
Dear PDS User:

I regret being unable to include a personal note. However, there are a few
pOints whould could not be covered in the documentation.

First, I want you to be happy with the PDS software package. If you have any
difficulty, however slight, with either the documentation or the programs, please
contact me. I prefer to interact by telephone, but as time allows I will corres
pond by mail.

Should program errors arise they will be repaired for free. I ask only that you
return your original diskette with cardboard backing and a return manila
envelope with sufficient return postage.

Many of the best features of PDS were suggested by users, and your comments
and suggestions on the documentation or the programs are welcome. Let's
keep in touch.

Sincerely,

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

P. S. LONGLABL is a version of MAKRO which allows up to 10-character
labels. LONGLINK is the corresponding linkage editor.

Scrolling program output: The two PDS assemblers and the G command
of EDIT allow the output to be scrolled. Pressing the space bar will
freeze the display; any other key will resume scroll. This feature
relies upon the non-standard ControllC detect routine in the DOS. The
programs call the ControllC routine and expect the key pressed, if any,
to return in the accumulator. If a blank is returned, the programs call
character-in to wait for another key to be pressed before resuming
operation.

PDS
ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM

FOR

NORTH STAR MINIDISK
OR

NORTH STAR HORIZON
INCLUDING:

RELOCATING MACRO ASSEMBLER
INTERACTIVE ASSEMBLER/EDITOR
STRING-ORIENTED TEXT EDITOR

TRACE DEBUG/DISASSEMBLER
LINKAGE EDITOR/LOADER

RELOCATING LOADER

FEATURING:

FULL Z80 CAPABILITY
OPERATIONAL ON Z80 OR 8080

INTEL MNEMONICS
AUTOMATIC FILE HANDLING

READY TO RUN ON DISKETTE
COMPLETE DOCUMENTATION

FULL USER SUPPORT

leT $99

Copyright 1978
A . r~ . As h 1 ey
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

OTHER SOFTvVARE AVAILABLE:

HDS
HYBRID DEVELOPMENT SYSTE~ -- S40

The HOS Hybrid Development System is available for all:forth Star systems. A hybrid program is
one in whjch portions are performed by assembly langUage and portions are performed by BASIC.
Such programs may be attractive because: '

1. Critical program segments may be coded in assembly language to achieve higher speed.

2. Proprietary program segments may better be protected when coded in assembly language.

3. Hybrid progra.ms offer nearly the same execution speed as assembly code while retaining
the ease of BASIC program deveiopment.

-I.. Certain operations are much more easily performed at the assembler level.

S. Hybrid programs can use internal BASIC routines for ease of program development.

HDS includes an interactive assembler/editor located at 40'H to be co-reSident with BASIC, together
with modifications to N'orth Star BASIC which facilitate communication between BASIC and assembly
routines. The modifications to BASIC give access to the addresses of BASIC variables and extend
the CALL function of BASIC to allow an unlimited parameter list. Access to the address of a BASIC
variable is gained by enclosing the variable in square brackets. Thus A1 refers to the value of var
iable Al while &\1] refers to the location of Al. Now assembly routines can use BASIC variables or
strings and return results back to BASIC.

A road map to BASIC is included containing a list of BASIC utility entry points and their calling se
quence. Examples are provided to:

1. Load an assembly language routine from
BASIC USing the sequence: PS :II "FILE": Z9 .. CALL (ADDR. LOCN, CPS])

2. Find the total of a BASIC array A(N) as: Z9 :II CALL (ADDR~ [A(l»), (5], m
3. Find the minimum in a BASIC array as: 29 :II CALL (ADDR, [B), (A(l)]. N)

HDS requires at teast 24K memory starting at ~H. Modifications are available for standard (8-:iigit)
:forth Star BASIC Release 4.0 and 5. O. Modifications for other versions of North Star BASIC are
available by arrangement. As always. full user support is provided by mail or paone. Dealer dis
counts are available.

SOURCE MODULES
To facilitate the development of assembly language application programs. and to encourage the use
and sale of POSt a number of assembly language program modules are available. These source
modules are proVided to facilitate your development efforts, and no restriction is imposed on their
use. Interface requirements are clearly documented.

:Y10DULE

A LPUSORT
:-rUMRSORT
FPPACK
FOURIER
:vIINV
:vIA TP"RD
RATPOL
SQRT
TRIOS
LOGEXP
FP!OP
FORMAT
;{FILES

FUNCTION

High speed alphabetic sort
High speed numeric sort
BCD floating point arithmetic
Fast FOllrier trans.iorm
Matrix inversion
Matrix product
Rational function and utilities
Square root
Sine. Cosine. TAN. ATA~
Ex·ponential. logarithm. y-
Floating point 1/0
Formatted floating point output
'{orth Star disk handler

REQutREYrENTS ~
:fone $ 20
None 20
None 20
FPPACK 20
FPPACK 20
FPPACK 10
FPPACK 15
FPPACK 5
FPPACK. RATPOL 20
FPPACK, RATPOL 20
None 15
None 10
None 15

E~TmE PACKAGE: $100 A LA CARTE: ADD $5 PEB ORDER FOR DISK

REGENT
Disk Disassembler (S25): Generates a sOllrce file
on disk from object program stored in memory.
:-rOT for the ca.sual or novice programmer.
(~ORTH STAR ON!. Y.)

Ez·ao
Assemblv Language Tutorial ($25): FOR the
noVice programmer. Teaches Z-80 instruction
set and operations by executing assembly. lang
uage commands indh1dually. Registers and
flags are displayed for each instruction execllted.
(NORTH STAR ONLY.)

All programs are available from your local computer store or directly from
.·Ulen Ashley; 395 Sierra),Iadre Villa. Pasadena. CA 91107 (213)793 .. 57.;8

CONTENTS

1. PDS OVERVIEW AND INTERFACE PROCEDURES
I nterfac i ng PDS•........................ 1- 5
Bringing up PDS 1-6
Relocating Loaders KWIK and KWIKABS 1-7
Re 1 oca tab 1 e DEBUG•............•. 1-8
EDIT Disk Files ..•.............................. 1-9
ASMB Memory Fi 1 es•.•..•..•.........••. 1-9
MAKRO Execution•......••••..••..•........•.. 1-10
Special Note to zao Owners•............... 1-11
Sample ASMB Operation•................... 1-12
Memo ry Si z e 1- 13

2. ASMB EDITOR/ASSEMBLER
I ntroducti on •.•................................. 2- 2
ASMB Organization 2 .. 3
Executive Commands ~•....•.•..•... 2-4

Corrmand List
Command Fonnat

Editor o ••••••••••••••••••••••• 2 .. 7
Automat.ic Line Number; ng

Assemb 1 er Opera ti on ~•........... 2-8
Source Line Format
Assembler Constants

Regi s ter Mnemoni cs•....................... 2-9
Assembly Language 2-10

8 Bi t Load
Accumulator Load/Store
8 Bit Immediate
16 Bit Load/Store
Exchange, Block Transfer, and Search
8 Bit Arithmetic and Logical
General Purpose Arithmetic and CPU·Control
16 Bit Arithmetic Group
Rotate and Shift Group
Bit Manipulation
Input/Output Group
Jump Group
Call and Return Group

Pseudo Operations 2-18
Assembler Errors/Diagnostics 2-20
Existing Source Files : 2-20

i

3. MAKRO ASSEMBLER
In troducti on 3- 2
Makro Input/Output., 3-3

Source Line Format
Assembler Operation 0 •••••••••••••••••••••••• 3-4

Special Operands
Assembler Constants

Register Mnemonics 3-5
Ass em b 1 y La n g u age. 3 - 6
Pseudo Opera t ; on s , 3- 14

Relocation Pseudo Operations
Assembler Errors/Diagnostics 3-19
MAKRO Conditional Assembly•..... 3-20
MAKRO Macro Capability .. o ••• 0 ••••••••••••••••••• 3-23

Introduction to Macros
Macro Processing
MAKRO Idiosyncracies
Procedural and Syntactical Rules

Using Macros 0 ••••••••••••••••• 0 ••••••• 3-28
.Repetition Control 3-30
M A K ROB 1 0 c k S t ru c t u red Ass em b 1 y .••••••.•..•••.•• 3 - 32
Assemb 1 y Time Input 3 -32
COnuTIun; ca ti on Between Macros 3-33
Relocation •... 3-34

Assembly Time Source .. LINK
Object Time .. Relocatable Code
Loader Directives
Object File Format
Source Code Restrictions
Symbol Table

PDS Relocating Loaders•........... 3-41
MAKRO Expression Evaluation 3-42
INTEL Source Compatability•........... 3-44
Sample Linkage Operation 3-45

4. EDIT TEXT EDITOR
In troducti 0 n •.........•......................... 4- 2
EDIT Organization •.............................. 4-3
EDIT Executive•.........•........... 4-4

Command Format
Nesting Commands
Special Characters
Text Poi nters

Ex e cut i v e Co mm and s . 4 - 6
COrmland L i s·t
Special Character Commands

Command Strings and Block Commands 4-11
Command String Syntax 4-12

i ;

4. EDIT TEXT EDITOR (Cont.)

E r ro r ~1e s s ages , , 4- 13
Sample EDIT Operation .. " , .. , ... , .. 4-14
Sample Block Operations , , , ... 4-15
Conditional Command Execution 4-16
Text Rearrangement , 4-19
Use EDIT to Save Typing " .. , " .. ,., .. 4-20
Memory Organ; zation ,., , 4-21
D; s play ... 4 - 22

5. DEBUG PROGRAM DEVELOPMENT AID
I n t r 0 du c t ; 0 n , • 5 - 2
DEBU G 0 rgan i za ti on 5- 3
Ex e cut i ve Co mm and s , 5 - 4

Single Step Executive
Using DEBUG , 5-11

Suggestions

HIGHLIGHTS CERTAIN TEXTUAL ITEMS WHICH MAY CAUSE
DIFFICULTY IF OVERLOOKED.

iii

PDS
PROGRAM DEVELOPMENT SYSTEM

PDS is an exceptionally powerful assembly language development system for 8080 or Z80

microcomputers with at least one disk drive. PDS includes a unified assembler/editor,

a macro assembler with a relocating linking loader, a string-oriented text editor, and

a trace debugger/disassembler.

The assemblers favor the INTEL instruction mnemonics, treating the Z80 superset as a

logical and syntactical extension. The debug module features breakpoint or single

step execution of programs, with trace display of all register contents, flag status,

a memory window, and the mnemonics of the instruction just executed and the next

instruction to be executed.

The power of PDS derives from the interactive environment afforded by the assembler/

editor and the debug package. Program modules can be modified, assembled and checked

in seconds under the tight control of trace execution.

While the many features of PDS will satisfy the demands of the most sophisticated

programmer, PDS affords an exceptional educational environment for beginning assembly

language programmers. The interactive combination of the ASMB editor/assembler and

the DEBUG trace program allow the user to witness operation of his program first hand.

To facilitate development of applications programs with PDS, source modules are ava~l

able for floating point arithmetic, floating point input/output, trigonometric functions,

numerical and alphabetic sorting, matrix inversion, fast Fourier transform, and a full

function expression evaluator.

For further information, please contact:

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

1-1

COMPARE!

PDS TDL CROMEMCO

Macro X X X
Relocating X X X
Trace Debug X
Interactive Assembler X

Z-80 Assembl,y

8080 Operational

INTEL Mnemonics

String Editor

Linkage Edit

Disassembler

X X X

X

X X

X X X

X X

X

NO OTHER READILY AVAILABLE
PROGRAM DEVELOPMENT SYSTEM
OFFERS AS MANY FEATURES AS

P D S

$99

1-2

PRO TECH
ALS-8 CP/M INTEL

X

X X

X

X X X

X X X

X V
/\

X

P D S

The components of PDS are structured to provide the most complete, well-rounded
program development system available for microcomputer use.

PDS includes:

ASMB Assembler/Editor

MAKRO Macro Assembler

EDIT Text Editor

DEBUG Debug Monitor/Disassembler

LINKED Linkage Editor

KWIK Relocating Loader

MAKRO and ASMB assemble the complete instruction set of the Z-80 and feature
mnemonics which are a logical and syntactical extension of the widely familiar
8080 assembly language.

Each of the components of PDS is written in the 8080 instruction subset and the
entire system is thus operational on either 2-80 or 8080 machines.

PDS is an ideal program development system for those owning a Z-80 machine or
those 8080 owners anticipating a future expansion to the more powerful Z-80
processor.

APPROXIMATE MEMORY REQUIREMENTS

PROGRAM DECIMAL

ASMB 6K

MAKRO 7.SK

EDIT 2K

DEBUG 3.SK (RAM at tJ)

Minimum operating system: 16K RAM and one disk drive. DEBUG, LINKED and KWIK
are furnished in relocatable form to satisfy the requirements of individual systems.

The sizes of disk files for relocatable modules do not reflect the memory required
for execution of those modules. Such files, containing relocation and loading
information in addition to program data, greatly exceed the memory space required
for execution. As an example, the relocatable disk file DEBUG occupies some 55
sectors of the disk, but less than 4K of memory when loaded.

1-3

ASMB: An editor/assembler combination for the rapid development of small to medium size
assembly language programs, ASHE includes all the features necessary for the creation,
modification arid disk storage of assembly language source files for Z80 or 8080 computers.
ASMB is a very fast assembler which, together with the co-resident editor, is structured
for a very rapid assemble/execute/modify cycle. The instruction set of ASHE is designed
to be a logical and syntactical extension of the widely familiar INTEL instruction set
for the 8080. Users already familiar with 8080 assembly language will readily acquire
the extended instruction set of the Z80 processor.

MAKRO: An extraordinary assembler featuring full macro and conditional assembly capa
bility, MAKRO incorporates the power of a relocating assembler and a linkage editor/
loader. Program modules developed with the ASMB assembler can be. collected into a
source library for the MAKRO assembler. The considerably enhanced power of the MAKRO/
EDIT combination, together with the overall reduced memory requirements of MAKRO,
make the two assemblers perfect companions.

EDIT: A very powerful text editor featuring a full spectrum of text manipulation
operations including string search, substitution, insertion, deletion, and block move
or delete. An elaborate command interpreter allows the definition of command string
macros. Segments of an input text file can be drawn from disk into memory, modified,
and written back to an output disk file. Large, heavily-commented source files which
exceed available memory can be developed and modified easily with the EDIT text editor.

DEBUG: An incomparable software dev'elopment tool featuring single-step execution of
Z80 or 8080 programs with complete display of all register contents, flag status, and
trace display (in mnemonic form) of the instruction just executed and the next instruc
tion to be executed. The single-step breakpoint can be located anywhere in the user's
program.

DeBUG, together with the fast ASMB editor/assembler combination, provides an interactive
environment for the development of assembly language programs. There is no more powerful
development system: program modules can be assembled, checked, and modified in seconds.
Programs operating under the trace mode of DEBUG are held tightly under control --
errors can be caught before they blow the program. The degree of program intimacy
afforded by DEBUG greatly exceeds that of BASIC.

DEBUG includes a disassembler for translating 8080 or Z80 object code into the MAKROI
ASMB instruction mnemonics. DEBUG also includes string search and change, memory
.display in ASCII or hexadecimal, memory fill by byte or block, and block move or compare
functions. DEBUG uses RST3 and requires RAM at low memory_

LINKED: Linkage editor, linking loader. LINKED searches library files of previously
assembled modules to include those necessary to complete the assembly. Commonly used
routines need only be developed once.

K\~ I K: Relocating loader creates an executable memory image for programs not requiring
a linkage edit.

1-4

INTERFACING PDS TO NORTH STAR DOS

The components of PDS utilize the standard entry points to the North Star
Disk Operating System:

DOS + 0DH
DOS + 10H
DOS + 16H
DOS + 28H

Character out
Character in
ControllC
Warm start entry

File names communicated to PDS are terminated by a carriage return. The
file name may be suffixed by an optional unit number. The unit number, if
present, must be separated from the file name by a comma. File names not
suffixed by a unit number default to drive 1.

Components of PDS which generate disk output tequest an output file name.
The output file must be found in the directory. PDS will examine the size of
the output file. A zero-length output file ;s treated as a new file and PDS
will update the directory entry to reflect the completed disk operations~

If a required file is not found in the directory, PDS issues a '?' prompt
and awaits re-entry of the file name. PDS will automatically size the
output file if the user creates (under the DOS) an. output file of length 0
before entering the program. As an example:

CR OFILE 0
GO MAKRO

Respond to the output file query with OFILE. P~S will update the directory
entry_

It is generally not possible for PDS to predict the required output file size
before disk operations commence. If the user elects to direct disk output to
an existing file, he must ensure that the file size is sufficient to contain
the output. PoS will cease disk operations with a 'NO ROOM' message when the
existing output file is full.

BRINGING UP PDS

1. Write protect the POS diskette before attempting to use it.

2. Make a working copy of the PDS diskette using the RD and WR cOl!ll1ands
of the DOS.

3. Store the original POS diskette as a master backup copy.

4. Read the entire PDS documentation.

5. Several components of PDS are furnished in relocatable fonn to be
placed at a convenient location in memory. The general procedure for
making a working copy of these modules is:

a.· Execute the relocating loader KWIKA8S (see next page).

b. Identify the module to be loaded and the load address.

c. At completion of relocation; create a disk file and save
the memory image of the relocated module. Set the file
type = 1.

d. The relocatable module may be deleted to save disk space.
The original version is always available on the master
back-up diskette.

6. Practice using each of the components of POSe

7. Suggestions and comments on the POS documentation or programs are
welcome.,

8. PDS diskettes furnished for double density disk systems are written
in single density and must be converted to double density before use.
Consult the North Star documentation for instructions on effecting this
conversion.

1-6ns

RELOCATING LOADERS KWIK AND KWlKABS

The KWIK loader is furnished. in relocatable form on disk file KWIK and in absolute
form on disk file KWlKABS. Entry to the absolute module is at DOS + A00H.* These
two forms are furnished to allow the user to bootstrap the loader to any convenient
memory location. The bootstrap procedure utilizes KWlKABS to relocate KWIK to the
desired execution address. The procedure is as follows:

GO KWlKABS
INPUT FILE
KWIK
LOAD ADDRESS
xxyy

Enter
File query

Desired RAM location
At completion, KWlKABS returns control to the warm start entry. The user should
then save the memory image just created:

CR UKWIK 4
TY UKWIK 1 xxyy
SF UKWIK xxyy xxyy is the previously defined RAM location.

The KWIK loader ;s subsequently accessed by GO UKWIK. (See MAKRO for discussion of
KWIK.) The KWIK loader supports an optional offset address. Response to the load
address query may take one of two forms: hexad or hexad,offset. The offset value
is added to the execution address to determine the memory load address. Thus, code
to be executed at E000H, with an offset of 3000H, is placed into memory at
E000 + 3000 = 1000H.

