E %

NorthSkarComputkersinc.

1440 Fourth Street
Berkeley, Ca. 94710

North Star Pascal
\ersion 1

System Reference Manual

PAS-DOC

Revision 3
25012-C

ok ko k ok k Kk k ok ok k Kk Kk Kk *
NORTH STAR PASCAL version 1
SYSTEM REFERENCE MANUAL
PASCAL-DOC Rev 3 December 79

North Star Computers, Inc.
1440 Fourth Street

Berkeley CA 94710
* k k % k% k ¥ k¥ ¥ *¥ * * % * %

% % % % % % %k % F
% % ok % % % F X *

NOTICE

North Star Pascal, version 1, is a special release of the UCSD Pascal (TM)
program development system, prepared jointly by the Institute for Information
Systems, University of California, San Diego, and North Star Computers, Inc.
("UCSD Pascal" is a trademark of the Regents of the University of California,
San Diego Campus.) Version 1 is compatible with UCSD Pascal (TM) version I.5.
This SYSTEM REFERENCE MANUAL is a corrected reprint of the UCSD Pascal 1.5
System Manual. Additional information, including specific details about the
North Star implementation are contained in the ADDENDUM TO NORTH STAR PASCAL
SYSTEM REFERENCE MANUAL, which accompanies this volume.

For technical assistance with difficulties encountered while using or
configuring North Star Pascal, consult your dealer, or call the North Star
Technical Hotline in Berkeley, at (415) 524-9202, during the hours of
10:00am-4:00pm Pacific Time.

* Kk k% k k k k Kk k k *k k k k k k¥ *k k k¥ k¥ k ¥ k¥ k¥ k¥ * k% kx *x *x %
* Copyright (C) 1979 Regents of the University of California,
San Diego Campus. This software, its source, object,
and all other forms, is the property of the Institute
for Information Systems and may be used or copied by
others only with written authorization from the Insti-

tute for Information Systems.
* Kk k k k k k *k k * k k k k * k * ¥ k ¥ ¥ ¥ * *x k¥ *¥ * k% % %

* % & K ok ok
% ok ok ok K F %k ¥

LR ST 2 S e S
TABLE OF CONTENTS
G H B RS R

Version I 8 September 1978

SECTION

THE UCSD PASCAL. SYSTEM

INTRODUCTION AND OVERVIEW

FILE H&NDLER

SCREEN ORIENTED FDITDP

i INTRODUCTION . .

GETTING STARTED . .

DETAILED DESCRIPTIQN OF ”GMH&N
REFERENCE . . . e
EXFERIMENTAL LAQSE fI 5 WVERSION 1120
4 YFT ANOTHER LINE ORIENTED EDITOR -~ YALDE
i DEBUGGER .

& FAaSCAL COMPILER

7 BASIC COMPILER

3] LINKER .

5 AGSEMPALER

QR e

WS R

THE UCED FABCAl. LANMGUAGE

1 INTRINSICS
1. 8TRING S
INPUT/OUTPUT

g

4 LCW LEVEL GRAPHICS S
5 CHAPACTER ARRAY MONIFULAT TN
A MISCELLANEQUS |

B
-

SE STATEMENTS

1

2 FHMMENT . .
3 DYMAMIC MFMURY ﬁLLG"A ;OM .
4 EQF

3 B M

& FILES . .

7 GOTO AND FXIT aTATfﬁFH*”

& PACKED RIABLES .

9 PAPAMETRIC PROCEDURES QND FUN"TIONS
10 PROGRAM HEADINGS
11 READ ANMD READILLN

12 RESET

i3 REWRITE .
14 SECMENT PRQCEDURc“

15 SETS .

1é& STRINGS R

i7 WRITE AND NhITEgN

18 IMPLEMENTATION SIZE LIMITA;ION‘
i9 EXTENDED CUMPARISONS

@ LONG INTEGERS .

21 UNITE . . .

22 TABLE OF UCSD INfﬂlele

QIFFERENPTB BETWEENM LCEDR S PAROAL AND STANDARD PABCAL

Bk s frde Bl puk ek v Bk fed e

[rey

31
32
S
51
93
5
71
21
g
95

99

f..ff
o

£
LA

s

[EC S I

R

o o O D

[O IR G IR B B) O]
&\

g

o

b

4

4
=
&

i

3 rs RN, SOEE I R TS B

s
e

T

2 A 53 Y e

Gm T

A

1
o

L a3

IMPLEMENTORE Y GUIDES

DRAWL INE

FILE FORMATSE . . .

"‘PECIAL UCsh F&QCP'L S\!NTAY (t ! E' uF')

1 GMENT PROCEDURES

=2 UN11H . . ‘

3 LONG INTEGER% .

INTERPRETER MNOTES
ODUCTION TO THE P%Sxéh PQELQD~M&CHINE .

BYTE SWAPPING .

TILITY PROGRAMS

CALCLL.ATOR
LIBRARIAN
BETUP -~ SYSTEM RECONF IGURATION
BOOTSTRAP COPIER
PATCH/DUMP . . o
RT11i TO PABCAL CUNV&RQIQN KIT .
GOTOXY PROCEDURE BINDER
DUPLICATE DIRECTORY .

P~CODE DISASSEMBLER
LIBRARY MAP

ABLES

EXECUTION ERRORS
ITOREBULTE
UNMITNUMBERS
“th?ATEb Coe
SEVHTAX ERRORS . . .
A¢€EW LER EYNTAX EH&QRW . .
SMERICAN STAMDARD CODE for INFQPHATIDN LNTERPHANGF
F-MACHINE OP-CODES .
LOBD PAGCal. BYNTAX WTAJQMﬂQ

DDENMDA, ERRaTA AND NOTEE

MOTES ON OTHER MATERIALS AVAILABLE

BRINEGING UP THE PASCalL SYBETEM

i ON PDP-11 .

2 O go80/780 8YS TEF R’TH ””/M QNP 3740 DI"!&P .
DIFFERENCES AMUNG IMVLFN&NTA&IQNQ FOR DIFFERENT PRUCES&G
CHAMGES MADE IN I.35 FROM (1.4, I.4b) SYSTEMS

-
oo
(3 -0

RIDAJ e b =i
=00~
L = {3 8 ~i U

. 2469

g g

273
277
279

3y e
wild vl

NEW SUBSCRIBERS: See Section A for details of bringing up
UCSD Pascal on your machine.

DISCLAIMER. These documents and/or the software they describe
are subject to change and/or correction without
notice. The UCSD Pascal Project cannot be held
responsible for implementations on processors where
the implementation work was not done at UCSD, Users
with systems aobtained frocm sources other than UCED
must contact their gupplier for support.

ACKNOWLEDGEMENTS:

The work described in these notes has been supported
significantly by the {ollowing organizations:

United States Navy Personnel Research and Development
Center, Sperry Univac Minicomputer Operations:. EDUCOM,
Digital Equipment Corporation, Processor Technology
Inc., Springer—~Verlag, Terak Corporation, General
Automation Corporation, The UCSD Computer Center,
grants from the University of California Instructional
Improvement Program, Tektronix Corporation, Micrapolis
Inc., Computer Power and Light, Phillips Research l.abs,
lLawrence Livermore Labs, Pascal Computing.

The work described in these notes has been made possible
by the drive and direction of the Director of the IIS:

Kenneth L. Bowles

Documentation Authors:

Gillian M. Ackland, S Dale Ander, Lucia A. Bennett,
Raymond 8. Causey, Charles "Chip" Chapin,

Gary J. Dismukes: Julie E. Erwin, Shawn M. Fanning,
Mary K. lLandauer, J. Raoul Ludwig, Joel J. McCormack,
Mark D. Overgaard, Keith A. Shillington,

David A. Smith, Roger T. Sumner, Dennis J. Volper.

Software Authors:

S. Dale Ander, Marc Bernard, Charles “Chip"® Chapin,

J. Greg Davidson, Barry Demchak, William P. Franks,

C. Richard Grunsky, Robert J. Hofkin, Albert A. Hoffman,
Richard 8. Kaufmann: Fater A, Lawrence, Jael J, McCormack,
Mark D. Overgsard, David A. Reisner, Keith A. Shillington.
David M. Steinore, Roger 7. Sumner, Steven 8. Thompson,
David B. Wellner.

Collected and Edited by:

Keith Allan Shillington and Gillian M. Ackland.

HEREHEH BB HEE RN RE TR R SRER R B R A RS EHSS
INTRODUCTION AND OVERVIEW # # Section 1.1
H0 30 I R RIS I R SRR I3

Version 1. 5 September 1978

The UCSD Pascal system described in the $following document is a
system intended to run on stand alone micro— and mini-camputers. This
system is highly machine independent since it vuns aon a pseuvudo—machine
interpreter commonly referred to as the "P-machine”. All the system
software i1s written in Pascal. except for the P-machine interprater and
a few rvun~time support routines written in assemblsgr for efficiency,
resulting in relatively straightforward software meintenance and
enhancement.

The system is designed to be used primarily with a CRT terminal
acting as the CONSOLE device;, however, the system is flexible enough to
he reconfigured for slower hard—copy terminals. For further
information regarding compatability between variocus types of equipment
and this system see the “"SETUP® document in Section 4.3 This document
is intended for programmers who are familiar with the Pascal

programming language and have some experience in writing computer
programs.

The $following is a tutorial book on PASCAL:

Kenneth L. Bowles,
{(Microcomputer) Problem Solving Using PASCAL
Springer-Verlag, New York, (21977

We suggest the following book as a PASCAL reference guide:

Kathleen Jensen and Niklaus Wirth,
FASCAL User Manual and Report
Springer~Verlag, New York, (c)i®73

For documentation concerning the differences between UCED
Pagscal and Staendard Pascal see Section 2. 2.

Page 1

1.1.1 THE UCSD PAGSCAL SYSTEM: AN OVERVIEY

The structure of the UCSDE Pascal system is best
conceptualized in terms of the "$ree~like" shivucture diagram figure 0.1
at the end of this sub- section.

The diagram in figure 0.1 depicts the outermost level of the
system. In terms of a "tree" or structure diagram. the “roogt®
corrvesponds to the outermost level:, while the “leaves" (i.e. the boxes
with no branches tao lowesr levels) correspond to the lower levels of the
system. While & user i3 in & particular level. the system displays a
list of available commands called tha “prompi-~line™, If the system is
running on a CRT screen type terminal: Ythen the prompt-line will
usually appear at the top of the screen. Commands are uvsvally invoked
by typing a single character from the CONSOLE dewvice. For example, the
prompt—line for the cutermocst level of the system is:

Command: E(dit, R(un, F(ile. Clomp. L{ink, X(ecute, A(zsem; D(ebug., 7 [I. 5]

By typing “F" the user will “descend” a lewvel within the
structure diagram into a level called the “Filer". Upan entering the
Tiler, engther prompit—~line detailing the so%t of commands available at
the Filer lzvel of the system s displayed The G(uit command causes
the user to exit fram the Filer and “"ascend"” back to the autermost
command level of the system. Now the user is back at ths level in the
system from which he started after boatetrapping the machine. Same
commands within the system prompt the ussr for the name of some disk

file In these ceses, the user enters the name of the file followed hy
@ carriago return. if an error is made in typing & portion of the file

nama., the backspace key (or sguivalant key depending upon the system
cenfiguration) may be wsed to “back over” and srase the erroneocus

part The line delete key (rubowut key) may be used to erase the entire
file name, thereby allowing ths veser tTo completely start over. I+ the
vseyr deocides not to accept any file name whatsosver., “escape’” From this
command i by entering 4 file name of rero characters. i.e typae <crl.

fute that due to a limited smount of reoom on Ythe promph-—lineg,
some of the infreguently used commands mayg not appear on the prompt-—
line.

A concept central to the dezign of the entire UCSD Pascal
system cummand structure is the concept of the “workfile”. A warkfile
zarn be thought of as 2 “"scratch-pad” areg used for development of
pragrams and only one workfile is allowed at any one time. If a user
¢izhes to begin a new workfile. the contents of the old one can be
saved, under a separate file namz, for later reference by using the
S{aevae command in the Filer level of the system When that file is
later retrisved for further work on the contents, it iz possible that a
numbier of files {(usually scurce and code) will be retrieved together
and in total they comprise the work-file

‘age 2

1. 1.2 OQUTERMOCET LEVEL COMMANDS: AN DOVERVIEW
A E(dit

Typing "EY while at the outermost command level of the system
causess the editor program to be brought into memory from disk., The
user may., while in the editor, insert or delete text inside his
workfile or any textfile, along with many other powerful commands. See
Section 1.3 for details. The workfile text (if present) is read into
the editor buffer, otherwise the Editor prompts for a file.

E F(iler

*F" places the user in a level of the system called the Filer.
This section of the system contains comnands used primarily for
maintenance of the files stored on the disk. The L{dir command allows
the user to list the titles and the last modification date, as well as
determine the number of blocks oaccupied by each file on the disk. The
T{ransfer command is vsed to copy from either one disk to another, or
from one area on a particular disk to another area on the same disk.
For more documentation on the Filer level including commands associated
with the "getting"”, "saving”, and “clearing” of the user’s workfile see
Section 1. 2.

¢, Clomp
This command initiates the system compiler to compile the users
work—file. I# there is no work—file currently the user is asked for a
spource text file name. If & syntax esryor within the source is

detected:, the compiler will stop and display the error number and the
surraunding text of the program. By tuping a space, the user can cause
the compiler to continue the compilation. Typing an <esc> causes the
cempiler to abort & return to Command level. Typing ‘E’ will, if the
system editor is the screen editor, c¢all the editor placing the cursor
naar the offending symbol. If the compilation is successful, (i.e. no
syntax errors were encountered) a codefile cailed #5YSTEM. WRK. CODE is
written out onto the user’s disk and becomes part of the workfile. For
more documentation on the use of the UCED Pascal compiler see Section
1. 6.

n. R{un

This command causes the codefile associated with the current
workfile to be exzecuted. If no zuzk code file currently exists, the
compiler is called in the same manney as described in C above. I+ the
compilation requires linkage to separately compiled code the linker
willi automatically be invoked and will assume the use of the +ile
#BYSTEM. LIBRARY. A¥fter a successful compilation, the program is
executed.

Page 3

E. X(ecute

This commaend prompts the uvser for the filename of a2 previously
compiled codefile. If the file exists, the codefile is executed:
otherwise the message "can’t find file" is returned. {(Note: the
“CCODEY suffix on such @ file is implicit. } I+ all code necessary to
execute the codefile has not been linked in, the message "file Lfileid>
not linked in is returned. It is convenient to X{ecute other programs
which have already been compiled because otherwise the user would have
to enter the Filer., Gi{et the Ffile, Q{uit the Filer, and then R{(un the
program. ‘ '

F. Alssem

Just like C{omp except the system assembler is invoked rather
than the syszstem compiler. '

G. D(ebug

This command causes the current workfile to be executed. If
the program in the workfile has not been compiled, the compiler will be
called as in the case of the R{un caommand. However if a run—-time error
occurs, Or a user— defined break-point or halt is encountered, the
Debugger program is called. The Debtugger is a program which allows the
user to examine the contents of variables within the program. See
section 1.9 Debugger for more details.

H. L{ink

Thisz command starts the system linker program explicitly to
allow users to lirk rToutines from libkraries other than
#SYSTEM. LIBRARY. See section 1.8 for more infaormation on the L inker,

1.1.3 UTILITY PROGRAMS

There are many functions needed by usere of any operating
syshtem To attempt to make all these functions system functions would
result in a terrible proliferation of command letters as the base node
level. In oarder to keep the COMMAND line simple, we have restricted
the functions available on it to what wso ferel is the bare minimum for
prograem anid text development. The pther useful, but much less pften
used functions are available through the X(ecute command. The sort of
Functions which are available are the desk calculator, the patch/dump
stility. the terminal configuration setup pregram a bogststrap mover, a
librarian and many others. For a complete list of the wtility pregrams
10w availahle with the UCSD Pascal system, veference Secticn 4 in the
Table of Contents. Any programs which you write and fesel wouwld be a
ssefyl addition to our library of utilitiss will be welcome
zontributions,

lage 4

1.1. 4 AN INTRODUCTION TO THE UCSD PABCAL SYSTEM

I.5 is the first release which contains the fully intergrated
and implemented concept of separate compilation and assembly. I.4b was
the first to support multiple types of processors.

The great bulk of the system software is written in Pascal and
runs on a relatively simple pseudo-machine. I this pseuvudo-machine is
emulated by a machine language program on & new real machine, the
Pascal software will also run on that new real machine.

Une class of differences among versions of the system is due to
aspects of the pseuvdo—machine that are not identicaly emulated by the
implemantations for different types of processors. A subsection in
section A contains a chart of differences between processors the system
currently runs on.

Anather class of differences stems from variations in the
system I/0 environmenis rather than in the host processor. Included
here are difference in system console terminal types (e.e. hard-copy vs
CRT we storage tube) or command conventions and capabilities {eg.
"intelligent” vs "doumb® CRT ‘s). The system is intended to be able to
cope with this sort of variation, Version 1.4 had some troubles with
terminals that genergite/rTequire ftwo-character sequences for some
controle, and single~character sequences for others. The utility
program "SETUP" has been completely regeneraied for 1.5 (see section
4. 3),

In the PDF-11 world these mass storage variations are not too
serious, primarily because there is considerzhle motivation to be
compatible with DEC devices and media. We have written and support
drivers for a few DEC incompatible devices but make no‘claim to
support uasers who want to develop their own such drivers. See section
A Ffor warunings about problems you might encounter.

The situation in the 8080G/Z80 world is much maere chaotic.
Bince is would not be practical for the Project to write and support
drivers for the vast multitude of BOBRO/ZB0 1/0 environments that exist,
we have chosen to take advantage of the widespread implementation of
Digital Research’s CP/M operating system by structuring the pseudo-
machine ‘s I/0 operations as calls on CP/M’s Basic 1/0 Subsystem (BIOE)
primitives, Thevefore, any I/0 configuration or which CP/M has been
imp lemented should also be able to support the Pascal system. We do
not guarantee this. For example, Intel MDS disk controllers cannot
read disks generated here and some BIOS‘s we have encountered do not
completely meet all the requirements specified for CP/M UCSD plans to
support some of the larger distribution B08B0-based machines directly.

Bur dominant mode of distribution for 80BQ/Z8B0 systems will be
on 3740 compatible diskettes. One of the distribution diskettes will

be CP/M oriented. This disk will be used, via a somewhat awkward tuwe-
step process, o bring up UCSD Pascal on a particular CP/M
configurstion, Look to section A for detaile on this process. It also

describes the configuration of a modified BIDNS, which will better
support the needs of the Pascal system Finally, directions are given
for making it possible to boot dirvectly ¢to Pascal rather than
indirectly through a CP/M program.

Page 95

A number of files on the disk start with ’SYSTEM"‘spe;iFicallu:

SYSTEM. PDP-11
SYSTEM. MICRO
SYSTEM. PASCAL.
SYSTEM. FILER
SYSTEM. COMPILER
SYSTEM. SYNTAX
SYSTEM. EDITOR
SYSTEM. LINKER
SYSTEM. ASSMBI.ER
SYSTEM. SWAPDISK
SYSTEM. CHARSET
SYSTEM. LIBRARY
SYSTEM. WRK. TEXT
SYSTEM. WRK. CODE
SYSTEM. STARTUP

In most cases these files contain the system segment of the
name they carry. That is to say that the EDITOR., FILER:, LINKER,
SOMPILER, ASSEMBLER are the files that are invoked by the text editor
vhen ‘E‘, ‘F’y etc. is typed. Some of the files are machine specific.
INTERP and MICRO are the files which contain the interpreters for the
rarticular machine being used. CHARSET is a file which appears on
iisks meant for TERAK computers only and contains the definition for
the soft character set, and the data for the Triton logo prompt.
-IBRARY is a file containing separately assembled or compiled routines
For use by the Linker in producing executable code files. PASCAL
rontains the operating system, and the Debugger. SWAPDISK is a file
Jjsed by some of the system segments during compilation of “include®
Piles if a memory shortage exists. It is a 2048 byte file which gets a
rortion of memory swapped to it when a directory needs to be read into
ore. When the directory work is complete, the memory is restored to
itz original state. STARTUP is a file which can be created at the
j1ser‘s option. If it exists on a disk, the operating system considers
it a runnable code~file, and executes it at initialize time. This
1llows the user to have a program that runs before the main command
rompt comes up, and will run anytime the I(nitialize command is
yped. WRK. TEXT and WRK.CODE are the current work-+file after some
iction has occurred to the work-file. They appear after having done
iome text editing on a work-file (SYSTEM. WRK. TEXT) or compiling a work-—
'ile (EYSTEM. WRK. CODE).

All other files on the disk are user generated (in one fashion
ir ancther). The other important parts of a disk are relatively
nvisible to the user. The directory resides at block 2 an the disk
ind extends for 4 blocks if it is a single directory. 8 blocks if it is
| duplicated (backed-up) directory. The bootstrap can reside at any of
I number of places on the disk, depending on the host machine. In most
ases, blocks O and 1 are reserved foar the bootstrap.

Page &

RRBEERURRFEBRREE BB SRR ERE RS
FILEHANDLER # % Section 1.2 %
HHRBBERURAREREE DA REEPRERE RS

Vergion 1.3 September 1978
1.2 1 FILES

A file is a discrete ‘chunk’ of information which is stoved on
the disk and veferenced by a filename. Each disk has a directory
which contains the filenames and locations of each file on the disk.
The Filebhandler, or Filevr., uses the information contained in the disk
directory %o manipulate files.

Crne of the attributes of a file is its type. The type of the
£ile determinegs the way in which it can be used. File types are
ascigned based on the file name,

Raserved type suffixes for filenames are:

CTEXT Human readahle text.

. CODE Maching executable code

. DATA Data file.

L FOTO A file containing one TERAK screen—~image.

. GR&F Intended to be a2 file containing a vector
list of a graphins imagn. Currently unused.

. BADR An unmovable file covering & physically

damaged area of & disk,

1.2. 2 VOLUMES

A volume 1s any I/0 device, such as the printer. the ksyboard,
or a disk. A "block-structured” device is one that can have a
directory anrd files, usually a disk of some sori. A non—
block—structured device does not have internel structure; 1% saimply
produces or cornsumes & stream of charasciers. The printer and the
keybeoard, for example, ave non-block-structured. The table below
illustrates the reserved volume names used to refer to non-block-—
structursed devices: bthe ‘upnit number’ ssesoriated with each device, and
the unit numbers associasbed with the system {(boocted) disk arnd any
alternats disks.

Page 7

Unit Number Volume ID Description

- wE m. wm mEm mm mE e e wm me wE e

- e e Bw mE wm B mE WG EE e Sm W

1 CONSOLE: screen and keyboard with echo

2 SYSTERM: screen and keyboard without echo
3 GRAPHIC: the graphic ‘side’ of the screen
4 <volume name2: the system disk

3 <volume name>: the alternate disk

& PRINTER: the line printer

8 REMOTE: additional peripherals
?-12 <volume name>: additional disk drives

FIGURE 1

1.2. 3 THE ‘WORKFILE’

The workfile is a temporary capy of the file being modified.
It is vused by the Filer, in the Editor, and by the Compiler. When the
text part of a workfile is changed, the system stores it on disk under
the name ‘#SYSTEM. WRK. TEXT’, and when a code version is first created,
it is named ‘#SYSTEM. WRK. CODE"’.

1.2. 4 FILE SPECIFICATION

Many Filer commands require the user to respond with at least
one file specification. The diagram below illustrstes the syntax aof
file specification.

{file specificatiord

volume ID

FIGURE 2

age 8

Volume i.d. syntax can be expanded thusly:

{volume ID>

—®

FIGURE 3

Volume names for block-structured volumes can be arbitrarily
assigned by the user. A volume name must be 7 or less characters long
and may not contain ‘=", ‘%', ‘7’ or ‘,’. Reserved volume names foar
~non- block-structured devices are given in Figure 1. The character ‘%’
is the volume ID of the ‘system disk’, the disk upon which the system
was booted. The character ‘:’, when used alone, is the volume ID of the
‘default disk’. The system disk and default disk are equivalent unless
the default prefix (see material on P(refix) has been changed. ‘#Cunit

Page 9

number>’ is equivalent to the name of the volume in the drive at that
time.

& legal filename can consist of up to 1% characters. In order
for the file tou be run the last 5 characters must bhe . TEXT, ,CODE, OR
.DATA. Without these suffixes the file may be executed but not put in
the workfile to be run., Lower—case letters will be translated
to upper—case., and blanks and non-printing characters will be removed
from the filename. Legal characters for {filenames areg the
alphanumerics and the special characters "—-‘:. /7 ‘'\N*, '_“y and *. °.
These special characters may be used to indicate hierarchic
relationships among files and/or to distinguish several related files
of different types.

WARNING: The I.9 Filer will not be able to access filenames containing
the characters ‘%7, : 7, ‘=', ‘2, and 7. ‘. I# #iles from previous
versions of the system contain these characters, then they should he
removed befare attempting to uvse those fPiles with the 1.5 System.

The wildcard characters, ‘=7 and ‘7', are used to specify
subsets of the directory. The Filer performs the requested action on
all files meeting the specifications. A file specification containing
the subset-specifying string ’'DOC=TEXT' notifies the Filer to perform
the requested action on all files whose names begin with the string
‘DOCY and end with the string ‘TEXT'. I+ a 7" is used in place of an
‘=’, the Filer requests verification before affecting each file meeting
the specified criteria. Either or both strings may be empty. For
example, a suvbset specification of the Form ‘={string>’ or ‘<{stringo=’
or even ‘=’ is wvalid. This last case:, where both subset— specifying
strings are empty, is interpreted by the Filer to specify every $file on
the veolume, so typing ‘=’ or ‘7?7’ alone causes the Filer to perform the
appropriate action on every file in the directory.

Given an example directory for volums MYDISK:

NAUGHTYBITS & 23-Jun-54
MOL.D. TEXT 4 29~-Jun-—-54
USELESS. CODE 10 19-May-54
MOLD. CODE 4 29-Jun—-54
NEVERMORE. TEXT 12 S-Apr-54
CDONS 5 10-Sep-52

EXAMPLE:

Prompt: Remove what file?

Fesponse: Typing ‘M=’ generates the message:
MYDISK: NAUGHTYBITS remaved
MYDISK: NEVERMORE. TEXT removed
Update directory?
{At this point the user can type ‘Y’ to remove or
type ‘MY, in which case the files will not be
removed, The Filer always requests verification
on any wildcard removes.)
Tygping "'N?° generateé the messagse:
Ramgve MAUGHTYRBITS: 7
After the user types & response; the Filer asks:
Famove NEVERMORE. TEXT: 7

EXAMPLE:
Prompt. Dir listing of what vol 7

Response: Typing =TEXT’ causes the Filaer to list

MOLD. TEXT 4 29-Jun-54
NEVERMORE. TEXT 12 S-Apr—~54

The subset-specifying strings may not ’‘overlap’. For example,

GOON=NG would not specify the file GOONS, whereas GOON=S5 would
be a valid (although pointless) specification.

The size specification information is predominantly useful in
the commands T(ransfer section 1. 2. 5 11 and M(ake section 1.2 .5 17.

Page 11

1.2. 9 COMMANDS AND USE

Type "F" at the Command level to enter the Filer and the
following prompt is displayed:

Filer: G(et, S{ave, W(hat, N(ew, L{dir, R{em:; C(hng, T{(rans, D{ate, Q(uvit
Typing ‘7’ in response to this prompt displays more Filer commands:

Filer: B(ad—-blks, E(xt—-dir, K(rnch, M(ake:. P(refix, V(gls, X{amine, Z{(erg

The individual Filer commands are invoked by typing the
letter found to the left of the parenthesis. For example,
‘S’ would invake the Save command.

In the Filer, answering a Yes/No question with any character
other than ‘Y’ constitutes a ‘No‘ answer. Typing an <esc> will return
the user tu the outer level of the Filer.

For each command requiring & file specification, refer to the
file specification diagram (Figure 2). In many cases, the entire file
specification is not necessary, and in some cases, certain parts of the
file specification are not valid. See the required command in the
following section.

Whenever a Filer command requests a file specification, the
user may specify as many files as desired, by separating the file
specifications with commas, and terminating this ‘file list’ with a
carriage return. Commands operating on single filenames will keep
reading filenames from the file list and operating on them until there
are none left. Commands operating on two filenames (such as C(hange
and T(rans) will take file names in pairs and operate on each pair
until only one or none remains. If one filename rvremains, the Filer
#ill prompt for the second member of the pair. I# an error is detected
in the list, the rest of the list will be flushed.

1) Glet
L.oads the designated file into the workfile.

The entire #ile specification is not necessary. I# the volume ID is
not given, the dofavlt disk is assumed. Wildcards ars not allowed,
and the size specification option is ignored.

Given the example directory:

FILERDOCZ2. TEXT
& OUT. CODE

FSH. TEXT
ABSURD. TEXT
HYTYPER. CODE
8TASIS. TEXT
LETTERL. TEXT
AGSEM. DOC. TEXT
FIiLER. DOC. TEXT
STASIS. CODE

EXAMPLE:
Frompt: fet what file?
Response: STARIS
The Filer responds with the message
‘Text and Code file ioaded’

since both text and code file exist. Had the user typed
‘GTASIS. TEXT ' or ‘STASIS. CODE’, the result would have been the
same — both text and code versions would have been loaded. In
the event that only ones of the versions exists, as in the case
of & QUT, then that version would be lozded, regardless of
whether text or code was regquested. Typing ‘A OUT. TEXT' in
response to the prompt would generate the message: ‘Code file
loaded .

Page 13

2) Stave
Saves the workfile under the filename specified by the user.

The entire file spéci#igation i not necessary. I# the volume ID is
not given, the default disk is asssumsd. Wildrards are not zlivwed,
and the size specification option is ignored.

IXAMPLE:
Frampt: Save as what +filse?

Rezponse: Type a filename of 10 or less characters: obserwving
the filenmame conventions in section 1 2. 4 'FILES’ . This
causes the FILER to automatically remove any old file having
the given name. and to save the warkfile under that name. For
example, typing "X"in respanse to the prompt causes the
workfile to be saved on the defauvlt disk as X TEXY. If a
codefile has been compiled since the last update of the
workfile., that codefile will be saved ass X CODE.

The FILER automaticaliy appends the suffixes . TEXT and . CODE to
files of the appropriate type. Explicitly typing AFILE. TEXT in
response to the prompt will cause the FILER to save this file
as AFILE. TEXT. TEXT . Any illegal characters in the filename
will be ignored, with the excepiion of 7' I+ the file
specification includes volume 1d. the Filer assumes that the
user wishes to save the workfile on another volume. Fowv
example, typing:

ige 14

RED: EYE
in response to ‘Save as what file?’ will generate
Prompt: HWould you like EYE. TEXT written to RED: 7
RED: EYE constitutes a file specification, and a ‘'Y’ answer to
this prompt will cause the Filer to attempt a transfer of the

workfile to the specified volume and file. (see section
1.2.5. 11 Tirangfer.)

33 Niew
Clears the workspace (workfile)d.
No file specifications allowed.
I# there is already a workfile present, the user is prompted:
Prompt: Throw away current workfile?

Response. ‘Y will clear the workfile while ‘N’ returns the
user to the outer level of the FILER.

I+ Cworkfile namel BACK exists, then the user is prompted:

Prompt. Remaove <workfile namel. BACK 7

43 Qluit
Returns the vuser to the outermost ctommand level.

No fils specification allowed.

S5) Wlhat
Identifies the name and state (saved or not) of the workfile.

Me fils specification allowed.

&y Violumes

L.ists volumes currently on-line, with their associated unit
{device! numbers,

Page 15

7)

No file specification allowed.

A typical display would be:

Volumes an—line:
CONSOLE:
SYSTERM:
GRAPHIC:
MYDIGK:
PRINTER:
REMOTE
Q % BIG:
Prefix is — MYDISK:

T HhR-
*

The system or "boot—-disk" volume’s name is preceeded by & "%’

The system volume is the default volume unless the prefix (see
Pi{refix) has been changed lgck—structured devices ave indicated
by ‘%’ or ‘&7

L.{(dir

lLists a disk divectory. or some subset thereof, to the volume and
file specified (default is CONSOLE:).

The user may list any subset of the diractory, using the ‘wildcard’
option, and may also write the directory. or any subset thereof, to
a volume or filename cther than CONSOLE. File specification will
tharefore be discussed in terms of source file specification and
deastination file specification.

Sogurce file specification consists of 2 mandatory volume ID, and

optional subvet-specifying stvings, which may be empty. If subset-
gpecifying strings are used, then one of the wildcard chsracters
must be used. A string (for example, the full Ffilename

STASIS. TEXT?) may not be used as part of the source file
specification unless a wildcard character is used!

Source file information is separated from destination file
information by a comma (7. 7).

Destination file specification consists of a volume ID, and, if the
volume is a block—-structured device, a filename. File size
specifications will be ignored

The most frequent use of this command is to list the entire directory
of & volume, The following display, which reprecents a complete
directory listing for the example disk MYDISX, would be generated

by typing any valid volume ID for MYDISK (ecep Figure 2} in vesponse
to the prompt,

‘age 14

Pir listing of what vel?

MYDIGK:

FILERDOCZ2. TEXT 28 1-Sep-78
&, OUT. CODE 10 1-Sep-78
FS. TEXT a8 1-Sep-78
ABSURD 4 1-Sep-~-78
HYTYPER. CODE 12 1-Sep-786
STASIS. TEXT 2 1-Gep—-78
LETTERL. TEXT 18 1-Sep~78
ASSEMDOC. TEXT 20 1-Sep-78
FILERDOCL. TEXT 24 1-Sep~78
STASIS. CODE & 1-8Sep-78

10710 files <listed/in-dir>, 130 blocks used, 364 unused
(The bottom line of the display informs the user that 10 files out
of 10 files on the disk have heen listed. that 130 disk blocks
have been used, and that 344 dicsk blocks remain unused.)

EXAMPLE:

Li{dir transaction involving wildcsrds:

Prompt: Dir listing of what vol ?

User response: #4:FIL=TEXT

generates the following display:

MYDISK:

FLHLERDOCZ2. TEXT 28 1-Sep-78

FILERDDCL. TEXT 24 1-Sep-78

2710 firles <listed/in—dir>, 52 blocks used, 364 unused

EXAMPLE:

L{dir transaction involving writing the directory subset to a
device cther than CONSDLE:

Prompt: Div listing of what vol ?

User response: #FIL=TEXT, PRINTER: causes

MYDRISK:

FILERDOCZ. TEXT 26 1-Sep~78

FILERDOC1. TEXT 24 i~Sep~78

2710 files <iisted/in—dir>, 52 blocks used, 3464 vnused

1o be wnitten to the Printer.

Page 17

EXAMPLE:

L{dir transaction involving writing the directory subset to a
block-structured device:

Prompt: Dir Jlisting of what vel 7

User response: #4:FIL=TEXT, #5: TRASH creates the file TRASH an
the velume asscciated with unit 5. TRASH wouvld contain:

MYDISK:

FILERDOCZ2. TEXT 28 1-8ep-~-78

FILERDOC1. TEXT 24 1-Sep-78

2710 files <listedsin—dir> 52 blocks used, 364 unused

82) E{xtendad list

Lists the directory in more detail fthan the Lidir command.

All files and unused areas are listed along with (in this order)
their block jlength., last modification date, the starting block
address, the number of bytes in the last block of the file, and the

filekind. All wildesvd options and prompits svre as in the L({dir
command. An example display is shown belouw ‘
MYDISK:

FILERDOCR. TEXT 28 1-Gep—-78 5 12 Textfile
A QUT. cane 0 1-Cep-78 54 312 Codefile
F9. TEXT 38 1-Cep-78 a4 312 Textfile
TUNUSED> 10 52

ARSURD 4 1-Bep-7E 62 312 Datafile
HYTYPER. COLE 12 1-8ep-78 &é zi2 Codefile
STASIZ TEXT 8 ~Sep-78 78 i Testfile
LETTERL. TEXTY 18 i-SGep-78 S3é si2 Textfile
ASSEMBOC. TEAY 20 1-8ep-78 104 312 Textfile
FILERDGCL. TEXT 24 1-Gep-—-78 124 iz Textfile
STASIS. CODE & 1-Sen-78 14 312 Codefile
LUNUSED> 354 184

i0/10 files <listed/in—divr, 130 blocks used, 364 unused, 334 in largest area

7) C{hange

Changes filg or volume name.

This command requires two file specificstions. The first of these
specifies the file to be changed: %the secend, to what it will be
thanged. The first specification is separated from the second
specification by either a <ret> or a comma (', ’). Any volume 1D
information in the second file specification is ignored, since
obviously the ‘old file’ and the ‘new file’ asre on the same velume!
Size specification information is ignored.

‘age 18

Given the example file FS. TEXT, residing on the volume occupying unit
Prompt : Change what file?
User Response: #5:F5 TEXT, HOOHAH

cthanges the name in the directory from ‘F5 TEXT’ to ‘HOOHAH'.
Although filekinds are originally determined by the filename,
the Clhange command does not affect the filekind. In the above

. case, HOOHAH would still be a text file. However, since the
(et command searches for the suffix . TEXT’ in order to load a
Yext file into the workfile, HOOMAM would need to be renamed
HODHAH. TEXT in order to be loaded into the workfile.

Wildcard specifications are legal in the C(hange command. I+ a
wildcard character is used in the first file specification, then a
wildcard must be used in the second file specification. The subset-—
specifying strings in the first file specification are replaced by
the analogous strings (henceforward called replacement strings)

given in the second file specification, The Filer will not change
the filename if the change would have the effect of making the
filename too long (>*15 characters). QGiven a directory of example disk
NOTSANE: containing the files:

POEMS. TEXT
MAUNDER. TEXT
MaLPRACTICE
MAKEL. ISTS. TEXT

EXAMPLE:
Prompt : Change what file?

User response: NOTSAWNE: MA=TEXT. XX=GAACK
causes the Filer to report

NOTSANE: MAUNDER. TEXT changed to XXUNDER. GAACK
NOTEANE: MAKELIETS. TEXT changed to XXKELISTS. GAACK

Page 19

The subset—-specifying strings may be empty, as may the replacement
strings. The Filer considers the file specification ‘=’ (where both
subset—specifying strings are empty) to specify every File on the
disk. Responding to the Cihange prompt with ‘=,I=Z’ wowuld cause evsamTy
filename on the disk to have a "Z° added at front and back.
Responding to the prompt with ‘Z=Z,=‘ would replace each terminal

and initial ‘Z° with nothing., Given the filensmes:

THIS. TEXT
THAT. TEXT

EXAMPLE:
Prompt Change what file?
llser Response: T=T.=

The result wounld be to change “THIS TEXT to ‘HIS TEX',
and ‘THAT. TEXT’ to ‘HAT. TEX".

The volume name may also be changed by specifyging a valume 1D
to be changed, and a volume (D %o change to

EXAMPLE:
Prompt : Change what file?
User Response: NOTI&NE., WRKDIGK,

gengrates the message, NOTSANE: changed to WRKDISK:

Q) R{emowve
Remowves file entries from the directory.

This command requires one file specificstion Pfor sach file the ussr

wishes to remave. Wildcards are legal. Gize specification
information is ignored. Given the sxampie files {assuming that they

are on the default volume):
AARDVAREK, TEXT
ANDROID CODE
GUINT. TEXT
AMAZ THG. CODE

XAMPLE:

Proempi. Remove what file?

User Rasponse: AMAZING. COLE
removes the file AMAZING. CODE from the volume dirsctory. Note:

Te remove SYSTEM. WRK. TEXT and/or SYSTEM. WRK. CODE the N(ew
cemmnand should be used, or the system may get confused.

sge 20 ‘ -

fs noted befare, wildcard removes are legal.

EXAMPLE:
Frompt; Remove what file?
Uner Response: A=CODE
causes the Filer to remove AMAZING. CODE and ANDROID. CODE.
KARWING: Remembor that the Filer considers the file
specification ‘=’ (where both subset- specifying strings are
emptyl to specify every file on the volume. Tysing an ‘=’ alane
will vause the Filer to remove every Ffile on your dirvrectory!!
Fortunately, before finalizing any wildcard removes, the Filer
prompits the user with
Prompt: Updates directary?
Response: Y’ rauses all specifisd Piles to be Temoved. ‘N
reburns the uzer Yo the outer level of the Filer without any
ramuves having occurrad.

11} Ti{ransfer

Copies the specified #ile to ithe given destination.

This cummand requivres the user to iype two ¢¥ile specifications, one
+or the souvce file:, and one for the destination file, separated
with sither a comma oy <retd. Wildcards arve permitted, and size

specification information is recognized for the destination file.

Assums LHYhat the vser wishes %o Lransfsr The File FARKLE. TEXT
from tne dise MYULZK to the disk DAaZHUP.

EXAMPLE:

Prompt: Transfer what file ?

Ucer Response:

MYDISK: FARKLE, TEXT

Page 21

Praompt: To where?

(Note: On a one—~drive machine, doa NOT remove your source disk
until you are prompted to insert the destination disk)

User Respanse: BACKUP: NAME. TEXT

Prompt: Put in BACKUP:
Type <spacer to continue

The vuvser should remove the source disk, insert the destination
disk and type a <space> The Filer then notifies the user:

MYRISK: FARKLE. TEXT transferred to BACKUP: NAME. TEXT

The Filer has made a copy of FARKLE and has written it to the
disk BACKUP giving it the name NAME. TEXT. If the specified
file is large, the user may be prompted to alternately insert
the source and destination disks until the transfer is
completed. ' ‘

It is often convenient to transfer a file without changing the name,
and without retyping the file name. The Filer enables the user to
do this by allowing the character ‘$’ to replace the filename in the
destination file specification. In the above example, had the user
wished to save the file FARKLE. TEXT on BACKUP under the name

FARKLE. TEXT, she could have %typed:

MYDISK: FARKLE. TEXT, BACKUP: %
WARNING: Please try to avoid typing the second #ile specification
with the filename completely omitted! For exsmple, a response to the
Transfer prompt of the form:

MYDISK: FARKLE. TEXT, BACKUP:

generates the message:

Possibly destroy dirvectory of BACKUP: 7

‘Y’ answer causes the directory of BACKUP to be wiped out!
Files may be transferred to volumes that are not block structured,
such as CONBOLE: and PRINTER:. by specifying the appropriate volume
ID (see Figure 1) in the destination file specification. A file

name on a non— bloack-structured device is ignored. It is generally
a good idea to make certain that the destination volumeis on-line.

EXAMPLE:
Prompt: Transfer what £ile?
ser Response: FARKLE. TEXT
PFrampt: To where?
User Response: PRINTER:
cauvses FARWKLE. TEXT %o be written to the printer.

The user may also transfer from non—block-structured devices,
providing they are input dewvices, Filenames accompanying a non-—
nianck-sbructured device ID are ignoved

The wildecard capability is allowed for T{ransfer. I# the source
file? specification contains a wildcard character, and the
destingtion file specification involves a hklack—-structured device,
then the deszstination file spscification must alse contain a wildcard
character, The subsst-specifuing strings in the source file
specification will be replaced by the analogous strings in the
destination file specification (henceforward known as vreplacement

strings). Anyg of the subsst-specifying or replacement sirings may
e zmpty. Remsmber that the Filer considers the file specification

‘w2 ks sperify evsry File on Lthe volume.
EXAMPLE

Riven the veolume MYDIGK containing the files PAUCITY, PARITY and
PENALTY, and the destination JDDNAMI:

Prompt: Transfer what file?
User Response: P=TY, ODDNAMZ U=8

would cauvse the Filer to reply:

MYDIBK: PAUCITY transferved to ODDNAMZI VAUCIS
MYRIGK: PARITY transferred to ODDNAMZ: VARIS
MYDIBK PENALTY transferred to QDDNAMIZ: VENALS

idring ‘= as the scurce filename specification will cause the Filer
fo attempt to ftransfer ewvery file on the disk. This will probhably
avarflow the output buffer. {There are easizr ways to transfer
whole disks. if you wish %o do this, please refer to the material
in this section on wolume— to- velume Yransfers.)

Using ‘=’ as the destination filename specification will have the
effect of replacing the subset-specifying strings in the source
specification with nothing. A brief reminder: ‘7’ may be used in
place of ‘=1, The aonly difference is that 7’ causes the user to be
asked for verification befare the operation is performed.

A file can be transferred from a volume to the same volume by
specifying the same valume ID for both source and destination file
specifications. This is frequently vseful when the user wishes to
relocate a file on the disk. Specifuying the number of blocks
desired will cause the Filer %o copy the file in the first- /.

area of at least that size. I# no size specification is
given, the file is written in the largest unused area.

I+ the user specifies the same filename for both source and
destination on a same~disk transfer, then the Filer rewrites the
file to the size-specified area, and removes the older capy

EXAMPLE:
Prompt: Transfer what file?
User Response: #4:; QUIZZES. TEXT. #4; QUIZZIES, TEXTIZ01]
cavses the Filer to rewrite QUIZIZES. TEXT in the first 20-block
area encountered (counting up from block O) and teo remove the
previous version of QUIZZIES. TEXT.
WARNING: Wildcard—type specifications do not alwauys work very well

on same-disk transfers. The results tend to be unpredictable, so
these operations are not recommended.

It is also possible to do zntire volume-to-volume transfers. The
file specifications for both scurce and destinstion should consist
aof volume ID only. Transferring a block-strucltured volume %o
another block~ structured volume causes the destination volume to be
‘wiped out’ so that it becomes an exact copy of the source volume,

Assume that the user desires an extrae copy of the disk MYDISK: and
is willing 4o sacrifice disk EXTRA:

EXAMPLE:
Prompt: Transfer what file?
User Response: MYDISK:.EXTRA:

Prompt: Possibly destroy directery of EXTRA: 7

Page 24

WARNING: There’s ne ‘possibly’ abeut this! If the user types
‘¥, the directory of EXTRA: will bte destroged! An ‘N’
response will return the user to the ocuter level of the Filer,
and a Y’ will cause EXTRA to become an exact cepy of MYDIGK.
Often this is desirable for backup purposes, since it is
relatively easy to copy a disk this way:, and the volume name
can be changed (see C(hng) if desired.

Although 1Y is certainly poseible Lo transfer a volume {(disk) to
another dsing a single adisk—drive, it i3 & fairly tediocsus process,
since the in-core transfer reads up bhe information in rather zmall
thunks, and a great deal of disk Juggling is necessary foar the
rompigta transfer To take gplace

12) Diate

-t
3

o

Lists current system date, and enables the user to change the date.

Prompt: Date Set: <1..31%F-IJAN | DECHF—-L00. . 99> OR LCR>
Taday is 12--Aug-73
New date?

The user may enter the correct date in the format given. After
typing <retl, the new date will be displayed. Typing only a return
does not atffect the current date. The hyphens are delimiters for
the day, month and uear ¥Fields, and it is possible to affect only
one or tuwo of Lthese Fields. For example:, the year could be cthanged
by typing "~—79’, the month by typing '-Sep’, etc. The entire menth-
name can be entered, but will be truncated by the Filer. Elash
{(’/77) is alse accspitable as a delimiter. The most common input will
be a single number, which will be interpreted as a new day. For
example, if yesterday was the 19th of August:. the user would want to
type D20<ret>, which would have the desired 2ffect of thanging the
date to the 20%h of August, The day~montb-yeay order is inviolate,
howevar,

This date will be sssociated with any files saved during the current

session and will be the date displayed for those files when the
direcktery is listed.

Pirefiy

Changes the cuvrent default to the volume specified.

This command requives the user to type a volume ID. An entire file
sperification may ke entered. but only the volume ID will be used.
It is not necessary #or the specified wvolume to be on—line.

Page 25

To determine the current default volume, the user may respond to the
prompt with ;7.

14) B{ad blocks
Scans the disk and detects bad blocks.

This command requires the user to type a volume ID. The specified
volume must be on—line.

Praompt: Bad blsocks scan of what vol?
Response: <«volume IL>
Checks sach hlock on the indicated volume €for errers and lists
the number of each bad block. Bad blocks can often be fixed or
marked (see eX{(amine). :

15) eX{(amine

Attempts to physically recover suspected bad blocks.

This command regquitres the user to type a volume ID.. The wvolume must
be on— line.

CXAMPLE:
Prompt : Examine blocks on what volume?
Response : Uvolume IDD generates the
Prompt: Block number-range 7
The user should have Jjust done a bad block scan, and should
enter the block number{(s) returned by the bad block scan. If
any files are endangered:. the following prempt should appear:
Prompt: File{(s) endangered:
<filenamel

Try to fix them?

Response: ‘Y’ will cause the FILER to examine the blocks and
return either of the messages:

Eleck <bleck-number?® may be ok

age 26

in which case the bad black has probably been fixed, or

Block <block—number> is bad

in which case the FILER will offer the user the option of
marking the block(s) BAD Blocks which are marked BAD will
nint be shifted during & Kirunch, and will be rendered
effactively harmliess.

An ‘N’ response to the “fix them?’ prompt returns the user to
the outer level of the FILER.

WAERNING: A hlock which is ‘fixed’ may contain garbage. ‘May be
alt’ should be translated as ‘iz probably physically ok’.
Fixing a8 block means that the block is resd, is written hack

nut to the block and is_read again. If the two reads are the
same, the message is ‘may he ok . Iin the avent that the reads

are differeni, the block is declared bad and masy be marked as
swuch 1f so desired.

146 Kilrunch

Moves the files on the specified volume so that unused blocks are
combined at the ‘end’ of the disk.

This command reavives the user $g Yupe & volume ID. The specified
valiums must be on-line. It is strongly recommended that the user
perform a bad block scan gf the volume before WKirunching in order %o
avaid writing files aver bad aress nf the disk. If bad blocks are
encountered, thasy must be sgither firxed or marked before the K(runch
{s2e zX{aminsg}.

A% each file is moved, its name 13 raported to the console. If
SYBTEM, PABCAL i1s moved, the system mucst be veinitialized hy
bontstrapping. 3o mot teuch the disk: the hoot-suwitch or the disk-

drive door until Kirunch tells you 1% has completed its tacsk.
EXAMPLE:

Prompt : Crunch what vol?

rauses Filer Lo prompt with:

Frompt : Are you sure2 you want to crunch (volume IDZ?

FPage 27

Response: ‘Y’ initistes the Kirunch. Typing an ‘N’ will return
the user to the outer level of the FILER.

17) Fake
Creates a dirvectory entry with the sgecifiszd Pilename.
This command requivres the user to type a file specification.
Wildcard characters are not allowed. The file size specification
option is extremely helpful, since, if it is omitted. the Filer
creates the specified file by consuming the largest unused area of
the disk. The File zsize is determined by following the filename
with the desirad number of blocks, enclesed in square brackets
L andg 737 Some epscial cases are: .

LG — equivalent to omitting the size specification. The file is
created in the largesst unused area.

[#] ~ the file is created in the second largest area, or half the
largest area, whichever is larger.

EXamMpPiE:
Prompt : Make what file?
Response ; MYDISK: FAafMLE TEXTIZE3

Creates the file FARKLE. TEXT oan the volume MYDISK: in the first
unuvsed 2E8-block eres sncowntersd

18} Z(=1rD

Reformats the specified volume. The previous directory is rendevred
irretrievable.

ZXAME K
Prompt: Zevro dir of what vol 7

Responge: <volume ID>

Prompt: Destroy <volume namse™ 7
P 3
Response: A "Y' response generates

o
W
©
L)
]

Prompt: Duplicate dir 7
Responses If a “Y” is tveped, then a durlicate directory will be
maintained. This is advisable because, in the event that the
disk directory is destroved. a utility program called COPYDUFPDIR
can use the duplicate directory to restore the disk.
Promet: <current number of blocks on disk> blocks ?
Responset “N° aenerates
Prompt: # of blocks 7
Responset User will tvepe number of blocks desired
(usually the maximum permitted for the svstem’s disk
recording densityv, 170 for singsle—~density, 340 for
double—density, and 4690 for aquad—caracity). Filer
Frroceeds with seauence bhelow.
“Y” menerates
Praomet: New vol name ?
Response? User tvyrpes any valid volume name.
Prompt: <new volume name> correct 7

Response? “Y" causes the Filer to resrond with the message!

<new volume name> zeroed

Fage 29

fEne]

]

L

<

—Notes —

R4 S HH AR U RN R R R H R W R R N RN RS
SBOREEN ORIENTED EDITOR = % Section 1.3.1 =
AR U R I N R R R R W N R R

Version I. 5 September 1978

This introduction:, which describes the idea behind the Editor,
is the first of four sections. The second section is a tutorial for
the novice. While the Editor is designed to handle any files, the
tutorial section vses & sample progrem to demonstrate how to use the
most basic commands o modify a file. The third section containsg a
detailad description of zach command, with examples, and the fourth is
for quick reference.

THE CONCEPT OF & ‘WINDOW' INTO THE FILE

1

The Screen Oriented Editor is specifically designed for use
with Video Display Terminals. On entering any file, the Editor
displays the start of the file in the upper left hand corner of the

SCT &N, I# the file is too long for the screszn, only the first portion
is displayed. This is the cuncept of a3 ‘window’. The whole file is
there and is asccessible by Editor commands, but only a portion of it
can be seen threugh the ‘window’ of the screen. When any Editor

command takes the user to a8 position in the file which is not
displayed, the "window" is updated to show that portion of the file

THE CONCEPT OF & CURSGH

The cursor represents the exsct position in the file and can be
used to move to anyg position, The window shows that portion of the
file near the cursor. To see another portion of the file, move the
EUTSOT. Action always takes place at the cursor. Some of the commands
permit additions, changss or deletions of such length that the screen
cannet hold the whole portion of the text that has been changed. In
those cases, the paertion of the scresn where the cursor stopped is
displayed. In ro case is it necessary for the user to operate on
portions of the text not sesn on the scresn, but in some cases it is
optional.

THE CONCEPRT OF A PROMPT LINE

The Editor displays a prompt line as the top line of the screen
in order to remind the user of the current mode and the ocptions
available for %that mode. Dnly the mast coammonly used options appear on
the prompt lire as the following display shows:

FEdit; Adldjust Cilpy Dillete Fling If(nsrit Jimp Rplace Biuit Xi{chng Zlap L[E.6:
NOTATION

Thg nobaiis vszaed in this section cerresponds to the notation
used to srompt the uvser in the editor. Any input that is enclosed
between & £ a@nd > is requesting that a particular key be used, not that
the perticular word be typed out, For example, CRETY> meane that the
return key should typee at that point. When a particular sequence of
key strokes is regquived they will be contained within gquotes. For
grample, "FILENAME". <RET> refers to the typed sequence *FILENAME"
followsd by Syping the rveturn hey. LowsT o upper case may be used
whan typing Editor commands.

[N N L |

F R H IR F IR H R RS R AN

GETTING STARTED # # Section 1.3.2
I W H AN H IR N E RN TR R H R

ENTERING THE WORKFILE AND GETTING A PRDGRAM.

On entesring %the Editor
No workfile is present. File? (<retl for no file) appesars.
There are two ways to answer this question

1Y With a name, for example "STRINGL Jretl™. The file named

STRING] will now be retrieved, The file STRINGIl could contain a
program, also called STRINGL, as in Fig. =2.1. After typing the nama, a
copy of the text of the first part of the file appears on the scresn.
Figure 2.1
PROGRAM STRINMGI:
BEGIN

WRITEC TOO WISE '),

WRITE('YOU ARE‘};

WRITELN(, "),

WRITELN{'TOO WIBE'};

WRITELN('YDY BE'}

o 1 G sy B 2T S ARD) Aok Wi B P 0 i Mt G SaAS Shegn SFalR Lo (Rl $TTH (s Tle S i S Risce WS Mo S S S

END.

2) With & “returnZ. This impliess that a new file i3 to be
started. The only thing visible on the screen after doing this is the
editor prumpt line. A new workfile is opened and currently has nothing
in it. Type “I" to begin inserting a program or text.

Workfiles: Mo questions arve asked if a workfiie mlready
exists. The workfile is displayed and can be modified or can bhe

cleared, in order to start a file, by using the Mlew command in the
Filer. ‘

Page 32

MOVING THE CURSOR

In order Yo edit, it is necessary to move the cursor. On the
keyboard are four keys with arrows, (which may 1ook like triangles),
which move the curser. The <Cup-arrowr moves the cursor up one line, the
{right—arrow’ moves the cursor right ore space and so forth.

The cursor does not like to he sutside of the text of the
pragram,. For erample., after the "N" in “BEGIN" in Fig. 2.2 . push
the <right-arrow> and the cursor moves to the "W" in "WRITE".
Similarly at the "W" in "WRITE(‘TOO WISE “}); ", uvse <left-arrow’> to move
to after the “N" in “BEGSIN",

Figure 2.2

e Mo 4 chart A B L WA S A SN S oot et B S B LIRS L, S D 034 M e S SO AR 120 AR GBS e WA Sk et o vooe it e - ——

BEGIN_
WRITE(TOO WISE ‘};

BEGIN
wRITE(TGO WISE ‘)

(s e soA et oo Pt 15 SO e e B4 el SO A TR BB S SO s AR M. 1 44 € YRGS OFh R, Srem W S b S ALK s S RS s 0 A S B S SR B S e Rk S B T S 00 B P S o b ot S Yoo e 03P SRS G U SES Gande Soven $OS0Y Geatn Senes

I# it is necessary to change the "WRITE('TOO WISE ‘);" found in
the third line to a "WRITE('TOO SMART “):; ", the cursor must first be
moved to the right spot.

For exemple: if the curser is at the "P" in “PROGRAM STRINGIL; *,

go down two lines by pressing the down arrow 2 times. Te mark the
positions the cursar occupies, labels a)b.c are used in Fig. 2 3. “a"
is the initial positicn of the cursori “b” is where the cursor is after
the first <down—arrowl; “c¥, after the second <down-arvow>.

Figure 2.3

2ROGRAM STRINGI
BEGIN

¢ WRITE{({ 'TOO WIKE '3

Mow, using the right arrow, move until the cursor sits on the
"W oof “"WISE". Note that with the use of <down—arrowr the cursor
appears te be putside the text. Actually it i1s at the "W" in "WRITE",
sp do not be surprised when on typing the first <left-arrow> the cursor
jumps to the "R" in "WRITE".

USIMG INSERT

The Edit level prompt line shows that to I(nsvrt (insert) an
item, type “"T1%. The cursoeor must he in the correct position hefore
typing “I". Earlier, %the cursor was moved to the "W" in "TOO WISE";
now, on typing “IY, an insertion will be made Lbefore the “"W". The rest
ot the line fvrom the point of insertion will be moved to the right hand
side of the screen. In the event that the insertion is lengthy., that

Page 33

part of the line will be moved down %t¢ allow reom gn the screen. After
typing "I" the following prompt line should appear on the screen:

>Insert: text {<hs> a char,<dell 3 line} [<eaty> accepte, <escr excanes]

If that prompt line did not appear at the top of the screen it
is NOT insert mode and a wrong ey may have been typed.

If the cursor is at the "W", and on typing "I" the insert
prompt line appeared, "EMART" may be imserted by typing those Ffiwve
letters. They will appear on the screan as they are typed.

There Temains one more
of the prompt line indicates th
insertion, while pushing the Ia&s
text remaing as it was before ty

Figure 2 4 (Screen afbter tyoing "SMART™)

- St 2t it S Soohs L St il m St o R Y L S oD s S i S e i A . 1 il M e S S ST i TR 15 35 s 14m BSe d wine d Te O 4 ne 1 e R1D fa7i ip vE ARA MAN. oy W e e P Gt T SR e SO

BEGIN WRITE('TOO SMART WIBE ‘3;

10 24 b b e M o s Gy 98948 Nt Coi i St SR 8 X ¥ ST b T MR e o o Sh S [Bk AP < ATHR ¢ Sha (9 S |1 s mie W Biew) TvAre ek (o S S Csm AL 1 oion e S TR0 KT s SN 1ot AR N et Sdu JArme armep WA s S o TS ey ot

Figure 2.9 (Screen after <etxl)

2 e SN A o A L b o e T S W S i et S NS a7 s A H08 S i et SO e e s e s L (s e ML WA ey A Bann i e Ak T Sy

BEGIN
WRITE(/TOD SMARTWISE ‘)

s e o pre orn wen s o e s o oo o wen o o0 e SO S Saole e B W ST ks N 4D W L S A M A 1iin W SO s AR ML Gy e ERR ks A T3S S P P PR J3ale ACRE S4RMS AN 7S SO e (RORe 41030 s St S0 rmr

Nita ok XIS iiim i Catmg CAfe e Sabe Pt L A LR e Seute ot Seete SOCH e R St S Dlase Sebbe S Seate

Figure 2. & (Screen after Jesck?

BEGIN
WRITE('TOD WIBE “);
It is iegal to insevyt 3 saviisge return This is done by
typing <return® while in the IMNSERT mede and causes the Editor tQ start

e
a naw line.
USING DELETE

The LELETE mode works iike the INSERT mode. Having inserted
the ‘SMART’ inte the STRING1 program and having sushed <etxl>, WISES
must be deletsd. Move the cursor to the first of the items to delete
and type D" Yo put the Editov into LDLLETE mode. The following prompt
line should appear:

- -

Fhelete: { r Meoving commandsh {dstx> to delete, <Jesc> to abortl

Each time <spaceX> is typed 2
example typing 4 spaces will cause "W
choice must be made as in insert, T
iz made or type “esc> and the propose
part of the text.

letter disappears. In this

T3E" to disappear. Now the same
ype Yatx> and the proposed deletion
*d delgticn resppears and remains

Ry

Pane 34

It is legal to delete a carriage rveturn. At the end of the -
line, enter DELETE mode:, and <space> until the cursor moves to the
beginning of the next line.

These are sufficient commands to edit any file desired. The

next section describes many more commands in the Editor which make
editing easier.

LEAVING THE EDITOR AND UPDATING THE WORAFILE

When all the changes and additions have been made, exit the
Editor and "save"” a copy of the modified program. This is done by
typing "3" which will ceavse the prompting display shewn in Fig. 2.7.

