
VOL 2 OF 2

MICROCOMPUTER PRODUCTS

MICROPROCESSORS, PERIPHERALS, & DSP PRODUCTS

1987 MICROCOMPUTER DATA BOOK

MICROPROCESSORS, PERIPHERALS, AND DSP PRODUCTS VOL 2 OF 2

August 1986 NECEL-000658 Stock No. 500105 ©1986 NEC Electronics Inc./Printed in U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.

GENERAL INFORMATION
QUALITY AND RELIABILITY
CMOS MICROPROCESSORS
NMOS MICROPROCESSORS
DIGITAL SIGNAL PROCESSING AND SPEECH
INTELLIGENT PERIPHERAL CONTROLLERS
CMOS SYSTEM SUPPORT PRODUCTS
NMOS SYSTEM SUPPORT PRODUCTS
DEVELOPMENT TOOLS
PACKAGING INFORMATION

Section 1 — Ge	eneral Information	Page
Highlights of Ne CMOS Micropro NMOS and HMO Digital Signal Pr Intelligent Peripl Magnetic Med Communicatic Graphics Cont CMOS System S µPD7720 Hardw µPD7720 Hardw µPD7720 Softwa µPD7720 Softwa µPD70108/116/20 MD-086 Series N MD-910TM Char PG1000 PROM F Ordering Proces	w Products Coming cessor Selection Guide DS Microprocessor Selection Guide cocessor and Speech Selection Guide cheral Controller Selection Guide controllers con Controllers c	1-4 1-5 1-6 1-6 1-7 1-7 1-8 1-8 1-9 1-10 1-11 1-11 1-12 1-12 1-12 1-12 1-12
Section 2 — Qu	uality and Reliability	
Technology Des Reliability Testin Failure Rate Cale Reliability Test F NEC's Goals on Infant Mortality I Life Tests Built-in Quality a Approaches to T	cription g culation and Prediction Results Failure Rates Failure Screening and Reliability Total Quality Control onclusion	2-3 2-3 2-6 2-7 2-7 2-8 2-8 2-10 2-10
Section 3 — Ch	MOS Microprocessors	
μPD70008/A μPD70108 μPD70116 μPD70208 μPD70216 μPD70616 μPD72191	8-Bit Microprocessors 8/16-Bit High-Performance Microprocessor (V20™) 16-Bit High-Performance Microprocessor (V30™) 8/16-Bit High-Integration Microprocessor (V40™) 16-Bit High-Integration Microprocessor (V50™) 32-Bit Virtual Memory Microprocessor (V60™) Floating Point Processor	
ection 4 — NI	MOS Microprocessors	
μPD780 μPD8085A/AH μPD8086 μPD8088 V20 through V60 are tra	High-Performance CP/M® - Compatible 8-Bit Microprocessor 8-Bit, Single-Chip Microprocessors 16-Bit Microprocessor High-Performance 8-Bit Microprocessor demarks of NEC Corporation. demarks of Digital Research Inc.	4-27 4-47

Section 5 — Di	gital Signal Processing and Speech
μPD7281 μPD9305 μPD7720A/ 77P20	Image Pipelined Processor5-3Memory Access and General Bus Interface for the μ PD72815-45Digital Signal Processors5-7
μΡD77C20 μΡD77C20 μΡD77230 μΡD7730 μΡD7755/56 μΡD7759	Digital Signal Processor5-96Advanced Signal Processor5-10ADPCM Speech Encoder/Decoder5-11ADPCM Speech Synthesizers5-12ADPCM Speech Synthesizer5-13
Section 6 — Int	telligent Peripheral Controllers
Magnetic Media μPD765A/7265 μPD72065/66 μPB9201 μPD71065/66 μPD7260 μPD7261A/B μPD9306/A μPD7262	Controllers Single/Double Density Floppy Disk Controllers 6-2 Single/Double Density Floppy Disk Controllers 6-2 Floppy Disk Interface 6-5 Floppy-Disk Interface 6-6 Hard and Floppy Disk Controller 6-8 Hard-Disk Controllers 6-8 CMOS Hard-Disk Interface 6-12 Enhanced Small Device Interface Controller 6-126
Communications μ PD7201A μ PD72001 μ PD72105 μ PD7210	Multiprotocol Serial Communications Controller 6-13° CMOS Multiprotocol Serial Communications Controller 6-149 OMNINET Local Area Network Controller 6-15° Intelligent GPIB Controller 6-15°
Graphics Contro	
μPD7220A	High-Performance Graphics Display Controller
Section 7 — CM	MOS System Support Products
μPD71011 μPD71051 μPD71054 μPD71055 μPD71059 μPD71071 μPD71082/83 μPD71084 μPD71086/87 μPD71088 μPD71088 μPD82C43	Clock Pulse Generator/Driver7-5Serial Control Unit7-1Programmable Timer/Counter7-3Parallel Interface Unit7-4Interrupt Control Unit7-6DMA Controller7-98-Bit Latches7-12Clock Pulse Generator/Driver7-138-Bit Bus Buffer/Drivers7-13System Bus Controller7-14CMOS Input/Output Expander for μ PD8048/C48 Family7-14
Section 8 — NR	MOS System Support Products
μPD8155/56 μPB8216/26 μPD8237A μPD8243/H μPD8251A/AF μPD8253 μPD8255A	2048-Bit Static MOS RAM with I/O Ports and Timer 8-4-Bit Parallel Bidirectional Bus Drivers 8-1 High-Performance Programmable DMA Controller 8-1 Input/Output Expander for μPD8048 Family 8-3 Programmable Communications Interface (USART) 8-3 Programmable Interval Timer 8-5 Programmable Peripheral Interface 8-6 Programmable DMA Controller 8-7

Section 8 — N	MOS System Support Products (cont)
μPD8259A	Programmable Interrupt Controller 8-9
μPD8279	Programmable Keyboard/Display Interface
μPB8282/83	8-Bit Latches
μPB8284A	Clock Generator and Driver for 8086/8088 Microprocessors
μPB8286/87	8-Bit Bus Transceivers
μPB8288	CPU System Bus Controller
μPB8289	Bus Arbiter
	evelopment Tools
•	vare Development Tools 9-3
	B 9-4
	Hardware Development Tools 9-
	16 9-1
	are Development Tools 9-
	9-1
	are Development Tools 9-
	9-1
	9-(
	108/216 Software Relocatable Assembler Development Tools
	9-1
	208/216 Software C Compiler Development Tools
	9-1:
	unication Program
	Microcomputer Development System
	by and Hard Disk Drive System
	racter Display Terminal Development Tool
PG 1000 PROW	Programmer 9-23
Section 10 —	Packaging Information
	e Cross Reference
	IP (300 mil)
	IP (300 mil)
	300 mil)
	VIP (300 mil)
	300 mil)
	O (Small Outline)
	PIP (600 mil)
	kinny DIP (400 mil)
	PIP (600 mil)
	DIP (600 mil)
	600 mil)
	O (Small Outline) (375 mil)
	lastic Leaded Chip Carrier)
A Company of the Comp	hrink DIP (400 mil)
	PIP (600 mil)
	DIP (600 mil)
	600 mil)
	liniflat
	Plastic Leaded Chip Carrier)
	PIP (600 mil)
40-FIII Ceraillic	DIP (600 mil)

Section	10 -	Packaging Information	(cont)
36 0fion	10 -	rackaying illivillativi	, (COIIL)

52-Pin Plastic Miniflat	10-15
52-Pin PLCC (Plastic Leaded Chip Carrier)	10-16
68-Pin Plastic Leaded Chip Carrier (PLCC)	10-17
68-Pin Ceramic PGA	10-17
80-Pin Plastic Miniflat	10-18
132-Pin Ceramic PGA	10-18

Numerical Index

Device	Page
	6-3
μPD780	4-3
μΡD7210 μΡD7220A μΡD7260 μΡD7261A μΡD7261B μΡD7262 μΡD7265	6-131 6-153 6-165 6-85 6-87 6-87 6-129 6-3 5-3
μΡD77C20 μΡD77P20 μΡD7730 μΡD7755 μΡD7756 μPD7759	5-77 5-99 5-77 5-117 5-127 5-127 5-133
μPD8085AH μPD8086	
μPD8155H μPD8156	
μPB8226 μPD8237A μPD8243 μPD8243H μPD82C43 μPD8251A	8-11 8-15 8-33 8-33 7-149 8-39
иPD8253 иPD8255A иPD8257 иPD8259A иPD8279	8-57 8-69 8-79 8-91 8-109
иРВ8282	8-117

Device	Page
uPB8283	8-117
uPB8284A	8-121
uPB8286	8-127
uPB8287	8-127
uPB8288	
uPB8289	8-139
uPB9201	. 6-55
uPD9305	. 5-45
uPD9306	6-121
иPD9306A	6-121
αPD70008	3-3
μPD70008A	
uPD70108	
uPD70116	
uPD70208	. 3-95
uPD70216	
uPD70616	3-229
uPD71011	7-3
uPD71051	. 7-11
uPD71054	. 7-31
uPD71055	. 7-47
uPD71059	
uPD71065	
uPD71066	
uPD71071	
uPD71082	
uPD71083	
uPD71084	
uPD71086	
uPD71087	
uPD71088	
uPD72001	
иPD72065	
uPD72066	
uPD72105	
uPD72191	
DD77000	E 101

GENERAL INFORMATION

GENERAL INFORMATION

Section 1 — General Information	Page
Introduction	1-3
Highlights of New Products Coming	1-4
CMOS Microprocessor Selection Guide	1-5
NMOS and HMOS Microprocessor Selection Guide	1-6
Digital Signal Processor and Speech Selection Guide	
Intelligent Peripheral Controller Selection Guide	1-7
Magnetic Media Controllers	
Communication Controllers	1-8
Graphics Controllers	
CMOS System Support Product Selection Guide	
NMOS System Support Product Selection Guide	1-10
μPD7720 Hardware Development Tool Selection Guide	1-11
μPD70208/216 Hardware Development Tool Selection Guide	1-11
μPD7281 Software Development Tool Selection Guide	1-11
μPD7720 Software Development Tool Selection Guide	1-12
μPD70108/116/208/216 Software Relocatable Assembler	
Development Tool Selection Guide	1-12
μPD70108/116/208/216 Software C Compiler	
Development Tool Selection Guide	1-12
Series Microcomputer Development System Selection Guide	e 1-12
MD-910TM Character Display Terminal Development Tool Se	election Guide 1-12
PG1000 PROM Programmer Selection Guide	1-12
Ordering Procedure for ROM-Based Microcomputer Produc	ts 1-13
ROM Code Submission (Form No. NEC-0000071)	1-14

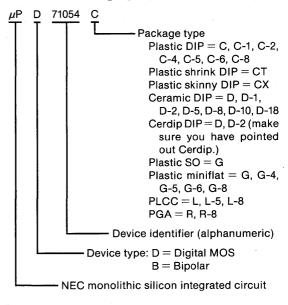
Introduction

The NEC microcomputer data book is issued in two volumes.

- Volume 1: Single-Chip Products
- Volume 2: Microprocessors, Peripherals, and DSP Products

NEC offers a wide variety of microprocessors and Digital Signal Processing (DSP) products for you to choose from. Volume 2 covers microprocessor, peripheral, DSP, and speech products. These products are offered in a variety of processes (NMOS and CMOS) and in a variety of package types. This extraordinary selection of products provides the systems designer with a wide assortment of design alternatives with products that truly fit your data processing, communications, instrumentation, industrial, and telecommunications needs.

Volume 2 is divided into the following sections.


- 1. General Information. This section includes ordering information, product selection guides, and ROM Code submission procedures.
- 2. Quality and Reliability. The NEC concepts of designed-in quality and total quality control as a company-wide activity are discussed here.
- **3. CMOS Microprocessors.** This section covers NEC's 8-bit, 16-bit and 32-bit lines of CMOS microprocessors. Included is NEC's proprietary V-Series of advanced CMOS microprocessors and co-processors.
- **4. NMOS Microprocessors.** This section covers NEC's 8-bit, 16-bit lines of NMOS microprocessors.
- 5. Digital Signal Processors and Speech. This section covers NEC's line of low cost 16-bit NMOS and CMOS Signal Processing Peripherals, advanced Non-Von-Neuman Image Processor, advanced 32-bit CMOS Signal Processor, and various speech products.
- 6. Intelligent Peripheral Controllers. This section covers NEC's line of Magnetic Media, Communication and Graphic Controllers. Included are floppy disk, hard disk, disk support chips, serial controllers, LAN controller, and GPIB controller.
- 7. CMOS System Support Products. This section covers NEC's line of CMOS System Support Products. These products are CMOS versions of most of the NMOS System Support Products. They have been specially designed for low cost, low power system needs.
- 3. NMOS System Support Products. This section covers NEC's line of 8085/8088/8086 NMOS and Bipolar system support chips.

- **9. Development Tools.** A comprehensive line of development hardware and software products support NEC's single-chip microcomputer families.
- **10. Packaging.** This section provides dimensioned package drawings and a cross-reference from package type to device numbers.

Ordering Information

Part numbers for ordering microcomputer products are listed on the first page of each data sheet. NEC's part numbers consist of four elements as shown in the example that follows.

Part Numbering System

Highlights of New Products Coming μPD70616 [V60] 32-Bit CMOS Microprocessor

The μPD70616 (V60) is a high-performance, 32-bit CMOS microprocessor. The V60 includes advanced features such as thirty-two 32-bit general-purpose registers and a powerful instruction set optimized for high-level languages and operating systems such as UNIX™ and MS-DOS™. The on-chip, demand-paged memory management and floating point units further increase performance and design flexibility.

The V60 has 24-bit address lines and a 16-bit data path. It will address 16 megabytes in real physical memory and 4 gigabytes in virtual memory. The device will be run on 16-MHz speed clock and offered in a 68-pin pin grid array (PGA) package. The part and data sheet will be available after June 1986.

μPD70611 Clock Generator/Driver

The µPD70611 is a CMOS clock generator for the V60. From 32-MHz crystal oscillator, in generates and supplies 16-MHz clock to the V60, as well as various synchronized signals. It will be offered in a 20-pin plastic DIP package and be available after June 1986.

μPD71613 System Controller

The µPD71613 is a CMOS system controller for the V60. It employs output signals for the V60, e.g. status signals, providing simple interface with external devices e.g. memory, I/O etc.

μPD7261BD-23 High Speed Hard Disk Controller

The μ PD7261BD-23 is a speed enhanced version of the μ PD7261BD-18. It is designed to work in SMD systems that have a data rate above 20-MHz.

