
The User s Guide
/

to ".

North Star BASIC

by ROBERT R. ROGERS

The User's Guide
to

North Star BASIC

FIRST EDITION

by R08ERT R. ROGER/

INTERACTIVE COMPUT£RS / houston, texas

~,~

~nTEA~CT~UE
, //Jf)J.;'Y))JJI J
COmPlJTfA5
"\~

COPYRIGHT C., 1978
ROBERT R. ROGERS

Made in the United States of America

Library of Congress Cataloging in Publication Data
Main entry under title:

The User's Guide to North Star BASIC, first edition.

Published and Printed by:

Interactive Computers
7620 Dashwood
Houston, Texas 77036

All rights reserved, including r~ghts of reproduction and use in
any form or by any means, including the making of copies by any photo
process, or by any electronic or mechanical device, printed or written
or oral, or recording for sound or visual reproduction, or for use in
any knowledge or retrieval system or device, unless permission in
writing is obtained from the copyright proprietor.

preface

About seven months ago a very smart businessman brought to my
house a Sol-20* COMPUTER with 24 K memory, a PANASONIC MONITOR, a
NORTH STAR MICRO-DISK SYSTEM*, and one VERBATIM MINIDISK with the disk
operating system (DOS) and NORTH STAR BASIC - VERSION 6 * RELEASE 3
on it. (I mention all of this detail so that the reader knows exactly
what it is that I learned on and used to WRITE the programs included
in this book.) He set it up in my library, gave me three little 20
page manuals, plugged it in, had a cup of coffee, and left.

If he had called me and said, " Hey, I've got a great deal for
just $3600 --- can I bring it over?" My response would have been very
quick and short --- " NO ! " I didn't need a $3600 toy.

After he left I went in and pushed the button and thought to
myself, " It's a neat television-typewriter fl. I even picked up one
of the manuals, a blue one, read a few pages; but couldn't get the
thing to do anything that the book said it was supposed to do. So I
picked up another manual, this time a yellow one. I did a couple of
the things it said to do and I finally got the "little blue mail box"
to come to life. First a little red light came on, then it hummed for
a few seconds, then turned off. That's about all I got the thing to
do for the first week. I wasn't too impressed.

By the end of the first month, after messing with the thing when
I had nothing better to do, I finally got it working to the point that
I could copy game programs out of a book; about half of which never
worked and I never understood why.

By the end of the third month I was writing a few simple
mathematical programs - nothing much - but something.

By the end of the fifth month I wrote what I considered to be a
significant program. It was an inventory counting and extension
program, which involved a data file. It was a relatively
straight-forward program, nothing fancy. But it did work and it did
save time over the way I had previously done the inventory.

By the end of the sixth month I had several game programs, an
invoice preparation program, a product distribution program, a
customer mailing list program, a cost accounting program, and a
monthly payment program to make computer note payments for the next 36

months to my bank. I am now hooked.
If I had had the information that I have put in this book

available to me when I started, in the same "over-simplified" format
that's been used, I would have saved hours of real frustration.
Instead of six months of "hard labor", I could have discovered what a
real "magic box" it is in several weeks.

So you know, that I know you know. I feel a last minute
obligation to mention that I have taken certin liberties in some of my
explanations and have made absolutes out of some things for which
there are many exceptions. For the most part I have knowingly done
this, feeling that there is nothing to be gained by confusing the
reader.

This is not intended to be a definitive text for the "computer
expert". It is a starting point for somebody who has never sat in
front of one of these "T.V. looking things" and wants to learn how
they work. If you feel offended or have a great urge to tell me about
some of my "mistakes", please do. For you who are just starting,
consider your finding these "mistakes" a yard stick of your progress.

I hope you,-as a potential reader, derive as much pleasure and
open a gateway to a whole new world of logic as I have. GOOD LUCK AND
MAY YOUR MEMORY NEVER BE FULL.

R.R. ROGERS

*Sol is a trademark of Processor Technology Corp., Pleasanton, CA
North Star DOS and BASIC are copyrighted products of North Star

Computers, Berkeley, CA, and are licenseq for use only with the North
Star MICRO-DISK SYSTEM.

cantents

PRE F ACE
A C K NOW LED G MEN T
I N T ROD U C T ION

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

1. How do we get STARTED. • • • • • • 1
2. How to WRITE a program • • • • • • 5
3. LINE NUMBERS • • • • • • • . •• 10
4. How to DISPLAY a progr am • • • •. • 11
5. VARIABLES. • • • • • • • • • • • • • • • 14
6. Cast of characters. • • • . ••• 17
7. The RENUMBER function. • • • • •. • 27
8. How to correct or EDIT a BASIC program . • 30
9. How to LOAD a program from a mini-disk . 35
10. How to SAVE a program that you write • . 41
11. How to put DOS on a mini-disk ••••••••• 45
12 How to put BASIC on a mini-disk. • • • • • •• 49
13 How to DELETE a program or a file. • •. • 53
14 How to DELETE a file from a mini-disk.. • 57
15 How to COPY a BASIC program from one

Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31

mini-disk to another • • • • . . • • 61
The LOOP • • • • • • • • • • • • • • • 65
SUBROUTINES. • • •• •••• • • •• 69
The ON statement • • . • • • • • 72
The TAB function • • . • • • • • • •• •• 77
The RANDOM function - FUN and GAMES. • • 80
The SIGN function. • • • •. • 85
The CHAIN command. • • • 91
The DATA statement • • • • • • • • • 93
The NUMERICAL FORMAT . • 97
The EXIT statement. • . ••• 102
Numerical LISTS and ARRAYS. .110
The SUBSTRING. • • • • • • • •• 115
SEQUENTIAL files. • • • •• ••• • .119
How the computer READs a TYpe 3 DATA file ••• 128
How to ACCESS and use SEQUENTIAL files. .134
How to COpy a DATA file from one
mini-disk to another • • • • • • • .139

Chapter 32 How to RANDOM ACCESS data files. • .143
Chapter 33 A closer look at the TYPe function. .156
Chapter 34 DECIMAL and HEXIDECIMAL. • • • • • .161
Chapter 35 SECRETS. • • • • • • • • • • • • • • •• 170
Chapter 36 The NEW BASIC. • • • • • • • 173
Assorted Programs • 180

intraductian
One of the most difficult task for me, was setting up the order

of the chapters in this book. Chapter one was no problem, as it tells
you how to turn the machine on. From there on, one needs to be aware
of a ~ultiple of things all at the same time.

In an effort to cope with this situation, I suggest that one does
not become obsessed with wanting to understand every detail of action,
but to concentrate on the subject at hand. Before you reach the end
of the book, I promise you that those unanswered questions will be
answered, most of the time.

Each chapter has a major topic, indicated by the title of that
chapter. In addition, certain other topics are also discussed as they
relate to the major topic.

Some topics are repeated and discussed in several chapters, if it
is felt that further discussion will reinforce the major topic, or if
under different circumstances a rediscussion will expand the
understanding of the secondary topics.

Other topics are discussed several times, when I felt that they
should be explained separatly and then together, in order to better
illustrate their differences.

The last chapter, regarding the NEW BASIC (June, 1978) from
North Star, does not attempt to fully cover the subject, but is meant
only as an introduction to it.

All the programs at the end of the book are programs that I wrote
along the way, as I was learning. They are the result of much "trial
and error" programming. It was through these programs that I actually
began to understand BASIC.

I recommend putting these programs in your computer and RUNning
them. Study them, to better understand how they work. There are many
programming techniques that I have since learned, which would make
these programs more efficient and more professional. I have purposely
not made the changes, as I felt it would be an advantage to the reader
to see the originals, in their elementary state. Even as they are,
they work pretty good. At the time I thought they were great.

I have tried to make simplicity the "guide word" for this book.
The working title was, The Over-Simplified Method of Learning BASIC.
Even though the title changed, my approach did not.

ac:knawled,."ent
I wish to acknowledge the following individuals, whose assistance

and encouragement provided much of the basis for this book.

William A. Rogers
Bob Johnston
Hillis Rogers
Barbara Rogers
Roxanne Rogers
Matt Barkley
F. Don Cooper

And a host of others

1
HOW DOW E GET S TAR TED

In most cases whenever one gets a new piece of equipment the
first thing that the manual tells you, is to completely read and
understand the instructions before trying to operate the equipment.
If you were to do that with a mini-computer, you would never turn it
on. " When all else fails read the instructions. ", is not the by-word
when it comes to computers. The instructions are written for people
who already know how to operate the equipment.

It is my opinion that "computer people" are not secure enough
among their peers to write something at the level that the man on the
street can understand. They seem to be constantly dropping words in
their explanation like; ROM and RAM, or CPU, or SOSOA SUPPORT, or
PROM, or the hundreads of other " in " words that they know full well
that we don't know the meaning of.

I may be overly zealous in my evaluation of "computer people ".
It could be that terms and expressions they use in all their
explanations, are part of their everyday vocabulary, and they may not
even be conscious of it. If this sounds like "sour grapes" it's not.
These people have so much to say, so much that they could impart upon
the masses - they have seen over the mountain, but can't seem to tell
us all about it.

Everytirne I sit in front of my "television typewriter" , I am
frustrated by the fact that I don't know how to use this marvelous
machine to the maximum of its ability. I am only limited by the
maximum of my ability. There is a vast mountain between the two --- I
have yet to see over the mountain. On occasion I have been permitted
a peek and the prospects of more are thrilling.

If you think that I am in awe of these "mini-computers" you are
right. One would normally become less entranced with something the
more they knew about it ---- not so with computers. I can't help
reminding myself that what I have is the "baby", the "mini" of the
line. I can't conceive all that the "big daddy" can do.

Before it can do anything you've got to learn how to get it
started. YOU ARE THE MASTER OF THE PLUG.

Here is how :

This is a step by step procedure for the set up that

-2-

I have. For someone who does not have the exact same
equipment, they may consider this initial section to be
useless to them, not so. All computers, like all
cars have the same knobs. They may be located in
different places on the dashboard, but they are
there.

Assuming that everything is plugged in; the terminal,
the disk-reader, and the monitor; and that all three are
properly connected to the computer. Do the following

1. Press the square red button (white on
some models) on the back right of the
terminal. (Facing the keyboard). The
button will lock in the "on" position.
You should hear what sounds like a slight
thump and then a hummmmm. This is the
cooling fan.

2. Turn on the monitor (t.v. set) by pushing
the "rocker switch" to the "on" position.

3. Turn on the disk-reader by flipping the
"toggle switch" to the up position. The
small red light on the front panel will
not come on. It lights only when the
disk-reader is actually running.

Everything is now "on". You should have a " > " sign in the
upper left corner of the monitor. The rest of the screen should be
blank. The" > " sign can be considered the "start up" sign. When
ever it appears in that position, it indicates that the computer is
neither in the Disk Operating System (DOS) mode nor the BASIC
mode.

4. The computer is now ready to EXecute the
command to load the Disk Operating System
-- DOS . Press the "UPPER CASE " key
located on the lower left of the keyboard.
The red light on the key should be " on "

5. Place the "mini-disk" which contains DOS in
the disk-reader, face up with the end which
has the oval opening going in first.

6. Type in the "command" : EX E900

-3-

Note: There is one space between the " EX " and the
" E900 ", this exact format must be used.

This "command" will cause the disk-reader to switch on, as
evidenced by the red light on the disk-reader comming on and the
humming sound which the unit will make. It will run for about 3 to 5
seconds and then cut itself off. The character " * " will appear on
the upper left corner of the monitor. None of this will happen until
you "enter" the EX E900 command into the computer. To "enter"
anything that you type on the keyboard, you must follow it up by
pressing the RETURN key.

So :

7. Press RETURN key.

If the above described "activity" does not take place, you
probably forgot to turn on the disk-reader. DO NOT turn it on now.
The disk-reader or the computer should never be turned on or off while
there is a "mini-disk" in the unit. It can cause unpredictable
results. It may cause the computer to LOAD the program in the wrong
place; it may WRITE strange things on the "mini-disk" in the middle of
an important program; it may erase the entire" mini-disk"; or if you
are lucky , it may not do any of the above.

If you find yourself in this predicament; first, take the
"mini-disk" out of the disk-reader. Second, *** TURN ON THE
DISK-READER *** Then, press the "UPPER CASE" key and the "REPEAT" key
at the same time. This is called a "RESTART". The" > " character
should appear on the upper left of the monitor. If it does, just
start allover again. If it doesn't, turn the computer off for a
second. This will wipe the slate clean. Then turn it back on, and
start allover again.

8. When the character " * " appears on the
monitor type in the command GO BASIC.
Or to put it another way:

On * type in : GO BASIC

9. Press RETURN key

Again the disk-reader will come on and run for a few seconds and
shut itself off. The word READY will now appear in the upper left
corner of the monitor.

You have now LOADed in DOS (disk operating system) which is a
machine language program that tells the computer how to operate the

-4-

disk-reader to read and write (LOAD and SAVE).

You have also LOADed into the computer the BASIC language program
which allows you to WRITE and RUN programs and everything else that
BASIC does.

The computer is READY. The next "move" is up to you.

2
HOW TOW R I TEA PRO G RAM

There are no simple answers to very complex questions, but there
are very complex answers to very simple questions. For someone to ask
"How do you write a computer program? " and want only a simple
answer, means that they really didn't want to know in the first
place.

Learning to write computer programs is like learning anything
else. You start at the most elementary level and slowly progress to
the point that you realize that you will never learn as much as there
is 14ft to learn. But you keep chasing that "carrot", just like the
donkey with the carrot hanging from a string a few inches from his
nose. The string being attached to a pole tied to his back.

It's worth the effort, so let's get started.

To write a computer program in BASIC all you have to do is type a
number, which becomes known as the LINE NUMBER, and type a STATEMENT
beside it. The number can be any number-from 0 to 65,535. The second
LINE you write will either be executed before or after the first LINE
depending on whether or not the LINE NUMBER you gave it was
numerically higher or lower. The higher LINE NUMBER will be executed
after the first LINE and the lower LINE NUMBER will be executed before
the first LINE. If you give the second LINE the same LINE NUMBER as
the first LINE, the second LINE will replace the first LINE.

A typical BASIC program is written in a "lOX series" of LINE
NUMBERS starting with LINE 10, then LINE 20, LINE JO, LINE 40 .••••••
This allows for ease of numbering and also permits inclusion of
additional program LINEs between previously written LINEs. The
importance of this will become obvious as you start to write
programs.

Example:
10 LET A 10
20 PRINT A -+ 5

This is a complete BASIC program that can be executed (RUN) by
the computer. The meaning of the words in the program have the same
meaning as they do in everyday conversation. We are going to LET A
equal 10, and then we ask the computer to evaluate the numerical
expression A + 5, and substitute the numerical value for A, and the
PRINT the answer.

-6-

The way that we make the computer execute the program is by

1. type in : RUN
2. press RETU~N key

If we RUN we get:

15

Obviously the answer is correct. The READY at the end of our
answer indicates that the computer is READY for more. We can take
the program that we have above and make a change in LINE 10 to expand
the range of its usefulness. Let's say that instead of always making
A equal to 15 we want to " put in" a value of A. So we change our
program to

10 INPUT A
20 PRINT A + 5

Where "put in" and INPUT have essentially the same meaning,
except one is "computer talk"

If we RUN we get:

?

The question mark which popped up on the screen means that you
know something that the computer dosen't know. It wants you to "put
in" the value of A. It can not RUN the rest of the program until you
do. All you need do is type in any number. Then after you type in
the number, enter it into the computer by pressing the RETURN key.

We get:

on

245
READY

? we type in: 240

All the words that we have used so far in writing our program are
called RESERVED WORDS. They mean exactly what they say. Since the
English language has many words with the same meaning, for the sake of
the computer it has been agreed to use only one of the words with that
meaning. It is then called a RESERVED WORD.

The RESERVED WORD that was chosen to mean "reading matter
produced from type passed through a press or an electronics device"
is .

-7-

PRINT. No other word with that same meaning will be used.

There are about 30 RESERVED WORDS in the vocabulary of a
computer in the BASIC mode. Everything that the computer does when it
is RUNning a BASIC program is guided by this very limited vocabulary.
Once you have "limited" your vocabulary to these 30 words when you are
"talking" to the computer, you will find that it can understand you.
The only problem then is to be sure that what you tell it to do, is
what you want it to do. The computer is very obedient, it does
"exactly" as it's told.

Without going into the meaning of this BASIC "vocabulary", I shall
list most of it for you to see:

1. LET 10. END 19. OUT
2. PRINT 11. READ 20. BYE
3. INPUT 12. DATA 21. RUN
4. IF ••• THEN 13. EXIT 22. LIST
5. FOR 14. RESTORE 23. LINE
6. GOTO 15. GOSUB 24. LOAD
7. ON 16. RETURN 25. SAVE
8. NEXT 17. FILL 26. EDIT
9. STOP 18. STEP 27. NULL

There are several others, but these are the most often used. The
one thing that they all have in common is they mean exactly what the
mean in "every day talk". If you were going to explain to sombody
what a program is doing, step by step, your choice of words would
probably be exactly the same.

Now back to our program

10 INPUT A
20 PRINT A + 5

If we want to test our program with several values of A, but
don't want to keep typing in RUN we can add another LINE and have
the computer go to the start after it finishes going through the
program. So we add :

30 GO TO 10

Which tells the computer when it gets to this LINE to go to LINE 10.

If we RUN we get:

110
15

120
25

?2873
2878

-8-

This could go on for ever. We are into a program LOOP which
goes from LINE 10 to LINE 20 to LINE 30 to LINE 10 to LINE 20 to LINE
30 to LINE 10 •.•••• and it will keep going and going and going. The
only way to get out is to "abort" the program, short of turning the
computer off---which always works. To do this :

1. press the CTRL key and the C key at the same time

This is called a CONTROL-C. It STOPs a program in progress. It
will interupt the program when the program finishes executing the LINE
that it is on. You may have to do several CONTROL-C procedures, one
after another, until the computer gets the signal when it is between
LINEs. Wnen it does, it will STOP and tell you where it STOPped. It
will PRINT something like the following:

STOP IN LINE 30

Every program should not be a crisis. We should be able to get
out of a program when we want to, and we can. Here's how:

Let's add a LINE or two, which will allow us to exit the program any
time we want. This is what we add:

15 IF A o THEN 40

Which says exactly what it says:

If the value of A equals zero then go to LINE 40

And then we make LINE 40 say END this program. We do it like
this:

40 END

Now let's look at our program:

If we RUN we get:

-9-

10 INPUT A
15 IF A = 0 THEN 40
20 PRINT A + 5
30 GOTO 10
40 END

?25
30

?25000
25005

?O
READY

That's basically what program writing is all about. You now can
write a computer program. You can add things to it to make it do
more. The remainder of this book will not be devoted to show the
reader how to do something she has now learned. The rest of the book
will amplify and expand this talent you now posess.

3

LIN E N U M B E R S

LINE NUMBERS are the "road map" that your computer follows
through your programs. They don't tell the computer what to do, the
LINE STATEMENT does that, they just get the computer to the right
place in your program.

All BASIC program STATEMENTS start with a LINE NUMBER. The LINE
NUMBER tells the computer in what order to execute the program. The
computer will start with the lowest numbered LINE and proceed in
increasing numerical order to the highest numbered LINE. The sequence
of numbers is not important, as long as they are in increasing
numerical order. LINE NUMBERS can be any whole number between 1 and
65535.

Most programmers number their STATEMENTS starting with LINE 10
and number subsequent LINEs in a lOX series.

Thus:

10,20,30,40, •••.•••••••• 65510,65520,65530

You could just as easily number your LINEs -- 1,2,3,4, •••••• However,
this is not advisable since it does not allow "space" to insert
additional STATEMENTs between existing LINES. The importance of this
will become more obvious when you write your first program.

I apologize that there is not more to say about LINE NUMBERS, but
there is not ••••••••••

4

HOW T 0 DIS P LAY A PRO G RAM

How to see what you got is important, so that you know what you
have. This is called LISTing a program that is in the computer.
The program either got there by writing it while the computer was in
BASIC mode or it was LOADed in from some "device". The "device" in
my case it would have been a "mini-disk".

For the purpose of the following discussion let's assume that
whatever we ask the computer for is there unless said otherwise. Our
first question to be answered is :

How do you display a program on the monitor (t.v) once it has been
written or LOADed?

1. on prompt or READY type in LIST
2. press RETURN key

The entire program will be displayed on the monitor. If the
program is longer than the number of lines the monitor will display at
one time (16 lines) the program will scroll by starting from the
lowest numbered LINE to the end of the program.

If you want to display only a portion of a program and you know
the LINE NUMBERs involved you can ask for only that portion. For
example

You have a program with LINE NUMBERs from 10 to 1200
in a lOX series, i.e. 10,20,30,---1190,1200. You want
t6 look at that portion of the program from LINE 820 to
LINE 930.

1. on prompt or READY type in LIST 820,930
2. press RETURN key

The computer would then display all the LINEs between and including
LINE 820 and LINE 930, a total of 12 LINEs.

If you then wanted to scan the last half of that same program, i.e.
from LINE 600 to the end, you would :

-12-

1. on prompt or READY type in LIST 600
2. press RETURN key

The computer would then scroll by on the monitor,
starting at LINE 600, the rest of the program to
LINE 1200; the end.

If you wanted to look at only LINE 600, you would

1. on prompt or READY type in LIST 600,
2. press RETURN key

The computer would display only LINE 600 on the monitor.

NOTE: The only change between the above example procedure and
this one it the addition of the "comma".

The above procedures are the most salient features of LISTing a
BASIC program that is in the computer. However, there is another type
of LISTing that is also important. This is the LISTing of the "files"
that are on the "mini-disk" This procedure is not done in the BASIC
mode but is done in the "disk qperating system "or DOS mode.

If you had a "mini-disk" and you wanted to know the names of the
files on that "mini-disk" you would do the following

1. Put the computer in the DOS mode.

a. From start up :

b.

put mini-disk" with DOS in the
disk-reader.

On > type in : EX E900

and press RETURN key.

From BASIC mode :

On READY type in BYE

press RETURN key

You know when the computer is in the "disk operating system"
i.e. DOS because of the "*" sign. If it is the last item to
appear on the monitor at the far left --- you are in the "disk
operating system" -- DOS. If the word READY is the last item to
appear, you are in the BASIC mode. If just the prompt (cursor) is

-13-

the last item to appear you are generally in the BASIC mode. If the
" ~ " sign appears in the upper left corner and the rest of the screen
is olank you are not in either mode, you are at start-up.

2. Put the "mini-disk" that you want LISTed
in the disk-reader.

3. on * type in : LI

4. press RETURN key

You will see displayed on the monitor a complete LISTing of all the
files on that "mini-disk".

Now that's the last word on LISTing, but not the last word on
"seeing what you got". All those neat little columns of numbers that
are located next to the names of the files mean something. But, we
won't get into that 'till later.

5

V A R I A B L E S

If you were to ask "real computer people" what they thought of
BASIC, they would look down their noses at you and tell you that they
don't see how anybody can make sense out of all those "dollar signs"
and "C5's" and all that stuff. "It's nothing but a jumble of ABC's",
they'd tell you.

Don't be upset or taken in by their condenscending attitude. Put
their remarks in perspective. Don't forget that many of them consider
the mini-computer a "toy computer". Without them taking the time, or
making an effort to see what the "state of the art" is with
mini-computers, they just assume that all they are are glorified
pocket calculators.

Having had the opportunity to expose several "real computer
people" to the job that my mini-computer is doing for my business, in
accounting, quality control, shipping, product records, and also as a
"word processor", they are usually very surprised at what they see,
and leave with a whole new attitude about the mini-computer.

But, irrespective of their initial attitude, there is some merit
in what they say about all those ABC's. Most BASIC programs RUN on
ABC's, and if you don't keep up with them your program can turn into a
"wild jumble" of "dollar signs" and "C5's".

There are 286 possible variable designations for any single
numerical value. You can assign any letter of the alphabet to
represent a numeric variable, the choice is yours - from A to Z. In
addition to any letter of the alphabet, you can combine your chosen
letter with any number from zero to nine. Some of the possible
choices are

K , N6 , LO , P8 , D , G4 , Z9 , W5 , T2 , 07

This system gives you 286 variable "names" to represent numeric
variables there are no rules, pick anyone you want, anytime you
need one.

The very same set of rules apply to the system of assigning
"names" to STRING variables (WORDS), with one addition, you must add a
"dollar sign" ($) as the last character of the variable "name". Some
typical designations for STRING variables (word variables) are:

A$, N6$, LO$, Y2$, J7$, C$, P9$, S8$

-15-

Counting the 286 numeric variable "names", plus the 286 STRING
variable "names", you have random access to a total of 572 "names" to
choose from --- as the man said, "that's a lot of ABC's ".

Although you need not be frugal in your use of variable names,
nor do you need to be very selective, you should choose them in some
orderly fashion so as to prevent using the same variable name in a
given program to represent two different variables. The method you
choose is entirely up to you, there is no standard method of assigning
variable names.

If one is writing a very long program, and it is taking days or
weeks to write, or to complicate it further, two or more people are
working on it, I would recommend using a variable tally sheet. There
are actually two tally sheets, one for numeric variables and one for
STRING (word) variables.

These tally sheets list all the possible variables, and when you
use one, all you do is cross it off the sheet. This will preclude the
chance of using the same variable more than 6nce. In a situation as I
have outlined above, I would not rely on your memory, it's not as good
as the computer's when it comes to such details. You may forget that
you assigned the same variable name to two different variables, the
computer won't.

And:

Here are the programs which will generate your tally sheets:

10
20
30
40
50
60
70
80
90
100
110

DIM A$(26) ,B$(26)
!" N U MER I C V A I R A B L E

FOR lITO 26
FOR J 1 TO 11
LET A$ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
LET B$ "0123456789"
! A$(I,I) ,B$(J,J)," "
NEXT J

NEXT I

10 DIM A$ (26) ,B$ (26)

LIS T

20!" S T R I N G V A I R A B L ELI S T
30
40 FOR I = 1 TO 26
50 FOR J = 1 TO 11
60 LET A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
70 LET B$ = " 0123456789"
75 LET T$ = "$"
80 ! A$(I,I),B$(J,J),T$," "

"

"

90 NEXT J
100
110 NEXT I

-16-

Contrary to some published advertisements, that is not all that
you need to know about variables, but that's a start ••••

6
THE CAS T 0 F C H A R ACT E R S

These small, seemingly insignificant things are the mortar that
hold the whole BASIC LANGUAGE together. The comma, the quotation
mark, the exclaimation mark, the back-slash, the per-cent mark, the
dollar sign, the number sign, the at-sign, and the space. All of
these characters playa major role in the BASIC LANGUAGE. The
presence or absence of a single one of these characters can make the
difference between a well RUN program and absolute garbage.

We shall look at each one of these and discuss their most salient
functions. I will not at this time attempt to cover all the
characters, some for which I can not even find a name, or their
function. I'm not sure that any single person is familar with all of
them --- I'm not. There are a few that you must become well
acquainted with in order to work with BASIC. Here are the more
ubiquitous.

THE COMMA

The COMMA is the "work horse" of the BASIC LANGUAGE . It is
used to separate variables, limit procedures, format OUTPUT, separate
system instructions, segment statements, and on, and on, and on

Here are some examples of the more common uses for the comma:

10 READ no, A,B,C$,D,E7$
10 INPUT A,B$,X
10 ! "THERE ARE ",K," INVOICES OUT"
10 PRINT A,
10 !"THERE IS STILL ",%$C8F2,G," IN THE ACCOUNT"
10 INPUT" DISCOUNT CODE 1,2,or 3 : " R7
10 ON J GOTO 125,160,240
10 OPEN no, "AUTOPART"
10 DATA 1,22,3,44,5,66,7,88
10 WRITE no, A,B$,C,D$,F7$
10 LET N = R(B,O)
LIST 250,300
RUN 140,200
LOAD AUTOPART,2

-18-

SF AUTOPART,2
CR DOS, 1 10

These examples show most -of the uses of the COMMA that you will
encounter.

The ability to format OUTPUT is a use that you must become
familar with at the onset. If a PRINT statement is not terminated by
a COMMA, the OUTPUT from that statement is printed on a single line by
itself.

Thus:

If we RUN we get:

10 FOR S = 1 TO 4
20 PRINT S
30 NEXT S

1
2
3
4

If we change LINE 20 to:

If we RUN we get:

For the program

If we RUN we get:

20 PRINT S,

123 4

10 FOR X = 1 TO 4
20 PRINT X
30 C = X+10
40 PRINT C
50 NEXT X

1
11
2
22
3
33
4
44

-19-

If we change LINE 20 to:

20 PRINT X,

If we RUN we get:

1 1 1
2 22
3 33
4 44

If we then change LINE 30 to:

If we RUN we get:

30 PRINT C,

1 11 2 22 3 33 4 44

What is happening is that the COMMA at the end of a PRINT
statement tells the computer to "add" the OUTPUT from the next PRINT
statement to the same line. If all the PRINT statements in a given
program had COMMAs at the end of them, then all the OUTPUT would be
put on the same line until it overflowed to the next line. If none of
the PRINT statements had a COMMA at the end, then all OUTPUT from each
PRINT statement would be on different lines.

If you have a program in the computer's memory that is 150 LINEs
long, and you want to look at LINEs 20 to 110, if you typed in LIST
the entire program would scroll by unless you were fast enough to
execute a CONTROL C in time to STOP it at the part that you wanted.
That's an iffy situation: sometimes you can; most times you can't.
The best way to do it is:

on READY type in: LIST 20,110

The computer will then display LINEs 20 to 110 and STOP by
itself. If you want to look at the last part of the program, from
LINE 110 to th~ end, then:

on READY type in LIST 110

Note, no comma.

If you just want to look at LINE 110 and nothing else, then:

-20-

on READY type in LIST 110,

The same thing holds true for the RUN command. If you want to
RUN the program from LINE 110 to END, then:

on READY type in : RUN 110

Most of the other uses of the COMMA are illustrated in the above
examples. Their effect is not as dramatic as the discussed examples,
but just as significant. Proper placing of the COMMA in a LINE
statement is essential. Be sure that you separate all variables in
LINE statements by COMMAS, regardless of whether it is a DATA, a READ,
a WRITE, an INPUT, a PRINT, or an ON statement. If there is more than
one variable or value on a LINE, it needs a COMMA between it.

On the other hand, don't use too many COMMAS. The last item on
the above mentioned LINE statements. should not be followed by a COMMA,
with the exception of the PRINT statement, then it's optional. If you
are in doubt about whether to use the COMMA or not, check the above
examples or just put it "in" and then "take it out" and see what
happens.

QUOTATION MARKS

The QUOTATION MARK can not be overlooked. If ever you have
anything that needs to be said, the computer will not say it unless
you enclose it in QUOTATION MARKS, the computer does not want to be
responsible for what you have to say. The QUOTATION MARK is
especially important in formating OUTPUT, allowing the computer to
identify and handle STRINGs (words), and allowing the computer to
differentiate between numbers and numeric expressions.

are:
Some examples of LINE statements with the QUOTATION MARKS in them

20 IF G$ = "YES" THEN 80
20 OPEN no, "FRUIT"
20 INPUT "WHAT IS THE INVOICE NUMBER: ", N
20 PRINT "THE VALUE OF X IS : ", X
20 !"PART NUMBER ",K," IS NOT IN STOCK"
20 !"THERE ARE ",J," INVOICES WITH A TOTAL OF ",R
20 ! .A," ",B," ",C," ",0," ",E
20 !" 3 X ",K," = ",S
20 DATA 5,"HY-TEMP SEALED HEADLIGHT",6,"SPARK PLUG"

-21-

20 !"A=",A," B=",B," C=",C," 0=",0
20 !" GROSS INCOME = ",~$Cl0F2,G
20 !"******************** •• ******************."
20 !"I--------I---------I--------I-------I-------l"
20 !"3+5=",N

All of these are practical uses of the QUOTATION MARKS. All of
the above examples came from actual programs, most of which are in
this book. Note the flexibility that is allowed when using the
QUOTATION MARKS, you may PRINT an entire line merely by enclosing its
contents with QUOTATION MARKS, or you may segment a LINE as many times
as space allows, for the inclusion of a variable.

Anything that you enclose by QUOTATION MARKS in a PRINT statement
. becomes a STRING (a word) to the computer. If it is a numerical
expression it is not evaluated by the computer, it is just PRINTed,
exactly as you enclosed it.

For example:

If on READY you typed in PRINT 3 + 5

You would get: 8

but if on READY you typed in PRINT "3 + 5"

You would get: 3 + 5

The difference between the two examples is that without the
QUOTATION MARKS the 3 + 5 is a numeric expression and the computer is
programed to solve the expression and PRINT out the answer. The" 3 +
5 " enclosed in QUOTATION MARKS is a "word", and the computer is
programed to PRINT out anything enclosed in QUOTATION MARKS exactly as
it appears.

Consider this program:

If we RUN we get:

If we change LINE 20 to:

10 FOR Y = 1 TO 4
20 PRINT Y,
30 NEXT Y

123 4

-22-

20 PRINT" ",Y

If we RUN we get: 2 3 4

Note the spaces between each number. The computer PRINTs what
ever is between the QUOTATION MARKS, in this case it was blank
spaces.

If we were to change LINE 20 to :

If we RUN we get

20 PRINT "THE VALUE OF Y = ", Y

THE VALUE OF Y = 1
THE VALUE OF Y = 2
THE VALUE OF Y = 3
THE VALUE OF Y = 4

Other than for a few examples at the start of this section, I
have not gone into one of the most important functions of the
QUOTATION MARK, its role in handling STRING VARIABLES or in a loose
definition, WORDS. As far as the computer is concerned, if it is not
a numeric value or a numeric expression to be solved --- it's a WORD
(STRING). That being the case, the computer wants you to keep your
"words" and your numbers separated. A numeric variable is represented
by a single letter of the alphabet, which mayor may not be coupled
with a number from zero to nine -- G4. A STRING variable is
represented by a single letter of the alphabet, which mayor may not
be coupled with a number from zero to nine, plus a dollar sign ($)
-- G4$. In this regard, there is one hard and fast rule which you
must remember, that is:

ALL STRINGS (WORDS) WHICH APPEAR IN THE BODY OF A
BASIC PROGRAM MUST BE ENCLOSED IN QUOTATION MARKS.

THE BLANK SPACE

A quick general statement that comes to- mind about BLANK SPACES
is that the computer completely ignores them. But, like most "quick
general statements", that's wrong. If I were to modify that to, the

-23-

computer usually ignores them, that would be closer to the fact.

The computer does not allow BLANK SPACES in the following:

1. In reserved words. These are words which have

2.

a special meaning to the computer. They are
either "command words" or "statement words".
When they appear in the body of a BASIC program
they must remain intact if they are to mean
anything special to the computer. Some examples
are:

STATEMENTS:

GOTO ON GOTO IF• THEN
GOSUB RETURN RESTORE
FOR NEXT END
STOP LET READ
WRITE OPEN CLOSE
INPUT FOR TO PRINT

COMMANDS:

LOAD BYE EDIT
LIST RUN PRINT

You can not have BLANK SPACES in the "name" of
any FUNCTION, such as:

ABS(G) RND(J) INT{T)

3. You· can not have BLANK SPACES in any LINE
NUMBER, such that:

is not the same as
50 GOTO 110

5 0 GOTO 110

-24-

The first example being read by the computer
as LINE 50 and the second as LINE 5.

