, A Structured Approach
to Data, The MacMillan Press Limited, London,
England, 1978.

[Dahl 72] Dahl, O.J. and C.A.R. Hoare, "Hierarchical
Program Structures," in Structured Programming
by O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare,
Academic Press, 1972.

[Dijkstra 72] Dijkstra, E.W., "Notes on Structured Pro
gramming," in Structured Programming, by O.J.
Dahl, E.W. Dijkstra, and C.A.R. Hoare, Academic
Press, 1972.

[DoD 79] DoD, "Preliminary Ada Reference Manual,"
SIGPLAN Notices (14, 6A), June, 1979.

[Friedman 79] Friedman, Frank L. and Judith A. Ste
bulis, "An Undergraduate Compiler Laboratory,"
SIGCSE Bulletin (11, 1), February, 1979, pp. 28-36.

[Girton 81] Girton, Anita, ''A Generic Capsule Prepro
cessor" (in progress).

[Halstead 77] Halstead, M.H., "Elements of Software
Science," Elsevier Computer Science Library, 1977.

[Horning 7 5] Horning, J., ''Some Desirable Properties
of Data Abstraction Facilities," Proceedings of the
Conference on Data: Abstraction, Definition and
Structure, SIGPLAN Notices (8, 2), March, 1976,
pp. 60-62.

[Ichbiah 79] Ichbiah, J.D., et. al., "Rationale for the
Design of the Ada Programming Language,'' SIG
PLAN Notices (14, 6B), June, 1979.

[Lampson 77] Lampson, B., et. al., "Report on the

Software Tools

Programming Language Euclid," SIGPLAN No
tices (12, 2), February, 1977.

[Linden 76] Linden, Theodore, ''The Use of Abstract
Data Types to Simplify Program Modification,''
SIGPLAN Notices (8, 2), pp. 12-23, March, 1976.

[Liskov 74] Liskov, B., "A Note on CLU," in CLU De
sign Notes, Project MAC, MIT, Cambridge, MA.,
1974.

[Liskov 77] Liskov, B., Snyder, A., Atkinson, R. and
Schaffert, C. "Abstraction Mechanisms in CLU,"
Comm. ACM, Vol. 20, No. 8, pp. 564-576, 1977.

[Liskov 77] Liskov, B., et. al. "CLU Reference Man
ual," Computation Structures Group Memo No.
161, Laboratory for Computer Science, MIT, Cam
bridge, MA., 1978.

[McCabe 76] McCabe, T.J., "A Complexity Measure,"
IEEE Transitions on Software Engineering, SE-2
(4), pp. 308-320, 1976. .

[McCall 80] McCall, J.L., and M.T. Matsumoto, "Soft
ware Quality Metrics Enhancements," General
Electric Company/Rome Air Development Center
Final Technical Report RADC-TR-80-109, Volume
I, April, 1980.

[Mickel 79] Mickel, Andrew B., et. al., Pascal 6000
Release 3 Document, University of Minnesota, Min
neapolis, MN, January, 1979.

[Palme 76] Palme, J., "New Feature for Module Pro
tection in SIMULA,'' SIGPLAN Notices, Vol. 11,
No. 5, pp. 59-62, 1976.

[Shaw 78] Shaw, Mary, et. al., "Validating the Utility
of Abstraction Techniques," Proceedings of the
ACM Conference, Washington, D.C., pp. 106-110,
December, 1978.

[Sheil 81] Sheil, B.A., "The Psychological Study of
Programming," ACM Computing Surveys (13, 1),
March, 1981, pp. 101-120.

[Venema 78] Venema, Ted and Jim des Rivieres, "Eu
clid and Pacal," SIGPLAN Notices, (13, 3), pp. 57-
69, March, 1978.

[Yin 78] Yin, B.H., and I.W. Winchester, "The Estab
lishment and Use of Measures to Evaluate the Qual
ity of Software Designs," Proceedings Software
Quality Assurance Workshop: Functional and Per
formance Issues, San Diego, November, 1978.

[Wegner 79] Wegner, Peter, "Programming with Ada:
An Introduction by Means of Graduated Exam
ples," SIGPLAN Notices (14, 12), pp. 1-46, Decem
ber, 1979.

[Welsh 80] Welsh, Jim, and Michael McKeag, Struc
tured System Programming, Prentice-Hall, 1980.

[Wirth 71] Wirth, N., "The Programming Languag,e
Pascal," Acta Informatica 1, pp. 35-63, 1971.

[Wirth 76] Wirth, N., Algorithms + Data Structure~
= Programs, Prentice-Hall, 1976.

[Wirth 77] Wirth, N., "Design and Implementation: of
Modula," Software -Practice and Experience (7),
pp. 67-84, 1977.

Histogram Capsule
(from Dahl and Hoare - [Dahl 72])

HISTOGR
C PNAME, PNUHCATS, ITEM TYPE, PBNDTYPE l
PNAHE = CAPSULE
(***)

<********** HISTOGRAM CAPSULE **********>

Software Tools

'* * TABULATES FREllUENCY DISTRIBUTION FOR A
* ITEHTYPE RANDOM VARIABLE ON THE * OPEN INTERVAL C-INF,+INFl WITH BOUNDARIES GIVEN BY THE ARRAY B * C-INF1B1)rtD1rB2>rtD21B3> •• tDN-11BN>rCBN1+INF>

* * HISTOGRAM OPERATORS --
* INIT - INITIALIZE BOUNDS ARRAY GIVEN THE BOUNDARIES
* OF CATEGORIES COF TYPE PBNDTYPE), AND CLEAR
* FREQUENCY ACCUMULATOR ARRAY.
* TABULATE - DETERMINE CATEGORY OF GIVEN ITEHTYPE ITEM AND
* . INCREMENT FREQUENCY COUNT OF THAT CATEGORY * FREQUENCY - RETURN INTEGER FREQUENCY COUNT FOR GIVEN CATEGORY
* PRINT - PRINT TABLE OF CATEGORIES.FREQUENCIES AND RELATIVE
* FREQUENCIES,

* * GENERIC PARAMETERS --
* PNAME - NAME OF CAPSULE
* PNUHCATS - NUMBER OF CATEGORIES CPARTITIONSl MINUS 1
* THIS IS THE SAHE AS THE NUMBER OF LOWER BOUNDS * ITEHTYPE - TYPE OF VALUE BEING CLASSIFIED CA SCALARJ,
* PDNDTYPE - TYPE OF THE STRUCTURE HOLDING THE BOUNDARY VALUES

* * ADAPTED FROM THE DAHL/HOARE PAPER 'HIERARCHICAL PROGRAM STRUCTURES
* IN THE DAHL/DIJKSTRA/HOARE TEXT ON STRUCTURED PROGRAMMING

* *l

EXPORTS CTABULATE,FREQUENCY,PRINT,INIT);

CONST N = PNUHCATS;

TYPE RANGEZEROTON = o,,N;
FREQARRAY = ARRAYCRANGEZEROTONJ OF INTEGER;

C* GLOBAL CAPSUL~ VARIABLES *>

VAR D! PBNDTYPE; <*ARRAY OF LOWER BOUNDS FOR EACH CATEGORY o.,N -
B[OJ = -INF = LOWER BOUND OF CATEGORY o,
BC1J = LOWER BOUND OF CATEGORY 1,
BCNJ = LOWER BOUND OF CATEGORY N*>

FREQ! FREQARRAY; <*ARRAY OF FREQUENCIES, ONE FOR EACH OF
CATEGORIES O,,N*l

TOTALCOUNT! INTEGER; <*TOTAL COUNT OF ITEMS PROCESSED*>

<***** PROCEDURE TABULATE *****>

PROCEDURE TABULATECITEHfITEMTYPEll

'* * DETERMINE CATEGORY CIJ FOR ITEM AND INCREMENT FREQCIJ BY 1 ·

* * ARGUMENT DEFINITIONS ---
* INPUT ARGUMENTS
* ITEM - ITEM TO BE CATEGORIZED
*l

LABEL 501

VAR
IrJ: INTEGER;

BEGIN <*TABULATE*>
FOR I != 1 TO N DO

IF ITEM < BCIJ
THEN

BEGIN
J != I-H
FREQ[JJ l= FREQ[JJt11
GOTO 50

END;
<*ELSE INCREMENT LAST FREQUENCY CATEGORY*>
FREQCNJ != FREllCNJtH .
50! TOTALCOUNT != TOTALCOUNT+1;

ENDC*TABULATE*l;

<***** PROCEDURE PRINT *****>

PROCEDURE PRINH
<*

;c PRINT A TABLE WITH CATEGORIES ON LEFT AND FREQUENCIES IN * CENTER AND RELATIVE FREQUENCIES ON RIGHT,

* * ARGUMENT DEFINITIONS -- CNONEl

* *PROCEDURE EXPECTS TABLE HEADERS TO HAVE BEEN PRINTED ALREADY,
;c IT PRINTS A THREE-COLUMN TABLE WITH COLUMN HEADERS,

* * EACH LINE OF THE TABLE APPEARS AS FOLLOWS -
*l

C* [LOWBOUND, HIBOUNDl · FREQUENCY RELATIVE FREQUENCY *l

CONST LPAR = 'C'i
RPAR = I) I;
f<DRACK = ' J' ;
COMMA= 11';
LBRACK = '['I

VAR I : INTEGER;
BEGIN

WRITEC'O CATEGORY RANGE 'll
WRITF.LNC'FRFOUFNCY RELATIVE FREQUENCY');
WRITF ('·--·- - ---· ---- --------------') i
WRITELN C '--··----·------------------------~---------------------' l;
WRITE<' '1LPAR1' -INF'1COMMA1BC1J:10t21RPAR>i
WRITE<' '1FREQCOJt10)i
WRITELNC' '•CFREQ[OJ/TOTALCOUNTl! 10! 4ll
FOR I!= 1 TO N-1 DO

BEGIN
WRITEC' 'rLBRACKrBCIJ!10121CDMMA1BCI+iJ:10:21RPAR1' ')i
WRITELNCFREQCIJ!lO,

'•CFREQtIJ/TOTALCOUNTl!10:4l
END; C*FOR I*>

WRITEC' '1LBRACKrBCNJl10121CDMMA1' +INF'rRPAR1' ');
WRITEC' '1LPAR1' -INF'1CDMMA1B[iJ;101RPAR>i
WRITE<' '1FREQCOJ:10)i

21

WRITELN(' '•<FREQ[OJ/TDTALCOUNT>l1014 >i
FDR Il= 1 TO N-1 DD

BEGIN
WRITE(' ',LBRACK1BCIJt101CDMHA1BCI+1J:i01RPAR1' ')i
WRITELN<FREQ[IJ!lO•

'1CFREQCIJ/TOTALCOUNT);!0!4>
ENDi <*FDR I*)

tINF'1RPAR1' ')1 WRITE(' '1LBRACK1BCNJ:10,coMMA1'
WRITELNCFREQ[NJilO •'
WRITELNC'OTDTAL ITEMS PROCESSED

'•CFREQ[NJ/TDTALCOUNT>l10l4)i
'1TDTALCOUNTl3)f

END <*PRINT*>;

<***** FUNCTION FREQUENCY *****>

FUNCTION FREQUENCYCilRANGEZEROTDN>: INTEGER;
<* * RETURNS A FREQUENCY COUNT FOR CATEGORY Ir O<=I<=N

* * * * * *>

ARGUMENT DEFINITIONS -
INPUT ARGUMENTS
I·- INDEX OF .FREQUENCY CATEGORY TO BE RETURNED

BEGIN
FREQUENCY I= FREQ[IJ

END <*FREQUENCY*>;

<***** PROCEDURE INI1 *****>

PROCEDURE INITCEXTBOUNDARRAYlPBNDTYPE>;
<* * INITIALIZE BOUNDARY ARRAY Brn,, NJ; SET FRFll ARRAY AND * TOTAL COUNT TO ZERO,

* * ARGUMENT DEFINITIONS
* INPUT ARGUMENTS
* EXTBOUNDARRAY - ARRAY OF BOUNDS THAT DEFINE THE CATEGORIES
*>

VAR I: INTEGER;
BEGIN

TOTALCOUNT := Oi
FOR I I= 1 TO N DO

B[IJ I= EXTBOUNDARRAY[IJ;
FOR I I= 0 TO N DO

FREQUJ != o;
END <*INIT*>
END C*PNAME <HISTOGRAM> CAPSULE*>;

Sort Capsule
(with conditional insertion directives)

CAPSDRT
CPNAME,PTYPE,PSUBRANGE,PSTRUCTURE,PDIRECTIQN,PKEYl
PNAME = CAPSULE
<* SORT CAPSULE DEFINITION C IN GENERIC FORMl

* *>

AUTHOR: CAROL A. GINSBERG
DATE COMPLETED: MARCH 1, 1982
LAST DATE MDDIFIEII: MARCH 5, 1982

SORTS DATA IN ASCENDING ORDER (IF PDIRECTION = 'UP' l DR
DESCENDING ORDER CIF PDIRECTION 'DOWN' l USING A SIMPLE
SELECTION SORT
PARAMETER DEFINITIONS -

PNAME - NAME OF CAPSULE
PTYPE - BASE TYPE OF ARRAY TO BE SORTED
PSUBRANGE - TYPE <RANGEl OF INDEX TO ARRAY BEING SORTED
PSTRUCTURE - INDICATES IF BASE TYPE IS 'SIMPLE' OR 'RECORD'

TYPE. IF 'SIMPLE' IS NOT DESIGNATED, THEN 'RECORD'
IS ASSUMED,

PDIRECTION - INDICATOR IF SORT IS TO BE ASCENDING DR DESCENDING
ORDER,

PKEY - NAME OF RECORD
ARE RECORDS)

EXPORTS C SORT);

KEYFIELD <REQUIRED IF ARRAY ELEMENTS

rYPE DATTYPE = ARRAHPSUBRANGEJ OF PTYPEi

<* THERE ARE NO GLOBAL VARIABLES REQUIRED FOR THIS
* CAPSULE, BUT ONE DUMMY VARIABLE MUST BE DECLARED·
*>

VAR DUMMY! INTEGERi

PROCEDURE SORT <VAR X! DYNAMIC DATTYPEi FIRST,LASTIPSUBRANGEli
<*
* SORT DATA USING A SIMPLE SELECTION SORT

* * DATA IS PLACED IN PDIRECTIDN ORDER
* (UP = ASCEND ING l <DOWN = DESCEND ING)

* * * * * * *)

ARGUMENT DEFINITIONS -
INPUT ARGUMENTS

FIRST, LAST - LOWER AND UPPER LIMITS OF INDEX TO X ARRAY
X - ARRAY TO BE SORTED

LABEL 99;

TYPE
INDEXTYPE = PSUBRANGEi

VAR I,J: INDEXTYPEi <*LOOP CONTROL VARIABLES*l
TEMP: PTYPE; <*TEMPORARY VARIABLE FDR EXCHANGE*l
IX: INDEXTYPEi <*INDEX OF LARGEST DR SMALLEST ITEM IN EACH SCAN*l

22

BEGIN (*SORT*l
<*VALIDATE N*l

IF FIRST >= LAST
THEN

BEGIN
WRITELN ('OSORT CALLED WITH FIRST >= LAST')i
WRITELN (' NO SORT PERFORMED, ') i
GOTO 99

ENDi C* IF TO VALIDATE N*>
C*SORT DATA*)

FDR I : = FIRST TO PRELI {LAST) DO
BEGIN <*FIND LARGEST (OR SMALLEST) ITEM BETWEEN X[IJ AND X[NJ*)

IX != Ii
FOR Ji=SUCC<I> TO LAST DO

<*•Y1IF<'PDIRECTION'='UP'lTHEN *l
<*•Y2IF<'PSTRUCTURE'='SIMPLE'>THEN *>

IF X[JJ < X[IXJ
THEN

IX t= Jf
(UY2ELSE*>

IF X[JJ,PKEY < X[IXJ,PKEY
THEN

IX := J;
C*SY2ENDIF*>
<*•YlELSEIFC'PDIRECTION'='DOWN'lTHEN*>
<*$Y2IF<'PSTRUCTURE'='SIMPLE'>THEN*l

IF XCJJ > X[IXJ
THEN

IX ~= Ji
<UY2ELSE*>

IF X[JJ, PKEY>X[IXJ, PKEY
THEN

(UY2ENDIF*l
<UY1ELSE*>

BEGIN

IX ~= J;

WRITELNC'l!NCORRECT DIRECTION INDICATOR FDR SORT')f
WRITELN<' RECOMPILE CODE WITH CORRECTED SORT');
WRITELN<' EXECUTION TERMINATED.-•>;
GOTO 99 <*EQUIVALENT TO 'HALT'*)

ENDi <*INNER LOOP*l
<UY1ENDIF*l

<*EXCHANGE ELEMENTS I AND IX*l
TEMP != XUXJ;
XCIXJ I= XCIJi
XUJ != TEMP

ENDi <*OUTER LOOP*>
99!

END <*SORT*);
END <*SORT CAPSULE*);

Stack Capsule

CAPSrn
CPNAHE1PSIZE1PTYPE)
PNAME = CAPSULE
<***>

<********** STACK CAPSULE **********

* PROVIDES COMPLETE MAINTENANCE FOR A STACK

* * * * * * * *

STACK OPERATORS
EMPTY
POP
PUSH
GET
INIT

GENERIC PARAMETERS
PNAHE - NAME OF CAPSULE * * * * *>

PSIZE - NUMBER OF ELEMENTS IN THS ARRAY USED AS sTArK
PTYPE _. BASE TYPE or· STACK ELEMENTS

EXPORTS CEMPTY, POP, PUSHr GET, INIT>i

<***** Gl.OBAL CAPSULE VARIABLES *****>
VAR Ai ARRAY[l,.PSIZEJ OF PTYPE; <*THE STACK *l

TOP! O •• PSIZE; <* POTNTFR TO TOP OF STACK *l

<***** FUNCTION EMPTY *****>

FUNCTION EMPTY: BOOLEAN;
<*
* DETERMINE IF STACK IS EMPTY

* * ARGUMENT DEFINITIONS --
* <NONE>
*>

·BEGIN
IF TOP 0 THEN

EMPTY ! = TRUE
ELSE

EMPTY .- FALSE
ENDf

<***** FUNCTION PDP *****>

FUNCTION POPI PTYPEi
<*
* POP AN ITEM OFF THE TOP OF STACK

* * ARGUMENT DEFINITIONS --
* <NONE•
*l

BEGIN
IF EMPTY THEN

Software Tools

l!EGIN
WRITELNC'
WRITE.LN<'
WRITEL.N<'
HALT

***STACK UNDERFLOW IN CAPSULE PNAME ***'ll
PUSH CALLED. WITH TOP = 0. ' ll
EXECUTION TERMINATED,'>; ENDl

TOP := TOP + 11
ACTOPJ ; = ITEM

END

'***** PROCEDURE GET *****> END
ELSE

BEGIN
POP t= ACTOPJf
TOP := TOP - t

END

PROCEDURE GETCTOPOFFSET: INTEGERlVAR BOTTOMIBOOLEANlVAR ITEM:PTYPEl

'* * READ AN ITEM FROM ANYWHERE ON THE STACK CDOES NOT ALTER STACK)

END;

< ***** PROCEDURE PUSH ***** l

PROCEDURE PUSH<ITEM: PTYPEll

'* * PUSH AN ITEM ONTO THE STACK

* * ARGUMENT DEF IN I I IONS
* INPUT ARGUMENTS
* ITEM - DATA ITEM TO BE ENTERED INTO STACK
*>

BEGIN
IF TOP = PSIZE THEN

BEGIN

* * * * * * * *>

ARGUMENT DEFINITIONS -
INPUT ARGUMENTS

TOPOFFSET - INDICATES THE INDEX CRELATIVE TO CURRENT
OF THE ITEM TO BE READ

BOTTOM - INDICATES IF END OF STACK AS BEEN REACHED
ITEM - STACK ENTRY BEING RETURNED

VAR INDEX; INTEGERl C*INDEX TO ACCESSING STACK ENTRY*l
BEGIN

INDEX := TOP - TOPOFFSETl
IF CINDEX < 1> THEN ~OTTOM := TRUE

ELSE BEGIN BOTTOM .:= FALSEl ITEM I= ACINDEXJ ENDl
ENDf

WRl T~LN<'
WRITELN<'
WRITELN<'
HALT

***STACK OVERFLOW IN CAPSULE PNAME ***'ll
TOP= STACKSIZE = '1 TOP)i

'***** PROCEDURE !NIT *****>

PROCEDURF INIH

END
ELSE

BEGIN

Software Tools

EXECUTION TERMINATED,'>l '* INTTJALTZF TOP OF STACK *>
BEGIN

TOP != Oi
ENDl

END C * CAPSTK CAPSULF *>I

AVAILABLE ON
MICROFICHE

DIRECT INQUIRIES TO:

mlCRO PHOTO DIVISIOn

(CiJ BELLE. HOWELL
OLD MANSFIELD ROAD
WOOSTER OH 44691

Contact Christine Ellis
Call toll-free (800) 321-9881

In Ohio, call (216) 264-6666 collect

.,.,.;,--::

TOPl

PUG

23

The 6th Annual PACS COMPUTER GAMES FESTIVAL
sponsored by the

Philadelphia Area Computer Society
and ·

LaSalle College Physics Department
will be held on the 19th of March 1983

from 11:00 A.M. to 4:00 p.m.
in the LaSalle College Ballroom

located at 20th & Olney
Philadelphia, PA 19141

Featuring Computers in Daily Life

For further information contact Stephen A. Longo,
Ph.D. Physics Department, LaSalle College, Philadel
phia, PA 19141 Phone (215) 951-1255.