Device	Description	Data Bits	Clock (MHz)	Supply Voltage (V)	Power Dissipation			
					Active (mA)	Standby (mA)	Package	Pins
μPD70008C	Microprocessor (CMOS Z80)	8	4	+5	30	.5	Plastic DIP	40
μPD70008AC-4	Microprocessor (CMOS Z80)	8	4	+5	30	.4	Plastic DIP	40
μPD70008AC-6	Microprocessor (CMOS Z80)	8	6	+5	30	.4	Plastic DIP	40
μPD70008AG-4	Microprocessor (CMOS Z80)	8	4	+5	30	.4	Plastic Miniflat	44
μPD70008AG-6	Microprocessor (CMOS Z80)	8	6	+5	30	.4	Plastic Miniflat	44
μPD70008AL-6	Microprocessor (CMOS Z80)	8	6	+5	30	.4	PLCC	44
μPD70108C-5	Microprocessor	8/16	5	+5	45	6	Plastic DIP	40
μPD70108C-8	Microprocessor	8/16	8	+5	45	6	Plastic DIP	40
μPD70108D-5	Microprocessor	8/16	5	+5	45	6	Ceramic DIP	40
μPD70108D-8	Microprocessor	8/16	8	+5	45	6	Ceramic DIP	40
μPD70108D-10	Microprocessor	8/16	10	+5	45	6	Ceramic DIP	40
μPD70108G-5	Microprocessor	8/16	5	+5	45	6	Plastic Miniflat	52
μPD70108G-8	Microprocessor	8/16	8	+5	45	6	Plastic Miniflat	52
μPD70108L-5	Microprocessor	8/16	5	+5	45	6	PLCC	44
μPD70108L-8	Microprocessor	8/16	. 8	+5	45	6	PLCC	44
μPD70116C-5	Microprocessor	16	5	+5	45	6	Plastic DIP	40
μPD70116C-8	Microprocessor	16	8	+5	45	6	Plastic DIP	40
μPD70116D-5	Microprocessor	16	5	+5	45	6	Ceramic DIP	40
μPD70116D-8	Microprocessor	16	8	+5	45	6	Ceramic DIP	40
μPD70116D-10	Microprocessor	16	10	+5	45	6	Ceramic DIP	40
μPD70116G-5	Microprocessor	16	5	+5	45	6	Plastic Miniflat	52
μPD70116G-8	Microprocessor	16	8	+5	45	6	Plastic Miniflat	52
μPD70116L-5	Microprocessor	16	5	+5	45	6	PLCC	44
μPD70116L-8	Microprocessor	16	8	+5	45	6	PLCC	44
μPD70208R-8	Microprocessor	8/16	8	+5	50	10	PGA	68
μPD70208L-8	Microprocessor	8/16	8	+5	50	10	PLCC (Note 1)	- 68
uPD70208G-8	Microprocessor	8/16	8	+5	50	10	Plastic Miniflat (Note 1)	80
иPD70216R-8	Microprocessor	16/16	8	+5	50	10	PGA	68
PD70216L-8	Microprocessor	16/16	8	+5	50	1.0	PLCC (Note 1)	68
лРD70216G-8	Microprocessor	16/16	8	+5	50	10	Plastic Miniflat (Note 1)	80
₄PD70616R	Microprocessor	16/32	16	+5	(Note 2)	(Note 2)	PGA (Note 2)	68
ιPD72191D	Floating Point Processor	16/32/ 64/80	8	+5	(Note 2)	(Note 2)	Ceramic DIP	40

Note:

[.] Available fourth quarter 1986.

^{2.} Not available introduction date.

GENERAL INFORMATION

NMOS and HMOS Microprocessor Selection Guide

				Supply	Power Dissipation			
Device	Description	Data Bits	Clock (MHz)	Voltage (V)	Active (mA)	Standby (mA)	Package	Pins
μPD780C	NMOS Microprocessor	8	2.5	+5	150	_	Plastic DIP	40
μPD780C-1	NMOS Microprocessor	8	4	+5	200		Plastic DIP	40
μPD780C-2	NMOS Microprocessor	8	6	+5	200	_	Plastic DIP	40
μPD8085AC-2	NMOS Microprocessor	8	5	+5	170		Plastic DIP	40
μPD8085AHC	HMOS Microprocessor	8	3	+5	135		Plastic DIP	40
μPD8085AHC-2	HMOS Microprocessor	8	5	+5	135	_	Plastic DIP	40
μPD8086D	HMOS Microprocessor	16	5	+5	340	_	Ceramic DIP	40
μPD8086D	HMOS Microprocessor	.16	5	+5	340		Cerdip	40
μPD8086D-2	HMOS Microprocessor	16	8	+5	350		Cerdip	40
μPD8088D	HMOS Microprocessor	8	5	+5	340	_	Ceramic DIP	40
μPD8088D-2	HMOS Microprocessor	8	. 8	+5	350		Ceramic DIP	40

Digital Signal Processor and Speech Selection Guide

				Supply	Power Dissipation			
Device	Description	Data Bits	Clock (MHz)	Voltage (V)	Active (mA)	Standby (mA)	Package	Pins
μPD7281D	NMOS Image Pipelined Processor	16	5	+5	500	-	Ceramic DIP	40
μPD9305R	CMOS IPP Support Chip	8/16	10	+5	100	_	PGA	132
μPD7720AC	NMOS Digital Signal Processor	16	8	+5	170	<u>-</u> ·	Plastic DIP	28
μPD7720AD	NMOS Digital Signal Processor	16	8	+5	170	– ,	Ceramic DIP	28
μPD77C20D	CMOS Digital Signal Processor	16	8	+5	40	· –	Ceramic DIP	28
μPD77C20L	CMOS Digital Signal Processor	16	8	+5	40	-	PLCC	44
μPD77P20D	NMOS Digital Signal Processor	16	8	+5	350	_	Cerdip	28
μPD77230R	CMOS Advanced Signal Processor	32	13.3	+5	340		PGA	68
μPD7730C	NMOS ADPCM Speech Encoder/Decoder	8	8	+5	210	-	Plastic DIP	28
μPD7755C	CMOS ADPCM Speech Synthesizer	-	.7	2.7 to 5.5	0.6	_	Plastic DIP	18
μPD7756C	CMOS ADPCM Speech Synthesizer	<u></u>	.7	2.7 to 5.5	0.6	-	Plastic DIP	18
μPD7759C	CMOS ADPCM Speech Synthesizer	8	.7	2.7 to 5.5	0.6	_	Plastic DIP	40

GENERAL INFORMATION

				Supply Voltage (V)	Power Di	ssipation	Package	Pins
Device	Description	Data Bits	Clock (MHz)		Active (mA)	Standby (mA)		
Magnetic Me	dia Controllers							
μPD765AC	NMOS Single/ Double Density FDC	8	8	+5	150	_	Plastic DIP	40
μPD765AC-2	NMOS Single/ Double Density FDC	8	8	+5	150	_	Plastic DIP	40
<i>μ</i> PD7265C	NMOS Single/ Double Density FDC	8	8	+5	150	_	Plastic DIP	40
μPD7265C-2	NMOS Single/ Double Density FDC	8	8	+5	150	· -	Plastic DIP	40
μPD72065C	CMOS Single/ Double Density FDC	8	8	+5	10	.5	Plastic DIP	40
μPD72065G	CMOS Single/ Double Density FDC	8	8	+5	10	.5	Plastic Miniflat	52
μPD72065L	CMOS Single/ Double Density FDC	8	8	+5	10	.5	PLCC	44
μPD72066C	CMOS Single/ Double Density FDC	8	8	+5	10	.5	Plastic DIP	40
μPD72066G	CMOS Single/ Double Density FDC	8	8	+5	10	.5	Plastic Miniflat	52
uPD72066L	CMOS Single/ Double Density FDC	8	8	+5	10	.5	PLCC	44
μPB9201C	Bipolar Floppy Disk Interface		16	+5	270	_	Plastic DIP	40
μPD71065G	CMOS Analog Phase-Locked Loop	. ——	19.2	+5	25		Plastic S0	28
μPD71066CT	CMOS Analog Phase-Locked Loop		19.2	+5	25	-	Plastic Shrink DIP	30
uPD7260D	NMOS Hard/Floppy Disk Controller	8	12	+5	320	_	Ceramic DIP	40
uPD7261AD	NMOS Hard Disk Controller	8	12	+5	320	_	Ceramic DIP	40
иPD7261BD-18	NMOS Hard Disk Controller	8	18	+5	320	-	Ceramic DIP	40
₄PD9306AC	CMOS Hard Disk Interface		10	+5	30		Plastic DIP	28
₽D7262D	NMOS ESDI Controller	8	18	+5	320	_	Ceramic DIP	40

Intelligent Peripheral Controller Selection Guide (cont)

				Supply	Power Dissipation		* .	
Device	Description	Data Bits	Clock (MHz)	Voltage (V)	Active (mA)	Standby (mA)	Package	Pins
Communicat	ions Controllers							
μPD7201AC	NMOS MPS Communications Controller	8	4	+5	230		Plastic DIP	40
μPD7201AD	NMOS MPS Communications Controller	8	4	+5	230	- ;	Ceramic DIP	40
μPD72001C	CMOS MPS Communications Controller	8	8	+5	40	2	Plastic DIP	40
μPD72001L	CMOS MPS Communications Controller	8	8	+5	40	2	PLCC	44
μPD72105C	CMOS Omninet Local Network Controller	8	8	+5	40	2	Plastic DIP	48
μPD72105L	CMOS Omninet Local Network Controller	- 8	8	+5	40	2	PLCC	52
μPD7210C	NMOS Intelligent	8	8	+5	180		Plastic DIP	40
Graphics Co.	ntrollers							
μPD7220AD	NMOS Graphics Display Controller	8	6	+5	270	<u></u>	Ceramic DIP	40
μPD7220AD-1	NMOS Graphics Display Controller	8	7	+5	270	- %	Ceramic DIP	40
μPD7220AD-2	NMOS Graphics Display Controller	8	8	+5	270		Ceramic DIP	40

CMOS System Support Product Selection Guide

				Supply	Power Dissipation			
Device	Description	Data Bits	Clock (MHz)	Voltage (V)	Active (mA)	Standby (mA)	Package	Pins
μPD71011C	Clock Pulse Generator/Driver	-	20	4.5 to 5.5	30		Plastic DIP	18
μPD71011G	Clock Pulse Generator/Driver	_	20	4.5 to 5.5	30	_	Plastic S0	20
μPD71051C	Serial Control Unit	8	8	4.5 to 5.5	10	.05	Plastic DIP	28
μPD71051G	Serial Control Unit	8	8	4.5 to 5.5	10	.05	Plastic Miniflat	44
μPD71051L	Serial Control Unit	8	8	4.5 to 5.5	10	.05	PLCC	28
μPD71054C	Programmable Timer/Counter	8	8	4.5 to 5.5	30	.05	Plastic DIP	24
μPD71054G	Programmable Timer/Counter	8	8	4.5 to 5.5	30	.05	Plastic Miniflat	44
μPD71054L	Programmable Timer/Counter	8	8	4.5 to 5.5	30	.05	PLCC	28
μPD71055C	Parallel Interface Unit	8	. 8	4.5 to 5.5	15	.05	Plastic DIP	40
μPD71055G	Parallel Interface Unit	8	8	4.5 to 5.5	15	.05	Plastic Miniflat	44
μPD71055L	Parallel Interface Unit	8	8	4.5 to 5.5	15	.05	PLCC	44
μPD71059C	Interrupt Control Unit	8	8	4.5 to 5.5	9	.05	Plastic DIP	28
μPD71059G	Interrupt Control Unit	8	8	4.5 to 5.5	9	.05	Plastic Miniflat	44
μPD71059L	Interrupt Control Unit	8	8	4.5 to 5.5	9	.05	PLCC	28
μPD71071C	DMA Controller	8/16	8	4.5 to 5.5	30	.01	Plastic DIP	48
μPD71071D	DMA Controller	8/16	8	4.5 to 5.5	30	.01	Ceramic DIP	48
μPD71071G	DMA Controller	8/16	8	4.5 to 5.5	30	.01	Plastic Miniflat	52
μPD71071L	DMA Controller	8/16	8	4.5 to 5.5	30	.01	PLCC	52
μPD71082C	Transparent Latch	8	8	4.5 to 5.5	20	.08	Plastic DIP	20
μPD71082G	Transparent Latch	8	8	4.5 to 5.5	20	.08	Plastic S0	20
uPD71083C	Transparent Latch	8	8	4.5 to 5.5	20	.08	Plastic DIP Inverted	20
uPD71083G	Transparent Latch	8	8	4.5 to 5.5	20	.08	Plastic S0	20
иPD71084C	Clock Pulse Generator/Driver		25	4.5 to 5.5	30		Plastic DIP	18
₄PD71084G	Clock Pulse Generator/Driver		25	4.5 to 5.5	30 -		Plastic S0	20
₄PD71086C	Bus Buffer/Driver	8	8	4.5 to 5.5	40	.08	Plastic DIP	20
₁PD71086G	Bus Buffer/Driver	8	. 8	4.5 to 5.5	40	.08	Plastic S0	20
ιPD71087C	Bus Buffer/Driver	8	8	4.5 to 5.5	40	.08	Plastic DIP Inverted	20
rPD71087G	Bus Buffer/Driver	8	8	4.5 to 5.5	40	.08	Plastic S0	20
PD71088C	System Bus Controller		8	4.5 to 5.5	20	.08	Plastic DIP	20
PD71088G	System Bus Controller		8	4.5 to 5.5	20	.08	Plastic S0	20
PD82C43C	Input/Output Expander		5	4.5 to 5.5	40	-	Plastic DIP	24
PD82C43CX	Input/Output Expander	-	5	4.5 to 5.5	40		Plastic Skinny DIP	24

	ort Product	

	Description			Supply Voltage (V)	Power Dissipation			
Device		Data Bits	Clock (MHz)		Active (mA)	Standby (mA)	Package	Pins
μPD8155C	256 x 8 RAM with 1/0 Ports and Timer	8	3	4.5 to 5.5	180	_	Plastic DIP	40
μPD8155C-2	256 x 8 RAM with 1/0 Ports and Timer	8	5	4.5 to 5.5	180	-	Plastic DIP	40
μPD8155HC	256 x 8 RAM with 1/0 Ports and Timer	8	3	4.5 to 5.5	180	-	Plastic DIP	40
μPD8155HC-2	256 x 8 RAM with 1/0 Ports and Timer	8	5	4.5 to 5.5	180	-	Plastic DIP	40
μPD8156C	256 x 8 RAM with I/O Ports and Timer	8	3	4.5 to 5.5	180	-	Plastic DIP	40
μPD8156C-2	256 x 8 RAM with 1/0 Ports and Timer	8	5	4.5 to 5.5	180	-	Plastic DIP	40
μPD8156HC	256 x 8 RAM with 1/0 Ports and Timer	8	3	4.5 to 5.5	180		Plastic DIP	40
μPD8156HC-2	256 x 8 RAM with I/O Ports and Timer	8	5	4.5 to 5.5	180	_	Plastic DIP	40
μPD8216C	Parallel Bidirectional Bus Driver	4	-	4.5 to 5.5	130	-	Plastic DIP	16
μPB8216C	Parallel Bidirectional Bus Driver	4	-	4.5 to 5.5	130		Plastic DIP	16
μPB8226C	Parallel Bidirectional Bus Driver	4	_	4.5 to 5.5	120	_	Plastic DIP	16
μPD8237AC-5	Programmable DMA Controller	8	5	4.5 to 5.5	150	_	Plastic DIP	40
μPD8243C	Input/Output Expander		5	4.5 to 5.5	20	_	Plastic DIP	24
μPD8243HC	HMOS Input/Output Expander	_	5	4.5 to 5.5	20		Plastic DIP	24
μPD8251AC	Programmable Communication Interface	8	3/5	4.5 to 5.5	100	-	Plastic DIP	28
μPD8251AFC	Programmable Communication Interface	8	3/5	4.5 to 5.5	100		Plastic DIP	28
μPD8253C-2	Programmable Internal Timer	8	5	4.5 to 5.5	140	_	Plastic DIP	24
μPD8253C-5	Programmable Internal Timer	8	4	4.5 to 5.5	140	_	Plastic DIP	24
μPD8255AC-2	Programmable Peripheral Interface	8	5	4.5 to 5.5	120	-	Plastic DIP	40
μPD8255AC-5	Programmable Peripheral Interface	8	4	4.5 to 5.5	120		Plastic DIP	40
μPD8257C-2	Programmable DMA Controller	8	5	4.5 to 5.5	100		Plastic DIP	40
uPD8257C-5	Programmable DMA Controller	8	3	4.5 to 5.5	120	-	Plastic DIP	40
μPD8259AC	Programmable Interrupt Controller	8	4	4.5 to 5.5	85		Plastic DIP	28

NMOS System Support Product Selection Guide (cont)