50 GOTO 110
is not the same as

50 GOTO 0

The first example being read by the computer
to GOTO LINE 110 and the second to LINE 1.

4. No BLANK SPACES can be used in a "defined"
STRING (word), such as a FILE NAME or a
STRING match, without it changing the STRING.

HAPPY is not the same as HAP P Y
REDWINE is not the same as RED WINE

All of the above forms are acceptable. You
must, however, be cognizant that they are
not the same.

Now, back to my original statement, "The computer ignores all
BLANK SPACES, excluding the above mentioned exceptions." That still
leaves an opportunity for lots of wide open spaces or if you prefer
you can do away with BLANK SPACES altogether.

Consider the following

10 FOR X
20 Y
30
40

and:

two programs:

= TO
=

PRINT

10FORX=1T03
20Y=X+1
30PRINTY
40NEXTX

3
X +

Y
NEXT X

This is no doubt a silly example, but it does illustrate the latitude
with which one has to spread out a program or condense it to his own
liking. Both programs are properly typed and the computer would RUN
either with no problem. .

-25-

THE B.ACK SLASH

Since we are talking about condensing things, let's next discuss
the "Borden's" of condensed BASrC computer programs -- the BACK SLASH.
The BACK SLASH allows you to put as many STATEMENTS on a single LINE
as you can possibly squeeie in. The computer will execute each
STATEMENT in order from left to right, just as if each STATEMENT had
its very own LINE NUMBER, each a little bit higher than its neighbor
to the left.

Consider the program in the section on BLANK SPACES where we took
out all the spaces, that same program could have been condensed even
further by the BACK SLASH. It would look like this:

10FORX=1T03\Y=X+1\!Y\NEXTX

This is the very same program. It will RUN just like the above
m~ntioned program, and yield the same OUTPUT. To the computer there
is absolutely no difference.

Why then, you say, do we go to all the trouble to spread things
out, use all those LINE numbers, take up all th'at space, all that
memory, if the above example is exactly the same to the computer? The
answer is that we don't have to, but if you ever had a problem with a
long program written as above, you would go batty trying to figure out
what it says. Unless you were very lucky, or unless you knew exactly
where your ~rror was, you would have to go back and spread it out in
order to see what you had.

Many professional programers, once they' have completely
"debugged" a program, will then go back and "compress" their program
to discourage other people from copying it, or changing it, or
figuring it out.

-26-

THE AT-SIGN

The AT-SIGN is of little or no value to the person who does not
make mistakes, not even typing ~rrors. For the rest of us however, it
provides a quick, convenient method to "start allover". When ever
you press the AT-SIGN key --" @ ", it will cause the computer to
void whatever was previously typed on the current LINE, and jump back
to start that LINE allover again.

For example:

10 "WHAT'S UP DOT @

This whole LINE will be voided and you can start allover again.

THE EXCLAMATION POINT

I have saved the "character" that I like best, for last. The
EXCLAMATION POINT has saved more time, more bytes, and has made
palatabl~ a portion of what I consider to be the drudgery of computer,
programing --- typing.

I have a problem in that I can't type as fast as I can think.
If I try, I find that what I typed is not what I thought. Any BASIC
computer program "worth its salt" is peppered with PRINT statements.

All that the EXCLAMATION POINT does, is allow you not to have to
type the word PRINT, you can type an EXCLAMATION POINT in its place.
It will replace the word PRINT either as a statement in a LINE or as a
command to the computer, any place you would use the word PRINT, you
can replace it simply by typing an EXCLAMATION POINT.

10 PRINT A,B,C
PRINT FREE(O)

is the same as
is the same as

10 ! A,B,C
FREE(O)

That's all that it does, but I'm glad that it does that

7
THE R E N U M B E R FUN C T ION

,
On the surface this hardly seems a worthy enough subject to give

special attention, and it may not be. But, I have found this little
RENumbering "function" is able to bring a little class and order to a
program, and it only takes a second.

All the RENumbering function does is renumber a program. It
makes the first LINE of a program LINE 10 and each subsequent LINE
number 10,more than the last LINE number. This is what I refer to as a
"10X series" , i.e 10,20,30, ••....•• 655-20,65530 • That's as high as
it goes.

That is not all that the RENumber function renumbers. If there
is a LINE number in the content of a LINE it will also change that
number to match the new number assigned to that LINE. I find this
pretty amazing when I consider that in almost any program you will
find at least 10 or more "GOTon,s, or "IF/THEN"'s , or ~even more
complicated, an occasional ON statement.

The time to use the RENumber function is after you've done all
the adding of LINEs, EDITing, DELETing, and just before you SAVE the
program. RENumbering makes future editing and tracking of the program
a lot eaiser to work with when looking for errors, or making
additions. It's worth the effort and should be done.

Let's look at a few examples

1 REM THIS MAKES A MATRIX 5 X 6
6 DIM M(5,6)
10 FOR J : 0 TO 5
15 M(J,O): J
23 FOR K : 0 TO 6
31 M(O,K) : K
40 PRINT M(J,K)
51 NEXT K
63 NEXT J
64 GOTO 10
10 END

This program was written by one of the most used methods in
computer programming today. The method was the "trial and error"
method. Most programs written by this method, which have not been

-28-

RENumbered, usually have a strange assortment of LINE numbers. This
is the result of constantly changing, editing, adding, and deleting of
LINEs until you get a program that works.

So that nobody will know how much trouble you had writing a
program, you should RENumber it. Do this :

1. on READY type in : REN
2. press RETURN key

Now to see the results do a LIST

10 REM THIS MAKES A MATRIX 5 X 6
20 DIM M(5,6)
30 FOR J= 0 TO 5
40 M(J,O) = J
50 FOR K = 0 TO 6
60 M(O,K) = K
70 PRINT M(J,K)
80 NEXT K
90 NEXT J

100 GOTO 30
11"0 END,

Note that all the LINE numbers are nciw in a "10X series" starting
with LINE 10 and that the LINE number in the body of the program
(LINE 100) has been appropriately changed.

The same RENumber function can also be used t9 expand LINE space
in a program. Aassume that the following extreme example is the
result of the "trial and error" method:

520 IF X = 25 THEN 523
521 IF X = 50-C THEN 524
522 IF 25< X > 50 THEN 525
523 GOSUB 1248
524 LET D = 22
525 GOTO 60

Let's suppose that after checking the program we find that if the
program returns to LINE 524 after it finishes its subroutine from LINE
523 it will not RUN. So all we have to do is add a GOTO statement so
that it dosen't come back to LINE 524. But wait, we've boxed

-29-

ourselves in. There's not any numbers left that we can use to add a
LINE at the required place. All we have to do is :

1. on READY type in REN
2. press RETURN key
3. on READY type in LIST

We will have to scroll through the program and look for the
desired section that we are interested in since we do not know what
the new LINE numbers are to LIST to. Let's say that we find them and
the new numbers we want are 1150 to 1200. So we do the following:

and we get:

1. on READY type in LIST 1150,1200

1150 IF X = 25 THEN 1180
1160 IF X = 50-C THEN 1190
1170 IF 25 < X > 50 THEN 1200
1180 GOSUB 1550
1190 LET D = 22
1200 GO TO 80

Now we can add one LINE or up to nine additional LINEs after our
GOSUB statement if we want to. Problem solved •••• Text on RENumber
function ended.

8
HOW T 0 COR R E C TOR E D I TAP R 0 G RAM

I'm sure that the second thing that was done after the computer
was worked out was to develop a system to correct programmer mistakes.
It must have been paramount in the mind of the people who developed
the BASIC language, because there are so many different ways to
correct the same mistake. Sometime you spend more time trying to
decide which method of editing to use than if you just did the whole
thing over. I shall discuss some of the most used methods.

If we have the following LINE in a program

130 IF A = B THEN 60

and you want to change it to:

130 IF A = B THEN 110

you do the following

1. on prompt or READY type in : EDIT 130

The EDIT command is a built in "function" which essentially treats
the PROGRAM LINE that matches the LINE NUMBER after EDIT, as if it
were the last thing typed into the computer.

2. on PROMPT press : CTRL key & G key

When you press the CTRL key and the G key together it is called a
CONTROL- G . The CONTROL - G is a built-in edit "function" which
automatically rePRINTS the last item that was typed into the
computer.

Therefore you should get

130 IF A = B THEN 60

Now do a "shift-delete" by pressing the DEL key while holding
down the SHIFT key. You will notice that each time you do a
"shift-delete" one character at the end of LINE 130 is erased. Since
to make the desired change we need to erase the "60" we do the
"shift-delete" twice. Now that we have erased the "60", the prompt
is in the proper position to type in the number "110". After you have
typed in the "110" press the RETURN key. You have made the desired
change To verify that the desired change was made, do a CONTROL-G,
you

-31-

should get

130 IF A = B THEN 110

If there are no further corrections, press RETURN key.

Now let's make a change at the other end of the line, we want to
change the LINE NUMBER 130 to LINE NUMBER 170.

1. on prompt or READY type in EDIT 130
2. press RETURN key
3. on prompt type in 170
4. do a CONTROL-G

You have now made the desired change. If you want to confirm
this do another CONTROL-G. You should get:

170 IF A = B THEN 110

And you do! However, you have left something behind. If you were to
LIST your program you would find that you have LINE 170, as you just
confirmed, and you would also see that LINE 130 didn't erase when you
"replaced" it. When you made all the other changes, one change
automatically erased the thing it was changing. LINE NUMBERS are
something special. If you want to do away with a LINE NUMBER you
specifically have to tell the computer that. Here's how:

1. on prompt or READY type in 130
(LINE to be erased)

2. press RETURN key

The unwanted LINE 130 is now gone ..•

Now let's change:

170 IF A = B THEN 110

to
170 IF A = 2*B THEN 110

Since the desired change this time is in the middle of the LINE,
we can approach it from either end; it really dosn't matter. If the
end results are the same, there is no "right" way. I will make the
change starting from the LINE NUMBER side, you try it from the other
end: -

-32-

1. on prompt or READY type in : EDIT 170
2. press RETURN key
3. on prompt press CTRL key and A key

continue to do this until you have passed
the " = " mark in your mark in your LINE

This is called a CONTROL-A. It is another "control function"
of the computer. It will automatically PRINT one character at a time
- each time you press the A key while holding down the CTRL key -
of the last thing typed into the computer or put in that "position" by
an EDIT command.

4. Now press the CTRL key and the Y key

This is called a CONTROL-Y It is another "control function"
of the computer. It is also called the" insert control" It is a two
step "control function". The first time you do a CONTROL-Y it will
print a "<" at the start of the LINE position that you executed
it. Such as :

170 IF A = <

Then you type your desired change:

170 IF A = <2*

Then you do the second CONTROL-Y which will print the ">" sign at
the end of you insertion. You now have

170 IF A = <2*>

Then you do a CONTROL-G which prints the remainder of the line and
you get :

170 IF A = <2*>B THEN 110

Then you do another CONTROL-G (This one is optional) and you get

170 IF A = 2*B THEN 110

Which is exactly what we wanted.

There are at least two ways to delete characters from a prograr
LINE. Again, both are commonly used and except under certiJ
conditions, which one you use is up to you. Let's change LINE 170

from

to:
170 IF A = 2*B THEN 110

170 IF A = 2 THEN 110

-33-

Method A

1. on prompt or READY type in: EDIT 170
2. do a CONTROL-A until the 2 appears
3. press the "space bar" for each character

you want to delete. i.e .. two times
4. do a CONTROL-G to display the remainder

of the line.
5. press RETURN key to effect the change

and we get:

170 IF A = 2 THEN 110

Which is what we wanted. However, look at all those wide open
spaces. I have already told you that the computer dosen't care if
they are there, so if you don't care then everything is fine. If you
do care then I recommend Method B:

1. on prompt or READY type in: EDIT 170
2. do a CONTROL-A until the 2 appears
3. press the CTRL key and the Z key for

each character you want omited. (two times)

This is called a CONTROL-Z. It is another editing "function"
of the computer. Each time you use it it will replace the character
in that position with a "%" sign, until you are finished with all
your changes and you enter the changes in the computer. When you LIST
your change or do a CONTROL-G after you have EDITed, the omitted
characters and the "%" sign are gone and so are the characters they
replaced, and so is the "space" they occupied.

4. do a CONTROL-G to complete the remainder
of the line.

we get:

170 IF A = 2%% THEN 110

5. press RETURN key (this enters the change
into the computer)

6. do a CONTROL-G to see the EDITed LINE
(optional)

we get:

170 IF A = 2 THEN 110

Which is exactly what we wanted.

-34-

As to those conditions when it is better to use the CONTROL-Z
method of deletions as opposed to the "space bar" method of deletion,
it depends on how much space you can afford to use. Even though the
computer essentially ignores excess spaces in LINE items, it does not
completely ignore them. It SAVEs them for you. If you put them
there, it assumes that you wanted them there. Every time it SAVEs the
"blank space" it also takes up one byte of memory. There are to my
knowledge no "reserved words" or "commands" which have spaces in them.
Assuming that to be the case, all "spaces" could be eliminated from
all programs. Thus our LINE 170 could be written:

170IFA=2THENIIO

The computer will handle this LINE 170 just as easy as the one
above. Besides that, you would save 7 to 9 bytes on just that one
LINE. Can you imagine the almost impossible task of trying to
"track" a three hundred LINE program written without any "spaces"
while looking for an error?

There are other EDIT "functions" in your system. By
understanding those that I have written about, you are in a better
position to evaluate the use of those I have not written about. Then
you can decide whether they are worth the effort.

HOW T 0
FRO M

9
LOA D APR 0 G RAM

A MIN I - DIS K

There are two ways to get a program into the memory of a
mini-computer. One we have already discussed; that of writing a
program into the computer. The.other we have already used; that of
LOADing a program into the computer from a "device". That device can
be a tape recorder, a paper tape, an ordinary telephone, magnetic
card, or the "device" that we used to LOAD in DOS and BASIC (both
operational programs), the "disc-reader".

The "disk-reader" is a wonderous machine. It can READ the
magnetic "mini-disk" in a matter of seconds. In less time than that,
it can "look" at what you want and "look" at what it's got, and tell
you if your "wants" exceeds it's "gots". If you ask for something it
can not find on the "mini-disk", it will try ten times to locate the
item, if it's not sucessful, the disc-reader will tell the computer
that it's not able to locate the ask for item and the the computer
will print that on the monitor. All that will take place in about one
second or less.

The "mini-disk" is nothing more than a large piece of tape
recorder tape that is the size of a five inch saucer instead of a long
skinny tape. It is essentially "played" and "record~d" in the same
manner as on a regular tape recorder. The unique feature of the
"disk-reader" is it's ability to locate any requested item at any site
on the "five inch saucer" Each mini-disk can contain about 90,000
pieces of information (bytes). You can ask for anyone piece and the
disk-reader will locate it for you in a matter of seconds.

It works very much like a record player. The recQrding head,
called the "pointer", is like the arm on the record player. The
mini-disk is like the record. The disk-reader turns the mini-disk,
just like the turntable turns the record, only much faster. The arm on
the turntable, the" pointer" on the disk- reader, follows the groves
in the record, the tracks of the mini-disk, starting from the outside
rim and working its way to the center.

Just like one of these new, modern turntables that can put the
playing arm down on any pre-selected band on the record, the computer,
by use of the Disk Operating System can put the "pointer" down on any
position (address) on th mini-disk.

Now that you know how it operates, let's learn how to operate it.

-36-

Every program on a "mini-disk" has a name. The name that th,
program is given is up to the programmer within certin limitations
All activity involving this program is done by using its' "given name
and nothing else.

The "given name" of a program must be no more than eigh
characters long. These characters can either be letters, numbers, or
symbols. There al~e only two exceptions. You can not use a blank or a
comma in the name.

The name should be an acronym which will tell the programmer
what the program is about. The name for an "invoice preparation
program" could be "INVOPREP" or the name for a program which reads
the contents of a min i-disk file could be "DISKREAD". Choose the
names of your programs so that they mean something to you.

Let's assume for our example that we have an "inventory
accounting program" which we will name INVACCTN. We could have just
as easily named it RABBIT or fI*+4R& or 6/7/78. All of these
options fulfill the naming requirement. But, let's use the name
INVACCTN. We must further assume that the program named INVACCTN is
recorded (SAVEd) on the mini-disk that we have in the disk-reader. On_
this same mini-disk is the program for our Disk Operating System (DOS)
and the BASIC Language program.

After making all these assumptions and meeting all the stated
requirements, we are ready to go from "start up" to putting in
(LOADing) our programs to RUNning them.

Here's how:

1. To put (LOAD) the Disk Operating System (DOS) in
the computer:

on > type in : EX E900

2. To put (LOAD) the BASIC Language into the
computer:

on * type in GO BASIC

3. To put (LOAD)'the program' named INVACCTN in
the computer:

on READY type in LOAD INVACCTN

-37-

The word READY again pops up on the monitor.

Each time that you "type in" something on the terminal
keyboard you have to follow it up with pressing the
RETURN key in order to "enter" it into the computer.

Each time you "press RETURN key" the disk-reader will
come on, run two or three seconds, turn itself off, and
replace the last symbol· on the screen with the next
required symbol on the monitor, first > then * then
READY --- if all goes well.

The different symbols and the word READY all tell you
that the computer accepts the LOADed program and is in
the required mode for the next "command". The symbols
mean :

> • • • tells you that the computer is in the
"start-up" position and there are no
programs in the computer

• tells you that the computer is in the
Disk Operating System - DOS mode

READY • • tells you that the computer is in the
BASIC mode and that you can READ, WRITE,
SAVE, and LOAD BASIC programs.

If you were already in the BASIC mode
and you tell the computer to do
something, it will print READY after if
it finishes its assignment.

Since, after we told the computer to LOAD INVACCTN we got READY,
that would indicate that the computer has LOADed our program and we
are READY to' RUN. If you do not have "complete faith" and you want to
see the program.

Do this:

on READY type in : LIST

The program named INVACCTN will scroll by from th~ first LINE to
the end. If you are now convinced that it is there and you want to
RUN the program do the following:

on READY type in RUN

-38-

When you press the RETURN key to enter the "command" into the
computer, it will start executing the program.

That's the way it should always work. On occasion it dosen't.
Let's consider the most frequent of these times.

If at any time you command the computer to LOAD a program and it comes
back and displays on the monitor" HARD DISK ERROR" or- HD 000, that
means that for some reason the computer was not able to transfer the
information on the mini-disk to its memory. The most frequent cause
for this "ERROR" is that the mini-disk was not properly inserted in
the disk-reader or that the "lock gate" on the disk-reader was not
closed.

To correct this "ERROR" check the "lock gate" if it is not
closed, close it and repete the LOAD command. If it was properly
closed, open it, take out the mini-disk. Make sure it was inserted
"face up" with the end with the "oval cut-out" going into the slot on
the disk-reader first. Even if it was properly inserted, reinsert it,
close "lock gate" and re-enter the LOAD command.

If it still does n~t LOAD the program and HD 253 ,or any number
following the HD appears; two things ~re probable, Number one, the
mini-disk is damaged. If that's the case, nothing can be done and you
have lost whatever program that was stored on the mini-disk at
position (BLOCK) 253 .

The mini-disk are not fragile but do require some special
handling. They should not be " bent, folded, or mutilated ". They
should not be placed in any type of magnetic field. They should be
k e p t " h i g han d dry " and in the en ve lop e t hat c arne in w hen no tin
use. In general, handle them as you would an expensive phonograph
r.ecord .

T~e second possibility is that a piece of lint or something got
between the disk-reader head (pointer) and the mini-disk. Sometimes
just by removing the mini-disk from the disk-reader and lightly
b 0 u n c i n g ito nit sed g e a f e· w tim e son the tab 1 e 0 r bye are full y
turning the mini-disk in its protective holder will correct the
problem. Re-insert the mini-disk and try to LOAD it again.

If it still dosen't work there are two possibilities. Number
one, the mini-disk is damaged. Number two, the disk-reader is
malfunctioning. To check this out try to LOAD another program from
the same mini-disk. If you are sucessful then consider the "HARD DISK
ERROR" is isolated to that one place-' (BLOCK) on that mini-disk. If
not, try to LOAD a program from another mini-disk. If you are
sucessful then consider that it is not your disk-reader that is at
fault, but that the previous mini-disk is actually damaged. If you
fail on all attempts it's probably your disk-reader. You don't need
more instructions --- you need a repairman.

-39-

Assuming, that none of the above happened, but you still didn't
LOAD your program, the next most frequent occurrence may be the
appearance of the following phrase:

ARG ERROR

This stands for" argument error" which means that what you ask the
computer to do, it could not do, because what it needed to do the task
was not available.

In our particular case, what it says is that there is no program
on the mini-disk with the name you told it to LOAD. If we are sure
that there was such a program on the mini-disk, then perhaps we made
an error in our LOAD command. For instances, if we told the computer
to:

LOAD INVACTN

We should expect an ARG ERROR, because the name of our program was:

INVACCTN

Look closely at the spelling. The computer never forgets what you
tell it. It does exactly what you tell it to if it can. Most of us
mortals have to learn how to deal with such consistancy --- it's not
all that easy.

Knowing that there is no room for ERROR, and our memory is not'
good enough to come up with the exact name of a program, and the
chances of us lucking up and guessing it are slim; the "computer
people" provided us with a solution. There is a method of getting the
computer to LIst the names of all the programs on a mini-disk.

Here's how:

If READY is the last message on the monitor,
we are still in the BASIC mode. In order to
display the mini-disk "file" LIst we must get
back to the Di~k Operating System - DOS mode.

To do this you must :

on READY type in : BYE

When you press the RETURN key to enter this
,command into the computer, a * will appear
as the last item on the monitor. That means

-40-

we are in DOS mode.

To get our LIsting of this "file" we then:

on * type in : LI

The disk-reader should come on, and a LIst of
all the programs on that mini-disk will be
displayed on the monitor

With the complete LIsting of the programs and
there exact spelling in front of you, you are
now able to properly LOAD the. program you want.
But, you cant LOAD a BASIC program in the DOS
mode. Here's how to get back to BASIC:

on * type in : JP 2A04

When you press the RETURN key you will see,
that READY is now the last entry on the
monitor. Which indicates that we have
JumPed back into the BASIC mode.

Now :

on READY type in : LOAD INVACCTN

The word READY should now apperar on the
screen again, telling you that all is done
and the computer is READY to RUN.

On occasion after the LOAD command is given the phrase:

NO PROGRAM ERROR

will appear on the monitor. What this tells you is one of two things.
Number one, there was in fact a space (file) created for a program
called INVACCTN, and this LIsting is on the mini-disk. Number two,
that program was never SAVEd. Either you forgot to SAVE the program
INVACCTN or you executed your SAVE command inproperly and the
computer did not SAVE the program and did not tell you otherwise. The
first possibility is the most probable.

10
HOW T 0 S A V E APR 0 G RAM

T HAT YOU W R I T E

Every time you sit down in front of this magic box to write a
program for a specific purpose, or a game, or to try some programming
technique, the potential to do something great exists, limited only by
the human, not by the computer.

On that occasion when you feel that you have accomplished this,
which may happen daily, you certainly don't want to deprive mankind of
this treasure. If you turn off the computer this. jewel will be lost.
All that extra cash will disappear, that money you could make if you
called it "software" and sold it.

Let's assume that after hours and hours of very trying labor, and
just before the point of complete mental fatigue, you finally get a
very useful and complex program off and RUNning. It's the greatest
thing you ever wrote. For that reason you decide to call it GREATEST.

'There must be some way to ,save this valuable asset. There is, and
here's how: .

1. First, check the program and make sure that
all RUNs well and there are no changes you
want to make before SAVEing the program.

on READY type in : LIST

If you find some changes that you want to make,
do it. If you are READY to SAVE the program,
then proceed.

2. It is always better to find out exactly how big
a program is, rather than guessing. There is a
method for telling you exactly how many blocks
long a program in the computer is. It involves
the use of the built-in FREE (0) function.

The FREE(O) function tells the .proirammer how
much of the computer's available memory is still
FREE to use - how much memory is left. By
establishing how much memory you have left after
you LOAD in both DOS and BASIC you would do the

-42-

following

on READY type in ! FREE(O)

you get: 10812

This means that without any programs in the
computer, other than the operational systems,
that I have 10,812 bytes of memory available.
This number may vary from system to system,
but will remain constant for 'any given system
that is not changed. Once you establish this
value for your system - remember it.

Since we already have a program in the computer,
and we want to find out how many blocks long
it is, we do this

on READY type in !(10812 - FREE(0»/256

you get:
25.515625

That means that the size of the program in the
computers memory is 25.515 blocks long. Here's
how that was determined

a. If you typed in : ! FREE(O)

and got 4280

That means you have 4280 bytes of
memory left.

b. If you know how much memory you
started with, i.e. 10812 bytes
and you know how much you got left,
i.e. 4280. Then

10812 - 4280 = 6532

Which means that you used 6532 bytes
to write the program in the computer.

-43-

c. If each block contains 256 bytes then:

6532 I 256 = 25.51 blocks

Which means the the program in the
computer is 25.51 blocks long.

d. Putting this all together into one
expression, you get

No. of blocks = (10812 - FREE(0))/256

3. If you are going to SAVE your program on a
a brand new mini-disk that has never been
used, you must first INITIALIZE the disk.
However, if you INITIALIZE your mini-disk
at this point you will l(Jse 'your program
in the computers memory. The INITIALIZing
function uses the same portion of memory
that your program is in.

DO NOT INITIALIZE AT THIS POINT

If you want to SAVE your program at this point
you will have to SAVE it to another mini-disk
that has already been INITIALIZED.

In view of the complications brought about by
not having an INITIALIZEd mini-disk ready when
you need one, it is a good practice to
INITIALIZE all brand new mini-disk as soon
as you get them. Even if you do several at
a time it does not matter, because you can't
use them until they are INITIALIZED.

4. We must be in the Disk Operating System
DOS mode - to prepare our FILES. So :

on READY type in BYE

5. We must CReate a FILE named GREATEST which is
26 blocks long.

-44-

on * type in CR GREATEST 26

6. We must TYpe the FILE. Since it is a program
written in BASIC that can be LOADed and SAVEd,
it is a TYpe 2 program. So that the computer
knows that we

on * type in : TY GREATEST 2

7. The program is in the computer, we have CReated
and TYped the FILE, everything is now READY to
SAVE the program GREATEST. We must go back to
the BASIC mode by:

on * type in : JP 2A04

8. Let's now SAVE the program GREATEST to the
mini-disk. We do that by

on READY type in SAVE GREATEST

9. It's done. You now have your program named
GREATEST SAVEd on a mini-disk. To check it,
tell the computer to LOAD it into the computer.-

on READY type in : LOAD GREATEST

If READY pops up as the last item on the
monitor all went well and you did in fact
SAVE your program. 'If you g.et an ERROR,
nothing is lost, the original program is
still in the computer. Just start over wi til
step number 1, but this time change the
name of your program to GREAT. This wil:
preclude the necessity of CELETEi~g FILEs
at this time.

And that's all there is to that

11
H OW TOP U T DO SON A MIN I - DIS K

There are certin programs which are more important than others.
Some programs are not worth the effort to SAVE and others will
literally shut you down if the mini-disk they are stored on is lost or
damaged.

One such program of the latter type is your Disk Operating System
(DOS). If you lose or damage this program you are out two ways.
Number one, you can't do anything with your computer other than use it
as a "television typewriter". Without some means of getting BASIC into
the memory of the computer Y,QU can't prog,ram or RUN in-BASIC.
Without some means to tel~ the computer ~en and how to use the
disk-reader you can't LOAD, READ, WRITE, SAVE, LIst, or much of
anything else.

The second way you are out is the cost of another mini-
disk with the Disk Operating System (DOS) on it. I can assure you
that the cost of a blank mini-disk is much, much less expensive than
another pre-written DOS programmed mini-disk.

Since we are only human, and a known human trait is the
"expectability of screwing up", one can without hesitation be assured
that one will at sometime screw up one's DOS disk. So in the true
spirit of reality --- Prepare for the worst and expect it. So let's
prepare a second, third, or however many additional mini-disk with DOS
that your past life experiences comfortably dictate.

Here's how:

1. Place mini-disk with Disk Operating System - DOS
in the disk-reader.

on > type in : EX E9DD

Then press RETURN key to enter the command into
the computer - as you will after each "type in :"
When the * charatcter comes on the screen it
indicates that DOS has been LOADed into that part
of the computer's memory which oper8tes the
disk-reader. You are in the DOS mode.

-46-

2. Put your "new" mini-disk into the disk-reader.

I put quotation marks around " new " for two
reasons. First it doesn't have to be a brand
new disk, it can be a mini-disk that you have
already used, but no longer need to keep what
is SAVEd on it. We are going to INITIALIZE
the "new" mini-disk. This procedure will
format the recording area so that it will accept
information from the system. It will also
over-write (erase) anything that is on the
mini-disk.

The second reason for the quotation marks is to
to help keep up with which mini-disk is which.
Remember that the "new" mini-disk will be the
one that we a putting DOS on.

on * type in IN

If you do not INITALIZE a new mini-disk and you
try to record on it you will always get a
HARD DISK ERROR.

3. Now we must CReate a file named DOS ten blocks
long

on * type in : CR DOS 10

4. Now we must put DOS into the computer a
second time, but not as part of the operations
system program (as above). This time we
we will LOAD it as a "regular program". Since
it is just a "regular program" it will be
stored in that portion of the computer's memory
which can be LOADed and SAVEd by the appropriate
command.

We actually will have DOS in the memory of
the computer twice. Once in the operational
systems portion of the computers memory and
once in the "regular program" portion of memory.

To get DOS into the "regular" memory of the
computer we must :

on '* type in LF DOS 2AOO

-47-

Which means, LOAD a File named DOS into the
computers "regular" memory whose location
(ADDRESS) is 2AOO. Note that the LOAD command
in the DOS mode is different from the LOAD
command in the BASIC mode. Since both modes
have common commands the names have been changed
so as not to confuse the operator. Here are some
of the command names

DOS BASIC

LF LOAD
. LI LIST

DE DEL (delete)
GO LOAD
SF SAVE
RD READ
WR WRITE
JP 2A04 <---> BYE

5. We have now LOADed into the computer DOS in two
places, INITIALIZED the "new" mini-disk, CReated

a file for DOS on the "new" mini-disk, and all
that is left to do is SAVE DOS on the newly
CReated File. So we put the "new" mini-disk"
back in the disk-reader and :

on * type in: SF DOS 2AOO

After pressing the RETURN key to enter our
command, the disk-reader will come on, run for
a few seconds, turn itself off, and the character

* will apperar as the last item on our
monitor. This would indicate that all went well,

and that DOS is now on the "new" mini-disk.

6. To check to make sure that all went well

on * press at the same time

UPPER CASE key and REPETE key

7. You are back in the "start up" mode

-48-

on > type in : EX E9DD

If you get a * you just LOADed your copy
of the Disk Operating System - DOS.

You not only have now fixed a second DOS disk, you have protected
youself from the effects of an eventual dumb mistake. That's all there
is to know about doing that ••••

12
HOW TOP U T BAS I CON A MIN I - DIS K

Equally important as knowing how to put DOS on a mini-disk is
how to put BASIC on a mini-disk, for all the same reasons. If you
were to lose or damage your only copy of BASIC you still couldn't RUN
a program other than Disk Operating System procedures. That by itself
is not much fun. So, let's find out how to transfer our BASIC
language program from one mini-disk to another. The methods are
essentially the same as for DOS except the "words" are different.

Here's how:

1. We must first get the computer in the DOS mode.

From start-up on > type in: EX E900

From BASIC on READY type in: BYE

Press RETURN key to enter command into the
computer. The * character should appear
as the last item displayed on the monitor.

2. If your mini-disk is a brand new disk and has
never been INITIALIZED before, or it's a old,
used mini-disk that you want to-completely
erase then :.

on * type in : IN

Press RETURN key to execute the INITIALIZE
command.

If you are adding BASIC to a previously used
mini-disk which already has DOS or some other
programs on it that you want to keep

DO NOT INITIALIZE

-50-

3. Put the "new" previously INITIALIZED mini-disk
into the disk-reader. We will first CR~ate a
file named BASIC, forty-five Blocks long, which
is the size of our BASIC Language Program.

on * type in : CR BASIC 45

(With a single space between each "word")

4. Since our BASIC program is a GO TYpe program.
That is, that it is LOADed by the command --­
GO BASIC, we must tell the computer this
information. We do that by TYPEing the program.
There are four TYpes of programs that we will
be concerned with:

TYpe O. • A machine language program such as
our Disk Operating System program
that is LOADed by the EXecute .
command.

EX E900

TYpe 1. . An operations systems program such
as our BASIC Language Program,
which is LOADed by the GO command.

GO BASIC

TYpe 2. • A BASlC program such as those
that we have written which are
LOADed by the LOAD command.

LOAD INVACCTN

TYpe 3. . A data file which can only be
accessed by a READ or WRITE
statement after it is OPENed,
and can not be LOADed or SAVEd.

10 OPEN no, INVACCTN
20 READ no, A,B,c

-51-

To tell the computer what TYpe program we have
CReated a file for we do the following:

on * type in TY BASIC 1 2AOO

The "2AOO" is the location (ADDRESS) to which
this TYpe one File is to be stored in the
computers memory.

5. Now we must LOAD the BASIC program File into
the of the computer. We do that by putting a
mini-disk with BASIC already on it the
"old" disk - into the disk-reader and :

on * type in : LF BASIC 2AOO

Which tells the computer to LOAD from the
mini-disk a File named BASIC into the
memory of the computer's memory at ADDRESS
"2AOO"

If after we press the RETURN key, an * is
the last item on the monitor, we know that the
program is in the computer.

6. We now put the "new" mini-disk into the disk­
reader, since that's where the File is that
we want to SAVE the BASIC program to. Then we
do it by:

on * type in : SF BASIC 2AOO

Which tells the computer to "record" on the
mini-disk whatever is in its memory at
location (ADDRESS) 2AOO and identify that
File by the name BASIC.

7. You now have BASIC on a second mini-disk. If
you don't believe it :

on * type in GO BASIC

If you don't get back -- READY -- you messed up.
Go back to square one.

13
HOW T 0 DEL E TEA PRO G RAM 0 R A F I L E

It seems that no sooner than you spend untold hours creating a
program or a file, you then come up wi th "a better mouse trap". You
no longer have any use for the old one, but you decide to keep it for
sentimental value. After all it was the "first program of that type
that I wrote" Soon you have more "old mouse trap" programs SAVEd on
"mini-disks" than you have "active" programs.

Then the time comes when you are right in the middle of " a
better mouse tra p ", it's the greatest one you've ever done. You look
for a "mini-disk" with enough open blocks (unused space) on it to SAVE
this wonderful new program, only to discover that they are all full.
You don't he~itate for a minute to grab one of those "old sentimental
" ones and erase it. After the first one it becomes easy to reclaim
all the rest.

The same thing holds true when you are writing a program. After
spending hours putting LINEs in, you figure a better way to do
something and you spend micro-seconds getting rid of those same
LINEs.

Now let's consider deletion or erasing methods. They are best
explained by example. I found that it was harder trying to
demonstrate how to get rid of something you didn't have, than to
create an example and then get rid of it.