Figure 2.7

O 0000 1 e e S Soa S A7 GO SO0 S A MW S 200 AP ST SO D LIS, M GRS SUNVR Separ BOBRS S0 a0 BN Mo SR TN aam Sanee

Ulpdate the workfile and leave

E{xit without updating

R{eturn %to the editor without updating
Wirite to a file name and return

oo st sae o e

P - a4t Y A0 o PO O s Y e At et BN e . Kot s v - s

The most elementary way to save a copy of the modified file on
disk is to tygpe "U" for Ulpdzte which causes the workfile to be saved
as BYSTEM. WRK. TEXT. #ith the workfile thus saved, it is possible to
use the R{un command, provided of course the file is a program. It is
also possible to use the S(ave option in the Filer tg cave the medified
fiie in the library before using the Editor to modify or create ancther
file.

Miscellaneous commands, in the next section, explains in
greater detail the options available 3t >Quit.

Page 39

33 3 B 3 3B 3030 I3 I U B0 0 R IR R H R I AW I I I AR

DETATLED DESCRIPTION OF COMMANDS # # Section 1.3.3
3 AE A H I H A I H ARSI AR R H R TR HR R RR

COMMAND AND MODE

At the Edit lave! bthere sre many ppiions. zsome of which are
efarred to as commands anid some as modes desending wpon the appearance
of the prompt . I+ &n option executes a task and returns control teo the
Edit lewvel, that option is called a cammand. I+f an option issuyes a
prompt and gives the user ancother level of options, it is called a
mode. On entering or returning te the Edit lewel, the Editor redisplays
the "Edit:" prompt line.

REPEAT -FACTORS

Many of the commande aliow rTepeat—{factors., A repeat-factar is
applied toc a command bty %typing & number immediately before issuing the
command which is then regested for the number of Yimes indicatsd by the
repeat-factor. For example: typing "2 <down-arrow>” will cause the
CTdpwn-arrow> commeand to ke erecuted Ytwice. maving the cursor down two
lines Commands which sllow & Tepest-facktor assume the repeat—-facter
te be 1 if no number is %Yyped hefore the commsnd. & /' typed befare
the command impolies an infinite number.

THE CURELR

It should be pointed out that the cursor is never really "at” a

character. The cursor is only allowed to bhe “hRetween” characters. For
instance, 1f %The gurssar lepks ss though it 13 3% the letter "R™, it is

actusally between the letter "R" and the jetier in Front of 1T, This is
noticed mogt clearly con the inecert command

26 it inserts in front of
q

the chavrackter bthe cursor was "at". v the soveen the cursor is placed

at" "R" to make it eacier &tp display

i

DIRECTION

Certain commands a
forward, then Shey oporzte fuoy
d

2 3 X ThRe
standard directinon of roading gilist
direction. When direction affects the Yy
noted.
MOVING COMMANIS
Cdown—arrowd Moves down
LUp-arrow> Maves up
<right—-arrow? Moves tight
{left—arrows Maves left
v ogr Yy " oar et Changes the direction to bachward
#xYoop Y.M pp V4" Changes the direction to forward
<epacer Moves dirvection
<hack—-spacel Moves left
“hab Moves diresction to %the next positicn which is a multiple
of B spaces from the left side of the screen
<returnl Moves to the beginning of the next line

Page 34

108 aveow: “~ i [P AEF K i wae w woe e s —ee - .
indicates direction; “<" for backward and "“>" for forward. On entering
the Editor, the direction is forward. The direction can be changed
by tuping the appropriaste command whenever the “"Edit: " prompt line is
presant. The period and the comma can also be used hecause on many
standard keyboards, *. " is lower—case for “»" and ", " is the lower-—
case far "IV

Rapeat—~factors can be used with any of the ahove commands.

For user convenience, the Editor maintains the coluan position
of the cursor when using <up-arrowr and <down-arrow? When the cursor
is putside the text, the Editor treats the cursor as though it were
immediately after the last charvacter. or hefore the firvst, in the line.

JUMe
JUMP mode is Teached by byping “"JY for Jimp while at the Edit
level. On entering JUMP mode the following prompt line appears:

PIUMP: Bleginning Efnd M(arker <esch

the beginning {or the

grigd of and the first (or last)
page of to display the prompt
line

SJump Yo what marker?
The name of Lthe marker must be entered fcollowed by a <return,
The Editor will then move the cursor to the place in the file with that
name, If the marker is not irn the file the Editor will digplay:

ERROR: Marker not therve. Flepase press <space barl to continuve.

fhe insérucltions for selling & wavker are detailed in SET under
Micsrslilanpous commands

PAGE

FAGE cemmand 15 exxcuted by typing "PY while at the Edit
level, Depending on the dircection of the arvrow at the beginning of the
prompt lirne, PAGE command movwes the curser one whole screenful up or
deoun, The cursar &l i% moves to the stzart of the line. A Crepeat-—
factar®> may be us re this command for moving several pages.
EQLIALS

TAVUALE commend iz ow w By typing =Y while 2t the Edit
level. It causes the cursor to gump Lo the beginning of the last
section of tert which was inssevted, found or replaced from anywhere in
the fils Equals works frgm anywhere in the file and is not direction
sensitive. An INSERT. FIND or REPLALE cauvse the absolute position of
the beginning of the inzeviion. find or veplacement to be saved.
Tuping “=" causes the cursor to jump to that position. If a copy or a

deletion has been made betwesen the beginning of the file and that
absplute position, the curser will mnot jump to the start of the
insertion as that absoclute position will no longer be correct.

Page 37

TEXT CHANGINMG COMMANDS
INGERT

INSERT mode is reached by typing "I" far “"I(nsrt" while at the
Edit level. On entering INSERT mode the following prompt line appears:

>ingsert: Text {<bs> a char.<ddel> a line) ([Letx> accepts. <esc> escapes]

One of the coptions here is to Yype in text followed by <esc> or
“ety> 1% is possible %o delete o charsctaer without leaving the INSERT
mode by back—spacing over ift. To delete the entire line just typed,
type . The INEERT prompt ling indicates these by "<hs> a char®
and " a line”.

Typing <return> INSERT starts a new line at the level of
indentation specified by the options turned on in Environment section
of the SET mode. See the section on the SET mode in order to set these
options.

AUTO~INDENT

I¢ Auyto—indent is True., a Uraeturn® causes the cursor to start
the next line with an indentation equal to the indentation of the line
above. i¥ Auto—~indent is False, a <return> returns the cursor to the
firet position in the nevt line. Note: if Filling is True, the first
position is the Left-margin.

FILLING

If Filiing is True. the Editonr forces all inzertiocns to be
between the vight and left mavrgins by asubtomakically inserting
<return’s between "words" whenever the vight margin wevld have been
excerded and by indenting to the Left-margin whenever a new line is
started. The Editor considers anything betwsen two spaces or between a
space and a hyphen to be a word,

I+ both Auto—indent and Filling are True. Auto—indent controls
the Left-margin while Filling controls the Right-margin. The level of
indentation may be changed by using the <{space> and <hackspace> keys
immediately after a <return’. Important: This can only be done
immediately after a <return.

Example 1: With Auto—-indent true, the following sequence
creates the indentation shown in Figure 3. 1.

TONE™, {return, Cespaced, {spaced, "TWA", :
Iraturn, "THREE", <return®, <hackspacel, "FQUR"

Figure 3.1

o vawr e oawr — v o -— e ot -

OGNE Origirnal indentation

TO Indentation changed by <spaceX <space>

THREE Lretyrn causes auto—indentation to level of line above
FOUR “backspacer changes indentatian from level of line above

R0 s o SO R s S S oot b W 20V s & e P, o B o e T 835 s e S 3000 e O el Mo s W S0 WS e Bt Soede

T e g e ~I{n
rEnE 213

Example 2: With Filling True (and Auto-indent False) the
following sequence creates the indentation shown in Figure 3. 2.

“ONCE UPON A TIME THERE- WERE".

(Very narrow margins have been used for simplicity.)

Figure 3.2

ONCE UPON A Auto-returned when next word would exceed margin
TIME THERE- Auto-returned at hyphen

WERE

-~

Level of left margin

e e Gt oD o S st S80S e 42408 Ao S ey s e S0V Ga L0 W S S aine Sooen P et it S B oo ey AU S S B e b i Yoo

Filling also cavses the Editor to adjust the margins on the
portion of the paragraph following the insertion. Any line beginning
with the Command character (see S5ET mode) is not touched when filling
does this adjustment and that line is considered to terminate the
paragraph.

The direction does not affect the INSERT mode, but is indicated
by the direction of the arrow on the prompt line.

If an insertion is made and accepted, that insertion is
available for use in the COPY mode. However, if <esc> is used, there
is no string available for COPY.

DELETE

DELETE mode is reached by typing "D" for "D(lete” while at the
Edit level. On entering DELETE mode the following prompt line appears:

>Delete: < 2 “Moving commandsl {<Cetx> to delete, ,<esc> to abort}

In order to delete, the cursor must be in position at the first
character to be deleted. On typing "D" and entering DELETE, the
Editor remembers where the cursor is. That position is called the
anchor. As the cursor is moved from the anchor position uwsing the
normal moving commands. text in its path will disappear. To accept
the deletion, type <etx> to escape, type Tesc>.

When <etx> is tuyped, the Editor saves everything which was
deleted for COPY to use; but if “esc> is typed, the copy buffer is
empty.

Example:

In Figure 3. 3:

1} Move the cursor to the "E" in EMD.

2) Type”< " (This changes the direction to backward)

3) Type "D" to enter DELETE mode.

4) Type <ret> <retl. After the first return the cursor moves to
before the "W" in WRITELN and "WRITELN(‘TO BE. ‘); "disappears. After
the second return the cursor is before the "W" in WRITE and that
line has disappeared.

5) Now press <etx> The program after deletion appears as is shown in
Figure 3. 4.

Page 39

The two deleted lines have been stored in the copy buffer and
the cursor has returned to the anchor position. Now use the COPY
rovtine to copy the two deleted lines at any place to which the cursor

is moved.

Figure 3.3

- — e omn e

PROCGRAM STRINGZ;
BEGIN
WRITE('TOO WISE ’);
WRITELN(‘TO BE.)
END.

Figure 3. 4

PROGRAM STRINGZ:
BEGIN
END.

- o oo ——— - v o o e s St o oany e — — -t o

The <{repeat—factor> may also he used to delete several lines as
once by prefacing a <return> or any other of the moving commands with a
<repeat-factor> while in delete mode.

ZAP

The ZAP command is executed by typing "Z" for Z(ap while at the
Edit level. This tommand deletes all text between the start of what
was previously found, replaced or inserted and the current poasition of
the cursor. This command is designed to be used immediately after one
of the FIND, REPLACE or INSERT commands. If more than 80 characters
are being zapped the editor will ask for verification.

Repeat—factars and Zap: I+ a FIND or a REPLACE is made with a
repeat factor and then ZAP, only the last find or replacement will be
zapped. All others will be left as found or replaced.

Whatever was deleted by using the ZAP command is available for
vse with the COPY command.

copPy

The COPY command is executed by typing “C" for C(py while at
the Edit level.

On entering the Copy mode the following prompt line is
displayed:

>COPY: B(uffer F(ile <esc>

To copy text from another file, type "F" and ancther prompt
will appear:

Page 40

>COPY: FROM WHAT FILECMARKER, MARKERI1?

Any file may now be specified, . text is assumed. In order to copy part
of a file, two markers can be set to bracket the desired text. 1+

L ,marker] or [marker:. 1 is used, the file will be copied from the

start to the marker or from the marker to the end. On completion of

the copy caoammand (from file), the cursor returns to the beginning of the
text just copied from the file. Use of the copy command does not

change the contents of the file being copied from.

To copy the text in the copy buffer, type"”B" and the Editor
immediately copies the contents of the copy buffer into the file at the

lacation of the cursar when "C" was typed. On the completion of the
copy command the cursor returns to immediately before the text which
was copied. Use of the copy command does not change the cantents of

the copy buffer.
The copy buffer is affected by the following commands:

1}DELETE: On accepting a deletion, the buffer is loaded with
the deletion; on escaping from a deletion the buffer is loaded with
what would have been deleted.

2)YINSERT: On accepting an insertion the buffer is loaded with
the insertioni an escaping from an insertion the copy buffer is empty.

3)ZAP: I# the ZAP command is used the buffer is loaded with
the deletian.

The copy buffer is of limited size. Whenever the deletion is greater
than the buffer available, the Editor will issue a warning upon typing
Letx> with the line:

There is no room %o copy the deletien. Do you wish to delete anyway? (y/n)

EXCHANGE

EXCHANGE maode is reached by typing “"X“ while at the Edit level.
On entering EXCHANGE mode the following prompt line appears:

>eXchange: TEXT {<bs>» a char} [<esc> escapes; <etx> accepts]

EXCHANGE mode treplaces one character in the file for each
character of text typed. For example in the file in Figure 3.5 with
the cursor at the "W" in WISE, typing "X" ., followed by typing "SM"
will replace the "W" with the "S" and then the "I" with the "M" leaving
the line as shown in Figure 3.6 with the cursor before the second "S".

Figure 3. 3 Figure 3. 6

WRITE(‘TOO WISE “); WRITE(‘TOO SMSE)i

- o s St T o o S oD D T Gt SO0 U S PSS S o

. o o . e

FPage 41

Typing a <{back—-space> (<bs>) will back the cursor one character
and cause the original character in that position to reappear. As with
most other commands, when in EXCHANGE mode. <escX leaves the mode
without making any of the changes indicated since entering the mode,
~while Cetx> makes the changes part of the file.

Note: Exchange dnes not allow typing past the end of the line
or typing in a carriage return,

FIND AND REPILLACE

In both modes the use o0f a JIrepeat—factor> is valid and must be
typed before typing “F" or "R". -~ The {repeat-factor> appears in
brackets on the prompt line.

Strings: Both modes operate on delimited strings. The Editar
has two string storage variables. Ones; called <targ> by the prompt
lines, is the target string and is referred to by both commands while
the other, called <sub> by the prompt line. is the suhstitute and is
used only by REPLACE. The fallewing rules apply te both these strings.

Delimiters:. Both delimiters of the string wilil be the same.
For example:. Wher in REFPLACE mcde tha following cemmand is valid and
will replace the first occurrence of the character "[" with the
character "1%: "<LO)1)Y. Here "<" and ")" are the delimiters.

The Editeor considers any character which is nat a
letter or a number to be a delimiter. <space> is a particularly common
delimiter.

Direction: Both modes operate from the position of the cursor
tc scan the text in the direction indicted by the arrow on the prompt
line. The target pattern can only be found if it appears in that

section of the text. See the section on direction on order te change
the arrouw

l.iteral and Token mode: In Literal mode, the Editor will look
for any occurrences of the target string. If you are in Token mode the
Editor will look for isolated occurrences of the target string. The
Editor considers a string isolated it it is surraunded by any
combination of delimiters. For example, in the sentence "Put the book
in the bookcase. ", using the target strirg "bock", literal mode will
find two occurrences of "book" while token mode will find only one, the
word "book" isolated by the delimiters <spacel <spacel.

To use token mode, type "T" after the prompt line and before
the target string:; toc use literal mode, type "L". The default value
found in the Environment may be over—ridden by typing "L" or “T" as
appropriate. Token mode ignores spaces within strings so that both
" O,)" and Y(/: ‘)" are considered to be the same string.

Paqe 42

The Same option: In both commands typing "S" indicates to the
Editor that it is to use the same string as used previously. For
example, typing "RS/<any-string>/" causes the REPLACE mode to use the
previous target string, while typing “R/<any-string>/8" causes the
previous substitute string to be used.

FIND

FIND mode is reached by typing "F" while at the Edit level. On
entering Find mode one of the prompt lines in Figure 3.7 appears.

Figure 3.7

>Findl11: L{it <{targetl =2

>Findl1]: T(ok <targetl =2

The FIND mode finds the n—th occurrence of the <{targetd> string
starting with the current position and moving in the direction shown by
the arrow at the beginning of the prompt line. The number "n" is the
{repeat-factor> and is shown on the prompt line in the brackets "C1".

Example 1: In the STRING1 program with the cursor at the first
“P" in PROGRAM STRING1 type "F*". When the prompt appears type
"WRITE ", The single quote marks MUST be typed. The prompt line
should now appear as:

>Findl1l: L)Yit <target> =>‘WRITE’

After typing the last quote mark the cursor jumps to immediately after
the “"E" in the first WRITE.

Example 2: In the STRING1 program with the cursor at the "E" of
“END. " type: """ 3" "F", This will find the 3rd ("3") pattern in the
reverse (Y<") direction. When the prempt line appears type /WRITELN/.
The prompt lime should read:
<FindL3]3: L)it <target> =>/WRITELN/

The cursor will move to immediately after the "N" in WRITELN.

Figure 3.8

PROGRAM STRING1;
BEGIN
WRITE(/TOO WISE ‘);
WRITE('YOU ARE ‘)i
WRITELN(', *); (#*CURSOR FINISHES IN THIS LINE*)
WRITELNC('TOO WISE)i
WRITELN(’YOU BE. *)

END. (#CURSOR STARTS IN THIS LINE#*)

- oo . o - . -

Example 3: On the first find we type "F/WRITE/". This locates
the first “"WRITE". Now typing "FS" will make the prompt line flash:

»Findlf13: L)it <target> =28

and the cursor will appear at the second WRITE.

REPLACE

REPLACE mode is reached by typing "R" while at the Edit level.
On entering REPLACE mode one of the two prompt lines in Figure 3.9
appears. In this example, a <repeat—-factor> of four is assumed.

Figure 3. %

-

>Replaceld4]: L{it V(fy <targ> <sub> =>

>Replacel4]: T(ok V(fy <targ> {sub> =>

- P -

Example 1: Type “"RL/QX//YZ/" which make the prompt line appear as:
>Replacelll: L)it V)fy <targ> <sub> =>L/QX//YZ/

This command will change: "VAR SIZEGX: INTEGER; * to "VAR
SIZEYZ: INTEGER: “. Literal mode is necessary because the string GX is
not a token but is part of the token SIZEGX. ,

Example 2: In Token mode REPLACE ignores spaces between tokens
when looking for patterns to replace. For example, using the lines on
the left hand side of Figure 3. 10 and typing: “2RT/(’, 7)/.LN. " The
prompt line should appear as:

>Replace: L)it VIfy <targ> <{sub> =>/(‘ ")/.LN.

Immediately after the last periaod was typed thase two lines
wauld change to those on the right hand side.

wxquv# 301G

WRITE(’: ") WRITELN;
WRITE(7,) WRITELN;

S SRS s o et S (755 Basie P M $To0 CHBR Ties St i i 904N H0S08 T Tl St Ao el SRR R Mo LA il e WSS ey e M e Sheke oA Sobys e e Seuee Srene A S04te

Vify: The verify cocption permits examination of the <targ>
string (up to the limit set by the repeat factor) and deciding if
it is te be replaced. The following nrompt line appears whenever
REPLACE made has found the <Ctarg> pattern in the file and verification
has besn regussted:

- -~

fleplace: Tescr abarts, ‘R replaces, 7 ¢ doesn’t

Typing arn "R" &t this point will cause a replacement while
tuyping a spacte will cauvse the REPLACE mode to search for the next
occyrrence provided the Crepeat—factorl has nost heen reached. The
Lrepeat-factar> counts the numher of txmes an sccurrence is found, not
the nrumber of times you actuslly type “R*. Use */" as a <repeat-factord
in ordey to replace every ocourrence of the target string. Once the
Editier can no longer find the tsrget string. the prompt:

ERE

Patisrn nod in the File Plesss gress Japasebard te continue.

ADJUST mode 15 reached by typing A" while at the Edit level of
Command. On entering ALJUST mode the following prompt line appears:

>Ad just: L{just Rijust Clenter Lieft,right. up,down—arrows> {{etx> to leavel}

The ADJUSY mode is designed to make it esasy te adjust the
ingegntation, O anyg ling the <right-arrow> and <left—arrcw? commands
move tThe whole line. Each time a wright—arrow> is typed the whole line
moves one space to The vight Fach Jleft-arrowr moves it one teo the
left. Whern the line 1s adjusted to the desired indentation press <Tetzxl.
After pressing “etxl, <<escr cannot be used.

In grder o adjust & whols seouancs of lines, adjust oneg line,

then vgse Cup—avrrow’ (Jdown—arvrowr) commands and the line above (below!
will be automaticelly adjyjusted by the same amount,

Ragpeat-factoers ave valid when ujed before any of the Larrowr
L]

commands while in ADJIUST mode.

ADJUST moade can also cernter or justify text. Typing "L" while
in ADJUST mode will cause the line to be left-justified to the margin
set in the Environment. Similerly typing "R” right—justifies to the set
margin and typing "C" will cause the line toc be centered between the
set margins. Tgp; rg Cup-—arrowr {c¢vr Jdown-arrow:>? will cause the line

abaove (bﬂlam to be adiusted to ths same specificaticn (lefi-justified.
right—~justitied or centered) a5 the previocusly adiusted line.

MARGIN

MARGIN command is executed by byping MY while at the it
level. MARGIN 15 an Envirvonment dependent command: that is. 1b mgg only
be exzcuted when Filling is set to True and Auto—indent is set to
False. The prompt for the MARGIN command does nat appesr on the
"EEdiIE: " line.

:"s
w.\.

There are three parameters uvsed by the command: Right-margin,
Left~margin and Fartsgraph-mavrgin. MARGIN deals with ong paragraph and
realigns the text o compress 1b o&s muih &% poussible without wiolating
the above Lthree margins See the Environment ppiion under the SBET mode
for hnow to set the margin values

Example:. The paragraph in Faguras 4 13 has been MARGIMed with
the perameters on the left wh*la the same pavagraph in Figure 3. 14 has
been MARGINed with the parameiers on the right

Lefb-~margin o nurgin 10

Rightmhgngn 7z Wigh+~marq1n 70

Bgpragiragh—-margia 3 Paragraeph—-margin O
Figure 313

This gquarter. thp eguipmant is diffprent, the rourse materials
are substantially differant. th nuTenr organization ds different
from previous guartev:. You if you depend upon a Fviend
whao took the 04 in the course.

This quarter, the eguipment is different, the tourse materials are
substantially different. and the courase organization is
different from previous quarters. You will be misled if
you depend upon a friend wheo took the course previously to
arient wou tn the course

Page 44

paragraph is defined to be somgthing occurring between two
blank lines. To MARGIN a parvagraph move the cursor to anywhere in that
paragraph and type "M". Wher doing an exceptiaonally long paragraph it
may take several sceconds before the routine is ready to redisplay the
sCreen.

COMManD CHARACTERS

Portions of the text can be protected from being MARGINed by
the use of the Command character. If the Command character appears as
the first non-blank character in a line then that line is protected
from the MOARGIN command, The MARGIN command treats a line beginning
with the command character as though it were a blank line, that is, it
will consider that ling tg terminate (begin) the paragraph.

Warning: Do net use the MARGIN command when in a line beginning with
the Command character.

MISCELLANEQUS COMMANDER

SET

BET mode is entered by typing "8" while at the Edit level.
The prompt fFor the SET zommand doges not appear on the "FEdit:" prompt
line due to space limitations. On entering the SET mode the following

prompt line appears:
>8et: Miarvrker E{nvironment <eenl
Miarker:

When editing., i1t is particularly convenient to be able to jump
directly to certain plsces in a long file by using markers set in the
desired places. Once set, it is possible to Jjump to these markers
using the Mlarker option in the JUMP mode. When in the SET mode, type
"M® for M{arker and the fgliowing prompit line appears:

Name of marker?

The neme may be uwp 2o 8 chavarcrters followesd by a <returnd.
Marker names sre vase sensitive so that lower and upper cases of the
same letter are cvonsidered toe be different charscters, The marker will
be entersed at the position of the cuvrser in the text: therefore, first
move the cursor to the desired position before setiing the marker. (If
the marker mlready existed, it will be reset.)

Only 10 markers are allowsd In a Ffile at any one time. If on typing
"SMY. the prompt:

Page 47

Figure 3. 15

Marker avflw.

Which one to replarce,
0) namel

1) name2

Pinameli(

appears, it is necessary to eliminate ong in arder to replace it
Chonse a number O thru ?. type that numher and that space will now be
availahle for use in setting the desired marker.

I & copy or deletion is mads bestwueen the bhaginning of the file
and the position of the marker, the marker will net subseguently return
to the desired place as the absolute pgsitisan has changed.

E(nvironment:

The Editor enables the user to uset the envirenment which the

user dotermings bo be mont genvenient Fur the edibing being done. When
in the ZET mode type "EY for Elnvircnment, the coreen display is
replaced with the following prompt shown in Figure 3. 16

Figure 3. 1&

o v daina < e dh Ao e 34800t vt P08 Lr17R S oL 150w s TAn e o T+ ¥ L1 C21CH S TS 1 el AR e Lokt 3708 BB M SV £ K e v 2 NS RRE AR e S e S P Lot N i bk Sk e M A SRC et O L1008 G4pYe e . G438 e B s MBS T

Environment, {opticonsl Jebxd or <epr ta lesve

Aluto indent
Fiilling

L{eft margin
Riighi margin

True
Talam
(¢]

77

Fiarag margin 5
Ciommand ch -~
Tioken def Truse
7TA3E bhytes Lasd, L2020 avallable
Patterns:
“target>= ‘xyz’, <substi= ‘abc’

e e HAMD s W Srim drum T MY AT VO B B v Lot b th M ke (e K e Tl bl SRS M (S0 O P M SO P Ty I v

Paage 48

m o g s v 8 S Aain ot e e anh Srmad Y (s 4a8 et ol R LS £ S Ay TosAe e Mk i 100D eare S TEin B AN b

By typing the appropriate letter, any or all of the options may
be changed. The options shown are the default options for the Editor
on tha Terak 85104 Implsmentations for other machines may have
different defaults.

The Options:
Aluto indent:

Auto-indent affects only the INSERT mnde of the Editor. Auto-—
indent {s set ¢o Trus (turned ond by typing “AT" and to False (turned
off) by typing “AF".

F(illing:

Filling affects the INSERT mode and allows the MARGIN command
to funstion, Filling is set te True {turmad on) by typing “"FT" and to
False by typing "FF",

L(eft margin
R{ight margin
Plara margin:

When Filling 1is True the margins set in the Environment are the
margins which affaect the INSERT mode and tha MARGIN commangd. They also
atfect the Center and lustifying commands in the ADJUST mode. To set
the Left-margin., type "L followesd hy 3 prsitive integer and a dCspacel.
The pocitive integer typed should replace the o0ld value for the L(aft
margin in the prompt shown in Figure 3. 146 A1l pesitive integers with
less than four digits are valid margin values

Ci{ommand ch:

The Command character affects the PMARGIN command and the
Filling option in the INSERT mode as destribed in those sections.
Change Command charvracters by typing "C” followed by any character. For
example typing "C”. "#" will change ths Lommand cheracter to "#", This
change will be rTeflected in the prompt.

T(oken deéf:
This option affects FIND and REFPLACE. Token is set to True by

typing "TT" and to False by typing “TF™. I# Token is True, Token is
the defavlt and if Token ig False, Literasl is the default.

Page 49

VERIFY

The VERIFY command is executed by typing "V while at the
Edit level. The status of the Editor is verifised by displaying the
updated screen. The Editor attempts to adjust the window so that the
curser is at the center nf the scdreen.

QUIT

QUIT mode is reached by typing "(" while at the Edit level. Un
entering QUIT made the screen display is replaced by the following
praompt: :

Figure 3. 17
>Guil:
Uipdate the workfile and leave
E{xit without updating
R{sturn to the editor without updating
Wirite to a #ile name and return

s s s (L B Tt sdatt oo S0 iy S St v wtoes reme. e oo B T S SOy e,

One of the four options must be selected by typing U, E,R or W
Wipdate:

Tiiis csuses the Editor to write the file just modified
into the workfile and store it asz SYSTEM WRK. TEXT. It is available
for either the Compile or Run options er for the Save option in the
Filer Tha Filer treats SYSTEM WRK TEXYT as texd file

E(xit:

This causes the Editor to leave withonot making arn: charges §in
SYSTEM WRK TEXT. This means that any modifications made cince entering
the Editor ars not recorded in the permanent workfile

R{eturn:

fhie opticn returns %o the Editor without updsting. The cursor
is returned to the exact place in the file 11 ovccupied when "G" was
tuped. Usually this command ig used after unintentionally ftuping "G,

Wirite:
This option puts up a further prompt:

Figure 3. 18
>Quit:
Name of output file (<crd tn returny -3

T e e e e B e e < €30 A e e Vo TR vk 588 T ((an® hiokt W Lo i s e M AR s Hoam T 43 At Tre v K08 SHRS | o TR ase Smn S ey o St (s et o e I S A e e A0 v e e GO Lryes i o B30 Vo0 S b e R o

Page 50

The modified file may now be written to any file name. If it
iz written to the name of an existing file, the modified file will
replace the old file. This command can be aborted by typing <return>
instesad of & file name and veturn will be to the Editor. After the
file has been written to disk., the Editor will prompt with the
following.

Figure 3 19

B s T T L T T psmppsw— - s s o s

>Quit

Writing.

Your file is 1978 bytes 1long.

Do ya at to E{t #vom or Rieturn to the Editor?

o S1o 2 e s LS e T T (AR e L i SR v S TR sk QM1 e 3 e Yo 3304 W Sahy +1akt (o7 (aePL VI S S Lo 0P oS DTN Btan bt A A Wl Joik S i TR ke KA LAl SOSMS A vl vt J0sle Sl A SRS ot et Samh vombe S . O e SOAIT Skt B

Typing "E" exits #rom the Editor and returns to the Command
leval while typing "R” returns the cursor to the exact position in the
file as when "Q" was typed.

W A IR R R E R RS R E R RN SRR
REFERENCE SECTION # ¥ Section 1.3 4
S22 S L I N I 2 L R T R 2T

Cdown—arraowsr> moves drepeat-factor> lines down

CUp-arrowi " * lines up
<right-arrowd " “ spaces vight
Lleft—arrowl " " spaces lsft
{spaceﬁ f " spaces in direction
Lhack~sparelr " " spares laft
Ltab> muves <regpest-~factor’ tab positions in direction
Lreturni moves to the beginning of line <repeat—factord lines in directic
BalpomywoeLw change ditection to baclwsrd
R channe direction to forward

moves to the beginning of what was just found/replaced/inserted,
é:«Cha?’a a4

Aldgust: Adjusts the indentation of tha line that the cursor is on. Use
the arrow keys to move. Moving up (doun) adjust line above
(below) by same amount of adjustment on the line you wsre on.
Repeat—factors are valid.

Clupy: Copies what wes last inserted/deleted/zapped into the file at
the position af the cursor.

Dielete: Treats the starting position of the cursor as the anchor. Use

any moving commands to move the cursaor, ety delates
sverything between the cuvser and the anchor.

Page 51

F(ind: Cperates in L)iteral or Tioken mode. Finds the <targr string.
Reprat-Ffactors are valid, direction is applied. "8" = use same
string as hefnre

Itngert: Inserts text Can use <hackspacer and <dell to regect psrt of
your insertion,

Jlump: Jumps to the heginning., end or areviously set marker.

M(argin. Adjusts anything betwesn two blank lines to the margins which
have been gset., Command charactesrs protect text from being
margined. Invalidatez the ropy buffar.

P(age: Muoves the curseor one page in direction. Rapeat-—-factors are
valid: dirvection is applied.

Q{uit: Leaves the editor. You may Wpdate. Elxit, Wirite. or Rlisaturn.

R{eplarce: Operates in L{iteral or Tloken mode. Replaces the <targ>
string uith the <subs® string. WVierify cption asks you to
verify before it replaces. "S8" option uses the Same siring as
before. Repeat-factors replace the target several times.
Direction is valid.

S(et: Sets M(arkers by assigning a string name to them Sets
E(nvironment for A{uto-indent, F(illing, margins. T{oken. and
Clommand characters.

Vigrify: Redisplays the scresn with Lha cuvsor Centered.

eXi{change: Exchanges the current text for the text typed while in this

1

mode. Each line pust be done sepsrately. <hack-spacer causes the
original character o rTe-—appeasr.

ZYan: Treats the starting position of the last thing
fFraund/roapglaced/innerted as an anchor and delet
between the anchor and the current cursor paosi

as avaerything
ttisn,

<repeat-factor> is any number typed hefore a command Typing a / is the
infinite nupkaer

Page 52

PRI A BN R BRI I SR 626 2
L2 EDITOR * % Section 1.3. 5 =
AP M AR R IR AR R B RA RS

Version 1.5 Septembher 1978

The L2 Editor is being released on an experimental basis. Not
all options are yet Ffully implemented so this section may not be
complete. The main advantage of this version is that it is able to
handiz files larger than can fit into the main memory buffer at one
time;, the upper limit being determined by the space available on disk.
It also avtomatically mekes a backup copy of the file being edited. In
many respects this Editor works exactly as this release and displays
the same prompt lines. Where the versions are the same, the user is
directad te rszad the mein Editar sechion

Entering the Workfils end Ostting & Pregram
if, an typing E, thare is not encugh room on the disk;
ERROR: Not enough room Ffar backup!

will be dizplaysd. This drsk must then be Kirunched in order ta
provide Tooam if that is possibla, a filas removed or another disk must
e vsed.

The same prompt line is displayed; see section 1.3 2.

th & name. I+ » file is chosen, a basckup copy will be
made bhafore the file 15 availlable for editing

S e s ok LG T CheR ol TP e AR O oS A T S T (B T M P e SR deeat Lo S i AT 110 TR, Lbaen Sogmn R0 e Mo TV hppe v WS (i o O G WY e cpead S ROAL e Loy A e o Y QABSS 3 YWY (PR ST YT MRS UABe MOV MRt P WP LR T S4eTe S Sentt auem dhesn

Copying to filezname back.
“EdLE

kv &

Reading. .

e S e L oo 4008 v RO T on TR e o TV 01 1 S 45 b R e ST T B S M -0 (o RIS S ¥ BRI L0 B O (A 31! TS b A RN T MR VTS Lo SO NS SO SR 6POR AL M AMiMS $0008 MMM SRS SA400 a0 Bt e D U Sete VR 4S040 DUNED GRS Gass B et sade

&

A¥ter this szerian of grompt lines, the firvrst part of the text
will appgear an the scraen

Eh & return, A new file 1s created in the same manner as

=) Wie
in gafiion 1.2 R
Thae paragrashs on ooving Yhs cursor. Insert and Delete in

section 1.3 2. should be read and are ap J;Labie here.
Leaving the Editor and Updating the workfile

When all changes and additions have been made: the Editor is
exited by typing Q" and the following prompt is displayed.

Uipdate the workfile and leave
E{zit (but workfile not updated)
Rieturn to the Editor without do1ﬂg angthzﬂg

Page 353

Notice that the Write aption is no longer available. One of
these three options must be chosen. Sege also PMiscellaneous commands
in section 1.3 3

{pdate:

This works in the same manner, however additional information
is supplied indicating the name of file updated and the length.

When a new $ile is created, the following appears:

Figure 5.3

Writing. #
The workfile, #SYSTEM. WRK. TEXY, is n blocks long.

T umin 32008 S0k i A2 SET. (oA W) TOETS B SH0CR X R Y 4Tl S a8 Sey e Saedn SeTRY AR PeyRe . M0 XS 1A W S0uGH COUS Coamm SRR SO NS LTS LB [3td e SV (CRES PHIT A0 LM A et AL RIS OO LAt e S Bt S SR D PRAD SO o0 MO VRS . LECT SR e SLI A A CHED Gme B Lt

ey o R it s T P A D WIS U S AT O (OO BV P GO B S . S o008 e 0 s

When an existing fils has been used, this exampls shows the extra
information now given:

Flguwe 5 4

Nr1t1ng,%

The work#file, #X:Fi TEXYT, is 44 blocks long.
The backup file is X:Fi BaACK

o 454 doane 3505 Shiy Ve ey g TR BN LI (IS T Ai4de S S0 Aoass S 20O Mt Gucer e £3405 (LS VIO 200 10 S JED BOOES SRS G SURC Sl SBa T T44n 4D Flrme SCBNR SO U Ghart M UAY Sl Flmth S/ LAMIM AN 590 Chn Gt SHOIC S Bt WP TI Mon, ST i Gums S B2kt AR Lo M Fabe® $3000 SOunt Summe Sass

The newly edited fileg is referred to as . TEYY, while the .BACK file
contains the original file with no modifications.

E{xit:

This causes the Editor to return to the command level without
making any changes in the workfile. Ne . BACK file is made and the
existing . BACK is removed, For exemple, if F1l.TEXT is the file being
used, then a copy F1. BACK will be mede nn entering the editor and on
ieaving by using the E option, Fi.BACK will be vemoved and only Fi. TEXT
will remsin. Howewver. since F1.TEXT is & cvopy of the original, it
will be in different place in the divectory. '

Ri{eturn:

This 1s the same. See section 1.3, 3.

MOVING COMMANDS
MR

Jump mode displays the same prompt line as before. In this
cava BT and "EY refsr to the baginningfend) of the bhuffer not the

beginningtend) of the #ile.

Typing "M" causes the Editor to display:

Pagwe 54

Jump to what marker?

It is now possible to use &0 markers and these will be set in
the same way as in section 1.3 3 To jump te the desired marker, type
in the nams, I# the marker is pressnt, the Editor will jump to that
position, otherwise, the Editor will jump to the last position of the
curser in the file. I¢ Find nesds to search a section of the file,
gthar than the buffer, Leaping...... will be displayed
BANTISH

This is a new command and is reached by typing "B" at the Edit
level. This is the prompt that will anpear:

>3anish: To the L{efl or Rlight Lescl

PFrior tn daing & large insertion or copy. in order to provide
moTe raom in the buffer and avoid buffer overflow it is possible to
move charsciers from the buffer into the stack. There is a left and a
right stack: left being ahead of the cursor and right. behind the

cursor The vser can make the choice according to the current
situstion In general, the screen is the boundary for the operation.
N&«"l

In order %0 move beyond the bounds of the buffer, tgpe‘“N".
The #ollowing prompt will then be displayed:

Mext, Flsruyarda:, Biarbwardsa in the £ils: Sitart. Eingd of the file. <esc>

Chaose “”9 of tho five opltions avallabhls, Whan waing “F" or
0¥, ar implicit hanish accurs wyesing the curzar a&s the noint of
rofseense For oeramples when "F? is tuynsd., sverything above the top of
the screen is banizshed Tt the lefi stacik More charvacters are added to

the bhottom of the screen to exitend the buffar in the forward
girertion. When “"BY i1s used the characters baelow the cursor are
banisikad toe the vight stack and part of the scoreen will become blank.
Mora characters are added abowve the ‘window’ of the screen

Figure 5.7 SYMBOLIC FILE

et £ A e 3 e i et B At s i SR s 230 T e e T80) Hake BTSSR pad S WSS ke 47 AR e TS S490E s e W] (AR M Yot A e MSEY e Yar. W0 L R SRS "R Daace (MRS O AN s

i left shack H ! right stack i
P Barkwards H BUFFER H Forward t
P Btart i H Evnygd ;

e v 3o 2 o 3P Ay o 701 o . SR R R e TS e 117 < bl T D P K G SR et 14 S g At PR a T AR R S S N B 113 W 70 S AN SO An MORS MAOA NGR TONM ShewR WAL DR MM breem AP (4TI (L AR 08 Vi e AR LGS RO T S T RS T S

Page 55

PAGE
See section 1.3.3.

EQUALS

See section 1. 3. 3.

TEXT CHANGING COMMANDS

INSERT

See sgection 1.3, 3.
DELETE

See section 1, 3. 3.
ZAP

See section 1.3.3.
COPY

See section 1.3 3.
EXCHANGE

See section 1.3. 3
FIND

Read section 1.3.3. The Editar will display: Finding.......
and if the pattern is not in the buffer:

End of buffer encountered. et more From diszk? (Y/7N?

On typing "Y", the Editor will move another section of the file
into the buffer to continue searching. Find is still directional

REPLACE

See sectign 1.3, 3.

FORMATTING COMMANDS

ADUUST

ad

Gre section 1.3

Page 56

MARGIN

See section 1.3 3.

MIGCELLANEQUS COMMANDS

SET

See section 1.3 3. The same prompt line is displayed.

M{arher:

Read section 1.3. 3. The names of the markers can be seen by
typing "SE®" for Set Envirvonment while at the Edit level. To set the
marker: type “SMY. In the event that 20 markere bhave already been set.
this will be indicated by:

Marker overflow. Which one %o replace? (Type in the letter or <sp>
E{nvironment:

Ta set the environmant., type “HE" The following i4s an example
of the promet displayed:

Figure 5.5
FEnvyronment: options “etyx> or Jspl to leavs
{utn Indent Falge
Flilling True
L {zft margin 4
Riight mavrgin 70
Pl{ara margin 1
Cilammand on ™
Sl{et tabstops
Teoken daf True

11982 bytes used. 2754 available.

Theve are O pages in the left steck, and 10 pages in the right stack.
Yaou have 8% pages of voom: and at mest 13 pages worth in the buffer.

Markeras:
TP P2 >P3
Created August 195, 1978: lLast updated August 15, 1978 (Revision 1).

s i e T oo i o A e o WY T Pt S AR Vet Bo0mn P A (S e O Tl SR M W Lhynn S Ty A8 et Ve g W M o "~ S MO St S RS0 o S S P T VY ST S TR S0 S At S T Sanle S 60008 Aesdh S S0 ekt Saere Srodp beiep Gamis 020 dbmms Soeam ets

By typing the appropriate letter, any or all of the options can

thanged. Sen sectaion 1. 3.3 The arrow before the marker name
indicates the relative position of the marker in the file to the
buffer, Ng arrow indicates that the marker is in the current buffer.

Page 57

It is now possible to vary the tabstwops., Type "8" while in the
envirenment and the following prompt will appear:

Set tabs: <righi, left vectors®> Clol% Mipg Riight Li{sft Dilecimal stop CTeatrl

At present, thess are noet yet fully implemented so that the effect of
using any of them is to have a variable tabstop instead of being set at
eight characters apart.

VERIFY

See section 1.3 3.

Page 58

LT S E T IR E L L Y Ry I R A e T T L LT R)
#* YET ANOTHER LINE ORIENTED EDITDOR ~ YALOE # # Section 1.4 #
BT ISR s e 2 R B PR TS E A I el Pt

Marsion 1.5 Septamber 1978

This text editor is intended for use on systems that do not
have powerfyl screen terminals. It ie designed to be very similar to
the terxt-oditor which accompanies DELC's RT-11 system.

The editor assumes, but is not dependent orn, the existence of
the workfile text. Upon reading it YALOE will groclaim ‘workfile STUFF

read in”. If it does not find such & Fileg, it will proclaim ‘No work
file read in’. This means that you entered YALOE with an empty
workfile, From this point you may create a file in YALOE: and when you

exit by typing ‘QU’, your workfile will ne langer be empty.

The editor operates in one of fwo modes: Command Mode or Text
Mode. In command mode all keyboard input is interpreted as commands
instructing the editor to perform some operation, then you Pirst enter
the ediftor you will be in the Command Mode, The Text Mode is entsred
whenawver the user btypes a command which must be followed by a text
string. Aafter the command Flind, G{(et. Iinseprt, Mlacro define. R{ead
file., birite Yo file, ovr eXl{change has been typed. all succeeding
ctharacters are considered part of the text string until an <ese> is
tuped. Note: when typed Tesc> echoes a "$7. The <esc> terminates the
tevt string and cauvses the editor to re-enter the Command Made, at
which point all charscters are again considered commands.

NOTE: Follow command strings in YALQOE with Jesc<esc> to
exzcute them, {This is unlike the rest of the systems ‘immediate’
commands, }

.41 GPECIAL KEY COMMANDS

Varinus characters have special meanings; as described below.
of these apply only in YALOE. Mary have similar effects in the
of the system: for these the ASCII code to which the system
onds as indicated can be changed using the program SETUP, described
artion 4.3 (Leso» ig the meost particular anomaly to YALDE.)
R E-Rae Echoes a %7 A single <esc?> terminates a text strin
A double &enc} executes the command string.

= 0
G
noN
o 3

B
]
[0

-

o 4
o+ A -h

3
nm

!

RUBQLY Deletas current line. On hard-copy terminals echoes
CTlinedellr CEAP T and & carriage veturn. On octhers, it clears
the current line on the screen. In both cases the

contents of that line are discarded by the editor.

Page 59

CTRL H Deletes character from the current line. On hard-
<chardell copy terminals it echoes a percent sign follcowed by
the tharacter deleted. Each succeeding CTRL H the
by the user deletss and echones another character.
An enclesing percent sign is printed when a key other
than CTRL. H is typed. This erasure is done right to
left up to the beginning of the command string.
CTRL. H may be used in both Command and Text mode.

CTRL X Causes the editor to ignore the entire command
string currently being entered. The editor
responds with a <cvr> and an asterisk to
indicate that the user may enter ancther
command. For example:

#IDALE AND
KEITHICTRL X2
#

A <chardell would cause deletion of only KEITH: CTRL X
would erase the entire command.

CTRL O Will switch yov to the optional character set
(i.e. bBit 7 turned on). This works only on the
TERAK 83510A. The CTRL O is used as a toggle
beatween the character sets. NOTE: You may find
while in the editor that weird characters are
showing up on the terminal instead of normal

anes. 1%t could be because uou accidentally

typed CTRL. O. Ta get back just tupe CTRL O

again.
CTRL. F All output to the terminal is discarded by the system
“Flushl until the next CTRL F is tuyped.
CTRL. 8 All output to the terminal is held wuntil another
Letop> CTRI. § is typed.

All other contrel characters are ignored and discarded by YALOE.

1.4 2 COMMAND ARGUMENTS

A comminand argument precedes a command letter and is used
either to indicateg the number of times the command should be performed
or to specify the particular portion of text to be affected by the
command. With some commands this specification is implicit and neo
argument is needesd; other commands:, however. require an argument.

Command arguments are as follows:

Donn A0

n n stands for any integer. It may be preceded by a + or -—.
I¥ no sign precedes n, it is assumed to be a positive number.
Whenever an argument is accentable in a command, its absence
implies an argument of 1 (or -1 if only the — is present).

m m iz a number 0. %
Q Q7 referse to the beginning of the current line.

/ ‘7' means 32700. ~/’ means -32700. It is used for a large
repeat factor.

= ‘=’ jg used oniy wiih the J, D and C commands and
rapresents ~n, where n is equal ts the length of the

iaszt text argument used, for example #ETHISE=D$$
finds and removes THIS.

1.4. 3 COMMAND BTRINGS

All EDIT command strings are tevrminated by two succtessive <escls.
Spaces, rarriage returns and tabs (CTRL I) within a command string are ignored
unless they appear in a text string.

Several commands can be strung tagether and executed in
seguence. For sxample:

w [GTHE INSERTED% -3CINGs SK GSTRINGSS

As a rule, commands are separated from one ancther by 2 single
Lescl, This separating <esc» is not needed. however:; if the command
redquires no text. Commands are terminated by a single <escl a second
Cesc> signals the end of a command sftring, which will then be
exenuted. When The erecution of the command string is complete, Tthe
gditor grompites for the nexd command with ‘=7

I# at any point in executing the command, an error is
encountersd: the command will be terainated, lgaving the command
exscuted only up to that point,

Py
J

.8 THE TEXT BUFFER

The current versian of your %Lext is siared in the Text Buffer.
This buffar’'s ares is dynamically allocated: its size and the room left

-

for exipansion may be ascertained by uwsing the 7 command.

Page 61

The editor can only work on files that fit entirely within the
Text Buffer. The Screen Oriented Editor in the next major release will
not have this limitation.

1 4.4 THE CURSOR

The Ycursor" is the position in your text where the next
command will be executed. In other words it is the current
"pointer" into the Text Buffer. Most edit commands function with
respect to the cursor:

AB,F, G J: Moves it.

D K: Remove text from where it is.

Us I, R: Add text to where it is.

C: X Remove and then add text at it.

L.V: Print the text on the terminal from it

’

1.4 5 INPUT/0OUTPUT COMMANDS

L{ist, V(erify, W(rite, R(ead, Q(uit, E(rase; and O

The L{ist command prints the specified number of lines on the
console terminal without moving the cursor.

#-2L $% Prints all characters starting at the second
preceding line and ending at the cursor.

#4L %% Prints all characters beginning at the cursor
and terminating at the 4th <cr>.

#OL$$ Prints from the beginning of the current line up
to the cursor.

The V(erify command prints the current text line on the
terminal. The position of the cursor within the line has no effect and
the cursor is not moved. No arguments are used. The V(erify command
is equivalent to a OLL (list) command.

The W(rite command is of the form
#WCfile title>s
File title is any legal file title as decribed in Section 1.2
less the file type. The editor will auvtomatically append a ‘. TEXT'
suffix to the file title given unless the file title ends with 7. 7,

‘Y, or . TEXT". If the filename ends in a ‘. ‘, the dot will be
stripped from the filename.

Page &2

The Wirite command will write the entitre Text Buffer to a file
wiih the given file fitle. It will not move the cursor nor alter the
corntents of the Text Buffer.

I+ there is no room for the Text Buffer on the volume specified
in the file titie given, the message:

QUTPUT ERROR. HELP!

will be printed. It is still possible to write the Text Buffer out by writing
it to ancther volume,

The R{(zad command is of the form
#RCFile titlels

The editor will attempt to resd the file title as given. In
the event no #file with that title ic proesent. a . TEXT’ is appended and
a new segavceh is made.

The R{isad command inserts the specifisd file into the Text
Buffar at the cursor. The cursor remains in the Text Buffer before the
text inserted. If the File read in does not fit into core buffer: the
entire Text Buffer wilill bBe undefined in content. i.e. this is an
unrecaverable error.

The QR{Iuit command has several foaras

GU Quit and update by writing out a new SYSTEM. WRK. TEXT
QE Quit and escape session; do not alter SYSTEM. WRK. TEXT
GR Don‘t quit: return to the editor

Q A prompt will be sent to the terminal giving all the

above choices; enter option mnemonic (U, E, or R) only.

Executing the QU command is & speciael case of the write
command, and the attempt teo write ogut SYSTEM WRK, TEXT may fail. In
this case uvse the W command te write out your file and then QE to exit
the editor.

The @GR command is used on the occasions when a Q@ is accidentally
typed, and you wish to return to the editor rather than leave it

The BEl{rase command {intended for CRYT terminals) erases the
ST RER.)

The 0 command (also intended for CRT terminals) can be used to
have the context around the cursor displayed un the screen each time
the cursor is moved. The arqgument of the O command determines the size
(# of lines) in that context. This aphion is initially disabled when
the editor is entered and can be enabied by issving an O command. A
second O command dissbles the option: succeeding 07’8 successively
eneble, disable etc. The cursor is denoted &5 8 split in the line.

Page &3

1.4 .6 CURSOR RELOCATION COMMANDS

Jlump, Al{dvance, B(eginning, G{et., F({ind

When using character and line orientsd commands. a positive (n
or +n) argument specifies the number of characters or lines in a
forward direction, and a negative argument the number of characters or
lines in a backward direction. The editar recognizes a line of text as
a8 unit when it detects a <cr> in the tezt.

Carriage return characters are treated the same as any other

ctharacter. For example assume the cursor is positioned as indicated in
the following text (~ represents the current position of the cursoer and
does not appear in actual use It is present here only for

clarification):

THERE WAS A CRDGKED MAN™CCRSZ :
AND HUMPTY DUMPTY FELL 0ON HIMJICR>

The J(ump command moves the cursor over the specified number of

characters in the Text Buffer. The edit command -4.J moves the cursor
back 4 characters.

THERE WAS A CROOKED™ MAMICRD
AND HUMPTY DUMPTY FELL ON HIM<ICRZ

The command 104 moves the cursor forward 10 characters and
places it between the "H’ and the ‘U’

THERE WAS A CROOKED MAN<CCRZ
AND HAUMPTY DUMPTY FELL ON HIMCCR®

The A(dvance command moves the cursor a specified number of
lines. The cursor is left positioned at the beginning of the line.

Hence the command 0A moves the cursoer to the beginning of the
current line.

THERE WAS & CROOKED MANCCRZ
~AND HUMPTY DUMPTY FELL 0ON HIMICRZS

The command —1A (or —-A) moves the cursor back one line.

~THERE WAS A CROOKED MARICRZ
AND HUMPTY DUMPTY FELL ON HIMCCRZ

Page 64

The Bleginning command moves the cursor to the beginning of the
Text Buffer.

Search commands are used to locate specific characters or
strings of characters within the Text Buffer.

The Gl{et and Flind commands are synonymous. Starting at the
position of the cursor. the current Text Buffer is searched for the nth
occurvencs of a specified text string. A successful sesarch leavee the
cursor immediately after the nth occurrence of the text string if n is
positive and immediately before the text string if n is negative. An
unsuccessful search generates an errur message and leaves the cursor at
the end of the Text Buffer for n positive and at the beginning for n
negative.

#RESTRINGE=JES This command string will look for the string
STRING starting at the beginning of the Text
Buffer; and if found it will leave the cursor
immediately before it.

1.4.7 TEXT MODIFICATION COMMANDS

Iinsert, D(elets, K{ill, C{hange,; eX(change

The I{nsert command cauvses the editor to enter the TEXT mode.
Characters are inserted immediately following the cursor until an <{esc>
is typed. The cursor is positioned immediately after the last
character of the insert. Occasionally with large insertions the
temporary insert buffer becomes full. Before this happens & message
will be printed on the console terminal, ‘Please finish’. In response
type two successive L{escrs. To continue, type I to return to the Text
mode.

NOTE: Forgetting to type the I command will cause the text
entered to be executed as commands.

The Dielete command removes a specifisd number of characters
from the Text Buffer, starting at the position of the cursor. Upon
completion of the command. the cursor’s position is at the first
character following the deleted text

Page 65

#-2DEH Deletes the two characters immediately precedxng
the cursor.

#BS$FHOSE $=D%% Delstes the first string ‘HOBE ° in the Text
Buffer, since =D used in combination with

a search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Buffer,
starting at the pcaition of the cursor. Upon completion of the

command. the tursor’s position is the beginning of the ling following
the deleted text

#2KEE Deletes characters starting at the current

cursor position and ending at (and 1nc1“d1ng)
the second <COR>.

#/UES Deletes all lines in the Text Buffer after the
. cCuUTsSaT.

The C(hange command replaces n characters, staerting at the
cursor, with the specified text string. Upon completion of the
command, the cursor immediately follows the changed text.

#OCAPPLEGYS Replaces the characters from the beginning of
the line up to the cursor with ‘APPLES’,
{equivalent to using OX).

#BEGHOSES=CL Y ZARDSS Searches for the first occurrence of ‘HOSE'’ in
the Text Buffer and replace it with ‘LIZARD‘.

The eX{change command exchanges n lines, starting at the
cursor, with the indicated text string. The cursor Temainge at the end
of the changed text.

#-5XATEX TS Exchanges all characters beginning with the
first character on the Sth lime bkack and ending
at the curser with the string ‘TEXT'.

#OQATEXTSS Exrhanges the current line from the beginning to
the cursor with the string "TEXT ', {eguivalent
to using 0OC).

#/XTEXTES Evxchanges the lines from the cursoer tos the end

of the Text Buffer with the text ‘TEXT,
(equivalent to wesing /78)

Page 64

1.4.8 QTHER COMMANDS

S{ave, Ui{nsave, Miacro, N (macro execution) and ‘7?7’

The S(ave command copies the specified number of lines into the
Save Buffer starting at the cursor. The cursor position does not
change., and the contents of the Text Buffer are nnt altered. Each time
a Slave is executed. the previous contents of the Save Buffer, if any,
are destroyed. If executing the S{ave command would have overflowed

the Text Buffer, the editor will generate a message to this effect and
not perform the save.

The Uinsave command inserts the entire contents of the Save
Buffer intn the Text Buffer at the cursor. The cursor remains befurs
the inzerted text. If there it not enocugh Toom in Text Buffer for the
Save Buffer, the editor will generate & message to this effect and not
execute the unsave,

The Save Buffer may be removed with the command OU.

The M{acros command is used to define macros. A maximum of ten
macros, identified by the integer (O..9) preceding the ‘M’', are
aliowed The defauvlt number iz 1. The M{acro command is of the form:

mMZcommand string¥%

Thie says to store the command string into Macro Buffer number
m, where m is the optional integer 0..%9 The delimiter, ‘Z’ in this
example, is always the #first character following the M command and may
be any charzcter which does not appear in the macro command string
itself. The sscond occurrence of the delimiter terminates the macro.

All characters extept the delimiter are legal Macro command
string chargcters., including single <escDs A#l1l commands are legal in
a macro command string. Example of a macro definition:

#SMAGBEGINS=CEND BEGINSVYUs

This defines macro number B, When macro number 5 is executed,
it will look for the string 'BEGIN’', change it to ‘END BEGINM’' , and
then display the change

I# an error orours when defining a macrs, the message

‘Error in macro definition’

Page 67

will be printed, and the macro will have to be redefined.

The execute macro command, N, executes & specfied macro command
string. The form of the command is:

nimns

Here n is simply any command argument as previously defined: m
is the macre number (an integer O0..9) to be executed. I+ m is omitted.
1 is assumed. RBecauge the digit m is technically a2 command text
string, the N command must be terminated by an <esck.

Attempts to execute undefined macros cause the error message
‘Unhappy macnum’. Errores encountered during macro execution cause the
mescsage ‘Error in macro’. Errors encountered in macro command syntax
cause the message ‘Error in macrn definition’,

The ? command prints a list of all the commands and the sizes
of the Text Buffer, Save Buffer, and availabkle memory left for
expansion.

Page 68

1.4. 9 sumMmarY OF aLl. COMMANDS

n o~ an argument m ~ macro numbery
na; Advance the cursor %o the beginning of the n th line from the
current position.
B: Go to the Beginning of the file.
nC: Change by deleting n ctharacters and inserting the following
text. Terminate text with Llesch.
nD: Delete n characters.
E: Erzge the screen.
nf: Find the n th occcurrence from the current cursor position of
the following string. Terminate target string with <esc>.
nG: et - ditto -
H: - dnwvalid -
1: Insert the following text. Terminate text with <Lesc>.
T Jump cursor n characters,
ni: Kill n lines of text. I#f current cursor position is not
at the start of the line, the first part of the line remains.
nl.: List n linas of text.
mi; Define macro number m.
niblm: Perfarm macro number m, n times.
il {n, off %Yoggle. Ii# on, n lines of text will be displayed

above and below the cursor vach time the cursor is moved.

I the cursor s in the middlie 0f a line then the line will
be split into two parts

The default is whatever fills the screen. Type 0 to turn off.

P ~ inpvalid -

Q: Quit this session, followed by:
U {pdate Write out a new SYSTEM. WRK. TEXT
E: {(scape Escape from session
R:{eturn Return to editor

R: Read this file into buffer (insert a2t cursor):

‘R’ must be followed by <file namel <escli
WARMNING: 1f the file will not fit into the buffer, the
content of the buffer becomes undefined!

ng: Fut the next n lines of text from the cursor position into the
Gave Buffar
T: -~ invalid -
U: Inseryt (Unsave) the contents of the Save Buffer into the text
a2t the curseor: does not destroy the Save Buffer.
W Verify: display the current line
W Write this file {(from start of buffer);
‘W must be followed by <filenamed> Lescr
nX: Dalete n lines of text, and insert the following text;
terminate with Cesc.
Y: - invalid -
Z: -~ invalid -

Page 49

=~ Notes -

lagqe 70

DUE TO THE LARGE NUMBER OF BUGS IN THE DEBUGGER, WE HAVE OMITTED THE
DEBUGGER, AND ITS CORRESPONDING DOCUMENTATION FROM THE SYSTEM RELEASE.

THE DEBUGGER WILL BE AVAILABLE AT SOME TIME IN THE FUTURE, AND YOU WILL
BE NOTIFIED OF THIS FACT. PLEASE DO NOT ASK US ABOUT THE DEBUGGER, AS
THE REPLY YOU GET WILL BE THE SAME AS THE MESSAGE ON THIS PAGE.

Thank you forn your patience An this matter. ed.

Pages 74 through 80 have been omitted.

Pages 71..7

- notes -

Pages 72..80

L R YR Y S R R)
RaSCal COMPILER # # Section 1.6
HHBRERARLER BN SRR BEEBHLERTEHARRH

Versiaon I.9 September 1978

The UCED Pascal compiler, & one-pass recursive descent based on
the PZ pourtable compiler from Zuvrich: is invoked by using the C(ompile
or Riun command of the sutermost level of the UCSD Pascal system. If a
workfile exists, it compiles that. Dtherwise, it prompts the user for
a source file name, It generates codefiles $t0 run directly cn the
Pzacal interpretive machins.

Unless the HAS SLOW TERMINAL boolesan inside the system
communication area {(see secition 4. 3) is true. the compiler., during the
courgse of compilation. will display on the CONDBDLE davice output
detailing %the progrese of the compilation. This ouvtput can be
suppressed with the Q+ compiler option (see section on compiler
options below), Relow is an example of the output which appears on the
CONSOLE device:

PASCAL compiler L[I.9 unit compiler]

< Q. e e
P1 L70501
R
F2 130401
S O P
TEST [32006373
S O 0

The identifiers appearing on the scresn are the identifiers of
the program andg ifs procedures The identifier for @ procedure is
displayed a%t the moment when compilation of the procedure bady is
started. The numbers within T 1 indicate the number of (16 bit) words
available for symbol table storage st that point in the compilation.
The numbers enclosed within < > are theg current ling numbers. Each dot

on the screzn represents 1 source line compiled.

I¥ the compilation is successful, that is, no syntax errors
detected. the compilar writes a codefile to the disk called
#SYSTEM. WRK. CODE, This is the codefile which is executed if the user
had typed the R{un command. See Bection 1.1 INTRODUCTION AND OVERVIEW
for further details on the system Commands,

Should the compiler detect a syntayx srror, the text surrounding
the srror and an evrror number together with the marker <[00 7 will
point to the symbol in the source where the error was detected. In the
event that both the Q@ and L options are set, the compilation will
continue, with the syntax error going to the listing file, and the
console remaining undisturbed. The compiler will the give the user the
option of typing a space, an <esc> or ‘E’. Typing a space instructs
the compiler to attempt to continue the compilation, while escape
causes the termination of the compilation, and “E" results in a call to
the editor, which avtomatically places the cursocr at the symbol where
the error was detected. '

Pzgqe B1

Most of the syntax errors detected by the UCSD Pascal compiler
are the standard ones listed in Jensen &% Wirth. A complete list of all
UCSD syntax errors can be found in Table 3. All evrror numbers will be
accompanied by & textuasl message upon entry to the editor if the file
#BYSTEM. BYNTAX is available.