Oh! Pascal!

Oh! Pascal! is a book by Doug Cooper and Michael
Clancy. Doug Cooper is an excellent programer living
in Oakland, California and Michael Clancy directs the
introductory programing courses at the University of
California Berkley.

Oh! Pascal! has been used at many leading uni
versities as a basic text book for Pascal. These schools
include University of California (Berkley), Purdue Uni
versity, Amherst College, Brandeis University, Har
vard and The Rochester Institute of Technology.

The book is very readable and clearly written. It
contains an emphasis on general problem solving tech
niques, an early discussion of procedures, self-check
questions and self-test for each chapter. Anti-bugging
and debugging sections follow each chapter. There are

·numerous programing examples of varying difficulty,
including long programs. Interactive programs are
shown in action, the reader isn't forced to infer their
differences from batch. It is 476 pages long and is illus
trated. The cost is $15.95 paperback.

Oh! Pascal! is published by W.W. Norton & Com
pany, 500 Fifth Ave., New York, New York 10110.

NEW MODULA-2 VERSION
FASTER, EASIER TO USE

DEL MAR, CA, Nov. 30 - Volition Systems has
introduced a complete software system based on its
fast, easy-to-use version ofModula-2, Niklaus Wirth's
powerful new programming language.

'' Modula-2 is particularly suited for large industrial
and commercial applications. It will save software de
velopers both time and money in program development
and maintenance," according to Joel J. McCormack,
company president. Volition Systems has pioneered
the commercial implementation of Modula-2.

"Our new implementation is faster, more compre
hensive, and easier to use then the previous release,
which was closely tied to the UCSD PascairMI environ-

24

ment,'' McCormack said. It can also handle larger pro
grams. The new release, called Version 0.3, conforms
to Wirth' s recently published book on Modula-2.

Wirth developed Modula-2 (from MODUiar LAn
guage) to replace his earlier language, Pascal. Whereas
Pascal was intended as a teaching language, Modula-2
is expressly designed for use in a wide range of real
world applications. The new language - designed to
utilize standard software modules - offers great flex
ibility in the development oflarge, complex systems.

Volition's Version 0.3 includes a comprehensive
module library, a compiler that runs 25 percent faster
than the previous version, and a tutorial designed to
bring Pascal programmers up to speed on Modula-2 in
a matter of hours.

The new version provides all the attractive fea
tures ofModula-2: low-level machine access, real-time
control, concurrent processes, and type-secure sepa
rate compilation with automatic version control. "In
terrupt handling is fully supported in Version 0 .3 - pro
grammers can now write real-time applications in
Modula-2 instead of resorting to error-prone assembly
language,'' McCormack commented.

Version 0.3 is available now for systems based on
the 6502 (including the Apple II and//~), 8080/Z80, TI
9900, and the 68000. Implementations for other popular
microprocessors are expected in early 1983, Mc
Cormack noted.

The most significant feature in Version 0.3 is the
standard library, a collection of modules that offers fa
cilities normally provided by an operating system. The
library provides console I/O, random access files, disk
directory operations, format conversion, strings, dec
imal arithmetic, storage management, program execu
tion and process scheduling.

The standard library provides a portable interface
to underlying operating systems. Volitions' current
Modula-2 system interfaces to UCSD Pascal. Modula-
2 implementations for other popular operating systems
will be available in 1983.

"With Modula-2, you can develop portable soft
ware systems that run without change on a number of
different operating systems," McCormack said. "This
should be of obvious interst to software developers
faced with writing applications which must run on all
of today's popular operating systems."

The Modula-2 system also provides access to sys
tem-dependent facilities. For instance, Apple users can
integrate their existing Pascal and assembly software
into the Modula-2 system. And Modula-2 gives them
access to the AppleStu:ff and TurtleGraphics units.

A major goal of the new version was to make the
compiler more useful for program development,
McCormack said.' It can compile larger programs than
Volition's previous version and it can compile existing
programs 25 percent faster. In addition, the compiler
provides conditional compilation facilities and im
proved error handling.

Modula-2 Version 0.3 is available now from Voli
tion Systems. The complete Modula-2 system includes

Announcements

a fast one-pass compiler, p-code interpreter, module
library, the Advanced System Editor (ASE), Pascal
compiler, and a complete set of utility programs. The
system is proced at $595.

A smaller configuration is available for the Apple
II and/// running Apple Pascal. This system includes
the Modula-2 compiler, interpreter, and module library.
It is priced at $495. Educational, retailer, and distrib
utor discounts are available.

Volition Systems concentrates on systems soft
ware development and on research and development
in hardware and software. Since the company was
founded in 1980, it has been a leader in the implemen
tation and dissemination Of the Modula-2 language and
other high level languages and in the design and devel
opment of advanced computer architectures.

For further information contact: Volition Systems,
P.O. Box 1236, Del Mar, CA, (619) 481-2286

TICOM OFFERS THE UCSD P-SYSTEM ON TWO
NEW MICROCOMPUTERS

TICOM, developer of integrated office manage
ment systems for micro computers, is now the exclusive
distributor of the UCSD p-System* on the DEC Rain
bow 100, and the NEC Advanced Personal Computer
(APC). A p-System veteran of four years, TICOM adds
these systems to their current list of UCSD p-System
based applications packages and development systems
for a variety of microcomputers, including the IBM PC
and the Xerox 820-11.

TICOM will offer both development and run-time
systems as well as its integrated office management
software package, FINAL COPY*, on the APC and the
Rainbow. FINAL COPY combines word processing,
data entry, records processing and remote communi
cations in a single package. This is the same system that
has been offered by TICOM on the IBM PC since Jan
uary 1982.

These products are now availble directly from TI
COM. They will be shown on the NEC APC, DEC
Rainbow, IBM PC, Xerox 820-11, and the Texas In
struments Business System 200 at COMDEX 82 in Las
Vegas, Nov. 29-Dec. 2 in the TICOM, booth #969.
Demonstrations on the NEC APC will also be available
in the NEC booth, #1734.

TI COM is no newcomer to the p-System. They in
itially implemented p-System software packages on
multi-user minicomputers in 1978. Taking full advan
tage of the p-System' s high degree of transportability,
they later adapted it to several different
microcomputers.

One additional feature offered on the NEC APC is
a graphics implementation. ''To completely utilize the
APC's extensive graphics hardware capabilities," Mi
chael Hadjioannou, president of Tl COM explains, ''we
have implemented a SIGGRAPH Core compatible set
of routines which are callable from UCSD Pascal. Soon
to be added will be the ability to access graphics func
tions with the Presentation Level Protocol (PLP) or
Turtlegraphics, making it easy to transport graphics
applications to the NEC APC."

Announcements

Modula 2, Niklaus Wirth's newest programming
language, will also be demonstrated on the XEROX
820-11 at the TICOM booth. It, too, is available from
TI COM.

For more information stop by booth#969, or con
tact TICOM at: 13470 Washington Blvd. #207, Marina
delRey, Ca. 90291, (213) 827-7118. Dealer inquiries are

· welcomed. All press contacts should be directed to
Lynn Anderson.

: *UCSD p-System is a Trademark of the Regents of the
- University of California.
*FINAL COPY is a Trademark of TIC OM SYSTEMS,
Inc.

EDISON AVAILABLE FOR
THE IBM PERSONAL COMPUTER

The Edison system is a portable software system
for personal computers written by Per Brinch Hansen
and described in his book "Programming a Personal
Computer'' (Prentice-Hall, April 1983).

The Edison system supports the development of
programs written in the programming language Edison
- a Pascal-like language that supports program mod
ularity and concurrent execution.

The Edison system includes an operating system,
an Edison compiler, a screen editor, a text formatter,
a print program, and an assembler written in the Edison
language.

The program text and portable code of the software
are available on diskettes for the following
microcomputers:

IBM Personal Computer
32 K words and

Keyboard
Dual 51;4!' Diskette Drive

single (or double) sided
Monochrome Display
Printer
Display/Printer Adapter

PDP 11/23 Computer
(or LSI 11) 28 K words

Dual g' Diskette Drive
RX02 (or RXOl)

Terminal
VT 100 (or VT 52)

Printer

The software can be edited and recompiled on
these machine configurations. It can also be moved to
other similar microcomputers by rewriting a kernel of
2 K words.

For more information on the availability of the
Edison system and the book, please write to:

Professor Per Brinch Hansen
Computer Science Department
University of Southern California
Los Angeles, California 90089

JRTPASCAL

Since May, when we slashed JRT Pascal's price
from $295 to $29.95, we've added over 10,000 new cus
tomers! -and we expect to reach 25,000 by year-end!

Needless to say, we're grateful for the deluge of
orders. To handle it has taken a new office, new per-

25

sonnel, and new shipping systems; even then, the mass
of orders - a fifty times increase - caused some de
lays. If your order didn't arrive quickly, thank you also
for your patience. We believe you'll find JRT is worth
the wait.

With the new capabilities, the goal of a one week
order turn-around is now in sight.

Note 1: Five and a quarter inch disk versions

Requiring only 85K of diskette space for the com
piler and 35K for the run-time system, JRT is currently
the most compact Pascal available for CP/M systems.
For program development in JRT Pascal on computers
with five inch disk drives, we recommend this file
arrangement:

On disk A:
• EXEC,COM
• your editor

(ED, Wordstar, etc.)
• the Pascal source program

being developed

On diskB:
• JRTPAS2.COM
• PASCAL.LIB
• PASCALO.INT
• PASCALl.INT
• PASCAL2.INT
• PASCAL3.INT
• PASCAL4.INT

IMPORTANT NOTE -The file PASCAL.LIB must
always be present on the computer system when com
piling or executing programs.

Note 2: Patch# 1

Applicable version: 2.1 A> DDT EXEC.COM
Error: multiplication of real DDT VERS 2.2
numbers by 0.0 produces incor- NEXT PC
rect result 5BOO 0100
Patch procedure: Use CP/Mpro- -S563C
gram DDT to patch EXEC. COM
- key in underlined code. 563C ED EB

Note 3: Patch #2

Applicable version: 2.1
Error: Message 'Source file not
found' when compiling under
CP/M ver 1.4 or CDOS
Patch procedure: Use CP/M pro
gram DDT to patch
JRTPAS2.COM - key in under
lined code.

563D 53,

-GO
A>SAVE90
EXEC.COM.

A>DDT
JRTPAS2.COM

DDTVERS 2.2
NEXT PC
5500 0100
-A2B9

02B9 CALL 3F83

02BC CALL 413D

02BF,

-GO

A>SAVE 84
JRTPAS2.COM

Note 4: JRT Pascal version 2.2 update

Version 2.2 of JRT Pascal is now being shipped
- 2.2 includes some internal enhancements and repairs
all problems reported in earlier versions. If you want

26

this update, it's yours for the cost of a diskette, postage
and handling: $10.

The ONLY disk formats available are:

SW' for Osborne, Apple CP/M, North Star, Superbrain,
Heath hard sector, Heath soft sector, Xerox 820,
Tele video

~f single-sided, single density standard

Please specify which of these formats you need.

Note 5: Coming - JRT Pascal version 3.0

In January we'll begin shipping JRT Pascal 3.0 -
a major enhancement. New features include:

• builtin indexed file system
• facilities for screen and report formattting
• dynamic arrays
• improved compiler error recovery
• enhanced EXEC interrupt
• full support for file variables and GET/PUT
• expanded user manual

Of course the price of new 3.0 will still be $29.95.

Note 6: Copy and License Policy

We've had lots of questions about our policy on
copying JRT Pascal. As our ads say, permission is
granted to copy both disk and manual for friends - so
long as it's not for resale.

Permission to make copies is also specifically
granted to schools and to computer clubs for members.

If you develop application software for resale, you
may distribute the run-time system (EXEC. COM and
PASCAL.LIB) with your package -with no license or
royalty fees.

Note 7: YOUR Pascal application programs

Naturally, more and more owners are developing
more and more JRT Pascal written. application pack
ages for sale - we've heard from many of them. And
- for developers - our copy and license policy is par
ticularly attractive.

Now we're putting together a JRT Application
Software Directory and would like to list the packages
you have for sale. For free listing, just fill out the en
closed Application Program Description and return it
to us with tangible evidence of your package such as
brochure, manuals, diskette - but quickly, please: the
first Directory is scheduled for February distribution.

Note 8: New address and phone number

The new phone number for orders only is (415)
566-5100.
The address for technical questions and prob
lem reports:

JRT Systems
Technical Services
P.O. Box 22365
San Francisco, CA 94122

Announcements

The address for new orders:

JRT Systems
550 Irving Street
San Francisco, CA 94122

Note 9: Feedback ... Please!

A dynamic product, new JRT Pascal versions are
always being developed. The system's main evolution
ary force is feedback from YOU - the user. We invite
- and encourage - you to write us your ideas about
how to make JRT Pascal even better.

ENHANCED PASCAL COMPILER FOR
IBM MAINFRAME COMPUTERS

ACUMEN Software Services Ltd. is pleased to
announce the release of Version 2.0B of the Australian
Atomic Energy Commission's PASCAL 8000, an im
proved Pascal compiler for IBM mainframe computers.

The AAEC's PASCAL 8000 Versin 1.2 was one of
the first production compilers for the Pascal language.
Version 2.0 offers the user significant improvements;
it will run under any of the OS, OS/VS and VM oper
ating systems MFT, MVT, VSl, SVS, VS2, MVS and
VM/CMS. It makes full use of the IBM 370's "long"
instruction - it has a dynamic dataset allocation - it
has improved compilation speed - its modular runtime
system makes for easy changes - it enables the user
to change the final condition code - it can support
lower case. The language accepted by the compiler
conforms as closely as possible to the ISO Draft Stan
dard. PASCAL 8000 Version 2.0 can rapidly pinpoint
problems in original source language, a function which
is available on only a few other compilers.

In Version2.0B, CMS supportforVM/SPhas been
added, improved traceback in the event of a system
abend is provided, compile-time specification of the
maximum procedure table size is introduced, as well as
other improvements to the run-time system.

PASCAL 8000 copipilers are already in successful
use in over 250 offices around the world, in banks,
schools, life assurance companies, universities, com
puting firms and government departments. IBM DOS
and Perkin-Elmer versions are currently under
development.

The compiler is supplied on 9-track EBCDIC 1600
BPI tape and includes; a user reference manual con
taining a description of the language as implemented,
an implementation guide and implementation JCL.
PASCAL 8000 has a one-time license charge of
$US 2,000 and annual maintenance and enhancements
charge of $US 250.

Enquiries about installing a PASCAL 8000 Version
2.0 compiler should be directed to:

Mr. Bryan Brooking
ACUMEN Software Services Ltd.
P.O. Box 86787
North Vancouver, B.C.
V7L4L3
Telephone (604) 980-7118

Announcements

USUS FORMS FOUR NEW INTEREST GROUPS,
• ELECTS OFFICERS AT MEETING IN DALLAS

DALLAS, TX, Nov. 15 - USUS, the UCSD-Pas
cal User's Society, elected new board members and
officers for next year, committed itself to increased user
education and informed new special interest groups
(SI Gs) at the organization's semi-annual national meet
ing recently concluded here.

Speaking of the strengths of this popular language,
keynoter John D. Page of Software Publishing Corp.
(Mountain View, CA) noted, "PPS was done in UCSD
Pascal because a task of that size and complexity could
not be done in BASIC." PPS, with more than 100,000
units sold, is the single best-selling Apple Pascal
program.

.. ''As the p-System is becoming more widely dis
tributed and an even more attractive target for appli
cation developers, we are experiencing a growing de
mand for user education,'' according to Randy Bush of
Volition Systems (Del Mar CA), who is the newly
elected chairman of the society's board of directors.

"USUS plans to increase its emphasis on tutorials
and member education to meet that need," he said. In
the future, approximately 40 percent of meeting content
will be devoted to tutorials for both users and
developers.

Moving in that direction, USUS presented two
free-to-the-public tutorials, added four new volumes to
its software exchange library and formed four new SI Gs
at the Dallas meeting. Some 200 people attended it.

SIGs were formed for users of the i:BM Personal
Computer, Texas Instruments computers and the Sage
computers as well as for those interested in influencing
file access standards being developed for multi-key ac
cess methods for p-System networks.

In addition to Bush, USUS directors for the com
ing year will be N. C. "Arley" Dealey of Volition Sys
tems, Michael Ikezawa (Rolling Hills, CA), Nancy
Lanning of Soffech Microsystems (San Diego, CA) and
Robert Peterson of Texas Instruments (Dallas, TX).

Peterson will also serve as president of the organ
ization. Other offiers are A. Winsor Brown (Huntington
Beach, CA), vice president; Michael Hadjioannou of
Ticom Systems (Marina del Rey, CA), treasurer; and
Thomas Woteki of Ferox Microsystems (Arlington,
VA).

The IBM PC SIG will have three co-chairs: Gary
Gibb of Thunderbird Properties (Oakland, CA), David
R. Gobel of Eastern Business Machines (Greenbelt,
MD) and Mitchell D. Garrett of Digital Engineering
Group, Inc. (Houston, TX).

The TI SIG will be chaired by Danny Cooper
(Plano, TX), and Tom Siep of Texas Instruments (Dal
las, TX) will head the Sage SIG. Steve Castle (Park
Ridge, IL) is chairing the File Access SIG.

In addition to tutorials, SIG meetings and technical
sessions, the meeting featured product announcements
and hardware demonstrations. Soffech Microsystems
announced the availability of its 4.1 version of UCSD
Pascal and Statcom (Austin, TX) announced and dem
onstrated CRTForm, an automatic code generator for
UCSD Pascal on 4.0.

