
f\JorthSbrCanpulrzrslnc.
1440 Fourth Street

Berkeley, Ca. 94710

North Star Pascal
Version 1

System Reference Manual

PAS-DOC
Revision 3
25012-C

* * * * * * * * * * * * * * * * *
* NORTH STAR PASCAL version 1 *
* SYSTEM REFERENCE MANUAL *
* PASCAL-DOC Rev 3 December 79 *
* * * North Star Computers, Inc. *
* 1440 Fourth Street * .
* BerkeLey CA 94710 *
* * * * * * * * * * * * * * * * *

t:!Q!1fE

North Star PascaL, version 1, is a speciaL release of the UCSD Pascal (TM)
program development system, prepared jointLy by the Institute for Information
Systems, University of CaLifornia, San Diego, and North Star Computers, Inc.
("UCSD PascaL" is a trademark of the Regents of the University of California,
San Diego Campus.) Version 1 is compatible with UCSD PascaL (TM) version 1.5.
This SYSTEM REFERENCE MANUAL is a corrected reprint of the Yf§Q f~§f~l 1.2
§~§1~m M~D~21. AdditionaL information, incLuding specific detaiLs about the
North Star impLementation are contained in the ADDENDUM TO NORTH STAR PASCAL
SYSTEM REFERENCE MANUAL, which accompanies this volume.

For technical assistance with difficulties encountered while using or
configuring North Star Pascal, consuLt your dealer, or calL the North Star
TechnicaL HotLine in Berkeley, at (415) 524-9202, during the hours of
10:00am-4:00pm Pacific Time.

*
* Copyright (C) 1979 Regents of the University of CaLifornia, *
* San Diego Campus. This software, its source, object, *
* and aLL other forms, is the property of the Institute *
* for Information Systems and may be used or copied by *
* others onLy with written authorization from the Insti- *
* tute for Information Systems. *
*

SECTION

* TABLE OF CONTENTS *

VeT'S i on I. 5

1 THE UCSD PASCAL SYSTEM

1
2
3

1.';
'-.. J

7

INTRODUCTION AND ,OVERVIEW
FILE HANDLER
SCREEN ORIENTED EDITOR
1 INTRODUCTION
:2 GETTING STARTED.
3 DETAILED DESCRIPTION OF COMMANDS
4 REFERENCE...
5 EXPER I MENTAL LAHGE F IL~E VERSIOf\·1 (f,,2)

YET ANOTHER LINE ORIENTED EDITOR - VALOE
DEBUGGER
Ft\SCAL COMP ILER
BASIC COMPILER
LIN~~ER

ASSE~!HLER

2 THE UCSD PASCAL LANGUAGE

1 INTRINSICS
1 STRING

INPUT/OUTPUT

Lel·j l.EVEL GRAPHICS
S CHARACTER ARRAY
6 MISCELLANEOUS.
DI~FERENCES BETWEEN
1. Cf'\SE STATEMENTS
2 COMMENTS
3
4·

6
7
8

OYNAMIC MEMORY ALLOCATION
EOF .
EOLI\;
FILES
GOTO AND EXIT STATEMENTS
PACKED VARIABLES

ST\t\NDARD PASCAL

9
10
11

PARAMETRIC PROCEDURES AND FUNCTIONS
P R OGR AJ'>1 HEAD I NGS

1 :3
14
15
16
17
18
1 S'
20
21
22

REt!\D AND REpiDLN
RESET
RE~IRITE

SEGMENT PROCEDURES
SETS
STRINGS
WRITE AND WRITELN
IMPLEMENTATION SIZE LIMITATIONS
EXTENDED COMPARISONS
LONG INTEGERS
UNITS
TABLE OF UCSD INTRINSICS

1-.,
31
32
3b
51,
33

99

11 '1
ll9
1~23

129

1 :3:3
1 :35
13:;
1 ~J6
136
138
1:3D
149
loll ~

J·!!-4

11~ ?

150
151

1 ~)6

1 ~~tl,
1 ~j6
136
156

3 IMPLEMENTORS' GUIDES

1.

3

4
;5

6

DHA~JLINE
FILE FORMATS
SPECIAL UCSD PASCAL SYNTAX (USE OF)
1 SEGMENT PROCEDURES
;; .. ~ lJN I '1~8 . A

3 LONG INTEGERS "
INTERPRETER NOTES "
INTRODUCTION TO '"HE P.<\SCAL PSEUDO~-MACHINE
BYTE SWAPPING

4 UTILITY PROGRAMS

3
4·

(::.,

7
8
9

10

1
2
3

.5
6

8

CALCULATOR
LIBRAR IAN .
SETUP - SYSTEM RECONFIGURATION
BOOTSTRAP COPIER
PATCH/DUI'1? .""..
RT11 TO PASCAL CONVERSION KIT
GOTOXY PROCEDURE BINDER
DUPLICATE DIRECTORY
P-CODE DISASSEMBLER
LIBRAR'f MAP " .

EXECUTION ERRORS
IORESULTS
UNI TNUt'tBERS
PEN8TATES .
SYNTAX ERRORS
ASSEMBLER SYNTAX ERRORS
AMERICAN STANDARD CODE fo~ INFORMATION INTERCHANGE
P-MACHINE OP-CODES
UCSD PASCAL SYNTAX DIAGRAMS

A ADDENDA, ERRATA AND NOTES

3
4

NOTES ON OTHER MATERIALS AVAILABLE
BRINGING UP THE PASCAL SYSTEM
.t ON PDP-l j, " .

2 ON 8080/180 SYSTEM WITH CPIM AND 3740 DISKS
DIFFERENCES AMONG IMPLEMENTATIONS FOR DIFFERENT PROCESSORS.
CHANGES MADE IN 1_ 5 FROM (1.4; I.4b) SYSTEMS

B INDEX . " .

1 1::0
..J,

163

165
" L.~' J .. ~ .. f

179
183
201
213

21.7
221
227
229
~2:j3

.235
237
239
243

249
251
253

257
261
265
267
26liA

)~ .. ~ ~
,.:.:, (.i.

273
277
279

NEW SUBSCRIBERS: See Section A for details of bringing up
UCSD Pascal on your machine.

DISCLAIMER~ These documents and/or the software they describe
are subject to change and/or correction without
notice. The tJCSD Pascal ProJect cannot be held
responsible for implementations on processors where
the imp lemt.'!ntation work was not done at UCSD, Users
with systems obtained From sources other than UCSD
must contact their supplier for support.

ACKNOWLEDGEMENTS:

The work described in these notes bas been supported
significantly by the following organizations:

United States Navy Personnel Research and Development
Center, Sp~rry UniVac Minicomputer Operations, EDUCOM,
Di 9 ita 1 Eq u i pmen t C OT'P orat ion, Proc essor Tec hnc 1 og y
Inc., Springer-Verlagl Terak Corporation, General
Automation Corporation, The UCSD Computer Center,
grants from thE University of California Instructional
Improvem~nt Program, Te~trnnix Corporation, Micropolis
Inc., Computer Power and Light, Phillips Research Labs,
Lawrence Livermore Labs, Pascal Computing.

The work described in these notes has been made possible
by the drive and direction of the Director of the lIS:

Kenneth L. Bowle~

Documentation Authors:

Gillian M. Ac k land, S. Ddle Ander, Lucia A. Bennett,
Raymond S. Causey! Charles "Chip" Chapin.
Gary ... J, o i. smll k eSt Julie E. Erwin, Shawn M. Fanningl.
Mary K. Landauer, J. Raoul Ludwi g, Joel J. McCormac k,
Mark D. Overgaard, Keith A. Shillington,
David A. Smi th I Roger T. Sumner, Dennis J. Vol peT'.

Software Authors:

S. Dale Ander} Marc Bernard, Charles "Chip" Chapin,
J. Greg Davidson, Barry Demchak, William P. Franks,
C. Richard G'f'unsky, Robert J. Hofkin, Albert A. Ho-Pfman,
Richard S. Kaufmann, Peter A. Lawrence, Joel J. McCormack,
Mark D. Overgaard, David A. Reisner, Keith A. Shillington,
David M. Steinor~, Roger T. Sumner, Steven S. Thompson,
David B. Wollner.

Collected and Edited by:

Keith Allan Shillington and Gillian M. Ackland.

***************************** ***************
* INTRODUCTION AND OVERVIEW * * Section 1. 1 *
***************************** ***************

VeT'sion I. 5 September 1978

The UCSD Pascal system described in the following document is a
system intended to run on stand alone micro- and mini-computers. This
system is highly machine independent since it runs on a pseudo-machine
interpreter commonly referred to as the uP-machine". All the system
softwa~e is written in Pascal, except fo~ the P-machinQ inta~p~Qt8~ and
a few run-time support routines written in assembler for efficiency,
resulting in relatively straightforward software maintenance and
enh~'lncement.

The system is designed to be used primarily with a CRT teT'min~l

acting as the CONSOLE devicei howeverl the system is flexible enough to
be reconfigured for slower hard-copy terminals. For further
information rega~ding coropatability between various types of equipment
and this system see the "SETUpu document in Section 4.3. This docume'(1t
is intended for programmers who are familia~ with the Pa$cal
progi~amming language and have some experience in writing computer
pr ogt'am'5

The following is a tutorial book on PASCAL:

Kenneth L. Bowles,
(Microcomputer) Problem Solving Using PASCAL
Springer-Verlag, New York; (c)1977

w~ suggest the following book as a PASCAL reference guide:

Kathleen Jensen and Niklaus Wirthr
PASCAL. U!';er Manual and RepoT't
SpT'ingeT'-VeT'lagi New YOT'k~ (c) 1975

For documentation concerning the differences between UCSD
Pascal and Standard Pascal see Section 2.2.

1. 1. 1 THE UCSD PASCAL SYSTEM: AN OVERVIEW

The structure of the UCSD Pascal system is best
con~ept(Jalized in terms of the "tr.ee-like" stT'uctlJre diagT'am figure 0.1
at the end of this sub- section.

The diagram in figure 0.1 depicts the outermost level of the
system. In terms of ~~ "tref!tI OT' structurE d:iagT'f30'b thE IIroot"
C01'T' e S p 0 n d s tot: h e 0 ute r m 0 S tIe vel t w h j.). e the u 1 ea v e s II (i. e. the box e 5

wit h nob ran c h est 0 low tf r 1 eve 1 s) c {) r i' f1' «5 P 0 n d tot h e 11) wt? l' 1 eve 1 5 0 .p the
sysi~em. ~"hile a user is in a p.ci'rticult3T"- level, the system dispL~ys a
list o~ available comm~~nd$ cal1~d th~ Hp.,"ompt-ltne H

, If the system is
running on a CRT screen type terminal, then the prompt-line will
usually appear at the top of the screen. Commands are usually invoked
by typing a single character from the CONSOLE device. For example, the
prompt-line for the outermost level of the system is:

C 0 mm ia n d: E (d i t I R (un I F (i 1 it? f C (0 m p , L. (ink 1 X (e C 1I t (:h A (sse m J D (e bug ,! ? [r. 5 J

B Y t Y pin 9 ,. F tI the use l' W ill ;. des c end 11 a .1 eve 1 wit h i nth e
s t T' lJ C t u T' e d i a 9 T' ami n t 0 ale vel calle d the II F i 1 e T' II • Up 0"" en t e T' i n 9 the
=iler, anothe~ prompt-line detailing the set of commands available at
the Filer level of the system is displ~yed. The Q(uit command causes
the use r toe x i t f l~ 0 m the F i 1 era n d t4 a s r: end It b a c k tot h e 0 ute l' m 0 s t
command level o~ the system. Now the user is back at the level in the
system from which he started after bootstrapping the machine. Some
commands within the system prompt the user fo~ the name of some disk
flle In these [a~e51 the user enters the name of the file followad by
a carriage return. If an error is made in typing a portion of the file
nam~, the backspace key (or e~uivalent key depending upon th~ system
r:onfigIJration) may bE~ u£.ed to ;'back ovwr" ~nd eT'Cise th~? erroneous
part The lin~ delete key (rubout ke~) may ba used to erase the entire
File n~me. thereby allowing the user to compl@te14 start over. If the
uSe'r d (!' C i d f.." S not t 0 ace e p t iiP"! l:i f i 1 eo n .'71 m f' t;.; h .~r.;::: (\ ~ .. v :::t 1"' I ,/ l:7 S ·c ape.!t f l' 0 ill t 11 i !.=.

c: 0 roma 1'1 d i -s b IJ en t ~ r i n 9 d f i 1 €I n.a !l'i ~ 0 oF l t~ T' 0 c: h .t':l 'f' act 0 r s , L f!t.. t y p e < c: r :> .

Notp that due to a limited amount of room on the prompt-line)
50me of the infrequently used commands ma~ not appear on the prompt-
1 i nfL

A concept cent'i'i~l to the design of th~ entire UCSD Pascal
;y~tem commi3nd strllctOT'e is the' concept of th.:~ t'uJor~{filer:. A !iJoT'k-File
::ar. b:: th':-;Ught of as a ·!$cT'c."}tch~·pt~d" arf~a used for devt":tlopment of
programs and only one workfil@ is allowed at any ona time. If a us~~

dishes to begin a new workfile, the contents of the old one can be
sa',¥q~r.L under a sep(.~rate fi Ie n~lm;£I, for 1 af,2T" rBfer-'ence by us ing the
3(ava command in the Filer lev~l of thp s~stpm, When that file is
lat~; ... retrif?ved for fOT't:her tJJork on th~ contents1 it lE) possibl(~ that a
number of file~ (usually source and code) will be retrieved together
~nd in total they comprise the work-file

1. 1.2 OUTERt10Si LEVEL COMMANDS:. AN OVERVIEW

A. E (d it

Typ lng "Eli wh i Ie at the outel'i-rHJst c.ommand level of the system
cau~~s the editor program to be brought into memory from disk. The
use~ maYI while in the edito~, inse~t or delete text inside his
work file D~ any textfile, along with many other powerful commands. See
Section 1.3 far details. The workfile text (if present) is read into
the editor buffert otherwi~e the Editor prompts for a file.

13 F(iler

HF" places the user in a level of the system called the Filer.
This section of the system contains commands used primarily for
maint~nance of the files stored on the disk. The L(dir command allows
the user to list the titles and the last modification date, as well as
determine the number of blocks occupied by each file on the disk. The
TCTBnsfer command is used to copy from either one disk to another, o~

from one area on a pal~ticular disk to another area on the same di~k.
For more documentation on the Filer level including commands associated
with the "getting", "saving", and "clearing" of the user's wOl'kfile see
Section 1. 2.

c. C (amp

This command initiates the system compiler to compile the users
work-file. If there is no work-file currently the user is asked '01' a
source text file name. If a syntax 9rTO~ within the source is
detected, the campile~ will stop and display the error number and the
surrounding text of the program. By typing a spacek the user can cause
the compiler to continue the compilation, Typing an <esc> causes the
camp i leT' to abtirt & return to Command leve 1. Typ ing 'E' wi 11, if the
system editor is the screen edttorJ call the editor placing the cursor
near the offending symbol. If the compil,,'ltion is successful, (1. e. no
syntax errors we~e encountered) a codefil~ called *SYSTEM.WRK. CODE is
written out onto the user's disk and becomes part of the workfile. FoT'
more documentation on the use of the UCSD Pascal compiler see Section
1. 6.

This command causes the codefile associated with the current
work~ile to be executed. If no such code file currently exists, the
compiler is called in the same manner as described in C above. If the
c6mpilation re~ujres linkage to separately compiled code the linker
will automatically be invoked and will assume the use of the file
*SYSTEM.LIBRARY. After a successful compilation, the program is
executed.

Page 3

E. X(ecute

This command prompts the user fn~ the filename of a previou.ly
compiled cod~file. If the file exists, the codefile is executed;
o the T' w i set hem e s sag e P; can ' t fin d f i 1 e tf i s ret lJ T' ned. (Not e : the
".CODEr.~ suffix on such a file is implicit» I-P all cod~ necessary to
execute the c:ode-File has not been linked in, the message "file <'Pileid>
not linked in is retu~ned. It is convenient to X(ecute other prog~ams
which have already been. compiled because otherwise the user would have
to enter the Filer. G(et the file, Q(uit the Filer~ and then RCun the
program.

F. A(5sem

Just like C(omp except the sys~em assembler is invoked rather
than the system compiler.

G. D(ebug

This command causes the cu~rent workfile to be executed. If
the program in the wo~kfile has not been compiled, the compiler will be
called as in the case of the R(un command. However if a run-time error
occurs., or a user- de.pin~d bre~lk-pojnt OT' halt is encountwred, the
Debugger program i$ called. The Debugger is a prog~am which allows the
user to examine the contents of variables within the program. See
section 1. 5 Debugge~ for more details.

H. L(ink

This command starts the syst~m linker program explicitly to
allol.", tlSf:"oT'S to li-rk "'outi.nes fr-orn libra1"ies c·tf1~T' than
*SYSTEM.LIBPARY. See section 1.8 for mDr~ inPormation O~ the linker.

1.1.3 UTILITY PROGRAMS

There are many functions needed by users of any operating
system. To attempt to make all these functions system functions would
result in a terrible proliferatlon of command letters as the base node
level. In order to keep the COMMAND llne simple, we hav~ restricted
the functions available on it to what W~ feel i~ the bare minimum for
~rogram and te~t develo~rni?nt. Th~· oth£'p usefult but much less often
IJsed functions dT'e available through the X(ecute command. The sort ofl
Functions which are available are the desk calculato~, the patch/dump
iJtility: the terminal configuration s€'tup prcgramJ a boot~Jtrap mcvel"l a
librarian and many others. For a complete list of the utility programs
10W avail~ble with the UCSD Pa~cal systRm. reFeronce Section 4 1n the
rable of Contents. Any programs which you write and -Feel \.t.Jould be a
Jseful addition to our library of utilities will be welcome
:: ontr i b lit;. OTIS

'age 4

1.1.4 AN INTRODUCTION TO THE UCSD PASCAL SYSTEM

1.5 is the first release which contains the fully intergrated
and implemented concept of sepa~ate compilation and assembly. I.4b was
the first to support multiple types of processors.

The great bulk of the system 50ftwa~e is written in Pascal and
runs on a ~elatively simple pseudo-machine. If this pseudo-machine is
emulated by a machine language program on a new real machine, the
Pascal software will also run on that new real machine.

One class of differences among versions of the system is due to
aspects of the pseudo-machine that are not identicaly emulated by the
implementations for different types of processors. A subsection in
$~ctton A contains a chart of differences between processors the system
currently run~ on.

Another clas$ of differences stems from variations in the
system lID environments rather than in the host processor. Included
here are diffe~ence in system console terminal types (e. e. hard-copy vs
CRT vs stc~age tube) or command conventions and capabilities (eg.
!I in tel 1. i 9 en t " v S tl dum bite R T .. 5 >. The s y 5 t em i sin ten d edt 0 b e a b let 0

cope with this sort of va~iation. Ver~ion I.4 had some troubles with
teTminals that ge~eTat9Jrequi~e two-cha~acter sequences fD~ some
contT'ols, and single-c:haT'acter sequences foT' othel's. The utility
progj',am "SETUP" has been complet1i'ly regenerated for 1. 5 (see section
4.3) .

In the PDP-i1 world these mass storage variations are not too
seriou~J primarily b~cau~e there is considerable motivation to be
compatible with DEC devices and m~dia. We hav~ written and support
driverg fo~ a few DEC incompatible devices but make no' claim to
SUppOTt users who want to develop their own such drivers. See section
A f(lT' u,U3;'nings c-lbout pT"obl~ros you might encounter.

The situation in the BOaO/Zeo wo~ld is much more chaotic.
Since is wDuld not be practical fo~ the ProJect to write and support
drivers far the vast multitude of soao/zao 110 environments that exist,
we have chosen to take advantage of the wide5pread implementation of
Digital Research's CP/M operating system by structuring the pseudo
machine's 110 operations as calls on CP/M's Basic I/O Subs~stem (BIOS)
primitiven. Thereforel any 110 configuration on which CP/M has been
implem~ntcd should also be able to support the Pascal system. We do
not gU~T'antee this. For example·, Intel MDS disk controllers cannot
read disks generated here and some BIOS's we have encountered do not
completel~ meet all the requirements specifi~d for CP/M. UCSD plan~ to
support some of the larger distribution SOaO-based machines directly.

Our dominant mode of distribution for soao/zao systems will be
on 3740 compatible diskettes, One of the distTibution diskettes will
be CP/M oriented This disk will be used, via a somewhat awkward two-
st~p process, to bring up UCSD Pascal on a particular CP/M
configuration. Look to section A for details on this process. It also
describes tho configuration of a modi~ied BIOS, which will better
support the needs of the Pascal system. Finally, directions are given
fOT making it possible to boot directly to Pascal rather than
indirect14 through a CP/M program.

Page 5

A number of files on the disk start with "SYSTEM.' speci~ically:

SYSTEM, PVP-11
SYSTEM. MICRO
SYSTEM. PASCAL
SYSTEM. FILER
SYSTEM. COMPILER
SYSTEM. SYNTAX
SYSTEM. EDITOR
SYSTEM. LINKER
SYSTEM. ASSMBL.ER
SYSTEM.SWAPDISK
SYSTEM.CHARSET
SYSTEM.LIBRARV
SYSTEM.WRK.TEXT
SYSTEM.WRK.CODE
SYSTEM. STARTUP

In most cases these files. contain the system segment of the
name they carry. That is to say that the EDITOR, FILER~ LINKER,
:OMPILER, ASSEMBLER are the files that are invoked by the text editor
"hen 'E', 'F ' , etc. is typed. Some of the files aT'e machine specific.
[NTERP and MICRO are the files which contain the interpreters fo~ the
)articular machine being used. CHARSET is a file which appears on
jisks meant for TERAK computers only and contains the definition for
the soft character set, and the data for the Triton logo prompt.
_IBRARV is a file containing separately assembled or compiled routines
POl' use by the Linke~ in producing executable code files. PASCAL
:ontains the operating system, and the Debugger. SWAPDISK is a file
Jsed by some of the system segments during compilation of "include"
Piles if a memory shortage exists. It is a 2048 byte file which gets a
)ortion of memory swapped to it when a directory needs to be read into
:ore. When the dir9ctory work is complete, the memory is restored to
Lts original state. STARTUP is a file which can be created at the
J seT' ISO P t ion. I fit e xis t $ 0 n a dis k,t h e 0 per at in 9 s Y s t em con s id e r s
It a runnable code-'11el and executes it at initialize time. This
tllows the user to have a program that runs before the main command
~rompt comes up, and will run anytime the I{nitiallze command is
;yped. WRK.TEXT and WRK.CODE are the current work-file after some
lction has occurred to the work-file. They appear after having done
~ome text editing on a work-file (SYSTEM.WRK. TEXT) or compiling a work
lile (SYSTEM.WRK.CODE).

All other files an the disk a~e user generated (in one fashion
~T' anothE'r>' The other important part'S of a disk are relatively
,nvisible to the user. The directory resides at block 2 on the disk
Ind extends for 4 blocks if it is a single directory, a blocks i. it is
I duplicated (backed-up) directory. The bootst1"ap can reside at any of
I number o~ places on the diskl depending on the host machine. In most
ases, blocks 0 and 1 are reserved fa~ the bootstrap.

Page 6

1.2.1 FILES

*************** *************~*
* FILEHANDLER* * Section 1.2 *
*************** ***************
Version I.5 September- 1978

A fi.le is a discrete 'chunk: of information which is stored on
the disk and ~eferenced by a filename. Each disk has a directory
which contains the filenamRs and locations of each file on the disk.
T h t:' F i 1 e han d 1 e'r J 0 r F i b~ 1" .. lJ S est tl e in f 0 T' ma t ion con t a i ned in the dis k
directory to manipulate files.

One of the attributes of a file is its t~pe. The type of the
file determines the way in which it can be used. File types are
assigned based on the file name.

1. 2. 2

Res~rved type suffixes Fa~ filenames are:

TEXT

. CODE

. DATA

, FOlD

.8,.\D

VDLUt1ES

Human readable text.

Machine executable code .

Data file.

A file containing one TERAK screen-image.

Intended to be a file containing a vector
list of a graphic imagn. Cur~ently unused.

An unmovable file cov~rln9 8 physically
damaged aTea of a disk,

A volum~ is any 1/0 device; slJch 13B the printer'. the keyboard.
0,.. a dis k " A tI b 1 t1 r: k - ~i t 'r" to, C t U T' e d" d e vic e i 5 0 net hat can h a v e a
d i r f~ c t n'" y a T'dJ f ~~ 1 e ~ , us tHl 1 1 \J a d j 5 k o.f 5 f.) ttl t"' SO 'T' t , A non -
blotk-structured device does not have internal structure; it sImply
prcduc~s Dr consumes a ~t~eam of characters. The printer and the
key b car d If' IJ 1" E l{ amp 1 ~: I .3 T' e non .-b 1 0 c k - s true t u T' e d . The tab 1 e bel 0'"

illu.trate9 the reserved volume names used to Tefer to non-block
stf'uctuT'ed devi.ce-51 the 'unit number- i d~~or.iated with each device, and
the unit numbers as~ociet~d with the system (booted) disk and any
al,t:;~T'nat~ disk~.

Unit Number

1
2
3
4
5
6
8

9-12

Volume ID

CONSOLE:
SVSTERM:
GRAPHIC:

<volume name>:
<volume name)-:

PRINTER:
REMOTE:

<volume name)-'

Description

screen and keyboard with echo
screen and keyboard without echo
the graphic 'side' of the screen
the system disk
the alternate disk
the line printer
additional peripherals
additional disk drives

FIGURE 1

1. 2.3 THE 'WORKFILE'

The workfile is a temporary copy of the file being modified.
It is used by the Filer, in the Editor, and by the Compiler. When the
text part of a workfile is changed, the system stores it on disk under
the name '*SYSTEM.WRK. TEXT', and when a code version is first created,
it is named '*SYSTEM. WRK. CODE'.

1. 2. 4 FILE SPECIFICATION

Many Filer commands require the user to respond with at least
one file specification. The diagram below illustrates the syntax of
file specification.

<f~\e spec~f~cQt~on>

vDl.uMe ID

FIGURE 2

)age 8

Volume i. d. syntax can be expanded thusly:

<VP\UMe 10>.

vo\nQ.Me

FIGURE 3

Volume names for block-structured volumes can be arbitrarily
assigned by the user. A volume name must be 7 or less characters long
and may not contai.n '-::::.', '$', '?' or ','. Reserved volume names for

. non- block-structured devices are given in Figure 1. The character '*'
i5 the volume ID of the 'system disk', the disk upon which the system
was booted. The character ': " when used alone, is the volume ID of the
'default disk'. The system disk and default disk are e~uivalent unless
the default prefix (see material on P(refix) has been changed. '.<unit

Page 9

number>' is e~uivalent to the name of the volume in the drive at that
time.

A legal filename can consist of up to 15 cha~acters. In order
for the fil~ to be run the last 5 characters must be . TEXT, ,CODE, OR
. DATA. Without these suffixes the file may be executed but not put in
the workfile to be run. Lower-case letters will be translated
to upper-case, and blanks and non-printing characters will be removed
from the filename. Legal characters for filenames are the
alphanumerics and the special c.haracters '_'i 'I', '\' , .r I, and '.'.
These special characteTs may be used to indicate hierarchic
relationships among file$ and/or to distinguish several related files
of di~Terent types.

WARNING: The 1.5 Filer will not be able to access filenames containing
the charac-ters '$', ': 't '=', '?': and '~', If files from previous
versions of the system contain these cha~acters, then they should be
removed be~ore attempting to use those riles with the I.5 System.

The wildcard characters, '=' and '7'1 are used to specify
subsets of the directory. The Filer performs the requested action on
all files meeting the specifications. A file specification containing
the subset-specifying string 'DOC=TEXT' notifies the Filer to perform
the requested action on all files whose names begin with the string
'DOC' and end with the st~ing 'TEXT'. If a '?' is used in place of an
'=', the Filer requests verification before afTecting each file meeting
the specified criteria. Either or both strings may be empty. For
example, a subset speCification of the form '=<string>' or '<string>='
OT' even '=' is valid. This last case. where both subset- specifying
strings are empty, is interpreted by the Filer to specify every file on
the volume. so typing '=' or '?' alone causes the Filer to perform the
appropriate action on every file in the directory.

~age 10

Given an example directory for volume MVDISK:

NAUGHTYBITS
MOLD. TEXT
USELESS. CODE
MOLD. CODE
NEVERMORE. TEXT
GOONS

6 23-'-'un-54
4 29-,,'un-54

10 19-May'-54
4 29-·...Iun-54

12 5-Apr-54
5 lO-Sep-S2

EXAMPLE:

EXAMPLE:

P~ompt: Remove what file?

Re$pons~: Typing 'N=~ generates the message:

MYDISK:NAUGHTYBITS
MVDISK:NEVERMORE.TEXT
Update directo~y?

removed
'removed

(At this point the user can type 'V' to remove or
type ~N"J in whi.ch case the Tiles will not be
removed. The Filer always requests verification
on an'J wi ldcard removes.)

Typin9 'N?' generates the mes~age:

Remove NAUGHTYBITS: ?

After the user types a respcnse~ the Filer as.ks:

Remove NEVERMORE. TEXT: ?

Prompt. Dir listing of what vol?

Response: Typing '=TEXT' causes the Filer to list

f¥tOLi). TEXT
NEVERMORE. TEXT

4 29-,Jun--·54
12 5'-Ap '("-·54

The subset-specifying strings may not 'overlap'. For example,
GOON~NS would not specify the file GOONS} whereas GOON=S wDuld
be a valid (although pointles~) specification.

Tha size specification information is predominantly useful in
the COf~H'Il:;nds T(rans-PeT' section 1. 2. S. 11 and M(ake section 1. 2.5.17.

Page 11

1.2.5 COMMANDS AND USE

Type "Fit at the Command level to enter the Filer and the
following prompt is displayed:

Filer: G(et, S(ave, W(hat, N(ew, L(dir .. RCem, C(hng, T(ransl D(atEb G(uit

Typing '?' in response to this prompt displays more Filer commands:

Filer: B(ad-blks. E(xt-dirl K(rnch, M(ake, P(refix, Veals, X(.amine. Z(ero

The individual Filer commands are invoked by typing the
letter found to the left of the parenthesis. FoT' example,
's' would invoke the Save command.

In the File~, answering a Yes/No question with any charact~r
other than'Y' constitutes a 'No' answer. Typing an <esc> will return
the user to the outer level of the Filer.

Fo~ each command requiring a file specification. refer to the
file specification diagram (Figure 2). In many cases, the entire file
specification is not necessary, and in some case~~ certain parts of the
file specification are not valid. See the required command in the
following section.

Whenever a Filer command re,uests a file specificationJ the
user may specify as many files as desired) by separating the file
specifications with commas, and terminating this 'file list' with a
carriage return. Commands operating on single filenames will keep
reading fil~name$ from the file list and operating on them until there
ill' e non e 1 e of t . Comma n d sop e l' at in 9 0 n t UJO f i 1 ena me s (s u c has C (han 9 e
and T(rans) will take file names in pairs and operate on each pair
until only one OT none remains. If one filename remainsl the Filar
~ill prompt for the second member 0' the pair. If an error is detected
in the list, the rest of the list will be flushed.

)age 12

Loads th9 designated file into the wD~kfile.

The entire file specification is not necessary. If the volume ID is
not giv(~nl the default disk is a~r.umed> l,.Jildcaros a~e not allowed,
and the ,sl.ze specification option is ignored.

Given the eXdmple diTecto~y:

EXAMPLE:

FILERDOC2.TEX'T
t';. OUT. CODE
FS.TEXT
ABSURD. TEXT
HYTYPER.CODE
STASIS. TEXT
LETTER1.TEXT
ASSEM.DOC .. TEXT
FILER. DOC. TEXT
STASIS, CODE

P~ampt: ~et what file?

Response: STASIS

The Filer responds with the message

'Text and Code file loaded'

since both text and code fil~ exist. Had the user typed
'STASIS.TEXTt or' 'STASIS. CODE', the result would have been the
same - bath text and code versions would have been loaded. In
the event that only one of the versions exist~, as in the case
of A.OUTI then that version would be loaded, regardless of
whether text or code was requested. Typing 'A. CUT. TEXT' in
response to the prompt would gene~ate the message: 'Code file
loaded'.

Page 13

2) S(ave

Saves the workfile under the filename specified by the user.

The entire file specification is not necessary. If the volume ID is
not given, th2 default disk is assum~d Wildcards are not a]b;~H?d ..
and the siz~ specification option i~ ignOT~d.

~XAMPLE:

ig9 14

Prompt: Save as what file?

ResponsE': Type a filen.iame of 10 or le5s chNr,3~tf.\j':;;1 obser·',/ing
the f i 1 ~ n a tTl e con ve n t ion sin ~ e c t ion 1. 2. 4 ' FILES f. T hi;:;.
caus~s the FILER to automatically remDVe any aId file having
the given ndm~. and to save the workfile under that name. For
e:<ampl€h typing flX"i" respon~e to the prompt catJses the
W 0 r k f i 1 e to bps a v e don the d e of a u 1 t dis k a s X. TE X T. I of a
code'il. hAS been compiled sinc~ the last update 09 the
wo-rkfi 1£01 tJ)atcodefile wi II be saved asX. CODE.

The FILER auttlmatic:ally appends thi:~ suf-rixes . TEXT and. CODE to
files of the appropriate type. Explicitly typing AFILE.TEXT in
response to the prompt will cause the FILER to save this file
as AFILE. TEXT. TEXT. An\j iII eg a 1 c harac tel's in th e of i 1 ename
will be ignored, with the ext.::ep"tion Of ~;'. If tho? fil~

specification in~ludes volume idJ th~ Filer assum~s that the
user wishes to save the workfil@ on another volume. For
example; typing:

RED: EVE

in response to 'Save as what file?' will generate

Prompt: Would you like EVE. TEXT written to RED: ?

RED~EYE constit\Jtes a file specirication, and a 'V' answer to
this prompt will cause the Filer to attempt a transfer of the
workfile to the specified volume and file. (see section
1 .. 2.5, 11 T(ran~f~~r,)

3) N(ew

Clears the workspace (workfile).

No file specifications allowed.

If there is already a workfile presentJ the user is prompted:

Prompt: Throwaway current work file?

Response: 'Y' will clear the workfile while 'N' returns the
user to the outer level of the FILER.

If <workfile nam~>.BACK exists., then the user is prompted:

Prompt: Remove <workfile name>. BACK ?

4) G(uit

Return~ the user to the outermost command level.

No file specification allowed.

5) W(hat

Identifies the name and state (saved or not) of the workfile.

No file specification allow.d.

6) V(olumes

Lists volumes cu~rently on-line. with their associated unit
(devic~~ numbers.

Page 15

No ~ile specification allowed.

A typical display would be:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
3 GRAPHIC:
4 * MYDISK:
6 PRINTER:
8 REMOTE:
9 # BIG:

Prefix is - MYDISK:

The system or "boot-disk" volume's name is pl'eceeded by a '*'.

The system volume is the default volume unless the prefix (see
PCrpfix) has been changed Block-structured devices are indicated
by I' * I aT" '4* I ,

7) L(dir

Li'sts a disk directory., or some subs~t thereof; to the volume and
file specif-ied (default is CONSOLE:),

The user may list any subset of the directory, using the 'wildcard'
option! and may also write the directory., Or' any subset thereof~ to
a volume or filename other than CONSOLE. File specification will
therefore be discussed in terms of source file speci'ication and
destin~tion fil~ specification.

Source file sp@cification consists of a mandatory volume ID, and
optional subset-spPtifying string~1 which may be empty. If subset-
~pecifying strings ara uSRd, then on~ of th@ wildcard charactRTs
must be US"dH1. A string <-Por example, the full fil~n(~m~

STASIS. TEXT) mav not be used as part of the source file
specification unless a wildcard character is used~

Source file informatiDn is 5Ppa r ated from destination file
1. nof ormat i on b 4 a c omm~ (~; ~).

Destination file specification consi&ts of a volum~ ID, and, if the
volume is a block-structured device, a filename. File size
specifications will bp ignored.

The most frequent use of this command is to list the entire directory
of a volume. The following display, which represents a complete
directory listing for the example disk MVDISK, would be generated
by typing an~ valid volume In for MYDISK (see Figure 2) in response
to the prompt,

~age 16

Dir listing Or what vol?

MVDISK:
FILERDOC2. TEXT 28 1-Sep-78
A.OUT CODE 10 1-Sep-78
F5.TEXT 8 1-Sep-78
ABSURD 4 1-Sep-78
HYTYPER.CODE 12 1-Sep-78
STASIS. TEXT 8 1-Sep-78
LETTER1.TEXT 18 1-Sep-78
ASSEMDOC.TEXT 20 1-Sep-78
FILERDOC1. TEXT 24 1-Sep-78
STASIS. CODE 6 I-Sep-76
10/10 files <listed/in-dir>, 130 blocks used, 364 unused

(The bottom line or the display informs the user that 10 files out
of 10 files on the disk have been listed, that 130 disk blocks
have been used, and that 364 disk blocks remain unused.)

EXAMPLE:

EXAMPLE:

L{di~ t~ansaction involving wildca~ds:

Prompt: Dir listing of what vol?

User response: #4:FIL=TEXT

generates the 'ollowing display:

MYDISK:
FILERDOC2.TEXT 28 1-Sep-78
FILERDOC1.TEXT 24 1-Sep-78
2/10 flIes <li~ted/in-dir>, 52 blocks used, 364 unused

L(dir transaction involving writing the directory subset to a
device other than CONSOLE:

Prompt: Dir listing of what vol?

User T'e·sponse: *FIL=TEXT, PRINTER: causes

IVJYDISK:
FILERDOC2. TEXT 28 1-Sep-78
FILERDOC1.TEXT 24 1-Sep-78
2/10 files <listed/in-dir>, 52 blocks used, 364 unused

to be w~en to the Pnint~.

Page 17

EXAMPLE:

L(dir transaction involving writing the directory subset to a
block-structured device:

Prompt: Dir listing of what vol?

User response: #4:FIL=TEXTI#5:TRASH creates the file TRASH an
the volume associated with unit 5. TRASH would contain:

MVJ}ISK:
FILERDOC2.TEXT 28 1-Sep-78
FILERDOC1. TEXT 24 1-Sep-78
2/ 10 f j 1 e 5 < 1 i s ted lin~" d j, r :> t 52 b 1 0 (: k S U $ e d., 364 v nus e d

8) E(xtended list

Lists the directory in more detail than the L(dir command.

All files and uflused areas are listed along with (in this order>
thei'r block lengthl last modification dat9.1 the starting block
address, the number of bytes in the last block of the file, and the
filekind. All wildcard options and prompts are as in the L(dir
command. An f.')(ample displ;ty is shown below.

MYDISK:
FILERDOC2.TEXT 28 1-Sep-78 6 512 Textfile
A,OUT.CODE 10 1-Sep-78 34 512 Codefile
F5. TEXT 8 1-Sep-78 44 512 Textfil@
<UNUSED> 10 52
ABSUnD 4 1"-Seo---78 62 512 Da t ,,:l'f'! i 1 e
HYTYPER.CODE 12 1-Sep-78 66 :512 Cadefile
STASIS TEXT 8 1-Sep-78 78 512 T£':.;tfi.le
LETTER1. TEXT 18 1""Sep-78 86 512 Textflle
ASSEMDOC. TEXT 20 1-Sep-78 104 512 Texti'.;ile
FILERDOC1.TEXT 24 1-Sep-78 124 512 Textfile
STASIS, CODE 6 1-SRp-78 148 512 Codefile
<UNUSED> 354 154
10/ 10 f i 1 es .(1 i s ted ./ i n --d i 'r:>, 130 b '1 0 c k sus e d I 364 :,; n us e d I 354 in 1 aT' 9 est are a

~) C(hange

Changes ~il~ or voluw@ name.

This command requires two file specifications. The first of these
specifies the file to be changed, the second, to what it will be
changed. The first specification is separated from the second
specification by either a -('ret:> OT' a comma (', '). Any volume ID
info~mation in the second file speciFication is ignored, since
obviously the 'old file' and the 'new file' are on the same vQlume~
Size specification Information is ignored.

'age 18

Given the example file F5.TEXT, residing on the volume occupying unit 5:

P~ompt ; Change what file?

User Response: #5:F5. TEXT,HOOHAH

changes the name in the directo~y from 'F5. TEXT' to 'HOOHAH'.
Although filekinds are originally determined by the filename,
the C(hange command does not affect the filekind. In the above
case, HOOHAH would still be a text file. However, since the
S(et command searches for the suffix '.TEXT' in order to load a
text file into the workfile, HOOHAH would need to be renamed
HOOHAH. TEXT in order to be loaded into the workfile.

Wildcard specifications are legal in the C(hange command. If a
wildcard character is used in the first file specification, then a
wildcard must be used in the second file specification. The subset
specifying strings in the first file specification are replaced by
the analogous strings (henceforward called replacement strings)
given in the second file specification. The File~ will not change
the filename if the change would have the effect of making the
filename too long (~15 characters). Given a directory of example disk
NOTSANE: containing the files:

EXAMPLE:

POEMS. TEXT
MAUNDER. TEXT
MALPRACTICE
MAKELISTS. TEXT

Prompt Change what file?

User response: NOTSANE:MA=TEXT;XX=GAACK
causes the Filer to report

NOTSANE:MAUNDER. TEXT changed to XXUNDER.GAACK
NOTSANE:MAKELISTS. TEXT changed to XXKELISTS.GAACK

Page 19

The subset-speci~ying strings ma~ be empty, as may the replacement
strings. The Filer considers the file specification '=' (where b~th
subset-specifying strings are empty) to specify every file on the
disk. Responding to the C(hange prompt with '=,Z=Z~ would cause eve~y
~ilename on the disk to have a 'z' added at 'rant and back.
Responding to the prompt with 'Z=Z,=' would replace each terminal
and initial '1 ~ with nothi.ng" Given thePilenarnes:

EXAMPLE:

EXAMPLE:

THIS. TEXT
THAT. TEXT

Prompt Change what file?

U~pr Response: T=T.=

The result would be to change ~THIS. TEXTi to 'HIS. TEX',
and 'THAT. TEXT' to 'HAT. TEX'.

The volum€ name may also be changed b~ specifying a volume ID
to be changed, and a volume 10 to change to.

Prompt Change what file?

User Response: NOTGANE_,WRKDISK.

ge~~rates the message, NOTSANE' changed to WRKDISK'

LO) R(emove

Remov~s file entries from the dIrectory.

Thi~ command requires one file speci~ication for each file the user
wishes to remove. Wildcards are legal. Size speciflcation
information is ignored. Given the examD12 files (assuming that they
are on the default vDlume):

'XAMPLE:

age 20

AARDVARK. TEXT
t<J;.tDRGID. CODE
QUINT, TEXT
~.Mi~Z I NG. CODE

Remove what file?

USC:?T" R~spon$e: AMAZING. CODE.

removes the file AMAZING. CODE from the volume dir2ctoru. Note:
To remove SYSTEM.WRK. TEXT and/or SYSTEM.WRK.CODE the N(ew
command should be used, or the system may get confused.

EXAMPLE:

A~ noted befa~e, wildcard removes are legal.

Prompt: Remove what file?

A=CODE

cause~ the Filer to remnve AMAZING. CODE and ANDROID. CODE.
t..,if~;~NrNG: Remffmber' th~t th~ Fil~;~-f i:an:'1der'~ the fi Ie
specification '=' (wheTe both subset- specifying strings are
emptq) to specify every file on the volume. Typing an '=' alone
will cause the Filer to remove every File on your directory!!
F'o'r'tunately. bef!or'e finali:ting any wildcard removeSl ttte FileT'
prompts the user with

Prompt: Update di~~ctQr~?

R2~i.pon·;.~: V' r.,~tHH:5 all specified files to be 'removed. 'N'
r~turns the user to the Quter level of the Filer without any
i;2~~H)"/ef1. na'.ling occur-r~d.

11) T(T',~n$re,..

Copies the specified file to the given destination.

This ct,mmand 'reQ.uires the user to t\jpe two file specificatirH'i::'1 one
far the source file, and one for the destination file, separated
with either a comma D~ <ret>. Wildcards are peTmitted~ and size
specification information is recognized for the destination 'ile.

AS6um~ that the user wis~e. to transFer the file FARKLE.TEXT
from tne dis~ MYDlSK to the dlSk ilACKUP.

EXAMPLE:

P~ompt: Transfer what file?

Uqe~ R~sponse: MVDISK:FARKLE. TEXT

Page 21

Prompt: To where?

(Note: On a one-drive machine, do NOT remove your source disk
until you are prompted to insert the destination disk)

User Response: BACKUP:NAME.TEXT

Prompt: Put in BACKUP:
Type <space> to continue

The user should remove the source disk, insert the destination
disk and type a <space>. The Filer then notifies the user:

MYDISK:FARKLE.TEXT transferred to BACKUP: NAME: TEXT

The Filer has made a copy of FARKLE and has written it to the
disk BACKUP giving it the name NAME. TEXT. If the specified
file is large, the user may be prompted to alternately insert
the source and destination disks until the transfer is
completed.

It is often convenient to transfer a file without changing the name,
and without retyping the file name. The Filer enables the user to
do this by allowing the chaTacter ~$' to replace the filename in the
destination file specification. In the above example, had the user
wished to save the file FARKLE. TEXT on BACKUP under the name
FARKLE.TEXT, she could have typed:

MYDISK:FARKLE.TEXT,BACKUP:$

WARNING: Pl~ase try to avoid typing the second file specification
with the filename completely omitted! For example, a response to the
Transfer prompt of the form:

MYDISK:FARKLE.TEXT,BACKUP:

generates the message:

Possibly destroy directory of BACKUP: ?

iV' answer causes the directory of BACKUP to be wiped out!

Files may be transferred to volumes that are not block structured,
such as CONSOLE: and PRINTER:, by specifying the appropriate volume
ID (see Figure 1) in the destination file specification. A file
name on a non- block-structured device is ignored. It is generally
a good idea to make certain that the destination volumeis on-line.

age 22

EXAMPLE:

Prompt: Transfer what file?

User Response: FARKLE.TEXT

Prnmp t: To whe.re?

User Response: PRINTER:

causes FARKLE.TEXT to be written to the printer.

The user may also transfer from non-block-$tructur~d devices,
providing they aT~ input devices. Filenames accompanying a non
block-structured device 10 are ignored.

The wildcard capability is allowed for TCransfer. If the source
file specification contains a wildcard character, and the
desti"ation file specification involves a block-structured device.
then the destination file specification must also contain a wildcard
character. The subset-specifying strings in the SOUTce file
sp~cification will be replaced by the analogous strings in the
destination file specification (henc.fD~ward known as replacement
strings). Any of the sub~et-5pecifying or r~placement st~ings may
be empty. Remember that the Filer tonside~s the file specification
!=' t~ speci~y ev~ry file on the volume.

Giv~n th~ vo]um~ MYDISK containing the files PAUCTTYJ PARITY and
PENALTY, and the destination ODDNAMZ:

User Re~PDnse: P=TY,QDDNAMZ'V=S

would cause the Filer to ~eply:

i1VDISV ... : PAUC I TY
MYDISK:PARITY
r1YDISK: PENALTY

transferred to ODDNAMZ:VAUCIS
transferred to ODDNAMZ:VARIS
t~an$ferred to QDDNAMZ:VENALS

Using '=' as the source filename sp~cification will cause the Filer
to attempt to transfer eye~y file on the disk. This will probably
ove~flow th~ output buffer. (The~e are easier ways to transfer
whole disks. If you wish to do this, please refer to the material
in this section on volume- to- volume transFers.)

Page 23

Using '=' as the destination filename specification will have the
effect of replacing the subset-specifying strings in the source
specification with nothing. A brief reminder: '?' may be used in
pla.ce of '='. The only difference i.s that '?' causes the user to be
asked for verification before the operation is performed.

A file can be transferred from a volume to the same volume by
specifying the same volume ID for both source and destination file
specifications. This is frequently useful when the user wishes to
relocate a file on the disk. Specifying the number of blocks
desiT't:d will cause the Filer to copy the file in the first-ou

area of at least that size. If no size specification is
given, the file is written in the largest unused area.

If the user specifies the same filename TO~ both source and
destination on a same-disk transfer, then the Filer rewrites the
file to the Size-specified areal and removes the older copy,

EXAMPLE:

Prompt: Transfer what file?

User Response: #4: GUIZZES. TEXTI #4: GUIZZES. TEXT[20J

causes the Filer to rewrite QUIZZES. TEXT in the first 20-block
area encountered (counting up from block 0) and to remove the
previous version of GUIZZES.TEXT.

WARNING: Wildcard-type specifications do not always work very well
on same-disk transfers. The results tend to be unpredictable, so
the$e operations are not recommended.

It is also possible to do entire volume-to-volume t~ansfers. The
file specifications for both source and destination should consist
of volume ID only. Transferring a block~structured volume to
another block- structured volume causes the destination volume to be
'wiped out' 50 that it becomes an exact copy of the source volume.

Assume that the user desires an extra copy of the disk MYDISK: and
is willing to sacrifice disk EXTRA:

EXANPLE:

Prompt: Transfer what file?

User Response: MYDISK:fEXTRA:

Prompt: Possibly destroy directory of EXTRA: ?

Page 24

WARNING: The~e's no 'possibly' abDut this! If the user types
'V', the directory of EXTRA: !!till. be destT't)l.jed! An 'N'
response will ~eturn the use~ to the outer level of the Filer,
and a 'V' will cause EXTRA to become an exact copy of MYDISK.
Often this is desi~able f.or backup purpo~es, since it is
relatively easy to copy a disk this way, and the volume name
can be changed (see C(hng) iT desired.

Although it is certainly possible to t~ansfer a volume (disk) to
another using a single disk-drive, it is a fairly tedious process,
sine e the i n'~c or'e t,~an$ fer read s up th e i nfol' mat i on in rath er sma 11
chunks, and a g~eat deal of disk Juggling i~ necessary fo~ the
complete transfer to take place.

12) O(ate

Lists current system date, and enables the user to change the date.

PT'omp t: Date Set: <1 .. 31>-<JAN .. DEC>-<OO .. 99> OR <CR)
TndalJ is 19"'Aug,,'78
N~UJ date?

Th~ user may enter the correct date in the format given. After
typing <ret::'>6 the new date will be displayed. Typing only a return
does not affect the current date. The hyphens are delimiters for
the day, month and year -rl.eldsJ and it is possible to affect only
one or tWtl of th~se fields. FoT' example, the year could be changed
by typing "--79',1 the month by typing '-Sep I, etc. The entire month-
name can be entered, but will be truncated by the Filer. Slash
(//') is alsD acceptable as a delimiter. The most common input will
be a slngle number, which will be interpreted as a new day, For
example, if yesterday was the 19th of August, the user would want to
type D20<ret>, which would have the desired effect of changing the
date tC.i the 20t;h of :'\U9t.'~~t. The d~Hj'~"month-'ye:·ar' o'rder is inviolate,
h oweve t"

This date will be associated with any files saved during the current
session and will be the date displayed POT those 9iles when the
directory is listed.

13) P(refix

C han 9 ~\;' the C i r 1- e n t~ d e 'r. a u 1 t tot h e vol u me s pee i fie d .

This command reqldT'es the 'Jser ·to type a volume ID. An entire .file
specification may b~ entered, but only the volume ID will be used.
It is not necessary for the specified volume to be on-line.

Page 25

To determine the current defatilt y61um~1 the user may Tespond to the
prompt wi th f.'

14) BCad blocks

Scans the disk and detects bad blocks.

This command requires the user to type a volume ID.
volume must be on-line.

The specified

Prompt: Bad blocks scan of what vol?

Response: <volume ID>

Checks each block on the indicated volume for errors and lists
the number of each bad block. Bad blocks can often be fixed or
marked (see eX(amine).

15) eX{amine

Attempts to physically recover suspected bad blocks.

This command requires the user to type a volume I~· The volume must
be on- line,

:::XAMPLE:

Prompt Examine blocks on what volume?

Response : <volume ID> generates the

Prompt: Block number-range?

The user should have Just dane a bad block scan, and should
enter the block number(s) returned by the bad block scan. If
any files are endangered; the fallowing prompt should appear:

Prompt: File(s) endanger'ad:
<filename:>
T-ry to fix th em'?

Response: #Y' will cause the FILER to examine the blocks and
return either of the messages:

Block <block-number> may be ok

in which ~ase the bad block has probably been ~ixed, or

Block <block-number> is bad

in which case the FILER will offer the user the option of
marking the block(s) BAD. Blocks which are marked BAD will
not be shifted during a K(runch, an~ will be rendered
ef~ectively harmless.

An 'N' response to the 'fix them?' prompt returns the user to
the outer level of the FILER.

WARNING: A block which is 'fix~d' may contain garbage. 'May be
ok' should be translated as 'is probably physically ok'.
Fixing a block means that the block is read. is written back
out to the block and i~~read again. If the two reads are the
same! the message i~; 'may be 0;'; i. In th@event that the i'e"ads
are different} the block is declared bad and may be marked as
~uch if so desired.

16) K(T'unch

Moves the files on the specified volume 50 that unused blocks are
combined at the 'end' of the disk.

This command r.quiT~5 the U$&T to type a volume 10. The specified
volume mU5t be on-line. It is strongly recommended that the user
perform a bad block scan of the vo10me before K(Tunching in order to
avoid writing filps over bad areas of the disk. If bad blocks are
encountered, the~ must be ~ithe~ fi~ed or marked before the K(runch
(see ~X(,3mirH:),

As each file is moved, its name 15 reported to the console. If
SYSTEM. PASCAL is mcved, the system must be reinitialized by
b t' 0 t s t T c\ P P 1 ri 9 . Don 0 t t 0 U c: h t h t~ diE k r the h [\ Q t -.. S tlI i t c h 0 r the dis k -
drive door until KCrunch tells you It has completed its task.

EXAMPLE;

Prompt Crunch what vol?

Response : <volume ID>

causes Filer to prompt with:

Prompt : Are you sure you want to crunch <volume ID>?

Page 27

Response: 'V' initiates the K(runch. Typing an 'N' will return
the uSer to the outer level oT the FILER.

17) M(ake

Creates a directory entry with the BpecifiedPilename.

This command requires the user to type a file specification.
Wildcard characters are not allowed. The file size specification
option is extremely helpful, since, if it is omitted, the Filer
creates the specified file by consuming the largest unused a~ea of
the di~k. The Pile size is determined by following the filename
with the desired number of blocks, enclosed in square brackets

.I r. / an d J' J ; , Some special cases are:

[0] e~uiyalent to omitting the size specification.
created in the largest unused ar~a.

The file is

[*l - the file is created In the second largest area, or half the
largest area, whichever is larger.

EXAMPLE:

Prompt Make what file?

Response : MYDrSK:FAR~LE. TEXT[28J

Creates the file FARKLE.l"EXT on the volume MVDISK: in the first
unused 28-block area encountered.

18) Z(ero

Reformats the specified volume.
i rretr ievab 1 e.

The previDus director~ is rendered

:::XAMPLE:

Prompt: Zero dir af what vol?

Response: <volume ID)

Prompt- Destroy <volume name~ ?

Response: A 'V' response generates

~ag e 28

Prompt: Duplicate dir ?

Response: If a 'Y' is typed, then a duplicate directory will be
maintained. This is advisable because, in the event that the
disk directory is destroyed, a utility program called COPYDUPDIR
can use the duplicate directory to restore the disk.

Prompt: <current number of blocks on disk> blocks?

Response: 'N' generates

Prompt: # of blocks?

Response: User will type number of blocks desired
(usually the maximum permitted for the system's disk
recording density, 170 for single-density, 340 for
double-density, and 690 for quad-capacity). Filer
proceeds with sequence below.

'Y' senerates

Prompt: New vol name ?

Response: User types any valid volume name.

Prompt: <new volume name> correct?

Response: 'Y' causes the Filer to respond with the message:

<new volume name> zeroed

Page 29

-t-l~s. -.

age 30

************************** ***~*************
* SCREEN ORIENTED EDITOR * * Section 1.3.1 *
************************** *****************

VeT'sion L 5 September 1978

This introduction, which describes the idea behind the Editor.
is the first of four sections. The second section is a tutorial for
the novice" While the Editor is designed to handle any files. the
tutorial section uses a sample program to demonstrate how to use the
most basic commands to madi'y a file. The third section contains a
detailed description of each commdnd. with examples, and the fourth is
for tuick reference.

THE CONCEPT OF A 'WINDOW' INTO THE FILE

The Screen Oriented Editor is specifically designed for use
wit h Vi d ~ 0 Dis p 1 a y T e T min a 1 s. On en t e l' i n 9 any f i 1 e i the Ed ito r
displays the start Or the file in the upper left hand corner of the
SCTe~n. If the file is too long for the screen, only the first portion
is displayed. This is the concept of a 'window'. The whole file is
there and is accessible by Editor commands, but only a portion of it
can be seen through the 'window' of the sc~een. When any Editor
command takes the user to a position in the file which is not
displayed, the uwindow" is updated to show that portion oT the file

THE CONCEPT OF A CURSOR

The cursor represents the exact posl~lon in the file and can be
used to move to any position. The window shows that portion of the
file near the cursor. To see another portion of the filel move the
cursor. Action always takes place at the cursor. Some of the commands
permit additipns; c:hange~ O'f' deletions of such length that the screen
cannot hold the whole portion of the text that has been changed. In
those cases, the portion of the screen whe~e the cursor stopped is
displayed. In no case is it necessary for the user to operate on
portions of the text not seen on the screen, but in some cases it is
cIj:d; i ana 1.

THE CONCEPl OF A PROMPT LINE

The Editor displays a prompt line as the top line of the screen
in order to remind the user of the current mode and the options
available for that mode. Only the most commonly used options appear on
the prompt line as the following display shows:

:>E d .i t ;A (d JUS t" C { P Y D (1 e t e F (i n ct ! (Tn; r t J { fi'I P i~ P 1 ate G { iJ i t X (c h n 9 Z (a p [E. 6 -

NOTATION

The notation used in this ~ection corresponds to the notation
used to prompt the user in the editor. Any input that is enclosed
between a < and> is requEsting that a particular key be used, not that
the partitule:.7' ; ..)01"'0 be tl~ped out. FOT" ~xample .. (RET)- means that the
return key should tYPBO at that point. When a particular sequence of
key strokes is required they will be contained within quotes. For
examplEh ·'FILENAME": <RET:> refei-s to the typed sequence uFILENAtvIE"
foll{)w~d by t;~~ing th0retu':rn l{elj, Lower C.i' upper' case may be used
when typing Editor commands.

******************* ***************** * GETTING STARTED * * Section 1.3.2 *
******************* *****************

ENTERING THE WORKFILE AND GETTING A PROGRAM.

On entering the Editor

No workfile is pre~ent. File? <ret> for no file) appears,

There are two ways to answer this question

1) Wi th a name, -POl" examp Ie "STRINGl '(T'et~>~', The of i Ie named
STRING1 will now be retrieved. The file STRING! could contain a
program, also called STRING1, as in Fig. 2. 1. A~ter typing the name, a
copy of the text of the 'irst part of the file appears on the SCTeen.
Figure 2.1

PROGRAM STRING! ,;
BEGIN

WR I TE (~ TOO t~ r SE ') i

WR I TE (;' YOU ARE') i
WR I TELN (I 1 ') i

WRITELN('TOO WISE');
WRITELN('YOU BE')

END.

2) With a (rEturn'. This implies thclt a new file is to be
started. The only thing visible on the sc~een after doing this is the
editor prumpt line. A new workfile is opened and currently has nothing
in it. Type teI" to begin inserting a program or tE"Kt.

exists.
cleared,
Fi ler.

Workfiles: No questions are asked if a workfile already
The work~il~ is displayed and can be modified or can be
in order to start a file, by using the N)ew command in the

Page 32

MOVING THE CURSOR

In order -to edit, it is necessary to move the cursor. On the
keyboard are four keys with arrows, (which may look like triangles)1
which move the cursor. The <up-arrow> moves the cursor up one line, the
<right-arrow~ moves the cursor right one space and so forth.

The cursor does not like to be outside of the text of the
pT'o9T"am. Fo'r example, a-Pter the "N" in "BEGIN" in Fig. 2.2 , push
the <right-arrow:> and the cursor moves to the "W"in "WRITE".
SimilaT'ly at the "W" in "WRITE("TOO WISE').i It, use '(left-arrow)- to move
to after the liN" in IIBEGIN",

Figure 2.2

BEGIN_
WRITE('TOO WISE ');

BEGIN
wRITE('TOO WISE ')j

If it is necessary to change the "WRITE('TOO WISE ')i" -Pound in
the th i l"d 1 ine to a .lWRITE ('TOO SMART I) i u, the cursor must oF i rst be
moved to the right spot.

For example: if the CUT'SOT' is at the "P" in "PROGRAM STRING1; ",
go dawn two lines by pressing the down arrow 2 times. To ma~k the
positions the cursor l.Jccupiesl labels aJ b, C a~e used in Fig. 2.3. "au
is the initial position of the curso'f'; "btl is where the cursor is after
the first <down-arrow>; "c u

, after the second <down-arT'ow>.

Figure 2.3

aROGRAM STRINGl
bEGIN
c WRITE('TOO WISE ');

Now, using the right aT~OWI move until the cursor sits on the
"Wit of ItWISE". Note that with the use of <down-arT'ow> the cursor
a p pea r s to be;) u t sid e the t E' X t . Act u it 11 Y i 't iSiS t the ft W If i n II WR I T E" ,
so do not be surprised when on typing the first <left-arrow> the cursor
j U in pst 0 -f; h e 'J R II i n II WR I TE If •

USING INSERT

The Edit level prompt line shows that to I(nsrt (insert) an
item, type !tIlt. The CUi"sor must be in the cOT'rect position befor'e
typing "Iii. EaT'lieT'1 the Cl.1T'SOT' was rlH'J'-.ted to the "W" in IITOO WISE";
nOWI on t4ping III H

, ;Hl in;!i.i::l·tion will be made before the "Wil. The rest
of the line from the point of insertion will be moved to the right hand
side of the screen. In the event that the insertion is lengthy, that

Page 33

part of the line will be moved down to allow raomon the screen. Afte~

t y pin 9 "I u the of" 1 1 0 win 9 p 1" 0 mp t 1 i n e s h \'J U 1 d ap pea ron the 5 C l' e en:

If that prompt line did not appear at the top Qf the screen it
is NOT insert mode and a wrong key may have been typed.

If the cursor is at the uWII, and on typing "IH the insert
prompt line appes'f.'e~:L HSMART" ma\J be in~ert~d by typing those five
letters. They will appear on the sc~een ag th~yaT'e typed.

There remains one more important step. Th~ choice at the end
of the prompt line indicates that pW$h1ng the <etx> key accepts the
insertion, while pushing the <esc> key rejects the insertion and the
text remains as it ~as bef.orE' typir:g '11"

BEGIN WRITE('TOO SMART WISE ');

Figure 2.5 (Screen after ~etx»

BEGIN
WRITE('TOO SMARTWISE ');

Figure 2.6 (Screen after <esc»

BEGIN
WR I TE (I TOO WISE .' i;

tYPIng <retuTn~ while in the INSERT mode and causes the Edito~ to start
a r1£l'tAl line.

USING DELETE

The DELETE mode works lIke the INSERT mode. Having inserted
the 'SMART' into the STRING1 progr~m and having pushed <etx>, 'WISE'
must be deleted- Move the cursor to the first of the items to delete
and type flD" to put the Edi tOi' into DELETE mode The f'ollolding prompt
line should appear:

:> Del e t e . (") ·!:...M c- ''; 1 n 9 {~Q ;n fll a rid s> {< e t x > t 0 del €I te, -(esc). t 0 abo 1" t }

Each time <space> is typed a letter disappears. In this
example typing 4 spaces will cause IIWISE'! to disappear. Now the same
choice must be made as in insert. Type <etx> and the proposed deletion
is made or type <esc> and the proposed deletion reappears and remains
part of the text.

Paae 34

It isl.gal to delete a carriage return. At the end of the
line, enter DELETE made, and <space> until the cursor moves to the
beginning of the next line.

These are sufficient commands to edit any file desired. The
next section describes many more commands in the Editor which make
editing easier.

LEAVING THE EDITOR AND UPDATING THE WORi-\FILE

When all the changes and additions have been made, exit the
Editor .and "'save" a copy of the modified program. This is done by
typing "G" w~ic.h will cause the pTcmpting displa'J shown in Fig. 2.7.

Figure 2.7

)Quit:
U(pdate the work file and leave
E<xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

The most elementary way to save a copy of the modified file on
disk is to type "U" foT' U(pdate which causes the UJo-rkfile to be saved
as SYSTEt1. WRK, TEXT. t~i th th~ u.!i.:~rkf i 1 e thus ~aved, it is p05sib l'e to
use the R(un con~andJ provided of course the Pile is a program. It is
also possible to use the S(ave option in the Filer to save the modified
file in the library before using the Editor to modify or create another
.pile.