1.6.1 COMPILE TIME OPTIONS

Compile time options in the UCED Pascal compiler are set
according to a convention described on pages 100102 of Jensen and
Wirth, where compile time wptions are set by means of sperial "dollar
sign" comments inside the Pascal program text. The syntax used in
UCSD s compiler control comments is essentially as described in Jensen
and Wirth. The actual options and the letters associated with those
options bear only little vresemblance to the options listed on pages 101
and 102 of Jensen and Wirth. it a '+ ar ‘~ ¢ is not specified after
an option letter, ‘4’ is assumed. The following sections describe the
varicus options currently available to the user of the UCSD Pascal
compiler.

D:
This option causes the compiler te issve breakpoint
instructions into the codefile during the course of the compilation in

prder that the interactive Debugger can be used more effectively., Eee
Section 3.2 “DEBUGGER" for details

Detault value: D-

D~ causes the compiler to omit breakpoint instructions
during the course of the compilation.

D+: causes the compiler to emit breakpoint instructions.

Affects the boolean variable GUTOOK in the compiler. Thisg
boolean is used by the compiler to determine whether it should allow
the use of the Pascal 6G0TO statement within the program.

Default value: G-
G+: allows the use af the GOTD statement.

G~: causes the compiler %o generate a syntax evror upon
encountering a GOTO statement.

C: The (*$C comment*) places the comment, (80 character maximum*) in the code
§ile genenated. This option 45 used at UCSD to place copyright Angormation
in the codegile.

e G-option has bsen used at U.C. 8. D to restrict novice
programmers from excessive wNses of the 0TO statement in sitvations
whzre more structured constructs such 26 FOR. HWHILE, ar REPEAT
statements wovlid be more appropriate.

When an 17 15 followsd immediaztely by a ’'+7 or ‘', the
control comment will affect the boolean variable IDCHECK within the
compiler. Hn alternative use af ‘I in 8 compiler control comment
causes the zompiler %o include a different source File into the
campiiation at that point. Gee section INCLUDE-FILE MECHANISM for
syntay.

IOCHECK DPTION
Default valueg: I

I+ instructs the compiler to gensrate code after each statement
which gerforms any 170, in order to check to see if the I/0
aperation was accomplished successfully. In the case of an
uneuccessful /0 ovperation the program will be terminated
with a run time srror.

et

- instructs the compiler nat %y gensrate any I/0 checking

code. In the cese of an unsuciessful I/0 operation the
program i5 not terminated with 2 run time error.

The T-aption is useful for system level programs which do many
170 cperations and aiso checks the IURESULT function after each 1/0
opsration The suystem program can then detect and report the I/0
ervrars, without hsing Ysrminasbtesd sbnoreslly with & run time errvor.
Howewvay $his option i% s8t at the expenze of the incressed possibility
that 170 srrore. {and possibly severe program bugslk, will go
untdegtected,

v 5% l;'i

INCLUDE FILE MECHANISEM

The syntax ¥for instructing the comgiler to include anobther
spurcs firle into fthe compilat:on i3 as follows: o

*EIFTLENAME)

~

Page 83

The characters betwean I’ and "#})‘ are tabten as the filename of the

source File to he included. The comment must be closed at the end of the
filename, therefore no other options, such as G+, or L+, etc. can follow the
filename. Mote that if a file name stavris with +° or ‘~‘ as the first
character of the filename, & hlank must be inserted between (#%$]1’' and
FILENAME . For example, the comment:

(#EITURTLE., TEXT*)

would cavse the file TURTLE. TEXT to bte compiled into %the program at
that point in the compilation.

(#$1 +FARKLE. STUFF#}

would cause the source File +FARKLE. STUFF to be included into the
campilation,

I# the initial attempt to open the include file fails, the
compiler concatenates a ". TEXT" te the file-name and tries again. I+
this second attempt fails, or some I/0 error occurs at some point while
reading the include file, the compiler vesponds with a fatal syntax
error.

The compiler accepts include files which contain CONST. TYPE,
VAR, PROCEDURE., and FUNCTION declarstions even though the ovriginal
program has previously complebed its declarstions. To do so., %the
include compiler control comment must appear between the original
program’‘s last VAR declaration and the first of the original program’s
PROCEDURE or FUNCTION declaratione. Note that an incliude file may be
inserted into the original praogram at any point desired. provided the
Tulegs governing the normal osrdering of Pascal declarations will not be
vinlated. Only when these rules are violated does the above procedure
apply.

The compiler cannot keep track of nested include comments, i.e.
an include file may not have an include file ctontrol comment. This
results in a fatal syntax error.

The include file option was addsd to the compiler at U C. 8. D in
crder to make it easier to compile large programs without having to
have the entire source in one very large file which in many cases would
be too large to edit in the existing sditors’ buffer.

L.

Controls whether the compiler will generate a program lisbting
cf the spurce text to a given file. The defauvlt value of this option is
i~ which implies that no compiled listing will be made. I+ the

character following *L* is "+4", then the compiled listing will be sent
to a diskfile with the title “#EYSTEM LBT. TEXT'. The user may override
thie default destination for the compiled listing by specifying a
filename foallowing "L For s2rzample the following control comment will
cause the compiled listing tu be sent to a diskfile called

DEMOL. TEXT™.

Page B34

(el DEMGOL. TEXT#)

To specify a Pile-name inside a3 control comment, see the
section describing the include file mechanism.

Mote that listing files which are sent to the disk may be
edited s3 any other ftest file provided the filename which is5 specified
contains the supffix " TEXTY. Without the " TEXT" suffix the file will
be treated by the suystem as a datafile rather than as a text file.

The compiler cutputs next o each source line the line number,
segment procedure nusbher. procedutre number:. and the number of bytes or
wordse (bybes for code. words For dats? reguirsd by that procedure’s
declarvations or coede to that pomint. The compiler alsg indicates
whether The Iine lies within the sctual code to be execubted or is a
part of the declarabions for that procedure by autputing a "L for
declarvation and an integsr G .9 to designate the lexical level of
statement nesting within the code part. I+ the D+ option is set then
the listing File will inciude an asterisk o9an each line where it is
aspropriabe for & wssr Lo specify a urnuipaizt while in the interactive
DebuggerA This xrfnrmat1on can be very valuable for debugging a large
srogrem since & run Ltime 2rTorT mensd
number, and the offset whers ThHs

L]

e will indicete the procedure
SCCuTT R4,

The Q compiler option is the "guiet compile” option which can
be use2d to suppress the output to the CONSOLE device of procedure names
and line numbers detailing the progress of the compilation.

Defauwlt value:. is set zgual to current value of the SBLOWTERM
attribute of the system communication record
SYSCOM™, (actually SYSCOM™ MISCINFO. SLOWTERM)

B+ causes the compiler to suvppvess output to CONSOLE device.

G-: cgusesr the compiler %o send proecedure name and line number
output to the CONSOLE device.

This eoption a¥fects the value oFf the boolean varisble
RANGECHECK in the compiler. T+ RAMGECHECK is true, the compiler will
nutout additional code to perform cheocking on array subscripts and
zesignments to vaeriables of subrange types.

This option causes the Listing to continue grom top-of-goam. L.e. the compilen

does:
PAGE(LISTFILE)

HYage 85

Default valuas: R+
R+ turns range checking on,
R~ turns range checking oféf,

Nate that programs compiled with the R—option set will run
slightly faster; however if an invalid index goours or & invalid
assignment is made, the program will not he terminated with a run time
error. Until & program has been completely tested and known %5 be
corvrect, it is wsually best to compile with the R+ oaption left on.

This option determines whether the compiler operates in
“Yswagping® mode. There are two main parts of the compilev: one
processes declarations; the oither handlies statements. In swapping
mods, only one of these parts is in main memory at a time. This makes
about 2000 asdditional words evailable for sumbol table storege at the
cost of slower compilation speed due to the overhead of swapping the
compiler segment in from disk. On fullsize:, single density floppy
disks this amounts to a factor of two reduction in compile speed. This
aptioen must accur prier the the compiler esncountering any Pascal
suyntay.

Default value: 8-

S+: puts compiler in swapping mode

G~-. puts compiler in non-swapping mode.
U:

USER PROGRAM OPTION:

ts the boonlesan varisbie LYLROOMP
compiler teo determine wh

w} S
z thar
latiogn:, eov a compiiation of

TRl
& sysiam prot

2
-

refavlt value: U+

Ue dnfarms the compiler that this compilation iz to ftake place
an bthe wvesr arograem ley level

U= informs the compiler to compile the program at the system lex
level. Thig sebtting of the U rompile time option also causes

P .

W

the following aptiens to bs se H=- @+, I-

>

Page 5é&

NOTE: This option will generate programs that will not behave
as ewpecbed. Mot tecommended for non-systems work without knowing its
method of operation.

USE LIBRaRY OPTION:

In this versian of the ‘U’ oaption, the U is followed by a file
name. The named filg becomes the library file in which suvbsequent
USEesd UNITs are sought. The default file fer the library is
¥EYSTEM LIBRARY. {see section 3.3.2 for more details on UNITs)

Following is an example of a valid UBES clause uvsing the ‘U’
eption:

USES UNIT1,UNIT2, {Found in =SYSTEM. LIBRARYY
{8U_a. CODEL
UNIT3,
{8U_B. LIBRARYY
UNIT4, UNITS;

Page 87

~ Notes -

"age 8§

FRFE W BN H W NE R W R R REF R R
* UCED BABIC COMPILER ® # Section 1.7 #
F RN RN H RN R R AR BN NN R B R

Vevrsien 1.5 September 1978

This section has been designed for programmers who are already
familiar with Basic. Its intent is to describe to those experienced
users the details of UCED Basic in a manner sufficiently detailed so as
to enable the writing or modificetion ©f programs in a manner
compatible with the UCSD Basic Compiler.

The Pirst zsction contains a brief description of the features
inclueded in UCBND Rasic: the second, the descriptions of the features
ynigque to UCHD Hesic, and the third a list of those features which we
intend UCBD Basic %o allow. but which are not yet implemented.

The UCSH PBasic Compiler has been written in the Pascal
language. Some of the intrinsics of the Pascal language, which are not
found in standard Bssic:, are found within the UCSD wersion of Basic.
Many of these are noted in the first section, all of them are noted or
recapped in the second.

The UCED BASIC Compiler i invoked juzt like the Pascal
compiler, provided the coampiler code is mamed *BYSTEM COMPILER.
Originally it will be named BASIC COMPILER. I£ you want & disk to be
BAGIC oriented, you must change the name of, or remove, the Pascal
compiler: and change the name of BASIC. COMPILER to »*SYSTEM COMPILER.
That disk, and asny capies of it will now compile BASIC programs as a
vresuit of the Clompile or Hiun command.

DESCRIPTION OF FEATURES INCLUDED

The Basic compiler has only real and string variables. When
applying & resl to indexing or obther integsy purposes %the rounded value
of the number ic wsed. In the Puncitiscnsg below x and 4y can be real
variahles or expressions which evaluate to real values., Similarly si
and 2 can be siving variables or esaipressions which evaluate to a
string.

VARIABLE NAMES

Fpal varisebliss: leftferi{digit’
String wvariables:, letter{digii:$ The digit is opticnal

Page 89

INTRINSIC ARITHMETIC FUNCTIONS

ATN(x) Returns the angle in radians whose tangent is x.

EXP(x)} Returns the bhase of the natural lsgarithms raised to the power x.
INT(x) Returns the value of x roundsd to the nearest integer.

LOG{x) Returns the log (base 10) of x.

LNt Returns the natural log of x.

MOD(x,y) Returns x modulo y.
SIN(x) Returns the sine of the angle x. Where x is in radians.

COS(x) Returns the cosine of an angle x. Where x is in radians.

INTRINGIC STRING FUNCTIONS

CATH¢(51.52. ..) Returns & string which is equal %ta the concatenatiaon of
311 the strings in the parameier list,

COP$isl, s,y eturne & copy of the portion of the mtring si, u
consescutive char cters, starting with the chsracter at position x.

DEL#$(s1, 2.y} Returns the contents of the sirin
Y
characters deleted. The deletion start
positian x.

g 81 with y consecutive
¢ with the character at

INS®(z1.32: x> Returns the contents of string 52 with string si inserted
immediately hefare the character which is at position x

LEM{s1) Returns the length »f the string sl.

POS(s1.,52) Returns an integer which is equal to the position of the

Tirst character in the first cccurrence of the string 51 in the
«tring sz. '

OTHER FUNCTIONS
ORD(s) Returns the ASCII value of the first character of the stving s.

STR&$(x) Returns the string rontaining the charactar associated with the ASCII
value x.

Page 90

FETS Reasds a single character €rom the keybosrd without prompt or echoing,
and veturnsg it as a string. GET$ reguires na arguments,

BLS(c, 83

NEW(c:58) ¢ is a numeric constant without a fraction part, which becomes
zesociated with the disk file whose name is in s. OLD expects that
file to alresdy exist, NEW creates a new one with the name s, removing
any previous file of that name. These functions must occur before
associated print or input statements, The numbers may not be
veassigned and must be in the range 1..146. For best results, use only
at the top of a program. In order that a file created by NEW be
editable with either of the system editors, ‘. text’ must be appended to
the file title.

These functions return IDRESBULT as described in section 2. 1.

PROGRAMMING STATEMENTS

Arithmetic statements and ocperations

- subtract, add
ARV divide.multipliy
34 sxnonsntiahlon

Relational operators

= gquals
Lo > not equals
b2 greater than
< less than
Do, omD greater than or equal
L= e legs than or squal
INPUT list
or

INPUT #c list

inputs from the main sgstem device, usually the kayboard. If the
agticonal #¢ is present, INMPUT inputs from the disk file number

¢ The input list may an+aln any cambination of real wvariables and
string variables. When a pregram expects input the prompt "7 is
srinted. Input of real numbers may be terminated with any non-numeric
character. Input of strings wmust be terminated with a return.

PRINT list
5y

PRINT #c list

device the 1ist following the PRINT command.
I¢ tho spt : asant, FRINT outputs to the diskfile number c.
The output 1ist ﬁag in sxny variable, subscripited array variable,
any arithmetic or string expression, . or any literal text. The list may
be Sﬁparat%d by commas or semi—-colens. If the list ends in a semi-color
the carvrriage veturn is suppressed. Literals may be enclosed in either
type oF quotation marks. Uoubls quotation maerks prints & single
guotation mark

Hrites to

Page 91

FOR wvar

= expl TO exp2 STEP exp3

NEXT var

IF expt

Each execution of the loop increments the loop counter "wvar® hy the
amount of expression 3. 1f the BTEP is omitted it is @sszumed to be 1.
Only increasing STEP values are sllowed. Evaluation of limits and
increments is done at the begimning of the loap. Mote that RETURN’s into
or GOTO s into a FOR loop may cause the loop Yo be undefined,

{relation coperator) evp THEN (ling number)
070

Either the reserved word THEN ar @OTO can be wvsed in this statement. I+
the relation between the expl and expl is Ffound 4o be true the branch

gceurs. A string is considered to be less than ancther string if it is
lexicographicaliy smaller.

N exp GITOOInl: InZ. .}

I# the expression, when rouynded, evalustes to 1 it goes to the first
line number (inl) if it esvalustes to 2 it goes to 1In2, etc. This is the
only form of the computed 070 which is availahle. I+ the expression is
out of Tangs AN erTraTr SUouTs

DEF FMname(lisil)=expression or DEF FNname{list)

MIM var

‘age 92

ngle line and multi-line Punciions ave allowable. The funciion name
t be a legal variable name for the type of value returned. Functions

Mo s

may be defined recursively. Tha pzrameter list i3 called by value, that
is, changes inside the function don’'t affect the wvalue of the external
parameters.

This command assig
sEring: %the express
avaluation must be tg s roal

WIJ

o the wvariable If the variable is a
FN

must ewvaluate o a string, and if a real,

{nil,n2: .. 1}

A single or multidimensional array may be declared with this command.
The variable name determines the type of the array. The array indices
are 0 .n1,0.. n2, ... Both meal and string multidimensional arrays can be
used., IFf no dimensicnz are declarsd the dimensions are assumed to be

G, 410, Q.10 G 1, G0 1 ... Yre nusber of dimensions automatically
de) ared dengnds an the number of dimensions which are wsed in the
praogram. but must be consistant over all uses of any given array.

E0OU8 linenuymber

Fxwcutes s subroustine call. The calling address is placed on the
subroutineg stack. Subroutine calls may be rTecursive,

RETURN
Returns to the line after the last GOSUB which is still pending. It pop:
the top address off the stack and uses it as the return address. A
ratvrn when no GOBUB’s are pending is an error.

GOTO linanumber
Program executisn jumps to the given line number.

REM text

i
i ad
il
B
[
k4
3
31
s
Fi:]
Y
_.’
R
3
+]
3
=

UNIQUE FEATURES OF UCHD BABIC
Arithaeitic
Far loans: dMote that varsexpl is done before 2yxp2 ov expd are evaluated.

Continvation of statements is allowed. Any line not beginning with a
lirne number is sssumed to he the continuation of the line above,

Functions: All pavemstevys of funcbtions are call by wvalue. You are not
allowed to use the paramsters to return values from a function.
Function vaells are allowsd Lo be recursive,

© The sdfring funcitions a2nd pgrocesdueres are those found in the
UCsDh Pascel language.

Arrays. Arrays of more than two dimencions asre allouwed.

Print: Tsh stops are not allowed, All list elessnts are printed without
spaces betwesn them. The carvriage rveturn can be suppressed by ;"
@as the lazdt symbsl in the line,

Qubroutines: Subroutines may be recursive.

Comments: In line comments may ke inserted The portieon of any line
following the € symbol is ignorsd by the compiler.

Page 93

PASCAL FUNCTIONs: The code of PAECAL FUNCTIONs may be added to the
BASIC compiler as new standard BASIC functions. This is
accomplished by a straight-forward addition to the BASIC compiler.

FEATURES TO BE ADDED

Certain features of the UCSED Basic compiler are still in the
process of being implemented. The most important of these are listed
belauw.
Data and Read: The standard initialization statements,
Matrix statement for standavd matrizx cperations.

Integer variables.

Mere standard functians.

RUNNING A BASIC PROGRAM

Create the BASIC program using one of the system text editors.
Once you have ensured that the BABIC compiler has been named
SYSTEM. COMPILER, you can use the commands Cl(ompile and R{(un at the
COMMAND level, just as if you were using Pascal on a disk which has the
Pascal compiler as its SYSTEM. COMPILER. Far a more detailed
description of COMMAND see Section 1.1

Page 94

AR AR W IR RS
THE LINKER # # Section 1.8
AR I W H I I IR i

Yersion I. 5 September 1978

The UCBD LIMKER allows the user bto combine pre-compiled files,
which may have been written either in PASCAL or in assembly language,
into the sustem worifile. The user may wish %o incorporate certain
useful routines into osrograms without having {o rewrite or even
recompile these routines. Fer example, one might wish to use a fast
assembly langusge routine for some "real-time"” application. This
Toutine could be assamhled separately., stored in a library. and
evantually acceszssed via the LINKER,

To link in 1y nes {=ither procepdures or Funchionsd: the
calling preg;aﬁ declaves thuse voutines to be EXTERNAL, much as
PROCEQURES gr FUNMCTIONS may be doelarved FORWARD (spe Section 3. 3. i)
This notifies the rompiler that fthe rToutines may be called, but are not
srovided yetl. The compiler will then inform the system that linking is

requivred besfore exscuition.

The LIMNKER can also be used ¢o link in UNITs. A UNIT is a
garoup of related rouvbines which will be used together to perform a
common task, LOEBH TURTLEGRAPHICE is a&n example af a UNIT containing
procedures and funchtions with which & "tuyrtle” can be moved on the
sCTaan A UNIT can bhe uveed by tuping the command USES Junitnamel
d1r9¢t y 2fter the PROGRAM Jidentifierl For more information on

see SBection 3032
fany files which ra

nogt yet been linked oy be compiled and

linked befove they can be exacutad

or EXTERNMAL routines and hawve
saved, but will need to he

b

.81 USING THE [LIiMKER

it the program in the workfile contains EXTERNAL declarations,
cr uses UNITs, typing #Hiun will automatically invoke the LINKER after
the compiler. The LIMKER will search the file »EVHETEM LIBRARY far the
voutines ogr UNITes specified, and will attempt to link them into the
workfile, I# the UNIT or EXTERNALly declared routine is not present in
#RBYSTEM. LIBRARY, +the LINKER will respond with an appropriate message:

Unit,
Proo,
Func,
Global,
or Public {identifier: undefined

Page 95

The LINWMER may also be invoked explicitly, and, in fact, must
be invokesd explicitly in cases wherse

i) the file inte which UNITs or EXTERMAL routines are to be
linked is not the workfile, orv

(2 thoe external routines to be linked reside in libkrary files
other than #8YSTEM. LIBRARY.

rentation UNMITs must reside in

(Neots: In the current implean
compilation in order to be UBED by a

®*EYSTEM. LIBRARY at the time of
FABCAL nrogram.)

In order to explicitly invoke the LIMNKER, the user types ‘L7 at
Command level and receives the prompt:

Mosgst fileT

The heostfile is the file into which the routines gr UNITs are to be
linked. The LINKEQ appends . CODE ot all file names typed in except for
wlrat, Typing & wretd in response du thg prempt zauses the LIMKER to
vse the wyorkFile as the hostfile. The LIMKER then asks for the name(s)
of the 11 bva*g files dn whiaoh bthg UNITs or BXTE L rowtines are to be
found:

Lib file? <rcodefile identifierv:

Ip to eight library files may be referenced. Typing ’'#° in
recpnnes to 8 request for a libfile name will cause the LINKER to
reference #*QYQTEM. LIBRARY. The vser will bte notified akout each
library #ile that is successfully opened.

Erample: Lib Fiie? & drets
Opening #BYSTEM, LIBRARY

Fer information on LIBRARIES and the LIBRARIAN see SBection 4 2.
When 2!] relevant libfile names have %aéﬁ gntered the user
myst type <ret> to proceed. The LINKER will now prompt with:

Mapg File? Lfile identifier: Lrst

The LIMKER wri file iested by the
yser, The map file con E infg di the linking
procesns, Qf:?ﬁ,.lﬁg with Iretl to this will suspend LThis eption.
Note {ihat . TEXT 15 appended unless a he last letter of the

filenams,

The LIMKER now veads up all segments reguired to enable the
linking precess. The user is now prompted to enter the destination
file for the linked code output (this will often be the same file name
as Yhat of the host filed. Linking will commenceg after the Jretl
following the outout file rame has besesn typed Aan smpty line, Iret
onily, causes the *'*gut file to he placed In the worvkfile & g

¥EYITEM. K. CODE

ot

Puring the linking process the linmker will report on all

szgments being linked as well as all external routines bheing copied
into the output codsefile. The lirnking process will be aborted if any
reauired segments or roubtines are missing or undefined. The user will
he informed of their shsence with meszanes as described at the
peaginning of this section

<

1.8 2 NOTES ON LIRKIER CONVENTIONS AND IMPLEMENMTATION

Cadefiles may contain up to 1é& segments. Block O of a codefile
contaeins information ?rga*d ng name, kind, relative address and langth
of mach £ode segment, Th informsetion is callsd the segtable, and
is represented a2s o ?ecord.

ARRAYIQ 151 OF
RECORD
CODELENG, CODEADDR: INTEGER

SEGNAME: ARRAYLO. . 121 OF PACKED ARRAYLO. .71 OF CHAR;

SEGKIND ARRAYIO. . 153 OF (LINKED, HOBTDEG, SEGPROC, UNITSEG,
%EWﬁTgEGis

TENTADD

R)

I AN T S-S R L Tt
AEPAYTIO . 1587 0OF TNT

t"l

CODELEM2 and CODEADDR give, vezpectively, the lsughth of the
code segmenit in bytes, and the block address of the code segment, A
destraiption of SESKRIND: Ffollows:

LIMKUED: The codesegment is fully executable. Either all external
regfegrences {(UNITs or EXTERNMNALs) have been resolved, or
. ,

! Lo the outer block of a PASCAL
am has rxterral references,

Yo 8 PASCAL segment procedure.
the segking sssigned te a2 compiled SEAMENT. (see SBection
is assigned to a separately compiled

k i
a8 or functionn, Ansembly language codefiles are
£ this as well as Pascal UNITs which are

Page 97

For an unlinked code segment {that is,

a sszgment containing

unresolved external references) the compiler generates linker

information,
ong for each UNMNIT,
defined in the sourcsa.
following information:

LIENTRY=RECORD
MAME: ALPHS;
CASE LITYPE: LITYPES OF
UNMITREF, ' '
GLORREF,
PUBLREF,
PRIVREF,
SEPPREF.
SEPFREF,
CONSTREF:
(FORMAT: UOBFORMAT:
NREFS: INTEGER;
MNWORDS LORANGE?;
GLOBLEF:
(HD“KPRGC PROCRANGE:
ICOFFEET: ICRANGE Y
PLRLDEF:
(BABEDQFFSET: LCRAMBE): fco
CONBTDEF:

CONGTVAL:
ERTPRAC, EXTIUNG,
SEFPROC, SEPFUNC:
{GROCPROC
MNEARAMS:
ESFMARRK:
{NEXTBASQELLD
END(lientryl;

If the LITVYPE is one of the fip
this portion of the recerd is 2 list of
segment. Each cf these pointers i
the code segment of a referenc ¢ the

in the lientry. These

them arve valid.

ge 78

w

PROCRANGE;
INTEGER)

LORAMGE)

2% cxse varian

5o tﬁtera inta the code

s the absoclute hgte address within
ce t variable.

are 89 ward vecords,

This information is a series of variable—length records,
routine or variable which is referenced in,

but not

The first 8 wordse of each record contain the

(format of lientry. name can be
any of BIG,
(% of references to
compiled

BYTE or WORD.)

lientry. name in
code segment)

{size of privates in words)

{which procedure it ocecurs in)
tbyte offset in p-code)

mpiler assigued word offset)

INTEGERY; fugere defined value)

{(procedure number in source segment)
{number of paramesters expected)

{private var allocation info)

then following

UNIT or routine named
But enly the first MREFs of

L FH AN R R RN R RSN HRAE R HREERWHE R R R H NN

#* ADAPTABLE ASSEMBLER # # Section 1.9 #
AR S R IR NN NN SN R

YVerasion 1.5 Seplember 1978

Ugers casianally need to write and execube
emall assembly : in Lthe language of the host machine.
These roubines wouvld be used within a Pascal pragram o arevide low—
legvel or fime oritical Pacilities, The UCED aAdaptable Aszembler (in
congunction with the ULED Linkerd has been designed to meet those
neads, The UCEBD Pascal Projgject will bs maintaining all our Pascal
interpraters uvsing this assembler In the ngay fuiure. By this process
the ugers of the UIBD Pascal system will bacome sssentially independent
of any manufactuvrer’ «tem softuare

This assembler was mudeliled afier The Last Assembler (TLA)
devglopsd st Lthe University or Wateripo. The basic concept behind both
the TLa and the JCED Adzaotable dssembiers 18 the usa of 3 centrail
machineg independent core thet is common to all versions of the
agsesembler. This central care 14 fugms with machineg specific code
to handle the peculiarities of sach ia%tvzﬁﬂa machine

For € 30 =2ssemblers will be
available. h took longer than one person-—
woak of ofbsny

?hi% veader who iz alrssdy fFluent in

ot
~J
ok

V3aLE

o & assemblsr program for a
Z80. DWCODES or 11, GPLGDn%) must be
: ile (80 ERRORS or 11. ERRORS)
or grror {flagging during the
+ it must also appear on the

Befors atltempiting to ai1ed
specific maching, an opeodes
locatesd on the sustem disk. T
contains the srror mes sages th
resaembly. Thia File 15 ophiang
system di3k.

g 8D assemble tupe Af{ssem fram the Command line.
This GYSTEM. AS?VWQLVQ {(The usar should sevrange that the
riand nhe assembler (POP-11 or ZI80) have that title.
the pyogram displays, the version of the asssembler being
syecyted and assuvaes that the rurrent workfile is the one to be
aszembled I¢ there is ng current workfile then the program asks which
file iz ta be sscsmbled

Page 99

The next prompt line is:
Qutput file Ffor the assgmbled listing (LIR> for nonel:

As ysual far a comsole cr prznter sutsut the words CONSOLE or
H must be Followed by o wolon, g, CONSODLE. If the colon is
@ d the &utput ig aent to a File Gf the nazme given. At this
t, the program veports whethear or not the pulput device {if any) is
ing, The aszembled code is written ocut to s file called
T
;

o

EM WRK. CORE which cannet be sxecuted by itseld but must be changed
nk in with & host file.

The program then stsris sssembling the workfile, flagging
errors as they are found., IF¥ sn & evrvor, other than an L/0
ervror, is found, a general message indicaztes the naturs of the srror
and also gives the eption to continug or sxit. The error message will

be taken from the ERRORE file if possible. If that is not possible, due
to space limitations or the absence of the errors fileg, the error
message number 1s given., The assembly is aborted if the I/70 error
encountered i1s net due to da%a typed in by the user, otherwise the user
is prompied to tvy again tHee bthe complete list of Assembler synitax
ervers and machine specific ervrors in Table & 3

The cvonsclie displays. on the [eft hand side of the scrgen: one
‘dot for ewauh ’;&w of vode assembled and a lineg counter esvery 9C lines.
When an include file is started, the console displays:

INCLURE CFILE IR
indicating which #ile hss besn included.
At the end of the ascsembly the aszembler program indicates that

it is fFindshed and tells the user how meny ervoers were found, In
addition an alphabetic symbel table 1s generated.

The veference symbol table corgsists of three parts. The first
column represants thse symbhal identifier: the zecaond. the sumbol tupe.

and the third, the iﬁfauxcﬁ that it ie defined or the value it has.
Actual valuss ave given for the symbels representing absclutes and
definition locations are given for the symboels representing labels.

The lecation numbar 1% given as & hi-hyte first number and corresponds
to the indey numbers an the left hand side of the listing. Only symhols
which have definition locations or abzolute valuszs have numbers in the
third column; ociher typse have dasches,

Below is an example of an assembhled listing with symbBol tahle.

Fde

Page 100

PAGE — 1 FRIMARY/ FILE: #5: PRIMARY. Z

QCO0G ! . PROC PRIMARYZ

Memoary after initiaiirzation: &0468

elol6l0 . :

(olalslo B FLOPPY . EQU OBFDH i Rom-based floopy driver

Q000! SECHMEM L EQU 2000H iFirst lecation in memory of bo
t

QGOGH SECENT | EQU S200H ; Entry point of bootstrap

Q000 SECDSK L EQU 0O8H + 1700H :SGerctor start of second bootstr
p

0000 B1DEK CEQU 10H 4+ 1700H i Sector start of BIONS part 1
00GO! ANEET E8QY 18W + 17300 ; Bector stert of BIOS part 2
QDU0

QL) CDRG 100U ;Primary bectstrap for ZILOG DO
10001

10001 FD 21 ¥ PRIMARY LD i Get block for second bootstrap
i004:7 CD FDOB Cali.

10070 FD Zi swxww LD iwet bBlock for part 1 of BIOS
10081 CD FDOB Cad L ey

100E:! FD 21 =xws Lo IY, hHFAD :Get block +or part 2 of BIOS
1012t CD FDOB catl. FLOPP

10151 €3 00%0 JP QECENT ivJump into seccond bootstrap
igcig!

1002 1610

16181 SECREAD

1018} O . BYTE %% i Unused

1019 GaA BYTE QAN i Read command

1Qia QOO0 . WORED SECHEN iMemary location for second beo
10iCE Q002 CWORD 200H i Number of bytes in boot

lQlﬁ’ QOO0 CWORD &% i Completion return address

Qo1 CEDRD PRIMARY sError in return address
oo CBYTE %% iCemplaetion result code
Q817 L WORD SECDSK iizk block of second boot
2310

DIREAD
Qo sUnused

B2READ

i oA i Read command

1 0053 Ot i Memory location or BIONS part 1
102 Z i Mumber of bytes in BIOE part 1
TOEE ;Cempletion return address

108 i Error return address

i0) . iCompletion result code

16 1017 CWIRD PILSK ' Disk block of BIODS part 1

103

1o b e

i

4

&

i

i

;h@tzan cfd BIOS part

iumber of bytes in BIQS part 2
;Completion return address
» rebturn address

[

Page 101

103C: OO0 .BYTE %%
10300 1817 . WORD B2DEK
103F
103F | . END
PAGE~ 2 PRIMARYZ FILE: #5: PRIMARY. Z SYMBEOLTARBRLE DUMP
AB — Absolute LB -~ lLahel UD - tUndefined MO - Macro
RF -~ Re# DF -~ De#f PR -~ Proc FC -~ Fung
FB - Public PY — Private (5 —~ Constant
BiD&8K AB 1710, BIlREAD LB 10257 BZDEK AR 17181
FLOPPY AR OBFD! PRIMARY t.B 10G0GT PRIMARYZ PR ——m—]
SECENT Al FLOG! SECMEM AL 90001 SECREAD LB 10181
NOTES:
The lecation values in the symbol table dump refer

locations in the

The *#&5‘g

net yget defined
it a
the listing, it

listing.

indicates that

the assembly has bsen resclived
the location where #%he raforence

is the new contents

2

1.9

All ohgects deal
vuse through
generated befors the £i

availahle for

at the beginning
the stard

Only lab
be follewed by

HIGH-LEVEL

of the first

a colon,
column and may be up

SYNTAX

the
. PRAOC

P e B vw |
0
+ O3

of earc
. PR or -
els may begin in

to 8 digits

CPROC er | FUNG (o

Local labels must

The mumber %o the
goourred whije

s

of that leocation

assambly. No

or | FURND
FLiND

the first
have
the

long. If

the firgt column must contain a spacea.

All assemhlies
.FUNC need not hecause they are ended
Jrnly the last one

PROC ov | FUNC.

Page 102

must end

with a

END.

L END.

needs &

left of

numbar

iCompletion result code
iDick block of BIOS part 2

BZ2READ LB 1032}
SECDSK AR 1708¢
to the

in the listing call attenticn %o the use of a label

star (#) appears aftev the lopcstion number at the left of
a forward refesrence occurring earlier in

the '#‘ isg
te the tTight

before Lhe firvrck PROC or | FURD are

code is allowed to be
The symbol table is reduced
the point wherse it was at

caiumn and may oeptionally
I$!

in the first

However each
by the cccurrence of the next

statement has no label,

. PROC or

A general rvailroad diagram for all assembly files looks like:

r——'l «PROC H
any non—-code

——% denerating)
operations

— .FUNC |~

code deneratin
operations an .END
dtrectlves

Page 103

The non—code generating operations are:
.EQU, .DEF, .REF. .PAGE, .TITLE, .LIST, .MACRO, .IF

The code generating operations are any other pseudo-ops and all
assembly code for the program.

1.9.3 EXPRESSIONS (one—pass restrictions)

Since the Adaptable Assembler makes only one pass through the
source code, something must be assumed (upon encountering an undefined
identifier in an expression) about the nature of the identifier in
order for the assembly to cantinue. It is therefore assumed that the
undefined identifier will eventually be defined as a label, which is

the most probable case. Any identifier which is not a label must be
defined before it is used.

Labels may be equated to an expression containingeither labels
and/or absolutes. One must define a label before it is used unless it
will simply be equated to ancther label. Local labels may not accur on
the left hand side of an equate (. EQU).

l.Local labels are mainly used to Jjump around within a small
segment of code without having to use up storage area needed by regular
labels. The local label stack may hold up to 21 labels. These are cut
back every time upon encountering a regular label and are thus rendered
invalid. An example of the use of leocal labels is shown below, the
Jump to label $04 being illegal.

$03 STA 4 i LEGAL USE OF LOCAL LABEL
JP NZ,$03
JP NZ,$04 ; ILLEGAL USE OF LOCAL LABEL
REALLAB .EGU $

%04 .EGU %

Page 104 -

Identifiers are character strings starting with an alpha
character. Other characters muset be alphanumeric or the ASCII
underline (/_'3, nly the +first 8 characters are used by the assembler
even though more may be entered.

The fellowing operaters can be used in pxpressions processed
by this assembler,

For unary operations:

o+ plus
f- minus
e gnes complemant

Fer binary operations:

o+ plus

- minus

ro e exclusive or

Ty ! multipiication

r truncating divisien

“hY remainder division

e bit wise

‘Rt bit wise

fa= equal (valid only in . IF)
B nat equal (valid oenly in . IF)

All constants must start with an integer 0-9.
A1) operations are applied to whole words.

The defauvlt radix is Hex for the ZBO version and Octal for the PDF-11.

1.9. 4 ASSEMBILER DIRECTIVES: OVERVIEW

Assembler dirvectives {(also referred toc as “pseudo—ops') allow
the programmer toc instruct the assembler to do variocus functions other
than orovide divect sxecutable code. The following directives are
common to all UCESD verszions but may differ from manufacturer’s standard
syntax.

in the following pseuvdo—-op descriptions square brackets, [1,
are used tc denote ogpiticnal slements. I1f an slement type is not listed
it cannct be used in that situation. As usual, angle brackets, <>,
denote meta symbuols

For example: [labell . ABCIY “Leharcater string>t
indicates that & label may be given but is not necessary
and that betweesn the double quotes must go the character
string to be converted {(not necessarily the words
Yeharacter string”).

Page 105

The following terms represent general concepts in the
explanation of each directive:

vahye = any numerical value, label, constant, expression.

valuelist = is a list of one or more values separated by caommas.
idlist = a list of one or more identifiers separated by commas.
expression = any legal expression as defined in Sectian 1.9.3.

identifier:integer list = a list of one or more identifier—integer
pairs seperated by commas. The
tolon—-integer is optional in each pair
and the default is 1. '

Small examples are included after each pseudo—op definition to
supply the user with a reference to the specific syntax and form of
that directive. The larger example, included in section 3. 3.2, is used
to show the coembined use and detailed examples of directive operations.

1.9.4.1 ROUTINE DELIMITING DIRECTIVES

Every assembly must include at least one .PROC or .FUNC, and
one .END, even in the case of stand-alone code which will not be linked
into a Pascal host(i.e. an interpreter). The most frequent use aof the
assembler. however, will be small routines intended to be linked with a
Pascal host. In this case, .PROCs and .FUNCs are used to identify and
delimit the assembly code to be accessed by a Pascal external procedure
or function. The .END appears at the end of the last routine and
serves as the final delimiter.

References to a .PROC or .FUNC are made in the Pascal host by
use of EXTERNAL declarations. At the time of this declaration the
actual parameter names must be given. For example, if the Pascal
declaration is:

PROCEDURE FARKLE (X, Y: REAL) EXTERNAL;
the associated declaration for the .PROC would be
PROC FARKLE. 4

A . PROC, .FUNC, or any assembly routine should be inserted into
the #SYETEM. LIBRARY {execute LIBRARIAN} 50 that it can be referenced by
the #*SYETEM. LINKER and linked in at run time An alternate method would
be to execute the LINKER and tell it what files to link in. Either
method works. However, if the Pascal host is updated and the assembly
routines aren’t in the #SYSTEM. LIBRARY, the linker will have to be
executed after each update. Therefore, we suggest that the routines be
inserted into the *EYSTEM LIBRARY to avoid this repetition. If the

Page 104

linker is called automatically using the Run command, it will search
the *SYSTEM LIBRARY for the appropriate definition of the assembly
reouting and link the two together.

. PROC Identifies a procedure that returns no value. A . FROC is
ended by the occurrence of a new .PROC,. FUNC, or . END.

FORM: . PROC <identifier>l, expressionl

[expression] indicates the number of words
of parameters expected by this routine.
The default is 0.

EXAMPLE: . PROC DLDRIVE, 2

. FUNC Tdentifies & function that returns a value,.
Two words of space to be used for the function value
will be placed on the stack before any parameters
A _FUNC is ended the same way as the .PROC.

FORM: CFUNG didentifiev>i, expressionl
Lexpression] indicates the number of words

of parameters expected by this routine.
The default is 0.

EXAMPLE: . FUNG RANDOM, 4
. END Used to denote the physical 2nd of an assembly.
1.9. 4.2 LAREL DEFINITIONS AMD SPACE ALLOCATION DIRECTIVES
LABCTE Converts character values to A8CII eguivalent byte constants

&
and places the esquivalents into the code siream

FORM: Liabell .A8CTII "<echaracter string>®
where <character string> is any string of printable
ASCII characters. including a space. The length

af the string must less than 8% characters. The
double quotes are used as delimeters for the
characters to bhe converted. I# a double quote is
degired in the string, it must be specifically
inserted using a . BYTE.

Page 107

. BYTE

. BLOGC

Page

"

108

EXAMPLE: CARCTI CHELLOY

far the insertion of ARYCD ths code must he
constructed as:

.ABCT T AR
. BYTE 34
.ASCTI TCDY

Note: The 34 is the ASCII number for a double quote in hex.
The representation actually uveed will depend on the
default radix of thes particular machine in uss,

Alliocstes a byte of space into the code stream for each value

listed Assigns the assoviated label, if any, to the address
at which the byte was stored. Expression must have a value
between —-128 and +255. If the value is ocutside of this range

an error will be #lagged.
FORM: [labell .BYTE Ivaluelistl

the default for ne stated value is O
EXAMPLE: TEMF . BYTE 4

the assaciated outiputl would he: G4

Alioostes a block of spece into code stresm for each value
listed Amount allocated iz in byves. Associates the label

(if present) with the starting address of the bilock allecated.

FORM: Llabell | BLOCK Clength>L, valuel
“<length> is the the number of butes toc hold the <value>
spacified The default for no stated value is O.
EXAMPLE: TEMP . BLOCK 4, b
the associated ouvtput would be:
Ob : ' :
D& { four hytes with the value Q&)
Oh
(07

. WORT Allocates a word nf space in the code stream for each value
in the valuelisgt. Associates the declaration label with the
word spate allocation.

FORM: f1labell | WIRD Lvaluslist>
EXaMrELE: TEMF . WORD O, 2:4,. ..
the assoriated ocutput would be:
QGO0
oGo2
GGo4 {words with these values in them)
EXAMPLE: L1 CWORD L2

Le L EQY % % represenbs the LE on_ the 780
CWORDG 5.

i LC was 30 at the | EHU
the associated ceotput wnuld be:

QO30 (% assignment due te the L2 value #)
00085 {#% aszcigament due to the WORD & »)
L EGU Assigns & value to a label. Labals may be squated to an
axpresnien containing either lables and/or absnlutes. One
us

b
must define 3 label before it is ed unless it will simply
be equated to another label. A locsal label may not appear
on the left hand side of an equate (. EGU).

FORM: <labell . EGU <valuel
EYXAMPL NASE LB Ré&
. ORG Sets the current locetion counter (LC)Y to the value of the . ORG.

it would normally be used in & stand-alone pragram. For example,
there ds one DORG 1n the 848G/7ZI30 interpreter.

.0RG 45 cuwwrently implLemented only forn advancing the Location countern. 1t 44
not cwuently possible to set the Location countern back.

Page 109

1.9.4.3 MACRO FACILITY DIRECTIVES:

A macro is a named section of text that can be defined once and
repeated in other places simply by using its name. The text of the
macro may be paramaterized, so that each invocation results in a
different version of the macro contents.

At the invocation point, the macro name is followed by a list

of parameters which are delimited by commas {(except for the
last one, which is terminated by end of line or the comment indication
(’; 7)). At invocation time, the text of the macro is inserted

(canceptually speaking) by the assembler after being modified by
parameter substitution. Whenever “n (where n is a single decimal digit
greater that zera) occurs in the macro definition, the text of the nth
paraineter is substituted. l.eading and trailing blanks are stripped
from the parameter before the substitution. If 2 reference occurs in
the macro definition to a parameter not provided in a part1cular
invocation, a null string is substituted.

A macro definition may not contain another macro definition. A
definition can certainly, however, include macro invocations. This
"nesting” of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing file (it
listing is enabled at the paint of invocation). Macro expansion text
is flagged, in the listing, by a '#’ just left of each expanded line.
Comments occurring in the macro definition are not repeated in the
expansion.

.MACRO Indicates the start of a macro and gives it an identifier.
. ENDM Indicates the end point of a MACRO.
FORM: . MACRD <identifier>

{macro body)

. ENDM

EXAMPLE: . MaCRO HELP
8TA %1 i % caomment >
1.DA %2 i 4 caomment >
. ENDM

The listing where the macro call is made may look like:

Page 110

HELP FIREST, QECOND

BTa FIRET
LDA SECOND

The statemsnt HELP, calls the macro and zends it tuwao
paramaters, FIRBT and SECOND. These parameters are in turn
referenced inside the macro using the identifiers 41 for the
variable FIRST, and %2 for the variable SECOND.

1.9.4. 4 COMDITIONAL ASSEMBLY DIRECTIVES

are used to selectively exiclude or include
sectians of code a% szcembly fime. When the assemhler encecunters an
IF dirvrective:, i1t evaluates the associated expression. In the simplest
case, if ths exsregsion is false, the asssembler simply discards the
text uyntil 2 EMIis vearhed If therse iz an ELSE dirsctive betueen
the IF and .ENIXdirectives, the text hefore the | ELSE is selected if
the sxpression is true, and the text after the ELSE if the condition

Conditionals

fﬁm

is false The unassemblaed nart of the conditional will not be included
in any listing. Conditionals may be nested,

The conditional expression takes one of two forms. The first
is the novmal arviithmeltic/logical expression used elsswhere in the
assembler. This tTups of expression is considered false if it

cevaluatez ton zeror true otherwise. The second form of conditional
pxpression is comparison for equality or insgguality (indicated by =7

&

angd I respectivelyl. fne may compare strings. characters: orp

arithmetic/iogical expressions.

iV tdenitifies the beginning of the conditional.
L ENDO identifies the eand of 3 conditianal | IF

L ELBE Identifies the alternste to the . IF. If the conditional
sxpression is egual to O then the else is used,

FoRM: Llabel] L IF Lexpression?
. ELSE (# only if there is an else *)
ENDC

Page 111

where the expression is the conditional expression to be met.

EXAMPLE: . IF LABEL1-LABELZ2 iarithmetic expression
i This text assembled only if subtraction
i Tesult is now zero

CIF REAY ="STUFFY jcomparison expression

; This text assembled if subtraction above

i was true and if text of first parameter

i (assume we are in macro) is equal to "STUFFY
. ENDC i terminate nested cond.

. ELSE
i This text assembled if sub¢traction result
i was Iero

. ENDC iterminate outer level
iconditional

1.9.4.5 PASCAL HOST COMMUNICATION DIRECTIVES

The dirvrectives . CONST, .PUBLIC, and .PRIVATE allow the sharing
of information and data space between an assembly routine and a Pascal
host. These external references must eventually be resolved by the
Linker. Refer teo Section 1.8 Linker, for further details.

. CONST Allows access of globally declared constants in the PASCAL host
by the assembly routine. . CONST can only be used in a program
to replace 14 bit relocatable objects.

FORM.: . CONGT <idlist
EXAMPLE: {(# see example after .PRIVATE #)
. PUBLLIC Aliows a variable declared in the global data segment of

the PASCAL host to be used by an assembly language routine
and the host program.

Page 112

FORM: .PUBLIC <idlist>
EXampPLE: (*# see example after . PRIVATE)

.PRIVATE Allows variables of the assembly routine to be stored in the
global data segment and yet Be inaccessable to the Pascal host.

These variables retain their values for the entire execution of
the program.

FORM: CPRIVATE Jlidentifier: integer list>

the integer is used to communicate the number of
words to be allocated to the identifier.

EXAMPLE: (¥ for . CONST, .PRIVATE, .PUBLIC #)
RQiven the following Pascal host program:

PROGRAM EXAMPLE;
COMBT BETSIZE=D30: LENGTH=8G,

VAR I, F, HOLD, COUNTER, LDC: INTEGER
871 ARRAYLO, . 23 OF CHAR:

and the following section of an assembly routine:

. CONST LENGTH
. PRIVATE PRT: LET2. 9
LRPUBLIC LoD, I, 4

This will allow the const LENGTH to be used in the assembly
routing almast as if the line LENGTH . EGU 80 had been
written., {(Recall the limitation mentioned above for the use

. CONMET identifiers.) The variables LDC,I.J to be used by both
the Pascal host and the assgmbly rowtine, and the variables
PRT, LBT2 to be vsed only by the assembly routine. Further,
the LSTR2:9 causes the variable LST2 to correspond with the
beginning of a % word block of space in the global data
seqment,

Page 113

1.7.4. 4 EXTERNAL REFERENCE DIRECTIVES

The use of .DEF and .REF is similar to that of .PUBLIC. .DEFs
and .REFs associate labels between assembly language routines rather
than betwesn an assembly routine and a Pascal host program. Just as
with PRIVATE and .PUBLIC, these external references must eventually be
resolved by the Linker. If such resolution cannot be accomplished:, the
Linker will indicate the offending labhel. Nazturally, the assembler
cannot be expected to flag these errors, since it has no knowledge of
other assemblies.

. DEF Identifies a label that is defined in the current routine
and available to be used in ather .PROLs or | FUNCs.

FORM: CDEF Jidentifierlistl
EXanpPLE: {# sge listing in section 3.3 2.3 for example #)
. REF Identifies a label used in this routine which has been

declared in an external . PROC or FUNC with a . DEF.
During the linking pracess, corresponding . DEFs and . REFs
are matched. '

FORM: CREF Jidentifierlistl
EXAMPLE: (% see listing in section 3. 3. 2.3 for example #)
NMote: The PRUOC and the . FUNG dirvective also generates

a . DEF with the same name. This allows assembly

procedures to call | PROC and .FUNCs if they have
been defined in a . REF.

1.9.4 7 LISTING CONTROL DIRECTIVES

CRIBT Allows selective listing of assembly roudines.
% I# no output file is declarved then the default is CONSOLE:
CNOLIST when a . LIST is encountered. The . NOLIST is used to turn off

the .LIST option. Listing maey be turned on and off
repeatedly within an assembly.

FORM: CLIST oy NOLIST

. PAGE Allows the programmer to explicitly ask for top of form
page breaks in the listing.

L4 no Listing output file 44 specified then all .LIST and .NOLIST
directives are simply Aignored.

FORM: . PAGE

.TITLE Allows the titling of each page if desired. The title may be up
to 80 characters in length. At the start of each procedure the
title is set to blanks and must be reset if title is desired.
The title.

INTERF SYMBOLTABLE DUMP

shown in Section 1. 9.1 was caused by a . TITLE directive. *%

FIRM .TITLE <titlel
where <titlelr 18 & siting

EXaMPLE . TITLE GRC12 interpreter

1.9. 4.8 FIL.E DIRECTIVES

L INCILLUDE Cavses the indicated source file to be inciuded at that point.
FORM: CDINCLUDE <+ile identifier. TEXTY where the file
identifier i3 any Ffile to be included. Only spaces

are allowed hetuween the end of the file name and the
end of the Includse line. :

CORRECT EXAMPLE: . INCLUDE SHORTETART TEXT

CORRELT EXAMPLE: D THCLUDE SHORTSTART, TEXT
i calls starter

IN-CORRECT EXAMPLE: | INCLUDE SHIRTSTART. TEXT ; calls starter

For a list of general errors and also naotes on the Z80 and PDP-11 based

marhinps aseg Tahle &,

** Note: The title is only cleared at the stant of the §ile. 1In section 1.9.1 the title
SYMBOLTABLE DUMP was not set by a .TITLE directive. That heading 48 always
wsed on pages containing symboltable dumps. Upon assembling a further
procedure the heading printed neturns to what Lt was set Lo beforne the
symboltable dump.

Page 115

-~ Notes -

N 147

WARNING

FA O HAH BB FH N R HERRS FE AR AR AR RN
SYSTEM INTRINSICS % % Section 2.1 %
EL S e e S AR T R M AL R L T R

Version 1.5 September 1978

Most of the UCSD intrinsics assume that users are fluent in the
use of PASCAL and are experienced in the use aof the system. Any
nacpssary range ov validity checks are the responsibility of the user.
Since scme of these intrinsics do no checking for range validity, they

may easily cause the system top dig & horrible death.

Those intrinsics

which are particularily dangerous are noted as swuch in their

descriptions.

PARAMETERS

Required parameters are listed along with the function/procedure

identifier.

Optional parvameters are in [square brackets].

The default

valuse for these are in {metabrackets} on the line below them. :

NOTE

Following are some definitions of terms used in these

documents.

They tend to tate the place of formal parameters in the

dummy declaration headers that preface sach description of a particular
routine, or set of routines. ' ,

ARRAY
BLOCK

BILOCRKS
BLOCKNUMBER

BOOLEAN
CHARALTER
DESTINATION

EXPRESSION
FILEID

INDEX

NUMBER

RELBLOCK

SIMPLVARIABLE

a PACKED ARRAY OF CHARacters
ong disk black., {512 bytess

an INTEGER number of blocks
an absolute disk block address

any BOOLEAN valug
any expression which evaluates to a character
a PACKED ARRAY OF CHARarters to write into or
a STRING: context dependent
part or all of an gxpression, to be specified
a file identifier, must be
VAR fileid:. FILE OF <typeli

or TEXT:
or INTERADTIVE:
or FILE:;

an index into a STRING or PACKED ARRAY OF CHARacters,
context dependent or as specified.

a literal or identifier whose tupe is either INTEGER
or REAL.

& reliative disk block address, relative to the start
of fthae file in context, the fivrst block beging
hlock zero.

any declared PASCAL variable which is of one of the
foiliowing TYPEs:

Page 117

SI1ZE
SOURCE
SCREEN
STRING
TITLE
UNITNUMBER

VOLID

* %

Pgge 118

BOOLEAN CHAR REAL HBTHING
~or . PACKED ARRAYL.. 1 OF CHAR
an INTEQER number of bytes or characters, any integer
value
a STRING or PACKED ARRAY OF CHARacters to be used 35 a
read-only array, context dependent or as specified, **
an array 9600 bytes lang: or as needed.
any STRING: call-by-value unless otherwise specified,
i.e. may be a quoted string, or string variable
or function which evaluates to a STRING
a STRING consisting of a file name
physical device number used to determine device handler
used by the interpreter
a volume identifier. BTRINGL7]

L.e. dn strning intrninsics, SOURCE is going fo have to be a stning, in intrinsics that

deal with packed arrays of characters, 4t may be eithern. A word of caution
about using STRINGs Ain Antrinsics that expect character amrays, the zernoeth
element of the stning 48 the Length byte, which may cause the programmen
some unexpected problems. (Were he not awarne of that fact!) ed.

R R X RRFBR R AWRRER R BB REEN NN HRINNR

STRING INTRIMSICS # % Section 2.1.1
LEE TR LI T ERTE S LS L 2 TS S S L T TR

Version 1.5 September 1978
FUNCTION LENGTH (STRING) : INTEGER
Returne the integer value of the length of the STRING.
Example:

GEESTRING := ‘12345677;
WRITELN(LENGTH(GEESTRING), * *, LENGTH(’"));

Will print:
7 0O
FUNCTION POS (STRING , SOURCE) : INTEGER
Thiz function returns the position of the first occurrence of

the pattern in SOURCE to be scanned. The INTEGSER value of the position
of the first character in the matched pattern will be returned; or if

the pattern was not found, zero will be returned. Example:
STUFF := ‘TAKE THE BOTTLE WITH A METAL CAP’;
PATTERN = ‘Tal ‘i
WRITELN(POS(PATTERN, STUFF)}i
Will prant:
26

FUNCTION CONCAT (SOURCEs)Y @ STRING
There may be any number of source strings separated by commas.

This function returns a siring which is the concatenation of
all the s¢rings passed to it. Erxample:

SHORTSTRING ‘THIS I8 & STRING';

LONGETRING ‘THIS I8 A VERY LONG STRING. “; :
LONGSTRING := CONCAT('START -, SHORTSTRING, -/, LONGSTRING);
WRITELN(LONGSTRING);

i

Will print:

START THIS IS A STRING-THIS IS A VERY LONG STRING.

Page 119

FUNCTION COPY (SOURCE , INDEX . SIZE) : STRING

This function returns a string containing 8SIZE characters
copied from SOURCE starting at the INDEXth position in SOURCE.

Example:
TL = ‘KEEP SOMETHING HERE',; KEPT = COPY(TL,POS('S’, TL}, ?);
WRITELN(KEPT);
Will print:
SOMETHING

PROCEDURE DELETE (DEETINATION , INDEX . SIZE)

This procedure removes SIZE characters from DEETINATION
starting at the INDEX specified. Example:
OVERSTUFFED = ‘THIS STRING HAS FAR TOO MANY CHARACTERS IN
DELETE (QVERSTUFFED, POS('HAS ', OVERSTUFFED»+3, 8);
WRITELN(OVERSTUFFED)

IT. %

Will print:
THIS STRING HAS MANY CHARACTERS IN IT.

PROCEDURE INSERT (SOURCE , DESTINATION , INDEX)
Thie inserts SOURCE into DESTINATION at the INDEXTHE position in

DESTINATINON,
Example:
ID = 'INSERTIONE;
MORE = 7 DEMONETRATE

DELETE (MORE, LENGTH(MIRE), 1)
INSERT(MORE, ID. POSC IO/, IDY Y,
WRITELNCIDY;

Will print:

INGERT DEMONZTRATIONS

PROCEDURE STR (LONG , DESTINATION)

Page 120

Thie converts the long integer LONG into a string. The
resulting stving is placed in DESTINATION. See section 3.3.3 for more
about the use of long integers.

Example:

INTLONG = 102039503;

STROINTLONG, INTSTRINGY

INSERT{ ‘. 7, INTSTRING, PRED(LENGTH{INTSTRING) });
WRITELNC ‘%7, INTSTRING?,

Will print:

%1020395. 03

Note about using strings and string functions:

In order to maintain the integrity of the LENGTH of a string,
only string functions or full string assignments should be vused to
alter strings. Moves and/ar single chavacter assignments do not affect
the length of a string which means it probably becomes wrang. The
individual elements of STRING are of type CHAR and may be indexed
1. LENGTH(STRING). Accessing the string outside this range will have
unpredictable results if range-checking is off or cause a run—time
errvror (1) if range checking is on.

Page 121

- Notes ~

age 122

HREERELEHLERHARBEAERXXE XX ERB LR FEEH R NREARR ANER

* INPUT AND OUTPUT INTRINSICS # % Section 2.1.2 *
HEEFRRERFEREDHRH R AR LSRR TREAREL FRRBRR R AR RSE AR RS

Version 1.5 September 1978

PROCEDURE RESET (FILEID, (TITLE])
PROCEDURE REWRITE (FILEID, TITLE)

These procedures open files for reading and writing and mark
the file as open. The FILEID may be any PASCAL structured file, and
the TITLE i1s @ string containing any legal file title.

The difference between them is that REWRITE creates a new file
on disgsk for output Ffiles; RESET simply marks an already existing file
open for 1/0. {Note: if the device specified in the title is a non-
directory structured device, e.g. PRINTER: , then the file is opened
for input, output., or both in either case.) If the file was already
open. and another RESET or REWRITE is attempted to it, an error will be
returned in IORESULT. The file‘s state will remain unchanged.

RESET (FILEID! without optional string parameter "rewinds” the
file by setting the file pointers back to the beginning (zero th

record) of the file. The boolean functions EOF and EOLN will now be
a2t by the implied GET in RESET.

These procedures behave differentiy with files of type
INTERACTIVE. RESET on files of types other than INTERACTIVE will do an
initial GET to the file, setting the window variable to the first
record in the file (as described in Jensen & Wirth). RESET on a file
of type INTERACTIVE wilil not do an initial GET.

PROCEDURE UNITREAD (UNITNUMRBER, ARRAY, LENGTH, [BLOCKNUMBERI1, L[INTEGERI]
PROCEDURE UNITWRITE (UNMITHUMBER, ARRAY, LENGTH, [BLOCKNUMBERI., [INTEGERI]

{ sequential » { O ¥

THESE ARE DANGERQOUS INTRINGICS

These procedures are the low-level procedures which do 1/0s 4o
various davices. The UNITNUMBER is the integer name of an 1/0 device.
The ARRAY is: any declaved packed array., which may be subscripted to
indicate a starting position. This is used as the starting address to
do the transfers from/s/to. The LENGTH is an integer value designating
the number of bytes to transfer. The BLOCKNUMBER is required only when
using a block-structured device (i.e. a disk) and is the absolute
blocknumber at which the transfer will start from/to. I the
BLOCKNUMBER is left out, O is assumed. The INTEGER value is eoptional
(assumed O) and indicates (if 1) that the transfer is to be done
asinchronously. The blocknumber is not necessary. A ' on'" will be
sufficient. (See UNITBUSY and UMITWAIT.) (*when using the asynchronous 1/0
facilities*) .

Page 123

)i
Y

FUNCTION UNITBUSY (UNITNUMBER) : BOOLEAN;

This function returns a BOOLEAN value. indicating i# TRUE that
the device specified is waiting for an I/0 transfer to complete.

Example:
UNITREAD(Z{non—-echoing kesyboardd, CHLOI.
' -1{for one character), {nc block no. }, 1{asynchronous)});
WHILE UNITBUSY{(2!{While the READ has not been completed’> DO
. WRITELN(QUTPUT, I am waiting for youw to type something’);
WRITELN(QUTPUT, ‘Thank you for typing a ‘,CHLOI1);

Execution of this example will continuvously type out the line
‘I am wairting for you to type something’ until 2 character is struck on
the keuyboard, Suppose @ ‘! were typed. The message ‘Thank you for
typing a '‘ will then appear, and program exscution will proaceed
normally.