LINI<'AGE ED ITOR

The linkage editor is furnished ;n relocatable form as disk file LINKED. Either
KWlKABS or the previously generated UKWIK loader can be used to generate an
executable module of LINKED. The procedure is as follows:

GO KWlKABS
INPUT File query
LINKED
LOAD ADDRESS
xxyy Desired RAM address

At completion:
CR ULINK 6
SF ULINK xxyy
TY ULINK 1 xxyy

The linkage editor ;s then accessed by
GO ULINK

Library files are expected to reside on the drive containing the object file and may
contain names of no more than five characters (10 for LINGLINK). If the file is not
found a "?" prompt is issued, a 11 ow; ng the fi 1 e name and drive to be re-entered. The
North Star version of LINKED does. not generate an object disk file. A RAM area after
LINKED must be reserved for loader tables.

*000H in double density version.

1-7ns

RELOCATABLE DEBUG

DEBUG is furnished in relocatable form to be positioned at a convenient
memory location. The relocation may be performed with KWIKABS or the
user-developed loader UKWIK. Relocation of DEBUG is performed via the
following sequence:

GO UKWIK
INPUT FILE
DEBUG
LOAD ADDRESS
xxyy

At completion:

CR UDEBUG' 16
TY UDEBUG 1 xxyy .
SF UDEBUG xxyy

File query

Desired RAM address

Subsequent access to DEBUG is made via

GO UDEBUG

1-8ns

EDIT DISK FILES

EDIT relies upon the NORTH STAR disk operating .system for the creation
of disk space, the transfer of file contents to and from memory, and the
console character input/output operations.

Upon initial entry, EDIT requests the name of the input text file -- the file
to be modified. To create a new file, the user should respond to the INPUT
query with the @. EDIT is thus cautioned to ignore any commands to read from
disk. At any time the user may open a new input disk file (closing any
existing input file).

Text material is transferred to memory in blocks of one sector (256 characters).
The user may transfer as ma.ny sectors to memory as available space will allow.
EDIT will not allow memory overflow. At termination, EDIT transfers to the
output file any information still residing in the input file. The user may
truncate the input file, however, by opening a new input file and responding
to the INPUT query with @.

The output file is the repository for the processed textual material. Text
is transferred to the output file in one-sector blocks. The name of the
output file is given to EDIT in response to the OUTPUT query. If the file
name is not found in the file directory, EDIT issues a I?I prompt. A new
output file may be defined. by re-entering.EDIT at start + 2DH.

"ASMB ME~10RY FILES

The ASMB editor/assembler resides in memory immediately after the DOS. In
the standard confi gura ti on, the memory reg; on from 2000H up to 50~~H* i: s
reserved for the DOS, ASMB, and assembler tables. Neither source nor object
files can be located within this region without damage to the programs.

* 53~0H in double density version.

1-9ns

MAKRO EXECUTION

MAKRO requests a pass option before the assembly. The pass parameter nnn
controls generation of the OBJECT file and assembly listing. The three
least significant bits independently control assembler options.

Bit 0 controls the extent of the assembly. If Bit 0 = 0, the
assembler skips pass 2, and neithe~an object file nor
pass 2 diagnostics are available. This option is used to
make a quick check of the source file.

Bit 1 controls the assembly listing. If Bit 1 = 0, only assembly
diagnostics are generated.

Bit 2 controls the generation of the object file. If Bit 2 = 0,
no object file is created.

Sit 3 controls the output device.

Assembly is normally performed with one of the pass options:

1 or A: No object file, pass 1 and 2 diagnostics only.

5 or E: Object file, pass 1 and 2 diagnostics only.

7 or G: Object file, full assembly listing.

? or 0: Object file, full listing to output device 1.

NOTE: A dummy output file must be defined even for cases in which no object
code is to be written to disk.

Pressing Control-C when entering file names to MAKRO returns control to the DOS.

I-IOns

SPECIAL NOTE TO Z-SO OWNERS

The entire PDS package was written to be fully operational on machines
using either the 8080 or Z-SO processor. As a result, one byte must be
changed in DEBUG to display the additional Z-SO registers.

After generating an executable image of DEBUG at memory location xxyy (as
discussed previously) the user must mOdify one program byte to display the
Z-SO index registers.

Change memory location:
From:
To:

xxyy + 229H
06
08

DEBUG can be used to effect this change. After completing the relocation,
but before saving the relocated file, perform the necessary modification.

1-11ns

SAMPLE ASMB OPERATION

)130 AS,'1E:
ASM8 DEVELOPMENT SYSTEM
F .····TEST.····53 0 0
TEST 5 3 0 0 5 3 0 0
~:1(1~~JLAE:EL : I N::-:: H

F'

OAe, E:
OF.:A A
ENCt

IN:=-:; O~~)10 LAE:EL
(n3:1:1 [:IAO
00:12 OPA
00:1:: END
A FO~:':1~3

F0(1~3 23:
F(1I.j1. ~j,?

F002 E:7
FO~J::

SlT t t'1E:OL TABLE
LAE:EL F O(n3
l·J
FILE
SA!,,·IE L·~F.~ I TTEN
E:>LI
(:tos 4
r'1AK.PO 14
ECI I T 46
END 16:::
SA\·'E 170
Asr'1E: 57
C)EE:UG ::~2

r::}J IKAE: S 1::7
~:].~ r K :14\.3
L I NKE[:I 155

10
~ .. -.
~ .. ~

1:1
0
:1

25
55

3:
:15
1::

H
~. ... '
A

~:1

1
1
~::)

~J

:1
~J

:1
~:1

(1

2A~:':i\.J

2AOO

2AOO

Create memory file

> typed after line number, but not echoed

Auto line mode
< typed after carriage return
Print formatted listing

Assemble file
OO~O LAE:EL .I N::< H Assembly listing
00:1:1 DAD 8
0\.3:1.2
0(1:13:

OF:A
END

A

Write source to disk

Disk operation completed

Source fi 1 e

1-12ns

MEMORY SIZE

MAKRO and EDIT search memory to determine the highest available contiguous
RAM address. In systems for which this is. undesirable, the user may patch
these programs to set a limit on the available memory.

MAKRO

MAKRO searches for memory top in a loop near the entry point. The code is:

2A49 MVI A,0AAH
MTLP: INR H

MOV M,A
CMP M

2A4E JZ MTLP
OCX H

2A52 SHLO MTOP

The 3 bytes at 2A4E should be changed to

21 xx yy (LXI H,MTOP)

where xx yy is the byte-reversed RAM limit.

EDIT

EDIT calls a subroutine to determine available memory. The call is:

2A13 LXI H,lB1BH
SHLD THERE

2A19 CALL MEMTOP (2BCC)

The loop at MEMTOP is:

2BCC LXI H,TEXT
2801 MVI A,0AAH
2B01 MTLP: INR H

MOV M,A
CMP M

2B04 JZ MTLP
DCX H

2BOC SHLD MTOP

The 3 bytes at 2B04 shaul d be changed to

21 xx yy

as done in the MAKRO patch.

NOTE: Entry point to double density version is 2D00H.

1-13ns

Addresses for the memory si ze patches to ~1AKRO and EDIT are gi ven for the
standard DOS at 20~0H. DEBUG should be used to disassemble the code at the
given locations before making any changes. Minor program modifications may
alter the loop positions slightly.

The corrected versions of MAKRO and EDIT should be saved on disk.

SCROLLING PROGRAM OUTPUT

The two PDS assemblers and the G command of EDIT allow the output to be
scrolled. Pressing the space bar will freeze the display; any other key
will resume scroll.

This feature relies upon the non-standard Control-C detect routine in the
DOS. The programs call the Control-C routine and expect the key pressed,
if any, to return in the accumulator. If a blank is returned, the programs
call character-in to wait for another key to be pressed before resuming
operation.

1-14ns b

A S M B

A disk-based assembler/editor
for the development of small to
medium size assembly language
programs.

The combination ASM8/DEBUG provides
an interactive environment for
assembly language program development.

2-1

Copyright 1978
Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107
(213) 793-5748

INTRODUCTION

ASMB is a powerful disk-based editor/assembler system for program devel
opment on a Z80 microcomputer. Structurally and operationally similar to
the program development packages SP-I and ESP-I, ASMB offers more exten
sive editing and assembling features while extending the instruction
assembly to the entire Z80 instruction set.

ASMB includes all the features necessary for the creation, modification
and storage of assembly language programs. Departing from the cumbersome
ZILOG assembly language, ASMB features instructions mnemonics similar to
the more widely familiar INTEL set. Indeed, mnemonics for the 8080 subset
of the Z80 instruction set are identical to the standard INTEL format.
Users familiar with INTEL assembly language will appreciate the treatment
of the Z80 instruction superset as a logical and syntactical extension of
the INTEL instructions.

The ASMB program development system is an ideal companion to the more
powerful r~AKRO assembler. Small program modules are more easily and rapidly
developed with the unified assembler/editor than the two-stage process of
MAKRO/EDIT. The fully tested program modules can be converted to MAKRO
source form by a single EDIT command. These source modules can then be
saved as a source library for MAKRO.

ASMB is itself written entirely in the 8080 instruction subset, and is
therefore operational on either 8080 or Z80 machines. AS~1B can thus serve
as a two-way cross assembler, assembling 8080 source programs on a Z80
machine, or Z80 object programs on an 8080 machine. The versatility and
power of ASMB make it an ideal program development system for either those
presently owning a Z80 machine or those anticipating a future expansion of
their present 8080 machine to the more powerful Z80 processor.

An examp 1 e of ASMB use is gi ven in Secti on 1.

2-2

ASMB ORGANIZATION

The ASMB program development system consists of a combination text
editor, assembler, and system executive for the creation and modification of
ZSO assembly language programs.

The system executive is responsible for handling all input/output operations,
invoking the editor or assembler, and dealing with the disposition of source
and object files in central memory.

The text editor is responsible for the creation and modification of source
programs within the memory file area. The text editor is line-oriented in
that editing consists of entering or deleting source lines identified by
ascending line numbers. The editor features automatic line numbering, line
renumbering, moderately free-form source input,well-formatted source output,
and a unique mini-editor for the modification of source code li.nes.

The assembler performs a two-pass translation of source to object code. The
assembler includes the powerful fe'ature of conditional assembly. Instruction
mnemonics are logically and syntactically identical to the INTEL assembly
language. The assembler is file-oriented with up to six source files simul
taneously residing in memory. Optional symbol communication bet\lJeen files
enables a moderate block structure development~

The concept and structure of ASMB were strongly influenced by Software
Package #1. Assembly language source programs are maintained in source
files under control of the system executive. Source files are created and
deleted by commands to the system executive. SourGe code is entered into the
source files under control of the editor, and the assembler can be directed
to translate the source file to object code anywhere in memory_

2-3

EXECUTIVE COMMANDS

COMMAND FORMAT

Executive commands consist of a single letter identifier, together with an optional
modifier character, and one or two hexadecimal parameters. The command character(s)
must be separated from any numerical parameters by a single blank. Numerical para
meters are likewise separated by a blank.

In the following, hexadecimal parameters are indicated by the sequence nnnn or
mmmm while an optional character modifier is indicated by a lower-case c. Unless
otherwise noted, the modifier c is a device control character (0-7) Itthich will be
present in the accumulator for all subsequent console I/O.

All command lines are terminated by a carriage return.

COMMAND LIST

I'# .. r F /NAME/
Jj~-

Generic file control command. The file 'control command
enables the user to create or destroy source files. Each source
file is identified by a file NAME of up to five characters. The
file name must be delimited by slashes. The opening slash must
be separated by a blank from the command characters. The hexa
decimal parameter nnnn and the modifier character are optional.
Thera is no relation between memory file NAME and any disk file.

(Generic command;
specific examples
below)

F INAME/nnnn

F IOTHERI

F /ERASE/0

F

FS
W

R

C n

Opens a source file NAME, starting at memory location nnnn,
making NAME the active file. Any previously active files
are maintained .

. Recall previously active file, OTHER, making it the currently
active file. Note the hexadecimal parameter is absent.
Delete file named ERASE, freeing memory space for a new source
fi 1 e.
Display the currently active file parameters, file name,
starting and ending memory locations.
Display the file parameters of all memory files.
Write the currently active source file to disk. The executive
will respond with the query FILE. The user must then type the
disk file to receive the source.
Read source code from disk into the currently active memory
file. The executive responds with the FILE query.
Append a disk file to the currently active memory file,
renumbering all source code lines by the increment n.
Improperly formed disk operations, disk read errors, or
insufficient disk file capacity result in the DISK ERROR
diagnostic.

2-4

o nnnn mmmm

B

I

Pc nnnn

Lc nnnn

G nnnn

u

e
A nnnn mmmm
A

AS

AE nnnn mmmn

AK

AT

Delete lines numbered nnnn up to and including mmmm
from the source file. If mmmm is omitted only nnnn
is deleted.

(BYE) Return to disk operating system.

Initialize the system, clearing all source files. The
initialization is automatically performed upon initial
entry. No lines of source code can be entered until a
new source file has been defined.

Print a formatted listing of the current source file,
starting at line number nnnn.

Print an unformatted listing, suppressing line numbers,
of the current source file.
The optional modifying character, c, can be an ASCII
digit in the range 0 - 7. The numerical value of this
modifier will be present in the accumulator for all sub
sequent I/O, or until redefined by the user. The
value is initialized to zero.

Execute at location nnnn. A user program may return to
the system executive by a simple return statement.

Execute at location 0000 .. This command is reserved for
entry to the DEBUG control system. .

Assemb 1 e the current source fi,1 e usi ng imp 1 i ed or1 g1 n
(ORG) nnnn and place resulting object code into memory
starting at location mmmm. The s~cond parameter is
optional; if absent, the object code is placed' into
memory at nnnn.

Mark existing symbol table for future global reference.
(Save symbol table resulting from last assembly.) This

command must follow an assembly: a symbol table must have
been generated.

Assemble, as above, displaying only source code lines
containing an assembler diagnostic.

Release (kill) the global symbol table.

Print symbol table resulting from previous assembly.

2-5

E nnnn

E /STRNG/

N nn

Enter the mini-editor to edit the currently active
source file beginning at line nnnn.
The mini-editor enables the user to scroll through the
source file, changing source lines on the fly.
Upon entry, the mini-editor displays source line nnnn or
the first source line if nnnn is omitted. The mini-editor
then awaits keyboard input. Depressing any key except
ESCAPE (ISH) advances the file pointer to display the
next successive line. The escape key allows the user to
re-enter the source line starting at character position
two. (At the label field, no line number is required.)
The user-entered line, terminated by carriage return, then
overlays the old line. The mini-editor cannot insert new
source lines into the file. Return to system executive
via Control C.

Enter the mini-editor to edit the currently active source
file beginning at the first occurrence of character string
STRNG. The string may be at most five characters long and
may contain no blanks. The string search is operable for
the P and ~ commands as well.

Renumber source 1 i nes., starting at nn and i nerementing by
nne The value nn is a decimal parameter.

There is space in the ASMB.command table for five additional user commands. Available
space starts after the 55 00 D0 byte string. New commands must be entered in the format

Command character,byte-reversed branch address
For each such command entered, the command count must be increased.

Search for the byte string 06 0E 3E 01 and increase the byte 0E for each new command
entered. A hex parameter, if present, is passed to the user routine in the DE registers.
A second hex parameter can be passed in the BC registers. The user routine can re-enter
ASMB via a RET instruction.

2-6

EDITOR

Source lines are entered into the currently active source file under control of
the file editor. The system executive recognizes a source line by a four
digit decimal line number, which must precede every line in the source file.
Modifications to the source file consist of one or more whole lines. Lines
may be deleted by the 0 control commanq. Lines may be modified by retyping
the line number and entering the new source line. The editor adjusts the
source file to accommodate line length without any wasted file space. Character
deletion is accomplished by the underline (SF) key.
Source program lines consist of a four-digit line number followed by a
terminating blank. The first character of the source line may contain
identifiers 1*1 or 1;1. These identifiers proclaim the entire line to be a
comment. The label field of the source line must be separated by exactly
one blank from the line number. Identifying labels can be from one to five
characters long and may contain no special characters. The operation field
must be separated from the label field by one or more blanks. The operand
field, if present, must be separated from the operation by a single blank.
Two blanks following the last operand separate the comment field, which should
start with a semicolon. Source lines may be up to 72 characters in length.

The user can invoke automatic line numbering for lines entered into the source
file. In the automatic mode, line numbers are incremented by one from the
starting value. Automatic line numbering is initiated by entering the starting
line number followed by > (greater than). Subsequent entries begin in character
pas i ti on t\'IO. The automa ti c mode is ex; ted by typi ng < (1 ess than) fa 11 ow; ng
the carriage return for the last source line. Failure to properly exit the -=:t_-3;'
automat; c mode can resul t in erroneous source 1; nes. Lengthy i nserti ons can iJ

be made into an existing source file by renumbering the file before eritering
the automatic mode.

The mini-editor allows text lines in the source file to be modified. When under.
control of the mini-editor, typing the Escape key switches from the scroll mode to
the modify mode. Editing of the source line begins at the first character of the
label field. Characters typed in under the modify mode are used to build the new
source line. The old source line can be used as a model for generating the new
source line: characters can be retrieved from the old line and placed in the new
line. In the modify mode, the following control characters are recognized:

CONTROL-A Fetch the next character from the old line and place it in the
new line.

CONTROL-Z Delete the next character from the old line.
CONTROL-Q Back up one character in both the old and new lines.
CONTROL-G Transfer the remainder of the old line to the new line.
CONTROL-S Reads a character from the console, and transfers all characters

from the old line up to, but not including, the input character.
CONTROL-Y An insert toggle. Between successive toggles, input characters are

inserted into the new line.
Any other characters typed in under the modify mode are entered into the new
line, overriding the corresponding character from the old line.

2-7

ASSEMBLER OPERATION

The assembler operates upon the currently active source file only. The source
file consists of a sequence of source lines composed of the four fields: label,
operation, operand, and comment.

The label field, if present, must start in the second character position after
the line number. Entries present in the label field are maintained in a symbol
table. These entries are assigned a value equal to the program counter at the
time of assembly, except that for the SET and EQU pseudo operations the variable
defined by the label field is assigned the value of the operand field. The
variables defined by the label field can be used in the operand field of other
instructions either as data constants or,locations.

The operation field, separated from the label field by one or ·more blanks or a
colon, cannot appear before the third character following the line number.
Entries in the operation field must consist of either a valid Z80 instruction
or one of the several pseudo-operations.