1"-'1. see 1 1 ~ fHH'l usc 0 mma n d $ ~ i nth e n ext $- e c t ion, e x pIa ins in
g~eateT' detail the options available at >Guit.

Page 35

************************************ *****************
* DETAILED DESCRIPTION OF COMMANDS * * Section 1.3.3 *
************************************ *****************

COMMAND AND MODE

I~; t t h i" E ct i t 1 ~ \I ~ J t h t? T' t? i-H' 0 ihH' q I) P tic 1'1 $ • ';;\ 0 m e 0 .p "'J 11 i chat r e
referred to as commands and some as modes depending upen the appearance
of 'the prompt. I-f an option executes d task and returns control to ·the
Edit level. that option is called a cnmml~nd. If! an optinn issues a
prompt and gives the user another level of options, it is called a
mod e . On en t e r i n 9 0 l' T' e t urn t n 9 t () thE? F d i t 1 ~ \/ E' 1 t the E ~ i t (') T' 1"' e dis P 1 ill Y s
the "Edit: I, prompt line.

REPEAT··FACTORS

Many of the commands allOW Tepeat-facto~s_ A repeat-factor is
applied to a command by typing a number immediately before issuing the
command which is then repeated for the number of times indicated by the
T'epeat--t~act;or. FoT' eiiample: tlJping l!2 <down-arrow~,'!; wi,11 cause the
<down-arrow> commma~d to he executed twice, moving the curSDr dawn two
lines Commands which allow a repeat-factor assume the repeat-factor
to be 1 if no numb~r is typed bef~re the comm5nd. A 'I' typed before
the command implies an infinite number.

THE CIJRSOR

It $hould be point:ed out that th~ cursor is never really :lata a
character. The cursor is only allowed to be Hbetween" characters. For
inst,,3nce, :lof th,.~ curSDr' looks 2.50 tho'-,gh it j.,:, ,3t the letter "R", l.t is
act1Jally between the letter "R" and t:hf~ Jettf"'"'' in fT'ont of it. This is
notic~d most clea~ly cn the inse~t cnrnmanrl as it in~erts in front of
the c h a rae t e r the c ~rr ~ 0 r ~\J a s I, _s t " . Qnt.: h £ S C '["' e e t1 the c U'1" SOT' i s pIa c e d
Hat tl IIR" to make it e-asie~ to display

DIRECTION

C e i' t a inc. a mm ~ n G;:; a l' e a f' fee ted t,. !.j d i :" e ;;.: t i I::' ("f , 1 f t h {Z' d i 1"" 0' C t ion i s
of! 0 T W 2. r d I f: h \~ r"! they 0 (.,-:, !:" t ? f:: f' ~i' '0 r d t ~"; ':'; '.' 9 h. + ~; I~) -f j 1 e . t h ;:3, t h ei. 1"'l 9 ~:. Ii eo

thE- reverse
Epec i t~.icall'J

s tan d aT' :j d ire c t; i I) n 0 f ~ -~ d d 1 n 9 Eng 1 i :5 fL L ;;i ':: h 1.:J d f' d sis
direction. When direct.1on ,aft'!ects the command it is
noted.

MOVING COMMANDS

'(d own-aT' 'f' Ot,:.I)

<up--aT"r ow>
<T'ight-ai'"row>
-(1 e.p t--arr ow:>
.... c: H or " I U or ~:r_'f

:').11 or !I. 11 or tI+"
<space:>
<back-space>
<1:ab>

<,..eturn)-

Page 36

!'1oves down
Mov'es LIp
l'1oves right
Moves left
Changes the di~Ection to backward
Changes the di~ection to forward
Moves diT'Ection
Moves l~'ft

Moves di~ection to the next position which is a multiple
of 8 spaces from the left side of the screen

Moves to the beginning of the next line

I n e a l' r f) W ~ l..J I ".~. •• "' _. - •• - r - - -- . .- - -

indicates dir·ection; H<" foT' backward and ")" TO~ forward. On entering
the Editor, the direction is forward. The direction can be changed
by typing the appropriate comm~nd whenever the itEdit: II prompt line],s
pre~ent, The period and the comma can also be u~~d because on many
standard key b o~rd S I ;:. II is 1 O'.i.H~T'-·case for II) II and U I II i 5 the 1 Qwer-
case for iI-(lf.

Repeat-factors can be used with any of the above commands.

For user convenience, the Editor maintains the column position
of the cursor when USiTtg <up-arrow> and <down-arrow>. When the CU~SoT'
is outside the text, the Editor treats the CU~SOT' as though it were
i mme d i a t i? 1.J aft e T' t ~ 0 1 i;,} s t c ha l' act e r t '0 r b e for e the of iT'S t) i nth eli n e .

JU!"IP mode< is T'l:acho?tl by typing " .. j'i foT' ,J(mp while at the Edit
an ent~rLng J0MP mode tne following prompt line appears:

>JUMP B(eginning ECnd M(arke~ <esc>

T 'J P i 1"'9 " B " (o r /, E Ji) m (: \.' f!' S the C!.J 'j' So 07' t; 0 the beg j, in! 1 n 9 (o T' the
end) of the fi!e, di;pla~s the edit prompt line and the first (or last)
p a 9 fi' 0 f thE': f i. 1 & . T y pin 9 It i"'~ :a (:,~ i) ~ est h e Ed i t (I T~ to dis pIa y the p or 0 m p t
1 i ne'

The name of the marker must be entered followed by a <return>.
The Editor will then move the cursor to the place in the file with that
n~me~ Ir the i!H~l"k~n' is not irithe ftl>? the Editor will display:

ERROR: Marker not ·there. Please press <space bar> to continue.

rhe instructlofiS fo\' %etting ~ ln~.;)\'keT· are detailed in SET under
Mierell~neous command~

PAGE

Pt1tGE cDmmand IS ex-s![ui:ed by 'typing "P" while at the Edit
le~el. Depending on the direction of the arrow at the beginning of the
prompt line, PAGE com~and moves the curSD~ one whole 5creenful up or
dewn, The CUTsor alw~ys moves to the 3t~rt of the line. A <~epeat
fact.or) maij be us~d berore this comm~nd ·Fc.r moving several pages.

eQUALS CCm\l~B·:~,J li ~i:::CL,-,tt:'d b;,. t,ypiny "::.;~" while at the Edit
level. It causes the cursor to Jump to the beginning of the last
s~ction of te~t which was inserted, found or replaced from anywhere in
the file. Equals wo~ks f~om 3n~where in the file and is not direction
sensitive. An INSERT. FINO or REPLACE cause the absolute position of
the beginning of the insBrtion. find or replacement to be saved.
TI,Jping "::::" c~uses the Cl!i'sor to Jump to that position. If a copy OT' a
deletion has been mad~ between the beginning of the file and that
absolute position, th~ cursor will not Jump to the sta~t of the
insertion as that absolute position will no longer be correct.

Page 37

TEXT CHANGING COMMANDS

INSERT

INSERT mode is reached by typing "I" .par "I(ns t ll while at the
Edit level. On entering INSERT mode the following prompt line appears:

Jlnsert: Text «bs> a charJ<del) a line} r<etx> acceptsl <esc> escapes]

One of the options here is to type in text followed by <esc) or
<etK>. It is possible to delete a character without leaving the INSERT
mode by back-spacing over it. To delete the entire line Just typed,
type <del:>. The INSERT prompt line indtcates th~se by "<bs> a char"
and u a line",

Typing <return> INSERT starts a new line at the levQl of
indentation specified by the options turned on in Environment section
of the SET mode. S~e the section on the SET mode in order to set these
options.

AUTa·~, INDENT

If Auto-indent is True. a <r~turn> causes the cursor to start
the next line with an indentation equal to the indentation of the line
above. If Auto-indent is False, a <retu~n> returns the cursor to the
first position in the nelCt line. Note: i~ Filling is True, the first
po~ition is the Left-margin.

FILLING

If Fil1i~g is True. the Editor fo~res all inse~tiDns to be
between the right and leFt margins by automatically inserting
<retur'n:>'s between fiwOT'ds ti whenever 'the T'ight maT'gin would have been
exceeded and by indenting to the Left-margin whenever a new line is
started. The Editor considers anything between two spaces or between a
space and a hyphen to be a word.

If both Auto-indent and Filling are True, Auto-indent controls
the Left-margin while Filling controls the Right-ma~gin. The level of
indentation may be changed by using the <space> and <backspace> ke~s
immediately after a <~eturn>. Important: This can only be done
immediately after a <return>.

Exa~ple 1: With Auto-indent true, the following sequence
c"peate $ th e i nd en tat i on sh own in Fig ure 3. 1.

"ONE U
; (return)', <spac e)-, <spac e>i "TWO",

'(T" e turn)'; ,I THREE jJ, <T'etUT'n::>, <bac k spar:: e:""~1 "FOUR"

Figure 3. 1

ONE
TWO
THREE

FOUR

Original indentation
Indentation changed by <spate> <space>
<~eturn) causes auto-indentation to level of line above
<backspace> changes indentation from level of line above

Example 2: With Filling T~ue (and Auto-indent False> the
following sequence creates the indentation shown in Figure 3.2:

"ONCE UPON A TIME THERE- WERE".

(Very n.rrow m.rgins have been used for simplicity.)

Figure 3.2

----_._--~-
ONCE UPON A
T It'1E THERE
WERE

Auto-returned when next word would exceed margin
Auto-returned at hyphen

Level of left margin

Filling also causes the Editor to adjust the margins on the
portion of the paragraph following the insertion. Any line beginning
with the Command character (see SET mode) is not touched when filling
does this adjustment and that line is considered to terminate the
paragraph.

The direction does not affect the INSERT mode, but is indicated
by the direction of the arrow on the prompt line.

If an insertion is made and accepted, that insertion is
available for use in the COpy mode. However, if <esc:> is used, there
is no string available for COPY.

DELETE

DELETE mode is reached b~ typing nOli for "D(lete ll while at tht!
Edit level. On entering DELETE mode the following prompt line appears:

>Delete: < > <Moving commands> «etx) to delete, ,<esc> to abort}

In order to delete, the cursor must be in position at the first
character to be deleted. On typing "0" and entering DELETE, the
Editor remembers where the cursor is. That position is called the
anchor. As the cursor is moved from the anchor position using the
normal moving commands. text in its path will disappear. To accept
the deletionl type <etx:>i to escape/ type <esc>.

When <etx> is typedl the Editor saves everything which was
del e ted for COP Y t 0 use; but i f <: e 5 c:> i sty p e d I the cop y b u f fer i s
emp ty.

Example:

In Figure 3.3:
1) Move the cursor to the liEn in END.
2) T y p e \I <: n (T his c han 9 est h e d ire c t ion t 0 b a c k wa r d)
3) Type 110" to enter DELETE mode.
4) Type <ret> <ret>. After the fir~t return the cursor moves to

before the "W" in l..JRITELN and "WRITELN('TO BE. ') i ltd isappears. After
the second return the cursor is before the "W" in WRITE and that
line has di5appeared.

5) Now press <etx>. The program a~ter deletion appears as is shown in
Figure 3.4.

Page 39

The two deleted lines have been stored in the copy buffer and
the cursor has returned to the anchor position. Now use the COPY
routine to copy the two d~leted lines at any place to which the cursor
is moved.

Figure 3.3

PROGRAM STR ING2i
DEGIN

WRITE('TOO WISE ')i

WRITELN('TO BE. ')
END.

Figure 3.4

PROGRAM STRING2:
BEGIN
END.

The <repeat-factor> may also be used to delete several lines as
once by prefacing a <return> or any other of the moving commands with a
<repeat-factor> while in delete mode.

ZAP

The ZAP command is executed by typing HZ" for Z(ap while at the
Edit level. This command deletes all text between the start of what
was previously found, replaced or inserted and the current position of
the cursor. This command is designed to be used immediately after one
of the FIND, REPLACE or INSERT commands. If more than 80 characters
are being zapped the editor will ask for verification.

Repeat-factors and Zap: If a FIND or a REPLACE is made with a
repeat f~ctor and then ZAP, only the last find or replacement will be
zapped. All others will be left as found or replaced.

Whatever was deleted by using the ZAP command is available for
use with the COpy command.

COpy

The COpy c:ommand is executed by typing "e" for C(py while at
the Edit level.

On entering the Copy mode the following prompt line is
displayed:

>COPY: B(uffer F(ile <esc>

To copy text from another file, type "F" and another prompt
will appear:

Page 40

>COPY: FROM WHAT FILE[MARKERIMARKERJ?

Any file may now be specified, . text is assumed. In order to copy part
of a file, two markers can be set to bracket the desired text. If
[I marker] or [marker,] is used, the fi Ie wi 11 be cop ied from the
start to the marker or from the marker to the end. On completion of
the copy command (from file), the cursor returns to the beginning of the
text Just copied from the file. Use of the copy command does not
change the contents of the file being copied 'rom.

To copy the text in the copy buf-Fer, type,uB" and the Editor
immediately copies the contents of the copy buffer into the file at the
location of the cursor when ftC" was typed. 0" the completion of the
copy command the cursor returns to immediately before the text which
was copied. Use of the copy command does not change the contents of
the copy buffer.

The copy buffer is affected by the following commands:

l)DELETE: On accepting a deletion, the buffer is loaded with
the deletion; on escaping from a deletion the buffer is loaded with
what would have been deleted.

2) INSERT: On accepting an insertion the buffer is loaded with
the insertion; on escaping from an insertion the copy buffer is empty.

3)ZAP: If the ZAP command is used the buffer is loaded with
the deletion.

The copy buffer is of limited size. Whenever the deletion is greater
than the buffer available, the Editor will issue a warning upon typing
<etx> with the line:

There is no room to copy the deletion. Do you wish to delete anyway? (yIn)

EXCHANGE

EXCHANGE mode is reached by typing "X" while at the Edit lev.l.
On entering EXCHANGE mode the following prompt line appears:

>eXchange: TEXT «bs> a char} [<esc> escapes; <etx> acceptsJ

EXCHANGE mode replaces one character in the file for each
character of text typed. For example in the file in Figure 3.5 with
the cursor at the "Wit in WISE, typing "X" , followed by typing "SM·'
will replace the "W" with the "S" and then the "I" with the "Mil le4ilving
the line as shown in Figure 3.6 with the curSOr before the second US".

Figure 3. 5 Figure 3.6

WRITE('TOO WISE '); WRITE('TOO SMSE ');

Typing a <back-space> <<:bs» will back the cursor one character
and cause the original character in that position to reappear. As with
most oth~r commands, when in EXCHANGE mode, <esc> leaves the mode
without making any of the changes indicated since entering the mode,
while <etx> makes the changes part of the file.

~ 0 t e : E " c h fa n qed n e s not all 0 t11 "J2J!l?_ i n 9 . pac; t the end 0 f the lin e
01' typing in a carrlage return.

FIND AN.D REPLACE

In both modes the use of a <repeat-factor) is valid and must be
typed before typing "Fit or "RH. The '(repeat-factor) appears in
brackets on the prompt line.

Strings: Both modes operate on delimited strings. The Editor
has two string storage variables. One, called <targ> by the prompt
lines, is the target string and is refer~ed to by both command~ while
the other, called <sub> by the p~ompt line, is the substitute and is
used only by REPLACE. ThePollohling rules apply to both these strings.

Delimiters: Both delimiters Qf the string will be the same.
For exampl~: Wher in RrPLACE mcd@ th? following command is valid and
will replace the fi1"st occurrence of th~ churacter "[II with the
character "]": 11«<)])". Here II·C It and It)" are the delimiters,

The Editor considers any character which is nnt a
letter or a number to be a delimiter. <space> is a particularly common
del imi tel'.

Direction~ Both modes operate from the position of the cursor
to scan the text in the direction indicted by the arrow on the prompt
line. The target pattern can only b~ found iT it appears in that
section of the text. See the section on direction on order to change
the arrow

Literal and Token mode: In Literal mode, the Editor will look
for any occurrences of the target string. If you are in Token mode the
Editor will look for isolated occurrences of the target string. The
Editor considers a string isolated if it is surrounded by any
combination of delimiters. FoT' examplel in the sentencf' "Put the beok
in the bookcasp.. "; u5ir~g the target st;1"ing "bock!!, literal mode will
find two occurrences of "book" while token mode will find only one} the
word "book" isolated by the delimiters <space)- <space>.

To use token mode, type "Til after the prompt line and before
the target string; to use literal model type "L". The de~ault value
found in the Environment may be over-ridden by typing ilL" or liT" as
appropriate. Token mode ignores spaces within strings so that both
"(',')" and "(', ')" are considered to be the same string.

Paae 42

The Same op tion: In both commands typ ing "S" ind icates to the
Editor that it is to use the same string as used previously. For
example, typing "RS/<any-string>l" causes the REPLACE ·mode to use- the
previous target string, while typing "R/<any-string>/S" causes the
previous substitute string to b~ used.

FIND

FIND mbde is reached by typing "F" while at the Edit level. On
entering Find mode one of the prompt lines in Figure 3.7 appears.

Figure 3.7

>Find[ll: L(tt <target/ =>

>FindC1J: Teak <target) =>

The FIND mode find~ the n-th occurrence of the <target> string
starting with the current position and moving in the direction shown by
thearT'ow at the beginning of the prompt line. The number "nil is the
<repeat-factor> and is shown on the prompt line in the brackets He]".

Example 1: In the STRINGl program with the cursor at the first
"P" in PROGRAM STRINGl type "F". When the prompt appears type
II 'WRITE"'. The single tl,uote mal'ks MUST be typed. The prompt line
should now appear as:

)Find(ll: L)it <target> =~'WRITE!

After typing the last quote mark the cursor Jumps to immediately after
the "E f! in the fir 5 t WR I TE.

Example 2: In the STRING1 program with the cursor at the "E" of
fiEND. II type: u-(" "3" "FIf. This will find the 3rd ("3 11

) pattern in the
reverse ("<") direction. When the prompt 1 ine appears type IWRITELN/.
The prompt line should read:

-(Find[31: L)it <target> =>/WRITELNI

The cursor will move to immediately after the liN" in WRITELN.

Figure 3.8

PROGRAM STRINGli
BEGIN

WRITE('TOO WISE ')i

WR I TE (, YOU ARE');
WR I TELN (" ');
WRITELN('TOO WISE ')i
WR ITELN('YOU BE. ')

END.

(*CURSOR FINISHES IN THIS LINE*)

<*CURSOR STARTS IN THIS LINE*)

Example 3: On the first find we type flF/WRITE/". This locates
the first "WRITE". Natal typing "FS" will make the prompt line flash:

~Findr1l: L)it <target> =~S

and the cursor will appear at the second WRITE.

REPLACE

REPLACE mode is reached by typing URn while at the Edit level.
On entering REPLACE mode one of the twa prompt lines in Figure 3.9
appears. In this example, a <repeat-factor:> of four is assumed.

Figure 3.9

>Replace[4J: L(it V(fy <targ> <sub> =)

>Replace[4J: T(ok V(fy <targ) <sub> =)

Example 1: Type "RL/GX//YZ/" which make the prompt line appear as:

>Replace[lJ: L)it V)fy <targ> <sub> =>L/GXI/YZ/

This command will change: "VAR SIZEOX: INTEGER; It to "VAR
SIZEYZ: INTEGER; ". Literal mode is necessary because the string OX is
not a token but is part of the token SIZEOX.

Example 2: In Taken made REPLACE ignores spaces between token~
when looking for patterns to replace. For example, using the lines on
the left hand side of Figure 3.10 and typing: "2RT/(',')/. LN ... Th.
prompt line should appear as:

>Replace: L)it V)fy <targ> <sub> =>/(', ')/. LN.

Immediately after the last period was typed those two lines
would change to those on the right hand side.

WR I TE (I: J);

WR I TE (! I ~.);

WRITELN;
WRITELNi

V)fy: The verify option permits examination of the <targ>
string (up to the limit set by the rep@at factor) and deciding if
it is to be replaced. The following prompt line appears whenever
REPLACE mode has found the <targ> pattern in the file and verification
has been requested:

(dOEsn't

T Y pin g a 1': II R II a t; t; h j. ~1 P c :i n t {jj J 1], c au {'; fl i~ rep 1 ace men t OJ h i 1 e
typing a space will cause the REPLACE mode to search for the next
occurrence provided the <repeat-factor> has not been reached. The
<repeat-factor> counts the number of times an occurrence is found, not
the number of times you ac:tl..I~11y typ.e URI!. Ufif? eI/" as a '(T'epeat-·f\~r.toT':>

in order to replace every occurrence of the target string. Once the
Editor can no longer find the target string, the prompt:

ADdUST

ADJUST. mode 15 reached b~ typing HI'"," whi.le at the Edit level of
Command. On entering ADJUST mode the following prompt line appears:

>AdJust: L<Just R(Just C(enter <left.right,up,down-arrows> «etx> to leave}

The ADJUST mode is designed to make it easy to adjust the
indentation. On any line the <right~arrow> and <left-arrow> commands
move tne whole line. Each time a <right-arrow> is t~ped the whole line
moves one space to the right. Each (left-arrow> moves it one tD the
left. When the line 15 adjusted to the desired indentation pres~ <@tx>.
After prs5sing <etx>, <esc> cannot be used.

1'il DT'd~:";" t~1 ':;'i,1.JUi;t ~ i.~JhC')l~~ s~~ql}(~r!f"f~ of li.nes; adjust one linf~§

then use <up-al'row> «down-arrow» comm~nd5 and the line above (below)
will b A automatically adjusted by the s~m~ amount.

Repeat-factors are valid when u~ed before any of the <arrow>
C omm·!tf1 d s wh i 1 e in AD·.)us"r ma de-.

AD,JUST mode can also center or ,Justi-fy text. Typing ilL" while
in ADJUST mode will cause the line to be left-Justified to the margin
set in the Environment. Similarly typing uR'; right~-Justifies to the sat
ma r gin and t \j pin 9 r. C II W 1. lIe ~ u 'S e the 1 i net 0 b e c:: en t e l' 0 d bet l..0 e en the
set m~rgin5. Typing <up-arrow> (or <down-arrow» will cause the line
above (below) to be adjusted to the same specification (left-Justified,
rig h t - ,I L! s t i fie d 0 r C E' n t P. r e? d) ,3 s the p ~ ~ v i O!J ~d, tJ a d .. p; s ted 1 i n (L

MARGIN

r-u., ::~: G r r-l c U in an ,3 r: dis e x E' C t1 t; f: d b Y t y P i.. n 9 H r"i H ~!z h i 1 E' ,,; t thE Ed i t
1 eve 1. MARGIN 1 S an Env i r-onmen t d ep f.~nd ent C omm,':lnd J -t;hat i $, i t m,~y on 1 y
be executed when Filling is set to True and AutD-indent is set to
False. The prompt for the MARGIN command does not appear on the
H)-Edit: II line.

Th@re are three parameters used by the command: Right-marginl
Left-margjn and Par2grBph-m~Tgln. MARGIN deals with one paragraph And
realign::; tnt? te!(t; to Ci.Hnpl'f2's-:..'> li~ .~'~~ I'I:Ui.h d'S pu~,sible withou'c violating
the above t~rep margins See th~ EnviTonm~nt option under the SET mode
for how to set the margin values,

Example: Ttt~ p":'lI·agi'arh In rl9~q~ ~~. 13 h-.'ds been Ml\RGINed with
t h t'? p i:H'c:\ m f~ t e r son t h €' 1 €' f t w II i 1 e t. h f.:' S ~1!'\;?,' par .:E'q;p'~ ~ phi n F i 9 u r e 3. 1 4 has
bee n Ml:'\R G r N f.! d w t t h t l'"l t? p.3 r a In ~.' t f~ T'!~ 0 if the r l. 9 h t.

L f? f' t --, ill::-! ';' 9 i;, :';
Right-·m.;J.rq tTl 1,2
P t:..~ 'r a 9 i' "~ P h _. if; d T q ,1 II a

L. 1=1f' t·· . iT~'~1 r' gin 1 0
Right-mat'g in 70
Paragrdph-m~rgin 0

T his q u .~ rtf.? T, t h r~ e n, li i ;:: 1'f\ f! n t j s d} P of P T' e p. t! t h t? r. {i iJ T' S. fl m E:I t ~ r· i a 1 'S

arE- s\.Ibst~T',t:i.all·y di~'fF'r-0'n~, :;!~;fd thf:' c:;"\:}·:-'t::~ [.r~.!.:3niz\-:;:ti.on is d:i..ff~'l"~nt

of T" 0 m p"l' e v i Q tJ S 0 .. U c3 i' t €' T ': . Y 0 U ltl l 1.~ b E' m i. s :l e d if. you d €? P Po n rl up 0 n ·a f! 'r]. end
w h (j t; 0 0 k t II f~ ;: 0 I., i 'f' S ~. P '~' f' \j i 0 ~ t :;],~ toe 1" i e ;; t ~.i ('j v t c t.: h~:: co U T' ~~ if:'

Figure ~i, 14

Thi"5 quarter, thi: equlpment is d.iffeT'ent;, the course materials are
substantially different. and the courne o~9anization is
different from previous quarters. You will be misled if
you depend upon a friend who took the course previously to
GPient ijou tc th:'? !:OUT;~~.

--

Pane 46

A paragT~ph is defined to be something occurring between two
blank lines. To MARGIN a paragraph move the cursor to anywhere in that
paragraph and type "M?!. Whan doing an exceptionally long paragraph it
may take several seconds before the routine is ready to redisplay the
SC1"'een,

COMMAND CHARACTERS

Portions of the text can be protected from being MARGINed by
the usa of the Command Lharacter. If the Command character appears as
the first non-blank character in a line then that line is protected
from the MARGIN command. The MARGIN command treats a line beginning
with the comm.snd characteT" as tlHHJgh l.t were fa blank line, that is, it
will consider that line to terminate (begin) the pa~ag~aph.
Warning: Do nat un~ the MARGIN command when in a line beginning with

the Command character.

MISCELL('~NEOUS CDNHt-\NDS

SET

SET mode is ent~red by
The prompt for the SET command
line due to space limitations.
prompt line appears:

tvp l.ng "S" wh tle at the Ed it level..
does net appear- on the "',)£:d l.t: II pT'ompt

On entering the SET mode the following

>Set: M(a~ker E(nvironment <e~c>

M<arker:

When editingl it is particularly convenient to be able to Jump
directly to certain places in a long file by using markers set in the
desired places. Once set, it is possible to Jump to these m{"iT'kers
using the M(arker option in the JUMP mode. When in the SET model type
n M II .p 01" M { aT' k era n d the f 0 1. 1 Q W t n 9 pro fit p t 1 i neat p pea T' S :

Th2 nBm~ ma~ Ue up to 8 characters followed by a <~eturn>.

Marker names are case ~ensitive so that lower and upper cases of the
same letter are considered to be dlfferent cha~acte~$. Th~ marker will
bee r; t f.~ 'f' e d 116 t t h !E pes i ti (i n Q f the C U f' S 0 'r' i nth e t e ~ t j the i' e ·f Q rei of iT's t
move the cur90~ to the desired position before setting the marker. (If
the m~~keT' alread\l existed> it will be T'e%·et.)

Only 10 markers are allowed In a fila at anyone time.
"8MH! the prompt:

Ii! on typing

Page 47

Figure 3. 15

Marker ov-F lw.
Which one to replace.
0) name1
1) namp.2

9)namel0

appears~ it is necessary to eliminate one in order to replace it.
Choose a number 0 thru 9. t~pe that numb~r and that space will now be
available fa~ use in setting the desired marker.

If a copy or deletion is made b9tween the beginning of the file
and the position of the marke~f the mar~pr will not subse~u&ntly return
to the desired place ~s th~ absolute position has changed.

E (nvi ronment:

Th. Editor en~bles the us~r to set the environment which the
user d~t~rmines ~G b~ m0~~ convenient fQ~ thp editing being done.
in the FET modf~ t~jpe "Ell fQ"!"' E<nviro-nmf'nt., the SCT"e~n dispL::n~! is
replaced with the following prompt shown in Figu~e 3.16

Figure 3.16

)'Environmen-t: {opticn/;~} (Etx::> or <sp:> tn le-i,v\?,
ACuto indent True

L(ePt mar-g:in 0
R (i 9 h t ftH!tT' gin 79
p (,:IT';~'l m·~T' 1.1 i n
C(ommand en
T(nken dE?f

Patterns ~

,'.

Trul:,~

<target>= 'xyzr, <subst>= 'abc'

When

--

Pane 48

B~ typing the a.pp~opriate letteTI any or all of the options may
be changed. The options shown are the d~fault options for the Editor
on the Terak 8510A. Implementations for other machines may have
differ~nt defaults.

The Options;

A(uto indent:

Auto-indent affects only the INSERT mode of the Editor. Auto
indent is s8t to Tr'u~ (tu'rnf:'?o on) h~l tuping "AT" and to False (turned
of of) b tj t IJ pin 9 .. AF II •

F(illing:

Filling affects the INSERT mode and allows the MARGIN command
to function. Filling is s~t to True (turned on) btl typing JlFTJI and to
False by typing "FF".

L(eft fNaT'g:in
R (i g h t: ffi.-:.'i l' gin
P (a r a m;:,\ r- gin:

When Filling is T~ue the margins set in the Environment are the
marg ins wh i ch affec t the INSERT mod e and the l'1ARGIN command. They a 1 so
affect the Cent~r and Justi~ying commands in the ADJUST mode. To set
t h P. L £? T t; ,-ma T' gin, t q P t~ u L H of 0 1 1. 0 lotH:' d h!.j -::I 13 0 ~ i t 1. ve 1. n t e geT' ,'a n d a <: 5 P ~'a {" @ :> .
The positive integer typed should replace the old value for the L(eft
margin in the prompt shown in Figure 3.16 All positive intege~s with
less than four digit~ are valid margin values.

C(ommand ch:

The Command character affects the MARGIN command and the
Fi 11 ing upt:3.on in the INSERT ITHHie a~ described in those sections.
Change Ct)mmand chaT'actel'$ b~J typing I'C H -folloloed btj any character. For
example typing '~CH; Il~\.i' will change th~' Comm~nd cha'racter to u*". This
change will be reflected in the p~ompt.

T(oken der:

This option affects FIND and REPLACE. Token is set to True b~
typing "TTl! and to False by typing "IF!!, If Token is True, Token is
the dei!ault ,-;,nd if Token is False, Literal is the default.

Page 49

VERIFY

The VERIFY command is executed by typing "V" while at the
Edit level. Th~~ status of th~ Editor is verified by displaying the
updated screen. The Editor attempts to adjust the window sa that the
CUT'90r is at the center of the screen.

GUIT

GU I T mod e i S T' e a c h e d b Y t y pin 9 f! G U wh i 1 eat the Ed i tIe vel. On
ent~ring QUIT mode the screen display is replaced by the following
p1"'ompt:

Figure 3.1"7

~;.G{'J it:
UCpdate the work file and leave
E(xit without updating
R(etuT'n to the e-ditoT' without Upd2;t:i'ng
W(rite to a file name and return

On €I 0 f t h F,!I f 0 IJ 1" 0 P t i Q n 5 m '.J s t bEts e 1 e c ted b y t Y pin 9 U, E J R t} T' W.

U(pdatf~'

This causes the Editor to l.4ii'itF: thE fi1.~;. just ffi:')difir:d
into the workfile and store it as SYSTEM. WR~. TEXT. It is available
for either the Compilp O~ Run option~ o~ for the Save option in the
File"!' Thp F~1f?7' treat5 SYSTEi1.WR~{ TFX'r ,~'3 +(Ji!r file

E(xit:

This C2·iiS(;H'.i the EditoT" tn 11;?:~\-·E· l~li t.hnut ,'!!.;r.J<lng ,::In'1 C/'i.2H'g(':S in
SYSTEM.WRK TEXT. This mnans that any modiFications made since entering
the Ed i t en' .. .:.~r' F II C! t l' 8:": C r t1 e cl i nth ~ p f~ .,' m :1 n p n t u! c r k f i 1 e .

T h i~) 0 P .f: 1. c n T' e t \.i ;' n ~ tot Ii ~ E d i. to.. Hi i tho u t lJ P d a tin 9 . The cUr'sor
i s r .~ t urn P, d tot h P. e x ~; c t p 1 ace i n t t: P. f i 1 e ito C cup i e d w h i? n rt Gil. wa 5

typed. U~)ualli:l this f.ommand i~ used aft;eT' IJnintention,~11y t'JPing tlG11
.

W(rit?:

This option puts up a fu~ther p~ompt:

Figure 3. 18

>Gui t:
Namn of output file «C~> to return) -->

Page 50

The modified file may now be written to any file name. If it
is w~itten to the name of an existing file, the modified file will
replace the old file. This command can be aborted by typing <return>
inste~d of a file name and ~eturn will be to the Editor. After the
file has been written to disk, the Editor will prompt with the
followin9~

Figure ~J 19

:-;:·Gu i t
Writing _
Your file is 1978 b~tes lang.
Do. you Ui ..:\ n t toE. (x,Lt f i" 0 m 0,..' R (e t u r' n t G the Ed ita or?

Ttj ping liE" ex its rl'o;n the Ed i tor and 'f'et urns to th e Command
lev(?l while typing "R!' returns the cursor to the exact position in the
of i 1 e as w hen I! Q it wa s 1.; y p e d .

<d Olun-a.-rr 01",,>
<up ~'aT'T\OuJ::<-
<r i 9 h t-aT''f''ow>
.(,:: 1 e of t-arT ow:>
<space>
<bac k~-!sPfH: eo)
<tab>
<re turn)·

********************* *****************
* REFERENCE SECTION * * Section 1.3.4 *
********************* *****************

moves <repeat-factor> lines down
II I; 1 i nes up
II H spaces right
Ii

"
tI ,t

spaces left
spaces in direction
spaces le-pt

ffi0ves <~epeat-factor> tab positions in direction
moves to the beginning of line <rapeat-fdctOT'> lines in directic

change dire~tion td backward
change direction to forwaTd
moves to the beginning of what W3S Just found/replaced/insertedJ
exchanged

A(dJu~t- AdJust··~ the ind~~ntation of the line that ·the l::ur$O,- i$ on. U5e
the ar~DW keys to move. Moving up (down) adjust line above
(below) by sam~ amount of adjustment on the line you were on.
Repeat-f~ctors are valid.

C(opy: Copies what waG last inserted/deleted/zapped into the file at
the position of th~ cur50~.

D(elete: Treat·s· the starting position of: the cursor as the anchor. Use
any moving commands to move the. cursoT'. <et)::> delates
everything between the cursor and the anchor.

Page 51

F(ind: Operates in L)iteT'al or Tioken mode. Finds the <targ> string.
Rr.pea't-·factol's aT"e v/ijlid~ diT'Ectlon i~) applied .. HSU;::;:; use 'same
string as b.fore

I(nsert: Insert15 text, Can use <backspace::''' and (del:> to reJEH:t part of
\lOUT' insertion.

.J (ump : J u m P!i tot h e beg inn in 9 ten d or j:H' eo v i 0 U S 1 ~.f s ~ t rna r k e r' .

M(argin: AdJusts anything b@tw~en two blank lines to the margins which
hav~ been set. Command characters protect text from being
margined. Invalidiltes the COP\} tHd~fl: .. r.

P(age: Moves the cur~or one page in ~irection. Repeat-factors are
valid: dIrection is applied.

G (u it: Lea v ~ 5 the e d i t Gr. Y t) U may U) p d ate. E) x i t; I W) T> i t e ,! 0 r R) e t tJ r n .

R (e p l.~ C €I : D p to:! 1" ate ~ ! n L < i t. ~ r ,3 lor T (0 ken m Q de. Rep 1 ace s the .(tar g)
string with th~ <subs) string. VCerify option asks you to
v~riftj before it repl.:aces. "S" option uses the SamE' str'ing as
before. R.peat-factors replace the target several times.
Direction is valid.

S(et: Sets M(arif.e!'s by assigning a string nam~ to them. SHts
E (n vir 0 n!'r. en t of! 0 r A (u t 0 - i n den t , F (ill in 9 I ma l' 9 ins} T (0 ken: and
C(ommand characters.

eX(change: Exchanges the current text for the text typed while in this
mode-. E'?iCO line must be done separately. <back-sp~~,-e:> causes the
original Ch,:3T';;:~:t""TL to 'rg-'appe.3r.

Z)ap: Treat. the ~ta~tin2 position o~ the last thing
fnund!r~place1/in~eTted as an 2nchor ~nd d@let~s Dverything
between the anchor and the current cursor posItion

<repeat-factor> is any number typed befor~ a comm~nd
i n Fin i t f? n U ff) t ~,..' ,

Page 52

Typing a I is the

************* *****************
* L2 EDITOR * * Snction 1.3.5 *
************* *****************

Version L 5 September 1978

The L2 Editor is being released on an experimental basis. Not
all option~ a~e yet fully implemented so this section may not be
complete. The main advantage of this version is that it is able to
handle files larger than can fit into the main memory buffer at one
time; the upper limit being determined by the space available on disk.
It al~o automatically makes a backup copy of the file being edited. In

many Tflspects this Editor wa~ks exactly as this release and displays
the same prompt lin~s. Whe~a the versions are the same, the user is
dirncted to read the m0in Editor section,

Entering the WQrk~ile and Getting a PrcgTam

If~ on 't;yping E, th::::re i~ not enough room on the disk;

ERROR: Not enough roam far backup!

will be displayed. This dlSk must then be K(runched in order to
provide reom if that is possible, a file removed or another disk must
be used.

The same prompt line is displayed; see section l. 3.2.

1) With a name. If a file is chosen, a backup copy will be
made before the file is available for editing,

:::Ed it;

A·~ t. l] T' t his ";' ,~ 1").\~ ,;,,: 0 .f! fi l' 0 m p t 1 in e SIt h ifJ fir s t p ~ l' tor the t ext

in s~ction 1.3 2.

Th8 pa .. tagr~~phs Ofl mt'hiir'lg th;;~ curE,OT'· InffieT't and Delete in
sectittn 1.3. 2. ~,hould be 'f'ead and ar'f! applicable here.

Leaving the Editor and Updating the workfile

When all changes and additions have been made, the Editor is
ex i ted b tJ t ~J ft .i D 9 II Q 1= a 11 r. t h (~ f 0. lID tl:' i n 9 p 'r 0 m p tis dis pIa y e d.

Figt:re 5.2

U(pd~te the wnrkfile and leave
ECxlt (but workfile not updated)
R(eturn to the Editor without doing anything.

_______ , ___ __ ,. _ __ ~ ____ r ____ 'U ... _____________ . __________________ ..,.. __ ~ ___ -----

Notice that the Write aptian is no longer available. One of
these three options must be chosen. S~e also Miscellaneous commands
in section 1.3.3,

lHpdate:

This works in the same manner, however additional in~ormation
is supplied indicating the name 09 file updated and the length.

When a new file is cTeated, the fallowing appears:

Figure 5.3

Writing.*
The work~ile, *SYSTEM.WRK. TEXT, is n blocks long,

When an exi~ting file has been used, this exarople shows the extra
info~mation now given:

Figur'e 5.4

Writing.*
The wcrkfile. *X:Fl.TEXT, is 44 blocks long.
The backup file is X:Fl BACK

The newly edited file is referred to as . TEXT, while the . BACK file
cont~ins the original file with no modifications.

E(xit:

This ca~ses the Editor to return to the command level without
making any changes in the workfile. No . BACK file is made and the
existing . BACK is removed, For example, if Fl. TEXT is the file being
used, then a copy Fl. BACK will be made an ~ntering the editor and on
leaving by using the E option, Fl.BAC~ will be removed and only Fl. TEXT
will remai.n. HrHJ:evel~, since Fl. TEXT is a ropy of the o'''igin4:'11" it
will be in different place in the di~ectory.

R(et.uT'n:

This is the same. See section 1,3.3.

MOVIN(i COt'1t~ANOS

Jump mode displays the same prompt line as befure. In this
c; .:L' i) 'I n" and " E " r e -f ii! 'f' tot h e beg inn j n 9 (en (1 j (} f the b (J ~ f e'f' not t h it
beginning(end) of the file.

Typing \lt1" causes the Editor to display:

Jump. to what marker?

It is now possible to use 20 ma~~ers and these will be set in
tl1e ';5·:.?m~ !Af~y as in section 1. 3, 3.. To JDmp to the desired mSr'keT'1 type
in to@. namf:?, l'r the rnt2r'!Q?r is pT'esent. tht:! Editor will Jump to that
position, otherwisel the Editor' will Jump to the last position of the
CUTSO~ in the file. If Find needs to search a section 0' the file,
o t. 1'1 ~ l' t h -tH1 t h tl b v f of eo r J L e ,3 p i it g. . ' . ., w ill bed i s pIa y e d' .
BANISH

This is a new command and is reached by typing US" at the Edit
lev~l_ This is the p~ompt that will appear:

:> B ':'H'! i ~ h: Tot h f.To L (~ ... 'F t; 0 T' R (i 9 h t (esc»

Prior to doing a large insertion or copy, in order to provide
more room in the buffer and avoid buffer overflow, it is possible to
move charactflTs from t~~ buffer into the stack. There is a left and a
right stackj left being ahe-c1d of the CUT"SOT' and right, behind the
cursor The USRr can make the choic~ acco~ding to the current
situ~tion, In general, the screen is the boundary for the operation.
NEXl

In ordfi.~r tp move beyond the b~,)lJndc;~ of the bufFer, type t'Nti.

The following p~ompt will then be displayed:

l'n!', ii~rl implicit h.:lni~.d~ nCCt.p"'~; using the r.U'P~fji' {Z\'; thE' point of
"r" ':?' t· :!' 'r' ~~ n ,-;' e F' {:'. T' {-n:~:re m p]. p ; ttl hen ., F II i s t IJ P ~ d ! ~: '\." ~ l' Y t h :i n gab Q vet h e top 0 of!
the screen is b~"ished to the left stack. More characters are added to
the bottom of the SCTeen to extend the buffpT in the fD~ward
di·i"'fi'ction. Wh~n "Ef: .is us~d the charerb?T's tH:lt::lt\,l the CUT'sor ST'e
ban i .~ fl edt c the rig h t s t: a c k and p (~l' t oft h e ~> Cf' e en w.i 11 bee 0 m e b 1 ~3 n k .
Mor~ charactp~s aro added above the 'window' of the screen.

Fi gUT'S 5. t) SVi'-1BOLIC FILE

lef:t ~t;,r.!(

: B.n r. in~'.a l' d 'EJ BUFFER
right stack
FOT'ward
End

Page 55

PAGE

See section 1.3.3.

EGUALS

See section 1.3.3.

TEXT CHANGING COMMANDS

INSERT

See section 1.3.3.

DELETE

See section 1,3.3.
ZAP

See section 1.3.3,

COpy

See section 1.3,3.

EXCHANGE

Sae section 1.3.3.

FIND

Read section 1.3.3. The Editor' wi,ll display: Finding
and if the patte~n is not in the buffer:

End of buffer encDuntered. Get more f~Dm disk? (YIN)

On typing !ly,r, the Edito'f' will move another section of the file
into the buffer to conti.nue searching. Find is still directional

See section 1.3.3.

FORMATTING COMMANDS

AD.JUST

802 $e~tion 1.3.3.

Page 56

MARGIN

See section 1.3.3.

MISCELLANEOUS COMMANDS

SET

See section 1 3.3. The same prompt line is displayed.

Read section 1.3.3. The namos of the markers can be seen by
typing USE~\ 'POl' Set Environment while at the Edit level. To set the
marlleT·; tlJPe USt'1". In the ev~nt that 20 melrkers have already been set,
this will be indicated by:

Mar k er over-P 1 00.1. Which one to replace? (Type in the letter or <sp>

E<nvir(jnment:

Tn c~et the envi'f"onm~nt;. type 'ISE- H
.

of the prompt displayed:

FigtH'e 5. 5

)or:: n v 1 'r' 0 n m 8 n t: ~V!.:ti..rl.DJL -(J? t '.(') 0 r <: '5 r:> t (') 1 e 21 \l ~

ACuto Indent False
F(illing True
L('lJ<ft m·'~T'9in 4
R(ight: m;~r'gj,n 70
P(ara maT'gin 1
(ommand ch
S(et tab$tops
T(oken deP TruE?

11582 bytes used. 27~~4 available.

The following is an example

Thf're are 0 pages in the lr:d~·t; stack, and 10 pages in the 'right stack.
You have 86 pag~s of ~oom, and at most 13 pages warth in the buffer.

.::~p 1 >P3

C're~1ted August 15, 1978: Last updated August 15t 1978 (Revision 1).

By typing th9 appropriate letter, an4 or all of the options can
changed. SeQ section 1.3.3. Thp arrow before the mark~r name
indicates th~ relative position o~ the marker in the file to the
buffer. No arrow indicates that the marker is in the current buffer.

Page 57

It is now pt,1ssible to vary the tabstops. Type usn while in the
environment and the following prompt will appear:

At pregent, the~e are not yet fully implemented so that the effect of
using any of them is to have a variable tabstap instead of being set at
eight characters apart.

VERIFY

See section 1.3.3.

Page 58

** ***************
* YET ANOTHER LINE ORIENTED EDITOR - YALOE * * Section 1.4 *
** ***************

VeT'~ i on I. 5 S(~P t emh el" 1978

This text editor is intended for use on systems that do not
have paw~~ful ~creen terminals. It is designed to be very similar to
the text-~ditor which accompanies DEC's RT-l1 system.

1 h e e d ito r ass IJ m e S J b li tis n {) t ct e p. E~ n den t 0 rl, the e xis ten ceo f
the workfile text. Upon reading it YALOE will proclaim 'workfile STUFF
read in~. If it does not find such a file, it will proclaim 'No wo~k
file 't"OcHi in', This means that you ent;e1"ed YALOE with an empty
wD~~f11e. From this point you may create a file in YALOE; and whpn you
e)(i, t b Y t Y pin 9 , au .. I you i' l*J t1 f' k f i .1 e w j, 1 1 n c 1 (j n geT' bee m p t y .

The editor operates in one of two modes: Command Mode or Text
Mode. In command mode all keyboard input is interpreted as commands
inst~urtinq th~ editor to perform some operation. Wh~n you fi~~t enter
thp editor ~ou will be in the Comma"d Mode. Thp Text Mode is ent~~ed
wherleY~7 the user type~ a command which must be followed by a text
string, Af.teT' the' commf"3nd F(ind, G(et. l<nsei't. M(acro define, R(ead
filt~1 ~'·J(T'it:? tc;rile.· OT' eX(chf.lnge ha.s been typed, all succeeding
chsr~cteTg are con9ide~ed part of the text stT'lng until an <esc> is
t~Jped. Nnte: Wh~H-' typed <e~-.r.:> echoes a '$". The <esc:> terminates the
t~xt st~ing and causes the editor to re-enter the Command Mode, at
which point ~ll characters are again considered commands.

NOTE: Fallow command st~ings in YALOE with <esc><esc> to
execut~ them. (This is unlike the rest of the systems 'immediate'
t'. ommr:;r;\.i s. j

1, 4. 1 SPECIAL ~EY COMMANDS

Vi:JT'ious chaT'1:'lctel'5 have special meaningsl as dt-~sc"'ibed below.
Som~ of these apply only in YALOE. Many have simila~ efFects in the
rest of the system; for thesE thp ASCII code to which th~ system
responds as indicated can be changed using the program SETUP, described
inS ~~ c t i "n 4. 3. (<:: esc. :> i s thE in 0 ~ t P a"f' tic u 1 a 1" an 0 rna 1 y toY ALOE..)

<esc> Echoes a ~$'. A single <esc) terminates a text st~in!

RUBOUT
<1 int'ch'l>

A double <esc> ax@cutss the command st~ing.

Deletes cu~rent line. On hard-copy terminals echoes
'(Zt\p' and a caT"'r'i~ge return, On othersl it clears
the current line on the screen. In both cases the
contents of that line are discarded by the editor.

Page 59

1. 4. 2

CTRL H
<chardel:>

CTRL X

CTRL 0

CTRl. F
<flush:>

CTRL S
-(-stop)

Deletes character from the current line. On hard
copy terminals it echoes a percent sign ¥ollowed by
the character deleted. Each succeeding CTRL H the
by th. user deletes and echoes another character.
An enclosing percent sign is printed when a key other
than CTRL H is typed. This erasure is done right to
left up to the beginning of the command string.
CTRL H may be used in both Command and Text mode.

Causes the ~ditor to ignore the entire command
string currently being entered. The editor
responds with a <cr> and an asterisk to
indicate that the user may enter another
command, For example:

*IDALE AND
KEITH'(CTRL X>
*

A <chardel> would cause deletion of only KEITHi
would erase the entire command.

Will switch you to the optional character set
(i. e. bit 7 turned on). This works only on the
TERAK 8510A. The CTRL a is used as a toggle
between the character sets. NOTE: You may find
while in the editor that weird characters are
showing up on the terminal instead of normal
ones. It could be because you accidentally
typed CTRL O. TQ get bac k Just type CTRL 0
again.

CTRL X

All output to the terminal is discarded by the system
until the next CTRL F is typed.

All output to the terminal is held until another
CTRL S is. typed,

All ather control characters are ignored and discarded by YALOE.

COMMAND ARGUMENTS

Acommmand argument precedes a command letter and is used
either to indicate the number of times thF command should be performed
or to specify the particular po~tion of text to be affected by the
command. With some commands this specification is implicit and no
a~gument is needsdi other commands, however, require an argument.

CDmmand arguments are as follows:

P~nn Lf\

1. 4. 3

n n stands for any integer. It may be preceded by a + or -.
If no sign preced&s n, it is assumed to be a positive number.
Whenever an argument is acceptable in a command. its absence
implies an argument oT 1 (O~ -1 if only the - is present).

m m is a number O .. 9.

o 10; refe~s to the beginning oT the current line.

I I I' means 32700. f_/' means -32700. It is used for a large
T"€1opeat factoT".

- I~- is used only with the J, 0 and C commands and
Tapresents -n, wh~re n is equal to the length of the
lSit text argument used~ for example *GTHIS$=D$$
finds and removes THIS.

CDMMAND STRINGS

All EDIT command strings are terminated by two successive <esc>s.
Spaces, ca~riage returns and tabs (CTRL Il within a command string are ignored
unless they appear in a text string.

Several commanas can be strung together and executed in
sequenc:e. For' exampl~:

GTHE INSERTED$ -3CING$ 5K GSTRING$$

As a rul~, commands are separated from one another by a single
-(esc:>. This separa'ting <esc::lo is not needed. howeveri if the command
requires no text. Commands are terminated by a single <esc>; a second
<esc> signals the end of a command st~ing; which will then be
execut~d. When the e~ecutian of the command string is completej the
e d ito 1" p r' G m p t s for' t h 8 n ~ x teo mm.a n d wi -t h I.n- J' •

If at any paint in &xecuting the command, an error is
enc{ltJnteT'~,d; thp comm..:)nd wi 11 be teT"min.;:1ted. leaving the command
executed only up to that point.

1. 4. 4 THE TEXT BUFFER

The current version of your text i~ stored in the Text Buffer.
This buffer's area is dynamically allocatedi its size and the room laft
for expan&ion may be ascertained by using the? command.

Page 61.

The editor can only work ~n files that fit entirely within th~
Text Buffer. The Screen Oriented Editor in the next major rele~se will
not have this limitation.

14.4 THE CURSOR

The "cursor" is the position in your text where the next
command will be executed. In other words it is the current
"pointer" into the Text Buffer. Most edit commands function with
respect to the cursor:

A,B,F,Q,J: Moves it.
0,10<.: R~move text from where it is.
U, I ,R ; Add text to where it -is.
C,X: Remove and then add text at it.
L,V: Print the text on the terminal from it.

1.4.5 INPUT/OUTPUT COMMANDS

L(ist, V(erify. W(rite, R(ead, G(uit, E(rase, and 0

The L(ist command print~ the specified number of lines on the
console terminal without moving the cursor.

*4L$$

Prints all characters starting at the second
preceding line and ending at the cursor.

Prints all characters beginning at the cursor
and terminating at the 4th <cr>.

Prints from the beginning of the current line up
to the cursor.

The V(erify command prints the current text line on the
terminal. The position of the cursor within the line has no effect and
the cursor is not moved. No arguments are used. The V(erify command
is equivalent to a OLL (list) command.

The W(rite command ia of the form

*W<file title>$

File title is any legal file title as decribed in Section 1.2
less the file typP. The editor will automatically append a '.TEXT'
suffix to the file title given unless the filp. title ends with '.',
']', or '. TEXT'. If the filename end'S in a ' " the dot will be
stripped from the filename.

Page 62

Th. W(rite command will w~ite the entire Text Buffer to a file
with the giv~n file title. It will nat move the cursor no~ alt~r the
contents of the Text Buffer.

If there is no room for the Text Buffer on the volume specified
in the file title giv~~n, the message:

OUTPUT ERROR. HELP!

will be printed. It is still possible to write the Text Buffer out by writing
it to anothe~ volume.

The R(ead command is of the form

*R<file title:>$

The editor will attempt to read the file title as given. In
the event no file with that title is present~ a '.TEXT' is appended and
a new search is made.

The R(ead ~ommand inserts the 3pecified file into the Text
Buffer at the CU~SD~. The cursor remains in the Text Buffer before the
text in.erted. If the file read in does not fit into core buffer, the
entire Text Buffer will be undefined in contentl i. e. this is an
unrecoverable error.

The Q(uit command has seve~al farms

au Quit and update by writing out a new SYSTEM.WRK. TEXT
GE Guit and escape session; do not alter SVSTEM.WRK.TEXT
,GR Don't Q.uit; retu'rn to the edito'!"
G A prompt will be sent to the terminal giving all the

above choices) enter option mnemonic (U, E, or R) only.

Executing the OU command is a special case of the write
commandt and the attempt to write out SYSTEM. WRK, TEXT may fail. In
this ca;e use the W command to w~ite aut your file and then BE to exit
the editoi'.

The GR command is used on thn occasions when a G is accidentally
typed~ and ~ou wish to return to the editor rather than leave it.

The E(rase command (intended for CRT terminals) erases the
Sf:re~n.

The 0 command (also intended Tor CRT terminals) can be used to
have the (ontext around the cursor displayed on the screen each time
the Ct.H;$\H' i.~ mt"!v~H.1, The argument of the 0 command deter-mines the si ze
(# of lines) in that context. This aption is initially disabled when
the editor is entered and can be enabled by issuing an 0 command. A
second 0 command di~sbles the aptian; succeeding 'D's successively
@nable-, disabltre etc. The CU'rso-r is denr~ted as a split in the line.

Pi~g €I 63

1.4.6 CURSOR RELOCATION COMMANDS

J(ump, A(dvanc:e.I B(eginning, Q(et .. F{ind

When using character and lina oriented commands, a positive (n
or +n) argument specifies the number of cha~acters or lin~s in a
forward direction, and a negative argument the number of characters or
lines in a backward direction. The editor recognizes a line 01 text as
a unit when it detects a <cr> in the text.

Carriage return character& are treated the same as any othe~

character. For example assume the cursor is positioned as indicated in
the following text (A rep~esent$ the current position of the cursor and
does not appear in actual use It is pre~ent here only far
cldrification):

THERE WAS A CROOKED MANA<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The J(ump command moves the cursor over the specified number of
character$ in the Text Buff~r The edit command -4J moves the cursor
back 4 characters.

THERE WAS A CROOKEDA MAN<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The command 10J moves the cursor forward 10 characters and
places it between the 'H' and the 'U/.

1 ines.

THERE WAS A CROOKED MAN<CR>
AND HAUMPTY DUMPTY FELL ON HIM<CR>

The A(dvance command moves the CUT'$or a specified number of
The cursor is left positioned at the beginning of the line.

Hence the command OA moves the cursor to the beginning of the
current 1 ine.

THERE WAS A CROOKED MAN<CR>
· ... ·AND HUMPTY DUMPTY FELL ON Hlt1'(CR>

The command -lA (or -A) mov~s the cursor back one line.

ATHERE WAS A CROOKED MAN<CR>
AND HUMPTY DUMPTY FELL ON H!M<CR)

Page 64

The B(eginning command moves the cursor to the beginning of the
Te~t 13ufr£*T'.

S~arch commands are used to locate specific characters or
strings o~ characters within the Text Bu~fer,

The G(et and F(ind commands are synonymous. Starting at the
position of the cursort the current Text Buffer is searched for the nth
occurrence of a specified text string. A succe$s.ul search leaves the
curSOT immediately after the nth occurrence of the text string if n is
positive and immediately before the text string if n is negative. An
unsuccessful search generates an error message and leaves the curSOT at
the end of the Text Buffer for n positive and at the beginning for n
negat i ve.

1,4.7

*BGSTRING$=J$$ This command string will look for the string
STRING starting at the beginning of the Text
Buffer; and if found it will leave the cursor
immediately before it.

TEXT MODIFICATION COMMANDS

I(nsert, D(eletet io<.iill, C(hange. eX(c:hange

The I(nsert command causes the editor to enter the TEXT mode.
Characters are inserted immediately following the cursor until an <esc>
is typed. The cursor 19 positioned immediately after the last
character of tria insert. Occasionally with large insertions the
temporary insert buffer becomes full. Before this happens a message
will be printed on the console terminal, 'Please finish'. In response
tYPf: two 'SfJcces5ive <esc>s. To continue, type I to return to the Text
mode.

NOTE: Forgetting to type the I command will cause the text
entered to be executed as commands.

The [Helete command removes a s.peciflied numbel' of cha'r.3cters
from the Text Buffer, starting at the position of the cursor, Upon
completion of the command_ the cursor's position isat the first
charact~r following the deleted text,

Page 65

Deletes the two characters immediately preceding
the cur'soT'.

*B$FHOSE $=D$$ D@letes the first string 'HOSE · in the Text
Buffer, since =D used in combin~tion with
a search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Bufferj
starting at the position of the cursoT'. Upon completion of the
command. the cursor's position is the beginning 0' the line following
the deleted text.

*2K$$ Deletes characters starting at the current
cursor position and ending at (and including)
the second <CR)<.

Deletes all lines in the Text Buffer after the
cursor.,

The C(hange command replaces n characters, starting at the
cursor, with the specified text string. Upon completion o~ the
comm;)nd, the cursor immediatf!ly follo~l1s the changed text,

·1t'OCAPPLES$$

*BGHOSE$=CLIZARD$$

Replaces the ch~~acters from the beginning of
the line up to the CUT'sor with 'APPLES',
(equivalent to using OX).

Searches for the first occurrence of 'HOSE' in
the Text B u of reT' a nor e pIa c e it to i t h (LIZARD'.

The eX(change command exchanges
cursor, with the indicated text string.
of the chang~d text.

n lint"sl st~'r'ting at the
lhe cursor remains at the end

'*-5XTEXT$$

·~OXTEXT$$

*/XTEXT$$

Page 66

Exchanges all characters beginning with the
first character on the 5th linp back and ending
at the CLP"'SGr' with the stT'ing 'TEXT.'.

Ex~hanges thp current line from the beginning to
the C i.rr ~) \) r' wit h t h €l g t; T' in 9 .. TE X T ' I (eq \I i. v ~31 en t
t Q us i n 9 OC) "

Exchanges the lines from the curSOT to the end
of the Text Buff~T with the text 'TEXT~,

(equivalent to using Ie),

1.4.8 OTHER COMMANDS

SCave, U(nsave, M(acro~ N (mac~o execution) and '?'

The S(ave ~ommand copies the specified number of linfls into the
Save Buffer starting at the cursoT'. The cursor position does not
changet and the cant.nts Qf the Text Buffer aTe not altered. Each time
a S(av~ i~ ex€~cut:~}d. the previous cont~nt$ of the Save Burrer. if any,
are destroyed. If executing the S(ave command would have overflowed
the TPoxt Buffer, the editor will generate a message to this effect and
not perform the save.

The U(n$ave command inserts the entire contents of the Save
Buffer intD the Text Buffer at the cursor, The cur~or remains before
the ins~rted text. I~ there is not enough room in Text Buffer for the
Save Buffer~ the editor will generate a message to this effect and not
execute the unsave.

The Save Buffer may be removed with the command au.

The M(sc~o command is used to de'ine macros. A maximum of ten
macros; identified by the integer (0 .. 9) prec.eding the 'M f

; aT'e
allotlJed, The default number' is 1, The M(acT'o command is of the form:

mMXcommand string%

This says to store the command string into Macro BuffeT number
m, where m is the optional integer 0 .. 9. The delimiter, '7.' in this
example, is always the first character following the M command and may
be any character which does not appear in the macro command string
itself. The second occurrence of the dRlimiter terminates the macro.

All characters except the delimiter are legal Macro command
string cth~,,~,~cte!'$1 inr:llJt1ing single <e'Sc::>~ 1',11 COfTH'!H'H1ds are legal in
a macro command string. Example of a macro definition:

*5M%GBEGIN$=CEND BEGIN$V$'l.$$

This defineG macro number 5.
i t to ill 1 t,10 k of! i".H' t h I? S t r-:i n 9 , BEG r N I v

then display the change,

When macro number 5 is executed,
change it to 'END BEGIN' I and

If an e~ror o~curs when defining a marra, the message

'Error in macro definition'

will be printed, and the macro will have to be redefined.

The execute macro command, NI executes a specfied macro command
string. The form of the command is:

nNm$

Here n is simply any command argument as previously defined; m
is the macro number (an int~ger O .. 9) to be executed. If m is omitted,
1 is assum@d. Becaus. the digit m is t.chnically a command text
string, the N command must be terminated by an <esc>.

Attempts to execute undefined macros cause the error message
'Unhappy macnum'. Errors encountpred during macro execution cause the
message 'Error in macro'. Errors encountered in macro command syntax
cause the message 'Error in macro definition'.

The? command prints a list of all the commands and the sizes
of the Text Bufferl Save Buffer, and available memory left for
expAnsion.

Page 68

1.4.9 SUMMARY OF ALL C O~tt1ANDS

n'- an sT'gument m - macT'O number

nA: Advance the cursor to the beginning af the n th line from the
current position.

B: Go to the Beginning of the file.
ne: Change by deleting n characters and inserting the following

te x t. Te-rmi nat~ te x t wi th <esc:>.
nD: Delete n chal"acteY's.

E: Er:3se the screen.
nF: Find the n th occurrence from the current cursor position of

the following string. Terminate target string with <esc>.
nG: Get - ditto -

1.:
n,,",:
n~.:

,- i nVlll i d -,
Insert thp following text.
Jump cursor n characters.
Kill n lines of text. If

Terminate text with <esc>.

cur~ent cursor position is not
at the start of the line, the first part of the line. remains.

n L : L i 5 t n 1 i n e S 0 f t .~ x t.
mM:

nNm:
nO:

Define macro number ro,
Perform macro number m, n times.
On . 0 f 'P t (J f~ g 1. e. I f! c n ~ n 1 in e t. 0 f ,t ext will bed i s pIa y e d

above and below the cursor each time the cursor is moved.
If the cursor i~ in the middle of a line then the line will
be split into two parts.

P:
The default is whi:ltevf.'T'fills the screen. Type 0 to turn off.

- invalid -
G: Quit this session, rollol!.Ied by:

U: (pdate Write out a new SYSTEM.WRK.TEXT
E: {scape Esc.ape TPom session
R': (~turn Return to ed i tor

R: Read this Tile into buf~er (insert at cursor);
'R' must be followed by <file name> <esc>i
WARNING: IT the file will not fit into the bUrrerJ the
cont~nt of the bufger becomes undefinpd!

nS: Put the next n lines of text from the cur~or position into the
S-.:lVf.\ Bu.p';~\r

T: - invalid -
U: Insert (Unsave) the contents of the Save Buffer into the text

at the curSQr; does not dpstroy the Save Buffer.
V: Verify: display the current line
W: Write this file (fr'om start of bufrer);

'W~ must be followed by <filename> <esc>
nX: D~lete n lines of t~xt, and insert the following texti

terminate with <esc>.
Y:
Z:

invalid -
-- invalid _.

Page 69

- NOt~~5 -

VUE TO THE LARGE NUMBER OF BUGS IN THE VEBUGGER, WE HAVE OMITTED THE
DEBUGGER, AND ITS CORRESPONDING DOCUMENTATION FROM THE SYSTEM RELEASE.

THE DEBUGGER WILL BE AVAILABLE AT SOME TIME IN THE FUTURE, ANV YOU WILL
BE NOTIFIED OF THIS FACT. PLEASE VO NOT ASK US ABOUT THE DEBUGGER, AS
THE REPLY YOU GET WILL BE THE SAME AS THE MESSAGE ON THIS PAGE.

Thank. you nOlL YOM patienc.e in tlUA mati-elL. ed.

Pag~ 74 thfLough 80 have been omitted.

Pag~ 71 .. 7

- note!.> -

Page!.> 72 •• 80

******************* *************** * PASCAL COMPILER * * Section 1.6 *
******************* ********~******

Version 1. 5 September 1978

The UCSD Pascal compilerA a one-pass recursive descent based on
th~ P2 portable compiler from Zurich, is invoked by using the C(ompile
or R(un command of the DutermO$t level of the UCSD Pascal system. If a
wOT'kfile exists.; it compiles that. Othe'f'wlse, it prompts the user for
a SOUTce file name. It generates codef11es to run directly on the
Pascal interp~etive machine.