PROCEDURE UNITWAIT { UNITNUMBER)i

Thie waits for the specified device to complete the I/0 in
progrens, It can be simuvlated by:

WHILE UNITBUSBY(n? DO {waste a small amount of timelk:

PRGOEDURE UNITCLEAR (UNITNUMBER)i

UNMITCLEAR cancels all I/0s2 to the specified unit and resets the
karduware to i1ts power—-up state.

FUMCTION BLOCKREADR (¢ FILEID, ARRAY, BLOCKS, [RELBLOCKI » : INTEGER;
FUNCTION BLOCKWRITE (FILEID, ARRAY, BLOCKS., L[RELBLOCKI) : INTEGER;
{ sequential >

These functions return an INTEGER wvajue egual to the numbher of
bBlocks of data actually transferred. The FILE must be an untyped ¢ile
(i.e. F: FILE;). The length of ARFAY should be an integer multiple of
bytes~per—disk-black. BL.OCKS is the number of hlocks you want '

transferved. RELBLOCK die¢ the blocknumbher relative to the start of the
file, the zeroeth block being the first block in the file. If no
RELBLOCK is specified, the reads/writes will be done sequentially. A

random access I/0 moves the file pointers. CAUTION should be exercised
when using these, as the array bounds are not heeded. EOF(FILEID)
becomes true when the last block in a file is read.

FPage 124

PROGOEDUARE CLOSE (FILEID OPTION)

OFTION may be null or ‘, LOCK’, or ‘., NORMAL’, or 7, PURGE’, or
‘e CRUNGCH"’. (Mote the commas!)

I+ OPTION is null then a NORMAL close is done, i.e. CLOSE
simply sets the file state to closed. I+ the file was opened using
REWRITE and is a disk file, it is deletsd from the directory.

The LOCK option will cavse the disk file associated with the
FILEID to he made permanent in the directory if the file is on a
directory—structured device and the file was opened with a REWRITE;
otherwise a NORMAL close is done.

The PURGE ontion will delete the TITLE associated with the
D from the directory. The unit will g0 off-line if the device is
Inck structurad.

FILEX
,r;.ri‘r)

The CRUNCH optinn is as get undefined in what it will do.
The intent is ¢to Ilock a file with the minimum number of blocks of
usefyl information.

A1l CLOSEs regardless of the option will mark the file closed
and will make the implicit variable FILEID™ undefined. CLOSE on a
CLOSE=d file causes no action.

FUMCTION EOF (FILEIDRY : BOOLEAN;
FUNCTION EOLN (FILEID?! : BOOLEAN

If (FILEID: is not present, the fileid INPUT is assumed (e.g.
IF EOF THEN. ..). EOLN and EOF vaturn false after the file specified is
RESET. They both return true on & closed file. When EOF (FILEID) is
true, FILEID™ is undefined. When QET (FILEID) sets FILEID™ to the EDLN
character or the EQF chavracter., EDLN (FILEID will return true, and
FILEID™ (in a FILE OF CHAR) will be set toc a hlank. If, while doing
puts or writes at the end of a file, the file canneot be expanded to
accommodate the PUT or WRITE, EOF(FILEID) will rTeturn truse.

FUMCTION IORESULT @ INTEGER:

after any I/0 aperation: IORESULT contains an INTEGER value
corresponding to the values given in Table 2.

Page 1295

PROCEDURE GET (FILEID J);
PROCEDURE PUT (FILEID),

These procedures are used for operations on typed files. A
typed file is any file for which a type is specified in the variable
declaration, ie. ‘FILEID : FILE OF <typelX-’. Thie is as opposed to
untyped files which are simply declared as: ‘ FILEID: FILE; ‘. ‘F: FILE
OF CHAR'’ is equivalent to ‘F: TEXT'. In a typed file each logical ‘
record is & memory image Fitting the description of a variable of the
associated {typel.

GET (FILEID) will leave the contents of the current logical
record peinted at by the file pointers in the implicitly declared
"window" wvariable FILEID™ and increment the file peinters.

PUT (FILEID) puts the contents of FILEID™ into the file at the
location of the current file pointers and then updates those pointers.

PROCEDURE READ{LN} (FILEID, SOURCE);
PROCEDURE WRITE{LNY (FILEID, SOURCE)i

These procedures may be used only on TEXT (FILE OF CHAR) ar
INTERACTIVE files for.I/0. If ‘FILEID, ‘ is omitted, INPUT or OQUTPUT
(whichever is appropriate) is assumed. A READ{(STRING) will read up to
and not including the end-of—-line character ({a carriage returnd>) and
leave EOLN(FILEID) true. This means that any subsequent READs of
STRING variatles will return the null string until a READLN or
READ(chararacter) is executed.

There are three files of type INTERACTIVE which are
predeclared: INPUT, OQUTPUT, and KEYBUOARD. INPUT results in echaoing of
ctharacters typed to the consnle device. KEYBOARD does no echoing and
allaows the programmer complete controal of the response to user typing.
QUTPUT aliows the user to halt or flush the cutput.

PROCEDURE PAGE (FILEID);

This procedure, as described in Jensen % Wirth (ibid.), sends a
~ top-of-form (ASCII FF) to the file.

PROCEDURE SEEK (FILEID. INTEGER ;i

This procedure changes the file pointers so that the next GET
or PUT from/to the file uses the INTEGERth record of FILEID. Records in.
files are numbered from O. A GET or PUT must be executed between
SEEK calls since two SEEKs in a row may cause unexpected, unpredictable
“Junk to be held in the window and associated buffers.

Section 2. 1.3 reserved for future use

Page 127

- Notes

Pana 1203

WA WU AW IR SN AR R R R L HRRRE BRI RN T3
LOW LEVEL GRAPHICS INTRINSICS # ¥ Section 2. 1.4 %
333 IR I WK ISR R RN FRR RN LRGN

Version 1.5 September 1978

CAUTION (*used only with the TERAK §510a microcomputer®)

These routines do no range checking of the parameters they are
passed. I# any of the paramters are “out of range”, these routines
will happily move bit patterns throughout main memory, much to the
dismay of the operating system and your program.

See Table 4 for modes and penstates for these intrinsics.

The DROW intrinsics are available only for the Terak 8310a in
this release. Additionzsl display units will be supported in later
releases, but no details are currently availatble. Probable implementa-
tion{s): Tektronix 4004.

PROCEDURE DRAWBLOCK({VAR SOURCE; SRCROW,SRCX,SRCY:TNTEGER; VAR DEST; DSTROW,DSTX,DSTY:INTEGER;
CNTX, CNTY,MODE: INTE

(# noneg of these are optional #)

This procedure is written for the Terak 89%10a graphic display
mode. The TERAMK screen displays words consecutively with the most
significant bit of the word on the vight. DRAWBLOCK will work only on
screens whose graphice operates in thisc manner. WARNING: No range
checking is performed.

DRAWBLOCK transfers a bit matrix SOURCE, which starts on an
word boundary, to 2 specified point (STARTY, STARTX) in the bit matrix
SCREEM. All parameters are integers except SBCREEM, which is a bit
matrix of width ROWSIZE (i.e. BITMAP: PACKED ARRAYLO. . MAXROW1 OF PACKED
ARRAYLO. . ROWRIZE~-11 OF BOOLEAN; 3. The SOURCE is SIZEX bits wide by
SIZEY bits high. The Ffirst COPYX bits of each raw are copied into the
destination MODE is definsd in TABLE 4.

VAR
PROCEDURE DRAWL INE (RANGE: INTEGER; VAR SCREEN; ROWWIDTH, XSTART, VSTART, DELTAX,
' DELTAY, PENSTATE: INTEGER);
{# none of these are oapktiaonal *)

In order the parameters are: INTEGER IDENTIFIER. ARRAY
IDENTIFIER. and the vemaining six, INTEGER EXPRESSION. RANGE will
contain the results of a Radar scan. This parameter is untouched
unless PENSTATE is sent as 4. The value returned is the number of dots
that would have besn drawn before encountering an obstacle. SCREEN may
be subscripted to determine a starting positien in the array. ROWWIDTH
is the width of SCREEN in number of words; this determines how DRAWL.INE
will consider the rectangularity of the array. XSTART is the starting
horizontal coovdinate; YSTART is the starting vertical coordinate.
DELTAX is the distance to move in the horizontal plane. DELTAY is the
distance to move in the vertical plane. PENSTATE controls the action
taken; sees TABLE 4.

**iote: An onden to use these rnoutines, the usern must add
the declanations as above, and the neserved word EXTERNAL;

Page 129

Page 130

A 406 I I AR S S I 3 00 30 0 160 0 IE I RIS I I S 0 28
CHARACTER ARRAY MANIPULATIONS INTRINSICS # 4 Section 2.1.5
AR B ARSI I N 2R 30 S S IR0 2 I B ARSI IR I I I I RN

Version 1.5 September 1978

CAUTION

These intrinsics are all byte oriented. Use them with care.
Resd the descriptions carefully before trying them out as no range
checking of any sort is performed on the parameters passed to these
Toutines. The programmer should know exactly what he is doing before

he does it since the system does not protect itself from these
operations.

FUNCTION 8CaAN (LENGTH: PARTIAL EXPRESSION, ARRAY) : INTEGER:

This Function returns the number of characters from the
starting position to where it terminated. It terminates on either
matching the specified LENGTH or satisfying the EXPRESSION. The ARRAY
should be a PACKED ARRAY OF CHARACTERS and may be subscripted to denote
the starting peoint. If the expression is satisfied on the character at
which ARRAY is pointed:, the value returned will be zero. If the length
passed was negative, the number returned will alsp be negative, and the

function will have scanned backward. The PARTIAL EXPRESSION must be of
the form:

“CHMoor Y=" followed by <character expression’
Examples:

Using the array:

DEM = ‘... THE TERAK IS A MEMBER OF THE PTERODACTYL FAMILY.

SCaN({—-2&. =" 7, DEML301);

will return —-26
STAMILO0,. 7., DEM,

will return 5
SCAN(1S, = , DEMIOI);

will return 8

PROCEDURE MOVELEFT (SOURCE, DESTINATION. LENGTH);
PROCEDURE MOVERIGHT (SOURCE, DESTINATIDN, LENGTH)i

Page 131

These functions do mass moves of bytes for the length
specified. MOVELEFT starts from the left end of the specified source
and moves bytes to the left end of the destination. MOVERIGHT starts
from the right ends of both arrays and also moves byte by byte.

These procedures will optimize to word moves (in the 11
version} if at all pessible. MOVERIGHT never attempts this
optimization:; MOVELEFT will optimize only Iif the destination is at an
address below the I/0 page. {The rgason for net doing word moves to
the 1/0 page is that some hardware relies on byte addressing in this
address space.)

In short: MOVELEFT starts at the leaft end of hoth arrays and

. copies bytes traveling right. MOVERIGHT starts at the right end of
both arrays and copies bhytes traveling left. The reason for having
both of thesgse is if you are working in a single array and the order in
which characters are moved is critical. The following chart is an
attempt to show what happens if you use the procedure which moves in
the wrong direction for your purposes. :

VAR ARAY: PACKED ARRAY [1..301 OF CHAR:

(#123454678%a123454789b123435678%c#)

ARAY: (THIS IS THE TEXT IN THIS ARRAY!

MOVERIGHT(ARAYL 101, ARAYL13, 10)

ARAY: INE TEXT INE TEXT IN THIS ARRAY!
MOVELEFT{ARAYL 11, ARAYI3Z1. 100

ARAY: INEMENENEMENETEXT IN THIS ARRAY!
MOVELEFT(ARAYLZ31, ARAYLZ2], 8);

ARAY: INIS ARRAYVENETEXT IN THIS ARRAY!

~e

PROCEDURE FILLCHAR (DESTINATION, LENGTH. CHARACTER);

This procedure takes a (subscripted) PACKED ARRAY OF CHARACTERS
and fills it with the number (LENGTH) of CHARACTERs specified. This
can be done by:

ALQ] = Lcharacter expression
MOVELEFT(ALQ], AL13/ n—~113;

but FILLCHAR ig twice as fast. as no memory reference is needed for a
source.

See the ncote about word move optimization in the section on
MOVELEFT. The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZEQOF (Section 2.1.68) is meant for use with

these intrinsics; it is convenient not to have to figure out or
remember the number of bytes in a particular data structure.

Page 132

B W 96 3 I W I I I %I W I I I N

MISCELLAMEDUS ROUTINES # # Section 2. 1.6
AR e S R B B IR 303 ST RS 33 330

Version 1.5 September 19786

FUNCTION SiZEQF (VARIABLE GOR TYPE IDENTIFIER) : INTEGER.

This function rTeturns the number of butes that the “"item”
passed as a parameter occupies in the stack. SIZEOF is particularly
useful for FILLOHAR and MOVExxxx intrinsics.

FUNCTION LOG (NUMBER) : REAL;

This function returns the log base ten of the NUMBER passed as
a parameter.

PROCEDURE TIME (VAR HIWORD, LOWORD INTEGER);

This procedure returns the current value of the system clock.
It is in &0ths of & second. (This is somewhat hardware—dependent; we
assume a 146-5it integer size and 32-bit clock word. The HIWORD
contains the most significant portion. WARNIMNG! The sign of the LOWORD
may be negative since the time is represented as a 32-bit unsigned
number. } Bath HIWORD and LOWORD must be VARiables of type INTEGER.

FUNCTION PWROFTEN (EXPONENT. INTEGER) : REAL;

This function rezturns the value of 10 to the EXPONENT power.
EXFOMENT must be an integer in the range 0..37.

PROCEDURE MARK (VAR HEAPPTR: ~INTEGER)
PROCEDURE RELEASE (VAR HEAPPTR: ~INTEGER);

These procedures are used for returning dynamic memory
allocations to the system. HEAPPTR is of type “INTESER. MARK sets
HEAPPTR fo the current top-of-heap. RELEASE sets top-of~heap poainter
to HEAFFTR.

PROCEDURE HALT;

This procedure generates 3 HALT opcode that, when executed,
causes & non-fatal run—time error to scour. At this point in
execution, the Debugger is invoked, therefore, if the Debugger is not
in core when %this occurs, a fatal run—time ervor, #14, will occur.

PROCEDURE GOTOXY(XCOORD ., YCOORD);

This procsdure sends the cursor to the coordinates specified by
(XCQORD, YCOORD). The vpper left corner of the screen is assumed to be

(G, G Thig procedure is written to default to a Datamedia—tupe
terminal. If your system uses oither than a Datamedia or Terak 8510a,

you wiil nesd to0 bind in a new GUTOXY using the GOTOXY package
described in Section 4. 10.

Fage 133

+—Ncﬁﬁ;~—

Page 134

FHAREHFF RSB FEXRERFERR BN ERFERRAFRFRRREFH R IR EHH R IR IR H RN

DIFFERENCES BETWEEN U.C. 5. D. PASCAL AND STANDARD PASCAL# % Section 2.2
e T R e Lt P T A A T I T LRI 2 S S I a2

Yersion 1.5 September 1278

This section is a summary and quick referrence guide which
notes the asreas in which U. C. 5. D. Pascal differs from the Standard
Pascal, and refers the user %to the appropriate documents which explain
various sespects of U C. 8. D. Fascal. The Standard Pascal referred to by
this section is defined in PASCAL USER MANUAL AND REPORT (2nd edition)
by Kathleen Jensen and Niklaus Wirth (Springer-Verlag, 1%735).

Many of the differences lie in the area of FILES and I/0 in
general. It is rzcommended that the reader first concentrate upon the
sections which describe the differences associated with the standard
procedures EOF, EDOLN, READ:. WRITE, RESET, and REWRITE.

2.2 1 CASE STATEMENTS

Jegnsen and Wirth on page 31, state that i+ there is no lahel
equal to the wvalue of the case statement selector, the result of the
ctase statemeni is undefined. U.C. 8.8 Pascal defines that if there is
no label matching the value of the case selector then the next
statement executed is the statement following the case statement. For
example, the following sample program will only output the line "THAT'’S
ALL FOLKSY since the rase statement will “fall through"” to the WRITELN
statement foullowing the case statement:

PROGRAM FALLTHROUGH;
YAR CH: CHAR;

BEGIN
CH:=’A’;
CASBE CH OF

B WRITELN(OUTPUT, ‘HI THERE ‘),
T WRITELN(QUTPUT, ‘THE CHARACTER IS & 77C’' ")
END;
WRITELN(DUTPUT, ‘THAT'’ 'S ALL FOLKE),
ERD.

Cantrary %o the syntax diagrams for (field 1listd> on pages 11b6-
118 of Jensen and Wirth, the U. € & D, Pascral coempiler will not permit a
semicolon before the “END" of & case varisnt field declaration within a
RECORD declaration. See Table & for revised syntax diagrams for <{field
list>.

Page 135

2.2 COMMENTS

n.

The U.C. 8. D. Pascal compiler recognizes any text appearing
between either the symbols "(#" and "#)" or the symbols "{" and "2>" as
a comment. Text appearing between these symbols is ignored by the
compiler unless the first character of the comment is a dollarsign, in
which case the comment is intervpreted as a compiler control comment.

See section 1.6 "Pascal Compiler" for details on compiler control
comments.

Note that if the beginning of the comment is delimited by the
(%" symbol, the end of the comment must be delimited by the matching
"#)" symbol, rvather than the “}" symbol. When the comment begins with
the "{" symbol) the comment continues uyntil the matching "2" symbol
appears. This feature allows a user to "comment out" a section of a
program which itself contains comments. Faor example:

{ XCP

il

XCP + 1; (# ADJUST FOR SPECIAL CASE... #) }

Note that the compiler does not keep track of nested comments.
When a comment symbol is encountered, the text is scanned for the
matching comment symbol. The following text will result in a syntax
error:

(% THIS IS A COMMENT (3% NESTED COMMENT #) END OF FIRST COMMENT)
~error here.

2.2.3 DYNAMIC MEMORY ALLOCATION

The standard procedure DISPOSE defined on page 158 of Jensen
and Wirth is not dimplemented in U. C. 8 D. Pascal. However, the function
of DISPOSE can be approximated by a combined use of the U.C. 5. D.
intrinsics MARK and RELEASE. The process of recovering memory space
described below is only an appreximstion to the Ffunction of RISPUOSBE as
one cannot expliicitly ask that the storage occupied by one particular
variable be released by the system for other uses.

The current U. C.S.D. implementstion allocates storage for
variables created by use of the standard procedure NEW in a stack-like
structure called the "heap”. The following program is a simple
demonstration of how MARK and RELEASE can be used to change in the size
of the heap.

PROGRAM SMALLHEAP:

TYPE PERSON=

RECGRD
NAME: PACKED ARRAYIQ. 151 OF CHAR;
ID: INTEGER

END;

Page 136

VAR P!

~PERSON; (% "~

HEAP: “~INTEGER;

BEGIN

MARK (HEAP)

NEW(P);

P~ NAME: = ‘FARKLE,

P™ ID: = 999;

RELEASE (HEAP);
EMD.

The above program first calls
current top of hesp into the variable
Lo an INTEGER is not really

a pointer

means “pointer

HENRY J. 7

MARK to p
HEAP.

been declared as pointing to almost anything.

to MARK must be & peointer wvariable,

1;‘)“

as defined in J&W #)

lace the a2ddress of the

HEAP being declared %o be
impovrtant,

as HEAP could have
The parameter supplied

but need not be a pointer that is

declared to be a pointer to an INTEGER. This is a particularly handy
construct for deliberately accessing the contents of memory which is
Below is a pictorial description of the heap
at this point in the program’s execution:

otherwise inacressable.

TOP OF HEAP —->

Next the program
results in a new variable
the diagram belou:

TOP OF HEAP ———0

Mo e e mm me e w. e

== HEAP

contents of heap at
start of program

- e we M mm e mw

talls the standard procedure MNEW and this

P

which is

lscated in

the heap as shown in

P ”

L HEAP

contents of heap at
start of program

T e mE e we w me e

Page 137

ODnce the program no longer needs the wvariable P and wiches to
“release” this memory space to the sysiem for other uses: it calls
RELEASE which resets the top of heap to the address contained in the
variable HEAP. :

If the above sample program had made a series of calls to the
standard procedure NEW between the calls to MARK and RELEASE, the
storage occupied by several varisbles would heve been released at
once. Note that due to the stack nature of the hesp it is not possible
to relesse the memory space used by & single item Iin the middlie of the
heap. It is for this re2ason the use of MARK and RELEABE can only
approximate the function of DISPOSE as described in Jensen and Wirth.

Furthermore, it should be noted that careless vuse of the
intrinsics MARK and RELEASE can lead to “dangling pointers®, pointing
to areas of memory which are no longer part of the definsd hesap space.

2.2.4 EQF (F)

To set EOF to TRUE for a textfile F being used as an input file
from the CONSOLE device, the user must type the EOF character. The
system default EOF character is the control-C character. The EOF
character can be altered by & suitable reconfiguration of the system
variable SYSCOM™. CRTINFO. EOF using SETUP, For further information
concerning system configuration and the SETUP program see Section 4. 3.

If F is cinsed, for any FILE F, EOF(F) will return the value
TRUE 1f EOF(F) is TRUE , and F is s FILE of type TEXT, EDLN(F) is
alsn TRUE. After a RESET(F), EOF(F) is FALSE. I¢ EOF(F) becomes TRUE
during a8 GET(F) or a READ(F.,...) the data ocbtained thereby is not
valid.

When a user program starts execution, the system performs a
RESET on the predeclared files INPUT, OUTFUT, and KEYBDARD See
section 2. 2. 11 READ for furthar details concerning the predesclared file
KEYBOARD.

#As defined in Jdeunsen and Wirsh, EOF and EOLN by default will
refer to the file IMPUT if no file identifier 1s specified.

2.2.% EOQLMNF)

CEOLN{F) is defined only if F is a textfile, F is a textfile if
the <type> of the window varisble. F™, is of type CHAR, EOLN becomes
TRUE only after reading the end of line character. The end of line
ctharacter is a tavriage return In the example program below, care
must be taken as regards when the carriage return is typed while
inputing data:

Paqe 1738

PROGRAM ADDLINES:
Vol K, BUM: INTEGER;

BEGIN
WHILE NOT EOQF(INPUT) DO
BEGIN
sUM: =0;
READ (INPUT, K);
WHILE NOT EOLN(INPUT) DO
BEGIN
SUM: =8UM+K;
READ (INPUT, K);
END;
WRITELN(OUTPUT);
WRITELN(QUTRUT, "THE SUM FOR THIS LINE I8 ', SUM);
END;
END.

In order for EOLN{(F) to be TRUE in the above program, the
carriage vreturn must be typsd immedistely after the last digit of the
last integer on that line. 1f instead a space is typed followed by the

carriage return, EOLN will remain FALSE and another READ will take
place.

2.2. 6 FILES

Changes were made in order to bring U . C. 8. D. Pascal closer to
the standard definition of the language.

A, INTERACTIVE FILES

Files of <type> INTERACTIVE behave exactly as files of <type>
TEXT. The standard predeclared files INPUT and QUTPUT will always be
defined tc be of <type> INTERACTIVE. All files of any <type> other
than INTERACTIVE, arve defined to operste exactly as described in Jensen
and Wirth. For files which are not of {type> INTERACTIVE, the
definitions of ECGF(F}, EOLN{(F), and RESET{(F) are exactly as presented
in Jeunsen and Wivrth, For more details concerning files of Xtype>
INTERACTIVE seg section 2. 2. 11 "READ AND READLN" and section 2. 2. 12
"RESET" and section 2.1.2.. ‘

£. UNTYPED FILES

U C S D. Pascal has one type of file declaration which iQ not
found in the syntax of Jemnsen and Wirth. This type and its use is
demonstrated in the sample program below:

Page 139

(HE]—3%)
PROGRAM FILEDEMO:

VAR G F:. FILE:
BUFFER: PACKED ARRAYLO. . S111 OF CHAR;
BLOCKNUMBER, BLOCKSTRANSFERRED: INTEGER;
BADI10: BOOLEAN;

(% This program reads a diskfile ralled ‘SOURCE, DATA’ and
copies the file into another diskfile called ‘DESTINATIONS
ysing untyped +iles and the 1rtrinszﬁ BLOCKREAD and
BLOCKWRITE #=)

BEGIN
BADIO: =FALSE;
RESET (G, 'SOURCE. DATA‘};
REWRITE(F, 'DESTINATION')
BLOCKNUMBER: =0;
BLOCKETRANSFERRED: =BlLGCKREADR{ G, BUFFER, 1. BLGLKNU“B&R);
WHILE (NDT EOF{(G)) AND ’IGQ&SULT =0 AND (NOT BADID) AND
{BLOCKSTRANSFERRrD 1 DO
BEGIN '
BLOCKETRANSFERRED: =BLOCKWRITE (F, BUFFER, 1. BLOCKNUMBER};
BARIO: =({RLOCKSTRANSFERREDC 1Y OR (IDORESULTI>0));
BLOCKNUMBER : =BLOCKNUMBER+ 1,
BLOCKETRANSFERRED: =BLOCKREAD (G, BUFFER. 1, BLDCKNUNEER):
END:
CLOSE(F, LOCK);
END.

The tuo files which are declared and used i1n the above samnple
program are both untyped files. An untyped file F c£an be thought of as
a file withaut a window variable F* to which all I/0 must be
accaomplished by using the functions BLOCKREAD and BLOCKWRITE. Mote
that any number of blocks can be transferred using either BLOCKREAD or
BLOCKWRITE! The functions return the actual number of blocks read. A
somewhat snnakg apprmach to doing & quick transfer would be:

WHILE DLOCKWRITE(F, BUFFER. BLOCKREAD(Q, BUFFER, BUFBLOCKS) Y>>0 DO (#IT#);

This is. however considered unclean. The program above has
been compiled using the I-Compile Time Option:. thereby requiring that
the function IORESULT and the number of blocks transferreid be checked
after each BLOCKREAD or BLOCKWRITE in order to detect any I/0 evrrors
that might have occurred.

Page 140

€. RANDOM ACCESS OF FILES

The U.C.5. D. implemenistion of structured files supports the
ability %o vandomly access individual recnrds within a file by means of
the intrinsic SEEK. SEEK expects two paramsiers: the first being the
file identifier, and the second., an integer specifying the record
number tn which the window should be moved. The first record of a
structured file is numbered vecord O The following sample program
demonstrates the wse of SEEK to randomly access and update records in a
+ile:

PROGRAM RANDOMACCESS;
VAR DIGK: FILE OF
RECORD
NAME: STRINGL2013:
DAY, MONTH. YEAR: INTEGER;
ADDRESS: PACKED ARRAYIO. . 491 OF CHAR;
ALIVE: BOOLEAN
END;
RECNUMBER: INTEGER:
CH: (CHAR;

BEGIN
RESET(DISK, "'RECORDS. DATA ");
WHILE NOT EOFJINPUTY IO
BEGIN : ,
WRITE{(DQUTPUT, 'Enter record number ———237);
READ (INPUT, RECNUMBER 3
SEEK{DISK, RECNUMBER);
GET{(DISKY, :
WITH DISK™ DO
BEGIN
WRITELN{QUTPUT, NAME, DAY, MONTH, YEAR, ADDRESS)
WRITE(QUTPUT, ‘Enter correct name ~-—27');
READL N INEUT, MaME Y

END;

SEEW(DISK,: RECNUMBER); (¥ Must point the window
- back to the record since

GET(DISBK) advances the
window %to the next record

atter loading DISK™ #%#)

PUT(DIGK);

END;
END,

Page 141

Attempts to PUT recovrds heyond the physical end of file will
set EJF to the valwve TRUE. (The physical end of file is the point
where the next record in the file will overwrite another file on the
disk.) SEEK always sets EOF and EOLN to FALSE. The subsequent GET or
PUT will set these conditions as is appropriate.

D. READ AND WRITE FROM ARBITRARILY TYPED FILES

It is not currently possible Lo READ or WRITE to files of type
other than TEXT or FILE OF CHaR.

2.2 7 GOTO AND EXIT STATEMENTS

U.C.S. D has a more limited form of 8070 statement than is
defined as the standard in Jensen and HWirth. U.C.8.D. ‘s QOTO statement
prohibits a GOTO statement to & label which is noet within the same
blaock as the GOTD statement itseld. The examples presented on pages 31-

32 of Jensen and Wirth are not legal in U . C. 8. D. Pascal.

EXIT is a U.C. 8. D. extension which accepts as its single
parameter the identifier of a procedure to be exited. Note that the
use of an EXIT statement to exit a FUNCTION can result in the FUNCTION
returning undefined values if no assignment to the FUNCTION identifier
is made prior to the esxscution of the EXIT ststement. Below is an
example of the use of the EXIT statement:

PROGRAM EXITDEMU;
VAR T: STRING:
CN: INTEGER;

FROCEDURE Qi FORWARD;

PROCEDURE P:
BEGIN
READLN(T);
WRITELN(T);
IF TC11="4#‘ THEN EXIT(Q):
WRITELN(/LEAVE P’);
END;

PROCEDURE Qi
BEGIN

F;

WRITELN('LEAVE Q')
END;

Page 142

PROCEDURE Rj
BEGIN
IF CN <= 10 THEN Q;
WRITELN('LEAVE R’
END;

BEGIN
CN: =0;
WHILE NOT EOF DO
BEGIN
ChN:=CN+1;
Ri
WRITELN;
END;
END.

If the above program were supplied the following input

THIS 18 THE FIRET STRING
#
LAST STRING

the following output will result:

THIE I8 THE FIRST STRING
LEAVE P
LEAVE Q
LEAVE R

#
LEAVE R

LAST STRING
LEAVE P
LESVE @
LEAVE R

The EXIT(E) statement causes the FROCEDURE P to be terminated
followed by the PROCEDURE Q. Processing continues following the call
to Q@ inside PROCEDURE R. Thus the only line of output following "#" is
“LEAVE R" at the snd of PROCEDURE R. In the two cases uwhere the
EXIT{(@) statemsnt is not executed, processing proceads normally through
the terminations of procedures P and Q.

I¢f the procedure identifier passed to EXIT is a recursive
procedure, the most recent invocation of that procedure will be
exited. I, in the above example, one or both of the procedures P and
Q declared and opened some local files:, an implicit CLOSE(F) is done
when the EXIT{(Q) statement is executed: as if the procedures P and Q
terminated normally.

Page 143

The creation of the EXIT statement at U.C. 8. D. was inspired by
the occasional need for a straightforwsrd means to abort a complicated
and possibly deeply nested series of procedure calls upon encountering
AT eTrTrovr. An example of such a use of the EXIT statement can be found
in the recursive descent U . C. 8. D. Pascal compiler. The routine use of
the EXIT statement is, nevertheless, discouraged.

2. 2.8 FACKED VARIABLES
A PACKED ARRAYS

The U.C.8. D. compiler wiil perform packing of arrays and
records i¥ the ARRAY or RECORD declaration is preceded by the word
PACKED. For example, consider the following declarations:

A: ARRAYLO. .21 OF CHAR;
B. FPACKED ARRAYILO. .93 OF CHAR;

The array A will occupy ten 16 bit words of memory. with each
element of the array occupying 1 word. The PACKED ARRAY B on the other
hand will occupy a total of only 5 words: since each 16 hit word
contains tws B bit characters. In this marner esath element of the
PACKED ARRAY B is B8 bits lang.

PACKED ARRAYs need not be restricted to arrays of type CHAR,
for example:

C: PACKED ARRAYLO..131 OF 0..3;

D: PACKED ARRAYL1.. 91 OF SET OF 0..15;

D2. PACKED ARRAYLO..239.0.. 3191 OF BOOLEAM;

Each element of the PACKED ARRAY C is only 2 bits long., since
enly 2 bits are needed to represent the values in the range 0..3.
Therefore C ovccupies only one 16 bit word of memory, and 12 of the bits
in that word are unused. The PACKED ARRAY D is a 9 word array, since
each element of D is a SET which can be represented in a minimum of 16

bits. Each element of a PACKED ARRAY OF BGOOLEAN, as in the case of D2
in the above erxample, occupies only cne bit.

The following 2 declarations are not squivalent due to the
recursive nature of the compiler:

E: PACKED ARRAYILO. .91 OF ARRAYLO. .31 {OF CHAR;

F: PACKED ARRAY{O. .9,0.. 31 OF CHAR;

Page 144

The szecond sccurrence of the reserved word ARRAY in the
declaration of E causes the packing option in the compiler to be turned
off E becomes an unpacked array of 4C wovrds. On the otherhand, the
PACKED ARRAY F occupies 20 total words becauvse the reserved word ARRAY
pccurs only once in the declaration. I+ E hzd been declared as

E: PACKED ARRAYILO. .91 OF PACKED ARRAYLOQ. .31 OF CHAR;
or as

E: ARRAYLO. .91 OF PACKED ARRAYLOC.. 31 OF CHAR;

F and E would have had identical configuratiaons.

The vessrvaed woerd PACKED only hes true significance before the
last appearance of the reserved word ARRAY in a3 declaration of a PACKED
ARRAY. When in dowubt a good rule of thumb when declaring a
multidimensional PACKED ARRAY is to gplate the reserved word PACKED
before every appearance of tha reserved ward ARRAY tou insure that the
resultant array will be PACKED.

The resulbant asrray will only be packed if the final type of
the array is scalar: ar subrange, or a set which can be represented in
8 bits or less. The final ftuype can alsoc be BOOLEAN or CHAR. The
$o0llowing declaration will result in no packing whatsoever because the
final type of the array canniot be represented in a field of B bits:

&: PACKED ARRAYIGC. . 31 OF 0O.. 1000
& wiil e an srrvaey which gocupies 4 14 Lit words,

Pscking never ovcurs acrnss word boundaries. This means that
if the tuype of the elemsnt to be packed requires a number of bits which
does not divide evenly intso 16, there will be some vnused bits at
the high order end of each of the words which comprise the array.

Mote that a string constant mey be assigned to a PACKED ARRAY
OF CHAR but not to an unpacked ARRAY OF CHAR. Likewise, comparisaons
between an ARRAY OF CHAR and @& siring constant are illegal. {These are
temporary implesmentation restrictions which will be removed in the next
major Telease.) Because gf their different sizes:, PACKED ARRAYs cannot
be compared to ocrdinary unpacked ARRAYs. For further information
regarding PACKED ARRAYs 0OF CHARacters zee section 2.2 16 "STRINGS".

4 PACKED ARRAY 0OF CHAR may be output with a single write statement:

PROGRAM VERYSLICK;
VAR T. PACKEDR ARRAYISL. 101 OF CHAR:
BEGIN
T:='HELLO THERE';
WRITELN{TS;
END.

Page 145

Initialization of a PACKED ARRAY OF CHAR can be accomplished
very efficiently by wsing the U.C. 8. D. intrinsics FILLCHAR and SIZEOF:

PROGRAM FILLFAST;
VAR A: PACKED ARRAY({O.. 101 OF CHAR;
BEGIN

FILLCHAR(ALQL, SIZEOF{(AY, 7 7}
END.

The above sample program fills the entire PACKED ARRAY A with
blanks. For further documentation on FILLCHAR, SIZEOF, and the cther
U.C.8. D. intrinsics see section 2. 1.5 "CHARACTER ARRAY MANIPULATION
INTRINSICSY,

B. PACKED RECORDS

The following RECURD decliaraticn declaves a RECORD with 4
fields. The entire RECORD occupies one 16 bit word as a result of
declaring it to be a PACKED RECORD.

VAR R:. PACKED RECORD
I,J:k: 0O..31;

B: BOOLEAN
END;
The vatiables I. J K each $ske up 5 bits in the word. The

boolean variable B is allocated to the 1467th bit of the same word.

In much the same manner that PACKED &RRAYs can he
multidimensional PACKED ARRAYs, PACKED RECORDS may contain fields which
themselves ave PACKED RECORDS or FACKED ARRAYS. Again, slight
differences in the way in which declarations are made will affect the
degree of packing schieved, For example, note that the following two
declarations are not equivalent:

YAR A: PACKED RECORD VAR B: PACKED RECORD

C: INTEGER; C: INTEGER;
F:PACKED RECORD F: RECORD ;
R: CHAR; R: CHAR:
¥ BOOLEAN . K. BOOLEAN
END; ; END; o
H: PACKED ARRAYLO. . 31 OF CHAR H: FACKED ARRAYILO. . 31 OF CHAR
END; - . o END;

A% with the reserved word ARRAY, the ressrved word PACKED must
appesr with every occurrence of the regssrved word RECORD in order for
the PACKED RECORD to retain its packed qualities throughout all fields
of the RECORD. In the above example:. only RECORD A has all of its
+ields packed into one word. In B, tha F field is not packed and
therefore occupies fwo 14 bit words, It is important to note that a
packed or unpacked ARRAY or RECORD which is & field of a PACKED RECORD
will always start at the beginning of the next word boundary. This
means that in the case of A, even though the F figld does not
completely £ill one word, the H field stavrts at the beginning of the

next word boundary.

f& caseg variant may by uveed as the last field of a PACKED
RECOH and the amount of space allocated to it will be the size of the
Iawgest variant amoung ihe varicus cas2s, The actual nature of the
packing is ¥far beyond the scope of this document.

VAR K. PACKUED RECORD
B: BOO0LEAN;
CASE F: BOOLEAN OF
TRUE: (Z: INTEGER):
FALSE: (M. PACKED ARRAYLO. . 31 0OF CHAR)
END
END,

In the above ezample the B and F fields are staored in fwo bits
of the first 14 bit word of the record. The remaining 14 bits are not
vead, The size of the cass variant field is always the size of the
largest variant, so in the above erxample., the tase variant field will
ocoupy two werds. Thus the entire PACKED RECCRD will occupy 3 words.

e

USTMG PACKEDT VARIARLES AR PARAMETERS

Mo element of a3 PACKED ARRAY or field of a PACKED RECORD may bhe
passed a5 a vavriable {call-by- re‘araur a! pavameter to a PROCEDURE or
FLmCTION, Pagked wvariables may. however, be passed 35 call by walue
paramaeters, 2s stated in Jensen and dz*th

D, PACK AND UNPACK ETAMDARD FROCEDURES

VO 8. 0 Pascal does not support the stendard procedures PACK
and UNMPFAUK as defined in Jenssn and Wivth on page 106,
2.2 % PARAMETRIC PRIOCEDURES AND FUNCTIONS

cal does not suppert the construct in which
NS may be declared 29 formal parameters in the
DLEDURE ov FUNCTION.

FRO

Sectian & & for & vevissd suyntax diagresm of <parameter—

2. 2. 10 BROGRAM HEADINGS

Although %the U C. 5 LB, Pascal compiler will permit a list of
file parvameters to be present following the program identifier, these
parametsers ave ignovad by the compiler and will have no a+¥fect on the
pragram being compiled. As a result the following ftwo program headings
are eguivalsnt:

Page 147

FPROGRAM DEMOCINFUT, OUTPUT): and PROGRAM DEMO;

‘With either of the above program headings: & user pregram will
have three files predeclsved and opened by the sustem. These are:
INPUT, QUTPUT, and KEVYBOARD and are defined to be of <{typer
INTERACTIVE. If the program wishes to declare any additional files.
these file declarations must be declared together with the program’s
other VAR declarations.

2. 2. 11 READ &ND READLN
Given the #following declarations:

VAR CH: CHAR:
F: TEXT: (# TYFE TEXT = FILE OF CHAR #)

the statement READ(F.CH) is defined by Jensen and Wirth on page 8% to
be equivalent to the two statement sequence:

CH: =F "
GET{F);

In other words:, the standard definition of the standard
procedure READ requires that the process of opening a file load the
“window varizsbhlse® F™ with the first character of the file. In an
interactive programning environment, it is net convenient to require a
user to type in the first character of the input file at the time when
the file is cpened. If this were the case, every program would “hang"
until a character was typed. whether or not the progrem performed any
input eperations at all. In seder to overcome this problem, U £ 8. D
Fascal definss an additional file <type> callsd INTERACTIVE. Declaring
a file F to he of JTtype> INTERACTIVE is equivalent to declaring F to be
of type TEXT, the differsnce being that the definition of the statement
READ(F:CH}) is the vevevrse of the sequence specified by the standard
definition for files of <typed TEXT: i.e.

GET{F)

CH: =F"y

This difference affects the way in which EOLN must be used
within a program whenreading fraom a textfile of type INTERACTIVE. As
in section 5 . EOLN bscomes frue only after rzading the end of line
charaecter, a varriage return. When this is rsad, EOQLN is get to true
and the cherscter returned as a result of the READ will be a blank. In
the follpwing axample . the left fragment is teken from Jensen and
Wirth; only the RESET and REWRITE staetemenis have hesen altered. The
program on the left will correctly copy the textfile represented by the
file X to the Ffile Y. The program fragment on the right performs a
similiar tesk, excepy that the source file being copied is declared to
be a file of <iypel> INMTERACTIVE. therveby forcing & slight change in the
program in ovder to produce the desirved vresult,

Page 148

PROGRAM JANDW; PROGRAM UCSDVERSION;

VAR X, ¥: TEXT; VAR X, Y: INTERACTIVE:;
CH: CHAR; CH: CHARi
BEGIN BEGIN
RESET(X, ‘SOURCE. TEXT i RESET (X, ‘CONSOLE: 7);
REWRITE(Y, 'SOMETHING. TEXT ‘); REWRITE(Y: ‘SOMETHING. TEXT '},
WHILE NOT EOF(X) DO WHILE NOT EOF(X) DO
BEGIN BEGIN
WHILE NOT EOCLN{X) DO WHILE NOT EOLN(X) DO
BEGIN BEGIN
READ(X, CH}; READ(X, CH) ;
WRITE(Y: CH); IF NOT EOLN(X) THEN
WRITE(Y, CH);
END: END;
READLNM(X}; READLN(X);
WRITELNC(Y); WRITELN(Y);
END,; END;
CLOBEY, LOCKS; CLOSE(Y, LOCK);
END, END.

NMote that the textfiles X and Y in the above two programs had
to be opened by using the U. €. 8. D. extended form of the standard
pracedurszs REBET and REWRITE.

The IF statement in the interactive version of the program
fragment on the left is needed in order for %Lthe file Y to become an
exact cony of the textfile X. Without the IF statement, an extra blank
character is apoended %o the end cf each line of the file VY. This
extra blank covresponds %o the end of line character according to the
standard definition in Jensen and Wirth. NMote that the CLOSE intrinsic
was applied to the file Y in both versions of the program in crder to
make it a permanent file in the disk directory called
"HOMETHING. TEXT". l.itewise, the textfile X teould have been a diskfile
instesd of coming from the CONSOLE device in the right hand version of
the program.

There are three predeclarsd textfiles which are automatically
opened by the system for a user program. These files are INPUT,
QUTPUTY, and KEYBOARD. The file INPUT defaults ts the COMNBOLE device
and is always defined to be of <typer INTERACTIVE. The statement
READ(INFUT, CH)Y where CH is & character veriable. will echo the
character typed from the CONSOLE back to the CONSIOLE device. WRITE
statements to the file DUTPUT will, by default, cause the output to
appear on the CONSOLE device. The file KEYBOARD is the non—echoing
equivalent to INPUT. For example, the two statements

READ (KEYBOARD, CH);
WRITE(QUTPUT, CHY;

are sguivalent to the single statement READ(INPUT, CH).

Page 149

For more documentation regarding the use of files see sections
2.2. 6 "FILES", 2. 2.4 "EOQF", 2. 2.5 "EOLN", 2. 2.17 'WRITE AND WRITELN",
and 2. 2. 12 "RESET". See section 2. 1.2 "INPUT/0UTPUT INTRINSICE" for
more details on the U C. 8. D. intrinsics.

2.2. 12 RESET(F)

The standard procedure RESET, as defined on page 9 of Jensen
and Wirth, resets the file window to the beginning cf the $£ile F. The
next GET(F) or PUT(F) will affect record number O of the file. In
addition, the standard definiticn of RESET(F) states that the window
variable F™ be loaded with the first record in the file. The U.C. S. D.
implementation of RESET(F) operates exactly as the standsrd definition,
unless the file F is declared to be of <typel INTERACTIVE in which case
the statement RESET(F) points the file window to the start of the file,
but does not load the window variable F™. Thus, for files of CTtypeld
INTERACTIVE, the U.C.S.D. equivalent of the standard definition of
RESET(F) is the two statement sequence:

RESET(F};
BETIL(F);

U. C. 8. D Pascal defines an alternative form of the standard
procedure RESET which is used to open a pre—existing file. In it,
RESET has two parameters, the first being the file identifier; the
second, elither a STRING censtant or verieble which corresponds to the
directory filename of the file besing opened. See section 2. 1.7
YINPUT /OUTPUT INTRINSICS"for mere infromstion on this use of RESET.

2.2 13 REWRITE(F)

The standard procedure REWRITE is used to open and create a new
file. REWRITE has two parameters, the fivrst, being the file
identifier, the second corresponds to the direchtory +filename of the
£ile being opened. and must be either a STRING constant or varizable.
For example, the statement REWRITE(F. 'SOMEINFO TEXT ') ceuses the file F
to be, opened for outpui, and, if the file is locked onto the disk, the

filename of the file in the dirvectory will be "SOMEINFO TEXT". REWRITE
performs exactly 25 the U.C. 8. D DOFPENNEW intrinsic and will sventually
replace OPENNEW . See section 2.1 2 "INPUT/OUTPUT INTRINSICS" for

further documentation regavding the use of REWRITE to open a file.

2.2.14 SEGMENT PROCEDURES

The concept of the SEGMENT PROCEDRURE is a U.C.S.D. extension to
Pascal, the primary purpose of which is to allow & programmer the
ability to explicitly partition a large prcgram into segments, of which
anly a few need be resident in memory at any one time. The U.C.S.D.
Pascal suystem is necessarily partitioned in this manner becauvse it is
too lavge fto Fit into the memory of most smzll interasctive computers
at nn2 time.

‘0
H]
uz
D
=y
o

-

The following is an example of the use of SECGMENT PROCEDURES:
PROGRAM SEGMENTDEMO;
(% CGLOBAL DECLARATIONG 60 HERE #)
PROCEDURE PRINT(T:STRIMG); FORWARD;

SEGHENT PROCEDURE ONE;
BEGIN
PRINT('SEGMENT NUMBER ONE');
END;

SEGMENT PROCEDURE TWO;
SEGHMENT PROCEDURE THREE:;
BEGIN
OME
PRINT (‘BEGMENT NUMBER THREE ‘)
END;
BEGIN (% OSEGMENT NUMBER TWO #)
THREE)
PRINT('SEGMENT NUMBER TWO);
END;

PROCEDURE PRINT;
BEGIN

WRITELN(GUTRUT, T
END;

BEGIN

THWO;

WRITELMC/ T/ DONE ")
END.

The above program will give the folleowing output:

SESHMENT NUMBER ONE
SESMENT NUMBER THREE
SEGMENT NUNBER TWOD
I'M DOMNE

For further documentation on SEGMENT PROCEDURES, their use and
the syntax governing their declaration see Section 3. 3 "SEGMENT PROCEDURES".

2 215 SETS

U.C. 5. D, Pascal supports all of the constructs defined for sets
on pages P0~51 of Jengen and Wirth, Sets {of enumevation values) are
limited to positive integers only. Space is assigned, rounding up to
ward boundaries, in a bitwise Ffashion, starting at zero, up to 4079,
inclusive. Thevetor a set can be at most 255 words in size, and have
at most 4080 elements.

Page 151

Comparisons and operations on sets are allowed only between
sets which are either of the same base type or subranges of the same
underlying type. For example, in the sample pragram below, the base
type of the set 8 is the subrange type . .49, while the base {ype of
the set R is the subrange type 1..100. The underlying type of both
sets is the type INTEGER, which by the above definition of
compatability, implies that the coemparizons and operations on the sets
§ and R in the follewing program are legal:

PROGRAM SETCOMPARE;
VAR §: SBET OF 0..4%;
R: SET OF 1..100;

BEGIN
.= [0,35,10, 15, 20: 25: 30: 33. 40, 451,
R:= L[i10Q, 20, 30, 40, 30, 60, 70, 80C, 201;
IF 8 = R THEN

WRITELNC(... oo05s ... "}
EL.SE
WRITELN(‘sets wark };
S := 8§ + R;
END.
In the following example. the construct [= .J is noet lesgal since the

two sets are of two distinct underlying tupes.

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERD, ONE, TWO);
VAR I: BET OF STUFF;

Ji BET OF O, .2

DEQIN

I:= [ZEROI;

Ji= L6, 20

IF T = J THEN .. Z24< error here
END.

2.2 16 STRINGS

V. C.8. 0. Pascal has an additisrnal predeclarsd type STRING.
Variahles of type STRIMNG are essentially PACKIED ARRAYs OF CHAR that
have a dynamic LENGTH att¢ribute, the value of which is returned by the
STRING intrinsic LEMGTH. The default maximum LENGTH of a STRING
variable is 80 characters but can be owverridden in the declaration of a
STRING variable by appending the desired LENGTH of the STRING wvariable
within [] sfter the vesserved type identifier STRIMG. Examples of
declarations of STRING variables are:

Page 152

TITLE: STRING; (% gefauvults to a maximum length of BO characters *)

NAME: STRINGILZ20I: {(# allouws the STRING to be a maximum of 20
characters#)

Mote that a STRING variable has an absolute maximum length of
255 characters. Assignments to string variables can be performed using
the assignment statement:, the U.C. 8. D STRING intrinsics, or by means
of a READ statement:

TITLE: =" THIS I8 A TITLE ‘i
or

READLN(TITLE);
or

NAME: = COPY(TITLE, 1,20);

The individual characters within a STRING are indexed from 1 to
the LENGTH of the STRING, for example:

TITLELLl:= ‘A7;
TITLELD LENGTH(TITLE)Y 1:= 7717
& wvariahle of

£

g
dynamic LENGTH. The vollow
Trun time erTTOoT:

tune BTRIMG may nct be indexed begond its current
B Y
i ing segquence will result in an invalid index

A variablie of type STHRING may be compared to any other variable
of type STRING or a string constant no matter what its current dynamic
LENGTH., Unlikes compariseons involving variables of other types: STRING
variables may be compared To itsms of a different LENGTH. The
resulting fomparison ig¢ lexicegraphical, The foilowing pgrogram is a
demonstration of legal comparisons involving variables of type STRING:

PROGRAM COMPARESTRINGS
VAR 5. STRING;
T. STRINGLAOTL;

‘BOMETHING

TROMETHING BIGGER;

F & =T THEN

WRITELN('S8trings do not work very well’)

F 8> T ThEN

WRITELN(E, * is greater than v T)

ELeE

Page 133

IF 8 < T THEN :
WRITELM(S, ' is less than ’,T);

IF 8§ = ‘GOMETHING . THEN

WRITELN(S: © equals ,5);
IF § 2 ‘SAaMETHINGS THEN

WRITELN(S, 7 is greater than SAMETHING ‘)i
IF § = ‘SOMETHING ; 7 THEN

WRITELM("BLAMKS DOM T COUNT 7}
ELSBE
WRITELNCGLANKE AFPEAR TO MAKE A DIFFERENCE)
S:= XXX’
T:=ARCDEF/;
IF 8 > T THEN

WRITELN(S, ' is greaster than . T)
ELBE ‘

WRITELN(S, * is less than 7, T);

]

r

END.

The abowve program should produce the following ocutput:

GOMETHING dis less fthan GOMETHING BIGGER
SOMETHING eguals SOMETHING

SOMETHING i greater Ythan DAMETHING
BLANKE APPESR TO MAKE DIFFERENCE

XXX is greater than ABCDEF

aof STRING variables in the U. C. S D.
: From the CONMEBOLE device:

One of the moszt common ueo
system is reading file name

W

i

T
&
n
)
B
[

PROGRAM LISTER:

VAR DBUFFER: FPACKED ARRAVIO. . S1113 0OF CHAR:
FILENAME: STRING: :
. FILE;

BEGIN
WRITE{('Enter filename of the Ffile to be listed ———2"1;
READLN(FILENAME);
RESET(F, FILENAMEY;
WHILE NDT EOFF) DO
BETIN

When a wvariable of type STRING is & raramster to the standard
procedure READ snd READLN, &il characters up to ‘the snd of lins
character (a carviage rebturn) in the scurce file will be assigned to
the STRING wvariahle, Note that care must be taken when reading STRING
variables. for example. the single statement READLN(S1,82) is
equivalent to the two statement sequence READIE1); READLN{S2). In both
cases the STRING wariahle 88 will be aszsicned the smpty string.

Page 154

Far further information concerning the predeclared type STRING
see Sectiocn 2.1, 1 "ETRING INTRINSICS".

2.2.17 WRITE AND WRITELN

The standard procedures WRITE and WRITELN are compatible with
Standavd Pascal, sycept with respect to a WRITE or a WRITELN of a
variable of type BUOLEAN. U.C.5. D, Pascal does not support the output
of the words TRUE or FALSE when writing ocut the valuve of a BOOLEAN
variable.

For a description of WRITE statements of variables of type
STRING cee Section 2. 1.1 “STRING INTRINSICS".

UC. 8D s WRITE and WRITELN dn support the writing of entire
PACKED ARRAYs (OF CHAR in a single WRITE statement:

VAR BUFFER: PACWUED ARRAYIO. 101 OF CHAR;

BEGIN
BUFFER: = "MELLDO THERE ', (¥ contains exactly 11 characters #)
WRITELN(OQUTPUT, BUFFER)

END.

The above consbruct will work only if the ARRAY is a PACKED
ARRAY OF {HAR. See section 2. 2.8 PACKED VARIABLES for #further
information.

The following pregram demonstrates the effects of a field width
specification within » WRITE statement for a variable of type STRING:

PROGRAM WRITESTRINGS,
VAR 5: S3TRING:

BEGIN
S:="THE BIEC BROWN FOX JUMPED. .. “;
WRITELN{S):
WRITELMN(S: 30},
WRITELN(S: LO)Y;
END.

The abawve grogram will produce the following eutput:

THE BIG BROWN FOX JUMPED. ..
THE BIG EROCWN FOX JUMPED. ..
THE BIG BR

NMnote that when a string varisble is written without specifying
a field widtn, the actual number of characters written is equal to the
dynamic length of the string. If the field width specified is longer
than %the dynamic length of the string, leading blanks are incserted and
written. If the field width is smaller %than the dynamic length of the
string, the s2ziess characters will be truncated on the right.

Page 155

2.

R

.18 IMPLEMENTATION SIZE LIMITS

The Tollowing is a list of maximum size limitalbions lmposed
upon the user by the current implementation of U C.5 D Pascal:

1. Maximum number of bytes of ob;
FUNCTION is 1200. Local varisb
can cccupy a maximem of 16255 word

de in a PROCEDURE or
a PROCEDURE or FUNCTION

of memsry.

2. Maximum number of characters in a STRING variable is 255,
3. Maximum number of zlements in a 3ET ie¢ 28 % 1&=4080.
4. Maximum number of SEGMENT PROCEDUREs and SESMENT FUNCTIONs

is 146. (9 are reserved for the Pascal zystem:. 7 are
available far wuse by the user program)

5. Maximum numher of PROCEDURE: or FUNCTIDONg within 2 szaoment
isg 127.

Do

.19 EXTENDED COMPARIGONSG.

1

»a -

U.C.8 D Pascal allows = and <> comparisons of any &rray or
record structure.

2.2 20 LONG THNTEGERS.

WCED Pascal allows integers of up bto 34 digits. Seg section
3.2 2 for deta2ils regarding long intrgers.
2.2 21 UNITS

UCSD Pascal now supporis the modularity concept of UNITs. See

section 3 3.2 for details regarding (NITe,

2 2.22 SUMMARY 0OF W . C.S5.D. INTRINSICS
INTRINSIC SECTION # DESCRIPTIDN
BLOCKREAD 200 R Fonrction which ?eéds a variable number of blocks

from an untyocesd file.

BLOCKWRITE 2.1.2 Function which writes a variable number of blocks
from an untyped file

CLOSE

CONCAT

DELETE

DRAWLINE

LRAWBLOCK

EXIT

GOTOXY

TMSERT

TOREBULT

PLROFTEN

&

M

2.

N

n

1

0

=

e

N

.1

o

(84

13

o

]

P

Procedure to clilose files.
STRING intrinsic used to concatenate strings together.

STRING intrinsic used to delete characters from
STRING variables.

Graphics intrinsic for use on the Terak 8510a.
Graphicses intrinsic for use on the Terak 8510a.
Intrinsic used to exit PROCEDURES cleanly.
Procedurs used for cursor addressing whose two
sarameters X and ¥ are the column and line numbers
on the screen where the curser is to be placed.
Fast procedyrs £

ar initialiring PACKED ARRAYs OF CHAR.

Halts a user program which may result in a call to
the interactive Debugger.

Routing used oy the Pascal compiler, and the PDP-11
Sseuemblar
STRING

ntrinsic used to insert characters in STRING

i
variahle

Functinn tTeturning the result of the previous I1/0
operation. (See Table 2 for a list of valvues)

]

2

STRING dintrinsic which Teturns the dynamic length
of 8 LTHRING wvaerviable.

Used to mark the current top of the heap in dynamic
memory a&lliacation.

Low level intrinsic for moving mass amounts of bytes.
lLow level intrinsic for moving mass amounts of bhytes.
Procedure for cpening a naw file.

vouvegduve for

apening an existing file.

BTRING i:
pattern

returning the position of a
FING variable.

Fenction which returns as a REAL result the number

10 raised %o the power 0f the integer parameter
supplied.

Page 157

TREESEARCH

UNITBUSY

UNITCLEAR

UNITREAD

UNITWALT

UNITWRITE

Page 158

Intrinsic used to release memory occupied by
variables dynamically allocated in the heap.

Used for vaendom accessing of records withing a file.

Function Teturning the number of bytes allocated

‘to & variable.

Procedure to convert long integer into string.
Function returning the time since last bootstrap
of system. (returns zero if microcomputer has

no real time clock)

Routine wsed solely by the Pascal compiler.

Low lawvel intrinsic for determining the shtatus of
a periphesral device.

Low level intrinsic to cancel I/0 from a peripheral
device.

Low level intrinsic for reading from a peripheral
device.

Low level intrinsic for waiting until a peripheral
device haz completed an I/0 aoperation.

Low level intrinsic wsed for writing to a peripheral

device.

FRB BN DB LA R R REHIRR LR HRFRBFEZEE FBRRAFRER B RS R
¥ DRAWLINE AN IMPLEMENTOR ‘S QUIDE # # Section 3.1 #
ta SR S E R T I T ST LS R S L S AR R T LS Ll

Yersion I.95 Ceptembher 1978

The DRAWLINEG intrinsic uses an incremental technique to plot
line segmenits on & point-addresssble matrix. The aigerithm guarantees a
best {(least gquavea> approzximation to the desired line. In general this
approximation 1§ nol unigue., DRAWLINE may pick diffsrant
representalions for a ting depending un the starting point. (This could
be corrected by alwads starting &t the same end of the line.) No range
checiing 1 performegd on parametzrs passed bto this intrinsic.

gorithin is essentialiy the one described in bMewuman and

SGprao nitzs of Interazctive Computer Braphics as the Digital
Difé# nalyzer It has been meodified to pevform only integer
arit zeal zource zode s included below The procedurs first
dete ther the I1insg will be morvre harviroenital or wertical., In the
digc o, we assume Lthe hevizontal case; vertical is similar.

There will be DELTAY points plottbted with horizontal increment
of 1 each 2 ical increment wiil be ABS (DELTAY / DELTAX) <= 1.

tical
rithmetic fs scaled by DELTAX to eliminate fractions.

sav in execuition time has been gained by ma1nta1n1ng
: 18 ' and doing only addition and
g int te be plotied.
T cate a wa intersecting lines may

8 b

tion cendition is either (1)
zwfr, or iﬁ Boath next horizental and the

al soints are TRUE ondition (2) could be weakened. when
ine ds mors horirontal. cn!q the next vertical peint need be

he vomputed point i
i

Page 159

FROCEDURE DRAWLINE (VAR RANGE: INTEGER; VAR SCREEN: SCREENTYPE;
ROWWIDTH, XSTART, YGETART, DELTAX., DELTAY, INK: INTEGER);

VarR X, Y, XINC, YINC: COUNT: INTEQER,

PROCEDURE DRAWDOT:

PROCEDURE. RADAR:
VAR GOTIT: BOOLEAN:

BEGIN
GOTIT .= FALSBE:;
COUNT .= COUNT + 1;

IF SCREFR LY, X1 THEN GOTIT := TRUE (#LANDED ON THE POINT%)
ELSE (#WE MIGHT 60 THROUGH A LINE®#)
IF SCREEN [v+1., X3 THERN
GOTIT = SCREEN LY, X+11:
IF GOTIT THEN
BEGIN
RANGE = CUUNT;
EXIT{DRAML I
END;
END (#RADAR®);

BEQIN (#DRAKDDOT}
CABE INK OF

O (#NONE*): EXIT (DRAWLINE}); (#THEY HAD N BUSINESS HERE#*)
1 OeWHITES): SCREEN LY, X1 := TRUE;

2 (#BlLLACK®): SCREEN L[V, X1 := FALSE:

3 (*REVERSE#): SCREEN LY, %1 := nNOT SCREEN LY, X1;

4 (#RADAR#): RADAR
END (#CASZH)
END (#DRAWDOTH);

PROCEDURE DOFORX; {#MORE HORTZONTAL %)
VAR ERROR: I: INTEGER:
BEGIN

IF DEL.TAX = O THEN EXIT (DRAWLINED; (#THEY'RE GUING NOWHERE#)
FRROR = DELTAX LIV &
I = DELTAX;

REPEAT
ERRUA := ERROR + DELTAYS
IF ERROR »= DELTAX ,
THEN BECIN ERROR .= ERRAN — DELTAYX: V .= ¥V # VINC END;
X := X + XING

DRAXDOT:
I :=1 —~ 1
UNTIL I = {3;
END (#DROFORY %},

Page 160

PROCEDURE DOFORY; {#MORE VERTICAL
VaRr ERROR, 1. INTEGER:
BEGIN
ERROR .= DELTAY DIV &
I = DELTAY:
REPEAT
ERROR .= ERROR + DELTAX:
IF ERROR = DELTAY
THEM REGIN ERROR
Y = Y + YINI:
DRAWDOT;
I ;=1 ~ 1;
UNTIL I =
END (#DOFORY2}Y;

i
3]
]
=3
2
g

BEGIN {#DRAWLINE®)
X = XBTART;
IF DELTAY < O

THEN BEGIN XINC = —~1; DELTAX = ~DFLTAX END
ELSE XING = 1; :
Y = YSTART;
IF DELTAY < &
THEN BEGIN YINC = -1, DELTAY .= ~DELTAY END

ELEE YINC := 1
COUNT @ = O
IF DELT&X = DELTAY THEN DOFORX ELS
IF I0i = 4 (#RADAR®) THEM RANGE @ =
END (#DRAWLINE#);

LOFORY

- DELTAY: X 1= X + XINC

END;

CRUNTY: (¥HIT THE LIMIT GIVENI)

Page 161

143

lage

AWM I F I I I N
* FILE FORMATS # # Section 3.2 #
I I I I IR

Version 1.5 September 1978

Text files are of the format:

<1024 bytes> header page, information for editors. This space
is reserved for use by the text editors, and is respected by all
portions of the system. (When a userprogram opens a TEXT file, and
REWRITEs or RESETs it with a title ending in ‘. TEXT’, the 1/0
subsystem will create and skip over the initial page. This is done to
facilitate uses editing their input and/or output data. The file~
handler will transfer the header page only on a disk-disk transfer, and
will omit it on a transfer to a serial device. (i.e. transfers to
PRINTER:, and CONSOLE: will omit the header page)

<1024 byte pages> where a page is defined:
<[DLEIfindentlltext]CCRIIDLEILindentlltextllCR]. .. [nullsl>

Data Link Escapes are followed by an indent—code, which is a
byte containing the value 32+(# to indent). The nulls at the end of
the page follow a [CR] in all cases: they are a pad to the end of a
page. The reason for the nulls is that the compiler wants integral
numbers of lines on a page. The Data Link Escape and corresponding
indentation code are optional. In a given text file some lines will
have the codes, and some won’t,

Foto files are declared in PASCAL as follows:

TYPE SCREEN = PACKED ARRAY(O..239,0..319] OF BOOLEAN;
VAR FOTOFILE: PACKED FILE OF SCREEN;

or something similar, which takes up the same dimensional
space.