			Supply	Power Dissipation				
Device	Description	Data Bits	Clock (MHz)	Voltage (V)	Active (mA)	Standby (mA)	Package	Pins
μPD8259AC-2	Programmable Interrupt Controller	8	5	4.5 to 5.5	85		Plastic DIP	28
μPD8279C-2	Programmable Keyboard/Display Interface		5	4.5 to 5.5	120		Plastic DIP	40
μPD8279C-5	Programmable Keyboard/Display Interface	-	3	4.5 to 5.5	120	- .	Plastic DIP	40
μPB8282C	Octal Latch	8	8	4.5 to 5.5	160	_	Plastic DIP	20
μPB8283C	Octal Latch	8	8	4.5 to 5.5	160	_	Plastic DIP	20
μPB8284AD	Clock Generator/ Driver	_	24	4.5 to 5.5	140	_	Cerdip	18
μPB8286C	Octal Bus Transceiver	8	8	4.5 to 5.5	160		Plastic DIP	20
μPB8287C	Octal Bus Transceiver	8	8	4.5 to 5.5	130		Plastic DIP	20
μPB8288D	CPU System Bus Controller		10	4.5 to 5.5	230		Cerdip	20
μPB8289D	Bus Arbiter		8	4.5 to 5.5	165		Cerdip	20

μ PD7720 Hardware Development Tool Selection Guide

Device	Description
EVAKIT-7720B	Stand-alone Evakit for µPD7720 Digital Signal Processor

μ PD70208/216 Hardware Development Tool Selection Guide

Device	Description
E-70208-S008	In-circuit emulator for µPD70208 (with V40 pod)
E-70216-S008	In-circuit emulator for µPD70216 (with V50 pod)
E-70208-1008	Optional pod unit for µPD70208 emulation
E-70216-1008	Optional pod unit for µPD70216 emulation
E-70216-1508	Converts IE-70108/70116-S to IE-70208/70216-S008

μ PD7281 Software Development Tool Selection Guide

Device	Description				
SW7281-D52	MS-DOS, 5-1/4" double-density floppy diskette				
SW7281-M52	CP/M-86, 5-1/4" double-density floppy diskette				
SW7281-M81	CP/M-86, 8" single-density floppy diskette				

CP/M-86 and MP/M-86 are registered trademarks of Digital Research Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

μPD7720 Software Development Tool Selection Guide

Device	Description
ASM77-C81	CP/M-80, 8" single-density floppy diskette
ASM77-D52	MS-DOS, 5-1/4" double-density floppy diskette
ASM77-I81	ISIS-II, 8" single-density floppy diskette
ASM77-182	ISIS-II, 8" double-density floppy diskette
ASM77-M52	CP/M-86, 5-1/4" double-density floppy diskette
ASM77-M81	CP/M-86, 8" single-density floppy diskette
ASM77-F9T1	Fortran IV ANSI X3.9-1966 source program 9-track 1600 BPI magnetic tape
SIM77-C81	CP/M-80, 8" single-density floppy diskette
SIM77-D52	MS-DOS, 5-1/4" double-density floppy diskette
SIM77-I81	ISIS-II, 8" single-density floppy diskette
SIM77-182	ISIS-II, 8" double-density floppy diskette
SIM77-M52	CP/M-86, 5-1/4" double-density floppy diskette
SIM77-M81	CP/M-86, 8" single-density floppy diskette

μPD70108/116/208/216 Software Relocatable Assembler Development Tool Selection Guide

Device	Description
RA70116-D52	MS-DOS, 5-1/4" double-density floppy diskette
RA70116-I81	ISIS-II, 8" single-density floppy diskette
RA70116-I82	ISIS-II, 8" double-density floppy diskette
RA70116-M52	CP/M-86, 5-1/4" double-density floppy diskette
RA70116-M81	CP/M-86, 8" single-density floppy diskette
RA70116-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape
RA70116-VXT1	VAX/UNIX, 9-track 1600 BPI magnetic tape

μPD70108/116/208/216 Software C Compiler Development Tool Selection Guide

Device	Description
CC70116-D52	MS-DOS, 5" double-density floppy diskette
CC70116-I81	ISIS-II, 8" single-density floppy diskette
CC70116-I82	ISIS-II, 8" double-density floppy diskette
CC70116-M52	CP/M-86, 5" double-density floppy diskette
CC70116-M81	CP/M-86, 8" single-density floppy diskette
CC70116-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape
CC70116-VXT1	VAX/UNIX, 9-track 1600 BPI magnetic tape

UNIX is a trademark of AT&T

VAX and VMS are trademarks of Digital Equipment Corporation

MD-086 Series Microcomputer Development System Selection Guide

Device	Description
MD-086FD-10	MD-086 series, floppy-disk based system
MD-086HD-10	MD-086 series, floppy-/hard-disk based system
MD-086DK	Hard-disk upgrade for MD-086FD-10
MD-910TM	Character display terminal

MD-910TM Character Display Terminal Development Tool Selection Guide

Device	Description
MD-910TM	Character display terminal

PG1000 PROM Programmer Selection Guide

Device	Description
PG1003	Plug-in personality module
PG1005	Plug-in personality module

Ordering Procedure for ROM-Based Microprocessor Products

	e devices listed mputer products.	below are ROM	I-based micro-	NEC Electronics Inc. will return the ROM code patterns in the EPROM media together with a code listing and a
μP	D7720	μPD77230	μPD77220	ROM-code verification form to you. Please return the verification form to verify the code in the EPROM
abo	ove products. Con	owing guidelines for stact your local sales	s representative	provided by NEC. NEC guarantees that the fina product will contain the same code you verified.
for	assistance and to	o obtain the necess	sary forms.	Summary:
A d	complete order m			Step 1 Customer submits a complete order, including the items listed above.
	•	OM code information lent memory EPRC oputers.		Step 2 NEC returns ROM pattern to customer together with a ROM-code verification form
	ROM code sub	mission form (pro	vided by your	and a code listing.
	local sales repre	sentative); see nex	t page.	Step 3 ☐ Customer verifies code received from NEC
	Your engineering	ng specifications,	if applicable.	and returns verification form.
	Please ignore thi your specification	is item if NEC has al on.	lready reviewed	Step 4 \(\subseteq \text{ NEC acknowledges customer order and begins production.} \)
	Mask charge pay	yment.		
	ress. The NEC fo	ent for ROM-based rm, "ROM-Based M n be obtained from y	licroprocessors	
	Your purchase o	rder.		

NEC	
NEC Electronics	Inc.

ROM CODE SUBMISSION

@1986 NEC Electronics Inc.

Fo: NEC Electronics Inc. Corporate Headquarters 401 Ellis Street, P.O. Box 7241 Mountain View, CA 94039		Date	· .
Attn: ROM Code Administrator			
We are ready to place a purchase order for our	, yo	our	, and a
submitting two copies of the ROM code on the	Customer Part Number	NEC Part Number Please check all applicab	le boxes.)
□ μPD2764 □ μPD70P322	□ μPD78P09	□ μPD8741A	
\square μ PD27128 \square μ PD75P108	□ μPD78P312	□ μPD8748H	
□ <i>μ</i> PD77P20	•	□ <i>μ</i> PD8749H	
		□ μPD8755A	
☐ To our engineering specification # ☐ With special marking: ☐ With the I/O port loading options (availa ☐ Lead type (if applicable) Bent	ble only on the devices liste		
NEC Electronics Inc. Please return the processed ROM code to the fo			
NEC Electronics Inc. Please return the processed ROM code to the fo			
NEC Electronics Inc. Please return the processed ROM code to the fo			·
NEC Electronics Inc. Please return the processed ROM code to the formal Name Company Division Shipping Address (not a P.O. Box, please)	ollowing individual for our v	verification.	
NEC Electronics Inc. Please return the processed ROM code to the formany Division Shipping Address (not a P.O. Box, please) City Telephone Number Customer Please send this form and the items listed below in above. • Two copies of ROM code • Engineering specification, if applicable. N	ollowing individual for our v	verification.	
NEC Electronics Inc. Please return the processed ROM code to the formal Romany Division Shipping Address (not a P.O. Box, please) City Telephone Number Customer Please send this form and the items listed below in above. Two copies of ROM code	State n a package clearly marked to the required if NEC has already	verification.	

Form No. NEC-0000071 Rev. B 7/86

2

QUALITY AND RELIABILITY

QUALITY AND RELIABILITY

Section 2 — Quality and Reliability

Introduction 2	<u>'-3</u>
Technology Description 2	-3
Reliability Testing 2	-3
Failure Rate Calculation and Prediction	-6
Reliability Test Results	-7
NEC's Goals on Failure Rates 2	-7
Infant Mortality Failure Screening 2	-8
Life Tests 2	:-8
Built-in Quality and Reliability 2-	10
Approaches to Total Quality Control 2-	10
Summary and Conclusion 2-	12

Introduction

As large-scale integration reaches a higher level of density, reliability of devices imposes a profound impact on system reliability. And as device reliability becomes a major factor, test methods to assure acceptable reliability become more complicated. Simply performing a reliability test according to a conventional method cannot satisfy the demanding requirements for higher reliability. At these new, higher levels of LSI density, it is increasingly difficult to activate all the elements in the internal circuits. A different philosophy and methodology is needed for reliability assurance. Moreover, as integration density increases, the degradation of internal elements in an LSI device is seldom detected by measuring characteristics across external terminals.

In order to improve and guarantee a certain level of reliability for large-scale integrated circuits, it is essential to build quality and reliability into the product. Then, the conventional reliability tests are followed to ensure that the product demonstrates an acceptable level of reliability.

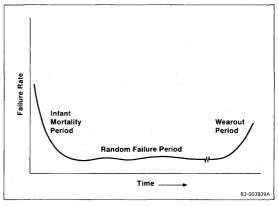
NEC has introduced the concept of total quality control (TQC) across its entire semiconductor product line. By adopting TQC, NEC can build quality into the product and thus assure higher reliability. The concept and methodology of total quality control are companywide activities involving workers, engineers, quality control staffs, and all levels of management.

NEC has also introduced a prescreening method into the production line that helps eliminate potentially defective units. The combination of building quality in and screening projected early failures out has resulted in superior quality and excellent reliability.

Technology Description

Most large-scale integrated circuits utilize high-density, MOS technology. State-of-the-art high performance has been achieved by introducing fine-line generation techniques. By reducing physical parameters, circuit density and performance increase while active circuit power dissipation decreases. The data presented here shows that this advanced technology yields products as reliable as those from previous technologies.

Reliability Testing


Reliability is defined as the characteristics of an item expressed by the probability that it will perform a required function under stated conditions for a stated period of time. This involves the concept of probability, definition of required function(s), and the critical time used in defining the reliability.

Definition of a required function, by implication, treats the definition of a failure. Failure is defined as the termination of the ability of a device to perform its required function. Furthermore, a device is said to have failed if it shows inability to perform within quaranteed parameters as given in an electrical specification.

Discussion of reliability and failure can be approached in two ways: with respect to systems or to individual devices. The accumulation of normal device failure rates constitutes the expected failure rate of the system hardware. Important considerations here are the constant failure period, the early failure (infant mortality) period, and overall reliability level. With regard to individual devices, areas of prime interest include specific failure mechanisms, failures in accelerated tests, and screening tests.

Some of these failure considerations pertain to both systems and devices. The probability of no failures in a system is the product of the probability of no failure in each of its components. The failure rate of system hardware is then the sum of the failure rates of the components used to construct the system.

Figure 1. Reliability Life (Bathtub) Curve

QUALITY AND RELIABILITY

Life Distribution

The fundamental principles of reliability engineering predict that the failure rate of a group of devices will follow the well-known bathtub curve in figure 1. The curve is divided into three regions: infant mortality, random failures, and wearout failures.

Infant mortality, as the name implies, represents the early-life failures of devices. These failures are usually associated with one or more manufacturing defects.

After some period of time, the failure rate reaches a low value. This is the random failure portion of the curve, representing the useful portion of the life of a device. During this random failure period, there is a decline in the failure rate due to the depletion of potential random failures from the general population.

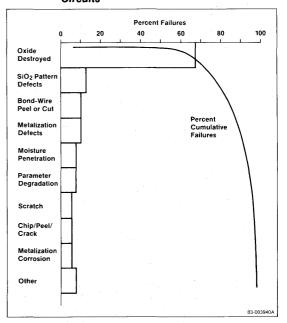
The wearout failures occur at the end of the device's useful life. They are characterized by a rapidly rising failure rate over time as devices wear out both physically and electrically.

Thus, for devices that have very-long life expectancies compared to those of systems, the areas of concern will be the infant mortality and the random failure portions of the population.

The system failure rates are related to the collective device failure rates. In a given system, after elimination of the early failures, the system will be left to the failure rate of its components. In order to make proper projections of the failure rate in the operating environment, time-to-failure must be accelerated in tests in a predictable way.

Failure Distribution at NEC

Integrated circuits returned to NEC from the field underwent extensive failure analysis at NEC's Integrated Circuit Division.


First, approximately 50 percent of the field returns were found to be damaged either from improper handling or misuse of the devices. These units were eliminated from the analysis. The remaining failed units were classified by their failure mechanisms as depicted in figure 2. These failures were then related to the major integrated circuit failure mechanisms and to their origins in a particular manufacturing step.

As shown in figure 2, the first four failure mechanisms accounted for more than 90 percent of total failures. As a result, NEC improved processes and material to reduce these failures. Additionally, NEC introduced screening procedures to detect and eliminate defective devices.

Temperature, humidity, and bias tests are used for testing the moisture resistance of plastic encapsulated integrated circuits. NEC developed a special process to improve the plastic encapsulation material. As a result, moisture-related—thus packaging-related—failures have been drastically reduced.

As a preventive measure, NEC has introduced a special screening procedure embedded in the production line. A burn-in at an elevated temperature is performed for 100 percent of the lots. This burn-in effectively removes the potentially defective units. In addition, improvement of the plastic encapsulation material has lowered the failures in a high-temperature and high-humidity environment.

Figure 2. Failure Distribution of MOS Integrated Circuits

Accelerated Reliability Testing

As an example, assume that an electronic system contains 1000 integrated circuits and can tolerate 1 percent system failures per month. The failure rate per component is:

 $\frac{0.01 \text{ Failures}}{720 \text{K Device Hours}} = \frac{13.888 \text{ x } 10^{-9} \text{ Failures/Hour}}{\text{or } 13.8888 \text{ FITs}}$

where FIT = Failure units per 109 device hours

To demonstrate this failure rate, note that 13.8888 FITs corresponds to one failure in about 7000 devices during an operating test of 10,000 hours. It is quickly apparent that a test condition is required to accelerate the time-to-failure in a predictable and understandable way. The implicit requirement for the accelerated stress test is that the relationship between the accelerated stress testing condition and the condition of actual use be known.

A most common time-to-failure relationship involves the effect of temperature, which accelerates many physiochemical reactions leading to device failure. Other environmental conditions are voltage, current, humidity, vibration, or some combination of these. Table 1 lists the reliability assurance tests performed at NEC for integrated circuits.

Table 1. Monthly NEC Reliability Tests

Test	MIL-STD-883 Method	Test Conditions
Li fe Test High-temperature, operating	1005A, D	T _A = 100 to 125°C for 1000 hours
High-temperature, storage	1008C	$T_A = 150^{\circ}\text{C}$ for 1000 hours
High-temperature, high-humidity test	_	T _A = 85 °C at 85% RH for 1000 hours
Pressure cooker test	_	T _A = 125°C at 2.3 atm for 168 hours
Environmental Test		
Soldering heat test	2031 (MIL-STD-750)	T = 260°C for 10 s without flux
Temperature cycle	1010C	$T = -65 \text{ to } +150 ^{\circ}\text{C} \text{ for}$ 10 cycles
Thermal shock	1011A	T = 0 to 100°C for 15 cycles
Lead fatigue	2004B2	at 250 gm: 3 leads, 3 bends
Solderability	2003	T = 230°C for 5 s with flux

Temperature Effect. The effect of temperature that concerns us is that which responds to the Arrhenius relationship. This relates the reaction rate to temperature.