T~e operand field, separated by a blank from the operation field, ~onsists of
an arithmetic expression containing one or more program variables, constants.
or the special character $ connected by th~ operators +or -. Evaluation
of the operand field is limited to a left to right scan of the expression, using
16 bit integer arithmetic. Operations requiring multiple operands (e.g., MOV A,S
or BIT 3,IX,4) expect the operands to be separated by a comma.

The specia] operand $ refers to the program counter at the start of the
instruction being assembled.* The program variable $ can be used as any otn~r
program variable except that its value changes constantly throughout assembly.
The location counter $ allows the user to employ program relative computations.

Assembler constants may be ~ither decimal or hexadecimal character strings.
Valid hexadecimal constants must begin with a decimal digit, possibly 0, and
be terminated by the suffix H.

* NOTE: Some assemblers interpret $ as the start of the next instruction.

2-8

REGISTER MNEMONICS

All of the Z80 registers have been assigned predefined mnemonics. These
assignments agree ',lith those given by Ii/TEL and ZILOG.

The predefined register set ; s defined as:

Reg; steT Definition Value

A Accumulator 7

B 8 or 16 bit £) I

C 8 bit IJ
D 8 or 16 bit

-']

2 I

1

E 8 bit 3 J

H 8 or 16 bit 4l
L 8 bit 5 t

r~ Memory Indi reet (HL) 6

SP Stack Pointer 6

PSW Program Status ItJord 6

IX 16 bit Index none <>'F,

IY 16 bit Index none r<

RF Refresh Register none 7-,

IV Interrupt Vector· none

" These register assignments may not be redefined.

2-9

ASSEr1BL Y LANGUAGE

As a consequence of favoring the INTEL mnemonic set over that of ZILOG,
the Z80 instruction superset has been invented. One consideration in the
definition of instruction mnemonics is standard assembly. language convention.
In the instruction mnemonics which follow

~·1NEMONIC

8 BIT LOAD

MOV R,R
\ MOV R, IX,d
t MOV R, IY ,d

\ MOV IX, d, R
LMOV IY,d,R
I
i MOV A, IV
i
j MOV A, RF

\ MOV IV,A
I MOV RF ,A

pp qq

yy
d
R
RP
QP

ACCUMULATOR LOAD/STORE

.LOA pp 99
LDAX B
LDAX 0

STA pp 99
STAX B
STAX 0

8 BIT LOAD IMMEDIATE

MVI R,yy
fM'VI IX d ! ' ,yy
l MVI IY, d,yy

refers to an arbitrary 16 bit datum;
refers to an arbitrary 8 bit datum;
refers to a Z80 displacement except for relative jumps;
refers to an 8 bit register (A, B, C, 0, E, H, L, M)
refers. to a 16 bit register pair (B, 0, H, SP)
refers to a 16 bit register pair (PSW, B, 0, H)

ZILOG

LD R,R
LD R, (IX+d)
LD R,(IY+d)
LD (IX+d),R
LD (IY+d),R
LD A,I
LD A,R
LO I,A
LD R,A

LD A, (nn)
LD A, (BC)
LO A, (DE)
LD (nn) ,A

LD (Be) ,A
LD (DE),A

LO R,n
LD (IX+d),n
LD (IY+d) ,n

REMARKS

Reqister to register (to, from)
Register indirect (R;flVI)

"
Memory i ndi rect (RrfM)

Fetch interrupt vector
Fetch refresh register
Load interrupt vector
Load refresh register

Accumulator direct
Accumulator extended

Accumulator direct
Accumulator extended

Register immediate
Memory indirect immediate

2-10

MNEMONIC

16 BIT LOAD/STORE

LX I RP, pp qq
LXI IX,pp qq
LX I IY, pp qq

LHLO pp qq
LBCD pp qq
LDED pp qq
,LIXD pp qq
·LIYO pp qq
·LSPD pp qq

SHLD pp qq
-s.aco pp qq
SDED pp qq
SIXD pp qq
SIYD pp qq
SSPO pp qq .-
~PHL
SPIX
-SPIV

PUSH QP
PUSH IX
PUSH IY

pop QP
POP IX
POP IY

ZILOG

RP = B, D, H, SP

LD RP,nn
LD IX,nn
LD IY,nn

LD HL, (nn)
LD BC, (nn)
LD DE,(nn)
LD IX, (nn)
LD IY, (nn)
LD SP, (nn)

LD (nn),HL
LD (nn),BC
LD (nn), DE
LD (nn), IX
LD (nn), IY
LD (nn) ,SP

lD SP,HL
lD SP, IX
lD SP, IY

PUSH QP
PUSH IX
PUSH IY

POP QP.
POP IX
POP IY

EXCHANGE, BLOCK TRANSFER, AND SEARCH

XCHG
r'-EX
i,

i EXX
1 XTHl
I XTIX
i!TIY

f
lDI

'. lDIR
'LDO
L~QDR
CPO
CPDR
CprI
CPIR

EX DE ,HL
EX AF,AF 1

EXX
EX (SP) ,Hl
EX (SP), IX
EX (SP), IY

LDI
LOIR
LDD
LDDR

CPO
CPOR
CPI
CPIR

R EMAR KS

QP = P SW, B, D, H

Extended immediate

Extended indirect load

Extended indirect store

Set stack pointer

To stack

From stack

Exchange

Transfer

Search

2-11

MNEMONIC ZILOG REMARKS

8 BIT ARITHMETIC AND LOGICAL

ADO R ADD R Add register

~DI ¥y ADD A,yy Add immediate
ADD IX,d ADD (rX+d) Add indirect
ADD IY,d ADO (IY+d)
ADC R ADC R Register with carry
ADC IX ,d AOC (IX+d) Memory indirect with carry .ADC IY,d AOC (IY+d)
ACI yy AOC n Immediate with carry
SUB R SUB R Subtract Register
SUB IX,d SUB (IX+d) Subtract'memory indirect SUS IY,d sus (IY+d) =
SBB R SSC R Register with carry
SSB IX,d SBC (IX+d)) Memory indirect with carry SBB IY,d SBC (IY+d))

ANA R AND R Logical and register
ANA IX,d AND (IX+d) Memory indirect -ANA IY,d AND (IX+d)
ORA R OR R Logical OR register
ORA IX ,d OR (IX+d) Memory indirect ORA IY,d OR (IY+d)
XRA R XOR R Exclusive OR register
XRA IX,d XOR (IX+d) Memory indirect
~RA IY,d XOR (IY+d)
CMP R CP R Register compare
CMP IX,d CP (IX+d) Memory i ndi rect CMP IY,d CP (IY+d)
b.NR R INC R Register increment
INR IX,d INC (IX+d)
INR IY,d INC (IY+d)
OCR R DEC R Register decrement
OCR IX,d DEC (IX+d)
.oCR IY,d DEC (IY+d)
ANI yy AND yy Accumulator immediate
XRI yy XOR yy
CPI yy CP yy
ORT yy OR yy
SUI yy SUB yy
SBr yy sse A,yy

2-12

MNEMONIC ZILOG REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL

DAA

CMA

NEG

CMC

STC

NOP

HLT

01

EI

1M 0
1M 1
1M 2

16 BIT ARITHMETIC GROUP

DAD RP

"' CAD RP

SSC RP

DAD IX,RP

DAD 1Y,RP

INX RP
'1NX IX,
INX IY

DCX RP
DCX IX
DCX IY

L.

DAA

CPL

NEG

CCF

SCF

NOP

HALT

01

EI

1M 0
1M 1
1M 2

RP = B,

ADD HL,RP

ADC HL,RP

SBC HL,RP

ADO IX,RP

ADO. IY ,RP

INC RP
INC IX
INC IY

DEC RP
DEC IX
DEC IY

Decimal adjust accumulator

Complement accumulator logical

Negate accumulator

Complement carry flag

Set carry flag

No operation

HALT CPU

Disable interrupts

Enable interrupts

Set interrupt mode

0, H, SP

16 bit add

16 bit add with carry

16 bit subtract with carry

16 bit add register pair to IX

16 bit add register pair to IY

16 bit increment

16 bit decrement

2-13

(RP ~ H or IY)

(RP ~ H or IX)

MNEMONIC

ROTATE AND SHIFT GROUP

RLC

RAL

RRC

RAR

SLC R

SLC M

SLC IX,d
-SLC IY,d

RL R

SRC R

RR R

SLA R

SRA R

SRL R

RLD

RRO

ZILOG REMARKS

R = B, C, D, E, H, L, M, I X +d, I Y +d

RLCA

RLA

RRCA

RRA

RLC R

RLC (HL)

RLC (IX+d)
RLC (IY+d)

.RL R

RRC R

RR R

SLA R

SRA R

SRL R

RLD

RRO

Accumulator left circular

Left circular through carry

Accumulator right circular

Right circular through carry

Register left circular

Memory left circular

left circular memory indirect

Register left through carry

Register right circular

Register right through carry

left linear bit 0 = 0

Right linear bit 7 = extended

Right linear bit 7 = 0

left decimal

Right decimal

2-14

MNEMONIC ZILOG REMARKS

BIT MANIPULATION b = bit number o ::; b ~ 7

BIT b,R BIT b,R Zero flag = bit b of register R

BIT b,M BIT b,(HL)
BIT b,IX,d BIT b,(IX+d)
BIT b,IY,d BIT b, (I Y +d)

--

STB b,R SET b,R Set (1) bit b of register or
STB b,M SET b, (HL) memory
STB b,IX,d SET b, (I X +d)
STB b,IY,d SET b,(IY+d)

RES b,R RES b,R Reset (0) bit b of register or
RES b,M RES b,(HL) memory
RES b,IX,d RES b,(IX+d)
RES b,IY,d RES b,(IY+d)

INPUT/OUTPUT GROUP P = port number R = register

IN P IN A, (P) Input to accumulator

CIN R IN R, (C) Register R from port (C) (Rr'M)

INI INI Input and increment

INIR INIR Repeated input and increment

IND IND Input and decrement

INDR INDR Repeated input and decrement

OUT P OUT (P) ,A Output accumulator

COUT R OUT (C) ,R Regi ster R to port (C), (Rr'M)

OUTl OUTI Output and increment

OUTIR OUTIR Repeated' output and increment

aUTO aurD Output and decrement

OUTDR OUTDR Repeated output and decrement

2-15

~1NEMONIC ZILOG REMARKS ~ jI/J
JUMP GROUP V = location (16 bit) , dest = destinati on (+128 bytes displacement)

JMP V JP V Jump

JNC V JP NC,V No carry

JC V JP C,V Carry

JNZ V JP NZ,V Not zero

JZ V JP Z,V Zero

JPO V JP PO,V Parity odd

JPE V JP PE,V Parity even

JP, V JP P,V Positive

JM, V JP M,V Negative

JR dest JR d Jump relative

JRC dest JR C,d Carry

JRNC dest JR NC,d No carry

JRZ dest JR Z,d Zero

JRNZ dest JR NZ,d Not zero

PCHL JP (HL) Branch to location in Hl

PCIX JP (IX) Branch to IX

PClY JP (IY) Branch to IY

OJNZ dest DJNZ,d Decr~ment and jump relative if
not zero

2-16

MNEMONIC ZILOG REMARKS

CALL AND RETURN GROUP V = address

CALL V CALL V Subroutine transfer

CNC V CALL NC,V No carry

CC V CALL C,V Carry

CNZ V CALL NZ,V Not zero

CZ V CALL Z,V Zero

CPE V CALL PE,V Parity even

CPO V CALL PO,V Parity odd

CP V CALL P,V Positive

CM V CALL M,V Negative

RET RET Return

RNC RET NC No carry

RC RET C Carry

RNZ RET NZ Not zero

RZ RET Z Zero

RPE RET PE Parity even

RPO RET PO Parity odd

RP RET P Positive

RM - RET M Negative
i
; RET! RET! Return from interrupt

~. RETN RETN Return from non-maskable interrupt
\ .. ,~:--'"""-

RST n RST n Restart

2-17

ASSEMBLER

ORG expr

DS expr

OW expr

DB expr

EQll

SET

IF expr

ENDIF '-

END

USE operand

PSEUDO OPERATIONS

PSEUDO OPERATIONS expr = arithmetic expression

Define program counte~ to nnnn

Reserve n bytes of storage

16 bit datum definition

8 bit datum or ASCII character string definition.
The operand may be an ASCII character string
enclosed in single quotation marks.
Examples:

DB 5,6,7
DB 'ASCII STRING' ,0DH,0AH

The operand defined by the label field is set
equal to the expression defined by the operand
field. This operation is performed in pass one
of the assembler and the variable definition is
fixed by the first such definition encountered.

The operand defined by the label is set equal to
the expression defined by the operand field. This
operation is performed in both pass 1 and pass 2
and the replacement is effected upon every encounter.

expr is evaluated. If the result is zero the scanner
skips to the next ENDIF, END, or end of file before
resuming assembly. If the expression evaluates to
any non-zero value, assembly pr6ceeds. Operation is
performed in both passes.

Identifies the end of a conditional assembly block.

Terminates assembly.

Allows program assembly to proceed with multiple
location counters. The operation is. skipped if
the operand has not previously been defined;
however, the definition can appear after the
reference, to be used by pass 2. The USE operation
is best explained by example.

AORG SET 0A000H
BORG SET 0B000H

USE AORG; SET code origin to AORG

! code at 0A000H l
USE BORG; SET value of AORG to PC

SET PC to BORG

! :ode at 0B0~0H

2-18

USE AORG;

! code l
USE BORG;

2-19

Resume code at end of previous
block which started at A~00.

Resume code at END of block
which started at B000.

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some irregularity discovered either during pass 1 or pass 2 of the
assembly. The single character precedes the line number of the formatted
assembly listing.

P Phase error: the value of the label has changed between the two
assembly passes.

L Label error: label contains illegal or too many characters, e.g., LB#I:
U Undefined program variable.
V Value error: the evaluated operand is not consistent with the operation

e.g., MVr A, 1000H (not a valid 8 bit operand).
S Syntax error e.g~, MOV A+B
o Opcode error, e.g. DeS B
M Missing label field.
A Argument error.
R Register error.
D Duplicate label error.

EXISTING SOURCE FILES

ASMB is compatible with programs generated under SP#1 or its many descendents,
SCS 1,2, ESP-I, ALS-8, etc. These related source programs can be included
in the.ASMB disk system by the following procedure:

1. Load ASMB and create a memory file at a convenient memory location.

2. Exit from ASMB and load the existing source file into memory
starting at the memory location defined in step 1.

3. Re-enter ASMB and examine the file with the P conmand.

4. Delete and re-enter the last line of the source code.

5. Save the memory file on disk via the W command.

6. EDIT wi 11 re-format the source fi 1 e for ~1AKRO vi a the N command.

While all such files are compatible with ASMB, EDIT may be unable to effect
the reformat. A failure may arise if EDIT does not encounter the ASMB
end-af-file 01 (catastrophic).

2-20

MAKRO

An extraordinary disk-based macro assembler
for the development of large programs on
Z80 or 8080 machines.

3-1

Copyright 1978
Allen Ashley
395 Sierra Madre Villa
Pasadena, California 91107
(213) 793-5748 .

INTRODUCTION

MAKRO is a powerful disk-based macro assembler for the development of large
programs whose source files may exceed available memory. Both the source and
object files of MAKRO reside on disk, freeing all available memory .for macro
storage and the construction of symbol tables. ~~AKRO is an extraordinarily
powerful development tool incorporating many features not commonly available.
The assembler is a working tool which has evolved under the demands generated
by its use.

Program development with MAKRO is a two-step process: the source file is
created, modified and saved on disk usino the text editor EDIT; MAKRO
reads the source file and creates the corresponding object file.

MAKRO assembles all Z80 and 8080 instructions. Departing from the cumbersome
ZILOG assembly language, MAKRO features instruction mnemonics which are
logically and syntactically similar to the more widely familiar INTEL instruc
tion set. Mnemonics for the 8080 subset of the Z80 instruction set are
identical to those defined by INTEL, and users already familiar with INTEL
assembly language will readily acquire the additional Z8'J commands.

MAKRO is written entirely in the 8080 instruction set and is fully operational
on either 8080 or Z80 machines. MAKRO can therefore serve as a two-way cross
assembler -- assembling 8080 programs on a Z80 machine or Z80 programs on an
8080 machine. The versatility and power of MAKRO make it an ideal development
tool for those owning a Z80 machine or anticipating a future expansion of their
8080 machine to the more powerful Z80 processor.

3-2

MAKRO INPUT/OUTPUT

MAKRO is a two-pass assembler, reading the source file first to construct
a symbol table, then generating the object file on the second pass.

Source code for MAKRO consists of the four fields: Label, Operation, Operand,
and Comments.

(1) A line starting with a semi-colon is interpreted as a comment.

(2) Entries in the label field must be terminated by a colon., The
label identifier starts with the first non-blank character and
ends with the colon. The colon requirement applies to SET and
EQU operations, and macro definitions.

(3) If a label is present, the operation field begins with the first
non~blank character after the colon.

(4) If no colon (hence no label) is detected, the operation field
begins with the first non-blank character.

(5) A comment field must be preceded by a semi-colon. Trailing
comments preceded by a double semi-colon ;; are tabbed to the
right of the operand field. Comments are not allowed on source
lines containing a macro call.

(6) Source lines must be terminated by carriage return/line feed.

The MAKRO user must identify the origin of the object code by an ORG operation
at the start of his source code. Failure to do so will result in the code
being assembled at location 0.

The list output of MAKRO displays the program counter, object code, and a
well-formatted source display. Horizontal tab sets align the label, operation
and operand fields for all source lines. An alphabetized symbol table is
presented at the conclusion of pass 2 of the assembly.

MAKRO utilizes all available memory after the load address. Program constants
and assembler symbol tables reside in memory immediately after MAKRO. Macro
text ;s stored at highest available memory. The region between is used for
macro processing operations.

3-3

ASSEMBLER OPERATION

Entries present in the label field are maintained in a symbol table. These
ent~ies are assigned a value equal to the proqram counter at the time of
assembly, except that for the SET and EQU pseudo-operations, the variable
defined by the label field is assigned the value of the operand field.
Entries created in the symbol table by the macro definition refer to
the storage location assigned to the text of the macro body. The variables
defined by the label field can be used in the operand field of other instruc
tions either as data constants or locations.

The operation field is separated from the label field by the colon. If no
label field is present, the operation field may begin anywhere on the line.
Entries in the operation field must consist of either a valid ZSO instruction,
one of the several pseudo-operations, or a previously defined macro.