Data files are up to the user.

Code files have one block of information which describes the
code kept in the file. First is an array of 16 word pairs, the first
ward in the pair describes the block which starts the code of the
segment which is numbered as the position in the array. The second
word is the number of bytes in that segment. For example if the third
word in the first block of a code file is an 8, and the fourth work is
1084, you now know that segment 1 of this code file starts on block 8
of the file, and has 1084 bytes of code.

Following this array is an array of arrays of characters. The
array is an array of 8 character arrays which describe the segments by
name. These 8 characters are those which identify the segment at
compile time. Here again, the position in this array corresponds to
the segment number.

Page 163

Following the arrauy of names is an array, again 16 words long.
of state descriptors. The values in this avray indicate what kind of
segment is at the described lecation. The values far this array, at
present, are: LINKED, HOBTREG, BEGFRIL. UNITBEG. SEPRTBEG.

The remainder of the blork, 144 woards, is reserved for future

use by later versions of the system. The format of the first bloack
will most probably change completely for version II.O.

Page 144

FRFHHER R BRI H R R R R R I S 33048 R 363 33
SEGMENT PROCEDURE NOTES ®* # Section 3.3.1
I S B SR B N R SR R B P S0 R B e 38

Version 1.5 September 19743
Declaraticns of SEGHMENT precedures and functions are identical
tu standard Pascal procedures and functions except they are preceded by

the reserved word ‘SEGMEMT . fov ssample

SEGMENT PROCEDURE INITIALIZE:

BEGIN
(¥ FASCAL code #)
END;

Frogram behavior differs, however, as code and data for a
SEGMENT procedure {(function) are in memory only wh;le there is an
active invoration of that prorasdure.

Advantages and Lepafits.

The user may now put large pieces of one-time code, eg
initialization code. intn a BEGMENT procedure. After performing the
initialization, fov evample, the now-useless code is taken out of

memary thus increasing the availabls memory space.

Furthermorse the uwseT may now compile his/her program in chunks,

specifically in SEGMENTS. The LLINKER orogram (described in Section
1.8Y zarn be wsed tao lirnk together the separate segmente to produce one
lavge code file.

Reguiremenis and limitations:

The disk which holds the codefile +or the program must be on-—
jine {and in the same drive a2z when the program was started) whenever
oneg of ZEGMENT grocedures g o bo he rzlled Otherwise the system will
attempt to retrisgve and execute whatever information now otcupies that
particular location on the disk., usuzally with very displeasing and
ceTitainly unéxpected results

w 4s W N . F A
& mavimum of wiz (&0

available to the wuser.

For furthar i
TO THE Pamtal, PBESQQ M&L

Page 1465

'age 164

LR T s R L T S e s e LT R IR S R
2 OLTNMACT TO EXTERMNALLY COMPILED # % Sectieon 3.3.2 #
AND ASSEMBLED ROUTINES # # #*
B BB S S R H I I I I B N I AR HIEH IR

Version 1.9 September 1978

EXTERNAL COMPILATION UNIT

The UCED Pascal 1.5 system suppordts a facility for integrating
externally compiled and assembled routines and data structures. Use of
separately compiled structures allcocws the user to create files of
frequentiy used tToutings. After a structure s compiled, the user adds
it te a2 library, wvsing the library maintainer. Files that reference
that sivucture need not compile it directly inte their code file,
rather, the linker copies the existing code into the host code file.
Separate compilation or assembly is supported in these areas: between
particens of programs written in Pascal: between assembly language
reutines and Pascal hosvts: and finally. between assembly language
reutinss, Each of these arsss is discussed in turn by the following
sgctions,

3.3 2. 1 PASCAL TO PASCAL LINKAGEES -— UNITE

A UMIT 15 a group of interdependent procedures:, functions, and
associated data structures which perform 2 specialized task. Whenever
this task i3 nesded within & program. the pregram indicates that it
UBES the UNIT. A UNIT consists of two pavrts, the INTERFACE part, which
declares rtonstants, types, variasbles. psrocedures and functions that are
public and can be used by the host program, and the IMPLEMENTATION
part, which declares constants, types., variables. precedures and
functiorns that are private, These are not available to the host program
and are used by the UNIT. The INTERFACE part declares how the program
will commuricate with the UNIT while the IMPLEMENTATION part defines
how the UNMIT will accomplish its task.

TURTLEGHAPHICS { example B 3 is a2 UNIT which enables the user
to draw pictures using a graphics turtle. The INTERFACE consists of
procedures like MOVE., TURNM, and PENCOLOR, which allow the user toc move
the turtle and changes colors, TURTLEGRAPHICS also employs DRAWLINE, an
externally assembled procedoure, to draw the lines and the turtle.

A program that uses TURTLEGRAFPHICS has no need for DRAWLINE,
and, consegquently, DRAKLINE is private to that UNIT.

Page 1&7

PROGRAM DRAWPOLYGON
USES TURTLEGRAPHICS;
VAR I1: INTEQER;
SIZE, NUMSIDES: INTEGER:

BEGIN
INITTURTLE: {# Initialize the UMNIT’s variables
WRITE(HWhat size polygan™’);
READM NCSIZEY;
WRITE! "Haw many sides™®’)
READI.N(NUMBIDES) ;
FOR I:=1 TC NUMSIDES DO
BEGIN
MOVE(STZE);
TURN{3A0 DIV NMIMSINES):
BN
END.

EXAMPLE A

A program must indicate the UNITs that it USES before the LLABEL
declaration part of the program At the occurrence aof a USES
statement, the compiler references the INTERFACE part of the UMIT as
though 1t were garvt of the host teyd liselid Thorefore a1l public
constants. types: varisbles: functions, and preoecedures ars global. Name
conflicts may aricse if the user definss an identifier that has already
been defined by the UNIT. Frocedures and functiocns may not USE UNITs
locally. :

GRAPHILS:

TEL OR= « NINE, WHIiTe. BLAUK, REVERSE)

SIREE INYIYTURTLE;

FROCEDURE TURN{ RELANGLE. Integer 3,
PROCEDURE MOVE(RELDISTANCE: Intasger }i
PROCEDURE MDVETOC X, ¥ Integer)
PROCEDURE TURNTO(ANGLE. Integer);
PROCEDURE PENCOLGR(PUGLOR. TECOLOR)

IMPLEMENTATION
Cign

TERXEIIE 317

i

Ll o w AT A — ~ v

TERYZTIE = 2729,
Lo i BT Ty,

RADCOMT = BT DRI,

Paae 148

*)

TYFRE

SCREEN = Parted
array LO, TERXSIZE, O. . TERYSIZE] of Boolean:

VAR
(# Private variables #)
TEXPOE: Integer:
TEYPOG: Integer:
TEGHEADING: Integer;
TCPEN: TECUOL.OR:

I, 4 Int&g@‘i‘,i

8 BCREEN;

{# Externally assembled procedure #)
EROCEDURE DRAKL INE(Var RADAR. Integer: Var 8: SCREEN;
ROW, X0, Y8, DX, DY, PEN: Integer)

EXTERNAL: (# External declaration)

PROCEDURE ITNITTURTLE:

BEGIN
Fillonar{ SOREEN. Sireaf(2CREEN:. O 3
Uniturite{ 3, SCREEN, &3)
HEADING = O

TOAPOS = O
TEGYPOS = (;
END;

FROCEDURE MOWE,; (# Public procedure, parameters declared above *)
BEGINM
MOVETII! Round {TURTLEX + DIST#Cas{ TURTLEANGILE/RADCDNST),
Round(TURTLEY + DIST#Sin(TURTLEANGLE/RADCONST!);
END;

PROCEDURE MOVETO;
VAR R: Integer;
BEGIN
DRAWLINE(R, 2, 20, 160+TURTLEX, 120~TURTLEY,
X-TURTLEX, TURTLEY-Y, ORD(TURTLEPEN));
ERND;

FROCEDURE TURNMN: (% Publis grocedure, parameters declared above #)
BEGIN

HEADING = (HEADING+BRELANGLE) mod 3860:
WD

Page 149

PROCEDURE TURNTO:

BEGIN

HEADING : = ANGLE;
END;
PROCEDURE PENCOLOR;
BEGIM

TGPEN = PCOLOR:
END;

END. (% End of ounit 3

EXAMPLE B

Example B is a skeleton for a TURTLEGRAPHICS UNMIT. Note that
the procedures MOVE, TURN. and INITTURTLE. and the TYPE TGCOLDR, are
declared in the INTERFACE part and are available for vuse by the host
pregram. Since the procedure DRAWILINE is not part of the INTERFACE, it
is private. and may not be wused by the hest, The syntax for a UNIT
definition is shown below The declarations of routine hsadings in the
INTERFACE part are similar to forward declarations; therefore, when the
corresponding bodies are defined in the IMPLEMENTATION part, formal
parameter specifications are nat rengated

A UNIT may sisc U3E snother UNTT, in which case thse USBES
declaration must aspgear at the beginning of thz INTERFACE part. In

example C, PICTUREGRAPKICS indicates in the INTERFACE part that 1t
USES TURTLEGRAPHICS. MNote that the program UREGRAFHICS, which USES
PICTUREGRAFPHICS, indicates that it USEE TURTLEGRAPHICS before using
PICTUREGRAFHITR it is lmportacnt bthat fhe Ei.;aF&w“ part 3?
TURTLEGRAPHICS be defined before FISTUREGRAFPHICS makes veferences to
it, therefore this ordering is reguired.

NOTE: VYariabies of type FILE must be declared in the INTERFACE
part of a UNIT A FUULE declared in the IMPLEMENTATION part will cause
a syntax error wpon compilation.

UNIT PICTUREGRAPHICS,

INTERFACE
USES TURTLEGRAPHICS; (= TURTLEGRAPHIZLS ia defined in the
TYPE t% ®#system library see section III below
PYECTOR="VECTOR,
YECTOR=RECORU

DELHEADING: INTEGER,
DELDISTANCE: INTEQER,
PENDOWN . BODLEAN:
NEXTVEC: PVECTOR

END; (% record %)

Pags 170

3#)
3%)

VA:TART:PVECTOR; (# Head of list of lines #)
HEAP: “INTECGER;
PROCEDURE MAKESURP ICTURE;
PROCEDURE DRAWSUBP ICTURE:
IMPLEMENTATION

PROCEDURE MAKESUBFICTURE;

BEGIN
(# Calculates next subpicture and stores on heap #)
END;
PROCEDURE DRAWSURPICTURE;
BEGIN
LPVEC: =8TART; (# Btart at beginning of list #}

WHILE LPVECINIL DO (# and draw each that’‘s there #?
WITH LPVEC™ RO

BEGINM
TURN(DELHEADING)
MOVE(DELDISTANIE)
IF PENDOWN THEN TGPEN: =WHITE

ELSE TGPEN: =NONME;

LPVEC: =NEXTVEC:

ENG;

END; (# drawsvbpicture #)

END.

PROGRAM USEGRAPHICS:

UBES TURTLEGRAPHICS, PICTUREGRAPHICS; (# picturegraphics uses
BEGIN {(# turtlegraphics
INITTURTLE:
REPEAT
MARK (HEAFP)
MAKESUBF ICTURE;

DRAWEUBFICTURE:

RELEABE (HEAP)Y;

UNTIL SETART=NIL;
END.

EXAMPLE C

Page 171

%)
*)

A

™

™

Unit heading

™

Unit identifi

~

< Usesg part >»

DIAGRAM D

- Compilation unit C

Unit definition >

“

- =

er

Interface part

Implementation

L,

-

]

i

-,

-~

]

part

I

Mo N Ty N

-

Program heading > >

L Unit definition
Uses part > < Block 2> |
Unit definition » 5 < Unit definition >

AN AT

A

unit heading 3;
< Interfare par

-~

£n

} .
Implementation part 2

d

>
Unit identifier >

Uit < Unit identifier
Separate unit «

E "n

Identifier 2

nterface

Uses part

Constant definition part >
Type definition part >
Variable declaration part >
Procedure hesading > |

>

Implementation
< l.abel deglaration part >

Constant definition part
Type definition part =
Variagble declaratisn par
Progedure and Function 4

~

o

PAN

T
e
£

e

o

=slaration part

Yy
AR

P

Uses < Unit identifier »

ron Unit ddentifievy G|

P S

R

o Empty

>

The user may define a UNIT in-line,
host program. In this
host program tonether. Any subsegquent
prugras require the uvser to recompile both
and compile a UNIT (or a group of UNITs

case the uvser compiles both
changes

atter the heading of the
the UNIT: and the
in the UNIT or host
The vuvsey may alsc define
separately:, and use the

libhrary mansger to store it (or them
8@ hast program that uses such a UNIT:
the code file by executing the LINKER.

) in a3 library. After compiling
the user must link that UNIT inte
Trying to R(un an unlinked code

file will cause

the LINKER to run automatically,

trying to X(ecute an

urilinked file causes the system to remind

you

to link the file

Changes in a host program require only that the user recompile the

program and link in the UNIT.

Changes in the IMPLEMENTATION part of a
UNIT only require the user to compile the UNTIT,

and then to relink all

compilation units that wuse that UNIT. Changes in the INTERFACE part of
a UNIT require that the user recompile both the UNIT and all

compijation units that use that UNIT.
campilation units must agsin be linked
sectiogn

Page 172

In this case all these
Faor more
1.8 LINKER or sectinon 4.2 LIBRARTJAN,

informatiaon see

< Function heading >

~

o

The compiler generates LINKER information in the contiguous
blocks that foliow a program that uses UNITs. This information
cantains locations of references to externally defined identifiers.
The LINKER document explains the format of this information,

3.3. 3.2 PASCAL TO ASSEMBLY LANGUAGE LINKAGES —— EXTERNAL PROCEDURES

External procedurses are primarily separately assembled assembly
language procedures, stored in a LLIBRARY on disk. Host programs that
require external proceduregs must have them linked into the compiled
codae ¥File. Typicslly the user writes externsl procedures in assembly
language, %o handle low-level opevations that Pascal is not designed to
pirovide. External assembly language procedures are also used for their
comparative speed in ‘vreal time’ applications.

A host program declares that a procedure is external in much
the sames way ac @ procedure is declarsd FORWARD. A standard heading is
providad: followed by the keyword EXTERNAL. Calls to the external
procaedure use standard Pascal syntax, and the compiler checks that
calls to Lthe externzl agree in type and number of parameters with the

erternal dsclaration It is the user’s respensibility to assure that
the zscembly language procedure respects the Pascal external
declaration. The linker chegcks only that the number of words of

paramsters agreo betwpen the Pascal and assembly language declarations.
For more information see section 1.8 Linker and 1.9 Assembler(s).

The conventions of the surrounding sytem concerning register
use and calling sanusnces must be restricted by writers of sssembhly
language vowbtines. These tonventions for the PDP-11 and 4846/808C
implementations are given here.

Firet, for the PDP-11, registers RO and Rl are available for
vuse; any others affecizsd by a routine must be saved on entry and
restorod on exit. The following call snd return sequence is
recommendsd for procedy TS It has the advantage that calls can be
made directly from sssembly language as well as from Pascal.

. PROC ENTRY, &

PARAMI | EGU & iDffert for first parameter
PARAMZ . EGU 4 iGftset for second paramter
RETADDR | EGQU o iCffset Ffor return address
QOLDR3 L EQU O iOffset for original value of RS
LOCAL .Gl -~ Offget for first local
LOCALZ | EOQU -4 iDFPset For cecond looal
MO RS, —(GF) ;i Bave contents aof RO
Mo - BPL,RE iUse RY to get at locals and paramoters
CLR -(5P) iReserve and Initialize
CLR -(SP) i Two local variables

i Inside vroutine
MOV PARAM(RS}, LOCAL1(RS) iSample statement

Page 173

EXIT: MoV RS, 8P
MOY (SP)+, RS
MOV (SP)+, RO
ADD #NPARAMS, SP
JMF @RO

iCut back to entry SP
iRestore previous RS
i Get return address
iDiscard parameters
iReturn to caller

In Z8C assembly language routines, all registers are available

for use,

. PROC

. PRIVATE
iReserve static storage
ireference obgjects like
iregister as on PDP-11

ENTRY, 2

POP HL

LD (RETADDR } . HL.

POP HL. \

LD (PARAMZ) . HL.

POP HL

LD (PARAML) . HL

LD HL., (PARAMZ)

LD (LOCAL 1), HL.
EXIT: LD HL., (RETADDR)

JP {(HL)

. END

For assembly language functions
except that:

essentially the same,

and the recommended interface seguence follows:
would work for both B0BO‘s and Z8O's.
the ZBO instructions are available.)

(This code
Optimizations are possible if

RETADDR, LOCAL L, LOCAL 2, PARAML, PARAMZ2

for this routine. Much easier to
this rather than relative to

i Get
iand
iGet

return address
save it
and save PARAMZ

i Get and save PARAMI

i Move PARAMZ
;o LOCALL

; Get return address

(. FUNC‘’s) the sequence is

1) Two words of zeros are pushed by the compiler befoare any

parameters are put on the stack.

2)
routine exit time.
stack.

After the stack has been completely cleaned up at the
the . FUNC must push the function result on the

Hare is a@n example of an external assembly language preocedure,

and a program that uses it.
apprgach to interrupt handling
applications).

This example takes a very primitive

{which might still be useful in some
There i3 no provision for handling interrupts from the
device where a collected buffer is being written to disk.
continuous interupts would be more complex,

Support for
invelving multiple buffers

and exclusion mechanisims to assure that buffer switching would accur

reliably.

Panm 174

The Project intends eventually to provide synchronization

rapabilities a% the Pascal level.

s0 that interrupnt handling can be

accomplished with greater convenience and safety.

. PROC DRCOLLECT. © H
CONST DREBUFLENG i
PUBLIC DRBUFFER i
DRADTR . EGU 167770
DRVECT L EQU 140
MOy H#HANDLR, @#DRVECT
MOV #340, @HDRVECT+2
MOy BDORBUFLLENG, RO
Moy HDRBUFFER, RL
BI& #1000 S2#DRADDR
LODE: TET R
BHNE Loop
BIC #1000, E#DRADDR
RYS PC
HARNTA R M SRLRADDR+2, (R1)+
nEC A
RTI

PROGRAM COLLECTDATA:
CONgT

LGRBUFLENG = 254,

TYPE
DATABUFFER = Array [1.. DRBUFLENG] of
1 Integer;
DRBUFFER: DATABUFFER,

DATAFILE: File of DATABUFFER:;
PROCEDURE DRCDLLECT;
External;

BESGTN |
Raomrmit
rar 1o
FEEIN

DPROGLLECT:

DU P
Uatand

‘SAMPLE. DATA 3

Collient
»{ DATAFILE,
=1 tu 10 do

o
2

CATAFILE " =DRBUFFER;
Putl{ DATAFILE »;
NI .
Cloesnl DATAFTLE, Lock ¥,
A

Name of routine for use by linker.
Public
Public variable.

conatant.

sLoad address of interrupt

i handler and set priority.

iload RO with size of buffer.

iLoad R1 with address of buffer.
iEnable interrupis on OR interface.
iErit loop when buffer full.

iDisable interrupts.
iReturn to PASCAL host program.

itl.oad buffer with next word,
i increment R, decrement RO
iReturn from interrupt.

integer;

Page 175

3. 3. 2. 3 ASSEMBLY LANGUAGCE TO ASBEMBLY LANGUAGE L INKAGES

The third way in which separate routines may share data

structures and subroutines is by linkage from assembly language to

ass

and

link information that slilows two sspasrately assembled procedures to

LCi
sep

embly language. This is made possible through the use of the . DEF
. REF pseudo-ops provided in the UCSD sssemblers. These generate

nked together. One possible use for this will be the linking of
arate routines and drivers in constructing new UCSD interpreters.

The following are very abbreviated versions of two assembly

language rToutines which make separsate references. They are used
externally by the UNIT PSGRAPHICS:

a .
thi

The first routine declares three public variables and declares
DEF for a label to be referenced by the second routine (Note that
5 is only a skeleton of the actual MOVETO routine):

. PROC MOVETO, & i THE 3 REAL PARAMETERE QCCUPY & WORDS

PROCEDURE MOVETO(X. Y., Z: REAL);

COMPUTES A NEW PSXPOE & PSYPOE FROM PSMATP AND
AN ASSUMED 1.0 AS THE INPUT VECTOR HOMDGENOUS
CRORDINATE. | .

(X Y Z 1) dot PEMATP™ = (X7 Y" Z° W)
PEXPOS = X'/W';
PESYPOS = Y '/W";

THESE ARE GLUBALE IN THE PASTal HOST
L PUBLIC PBXPOS
LPUBLIC PBYPOS
. PUBLIC PEBMATFP

i MOVETO ENTRY POINT

©
&

NS

Pag

MOV R5, -(GP) i RS USED AS FRAME POINTER

MOV e8P, RS '

MOY @#HPSMATP. RO i RO IS TOS MATRIX POINTER
ARAMITER DISPLACEMENTE FROM RIS FRAME PDOINTER

. EQU 14

. EQU iG

. EQU 4

. EGU -4

COMPUTE W', BOMOGENEDUS CRORD
AND LEAVE IT Ol STACK

- . mr e W

a 1754

be

COMPUTE PSXPOE

MOW COMPUTE PSYPOS

L T S

CLEAN UP STACK AND RETURN

ROUMD: & ROUND REAL Ol STACK TC INTEGRER

P RF D0 THENW SUABTRACT Q.0 ELEE
o ADD . 5. THEN TRUCATE.

. ERE

The second routine references the first routine as
separately sssembled DRAWLINE routine.

wall as the
MOVETO must be linked into

LIMETD before the voutine can be linked in as an external procedure to
a FasCal. UNIT or PROGRAM.

CPROC LINEYO. & ¢ PARAMETERS OCCUPY & WORDS

i PROCEDURE LINETO(X. Y, Z: REAL);
i DRAWS A LINE FROM THE LAST POINT CONTAINED IN
i PSXPDE & PSYPOS TO THE NEW TRANSFORMED POINT
i GIVEN BY X, ¥, & Z...
i SAVEX = PSXPOS: SAVEY = PSYPDS;
i MOVETOOX, Y. 2
i TIRAWILINE (JUNK, PSBUFP™, 20, 150+SAVEX, 120-8SAVEY,
i PSXPDS-SAVTX, SAVEY-PSYPOS, 1)
CPUBLIC PBXPDS
L PUBL IC PSYPODS
. PUBLIC PARBUFP
 PRIVATE RANGE
.REF MOVETO
.REF DRAWLINE
i LINMETO ENTRY POINT
MOV RS, (8P}
Moy SP, RS i USE RS AS STACK FRAME PDINTER
SAVEX CEQu -2
SAVEY . EQU -4
X . EQu 14
4 . EQU 10
Z . EQuU 4
;i BAVEX - = PSYPNS: SAVEY = PEVPDS;
i O MOVETDOX. Y, D)5

Page 177

JER PC, @EMOVETO

i DRAOWLINEC ..)

JER PC, eHDRAWLINE

;o ALL DONE. .. RETURHN
JHP eRro
. END

For examples and more information see section 1.9 ASSEM

Fage 178

A0 4RI AW S R IR L SN SN RFHH N RR

LONG INTEGERS # ¥ SECTION 3.3.3 %
A H A S R B B SR R RN S A

Yersion 1.5 Seprtember 1978

A new addition to U . C.5.D. Pascal predeclared type INTEGER is
the optional use of a length attribute (available only on LSI 11/PDP
11 based micros). This essentially constitutes a new type and will,
in the remainder of this document, be rveferred to as LONG INTEGER.
The LUONG INTEGER is switable for business, scientific or other
applications in which the need for extznded number length with
complete accuracy is felt. This extension supports the four basic
standard INTEGER arithmetic operations (addition, subtraction.
divigion and multiplication) as well as routines facilitating
conversion to sirings and standard INTEGERs. Strong type checking is
enforeaod throughout to reduce potential errors. Input/Output, in line
declaration of censtants and inclusion in structured types are all
Fully supported and are analogous to the usage of standard INTEGERs.

LONG INTEGERs are deciared using the standard identifier
INTEGER followed by a length attribute in square brackets. This
length is an unsigned number, not larger than 36, denoting the minimum
numbzer of decimal digits representable by the LOMG INTEGER. For
example, a variable called ‘X’ capable of storing at least an eight
decimal digit signed number would be created by:

VAR X: IMTEGERIED:
Crenstants are defined in the normal mannevr:
CONST RYDBERG = 10973731

In the above example RYDBERG would be by default a LONG INTEGER
and could be used anywhere a LONG INTEGER couvld be used.

In general LONG INTEGERs may be used anywhere it is
syntactically correct to use REALs (not fully implemented until II.G;
for now LONG INTERGER: are limited to aritmetic operations, assignment
ctatements (but not assignment toc a REALY, TRUNC, and STR)Y; however
care must be taken to ensure that sufficient words have been allocated
by the declared length 2tfribute for storage of the result of
assignment or arithmetic expression statemants (see note in next
subsection for complete details). IMTEGER expessions are implicitly
converted as reguired upan assignment to, or arithmetic operations
with, a LONG INTEGER. The revarse iz not true. Unary plus/minus is
correctly handled. Examples- '

Page 179

VAR I:- INTEGER;
L: INTEGERINI; where M is an acceptable length
§: REAL;

I:= L; compile time error. see TRUNCC(L) below

lL:=-L; correct, with the usual exceptian

L:= I:, always correct

l..= 8 never accepted

S:= L; will be implemented with II 0O

Arithmetic operations which may be used in conjgunction with
LONG INTEGERs are any or all from the set +.—, % DIV, unary
plus/minus. On assigrnment the length of the LONG INTEGER is adjusted
{during execution) to the declared length attribute of the variablas,
therefore an interrupt (overflow) may result An interrupt {overflow)
occuTs only when tha intermadiate resuylt exceeds the number of words
required to store {(as a minimum) thirty-seven decimal digits, or when
the final result is assigned to a variable with insufficient length
attribute. (On the matter of the length attribute and what it
defines: & length attribute of 5 thru 9 may store up to and including
2147483647, length attributes of 10 thru 14 may store thru
140737488353327, 195 thru 18 .. F2323372036854775807. It is left to the
interested reader to compute any largsr length attribute storage
capacities. Thus it would be unuwise to attempt to use a LONG INTEGER
as & subrange. This range of length attributes all having the same
upper bound is a result of the allocation of a full word as the least
amount of additional storage, i.e. 5 thru 2 represent a two word
INTEGER.) All of the standard relational operators may be used with
mixed LONG INTEGER and INTEGER.

The function TRUNC(L), where ‘L’ is a LONG INTEGER, will
convert ‘L’ to an INTEGER (i.e. TRUNC will accept a LONG INTEGER as
well as a REAL as an argument). Interrupt (overflow) will result if L
is greater than MAXINT.

The procedure STR(L,S) converts the INTEGER or LUONG INTEGER
‘L.'. into a string (complete with minus sign if needed) and places it
in the STRING ‘8. The following program segment will provide a
suitable dolilar and cent routine:

STR{L, 5 INSERT(’. 7, S, LENGTH(S) -1}, WRITELN(S);

Where ‘LY and ‘S’ are appropriately declared. TRUNC and STR
are the only two routines which currently will accept LONG INTEGERs as
paramaters. At attempt €o declare a LONG INTEGER in a parametsr list
will result in a compile time evror, which may be civcumvanted by
creating a type which is a LONG INTEGER. For example:

Page 180

TYPE LONMG = INTEGERLIBI
PROCEDURE BIGNUMBER(BANKACCT: LONGY,

The LONG INTEGER is stored as a multi-word, twos complement
binary numbsr. System and interpreter voutines do the I/0 conversions
as required, Maximum storage efficiency is achieved by dynamic
expansion and contiraction of word allocation as required. During
LONG INTEGER operations the length is placed on the stack above the
number iteelf, the declared length attribute need not be the same and

can bhe less than this length.

Page 181

- Notes —

‘age 182

FHRURFHELERARRAUREERRRRAEFRHHEAE R WRE IR R BJRR

PHUEDD-MACHINE ARCHITECTURE # % Section 3.4
LSRR T LA ST BT R LIRS S S ALY

Version I.5 September 1978

The ULCSD Pascal P-machine, designed specifically for the
execution of Pascal programs on small machines, is an extensively
modified descendant of the P-2 pseudo—machine from Zurich. It supports
variable addressing, including strings, byte arrays, packed fields, and
dynamic variables; logical. integer, real, and set top-of-stack
arithmetic and comparisons; multi—element structure comparisons;
several tuypes of branches; procedure/function calls and returns,
including averlayable proceduresi miscellaneous procedures used by
systems programs; and an I/0 system.

This Section, to be used in conygunction with Section 3.5,
describes the P-machine "hardware:." communication with the operating
system, exceptional condition handling, the instruction set, the 1/0
system: and the bootloading process.

NOTE: not all of the above will be included in %the 1.5 release
and will only be available sometime later

3.4 1 HARDWARE

There exists no physical P-machine {(yet!). The P-machine
exists only as interpreters written in assembly languages of actual
computers, However, this can and will be ignored in the following
descripfion.

The P-machine uses 16-bit words, with two 8-bit bytes per
word, 1t has several registers and a vser memorTy:. in which are kapt a
stack and a8 heap. All registers are pointers to word—-aligned
structures, except IPC, which is a pointer to byte—-aligned

instructions. Ths registers are:
SP: Stack Poinfter is a pointer to the top of the execution stack. The
stack startes in high memory and grows toward low memary. It

contains code segments and activation records, and is used to pass
parameters, vebturn function values, and a8s an oaperand source for
many instructions. The stasck is extended by loads and procedure
calle, and is cut back by stores, procedure returns, and arithmetic
operations.

NP New Pointer iz a pointer to the top of the dynamic heap. The heap
starts in low memory and grows vpusard toward the stack. It
coniainse all dynamic vaviablies {see Jensen and Wirth, Chapter 10).
It is extended by the standard procedure ‘new’, and is cut back by
the standard procedure ‘relsase’.

Fage 183

JTARB: Jump TARLle pointer is a pointer to the procedure attribute table
of the currently executing procedure. {See Section 3.3, figure 5.)

SEG: Segment Pointer points to the procedure dictionary of the segment
to which the currently executing procedure belongs. (See Section
3.9 figure 6.)

MP: Most recent Procedure is a pointer to the activaticon record af the
currently executing procedure. (See Section 3.5, figure 7.
Variables laocal to the current procedure are accessed by indexing
of £ MP.

BASE: BASE Procedure is a pointer to the activation record of the most
recently invoked base procedure (lex level 0O} Global (lex
level 0) variables are accessed by indexing ofFf BAGE.

3.4.2 OPERATING SYSTEM/P-MACHINE COMMUNICATION -~ SYSCOM

It is sometimes necassary for the operating system and the P-
machine to exchange infermation. Hence there exists a variable SYSCOM
in the outer block of the operating system, and a corresponding area in
memoTy known to the hardware. The +fields in SYSCOM actuslly relevant
to this communication are:

IORSLT: contains the error code veturned by the last activated or
terminated 1I/0 operations. (See I/0 section below, and operating
system read and write procadures. ?

XEQERR: contains the evrror code of Lhe last run—~time error. (Gee
exception handling below.)

SYSUNIT: contains the unit number of the device the operating system
was bonted from (usvally 4 or 3J).

BUGSTATE: contains the current bugstate. (See BPT dnstruction below.)
GDIRP: contains a pointer to the most recent disk directory read in,
unless dynamic allocation or deallocation has taken place since then,

(Soe MRK, RLS, and NEW ingtructions below 3

STURASE, LASBTMP, GQEG. JTaAR: copins of Lhe BABE., MP, SEC and JTAR
registers.

BOMRBPR contains a pointer to the activation record of the operating

system routine EXECERROR when a rtuntime error otcurs. (See
exception handling.)

Pzge 184

BOMIPC: contains the value of IPC when a run—-time error oCCcurs.

HLTLINE: contains the line number of the last conditional halt executed.
(See BPT instruction.)

BRKPTS: contains up to four line numbers of breakpointed statements.
{(Sae BPT instruction.)

CRTINFO. EQF: contains the end-of-file character (see console input
driver).
CRTINFO. FLUSH: contains the flush-output character (see console input,

output drivers).

CRTINFO. STOP: contains the stop—output character (see console ovtput
and input drivers).

CRTINFT). BREAK: cantains the break—execution character (see console
input driver),

SEGTABLE: contains the segment dicticnary for the paescal system,

3.4.3 EXCEPTION HANDLING ~ XEQERR

Whenever a run—~time error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers control to the XEGERR routine.
This routine

1) enters the error code into SYECOM™ XEGQERR.

2) calculates what MP will be after step 4. and sets SYSCOM™. BOMBP to
that. (The size of EXECERROR s activation record must be known
by the P-machine.)

3) stores the current value of IPC into SYSCOM™. BOMIPC.

4) points IPC to a CXP 0,2 (call cperating system procedure
EXECERRGORY instruction.

95) resumes exsoution of interpreter code, starting with the CXP.

3.4 .4 OPERAND FORMATS

Although an element of a structure may occupy as little as one bit,
a3 in a PACKED ARRAY OF boolean:. wvariables in the P-machine are
alwaye aligned on word boundaries. All tap—of—stack operations expect
their operands to occupy at least one word, even if not all the
information in a word is valid. The least significant bit of a word is
bit O, the most significant is bit 15

Page 185

BOOLEAN: One word. ' Bit O indicates the value (false=0, £frue=1), and
this is the only information used by boolean comparisons. However,
the boolean operators LAND, LOR, and LNOT operate on all 16 bits.

INTEGER: One word, two’s complement, capable of representing values in
the range -—-32748. . 32747.

SCALAR (user—defined): One word, in range ©..32767.

CHAR: One word, with low byte containing character. The infternal
character set is "extended" ASCII, with Q.. 127 representing the
standard ASCII set, and 128.. 255 as a user~defined character set

REAL.: Two words, with format implementation depsndent. The system
is arranged so that only the interpreter needs to know the detailed
internal format of REALs (beyond the fact that they sccupy two
words) Following are the two detailed formats Ffor the CPUs we now
(as of 1.4) support.

PDP11:
15 o
word 1. ! low mantissa !
15 14 7 & 0
wiprd O ‘g ! exponent ! high maniissa H
Z80/80840:
5 a 7 O
word 1 ! low mantissa ! middle mantissa '
15 14 g8 7 O
word O: tg high mantissa ! exponent '

s St 442 bt 108 S A0 (R 174 e Mok SN A P v S Shomw Al ekt P D SRS fvhe S (Lo St Bt it 1008 Bl A A S Bt St G VO ks Bt 3 B A M e e M SN S R

Both representations have an exress-128 exponent, a fractional
mantises that is always normalized., exponent hase 2, an implicit

24th mantissa bit, and zero represented by a zero exponent. (See
PDPli processor manual or ZI80/8080 interpreter listing for greater
detail.)

POINTER. One or three wovrds, depending on type of pointer.
Pascal pointers, internal word pointers: one word, containing a word
address. ‘
Internal byte pointers: one word, containing & byte address.
Internal packed field pointers: three words
word 2: word pointer to word field is in.
word 1. Ffield_width (in bits)
word O: vight_bit_number of field.

SET: G 259 words in data segment, 1 . 25%& werds on stack. Sets are

implemented as bit vectors, always with a lower index of zero. A
set variable declared as set of m..n is allocated (n+13) div 16
words. When a set is in the data segment, all words alliocated
contain valid information.

When a set is on the stack, it is represented by a word
containing the length, and then that number of words: all of which
contain valid information. All elements past the last word of a
set are assumed not to be elements of the set. Before being stored
back in the data segment, a set must be forced back to the size
allocated to it, and so an ADJ instruction must be issued.

~-RECORDS and ARRAYS: any number of words (up to 16384 words in one
dimension). Arrays are stored in row-major order:, and always have
a lawer index aof zera. Only fields or elements are loaded onta the
stack ~ never the structure itself. Packed arrays must have an
intagral number of elements in each word, as there is no packing
across word boundaries (i%t is acceptable to have unused bits in
each ward). The first element in each word has bit O as its low-
arder bit.

STRINGS: 1..128 words. Strings are a fiexible versiaon of packed
arrays of char. A stringlnld occcupies {(n div 2)+1 words. Byte O
of a stving iz the current length of the string, and bytes
1..iength(string) contain valid characters.

CONSTANTS: constant scalars, sets, and strings may be imbedded in
the instruction stream, in which case they have special formats.
All scalars (excluding teals) not in the range 0..127: two bytes,
low byte first.
Strings: all string literals take length(literali+i bytes. and
are byte aligned. The first byte is the length, the rest are the

actual characters. This format applies even if the literal should
be interpreted as a packed arrvay of char (see SiP and S2P
below).

Reals and sets: word aligned, and in reverse word order.

3.4.°5 INSTRUCTION SET FORMAT

Instructions on the P-machine are one or two bytes long, followed
by zero teo four parameters. Most parameters specify one word of
information, and are one of five basic types

UB wunsigned byte: high order byte of parameter is implicitly zero.

SB signed buyte: high order byte is sign extension of bit 7.

DB don“t care byte: can be treated as 5B or UB, as value is always in
the range 0..127.

B big: this parameter is one byte long when used to represent values in
the range 0..127, and is two bytes long when representing
values in the range 128.. 327&7. I+ the first byte is in
O..127, the high byte of the paramester is implicitly zero.
ODtherwise, bit 7 of the first byte is cleared and it is used as the
high order byte nof the parameter. The second byte is used

Fage 187

as the low order byte. ,
W word: the next two bytes, low byte first, is the parameter value.

Any exceptions te these formats are noted in the instructions where
they ocrur.

3.4.6 ENGLISH INSTRUCTION SET DESCRIPTION

In the following section: refersnces to an element on the stack are
context—depgndent, and can mean anywhere from onse word to 2546 words.
Also., unless specifically noted to the contrary, operands are popped off
the stack ~ they are not left argund.

Abbreviations are used widely, but use fairly simple conventions.
Parameters are written as X or X_n, where X is UB, SB, DB, B, or W, and
n is an integer indicating the perameter position in the instruction.
Tos means the operand on the top of stack. tos—1 the next operand.
etc, Mark Stack Control Word is abbreviated to MHECW.

Many instructions refer to the activation record of & procedure, and
this document assumes the reader has a general knowledge of procedure
calling in stack machines, and the concept of stack frames. Any
activatinn racord as defined in this doctument specifically consists of:

1) the local data segment of the procedure. and .

2) tho MGCW: containing addressing information (static links), and
infermation on the calling procgdures envivonment when the procedure
was calied,

(See Section 3.8, #figure 7.

The dymamic chain refers to the ralling chain, $raversed using the

MSTW MSDYN links. The static chain referrs o the laxical or ancestor
chain: traversed using the MBECH MESSTAT links,

MNEMONIC OoP-~-CODE PARAMETERS FULL NAME AND OPERATION

VARTIABLE FETCHING,

9.4 INDEXING:, STORING, AND TRANSFERING
5. A. 1 ONE WORD LOADS AND SR TP R D

o
STORES
S.A. 1. a CONSTANT ONE WORD L.OADS

SLDC 0..127 . ; Short load word constant. Pushes the
speode., with high byte zero, onto stack

Page 1886

LDCN
LDCI

2.A. 1. b
SLDLL
SLDL1&

LDL

LLA

SLDO16

L.DO

LAO

SRO

4]
;b
e

1.4

L.O0

L.DaA

159

199

LOCAL

216
=31

202

198

‘r-.

OnE

Load constant nil. Pushes the
implementation-dependent value of nil.

lLoad constant word. Pushes W.

WORD LOADS AND STORE

LEalL OME WORD

DE. B

with offget [

Short load local word. SOLDLXx Tetches
the word with offzet x in MP activation
record and pushes it.

Load local word. Fetrhes the word with
gffzet B in MP activation recoard and pushes it

l.oad loral address. Fetirhes addreas of

the waord with offset B in MP artivation record
and pushes it

S¢ore local word. Stores tos into word
B in MP a

ctivat:on record.

LOAGS AND STORE

Short load glohal word. SLDOx fetches
the word with offset x in BASE activation
recard and pushes it

lLead gleohal word., Fetches the word with
pffeet B in BASE activation record and pushes
ik

lLoad global address. Pushes the word
address of the word with offset B in BASE

activation vecord.

Stove global wavrd. Stores tos into the
word with offset B in BABE activation record.

Load intermediate word. DB indicates the
number of static links to traverse to find the
activation record to use. B is the aoffsst
within the ‘activation record.

Load intermediate address.

Store intermediate word.

Page 189

5. A 1. e "INDIRECT ONE-WORD L.OADS AND STORE

STO 154 o Store indirect. Tos is stored into the
word pointed to by tos—1.

SINDO 248 Load indirect.

9.4.2 MULTIPLE WORD LOADS AND STORES (SETS AND REALS)

LDC 179 UB,<block> Load multiple word constant. UB is the
number of words to load, and <block> is a
word aligned block of UB words., in reverse
word order. Load the block ontoe the stack.

L.DM 198 uB l.oad multiple words. Tos is a pointer
o to the beginning of a block of UB words.
Push the block onto the stack.

ST™ 189 - UB Store multiple words. Tos is a block of
UB words, tos—-1 is a word pointer to a
similiar block. Transfer the block from the

stack to the destination block.

5. A.3 BYTE ARRAYS

BYT 210 Byte conversion. Convert word pointer
tos to a byte pointer. (NOP on the PDP1i and
Z80/8080 implementations.)

LDB 190 Load byte. Push the byte (after zeroing
high byte) pointed to by byte pointer tos.

STB 191 Store byte. Store byte tos into the
location specified by byte pointer tos-1.

MVB 1469 B Move bytes. Tos is a byte source
pointer to a block of B bytes, tos—-1 is a
byte destination pointer to a similiar
block. Transfer the source block to the
destination block. {This instruction is
redundant due to word alignment, and will
be replaced by MOV in the future.)

IXB 209 Index byte array. Push a byte pointer
tformed from the integer index taos and the byte
pointer tos—1.

D.A. 4 STRINGS

Page 190

LCA

SAaS

s1p

S2F

IX8

SINDO
SIND7?
IND

INC

IXA

™

3

166

170

208

ORD

148

164

UB, <chars> Load constant string address. Push a

us

ANl ARRAY

B

byte pointer to the location UB is contained
in., and skip IPC past <chars>.

String assign. Tos is either a source
byte pointer or a character. (Characters
always have a high byte of zero, while
pointer never do.) Tas-1 is a destination
byte pointer. UB is the declared size of
the destination string. I+ the declared
size is less than the current size of the
source string, a run—time erTOr oCCcurs;
otherwise all bytes of source containing
valid information are transferred to the
destination string.

String to packed conversion on tos. Tos
is a byte pointer to a string, and is
incremented by one byte in order to point to
the first character of the string.

String to packed conversion on tos-—-1.
Tos and tos—1 are byte pointers, and tos—1 is
incremented by one byte.

Index string array. Performs the samse
operation as IXB, except before indexing the
index is checked to see if it is in the range
1. . current length. I# not, a run—-time error
oCeours,

INDEXING AND ASSIGHNMENT

Move words. Tes is A source pointer to
a bkilock of B words, tos-1 is a destinatiaon
pointer ¢o0 a similiar block. Transfer the
block from the source to the destination.

Short index and load word. SINDx indexes
the word pointer tos by x words, and pushes
the word pointed to by the result.

Static index and load word. Indexes the
word pointer tos by B words, and pushes the
word pointed to.

Increment field pointer. The word
pointer %tos is indexed by B words and the
Tezsultant pointer is pushed.

Index array. Tos is an integer index.
tos—1 is the array base word pointer, and B
is the size {(in words) of an array element.
A& word pointer to the indexed slement is
pushed

Page 191

IXP 1?2 UB_1,uUB_2 Index packed array. Tos is an integer
index, tos—~1 is the array base word pointer.
DB_1 is the number of element_per_word, and
DB_2 is the field_width (in bits). Compute
and push a packed field pointer.

L.DP 186 Load a packed field. Push the field
described by the packed field pointer tos.

sTP 187 Store into a packed field. Tos is the
data, taos—1 is a packed field pointer. Store
tos into the field described by tos—1.

5.A. 6 DYNAMIC VARIABLE ALLOCATION AND DE-ALLOCATION

NEW 158 1 New variable allocation. Tos is the size
(in words) to allocate the variable, and
tos—2 is a word pointer to a3 dynamic
variable. I# GDIRP is non—nil: cut NP
back to GDIRP and set GDIRP to nil. Store
NP into word pointed to by tos-1, and
increment NP by tos words.

MRK 138 31 tlark heap. Release GDIRP and set to nil
if necessary, then store NP into word pointed
to by tos.

RLS 158 32 Release heap. Set GDIRP to nil, then

store word pointed to by tos into NP,

5.8 TOP OF STACK ARITHMETIC AND COMPARIBONS

5.B. 1 LDGICAL

LAND 132 Logicel and. And tos into tos-—1.
LOR 141 {f.ogical or. Or tos into toes-i.
LNOT 147 Logical not. Take one’s complement of tos.

EQUBOOL 175
NEGBOOL 183
LEQBOOL 180
LESBOOL 181
GEQROOL. i74
GTRBOOL 177

Boolean =,

oo
B
jl

and > comparisons.
Compare bit C of tos—~1 to bit_O of tos and push
true or false.

Page 192

9.8B.2

ABI

ADI

NGI

SRI

MP I

MODI

CHK

EQUT
NEQI
LEQI
LEST
GEQI
GTRI

INTEGER

128

130

[
fS
i

i3&

199
203
200
201
1?4
197

5.B.3 REALS

Absolute value of integer. Take absolute
value of integer tos. Result is undefined if
tos is initially -32748.

add integers. Add tos and tas-—1.

Negate integer. Take the two’s
complement of tos.

Subtract integers. Subtract tos from tos-1.

Multiply integers. Multiply tos and tos-1.
This instruction may cause overflow if result
is larger than 14 bits.

Square integer. Square tos. May cause
averflow,

Divide integers. Divide tos—-1 by tos and
push quotient. (PDP11 quotient defined as in
Jansen and Wivrth; IBO/B080 guotient defined
by floor(tos-1/taos).)

Modulo integers. Divide tos—1 by tos and
push the remainder (as defingd in Jensen and
Wirth)

Check against subrange bounds. Insure
that tos—1 <= tos-2 <= tos, leaving %tos-2 on
the stack. If conditions are not saticefied

a run—time eTTOT OCCUTS.

Integer =,

and >
comparisons. Compare tos—1 to tos and push
true or false.

All over/underflows cause a run—time srror.

FLT

138

Float top—of~stack. The integer tos is
converted to a floating point number.

"3
0
v

L]

Posie
~!
J

- FLO 137 Float next to top-~of-stack. Tos is a real,
tos—1 is an integer. Convert tos-1 to a real
‘number,

TNC 158 22 Truncate real. The real teos is truncated
: (as defined in Jensen and Wirth) and
converted to an integer.

RND 158 23 Round real. The real tos is rounded (as
defined in Jensen and Wirth), then truncated
and converted to an integer.

ABR 129 , Add reals. Take the abdsolute value of
' ' the real tos.
ADR 131 | Add reals. Add tos and tos-1.
NGR 14646 Negate real. Negate the real tos.
SBR 130 ' Subtract reals. Subtract tos from tos-—1.
MPR 144 : Multiply reals. Multiply tos and toas-1.
SaQR 153 Gquare reél.
DVR 135 Divide reals. Divide tos~1 by tos.
POT 158 35 - Power of ten. The integer tos is check

far O <= tas <= 38, a run-time errar
occurring if the conditions aren’t satisfied.
The implementation dependent value 10 ~ tos
is pushed. This facility 3llows the rest of
the system to be independent of floating
point format.

SIN 158 24 Sine. Take the sine of the real tos.
cas 158 25 Cosine.

ATAN 158 27 Arctangent.

EXP 158 29 Exponential. e ~ tos.

LN 158 28 Matural logarithem.

LOe 158 26 Log base 10.

SQT 158 30 Square root.

EQUREAL 175
NEGREAL 183
LEGREAL 180
LESREAL 181
GEGREAL 174
GTRREAL 177

Real =,
<2
<=,

oy
" d

i
i

MR NN R

and » comparisons.
Fush TRUE or FALSE.

Paace 194

5.B.4 SETS

ADJ

665

SRS

INN
UNT

INT

DIF

EQUPOWR
NEGQPOWR
LEQPOWR
GEQPDWR

5.B.5 GSTRINGS

EQUSTR
NEQSTR
LEQGSTR
LESSTR
GEQSTR
GTRSTR

160

151

133

175
183
180
i76

175
123
180
igl
176
177

LoD

bbb b Dbp

uB

Ad just set. The set tos is forced to
occupy UB words, either by expansion (putting
zgroes "between” tos and tos—1) or
compressicon (chopping of high words of set),
and its length word is discarded.

Build a singleton set. The integer tos
is checked to insure that O <= tos <= 4079, a
run~time error occurring if not. The set
Ltosl is pushed.

Build a svbrange set. The integers tos
and tos-1 are checked as in 85GS, and the set
Ftos—~1.. tosd is pushed. (The set {1 is
pushed if tos—-1 > tos.)

Set membership. See if integer tos_1 is
in set tus, pushing TRUE or FALSE.

Set union. The union of sets tos and
tos~1 is pushed. (Tos or tos—1.)

Set intersection. The intersection of
sets tos and tos-1 is pushed.
(Tos and tos—1.)

get difference. The diffefence of sets
tos—1 and tos is pushed.
(tos—1 and not tos.)

Set =,
<>
<= (subset of),
and >=
(superset of) comparisons.
String =,
R . <2
<=,
<
and >

comparisons. The string pointed to by word
pointer tos—1 is lexicographically compared
to the string pointed at hy tos.

Page

19

5.B. &6

EQUEBYT
NEGBYT
LEGBYT
LESBYT
GEGEYT
GTRBYT

BYTE ARRAYS

173
183
150
18l
17&
177

10
10
10
10
10
10

Byte array =,

andg >
comparisons. <=, <, >»=, and > are only
emitted for packed arrsys of char.

3. B. 7 ARRAY AND RECORD COMFARISONS

EQUWORD 175 12 Word or multiword structure =
NEGQGWORD 183 12 and <>
comparisons.

5. C SURIP G
Simple (non-case statement) jumps are 811 two bhytes long. The

first byte is the op-code,
offset is non—negative,

negative,

t

he second is a 8B jJjump offset. I+ this

it is simply added to IPC. (A value of zervra
for the jump offset will make any jump a two-byte nop.) If &EB is

then 88 div 2 is used as a word offset into JTAB, and IPC

is set to fhe byte address({(JTAB"I8B div 23) -~ JTABILSB div 21.

UJP

FJP

EFJ

NFJ

X.JP

Page

1964

185

161

S8

W_1:W

29
o

W

Unconditional jump. Jump as described
above.
False jump. Jump i+ tos is false,

Equal false jump. Jump i€ integer tos
tos—1. Net implemented in I. 4.

Not esqual false jump. Jump if integer
tos = tosg~1. Met implemented in I. 4.
3 <case table>

Case jump. W_1 is word-aligned, and is
the minimum index of the table. W_2 is the
maximum index. W_3 is an unconditional

jumg instruction past the table. The case
table is W_2-W_1+1 words long: and contains
selé~relztive logcations.

I+ tos, %the actual index, is not in the
range W_1.. W_&: then IPC is pointed at
W 3. Otherwise, tos-W_1 is wused as an
indeyx into the table, and IPC is set tao
byte addressi{casetablelindex—min_indexl)-
casetablelindex—min_index].

5. D PROCEDURE AND FUMCTION CALLS AND RETURNS
The general scheme used in procedure/function invocation is

1) Calculate the data_size and parameter_size of the called
procedure by using the informastion in the current procedure
dictionary {(pointed to by SEG).

2) Extend stack by data_size bytes.

3) Copy parameter_size bytes from the old top-of-stack to the
beginning of the space just allocated.

4) Build a MSCW, saving SP, IPC, SEG, JTAB, MP, and a pointer
to the most recent activation record of the called procedure’s
immediate parent.

5) Calculate new values for SP, IPC, JTAB, MP, and if necessary,
SEG. Check for stack overflow.

&) If the called procedure has a lex level of ~1 or O save BASE
andg calculate a new BASE.

cLp 206 uB Call lacal pracedure. Call procedure UB,
which is an immediate child of the currently
executing procedure and in the same segment.
Static link of MSCW is set to old MP.

ceP 207 Us Call globel procedure. Call procedure
UB, which is at lex level 1 and in same
segment. The static link of the MSCW is set

to BASE.

CIipP i74 UB Call intermediate procedure. Call
procedure UB in same segment as the
currently executing procedure. The static

link of the MSCW is set by looking up the
call chain until an activation record is
found whose caller had a lex level one 1
less than the procedure being called. Use
that activation record’s static link as the
skatic link of the new MSCHW.

CBP i94 uUB fall hase procedure. Call procedure UB,
which is a3t lex level -1 or Q. The static
link of the MSCW is set to the static link
in BASE ‘s activation record. The BASE is
saved, after which it is pointed at the
activation record Jjust created.

CXP 205 D3 _1,UB_2 Call external procedure. Used to call
any procedure not Iin the same segment as
the calling procedure, including procedures
at lex level -1 ar O. It works as follows:

1y Is desired segment in memory? This
is determined by traversing up the call
chain until an activation record of a
procedure in the desired segment is faund,
or the opersting system’s resident

CSP -- eds note: it was pointed cut that op-code 158 48 CSP, and is scattered throughout
this document. This will be cleared up Lin the next majorn documentation
egpont.

Page 197

RNP

RBP

EXIY

173

193

i28 4

DB

D3

activation record is encountevred.

2a) na: read in segment from disk using
the information in the segment dictionary,
then build an activavion recard. However,
extend stack by data_sizedparamsize in step
2.

2b) yes. build activaetion record normally.

3) calculate the dynamic link for the
MSCW: If the called pracedure has a lex
level of ~1 or O, set as in CBP, otherwise
set as in CIP.

Return from non—base procedure. DB is
the number of words that should be returned
as 8 function wvalue (O for procedures, 1 for
nan-real functions, and 2 for real functions).
DE wourds are copied from the bottom of the
data segment and “pushed” onto the caller’s
top-of-stack. The information in the MBCW
is then used to restore the caller’s
covrect enviranment.

Return Ffrom base procedure. The saved
base is wmoved into BABE, after which things
proceed as in the RNP instruction.

Exit from procedure. Tos is the
procedure number, toe~1 die thoe segment
numher, This operator sets IPC to point to

the sxit code af Lthe currently sxecwuting
procedure, then sees if the current
preocadure is the ong Tto exit fraom i it
is, control returns te the instruction
fetch loop.

Dtherwise, each MBCW hae its =saved IPC
changed te point to the exit code of the
procedure that inveoked i%t, until fthe
desired procedure is foound.

If at any time the saved IPC of main body
of tre operating system is about fto he
changed, a vun-fime error occurs.

9. B SYSTEMS PROGRAMS SUPPORT PROCEDURES

See Section 2.1

BYTE ARRAY PROCEDURES

FLC

Page 198

138

i

o

for description of these procedures.

Fillchar{dst:, lzgn, char}.

SCN isg 11 Scan(maxdisp, start, forpast,

ML 158 92 Moveleft{src, dst, numbytes).

MVR 158 03 Moveright{(srec, dst, numbytes).

COMPIILER PROCEDURES {(still undocumented)

TRS 198 08 Treasearch.

Ibs is8 07 Idseafch.
DEBUGGER

BPT 213 Breakpoint {(conditional HALT)
MISCELLANEDOUS

TIM 158 09 Time.

XIT 214

char, mask).

Page 199

lage 200

AR RN H W RN RN H RN R RN R R R R R RRRL R
#* INTRODUCTION TO THE PASCAL PSEUDO-MACHINE # # Section 3.5 %
B4 4 306 33 AW I IR A H AR I I R

Vergion 1.5 September 1978
UCSD uses an interpreter based implementation of Pascal. This
implementation is interpreter based. This means that the compiler emits

tode for a pseuvdo-machine which is emulated at run time by a program
written in the machine language of the host. The compiler, program
editor, small stand-alone operating system, and various utilities are
themselves written in Pascal and run on the same interpreter. Thus the
entire system can be moved to a new host machine by rewriting the
interpreter for the new host.

Figure 3. 5. 10 (the last psge of this document) is a skeleton version
ef a large Pascal progrem, here-in-after referred to as "The Program".
This document iz & tap-~down decscription of the realization of that
program on the UCSD Pascal system. We will make occasional use of a
helpful coincidence: The Program is the framework of the portion of
the UCHSD Paescal environment that ‘s written in Pascal.

I+ The Program were expanded to a complete Pascal system, it
wowuld consist of at least 6000 lines of Pascal and compile to more than
50,000 bytes of code-——too big to 7it all at once into the memory of a
small machine (by our current definition of small). We have therefore
extended Pascal so that a programmer can explicitly partition a program
into seqments; only some of which need be resident in main memory at
a time. The syntax of this extension is shown in figure 3.5 1. (Any
syntactic objects not defined explicitly there retain their standard
interpretation as defined by Jensen & Wirth: Pascal User Manual and
Report.)

“programs .= <praogram heading> <segment blookl

“segment hlock> .= <label declaraticen part>
{eonstant declaration parts <type definition parts
{variable declaration part> <segment declaration partd
<ocagment body’

Lsegment declaration partr .= SEGMENT <{procedure heading>
<segment block>i \ SEGMENT <function heading>
Lsegment block>;

<segment body>: = {procedure and function declaration part>
<etatement part>

FIGURE 3.8 1. GCEGMENT DECLARATION SYNTAX.

Page 201

Segment declaration syntax (figure 3.5 1) requires that all nested
segments be declared hefore the ordinary procedures or functions of
the segment body. Thus, a code segment can be completely generated
before processing of code for the next segment starts. This is not a
functional limitation, since forward declarations can be used to allow
nested segments (COMPILER in The Program) to reference procedures in
an puter segment body (CLEARSCREEN). Similarly., segment procedures
and functions can themselves be declarsd forward.

Segmenting a program doss not change its meaning in any
fundamental sense. When a segment is called (e, g. the COMPILER
segment in line A}, the interpreter checks to see 14 it is present in
memory due to s previsus invocation. I# it is:, control is transferred
and execution proceeds: if no%, the appropriate code segment must be
loaded from digk before the transfer of control takes place. When no
more active invocations of the segment exist, its code is rvamoved from
memory. For instance, in The Program. the code for the CUMPINIT
sggment is not preszent in memory either before or after the execution
of line 4 Clezrly, a program should be segmented in such a way that
{non-—-recursive) segment calls are infrequent: octherwise, much time
could be lost in unproductive thrashing (particularliy on & system with
low performance disk).

high address

S DEBUGGER 10 {

nn t : 20 e M 0 N PO S i Wt B VSA1D AR (O (el (S i ook e AP S i e e Uaihe Aha P e S Smabl S R . 4eORD s SR T T KPR ® 0D bt S e e RS o S Ui
P FILER 17 }

shown ! et e s e o o i S . T B 1 1 3 i 8 i 8 7 e v, 2 vt A P ot S S e 9 i o v e
: i EDITOR 12 H

in ‘ — L P " - S v SA2 Smas o Ao WS o OB o s en e I D S SN0 i SRS T S A B bt e AUBS Foads SN Gho- STRAS sSSP Sere Soem SRS 4Sule Ao SdSs SR o

! ; COMPINIT 7 :

l-h B : UL < whe Aus e e e L e e 98 € o e T faae AR e end (WO LM 6 e h. —aRs WA e (eA - U M M (UGN Mty MR Frmm S IS WS el O e 202 A T IAE N VS S

: H COMPILER 41 !