Unless the HAS SLOW TERMINAL boolean inside the system
corum u n 1 c. a t ion aT' e a (5 e e sec t ion 4. 3) i s t rue l the com pi! e or , d uri n 9 ,t h e
course of compilation. will display on the CONSOLE device output
detailing the progress of the compilation. This output can be
suppress~d with the G+ compiler option (see section on compiler
options below), Below is an example of the output which appears on the
CONSOLE device:

PASCAL complIer [1.5 unit compiler]
0:>

P 1 (7050]
< 19)- ...
P2 (3040)
.(61>0 ~ . :
TEST [30(3)
<: 11 9>, , , . ,

The identifiers appearing on the screen are the identifiers of
th~ program and its prDcedu~e5. The identifier ~or a procedure is
displayed at the moment when compilation of the p~ocedure body is
started. The numbers within [] indicate the number of (16 bit) words
available for 5ymbol table sto~age at that point in the compilation.
The numbers enclosed within < > are the current line numbers. Each dot
on the screen represents 1 source line compiled.

!f the compilation is success~ul, that is, no syntax errors
detected, the compiler writes a codefile to the disk called
*SYSTEM. WRK. CODE. Thls is ths codefile which is executed if the user
had typed the R(un command. See Section 1.1 INTRODUCTION AND OVERVIEW
for further details an the system commands.

Should the compiler detect a syntax error, the text surrounding
the error and an error number together with the marker 1«« ' will
point to the symbol in the source where the error was detected. In the
event that both the Gaod L options are set, the compilation will
continue, with the syntax e~ror going to the listing file, and the
console remaining undisturbed. The compiler will the give the user the
option of typing a space, an <esc> Dr 'E'. Typing a space instructs
the compiler to attempt to continue the compilation, while escape
causes the termination oT the compilation. and liEU T'esults in a call to
the editor, which automatically places the cursor at the symbol where
the error was detected.

Page 81

Most of the syntax errora detected by the UCSD Pascal compiler
are the standard ones listed in Jensen & Wirth. A complete list of all
UCSD syntax errors can be found in Table 5. All error numbers will be
accompanied by a textual message upon enty'y to the editor if the file
*SYSTEM.SYNTAX is available.

1. 6. 1 COMPILE TIME OPTIONS

Compile time options in the UCSD Pascal compiler are set
according to a conventiDn described on pages 100-102 of Jensen and
WiT'th~ where compile time options are se't by means of special "dollar
sign" comments inside the Pascal program text. The syntax used in
UCSD's compiler control comments is essentially as described in Jensen
and Wirth. The actual options and the letters associated with those
options bear only little resemblance to the options listed on pages 101
and 102 of Jensen and Wirth. If a '+' Dr '- , is not specified after
an option letter, '+' is assumed. The following sections describe the
various options currently available to the user of the UCSD Pascal
compiler.

D:

This option causes the compiler to issue breakpoint
instructions into the codefile during the course of the compilation in
order that the interactive Debugger can be used more effectively. See
Section 3.2 uDEBUGGER u for details

G:

Derault value: D-

D-: causes the compiler to omit breakpoint instructions
during the course of the compilation.

D+: causes the compiler to emit breakpoint instructions.

Affects the boolean variable GOTOOK in the compiler. This
boolean is used by the compiler to determine whether it should allow
the use of the Pascal GOTO statement within the program.

Default value: G-

G+: allows the use of the GOTO statement.

G-: causes the compiler to generate a syntax error upon
encountering a GOTO statement.

C: The (*$C eomment*) plae~ the eomment, (80 eh~aet~ maX£mum*) ~n the eode
nile gen~ated. Th-iA option ~ M ed at UCSV to plaee eopYJvtght ~nnoJuna.tA,on
~n the eodenile..

Page B2

The G-optian has been used at U.C.S.D to restrict novice
programmers from exces5i~e uses of the GOTO statement in situations
wher9 more structured const~ucts such as FOR, WHILE, or REPEAT
statements would be mere approprlate.

I:

When ,an '1'" lS fol1o\ol?d imm£>di-ately by a '+' OT' ' .. _', the
control comment will affect the boolean variable IOCHECK within the
compiler An alt~rnative use of 'I' in a compiler control comment
causes the compiler to include a diffe~ent source file into the
cQ~pilation at that point. See section INCLUDE-FILE MECHANISM for
s~nta)'.

.IOCHECK. OPTION

1+: instructs the compiler to generate code after each statement
\J.;hich performs any 1/01 in or'oel' to check to see if the 110
operaticn was accomplished successfully. In the case of an
unsuccessful 110 operation the program will be terminated
with a run time error.

1-< lnstT'ucts the compiler not to genIS-rate .:irty I/O checking
,~)de. In the case of an i.Jnsuct::e~sFul 110 operation the
program is not terminat@d with a run time error.

The !~·'option is use~ul f!OT" system level programs which do many
110 operations and also checks the IORESULT function after each 110
operation. The ~y5tem prog~am can then detect and report the 110
€ \" r ':.'i :' 5 • !,J.d t h .0 U t b ~ . .i n g t ~ T- m 1 ro, il t: Ii? d /~ b n !, ... 'f' m d .1. 1 i~ ~:J i t h ar' l.J n t i in e error.
HDw~Ve~ this option i~ set at the expense of the inc~eased possibility
tj<l~t 1/0 e'Tr;':-ii'"~' (r3'nd pc.q~·;ibly se-Vi?re progr"am b"Jgs)} wlll yo
undet.f~ct~d.

INCLUDE FILF MECHANISM

.The syntax for lnstTucting the complIer to include another
source flie into the compilatlon i~ 25 follows:

(* '$ T F :r LENAI"'!E ,~,)

Page 83

The characters between 'I' and '*) i are taken as the filename of the
source file to be included. The comment must be closed at the end of the
filename, therefore no other options, such as G+, or L+, etc. can follow the
filename. Nate that if a file name sta~ts with '+' or '-' as the fiT£t
character of the filename, a blank must be inserted between '(*$1' and
'FILENAME'. Far examplei the comment:

<*SITURTLE. TEXT*>

would cause the file TURTLE. TEXT to be compiled into the program at
that point in the compilation.

would cause the saUTee file +FARKLE.STUFF to be included into the
compilation.

If the initial attempt to open the include Pile fails, the
compiler concatenates a ". TEXT" to 'the file"-name and tries again. If
thi. second attempt fails~ or some liD error occurs at some point while
reading the include file, the compiler resp~nds with a fatal syntax
erroT'.

The compiler accepts include files which contain CONST, TYPE,
VAR, PROCEDURE. and FUNCTION declarations even though the original
program has previously completed its declarations. To do so, the
include compiler control comment must appear between the original
program's last VAR declaration and the first of the original program's
PROCEDURE or FUNCTION declarations. Nate that an include file may be
inserted into the original program at any point desired, provided the
rules governing the normal ordering of Pascal declarations will nat be
viDlated. Only when these rules are violated does the above procedure
app 1 y,

Th e camp i 1 er cannot keep tra c k of nested inc 1 ud e C ommentsl i. e.
an include file may not have an include rile control comment. ThlS
results in a fatal syntax error.

The include file aption was added to the compiler at U.C.S.D in
order to make it easier to compile large programs without having to
have the entire source in one very large file which in many cases would
be too large to edit in the existing editors' buffer.

L:

Controls whether the compiler will generate a program listing
of the source text to a given file. The default value Qf this aption is
L-, which implies that no compiled listing will be made. If the
character following aL" is Ii+H, then the compiled listing will be sent
to a diskfile with the title '*5YSTEM.LST.TEXT'. The user may override
thi~ default destination for the compiled listing by specifying a
f i 1 (-HI ~ m i? fa 1 1 ow i n 9 It L 0\ • For e 1. amp 1 at h e of 0 1 1. 0 win 9 con t r ole 0 mm ~ n t (.IJ ill
cause the compiled listing to be sent to a diskfile called
i'DEi>101, TEXT't ,

Page 84

<*$L DEM01.TEXT*>

To specify a file-name inside a control comments see the
section describing the include file mechanism.

Note that listing files which are sent to the disk may be
edited as .ny other text file provided the filename which is specified
con t ~ ins the S l)f fix AI. TEXT It • Wi tho u t the f/ • TEXT" s u f fix t h eo f i 1 e \IIi 1 1
be treated by the system as a datafile rather than as a text file.

The compiler outputs next to each sou~ce line the line number,
segment procedure numbe~, procedure number, and the number of bytes or
words (bytes for code, wOTds fOT data) requir~d by that procedure's
declarations or cade to that point. The compiler also indicates
whether the line lies within the actual code to be executed or is a
part of the dec: lard';inns for that procedure by Qutputing a uD u for
declaTation and an integer 0 .. 9 to designate the lexical level of
statement nesting within the code pa~t. If the D+ option is set then
the listing fila will includ@ an asteTisk on each line where it is
appropriate f0T a user to specify a breakpoint while in the interactive
Debugger. This information can be very valuable for debugging a large
program since a run time error mE~5age will indicate the procedure
iHH1. b tH' 1 and t. Ii e 0 f f 'S e t w her ~ the '::::1' r 0 roc C 1,.11"' 'f iE'd .

G:

The G compiler option is the "quiet compile" option which can
be u5?d to supp~es$ the output to the CONSOLE device of procedure names
and line numbers detailing the progress of the compilation.

R:

Default value: is set equal to CUTrent value of the SLOWTERM
attribute of the system communication record
SYSCOM",·. (actoally SYSCOM MISCINFO. SLOWTERM)

G+" causes the compiler to suppress output to CONSOLE device.

G-: causes th~ compil~r to send procedure name and line number
output to the CONSOLE device.

This op~lDn affe~ts the value of the boolean variable
RANGECHECK in the compiler. If RANGECHECK is true, the compiler will
Dutput additional code to perform checking on array subscripts and
assignments to variables of suDrange types.

P:
TIU..6 option C.a.U6M the. futing to c.ontiYl.u.e. 6Jtom top-06-6ofLm. i.e.. the. c.ompileJt
dOM:

PAGE(LISTFILE)

Page 85

Default value: R+

R+' turns range checking on.

R-- turns -range chet.::king c-ff.

Note that pT'ogT'arn~ compiled with thl!: R-option 'Set will T'un
slightly faster; however if an invalid index occurs or a invalid
assignment is made~ the p~Dgram will not be terminated with a run time
error. Until ~ program has been completely tested and known tD be
COTTect, it is usually best to compile with the R+ option left on.

s;

This option determines whether the compiler operates in
"swapping" mode. There are two main parts of the compi.ler': one
processes declarations; the other handles statements. In swapping
moor.-:, cnly one of these parts is in main memory at a time. This makes
about 2500 addItional wo~ds available for symbol table storage at the
cost Qf ~lo~~r compilation speed due to the overhead o~ swapping the
cornpilt'?T' segment in fT'om disk. On flJllsizel Single d-:nsity floppy
di~ks this amounts to a factor o¥ two reductio" in compile speed. This
option must occu~ prior the the compiler encountering any Pascal
syntax.

Default value: S-

S+: puts compiler in swapping mode

S'-; puts compiler in non,"swapping mode.

U:

USER PROGRAM OPTION:

ThlS option S2tS the boo12an variable SYSCOMP in the compiler
ttl hie his v' ~-:; e d b IJ the com p i 1 t? r t Q .j e t f': T' m 1, new h • .?t 1:21' t h 1 S Co iJ m p i 1 Cit t 'i w n .i s
a user PT'ogT'.an: compi.lationl or a ::o!'!qJll~~t;iGn c:f a systf~m program.

PaGe 86

\ I ...
,.,1 •• infDrms the compiler that ~hts tompilation i~ to take place

on the user program lex level,

u-: informs the compiler to compile the program at the system lex
level. This s~tting o~ th~ U compil~ time 0ption also causes
the following options t;J h~! ..set- R-. G+! I-.

NOTE: This option will generate programs that will not behave
as elpected. Not recommended for non-systems work without knowing its
method of operation.

USE LIBRARY OPTION:

In this ve~sion of the 'u' optionl the U is followed by a file
name. The named file becomes the libraTY file in which subsequent
USEed UNITs are sought. The default file for the library is
*5YSTEM.LIBRARY. (see section 3.3.2 for more details on UNITs)

option:
Following is an example of a valid USES clause using the 'u'

USES UNI Tl, UN! T2!
A. cong}
UNIT3.,
B. LIBRt'RV}
UNIT4, UNIT5i

.i n ~SYSTEM. LIBRARY.)

Page 87

- Notes -

*********************** ***************
* UCSD BASIC COMPILER * * Section 1.7 *
~**************** ***************

September 1978

This section has been designed for prDgramme~s who are already
familiar with B~sic. Its intent is to describe to those experienced
users the details of UCSD Basic in a manner sufficiently detailed so as
to iz:nab 1 e th l \.;jr it i 1"19 :n~ mnd if i c;:-:t: i on Q-t programs ina manne.r
compati~le with thE UCSD Basic Compiler.

The first section contains a brief description of the features
includ~d in UCSD B~sic; the -second. the descriptions of the ~eatu,..es

unique to UCSD Basicl and the third a list of those features which we
intend UCSD Basic to allow, but which are not yet implemented.

The UCSD Basic Compiler has been written in the Pascal
language. Some of the intrinsics of the Pascal language, which are not
found in standard Basic, are found within the UCSD version of Basic.
Many of these are noted in the first sEction, ~ll of them are noted or
recapped in the second.

The l}CSD BASrC Compiler i,S invoked Just like the Pas1:al
compllerl provided tho compiler code is named *SYSTEM.COMPILER,
Originally it will be named BASIC, COMPILER. If you want a disk to be
BASIC oT'iented~ you must change the name of, or remove, the Pascal
compiler: arid change the name of BASIC. COMPILER to *SYSTEM.COMPILER.
T tu; t dis k la n d ,~n y con j e s of it., ld ill now C Q m p i 1 e BASIC pro 9 't" am s as a
rEsult of the CCompile OT R(un command.

DESCRIPTION OF FEATURES INCLUDED

The BaSiC complier has only real and string variables. When
applying a real to indexing or ether integer purposes the rounded value
of the number is used. In the ~uncticn5 below x and y can be ~eal
variables ar expressions which evaluate to real values. Similarly 51
and 52 can be st~ing variables or expressions which evaluate to a
string.

VAR IABLE Nf\t'lES

Rea 1 'i Q r i ~ b 1 ~"S : 1 et t ~. 1" (dig it) .
String \.'=:'11301$5. lettel'(dig.i"t)$. The digit is option~l.

Page 89

INTRINSIC ARITHMETIC FUNCTIONS

ATN(x) R~turn~ the angle in radians whose tangent is x.

EXP(x) Returns the base of the natural logarithms raised to the power x.

INT(x) Returns the value of x rounded to the nearest integer.

LOG(x) Returns the log (base 10) 0' x.

Returns the natural log of x.

MOD(x,y> Returns x modulo y.

SIN(x) Returns the sine of the angle ~. Where x is in radians.

COS(x) Returns the cosine of an angle x. Where x is in radians.

INTRINSIC STRING FUNCTIONS

CAT$(sl. s2 ...) Returns a string which is equal to the concatenation of
all the strings in the parameter list.

COP*Csl, x,q) Returns a copy of the portion o~ the string sl, 4
cD"~ecutive chsracte~s, ~t5rting wlth the characte~ at position x.

DEL$(s11 x,y) RetuTns the contents of the string 51 with y consecutive
characters ~eleted. The deletion sta~ts with the character at
position x.

INS$(;lts2: x) Returns the contents of string 52 with string sl inserted
immediately hefore t~e ~haracter which is at position x.

LENCsl) R9turns the length Df the string 51.

POS(sl,s2) Returns an integer which is equal to the position of the
first characte~ in the first OCCUT~enre of the string sl in the
string s2.

OTHER FUNCTIONS

ORD(s) Returns the ASCII value of the ~iTst character of the string s.

STR$(x) Returns the string containing the chSTRcter associated with the ASCII
value x.

Page 90

:ET$ Reads a single character from the keybosrd without prompt or echoing,
and returns it as a string. GETS requires no arguments.

DLD(c, $;
NEW(c,s) c is a numeric constant without a fraction part, which becomes

3~~ociated with the disk file whose name is in s. OLD expects that
file to alresdy exist, NEW creates a new one with the name s, removing
any previows file of that name. These functions must occur before
associated print or input statements. The numbers may not be
reassigned and must be in the range 1 .. 16. For best results. use only
at the top of a program. In order that a file created by NEW be
editable with either oT the system editors, '. text' mt..'st be appended to
the file title.

Tn eserunc ti ons return IORESUL T as df;\scr ibed in section 2. 1.

PROGRAMMING STATEMENTS

Arithmetic statements and operations
I + subtract/add

I I .* d i v ide: m u 1 tip 1 Y

Relational Qpe~ato~s

INPUT list
or

INPUT #c list

-c:> I :>-c

<
_>= I =>
<= I :-.:<

equals
not equals
greater than
less than
greater than or equal
less than or equal

In put sf rom the main system d e vic e I U $ U a 11 y the keyboard. I of the
optional 8c is p~e5ent, INPUT inputs from the disk file number
c The input list may contain any combination of real variables and
string vBTiables. When a prDgram expects input the prompt "?II is
printed. Input of real numbers may be terminated with any non-numeric
character. Input of strings must be terminated with a return.

PRINT li5t
or

PRINT ftc: li;;t

W~ites to the main output device the list following the PRINT command.
If thD optional He is pT9sent, PRINT outputs to the diskfile number c.
The output list may contain ~ny Y~~iable, subscripted aTray variable,
any arithmetic OT' s'cring expl"essionl OT' any literal text. The list may
be sepa~ated b4 commas or semi-colons. If the list ends in a semi-color
the carriage return is suppressed. Literals may be enclosed in either
type of quotation marks. Double quotation marks prints a single
ti!.!otatio'n mSH'!c.

Page 91

FOR val" = expl TO exp2 STEP exp3

NEXT var

Each execution of the lOL1p increments the loop countar "varr" by the
amount of expression 3. If the STEP is umitted it is assumed to be 1.
Only increasing STEP values are allowed. Evaluation of limits and
increments is done at the beginning o~ the loop_ Note that RETURN's into
or GOTO~s into a FOR loop may cause the loop to b~ undefinad.

IF expl (r~l~~ion operator) eyp2 THEN (line number)
GOTD

Either 'the reserved word THEN or GOTO can be l}sed in this st;atement. lOP
the ~elation b~tween the alpl and exp2 is 'ound to be true the b~anch
occurs, A sti'ing is c>Jnsidered to be less than another string if it is
lexicographically smaller.

IN e j(p GO TO:; 1 re 1.. 1 n 2., . ~

If the eXprp.5stCHj, ~iJh~n rounded, evaluates to 1 it goe's to the f'i,..st
line number (In!) if it evaluates to 2 it goes to 1n2, etc. This is the
only form of the computed GOTO which is available. If the expression is
out of range an error occurs.

DEF FNname(list)=expression or DEF FNname(list)

Ei' - .

FhiEND

Single Ilne and multi-line functions are allowable. The function name
must be a legal variable name for the tupe of value returned. Functions
;nay be defined recuT'sively. Th<? p,::'r'~miE:'tt::r lis;.t is called by value) that
is, change$ inside th~ function don't afgect the value of the exteTnal
p ~r ·,!;li'1e t e r.t; .

var ~:p. ~ p
OT"

This command assigns a new valup to the variable I~ the variable is a
;:,f;Ting: thf\ ~':l:(pT"eSSiDn rJ';ust ?\(a'\Ui.~t;:;, to a ~:.tT'ing, nod if a· real,
evaluation must be to a r~a]

)If"l vaT (n 1! n2k . ,

A single or multidimensional ar~3y m3Y be declared with this command.
The variable name determines the type of the a~ray. The ar~ay indices
3'1"e O. ,n1t 0 .. r.2, ... Both "',",,211 and strii\g multidim~nsional en'rays can be
used. If no dimensions are declared the dimensions are assumed to be
O. . 1 0, ;:;,. 10, 0.. 1, 0.. 1 ,., The n U ii, b e r of dim e n 5 i on s aut £I rna tic a 11 y
declared depends on th~ numbAr of 1im~nsions which are used in the
program, but must be consistant over ~ll uses of any given array.

G08UB linenvmber

RETURN

Ex~cute~ a subroutine call. The calling ~ddre5$ is plscsd on the
suhroutine stacIe Subroutd,ne calls may be recursive.

Returns to the line after the last GOSUB which is still pending.
the top address off the stack and uses it as the return address.
retu~n when no GOSUB's are pending is an error.

GOTO 1 lfHH1umb er

Program execution Jumps to the given line number.

REN text

UNIGUE FEATURES OF UCSD BASIC

Continuation of statements is allowed. Any line not beginning with a
line number is sesumed to be the continuation of the line above.

Functions: All parameters of functions are call by value. Yau are not
allowed to use the parameters to return values from a function.
Function call~ ,:;,c'e allQwBu to be r~cu1·~ive.

Strings: The string functions and p~oc91uTes are those found in the
UCSD Pasc~l language.

Print: T:::1o stops aT'e not al1.c!J,1t:~d, IU J 1 i.st el~me!1ts .aT'S. printed uiithout
s p .a c e s bet ll' e e n them. The carriage ret LI l' n can b es u p pre sse d by "i U

as the la~t 5~mbol in the line.

Subroutines: Subroutines may be recursive.

Comments; In 1 ine comments may be inserted.
following the @ symbol is ignored by

The portion of any line
the c om p i 1 e T' •

Page 93

It pop'
A

PASCAL FUNCTIONs: The code of PASCAL FUNCTIONs may be added to the
n AS ICc 0 mp i 1 e T' a s new s -t a n da T' d 13 AS I C fun c t i {) n s . T his i s
accomplished by a straight-forward addition to the BASIC compiler.

FEATURES TO BE ADDED

Certain features of the UCSD Basic compiler are still in the
process of being implemented. The most important of these are listed
belol\l.

Data and Read: The stan~a~d initialilation 5tatements.

Matrix statement for standard matrix operations.

Integer variables.

More .tandard functions.

RUNNING A BASIC PROGRAM

CTeate the BASIC program using one of the s~stem text editors.
Once you have ensu~ed that the BASIC compiler has been named
SYSTEM. COMPILER! you can use the commands C(ompile and R(un at the
COMMAND level, Just as if you were using Pascal on a disk which has the
Pascal compiler as its SYSTEM. COMPILER. For a more detailed
descript.ion of COMMAND see Sec'tion 1. 1

Page 94

************** ***************
* THE LINKER * * Section 1.8 *
************** ***************

Vei'S i on L 5 September 1978

The UCSD LINKER allows the user to combine pre-compiled files,
which maq have been written either in PASCAL or in assembly language,
into the 54stem workfile. The user may wish to incorporate certain
useful routines into programs without having to rewrite or even
rec'ompile these ,.'outines. For ex,:ample, one mi.ght wish to use a -Past
ass em b 1 q 1 f.'P1 9 u a g €' 1" 0 u t :i. n e f O'f' so m e H rea l'~' tim e U a p p 1 i cat ion. T his
routine could be a~sembled ·~epaT'.atelYI stored i.n a Ii.bT'aT'Y, and
eventually acce5~ed via the LINKER

T 0 1 ink i Tf '1" C;' l' 1; i n e ~ \"i: it; h C 1" P Toe 0 oj U 1" i? S {,} l' .p un c t i '0 n s) j t h eo
call ing pT'tlgr'am dec lal't:s thuse row'tines to be EXTERNAL. much as
PROCEDURES or FUNCTIONS may be declaTed FORWARD (see Section 3.3.1).
This notifies the compiler that the rDutines may be called. but are not
provided vet. The compiler will then infoTm the system that linking is
required before execution.

The LINKER can also be uged to link in UNITs. A UNIT is a
group of related routin~s which will be used together to perform a
common task. UCSD TURTLEGRAPHICS is an example of a UNIT containing
procedures and functions with '~;hicha tlt·urtle il can be moved on the
scraen A UNIT can be uged b~ typing the command USES <unitname>
directly after the PROGRAM <identifier> For mo~e information on
Ui'-J ! l' 5 J S !? !;;' Sec t i Q n~1. 3., :2;

Any files which referE!\Ce UNITs or EXTERNAL rQutines and have
not yet been linked may be c0mpil~d and saved. but will need to be
1 i fl ked b e .f 0 '1'" e t ~~; eye ~~ \'1 bee!: e c ~j. ~t a ~l

1. 8_ 1 US ING· T~!E L II\W.E.R

If the program in the warkfile contains EXTERNAL declarations.
or uses UNITs, typing R(un will automatically invoke the LINKER afte~
the compiler. The LIN~ER will search the file *SYSTEM.LIBRARY for the
routines or UNITs specified, and will attempt to link them into the
wo~kfile, If the UNIT or EXTERNALly dec!a~ed routine is not present in
*SYSTEM_ LIBRARY, the LINKER will respond with an appropriate message:

Prot,
F' unc I

Glob·all
or Public (identifier> undefined

Page 95

The LINKER may also be invoked explicitly, and, in fact, must
be invoked explicitly in cases where

1) the file into which UNITs or EXTERNAL routines are to be
linked is not the wcn~kfile~ 01"

(2) the e~ternal routines to be linked reside in library files
other than *SYSTEM.LIBRARY.

(Not a : I nth e C tJ'f/ 1" e n t 1.11 P 1 e (!H.~; n t a ·t 1. 0 n UN ITs ~'Tl us t T' e sid e i n
*SYSTEM.LIBRARY at the time of compilation in order to be USED by a
PASCAL program.)

In orde~ to e~plicitly invoke the LINKER, the user types 'L' at
Command level and receives the prompt:

The hostfile is the file into which the routines or UNITs are to be
linked. The LINKER appends . CODE at all file names typed in except for
*<r~t>. Typing a <ret> In 1"eHipOnse +:0 thE p;·ompt::,.~U~·H;;;i: the LI!\~KE:R to
use the workfile as the hostfile. The LINKER then asks for the name(s)
of the libra~y files in wh~ch the UNI1s or EXTERNAL ro~tines are to be
found:

Lib file? <codefile identifier>

Up to eight library files ma~} be refel"enced. Typing '*' in
respcnse to a request ¥or a libfile name will cause the LINKER to
reference *SYSTEM.LIBRARV. The user will be notified about each
library File that is ~uccessfully opened.

Example: Lib fi_u~? * ('l'E-t:)

Opening *SYSTEM.LIBRARY

For information on LIBRARIES and the LIBRARIAN see Section 4.2.

Wh~n all relevant libfile names have b~en entered the user
must type <ret> to proceed. The LINKER will now prompt with:

Map file? <file identifier) <ret)

Th eLl NJ.!.ER t.rr· i t G; S the ma p f! i 1 etc the· ~ i J e or' fi" qt} est e d by the
USE'T'. Th~ ,,\,,,;5pvileo (cnt;;:dn;':-i 1~~lf"\t;$.\nt: L.n'~l--\r::-R info 'i"oJQi!!r'di:,!g the linking
p !' t~ C e ;:~ ::;, , R e ~ p C !"~ din g \eJ i t h -(1~ f' t; .::; t u t h j, s ~q. G fr, p t t~ ill .; U "':' ron d t hi., 0 P t ion.
No t ~ t hat . TE X r 1 5 .a p p f!.;~ n d e d un 1 e t.:: s a I.! i s t h ~ 1 ~ If.) tIe 1;.; t e r 0 ft; h e
f i 1 en~me.

The LINKER now reads up all segments required to enable the
linking process. The user is now prompted to ent&r the destination
fil@ for the linked code output (this will often be the same file name
as that of the host file). Linking ~il1 commence after the <ret>
following the owtput ~ile name has been tqpe1. An em~t4 line, <~et~

onlYI causes the output Pile to be pl~ced in the workfile e g.
~J~·S'l·~~1'" E:M ~ ~~lHl ~\. 'C 0 DE

~~gment5 being linked as well as all external routines being copied
into the output codafile. The linking process will be aborted if any

I

required segments or routines are ffilssing or undefined. The user will
be info~med of their absence with messages as described at the
bpginning of this s~ction.

1" 8 .. ;2 NOTES ON LINKER CONVENTIONS AND IMPLEMENTATION

Codefiles may contain up to 16 segments. Block 0 of a codefile
cont~ins information regarding name, kindl relative address and length
of each cede ·segment. This infof'ma'iJi~)·r. is ":flled the segtable} and
is ~~p~esentsd as Q ~ecord:

RE.CORD

RECORD
CODELENG, CODEADDR: INTEGER

SEGNAME: ARRAY[O .. 153 OF PACKED ARRAY[O .. 71 OF CHARi

:3EG;V~IND t'RRAVrO,. 15J OF (LIN~\EDI HOSTSEGt SEGPROCI tJNITSEG,
SEPHTSEG) ;

END

~ODELFNG and CODEADDR give, r9;pectival~, the length of the
code ~,egrnent l.n b4t;esl and the block~rld're~s of the code $.egment, A
descrlption of SEGhINDs folluws:

L I Nrt ED : Ttl e c (1 d ~ ~ e 9 m'E! n t ts f!II 1 U ~:{ ~ C ',I 't .~ ti 1 e . E i t Ii era 1 1 ext ern a 1
re~erences (UNITs or EXTERNALs) have been resolved, or
non e tu ere P T' e '5 & n t

HO~rfSEG': the 5f:~9kind ~s.sigrH2'q t;o the Quter block of a PASCAL
p r ~. g r {;;j in i F t Ii e pr c, 9 l' ;.:;:Hll has '.!n: t~ e r f"') a 1 l' e fer en c: e s .

SEGPROC: the segkind assign~d to \3 PASCAL segment procedure ..

UNITSEG: t~~ s~gklnd ~ssign0d to ~ compiled SEGMENT. (see Section
3, 3. 1)

SEFRTSEG: This sE'gk~:nd 15 assi.gned to a separately compiled
procedure or function. Assembly language codefiles are
aJways of this type. 9S well as Pascal UNITs which are

Page 97

For an unlinked code segment (that is, a segment containing
unresolved external refe~ences) the compiler generates linker
information. This information is a series of variable-length records,
one for each UNIT, routine or variable which is refe~enced in, but not
defined in the SDurce. The first 8 words of each recD~d contain the
following information:

LIENTRY=RECORD
NAME: ALPHAi
CASE LITYPE: LITVPES OF

UNITREF~

GLOBREFt
PUBLHEF,
PR!VREF,
SEPPREFI
SEPFREFI
CONSTREF:

(FOFt i'1A T :

NREFS:

OPFORMAT;

INTEGERJ

NWORDS LCRANGE);
GLOBDEF:

(format of lientry.name can be
any of! BIG.. BYTE or WORD.)

(# of rererences to lientry. name in
compiled cDd~ segment)
(size of privates in words>

< HOMEPROC: PROCRANGE; (which procedure it occurs in)
(byte offset in p-code) ICOFFSET: ICRANGE);

PUBLDEF:
U3f\SEOFFSET: LCRAN(:}EJ} (compiler assigned word offset)

CONSTDEF:
(CONSTVAL: INTEGER);

EX TP ri DC: E X "l""r:'UNC I

SEPPROC~ SEPFUNC:
CSRCPROC' PROCRANGE;
NPARAMS: INTEGER);

EOFi1ARK:

(users defined value>

(procedure number in source segment)
(number of parameters expected)

(NEXTBASELC: LCRANGE) (private var allocation info)
END <. 1 i en t r' U) ;

If the L!TVPE is !H10 of- tho first r.asi? v.~Ti~;lt; thc·'jj following
this portion a' the reco~d is a list of pointers into the code
segment. Each of these pointers i~ the absolute byte address within
the code segment of a ~eference to the variable, UNIT or routine named
in the lient~y. These are 8 wD~d ~eccrds, but nnly the first NREFs of
th€ili ar-e valid.

rage 98

'.*****4t"*******'!-f*** "",***-*'*,J(.**.******
* ADAPTABLE ASSEMBLER * * Section 1.9 *
~********************** ***************

,} e r s ion I. 5 S.ep tember 1978

Use. 1" '3 .J 'r ~j c ~:,i) ~:\ d S C ~1;. r) C '': ~:';',~, : c c ,:;) 1 1 ~J n e Q d t ,:1 /,\.(r i t eo and ere cut e
s m:3 1 1. ass ~'m b l:~ 'f' <.) uti n ~ 'S iHT' i t. i.; en :i nth e 1 ~ n 9 wag €I p f: the h 0 S t m3 chi n e ,
These routines ~ould be used withl" a Pascal program to p~ovide low
level or time critical facilitips. The UCSD Arlaptable As~embler (in
conJunctl,nn with the UCSD Ll.nk~r) has bEen deSi;;rned to meet those
n~eds, The UCSD Pascal Project ~il1 be maintaining all our Pascal
t rd: ~ l' P 'f ~ t; e' 'f' S ",J S 'l n g t'; h t ',; \:; ~j ~-; .:, 1': b 1 ~:::q" j nth~' "'H:3 r of \l t. Ln'" e . R Y 1; h t;i· pro c e s s
the users of the UCSD Pascal system will b~cDme essentially independent
of any manufacturer's sy~t.m software,

This assembler was mod~lled dfter The Last Assembler (TLA)
deve!opeJ at the University of WateTloo. The b3Sic concept behind both
the TL{>, r:lna th{:? Uf.:SD Adaptable A~S'?lnt.ier5 15 the ~~e of; a ce.ntral
machine LndepenJent core that is com~Qn to all versions of the
aBs9mbler This central core is augmented with machine specific code
t <0 han ri 1 ~ t n e pee 11) i aT" i t i ~ s of S!"~ chi -n (j i v i d I..J.3 1 in ~ r. h i n e '

For the 1. 5 release PDP-~ll and Z80 ,~5semb lers wi 11 be
adaptations took longer than one person-

This ODC!}''ni?qt !s inten,jed for ;; 'I'€3df:1" liJhl;j l~· alre~d!J fluent in
.at le~st one 'E,HisE~r:d'jltJ It:lngwagE>

USAGE

BefoT~ ~tt~mpting to ~i?~ute the assembler program for a
spf:cifl,t:-: machine; an opc~d~? 1"i Ie Cl80.0PCDDES Ol" 11. OPCODES) must be
locat?d on the sqstem disk. The erro~s file (ZBO.ERRORS OT 11. ERRORS)
contains the error messages that are us~d for e~rDr flagging during the
~ 5 $ ~~ iTt b 1. f.~~ ~ T h ~'~!'1 +~ i l t~~ i. SOl) t ;, fi r~ ~ 1 } 1·f t.! r~~. e d } i t m tJ s tal S 0 a p pea l' 0 nth e

TO US€; the UGSD ,ass€lmblpr, tyPf: A(ssem for'om the Command line.
This ~i!l SKecu~~ SYSTEM, ASSEMBLER, (T~e user should ~rrange that the
riql\t ·,,::,t-;~i\,P'-i of~ t;h~ a~sembler {PDP-1t or 1.80) h.ave t.hat title.)

The program displaysJ the version of the asssembler being
e :x e cut e d ;:H1 d a s ~ t' ,;l e <; t h ~ t the CUT' l' ~ n t '.U 1) or k of! i 1. e i s the 1) net 0 b e
assembled tf the~e is no (\Jrrert wQrk~ile then the prog~am asks which
fil'.: is to be ,£j'Ss~mblf;·d,

Page 99

The next prompt line is:

Output file for the assembled listing «CR> for none):

As usual for a console or printer output the wards CONSOLE or
PRINTER nU_Ist b~ f;:.~11Qlnwd b~:3 ':..olu'(u j, f:. CONSDLX':;:'" If the cclon is
neglected the uutput is sent to a file of the name given. At this
point. the pTQg~am reports whether O~ not the output devic~ (if any) is
on line The assembled code is written out to a file called
*SVSTEM.WRK.CODE which cannot be executed by itself but must be changed
to link in with a host file.

T r. e p T' 0 g T' 2d1~ t h f:HI s t ,;; i' 't ~ cl $ S e m b lin 9 the w Cl 1'" k f i 1 e j 1- 1 ;39 gin 9
er'i"OT"$ ~s they 3re f-ound, If' ,E:t'l ~j el't'Qr~ other than an 110
error, is found, a general message indicates the natu~e of the error
and also gives the option to continue or exit. The error message will
bet a k ~ n f'r om the ER R OR S f i 1 e i f P 0 S sib 1 e. r f t h l~ t i $ not p 0 S s :i b 1 e.. d (J e
to space limitations or the absence of the errors file, the error
message number 15 given. The assembly is aboTted if the 110 error
encountered is not due to data typed in by the user, otherwis~ the user
is prompted to try again. \S~e the complete list of Assembler syntax
eT''rorg 2!nn ffiitichinc, s.pt"?fii:i.c.. eT'T'OT~S in l~hle 6,)

The COD$cltl' cii;.;pla\jsl on t:h~ i.;!f-r, hand sid~? of the 'c~C'1'0er~, onf:'

dot TOT" eat:h Ilno cd:> ~~nde as'r:d'~mbled and a l:i'tH~ c.rH}nter ev(,:;.'r.'Y 50 lines.
When an include file is started, the console displays:

INCLUDE

At the end c~ the assembly the assembler program indicates that
it is finished and tells the user how m~n~ errors were found. In
addition an alphabetic symbol table i~ generated.

The refe~ence symbol table consists of three parts. The first
col u mn T' e p T' e S E\ n t s t tH~ S ~.~ m b t) 1 i d f:.' n t i f i 2;' 'r' ; the 'T:,; e c O~ (1, the 5 tJ (rd1 {J 1 t I:! f.h~ j

and the third, the lotation that it is defined or the value it has.
Actual values are givR~ for the symbols representing absolutes and
definition locations are given for the symbols representing labels.
The location number lS given as a hi-byte first number and corresponds
to the Index numbers on the left hand side of the listing. Only symbols
which have definition locations o~ absolute values have numbers in the
third ccluffi!1i othel' typ,~s IH~V(~ d,~:)sh'i:'s,o

Pagt: 10!)

PAGE - 1 PRIMARYZ FILE: #5: PRIMARY. Z

00001
MemoT' y a f t~·{'
0000:

initi;.all.ldt:ion:

OOOOi
0000:
t
OOOO~

OOOO~

P
0000;
OOOO~

OOOOl
0000:

10001
1000:
1004:
1007;
100H:
lOOE:
1012~

10151

FD
CD
FD
CD
FD
CD
C:'i

21 ~.,***
FDOB
,t'>'j ~

~;;' k,~t·k ",~.L

FDOH
;~\ ·1
~:.. 1- ~ .. ~:.~,"t"

FDOB
0090

l018!
1002* 181.0

FL.DPP'-{
8F.:Cr-1EM

B 1 D~:H-\
D2D'3it~

PH IM!''\RY

101S: SECREAD
1018! 00
1019: O!-~

lOlA: 0090

10lel 0002
101E: 0000
102.0 l 0010
10221 00
l023i 0817

1009* 2510
102;-; ;
1 O;2f,: 00
'lO;?iS i OA

10~2Dl OG10
102F; 00
1030; 1017
10a2:

B1READ

1082: B2READ

10:::-:i3 ~

1034:

Of)

· PRDC PR Il"lARYZ
6068

· EaU OBFDH
· EQU 9000H

· EGU 9000H
,EQU OSH + 1700H

.EGU 10H + 1700H

.E~U ISH L 1700H

LD IV, 'SECREriD
C,!\LL fLUF? '>(

L.u Iy' J bth'Ff...,D
C~LL F~' L .. r] F:) F~ \(

LD IVI B~-2nEAD
Cll,LL FLOPPY
JP SECENT

· BYTE $--$

BYTE O(\!·:
· WORD SE:C(o'il::N

, ~~HJR D 200~f

· WORD $~"$

· l,.HJRD PR !!"iARY
. IiYTE $-$

· WORD SEe DSI"' ..

;Rom-based floopy driver
iFirst location in memory of bo

;Entry point of b~otstrap
;Sector start of second bootstr

,Sector start of BIOS part 1
iSectcr start of BIOS part 2

;Primary bootstrap for ZILOG DO

;. G£'t block for ~ec.ond bootstrap

.' Gf:'t block rcn" par·t 1 of BIOS

,; Ge-t block for part 2 of BIOS

i dump into second bootstrap

I Unus,ed
; Read commtar~d

;Memory location for second boo

jNumbe~ o~ byte5 in boot
;Completion return address
;E~ror in return address
iCompletion result code
iDisk block of second boot

· EYTE $-$;Unused
· BYTE O~\H i Head comm~31"",d

. WORD SECMEN+300H iMemory location or BIOS part 1
L,·;ilR.D 2(~'/·~·~·~~ ; f~J~J;11rJt .. ~~r n-F bfjtes in 13108 p'-!'irt 1

. WORD $-$;Ccmpletion return address
WORD PRIMARY iErro~ return add~ess

,BYTE $-$;Completion result code
· WORD DtDSK :Disk block of BIOS part 1

;MRmory location cfd BIOS part

;Number of bytes in alaS part 2
;Cumpletion ~eturn address
,ErTor return address

Page 101

103C: 00
103D: 1817
l03F:

· BYTE $... $

· WORD B2DS!{
;Completion result code
jDisk block o~ BIOS part 2

103Fl · END

PAGE- 2 PRIMARYZ FILE: #5: PRIMARY. Z SYMBOLTABLE DUMP

AB
RF
PB

BIDSK
FLOPPY
SECENT

-
Absolute
Ref
Public

AB 1"110:
AB OBF!)!
AB 90001.

r .. !OTES:

LB Label un
DF - Def PR --
PV Private CS -

B1READ
PRIMARY
SECMEM

LB 1025;
LB 1000:
AD 9000;

Undefined
PT'CC

Constant

PRIMARYZ
SECREAD

Me Macro
Fe - Func

AS 1718:
PR _._--:

LB 101.8:

B2READ
SECDSK

The location valu~s in th? sVmbol table dump refer to the
locatlon~ ip t~G listing.

The ****'s in the listing call attentIon to the use of a label
not yet defirted.

LB 1032:
AB 1708:

if a
the listing ..

stal' (*> appears after the location number at the left of
it indicates that a forward reference occurring earlier in

the ar;semhly ha"3 bf>f'r! resolved. Then'-lmbf:~'r to thp IBf-t of the '*' is
t h (~ 1 0 cat ion w h ~H" e +; h r T' ':~ F 2 'f' F' n c F.: 0 C r: ~,) ~, .,.... 2 ~ { t.,! h ... 1 '8' t h 0 ret; rn b {~ T tot h t:~ i' t 9 h t
is the new contents of that location

L 9. 2 HIGH-l.EVEL SYNTAX

All ob.Jpcts (!!.~':~.a'red tfJ:c,re Lhf::' Fi1'i:;t: . PROC or . FUNt": are
a v ail a hIe of 0 r LI set r. '!" 0 t: g h c tI t t h f.' ass e in h 1 'J No cod e i sal lowed t 0 b e
generated before th~ first .PROC or . FUNC. The symbol table is reduced
at t.he beginnj.ng of each. PROC OT' FUNC tCl thf:' p0.inf; where it llU~5 at
the- start of the first. PROC OT' . FUf\V~

Only labels may begi~ in the fjrst column and may optionally
be follcbJp.d by a colon. Local labels most havf? "$' in the first
column and may be up to 8 digits long. If the statement has no labell
the fiT'st column most contain a space.

All assemblies must end with a END. However each. PROC or
. FUNC need not because they ara ended by the occur~ence of the next
,PROC or . FUNe. Orlly the last one need:; i:i . END.

Page 102

A general railroad diagram for all assembly files looks like:

/'

.

a.ny nen-cede
genera.ltng
oper'Q.llons

codeg~nerQttng
operQ.~J.,ons nnd

dtrecltves

~(
I

1---__ ---: EHD

Page 103

The non-code generating operations are:

.EGU, .DEF, . REF, . PAGE, . TITLE, . LIST, . MACRO, . IF

The code generating operations are anv other pseudo-ops and all
assemb1v code for the program.

1. 9. 3 EXPRESSIONS (one-pass restrictions)

Since the Adaptable Assembler makes onl~ one pass through the
source code, something must be assumed (upon encountering an undefined
identifier in an expression) about the nature of the identifier in
order for the assembly to continue. It is therefore assumed that the
undefined identifier will eventually be d~fined as a label, which is
the most probable case. Any identifier which is not a label must be
defined before it is used.

Labels may be e~uated to an expression containingeither labels
and/or absolutes. One must define a label befo~e it is uspd unless it
will simply be equated to another label. Local labels may not occur on
the left hand side of an equate (.EGU).

Local labels are mainly used to Jump around within a small
segment of code without having to use up storage area needed by regular
l.bel-s. The local label stack may hold up to 21 labels. These are cut
back every time upon encountering a regular label and are thus rendered
invalid. An example of the use of local labels is shown below, the
Jump to label $04 being illegal.

Page 104·

$03

REALLAB
$04

STA 4

JP NZ,S03

JP NZ,S04
. EGU $
. EGU $

iLEGAL USE OF LOCAL LABEL

iILLEGAL USE OF LOCAL LABEL

Identifiers a~e character strings starting with an alpha
character. Other cha~acters must be alphanumeric or the ASCII
underline (' '), Only the ~irst 8 characters are used by the assembler
even though more may he entered.

The following operators can be used in expressions processed
by this assemble~,

For un~ry operations:
'+' plus
,_ I minus
'''V , ones complement

For binary ope~ations:
'+' plus.
'- ,
I f

,~, (

I I '
t t.. '
I I ,

I

I & ~
I = I

I ,'!I I --..

minus
exclusive or
multiplication
truncating division
remainder division
bi·t wis;:~

bit wise
eqtJal (v~lid anly in . IF)
nat equal (valid only in IF

All constants must start with an integer 0-9.
All operations are applied to whole words.

The default radix is Hex fDr the leO version and Octal fOT the PDP-l1.

1.9.4 ASSEMBLER DIRECTIVES: OVERVIEW

Assembler dir-er:tives (also referred to as "pseudo-ops") allow
the programmer to instruct the as~emble~ to do various function5 othe~
than provide direct executable code. The following directives are
common to all UCSD versions but may differ from manufacturer's standard
syntax.

In the following pseudo-op descriptions s~uare brackets, [l,
are used to denote optional el~ments. If an element type is not listed
it cannot be used in that situation. As usual, angle brackets,<>,
denote meta symbols.

FoT" e~ample: (label] . ASCII "-(char-cater string)-II
indicates that a label may be given but is not necessary
and that between the double quotes must go the character
st~ing to be converted (not necessarily the words
"charar.ter string")_

Page 105

The foll~wing terms represent general concepts in the
explanation of each directive:

value = any numerical valuel label, constant, expression . •
valuelist = is a list of one or more values separated by commas.

idlist = a list of one or more identifiers separated bV commas.

expression = any legal expre5~ion a~ defined in Section 1.9.3.

identifier: integer l~st = a list of one or more identifier-integer
pairs seperated by ~omma~. The
colon-integer is optional in ea~h pair
and the default is 1.

Small examples are included after each p~eudo-op definition to
supply the user with a reference to the specific synta~ and form of
that directive. The larger examp Ie, inc luded in section 3.3.2, is used
to show the combined use and detailed examples of directive operations.

1.9.4.1 ROUTINE DELIMITING DIRECTIVES

Every assembly must include at least one .PROC o~ . FUNC, and
one . END, even in the case of stand-alone code which will not be linked
into a Pascal host (i. e. an interpreter>. The most frequent use of the
assembler, hO~lever, will be small routines intended to be linked with a
Pascal host. In this case, .PROCs and . FUNCs are used to identify and
delimit the assembly code to be accessed by a Pascal external procedure
or function. The . END appears at the end of the last routine and
serves as the final delimiter.

References to a .PROC or . FUNC are made in the Pascal host by
use of EXTERNAL declarations. At the time of this declaration the
actual parameter names must be given. For example, if the Pascal
declaration is:

PROCEDURE FARKLE(X, Y: REAL); EXTERNALi

the associated declaTation for the .PROC ~ould be

PROC FARKl.E,4

A .PROC, . FUNC, or any assembly routine should be inserted into
the *SYSTEM.LIBRARY (execute LIBRARIAN) 50 that it can be referenced by
the *SYSTEM.LINKER and linked in at run time An alternate method ~ould
be to execute the LINKER and tell it what files to link in. Either
method works. Howeverl if the Pascal host is updated and the assembly
routines aren't in the *SYSTEM.LIBRARY, the linker will have to be
executed after each update. Therefore, we suggest that the routines be
inserted into the *SYSTEM. LIBRARY to avoid this repetition. If the

Page 106

linker is called auttHhstlcally using the Runc:ommand, it will search
the *SYSTEM.LIBRARY for the appropriate definition of the assembly
routine and link the two together.

· PROC

· FUNC

· END

1.9,4.2

· ASCII

Identifies a procedure that returns no value. A .PROC is
ended by the occurrence of a new .PROC,.FUNC, or . END.

FQRt'1:

EXAMPLE:

.PROC <identifier>C,expression]

[expression) indicates the number of words
of parameters expected by this routine.
The deft~ult is O.

. PROC DLDRIVE.2

Identifies a function that returns a value.
Two words of space to be used fOT the function value
will be placed on the stack before any parameters
A . FUNC is ended the same way as the .PROC .

FORM:

EXA!'1PLE~

. FUNC <identifier>C,expressionl

[exp~essionJ indicates the number of words
of parameters expected by this routine.
The def~ult is 0,

. FUNC RANDOM. ·4·

Used to denote the physical end of an assembly_

Converts cha~acte~ values to ASCII equivalent bijte constants
and plac@s the equivalents into the cod~ stream.

FORM: r. 1 abe 1) . AS C I I l! <: c h a 'r a. c t e 1" s t T' i n 9 > ,.
where <character string> is any string of printable
ASCII chaT'acters~ including a space. The length
of the string mu~t less than 80 characters. The
double quotes are used as delimeters for the
characters to be converted. If a double quote is
dt?~ired· in the string; it must be specifically
inserted ustng a . BYTE.

Page 107

. BYTE

. BLOCK.

Page 108

EXAMPLE: · ASe r r lIHELLO"

for the in5~rtian of AB~CD the code must be
constructed as:

· ASCII
· BYTE
· ASCI I

Note: The 34 is the ASCII number far a double quote in hex.
The representation actually used will depend on the
default radiI of the particular machine in use .

Allocates a byte of space into the code stream for each value
list~d_ Assigns the assoc:iated label, i-F any, to the address
at which the byte was stored. Expression must have a value
between -128 and +255. I' the value is outside of this range
an error will be flagged.

FORJ1: [1 abe 1] . B VTE rVf.l.luelistJ

the default for no stated value is 0

EXAMPLE:.: TEt1P . BYTE 4

AlloCBt~s a block of spac~ jnto code stream for ~ach value
listed Amount allocated is in bytes. Associates the label
(if pr~sent) with the starting address of the block allocated.

[1 f~ bel J . BLOC f.<.

<:length:> is thr:> th~ nl~mb·eT' of tH~t~s to held the <:value:>
s pee i fie d T h P. d f.~ fat! 1. t .p 0" n (1 s t r3 ted v {:t 1 U ~ i sO.

EXAMPLE: TEMP . BLOCK 4 , 6

the a$sociated output would be:
Of;)

06 (f D wr' h y t ~~ ~ ll,~ i tilt he val tJ e 06)
06
06

. WORD

. EQU

. ORG

Allocates a word of space in the code stream for each value
in the v~lu~list. As~o(jatp.s th€* decla'ration label with the
word space allocation.

FOR~1:

EXAMPLE:

EXAMPLE:

CIa bel] . WOR D <valuelist>

TEMP . WORD 0,2,4, ...

the associated output would be:
0000
0002
000,,1 (words with these values in them)

Ll . WORD L;2

if L.C l!J·mt;; 50 4~t ttH! ,EQU
t h Eo ;~ ~ soc i .;,;y t ~ d Gut; p n t IJJ n v 1 d be:

0050 (* assign(r,t::nt due to tho L2 valLIe *)

0005 (* a~signment due to tho WORD 5 *)

Assigns a value to a label. Labels may be equated to an
~?~pT'e!i!:~!:ion cont~ining either lables and/or absolutes. Dne
must deFine a label before it is used unless it will simply
be equated to another label. A local label may not appear
on the left hand side of an equate (.EGU).

FORI'-1: . EGU <value:>

R6

S IJ~ t ~, t h ~ cur T' en t 1 0 cat i 0 it C 0 U T'I t ? r (L C) tot h e 'of a 1 u e 0 f the . OR G .
It would normally be used in a stand-alone program. For example,
there is one. ORG In the 8G80/Z80 interpreter .
. ORG .L6 cuNLenUy impiemented oni..lj 60ft advancing the iocation c..oun..tetL. It.-iA
not cunnentilj po~~ibie to ~et the iocation count~ back.

Page 109

1.9.4.3 MACRO FACILITY DIRECTIVES,

A macro is a named section of text that can be defined once and
repeated in other plac~s simply by using its name. The text of the
macro may be parameterized, so th.::1t each invocation results in a
different version of the mac~o contents.

At the invocation point, the macro name is followed by a list
of parameters which are delimited by commas (except for the
last one, which is terminated by end of line or th~ comment indication
('i ') >. At invocation time, the text of the macro is inserted
(conceptually speaking) by the assembler after being modified by
parameter substitution. Whenever i.n (where n is a single decimal digit
greater that zero) occurs in the macro d~'inition, the text aftha nth
parameter is substituted. Leading afid trailing blanks are stripped
from the parameter before the substitution. If a reference occurs in
th~ macro definition to a parameter not provided in a particular
invocation, a null string is substituted.

A macro definition may not contain another macro definition. A
d e of i nit ion can c e r t a i n 1 Y I h owe v e r lin c 1 u d Po ma c r 0 in v 0 cat ion s . T h i 5

"nesting" of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing file (if
listing is enabled at the pOint of invocation). Macro expansion text
i s f loa 9 9 e d lin the lis tin 9 , b y a ' #' JUs tie f t 0 f e a c hex pan de d line.
Comments occurring in the macro definition are not repeated in the
expansion .

. MACRO Indicates the start of a macro and gives it an identifier .

. ENDM

Page 110

Indicates the end point of a MACRO .

FORM:

EXAMPLE:

. MACRO <identifier>

(ma.c1"'O body)

. ENDM

. MACRO HELP
STA 'X1
LDA %2

. ENDM

-(comment :>
<: comment :>

The listing where the macro call is made may look like:

1.9.4.4

HELP FIRST. SECOND
51"1'.,.
LDA

FIRST
SECOND

The 5tatem~nt HELP, calls th~ macro and ~ends it two
parameters. FIRST and SECOND. These parameters are in turn
referenced inside the macro using the identifiers Xi for the
va~iable FIRST, and 1.2 for the variable SECOND.

CONDITIONAL ASSEMBLY DIRECTIVES

Conditionals are used to selectively exclude or include
sections of cod~ at a$sembly time. When the assembler encounters an
. IF directive, it evaluates the associated expression. In the simplest
case, if th~ ~xr~eSSiD" is falsel the assemble~ simply di5ca~ds the
text !.inti 1:~ E!\!D(1.·E 'if~.'Elrhert If· there is ,~n ELSE direr.:tivp. bet{z.!fH~n

t h flo r Fan d . ENOC d .1 T' ~ c t: :i \l i~ Sit h e t ext b ~p 0 'r ~ the . ELSE i os s e 1 e r. ted if
thf~ s'q)T't:s<;;, on is t1'U€~. mnd the t~xt !3ftr~T' the ELSE if! the condition
is false The unassembled part of the condition~l will not be included

Conciitjonals may b~ nested.

Th~ condit tiJn~l ff'XPT8Si sion ti!j~(e~~ one of tldO fOT'ms. The first
is the no~mbl a~ithm.tic/logical expres~ion used elsewhere in the
assembler. This typm of exp~essicn is considered false if it
ev~luAte~ tn zerOi true othe~wise. The second farm of conditional
expr-E'SSlOn is COmf.H~·r'j,son for' equality or inequality (indicated by '=1
and ' . "~.: ~ r e ~;q) i? C t i \/ ely '- 0 n € !(i~;~ ~J C. 0 m paT' B 5 t r i n 9 s • c h a rae t e -r' S t Of'

a~tthmRttc!logical expressions.

· IF

· ENDC

· ELSE

ldentlfias the beglnning of the conditional_

Identif.:ies th~ alte-rn3te to the. IF. If -the conditionall
exp~ession is egual to 0 then the else is used.

FORM: [lr.ibel] IF <expr~ssion>

. ELSE (* only if there is an else *)

. ENDC

Page iii

1.9.4.5

where the expression is the conditional expression to be met.

EXAMPLE: · IF LABELI-LABEL2 iarithmetic exp~ession
This text assembled only if subtraction
result is now zero

IF "%1" ;:::"STUFF!I icomparison expression
This text assembled if subtraction above
was true and if text of first parameter
(assume we a~e in macro) is equal to "STUFF"

.ENDC iterminate nested condo

· ELSE
This text assembled if subtraction result

i was zero

· EN DC iterminate outer level
iconditional

PASCAL HOST COMMUNICATION DIRECTIVES

The di~ective5 .CONST, . PUBLIC, and . PRIVATE allow the sharing
of information and data space between an assembly routine and a Pascal
host. These external referenc.es must eventually be resolved by the
Linker. Refer to Section 1.8 Linker, for further details.

.CONST

. PUBLIC

Page 112

Allows access o~ globally declared constants in the PASCAL host
by the assembly routine .. CaNST can only be used in a program
to replace 16 bit relocatable obJects.

FORM: ,CONST <i d 1 is t)·

EXAMPL.E: <* see example after . PRIVATE *)

Allows a va~iable declared in the global data segment o~
the PASCAL host to be used by an assembly language routine
and the host program.

FORM: .PUBLIC <idlist>

EXAMPLE: <* see example after . PRIVATE *>

.PRIVATE Allows va~iables of the assembly routine to be sto~ed in the
global data segment and yet be inaccessable to the Pascal host.
These va~iables retain their values for the entire execution of
the p-rog-ram .

FORM: . PRIVATE <identifier: integer list>

the integer is used to communicate the number of
words to be allocated to the identifier.

EXl'~lPLE: (* for .CONST, . PRIVATE, . PUBLIC *>

Given the following Pascal hast program:

PRO(~RAM EXAMPLEi
CONST SETSIZE=50; LENGTH=80i

VAR I,J.F/HOLD,COUNTER,LDC: INTEGER;
LST1:ARRAY[O .. 9J OF CHAR,

BEGIN

END.

and the following section of an assembly routine:

_ CONST
. PRIVt .. TE
. PUBLIC

LENGTH
PRT .• LST2: 9
LDCI I I J

This will allow the canst LENGTH to be used in the assembly
routine almost as if the line LENGTH. EGU eo had been
written. (Recall the limit~tinn mentioned above for the use
. CONST identifiers.) The vaT':i~3bles LOC, I. J to be used by both
'the Pase a 1 hO$ t and tile assemh 1 y~. outi ne, and the variables
PRT, LST2 to be used only by the assembly routine. Furthe~,

the LST2:9 causes the va~iable LST2 to correspond with the
b fl gin n i n goof a 9 tal 0 1" d b 1 () c~· 0 oF spa c e i nth e 9 1 t., b aId a ta
segment"

Page 113

1. 9. 4. 6 EXTERNAL REFERENCE DIRECTIVES

The use of . DEF and ~REF is similar to that of . PUBLIC .. DEFs
and . REFs associate labels between assembly language routines rather
than between an assembly routine and a Pascal host program. Just as
with . PRIVATE and .PUBLIC~ these external references must eventually be
resolved by the Linker. If such resolution cannot be accomplished, the
Linker will indicate the offending label. Naturally! the assembler
cannot be expected to flag these errors, since it has no knowledge of
other assemblies.

. DEF

. REF

· LIST
&

· NOL.IST

· PA(-1E

Identifies a label that is defined in the current routine
and availabl~ to be used in other .PROCs or . FUNes.

FORfYi. .DEF <identifierlist>

EXAt1PLE: <* see listing in section 3.3.2.3 'O~ example *)

Identifies a label used in this routine which has been
declared in an external .PRQC or . FUNC with a .DEF.
During the linking proce$s~ corresponding .DEFs and .REFs
are rna t t: h e d .

FORM: . REF <identifierlist>

EXAMPLE: <* see listing in section 3.3.2.3 far example *'
Nate: The .PROC and th0 . FUNC directive also generates

a . DEF l~ith the same ntune. This allows assembly
procedures to call. PROC and . FUNes if they have
been defined in a . REF.

LISTING CONTROL DIRECTIVES

Allow. selective listing of assembly routines.
If no Dutput file is declared then the default is CONSOLE:
when a . LIST is encDuntered. The . NOLIST is used to turn off
the .LIST option. Listing may be turned on and off
rRpeatedl~ within an assembly.

FORM: , LIST 01" . NOLIST

Allows the programmer to explicitly ask for top of form
page breaks in the listing.

i6 no ruUng ouitpld nile M ,t,pecJ..6ied then au. . LIST and .NOLIST
dhc.e.c.Uvualte .6imply ignoJted.

. TITL.E

1, 9.4.8

. INCLUDE

FORM: . PAGE

Allows the titling of each page if desi~ed. The title may be up
to 80 cha~acters in length. At the start of each procedure the
title is set to blanks and must be T'eset· if title is desired"
The title;

INTERP SYMBOL TABLE DUMP

shown in S~ction 1.9.1 was caused by a . TITLE directive. **

FORM . TITLE <:t i t 1 e:'-'"
where <tit}p> is a string

EXAMPLE .1ITLE GRC12 interpreter

FILE. DIRECTIVES

Causes the indicatgd source file to be included at that point .

FORM: . INCLUDE <file identifier. TEXT> where the file
identifier is any file to be included. Only spaces
are allowed between the end of the file name and the
end o~ the Includ~ line .

CORRECT EXl\MPLE.: . INCLUDE SHORTSTART TEXT

CORRECT EXAI'1PLE: . INCLUDE SHORTSTART.TEXT
i callo; starter

IN-CORRECT EXAMPLE: . INCLUDE SHORTSTART.TEXT calls starter

For a list of gene~al errors and also notes on the zao and PDP-11 based
m /H~ h j !1 !'.'''! S :; p ;::, T.3 h 1 e 6.

** Note:' The.ti:Ue iJ.> only c.£.eCVted a;t the -6.taJtt 06 .the {yUe. In -6 eetion 1.9. 1 the :ti.:tle
SYMBOL TABLE DUMP Wa6 not f.:,et by a . TITLE cUJtec.:tive. That heading iJ.> a,fu)aY-6
tL6 ed on page!.> c.ontMMng f.:,ymboUabie dump-6. Upon M-6 emblinga 6wvthetL
pJtoc.edwr.e the heading pJtinted JtetWtn6 to what il WM f.:,et to be60Jte the
-6ymboltabie dump.

Page 115

- Notes -

WARNING

********************* ***************
* SYSTEM INTRINSICS * * Section 2. 1 *
********************* ***************

Version 1. 5 September 1978

Mast of the UCSD int~insics assume that users are fluent in the
use Or PASCAL and are experienced in the use of the system. Any
necessary range or validity checks are the responsibility of the useT'.
Since some of these intrinsics do no checking for range validity. they
may easily cause the system to die a horrible death. Those intrin5ic~
which are part1cularily dangerous are noted as such in thei~
descriptions.

PARAMETERS

Required parameters are listed along with the function/procedure
identifier. Optional parameters are in [square bracketsJ. The default
values for these are in {metabrackets} on the line below· them.

NOTE

Following a~e some definitions of terms used in these
documents. They tend to take th~ place of formal paTameter~ in the
dummy declaration headers that preface each description of a particula~

routine, or set of routines,
ARRAY a PACKED ARRAY OF CHARacterG
BLOCJ.(. one dl.·sk blQckl {512, bytes}

BLOCKS
BLOCKNUMBER

BOOLEAN
CHARACTER
DESTIN/,TION

EXPRESSION
FILElD

INDEX

NUMBER

RELBLOC~

SIMPLVARIABLE

an INTEGER number of blocks
a nab S \1 11) ted i '2 k b 1 0 c k add T' e s s

any BOOLEAN value
any expression which evaluates to a character
a PACKED ARRAY OF CHARacters to write into or

a STRING, context dependent
part or all of an exp~essionJ to be specified
a -filt? identifier~ ~'i:ust be

VAR fileid: FILE OF <type>;
or TEXT;
01' INTERACTIVE;
OT"' FILE;

an index into a STRING or PACKED ARRAY OF CHARacters,
context dependent or as specified.

a literal or identifier whose type is either INTEGER
or REAL.

a relative disk black address. relative to the start
of the file in co~textj the fir~t blork beIng
block zero.

any declared PASCAL va~iable which is oT one of the
f (I 1 1 m~J 1. n 9 TYP E s: :

Page 117

SIZE

SOURCE

SCREEN
STRING

TITLE
UN I TNllMBER

VOLID

BOOLEAN CHAR REAL STRING
or PACKED ARRA.Y[..] OF CHAR

an INTEGER number ofbyte~ or characters; any integer
VJ..':jlup.

a STRING or PACKED ARRAY OF CHARacters to be used as a
T'ead-only array, context d~pendent or as specified. **

an array 9600 bytes long; or as needed.
any STRING, call-by-valuD unless otherwis. specified,

i. e. may be a Q,lIoted stT'ing, or string val'iable
or function which evaluates to a STRING

. a STRING con5t~ting of a file name
physical device number used to determine device handler

used by the interpreter
a volume identifier, STRING[7J

** i. e. in .6vung in.tJzA.n.6ieo, SOURCE i.6 go-Lng to have to be a .6;tJU,ng, -Ln A..nvun.6ieo that
deal with pac.ked aJVLay.6 06 c.hafLac.telt-6, it may be eitheJt. A wOJtd 06 c.auUon
about U6ing STRING.6 in {n:tJvtn.6ieothat expec.t c.ha.Jta.c.teJt aJVLay.6, the zeJtoeth
Uement 06 :the .6.tJU.ng -fA the length byte, whic.h may c.aU6 e the pJtogJtammeJt
.6ome unexpec.ted pJtoble.m6. (Wvr.e he not awMe 06 that 6ac.t!) ed.