 $R = R_0 \exp(-E_a/kT)$

where $R_o = Constant$

E_a = Activation energy in eVk = Boltzmann's constant

 $= 8.617 \times 10^{-5} \text{ eV/K}$

T = Absolute temperature in kelvin (K)

The significance of this relationship is that the failure mechanisms of semiconductor devices are directly applicable to it. A linear relationship between failure mechanism and time is assumed.

Activation Energy. Associated with each failure mechanism is an activation energy value. Table 2 lists some of the more common failure mechanisms and the associated activation energy of each.

Table 2. Activation Energy and Detection of Failure
Mechanisms

Failure Mechanism	Activation Energy	Detection
Oxide defect	0.3 eV	High-temperature operating
Silicon defect	0.3 eV	life test
lonic contamination	1.0-1.35 eV	-
Electromigration	0.4-0.8 eV	-
Charge injection	1.3 eV	
Gold-aluminum interface	0.8 eV	
Metal corrosion	0.7 eV	High-humidity operating life test

High-Temperature Operating Life Test. This test is used to accelerate failure mechanisms by operating the devices at an elevated temperature of 125 °C. The data obtained is translated to a lower temperature by using the Arrhenius relationship.

High-Temperature and High-Humidity Test. Semiconductor integrated circuits are highly sensitive to the general accelerating effect of humidity in causing electrolytic corrosion between biased lines. The hightemperature and high-humidity test is performed to detect failure mechanisms that are accelerated by these conditions. This test is effective in accelerating leakage-related failures and drifts in device parameters due to process instability.

High-Temperature Storage Test. Another common test is the high-temperature storage test in which devices are subjected to elevated temperatures with no applied bias. This test is used to detect mechanical problems and process instability.

Environmental Test. Other environmental tests are performed to detect problems related to the package, material, susceptibility to extremes in environment, and problems related to usage of the devices.

Failure Rate Calculation and Prediction

Analysis of integrated circuit failure rates can serve many useful purposes. For example, the early-life failure rate helps establish a warranty period, while the mature-life failure rate aids in estimating repair costs, spare parts stock requirements, or product downtime. Accurate prediction of failure rates can also be used for process control.

The following sections describe the failure rate calculation and prediction methods used by NEC's Integrated Circuit Division.

The Arrhenius Model

Most integrated circuit failure mechanisms depend to some degree on temperature. This relationship can be represented by the Arrhenius model, which includes the effects of temperature and activation energy of the failure mechanisms.

As applied to accelerated life testing of integrated circuits, the Arrhenius model assumes that degradation of a performance parameter is linear with time. Temperature dependence is taken to be the exponential function that defines the probability of occurrence. The relationship of failure rate to temperature is expressed as:

$$F_1 = F_2 \exp[(E_a/k) \times (1/T_1 - 1/T_2)]$$

Where: F_2 = Failure rate at T_2

F₁ = Failure rate at T₁

Ea = Activation energy in eV k = Boltzmann's constant

T = Operating junction temperature in kelvin (K)

The equation explains the thermal dependence of integrated circuit failure rates and is used for derating the resulting failure rate to a more realistic temperature.

Acceleration Factor

The acceleration factor is the factor by which the failure rate can be accelerated by increased temperature. This factor is derived from the Arrhenius failure rate expression, resulting in the following form.

$$A = F_1/F_2 = \exp[(E_a/k) \times (1/T_1 - 1/T_2)]$$

A = Acceleration factor

 F_2 = Failure rate at T_2

 $F_1 = Failure rate at T_1$

In calculating the field reliability of an integrated circuit, it is necessary to calculate the junction temperature. In general, the junction temperature will depend on the ambient temperature, cooling, package type, operating cycle time, and power dissipation of the circuit itself. In these terms, the junction temperature (T_J) is expressed as:

$$T_J = T_A + P_d A_f \theta_{JA}$$

T_J = Junction temperature

T_A = Ambient temperature

 P_d = Power dissipation

 $A_f = Air flow factor$

 θ_{JA} = Package thermal resistance

Table 3 lists derating factors of various failure mechanisms. This table is generated assuming that an accelerated test is performed at a junction temperature of 125°C. The result is then derated to 55°C junction temperature. The acceleration factor may then be obtained by taking the inverse of the derating factor.

Table 3. Derating Factors of Failure Mechanisms

Failure Mechanisms	Activation Energy, eV	Derating Factor
Oxide defect	0.3	0.1546
Silicon defect	0.3	0.1546
lonic contamination	1.0	0.001984
Electromigration	0.4	0.08307
Charge injection	1.3	0.0003067
Metal corrosion	0.7	0.01315
Gold-aluminum interface	0.8	0.006886

The acceleration of failure mechanisms in a highhumidity and high-temperature environment must be expressed as a function not only of temperature but also of humidity.

According to the reliability test statistics, the acceleration factor in such an environment can best be approximated with Peck's model as follows.

$$A = \exp[(E_a/k) \times (1/T_1 - 1/T_2)] \times (H_2/H_1)^{4.5}$$

where $E_a = Activation energy$ k = Boltzmann's constant

T = Junction temperature

H = Relative humidity

For example, the acceleration factor for high-humidity and high-temperature or pressure cooker tests ranges from 100 to 1000 times that of the normal operating environment.

Failure Rate Calculation

As an example, suppose that product samples are submitted to a 1000-hour life test at 125°C junction temperature and two failures are encountered: one oxide and one metalization defect. The sample size is 885 units.

Thus, the oxide failure rate is 0.11 percent per 1000 hours and the metalization failure rate is 0.11 percent per 1000 hours. Therefore, the total failure rate at 125 °C sums to 0.22 percent per 1000 hours at 1K hours.

Failure Rate Prediction

To derate these failure rates to a normal operating environment, use the derating factors listed in table 3.

Oxide failures = $0.11 \times 0.1546 = 0.01701\%$ per 1K hrs Metal failures = $0.11 \times 0.01315 = 0.00145\%$ per 1K hrs

Total failures = 0.01846% per 1K hrs

Note that the example above is a snapshot of the hightemperature life test performed on a particular lot. It is not accumulated data that can be used to represent overall reliability. This conservative illustration, however, shows that the failure rate in a normal operating environment is approximately one-twelfth the failure ate in a higher-temperature environment.

The failure rate prediction takes different activation energies into account whenever the causes of failures are known through performing failure analysis. In some cases, however, an activation energy is assumed n order to accomplish a quick first-order approxination. To yield a conservative estimate of failure rates, NEC assumes an average activation energy of 0.7 eV vhenever the exact failure mechanism is not known.

Reliability Test Results

Before introducing new technologies or products, NEC's internal reliability goals must be attained. Several categories of testing are used in the internal qualification program to assure that product reliability meets NEC's reliability goals. Once the product is qualified, its reliability level is regularly monitored in a monthly reliability test.

NEC's Goals on Failure Rates

NEC's approach to achieving high reliability is to build quality into the product, as opposed to merely screening out defective units. The use of distributed control methods embedded in the production line, in conjunction with conventional screening methods, results in the highest reliability at the lowest cost.

NEC's maximum failure rate goals for infant mortality and long-term device operation are listed in table 4.

Table 4. Infant Mortality and Long-Term Failure Rates

Туре	Failure Rate Percent/1000 Hours	
Infant mortality	0.10 max	
Long-term 1.2M device hours average 3.0M device hours average	0.02 max 0.01 max	

Infant Mortality Failure Rate

The infant mortality goal for each product group is set at 0.10 percent maximum. When a failure rate exceeds this level, there is prompt remedial action.

Long-Term Failure Rate

The long-term failure rate goal is based on the following conditions:

- A minimum of 1.2 million device hours at 125 °C is accumulated to resolve 0.02 percent per 1000 hours at 55°C with a 60-percent confidence level.
- A minimum of 3 million device hours at 125°C is accumulated to resolve 0.01 percent per 1000 hours at 55°C with a 60-percent confidence level.

Infant Mortality Failure Screening

It is logical to assume the integrated circuit that fails at one temperature would also fail at another temperature, except it would fail sooner at a higher temperature. As can be expected, the failure rate is a function of activation energy. Establishing infant mortality screening, therefore, requires knowledge of the likely failure mechanisms and their associated activation energy.

The most likely mechanisms associated with infant mortality failures are generally manufacturing defects and process anomalies. These generally consist of contamination, cracked chips, wire bond shorts, or bad wire bonds. Since these describe a number of possible mechanisms, any one of which might predominate at a given time, the activation energy for infant mortality might be expected to vary considerably.

The effectiveness of a screening condition, preferably at some stress level in order to shorten the time, varies greatly with the failure mechanism being screened for. Another factor is the economics of the screening process introduced into the production line. Optimal conditions and duration of a screening process will be a compromise of these two factors.

For example, failures due to ionic contamination have an activation energy of approximately 1.0 eV. Therefore, a 15-hour stress at 125 °C junction temperature would be the equivalent of approximately 90 days of operation at a junction temperature of 55 °C. On the other hand, failures due to oxide defects have an activation energy of approximately 0.3 eV, and a 15-hour stress at 125 °C junction temperature would be the equivalent of approximately one week's operation at 55 °C junction temperature. As indicated by this, the condition and duration of infant mortality screening would be a strong function of the allowable component failures, hence the system failure, in the field.

Empirical data, gathered over more than a year at NEC, indicates that early failure does occur after less than 4 hours of stress at 125 °C ambient temperature. This fact is supported by the life test of the same lot, where the failure rate shows random distribution, as opposed to a decreasing failure rate that then runs into the random failure region.

NEC has adopted the initial infant mortality burn-in at 125 °C as a standard production screening procedure. As a result, the field reliability of NEC devices is an order of magnitude higher than the goals set for NEC's integrated circuit products.

Life Tests

The most significant difference between NEC's products and those of other integrated circuit manufacturers is that NEC's have been prescreened for their infant mortality defects. The products delivered to customers are operating at the beginning of the random failure region of the life curve. The life test data also reflects this fact, as will be shown.

The failure mechanism distribution from field failures, as previously shown in figure 2, also contains a very low percentage due to infant mortality. The majority of failures are long-term life failures, and these can be eliminated by stringent process control. Usually, these failure mechanisms have low activation energy associated with them.

Another significant improvement devised by NEC is plastic encapsulation and passivation. As a result, NEC products show excellent reliability in both high-humidity and high-temperature environments. Following is life test data accumulated over more than a year for large-scale integrated circuits.

High-Temperature Operating Life Test

This test is used to accelerate failure mechanisms by operating the devices at an elevated temperature. For large-scale integrated circuits, the failure rate is 0.242 percent per 1000 hours at 125 °C. This is equivalent to 0.0071 percent per 1000 hours in an operating environment of 55 °C (table 5).

Table 5. High-Temperature Operating Life Test

Number of		Number of Failures at					
Samples		48 hrs	96 hrs	168 hrs	500 hrs	1K hrs	
3317		0	0	1	4.	3	
Total number of Failure rate at 11 Projected failure	K hrs at 125°C			2% per 1 7% per 1			

High-Temperature and High-Humidity Life Test

This test is used to accelerate failure mechanisms by operating the devices at high temperature and high humidity. Leakage-related failures and device parageter drift are accelerated by this test. For these large-scale integrated circuits, the failure rate is 0.091 percent per 1000 hours. This is equivalent to 0.0027 percent per 1000 hours in an operating environment of 55°C. The test conditions are T_A = 85°C and relative humidity (RH) = 80% (table 6).

Table 6. High-Temperature and High-Humidity Life
Test

Number of	Number of Failures at					
	48 hrs	96 hrs	168 hrs	500 hrs	1K hrs	
2190	0	0	0	0	2	
Total number of failures at 1K hrs Failure rate at 1K hrs at 85°C/80% Projected failure rate at 1K hrs at	RH	= 2 = 0.09	% per 1	K hrs		
55°C/60% RH		= 0.003	3% per 1	K hrs		

High-Temperature Storage Life Test

This test is effective in accelerating the failure mechanisms related to mechanical reliability problems and process instability. For these LSI devices, the failure rate is 0.207 percent per 1000 hours at 125 °C. This is equivalent to 0.0061 percent per 1000 hours in an operating environment of 55 °C (table 7).

Table 7. High-Temperature Storage Life Test

Number of	Number of Failures at				
Samples	48 hrs	96 hrs	168 hrs	500 hrs	1K hrs
2410	0	0	0	1	4
Total number of failures at 1K hrs Failure rate at 1K hrs at 125°C Projected failure rate at 1K hrs		= 5 = 0.20	7% per 1	K hrs	
at 55 °C		= 0.00	6% per 1	K hrs	

Pressure Cooker Test

This test is effective in accelerating failure mechanisms related to metalization corrosion due to moisture. The failure rate is 0.52 percent per 1000 hours at $T_A = 125\,^{\circ}\text{C}$ and 2.3 atm at 100 percent humidity. This is equivalent to 0.0013 percent per 1000 hours at 55 $\,^{\circ}\text{C}$ and an environment of 60 percent humidity (table 8).

Table 8. Pressure Cooker Test

Number of	Number of Failures at					
	48 hrs	96 hrs	168 hrs	500 hrs	1K hrs	
718	0	4	5	No test pe	erformed	
otal number of failures at 168 ailure rate at 125 °C rojected failure rate at 55 °C	hrs		.54% pe	r 1K hrs er 1K hrs		

ife Test Data Summary

able 9 summarizes the life test results and projected ailure rates in the normal operating environment. The ailure rate shows random distribution as opposed to a ecreasing failure rate. This is a result of infant nortality screening.

Table 9. Life Test Data

	Number of	· N	Total Number of			
Test Time	Samples	96 hrs	168 hrs	500 hrs	1K hrs	Failures
High-temperature life test	3317	0	1	4	3	8
High-humidity life test	2190	. 0	0	0	2	2
High-temperature storage life test	2410	0	0	1	4	5
Pressure cooker test	1718	4	5	No 1 perf	est ormed	9
Total	9635	4	6	5	9	24

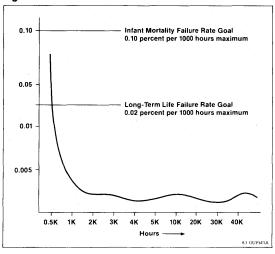

The projected failure rate in the normal operating environment is calculated assuming that the average activation energy is 0.7 eV.

Figure 3 shows the life distribution of NEC integrated circuits as a form of the bathtub curve.

This life test data shows improvements of approximately an order of magnitude better than NEC's goal. The hours of operation are equivalent to the normal operating environment. Wear-out failures, which had been the main target for reliability improvement, have also been significantly reduced. This result comes mainly from process improvements and stringent manufacturing process control.

NEC's main goal has been to improve reliability with respect to infant mortality and long-term life failures. This can be achieved by introducing an effective screening method for infant mortality and building quality into the product.

Figure 3. Plot of Life Test Results

Thermal Stress Tests

Temperature cycling and thermal shock test the thermal compatibility of material and metal used to make integrated circuits. Table 10 lists the reliability test results of thermal stress tests.

Table 10. Thermal Stress Tests

Test Item	Number of Samples	Number of Failures
Soldering heat test T _A = 260°C for 10 seconds	1891	0
Temperature cycle $T_A = -65 \text{ to } +150 ^{\circ}\text{C}$, 10 cycles	1891	0
Thermal shock test T _A := 0 to +100°C, 15 cycles	1891	0

Mechanical Stress Tests

In addition to the device life test, NEC performs mechanical stress tests to detect reliability problems related to the package, material, and device susceptibility to an extreme environment. Table 11 lists mechanical stress test results.