;:. P ':) g P&l", ; o o ot s v b s ot dar W K e S o B T A e Y. caem i BAE A VR e e I (A s R el A i MR SaRn AN LATIS SIS 6 "3 fhetm 11BN RV an TS AT WA wee
ey ITIsLIZE 3 i

' USER PROCRAM i H

e s S~ S K800 Al A S AT VRS e B % W AR AT Shaen el b e s b i e s o s St hogn 2008 s S S T Mot Aan e 92 S s 20 St e e

H FAablALSYSIEM 17 !
i SEGHMENT DICITOMARY 1 :

r—as 1000 sante St il e Tt AP P S e W Wb B oare N 4w S TS h PN TR o o AISS Lot (s TOD T TS W SO SO A Linre Rl W e A SoomS Tl S TR s e ATE S (TS

low address

FIGURE 3. =8 PAGCAL BYSTEM CODE FILE.

hA]
2
M

Page

The code file resulting from compilation of The Program is
diagrammed in figure 3. 9. 2%, The file is a sequence of code segments
preceded by & segment dictionary. The size of each segment is noted
in blocks, the 512-byte disk sllocation quantum used aon most PDP-11
operating systems. The sizes indicated are representative of a full
Pascal system, Each code segment begins on & block boundary. The
ordering {(from low address to high address) is determined by the order
that ane encounters segment procedure bodies in passing through The
Praogram.

An overview of the relationship between figures 3. 5. 2 through
3.5.8 {(to be discussed in the following pages) is given in figure 3. 5.9
at the end of this section. It is helpful to study figure 3.5 9 at this
point for a better understanding of the section.

The segment dictionary in the first block of a code file contains
an entry ¥for each code segment in the file. The entry includes the
disk location and sizefl{in bytes) for the ssgment. The disk location
is given a&s relatiwve to the beginning of the segment dictionary {(which
is alsec the beginning of the code file) and is given in number of
Blocks. This informabtlion is kept in the system communicatiosns area
(alsp ctalled SYSCOM) during the execution of the code file, and is
uged in the loading of non—present segments when they are needed.
Figure 3.5 3 details the layout of the table and shows representative
contents for the Pascal system code file.