Our first example is that we have a program in the computer which is
50 LINEs and we want to get rid of the whole thing. What we do is
SCRatch the entire program. Here's how:

1. on prompt or READY type in SCR
2. press RETURN key

You have now wiped out all 50 LINEs of a program that was in the
computer. If you were to do a LIST, all you would get back is a
READY.

Example II 2

We have a program in the computer which has 50 LINEs, numbered from 10
to 500 in a 10X series - i.e. 10,20,30,--- 480,490,500 We want to get
rid (delete) of LINE NUMBERs 50,290,and 470.

~53-

All we have to do is:

1. on prompt or READY type in 50
2. press RETURN key
3. on prompt type in 290
4. press RETURN key
5. on prompt type in 470
6. press RETURN key

These lines are now deleted. If we did a LIST 0 f the program,
you would see that they are no longer part of the program. Because it
is so easy to delet a LINE, one must take extra caution not to
accidentally type in a random number while the computer is in BASIC
mode with a program LOADed. If it should happen, do not compound the
mistake by pressing the RETURN key. Correct the error by a
"shift-delete" or press the "@" key.

Another common mistake is while you are busy thinking about the
content of a LINE, you type in the wrong LINE NUMBER. If you typed in
360 and should have typed in 560 and then caught you mistake and
pressed the RETURN key to" start over", everything would seem O. K. ,
but it visn't. You just DELETEd LINE NUMBER 360. Remember, the
computer does what you tell it to do --- even when you don't mean it.
The proper way to have handled the error would have been a
"shift-delete" or to press the " @ " key.

Using the same program as in Example # 2, let's now DELETE a
I arger portion of the program. 1:d s time we wan t to DELETE everything
from LINE NUMBER 470 to LINE NUMBER 780. We could do it " by the
numbers" as we did in the second example. That would take a long
time and would be boring, but it would work. Or we could do it this
way :

1. on prompt or READY type in DEL 470,780
2. press RETURN key

The task is now complete.

If you want to verify it type in : LIST 460,790

you get :
460 IF K = COS(T) THEN GOSUB
790 INPUT "SUM OF ALL FIELDS ",G7

(or whatever the content of these LINEs may have been)

If you wanted to DELETE everything in our Example # 2 program
from LINE NUMBER 840 to the end of the program you would then :

-54-

1. on prompt or READY type in DEL 720
2. press RETURN key

Consider it done

To confirm it:

on READY type in : LIST

The entire program will scroll by from top to the last LINE, which
will be LINE 710.

NOTE: You should be aware that on the system that I
am using that due to a flaw in the BASIC, when
you want to use those LINE NUMBERS that you
eairler DELETEd --- all will seem rosy, but
it's not.

What happens when you start filling the
vacuum that you created by DELETing that big
block of LINEs, and you keep adding one LINE
after another, and there's no indication that
anything has gone awry, is that all these
efforts are in vain. Even though everything
you type appears on the monitor, its continuing
to be DELETED by the computer from the program.
Consequentally you are not doing anything except
practicing typing.

Knowing this still makes the DELETE function
a usuable programming tool. Not knowing this
renders the thing less than useless. You can
correct this flaw by doing the following
each time you DELETE a large block of LINEs:

1. After you have done the DEL 470,840
and pressed the RETURN key.
on READY type in : BYE

2. press RETURN key
3. on * type in JP 2A04
4. press RETURN key

and you are READY to add those LINEs

All we did was leave BASIC mode, which had the effect of wlplng
out any remaining "commands", by going to DOS mode. Then we JumPed
back in BASIC mode with a "clean slate".

You are now in a position to wipe out a LINE, a portion of a
program, or the entire program. We have gone far beyond just

-55-

"scratching the surface" with regard to the subject of DELETions, we
have ventured into realm of "SCRatching the whole thing".

Well, not exactly. If I had decided to write an entire chapter
on the subject of how to DELETE a FILE on a "mini-disk". It would
end up a short three line chapter and still cover the subject
completely, like this:

1. on *
2. press

type in : DE "NAME"
RETURN key

For NAME substitute the name of the file you wish to
DELETE.

And that covers the subject of program and file DELETions.

HOW T 0 DEL E TEA F I L E FRO MAD I S K

Let's say that you develop the good habit of saving every
significant program that you write. Even when you write another
program that does the same thing quicker and better you hang on to the
original. At some point in time you will find that many of your
earlier programs, though great at the time, are no longer worth
keeping. You find that all those mini-disks represent too large of an
investment to sit around with no expectation of being used again.
It's time to clean house.

If you have a mini-disk with several programs on it and you deem
that none are worth keeping, and you want to erase the entire
mini-disk, here's how:

1. Put the computer in DOS mode.

a. From start up type in EX E900

b. From BASIC on READY type in BYE

2. Put the mini-disk to be cleared in the
disk-reader

3. When you INITIALIZE a mini-disk the computer
over-writes everything that is on the mini-disk
as it formats it to accept data from the computer
This has the same effect as "erasing" the
mini-disk.

Here's how

on * type in : IN

Note that when you INITIALIZE a mini-disk
and you get to the DOS mode from BASIC mode
(BYE), you can not JumP (JP 2A04) back to
BASIC mode. Both BASIC and any program
that you have in the computer's "regular"
memory (programs that you write or LOAD)

-58-

are erased as well., To get back to BASIC
you must GO BASIC.

Now let's suppose that you don't want to "clean" the entire
mini-disk, but only remove one FILE. The name of the FILE that we
want to DElete is GONE •

Here's how:

A. Put the computer in the DOS mode as above.

B. Place the mini-disk with the FILE named GONE
in the disk-reader.

C. on * type in DE GONE

When the * reappears on the monitor as the
last item - GONE is gone, it has been DEleted.

D. To check it, you can LIst the FILEs to get the
names of all the FILEs on the mini-disk by

on * type in : LI

You LIsting should not contain the FILE named
GONE .

So that you are aware of what really happens when you DElete a
FILE, consider how the FILE Directory is set up.
The first four blocks of a mini-disk is reserved for the FILE
Directory. When you issue a command regarding a FILE name, the
computer tries to match the name you ask for with the names in the
FILE Directory. If it is successful, the computer then reads the Disk
Address of that FILE, which is recorded as part of the FILE Directory,
and goes to that Disk Address and executes the command that you gave
it.

When you DElete a FILE the computer dosen't actually erase the
FILE, but only the Disk Address. The FILE is left intact. If you were
to CReate another FILE with the exact same Disk Address you would be
able to access that "DEleted" FILE.

This method is actually used to change the name of a FILE without
changing the file. Consider this example :

You do a LIst of a mini-disk and it tells you

-59-

GONE 186 23 2

There is a FILE with the name GONE at Disk Address 186
that is 23 blocks long and is a TYpe 2 program FILE (can be
LOADed and SAVEd).

If you want to change the name from GONE to HERE and
still maintain the FILE you do this:

a. on *
b. on *
c. on *

type in
type in
type in

DE GONE
CR HERE 23
TY HERE 2

You now have the same FILE with a "new" name.
LIsted it you would get

on * type in LI

you get:

HERE 186 23 2

Which is exactly what you wanted, an old FILE with a
new name, and the same Disk Address.

If you

Now what happens when you CReate a new FILE and it ends up with
the same Disk Address as a DEleted FILE, but you really want a "new"
FILE and not the old recorded information still on the mini-disk from
the DEleted FILE, usually nothing.

On occasion, if you WRITE to the "new" FILE in the exact same
format as you did the "old" FILE and you READ from the "new" FILE in
the same format as you did from the "old" FILE , you will find that
you are using "old" FILE data if it's a TYpe 3 FILE. Or you will end
up LOADing an "old" program if you did not SAVE the new program to the
"new" FILE.

To prevent this from happening with a TYpe 3 data FILE, all you
have to do is be sure that the "new" data starts WRITEing at the start
of the "new" FILE and not at the end of previous data for the "old"
DEleted FILE. This is done with the TYPE statements (as opposed to
TYpe) used in conjuction with the READ statement in your program.

This presents no real problem in using TYpe 3 FILEs if you are
aware of how the FILE Directory and the FILEs are actually used by the
computer.

-60-

If you DElete several FILEs from a mini-disk and leave several
other scattered in between those DEleted, rather than lose this
available "space" or hope to have a program of the proper length (no.
of blocks) to fit in , you can COmpress all the remaining FILEs to the
front of the mini-disk. This will leave all of the available "space"
at the end of existing FILEs.

To do this you

1. The computer must be in the DOS mode.

a. from start up on > type in
b. from BASIC on * type in

EX EgOO
BYE

2. Place mini-disk to be COmpressed into the disk­
reader.

3. on * type in CO

When you press the RETURN key to enter your
command into the computer, you will note that
the disk-reader will come on and run longer than
usual, with lots of "clicks".

What it is doing is ReaDing each program into
the computer's holding area memory (buffer)
until it locates or clears sufficient "space"
to WRite it back on the mini-disk at the "front"
of the disk. It will do this with each program
on the mini-disk and the automatically change
the Disk Address to match the programs new
location.

That's all there is to that •...

15

HOW T 0 COP Y A BAS I CPR 0 G RAM
FRO M 0 N E MIN I - 0 I S K T 0 A NOT HER

Nobody should ever keep only one copy of an important or highly
used BASIC program. There should always be one to use and one or more
to store. The out of pocket cost for the extra mini-disk is far less
than the cost in time and effort to rewrite a program you've already
done. Besides that, it's far less interesting rewriting a old program
than it is to create a new one.

Then there's
if you buy it.}
program or a game
expensive to risk
dollar or so.

the cost of BASIC software. (It's called software
A pre-programmed mini-disk with some utility type
program that is written in BASIC is generally to
loss or damage, when it can be duplicated for just a

The average cost of a mini-disk is about five dollars. Each
mini-disk will hold 89,600 characters (bytes). That works out to
about 5.6 cents per 1000 bytes (1 K), and that's cheap.

Each mini-disk consist of 35 tracks, each track contains blocks,
and each block contains 256 bytes. Not all of these blocks can be
used for recording programs. The first four blocks are reserved for
the directory of the contents of the remaining 346 blocks. When you
LIst a mini-disk it is from these first four blocks that that
information is maintained. Here is a typical LIsting :

DOS 4 10 0
BASIC 14 45 1 2AOO
FILE*L 59 5 2
NUMBERS 64 10 2
6/10/78 74 5 2
MT-DATA 79 100 3
$$$$$$$ 179 16 2

The first eight spaces are for the FILE name, next is the
starting Disk Address, then the size of the FILE - number of blocks,
then the FILE TYpe. The BASIC Language program FILE has an additional
computer memory Address which tells the computer exactly where to put
it - in the computer's memory.

If you will note that the starting Disk Address for each
succeding FILE is the sum of the previous FILE plus the total number

-62-

of blocks used by that FILE. Thus the FILE named NUMBERS, in our
example above, has a starting Disk Address of 64, and it is 10 blocks
long, so the' next FILE's starting Disk Address will be 74, and it
is.

When the computer is told to LOAD a FILE it does not search the
entire mini-disk for that FILE , but reads just the FILE directory -
the first four blocks on the mini-disk. If it finds the FILE name
that it is searching for, it then reads the Disk Address and the size
- number of blocks, which tells it where to go on the mini-disk to
LOAD the FILE. That is, after it checks the last item on the line and
makes sure that the type of FILE you are sending it after is the right
TYpe.

Now, knowing all of this information should make it easy to LOAD
a program from one mini-disk and record it on another. The fact of
the matter is that even without knowing all of this it's relatively
easy to do. Here's how:

1. Put the computer in the Disk Operating System
- DOS mode.

From start up put a mini-disk with DOS
in the disk-reader and :

on > type in EX E900

From BASIC mode

on READY type in BYE

2. If you are using a brand new mini-disk to put
your program on or you are using an used
mini-disk that you want to.totally erase,
you must first INITIALIZE the mini-disk.

To do this you

on * type in IN

If you are going to add this program to a
mini-disk that already has been INITIALIZED
do not do it again -- skip this step.

3. Put the mini-disk with the program on it that
you want to record on the "new" mini-disk, in
the disk-reader. We are going to LIst it to

-63-

get the exact "spelling" of the FILE name that
we want to record and also to get the size -
number of blocks it contains, and the TYpe

To do this :

on * type in : LI

We must note the following items for later use.
We will use the above sample LIsting for our
example.

The FILE name
The FILE size
The FILE TYpe

NUMBERS
10 blocks
2

4. Put the "new" mini-disk back into the disk-reader
We must CReate a FILE with the name NUMBERS,
10 blocks long.

To do that we :

on * type in : CR NUMBERS 10

5. Now we must tell the computer what TYpe of FILE
NUMBERS is so that it will know how to access it.

We do that by

on * type in TY NUMBERS 2

NUMBERS is now TYped as a program written in
BASIC which can be LOADed and SAVED.

6. Take the "new" mini-disk out of the disk-reader
and put in the mini-disk with the program on it
that you want to record. We must now go to the
BASIC mode.

Do that by :

on * type in GO BASIC

7. We now will LOAD the program named NUMBERS
into the computer by .•

on READY type in LOAD NUMBERS

-64-

8. Take out that mini-disk and put in the "new"
mini-disk that we want to SAVE NUMBERS on.

To do that :

on READY type in : SAVE NUMBERS

You now have two copies of NUMBERS

9. If you do not have "complete faith" and want
to see.

Do the following

a. on READY type in : SCR

This will SCRatch the program in memory.

b. on READY type in : LIST

This will LIST any program in memory
Since we just SCRatched it, this shows
you that there is nothing there.

c. on READY type in : LOAD NUMBERS

This will put NUMBERS into memory from
your "new" mini-disk.

d. on READY type in : LIST

The computer will scroll by the program
that you copied.

And that's all there is to that •••••

16

THE L a a P

The LOOP is exactly what it sounds like it is, a course that one
follows that leads him in circles. Actually it's not us that will go
in circles, it's the computer. The" simplest" LOOP that I can think
of is:

10 GOTO 20
20 GOTO 10

As you may have noticed, I put "simplest" in qutotation marks, as the
word has several definitions.

Program LOOPS generally instruct the computer to do the same
thing over and over a specified number of times. They are best
explained by example.

Consider this program:

If we RUN we get:

10 FOR K = 1 TO 3
20 PRINT K
30 NEXT K

1
2
3

This is called a FOR LOOP. LINE 10 tells the computer to execute
the program three times. Each time it executes the program it is to
assign a new value to the variable K. The specified values for K are
1,2, and 3. The computer will automatically increase the value of the
variable by increments of 1, between the limits set in the FOR
statement, and then execute the program with the new value.

Another type of LOOP which will do the same thing, only
different, is the GOTO LOOP.

Consider this:

-66-

10 R = R + 1
20 IF R = 4 THEN END
30 PRINT R
40 GOTO 10

The computer can be placed in a LOOP by many different
programming techniques. Usually these different methods are the
choice of the programmer rather than being the result of a specific
type LOOP for a specific type technique. The most discussed and the
most used LOOP is the FOR LOOP.

Consider this program

10 FOR T = 1 TO 3
20 X = 10
30 PRINT X + Y
40 y = y + X
50 NEXT T

In this FOR LOOP the values of T are not actually involved in the
essence of the program, but the LOOP is just a method to make the
program cycle three times to change the value of the algebraic
expression -- X + Y. If we were to change LINE 10 to read:

10 FOR T 1 TO J

Where the value of J is determined by an INPUT statement, information
to be typed in, or as a result of a calulation made by the computer in
some other part of the program, then the LOOP will cycle through the
algebraic expression J times.

The computer will automatically increase the value of the
variable in a FOR statement by 1 unless you tell it to do otherwise.
If you want the computer to increase the value of the variable in a
FOR statement by increments of.5 rather than by 1, then you must
tell the computer to STEP the increases by .5 •

This is how:

If you RUN you get:

10 FOR X
20 PRINT X,
30 NEXT X

1 TO 3 STEP.5

1 l.~ 2 2.5 3

-67-

You can STEP a FOR statement by any size increment that falls
within the bounds of the statement. We could have STEPed the above
LINE 10 by .00063, 1.87629, or 2.99. We could not have STEPed it by a
minus number, a zero, or a number greater than three.

The computer will not function with a FOR statement which goes
from a higher number to a lower one.

Such as:

10 FOR X 3 TO 1

However, it will work if the "negative" FOR statement is STEPed. Why
this happens is beyond the scope of this book. It is also beyond the
scope of its author.

But:

If we RUN we get:

10
20

. 30

FOR X = 3 TO 1
PRINT X
NEXT X

STEP -.5

3 2.5 2 1.5 1 .5

A program can have as many FOR LOOPS as the programmer desires.
However, if they are superimposed upon each other, rather than being
seperate and complete LOOPS isolated in different ~arts of the
program, they must be placed in the program ina specified manner.

Consider this program:

10
20
30
40
50
60
70
80
90

100

If we RUN we get:

FOR X
FOR Y
FOR Z
FOR W
N = X +
PRINT N
NEXT W
NEXT Z
NEXT Y
NEXT X

1 TO 7
4 TO 7
8 TO 11
11 TO 14

Y + Z + W

-68-

24 25 26 27 25 26 27 28 ••••• 35 36 37 38 36 37 38 39

Note that the FOR LOOPS are "fed" from the inner most LOOP to the
outer most LOOP. You must always be sure that you follow this method
when you put in your NEXT statements. Any time you have a FOR
statement, you must also have a NEXT statement. If you have six FOR
statements in a program, you must also have six NEXT statements in
that program.

This is essentially all that you need to know about LOOPs to get
started using them ••••••

17

THE SUB R 0 UTI N E

This is not a chorus line of underwater ships, but a method of
telling the computer to do somthing numerous times without having to
write out the instructions numerous times. Being able to use the
GOSUB Statement keeps the programmer from being bored by not having to
write and then rewrite,and then rewrite, and then rewrite •••• a
portion of a program that is repeatedly used. All he or she has to do
is write that portion of the program once, and then anytime it is
needed, you just tell the computer to go to it.

Consider the following program which is used to calculate the
discount of different types of inventory items and different
quantities. This program demonstrates the use of the GOSUBstatement
and the RETURN statement.

10 INPUT "HOW MANY OF CLASS #1 ITEMS : " ,A
20 GOSUB 180
30 !"THE DISCOUNT IS " ,B*lOO, " %"
40
50 INPUT "HOW MANY OF CLASS #2 ITEMS " ,A
60 GOSUB 180
70 ! "THE DISCOUNT IS " ,B*93, " %"
80
90 INPUT "HOW MANY OF CLASS #3 ITEMS " ,A

100 GOSUB 180
110 !"THE DISCOUNT IS i, ,B*75," %"
120
130 INPUT "HOW MANY OF CLASS #4 ITEMS " ,A
140 GOSUB 180
150 !"THE DISCOUNT IS " ,B*25," %"
160
170 GO TO 10
180 IF A > 10 AND A < 100 THEN B = .07
190 IF A > 99 AND A <- 500 THEN B = .09
200 IF A > 499 AND A < 10~0 THEN B = .12
210 IF A > 1000 THEN B = .15
220 RETURN

Now let's consider what is happening. First the computer ask
you, "HOW MANY OF CLASS #1 ITEMS"? You type in a response. It then

. assigns that value to the variable A. Then the computer jumps to a

-70-

subroutine starting at LINE 180. This is initiated by the GOSUB
statement:

20 GOSUB 180

The computer then evaluates the value of A, quantity of CLASS #1
items, through LINE 180 to LINE 210. It then assigns a value to the
variable B, based on its evaluation of variable A. (Note that the
greater the number of items, the greater the discount factor.)

After the computer determines the "discount factor" it sends this
information back up to the regular program. The interupted regular
program picks up at the next LINE after the GOSUB statement and
continues to execute the rest of the program in a normal manner. To
tell the computer to do all of this, i.e .• to RETURN to the regular
program, one LINE past where it left, your LINE statement would be:

220 RETURN

At this point the computer determines the actual discount by
multiplying the discount factor by a "class factor". The computer is
then instructed to PRINT (I) the results of its efforts and go back
for more.

If we RUN we get:

HOW MANY OF CLASS #1 ITEMS we type
THE DISCOUNT IS 9 %

HOW MANY OF CLASS #2 ITEMS we type
THE DISCOUNT IS 6.51 %

HOW MANY OF CLASS #3 ITEMS we type
THE DISCOUNT IS 11.25 %

HOW MANY OF CLASS #4 ITEMS we type
THE DISCOUNT IS 3 %

Now let's track what happened:

1. You assign a value to A = 375

2. The computer evaluates A in the
subroutine and assigns a value to

in

in

in

in

B = .09. Since 375 is greater than

375

20

1200

832

-71-

100 and less than 500.

3. The RETURN statement (LINE 220) send
the computer back to where it came
from - the next LINE after the
GOSUB statement (LINE 30).

4. The computer then determines the
discount:

B * 100
.09 X 100 9

and PRINTs the discount.

5. Then as expected the computer moves
on to the next LINE in the program
(LINE 40).

The GOSUB statement is no more than a fancy GOTO statement with a
"leash" to bring it back after it done its business, a RETURN
function. The entire activity of the GOSUB statement could be
replaced with two or more GOTO statements. One to send the execution
of the program to another LINE and one to send it back. The main
advantage is that you don't have to keep up with RETURN LINE NUMBERS,
the computer does it for you~

If you understand the above program, then you understand the
GOSUB statement. If you don't, go back and study it ..••••

18

THE "0 N" S TAT E MEN T W HAT I TIS
AND HOW T 0 USE I T

Unlike most of the other topics thus far discussed, the" ON"
STATEMENT is not very complicated nor does it need very much
explanation. This is not an indication of its lack of importance but
of its simplicity. Although the uses of the ON statement are varied,
no matter where it is used, it always does the same thing --­
transfers control of the program to another LINE depending on the
value of a specified NUMERIC variable. That's "computer people" talk
for a "multiple choice" GOTO statement.

A typical ON statement in a program would look like this :

40 ON C GOTO 70,110,270

What this tells the computer is

IF C
IF C
IF C

1 THEN GO TO LINE 70
2 THEN GO TO LINE 110
3 THEN GO TO LINE 270

The value of C can be "typed in" as a response to an INPUT
statement, can be the result of a mathematical expression, or can
simply be assigned by a LET statement, i.e •• 30 LET C = 5. A useless
program which illustrates how the ON statement works is this :

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

20 INPUT "TYPE A NUMBER FROM 1 TO 10
30 ON H GOTO 1,2,3,4,5,6,7,8,9,40
40 END

" H

-73-

If we RUN 20 we get:

TYPE A NUMBER FROM 1 TO 10 if we type in 6
6
7
8
9
TYPE A NUMBER FROM 1 TO 10 if we type in 8
8
9
TYPE A NUMBER FROM 1 TO 10 if we type in 10
READY

Wha't is happening is that the number we type in is evaluated by
the ON statement, and the computer is being sent to that LINE to
execute the program. The computer goes to the LINE number equal to
the INPUT value of H, and continues to execute the rest of the program
from that point on. When you type in the number 8 for the INPUT
statement, it gives the value of 8 to the variable H. The computer
will then GO TO the eighth LINE number in your ON statement and the
program will proceed from that LINE.

I do not know the upper limit for the values of the variable in
an ON statement, but I do know that it can be up to 24. Branching to
more LINEs than this would require branching to another ON statement,
if the need should arise.

You may have noticed that I said RUN 20. This has nothing to do
with the ON statement, but just starts the execution of the program at
LINE 20, the INPUT statement, rather than at LINE 1.

Another program which illustrates a use of the ON statement is
the following

10
20
30
40
50
55
60
70
80
90
100
110
120
130
140
150

II WHEN YOU MIX TWO DIFFERENT PRIMARY COLORS
II YOU GET A THIRD COLOR • II

II SELECT THE COLORS TO BE MIXED BY NUMBER II

II

II

II

COLOR
COLOR
COLOR

#1
#2
#3

BLUE
YELLOW
RED "

..

NPUT "WHAT IS YOUR FIRST COLOR

II

INPUT "WHAT IS YOUR SECOND COLOR

ON C GOTO 130,200,270
ON 0 GOTO 140,160,180
! II BLUE + BLUE BLUE
GOTO 340

II C ,
II 0

..

II

-74-

160 ! .. BLUE + YELLOW GREEN ..
170 GO TO 340
180 ! .. BLUE + RED PURPLE ..
190 GOTO 340
200 ON D GOTO 210,230,250
210 ! .. YELLOW + BLUE GREEN ..
220 GO TO 340
230 ! .. YELLOW + YELLOW YELLOW ..
240 GOTO 340
250 ! .. YELLOW + RED ORANGE ..
260 GOTO 340
270 ON D GOTO 280,300,320
280 ! " RED + BLUE PURPLE "
290 GOTO 340
300 ! " RED + YELLOW ORANGE "
310 GOTO 340
320 ! " RED + RED RED "
330
340
350 ! " DO YOU WANT TO CONTINUE ????????? "
360 INPUT "TYPE IN : 1 for YES & 2 for NO
370 ON E GOTO 40,380
380 END

If we RUN we get

WHEN YOU MIX TWO DIFFERENT PRIMARY COLORS
YOU GET A THIRD COLOR •

SELECT THE COLORS TO BE MIXED BY NUMBER

COLOR #1 BLUE
COLOR #2 YELLOW
COLOR #3 RED

WHAT IS YOUR FIRST COLOR we type in
WHAT IS YOUR SECOND COLOR we tyoe in

BLUE + RED PURPLE

DO YOU WANT TO CONTINUE ?????????

TYPE IN 1 for YES & 2 for NO we type in

READY

"

1
3

E

2

Now, let's examine what took place. When we typed in 1 for the
first INPUT statement (first color ?), we assigned the value of 1 to
the variable C. When we typed in 3 for the second INPUT statement
(second color ?), we assigned the value of 3 to the variable D.

-75-

120 ON C GOTO 130,200,270

When the computer got to LINE 120 the ON statement sent the
continued execution of the program to LINE 130, since the value of C
was equal to 1. Had C been equal to 2, the computer would have been
sent to LINE 200: the second LINE number in the ON statement. C
equal to 3 would have sent it to LINE 270.

LINE 130 is another ON statement. For our second INPUT statement
we typed in 3. This assigned the value of 3 to the variable D.

130 ON D GOTO 140,160,180

When the computer executed LINE 130 with the INPUT value of 3 for
D, it progressed to LINE 180: the third LINE number in the ON
statement.

180 ! " BLUE + RED PURPLE ..

This PRINT statement yields

BLUE + RED PURPLE

Then we

190 GOTO 340

340

All this does is skip a space in our OUTPUT. This is really a
PRINT statement, and it actually does PRINT a line of "spaces".

350 ! " DO YOU WANT TO CONTINUE ????? ..

Another PRINT statement which PRINTs whatever you have enclosed in
quotation marks.

360 INPUT n TYPE IN 1 for YES & 2 for NO .. E

Which gives us

TYPE IN 1 for YES & 2 for NO we typed in 2

-76-

This INPUT statement assigned a value of 2 to the variable E. Then
the program progressed to the next LINE.

320 ON E GOTO 40,390

Depending on the value of E, this LINE would either send the
execution of the program back to the start -- LINE 40 if E were
equal to 1, or to the END -- LINE 390, if E is equal to 2. We chose
the latter.

And that's where we are with the ON statement -- the end •••.•

19

THE B U I L TIN TAB U L A TOR TAB

The next built in function, which is part of most BASIC language
programs, that I feel important enough to detail, is the TAB FUNCTION.
The dictionary defines "tabulate" as "To arrange in an orderly
manner". That is exactly what the TAB function will allow you to do
with your OUTPUT --- PRINTed or displayed information.

The TAB function allows you to PRINT out any data in almost any
format that you choose. The TAB function must always be used within a
PRINT statement, because it tells the computer where to PRINT the
material in that PRINT statement. A typical PRINT statement in a BASIC
program, used with the TAB function would appear like this:

130 ! TAB (30) ,S

This tells the computer to PRINT the value of the NUMERIC
vairable S thirty (30) spaces from the left margin, or to skip 29
spaces and then PRINT the value of S.

You might have the need of setting up columns of numbers, such
that you PRINT statement might look like this:

130 ! TAB(lO) ,A,TAB(20) ,B,TAB(30) ,C,TAB(40),D

This PRINT statement would start PRINTing A at "space" 10, Bat
"space" 20, C at "space" 30, and D at "space" 40.

As with any PRINT statement, "words" or STRINGs can also be used
with the TAB function. Consider this LINE:

130 TAB(lO),"WHAT COLOR IS IT ? ",TAB(30),K$,TAB(40) ,R$

If K$ RED and R$ BLUE , then this LINE would yield

WHAT COLOR IT IT? RED BLUE

-78-

Now let's consider a more common use of the TAB function,
addressing envelopes. Consider a portion of a mailing list program
which prepares the address label as below:

If:

70 ! N$,Nl$,A$,C$,Z,M$

Where: N$
Nl$
A$
C$

customer name
company name
street address
city & state
zip code

N$
Nl$
A$
C$
Z
M$

Z
M$ any message

Mrs. Anita Tempanny
Tootums Nickle Co.
1010 Dime Lane
Salada, Tenn.
10102
Attention Change Dept.

If these values were PRINTed by our LINE 70 above we would get:

Mrs.Anita TempannyTootums Nickle Co.lOlO Dime LaneSalada,
Tenn.lOl02Attention Change Dept

Which is no way to address a letter.

First we must spread out our PRINT statement so that each line of the
address is to itself.

If we RUN we get:

Mrs. Anita Tempanny
Tootums Nickle Co.
1010 Dime Lane
Salada, Tenn.
10102

Attention Change Dept.

70 N$
80 Nl$
90 A$

100 C$
110 Z
120
130
140 M$

-79-

Which is still no proper way to address a letter. So we change our
PRINT statements to:

70 TAB (20) , N$
80 TAB(23), Nl$
90 TAB(26) , A$
100 TAB(29), C$,TAB (48) ,Z

This will get you:

110
120
130 TAB(lO) , M$

Mrs. Anita Tempanny
Tootums Nickle Co.

1010 Dime Lane
Salada, Tenn.

Atention Change Dept.

Which is a properly addressed envelope.

And that's how that works ••••••••

10102

20

THE RAN D 0 M FUN C T ION - FUN AND GAM E S

The RANDOM FUNCTION --- RND(O) --- is very interesting and fun to
play with, but I have yet to find a use for it other than in writing
games or just watching it generate random numbers. But, there are no
rules which say you can't have fun playing with the computer. I
highly recommend writing game programs, it's much like reading comic
books to learn how to read, it's palatable and it works.

First, I must tell you that the RANDOM FUNCTION dosen't generate
random numbers. It generates pseudo-random numbers. The difference is
that a random number would be any number selected at random without
limits --- the RANDOM FUNCTION can not do this. The RANDOM function -
RND(O) - has limits, and within a given program it always produces the
same series of random numbers. This may limit its usefulness, but
certinly does not negate it.

Let's first examine a program which will give us four random
numbers.

If we RUN we get:

10 FOR R = 1 TO 4
20 PRINT RND(O) ,
30 NEXT R

.15625 .52392578 .21208191 .844149

If you were to RUN the same program again, you'd get the exact
same series of numbers. This phenomenon provides a method for
debugging programs, since you get the same series of numbers each
time. To the best of my knowledge, you can not generate truly random
numbers, but there are ways to get close.

As you can see in our above program, all the numbers generated b
the function RND(O) are decimal numbers. All the numbers are betweE
zero and one. That's all that the RANDOM function does - genera'
numbers between 0 and 1. Let's say that you want to generate fr
random numbers between 1 and 10. Since we know exactly what
RANDOM function does, all we have to do is change our progeam

If we RUN we get:

-81-

10 FOR R = 1 TO 4
20 PRINT lO*RND(O),
30 NEXT R

1.~625 5.2392578 2.1208191 8.44149

All we have done is to multiply the original random numbers by
ten. We now have random numbers between 1 and 10. Let's suppose that
we want only whole numbers between 1 and 10. Using essentially the
same program, we make the following change:

We RUN we get:

10 FOR R = 1 TO 4
20 ! INT(lO*RND(O»,
30 NEXT R

152 8

Right off, I'm sure that you noticed that I have slipped in a
function that has not been mentioned before -- the INTEGER function.
The entire activity of this function can be summed up in one sentence.
The INTEGER FUNCTION -- INT(K) -- rounds off to the next lowest whole
number any value of K. If the value of K = 7.878, the INT(K) = 7. If
the value of K = .8453243, the INT(K) = O. Thus, in our above program
all we have done is "round off" the random numbers, once they have
been generated and multiplied by ten.

20 INT(RND(O)*lO)

FIRST :
SECOND:
THIRD :

RND(O)
.15625*10
INT(1.5625)

.15625
1.5625

1

Now let's suppose that we want the computer to PRINT four
random nu~bers between 1 and 60. We would change our program to:

If we RUN we get:

10 FOR R = 1 TO 4
20 PRINT INT(60*RND(0)+1),
30 NEXT R

-&2-

12 48 26 51

This is what happened:

20 INT(60*RND(O)+1)

FIRST :
SECOND:
THIRD :
FOURTH:

RND(O)
60*.19287
11.5722 + 1
INT(12.5722)

.19287
11.5722
12.5722
12

That's how the computer got the first random number in the program
above.

Note that our range of random numbers from 1 to 60 was
established by multiplying the RANDOM function - RND(O) - by the
highest number in our desired range and then adding 1 to give us the
lowest number in our range.

20 INT(60*RND(0)+1)
60 to 1

This holds true for all ranges of random numbers as long as the
lowest number in the desired range is 1. It would not work if we
wanted to generate four random numbers between 300 and 800. If we
wrote our PRINT statement iike this:

20 INT(800*RND(O)+300)
800 to 300

We would generate random numbers between 300 and 1100, not 300
and 800. If you will examine the arithmetic involved you will quickly
see why. In order to get the desired results our PRINT statement
would have to be:

If we RUN we get~

20 INT(500*RND(0)+300)

378
709
721
566

-83-

That concludes most of what there is to know about the RANDOM
FUNCTION and how it works. There is one last "secret" which I
indicated above· that I would reveal, and that is how to make the
RANDOM function more random. Even though the computer "helps" us out
by generating the same series of "random" numbers each time it
executes a given program, when playing games it's not much of a
challenge if you know all of the answers beforehand. That is what
will happen after you have used the same program several times -- you
will end up knowing the series of "random" numbers that the computer
is going to generate. It's much more of a chall:ange to write a game
program and then be forced to play it without prior knowledge.

If you will look close at the RANDOM FUNCTION's format you will
notice a heretofore unmentioned zero enclosed by parentheses. This is
the key to an almost real RANDON number generator. The zero can be
replaced by a variable so that:

RND(O) becomes RND(J)

The variable J then becomes a "seed" which will start the RANDOM
generator at different "places". It is only used by the computer to
"start" the RANDOM generator and need not be gone back to in a given
program each time a RANDOM number is generated. However, if you use
the same value for the "seed" every time you RUN a given program, you
will end up back where you started; getting the same series of
"random" numbers. What you must do is to have the "seed", the value
for J, be the result of an INPUT statement. Such as :

10 INPUT "TYPE IN ANY NUMBER BETWEEN 0 AND 100
20 LET J = P/lOO
30 FOR D = 1 TO 4
40 INT(60*RND(J)+20}
50 NEXT 0
60 GOTO 10

" P

This program will generate random numbers between 20 and 80. If
each time the program comes to the INPUT statement you type in a
different number between 0 and 100, you will get a different series of
"random" numbers. If you type in the same number you will get the
same series of "random" numbers.