Pqge 118

********************* ***************** * STRING INTRINSICS * * Section 2. 1. 1 *
********************* *****************

Version l.S September 1978
FUNCTION LENGTH (STRING) : INTEGER

Returns the integer value of the length of the STRING.

Example:

GEESTRING := '1234567';
WR ITELN (LENGTH (GEESTR INC),' " LENGTH (I ,));

Will print:

7 0

FUNCTION POS (STRING I SOURCE) : INTEGER

This function returns the position of the first occurrence of
the pattern in SOURCE to be scanned. The INTEGER value of the position
of the first cha~acter in the matched pattern will be returned; or if
the pattern was not found, zero will be returned. Example:

STUFF := 'TAKE THE BOTTLE WITH A METAL CAP';
PATTERN := 'TAL';
WRITELN(POS(PATTERN,STUFF»;

Will p"rint:

26

FUNCTION CONCAT (SOURCEs) : STRING

There may be any number of source strings separated by commas.

ThislTunction returns a st~ing which is the concatenation oT
all the str-i.ngs passed to it. Ex.ample~

SHORTSTRING := 'THIS IS A STRING';
LONGSTRING : = 'THIS IS A VERY LONG STRING. 'i

LONGSTRING := CONCAT('START ',SHORTSTRING, '-', LONGSTRINO)J
WRITELN(LONGSTRING);

Will print:

START THIS IS A STRING-THIS IS A VERY LONG STRING.

Page 119

FUNCTION COpy (SOURCE I INDEX I SIZE) : STRING

This function return~ a st~ing containing SIZE characters
copied from SOURCE starting at the INDEXth position in SOURCE.
Example:

TL := 'KEEP SOMETHING HERE';
WR ITELN (KEPT) i

Wi 11 print:

SOME.THING

KEPT

PROCEDURE DELETE (DESTINATION , INDEX I SIZE)

COPV(TL,POS{'S',TL),9);

This procedure removes SIZE characters from DESTINATION
starting at the INDEX specified. Example:

OVERSTUFFED: = 'THIS STRING H~~S F.CtR TOO MANY CHARACTERS IN IT. 'j

DELETE(OVERSTUFFEDJPOS('HAS',OVERSTUFFED)+3,8)~

WRITELN(OVERSTlWFED);

Wj 11 print:

THIS STRING HAS MANY CHARACTERS IN IT.

PROCEDURE INSERT (SOURCE I DESTINATION I INDEX

This inserts SOURCE into DESTINATION at the INDEXth position in
DESTINr',T InN.

Example:

ID : = I INSERTIONS' I
MORE := ' DEMONSTRATE';
DELETE (MORE, LENGTHCMORE) , l)i
INSERT O'iOREI ID. POS ('IO! 1 10)) i
WRITELN(ID);

Will print:

INSERT DEMONSTRATIONS
PROCEDURE STR (LONG I DESTINATION)

Page 120

This converts thy lang integer LONG into a st~ing. The
~esulting string is placed in DESTINATION. See section 3.3.3 for mo~e
about the use of long integers.

Example~

INTLONG ;= 102039503;
STRCINTLONG,INTSTRING);
INSERT('. ~ I INTSTRING, PRED(LENGTH(INTSTRING»);
WRITELN('$', INTSTRING)i

Will print:

$1020395.03

Note about using st~ing$ and st~ing functions:

In order to maintain the integrity of the LENGTH of a st~ing,

only st~ing functions or full string assignments should be used to
alter strings. Moves and/or single characte~ assignments do not affect
the length of a string which means it probab~ecome$ wrong. The
individual elements of STRING are of t~pe CHAR and may be indexed
1 .. LENGTH(STRINO). Accessing the string out~ide this range will have
unpredictable ~e$ults if range-checking is off or cause a run-time
error (1) if range checking is on.

Page 121

- Notes -

age 122

******************************* *****************
* INPUT AND OUTPUT INTRINSICS * * Section 2.1.2 *
******************************* *****************

Version 1. 5 September 1978

PROCEDURE RESET (FILEID, [TITLE])j

PROCEDURE REWRITE (FILEIDI TITLE)j

These procedu~es open files for reading and writing and mark
the file as open. The FILEID may be any PASCAL structured file, and
the TITLE is a st~ing containing any legal file title.

The difference between them is that REWRITE creates a n.w file
on di~k for output filesi RESET slmply marks an already existing file
open for 1/0. (Note: if the device specified in the title is a non
directory structured device, e. g. PRINT~R: I th~n the file is opened
Tor in put IOU t put, 0 r bot h in e i the rca 5 e.) 1ft h e f i 1 e wa sal rea d y
open. and another RESET O~ REWRITE is attempted to it~ an error will be
returned in IORESULT. The -filei's state will remain unchanged.

RESET (FILEID) witho~jt optional string parameter urewinds" the
file by setting the -file pOinters back to the beginning (zero th
~ecoT'd) oT the -file. The boolean functions EOF and EOLN will now be
set by the implied GET in RESET.

These procedures behave differently with files of type
INTERACTIVE. RESET on files of types other than INTERACTIVE will do an
initial GET to the file, setting the window va~iable to the first
l' e COT' din the f i 1 e (as des c rib e din Je n 5 en & Wi r t h) . RESE Ton a of i 1 e
of type INTERACTIVE will not do an initial GET.

PROCEDURE UNITREAD
PROCEDURE UNITWRITE

UNITNUMBER. ARRAY, LENGTH,
UNITNUMBER, ARRAYI LENGTH.

THESE ARE DANGEROUS INTRINSICS

[BLOCKNUMBER], [INTEGER]);
CBLOCKNUMBERJp [INTEGER]);
{ sequential} { 0 }

These procedures are the low-level procedures which do 110s to
varioun d~v,.c.es. The UNITNUMBER is the'· integer name of an 110 device.
The ARRAY is anq de~lared packed a~raYI which may be subscripted to
indicate a starting position. This is used as the starting address to
do the transfers from/to. The LENGTH is an integer value designating
the number of bytes to transfer. The BLOCKNUMBER is required only when
u~ing a hlock-structured device (i. e. a disk) and is the absolute
blocknumber at which the t~ansfer will start from/to. If the
BLOC~NUMBER i5 left out, 0 is assumed. The INTEGER value is optional
(assumed 0) and indicates (if 1) that the t~ansfer is to be done
asynchronously. The blocknumbe-r is not necessary. A '"Yl.' wut be
sufficient, (See UN!TBUSY and UNITW?,IT.) (*when U6iYl.g the aoYYl.C.h!tOYl.OU6 I/O
6aUlitieA *)

FUNCTION UNITBUSV (UNITNUMBER) : BOOLEAN;

This function returns a BOOLEAN value, indicating if TRUE that
the device specified is waiting foT' an 110 transfer to complete.

Example:
UNITREAD(2{non-echoing keyboa~d}jCH[OJf

l{for one character}, {no block no.}, l{async:hronous},);
WHILE UNITBUSY(2){While the READ has not been completed} DO

WRITELN(OUTPUT,'I am waiting for you to type something'};
WRITELN(OUTPUT, 'Thank you for typing a .. I CH[OJ)i

Execution of this example will continuously type out the line
'I am waiting far you to type something' until a character is struck on
the keybo;:~T'd, Suppose a '!' were tlJpedo The me'ssage 'Thank you foT'
typing a·' will then appear, and program execution will proceed
nOT'ma 11 y.

PROCEDURE UNITWf-\IT (lINITNUMBER) i

This waits for the sppci'ied d.vice to complete th~ 110 in
prog~es~. It can be simulated by:

WHILE UNITBUSV(n) DO {waste a small amount of time};

PROCEDURE UNITCLEAR (UNITNUMBER);

UNITCLEAR cancels all IIOs to the spe~iFied unit and resets the
hardware to its power-up state.

FUNCTION BLOCKREAD
FUNCTION BLOCKWRITE

FILEID, ARRAY, BLOCKS.
FILEID, ARRAY, BLOCKS.

(RELBLOCKJ)
[RELBLOC~'{ J)
{ sf'quential }

INTEGER~
INTEGER,

These functions retu~n an INTEGER value e~ual to the number of
blocks of data actll(~lly tT'ansferred. The FILE must be an untf,~ped file
(1. e. F : FILE;). T Ii f.\ 1 eng tho -f' AR R A V 5 h 0 U 1 d b e ani n t. e 9 Po r m u 1 tip 1 e 0 f
bytes-per-di~k-block. BLOCKS is the number o~ blocks you want
tran':;ft:>rr'ed. RElBLOC!, is the blocknomoC\;, reL:::"tive to the staT't 0; the
file# the zeroeth block being the first block in the file. If no
RELBLOCK is specified, the reads/writes will be done sequentially. A
random access 110 moves the file point~rs. CAUTION should be exercised
when using thesel as the array bounds a~e nat heeded. EOF(FILEID)
becomes true when the last block in a file is read.

Page 124

Pf~GCE.DURE CLOSE (FILEID OPTION) i

OPTION may be null or " LOCK't or " NORMAL', or " PURGE', or
',CRUNCH', (Note the commas!)

If OPTION is null then a NORMAL close is done, i. e. CLOSE
simply sets the file state to closed. If the file was opened using
REWRITE and is a disk file, it is deleted from the directory.

The LOCK option will cause the disk file associated with the
FILEID to be made permanent in the directory if the file is on a
dfrectD~y-structured device and the file was opened with a REWRITE;
othe~wise a NORMAL close is done.

The PURGE option will delete the TITLE as~ociated with the
FILEID fram the directory. The unit will go off-line if the device is
not block structuT~d.

T h 1;:' C R UNC Hop t i. 0 n i ~~ as y n tun d e fin (~ din ll' hat i t wi 11 do.....
The intent is to ID~k a fil~ with the minimum number of blocks of
u.eful information.

All CLOSEs rega~dlegs of the option will ma~k the file cloned
and will make the implicit variable FILEIDA undefin~d. CLOSE on a
CLOSEed file causeG no action.

FtJNCTHlt ... l EOF (FILEID) : BOOLEAN.;
FUNCTION EOLN (FILEID) : BOOLEANi

If (FILEID) i's nt,1t present, the fileid INPUT is assumed (e. g.
IF EOF THEN ... >. EOLN and E.OF return fl.~.lHe d'fter the file specified is
RESET. They both return tr-ue on a c lased fi le. When EOF (FILEIO) is
t~ue~ FILEIDA is undefined. When GET (FILEID) sets FILEIDA to the EOLN
character OT the EOF character; EOLN (FILEID) will return true, and
FILE!'fY" (in a FILE OF CHAR) will be s~t; to a bIanlc, If) while doing
puts or writ.s at the end of a file, tho file cannot be ~~panded to
accommDdate th~ PUT or WRITE~ EOF(FILEID) will return true.

FUNCTION IORESULT INTEGER;

I~d"t;(?r any I/O opf~r.ations IORESULT c.ontains an INTEGER value
corresponding to the values given in Table 2.

Page 125

PROCEDURE GET (FILEID);
PROCEDURE PUT (FILEID)i

These procedures are used for operations on typed files. A
typed file is any file for which a type is specified in the variable
dec 1 a rat ion lie. ' FILE I D : FILE OF <: t Y P e" t • T his i s a sop p 0 sed to
untyped files which are simply declared as: ' FILEID: FILEi'. 'F: FILE
OF CHAR' is equivalent to 'F: TEXT'. In a typed file each logical
record is a memD~y image fitting the description of a variable of the
associated <type>.

GET (FILEID) will leave the contents of the current logical
record pointed at by the file pointers in the implicitly declared
"window" variable FILEIDA and increment the file pointers.

PUT (FILEID) puts the contents of FILEIDA into the file at the
location of the current file pOinters and then updates those pOinters.

PROCEDURE READ{LN} (FILEID, SOURCE)i

PROCEDURE WRITE{LN} (FILEIDi SOURCE)j

These procedures may be used only on TEXT (FILE OF CHAR) or
INTERACTIVE fi les for. 110. If 'FILEID, , is omi tted, INPUT OT' OUTPUT
<whichever is appropriate) is assumed. A READ(STRING) will read up to
and not including the end-of-line character «a carriage return» and
leave EOLN(FILEID> true. This means that any subsequent READs of
STRING variables will return the null string until a READLN or
READ(chara~acter) is executed.

There are three files of type INTERACTIVE which are
predeclared: INPUT, OUTPUT, and KEYBOARD. INPUT results in echoing of
characters typed to the console device. KEYBOARD does no echoing and
allows the programmer complete cont~ol o~ the response to user typing.
OUTPUT allows the user to halt or flu~h the output.

PROCEDURE PAGE (FILEID);

This prOCedUT'E'1 as described in Jensen & Wirth <ibid.), sends a
top-of-farm (ASCII FF) tQ the file.

PROCEDURE SEEt{ (, FILEID, INTEGER) i

This procedure changes the,file pointers so. that the next GET
or PUT frDm/to the file uses the INTEGERth record of FILEID. Records in·
files are numbeT'ed from O. A GET or PUT must be executed between
SEEK, calls since two SEEKs in a row may cause unexpected, unpredictable
Junk to b,~ held in the window and associated' buffers.

Section 2.1.3 reserved for future use

Page 127

- Notes -

P.:.lnn 1:>P.

CAUTION

*********************************** *************** * LOW LEVEL GRAPHICS INTRINSICS * * Section 2.1.4 *
*********************************** ***************

Version I. 5 September 1978

(*U,6e.d only with the. TERAK 8510a. miCJtoc.omputeJt*)

Thes~ routines do no range checking of the parameters they are
passed. If any of the paramteT's are "out of range", these routines
will happily move bit patterns throughout main memory, much to the
dismay of the operating system and your program.

See Table 4 for modes and penstates fQ~ these intrinsics.

The DRAW intrinsics are available only for the Terak 8510a in
this r~lea5e. Additional display units will be supported in later
releases, but no details are currently available. Probable implementa
t ion (s): T e k tor 0 nix 4006.

PROCEVURE VRAWBLOCK(VAR SOURCE; SRCROW,SRCX,SRCY:INTEGERj VAR VEST; VSTROW,VSTX,VSTY:INTEGER;
CNTX, CNTY, MOVE: INTEl

(* non~ of these are optional *)

This p~o~edure is w~itten for the Terak 8510a graphic displa~
mode. The TERAK screen displays words consecutively with the most
significant bit of the word on the right. DRAWBLOCK will work only on
screens who;. graphics operates in thi~ manner. WARNING: No range
checking is performed.

DRAWBLOCK transfers a bit matrix SOURCE, which starts on an
word boundary, to a specified point (STARTY, STARTX) in the bit matrix
SCREEN. All parameters are integers except SCREEN, which is a bit
matrix o~ width ROWSIZE (1. e. BITMAP: PACKED ARRAY[O .. MAXROWJ OF PACKED
ARRAV[O .. ROWSIZE-IJ OF BOOLEAN;) The SOURCE is SIlEX bits wide by
SIZEY bits high. The first COPYX bits of each row are copied into the
destination. MODE is defin~d in TABLE 4.

VAR
PRDCEDURE DRf\WLINE (RANGE: INTEGER; VAR SCREEN; ROWWIVTH, XSTART, YSTART, VELTAX,

VELTAY, PENSTATE: INTEGER);
(* none of these are optional *)

In order the parameters are: INTEGER IDENTIFIER, ARRAY
IDENTIFIER. and the remaining six, INTEGER EXPRESSION. RANGE will
contain the results of a Radar scan. This parameter is untouched
unless PENSTATE is sent as 4. The value returned is the number of dots
that would hav. be~n drawn before encountering an obstacle. SCREEN may
be subscriptpd to determine a starting position in the array. ROWWIDTH
is the width of SCREEN in number of words; this determines how DRAWLINE
will consider the rectangularity of the array. XSTART is the starting
horizontal coordinate; YSTART is the starting vertical coordinate.
DELTAX is the distance to. move in the horizontal plane. DELTAY is the
distance to move in the vertical plane. PENSTATE controls the action
taken; sea TABLE 4.

* * fJ 0 te.: in oltdeJt to U,6 e. the6 e. ltO utine6 , the. t.M eJt mt.M t add
the deelaltation6 a6 above., a.nd the. lte6eJtve.d woltd EXTERNAL;

Page 129

-~ares.. -

Page 130

** ***************** * CHARACTERARRAV MANIPULATIONS INTRINSICS * * Section 2.1.5 *
** *****************

Version I. 5 September 1978

CAUTI.ON

Th e·s e in t T' ins i c: s aT" e a 11 by teo 1" i en ted. Use them wit h car e.
Read the descriptions carefully before trying them out as no range
chec.king of any sort is performed on the parameters passed to these
routines. The p~ogTammer should know exactly what he is doing before
he does it since the system does not protect itself from these
opera'tiofHL

FUNCTION SCAN (LENGTH, PARTIAL EXPRESSIONI ARRAY) : INTEGER;

This Funtt10n returns the number of characters from the
starting position to where it terminated. It terminates on either
matching the specified LENGTH or satisfying the EXPRESSION. The ARRAY
should be a PACKED ARRAY OF CHARACTERS and may be subscripted to denote
the starting point. If the exp~ession is satisfied on the character at
whir.::h ARRAY is pointed, the value returned uJill be zero. If the length
passed was negative, the number returned will also be negative, and the
function will have scann~d backward. The PARTIAL EXPRESSION must b~ of
the TOT'm:

U<::;:-II OT' 11=11 folluwed by <c.haracter- expr~5si.on)-

Examples:
Us i"9 the aT'T"ay:
DEM := I •••• • THE TERAK IS A MEMBER OF THE PTERODACTYL FAMILY. I

SCAN (-26~ :;;;: I, DEt1[30]);
will return -26

will return 5
SCAN (.15, == If, DEM[O]);

wi 11 return 8

PROCEDURE MOVELEFT (SOURCE, DESTINATION. LENGTH)j

PROCEDUHE MOVER I GHT .(SOURCE, DEST 1. NA r ION, LENGTH);

Page 131

These functions do mass moves of bytes for the length
specified. MOVELEFT start~ rrom the left end of the specified source
and moves bytes to the left end o~ the destination. MOVERIGHT starts
from the right ends of both arrays and also moves byte bV byte.

These procedures will optimize to word moves (in the 11
version) if at all pDssible. MOVERIGHT never attempts this
optimizationi MOVELEFT will optimize only if the destination is at an
address beluw the lID page. (The raason far not doing word moves to
the 110 page i9 that some hardware relies on byte addressing in this
address space.)

In short: MOVE LEFT starts at the left end of both arrays and
copies bytes traveling right. MOVERIGHT starts at the right end of
both arrays and copies byt~s traveling left. The reason for having
both of these is if you are working in a single array and the order in
which characters are moved is critical. The following chart is an
attempt t6 show what happens if you use the procedure which moves in
the wrong direction for your purposes.

VAR ARAY: PACKED ARRAY [1 .. 30J OF CHARi

<*123456789a123456789b123456789c*)
ARAY: :THIS IS THE TEXT IN THIS ARRAyt

MOVERIGHT(ARAY[lOJ.ARAY[lJ,10);
ARAY: :NE TEXT INE TEXT IN THIS ARRAY:

MOVELEFT(ARAY[1],ARAY[3]~ 10)
ARAY: INENENENENENETEXT IN THIS ARRAY:

MOVELEFT(ARAV(23),ARAY[2],S);
ARAY: INIS AR~AYENETEXT IN THIS ARRAY:

PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER);

This procedure takes a 'subscripted) PACKED ARRAY OF CHARACTERS
and fills it with the numb~r (LENGTH) of CHARACTERs specified. This
can be done by:

A(OJ := <character expression>;
MDVELEFT(A[O],A[l],n-l)i

but FILLCHAR is twice as fast, as no memory reference is needed for a
source.

See the note about word move optimization in the section on
MOVELEFT. The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZEOF (Section 2.1.6) is meant for use with
these intrinsic$j it is convenient not to have to figure out or
remember the number of b~tes in a particular ~ata structure.

Page 132

************************** *****************
* MISCELLANEOUS ROUTINES * * Section 2.1.6 *
************************** *****************

Version I.5 September 1978

FUNCTION SIZEOF (VARIABLE OR TYPE IDENTIFIER) : INTEGERi

This function returns the number of bytes that the "item"
passed as a parameter occupies in the ~tack. SIZEOF is particularly
useful fur FILLCHAR and MOVExxxx intrinsics.

FUNCTION LOG (NUMBER ~ REALi

This function returns the log base ten of the NUMBER passed as
a paT"amet~r"

PROCEDURE TIME (VAR HIWORD, LOWORD' INTEGER);

This procedure returns the current value of the system clock.
It is in 60th? of a s~cond. (This is somewhat hardware-dependent; we
assume a 16-bit integer size and 32-bit clock word. The HIWORD
contains the most significant portion. WARNING! The sign of the LOWORD
may be negativ~ since tile time is represented as a 32-btt unsigned
number.) Both HIWORD and LOWORD must be VARiables of type INTEGER.

FUNCTION PWROFTEN (EXPONENT: INTEGER) : REAL;

This function returns the value of 10 to the EXPONENT power.
EXPONENT must be an integer in the range O .. 37.

PROCEDURE MARK (VAR HEAPPTR: AINTEGER)
PROCEDURE RELEASE (VAR HEAPPTR: AINTEGER);

These procedures are used for returning dynamic memory
allocations to the system. HEAPPTR is o~ type AINTEGER. MARK sets
HEAPPTR to the curT'ent top-·of-heap. RELEASE sets top'-of-heap pointer
to HEAPPTR,

PROCEDURE HALT i

This procedure generates a HALT opcode that, when executed,
causes a nan-fatal run-time error to occur. At this point in
execution. the D~buggeT' is invoked, theT'efore, if the Debugger is not
in core when this occurs, a fatal run-time errol', #14, will occur.

PROCEDURE GOTOXY{ XCaORD I YCOORD);

ThlS procedure sends the cursor to the coordinates specified by
(XCOORD, YCOORD). The upper left corner of the screen is assumed to be
(0,0). This procedure is wTltten to default to a Datamedia-type
terminal. If your system uses ather than a Datamedia or Terak 8510a,
you will need to bind in a new GOTOXY using the GOTOXY package
described in Section 4.10.

Pag.e 133

-NO\"ES -

Page 134

** ***************
* DIFFERENCES BETWEEN U.C.S.D. PASCAL AND STANDARD PASCAL* * Section 2.2 *
** ***************

Version .r. 5 September 1978

This section is a summary and quick referrence guide which
notes the areas in which U.C.S.D. Pascal differs from the Standard
Pascal, and refers the user to the appropriate documents which explain
various 5$pects of U. C. S. D. Pascal. The Standard Pascal referred to by
this section is defined in PASCAL USER MANUAL AND REPORT (2nd edition)
by Kath 1 een .Jensen and Ni klaus Wi T'th (Spr i ng er"-Y'er lag, 1975 >.

Many of the differences lie in the area of FILES and I/O in
general. It is recommended that the reader first concentrate upon· the
sections which describe the diffe~ences associated with the standard
procedures EOF, EOLN. READt WRITE, RESET, and REWRITE.

2.2.1 CASE STAiEMENTS

Jensen and Wirth on page 31, state that if there is no label
equal to the value of the case statement selector, the result of the
case statement is undeflned. U.C.S.D. Pascal defines that if there is
no label matching the value of the case selector then the next
statement executed is the statement following the case statement. For
example, the following sample program will only output the line "THAT'S
ALL FOLKS·! since the case statement will "fall through" to the WRITELN
statement following the case statement:

PROGRAM FALLTHROUGHJ
VAR CH: CHAR;
BE.GIN

CH: =: ' A ';
CASE CH OF

.. B": WR I TELN < OUTPUT, 'HI THERE I') i

re': WRITELN(OUTPUT, 'THE CHARACTER IS A lIe"')

END;
WRITELNCOUTPU1, 'THAT I .. S ALL FOLKS');

END.

Contrary to the syntax diagrams for <field list:> on pages 116-
118 of Jensen ~nd Wirth: the U.C.S.D. Pascal compiler will not permit a
semicolon befoT'ethe IIEND!! of a case va-riar.t field declaration within a
RECORD decla~ation. See Table 6 for revised s~ntax diagrams for <field
1 i st:>-.

Page 135

2.~.2 COMMENTS

The U.C.S. D. Pascal compiler recognizes any text appearing
between either the symbols n<*n ·and "*)H aT' the ~ymbol~ u-e ft and It}" as
a comment. Text appearing between these symbols is ignored by the
compiler unless the first character of the comment is a dollarsign, 'in
which case the comment is interpreted as a compiler control comment.
See section 1.6 "Pascal Compiler" for details on compiler control
comments.

Note that if the beginning 0' the comment is delimited by the
"(*ff symbol, the end oT the comment must be delimited by the matching
n*>" symbol, rather than the II}" symbol. When the comment begins with
the "{If symbol) the comment continues until the matching U}" symbol
app ears. Th is feature a llows a user to "c omment out II a sect i on of a
program which itself contains comments. For example:

{ XCP XCP + 1; <* ADJUST FOR SPECIAL CASE ... *> }

Note that the compiler does not keep track of nested comments.
When a comment symbol is encountered, the text is scanned for the
matching comment symbol. The following text will result in a syntax
error:

2.2.3

<* THIS IS A COMMENT <* NESTED COMMENT *> END OF FIRST COMMENT *)
'·'error here ..

DYNAMIC MEMORY ALLOCATION

The standard procedure DISPOSE defined on page 158 of Jensen
and Wirth is not implemented in U,C.S. D. Pascal. HOWEver, the function
of DISPOSE can be approximated by a combined use of the U.C. S.D.
intrinsics MARK and RELEASE. The process of recovering memory space
described below is only an approximation to the function of DISPOSE as
one cannot .explicitly ask that the storage occupied by one particular
variable be released by the system for other uses.

The cur~ent U.C.S.D implementation allocates sto~age for
variables created by use of the standard procedure NEW in a stack-like
s t rue t u r e c a 11 edt he" h e a p PI • T h efo 11 0 wi, n 9 p 1" 0 9 T' ami s a s imp 1 e
demonstration of how MARK and RELEASE can be used to change in the size
of the heap.

PROGRAM SMALLHEAPi

TYPE PERSON=
RECORD

Page 136

NAME: PACf.(.ED ARRAV(O. 15) OF CHARi
ID: INTEGER

ENDi

VAR P: '''·PERSON; <* means "pointer to" as defined in J&W *>
HEAP: INTEGER,

BEGIN
l"'iAR~< (HEAP) ,;
NEW(P) i
p NAME: = 'FARKLE, HENRY J. ';
p ID: == 999;
RELEASE (HEAP) i

END,

The above program first calls MARK to place the address of the
current top of heap into the variable HEAP. HEAP being declared to be
a pointer to an INTEGER is not really importantl as HEAP could have
been declared as pointing to almost anything. The parameter supplied
to MARK must be a pointer variable, but need not be a pOinter that is
declared to be a pointer to an INTEGER. This is a particularly handy
construct for deliberately accessing the contents of memory which is
otherwise inaccessable. Below is a pictorial description of the heap
at this point in the program's execution:

TOP OF HEAP --:>

contents of heap at
start of program

<--- HEAP

Next the program calls the standard procedure NEW and this
results in a new variable pA which is located in the heap as shown in
the diagram below:

TOP OF HEAP ---:>

contents oT heap at
start of program

<---~ HEAP

Page 137

Once the program no longer needs the variable pA andwi~hes to
"release" this memory space to the system .pOl' other usess it calls
RELEASE which ~esets the top of heap to the address contained in the
val' iab 1 e HEAP.

If the above sample program had made a series of calIsta the
standard procedure NEW between the calls to MARK and RELEASE, the
storage occupied by several variables would have been relea~ed at
once. Note that due to the stack nature 0' the heap it i. not possible
to release the memory space used by a single item in the middle of the
heap. It is for this reason the use of MARK and RELEASE can only
approximate the function of DISPOSE as described in Jensen and Wirth.

Furthermore, it should be noted that careless use of the
intrinsics MARK and RELEASE can lead to "dangling pointersll, pointing
to areas of memory which are no longer part of tne defined heap space.

2.2.4 EOF(F)

To set EOF to TRUE for a textfile F being used as an input file
from the CONSOLE device1 the user must type the EOF character. The
system default EOF character is the control-C character. The EOF
character can be altered by a suitable reconfigu~ation of the system
variable SYSCOMA.CRTINFO.EOF using SETUP. For further information
concerning system configuration and the SETUP program see Section 4.3.

If F is closed, for any FILE FI EOF(F) will return the value
TRUE If EOFCF) is TRUE I and F is a FILE of type TEXT, EOLN(F) is
also TRUE. After a RESET(F), EOF(F) is FALSE. IF EOF(F) becomes TRUE
during .a GET(Fi OT' a READ(F, ...) the d·:3ta obtained thereby is not
val id.

When a user program starts execution. the syst~m performs a
RESET on the predeclared files INPUT, OUTPUTJ and KEYBOARD, See
section 2.2.11 READ for further details concerning the predeclared file
~.EYBOARD.

As defined in ~'2n&en .and l..Ji.rth. EOF and EOLN by def-ault will
refer to the file INPUT if no file identifier is specified.

2,2.5 EOLN(F)

EOLNCF) i~ d~fined onl~ if F is a textfile. F is a textfile if
the <type:> of the l.;Jindoul va~i3ble: F"'~l is of type CHAR. EOLN becomes
TRUE only after reading the end of lin~ character. The end of line
character is a car7iage ~eturn In the example program below, care
must be taken as regards when the carriage return is typed while
inputing datt~:

Paae 138

PROGRAMADDLINES.
VAR Ki SUM: INTE-:GER;

BEGIN
WHILE NOT EOF(INPUT) DO

END.

BEGIN
SUM: ~O,
READ (INPUT, K) j

WHILE NOT EOLN(INPUT) DO
BEGIN

Sut'1: =5UM+K i
READ(INPUT, K);

END;
WR I TELN (OUTPUT) j

WRITELN(OUTPU'L "THE SUM FOR THIS LINE IS '~ SUM);
END;

In o~d~~ for EOLN(F) to be TRUE in the above program, the
carriage return must be typed immediately after the last digit of the
last integer on that line. If inst~ad a space is typed followed by the
carriage return, EOLN will remain FALSE and another READ will take
p lac e.

2.2.6 FILES

Changes we~e made in order to b~ing U. C.S.D. Pascal clo~er to
the standard definition of the language.

A. INTERACTIVE FILES

Files of <type> INTERACTIVE behave exactly as files of <type>
TEXT. The standard predeclared files INPUT and OUTPUT will always be
defined to be of <type> INTERACTIVE. All files of any <type> other
than INTERACTIVE, are defined to operate exactly as described in Jensen
and Wirth. For files which are not of (type> INTERACTIVE, the
definitions 0' EOF(F), EOLN(F), and RESET(F) are exactly as presented
in Jensen and Wirth. For mare details concerning files of <type>
INTERACTIVE see spction 2.2.11 "READ AND READLN" and sec.tion 2.2.12
"RESEl" and sec t ion 2. 1. 2 ..

B. UNTYPED FILES

U.C S.D. Pascal has one type of file declaration which i~ not
found in the syntax of Jensen and WiTth. This type and its use 15

demonstrated in the sample program below:

Page 139

<*$1-*)
PROGRAM FILEDEMO;

VAR G,F: FILE;
BUFFER: PACKED ARRAY[O .. 511J OF CHARi
BLOCKNUMBER, BLOCKSTRANSF'ERRED: INTEGER;
BADIO: BOOLEAN;

(* This program reads a diskfile called 'SOURCE. DATA' and
copies the file into another diskfile called 'DESTINATION'
using untyped files and the i~trinsics BLOCKREAD and
BLOC Kf.,.JR I TE '.)

BEGIN
BADIO: =FALSE;
RESET<GI ;"SOURCE. DATA');
REt.JRITE(F, 'DESTINATION');
BLOC)O<·.NUMBER: =0;
BLOCKSTRAN5FERRED:=BLOCKREAD(G.BUFFER,liBLOCKNUMBER);
l.JHILE (NOT EOF(G» AND (IORESUL.T=O) AND (NOT BADIO) AND

(BLOCKSTRANSFERRED=l) DO
BEGIN

BLOCKSTRANSFERRED: =BLOCKWRITECFI BUFFERI 1,BLOCKNUMBER);
BADIO:=«(BLOCKSTRANSFERRED(l) OR (IORESULT<>O»;
BLOCKNUMBER:=BLOCKNUMBER+l~

BLOCKSIRANSFERRED:=BLOCKREAD(G,BUFFER,l,BLOCKNUMBER)i
END;

CLOSE (F J LOCK) ;
END.

The two files which aTe declared and used 1n thp above sample
program are both untyped files. An untyped filg F can be thought oP as
a file without a window variable FA to which all liD must be
accomplished by using the functions BLOCKREAD and BLOCKWRITE. Note
that any number of blocks can be transferred'using either BLOCKREAD or
BLOC~<.WRITE. The functions return the actual number of blocks read. A
somewhat sneaky a,p~oach to doing a quick transfe~ would be:

WHILE BLOCKWRITE(F,BUFFER,BLOC~READ(G,BUFFER,BUFBLOCKS»>O DO <*IT*)i

This is. howgyer considered unclean. The program above has
been compiled using the I-Compil~ Tim. Option, thereby requiring that
the function IORESULT and the number of blocks transferred be checked
after each BLOCKREAD or BLOCKWRITE in order to detect any I/O errors
that might have occurred.

Page 140

c. RANDOM ACCESS OF FILES

The U.C.S. D. implementation of st~uctur~d files supports the
ability to randomly acces~ individual ~ecD~d~ within a file by means of
the intrinsic SEEK. SEEK expects two p~rameters~ the first being the
Tile identifierl and the sec.ond, an integer speci-Pying the record
number to which the window should be moved. The first record of a
stT'uctuT'~·d file is otHobe'red record O. The foilowingsample progT'2Im
demonstrates the use of SEEK to randomly access and update records in a
-Pi 1 e:

PROGRAM RANDOMACCESS,
VAR DISK: FILE OF

RECORD
NAME: STRING[20J.
DAY, MONTH! YEAR: INTEGER;
ADDRESS: PACKED ARRAV[O .. 49] OF CHAR;
ALiVE: BOOLEAN

ENDj
RECNUMBER: INTEGER;
CH: CHAR;

BEGIN

END.

RESET(DISK, JRECORDS. DATA') i
WHILE NOT EOF(lNPUT) DO
BEGIN

WRITEUJUTPUT, fEnte'(~ l"€cord number ----:;.');
READ(INPUT,RECNUMBER)i
SEEK(DISK,RECNUMBER)i
GET (DISK) I

t4ITH DISl,,'" DO
BEGIN

WRITELN(OUTPUT,NAME,DAY, MONTH, YEAR,ADDRESS);
WRITE(OUl'PUTi tEnter cOT"T'ect name ---:>') i
READLN(lNPUT,NAME)i

ENDi

SEEK(DISK, RECNur·1BER.) i <if> Must point the window

PUT,OISK)i
END.

back to the record since
GET (DISK) advances the
window to the next record
afte~ loading DISKA *)

Page 141

Attempts to PUT reco~ds beyond the physic.al end of file will
sst EOF to the value TRUE. (The physical end of file is the point
where the next record in the file will overwrite another file on the
disk.) SEEK always sets EOF and EOLN to FALSE. The subsequent GET or
PUT will .et these conditions as is app~opriat~.

D. READ AND WRITE FROM ARBITRARILY TYPED FILES

It is not currently possible to READ Dr WRITE to files o~ type
other than TEXT or FILE OF CHAR.

2.2.7 GOTO AND EXIT STATEMENTS

V.C.S.D. has a more limited form of GOTO statement than is
defined as the standard in Jensen and Wirth. U.C.S.D. 's GOTO statement
prohibits a GOTQ statement to a label which is not within the same
block as the GOTO statement itself. The examples presented on pages 31-
32 of Jensen and Wirth are not legal 1n U.C.S,D. Pascal.

EXIT is a U.C.S.D. extension which accepts as its single
paramete~ the identifier of a procedur~ to be exited. Note that the
use of an EXIT statement to exit a FUNCTION can result in the FUNCTION
returning undefined values if no assignment to the FUNCTION identi~ier
is made prior to the execution Qf the EXIT statement. Below is an
example of the use of the EXIT statement:

PROGRAM EXITDEMOi
VAR T: STRINGi

Page 142

eN: INTEGER;

PROCEDURE Gi FORWARD;

PROCEDURE Pi
BEGIN

READLN(T) i

WRITELN(T) ;
IF T[lJ='#1 THEN EXIT(Q);
WRITELN('LEAVE P');

END;

PROCEDURE Q;

BEGIN
Pi
WR I TELN (J LEAVE G t) ;

ENDi

PROCEDURE Ri
BEGIN

IF eN <= 10 THEN Gi
WRITELN(iLEAVE R')i

END;

BEGIN
eN: =0;
WHILE NOT EOF DO

BEGIN
eN: =CN+l;
Ri
WRITELNi

END;
END.

If the above program were supplied the following input

THIS IS THE FIRST STRING

LAST STRING

the following output will result:

THIS IS THE FIRST STRING
LEAVE P
LEAVE G
LEAVE H

*' LEAVE R

Lf\ST STR ING
LEAVE P
LEAVE Q

LEAVE P

The EXITCQ) statement causes the PROCEDURE p to be terminated
followed by the PROCEDURE G. Processing continues following the call
to Q i.T1side PROCEDURE R. Thus the only line of output following "#" is
"LEAVE RU .at the ~nd of PROCEDURE R. In the two cases where the
EXIT(Q) statement is not executed, processing proceeds normally through
the termlnations of procedures P and Q.

If the procedure identifier passed to EXIT is a recursive
procedure, the most recent invocation of that procedure will be
exited. If, in the above exampleJ one aT' both oT the pT'ocedure4J P and
G dec 1 are dan d 0 pen e d s 0 me I 0 cal r i 1 e s , an imp 1 i cit CLOSE (F) i s don e
when the EXIT(Q) statement is executed, as if the procedu~es P and Q
terminated normally,

Page 143

The creation of the EXIT statement at U.C.S.D. was inspired by
the occasional need ~or a stT'aightforward means to abort a complicated
and possibly deeply nested series of procedure calls upon encountering
an error. An example of such a use of the EXIT statement can be found
in the recursive descent U.C.S.D. Pascal compiler. The routine use of
the EXIT statement is, nevertheless, discouraged.

2.2.8 PACKED VARIABLES

A. PACKED ARRAYS

The U.C.S.D. compiler will perform packing of arrays and
records if the ARRAY or RECORD declaration is preceded by the word
PACKED. For example, consider the following declarations:

A: ARRAY[O .. 9] OF CHARi

B: PACKED ARRAyrO .. 9J OF CHAR;

The array A will occupy ten 16 bit words of memory, with each
element of the array occupying 1 word. The PACKED ARRAY B on the other
hand will occupy a total of only 5 wordsl since each 16 bit word
contains two 8 bit characters. In this manner each element of the
PACKED ARRAY B is 8 bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR,
for examp Ie:

c: PACKED ARRAY[O .. 1] OF O .. 3;

D: PACKED ARRAY[l .. 9J OF SET OF 0 .. 15i

D2: PACKED ARRAyeO . . 23910 . . 3191 OF BOOLEANi

Each element of the PACKED ARRAY C is only 2 bits long, since
only 2 bits are needed to represent the values in the range O .. 3.
Therefo~e C occupies only one 1.6 bit word of memory, and 12 of the bits
in that word are unused. The PACKED ARRAY D is a 9 word array, since
each element of D is a SET which can be represented in a minimum of 16
bits. Each element of a PACKED ARRAY OF BOOLEAN, as in the case of D2
in the above example, occupies only one bit.

The following 2 declarations are not equivalent due to the
recursive nature of the compiler:

E: PACKED ARRAY[O .. 9] OF ARRAY[O .. 3J OF CHARi

F: PACKED ARRAY[O .. 9;0 .. 3] OF CHARi

Page 144

The second occurrence of the reserved WD~d ARRAY in the
declaration of E causes the packing option in the compiler to be turned
off E becomes an unpacked arra~ of 40 words. On the othe~hand, the
PACKED ARRAY F occupies 20 total words because the ~e$erved word ARRAY
occurs only once in the declaration. If E had been declared as

E: FAC!J..ED ARRAYEO .. 93 OF PACKED ARRAYCO .. 3:1 OF' CHARi

or as

E: ARRAY[O .. 9] OF PACKED ARRAY[O .. 3J OF CHARi

F and E would h~ve had identical configurations.

The reserved word PACKED only has true significance before the
last appearance of the reserv~d word ARRAY in a declaration of a PACKED
ARRAY. When in doubt a good rule of thumb when declaring a
multidimensional PACKED ARRAY is to place the reserved word PACKED
before every appearance of th~ reserved ward ARRAY to insure that the
re5ultant ar~ay will be PACKED.

The ~esultant array will only be pac~ed if the final type of
the al"ray isscalaT'i OT' subrange, or a set which can be represented in
8 bits or less. The Tinal type can also be BOOLEAN Or' CHAR. The
following declaration will result in no packing whatsoever because the
final type of the array cannot be represented in a ~ield of 8 bits:

G: PACKED ARRAVfO .. 3] OF 0 .. lOOOi

G will be an array ~hich occupies 4 16 bit words.

P~cking never occurs across word boundaries. This means that
if the type of the element to be packed requires a number of bits which
does not divide evenly into 16, there will be some unused bits at
the high order end of each of the words which comprise the array.

Note that a string constant may be assigned to a PACKED ARRAY
OF CHAR but not to an unpacked ARRAY OF CHAR, Likewise, comparisons
beb..vl':;.::n at', ARRAY OF G~·,!t:\H and a str'ing c\.)nstant are illegal. (These are
temporary impl~mentation Te~tTictions which will be removed in the next
major release.) Because of theiT different sizest PACKED ARRAYs cannot
be tompar~d to ordinary unpacked ARRAYs, For further information
regarding PACKED ARRAYs OF CHARacters see section 2.2.16 HSTRINGS".

A PACKED ARRAY OF CHAR may be output with a single write statement:

PROGRAM VERY8L!CK;
Vl-,R T. PAChED ARRAY[O. 10J OF CH/\R;
BElJIN

T::'HELLO THERE';
\...JR I TELN (T) i

END.

Page 145

Initialization of a PACKED ARRAY OF CHAR can be accomplished
very efficiently by using the U.C.S.D. intrinsics FILLCHAR and SIZEOF:

PROGRAM FILLFASTi
VAR A: PACKED ARRAyeO .. 10J OF CHAR;
BEGIN

FILLCHAR (A[OJ J 51 ZEOF (A) I ' 1');

END.

The above sample program Tills the entil~e PACKED ARRAY A with
blanks. For Turther documentation on FILLCHAR, SIZEOF, and the other
U.C.S.D. intrinsics see section 2.1.:; uCHARACTER ARRAY MANIPULATION
INTR INSICS".

B. PACKED RECORDS

The following RECORD declaration declares a RECORD with 4
fields. The entir~ RECORD occupies one 16 bit word as a result of
declaring it to be a PACKED RECORD.

VAR R: PACKED RECORD
I, J, f.<.: 0 .. 31;
B: BOOLEAN

END;

The variables I, ~, K each take up 5 bits in the word. The
boolean variable B is allocated to the 16'th bit of the same word.

In much the same manner that PACKED ARRAYs can be
multidimensional PACKED ARRAYs, PACMED RECORDS may contain fields which
themselves are PACKED RECORDS or PACKED ARRAYS. Again, slight
differences in the way in which declarations are made will affect the
degree of packing achieved. For example, note that the following two
declarations are not equivalent:

VAR A: PACKED RECORD
C: INTEGER;
F:PACKED RECORD

R: CHAR;
K: BOOLEAN

END;
H: PACKED ARRAY[O .. 3J OF CHAR

END;

VAR B: PACKED RECORD
C: INTEGER;
F:RECORD

R: CHARi
1-<..: BOOLEAN

END;
H:PACKED ARRAY[O .. 3] OF CHAR·

END;

As with the rese~ved word ARRAY, the ~eserved word PACKED must
appear with every occurrence of the re5e~ved word RECORD in order for
the PACKED ,REGORD to T',etain its ~h1c~~ed qualities throughout all ~ields
of the RECORD. In th~ abcive ~xample, only RECORD A has'ali of its
-Pields ,packed. int,O one word. In B; 't;he F field is not packed and·
therefoT"e occup ies i;wo it.; b it ~41cq·ds. It is important to note ,that d

p~~ked or unpacked ARRAY or RECORD which is a fIeld afa PACKED RECORD
will always start at the beginning of the next word boundary. This
means that in the case Qf A, even though the F field does nat
completely fill one word, the H field starts at the beginning of the

next word bounda~y.

A case variant may be used as the last field of a PACKED
RECORD, and the amount of space allocated to it will be the size of the
large.st varian.t amoung the varlOU$ cases. The actual nature of the
packing is faT beyond the scope of this document.

VAR K~ PAC~ED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF

TRUE: (Z: INTEGER) i
FALSE: (M~ PACKED ARRAY[O .. 3J OF CHAR)

END
END;,

In the above example the Band F fields are stored in two bits
of the first 16 bit word of the record. The ~emaining 14 bits are not
~'sed. The 5i!? of the cas'=? var':!.a;nt; 'Field is always the size of the
largest vt3-ri,ant, so i'n the above example~ the case vaT'iant field will
ocrIJP~~ two tl-J(n~ds. Thtl~ the entire fACIA.ED RECORD will occupy 3 words.

C. USING PACKED VARIABLES AS PARAMETERS

N0 element of ~ PAC~ED ARRAY or field of a PACKED RECORD may be
pass@.d as a variable (call-'bY"-'i"eferen\~eJ p~)T'ameteT' to a PROCEDURE or
FUNCTION. P·.3ckt'rl vaT:i~ble?i ma.y~ hCIU(7:'Viil', be paS':sed £3£ call b\J value
p,-;rameteT's, as stated in ..Jensen and Wirth,

D. PACK AND UNPAC~ STANDARD PROCEDURES

V.C.S.D. Pascal does not support the standard procedures PACK
and \.ij"'·~F ... 'CK as defined in Jensen and t,JiTth on page 106.

2. 2. 9 PARAMETRIC pnOCEDURES AND FUNCTIONS

U, C.S. D. Pascal does not suppcrt the construct in which
PRDCEDURfS ~~d FUNCTIONS ma4 be decl~Ted as formal parameters in the
P2"!' f~.d':"?e 1::~;"I" 1 is t Co f .;.~ FROCEDURE or F UNC T ION.

See Section 6,6 for a revised syntax ctiagram of <parameter-

2. 2 . .to

Although the U.C.S. D. Pascal compiler will permit a list of
file p~TameteTs to be present following the progTam identifier, these
parameter~ are ignored by the campi19r and will have no affect on the
program being compiled. As a result the following twa program headings
are eql.lival;:.nt.

Page 147

PROGRAM DEMO(INPUT,OUTPUT); and PROGRAM DEMO;

With either of the above program headings, a user program will
have three files predeclared and opened by the system. These a~e:
INPUT, OUTPUT, and KEYBOARD and are defined to be of <type>
INTERACTIVE. If the program wishes to declare any additional files,
these file declarations must be declared together with the pTog~am's
other VAR declaration~.

2.2.11 READ AND READLN

Given the following declaratio~$:

VAR CH:CHAR;
F: TEXT; C* TYPE TEXT = FILE OF CHAR *)

the statement READ(F,CH) is defined by Jen~en and Wirth on page 85 to
be equivalent to the two statement sequence:

CH: :;;.:F-· .. ·;
GE.T (F) i

In other words, the standard definition of the standard
procedure READ requires that the process of opening a file load the
., win dew va r i ~3 b 1 e" F·.... wit h the fiT' S t c Ii a T' act e r 0 f the f i 1 e. I nan
interactive progTdmming environment, it is not convenient to require a
user to type in the first character of the input file at the time when
the file is opened. If this !.~H!r-e the ,case, every pT'ogT'-arn would Ilhang"
until a character was typed, whether or not the program performed any
input operations at all. In ur-del'"' to overcome this probleml U. C. S, D.
Pa~cal defines an additional file <type> called INTERACTIVE. Declaring
a file F to be of <type> INTERACTIVE is equivalent to declaring F to be
of type TEXT, the difference being that the definition of the statement
READ(F,CH) is the reverse of the sequence specified by the standard
definition for files of <type> TEXT: i. e.

GET \ F);
CH: =F·····;

This difference affects the way in which EOLN must be used
within a program when~eading from a textfile of type INTERACTIVE. As
in section 5 I EOLN ~ecome5 true only after reading the end of line
character, a carriage return. When this is read, EOLN is set to true
and the character returned as a result of the READ will be a blank. In
the following example I the left fTag!1!i?fit is taken from Jensen and
Wirth; only the RESET and REWRITE statements have been altered. The
program on the left will correctly copy the textfile represented by the
file X to the file Y. The pro1ram fragment on the Tight performs a
similiar task, except that the source file being copied is declared to
be a file of <type> INTERACTIVE, the~eby forcing a slight change 1n the
program in order to produce the desired result.

Page 148

PROGRAM ",JANDW;
VAR X,Y:TEXTi

CH: CHARi
BEGIN

RESET (X, "SOURCE. TEXT' } ,
REWRITE(Y, 'SOMETHING. TEXT');
WHILE NOT EOF(X) DO

BEGIN
WHILE NOT EOLN(X) DO

BEGIN
READC X: CHi;
WR I TE (V: C H) i

END,
READLN(X);
WR I TELN (Y) i

END;
CLOSE{Y, l.OCK);

END.

PROGRAM UCSDVERSIONi
VAR X,V: INTERACTIVE;

CH: CHAR.
BEGIN

RESET(X, 'CONSOLE: ');
REWRITE(Y, 'SOMETHING. TEXT');
WHILE NOT EOF(X) DQ

BEGIN
WHILE NOT EOLN(X) DO

BEGIN
READ(X,CH)i
IF NOT EOLN(X) THEN

WR I TE (Y , CH) ;
END;

READLN(X);
WR I TELN (Y) i

END;
CLOSE (V, LOCK);

END.

Note that the textfiles X and Y in the above two programs had
to be opened by using the U.C.S.D. e~tended form of the standard
procedur~5 RESET and REWRITE.

The IF statement in the inte~active version of the prog~am
fragment an the left is needed in order for the file Y to become an
exact cop~ oT the textfile X. Without the IF statement, an ext~a blank
cha~acter is appended to the end of each line of the file Y. This
ext T' a b 1 an k c Co I" T' e';.; p on d s to the en d 0 of 1 i nee h a r· a c: t e ~ ace 0 T' din 9 to the
standard definition in Jensen and Wirth. Nate that the CLOSE intrinsic
was applied to the file Y in both ve~siDns of the p~og~am in order to
make it a permanent file in the disk directory called
"SOMETHING. TEXT", Likeu.\ise, the textfile X could have been a diskfile
instead of coming from the CONSOLE device in the right hand version of
the pT'ogrdm.

There a~e three predeclared text9iles which are automatically
opened by the system for a user progr3m. These files are INPUT,
OUTPUT, and KEYBOARD. The file INPUT defaults to the CONSOLE device
and is always defined to be of <type> INTERACTIVE. The statement
READ(INPUT.CH) where CH is a character variable. will echo the
character typed from the CONSOLE back to the CONSOLE device. WRITE
s tat e m en t s tot h e f i 1 e OUTP UT wi 1 I, b Y d e .p au 1 tiC au $ e the 0 U t put to
appear on the CONSOLE device. The rile KEYBOARD is the non-echoing
equ i va lent to INPUT. Fo~ e xamp 1 e, the two statements

READ(KEYBOARD,CH)i
WRITE(OUTPUT/CH);

are equivalent to the single statement READ(INPUT,CH).

Page 149

·Formore documentation regarding the use o-ffiles see sections
2.2.6 HFILES", 2.2.4 "EOF", 2.2.5 "EOLN u

, 2.2.17 'WRITE AND WRITELN'*1
and 2.2.12 ·'RESET". See section 2.1.2 "INPUT/OUTPUT INTRINSICS" for
more details on the U. C. S. D. intrinsics.

2.2.12 RESET(F)

The standard procedure RESETf as defined tin page .9 of Jensen
and Wirth, resets the rile window to the beginning of the file F. The
next GET(F) or PUT(F) will affect record number 0 of the file. In
addition, the standard dei~initiQn of RESET(F) states that the window
variable FA be loaded with the first record in the foile. The U.C.S.D.
implementation of RESET(F) operates ex~ctly as the standard definition,
unless the file F is declared to be Or -(type> INTERACTIVE in which case
the statement RESET(F) points the file window to the start of the ~ile,

but does not load the window variable FA, Thus, for files of <type>
INTERACTIVE, the U.C.S.D. equivalent of the standard definition of
RESET(F) is the two statement sequence:

RESET(F)i
GET (F) i

U.C.S.D. Pascal defines an alt~rnative form of the standard
procedure RESET which is used to open a pre-existing 'ile. In it,
RESET hSfS two parametersf the first being the fi Ie identifieri the
second, either a STRING constant or variable which corresponds to the
directory Tilf~name of the file being opened. See section 2.1.2
IfINPUTlOUTrUT INTRINSICS"f.oT' more infromation on this wse of RESET.

2.2.13 REWRITE(F)

The standard procedure REWRITE is us~d to open and c~eate a new
file. REWRITE has two parameters, the first. b~ing the file
identifier, the second corresponds to the directory filename of the
file being opened, and must be either a STRING constant or variable.
For example, the statement REWRITE(F, 'SOMEINFO. TEXT', Cc'3uses the file F
to be. 0 pen e d f Q r output, and I if the file .is 1 o'c k € don t ot h '!! dis k I the
filename o-F the rile in the director'Y will be "50MEtNFO 'TEXT". REWRITE
performs exactly as the V.C. S. D OPENNEW intrtnsl~ and will eventually
replace OPENNEt,.J. See section 2.1.2 "INPUT/OUTPUT INTRINSICS" for
further documentation regarding the use Qf REWRITE to open a file.

2.2.14 SEGMENT PROCEDURES

The concept of the SEGMENT PROCEDURE is a U.C.S.D. extension to
Pascal, the primary purpose of which is to allow a programmer the
abili~y to explicitly p~rtition a 13~gp program into s~9ments, 09 which
only a~ew need be resi~ent in m~mory at anyone time. The U.C.S.D.
Pasc;31 'Slj5tem is .necessa-rily partitinn!?d in this manner becot!se it is
too large to fit into the memory o~ mC3t E~~ll interactive computeT's
at one time.

Page 150

The fallowing is an example of the use of SEGMENT PROCEDURES:

PROGRAM SEGMENTDEMOi

(* GLOBAL DECLARATIONS GO HERE *>

PROCEDURE PRINT(T:STRING); FORWARD;

SEGMENT PROCEDURE ONE;
BEGIN

PRINT('SEGMENT NUMBER ONE');
ENDi

SEGMENT PROCEDURE TWO;
SEGMENT PROCEDURE THREE;

BEGIN
ONE;
PRINT('SEGMENT NUMBER THREE');

END;
BEGIN <* SEGMENT NUMBER TWO *>

THREE;
PRINT('SEGNENT NUMBER TWO');

END;

PROCEDURE PRINT;
BEGIN

WRITELN(OUTPUT,T);
END;

BEGIN
TWO;
WR I TELN (Ii' / M DONE') i

END.

The above program will give the following output:

SEGMENT NUMBER ONE
SEGMENT NUMBER THREE
SEGMENT NUNBER TWO
I'M DONE

For furthe~ documentation on SEGMENT PROCEDURES, their use and
the syntax governing their declaration see Section 3.3 "SEGMENT PROCEDURES".

2.2.15 SETS

V.C.S.D. Pascal supports all of the canst~ucts defined 'or sets
on pages 50-51 of Jensen and Wirth. Sets Cof enumeration values) a~e
limited to positive integers onl~. Space is assigned, rounding up to
word boundaT'ies~ in a bitwise f£;Hihion, ::t£::lT,ting at zero} up to 4079,
inclusive. Therefor a set can be at most 255 words in size, and have
at most 4080 elements.

Page 151

Comparisons and operations on sets are allowed only between
sets which are either of the same base type or subranges of the same
underlfJing type, FaT' example, in the sample program below, the base
type of the set 5 is the subrange type 0 .. 49, while the base type of
the set R is the subrang e typ e 1.. 100. Th e under ly 1ng type of both
sets is the type INTEGER, which by the above definition of
compatabilitYI impli~s that the comparisons and operations on the sets
Sand R in the ~o11owing program are legal:

PROGRAM SETCOMPARE;
VAR S: SET OF O .. 49,

R: SET OF 1 .. 100;

BEGIN
S'- [0,5,10,15/20:25,30,35.40,45];
R"= (10,20,30.40,50,60~70,80,90];
IF S = R THEN

WR ITELN< ' .. , oop S ... ")

ELSE
WRITELN('sets work');

S S + Ri
END,

In the following example, the construct I = J
two sets ar~ of two distinct underl~tng types.

is not legal since the

2.2.16 STRINGS

PROGRAM ILLEGALSETSi
TYPE STUFF=(ZERO.ONE~TWO)i
VAR I: SET OF STUFFi

J: SET OF 0 .. 2;

BEGIN
I':: [ZERO);
,J:= [l,2J;
IF r :::~ ,J THt:::N

END.

U. C.S.D. Pascal has an addition~l pred~c13r~d type STRING.
Variables of type STRING are essentIally PAC~ED ARRAYs OF CHAR that
have a d~namic LENGTH attribute, the y~)ue of ~hich is returned by the
STRING intrinsic LENGTH. The default maximum LENGTH of a STRING
variable is 80 cha~acters but can be ove~ridden in the declaration of a
STRING variable by appending the desired LENGTH of the STRING variable
within [J after the re5~T'ved type identifjer STRING. Examples of
declarations of STRING variables are:

Page 152

TITLE: STf<rNGi (* defaults to a maximum length of 80 characters *)

NAME: STRINGr20J. <* allows the STRING to be a maximum of 20
c haT'ac ters-R')

Note that a STRING variable has an absolute maximum length of
255 characters. Assignments to string variables can be performed using
the assignment statements the U.C.S.D. STRING intrinsics, or by means
of a READ statement:

TITLE:~(THIS IS A TITLE I • ,

or

READLN(TITLE) i

or

NAME: = COPY(TITLE, 1,20);

The individual characters within a STRING a~e indexed from 1 to
the LENGTH of the STRING, for e~ample:

TITLE [1] : = I A I ;

TITLE[LENGTH(TITLE)

A variable of type STRING may not be indexed beyond its current
dynamic LENGTH. The following sequence will result in an invalid index
run time erTO'!':.

TITLE::= '1234 I j

TITLEC5J:= , f.'; I
.... i

A vaT'iable of t~pe STRING may be compared to any other variable
of type STRING or a string constant no matter what its current dynamic
LENGTH. Unlike comparisons involving variables of other typesi STRING
variables may be compared to items of a diffE~ent LENGTH. The
resulting comparison is lexicographlcal. The foLlowing program is a
demonstration of legal compari~ons involving variables of type STRING:

PROGRAM COMPARESTRINGS,
\,JAR S. STR I NGi

T: STR ING[:'~O] i

BEGIN
S: = "SOMETHING (i
"r ,0;:; ! SC;!"iETH 1 NG B I fiGEH' ;
IF S = T THEN

WRITELN('Strings do not work very well')

IF S ::} T THEN
WR I TELN (Sit i s 9 T' eat e l' t han I, T)

EL~.SE

Page 153

IF S -::: T THEN
l-JR I TELN (S,' is 1 e sst han ! IT) ;

IF S = 'SOMETHING' THEN
WR1TELN(SI' eq.uals !J S)i

IF S > 'SAMETHING' THEN
WRITELN(S, I is greater than SAMETHING '),

IF S = 'SOMETHING ' THEN
WRITELN("BLANKS DON' "T COUNT I,

ELSE
WRI1ELN(IBLANKS AFPEAR TO MAKE A DIFFERENCE').

S:='XXX';
T: -.. I r~ECDEF ," i

tF S > T THEN
WRITELN<S, I is gr·gater than '; T)

ELSE
t..JR I TELN (S I ' is 1 e sst han #, T) ;

END.

Th~ above program should produce the following output:

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING
SOMETHING is greater than SAMETHING
BLAN~S APPEAR TO MAKE A DIFFERENCE
XXX is 9~~at~r than ABCDEF

On~ of the rn0st common u~~s of STRING va~iables in the V.C.S. D.
Pascal sy~tem is reading file names fro~ the CONSOLE device:

PROGRAJ'1 LISTERf
VAR BUFFER: PACKED ARRAV[O. "511J OF CHAR;

FILENAME: STRING;
F: FILE;

BEGIN
INRITE('Ente\" filen-3me Gf the ~ile to be listed _·--)<')i

READLN(FILENAME)i
RESET < F I F I LENAI~·iE) ;
~,.IH It. 12: NOT EUF ~ F) DO
BE~:~ IN

END.

When a variable of ty~8 STRING is a rara~pter to the standard
proceduT"e READ ,~nd PE.~\DLNJ all ch..::iT'.uctcl"S up to ~theend of lin~

chars.cter' Ca cdT.'1"i,3ge l·etuT'P) in the source file will be assigned to
the 51'RING vaT'lahle. Note th3t care mJJst be ta'k:en when reading STR.!NG
variables. foT' exampl::-: the single statement READLN(SlAS2) is
equivalent to the two statement sequence READCS1); READLNCS2). In both
cases the STRING vaTlable 82 will be assigned the empty ~tring.

Page 154

For further info~mation concerning the predeclared type STRING
see Sec t i on 2. 1. 1 ':STR !!··!G INTR !NSICSH.

2.2- 17 WRITE AND WRITELN

The standa~d procedures WRITE and WRITELN are compatible with
Standa~d PascalI e~cept with respect to a WRITE or a WRITELN of a
variable of type BOOLEAN. U.C.S. D. Pascal does not support the output
of the wo~ds TRUE or FALSE when writing out the value of a BOOLEAN
vaT' iab 1 e.

For a description of WRITE statements of variables of type
STRING see Section 2. L 1 "STRING INTRINSICS".

u, C. S_ D. IS WRITE and WRITELN do suppo~t the writing of entire
PACKED ARRAYs OF CHAR in a single WRITE statement:

VAR BUFFER: PACKED ARRAY[O .. 10] OF CHARi
BEGIN

BUFFER: ~ ")--'ELLO THERE'; <* contains exactly 11 characters *>
WRITELN(OUTPUT, BUFFER);

END.

lhe above con~truct will work only if the ARRAY is a PACKED
ARRAY OF CHAR. See section 2.2.8 PACKED VARIABLES for further
i nrormat i on.

The following program demonstrates the effects of a field width
specification within a WRITE stat~ment for a variable of type STRING:

PROGRAM WRITESTRINGSi
VAR S: STR INGi

BEGIN
s; ~. r THE BIG BROWN FOX JUMPED... 'i

t"JR I TELN (S > i
WRITELN(S: 30);
WRITELN(S: 10) i

END.

The above program ~ill produce the following output:

THE BIG BROWN FOX JUMPED ...
THE BIG BROWN FOX JUMPED ...

THE BIG DR

Note that when a string variable is written without specifying
a field wtdthi the actual number of cha~acters written is e~ual to the
dynamic length of the string. If the field width specified is longer
than the dynamic length of the string. leading blanks are inserted and
written. If the fi~ld width is smaller than the dynamic length of the
string, the excess characters will be truncated on the right.

Page iSS

2.2.18 IMPLEMENTATION SIZE LIMITS

The following 1s a list of maximum size limitations imposed
upon the user by toe current implementation of U. C.,S. D .. Pascal:

2 ~l. 19

1. Maximum number of bytes of object code in a PROCEDURE or
FUNCTION is 1200. Local variables in a PROCEDURE or FUNCTION
can occupy a maximum of 16jS~ words Qf memory.

2. Maximum number of characters in a STRING variable is 255.

3. Maximum number of elements in a SET is 255 * 16=4080.

4. Maximum number of SEGMENT PROCEDUREs and SEGMENT FUNCTIONs
is 16. (9 are reserved foT' the Pa~cal system, 7 are
available for use by the user p~ogram)

5. Maximum numhpr of PROCEDURF~ or FUNCTIONs within a segment
is 127.

EXTENDED COMPARISONS.

u. C. S. D. ra5~al allows = and <> comparisons of any aT'ra~ or
record structure.