location H i H
............ - - - PAGCALSYSTEM
wice H a500 H '
i i8 H
~~~~~~~~~~~~~~~ USERPROGRAM
i variable i
H 2 H .
~~~~~~~~~~~~~~ COMPILER:
! 20932 H
! &2 '
............... COMPINIT
H 3480 H
' 70 i
~~~~~~~~~~~~~~~~~~ DEBUGGER
H 5860 H

s s e 24000 sen® Sma Sr3eb Lot Sk S04 1 P VR Lo T I ebed Dl e Dl 000 P P S D P

FIGURE 3.5 3. THE SEGMENT DICTIONARY

PB‘QE 203



A code segment contains the code for the body of =ach of its
procedures, including the segment procedure, itself, Figure 3.5. 4 is a
detailed diagram of the code segment of The Program (Pascalsystem).
Each of a3 code segment’s proecedures are assigned a procedure number,
starting at 1 for the segment procedure, and ranging as high as 255
(current temporary liimit of 127). All references to a procedure are
made via its number. Translation from procedure number to location in
the code segment is accomplished with the procedyre dictionary at the
end of the segment. This dictionary is sn arvay indexed by the
procedure number, Each array elsment is a self-relative pointer to the
code for the corrazspanding praocedure. Jince zevro is not a valid
procedure number, the zero’th entry cf the dicticnary is wsed %o store
the segment number (even byte) and number of procedures (odd byte)
Observe that CLEARSCREEN is the first procedure for which code is
generated and that it appears at the beginning of the segment. The
cuter block code is generated and appears last.

high addresses

Number of procedures | Segment Number
in dictionary H

Procedure #1 PASCALSYETEM | ——}
e T
{———~1 Procedure #2 CILLEARSCREEN | :
L o e rest 0f - - - = = - = - - i i
i 1t — - ~ = procedure dictiensry - — — - - H :

PASCALSYSTEM s puter block code

Y

cm e mw mw mm mw

s e st S St Tt e e Atk S o P28 T o o Rt Mt S e St S e A e = o Fon = v v e e s e S

- rm ma me wa e

|
T
Pl
o
O
m
g
c
X
m
*
W
n
o
o
n

- e — o S e S S e S A > o 4t Aoy ot S WAm e SAaie e et AR e T S e W S e e i o o

———lr PROCEDURE #2 {(clearscreen? cude :

low addrescses

FIGURE 3. 5. 4 A CODE SEGMENT

Page 204



A more detailed diagram of a single procedure code section is

sewm.s in {igure 3.0, 5. it cansists of two parts: the procedure code
itseld in the lower portion of the section! and a table of attributes
of the procedura. These attributzs are-

LEX LEVEL: This add byte is the depth of absolute lexical nesting
fer the procedure. {i.e. Lex Leavel (LL) Pascalsystem=-1, LL COMPILER
o CLEARSCREEN=0, LL COMPINIT=1, etc. ).

PROCEDURE NUMBER: This even byte refers to the number given in the
procedure dictionary of the psrent segment procedure. For example,
the Procnum of CLEARSCREEN is 2. (see figure 3.5 4).

ENTER IC:This i3 a self-relative pointer to the first instruction
to be executed for this procedursa.

EXIT IC:This is a self-relative pointer to the beginning of the
blaock of procedure instructions which must be executed to terminate
procedursz properly.

PARAMETER SIZE: The peram size is the number of bytes of
parameters passed to a procedure frem its caller.

and DATA SEGMENT SIZE:. The data size is the sizie of the data
seament (Bez bzlow? in bytes, excluding the markstack and PARAM SIZE.

Between these attributes and the procedure code there may be an

optional section of memory called the “jump table". Its sntries arve
addresses within the procedurs rcode JTAB is a term commonly applied

to the six attributes just discussed and the jump table itself.

high addresses
osdd even

D T e et e T

PASCALSYSTEM' s H
Procedure {
Dictionary i

- wa ses
)
{

H
H Leax Level H Procedure #
Q
1

- - e we -

Pointer

e e e s i s e o s e e e ot i ot e o o s St s et et et i Mt (ot e oo iy S - s o o e (oot st S o o Lo 1 Ga0wn S 0 Sos e

ko]
hh
-3
]
3
]
ot
4
..’
w
.
~
]

Data Segment Size

- = = - = JJump Table - -~ — -~ = -

i CLEARSCREEN
: CODE

low addresses

FIGURE 3.5 S. PROCEDURE CODE SECTION (OF CLEARSCREEN)

Page 205



high addresses

e v daaam do v et sy

0
o
wn
o
1]
3
e
m
Ty
e
=,
D
oo
ot
1
i3]
w
3
1]
3
o

B . T S T R = T SV Y

mark stack

- i e a4 o v B P s Sopee S Woes S a0 Mt rme

Compiler Code Segment |

o~ . Loty o Abate ot Gomre Pt 0 ahs SUBY Slate

Compiler Data Sagment |

e s e cwe pee ewes  ome e S Geem e wde e e

W
<£
"
ot
o
3
el
&
of
1}
]
1]
w0y
3
]
o
<t

—

—— e e e e e
-

-

3
1]
-j
=
0w
ot
1]
n]
=

i
I
i
!
i

0
]
3
]
[
e}
[N
[

Code Segment

¥ e s saoe ey 3200 s o sovve

Data Sagment

o e e tme mew ey e e s Sen we  ied e ewe

mark stack

—

CLEARSCREEN Data Segment

o mwr ema  mms s e e mee e e ems e sme e

- - - w-

O
o
3
b~
pete
b
(¥
(34

- - -
e mae e mom

3
7]
-4
=
n
[
w
[x}
~

- o

e, S St i et St Svabe Sl e iy SO S SN St T S Y ot S SR CHe B St S e Sy

-

-

34
]
3
-]
Q
-~
]
-5
Pt
1]
n

o e eass e e smse e e wme G e e s wem

- s e e e e

- s e e e M Gem e e e e

- o me Ste mess

Interpreter

t
i
B R it |

SYys&COmnm

]
i
L T it
1
]

<— <segment dictionary>

o e mA me

— - suons e oo avose

low addresses

FIGURE 3. 5. 6. SYSTEM MEMORY DURING CLEARSCREEN EXECUTIUN

Figure 3.5.6 is a snapshot of system memory during the execution of a
call to procedure CLEARSCREEN from line €C in COMPINIT. The Pascal

Page 206



intzroreter occupiss the lowest area in memory. In it is the system
compuniications areafslso cslled SYSCOM),which is sccessible both to
assembly langvage Toutines in the interpreter and (as if it were part
of the heap) to system reoutines coded in Pascal. It serves as an
important communication link between these twp levels of the system.
The Pascasl heap is nex® in the memory layouti: it grows toward high
memory. Yhe zingle stack growing down from high memoery is used foar 3
typos of items: 1) temporary storage needed during exnression
gvaluation: 2@ & dats segmeant containing local varisbles and
paramaters for rach procedure activation: and 3) a code segment for
gach active ﬁegm@r$ pracedure, {Hee Figure 3.5 &3

onsider the status of operations just bhefore COMPINIT is called
e B. Conceptually, there are six psevdo-variables which point
atinns in memory:

a BTACK FPOIMTER(SP; which points %te the current taop of the stack,

a FAHEK DTACK POINTERMP ) which points to the “"topmest” markstack
in the stack, {(remember that the the stack grows down!),

a SEGSHMENT (856 warisble:ublch pf
dictionary for the currently actkive 3
Just before COMPINIT i3 called, SEu po
procedure dictionary,

ts Lo the base of the procsdure
ment procedure. For axample.
ints to the COMPILER segment’s

an INTERPRETER PROGRAM COUNTER(IPC):which cantains the address of
the pext instructisn to be execubted in the code segment of the current

procedure,

a JTAR peointer: wh
attributes and jump is
code sectian.

ch points to the collection of procedure
ie gntries in the body of the current procedure

and a NEW POINTER(HP)}-which points to the currant teop of the
heap.

Whaen sa2gment procedure COMPINIT is called in line By its code
segment (i Cildlﬂg,ali tompiler initialization procedures) is loaded
an the stack. The COMPINIT data segment is built on top of the stack,
Figure 3 9% 7 is a8 diagram nf the data segment for COMPINIT.

Page 207



high addresses

P - —

Other COMPINIT veriables |

S e T L

-

-—2» martkstack

Bam sm e e wew hese  omd

MSJTaR

O ai teme s sews e o b e e e e e s o s

MSDYN

L T T T

MESSTAT

T e T e T

e

low addreszes

FIGURE 3. 5. 7. A DATA SEGMENT

In the vupper portion of the data segment, space is allocated Ffor
variables local to the new procedure, For example: COMPINIT s data
segment allocates spasce for integer variables 1 and J, as well as
baolean BOOL,

In the lower porbtion of the data segment is a "msvkstack®™. When
a call to any procedure is made, the current values of the
psevdo—~variables., which characterize the ovpersting environment of the
calling procedure, sre stored in the markstack of the galled
procedure. This is s that the pseude-variables may be restored to
pre—-call conditions when contral is retuvrned to the calling procedure.

For example, the call to COMPINIT cauvees conditions in COMPILER
Just before the call to be stored in COMPINIT’s markstack in the
following mannerp:

MarkEtack DyNamic link {(MEBDYN) A~ NP
" " IPCI(MEBIPC)Y <-- IC
N " SEGment Pointer (MBREL) I~ BEC
" o Jump TABle (MSJUTAB) <{-- JTAB
" " Stack Pointer (5P) {—— GF

Page 208



In addition a Static Link field becomes a pointer to the data
segment of the lexical parent of the called procedure. In particular,
it points to the Static Link field of parent’s markstack. After the
building of the data segment new values for IC, SEG, 8P, MP, JTAB, and
MP are established for the new proacedure.

When the call to CLEARSCREEN is made on line €, another data
segment is added to the stack and again the pseudo-variables are
storad in the new markstack, =2s well 2¢ the appropriate Staetic Link,
and updatead, Note that now the SEG no langer poinkts to the COMPINIT
procedure dictionary, but to the Pascalsustem dictionary.

Mo code ssament for CLEARSCREEN ig¢ added %o the stack before the
data segment since the code for CLEARSCREEN is already present in
segment Pascalsystem. Its invocation causes only a data segment to
be added to the stack. Hhen CLEARSCREEN and INIT are completed, the
COMPILER data segment will again be the top element on the stack.

Figure 3.5 8 is a detailed disgram of the stack during execution oéf
an instructian in Cimfwufmfmﬂ including sppvopriate peintsrs for
static:, dynasmic., ete, inks of CLEARDOREEM's markstack. NMote where
the pseuvdo—-variables pu;nt in the stack. In particular, JTAB points

inside CLEARBCREEN code section which is in the Pascalsystem code
segment, IC points inside thaet CLEARSCREEN code, and SEG points to the
base of the Pascalsystem code segment.

Page 209



. P MW awsul:’nu

B e e e MR s T8V

in

code

<~PASCALSYSTEM
{~code segment
segment

HC-
B !

[}

¥

EG
Té
PC

-

™) e

{ oe o - - - -

o e |

e mw ma wm ME e W e R e e R we e

cade

T

rvee e s St doaee cabes $0ant Asves SCom St Smame SOCH

segment
segment
MPIN

e oot Sheme 20000 S S Sbn Sbtan SO S S WA SHOAY o P B9 S S SN A Foma Do Sant HaSE L4 td M B bl POA (MDD s e Subse Mo
e
Shan Ve Aot UK cca s S PRiAe 0008 GO Bsd A VD foken Emie MR M et HE SIS PN TR S I T s GO I LASC Sebtn P MOME e S8 St

o

data

code

COMPILER

markstack

tigh addresses

Pointer to Procedure #2

Paointer to

dent data segment
COMPILER

i

ot s cas seeme dars ixtve S0 bhote
B e b T T

Mes mm i e e saes  wm e - aer sew mm

-

oren e ot e foun aran L

e . e e e

{ me e e e me s wm we ve e e ew e e

to PASCALSYSTEM res

of
COMPINIT

PR

-

-

-

W

code

COMPINIT

-

OMPINIT

€3

of

i
3]
£

Procedu

-

-

-

variables

COMPINIT

-

-

-

-

-

-

-

-

-

MSIPC

-

-

-

data

e

-

sagment

MSSEG

oy avass ek soems o s s ats Sh0np oy tres SO St Sares S O e Sheas SOOHS Josec atnes

-

of
COMPINIT

-

e

MSJTAB

-

—

ETN

-

-

-

-

-

- W wa o

MSDVYN

MESTAT

e coane soms

s A S e s B B £010 M U e e

]
b
:

-

stack

evaluation

-

-

- me e mw ww

- e . - e

variables

o e b h doren S Abi 83740 Sodt S0k Bt SAC HAS VRS S Crd P S 2 SO SN

158
MSIFC

03

e

eoss 1o serns wesss

CLEARSCREEN

s snany v 15 4y oo ot
v covs

- e
P —

- W v e

- W e W

- e mw ow

. s e e mw

- - - = w-

-

-

data
segment

-

s s o

e eha sosch

-

-

of
CLEARSCREEN

tac
hea

£
of

s e e me

to

e e e e M G W MmN W WOh we W o e

s e e oo sua0s s

stack

MEJTAB

MESTAT

MESDYN
HE AP

evaluation

i !
i i

—— S ma R e e i W mee W e mm A iy e

!
i
1
[
§
i
;
i
i
i
i
i
i
I
i
i
i
i
i
i
i
H
i
i
i
t
f
i
!
H
i
i
i
{
t

amion s (e et aogu SO LA e S SO e FHOS S e RS MACY AL D I e S S O O VY 15k SO T SR BRI PV B Nl (RS B

o s s moin San v et
e i 2120 Sowie YT o T somns Ao

- e -

i o S " et oot uart vt o

- e —. mw me ww

Page 210

FAR B w8 5T mlad «f g wd V]

jalii=1h 5 8703

T XV ASU

=1

TN

R AR IS

P
T



Figure 3. 5.9 illustrates a top—-down process by
relaticnships among diagrams 2 threugh 7.

codg file
figure 3.3 2

s 5% e N b Atk ARG e s e S0 bl 2o e

P PASCALEYETEM

system memory

{——-2{ Fipgure 3.5 7

———1 figure 3 5 4%
H :
{ CLEARSGCREEN | ———>
! code detail |
e figure 3.5
i segment dictionz

i data segment detail

showing the

figure 3.5 51
proc. code |
detail H

- - -

[X o4
[ '8
]
ot
)
e
oy

- -

FIGURE . 5. %9 RELATIONGHIP (F DOCUMENT FIGURES

Page 211



PROGRAM PASCALSYSTEM;
VAR
SYSCOM: SYSCOMREC,
CH: CHAR;

PROCEDURE CLEARSCREEN: FORWARD;

SEGMENT PROCEDURE USERPROGRAM;
BEGIN
END;
SEGMENT PROCEDURE COMPILER;
VAR
g8y, 0P INTEGER;
SYMCURSOR: INTEGER;

PROCEDURE INSYMBOL: FORWARD;

SEGMENT PROCEDURE COMPINIT;
VAR

I,J: INTEGER:

BQOL.: BOOLEAN;
BEGIN

I:=1;

CLEARSCREEN;  —————————=—x e

INSYMBOL ;
END;

PROCEDURE INSYMBOL;
BEGIN ... END:

PROCEDURE BLOCK;
BEGIN ce. ERDG
BEGIN (#COMPILER®)

COMPINIT;  memmommsimmmeeeme -

INSYMBOL;
END; (#COMPILER®)

SEGMENT PROCEDURE EDITOR;
BEGIN c.o. - END;

PROCEDURE CLEARSCREEN
BEGIN

WR T TE ( e = e oo}
END;
BEGIN (=PASCALEYSTEM®)
REPEAT

READ(CH)
CASE CH OF

C: Caﬁp ILER, S s o o it R S 7 3 G 3 S S

E:EDITOR;
U: UBERPRIOGRAM

END ( XCASE#)
UNTIL CH = ‘4°
END.

FIGURE 3. 5. 10,

LINE B

el TNE A

THE PROGRAM



B0 3 S0 S SR S ST AR SR S 3
* BYTE-SWAPPING ¥ ¥ Section 3.6
35 B B W R H G BB N B2 e 3

Version 1.9 September 1978

Byte-swapping problems ccecur when code generated on one machine
is transferred to ancther or programs which directly interface with
memary {(2.g. the Patgch utility ) are written on or for one machine and
transferred to another which has a different ordering for its memory.

There are two different ways to order bytes in a given memory:
A} DByte Zero is the byte containing the least significant

hald of the word. Byte One contains the most sigqnificant
half.

B) Byte Zero is the byte containing the most significant
half of the word. Bete One contains the least significant
hal#f.

The difference bhetween these is the way Byte quantities are
read and stored in memory. Kord gquantities, such as integers, will be
read and looked at in the same way on both types of machines. However,
byte quantities such as P~code or characters will be reversed.

An example;

DEFINITION {A) (B

s mes# me 3 ls#
Val UE(Hey) ! G4 t07 ! ! 07 LI .7 ¢
BYTE O 1 0 1

( least/most significaent bit, thereby least/most significant byte )

If both of the bytes shown above were read as an integer , a
word guantity, they would give the value 3, 388 However, if the value
af byte Zero usas wanbed {ss in: C: PAJKED ARRAYILO.. 11 OF CHaR; ) then
Definition & would show & value of C4H and Definition B would show a
value of O7H. Bath definitions would szhow the value O7R if the most
significant byte were specified.

Byte—swapping 1is not a hard problem to solve, it just requires
a little thouvght. The Patch utility has tupe declarations for both
types of machines and a ztudy of it showld suffice to show how to
satisfy gour programming needs.

Page 213



- Notes -

'age 214



4G SN BRI RN K2
#* THE CALCULATOR % # Section 4.1 #
P RN IR RN RIS R SR 3

Yersion 1.9 September 1978

The prampt. =37 , ezpects & one line expressiaon in algebraic
form. Up to &% differsnt variables are available, each with different
values assigned using the syntax of the given grammer. Only the first B
letters are used %o distinguish between variables. Variables having a
value may be used as constants. There are two built-in variables: PI
(3. 141393) and E (2.718282). These wvalues may be changed by the user.

No distinction is made between upper and lower case letters.

The MOD function is the backslash '\’ : the PASCAL MOD function
is used and the operands are Tounded to be integers. WARMNING: Since
this uses the PASCAL defn. of MOD ( see Jensen & Wirths’ Pascal User
Manpal and Repovyt Second Edition page 108) the results obtained may not
be as expected.

The aperand of the factorial function ‘FAC’ is also rounded to
be an integer which must be between zero and thirty—~three inclusive or
the expression will be rejected.

The upavrow ‘™’ is used for exponentiation. The operand must
be positive or the expression will be rejected as ¢ ~ Y LN ( X ) is
used to calculate the answer.

LASTKY is a constant which is assigned the value of the
grevious correct expression by the calculator and may be used in the
following expression instead of inserting the same expression again.

Angles for the TRIG functions must be in RADIANS. Degree to
Radian conversion is accomplished by RADANGLE = ( PI / 180 ) # DEGANGLE.

This program will bomb on an execution error if an aver or
underflow occurs. If this happens 211 vser assigned variahbles and their
values will be lost.

To lezave the calculator mode simply type <RET> immediately
following the prampt.

EXAMPLE OF CALCULATOR SESSION:

-> PI
3. 141592
~> LABTX
3. 141592
- HALFRI = PT /
1. 570796
- 8IN ( HALFPI
1.0
->A=8=0C=D0D=F = FaC (3) /7 2

=4

Page 215



3.0

-2 A
3.0

i
3.0

~> 1 + 2
3.0

-» 3+ 77 4
4.795

—> SQRT(2#2+3%#3)
3. 605551

Page 216



R RREEAERARRRE R ARG REERAR R R AR
# LIBRARIAN UTILITY # # Section 4.2 #
ISR I M U NI HH I IIE I I I

Version 1.5 September 1978

LIBRARY CODE is a vitility pregram that allows the user to link
separately compiled PASCAL units and separately assembled subroutines
into a LIBRARY file. It is hased vupon the original pre-1.5 utility
LINKER. CORE and operates in bssically the same way.

To add a segment fto HEYSTEM LIBRARY it is necescssry to create a
new file inte which s2ach segment that is wanted from the original
¥EVETEM. LIBRARY is ¢fivst linked. It is then possible to add segments
Yy linking fvrom another code file into the new file being created.

ZXAMPLE

Consider the case of adding a segment called TURTLE to the
already existing file #SYSTEM. LIBRARY which is assumed to contain the
segments PECRAPHICS and MOVETO.

On executing LIBRARY. CODE. the user is prompted for the name of
the output codefile. For this exampia, respond with the name
NEW. LIBRaARY. The program now asks for a ‘Link Coade File’. The
respoanse here ig ®SYETEM. LIBRARY. The names of all segments currently
linked into the input libravy, 1i.e. H*SBYSTEM. LIBRARY, as well as their
length in bytes iz now displayed. Currently there are a maximum of 16
segments in any PABCAL program or LIBRARY.

O~ MOVETYTO 2398 G O 8- 0 10— o
i—- PBeRAPHI a4 b R 0 G- o i1~ 0
=i Q - O 10— O . 14~ (o]
3 O T o 1i- o 15~ )

The following prompiline appests:
SBegment # to link and <spacvel. MNlizw Ffile, Qluit, Aflbort

The uzer now entars the number of a segment within the link
code file that is %o be linked into the new library $#ile, followed by
LeEpacer. Mest, the number of tthe segment in the output file to be
iinked into (i.e. NEW LIBRARY) is typed followed by <Uspacel. For each
segment linked the librarian reads that segment from the input file and
writes it %o the output file at the segment requested. It then
displays the segment table for the current state of the output library
file. In this example, rvespond with the following:

Ffage 217



O<spacel
Seq to link into? O<space>
1<space?
Seg to link inte? 1<spacel

When all needed segments hawve besen linked a new input file is
requested by typing ‘N’ for N{ew file. In this example, a separately
compiled PASCAL UNIT called TURTLE is assumed to exist in a codefile
called TGRAPHICS. CODE. See section 3.2, UNITS. On entering the name
of this file the following display appears:

o- 0 4-— o 8- g 10~ 0
1- 0 B G G- o 1i-~ 0
2= 8] b6 0 10—~ TURTLE 230 14~ 0
3- ¢ 7 o 11— 0 15~ o

The Unit TURTLE occurs in segment 10 and is to be linked into
segment 2 within NEW LIBRARY. The user responds’

i0<space>

Seg to link into? 2ispacel
The final display of the output library ssgment table is thus:
O-— MOVETO =378 G-~ o g e i0- 0
1— PSGRAPHI 844 B~ 3 b o 11— O
2- TURTLE 230 b o 10~ ¢ 14— O
3 ) 7= o 1i- 0 15~ 0

The output library codefile length is displayed and in this
example 18 16 (blocks long).

Once the needed segments from all input files have been linked
in the user locks the output file by typing ‘8‘ followed by a return,
(unless a copyright notice is desired within the codefile). Type ‘A’
to abort the linking process. The old #EVYSTEM LIBRARY should either be
Temoved or its name changed if it vesides upon the same disk and the
name NEW LIBRARY must be changed Ho «5YSTOM LIBRARY in order to be
used.

NOTE

In response to the initial prompt "Ouiput Code File ~2" we
could have just as easily said *UYSTEM LIBRARY fsllowed by another
#SYSTEM. LIDRARY in response to the prompt "Link Code File -2".
However, in this case the original #3YETEM LIBRARY will be removed
auvtomatically upon completion of the linking process



— Noog —

Page 219



age 220

o
a

w



RRR SR F RGBSR RRARERHEFRRPFHEREE P I

* SETUP — SYSTEM RECONFIGURATION % # Section 4.3 #
300 3 A I I B R I I B M M 3 M3 3 333303

Version I.9 September 1978

The UCSD Pascal Operating System keeps certain information
about the uesr in a file called SYSTEM MISCINFO, During each system
initialization this file is reszd into mempry, and from there it is
accessed by many parts of the system. particularly (if the vser has a
terminal suitable for 1%} by the screen oriented pditor.

Much of this information needs to be initialiy set up by the
usery to conform %o his particular hardware configuration or his taste
or convenignce. Mnst of this information concerns the nature of hisg
terminal and keyboard, although thers are a few miscellansous fields.

SETUP isg tum likds any other comoiled Pascal program:. by
entering the Command level of the syshem: Htyping X for eXecute and
typing the Ffilename SETUF followed by a carviage reburn.

SETUR: CUHANGE) T(EAGH) H(ELF) G{UIT)

I this does noet happen it may be because the setup program is
net on the disk. If sc, the system will display the message

ne #ile setup. CODE

I# neither of the abaove happens, something is drastically wrong.
Contant UCSD, Azssuming all is well:, continue.

All commands Yo the BETUP program are invoked by typing a
singls letter chosen from the promptline,

SETUP. CUHAMGE) T{(EaADH HELP) G(UIT)

Type ‘M’ to find cut what the commands at this level do. The
praogran is ¢celf teaching, <o the rest of this document explains the
infarmation SETUP wa+ designed to change.

SETUP does mnot +tell the system how to do random access cursor
addressing on the ueser’s terminal {(for thase teviminale which have this
capabilityr. To 2Y1low the sustem to use that feature, please refer to
Section 4.7 of this document package.

4.3 1 MISCELLANEQUS INFORMATION

HAZ CLOCK
Values: TRUE., FALSE
A real time cleock is available. A real time clock module, such
the DEC KWil, may be found on many processors, It is assumed to be a
n2 frequency (60 cycle) clock. If available it is used by the PASCAL
ystem to cptimize disk directory updates. SBee secticon 2. 1.6 TIME intrinsic.

e

s
i
]

Yy

i;

Page 221



HAS 8510aA o
Valuas: TRUE. FALSE
The system is running on a Terak 8310a hardware configuration.

4. 3. 2 GENERAL TERMINAL INFORMATION

HAS SLOW TERMINAL
Values: TRUE, FALSE.
When this field is true, the system issues abbreviated
pramptlines and messages. ,
. Suggested setting: 600 baud and under -— True: otherwise False.

HAS RANDOM CURSOR ADDRESSEING

Values: TRUE., FaALSE

Only applies to video terminals. Bee Section 4.7 in order to
allow the system to make use of this feature.

HAS LOWER CASE
Valuas: TRUE, FALSE

SCREEN WIDTH
The number of characters per line of a terminal.

SCREEN HEIGHT

The number cof lines per display screen of 3 video terminal.
Set to O for a hard copy terminal or other terminal in which paging is
not appropriate. '

NON-PRINTING CHARACTER

Values: Any printing character.

What should be displayed by the terminal to indicate the
presence of a nan—printing character.

Recommended setting: ARCII 2",

VERTICAL MOVE DELAY

The number of nulls to send after a vertical curser move. Many
types of terminals require a delay after certain cursor movements which
enables the terminal toc complete the movement befeore the next character
is sent. This number of nulls will be sent after carriage returns,
ERASE TO END OF LINE., ERASE TO END OF SCREEN and MOVE CURSOR UP.

4.3.3 CONTROL KEY INFORMATION

The user may choose which contrel keys swit his particular
keybeard arrangement and his taste.

Some keyboards generate two codes when some single key is
pressed. If that is the case for any of the keys mentioned here, it
must be noted in the field PREFIXED [<fieldname>] which has either the
value TRUE or the wvalue FALSBE. The profix for all surh keys must be
the same and must be neted in the figld LEAD-IN FROM KEYRQARD. Thisg
feature may also be used to access contrel functiens with two—
character sequences if a user’'s keyboard is unable toc generate many
control characters. As an example, suppose the usev’s keyboard had a
vector pad which generated the valug pairs ESC U™, EBC "D", ESBC ".®
and ESC "R" for the keys for Uparrow. Downarrow. Leftarrow and

Page 222



Rightarrow, respectively. Assume also that all other keys on the
keyboard generate only single codes. Then the user would give the
fellowing fields the fellowing values

KEY FOR MOVING CURSOR UP ASCITI "uv
KEY FOR MOVING CURSOR DOWN ASCII "D
KEY FOR MIWING CURSOR LEFT ASCII "L
KEY FOR MIOVING CURSOR HIGHT ASCII “R"
LEAD-IN KEY FOR KEYEOARD ESC
PREFIXEDIKEY FOR MOVING CURSOR UPJ TRUE
PREFIXEDIKEY FOR MOVING CURSOR DOWNI] TRUE
PREFIXERLKEY FOR MOVING CURSOR LEFT] TRUE
PREFIXEDCKEY FOR MOVING CURBOR RIGHT] TRUE

KEY FOR STOP

Console cutput step character. The STOP character is a toggle;
when pressed, the key will cause output te the file OUTPUT’ to cease.
When the key iz depressed again, the write to file ‘OUTPUTY will resume
where it laeft nfe Thig function is very useful for reading data which
is being displayed faster than cne can read.

Suggested setting: ASCII DC3

KEY FOR FLUSH

Conmsole ocubput cancel character. Similar in concept and usage
te the STOP key., the FLUSBH key will cause output to the file ‘OUTPUT’
to ge undisplaysed urtil FLUSH is pressed again or the system writes to
file ‘HEYROARD hote that, unlike the STOP key. proreszing continuves
uninterrupted while output goes undisplayed.

Suggested setting: ASCII ACK

KEY FOR BREAK
Typing the character BREAK will cause the program currently
exgcuting to be terminated with & run—time error immediately.
Suggested setting: Somebthing difficult to hit accidentally.

KEY TO EMD FILE

Cansole end of file character. When reading from the files
KEYBOARD or INPUT or the unit ‘CONG OL .', this key sets the Beoolean
function EOF to TRUE. See section 2.2 4 EQF intrinsic.

SBuggested setiing: ASCIT ETYX

KEY TO DELETE CHAROAGCTER

Each time you press this key one character is removed from the
curreant line, until nothing is left on that line.

Suggested setting: ASCII BS

KEY TO DELETE LINE

Depressing LINE DELETE will cauvse the current line of input to
be erased.

Suggested sstting. AHSII DEL

Page 223



The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
capability and may be safely ignored by users
having any cther kind of terminal, such as
hardcopy terminals or storage tube terminals.

KEY TO MOVE CURSOR UP
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These keys are used by the screen oriented editer to control
the basic motions of the curser. If the keybhoard has a vector pad, set
these fields to the values it generates, otheruwise, we suggest
choosing 4 keys in the pattern of a vector pad and use the control
codes which correspond to them:. for example the keys ‘07, ‘. 7/, ‘K’ and
‘s * on most keyboards encircle an imaginary vector pad. You may wish
to use a prefix character before such keys as described above.

ERDITOR “ESCAPE" KEY

The key which, in the system screen oriented editor, is to be
vsed to escape Ffrom commands, reversing any action taken,

Suggested setting: ASCII ESC

EDITOR “ACCEPTY" KEY

The key which, in the system screen oriented editor, is to be
vsed to accept commands, making permanent any action taken.

Suggested setting: ASCII ETX

4.3 4 VIDEQ SCREEN CONTROL. CHARACTERS

This section describes the characters which, went sent to the
terminal by the computer, conitrols the terminals actions, Yoou should
consult the manual for ygour terminal te find the appropriate values..
If a terminal does not have one of these characters, the field should
be set to O unless otherwise directed.

Some screens require a two character sequence teo exercise some
of their functiaons I+ the first character in all of these sequences
is the same. it can be set as the values of the field LEAD-IN TO SCREEN
and for each <fieldnamel which requires that prefix, the user must set
the field PREFIXI{<fieldnamel] to TRUE. For example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN were respectively performed by
the sequences ESC "L" and ESBC "S" but all ths other screen controls

were single characters. The user would then set the following fields
te the following values: :
LEAD~IN TD SCREEN ASCII ESC
ERASE TO END OF LINE ASCII "L
ERASE TO END OF SCREEWN ASCITI "¢
PREFIXEDLERASE TO END OF SCREEN] TRUE
PREFIXEDLERASE TO END OF LINED : TRUE.

Page 224



ERASE TO END OF SCREEN
The character which erases the screen from the current cursor
position to the end of the screaen.

ERASE TO END OF LINE

The character which, when sent to the screen, erases all
characters from the current cursor position to the end of the line the
cyrser is on.

ERASE ILINE .
The character which, when sent to the screen, erases all the
characters on the line the curser is currently on.

ERASE SCREEM
The character which, when sent to the screen, erases the entire
sCTesen

BACKSPACE

The character which, when sent to the screen, causes the cursor
to move sparce te the left.

MOVE CURSDOR HOME

The character which moves gour cursor to the upper left of the
current page. IMPORTANT: If your terminal doees not have such a
character, set this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR UP
MOVE CURSOR LEFT

The characters which move your cursor non—-destructively one
spacs in those divections.

Page 225



"age‘ P26



R S L R e X R I A R A B S
# DROTSTRAP COPIER # # Saction 4.4 %
R W WA R NN RN RN RS

Version 1.9 September 1978
The bootstrap copier BODTER. CODE asks for the unitnumber of the
volume on which to write the bootstrap. Refer tao Table 5 for a list of
volume numbers. It will then ask for a file name to write as the
bootstrap. It writes the first two blocks of that $file, so in order to
copy the bootstrap from anm existing disk, give it the diskname, and it
will copy the bootstrap from the disk named to the unit numbered.

To execute the BOOTER program, tgpe‘x BOOTER to Command level
(assuming that there a copy of BOOTER. CODE on the disk).

Page 227



-~ Nates -

‘age 228



F AN R RN HEBER R LR AR RE R
% PATCH * % Section 4.5 %
FH R RH RN R RRRRSHR

Version 1.9 Septembar 1978

On X(ecuting PATCH. the promptline is
C(onsole:, Platchwrite, W(holewrite, Q(uit

The aptions available are:
Working with, and alitering the file in the Cl{onsole mode.
PDumping the file in a Hex, Decimal, Octal, or ASCII format, in the
P(atchwrite mode
Dumping/concatenating and/or meving blocks in files with the
W(holewrite mode.
Leaving PATCH with the Q(uit command.

In the Ci{onsole mode, the promptline changes with each command.
The promptline always reflects the commands available at any given
time, and no more. The full promptline is:

Fatoh: Riead:. ESlave, H{ex:, M{ixed, G(et, Q(uit [nnl

The number in squatve brackets at the end of the prompt is the current
block being patched. The first command to use is Glet. Glet will
prampt

Filgname: “<cr for unit i/0>

Respond to this prompt with the name of the file to be
patched. If the disk/device has no directory, ov has some problem with
the directory, reference it by its Pascal unitnumber, Type a carriage
return to this prompt. and the prompt is:

Unitnum to patch £4,5,92.. 127 (0 will Quit)

Having typed & successful entry to one of the two above prompts, the
prompt will now be extended by the R{ead command. R(ead will read up a
block from the file/unit. The prompt on entering R(ead command is

Bi.OCK:

Respond with a2 block number in the file/unit specifiead. There
is no range checking provided on this read, so exercise care in the
number typed. The promptline isnow extended with H{ex, M{ixed and
the block number in sguare brackets. Hiex and M{ixed display the
block read. Using the H{ex command displays the block entiraely in
hexadecimal characters:. using the Miixed command will display printing
ASCII characters whers possiblis. and hezxadecimal values slssuwhere. The
promptline is:

Page 229



Alter: pad vector 1.3, 3,0 0. .F hex characters, S(tuff, Q(uit

The wvector keys on the terminzl causes the cursor to move
around in the data. notice that there the cursor will remain only on
the data, and will not move cff the data. Typing a hexadecimal
character changes the character the cursor is aver provided that only
one or more of the data positians is changed, when Q(uitting from Alter
mode, the Patch promptline will be extended with the S{ave command.
Typing S(ave writes the changed data back to from where it was read.

In the Alter mode, there is one optional command: S(tuff. Typing the
S(tuff command displays the promptline:

Stuff for how many buytes:

Key a number from O to 512 Type carriage return to cause
patch to accept the number, the promptline changes to:

Fill with what hax pair:

Key a byte valus in hexadecimsl. The data reappears aon the
screen, with the numbey of bytes specificsd, Ffrom the position of the
cursor filled with the data value specified. to the bhex pairt prompt.

Using the Patchwrite command causes a full screen prompt to
appear: '

e casee e tve et vt Lot Sty e s b et {82 Lt S0 PSS VA 1 (MR 4SS SR CRen TS 5 A S e B AR AN AR TP BT A S e aias SOl SR OB SRt ARG 408 e Sl O S S s e ot

This procedure writes out sequential bloacks to any file as a patch
dump. Type the prefix character of the optinn tn be changed Type ‘P’
to PRINT, ‘G’ to QUIT.

A( Input File
B( Begin Block #
C( Num. of Blocks

E{ Qutput File

G( Hexadecimal
H( ABCII

I( Decimal

J{ Octal

K{ Decimal Bytes
I.{ Octal Bytes
M( Krunch

N( Double Space

" e oo St = 200 ot S (e M FS L SO VTS (B9 . SO e A0 e NS S4B (R 1690 Bulme R i St S | RS SR TALSS Sophe S e e Fyate e 81w W S e A e (e Wemw SA4RS S SeAee g v Hem S Shonn FabRs 150 Gemis Lekme e s e {t S SO e S90S S0eb S4OR Sates

Page 230



Following each of the fields is the current value of that
field. Typing the charscter in frvont of the field places the cursor
atter the field, and removes the current value. Typing ‘Y’ or ‘T’ sets
a boolean value to True, any other character sets the field to False.
The Input File and Output File fields require a filename to be typed
followed by carriage return. The integer fields (Begin Block., and Num.
of Blocks) require a number to be typed followed by carriage rTeturn or
space, Any other charscter sets the value of the field to some
unspecified value.

The other options at the Patchwrite level are Print and Quit.
Both cause Patch to return to the outer level. Quit does it straight
away, Print dumps out the file in the raquested format on the way. The
optiens available for the dump need to be selected, the default is
none, The options Krunch and Double Space affect the formatting of the
output. Krunch, when true, removes blank lines between logical output
lines. Double Space when true. double spaces all output.

Using the W(holewrite command causes the full page prompt:

This procedure writes any number of blocks from an existing file
to a new File, unchanged. Simply specify the necessary parameters
Type ‘P to PUT, @7 to QUIT

I{nput File
S{tart Block
N{umber of Blcks

O(utput File

e r—" o o v s s o o Lo - 020 et ke Gacte 24rat sedte shese SALKD SO0 Gboas SELID GUNRD sen Seate

The protocol Ffor changing the fields at this level is the same
as that for the Patchuwrite level. The Wholewrite level is that which
allows one ton mix/match and mingle files. Put and Quit both cause
Patch to return %o the outer level, Putbt writes to the file on its way,
Quit does not. ”

Notice that the Paslchwrite and Wholewrite levels remember their
vital parameters acrcss sessions (while remaining in Patch). The
Consocle level wili ciear &ll memory of the session. The Patchurite
level paginates its output, after each block written, a form—-feed is
generated. (Specifically PAGE(BUTPUTFILE) ). '

Page 231



- Naotes -

age 232



F AR BRI N BRI AW HHE RN B R R RSN

# RT11 to PASCAL CONVERSIONM KIT # # Section 4.& %
F R AW N R E RIS SRR RN R

Version 1.5 September 1978

The utility file labeled RT1ITOEDIT is intended for use with
RT—-11 disks. It assumes the presanta of an RT-11 directory spanning
blocks &-7. When the file is executed it asks the user to specify the
Pascal system unitnumber of the volume of which the user wants to view
the directory. Cnce a legal on—line unit has been specified,
RTLIITOEDRIT reads each entry on blocks 6-7. The program uses the
UNITRESAD intrinsic to read the directory and does not open the file in
the usual manner. It lists on the screen the entire contents of the
directory. For each entry it specifies the file title, file kind, the
size of the file in blocks, and the starting block location of the file
{(in base 10). All unused portions are identified as such. The user

will bs prompted for an RT-11 file name. a Pascal system file name, and
finally = mode of transfer.

Page 233



-~ Nateg -

‘age 234



(2222 T2 I L LIl st T

# GOTOXY BINDER * % Section 4.7 *
Y T I T T YT Y T

Version 1.5 September 1978

Using SETUP alone is not enocush to impPlement full
cursor-control led operation on your terminal, To achieve xy
cusror addressing, you must prepare a Pascal procedure similar
to those on the following pager but designed to handle
random cursor addressing arpropriately for your terminal.
Compile the procedure, then run BINDER on the resultins code
file,

The BINDER prosgram alters the SYSTEM.PASCAL on the
default P(refix disks insertins your special cursor addressing
Procedure into the system under the name GOTOXY., It asks for
the name of a file containing the compiled p~code version of a
‘GOTOXY Pprocedure.’ This procedure is defined as

PROCEDURE GOTOXY(COLUMNX, ROWY: INTEGER):

In systems where the console device is a cursor-
control led CRT terminal, GOTOXY is used by various system
software (and may also be callsed within user pProsrams) to
rosition the screen cursor to the column, row co-ordinates x
and ¥+ Thus, GOTOXY(2,3) would send the screen cursor to
column 2 of row 3, It is assumed that the upprer left-hand
corner of the screen has co-ordinates x=0, y=0,

Note that the procedure itself must NOT be named
GOTOXY» but takes that name automatically after being bound
into the system, For example even thoush you may call your
Procedure "MYTERMXY", once it is bound into the operating
systems Yol mist use the name "COTOXY" to access it

The compiler directive (*$U-%)s, or {$U-> must be the
first thing in the Fascal text file containing your GOTOXY
Procedure, If it is noty you will 9et a value ranse error when
executing BINDER.

The GOTOXY procedure definition itself is enclosed
within a "dummy"” program definition (see the "IQ120XY"
sample procedure on the following page) where the statement
Part of the dummy program is simply a null, Ify when compiline
the program you g9et a "nil memory reference’”; remove the
Pragram heading (but not the null statement block) and
recompile,

Fage 235



- Notes —

(*3U-*)
PROCEDURE FGOTOXY(X,Y: INTEGER);
BEGIN

IF X < 0 THEN X := 0;

IF X >79 THEN X := 79;

IF Y < 0 THEN ¥ := 0;

IF V> 23 THEN Y := 23;

write (CHR(27),'Y',CHR(Y+32),CHR(X+32]))
END;

BEGIN (* Dummy main bLock *)
END.

(*This noutine should work §on the DEC VT-52%*)

(%$U-~%)
PROGRAM PASCALSYSTEM:
(¥ GOTOXY for SOROC IG@120%)
PROCEDURE IQ120XY(XsY: INTEGER);
VAR P: PACKED ARRAY([O..31 OF CHAR:
BEGIN

IF Y)>23 THEN Y:=23;

IF X»79 THEN X:=79;

IF Y(O THEN Y:=0;

IF X<O THEN X:=0;

PLOJ: =CHR(27)

PL1l:='="';

PL2):=CHR(Y+32)}

PL3]:=CHR(X+32):
- UNITWRITE(2:,P,4);
END;
BEGIN END.,

age 23&



F W R R AR R R W E I 030 3R AN BN NI NN

#* DUFLICATE DIRECTORY UTILITIES # % Section 4.8
26303 0 I3 0TI A H IR R I H NI WA

Vergion 1.9 September 1978

COFYDUPDIR

This program will copy the duplicate directory into the primary
divectory location. If the disk is not currently maintaining a8 current
directory the program will tell you so.

To use this program e(x)ecute
COPYDUPDIR. The program will ask for the drive in which the caopy is to
take place (4 or 3). If no duplicate directory is found it will tell
you after you indicate the drive unit, If the duplicate is found then
it will ask you if your sure you want to distroy the directory in
blocks 2-5. A ‘Y’ will execute the copy any other character will abort
the program.

MARKDUPD IR

This program will mark & disk that is currently not maintaining
a duplicate directory so that it will., Caution must be exersiced to be
sure that blocks 4-9 are free for use. If they are not one must re-
arrainge the files as to make them free. One can tell if there
available by getting an E)xtended listing in the Filer and checking to
ses whare the firet file starts. If the first file starts at block & or
the first file starts at block 10 but there is a 4 block unused section
at the top, ¢then the disk has not been marked If however, the first
£ile starts at block 10 and there is no unused blocks at the beginning
of the directory then the disk has been mavked.

SYSTEM. PASTAL 31 30-Aug—-78 & Codefile
OR
Tunused> ' 4 &

SYSTEM. PASCAL 31 30~-Aug-78 10 Codefile

Both of the ahbove cases indicate disks that have not been
marked. Below is the divectory of a properly marked disk.

SYSTEM. PASCAL 31 30-Aug—-78 10 Codetile

Page 237



To execute this program e(X)ecute MARKDUPDIR. The program will
ask you which unit contains the disk to be marked (4 or 3). The
praogram will check to see if it thinks that the blocks 6-9 are free. If
the program doesn’t think so it will ask you if you are sure they are
free ? Typing ‘Y’ will exscute the mark, any other character will abort
the program. Be sure that the space is #ree before marking it as a
duplicate directeory.

Page 238



P24 30 AR I I 2NN MR N IR
¥ P-CODE DISASSEMBLER % # Section 4.9 #
WA R RN HE R RIS

Version 1.5 September 1978
The disassembler inputs a standard UCS5D code file and outputs

symbolic psurdo-assembly (P~Code) along with various statistics
concerning opcode frequency., procedurs c¢alls, and data segment

references. The disassembler was originally written to collect
statistics an opcode frequency. etc. as an aid in making architecture
improvements. It has since been found helpful in debugging

interpreters, optimizing programs, and provides a source of further
information regarding some of subtletizs of our implementation of
Pascal. All statistics gathered are "static" as opposed to "dynamic™.
In athey words the statistics are collected by making a pass through
the code File instead of collecting them while the code file is
actually running.

4. 9.1 DISASSEMBLY

The Disassembler inputs & codg file that has been generated by
the UCED Pascal Compiler. I¥f a program USES a UMIT tha disassembly
will 1nglude the UNIT only 1+ the code #ile has been linked. Assembly
routines linked into a Pascal host will never be included in the
disassembly.

Tae Disassembler is invoked by eXecuting DISASM. 15 and requires
the file OPCORES 19 to be on the system disk. The Disassembler will
first prompt for an input code file, the suffix .CODE being assumed and
thus not required. The next guestion refers to the byte sex of the
maching the code file is intended to run on, that is whether the first
physical byte (byte 0 of a machine waord is the moet significant byte
of the word. Fur mare information, see section 3. 6 BYTE-SWAPPING. For
both currently suppnrted CPU‘s, the PDP-11 and the 8080 families,
phusicral hyte O is the least significant byte, Next the prompt will be
for an output file for the disassembied gutput. Since the output file
is untyped, CONSDLE: or the PRINTER: (if it is on—line? may be used in
preference to any othsr file. The final question at this stage is
whether the user wishes to take control of the disassembly, i.e. decide
which procedures are disassambled as opposed to all the procedures in
the file.

The foliowing gquestion regards the collection of statistics on
references to a particular Procegdure’s data segment, Should you
decide to control fthe disassembly you will be warned that all
statistics gathered are only gathered on those procedures which are
disassemhled. Next you will be taken into the Segment Guide. This
ievel displays the segments you have hy name and lets you decide on
which one you are interested in. The Procedure Guide follows to let
you decide on the particular procedurei{s) that you wish to
disassamble. Typing an "L" at this point will list the procedure(s)
contained in this ssegment A more compiete description of this step

Page 239



octcurs in the next section. The Segment Guide may be re—-antered by
typing "Q" in the Procedure Guide. Thus in this manner you may
disassemble several procedures in several different segments without
disassembling the entire file. The Segment Guide is exited by typing
HGW. )

i1 1 1:D O (sl CONSOLE: %)
P2 1 1:D 1 PROGRAM DISASMDEMO;
1 3 1 1D 3 VAR I: INTEGER;
i 4 1 1:D 4 TOMORROW: BOCLEAN;
HE 1 1:D S5 COMMENT: STRING:
L - 1 1:C O BEGIN
HE 4 1 1:C ) I.=0y
i 8 1 1:C S TOMORROW: =FALSE;
19 1 1:C 8 REPEAT
110 i 1:C 8 I:=I+1;
11 1 1:C i3 WRITELN( /'Disagsembly —— a step backwards. .. ’);
12 1 1:C 74 UNTIL TOMORROW:
113 i i1:C 77 END.
H
FIGURE 1 SAMPLE PASCAL PROGRAM
H BLDCK # 1 OFFSET IN BLOCK= O
| SEGMENT PROC OFFBET# HEX CODE
H 1 1 Q000 BPT 7 D507
i i 1 2{0023%: SLDC o 00
‘ 1 1 30003 SRO 3 AROR
H 1 1 S(Q05) St.DC 0] o0
: 1 1 6(0061}: ERO 4 ABO4
H 1 i 8008 Si.DO 3 EA
H i i F(O0P): SLDC 1 01
H 1 1 10{00A}): ADI 82
H i 1 11(008): SRO 3 ABO2
H 1 i 13(00D): LoD 1 3 B&0103
i i i 16(C10): LCA 42 ‘Disassembly —— a step backwards. .
’
H i 1 6Q{030) SL.DC 0 o0
t i 1 61 (03D} CXP WRITESTR CDOO13
H 1 1 64(040) CsP IOCHECK FEQQ
H 1 i &665(042) 1.2 1 3 B&6C1032
! i i &2(045) CXP WRITELN CDOO016
i i 1 72{048): caP IOCHECK FEQO
H i i TA(CEA) Sl.DO 4 EB
i 1 1 75(04RB) FuJpP 8 AlF6
i 1i 1 77{(0Q4D): RBP ¢ C100

FIGURE 2 SaMPLE PROGRAM DISASSEMBLED

Pags 224G



Figure 1 displays a sample Pascal program that has been listed
during compilation. Figure 2 displays the disassembled code of the
file genevrated by the compiler. The left 3 columns in figure 2
correspond to the 3 columns to the right of the line number in figure
1. They are segment number, procedure number, and offset within
procedure: tespectively., The offset is also given in hex in
parentheses. A complete description of UCSD P-Cade mneumanics is given
in section 3. 4. The actval code that exists in the file is given in
hex in the rightmost column, The paramepters to CXP’'s and CSP’'s are
converied to the procedurs name 1if it is a known system procedure or
function. WRITESTR, WRITELN, and IOOCHECK are some epxamples. The
string operand for LCA is printed as a string as evidenced by the line
with offset 16. Jumps have their operandis) converted to an offset
from the start of the procedure so0 that tha offset may act as a label.
Thus the B displayed in the operand fielid of the FJP at offget 73
really means a jump to the SLDD at offzet B, This is also true of case
Jumps (XJP s}, The block number and byte offset of the start of the
procedure are given relative £o the start of the code file. Thus this
procedure starts at block 1. offset O of the code Ffile. The segment
dicticonary resides in block O for all code files

4.9 2 DATA SEGMENT REFERENCE STATISBTICS

The fourth prompt the Disassembler provides is a question
asking i€ you would like to keep track of all references to a
particular procedure’s data segment The most common use of these
statistices is in eoptimization of a given procedure’s code file. By
re-arranging the order of declaration of variables one may change the
offset within a data segment that applies to a given variable. For
p—machine architecture reasons the #irst 14 words offset into the data
segment are the fastest and have aptieized 1 byte instructions. Offsets
from 17 to 3127 resulbt in instruciions as least 2 bytes long, while
references to greater than 127 require at least 3 bytes. By making the
most frequently used variables have the smaller offsets one may save
considerable code file space and possibly time during sxscution.

iData Eegment size; 25 Data references: S Lex level
2

tFor segmant DISASMDE Procedure # 1

iCffset(word) Total %

H G 3 &G, 00

1 4 2 49. GO

FIGURE 3 SAMPLE PROGRAM’S DATA SEGMENT STATISTICS

Page 241



Figure 3 shows the data segment statistics for our sample
program. Clearly there is little to be gained from optimizing such a
small program but the general idea can still be presented. By using
the compiled listing shown in figure 1 one can match offsets to
variables as such: ' ’

variable offset
I 3
TOMORROW 4
COMMENT : 5

Now by using the figures in figure 3 one can see that offset 3
or the variable I occurs most frequently and thus deserves it’s
position. This same idea carried out on a large program may result in
substancial size savings. Motice that offset & nevers occurs and thus
is not included in the statistics in figure 3.

The prompt for the output file for these statistics occcurs
after the disassembly has been completed. If you elect to collect
these statistics you will be taken into the Ssgment and Procedure
Guides as described in the previous section except that the prompt
requests the selection of a data segment on which te collect
statistics. In the Procedure Guide, "L” gives a listing of all the
procedures in the selected segment by nmumber, lex level, and data
segment size. After the selection of & date segment. processing
continues, as described in the previcus section, from the point after
the data segment question.

4. 9.3 ORCODE, PROCEDURE CALL, AND JUMP STATISTICH

These statistics are collected a5 an aid in optimizing the
architecture of P-Code and alithough they are interesting to look at
they are of no real use to the typical user. For this reason they will
be described only superficially.

Each oprode is given with a complete breakdown of which bit was
most significant for each operand on any given occurrence of the
opcode. These are presented in terms of totals and percentages of the
number of occurrences of the opcode. In addition a histogram of the
opcode occurrence as a percentage of the total number of apcodes
disassembled vruns along the righthand margin. There is also a table of
Jumps in terms of the number of bits required to represent the distance
of the jump for both positive and negative Jjumps. Finally there are
counts of all procedure calls listed by segment and procedure number,

Page 242



The last prompt of the program is the file to which these
statistics are to be dumped.

Page 243



- Notes -

age 244



IR HH R FHEERE R E R R IR AN
# LIBRARY MAP UTILITY #* ¥ Section 4. 10 *
FR R RRRERERRARER AR R RRE HRF R R A IR EHRE®

Version 1.9 September 1978

The program LIBMAP produces a map of a library (or code) file

and ligts the linker information maintained for each segment of the
file.

The program first prompts for a library file name. As in the
linker, this may be an asterisk to indicate "#S5YSTEM. LIBRARY". Unlike
the linker, however, the ". CODE" suffix may be supressed by appending
a period to the full file name.

Example
typing references file
* #SYSTEM. LIBRARY
FARKLE : FARKLE. CODE
GuLD. LIBRARY. : OLD. LIBRARY

Typically, the map vtility will be used to list library
definitions but the option is available to include intra-library symbol
references. Should this feature be desired, type a "Y" when queried

for a reference 1ist. A space (or carriage return) is considered a
HNH.

The user is now prompted for an output file name. (". TEXT"
will be appended unless an extra period is used. ) Several libraries
may be mapped at the same time. To quit, type a carriage return when

prompted for any file name.

A sample map follows

LIBRARY MAP FOR *»SYSTEM. LIBRARY

S # O HMOVETO separate procedure segment
PSMATP public reé
PSYPOS public ref
MOVETG separate proc P #1
PSXPOS public ref

GMOVETO global addr P #1, I #0
PSBUFP public ref

JUNK private raf

DRWLIN global ref

PEYPOE public ref (& timas)
LINETO zeparate proc P O#2

POXROS pubiic ref (2 times)
GMOVETC global rvaf
GLINETO global addr P B2, 1 #0

Page 245



‘age 2446

st

#

#

1:

DRAWL INE
DRWLIN
PSMATP
CONCAT

PSGRAPHI
XROT
MAXSTHK
MATSTK
MCVETO
LINETO
CONCAT
YROT
ZROT
PSXPOS
PSMATP
PSYPOS
PERUFP
STKINX
BUF 1
BUF2

VPGRAPHI
NONE

- REVEREE

SCREEN
SCALLE
XCENTER
YCENTER
XCURR
YCURR
WHITE
BLACK
XHIVal Uk
YHIVAILLUE
X{.0Val.UE
YLOVALUE
DRAW
POINT
ERASE
DRAWLINE
XGOREEN
X5CALE
XGHIFT
YEGOUREEN
YSCALE
YSHIFT

TURTLE
NONE
WHITE
REVERGE
HEADING

separate proc
global addr

public ref (2
separate proc

library unit
canstant value
constant value

private ref (10 times)

external proc
external proc
external proc
constant value
constant value
public ref
public ref (7
public ref
public ref (7
private ref (8
private ref (4
private ref (2

library unit

constant value
constant value
private ref (3
private vef (8
private ref (2
private ref (2
private rvef (7
private ret (7
constant value
constant value
privete ref (4
private raf (4
private ref (5
private ref (5
constant value
constant value
constant value
external proc

tonstant value
private ref (3
private ref (2
constant wvalue
private ref (3
private ref (2

libhrary unit
constant value
constant value
constant value

private ref {(iD times?
WANTCURS private ref (13 times)

P &3
P #3,
timasg)
P #4

of O
of 7

P #8
P9
P #12
of 1
of 2

times)

times)
times)
times)
times)

of O
of 3
times)
times)
timas)
times)
times)
times)
of 5
of &
times?
times)
times)
times)
of 1
of 4
of 2
P #3
of 320
times)
times)
of 240
times)
times)

of Q
of i
of 3

I

#0



SCALE
SCREEN
XCENTER
YCENTER
XCURR
YCURR
TGPEN
BLACK
XHIVALUE
YHIVALUE
XL.OVALUE
YLOVALUE
RBOREEN
XBCALE
DRAWL INE
XBHIFT
YSCREEN
YSCALE
YSHIFT

to & #15:

private
private
private
private
private
private
privats

ref
ref
ref
ref
ref
ref
ref

(8

(3

(2
(2
Céh
(&
(4

constant value

private
private
private
private

ref
ref
ref
Tef

(4
(4
(@)
(5

constant value

private

external

ref

(32

proc
private rvef (2
constant value
private ref (3
private ref (2

are unused

times)
times)
times)
times)
times)
times)
times)
of 2

times)
times)
times)
times)
of 320
times)

P #10

times)
of 240
times)
times)

Page 247



- Notes -

tage 248



S T ¢ A S

g @

10
11

12

14

15

HAHFRREALET HEEHAFEAREFHETRERRRS
# TABLE 1 % % EXECUTION ERRORS *
W RN B I NI AN

Version I.93 Ceptember 1978

System evrror FATAL
Invalid index, value out of range (XINVNDX)

No segment: bad code file (XNOPROC)

Procedure not present at exit time (XNCEXIT)

Stack overflow (XSTKOVR)

Integer overflow (XINTOVR)

Divide by zero (XDIVIER)

Invalid memoary raference <Chus timed out> (XBADMEM)
User break (XUBREAK)

System I/0 error (XSYIOER) FATAL
User I/0 ervror (XUIJERR)

Unimplemented instruction (XNATIMP)

Fioating peint math error (XFFIERR)

String too long (XS2LONG)

Halt, Breaskpoint (without debuggesr in core) (XHLTBPT)

Bad Block

Al)l fatal evrrors either cause the system tu rebootstrap, or if

the error was totally lethal to the system, the user will have to

reboot.

All errors cause the system to re—initialize itselt (call

system procedure INITIALIZE).

Pane 249



- hates -

lage 250



WM

4

~

10

11

13

14

15

PR WA HHHFHRITE AR R R R WL S
# TABLE 2 % #* IORESULTS %
Lp 22T 2 X L L L L S

Version I.5 September 1978

No errar

Bad Block, Parity error (CRC)

Bad Unit Number

Baed Mode, Illegal operation

Undefined hardware error

l.ost unit. Unit is no longer on-line

Lost £ile, File is no longer in directory
Bad Title, Illegal +ile name

No room, insufficient space

No unit, No such veolume on line

No file, No such file on volume
Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file
Bad format. error in reading real or integer

Ring buffer overflouw

Page 251



~ hNptes -

age 252



AW ENRN W NIR AR R RN

#* TABLE 3 # ¥ UNITNUMBERS #
AW H R RT3

Version 1.8 September 1978

NUMBER VOLUME NAME

O vempbyl
1 CONSOLE
2 SYSTERM
3 GRAPHIC
4 flappy0
5 floppyl
& PRINTER
7 available — Cunimplemented>
8 REMOTE <reserved for future usel>
9 bilocki
10 block?
11 blockd
12 block4
Devices @ ~ 12 are block—struckured devices, in most cases (RK-03).

Page 253



- Notes -

age 254



DRAWL INE:

O

W om

B

DRAWBLOCK:

03

i

SR TSR SRR I
% TABLE 4 # % PENSTATES #
SN R I I RN N

Varsion 1.9 September 1278

PENUP (picture will not change)
PENDIOWN  (force bhits on)

ERASER (force bits off)
COMPLEMENT (XOR bits)

RADAR {scan for obstacle)

R <paint source onto destination’>

COPY <source goes tn destination>

COMPLEMENT <inverted source goas to destination>
EXCLUSIVE-OR <source exclusive—or destination goes

to desination>

Page 255



- Notes -

tage 254



do.

NONTORUNE

30
31:
52
53:
S4.
595
Sé6:
97:
58:
59

101
102:
103
104:
105:
106:
107:

e R R I 233 B30 H 2033 HH I IR H AR R F WX AR RU{AR

# TABLE 5 # * SYNTAX ERRORS IN UCSD PASCAL #
FHHNHRRBRES IR SN B I W NN R 3R

Version 1.5 Sepitember 1978

Thke syntax errors this compiler gives are not the best it can
When time comes available to do so, the error generation of the
compiler is going to be seriously re-vamped.

Error in simple type
Identifier expected
‘PROGRAM' expected

‘Y eupected

f.07 epxpected

I1legal symbol

Error in parameter list
OF Y expected

‘{’ expected

Evrar in type

‘L’ pxpected

‘1’ expected

‘END " expected

i ' expected

Integer expected

‘=’ expected

‘BEGIN’ expected

Evror in declaration part
errar in Tfield-1list>
. sepected

‘¥’ expected
‘Intarface’ expected
‘Implementation’ expected
‘Unit’ sepected

Evrar in constant

‘; =’ expected

‘THEN' espected

TUNTILY expected

‘D expected

‘TN or ‘DOWNTO’ expected in for statement
‘IF " expected

‘FILE’ expected

Error in <factorl (bad expression)

Error in variable

Identifier declared twice

Low bound exceeds high bound

Identifier is not$ o0f ithe appropriate class
Undeclasred identifier

sign not allowed

Number expected

Incompatible subrange types

Page 257



108:
109
110:
11%:
112
113:
i14:
115:
116:
117:
118:
119:
120:
121:
122
123:
124
128:
126:
127:
128:
129:
130:
131:
132:
133:
134
135:
136:
137
138:
13%:
140:
i41:
i42:
143
144:
145:
144:;
147
148:
149
150:

131
152:
153:
154:
155;
156:
157:
158:
159
160:

Page

File not allowed here

Type must not be real

<tagfield> type must be scalar or subrange
Incompatible with <tagfield> part

Index type must not be rsal

Index type must be a scalar or a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter
Unsatisified forward reference

Forward reference type identifier in variable declaration
Re~-specified params not OK for a forward declared procedurs
Function result type must be scalar, subrange or pointer
File value parameter not allowed

A forward declared function‘s result type can’t be re—-specified
Missing result type in function declaration

F-format for reals only

Error in type of standard procedure parameter

Number of parameters does not agree with declaration
Illegal paramster substitution

Result type does not agree with deciaration

Type conflict of operands

Exprassion is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowsd

Illegal type of operandis)

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types must be compatible

Type of variable is net array

Index type is not compatible with the declaration
Type of variable is not record

Type of variable must be file or pointer

Illegal parameter solution

Illegal type of loop control variatble

Illegal type of expression

Type conflict

Assignment of files nat allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index tuype must be integer

Assignment to standard function is not allowed

Assignment to formal function is not allowed
No such field in this record

Type error in read

&ctual parameter must be a variahle

Control variable cannot be formal or nan—local
Multidefined case label

Ten many cases in case statement

Mo such variant in this record

Real or string tagfields not allowed

Previous declaration was not forward

258



161
1462
163:
1464 :
165:
166:
167
168:
169
170:
171:
172
174:
182:
183:
184
185
184:
187:
188:
189
190:
i91:
192:
193:
194:
195

201
202:
203:
204
250:
251
252
253:
254
29&:

- g

=257
208:
259

300:
301
302:
303:
304
398
399:

Again foruward declared

Parameter size must be constant
Misging variant in declaration
Substition of standard proac/func not allouwed
Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Standard file was re-~declared
Undeclared external $file

Pascal function or procedure expected
Mested units naot allowed

External declaration not allowed at this nesting level
External declaration not allowed in interface section

Segment declaration not allowed in unit
i.abels not allowed in interface section
Attempt to open library unsuccessful
Unit not declared in previous uses declavation
"Uses” not allowpd at this nasting level
Unit not in library

No private files

‘Uses” must be in interface section

Not enough room for this operation
Comment must appear at top of program
Unit not importable

Error in rgal number - digit expected
String constant must not exceed source line
Integer constant exceeds range

8 or 2 in octal number

Too many scopes of nested identifisers

Too many nested procedures or functions

Too many foruward references of procedure entries
Procedure too long

Too many long constants in this procedurs
Toe many external references

Tno many externals

Tooe many local files

Expression too complicated

Division by zero

No case provided for this value

Index expression out of bounds

Value to be assinged is cut of bounds
Element expression out of range
Implemantation restriction
Implementation restriction

Page 259



400:
401:
402.
403:
404
405:
406:

Illegal character in text
Unexpected end of input

Evrror in writing
Error in reading
Error in writing
Call not allowed
Include file not

Page 260

code file, not enough room
include file

list file, not enough room
in separate procedure
legal



file,

H B I T T SIS T A S B
# TABLE & »* % ASSEMBLER SYNTAX ERRORS
WP R N H RN 33633

specific machine errors are

Version 1.5 September 1978
This section lists all the general errors found in the ERRORS

dealing with machine specifics.

CTNCURUNS

Undefined labsl

Qlperand out of range

Must have procedursz name

Number of parameters expected
Extra garbage on line

Imput ling over 80 characters

Not encugh ifs

Must be declared in ASECT before use
Idantifier previously declarad
Improper format

EQU expected

Must EQU before use if not to a label
Macro identifier expected

Word addressed machine

Backward ORG not allowed
Indentifier expected

Constant expected

Invalid structure

Extra special symbol

Branch tno far

Variable not PC relative

Illegal macro parameter index

Mot encugh macro parametevs
Operand not absolute

Illegal use of special symbols
I1l-formed expression

Mot ernough operands

Cannot handle this relative
Constant overflow

Illegal decimal constant

Illegal actal constant

Illegal binary constant

Iinvalid key word

Unexpected end of input — after macro
Include files must not be nested
Unexpected end of input

Bad place $for an include file
Only labels % comments may occupy column
Expected local label

Locel label stack overflow

String constant must be on 1 line
String constant exceeds 80 chars
Illegal use of macro parameter

No local labels in ABECT

Exnectsd k2y ward

found in the sections below

ona

Fage 261



44: String expected ; » :
47: Bad block. parity error (crc)
48: Bad unit number
4%: Bad mode, illegal operation
50: Undefined hardware error
51: Lost unit, no longer on-line
S52: Last #file, no longer in directory
93: Bad title, illegal file name
54: No room; insufficient space
53: No unit:, ne such volumn on—line
S56: No file, no such file on volumn
57: Duplicate file
58: Not closed, attempt tn open an open file
9%: Not open, attempt to access a closed file
&60: Bad format, error in reading real or integer
61 Nested macro definitions illegal
62 "=" 0/'(. "#" exp@&ted
63 May not EQU to undefined Labels
280 Based marchines ~

For constants, Hex is the default type,
a ‘B’ defines binary ex. 100108 .,
a ‘. defines decimal ex. 35674.

Location Counter (LC) = &

All reserved words may not be used for any other purpose
such as an identifier. For example, the reserved word
currently is being used as a register and in a condition
code, therefore it may not be used for any other purpose

{this is contrary to usuasl Zilgg essembly language.
restricted in the UCSD assembleaer).

Specific error messages:

76: Incarrect operand format
77: Close paren ")" expected
78: Comma “," expected

79: Plus "+" expected

80: Open paren "(" expected

B1l: Stack pointer "SP" expected
82: "HLY expected

83: illegal "CC" condition code
B4: Register "C" expected

85: Register "R" expected

86: Register "A" expected

PDP11 Based machines:

. Page 262



For constants,

and output,

a 'H’ defines hexadecimal
a ‘.’ defines decimal

a ‘B’ defines binary

Location Counter (LC) = #

Specific error messages:

74:
77
78:
79
80:
8i:
8z:
83:
84.

Closing paren ")" expected
Register expected

Too many special symbols
Unrecognizable operand

Register reference only

First eperand must be a register
Comma expected

Unimplimented instruction

Must branch hackwards to lahel

ex.
ex.
ex.

Octal is the default type for both input

056H

546.

3

1001B .

Page 263



- Notes -~

Pagce 244



33 F4T I 03I I3 2 3 3033 0 I 309 30 0030 30 H 3 I 3E I I3 2 3030 A I3 3 3 I I I3

* TABLE 7 # % American Standard Code for Information Interchange #
SE3E3E 330 F I 0363536 3636 3036 36 36 36 3 30 36 35 30 36 38 35 S 33 303 35 3 30 30 3 36 30 3033 0 36 35 3038 3 3 3 6 335 3 I 3

000
001
002
003
co4
Q03
006

010

011

10 012
11 013
i2 014
13 015
14 Q16
13 017
16 020
17 021
18 oz2
19 023
20 024
21 025
22 026
23 027
24 030
29 031
26 032
27 033
28 034
29 035
30 036
31 037

VONCUORUWUN=-O

00
01
o2
03
04
05
06

007 Q7
o8
09

0OA
OB
ocC
oD
GE
OoF
10
11
i2
13
14
i35
16
17
18
19

4
&

i
iC
iD
iE
iF

NUL
SOH
STX
ETX
EOT
ENG
ACK
BEL
BS
HT
LF
VT
FF
CR
S0
SI
DLE
DC1
DC2
oC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
es
RS
us

Yersion 1.5 GSeptember 1978

32
a3
34
35
36
37
38
a9
40
41
a2
43
44
45
a6
47
48
49
50
51
52
53
54
55
56
57
58
59
&0
61
62

63

040
041
042
043
044
045
046
047
050
051
052
053
054
0535
056
057
060
061
062
063
&4
065
Ob6b
067
070
071
072
073
G74
075
076
077

20
21
22
23
24
23
26

27
28
29

24
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
3E
3F

SP
1

.
3

#
%
%
&
L4
(
}

JONPCADUONON" |~ + %

NV AT

&4
&5
b6
&7
68
&9
70
71
72
73
74
75
76
77
78
89
80
CH
82
83
84
85
86
87
88
89
90
91
92
93
94
95

100
101
102
103
104
105
106

40
41
42
43
44
45
46

107 47

110
111
112
113
114
115
116
117
120
121
122
123
i24
125
126
127
130
131
132
133
154
135
136
137

48
49
4n
4B
4c
4p
4E
4F
50
51
52
53
54
55
56
57
58
59
54
58
5¢C
5D
SE
S5F

= IToTMUORD>E

LU/, MNLSXECC-HMAPIVOZIN R

96
97
98
99

100

101

102

103

104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146

147 &7
150 68
151 &9

152
153
154
135
1564
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

L4

&0
61
62
&3
64
&3
b6

= Ta Ko aoanob

6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
7C
7D
7€
7F

O v NEXECCHN 3,80 033 mxe

Page 265



-~ Notes =~

‘age 26646



126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

GGo
001

176
177
200
201
202
203
204
205
20&
207
210
211
212
213
214
215
21é
217
220
221
222
223
224
225
2258
227
230
231
232
233
234
239
2346
237
240
241
242
243
244
245
2445
247
250
251

s

00
01

7E
7F
80
81
82
a3
84
85
86
87
88
89
84
&B
8C
8D
8E
8F
90
?1
92
93
94
95
76
57
98
99
24
7B
FC
9D
FE
FF
AO
Al
A2
A3
¥
aS
Ab
a7
AB
A9
Al

3363630 30 33 3

# TABLE 8 #
3636 38 3 30 3 b 303

SLGC O
SLDC 1

SLDC 126
SLDC 127
ABI
ABR
ADI
ADR
AND
DIF
DVI
DVR
CHK
FLO
FLT
INN
INT
10R
MOD
MP 1
MPR
NGT
NGR
NOT
SR
SBI
SBR
S6s
SQT
8GR
STO
1XS
UNI
S2P
CBP
LDCN
ADJ
FuUP
ING
IND
IXA
LA
LCA
LD
MOV

My
8AS

171
172
173
174
175
176
177
178
179
180
181
182
183
184
i85
186
187
i88
189
190
171
i92
193
i?4
195
196
i97
198
199
200
201
202
203
204
203
206
207
208
209
210
211
212
213

Version I.

253
254
255
296
257
260
26&1
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
207
310
311
312
313
314
315
316
317
320
321
322
323

324
325

3 38 30 3 30 36 3 30 30 35 36 3 34 30 - 3E 3 3

# P-MACHINE OP~CODES 3
B33 333 I H I I I SN

S

AB
AC
AD
AE
AF
BO
Bi
B2
B3
B4
B3
Bé&
B7
88
B?
BA
BB
BC
BD
BE
BF
co
Ci1
ca
Cc3
c4
cS
Cé
c7
cs
c?
CaA
cB
cc
cD
CE
CF
5o
D1
D2
D3

D4
D5

September 1978

8RO
XJP
RNP
CIpP
EQU
GEQ
GRT
LpA
LDC
LEQ
LES
LOD
NEQ
8TR
uJp
LDP
sTp
L.DM
ST™
L.DB
8TB
IXP
REP
CBP
EQUI
GEGI
GRTI
Lia
LDCI
LEGQI
LESI
LDL
NEGI
STL
cxp
CLp
ceP
S51P
IXB
BYT
EFJ
NFJ

- BPFT

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

2595

326
327
330
331
332
333
334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
353
354
335
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376

377

D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1
E2
E3
E4
ES
E6
E7
ES
£9
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
Fa
F5
Fé
F7
F8
F9
FA
FB
FC
FD
FE

FF

XIT

NOP

SL.DL
SLDL
SLDL
SLDL
SL.DL
SLDL
SLDL.
SLDL
SL.DL.
SLDL
SLDL
SLDL
SLDL
SLDL
sL.DL
SLDL
SLDO
SL.DO
SLDO
SL.DO
SL.DO
SL.p0
SLDO
SLDO
SLDO
SLDO
SLDO
SLDRO
SLDo
SLDO
SLDO
sLpo
SIND
SIND
SIND
SIND
SIND
SIND
SIND

SIND

QONCODIPWN-

Page 247



—_— ]\\o‘{s& —

Page 268



{identifier>

wunsigned integerD

I ———

]

N e, T e ’
e ’% (P78 b L gn’.’;’ d v n‘f..t: !_:3!35" "'_"" ) ’C\}m““"’"’{"’ Ay gL i 2 ) ”.. k R “;!”
i AN { A lg
s 7

L

e e e
ey

- 1 r,.m A A 1. A A A A - Tt ey
>

o VUSSP SA———

268k



gonsuanty

(~4 constant identifier

|

'L—4 unsigned number

chusacber

WY o)
AN AN

{simple tgpe)

tuype tdentifier

L

J

N

I
p\>
constunt-~wmﬂ::}«-w*constant-

W“’@"T‘-O tdentifier ) ’@ A

R

>LRR



<type>

—-————m sinple tupe

—_— 1 ,@» type identifier

w.\

m-...,-.._..*—.

»G%wkaqmp\e Lupe -—J 0

Mo e oamass .

g—-"'«"'*“-——-—!

w‘(’m\\-ﬂtwpe 7

\\me/j

MM apen _W.»"

e s,
LN,
l\m )(’;ET ‘\v P — v..vﬂg‘f:}.-w.,w-m-v—ﬂ.,,-m\.w«...,.»" S i' NP 1 e tvpe f S ,,,/1

o r 1
’@c‘:f D 1~ oed Plend Vst pee
MNe” L j

ol e A
’Gﬁ‘f-,/ |

.
> STRING J#’ S
N

uﬂﬁiQﬂed
integer

S 4 A o

':j
—
A ;' 1
| o/

e et p——

.

N

e et _..,..-'

—

ol IvTERACT zvgx

N

A S s

26€C



Y vy VI s

X A T

(e
X

gé’tdenttﬁler

|

)
‘]‘Q—‘Wpe Tr J A

CASE M+ identifier ,@l. type identifier
~ o
constant| o o » fleld \igt r——-—*@——‘
{variable)>

varigble tdentifier

field

tdentifier

(O—

\e@——, field identifier —7

N4 i o

{LF (—’ expression T@J
!
L

()

72620



<factor>

» unstgned constant 7+
> »variable A
— function tdentifier ~7“#(:)7r*expresstonr](::%”

| L M\

| N

\ A

- %G;}mwww*expresgion--~(zz} -

. NOT factor b

)
jf,wJ

>~*express%om~L%:;}ﬂexpresston
;

&

<term

v

OOOE
L)

>6 8



{simple expression>

- ~——Aterm T

L-~~~-~~-t.erm

<expressiond

—» slmple expression

&

{parameter 1lst>

simple expression r———

’;
“”’(Z}‘ LdEHtifieP*+ﬂ<::}$tgpe identifter~L<E>~meb

*~»— N

8 F



(~** unsigned integer

Ly funciion
identifier

ildentifien

{statement)

expres—
ston

} Vartablewwi]rmquza R
a—

4 procedure | L@H&,

3

expresston;-4wﬂzz}mm4*

R Baa;i\;\r««gma
s
-
L

statement-—7ww
J

o exp;'*esF%
> . -
hq11r>"w _suen |

sLonNn

R '—w e

wﬁ\},exphesmi_w
%

- R USSR |
! . OR—

b W ILE/&M - expreqqtorx i‘w-* “@ 5

et S

END } -

Mmm\\"qtate~ state—|
THEN T ment —i4igt“é\§”

et v

! ment

const—
ant

e e

v *
\T;M state—|
i i ment ?<

y
-

SPUR——

‘
3
2
H

&

o

atement

i S

L._W“,m{::jém,Mmj

" {
#mwv»<j;LAf¥a *”Lgtemﬂntrr*%E%%:Z)WeXﬁ”es<imﬁrj

IS g

J‘@“ ) W“‘
- !

NTO;
- U S ;
w FOR vartable 2 o b ESsLon 70 \i
N RJ/ Ldentirienr [T\ expressio
. T Lv—-«u A . A A AN ot e it wm
- . ;i
i It
\~M’expression~¢@ﬁ®—ﬁstatemeﬂt 7
e
B e i e . A st | o ‘
‘”-;«u variable -w- statement -7
S S z
L ‘ |
— - A

f SRS

>»L



<block>

M@WWM R
— A

W

# unsigned integer

Ldentifler

e = —H constant

S SONPSS |

oo

A

TYDE 7> Ldgntifiagr:
f

SR

g oy

e b oD e

<\

oo

S
1
i
i
!
e

=i ocik -

S

/,...«..J,m_w —
»(\PRMCE.BXJRE -3 Ldent L

Ldenti{ler

[ERNTN |

Ler t——# parameter list

oy

"’**g purameter list -
H : }

Y
—t®

D i 0 Sk B e e ey

” atemnernt "‘"*'g

sron
s
£
¥
{
!
i
3

268H



campilation?

I T P gm G RA” e B

Ldentiiter wmw4i£>M]

r

%yl declaration

i
| SO —

b""‘“‘“"“‘”"‘“""‘“’“""'“"‘“‘““"“"“"""g uses clause |

i - o
H
H

\ - N
o Bloak
¢
SO I

% unli declaratlon

O e R ' S R b o o e AN

268



— Notes —

268 3



H AR AW F R R IE I I

#* MATERIALS AVAILABLE % # Section A. 1 %
FAEAEIE ISR H I I SE NI

As the UCSD Pascal system has grown, we have found that to
distribute all of the software which is useful to all users for all
systems, has become an unbearable task. To attempt to alleviate the
large number of diskettes the release software requires, and to
alleviate the number of pages of documentation sent to each subscriber,
we have started to split the system into a number of seperately
available sections.

The major section is the section which contains the operating
system and all the suppoart routines that go with it. We include a
number of useful utilities which should enable the subscriber to do all
types of developmental work. The master releacse (as from herein it
shall be named) contains the interpreter for the initial system
ordered, the UCSD Pascal operating system, the Pascal compiler, two
text editors (one for screen devices, one for general purpase), a
BASIC compiler, the Linker, the Assembler for the appropriate machine
(at least). Other utilities include: a generalized file utility (the
File handler), a genevalize patch and dump routine, a set of programs
to enable the subscriber to configure the system to run most
intelligently with any terminal, a desk calculator, and a librarian.

Software which is not included in the master release is
generally available from the IIS as a supplemental package at a nominal
handling charge (dependent on the amount of material involved with the
package). The sorts of softuare available are: interpreters for
machines other than the machine the master release was ordered for,
which will be accompanied by the assembler for that machine, in some
cases we have assemblers for machines for which we do not yet have
interpreters, program and data management systems, specifically a cross—
referencer, and a pretty-printer. Also available, although not until
some indeterminite time after the 1.9 release, a Computer Aided
Instruction packet. This may be available through the I1IS, however it
may be available only through the University of California Extension
Studies Office. The CAI package consists of knowledge quizzes, and
programming quizzes, and a record keeping system, all based on Kenneth
L.. Bowles book: (Micro)Computer Problem Solving Using Pascal.



- Notes -

‘age 270



F YA 3 0 2 30 303 0 330 IR W R H HH N W I W
# THE FIRST TIME THROUGH * # Section A. 2.1 #
3303 033 303 306 3030 W 30 R IEIH I R KRR R W

Version I.5 September 1978

Welcome %o UCSD PASCAL. I# you put the disk labelled "PASCAL:"
in ygour booting drive, went through your normal boot-strapping
procedure, and were grested in a similar fashion, you do not need to
Tead this section.

I+ this is not the case then here are a few of the problems we
have encountered with I.4 coming up in strange and foreign lands:

1.} Some rvevisions of the LEI-11 refuse to boot with the clock
running. If you have a switchable clock, turn it off to
bootestrap: if and when %the system grests you with the welcome
message and the date, turn the clock back on.

2. ) You have Andromeda floppy-—-disk drives. Currently you will be
able to use anly drive #0 unless the other drives have disks in
them at boctstrap time. Drives that do net meet this condition
will appear permanently off-line.

3.7 You do not have enoaugh memory. The minimum requirement for
mgmory is 24K 1&6-bit words.

4. ) You have a system configured £or RE-0F hard-disk and you have

an unformatted disk on line. The system will hang waiting for
a reply from the disk which cannst be generated if the disk is
unfarmatted. Take the disk aff~line and try =again.

5. ) You have a system configured far RK and RX and the RX is not
present. RX must be present.

A} e haven't encountered ysur problem before. Call:

The number listed an the front page of this document.

Page 271



- Notes -

‘age 272



I R AT N IR RHE R R
#* 8080/Z80 WITH CP/M % 3740 DISKS # # Section A. 2.2 #*
A 2SN F IR IR I

YVersion 1.5 September 1978

THE CP/M IMPLEMENTATION OF UCSD PASCAL

BOOTING PASCAL

To get Pascal running under your version of CP/M: a two—-disk
bootstrap is used. First, boot CP/M in the usual manner. On the CP/M
disk distributed with the Pascal system is a file called PASCAL. COM.
PIP this file over to the bocted disk, then execute it.

When the program asks for a Pascal disk, put the disk labeled
PASCAL: in drive A and any disk in drive B. The system may not boot if
there is no disk in drive B, or if you have a l-drive system and your
CP/™M drivers wait on 2 request to drive B, Then hit Lreturnl. In
about 135 seconds the FPascal welcoming message should appear. (Note: we
have discovered that some drives, possibly as a rtesult of being double-—
buffered, cannot keep up with a 2 to I interleaving and hence are
extremely sliow The bootsirap then may take about 30 or 40 seconds.
We intend to alleviate this problem in the next release:, but persans

with svuch drives will have to bear with slow disk accesses for the
present. )

I¥f all has gone well, Welcome to the Wonderful World of Pascal.
If not, please call to notify us of your prohlem.

MODIFICATIONS TO CP/M

The Pascal system will operate under an unmodified CP/M system,
but it is advisable %o create a special CP/M for use with Pascal in
order fto have Pascal running in the environment for which it was
designed.

1. If there is no disk in a drive and an access is made from
that disk, the driver should not wait %o perform that access until a
disk is inserted, as the Pascal system often attempts to read from
empty drives when searching for a particular disk. Instead, simply
return a 1 to indicate a bad 1/0 operation.

2. If you have a keyboard interrupt handler, it should
recognize the character fentrl~f1 28 a3 “flush-output” toggle and signal
the character—aut routine to gobkle any characters until signaled
again, When it receives another [cntrl—-f1 the keyboard handler should
signal the output handler causing the output handler to resume
outputting characters sent to it.

Page 273



The keyboard interrupt handler should also recognize the
character Lentrl— s] as a "stop output" togole and wait until it
receives another [cnirl-sl before allowing program execution to
continve.

If your keybeard has no alphaleock, the input driver can use any
ctharacter not used for some other purpose as an alphalock toggle.
£Cntrl~pl, Ereturnl, Lentrl-il, fcnirl-s], fcntrl-£3, Lcntrl-cl or any -
chavacter in SYSCOM™. CRTINFO should be excluded from consideration. We
suggest Lcnirl-al.

Pascal expects the tab character {L[cntrl—-il) to cause the
terminal cursor to advance to the nesrest eight column. I+ the
terminal does not do this itself, then the driver in the BIUOS should.

CREATING A BUOUDTSTRAP ON A PASCAL DISK

Note: These instructions are for a standard BIOS with 5i2-byte
blocks. For instructions for a non-standard BIOS, reference file
READ. ME on the CP/M disk in the distribution packet.

On the CP/M disk are two programs, PGEN. COM and PINIT. AGM. The
program PGEN.COM is a program used %o write out a buffer (which will be
filled by boot code and BIOS) to track 0. PINIT.ASM is the boot code
that reads SYSTEM. MICRO from a Pascal disk, loads the BIOS into the
corrvect place, and starts the interpreter’s boot rautine.

You must create a file PBOOT. HEX, which will require a slight
modification of your current BOOT program. PBOOT will reside on track
0, sector 1 and, when executed, will load track O, sectors 2 thru 13
into memory starting at location (MSIZE~48)#1024 + OBAOOH, and jump to
that location.

You then need to =dit PIMIT. ABM, changing MSIZE to match your
system. Assamble the file, creating PINIT. HEX.

The next step is to stitch teogether the one-sector boot, the
Pascal interpreter loader, BIOS, and the program to write this
information out to sector O. The following is a session with DDT that
performs all this. This sessiocn was used to create a 4BK system. User
input is in lowercase, and comments are off to the right.
A>ddt pgen. com load PGEN. COM into memory. PBOOT, PINIT,
and BIOS will be overlayed into PGEN’'s
data area, after which a memory image will

L P

be saved.
DDT YERS 1.3
NEXT Pe
0400 01060

Page 274



~ipboot48. hex i set PBOOTA48. HEX as input file
-h?00 O i PBOOT starts at location O, and we want to
i read it in at location 900H

0900 0900

-1 200 i read in PBOQT
NEXT PC

0980 0000

~ipinit48. hex set ‘PINIT4B.HEX’ as input file

i

-h?80 BAQO i PINIT starts at location BAOOH in a 48K system
i {in general (MSIZE-48)#1024 + BAOOH), and we
i want it at location 980H

€380 4F80

-r4£80 i read it in

NEXT FC

0A7d BAOG

-ibios48. hex i and lastly read BIOS into location D8OH

~hd80 beQO

C380C 4FB0

-~ &80

NEXT PC

OF7&4& 0000

-Lentrl-cl i leave DDT. . .

AZsave 146 pgendB. com i ...and save the program.

A>pgendd ; sample execution of the program. ..

PGEN VI. C

PUT BOOTERT{Y/N})y

WRITING BOOTER TO DRIVE A, TYPE RETURN ; put a Pascal disk {(preferably a
H copy of the master) in drive A
H before hitting [returnl.

AGAIN?(Y/N)in

GET BOOTER?(Y/N)n

REBOOTING CP/M, TYPE RETURN i put the CP/M disk back in drive A
i before hitting Lreturnl.

Az

Page 275



-~ Notes -

lage 2764



LA R e R I e L R R R T
# DIFFERENCES AMONG IMPLEMENTATIONS % % Section A3 =
FRFFFRHBERFEFHHLBRELRERR R R X REF SRR BERE BFRH RN B RS RS S

Version 1.3 September 1978
The following is a list of differences between PDP11 Pascal and
80B80/780 Pascal, the items describe the way it is on the

8080/280, and how that differs from the documented system.

1. The definition of div is different (thereby changing the values
returned by mpd):

a8 div b = floorlarsb)
amecd b = a — b#(a div b)

2. The I/0 drivers are all written for synchronous aperation. This
means that Lbreakl has no effect. ECntrl-s] and Lentrl—-+1 will
not perform as described wnless youw have a keyboard interrupt
handler, and this handler is modified as gpecified below in
Modifications te CPM.

This also means that UNITAUSY, UNITCLEAR, and UNITWAIT are
meaningless. {(In the future 1t may be possible to use ‘the
UNITBUSY and UNITCLEAR operations on the keyboard, but this is
currently infeasible. )

3. The interpreter is called SYETEM. MICRDO instead of SYSETEM. INTERP.

4, The CP/M implezmentaetions have bootstraps that are not accessible to
Pascal, hence the program BDOTER. CODE will not work. Sze the
approprniate section of this document for instructions on
copying and/or cregating a boctstrap.

5. There are no turtle graephics procedures in the interpreter. Users
with bit—mapped graphics devices are advised %o see section 3.1
of the documentation for & Pascal version of DRAWLINE.

6. There are no long integer funct
1

ns available with the 780/8080
system, They will be aval i

io
abieg in later releases.

Page 277



- hotes -

’age‘278



B AR RS IR R R R F R RFE FH IR
# CHANGES MADE IN RECEMT RELEASES # # Section A. 4 %
s 2 X2 A R A S I A SR A e e L L F I

Version 1.9 September 1978

SUMMARY OF DIFFERENCES BETWEEN UCSD PASCAL RELEASES 1.4 AND 1.5

The following additions, improvements and/or corrections apply
to Version I.53. Reference the (section #) preceding each entry for a
more detailed description. For information regarding differences be-
tween previous releases refer to the system documentation for those
releases.

(1. 1)
OPERATING SYSTEM

(—o All +ields of SYSCOM (system communication area) that
can be set in the wutility SETUP are initialized at
boot time using #SYSTEM. MISCINFO (if present).

(2. 1. 1) The bug in the string intrinsic POS has been #ixed.

(1. 1) C{ompile will now prompt the user for the file to
compile if the workfile is empty.

(1.8} There now exists a new command called L(ink at the
command level of the suystem that directly invokes
the new utility #*SYSTEM. LINKER.

(1.9 There now exists a new command called A{ssem at the
command level of the system that directly invokes
the new assembler.

(1. 1) I+ a file SYSTEM. STARTUP exists on a given disk, that
file will be rTun as a user program at initialize time.
(1. 1?2 R{un directly invokeg #SYSTEM. LINKER if it is

nesded by the user program. It assume use of
#SYSTEM. LIBRARY for external linkage.

(1. 1 X{ecute will not vun code files which need to be
Linked. An error message will appear.
(1. 22 The file handler is now a separate file called

#SYSTEM. FILER.

Page 279



(=) “Backspacing and Zdelr are now allowed when reading integers
' from Unit #1 (CONSOLE:). However, backspacing over the sign,
if any, is not permitted. ‘

(1.2) FILE HANDLER

Substantial mogifications have besn made in the syntax of user

responses to filer prompts. Foer nearly ail commands there exists the
option of using either of two wildcard symbole enabling extended
control over activity within the filar. In general, the symbol "="

will allow selective control over files within the L(dir, C(hange.
Riemove, and Tl(ransfer coammands. The "?" symbol is similar to "=" with
the addition that it will cause the filer ¢to prompt the uvser for each
task to be performed.

G(et command now allows use of appended " TEXT" and
“. CODE" suffivxes in file names and igneres them.

S(ave command will now 2llow the current workfile to
be zawed on a disk other than the system volume,

E{ and L{dir now vequire an appended ":'" after literal
volume I.D. "5, Ssiective listing of directory subsets

ie allinwed through wse of %Yhe wildcard symbol = in can-—
Junction with file prafix and suffix string patterns.
Divectory listings may be sant %o a volume other than
COMSDLLE: by following the source volume name with
foowwvonlume idl’

Clhange command will now a2llaow the uvser to change
selected file prefix and suffix sktring pattsrne within
groups of filenemes contsining the chosen patterns
through use o0f the wildecavd symbols = or 7.

Riemove command allows seslectiva remaval of graoups of
files wsing the = 5y ? symbol in a mannaet similar to the
C{hange command. To seisctively remove any or all of

the fileés on a given volume the vser may type
Svpllprefisxy T osnd will be prompted for each file on

the disk. Typing Riesmove! <vol prefix> now will result in
ne sction. R{empwe) {vol prefix> = will remove ALL files
on the #isk. A1l commands vesultirg in the potential
remaoval of more than orne file will prompt the user with
"Update directory?" following “"removal" of file names.

T(ransfer command functions in a manner similar to
the C(hange command. When performing a disk to disk
transfer using one drive it will now ask for the

the fils name to be transferred to bafore the source
disk is removsd. It dic¢ now possibie to selectively

transfer any or 2ll of the files on 3 disk by tuping



<vol.prefix’> followed by "“?" or “=" in a manner simi-
lar to the R{emove command. The user will be prompted
for each file and is given the option of transferring.

Z{ero command will now prompt the user with the present
number of blocks allocated the the disk in the directory.
if a valid number exists, and will ask it the same number
of blocks is wanted. If the response is No (or there was
noe previous "# of blocks®) then the user may enter the
appropriate number of blocks. The Z(ero will be aborted
if a bad # of blocks is specified.

M{ew command will now check for a ". BACK" file corresponding
to the current workfile and will ask if the user wishes

this file to be removed. (This is for use in conjunction
with the new L.2 (large file) EDITOR.

The new command 7 will result in display of the prompt-—
line extension:

Filer:B(ad~blks,E(xt—~dir:K{runch: Mlake.P{refix,V(olume, X{amine, Z(ero

Typing any non—command key will redisplay main promptline.

EDITORS (Sections 1.3 and 1. 4)

Three different editors are curvently provided with the UCSD
PASCAL system: YALOE, “"EDITOR"(E. &), and the new L. 2 EDITOR. EDITOR is a
substantially more powerful {(and even easier to use) editor than YALOE,
but it makes some assumptions about the run—time environment.
The L. 2 EDITOR (eventually to become the standard release editor) will
handle files of arbitrary size, however it is in its experimental form
and recommended for brave users anly.

EDITOR requires a regasonably powerful CRT terminal with the following
features:

XYADRESSING — go directly to a given row and column on the screen
WNDFS -~ nen-destructive forward space {the inverse af back-
- space)
LF - down one line f{and if at the bottom of the screen
scrolls up?
RLF - reverse line feed {up one line; not required to

reverse scroll)

Page 281



(EDITOR no longer requires Erase-to—end-of-screen,
Erase~to~end—of-line, or Home facilities.?

Typing "E" at the main command level will execute the file
SYSTEM. EDITOR.  Selertion of either YALOE or EDITOR(E. & or L.2) as
the system editor is made in the Filer by C(hanging the selected file’s
name to SYSTEM. EDITOR.

Proper use of EDITOR regquires that the system disk be left
on—line while editing.

The E. 6 EDITOR has the following differences from the previously
released E. 4 ERITOR:

(1.3.3) The C(opy command now requires the user to specify whether
the copy is to be made from the B(uffer ( as in the old
Clopy command ) or from another Fl{ile. Copying from a file
allows the option of ceopying subsets of the file by speci-
fying markers.

(1.3.3) Atidjust now enables L(eft and R{ight justification as well
as Clentering of text lines.

(e 3 Automatic date-stamping of files. The first date the file
was ¢reated and the last date that it was updated are dis—
plaged in the El{nvironment.

The following is a brief summary of the differences between.
the E. & editor and the L. .2 {(large filg) editor (for more information
see section 1.3 5}

(1.3.3) The L. 2 EDITOR does not write to QYSBTEM WRW. TEXT unless
a8 new workfile has been created. Insteasd, upon entering
the editor the file to be read from is renamed with
a .BACK suffix and a warkfile is created with the
oid #ile’s naeme.

(1. 3. 3) New commands to be used in conjunction with large file
capability are RBflanish Lf{eft or R(ight, and N(ext Black
or Filorward or Sitart or E(nd,

(1.3.%) F(ind and R(eplace‘will sroempt user if target not found
and the file extends beyond the editor buffer(i. e ,if it
is & “"large file").