The value of the "seed" J can not be greater than the numbers
generated by the RANDOM function. It must be between 0 and 1. So if
our INPUT statement asks for a number between 0 and 100, we must
divide that INPUT by 100 to get a fractional value for the "seed"
variable J (J = P / 100). If any number greater than 99 were typed in,
the computer would indicate an OUT OF BOUNDS error. This is because
the RANDOM' function -- RND(O) -- can not equal or exceed 1.

the value for the "seed" does not have to come from an INPUT

-84-

statement, it can be the result of any number of devious or
complicated routes. The harder it is to purposely duplicate the
"seed", the truer will be the "random" number. The only thing that the
programmer must be sure of, is that once a value for the "seed" is
attained, that it be between 0 and 1.

I have now told you all I know about RND(O)

21

THE S I G N FUN C T ION

The SIGN FUNCTION - SGN(A) - when called upon ,looks at a numeric
expression generated by the program that it is used in and assigns
itself a numeric value of 1,0,-1, depending on whether the evaluated
numeric expression was positive, equal to zero, or negative;
respectively.

If K
If K
If K

58.941 the
o the
- .386 the

SGN(K)
SGN(K)
SGN(K)

1
o
-1

Where K is the numeric variable to be evaluated by the SIGN
function.

Although limited in its use, the SIGN function does provide a
needed "service". It of course, should never be confused with the
SINE function - SIN (G) - as it has nothing to do with that kind of
stuff.

Here is a potentially useful program which best illustrates the
use of the SIGN FUNCTION:

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

REM THIS IS A SIMPLE CHECKBOOK BALANCING PROGRAM
INPUT" STARTING BALANCE FROM BANK STATEMENT: ", A

INPUT" HAVE YOU MADE A DEPOSIT - YES or NO : ", A$
IF A$ "NO" THEN 130

INPUT " WHAT WAS THE AMOUNT OF THE DEPOSIT
F F + E
K = K + 1

INPUT " DID YOU MAKE ANOTHER DEPOSIT "
IF Al$ "YES" THEN 70

"

Al$

INPUT "WHAT IS THE AMOUNT OF THIS CHECK ", B
C C + 1
D = D + B

INPUT "HAVE YOU WRITTEN ANOTHER CHECK ??? "

E

Y$

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

-86-

IF Y$ "YES" THEN 140
G = A + F - D
!\!\! "**"
!

"YOU HAVE WRITTEN " C " CHECKS TOTAL " ,%$CIOF2,D , ,
"YOU HAVE MADE ",K," DEPOSITS TOTAL " ,%$CIOF2,F

H SGN(G)
IF H 1 THEN 320
IF H = -1 THEN 350
! " YOU ARE NOT o V E R D R AWN "
! " BUT THERE IS NO MONEY LEFT IN YOUR ACCOUNT "
GOTO 380
! " Y o U S T I L L H A V E M 0 N E '1 L EFT "
! " THERE IS ",%$CIOF2,G," IN YOUR ACCOUNT "
GO TO 380

"***** .y 0 U ARE 0 V E R D RAW N ***** "
!" YOU MUST DEPOSIT ",%$CIOF2,ABS(G)
! " TO COVER CHECKS ALREADY WRITTEN "
END

This program contains several notable programming techniques,
most of which have nothing to do with the SIGN function, but that you
should be aware of. First we will list the variables contained in the
program:

A
A$ and Y$

E
F
K
B
D
C
G
H

STARTING BANK BALANCE
YES or NO
AMOUNT DEPOSITED
TOTAL AMOUNT DEPOSITED
TOTAL NUMBER OF DEPOSITS
AMOUNT OF CHECK WRITTEN
TOTAL AMOUNT OF CHECKS WRITTEN
TOTAL OF NUMBER OF CHECKS WRITTEN
BALANCE OF BANK ACCOUNT
SGN(G)

By knowing what everything stands for, it is much easier to trace
the steps of the program and figure out what is happening. Anytime
that you are working with an unfamiliar BASIC program, the very first
thing to do is to list and identify all the variables, then refer to
this list as you track the program. This advice may not solve all
your problems in understanding a program, but it will certainly help.

One other piece of advice: if you come across a variable that
you can not identify, don't be alarmed. Some "computer people" quite
often throw in unneeded variables to confuse someone who is trying to
figure out their program. If you should encounter what appe~rs to be
a "UFV", unidentifiable fabricated variable, just take it out of the
program and see if the program will RUN without it. If its absence

-87-

is not noticed through a number of varied RUNs, you've probably
located an "UFV". If that's the case - discard it.

Now back to our program, I don't use "UFVs" so don't waste time
looking for them. Let's look at some of the specific programming
techniques in this program.

1. The YES/NO method for determining the direction of the program •

40 INPUT "HAVE YOU MADE A DEPOSIT" A$
50 IF A$ = "NO" THEN 130

If your answers here had been NO the computer
would have skipped the entire section relating
to deposits. If your answer is YES the program
then proceeds to the next LINE. This same method
is used again starting with LINE 180.

180 INPUT "HAVE YOU WRITTEN ANOTHER CHECK ?" Y$
190 IF Y$ = "YES" THEN 140

Here the program can either proceed to the next step
or go back for more information. If the answer is
YES, the program goes back to LINE 140 for the
required INPUT. If the answer is NO, then the
computer has all the necessary information to finish.

Some programmers prefer to use just the abbreviation
for YES and NO --- " Y " and " N" If you use
this method you must adjust your If statement
accordingly.

2. The "value accumulation" technique.

LINE 80 and LINE 160 both use this technique
to get a total of another variable. Only in the
world of computer can something be equal to itself
plus something else. Let's look at what's happening:

70 INPUT "WHAT IS THE AMOUNT OF THE DEPOSIT :", E
80 F = F + E

Every time the computer gets a new value for the
variable E it then goes to LINE 80 and that

-88-

value is then added to the previous value of the
variable F. If after LOADing our above program
into the computer and before telling the computer
to RUN, we typed in PRINT F; we would get O.
So:

START F F + E then F = 0

If we then responded to the INPUT statement by
typing in 10 for the value of E, then:

F = F + E then F 10

because: F = 0 + 10

Then if we had another INPUT for E of 5

F F + E then F 15

because: F 10 + 5

Then if we had another INPUT for E of 12:

F F + E then F 27

because: F 15 + 22

and so on, and so on ••••

3. "COUNT THE PASSES" technique

This is essentially the same thing as above,
except that instead of keeping a running total
of a second variable as we did in· that example,
we are just counting the number of times that
the program passed by a given LINE. If we know
the reason for passing by "that" LINE, then
we know how many "causes" there was which
required that passage. In other words, if you
knew that a certin man only passed by your
office door to go to the water cooler, and that
he passed by your door 7 times in the course
of a day -- you know that he went to the water

-89-

cooler seven times that day.

This same logic is applied in LINE 90 and
LINE 150 •

90 K K + 1
150 C = C + 1

Each time the computer passes either one of these
LINEs the value of there respective variable
will increase by 1. Variable K counts the
number of deposits that are made. Each time
a deposit is INPUT, the program passes through
LINE 90. Each time the program passes through
LINE 90, K is increased by 1. If you know
how many times the computer passed through
LINE 90, you know how many deposits were made.

These are all of the major programming techniques used in the
above program, but there are some other items which might require some
explanation. Consider LINE 200:

200 G = A + F - D

G BALANCE OF CHECKING ACCOUNT

So, if you take your "starting balance", A,
and add the "total amount of deposits", F,
and subtract the "total amount of checks", D,
you will end up with your "balance", G.

LINEs 260, 270, and 280, are what this whole
chapter is all about. This is the SIGN
function in action. Depending on the value
of SGN(G) your friendly "banker" will
either give you "thumbs up" or "thumbs down".

260 LET H = SGN(G)
270 IF H 1 THEN 320
280 IF H = -1 THEN 350

What this tells the computer is that if the
balance of you bank account is "positive"
then GOTO LINE 320 and tell you. If the
balance of your account is "negative" then
GOTO LINE 350 and tell you. If you are

-90-

exactly even, no money in the bank and not
overdrawn, then proceed to LINE 290, and
tell you that.

The computer will evaluate the value of the
variable G, which in this case is the
"balance of the checking account" as determined
by LINE 200. Then depending on the SIGN of the
value of G (+, -, 0), a value is assigned
to the variable H (1, -1, 0). The value
of the variable H really directs the activity.

One last footnote to this discussion of LINE 260,
this LINE is called a LET statement. As you will
notice I have not included the "LET" in the
above program LINE 260, but I did include it
in the explanation of LINE 260. In a LET
statement the computer doesn't care if you put
the word LET in or leave it out.

LINE 360 has another heretofore unexplained
function in it. This is called the ABSOLUTE
FUNCTION. The ABSOLUTE function does only
one thing, it returns the "absolute value" of
the variable it is instructed to "function"
with. In this case G. In our program
G will have a negative value, as it is found
in LINE 360. That's how we got to LINE 360,
our account was overdrawn. Since the program
is telling you how much to deposit to cover
the overdrafts, it must be a "positive" or
"absolute" value. The "absolute value" of
a number is "that" number, with complete
di$regard to its sign.

LINEs 230,240,330,and 360 all have funny
little sets of symbols,letters, and numbers
enclosed by commas (%$CIOF2). These are not
typing errors, they are format instructions
to the computer.

That's more than you probably wanted to know about SGN(A)

22

THE C H A INC 0 M MAN 0

The CHAIN command when used in a LINE of a BASIC program tells
the computer to STOP the program that it has in memory, and LOAD
another program and start executing the "new" program. The procedures
for doing this are no different than if you were to do it yourself, by
putting the computer in the READY condition and then type in LOAD
"PROGRAM", and then type RUN. The only difference is, that by using
the CHAIN command you have switched from "manual" to "automatic".
It's always nicer for the computer to do the work than to have to do
it yourself.

Consider these two silly examples:

The first program we will name BIRDS

10 FOR V9 = 10 TO 20
20 !" BIRDS II

30 NEXT V9
40 CHAIN "BEES"

The second program we will name BEES

10 FOR Q5 = 1 TO 12
20 !" BEES ",
30 NEXT Q5
40 CHAIN "BIRDS"

Assuming that both of these programs are on the same mini-disk,
unless you have a multi-disk system, you need only LOAD either BIRDS
or BEES and tell the computer to RUN. The computer will keep the
BIRDS and BEES coming for as long as you would like. In fact, the
only way to STOP them would be to abort the cycle, by a CONTROL C or
turning the computer off. The CONTROL C is the prefered method.

-92-

If we RUN we get:

BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS
BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES
BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS
BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES

and so on, and so on, and so on ••••••.

What is happening is that the computer is LOADing "BIRDS" and
executing that program, then the CHAIN command in LINE 40 tells the
computer to LOAD "BEES" and execute that program, then the CHAIN
command in LINE 40 of that program tells the computer to LOAD "BIRDS"
and RUN that program. This cycle is set up by the CHAIN commands in
both programs and will continue until you STOP it.

There are obviouly some very practical uses for the CHAIN
command. If you had a business program which prepared your invoices,
this invoicing information could then automatically be passed on to
the "accounts receivable" program, and then this information could
automatically be passed on to the "general ledger" program, and from
that to the "income statement" program, and then to the "balance
sheet" program. All of this could automatically be done by CHAINing
the necessary programs in the sequence that you wanted.

If you have a need for the CHAIN command, the possibilities for
its use are further extended when used in corijuction with other
STATEMENTs such as the ON statement or the IF statement.

So that's what the CHAIN command does ••••.•••

23

THE D A T A S T A ~ E MEN T

Data does not have to be stored on a mini-disk or any other type
of "device" to be available for use by the computer. It can be part
of the program as DATA STATEMENTS. When DATA is supplied by this
method, it is given a LINE NUMBER, just as is any other STATEMENT in a
program. The DATA STATEMENTs can be placed anywhere in the program,
but are usually placed at the end of the program.

The same general rules which we have already discussed for using
READ statements with 'the mini-disk, apply to READ statements used with
~he DATA statement.

When the computer is told to READ a value for a variable, it goes
through the DATA STATEMENTs in numerical/sequential order and "picks
up" a value. This process of READing DATA is almost exactly like the
process when READing data from a mini-disk or other "device". Much
like the pointer on the disk reader starts at the "start of FILE" and
sequentially READs the data, advancing itself at the rate that data is
READ, until the pointer reaches the "end of file" or END MARK: so does
the computer's "DATA statement pointer".

When the computer is told to READ data from a DATA STATEMENT, it
READs the DATA starting with the DATA STATEMENT with the lowest LINE
NUMBER and sequentially READs all the DATA on that LINE, from left to
right. For example :

If we RUN we get :

10 READ F
15 IF F = 0 THEN 60
20 PRINT F,
30 GOTO 10
40 DATA 1,2,3
50 DATA 4,5,6,0,7,8
60 ! "END OF DATA"
70 END

1 2 3 4 5 6 END OF DATA

Each value for the NUMERIC VARIABLE F was READ by the computer,

-94-

and then that value was PRINTed. The computer started READing DATA
from LINE 40, the first value for F was 1 , the second was 2, and the
third time a value for F was READ it was 3. Then when there was no
more DATA on LINE 40, the computer proceeded to the next DATA
STATEMENT LINE 50. It then READ each value from that LINE.

Note that each value (data) is separated by a comma and that the
last item of DATA on each LINE is not followed by a comma.

If we were to change our READ statement to:

10 READ F,B

and leave everything else as it is in the above program,
we would get :

1 3 5 END OF FILE

The first time LINE 10 is excuted:

the second time:
the third time:
the fourth time:

F
F
F
F

1
3
5
o

B
B
B
B

If we were to change the READ statement to:

10 READ F,B,H

If we RUN we get:

1 4 END OF FILE

The first time LINE 10 is excuted:

the second time:
the third time:

F
F
F

1
4
o

B
B
B

2
5
7

2
4
6
7

H
H
H

3
6
8

Now let's consider our "FRUIT" program that was used to explain­
SEQUENTIAL FILEs. If you will remember, we wrote a program to prepare
a DATA FILE and also wrote a program to READ that DATA FILE and when
the product number was INPUT the computer would PRINT the name of the

-95-

fruit. For a program that short, and with no more DATA than was used,
it would have been more reasonable to use the DATA STATEMENT method.
This is how the program would be:

10
20
30
40
50
60
70
80
90

IOU
110
120
130
140
150
160

If we RUN we

WHAT

we get:

INPUT "WHAT IS THE PRODUCT NUMBER ",P
IF P = 0 THEN 160
READ N,F$
IF N = P THEN 70
IF N = 0 THEN 100
GOTO 30
PRINT P," ",F$
RESTORE
GOTO 10
! "THERE IS NO PRODUCT WITH NUMBER
RESTORE
GOTO 10

" P

DATA 100,APPLES,200,ORANGES,300,LEMONS,400
DATA BANANAS,500,PEACHES,600,GRAPES,700
DATA PLUMS,800,CHERRIES,0,ZERO
END

get:

IS THE PRODUCT NUMBER if we type in 600

600 GRAPES

WHAT IS THE PRODUCT NUMBER if we type in 200

we get: 200 ORANGES

WHAT IS THE PRODUCT NUMBER if we type in 0

we get: READY

Two things should be noted about the above program. The first is
that the READ statement must exactly match the TYPE of DATA available
to be READ. It must be an exact match --- number for number and word
for word •••

The second item worthy of further consideration is the RESTORE
STATEMENT found in LINEs 80 and 100. The RESTORE statement would be
comparable to the OPEN statement when using a data FILE. This
statement RESTORES the "pointer" to the start of the DATA (to the
"start of FILE").

Each time you enter a "product number" for the INPUT statement,

-96-

the program starts its search of DATA from the start of the DATA
statements. This is because we have told the computer to RESTORE all
DATA before it goes back to LINE 10, the INPUT statement. Had we not
included the RESTORE statement, then our search for all successive
INPUT "product numbers" would start in the middle or end of our DATA,
wherever the "pointer" happened to be after its last READ statement.
This would generate false OUTPUT {information that the computer PRINTs
on the monitor} similar to that experienced in our example "Account
Number/Active/Non-active", when discussing OPENing and CLOSing data
FILEs.

Also, if you were to review the section on SEQUENTIAL FILEs, you
will note that our programs on "AUTOPARTS" is very similar to the
above "FRUIT" program, and it too could easily be done with DATA
STATEMENTs. In fact, in my opinion, it's a lot easier and faster to
work with DATA STATEMENTS rather than DATA FILEs. This even becomes
more evident when one has to make a change to some of the already
generated DATA. With the DATA STATEMENT all you have to do to make a
change is EDIT the LINE. With a DATA FILE you must RANDOM ACCESS that
specific DATA you want to change and write a program to change it.

If the DATA STATEMENT method is quicker,faster, and easier to
use, why then would anybody hassle with DATA FILEs? On the surface
that is a very valid question, but if one considers how much "space"
is taken up just storing DATA, the answer becomes very obvious. All
of the cited examples contained only a limited number of DATA items.
If our "auto parts house" wanted to inventory 6000 items instead of
just the 10 we used in our example, we would run out of available
memory before we ever got started. The same would be true for any of
the other examples. These are all very small and short programs,
almost useless in a "real" situation.

However, that does not render the DATA STATEMENT method useless.
There is both a place and a need for this technique, and your time
spent in perfecting your use of it will be well rewarded. It has been
for me.

That's all there is to DATA STATEMENTS ••••••

24

THE N U MER I CAL FOR MAT

Anytime you have numerical OUTPUT, whether it is "hard copy"
(computer talk for printed material) or it is displayed on the
monitor, it is formatted. That is to say, that the numbers are
"printed" in a definite method of display. If you donlt format
numerical OUTPUT, the computer automatically will. If the computer
does it, all numerical OUTPUT is printed in the DEFAULT FORMAT.

There is nothing fancy about the DEFAULT format. It is very
functional and very simple. It is also the most commonly used format
for numbers. In the DEFAULT format all displayed numbers contain up
to eight digits. This maximum total of eight digits is used with
complete disregard as to where the decimal point is placed. If the
number to be displayed is greater than eight digits, only the first
eight numbers are displayed. Any remaining numbers are rounded off to
the eighth number or the number is printed in SCIENTIFIC NOTATION if
it is too large or too small to round off within the eight digit limit
and still maintain most of its value.

Here are some examples of numbers supplied to the computer and
then printed in the DEFAULT format :

INPUT

1000
350200509

123.12345678
.123456789

.0000000005
12345678919

DEFAULT FORMAT

1000
3.5020051E+08

123.12346
.12345679

5E-IO
1.2345679E+10

There are instances when the DEFAULT format will work, but a
different format would make the data easier to use.

;...98-

Consider this program :

10 INPUT .. NUMBER OF BARRELS OF OIL ON HAND .. J
20 INPUT .. CURRENT COST PER BARREL .. B
30 INPUT .. CURRENT SHIPPING COST PER BARREL .. A ,
40 .. VALUE OF OIL ON HAND .. J*B
50 ! .. TOTAL COST OF SHIPPING .. J*A
60 ! .. TOTAL NUMBER OF GALLONS ON HAND .. J*55
70 END

If we RUN we get:

NUMBER OF BARRELS OF OIL ON HAND we type in 1273
CURRENT COST PER BARREL we type in 18.395
CURRENT SHIPPING COST PER BARREL we type in 1.859

VALUE OF OIL ON HAND 23416.835
TOTAL COST OF SHIPPING 2366.507
TOTAL NUMBER OF GALLONS ON HAND 70015

All of the answers are correct, but it would be easier to
understand and more useful if it were better formatted. It would be
much better if it had dollar signs in the proper places, right
justified, commas, and decimal points for cents. All of this can be
accomplished by a few simple changes.

The necessary changes are all made in the PRINT statements.

Let's first discuss LINE 40:

40 ! .. VALUE OF OIL ON HAND .. J*B

If we change LINE 40 to:

40 ! .. VALUE OF OIL ON HAND " %$CIOF2, J*B

If RUN with the same INPUT as above, we would get:

VALUE OF OIL ON HAND $ 23,416.84

As opposed to the previous ourpUT:

VALUE OF OIL ON HAND : 23416.83S

-99-

Now let's look at what took place. The key to the new format is
the addition of "%$C10F2" to LINE 40. This addition gave us a dollar
sign, comma in the proper place, two places after the decimal rounded
off, right justified, and space for up to ten digits. The" %$C10F2 "
is called a FORMAT STRING

The % · · percent sign in a PRINT statement tells
the computer that format instructions
are forthcomming.

The $ · · dollar sign tells the computer to PRINT
a dollar sign in front of the data to
be PRINTed.

The C · · letter C in the FORMAT STRING tells the
computer to PRINT commas in the proper
places for the numeric values.

The 10 · · number ten in the FORMAT STRING tells the
computer that there are a total of 10
characters in the OUTPUT.

The F · · letter F in the FORMAT STRING tells the
computer to print the numbers in FLOATING
POINT format.

The 2 · · number two tells the computer how many
places beyond the decimal you want PRINTed
and how you want the numbers rounded off.

The STRING FORMAT must be enclosed in commas in the PRINT
statement. Any features that you do not want can be omitted from the
STRING FORMAT. If you did not want the comma to appear in the OUTPUT,
but you wanted everything else to remain the same, your STRING FORMAT
would be:

%$10F2

If you wanted the comma, but did not want the dollar sign:

%C10F2

If you did not want either the dollar sign or the comma:

%10F2

! -100-

If you wanted the dollar sign, the comma, and three places beyond the
decimal point:

%$CIOF3

If you wanted everything exactly as above but you need space for 15
total character instead of the formatted 10:

%$C15F3

If you only wanted the 15 character range to be right justified and
there would be no numbers beyond the decimal:

%15FO

As you can see, you can take or leave as much of the STRING
FORMAT as you want. You can expand its scope to handle very large
numbers with dollar signs and commas or diminish it to only right
justify whole numbers or decimals.

to
In our program above we would change the other PRINT statements

50
60

"TOTAL COST OF SHIPPING
"TOTAL NUMBER OF GALLONS ON HAND

",%$CIOF2,J*A
",%CIOFO,J*55

In this program we have included a STRING FORMAT in every PRINT
statement. Many programs may have hundreds of PRINT statements all
requiring the exact same STRING FORMAT. It would work all right if
you included the same STRING FORMAT in each and every PRINT statement,
but it is not necessary if you make one addition to the STRING FORMAT.
If we were to add the "number" sign (#) to the STRING FORMAT:

%$C#lOF2

All subsequent numbers would be formated by the PRINT statement which
contained the above STRING FORMAT. To recap:

%$CIOF2
%$C#lOF2

FORMATS A SINGLE PRINT STATEMENT
FORMATS ALL FOLLOWING PRINT STATEMENT

-101-

There may be some OUTPUT in a program that you don't want
formated like all the rest. Consider our program above, we would not
want our "number of gallons" to be formated like dollars and cents.
On a short program as above it was easier to add the STRING FORMAT to
each PRINT statement, but suppose you had a program that had one
hundred PRINT statements, half of which were formated one way, the
other half used the DEFAULT format. All you have to do is to "void"
the STRING FORMAT by the following:

65 ! %t

The %t symbols in combination may be added to any PRINT
statement or may be included on a LINE by themselves as in LINE 65 in
the above example, either way the effect is the same -- they cancel
all previous STRING FORMATs.

Now that we are back where we started, we have covered the subject

25

THE E X ITS TAT E MEN T

Experience has shown me that the EXIT statement is seldom
included when one is originally writing a program which contains a
"nested LOOP", but that it is always added as a result of a CONTROL
STACK ERROR. It is one ot those things that nobody ever thinks about
until they need it. The important thing is not to completely forget
it, thus spending needless hours trying to figure out why a program
won't RUN.

Consider the CONTROL STACK ERROR as a reminder. The absence of
an EXIT statement is not the only thing that will generate this ERROR,
but it's one ot the things that will.

The EXIT statement allows one to EXIT a "nested LOOP" (a LOOP
within another LOOP) before the computer has completed its cycle of
that LOOP, and then be able to re-enter that same LOOP as if it did
complete its cycle.

This, of course, can be best explained by example. So here it is

Consider this program:

If we RUN we get:

10 FOR X = 1 to 3
20 PRINT "X = ",X
30 NEXT X

X 1
X 2
X 3
READY

This is exactly as expected.
following:

If we change the program to the

If we RUN we get:

10 FOR X = 1 TO 3
20 !"X .. , X
25 IF X 2 THEN 40
30 NEXT X
35 END
40 ! .. I AM OUT ..
50 GOTO 30

X I
X 2

I AM OUT
X 3
READY

As you can see, we started the LOOP, then left it, then
re-entered it right where we left off. So far no ERROR and no EXIT
statement. If we change our program to:

If we RUN we get:

5 FOR Y = I to 3
10 FOR X = 1 TO 3
20 ! "X .. , X
25 IF X 2 THEN 40
30 NEXT X
35 NEXT Y
38 END
40 ! .. I AM OUT "
50 GOTO 35

X I
X 2

I AM OUT
CONTROL STACK ERROR IN LINE 35
READY

Well, we kept messing around until we finally got an ERROR. All
we tried to do was to RUN the same program three times that we had
already sucessfully RUN one time.

The other thing that we tried to do was to leave a "nested LOOP"
before it had finished its cycle, and then tried to re-enter it. When
you do this you will always get a CONTROL STACK ERROR.

Since the computer is very obediant, and does exactly as ·it is

-104-

told, our program has put it in the position of having to execute two
conflicting directives at the same time. One, it is told to finish
its X LOOP for X = 1 TO 3. The other, it is told to get the NEXT Y.
If it goes to the NEXT Y it can't finish its X LOOP. If it finishes
its X LOOP it can't go to the NEXT Y. So, the computer says to hell
with the whole thing --- giving you a CONTROL STACK ERROR. .

All that we have to do to make everybody happy is to tell the
computer that when necessary, it is alright if it EXITs the X LOOP and
does not finish its cycle. This allows the computer to finish its X
LOOP when it can, and leave it when it can't.

To do all of this, we add the EXIT command to LINE 25.

25 IF X 2 THEN EXIT 40

If we RUN we get:

X = I
X = 2

I AM OUT
X = 1
X =2

I AM OUT
X = I
X = 2

I AM OUT
READY

One practical use of this new gained knowledge would be to use it
in what I call the "unique data test" programming technique. This
programming technique allows one to take DATA from any source -- INPUT
statements, READ/DATA statements, or from READ/DATA files -- and test
each piece of data to see if it is the same as any previous data or is
it unique. If its unique it is assigned a unique variable, if it is
not, it is not.

Here is the program:

-105-

10 DIM A(4)
1---------------- 20 FOR T = 1 TO 4
1 30 READ A

data 1 uniquel------ 40 FOR D = 1 TO 4
feed 1 test 1 50 IFA = A(D) THEN EXIT 90
loop 1 loop 1------ 60 NEXT D

1 70 K = K + 1
1 80 A(K) = A
1---------------- 90 NEXT T

unique data 1----- 100 FOR C = 1 TO K
print 1 110 PRINT A(C)
loop 1----- 120 NEXT C

130 DATA 10,20,10,30

By changing the DIMENSION of A, this program can be expanded to
handle as many values of A as available memory will a11ow~ By
suitably changing the source of "feed" for the variable A, this
information could be supplied by a wide range of methods.

Now let's look at the program as written. The sequence of events
for this program are:

1. From the first cycle of the "feed loop"
the computer gets a value for A.

2. It then sends this data to the "test loop".
If the data is equal to any previous value
for the variable A, the computer goes back
to the "feed loop" and gets another value for
A.

3. If the value of A does not equal any previous
value, it is then assigned a unique variable
name -- A(K) = A. The computer is then sent
back to the "feed loop" to get another value
for A.

Because I feel that this is an important programming technique,
since comparison of data is a key computer function, and because I
spent two days trying to figure this whole thing out, and because I
think that a complete understanding of this program has other things
to offer, I shall fully explain how it works. Here it is as I see
it.

If you RUN you get:

-106-

The FIRST TIME the computer cycles the program:

LINE 20
LINE 30

LINE 40
LINE 50
LINE 60

unique
test
loop

SINCE

A

A
A

T
A

10

IS
10

1
10

NOT
< >

D
1
2
3
4

EQUAL
any

A(D)
A(l)
A (2)
A (3)
A (4)

TO A(D)
A(D)

a
0
0
0

The computer finishes its "unique test loop"
and goes on to the next LINE --- LINE 70

LINE 70

LINE 80

LINE 90 Go

The SECOND TIME

LINE 20
LINE 30

LINE 40
LINE 50
LINE 60

A

K = 0 + 1 K = 1

A(K) = A A(l) = 10

back to "feed loop" for another

the computer cycles the program

20

T = 2
A 20

D
1
2
3
4

A(D)
A(l) = 10
A(2) 0
A(3) = 0
A(4) = 0

A

-107-

A IS NOT EQUAL TO A(D)·
A = 20 < > and A(D)

The computer has completed the ··unique test loop·· and goes to the next
line of the program LINE 70

LINE 70

LINE 80

LINE 90

The THIRD TIME

LINE 20
LINE 30

LINE 40
LINE 50
LINE 60

A

K = 1 + 1 K = 2

A(K) = A A(2) = 20

Back to the IIfeed loopll for another

.************

the computer cycles the program

10

T
A

D
1
2
3
4

3
10

A(D)
A(l) 10
A (2) 20
A(3) 0
A(4) = 0

SINCE A IS EQUAL A(D)
A = any A(D)

10 = A(l) = 10

A

The computer is sent back to the "feed loop" for another A

-108-

The FOURTH TIME the computer cycles the program

LINE 20
LINE 30

LINE 40
LINE 50
LINE 60

A 30

SINCE
A

T
A

0
1
2
3
4

A IS
30

4
30

NOT
< >

A(D)
A(l)
A (2)
A (3)
A (4)

EQUAL
any

10
20

0
0

TO A(D)
A(D)

The computer finishes the "unique test loop" and goes to the next line
LINE 70 •

LINE 70

LINE 80

K = 2 + 1

A(K) =

K 2

A(3) 30

The "feed loop" is now complete (T = 4) so the computer progresses
to the next line -- LINE 100.

But first let's look at:

D A(D)
K = 3 1 A{l) == 10

2 A(2) = 20
3 A(3) = 30
4 A(4) =- 0

LINE 100 the
LINE 110 print FOR C = 1 TO 3 (K 3)

LINE 120 loop

Therefore

So we get 10 20 30

C
1
2
3

-109-

A(C)
A (1)
A (2)
A(3)

10
20
30

I am sure that this is the longest chapter in any published book
on the EXIT statement. For that reason, one should feel that it has
been adequately explained -- I hope so •••••••••

26

N U MER I CAL LIS TAN DAR RAY S

When you see DIM A(12) or A(4,7) or A(16), you see the "call
letters" or the DIMENSION for a NUMERICAL LIST or a NUMERICAL ARRAY.
When ever I see them I feel a great urge to reprimand the computer
industry for not making the format of these different from DIM A$(12)
or A$ (4,7) or"A$(16). If this book does nothing more for you than to
engrave in your memory that the two have little or nothing in common,
it will be worth the cost of the book in the savings in time and
frustration.

I caution you not to make the mistakes that I originally made by
assuming that because they look alike, they therefore share the same
qualities •. This would be a normal assumption, since many other
NUMERICAL and STRING qualities are shared. To compound the erroneous
assumptions, there is little or nothing to indicate otherwise. You
start getting hints that somthing is awry when you start using them.

Rather than going into detail of how each NUMERICAL and each
"like" STRING differ, I prefer to discuss how each works. This
chapter is devoted to the NUMERICAL, the STRING will be discussed
elsewhere.

Let's first discuss the NUMERICAL DIMENSION statement. It
appears in the BASIC program as:

DIM A(16) or DIM A(15) ,B(12) or DIM A(5,8)

The default DIMENSION of any NUMERICAL list is ten (10). Thus if
you have a list of ten or less numbers you do not have to include a
DIMENSION statement in your program. If you want to limit a list to a
definite number of entries then you must include a DIMENSION
statement.

Consider these examples:

10 FOR X = I TO 6
20 INPUT Y(X)
30 NEXT X
40 FOR X = 1 TO 6
50 PRINT Y(X) ,
60 NEXT X

-111-

If we RUN we get:

we
?
?
?
?
?
?
10 20
READY

If we typed PRINT Y(4)

and pressed the RETURN KEY

we would get: 40

type in:
10
20
30
40
50
60

30 40 50 60

Now if we took the very same program and added:

5 DIM Y(3)

If we RUN we would get an OUT OF BOUNDS error if we added more
than three values for Y. On the other hand if we changed LINE 5 to:

5 DIM Y(15)

The program would RUN exactly as it did in our first example.

What DIM Y(5) really means is that you have reserved in the
computer's memory room for five values of Y. If you do not use all
the reserved spaces, the memory is still reserved. For that reason
you should not excessively over-DIMENSION any variable. There will be
times that you will not know how many values a DIMENSIONed variable
will have. On those occasions I recommend a DIMENSION close to what
you would expect.

Since the computer will store the first five value~ of Y (DIM
Y(5)), we can not use Y as our variable name, because Y will actually
have 5 values. Also it's important to know exactly which value of Y
we are dealing with. There are several ways to do this, but the most
used is the subscript.
Such that :

-112-

The first value of Y Y (1)
The second value of Y Y (2)
The third value of Y Y (3)
The fourth value of Y Y(4)
The fifth value of Y Y (5)

The K th value of Y Y(K)

Where K in this example can equal 1 to 5 •

If you had two or more variables which had multiple values, you
would then have two or more variables in your DIMENSION statement.
For example, if you had four variables which would have multiple
values, and you needed to keep up with each value for each variable,
and you knew the expected number of values each variable would have,
your DIMENSION statement would be :

10 DIM A(l5} ,8(25) ,C(7) ,D(lOO)

Note that the DIM need only appear one time and that the
variables and their DIMENSION are seperated by commas. The only other
hard and fast rules that I can think of for the DIMENSION statement
are:

1. A variable must be DIMENSIONed before it is used.

2. A variable can only be DIMENSIONed one time in
a program, and can never be. reDIMENSIONed in the
body of the program.

The next item is the NUMERICAL ARRAY. It is like the NUMERICAL
LIST only different. The DIMENSION statement for a NUMERICAL ARRAY
which is to contain three rows of values and four columns of values
for a specified variable would be :

10 DIM A(3,4)

This means that A is expected to have a total of 12 values, and
that the computer is to store each of the values in three rows and
four columns.

Consider this:

-113-

COLUMN
1 2 3 4

+------+------+------+------+
ROW 1 I 10 I 15 I 20 I 25 I

+------+------+------+------+
ROW 2 I 30 I 35 I 401 45 I

+------+------+------+------+
ROW 3 I 50 I 55 I 60 I 65 I

+------+------+------+------+

This is our ARRAY filled with DATA. There are many ways to fill an
array, from specific location INPUT:

A(3,2) = 55

from values generated from a program:

90 LET A (2,4) K

In the above case K 45

Or we can write a program specificlly designed to fill our array.
That program would be:

10 DIM A(3,4)
20 FOR X = 1 TO 3
30 FOR Y = 1 TO 4
40 INPUT A(X,y)
50 NEXT Y
60 NEXT X
70 ! "THE ARRAY IS FILLED"\!
80 ! "WHAT BOX DO YOU WANT ?"
90 INPUT "WHICH ROW : ",X

100 INPUT "WHICH COLUMN :,Y
110 ! "A(",X,",",y,") = ",A(X,Y)\!
120 GOTO 80

This program will start with the first ROWand fill it with DATA and
then the second, and the the third.