27

Ticom showed the UCSD p-System running for the
first time on the NEC Advanced Personal Computer.
Other demonstrations included the Sage II computer
from Sage Computer Technology (Reno, NV) and the
Modula-2 programming language from Volition Sys
tems running on the Sage II, the Apple II and the TI
990.

The next scheduled meeting of USUS is April 22-
24, 1983 in San Diego. USUS is a vendor-independent,
non-profit user's group for the most widely used, ma
chine-independent software system, UCSD Pascal.

USUS was founded in 1980 to promote and influ
ence the development of the UCSD Pascal System and
to provide a forum for education and information ex
change about it. Annual membership in the society is
$20 for individuals and $500 for institutions.

GREAT PLAINS SOFTWARE ANNOUNCES FIRST
SHIPMENT OF THE "HARDISK ACCOUNTING

SERIES" TO APPLE DEALERS

Written in USCD Pascal, the program runs on Ap
ple II and III, with a Corvus or profile hardisk. The pro
gram will run on IBM's personal computers and most
other microcomputers in April.

The menu driven, double entry accounting system
features interactive modules and complete audit trials.
With extensive data prompts, error checking and an
operator's manual, users will find the system easy to
use and understand.

For more information contact Great Plains Soft
ware, 123North15th St., Fargo, ND 58102 or call (701)
293-8483.

INMOS ANNOUNCES OCCAM

INMOS announces occam, a new programming
language. Named after the philosopher William of Oc
cam, the language is based on the concepts of concur
rency and communication. These concepts enable to
day's applications to be implemented more effectively
and are essential for the complex multi-processor sys
tems of the future.

Systems, even those with only one processor, con
sist of many parts working together, that is ''concur
rently.'' When used in programming a system, occam
directly represents these components and their inter
connections and gives an efficient design and imple
mentation. Future systems will have many processors,
and occam' s understanding of concurrency will be es
sential for their design.

To introduce occam and concurrency, INMOS is
offering an Occam Evaluation Kit. This will run on any
system supporting the UCSD p-System (version IV),
and costs $200. The kit includes a compiler-editor and
full supporting documentation. The UCSD p-System
may also be purchased with the Occam Evaluation Kit
for an additional charge.

Other occam products will become availble in
1983. .

28

INMOS MICROCOMPUTER ACTIVITIES

Inmos is already established as a technical inno
vator in memory products. It has market leadership in
fast 16K static RAMs in both 16Kx 1and4Kx 4 organ
izations. Its IMS2600 64Kx 1 dynamic RAM is the fast
est available, and it will shortly be introducing 8Kx 8
and 16Kx 4 versions.

The other plank in the product strategy is the
Transputer, an advanced microcomputer due to be in
troduced in 1984. It is being designed in Bristol, En
gland at Inmos-' United Kingdom Technology Center.
Microcomputers are the key products in the semicon
ductor industry, fuelling the silicon revolution. They
are the fastest growing market sector, and with asso
ciated hardware and software support products, the
largest.

Developing microcomputer systems is a complex
task. The user needs efficient tools to design and debug
systems and languages to program applications. Inmos
decided early that the support products would be made
available in the order that the user needed them to cre
ate his systems. They will be announced during 1983,
ahead of silicon products.

While the transputer will support software in all
popular high-level languages available today, it is seen
by Inmos as more than just a' 'better'' microprocessor.
Rather, it is a silicon "building block", the component
for the massively parallel systems of the 80' s and be
yond, such as the so-called Fifth Generation computer
systems.

The efficient design and implementation of these
systems is not possible with current languages, whose
designers never intended them for such applications.
To meet this need occam was created.

WHY A NEW LANGUAGE?

A common factor in real systems is that they con
sist of a collection of components which exist alongside
one another for the lifetime of the system. The com
ponents are independent, and from time to time com
municate information with one another.

Existing programming languages are designed for
single-processor use. Although they do allow a system
to be broken down into its separate components, they
insist on executing these components sequentially. This
is a poor model of a real system.

With the reducing cost and increasing capability of
tomorrow's VLSI components, systems can be built
from multiple processors, which are much more com
plex than today's systems. The limitations of current
languages prevent the exploitation of such systems, and
clearly calls for a new language.

OCCAM

Concurrency in occam is implemented by having
a "process" for each independent activity. Concur
rency reaches to the lowest level of the language, the
individual language statement. These statements are
called "primitive processes".

A primitive process on its own cannot do much, so
the language provides ''constructors'' to group them
together into bigger processes.

Announcements

Three types of primitive processes are used in oc
cam. The first and most familiar is the "assignment".
Assignment in occam is exactly the same as in other
languages; it gives a value to a variable.

The other two primitive processes are ''input'' and
''output''. These allow communication between ''con
current processes'', that is, processes which are ruD.
ning in parallel. Communication takes place by input
ting and outputting "messages" through "channels".

A channel is a one directional link between two
concurrent processes. A conversation between two
processes requires two channels. A channel imple
ments a handshaken unbuffered data transfer between
the sending process and the receiving process. Since a
channel is a point-to-point connection, no addresses are
needed in the messages.

Occam needs a minimum of constructors. The
"sequential" constructor introduces a block of pro
cesses which are to be executed one after the other. The
"parallel" constructor introduces a block whose com
ponent processes are to be executed in parallel.

The "alternative" constructor selects one (and
only one) of a set of processes. Each process has a
"guard" associated with it which is usually an input
statement. The alternative constructor selects the first
of its processes whose guard is ready to input and then
executes it. If several guards are simultaneously valid,
just one of them is randomly selected.

There are also looping and conditional construc
tors, and a replicator mechanism - which allow the
arraying of processes. In addition, the language gives
access to a real-time clock.

OCCAM SYNTAX
Occam has been designed to be used with an in

teractive workstations, which affects aspects of the
syntax. For example, since a screen provides a limited
number of lines of text, the block structure of the text
is shown by indentation (rather than BEGIN .. END
keywords, which makes inefficient use of the screen).
Because the meaning of a program is affected by its
physical position on the screen, an integrated editor
compiler is nomally used to write an occam program.

Here are fragments of occam to illustrate the
syntax:

SEQ

PAR

ALT

in?char
out !char

outl! 'A'
out2 ! 'B'

inl?char
out!char

in2?char
out!char

WHILE x>O
SEQ

IF x<O

in?x
out!x

x:=-x
VAR char;
CHAN in:

VAR array[lOO]:

Announcements

-- sequential constructor
-- first input from channel "in"
-- then output the value to channel "out"

-- para 11 el constructor
-- output "A" to channel "outl" in parallel
-- with outputting "B" to channel "out2"
-- alternative constructor
-- guard; try input from channel "inl"
-- if guard succeeds, output its input
-- another guard
-- and its associated process

-- WHILE loop

-- input,
-- then output as long as x>O

-- conditional
-- assignment
-- declare a variable, "char"
-- declare a channel, "in"

-- declare a vector, "array" of 100 elements

CHAN inputs[l6] -- declare a vector of 16 channels

SEQ i=(O FOR 100} -- FOR loop, sum array elements sequentially
sum:=sum+array[i]

PAR i=(O FOR 100} -- "replicator" creates 100 parallel processes
array[i]:=array[i]+l -- increments array elements in parallel

ALT i=(O FOR 100} -- alternative and replicator combined
inputs[i]?char -- select an input from array of channels

out!char -- and output the winner
char:=array(BYTE i) -- BYTE keyword allows byte addressing

PROC buffer (CHAN in,out) -- abstraction mechanism
WHILE TRUE -- loop for ever

VAR x:
SEQ -- implement a 1-deep buffer

i n?x
out!x

CHAN c:
PAR

buffer (in,c)
buffer (c, out)

-- now invoke the abstraction

OCCAM IMPLEMENTATION
The conventional implementation of a process,

which uses an area of memory to hold the variables and
scheduling information, works. For many applications,
a simple round-robin scheduler is adequate. Many im
plementations of a channel are feasible and should be
readily apparent to system, designers. The details will
vary to exploit machine-specific features or other
choices, like a multiprocessor implementation. For in
stance, a channel between processors can use shared
memory, IO ports or serial links.

Interrupts are easily handled within occam. A pro
cessor with N nestable interrupts can be modelled in
occam as N+ 1 communicating processors. The base
processor needs a scheduler, while the interrupt pro
cessors may have none; beingjust a single process wait
ing for input from a channel which hides the interrupt
logic. The microprocessor hardware will then auto
matically multiplex the processor between base pro
cessor and interrupt processors. This ability to handle
interrupts in the language can significantly reduce de
sign and integration timescales.

Implementations of occam are efficient, with code
densities and execution rates closer to assembler than
typical high level languages like Pascal. This is because
of a deliberate choice to restrict the language to those
features which are supported directly by all likely ma
chines. An implementation of occam needs a small run
time system but this is typically less than 100 machine
instruetions.

The overheads of concurrency is higher in systems
which use ''gratuitous concurrency'' than in those
where the parallelism is tuned for performance. For in
stance, doing assignment statements in parallel on a
single processor system will result in some overhead.
However, concurrent communication is efficient and
sensible. It is expected that an occam system on an in
dustry-standard microprocessor will incur less over
head than one using a traditional real-time kernel.

WILLIAM OF OCCAM
The language occam was designed by Inmos in

conjunction with Professor C.A.R. ('Tony') Hoare,
Director of the Programming Research Group at Ox
ford University.

29

A predecessor of his at Oxford was the fourteenth
century philosopher William of Occam who is best
known for "Occam's Razor", "Entia non sunt multi
plicanda praeter necessitatem." Literally translated,
''entities should not be multiplied beyond necessity'',
it is often seen as a plea to keep things simple. More
generally, it suggests that if two or more solutions to a
problem exist, the simplest one is preferred.

This approach of simplicity is fundamental to oc
cam and is extended to all work that Inmos is carrying
out in its VLSI products. It also reflects the well-pub
lished views of Professor Hoare that many modem lan
guages are unnecessarily complex, and in some cases
dangerously so.

OCCAM PRODUCTS

Inmos ia announcing an Occam Evaluation Kit
along with the language itself. It allows medium-sized
programs to be designed, written and executed, and is
intended to teach people to think "parallel".

The kit is a portable compiler and editor built upon
Softech's UCSD Pascal system (version IV). It gener
ates p-code, which is executed in the normal fashion by
a p-system host. It is available tailored for the Apple 2,
Sirius 1/Victor 9000, Intel MDS, IBM Personal Com
puter, VAX/VMS and LSI/11 and is provided in the ap
propriate diskette formats for these hosts. It is also
available in uncommitted form on 8' diskette in Sof
tech' s UCSD Pascal distribution format (single-sided,
single-density).

The kit includes language and compiler manuals,
together with installation instructions, warranty and
example programs. The Occam Evaluation Kit costs
$200.

During the first half of 1983, Inmos will announce
hardware and software packages which support se
lected industry standard microprocessors, including
the iAPX 86 family and the MC68000 family of micro
processors. These packages will be offered either as
"software-only" for running on a UCSD p-system
host, or integrated with a microprocessor-based work
station offering high-resolution graphics, 256K bytes of
memory and high density floppy-disks. Expansion ca
pability for the workstation will include a local area
network and Winchester disks.

For more information on the Occam Evaluation
Kit, contact Brad Hartman at INMOS, Colorado
Springs, Colorado (303) 630-4362.

TINY PASCAL PLUS+ FOR PET AND APPLE II

ABACUS SOFTWARE announces the release of
TINY Pascal PLUS+, an enhanced version of TINY
Pascal with support for graphics. The package runs on
the 32K PETS and APPLE II' s with Applesoft in ROM.
It is available for immediate delivery.

TINY Pascal PLUS+ is a complete package allow
ing the user to create, compile and execute programs
written in the Pasal language. TINY Pascal PLUS+
includes:

30

• LINE EDITOR to create, modify and maintain
source

• COMPILER to produce P-code, the assembly
language of the P-machine

• INTERPRETER to execute the compiled P
code (with TRACE facility)

• Structured programming constructs: CASE-OF
ELSE, WHILE-DO, IF-THEN-ELSE, RE
PEAT-UNTIL, FOR-TO/DOWNTO-DO, BE
GIN-END, MEM, CONST, VAR, ARRAY

TINY Pascal PLUS+ provides graphics and other
"built in functions - GRAPHICS, PLOT, POINT,
TEXT, INKEY, ABS and SQR. The PET version sup
ports double density plotting on the 40 column screen
giving 80 x, 50 plot positions. The APPLE II version
supports both LORES and HIRES graphics with:
COLOR, HGRAPHICS, HCOLOR, HPLOT and PDL.
For those users who do not require graphics capabili
ties, the original TINY Pascal package is still available.

Prices for the diskette versions for APPLE II and
PET are $50. A cassette version for the PET is also
available for $55. The original non-graphics versions
are available for 16K/32K PETS and APPLE II's on
diskette for $35 and on cassette for the PEt for $40.

For more information contact: ABACUS Soft
ware, P.O. Box 7211, Grand Rapids, Mich. 49510.

HELP WANTED

Our company is presently looking for a Pascal ex
pert to work for us. His duties will include bringing Pas
cal into the data center as a second language. He/she
should have five years experience in Pascal usage, a
degree and be a good communicator. This career op
portunity is with a major conglomerate and involves
state-of-the-art technology.

Please have interested people contact Larry C.
McWilliams at 1-800-821-3194.

RIDGE TIDRTYTWO GRAPIDCS

The RIDGE ThirtyTwo is a 32-bit multi-user
graphics work-station. Pascal is the system language.

We are seeking engineering and scientific packages
written in Pascal to run on our machine.

The RIDGE ThirtyTwo offers high-performance
(2-4 times the speed of a VAX 11/780) and high-reso
lution graphics (1024x 800 pixel graphics displays). I
have enclosed results from the Stanford Puzzle Pro
gram and the Whetstone Benchmark. Please contact
me if you know of any software houses or OEM's who
would like to use o.ur high-performance Pascal.

STANFORD PUZZLE BENCHMARK
(Pascal, Subscript version)

Machine
(seconds)

IBM-3081
S-1 Mark I
IBM-370/168

Time

1.3
2.0
2.1

Announcements

Ridge-32
DEC 2060
IBM-370/158
VAX-11/780
68000 8 Mhz
IBM 4331
Apple II

2.2
5.4
7.5

10.2
19.0
38.0

1500.0

Prime 750
VAX 11/750
DEC 11/34
(68000 8 Mhz)

750
331
134
70

The Whetstone program is a floating-point intensive
program representative of scientific calculations.

The puzzle program, developed at Stanford University
by Forest Baskett, tests the computer's ability to per
form basic operations, such as procedure calls, array
references, conditional branches and comparisons.

*With addition of hardware floating point.

Please contact Ridge Computers, 586 Weddell Dr.,
Sunnyvale, California, 94086 or call Benay Dora
Abrams at 408-745-0400.

WHETSTONE BENCHMARK

Machine

Ridge-32

Perkin Elmer 3240
VAX 11/780

Announcements

Whetstones
(Thousand&' sec)

1500

1172
753 (*1168)

SOFTWARE CONSULTING SERVICES
901 WHITIIER DRIVE· ALLENTOWN, PENNSYLVANIA 18103 · (215) 797-9690

PASCAL VALIDATION Sl1ITE VERSION 3.1 NOW AVAILABLE

There are nearly 500 licenses of earlier versions of the Validation Suite. The new Suite is
an extensive revision of version :J.O. It contains corrections to nearly 60 deficiencies found
in P\'S V:l.O and has 55:l test programs of \l;hich over 150 are new or modified. Subsequent
revisions to the Suite are likely to be minor.

The Validation Suite was developed by Brian Wichmann in the V.K. and Arthur Sale in
Tasmania under the auspices of the Pascal llsers Group. The intention of the package is to
e·ncourage a very high degree of portability of Pascal programs (even higher than presen
tly exists), and to provide users with a mechanism to assure themselves that vendor's
produrts romply with the Standard. Validation reports on compilers are published in
Pascal :-.iews.

Restrictions
The conditions of release prohibit the distribution of the package to third parties so as to

limit the growth of unauthorized and inaccurate versions. However, no restriction is placed
on the use of the package for validating Pascal processors, for benchmarking. for accep
tance tests, for preparing comparative reports and similar activities, nor for the distribu
tion of the results of such use. The Validation Suite has been widely used and distributed,
and has not been restricted to a small subset of the user community.

The Way Things Are
The Pascal Compiler Validation Suite consists of approximate!}: 18,000 lines of test code

for.Pascal compilers. It was developed by A.H.J.Sale and R.Freak of the l'niversity of
Tasmania and B.A.Wkhmann and Z.J.Ciechanowicz of the British !'<ational Physical
Laboratory. They own it and have the sole rights in determining the policies involved in its
distribution. Although the value of the Validation Suite is not directly knowable, one can es
timate the cost of recreating it at approximately six dollars per line of code or about SI00,-
000. Drs. Sale and Wichmann have authorized me las an individuall to act as a distributor
for the Validation Suite in both North and South America.

Let Us Help You
I. Should you have any technical questions regarding the Validation Suite, please write to

me (don't telephone) and I will respond or forward your commentary to Sale and
Wichmann. These men constantly travel and it would be difficult to track them down
without my help.

2. If you have trouble reading one of our tapes or diskettes call !\lartha Cichelli !215-797-
9690) and she will help straighten out the problem. Martha is in charge of preparing the
distribution.

Please Help l's
If the terms of the license agreement are not acceptable to your organization, please do

not request a copy of the Validation Suite. I have neither the right nor the inclination to
authorize any amendments to the Sale-Wichmann license agreement.

31

32

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:

(Company name if requestor is a company)

Phone Number:

Name and address to which information should

be addressed (write "as above" if the same):

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the case of a company, the requestor agrees
that:

a) The Validation Suite is recognized as being the copyrighted, proprietary property of The British Standards
Organization and A.H. J. Sale, and
bl The requestor will not distribute or otherwise make available machine-readable copies of the Validation
Suite, modified or unmodified, to any third party without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and documentation contained in the Validation
Suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative reports and
similar purposes, and to make available the listings of the results of compilation and execution of the programs to third
parties in the course of the above activities. In such documents, reference shall be made to the original copyright notice
and its source.

Distribution Charge: $300.00
Make checks payable to:

Software Consulting Services
in US dollars drawn on a US bank.

Remittance must accompany application.

Mail Request and Check To:
Software Consulting_ Services

901 Whittier Dr.
Allentown+. PA. 18103 USA

Attn: n.. J. Cichelli

SOURCE CODE DELIVERY MEDIUM SPECIFICATION

I Magnetic tape

9-Track, odd parity, 1/2"x600'. Select Density:

() BOO bpi () 1600 bpi

) ANSI-STANDARD. Each logical record is an

BO character card image. Each physical

record has a block size of 40 logical

records. Select Character Code:

(I ASCII (I EBCDIC

) Special DEC System Alternate Formats:

() RSX-IAS PIP (requires ANSI MAGtape RSX SYSGEN).

() DOS-RSTS FLX.

Office Use Only

Signed:

Date:

Richard J. Cichelli

On Behalf of A.H. J. Sale and B. S. I.

I B" Diskette

) Single Density

() Double Density

Format

I CP/M

I UCSO II, IV

) DEC-RSX Files 11

Special Format

I Interleave (1-26)

I Skew (0-25)

I UCSD Ill (W. D. Microengine)

) DEC-RT (Single Density)

I IBM 3740 (Single Density EBCDIC)

0. DATE 11/23/82

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR r· Give a person, address and phone number. •;

Foster Schucker
Assistant Director
Computing Services
Suny @ Fresonia
Fredonia, NY 14063
716-673-3393

2. MACHINE/SYSTEM CONFIGURATION
Burrouqhs Larqe Systems

r· Any known limits on the configuration or support software required, e.g.