Th~ operand field, separated by a blank from the operation field, consists of
an arithmetic expression containing one or more program variables, constants,
or the special characters $, @ or %, connected by valid operators. Evaluation
of the operand field is perfonned using 16-bit integer arithmetic. Operations
requiring multiple operands (e.g., MOV A,B or BIT 3,IX,4) expect the operands
to be separated by a comma. Parameters passed in a macro call are separated
by corrmas and terminated by a carriage return.

The special operand S refers to the program counter at th~ start of the instruc
tion being assembled. (NOTE: some assemblers interpret S as the start of the
next instruction.) The program variable S can be used as any other program
variable except that its value changes constantly throughout assembly. The
location counter $ allows the user to employ progr~m-relative computations.

MAKRO recogni zes ttJO other speci a 1 operands. The @, when used as an operand,
refers to the repetition counter index. The %, as an operand, refers to the
number of actual parameters in the current macro call.

Assembler constants may be decimal, hexadecimal, octal, or binary. Valid
hexadecimal constants must begin with a decimal digit, possibly 0, and be
terminated by the suffix ~H. I Binary constants are terminated by 'B'· and
may contain only the digits 0 and 1. Octal constants are terminated by 'a'
and may contain only the digits 0 - 7.

After completion of an assembly, MAKRO may not be re-entered.

3-4

REGISTER MNEMONICS

All of the Z80 registers have been assigned predefined mnemonics. These
assignments agree with those given by INTEL and ZILOG.

The predefined register set is defined as:

Register Definition Value

A Accumulator 7

B 8 or 16 bit ,0

C 8 bit 1

D 8 or 16 bit 2

E 8 bit 3

H 8 or 16 bit 4

L 8 bit 5

M Memory Indirect (HL) 6
SP Stack Pointer 6

PSW Program Status Word 6
IX 16 bit Index none
IY 16 bit Index none
RF Refresh Register none
IV Interrupt Vector none

These register assignments may not be redefined.

3-5

ASSEr1BLY LANGUAGE

As a consequence of favoring the INTEL mnemonic set over that of ZILOG,
the Z80 ins tructi on superset has been invented. One cons i dera ti on in the
definition of instruction mnemonics is standard assembly language convention.
In the instruction mnemonics ~hich follow

pp qq refers to an arbitrary 16 bit datum;
yy refers to an arbitrary 8 bit datum;
d refers to a Z80 displacement except for relative jumps;
R refers to an 8 bit register (A, 8, C, 0, E, H, L, ~~)

RP refers to a i6 bit register pair (B, 0, H, SP)
QP refers to a 16 bit register pa i r (P S ~J, B, D, H)

MNEi~ON Ie ZILOG REMARKS

8 BIT LOAD

MOV R,R LD R,R Reqister to register (to, from)
MOV R,IX,d LD R,(IX+d)
~10V R,IY,d LD R,(IY+d)

Register indirect
"

(R~M)

MOV IX,d,R LD (IX +d) ,R
r~ov IY,d,R LD (IY+d),R

Memory indirect (RrfM)

MOV A, IV LD A,I Fetch interrupt vector
~lOV A, RF LD A,R Fetch refresh register
ti0V IV,A LD I,A Load interrupt vector
r~ov RF ,A LD R,A Load refresh register

ACCUMULATOR LOAD/STORE

L DA P p 99 LOA, (n n) Accumulator direct
LDAX B LD A,(BC) Accumulator extended
LDAX 0 LD A,(DE)
STA p~~gg~ ____ ~~L~D~(~nn~)w,~A ______ ~A~c~cu~m~u~l~a~to~r~d~i}~~e~c~t __________ __
STAX B LD (BC),A Accumulator extended
STAX 0 LD (DE),A

8 BIT LOAD IMMEDIATE

MVI R,yy
r'1VI IX ,d ,yy
i~1V I r Y ,d ,yy

LD R,n
LD (IX+d),n
LO (I Y+d) ,n

Reg is ter i mmed i ate
Memory indirect immediate

3-6

MNEMONIC ZILOG RE~1ARKS

16 BIT LOAD/STORE RP = B, 0, H, SP QP = P S~·J, B, 0, H

LX I RP, pp qq LD RP,nn Extended immediate
LX I IX, pp qq LD IX,nn
LXI IY,pp qq LD IY)nn

LHLD pp qq LD HL,(nn) Extended indirect load
LBCD pp qq LD BC, (nn)
LDED pp qq LD DE,(nn)
LIXD pp qq LD IX,(nn)
LIYD pp qq LD IY,(nn)
LSPO pp qq LD SP, (nn)

SHLD pp qq LD (nn) ,HL Extended indirect store
SBCD pp qq LD (nn),BC
SDEO pp qq LD (nn),DE
SIXD pp qq LD (nn),IX
SIYO pp qq LD (nn),IY
SSPO pp qq LD (nn),SP

SPHL LO SP,HL Set stack pointer
SPIX LD SP,IX
SPIV LD SP, IY

PUSH QP PUSH QP To stack
PUSH IX PUSH IX
PUSH IY PUSH IY

POP QP POP QP From stack
POP IX POP IX
POP IY POP IY

EXCHANGE, BLOCK TRANSFER, AND SEARCH

XCHG EX DE,HL Exchange
EX EX AF,AF '
EXX EXX
XTHL EX (SP) ,HL
xrIX EX (SP),IX
XTIY EX (SP),IY

LOI LDI Transfer
LDIR LDIR
LDD LDD
LDDR LDOR

CPO CPO Search
CPDR CPDR
CP I I CPI
CPIR CPIR

3-7

MNEMONIC ZILOG REMARKS

8 BIT ARITHMETIC AND LOGICAL

ADD R ADO R Add register
ADI yy ADD A,yy Add immediate
ADD IX,d ADD (IX+d) Add indirect
ADD IY,d ADD (IY+d)
ADC R AoC R Register with carry
ADC IX,d ADC (IX+d) Memory indirect with carry ADC IY,d ADC (IY+d)
ACI yy ADC n Immediate with carry
SUB R SUB R Subtract Register
SUB IX,d SUB (IX+d) Subtract memory indirect SUB IY,d SUB (IY+d)
SSB R SBC R Register with carry
S88 IX,d S8C (IX+d) Memory indirect with carry S88 IY,d S8C (IY+d)
ANA R AND R Logical and register
ANA IX";d AND (IX+d)) Memory indirect ANA IY,d AND (IX+d))

ORA R OR R Logical OR register
ORA IX,d OR (IX+d) Memory indirect ORA IY,d OR (IY+d)
XRA R XOR R Exclusive OR register
XRA IX,d XOR (IX+d) Memory indirect XRA IY,d XOR (IY+d)
CMP R CP R Register compare
CMP IX,d CP (IX+d) Memory indirect CMP IY,d CP (IY+d)
INR R INC R Register increment
INR IX,d INC (IX+d)
INR IY,d INC (IY+d)
OCR R DEC R Register decrement
OCR IX,d DEC (IX+d)
OCR IY,d DEC (IY+d)
ANI yy AND yy Accumulator immediate
XRl yy XOR yy
CPI yy CP yy
ORI yy OR yy
SUI yy SUB yy
S8l yy S8C A,yy

3-8

MNEMONIC ZILOG REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL"

DAA DAA Decimal adjust accumulator

CMA CPL Complement accumulator logical

NEG NEG Negate accumulator

CMC CCF Complement carry fl ag

STC SCF Set carry flag

NOP NOP No operation

HLT HALT HALT CPU

Dr 01 Disable interrupts

E1 E1 Enable interrupts

IM £) 1M 0 Set interrupt mode
IM 1 1M 1
1M 2 1M 2

16 BIT ARITHMETIC GROUP RP = B, 0, H, SP

DAD RP ADD HL,RP 16 bit add

CAD RP ADC HL,RP 16 bit add with carry

SBe RP SBC HL,RP 16 bit subtract with carry

DAD 1X,RP ADO IX,RP 16 bit add register pair to IX (RP 1- H or IY)

DAD IY,RP ADD IY,RP 16 bit add register pair to IY (RP 1- H or IX)

INX RP INC RP 16 bit increment
INX IX. INC IX
INX IY INC IY

DCX RP DEC RP 16 bit decrement
DCX IX DEC IX
DCX IY DEC IY

3-9

t·1NE~10N I C

ROTATE AND SHIFT GROUP

RLC

RAL

RRC

RAR

SLC R

SLC M

SLC TX,d
SLC IY,d

RL R

SRC R

RR R

SLA R

SRA R

SRL R

RLD

RRD

ZILOG RH1ARKS

R = B, C, D, E, H, L, r~, I X +d, I Y +d

RLCA

RLA

RRCA

RRA

RLC R

RLC (HL)

RLC (IX+d)
RLC (TY+d)

RL R

RRC R

RR R

SLA R

SRA R

SRL R

RLD

RRO

Accumulator left circular

Left circular through carry

Accumulator right circular

Right circular through carry

Register left circular

r~emory 1 eft c i rcu 1 a r

Left circular memory indirect

Register left through carry

Register right circular

Register right through carry

Left linear bit ~ = 0

Right linear bit 7 = extended

Right linear bit 7 = 0

Left decimal

Ri ght dec ima 1

3-10

I~NE~10N Ie ZILOG REr·1ARKS --

BIT MANIPULATION b = bit number o ~ b ~ 7

BIT b,R BIT b,R Zero fl ag = bi t b of regi ster R

BIT b, t'1 BIT b,(HL)
BIT b,IX,d BIT b,(IX+d)
BIT b,IY,d BIT b, (I Y +d)

STS b,R SET b,R Set (1) bit b of register or
STS b,M SET b,(HL) memory
STS b,IX,d SET b, (I X +d)
STS b, IY ,d SET b,(IY+d)

RES b,R RES b,R Reset (0) bit b of register or
RES b, r'1 RES b,(HL) memory
RES b,IX,d RES b,(IX+d)
RES b,IY,d RES b,(IY+d)

INPUT/OUTPUT GROUP P = port number R = register

IN P IN A,(P) Input to accumulator

eIN R IN R,(C) Register R from port (C) (R#M)

INI INI Input and increment

INIR INIR Repeated input and increment

IND INO Input and decrement

lNDR INDR Repeated input and decrement

OUT P OUT (P) ,A Output accumulator

r.OUT R OUT (C), R Register R to port (C) (R#M)

OUTI OUTl Output and" increment

OUTIR OUTIR Repeated output and increment

aUTO aUTO Output and decrement

OUTDR OUTOR Repeated output and decrement

3-11

~INEr(10N I C ZILOG REHARKS /! --

JW·1P GROUP If = 1ocation (16 bit) dest= destination (1:128 bytes displacement)

Jt.1P V JP V Jump

JNC If JP NC,V No carry

JC V JP C,V Carry

JNZ V JP NZ,V Not zero

JZ V JP Z,V Zero

JPO V JP PO,V Pa ri ty odd

JPE V JP PE,V Parity even

JP V JP P,V Positive

JM V JP M,V Negative

JR dest JR d Jump relative

JRC dest JR C ,d Carry

JRNC dest JR NC,d No carry

JRZ dest .JR Z,d Zero

JRNZ dest JR NZ,d Not zero

PCHL JP (HL) Branch to location in HL

PCIX JP (IX) Branch to IX

PCIY JP (IY) Branch to IY

DJNZ dest DJNZ,d Decrement and jump relative if
not zero

3-12

MNEMONIC ZILOG REMARKS

CALL AND RETURN GROUP V = address

CALL V CALL V Subroutine transfer

CNC V CALL NC,V No carry

CC V CALL C,V Carry

CNZ V CALL NZ,V Not zero

CZ V CALL Z,V Zero

CPE V CALL PE,V Parity even

CPO V CALL PO,V Parity odd

CP V CALL P,V Positive

CM V CALL M,V Negative

RET RET Return

RNC RET NC No carry

RC RET C Carry

RNZ RET NZ Not zero

RZ RET Z Zero

RPE RET PE Parity even

RPO RET PO Parity odd

RP RET P Positive

RM RET M Negative

RET! RETI Return from interrupt

RETN RETN Return from non-maskable interrupt

RST n RST n Restart

3-13

ASSEMBLER

ORG expr ,

OS expr

OW expr

DB expr

EQU

SET

IF expr

NIF expr

ENOIF

END expr

PSEUDO OPERATIONS

PSEUDQ OPERATIONS expr = arithmetic expression

Define program counter to nnnn.

Reserve n bytes of storage. The first and last bytes of the
reserved storage area are modified .. An unmodified reserved
a'rea can be created by ORG $+S IZE.

I6-bit datum definition.

a-bit data or ASCII character string definition. The operand
may be an ASCII character string enclosed in single quotation
marks. Examples:

DB 5,0DH, I FILE'
DB I ASCI I STRING' ,0DH

The operand defined by the label field is set equal to the
expression defined by the operand field. This operation is
performed in pass 1 of the assembler and the variable definition
is fixed by the last such definition encountered in pass 1.

The operand defined by the label is set equal to the expression
defined by the operand field. This op'eration is performed in
both pass 1 and pass 2 and the replacement is effected upon
every encounter.

expr is evaluated. If the result is zero the scanner skips to
the next ENDIF, END, or end-af-file before resuming assembly.
If the expression evaluates to any non-zero value t assembly
proceeds. Operation is performed in both passes. Read IF as
II SKIP IF ZERO e "

expr is evaluated. If the resul tis not zero the scanner ski ps
to the next ENDIF, END, or end-of-file before resuming assembly.
Equivalent 'to NOT IF. Read NIF as "SKIP IF NOT ZERO."

Identifies the end of a conditional assembly block.

Terminates assembly. expr is an optional execution address to
which the hex loader will branch after completion of the load"

3-14

ASSEMBLER

USE operand

MACRO

PSEUDO OPERATIONS expr = arithmetic expression

Allows program assembly to proceed with multiple location count
ers. The operation is skipped if the operand has not previously
been defined; however, the definition can appear after the
reference, to be used by pass 2. The USE operation is best
explained by example:
AORG: SET 0A000H
BORG: SET 0B000H

USE AORG; SET code ori gi n to AORG
[CODE AT 0A000H]
USE BORG;

[CODE AT 0B000H]
USE AORG;

[CODE]

USE BORG;

SET value of AORG to PC
SET PC to BORG

Resume code'at end of previous
block which started at A000.

Resume code at END of block which
started at B000.

The USE instruction can be used to insert program data at the
end of instruction code:
AFTR: SET LAST;

ORG Start;
[CODE]

RESUM: SET $;
USE AFTR

STRING: DB 'CHARACTERS'
USE RESUM;
[CODE]

USE AFTR
[MORE DATA]

USE RESUM;
LAST: SET $

END

Not known on pass 1.
Somewhere.

Remember where we are.

Resume in~line coding.

Continue

Signifies macro definition.

3-15

ASSEMBI ER

MACND

LOCAL

LOCND

GOTO label

PSEUDO OPER8TIONS expr = arithmetic expression

Signifies end of macro definition

Signifies the start of an assembly block. All labels generated
within a local block are confined to that block.

Signifies the end of an assembly block, global assembly resumes.
LOCAL/LOCND assembly blocks allow temporary macro definitions.

Directs assembler to skip forward to label before resuming
assembly. If label is reached via a GOTO branch, the symbol will
not be entered into the symbol table. If label is rea.ched via
a normal assembly sequence it is treated as an ordinary statement
label. GOTO is used in conjunction with conditional assembly to
effect complex assembly sequences. GOTD allows forward refer
ences only. An invalid label terminates the assembly pass.

IFGZ expr;label If expr evaluates to zero, the assembler branches forward to
label; otherwise assembly continues.

IFGNZ expr;label If expr evaluates to non-zero, the assembler branches forward
to label; otherwise assembly continues. Labels reached by

REPT expr

REPND

USB expr

IFGZ and IFGNZ branches are not entered into the symbol table.
Note that label must be separated by a semi-colon from the end
of expr.

Repeat block. The value of expr determines the number of times
the repeat block is executed.

Defines the end of a repeat block. The portion of source code
bracketed by REPT/REPND is assembled repeatedly.

Assembly-time branch to user routine. MAKRO branches to the
address given by the value of expr. The user routine may
utilize all registers. MAKRO may be re-entered by a return RET.
Upon entry to the user routine, the zero flag is set for pass 1
of the assembly, and the DE registers contain the address,
within MAKRQ, at which assembly must resume. This pseudo
operation provides the means for controlling output.

IFEQ STRl,STR2;LABEL Branch to LABEL if character string STR1 is identical
to STR2.

IFNE STRl,STR2;LABEL Branch to LABEL if character string STR1 is not identical
to STR2.

3-16

ASSEMBLER PSEUDO OPERATIONS expr = arithmetic expression

IFNEG expr;LABEL Branch to LABEL if expr results in a negative value.

IFDEF SYMBL;OEFND Branch to DEFND ; f SYMBL has been entered in the symbo 1 tab 1 e-.

LIST

NOLST

Turns on full assembly listing, restoring any pass options.

Turns off full assembly listing, retaining diagnostic and error
mes.sages.

COMPS STR1,STR2;LABEL Branch to LABEL if character string 2 is greater than
character string 1.

LINK FILENAME Merges disk file FILENAME into the current assembly. The LINK
pseudo ... operation enables the assembly to include previously deve': ..
oped program modules.

INPUT MAKRO allows the user to define program variables at assembly time.
The INPUT pseudo-operation accepts an expression from the console
input, evaluates .that expression, and assigns the computed value to
the variable defined by the label field.

XPAND . Display macro expansion (default case).

NOEXP Suppress macro expansion.

APUSH expr Places the value of expr on the internal assembly stack.

LA8EL:APOP Similar to SET pseudo-op except that value of LABEL is recovered
from assembly stack. APUSH and APOP are primarily used within nested
control macros as in FOR/NEXT loops. Such nesting requires that the
starting address of FOR loops be recovered in reverse sequence by the
following NEXT macros.

PAGE Causes page eject (via form feed).

TITLE I PAGE HEADING I Causes corresponding headin'gO~toappear on subsequent
pages of the assembly listing. If the TITLE field ;s empty, MAKRO
will prompt the user during pass 2 for the page heading. The prompt
opticn ;s exercised by terminating the TITLE pseudo-op with a car
riage return.

"

SETQ expr Sets internal label-generating assembly variable to value of expr.
A question mark appearing in the label field is expanded as the
character string representing the hex value defined by SETQ. This
operation was implemented to allow communication between macros.

3-17

RELOCATION PSEUDO-OPERATIONS

The relocating assembler, MAKRO version AMA.2, additionally recognizes
the following pseudo-operations or directives to the loader LINKED

LABEL:ENTRY

LABEL: EXTRN

FILE:LIBRY

Loader directive which defines LABEL for reference
in another (independent) assembly.