If we RUN we get

-114-

?

(In the interest of space type in the following
numbers in sequence for each ? .)

10 15 20 25 30 35 40 45 50 55 60 65

THE ARRAY IS FILLED

WHICH BOX DO YOU WANT ?
WHICH ROW we type in 2
WHICH COLUMN : we type in 3
A(2,3) 40

This program will keep RUNning as long as you are willing to type
in numbers. If you decide to STOP, press the CTRL key and the C key
at the same time. This is called a CONTROL C and will abort the
program.

That's how LISTs and ARRAYs work, but that's not all there is to
know about them. The hard part starts now, learning how to use th~m.
I can show you what they are and what they do ••••• the rest is up to
you ••••••

27

THE SUB S T R I N G

Now we are starting to get into the heavy stuff. I wasn't ready
to write this section until today. I spent about two hours with my
"analyst" (computer type) to make sure it really was like I thought it
was. He said I was close enough to the truth to proceed. So we
will .•••..•

One of the biggest problems with understanding SUBSTRINGS, parts
of "words", is getting them confused with other things. The format
for the SUBSTRING - A${3,7) - looks similar to the format for a
NUMERICAL ARRAY - A{3,7). Since they do look so much alike, and you -
must admit they do, I have a tendency to equate traits of one with the
other. This leads to mass confusion, and erroneous conclusions. Thus
the need for my time with the "analyst".

By now, you must be asking why would anybody care about parts of
"words". Though you may not be conscious of it, a lot of what we do
with words involves working with their parts. When you look up the
spelling of a word in the dictionary, you approach it in parts - the
first syllable, then the next, and the next, until you "match" the
word. When we alphabetize a list of names; we compare the first
letters, then the second, and so on. When the computer performs these
same tasks, it has to be told exactly how to do it, although you may
be doing it subconsciouly.

Consider the following:

STRING VARIABLE

SUBSTRING

A$

RED WINE
12345678

"RED WINE"

A$(5) = WINE

A$(5) is the 5th through the last character

A${J) is the Jth through the last character

If J
If J
If J

5
8
1

then
then
then

-116-

A$(J)
A$(J)
A$(J)

WINE
E
RED WINE

A$(3,7) is the 3rd through the 7th character

A$(3,7) = D WIN

For our example STRING : RED WINE

A$(5) A$(5,8) WINE

Since by definition the first value enclosed by
parentheses is the starting character in the
SUBSTRING, and the second number is the ending
character, and the STRING is always counted from
left to right, the first value must always be
less than or equal to the second value.

A$ (8,5) will generate an OUT OF BOUNDS error

A$(I,J) is Ith character through the Jth character.

Where

If I
If I
If I
If I

A$ (K,K)

A$ (3,3)
A$(7,7)

I (= J I is less than or equal to J

2 and J 6 then A$(I,J) ED WI
1 and J 3 then A$(I,J) RED
5 and J 8 then A$(I,J) WINE
7 and J 7 then A$(I,J) N

will always equal the Kth character.

-r.t:
.LJ.

If
If

K
K
K

...
L

5
1

then
then
then

A$(K,K)
A$(K,K)
A$(K,K)

E
W
R

will always equal the 3rd character
will always equal the 7th character

Consider this program:

10 T$ = "ABCDEFGH"
20 FOR C = 3 TO 5

D
N

If we RUN we get:

Consider this program:

If we RUN we get:

Consider this program:

10 READ A$

-117-

30 PRINT TS(C)
40 NEXT C

CDEFGH
DEFGH
EFGH

10 B$ = "ABCDEFGH"
20 FOR E = 1 TO 3
30 FOR F = 3 TO 6
40. PRINT B$ (E,F)
50 NEXT F
60 NEXT E

ABC
BCD
CDE

20 ! " 11M THINKING OF A WORD - WHAT IS IT "
30 INPUT "TYPE IN A THREE LETTER WORD ",B$
40 FOR X = 1 TO 3
50 IF B$(X,X)=A$(X,X) THEN !"CORRECT ",B$(X,X)
60 NEXT X
70
80 IF B$=A$ THEN 1"**** YOU ARE RIGHT ****"
85
90 IF A$ < >. BS THEN 30
95 GOTO 10

100 DATA "CAT","DOG","PUT","TAP","COY","MIX","WRY"

This program compares each character of the INPUT word (B$) with
each character of the "game word" (A$). If the computer makes a
match, then the character is printed. If the computer does not make a
match, it goes on to the next character and repeats the process.
After it has evaluated all three characters (letters), it then
evaluates the word. If it makes a match, it tells you so, and then
READs a new "game word". If it does not make a match, the computer
returns to the INPUT statement for you to try another word.

-118-

The above explanation and sample programs will only give you a
start on the use of SUBSTRINGS. Learning how to use them well will
widen your available choices to compare data. A good deal of the use
of the computer is to compare data, the more ways you know how to do
it, the more use you will get out of the computer.

That is NOT all there is to know about that •••••

28

SEQ U E N T I A L F I L E S

To get the maximum use of your system it is mandatory to learn
how to use data FILEs (TYpe 3 FILEs), and be familiar with how they
work and how the computer READs and WRITEs to them. Any time you use
(access) a data FILE you are storing data on a device and therefore
are leaving FREE available memory in you computer for writing or
expanding your program. You are also able to store data far beyond the
memory capacity of your system, since each mini-disk will store about
90,000 bytes (90 K). As mentioned earlier, each mini-disk contains
350 blocks and each block contains 256 bytes.

Before getting into the specifics of how data FILEs work, a
general over-all view of their operation will show that they are not
too different from any other TYpe FILE. TYpe 3 data FILEs, like all
other TYpe FILEs, must first be CReated. In order to do that they
must be named. The same rules for naming other TYpes of FILEs apply
for naming TYpe 3 FILEs. The next step is to TYpe the FILE, all DATA
FILEs are TYpe 3 • That means that they can only be used (accessed) by
a READ or WRITE statment in a BASIC program. Having done all the
above, the FILE is ready for putting in data.

To add data to a FILE one usually writes a program that asks for
specific information to be typed in (INPUT). Once the required
information is supplied, the computer is then told to WRITE this
information (data) onto the mini-disk. Each new addition is added to
the mini-disk immediatly fo~lowing the previous data, thus a
sequential FILE is slowly filled with data. The required information
may be no more than a single numerical value or may be more than a
thousand numbers or words, depending on the program written to add
(WRITE) data to the FILE. Regardless of the INPUT the computer
essentially handles it all in the same manner, and records (WRITEs) it
on the mini-disk the same way.

Just having a' mini-disk full of information is not of much value.
It only becomes valuable when one can ask for a specific piece of data
and the computer in its unique way can search all that available
information and then give you what you ask for, if it has it, in a
matter of seconds. In order to be able to do this, you must now write
a second program - this time to take out information (READ).

Having learned how to do all the above, you have greatly expanded
the capacity of your system and increased it's range of usefulness.
Now let's learn how to do all the above.

-120-

First we must again remember that the computer does no more than
what one could do himself by conventional methods. It has a couple of
advantages over doing the task by "hand". Number one, it can search a
FILE much faster. It essentially does it by the same method that you
would, it looks at all the data until it finds some that matches what
it is looking for.

Number two, the computer can evaluate the "found" data for any
number of instructed conditions, such as: IF this is found - do this,
or IF this is equal to that - do this, and so on.

The computer can perform all of these task in a matter of
seconds, usually with little or no error. The human can perform all
of these tasks by "hand", hopefully with little or no error. The main
difference between the two methods is time and efficiency.

We will approach the use of DATA FILEs on the basis of
contrasting the "hand" method with the "electronic" method. This will
allow the reader to better understand what is happening, and be able
to relate to the sequence of events.

Let's suppose that you work for an auto parts supply company.
You have been given the job of preparing an inventory listing of all
auto parts and assigning a part number to each. This information is
to be placed in a file and stored for future use.

You start by first getting a file folder and naming the folder
AUTO PARTS. You then get some paper and start recording the part
number with its accompanying auto part. You start at the top of the
page and continue to add part number, then part name. You continue
this procedure until you have finihed the task. You then put the
papers in the file folder and then put the file folder into a file
cabinet.

Using our above example, the "electronic" method would be
essentially the same. First, we must CReate a file folder. We do
this by the following.

1. We must put the computer into the DOS mode.

a. From start up - put a mini-disk with
Disk Operating System (DOS) on it in
the disk-reader.

on > type in EX E900

b. From BASIC mode

on READY type in BYE

-121-

2. To CReate our "file folder" , with the name
AUTOPART, we must place an INITIALIZEd mini-disk
in the disk-reader and then:

on * type in CR AUTOPART 300

This CReates a FILE with the name AUTO PART which
is 300 blocks long - which is almost the capacity
of a new mini-disk.

3. We must then tell the computer that the FILE named
AUTO PART is a TYpe 3 data FILE, so that we will be able
to READ and WRITE to the FILE. This is accomplished by:

on * type -in : TY AUTOPART 3

We now have a "file folder" labeled AUTOPART, it is ready to
put our RECORDs into it.

Next we want to develop a data FILE which contains two pieces of
information for every auto part maintained in the inventory of a parts
house. We want to give every auto part a part number, and then we
want to identify the auto part which goes with this number. We want
to WRITE this inforamtion in an orderly manner, as was done by the
"hand" method above.

Our first step is to write a program which will add this
information to our FILE in an orderly manner. There are two questions
that the computer must a3k : 1. "WHAT IS THE PART NUMBER ", 2. "WHAT
IS THE PART NAME".

In BASIC these questions are represented by the INPUT statement
as

50 INPUT "WHAT IS THE PART NUMBER " N

Where INPUT is the alert word - reserved word - used by the computer
to tell it to ask for some information. That portion of the INPUT
statement which is in quotation marks is for the user's benefit. It
is the method used by the computer to tell the operator what
information he is to type in (INPUT). Anything that is enclosed in
quotation marks following an INPUT statement is PRINTed by the
computer. If no quoted remark follows the INPUT statement then a
question mark (?) will appear on the monitor, indicating to the
operator that they must type in some information before the computer
can go on.

-122-

The most significant character in the above INPUT statement to
the computer is the letter "N". The dperator will never see this, but
it is to the computer what the quotation mark enclosed portion of the
INPUT statement is to the operator. The letter "N" is used to
represent a numerical value - a variable - to the computer. It could
have been any letter of the alphabet or any combination of letter and
number from 0 to 9, i.e, K4,B2,X7,G,S ..••••••

Let's assume that the first part number is 1001, and it is the
part number for HI-TEMP SPARK PLUGS. When the computer ask you

WHAT IS THE PART NUMBER

You respond by typing in the number 1001

You have assigned the numeric value of 1001 to the numeric
variable "N". If you were to ask the computer \vhat is the value of
"N" it would PRINT 1001. "N" will always have this value until you
change it.

The next question that computer should ask is "WHAT IS THE PART
NAME". This question is represented by the INPUT statement:

60 INPUT "WHAT IS THE PART NAME N$

The same general information pertaining to LINE 50 goes for this LINE
with one notable exception -- the dollar sign,"$", which follows the
"N". In pure computer talk this INPUT statement wants you to type in
a STRING. For some unknown reason all alphabetic or alphanumeric
values are called a STRING. For ease of understanding, I have found
it useful to automatically substitute WORD every time I see or hear
STRING. This conversion is not exactly valid, but by the time you
understand the reasons why it's not, you will understand the concept
of STRING variables.

Now back to LINE 60. On the monitor we would see:

WBAT IS TBE PART NAME

You would then type in (INPUT) BY-TEMP SPARK PLUGS

We have now assigned the "word" - BY-TEMP SPARK PLUGS - to the
"word variable", "N$". Or in computer talk the STRING VARIABLE, "N$",
is equal to : BY-TEMP SPARK PLUGS

The relationship between the two variables

-123-

N 1001

N$ HY-TEMP SPARK PLUGS

is essentially the same as far as the computer is concerned. They are
handled the same way, as illustrated above for the numeric variable,
if we told the computer to PRINT "N$" it would PRINT : HY-TEMP SPARK
PLUGS, since that is what "N$" is equal to.

The computer now has the required information for performing the
task that we set out to do, i.e. , values for both variables, or
answers to both its questions. We must now tell the computer what to
do with this information (data).

We want it to WRITE this unique combination of part number and
part name on a mini-disk so that ''I~Ol'' and "HY-TEMP SPARK PLUGS" are
inseparable. If one knows the part number the computer can tell you
the part name or if one knows the part name the computer will tell you
the part, number.

If we were doing this by the "hand" method, we would have to go
to the file cabinet (the mini-disk), open the cabinet and take out our
file folder for AUTO PARTS (OPEN the FILE named AUTOPART), write down
the information on a sheet of paper in the folder (WRITE N,N$), and
then close the file and put it back into the file cabinet (CLOSE), and
we are finished (END). The computer must be inst.ructed to do
essentially the same thing. We tell the computer to :

40 OPEN #0, "AUTOPART"

This STATEMENT tells the computer to :

a. Go to "file cabinet" #0
Turn on the disk-reader

b. OPEN the "file cabinet"
Search for a FILE

c. Find the "file folder" named "AUTOPART"
Finds and OPENs the FILE - AUTOPART

At this point the computer has the required information to be
recorded, has located the proper FILE to WRITE the information to, has
OPENed the FILE and is READY to put it in the FILE. We must now tell
the computer to put the data into the "file folder". So our next
STATEMENT is :

-124-

80 WRITE #0, N,N$

The "#0 " makes sure that the computer WRITEs the values for " N" and
"N$" to the same FILE that it spent all that time locating and
OPENing. So, that's what it does: it WRITEs the values of the
variables in the FILE represented by #0. If we could see the FILE
AUTOPART we would see :

1001,HY-TEMP SPARK PLUGS *

The computer will automatically WRITE the values of N, N$ at the
start of the FILE. The asterisk at the end of the value of N$ is my
representation of an END MARK. After each WRITE command the computer
will place an END MARK at the end of the last item it recorded - it is
like a p~riod at the end of a sentence. The need for the END MARK
will become evident as we go on~

We are now ready to add more data. The next item will have the
part number 1002, and it is a SEALED BEAM LIGHT. Therefore N = 1002
and N$ = SEALED BEAM LIGHT. In order to get back to the start of our
program we have to tell the computer to go back and get some more
data. Since we did not tell the computer to CLOSE the FILE it, left
it OPEN and the recording head (pointer) is at the end of the previous
INPUT. This being the case, we will not have tell it to do all that
again. All we have to tell the computer to do is go back for more
data or INPUT. So, we tell it to go to LINE 50, which is the first of
the two INPUT statements:

90 GOTO 50

The next thing to appear on the monitor is

WHAT IS THE PART NUMBER

You would then type in: 1002

WHAT IS THE PART NAME

You would then type in SEALED BEAM LIGHT

The computer would then go through the same motions as before and our
FILE would now look like this :

-125-

1001,HY-TEMP SPARK PLUGS,1002,SEALED BEAM LIGHTS*

Then the computer would go back for more data

INPUT

WRITE

GOTO INPUT

This cycle would continue as long as you want it to. After a few
minutes our FILE would look like this :

1001,HY-TEMP SPARK PLUGS,1002,SEALED BEAM LIGHTS,
1003,BONDED BRAKE LINING,1004,STEEL BELTED TIRES,
1005,SEAT BELTS,1006,LOW PRESSURE OIL GAGE,1007,
AIR HORN,1008,HI-LOAD SHOCK ABSORBERS,1009,LOCK
TYPE GAS CAP,lOlO,WIDE ANGLE MIRROR*

That's exactly what we want. But it's not all that easy. If we
were to PRINT the contents of our FILE AUTOPART as we have
constructed it, we would not get what we have shown above, but all of
our STRING vairables (words) would be cut short and limited to only 10
characters (10 bytes).

Thus our first item:

1001,HY-TEMP SPARK PLUGS

would be

1001,HY-TEMP SP

There is a pre-set limit to the size (DIMENSION) of any STRING
vairable (word). Unless told otherwise the computer will give all
STRING variables the DIMENSION of 10 characters. If the size,
length, or DIMENSION of a "word" is greater than 10 characters, only
the first 10 characters are accepted by the computer and the rest are
ignored.

Although, this 10 byte limit would not effect some of the data
entries in our FILE, it would render others unintelligible. Unless
one is willing to play word games every time they got only a portion
of a "word", this situation would be considered unacceptable.

-126-

There is a method of correcting the problem. One need only
consider the length (DIMENSION) of the longest single
" word ",STRING vairable, in his data. In our case that would be 23
characters found in part number 1007. We must then tell the computer
how many characters to reserve for each of our "words", STRING
variables. This is called DIMENSIONing a variable. Our DIMENSION
statement is part of the BASIC program and must appear befor the
variable is used. Once 'a variable is DIMENSIONed within a program
that variable will always have that DIMENSION. You can not change
that DIMENSION in a later portion of the program.

Our statement would be :

20 DIM N$(23)

This tells the computer to always reserve 23 bytes any time it
READs or WRITEs the STRING vairable N$. No matter how long the
"word" for N$ is the computer will always allot 23 characters for it.
For STRINGS that are shorter than this the computer will still use 23
characters, the unused portion being filled with blank spaces.

Now, let's stop and look at the BASIC program that we have thus
far put together

20 DIM N$(23)
40 OPEN #0, " AUTOPART"
50 INPUT "WHAT IS THE PART NUMBER
60 INPUT "WHAT IS THE PART NAME
80 WRITE #0, N,N$
90 GOTO 50

"
"

N
N$

That looks and works great, it does everything that we set out to
accomplish. I want to turn off the computer and go home for the day.
Before I can leave I must put all the FILEs back and CLOSE the FILE
cabinet. The computer is no different, it's got to do the same thing
-- and like lots of people it must be told. We tell the computer by
.&..1-.': _ _ .L._.L ____ .L ~

1..11.1.>::> >::>l-al-~m~lll.. ;

100 CLOSE #0

That's all there is to that. But wait, if we examine the program
we see that the computer will never get to LINE 100. Every time it gets
to LINE 90 we have told it to GOTO LINE 50. There doesn't seem to be
any escape. We could just turn the thing off, but that's not
recomended procedure. If we just turned it off while it is in a
program loop (cycle) it may not have completed all its assigned tasks,
and we may not get recorded all the data entries we need. This is how
we do it:

-127-

55 IF N = a THEN 100

What this tells the computer is if ever the value for the
variable N is equal to zero then GOTO LINE 100. So when the computer
asks:

WHAT IS THE PART NUMBER

If you type in : 0

The computer will GO TO LINE 100 and then the computer will CLOSE
the FILE as instructed. This is called an ESCAPE statement.

But, that's still not all, there's one more thing that we should
tell the computer, to give it one last chance to do everything it was
supposed to do.

Because the computer is "lazy", it will oft times store up all
its instructed jobs and then do them all at once. This ability to "
put off doing now, what you can do later " is not really a sign of
laziness. It allows the computer to limit disk activity, so that the
disk-reader is not turning on and off every second or so. The
computer has a built in BUFFER, which is a small memory "cell" that
stores data that it is to WRITE. If you were to just turn off the
computer as earlier mentioned, you would not give the computer an
opportunity to clean out its BUFFER memory. All the information still
stored there would be lost.

for the most part all of the BUFFER activity would have been
completed at LINE 100 , the CLOSE statement. Although it may not be
required, I suggest that the last STATEMENT for any program be :

110 END

This shuts ~verything down in proper fashion and also tells
anyone who LISTs the program that that last LINE is in fact the last
LINE.

29

HOW THE COM PUT ERR E ADS A
T Y P E 3 D A T A F I L E

I continue to dwell on the "ins and outs" of data FILEs, because
their sucessful use is dependent on one's total understanding of how
they actually work. This attitude is probably a reflection of the
difficulity that I experienced when I was first learning how to use
them. On many occasions I was unable to get a FILE READ without
generating an ERROR. In the absence of understanding what was going on
it was almost impossible to correct the ERROR.

Let's assume that we have CReated a FILE with the name
"FRUIT". If we were able to see the contents of our FILE on the
mini-disk it would look like this :

lOO,APPLES,200,ORANGES,300,LEMONS,400,BANANAS,
500,PEACHES,600,GRAPES,700,PLUMS,800,CHERRIES*

The program used to fill this FILE with data could contain an
assortment of INPUT and WRITE statements. The most obvious would be:

and then

10 INPUT "WHAT IS THE FRUIT NUMBER
20 INPUT "WHAT IS THE FRUIT NAME

90 WRITE #0, F,F$

"
"

F
F$

If these LINEs were part of a program similar to the program that
was used to fill the data FILE "AUTOPART" earlier, they would generate
II FRUIT" FILE as shown above. But, the same FILE could be generated
from multiple INPUT and WRITE statements.

Consider the following •

30 INPUT "WHAT IS TWO TIMES 50 :", J
40 INPUT "WHAT IS NEW YORK'S FAVORITE FRUIT :", P$
60 INPUT "HOW MANY YEARS IN A BICENTENNIAL " T
80 INPUT "WHAT IS FLORIDA'S FAVORITE FRUIT: n Q$
90 D = J + T

-129-

100 INPUT "WHAT FRUIT GOES BEST WITH SEAFOOD " Y$

160 WRITE #0, J,P$,T,Q$,D,Y$

Assuming the expected answers for the INPUT, if we were to look at the
data on the FILE we would see

100,APPLES,200,ORANGES,300,LEMONS*

Even though our INPUT and WRITE statements were radically
different from the previous example, you'll note that the net result
is identical. Both FILEs contain the same data in the same sequence.
The computer is only assigning values to variables and then recording
that information.

The same thing holds true for READing a data FILE. Using again
our example FILE "FRUIT", all of the READ statements below when
included in a properly written program will yield the same results.

10 READ #0 , C
20 PRINT C
30 READ #0 , X$
40 PRINT X$
50 READ #0, E
60 PRINT E
70 READ #0, G$
80 PRINT G$
90 READ #0, M

100 PRINT M
110 READ #0, S$
120 PRINT S$

If we were to RUN a program which contained these LINEs and used the
FILE "FRUIT" as its' data source, we would get:

100
APPLES
200
ORANGES
300
LEMONS

Or using the same logic, if our program contained:

50 READ #0, C,C$,W
60 PRINT C,C$,W
80 READ #0, H$,Y,D$

We would get

-130-

90 PRINT H$,D$
95 PRINT Y

100,APPLES,200
ORANGES,LEMONS
300

Or for a final example, again using the same premise:

We would get

40 READ #0, A,A$,B,B$,C,C$
50 PRINT C$,B$,A$
60 PRINT A,B,C

LEMONS,ORANGES,APPLES
100,200,300

Th~ point is that READing data FILEs is not limited to the same
INPUT that put data into that FILE. Nor must the format of OUTPUT
follow the same sequence. The only "hard and fast" rule that must be
followed is that data must be READ in the exact same order that it is
contained in the FILE.

This last statement is so important that I feel an obligation to
repeat it.

ALL DATA IN A DATA FILE MUST BE READ IN EXACTLY
THE SAME ORDER THAT IT IS CONTAINED IN THE FILE.

If were were to examine our example FILE "FRUIT", we would notice
that the sequence of order of data is :

NUMERIC VALUE, STRING VALUE, NUMERIC VALUE,
STRING VALUE , NUMERIC VALUE, STRING VALUE,

and so on •••••

Therefore, we must READ our FILE in that same order. If our first
READ statement in a program for this FILE was :

30 READ #0, R$

-131-

We would get

TYPE ERROR

Which would indicate that we ask the computer to READ a value for
the STRING VARIABLE R$ and the first data on the FILE is a NUMERIC
VALUE --- thus the wrong type of data --- thus the TYPE ERROR.

In order to sucessfully READ a data FILE you must know the
sequence of TYPEs of values contained in that FILE. Your READ
statement must exactly match the available data to be READ. If it
does not match, you will get a TYPE ERROR.

Consider the following program

10 INPUT " WHAT IS YOUR FILE NAME F$
20 OPEN #0, F$
30 IF TYP(O) = 0 THEN 120
40 IF TYP(O) = 1 THEN 60
50 IF TYP(O) = 2 THEN 90
60 READ #0, S$
70 PRINT " STRING "
80 GO TO 30
90 READ #0, N

100 PRINT " NUMBER "
110 GOTO 30
120 PRINT " END OF FILE "
130 CLOSE #0
140 END

This program will READ any FILE and PRINT the sequence of value
TYPEs. Thus if we were to use it to READ our example FILE "FRUIT", we
would get :

NUMBER
NUMBER
NUMBER

STRING
STRING
STRING

NUMBER
NUMBER
NUMBER

STRING
STRING
STRING

NUMBER STRING
NUMBER STRING
END OF FILE

This program is able t6 READ any FILE without knowing the
sequence of TYPEs of data by the fact that we have made provisions for
what the computer is to do no matter what TYPE of data it encounters.
This is done with the TYP FUNCTION.

So much emphasis has been placed on the sequence of TYPE of data
in the data FILE because that is how it is READ by the computer when
accessed SEQUENTIALly. Remember how the "pointer" always starts at
the begining of the FILE when it is OPENed, and advances through the
FILE at the rate of each READ statement.

-132-

The pointer will not go back to the start of the FILE unless you
reOPEN the FILE. If you fail to remember this fact and you are
writing a "search" type program where you want to repeatedly search a
FILE for different kinds of information, you will end up only
searching that portion of the file that has not yet been READ. The
computer will only READ the data that is left after the last advance
of the "pointer" (reader arm). Therefore after each "search" you must
CLOSE the file and the OPEN it again before starting the next
"search". Let's consider the following example.

Let's say that we have CReated a FILE named "ACCOUNTS", and the
FILE contains all the account numbers of "active" accounts. The "FILE
looks like this :

100,200,300,400,500,600,700,800,900,*

The purpose of our program is to be able to type in an account
number, and the computer will tell us if that is an active account.

10 INPUT .. WHAT IS THE ACCOUNT NUMBER " X
20 IF X = 0 THEN 140
30 OPEN #0, "ACCOUNTS"
40 IF TYP(O) = 0 THEN 110
50 READ #0 , P
60 IF P = X THEN 80
70 GO TO 40
80 ! "ACCOUNT NUMBER " , X, .. IS ACTIVE " .
90 CLOSE #0

100 GOTO 10
110 ! "ACCOUNT NUMBER ",X," IS NOT ACTIVE "
120 CLOSE #0
130 GO TO 10
140 CLOSE #0
150 END

If we RUN we get :

WHAT IS THE ACCOUNT NUMBER : we type in 400
ACCOUNT NUMBER 400 IS ACTIVE.

WHAT IS THE ACCOUNT NUMBER : we type in 260
ACCOUNT NUMBER 260 IS NOT ACTIVE.

WHAT IS THE ACCOUNT NUMBER : we type in 0
READY

If we were to take out LINE 90 and then RUN we would get

-133-

WHAT IS THE ACCOUNT NUMBER : we type in 400
ACCOUNT NUMBER 400 IS ACTIVE.

WHAT IS THE ACCOUNT NUMBER : we type in 200
ACCOUNT NUMBER 200 IS NOT ACTIVE.

Since we know what is on the FILE we know that 200 is an ACTIVE
account. What went wrong? Account 200 would also like to know.
They are sure they paid their bill.

By taking out LINE 90 we did not CLOSE the FILE, therefore the
"pointer" (reader arm) will start READing the FILE from position
"400". From that "point Ob" it will not encounter the number 200, but
will reach the END MARK "*", thus indicating that there is no
active account ,"200".

If we were to put LINE 90 back in our program and take out LINE
120 all would go well until we had an account that was not "active".
Then, all future INPUT would result in a TYPE ERROR. The reason being
that the "pointer" would be at the END OF FILE and the next thing to
come up would be the END MARK --- * , which is neither a NUMERICAL
VALUE or a STRING VALUE. The other possibility would be that the
computer would find no "active" accounts.

(I have taken certin liberties in the above explanations in the
interest of best explaining the effects and need of certin program
LINEs. The fact is, that by taking out the above mentioned LINEs the
programs probably would not RUN, since we would be telling the
computer to OPEN a FILE that is already OPEN. Also, the format of all
the PRINT statements would not be actually PRINTed as I have
illustrated them, but the content of these statements would be as
represented. I do not feel the need to be totally exact and dilute the
readers concentration by mentioning all the possible exceptions.
These "half truths" will become evident as you better understand the
principles of the subject.)

That completes this section on "How the computer READs a
SEQUENTIAL FILE". Study this section and remember what it says.
Without knowing the information presented above, you will experience
many frustrations as a result of not being able to get the computer to
READ a FILE without generating a plethora of FILE ERRORs, as I
did ••••••

30

HOW T 0 A C C E S SAN D USE
SEQ U E N T I A L D A T A F I L E S

Now that we have CReated a data FILE and we have put data into
it, it's now time for it to become a useful tool. and pay its way. Up
to this point everything that we have done with regards to SEQUENTIAL
FILEs has been for the computer. We've got nothing out of it. We
must instruct the computer as to how it can give us the information we
want, when we want it. This of course, is done by writing another
BASIC program.

When we start to write this program we must remember that the
computer is generally dumb, it can't do even the simplest thing unless
we tell it to. The nice part about the computer is that we need only
tell it once, and it doesn't torget.

First, let's consider what we want the computer to do with the
data FILE that we have CReated.

a. Find a data FILE named AUTOPART

b. OPEN it

c. Search for some specific information

d. Retrieve the information if it's there

e. PRINT it out or display it on the monitor

f. Be READY to do it allover again

That's all we want the computer to do with our data FILE.

Following the same line of thought as we did before when we
CReated our data FILE, we must first locate and OPEN the FILE.

We do that by:

40 OPEN to, "AUTOPART"

Since we know that some of the "words", STRING variables in our
data exceeds the DEFAULT DIMENSION of 10 characters (IO bytes), we

-135-

must DIMENSION our STRING variable " N$ "

So we write :

20 DIM N$(23)

We must decide what information we want and what information we
must type in (INPUT). We can either give the computer the "part name"
and ask it to find the "part number" that goes with that name, or visa
versa. Let's say that we want to be able to type in (INPUT) the
"part number" and the computer will supply us with the name of the
part with that number. To do this we must supply the "part number".
Our INPUT statement would then be :

50 INPUT "WHAT IS THE PART NUMBER " P

Now that the computer has the "part number", or in reality a
value for the numeric variable P, that is :

P Whatever "part number" that we type in

It is ready to go looking for a "part name" with a "part number"
that matches the one we typed in. So we tell- the computer to

60 READ #0 , N,N$
Where:

N = PART NUMBER in our data FILE

N$ = PART NAME in our data FILE

Remembering what our data FILE looked like, the first time the
computer READs the FILE it will come up with :

N = 1001

N$ = HY-TEMP SPARK PLUGS

We want the computer to compare the INPUT "part number", P with
the stored data "part number", N. If the two numbers are the same,
then we want the computer to PRINT the "part number", N and its
accompaning "part name", N$. As complicated as it sounds it's not -
here's how:

-136-

70 IF N P THEN PRINT N,N$

This LINE tells the computer to do just what we said :

If N (FILE part number) = P (INPUT part number)
Then PRINT N (FILE part number) and N$ (FILE part name)

But what happens if the numbers don't match? Since we haven't
told the computer what to do in this situation, nothing will happen.
The computer will just sit there, the disk-reader will run for a
while, and then all will stop. Our next LINE will therefore be:

80 IF TYP(O) 2 THEN 60

Since the "part numbers" didn't match the computer will
immediately go on to the next LINE. LINE 80 tells the computer that
if the next thing to come up on the mini-disk is a numeric value then
GOTO LINE 60. The way it tells the computer all of this is from the
READ TYP function :

TYP(O)

(I shall go into greater detail in explaining the TYP function in
another chapter. Suffice it to say for the time being that it does
what I have indicated that it does.)

So what happens is that if N is not equal to P the computer goes
back to LINE 60 and READs another set (RECORD) of variables. It
continues to do this until it finds a set of variables (N and N$)
where N = P, when it finds N = P it then PRINTs the set (RECORD).

INPUT P

READ N, N$

N<> P N P

PRINT N, N$

The next obvious question should be, " What happens if it doesn't
find a match ?" Suppose that the INPUT number was never put into the
data FILE, or the operator hit the wrong key and put in a "bad"
number --- what then ?

-137-

The first thing I can tell you is that if you didn't tell the
computer what to do under these circumstances, it sure as hell doesn't
know. Again, everything will come to a stop, or worse, the
disk-reader will just keep running and running and running. I would
suggest a CONTROL - C if this occurs.

You, as the programmer, must anticipate all the possible
occurances, and write the program so that when they occur the computer
knows what to do. To digress for a minute, I would like to relate a
story I read in the newspaper which will illustrate my point.

In a state which allows personalized license
plates for automobiles an enterprising computer
programmer requested the license plate" NONE" .
The agency which censors personalized plates saw
nothing wrong with it, so the license plate" NONE"
was issued.

It did not become evident to the authorities
why such a license plate should not have been issued,
until about 20u unpaid parking tickets later.

It seems that whenever an unpaid parking ticket
was turned over to the warrant division, they used
their computer to match the name and address of
the owner of the car with the license plates.

The computer was programmed such that if the
license plate number was not a valid match, it
would automatically give it the default "number"
" NONE ", thus making a match impossible.

Now, back to more important things. What to do if the computer
can't make a match with our "part numbers" ?

Do this :

90 IF TYP(O) o THEN 150

This tells the computer that if the next thing up on the
mini-disk is an END MARK, which would indicate END OF FILE, then the
computer has gone through the entire FILE and has reached the END and
still can not make a match. In that case the computer is instructed
to GOTO LINE 150.

Which says

150 PRINT" THERE IS NO PART WITH THAT NUMBER ..

Then we start allover again, with:

-138-

160 GOTO 50

Let's review our program up to this point

20
40
50
60
70
80
90
150
160

DIM N$(23)
OPEN to, "AUTOPART"
INPUT "WHAT IS THE PART
READ to, N,N$
IF N = P THEN PRINT
IF TYP(O) = 2 THEN 60
IF TYP(O) = 0 THEN 150
! "THERE IS NO PART WITH
GOTO 50

NUMBER ", P

N,N$

THAT NUMBER"

That is essentially the whole program. We have only two thing to
add: 1. An escape statement. 2. CLOSE and END statements. Our
"escape" statement would be similar to the one we used in the
preceeding chapter :

55 IF P o THEN 170

Such that when the computer ask you :

WHAT IS THE PART NUMBER

and you type in 0

The computer will GOTO LINE 170 , which says

170 CLOSE 10

and then 180 END

Th~t's all there is to it •••••••••

31

HOW T 0 COP Y A D A T A F I L E
FRO M 0 N E MIN I - DIS K T 0 A NOT HER

There is no real problem with transfering a TYpe 3 data FILE from
one mini--disk to another, it just has to be done by some method other
than the LOAD and SAVE method used for programs written in BASIC, i.e.
TYpe 2 FILEs.