Table 11. Mechanical Stress Tests

Test Item	Number of Samples	Number of Failures
Mechanical shock test at 15 kg, 3 axis	315	0
Vibration test at 100 Hz to 2 kHz, 20 g	315	0
Constant acceleration at 20 kg, 3 axis	315	0
Lead fatigue test at 240 grams	538	0
Solderability test at 230 °C for 5 seconds	638	0

Built-In Quality and Reliability

As large-scale integration reaches even higher levels of density, simple quality inspections cannot assure adequate levels of product quality and reliability. In order to ensure the reliability of state-of-the-art VLSI, NEC has adopted another approach. Highest reliability and superior quality of a device can only be achieved by building these characteristics into the product at each process step. NEC, therefore, has introduced the notion of total quality control (TQC) into its entire semiconductor production line. Quality control is distributed into each process step and then summed to form a consolidated system.

Approaches to Total Quality Control

First, the quality control function is embedded into each process. This method enables early detection of possible causes of failure and immediate feedback.

Second, the reliability and quality assurance policy is an integral part of the entire organization. This enables a companywide quality control activity. At NEC, everyone in the company is involved with the concept and methodology of total quality control.

Third, there is an ongoing research and development effort to set even higher standards of device quality and reliability.

Fourth, extensive failure analysis is performed periodically and corrective actions are taken as preventive measures. Process control is based on statistical data gathered from this analysis.

The goal is to maintain the superior product quality and reliability that has become synonymous with the NEC name. The new standard is continuously upgraded and the iterative process continues.

Implementation of Distributed Quality Control

Building quality into a product requires early detection of possible causes of failure at each process step. Then, immediate feedback to remove the causes is a must. A fixed station quality inspection is often lacking in immediate feedback. It is, therefore, necessary to distribute quality control functions to each process step, including the conceptual stage. NEC has implemented a distributed quality control function at each step of the process. Following is a breakdown of the significant steps:

- · Product development phase
- Wafer processing
- · Chip mounting and packaging
- · Electrical testing and thermal aging
- Incoming material inspection

Product Development Phase. The product development phase includes conception of a product, review of the device proposal, organization and physical element design, engineering evaluation, and finally, transfer of the product to manufacturing. Quality and reliability are considered at every step. More significantly, at the design review stage and prior to product transfer, the quality and reliability requirements have to be examined and determined to be satisfactory. This often adds 2 to 3 months to the product development cycle. Building in high reliability, however, cannot be sacrificed.

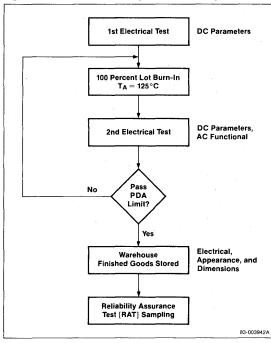
Wafer Processing Stage Inspection. The in-process quality inspections that occur at the wafer fabrication stage are listed in table 12.

Table 12. Wafer Processing Inspection

Process	Inspection Item
Wafer	Resistivity, dimension, and appearance, (lot sampling inspection)
Mask	
Photolithography	Alignment and etching (100% inspection)
Cleaning	
Diffusion and oxidation	Oxide thickness, sheet resistivity (lot sampling inspection)
Metalization and passivation	Thickness, V _{th} , C-V characteristics (lot sampling)
Wafer sort and scribe	Dc parameters (100% inspection)
Die sort	100% visual inspection

Chip Mounting and Packaging. The in-process quality inspections done at the chip mounting and packaging stage are listed in table 13.

Table 13. Chip Mounting and Packaging Inspection


Process	Inspection Item			
Die	Incoming material Inspection			
Die attach	Appearance (lot sampling inspection)			
Vire bonding	Bond strength, appearance (lot sampling)			
'ackaging	100% appearance inspection			
ine leak*	Lot sampling			
iross leak*	100% inspection			

For ceramic package devices only.

Ilectrical Testing and Screening. Electrical testing and nfant mortality screening are performed at this stage. If the following the process is depicted in figure 4.

It the first electrical test, dc parameters are tested coording to the electrical specifications on 100% of ach lot. This is a prescreening prior to the infant nortality test. At the second electrical test, ac function-l tests as well as dc parameter tests are performed on 20% of the subjected lot. If the percentage of defective nits exceeds the limit, the lot is subjected to an additional burn-in. During this time, the defective units re undergoing a failure analysis, the results of which te then fed back into the process for corrective action.

Figure 4. Electrical Testing and Screening

Incoming Material Inspection. Prior to warehouse storage, lots are subjected to an incoming inspection according to the following sampling plan.

Electrical test:	Dc parameters	LTPD	3%
	Functional test	LTPD	3%
 Appearance 		LTPD	3%

Reliability Assurance Test

Samples are continually taken from the warehouse and subjected to monthly reliability tests as discussed previously. They are taken from similar process groups so that it can be assumed that any device is representative of the reliability of the group.

In-Process Screening

Perhaps the most significant preventive measure that NEC has implemented is the introduction of 100% burn-in as an integral part of the standard production process. Most of the potential infant failures are effectively screened from every lot, thereby improving reliability. Assuming average activation energy of 0.7 eV, burn-in at $T_A = 125\,^{\circ}\text{C}$ for 4 hours is equivalent to a week's operation in a normal operating environment. This appears to be ample time for accelerating the time-to-failure mechanisms for early failures.

Process automation, as previously mentioned, has also contributed a great deal toward improving reliability. Since its introduction, assembly related failure mechanisms have been substantially reduced. And, in combination with in-process screening and materials improvement, it has helped establish quality and reliability above NEC's initial goals.

Summary and Conclusion

As has been discussed, building quality and reliability into products is the most efficient way to ensure product reliability. NEC's approach of distributing quality control functions to process steps, then forming a consolidated quality control system, has produced superior quality and excellent reliability.

Prescreening, introduced as an integral part of largescale integrated circuit protection, has been a major factor in improving reliability. The most recent year's production clearly demonstrates continuation of NEC's high reliability and the effectiveness of this method.

Reliability assurance tests (RATs), performed monthly, have ensured high outgoing quality levels. The combination of building quality into products, effective prescreening of potential failures, and the reliability assurance test has established a singularly high standard of quality and reliability for NEC's large-scale integrated circuits.

With a companywide quality control program, NEC is committed to building superior quality and highest reliability into all its products. Through continuous research and development activities, extensive failure analysis, and process improvements, a higher standard of quality and reliability will continuously be set and maintained.

CMOS MICROPROCESSORS

3

Section 3 — CMOS Microprocessors

μPD70008/A	8-Bit Microprocessors 3-3
μPD70108	8/16-Bit High-Performance Microprocessor (V20™) 3-3
μPD70116	16-Bit High-Performance Microprocessor (V30™) 3-63
μPD70208	8/16-Bit High-Integration Microprocessor (V40™) 3-95
μPD70216	16-Bit High-Integration Microprocessor (V50™) 3-16
μPD70616	32-Bit Virtual Memory Microprocessor (V60™) 3-229
μPD72191	Floating Point Processor 3-233

V20 through V60 are trademarks of NEC Corporation.

Description

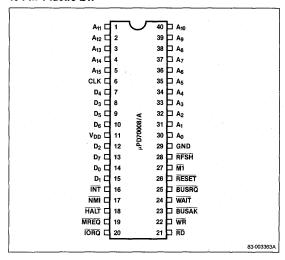
The μ PD70008 and μ PD70008A are power saving, high performance, general purpose 8-bit microprocessor. It is a CMOS-process part with a standby mode that greatly reduces power consumption.

Features

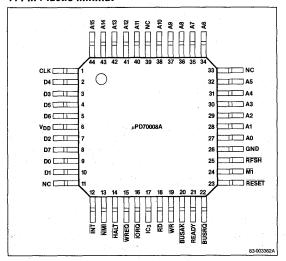
- ☐ High performance µPD780 instruction set
- ☐ Instruction cycle:
 - $1\mu s$ at 4 MHz (μ PD70008, μ PD70008A-4) 0.66 μs at 6 MHz (μ PD70008A-6)
- ☐ Direct addressing of up to 64 K bytes of memory
- ☐ Memory refresh function
- □ Interrupt functions:
 - Maskable external interrupt (INT)
 - Nonmaskable external interrupt (NMI)
- ☐ Low-power standby mode (HALT)
- ☐ CMOS standby mode (HALT)
- ☐ Single power supply

Ordering Information

art lumber	Package Type	Max Frequency of Operation 4 MHz		
PD70008C	40-pin plastic DIP			
PD70008AC-4	40-pin plastic DIP	4 MHz		
PD70008AC-6	40-pin plastic DIP	6 MHz		
PD70008AG-4	44-pin plastic miniflat	4 MHz		
PD70008AG-6	44-pin plastic miniflat	6 MHz		
² D70008AL-6	44-pin PLCC	6 MHz		


Absolute Maximum Ratings

A = 25°C	
ower supply voltage, V _{DD}	-0.3 V to +7 V
iput voltage, V _{IN}	-0.3 V to V _{DD} +0.3 V
utput voltage, V ₀	-0.3 V to V _{DD} +0.3 V
berating temperature, T _{OPT} μPD70008 μPD70008A	- 10°C to +70°C - 45°C to +85°C
orage temperature, T _{STG}	-65°C to +150°C


bmment: Exposing the device to stresses above those listed in Absote Maximum Ratings could cause permanent damage. The device is it meant to be operated under conditions outside the limits deribed in the operational sections of the specification. Exposure to solute maximum rating conditions for extended periods may affect vice reliability.

Pin Configurations

40-Pin Plastic DIP

44-Pin Plastic Miniflat

Pin Identification

40-Pin Plastic DIP

No.	Symbol	Function
1-5	A ₁₁ -A ₁₅	Address bus, high bits, outputs
6	CLK	Clock input
7–10	D ₃ -D ₆	Data bus, bits 3-6, inputs /outputs
11	V _{DD}	Power supply
12	D ₂	Datra bus, bit 2, input/output
13	D ₇	Data bus, bit 7, input /output
14, 15	D ₀ , D ₁	Data bus, bits 0, 1, inputs/outputs
16	INT	Interrupt input
17	NMI	Nonmaskable interrupt input
18	HALT	Halt / standby mode output
19	MREQ	Memory request output
20	IORQ	1 / 0 request output
21	RD	Read strobe output
22	WR	Write strobe output
23	BUSAK	Bus acknowledge output
24	WAIT	Wait input
25	BUSRQ	Bus request input
26	RESET	Reset input
27	M1	Machine cycle 1 output
28	RFSH	Refresh request output
29	GND	Ground
30-40	A ₀ -A ₁₀	Address bus, low bits, outputs

Pin Functions

A₁₅-A₀ (Address Bus)

These three-state output pins form a 16-bit address bus for addressing memory or peripheral devices. The address bus enters the high impedance state when bus acknowledge is active. In the standby mode, these pins output high- or low-level signals.

D₇-D₀ (Data Bus)

These three-state pins form an 8-bit bidirectional data bus. On this bus data is transferred between the $\mu PD70008/A$ and memory or peripheral devices. This bus enters the high impedance state when bus acknowledge is active. In the standby mode, these pins are high-level.

INT (Interrupt)

This pin is an active-low interrupt input which can be masked by software. $\overline{\text{NMI}}$ has a lower priority than $\overline{\text{NMI}}$ and $\overline{\text{BUSRO}}$. $\overline{\text{INT}}$ releases the standby mode.

44-Pin Plastic Miniflat

No.	Symbol	Function
40-44	A ₁₁ -A ₁₅	Address bus, high bits, outputs
1	CLK	Clock input
2-5	D ₃ -D ₆	Data bus, bits 3-6, inputs/outputs
6	V _{DD}	Power supply
7	D ₂	Datra bus, bit 2, input/output
8	D ₇	Data bus, bit 7, input /output
9-10	D ₀ , D ₁	Data bus, bits 0, 1, inputs /outputs
12	INT	Interrupt input
13	NMI	Nonmaskable interrupt input
14	HALT	Halt / standby mode output
15	MREQ	Memory request output
16	10RQ	I / O request output
18	RD	Read strobe output
19	WR	Write strobe output
20	BUSAK	Bus acknowledge output
21	WAIT	Wait input
22	BUSRQ	Bus request input
23	RESET	Reset input
24	M ₁	Machine cycle 1 output
25	RFSH	Refresh request output
26	GND	Ground
28-32, 34-38	A ₀ -A ₁₀	Address bus, low bits, outputs
17	IC	Internally connected
11, 33, 39	NC	Not connected

NMI (Nonmaskable Interrupt)

This pin inputs an interrupt which is not maskable b software. $\overline{\text{NMI}}$ is active-low in the $\mu\text{PD70008}$, and is fall ing edge triggered in the $\mu\text{PD70008A}$. $\overline{\text{NMI}}$ has a highe priority than $\overline{\text{INT}}$, but a lower priority than $\overline{\text{BUSRQ}}$ an RESET. $\overline{\text{NMI}}$ releases the standby mode.

MREQ (Memory Request)

This three-state pin is an active-low output. The \$\mu PD70008 / A asserts \$MREQ\$ to indicate that the information on the address bus is a memory address. This pienters the high impedance state when bus acknown edge is active. \$MREQ\$ is inactive (high) in the standlar mode.

Pin Functions (cont)

IORQ (I/O Request)

This three-state pin is an active-low output. The $\mu PD70008/A$ asserts \overline{IORQ} to indicate that the information on the address bus is a peripheral device address. \overline{IORQ} is also asserted during a maskable interrupt service to request the interrupting device to output its interrupt vector to the data bus. This pin enters the high impedance state when bus acknowledge is active. \overline{IORQ} is inactive (high) in the standby mode.

RD (Read Strobe)

This three-state active-low output provides a read strobe for the memory and peripheral devices. The pin enters the high impedance state when the bus acknowledge is active. \overline{RD} is inactive (high) in the standby mode.

WR (Write Strobe)

This three-state active-low output provides a write strobe for the memory and peripheral devices. This pin enters the high impedance state when bus acknowledge is active. WR is inactive (high) in the standby mode.

BUSRQ (Bus Request)

This is an active-low input. Peripheral devices assert \overline{BUSRQ} to request the $\mu PD70008/A$ to release control of the address bus $(A_{15}-A_0)$, data bus (D_7-D_0) and control bus $(\overline{MREQ},\overline{IORQ},\overline{RD}$ and $\overline{WR})$ and assert bus acknowledge. \overline{BUSRQ} has a higher priority than either \overline{INT} or \overline{NMI} , but is lower in priority than \overline{RESET} . \overline{BUSRQ} will temporarily suspend the standby mode. The $\mu PD70008/A$ leaves standby mode when \overline{BUSRQ} is asserted, but returns to the standby mode when \overline{BUSRQ} is released.

BUSAK (Bus Acknowledge)

This active-low output indicates that the data bus D7-D0), address bus (A15-A0), and control bus (MREQ, ORQ, RD and WR) have entered the high impedance tate. This releases the buses from CPU control and nakes them available to the peripheral devices for data exchange. This state cannot be released by NMI or NT, out responds only to RESET or the release of BUSRQ.

TALT (Halt/Standby Mode)

his active-low output is asserted after the halt comnand has been executed and indicates that the PD70008/A has entered the standby mode.

WAIT (Wait)

This pin is an active-low input. Memory and peripheral devices assert this signal to increase read or write access time. When $\overline{\text{WAIT}}$ is asserted, the $\mu\text{PD70008/A}$ inserts wait states (TW) into the machine cycle until $\overline{\text{WAIT}}$ is released.

RESET (Reset)

This active-low input is used to reset the $\mu PD70008/A$. The standby mode is released on Reset. Reset has the highest priority.

INTI < NMI < BUSRQ < RESET

RFSH (Refresh Request)

This pin is an active-low output. The μ PD70008/A asserts $\overline{\text{RFSH}}$ to trigger the external memory refresh operation. When $\overline{\text{RFSH}}$ is low, the lower seven bits of the address bus (A₆-A₀) are a refresh address. This pin is inactive (high) in the standby mode.