Loader directive which defines LABEL as a point
created in another assembly, which must be found
by the linkage editor.

Loader directive which defines FILE as an object
library within which one or more external references
may be fa und.

LABEL:ABSNT expr Loader directive which defines LABEL as a fixed location
to be used as an external reference in another assembly.
The ABSNT directive operates as an assembly EQUate which
can be changed at load time.

3-18·

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some irregularity discovered during either pass 1 or pass 2 of the
assembly.

P Phase error: the value of the label has changed between the
two assembly passes.

L Label error: missing operation field or invalid destination label.

U Undefined program variable.

V Value error: the evaluated operand is not consistent with the
operation, e.g., MVI A, 1000H (not a valid 8-bit operand).

S Syntax error, e.g., MOV A+8

o Opcode error, e.g., DeS B

M Missing label field.

A Argument error.

R Register error.

D Duplicate label.

3-19

MAKRO CONDITIONAL ASSEMBLY

The conditional assembly features of MAKRO include

COMPS
IFEQ
IFNE
IFNEG
IFDEF
IF
NIF
ENDIF
IFGZ
IFGNZ
GOTO

String comparison
Character string equality
Character string inequality
Branch on negative
Branch if defined symbol
Skip if zero
Skip if not zero
Termination of conditional block
Branch to label if zero
Branch to label if not zero
Unconditional branch

These pseudo-operations enable the programmer to direct the assembly by per
forming assembly time computations. In the simplest application, conditional
assembly allows a program to be written with a number of options, such as
various input/output modes, with the desired array of options selected by
program switches. A single source code module can thus be used for a
variety of applications. More powerful application of conditional opera
tions directs the assembly according to results generated during the
assembly process. An example of this application is given in the discussion
of macro processing.

The conditional assembly operations effect their branching upon the results
of evaluating an arithmetic expression. The expression begins with the /first
non-blank character after the operation field and ends with a carriage
return or semi-colon. The label directed branches IFGZ and IFGNZ include a
destination field following the expression. A semi-colon must separate
the destination from the expression. The destination field is terminated
by a blank or carriage return. Branching is performed in a forward direction
only, the assembler skipping over source code until the destination label or
end-of-file is detected.

Treatment of the destination label in label-directed branches requires
discussion. The general form is

Branch expr; There
else here
[CODE]

There:
If the branch condition is not satisfied, assembly proceeds in sequence with
else, in which case the destination label (There) may be reached in the
course of assembly. In this, the fall-through case, the destination label is
treated as an ordinary statement label and is entered into the symbol table.
However, if the branch condition is satisfied, the label is reached via a
skip, and normal assembly proceeds with the first character following the
colon at the destination. The destination label is not seen by the assembler.

3-20

The IF/ENDIF and NIF/ENDIF assembly blocks bracket portions of code which are
conditionally assembled or disregarded. The IF block is disregarded if the
corresponding expression evaluates to zero. The NIF block is disregarded if
the expression evaluates to not-zero. Mnemonically, these conditions refer
to the skip rather than the assembly.

Nested IF / N IF bloc ks cannot generally be assembled correctly. Consider
blocks nested as

a IF exprl
b IF expr2
c ENDIF hopefully for the inner

[CODE] some code in here
d ENDIF hopefully for the outer

Assembly proceeds as follows:
exprl is evaluated, the assembler skipping to the first ENDIF (c) if exprl
1S zero. If exprl is not zero, expr2 is evaluated, the assembler reaching
the ENDIF (c) regardless of the results. It is seen that CODE is assembled
regardless of the contents of either expression. The second ENDIF (d) is
superfluous, and is ignored. There may be applications of such behavior, but
the operation seems more likely to be a source of confusion. Complicated
conditional branching is more easily and clearly generated by the label
directed operations.

A cautionary flag must be raised regarding conditional assembly. Phase
changes of assembly variables (change in value between the two assembly
passes) can result in a totally invalid assembly. If such phase changes
cause the course of the assembler through the source code to differ for
pass 1 and pass 2, the resulting assembly is almost certain to fail. You
must remember that any and all branches performed in pass 1 must be repeated
in pass 2.

The character string tests, IFNE and IFEQ, perform a -character-by-character
test of the first two parameter strings, conditionally effecting the branch
upon the outcome of the comparison. The forms of these operations are:

IFEQ STR1,STR2;LABEL
IFNE STR1,STR2;LABEL

String 1 begins with the first non-blank character after the operation code
and extends to the character preceding the comma. String 2 includes the
character following the comma through that preceding the semi-colon.

Remember that the destination field must be preceded by a semi-colon and
that the destination label vanishes if the branch is true.

3-21

IFNEG expr;LABEL
expr is evaluated. If the result is negative (IS-bit signed arithmetic) the
assembler branches to LABEL. IFNEG, IFGZ and IFGNZ can be combined to effect
any computational branch.

IFDEF SYMBOL;LABEL
The symbol table is searched for symbol. If the entry is found, assembly skips
to LABEL. IFDEF is used to provide automatic type declaration.

COMPS STRl,STR2;LABEL
A character-by-character comparison is made between STRl and STR2. If STR2
is greater than STR1, assembly branches to LABEL. The COMPS pseudo-op is
used to test parameter type in a macro call.

3-22

MAKRO MACRO CAPABILITY

INTRODUCTION TO MACROS

A macro can be considered an assembly language super-instruction with which
the user can in~oke many elementary assembly language statements with a
single macro call. Users familiar with FORTRAN utilize a macro in the
FORTRAN statement function. BASIC programs using the DEF FN operation
capitalize upon an economical feature similar to a macro. The PL/l pre
processing pass.is a macro phase.

Assembly language programming is distinguished from such high level lang
uages on the basis of the translation from the programmer-oriented language
to the machine-oriented object code. This translation is performed on an
approximately one-to-one basis for assembly language programs -- one
machine instruction for each assembly language instruction. Programs
written in a high level language enjoy greater leverage in that a high
level language statement may result in the generation of many elementary
machine code instructions.

A macro assembler can be regarded as bridging the gap between rudimentary
assembly and high level language programming. Indeed, several high level
languages have been implemented upon an underlying macro structure. A
high level language implemented by macros can furnish the efficiency of
assembly language and the ease of high level programming. Via macros, the
user can design his own open-ended high level language.

MACRO PROCESSING

Interpretation of a macro involves the three steps:

• macro definition
• macro call
• macro expansion

The macro definition is the means by which the programmer informs the
assembler of the instruction sequence to be effected. Briefly, in the
macro definition the programmer informs the assembler that "when I say
this, I mean that.1I The macro definition associates a name (label) with'
the sequence of instructions. Subsequent to the definition, the macro
name is used as an entry in the op-code field to invoke the entire instruc
tion sequence. In order to provide more power and flexibility to the
macro, beyond that which can be furnished by a text editor, the macro
·definition allows certain parameters (dummy) to be included in the defini
tion. These dummy parameters appear in the operand field of the macro
definition. The assembler recognizes the dummy parameters when they

3-23

appear in the sequence of instructions comprising the body of the macro.

The macro definition thus consists of the following:

NAME: MACRO dummy parameter list
[MACRO BODY]
MACNO signals end of definition

The macro call consists of the macro name appearing in the operation (op
code) field of a subsequent instruction. Actual parameters, appearing in
the operand field of the macro call, replace the dummy parameters of the
macro definition.

In the macro expansion phase, the instruction sequence representing the
body of the macro ;s delivered to the assembler. Dummy parameters appear
ing in the macro body are replaced, in sequence, by the actual parameters
included in the call. With the single macro call, the user has invoked
an entire instruction sequence.

MAKRO deals with the macro definition during pass 1 of the assembly.
Source text, comprising the macro body, is transferred to a temporary
buffer following the symbol table. The source text is scanned for occur
rences of the dummy parameters whi ch are. repl aced by the parameter sequence
number. The compressed macro text is then stored uppermost in memory.

Macro expansion must be performed for both passes of the assembly. After
recognizing a macro call, the body of the macro is expanded into the
buffer area, with actual parameters replacing the parameter sequence
values. Assembler input is directed to the expanded text (away from the
mass storage d~vice). Input from the mass storage device is resumed when
the body of the macro is exhausted.

3-24

MAKRO IDIOSYNCRACIES

The treatment of macros by MAKRO differs somewhat from conventional tech
nique. The differences, however, stem from careful consideration, and
MAKRO processing is considerably more powerful than alternative methods.
The primary departure from convention arises in the treatment of macro
parameters. MAKRO delays the binding of parameter values until object
code ;s generated (all parameters are call by name, not value). Dummy
parameters appearing in the macro definition are treated as character
strings which are recognized in the macro body regardless of their context.
Thus, in the definition

MAX1: MACRO
(BODY]
MACNO

any occurrence of String 1
the first dummy parameter.

MAXI: MACRO
DB 'THIS'
OW THAT
LXI H,THIS
MACNO

String 1, String 2

in the macro body is regarded as a reference to
For example
THIS ,THAT
;THIS or THAT

is treated as reference to the dummy parameters as
DB 'I'
OW 2
LXI H,l

;1 or 2

;n which the digits represent the parameter sequence.

Actual parameters, in the macro call, are likewise treated without regard
to context in the expansion phase. Character strings representing actual
parameters directly replace the dummy sequence values. Thus the call

MAXI ALFA,BETA
generates

DB 'ALFA'
OW BETA
LXI H,ALFA

;ALFA or BETA

The revised and expanded body is then delivered to the assembler for inter
pretation.

3-25

PROCEDURAL AND SYNTACTICAL RULES

1. Dummy parameters must be at least two characters in length. All characters,
including blanks, in both actual and dummy parameter strings, are considered
significant.

2. Dummy and actual parameter strings begin with the first non-blank character
in the operand field. Parameter strings are separated by a comma.

3. All labels generated within the macro body assume global status. The special
character # appearing in the macro body is regarded as a reference to a four
digit hex number which ;s unique for each macro expansion. Labels generated
for which global status is undesirable should be suffixed with the # character.
Thus, within the macro expansion,

LABEL: assumes global status
L#: is local to the current expansion

4. As a consequence of pass 1 treatement of the definition, a macro cannot be
globally redefined.

5. No macro de.fi n; ti on may appear wi thi n the body- of another macro expans; on.
6. Macro expansions may be nested up to ten deep, i.e., up to ten macro calls

can be simultaneously active. (Refer to REPEAT BLOCK discussion).
7. Scanning for a macro call precedes the search through the op-code table.

Thus a macro can be used to redefine a machine operation. For example, to
trace jump operations the JMP instruction may be replaced by a macro as

JMP: MACRO ADDRESS
PUSH PSW
MVI A,' J I

CALL CHOUT
CALL CHIN
POP PSW
DB 0C3H
OW ADDRESS
MACNO

which causes the program to display IJI and await keyboard input before
effecting any JMP.

8. The number of actual parameters ordinarily agrees with the number of dummy
parameters. Excess actual parameters are ignored. Insufficient actual para
meters default to the null parameter.

9. The parameter separation character (default I,') in macro calls can be redefined
at the time of macro definition. If the formal parameter list begins with a
corrma (,) the character immediately following is taken to be the parameter
separation character for subsequent calls of that macro. The first formal
parameter begins with the character follow;ng--uie separation character. This
option is provided to allow syntactically more attractive macro usage.

3-26

10. The macro definition must precede any reference.

11. A null actual parameter, represented by two consecutive commas in the
parameter string of the macro call, results in a nulJ replacement string
in the macro expansion. The first actual parameter is considered null if
the calling parameter string begins with a comma.

12. The MACND pseudo-instruction may not be preceded by a label field.

13. MAKRO actual parameters, or porti ons thereof, enclosed in square brackets [J,
are treated as literal blocks and expanded without regard to any delimiters
contained therein. Each such expansion strips off a matching pair of square
brackets. The brackets must be balanced.

3-27

USING MACROS

Macro calls are typically used to alleviate tiresome sequences of instruc
tions, such as in table generation or monitor function references. Thus

or

CHOUT: MACRO
CALL OUTCH
MACNO

STATUS: MACRO PORT,STBIT
S#: IN PORT

ANI STBIT
JZ S#
~1ACND

illustrate the least imaginative exploitation of macro power. Computer
literature is filled with awesome examples of the heights which can be
reached by sophisticated macro use. See P.J. Brown, MACRO PROCESSORS,
in which it is revealed that SNOBOL 4 ;s implemented by macros.

The following illustration of a high level language (BASIC) is presented
in order to suggest more penetrating application of the macro:

TYPE DECLARATION
WORD: MACRO LABEL,VAlUE
LABEL: OW VALUE
MACND
STRING: MACRO LABEL,DATA
LABEL: DB 'DATAl
NLABEL:EQU $+l-LABEL
MACND
LOOPVR: MACRO LOOP

LOOPNM: OS 2

MACNO

PROGRAM LOOPING
FOR: MACRO LOOP,REPS
LX! H,REPS
SHLD LOOPNM
LOOPST:SET $
MACND
NEXT: MACRO lOOP
LHLD LOOPNM
DCX H
SHLD LOOPNM
MOV A,H
ORA l
JNZ LOOPST
MACNO 3-28

If you want string length

Loop index variable
Loop start
Rep counter

ARITHMETIC OPERATIONS
ADDITION: MACRO LEFTARG,RTARG,ANSWER
LXI B,LEFTARG
LXI D,RTARG
LXI H,ANSWER
CALL FPADD
MACND

Macro expansion in conjunction with conditional assembly offers an especially
powerful assembly combination. To illustrate, refer to the previously defined
ADDITION macro. Now assume that we wished to address the destination (ANSWER)
either directly as shown, or indirectly (LHLD instead of LXI). Further,
assume that we wish to avoid the generation of the instruction entirely if
the destination location is unchanged from a previous operation. Reflect
upon the following complex:

ADDITION: MACRO LARG,RARG,ANS,FLAG
LXI B,LARG
LXI D,RARG
NIF HCON-ANS Check for valid H
GOTO ADDND
ENDIF
IF I-FLAG Flag is 0 for indirect
GOTO INDIR
ENDIF
LXI H,ANS Direct
GOTO AOOND
INDIR:LHLO ANS Indirect
GOTO ADDNO Gobble label
ADONO: CALL FPAOD
HCON: SET ANS
MACNO

This macro was designed to illustrate many of the novel features of MAKRO.
Some economy of code could have been effected by use of IFGZ and IFGNZ
pseudo-operations. Note that no labels are generated by a call to this
macro since the destinations INDIR and ADDND are invariably reached by a
GOTO branch. Quite clearly the macro could be expanded to treat the left
and right arguments as well. Complex macro usage .greatly reduces the chance
of coding error, since without macro expansion the chance of correctly
entering a number of such sequences is minimal. A set of such complex
macros need only be developed once and then merged into the current file.
MAKRO, in conjunction with your macro file, becomes your high level language.

3-29

REPETITION CONTROL

MAKRO allows assembly time repetition (looping). A block of assembly code
may be replicated up to 255 times by enclosing the block in REPT/REPND
brackets. The form of the repeat block is

REPT expr
[CODE]
REPND

in which expr is evaluated, truncated to an a-bit value, and used as a loop
repetition factor. Repeat blocks may be nested, and may occur within a
macro expansion. MAKRO maintains a control stack of length 80 bytes. The
maximum depth of nesting is determined by the stack limit.

An active repeat block consumes 10 bytes of the control stack, and an active
macro expansion consumes 8 bytes. Repeat blocks and macro expansions may
be nested in any way so long as the total stack depth does not exceed 80
bytes.

In order to provide some flexibiJity to the repeat block, MAKRO recognizes
two special operands:

@ is a repeat loop index, counting up from zero, marking progression
of the repeat block.

% is a count of the number of active parameters in the most recent
macro expansion.

MAKRO also allows looping over the actual parameters in a macro expansion.
Such looping is governed by three special characters appearing in the macro
body:

tN Control-N
tS Control-S
tQ Control-Q

Parameter flag (Press Control and N simultaneously)
Start of macro loop
End of macro loop

The start and end of the macro loop must be bracketed by tS/tQ; the loop is
then repeated over all the actual parameters occurring in the macro call.
Within such a loop, the elements of the parameter sequence are referenced by
two tN's in sequence.

3-30

To illustrate the macro loop, assume we have a series of A5CII strings we
wish to print, and that the sequence and number of these strings to be
printed must vary within our program. Define the macro print all:

PNALL: MACRO
+S Start loop over all actual parameters
LXI H,+N+N
CALL PRINT
+Q End the loop
MACNO

Now we use this macro as
PNALL S1,52,53
PNALL S6,S1,59,52,57

The loop control automatically handles the counting and parameter refer
encing.

3-31

MAKRO BLOCK STRUCTURED ASSEf·1BLY

The LOCAL/LOCND pseudo-operations allow the user to bracket portions of the
assembly, treating such portions as isolated units. Macro definitions,
addresses, equates, and 'sets generated within such blocks may not be accessed
from outside the block. Consider such blocks as FORTRAN subroutines or
procedures in PL/l or ALGOL. The insulation of such blocks from one another
is nearly complete; the blocks may not contain references to elements
outside the block (exception coming).

The treatment of such blocks is effected by limiting the scope of the symbol
table. During pass 1 of the assembly, LOCAL restricts access to the symbol
table to only those entries following. LOCND, on pass 1, resets global
access to the symbol table. On pass 2, LOCND causes all entries generated
between the two bracketing LOCAL/LOCND operations to be deleted from the
symbol table.

Now the exception promised earlier: An attempt is made during pass 2 to
satisfy a reference to an undefined element by searching symbol table entries
after the block. Local symbols must remain in the symbol table until the
procedural block completes pass 2, and these symbols may be accessed in an
attempt to resolve an undefined element, global or local.

ASSEMBLY TIME INPUT

The INPUT pseudo-operation allows the user to define program variables at
assembly time. Critical program variables, such as the assembly origin
or I/O port numbers, may be entered as input variables, with their value
determined by console input during pass 1 of the assembly.

As an example, assume that we have developed a program requiring input
from a serial port;. however, neither the port number or status mask can
be standardized. We may therefore write the source program with these
variables defined by input:

I PORT: INPUT
IMAS K: INPUT

and the status check portion of the program would be

READY:IN IPORT
ANI IMASK
JZ READY

The INPUT pseudo-operation is performed in pass 1 of the assembly. MAKRO
displays the source line and awaits console input. The user may enter any
valid expression which is terminated by a carriage return.

3 ... 32

COMMUNICATION BETWEEN MACROS

The opera ti ons APUSH/ APOP and SETQ a 11 ow communi ca ti o.n between re 1 a ted macros.
The function of these operations is exemplified by a conceptual OOIF macro.