Essentially, what you must do is ReaD a specific number of blocks
of data at a specific starting place (ADDRESS) on the mini-disk into
the computer, then put in the "new" mini-disk and WRite the same data
to a specific Disk Address.

This method can be used to completely copy anything that is on
one mini-disk to another, not limited only to TYpe 3 FILEs. You
alternately ReaD a specific number of blocks into the computer's
memory (number of blocks dependent on available memory) from the "old"
mini-disk, and then WRite them out of the computer's memory at a
specific Disk Address on the "new" mini-disk.

Here is how to do it for a TYpe 3 FILE :

1. Put the computer in the DOS mode.

a. From start up type in : EX E900
b. From BASIC on READY type in : BYE

2. Put the mini-disk with the TYpe 3 FILE to
be transfered in the disk-reader.

3. on * type in : LI

Let's suppose that the FILE that we intend to
copy is named CUSTOMER and it is 50 blocks
long. When we LIst we get:

CUSTOMER 4 50 3

Which indicates that the FILE name is CUSTOMER,
it starts at block 4 (disk-address), it is

-140-

50 blocks long, and it is a TYpe 3 FILE.

4. Now.put the "new" INITIALIZEd mini-disk into
the disk-reader and CReate a FILE named CUSTOMER
that is 50 blocks long.

To do this you

on * type in : CR CUSTOMER 50

5. We must tell the computer that the FILE with the
name CUSTOMER is a TYpe 3 data FILE. You then :

on * type in : TY CUSTOMER 3

6. So that we know where to tell the computer to
WRite the stored data it got from ReaDing the
"old" mini-disk, we need to know the Disk Address
of the FILE named CUSTOMER on the "new" mirii-disk
To find that out we :

on * type in LI

We get

CUSTOMER 135 50 3

7. Let's stop and recap what we've done and what we
want to do. First look at the Disk Address :

"old" CUSTOMER 4 50 3

"new" CUSTOMER 135 50 3

We want the computer to ReaD 50 blocks of data
from the "old" FILE named CUSTOMER starting at
Disk Address 4 and store it in it~ "regular"
memory (READ,WRITE,LOAD,SAVE, and program
portion of the memory). So that's what we tell
it :

on * type in RD 4 2AOO 50

-141-

This command tells the computer to go to Disk
Address 4 and ReaD the next 50 blocks and store
this data in a "box" in the computer with the
ADDRESS 2AOO hex RAM address).

8. We now want the computer to WRite the 50 blocks
of data that it has in its "regular" memory to
a FILE on the "new" mini-disk (put it in the
disk- reader) with the name CUSTOMER, whose
Disk Address is 135. So that's what we tell the
computer to do :

on * type in WR 135 2AOO 50

This tells the computer to go to a "box" that
is located at ADDRESS 2AOO somewhere inside
it. Get the contents, 50 blocks of data, from
the "box" and WRite it on the mini-disk starting
at Disk Address 135.

9. The best way that you can be sure that all went
well is to RUN a program that accesses this FILE
and uses the data.

Another method is the use of the following
program. I have named the program FILELIST
and would recommend copying the program in
BASIC, and SAVEing it as one of your general
use programs.

10 REM THIS PROGRAM PRINTS THE CONTENTS
20 REM OF A TYPE 3 DATA FILE
30 DIM N$(300)
40 INPUT "TYPE IN FILE NAME
50 OPEN #0, F$

"

60 IF TYP(O)=O THEN! "END OF FILE"
70 IF TYP(0)=2 THEN 110
80 READ #0, N$
90 ! TAB (15},N$
100 GO TO 60
110 READ #0, N
120 ! TAB(6),N
130 GOTO 60
140 END

F$

As I mentioned earlier this method of ReaDing and WRiting from
one mini-disk to another is not limited only to transfering TYpe 3

-142-

data FILEs, but may be used to copy entire mini-disk including DOS,
BASIC, and any other TYpe programs and their LIsting. However, it is
the most practical method for TYpe 3 FILEs.

It is most important to develop a full understanding of this
technique and be able to have it available when needed. As ~ith other
TYpes of programs, one should never have only one copy of an important
program, this includes data FILEs.

32

HOW TOR AND 0 MAC C E S S D A T A F I L E S

That is not a question, but the title of this chapter. Not too
many days ago it was a question for me. I had already decided not to
include the subject, because it was outside the scope of this book.
(That's literary talk for" I don't understand it well enough to write
about it.) I gave it one more try and all of the sudden, for the
first time, it made sense.

I can now tell you that RANDOM ACCESS of data files is just as
logical and just as easy as all the other phases of operating one of
these computers, if you finally get to the point that you understand
the principal of the thing. I had already read that RANDOM ACCESS was
an advanced technique. This statement alone had made me decide not to
spend the time to figure it out till I absolutly had to.

I finally had a reason. I have a very long data file which lists
all the customers and their addresses for the company I work for. The
file was set up so that the most frequent customers were at the front
of the file and the occasional customers were near the end of the
file. Since this file was READ by SEQUENTIAL ACCESS ,it saved time by
setting the file up this way. No sooner than I had entered all the
names and addresses (about 200), one of our very good customers
moved. I was faced with the decision of either learning RANDOM ACCESS
or reINPUT all of the data into a new file.

After reading the "computer manual " for the tenth time I almost
optioned for the latter. Here is what the "computer manual" tried
to say.but never quite could •••..•

In general all you do is READ or WRITE to a specific place
(ADDRESS) on the "mini-disc". To determine the starting point
(ADDRESS) where you want the computer to READ or WRITE , you must by
some method tell the computer how many " bytes " to skip over before
it starts. Let's consider the simple READ statement:

10 READ A,B,C

This READ statement tells the computer to READ a set of three
numerical variables -- A , B , and C. In a DATA statement or in a
DATA file this set of three numerical variables would exactly match
the variables in our READ statement. This SET of numerical values is
called a RECORD.

If you were able to see the data on a "mini-disc" it would appear

-144-

as a series of sets (RECORDS) of three numeric values each.

Let's CReate a file, write a program, and WRite data to the
file:

First CREATE a file named "FILE"

1. If you are in BASIC mode : ON READY type in: BYE
2. Turn on "disc-reader" insert INITALIZED "mini-disc"
3. ON * type in CR FILE 5
4. ON * type in TY FILE 3

This program will add DATA to our "FILE"

10 OPEN #0 , "FILE"
20 INPUT "VARIABLE A
30 IF A = 0 THEN 80
40 INPUT II VARIABLE B
50 INPUT "VARIABLE C
60 WRITE #0 , A,B,C
70 GOTO 20
80 CLOSE #0
90 END

If we RUN we get

VARIABLE A we type in 1
VARIABLE B we type in 1
VARIABLE C = we type in 1
VARIABLE A we type in 2
VARIABLE B we type in 2
VARIABLE C we type in 2
VARIABLE A we type in 3
VARIABLE B we type in 3
VARIABLE C we type in 3
VARIABLE A we type in 4
VARIABLE B we type in 4
VARIABLE C we type in 4
VARIABLE A we type in 5
VARIABLE B we type in 5
VARIABLE C we type in 5
VARIABLE A we type in 0
READY

Now our "FILE" is complete with DATA •.•

This "FILE" can be ACCESSED by either
methods, as can most files.

"

"
"

A

B
C

SEQUENTIAL or RANDOM ACCESS

-145-

Let's say that the data in the "FILE" looks like this:

RECORD #1 1 , 1 , 1
RECORD #2 2 , 2 , 2
RECORD #3 3 , 3 , 3
RECORD #4 4 , 4 , 4
RECORD #5 5 , 5 , 5

1---------1 ("end mark")

Each RECORD in our "FILE" occupies a specific number of bytes.

REMEMBER: EACH NUMERICAL VALUE IS FIVE (5) BYTES

This is true regardless of the size of the numerical value
i.e ••• number. 1 = 5 bytes and 1,000,000 = 5 bytes. Since our
"FILE" has three numerical values in each RECORD; each RECORD
contains: 3 times 5 bytes for a total of 15 bytes.

3 NUMERICAL VALUES X 5 BYTES EACH 15 BYTES

The RANDOM ACCESS READ statement for our "FILE" would be:

10 READ #0 %15*X, A,B,C

The 10 ••• is the LINE NUMBER

The READ #0 •• is the READ "command" to the computer to
tell it that it is reading a "mini-di~c"
file.

The % •••• is the "command" to the computer to evaluate
the following arithmetic expression and
"skip" that many bytes before it READs the
specified values.

The 15 •••• is the number of bytes in each set (RECORD)

The X .••• is the number of RECORDS (sets) to be skipped
It is also equal to one less than the RECORD
NUMBER.

The -A,B,C .•• is the names of three numerical variables
that the computer is to READ values for.

-146-

Let's look at what we have:

X RECORD # A , B , C ADDRESS BYTES TOTAL BYTES
--------- --------- ------- -----------

0 RECORD #1 1 , 1 , 1 %15*0 15 15
1 RECORD #2 2 , 2 , 2 %15*1 15 30
2 RECORD #3 3 , 3 , 3 %15*2 15 45
3 RECORD #4 4 , 4 , 4 %15*3 15 60
4 RECORD #5 5 , I) , 5 %15*4 15 75

1---------1

Now consider our READ STATEMENT again:

10 READ #0 %15*X ,A,B,C

This is the same as

SKIP 15 BYTES x
*

TIMES THEN READ A,B,C
% 15 X A,B,C

(I understand that the times sign and the X get mixed up, but
just read through it.)

Now let's consider some examples and use the above chart to
follow our examples like the computer.

10 READ #0 %15*X, A,B,C

If we want to know what A,B, & C is in the third record we set X = 2.
The computer will skip the first two RECORDS and then READ values into
our variables from the third RECORD.

A 3
B 3
C· 3

If we want to know what A,B, & C is in the first record we set X = o.
This tells the computer not to skip any RECORDS , but to READ the
values into our variables from the very first RECORD.

A 1
B 1
C 1

If we want to know what A,B, & C is in the J th RECORD
we set the value of X = J - 1. Using the variable expression
J - 1 to replace X, since they are the same, enables us to then
type in the exact RECORD number we want to READ or WRITE. If our READ
statement was :

10 READ # 0 % 15 * (J -1) , A, B , C

-145-

Let's say that the data in the "FILE" looks like this:

RECORD #1 1 , 1 , 1
RECORD #2 2 , 2 , 2
RECORD #3 3 , 3 , 3
RECORD #4 4 , 4 , 4
RECORD #.5 ') , 5 , 5

1---------1 ("end mark")

Each RECORD in our "FILE" occupies a specific number of bytes.

REMEMBER: EACH NUMERICAL VALUE IS FIVE (5) BYTES

This is true regardless of the size of the numerical value
i.e .. . number. 1 = 5 bytes and 1,000,000 = 5 bytes. Since our
"FILE" has three numerical values in each RECORD; each RECORD
contains: 3 times 5 bytes for a total of 15 bytes.

3 NUMERICAL VALUES X 5 BYTES EACH 15 BYTES

The RANDOM ACCESS READ statement for our "FILE" would be:

10 READ #0 %15*X, A,B,C

The 10 ••• is the LINE NUMBER

The READ #0 •• is the READ "command" to the computer to
tell it that it is reading a "mini-di~c"
file.

The % •••• is the "command" to the computer to evaluate
the following arithmetic expression and
"skip" that many bytes before it READs the
specified values.

The 15 •••• is the number of bytes in each set (RECORD)

The X •••• is the number of RECORDS (sets) to be skipped
It is also equal to one less than the RECORD
NUMBER.

The -A,B,C ••• is the names of three numerical variables
that the computer is to READ values for.

-146-

Let's look at what we have:

X RECORD # A , B , C ADDRESS BYTES TOTAL BYTES
--------- --------- ------- -----------

0 RECORD #1 1 , 1 , 1 %15*0 15 15
1 RECORD #2 2 , 2 , 2 %15*1 15 30
2 RECORD #3 3 , 3 , 3 %1.5*2 15 45
3 RECORD #4 4 , 4 , 4 %15*3 15 60
4 RECORD #5 5 , 5 , 5 %15*4 15 75

1---------1

Now consider our READ STATEMENT again:

10 READ #0 %15*X ,A,B,C

This is the same as

SKIP 15 BYTES x
*

TIMES THEN READ A,B,C
% 15 X A,B,C

(I understand that the times sign and the X get mixed up, but
just read through it.)

Now let's consider some examples and use the above chart to
follow our examples like the computer.

10 READ #0 %15*X, A,B,C

If we want to know what A,B, & C is in the third record we set X = 2.
The computer will skip the first two RECORDS and then READ values into
our variables from the third RECORD.

A 3
B 3
C' 3

If we want to know what A,B, & C is in the first record we set X = o.
This tells the computer not to skip any RECORDS , but to READ the
values into our variables from the very first RECORD.

A 1
B 1
C 1

If we want to know what A,B, & C is in the J th RECORD
we set the value of X = J - 1. Using the variable expression
J - 1 to replace X, since they are the same, enables us to then
type in the exact RECORD number we want to READ or WRITE. If our READ
statement was :

10 READ #0 %15* (J-l) , A,B,C

If we set J

-147-

3 (We want to READ RECORD #3) we get

A 3
B 3
C 3

A program that would RANDOM ACCESS this "FILE" would be

10 OPEN #0 , "FILE"
20 INPUT "WHAT RECORD NUMBER DO YOU WANT "J
30 IF J = 0 THEN 70
40 READ # 0 % 15 * (J -1) , A, B , C
50 PRINT A,B,C
60 GOTO 20
70 CLOSE #0
80 END

If we RUN we get:

WHAT RECORD NUMBER DO YOU WANT If we type in 4

We get: 4
4
4

WHAT RECORD NUMBER DO YOU WANT If we type in 2

We get: 2
2
2

WHAT RECORD NUMBER DO YOU WANT If we type in 0

We get:
READY

To change a value in a RECORD (set) in our example "FILE" is a
little more complicated, but not much. Let's first look at our "FILE"
structure again :

RECORD # 1 1 , 1 , 1
RECORD # 2 2 , 2 , 2
RECORD # 3 3 , 3 , 3
RECORD # 4 4 , 4 , 4
RECORD # 5 5 , 5 , 5

1---------1

Since we have already established that

10 READ #0 %15 (J-l) , A,B,C

will allow access to a spec~fic RECORD by setting the variable J equal
to that RECORD number, let's review how we arrived at the access

-148-

expression: %15*(J-l). The 15 was the sum of the "byte space"
occupied by the three numerical values for A,B, and C.

A 5 bytes
B 5 bytes
C 5 bytes

If we set J = 3 for our READ statement the computer will send the
"pointer" to the start of RECORD number 3 and READ the next 15 bytes
for the values of A,B, and C. It would actually go to the start of
RECORD number three and READ the first 5 bytes for the value of A,
then READ the second 5 bytes for the value of B, and then READ the
third 5 bytes for the value of C.

The fact that we know that that's how the computer will READ the
"FILE" enables us to derive an ADDRESS for each individual value for
A,B, and C.

The ADDRESS for
The ADDRESS for
The ADDRESS for

A is
B is
C i~

%15 (3-1)
%15(3-1)+5
%15(3-1)+10

Remember, that all the ADDRESS does is to tell the computer where
to start READing. So if we tell the computer to go to the ADDRESS for
A it will automaticaly READ the next "five byte space" for the value
of A. For this reason the ADDRESS for the variable A is the same
as the ADDRESS for the RECORD.

The ADDRESS, "starting point", for variable B would be the same
as for variable A plus the "byte space" used for variable A i.e ••
five bytes. If the computer was told to READ variable B, using the
ADDRESS given above , it would "skip" two fifteen byte RECORDS (3-1)
and then "skip" five more bytes (+ 5) and then READ the next "five
byte space" for the value of variable B.

The ADDRESS for variable C would be the same as for variable A
plus the "five byte space" used for variable A plus the "five byte
space" used for variable. B, so the ADDRESS, "starting point", for
variable C would be :

%15*(3-1)+10.

We now know how to get to each individual value for each
individual variable. By changing our READ statement we can now ACCESS
any single value for any single variable. If we wanted to know the
value of B in the J th RECORD of our "FILE" our READ statement
would be :

10 READ 10 %~5(J-l)+5 ,B

For variable C it would be :

10 READ 10 %15(J-l)+lO , C

-149-

For variable A it would be our original READ statement, except we will
tell the computer to READ only variable A:

10 READ #0 %15(J-l) , A

Once you have learned how to get to a specific piece of data,
changing it should present no particular problem. Just getting there
was most of the battle. First we must write a program which will
allow us to OPEN the "FILE",INPUT our change, ADDRESS the "FILE",
WRITE our change, and then CLOSE the "FILE". The necessary program
would be:

10 INPUT "DO YOU WANT TO CHANGE A B OR C " W$, ,
20 INPUT "WHAT DO YOU WANT TO CHANGE IT TO " T
30 IF W$ "A" THEN P 0
40 IF W$ = "B" THEN P 5
50 IF W$ = "C" THEN P 10
60 INPUT "WHAT RECORD # DO YOU WANT TO CHANGE " ,J
70 OPEN #0 , "FILE"
80 WRITE #0 %15*(J-l)+P , T , NOENDMARK
90 CLOSE #0

100 END

Now let's track the program and see what's happening.

LINE 10 •• This INPUT tells the computer which variable you
are going to change by assigning the variable P
to the variable you type in - A , B , or C . The
variable P is used in the ADDRESS to set the
pointer "up" the proper number of additional bytes
for the individual variables A·, B , or C.

LINE 20 •• This INPUT assigns a value to the variable T
which assumes the position of either A, B , or
C , the one you wanted to change in LINE 10.

LINE 30 •• These three LINEs assign a value to the variable
P •

LINE 60 •• This INPUT tells the computer how many RECORDS to
"skip"

LINE 70

LINE 80

This statement OPENs a file named "FILE"

This is the statement that essentially does all
the work. It takes the information from all the
INPUT, determines the ADDRESS, then WRITEs the
new value at that ADDRESS •

-150-

But what's that at the end of LINE 80 --? "NOENDMARK" If you
will remember we previously said that after the computer executes a
WRITE statement it automatically prints an " END-MARK" This
indicates that this entry is the last entry of a WRITE statement •

We certinly don't want an "END-MARK" in the middle of a data
file. It would do two things: Number 1 , it would play havoc with
our "byte count system" we have established to determine the ADDRESS
since the "END-MARK" would throw in an additional byte. Number 2 , it
would indicate to the computer if one were using the SEQUENTIAL ACCESS
method that it had reached "end of file", when in fact it was in the
middle of a "FILE".

If we did not tell the computer not to put an "END-MARK" after it
finished it's WRITE command, it automatically would. Since we don't
want it we must include the "reserved word" NOENDMARK at the end of
the WRITE statement.

Keep in mind, however, what would happen if we had to change the
very last variable of the very last RECORD in the "FILE" ----- we
would end up with NO END MARK at all. If-we were to access this
"FILE" by the SEQUENTIAL ACCESS method and you got to "end of file"
and there was NOENDMARK the "disc-reader" would just keep running and
running and running.

This would not be a problem for the "FILE" that was only RANDOM
ACCESSED since you would always tell the computer the specific address
that you want it to go to.

This is not the last word on RANDOM ACCESS , but it will give you
a working knowledge of how to use it for numerical variables.

Isn't there more to life than just numerical variables? There
must be! Yes, Virginia, there is~ there's strings. STRING variables
(words) present a greater challenge to RANDOM ACCESS of data files,
but a challenge that you are very close to meeting.

with numerical variables the computer reserved a specific number
of bytes for each variable. For the number three the computer reserved
the same number of bytes as it would for the number three million. It
may not make any sense but you can always "count" on it ---- and we
did.

Since a string (word) variable can potentially range in size from
one byte to 89,600 bytes, (maximum determined by total number of bytes
that can be stored on a single "mini-disc", plus or min~s 2 or 3) and
the computer handles strings differently than numbers, it would be
impossible to pre-size (dimension) a string variable.

The key word in the above II paragraph sentence " is the word
DIMENSION ---- remember the DIM statement. To quickly review, an
unDIMENSIONed string (word) has the default DIMENSION of 10 or, if
you like, 10 bytes. If the string is shorter than 10 bytes, and you
know it's an unDIMENSIONed string, this creates no particular problem.

-151-

If the unDIMENSIONed string is longer than 10 bytes (characters) the
computer will use only the first 10 bytes and .ignore the remaining
characters. Thus:

GO TO HELLISPORT

If left unDIMENSIONed becomes :

GO TO HELL

Which is not what we want. Remember each string variable must be
DIMENSIONed or it will assume the default DIMENSION of 10 characters
(bytes) •

To determine the size of a file RECORD (set of variables) which
contains one or more string variables, all we do is count the number
of bytes (characters) in each string and then add 2 bytes for each
string variable. Let's first CReate a file and write a program to
WRite data to it :

1. Get in the disk operating system (DOS).
A. From start up , load from "mini-disk" EX E900
B. From BASIC mode, type in : BYE

2. ON * type in CR FILE$ 5

3. ON * type in TY FILE$ 3

4. Put the computer in BASIC mode.
A. From start up : ON * type in GO BASIC
B. If BASIC has already been LOADed once

ON * type in : JP 2A04

(In all instances where you "type in" always follow that by
pressing the RETURN key - I forget to mention that sometimes)

The program to add data to "FILE$" is

10 OPEN #0 , "FILE$"
20 INPUT "VARIABLE A$ " A$
30 IF A$ = "0" THEN 80
40 INPUT "VARIABLE B$ = " B$
50 INPUT "VARIABLE C$ = " C$
60 WRITE #0 , A$,B$,C$
70 GOTO 20
80 CLOSE #0
90 END

If we RUN we get:

-152-

VARIABLE A$ type in ORANGE
VARIABLE B$ type in APPLE
VARIABLE C$ type in PEACH
VARIABLE A$ type in ONION
VARIABLE B$ type in BEET
VARIABLE C$ type in POTATO
VARIABLE A$ type in GRAPE
VARIABLE. B$ type in PLUM
VARIABLE C$ type in CHERRY
VARIABLE A$ type in TOMATO
VARIABLE B$ type in LETTUCE
VARIABLE C$ type in CORN
VARIABLE A$ type in 0

Our "FILE$" is made up of multiple RECORDS of the three string
variables A$, B$, and C$ • If we ~ould see our "FILE$" it
would look like this :

RECORD #1
RECORD #2
RECORD #3
RECORD #4

ORANGE,APPLE,PEACH
ONION,BEET,POTATO
GRAPE,PLUM,CHERRY
TOMATO,LETTUCE,CORN
I-------------~-------I "end-mark"

Since we did not DIMENSION these string variables each would have
the default DIMENSION of 10 bytes. The rule for determining the number
of bytes in a file RECORD for string variables is :

COUNT THE NUMBER OF BYTES IN A STRING AND ADD 2

Each RECORD in our "FILE$" contains three unDIMENSIONed string
variables, therefore each RECORD would contain

(10 + 2) + (10 + 2) + (10 + 2)
A$ B$ C$

36 bytes
a RECORD

From this point on everything we said about numerical RECORDS is the
same for string RECORDS. The READ statement for our "FILE$" would be

10 READ iO %36*(J-l) , A$,B$,C$

Where 36 is the number of bytes per RECORD and (J-l) would be the
RECORD number. The READ statement essentially says:

SKIP 36 BYTES (J-l) TIMES THEN READ A$,B$,C$

-153-

The program to READ our "FILES" would be

10 OPEN #0 , "FILE$"
20 INPUT "WHAT RECORD NUMBER DO YOU WANT " J ,
30 IF J = 0 THEN 70
40 READ #0 %36* (J-1) , A$,B$,C$
50 PRINT A$,B$,C$
60 GOTO 20
70 CLOSE #0
80 END

If we RUN we get:

WHAT RECORD NUMBER DO YOU WANT type in 3
GRAPE
PLUM
CHERRY
WHAT RECORD NUMBER DO YOU WANT type in 1
ORANGE
APPLE
PEACH
WHAT RECORD NUMBER DO YOU WANT type in 0
READY

Now let's assume the inevitable happens. No sooner than we get
our "apples" and "tomatoes" in order and on "FILE$", we get a letter
telling us that everything has "gone sour". We've got to change the
"CHERRY" to "LEMON" •

We READ our "FILE$" and find that "CHERRY" is the third entry in
RECORD # 3. Next we must write a program to change it. The required
program would be

10 INPUT "WHAT VARIABLE DO YOU WANT TO CHANGE
20 IF wS = "0" THEN 110
30 INPUT "WHAT DO YOU WANT TO CHANGE IT TO :
40 IF W$ "A$" THEN H 0
50 IF W$ = "B$" THEN H 12
60 IF W$ = "C$" THEN H 24
70 OPEN #0 , "FILE$"
80 WRITE #0 %36* (J-1) + H , L$
90 CLOSE #0

100 GO TO 10
110 END

~f we RUN we get :

WHAT VARIABLE DO YOU WANT TO CHANGE : type in
WHAT DO YOU WANT TO CHANGE IT TO type in
WHAT VARIABLE DO YOU WANT TO CHANGE : type in
READY

: "

" , L$

C
LEMON

o

W$

-154-

If we want to check to see if all the changes were made , LOAD the
READ program above.

If we RUN we get :

WHAT RECORD NUMBER DO YOU WANT
GRAPE
PLUM
LEMON

type in 3

This would indicate that all went well and the change was made. Now
let's consider a few additional examples:

10 DIM A$ (5) ,B$ (13) ,C$ (24)

If this DIMENSION statement represents the DIMENSIO"s of the
string variables A$, B$, and C$ and these are the only variables
in the RECORD then :

A$
B$
C$

5 bytes + 2 bytes
13 bytes + 2 bytes
24 bytes + 2 bytes

TOTAL

7 bytes
15 bytes
26 bytes

48 bytes

Therefore each RECORD of our example contains 48 bytes. The READ
statement to RANDOM ACCESS this file would be :

1 0 READ # 0 % 4 8 (J -1) , A $, B $, C $

One last example

10 DIM K$(51)

This is the DIMENSION statement used in a program to WRITE data
to a TYPE 3 data file. There are three variables; S , B$, and M$.
The prog~am WRITEs all three variables in the order S ,B$,M$, by
RANDOM ACCESS method • What would be the WRITE statement ?

M$

Therefore

S = numerical variable
B$ = string variable DIM(51)

unDIMEMSIONed string variable

TOTAL

5
51 + 2
10 + 2

70

bytes
bytes
bytes

bytes

60 WRITE to %70* (J-l) , S ,B$,M$

-155-

This WRITE statement says :

SKIP 70 BYTES (J-l) TIMES THEN WRITE S,B$,M$

Where (J-l) is the RECORD number.

If we wanted to READ the value of only B$ from the file data CReated
by this example our READ statement would be :

130 READ #0 %70*(J-l)+5, B$

If we wanted to change the value of of M$ in file RECORDs numbers 14
and 78 in our example, the WRITE statement would
be :

260 WRITE #0 %70*(J-l)+58, M$

Where the first INPUT value for J would be 14
The second INPUT value for J would be : 78

If you understand all that I have written about RANDOM ACCESS of
data files and it took you less than six months to understand it, then
I can only assume one of two things : 1. You are considerably more
intelligent than I am: or 2. You had better instructive information
available to you. I hope in your case it is the results of both.

33

A C LOS E R L 0 0 KAT THE T Y P FUN C T ION

We have covered a very complex, but one of the most useful sets
of tools the computer has to offer --- the use of SEQUENTIAL FILES. I
need to go back and mention a few things which I think would be more
salient now than at the time they first appeared in the program.

My exp~anation of the TYP function was inadaquate, but I did not
want to divert from the poin~ at hand. Therefore, I just briefly
mentioned what the TYP function did in that particular program,
without further explanation. Let's now look at the TYP function
closer.

If you remember I said that anytime you OPEN a FILE the "reader"
(pointer) always goes to the "front" or start of the FILE. It then
moves in an orderly manner through the FILE, much like the arm on a
record player follows the groves in a phonograph record. There are
many occasions when one does not to start at the "front" of the FILE.
Often it's necessary to start at the end of the FILE.

Let's consider the program we wrote to add data to our FILE
AUTOPART. We have long since CLOSEd that FILE and put it away. Now a
new shipment of auto parts has just arrived, and we must add these new
items to the FILE. If we were to use the program we had previously
written, we would have a minor disaster.

Why would we have a "disaster" when it worked so well before?
The reason is, that by OPENing the FILE again the pointer (reader)
starts at the beginning of the FILE, as it always does. If you were
to RUN the program as written, without making any changes, you would
be erasing previous data at the same rate that you were adding new
data. You would be "over writing" anything that was already on the
mini-disk and when you finished adding your new data, that's all that
you would have --- your new data.

Even if you added only one item and the FILE already had 236
other data entries, you would still end up with a FILE with only one
item on it. The reason is that when the computer finished writing
that single item on the mini-disk, it would then place an END MARK
after it. This of course, would tell the computer when it goes to
READ the FILE, after it READs that single item and then encounters an
END MARK, that that is the "end of file".

Now, -all of this is all right if that's what you intended to do,
but if you meant to add the daea for the new auto parts at the end of
all previous data entries, then you've got to tell the computer to do

-157-

it that way. Here's how .•.••

Whenever the computer READs a data FILE on a mini-disk it always
"looks" one step ahead --- it always knows what's corning up next. We
are provided with a method to take advantage of this fact, it is
called the TYP FUNCTION. Like all other FUNCTIONs discussed, it is
part of the BASIC LANGUAGE program, and is there to be called upon
when needed.

Let us look at our original program that we wrote to add data to
our FILE AUTOPART:

10 DIM N$ (23)
15 OPEN #0, "AUTOPART"
30 INPUT " WHAT IS THE PART NUMBER II N
40 IF N = 0 THEN 80
50 INPUT " WHAT IS THE PART NAME II N$
60 WRITE #0, N,N$
70 GOTO 30
80 CLOSE #0
90 END

If we make the appropriate changes, such that we can add new data
to the end of the old data, thus expanding our FILE AUTOPART. Our new
program to add additional data to the FILE would look like this:

10 DIM N$(23)
15 OPEN #0, II AUTOPART"

I------- 22 IF TYP(O) = 0 THEN 30
I 24 IF TYP{O) = 2 THEN 26
I 26 READ #0, Nl, Nl$
1------- 28 GOTO 22

30 INPUT .. WHAT IS THE PART NUMBER : II N ,
40 IF N = 0 THEN 80
50 INPUT " WHAT IS THE PART NAME : II N$,
60 WRITE #0, N, N$
70 GO TO 30
80 CLOSE #0
90 END

As you can see, both programs are exactly the same except for the
inclusion of LINEs 22,24,26,and 28. Let's examine exactly what each
of these LINEs does and how they affect the program.

22 IF TYP{O) = 0 THEN 30

This tells the computer that IF the next thing to corne up on the!

-158-

FILE is an END MARK, THEN go to LINE 30. LINE 30 is really the start
of our program for adding data to our FILE after it is properly OPENed
and DIMENSIONed.

24 IF TYP(O) 2 THEN 26

This tells the computer that IF the next thing to come up on our
FILE is a NUMERIC VALUE (number), THEN go to LINE 26.

26 READ #0, Nl, Nl$

The computer already knows that the next thing to come up is a
NUMERIC VALUE, that's why it came to LINE 26. We already know that
our FILE is constructed of sets (RECORDs) of a NUMERIC VALUE (part
number), followed by a STRING VALUE (part name). Since we know how
the FILE is constructed, we also know that the computer can not READ
another NUMERIC VALUE until after it has -READ a "par t name", a STRING
VALUE. Knowing all of this, we are in a position to tell the computer
what to READ so that we know that the "next thing to come up" on the
mini-disk will either be a NUMBER or an END MARK.

The other thing of interest which you may have noticed is that we
have changed the "names" of both of the variables. N has become Nl
and N$ has become Nl$. We must differentiate between typed in (INPUT)
values --- N, N$ and READ values --- Nl, Nl$. If we did not, the
computer would already have a value for the "part number" and "part
name", it would be the last set of values it READ from the mini-disk.

For this particular program it would not make any difference,
since we immediately assign new values for Nand N$ by our INPUT
statements. It is generally not in your best interest to use the same
variable "names" for "procedural tasks", such as setting the IIfile
pointer" to the proper position, as you use for "actual values" in
your program. You may inadvertently assign a value to something
without knowing it, particularly when you are working with long
complicated programs.

28 GOTO 22

The only way the computer could have gotten to LINE 28 was to
have not encountered an END MARK when it READ the FILE. Since we are
trying to set the pointer (reader arm) to the "end of FILE" so that we
can add additional new data, we know that we have not reached the "end
of FILE" and therefore must send the computer back to READ more data.
That is what LINE 28 does, it starts the READ cycle (loop) allover
again. Thus we get:

-159-

CHECK FOR END MARK

NO YES

CHECK FOR NUMBER START WRITING

READ SET OF DATA

This cycle (loop) will continue until the computer finally
encounters an END MARK. When the computer has READ the entire FILE
and has placed the pointer (reader arm) on the eventually found END
MARK, the file pointer is then in the proper position to WRITE new
data at the end of all previous data. Thus starts the INPUT portion
of your program and then the WRITE portion.

We can now add new data to this FILE at anytime without fear of
"over WRITEing" any previous data. No more problems - right? Not
so •••• every time we resolve one problem, we potentially create another
one. Since the computer can not think for itself and must rely on you
to do its thinking, it is at a disadvantage. We humans usually
resolve immediate problems with little regard to long term effects, as
evidenced by the solution of the above problem. What we did works and
works well,for our particular set of circumstances. However, there is
still one "flaw" in the system, or maybe I just haven't learned how to
get around it.

If you were to take our "new improved" program above and start
with a new unused mini-disk; our FILE properly CReated and TYped,
everything exactly as it should be; and try to RUN it --- it wouldn't
work.

The disk-reader would come on and just run and run and run ••••••
after a while the computer may turn it off or it may not. To put a
STOP to this, press the CTRL key and the "CO key at the same time
(CONTROL C). Everything will come to a STOP and READY will again
appear on the monitor.

Now, let's see if we can figure out what has happened. Our
approach to the solution must be guided by the fact that the computer
is very unyielding and that it always does what it is told to do.
Since we feel sure that we have not erred, as evidenced by the fact
that we have already successfully RUN this program before, it must be
a malfunction of the equipmeant --- our natural instinct is to blame
that which we least understand. Not so

Granted, the computer does exactly as it is told to do, but if we
fail to tell it to do something then it is left in the position of not
knowing what to do. That is· what we have done with our "new, improved
"program. LINEs 62 and 63 tells the computer what to do if it finds
a number or an END MARK • But nowhere have we told the computer what
to do if it doesn't find anything. On a "brand new" FILE that has
never been written to there would not be a number or an END MARK.
Neither condition of our program would be met and we have not told the
computer what to do under these circumstances.

-160-

Not only have we not told the computer what to do in a situation
like this, neither has the manufacturer, nor has the "person" who
wrote the Disk Operating System, nor the "person" who wrote the BASIC
language program --- nobody told the computer what to do. So, don't
feel like it's just our dumb mistake.

I would suggest another TYP FUNCTION to handle a situation like
this, which would tell the computer that if it finds a "clean" FILE
then go back to the "start of FILE" and continue with the rest of the
program --- but, none presently exists. The problem however, does
exist.