2.2.20 LONG INTEGERS.

UCSD Pascal allDws integers of 0p to 36 digits.
3.3 3 for details ~egarding long int~ge~s.

Se~ section

2.;;': 21 UNITS

UCSD Pascal now ~upports the modularity concept of UNITs. See
sec t ion 3. 3. 2 for de -t ail S l' e 9 i3 r din 9 UN I T ~ .

2.2.22 SUMMARY OF U. C.S. O. INTRINSICS

INTRINSIC SECTION #

2. 1. 2

BLOCI-<.WR I TE 2.1.2

Page 156

DESCRIPTION

Furtction whi~h reads a variable number of blocks
'rom an untyped fjl~.

Function which writes a variable number of blocks
from an untyped file.

CLOSE 2. 1.2

Cor-·feAT 2. 1. 1

DELETE ,..,
.c.:.. 1 . 1

DRA~:JLINE
..., 1.4 c;. •

DRAWBLOCK 2. 1 .. 4

EXIT 2. 1.7

GOTOXY 2. 1.6

F ILLCHt\R

HALT 2.1.6

ID5EARCH

2. 1. 1

IORESlJLT 2. 1.. 2

t.E~·!GTH 2, 1 1

MARI~ '-~ e_. 1. 3

t10VELFFT 2. 1 5

.-~ i 5 c. .I.

d. 1 ;2

2, . "., l. f~

'"' t::! .. L 1

P !,.!~ OF I EN 2. L ,~

Procedure to close files.

STRING intrinsic used to concatenate strings together.

STRING intrinsic used to d~lete characters from
STRING variables.

G~aphics intrinsic for use on the Terak 8510a.

Graphics intrinsic for use on the Terak 8S10s.

Intrinsic used to exit PROCEDURES cleanly.

Procedure used for cu~sor addressing whose two
parameters X and Y a~e the column and line numbers
on the 5c~een where the cursor is to be placed.

Fast p r ocedur2 ~or initializing PAC~ED ARRAYs OF CHAR.

Halts a user program which may result in a call to
the in~eractive Debugger.

f-ioutine used 1J\j the Pascal ~ompilel'l and the PDP-ll
a 5 f£,. ';;' m b 1 ~ T' .

51'RING intrinsic used to insert characters in STRING

Function returning the result of the previous I/O
operation. (See Table 2 for a list of values)

STRING intrinsic which Teturn~ the dynamic length

Used to m~~k the current top of the heap in dynamic
memor~ allQcation.

Low level intrinsic for moving mass amounts of bytes.

Low level intrinsic ~or moving mass amounts of bytes.

Procedur~ for opening a new file.

PI'DL~:cture for' ;Jpening an existing file.

STRING int~insic returning the position of a
pattern in a STRING variable,

Fvnction which retu~n5 as a REAL result the number
10 raIsed to the paw.r of the integer parameter
supplied.

Page 157

RELEASE

SEEK

SrZEOF

STR

TIME

TREESEARCH

UNITBUSY

UNITCLEAR

UNITREAD

UNITWAIT

UNITWRITE

Paqe 158

2. 1.3

2. 1.2

2. 1.6

2. 1. I

2. 1.6

2.1.2

2.1.2

2.1.2

2.1.2

2.1.2

Intrinsic used tOT'elease memory occupied by
variables dynamically allocated in the heap.

Used far random accessing of records withing a file.

Function returning the number of bytes allocated
to ~l v~riable.

Procedure to convert long integer into string.

Function returning the time since last bootstrap
of system. (returns z~ro if microcomputer has
no real time clock)

Routine used solely by the Pascal compiler.

Law level i~triniic For det~rmining tha status of
a peripheral device.

Low level intrinsic to cancel 1/0 from a peripheral
device.

Low level intrinsic for reading from a peripheral
device.

Low level intrinsic for waiting until a peripheral
device has completed an I/O operation.

Low level intrinsic used for writing to a peripheral
device.

************************************ ***************
* DRAWLINE AN IMPLEMENTOR'S GUIDE * * Section 3.1 *
************************************ ***************

VeT'S i on I. 5 September 1978

The DRAWLINE Intrinsic uses an incTemental technique to plot
line segments on a point-addressable matrix. The algorithm guarantees a
best (least squares) approximation to the de~ired line. In general this
appr'f.}:cifHatiQn J.s n,~;i,~ ufd,qtie. DF~t..!LIf·iE (T\~;H; pick diffe!"erit
i'epi'e-S\?nt~t:ions 'tOT' d line depfi'nding on the ~tQT'ting point. (This could
be C Q'1" 1" e c ted 1.1 \J a 1 W-3 Y ss. tar tin 9 at the same end of the 1 i n e.) No 1'" a n 9 e
chec~ing is performed an parameters passed to thi~ intrinsic,

The alQo~ithm IS essentially the one described in Newman and
Sp~oul, P~t~ci~19s of Intersttive Computer Graphics a~ the Digital
DiFfeTentiel AnAlyzer It has been modified to perform only integer
9Tithmetic P~~c~l SQUTee cnde is included b~lDW, The procedure first
rl e t e-T m i 'i -:? d '\l,! h e t h f; 'f' the 1 i 11 ~ ;1) ill h f.' ,~i C':' ~ h (') 1" i 7 c.~ 1; t,~ 1 ,)"r~ \? f~ T' ,t i c ~ 1 . ! nth e
d :i. s r_ u ;'~ ':: i i'1 n b • .£.' 1. <j W I we a saw in e the h C i' i z 0 n t B 1 c. 1:1 s e : v e r t i ca 1 i IS S i mil a r .

There will be DELTAX points p10t~~d with horIzontal increment
of 1 ~ach" The vertic~l increm4?nt will be. ,\BS (DELTAY I DELTAX) <= 1.
The Y coordinate arithmetic is scaled by DELTAX to eliminate fractions.
An additional savings in execution time has be~n gained by maintaining
t h 2:::; L~J 'f' ,',2 '::.; S .) f ":" ~~ ::' p 'f' h~ V i t) u ~:.. pet:,,\ t . ~ n d doing 0 n 1. y .a d d i til) n and
subtraction to reach the next point to be plotted.

The Hp.,D/\F~p~ .. "lc.tion i~ C':t.l!1'i/:ili,:,,:,:::tc7d . .:::s twa :Lr:te-T'se·:ting lines may
hay~ no plotted pU1nts in common. Tha detection conditIon is either (1)
t i H? C Q (;1 put e d p cd n t i:; T Ii l.iE 1 D T' <~?) bot h t h eo n e x ,t tH',H" i Z 0 n t d 1 and the
n e 'f. t ',! e r t :i c. e 1 yed n t saT' e T R UF.:: Con d i t ion (2) could be weakened; when
t h li:'! i n e :\ s m C11 e ;.; C f' 1, '! I) n tal' ; en 1 lj t Ii e n ext VeT' tic. alp 0 i n t need b e
checked.

Ref e i' .t; Q S .2 C to: i Q it 2, 1. .1- for .~ ct e E! s:: r' i p t 1. 0 n 0 of the paT' a m e 't ere all i n 9 seq u e nee.

Page 159

PROCEDURE DRAWLINE (VAR RANGE: INTEGER, VAR SCREEN: SCREENTYPEi
ROWWIDTH, XSTARTI YSTART, DELTAX~ DELTAYJ INK: INTEGER)j

VAR X. V, XINC,· VINe. COUNT: !Nl'£GFP,

PROCEDURE DRAWDOT;

PROCEDURE Rp-,Dt\i1.
VAR GOTIT: BOOLEAN;
BEGIN

GOTIT -::: FALSEi
COUNT ;= COUNT + Ii
IF SCREEN [V, XJ THEN GOTIT := TRUE (*LANDED ON THE POINT*>
ELSE <*WE MIGHT GO THROUGH A LINE*>

IF SCREEN [Y+l~ Xl THEN
GOTlT := SCREEN [Yt X+l1;

IF GOTIT THEN
BEGIN

RANGE : =: COUNT,
EX IT (DRA~JL 1 hiE)

ENDi
END (*R/itDi\R*) i

BEGIN (*DRAWDOT*)
eliSE 1NI-\ OF

o <*NONE*):
1 (*~~HITF..:*):

2 (*BLACV~*):

3 (*REVERSE *) :

4 (*RADf'R*):
END (*CASE~')

END <*DRAWDOT*)i

PROCEDURE DOFORX;

EX IT (DRAWLINE);
SCREEN LY; XJ
SCREEN [V, X]
SCREEN [Y,)(J
RADAR

VAR ERRORJ I: INTEGER;
BEGIN

<*THEY HAD NO BUSINESS HERE*>
TRUE,
FAtSE;
NOT SCREEN (V, Xli

IF DELTAX = 0 THEN EXIT (DRAWLINE); <*THEV'RE GOING NOWHERE*>
ERROR := DELTAX DIV 2;
I ::= DELTAXi
REPEAT

ERROR := ERROR + DELTAY;
IF ERROR >= DELTAX

X : = X + XINC,
DR l\t·JDDT;
I := 1-1;

UNTIL I ::: 0;
END (~fnOFORX*);

Page 160

END;

PROCEDURE DOFORY; C*MORE VERTICAL*)
VAR ERROR, 1: INTEGERi
BEGIN

ERROR ;= DELTAY DIV 2;
I : = DELT?\Yi
REPEAT

ERROR := ERROR + DELTAX;
IF ERRDR :'.,:-:; DEL TA'Y

THEN BEGIN EHROR ::~ E'RHOR .- DELTAY:: x
Y :::: Y + VINCI'
DRAJ...'DOTi
I := I - 1;

UNTIL I :: Oi
END (*DOFORY*) ;

BEGIN <*DRAWLINE*)
X :;;.; XSTAHTi
IF DELTAX <: 0

THEN BEGIN XINC
EL SE X INC ::.: 1 i

Y :::: YSTART;
IF DELTf"lY <: Q

THEN BEGIN Ylr~C
ELSE Y INC : = 1 i

COUNT :~.;;; OJ

-1; DELTf~X ··nrL TAX

--1, DELrAY - ·-l)~.LTAY

E.L SE {jUF OR Y ;

x + XINC END;

END

END

IF DELTAX >= DELTAY THEN DOFORX
IF IN~ = 4 (~nADAR*) THEN RANGE CDU~ .. rr;; <*HIT THE LIMIT GIVEN*>

END <*DRAWLINE*)i

Page 161

- Notes-

**************** *************** * FILE FORMATS * * Section 3.2 *
**************** ***************

Version I. 5 September 1978

Text files are of the format:

<1024 b~tes> header page, information for editors. This space
is reserved for use by the text editors, and is respected by all
portions of the system. When a userprogram opens a TEXT file, and
REWRITEs or RESETs it with a title ending in '.TEXT', the 1/0
subsystem will create and skip over the initial page. This is done to
facilitate uses editing their input andlor output data. The file
handler will transfer the header page only on a disk-disk transfer, and
will omit it on a transfer to a serial device. (i.e. transfers to
PRINTER:, and CONSOLE: will omit the hea~er page)

<1024 byte pages> where a page is defined:
<[DLElCindent]Ctext][CRlCDLE][indent][textl[CRl ... [nulls]>

Data Link E~capes are followed by an indent-code, which is a
byte containing the value 32+(. to indent). The nulls at the end of
the page follow a [CRJ in all cases, the~ are a pad to the end of a
page. The reason for the nulls is that the compiler wants integral
numbers of lines on a page. The Data Link Escape and corresponding
indentation code are optional. In a given text file so~e lines will
have the codes, and some won't.

space.

Foto files are declared in PASCAL as follows:

TYPE
VAR

SCREEN = PACKED ARRAY[O .. 239,0 .. 319J OF BOOLEAN;
FOTOFILE: PACKED FILE OF SCREEN;

or something similar, which takes up the same dimensional

Data files are up to the user.

Code files have one block of information which describes the
code kept in the file. First is an array of 16 word pairs, the first
word in the pair describes the block which starts the code of the
segment which is numbered as the position in the array. The second
word is the number of bytes in that segment. For example if the third
word in the first block of a code file is an 8. and the fourth work is
1084, you now know that segment 1 of this code file starts on block 8
of the file, and has 1084 bytes of code.

Following this array is an array of arrays of characters. The
arra~ is an array of 8 character arrays which describe the segments b~
name. These 8 characters are those which identify the segment at
compile time. Here again, the position in this array corresponds to
the segment number.

Page 163

Fa 11 ow i n g the aT' l' at) 0 of n a me sis an aT' ra y I ag a i n 16 til 0 1" d $ 1 on 9 I
of state descriptors. The values in this array indicate what kind of
segment is at the described location. The values far this array, at
present, are: LINKED,HOSTSEGtSEGPROC.UNITSEG,SEPRTSEG.

The rem,:lindeT' of the block, 144 \uor'ds, is reserved for future
use by later versions of the system. The fermat of the fi~st block
will mast probably change completely foT' version 11.0.

Pt~ge 164·

~-*{HH**·i:'*·l:HHH~·,*·***·******Fi-R*j:Hi· ,***************~*
* SEGMENT PROCEDURE NOTES * * Section 3.3.1 *
*******~******************* *****************

Version 1,5 September 1978
Declarations of SEGMENT procedures and functions are identical

to standard Pascal procedures and functions except they are preceded by
tiH.~' l"e's€t'fved ulord 'SEGt'1ENT', fOl' ei:,~mpJ~:

SEGMENT PROCEDURE !NITIALIZE~

BEGIN
(* PASCAL codE *)

ENDi

Program behavior diff~rsl however~ as code and data for a
SEGMENT procedure (function) are in memory only while there is an
active invocation of that prCfAdure,

The usel' mialj now put large pieces of one-time code, ego
in:itial i :u~tj on corle, into a SEGMENT pr'oceduT'e. After performing the
initialization. for eyamplel th~ new-useless code is taken out of
memory thus increasing the available memory space.

Furthe~more the user ma4 now compile his/her program in chunks,
sp~~:i~icallu in SEGt"1ENTS. Ttl{'; LINV.ER program (described in Section
1. 8) c: at n L c' l.,.i s e ~1 t <J 1 ink t (J get ffH:' j' t b~: s e p d rat e s e 9 me n t s t (j P r- c due e on e
large code f:ile.

Requirem2nts and limitations:

The disk which holds the codefile fer the program must be on
line (and in the same drive as when the program wae started) whenever
one of SEGMENT protedUTe~ i~ to he c211ad Otherwise the sy.tem will
attempt to retrieve and execute whatever information now occupies that
particular 11Jcati..on on the d1<slc· u5ual1tJ hJlth verlJ displeasing and
cErtaInly Ln&xpected results.

available to the user

SEGMENT procedures reust be the f1rst pro~eduTe declarations
containing code-generating statements.

For furth~r details and exampJes see Section 3. 5~ INTRODUCTION
TO THE P!~SC:AL PSE:UDD Mt;CH!NE

Page 165

- Ntd.:;e~,-

~age 166

****R*****~**~******************** *****************
~;, L T f.!V.!\C:: Tn [';~ TERfU\!. L Y COMP I L.ED * * Se c t ion 3. 3. 2 *
* AND ASSEMBLED ROUTINES * * * ********************************** *****************

Vtn"sion 1. 5 Se p temb En" 1978

EXTERNAL COMPILATION UNITS

The ucsn Pas,cial 1. 5 stjstem SUppOl"ts a facility foT' integrating
externally compiled and assembled routines and data st~uctures. Use of
separately compiled st~uctures allows the user to create files of
of T' e G. iJ f~ n t 1 U USE' d l" 0 u t j 11 C· 'S . [\ f t t? r- d s t; "[" u c t; U "f' f' i '!. C em p j 1 e d I the u '5 era d d s
it to a library, using the library maintainer. Files that reference
that structu~e need not compile it directly into their code file,
l' a the l' J t ~~ E' 1 i n ir: e T' cop 3. 9 S the e xis tin 9 r.: c ~j f~' i n tot h e h 0 s teo d e of i 1 e .
Separate compilation or assembly is supported in these areas: between
portions of programs written in Pascal; between assembly language
T'ctrt:ines ar,tj Pa~)c,31 hosts; .3nd fin~~11y, bf~tl!.:een assembly language
routin~s. Each o¥ these areas is discussed in turn by the following
sections.

3, 3. 2 1 PASCAL. TO PASCAL LINft,AGES -- UNITS

A UNIT IS a group of interdependent proceduresl functions, and
associated data st~uctures which perform a specialized taSk. Whenever
this task 15 needed within d prograffit the program indicates that it
USES the UNIT. A UNIT consists of two parts, the INTERFACE pa~t, which
dec 1 a j. e s r: n n ~ t ~~ n t <,:;- t tj P f~S j V a:\ r i s b 1 e s .~ pro C eo d l.l't' e s a 1"1 d of u net ion s t hat are
public and can be used by the host program. and the IMPLEMENTATION
paTt~ which declares constants! types, variables .. procedures and
functions that ~re private, These are not available to the host program
and are used b~ the UNIT. The INTERFACE pa~t declares how the program
will communicate with the UNIT while the IMPLEMENTATION part defines
how the UNIT will accomplish its task.

TURTLEGRAPHICS (example B) is a UNIT which enables the user
to draw pictures using a graphics turtle. The INTERFACE consists of
procedures like MOVE, TURN, and PENCOLOR} which allow the user to move
the turtle and change ~olo~s. TURTLEGRAPHICS also employs DRAWLINE, an
externally assembled procedurei to draw the lines and the tu~tle.

A prog~am that uses TURTLEGRAPHICS has no need for DRAWLINE,
and, conse~uentlyj DRAWLINE is private to that UNIT.

Page 167

PROGRAM DRAWPOLYGON;
USES TURTLEGRAPHICS;
VAR I: INTEGER;

SIZE/NUMSIDES: INTEGER;

BEGIN
INITTURTLEi <* Initialize the UNIT's variables *>
WRITE{'What size pclygon~/)j
READf_N(SIZE) i
WRITE(~How many sides?i)j
READLNCNUMSIDES);
FOR 1:=1 TO NUMSIDES DO

Bf:~rN

END.

MOVE (S J Z E) j

TURf\! (360 D I \/ hP')MS I DES);
ENDj

A program must indicate the UNITs that it USES before the LABEL
declaration part Q~ the program. At the occu~rence of a USES
statement, the compiler references the INTERFACE part of the UNIT as
though it were part of the host text itself Therefore all public
con s t (.1 n t 5 . t Y P t?!.) : va r i ~ b 1 e S 1 fun c: t i en 5 J and p ·r c t: e d lJ T' f? 5 are 9 1 Q b a 1 . Name
conflicts may a~ise if the U5~r defin~s an id~ntifier that has alre~dy
been defined by the UNIT. PTocedur~s and function~ may not USE UNITs
localllJ.

Paoe 168

UN I T rUPTLJ:':~CRAPHT. CSi
I ~.rn::·? F !\ ~ F

PRoc!:~n! . .InE IN I TTI.IRTLEi
PHOCEDURE TURN (HFLANGLE.. In t P.g e 1");

PROCEDURE MDVE(REL.DISTANCE: !nt~gE~')i

PRDCEDURi-: MDV~.TO(X, 'y" Integer) i

PROCEDURE TURNTO(ANGLE, Intege'r')i

PROCEDlJRE PENGOL.OR (PCOLOR, TGCOLOR) i

! ~1PLEMEN T'A r ION

TER xsr ZF = 319:
"fER'y'S:: 7E - 2,39;

TYPE

SCREEN = Pi.=:!C ~ed
,";T'T'dY TERXSIZE, O .. TERVSIZEJ of Boolean;

VAR
<* Private Y~riables *)
TGXPOB: Integer;
TGYPClS: Integer;
TGHEADING: !nteger~
TGPEN: TGCDLOR;

1; d: Int.eger-j
S: SCREEN;

(* Externally clssembled ~rocedure *)
P~OCED1)RE DRAlfJL,INE(Var RADI~R. Integer; Val'S: SCREENi

ROW, XO, VOl DX, DY, PEN: Integer);

EXTERNALi <* External declaration *)

PROCEDURE INITTURTLEi
BE(~ IN

Fillchar-(SCREEN_, SilHOf(SCREEN), 0);
UnitwTite(3, SCREEN, 63);
HEADING : = 0;
TGXPOS .-- 0;
TGVPOS 0;

ENDi

PROCEDURE MOVEi (* Public procedu~el pa~ameters declared above *>
BFGr,lN

MOVETO{ Round(TURTLEX + DIST*Cos(TURTLEANGLE/RADCONST),
RoundCTURTLEY + DIST*Sin(TURTLEANGLE/RADCONST));

END;

PROCEDURE MOVETOi
VAR R: I n t e 9 e r'- i

BEGIN
DRAWLINEC R} 91 20! 160+TURTLEXi 120-TURTLEY.

X-TURTLEX, TURTLEY-¥, ORD(TURTLEPEN));
ENDi

PROCEDURE TURt-t; (-~" PUt,l-11C iJrQt:ed\._:re~ P<'H'.3f1'HE?tfH'S dec lal'ed above *>
BEGIN

HEADING - (HEADING+RELANGLE) mod 360;
~::J'..JD;

Page 169

EXAMPLE B

PROCEDURE TURNTO;
BF(JIN

HEADING
END;

ANGLE;

PROCEDURE PENCOLOR;
BEGIN

TGPEN
END;;

peDLOR,

END. (* End of, unit *)

Example B is a skeleton for a TURTLEGRAPHICS UNIT. Nat~ that
the procedures MO\lEf TURN. and INITTURTLE, ·11lnd th,? TYPE TGCOLOR; are
declared in the INTERFACE part and are avsilable fo~ use by the host
program. Since the procedure DRAWLINE is not part of the INTERFACE; it
is private, and may not be used b~J the host. The sfJntr3X foT' a UNIT
definition is shown below Thp declarations of routine headings in the
INTERFACE part are similar to f~~ward declaration9j therefore) when the
corresponding bodies ar~ defined in the IMPLEMENTATION part, formal
parampter sp~cjfication~ are not repeated

A UN I T fr:;j:} ;3 j ~,'J U~;.~E .ari o~: h ~-:'T' UN T·r., i;"i wh:\. c.. h r: 21 s. ~ t h G' USES
declaration must appear at the beginning of the INTERFACE part. In
example C, PICTUREGRAPHICS indicates in the INTERFACE part that it
USES TURTLEGRAPHICS. Note that th. program USEGRAPHICS, which USES
PICTUREGR,.,\PHICS, indicatp.s that it I....iSES TURTLECR,.\PHICS be-fore lising
PICTUREGR~'\rhIC;::~ It is ili;;~(,;i·}.,~:·,l ·th.~t. t;-:··, I1\iTF:RFt'~.~E P;~T't o·f
TURTLEGRAPHICS be defined before PICTUREGRAPHICS makes refe~ences to
it, thp.T'efore thi.s or\:ierinq is 1'equiT'ed,

NOTE: Variables of type FILE must be d~clared in the INTERFACE
part o~ a UNIT A FILE declaT'ed in the IMPLE~1ENTATION part will cause
a s~ntax error upon compilation.

UNIT PICTUREGRAPHICS;
INTERFACE.

USES TUR1LEGRAPHICS;
TYPE

PVEC TOR="'"VEC TDR.
\/EG TOR:::.-:RECORD

(~, T!...!RTtFGRAPHTCS t~ defined in ·the
f* ·~,;\;st8m libT'~T~q see section III below

DELHEADING: INTEGER.
DFlDISTANCE: INTEGEP;
PENDOt,JN. BOOLEAN;
NEXTVEC:PVECTOR

END; (* rec ord *)

Page 170

Vf\R
START:PVECTORi
HEf-\P: , INTEGER;

(* Head of list o~ lines *>

PROCEDURE MAKESUBPICTURE;

PRDCEDURE DRAWSUBPICTURE,

IMPLEMENTATION

PROCEDURE MAKESUBPICTURE;
BEGIN

(* Calculates n~xt subpicture and stores on heap *)
END;

PROCEDURE DRA~.JSUBP ICTUREi
BEGIN

LPVEC:=START; (* Start at beginning of list *)
WHILE LPVEC<>NIL DO C* and d~aw each that's there *>

WITH L.PVEC·"'· DO
BEGIN

TURN(DELHEADING)i
MOVE{DELDISTANCE);
IF PENDOWN THEN TGPEN:=WHITE

ELSE TGPEN:=NONEi
L.PVEC:=NEXTVEC;

END;
END; <* drawsubpictu~e *>

END.

PROGRAM USEGRAPHICSj
USES TURTLE~RAPHICS!PICTUREGRAPHICSi
BEGIN

<* picturegraphics uses
<* turtlegraphics

INITTURTLE!
REPE.~T

Ml~ .. RK (HEAP) ;
M~.KESUBP I CTURE;
DRAWSLJBPICTURE;
RELEASE (HEAP) :;

UNTIL START=NIL;
END.

EXAMPLE C

Page 171

<:. Compilation unit)

<: Unit definition>

< Unit h~ading >

< Unit identifier)

< Int~rface part :>

< Implementation part> -

< U ~ e 5' par t ... ;>

D I AGR t,\r1 D

.::: Progl"am heading:> ; _< llDit_ de.finitiQn :> i

< Uses part ~ < Block> :
<:. Un i t d ~ ~ i nit i (') n >-1. __ <:. Un i t de f in i t lQ.!l...2-.

< unit heading Ji
< Interface part>
< Implemrntation pa~t >
End

Unit < Unit identifier> ;
Separate unit < Unit identifier>

.(Identifier' ,)

Interface
-(Use·s paT't;)-
~ Constant definition part>
< Type definition part)
< Va~iable declaration pa~t >
< Procedure heading> : < Function heading :>

Implementation.
< Label d~claration part>
< Constant definition part>
< Type definition part>
< Vclriable declaration part ~
< P~Dcedure and runction d@claT'ation part :>

Uses < Unit idantifier >
_..!... ___ ~~_~1J.i..t...Jd ftn t j. f .-LE T' ~: __ -(Empty >

The US!;?!' may define a UNIT in-liner a-Pt?T' the heading o-f! the
host program. In this case the us~r compiles both the UNITt and the
host p""o~p'''am 'ioget"h!?1'. Any subs.~quent f:hangp.(;) in the UNIT OT' host
P j Ci f}1' .a m 'r e qu irE:' the 1I s er t (} r e com p i 1 e b n 't" . The use T' m c~ IJ a 1. t) 0 d e fin e
and compile a UNIT (or a group of UNITs) separately, and use the
library manager to store it (or them) in a library. After compiling
a host program that u~essu~h a UNIT, the user must link that UNIT into
the code file by executing the LINKER. lrying to R(un an unlinked code
file will cause the LINKER to run automaticallYI trying to X(ecute an
unlin~ed file causes the system to remind you to link the file.
Changes in a h09t program require only that the user recompile the
pro~ram and link in the UNIT. Changes in the IMPLEMENTATION part of a
UNIT only ~equire the user to compile the UNJTj and then to ~elink all
compilation units that use that UNIT. Changes in the INTERFACE part of
a UNIT require that the user recompile both the UNIT and all
compilation units that use that UNIT. In this cas~ all the~e
compilation unjts mU5t again be linked. For more information see
section 1.8 LINKER or section 4.~ LIBRARIAN.

Page 172

The compiler genft~ates LINKER info~mation in the contiguous
blocks that follow a program that uses UNITs. This information
contains locations of references to externally defined identifiers.
The LINKER document explains the format of this information,

3.3.3.2 PASCAL TO ASSEMBLY LANGUAGE LINKAGES -- EXTERNAL PROCEDURES

External procedures are prima~ily separately assembled assembly
language procedures, $tored in a LIBRARY on disk. Host programs that
require ext.rnal procedures must have them linked into the compiled
code file. Typically the user w~ites external procedures in assembly
language, to handle low-level operations that Pascal is not designed to
p~Dvide. External assembl~ language procedures are also used for their
comp,aT'~·t;ive spe(~d in 'real time' applications.

A host program declares that a procedure is external in much
the same w~y a~ a procedure is declared FORWARD. A standard heading is
p~ovided: fGllowed by the keQwnrd EXTERNAL. Calls to the external
procedure use standard Pascal syntaxl and the compiler chec~5 that
calls to the extern~] agree in type and number of parameters with the
external declaration. It is the user's re5ponsibility to assure that
the as~embly langu~ge procedure respects the Pascal exte~nal
declar~tion. The linker checks only that the number o~ words of
paramete~~ agree b~tw~en the Pascal and assembly language declarations.
For more info~mation see section 1.8 Linker and 1.9 Assembler(s).

The conventions of the surrounding sytem conce~ning register
use anM tBlling spqu?nces must be ~estri~ted by write~s of ~ssembly
languclge ~'Dl.,ltin~::::.. ThElse conventions TOT' the PDP-l1 and l80/8080
implem~ntation~ ara given he~e.

First, fo~ the PDP-l1~ registers RO and Rl are available for
use; any n'th.e1~s. f3ff-f.'cted by a T'ol"ltine must bp. saved on entry and
restorod on exit The following call and retu~" se~uence is
recommend0d fo~ rro~eduras. It has the advantage that calls can be
made directly from assembly languag~ as w~ll as ~rom Pascal.

- PROC E.NrRY,~ 2

PARAMl . EGU
PAR AM:;: . EGU
RET t'\DDR ,EGI...J
Ot.~DR5 ~ EGlJ

6
4
2
o

LOCALl ,EGU-2
LOC,.'L2 . EGU --4

MOV
MO~.}

CLR
CLR

R5,-(SP)
SP,R5
-(SP)
-(SP)

Inside routine

j Of-Pset
i Off-set
; Of-fset
i Offset
; O'F-fset
; O.pf's€t

ror fiT'~t p~'3rameteT'

fur second paramtel'
for r'gtu1'n address
foT' or 1. 9 S. na 1 value o~ R5
for f-ir-st local
for second local

iSave contents o~ R5
;Use R5 to get at locals and parameters
iReserve and Initialize
iTwo local variables

MOV PARAM(RS),LOCAL1(R5) ;Sample statement

Page 173

EXIT: MOV
MOV
MOV
ADD
",r1P

R5, SP
(SP)+,R5
(SP)+,RO
#NPARAMSiSP
@RO

;Cut back to entry SP
;Restore p~evious R5
iGet return address
iDiscard parameters
iReturn to caller

In zeo assembly language routines, all registers are available
for use, and the recommended interface sequence follows: (This code
would work for both 8080's and ZSO's. Optimizatinns are possible if
the zeo instructions aT'e available.)

. PROC ENTRY, 2

. PRIVATE RETADDR,LOCALIJLOCAL2,PARAM1,PARAM2

EXIT:

iReserve static storage
ireference obJects like
iregister as on PDP-11
POP HL
LD (RETADDR),HL
POP HL.
LD (PARAM2),HL
POP HL.
LD (PARAM1),HL

LD
LD

LD
JP
. END

HL., (PARAM2)
(LOCALl), Hl.

HL, (RETADDR)
(HL)

for this routine. Much easier to
this rather than relative to

iGet return address
; and save it
iGet and save PARAM2

;Get and save PARAMl

; Move PARAM2
; to LOCl\ll

iGet return address

For assembly language functions (.FUNC's) the sequence is
essentially the same, except that:

1) Two words of zeros are pushed by the compiler before any
parameters are put on the stack.

2) After the stack has been completely cleaned up at the
routine exit time, th2 . FUNC must push the function result on the
st':::iC k.

Here is an example Qf an external assembly language procedure.
and a program that uses it. This example takes a very primitive
approach to interrupt handling (which might still be useful in some
applications). The~e is no provision for handling inte~rupts'from the
device where a collected buffer is being written to disk. Support for
continuous interupts would be mare complex, involving multiple buffers
and exclusion mechanisims to assure that buffer switching would occur
reliably. The ProJect intends eventually to provide synchronization

P~n~ '174

capabilities at the Pascal level~ so that inte~rupt handling can be
accomplished with great~r convenience and safety.

. PROC

DRADDR
DR\"ECT

L.DOP·

. CONST
PUBLIC

. EGU

. EGU
MOt;
MOV
MOV
MOV
BIB

TST
BNE
SIC
R"f'S

DRCOlLECT#O
DRBUFLENG
DRBUFFER

167770
140
#HANDLR,@#DRVECT
:tt340.@#DRVECT+2
#ORBUFLENG~RO

#DRfHJFFER! R!
:f* 1 00, @#DR ~"DDR

RO
LOOP
*1.001 @#ORADDR
PC

Name of ~outine for use by linke~.

Public. constant .
Public variable.

;Load address of inteT'Tupt
; handler and set p~iority.
iload RO with size of buffer.
;Load Rl with address of buffer.
~Enable interrupts on DR interface.

:Extt loop when buffeT' full.

;Disable interrupts.
iReturn to PASCAL host program.

@#DRADDR+2e {Rl)+ j LOfid buffer with next word,
DEC
RTI

PO ; i,nCl"f'ment Rt. decremE'nt RO.
iReturn from interrupt.

PRO(;Rtd'1 CDL L.FCTDATA.
CDNST

TYPE
DfY1ABUFFEH _. At'T'atj (1.. DRHUF'LENGJ of integer;

1: Integ~1'T';

DRBUFFER: DAT~BUFFER;

DATAFILE: File of DATABUFFER;

PROCE.DURE' DRCOLLECTi
ExterD31j

Rp~,)!"i te (DATAFILE. 'SAMPLE. DATA;) j

Far 1:=1 to 10 do

DRCOLLECT;
OATAFILE~:=DRBUFFER;

Put (DATi~F!LE);
END .•

C 1 c s ~ (Dl). T ;\F I LE ~ L (J r= k);
F~:r,

Page 175

3.3.2.3 ASSEMBl.Y LANGUAGE TO ASSEMBLY LANGUAGE LINKAGES

The third way in which separate routines may share data
structures and subroutines is by linkage f~Dm assembly language to
assp.mbly language. This is made possible through the use of the .DEF
and . REF pseudo-ops provided in the UCSD assemblers. These generate
link information that allows two sepa~ately assembled procedures to be
L(inked together. One possible use for this will be the linking of
separate routines and drivers in constructing new UCSD interpreters.

The following are very abbreviated versions of two assembly
language routines which make sepa~ate references. They are used
externally by the UNIT PSGRAPHICS:

The first routine decla~es thr'ee public variables and declares
a .DEF for a label to be referenced by the second routine (Note that
this is only a skeleton oT the actual MOVETO routine):

. PROC MOVETO,6 THE 3 REAL PARAMETERS OCCUpy 6 t~ORD8

PROCEDURE MOVETO{X, V, Z: REAL);

COMPUTES A NEW PSXPOS & PSYPOS FROM PSMATP AND
AN ASSUMED 1.0 AS THE INPUT VECTOR HOMOGENOUS
COORDI.NATE ...

(X Y Z 1) dot PSMATp A
- (X' V' Z' W')

P 8 XP as x I I W ' ;
PSYPOS . - y I IW ' i

THESE ARE GLOBALS IN THE PASCAL HOST
,PUBLIC PSXPOS
. PUBLIC PSYPOS
. PUBLIC PSMATP

MOVE TO ENTRY POINT

MOV
MOV
MDV

R5,-(SP)
SP/R5
@#PSMATPJRO

R5 USED AS FRAME POINTER

RO IS TOS MATRIX POINTER

rA~AMCTER DISPLACEMENTS FROM R5 FRAME POINTER
x
v
z
w

Page 176

· EGU
· EGU
· EGU
· EGU

14
10
4
-4-

COMPUTE W', HOMOGENEOUS COORD
AND LEAVE IT ON STACK

ROUND:

. END

COr-1PUTE PSXPOS

NOW COMPUTE PSYPOS

CLEAN UP STAC~ AND RETURN

I ROUND REAL ON STACK TO INTEGER
IF < 0 THEN SUBTRACT O. 5 ELSE
ADD O. 5~ THEN TRUCATE .

r h e: sec 0 ~ d r' 0 uti neT' e f e 1" en c est h ~ of 1 r s t l' 0 uti n e a s us ell a s ttl e
separately assembled DRAWLINE routine. MOVETO must be linked into
LINETO befoTB the routine can be linked in as an external procedure to
a PASCAL UNIT Dr PROGRAM .

. PROC LINETO,6 ; PAR/"tMETERS OCCUpy 6 WORDS

PROCEDURE LINETO(X, V, Z: REAL);

DRAWS A LINE FROM THE LAST POINT CONTAINED IN
PSXPOS & PSYPOS TO THE NEW TRANSFORMED POINT
GIVEN BY X, V, & Z ...

SAVEX - PSXPOSi SAVEY := PSYPOS;
t'lQVE"TfJ (X, y. Z) ;
DR/\tl"Llr~E(.JUNJ.\~ PSBUFp ·, 20, 160+SAVEX, 120-~SAVEY,

PSXPOS-SAVEX. SAVEv-PSYPOS, l)j

· PURL Ie PSXPOS
· PUBL 1 C PSYPOS
· PUBt Ie PGHUFP
· PH I\JATE RANGE

.REF MOVE TO

.Rt:F DRAWLINE

LINETO ENTRY POINT

MOV R5, -(SP)
MOV SP, R5

Sr\VEX EQU --2
SAVEY EGU --4
X EQU 1.11
y EQU lC}
Z EGlJ 4

SAVEX "= PSXPOS; SAVEY

USE R5 AS STACK FRAME POINTER

PSYPOS;

Page 177

JSR PC,@#MOVETO

DRAWLINE(...) i

JSR PC,@#ORAWLINE

; ALL DONE ... RETURN

Jf'lP @RO
. END

For examples and mo~e information see section 1.9 ASSEM

***************** *****************
* LONG INTEGERS * * SECTION 3.3.3 *
~~#************ *****************

A new addition to V.e.S.D. Pascal p~edecla~ed type INTEGER is
the optional use of a length attribute (available only on LSI 11/PDP
11 based micros). This essentially constitutes a new t~pe and will,
in the remainder of this document, be referred to as LONG INTEGER.
The LONG INTEGER is suit~ble for business, scientific or other
applications in which the need for extended number length with
complete accura~y is felt. This extension supports the four basic
st3ndard INTEGER arithmetic operations (additiont subtraction,
division and multiplication) as well as routines facilitating
conve~slon to strings and standard INTEGER~. Stl'ong t~pe checking is
enforc.;\r.! throughout to reduce potential errors. Input/Output, in line
declaration of constants and inclusion in $tructu~ed types are all
fully $IJpported and are analogous to the usage of standard INTEGERs.

LONG INTEGERs are declared using the standard identifier
INTEGER followed by a length attribute in squaTe brackets. This
length is an unsigned number, not larger than 36, denoting the minimum
number of decimal digits repre5ent~ble by the LONG INTEGER. For
exan'lple, a variable called 'XI capable of storing at least an eight
decimal digit signed number would be created by:

VAR X: INTEGER(8J;

Constants aTe defined in the normal manner:

CONST RYDBERG = 10973731;

In the above exampl~ RYDBERG would be b~ default a LONG INTEGER
and could be used anywhere a LONG INTEGER could be used.

In general LONG INTEGERs may be used an~where it is
synt~ctically correct to use REALs (nat fully implemented until II.Oi
for now LONG INTEGERs are limited to aritmetic operationsl assignment
statementrj (biJt not as<:!ignment to a R~;;:AL)} TRUNC, and STR); howf!ve"f'
care must be taken to ensure that sufficient words have been allocated
by thp derl~red length att~ibute for storage of the result of
assignment or arithmetic expression statements (see note in next
subsection fo~ complete details). INTEGER expessions aTe implicitly
co~verted as required upon assignment tnJ or arithmetic operations
with, a l..ONG INTEGER. The T"even"S~ i~ not true, UrH1T'y plus/minus is
correctly handled.

Page 179

VAR r· INTEGER j
L: INTEGER(NJj where N is an acceptable length
S: REALi

1:= Li cOffinile time error; see TRUNC(L) below
L:=-L; correctf with~he usual exception
L:. = I ~ ll!-UQ.Y,.Lf..fLl' ... !:Ji.U
l'= Si never acceRted
S:= Li will be implemented with II.O

Arithmetic operations which may be used in conjunction with
LONG INTEGERs are any or allr'rom the set + .. -I*tDIV,una y
plus/minus. On assignment the length 0' the LONG INTEGER is adjusted
(during execution) to the decla~ed length attribute of the va~iable,
th~refDre an interrupt (overflow) may result. An interrupt (overflow)
occu~s only wh~n t~e intermediate result exceeds the number of words
required to store (as a minimum) thirty-seven decimal digits, or when
the final result is assigned to a variable with insufficient length
attribute. (On the matter of the length attribute and what it
defines: a length attribute of 5 thru 9 may store up to and including
2147483647, length att~ibutes of 10 thru 14 may store thru
140737488355327, 15 thru 18 .. 9223372036854775807. It is left to the
interested reader to compute any larger length att~ibute storage
capacities. Thus it would be unwise to attempt to use a LONG INTEGER
as a subrange. This range of length att~ibutes all having the same
upper bound is a result of the allocation of a full word as the least
amount of additional storagel 1. e. 5 th1"u 9 represent a two word
INTEGER,) All of the standard relational operators may be used with
mixed LONG INTEGER and INTEGER.

The function TRUNCCL), where 'L' is a LONG INTEGER, will
convert 'L' to an INTEGER <i. e. TRUNC will accept a LONG INTEGER as
well as a REAL as an argument). Interrupt (overflow) will result if L
is greater than MAXINT.

The procedure STR(L/S) converts the INTEGER or LONG INTEGER
'L ' , into a st~ing (complete with minus sign if needed) and places it
in ttl (? STR lNG'S I. Ttl e fo I 1 oUJi ng program segment wi 11 provi de a
suitable dollar and cent routine:

STR(L,S); INSERT{'. '!SJLENGTH(S)~ei); WRITELN(S);

Where 'L' and ~Sl are appropriately declared. TRUNC and STR
are the only two routines which cur~ently will accept LONG INTEGERs as
parameters. An attempt to declare a LONG INTEGER in a parameter list
will result in a compile time e~ror, which may be circumvented by
creating a type which is a LONG INTEGER. For example:

Page 180

TYPE LONG = INTEGER[1Bll
PRDCEDURE BIGNUMBERCBANKACCT LONG)i

The LONG INTEGER is stored as a multi-wordJ twos complement
bina~y numb~r. System and interp~eter ~outines do the I/O conversions
as re~ui~ed. Maximum storage efficiency is aChieved by dynamic
expansion and cont.i'action of Ulor-d allocation as required. During
LONG INTEGER operations the length is placed on the stack above the
number itself, the d&clared length att~ibute need not be the same and
can be lens than this length.

Jage 182

******************************* *************** * P5UEDO-MACHINE ARCHITECTURE * * Section 3.4 *
******************************* ***************

VeT'S ion 1. 5 Septembe-r 1978

The UCSD Pascal P-machine, designed specifically for the
execution of Pascal programs on small machines, is an extensively
modified descendant Or the P-2 pseudo-machine from Zurich. It supports
variable addl"essing, including strings. byte arrays, pac"ed fields, and
.jynamit: vaT'iables.; logical, integer, real .. and set top-of-stack
arithmetic and comparisons; multi-element structure comparisons;
several types of branches; procedure/function calls and returns,
including overla~able procedures; miscellaneous procedures used by
systems programs; and an I/O system.

This Sectionl to be used in conjunction with Section 3.5,
describes the P-machine "hardwa'f'e, It communication with the operating
systeml exceptional condition handling, the instruction set, the lID
system, and the bootloading process.

NOTE: nat all of the above will be included in the 1.5 rel!ase
and will anl~_be available sometlme.later.

3.4.1 HAR D~·Jt~R E

The 1" e e xis t s no p h Y sic alP -ma chi n e (yet!). The P -ma chi n e
e~ists only a~ interpreters written in assembly languages of actual
compute~s. However, this can and will be ignored in the following
description.

The P-machine us~s 16-bit words, with two a-bit bytes peT
word. It ha~ s.everal registers and a user memory, in which aT'e kept a
star.\(and a heap. All r~gisters are pointers to word-aligned
st~uctures! except IPC, which is a pointer to byte-aligned
instT'~JctiQns. The registers are:

SP : St a c k Poi n t e r i sap 0 in t e r tot h e top 0 T the e x e cut i on s t a c k . The
stack starts in high memory and grows toward low memory. It
contains code segment. and activation recordSJ and is used to pass
parameters! retu~n function vdlue~J and as an opeT'and source for
many instructions. The stack is extended by loads and procedure
callsi and is cut ba,ck by ~toreSI procedure returns, and arithmetic
operation'S.

NP: N~w Po inter is a poi nter to th e top of! the dynami c heap. The heap
starts in law memory and grows upward toward the stack. It
contains all dynamic variables (see Jensen and Wirth, Chapter 10).
I tis eo x t e It d e d b y the s tan d .a rd p r' 0 C e d u r' e I T1 e w', and i $ cut b a c k b Y
the 'standard procedure 'release',

Page 183

~TAB: Jump TABle pointer is a pointer to the procedure attribute table
of the currently executing procedure, (St~e S~~-:tion 3,5 .. -Figure 5.)

SEG: Segment Pointer points to the procedure dictionary of the segment
to which the currently executing procedure belongs. (See Section
3. 51 of i 9 liT' e 6.)

MP: Most recent Procedure is a pointer to the activation record of the
currently executing procedu'!"e. (Se~ Sectton 3.5) -figuT'e 7.)
Variables local to the current procedure aT'e accessed by indexing
off MP.

BASE: BASE Procedure is a pointer to the activation record of th~ mast
recently invoked base procedure (lex level 0). Global (lex
le~el 0) variables are accessed by indexing Qf~ BASE.

3.4.2 OPERATING SYSTEM/P-MACHINE COMMUNICATION - SYSCOM

It is sometimes necessaT'y for the QP~rating system and the P
machine to exchange information. Hence there exists a variable SYSCOM
in the outer bloc~ of the operating system, and a co~responding area in
memory kn~wn to the hardware. The fields in SYSCOM actually relevant
to this commtlnicatioTl are:

IORSLT: contains the error code returned by the last activated or
terminated 110 operations. (See I/O section below, and operating
sY$tem road and writp procedures)

XEQERR: contains the error code of the last ~un-time error. (Sf.\2

exception h~ndling below.)

SVSUNIT: contains the unit number of the device the operating system
was booted from (usually 4 or 5).

BUGSTATE' cont~in~ the (urrent bU9st~tE. (St.-eo BPT infitT'Uction belolJ.!.)

GDIRP: contain5 a pointer to the mast recent disk directory read in,
unless dynami~ allocation or deallocation has taken place since then.
(S~:'e MRKt RLS, and NEJ~ instr!.Jctions below.)

STKBASE. LASTMP, SEQ, JTAB:
reg is ter s.

BOMBP: contains a pointer to the activation record of the operating
system routine EXECERROR when a runtime error occurs. (See
exception handling,)

Pege 184

BOMIPC: contains the value of IPC when a run-time error occurs.

HL TL I NE : con t a ins the lin e n u m be,.. 0 f the 1 <1\ S teo n d i t ion ~=i 1 hal t e x e cut e d .
(See BPT instruction.)

BRKPTS: contains up to four line numbers of breakpointed statements.
(S~e BPT i.nstY'uction.)

CRTINFO.EOF:
driver).

contains the end-or-file character (see console input

CRTINFO.FLU5H: contains the flush-output character (see console inputl
output drivers).

CRTINFO,STOP: contains the stop-output character (see console output
and input drivers).

CRTINFO.BREAK: contains the break-execution character (see console
input driver>.

SEGTABLE: contains the segment dictlonar~ for the pascal system.

3.4.3 EXCEPTION HANDLING - XEGERR

Whenever a run-time error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and t~ansfe~s control to the XEGERR routine.
This ~outine

1) enters the error code into SYSCOMA
• XEGERR.

2) calculates what MP will be after step 41 and sets SYSCOMA.BOMBP to
that. ~The size of EXECERROR's activation record must be known
by the P-m·ac:hine.)

3) stores the current value of IPC into SYSCOM-.BOMIPC.
4) points IPC to a CXP 0,2 (call operating system procedure

EXECERROR) inst~uctiDn.

5) resumes execution of interpreter code, starting with the expo

3.4.4 OPERAND FORMl\ TS

Although an element of a structure may occup~ as little as one bit,
as in a PACKED ARRAY OF boolean, variables in the P-machine are
alwa~s aligned on word boundaries. All top-of-stack operations expect
their operands to occupy at least one wardJ even if not all the
infa~mation in a word is valid. The least significant bit of a word is
bit OJ th~ most significant is bit 15.

Page 185

BOOLEAN: One wo~d. Bit 0 irtdicates the value (false=OI true=l),and
this is the ~nly information used by boolean comparisons. However,
the hoolean operators LAND, LOR, and LNOT operate on all 16 bits.

INTEGER: One word, two's complement, capable of representing values in
the range -32768 .. 32767.

SCALAR (user-defined): One word, in range O .. 32767.

CHAR: One WOT'd~ with low byte containing character. Th~ internal
c h a rae t e 1" set i 5 II ext en d e d U ASC I I I wit h 0.. 127 l' e pre s en tin 9 the
standard ASCII set, and 128 .. 255 as a user-dpfined character set,

REAL: Two wO'r'dsl with fOT'mat implementation dependent, The system
is arranged 50 that only the interpreter needs to know the detailed
internal format of REALs (beyond thp fact that they occupy twa
words) Following are th. two detailpd formats for the CPUs we now
(a~ or 1. 4) suppur't.

PDP 11;
15 o

llfQ'T'd 1; low mantissa

15 14 7 6 o

exponent high mantissa

zeO/SOBO:
15 8 '1 o

15 14· 8 7 o

UlOT'd 0: high mantissa exponent

Both repT'esent~tj.on::.t hav~ an e;c:,:~ss'-'128 exponent ... a fl"ac:tional
mantisr;a ti)at is alw.ays. normalizE:~dt expont1nt oa£if.? 2. an implicit
24th mantissa bit, and zero represented by a zero exponent. (See
PDPll processor manual or ZaO/SOBO interpreter listing for greater
de ta i 1.)

POINTER. One or three words, depending on type of pointer.
Par..cal pointers;, internal word pointers: one word, containing a word

address.
Intern.Sll bytl? pointers: one WOT'd, containing a byte addr-ess.
Internal par,ked field pointers: three words.

word 2: wOT'd pointer to word rield is in.
WO!"' d 1: of!:i ~ 1 d _w i d t ~ < j n bit; 5)

word 0: right_bit_numbeT' of field.

SET: ' (1, 255 tool'd~ in d.~tM segm~ntl :t ,256 words on stack. Sets are

Page 186

imp 1 em e n t ed ,:a'$ bit vee tar s , a 1 Wa y s wit halo we-r in d e x 0 f z e l' o. A
set vlH',iable declared as set of m .. n is allocated (n+15) div 16
words. When a set is in the data segment, all words allocated
contain valid info~matian.

When a set is on the stack, it is represented by a word
containing the length, and then that number of words. all of which
contain valid information. All elements past the last word of a
set are assumed not to be elements of the set. Before being stored
bark in the data segment, a set must be forced back to the size
allocated to it, and so an ADJ instruction must be issued.

-RECORDS and ARRAYS: any number of words (up to 16384 words in one
dimension). Arrays are stored in row-major order, and always have
a lower index of zero. Only fields or elements are loaded onto the
stack - neveT the structure itself. Packed arrays must have an
integral number of elements in each word, as there is no packing
across word boundaries (it is acceptable to have unused bits in
each word), The first element in each WOT'd has bit 0 as its low
order bit.

STRINGS: 1 .. 128 words. Strings are a flexible version of packed
al"rays of char. A string(nJ occupies (n div 2)+1 words. Byte 0
of a string is the current length of the string, and bytes
1 .. 1ength(string) contain valid characters.

CONSTANTS: constant scalars, sets, and strings may be imbedded in
the instruction stream, in which case they have special formats.

All scalars (excluding reals) not in the range 0 .. 127: two bytes.
low byte first.

Strings: all string literals take length(literal)+l bytes, and
are byte aligned. The first b~te is the length, the rest are the
actual charact~rs. This format applies even if the literal should
be interpreted as a packed array Q£ char (see SiP and S2P
below.) .

Reals and sets: word alignedJ and in ~!~ word order.

3.4.-5 INSTRUCTION SET FORMAT

Instructions on the P-machine are one or two bytes long, followed
by zero to four param~ters. Most parameters specify one word of
information, and are one of five basiC types.

UB unsigned byte: high orde~ byte of parameter is implicitly zeT'o.
SE signed byte: high order byte is sign extension Qf bit 7.
DB don't care byte: can be treated as sa or UB, as value is always in

the range 0 .. 127.
E big: this parameter is one byte long when used to represent values in

the range O .. 127, and is two bytes long when representing
values in the range 128 .. 32767. If the first byte is in
0 .. 127J the high byte of the parameter is implicitly zero.
Otherwise} bit 7 of the first byte is cleared and it is used as the
high order byte of the param~teT'. The second byte is used

Page 187

as the low order byte.
W word: the next ttJlO byte"5i1 low byteriT'stt is the paT'ysmeter value.

Any exceptions to these formats are noted in the instructions where
they occur.

3.4.6 ENGLISH INSTRUCTION SET DESCRIPTION

In thp fallowing section~ refprencEs to an element on the stack are
context-dependentt and can mean anyw~ere from one word to 256 words.
A 1 so} tf n 1 e s ssp e c i. -F i cally n () ted tot h e c on t l' a l' y , 0 peT' and s aT' epa p p e d 0 ~ f
the stack - they are not left a'r'ound.

Abbreviations a~e used widelYI but use fairly simple conventions.
Paramete1's are written as X or X_", where X is UB, SBI DB, B, or W, and
n is an integer indicating the param~ter position in the instruction.
Tos means the operand on the top of st~~kJ toa-l the next operand;
etc. Mark Stack CDntrol Word is abbreviated to MSCW,

Many instructions re-Fer to the activation record of a procedure. and
this document assumes the reader has a general knowledge of procedure
calling in stack machines, and thp concept of stack frames. An
activation reco~d as defined in this document specifically consists of:

1) the local data segment o~ the procedurej and
2) the MSCW, containing addressing information (static links), and

Information on the calling procedure~ environment when the procedure
wa~; called.
(See Section 3.5. figure 7. ,

Thp dune~ic chRin re'ers to th~ calling chaln. traversed u~ing the
MSCW MSDYN links. The st8tic chain l'ef~r~ t~ thv lexical or ancestor
chain, travl;:\T'sed u~ing the MSCW. MSSTAT links,

MNEMONIC OP-CODE PARt,\METERS FULL NAME AND OPERATION

5. A VARIABLE FETCHING, INDEXING, STORINGJ AND TRANSFERING
S.A.l ONE WORD LOADS AND STORES

S.A.I.a CONSTAN7 ONE WORD LOADS

SLDC o .. 12'7 Short load word constant. Pushes the
c:pCOdl· ... U))t;t: high bytp. zero,; cinto stack.

Page 188

l .• DCN 159

LDCI 199 w

Load con5tant ni~. Pushes the
implementation-dependent valur. of nil.

Load constant word. Pushns W.

5.A. 1. b LOCAL ONE WORD LOADS AND STORE

SLDLl 216

SLDL16 231

LDL 202

LLA lqe

STL 204

B

B

B

Short load local word. SLDLx fetches
the wo~d with off&et x in MP activation
reco~d and pushes it.

LO~3 d 1 !H'.i'J 1 wor d. Fete h es th e wO'f'd wi th
offset B ~n MP activation record and pushes it.

Load lo~al add~ess. Fetches addre&5 of
the (11 aT' d wit h 0 f of ~~ e t 13 i n I"tP act i va t 1. 0 n r e c. 0 r d
and pushes it,

Store loc.al UJo1~d. St*.ll'eS ttjEj into word
wltn offsFt B in MP activation record.

5.A. 1. c GLOBAL ONE WORD LOADS AND STORE

SLDOl 2:-12

SLD016 247

LOO 167

LAO

SRO 1.71.

B

Short load global UJor-d. SLD()~ fetches
the tlJord wi.th offset x in BASE a.euva.uon
record an~ pushes it.

L c;} d (] 1 1) b a 1 ltJ tH' d . Fe tc h e 5 the I» 0 r d wit h
oFfset B in BASE activation record and pushes
i·t.

Lo.~d 9 1 oba 1 addl'ess. Pushes the word
addre5s of the word with offset B in BASE
~ctivation record.

Stor~ globAl word. Stores tos int.D the
word wit~ of~5et B in BASE activation record.

5-A. I. d INTERMEDIATE ONE-WORD LOADS AND STORE

LDD

LDA 178 DE,B

STR 184

LO(';ld intermetii.a-te wal'd. DB indicates the
number or static links to traverse to find the
activation record to use. B i. the ofFset
within the activation record.

Load intermediate address.

Store intermediate word.

Page 189

5.A. 1. e 'INDIRECT ONE-WORD LOADS. AND STORE

STO 154 store indirect. Tos is stored into the
word pointed to bytos-1.

SINDO 248 Load indirect.

5.A.2MULTIPLE WORD LOADS AND STORES (SETS AND REALS)

LDC 179

LDM 188

STM 189

5.A.3 BYTE ARRAYS

BYT 210

LDB 190

STB 191

MVB 169

IXB 209

5.A.4 STRINGS

Page 190

UB, <block:> Load multiple word constant. UB is the

UB

UB

B

number of words to load, and <block> is a
word al igned bloc k of UB words, in reverse
word order. Load the block onto the stack.

Load multiple words. Tos is a pOinter
to the beginning of a block of UB words.
Push the block onto the stack.

StoT'emultiple words. Tos is a block of
US wordsl tos-l is a word pointer to a
similiar block. Transfer the block from the
stack to the destination block.

Byte conversion. Cctnvert word pointer
tos to a byte pointer. (NOP on the PDP11 and
ZSO/S080 imp lementat ions.)

Load ,byte. Push the byte (after zeroing
high byte) pointed to by b~te pointer tos.

store byte. Store byte tos into the
location specified by byte pointer tos-l.

Move bytes. Tos is a byte source
pointer to a block of B bytesl tos-l is a
byte destination pointer to a similiar
block. Transfer the SOlfT'Ce block to the
destination block. (This instruction is
redundant due to word alignment. and will
be rep la c e d by MOV in the f u t u l' e.)

Index byte array. Push a byte pointer
formed from the integer index tos and the byte
pointer tos-l.

LeA 166

SAS 170

SIP 208

S2P 157

IXS 155

UB, <chars> Load constant string address. Push a
byte pOinter to the location UB is contained
in, and skip IPe past <chars>.

us String assign. Tos is either a SOUT'ce
byte pointer or a character. (Characters
always have a high byte of zero, while
pointer never do.) 10s-1 is a destination
b~te painter. UB is the declared size of
the destination string. If the declared
size is less than the current size of the
source string, a run-time er~or occurs;
otherwise all bqtes of source containing
valid information are transferred to the
destination string.

Stl' i ng to pac ked c onveT'S i on on tos. Tos
is a bl.Jte pointer to a string, and is
inc~emented by onp byte in order to point to
the first character of the string.

String to packed conversion on tos-1.
Tos and tos-l are byte pOinter$I and tos-l is
incremented by one b~te.

Index string aT'T'C:Hj. Performs the same
operation as IXB, except before indexing the
index is check~d to see if it is in the range
1 .. cur~ent length. If notl a run-time error
DC r: UT' $,

5. A. 5 RECORD AND ARRAY INDEXING AND ASSIGNMENT

MOV 168 B Mo.ve ""Q'rds. Tos is a SQU1"ce pointer to

SINDO 248

SIND7 255

IND 163

INC 162

IXA 164

B

B

B

a block of B wards, tos-l is a destination
pointer to a similiar block. Transfer the
block From the source to the destination.

Short index and load word. SINDx indexes
the word pointer tQS by x wordsl and pushes
the word pointed to by the result.

Static index and load word. Indexes the
word pointer tos by B words, and pushes the
wOl'd pointed to.

Increment field pointer. The word
pointer tos is indexed by B words and the
T@iliultant pointer i5 pushed.

Index array. los is an integer indexl
tos-l is the array base word pointer, and B
is the size (in words) of an array element.
A word painter to the indexed element is
pushed

Page 191

IXP 192

LDP 186

STP 187

UB_l,UB_2 Index packed array. Tos is an integer
index, tos-1 is the array base word pointer.
DB_1 is the number o~ element-per_word, and
DB _2 is the fie 1 d _w i d t h (i n bit s) . Camp ute
and push a packed field pointer.

Loa d a p a·c ked fie 1 d . Pus h the fie 1 d
described by the packed field pointer tos.

store into a packed field. Tos is the
data, tos-1 is a packed field pointer. Store
tos into the field described by tos-1.

5.A.6 DYNAMIC VARIABLE ALLOCATION AND DE-ALLOCATION

NEW 158 1

MRK 158 31

RLS 158 32

New variable allocation. Tos is the size
(in words) to allocate the variable, and
tos-2 is a word pointer to a dynamic
variable. If GDIRP is non-nil, cut NP
back to GDIRP and set GDIRP to nil. Store
NP into word pointed to by tos-1, and
increment NP by tos words.

Mark heap. Release GDIRP and set to nil
if necessary, then store NP into word pOinted
to by tos.

Release heap. Set GDIRP to nil, then
store word pointed to by tos into NP.

5.B TOP OF STACK ARITHMETIC AND COMPARISONS

5.B.l LOGICAL

LAND 132 Logical and. And tos into tos-l.

LOR 141 Logical or. Or tos into tos-l.

LNOT 147 Logical not. Take one's complement oOP tos.

EGUBOOL 175 6 Boolean =,
NEGBOOL 183 6 ·C>;
LEGBOOL 180 6 '-(=,

LESBOOL. 181 6 <,
GEGBOOL 17.6 6 >=,
GTRBOOL 177 6 and). comparisons.

Compare bit 0 of tos-l to bit _0 of tos and push
true OT' fa 1 se.

Page 192

5.B.2 INTEGER

ABI 128

ADI 130

NGI 145

SB! 149

MPI 143

SGI 152

DVI 134

MODI 142

CHI-<

EGUI 195
NEGI 203
LEG! 200
LEST 201
GEGr 196
GTRI 197

5.B.3 REAL.S

Absolute value of integer. Take absolute
value of integer tos. Result is undefined if
tos is initially -32768.

Add integers. Add tos and tos-l.

Negate integer. Take the two's
complement of tos.

Subtract integers. Subtract tos from tos-l.

Multiply integers, Multiply tos and tos-l.
This instruction may cause overflow if result
is larger than 16 bits.

Sq,W;!:lT'e integer.
over-of low.

Stluare tos. May cause

Divide integers. Divide tos-l by tos and
push quotient. (PDPll ~uotient defined as in
Jensen and Wirth; Z80/8080 quotient defined
by floor(tos·-·1/tos),)

Modulo integers. Divide tos-l by tos and
push the remainde~ (as defined in Jensen and
Wirth)

Check against subrange bounds. Insure
that tos-l <= tos-·2 (= tOSI 1 eavi ng tos-2 on
the stack. If conditions are not sati~fied
a run-time error occurs.

IntegeT' :,
<>,

<=,

and)
comparisons. Compare tos-l to tos and push
true or Talse.

Allover/underflows cause a run-time error.

FLT 138 Flo at top -. a f .~. s t a c k . The in t e 9 e r to sis
conve~ted to a floating point number.

Page 193

FLO 137

TNC 158 22

RND 158 23

ABR 129

ADR 131

NGR 146

SBR 150

MPR 144

SQR 153

DVR 135

POT 158 35

SIN 158 24
COS 158 25
ATAN 158 27
EXP 158 29
LN 158 28
LOG 158 26
SGT 158 30

EGUREAL 175 2
NEQREAL 183 2
LEQREAL 180 '2
LESREAL 181 2
GEGREAL 176 2
GTRREAL 177 2

Float next to top-o-F-'stack. Tos is a real,
tos-l is an integer. Convert tos-l to a real
number.,

Truncate real. The real tos is truncated
(as defined in ~ensen and Wirth) and
converted to an integer.

Round real. The real tos is rounded (as
defined 1n .Jensen and Wirth), then truncated
and converted to an integer.

Add T'eals.
the rea I tos.

Take the absolute value o~

Ad d rea Is. Ad d tos and tos-l.

Negate real. Negate the real tos.

Subtract real s. Subtract tos from tos-1.

Multiply reals. Multiply tos an~ t4s-1.

SquST'e T'eal.

Divide reals. Divide tos-l by tos.

Power of ten. The integel' tos is check
for 0 <.= tos <= 38, a run-time error
occuTT'ingi~ the conditions aren't satisfied.
The implementation dependent value 10 A tos
is pushed., This facility:allows the rest of
the systam to be ind9pgndent of floating
poi n t f- 01" rna t .

Sine. Take the sine of the real tos.
Cosine.
Arctangent.
Exponential. e A t05.

Natural logarithm.
Log base 10.
Sttuare root.

Real ::::t,

<>,

and > comparisons.
Push TRUE or FALSE.