As the name implies, the OOIF macro is to generate execution time instructions
to selectively execute the following block of code. For cosmetic considerations,
this macro will utilize I. I as the parameter separation character.

OOIF ,.ARG1.RELATION.ARG2
The macro is invoked as:

OOIF X.GT.Y

The macro must translate into a logical test of RELATION between the operands
ARGI and ARG2, and JUMP ahead if RELATION is false. While a backward refer
ence can be effected by the SET pseudo-op, forward references cannot. (Why?)

The forward reference ;s implemented within the OOIF macro as
f,PUSH ~f.H
JUMP IF FALSE TO 0#

in which. the # is uniquely expanded.

A subsequent IFENO macro generates the required label as
QVAL:APOP

SETQ QVAL
O?:

Test your understanding of the above by defining an ELSE macro to be inserted
optionally between the nOIF and IFEND macros.

3-33

RELOCATION

MAKRO offers two different methods of achieving relocation': at assembly time
via the LINK operation, or at load time via relocatable code.

A relocating assembler monitors object code generated by the assembler,.and
flags portions of that code whose values depend upon the execution address
of the program. Object code generated by a relocating assembler is not
ready for execution,. requiring address modification by another program -
the loader.

A special type of loader -- a linking loader -- will allow program modules
to reference previously developed modules (externals). The linking loader
performs a library search to find and include all the necessary program
modules. The output of the linking loader is an absolute, executable
program.

Such techniques are necessary on multi-user machines in which several
programs may be executing simultaneously and the execution address of any
program is dictated by available memory space., On a micro-computer, the
practical advantage of relocation and linkage is that large programs may
be developed in small discrete modules which can be created and checked
out independently. Commonly used modules, such as floating point routines,
need be developed only once.

There are, however, drawbacks to the relocating assembly/link loader:

1. A linking loader and link edit phase is required.
2. Restrictions are placed upon the structure of the source code

to enable relocation. These restrictions vary from a minor
nuisance to considerable pain, and occasionally force inefficiency
into the resulting code.

3. Certain operations (masking) and certain quantities (8-bit
values.) cannot easily be handled by arel:9S?iting assembler.

MAKRO provides the features of a relocating assembler and linking loader via
the LINK pseudo-operation, with no restriction placed upon the source code.
The LINK operation is performed at assembly time, producing an executable
object module, with no need for the linkage/edit or address modification
phase. With MAKRO, the user need not restrict his source code to relocatable
form, since all MAKRO source ;s relocatable by the LINK operation.

Relocation and linking are typically performed at the object code level,
after assembly has been compl eted. The MAKRO L'INK operation is performed
at the source code level. The LINK pseudo-operation extends the assembly
to include the named source file(s).

3-34

Suppose a main program is being developed which will require library
modules FPPACK (a floating point package) and FPOUT (an input/output
package). The main program should then include

LINK FPPACK
LINK FPOUT

Assembly proceeds through the main program and continues through the link
modules in the order given. The LINK pseudo-operation may appear anywhere
in the source code, and LINK modules may themselves contain the LINK oper
ation.

The LINK command, without a file name, acts as the INPUT pseudo-operation.
The source line is displayed, prompting the definition of the link file at
assembly time. Macro library files may be terminated by such a LINK com
mand to chain the assembly to the current source file. In this case the macro
library file should be specified as the input file.

The LINK file name must be terminated with a carriage return.

3-35

RELOCATION

The LINKED and KWIK Loaders

MAKRO version AMA.2 generates a relocatable object module for source code
conforming to certain addressing restrictions. The relocatable object
module is loaded into memory, for execution, by:

LINKED linkage editor/relocating loader
KWIK relocating loader

Either of these loaders will perform all necessary address modification to
.relocate the object module for execution anywhere in memory, provided that
address constants satisfy the restrictions given below. In addition to
re 1 ocati on, the LINKED 1 i nkage ed; tor wi 11 perform ali bra ry search to
include previously assembled object modules required for execution.

Three MAKRO pseudo-operations provide loader directives for the LINKED loader:

ENTRY

EXTRN

LIBRY

Defines the label field of the instruction to be
an entry point when this module is referenced
e1 sewhere.
Defines the label field to be a requisite module to
complete an executable load.
Defines the label field to be a library containing
certain of the requisite external modules.

If none of these three directives is present in the assembly, the object
module may be loaded by an INTEL hex loader for execution at the absolute
address given by the assembly or by the KWIK loader for relocation. In
the absence of the loader directives, object code generated by MAKRO con
forms to INTEL hex standards, except that relocation information is passed
in the two bytes following the load address. These bytes (7 and 8 following
the colon) are ignored by the INTEL hex loader.

The object code produced by MAKRO consists of four types of records:

Byte Number Contents
1. DATA RECORD

1 I. I

2,3 byte count
4,5 load address (high)
6,7 load address (low)
8,9 relocation information

10 to n-l data bytes
n checksum

3-36

Byte Number
2. LIBRARY DIRECTIVE

1
2-n

3. ENTRY DIRECTIVE
1

2,6
7,8

4. EXTERNAL DIRECTIVE

5. ABSOLUTE ENTRY

ENTRY DIRECTIVE

1
2,6
7,8

1
2,6
7,8

Contents

7AH
Library file name (ASCII)

0BAH
entry name (ASCII)
entry point, relative to start

0FAH
external name (ASCII)
tail address of linked list

0BBH
entry name
entry value

MAKRO allows commonly used program modules to be assembled and stored in an object
library. Entry pOints to these modules are defined by the ENTRY directive, which
are output along with the object code. These object modules may be referenced in
a later assembly by the ENTRY point name. The form of the ENTRY directive is:

LABEL:ENTRY
which is similar to

LABEL:EQU $

except that the ENTRY pseudo-operation generates loader information during pass 1
of the assembly.

ABSOLUTE ENTRY DIRECTIVE
The ASSNT directive functions as ENTRY except that the value of the entry is defined
by the operand field (as in EQU) and is not subject to relocation by the loader.
Example:

DOS:EQU 2000H
CHARIN:ABSNT DOS+10H

EXTERNAL DIRECTIVE
The EXTRN directive allows the current assembly to reference an ENTRY point defined
by a previous assembly. The form of the directive is:

LABEL:EXTRN
which defines LABEL as a routine not present in the current assembly, but which may
be found in an object library on a disk file. Having defined LABEL as an external,
it may be referenced as any other program variable, except that it may not be used
in an expression. Thus

CALL LABEL is valid, while
CALL LABEL+3 is forbidden

3-37

LIBRARY D~RECTIVE

The library directive, LIBRY, identifies the disk file in which LINKED may
seek to satisfy subsequent external directives. One or more external
directives follow the library directive. For example, a disk file FPPACK may
contain a floating point package with entry points FPADD, FPSUB, FPMUL and
FPDIV. A source program requiring these floating point routines as externals
would declare FPPACK via a LIBRY directive, and itemize the required entry
poi nts:

FPPACK:LIBRY
FPAOO:EXTRN
FPSUB:EXTRN
FPMUL:EXTRN
FPDIV:EXTRN

Entry points, library files, and externals must have unique names. Within
the library files the required external references must be defined as
entry points.

Library files are included in the order in which they are encountered; the
entire object module is included.

The LINKED load map defines the execution address of each entry pOint. Unsatis
fied exterhals are displayed. At completion of the load, the next available
memory address is displayed. A checksum error is signified by'? '. Duplicate
ENTRY and unsatisfied EXTRN modules are identified by 10 1 and rut errors respec
tively. Library files not found on the designated unit are displayed, and the
user may then redefine the file and unit.

3-38

SOURCE CODE RESTRICTIONS

1. Labels defined by an EXTRN directive may not be used in an arithmetic
expression.

2. Relocatable quantities may only be used ;n an arithmetic expression
containing the operators + and -.

3. Relocatability is limited to 16-bit quantities. The relocatability of
such quantities is determined by the form of the expression defining
the quantity. Absolute quantities are assigned a relocation value
of 0. Thus

CONST:EQU 5
defines CONST as an absolute with relocation value~. Program relative
values are assigned a relocation value of 1. Thus

HERE:LXI H,HERE
assigns a relocation value of 1 to the label HERE, and flags the LXI
instruction as requiring address modification.

4. Arithmetic expressions containing absolute and relocatable quantities
derive their relocation value from the result of the expression. The
rules of relocation arithmetic are:

a. The sum of an absolute and relocatable quantity is relocatable.

b. The difference of two relocatable quantities is absolute.

c. Any chain expression, containing absolute and relocatable quantities
connected by + or -, must evaluate to either 0 or 1 in relocatability.
Mentally substitute 1 for program relative quantities, and 0 for
absolutes, and evaluate the expression. MAKRO does not check the
resulting expression for validity. This restriction does not mean
that masking or other such address computations may not be used.
MAKRO will treat the results of such operations as absolute, and
it is the programmer's responsibility to ensure that the resulting
object code is valid.

5. Secondary load modules, those containing the ENTRY directive, must be
assembled at ORIGIN 0.

6. Load modules should neither begin nor end with the DS pseudo operation.

3-39 c

SYMBOL TABLE

The symbol table displays the value of all program variables together
with the relocation flag. The symbol table is printed with five entries
per line, each entry consisting of the variable name, variable value,
and relocation flag. The legend for these flags is:

0 absolute value
1 relocatahle value
3 external

83 externa 1. 1 i brary

The value shown for an external variable refers to the last address
within the program at which that external was referenced.

3-40

PDS RELOCATING LOADERS

A loader is the conduit through which the contents of a disk file are trans
ferred to memory for execution. The most widely available loader for micro
computer use is the INTEL hex loader for which source code listings are easily
obtainable. Loaders vary widely in the extent to which they operate upon the
data (program) while effecting the transfer from disk to memory.

The INTEL loader, one of the simplest, maintains a checksum to ensure fidelity
of the transfer, but otherwise performs no operation on the data being trans
ferred. The next higher level of loader sophistication is the relocating
loader. This utilizes relocation information to perform certain modifications
upon the data being transferred to enable the program to execute at an address
other than that for which the program was assembled. The highest level
operation ;s the linkage editor which can combine one or more incomplete mod
ules, relocating as required, into a unified, executable program. A linkage
editor may not necessarily perform the loading function, in that no executable
image may be left in memory at completion of its task.

PDS spans this spectrum of loader functions by providing two loaders, ~IK
and LINKED, which together with the ubiquitous INTEL loader satisfy all require
ments.

The function of the PDS loaders is somewhat dependent upon the operating envir
onment. The KWIK loader is the relocation vehicle for object programs created
with the MAKRO assembler version AMA.2. The object file and load address are
identified to KWIK which proceeds to create an executable image at the load
address. The input file to KWIK must satisfy the coding restrictions defined
in the preceding section, and the file may not contain any of the loader
directives. Such files may also be loaded with the INTEL loader for absolute
execution (at the address for which the program was assembled).

The LINKEDloader will perform the relocation function while collecting the
independent modul·es defined by the loader directives. LINKED combines the
requisite modules into an executable image in memory at the specified load
address and simultaneously creates an INTEL hex compatible object file.

It is anticipated that the INTEL loader, or an equivalent binary loader, will
continue to perform the bulk of the loader functions. The KWIK loader is
expected to be used for unique applications requiring an object file to
execute at more than one memory address. TheLINKED linkage editor is expected
to be used in the development of large applications programs in which a number
of component element~ have been independently developed.

KWIK and LINKED are furnished in relocatable form and may thus be relocated
to satisfy system requirements.

3-41

MAKRO EXPRESSION EVALUATION

Arithmetic expressions appearing in the operand field of MAKRO instructions
are evaluated according to standard arithmetic rules. The following table
defines the available arithmetic operations and the operator precedence.

Operation

(

*
/
\

+

Precedence
Value

16

12
12
12
11

11

& 8

- or t (5E hex) 7

>

<

II (quote)

7

6

6

Definition

Begin parenthetical expression
Multiplication
Division
Modulo, integer remainder
Addition
Subtraction
Logical AND
Logical OR
Logical EXCLUSIVE OR (XOR)
Right shift, zero fill
Left shift, zero fill

,NOT, logical complement
o End parenthetical expression

Expressions containing these operators are evaluated from left to right,
execution of any operation delayed until all preceding operations of prece
dence value greater than or equal to the pending operation are performed.

The logical complement refers to the operand or parenthatical expression
immediately following.

In the expressions
A>B, A<B

the left operand (A) is shifted in the indicated direction by B bit positions,
with zero bits shifted in.

The modulo operator \ returns the integer remainder after division. Thus
A\ B yi e 1 ds

A - [AlB] * 8

wh~re the integer part of the bracketed term is taken. The modulo operator
has precedence equal to *, I. The expression

3-42

22\3 * 5 yields 5 as
(22\3) * 5.

In any expression, the user may insert parentheses to force the intended
computational sequence. In the previous expression, execution of the
modulo can be delayed by

22\(3*5) = 7

STRING HANDLING PRIMITIVE

Arithmetic operands and the first argument of the IFEQ and IFNE pseudo
operations may be subject to string segmentation. String segmentation ;s
; nvoked ; f the fi rst character of the operand is a 1 eft ang-re bracket I < I •

The two characters immediately following the opening bracket are taken as the
start/finish segmentation markers. The string argument is taken as the
remaining characters up to but not including the right angle bracket ')'.
The string handling primitive replaces the entire construct with the charac
ters, if any, contained between the start/finish segmentation characters.
Thus

(59123456789) yields 678
«()ARRAY(JI) yields JI
(~OSARRAY (IJ) yi e 1 ds ARRAY

The string primitive is also functional when recognized in the label field and
macro parameter fields. Use of the segmentation primitive can be illustrated
by a conceptual LOAD macro to place the value of the argument on an operand
stack. The macro must take appropriate action when the argument is an array
reference:

LOAO:MACRO ARG
I FEQ {() ARG) , ; SCALAR
LX r H, (() ARG)
LXI D, ~ (,kSARG)
DAD 0
GOTO QUIT

SCALAR:LXr H,ARG
GOTO QUIT

QUIT:
MACNO

3-43

test for null index
else array, get index

stack operand

INTEL SOURCE COMPATIBILITY

Source files created for the INTEL assembler must be modified before
assembly·by MAKRO. The following table defines the systematic editing
required. In the table Ib l refers to a blank.

CHANGE: TO:

bEQUb :EQUb
bSETb :SETb
ENOM MACNO
bANDb &
bORb A

bSHRb >

bSHlb· <
bMACRO : MACRO
bMODb \
bXORb I

bNOTb 1/ (quote)

Source lines containing multiple labels must be modified to contain only
a single label identifier.

The expanded capability of MAKRO generally precludes the inverse operation.
of converting MAKRO source.

3-44

SAt·1PLE LI NKAGE OPERATION

The following example should illustrate the use of the linkage editor.

1. Create a source file CALLRS:
CALL EXT!
CALL EXT2
EXTS:LIBRY
EXT1:EXTRN
EXTN:LIBRY
EXT2:EXTRN
END

2. Use MAKRO to assemble this file, creating the object file CALLR.

3. Create' a source file EXTSS:
EXTl:ENTRY
LXI H,EXTG
EXTG:ENTRY
LXI H,2
END

4. Assemble this source file, creating object file EXTS.

5. Create a source file EXTNS:
EXT2:ENTRY
LXI B,EXTQ
EXTQ:ENTRY
MVI B, I Q'
END

6. Assemble EXTNS, creating object file EXTN.

7. Exercise your linkage module ULINK, identifying CALLR as the input file, and
any convenient load address.

Note that in Step 1 the code for EXT! and EXT2 does not reside in the current
source module. The LIBRY directives identify to the linkage editor the disk
file(s) in which the subsequent external references may be found. The module
in Step 1 defined EXTl and EXT2 as modules which must be resolved during the
load.

In Step 3, the source module EXTSS creates the first external EXTl. Note
that within this module EXTI is defined as an entry.

In operation, the linkage editor loads the module CALLR, then opens EXTS to
find the location of EXTl. The entire module EXTS is loaded.

Finally the linkage editor opens and loads EXTN, resolving references within
CALLR to the entry paint EXT2.

3-45 c

MAKRO ABSOLUTE FILES

Object code \vritten to disk by MAKRO is first passed through a format program
which incorporates the checksum and relocation information. The formatter calls
a direct disk write routine which buffers disk output.

MAKRO can be caused to generate absolute object disk files which can be loaded
for execution by the DOS loader by skipping the format routine.

To crea te th is program, load MAKRO wi thout ,enteri ng the program. Use DEBUG to
search for the byte string F5 05 E5. The start of this string marks the
start of the direct disk write. Again use DEBUG to search for the string
05 C5 E5 F5 which marks the start of the formatting routine. At this second
address, patch in a JMP to the first address. Save the resulting program
as disk file ABSMAKRO.

Certain code restrictions must be followed:

1. The code must flow straight through with a single ORG statement at
the start, and no manipulation of the location counter within the
program.

2. The OS opcode must be replaced by the macro

OS:MACRO COUNT
REPT COUNT
DB 0
REPNO
~1ACND

3. None of the loader directives nor any relocation feature can be
used.

3-46

b

EDIT

A very powerful Text Editor for
the creation, modification and
disk storage of character-oriented
material

4-1

Copyright 1978

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107
(213) 793-5748

INTRODUCTION

EDIT is a very powerful text editor featuring a full spectrum of text
manipulation operations including string search, substitution, insertion,
deletion and block move or delete. An elaborate command interpreter
allows the definition of corrnnand string macros. Segments of an input
text file can be drawn from disk into memory, modified, and written
back to an output disk file. Large, heavily-commented source files
which exceed available memory can be developed and modified easily with
the EDIT text editor.

Operationally similar to the editor offered by INTEL, EDIT offers a
broader range of functions, approximately three times the speed, and
occupies a little more than half the memory space of the INTEL ISIS editor
or the TDt ZAPPlE editor.

EDIT is written entirely in the 8080 subset of the Z80 instruction set
and is thus fully operational on either machine.

4-2

EDIT ORGANIZATION

EDIT operates under control of an executive which is responsible for
the transfer of textual material between disk and memory and for the
interpretation of user commands to create or modify that material.

Command strings, consisting of decimal repetition factors, alphabetic
command characters, character string parameters and control punctuation,
dictate the modifications to be performed on the text stored in memory.
Portions of an input text file may be drawn into memory, modified and
stored back on an output disk file.

Although the command structure of EDIT is consonant with conventional
text editors, users unfamiliar with convention may require some practice
to become adept at exploiting the many features. It is suggested that
the user practice on an empty diskette, creating and modifying text of
no particular value. Each of the executive commands should be exercised
in all its variety until the operation of EDIT has become second nature.