There are a couple of ways to program around the problem, both
are essentially the same. One is that you can at the start of any
program which is used to add data to a FILE, include an INPUT
statement which ask : ARE YOU STARTING A NEW FILE? If you type in:
NO, then the program proceeds as normal. If you type in: YES, then
the program is routed around the TYP FUNCTION statements and
immediately goes to the INPUT and WRITE statements for the first data
entry.

Such as the following:

17 INPUT " ARE YOU STARTING A NEW FILE ?" Y$
18 IF Y$ "YES" THEN 30

This method is quite effective, but requires that you respond to
the INPUT question every time you RUN the program. Since in my
situation I don't start a new FILE that often, I prefer to just type
in a GOTO statement on those occasions when I do start a new FILE.
Thus I include:

18 GOTO 30

·for just that first data entry. The program is written so that it
never goes back to LINE 18 for all subsequent data entries. Since I
don't SAVE the program with LINE 18 in it, the next time I LOAD the
program it is not there.

There is a hazard in using this method, in that if you route your
program around the TYP FUNCTIONs in any subsequent data entries, you
will end up with only one data entry --- the last one you typed in.
To insure that this doesn't happen, it's a good idea to STOP the
program after the first data entry and DELete LINE 18. Then, the
program will be exactly as originally written.

34
DEC I MAL AND HEX IDE C I MAL

Now, to what I consider more of the heavy stuff. On numerous
occasions we have already used the computer's memory ADDRESS system to
EXecute, JumP, ReaD, or LiFt a program. As we encountered them, I
kept glossing over their explanation, or put it off till later, or on
most occasions, not mentioning it at all. I didn't want to call it to
your attention.

Each one of the COMMANDS was followed by a number. This number
tells the computer where to get something or where to put something.
There are two types of ADDRESS systems used , one is the DISK ADDRESS,
the other is the computer's memory ADDRESS system.

The DISK ADDRESS has already been discussed in the chapter on
RANDOM ACCESS. It has little or nothing to do with DECIMAL or
HEXIDECIMAL addresses, and should not be confused with them.

Consider the following examples which we have already used

EX E900 RD 0 6000 32 . JP 2A04 WR 32 5700 16

These are all COMMANDS directed at specific ADDRESSes in the memory of
the computer. These are all HEXIDECIMAL ADDRESSes. Up to now we have
not used the DECIMAL ADDRESS.

There is a direct relationship between DECIMAL and HEXIDECIMAL.
All HEXIDECIMAL ADDRESes have an equivalent DECIMAL ADDRESS, and all
DECIMAL ADDRESSes have an equivalent HEXIDECIMAL ADDRESS. The
relationship between them will be examined.

The HEXIDECIMAL ADDRESS is the only address used by the Disk
Operating System. All commands used in DOS which contain an ADDRESS
must be in HEXIDECIMAL. Note the above examples.

We have as yet have not encountered the use of the DECIMAL
ADDRESS. The DECIMAL ADDRESS is used at the "byte access" level. In
general, it is only used in the BASIC mode. Each "space" of memory has
a specific DECIMAL ADDRESS. A 24K system has 24,576 DECIMAL
ADDRESSes. Some examples of the DECIMAL ADDRESS are:

10 FILL 52224,42

20 EXAM (57321)

-162-

The FILL statement will place a specific ASCII code in memory. For our
example it will place 42 (*) in the computer's 52,224 th "memory
space".

The EXAM-statement will EXAMine what ever is in the computer's memory
at the designated DECIMAL ADDRESS. In our example it will look at the
57,321 st "byte space". If it looked at the 52,224 th "byte space" it
would see 42.

Let's look at how the HEXIDECIMAL system works.

Essentially the HEXIDECIMAL system is no more than a
alphabetic-numeric representation of the DECIMAL system, to the base
SIXTEEN intead of TEN. For our purposes the smallest number would be
zero and the largest number would be 65,535.

They would be represented by

HEX
0000

DEC
o

HEX
FFFF

DEC
65535

Since HEXIDECIMAL uses base sixteen, we need symbols for the
"units" from 1 to 15, in addition to 1 to 9. We use the letters A to F
to represent the digits 10 to 15.

Let's consider our highest example

HEX
FFFF

DEC
65535

Starting at the left, the first number or letter tells you how many
times to raise 16 to the third power.

Therefore :

or:
F TIMES 16 CUBED

F*16"3

-163-

The next number or letter tells you how many times to raise
16 to the second power.

Therefore:

or:
F TIMES 16 SQUARED

F*16"2

The next number or letter tells you how many times to raise
16 to the first power.

Therefore:

F TIMES 16
or:

F * 16

The last number (no letter) tell you how many times to raise
16 to the zero power. Since 16 to the zero power is one:

F TIMES 1 or F

The next question should be, " How do you know the value of the
"letter" in the HEXIDECIMAL number? "

Here it is:

1st 2rd 3rd 4th

1 1 1 1

9 9 9 9

--
10 times A A A A
11 times B B B B
12 times C C C C
13 times D D D D
14 times E E E E
15 times F F F F

So again considering our highest example:

-164-

F F F F

1st F 15 X l6
A

3 61440
2rd F 15 X l6 A 2 3840
3rd F 15 X l6

A

l 240
4th F 15 X l6 A O 15

HEX F F F F 65535 DEC

Now let's try it with JP 2A04, which is the JumP command to get
from DOS to a BASIC program in the computer's memory.

2 A o 4

1st 2 2 X l6 A 3 2 X 4096 8192
2rd A 10 X l6 A 2 10 X 256 2560
3rd 0 0 X l6 A l 0 X 16 0
4th 4 4 X l6 A

O 4 X 1 4

HEX 2 A 0 4 10756 DEC

Now for some practical considerations. Consider our example - RD
a 6000 32. What this tells the computer is to READ from a mini-disk
STARTING at BLOCK 0 into the computer's memory STARTING AT ADDRESS
6000 the NEXT 32 BLOCKS on the mini-disk.

The 6000 is the HEX address, since all DOS functions are done by
HEXIDECIMAL, telling the computer where to store the information that
it is ReaDing off the mini-disk. In assigning this address several
things must be considered. First one does not want to "store" the
information where something else already is stored. In order to
execute the ReaD command we had to load the Disk Operating System into
the computer. DOS is at HEX 2000. So if we ReaD our mini-disk to 2000
- RD 0 2000 32 - we would overwrite DOS.

The next consideration is the size of what we are storing. We
want to ReaD into the computer 32 BLOCKS. On a 24K system like mine,
the highest HEX ADDRESS is 8000. with DOS loaded into the computer,
the mini-disk can be ReaD into the computer anywhere between HEX 2000
plus 10 blocks for DOS and HEX 8000. Since each BLOCK is 256 bytes
(16

A

2), we don't want to make our starting ADDRESS to high, or we will
exceed the memory ADDRESSes of our system.

Let's look at the lowest possible starting address. We know that
DOS is loaded into the computer starting at HEX ADDRESS 2000. We
also know that DOS is 10 BLOCKS long - which is the same as 10 times

-165-

256 bytes long - which is the same as 10 times 16
A

2 long. Now, it's
starting to look like one of the "factors" in the HEXIDECIMAL system,
and it is.

HEXIDECIMAL equivlent of 10 X 16
A

2 o A 0 0

If you add the DOS starting ADDRESS 2 0 a 0 to the number of BLOCKS
required to store DOS - converted to HEXIDECIMAL, you will end up with
the DOS ending ADDRESS.

Thus:

DOS STARTING HEX ADDRESS
NUMBER OF BLOCKS IN HEX

DOS ENDING HEX ADDRESS

2 0 0 0
o A a 0

2 A 0 0

Which is the HEX starting ADDRESS for BASIC. Which makes sense,
because BASIC is loaded into our system immediately following DOS in
memory. However, for our example since we have not loaded BASIC this
memory "space" is available.

Now back to the 32 BLOCKS that we want to ReaD into the
computer's memory.

If we add

32 BLOCKS HEX 2 0 0 0

DOS ENDING HEX ADDRESS
HEX VALUE OF 32 BLOCKS

ENDING HEX ADDRESS

2 A 0 0
200 0

4 A 0 0

And since we can go up to HEX ADDRESS 8000, we will have no troublE
ReaDing our 32 BLOCKS starting at HEX 2 A 0 O. So our ReaD commanc
could have been :

RD 0 2AOO 32

If we had BASIC in our computer, which has a starting HEX ADDRESS of
A 0 0 , and is 45 BLOCKS long, our available memory for "storing
would be :

-166-

STARTING HEX ADDRESS FOR BASIC : 2 A 0 0
HEX VALUE OF 45 BLOCKS : 2 D 0 0

ENDING HEX ADDRESS FOR BASIC 570 0

Our ReaD command could have been:

RD a 5700 32

And our ending HEX ADDRESS would be:

770 0

(5 7 0 0 + 2 0 a 0 7 7 0 0)

Which is still less than our maximum HEX ADDRESS 8 0 0 O.

But we choose a convenient number to remember -- 6000 •

So:

STARTING HEX ADDRESS 6 0 0 0
HEX VALUE OF 32 BLOCKS: 2 0 0 0

ENDING HEX ADDRESS 800 0

This equals our maximum HEX address of 8 0 0 0 , so we would just be
able to "store" 32 BLOCKS starting at HEX 6 0 0 0 •

Let's look at the arrangement of memory in the computer. Unique
to this system (SOL-20 with NORTH STAR BASIC) is the fact that the
first 8K of memory is not used, and therefore the first 8 times 1024
of DECIMAL or HEX addresses are not used. The reason for this is
beyond the scope of this book. However, that does not mean that you
have lost 8K of available memory. It's all there, it's just at a
different ADDRESS.

-167-

This is the way the computer's memory bank looks:

o
No memory

8K
1st 8K
memory

16K
2rd 8K
memory

24K
3rd 8K
memory

32K

This arrangement of memory causes no problems, but you must make
suitable adjustments in figuring the HEX or DECIMAL ADDRESSes.

The next thing to remember is that "K" is not equal to 1000, but that
"K" is equal to 1024. Therefore a 24K system has :

24K 24 X 1024 24576 - 1 bytes

Or 24575 byte ADDRESSes. The reason for the "- 1" is because the
computer starts counting at zero instead of one.

-168-

Here is another "map" of the computer's memory:

24K
24,576
bytes

DECIMAL
ADDRESS

o
1
1
1

1------------------8191
1 1
1 1
1 1
1 1---------8192
111
111
1 2,560 bytes 1
111
111
111
1 1--------10751
1 1
1 1
1 1
1 1--------10752
111
111
111
1 11,520 bytes 1
111
111
111
1 1--------22271
1 1
1 1
1 1
1 1--------22272
111
1 10,495 bytes 1
111
111
1 1--------32767
1 1
1 1
1-----------------32768

1st 8 K
NO MEMORY

= 8 X 1024 minus 1 --------1
1
i
1

2 0 0 0 HEX 1
1

STARTING DOS 1
1

10 BLOCKS 1
2,560 bytes 1

1
END DOS 1

1
1
1

= 2 A 0 0 HEX 1
1

STARTING BASIC 1
1

45 BLOCKS 1
11,520 bytes 1

(45 X 256) 1
1

END BASIC 1
1
1
1

5 7 0 0 HEX 1
1

START FREE 1
MEMORY 1

1
END OF MEMORY -----------1

8 0 0 0 HEX

-169-

If we can get from HEX to DECIMAL, then we ought to be able to go
the oppsite way - DECIMAL to HEX. We can, but it is a little
different.

Here is how:

STARTING: 22310 DECIMAL
••••••••••••••••••••••••••• a a a ••••••••

22310 divided by 16 A 3 5 + remainder:1830

1830 divided by 16 A 2 7 + remainder:38

38 divided by 16 A l 2 + remainder:6

6 divided by 16 A O 6

.
HEXIDECIMAL equivalent for a DECIMAL number is the quotients from the
above calculation:

DECIMAL 22310 HEXIDECIMAL 5726

If any of the quotients had been between 10 and 15, we would
substitute the HEX letter for the value: 10=A, 11=B, ••• ,15=F. If a
quotient is more than 15 it means that we didn't start with a high
enough power of 16.

That is all that one really needs to know about the relationship
between DECIMAL and HEXIDECIMAL at this time. To be completely honest
with you, you probably don't really "need" to know this much. Most of
the HEX ADDRESSes that you will use are already provided and by the
time you start working with DECIMAL ADDRESSes, byte access, you will
have long past the need for this book. On the other hand,
understanding this chapter will enable you to better understand why
and what you are doing.

I have included a program in the back of the book which will
convert HEX to DECIMAL or DECIMAL to HEX, which further precludes the
necessity for this chapter. In spite of all the reasons not to become
familiar with the subject at hand, I highly recommend the
converse •••••••

35
SEC RET S

I honestly wish that this could be the longest chapter in the
book, but it rivals the shortest.

A secret, according to the Random House Dictonary, College
Edition, is "a method, formula, plan, etc., known only to the
initiated or the few". I have found that a lot of the "general
knowledge" about the finer points of how to operate and program these
microcomputers qualifies as a secret by the above definition.

My experience has been like dealing with the little old lady who
gives you her favorite recipe, but "forgets" to include one or two of
the most siginificant ingredients. When you try her recipe, what you
get is all right, but never as good as hers --- and you never really
understand why.

I have found "computer people" to be a lot like the "little old
lady". They seem to always make their computers do more than you can
make yours do. They always say they've told you everything, but if
you watch and listen real close, they will always do something they
"forgot" to tell you about.

After two six-paks of beverage, I finally got one of those
"people" talking. However, in order to keep him drinking (and
talking), I had to drink along. This proved to be a disaster. I dontt
remember much of what he said, and my notes weren't as great the next
day as I thought they were that night. From my early evening notes I
was able to glean some "secrets", though not as many as are still out
there.

Here's wijat I got:

1. How to change the display and INPUT speed
of your computer.

on prompt or READY type in: FILL 51211,45

The number after the FILL 51211, can be any
number between 0 and 255, zero being the
fastest speed and 255 being the slowest
speed. The display stays at this speed until
changed again by this statement. It can also
be included in a program so that it can "print"
on the screen at different speeds depending on

~171-

what's going on in the piogram.

2. The video portion of the computer's memory is
between 52224 and 53247. If you want the
computer to PRINT any character that you
choose, in any position of the monitor,
you would type:

FILL 52224,42

Which would put, the character * somewhere
on the screen. (42 is the ASCII code for *
I think he said the top left corner if the
screen was cleared to start with (see below for
how to clear the screen).

3. To clear the monitor of all characters, you
would type:

! CHR$(ll)

This one was obvious, after he told me it does
the same thing as the "CLEAR" key on the keyboard
does when we're in the START-UP MODE.

4. I got this program off the table cloth
the next day:

10 CHR$(ll)
20 !"THIS WILL PLOT ANY CHARACTER YOU WANT"
30 !"ANYWHERE ON THE SCREEN."
40
50 !"IS THE CHARACTER YOU WNAT ON THE KEYBOARD ?"
60 A$ = INCHAR$(252)
70 IF A$ = "Y" THEN 110
80 INPUT "ENTER THE ASCII CODE ", C
90 A$::: CHR$ (C)

110 ! "WHAT CHARACTER ?"
120 A$ = INCHAR$(252)
130 !"INVERSE VIDEO? (Y OR N)
140 X$ = INCHAR$(252)
150 IF X$ = "Y" THEN A$ = CHR$(ASC(A$)+128)
160 INPUT "LINE (0 TO 15) : ",L
170 INPUT "CHARACTER POSITION (0 TO 63) : ",C
180 FILL 52224 +64*L + C, ASC(A$)
190 GOTO 150

The next day, I put it in the computer, and

-172-

it provided "food for thought" all day.
(I think some of it only works with the "NEW"
BASIC) .

5. To turn your computer into just a terminal to
work with another computer, you:

on > type in: TE

I didn't know this, and live never had a
need for this information, but I guess it's
good to know.

6. To make your computer PRINT on a printer,
instead of your monitor, you would:

on prompt or READY type in: FILL 51207,1

To stop your computer from PRINTing on a
printer, and display on the monitor, you
would:

on prompt or READY type in: FILL 51207,0

Everybody seemed to know this, but me. I also
found out that this only applies to a "serial"
printer. If you have a "parallel" printer, use a
2 instead of a 1 after the FILL statement. This
one will also work from inside a program.

There were a lot more "secrets" disclosed that night, as we
talked, and drank, till dawn. I just can't remember them. I would
highly recommend taking your friendly computer store person out and
buying him/her a few beverages. I would further recommend, that you
write and he/she drink. HOWEVER, under no circumstances, invite two
or more "computer people" out at one time, if your objective is to
learn something. If you can get a "computer type" to sit down with
you at your computer, you can also discover a lot of the "secrets"
from them. -

36
THE NEW BAS I C

There is always something to be gained from learning the
fundamentals, but it is not always necessary to know them to be able
to function. The NEW BASIC is exactly like the "old" BASIC execpt
that it is different. It does everything that the "old" BASIC does,
for the most part, exactly the same. It also does a few new things.
Almost anything that you learn about the "old" BASIC is applicable to
the NEW BASIC.

The NEW BASIC is Northstar's Release 4 (June, 1978). This book
was complete and ready for the publisher, when I received a copy of
the NEW BASIC. My first impulse was not to include it. However,
after working with it a few days, I decided that the NEW BASIC had
something to offer that you should know about.

The biggest changes are the automation of the most used
"functions" relating to SAVING and LISTING files. These make life a
little eaiser and eliminate a great deal of JumPing and BYEing. Now
you can do it all from BASIC mode. There are probably a lot more
advantages than I can evaluate, because I don't fully understand
everything that the "old" BASIC can do yet. One thing that I know
that hasn't changed is the person that writes the manuals for North
Star. I honestly could not understand most of it, but then I may have
been lacking some "familiarity with some version of BASIC".

After much reading and much "trial and error" time with my
computer, I finally figured out the following:

1. The FREE command has been changed to the
PSIZE command. If at anytime you want to
know haow much available memory you have
left in the computer in BASIC mode, you
just:

on prompt or READY: type in: PSIZE

BASIC will tell you how many disk blocks will be
needed to SAVE the program.

The FREE function is still part of the NEW
BASIC, and it can also be used.

on prompt or READY: type in: !FREE(O)

BASIC will tell you how many bytes of memory are

-174-

left FREE.

They do similar things and they are both
available. The choice is yours.

2. The new function - NSAVE - is a welcome
addition. From the BASIC mode it will
allow you to SAVE the program that you
have in the computer without having to
go to the DOS mode, CReate a file, TYpe
it, size it, and then back to BASIC to
SAVE it. The NSAVE command does all of
that for you automatically. Again, all
the "old" BASIC operations to do this,
still work too.

3. The CAT command will allow you to LIst
the names of all the files ,that you have
on any mini-disk in the disk reader from
the BASIC mode. Heretofore you had to
go to the DOS mode first. Now you can
use CAT from the BASIC mode and LI from
the DOS mode.

4. The next new feature is the AUTO command.
This command will cause the computer to
automatically write the LINE NUMBERS for
you, when you are writing a BASIC program.
When this command is executed, the computer
will generate a new LINE number, every time
you press the RETURN key.

You can specify the starting LINE number
and the size of the increment, if you want.
Or, if you don't want, the computer will
assign the default starting LINE number of
10, and the default increment of 10. All
you do is:

on prompt or READY

Thus:

10.
20.
30 ••

type in: AUTO

If you want to start at a LINE number other
than 10, then:

-175-

on prompt or READY: type in: AUTO 100

This will start with LINE 100, and each
subsequent LINE number will increase by
the default increment of 10.

Thus:

100.
110. •
120. • • • • •

If you want to start at LINE 100 and increment
by 100, you would then:

on prompt or READY

And you would get:

100. • • • • •
200. • • • • •
300.

type in: AUTO 100,100

Two things that make the AUTO command awkward to use
for me:

a. There is no space automatically provide
between the LINE number and the LINE
statement, so you have to remember to
put it there if you want it. It's
not necessary, and it does take up
memory. Still, for beginners and
programmers who like to be able to
find the right LINE number in a hurry,
I recommend the "space".

b. I'm not a good enough programmer to write
a program without having to "insert" LINEs
as I go along. Thus, I always start out
using the AUTO command, but very quickly
abandon it, because it's more trouble to
stop and restart it than it is to just
put in the LINE numbers. But, I always
start out using it.

I would recommend for the next version of NEW BASIC to rectify
these two detractants, by making the space between LINE number and
LINE statement optional, by showing the computer owner how to
personalize the AUTO command, if possible. Also, by including an
"escape" from the AUTO command, which would allow one to exit it, use

-176-

whatever LINE numbers he wants, and then re-enter the AUTO, such that
it would retain its original "count".

5. The APPEND command will probably not be
one of the most used features of the NEW
BASIC, but it's good to have around. This
command allows one to LOAD a program from
a mini-disk on to a program that is already
in the computer.

The one condition required to use the APPEND
command, is also the only draw-back I see to
the use of the APPEND command. The last
LINE number of the program in the computer
must be lower than the first LINE number
of the program that you are LOADing into
the computer.

Thus if you have:

10.
20.
30.
40.

10.
20.
30.
40.

PROG-l

PROG-2

Where, PROG-l is in the computer and 'PROG-2
is on a mini-disk, and you wish to APPEND
PROG-2 to the end of PROG-l, this can not
be done without changing all the LINE
numbers of PROG-2, such that the first LINE
number is greater than LINE 40.

This would not be such a chore for a small
program as our above example. However, if
our PROG-I's last LINE number was 1200, and
the first LINE number for PROG-2 was 10, you
would have a lot of RENumbering to do to get
the first LINE number of PROG-2 greater than
1200. There might be an easy way to do this,
but I could not find it.

Let's go back to our original example, PROG-l
& PROG-2. If PROG-l is in the computer and

-177-

you want to add PROG-2 to the end of it -
APPEND PROG-2. You do this:

on prompt or READY: type in: APPEND PROG-2

If in the NEW NEW BASIC they include an
automatic LINE NUMBER CHANGER, it would
be great, without it - it's only good.

6. Another change is the new entry point to
BASIC from DOS or START UP. For the old
BASIC it was HEX 2A04. If you were in
DOS mode and you wanted to get back to
BASIC mode, you would:

on * type in: JP 2A04

From START UP you would:

on > type in: EX 2A04

For the new BASIC both of these commands
still work and are both useful. But,
another entry address has been provided
that retains the value of all the variables.
This new entry address is HEX 2Al4. Thus,
if you are RUNning a BASIC program and STOP
it, and go to DOS mode, and then want to go
back to the program, keeping all the values,
you would:

on * type in: JP 2Al4

If you want to re-enter the program with
all the values reset, then:

on * type in: JP 2A04

as always ••••

7. The new BASIC has also corrected what
I considered to be a major irritation
in the old BASIC. The DELete command
has been "fixed" so that once used on
large blocks of LINE numbers, that these

-178-

DELeted LINEs are usable again. As you
may remember, I cautioned the reader
about this "flaw" in an earlier chapter.

While we are on the subject of deletions,
I will take this opportunity to mention
that the old DE (DEletion) command, used
to DElete files from the mini-disk, has
been changed to DESTROY in the new BASIC.

"old" DE PROBLEM

"new" DESTROY PROBLEM

8. The LIST command for LISTing a BASIC program
in the memory of the computer has changed
somewhat. Actually the commands have
remained the same, but their meaning changed.

The "old" LIST 250

Would LIST a program from LINE 250 to END.

The "new" LIST 250

will LIST LINE 250 only.

On the other hand:

The "old" LIST 250,

Would LIST only LINE 250

And:

The "new" LIST 250,

will LIST the entire program from LINE 250
to the END.

Everything else remains the same with regard
to LISTing.

9. The last item of change that I will go into
is the COMPACT command. In the old BASIC,
if you had a mini-disk which you had DEleted

-179-

several of the files from, and you wanted
to "move" everything to the front of the
mini-disk, you would put the computer in
the DOS mode, insert the desired mini-disk,
and:

on * type in: CO

In the new BASIC, you first load the COMPACT
program by:

on * type in: GO COMPACT

Then insert the desired mini-disk into the
disk-reader and, type in : 1.

There are several other features to the new BASIC which I either
have not used enough to write about, or that I tried to use, but as
yet do not fully understand.

In general, the new BASIC is an improvement over the old BASIC.
If given the choice, I would recommend starting with the new BASIC.
If you already have the old BASIC, I would recommend getting the new
one when you get a chance. However, it's not a major advancement in
the computer industry, it's just an improved version of what you
already have, and what you already have works pretty good. I'm told
that 99% of programs written with the old BASIC will work with no
changes wth the new BAS IC. So I would not make' a mad rush to your
neighborhood computer store to get it, but if you are there - pick it
up.

Theend ••• but really just the beginning ••••

-180-

10 REM
20 REM

THIS PROGRAM PRINTS A LIST OF ALL THE POSSIBLE VARIABLES

30 1" IF YOU WANT A LIST OF STRING VARIABLES TYPE IN
401
50!" IF YOU WANT A LIST OF NUMERIC VARIABLES TYPE IN
60
70 INPUT" WHICH DO YOU WANT 1 OR 2 : ", V
80 ON V GOTO 90,220
90 DIM A$ (26) ,B$ (26)
100 I" S T R I N G V A I R A B L ELI S T
1101
120 FOR 1=1 TO 26
130 FOR J=l TO 11
140 LET A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
150 LET B$=" 0123456789"
160 T$="$"
1701 A${I,I) ,B${J,J),T$," "
180 NEXT J
1901
200 NEXT I
210 END
220 DIM A$ (26) ,B$ (26)

1"

2"

"

2301 " N U MER I CAL V A I R A B L ELI S T
PRESS RETURN TO CONTINUE
2401
250 FOR 1=1 TO 26
260 FOR J=l TO 11
2'iu LET A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
280 LET B$=" 0123456789"
2901 A${I,I) ,B${J,J),"
3UO NEXT J
3101
320 NEXT I
READY

"

"

-181-

10 REM THIS IS A SIMPLE CHECK BOOK BALANCING PROGRAM
20 INPUT " STARTING BALANCE FROM BANK STATEMENT
30 1
40 IltPUT " HAVE YOU MADE A DEPOSIT ?
50 IF A$ "NO" THEN 130
601

", A$

70 INPUT " WHAT WAS THE AMOUNT OF THE DEPOSIT
80 F= F + E
90 K = K + 1
100 1

"

"

E

110 INPUT " DID YOU MAKE ANOTHER DEPOSIT ?
120 IF Al$ = "YES" THEN 70

" Al$

1301
140 INPUT " AMOUNT OF CHECK WRITTEN
150 C = C + 1
160 D = D + B
1701

" B

A

180 INPUT " HAVE YOU WRITTEN ANOTHER CHECK ?
190 IF Y$ "YES" THEN 140

" , Y$

200 G = A + F - D
2101\1\1"**"
2201
23U 1 " YOU HAVE WRITTEN ",C," CHECKS : TOTAL ",%$C10F2,D
PRESS RETURN TO CONTINUE
240 1 " YOU HAVE MADE ", K," DEPOSITS : TOTAL ",%$C10F2,F
2501
260 H = SGN(G)
270 IF H 1 THEN 320
280 IF H = -1 THEN 350
2901 " YOU ARE NOT 0 V E R 0 RAW N "
3001" BUT: THERE IS NO MONEY LEFT IN YOUR CHECKING ACCOUNT
310 GOTO 380
3201" YOU S TIL L H A V E M 0 N E Y L EFT "
330 1 " THERE IS ", %$C10F2,G," IN YOUR CHECKING ACCOUNT "
340 GOTO 380
350 1" YOU ARE 0 V E R D RAW N "

"

360 1" YOU MUST DEPOSIT ",%$C10F2, ABS(G) ,"
3701 " ALREADY WRITTEN"

TO COVER CHECKS",

J80 END
READY

-182-

10 REM THIS PROGRAM DRAWS A SQUARE
20 REM
30 1 CHR$(139)
40 FOR N=l TO 4 \ ! CHR$(19), \ NEXT N
50 READ X,Y
60 IF X=O THEN 240
70 FILL (52224 + X + 64* Y) , 160
80 GOTO 50
90 REM FIRST LEFT
100 DATA 18,13,18,12,18,11,18,10,18,9,18,8,18,7,18,6
110 REM FIRST BOTTOM
120 DATA 19,13,20,13,21,13,22,13,23,13,24,13,25,13,26,13,27,13
130 DATA 28,13,29,13,30,13
140 DATA 41,13,31,13,32,13,33,13,34,13,35,13,36,13,37,13,38,13
150 DATA 39,13,40,13
160 REM FIRST RIGHT SIDE
170 DATA 41,12,41,11,41,10,41,9,41,8,41,7,41,6
180 DATA 40,12,40,11,40,10,40,9,40,8,40,7,40,6
190 DATA 19,13,19,12,19,11,19,10,19,9,19,8,19,7,19,6,40,13
200 REM FIRST TOP
210 DATA 19,6,40,6,20,6,21,6,22,6;23,6,24,6,25,6,26,6,27,6,28,6
220 DATA 29,6,30,6,31,6,32,6,33,6,34,6,35,6,36,6,37,6,38,6,39,6
230 DATA 41,6
PRESS RETURN TO CONTINUE
240 RESTORE
250 FOR N= 1 TO 1000\ NEXT N
260 GOTO 30
270 END
READY

-183-

1 REM THIS GRAPHIC PROGRAM DRAWS A HOUSE
10 ! CHR$(139)
20 FOR N=l TO 4 \ ! CHR$(19), \ NEXT N
30 READ X,Y
40 IF X=O THEN 630
50 FILL(52224 + X + 64* Y) , 160
60 GOTO 30
70 REM LEFT WALL BOTTOM TO TOP
80 DATA 6,15,6,14,6,13,6,12,6,11,6,10,6,9
90 DATA 7,15,7,14,7,13,7,12,7,11,7,10,7,9
100 REM BEAM LEFT TO RIGHT
110 DATA 4,9,5,9,6,9,7,9,8,9,9,9,10,9,11,9,12,9,13,9,14,9,15,9,16,9,17,9
120 DATA 17,9,18,9,19,9,20,9,21,9,22,9,23,9,24,9,25,9,26,9,27,9
130 DATA 28,9,29,9,30,9,31,9,32,9,33,9,34,9,35,9,36,9,37,9,38,9
140 REM RIGHT WALL TOP TO BOTTOM
150 DATA 38,9,38,10,38,11,38,12,38,13,38,14,38,15
160 DATA 37,9,37,10,37,11,37,12,37,13,37,14,37,15
170 REM BEAM EXTENSION
180 DATA 38,9,39,9,40,9,41,9
190 REM LEFT ROOF BOTTOM TO TOP
200 DATA 6,9,7,9,6,8,7,8,7,7,8,7,9,7,9,6,8,6,10,5,9,5
210 DATA 10,4,11,4,11,3,12,3,12,2,13,2,13,1,14,1
220 REM ROOF BEAM LEFT TO RIGHT
PRESS RETURN TO CONTINUE
230 DATA 14,1,15,1,16,1,17,1,18,1,19,1,20,1,21,1,22,1,23,1
240 DATA 24,1,25,1,26,1,27,1,28,1,29,1,30,1,31,1,32,1,33,1
250 REM RIGHT ROOF TOP TO BOTTOM
260 DATA 32,1,33,1,33,2,34,2,34,3,35,3,35,4,36,4,36,5,37,5,37,4
270 DATA 37,6,38,6,38,7,39,7,39,8,40,8,40,9,41,9,41,9
280 REM FLOOR LEFT TO RIGHT
290 DATA 4,15,5,15,6,15,7,15,8,15,9,15,10,15,11,15,12,15,13,15
300 DATA 14,15,21,15,22,15,23,15,23,15,24,15,25,15,26,15,27,15
310 DATA 28,15,29,15,30,15,31,15,22,15,32,15,33,15,34,15,35,15
320 DATA 35,15,36,15,37,15,38,15,39,15
330 REM DOOR \ BOTTOM LEFT TO TOOP TO RIGHT TO BOTTOM RIGHT
340 DATA 14,14,21,15,14,13,14,12,14,11,15,11,16,11,17,11,18,11
350 DATA 19,11,20,11,21,11,21,12,21,13,21,14,21,15
360 REM WINDO~
370 DATA 27,13 ,28,13,29,13,30,13,31,13,32,13,33,13
380 DATA 33,12,33,11,32,11,31,11,30,11,29,11,28,11
390 DATA 28,12, 34,13
400 REM GRAGE
410 DATA 38,9,40,9,41,9,42,9,43,9,44,9,45,9,46,9,47,9,48,9,49,9
420 DATA 50,9,51,9,52,9,53,9,54,9,55,9,56,9,57,9,58,9,60,9
430 DATA 59,9,59,8,59,7,59,6,59,5,59,4,59,10,59,11,59,12,59,13
440 DATA 59,14,59,15
450 REM FLAG
PRESS RETURN TO CONTINUE

-184-

460 DATA 59,4,58,4,57,4,56,4,55,4,54,4,52,4,51,4
470 DATA 59,6,58,6,57,6,55,6,54,6,53,6,51,6
480 REM AUTO
490 DATA 42,15,55,15,43,14,44,14,45,14,46,14,47,14,48,14,49,14
500 DATA 42,14,41,14,50,14,51,14,52,14,53,14,54,14,55,14,56,14
510 DATA 43,13,44,13,45,13,46,13,47,13,48,13,49,13,50,13,51,13
520 DATA 52,13,53,13,54,13
530 DATA 44,12,53,12,49,12
540 DATA 43,11,44,11,45,11,46,11,47,11,48,11,49,11,50,11
550 DATA 51,11,52,11,53,11,54,11,55,11
560 DATA 10,6,10,5,10,4,10,3,10,2,10,1,9,1,9,2,9,3,9,4,9,5,9,6
570 DATA 8,1,8,2,8,3,8,4,8,5,8,6
580 REM UP WINDOW
590 DATA 19,4,20,4,21,4,22,4,23,4,24,4,25,4,26,4,27,4
600 DATA 19,5,19,6,19,7,20,7,21,7,22,7,23,7,24,7,25,7,26,7,27,7
610 DATA 27,6,27,5,23,5,23,6
620 DATA 0,0
630 RESTORE
640 FOR N= 1 TO 1000\ NEXT N
650 GOTO 10
660 END
READY

-185-

10 1" IF YOU KNOW THE CHARACTER AND WANT THE ASCII CODE - TYPE IN 1"
20!
3D!" IF YOU HAVE THE ASCII CODE AND WANT THE CHARACTER - TYPE IN 2"
40 !
50 INPUT" WHICH DO YOU WANT 1 OR 2 ",V
60!
70 ON V GOTO 150 ,80
80 INPUT" WHAT IS THE CHARACTER FOR ASCII CODE NUMBER ",A
90!
100!
110!" THE CHARACTER FOR THE ASCII CODE ",A," IS ",CHR$(A)
120!
130!
140 GOTO 10
150 INPUT" WHAT CHARACTER DO YOU WANT THE ASCII CODE FOR ",A$
160 1
170!
1801" THE ASCII CODE FOR ",A$," IS
190!
200!
210 GO TO 10
READY

",ASC(A$)

-186-

1 REM THIS PROGRAM READS ANYTHING THAT IS READ INTO THE
2 REM MEMORY OF THE COMPUTER.
3 REM
10 REM INPUT VALUES\ S=24576 ----E= 32768
20 REM LOAD MEMORY ON * RD '#' 6000 32
30 REM WHERE # =0, 32 , 64 , 96 , 350
40 REM THEN * JP 2A04
50 REM THEN RUN
60 REM EACH BLOCK IS 256 BITS \ IF # =1 THEN E=24576 +256
70 REM S & E ARE SET FOR 32 BLOCKS
80 S=24576
90 E=32768
100 FOR N=S TO E
110 A=EXAM(N)
120 IF A>128 THEN A=A-128
130 IF A<32 THEN A=46
140 ! CHR$ (A) ,
150 NEXT N
READY

1 REM THIS PROGRAM WILL READ AND PRINT ANYTHING ON A MINI-DISK
2 REM
10 REM INPUT VALUES\ S=24576 ----E= 32768
20 REM LOAD MEMORY ON * RD '#' 6000 32
30 REM WHERE # =0, 32 , 64 , 96 , 350
40 REM THEN * JP 2A04
50 REM THEN RUN
60 REM EACH BLOCK IS 2S6 BITS \ IF # =1 THEN E=24576 +256
70 REM S & E ARE SET FOR 32 BLOCKS
80 S=24576
90 E=32768
100 FOR N=S TO E
110 A=EXAM(N)
120 IF A>128 THEN A=A-128
130 IF A<32 THEN A=46
140 !CHR$(A) ,
150 NEXT N
READY

-187-

1 REM THIS PROGRAM MATCHES THREE TYPES OF DATA AGAINST STORED
2 REM DATA. THE INPUT IS 21 CHARACTERS EITHER\ + , 0 , • ,
3 REM THE + CAN BE POSITIVE THE 0 CAN BE NEGATIVE
4 REM AND THE CAN BE A VARIABLE EITHER POS OR NEG.
5 REM AS THE PROGRAM IS WRITTEN THE INPUT MUST BE 21 CHARCTERS
10 DIM R$(21) ,R1$(21)
20 INPUT "WHAT ARE YOUR 21 REACTIONS ",R$
30 IF LEN (R$)<>21THEN 20
40 READ R1$,C
50 IF C=O THEN 130
60 FOR N = 1 TO 21
70 IF R1$(N,N) = "." THEN 100
80 IF R$(N,N)="." THEN 100
90 IF R$(N,N)<>R1$(N,N) THEN EXIT 40
100 NEXT N
1101" ",C,
120 GOTO 40
130 RESTORE
1401" *"
150 GOTO 20
151 REM YOUR DATA STATEMENTS MAY BE CHANGED TO SUIT YOUR
152 REM YOUR OWN REQUIREMENTS THE REACTIONS MUST BE
153 REM ENCLOSED BY QUOTATION MARKS.
PRESS RETURN Iro CONTINUE
160 DATA "0+00+++++++.+0+0+.++0",1
170 DATA "000+++++++0+0+00++0++",2
180 DATA "0000+++++.0+0000.00+0",3
190 DATA "0+0++0.+0++00000+.+00",4
200 DATA "0+00+++++00+0000000.0",5
210 DATA "0000+++++00000000.0+0",6
220 DATA "0000++0+.0+000000+0+0",7
230 DATA "0+000+++.00+000000000",8
240 DATA "000000+00000+00000000",9
250 DATA "0+0000++0000000000000",10
251 REM YOUR LAST DATA STATEMENT MUST BE LINE 440
440 DATA "0",0
READY

-188-

10 !
20 !
30 !
40!