B5000/B6000/B7000. operating system. •;

3 • 2 , 3 • 3 , MCP

3. DISTRIBUTION r· Who to ask, how it comes, in what options. and at what price.•;

Operations Supervisor 1600 BPI or 800 BPI
Computing Services Library Maintenance tape
Fred Suny @ Fredonia
Fredonia NY 14063
$25 w/tape $50 without (1800)
Ask for 3.3 Pascal

4. DOCUMENTATiON r· What is available and where. ·;

Not much but is in computer readable form

5. MAINTENANCE r· Is it unmaintained, fully maintain~d, etc?•;

Partially naintained. It's used as a teachinq tool, so not much
support is really needed

6. ST AN 0 AR 0 r· How does it measure up to standard Pascal? Is it a subset? Extended? How.•;

Have not had a chance to try the sale suite yet. It. has extensions
to fit into the Burroughs File SysteITl. Other minor bells/whistles.

7. MEASUREMENTS r· Of its speed or space. ·;

8. RELIABILITY r· Any information about field use or sites installed. ·;

Running at ~ 25 sites

9. DEVELOPMENT METHOD r· How was it developed and what was it written in?·;

Step 5 compiler !'1odified by Jim Madden UCSD. Pascal is source
Language.

1 0. LIB RARY SUP PO RT r· Any other support for compiler in the form of linkages to other languages. source libraries, etc. •;
Supports Burroughs intra lanquaqe library support.

Implementation Reports 33

CDC 6000
A version of Pascal 6ee0 3.2 is now available that uses the ASCII character
set (rather than CDC Display Code). If sufficient interest is found, it will
be made available for distribution through the standard Pascal 60eC mechanism.
Convey your interest to your Pascal 6000 distributor or:

Scott Trappe
MS 92-134
Tektronix, Inc.
PO Box 500
Beaverton, Oregon 97077
(503) 629-1717

CDC 7600 (Manchester)

0. DATE 8/15/80

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR r· Give a person, address and phone number. 'J

University of Manchester Reqional Computer Centre
Oxford Rel., Manchester, Enqland

Maintainer - see s

2. MACHINE/SYSTEM CONFIGURATION r· Any known limits on the configuration or support software required, e.g.

Control Data 7 6 () 0 and CYB ER 7 ~perating system. 'J

SCOPE 2.1.5, 32/64K/ SCM.

3. DISTRIBUTION r· Who to ask. how it comes. in what options. and at what price. ·;

Contact R. J. Collins at above address. A distribution aqreement
must be siqned and the cost is L50 sterlinCT.

4. DOCUMENTATION ('Whatisavailableandwhere. ·;

Same as Pascal 6000 release 3.

5. MAI NTE NAN CE r· Is it unmaintained. ful!y maintained. etc? •;

UMRCC cannot undertake to maintain the nroduct al thouqh we \.·muld
be interested in anv buas in the 7600 denendent code.

6. ST AN DAR D (' How does it measure up to standard Pascal? Is it a subset? Extended? How.·;

Same as 6000 PhSCAL release 3.

7. MEASUREMENTS r· or its speed or space. ·;

Requires 5 00 0 OB words r.1emory tci coDriile most stu<lent jobs.

8. RE LIA B 1 LITY (* Any information about field use or sites installed. ')

Same as 6000 PASCAL release 3.

9. DEVELOPMENT METHOD r· How was it developed and what was it written in?·;

Cross conniled fron CYBER 7200compiler

1 0. LIB RA RY SUP PO RT r· Any other support for compiler in the form of linkages to other languages, source libraries, etc. ')

Same as 6000 PASCAL release 3.

34 Implementation Reports

DEC PDP-11, VAX-11 (Oregon Software)
Oregon Software Pascal-2

0. DATE 4 November 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

Oregon Software
2340 SW Canyon Road
Portland Oregon 97201

Phone: (503) 226-7760

2. MACH IN E /SYSTEM CON FIGURA Tl 0 N (*Any known limits on the configuration or support software required, e.g.

operating system. *)

All Digital PDP-11 processors, Including Vax-11 in compatibility
mode. All Digital PDP-11 operating systems, RSTS/E, RSX-11,
RT-11.
Compiler requires EIS, 28K words of memory, 500 blocks of disk.

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price. *)

Available from above. Write for price and terms.

4. DOCUMENTATION (*What is available and where.*)

Pascal-2 User Manual, 175 printed pages, includes
utility guide. Shipped with order, or write for a free copy.

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc?*)

Fully maintained.
6. STANDARD (*How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

Very close to draft standard without conformant arrays.

Extensions include structured constants, "otherwise" in case,
I/O interface, Random access I/O, low-level machine interface
extensions.

7. MEASUREMENTS (*Of its speed or space. *J

Code is a small as and as fast as any other Digital Language
processor. Benchmark data available on request.

8. RELIABILITY (*Any information about field use or sites installed. *)

Installed at over 200 sites.
2 years.

Has been used in-house for

9. DEVELOPMENT METHOD (*How was it developed and what was it written in?*)

10.

Written in Pascal, bootstrap using OMSI Pascal-1

LIBRARY .SUPPORT (*Any other support for cor;npilerin {he form of linkages to other languagesJour<;e libraries, etc.*)
Linkage to external routines in Pascal, Macro, or ~·orLran.
Utility programs include cross reference generator, formatter,
documentation aids.

Implementation Reports 35

Intel 8085 CCogitronics)

0. DATE 28 January 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *J

Donald L. Dunstan (503) 645-5043
Cogitronics Corporation
5470 N. W. I nnisbrook Pl.
Portland, Oregon 97229

2. MACH IN E /SYSTEM CON FIGURA Tl 0 N (*Any known limits on the configuration or support software required, e.g.

operating system. *)
Cogitronics Pascal is configurable to OEM environment.
Target computers: Z-80, 8085
Host computers: GenRad ADS 2300; Tektronix 8002A, 8550; CDC Cyber (6000 series)
Planned host computers: PDP-11; I BM 370; CP /M compatible systems

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price.*)

Bill Lowery, Director of Marketing
Available on machine readable media of host computers
Single user license $2000
Customer Demonstration Kits avai I able

4. DOCUMENTATION (*What is available and where.*)

Cogitronics Pascal Reference Manual (avai fable for $15)

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc?*)

Fully maintained

6. STANDARD (*How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

ISO standard, see validation suite results
Microprocessor Software Engineering Adaptations

7. MEASUREMENTS (*Of its speed or space. *J

Z-80 based GenRad development system compiles at 800 source lines per minute
Requires 64K system

8. RELIABILITY (*Any information about field use or sites installed. *)

Product released 1/1/81

9. DEVELOPMENT METHOD (*How was it developed and what was it written in?*)

Cogitronics Pascal was written and developed in Cogitronics META compiler
generation system.

10. LIBRARY SUPPORT (*Any other support for compiler in the form of linkages to other languages, source libraries, etc.*)

36

Linkage is available to externally compiled Pascal modules, externally compiled
MICRO language modules, and externally assembled routines.

Implementation Reports

Intel 8080, 8086 (Microsoft)

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

Bob Wallace or David Jones
MICROSOFT, INC.
10700 Northup Way
Bellevue, WA 98004

2. MACH IN E/SYSTE M CON FIG U RATI 0 N (*Any known limits on the configuration or support software required, e.g.

operating system. *)

Targets:
HOST:

8080, 8086, Z8000 under MS-DOS, UNIX, CP/M-80, CP/M-86 and others.
Above plus DEC-20, VAX, IBM 370 and others.

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price.*)

Only offered to the Hardware Manufacturers for distribution. Please
contact OEM Sales for price and availability. :· ~

4. DOCUMENTATION (*What is available and where.*)

Manual - $20.00.

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc?*)

Fully Maintained.

6. STANDARD (*How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

ISO standard (Level O) plus many extensions .for systems programming:
strings, address type, super arrays, attributes, value section, interfaces,
etc.

7. MEASUREMENTS (*Of its speed or space. *J

Generates very efficient optimized native code.

8. RELIABILITY (*Any information about field use or sites installed. *)

Relatively new but well tested.

9. DEVELOPMENT METHOD (*How was it developed and what was it written in?*)

Developed with DEC-20 Pascal; now self-compiled.

10. LIBRARY SUPPORT (*Any other support for compiler in the form of linkages to other languages, source libraries, etc.*}

FORTRAN-77 front end available, shared library. Compatible with
other Microsoft products.

Implementation Reports 37

Intel 8080 COnacki)

0. DATE 1 1 1 August , 98

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR r· Give a person, address and phone number. •;

Steve Harrison
Onacki Systems
5161 Cole Street
San Diego CA 92117

2. MACHINE/SYSTEM CON FIGURATION r• Any known limits on the configuration or support software required, e.g.

operating system •;
Radio Shack's TRS-80 microcomputers·, Model I and 11..1odel III
Runs under the TRDOS operating system

3. DISTRIBUTION ('Who to ask, how it comes. in what options. and at what price. '}

Available from Onacki systems
Cost! $239 (discounts available on volume orders, write for information)
Distributed on 5.25 inch diskette
Please specify Model I or Model III microcomputer

4. DOCUMENTATION r· What is available and where. •;

User manual,, which is included with purchase, describes how to use
the compiler and the points of difference with ISO DP185.1 DP7185.1
_Jlq~ aJ11~11~~ noes NOT conrain ~ rut9rial on Pascal 5. ~Nl ErvA:N'CF (#Ts 1t unmamtained,fuT/y mamtameCl, etc ·;

All questions or comments will be answered by Onacki Systems.

6. STANDARD ('How does it measure up to standard Pascal? Is it a subset? Extended? How.•;

The ~rinciple restrictions from ISO DP7185.1
*Procedural, Functional and Conformant-array parameters are not

implemented
*The goto statement is not implemented
*Files have been (slightly) _changed to work with TRDOS operateing
sys ten

7. MEASUREMENTS r· Of its speed or space. ·;

Extremely compact object code fornat. For example: the comniler is less
than Bk bytes

8. RELIABILITY t• Any information about field use or sites installed. ·;

An earlier version of this compiler has been in use for 2.5 years

9. DEVELOPMENT METHOD r· How was it developed and what was it written in?·;

Compiler is written in Pascal and was written and is maintained on a
TRS-80 Model I computer with 1.me 5.2~ inch disk drive

10. LIB RARY SUPPORT r· Any other support for compiler in the form of linkages to other languages. source libraries, etc. *)

Additional declared procedures and functions allow access to the TRS-80's
graphics, random number generator, etc., as well as access to machine
lanquage routines

38 Implementation Reports

Intel 8080 CMT Microsystems)

0. DATE April 20, 1981

1 . IMPLEMENTOR/MAINTAINER/DISTRIBUTOR r· Give a person, address and phone number. •J
Michael G. Lehm~n
ifi' MicroSYSTm-1S
1562 Kings Cross Drive
c~rdiff, CA 92007
(714) 755-1366

2. MACH IN E /SYSTEM CON FI GU RATI 0 N r· Any known. limits on the configuration or support software required, e.g.

56k 8080/Z80
CP/M required
24 by 80 CRT

operating system. •j

3. DISTRIBUTION 1· Who to ask, how it comes, in what options, and at what price. •j

From MT MicroSYSTEMS, on floppy diskettes, $475 (suggested retail)
[no options] includes screen editor w/ progran proofreader
(checks syntax, spelling, reformats, etc.)

4. DOCUMENTATION r· What is available and where.·)

185 page User's Guide supplied with system

5. MAINTENANCE r· 1s it unmaintained, fulfy maintained, etc?·)

Fully maintained by ""1T MicroSYSTEMS

6. ST AN DAR D r• How does it measure up to standard Pascal? Is it a subset? Extended? How.•)

ISO Standard with extensions: Dynamic Strings, Modular Compilatior,.
Bit/Byte manipulation, I/O port access, Inline assembly code

7. MEASUREMENTS r·otitsspeedorspace. ·)

150k bytes of disk space
400 lines/minute on 4 MHz Z80 with 8'' floppies

8. RE LIA Bl LITY r· Any information about field use or sites installed. ')

More than 1000 field sites installed

9. DEVELOPMENT METHOD r· How was it developed and what was it written in?•)

Developed from scratch in Pascal, 3-nass recursive descent

1 0. ll BRA RY SUP PO RT r· Any other support for compiler in the form of linkages to other languages, source libraries, etc. ·r
Large subroutine library of portable and machine dependent procedures
(more than 100 routines)

Implementation Reports 39

Mostek 6502 (Abacus)

o. DATE January 2, 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *J

Abacus Software
P.O. Box 7211
Grand Rapids, Michigan 49510

2. MACH IN E/SVSTE M CON FIGURA Tl 0 N (*Any known limits on the configuration or support software required, e.g.

APPLE II ,APPLE II+ with DOS operating system. *J

PET/CBM New ROMS 16K/32K cassette or diskette

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price. i
APPLE II/APPLE II+ standard TINY Pascal . 35·
APPLE II/APPLE II+ graphics TINY Pascal PLUS 50.
PET 16K/32K standard TINY Pascal $40
PET 16K/32K standard TINY Pascal $35°
PET 32K graphics TINY Pascal PLUS+ $55·
PET 32K graphics TINY Pascal PLUS+ $50.

4. DOCUMENTATION (*What is available and where.*}

diskette
diskette
cassette
diskette
cassette
diskette

TINY Pascal User's Manual $10. refundable with order
of software

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc?*)

Will correct any problems found by users.

6. STANDARD (*How does it measure up to standard Pascal? ls it a subset? Extended? How.*)

Subset implementation with graphics extensions for
PET and APPLE II.

7. MEASUREMENTS (*Ofitsspeedorspace. *J

8. RELIABILITY (*Any information about field use or sites installed. *)

Over 200 users of TINY Pascal.
TINY Pascal PLUS+ just released.

9. DEVELOPMENT METHOD (*How was it developed and what was it written in?*)

BASIC and 6502 Assembly language

10. LIBRARY SUPPORT (*Any other support for compiler in the form of linkages to other languages, source libraries, etc.*)

Not required

40 Implementation Reports

Motorola 6809 COmegaSoft)

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR r· Give a person, address and phone number. •;

OmegaSoft
P. o. Box 70265
Sunnyvale, CA 94086

2. MACHINE/SYSTEM CON FIGURATION r· Any Jcn9wn limits on the configuration or support software required, e.g.

operating system. •;

Motorola 6809 compiler
MDOS version; MDOS09 03.00 SK RAM for operating system plus 24K or
more at $2000 for compiler, 2 or more disk drives, at least one drive
capable of reading a single- sided di~k in the standard ~'1.DOS format

FLEX version: 6809 FLEX V3.0, BK RAM for operating system plus 24K
or more at $0 for compiler, 2 or more disk drives, at least one capable
of reading an 8 or 5.25 inch single-density, single-sided, soft-sec
tored disk in the standard FLEX forrrtat

Other formats: contact OmegaSoft for availability

3. DISTRIBUTION r· Who to asJc, how it comes, in what options. and at what price. •;

Available from OmegaSof t
Cost $200 with run•time library object

$250 with run-time library and source
Includes compiler, assembler, loader and debugger in object for~.
utilities in object code and Pascal source, and user manual

4. DOCUMENTATION r· What is available and where. ·;

User manual, included with purchase, available seperately for $20

5. MAI NTE NANCE r· Is it unmaintained, fully maintained, etc? •;

6. ST AN DAR D r· How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

(has HEX, STRING types; only textfiles; origined variables; EXTER~AL
procedures; OTHERWISE/ELSE in case statements; no non-local goto's;
'**' power operater; string concRtenation; and, or, not on numbers)
(May be one o·f the more complete implemantations of Pascal for nicros)

7. MEASUREMENTS r· Of its speed or space.·;

8. RELIABILITY r· Any information about field use or sites installed. ·;

9. D EVE LO PM ENT METH 0 D r· How was it developed and what was it written in? ·;

1 0. LIB RARY SUPPORT ('Any other support for compiler in the form of linJcages to other languages, source libraries, etc. •;

Additional predeclared procedures and functions for strings, files

Implementation Reports 41

Texas Inst. 990 CTI)

0. DATE Release 1. 7, Auqust 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR r· Give a person, address an<j phone number. •J

Implemented by Texas Instruments. Information is available from
TI sales offices, or write to:

Texas Instrumen,ts, Digital Systems Group, ~-1S784, P. o. Box 1444,
Houston, Texas 77001 or call (512) 250-7305.

Problems should be reported to: Texas Instruments, Software Sustaininq,
~82188, P.O. Box 2909, Austin, Texas 78769 or call (512) 250-7407.

2. MACHINE/SYSTEM CON FIGURATION r· Any known limits on the configuration or support software required, e.g.

operll.ti,Q!}.. f~tfl.m. •j
The compiler runs on a TI 990/1o·or ~~u 14 computer under the DX10 or
D~OS operating system (TI DS99p system ~odel 4 or larger, with at least
192K bvtes of memorv).
The co;npiled and lii'.i.ked object proqraMs can be executed on anv member
of the 990 conputer family (FS990 or DS990 system) using the TX5. TX990,
DX10, or DMOS o~eratinq system.
3. DISTRIBUTION r• Who to ask, how it comes, in what options. and at what price.")

Available on maqnetic tapes, disk pnck, or diskettes. Contact a
TI salesman for a price quotation and further details.
4. DOCUMENTATION r• What is available and where. •J

The TI pascal language is specified in the TI Pascal Reference ~1anual
TI part number 2270519-9701. Instructions for using the compiler and
Jinkinq and e_x_ecutinq Pascal proqrams are aivenin the ''DX10 TI pascal
Programmers Guide'', part nunher 227()528-9701 and the ''DNOS TI
Pascal Programmers Guide'', nart number 2270517-9701.
5. MAINTENANCE f" ls it unmaintained, fully maintained, etc? •J

TI Pascal is a full supported product. Bug reports are welcomed and
maintenance and further developmentswork are in proqress.

6. STAN DARO r· How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

TI Pascal has so~e differences fro~ standard Pascal. The major differences
are~ * A goto cannot be used to jump out of a procedure

* The control variable of a FOR statement is local to the loop.
* The precedance of Boolean operators has been r:todified to he

the same as in Al~ol and FORTRAN
* The standarr1 procedures GET and PUT have been replaced hy

generalized READ and \V'RITE procedures.
TI Pascal has nanv extensions to standard Pascal includinq random
access files, dynamic arrays, ESCAPE and ASSERT state~ents, option~l
OTHERWISE clause on CASE statements, and formatted READ.

7. MEASUREMENTS ("Ofitsspeedorspace.*)

The co~piler occupies a 64K byte memory region.
8. RELIABILITY (4 Any information about field use or sites installed. *)

The system has been used by several different qrouns within TI since
October of 1977, and by a number of outsirle customers since Mav of 1q78.
Undates have been released in January 197g 1 January 1qso and Auqust 1981.
This long history of extensive use and rraintenance make this a stable
and reliable product.
9. DEVELOPMENT METHOD r· How was it developed and what was it wrHten in? *J

The cormiler produces obJ'ect code which is· link-edited with. t' run- 1r:te
support routines to forr:l a directly executable nro~ran. 'I'he coP'l::iiler is
written in Pascal and is self-cornnilincr. ·
1 0. LIB RA RY SUP PO RT r· Any other support for compiler in the form of!inkages to other languages, source libraries, etc. •j

TI Pascal supports seperate coRpilation of routines and allows linkinq
with routines written in F'ORTRA"'>T or assembly lanquaae. ·

42 Implementation Reports

Z i 109 Z-80 (Ithaca)

0. DATE May 12, 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

Ithaca Intersystems, Inc.
1650 Hanshaw Road
P.O.· Box 91
Ithaca, New York 14850

PASCAL/Z

2. MACH IN E/SYSTE M CON FIG U RATI 0 N (*Any known limits on the configuration or support software required, e.g.

' operatinp, system. *)
Z-80 system with minimum of 56K memory lincluding the CP/M operating system)

and one disk drive.