5.B.4 SETS

ADJ

SGS

SRS

INN

UNI

INT

DIF

EGUPOWR
NEGPOWR
LEGPOWR
GEGPOWR

5.B.5

EGlJSTR
NEGSTR
LEGSTR
LESSTR
GEGSTR
GTRSTR

160

151

148

139

156

140

133

175 8
183 8
180 8
176 a

STRIl~GS

175 4
1.83 4
180 4
181 4
176 4

177 4

us AdJust set. The set tos is 90rced to
occupy US words, either by expansion (putting
zeT'oes IfbetweenH tos and tos-1) OT"
compression (chopping o~ high WOT'ds o~ set),
and its length word is discarded.

Build a singleton set. The integeT' tos
is checked to insure that 0 <= tos <= 4079, a
run-time eT'T'or occurring if not. The set
[tosJ is pushed.

Sui Id a subrange set. The integers tos
and tos-l a~e checked as in SGS, and the set
[t 0 s -1. .. to S J i s pus h e d . (The set [] i s
pushed i f t 0 S '--1 :> t 0 5.)

Set membership. See if integer tos_l is
in set tos, pushing TRUE OT' FALSE.

Set union.
tos-l is pushed.

The union of sets tos and
(Tos .2.!. tos-l.)

Set intel·section. The intersection of
sets tos and tos-l is pushed.
(To S and to S -, 1.)

Set difference. The difference of sets
tos-l and tos is pushed.
(tos-l and n,.Q..t_ tos.)

<:>,
-(: (subset of),

(superset of) comparisons.

String =,
<:>,

<=,

and :>=

and >
comparisons. The string pointed to by word
pointer tos-l is lexicographically compared
to the string pointed at by tos.

Page 19:

5.B.6 BYTE

EGUBYT 175
NEGBYT 1.83
LEGBYT 180
LESBYT 181
GEGBYT 176
GTRBVT 177

ARRAYS

10
10
10
10
10
10

By te array =,

and :>
comparisons. <=1 <, >=, and > are only
emitted fOT ~c:ked arrays of char.

5.B.7 ARRAY AND RECORD COMPARISONS

EQU1~ORD

NEGWORD
175 12
183 12

5. C JUF1PS

Word or multiword structure =
and <:>

C ompar i sons.

Simple (non-case statement) Jumps a~e all two bytes long. The
first byte is the op-code, the second is a SB Jump offset. If this
offset is non-negative, it is simply added to IPC. (A value oT zel"O

for the Jump offset will make any Jump a two-'byte nap.) If sa is
negative, then sa llY 2 is used as a wo'rd offset into ~TABJ and IPC
is set to the byj~..!t addT'e5s(JTAB· [SB div 2J) - JTAStSB &1y. 2J.

U.JP 185 SB

FJP 161 SB

EFJ 211 SB

NFJ 212 5B

X.JP 172

Unconditional Jump.
above.

Jump as described

False Jump. ~ump if tos is false.

Equal false Jump. "Jump iT integer tos <>
't05-1. Not imp lemented in I. 4.

Not equal
tos = tos-·l.

·f-alse Jump. J{Jmp if integer
Not implemented in 1.4.

Case Jump. W_l is lllord-aligned, and is
the min i rou min d e x 0 of t h eo tab 1 e. W _2 i s the
maximum index. t"'_3 is an unconditional
Jump instruction past the table. The case
table is W._2·-W_l+1 words long, and contains
self-~elative locations.

If tOSI the actual index, is not in the
'r'.ang e W_J,. W_.21 ttl en IPC is poi n ted at
W_3. Otherwise; tos-W_.1 is us.ed CiS an
index into the table, and IPC is set to
by te~_~d dr'ess (c as etab 1 et: i no e x -mi n_i nd ex)
casetable[index-min_indexJ.

5.0 PROCEDURE AND FUNCTION CALLS AND RETURNS

CLP

CGP

CIP

CBP

CXP

The general scheme used in procedure/function invocation is

1) Calculate the data_size and parameter_size of the called
procedure by using the information in the current procedure
dictiona~y (pointed to by SEG).

2) Extend stack by data_size bytes.
3) Copy parameter_size bytes from the old top-af-stack to the

beginning of the space Just allocated.
4) Build a MSCW, saving SP, IPC, SEQ, JTAB, MP, and a pointer

to the most recent activation record of the called procedure's
immediate parent.

5) Calculate new values for SP, IPC, JTAB, MP, and if necessary,
SEG. Check for stack overflow.

6) If the called procedure has a lex level of -lor 0 save BASE
and calculate a new BASE.

206

207

174

194

205

UB

UB

UB

UB

Call local procedure. Call procedure UB,
which is an immediate child of the currently
executing procedure and in the same segment.
Static link of MSCW is set to old MP.

Call global procedure. Call procedure
UB. which is at lex levelland in same
segment. The 4itatic link of the MSCW is set
to BASE.

Call intermediate procedure. Call
procedure VB in same segment as the
currently executing procedure. The static
link of the MSCW is set by looking up the
call chain until an activation record is
found whose caller had a lex level one I
less than the procedure being called. Use
that activation record's static link as the
static link of the new MSCW.

Call base procedure. Call procedure UB,
which is at lex level -lor O. The static
link of the MSCW is set to the static link
in BASE' ~ act i vat ion r e cor d . The BASE i 5

saved, after which it is pointed at the
activation record Just created.

013_1, UB_._2 Call external procedure. Used to call
gP,~ procedure not in the same segment as
the calling procedure, including procedures
at lex level -lor O. It works as follows:

1) Is desired segment in memory? This
is determined by traversing up the call
chain until an activation record of a
procedure in the desired segment is found,
or the DPerating system's resident

esp -- ed6 note: it WM po~nted ou:t thM. op-c.ode 158 -fA esp, and)A .6c.aZteJted thJwughoLLt
:t.fU.6 doc.ument. ThL6 will be c.leaJr.ed u.p ~n the next maj Oft doc.umentaUon
ennoJtt •

Page 197

RNP 173 DB

REP 193 DB

EXIT 158 4

activation ~ecord is encounte~ed,
2a> no: read in segment from disk using

th~ information in the segment dictionary,
then build an ~~H:ti\fatiDn recoT'd. However,
extend stack by data_size+pc;ramsize in step
2.

2 b) yes; b u i 1 d act i va t ion 1" e c 0 i" d nor ma 11 y .
3) calculate the dynamic link foT" the

MSCW: If the called procedure has a lex
level of -1 or O. set as in esp, otherwise
set as in elP.

Return from !1on~-base procedure. DB is
the number of words that should be returned
as a function value (0 rOT' procedures, 1 .pOl'

non-"i"eal functions, and 2 ·r-or real functions).
DB words are copied 9rom the bottom of the
data segment and "pushed" onto the caller's
top -' 0 f - s t a c k . Th e i n f 0 T' ma t ion in the MSC W
is then used to restore the caller's
correct environment.

Return ·j!rom base procedure. Th~ saved
base is moved lnto BASE, a,ter which things
proc9.ed as in the RNP instruction.

Exit from procedure. Tos is the
P'!" 0 red ~J r e n u m h p. 'l". t !:: ~ - 1 i~; t h I.?' f.;? 9 m l? rl t
number. This operato~ sets IPC to point to
the exit c~de of the cU~~9nt]4 executing
proc~du'i"e, th€n sees if the :;:uT'T'ent
procedure is the one to exit Prom. If it
is. control returns to the instT'uction
retch loop.

Otherwise, each MSCW has its saved IPC
changed to point to the exit code of the
procEdure that invoked it, until the
desired procedure is found.

If at any time the saved IPe of main body
of t~e ope~ating system is about to be
c h\3 n 9 ed, a run -~ tim e e T" 'r Q T' 0 C cur s .

5.E SYSTEMS PROGRAMS SUPPORT PROCEDURES

See Section 2.1 for desci'iption o.,! these procedures.

BYTE ARRAY PROCEDURES

FLC 158 10 Fillcnar(dst, len, char).

Page .198

seN

MVL

MVR

TRS

IDS

BPT

TIM

XIT

158 11

158 02

158 03

5can{maxdisp, start, forpast, char, mask).

Moveleft(srci dst, numbytesL

Moveright(sT'c, dst, numb'ltesL

COMPILER PROCEDURES (still undocumented>

158 08

158 07

DEBUGGER

213

MISCELLANEOUS

158 09

21,4

Treesearch.

Idsearch.

Breakpoint (conditional HALT)

Time.

Page 199

- Notes .-

Jage 200

*** *************** * INTRODUCTION TO THE PASCAL PSEUDO-MACHINE * * Section 3. 5 *
*** ***************

VeT'sion 1. 5 September 1978

UCSD uses an interp~eter based implementation of Pascal. This
implementation is interpreter based. This means that the compiler emits
code for a pseudo-machine which is emulated at ~un time by a p~ogram

writt~n in the machine language of the host. The compiler, program
editori small stand-alone operating system, and various utilities are
themselves w~itten in Pascal and run on the same interpreter. Thus the
entire system can be moved to a new host machine by rewriting the
interpreter Tor the new host.

Figu~e 3.5.10 (the last page of this document) is a skeleton version
Or a large Pascal program; here-·in-a{~ter refer-red to as "The Program".
This document is a top-down description of the realization of that
program on the UCSD Pascal system. We will make occasional use of a
helpful coincidence: The Program is the framework of the portion of
the UCSD P~scal environment that's written in Pascal.

If The Program were expanded to a complete Pascal system, it
would consist of at least 6000 lines of Pascal and compile to more than
501000 bytes Df code--too big to fit all at once into the memory of a
small machine (by our current definition of small). We have therefore
extended Pascal so that a progT'ammer can explicitly partition a program
into segmentsi only some of which need be resident in main memory at
a time. The s~nta)(o-r this extension is shown in figure 3.5.1. (Any
syntactic objects not defined explicitly there retain their standard
interpretation as defined by Jensen & Wirth: Pascal User Manual and
Report.)

<program> ::= <program heading> <segment block~

<segment block> ::= <label declaration part>
<constant declaration pa~t> <type definition part>
<variable declaration part> <segment declaration part>
.. .:: ~ e 9 m. en t bod y)-

<segment declaration part> ::= SEGMENT <procedure heading>
<segment block>; , SEGMENT <function heading>
<segnn?nt block>;

-(segment body:>:::::-.:: <pT'ocedure and function declaration part:>
<~t=tement part>

FIGURE 3. 5 1. SEGMENT DECLARATION SYNTAX.

Page 201

Segment declaration syntax (figure 3.5.1) requires that all nested
segments be declared be~ore the ordinary procedures or functions of
th~ segment body. Thus, a code segment can be completely generated
before processing of code for the next segment starts. This is not a
functional limitation;since fo~wa~d declarations can be used to allow
nested s£gments (COMPILER in The Program) to ~eference procedures in
an oUtf~l' segment body (CLEARSCREEN). Simi larly, segment procedtJ.res
and functions can themselves be declared forward.

Segmenting a p~Dgram does not change its meaning in ~ny
fundament,~l sense. When a segment is called (e.9. the COMPILER
segment in line A), the int~TpTeter checks to see if it is present in
memory due to a previous invocation. If it is, control is transferred
and EXe"cution proceeds: if not, the appropriate code segment must be
loaded from disk befo~e the transfer 0 9 control tak&s place. When no
more active invocations Qf the segment exist, it. code is removed from
memory. For ins tance, in Th e Program; the c: od e for the (;O~IP I.NIT
segment is not present in memory either be'ore or after the execution
of line A Cle~rly, a program should be segmented in such a way that
(non *- T" t? c: u r s i v e) s e 9 men tea lIs a 1"' e i n f!' e que n t i Q the r wi $ e I en u c h 't; i me
CQuld be lost in unproductive thrashing (particularly on a system with
low performance disk).

high address

DE.BUGGER 10
n n t ... _ .. ____ ___ ;.,. .. _."-- __ ,. __ ,.,_,_, _______ J_,.. ______ ~ __ _......_ .. _ """,,--,., ---------

FILER 1'7

EDITOH 12
i n - _____ c' ... ~, • ...,... .-.... - •. '- - ... ~--- - _ "'_.- _._,.,.. ... ~ _ - ---- ... ------.----------------

CDI"!P I I\! IT 7
.f,:: ~it ~ ,-"' ""C<"9' -~ -~" ... --' ,.- - '-,,,,- ._ •• - ~ <_ ~ ~ _ .. _.- -..- -- ._._- .. _ ... _ _ •. _-";. ... ,-,. ,----

COMPILER

USFf~ PROGRAM 1

17

SEGMENT DICITONARV 1

low address

FIGURE 3. 5. 2. PASCAL SYSTEM CODE FILE.

Page 202

Thacode file resulting from compilation of The Program is
diagrammed in figure 3.5.2*. The file is a se,uence of c~de segments
preceded by a segment dictionary. The size of each segment is noted
in block$1 the 512-byte disk allocation quantum used on most PDP-11
operating $yst~ms. The sizes indicated are ~epresentative of a full
Pas cal s y stem. Ea c h cod e s e 9 men t beg ins 0 nab 1 0 c k b 0 un d aT' y . The
ordering (from law address to high address) i~ determined by the orde1'
that one encounters segment procedure bodies in passing through The
PragT"'am.

* An overview of the relationship between figures 3.5.2 through
3.5.8 (to be discussed in the following p~ges) is given in figure 3.5.9
at the end of this section. It is helpful to study figure 3.5.9 at this
point for a better understanding of the section.

The segment dictionary in the first block of a code file contains
an entry for each code segment in the file. The entry includes the
disk location and size(in bytes) for the segment. The disk location
is given as relative to the beginning of the segment dictionary (which
is also the beginning of the code file) and is given in number of
blocks. This information is kept in the system communications area
(also called SYSCOM) during the execution of the code file, and is
used in the loading of non-present ~egments when they are needed.
Figure 3.5-3 details the layout of the table and shows representative
contents for the Pascal system code file.

location

s i~: e

1
- - - - - - - - - - - - - - PASCALSYSTEM

8500

18
- - - - - - - - - - - - - - USERPROGRAM

variable

22
- - - - - - - - - - - - - - COMPILER'

20932

63
- - - - - - - - - - - - - - COMPINIT

3480

70
- - - - - - - - - - - - - - DEBUGGER

5880

FIGURE 3.5. '3. THE SEGMENT DICTIONARY

Page 203

A code segment contains the code for the body of each of its
procedures, including the segment procedure, itself. Figure 3.5.4 is a
detailed diagram of the code segment of The Program (Pascalsystem).
Each of a code segment's procedures are assigned a procedure numbe~,
starting at 1 for the segment procedure, and ranging as high as 255
(current temporary limit of 127). All references to a procedure are
made via its number. Translation from procedure number to location in
the code segment is accomplished with the procedure dictionary at the
end of the segment. This dIctionary is an array indexed by the
procedure numb~r. Each array element is a self-relative pointer to the
code for the corresponding procedure. Since zero is not a valid
procedure number, the zero'th entry of the dictiona~y is used to store
the segment number (even byte) and number of procedures <odd byte).
Observe that CLEARSCREEN is the first procedu~e for which code is
generated and that it appears at the beginning of the segment. The
outer block code is generated and appears last.

Pa9.e 204

high addrEsses
odd even

:---~
: Number of procedures : Segment Number

in dictionary
: - .. ---... -.-----... ----,--... -.. -~.------------ '-._"'-- ----------.. ---- :

Procedure #1 PASCALSYSTEM :--l

:----: Procedure #2 CLEARSCREEN
- - - - - rest of - - - - - - - -

:--: - - - - procedure dictio~ary - - - - -
: -----... ,-- -. ---- - --- - ----- - --~ - --_ .. - -- - - -- - --- - ---- :

PASCALSYSTEM's outer block code ,.,.~ ,
f '" .. -.

. ! _----- -.-"--"'-~'.-- .. "' _- -.--.. _._.--.-.. __ ._. - ------~- -~-.... --- ... ~ ..
other procedures of the Pasral system

: ---------------_._-------------- --_._._-_._-----: . -"",. I ~. I PROCEDURE #3 code

:---:
PROCEDURE #2 (cle6r5cTe~n) ..:ode

: .------ --_._--------_._-------- - --_._--_ .. _--_ .• _---- :

low addresses

FIGURE 3, 5. 4 A CODE SEGMENT

A more detailed diagram of a single pTocedu~e code section is
S f2 ;,;:. ,i 1 n f~. gUT' r~ :3. ~, '5, I t; con 5 i 5 t $ Q F- t w (.) par ts : the p'r- 0 c e d U 1'- e cod e
itself in the lower portion of the section) and a table of attributes
of the procedure. These attributes are'

LEX LEVEL: This add byte is the depth of absolute lexical nesting
,For the p'roceduT'e. (i. e. Lex Level (LL) Pascalsystem=-l, LL COMPILER
OJ' CLEARSCREEN=Q, LL COMPINIT=l, etc.).

PROCEDURE NUMBER: This even byte refers to the number given in the
procedure dictionary of the parent segment procedure. For example,
the Procnum of CLEARSCREEN is 2. (see figuT'e 3.5.4>.

ENTER IC:This is a self-relative pointer to the first instruction
to be executed for this procedure.

EXIT IC:This is a self-relative pointer to the beginning of the
block of procedure instructions which must be executed to terminate
procedure properly.

PARAMETER SIZE:The param size is the number of bytes of
parameters passed to a procedure from its caller.

and DATA SEGMENT SIZE:The data size is the size of the data
segiT,ent (See b::low; in b'Jtes, excluding the markstack and PARAM SIZE.

Between these attributes and the procedure code there may be an
optional sE?c:tion of me-mory called the "Jump table". Its entries ClT'e
addresses within the procedur~ code J1AB is a term commonly applied
to the si.x attribL'tes .lust ~iscussed and the Jump table itself.

high addresses
odd even

: - --~------,-- - -_.--_._----_ . .,,,-_._------ _._--- ;
Lex Level Procedure # : <-------;------------------

;--------------------------------:
Enter Ie :--!

: '.* ---'-"- ._,-. _ .. ,_. ---_._---_._----_._------ ---_._--

; -_ .. - : Exit Ie
~--------------------------------

Parameter Size
!--------------------------------

Data Segment
: - -- -_."'_ .. -'--'- - ... ------ -----_ ... _. --~-~ ... ---- .. -_ ... _ .. _--
! _. - --. _.. - J u m pTa b 1 e ~- .-. - - .- --:
; -----_._--_._------_._-------------:

:-:>:
l--------------------------------l

CLEARSCREEN
CODE

:<-l
: ------ --------- --- - ------------------ :

low addresses

PASCALSYSTEM's
Procedure
DictionaT'Y
Pointer'

:------------------

F!Gt}RE 3. 5 5. PROCEDURE CODE SECTION (OF CLEARSCREEN)

Page 205

high addr'esses

:---------------------------:
System Resident Segment

;---------------------------:
System Data Segment

:- - - - - - - - - - - - - -I
mark stack

:---------------------------:
: Compiler CDde Segment
:-----~---------------------:

Compiler Data Segment
:- - - - - - - - - - - - - -:

mark stack !
I

:---------------------------:
f Compinit Code Segment :
:----~--~---~----~----------:

Compinit Data Segment
:- - - - - - - - - - - - - -:
: mark stack :
:---------------------------:
: CLEARSCREEN Data Segment :
t- - - - - - - - - - - - - -~

mark stack I
l

1---------------------------:
temporaries

;- - - - - - - - - - - - - -; ,
I

:-----------------~---------;

H E A P

1---------------------------:
Interpretel'

:-- --:
s y S COM :<-

:-- - -- - -- - -- - --:
t---------------------------:

low addresses

<segment dictionary>

FIGURE 3. 5.6. SYSTEM MEMORY DURING CLEARSCREEN EXECUTIU~

Figure 3.5.6 is a snapshot of system memory during the execution of a
call to procedure CLEARSCREEN from line C in COMPINIT. The Pascal

Page 206

interpreter occupies the lowest a~ea in memory. In it is the system
commvnic~tions area(alsQ called SYSCOM),which is accessible both to
assembly language Toutines in the interpreter and (as if it were part
of the heap) to system routines coded in Pascal. It serves as an
important communication link between these two levels of the system.
The Pasc.l heap 15 next in the memory layout; it grows toward high
memory. The si~gle stack growing down from high memory is used far 3
t~pe9 of items: 1) tempo~ary storage needed during expression
evalustioni 2) a data 5~gment containing local variables and
pcri':Hl'!;~terc; foT' f~ar"h p'l"'ncectu;'Q ;3t:tiv~3tion; and 3) a code segment fO"r
each active segment !.)i'or.:edt.IT'e. (S~e f~i.9ur,;:! 3.5 . .f:..)

CDn5ide~ the status of operations Just befo~e COMPINIT is called
in line B. Conceptually, there are six pseudo-variables which point
to locat"lons in memp7"9:

a STACK POINTER(SP):which points to the current top of the 'stack,

,3 !"l,;Rt<\ STACiA, ?DI1\~TER01jF"): whict\ pOints to t;tle~ltopmostlt maT'kstack
in the ~;d;fH:ki (1"'e-membe-r' ·that the the ~;;tack grows down!)~

a SEGMENTCSEG) Vdriable:which pOints to the base of the procEdure
dictionary fDr the currently active segment p~ocedu~e. For example,
Just before COMPINIT is called, SEG pOints to the COMPILER segment's
procedure dictionary,

an INTERPRETER PROGRAM COUNTERCIPC):which contaIns the address of
the next instruction to be executed in the code segment of the current
procedure,

a JTAB pointer:which points to the collection of procedure
attribute~ and Jump table entries in the body of the cu~rent procedure
code secti~;n,

~nd a NEW POINTER(NP)·~hich points to the current top of the
heap.

When ~egme"t procedure COMPINIT is called in line B, its code
segment (lncludlng all compiler initialization procedures) is loaded
on the stack. The COMPINIT data segment is built on top of the stack.
F 1. 9 u r A 3. 5 7 i~; ~ d i a ry r''::; m (t f the d a t ~ s e 9 in & n t f {) T' C OMP I NIT,

Page 207

high addresses

~----------------------------:
Other COMPINIT variables

:----------------------------:
BaOL

1----------------------------1
I

j----------------------------:
J

:----------------------------:<--:
:--

!--

:--

1--

l-'-
!----:
: t1P : -~-) : -
:----!

MSSP

MSIPC

~'1SSEG

: --:> mar k s tac k

MSDYN

I"ISSTAT
--.:<--:

low addresses

FIGURE 3. 5, 7. A DATA SEGI"JENT

In the upper partien of the data segment, space is allocated for
variables local to the new procedure. For example:COMPINIT's data
segment allocates space for integer variables I and J, as well as
boolean BOOL,

I nth e 1 0 U1 e r p 0 r c). 0 n 0 f the d a t a s e gene n tis a II ma T'~ k s t a c k II • W hen
a call to any procedure is made, the current values of the
pseudo-variablEs; which characterize the oper~ting environment of the
calling procedure, are stored in the ma~kstack of the called
procedure. This is so that the pseudo-variables may be restored to
pre-call conditions when control is returned to the calling procedure.

For example, the call to COMPINIT causes conditions in COMPILER
Just before the call to be stored in COMPINIT's markstack in the
following manner:

Page 2.08

MarkStack DYNamic link (MSDYN) <-- MP
II u IPC(MSIPC) <-- IC
if

II

"

1/

II

SEGment Pointer(MSSEG) (-- SEG
Jump TABle (MSJTAB) <-- JTAB
Stack Pointer (SP) <-- Sp

In addition a Static Link field becomes a pointer to the data
segment of the lexical parent of the called procedu~e. In particular,
it points to the Static Link field of parent's markstack. After the
building of the data segment new values for IC, SEQ, BP, MP, JTAB, and
NP are established for the new procedure.

When the call to CLEARSCREEN is made on line C, another data
segment is added to the stack and again the pseudo-variables are
5 tOT' P. d in t. hen ~ w rna T' k $ t a c k Ie s W Ii? 1 1 a $ t h p.a p pro p ria t e Static Link,
and updated. Note that now the SEG no longer points to the COMPINIT
procedu~e dictiona~y, but to the Pascalsyztem dictionary.

No code segment for CLEARSCREEN is added to the stack before the
data ~egment since the code fOT CLEARSCREEN is already present in
segment Pascalsystem. Its invocation causes only a data segment to
be added to the stack. When CLEARSCREEN and INIT a~e completed, the
COMPILER data segment will again be the top element on the stack.

F i 9 ~w: l' eo :3. 5. ~1 i sad eta i 1 e d d ia 9 T'a m 0 f the s t a c k d uri n 9 e x e cut ion 0 f
an iTl5tT'·tH.:ti·o1l in CLEliRSCREEN, incl'Jding 3.ppi'op-rL:d7B point~rs rOT'

fita-tic. dynamic, i:tc. links 'Jf C!....CARGCRE£Ji~'s ma'rks-Lack. Note whe're
the pse~dD-variable$ point in the stack. In particular, JTAB points
inside CLEARSCREEN code section which is in the Pascalsystem code
segment, Ie points inside that CLEARSCREEN code, and SEG points to the
base of the Pascalsystem code segment.

Page 209

..... ___ - __ • _ w ... " v to.....,W '(;; ;;;_!:I'IJ'C"f'"

to PASCALSYSTEM resident data segment

~-------- high addresses ---------, :-----------------------------------
COMPILER code segment

:-----------------------------------
I
t COMPILER data segment
1- - - - - - - - - - - - - - - - - -

maT- k s tac k

:-------~-------------------~-------:
: -------:> : 20 4

:-----------------------------------:
Pointer to COMPINIT code :--:

1-----------------------------------: ,
•

SEG :<- in
JTAB :<-PASCALSYSTEM
IPC I<-code segment

--------:

Pointer to Procedure #2 I--+-f

1-----------------------------------, :-+------>1-----------------------------------:
code

segment
of

COMPINIT

I t

•

1----:;:· : COMPINIT code ,
I ;-----------------------------------: ,

I of COMPINI1' t <:---:
:---------------------------------~-:

COMPINIT vaT' iab 1 as
: _____ 'K __________ , ______ · ______________ :

MSSP

1-----------------------------------:
: MSIPC :
: ... _--_ ... _-----------_ .. _----------------- :

MSSEG
:----~---------------------~-~--~---:

i1SJTAB

;-----------------------------------l
MSDVN

:-----------------------------------1
MSSTAT 1<--1

~-----------------------------------:
evaluation stack

1-->:--------------~------------------~-1
• • CLEARSCREEN vaT' iab 1 es
: ----.---------------.-~--'------*------ :

1---: t'1SSP

1-----------------------------------1
i -------: MSIPC

;-----------------------------------:
1-------1 MSSEG

: l-----------------------------------:
f---------: MSJTAB

:-----------------------------------:
MSDYN :---.:

:-----------------------------------1
: ---,--_._---- : MSSTAT 1<----:

:-----------------------------------:

--------+

data

segment
oOP

COMPINIT

-----.... --1

---------:

data
segment

of
CLEARSCREEN

MP t • ,
--------:

:- -
evaluation stack

y top of stack
-- -;0:::----; SP

Page 210

H E A P
.. ~, ~ 1 <_' __ <K" ~ NP

tOR Ot. heaa
~ --------... ----------.,. ------,.,.,. ~- --..-w--·--- ... -l

Figu~e 3.5.9 illustrates a top-down process by showing the
relationships among diagrams 2 through 7.

CQd~ -File
fig Ul' ~ 3. 5. ~~

! ---.. ".-~----, , .. ".~-".----- ~

~ PASCALSYSTEM :--->: figure 3.5.41
: ._----_._-------- :

CLEARSCREEN :--->: figure 3. 5. 5~
cede detai 1 proc. code

detail

r .. ,. ,
i "'-'- .~ ~~. ~

: -... ---$-----~ ... -----.~ .. :

fig:Jre 3.5.3
segment dictionary detail

d ~ t a s e gm (; Ii t : - --:> : f i 9 U 1"' e 3. 5. 7
l-~-··"-··-··,,·-··"'--··-··--~·l i dat.a segment detai 1

RELATIONSHIP OF DOCUMENT FIGURES

Page 211

PROGRAM PASCALSYSTEMi
VAR

SYSCOM: SYSCOMRECi
CH: CHAR;

PROCEDURE CLEARSCREEN:FORWAROi

SEGMENT PROCEDURE USERPROGRAMi
BEGIN

END;
SEGMENT PROCEDURE COMPILER;
VAR

SY, OP: INTEGERi
SYMCURSOR: INTEGER;

PROCEDURE INSYMBOLi FORWARD;

SEGMENT PROCEDURE COMPINIT;
VAR

I,J: INTEGER,
BOOL: BOOLEAN;

BEGIN

I: =1;
CLEARSCREEN; --------------------------------LINE C
INSYMBOLi

END;

PROCEDURE INSYMBOLi
BEGIN ... END;

PROCEDURE BLOCK;
BEGIN END;

BEGIN <*COMPILER*>

COMP INITi
INSYMBOLi

-----------------------------------LINE B

SEGMENT PROCEDURE EDITOR;
BEGIN END ..

PROCEDURE CLEARSCREEN
BEGIN

WRITE(-------------------);

END~

BEGIN (*PAGCALSYSTEM*)
REPEAT

READ(CH) :
CASE CH OF

c: COMP IL.ER;
E: EDITOR;
U:USERPROGRAM

END ('tl CASE'*)
UNTIL CH = ;H"

END.

FIGURE 3. 5. 10. lHE PROGRAM

***************** *************** * BYTE-SWAPPING * * Section 3.6 *
***************** ***************

Version 1.5 September 1978

B~te-swapping problems OCCUT when code gene~ated on one machine
is transferred to another or programs which directly interface with
memory (eo g. the Patch utility) are written on or for one machine and
transferred to another which has a different ordering for its memory.

TheT'e are two different ways to order bytes in a given memory:

A) Byte Zer~ is the b~te containing the least significant
half of the word. Byte One contains the most significant
half.

B) Byte Zero is the byte containing the most significant
half of the word. E'Jte OnJt contains the least significant
ha 1 f,

The difference between these is the way Byte ~uantities are
read and stored in memory. Word ~uantitiesl such as integersl will be
read and looked at in the same way on both types of machines. However,
byte ~uantities such as P-code or characters will be reversed.

An example:

DEFINITION (A) (B)

VALL!E (He x) 04 07 07 04

BYTE o 1 o 1

(least/most significant bit, thereby least/most significant byte

If both Or the bytes shown above were read as an integer , a
WQ'pd G.u~nl:;it;YI th~y would give the value 31588. Howevel"l if the value
of byte Zer'Q W;i:l5 tilant;ed ti$!:> j,n: C: PAI:::i,(,ED ARRAVr.:O .. 1J OF CHARi) then
Definition A wDuld show a value of 04H and Definition B would show a
value of 07H. Bath definitions would .how the value 07H if the most
significant byte were specified.

Byte-swapping is not a hard problem to solve, it Just requires
a little thought. The Patch utility has type declarations for both
types of machines and a study of it should suffice to show how to
satisfy your programming needs.

Pnge 213

Notes -

tage 214

******************* ***************
* THE CALCULATOR * * Section 4. 1 *
******************* ***************

Version 1. 5 September 1978

The pl'CllnptJ ""--:;:" l ey.pects at o'C't(? line expression in algebraic
form. Up to 25 different vaTiables are available. each with different
values assigned using the syntax of the given grammer. Only the first 8
letters are used to distinguish between variables. Variables having a
value may be used as constants. There are two built-in variables: PI
(3.141593) and E (2.718282). These values may be changed by the user.

No distinction is made between upper and lower case letters.

The MOD function is the backslash '\': the PASCAL MOD function
is used and the operands are rounded to b~ integers. WARNING: Since
this uses the PASCAL defn. of MOD (~ee ~ensen & Wirths' Pascal User
Manual and Report Second Edition page 108) the results obtained may not
be as expected.

The operand of the factorial function 'FAC' is also rounded to
be an intege~ which must be between zero and thirty-three inclusive or
the expression will be rejected.

The uparrow tA~ is used for exponentiation. The operand must
be positive O~ the exp~es$ion will be reJected as e A V LN (X) is
used to calculate the answer.

ILASTX' is a constant which is assigned the value of the
previous correct expression by the calculator and may be used in the
following expression instead of inserting the same expression again.

Angles for the TRIG functions must be in RADIANS. Degree to
Radian conversion is accomplished by RADANGLE = (PI / 180) * DEGANGLE.

This program will bomb on an execution error if an over or
underflow occurs. If this happens all user assigned variables and their
values will be lost.

To leave the calculator mode simply type <RET> immediately
following the prompt.

EXAMPLE OF CALCULATOR SESSION:

3. 1415 12
-:> LASTX

3. 141592
~ HALFPI = PI I 2

1. 570796
-) SIN (HALFPI)

1.0
-y A = B = C = D = F = (FAC (3) I 2

Page 215

3.0
-> A

3.0
-> C

3.0
-)- 1 + 2

3.0
-> 3 + 7 I 4

4.75
-)- SGR T (2*2+3,*3)

3.605551

Page 216

********************* ***************
* LIBRARIAN UTILITY * * Section 4.2 *
********************* ***************

Version 1. 5 September 1978

LIBRARY CODE is a utility program that allows the user to link
sgparately compiled PASCAL units and separately assembled subroutines
into a LIBRARY file. It is based upon the original pre-I.5 utility
LINKER. CODE and ope~ates in basically the same way.

To add a segment to *SYSTEM.LIERARY it is necessary to create a
new file into which each segment that is wanted from the original
*SY5TEM.LISRARY is first linked. It is then possible to add segments
by linking from another code file into the new file being created.

Consider the case of adding a segment called TURTLE to the
al~eady existing file *SYSTEM.LIBRARY which is assumed to contain the
s~gments PSGRAPHICS and MOVETD.

On executing LIBRARY.CODEI the user is prompted for the name of
the 0 U t put cod e f i 1 e. F 0 1"' t his e'x amp 1 e Ire s p 0 n d wit h the na m e
NEW. LIBRARY. The pl"ogram now ask 5 -for d 'Link Code Fi Ie'. The
response here is *SYSTEM.LIBRARY. The names of all segments currently
linked into the input library, i. e. *SYSTEM.LIBRARY, as well as their
length in bytes is now displayed. Currently there are a maximum of 16
segments in any PASCAL p~ogram O~ LIBRARY.

0- MOVETO 2;:198 4~· 0 8-- 0 10-
1- PEHiRAPHI 864 5-- 0 9- 0 11-
2-- 0 6- O. 10·- 0 14-
3"'~ 0 7- 0 11"~ 0 15-

The following prcmptlirte appears:

Segment ~ to link and <:spac~:>: N(>?w Pilei Q(uit, A(bort

The user now enters the number of a segment within the link
code file that is to be linked into the new library fileJ followed by
<space:>. Next, the numbeT' of -the segment inche output file to be

0
0
0
0

linke:d into (i. e. NEW. LIBRARY) is typed followed by <space:>. For each
segment linked the libra~ian reads that segment ~l'om the input file and
writes it to the outp~t file at the segment requested. It then
displays the segment table for the current state of the output library
,file. In this example, respond with the following:

Page 217

Q<:$pace)
Seg to link into? O<space>
l<:space:>
Seg to link into? l<space>

When all needed segments have been linked a new input file is
re~uested by typing 'N' for N(ew file. In this example, a separately
compiled PASCAL UNIT called TURTLE is assumed to exist in a codef.IIe
called TGRAPHICS.CODE. See section 3.2, UNITS. On entering the name
of this file the following display app~ars:

0- 0 4- 0 8· .. - 0 10·-,
1- 0 5- 0 9···, 0 11-
2- 0 6- 0 10·- TURTLE 230 14-
3- 0 7- 0 11- 0 15-

The Unit TURTLE occurs in segm~nt 10 and is to be linked into
segment 2 within NEW. LIBRARY. The user ~espDnds'

lO<space)'
Seg to link into? 2<space)

The final display of the output libr~ry segment table is thus:

0- MOVETO 2398 4- 0 8-~ 0 10,-
1- PSGRAPHI 864 5- 0 9- 0 11-
2- TURTLE 230 6- 0 10 .. - 0 14-
3- 0 7- 0 11.- 0 15-

The output lib~ary codefile length is displayed and in this
example is 16 (blocks long>.

0
0
0
0

0
0
0
0

Once the needed segments from ~11 input files have been linked
in the user locks the output fil~ by typing 'Q' ~ollowed by a return,
(unless a copyright notice is desirecl within the codefile). Type 'A'
to abort the linking process. The old *SYSTEM.LIBRARY should either be
removed Dr its name changed if it resides upon the same disk and the
name NEW. LIBRAR'y" must be chanf.ied tCi -~:;;;\,'STEr'L LI{:H~MRY in order to .be
used.

NOTE

In response to the initial prompt "Output Code File-:>" we
could have Just as easily said *SVSTEM.LIBPARY ~ollowed by another
·HSYSTEM. LIBRARY in response to the prompt "Link Code File _)".
However, in this case the original *SYSTEMLIBRARY will be removed
automatically upon completion of the linking process.

Page 218

- t\o~s.. -

Page 219

- NOtt::5 .-

age 220

********************************** ***************
* SETUP - SYSTEM RECONFIGURATION * * Section 4.3 *
4***************4************* ***************

Version 1. 5 September 1978

The UCSD Pascal Operating System keeps ceTtain information
about the user in a 'ile called SYSTEM.MISCINFO. During each system
initiolization this file is re~d into memory, and fTom there it is
accessed by many parts of the system, particularly (if the user has a
terminal suitable for it) by the screep oriented ~ditDr.

Much of this information needs to be initially set up by the
user tD conform to his particular hardw~r. configuration or his taste
or convenience, Mnst of this 1n~ormation concerns the nature of his
terminal and k~ybo3~d, although there ~re a few migcellaneou5 fields.

SETUP is T:)j-: Ij~p'< ,7.t1~} Qth~T' cr,;mpiled Pascal program, by
entering the Command level of the system, typing X for eXecute and
typ ing the fi lename SE.'fUP followi:!d by a car"f'iage 'retlH'n.

SETUP: C(HANGE) T{EACH) H(ELP) G(UIT)

If this dCtt~'.; nr.d~ happen it 11Ir-st) be because the setup program is
net en the disk. If sc, the system will display the message

no file setup. CODE

If neither of th. above heppens~ something is d~astically wrong.
Cont~ct UC~;D, AS5um"lnr~ all is well. continue.

All commands to tIle SETUP prog-r'am C:iT"e invoked by typ 1ng a
singl~ letter ch0gen f~om the promptline.

SETUP_ C(HANGE) TCEACH) HCELP) G(UIT)

Type 'H' to find cut what the commands at this lev~l do. The
p~0g~a~ is ~~!f t~~ching, so the ~est Df this document explains the
information SETUP was designed to change.

S~TUP does not tell the system how to do random access cursor
~lddr-e~:sing on t~d:' ;,;<;er"s te',--{ri"Jrldl. (for' th{iSP tt'r'tllln.al~ which have this
carabtlity), To ~11aw the system to use that feature, please refer to
Sect:;'Qn 4.7' n-f! this document package.

4.3.1 MISCELLANEOUS INFORMATION

HAS CL{]CV~

V::;;11.lJ~S' TPUE. Fj~L_SE

A real time clock is available. A real time clock module, such
as the DEC KW11, may be found on many processors. It is assumed to be a
lina f~e~uency (60 cycl~) clock. If available it is used by the PASCAL
~ iJ s t o? m toe p tim i ! t:' dis k d:f, r e c to 1" y \J P d a t P- S . See sec t ion 2. 1. 6 T I ME i n t r ins i c:: •

Page 221

HAS 8510A
Values: TRUE4 FALSE
The system is running on a Tarak 8510a hardware configuration.

4.3.2 GENERAL TERMINAL INFORMATION

HAS SLOW TERMINAL
Values: TRUE, FALSE.
When this field is true, the system issues abbreviated

promptlines and messages.
Suggested setting: 600 baud and under -- True, otherwise False.

HAS RANDOM CURSOR ADDRESSING
Values: TRUE, FALSE
Only applies to video terminals. See Section 4.7 in order to

allow the system to make use of this feature.

Hr:\S LOWER CASE
Values: TRUE,FALSE

SCREEN WIDTH
The number of characters per line of a terminal.

SCREEN HEIGHT
The number of lines per display screen of a video te~minal.

Set to 0 for a hard copy terminal or otber terminal in which paging is
not appropriate.

NON-PRINTING CHARACTER
Values: Any printing character.
What should be displayed by the terminal to indicate the

presence of a non-p~inting character.
Recommended setting: ASCII "?u.

VERTICAL MOVE DELAY
The number or nulls to send after a vertical cursor· move. Many

types of terminals require a delay after certain cursor movements which
enables the terminal to complete the movement before the next character
is sent. This number of nulls wi.l1 be sent after carriage returns,
ERASE TO END OF LINEI ERASE TO END OF SCREEN and MOVE CURSOR UP.

4.3.3 CONTROL KEY INFORMATION

The user may choose which control keys suit his particular
keyboard arrangement and his taste.

Some keyboards generate two cedes when some single key is
pressed. If that is the case ~or any or the keys mentioned here, it
must be noted in the field PREFIXED [<fieldname>J which has e~theT' the
value TRUE OT' the v.:d>ue Ff\LSE. ThE: PT'8fi x for all such key~ must be
the same and must be noted in the field LEAD-IN FROM KEYBOARD. This
feature may also be used to access control functions with two
character sequences if a user!s keyboard is unable to generate many
control characters" As an examplth suppos(;: th~ use-r"s keyboard had a
vector pad :.tIhich geneT-ated tht.? v431ue p;lirs ESC I!UII# ESC Hon; ESC "1_"
and ESC "R" for the keys fo~ Uparrow~ Downarrowl Leftarrow and

Page 222

Rightarrow, ~espectiv~ly. Assume also that all other keys on the
keyboard generate only single codes, Then the user would give the
fcllcwing fields the following v~lues:

KEY FOR MOVING CURSOR UP
KEY FOR MOVING CURSOR DOWN
KEY FOR MOVING CURSOR LEFT
KEY FOR MOVING CURSOR RIGHT
LEAD-IN KEY FOR KEYBOARD
PREFIXED[KEY FOR MOVING CURSOR UP]
PREFIXEDCKEY FOR MOVING CURSOR DOWN]
PREFIXEDCKEY FOR MOVING CURSOR LEFT]
PREFIXEDCKEY FOR MOVING CURSOR RIGHT]

t(E'\,' FOR STOP

ASCII
ASCII
ASCII
ASCII
ESC
TRUE
TRUE
TRUE
TRUE

IfU"
"D"
ilL"
IIRI!

COT1501{:;t output stop ch,!?)T'acter. TnI'?' STOP char-acter is a toggle;
when pressed, the key will cause output to the file 'OUTPUT' to cease.
Wh~n the key is depress~d againj the write to 'ile 'OUTPUT' will resume
w~ere it left o~~. This f~nction is ve~y useful for raading data which
is being displayed faster than one can read.

Suggested setting: ASCII DC3

''''EY FOR FLUSH
Console output cancel ~haracter. Similar in concept and usage

to the STOP key~ the FLUSH key will cause output to the file 'OUTPUT'
to go undisplayed ~Jntil FLUSH is pressed ~gain Dr the system writes to
file 'f"EVDOARDf. t\:ote thst, u;\lik~ the STOP keYl pr"cres:;:.ing continues
unint~rTupted while output gees undisplayed.

Suggested setting: ASCII r~CK

KEY FOR BREAK
Typing the character BREAK will cause the program currently

executing to be terminated with a run-time error immediately.
Suggested setting: Something dtfficult to hit accidentally.

KEV TO END FILE
Console end of file character. When reading from the files

KEYBOARD or INPUT or the unit 'CONSOLE:', this key sets the Boolean
function EOF to TRUE. See section 2.2.4 EOF intrinsic.

Suggested setting: ASCII ETX

\t,EY TO DELETE CHARACTER
Each time you p~ess this key one character is removed from the

cur't'e·nt lineJ Llntil nothing is left on t.hat line.
Suggested s~tting: ASCII BS

KEY TO DELETE LINE
D~pressing LINE DELETE will cause the current line of input to

be erased.
Su 9 9 est e d s ~ t tin g. !\:::~C I I DEL.

Page 223

The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
capability and may be safely ignored by users
having any other kind of terminal, such as
hardc~py terminals or storage tube terminals.

KEY TO MOVE CURSOR UP
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These keys are used by the screen oriented editor to control
the basic motions of the cursor. If the keyboard has a vector pad, set
these fields to the values it generatesl otherwise, we suggest
choosing 4 keys in the pattern or a vector pad and use the control
codes which correspond to them, for example .the keys '0", ".', 'K' and
'i' on most keyboards encircle an imaginary vector pad. You may wish
to use a prefix character before such keys as described above.

EDITOR "ESCAPE" KEY
The key which, in the system screen oriented editor, is to be

used to escape from commands, reversing any action taken.
Suggested setting: ASCII ESC

EDITOR IIACCEPT" KEY
The key which, in the system screen oriented editor, is to be

used to accept commandsi making permanent any action taken.
Suggested setting: ASCII ETX

4.3.4 VIDEO SCREEN CONTROL CHARACTERS

This section describes the characters which, went sent to the
terminal by the computer, controls the terminals actions. Yoou should
consult the manual for your terminal to find the appropriate values ..
If a terminal does not have one of these characters, the ~ield should
be set to 0 unless otherwise directed.

Some screens require a two character sequence to exe~cise some
of their functions If the first character in all of these sequences
is the same, it can be set as the value o~ the field LEAD-IN TO SCREEN
and for each <fieldname) which requires that prefix, the user must set
the field PREFIX[<fieldname>J to TRUE. Fa~ example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN \uere respectively performed by
the sequences ESC tiL" and ESC "S" but all the other screen controls
were single characters. The user would then set the following fields
to the following values:

Page 224

LEAD-IN TO SCREEN
ERASE TO END OF LINE
ERASE TO END OF SCREEN
PREFIXED[ERASE TO END OF SCREEN)
PREFIXED[ERASE TO END OF LINE]

ASCII
ASCII
fiSC I I
TRUE
TRUE.

ESC
"Lit

ERASE TO END OF SCREEN
The. cha~acter w.hich erases the screen from the current cursor

position to the end o~ the screen.

ERASE TO END OF LINE
The character which, when sent to the screen, erases all

characters from the current cursor position to the end of the line the
cursor is on.

ERASE LINE
Th e ,: ha'rac: tel" ush i chi wh en sent to th e sc reen, erases a 11 the

characters on the line the CUTsor is currentl~ on.

ER/JtSE SCREEN
The character whichl when sent to the screen, erases the entire

screen

BACKSPACE
The character which, when sent to the screen, causes the cursor

to move space to the left.

MOVE CURSOR HOME
The character which mov~s your cursor to the upper left of the

cur'rent; pag~. IMPORTANT~ If your termin.:al does not have such a
character, set this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR. UP
MOVE CURSOR LEFT

The cha~acters which move your cursor non-destructively one
space in tho~e directions.

- Notes -

******************** *************** * BOOTSTRAP COPIER * * Section 4.4 *
******************** ***************

Ve~sion I.5 September 1978
The hootst~ap. copie~ BOOTERoCODE asks for the unitnumbe~ o~ the

volume on which to write the bootstrap. Refer to Table 5 for a list of
volume numbers. It will then ask for a file name to write as the
bootstrap. It w~ites the first two blocks of that ~ile, so in order to
copy the bootstrap from an existing disk, give it the diskname, and it
will copy the bootstrap from the disk nam~d to the unit numbered.

To execute the BOOTER program) type X BOOTER to Command level
(assuming that there a copy of BOOTER.CODE on the disk).

Page 227

- Note£ -

lage 228

********* ***************
* PATCH * * Section 4.5 *
********* ***************

Version I. 5 September 1978

On X(ecuting PATCH~ the promptline is

C(onsolfh P(atchwT'ite, W(holewrite, G(u1t

The options ava.ilable are:
Working with, and alte~ing the file in the C(onsole mode.
Dumping the file in a Hex, Decimal, Octalf or ASCII fo~mat, in the
P(atchwrite mode.
Dumping/concatenating and/Dr moving blocks in files with the
W(holewrite mode.
Leaving PATCH with the Q(uit command.

In the C(onsole mode; the promptline changes with each command.
The promptline ~lways reflects the commands available at any given
time, and no more. The .pull promptline is:

Patch: R(ead. S!ave! H{ex, M{ixed, G(et, G(uit [nnJ

The number in square brackets at the end of the prompt is the current
block being patched. Th(~ first comm~'ind to use is G{et. G(et will
prompt

Filename: <cr fQ~ unit i/o>

Respon~ to this p~ompt with the name of the file to be
patched. If the disk/device has no directory, or has some problem with
the directory, reference it by its Pascal unitnumber. Type a carriage
return to this prompt, and the prompt is:

Unitnum to pi:itch [4, 5~ 9 .. 12] (0 will Gu:i.t)

Having typed a succ€s~ful entry to one Or the two above promptsl the
prompt will now be extended by the R(ead command. R(ead will read up a
block from the ~ile/unit The prompt on entering R(ead command is

BLOCK:

Re~pond with a block number in the file/unit specified. There
is no range checking provided on this read, so exercise care in the
number typed. The promptline isnow extended with H(ex, MCixed and
the block number in squa~e brackets. H(ex and M(ixed display the
block read. Using the H(ex command displays the block entir~ly in
h~xadecimal characters; using the MCixed comm~nd will display printing
ASCII chnracters where possible~ and hexadecimal values elsewh~re. The
promptline is:

P.=lge 229

AlteT': pad vectoT' 1,5,3,0 O .. F hex characters, sctu-F-F, G(uit

The vector kpys on the terminal causes the cursor to move
around in the data, notice that there the cursor will ~emain only on
the data, and will not move off the data. Typing a hexadecimal
character changes the character the cursor is over provided that only
one or more of the data positions is changed, when G(uitting from Alter
mode, the Patch promptline will be extended with the S(ave command.
Typing S(ave writes the changed data back to from where it was read.
In the Alter model there is one optional command: S(tu'f. Typing the
S(tuff command displays the promptline:

Stuff for how many bytes:

Key a number from 0 to 512. Type carriage return to cause
patCh to accept the numberl the promptline changes to:

Fill with what hex pair:

Key a byte valur in hexadecimal. The data reappears on the
screen, with tht'? number of Lyt..:es. ~pecified, from the position oil the
cursor filled with the data value specified. to the hex pair prompt.

Using the Patchwrite command caus~s a full screen prompt to
appear:

This procedure w~ites out sequential blocks to any ~ile a~ a patch
dump. Type the prpfix character of the option to b~ changed Type 'P'
to PRINT, 'Q I to QUIT.

A(Input Fi Ie
B(Begin Block 1*
C (Num. 0 fBI 0 L k s

E(Output File

G(Hexadecimal
H(ASC I I
I(Decimal
~(Octal
K(Decimal Bytes
L(Octal Bytes
M(Krunch
N(Double Space

Page 230 .

Fol1o~ing each of the fields is the curTent value of that
field. Typing the characte~ in f~ont of the field places the cursor
after the field, and removes the current value. Typing 'V' or 'T' sets
a boolean value to True, any other character sets the field to False.
The Input File and Output File fields require a filename to be typed
followed by carriage return. The integer fields (Begin Block, and Num.
of Block~) Te~uire a number to be typed followed by carriage return or
space. Any other character sets the value of the field to some
unspecified value.

The other option~ at the Patchwrite level are Print and Guit.
Both cause Patch to return to the outer level. Quit does it straight
away. Print dumps out the file in the· requested format on the way. The
options available for the dump need to be selected, the default is
none. The options Krunch and Double Space affect the formatting of the
output. Krunch, when true, removes blank. lines between logical output
I ines, Daub Ie Space when tl"ueg daub Ie spaces all output.

Using the W(holew~ite command causes the full page prompt:

This procedu~e writes any number of blocks from an existing file
to a new file, unchanged. Simply specify the neces5ary parameters
Type 'P! to PUTI fQ j to QUIT

I('oput File
S(tart Block
N(umber o~ Blcks

O(utput File

The protocol for changing the fields at this level is the same
as that for the Patchwrite level. The Wholewrite level is that which
allows one to mix/match and mingle files~ Put and Quit both cause
Patch to return to the Duter level, Put writes to the file on its way,
Guit does not. "

Notice that the Patch~rite and Wholewrite levels remember their
vital parameters across sessions (while remaining in Patch). The
Con~ole level will cl$ar all memory of the session. ThePatchwrite
level paginates its output, afte~ each block written, a form-feed is
generated. (Specifically PAGE<OUTPUTFILE».

Page 231

- Notes -

age 232

********************************* ***************
* RT11 to PASCAL CONVERSION KIT * * Section 4.6 *
********************************* ***************

Version 1. 5 Sept.emhel' 1978

The utility file labeled RTI1TOEDIT is intended for use with
RT-l1 disks, It assumes th~ presence of an RT-l1 directo~y spanning
blocks 6-7. When the file is executed it asks the user to specify the
Pascal system unitnumber of the volume of which the user wants to view
the directory. Once a legal on-line unit has been specified,
RTI1TOEDIT ~eads each entry on blocks 6-7. The program uses the
UNITREAD intrinsic to read the directory and does not open the file in
the usual manner. It lists on the screen the entire contents of the
directory. FOl' each entry it specifies the file title, file kind, the
size of the file in blocks, and the starting block location of the file
(in ba<ie 10), All unused portions are identified a<i such. The user
will be prompted for an RT-l1 file name, a Pascal system file namel and
finally a mode of transfer.

Page 233

- Notes .-

'age 234

***************** * GOTOXV BINDER *

Version 1.5

* Section 4.7 *

September 1978

Usin, SETUP alone is not enough to implement full
cursor-controlled operation on your terMinal. To achieve xy
cusror addressing, yo~ must prepare a Pascal procedure similar
to those on the following page, but designed to handle
random cursor addressin, appropriately for your terminal.
Compile the procedure, then run BINDER on the resulting cod.
f i l e.

The BINDER program alters the SYSTEM.PASCAL on the
default P(refix disk, inserting your special cursor addressing
procedure into the sYstem under the name GOTOXV. It asks for
the name of a file containing the compiled p-code v.rsion of a
'GOTOXY procedure.' This procedure is defined as

PROCEDURE GOTOXY(COLUMNX, ROWV. INTEGER),

In sYstems where the console device is a cursor
controlled CRT terminal, GOTOXV is used by various system
software (and may also be called within user pro,rams) to
position the screen cursor to the column, row co-ordinates x
and y. Thus, GOTOXY(2,3> would send the screen cursor to
colUMn 2 of row 3. It is assumed that the upper left~hand
COi"ner' 0 f t he screen has co-ord i na t es x=O, y=O.

Note that" the procedure itself must NOT be named
GOTOXY, but takes that name automatically after being bound
into the system. For ex.aMPle, even thou9h YOU may call your
procedu,-'e' "MVTERMXY", once i1 is bound into the operating
system, YOU must use the name uGOTOXY" to access it.

The COMPiler directive (*$U-*>, or <$U-) must be the
first thing in the Pascal text file containing your GOTOXV
procedure. If it is not, YOU will get a v~lue range error when
executing BINDER.

The GOTOXV procedure d.finitionitsetf is enclosed
within a "dummY" program definition (see the "IQ120XY"
sample procedure on the following page) where the statement
part of the dummy program is simply a null. If, when compiling
the pr"Ogl"'am YOU get a "ni lmemory reference"; remove the
program heading (but not the null statement block) and
recompi 1 e.

Page 235

- Notes -

(*$U-*)
PROCEVURE FGOTOXY(X,Y: INTEGER);
BEGIN

IF X < 0 THEN X := 0;
IF X>19 THEN X := 79;
IF Y < 0 THEN Y : = 0;
IF Y > 23 THEN Y : = 23;
w~e{CHR(27),'Y' ,CHR(Y+32),CHR(X+32))

ENV;

BEGIN (* Vummy main bloQk *)
ENV.

age 236

(*Thi.6 ftou:ti.ne .6h.ould woftk 60ft .the VEC VT- 52*)

<*$U-*)
PROGRAM PASCALSYSTEM;
<* GOTOXY for SOROC 19120*)
PROCEDURE IQ120XY(X,Y:INTEGER),
VAR Pt PACKED ARRAYCO •• 3J OF CHAR;
BEGIN

IF Y)23 THEN Yt=23;
IF X)79 THEN X:=79;
IF Y<O THEN Yt=O,
IF X(O THEN X:=O;
PCO] t =Cf'-IR C 27);
PCl]::'=';
PC2]:=CHR(Y+S2)'
PCSl ~ =CHRC X+32);
UNITWRITEC2,P,4),

END;
BEGIN END.

********************************* ***************
* DUPLICATE DIRECTORY UTILITIES * * Section 4.8 *
********************************* ***************

Version 1.5 September 1978

COPYDUPDIR

This program will copy the duplicate directory into the primary
di~ectory location. If the disk is not currently maintaining a current
directory the program will tell you so.

To use this program e(x)ecute
COPYDUPDIR. The prog~am will ask for the drive in which the copy is to
take place (4 or 5). If no duplicate directory is found it will tell
you after you indicate the drive unit. If the duplicate is found then
it will ask you if your sure you want to distroy the directory in
blocks 2-5. A 'V' will execute the copy any other character will abort
the pT'ogl~am.

tJfARKDUPD 1 R

Ttli. program will mark a disk that is currently not maintaining
a duplicate directory so that it will. Caution must be exersiced to be
sure that blocks 6-9 are free fOT use. If they are not one must re
arrainge the files as to make them free. One can tell if there
availahle by getting an E)xtended listing in the Filer and checking to
see where the first file starts. If the first file starts at block 6 or
the first file starts at block 10 but there is a 4 block unused section
at the top, the nth e dis It has not bee n ma r ked. I f h 0 III e ve r • the fir s t
file starts at block 10 and there is no unused blocks at the beginning
of the directory then the disk has bee~ ma~ked"

SYSTEM. PASCAL

':-':'.In use d:>
SYSTEM. PASCAL

31

4
31

OR

30-Aug-78

30-Aug-78

6

6
10

Codefile

Code~ile

Both of the above cases indicate disks that have not been
mar'ked. Below is the directory o.fa properly marked disk.

SYSTEM. PASCAL 31 30-Aug-78 10 Codefile

Page 237

To execute this pro~ram e(X)ecute MARKDUPDIR. The program will
ask you which unit contains the disk to be marked (4 or 5). The
program will check to see if it thinks that the blocks 6-9 are free. If
the program doesn't think so it will ask you if you are su~e they are
free? Typing 'V' will execute the mark, any other character will abort
the program. Be sure that the space is free before marking it as a
duplicate directory.

Page 238

************************ ***************
* P-CODE DISASSEMBLER * * Sectio~ 4.9 *
************************ ***************

VeT'S i on 1. 5 Sep temb eT' 1.978

The disassembler inputs a standard UCSD code file and outputs
symbolic psuedo-assembly (P-Code) along with various statistics
concerning opcode frequency, procedure calls, and data segment
references Th~ di~assembler was originall~ w~itten to collect
s t a\ t i '5 tic son 0 p cod e of r e que n c y ! etc. a san aid i n ma kin gar chi t e c t U T' e
improvements. It has since been found helpful in debugging
interpretersl optimizing programsl and provides a source of further
information regarding some o~ 5ubtleti.s of OUT' implementation of
Pa.5cal. All stt"ltistics gathered are "static" as opposed to "dynamic".
In othe~ words the statistics are collected by making a pass th~ough
the code Fil~ instead of cDl1~cting them while the code file is
actjJ,~lly running.

4. 9. 1 D!SASSEMBLY

The Disassembler inputs a code file, that has been generated by
the UCSD Pa9c~1 Compiler, If a p~og~am USES ~ UNIT the di~a5sembly
w i 1,:' 1. n;: 1. u d f' t [HZ' tJN I T Q nIt; i f the cod e P i 1 t~ has bee n 1 ink e d . Ass em b 1 '='
l' 0 'MI t i ~ j:~. 'S 1 ink e din t 0 fa Pas cal h 0 $ t to ill n eve l' be inc 1 u d e din the
d isassp.mb ly,.

The Disassembler is invoked by eXecuting DISASM. 15 and re~uires
the fi le OPCODES. 15 to be on the system disk. The Disassembler will
fi~st prompt for an input code file, the suffix . CODE being assumed and
thus not requi~ad. The next question refers to the byte sex of the
machine the code file i. intended to run oni that is whether th~ first
physical byte (bytft 0) of a machine word is the most significant byte
of the wo'rd. FUi' more information, see section 3, 6 BYTE~SWAPPING. For
bath cu~rgntly supported CPU IS, the PDP-11 and the 8080 families#
phy~ical byte 0 i. the least significant byte. Next the prompt will be
fOT an output file far the disassRmbled output. Since the output file
is untyped; CONSOLE: or the PRINTER: <if it is on-line) may be used in
preference to an~ other file. The final ,~estion at this stage is
whether the usei' wish€~s to take corltrol of the disassembly, i. e. decide
which procedures are dis~ss8mbled as opposed to all the procedures in
the file.

The following question regards the collection of statistics on
r?fnreni:.es to a PilT'tj,cuL.~1· Pr'QCeOI)T'1.? 's data se.gment, Should you
decide to control the disassembly you will be warned that all
statistics gath~red are only gathered on those procedures which are
disas$~mbled" N~xt you will b~ taken into th~ Segment Guide. This
level displ~y5 the segments you have by name and lets you decid. on
which one you are interested in. The Procedure Guide follows to let
you decide on the particular procedure(s) that you wish to
disas~emble. Typing an "L" at tliis point will list the p~ocedure(s)
cont~ined in this segment A more complete description of this step

Page 239

occurs in the next section. The Segment Guide may be re-entered by
typ iug UGH in the ProceduT'e Guide. Thus in th is manneT' you may
disassemble several procedures in several different segments without
disassembling the entire file. The Segment Guide is exited by typing
IIG H •

1 1 1: D 0 <*SL cONSOLE:*>
2 1 1: D 1 PROGRAM D I SASMDEMOi
3 1 1: D

,... VAR I: INTEGER; ..J

4 1 1: D 4 TOMORROW: BOOLEANi
5 1 1: D 5 COMMENT: STRING;
6 1 1: C 0 BEGIN
7 1 1: C 0 I: =0,
8 1 1: C 5 TOMORRDW:=FALSE;
9 1 1: C 8 REPEAT

: 10 1 1: C 8 1:=1+1;
: 1 1 1 1: C 13 WRITELN(~Disas5embly -- a step b a c k l~a r d s. . . ') i
112 1 1: C 74 UNTIL TOMORROW,
113 1 1: C 77 END.

FIGURE 1 SAMPLE PASCAL PROGRAM

BLOCK 41: 1 OFFSET IN BL.OCH .. = 0
I SEGMENT PROC OFFSET# HEX CODE

1 1 0(000) : BPT 7 D507 .. 1 2{O(2) : SLDC 0 00 ..
1. 1 3(003) : SRO 3 AB03
1 1 5(005) : SLDC 0 00
1 1 6(006) : SRO 4 AB04
1 1 8(008) : SLDO 3 EA
1 1 9 (009) ,: SLDC 1 01
1 1 10(OOA) : ADI 82
1 1 11 (OOB) : SRO 3 AB03
1 1 13(00D) : LOD 1 3 B60103
1 1 16(010): LeA 42 "Di'5a~sembly -- a step bar: kwa-rds .. ,
1 1 60(03G) : SLDC 0 00
1 1 61 (03D): CXP WRITESTR CDOO13
1 1 64(040) : CSP IOCHECK 9EOO
1 1 66(042} :: LOD 1 3 B60103
1 1 69(045) ~ CXP WRITELN CDOO16
1 1 72{048) : CSP IOCHECK 9EOO
1 1 74 (O·4A) : SL.DO 4 EB
1 1 75(04B) : FJP 8 A1F6
1 1 77(04D): Rap 0 C100

FIGURE 2 SAMPLE PROGRAM DISASSEMBLED

Figur~ 1 displays a sample Pascal program that has been listed
during compilation. Figure 2 displays the disassembled code of the
file generated by the compiler. The left 3 columns in figure 2
correspond to the 3 columns to the right of the line number in figure
1. They are segment numbeT~ procedure numberl and offset within
p r CH:: ~ (:!I.n' 0 : i' e s p ~ c t i ve 1 y . T tH? 0 .p f set i. sal s q 9 i ve n i n hex i n
parenthes~s. A compl~te description of UCSD P-Code mneumonics is given
in section 3.4. The actual code that exists in the file is given in
hex in the rightmost column. The parameters to CXP~s and esP's are
converted to the procedure name if it is a known system procedure or
function. WRITESTR, ~.JRITELN, {.~nd IOCHEC~\. are some eX.3mples.. The
string ope~and for LeA is printed as a string as evidenced by the line
with o~fset 16. Jumps have their op.randCs) converted to an offset
from the start of the pro~edure so that the o~f5et may act as a label.
Thus the 8 display@d in the operand field of the FJP at o~f5et 75
really mea.ns a Jump to the SLDO at o~f~et 8. This is also true of case
J u m p s (X ,..lP , s) . The b 1 n c k n u m b P. ran d b Y teo of f sPot 0 f the s taT' t 0 f the
procedure are given relativp to the start of the code file. Thus this
procedure star-t;~; at bloc~, 11 offset 0 o~ 'the cod~ filt?. The segment
di~tiona~y rosides in block 0 for all code files.