II THIS IS A MULTIPLICATION LEARNING PROGRAM II

II FOLLOW THE INSTRUCTIONS BY THE COMPUTER II

50 INPUT II PUT IN THE TIMES TABLE VALUE YOU WANT
60 LET B = A*6
70 LET C=A*2
80 LET D=A*9
90 LET E = A*5
.1,00 LET F A*ll
110 LET G A*4
120 LET H A*7
130 LET J A*12
140 LET K A*3
150 LET L A*8
160 LET M A*10
170 A, II X 6
180 IF P=B THEN 250
190!
200 IF P<>B THEN 210
210!

II \ INPUT II II P

II, A

220 ! II

230 !
YOUR ANSWSER IS INCORRECT -- TRY AGAIN

PRESS RETURN TO CONTINUE
240 GOTO 170
250 IF P = B THEN GOSUB 1030
260
270 A, II X 2
280 IF Q=C THEN 340
290 IF Q<>C THEN 300
300

II \ INPUT II II Q

310 ! " YOUR ANSWSER IS INCORRECT -- TRY AGAIN
320 GO TO 260
330
340 GOSUB 1030
350 A, II X 9
360 IF R = D THEN 410
370 IF R<>D THEN 380

II \ INPUT II II R

"

380
390 " YOUR ANSWER IS INCORRECT THINK AND TRY AGAIN
400 GO TO 350
410 GOSUB 1030
420 A, II X 5
430 IF S = E THEN 480
440 IF S<>E THEN 450
450

II \ INPUT II II S

II

460 "******* YOUR ANSWER IS INCORRECT THINK AND TRY AGAIN **11
PRESS RETURN TO CONTINUE

470 GOTO 420
480 GOSUB 1030
490 A," X
500 IF T=F THEN 550
510 IF T<>F THEN 520

11

-189-

",\INPUT " " T

520
530
540
550

" YOUR ANSWER IS INCORRECT -- THINK HARD--TRY AGAIN
GO TO 490
GOSUB 1030

560 A," X 4
570 IF U = G THEN 620
580 IF U<>G THEN 590
590

II \ INPUT " " U

6001 " YOU ARE WRONG YOUR NOT THINKING -- TRY AGAIN
610 GO TO 560
620 GOSUB 1030
630 A," X 7
640 IF V = H THEN 690
650 IF V<> H THEN 660
660

",\ INPUT" " v

670 1" WRONG----WRONG----WRONG---ONCE MORE
680 GOTO 630
690 GOSUB 1030
PRESS RETURN TO CONTINUE
700 A," X 12
710 IF W = J THEN 760
720 IF W<> J THEN 730

.. \ INPUT .. " W

WRONG

" THE ANSWER YOU PROVIDED IS WRONG -- TRY AGAIN
GOTO 700
GOSUB 1030

A, .. X 3
IF X = K THEN 830
IF X <> K THEN 800

" \ INPUT " .. X

II

II

"

"

730
740
750
760
770
780
790
800
810
820
830

! .. YOU MUST KNOW THAT CAN NOT BE THE RIGHT ANSWER-- TRY AGAIN n

GOTO 770
GOSUB 1030

840 A," X 8
850 IF Y=L THEN 900
860 IF Y<>L THEN 870
870

", \ INPUT" ", Y

880 1 " NOT RIGHT
890 GOTO 840

THINK IT OVER AND TRY IT AGAIN

900 GOSUB 1030
910 A," X 10
920 IF Z = M THEN 970
PRESS RETURN TO CONTINUE

" \ INPUT " " , Z

n

930 IF Z<>M THEN 940
940 1
950 n WRONG --- JUST ADD A ZERO TO YOUR NUMBER AND TRY AGAIN·

·960 GOTO 910
970 GOSUB 1030
980 1 n YOU HAVE COMPLETED THIS SECTION -- DO YOU WANT TO TRY MORE ? •
990 INPUT - YES OR NO ., W$
1000 IF W$ • ·YES· THEN 50
1010 1 - PLEASE -- TRY IT JUST ONE MORE TIME -- CHICKEN •
1020 END
1030 1
1040 1 n********* YOU ARE CORRECT ***********-
10501
1060 RETURN
1070 END
READY

-191-

1u !"WHEN YOU MIX TWO PRIMARY COLORS YOU GET A THIRD COLOR"
20 !"SELECT THE COLORS BY NUMBER AS REQUESTED"
30!
40!
50!"
60!"
70!"
80!

COLOR #1
COLOR #2
COLOR #3

BLUE
YELLOW
RED

"
"
"

90 INPUT "WHAr IS YOUR FIRST COLOR 1
100INPUT "WHAT IS YOUR SECOND-COLOR 1
110!
120 ON C GOTO 130,200,270
130 ON D GOTO 140,160,180

2
2

OR
OR

140! " IF YOU MIX BLUE WITH BLUE YOU GET BLUE"
150 GOTO 340

3
3

160! " IF YOU MIX BLUE WITH YELLOW YOU GET GREEN"
170 GOTO 340
180! " IF YOU MIX BLUE WITH RED YOU GET PURPLE"
190 GO TO 340
200 ON D GOTO 210,230,250
210! " IF YOU MIX YELLOW WITH BLUE YOU GET GREEN"
220 GOTO 340
230! " IF YOU MIX YELLOW WITH YELLOW YOU GET YELLOW"
PRESS RETURN TO CONTINUE
240 GO TO 340
2501 " IF YOU MIX YELLOW WITH RED YOU GET ORANGE"
260 GOTO 340
270 ON 0 GOTO 280,300,320
2801 " IF YOU MIX RED WITH BLUE YOU GET PURPLE"
290 GO TO 340
3001 " IF YOU MIX RED WITH YELLOW YOU GET ORANGE"
310 GOTO 340
3201 " IF YOU MIX RED WITH RED YOU GET RED"
330 GOTO 340
340 1
350 1" DO YOU 'ilANT TO CONT INUE? "
360 INPUT" TYPE 1 FOR YES & 2 FOR NO ", E
3701
380 ON E GOTO 50,390
390 END
READY

",C
" ,0

-192-

THIS IS A GAME WHERE THE COMPUTER IS THINKING OF A
NUMBER BETWEEN 1 AND 100. YOU TRY TO FIGURE IT OUT

1 REM
2 REM
3 REM
10 A=O

BY THE COMPUTER TELLING YOU IF YOU GUESS IS HIGH OR LOW

20 X=INT(RND(0)*100+1)
30 A=A+l
40 INPUT " WHAT DO YOU THINK THE NUMBER IS ?
50 IF X>Y THEN 80
60 IF X<Y THEN 120
70 IF X=Y THEN 150
801" YOUR NUMBER IS TOO
901
1001
110 GOTO 30
1201" YOUR NUMBER IS TOO
1301
140GOTO 30
1501
1601

LOW"

HIGH"

" ,Y

1701"**"
1801
1901"
2001

YOU ARE

PRESS RETURN TO CONTINUE

COR R E C T YOU GOT IT "

2101"**"
2201
2301" IT TOOK YOU THIS MANY TUNRS TO GET IT ",A
2401
2501
260 GOTO 10
READY

-193-

10 1" THE COMPUTER IS 'THINKING' OF A NUMBER BETWEEN 1000 AND 9999"
201
301" WOULD YOU LIKE TO TRY AND FIND OUT WHAT IT IS 1 1 1 1 1"
401
50 INPUT" YES OR NO 1 1 1 1 1 ",K5$
60 IF K5$ = "NO" THEN 970
701
801
901
1001
110 LET N 0
1201
1301
140 FOR A = 0 TO 9
150 FOR B 0 TO 9
160 FOR C a TO 9
170 FOR D = 0 TO 9
180 LET A INT(RND(A) *10)
190 LET B = INT(RND(B) *10)
200 LET C INT(RND(C) *10)
210 LET D INT(RND(D)*10)
220 IF A=B THEN 70
230 IF A = C THEN 70
PRESS RETURN TO CONTINUE
240 IF A= D THEN 70
250 IF B = D THEN 70
260 IF C = D THEN 70
270 IF B=C THEN 70
280 LET N = N + 1
290 ! " PUT YOUR NUMBER IN SEPERATED BY COMMAS--1,2,3,4 "
300!
310 INPUT A1,B1,C1,D1
320 LET J 0
330 LET K 0
340 IF Al A THEN J=J+1
350 IF Al A THEN K=K+l
360 IF Al B THEN K=K+l
370 IF Al C THEN K=K+l
380 IF Al D THEN K = K+1
390 IF B1 B THEN J=J+1
400 IF B1 A THEN K=K+1
410 IF B1 B THEN K=K+l
420 IF B1 C THEN K=K+l
430 IF B1 D THEN K=K+l
440 IF C1 C THEN J=J+l
45U IF C1 A THEN K=K+l
460 IF C1 B THEN K=K+l
PRESS RETURN TO CONTINUE

470 IF
480 IF
490 IF
500 IF
510 IF
520 IF
530 IF
540 1 II

550 1 II

5601

Cl C THEN
Cl D THEN
Dl D THEN
Dl A THEN
Dl B THEN
Dl C THEN
Dl D THEN

YOU HAVE
OF WHICH

K=K+l
K=K+l
J=J+l
K=K+l
K=K+l
K=K+l
K=K+l
II, K ,
II,J, II

570 IF J = 4 THEN 590
580 GO TO 280

-194-

II RIGHT NUMBERS II

IS/ARE IN THE RIGHT POSITION "

590 1 "************ YOUR ANSWSER IS CORRECT ************** II

600 1
610 1 lilT TOOK YOU II, N, II TURNS TO GET IT RIGHT II

620 II YOUR RATING IS II

6301
640 IF N<5 THEN 740
650 IF N=5 THEN 760
660 IF N=6 THEN 760
670 IF N= 7 THEN780
6BO IF N= 8 THEN780
690 IF N=9THEN7BO
PRESS RETURN TO CONTINUE
700 IF N 10 THEN 800
710 IF N 11 THEN 800
720 IF N = 12 THEN 800
730 IF N > 12 THEN 820
740 1 II ::::::::: YOU ARE A GENIUS -- OR YOU ARE VERY LUCKY::::::"
750 GOTO 840
760 ! II

770 GOTO 840
******* YOUR NUMERIC LOGIC IS ABOVE AVERAGE *******"

780 ! II ----------- YOUR NUMERIC LOGIC IS AVERAGE -------------n
790 GO TO 840
800 !" iiiiitiiii YOUR NUMERIC LOGIC NEEDS HELP ititiitt"
810 GOlfO 840
8201" XXXXXXXXX YOUR NOT TOO BRIGHT - OR YOU ARE NOT TRYING XXXXXX·
83"0 GOTO 840
840 1
850 1
860!
870 ! •
880 INPUT
890!

WOULD YOU LIKE TO TRY AGAIN 1??
• YES OR NO ".T$

900 IFT$ • ·YES· THEN 70
9101

•

920 ! "CHICKEN--CHICKEN--CHICKEN--CHICKEN--CHICKEN--CHICKEN "
PRESS RETURN TO CONTINUE

930 NEXT
940 NEXT
950 NEXT
960 NEXT
970 END
READY

-195-

1 REM THIS IS AN INVOICE TOTALING PROGRAM
2 REM
10 INPUT "UNIT COST : ",C
20 !" IS THIS A TAXABLE ITEM ? "
30 INPUT" YES OR NO ", Y~
40 IF Y$= "YES" THEN GOSUB140
50 R=R+C . .
60 INPUT"DO YOU HAVE ANOTHER ITEM? " D$
70 IF D$="YES" THEN 10
80!%'$10F2
90 !"TOTAL COST OF ALL ITEMS : ",

: ",B
II , '. 05*B

R
100 !"TOTAL COST OF TAXABLE ITEMS
110!"TOTAL AMOUNT OF TAX
120!"TOTAL OF ALL ITEMS PLUS TAX
130 END

: ",R+.05*B

140 B=B+C
150 RETURN
READY

-< .,

-196-

10 REM THIS IS A GAME - YOU BET IF THE NEXT CARD UP IS BETWEEN
20 REM THE TWO NUMBERS DISPLAYED.
30 02=100
401" ------------------------------------- ..
501" THE POT HAS ",%$10F2,02
601" ------------------------------------- ..
70 INPUT" ",A$
80 X=INT(RND(O) *13+1)
90 Y=INT(RND(O) *13+1)
100 IF X=Y THEN 80
110 IF X=Y+1 THEN 80
120 IF X=Y-1 THEN 80
130 K=ABS««ABS(X-Y)-1)/13)*100)-100)
140 K2=«(K/50)/1)+(K-50)-(2*(100/K)))*3/5.25
150 IF K2 < .5 THEN K2=.5
160 IF ABS(X-Y)-l = 6 THEN K2=1
1701" •••••••••••••.••.•••••••••••..••••••••.•••...•••••••.••••. "
1801" CAR D N U M B E RON E ",X," RISK IS "
1901TAB(45),%5Fl,ABS««ABS(X-Y)-1)/13)*100)-100)," % AGAINST"
2001" CAR D N U M B E R TWO " , Y," " ,ABS (X-Y) -1," CARDS"
2101
2201" HOUSE PAYS ",%$10F2,K2," FOR EVERY DOLLAR BET"
230!" •••••••••••••••••••••••••••••• ~ ••••••••••••••••••
PRESS RETURN TO CONTINUE
240 INPUT "PLEASE PLACE YOUR BET
2501" "
260 Z=INT(RND(O) *13+1)
2701" N EXT CAR D
2801
290 IF 0=0 THEN 40
300 IF Z = X THEN 350
310 IF Z = Y THEN 350
320 IF X>Y THEN 350
330 IF X<Y THEN 380
340 IF X=Y THEN 260
350 A=X
360 B=Y
370 GOTO 400
380 B=X
390 A=Y
400 IF Z>A THEN430
410 IF Z<B THEN430
420 GOTO 480

U PIS A

$ ",0

",z

4301" ii YOU L 0 0 S E ii
4401
450 02=02+Q
460 04=04-0
PRESS RETURN TO CONTINUE

..

-197-

470 GO TO 530
480!" $$$$$$$$$$$$$ YOU WIN $$$$$$$$$$$$$$$"
490!
500 Q2=Q2-Q*K2
510 Q4=Q4+Q*K2
520 GO TO 530
530 IF Q4 > 0 THEN 550
540 IF Q4 < 0 THEN 580
550!" YOU NOW H A V E WON " ,%$10F2,Q4
560 IF Q2 < 1 THEN30
57U GOTO 40
5S0!" YOU NOW H A V E LOS T ",%$10F2,Q4
590 GOTO 40
READY

-198-

1 REM
'2 REM
3 REM

THIS IS AN INVOICE TOTALING PROGRAM WITH ACCOUNTING
OF ALL THE INVOICES TOTALED.

1U I=O\D=O\J=O\H=O\K=O\S=O\T=O\O=O\R=O
20 N=N+1
30 INPUT "IS THIS ACCOUNT TAXABLE?
40 IF A$ = "YES" THEN T=.05
50 I = 1+1
601

" ,A$

70 INPUT" WHAT IS THE LIST PRICE OF THE ITEM?: ",p
801
90 INPUT " HOW MANY ARE TO BE SHIPPED ON THIS INVOICE
1001

11,0

110 R=R+O
120 INPUT "WHICH DISCOUNT CODE 1, 2 , OR 3
1301
140 GOSUB 330
150 INPUT "DO YOU HAVE ANOTHER ITEM :" B$
160 IF B$ = "YES" THEN 50

" o

1701\1\!"---"
1801
190 1 " TOTAL NUMBER OF LINE ITEMS FOR THIS INVOICE: II, %#, I
200 ! II TOTAL NUMBER OF UNITS FOR THIS INVOICE " , R
PRESS RETURN TO CONTINUE
210 II 'l'OTAL LIST PRICE ALL PRODUCT ON INVOICE
220 "TOTAL DISCOUNT PRICE ALL PRODUCT
230 1 " TOTAL TAX ON THIS INVOICE
240 1 " TOTAL AMOUNT OF THIS INVOICE
250 M=M+{K+{K*T))
2601
270 INPUT "DO YOU HAVE ANOTHER INVOICE
280 IF C$="YES" THEN 10
2901

"

3001 " TOTAL NUMBER OF INVOICES PREPARED
3101 " TOTAL AMOUNT OF ALL INVOICES PREPARED
320 END
330 ON 0 GOTO 340,360,380
340 J=P
350 GOTO 390
360 J=P*.9
370 GO TO 390
380 J=P*.8
390 H=H+{P*Q)
400 K=K+{J*Q)
410 RETURN
READY

C$

"
"

",%#$10F2,H
" ,K
.. ,K*T
" ,K+ (K*T)

%#,N
%$10F2,M

-199-

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM

THIS PROGRAM PREPARES THE EMPLOYEE DATA FILE TO BE USED
WITH THE PAYROLL PROGRAM. ALL OF THE QUESTIONS MUST
BE ANS'riERED. AN HOURLY RATE MUST BE USED EVEN FOR
SALARIED EMPLOYEES BASED ON 40 HOURS PER WEEK.
HOURLY EMPLOYEES MUST HAVE AN EMPLOYEE NUMBER GREATER
THEN 200 ---- SALARIED EMPLOYEES A NUMBER LESS THAN 200.

10 DIM N$(30),S$(11)
20 OPEN #0, "EMPLOYEE"
30 INPUT " EMPLOYEE NUMBER
40 IF N = 0 THEN 220
50 INPUT " EMPLOYEE NAME
60 INPUT " SOCIAL SECURITY NO.
70 1" TYPE IN FOR MARITAL STATUS: "

" N

",N$
",S$

80 INPUT" 1 - SINGLE * 2 - MARRIED: ",M
90 INPUT" EMPLOYEE'S PAY RATE ",R
100 INPUT" TOTAL NO. DEPENDENTS ",D
110 1" TAKING DEPENDENT INSURANCE? "
120 INPUT" 1 FOR YES 2 FOR NO ",I
130
140 IF TYP(O) = 0 THEN 200
150 IF TYP(O)=2 THEN 160
160 READ #0, N1,N1$,Sl$,M1,R1,D1,I1
PRESS RETURN TO CONTINUE
1701" THE LAST NUMBER READ ON THE FILE WAS
180!" THE LAST NUMBER WRITTEN ON THE FILE
190 GOTO 140
200 WRITE #0, N,N$,S$,M,R,D,I
210 GOTO 30
220 CLOSE #0
230 END
240!
250!
2601
270 OPEN #O,"EMPLOYEE"
280 IF TYP(O)=O THEN 320
290 IF TYP(O)=2 THEN 300
300 READ #O,N1,N1$,Sl$,M1,R1,D1,I1
310 GOT0280
320 1" THE LAST EMPLOYEE NUMBER ON FILE IS
330 CLOSE#O
340 END
READY

" ,N1
" ,N

",N1

-200-

1 REM THIS IS A PAYROLL PROGRAM WHICH CALCULATES WITHOLDING
2 REM AND FICA, ALLOWS FOR OTHER DEDUCTIONS. IT REQUIRES
3 REM A TYPE 3 EMPLOYEE FILE. IT IS BASED ON A WEEKLY
4 REM PAYROLL AND HANDLES BOTH SALARIED (#1 TO 199)
5 REM AND HOURLY (#200 AND ABOVE) EMPLOYEES.
6 REM THE WITHHOLDING TAX IS BASED ON 1978
7 REM TO UPDATE CHANGE LINES 430 TO 600.
10 DIM N$(~O) ,S$(ll)
20 K4=0
30 INPUT" THIS PAYROLL IS FOR THE PERIOD ENDING: ", D$
40!\!"----------------------------------~--------------------"
50 OPEN #0, "EMPLOYEE"
60 INPUT "WHAT IS THE EMPLOYEE NUMBER :", N9
70 I7=0\H2=0\F8=0
80 IF N9 = 0 THEN 1000
90 IF N9<200 THEN K4 = K4 +1
100 READ #0, N,N$,S$,M,R,D,I
110 IF N = N9 THEN 160
120 IF TYP(0)=2 THEN 100
130 IF.TYP(O)=O THEN! "THERE IS NO SUCH NUMBER"
140 CLOSE #0
150 GOTO 50
160!
PRESS RETURN TO CONTINUE
l1U1" THE NUMBER : ",N9," IS FOR ",N$
180
190 IF N9<200 THEN 210
200 GOTO 220
210 H=40\GOTO 260
220 INPUT "TOTAL NO. OF REGULAR HOURS WORKED ",H
23U IF H < 41 THEN 250
240 !"*** NO MORE THAN 40 ***"\GOTO 220
250 INPUT "TOTAL NO. OF OVER-TIME HOURS WORKED ",H2
2601
270 IF N9>200 THEN 300
280 INPUT "IF COMMISIONS HOW MUCH ",F8
290 F9=F9+F8
300 W = H*R
310 WI =H2*R*1.5
320 G = W + WI + F8
330 H5=H5+H
340 H6=H6+H2
350 W6=W6+Wl
360 INPUT "AMOUNT OF ADVANCEMENT REPAYMENT ",D7
3701
380 Dl = D*14.4
390 Nl = G-Dl
PRESS RETURN TO CONTINUE

400 F=G*.0605
410 ON M GO TO 420,520
420!
430 IF N1<33 THEN T1=0

-201-

440 IF N1>33 THEN T1=(Nl-33)*.16
450 IF Nl>76 THEN Tl=6.88+(NI-76)*.18
460 IF Nl>143THENT1=18.94 +(Nl-143)*.22
470 IF N1 >182 THEN T1=27.52+(NI-182)*.24
480 IF N1>220 THEN Tl=36.64+(NI-220)*.28
490 IF N1>297 THEN Tl=58.20+(NI-297)*.32
500 IF Nl>355 THEN Tl=76.76+(Nl-355)*.36
510 GO TO 610

N1<61 THEN T1=0
520!
530 IF
540 IF
550 IF
560 IF
570 IF
580 IF
590 IF
600 IF
610!
620!

Nl>61 THEN Tl= (NI-61)*.15
Nl>105 THEN Tl =6.6+(N1-105)*.18
Nl > 223 THEN Tl=27.84+(NI-223)*.22
Nl>278 THEN Tl = 39.94+(NI-278)*.25
Nl>355 THEN Tl=59.19+(Nl-355)*.28
Nl>432 THENT1=80.75+(Nl-432)*.32
Nl>509 THEN Tl=105.39+(Nl-509)*.36

PRESS RETURN 'ro CONTINUE
630 t"EMPLOYEE NUMBER
640 t"-
650 t"SOCIAL SECURITY #
660 IF N9<200 THEN 690
670 t "PAY RATE
680 GOTO 710
690 R2=R*40
700 ! "PAY RATE
710 !"TOTAL DEPENDENTS
720 !"PAY PERIOD ENDING
730 t"GROSS PAY
740 IF N9<200 THEN 780
750!H," REGULAR HOURS =
760 IF H2=0 THEN 780
770!H2," OVER-TIME
780 IF F8>1 THEN 800
790 GOTO 810
800 ! "COMMISIONS
810 ! "FICA WITHELD
820 ! "WITHOLDING TAX
830 IF I = 2 THEN 880
840 12 = 13.12\13=13+12
850 "DEPENDENT INSURANCE
PRESS RETURN TO CONTINUE

",TAB(35),%10FO,N
",TAB(35),N$
",TAB (35) ,S$

",TAB(35) ,%$10F2,R

",TAB(35) ,%$10F2,R2
",TAB(35) ,%10FO,D
" , TAB (38) , D$
",TAB(35),%10F2,G

",TAB(35) ,%10F2,H*R

",TAB(35) ,%10F2,H2*R*I.5

: ", TAB (3 5) , % 1 0 F 2 , F 8
",TAB(35),%10F2,F
" , TAB (3 5) , % 1 0 F 2 , T 1

" , TAB (3 5) , % 10 F 2 , 12

-202-

860 17=13.12
870 IF 07=0 THEN 900
880 1 "ADVANCE DEDUCTION : ",TAB(35), %10F2,D7
890 08=08+07
900 1
9101"*** NET PAY ",%$CI0F2,G-F-TI-17-D7
9201
930 N2=G-F-T1-17-D7
940 G1=G1+G
950 F1=F1+F
960 T2=T2+T1
970 N3=N3+N2
980 CLOSE #0
990 GOTO 50
10001\!\!"**"
10101\1\1
1020 ! " TOTALS FOR PAYROLL PERIOD ENDING ", 0$
10301
1040 1" TOTAL GROSS PAYROLL
1050 1" TOTAL FICA
1060 1" TOTAL WITHHOLDING TAX
1070 1" TOTAL DEPENDENT INSURANCE
1080 1" TOTAL ADVANCE DEDUCTIONS
PRESS RETURN TO CONTINUE
1090 1" TOTAL NET PAYROLL
11001

",%#$C10F2, G1
",F1
" ,T2
",13
.. ,08

" ,N3

1110 IF N3<>G1-F1-T2-13-D8 THEN l"ERROR IN NET PAYROLL *******"
11201%#
1130 1" TOTAL REGULAR HOURS PAID
1140 1" TOTAL OVER-TIME HOURS PAID:
1150 1" TOTAL OVER-TIME WAGES PAID:
1160 1" TOTAL COMMISIONS PAID
READY

.. ,H5- (K4*40)
" ,H6
",%$CI0F2,W6
",%$C10F2,F9

1 REM
2 REM
3 REM
4 REM

-203-

THIS INVENTORY PROGRAM REQUIRES A FILE (ANY NAME) BE
SET UP IN ADVANCE AND THAT MINI-DISC BE IN THE DISK
READER SO THAT THE DATA CAN BE WRITTEN TO IT.

5 REM ONCE THE COUNTS HAVE BEEN ENTERED AND ALL THE DATA
6 REM IS COMPLETE THEN RUN THAT DISK WITH INVENTORY ACCOUNTING
7 REM PROGAM
10!" THIS IS THE INVENTORY COUNTING PROGRAM - JUST TYPE IN THE"
20!" DATA THAT THE PROMP ASK FOR AND EVERYTHING WILL BE OK"
30!
40 INPUT" NAME OF PERSON RUNNING PROGRAM ",K$
50INPUT "INVENTORY DATE
60!
70 DIM E$ (24)
80!
90INPUT" FILE NAME
100 OPEN #O,F$
110 IF TYP(O) THEN 150
120 IF TYP(O)=l THEN 130
130 READ #O,N
140 GOTO 110

" ,D$

" F$

150!" FILE IS READY FOR INVENTORY UPDATE"
160!
PRESS RETURN TO CONTINUE
170!
180 READ N,E$,C,O
190 IF N=l THEN 430
200 ! N," ",E$
210 INPUT " NO. OF UNITS IN INVENTORY
220 !

" H

230! "ITEM#
240!

DISCRIPTION CLASS UNIT$

250! TAB(7) ,E$,TAB(29) ,C,TAB(38) ,O,TAB(48),H

ON HAND"

260!" •••.•••••••••••••••••••••••.•••••.•••••••••••••••••• "
270 WRITE#O,N,E$,C,O,H
280 GOTO 180
290!"++"
300!
310 REM
320 REM
330 REM

THIS PROGRAM WILL TAKE AS MANY LINE ITEMS AS YOU HAVE
MEMORY FOR.

340 REM DATA STATEMENT MUST CONTAIN THE FOLLOWING FOR EACH ITEM
350 REM ITEM NUMBER ITEM NAME ITEM CLASS ITEM COST
360 DATA 100,"APPLES",1,.155
370 DATA 101,"ORANGES",1,.23
380 DATA 102,"GRAPES" ,1,.07
390 DATA 200,"EGGS",2,.79
PRESS RETURN TO CONTINUE

400 DATA 201,"MILK",2,1.25
410 DATA 202,"CHEESE",2,1.39
420 DATA 300,"SOUP",3,.21
425 DATA 1,"1",1,0
4301

-204-

440 1" YOU ARE NOW FINISHED WITH THE INVENTORY INPUT"
450 WRITE #O,D$,B1,K$
4601
470 1" THANK YOU VERY MUCH ",K$
480 CLOSE # 0
490 END
READY

10 REM
20 REM
30 REM
40 REM
50 REM
60 REM
70 REM
80 REM
90 REM

-205-

THIS INVENTORY ACCOUNTING PROGRAM MUST BE RUN WITH
THE DATA FROM THE INVENTORY COUNTING PROGRAM THAT
WAS WRITTEN TO THE INVENTORY FILE CREATED BY THAT
PROGRAM

THIS PROGRAM WILL GIVE ITEM TOTALS AND EXTENSIONS
AND TOTAL DOLLARS FOR 10 SEPERATE CLASS ITEMS
AND TOTAL OF ALL ITEMS IN LIKE CLASS ITEMS

100 !" THIS IS THE INVENTORY EXTENDING AND LISTING PROGRAM"
110!" IT IS RUN WITH THE INVENTORY COUNT DATA DISC"
120 DIM E$(24)
130!
140 INPUT "DATE OF THIS INVENTORY RUN • ",D$
150 INPUT "THIS PROGRAM RUN BY", K$
160 INPUT" INVENTORY FILE NAME ",F$
170 OPEN #O,F$
180!"
190!"ITEM# DESCRIPTION CLASS UNIT$ COUNT COST"
200!" •••.•••••••••.•••••••••..•••••••••••••••••••••••••••••••••• e

210 T=O
220 Tl=O
230 T2=0
PRESS RETURN TO CONTINUE
240 T3=0
250 T4=0
260 T5=0
270 T6=0
280 T7=0
290 T8=0
300 T9=0
310 READ #O,N,E$,C,O,H
320 IF N=O THEN 680
330 IF H=O THEN 310
340 IF C=l THEN 450
350 IF C=2 THEN 470
360 IF C=3 THEN 490
370 IF C=4 THEN 510
380 IF C=5 THEN 530
390 IF C=6 THEN 550
400 -IF C=7 THEN 570
410 IF C=8 THEN 590
420 IF C=9 THEN 610
430 IF C=10 THEN 630
440!
450 T=T+O*H
460 GOTO 660
PRESS RETURN TO CONTINUE
STOP
READY

470 Tl=Tl+O*H
480 GOTO 660
490 T2=TZ+O*H
500 GOTO 660
51U T3=T3+O*H
520 GO TO 660
530 T4=T4+0*H
540GOT0660
550 T5=T5+O*H
560GOT0660
570 T6=T6+O*H
580GOT0660
590 T7=T7+O*H
600GOT0660
610 T8=T8+O*H
620GOT0660
630 T9=T9+O*H
640GOT0660
650 GOTO 660

-206-

6601N,TAB(7} ,E$,TAB(31) ,C,TAB(36} ,O,TAB(45) ,H,TAB(55) ,%8F2,O*H
670 GOTO 310
6801
6901 " : "
PRESS RETURN TO CONTINUE
700 "FRUIT AND VEGTABLES
710 "DAIRY PRODUCTS
720 "CANNED GOODS
730 "INVENTORY ADJUSTMENT
740 "A GOODS
750 "B GOODS
760 "C GOODS
770 "D GOODS
780 "E GOODS
790 "F GOODS
800 REM

1
2
3
4
5
6
7
8
9
#10

",%$C#IOF2,T
" ,Tl
" ,T2

" ,T3
" ,T4
" ,T5
" ,T6
" ,T7
" ,T8
" ,T9

801 REM
8U2 REM
804 REM
SUS REM
aU6 REM

THE T VALUES IN THE FOLLOWING TWO LINES MAY BE
IN ANY ORDER TO GIVE TOTALS OF SEVERAL CLASSES
AS IT IS FI GIVES THE TOTAL FOR FINISHED PRODUCT
AND Rl GIVES THE TOTAL FOR RAW MATERIALS

810 Fl=T+Tl+T2+T3
820 Rl=T4+T5+T6+T7+T8+T9
8301"**"
840 El=Fl+Rl
8501
8601" TOTAL FINISHED PRODUCT
8701
PRESS RETURN TO CONTINUE

$ ",Fl

-207-

8801" TOTAL RAW· MATERIALS $ " ,Rl
89U!
9001" TOTAL ALL INVENTORY ITEMS $ " ,El
910 1%#
9201"**"
930 CLOSE #0
940 END
READY·