(1. 3. 5) Changes within E{nviraonment:
Ability to set tab stops.
Lists names of markers,
Lists number of pages in Left and Right
stacks of large files, in buffer and
number of pages available on disk.

Page 282



(1.3
DEBUGGER

(1. 5) The debugger now works as claimed in the system documentation.

- pAScAal. COMPILER

(2. 2) l.owercase characters are now allowed within all
identifiers and reserved words:, but are converted to
upper casel(i.e..Hello is eguivalent to hEILD). The break
character ’‘_° is also allowed (anywhere a digit is
allowed in an identifier) and is ignored.

(3.3 3) There now exists the facility for using "Long Integers” for
business applications. The standard type INTEGER has been
extended and the standard arithmetic operators +, -, 3%, DIV,
and unary plus and minus are allowed for use with long
integers (as well as the TRUNC and STR intrinsics).

{3.3.2) A substantial new addition to capahilities of programming
in UCSD PASCAL is the facility for linkage to separately
compiled "UNITsY and external assembly language tToutines.
A UNIT is a library module which may be imported for use
by PASCAL programs. It incorperates the use of public and
private declarations and definitions. The introduction of
UNITS to UCSD PASCAL introduces new syntax for the language
including the new reserved words:

UNIT

INTERFACE

IMPLEMENTATION

and USES.

3
w
n

PASCAL programs may now access external assembly language
rovtines through the use of an EXTERNAL declaration which
resemhles the FORWARD daclaration.

(1.9 LINKER

SYSTEM. LINKER is a new sustem wtility made available to allow
the linkage of <eparstely compiled PASCAL UMNITS as well as access in
PASCAL to aszembly language routines, and linkage from assembly language
to essembly language.

(4.2) IBRARIES

b~ oA s}

The file SYSTEM. LIBRARY is available for use in congunction
with SYSTEM. LINKER. The old LINKER. CODE has been replaced by LIBRARY. CODE
which allows the usar to build libraries contaeining utility routines

Page 283



(2.1. 1)
- INTRINSICS

The procedure STR has been added and is used to convert integers
or long integers to their character string representation.

UTILITY PROGRAMS

Several new UTILITY PROGRAMS have been added. Reference
also the TABLE OF CONTENTS and the UTILITY DOCUMENT(Section 4).

(4. 3) MEW SETUP.

(4. 5) REVISED PATCH.

(4.8) COPYDUPDIR.

(4. 8) MARKDUPDIR.

(1. 9) ASSEMBLERS. (LSI-11, 8080, 280)
(4. 9) DISASSEMBLER.

Page 284



ARRAY, 117

WA W H R RN IR RS

# INDEX # # Section B #
S I I TR TR

Version 1.5 September 1978

ASSEMBLER, 4, 99, 100, 114, 284

BAD BLOCK SCAN,
BANISH:, 55
BLOCK, 117

BLOCKNUMBER, 117

BLOCUREAD, 124,
BLOCKWRITE, 124,

286
140, 136
140, 1546

BOOTSTRAP, 45, 227

BREAKPOINT, 77
CASE STATEMENTS.
CHANGE, 12
CHARACTER, 117
CLOGE, 124, 149,

COMPILED LISTING,

COMPILER, 3, 81,

P
L]
A

1

H

J B

e

~
=k

CONCaY. 119, 1357
CONDITIONAL ASBEMBLY, 111
CONTROL CHARACTERE, 39

Cary, 51, 120
cP/M, 3, 273
CRAWL.. 72
CURBLR., 31, 36,
DATE, 285

DEBUGGER, 4, 71, 82,

DESTINATION, 117

DIRECTIVES, 105
DIRECTORY,. 1é;
DIBK ERRDR. 26
DISK 517e. 29
DIBK BPaCE, Z7
DLE., 1£3
DRAWERLOCK, 129,

b2

=83
18, 284
157

DRAWLUINE, 129, 137, 13%
EDITOR, 3, 31, 281
EGF, 125, 138, 141

EGLN, 125, 138,
EXAMINE, 26. 72,
EXECUTE, 4

EXIT, 142, 1357
EXPRESSION, 117

EXTENDED LIBT, |

EXTERNAL, %3, 10O

FILE, 123, 125
FILEID, 117

141, 148
74

0
2., 173
4
L

48

FILENAMES, 7. 11, 33

FILER, 2., 3, 7.

260

Page 285



FILES, 139

FILLCHAR, 132, 146, 157
FIND, 42, 43, 51

FORWARD, 173

FUNCTION, 107

GENERAL ERRORS, 261

GET. 13, 1295

GOTO, 82, 142

6OTOXY, 133, 157, 222, 235, 281
GRAPHICS, 129, 1359

HALT, 133, 157

HEAP, 136

IDSEARCH, 157
IMPLEMENTATION, 167
INCLUDE, 83, 100, 115
INDENTATION CODE, 163
INDEX, 117

INITIALIZE DISKS, 28

INPUT, 138, 149

INSERT, 33, 37, 52, 120, 157
INTERACTIVE, 148

INTERFACE, 167

INTRINSICS, 156

IO-ERROR, 125, 249, 251
IORESULT, 83, 125, 157, 184
JUMP, 52

KEYBOARD, 138, 149

KRUNCH, 27

L2 EDITOR, 352

LENGTH, 119, 1953, 157
LIBRARIAN, 283

LIBRARY, 173

LINKER, 4, 95, 172, 283
LIST DIRECTORY, 16, 18
LOCK, 124

LaG, 133

LONG INTEGERS, 120, 179, 283
LSI1tL, 1

MACRO, 104
MACROS, 109
MAKE, 28

MARK, 133, 157
MARKERS, 36, 47, 52
MEMORY ALLOCATION, 134
MEMORY MANAGEMENT, 133
MOVELEFT, 131, 157
MOVERIGHT, 131, 157
NEW, 15, 138

NEXT. 55

NORMAL, 124

NUMBER, 117

OUTPUT, 138, 149

PACK, 147

PACKED ARRAYS, 144

Page 2864



PACKED RECORDS, 146
PACKED VARIABLES, 144
PAGE, 126

PASCAL. 1

PATCH, 284

PEP—-11, 79

eDPLL, 1. B, 1BRA
PENSTATES, 25355

P08, 119, 137

FREFIX, 25

PROCEDURE, 107

PROGRAM HEADINGS, 147
PSEUDD COMMENT, 71, 82
PSEUDD-0OPS, 105

PURGE, 124

PUT, 125

PWROFTEN, 133, 1%7
QUIET, 85

QuUIT, 13, 50, 352, &2
RADAR, 159

RANGECHECK, B5

READ, 126, 148, 154
READLN, 148

RELBLOCK, 117

RELEASE, 133, 1357
REMOVE, 20

REPLACE, 42, 44. 52
RESET, 123, 142, 149, 150, 157
RESTRICTIONS, 156
REWRITE, 123, 148, 14%, 1350, 157

RT-11, 233
RUN, O3
SAVE, 14
SCAN, 131

SCREEM, 118

SCREEN CONTROL, 5, 85, 133, 221, 235, 284
SEEK, 126, 140. 158

SEGMENT PROCEDURE. 150, 165

SETS, 151

SETUR, 284

SIMPLVARIABLE, 117

8IZE, 118

SIZEOQF, 133, 1464, 158

SOURCE, 118

STR, 120, 158, 180

STRING, 118, 119, 283

STRINGS, 132

SHAPPING, B6

SYNTAX ERRORS, 257

SYsCaM, 21

SYSTEM COMPILATION, 86

SYSTEM. LIBRARY, 4, 71, B4, 87, 95, 106
SYSTEM. WRK. CODE, 3. 33, 81, 96, 100
TEXT, 148. 143

Page 287



TIME, 133, 158
TITLE, 118 ‘
TOKEN. 42

TRANSFER, 21
TREESEARCH, 158
TRUNC, 180

UNIT, 87, 97, 1&7
UNITBUSY, 123, 158
UNITCLEAR, 124
UNITNUMBER., 1i@, 283
UNITREAD, 123, 158
UNITWALIT, 124, 138
UNITWRITE, 123, 158
UNPACK, 147
UNTCLEAR, 158

USE LIBRARY, &7

USES, 148
VOLID, 1i8
VOLUME, 25

VOLUME NAMES, 7. 253

VOLUMES, 15

WaLK, 72

WHAT, 195

WILDCARDSG, 11

WORD PROCESSING, 38, 44, 47, 52
WORKFILE, 3, 8, 32, 2% 59, 71, 81, 96&, 100, 279
WRITE, 12&, 155

WRITELN, 155

80, 1., 5, 99, 134

ZERO, 28









FOR NORTH STAR PASCAL SYSTEM REFERENCE MANUAL, REVISION 3

I.

II.
A.

B.

.

o] HEHOQ W

Iv.

ADDENDUM (REVISION A, DECEMBER, 1979)

(describes PASCAL-S, PASCAL-DQ)

TABLE OF CONTENTS
INTRODUCTION.. cveevevecnenncnns cecsstessosssseccseoas ]

THE PRIMARY DISKETTE(S).eeeeeecccocoossoscoasasscnsans 3
Introductioneeeeeieceecocosscne ceseseseccssescsssnsae

2. The Compiler DisKette, COMP:....eeseeescessenseeesh

Personalization of PasCa@lececeecscerscococcccccscnce
1. CREATING THE WORKING DISKETTES.:eesses cescscscenen
2. I/0 PERSONALIZATION OF THE P-MACHINE SIMULATOR....

a, Getting Started.cseeeeceereesessccrcocssasosnsne
b. Installing the Input/Output Routines.....ceeeese

O =1 —1 1 ~3

3. CHOICE OF SIMULATORS...cceeeeevocccssscasccssasesll
4. CONSOLE TERMINAL CONFIGURATION....... P
5. CHOICE OF EDITORS...... cestecencena O S I

. NORTH STAR PASCAL IMPLEMENTATION NOTES.....ccecee..14

Pascal Disk BloCKS.eeeeeeoveeocoososcsscsanscens eeves 1l
Program Development with Single Density.seeeesscsso 1l
Terminals with Short Line LengthS.eeeecececseseaescslb
Numeric Capabilities of North Star Pascal.c.ece.... .16
Unused DriveS.ieecseesocsesssssccscsascsasassaassasasll
Handling of DLE (Control-P) and CR (Control-M)

Under PasCal..eeeececcecsecesassarvaccsssnscssanoasll
Data Transfer Between Single-Density and

Double-Density (or Quad-Capacity) Diskettes......18

THE AUX DISKETTE........ cecrsecsassestsscscscereansell

APPENDICES

1. USER AREA SPECIFICATION AND DESCRIPTION...... cerecess2h
2. SAMPLE INPUT/OUTPUT ROUTINES..:eeeeecocesscoconoscss ..28

3. A BRIEF PASCAL BIBLIOGRAPHY.....ieeeveerensccaceacess3l

1/80



PG 1 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3

I. INTRODUCTION

The programming language Pascal was designed to encourage the use of modern
structured, modular programming techniques among computer science students, but
has nevertheless become popular in professional environments as well. Both this
ADDENDUM and its parent document, the NORTH STAR PASCAL SYSTEM REFERENCE MANUAL,
assume that the reader is familiar with the Pascal language itself, and so
concentrate on the particular use and operation of the North Star Pascal system
in preparing and executing programs. For those who need to learn more about
programming in Pascal, a bibliography of suggested references is included at the
end of this ADDENDUM.

North Star Pascal, Version 1, is an implementation of the UCSD Pascal (TM)
Version I.5F software system, as configured for operation on the HORIZON
computer or other 8080 and Z80 microcomputer systems equipped with North Star's
MICRO DISK SYSTEM (MDS). The software system was created at the Institute for
Information Systems, University of California, San Diego.

Version 1 is essentially the complete UCSD Pascal (TM) system, containing
all tools necessary for program development using the Pascal language: a text
editor, Pascal compiler, object code linker, 8080 and Z80 assemblers to
facilitate the interface of machine-code routines to Pascal code, and several
utilities. The system operates independently of North Star's DOS, and includes
its own file-handling and disk-management functions. However, it contains minor
changes from the standard UCSD system, designed to make operation more
convenient when 5-1/4" floppy disks are used for mass-storage of programs and
data. This ADDENDUM discusses the relevant changes and their effects on system
operation as described in the SYSTEM REFERENCE MANUAL. Also discussed in this
ADDENDUM are the procedures necessary for interfacing North Star Pascal to an
arbitrary input/output configuration, and suggested program development
strategies for single-density and double~density systems.

HARDWARE REQUIREMENTS

In order to run the North Star Pascal system, your computer must meet the
following standards:

1. Its CPU must be one of the "8080 family" of processors, which includes
the 8080, 280, and 8085.

2. It must be a HORIZON computer or be equipped with a single-density,
double-density, or quad-capacity North Star MDS Micro Disk System. The single-
density version of the Pascal system, PASCAL-S, supports up to three disk
drives, and the double-density/quad-capacity version, PASCAL-DQ, supports a
maximum of four. Note that program development under the single-density version
of North Star Pascal requires at least two disk drives on-line. Using the DQ
version, program development may be pursued with only one drive on-line, but
dual-drive operation is far more convenient. PASCAL-S works only with North
Star's first, single-density-only disk controller. PASCAL-DQ does not read or
write single~density disk information, and will work only with the newer (dual
density) controller.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 2

3. The bootstrap PROM on the North Star MDS Controller Board must be
located at E800H in memory. (For single-density controllers only, the PROM must
be configured to load the North Star DOS into RAM starting at 2000H.)

4, Program development using the Pascal compiler requires at least 48K
contiguous RAM, and 56K is recommended because the compiler will run faster,
larger assembly-language programs may be assembled and linked together, etc.
Once compiled, applications programs may run in as little as 20K of RAM,
depending upon their individual storage requirements.

Before reading further in this ADDENDUM, read the entire NORTH STAR PASCAL
SYSTEM REFERENCE MANUAL at least once to familiarize yourself with general
system features and concepts. Return to the ADDENDUM for detailed information
about system configuration and operation in the North Star environment.

#%% OWNERS OF PREVIOUS NORTH STAR PASCAL RELEASES, PLEASE NOTE: ¥*¥#

This ADDENDUM describes North Star Pascal Version 1, Release 2. Owners of
Release ] should be aware that the User I/0 area jump table has been modified in
a small, but significant way to accommodate quad capacity drives. Please see
sections II.B.2.b and II.B.2.c for further details. User I/0 areas from older
releases will require slight modification before interfacing to Pascal Version
1, Release 2. '

Every effort has been made to insure that the information presented here is
accurate and complete at press time. If you find any errors or omissions,
please notify North Star in writing at the following address:

NORTH STAR COMPUTERS

ATTN PASCAL PRODUCT ENGINEER
2547 NINTH STREET

BERKELEY CA 94710

NOTE: "UCSD Pascal"™ is a trademark of the Regents of the University of
California, San Diego Campus.



PG 3 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

II. THE PRIMARY DISKETTE(S)

A. Introduction

The North Star Pascal program development system consists of two parts,
the PRIMARY diskette(s) and the AUXILIARY diskette. The PRIMARY set contains
all the software necessary to permit program development using Pascal,
including the system bootstrap program. The AUXILIARY diskette includes the
two assemblers and several utilities intended for use by advanced programmers.

This section describes the PRIMARY diskette set. In PASCAL-S, primary
system software is divided between two 5-1/4" single-density floppy diskettes,

named PASNS: and COMP:. All primary system software for PASCAL-DQ fits on one
double-density diskette, PASNS:.

1. The Bootstrap Diskette, PASNS:
The BOOTSTRAP diskette for either PASCAL-S or PASCAL-DQ is marked

PASNS:

This diskette contains the operating system software and other programs
which will be described shortly. The bootstrap diskette must always be
inserted in drive #1 (this corresponds to "device #4" in the Pascal system's
terminology) whenever you "bring-up" the system. (This goes for both
single~-density and DQ systems!) Sometimes, you may have occasion to remove
the bootstrap diskette from the device #U4 drive during the execution of
certain programs or system functions. Under normal operating conditions,
the system will remind you to re-insert the bootstrap diskette after the
program or function is done. You will see the following words on your
terminal:

PUT IN PASNS:

The device #4 drive will turn on, and the message will be repeated until the
appropriate diskette has been inserted and the drive door closed. Do not be
afraid of re-inserting the bootstrap diskette while the device #U drive is
operating, as it will not harm the diskette.

The bootstrap diskette contains the following software files:

SYSTEM.NSTAR2
SYSTEM.NSTARO

These are the "p-machine simulator" programs, and are the heart of the
North Star Pascal system. All Pascal programs are compiled into "p~-code"
which is a machine code for a pseudo-microprocessor that is ideal for
executing Pascal programs. In order for this code to run on typical
microprocessors, a program which SIMULATES the "p-machine" must be written
for and executed on the computer. This program makes the processor on which
it runs appear to be the ideal p-machine. All system software in the Pascal
system, with the exception of the p-machine simulator itself and low-level
I/0 drivers, is in the form of p-code, so one of the simulators must always



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 4

be running when you use the system. SYSTEM.NSTAR2 expects system RAM to
begin at 2000H, and loads there, while SYSTEM.NSTARO loads at 0000H. Except
for their origins in memory, SYSTEM.NSTAR2 and SYSTEM.NSTARO are identical.
While the system is initially configured to use only the 2000H-based
simulator, you may re-configure it to use the 0000H-based simulator instead.
The procedure for this is described elsewhere in this ADDENDUM. Note that
the selected simulator is automatically loaded and executed whenever you
"bring up" the Pascal system, and that the standard North Star bootstrap
PROMs are able to bootload either the 0000H-based simulator or the 2000H-
based one.

SYSTEM. PASCAL

This is the Pascal command processor with which you interact to
initiate editing, compiling, linking, and execution of your programs. The
operation of this program is explained in detail in the SYSTEM REFERENCE
MANUAL.

SYSTEM. FILER

This is a separate part of the operating system, which allows you to
maintain data and program files on diskette. It is entered through the
operating system's F(iler command. See section 1.2 of the SYSTEM REFERENCE
MANUAL for operating details.

SYSTEM. LIBRARY

This is a collection of special routines which may be linked into your
Pascal programs after they are compiled and before they are executed. See
the section 1.8 (LINKER), and section 3.3.2 of the SYSTEM REFERENCE MANUAL
for more information about the SYSTEM.LIBRARY. Note that this file should
remain on-line while preparing Pascal programs for execution, especially
those which involve input/output of real numbers, since the routines which
accomplish this must be linked into compiled programs from the
SYSTEM. LIBRARY before execution.

SETUP.CODE

SETUP is an interactive program which permits you to re-configure your
Pascal system to observe the screen control conventions of your particular
console terminal. See section 4.3 of the SYSTEM REFERENCE MANUAL for
further information.

SYSTEM.MISCINFO

This data file contains configuration information for your system,
including much of that which permits cursor-controlled operation on video
terminals. The SYSTEM.MISCINFO file supplied with your Pascal system makes
the system treat your terminal as if it has no cursor-control (except for
standard carriage-return and linefeed functions). Single character input
deletion is accomplished by striking the underline (_) key, and deletion of
an entire input line occurs when the terminal's at-sign (@) key is pressed.
You will need to use the SETUP and BINDER programs in order to adjust your



PG 5 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

system for convenient video screen operation with full cursor-control,
screen and line clear functions, backspacing, ete.

SOROC. MISCINFO

For those whose console terminal is a SOROC IQ120, use of this special
MISCINFO file will re-configure your system to use the full cursor-control
capabilities of the terminal. In particular, striking the left-arrow vector
key will delete a single input character at a time (backspacing and erasing
that character) while the RUB key must be depressed to cancel an entire
input line (erasing that line from the screen). See the PERSONALIZATION
section in this ADDENDUM for complete details.

HAZ.GOTOXY.TEXT
HAZ.GOTOXY.CODE
HAZ.MISCINFO

These three files will aid the owner of a HAZELTINE 1400 or 1500 series
terminal in personalizing North Star Pascal for complete cursor-controlled
operation. The first contains the text source of the Pascal procedure used

- to position the screen cursor at an xy-coordinate (GOTOXY). The second file
is the compiled p~code version of the GOTOXY procedure, ready to be inserted
into the Pascal system by the BINDER program. The last file contains
SYSTEM.MISCINFO parameters for the Hazeltine terminals, and should replace
the standard SYSTEM.MISCINFO file on systems where the console device is a
Hazeltine terminal. HAZ.MISCINFO stipulates that backspace (or left-arrow)
is the system character-delete key, while DEL is used to cancel an entire
input line. (Note that terminals used with HAZ.MISCINFO and HAZ.GOTOXY must
ignore parity information, and must NOT be set for auto-linefeed.) See the
PERSONALIZATION section in this ADDENDUM for additional details.

2. The Compiler Diskette, COMP:

Because it was not possible to put all major system software on one
single-density diskette, PASCAL-S includes an extra diskette,

COMP:

which contains, among other programs, the Pascal compiler and the screen-
oriented editor. Note that the increased capacity of double-density and
quad-capacity diskettes eliminates the need for a separate COMP: diskette in
PASCAL-DQ. All software listed under COMP: is included on PASNS: in PASCAL-
DQ.

SYSTEM. EDITOR

The SYSTEM.EDITOR is initially the screen~oriented editor described in
section 1.3 of the SYSTEM REFERENCE MANUAL. If you do not have a cursor-
controlled video terminal, you should make YALOE.CODE (a conventional line-
oriented editor) into the SYSTEM.EDITOR. See the PERSONALIZATION section of
this ADDENDUM for more information on your choice of text editors.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 6

SYSTEM. COMPILER

This is the Pascal to p-code compiler as described in section 1.6 of
the SYSTEM REFERENCE MANUAL.

BOOTER. CODE

BOOTER is a program which copies the special bootstrap code from the
bootstrap disk to another copy of the bootstrap disk. Bootstrap code is
contained in several "invisible" Pascal disk blocks which are not accessible
through or indicated by the disk directory. When the F(iler's T(ransfer
function is used to copy the contents of the bootstrap diskette over to
another disk, the "invisible" blocks are NOT copied, since they are not
reflected in the directory. In order to copy the bootstrap diskette using
only Pascal system software, it is necessary to use the T(ransfer function
to copy all files in the directory to the new disk, then X(ecute the BOOTER
program to transfer the "invisible" blocks. See section 4.4 in the SYSTEM
REFERENCE MANUAL for more information. (Note that the PASCAL-UPGRADE
product, which isn't described here, includes a Pascal utility to copy
entire diskettes, but this is not a part of standard Pascal system
software.)

BINDER. CODE

This program injects a special procedure, GOTOXY, into the Pascal
operating system in order to facilitate cursor-controlled operation. You
will need to use this program if your video terminal is NOT a Lear Siegler
ADM-3A or a SOROC IQ120. Before you can use BINDER, you must write and
compile a version of the GOTOXY procedure which is appropriate for your
terminal. BINDER will then make the resulting code file a part of the
system. For examples on how your GOTOXY procedure should be written, see
section 4.7 of the SYSTEM REFERENCE MANUAL. Note that this procedure must
be compiled using the {$U-} compile-time option, which is explained in
section 1.6.1 of the SYSTEM REFERENCE MANUAL. Also, your version of GOTOXY
may NOT itself be called "GOTOXY", but may be referenced by that name once
it has become part of the Pascal system.

SYSTEM. LINKER

Pascal programs may be compiled separately, and then may be linked
together, before being executed, to form new software packages. Machine-
code routines may also be linked into Pascal code before execution. This
makes it possible to have "libraries" of often-used routines which may be
linked into compiled Pascal programs whenever necessary. See sections 1.8
and 3.3.2 of the SYSTEM REFERENCE MANUAL for more information. (Note that
the AUX: diskette, described later in this ADDENDUM, contains utilities for
the creation and management of software libraries,)

YALOE. CODE

YALOE is "Yet Another Line Oriented Editor" and is intended to be used
as the SYSTEM,EDITOR when no cursor-controlled video display is available as
console device. See the PERSONALIZATION section of this ADDENDUM for the



PG 7 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

procedure which must be followed to convert YALOE.CODE to SYSTEM.EDITOR if
the screen-oriented editor is inappropriate for your system. Information
about YALOE is contained in the REFERENCE MANUAL, section 1.4.

B. Personalization of Pascal

NOTE: The personalization process described here assumes your familiarity
with the North Star DOS and MONITOR, which are supplied as standard software
with your HORIZON computer or MICRO DISK SYSTEM. You will need to use the DOS
and MONITOR to effect personalization of your Pascal system. If you are not
familiar with the DOS or MONITOR, refer to the proper sections of the NORTH
STAR SYSTEM SOFTWARE MANUAL for further details.

1. CREATING THE WORKING DISKETTES

The Pascal diskettes you receive from North Star are write-protected.
They are your FACTORY MASTERS, and YOU SHOULD NEVER ATTEMPT TO WRITE DATA ON
THEM, OR TC REMOVE THE WRITE-PROTECT TAB. The factory masters should be
used to create a set of WORKING DISKETTES, which will remain unprotected,
and which will be used in routine operation of the system. Upon receipt of
your Pascal factory masters, create a set of working diskettes by using the
CD command (or utility) in the North Star DOS to copy the contents of each
factory master onto a new diskette. Be sure to copy the label information
for each factory master onto the label of the appropriate duplicate
diskette. Then, retire the write-protected factory masters to a safe place
where they may be kept until needed to generate more duplicates. Official
warranty policy for North Star Pascal requires return of your factory
masters before warranty replacement or update is possible, so RETAIN YOUR
FACTORY MASTERS IN THEIR ORIGINAL CONDITION!

2. I/0 PERSONALIZATION OF THE P-MACHINE SIMULATOR
a. Getting Started

The standard Pascal system, as shipped, is pre-configured to operate
on a HORIZON computer system, using the standard serizl port as CONSOLE:
device, the second serial port as PRINTER:, and the parallel port as
REMOUT:. (Note that the REMOTE: device described in the SYSTEM REFERENCE
MANUAL has been changed to two devices, REMOUT:, which is device #8, and
REMIN:, which is device #7. Only REMOUT: is available in North Star
Pascal, Version 1.)

If you have a HORIZON as described above, you may bootload the system
without any modifications being necessary. In this case, skip to the
CONSOLE TERMINAL CONFIGURATION section. However, if your computer does
not follow the HORIZON's input/output conventions, you will need to
"personalize" your system to use your particular I/0 devices. PASCAL-DQ
must also be personalized to take full advantage of quad-capacity drives.
(It is normally configured to use only one side of each drive.)

As implied before, the North Star Pascal p-machine simulator has been
written in 8080 machine code compatible with 8080, 8085 and Z80 machines.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 8

The first 1.5K of the simulator is devoted to device input/output code,
but the first 1K of that contains mostly routines which handle disk I/O.
The "User I/0 Area" of the Pascal system begins at SYSORG+U400H, where
SYSORG is the origin of the simulator, 0000H for SYSTEM.NSTARO, and 2000H
for SYSTEM.NSTAR2. Thus, the User Area begins at 400H for SYSORG=0000H
and 2400H for SYSORG=2000H. Within this area, you have 467 bytes into
which you may write I/0 drivers for your particular console, printer, etc.

You should boot the North Star DOS now, and insert the working copy
of the PASNS: diskette into drive #2 (Pascal device #5). Use the LI 2
command to get a listing of the diskette directory. You should see the
following:

(for PASCAL-S)

PASNS: 0 4 s 0
Vi.R2.8D O 035 0
PASCAL 0 0S 1 E800
USERIO.2 xxx 238 1 2400
USERIO.O0 xxx 28 1 400
(for PASCAL-DQ)
PASNS: 0 4D 0
V1.R2.DQ © 0D 0
PASCAL 0 0D 1 E800
USERIO.2 xxx 2D 1 2400
USERIO.0 xxx 2D 1 1400

In place of "xxx" in the listing will be the actual North Star disk
addresses where the USERIO files happen to be on the factory master
diskette. The Pascal system itself does not create, maintain, or use the
North Star format diskette directory. North Star provides DOS format
directories on its Pascal system diskettes for your convenience only. The
presence of these directories alerts DOS users to the fact that diskettes
bearing them are Pascal diskettes and are not to be used under DOS (except
in the cases of disk initialization, duplication, or personalization, as
described below).

Another reason for including a DOS format directory on Pascal system
diskettes (especially the bootstrap diskette) is to facilitate
personalization of Pascal under DOS. Notice the two "files", USERI0O.2 and
USERIO.0. The areas on the diskette named by these files correspond to
the User Areas for the simulators SYSTEM.NSTAR2 and SYSTEM.NSTARO,
respectively. For either simulator to run on your computer system, the
low-level I/0 routines contained in its User Area nust be appropriate for
your computer configuration. Note that changing one version of the
simulator so that it will run on your system will not change the other.
For both SYSTEM.NSTAR2 and SYSTEM.NSTARO to run on your system, you will
have to configure both USERIO files to reflect the I/0 requirements of
your computer and peripheral devices.



PG 9 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED).

As shipped from the factory, the PASNS: bootstrap diskette is
configured to bootload SYSTEM.NSTAR2 and ignore SYSTEM.NSTARO. Thus, you
must make certain to modify the DOS "file" USERIO.2 before you can bring
the system up. If you intend to use the 0000H-based SYSTEM.NSTARO, you
should also modify USERIO.0 as well. To load a User Area into RAM using
North Star DOS, use one the following commands, depending on which Area
you wish to manipulate:

LF USERI0.2,2 xxxx
or

LF USERIO.0,2 XxxX

The above assumes that the bootstrap diskette is in the secondary drive
(Pascal device #5). The actual address in RAM memory where you wish the
code to be loaded should be substituted for the "xxxx" shown above. This
address must be in hexadecimal. For example, to load the User Area for
the 2000H-based simulator from disk into RAM starting at location 4400H,
type:

LF USERI0.2,2 4400

For sake of discussion, it will be assumed that the User Area has been
loaded into U4U400H during all personalization steps described here.

Now, use the North Star MONITOR to modify the User Area so that it
contains routines appropriate to your computer's configuration. See
Appendix 1 for a detailed specification of the User Area. (To get a feel
for the type of things you will be doing, see Chapter G, "INSTALLING THE
INPUT/OUTPUT ROUTINES", of the GETTING STARTED section of the North Star
SYSTEM SOFTWARE MANUAL. This process is roughly analogous to, but NOT THE
SAME as what you must do to install I/0O routines into Pascal.) -Remember
that the I/0 routines will actually begin in memory at the origin of the
simulator + 40O0H.

b. Installing the Input/Output Routines
Once you have modified the User Area which has been in RAM during
this discussion with the appropriate changes to the jump table and your
own I/0 personalization routines, return to the DOS and execute either the
command :
SF USERIO.2,2 4400
or

SF USERIO.0,2 4400

depending upon which version of the simulator you are personalizing.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 10

If you have not had to personalize your working bootstrap diskette,
or if you have followed all instructions in section 2 correctly, your
diskette should be ready to bootstrap-load the Pascal system into your
conmputer.

Simply insert the bootstrap diskette into the primary drive and cause
your computer to begin execution at E800H. (Standard HORIZONs will do
this automatically at reset or whenever they are turned on.) If you are
in the DOS, and the DOS format directory contains the "PASCAL"™ file as
listed above, you may instead type:

GO PASCAL

After a few seconds of disk activity, you should be greeted with the
following message:

Welcome PASNS:, to
U.C.S.D. Pascal System I.5

Current date is 1-Dec-T9

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem...

If you do not get this response, try re-booting (forcing your
computer to execute at E800H). If you did not personalize your diskette
prior to bootstrap-loading, either the diskette is defective, or you do
not have a standard HORIZON configuration and need to personalize the
system as described in section 2. If your diskette is defective, go back
to section 1, CREATING THE WORKING DISKETTES, and start everything over
again, using new diskettes for your working copies.

If you did personalize your diskette prior to bootstrap, your
personalization routines may be incorrect. Please double-check the
correctness of your I/0 personalization routines, and, when you are
satisfied that they are correct, re-personalize the working bootstrap
diskette according to section 2.

3. CHOICE OF SIMULATORS

If your system has come up as described above, you are using the Pascal
p-code simulator which is resident starting at 2000H in memory
(SYSTEM.NSTAR2). Because many computer systems cannot contain the 48K RAM
required for program development unless memory starts at 0000H, and also
because no system may run with the recommended 56K of RAM unless contiguous
memory begins at 0000H, the simulator SYSTEM.NSTARO, with origin at 000O0H,
is included on the bootstrap diskette. If you are satisfied with the system
at 2000H, you may R(emove the SYSTEM.NSTARO file from your working bootstrap
diskette. However, if you would rather use the 0000H-based simulator, you



PG 11 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

must first personalize its I/0 routines if necessary (see section 2, above),
then use the F(iler to R(emove SYSTEM.NSTAR2 or C(hange its name to
something else, such as "P,SIMULATR.2000". Once you have done this, you may
re-boot the system, and the SYSTEM.NSTARO simulator will be used. (At boot-
load time, the bootstrap routine scans the diskette's Pascal directory --
NOT the DOS format directory -- for the first SYSTEM.NSTARX file it can
find, then loads the contents of that file into the appropriate memory
location as indicated by the digit at the end of the file name.)

Note that, if you R(emove either simulator file, the DOS format
directory (which lists the locations of the User Areas for each file) will
NOT be changed to reflect the file's absence. If you use the Pascal system
to make changes in a diskette which also has a DOS file directory, and any
of those changes affects the accuracy of the information in the DOS format
directory, you may want to use the DOS to update or delete the information
in that directory.

4. CONSOLE TERMINAL CONFIGURATION

Your Pascal system was shipped configured for a terminal with no
cursor-control. If you have a cursor-controlled video screen, you may want
to reconfigure the system to take advantage of the special features of your
terminal. For example, features on your terminal may make it possible for
instant erasure of a line of input in response to striking the line-delete
key, or backspacing and erasure of the preceding character in response to
the character-delete key.

If your terminal is a SOROC IQ120, the reconfiguration process is
brief. When the system asks for a "Command" (as it does at bootstrap-load
time), strike the "F" key. After a second of disk activity, you should see
a command-prompt line which begins with the word "Filer" instead of
"Command." You are now in the File Maintenence portion of the Pascal
operating system. Strike the "C" key, and you will be asked for the name of
a file whose name is to be CHANGED. Type

SOROC.MISCINFOLCR>

where <CR> indicates striking the RETURN key. Then, you will be asked for
the new name for the file. Type

SYSTEM. MISCINFO<KCR>
The system will reply
PASNS:SYSTEM.MISCINFO exists...remove it ?

and wait for you to strike a key. Strike "Y" (for "yes"). When the system
replies that the change has been made, you should re-boot the system. You
should see a difference in the greeting procedure. For one thing, the
screen will be cleared before the greeting is printed on it. This is a hint
to you that everything is operating smoothly, and that the system is now
using the cursor-control and other facilities of your SOROC terminal.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 12

The SYSTEM.MISCINFO file contains information which allows your Pascal
system to take advantage of whatever special screen-control facilities your
console terminal has, Initially, the SYSTEM.MISCINFO file tells the system
to assume that only a non-cursor-controlled device is available. By
changing the SOROC.MISCINFO file to SYSTEM.MISCINFO, you have changed the
system's expectations and abilities. .(HAZELTINE owners should note that the
process described applies to their terminal as well, execpt that the file
whose name is changed to SYSTEM.MISCINFO should be HAZ.MISCINFO instead of
SOROC.MISCINFO).

North Star could not include special MISCINFO files for every terminal
on the market. If you own a terminal other than a SOROC IQ120 or a
HAZELTINE (1400/1500 series), you must (in the Command mode) X(ecute the
program SETUP, which will assist you in creating a NEW.MISCINFO file suited
to the particular features of your cursor-controlled console terminal. See
section 4.3 of the PASCAL SYSTEM REFERENCE MANUAL for more details about
SETUP. Before you quit SETUP, be sure that you have "Updated the Disk" as
part of the QUIT procedure. When you return to Command mode at SETUP's
conclusion, change NEW,MISCINFO to SYSTEM,MISCINFO just as described above
for SOROC.MISCINFO and HAZ,MISCINFO.

One more thing may be necessary before cursor-=controlled video
operation will work on your terminal. The SOROC IQ120 and the Lear Siegler
ADM=3A terminal use the same "escape sequences" for repositioning the screen
cursor to any specific point on the screen. 1In brief, an ESC code (ASCII
27) and the "equals" (=) character are sent to the terminal, followed
immediately by the Y (row) and X (column) co-ordinates expressed as ASCII
characters. ASCII character 32 (space) represents row or column 0, ASCII 33
(1) denotes row or column 1, ete. If your terminal follows the same
conventions, you need only re~boot the system after installing the new
SYSTEM.MISCINFO file to achieve full screen operation, since the system is
already configured to recognize and use this particular cursor-control
method.

If your terminal handles X,Y cursor positioning differently than the
above terminals, however, it will be necessary for you to prepare a Pascal
procedure such as "IQ120XY" in section 4.7 of the PASCAL SYSTEM REFERENCE
MANUAL. The procedure should accept two integer co-ordinates, X and Y
(column, row), and the result should be that the cursor is re-positioned at
the proper screen co-ordinates. C(ompile the procedure, and X(ecute the
program "BINDER" ("COMP:BINDER" for PASCAL-S) to bind the compiled procedure
into the Pascal Operating System. (For HAZELTINE owners, North Star has
already supplied a compiled version of the proper GOTOXY routine on the
PASNS: diskette. Simply X(ecute BINDER and name HAZ.GOTOXY.CODE as the file
containing GOTOXY.) ##¥ IMPORTANT! #*%#% You cannot use the screen editor to
prepare the GOTOXY text until you have screen control fully implemented on
your system, so you must X(ecute COMP:YALOE in order to prepare the text
file for compilation prior to binding. Do NOT use the E(dit command to
invoke the editor until you have completed step 5 below.

Note that BINDER requires at least 60 free disk blocks before it will
operate correctly. It invokes the L(inker program automatically to create a
new version of the operating system with your personalized XY procedure



PG 13 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

linked in, Neither the single-density nor the DQ version of PASNS: has
sufficient free disk space for the BINDER's operation, so it will be
necessary for you to T(ransfer some files from the PASNS: disk to another,
empty Pascal data diskette, then R(emove these files from your working
PASNS: diskette, leaving at least 60 free disk blocks before X(ecuting
BINDER. The SETUP.CODE, SYSTEM.LIBRARY, and unused simulator files may be
T(ransferred to an alternate diskette and R(emoved from the working PASNS:
diskette to make room for BINDER operation. DO NOT remove any SYSTEM file
(except the SYSTEM.LIBRARY and the unused simulator) from the PASNS:
diskette for this procedure.

When the appropriate files have been removed, consolidate the available
free disk blocks at the end of the diskette by using the K(runch command in
the F(iler. (See section 1.2.5.16 of the SYSTEM REFERENCE MANUAL.) BINDER
may now be executed. When BINDER is finished, re-boot the system, and
T(ransfer the files back to the PASNS: diskette.

Once your special version of GOTOXY has been bound into the system, you
should be able to re-boot the system and enjoy full cursor-controlled video
console operation. PASCAL-S users should note that both the SYSTEM.COMPILER
and the BINDER program are on the COMP: disk, so you will have to have the
COMP: disk in your second disk drive while compiling and binding your GOTOXY
procedure.

5. CHOICE OF EDITORS

Once you have set up screen-oriented operation on your system, or have
decided that you will not opt for screen-orientation (becuase your terminal
is a TTY, doesn't have cursor-control, ete.), you may choose which, of the
two editors available on the system, you will use as your SYSTEM,EDITOR. If
your system is screen-oriented, you need make no change in the existing
SYSTEM.EDITOR file -- it already contains the screen-editor. In this case,
you should R(emove YALOE.CODE from the working diskette (the working COMP:
diskette if you have PASCAL-S), in order to acquire more free storage space
on that diskette. If you do not have a screen-oriented terminal, you CANNOT
use the screen editor, and must use YALOE instead. To do this, go into the
F(iler, C(hange YALOE.CODE to SYSTEM.EDITOR (both of these are on the COMP:
disk for PASCAL-S), Q(uit the Filer, and you're all set.

After choosing your SYSTEM.EDITOR, you may use the E(dit command to
invoke that editor.

For purposes of convenience in program development, single-density
users may wish to use the F(iler's T(ransfer command to put their chosen
SYSTEM.EDITOR on the bootstrap diskette, rather than keep it on the COMP:
diskette. With the bootstrap diskette in the primary drive and the COMP:
diskette in the secondary drive (Pascal device #5), go into the F(iler, use
the T(ransfer command to move COMP:SYSTEM.EDITOR to #SYSTEM.EDITOR, then
R(emove COMP:SYSTEM.EDITOR and Q(uit the Filer.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 14

ITII. NORTH STAR PASCAL IMPLEMENTATION NOTES

A, Pascal Disk Blocks

A Pascal "disk block" contains 512 bytes of information. This is
equivalent to two North Star standard disk blocks (256 bytes each). Thus, a
single-density diskette, holding 350 North Star disk blocks of information can
contain up to 175 Pascal-style blocks. Double-density diskettes, holding 700
North Star disk blocks of information, can contain up to 350 Pascal-blocks.
Quad-capacity diskettes can contain 1400 North Star disk blocks, and therefore
up to 700 Pascal-blocks. However, the first track on every diskette (track 0)
is "off limits"™ to the Pascal system, and is reserved for routines and
information (such as the DOS format directory and the bootstrap routine) which
are specific to the North Star implementation of Pascal. These blocks are not
accounted for in the Pascal diskette directory, but all others are (including
those which contain the Pascal directory itselfl!).

The blocks covered in the Pascal directory, and which are normally
available to the Pascal system for routine data storage and manipulation, are
called the RELATIVE BLOCKS. They begin with the first sector of the second
track (track 1/sector 0). There are 170 relative blocks on a single-density
North Star Pascal diskette, 340 on a double-density diskette, and 690 on a
quad-capacity diskette. When you use the F(iler's Z(ero command to "zero" the
directory of a Pascal diskette, make sure that the "number of blocks" is set
to 170, 340, or 690, depending on the capacity of your disk drives.

B. Program Development with Single Density

NOTE: While this section is primarily for the benefit of single-density users,
DQ users may find items 4 and 5 useful.

Program development with a single~density system is somewhat tricky. The
SYSTEM REFERENCE MANUAL describes program development procedures which rely
heavily on the "WORKFILE" features of the system. That is, unless told
otherwise, the system assumes that all program development will be done using
standard "workfiles" which may be manipulated conveniently with special built-
in commands, etec. Unfortunately, the system requires that all workfiles exist
on the bootstrap diskette, which is inconvenient under single-~density
operation on 5-1/4" floppies, since there is not much free storage space
available on either the bootstrap or COMP: diskettes.

The single-density user may use "workfile mode" successfully if the
programs developed under that mode are small, and are infrequently modified.
As programs become larger, and are maintained more often, you may find
yourself running out of diskette storage space for the workfile in the middle
of an editing session, meaning that it will be impossible for you to update
your workfile with any changes made during that session! To combat this space
limitation, you should use the following strategy:

1. Avoid using commands or features which establish or update a workfile.
Do not use the "U" option when quitting the editor. Instead, use the "W"
option to write the editor buffer back to the original file (which you will be
expected to name).



PG 15 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

2. If ever you do find yourself with an unwanted workfile, go into the
filer and use the N(ew command to eradicate the workfile. Note that, if there
is a workfile in your bootstrap diskette directory, the system will shift
automatically into "workfile mode." N(ew takes it out of that mode. This is
especially important when using the editor, compiler, or assembler, because
you do not get a choice of which files you wish to edit, compile or assemble
in workfile mode. The system assumes that you wish to deal with the workfile
only. When you are not in workfile mode, the editor asks which file you want
to edit, the compiler and assembler ask for the names of source and
destination (code) files, etc.

3. A test to see whether or not you are in workfile mode is to go into
the F(iler, and invoke the W(hat command. Any response other than "No
Workfile" means that you are in workfile mode, and should invoke N(ew to get
out of that mode. (Since you probably entered the workfile mode by accident,
there is a good chance that important information is in the workfile. You
should use the S(ave command in the F(iler to save the contents of the
workfile into an appropriate TEXT or CODE file before using the N(ew command,
which will erase the workfile.)

4., Before writing a file to diskette from the editor, you must be sure
that there is enough free space on the diskette to hold the contents of that
file. If that free area is not available, you will not be able to write out
the contents of the editor's buffer, and run the risk of losing your changes
for that session. If you are editing large files, it is best to go into the
F(iler before editing, and use the L(ist or E(xtended-list commands to
determine, by looking at the directory, whether sufficient free diskette space
is available for a file creation or update. If you have reason to doubt that
sufficient space exists, you should use the filer's B(ad blocks command to
search the diskette for any bad blocks. If there are any, you have a bad
diskette, and should take steps to transfer all the good blocks onto another,
good diskette. If there are no bad blocks, you can use the K(runch command in
the filer to reclaim unused diskette storage space (similar to the CO utility
in North Star's DOS). If, after K(runching the diskette you still have
insufficient space for the file, you will have to update your file onto
another diskette where enough free space is available. CAUTION: It is not
possible to leave the editor temporarily for the purpose of K(runching a
diskette. When you leave the editor, you lose the work for the session unless
you first write the editor's buffer to a text file on diskette. So, it is
important that you check the status of your diskette BEFORE editing.

5. Usually, during program development and execution, the bootstrap
diskette is in the primary drive (device #4), and the COMP: or AUX: diskette
is in the secondary drive (device #5). When compiling or assembling large
programs whose source and object won't fit together on either of those disks,
it may be necessary to put source on a separate diskette, and compile or
assemble the object to that diskette also. To do this, you must give the
A(ssem or C(omp command in the Command mode, and when the chosen program asks
for a source file name, you must remove the bootstrap diskette from device #4
and insert the source/destination program development diskette. To name the
files on that diskette, you must prefix each name with either "#4:", as in
"#4:PROG1", or with the name of the diskette volume, as in "DEVELOP:PROG1",
assuming the name of the diskette is "DEVELOP:". (You will probably want to



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 16

enter the F(iler and use the P(refix command to set the default diskette to
the name of your development volume before entering the editor, compiler, or
assembler. Then, you won't have to retype the volume name for every file on
that diskette.) When the compilation or assembly is complete, the operating
system will remind you to re-insert your bootstrap diskette before you can re-
enter Command mode.

If you must remove the bootstrap diskette in order to facilitate an
assembly or compilation, be warned that, if a fatal error occurs during the
operation and the bootstrap diskette is not available for system re-
initialization and recovery purposes, you will be stuck in an endless loop of
p-machine execution errors (typically errors 2 and/or 3 -- see TABLE 1, PASCAL
SYSTEM REFERENCE MANUAL). If this occurs, you will be forced to re-insert the
bootstrap diskette in device #4 and initiate re-booting by hand. In less
severe circumstances, the system will remind you to replace the bootstrap
diskette.

When using the E(ditor, NEVER remove the diskette which contains the
editor program itself. The diskettes containing the C(ompiler, L(inker, or
A(ssembler must also remain in their respective drives when any of them is in
use. Failure to observe this rule may result in p-machine execution errors,
and (especially in the case of the editor) loss of data before it can be
written to diskette.

At some point, it may be necessary for you to remove BOTH system
diskettes in order to transfer a file from one development diskette to another
development diskette, or to a fresh diskette. To do this, you must first be
in the F(iler. Once you are in the F(iler, it is OK to remove ALL diskettes
from the drives and replace them with new ones for the T(ransfer, if you wish.
The F(iler is self-contained, and doesn't care what diskettes are in the
drives. However, to leave the F(iler, it is necessary to re-insert the
bootstrap diskette, and the system will remind you to do so.

C. Terminals with Short Line Lengths

North Star does not recommend that terminals with line lengths shorter
than 80 columns be used for cursor-controlled operation under Pascal version
1, since the menu-prompting schemes for the Command mode and the F(iler are
rather heavily oriented to screens at least 80 characters wide. However, the
screen-editor will work properly with terminals whose line lengths are shorter
than 80 columns. In any case, Pascal may still be used in the line-oriented
node (with YALOE as the SYSTEM.EDITOR) with all terminals. Future releases of
North Star Pascal will support at least terminals with line length of 614
characters or greater.

'D. Numeric Capabilities of North Star Pascal

In keeping with all known implementations of UCSD Pascal, North Star
Pascal permits 7.1 digit precision in real (floating-point) number
computations, using a 32-bit binary floating-point internal representation.
The standard procedures WRITE and WRITELN will display up to 6 digits of real
number precision. Real numbers may range from + 1.0E-38 to + 9.99999E+38, and
the maximum dollar/cents amount which may be represented by a real number



PG 17 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

without rounding is + $9999.99. A full range of intrinsic functions,
including exponentials and transcendentals, is provided to facilitate
arithmetic on real numbers. Note that any programs which do I/0 of real
numbers must be linked to appropriate routines contained in the SYSTEM,LIBRARY
before they may be executed.

Integers are represented as 16-bit twos-complement binary quantities, and
may range in value from -32767 to +32767. By decrementing a variable
containing -32767 (or incrementing one which contains +32767), it is possible
to obtain the twos-complement value of -32768, and use it in comparisons for
equality or inequality, etc. However, -32768 is an "undefined" value in the
North Star Pascal range of integers, and therefore cannot be input or output
by the standard procedures READ, READLN, WRITE, or WRITELN. Furthermore, this
value cannot be assigned explicitly to a constant or variable (as in INTVAR :=
-32768) without causing a program error.

E. Unused Drives

Although North Star Pascal supports up to three single-density drives or
four double-density/quad-capacity drives, it is possible to operate the system
with only one or two drives. (As noted before, two single-density drives are
the practical mimimum requirement for program development.) As a consequence
of system architecture, there will be occasions when the system will "look"
for drives which may not be on-line (notably, at bootstrap load time, when the
system initializes its peripherals). When this happens, the drive motors will
be on, but no drive will appear to be selected. The "search" process for a
nonexistent drive takes about 10 seconds with a single-density controller and
1 second with the DQ controller for each drive which is not on-line. As an
example, if you have a dual-drive single~density system, note that the drives
appear to become dormant midway through the bootstrap initialization disk
activity. After a few seconds of motor activity but no disk selection, a
drive is finally selected, and the system proceeds to give you the greeting
mentioned earlier. The dormancy period is normal, and occurs because the
system is seeking the third drive, which is not available in your system.

Except for the delay caused by the "dormant" periods, normal system operations
remain unaffected.

F. Handling of DLE (Control-P) and CR (Control-M) Under Pascal

The Pascal system uses DLE as a lead-in character for an internal blank
compression/expansion code., Within textfiles, any consecutive blanks which
occur at the beginning of a line of text are compressed into a two-character
sequence, The first is DLE, and the second is the character whose ASCII value
is 32 more than the number of blanks being compressed. In general, when the
operating system makes the contents of a textfile available to a Pascal
program, or sends text to an interactive device (CONSOLE:, PRINTER:, REMOUT:),
the compression code is re-constituted to the appropriate number of
consecutive blanks. All two~character sequences which begin with DLE will be
translated into zero or more blanks before they are output by the Pascal
system to an interactive device. Moreover, any two character DLE sequence
which is input from an interactive device is automatically expanded into zero
or more blanks. Therefore, it is impossible to send or receive a DLE to or
from any interactive device.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 18

A similar problem is faced by those who wish to output the CR character
(CHR(13), carriage-return) to an interactive device, since Pascal views CR as
a "new-line" character, and expands it to a two-character sequence consisting
of CR followed by LF (CHR(10), linefeed), before passing it along to the
device.

The "character interception" behavior of the Pascal system is unfortunate
for those whose terminals use DLE as one of the cursor-control codes (such as
the Hazeltine 1400/1500 series). More importantly, such "interception" may
wreak havoc with the operation of the GOTOXY procedure for any terminal.
Certain steps may be taken to "fool" the Pascal system into accepting DLE and
CR codes as they are. The part of the Pascal system which does the automatic
DLE and CR processing sits "between" an applications program (user program,
system editor, filer, etc.) and the User Area routines. Characters are
passed from the sending routine, through the "intermediate" system, to the
receiving routine. Either a high-level program or a User I/0 module may be
the sender or receiver. To "fool" the intermediate system into passing DLEs
and CRs untouched, it is only necessary that the sending routine turn the high
bit of the character on before sending it, and the receiving routine turn that
bit back off as soon as it receives it. Turning the high bit of a character
on increases its "ASCII value" by 128, and insures that Pascal will not
recoghize it, nor meddle with it. To input or output a DLE, you should input
or output a CHR(16+128) instead. To output a CR character, send CHR(13+128).
(No special handling occurs on input of CR, so don't worry about that case.)

So that Hazeltine 1400/1500 series terminals (or similar terminals) may
be interfaced more simply to Pascal, North Star has written the CONSOLE: and
PRINTER: low-level input routines in the standard User I/0 block to intercept
any incoming DLE codes and turn on their high bit before passing them along to
the rest of the system. In the HAZ.MISCINFO file, the "KEY TO MOVE CURSOR
RIGHT" code is specified as being decimal 144 (DLE with the high bit on), and
the "MOVE CURSOR RIGHT" code is also decimal 144. The HAZ.GOTOXY procedure is
able to recognize when it is sending a CR or DLE character, and always turns
the high bits of these characters on before sending them. (Refer to the
textfile contained on the PASNS: diskette.) Terminals receiving these codes
should be configured to ignore the high (parity) bit. Alternately, the User
Area output routines may be changed to mask off a character's high bit before
passing it on to an I/0 device. (This modification has already been provided
for in the standard User Area., See SAMPLE INPUT/OUTPUT ROUTINES, elsewhere in
this ADDENDUM. )

G. Data Transfer Between Single-Density and DQ Diskettes

The PASCAL-S system cannot read or write double-density data; The PASCAL-
DQ system cannot read or write single-density data. However, an entire volume
of Pascal data may be transferred from one diskette to another of the opposite
density using the CF utility in the North Star dual-density DOS (Version 6,
Release 5.0 or later).

Nominally, CF will handle only DOS-format files, using the DOS directory.
CF will not use the Pascal directory. Therefore, it is necessary for CF to
treat the entire Pascal data area on a diskette as if it were a DOS file. To
use CF 'in transferring Pascal information between diskettes of opposite



PG 19 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

densities, you must use DOS to CReate an entry in the DOS directory of each
Pascal diskette which corresponds to the entire Pascal data area on that
diskette. "CReating" a DOS-style file on a Pascal diskette does not alter any
information on that diskette (except in the DOS-directory area itself, of
course). It is done only to give the CF utility a "pointer" to the Pascal
data region on the diskette. Once the DOS file entries exist, it is a simple
matter to invoke CF and transfer information from one diskette to another,
switching densities along the way.

The Pascal data region of a single-density diskette is only half as large
as that of a double-density diskette, and less than one-quarter as large as
that of a quad-capacity one. This means that it will be possible to transfer
a single-density Pascal volume in its entirety to a double-density or quad-
capacity diskette. However, all the information on a double-density or quad-
capacity Pascal volume will not fit on a single-density diskette. It is
possible, though, to prepare a DQ Pascal volume which can contain only as much
information as a single~density one. The half-capacity double~density volume
may then be transferred to a single-density data diskette using the method
mentioned above. To prepare a half-capacity double-density volume, first use
the DOS to initialize an unused diskette to double-density. Then, boot-up
Pascal and use the F(iler's Z(ero command, to initialize the Pascal directory
of the diskette. When Pascal asks for the number of blocks, enter 170, the
number of blocks on a single-density diskette, instead of the usual 340 for a
double~-density diskette (or 690 for quad-capacity).

As a result of the above procedure, you will have a double~density Pascal
volume whose entire contents may be transferred to a single-density diskette.
To transfer from double~density to single-density, first use the Pascal
F(iler's T(ransfer command to copy files you choose from regular-capacity
double-density Pascal volumes to the special half-capacity volume. Because
the Pascal system is aware of the decreased storage capacity of the special
volume, it will not permit you to put more information on that volume than a
single~density diskette can hold. When all the files you wish to transfer to
single-density have been copied onto the half-capacity diskette, boot-up the
double~density DOS, make sure that both the half-capacity double-density
diskette and the destination single-density diskette have appropriate DOS
files on them which refer to their respective Pascal data areas, and then use
the CF utility to transfer the volume from double-density to single-density.

Note that after an entire volume transfer using CF, the resulting single-
density or double-density diskette (depending on which direction the transfer
went) will be an exact duplicate of the original volume which was transferred.
In particular, the volume names will be the same. Also, if a single-density
volume is transferred to double-density, the resulting double-density volume
will be a half-capacity volume, and the diskette storage area after the 170th
Pascal block will be inaccessible using the usual Pascal disk accessing
methods.

Following are examples of transfers between single-density and double-
density volumes. The first transfers single-density to double~density, and
the second transfers double-density files to a single~density volume using an
intermediate, half-capacity double-density Pascal volume. Both procedures
assume that the disks involved in the transfer either have good information of



- ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 20

the appropriate density on them, or have been initialized using the DOS IN
command to the appropriate density before the transfer process begins. Also,
both procedures require at least two disk drives to be on-line. If you have
only a single-drive system, transfer of Pascal information between diskettes
of different densities is quite difficult, and is not recommended.

SINGLE-DENSITY TO DOUBLE-DENSITY

¥ Choose a single-~density Pascal diskette and a double-density diskette
in good condition.

# Boot up double-density DOS (Release 5.0 or later). Type the following
command:

LF CF 2D00
This readies the CF utility for later use.

¥ Put the single-density Pascal diskette in drive #1 and the double-
density diskette in drive #2.

¥ Type the following commands:

CR SDVOLUME 340 10 S
{Create DOS single-density dummy file on drive #1}

CR DDVOLUME,2 340 10 D
{Create DOS double-density dummy file on drive #2}

Note that either diskette may have been used for transfers like this
before. Therefore, prior to using the CR command, you might check the
directory of each diskette to see whether or not the SDVOLUME and
DDVOLUME files already exist. (They must each be 340 North Star blocks
in length, starting at disk address 10 on their respective diskettes.)
If they do exist, avoid re-creating them.

*# Now, the CF utility may be used. Type the following:

JP 2D00 SDVOLUME DDVOLUME,?2
{Enter the CF utility}

The CF utility will ask if you wish to write in Single or Double
Density. Strike "D" for double. When the CF command finishes, the
diskette in drive #2 will be a half-capacity double-density Pascal
volume (170 Pascal storage blocks available, instead of 340). The
information contained on it will be identical to that contained on the
original single-density volume. Double-density Pascal may now be
booted-up, and will be able to read files from the newly copied
diskette.



PG 21 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

DOUBLE~DENSITY TO SINGLE-DENSITY

*# First, prepare the half-capacity diskette. (If you already have one of
these, skip to the next step.) Insert an initialized double-density
diskette in device #5 (North Star drive #2), and enter the F(iler
command level. Use the Z(ero command to initialize the Pascal
directory of the diskette in the secondary drive (Pascal device #5) so
that it contains only 170 free blocks of information. (When the system
asks "# of blocks?" enter 170.)

*# Still in the Pascal F(iler, use the T(ransfer command to copy the
Pascal files you choose onto the half-capacity diskette.

¥ Leave Pascal by booting-up the double density DOS. Type the following
command : )

LF CF 2D00
This readies the CF command for later steps.

* Put the half-capacity double~density diskette in North Star drive #1
and a single-density diskette in North Star drive #2. Check to see
whether or not the required DDVOLUME and SDVOLUME files exist on the
two diskettes. If not, create them:

CR DDVOLUME 340 10 D
{Create DOS double-density dummy file on drive #1}

CR SDVOLUME,2 340 10 S
{Create DOS single-density dummy file on drive #2}

¥ Type the following command:

JP 2D00 DDVOLUME SDVOLUME,2
{Enter CF utility}

The CF command will ask if you wish to write in Single or Double
Density. Strike "S" for single-density. When the utility is finished,
the diskette in drive #2 will be a single~density Pascal volume with
the same name as, and containing all the files and information on the
double-density half-capacity diskette in drive #1. This newly
generated diskette may now be read by single-density North Star Pascal
systens.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 22

JV. THE AUX DISKETTE

The Auxiliary diskette, AUX:, is designed for use by advanced programmers.
It includes two assemblers, for 8080 and Z80 operation, with which you may
create machine-language routines which may be linked into your compiled Pascal
programs. A series of utility programs round out the package. All AUX:
diskettes contain the following files:

Z80.ASSMBLER

This is the Z80 (Zilog Mnemonics) version of the U.C.S.D. Adaptable
Assembler described in section 1.9 of the PASCAL SYSTEM REFERENCE MANUAL.

Z80.0PCODES
Z80.ERRORS

These are data files for the Z80.ASSMBLER -~ the assembler WILL NOT OPERATE
without them.

8080.0PCODES
8080 . ERRORS

These are data files for the SYSTEM.ASSMBLER listed below.
MARKDUPDIR. CODE

MARKDUPDIR marks a Pascal data diskette so that a duplicate directory will
be maintained automatically on it by the Pascal Operating System. (Note that
the System Filer's Z(ero command, which initializes a diskette directory, gives
you the option of specifying single or duplicate directories., MARKDUPDIR need
only be used when it is desired to maintain duplicate directories on a diskette
which previously contained only one directory.) See section 4.8 of the SYSTEM
REFERENCE MANUAL for more information,

COPYDUPDIR.CODE

In the event that the main directory on a diskette is crashed, it may be
regenerated from the duplicate directory (if there is one) by use of COPYDUPDIR.
See section 4.8 of the SYSTEM REFERENCE MANUAL for further details.

RELOC. CODE

This program relocates a machine-language CODE file produced by the system
assembler to any desired base address, and produces a pure-code, relocated
object file as output. The user must be careful to specify the EXACT, COMPLETE
file name for CODE and OBJECT files (including prefix if the file is not on the
default diskette, and any suffixes such as .CODE, .0BJ, etc.) or the program
will fail.

SYSTEM. ASSEMBLER

This is the 8080 (Intel Mnemonic) version of the UCSD Adaptable Assembler.
Note that this version of the Assembler gives you the option of generating



PG 23 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

either a non-relocatable code file (with absolute addressing) or a relocatable
code file (with relative addressing information usable by LINKER and RELOC).

PATCH. CODE

This utility program facilitates patching of data on diskette, and is
described in section 4.5 of the PASCAL SYSTEM REFERENCE MANUAL.

LIBRARIAN.CODE

This program is described in section 4.2 of the SYSTEM REFERENCE MANUAL.
It permits the user to insert often-used routines and UNITs into the
SYSTEM.LIBRARY, or create new libraries as required. Note that the SYSTEM
REFERENCE MANUAL calls this program LIBRARY.CODE, however, its North Star Pascal
name is LIBRARIAN.CODE.

The PASCAL-DQ AUX: diskette also contains one program which could not be
included on the PASCAL-S AUX: diskette, due to space limitations:

LIBMAP.CODE
This provides the user with an extended listing of the contents of a code

library, according to the scheme described in section 4.10 of the SYSTEM
REFERENCE MANUAL.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 24

APPENDIX 1: USER AREA SPECIFICATION AND DESCRIPTION

The User Area is the part of the Pascal p-machine simulator which contains
the routines which actually interface the system with the various physical I/0
devices available under a given hardware configuration. A User Area which
interfaces the system to the North Star HORIZON computer has been included on
the standard PASNS: diskette. You may need to patch or replace these routines
to reflect the particular requirements of your computer hardware (see I/0
PERSONALIZATION OF THE P-MACHINE SIMULATOR, elsewhere in this ADDENDUM). This
Appendix is a complete specification of the User Area, and is intended to aid
you in modifying the User Area to suit your own special needs.

You may place custom I/0 routines at any arbitrary locations in the User
Area, as long as the USER AREA JUMP TABLE reflects the locations you choose. The
jump table is a U5-byte portion at the very beginning of the User Area. The
467-bytes reserved for user I/0 routines follow the jump table in memory, and
together, they occupy a 512-byte block in RAM, which corresponds to two '
contiguous North Star disk blocks (256 bytes per North Star block).

The jump table contains 13 sequential 8080 JMP instructions, each one
corresponding to a different routine in the User Area. The first byte in each
3-byte JMP instruction is usually a C3H, corresponding to an 8080 JMP., The next
two bytes give the location of the routine itself, and it is this pair of bytes
which must be changed to conform to the location you choose for a given routine.
Note that a correct jump table must be present at the beginning of ANY User
Area, or low-level I/O functions will fail and the system will crash.

Below is a description of the jump table, along with specifications you
nust follow when writing the corresponding I/0 routines. Note that all routines
are responsible for returning to any code which calls them. For all but one of
the routines, this should be done by executing one of the RET family of
instructions. The case of NSMSIZ is unique, and is described in detail.

SYSORG+400H: JMP CONONL

This routine is called frequently to determine whether or not the CONSOLE:
device is on-line or off-line., If the CONSOLE: is available, CONONL must return
a 00H in the accumulator, otherwise 09H should be returned. No registers except
the accumulator may be modified. (In this and all routines described here, the
condition flags need NOT be saved or restored.) Two other routines, PTRONL and
REMONL, perform on-line status reporting for the PRINTER: and REMOUT: devices,
respectively, and must adhere to the same specifications as CONONL.

SYSORG+403H: JMP CONINP

CONINP waits until a character is available from the CONSOLE: device, then
returns it in the accumulator. No registers except the accumulator may be
modified.



PG 25 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL,VREV 3 (CONTINUED)

SYSORG+406H: JMP CONOUT

CONOUT waits until a character may be sent to the CONSOLE:, then puts out
the contents of the C register. A value of OOH must be returned in the
accumulator to denote a successful I/0 operation. No registers except the C
register and accumulator may be modified.

SYSORG+409H: JMP CONST

This routine checks input status of the CONSOLE: device. If a character is
ready, the value FFH (TRUE) must be returned in the accumulator. If no
character is ready, 00H (FALSE) should be returned in the accumulator. No
registers except the accumulator may be modified.

SYSORG+40CH: JMP PTRONL

Reporting of on-line status for device #6 (PRINTER:) is done here. See
CONONL (SYSORG+400H) for specifications.

SYSORG+40FH: JMP PTRINP

PTRINP waits for an input character to be available from the PRINTER:, and
then returns the character in the C register. (This is useful for implementing
buffered-printer protocol schemes, etc.) The value O0H must be returned in the

accumulator (indicating a successful I/0 operation). No registers other than C
and the accumulator may be modified.

SYSORG+412H: JMP PTROUT

A single character, the contents of the C register, is sent to the PRINTER:
device. The value OOH must be returned in the accumulator to denote a

successful I/0 operation. No registers other than C and the accumulator may be
modified.

SYSORG+415H: JMP REMONL
SYSORG+418H: JMP REMINP
SYSORG+41BH: JMP REMOUT

These are, respectively, on-line status reporting for, character input
from, and character output to the REMOUT: device (Pascal system device #8). The
specifications are the same as PTRONL, PTRINP, and PTROUT, respectively, except
that a different device is accessed by these routines.

NOTE: The JMP instructions for PTRINP, and PTROUT may be replaced in the jump
table by RET instructions, provided that PTRONL always returns 09H (device off-
line) in the accumulator. PTRINP and PTROUT will not be called by the system
unless PTRONL reports that the device is on-line. The same thing holds for
REMONL, REMINP, REMOUT,



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 26

SYSORG+4 1EH: JMP NSMSIZ

This routine returns a 16-bit value on the stack which corresponds to the
highest contiguous WORD (16-bit) location in Pascal system RAM. The routine
which is supplied with the standard Pascal system as shipped from the factory
searches the computer's memory space to find this upper limit, and considers
that limit be reached when it ecounters no memory, ROM, or write-protected RAM.
Note that if memory-mapped I/0 devices (such as video display boards, etc.) are
contiguous with system RAM, the standard "memory sizing" routine will consider
them as part of available RAM! If this is the case in your system, you will have
to install an alternate memory sizing routine, such as oné which returns a
constant value as the upper limit. '

Remember that the value returned must point to an EVEN address (word
boundary). For example, if system RAM extends to BFFFH, the value returned by
NSMSIZ should be BFFEH. All registers may be used by this routine. The
technique used for RETurning with the stack pointer pointing at the appropriate
value is to load the value in the HL register pair, do an XTHL (exchange the
value at the top of the stack -- assumed to be the RETurn address -- with the
value in HL), then execute a PCHL instruction, which is a JMP to the location
represented by the value in HL. If you do not use this technique, your memory
sizing routine may crash the Pascal system. (See SAMPLE INPUT/OUTPUT ROUTINES
for an example of this technique in use.)

SYSORG+421H: JMP NSCLOK

The real-time clock option of the Pascal system is not yet available. For
now, this routine should RETurn, with the "not-on~line" value of 09H in the
accumulator. No other registers may be modified.

SYSORG+424H: JMP MACINT

This routine is called by the Pascal system at bootstrap-load time just
before the memory sizing routine is called, and provides for one-time machine
and I/0 device initialization each time the Pascal system is re-booted. For
example, the HORIZON motherboard is initialized, memory-parity is enabled, and
the two serial I/0 ports are reset in the MACINT provided in the user area of
both p-machine simulators on the factory master diskette. All registers may be
used.

SYSORG+427H: DVACHR
SYSORG+428H: DV5CHR
SYSORG+429H: DV9CHR
SYSORG+42AH: DV10CHR

These bytes are used only by the PASCAL-DQ system, but are present, though
ignored, in the PASCAL-S system. Each byte corresponds to one of the four
possible disk drives which may be connected to a DQ system (Pascal device
numbers 4, 5, 9, and 10), and contains information about the characteristics of
that drive. Six of the eight bits in each characteristics byte are significant.
The high bit (bit 7) should be set (1) if the drive is to access double-density
information, reset (0) if the drive is to access single-density information.

Bit 6 should be set if the corresponding drive is quad-capacity (double-sided),



PG 27 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

and reset if not. Bits 5 and 4 should remain reset -- they are reserved for
future use. The lower nybble of a characteristics byte (bits 0-3) contains the
number of Pascal blocks which-will fit in a disk track at the specified density.
For drives operating in single-density, this nybble should contain 05H, since
there are five Pascal blocks per single~density disk track. The lower nybble
for a drive operating in double-density or quad-capacity mode should contain
0AH, corresponding to the 10 Pascal blocks per DQ track., All four bytes in the
PASCAL-S system are 05H, because single-density drives are single-sided (all
bits off in the upper nybble), and accommodate 5 Pascal blocks per track (5H in
the lower nybble). In PASCAL-DQ, the characteristics bytes are all 84H,
indicating that the standard DQ system expects only single-sided drives,
operating in double-density, at 10 blocks per track. For double-sided drives,
the corresponding characteristics bytes should be changed to CAH. (In North
Star Pascal Version 1, it is not possible for any drive in a DQ system to access
single-density information, no matter how the characteristics bytes are set, nor
can PASCAL-S access double-density information. The "density" bit in each
characteristics byte has been included for use by future versions of North Star
Pascal.)

SYSORG+42BH and
SYSORG+42CH: RESERVED FOR FUTURE EXPANSION



0000}
0000}
0000}
0000}
0400}
0400}
0400}
0400}
0400 ¢}
0400}
0400
0400!
0400}
04001
0400
0400}
0400
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400}
0400 |
0400}
0400}
0400!
04001
0400 |
0400}
0400}
0400 |
0400}
0400}
0400}
0400}
0400}
0400 !

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 28

APPENDIX 2: SAMPLE INPUT/OUTPUT ROUTINES

supplied on the standard PASCAL-DQ release bootstrap diskette.

The following is an assembler listing of the HORIZON User Area routines

(The routines

used by PASCAL-S are almost exactly identical, except for the drive

characteristics bytes.)

own personalization routines.

00FF
0000
0080
0010

00TF
0400
0600
0003
0002
0002
0001
0005
0004
0002
0001
0006
0000
0002
0001

0080
0020

H HRRXRRXARES

.
?

. ORG

User Area Routines for N#* Horizon

You may use these routines as models in writing your

RRELXBXEXXER

(Last modified 29-Nov-T79)

1024,

y Define Constants

TRUE . EQU
FALSE  .EQU
HIGHBIT .EQU
DLE . EQU
ASCII .EQU
NSJTST .EQU
STRTSR .EQU
CSTAT . EQU
CDATA . EQU

CRDYINP .EQU
CRDYOUT .EQU

PSTAT .EQU
PDATA .EQU
PRDYINP .EQU
PRDYOUT .EQU

RSTAT .EQU
RDATA .EQU
RRDYINP .EQU
RRDYOUT .EQU

RSTROBE .EQU
RPOFLG .EQU

OFFH
00
80H
10H

TFH

$
NSJTST+512.

o

-

(S}

—anE

- N O

80H
20H

?

Ve Ve We we Mo we We we we e

“we we we we we wo

we we we we we e

Wwe Wwe we we we we we we

User area = NSBIOS + 1K.

MSB in byte.

Control-P, ASCII DLE, which
is system lead-in for
blanks-compression code.
Pascal system routinely
"eats" this character.
Special measures have to be
taken to input it. (See
CONINP, below.)

ANI mask to strip parity bit.

Start of N¥ jump table.
Memory-sizing search will
start here.

Console status port.

(Console=HORIZON L serial.)

Console data port.

Mask for console char ready.

Mask for console ready to
accept char.

Printer status port.

(Printer=HORIZON R serial.)

Printer data port.

Mask for printer char ready.

Mask for printer ready to
accept char.

Remote status port.

(Remote=HORIZON par. port.)

Remote data port.

Mask for remote char ready.

Mask for remote ready to
accept char.

Position of strobe bit.

Position of PO bit.



0400}
0400}
0400 |
0400 !}
0400
0400 !

0400 !
0400 |
0400 !
0400}
0400 |
0400 !
0400 |
0400 !
0400}
0400}
0400}
0400}
0400 !
0400 |
0400 |
0400}
0400 !
0400 !
0400}
0400!
0490 !
0400}
0400}
0400 !
0403}
0406 |
0409}
o40cC!
o4oc!
O40F !
0412}
0415}
0415}
0418!
- 041B|
O41E!
O41E}
0421}
o421}
0424}
os2y !
o427
o427
0428}
0429
o424
- QU2B|
042B!
042D!

PG 29 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

0009
O0ES8

0080

0000
ooko

0000
000A
0005

008A

0006
00Co
0040
o041

C3 ##%w
C3 #ux#
C3 %
C3 ##%%

C3 #*u#
C3 we#s
C3 #u%s
C3 ###w
C3 *###
C3 #u#w
C3 ek
C3 #uE

C3 #%%%

84
8A
8A
84

00 00

NOTRDY .EQU
DCTRLB .EQU

DDENS  .EQU
SDENS  .EQU
QUADC  .EQU

ONESIDE ,EQU
DBLKTRK .EQU
SBLKTRK .EQU

CHARACS .EQU

MBOARD .EQU
RAMPORT .EQU
PARITYD .EQU
PARITYE .EQU

; Jump Table

CONONL JMP
JMP
JMP
JMP

PTRONL JMP
JMP
JMP

REMONL JMP
JMP
JMP
JMP
JMP
JMP

DV4CHR .BYTE

DV5CHR .BYTE

DVOCHR .BYTE
DV10CHER .BYTE

EXPANSN .BLOCK

9
OE8H

80H

O00H
4oH

00H
10.
5.

“we we we we e

“we we we we we we

Device off-line code.

High byte of disk controller
address.

Denotes double~density mode
for drive characteristics.

Denotes single-density mode.

Denotes quad (double-sided)
drive capacity.

One-sided drive capacity.

Pascal blocks per track, DQ.

Pascal blocks per track, SD.

DDENS+ONESIDE+DBLKTRK;

06H
OCOH

"40H

41H

ONLINE
CONINP
CONOUT
CONST

ONLINE
PTRINP
PTROUT
ONLINE
REMINP
REMOUT
NSMSIZ
OFFLIN
MACINT
CHARACS
CHARACS
CHARACS
CHARACS

2,0

Wwe we we we we we we

we we we we

’

?

A1l 4 drive characteristics
bytes will denote DD mode,
one-sided operation € 10
blocks/track.

SDENS+ONESIDE+SBLKTRK is
standard CHARACS for single
density.

Motherboard status port.
N# RAM communication port.

Code to disable RAM parity.
Code to enable RAM parity.

NSCLOK is off=-line.

Machine initialization.

s Reserved for future use.



042D}
ou2D|
oLoL*
042D}
042F |
0431}

0434 |
0436 |
0438}
0434
043B!
043D!
043D!
043D/
043D}
043D|
043D!
043D/
043D
043D}
O43E!
o4oT7*
O43E!
0440}
o442 |
o445 |
0446 |
o448}
o448
ou48|
0448
OLY4A!l
OL4L4B!
o4yc!
OLOA®
o4uc!
OLLE!
0450}
0453}
04551
o451%
0456 |
0458 |
0459

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 30

sy Console drivers

2D04
DB 03
E6 02
CA 2DO4

DB 02
E6 TF
FE 10
co

F6 80

CONINP

c9

3EO04

DB 03
E6 01
CA 3EO04
79

E6 FF

CONOUT

D3 02
AF
c9

Lcoy

DB 03
E6 02
CA ##xx
3E FF
C9

5604

3E 00 $01
€9

CONST

IN
ANI
JZ
IN
ANT
CPI
RNZ
ORI

RET

IN
ANT
JZ
MOV
ANI

ouT
XRA
RET

IN
ANI
Jz
MVI
RET

MVT
RET

CSTAT
CRDYINP
CONINP
CDATA
ASCII
DLE

HIGHBIT

CSTAT
CRDYOUT
CONOUT
A,C
OFFH

CDATA

CSTAT
CRDYINP
$01

A, TRUE

A, FALSE

We Wwe we we Ve we we we we

e we Ve we we we

Check status.
Loop on no character.

Return character in acc.
Is character control-p?

Turning on the high bit
"fools" Pascal system
into not "eating" char.

It is now impossible for
a program to input DLE
CHR(16) from console.
All DLE's are intercepted
here first, and translated
to CHR(14%4) {16+128}.

Check status.

Loop on not ready.

Now, a no~op. Change FFH to
TFH (value of ASCII, above)
to strip parity bit before
output.

Output character in reg C.
Good I/0 result.

Check status.

Input is ready.

No character avail.



04591
0459/
O410%
0459}
045B/|
045D}
0460}
0462}
ou6y |
0467}
0465%
0469}
o464}
O46B!
o46C!
O413#%
o46C}|
O46E!
04701
04731
047y
04761
0u76 |
04761
04781
04791
0474
o4T7A}
0474}
O419%
o47A}
o47A!
047B|
o47CH
ou7cC
047D}
oh1C#*
047D!
047D}
O47F!
0481
0484 |
0486}
0488}
0489}
048B!
048D
048F |
0491}
04931
0495}
0496 |
04971

PG 31 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

5904

DB
E6
cA
DB
FE
c2
F6

05
02
5904
01
10
RHEE®

80

6904

4F
AF

C9

6Cou

DB
E6
ca

79
E6

D3
AF
€9

05
01
6Col

FF

04

TAOY
O47A

AF
4F

C9

TDO4
O47D

DB
E6
cA
3E
D3
79
F6
D3
EE
D3
EE
D3
AF
€9

06
01
T7DOY
20
06

80
00
80
00
80
00

; Printer driver

PTRINP IN
ANT
Jz
IN
CpPI
JNZ
ORI

$01 MOV
XRA
RET

PTROUT IN
ANT
JZ
MOV
ANI

ouT
XRA
RET

sy Remote driver

REMINP .EQU
XRA
MOV

RET

REMOUT .EQU
IN
ANT
JZ
MVI
OouT

REMOUT1 MOV
ORI
ouT
XRI
ouT
XRI
ouT
XRA
RET

PSTAT
PRDYINP
PTRINP
PRDYOUT
DLE

$01
HIGHBIT

C,A
A

PSTAT

PRDYOUT
PTROUT
A,C
OFFH

PDATA
A

Q>

$

RSTAT
RRDYOUT
REMOUT
A, RPOFLG
RSTAT
A,C
RSTROBE
RDATA
RSTROBE
RDATA
RSTROBE
RDATA

A

we we we we

“we we o we

Character input.

Same intent to translate
DLE as in CONINP,
above.

Return character in C.
Good I/0 result.

Character output.

No-op for now. Change FFH
to TFH to mask off parity
bit before output.

Good I/O result.

Character input.

Good I/0 result.

No parallel input, so
simply return null.

Character output.

The usual status check.
Reset PO flag.

Output char in C.
Strobe := false.

Send character.

Toggle strobe.

Toggle strobe.

Good I/0 result.



04971
0497 |
0497 1|
0497t
0497 |
0416%
040D*
0401%
04971
0498}
0499
04991
0499
04991
0499}
04991
O420%
0499}
049B|
ou9cC|
ou9cC|
o49cC}
o49cC!
ou9cC|
049cC|
ou49cC|
ou9cC|
o49C!
o4oc!
O41F#
ougcC|
O49F |
OL4A1}
O4A2!
0443}
0L AL |
0445}
04 A6 |
0LA9!
O4AA!
O4AB)
OU4AE]
Q4AT#
OL4AE]
O4AF )
04BO |
04B1!}
04B1}
04B2 |
O425#%
o4B2 |
04B2!
04B3!
04BY |
04B5 |
O4BT !
04B9 |}
O4BB!
O4BE!
O4BE|

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 32

9704
9704
9704
AF
c9

9904
3E 09
)

9C04

21 0006
2E FF
TE

47

2F

7

BE

Co #%%%
70

24

C2 A104

AEO4
25
2D
E3

E9

B204
04B2

F5

E5

AF

D3 06
3E 40
D3 CO
21 00EC

.
?
.
’
’
.
?

available.

when a device is on~line;

ONLINE XRA

RET

available.

when a device is off-line;

OFFLIN MVI

“we We We we we Ve we we we

RET

XTHL
PCHL

Vector to this routine if a given device is

ALL I/0 drivers (input, output,
initialization and status) should use this

A

Vector to this routine if a given device isn't

ALL I/O drivers (input, output,
initialization and status) should use this

A, NOTRDY

Dynamic Memory Sizing
Note sequence for returning to calling routine:

It's crucial that a return is done in this way,

else system will probably crash. When this
return sequence is executed, HL must be hold-
ing pointer to last WORD of contiguous memory

available.

NSMSIZ LXI

$01

MVI
MOV
MOV
CMA
MOV
CMP
JNZ
MOV
INR
JNZ

ENDSRCH DCR

DCR
XTHL

PCHL

MACINT .EQU

PUSH
PUSH
XRA
ouT
MVI
ouT
LXI

H, STRTSR
L,0FFH
AM
B, A

M, A

M
ENDSRCH
M, B

H

$01

$

PSW

H

A

MBOARD

A, PARITYD
RAMPORT

Ve we We Ve We we We Me we We we

we we Ve we we

’

.
’

Start sizing
on 256 boundary-1;
Get current contents of
test loc and save it.
Complement A.
Stuff it back in.
Is it the same?
No: then found end.
Yes: Put byte back.
Move on to deader pastures.
Stop when we wrap around.

Go back to last memory bank.
Point to last memory WORD.
Put onto stack,

get return address,

and return.

Initialize HORIZON machine.

Does the motherboard.
Parity disabled on RAM.

H,DCTRLB*100H+1024.

.
b
.
’

Disc¢ controller board addr
+ 1K.



Q4BE|
O4BE!
O4BE!
OL4BF|
o4co}
o4c1
oucy |
oucs !
oucCé |}
04c8}
04CB|
o4CB|
o4cD!
O4CF !
O4CF |
OL4CF |
O4UCF |
o4D1|
04D3 !
04D5 |
ouDT7 !
04D9 |
O4DB!
o4DC |
ouDD |
O4DF |
O4DF |
OLE1}
O4E3 !
OU4ES5 |
OLET!
QU4E9 !
OLEB!
OL4ED!
OLEF|
OU4F1]
O4F1!}
O4F1}
OU4F3 |
OLUF5 )
O4FT !
O4FA !
O4FA |
O4FB|
O4FC!
O4FD|
O4FD|

PG 33 - ADDENDUM (REV’A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

O4BE

TE
7
2C
c2
24
7C
FE
c2

3E
D3

3E
D3
D3
3E
D3
D3
E3
E3
3E

D3
3E
D3
3E

3E
D3
DB
DB

3E
D3
3E
CD

E1
F1
C9

BEOY

E8
BEO4

41
Cco

03
03
05
4o
03
05

CE

03
CE
05
27
03
27
05
02
04

60
06
0D
8804

. EQU
MOV
MOV
INR
JNZ
INR
MOV
CPI
JNZ

MVI
ouT

RAMINT

A, PARITYE
RAMPORT

We we we we Wwe we we we W

Initialize HORIZON RAM.

Rewrite RAM byte -- proper
parity will be set.

Ready for next byte.

If same page, no problen.

Page := page + 1.

Have we wrapped around to
disk~controller yet?

If not, back for more.

Enable RAM parity logic,
and we're done.

;y Now, initialize serial ports/Usarts

We Ve Ve we we we We we we we

’
’

Code to reset Usarts,
to L. serial port,
and R. serial port.
Another Usart code,
to Left,
and Right.
Let parameters sink in —-
waste a little time.
2 stop bits, 16%*clock,
8 data bits, no parity.

Same for R ser. port.
CMD: RTS,ER, RXF,DTR, TXEN.

Same for R ser. port.

; Reset L. rda.
; Reset R. rda.

; Now, initialize the parallel port (REMOUT:)

MVI 4,3
oUT CSTAT
oUT PSTAT
MVI A,40H
ouT CSTAT
ouT PSTAT
XTHL

XTHL

MVI A,O0CEH
ouT CSTAT
MVI A,O0CEH
ouT PSTAT
MVI A,2TH
ouT CSTAT
MVI A,27H
OUT PSTAT
IN CDATA
IN PDATA
MVI A, 60H
oUT RSTAT
MVI A,O0DH
CALL  REMOUT1
POP H

POP PSW
RET

.END

.
)

.
?

Code to set PO flag.

Send a carriage return.



ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE‘MANUAL, REV 3 (CONTINUED) -~ PG 34

APPENDIX 3: A BRIEF PASCAL BIBLIOGRAPHY

The Pascal programming language itself has not been covered in either the
NORTH STAR PASCAL SYSTEM REFERENCE MANUAL, or this ADDENDUM; the assumption has
been that anyone who reads these documents with an eye toward learning the
mechanics of the North Star Pascal Program Development System is already well-

grounded in Pascal. For those who need first to learn Pascal programming,
several excellent references are available.

Algaic, Suad, and Arbib, Michael A., THE DESIGN OF WELL-STRUCTURED AND
CORRECT PROGRAMS, Springer-Verlag: 1978.

Bowles, Kenneth L., BEGINNER'S MANUAL FOR THE UCSD PASCAL SYSTEM,
BYTE/McGraw-Hill: 1980.

Bowles, Kenneth L., MICROCOMPUTER PROBLEM SOLVING USING PASCAL, Springer-
Verlag, 1978.

Gabrielson, Mike, "Pascal Bibliography", DR. DOBB'S JOURNAL, Vol 4:2 (32),
Feb 1979, pp. 29-30.

Grogono, Peter, PROGRAMMING IN PASCAL, Addison-Wesley: 1978.

Jensen, Kathleen, and Wirth, Niklaus, PASCAL USER MANUAL AND REPORT (second
edition), Springer-Verlag: 1975.

Mickel, Andy and Jim Miner (eds.), PASCAL NEWS, International Pascal Users'
Group, University Computer Center, 227 Experimental Engineering Bldg.,
University of Minnesota, 208 S.E. Union Street, Minneapolis MN 55455 USA.

Schneider, G.M., Weingart, S., and Perlman, D., AN INTRODUCTION TO
PROGRAMMING AND PROBLEM SOLVING WITH PASCAL, Wiley: 1973.

Wilson, I.R., and Addyman, A.M., A PRACTICAL INTRODUCTION TO PASCAL,
Springer-Verlag: 1979. '

Wirth, Niklaus, ALGORITHMS + DATA STRUCTURES = PROGRAMS, Prentice-Hall:
1976.

Wirth, Niklaus, SYSTEMATIC PROGRAMMING -- AN INTRODUCTION, Prentice-Hall:
1973.