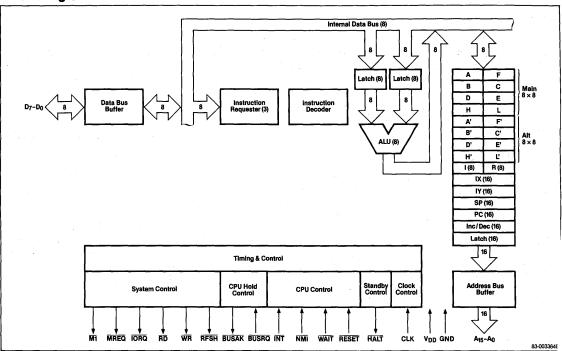
M1 (Machine Cycle 1)

This pin is an active-low output. When $\overline{M1}$ is asserted, it indicates that the μ PD70008/A is in the opcode fetch cycle, $\overline{M1}$.

CLK (Clock)

This pin is the system clock input.

V_{DD} (Power Supply)


This pin is the +5 V power supply input.

GND (Ground)

This pin is the ground pin.

Block Diagram

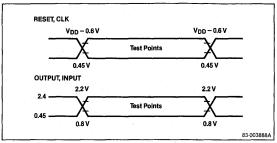
DC Characteristics

 $\mu PD70008$: $T_A = -10\,^{\circ}C$ to $+70\,^{\circ}C$, $\mu PD70008A$: $T_A = -40\,^{\circ}C$ to $+85\,^{\circ}C$, $V_{DD} = +5\,V \pm 10\%$

			Limit	в .		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input voltage high	V _{IH1}	2.2		V _{DD}	٧	Except CLK, RESET	
	V _{IH2}	V _{DD} -0.6	3	V _{DD} +0.3	٧	CLK, RESET	
input voltage low	V _{IL1}	-0.3		0.8	٧.	Except CLK, RESET	
	V _{IL2}	-0.3		0.45	٧	CLK, RESET	
Output voltage high	V _{OH}	2.4			٧	$I_{OH} = -400 \mu\text{A}$	
Output voltage low	V _{OL}			0.4	٧	$I_{OL} = 2.5 \text{mA}$	
Input leakage current high	l _{LIH}			10	μА	$V_I = V_{DD}$	
Input leakage current low	LIL			-10	μΑ	V _{IN} = 0 V	
Output leakage current high	lloh			10	μΑ	$V_0 = V_{DD}$	
Output leakage current low	lLOL			-10	μΑ	V ₀ = 0 V	

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Supply current (Note 1)						
μPD70008	I _{DD1}		10	30	mA	$t_{CYK} = 0.25 \mu s$
	I _{DD2}		500		μΑ	$t_{CYK} = 0.25 \mu s$
μPD70008A-4	I _{DD1}		9	20	mA	$t_{CYK} = 0.25 \mu s$
	DD2		80	240	μΑ	$t_{CYK} = 0.25 \mu s$
μPD70008A-6	I _{DD1}		14	30	mA	t _{CYK} =0.165 μs
	DD2		120	360	μΑ	t _{CYK} =0.165 μs

Note:


(1) I_{DD1} is normal operating current. I_{DD2} is standby mode current.

Capacitance $T_A = 25$ °C, $f_C = 1$ MHz

				Test		
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CLK input capacitance	CK			35	pF	(Note 1)
Input capacitance	Cl			5	pF	(Note 1)
Output capacitance	CO			10	pF	(Note 1)
I/O capacitance	C _{IO}			10	pF	(Note 1)

Note:

(1) All unmeasured pins returned to 0 V.

AC Characteristics

 μ PD70008: T_A = -10° C to $+70^{\circ}$ C, μ PD70008A: T_A = -40° C to $+85^{\circ}$ C, $V_{CC} = 5$ V $\pm 10^{\circ}$

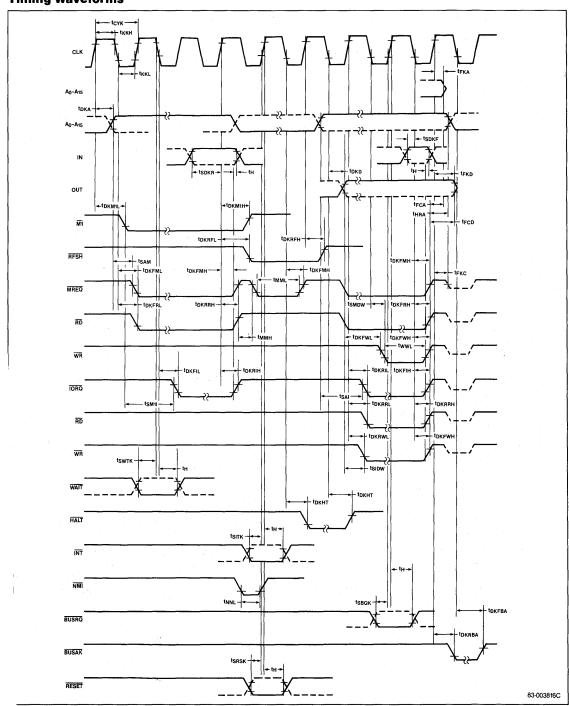
			Limits					
			μPD70008/A-4		μ PD70008A-6			Test
ignal	Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
LK	Clock period	t _{CYK}	0.25	(Note 1)	0.165	(Note 8)	μS	
	Clock pulse width high	t _{KKH}	0.11	200	0.065	200	μS	
	Clock pulse width low	t _{KKL}	110	2000	65	2000	ns	
	Clock pulse rise and fall time	t _{KR} , t _{KF}		30		20	ns	
5-A ₀	Address output delay	t _{DKA}		110		90	ns	C _L = 100 pF
	Address delay to float	t _{FKA}		90		80	ns	C _L = 100 pF
	Address stable prior to MREQ, memory cycle	t _{SAM}	(Note 2)		(Note 9)		ns	C _L = 100 pF
	Address stable prior to IORQ in I / O cycle	t _{SAI}	t _{CYK} - 70		(Note 10)		ns	$C_L = 100 pF$
	Address stable from RD, WR,	t _{HRA}	(Note 3)		(Note 11)		ns	$C_L = 100 pF$
	Address stable from RD, WR during float	t _{FCA}	(Note 4)		(Note 12)		ns	$C_L = 100 pF$
-D ₀	Data output delay	t _{DKD}		180		130	ns	C _L = 100 pF
	Delay to float during write cycle	t _{FKD}		90		80	ns	C _L = 100 pF
	Data setup time to CLK during M1 cycle	t _{SDKR}	35		30		ns	C _L =100 pF
	Data setup time to CLK during M2 to M5 cycles	t _{SDKF}	50		40		ns	C _L =100 pF
	Data stable prior to WR (memory cycle)	tsmdw	t _{CYK} -170	-	(Note 13)		ns	$C_L = 100 pF$
	Data stable prior to WR (I / 0 cycle)	tsidw	t _{KKL} +t _{KR} -170		(Note 14)		ns	C _L = 100 pF
	Data stable from WR	t _{FCD}	(Note 5)		(Note 15)		ns	C _L = 100 pF
₹	WR delay from CLK ↑ to WR low	t _{DKRWL}		65		60	ns	
	WR delay from CLK ↓ to WR low	tDKFWL		80		70	ns	
	WR delay from CLK ↓ to WR high	t _{DKFWH}		80		70	ns	
	WR low pulse width	t _{WWL}	t _{CYK} -30		(Note 18)		ns	
	M1 delay from CLK ↑ to M1 low	t _{DKM1L}		100		80	ns	C _L = 100 pF
	M1 delay from CLK 1 to M1 high	t _{DKM1H}		100		80	ns	C _I = 100 pF

μ**PD70008/A**

AC Characteristics (cont)

 μ PD70008: $T_A = -10$ °C to +70 °C, μ PD70008A: $T_A = -40$ °C to +85 °C, $V_{CC} = 5$ V ± 10 %

				Li	imits			
			μ PD700 0	8/A-4	μ PD 700	08A-6		Test
Signal	Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
RFSH	RFSH delay from CLK ↑ to RFSH low	† _{DKRFL}		130		110	ns	C _L = 100 pF
	RFSH delay from CLK † to RFSH high	[†] DKRFH		120		100	ns	C _L = 100 pF
WAIT	WAIT setup time to CLK ↓	tswtk	70		60		ns	
IALT	HALT delay from CLK ↓	t _{DKHT}		300		260	ns	C _L = 100 pF
NT	INT setup time to CLK ↑	tsitk	80		70		ns	
IMI	NMI low pulse width	t _{NNL}	80		70		ns	
USRQ	BUSRQ setup time to CLK ↓	tsbok	50		50		ns	
USAK	BUSAK delay from CLK ↑ to BUSAK low	t _{DKRBA}		100		90	ns	C _L = 100 pF
	BUSAK delay from CLK ↓ to BUSAK high	t _{DKFBA}		100		90	ns	C _L =100 pF
ESET	RESET setup to CLK	t _{SRSK}	60		60		ns	
other	Delay to float (MREQ, IORQ, RD, WR)	t _{FKC}		80		70	ns	
	M1 stable prior to IORQ (interrupt acknowledge)	t _{SM1I}	(Note 7)		(Note 19)		ns	
	Hold time for setup time	t _H	0		0		ns	
MREQ	MREQ delay from CLK ↓ to MREQ low	t _{DKFML}		85		70	ns	C _L =100 pl
	MREQ delay from CLK 1 to MREQ high	t _{DKRMH}		85		70	ns	$C_L = 100 \text{ pl}$
	MREQ delay from CLK ↓ MREQ high	t _{DKFMH}		85		70	ns	C _L =100 pi
	Pulse width MREQ low	t _{MML}	t _{CYK} -30		(Note 16)		ns	C _L = 100 pi
	Pulse width MREQ high	t _{MMH}	(Note 6)		(Note 17)	-	ns	C _L = 100 pl
ORQ.	IORQ delay from CLK 1 to IORQ low	t _{DKRIL}		75		65	ns	$C_L = 100 p$
	IORQ delay from CLK ↓ to IORQ low	†DKFIL		85		70	ns	C _L = 100 pl
	IORQ delay from CLK † to IORQ high	t _{DKRIH}		85		70	ns	C _L =100 pl
	IORQ delay from CLK ↓ to IORQ high	^t DKFIH		85		70	ns	$C_L = 100 \text{ pl}$
Ď	RD delay from CLK ↑ to RD low	t _{DKRRL}		85		70	ns	C _L = 100 pl
	RD delay from CLK ↓ to RD low	† _{DKRFL}		95		80	ns	C _L = 100 pl
	RD delay from CLK ↑ to RD high	t _{DKRRH}		85		70	ns	C _L =100 pl
	RD delay from CLK ↓ to RD high	[†] DKFRH		85		70	ns	C _L = 100 pl
ote:		(7)	t _{SM1I} = 2t _{CYK} +t _I	KH+tKF-	- 65		(14) t _{SIDW} = t _K	KL +t _{KR} - 140
	KH+tKKL+tKR+tKF	(8)	t _{CYK} = t _{KKH} +t _K	KL +1KR +1	KF		(15) t _{FCD} = t _{KK}	L+t _{KR} -55
$2) t_{SAM} = t_{Ki}$	_{CH} + t _{KF} - 65		t _{SAM} = t _{KKH} +t _K		•		(16) t _{MML} = t _C	
(3) t _{HRA} = t _{KF}	_{(L} +t _{HR} – 50		teal=tovk-55				(17) tasau = tv	


- (3) $t_{HRA} = t_{KKL} + t_{HR} 50$
- (4) $t_{FCA} = t_{KKL} + t_{KR} 45$
- (5) $t_{FCD} = t_{KKL} + t_{KR} 70$
- (6) $t_{MMH} = t_{KKH} + t_{KF} 20$

- (10) $t_{SAI} = t_{CYK} 55$
- (11) $t_{HRA} = t_{KKL} + t_{KR} 50$
- (12) $t_{FCA} = t_{KKL} + t_{KR} 40$ (13) $t_{SMDW} = t_{CYK} - 140$

- (17) $t_{MMH} = t_{KKH} + t_{KF} 20$
- (18) $t_{WWL} = t_{CYK} 30$
- (19) $t_{SM1I} = 2t_{CYK} + t_{KKH} + t_{KF} -$

Timing Waveforms

Register Configuration

Program Counter (PC)

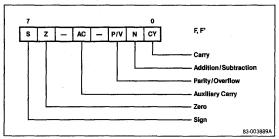
The 16-bit program counter contains the address of the next instruction to be fetched and executed. It is set to 0000H at reset.

Stack Pointer (SP)

The 16-bit stack pointer stores the first address of the portion of main memory used as a LIFO stack. SP is decremented when a CALL or PUSH is executed, or when an interrupt occurs. It is incremented when a RET, POP, or interrupt return is executed.

Index Registers (IX, IY)

These two 16-bit registers are used to perform indexed addressing.


Accumulators (A, A')

The μ PD70008/A has two 8-bit accumulators: the main accumulator (A) which is used to perform arithmetic and logic operations, and an alternate accumulator (A'). The contents of the main and alternate accumulators can be exchanged using the (EX) instruction. The alternate accumulator can be used for background operation, or to save the data in the main accumulator when an interrupt is processed.

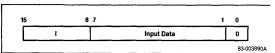
Flag Registers (F, F')

The μ PD70008/A has two 8-bit flag registers: main (F) and alternate (F') of the format shown in figure 1. The main flag register (F) has the status flags resulting from normal operation. The contents of the main and alternate registers can be exchanged using the exchange (EX) instruction. The alternate (F') register can be used for background operation, or to save the state of the main flag register when an interrupt is processed.

Figure 1. Flag Register Format

General Purpose Registers

The μ PD70008/A has twelve 8-bit general purpose registers: six main registers (B, C, D, E, H, and L) and six alternate registers (B', C', D', E', H', and L'). Each register can be used individually as an 8-bit register, or can be used in pairs as 16-bit registers (BC, B'C', DE, D'E', HL, and H'L').


The main registers are used when instructions are executed normally. The contents of the main and alternate registers are exchanged using the EX instruction. The alternate registers may be used for background operation or to save the contents of the main registers when an interrupt is processed.

Interrupt Page Address Register (I)

This 8-bit register is used to generate addresses in maskable interrupt mode 2. See figure 2. These addresses are used with externally input data to reference an interrupt start address table.

This register is cleared to 00H at reset.

Figure 2. Interrupt Reference Address

Memory Refresh Register (R)

This 7-bit register retains the refresh address for the external dynamic memory. The contents of this register are automatically incremented in each opcode fetch (M1) cycle. The contents of this register are output or the lower 7 bits of the address bus (A_6-A_0) .

This register is cleared to 00H at reset.

Timing

This section describes read and write timing for mem ory and I/O devices in connection with CPU operation timing. A single clock cycle (from one leading edge to the next) is defined as one timing state. The nth state is represented as Tn. A single instruction consists of two to six machine cycles. A single machine cycle require three to six timing states. The nth machine cycle is represented as Mn.

Table 1 lists the number of states normally required t each cycle.

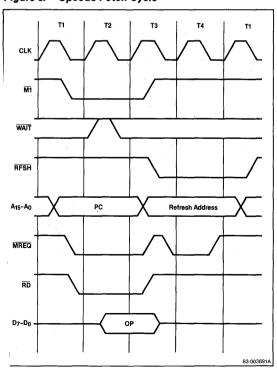


Table 1. Timing States per Cycle

Cycle	Number of States per Machine Cycle
Opcode fetch	4
Memory read	3
Memory write	3
I/O read	4
I/O write	4

The four states for I/O read and write include a single wait state (TW). The $\mu\text{PD70008/A}$ inserts one wait state in every I/O read or write. Slower external devices may assert the WAIT signal to request longer read and write access times. This time will be added to the original number of clock states. The WAIT signal is monitored on the trailing edge of clock state T2. If WAIT is asserted, a wait state (TW) is generated. The $\mu\text{PD70008/A}$ continues to monitor WAIT on the clock's trailing edge, and supplies additional wait states a long as that signal is asserted. When WAIT is released the $\mu\text{PD70008/A}$ proceeds to the T3 state.