(64K and two disk drives recommended for serious program development)

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price. *)

Package includes object code for Pascal/Z compiler, ASMBLE/Z macro-assembler,
LINK/Z linker/loader and SWAT, our interactive symbolic debugger. The
libraries are provided in both object and commented source code (Z-80) .
Also included are a number of support and example files and programs, and documentation.

Available on CP/M compatible 8" diskettes from the distributor--contact
Intersystems for information on obtaining other formats.
u:s.{Dom)retail price: $395.00

4. DOCUMENTATION (*What is available and where.*}

Over 300 pages of documentation, including: the Pascal/Z Implementation Manual,
ASMBLE/Z , LINK/Z and SWAT manuals and the Jensen & Wirth USER MANUAL AND REPORT.

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc?*)

Updates approximately every three mon~hs, available for a nominal charge to
registered users.

6. STANDARD (*How does it measure up to standard Pascal? ls it a subset? Extended? How.*)

Closely follows Jensen & Wirth definition. Exceptions: No GET/PUT (our READ/WRITE
routines have been expanded to handle all I/O functions), no PAGE, no procedural
parameters. Extensions: Direct File Access, Variable length strings, EXTERNAL
routines, separate compilation, INCLUDE files, variant records implemented,
ELSE on the CASE statement.

7. MEASUREMENTS (*Of its speed or space. *)

Running the Erasthones sieve on page 54 of the USER MANUAL AND REPORT (with a
WRITE statement added to display) 6K COM file ran in 45.85 seconds, much better
±haD CDIW2etition.

8. RELIABILITY (*Any information about field use or sites installed. *)

Over 1500 Users. No bugs found by users in current release (3.3), which has
been released for three months.

9. DEVELOPMENT METHOD (*How was it developed and what was it written inl *)

Developed in Pascal.

10. LIBRARY SUPPORT (*Any other support for compiler in the form of linkages to other languages, source libraries, etc. *)
.Libraries included in source. Alternate libraries available from Z Users' Group.
Assembler outputs Microsoft-compatible REL files -- can be linked to other

languages using our LINK/Z, provided protocol is same.

Implementation Reports 43

- ' .. ~

.'!..~~--·,:·: '-· ... -~ ,.:.:);~\"'::

-...-.-

(Microsoft)

~. f. ·-~

·~.:

See Intel 8080.

. ~,." .!· - .a

. ~ ' ~ . _;_· -

:_ ...

-"...~. _,...

.i: . _ __.,·· ''t~·:):_

\'" .~ .. ,nn&'d ~-:.~ -~~~•<;41\ ~ ·M ~~\ .,., , ".;'i •· ..

-·.:_·t:~<~:.- ' :1 "! :;,.,:_ --:- ~ • t!!c::·-~-: ~~ r c .. ~~ : .. _
,. ;- ~-

Machine (operating system)
ALL
BESM-6
Burroughs B5700
Burroughs B6700/B7700 (MCP)
CDC 6000
CDC 6000
Cyber 70 and 170
DEC PDP-11
DEC PDP-11
DEC PDP-11
DEC PDP-11
DEC PDP-11 (RSTS)
DEC PDP-11 (RSX-11 M/IAS)
DEC PDP-11 (RSX-11M/RT-11)
DEC PDP-11 (Unix)
DEC PDP-11 (Unix)
DEC PDP-11 (Unix)
DEC PDP-15
DEC VAX
DEC VAX (Unix)
DG Eclipse
DG Eclipse (AOS)
DG Eclipse (AOS)
DG Eclipse (ROOS)
DG Nova (AOS)
Digico Micro 16E
Facom 230-45S
General Electric GEC4082
Golem B (GOBOS)
HP 1000
Honeywell 6000/Series 60 Level 66 (GCOS Ill)
Honeywell Level 6
IBM 3033
IBM 360/370
IBM 360/370
IBM 370
IBM 370
IBM 370
IBM 370
IBM 370/303x/43xx
IBM Series 1
IBM Series 1
ICL 1900
Intel 8080/8085
Intel 8080/8085
Intel 8080/8085
Intel 8080/8085
Intel 8080/8085
Intel 8080/8085 (CP/M)
Intel 8080/8085 (TRS-80/Northstar)
Intel 8086
Intel 8086
MOS Tech 6502 (Apple)
Modcomp II and IV
Motorola 6800
Motorola 6800
Motorola 6800
Motorola 6800
Motorola 6800 (Flex)
Motorola 68000
Motorola 6809
Motorola 6809 (MDOS09)
Nord 1 o and 100 (Sintran 111)
Perkin-Elmer 3220
Perkin-Elmer 7/16
RCA 1802
RCA 1802
Siemens 7.748
Sperry-Univac V77
Texas Instruments 990
Texas Instruments 9900
Zilog Z-80
Zilog Z-80
Zilog Z-80

Implementation Reports

Machine Index

lssue:page
#15:101
#15:107.
#15:107
#19:113
#19:115
#15:108 .
#15:108
#15:111
#15:112
#19:115
#15:124
#15:100
#17:86
#15:101
#15:111
#15:100
#15:103
#15:124
#17:89
#19:115
#17:106
#15:110
#15:109
#15:108
#15:110
#15:113
#15:112
#15:113
#17:104
#19:116
#15:113
j115:113
#19:120
#15:115
#15:114
#15:124
#17:104
#17:102
#19:117
#19:117
#19:116
#15:114
#15:116
#15:119
#15:118
#15:119
#15:117
#17:102
#17:105
#15:100
#15:119
#15:103
#15:107
#15:120
#17:102
#15:120
#19:121
#19:120
#15:123
#19:121
#15:103
#17:102
#15:121
#15:122
#15:121
#17:103
#15:122
#15:124
#15:124
#17:101
#15:124
#15:124
#17:88
#15:124

Comments
Pascal I (Derived from Pascal S)

UCSD Pascal
UCSD Pascal

Pascal S

Concurrent Pascal

Pascal E
Modula

Tiny Pascal

Modula
UCSD Pascal

Modula

45

Machine (operating system)
Zilog Z-80

lssue:page
#17:104
#19:123
#17:103
#15:124
#19:124
#15:118
#1'5:119
#15:119

Comments

Zilog Z-80
Zilog Z-80 (CP/MO)
Zilog Z-80 (TRS-80)
Zilog Z-80 (TRS-80)
Zilog Z80
Zilog Z80
Zilog Z8000

46

UCSD p-System Users' Society

USUS MEMBERSHIP APPLICATION

I am applying for membership as

Affiliation

____ an individual ($20.00 U.S.)
____ an organization ($500.00 U.S.)

These rates are for 12 months of membership

Address ______________ _

Country

Form UMR:820415

Phone ----------------- --·-- TWX/Telex __________ _

Option: Do NOT print my phone number in USUS rosters
Option: Print ONLY my name and country in USUS rosters ___ _
Option: Do NOT release my name on-mailing lists

Computer System:
Z-80 __ 8080 __ PDP/LSl-11 __ 6502/Apple __ 6800 __ 6809 __ 9900

__ 8086 __ Z8000 __ GA-16 __ 68000 __ MicroEngine other _______ _

Interested in the following Committees/Special Interest Groups (SIGs):
__ Advanced Planning
__ Apple SIG
__ Applications SIG
__ Bylaws Committee
__ Communications SIG

__ Concurrency SIG
__ Educational SIG
__ Industrial SIG
__ Medical Appl. SIG
__ Meetings Committee

__ Publications Comm.
__ SW Exchange Library
__ Pascal Standards
__ Technical Info.
__ User Services
__ Word Processing

Send check or money order in the amount of $20 (drawn on a U.S. bank or U.S. office), payable to USUS, to
Chip Chapin, Secretary, USUS, P.O. Box 1148, La Jolla, CA 92038-1148, USA.

USUS stands for the UCSD p-System Users' Society (or the UCSD Pascal System Users' Society), and is
pronounced "Use Us". The UCSD Pascal System is a machine independent software system developed to
facilitate software portability; Pascal was its principal language, but now other languages such as FORTRAN,
COBOL and BASIC are becoming available. The Society was created to promote and influence the development
of, and education and information exchange about the UCSD p-System. To do this, USUS periodically holds
meetings around the United States and publishes a quarterly newsletter to provide its members a forum for
technical presentations and discussion and news about the UCSD p-System and its derivatives. USUS also
supports a Software Exchange Library from which members can obtain software for a nominal reproduction
charge. Special Interest Groups (SIGs) on topics including the Advanced Planning of new system features,
Apple Pascal and Word Processing have been formed, and others will form as the interest develops. USUS
is a non-profit organization and is independent of all vendors.

UCSD p-System® User's Society UCSD Pascal System® User's Society
"UCSD p-System" and "UCSD Pascal" are trademarks of the Regents of the University of California.

Implementation Reports

~ !l®te ~ j/~ !l®te ~ j/~ !l®te ~ j/~ !l®te ~ j/~ '

HP 3000 Ser~es 33
Authors: PaulJ. Campbell and Charles R. Williams

Beloit College, Beloit, WI 53511, USA

Pascal Processor Identification

Computer: Hewlett-Packard 3000 Series 33 run
ning under operating system HP 32033 MPE IV Version
C.D0.20

Processor: PascaV3000 Version HP 32106A.00.03,
which Hewlett-Packard asserts is an extension of the
proposed ANSI Standard Pascal (May 20, 1981 version) ..

Installation: Beloit College, Beloit, WI5351 l, USA

Test Conditions

Tested by: Paul J. Campbell and Charles R. Williams
Date: July-August 1982
Validation Suite Version: 3.0, (issued 8 January

1982), which appears to test agreement with DP7185 .1,
the second draft of the proposed ISO Pascal Standard

Report Sent To:

Lance Carnes, Editor, HP-3000 Special Interest Group
for Pascal (SIGPascal), TEXET Company, 163 Lin
den Lane, Mill Valley, CA 94941

William J. Cody, Applied Mathematics Division, Ar
gonne National Laboratory, Argonne, IL

Jean Danver, Hewlett-Packard Company, Information
Systems Division, 19420 Homestead Rd., Cuper
tino, CA 95014

Lloyd D. Davis, Editor, Newsletter, HP-3000 Special
Interest Group for Education (SIGED), Director,
Academic Computing Services, 209 Hunter, The
University of Tennessee at Chattanooga, Chatta
nooga, TN 37402

Bob Dietrich, M.S. 92-134 Tektronix, Inc., P.O. Box
500, Beaverton, OR 97077

Charley Gaffney, Pascal News, 2903 Huntington Road,
Cleveland, OH 44120

William M. Kahan, Computer Science Dept., Univer
sity of California, B~rkeley, Ca 94720

Emil Knorr, Math. Dept., Shaker Heights High School,
Shaker Heights, OH

John Nierengarten and Dan Abts, Computer Center,
University of Wisconsin, Lacrosse, WI

John R. Ray, Editor, Journal of the HP-3000 Interna
tional Users Group, The University of Tennessee
Knoxville, Knoxville, TN 37401

Mike Riedel, Software Engineer, Hewlett-Packard, 150
S. Sunny Slope Rd., Brookfield, WI 50005

Arthur Sale, Dept. of Information Science, University
of Tasmania, Tasmania, Australia

Richard Sours, Math. Dept., Wilkes College, Wilkes
Barre, PA

B. A. Wichmann, NPL

Introduction

"PascaV3000 [also referred to as HP3000 Pascal]
is a superset of Hewlett-Packard Standard Pascal
... ; HP Standard Pascal, in turn is a superset of Amer-

Validation Suite Reports

ican National Standards Institute (ANSI) Pascal."
(PascaV3000 Reference Manual, p. 1-1).

Programs in the validation suite were compiled
with the compiler option ANSI ON, so that the com
piler would issue a warning when it encountered fea
tures not legal in ANSI Standard Pascal. In the sections
below, warnings of this nature are either mentioned ex
plicitly or the feature involved is marked as a feature
of HP Standard Pascal. The validation suite itself con
tains some defective tests. Those previously reported
by Wichmann[1983] are marked' 'ignore test output per
Wichmann.''

I"rincipal Deviations

• GET is implemented as a "deferred" get in or
der to facilitate interactive VO

• real numbers are not written correctly to files
• a FOR loop variable may be altered from within

its loop, and it is still defined after completion of the
loop

• pointers which are still needed are allowed to be
disposed, and pointers with explicit tag values are han
dled incorrectly

• a procedure call may be bound to a wrong de
fining occurrence

• the LN function has large relative errors (about
10%) for arguments near 1

Main Extensions
• OTHERWISE and subrange-like lists may be

used as case-selector elements
• the predefined type LONGREAL is available
• the predefined type STRING is implemented as

a PACKED ARRAY OF CHAR with a declared maxi
mum length and an actual length that may vary at
runtime

• primitives are provided for manipulation of ob
jects of type STRING

• a function may return an object of structured
type

• constructors are available for assigning constant
values to objects of structured types

• values of user-defined enumerated types can be
directly written to and read from files

• a packed array of CHAR can be read with a sin
gle READ command

• a subprogram in any of the languages SPL, For
tran/3000, CoboV3000, and PascaV3000 can be called by
a program in any of the other languages

• conformant arrays are not handled

CONFORMANCE TESTS

Number oftests run
invalid
irrelevant
passed
failed (number of causes)
detecting compiler bugs

154
3
0

149
2 (2)
0

47

Tests invalid

6.4.3.3-5 - Ignore test output per Wichmann.
Compiler does not permit an uniitialized empty record
to be accessed.

6.5.1-1 - Ignore test output per Wichmann. Sec
tion 6.10 of7185.1 (ISO second draft) demanded that
''Each program parameter shall be declared in the var
iable-declaration-part of the program-block." The
wording of 6.10 was changed in the ISO third draft to
"Each program parameter shall have a defining-point
as a variable-identifer for the region that is the program
block." Either wording affects the parameters "name"
and "firstname" in this program.

6.6.6.5-1 - Ignore test output per Wichmann.
Compiler issues no warning or error message.

6.9.3.5.1-1 - Ignore test output per Wichmann.
Still, the floating-point representation of real numbers
is not written correctly to textfiles. The compiler fails
to write the initial space required before each non-neg
ative number. (Note: The test does not check writing
of negative reals.)

Details of failed tests

6.7.1-2 - Compiler rejects [x .. y] where x > y,
claiming that a ''set of this size cannot be constructed.''
The standard requires the expression to be interpreted
as the empty set.

6.9.3.5.2-1 - The fixed-point representation of
real numbers is not written correctly to textfiles, as the
number 0.0 is written a .0 instead of the required 0.0.
The compiler omits the initial zero for all positive reals
between 0 and 1.

EXTENSION TESTS

Number of tests run 3

Details of tests

6.1.9-7 - Equivalent relational symbols are not
defined.

6.1.9-8 - None of the alternate symbols%,%=,
.= is defined.

6.8.3.5-16 - The alternative OTHERWISE is ac
cepted in a CASE statement (HP Standard Pascal
feature).

DEVIANCE TESTS

Number of tests run 115
invalid 2
irrelevant 1
correctly detecting 91

deviations
true extensions 13
not detecting deviations 8 (4)

and not true extensions
(number of causes)

detecting compiler bugs 0

Tests invalid

6.3-7 -The syntax in lines 14 and 15 is incorrect:
the caret symbol "should be deleted in both. With these
corrections the compiler deviates from the standard by

48

allowing the use of NIL in the CONST section.

6.4.6-6 -Program fails to declare program param
eter f within the VAR section, as required by the stan
dard. With f correctly declared, the compiler passes the
test.

Tests irrelevant

6.4.3.3-7 - This test relies on the compiler de
viating for tests 6.4.3.3-10 through 6.4.3.3-13, which it
does not.

True extensions

6.1.7-9 - Compiler permits assignment of a single
character, quoted or unquoted, to a PACKED ARRAY
OF CHAR of any positive size. (HP Standard Pascal
feature). It does not allow assignment to a variable of
type CHAR of a (padded or not) PACKED ARRAY OF
CHAR containing a single character.

6.1.7-10 - Padding with spaces is done automati
cally in assigning a shorter string to a longer one. (HP
Standard Pascal feature).

6.1.7-11-11 - Assignment of a null string is per
mitted. (HP Standard Pascal feature)

6.1.7-12 - String constants are indexed.
6.1.8-5 -Space may be omitted between a number

and a following word-symbol.
6.2.1-8,6.2.1-10 - Multiple declaration parts are

allowed: the CONST, TYPE, and VAR sections can be
repeated and intermixed. The LABEL section must
still precede, and the procedure and function sections
follow, the block of CONST, TYPE, and VAR sections.
(HP Standard Pascal feature)

6.3-9 - The value of a declared constant may be
specified with a constant expression. (HP Standard
Pascal feature)

6.4.3.3-8 -A warning instead of an error message
is issued if a case label is not within tag or select expres
sion range.

6.4.5-12 - To compare two string literals, the com
piler blank-fills a shorter one. (HP Standard Pascal
feature)

6.6.1-5 - Formal parameters may be repeated in
the subsequent procedure declaration of a FORWARD
procedure. (HP Standard Pascal· feature)

6.6.2-5 -A function may return a set, an array, or
a record instead of an object of simple type. (HP Stan
dard Pascal feature)

6.8.3.5-7 - Subrange-like lists may be used as
case-selector elements. (HP Standard Pascal feature)

Deviations not detected

6.2.1-6 -Declared but unused labels are allowed.
(Note: Such behavior was not prohibited in the first
draft of the ISO standard, but is prohibited in the sec
ond and third drafts at'6.2. l.)

6.6.1-3, 6.6.1-4 - A procedure call may be bound
to a wrong defining occurrence: in these cases, to the
outer of the two wrong procedures.

6.6.3-4 - A variable parameter is allowed to de
note a field which is the selector of a variant-part.

6.8.3.9-7 - Assignment may be made within the
loop to a FOR loop control variable.

Validation Suite Reports

6.8.3.9-8 - Compiler fails to detect use of a FOR
loop control variable after completion of the loop. The
value of the variable after completion is the fin:al-value
in the FOR statement.

6.8.3.9-9 -After a FOR loop which is not entered,_
the value of the control variable is defined but unknown.

6.8.3.9-16 - The control variable of a FOR loop
may be reassigned by a READ during execution of the
loop.

ERROR-HANDLING

Number of tests run
invalid
irrelevant
passed

Tests invalid

failing to detect errors
(number of causes)

detecting compiler bugs

55
2
0

34
18 (8)

1

6.6.6.5-6 - The test considers it an error if after
REWRITE(fyle), EOF(fyle) is defined. In fact the stan
dard requires EOF(fyle) to be true under this circum
stance; it is fyle" that is required to be undefined. The
compiler abides by the standard.

6.9.3.2-3 - The statement REWRITE(f) must be
inserted before the call to write to f. With this correc
tion, the compiler passes the test.

Details of tests failing to detect errors

6.4.3.3-10 through 6.4.3.3-13 - Undefined tag
fields in variant records are not detected.

6.5.5-2 - Compiler fails to detect the change in
value of a file buffer variable when used as a global var
iable while the buffer variable's dereferenced value is
passed as a VAR parameter.

6.5.5.3-Asfor6.5.5-2, except that here the buffer
variable is an element of the record variable list of a
WITH statement.

6.6.2-9 - Compiler does not detect that a function
identifier has not been assigned a value within the func
tion; the standard requires such a function identifier to
be undefined. (The test would be enhanced by revealing
what value (if any) is assigned by execution of the
function.)

6.6.5.3-6 - Compiler fails to detect disposing of
a pointer variable which refers to a current actual VAR
parameter.