4.9.2 DAT!~ SEGMENT REFERENCE STATISTICS

The fourth prnmpt the Di~assembler provides is a question
asking ,if you would like to keep tl"Bck of all references to a
particular procedure's data segm~nt The most common use of these
statistics is in optimization of a given p~ocedure's code file. By
re-arranglng the order of declaration of variables one may change the
o~fset within a data segment that applies to a giv~n variable. For
p-machine architecture reasons the first 16 words offset into the data
segment are the f~stest and h~ve optimized 1 byte instructions. Offsets
f·rom 17 to 127 ',resul t. in in;;t';T'U!::tions as least 2 bytes long, while
references to greater than 127 re~ui~e at least 3 bytes. By making the
most frequently used variables havs the smaller offsets on~ may save
considerable code file spac~ and possibly time during execution.

;Data Segment size: 45

:For s~gmflnt DISASMDE P~ocedure # 1
:Offspt(word) Total

3 3
4 2

60. 00
40.00

5 Lex level

FIGURE 3 SAMPLE PROGRAM'S DATA SEGMENT STATISTICS

Page 241

o

Figure 3 shows the data segment statistics for our sample
program. Clearly there is little to be gained from optimizing such a
small program but the general idea can still be presented. By using
the compiled listing shown in figu~e lone can match offsets to
variables as such:

variable

I
TOMORROW
COMMENT

offset

3
4
5

Now by using the figures in figure 3 one can see that offset 3
or the variable I occurs most fre~uently and thus deserves it's
position. This same idea carried out on a large program may result in
substancial size savings. Notice that offset 6 nevers occurs and thus
is not included in the statistics in figure 3.

The prompt for the output file for these statistics occurs
after the disassembly has been compieted. If you elect to collect
these statistics you will be taken into the Segment and Procedure
Guides as described in the previous section except that the prompt
requests the selection Or a data segment on which to collect
statistics. In the Procedure Guide, "L" give5 a listing of all the
procedures in the selected segment by number, lex level, and data
segment size. After the s&lection of a data segmentl processing
continuesl as described in the previous section, from the point after
the data segment question.

4.9.3 OPCODEI PROCEDURE CALL, AND JUMP STATISTICS

These statistics are collected as an aid in optimizing the
architecture of P-Code and although they are interesting to look at
theq are of no real use to the typical user. For this reason they will
be described only superficially.

Each opcode is given with a complete breakdown of which bit was
most significant for each operand on any given occurrence of the
opcode. These are presented in terms o~ totals and percentages of the
number of occurrences of the opcode. In addition a histogram 0' the
opcode occurrence as a percentage of the total number of opcodes
disassembled runs along the righthand margin. There is also a table of
Jumps in terms o~ the number of bits required to represent the distance
of the Jump for both positive and negative Jumps. Finally there are
r.ounts of all procedure calls listed by segment and procedure number.

Page 242

The last p~Qmpt of the program is the file to which these
statistics are to be dumped.

Page 243

- Notes -

age 244

*********************** **************** * LIBRARY MAP UTILITY * * Section 4, 10 *
*********************** ****************

Vel'S i on 1. 5 September 1978

The program LIBMAP produces a map of a library (or code) file
and lists the linker info~mation maintained for each segment bf the
file.

The program first prompts for a library file name. As in the
linker, thi<.i may be an asterisk to indicate u*SYSTEM. LIBRARY". Unlike
the linker, however, the ".CODE" suffix may be supressed by appending
a period to the full file name.

Example

typing

* FARKLE
OLD, LIBRARY.

references file

*SYSTEM.LIBRARY
:FARKLE.CODE
:OLD.LIBRARV

TypicallijJ the map utilitv will be used to list library
definitions but the option is available to include intra-library symbol
references. Should this feature be desired, tlJPe a "Y" when queried
for a reference list. A space (or ca~riage return) is considered a
"Nil.

The u~er is now prompted for an output file name. (",TEXT"
lui 11 be appended unl(~ss an extra peT'iod is used.) St:1veral libraries
may be mapped at the same time. To ~uit, type a carriage return when
prompted for any file name.

A sample map follows

LIBRARY MAP FOR *SYSTEM.LIBRARY

S # 0: r"iOVETO separate procedure segment
PSt1ATP public ref
PSYPOS public ref
MOVETO separate PT"OC P #1
PSXPOS public ref
GMOVETO global addr P #1, I #0
PSBUFP public ref
JUNK private T':?f

DRWLIN global ref
PSYPOS pulllic re~ t

\~ times)
LINETO s:.epEii'att:? PTOi:':: P #2
PSXPOS publi.c. ref (2 times)
GMOVETO global ref
G·L.INETO global actdr P #~ e;..1 I 4*0

Page 24·5

DRAWLINE separate proc P #3
DR~.JLIN global addr P #3; I #0
PSMATP public reT (2 times)
CONCAT separate prot.: P #4

S # 1 : PSGRAPHI library unit
XROT constant value o-F 0
MAXSTK constant value of 7
MATSTK private ref (10 time~)
MOVETO external proc P #8
LINETO ex tern<:ll proc P #9
CONCAT external proc P #12
YROT constant value of 1
ZROT constant value Or 2
PSXPOS public ref
PSMATP public ref (7 times)
PSYPOS public ref
PSBUFP public. re~ (7 times)
STKINX private ref (8 times)
aUFl private ref (4 times)
BUF2 private ref (2 times)

S # 2: VPGRAPHI library unit
NONE con.r~tant value of 0
REVERSE constant va 1 U€:' of :"':J

SCREEN pT' i vate ref (3 times)
SCt~LE pr j\t,,":it(~ reF (8 tim!:'?i.;)
XCENTER private ref (2 times)
YCENTER private ref (2 times)
XCURR pl"ivate l"ef (7 times)
YCURR private ref (7 times)
WHITE constant v~ltJe of 5
BLACK constant value of 6
XHIVliLUE prIvate 'rE"(! (4 times)
YHfVALUE. private T'fi:lr (4 times)
XLOVALUE private ref (5 times)
YLOVALUE private ref (5 times)
DRAW constant value of 1
POINT constant value of 4-
ERASE constant value of 2
DRAWLINE ex'tern~:ll proc P #8
XSCREEN constant value Or 320
XSCALE private ref (:3 times)
XSHIFT private ref (2 times)
YSCREEN constant v-31ue of 240
YSGALE p'rivate ref (3 times)
YSHIFT PT'iV~3te l'ef (2 times)

S #- 3: TURTLE library u"""'; ... •• A \.t

NONE constant v-31ue of 0
WHITE constant value of 1
REVERSE constant valve of 3
HEADING private ref (, t t> time~)

WANTCURS private ref (13 times)

SCAl_E private ref (8 times)
SCREEN private ref (3 times)
XCENTER private ref (2 times)
YCENTER private ref (2 times)
XC~JRR private ref (6 times)
YCtJRR private ref (6 times)
TGPEN private ref (4 times)
BLACK constant VCi lUE' of 2
XHIVALUE private ref (4 times)
YHIVALUE private ref (4 times)
XLOVALUE private ref (5 times)
YLOVALUE private ref (5 times)
X.SCREEN con..:;tant value of 320
XSCALE private ref (3 times)
DRAWLINE external PT'OC P #10
XSHIFT private ref (2 times)
YSCREEN constant value of 240
YSCALE private ref (3 times)
VSHIFT private ref (2 times)

c w # 4: to S #15: are unused

Page 247

- Notes -

'age 248

*********** ******************** * TABLE 1 * * EXECUTION ERRORS *
*********** ********************

Version I. 5 September 1978

o System error FATAL

1 Invalid indexJ value out of range (XINVNDX)

2 No segment, bad code file (XNOPROCi

3 Procedure not present at exit time (XNOEXIT)

4 Stack overflow (XSTKOVR)

5 Integer overflow (XINTOVRl

6 Divide by zero (XDIVZER)

7 Invalid memory reference <bus timod out> (XBADMEM)

8 User break (XUBREAK)

9 System I/O error (XSYIOER) FATAL

10 User 110 error (XUIOERR)

11 Unimplemented instruction (XNOTIMP)

12 Floating point math error (XFPIERR)

13 St~ing too long (XS2LONG)

14 HaItI Breakpoint (without debugger in core) (XHLTBPT)

15 Bad Block

All fatal errors either cause the system to rebootstrap, or if
the error was totally lethal to the system, the user will have to
reboot. All errors cause the system to re-initialize itself (call
system praceduTe INITIALIZE).

- Notes -

lage 250

************ *************
* TABLE 2 * * IORESULTS *
************ *************

Version I. 5 SeptembeT' 1978

o No errol'

1 Bad Block, Parity errol' (eRe)

2 Bad Unit Number

3 Bad Mode, Illegal ope1'ation

4 Undefined hardware error

Lost unit, Unit is no longer on-line

6 Lost ofi ie, File 1s no longer in directory

7 Bad Title; Illegal file name

8 No room. insuffic ient space

9 No unit, No such volume on line

10 No file, No such file on volume

11 Duplicate file

12 Not closed, attempt to open an open file

13 Not open~ attempt to access a closed file

14 Bad format, erroT' in read i ng rea 1 or integer

15 Ring buffer overflow

Page 251

- Notes .-

age 252

*********** ***************
* TABLE 3 * * UNITNUMBERS *
*********** ***************

Vel'S i on I. 5 SeptembeT' 1978

NUMBER VOLUME NAME

o <~mp ttj:>

1 CONSOLE

2 SVSTERM

3 GRAPHIC

4 flO[JPYO

5 floppy1

6 PRINTER

7 available - <unimpl~mented>

8 REMOTE <rese1'ved for future use>

9 blockl

10 block2

11 block3

12 block4

DE'v i c. eo s 9 - 12 aT' e b 1 0 c: k - $ t rue t u T' e d d e vi. c e $ lin m 0 s tea $ e s (R K -05) .

Page 253

- Notes -

age 254

DRAWl..INE:

o

1

2

3

4

DHAWBLOCK:

o

1

3

*********** *************
* TABLE 4 * * PENSTATES *
*********** *************

VeT'sion 1.5 S(~P temb er 1978

PENUP (picture will not change)

PENDOWN (fa~ce bits on)

ERASER (force bits off)

COMPLEMENT (XOR bits)

RADAR (scan for obstacle)

OR <paint source onto destination>

COpy <source go~s to destination>

COMPLEMENT <inverted source goes to destination>

EXCLUSIVE-OR <source exclusive-oT' destination goes

to de'5in~tion:;'''

Page 255

- Notes -

~ag e 256

********'***
*' TABLE 5 *

******************************** * SYNTAX ERRORS IN UCSD PASCAL *

Version I. 5 SeptembeT 1978

The s~ntax errors this compiler gives aTe nat the best it can
do. When time com~$ available to do so, the erTor generation of the
compiler is going to be seriously re-varoped.

1: Error in simple type
2: Identifier expected
3: 'PROGRAM' ~xpected

4:
c:::..
-..I.

6:
7:
8:
9:

10:
11 :
1 ~· c:;..

13:
14:
15:
16:
17:
18:
19:
20:
21 :
22:
23:
24:

')' expected
, expected

III eg.31 symbol
Er~or in parameter list

f OF I eo x pee t; e d
'(.3 expected
Err-oT' in type
'[' ~:tpected
')' e.xpected
... END" expected
'i r ext:H'~cted

Integer expected
,=, expec.ted
'BEGIN' expected
Error in declaration paTt
error in <field-list>
'. I ei':<pected
'*' exp~ct~d
'Int~rface' expect~d

tlmplem~nt~tion' expected
'Unit' e~pect~d

50: E~ror in con$t~nt
51: ': =' expected
52 : 'THEN' e x p {) c: t ~ d
53: ' UNT I L" e ~ p e c ted
54 . ' DO' f.' X t':l Po C t to? d
55: "TD I OT' ""DOWNTO I expected in .por statement
56 : ' IF' e x pee ted
57: 'FILE" ex p ec ted
58: Error in <factor> (bad expre5~ion)
59: Error in va~iable

101: Identifier declared twice
102: Low bound exceeds high bound
103: Identi~i~~ is not of the appropriate class
104: Undetla~ed identifier
105: sign not allowed
106: Number expected
107: Incompatible subrange types

Page 257

108:
109:
110:
111 :
112:
113:
114:
115:
116:
117:
118:
119:
120:
121 :
122:
123:
124:
125:
126:
127:
128:
129:
130:
131 :
132:
133:
134:
135:
136:
137:
138:
139:
140:
141 :
142:
143:
144:
145:
146:
147:
148:
149:
150:

151 :
152:
153:
154:
155:
156:
157:
158:
159:
160:

File not allowed here
Type must not be real
<tagfield~ type must be scalar or subrange
Incompatible with <tagfield> part
Index type must not be real
Index type must be a scalar or a subrange
Base type must not be real
Base type must be a scalar or a sub~ange

Error in type of standard procedure parameter
Unsatisified forward reference
Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalarj subrange or pointer
File value parameter not allowed
A forward declared function's result type can't be re-specified
Missing result type in function declaration
F-format for reals only
Error in type of standard procedure parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type does not agree with declaration
Type conflict of operands
Expression is not of set type
Tests on equality allowed only
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand(s)
Type of operand must be boolean
Set element type must be scalar or subrange
Set element types must be compatible
Type of variable is not array
Index type is not compatible with the declaration
Type of va~iable i5 not record
Type of variable must be file or pointer
Illegal parameter solution
Illegal type af loop control variable
Illegal type of expression
Type conflict
Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be scalar
Index type must be integer
Assignment to standard function is not allowed

Assignment to formal function is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Control variable cannot be formal or non-local
Multidefined case label
Too many cases in case statement
No such variant in this record
Real or string tagfields not allowed
Previous declaration was not forward

Page 258

161: Again ~o~ward decla~ed
162: Parameter size must be constant
163: Missing variant in declaration
164: Sl1bstition of standard proc/-Punc. not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Unde~inp.d label
169: Error in base set
170:
171 :
172:
174:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191 :
192:
193:
194:
195:

201:
202:
203:
204:
250:
251:
252;
253:
254:
256:
257:
258:
259:

300:
301:
302:
303:
304:
398:
399:

Value parameter expected
Standard file was re-declared
Undeclared external file
Pascal function or procedure expected
Nested units not allowed
External declaration not allowed at this nesting level
Exte~nal declaration not allowed in interface section
Segment declaration not allowed in unit
Labels not allowed in inte~face section
Attempt to oppn libra~y unsuccessful
Unit not declared in previoufi uses declaration
'Uses' not allowed at thi$ nesting level
Unit net in library
No private files
'Uses' must be in interface section
Not ~nough room for this operation
Comment must appear at top of program
Unit not importable

Error in ~eal number - digit expected
String constant must not exceed source line
Integer constant exceeds range
8 or 9 in octal number
Too many scopes oT nested identifieTs
Too many nested p~ocedures or functions
Too many forwa~d references of procedure entries
Procedure too long
Too many long constants in this procedure
Too many external references
Too many externals
Too many local files
ExpreSSion too complicated

Division by zero
No case provided for this value
Index expression out of bounds
Value to be assinged is out of bounds
Element expression out of ~ange
Implementation restriction
Implementation restriction

400: Illegal character in text
401: Unexpected end of input
402: Error in writing code filei not enough room
403: Error in reading include Tile
404: Error in writing list file. not enough room
405: Call not allowed in separate procedure
406: Include file not legal

Page 260

*********** ***************************
* TABLE 6 * * ASSEMBLER SYNTAX ERRORS *
*********** ***************************

Version I. 5 September 1978
This section lists all the general errors found in the ERRORS

file, specific machine errors are found in the sections below
dealing with machine specifics.

1: Undefined label
2: Operand out of range
3: Must have procedure name
4: Number of parameters expected
5: Extra garbage on line
6: Imput 1 i ne over 80 c harae tel's
7: Not enough iTS
B: Must be declared in ASECT before use
9~ Identifier previously declared

10: Improper format
11: EGU expected
12: Must EGU befo~e use if not to a label
13: Macro identifier expected
14: Word addressed machine
15: Backward ORG not allowed
16: Indentifier expected
17: Cnnstant expected
18: Invalid structure
19: Extra special symbol
20: Branch too far
21: Variable not PC relative
22: Illegal macro parameter index
23: Not enough macro parameters
24: Qperan~ not absolute
25~ Illegal use of special symbols
26: I II-formed expression
27: Not enough ope~ands
28: Cannot h~ndle this relative
29: Constant overflow
30: I lIe gal dec i ma 1 con s tan t
31: Illegal octal constant
32: Illegal bin~'ar(j constant
33: I n val i d key W 0 T' d
34: Unexpected end of input after macro
35: Include files must not be nested
36: Unexpected end o~ input
37: Bad plac.e for an inc.lude file
38: Only labels & comments may occupy column one
39: Expected local label
40: Local label stack ove~flDw
41: String constant must be on 1 line
42: String constant exceeds 80 chars
43: Illegal use of macro parameter
44: No local labels in ASECT
45: Expected key ward

Piig e 261

46: String expected
47: Bad block, parity eT'roT' (CT'C)
48: Bad unit number
49: Bad model illegal opeT'ation
50: Undefined hardware errol'
51: Lost unit, no longer on-line
52: Lost file, no 10ngeT' in directory
53: Bad tit 1 e,i 11 ega 1 f i 1 e name
54: No roo m lin s u f Tic i en t spa c e
55: No unitl np such volumn on-line
56: No file, no such file on volumn
57: Duplicate file
58: Not c~o$ed, attempt to op~n an open file
59: Not openJ attempt to access a closed file
60: Bad format, error in reading real or intege~

61 Nu.ted maMa de6~n"L.tioytJ., illegal
6'2. "=" OIL "r" expected
63 May no.t EQU .to unde6~ned lab~

zao Bas@d machines

For constants, Hex is the defaul~ type,
a 'B' defines binary ex.
a '. ' d e fin e s dec i ma 1 ex.

Location Counter (LC) = $

10010B ,
5674.

All reserved words may not be used foT' any other purpose
sue has ani den t i fie!'" . F v T' E A amp 1 e I the To e s e r ve d W 0 r d If e"
currently is being used as a register and in a condition
code, therefore it may not be used for any other purpose
(this is contrary to usual Zilog assembly language, but is
restricted in the UCSD assembler).

Specific error messages:

76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

Incorrect operand format
Close paren U)" expected
Comma •• , If e x pee ted
Plus H expected
Open paren "(Ii expected
Stack pointer liSP" expected
" HL II e x pee ted
Illegal "CCII condition code
Register ne" expected
Reg i s t e r ,I R 1/ e x pee t eo d
Register "A" expected

PDP11 Based machines:

Page 262

For constants, Octal is the default type for both input
and output,
a ' H' de fin e she x ad e c i ma 1 ex. 056H,
a ' , defines dec imal ex. 546.
a 'B' d e fin e s bin a rye x . 1001 B .

Location Counter (LC) = *
Specific error messages:

76: Closing paren U)" expected
77: Register expected
78: Too many special symbols
79: Unrecognizable operand
80: Register reference only
81: First operand must be a register
82: Comma expected
83: Unimplimented instruction
84: MU$t branch backwards to label

Page 263

- Notes -

Paae 264

*********** **
* TABLE 7 * * American Standard Code for Information Interchange *
*********** **

Version I. 5 September 1978

0 000 00 NUL 32 040 20 SP 64 100 40 (! 96 140 60 ,
1 001 01 SOH 33 041 21 65 101 41 A 97 141 61 a
2 002 02 STX 34 042 22 u 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 # 67 103 43 C 99 143 63 c
4 004 04 EDT 36 044 24 $ 68 104 44 D 100 144 64 d
5 005 05 ENG 37 045 25 OX 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 , 71 107 47 G 103 147 67 g
8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29) 73 111 49 I 105 151 69 i
10 012 OA LF 42 052 2A * 74 112 4A ~ 106 152 6A J
11 013 OS VT 43 053 2B + 75 113 4B K 107 153 6S k
12 014 OC FF 44 054 2C 76 114 4C L 108 154 6C 1
13 015 OD CR 45 055 20 77 115 4D M 109 155 60 m
14 016 OE sa 46 056 2£ 78 116 4E N 110 156 6E n
15 017 OF SI 47 057 2F I 89 117 4F 0 111 157 6F 0

16 020 10 DLE 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 DCl 49 061 31 1 81 121 51 G 113 161 71 q,
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 s
20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 SVN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 CAN 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 EM 57 071 39 9 89 131 59 V 121 171 79 Y
26 032 lA SUB 58 072 3A 90 132 SA Z 122 172 7A z
27 033 lB ESC 59 073 3S 91 133 5B [123 173 7B {

28 034 lC FS 60 074 3C < 92 134 SC \ 124 174 7C
29 035 10 GS 61 075 3D = 93 135 3D] 125 175 7D }

30 036 lE RS 62 076 3E > 94 136 5E A 126 176 7E ...,
31 037 1F US 63 077 3F ? 95 137 SF 127 177 7F DEL

Page 265

- Notes -

lage 266

*********** ********************** * TABLE 8 * * P-MACHINE OP-CODES *
*********** **********************

Version I. 5 Septembel' 1978

o 000 00 SLOC 0
1 001 01 SLDe 1

126 176 7E SLDC 126
127 177 7F SLDe 127
128 200 80 ASI 171 253 AB SRO 214 326 06
129 201 81 ABR 172 254 AC X~P .215 327 D7
130 202 82 ADI 173 255 AD RNP 216 330 D8
131 203 83 ADR 174 256 AE CIP 217 331 09
132 204 84 AND 175 257 AF EGU 218 332 DA
133 205 85 DIF 176 260 BO GEG 219 333 DB
134 206 86 DVI 177 261 Bl GRT 220 334 DC
135 207 87 DVR 178 262 82 LOA 221 335 DD
136 210 88 CHK 179 263 B3 LDe 222 336 DE
137 211 89 FLO 180 264 B4 LEG 223 337 DF
138 212 SA FLT 181 265 85 LES 224 340 EO
139 213 88 INN 182 266 B6 LOD 225 341 E1
140 214 Be INT 183 267 B7 NEG 226 342 E2
141 215 8D lOR 184 270 BS STR 227 343 E3
142 216 8E MOD 185 271 89 U~P 228 344 E4
143 217 SF MPI 186 272 SA LOP 229 345 E5
144 220 90 MPR 187 273 BB STP 230 346 E6
145 221 91 NGI 188 274 BC LDM 231 347 E7
146 222 92 NGR 189 275 BD STM 232 350 E8
147 223 93 NOT 190 276 BE LOB 233 351 E9
148 224 94 SRS 191 277 BF STB 234 352 EA
149 225 95 SBI 192 300 CO IXP 235 353 EB
150 226 96 SBC:< 193 301 Cl REP 236 354 EC
151 227 97 8GB 194 302 C2 CBP 237 355 ED
152 230 98 SOI 195 303 C3 EGUI 238 356 EE
153 231 99 SQR 196 304 C4 GEGI 239 357 EF
154 232 9A STO 197 305 C5 GRTI 240 360 FO
155 233 9B IXS 198 306 C6 LLA 241 361 F1
156 234 9C UNI 199 307 C7 LOCI 242 362 F2
157 235 90 S2P 200 310 C8 LEGI 243 363 F3
158 236 9£ CSP 201 311 C9 LESI 244 364 F4
159 237 9F LDCN 202 312 CA LDL 245 365 F5
160 240 AO ADJ 203 313 CB NEGI 246 366 F6
161 241 A1 F~P 204 314 CC STL 247 367 F7
162 242 A2 INC 205 315 CD CXP 248 370 F8
163 243 A3 IND 206 316 CE CLP 249 371 F9
164 244 A4 IXA 207 317 CF CGP 250 372 FA
165 245 AS LAO 208 320 DO SlP 251 373 FB
166 246 A6 LeA 209 321 01 IXB 252 374 FC
167 247 A7 LDO 210 322 D2 BYT 253 375 FD
168 250 AS MOV 211 323 03 EFJ 254 376 FE

169 251 A9 MVB 212 324 04 NFJ 255 377 FF
170 252-AA SAS 213 325 D5 BPT

XIT
NOP
SLDL 1
SLOL 2
SLDL 3
SLDL 4
SLDL 5
SLDL 6
SLDL 7
SLDL 8
SLDL 9
SLDL 10
SLOL 11
SLDL 12
SLDL 13
SLDL 14
SLDL 15
SLDL 16
SLDD 1
SLDD 2
SLDO 3
SLOD 4
SLDD 5
SLDD 6
SLOD 7
SLDO 8
SLDO 9
SLDC 10
SLOO 11
SLOO 12
SLDD 13
SLDC 14
SLDO 15
SLDO 16 .
SIND 0
SIND 1
SIND 2
SIND :3
SIND 4
SIND 5
SIND 6
SIND 7

Page 267

_,,\o~ -

Page 268

<ldeYlt.lfter>

<un5~aned ~nteoer)

\c:ons~a.n~)

constanl tde~ttfter

unstgfled nUMber
!

I
I
I

L----!S-__ -----'---{)--,_J

<siMple type>

lype~--~--~------~·

ldentttter type Ldenttrter

con~lant~--~---

<va.rta.ble>

vurtah\e tdenltfter ~ ... ~--------------------.------

fte\d tdenttfter-~ expression
L .

i

L, __ ~01E---)
I
~
I
I

I

I
..-- • "' - - -~-. '. -~--.., I

field ldentlfter ~
'-------- , J I

I
~

<ro..ctor>

,'-·-------· 1 ut'lslgt'led COt'lsta.t'lt l -------r~,..
,.,....~ ______ w _____ ._~ va.rla.b\Q L.-------~

I . I
-----------.----- ,

i'---~:-&..._.fu_n._c_t_~_o_n ___ ~ d_e_n_t_~_r_i. er h-0r I.-e_X_D_r_e_ss_t_o_n--J I

I I
~L- r . \! L-~--1 i---'--'-<~ 0-'--~QxprQs;s;ton'-' --··~0- ~

i i . .J

l
i -- - -Q ~ ra.etor t--~ -,

1 ~ I. J

I.
I

I
\..

.---~

--~~fQctcr~------------------~----~--~----

-,~

I

<siMple expression>

<expresston>

1 slMp'le expresslon ----~··--~-·----··--T

I
I
!
I

I
!

i

<po.ra.Meter \!,st>

<block>

*********************** ***************
* MATERIALS AVAILABLE * * Section A. 1 *
*********************** ***************

As the UCSD Pascal system has g~own, we have found that to
distribute all of the software which is useful to all use~s for all
system~1 has become an unbearable task. To attempt to alleviate the
large number of diskettes the ~elease software Te~ui~es, and to
alleviate the numbe~ of pages of documentation sent to each subscriber,
we have started to split the system into a number of sepe~ately
available sections.

The maJor section is the section which contains the operating
system and all the suppo~t routines that go with it. We include a
number of useful utilities which should enable the subscriber to do all
types of developmental work. The master release (as from herein it
shall be named) contains the interpreter for the initial system
ordered, the UCSD Pascal operating system, the Pascal compiler, two
text editors (one for screen devices. one for general purpose), a
BASIC compiler, the Linker. the Assembler for the appropriate machine
(at least). Other utilities include: a generalized file utility (the
File handler). a generalize patch and dump routine, a set of programs
to enable the subscriber to configure the system to run most
intelligently with any te~minal.· a desk calculator, and a librarian.

Software which is not included in the master release is
generally available from the 115 as a supplemental package at a nominal
handling charge (dependent on the amount of material involved with the
package). The sorts of $oftwa~e available are: interpreters for
machines other than the machine the master release was ordered for,
which will be accompanied by the assembler for that machine, in some
cases we have assemblers for machines for which we do not yet have
interp~etersl program and data management systems; specifically a cross
referencer, and a pretty-printer. Also available, although not until
some indeterminite time after the 1.5 release, a Computer Aided
Instruction packet. This may be available through the lIS, however it
may be available only through the University of California Extension
Studies Office. The CAI package consists of knowledge quizzes, and
programming ~uizzes, and a record keeping system, all based on Kenneth
L. Bowles book: (Micro)Computer Problem Solving Using Pascal.

- Notes -

lane 270

************************** ***************** * THE FIRST TIME THROUGH * * Section A.2. 1 *
************************** *****************

Version 1. 5 September 1978

~~e 1 come to UCSD PASCAL. If fJ ou put the dis k labe lled "PASCAL: II

in ~ou~ booting drive, went th~ough your normal boot-strapping
procedure, and were greeted in a 5imilar fashion, you do not need to
read this section.

If this is not the case then here are a few of the problems we
have ~ncountered with 1.4 coming up in strange and foreign lands:

L) S Q meT' e vis ion S Q f the LS 1-,,11 reT use to boot with the clock
running. If you have a swi.tchable clock, turn i·t off to
bootstrap; if and when the system gr~ets you with the welcome
message and the date, turn the clock back on.

2.) You have AndT'omeda floppy-disk drives. Currently you will be
able to use only drive #0 unless the other drives have disks in
them at bootstrap time. Drives that do not meet this condition
will appea~ permanently off-line.

3.) You do nat have enough memoT'y.
memory is 24K 16-blt words.

lhe minimum requirement for

4.) You h a v e a s y s t em con fig U i' e d for R iJ.. -·05 h a r d _. dis k and you h a v e
an unformatted disk on line. The system will hang waiting for
a ~eply from the disk which cannot be generated if the disk is
un'ormatted Take the disk off-line and try again.

s.) You have a system configured foT' RK and RX and the RX is not
present., R.X must be present.

6. We haven't encountered your problem befo~e. Call:

The number listed on the front page of this document.

Page 271

- Notes -

lage 272

*****'****************************** ***************** * SOBO/ZSO WITH CP/M & 3740 DISKS * * Section A.2.2 *
*********************************** *****************

Version I.5 September 1978

THE CP/M IMPLEMENTATION OF UCSD PASCAL

BOOTING PASCAL

To get Pascal ~unning under your version of CP/M, a two-disk
bootst~ap is used. First, boot CP/M in the usual manneT'o On the CP/M
disk distributed with the Pascal system is a file called PASCAL. COM.
PIP this file over to the booted disk, then execute it.

When the program asks 'OT' a Pascal disk, put the disk labeled
PASCAL: in drive A and any disk in drive B. The system may not boot if
there is no disk in drive D, or if you have a l-drive system and your
CP 1M til" i vers wa i t on a req.'Jl?st t" dr i ve B. Then hit (return J. In
about 15 seconds the Pascal welcoming message should appeal'. (Note: we
have discovered that some drives, possibly as a result of being double
bufreredt cannot keep up with a 2 to 1 interleaving and hence are
extremely slow. The bootstrap then may take about 30 or 40 seconds.
We intend to alleviate this problem in the next release, but pe~sons
with such drives will have to bear with slow disk accesses for the
present.)

If all has gone well, Welcome to the Wonderful World of Pascal.
If not, please call to notify us of your problem.

MODIFICATIONS TO CP/M

The Pascal system will operate under an unmodified CP/M system,
but it is advisable to create a special CP/M for use with Pascal in
orde~ to hav~ Pascal running in the environment for which it was
designed.

1. If there is no disk in a drive and an access is made from
that disk, the driver should not wait to perform that access until a
disk i5 inserted, as the Pascal system often attempts to read from
empty drives when searching for a particular disk. Instead, simply
return a 1 to indicate a bad 110 operation.

2. If you have a keyboCll"d interT'upt handler, it should
T'ec:ogniz~ the char,~c.tel' [cT\t~l-fJ as a uflush--output" toggle and signal
the character-out routine to gobble any characters until signaled
again. When it receives another [cntrl-fJ the keyboard handler should
signal the output handler causing the output handler to resume
outputting characters ~ent to it.

Page 273

The keyboard interrupt handler should also recognize the
character [cntrl- $] as a "stop output" toggle and wait until it
receives another [cntrl-s] before allowing program execution to
continue.

If your keyboard has no alphalock, the input driver can use any
character not used for some other purpose as an alphalock toggle.
[en t r 1-p J I [ret urn J I I: c n t r 1 ~- i J , J: c n t r 1-~' s J I [en t r 1-f J , [c n t T' 1 - c] 01" an 'J .
character in SYSCOMA.CRTINFO should be exclude~ from consideration. We
suggest [cntrl-al.

Pascal expects the tab character ([cntrl-iJ) to cause the
terminal cursoT' to advance to the nearest eight column. If the
terminal does not do this itself, then the driver in the BIOS should.

CREATING A BOOTSTRAP ON A PASCAL DISK

Note: These instructions are for a standard BIOS with 512-byte
blocks. For instructions for a non-standard BIOS, reference file
READ. ME on the CP/M disk in the distribution packet.

On the CP/M disk are two programs, PGEN.COM and PINIT.ASM. The
program PGEN.COM is a program used to write out a buffer <which will be
filled by boot code and BIOS) to track O. PINIT.ASM is the boot code
that ~eads SYSTEM. MICRO from a Pascal disk, loads the alaS into the
correct place, and starts the interp~eter's boot routine.

You must cl'eate a file PBOOT.HEX, which will require a slight
modification of your current BOOT program. PBOOT will reside on track
0, sector 1 and, when executed, will load track 0, sectors 2 thru 13
into memory starting at location (MSIZE-48)*1024 + OBAOOH, and Jump to
that location.

You then need to edit PINIT.ASM, changing MSIZE to match your
system. Assemble the file, creating PINIT.HEX.

The next step is to stitch together the one-sector boot, the
Pascal interpreter loader, BIOS, and the program to write this
information out to sector O. The following is a session with DDT that
performs all this. This session was used to create a 48K system. User
input is in lowercasel and comments are off to the right.

A)-ddt pgen, com

DDT VERS 1.3
NEXT PC
0400 0100

Page 274

load PGEN.COM into memory. PBOOT, PINIT,
and BIOS will be overlayed into PGEN's
data area; after which a memory image will
be saved.

-ipboot48.hex
-h900 0

0900 0900
-1'900
NEXT PC
0980 0000

-ipinit48.hex
-h980 BAOO

C380 4F80
-r4f80
NEXT PC
OA7d BAOO

-ibios48. hex
-hd80 beOO
C380 4F80
-r4f80
NEXT PC
OF76 0000
-[cntrl-cl

AJsave 16 pgen48. com

A)opgen48

PGEN VI.O

PUT BOOTER?(V/N)y

set PBOOT48.HEX as input file
PBOOT starts at location 0, and we want to

read it in at location 900H

read in PBOOT

set 'PINIT48.HEX' as input file
PINIT starts at location BAOOH in a 48K system

(in general (MSIZE-48)*1024 + BAOOH), and we
want it at location 980H

read it in

and lastly read BIOS into location D80H

leave DDT. , .

... and save the program.

sample execution of the program ...

WRITING BOaTER TO DRIVE A, TYPE RETURN put a Pascal disk (preferably a
copy of the master) in drive A
before hitting [return].

AGAIN?(Y/N)n
GET BOOTER?(Y/N)n
REBOOTING CP/M, TYPE RETURN

A>

put the CP/M disk back in drive A
berore hitting [return].

Page 275

- Notes -

'aGe 27b

************************************* *************** * DIFFERENCES AMONG IMPLEMENTATIONS * * Section A.3 *
************************************* ***************

Version 1.5 September 1978

The following is a list of differences between PDP11 Pascal and
8080/Z80 Pascal, the items describe the way it is on the
8080/Z80, and how that differs from the documented system.

1. The definition of div is different (thereby changing the value5
returned by mod):

a &iv b = floor(a/b)
a m~ b = a - b*(a div b)

2. The 110 drivers are all written ~or synchronous operation. This
means that [break] has no effect. rCntrl-s] and (cntrl-fl will
not perform as described unless you have a keyboard interrupt
handler, and this handler is modified as specified below in
i19.!ti.f i c § t ion ~,~.!.fL_G..E.t1.

This also means that UNITBUSY, UNITCLEARJ and UNITWAIT are
meaningless. (In the fut'J'Pe lt may be possible to use -the
UNITBUSY and UNITCLEAR operations on the keyboard, but this is
cUT'rently infeasible.)

3. The interpreter is called SYSTEM. MICRO instead of SYSTEM.INTERP.

4. The CP/M implementations have bootstraps that a~e not accessible to
Pascal, hence the program BOOTER, CODE will not work. See the
apprDp~iate section of this document for instructions on
copying and/or c~eating a bootstrap.

5. There are no turtle graphic'S procedures in the interpT'eter. Users
with bit-mapped graphics devices are advised to see section 3.1
of the documentation feT' a Pascal version of DRAWLINE.

6. There are no long integer functions available with the ZaO/SOBO
system. They will be available in later releases.

Page 277

- Notes -

lage 278

*********************~.************* *************** * CHANGES MADE IN RECENT RELEASES * * Section A.4 *

*********************************** ***************
Version 1. 5 September 1978

SUMMARY OF DIFFERENCES BETWEEN UCSD PASCAL RELEASES 1.4 AND 1.5

The following additions, improvements and/or corrections appl~
to Version 1.5. Reference the (section #) preceding each entry for a
more detailed description. For information regarding differences be
tween previous releases refer to the system documentation for those
reI eas·es.

(1. 1)
OPERATING SYSTEM

(---)

(2.1.1)

(1. 1)

(1- 8)

(1.9)

(1. 1)

(1. 1)

(1. 1)

(1. 2)

All fields of SYSCOM (system communication area) that
can be set in the utility SETUP are initialized at
boot time using *SVSTEM.MISCINFO (if present).

The bug in the string intrinsic POS has been fixed.

C(ompile will now prompt the user for the file to
compile if the workfile is empty.

There now exists a new command called L(ink at the
command level of the system that directly invokes
the new utility *SVSTEM.LINKER.

There now exists a new command called A(ssem at the
command level of the system that diTectly invokes
the new assemble~.

If a file SYSTEM. STARTUP exists on a given disk. that
file will be run as a user program at initialize time.
R(un di-rectltJ invokes *SVSTEM. LINKER if it is
needed by the user program. It assume use of
*SYSTEM.LIBRARY Tor external linkage.

X(ecute will not run code files which need to be
L(inked. An error message will appear.

The file handler is now a separate file called
*SYSTEM.FILER.

Page 279

(----) Backspacing -3nd '(del:> are now allowed when reading integeT's
from Uriit #1 (CONSOLE:). However, backspacing over the sign,
if any, is not permi tted.

Substantial modi'ications have been made in the syntax of useT'
responses to filer prompts. For nearly all commands there exists the
option of using either of two wildcard symbols enabling extended
C 0 f1 t i 0 1 over act i v i t i.J wi t h i nth e of i 1 ,z 1" . In 9 e neT' aI, t h f.? S Y m bo 1 " = n

will allow selective control over files within the LCdir, CChange,
R(emove, snd T(r-ansfe-r commands. The "?" symbol is similar 1;0 It;::" with
the addition that it will cause the filer to prompt the user 90~ each
task to be performed.

G(et command now allows use of appended !t.TEXTlI and
". CODE" suffixes in file names and ignores them.

SCave command will now allow the current workfile to
be 5d\ .. ·ed Dn a disk other than the E:iystem volume.

E(ar~d L.(dir now r·eq.ui"Te an ~ppended ": II ,after literal
volume 1.0. 's. Selective listing of directory subsets
is allowed through use of the wildcard s~mbol = in con
Junction with file prefix and suFfix string patte~ns.
Directory listings m~y be sent to a volume other than
CONSOLE: by following the sourcp volume name with

, i -('I'D 1 ume i d)- , .

C(h';:H;ge CIJmmand ttd.l1 now ,~11ouJ the US4,?T' to changE"
selected file prefix and su~fix st~ing patterns within
groups of filenames containing the chosen patterns
through use of the wildcard symbols = or 7.

R(emove command allows sele~tive removal of groups 0'
files using the = cr ? symbol in a manner similar to the
C (h an gee 0 mm a r. d . To s e 1 e c t i vel y rem 0 v e an yeT' a 11 0 ~

the 1- i 1 as n nag i v en v 0 11) m e the U E fE'r' rna y t y p eo
<vol"prefix) ? a~d will be prompted fo~ gach file on
the disk., Typing R(emove} <vol, prot::H~jx:) now will result in
no acti.on. R{emo'/e) <voL pT'efi:t::> := will remove ALL files
on the disk. All commands rEsulti,...,g in the potential
removal of more than anA File will prompt the user with
"Update directopy?1I following "removal" of file names.

T(ransfer command functions in a manner similar to
the CChange comO'land. When performing a disk to disk
trans.fer using one drive it will now ask for the
the file name to be transferred to before the source
disk is remov~d. It is now possible to selectively
transfer any o~ all of th~ files on a disk by typing

<vol. prefix:> followed by "?" or "=" in a manner simi
lar to the R(emove command. The user will be prompted
for each file and is given the option of transferring.

Z(ero command will now.prompt the user with the present
number of blocks allocated the the disk in the directory,
if a valid n·umber ey',istsl arid will ask if the same number
of blocks is wanted. If the response is No (or there was
no previous uti: of blocks U

) then the user maCj enter the
appropriate number of blocks, The Z(ero will be aborted
if a bad # of blocks is specified.

N(ew command will now check foT' a ".BACK" file corresponding
to the current workfile and ,will ask if the user wishes
this file to be ~emoved. (This is for use in conJunction
with the new L.2 (large file) EDITOR.

The new command? will result in display of the prompt-
1 ine ex'tension:

Fil~T:B(ad-blks~E(xt-dirlK(runch,Mtake,P(refixIV(olume,X(amine.Z(ero

Typing any non-command ke~ will redisplay main promptline.

EDITORS (Sections 1.3 and 1.4)

Three different editcrrs are currently provided with the UCSD
PASCAL s~stem: YALOE, "EDITOR"tE.6), and the new L.2 EDITOR. EDITOR is a
substantially more powerful (and even easier to use) editor than YALOE,
but it makes some assumptions about the run-time environment.
The L.2 EDITOR (eventually. to become the standard release editor) will
handle files of arbitraTY size, however it is in its experimental form
and recommended for brave users only.

EDITOR requires a reasonably powerful CRT terminal with the following
features:

XYADRESSING

NDFS

LF

RLF

go directly to a given row and column on the screen

non-destructive"orward space (the inverse of back
space)

down one line (and if at the bottom of the screen
scrolls up)

reverse line feed (up one line; not re~uired to
reveT'se seT'oll)

Page 281

(EDITOR no longer requires Erase-to-end-or-screen,
Ersse-to-end-of-line, or Home facilities.)

T Y pin 9 '1 E" at the ma inc 0 mma n dIe vel wi lIe x e ;: iJ t e the f i 1 e
SYSTEM. EDITOR. Selection o~ either YALOE or EDITOR(E.6 or L.2) as
the system editor is made in the Filer by C(hanging the selected file's
name to SYSTEM. EDITOR.

Proper use of EDITOR requires that the system disk be left
on-line while editing.

The E.6 EDITOR has the following differences 'rom the previously
released E.4 EDITOR:

(1.3.3) The C(opy command now requires the user to $peci~y whether
the copy is to be made from the B(uffer (as in the old
C(opy command) or 'rom another F(ile. Copying from a file
allows the option of copying subsets of the file by speci
f yin g rna r k e r s.

(1.3.3) A(dJust now enables LCeft and R(ight Justification as well
as C(entering of text lines.

(---) Automatic date-stamping of 'iles. The fi~st date the file
was created and the last date that it was updated are dis
played in the E(nvironment.

The following is a brief summary o~ the differences between.
the E.6 editor and the L.2 (la~ge file) editor (for more information
see section 1. 3. 5~;

(1. 3.5) The L.2 EDITOR does not write to SYSTEM.WRK.TEXT unless
a new workrile has been cl'eated. Instead, upon entering
the editor the file to be read from is renamed with
a . BACK suffix and a work~ile is created with the
old f i 1 e I s name.

(1.3.5) New commands to be used in conjunction with large file
capability are B(anish L(eft or R(ight, and N(ext B(ack
or F(orward or S(tart Or E(nd.

(1.3.5) FCind and R(eplace will prompt user if target not found
and the file extends beyond the editor buffer(L e., iOP it
i s a II 1 a r 9 e f i I e c.) •

(1.3.5) Changes within E(nvironment:

Page 282

Ability to set tab stops.
Lists names of marke~s.
Lists numbel' of pages in Left and Right

stacks of large filesl in buff-er and
number of pages available on disk.

(1. 5)
DEBUGGER

(1.5) The debugger now works as claimed in the system documentation.

PASCAL COMPILER

(2.2) Lowercase characters are now allowed within all
identi~ier$ and reserved words, but are converted to
upper case(i. e. ~ Hello is equivalent to hElLO), The break
character '_' is also allowed (anywhere a digit is
allowed in an identifier) and is ignored.

(3.3,3) There now e~ists the -Facility .por using "Long Integers" for
business applications. The standard type INTEGER has been
extended and the standard arithmetic operators +,-,*, DIV,
and unary plus and minus are allowed for use with long
integers (as well as the TRUNC and STR intrinsics).

(3,3.2) A substantial new addition to capabilities of programming
in UCSD PASCAL is the facility for linkage to separately
compiled HUNITts" and external assembly language rQutines.
A UNIT is a library module which may be imported for use
by PASCAL programs. It incorpo~ates the use of public and
private declarations and definitions. The introduction of
UNITS to UCSD PASCAL int~oduces new syntax fo~ the language
including the new reserved words:

UNIT
INTERFACE
IMPLEMENTATION

and USES.

(3,3.2> PASCAL programs may now access external assembly language
routines through the use of an EXTERNAL declaration which
resembles the FORWARD declaration.

SYSTEM. LINKER is a new system utility made available to allow
the linkage of sepa~ately compiled PASCAL UNITS as well as access in
PASCAL to assembly language routines, and linkage from aS$embly language
to assembly language.

(4.2)

The file SYSTEM. LIBRARY is available for use in conJunction
with SYSTEM. LINKER. The old LINKER. CODE has been replaced by LIBRARY. CODE
which allows the user to build libraries containing utility routines.

Page 283

(2. 1. 1)
INTRINSICS

The procedure STR has been added and is used to convert integers
or long integers to their character string representation.

UTILITY PROGRAMS

Several new UTILITY PROGRAMS have been added. Reference
also the TABLE OF CONTENTS and the UTILITY DOCUMENTCSection 4>.

Page 284

(4.3) NEW SETUP.
(4. 5) REVISED PATCH.
(4.8) COPYDUPDIR.
(4.8) MARKDUPDIR.
(1.9) ASSEMBLERS. (LSI-ll,8080,Z80)
(4.9) DISASSEMBLER.

********* *************
* INDEX * * Section B *
********* *************

Version 1. 5 September 1978

ARRAY, 117
ASSEMBLER I 4, 99, 100, 114, 284
BAD BLOCK SCAN, 26
BANISH.. 55
BLOCI·C 117
BLOCKNUl"lBEH I 11 '7
BLOCKREAD, 124, 140, 156
BLOCKWRITEI 124, 140, 156
BOOTSTRAP, 45, 227
BREAKPOINT, 77
CASE STATEMENTS. 13~

CHANGE, 18
CHARACTER, 117
CLOSE, 1243 149. 156
COMPILED LISTINGi 84
COMPILER, 3, 81, 283
CONCAT, 119, :1 57
CONDITIONAL ASSEMBLY, 111
CONTROL CHARACTERSI 59
COPYJ 51, 120
CP/M, 51 273
CRAWLt 72
CURSOR, 311 36, 62
DATE, 25
DEBUGGER I 4, 71, 82, 283

DESTINATICH'), 11.'?
DIRECTIVES, 105
DIRECTORY.. l,6i '.i.8, 284
DISK, ERROR1 ~~6

DIS.~ ~:a lEI 29
DISi" SPf~CEi 27
DLE, lh3
DRAWBLOCK, 129, 157
ORAWLINE, 129, 157! 139
EDITOR, 3, 31. 281
EOF. 125, 138, 141
EOLNl 12'5, 138, 14 t J 14·8
EXAMINE, 26, 721 74
EXECUTE, 4
EXJT~ 142, 157
EXPRESSIONJ 117
EXTENDED LIST, 18
EXTERNAL, 95, 102, 173
FILE, 123, 125, 148
FILEID, 117
FILENAMES, 71 11, 31
FILERI 2, 3, 7: 280

Page 285

FILES, 139
FILLCHAR, 132, 146, 157
FIND, 42, 43, 51
FORWARD, 173
FUNCTION, 107
GENERAL ERRORS, 261
GET, 13, 125
GOTQ, 82, 142
GOTOXY, 133, 157, 222, 235, 281
GRAPHICS, 129, 159
HALT, 133, 157
HEAP, 136
IDSEARCH, 157
IMPLEMENTATION, 167
INCLUDE, 83, 100, 115
INDENTATION CODE, 163
INDEX, 117
INITIALIZE DISKS, 28
INPUT, 138, 149
INSERT, 33, 37, 52, 120J 157
INTERACTIVE, 148
INTERFACE, 167
I.NTRINSICS, 156
la-ERROR, 125, 249, 251
IORESULT, 83, 125, 157, 184
,",UMP, 52
KEYBOARD, 1381 149
KRUNCH, 27
L2 EDITOR, 52
LENGTH, 119, 153, 157
LIBRARIAN, 283
LIBRARY, 173
LINKER, 4, 95, 172, 283
LIST DIRECTORY, 16, 18
LOCK, 124
LOG, 133
LONG INTEGERS, 120, 179J 283
LSI1!, 1
MACRO, 104
MACROS, 109
MAKE, 28
MARK, 133, 157
MARKERS, 36, 47, 52
MEMQRY ALLOCATION, 136
MEMORY MANAGEMENT, 133
MOVELEFT, 131, 157
MOVERIGHT, 131, 157
NEW, 15.1 138
NEXT, 55
NORMAL, 124
NUMBER I 117
OUTPUT, 138, 149
PACK, 147
PACKED ARRAYS, 144

Page 286

PACKED RECORDS, 146
PACKED VARIABLES, 144
PAGE, 126
PASCAL, 1
PATCH, 284
PDP-il, 99
PDP 11, 1 , 5, 186
PENSTATES, 255
POS I 1. :t 9, 1 57
PREFIX, 25
PROCEDURE, 107
PROGRAM HEADINGS, 147
PSEUDO COMMENT, 71, 82
PSEUDO-OPS, 105
PURGE, 124
PUT, 125
PWROFTEN, 133, 157
QUIET, 85
QUIT, 15, 50, 52! 62
RADAR, 159
RANGECHECK, 85
READ, 126, 148, 154
READLN, 148
RELBLOCK, 117
RELEASE, 133, 157
REMOVE, 20
REPLACE, 42} 44: 52
RESET, 123, 148, 149, 150, 157
RESTRICTIONS, 156
REJpJRITE, 123, 148, 149, 150, 1 S7
RT-l1, 233
RUN, 3
SAVE~ 14
SCAN; 131
SCREEN, 118
SCREEN CONTROL, 5, 85, 133, 221, 235, 284
SEEK, 126, 140, 158
SEGMENT PROCEDURE, 150. 165
SETS, 151
SETUP. 284
SIMPLVARIABLE, 117
SIZE, 118
SIZEOF, 133, 146, 158
SOURCE, 118
STR, 120, 1S8. 180
STRING, 118, 119, 283
STRINGS, 152
SWAPPING, 86
SYNTAX ERRORS, 257
SYSCOM, 81
SYSTEM COMPILATION, 86
SYSTEM. LIBRARY, 4, 71, 84, 87, 95, 106
SYSTEM.WRK.CODE, 3, 3~1 81J 96, 100
TEXT, 148, 163

Page 287

TIME, 133, 158
TITLE, 118
TOKEN; 42
TRANSFER, 21
TREESEARCH, 158
TRUNC, 180
UNIT, 87, 97, 167
UNITBUSYJ 123, 158
UNITCLEAR, 124
UNITNUMBER; 118. 253
UNITREAD, 123, 158
UNITWAITI 124, 158
UNITWRITE, 123, 158
UNPACK, 147
UNTCLEAR, 158
USE LIBRARY, 87
USES, 168
VOLID, 118
VOLUME, 25
VOLUME NAMES, 71 253
VOLUMES, 15
WALK, 72
WHAT, 15
WILDCARDS, 11
WORD PROCESSING, 38, 46, 47, 52
WORKFILE, 3, 81 32~ 85, 59, 71. 811 96, 100, 279
WRITE, 126, 155
WRITELN, 155
ZBO, I, 5, 99, 186
ZERO, 28

Page 288

ADDENDUM (REVISION A, DECEMBER, 1979)

FOR NORTH STAR PASCAL SYSTEM REFERENCE MANUAL, REVISION 3

(describes PASCAL-S, PASCAL-DQ)

TABLE OF CONTENTS

I. INTRODUCTION •••••..••••••••.••••••••.•••••••••••••••• 1

II. THE PRIMARY DISKETTE(S) •••••••••••••••••••••••••••••• 3
A. Introduction •• 3

1. The Bootstrap Diskette, PASNS: •••••••••••••••••••• 3
2. The Compiler Diskette, COMP: ••••••••••••••••••••.• 5

B. Personalization of Pascal ••••••••••••.•••••••••••••. 7
1. CREATING THE WORKING DISKETTES •••••••••••••••••••• 7
2. I/O PERSONALIZATION OF THE P-MACHINE SIMULATOR ••.• 7

a. Getting Started •••••••••••••••••••••••••••••••.• 7
b. Installing the Input/Output Routines •••••••••••• 9

3. CHOICE OF SIMULATORS ••••••••••••••••••••••••••••• 10
4. CONSOLE TERMINAL CONFIGURATION .•••••••••••••••••• 11
5. CHOICE OF EDITORS •.•••••••••••••••••••••••••••••• 13

III. NORTH STAR PASCAL IMPLEMENTATION NOTES ••.•••••••••• 14
A. Pascal Disk Blocks ••••••••••••••••••••••••••••••••• 14
B. Program Development with Single Density ••••••••••.• 14
C. Terminals with Short Line Lengths •••••••••.•••••••• 16
D. Numeric Capabilities of North Star Pascal ••••• _ •••• 16
E. Unused Drives •••••••••••••••••••••••••••••••••••••• 17
F. Handling of DLE (Control-P) and CR (Control-M)

Under Pascal ••••••.•••••••••••••••••••••••••••••• 17
G. Data Transfer Between Single-Density and

Double-Density (or Quad-Capacity) Diskettes •••••• 1S

IV. THE AUX DISKETTE •••••••••••••••••••.•••••••••••••••• 22

APPENDICES

1. USER AREA SPECIFICATION AND DESCRIPTION •••••••••••••• 24
2. SAMPLE INPUT/OUTPUT ROUTINES •••••.••..•••••••••.•.••• 28
3. A BRIEF PASCAL BIBLIOGRAPHY •••••••••.••.••••••••••••• 34

1/80

PG 1 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3

I. INTRODUCTION

The programming language P~scal was designed to encourage the use of modern
structured, modular progr~ing techniques among computer science students, but
has nevertheless become popular in professional environments as well. Both this
ADDENDUM and its parent document, the NORTH STAR PASCAL SYSTEM REFERENCE MANUAL,
assume that the reader is familiar with the Pascal language itself, and so
concentrate on the particular use and operation of the North Star Pascal system
in preparing and executing programs. For those who need to learn more about
programming in Pascal, a bibliography of suggested references is included at the
end of this ADDENDUM.

North Star Pascal, Version 1, is an implementation of the UCSD Pascal(TM)
Version I.5F software system, as configured for operation on the HORIZON
computer or other 8080 and Z80 microcomputer systems equipped with North Star's
MICRO DISK SYSTEM (MDS). The software system was created at the Institute for
Information Systems, University of California, San Diego.

Version 1 is essentially the complete UCSD Pascal (TM) system, containing
all tools necessary for program development using the Pascal language: a text
editor, Pascal compiler, object code linker, 8080 and z80 assemblers to
facilitate the interface of machine-code routines to Pascal code, and several
utilities. The system operates independently of North Star's DOS, and includes
its own file-handling and disk-management functions. However, it contains minor
changes from the standard UCSD system, designed to make operation more
convenient when 5-1/4" floppy disks are used for mass-storage of programs and
data. This ADDENDUM discusses the relevant changes and their effects on system
operation as described in the SYSTEM REFERENCE MANUAL. Also discussed in this
ADDENDUM are the procedures necessary for interfacing North Star Pascal to an
arbitrary input/output configuration, and suggested program development
strategies for single-density and double-density systems.

HARDWARE REQUIREMENTS

In order to run the North Star Pascal system, your computer must meet the
following standards:

1. Its CPU must be one of the "8080 family" of processors, which includes
the 8080, Z80, and 8085.

2. It must be a HORIZON computer or be equipped with a single-density,
double-density, or quad-capacity North Star MDS Micro Disk System. The single
density version of the Pascal system, PASCAL-S, supports up to three disk
drives, and the double-density/quad-capacity version, PASCAL-DQ, supports a
maximum of four. Note that program development under the single-density version
of North Star Pascal requires at least two disk drives on-line. Using the DQ
version, program development may be pursued with only one drive on-line, but
dual-drive operation is far more convenient. PASCAL-S works only with North
Star's first, single-density-only disk controller. PASCAL-DQ does not read or
write single-density disk information, and will work only with the newer (dual
density) controller.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 2

3. The bootstrap PROM on the North Star MDS Controller Board must be
located at E800H in memory. (For single-density controllers only, the PROM must
be configured to load the North Star DOS into RAM starting at 2000H.)

4. Program development using the Pascal compiler requires at least 48K
contiguous RAM, and 56K is recommended because the compiler will run faster,
larger assembly-language programs may be assembled and linked together, etc.
Once compiled, applications programs may run in as little as 20K of RAM,
depending upon their individual storage requirements.

Before reading further in this ADDENDUM, read the entire NORTH STAR PASCAL
SYSTEM REFERENCE MANUAL at least once to familiarize yourself with general
system features and concepts. Return to the ADDENDUM for detailed information
about system configuration and operation in the North Star environment.

*** OWNERS OF PREVIOUS NORTH STAR PASCAL RELEASES, PLEASE NOTE: ***

This ADDENDUM describes North Star Pascal Version 1, Release~. Owners of
Release ~ should be aware that the User I/O area jump table has been modified in
a small, but significant way to accommodate quad capaCity drives. Please see
sections II.B.2.b'and II.B.2.c for further details. User I/O areas from older
releases will require slight modification before interfacing to Pascal Version
1, Release 2.

Every effort has been made to insure that the information presented here is
accurate and complete at press time. If you find any errors or omisSions,
please notify North Star in writing at the following address:

NORTH STAR COMPUTERS
ATTN PASCAL PRODUCT ENGINEER
2547 NINTH STREET
BERKELEY CA 94710

NOTE: "UCSD Pascal" is a trademark of the Regents of the University of
California, San Diego Campus.

PG 3 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

II. THE PRIMARY DISKETTE(S)

A. Introduction

The North star Pascal program development system consists of two parts,
the PRIMARY diskette(s) and the AUXILIARY diskette. The PRIMARY set contains
all the software necessary to permit program development using Pascal,
including the system bootstrap program. The AUXILIARY diskette includes the
two assemblers and several utilities intended for use by advanced programmers.

This section describes the PRIMARY diskette set. In PASCAL-S, primary
system software is divided between two 5-1/4" single-density floppy diskettes,
named PASNS: and COMP:. All primary system software for PASCAL-DQ fits on one
double-density diskette, PASNS:.

1. The Bootstrap Diskette, PASNS:

The BOOTSTRAP diskette for either PASCAL-S or PASCAL-DQ is marked

PASNS:

This diskette contains the operating system software and other programs
which will be described shortly. The bootstrap diskette must always be
inserted in drive '1 (this corresponds to "device '4" in the Pascal system's
terminology) whenever you "bring-up" the system. (This goes for both
single-density and DQ systems!) Sometimes, you may have occasion to remove
the bootstrap diskette from the device #4 drive during the execution of
certain programs or system functions. Under normal operating conditions,
the system will remind you to re-insert the bootstrap diskette after the
program or function is done. You will see the follovling words on your
terminal:

PUT IN PASNS:

The device #4 drive will turn on, and the message will be repeated until the
appropriate diskette has been inserted and the drive door closed. Do not be
afraid of re-inserting the bootstrap diskette while the device #4 drive is
operating, as it will not harm the diskette.

The bootstrap diskette contains the following software files:

SYSTEN.NSTAR2
SYSTEM. NSTARO

These are the "p-machine simulator" programs, and are the heart of the
North Star Pascal system. All Pascal programs are compiled into "p-code"
which is a machine code for a pseudo-microprocessor that is ideal for
executing Pascal programs. In order for this code to run on typical
microprocessors, a program which SIMULATES the "p-machine" must be written
for and executed on the computer. This program makes the processor on which
it runs appear to be the ideal p-machine. All system software in the Pascal
system, with the exception of the p-machine simulator itself and low-level
lID drivers, is in the form of p-code, so one of the simulators must always

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 4

be running when you use the system. SYSTEM.NSTAR2 expects system RAM to
begin at 2000H, and loads there, while SYSTEM.NSTARO loads at OOOOH. Except
for their origins in memory, SYSTEM.NSTAR2 and SYSTEM.NSTARO are identical.
While the system is initially configured to use only the 2000H-based
simulator, you may re-configure it to use the OOOOH-based simulator instead.
The procedure for this is described elsewhere in this ADDENDUM. Note that
the selected simulator is automatically loaded and executed whenever you
"bring up" the Pascal system, and that the standard North Star bootstrap
PROMs are able to bootload either the OOOOH-based simulator or the 2000H
based one.

SYSTEM. PASCAL

This is the Pascal command processor with which you interact to
initiate editing, compiling, linking, and execution of your programs. The
operation of this program is explained in detail in the SYSTEM REFERENCE
MANUAL.

SYSTEM. FILER

This is a separate part of the operating system, which allows you to
maintain data and program files on diskette. It is entered through the
operating system's F(iler command. See section 1.2 of the SYSTEM REFERENCE
MANUAL for operating details.

SYSTEM. LIBRARY

This is a collection of special routines which may be linked into your
Pascal programs after they are compiled and before they are executed. See
the section 1.8 (LINKER), and section 3.3.2 of the SYSTEM REFERENCE MANUAL
for more information about the SYSTEM. LIBRARY. Note that this file should
remain on-line while preparing Pascal programs for execution, especially
those which involve input/output of real numbers, since the routines which
accomplish this must be linked into compiled programs from the
SYSTEM. LIBRARY before execution.

SETUP. CODE

SETUP is an interactive progr~Q which permits you to re-configure your
Pascal system to observe the screen control conventions of your particular
console terminal. See section 4.3 of the SYSTEM REFERENCE MANUAL for
further information.

SYSTEM.MISCINFO

This data file contains configuration information for your system,
including much of that which permits cursor-controlled operation on video
terminals. The SYSTEM.MISCINFO file supplied with your Pascal system makes
the system treat your terminal as if it has no cursor-control (except for
standard carriage-return and linefeed functions). Single character input
deletion is accomplished by striking the underline (_) key, and deletion of
an entire input line occurs when the terminal's at-sign (@) key is pressed.
You will need to use the SETUP and BINDER programs in order to adjust your

PG 5 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

system for convenient video screen operation with full cursor-control,
screen and line clear functions, backspacing, etc.

SOROC.MISCINFO

For those whose console terminal is a SOROC IQ120, use of this special
MISCINFO file will re-configure your system to use the full cursor-control
capabilities of the terminal. In particular, striking the left-arrow vector
key will delete a single input character at a time (backspacing and erasing
that character) while the RUB key must be depressed to cancel an entire
input line (erasing that line from the screen). See the PERSONALIZATION
section in this ADDENDUM for complete details.

HAZ.GOTOXY.TEXT
HAZ.GOTOXY.CODE
HAZ.MISCINFO

These three files will aid the owner of a HAZELTINE 1400 or 1500 series
terminal in personalizing North Star Pascal for complete cursor-controlled
operation. The first contains the text source of the Pascal procedure used
to position the screen cursor at an xy-coordinate (GOTOXY). The second file
is the compiled p-code version of the GOTOXY procedure, ready to be inserted
into the Pascal system by the BINDER program. The last file contains
SYSTEM.MISCINFO parameters for the Hazeltine terminals, and should replace
the standard SYSTEM.MISCINFO file on systems where the console device is a
Hazeltine terminal. HAZ.MISCINFO stipulates that backspace (or left-arrow)
is the system character-delete key, while DEL is used to cancel an entire
input line. (Note that terminals used with HAZ.MISCINFO and HAZ.GOTOXY must
ignore parity information, and must NOT be set for auto-linefeed.) See the
PERSONALIZATION section in this ADDENDUM for additional details.

2. The Compiler Diskette, COMP:

Because it was not possible to put all major system software on one
single-density diskette, PASCAL-S includes an extra diskette,

COMP:

which contains, among other programs, the Pascal compiler and the screen
oriented editor. Note that the increased capacity of double-density and
quad-capacity diskettes eliminates the need for a separate COMP: diskette in
PASCAL-DQ. All software listed under COMP: is included on PASNS: in PASCAL
DQ.