The majority of software development time is spent either in the debug
mode, finding err·ors, or in the text-edit mode, correcting those errors.
The user is advised to become thoroughly familiar with these software
development tools.

4-3

EDIT EXECUTIVE

Commands to the system executive consist of single upper case alphabetic
characters, optionally preceded by a signed decimal repetition factor.
Commands can be chained together to form a block-structured command
string. Such command strings are punctuated by the escape character
(ISH, echoed as $), while a block command is indicated by enclosing the
block in brackets <>. Every command string must be terminated by two
successive escape characters.

Command blocks can be nested quite deep, on the order of fifty. A
command block is interrupted either when any portion of the block cannot
be executed or the block repetition factor is exhausted. The meaning
of these features will, hopefully, be made clear in the subsequent material.

While the escape character is always interpreted as punctuation, the
block-defining brackets are significant only in the context of an executive
command. In addition to these characters the @, in the proper context,
has a variety of meanings which depend upon the command being executed.

Generally the @ is interpreted as 'anyl or 'all. I When the @ is used as
the command repetition factor, preceding the control character, it is
interpreted as 'all,' implying that the command is to be repeated as
often as possible. When the @ is used as a character (not the first)
in a character string under search, it is interpreted as 'any' in that
@ will match any character. In the commands defining disk input/output
files, @ is interpreted as Inane. I To create a new file, rather than edit
an existing file, the request for an input file name should be answered
with the @.

In search strings, the special character 'ampersand' (&) represents an
arbitrary character string. Just as @ will match any character in the
text, & will match an arbitrary character string not including a line feed.

EDIT maintains five pointers to the text file:

Start of the text buffer
End of the text buffer
Start of a defined textual block
End of the defined textual block
Pointer to the current activity

The first of these pointers is stationary, the second moves according to
ebb and flow of the file size. The block pointers mark the start and
end of textual blocks for deletion or relocation.

The pointer to the current activity dictates the operation of ED fT.
Executive commands enable the user to move the activity pointer through
out the text file. The editing commands (Search, Delete, Change) are
relative to the position of the current activity pointer. The command
structure of ED IT "i s composed of three command types:

4-4

Disk input and output operations
Commands to move the activity pointer
Text modification commands relative to the pointer

Executive commands are expressed to .EDIT in response to the prompt @
(the all-purpose character). EDIT examines memory to determine the
available size of contiguous RAM following the program end. Having
determined memory size, EDIT lays claim to all the available space.

Typing errors in a command string can be backspaced over with the rubout
key. EDIT echoes the deleted character. The entire command string can
be aborted by Control/C. EDIT accepts the entire command string before
proceeding to interpret that string. EDIT automatically supplies a
line feed after an input carriage return.

The user should note that apart from the control character Escape and
the context-dependent characters (@,&,<, » no other text characters have
any special significance to EDI~ Carriage return, line feed, underline,
etc., are merely data characters to be manipulated as any other characters.

4-5

EXECUTIVE COMMANDS

In the following, n represents a signed decimal repetition factor,
defining the number of times the inmediately following command is to
be executed. When applicable, a negative parameter value directs EDIT
operations toward the start of the text file. Spaces may not separate
the repetition factor and the immediate command. The punctuation charac
ter Escape ;s represented by $. By default, an absent repetition factor
is assumed to be unity.

COMMAND LIST

nA APPEND n SECTORS FROM THE INPUT FILE TO THE MEMORY BUFFER.
EDIT will terminate the command when the input file is exhausted,
when n sectors have been transferred, or when available memory has
been filled. The current pointer position ;s not affected by this
operation.

8 MOVE THE CURRENT ACTIVITY POINTER TO THE START OF THE MEMORY FILE.

nC CHANGE CHARACTER STRINGS.
The form of the corrmand is

nCSTRINGl$STRING2$$
which changes the next n occurrences, following the current pointer,
of String 1 to String 2. Every occurrence, after the pointer posi
tion, of String 1 is changed to String 2 by the command

@CSTRINGl$STRING2$$
An example, not original, is

nCFROG$PRINCE$$
which changes the next n FROG's to PRINCE's. The current activity
pointer is moved to the position immediately following the last of
the n operations.
The 'any' character @ can be used to ignore any character, except
the first, in String 1. Thus

CT@IS$THAT$$
will change THIS as well as TZIS to THAT.
All characters except @ are considered significant in the strings
for the Change and Search commands.

A negative repetition factor directs the change function backward
toward the start of text.

4-6

A character string can be deleted from the memory buffer by
nCSTRING$$

Only occurrences of strings after the current pointer position
can be changed. There is no practical limit to the length of
parameter strings for Change or Insert functions.

nO DELETE THE NEXT n CHARACTERS FOLLOWING THE, CURRENT POINTER.
If the parameter is negative, the n characters preceding the pOinter
are deleted. The command @D will not delete the remaining charac
ters. To clear the buffer use @K;~O deletes the character, if
any, prec'eding the pofnter position.- An alternate fo-rm of the delete
command is nDSTRING, in which the block of text from the current activity
pointer up to and including the nth occurrence of STRING is deleted.
Deletion is toward the start of text is n ;s negative.

E TERMINATE EDIT, TRANSFER MEMORY CONTENTS AND ANY REMAINING INPUT
FILE CONTENTS TO THE OUTPUT FILE.

Control is passed to the warm-start entry point of the disk
operating system. Subsequent re-entry to EDIT allows an entirely
new edit session.

, F CLOSE THE EXISTING DISK INPUT FILE AND OPEN A NEW INPUT FILE.
I""c:.DIT responds with the INPUT query. All significance of the
previous input file is lost. EDIT may be used to merge disk files
by repeated use of the F command.

G SCROLL THE MEMORY FILE.

H

The scroll is terminated by ControllC or end of file. The scroll
is controlled by the space bar. Pressing the space bar will freeze
the display; any other key resumes scroll. At termination (except
for end of file) the current pointer is positioned approximately
8 lines before the last line of the display.

SET BLOCK POINTERS.
EDIT allows text blocks to be moved or deleted. The start and end
of the text blocks are defined by the two block pointers. The H
command sets the start pointer to the end pointer, and the end pointer
to the current position of the activity pointer. Successful defi
nition of the block requires that the activity painter be moved down,
from start to end, invoking the H command twice. EDIT checks only
that the end pointer is closer to the end of text than the start
pointer. The user is cautioned to exercise care in setting the
pointers for a block delete. Make sure the painters are properly
set before a block delete.

I INSERT THE INPUT STRING INTO THE TEXT BUFFER U1MEDIATELY FOLLOWING THE
ACTIVITY POINTER.

Thus ISTUFFS would insert the characters STUFF into memory at the
position of the activity pointer. The pointer is moved to the
character following the insertion. The length of the inserted
string is limited only by available memory, The insertion may con
tain any characters except the 5scape punctuation character.

4-7

\
\

J PAUSE.
Execution of the current command is interrupted to await keyboard
input. A '?' prompt is issued to signify that EDIT requires user
input before proceeding. Typing the ESCAPE key returns EDIT to
the input mode; any other key resumes processing. Upon escape,
EDIT saves the current command stri ng.,
The pause mode is used to interrupt a long command string to
display the working area. The command string

@<S:$0L$lTJlL$>$S
will search every line containing a colon, display the line, and
wait for user response. After detecting the escape key, the
activity pointer is positioned at the start of the last line
displayed (in this case).

nK DELETE LINES FROM THE BUFFER.
If n is positive, n lines following the current pointer position
are deleted. If n is negative, n lines preceding the pointer are
deleted. Lines in EDIT are defined as the characters following a
line feed character up to and including the next line feed. If the
pointer is positioned within a line, only the portion of the line
on the deleted side is deleted. The command sequence

B$$
@KS$

will scratch the entire memory buffer.

nL MOVE THE CURRENT POINTER POSITION BY n LINES.
Direction of motion is toward the start of text for negative
parameter values. If n is '0' the pointer is positioned at the
start of the current line.

nM ~~OVE THE CURRENT POINTER POSITION BY n CH.~RACTERS.·

N

nP

@M moves the pointer back one character. Use 'z' to position
at end of text.

REFORMAT AN ASMB SOURCE FILE INTO r·1AKRO FORMAT.
The source files of ASMB are not suitable for text processing.
The IN' command strios the line numbers and inserts line feeds:
preparing the input ~ile for jnput to the MAKRO assembler. Jhe entir~
~ile must he resident i-n r'!erJqry~

- ,

WRITE n SECTORS, IF POSSIBLE, FROM THE MEMORY TEXT FILE TO THE
OUTPUT FILE.

The pointer position -is moved to the start of the text file.
EDIT will not clear the text buffer until an end of the input file
is detected.

Q RETURN CONTROL TO THE WARM-START ENTRY OF THE DISK OPERATING SYSTEM.
If the End command has not been executed, EDIT may be re-entered
without harm to the active memory file.

4-8

nS SEARCH FOR THE nth OCCURRENCE OF A SPECIFIED CHARACTER STRING
FOLLOWING THE CURRENT POINTER POSITION.

The pointer is positioned after the last occurrence found. The
corrmand string

nSEDIT$$
positions the pointer after the nth occurrence of EDIT. The
search proceeds from the pointer position to the end of text.
A negative repetition factor searches backward toward the start
of text.
The ampersand (&) as a character, not the first, in a search or
change string will match an arbitrary character string not including
a line feed. Thus the command

S:&Z$$
will succeed for either of the following:

:Z
:XXXXZ

but not for
:CALL SUB

ZERO: INX H

since a line feed separates the first colon and the Z.

nT TYPE (DISPLAY) n LINES FROM THE CURRENT POINTER POSITION.
The sign convention for n is followed.

V VIEW ACTIVITY POINTER IN CONTEXT.

t~ INSERT THE TEXT BLOCK DEFINED BY THE TEXT POINTERS INTO MEMORY AT THE

x

Y

CURRENT POINTER POSITION.
Blocks may be moved up or down in memory, but the source and
destination must not overlap. The source block is not modified by
the insertion. ,EDIT monitors the (possibly new) pointer positions
to the source block in preparation for a Delete command.

DELETE THE BLOCK DEFINED BY THE BLOCK POINTER POSITIONS.
No modifications to the source file except Block Move, may be
made between the steps to set the block pointers and either
Block Delete or Block Move. No operation is performed if the
block end pointer ;s less than or equal to the block start pointer.

DISPLAY, IN HEXADECIMAL, STATISTICS OF THE CURRENT MEMORY FILE.
The display format is:

P hex address of activity pointer
L # of lines in file
C # of characters in file
S # of disk sectors required to contain file
T end of file memory location.

4-9

Z MOVE CURRENT ACTIVITY POINTER TO THE END OF MEMORY FILE.

SPECIAL CHARACTER COMMANDS

EDIT recognizes the special character commands only when these characters
are entered as the first character of the command string.

Control/R

Control/U

As the first character in a command string, Control/R
repeats the immediately preceding command string.

As the first character in a command string, Control/U
fetches and executes the command string (up to 32
characters) saved at interruption of the previous
pause command (J).

4-10

COMMAND STRINGS AND BLOCK COMMANDS

A single EDIT command consists of the repetition factor and the com
mand terminated by two escape characters. As an example, to change the
next two occurrences of THIS to THAT the command is

2CTHIS$THAT$$
Now, suppose it is desired to search for a line containing a colon,
and delete the next following line containing the string 'KEY. I This
(far-fetched) sequence could be performed by the sequence of atomic
commands .

S:$$
SKEY$$
0L$$
K$$

The same sequence can
S:$SKEY$0L$K$$

Find a colon
Now fi nd KEY
Move to start of KEY line
Delete the KEY line

be performed by the command chain

Note that single escape characters are used to identify the end of
each element of the command string and a pair of escape characters mark
the end of the chain. Inability to execute any element of the command
chain terminates further execution of the string.

Certain of the commands, such as insert, do not recognize a repetition
factor .. Such commands, or indeed a command chain including these commands,
can be repeated an arbitrary number of times by enclosing the chain in
brackets. For example, to insert XXXX before every occurrence of YY in
the text .

B$$
@<SYY$-2M$IXXXX$2M$>$$

Move pointer to start

which is equivalent to indefinite repetition of the command block
SYY$$ Find YY
-2M$$ Go back over the YY
IXXXX$$ Now insert the XXXX
2M$$ Move past the YY so we don't pick it up again

Each such command block must be preceded by a repetition factor.

The unattractive appearance of the command block is alleviated by exper
ience and the fact that 99% of the editing tasks are much simpler than this.

Blocks themselves can be nested, but at this point serious examples are
difficult to generate.

4-11

COMMAND STRING SYNTAX

The syntactical rules of EDIT were designed to avoid execution of a
command string which would produce results not intended by the user.
Execution of a command string is immediately terminated upon detection
of a syntax error. On occasion this may require that the input string
be completely re-entered~ a burden considered less serious than the
loss of an entire source file.

SYNTACTICAL RULES

1. All command strings must be terminated by two successive escape
characters.

2: Parameter strings for Search and Change commands must be terminated
by an escape character.

3. Block corrnnands must be preceded by a repetition factor, the sign
of which is ignored.

4. Scanning of the command string resumes at the character immediately
following the closing bracket of a block command. Thus

2<CESX$>$B$$
terminates after executing the block twice; whereas

2<CEX>B$$
executes the B command before terminating.

5. Nes'ted block commands must have their closing brackets in succession.
For example

2<2<CEX»$$
is a valid command to change E to X four times. On the other hand,

2<2<CEX>$>$$
terminates after executing the inner block twice.

6. The opening and closing brackets in a command string must be balanced.
EDIT assumes each closing bracket refers to the immediately pre
ceding opening bracket. Failure to properly close a block command
defeats the repetition factor for that block.

4-12

ERROR MESSAGES

ILLEGAL
Indicates an invalid command character.

DISK ERROR

NO ROOM

ERROR

Some condition has prevented access to disk.

An overflow condition has been detected, either
space on the output file or insufficient memory
current disk operation. Memory overflow can be
one or more sectors of the memory file to disk.
Organization.

insufficient file
to continue the
remedied by dumping
Refer to Memory

Some error condition other than those above has been detected
(generally a syntax error in the command).

CANNOT FIND
The CANNOT FIND message signals that EDIT was unable to continue
a Search or Change command. It is preceded by the (hexadecimal)
number of times the command was successfully executed within the
current command block. This feature can be used to count the
number of occurrences of a character string.

B$@SEDIT$$
will yield a count of the number of occurrences of EDIT in the text.
The counter also indicates whether the command was ever successfully
completed, for if .

@CSTRING$NEWSTRING$$
resul ts in

0000 CANNOT FIND
STRING

then STRING was never found.

Any of the above error conditions terminate interpretation of the current
command sequence.

4-13

SAMPLE EDIT OPERATION

A few examples are presented to illustrate EDIT operation. In these
examples~ the up-arrow illustrates the position of the current acti
vity pointer.

IThere is a tide in the affairs of men$$
There is a tide in the affairs of me~

Caffairs$business$$
CANNOT FIND
affairs
B$$

Ihere is a tide in the affairs of men
Caffairs$business$$
There is a tide in the busines~ of men

I

@CoSpp$$
CANNOT FIND
a
There is a tide in the business p~f men

Command; insert text into buffer.
Buffer contents; pointer positioned
after insert.
Command; change strings.
Response; pointer was positioned
after I affairs J •

Command; move pointer to top of
buffer.
Result.
Command; now change affairs.
Result.
Command; change all '0 1 to 'ppl
Response; command repeated until
'a' could no longer be found.
Result; note: '0 1 was found and
changed once.

Remember tha t If $" is the echo of the escape key.

4-14

SAMPLE BLOCK OPERATIONS

There is a tide in the business p~f men

B$$

lhere is a tide in the business ppf men

Sde$$

There is a tid~ in the business ppf men

H$$

There is a ti d~ in the business ppf men

Spp$$

There is a tide in the business p~f men

H$$

There is a tide in the business pp/ men
I block I

ZSS

There is a tide in the business ppf men
I t

t

block

~AJ$$

There is a tide in the business ppf
me~ in the business pp

X$S

There is a tidEi.f men in the business pp

4-15

Buffer contents

Command; move pointer to start of
text.

Result.

Command; position pointer after 'del.

Result.

Set block pointers.

Result; block pointer 2 positioned
at current pointer position; start
pointer not yet valid.

Command; position pointer after Ippl.

Result.

Position block pointers.

Result; block pointer 1 set at old
position, block pointer 2 set at
current position, both poi~ters valid.

Command; prepare to insert block at
end of text.

Result

Insert block at current pointer
position.

Result; pointer position unchanged.

Delete old block.

Result; block deleted, pointer
moved to start of deleted block,
block pointers no longer valid.

CONDITIONAL COMMAND EXECUTION

Considerable thought was expended in an effort to provide the user with some
conditional execution capability. As a paradigm for illustration, consider
the command sequence:

While not at end of file
SEARCH for CALL

IF next line is RET
THEN change CALL to JMP AND delete RET

ELSE rontinue search for CALL

The potential variations of such conditional sequences and the conditions of
the test are unfathomable. Any attempt to provide the mechanics for such a
wide variety of possible situations would unnecessarily complicate operations
for ordinary tasks.

The adopted solution involves and explains the operation of the pause command.
The pause command enables the user to execute a sequence of elementary commands
and then display the working area. The user may then interrupt the sequence
to effect the necessary repairs, and then resume the initial sequence with
the Control/U special command.

Admittedly, the user is not entirely relieved of his burden; however, he may
be spared the consequences of an ill-posed command sequence.

Our previous model may be effected by the following:
@<SRET$-lS2T$J$2L$>$$ (Search for RET, back up one line and

print two lines; pause; skip over
the RET if you wish to continue.)

If the display reveals the CALL/RET sequence, the user may interrupt execu
tion, make the necessary modifications, and resume the original sequence by
the Control/U command.

EDIT maintains two separate command buffers for the Control/U and Control/R
. commands, and the user may therefore toggle between these two to systematically
edit the entire file.

4-16

Still pursuing the pre~ious example, assume the text file consisted of
the following:

CALL SUBl
RET
DAD H
RET
CALL SUB2
RET
INX H
RET

with the pointer positioned at the start of the text. Now enter the search
@<SRET$-L$2TJ2L$>$$

and EDIT responds with
CALL SUBl
RET
?

our target for change. Type the escape key to recover the input mode
and save the seek command string. Now we effect the text modification with

CCALLSJMPLK$$
which defines this as the previous command. (Ignore excessive scrolling here.)

At this point the text buffer consists of
JMP SUBl

tOAD H
RET
CALL SUB2
RET
INX H
RET

with the pointer positioned at the up arrow.