6.6.5.3-7 - Compiler fails to detect disposing,
within the scope of a WITH statement, of a pointer var
iable which refers to an element of the current record
variable-list of the WITH.

6.6.5.3-8 through 6.6.5.3-10 - Compiler fails to
detect errors in the use of a pointer variable that was
allocated with an explicit tag value.

6.6.5.3-11 - Pointer still usable after DISPOSE.
6.6.6.5-7 - Compiler fails to detect error of apply

ing EOLN function to a file for which EOF is true.
6.7.2.2-13 - Error of a negative right operand in

MOD is undetected. (The test would be more valuable
if it revealed how a compiler accepting this construct
handles it.)

Validation Suite Reports

6.8.3.9-19 -A FOR statement control variable is
still defined after the loop is completed; its value is the
final-value in the FOR statement.

6.9.3.2-4, 6.9.3.2-5 - Compiler detects no error
when asked to write a real number using 0 digits after
the decimal point.

Tests detecting compiler bugs

6.6.5.2-5 - In order to facilitate J!O with interac
tive devices, GET is deliberately implemented as a
"deferred" GET, which postpones the actual loading
of a component into the buffer variable. Also deferred
are setting the file buffer to undefined and EOF to true.
Hence the compiler should not conform to the stan
dard's pre- or post-assertions for GET. However, runs
of 6.6.5.2-5 at two different times produced inconsist
ent results, the compiler failing the test on one occasion
and passing it the other.

IMPLEMENTATION-DEFINED

Number of tests run 14
invalid 2
irrelevant 0
detecting compiler bugs 0

Details of invalid tests

6.6.6.1-1 - A standard function may not be used
as parameter to a procedure.

6.6.6.2-11- Because this test relies on non-detec
tion of underflow at runtime, the procedure MACHAR
has to be modified to trap run-time underflow and con
tinue execution. (This is accomplished by using the
compiler library routine XARITRAP). Even with this
modification, the program fails to produce results com
pletely agreeing with known features of the processor.

VARIABLE MEANING PROGRAM VALUE TRUE VALUE
(where diff'erent)

beta radix 2

number or digits in 23
floating point
significand

rnd rounds

ngrd number of guard digits
for multiplication

machep 1.0 + 2machep < > 1.0 23

negexp 1.0 - 2negexp < > 1.0 22

iexp number or bi ts (includ-
ing sign) reserved for
exponent

min exp 2minexp is smallest 55
floating point power
or 2

max exp maxexp is largest 257 255
floating point
pololer of 2

eps 1.0 + eps <> 1.0 1. 192093 E-07

epsneg 1.0 - ep:meg <> 1.0 2.384186 E-07

xmin smallest floating pt. 1. 72723~ E-77
power of 2

xmax large.st .floating 1.727233 E-77 1.15792 E+77
point number

The program assumes that maxexp can be calcu
lated by adding minexp to a power of 2. This reasoning
fails to account for computers like the one at hand,

49

which have a single exception to their assumption of a
leading 1 preceding the mantissa of a :floating point
number: namely, the number with exponent zero and
mantissa zero is interpreted as 0.0, instead of as 2-256.
In fact the compiler can represent all floating point
numbers (within its range of precision) between 2-256
and 2256, not including these lower and upper bounds.
The smallest floating point number is

(1 + eps) 2-256 and the largest is (1 - epsneg) 2256

In the other tests using MACHAR, the procedure
is replaced by one simply assigning the known correct
values.

(The following changes should be made in the text
of the long initial comment of the test 6.9.2-6 should be
6.9.1-6 negeps should be negep, and it is the largest in
magnitude negative integer ...)

Details of implementation-dependencies

6.1.9-5 - The alternate comment delimiters (*,
*) are implemented.

6.1.9-6 -The equivalent symbols@ for up-arrow
and(. , .) for braces are implemented.

6.4.2.2-10 - MAXINT = 2147483647 = 2:31-1
6.4.3.4-5 - The base-type of a set may have as

many as 32768 elements, according to PascaV3000 Ref
erence Manual.

6.7.2.3-3, 6.7.2.3-4 - In test of short-circuit eval
uation of (A AND B) and (A ORB), only the first
expression A is evaluated. It is possible to force full
evaluation by using the compiler command PARTIAL
_EVAL OFF, the default being ON.

6.8.2.2-1, 6.8.2.2-2 - Evaluation precedes selec
tion in the assignments A(IJ := expression, p" :=
expression.

6.8.2.3-2 - Actual parameters to a procedure are
evaluated in forward order.

6.9.3.2-6 - default field widths are
integer 12 characters
boolean : varies according to the boolean value
real : 12 characters

6.9.3.4.1-2 - The number of digit characters writ
ten in the exponent of a real value expressed in :floating
point format is 2.

6.9.3.6-1 -The representations of true and false,
with parentheses to indicate width, are
(TRUE) (FALSE)

QUALITY

Number oftests run
invalid
irrelevant
passed
failed (number of causes)
detecting compiler bugs

Details of some tests passed

61
0
0

48
13 (9)
0

1.2-1 - General check on execution speed: the
program executes in 11.2 sec., corresponding to 89
thousand whetstone instri;ictions per second.

1.2-2 - GAMM measure: The program executes
3 million GAMM units in 160.8 sec, for a GAMM meas-

50

ure of 53. The values printed are ACC = 16.7319145,
ACCl = .0016733; the value for ACC should be
16.73343.

1.2-3 - Speed of procedure calls: The program
contains 228,057 procedure calls, and executes in 20.0
sec., for an average of 11,400 calls per second, or an
overhead of 88 microseconds per call.

6.4.3.4-4- Warshall's algorithm executes in 0.8252
sec. (average of five runs) and requires 2330 bytes of
storage for all varibles.

6.6.5.3-12 - This test program must be compiled
with the PascaV3000 compiler option HEAP_DISPOSE
ON; the default setting is OFF. (This option is not avail
able in the HP Standard Pascal subset.)

6.8.3.5-12 - Use of a case constant of the same
base type as the case selector - but outside the sub
range of the case selector type - results in a compile
time error.

Details of tests failed

6.1.5-9 - Very large values: Each very large value
produces an error message.

6.1.8-6 - Compiler fails to issue a warning for a
possible unclosed comment.

6.4.3.2-6 -The index type of an array may not be
INTEGER, and the compiler prints an appropriate er
ror message.

6.4.1-2 - Fewer than 300 identifiers are allowed
in a declaration list.

6.6.6.2-8 - Test of EXP function produces loss of
7 base 2 significant digits for arguments -103.762 and
115.1674. See note below on 6.6.6.2-10.

6.6.6.2-9 -Tests of SIN and COS functions pro
duce respective losses of 16 and 15 base 2 significant
digits for respective arguments 18.84967 and 23.56232.
See note below on 6.6.6.2-10.

6.6.6.2-10 - Test of LN function fails because of
large relative errors (about 10%) for arguments near l.
Since the Pascal/3000 compiler calls system library rou
tines to calculate EXP, SIN, COS, and LN, other com
pilers and interpreters which also 'use those routines
(e.g., Fortran/3000, Basic/3000, etc.) inherit the same
inaccuracies.

6.8.3.4-2 - IF statements can be nested only 11
deep, not 24.

6.8.3.5-15 - CASE statements can be nested only
11 deep, not 15.

6.8.3.8-3 - WHILE statements can be nested only
14 deep, not 15.

6.8.3.9-20 - FOR loops can be nested only 11
deep, not 20.

6.9.1-8 - Test of accuracy of read/write for reals
fails. Result was too large 47 times, equal 0 times, and
too small 53 times. See 6.9.3.5.2-2 for underlying
explanation.

6.9.3.5.2-2 - Test to check accuracy of write for
reals produces repeated error message ''input incorrect
- nondigit read." The standard (6.9.4.5.2 of second
draft, 6.9.3.4.2 of third draft) requires that WRITELN
(X:33 :30) write 30 digits after the decimal point. PascaV
3000 Reference Manual (p. 6-41) notes that in no case
will more digits be printed than are in the internal rep
resentation. The input errors ("non-digit read") are

Validation Suite Reports

from all of the leading blanks the compiler inserts to
right-justify the shorter output. Using just WRI
TELN(X) gives agreeable results. (The behavior of this
compiler seems more reasonable than that prescribed
by the standard.)

LEVEL 1 (CONFORMANT ARRAYS) TESTS

Number of tests run
irrelevant

11
11

6.6.3.7-1 through 6.6.3.7-10, 6.6.3.8-1 - Ignore
test output per Wichmann. Conformant arrays are not
handled by Pascal/3000.

Concluding Comments

Compiler errors discovered by users of Pascal/
3000 and reported to Hewlett-Packard are published
monthly in the Software Status Bulletin for Program
Team 3000. Most of these errors involve extension or
other feature which do not involve the Pascal standard,
but some involving the standard were not caught by the
Validation Suite: ·

• Integer multiplication by (-1) crashed an earlier
version (Version 00.00) of the compiler

• The invalid use of declared variables which are
accessed within binary and unary expressions - but
which never have values assigned to them - is not al
ways detected, although one instance was caught by
Test 6.2.1-11

• compiler erroneously allows redefinition of the
reserved word WRITE as the name of a procedure

(The Software Status Bulletin also features some
times-amusing advice under ''Temporary Solution,''

such as

• Ignore it [the message to inform HP if a certain
error occurs], your program is correct and can be run
as is.

• Use a real file name [instead of']
• Do not take advantage of the fact that this error

is not detected, because it will be.)

References

Addyman, A., et al., ISO DP/7185 -A Draft Proposed
Standard for the Programming Language Pascal,
Pascal News Number 18 (May 1980) 2-70. ["ISO
First Draft] ,

Differences Between the Draft International and Amer
ican Pascal Standards, X3J9/82-102 JPC/82-102, 5
pp.

DP7185 Specification for the Computer Programming
Language Pascal 97 /SC 5 N 595 (January 1981), Pas
cal News Number 20 (December 1980) 1-83. ["ISO
Second Draft"]

DP7185 Specification for the Computer Programming
Language Pascal 97/SC 5 N 6d78 (4November1981),
88 pp. ["ISO Third Draf"]

HP 3000 Support Systems, Pascal/3000 Reference Man
ual, 1st Edition, December 1981.

Joint ANSI/X3J9 IEEE Pascal Standards Committee,
American National Standard Programming Lan
guage Pascal, Second Draft, 15 July 1982, Foreword
+ 81 pp.

Software Status Bulletin for Program Team 3000.
Wichmann, B.A., Status Report on Version 3.0 of the

Pascal Test Suite, Pascal News Number 24 (January
1983) 20-22. PUG

Intel 8085, Zilog 80 (Cogitronics)

Pascal Processor Identification

Target computers: Z80, 8085
Host computers: GenRad ADS 2300; Tektronix

8002A, 8550; CDC Cyber (6000 series)
Planned host computers: DEC PDP-11; IBM 370;

CPM compatible systems
Processor: Cogitronics Pascal Vl.2C

Test Conditions

Time: December 1980
Tests carried out by: D. Dunstan
Validation Suite Version: 2.2

Restrictions and Extensions

Due to the byte addressable nature of the target
machines, PACK and UNPACK procedures are not
supported.

PACK is ignored in declarations.
Strings are compatible if their lengths are the same.

The lower bound of the index type need not be one.
No runtime checks are made.
The result of a function may be any data type (other

than file.)

Validation Suite Reports

Procedures and functions may not be used as
parameters.

PAGE procedure is not supported.
A GOTO target must be within the current routine

or the mainline.
No restrictions are placed upon the FOR loop con

trol variable.
The standard files INPUT and OUTPUT are al

ways opened automatically whether or not they are
mentioned on the program header.

Implicit references to the standard files INPUT
and OUTPUT are always possible, even when the iden
tifiers INPUT and OUTPUT have been redefined.

Conformance Tests

Number of tests attempted: 139
Passed: 127
Failed due to restrictions and extensions: 7
Failed: 5

Details of failed conformance tests

6.4.3.3-1 -Test does not conform to current ISO
standard.

51

6.6.3.1-1 -Test does not conform to current ISO
standard.

6.9.4-4 - Test does not conform to current ISO
standard.

6.9.4-7 - Test does not conform to current ISO
standard.

Deviance Tests

Number of tests attempted: 94
Passed: 67
Failed due to restrictions and extensions: 23
Failed: 4

Details of failed deviance tests

6.1.5-6 - Test does not conform to current ISO
standard.

6.4.6-11 - No check for fields of type file.
6.6.1-6 - No check for procedures or functions

that are declared FORWARD but are never defined.
6.6.2-5 - No check to verify that the function

identifier is defined within the function.

Error Handling Tests
Number of tests attempted: 46
Passed: 7
Failed due to restrictions and extensions: 39
Failed: 0

Implementation Defined Tests
Number of tests attempted: 15
Passed: 12
Failed due to restrictions and extensions: 1
Failed: 2
Details of failed implementation defined tests
6.11-2 -Alternate operators not allowed.
6.11-3 -Alternate operators not allowed.

Quality Measurement Tests
Number of tests attempted: 23
Passed: 21
Failed due to restrictions and extensions: 2
Failed: 0

Extension Test
Otherwise is implemented as described in the cur-

rent ISO standard. PUG

IBM 370 (AAEC)

Pascal 8000 Version 2.0 Validation Suite Report

IBM 370 (AAEC)

Validation Suite Results

Pascal Processor Identification

Computer: IBM 370/168, Model 3
Processor: Pascal 8000, Version 2.0 (27JUL80)

Test Conditions

Tester: Joseph A. Miner, Cornell Computer
Services

Date: July 1980
Validation Suite Version: 2.2
No.te: In the body of this report, the words "ISO

Draft Standard Pascal'' and ''the ISO Draft Standard''
refer to the Draft Pascal Standard ISO DP/7185 pub
lished in the April 1980 issue of Sigplan Notices and the
May 1980 issue of Pascal News.

Conformance Tests

Number of tests passed: 126 (2 were repaired)
Number of tests failed: 3 (1 basic cause)
Invalid tests discovered: 10
Details of Repaired Tests:(These tests passed after

the errors noted were fixed.)
Test 6.6.1-6 was missing a semicolon in the main

program after the call of procedure one.
Test 6.6.3.3-3 had type compatibility errors be

cause of anonymous pointer types.
Details of failed tests: Tests 6.4.3.5-2, 6.4.3.5-4, and

6.9.1-1 fail because OS/360 requires that at least one
data character be written on each line of a text file (two
if the file contains ASA control characters). Zero length

52

records may not be written.
Details of invalid tests: Tests 6.1.2-3 and 6.3-1 re

quire that identifiers that are identical in the first eight
characters be distinguished. Both tests passed after the
identifiers were changed.

Test 6.1.8-3 shows that either form of comment
delimiter may end a comment, as specified by the ISO
Draft Standard.

Test 6.4.3.5-1 contains an invalid file type decla
ration ("file of ptrtoi", where ptrtoi is a variable name,
not a type).

Test 6.5.1-1 attempts to define a file of files.
Tests 6.6.3.1-1 is invalid since one of the actual pa

rameters is not of the same type as the corresponding
fm:mal variable parameter.

Test 6.6.3.1-5 contains invalid syntax for an actual
procedure parameter.

Test 6.6.3.4-2 contains invalid syntax in a formal
procedural parameter specification.

Test 6.9.4-4 compares a line previously written to
a string constant. The string constant does not match
the format used to write the line. (The test succeeds if
appropriate changes are made to the program.)

Test 6.9.4-7 expects boolean values to be left jus
tified when written to a text file. The ISO Draft Stan
dard specifies that writing.a boolean value to a text file
is equivalent to writing the string 'true' or 'false'.
Therefore the values should be right justified.

Note: Several tests contain declarations of iden
tifiers that are identical in the first eight characters
(6.1.2-3, 6.3-1, 6.4.5-5, and 6.8.2.2-2). Because the Val
idation Suite assumes that the processor only need dis
tinguish identifiers that differ within the first eight char
acters, these tests have been reported here as "Invalid
Tests". A more recent version of the ISO Draft Pascal

Validation Suite Reports

Standard (ISO DP/7185) appears to require that a con
forming processor distinguish identifiers that differ in
any character position.

Deviance Tests

Number of deviations correctly detected: 87
Number of tests not detecting erroneous deviations:

3 (1 basic cause)
Number of tests showing extensions:2
Invalid tests discovered: 3
Details of extensions: Test 6.8.3.5-12 shows that

subrange-like lists are allowed as case-constant
elements.

Test 6.8.3.5-14 shows that the "otherwise" clause
is allowed in case statements.

Details of deviations not detected: Tests 6.8.2.4-2,
6.8.2.4-3, and 6.8.2.4-4 show that it is possible to
branch into if statements, between branches of a case
statement, and into a case statement.

Details of invalid tests: Test 6.1.5-6 shows that
lower case 'e' is allowed in an unsigned-real number,
as specified by the ISO Draft Standard.

Test 6.2.1-5 contains a label that is declared but
never defined or referenced. This is allowed in the cur
rent version of the Standard. (The compiler issues a
warning message in this case.)

Test 6.4.5-5 declares identifiers that are not unique
over the first eight characters. The deviation is cor
rectly detected if appropriate changes are made to the
identifiers.

Error handling

Number of errors correctly detected: 30
Number of errors not detected: 16 (7 basic causes)
Details of errors not detected: Tests 6.4.3.3-5, 6.4.3.3-

6, 6.4.3.3-7, and 6.4.3.3-8 show that the variant fields
of a record are not' 'undefined'' when the tag field value
is changed.

Test 6.4.3.3-12 shows that assignment of an unini
tialized empty record is not detected.

Test 6.4.6-7, 6.4.6-8, and 6.7.2.4-1 show that as
signment of a set expression containing elements that
are not within the subrange base-type of the destination
set is not detected if all the elements of the expression
set have ordinal values in the range 0 .. 63.

Tests 6.6.5.2-6 and 6.6.5.2-7 show that a file vari
able may be modified while the associated buffer vari
able is an actual variable parameter.

Tests 6.6.5.3-5 and 6.6.5.3-6 show that a variable
may be DISPOSED while it is an actual variable
parameter.

Tests 6.6.5.3-7, 6.6.5.3-8, and 6.6.5.3-9 show that
variables created by the variant form of NEW may be
used in expressions and on the left hand side of assign
ment statements.

Implementation Defined

Number of tests run: 15
Number of tests repaired: 1
Details of repaired test: Test 6.8.2.2-2 contains type

compatibility errors caused by anonymous pointer
types.

Details of implementation-dependence: Test 6.4.2.2-

Validation Suite Reports

7 shows maxint to be 2147483647.
Test 6.4.3.4-2 shows that a set of char is allowed.
Test 6.4.3.4-2 shows that sets must be of 64 ele

ments or less, with sets of integers falling in the range
0 .. 63.

Test 6.6.6.1-1 shows that standard functions may
not be used as actual function parameters.

Test 6.6.6.2-11 displays some characteristics of the
floating-point arithmetic. The results are reproduced in
section 2 of this report. ("Floating-Point Arithmetic
Characteristics", below).

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean
expressions are completely evaluated in all cases.

Tests 6.8.2.2-1and6.8.2.2-2 show that the variable
on the left hand side of an assignment statement is se
lected before evaluation of the expression on the right

· h~d side.
. Test 6.9.4-5 shows that two digits are written in an

exponent.
Test 6.9.4-11 shows that the default field widths for

output are integer - 12; Real -24; Boolean -4 if true,
5 if false.