SYSTEM. EDITOR

The SYSTEM. EDITOR is initially the screen-oriented editor described in
section 1.3 of the SYSTEM REFERENCE MANUAL. If you do not have a cursor
controlled video terminal, you should make YALOE.CODE (a conventional line
oriented editor) into the SYSTEM. EDITOR. See the PERSONALIZATION section of
this ADDENDUM for more information on your choice of text editors.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 6

SYSTEM. COMPILER

This is the Pascal to p-code compiler as described in section 1.6 of
the SYSTEM REFERENCE MANUAL.

BOOTER.CODE

BOOTER is a program which copies the special bootstrap code from the
bootstrap disk to another copy of the bootstrap disk. Bootstrap code is
contained in several "invisible" Pascal disk blocks which are not accessible
through or indicated by the disk directory. When the F(iler's T(ransfer
function is used to copy the contents of the bootstrap diskette over to
another disk, the "invisible" blocks are NOT copied, since they are not
reflected in the directory. In order to copy the bootstrap diskette using
only Pascal system software, it is necessary to use the T(ransfer function
to copy all files in the directory to the new disk, then X(ecute the BOOTER
program to transfer the "invisible" blocks. See section 4.4 in the SYSTEM
REFERENCE MANUAL for more information. (Note that the PASCAL-UPGRADE
product, which isn't described here, includes a Pascal utility to copy
entire diskettes, but this is not a part of standard Pascal system
software.)

BINDER. CODE

This program injects a special procedure, GOTOXY, into the Pascal
operating system in order to facilitate cursor-controlled operation. You
will need to use this program if your video terminal is NOT a Lear Siegler
ADM-3A or a SOROC IQ120. Before you can use BINDER, you must write and
compile a version of the GOTOXY procedure which is appropriate for your
terminal. BINDER will then make the resulting code file a part of the
system. For examples on how your GOTOXY procedure should be written, see
section 4.7 of the SYSTEM REFERENCE MANUAL. Note that this procedure must
be compiled using the {$U-} compile-time option, which is explained in
section 1.6.1 of the SYSTEM REFERENCE MANUAL. Also, your version of GOTOXY
may NOT itself be called "GOTOXY" , but may be referenced by that name once
it has become part of the Pascal system.

SYSTEM. LINKER

Pascal programs may be compiled separately, and then may be linked
together, before being executed, to form new software packages. Machine
~ode routines may also be linked into Pascal code before execution. This
makes it possible to have "libraries" of often-used routines which may be
linked into compiled Pascal programs whenever necessary. See sections 1.8
and 3.3.2 of the SYSTEI1 REFERENCE HANUAL for more information. (Note that
the AUX: diskette, described later in this ADDENDUM, contains utilities for
the creation and management of software libraries.)

YALOE.CODE

YALOE is "Yet Another Line Oriented Editor" and is intended to be used
as the SYSTEM. EDITOR when no cursor-controlled video display is available as
console device. See the PERSONALIZATION section of this ADDENDUM for the

PG 7 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

procedure which must be followed to convert YALOE.CODE to SYSTEM. EDITOR if
the screen-oriented editor is inappropriate for your system. Information
about YALOE is contained in the REFERENCE MANUAL, section 1.4.

B. Personalization of Pascal

NOTE: The personalization process described here assumes your familiarity
with the North Star DOS and MONITOR, which are supplied as standard software
with your HORIZON computer or MICRO DISK SYSTEM. You will need to use the DOS
and MONITOR to effect personalization of your Pascal system. If you are not
familiar with the DOS or MONITOR, refer to the proper sections of the NORTH
STAR SYSTEM SOFTWARE MANUAL for further details.

1. CREATING THE WORKING DISKETTES

The Pascal diskettes you receive from North Star are write-protected.
They are your FACTORY MASTERS, and YOU SHOULD NEVER ATTEMPT TO WRITE DATA ON
THEM, OR TO REMOVE THE WRITE-PROTECT TAB. The factory masters should be
used to create a set of WORKING DISKETTES, which will remain unprotected,
and which will be used in routine operation of the system. Upon receipt of
your Pascal factory masters, create a set of working diskettes by using the
CD command (or utility) in the North Star DOS to copy the contents of each
factory master onto a new diskette. Be sure to copy the label information
for each factory master onto the label of the appropriate duplicate
diskette. Then, retire the write-protected factory masters to a safe place
where they may be kept until needed to generate more duplicates. Official
warranty policy for North Star Pascal requires return of your factory
masters before warranty replacement or update is possible, so RETAIN YOUR
FACTORY MASTERS IN THEIR ORIGINAL CONDITION!

2. I/O PERSONALIZATION OF THE P-MACHINE SIMULATOR

a. Getting Started

The standard Pascal system, as shipped, is pre-configured to operate
on a HORIZON computer system, using the standard serial port as CONSOLE:
device, the second serial port as PRINTER:, and the parallel port as
REMOUT:. (Note that the REMOTE: device described in the SYSTEM REFERENCE
MANUAL has been changed to two devices, REMOUT:, which is device #8, and
REMIN:, which is device #7. Only REMOUT: is available in North Star
Pascal, Version 1.)

If you have a HORIZON as described above, you may bootload the system
without any modifications being necessary. In this case, skip to the
CONSOLE TERMINAL CONFIGURATION section. However, if your computer does
not follow the HORIZON's input/output conventions, you will need to
"personalize" your system to use your particular I/O devices. PASCAL-DQ
must also be personalized to take full advantage of quad-capacity drives.
(It is normally configured to use only one side of each drive.)

As implied before, the North Star Pascal p-machine simulator has been
wri tten in

J

8080 machine code compatible vii th 8080, 8085 and Z80 machines.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 8

The first 1.5K of the simulator is devoted to device input/output code,
but the first 1K of that contains mostly routines which handle disk I/O.
The "User I/O Area" of the Pascal system begins at SYSORG+400H, where
SYSORG is the origin of the simulator, OOOOH for SYSTEM.NSTARO, and 2000H
for SYSTEM.NSTAR2. Thus, the User Area begins at 400H for SYSORG=OOOOH
and 2400H for SYSORG=2000H. Within this area, you have 467 bytes into
which you may write I/O drivers for your particular console, printer, etc.

You should boot the North Star DOS now, and insert the working copy
of the PASNS: diskette into drive #2 (Pascal device #5). Use the LI 2
command to get a listing of the diskette directory. You should see the
following:

(for PASCAL-S)

PASNS: 0 4 S 0
V1.R2.SD 0 o S 0
PASCAL 0 o S 1 E800
USERIO.2 xxx 2 S 1 2400
USERIO.O xxx 2 S 1 400

(for PASCAL-DQ)

PASNS: 0 4 D 0
V1.R2.DQ 0 o D 0
PASCAL 0 o D 1 E800
USERIO.2 xxx 2 D 1 2400
USERIO.O xxx 2 D 1 400

In place of "xxx" in the listing will be the actual North Star disk
addresses where the USERIO files happen to be on the factory master
diskette. The Pascal system itself does not create, maintain, or use the
North Star format diskette directory. North Star provides DOS format
directories on its Pascal system diskettes for your convenience only. The
presence of these directories alerts DOS users to the fact that diskettes
bearing them are Pascal diskettes and are not to be used under DOS (except
in the cases of disk initialization, duplication, or personalization, as
described below).

Another reason for including a DOS format directory on Pascal system
diskettes (especially the bootstrap diskette) is to facilitate
personalization of Pascal under DOS. Notice the two "files", USERIO.2 and
USERIO.O. The areas on the diskette named by these files correspond to
the User Areas for the simulators SYSTEM.NSTAR2 and SYSTEM. NSTARO,
respectively. For either simulator to run on your computer system, the
10vl-level I/O routines contained in its User Area must be appropriate for
your computer configuration. Note that changing one version of the
simulator so that it will run on your system will not change the other.
For both SYSTEM.NSTAR2 and SYSTEM.NSTARO to run on your system, you will
have to configure both USERIO files to reflect the I/O requirements of
your computer and peripheral devices.

PG 9 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

As shipped from the factory, the PASNS: bootstrap diskette is
configured to bootload SYSTEM.NSTAR2 and ignore SYSTEM.NSTARO. Thus, you
must make certain to modify the DOS "file" USERIO.2 before you can bring
the system up. If you intend to use the OOOOH-based SYSTEM.NSTARO, you
should also modify USERIO.O as well. To load a User Area into RAM using
North Star DOS, use one the following commands, depending on which Area
you wish to manipulate:

LF USERIO.2,2 xxxx

or

LF USERIO.0,2 xxxx

The above assumes that the bootstrap diskette is in the secondary drive
(Pascal device #5). The actual address in RAM memory where you wish the
code to be loaded should be substituted for the "xxxx" shown above. This
address must be in hexadecimal. For example, to load the User Area for
the 2000H-based simulator from disk into RAM starting at location 4400H,
type:

LF USERIO.2,2 4400

For sake of discussion, it will be assumed that the User Area has been
loaded into 4400H during all personalization steps described here.

Now, use the North Star MONITOR to modify the User Area so that it
contains routines appropriate to your computer's configuration. See
Appendix 1 for a detailed specification of the User Area. (To get a feel
for the type of things you will be doing, see Chapter G, "INSTALLING THE
INPUT/OUTPUT ROUTINES", of the GETTING STARTED section of the North Star
SYSTEM SOFTWARE MANUAL. This process is roughly analogous to, but NOT THE
SAME as what you must do to install I/O routines into Pascal.) Remember
that the I/O routines will actually begin in memory at the origin of the
simulator + 400H.

b. Installing the Input/Output Routines

Once you have modified the User Area which has been in RAM during
this discussion with the appropriate changes to the jump table and your
own I/O personalization routines, return to the DOS and execute either the
command:

SF USERIO.2,2 4400

or

SF USERIO.0,2 4400

depending upon which version of the simulator you are personalizing.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 10

If you have not had to personalize your working bootstrap diskette,
or if you have followed all instructions in section 2 correctly, your
diskette should be ready to bootstrap-load the Pascal system into your
computer.

Simply insert the bootstrap diskette into the primary drive and cause
your computer to begin execution at E800H. (Standard HORIZONs. will do
this automatically at reset or whenever they are turned on.) If you are
in the DOS, and the DOS format directory contains the "PASCAL" file as
listed above, you may instead type:

GO PASCAL

After a few seconds of disk activity, you should be greeted with the
following message:

Welcome PASNS:, to

U.C.S.D. Pascal System I.5

Current date is 1-Dec-79

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem •••

If you do not get this response, try re-booting (forcing your
computer to execute at E800H). If you did not personalize your diskette
prior to bootstrap-loading, either the diskette is defective, or you do
not have a standard HORIZON configuration and need to personalize the
system as described in section 2. If your diskette is defective, go back
to section 1, CREATING THE WORKING DISKETTES, and start everything over
again, using new diskettes for your working copies.

If you did personalize your diskette prior to bootstrap, your
personalization routines may be incorrect. Please double-check the
correctness of your IIO personalization routines, and, when you are
satisfied that they are correct, re-personalize the working bootstrap
diskette according to section 2.

3. CHOICE OF SIMULATORS

If your system has come up as described above, you are using the Pascal
p-code simulator which is resident starting at 2000H in memory
(SYSTEM.NSTAR2). Because many computer systems cannot contain the 48K RAM
required for program development unless memory starts at OOOOH, and also
because no system may run with the recommended 56K of RAM unless contiguous
memory begins at OOOOH, the simulator SYSTEM.NSTARO, with origin at OOOOH,
is included on the bootstrap diskette. If you are satisfied with the system
at 2000H, you may R(emove the SYSTEM.NSTARO file from your working bootstrap
diskette. However, if you would rather use the OOOOH-based simulator, you

PG 11 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

must first personalize its I/O routines if necessary (see section 2, above),
then use the F(iler to R(emove SYSTEM.NSTAR2 or C(hange its name to
something else, such as "P.SIMULATR.2000". Once you have done this, you may
re-boot the system, and the SYSTEM.NSTARO simulator will be used. (At boot
load time, the bootstrap routine scans the diskette's Pascal directory -
NOT the DOS format directory -- for the first SYSTEM.NSTARX file it can
find, then loads the contents of that file into the appropriate memory
location as indicated by the digit at the end of the file name.)

Note that, if you R(emove either simulator file, the DOS format
directory (which lists the locations of the User Areas for each file) will
NOT be changed to reflect the file's absence. If you use the Pascal system
to make changes in a diskette which also has a DOS file directory, and any
of those changes affects the accuracy of the information in the DOS format
directory, you may want to use the DOS to update or delete the information
in that directory.

4. CONSOLE TERMINAL CONFIGURATION

Your Pascal system was shipped configured for a terminal with no
cursor-control. If you have a cursor-controlled video screen, you may want
to reconfigure the system to take advantage of the special features of your
terminal. For example, features on your terminal may make it possible for
instant erasure of a line of input in response to striking the line-delete
key, or backspacing and erasure of the preceding character in response to
the character-delete key.

If your terminal is a SOROC IQ120, the reconfiguration process is
brief. When the system asks for a "Command" (as it does at bootstrap-load
time), strike the "F" key. After a second of disk activity, you should see
a command-prompt line which begins with the word "Filer" instead of
"Command." You are now in the File Maintenence portion of the Pascal
operating system. Strike the "C" key, and you will be asked for the name of
a file whose name is to be CHANGED. Type

SOROC.MISCINFO<CR>

where <CR> indicates striking the RETURN key. Then, you will be asked for
the new name for the file. Type

SYSTEM.MISCINFO<CR>

The system will reply

PASNS:SYSTEM.MISCINFO exists ••• remove it ?

and wait for you to strike a key. Strike "Y" (for "yes"). When the system
replies that the change has been made, you should re-boot the system. You
should see a difference in the greeting procedure. For one thing, the
screen will be cleared before the greeting is printed on it. This is a hint
to you that everything is operating smoothly, and that the system is now
using the cursor-control and other facilities of your SORCC terminal.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 12

The SYSTEM.MISCINFO file contains information which allows your Pascal
system to take advantage of whatever special screen-control facilities your
console terminal has. Initially, the SYSTEM.MISCINFO file tells the system
to assume that only a non-cursor-controlled device is available. By
changing the SOROC.MISCINFO file to SYSTEM.MISCINFO, you have changed the
system's expectations and abilities •. (HAZELTINE owners should note that the
process described applies to their terminal as well, execpt that the file
whose name is changed to SYSTEM.MISCINFO should be HAZ.MISCINFO instead of
SOROC.MISCINFO).

North Star could not include special MISCINFO files for every terminal
on the market. If you own a terminal other than a SOROC IQ120 or a
HAZELTINE (1400/1500 series), you must (in the Command mode) X(ecute the
program SETUP, which will assist you in creating a NEW.MISCINFO file suited
to the particular features of your cursor-controlled console terminal. See
section 4.3 of the PASCAL SYSTEM REFERENCE MANUAL for more details about
SETUP. Before you quit SETUP, be sure that you have "Updated the Disk" as
part of the QUIT procedure. When you return to Command mode at SETUP's
conclusion, change NEW.MISCINFO to SYSTEM.MISCINFO just as described above
for SOROC.MISCINFO and HAZ.MISCINFO.

One more thing may be necessary before cursor-controlled video
operation will work on your terminal. The SOROC IQ120 and the Lear Siegler
ADM-3A terminal use the same "escape sequences" for repositioning the screen
cursor to any specific point on the screen. In brief, an ESC code (ASCII
27) and the "equals" (=) character are sent to the terminal, followed
immediately by the Y (row) and X (column) co-ordinates expressed as ASCII
characters. ASCII character 32 (space) represents row or column 0, ASCII 33
(!) denotes row or column 1, etc. If your terminal follows the same
conventions, you need only re-boot the system after installing the new
SYSTEM.MISCINFO file to achieve full screen operation, since the system is
already configured to recognize and use this particular cursor-control
method.

If your terminal handles X,Y cursor positioning differently than the
above terminals, however, it will be necessary for you to prepare a Pascal
procedure such as "IQ120XY" in section 4.7 of the PASCAL SYSTEM REFERENCE
MANUAL. The procedure should accept two integer co-ordinates, X and Y
(column, row), and the result should be that the cursor is re-positioned at
the proper screen co-ordinates. C(ompile the procedure, and X(ecute the
program "BINDER" ("COMP:BINDER" for PASCAL-S) to bind the compiled procedure
into the Pascal Operating System. (For HAZELTINE owners, North Star has
already supplied a compiled version of the proper GOTOXY routine on the
PASNS: diskette. Simply X(ecute BINDER and name HAZ.GOTOXY.CODE as the file
containing GOTOXY.) *** IMPORTANT! *** You cannot use the screen editor to
prepare the GOTOXY text until you have screen control fully implemented on
your system, so you must X(ecute COMP:YALOE in order to prepare the text
file for compilation prior to binding. Do NOT use the E(dit command to
invoke the editor until you have completed step 5 below.

Note that BINDER requires at least 60 free disk blocks before it will
operate correctly. It invokes the L(inker program automatically to create a
new version of the operating system with your personalized XY procedure

PG 13 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE ~MNUAL, REV 3 (CONTINUED)

linked in. Neither the single-density nor the DQ version of PASNS: has
sufficient free disk space for the BINDER's operation, so it will be
necessary for you to T(ransfer some files from the PASNS: disk to another,
empty Pascal data diskette, then R(emove these files from your working
PASNS: diskette, leaving at least 60 free disk blocks before X(ecuting
BINDER. The SETUP. CODE, SYSTEM. LIBRARY, and unused simulator files may be
T(ransferred to an alternate diskette and R(emoved from the working PASNS:
diskette to make room for BINDER operation. DO NOT remove any SYSTEM file
(except the SYSTEM. LIBRARY and the unused simulator) from the PASNS:
diskette for this procedure.

When the appropriate files have been removed, consolidate the available
free disk blocks at the end of the diskette by using the K(runch command in
the F(iler. (See section 1.2.5.16 of the SYSTEM REFERENCE MANUAL.) BINDER
may now be executed. When BINDER is finished, re-boot the system, and
T(ransfer the files back to the PASNS: diskette.

Once your special version of GOTOXY has been bound into the system, you
should be able to re-boot the system and enjoy full cursor-controlled video

\ console operation. PASCAL-S users should note that both the SYSTEM. COMPILER
and the BINDER program are on the COMP: disk, so you will have to have the
COMP: disk in your second disk drive while compiling and binding your GOTOXY
procedure.

5. CHOICE OF EDITORS

Once you have set up screen-oriented operation on your system, or have
decided that you will not opt for screen-orientation (becuase your terminal
is a TTY, doesn't have cursor-control, etc.), you may choose which, of the
two editors available on the system, you will use as your SYSTEM. EDITOR. If
your system is screen-oriented, you need make no change in the existing
SYSTEM. EDITOR file -- it already contains the screen-editor. In this case,
you should R(emove YALOE.CODE from the working diskette (the working COMP:
diskette if you have PASCAL-S), in order to acquire more free storage space
on that diskette. If yo~ do not have a screen-oriented terminal, you CANNOT
use the screen editor, and must use YALOE instead. To do this, go into the
F(iler, C(hange YALOE.CODE to SYSTEM. EDITOR (both of these are on the COMP:
disk for PASCAL-S), Q(uit the Filer, and you're all set.

After choosing your SYSTEM. EDITOR, you may use the E(dit command to
invoke that editor.

For purposes of convenience in program development, single-density
users may wish to use the F(iler's T(ransfer command to put their chosen
SYSTEM. EDITOR on the bootstrap diskette, rather than keep it on the COMP:
diskette. With the bootstrap diskette in the primary drive and the COMP:
diskette in the secondary drive (Pascal device #5), go into the F(iler, use
the T(ransfer command to move COMP:SYSTEM.EDITOR to *SYSTEM.EDITOR, then
R(emove COMP:SYSTEM.EDITOR and Q(uit the Filer.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 14

III. NORTH STAR PASCAL IMPLEMENTATION NOTES

A. Pascal Disk Blocks

A Pascal "disk block" contains 512 bytes of information. This is
equivalent to two North Star standard disk blocks (256 bytes each). Thus, a
single-density diskette, holding 350 North Star disk blocks of information can
contain up to 175 Pascal-style blocks. Double-density diskettes, holding 700
North Star disk blocks of information, can contain up to 350 Pascal-blocks.
Quad-capacity diskettes can contain 1400 North Star disk blocks, and therefore
up to 700 Pascal-blocks. However, the first track on every diskette (track 0)
is "off limits" to the Pascal system, and is reserved for routines and
information (such as the DOS format directory and the bootstrap routine) which
are specific to the North Star implementation of Pascal. These blocks are not
accounted for in the Pascal diskette directory, but all others are (including
those which contain the Pascal directory itself!).

The blocks covered in the Pascal directory, and which are normally
available to the Pascal system for routine data storage and manipulation, are
called the RELATIVE BLOCKS. They begin with the first sector of the second
track (track 1/sector 0). There are 170 relative blocks on a single-density
North Star Pascal diskette, 340 on a double-density diskette, and 690 on a
quad-capacity diskette. When you use the F(iler's Z(ero command to "zero" the
directory of a Pascal diskette, make sure that the "number of blocks" is set
to 170, 340, or 690, depending on the capacity of your disk drives.

B. Program Development with Single Density

NOTE: While this section is primarily for the benefit of single-density users,
DQ users may find items 4 and 5 useful.

Program development with a single-density system is somewhat tricky. The
SYSTEM REFERENCE MANUAL describes program development procedures which rely
heavily on the "WORKFILE" features of the system. That is, unless told
otherwise, the system assumes that all program development will be done using
standard "workfiles" which may be manipulated conveniently with special built
in commands, etc. Unfortunately, the system requires that all workfiles exist
on the bootstrap diskette, which is inconvenient under single-density
operation on 5-1/4" floppies, since there is not much free storage space
available on either the bootstrap or COMP: diskettes.

The single-density user may use "workfile mode" successfully if the
programs developed under that mode are small, and are infrequently modified.
As programs become larger, and are maintained more often, you may find
yourself running out of diskette storage space for the workfile in the middle
of an editing session, meaning that it will be impossible for you to update
your workfile with any changes made during that session! To combat this space
limitation, you should use the following strategy:

1. Avoid using commands or features which establish or update a workfile.
Do not use the "U" option when quitting the editor. Instead, use the "W"
option to write the editor buffer back to the original file (which you will be
expected to name).

PG 15 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

2. If ever you do find yourself with an unwanted workfile, go into the
filer and use the N(ew command to eradicate the workfile. Note that, if there
is a workfile in your bootstrap diskette directory, the system will shift
automatically into "workfile mode." N(ew takes it out of that mode. This is
especially important when using the editor, compiler, or assembler, because
you do not get a choice of which files you wish to edit, compile or assemble
in workfile mode. The system assumes that you wish to deal with the workfile
only. When you are not in workfile mode, the editor asks which file you want
to edit, the compiler and assembler ask for the names of source and
destination (code) files, etc.

3. A test to see whether or not you are in.workfile mode is to go into
the F(iler, and invoke the W(hat command. Any response other than "No
Workfile" means that you are in workfile mode, and should invoke N(ew to get
out of that mode. (Since you probably entered the workfile mode by accident,
there is a good chance that important information is in the workfile. You
should use the S(ave command in the F(iler to save the contents of the
workfile into an appropriate TEXT or CODE file before using the N(ew command,
which will erase the workfile.)

4. Before writing a file to diskette from the editor, you must be sure
that there is enough free space on the diskette to hold the contents of that
file. If that free area is not available, you will not be able to write out
the contents of the editor's buffer, and run the risk of losing your changes
for that session. If you are editing large files, it is best to go into the
Feiler before editing, and use the L(ist or E(xtended-list commands to
determine, by looking at the directory, whether sufficient free diskette space
is available for a file creation or update. If you have reason to doubt that
sufficient space eXists, you should use the filer's B(ad blocks command to
search the diskette for any bad blocks. If there are any, you have a bad
diskette, and should take steps to transfer all the good blocks onto another,
good diskette. If there are no bad blocks, you can use the K(runch command in
the filer to reclaim unused diskette storage space (similar to the CO utility
in North Star's DOS). If, after K(runching the diskette you still have
insufficient space for the file, you will have to update your file onto
another diskette where enough free space is available. CAUTION: It is not
possible to leave the editor temporarily for the purpose of K(runching a
diskette. When you leave the editor, you lose the work for the session unless
you first write the editor's buffer to a text file on diskette. So, it is
important that you check the status of your diskette BEFORE editing.

5. Usually, during program development and execution, the bootstrap
diskette is in the primary drive (device #4), and the COMP: or AUX: diskette
is in the secondary drive (device #5). When compiling or assembling large
programs whose source and object won't fit together on either of those disks,
it may be necessary to put source on a separate diskette, and compile or
assemble the object to that diskette also. To do this, you must give the
A(ssem or C(omp command in the Command mode, and when the chosen program asks
for a source file name, you must remove the bootstrap diskette from device #4
and insert the source/destination program development diskette. To name the
files on that diskette, you must prefix each name with either "1/4:", as in
"1/4: PROG1", or with the name of the diskette volume, as in "DEVELOP: PROG1",
assuming the name of the diskette is "DEVELOP:". (You will probably want to

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 16

enter the F(iler and use the P(refix command to set the default diskette to
the name of your development volume before entering the editor, compiler, or
assembler. Then, you won't have to retype the volume name for every file on
that diskette.) When the compilation or assembly is complete, the operating
system will remind you to re-insert your bootstrap diskette before you can re
enter Command mode.

If you must remove the bootstrap diskette in order to facilitate an
assembly or compilation, be warned that, if a fatal error occurs during the
operation and the bootstrap diskette is not available for system re
initialization and recovery purposes, you will be stuck in an endless loop of
p-machine execution errors (typically errors 2 and/or 3 -- see TABLE 1, PASCAL
SYSTEM REFERENCE MANUAL). If this occurs, you will be forced to re-insert the
bootstrap diskette in device #4 and initiate re-booting by hand. In less
severe circumstances, the system will remind you to replace the bootstrap
diskette.

When using the E(ditor, NEVER remove the diskette which contains the
editor program itself. The diskettes containing the C(ompiler, L(inker, or
A(ssembler must also remain in their respective drives when any of them is in
use. Failure to observe this rule may result in p-machine execution errors,
and (especially in the case of the editor) loss of data before it can be
written to diskette.

At some pOint, it may be necessary for you to remove BOTH system
diskettes in order to transfer a file from one development diskette to another
development diskette, or to a fresh diskette. To do this, you must first be
in the F(iler. Once you are in the F(iler, it is OK to remove ALL diskettes
from the drives and replace them with new ones for the T(ransfer, if you wish.
The F(iler is self-contained, and doesn't care what diskettes are in the
drives. However, to leave the F(iler, it is necessary to re-insert the
bootstrap diskette, and the system will remind you to do so.

C. Terminals with Short Line Lengths

North Star does not recommend that terminals with line lengths shorter
than 80 columns be used for cursor-controlled operation under Pascal version
1, since the menu-prompting schemes for the Command mode and the F(iler are
rather heavily oriented to screens at least 80 characters wide. However, the
screen-editor will work properly with terminals whose line lengths are shorter
than 80 columns. In any case, Pascal may still be used in the line-oriented
code (with YALOE as the SYSTEM. EDITOR) with all terminals. Future releases of
North Star Pascal will support at least terminals with line length of 64
characters or greater.

D. Numeric Capabilities of North Star Pascal

In keeping-with all known implementations of UCSD Pascal, North Star
Pascal permits 7.1 digit precision in real (floating-point) number
computations, using a 32-bit binary floating-point internal representation.
The standard procedures WRITE and WRITELN will display up to 6 digits of real
number precision. Real numbers may range from ± 1.0E-38 to ± 9.99999E+38, and
the maximum dollar/cents amount which may be represented by a real number

PG 17 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

without rounding is ± $9999.99. A full range of intrinsic functions,
including exponentials and transcendentals, is provided to facilitate
arithmetic on real numbers. Note that any programs which do I/O of real
numbers must be linked to appropriate routines contained in the SYSTEM. LIBRARY
before they may be executed.

Integers are represented as 16-bit twos-complement binary quantities, and
may range in value from -32767 to +32767. By decrementing a variable
containing -32767 (or incrementing one which contains +32767), it is possible
to obtain the twos-complement value of -32768, and use it in comparisons for
equality or inequality, etc. However, -32768 is an "undefined" value in the
North Star Pascal range of integers, and therefore cannot be input or output
by the standard procedures READ, READLN, WRITE, or WRITELN. Furthermore, this
value cannot be assigned explicitly to a constant or variable (as in INTVAR :=
-32768) without causing a program error.

E. Unused Drives

Although North Star Pascal supports up to three single-density drives or
four double-density/quad-capacity drives, it is possible to operate the system
with only one or two drives. (As noted before, two single-density drives are
the practical mimimum requirement for program development.) As a consequence
of system architecture, there will be occasions when the system will "look"
for drives which may not be on-line (notably, at bootstrap load time, when the
system initializes its peripherals). When this happens, the drive motors will
be on, but no drive will appear to be selected. The "search" process for a
nonexistent drive takes about 10 seconds with a single-density controller and
1 second with the DQ controller for each drive which is not on-line. As an
example, if you have a dual-drive single-density system, note that the drives
appear to become dormant midway through the bootstrap initialization disk
activity. After a few seconds of motor activity but no disk selection, a
drive is finally selected, and the system proceeds to give you the greeting
mentioned earlier. The dormancy period is normal, and occurs because the
system is seeking the third drive, which is not available in your system.
Except for the delay caused by the "dormant" periods, normal system operations
remain unaffected.

F. Handling of DLE (Control-P) and CR (Control-M) Under Pascal

The Pascal system uses DLE as a lead-in character for an internal blank
compression/expansion code. Within textfiles, any consecutive blanks which
occur at the beginning of a line of text are compressed into a two-character
sequence. The first is DLE, and the second is the character whose ASCII value
is 32 more than the number of blanks being compressed. In general, when the
operating system makes the contents of a textfile available to a Pascal
program, or sends text to an interactive device (CONSOLE:, PRINTER:, REMOUT:),
the compression code is re-constituted to the appropriate number of
consecutive blanks. All two-character sequences which begin with DLE will be
translated into zero or more blanks before they are output by the Pascal
system to an interactive device. Moreover, any two character DLE sequence
which is input from an interactive device is automatically expanded into zero
or more blanks. Therefore, it is impossible to send or receive a DLE to or
from any interactive device.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 18

A similar problem is faced by those who wish to output the CR character
(CHR(13), carriage-return) to an interactive device, since Pascal views CR as
a "new-line" character, and expands it to a two-character sequence consisting
of CR followed by LF (CHR(10), linefeed), before passing it along to the
device.

The "character interception" behavior of the Pascal system is unfortunate
for those whose terminals use DLE as one of the cursor-control codes (such as
the Hazeltine 1400/1500 series). More importantly, such "interception" may
wreak havoc with the operation of the GOTOXY procedure for any terminal.
Certain steps may be taken to "fool" the Pascal system into accepting DLE and
CR codes as they are. The part of the Pascal system which does the automatic
DLE and CR processing sits "between" an applications program (user program,
system editor, filer, etc.) and the User Area routines. Characters are
passed from the sending routine, through the "intermediate" system, to the
receiving routine. Either a high-level program or a User I/O module may be
the sender or receiver. To "fool" the intermediate system into passing DLEs
and CRs untouched, it is only necessary that the sending routine turn the high
bit of the character on before sending it, and the receiving routine turn that
bit back off as soon as it receives it. Turning the high bit of a character
on increases its "ASCII value" by 128, and insures that Pascal will not
recognize it, nor meddle with it. To input or output a DLE, you should input
or output a CHR(16+128) instead. To output a CR character, send CHR(13+128).
(No special handling occurs on input of CR, so don't worry about that case.)

So that Hazeltine 1400/1500 series terminals (or similar terminals) may
be interfaced more simply to Pascal, North Star has written the CONSOLE: and
PRINTER: low-level input routines in the standard User I/O block to intercept
any incoming DLE codes and turn on their high bit before passing them along to
the rest of the system. In the HAZ.MISCINFO file, the "KEY TO MOVE CURSOR
RIGHT" code is specified as being decimal 144 (DLE with the high bit on), and
the "MOVE CURSOR RIGHT" code is also decimal 144. The HAZ.GOTOXY procedure is
able to recognize when it is sending a CR or DLE character, and always turns
the high bits of these characters on before sending them. (Refer to the
textfile contained on the PASNS: diskette.) Terminals receiving these codes
should be configured to ignore the high (parity) bit. Alternately, the User
Area output routines may be changed to mask off a character's high bit before
passing it on to an I/O device. (This modification has already been provided
for in the standard User Area. See SAMPLE INPUT/OUTPUT ROUTINES, elsewhere in
thi s ADDENDUM.)

G. Data Transfer Between Single-Density and DQ Diskettes

The PASCAL-S system cannot read or write double-density data; The PASCAL
DQ system cannot read or write single-density data. However, an entire volume
of Pascal data may be transferred from one diskette to another of the opposite
density using the CF utility in the North Star dual-density DOS (Version 6,
Release 5.0 or later).

Nominally, CF will handle only DOS-format files, using the DOS directory.
CF will not use the Pascal directory. Therefore, it is necessary for CF to
treat the entire Pascal data area on a diskette as if it were a DOS file. To
use CF in transferring Pascal information between diskettes of opposite

PG 19 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

densities, you must use DOS to CReate an entry in the DOS directory of each
Pascal diskette which corresponds to the entire Pascal data area on that
diskette. "CReating" a DOS-style file on a Pascal diskette does not alter any
information on that diskette (except in the DOS-directory area itself, of
course). It· is done only to give the CF utility a "pointer" to the Pascal
data region on the diskette. Once the DOS file entries exist, it is a simple
matter to invoke CF and transfer information from one diskette to another,
switching densities along the way.

The Pascal data region of a single-density diskette is only half as large
as that of a double-density diskette, and less than one-quarter as large as
that of a quad-capacity one. This means that it will be possible to transfer
a single-density Pascal volume in its entirety to a double-density or quad
capacity diskette. However, all the information on a double-density or quad
capacity Pascal volume will not fit on a single-density diskette. It is
possible, though, to prepare a DQ Pascal volume which can contain only as much
information as a single-density one. The half-capacity double-density volume
may then be transferred to a single-density data diskette using the method
mentioned above. To prepare a half-capacity double-density volume, first use
the DOS to initialize an unused diskette to double-density. Then, boot-up
Pascal and use the F(iler's Z(ero command, to initialize the Pascal directory
of the diskette. When Pascal asks for the number of blocks, enter 170, the
number of blocks on a single-density diskette, instead of the usual 340 for a
double-density diskette (or 690 for quad-capacity).

As a result of the above procedure, you will have a double-density Pascal
volume whose entire contents may be transferred to a single-density diskette.
To transfer from double-density to single-density, first use the Pascal
F(iler's T(ransfer command to copy files you choose from regular-capacity
double-density Pascal volumes to the special half-capacity volume. Because
the Pascal system is aware of the decreased storage capacity of the special
volume, it will not permit you to put more information on that volume than a
single-density diskette can hold. When all the files you wish to transfer to
single-density have been copied onto the half-capacity diskette, boot-up the
double-density DOS, make sure that both the half-capacity double-density
diskette and the destination single-density diskette have appropriate DOS
files on them which refer to their respective Pascal data areas, and then use
the CF utility to transfer the volume from double-density to single-density.

Note that after an entire volume transfer using CF, the resulting single
density or double-density diskette (depending on which direction the transfer
went) will be an exact duplicate of the original volume which was transferred.
In particular, the volume names will be the same. Also, if a single-density
volume is transferred to double-density, the resulting double-density volume
will be a half-capacity VOlume, and the diskette storage area after the 170th
Pascal block will be inaccessible using the usual Pascal disk accessing
methods.

Following are examples of transfers between single-density and double
density volumes. The first transfers single-density to double-density, and
the second transfers double-density files to a single-density volume using an
intermediate, half-capacity double-density Pascal volume. Both procedures
assume that the disks involved in the transfer either have good information of

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 20

the appropriate density on them, or have been initialized using the DOS IN
command to the appropriate density before the transfer process begins. Also,
both procedures require at least two disk drives to be on-line. If you have
only a single-drive system, transfer of Pascal information between diskettes
of different densities is quite difficult, and is not recommended.

SINGLE-DENSITY TO DOUBLE-DENSITY

* Choose a single-density Pascal diskette and a double-density diskette
in good condition.

* Boot up double-density DOS (Release 5.0 or later). Type the following
command:

LF CF 2DOO

This readies the CF utility for later use.

* Put the single-density Pascal diskette in drive #1 and the double
density diskette in drive #2.

* Type the following commands:

CR SDVOLUME 340 10 S
{Create DOS single-density dummy file on drive #1}

CR DDVOLUME,2 340 10 D
{Create DOS double-density dummy file on drive #2}

Note that either diskette may have been used for transfers like this
before. Therefore, prior to using the CR command, you might check the
directory of each diskette to see whether or not the SDVOLUME and
DDVOLUME files already exist. (They must each be 340 North Star blocks
in length, starting at disk address 10 on their respective diskettes.)
If they do exist, avoid re-creating them.

* Now, the CF utility may be used. Type the following:

JP 2DOO SDVOLUME DDVOLUl1E, 2
{Enter the CF utility}

The CF utility will ask if you wish to write in Single. or Double
Density. Strike "D" for double. When the CF command finishes, the
diskette in drive #2 will be a half-capacity double-density Pascal
volume (170 Pascal storage blocks available, instead of 340). The
information contained on it will be identical to that contained on the
original single-density volume. Double-density Pascal may now be
booted-up, and will be able to read files from the newly copied
diskette.

PG 21 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

DOUBLE-DENSITY TO SINGLE-DENSITY

* First, prepare the half-capacity diskette. (If you already have one of
these, skip to the next step.) Insert an initialized double-density
diskette in device #5 (North Star drive #2), and enter the F(iler
command level. Use the Z(ero command to initialize the Pascal
directory of the diskette in the secondary drive (Pascal device #5) so
that it contains only 170 free blocks of information. (When the system
asks "# of blocks?" enter 170.)

* Still in the Pascal F(iler, use the T(ransfer command to copy the
Pascal files you choose onto the half-capacity diskette.

* Leave Pascal by booting-up the double density DOS. Type the following
command:

LF CF 2DOO

This readies the CF command for later steps.

* Put the half-capacity double-density diskette in North Star drive #1
and a single-density diskette in North Star drive #2. Check to see
whether or not the required DDVOLU~m and SDVOLUME files exist on the
two diskettes. If not, create them:

CR DDVOLUME 340 10 D
{Create DOS double-density dummy file on drive #1}

CR SDVOLUME,2 340 10 S
{Create DOS single-density dummy file on drive #2}

* Type the following command:

JP 2DOO DDVOLUME SDVOLUI1E,2
{Enter CF utility}

The CF command will ask if you wish to write in Single or Double
Density. Strike US" for single-density. When the utility is finished,
the diskette in drive #2 will be a single-density Pascal volume with
the same name as, and containing all the files and information on the
double-densi ty half-capacity diskette in drive 111. This newly
generated diskette may now be read by single-density North Star Pascal
systems.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 22

IV. THE AUX DISKETTE

The Auxiliary diskette, AUX:, is designed for use by advanced programmers.
It includes two assemblers, for BOBO and ZBO operation, with which you may
create machine-language routines which may be linked into your compiled Pascal
programs. A series of utility programs round out the package. All AUX:
diskettes contain the following files:

ZBO.Ass~mLER

This is the z80 (Zilog Mnemonics) version of the U.C.S.D. Adaptable
Assembler described in section 1.9 of the PASCAL SYSTEM REFERENCE MANUAL.

zaO.OPCODES
ZaO.ERRORS

These are data files for the ZaO.ASSMBLER -- the assembler WILL NOT OPERATE
without them.

aOBO.OPCODES
aOaO.ERRORS

These are data files for the SYSTEM.ASSMBLER listed below.

MARKDUPDIR.CODE

MARKDUPDIR marks a Pascal data diskette so that a duplicate directory will
be maintained automatically on it by the Pascal Operating System. (Note that
the System Filer's Z(ero command, which initializes a diskette directory, gives
you the option of specifying single or duplicate directories. MARKDUPDIR need
only be used when it is desired to maintain duplicate directories on a diskette
which previously contained only one directory.) See section 4.a of the SYSTEM
REFERENCE ~~NUAL for more information.

COPYDUPDIR.CODE

In the event that the main directory on a diskette is crashed, it may be
regenerated from the duplicate directory (if there is one) by use of COPYDUPDIR.
See section 4.B of the SYSTEM REFERENCE MANUAL for further details.

RELOC.CODE

This program relocates a machine-language CODE file produced by the system
assembler to any desired base address, and produces a pure-code, relocated
object file as output. The user must be careful to specify the EXACT, COMPLETE
file name for CODE and OBJECT files (including prefix if the file is not on the
default diskette, and any suffixes such as • CODE, .OBJ, etc.) or the program
will fail.

SYSTEM. ASSEMBLER

This is the aOBo (Intel Mnemonic) version of the UCSD Adaptable Assembler.
Note that this version of the Assembler gives you the option of generating

\

PG 23 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

either a non-relocatable code file (with absolute addressing) or a relocatable
code file (with relative addressing information usable by LINKER and RELOC).

PATCH. CODE

This utility program facilitates patching of data on diskette, and is
described in section 4.5 of the PASCAL SYSTEM REFERENCE MANUAL.

LIBRARIAN. CODE

This program is described in section 4.2 of the SYSTEM REFERENCE MANUAL.
It permits the user to insert often-used routines and UNITs into the
SYSTEM. LIBRARY, or create new libraries as required. Note that the SYSTEM
REFERENCE t~NUAL calls this program LIBRARY. CODE, however, its North Star Pascal
name is LIBRARIAN. CODE.

The PASCAL-DQ AUX: diskette also contains one program which could not be
included on the PASCAL-S AUX: diskette, due to space limitations:

LIBMAP.CODE

This provides the user with an extended listing of the contents of a code
library, according to the scheme described in section 4.10 of the SYSTEM
REFERENCE MANUAL.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 24

APPENDIX 1: USER AREA SPECIFICATION AND DESCRIPTION

The User Area is the part of the Pascal p-machine simulator which contains
the routines which actually interface the system with the various physical 1/0
devices available under a given hardware configuration. A User Area which
interfaces the system to the North Star HORIZON computer has been included on
the standard PASNS: diskette. You may need to patch or replace these routines
to reflect the particular requirements of your computer hardware (see 1/0
PERSONALIZATION OF THE P-MACHINE SIMULATOR, elsewhere in this ADDENDUM). This
Appendix is a complete specification of the User Area, and is intended to aid
you in modifying the User Area to suit your own special needs.

You may place custom 1/0 routines at any arbitrary locations in the User
Area, as long as the USER AREA JUMP TABLE reflects the locations you choose. The
jump table is a 45-byte portion at the very beginning of the User Area. The
467-bytes reserved for user 1/0 routines follow the jump table in memory, and
together, they occupy a 512-byte block in RAM, which corresponds to two
contiguous North Star disk blocks (256 bytes per North Star block).

The jump table contains 13 sequential 8080 JMP instructions, each one
corresponding to a different routine in the User Area. The first byte in each
3-byte JMP instruction is usually a C3H, corresponding to an 8080 JMP. The next
two bytes give the location of the routine itself, and it is this pair of bytes
which must be changed to conform to the location you choose for a given routine.
Note that a correct jump table must be present at the beginning of ANY User
Area, or low-level 1/0 functions will fail and the system will crash.

Below is a description of the jump table, along with specifications you
must follow when writing the corresponding 1/0 routines. Note that all routines
are responsible for returning to any code which calls them. For all but one of
the routines, this should be done by executing one of the RET family of
instructions. The case of NSMSIZ is unique, and is described in detail.

SYSORG+400H: JMP CONONL

This routine is called frequently to determine whether or not the CONSOLE:
device is on-line or off-line. If the CONSOLE: is available, CONONL must return
a OOH in the accumulator, otherwise 09H should be returned. No registers except
the accumulator may be modified. (In this and all routines described here, the
condition flags need NOT be saved or restored.) Two other routines, PTRONL and
REMONL, perform on-line status reporting for the PRINTER: and REMOUT: devices,
respectively, and mU$t adhere to the same specifications as CONONL.

SYSORG+403H: JMP CONINP

CONINP waits until a character is available from the CONSOLE: device, then
returns it in the accumulator. No registers except the accumulator may be
modified.

PG 25 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

SYSORG+406H: JMP CONOUT

CONOUT waits until a character may be sent to the CONSOLE:, then puts out
the contents of the C register. A value of OOH must be returned in the
accumulator to denote a successful I/O operation. No registers except the C
register and accumulator may be modified.

SYSORG+409H: JMP CONST

This routine checks input status of the CONSOLE: device. If a character is
ready, the value FFH (TRUE) must be returned in the accumulator. If no
character is ready, OOH (FALSE) should be returned in the accumulator. No
registers except the accumulator may be modified.

SYSORG+40CH: JHP PTRONL

Reporting of on-line status for device #6 (PRINTER:) is done here. See
CONONL (SYSORG+400H) for specifications.

SYSORG+40FH: JMP PTRINP

PTRINP waits for an input character to be available from the PRINTER:, and
then returns the character in the C register. (This is useful for implementing
buffered-printer protocol schemes, etc.) The value OOH must be returned in the
accumulator (indicating a successful I/O operation). No registers other than C
and the accumulator may be modified.

SYSORG+412H: JMP PTROUT

A single character, the contents of the C register, is sent to the PRINTER:
device. The value OOH must be returned in the accumulator to denote a
successful I/O operation. No registers other than C and the accumulator may be
modified.

SYSORG+415H: JHP REMONL
SYSORG+418H: JMP REMINP
SYSORG+41BH: JHP REMOUT

These are, respectively, on-line status reporting for, character input
from, and character output to the REMOUT: device (Pascal system device #8). The
specifica~ions are the same as PTRONL, PTRINP, and PTROUT, respectively, except
that a different device is accessed by these routines.

NOTE: The JMP instructions
table by RET instructions,
line) in the accumulator.
unless PTRONL reports that
REMONL, REMINP, REMOUT.

for PTRINP, and PTROUT may be replaced in the jump
provided that PTRONL always returns 09H (device off
PTRINP and PTROUT will not be called by the system
the device is on-line. The same thing holds for

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 26

SYSORG+41EH: JMP NSMSIZ

This routine returns a 16-bit value on the stack which corresponds to the
highest contiguous WORD (16-bit) location in Pascal system RAM. The routine
which is supplied with the standard Pascal system as shipped from the factory
searches the computer's memory space to find this upper limit, and considers
that limit be reached when it ecounters no memory, ROM, or write-protected RAM.
Note that if memory-mapped I/O devices (such as video disp~ay boards, etc.) are
contiguous with system RAM, the standard "memory sizing" r:outine will consider
them as part of available RAM! If this is the case in your! system, you will have
to install an alternate memory sizing routine, such as on~ which returns a
constant value as the upper limit. '

Remember that the value returned must point to an EVEN address (word
boundary). For example, if system RAM extends to BFFFH, the value returned by
NSMSIZ should be BFFEH. All registers may be used by this routine. The
technique used for RETurning with the stack pointer pointing at the appropriate
value is to load the value in the HL register pair, do an XTHL (exchange the
value at the top of the stack -- assumed to be the RETurn address -- with the
value in HL), then execute a PCHL instruction, which is a JMP to the location
represented by the value in HL. If you do not use this technique, your memory
s~z~ng routine may crash the Pascal system. (See SAMPLE INPUT/OUTPUT ROUTINES
for an example of this technique in use.)

SYSORG+421H: JMP NSCLOK

The real-time clock option of the Pascal system is not yet available. For
now, this routine should RETurn, with the "not-on-line" value of 09H in the
accumulator. No other registers may be modified.

SYSORG+424H: JMP MACINT

This routine is called by the Pascal system at bootstrap-load time just
before the memory sizing routine is called, and provides for one-time machine
and I/O device initialization each time the Pascal system is re-booted. For
example, the HORIZON motherboard is initialized, memory-parity is enabled, and
the two serial I/O ports are reset in the MACINT provided in the user area of
both p-machine simulators on the factory master diskette~ All registers may be
used.

SYSORG+427H: DV4CHR
SYSORG+428H: DV5CHR
SYSORG+429H: DV9CHR
SYSORG+42AH: DV10CHR

These bytes are used only by the PASCAL-DQ system, but are present, though
ignored, in the PASCAL-S system. Each byte corresponds to one of the four
possible disk drives which may be connected to a DQ system (Pascal device
numbers 4, 5, 9, and 10), and contains information about the characteristics of
that drive. Six of the eight bits in each characteristics byte are significant.
The high bit (bit 7) should be set (1) if the drive is to access double-density
information, reset (0) if the drive is to access single-density information.
Bit 6 should be set if the corresponding drive is quad-capacity (double-sided),

PG27 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

and reset if not. Bits 5 and 4 should remain reset -- they are reserved for
future use. The lower nybble of a characteristics byte (bits 0-3) contains the
number of Pascal blocks which-will fit in a disk track at the specified density.
For drives operating in single-density, this nybble should contain 05H, since
there are five Pascal blocks per single-density disk track. The lower nybble
for a drive operating in double-density or quad-capacity mode should contain
OAB, corresponding to the 10 Pascal blocks per DQ track. All four bytes in the
PASCAL..;S system are 05H, because single-density drives are single-sided (all
bits off in the upper nybble), and acqommodate 5 Pascal blocks per track (5H in
the lower nybble). In PASCAL-DQ; the characteristics bytes are all BAH,
indicating that the standard DQ system expects only single-sided drives,
operating in double-density, at 10 blocks per track. For double-sided drives,
the corresponding characteristics bytes should be changed to CAH. (In North
Star Pascal Version 1, it is not possible for any drive in a· DQ system to access
single-density information, no matter how the characteristics bytes are set, nor
can PASCAL-S access double-density information. The "density" bit in each
characteristics byte has been included for use by future versions of North Star
Pascal.)

SYSORG+42BH and
SYSORG+42CH: RESERVED FOR FUTURE EXPANSION

0000
0000
0000
0000
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400'
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 28

APPENDIX 2: SAMPLE INPUT/OUTPUT ROUTINES

The following is an assembler listing of the HORIZON User Area routines
supplied on the standard PASCAL-DQ release bootstrap diskette. (The routines
used by PASCAL-S are almost exactly identical, except for the drive
characteristics bytes.) You may use these routines as models in writing your
own personalization routines.

OOFF
0000
0080
0010

007F

0400
0600

0003

0002
0002
0001

0005

0004
0002
0001

0006

0000
0002
0001

0080
0020

*********** User Area Routines for N* Horizon ***********
(Last modified 29-Nov-79)

.ORG 1024.

Define Constants

TRUE • EQU
FALSE .EQU
HIGHBIT .EQU
DLE • EQU

ASCII .EQU

NSJTST • EQU
STRTSR .EQU

CSTAT • EQU

CDATA • EQU
CRDYINP .EQU
CRDYOUT .EQU

PSTAT • EQU

PDATA • EQU
PRDYINP .EQU
PRDYOUT • EQU

RSTAT .EQU

RDATA .EQU
RRDYINP .F.QU
RRDYOUT .EQU

RSTROBE .EQU
RPOFLG .EQU

OFFH
00
80H
10H

7FH

$
NSJTST+512.

3

2
2
1

5

4
2
1

6

o
2
1

BOH
20H

; User area = NSBIOS + 1K.

MSB in byte.
Control-P, ASCII DLE, which

is system lead-in for
blanks-compression code.
Pascal system routinely
"eats" this character.
Special measures have to be
taken to input it. (See
CONINP, below.)

ANI mask to strip parity bit.

Start of N* jump table.
Memory-sizing search will

start here.

Console status port.
(Console=HORIZON L serial.)
Console data port.
Mask for console char ready.
Mask for console ready to

accept char.

Printer status port.
(Printer=HORIZON R serial.)
Printer data port.
Mask for printer char ready.
Mask for printer ready to

accept char.

Remote status port.
(Remote=HORIZON par. port.)
Remote data port.
Mask for remote char ready.
Mask for remote ready to

accept char.
Position of strobe bit.
Position of PO bit.

PG 29 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

04001
0400 I 0009 NOTRDY .EQU 9 Device off-line code.
04001 00E8 DCTRLB .EQU OE8H High byte of disk controller
0400 address.
0400 0080 DDENS .EQU 80H Denotes double-density mode
0400 for drive characteristics.

0400 0000 SDENS .EQU OOH Denotes single-density mode.
0400 0040 QUADC .EQU 40H Denotes quad (double-sided)
0400 drive capacity.
0400 0000 ONES IDE .EQU OOH One-sided drive capacity.
0400 I OOOA DBLKTRK .EQU 10. Pascal blocks per track, DQ.
0400 0005 SBLKTRK • EQU 5 • Pascal blocks per track, SD.
0400
0400 008A CHARACS • EQU DDENS+ONESIDE+DBLKTRK;
0400 All 4 drive characteristics
0400 bytes will denote DD mode,
0400 one-sided operation @ 10
0400 blocks/track.
0400 SDENS+ONESIDE+SBLKTRK is
0400 standard CHARACS for single
0400 density.
0400
0400 0006 MBOARD • EQU 06H Motherboard status port.
0400 OOCO RAMPORT .EQU OCOH N* RAM communication port.
0400 0040 PARITYD .EQU 40H Code to disable RAN parity.
0400 0041 PARITYE .EQU 41H Code to enable RAM parity.
0400
0400 ; Jump Table
0400
0400 C3 **** CONONL JMP ONLINE
0403 C3 **** JMP CONINP
0406 C3 **** Jl1P CON OUT
0409 C3 **** JMP CONST
040C
040C C3 **** PTRONL JMP ONLINE
040F C3 **** Jt-1P PTRINP
0412 C3 **** JMP PTROUT
0415
0415 C3 **** REHONL JHP ONLINE
0418 C3 **** JMP REMINP
041B C3 **** JMP REMOUT
041E
041E C3 **** JMP NSHSIZ
0421
0421 C3 **** JMP OFFLIN NSC~OK is off-line.
0424
0424 C3 **** JHP HACINT Machine initialization.
0427
0427 8A DV4CHR • BYTE CHARACS
0428 8A DV5CHR • BYTE CHARACS
0429 8A DV9CHR • BYTE CHARACS
042A 8A DV10CHR • BYTE CHARACS
042B
042B 00 00 EXPANSN • BLOCK 2,0 Reserved for future use.
042D

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 30

04201
04201
0404* 2D04
0420 DB 03
042F E6 02
0431 CA 2D04
0434 DB 02
0436 E6 7F
0438 FE 10
043A CO
043B F6 80
043D
0430
0430
0430
0430
043D
0430
043D
043D C9
043E
0407* 3E04
043E OB 03
0440 E6 01
0442 CA 3E04
0445 79
0446 E6 FF
0448
04481
04481
04481 D3 02
044AI AF
044BI C9
044CI
040A* 4C04
044CI DB 03
044EI E6 02
04501 CA ****
04531 3E FF
04551 C9
0451* 5604
04561 3E 00
04581 C9
q4591

Console drivers

CONINP IN
ANI
JZ
IN
ANI
CPI
RNZ
ORI

RET

CONOUT IN
ANI
JZ
HOV
ANI

OUT
XRA
RET

CaNST IN
ANI
JZ
HVI
RET

$01 HVI
RET

CSTAT
CROYINP
CONINP
CDATA
ASCII
DLE

HIGHBIT

CSTAT
CRDYOUT
CON OUT
A,C
OFFH

CDATA
A

CSTAT
CRDYINP
$01
A, TRUE

A, FALSE

Check status.

Loop on no character.

Return character in acc.
Is character control-p?

Turning on the high bit
"fools" Pascal system
into not "eating" char.

It is now impossible for
a program to input DLE
CHR(16) from console.
All DLE's are intercepted
here first, and translated
to CHR(144) {16+128}.

Check status.

Loop on not ready.

Now, a no-oPe Change FFH to
7FH (value of ASCII, above)
to strip parity bit before
output.

Output character in reg C.
Good I/O result.

Check status.

Input is ready.

No character avail.

PG 31 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

04591
04591
0410* 5904
0459 DB 05
045B E6 02
045D CA 5904
0460 DB 01
0462 FE 10
04·64 C2 ****
0467 F6 80
0465* 6904
04691 4F
046AI AF
046BI C9
046CI
0413* 6C04
046C DB 05
046E E6 01
0470 CA 6C04
0473 79
0474 E6 FF
0476
0476
0476 D3 04
0478 AF
0479 C9
047A
047A
047A
0419* 7A04
047A 047A
047A AF
047B 4F
047C
047C C9
047D
041C* 7D04
047D 047D
047D DB 06
047F E6 01
0481 CA 7D04
0484 3E 20
0486 D3 06
0488 79
0489 F6 80
048B D3 00
048D EE 80
048F D3 00
0491 EE 80
0493 D3 00
0495 AF
0496, C9
04971

; Printer driver

PTRINP IN
ANI
JZ
IN
CPI
JNZ
ORI

$01 HOV
XRA
RET

PTROUT IN
ANI
JZ
MOV
ANI

OUT
XRA
RET

Remote driver

REHINP .EQU
XRA
MOV

RET

REHOUT .EQU
IN
ANI
JZ
MVI
OUT

REHOUT1 HOV
ORI
OUT
XRI
OUT
XRI
OUT
XRA
RET

PSTAT
PRDYINP
PTRINP
PRDYOUT
DLE
$01
HIGHBIT

C,A
A

PSTAT
PRDYOUT
PTROUT
A,C
OFFH

PDATA
A

$
A
C,A

$
RSTAT
RRDYOUT
REMOUT
A, RPOFLG
RSTAT
A,C
RSTROBE
RDATA
RSTROBE
RDATA
RSTROBE
RDATA
A

Character input.

Same intent to translate
DLE as in CONINP,
above.

Return character in C.
Good I/O result.

Character output.

No-op for now. Change FFH
to 7FH to mask off parity
bit before output.

Good I/O result.

Character input.
Good I/O result.
No parallel input, so

simply return nUll.

Character output.
The usual status check.

Reset PO flag.

Output char in C.
Strobe := false.
Send character.
Toggle strobe.

Toggle strobe.

Good I/O result.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 32

04971
04971
04971
04971
04971
0416* 9704
040D* 9704
0401* 9704
0497 AF
0498 C9
0499
0499
0499
0499
0499
0499
0422* 9904
0499 3E 09
049B C9
049C
049C
049C
049C
049C
049C
049C
049C
049CI
049CI
041F*
049CI
049Fl
04A1
04A2
04A3
04A4
04A5
04A6
04A9
04AA

9C04
21 0006
2E FF
7E
47
2F
77
BE
C2 ****
70
24

04AB C2 A104
04AE
04A7* AE04
04AE 25
04AF 2D
04BO E3
04B1
0~B1 E9
04B2
0425* B204
04B21 04B2
04B2 F5
04B3 E5
04B4 AF
04B5 D3 06
04B7 3E 40
04B9 D3 CO
04BB, 21 OOEC
04BEI
04BEI

Vector to this routine if a given device is
available. ALL I/O drivers (input, output,
initialization and status) should use this
when a device is on-line;

ONLINE XRA A
RET

Vector to this routine if a given device isn't
available. ALL I/O drivers (input, output,
initialization and status) should use this
when a device is off-line;

OFFLIN HVI
:"";: RET

A, NOTRDY

Dynamic Memory Sizing
Note sequence for returning to calling routine:

XTHL
PCHL

It's crucial that a return is done in this way,
else system will probably crash. When this
return sequence is executed, HL must be hold
ing pointer to last WORD of contiguous memory
available.

NSMSIZ LXI
MVI

$01 HOV
MOV
CMA
MOV
CMP
JNZ
NOV
INR
JNZ

ENDSRCH DCR
DCR
XTHL

PCHL

HACI~rT • EQU
PUSH
PUSH
XRA
OUT
HVI
OUT
LXI

H, STRTSR
L,OFFH
A,M
B,A

H,A
M
ENDSRCH
H,B
H
$01

H
L

$
PSW
H
A
MBOARD
A,PARITYD

Start s~z~ng
on 256 boundary-1;

Get current contents of
test loc and save it.

Complement A.
Stuff it back in.
Is it the same?

No: then found end.
Yes: Put byte back.

Move on to deader pastures.
stop when we wrap around.

Go back to last memory bank.
Point to last memory WORD.
Put onto stack,

get return address,
and return.

Initialize HORIZON machine.

Does the motherboard.
Parity disabled on RAM.

RAMPORT
H,DCTRLB*100H+1024.

Disc controller
+ 1K.

board addr

PG 33 - ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED)

04BE
04BE
04BE
04BF
04CO
04C1
04C4
04C5
04C6
04C8
04CB
04CB
04CD
04CFI
04CF'
04CF
04CF
04D1
04D3
04D5
04D7
04D9
04DB
04DC
04DD
04DF
04DF
04E1
04E3
04E5
04E7
04E9
04EB
04ED
04EF
04F1
04F1
04F1
04F3
04F5
04F7
04FA
04FA E1
04FB F1
04FC C9
04FD
04FD

04BE
7E
77
2C
C2 BE04
24
7C
FE E8
C2 BE04

3E 41
D3 CO

3E 03
D3 03
D3 05
3E 40
D3 03
D3 05
E3
E3
3E CE

D3 03
3E CE
D3 05
3E 27
D3 03
3E 27
D3 05
DB 02
DB 04

3E 60
D3 06
3E OD
CD 8804

RAMINT .EQU
MOV
MOV
INR
JNZ
INR
110V
CPI
JNZ

MVI
OUT

$
A,M
M,A
L
RAt-lINT
H
A,H
DCTRLB
RAMINT

A,PARITYE
RAMPORT

Initialize HORIZON RAM.
Rewrite RAM byte -- proper

parity will be set.
Ready for next byte.
If same page, no problem.
Page := page + 1.
Have we wrapped around to

disk-controller yet?
If not, back for more.

Enable RAM parity logic,
and we're done.

; Now, initialize serial ports/Usarts

MVI
OUT
OUT
HVI
OUT
OUT
XTHL
XTHL
NVI

OUT
MVI
OUT
MVI
OUT
MVI
OUT
IN
IN

; Now,
MVI
OUT
HVI
CALL

POP
POP
RET

• END

A,3
CSTAT
PSTAT
A,40H
CSTAT
PSTAT

A,OCEH

CSTAT
A,OCEH
PSTAT
A,27H
CSTAT
A,27H
PSTAT
CDATA
PDATA

Code to reset Usarts,
to L. serial port,
and R. serial port.

Another Usart code,
to Left,
and Right.

Let parameters sink in -
waste a little time.

2 stop bits, 16*clock,
8 data bits, no parity.

Same for R sere port.

CMD: RTS,ER,RXF,DTR,TXEN.

Same for R sere port.

Reset L. rda.
Reset R. rda.

initialize the parallel port (REMOUT:)
A, 60H Code to set PO flag.
RSTAT
A,ODH
REMOUT1

H
PSvJ

Send a carriage return.

ADDENDUM (REV A) TO PASCAL SYSTEM REFERENCE MANUAL, REV 3 (CONTINUED) - PG 34

APPENDIX 3: A BRIEF PASCAL BIBLIOGRAPHY

The Pascal programming language itself has not been covered in either the
NORTH STAR PASCAL SYSTEM REFERENCE MANUAL, or this ADDENDUM; the assumption has
been that anyone who reads these documents with an eye toward learning the
mechanics of the North Star Pascal Program Development System is already well
grounded in Pascal. For those who need first to learn Pascal programming,
several excellent references are available.

Algaic, Suad, and Arbib, Michael A., THE DESIGN OF WELL-STRUCTURED AND
CORRECT PROGRAMS, Springer-Verlag: 1978.

Bowles, Kenneth L., BEGINNER'S MANUAL FOR THE UCSD PASCAL SYSTEM,
BYTE/McGraw-Hill: 1980.

Bowles, Kenneth L., MICROCOMPUTER PROBLEM SOLVING USING PASCAL, Springer
Verlag, 1978.

Gabrielson, Mike, "Pascal Bibliography", DR. DOBB'S JOURNAL, Vol 4:2 (32),
Feb 1979, pp. 29-30.

Grogono, Peter, PROGRAMMING IN PASCAL, Addison-Wesley: 1978.

Jensen, Kathleen, and Wirth, Niklaus, PASCAL USER MANUAL AND REPORT (second
edition), Springer-Verlag: 1975.

Mickel, Andy and Jim Miner (eds.), PASCAL NEWS, International Pascal Users'
Group, University Computer Center, 227 Experimental Engineering Bldg.,
University of Minnesota, 208 S.E. Union Street, Minneapolis MN 55455 USA.

Schneider, G.M., Weingart, S., and Perlman, D., AN INTRODUCTION TO
PROGRAMMING AND PROBLEM SOLVING WITH PASCAL, Wiley: 1973.

Wilson, I.R., and Addyman, A.M., A PRACTICAL INTRODUCTION TO PASCAL,
Springer-Verlag: 1979.

Wirth, Niklaus, ALGORITHMS + DATA STRUCTURES = PROGRAMS, Prentice-Hall:
1976.

Wirth, Niklaus, SYSTEMATIC PROGRAMMING -- AN INTRODUCTION, Prentice-Hall:
1973.