Figure 3. Opcode Fetch Cycle

Opcode Fetch Cycle

The first machine cycle of each instruction, M1, is the opcode fetch cycle. See figure 3. The opcode is fetched from memory during the first half of this cycle, and the dynamic memory is refreshed during the latter half.

The memory outputs the opcode to the data bus when $\overline{\text{MREQ}}$, $\overline{\text{RD}}$, or $\overline{\text{M1}}$ is asserted. It is then read into the CPU at the leading edge of clock state T3.

The CPU outputs a refresh address onto A_6 – A_0 during T3. It is applied to the dynamic memory when \overline{RFSH} or \overline{MREQ} are asserted.

Memory Read Cycle

The memory contents are read out to the data bus when $\overline{\text{MREQ}}$ or $\overline{\text{RD}}$ is asserted. The $\mu\text{PD70008/A}$ reads data from the data bus on the trailing edge of T3. See figure 4.

Memory Write Cycle

Write data is output to the data bus between the last half of state T1 of the current machine cycle and the first half of state T1 of the next cycle. It is written to memory when WR or MREQ is asserted. See figure 5.

Figure 4. Memory Read Cycle

Figure 5. Memory Write Cycle

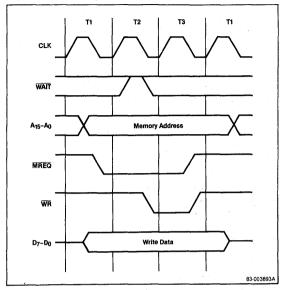
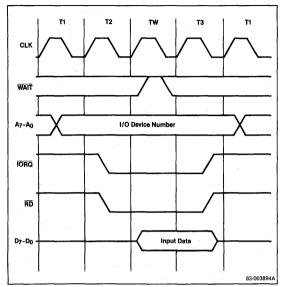
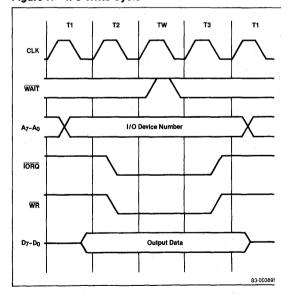



Figure 6. I/O Read Cycle


I/O Read Cycle

The contents of an I/O device are read out to the data bus when $\overline{\text{IORQ}}$ or $\overline{\text{RD}}$ is asserted. The $\mu\text{PD70008/A}$ reads the data bus on the trailing edge of the T3 clock state. See figure 6. To compensate for I/O devices with longer access times, the $\mu\text{PD70008/A}$ generates one wait state (TW) regardless of the condition of the $\overline{\text{WAIT}}$ signal. To extend the access time, the CPU must detect the $\overline{\text{WAIT}}$ signal asserted at the falling edge of TW.

I/O Write Cycle

Write data is output to the data bus between the last half of state T1 of the current machine cycle and the first half of T1 of the next machine cycle. It is written to an I/O device when $\overline{\text{IORQ}}$ or $\overline{\text{WR}}$ is asserted. As in the I/O read cycle, one wait state is automatically inserted in the I/O write cycle. See figure 7. The $\overline{\text{WAIT}}$ signal is used to insert additional wait states in the I/O write cycle in exactly the same way as in the read cycle.

Figure 7. I/O Write Cycle

Bus Request State

The bus request causes the μ PD70008/A address bus (A₁₅-A₀), data bus (D₇-D₀), and control bus (MREQ, IORQ, RD, and WR) pins to enter the high impedance state. This makes the buses available to external devices for DMA access.

The bus request state is controlled by the bus request (BUSRQ) signal. See figure 8. The μ PD70008/A detects BUSRQ at the rising edge of the last state of each machine cycle. If it is active (low) the μ PD70008/A does not move on the next machine cycle, but enters the bus request state. The μ PD70008/A asserts BUSAK to indicate that the BUSRQ signal has been received, and the three buses have entered the high impedance state.

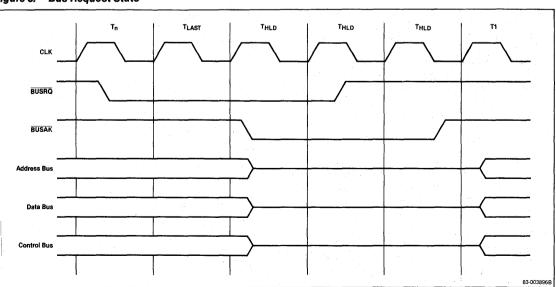
 $\overline{\text{BUSRQ}}$ is checked at the rising edge of all clock states. When it becomes inactive the $\mu\text{PD70008/A}$ leaves the bus request state, and proceeds to the next cycle.

 $\overline{\text{BUSRQ}}$ temporarily suspends the standby mode. When $\overline{\text{BUSRQ}}$ is asserted, the μ PD70008/A leaves the standby mode and enters the bus request state. When $\overline{\text{BUSRQ}}$ is released the μ PD70008/A returns to the standby mode.

Interrupts are disabled during the bus request state.

Interrupts

The μ PD70008/A has two types of interrupt: maskable $\overline{[NT]}$) and nonmaskable $\overline{[NM]}$). The nonmaskable interupt request cannot be masked by software. It will be acconsided unless the μ PD70008/A is in the bus


request state. The maskable interrupt can be masked by software. It is controlled by setting or resetting the interrupt enable flip-flop (IFF) using the EI or DI instructions. INT has a lower priority than the nonmaskable interrupt. The maskable interrupt will therefore not be acknowledged if there is a nonmaskable interrupt, or if the μ PD70008/A is in the bus request state.

INTI < NMI < BUSRO < RESET

Nonmaskable Interrupt Operation

The falling edge of $\overline{\text{NMI}}$ always sets the nonmaskable interrupt flip-flop. The $\mu\text{PD70008/A}$ checks the flip-flop at the rising edge of the last clock state of an instruction. If it is set, the $\mu\text{PD70008/A}$ transfers control to the nonmaskable interrupt service routine. The interrupt process starts at the opcode fetch cycle, (M1, 5 states) but the opcode fetched at this point is ignored. The contents of the PC are stored on the stack in the next two machine cycles (M2, 3 states and M3, 3 states). At the same time, the address 0066H is loaded into the PC, and the state of the interrupt enable flip-flop is saved to an exclusive flip-flop. The entire interrupt routine requires 3 machine cycles (11 states). The contents of the PC and IFF are restored by the execution of the RETN instruction at the end of the interrupt procedure.

Maskable Interrupt Operation

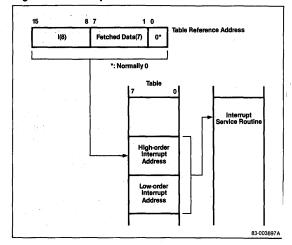
Maskable interrupts are processed in three modes. In each mode, the INT signal is detected at the rising edge of the last clock state of each instruction. The M1 instruction specifies which mode is to be used.

Mode 0. In this mode, the data placed on the bus by the interrupting device is treated as an instruction. It is fetched in the opcode fetch cycle (M1, 7 states) and executed. The instruction used in this mode is usually a CALL (3 bytes) or RST (1 byte).

If a 1-byte RST instruction is executed, the contents of the PC are saved to the stack. A fixed address specified by the opcode is loaded into the PC during the next M2 (3 states) and M3 (3 states). The execution of this interrupt requires 3 machine cycles or 13 states.

If a 3-byte CALL instruction is executed, the second and third bytes are fetched during the M2 and M3 cycles (3 states each). During M4 and M5 (3 states each), the contents of the PC are saved to the stack and the second and third bytes of the CALL instruction are loaded into the PC. This interrupt requires 5 machine cyces and a total of 19 clock states.

Mode 1. In this mode, the data fetched during M1 (7 states) is ignored, and the μ PD70008/A proceeds to the next cycle. During the M2 and M3 machine cycles (3 states each), the contents of the PC are saved to the stack and replaced by the interrupt address 0038H. This interrupt requires 3 machine cycles or 13 states.


Mode 2. In this mode, the data fetched from the interrupting device and the contents of the interrupt page register (I) are used to reference an interrupt start address table. Program execution jumps to the 16-bit address referenced by the table. See figure 9. The data is fetched during the opcode fetch cycle (M1, 7 states). During M2 and M3 (3 states each) the contents of the PC are saved to the stack. During the M4 and M5 cycles, (3 states each) the table is referenced and the contents of the table location are loaded into the PC. This interrupt requires 5 machine cycles or 19 states.

Standby Mode

The μ PD70008/A is provided with a standby mode (HALT). In the standby mode, power consumption is approximately 2% of normal operating power consumption. The standby mode is set by executing the HALT instruction.

In the standby mode, the state of the $\mu PD70008/A$ is retained. The contents of all registers and the state of all flags are retained as well. Clock signals are supplied only to indispensable circuits in the $\mu PD70008/A$ to minimize power consumption.

Figure 9. Interrupt Address Table

External operations such as memory access and memory refresh are not performed in the standby mode.

Table 2 shows the state of each output pin in the standby mode.

Table 2. Standby Mode

Pin	Status					
Data bus D ₇ -D ₀	High level, pulled up through internal resistance					
Address bus A ₁₅ -A ₀	High or low level signals					
Control bus RD, WR, MREQ, IORQ, M1	High level (inactive)					
RFSH	High level (inactive)					
HALT	Low level (active)					

The standby mode is released when a reset or an interupt occurs. The standby mode is temporarily supended by a bus request, but not released.

RESET in Standby Mode

When the RESET signal becomes active (low) the standby mode is released and a normal reset is proformed.

NMI in Standby Mode

When the NMI signal is asserted (low) the standby mo is released and normal nonmaskable interrupt procesing is performed. The interrupt is not performed in the bus request state.

INT in Standby Mode

When the INT signal is asserted (low) the standby mode is released. If the interrupt is enabled, normal interrupt processing is performed. If the interrupt is disabled, execution resumes at the instruction following the HALT instruction.

BUSRQ in Standby Mode

The BUSRQ signal is detected at the rising edge of each clock in the standby mode. If the BUSRQ signal is active (low) the μ PD70008/A leaves the standby mode, and enters the bus request state. When BUSRQ is released, the standby mode is resumed. The standby mode is not released by the BUSRQ signal.

RESET

The RESET signal must be asserted (low) for over 3 clock cycles to be recognized. The following steps are the reset initialization process:

- The program counter (PC) is cleared to 0000H.
- The interrupt enable flip-flop (IFF) is reset to 0, disabling maskable interrupts. The interrupt mode is set to 0
- The interrupt page address register (I) is cleared to 00H.
- The memory refresh register (R) is cleared to 00H.
- The address bus (A₁₅-A₀) and data bus (D₇-D₀) are set to high impedance.
- All control outputs are set in their inactive state.
- The standby mode is released.

The following registers are undefined at reset:

Stack pointer (SP) Accumulators (A,A') Flag registers (F,F') General purpose registers (B, B', C, C', D, D', E, E', H, H', L, L') Index registers (IX,IY)

When RESET is released the program will begin execuion from location 0000H.

nstruction Set

ach operand should be written in the operand column fan instruction according to the description in table 3. apital letters are keywords and should be written as ney appear.

Table 3. Operand Description

addr	16-bit immediate data or label
faddr	00H, 08H, 10H, 18H, 20H, 28H, 30H, 38H immediate data or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label (bit specification of 8-bit register / memory)
d	8-bit displacement (signed 2's complement)
r	A, B, C, D, E, H, L
r'	A', B', C', D', E', H', L'
rp	BC, DE, HL, AF
rp1	BC, DE, HL, SP
rp2	BC, DE, IX, SP
rp3	BC, DE, IY, SP
е	Displacement for relative jump (signed 2's complement)

Selection of Register and Condition

rp	qq	rpi	ss, dd	rp2	pp	rp3	rr
BC	00	BC	00	ВС	00	ВС	00
DE	01	DE	01	DE	01	DE	01
HL	10	HL	10	IX	10	ΙΥ	10
AF	11	SP	11	SP	11	SP	11

r, r'	r, r'	bit	b	faddr	t
B B'	000	0	000	00H	000
C C'	001	1	001	08H	001
D D'	010	2	010	10H	010
E E'	011	3	011	18H	011
H H'	100	4	100	20H	100
L L'	101	5	101	28H	101
A A'	111	6	110	30H	110
		7	111	38H	111

Flag Operation

(Blank): Flag not affected

0: Flag reset

1: Flag set

X: Flag affected according to result of operation

U: Flag unknown

Structure of Instruction Byte for Addressing

_		154.	-	
Byte	Op Code	Byte]	
	- 11. 4.	31.7		
(IX + d) or (IY + d)	Op Code	Op Code	Displacement	
	Op Code	Op Code	Displacement	Op Code
	<u> </u>			
(IX +d), Byte or (IY +d), Byte	Op Code	Op Code	Displacement	Byte
(Word) or Word	Op Code	WordL	WordH	
· <u>E</u>	Op Code	Op Code	WordL	WordH
_				
Addr	Op Code	AddrL	Addr _H	,
			_	
•[Op Code	e-2]	
				83-00389

									Op	erati	on Co	de							No. of	No. of				ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1_	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	P/V	N	_
8-Bit Transfer	r Instructions																									
LD	r, r'	r ← r′	0	- 1		r			r'										4	1						
	r, byte	r ← byte	0	0		r		1	1	0									7	2						
	r, (HL)	r ← (HL)	0	1		r		1	1	0									7	1						
	r, (IX + d)	r ← (IX + disp)	1	1	0	1	1	1	0	1	0	1		r		1	1	0	19	3						
						di	sp																			
	r, (IY = d)	r ← (IY + disp)	. 1	1	1	1	1	1	0	1	0	1		r		1	1	0	19	3						
						di	sp									-										
	(HL), r	(HL) ← r	0	1	1	1	0		r				_						7	1						
	(IX + d), r	(IX + disp) <− r	1	1	0	1	1	1	0	1	0	1	1	1	0		r		19	3						
						di	sp																			
	(IY + d), r	(IY + disp) ← r	1	1	1	1	1	1	0	1	0	1	1	1	0		r		19	3						_
						di	sp																			
	(HL), byte	(HL) ← byte	0	0	1	1	0	1	1	0									10	2						_
	(IX + d), byte	(IX + disp) ← byte	1	1	0	1	1	1	0	1	0	0	1	1	0	1	1	0	19	4						_
						di	sp			_																
	(IY + d), byte	(IY + disp) ← byte	1	1	1	1.	1	1	0	1	0	0	1	1	0	1	1	0	19	4						_
						di	sp		-																	
	A, (BC)	A ← (BC)	0	0	0	0	1	0	1	0									7	1						_
	A, (DE)	A ← (DE)	0	0	0	1	1	0	1	0									7	1						
	A, (word)	A ← (word)	0	0	1	1	1	0	1	0									13	3						_
	(BC), A	(BC) ← A	0	0	0	0	0	0	1	0									7	1						_
	(DE), A	(DE) A	0	0	0	1	0	0	1	0									7	1						_
	(word), A	(word) ← A	0	0	1	.1	0	0	1	0									13	3						
	A, I	A ← I	1	1	1	0	1	1	0	1	0	1	0	1	0	1	1	1	9	2	X	. x	0	IFF	0	_
	A, R	A ← R	1	1	1	0	1	1	0	1	0	1	0	1	1	1	1	1	9	2	х	х	0	IFF		_
	I, A	1 ← A	1	1	1	0	1	1	0	1	0	1	0	0	0	1	1	1	9	2						_
	R, A	R ← A	1	1	1	0	1	1	0	1	0	1	.0	0	1	1	1	1	9	2						_
	rp1, word	rp1 ← word	0	0	d	d	0	0	0	1									10	3					_	_
	IX, word	IX — word	1	1	0	1	1	1	0	1	0	0	1	0	0	0	0	1	14	4						_
	IY, word	IY ← word	1	1	1	1	1	-1	0	1	0	0	1	0	0	0	0	1	14	4						
	HL, (word)	H ← (word + 1), L ← (word)	0	0	1	0	1	0	1	0									16	3						_