Test 6.10-2 shows that the operation
REWRITE(OUTPUT) is permitted

Tests 6.11-1, 6.11-2, and 6.11-3 show that alterna
tive comment delimiters, as well as the symbols (..)
and ' are implemented. (Also implemented are the
symbols .,= & and l)

Quality Measurement

Number of tests run: 23 (8 modified)

Results of tests: Test 5.2.2-1 shows that different
identifiers that do not differ in the first eight characters
are not flagged.

Test 6.1.3-3 shows that identifiers are distinguished
only over eight characters.

Test 6.1.8.4 shows that a semicolon or open com
ment symbol within a comment is flagged with a warn
ing message.

Tests 6.2.1-8, 6.2.1-9, and 6.5.1-2 show that long
lists of types, labels, and variables are allowed in their
respective definition parts.

Test 6.4.3.2-4 shows that array [integer] is not
allowed.

Test 6.4.3.3-9 shows that variant fields of a record
type are overlaid in the order of definition.

Test 6.4.3.4-5 (Warshall' s algorithm) uses 0.134
seconds of processor time with all execution tests en
abled, and 0.067 seconds without tests. (By compari
son, the program uses 0.816 seconds on a B6700 with
the Tasmania compiler).

Test 6.6.1.7 shows that five levels of procedure or
function nesting is allowed.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and
6.6.6.2-10 show that the sqrt, arctan, exp. ln, and sin/
cos functions are implemented without any significant
error. (Details in section 2 of this report, below.)

Test 6.7.2.2-4 shows that division by and into neg
ative operands is implemented consistently, that the
quotient is trunc(a/b) for negative operands, and that
mod yields remainder of div with negative operands.

53

Test 6.8.3.5-2 shows that unreachable case branches
are not flagged.

Test 6.8.3.9-8 shows that at least 256 branches are
allowed in a case statement.

Test 6.8.3.9-18 is not relevant, since use of a for
statement control varible after termination of the loop
is detected as an error.

Test 6.8.3.9-20 shows that for statements may be
nested at least 15 levels.

Test 6.8.3.10-7 shows that with statements may be
nested at least 15 levels.

Test 6.9.4-10 shows that output is flushed at the end
of the job.

Test 6.9.4-13 shows that recursive I/O to the same
file is allowed.

Details of Modifications

Test 6.4.3.4-5 was modified to use the Pascal 8000
CLOCK function to calculate the processor time used
by the program.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9,
6.6.6.2-10, and 6.6.6.2-11 were modified to disable
arithmetic interrupts during execution. These tests gen
erate exponent underflow interrupts that are normally
trapped and treated as an error.

Test 6.9.4-14 was modified to remove the unde
clared and unused file F from the program statement
parameters.

Compilation Speed

Several programs were compiled on the IBM 370/
168 Model 3 processor using the VM/370-CMS oper~
ating system release 6.8 with Basic System Extensions
release 2. The virtual CPU times used to compile the
programs were recorded. CPU times include time spent
interpreting the PASCAL EXEC command file and
compiler program loading and initialization. The ver
sion of the compiler used was compiled with all exe
cution tests disabled and without any traceback
information.

Five programs containing a total of 13,875 lines of
code, ranging from 1829 to 3706 lines each, were com
piled. When the programs were stored in files contain
ing variable length records with trailing blanks re
moved, compilation speed was about 30,000 lines per
minute, with a range of 23,000 to 45,000 lines per min
ute. The average speed was around 1,030,000 charac
ters per minute.

When the programs were reformatted in files with
fixed-length 80-byte records, compilation times de
creased about 2%. The average number of lines per
minute increased slightly to 31,400, and the number of
characters per minute increased about 145% to 2,-
510,000. This increase in speed is apparently due to re
duced CMS overhead when processing files with fixed
length records, and high-speed skipping of blank char
acters by the compiler.

Floating Point Arithmetic Characteristics

Several of the Validation Suite programs test the
quality of the floating point arithmetic and mathemati
cal functions. These results are summarized here.

54

The programs were written by W. J. Cody of Ar
gonne National Laboratory and revised for Pascal by
R. A. Freak, University of Tasmania. Parts of the pro
grams are based on an algorithm by M. Malcolm (CACM
15 (1972), pp. 949-951), with some of the modifications
suggested by M. Gentleman and S. Marovich, (CACM
17 (1974), pp. 276-277).

Machine Characteristics

Radix of Representation

Number of base Beta digits in
significand

Chopping is used (not rounding)

More than T base Beta digits
participate in post
normalization after
multiplication

Number of bits in exponent
representation

Smallest positive number s. t.
1+ eps<>l

Smallest positive number s.t.
1-EpsNeg<> 1

Smallest positive number

Largest positive number

Arithmetic Function Quality

Beta= 16

T= 14

Rnd= 0

NgRd= 1

!Exp= 7

Eps = 2.2204e-16

EpsNeg=
1.3878e-17

XMin= 5.3976e-79

XMax=
7.2370e+75

In the twelve quality tests, various identities were
tested with 2000 arguments randomly chosen from a
logarithmic distribution over the stated range. The tests
are identified by the following numbers:

1. sqrt(x*x) - x = 0.0
2. ~crtRn(x) = truncqted tqylor series.
~. qrctan(x) = qrctRn(1/16) + ~rctRn((x-1/16)/(1+x/16))
4. 2 * '.lrchn(x) = ll.rchn(2x/(1-x*x))
5. exp(x - 0.0625) = exp(x)/exp(0.0625)
6. exp(x - 2.8125) = exp(x)/exp(2.S:l12?)
7. ln(x) = Tqylor series expansion of ln(1+y)
8. ln(x) = ln(17x/16) - ln(17/16)
q, ln(x) = 1n(11 x/10) - ln(11 /10)

1·J. ln(x*x) = 2 * ln(x)
11. sin(x) = -~*sin(x/~) - 4*sin(x/'S)**?
12. -::os(x) = 4*cos(x/·~)**~ - ?*cos(x/"~)

Table format

From left to right: the test number, the argument
range, the number of times the result was too large or
too small, the mean relative error in decimal and hex
adecimal, the maximum relative error and the argument
value at which it occured, and the root-mean-square
error in decimal and hexadecimal. (See Table I on fol-

. lowing page.)

Modifications to the Validation Suite

The following modifications were made to the test
programs before they were processed.

Validation Suite Reports

Table I

+----~-------------·------·-------------·-------------~-------------+

lTestl Range !Large lMean RelativelMax Relative lRMS Relative l

~----1-------------l~~~==-l----~~~~~----l~~~~~~~~-~~:-l----~~~~~----~
l 1 l 2.5000e-01 l 0 l -1.75658-17 :· 1.1077e-16 l 2.9011e-17 I
l l 1.000e+OO l 919 l 16**-13.92 l @2.5058e-01 l 16**-13.73 1

+----+-------------+------+-------------+----------~--+-------------{
\ 1 \ 1 . OOOOe+OO l 0 \ i i l
t----l--~~~~~~~=~~-l----~-l-------------1-------------l-------------*
l 2 l -6.250e-02 l 29 i 3.4137e-19 i 6.0492e-17 l 3.2065e-18 /
1 l 6.2500e-02 l 0 l 16**-15.34 l @1.4339e-02 l 16**-14.53 1

+----+~------------+------+------------~+-------------+-------------{
l 3 l 6.2500e-02 l 1438 i 7.6733e:..17 l 2.2153e-16 i 9.8159e-17 j
l i 2.6795e-01 l 0 l 16**-13.38 i @1.2595e-01· i 16**-13.29 1

+----+-------------+------+-------------+-------------+-------------{
l 4 l 2.6795e-01 l 1776 l 4.6553e-17 l 1.5834e-16 l 5.5639e-17 l

~----l--~~~~=~~=~~-l---~=-l--~~===~=~~~-l-~=~~~~~~=~~-l--~~===~=~~~-~
l 4 i 4.1421e-01 l 358 l 4.0689e-18 l 2.21%e-16 l 5.5398e-17 /
l l 1.0000e+OO l 193 i 16**-14.44 l @5.4685e-01 l 16**-13.50 1

+----+-------------+------+-------------+-------------+-------------{
l 5 i -2.8407e-01 i 728 l -4.0753e-17 l 2.2279e-16 \ 8.7417e-17 j
l l 3.4657e-01 l 181 l 16**-13.61 l @5.9158e-02 1 16**-13.34 1

+----+-------------+------+-------------+-------------+-------------{
l 6 l -3.4657e+OO l 579 l -2.2268e-17 l 2.2048e-16 l 5.8089e-17 j
1 i -1.4002e+02 l 207 l 16*~-13.83 l@-8.8676e+01 l 16**-13.48 1

+----+-------------+------+-------------+-------------+-------------{
l 6 l 6.9315e+OO l 576 l -2.3871e-17 l 2.2198e-16 l 6.0656e-17 I
1 l 1.7457e+02 l 198 l 16**-13.80 l @1.0817e+02 l 16**-13.47 1

+----+-------------+------+-------------+-------------+-------------i
l 7 l 9-9998e-01 i 550 i -2.0664e-17 l 4.3116e-16 l 4.1493e-17 j
1 l 1.0000e+OO l 414 l 16**-13.86 l @1.0000e+OO l 16**-13.60 1

+----+-------------+------+-------------+--~----------+-------------i
l 8 l 7.0710e-01 l 0 l -1 .0709e-17 l 2.1473e-16 l 6.3062e-17 I
l l 9.3750e-01 l 757 i 16**-14.09 l @9.3741e-01 l 16**-13.45 1

t----+-------------t------t-------------t-------------t---------~---i
1 9 l 3. 162-3e-01 1 0 1 -1 . 071 Oe-1 7 I 3. 7234e-1 6 \ 9. 9664e-1 7 /

~----l--~~~~~~~=~~-l-~~~=-l--~~===~~~~:-+-~~~:=~~~=~~-+--~~===~~~=:-~
i 10 l 1.6000e+01 l 1503 l 2.2)28e-17 l 1.1152e-16 l 3.1590e-17 I
l l 2.4000e+01 l 0 l 16**-13.83 l @1.9817e+01 l 16**-13.70 1

+----+---·'----------+------+-------------+-------------+-------------{
\ 11 l O.OOOOe+OO l 1676 i 7.1044e-17 l 3.68'31e-16 l 9.4375e-17 I
i l 1.5708e+OO l 122 l 16**-13.41 l @1.8953e-01 l 16**-13.31 1

+----+-------------+------+-------------+-------------+-------------{
l 11 l 1.B850e+01 l '304 l -6.2493e-15 l 2.7247e-12 l 6.6908e-14 l
l l 2.0420e+01 l 1662 l 16**-11.80 l @1.8850e+01 l 16**-10.94 l
+----+-------------+------+-------------+-------------+-------------{
l 12 l 2.1991e+01 l 1891 l 5.6811e-15 \ 1.3817e-12 \ 4.0160e-14 j
: : 2.3562e+01: 93: 16**-11.83 I @2.3561e+01 I 16**-11.13 I

+----·-------------·------·-------------·-------------·-------------+

Validation Suite Reports 55

Character Set Changes

• The curly brace ('{' and '} ') characters were
changed from standard EBCDIC to the text printing
(TN) character set.

• The EBCDIC not symbols used for the Pascal
up-arrow character were changed to '@'.

Several changes were needed so the file of test pro
grams could be processed by the skeleton program sup
plied with the test suite.

• Sequence numbers were removed and all lines
were truncated to 72 characters or less.

• The heading comment oftest 6.8.3.4-1 was miss-

ing a comma after the test number, which caused the
skeleton program to stop.

• Test6.6.1-7 and 6.6.5-3fail to end with a line con
taining 'end.' written in lower case in columns one
through four.

• The last line in the file is not a complete heading
comment with a test number of 999 (it consists only of
'{T999'). The skeleton program failed to stop correctly
at the end of the file.

Additional repairs made to individual programs are
noted in the Validation Suite Report. These repairs deal
with programming errors or similar problems. PUG

Pascal1100

Pascal Processor Identification

Computer: Univac 1100/60
Processor: Pascal 1100 -Enhanced descendant of

U.S. Naval Ocean Systems Center compiler developed
by M.S. Ball

Version 2. lILR, Updated 10/26/81
Note: This is not a Univac supported product.

However, versions of it are available through the Uni
versity of Maryland.

Test Conditions

Tester: I. L. Ruben ("unofficial" maintainer of the
compiler)

Date: October 1981
Validation Suite Version: 2.2

Conformance Tests

Number of tests passed: 125
Number of tests failed: 14 (10 basic causes)
Details of failed tests: Test 6.2.2.3 contains a scope

error which is not detected by the compiler.
Test 6.2.2.8 fails because the compiler restricts as

signment to a function identifier to that function's block
level.

Tests 6.4.2.2-5 and 6.4.2.2-6 fail because the
expression is too long for the code generation scheme
utilized. Note however, that the ASCII collating se
quence is used, so that these tests would pass if the IF
statements were broken up.

Test 6.4.3.5-1 fails because the compiler only al
lows a file declaration consisting of a file of type. The
test has a file of variable(????).

Tests 6.4.3.5-2, 6.4.3.5-3, 6.9.1-1, and 6.9.4-4 fail
because characters are written to 1100 text files in mul
tiples of 4, padding with blanks if necessary. Thus, the
eoln and eof functions do not occur where expected in
these tests.

Test 6.5.1-1 fails because a file of a type, where the
type contains (oris) afile type, are not permitted by the
compiler (i.e., a file of files is not supported).

Test 6.6.5.2-3 fails because a reset is not allowed
on a file that was never written to.

Test 6.8.3.9-7 fails due to a infinite loop introduced

56

by bad code generation in loop termination tests in
volving maxint.

Test 6.9.4-6 fails because a string is always entirely
displayed, even if its field width is smaller.

Test 6.9.4-7 fails because TRUE is right justified.

Deviance Tests

Number of deviations correctly detected: 54
Number of tests showing true extensions: 9
Number of tests not detecting erroneous deviations:

31 (13 basic causes)

Details of extensions: Tests 6.1.5-6 shows that lower
case e may be used in real numbers (e.g. 12.34e-12).

Tests 6.1.7-4, 6.1.7-9 (cases 1 to 4), 6.1.7-10, and
6.4.5-11 show that a right-hand side string constant (or
value procedure parameter) is made the same length
(padded with blanks or truncated) as the left-hand side
(or formal parameter). In other words, string constants
are made to conform across binary operators and
assignment.

Test 6.4.2.4-2 shows that real constants are per
mitted in a subrange declaration.

Tests 6.8.3.5-12 and 6.8.3.5-13 show that a sub
range used for a CASE tag is accepted. Also, ov~rlap
ping and duplicate ranges are detected.

Test 6.10-1 shows that "output" is a predeclared
file (note, "input" is also).

Details of deviations not detected: Test 6.1.2-1 shows
that the reserved word NIL may be redefined.

Test 6.1. 7 -6 shows that the index bounds of a string
are not restricted to l. .n.

Tests 6.1.7-7 and 6.1.7-8 show that strings are per
mitted to be an array of a subrange of char.

Tests 6.2.2-4, 6.2.2-7, 6.3-6, and 6.4.1-3 contain a
scope error which is not detected by the compiler.

Tests 6.4.5-2, 6.4:5-4, 6.4.5-5 and 6.4.5-13 indicated
that type compatibility is used with VAR parameters
rather than enforcing identical types.

Test 6.6.2-5 shows that a function without an as
signment to the function variable in its block compiles
and runs.

Tests 6.6.3.5-2, 6.6.3.6-2, and 6.6.3.6-4 fail because
parameter base types are the same (integer).

Validation Suite Reports

Tests 6.8.2.4-2, 6.8.2.4-3, and 6.8.2.4-4 show that
a GOTO between branches of a statement is permitted.

Tests 6.8.3.5-10 and 6.8.3.5-11 show that the com
piler accepts case tags which are the same type as the
index, although a real index is flagged as an error.

Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4, 6.8.3.9-16, and
6.8.3.9-19 show that an assignment to a FOR control
variable is permitted within the loop.

Tests 6.8.3.9-9 and 6.8.3.9-14 show that the FOR
control variable may be declared anywhere, so long as
it is declared at the same or outer block (this excludes
formals, pointers, and record components).

Test 6.9.4-9 indicates that 0 and negative field
widths may be used in a write statement.

Test 6.10-3 shows that "output" can be redefined
and yet still be used as the default file for write state
ments (similarly for ''input'').

Error Handling

Number of errors correctly detected: 18
Number of errors not detected: 28 (13 basic causes)
Details of errors not detected: Test 6.2.1-7 shows

that local variables are not preset to "undefined".
Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, and 6.4.3.3-8

indicate that no checking is performed on the tag field
of variant records.

Tests 6.4.3.3-12 shows that an assignment to an
empty record is not detected.

Tests 6.4.6-7, 6.4.6-8, and 6.7.2.4-1 indicate that no
bounds or overlap checking is performed on set
operations.

Test 6.6.2-6 shows that the use of a function with
out an assignment to the function-value-variable is
permitted.

Tests 6.6.5.2-1 and 6.6.5.2-2 fail because 1/0 has
not been implemented according to the standard. Also,
characters are written to 1100 text files in multiples of
4, padding with blanks if necessary. Thus, eoln and eof
do not occur where expected in the tests.

Tests 6.6.5.2-6 and 6.6.5.2-7 fail because the com
piler does not detect (invalid) operations on buffer var
iables passed as a procedure or function parameter or
changed within the range of a WITH statement.

Tests 6.6.5.3-3 and 6.6.5.3-4 fail because dispose
(under full memory management support) "ignores"
pointers that do not point to the heap (NIL has the value
0). Note, Pascal 1100 supports three levels of memory
management configurations (under user option). Under
the other two configurations, these tests pass.

Test 6.6.5.3-5 fails because dispose successfully
releases the space allocated by new (is this test wrong
????).

Test 6.6.5.3-6 shows that no check is performed for
scoping on the parameter to dispose.

Tests 6.6.5.3-7, 6.6.5.3-8, and 6.6.5.3-9 fail because
no checks (other than type compatibility) are done on
the pointer assignments tested. A check is done, how
ever, that a pointer points to the area allocated to it by
new.

Tests 6.6.6.3-2, 6.6.6.3-3, 6.7.2.2-6, and 6.7.2.2-7
fail because overflows are not detected. The values
eventually go negative due to the overflow.

Tests 6.8.3.9-5, 6.8.3.9-6, and 6.8.e.9-17 show that

Validation Suite Reports

a FOR control variable is not invalid after execution of
the FOR loop.

. Implementation Defined

Number of tests run: 15
Number of tests incorrectly handled: 0

· Details of implementation-dependence: Test 6.4.2.2-
7 shows maxint to be 34359738367.

Tests 6.4.3.4-2 and 6.4.3.4-4 show that all set bounds
must be positive. A set of char is permitted. Set bounds
allowed are 0 to 143.

Test 6.6.6.1-1 shows that no standard functions
may be used as parameters.

Test 6.6.6.2-11 details some machine characteris
tics regarding number formats (e.g., single precision
reals in range l.47E-39 to L70E+38).

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean
expressions are evaluated only to the extent needed to
determine the result.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that a variable is se
lected before the expression is evaluated in an assign
ment statement.

Tests 6.9.4-5 and 6.9.4-11 show that the default size
for the exponent field on output is 2, and the real, in
teger, and boolean default field widths are all 12.

Test 6.10-2 shows a rewrite on the standard file
"output'' is not allowed.

Tests 6.11-1, 6.11-2, and 6.11-3 show that alterna
tive comment delimiters have been implemented, as
have the' alternative pointer symbol ("@"). No other
symbols from these tests are accepted.

Quality Measurement

Number of tests run: 23
Number of tests incorrectly handled: 0
Results of tests: Test 5.2.2-1 shows that identifiers

are not distinguished over their whole length; only the
first 12 characters are used.

Test 6.1.3-3 shows the number of significant char
acters in an identifier is 12.