Now we re-enter the search mode with
Control/U

and EDIT returns with
DAD H
RET
?

to which we respond with the space bar, yielding
CALL SUB2
RET
?

4-17

Now type the escape key and Control/R to yield the text contents
JMP SUBI
DAD H
RET
JMP SUB2

tINX H
RET

Control/U resumes the search. The entire file is searched and patched by
1. Entering the search command with an inspection pause;
2. Entering the patch command when needed;
3. Toggling between the Control/R and Control/U commands.

4-18

TEXT REARRANGEMENT

Rearrangement, while not of particularly pressing import, merits mention
for illustrative purposes. Assume that we wish to collect all of a
certain group of lines together into a single block. As an example, we
may wish to move all data statements of the form

DB I

to the end of text. Consider the command sequence
8$$ move to start of text
@<SDB '$0L$HLHBWX>$$

which searches for the target string, mbves to the start of that line,
sets block pointers, advances one line, sets block pointers, moves to
start of text, inserts the target line, and finally deletes the line
from its initial position.

Having collected all such lines at the start of text, the block may be
re-positioned at will. This operation is quite slow for large files,
and collects the target lines in reverse order. The reversal of sequence
can be avoided, however (an exercise for the reader),

MULTIPLE STATEMENT LABELS

Source files created with the INTEL assembler, or any assembler permitting
multiple statement labels, can be patched to ~~AKRO format by the following
command:

B$@<S:&:$0L$S:$IEQU $
$>$$

carriage return

in which the $ in EQU $ is the dollar sign; everywhere else, it is the
echo of ESCAPE.

4-19

USE EDIT TO SAVE TYPING .

Suppose a certain name, or assembly language command, must be repeated
with tiresome frequency throughout a body of text. We may substitute a
single, unused character for the nuisance string(s) and systematically
edit the entire file to replace the temporary character with the desired
string. For example, we may decide to use lEI to represent the character
string

:DW 0
and enter the assembly source code as

OATA#
LABEL#
KNTR# etc.

Then enter the command string
B$@C#$:DW 0$$

to yield
OATA:DW 0
LABEL:OW £)
KNTR: OW 0

Move to top of buffer and change all
occurrences of # to the desired string.

Similarly, systematic editing can replace a single character with several
lines of code. Thus

B$@C#$MOV A,H
ORA L$$

Carriage return inserted in input
string.

will change every occurrence of 1#1 to the two lines of code
MOV A,H
ORA L

which test the H,L registers for zero.

4-20

MEMORY ORGANIZATION

The following diagram illustrates the organization of memory:

PGM AREA

----------B BEGINNING OF TEXT BUFFER

ACTIVITY POINTER

END OF TEXT BUFFER

-..,..------- T - I

r{
-----~-----T

END OF COMMAND STRING

INPUT COMMAND

TOP OF MEMORY

--

The command string, of length' I, is stored in reverse at the top of memory_
To insert this block at current position P, the text below the pointer (length
E-P) is first moved down to the end of the command str.ing at T-I. The saved
text below the pointer extends from (T-I) up to (T-I)-(E-P).
The inserted text is then moved up to P, extending from there -to P+I. Memory
overflow occurs if

P+I > (T-I)-{E-P)
or equivalently

2I > T-E
which implies that no single text insertion can ever exceed half the remalnlng
available buffer space. When working with a full memory buffer the user should
beware of memory overflow lest his efforts prove fruitless.

4-21

DISPLAY

Certain of the commands are followed by a context display showing, when
possible, eight lines preceding and eight lines following the current
pointer position. "For example, the display pops up on the last of any
Change or Insert command or the ~1ove lines command. The context di sp 1 ay
can be invoked at any time by the 0L command. The display does not appear
for block commands.

The position of the current activity pOinter is shown as the screen
representation of 0FFH (a white block on some monitors). This pOinter
representation character can easily be changed by the user since 0FFH
may delete a character on some monitors. It should be noted that the
activity pOinter is always assumed to be positioned between two charac
ters.

The pointer character never appears if the pointer is positioned at
either end of the memory file ..

To change the cursor character, load EDIT into memory without entering the
program. Use DEBUG to search for the byte combination 3E FF representing
the instruction MVI A,0FFH. Change the FF to any desired character. It
is suggested that the cursor character be unique and recognizable at a
glance. Save the modified version of EDIT.

4-22 b

DEBUG

An SOSO/ZSO debug, monitor and disassembler
program development system.

5-1

Copyri ght 1978
Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107
(213) 793-5748

\

INTRODUCTION

DEBUG is an incomparable software development tool featuring single-step
execution of Z80 or 8080 programs with complete display of all register
contents, flag status, and trace display, in mnemonic form, of the
instruction just executed and the next instruction to be executed. The
single-step breakpoint can be located anywhere in the user1s program.

DEBUG also allows the user to disassemble Z80 and 8080 programs, examine
or modify memory, move or compare blocks of memory, and search for spe
cific byte strings.

DEBUG combines a disassembler, a debug package, and the commonly used
monitor routines.

t4ith two exceptions (easily modified by the user) DEBUG is written
entirely in the 8080 subset of the Z80 instructions. DEBUG is thus opera
tional on either 8080 or Z80 machines. DEBUG is therefore a recommended
development tool for those 8080 owners anticipating a future expansion to
the Z80 processor.

5-2

DEBUG ORGANIZATION

DEBUG contains an overall executive which interprets user commands and
branches to the appropriate module to execute those commands. Upon termi
nation of any DEBUG command, control is returned to the DEBUG executive.
Exit from the DEBUG executive returns control to the entry of
the disk operating system.

Executive commands consist of single characters which must be entered
after the executive prompt «j. Parameters required for any command are
entered as a sequence of hexadecimal characters, of which only the last
four characters entered are considered valid. A hexadecimal parameter is
terminated by any non-valid hexadecimal character.

Pressing Control-C when entering a hex parameter returns control to the
moni tor.

5-3 a

EXECUTIVE COMMANDS

A DISPLAY CONTENTS OF MEMORY IN ASCII.
DEBUG responds with the @ prompt, requesting an address at which the
memory display is to begin. The display consists of a four-digit
hexadecimal addriss followed by 64 bytes displayed as ASCII characters.
Invalid ASCII (control) characters are represented by a blank. After
each line displayed, the display module awaits keyboard input. Any
key except 'QI advances to the next 64-byte block. The memory pOinter
can be moved by pressing IQ' and then typing a new hex address.
Depressing 'QI twice in succession returns control to the DEBUG executive.

5-4

C SET BREAKPOINT AND BEGIN EXECUTION
DEBUG responds with the @ prompt twice in succession, requesting
two hexadecimal parameters. The first parameter represents the
address at which the breakpoint is asserted; the second repre
sents the address at. which execution is to begin. Program
execution proceeds uninterrupted up to, but not including, the
instruction at the breakpoint. NOTE: The first single step
executes the instruction at the breakpoint.
Upon reaching the breakpoint, DEBUG displays all the current
Z80 registers, the mnemonic of the next instruction to be exe
cuted, the CMZ flag status, and memory locations pointed to by
each of the registers. Register contents are exhibited as
four-character hexadecimal numbers. The format is as follows.

PC AF BC DE HL SP IX IY Mnemonic of instruction
just executed

(PC) (AF) (Be) (DE) (HL) (SP) (IX) (IY) Flags - next instruction
to be executed

W --16 bytes at memory window ----

where (REG) represents the (byte reversed) memory contents
pointed to by REG, and the memory window displays any desired
16 bytes of memory_
The breakpoint is asserted as Restart 3 (call to 18H). Prior to
execution, DEBUG transfers any existing user instruction at 18H,
places a jump to DEBUG at I8H, then replaces the user instruction
at the breakpoint by a RST 3. Encountering the breakpoint,
DEBUG saves the Z80 registe~, removes the break, restores the
contents at 18H, displays the registers, and jumps to the single
step executive.
The user must not attempt to impose a breakpoint in non-existent
or read-only memory_ Similarly, the user must not assert a
second breakpoint without clearing any former break. If program
execution terminates before reaching the break, the breakpoint
can be cleared by forcing execution at either the breakpoint or
I8H. The breakpoint must be the first byte of a multibyte
instruction.

5-5

8 (Cant/d)

SINGLE STEP EXECUTIVE

When the target program reaches the breakpoint, control is trans
ferred to the single step executive. The single step executive
controls further execution of the target program. Commands to
the executive consist of a hexadecimal Darameter (n) followed
by a terminating character. The terminating character defines
the command to the executive

SINGLE STEP Commands:

Space bar allows the program to execute the next instruction.

G frees the target program to proceed with uninhibited execution.

W resets the memory window to the position defined by the
hex parameter (n).

R asserts a breakpoint at the address given by the top of the
user's stack. The target program executes uninterrupted
until the new breakpoint is reached. The user must ensure
that the top of the stack contains a valid return address.

P resets the breakpoint to the location defined by the hex
parameter (n).

Q terminates execution of the target program and returns
control to the DEBUG executive.

K abandons single step, but imposes a breakpoint at the
instruction just executed. This option is useful for
tracking program execution through a loop. The single step
executive regains control the next time the program reaches
the breakpoint.

o displays only the mnemonic of the next instruction to be
executed. The single step executive maintains a toggle
which is switched for each execution of the '0' command.
The first execution switches the display to the mnemonics
only; the second execution of '0' resumes the full register
dis play, etc.

5-6

B (Cont' d)

Z sets the 8 bit registers. After detecting 'zt the single
step executive awaits a sequence of commands of the form

Rnn
where R is any of the 8 bit registers A, B, C, D, E, F,
H, L or M, and nn is a hexadecimal value to be inserted
into the register. Control is returned to the single step
executive by typing a carriage return instead of a register
character.

X executes the next n instructions, without interruption,
before returning control to the single step executive.

* I releases the target program but asserts a break onto the top
of the user's stack. The 'R' command places a break in the
program at the return address. The 'I' command directs the
return to the DEBUG package.

* N forces program execution to resume at location n, maintaining
single step control.

* J traces transfer instructions (JMP, CALL, etc.) only. The 'J'
command is a toggle, as the 10'.

T sets a program trap. The target program is released for
controlled execution. The single step executive will regain
control when any 16-bit register contains the value n, or a
memory reference ;s made to address n.

If the target program branches to read-only memory, DEBUG moves the
breakpoint to the return address, allowing ROM instructions to be
executed and trapping the program upon the return to RAM.
The single step feature of DEBUG will prove to be the user's single
most powerful program development tool. It is highly recommended
that every effort be made to become familiar with operation of the
single step executive.
The single step trace option will prove to be a much more potent
analytical device than a simple breakpoint because it allows the
user to monitor program evolution.

* Commands available on special DEBUG versions only.

5-7

C COMPARE TWO BLOCKS OF MENORY.
DEBUG responds with the @ prompt thrice in succession. The required
parameters are respectively start and end of the first memory block, and
start of the second memory block. DEBUG displays the location and
contents of all bytes which differ in the two memory blocks. Control is
returned to the DEBUG executive. Control-C returns to monitor.

D DISASSEMBLE MEMORY BY SINGLE INSTRUCTIONS.
With the @ prompt, DEBUG requests a starting address. Instructions
are disassembled into the MAKRO mnemonics, one instruction at a time,
awaiting keyboard input before proceeding. Depressing the space bar
will advance to the next sequential instruction. Depressing IQI returns
control to the DEBUG executive.
Typing any valid hexadecimal address will advance the disassembly pOinter
to that address and resume sequential disassembly from that point.

E EXAMINE AND MODIFY MEMORY.
The @ prompt requests a starting location. DEBUG displays the current
contents and awaits the new hexadecimal value to be inserted in memory.
Only the last two hex characters are considered valid. Typing lQI
returns control to the DEBUG executive. Values to be stored in memory must
be terminated by carriage return.

F FILL A BLOCK OF MEMORY WITH A CONSTANT.
DEBUG responds with a # prompt, requesting the constant hexadecimal
value. The two @ prompts then following request the starting and
ending address of the memory block to be filled. Control is automatically
returned to the DEBUG executive.

G EXECUTE.
DEBUG responds with the @ prompt to request the address at which exe
cution is to begin.

M MOVE A BLOCK OF MEMORY.
DEBUG responds with three successive @ prompts representing, respectively,
the start and end of the source block, and the start of the destination
block. Control is returned to the DEBUG executive.

Q EXIT FROM THE DEBUG EXECUTIVE.
Control is transferred to the disk operating system.

5-8 a

S SEARCH MEMORY FOR SPECIFIED BYTE STRING.
DEBUG accepts the sought-for byte string, up to five bytes in
length, immediately after receiving the S command. The byte string
is entered as a sequence of the group

2 hex digits followed by a space
The byte string is terminated by a carriage return. Each group of
hex digits, including the last, must be followed by a space. Fol
lowing the carriage return terminating the byte string, DEBUG requests
a starting address for the search with the @ prompt. .

Memory is searched from the starting address to higher address values,
wrapping around to reach the start. The search is interrupted to
display the next occurrence of the byte string. The memory pointer
to the start of the string is displayed. Successive realizations of
the byte string are located by depressing the space bar. At each
pause, control can be returned to the DEBUG executive by IQI.

An active search can be terminated by Control-C.
The power of the search mode is considerably enhanced by the capa
bility of searching for a given byte string under a specified mask
string. The mask string enables the user to include Idonlt care
bytes I and modified bytes within the string. To illustrate the
search-urider-mask option, a match between memory byte B and input
string byte I ;s defined as a zero result of the following operation.

(EXCLUSIVE OR OF B AND I) AND NOT MASK
Agreement between the input string and memory is found if and only
if a match is found for each byte in the sequence. By default the
mask is zero, in which case a match requires identity between the
memory and input bytes. If the mask is 0FFH, any memory byte is ac
cepted as a match. The search-under ... mask option is enabled by entering
the byte string as a sequence of

4 hex digits followed by a space
- .

The first two of these four digits represent the mask byte; the
second two di gi ts represent the sought-for byte.
The byte string found in memory can be changed if the user presses
I C' when the search pauses. An input byte string, as that used to
define the sought string, can then overlay the memory bytes. The
overlay string may be longer, shorter, or equal to the search string.
The overlay string is terminated with a carriage return.

5-9

T DISASSEMBLE A SEQUENTIAL BLOCK OF f1EMORY.

DEBUG responds with the @ prompt twice in succession, representing
the start and end of the memory block. The entire block is disassembled
without user-interaction. Control is returned to the DEBUG ~xecutive.

V VIEW MEMORY IN HEXADECIMAL.

The @ prompt requests a starting address. DEBUG displays memory in
successive 16-byte groups starting at the input address. Depressing
the space bar advances the display to the next 16-byte group. Pressing
IQI returns control to the DEBUG executive.

5-10

USING DEBUG

Experi ence wi 11 prove DEBUG to be an i ndi spensab 1 e programmi ng aid. 'tJh i 1 e
these notes cannot substitute for that experience, they may assist the user
to more rapidly acquire total facility in the operation of DEBUG. The fol
lowing material adopts, as the measure of programming effort, the time it
takes a program to move from the conceptual stage to a fully operational
version. It is the intent of these notes to assist the user to exploit
DEBUG to minimize that time.

The first point to be made regards programming style: quality software is
born in a planning stage. A well-planned program will be up and running
long before one poorly conceived, regardless of the development aids. It
is altogether too easy to become overly reliant upon DEBUG, in that the user

"may be drawn into the trap of hastily assembling a program with the assumption
that DEBUG will cure all the problems. DEBUG should be used in conjunction
with, tather than as a SUbstitute for a planning stage.

From the standpoint of time, however, too much planning may increase the
overall development time.' As a guideline, one should structure out his
concept so that critical program functions are as nearly independent of each
other as possible. It is vanity to try to get anything but the simplest pro
gramming task to execute properly on the first try. The user should assume
that the initial effort will contain errors and structure the program to
minimize the extent of the damage caused by any individual error.

Define a major cycle as one trip through the circuit: text edit, assembly,
execute/debug. We wish to minimize the total number of such major cycles.
Overall development time is minimized not by producing an error .. free initial
effort, but by limiting the number of development passes.

As much as possible, we want to avoid the serial discovery of errors
picking up one fatal error on each major cycle. The bulk of the planning
effort should be directed to those aspects of the program which must function
first.

The first function of the DEBUG package is to bridle the fury of a program
error. Let us define a minor cycle as the sequence: reload the program and
debug package and try again. Each development pass can contain many such
minor cycles, since a simple error can erase memory. The user should learn
to manipulate the breakpoint and single step features of DEBUG to maximize
the number of errors identified on each minor cycle.

5-11

On the first minor cycle, DEBUG should be used to insert a breakpoint before
the first subroutine call or major logic branch of the main program. If the
program fails before the breakpoint, the minor cycle must be repeated with
the break inserted earlier. At a subroutine call, the user should initially
trip over the call with the 'R' command to eliminate wasteful single stepping.
In the early DEBUG stages, the breakpoint should be used to divide coarsely
the program into good and bad zones.

Fatal errors which can be oatched without reassembly should be corrected on
a fresh copy (newly loaded) of the program, which should then be stored on
disk. Minor cycles are much faster than a development pass. All such patches
should be noted for the next assembly.

The search to localize an error should be taken in broad steps initially, via
the' R I and I P , commands, increasing the fineness of the step gradua 11 y . If
a subroutine call is found to result in an error, then that subroutine should
be entered in the single step mode, but any calls out of that routine should
be tripped over by the IR' command.

Whenever possible, the user should try to keep an errant program in execution \
rather than abort, patch, and start over. Rrogram operations which result in.
a misdirected branch or faulty register contents should be corrected by the
'N' or IZI commands, respectively. ~

The memory window should be set to monitor a critical memory area away from
the current focus; it should be regarded as a rear-view m;rror~ The memory
window may be moved about freely in the single step mode without advancing
the program.

Versions of DEBUG supplied for units with software-controlled hardware interrupt
(e.g., POLY-8S, COMPAL-80) contain a trap feature which will allow the target'
program to execute until any (16-bit) register contains the trap value or .
any memory reference is made to the trap address. The trap feature is perfect
for finding that program error which results in overwriting memory. In these
versions of DEBUG, the 'H' command displays the last five instructions executed.
These special versions of DEBUG can single step programs through read only
memory.

The I I' command, implemented only in the special verSions of DEBUG, was set
up to replace the 'R' command when single stepping the program through RON.
The I R I command ~lJi 11 not work when the return address po; nts to ROr4. The
'I' command is outwardly identical to the IR' command.

The IK' command is used to keep DEBUG in the simple breakpoint mode, allovling
the user to monitor program flow past a critical point.

5-12

	0001
	0002
	0003
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12