Test 6.1.8-4 shows that no warning is given if a valid
statement or a semicolon is detected in a comment.

Tests 6.2.1-8, 6.2.1-9, and 6.5.l-2indicate that large
lists of declarations may be made in each block.

Test 6.4.3.2-4 shows an array with an integer index
type is not permitted.

Test 6.4.3.3-9 shows that variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 350 ms.
to run (on 1100/60).

Test 6.6.1-7 shows that procedures cannot be nested
to a level greater than 9.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and
6.6.6.2-10 tested the sqrt, arctan, exp, sin/cos, and ln
functions respectively. No significant errors were
reported.
Test 6.6.6.2-9 (sin/cos) produced an "out ofrange" run
time error on the last test in the program. The argument
was outside the acceptable range allowed by the 1100
math library for the sine function.

Test 6. 7 .2.2-4 shows that mod and div are consist
ent for negative operands except that when i mod 2

57

(i< 0) is 0, it is represented as a negative 0 on the 1100.
Thus the expression i-i div 2*2 fails to compare with i
mod 2 for the even cases of negative i. Mod returns re-
mainder of div. ·

Test 6.8.3.5-2 shows that case constants do not
have to be of the same type as the case-index, if the
case-index is a subrange. But the constants must be
type compatible with the case-index.

Test 6.8.l.5-8 shqws that a large CASE statement
(> 256 selections) is permissible.

Test 6.8.3.9-18 shows that the compiler ensures
that because the FOR control variable is available after
the FOR loop, the final value is the final value of the
loop (not 1 greater or less). Thus the range checks (al
ways generated) in the CASE accept the CASE index
(value is "pink").

Tests 6.8.3.9-20 and 6.8.3.10-7 indicate the FOR
and WITH statements may be nested to a depth greater

than 15.
Test 6.9.4-10 shows that file buffers are :flushed at

the end of the program.
Test 6.9.4-14 shows that recursive VO is permitted,

using the same file.

Extensions

Number of tests run: 1
Details of test: Test 6.8.3.5-14 shows the compiler

does not accept OTHERWISE in the syntax given in
the test. However, it does accept OTHERWISE (and
ELSE) when used in the syntax of a CASE label. Fur
ther, many other (non-standard) extensions are pro
vided to allow Pascal 1100 to be used for implementa
tion purposes on the 1100. These include external
compilations, external variables, 1100 Exec 8 support,
and variable length strings. PUG

IBM 4341

Computing Services Centre

1st March 1982

Dear Sir,

Enclosed are reports on running the Sale Pascal
validation suite against the Pascal compilers on the
IBM 4341(PascaJ/VSR2.0) and the VAX 11/780 (VAX
11 Pascal V 1.2-82). The latter is a later release than the
one reported in Pascal News No. 19.

You may wish to publish these in Pascal News.

Yours sincerely,

C.R. Boswell
Director

Pascal processor identification.

Computer: IBM 4341.
Location: Victoria University of Wellington, New

Zealand.
Processor: PASCAL/VS R2.0

Test conditions.

Tester: R.H. Hefford (CSC programmer).
Date: January, 1982.
Validation Suite Version: 2.0

Notes:

1) The LANGLVL(STANDARD) option was used
with the compiler.

2) The compiler was running under the CMS op
erating system.

Implementation defined

Number of tests run: 15
Test 6.4.2.2-7 - MAXINT = 2147483647.
Test 6.4.3.4-2 - Implementation allows a set of

char.

58

Test 6.4.3.4-4 - The ord of all set members must
be in the range 0 .. 255.

Test 6.6.6.1-1 - Standard functions are not per
mitted as parameters.

Test 6.6.6.2-11 - Smallest positive real number
larger than zero is 5.39760535E-79. Largest real number
is 7.23706558E+75. Reals have a 7 bit exponent and a
14 digit base 16 mantissa.

Test 6.8.2.2-1 - In the situation array[exp2] :=
expl; expl is evaluated before exp2.

Test 6.8.2.2-2 - In the situation p""' := exp; the
expression is evaluated before the position of p"' is
evaluated.

Test 6.9.4-5 -Number of digits in exponents is 2.
Test 6.9.4-11 - Default field width for integers,

reals and booleans is 12, 20 and 10 respectively.
Test 6.10-2 - A rewrite is allowed on the file

output.
Test 6.11-1 - '(*' and '*)' are allowed io delimit

comments.
Test 6.11-2 - Alternative symbols are not imple

mented. '@' is used instead of '"''.

Quality tests

Number of tests run: 24
Number of tests failed: 5
Test 5.2.2-1 Failed: Meaning of the program was

changed by the truncation of identifiers.
Test 6.1.3-3 ~assed: Number of significant charac

ters in identifiers is 16.
Test 6.1.8-4 Passed: The compiler will help in the

discovery of unclosed comments by issuing a warning
if it finds inside the comment the start of another
comment.

Test 6.4.3.2-4 Failed: The declaration 'everything
= array [integer] of integer' is not allowed because
there are too many elements.

Test 6.4.3.4-5 Passed: Execution time for the War
shall algorithm was 0.2 seconds. According to the man-

Validation Suite Reports

ual the space required would have been 5120 bits or 640
bytes.

Test 6.6.1-7 Failed: Procedures cannot be nested
more than 8 levels deep.

Conformance tests

Number of tests run: 138
Number of tests failed: 11
Test 6.1.8-2 Failed: A opening curly bracket in a

comment is not allowed.
Test 6.1.8-3 Failed: The closing comment delimiter

does not have to be of the same type as the opening one.
Test 6.2.2-1 Passed: The identifier name range ap

peared to have some special meaning to the compiler
and the program did not compile till it was changed to
scope.

Test 6.4.3.3-1 Failed: A record declaration of the
form d = record; end; was not accepted by the compiler.

Test 6.4.3.5-1 Passed: Error in the program var
ptrtoi : "' i; instead of type ptrtoi = I\} i;

Test 6.4.3.5-2 Failed: Writing an empty line to -a file
results in a blank followed by an end of line marker.

Test 6.6.3.4-2 Failed: A routine passed as a param
eter must not be nested within another routine.

Test 6.6.5.2-3 Failed: Does not seem possible to
create an empty file under CMS.

Test 6.7.2.2-5 Failed: The expression (maxint -
(maxint div 2)) * 2 was flagged as causing fixed point
overflow.

Test 6.8.3.8-2 Failed: A while loop containing no
statements is not allowed.

Test 6.9.4-4 Failed: Conforms to the standard ex
cept when the number will not fit in the field width
specified.

Examples: (_represents a blank)
Format 0.0:6 Output_O.O instead of_O.O
Format 1.0:6 OutpuLl.E+OO instead of_l.O
Format 123.456:7:3 Output 123.456 instead oL123.456

Test 6.9.4-7 Failed: Writing of booleans does not
conform to the standard. According to the standard the
output should have been left justified but the PASCAL/
VS output was right justified.

Test 6.9.6-1 Failed: Page procedure did not cause
a page throw when writing to a terminal. It will work
when writing to a file if the file has the correct format.

Error handling.

Number of tests run: 46
Number of tests failed: 17
Test 6.2.1-7 Failed: The compiler does not check

for undefined variables.
Test 6.4.3.3-5 Failed: A change of variant occured

in a record (by assigning a value associated with the
variant to the tag field). This caused a previous field to

Validation Suite Reports

cease to exist. A reference to that field did not cause an
error.

Test 6.4.3.3-6 Failed: A reference to a field with the
undefined value did not cause an error. The undefinition
arose because a change of variant occured and those
fields associated with the new variant come into exis
tence with undefined values.

Test 6.4.3.3-7 Failed: A reference to an undefined
field did not cause an error. In this case the variant
changes occured implicitly as a result of assignment to
fields. ·

Test 6.4.3.3-8 Failed: As for 6.4.3 .3-7 except no tag
field is used.

Test 6.4.3.3-12 Failed: Allowed assignment of an
undefined empty record. A contradiction in that the
program did not detect the error and printed pass.

Test 6.4.6-5 Failed: An expression with the value
10 was passed to a procedure when the parameter was
declared to be 0 .. 5. The error was not detected.

Test 6.6.5.2-2 Failed: Read past eof not detected.
Test 6.6.5.2-6 Failed: Changing the position of the

file variable while it was the actual parameter to a pro
cedure did not cause an error.

Test 6.6.5.2-7 Failed: Changing the file pointer
while it is within a with statement does not cause an
error.

Test 6.6.5.3-5 Failed: A variable which was an ac
tual variable parameter was refered to by the pointer
parameter of dispose without causing an error.

Test 6.6.5.3-6 Failed: A variable which was an ele
ment of a record variable list of a with statement was
refered to by the pointer parameter of dispose without
causing an error.

Test 6.6.5.3-7 Failed: A variable created by the us
ing the variant form of new is used as an operand in an
expression. The error is not detected.

Test 6.6.5.3-9 Failed: A variable created by using
the variant form of new is used as an actual parameter.
The error was not detected.

Test 6.7.2.2-6 Passed: The expression (maxint -
(maxint div 2)) * 2 could not be compiled. Other meth
ods were used to get a fixed point overflow and the error
was detected.

Test 6.7.2.2-7 Passed: Same problem as for 6.7.2.2-
6.

Test 6.8.3.9-5 Failed: The use of a control variable
of a for loop after that loop had completed was not
flagged as an error.

Test 6.8.3.9-6 Failed: The use of a control variable
for a loop which had not been entered was not flagged
as an error.

Test 6.9.2-5 Failed: Reading 'ABC123.456' into a
real variable did not cause an error message. The result
was zero. PUG

59

VAX 11·780
Pascal processor identification

Computer: VAX/11-780

Location: Victoria University of Wellington, New
Zealand.

Processor: VAX-11 PASCAL Vl.2-82

Test conditions

Tester: R. H. Hefford (CSC programmer).
Date: February, 1982.
Validation suite version: 2.0

Notes
1) The validation suite was compiled using the I CHECK
and/STANDARD options.

2) Changes from VAX 11 Pascal Vl.0-1 (as re
ported in Pascal News No., 19.):
a) Empty record is implemented.
b) Tag field redefinition allowed.
c) Run time checking of the appropriateness of

the value of variables. Range checks are done for
array subscripts, assignment statements, PRED,
SUCC, CHR, case selecters and set operations.

d) Default field width for a boolean is now 7
characters (was 16).

CONFORMANCE TESTS

Number of tests run: 138
Number of tests failed: 11
Test 6.1.3-1 -The compiler issues a warning if an

identifier exceeds 19 characters but the program will
still run.

Test 6.5.1-1- Would not allow a file of files.
Tests 6.6.3.1-5, 6.6.3.4-2 - The tests could not be

run as this pascal does not allow a procedure passed as
a parameter to have a parameter list.

Test 6.6.5.2-3 - A RESET on a non existant file
caused the program to fail.

Test 6.6.6.2-3 - The EXP function failed the ac
curacy test. It gave the value ofEXP(9) as 8103.083984.
The test program expected a value between 8103.08392
and 8103.08393.

Test 6.8.3.5-4 - Case label ranges exceeding 1000
are not allowed.

Test 6.8.3.9-7 - A for loop with an upper limit of
maxint caused overflow to occur.

Test 6.9.4-3 Passed. - The test program had to be
modified as the compiler would not accept a packed
array of char as a parameter in a readln statement.

Test 6.9.4-4 - When writing real numbers the pro
gram used expontential format when the number ov
erflowed the field. The validation suite expected fixed
point format.

Test 6.9.4-7 Failed writing booleans. - The pro
gram wrote 'TRUEFALSE' and the validation suite
expected 'TRUE FALSE'.

Test 6.9.5-1 - Parameter to a read cannot be the
element of a packed structure.

60

DEVIANCE TESTS

Number of tests run: 95
Number of tests failed: 29
Test 6.1.2-1 NIL is not implemented as a reserved

word.
Test 6.1.5-6 'e' is equivalent to 'E' inreal numbers.
Test 6.2.2-4 -Allowed a global symbol to be used

within a procedure with its global definition and then
allowed it to be redefined.

Test 6.3-6 - A constant was used in its own
declaration.

Test 6.4.1-2 - The compiler allowed the use of
types in their own declaration.

Test 6.4.1-3 - Again a type was used in its own
definition. In this case a global symbol was available
with the same identifier.

Test 6.4.5-2 thru 6.4.3-5, 6.4.5-13 - The compiler
checks the types of the formal and actual parameters.
The identifiers do not have to be the same.

Test 6.6.2-5 - Functions do not have to contain an
assignment to the function name identifier.

Tests 6.6.3.5-2, 6.6.3.6-2 thru 6.6.3.6-5 - These
tests could not be run as this pascal does not allow a
procedure passed as a parameter to have a parameter
list.

Test 6.8.2.4-2 - Jumps between branches of an if
statement are allowed.

Test 6.8.2.4-3 -Jumps between branches of a case
statement are allowed.

Test 6.8.2.4-4 - Allowed a goto into a case
statement.

Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4 - Allows as
signment to the control variable in a for loop.

Test 6.8.3.9-9 - A non local variable at an inter
mediate level can be used as a for statement control
variable.

Test 6.8.3.9-13 -A formal parameter can be used
as a for statement control variable.

Test6.8.3.9-14 - A global variable (at program
level) can be used as a for statement control variable.

Test 6.8.3.9-16 - A for statement control variable
value can be read during the execution of the for
statement.

Test 6.8.3.9-19 -Allowed a nested for loop using
the same control variable. In this test the inner for loop
is in a procedure called from within the outer for loop.

Test 6.9.4-9 - Allowed the use of a field width of
zero and minus one when writing integers.

Error Handling

Number of tests run: 46
Number of tests failed: 18
Tests 6.4.3.3-5 thru 6.4.3.3-8 - Reference to un

defined or nonexistant variables was not detected as an
error. The variables become undefined or nonexistant
due to a change of variant.

Test 6.6.2-6 - Use of a function with an undefined
value was not detected.

Test 6.6.5.2-1 -The test could not be carried out

Validation Suite Reports

because the program would not do a PUT to a file it had
just done a RESET on.

Test 6.6.5.2-6 - Changing the current file position
of a file f, while the buffer variable is an actual param
eter to· a procedure was not detected as an error.

Test 6.6.5.2-7 - This test is similar to 6.6.5.2-6,
except that the buffer variable is an element of the re
cord variable list of a with statement. The error was not
detected.

Tests 6.6.5.3-3 thru 6.6.5.3-6 - DISPOSE ac
cepted as parameter a NIL pointer, an undefined pointer,
a pointer that is pointing to a actual variable parameter
and a pointer that ·is pointing to a variable that is an
element of a record variable list. No error message or
warning was given.

Test 6.6.5.3-7, 6.6.5.3-8, 6.6.5.3-9 - A variable
created by the use of the variant form of new is used as
an operand in an expression, as a variable in an assign
ment statement and as an actual parameter. This was
not detected as an error.

Test 6.8.3.9-5 - Allowed use of a control variable
after the for loop had completed. The variable had re
tained the final value it had in the for loop.

Test 6.8.3.9-6 - If a forloop is not entered the con
trol variable retains the value it had before the for loop
is entered.

Test 6.8.3.9-17 - Two nested for statements can
use the same control variable.

IMPLEMENTATION DEFINED

Number of tests run: 15
Test 6.4.2.2-7 -The implementation defined value

ofmaxint is 2147483647.
Test 6.4.3.4-2-Implementation allows set of char.
Test 6.4.3.4-4 - Set element values must not ex-

ceed 255.
Test 6.6.6.2-11
1) The radix of the floating-point representation is
2) The number of base 2 digits in the floating-point

significand is 24.
3) The arithmetic rounds.
4) The number of bits reserved for the represen

tation of the exponent of a floating-point num
ber is 8.

5) The exponent of the smallest positive fl. pt. no.
is -128.

6) The exponent of the largest finite floating-point

Validation Suite Reports

number is 127.
7) The smallest positive floating-point number eps

such that 1.0+eps <> 1.0 is 5.96046448E-08.
8) The smallest positive floating-point number is

2.93873588E-39.
9) The largest finite floating-point number is

l.70141173E+ 38.

Test 6.7.2.3-2 - In the short circuit evaluation of
(a and b) both expressions are evaluated.

· Test 6.7.2.3-3 - In the short circuit evaluation of
(a orb) both expressions evaluated.

. Test 6.8.2.2-1-The binding order of (a[i] := exp)
is selection then evaluation.

Test 6.8.2.2-2-The binding order of(p"':= exp)
is selection then evaluation.

Test 6.9.4-5 - The number of digits written in an
exponent is 2.

Test 6.9.4-11 - Implementation defined default
field width values:

INTEGERS: 10 characters
BOOLEAN: 7 characters
REAL: 16 characters

Test 6.10-2 - A rewrite can be performed on the
file output.

Test 6.11-1 -Alternate comment delimiters have
been implemented.

Test 6.11-2, 6.11-3 - Alternative symbols not
implemented.

Test 6.6.6.1-1-Test could not be done as this pas
cal will not accept a function or procedure with a pa
rameter list as a parameter to a function or procedure.

QUALITY

Number of tests run: 23
Number of tests failed: 2
Test 6.1.8-4-The program contained an unclosed

comment bracket. The compiler did not assist in any
way with finding this error. The program compiled
without errors.

Test 6.4.3.2-4 - Declaration 'array[integer] of in
teger' is not allowed. The error message was 'Index
type must not be integer'.

Test 6.4.3.3-9 - The fields of a record are stored
in memory in the order that they are declared.

Test 6.4.3.4-5 - Warshall's algorithm in Pascal.
Execution time was 102 milliseconds. PUG

61

Back Issues

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

::: MMiii ®O!J'il' ®~ r;irnmmr
$15 D set 1 Issues 9 ... 12 (September 1977 - June 1978)

$<15 D set 2 Issues 13 ... 16 (December 1978 - October 1979)

$15 D set 3 Issues 17 ... 20 (March 1980 - December 1980)

$15 D set 4 Issues 21 ... 23 (April 1981 [mailed January 1982] -
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US$ __ ._
on check number __ _

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

62

1983

JOINING PASCAL USER GROUP?

• Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

• Please enclose the proper prepayment (check payable to "Pascal User's Group"),

• When you join PUG any time within a year: January 1 to December 31, you will receive al/ issues Pascal
News for that year.

• We produce Pascal News as a means toward the erid of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

• Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING SACK ISSUES OR EXTRA ISSUES?

• Ba9k issues will have a price rise to $25 on July 83

• Our unusual policy of automaticaily sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

• Issues 1 .. 8 (January, 197 4 - May 1977) are out of print

• Issues 9 .. 12, 13 .. 16, & 17 .. 20, 21 .. 23 are available from PUG(USA) all for $15.00 a set<

• Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL /FOR PUBLICATION?

• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 cm. wide) form.

• All letters will be printed unless they contain a request to the contrary.

63

Membership

Please enter my

D New or

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

D Renew

1983

membership in Pascal Users Group. I understand I will receive "Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed

1 yr. 0 in USA $20

3 yr. 0 in USA $40

D outside USA $30

D outside USA $70

D AirMail anywhere $55

D AirMail anywhere $115

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $ __ . __
on check number ____ _

(Invoice will be sent on receipt of purchase orders. Payment must be received before newsletter will be sent.
Purchase orders will be billed $10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

D This is an address correction here is my old as:)dress label:

64

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:

• teaching programming concepts
• developing reliable "production" software
• implementing software efficiently on today's machines
• writing portable software

Pascal implementations exist for more than 105 different computer systems, and this number increases every
month. The "Implementation Notes" section of Pascal News describes how to obtain them.

The standard reference ISO 7185 tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active
members in more than 41 countries.

-, ··w::·~----