									Ot	erati	on Co	ode							No. of	No. of			Fla	ags		
Mnemonic	Operands	Operation	 7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	H	PIV	N	C
Sixteen-Bit Tr	ansfer Instruction	3						-																		
LD	rp1, (word)	$rp1_{H} \leftarrow (word + 1),$ $rp1_{L} \leftarrow (word)$	1	1	1	0	1	1	0	1	0	1	d	d	1	0	1	1	20	4						
	IX, (word)	$IX_H \leftarrow (word + 1),$ $IX_L \leftarrow (word)$	1	.1	0	1	1	1	0	1	0	0	1	0	1	0	1	0	20	4						
	IY, (word)	$IY_H \leftarrow (word + 1),$ $IY_L \leftarrow (word)$	1	1	1	1	1	1	0	1	0	0	1	0	1	0	1	0	20	4						
	(word), HL	(word + 1) ← H, (word) ← L	0	0	1	0	0	0	1	0			1.						16	3						
	(word), rp1	(word + 1) ← rp1 _H , (word) ← rp1 _L	1	1	1	0	1	1	0	1	0	1	d	d	0	0	1	1	20	4	-					
	(word), IX	$(word + 1) \leftarrow IX_H,$ $(word) \leftarrow IX_L$	1	1	0	1	1	1	0	1	0	0	1	0	0	0	1	0	20	4						
	(word), IY	$(word + 1) \leftarrow IY_H,$ $(word) \leftarrow IY_L$	1	1	1	1	1	1	0	.1	0	0	1	0	0	0	1	0	20	4				-		
	SP, HL	SP ← HL	 1	1	1	1	1	0	0	-1									6	1						
	SP, IX	SP ← IX	1	1	0	1	1	1	0	1	1	1	1	1	1	0	0	1	10	2						
	SP, IY	SP ← IY	 1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	1	10	2						
PUSH	гр	$(SP - 1) \leftarrow rp_L$, $(SP - 2) \leftarrow rp_H$, $SP \leftarrow SP - 2$, 1	1	q	q	0	1	0	1			_				-		11	1			-	<u> </u>		
	IX	$(SP - 1) \leftarrow X_L,$ $(SP - 2) \leftarrow X_H,$ $SP \leftarrow SP - 2$	1	1	0	1	1	1	0	1	1	1	1	0	0	1	0	1	15	2	_					
	IY	$(SP - 1) \leftarrow IY_L,$ $(SP - 2) \leftarrow IY_H,$ $SP \leftarrow SP - 2$	1	. 1	1	1	1	1	0	1	1	1	1	0	0	1	0	1	15	2						
POP	rp	$rp_L \leftarrow (SP),$ $rp_H \leftarrow (SP + 1),$ $SP \leftarrow SP = 2$	1	1	q	q	0	0	0	1						• .			10	1						
	IX	$IX_L \leftarrow (SP),$ $IX_H \leftarrow (SP + 1),$ $SP \leftarrow SP + 2$	1	1	0	1	1	1	0	1	1	. 1	1	0	0	0	0	1	14	2				-		
	ΙΥ	$IY_L \leftarrow (SP),$ $IY_H \leftarrow (SP + 1),$ $SP \leftarrow SP + 2$	1	. 1	- 1	1	1	1	0	1	1	1	1	0	0	0	0	1	14	2					_	

instruction Set	(cont)

									Op	erati	on Co	ode							No. of	No. of			Fla	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	P/V	N	C
Data Convers	ion Instructions																									
EX	DE, HL	DE ↔ HL	1	1	1	0	1	0	1	1									4	1						
	AF, AF'	$A \leftrightarrow A', F \leftrightarrow F'$	0	0	0	0	1	0	0	0									4	1						_
EXX		BC ↔ BC', DE ↔ DE', HL ↔ HL'	1	1	0	1	1	0	0	1		,							4	1						
EX	(SP), HL	$(SP) \leftrightarrow L$, $(SP + 1) \leftrightarrow H$, $SP \rightarrow SP + 2$	1	1	1	0	0	0	1	1									19	1						
	(SP), IX	$(SP) \leftrightarrow IX_L,$ $(SP + 1) \leftrightarrow IX_H,$ $SP \rightarrow SP + 2$. 1	1	0	1	1	1.	0	1	. 1.	1	. 1	. 0	0	0	1	1	23	2				٠.		
	(SP), IY	$(SP) \leftrightarrow IY_L$, $(SP + 1) \leftrightarrow IY_H$, $SP \leftarrow SP + 2$	1	1	1	1	. 1	1	0	1	1	1	1	0	0	0	1	1	23	2			•		-	
Block Transfe	r Instructions														-											_
LDI		(DE) ← (HL), DE ← DE + 1, HL ← HL + 1, BC ← BC − 1		1	1	0	1	1	0	1	1	0	1	0	0	0	0	0	16	2			0	Х	0	
LDIR		(DE) ← (HL), DE ← DE + 1, HL ← HL + 1, BC ← BC − 1, End if BC = 0	. 1 .	. 1	1	0	1	1.	0	1.	1	0	1.	1	0	0	0	0	21 / 16(1)	2			0	0	0	
LDD		(DE) ← (HL), DE ← DE − 1, HL ← HL − 1, BC ← BC − 1	1	1	1	0	1	1	0	1	1	0	1	0	1	0	0	0	16	2			0	X	0	
LDDR		$(DE) \leftarrow (HL),$ $DE \leftarrow DE - 1,$ $HL \leftarrow HL - 1,$ $BC \leftarrow BC - 1,$ $End \ if \ BC = 0$. 1	1	1	0	. 1	1	0	1	1	0	1	1	1	0	0	0	21 / 16(1)	2			0	0	. 0	
Block Search	Instructions							-																		
CPI		A — (HL), HL ← HL + 1, BC ← BC — 1	1	1	1	0	1	1	0	1	1	0	1	0	0	0	0	1	16	2	×	x	X	х	1	
CPIR		$A - (HL),$ $HL \leftarrow HL + 1,$ $BC \leftarrow BC - 1,$ $End if A = (HL) or BC = 0$	1	1	1	0	1	1	0	1	1	0	1	1	0	0	0	1	21/16(2)	2	X	x	X	X	1	

									O	perati	on Co	de							_ No. of	No. of	_		FI	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	PIV	N	C
Block Search	Instructions (cont)																									
CPD		A — (HL), HL ← HL — 1, BC ← BC — 1	1	1	1	0	1	1	0	1	1	0	1	0	1	0	0	1	16	2	х	X	X	х	1	
CPDR		A $-$ (HL), HL \leftarrow HL $-$ 1, BC \leftarrow BC $-$ 1, End if A $=$ (HL) or BC $=$ 0	. 1	1	1	0	1	1	,0	1	1	0	1	1	1	0	0	1	21 / 16(2)	2	X	x	X	Х	1	
Eight-Bit Aritl	hmetic Operation In	structions																								
ADD	A, r	A ← A + r	1	0	0	0	0		r										4	1	Х	Х	Х	٧	0	Х
	A, byte	A ← A + byte	1	1	0	0	0	1	1	0									7	2	X	х	Х	٧	0	Х
	A, (HL)	A ← A + (HL)	1	0	0	0	0	1	1	0									7	. 1	Х	х	Х	٧	0	Х
	A, (IX + d)	A ← A + (IX + disp)	1	1	0	1	1	1	0	1	1	0	0	Ó	0	1	1	0	19	3	Х	Χ.,	х	٧	0	Х
						d	isp												-							
	A, (IY + d)	A ← A + (IY + disp)	1	1	1	1	1	1	0	1	1	0	0	0	0	1	1	0	19	3	Х	х	Х	٧	0	Х
						d	isp												-							
ADC	A, r	A A + r + CY	1	0	0	0	1		.r										4	1	Х	. x	. X	٧	.0	х
	A, byte	A ← A + byte + CY	1	1	0	0	1	1.	1	0									7	2	х	х	Х	٧	0	х
	A, (HL)	A ← A + (HL) + CY	1	0	0	0	1	1	1	0									7	.1	Х	х	х	٧	0	х
	A, (IX + d)	A - A + (IX + disp) + CY	1	1	0	1	1	1	0	1	1	0	0	0	1	1	1	0	19	3	Х	х	Х	٧	0	х
						d	isp												- -							
	A, (IY + d)	A - A + (IY + disp) + CY	1	1	1	1	1	1	0	1	1	0	0	0	. 1	1	1	0	19	3	Х	х	х	٧	0	х
		. •				d	isp			-									-							
SUB	A, r	A ← A – r	1	0	0	1	0		r										4	1	X	. X	Х	٧	1	Х
	A, byte	A - A - byte	1	1	0	1	0	1	1	0									7	2	Х	х	Х	٧	1	х
	A, (HL)	A ← A − (HL)	1	0	0	1	0	1	1	0			*						7	.1	х	Х	Х	٧	1	х
	A, (IX + d)	A ← A − (IX + disp)	1	1	0	1	1	1	0	1	1	0	0	1	0	1	1	0	19	3	х	х	Х	٧	1	Х
						d	isp												- 							
	A, (IY + d)	A ← A − (IY + disp)	1	1	1	1	1	1	0	1	1	0	0	1	0	1	1	0	19	3	х	Х	X	٧	1	X
						d	isp												-							

	CONTRACTOR		ICONTI
HIIDLI	uviivi	1 261	(cont)

									Op	erati	on Co	de							No. of	No. of			Fla	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	PIV	N	C
Eight-Bit Arith	hmetic Operation I	nstructions (cont)																						•		
SBC	A, r	A ← A − r − CY	1	0	0	_1	1		r									4	1	X	X	X	٧	1	Х	
	A, byte	A ← A − byte − CY	1	1	0	1	1	1	1_	0	-								7	2	X	X	X	٧	1	· >
	A, (HL)	A ← A − (HL) − CY	1	0	0	1	1	1	1	0									7	1	Х	Х	Х	٧	1)
	A, (IX + d)	A ← A − (IX + disp) − CY	1	1	0	1	1	1	0	1	1	0	0	1	1	1	1	0	19	3	Х	Х	Х	٧	1	×
						di	isp																			
	A, (IY + d)	A ← A − (IY + disp) − CY	1	1	1	1	1	1	0	1	1	0	0	1	1	1	1	0	19	3	Х	Х	Х	٧	1)
			-			di	isp																			
Eight-Bit Logi	cal Operation Inst	ructions																								
AND	A, r	A ← A AND r	1	0	1	0	0		r										4	1	Χ.	Х	1	Р	0	C
	A, byte	A ← A AND byte	- 1	1	1	0	0	1	1	0									7	2	Х	Х	1	Р	0	0
	A, (HL)	A ← A AND (HL)	1	0	1	0	0	1	1	0									7	1	Х	X	1	Р	0	0
	A, (IX + d)	A ← A AND (IX + disp) – CY	1	1	0	1	1	1	0	1	1	0	1	0	0	1	1	0	19	3	Х	Х	1	Р	0	. (
						di	isp												•							
	A, (IY + d)	A ← A AND (IY + disp)	1	1	1	1	1	1	0	1	1	0	1	0	0	1	1	0	19	3	Х	Х	1	Р	0	(
						đi	isp																			
OR .	A, r	A ← A OR r	1	0	1	1	0		r										4	1	Х	Х	0	Р	0	0
	A, byte	A ← A OR byte	1	1	1.	1	0	1	1	0			-						7	2	Х	Х	0	Р	0	0
	A, (HL)	A ← A OR (HL)	. 1	0	1	1	0	1	1	0							· .		7	. 1	Х	х	0	P	0	0
	A, (IX + d)	A ← A OR (IX + disp)	1	1	0	1	1	1	0	1	1	0	1	1	0	1	1	0	19	3	Х	х	0	Р	0	0
						di	isp												,							
	A, (IY + d)	A ← A OR (IYJ + disp)	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	19	3	Х	х	0	Р	0	0
			-			di	isp						~~~													
XOR	A, r	A — A XOR r	1	0	1 -	0	1		r										4	1	Х	х	0	P	0	-0
	A, byte	A ← A XOR byte	1	1	1	0	1	1	1	0									7	2	Х	Х	0	Р	0	-0
	A, (HL)	A ← A XOR (HL)	1	0	1	0	1	1	1	0									7	1	Х	Х	0	P	0	0
	A, (IX + d)	A ← A XOR (IX + disp)	1	1	0	1	1	1	0	1	1	0 -	1	0	1	1	1	0	19	3	X	X	0	Р	0	0
			-			di	isp											-	•							
	A, (IY + d)	A ← A XOR (IY + disp)	1	1	1	1	1	1	0	1	1	0	1	0	1	1.	1	0	19	3	Х	X	0	Р	0	0
	,	• • • •				di	isp																			

-									O	erati	on Co	ode							No. of	No. of			Fi	ngs		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	\$	Z	Н	PIV	N	C
ight-Bit Logi	ical Operation Instr	ructions (cont)																								
CP	A, r	A – r	1	0	1	1	1		r										4	1	Х	Х	Х	٧	1	Х
	A, byte	A – byte	1	1	1	1	1	1	1	0									7	2	Х	х	х	٧	1_	Х
	A, (HL)	A (HL)	1	0	1	1	1	1	1	0									7	1	Χ:	Х	X	٧	1	х
	A, (IX + d)	A - (IX + disp)	1	1	0	1	1	1	0	1	1	0	1	. 1	1	1	1	0	19	3	Х	Х	Х	٧	1	х
						di	sp											-								
	A, (IY + d)	A - (IY + disp)	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	0	19	3	Х	X	Х	٧	1	X
						di	sp																			
Eight-Bit Incr	ement / Decrement	t Instructions																								
INC	r	r < r + 1	0	. 0		r		1	0	0									4	1	х	х	х	٧	0	
	(HL)	(HL) ← (HL) + 1	0	0	1	1	0	1	0	0									11	. 1	х	х	Х	٧	0 -	
	(IX + d)	(IX + disp) ← (IX + disp) + 1	1	1	0	1	1	1	0	1	0	0	1	1	0	1	0	0	23	3	х	×	х	٧	0	
						di	sp			-																
	(IY + d)	(IY + disp) ← (IX + disp) + 1	1	1	1	1	1	. 1	0	1	0	0	1	1	0	1	0	0	23	3	X	Χ.	х	٧	0	
						di	sp										-									
DEC	r	r ← r – 1	0	0		г		1	0	1									4	1	х	X	· X	٧	1	
	(HL)	(HL) ← (HL) – 1	0	0	1	1	0	1	0	1							•		11	1 .	Х	х	х	٧	1	
	(IX + d)	$(IX + disp) \leftarrow (IX + disp) - 1$	1	1	0	1	1	1	0	1	0	0	1	1	0	1	0	1	23	3	Х	X	х	٧	1	
						di	sp																			
	(IY + d)	(IY + disp) ← (IY + disp) – 1	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0	1	23	3	Х	х	х	٧	1	
						di	sp																			
Sixteen-Bit Ar	rithmetic Operation	Instructions																								
ADD	HL, rp1	HL ← HL + rp1	0	0	s	s	1	0	0	1									11	1			U		0	х
ADC	HL, rp1	HL ← HL + rp1 + CY	1	1	1	0	1	1	0	1	0	1	s	s	1	0	1	0	15	2	х	X	U	٧	0	Х
SBC	HL, rp1	HL ← HL – rp1 – CY	1	1	1	0	1	1	0	1	0.	1	s	s	0	0	1	0	15	2	х	x	U	٧	1	X
ADD	IX, rp2	IX ← IX + rp2	1	1	0	1	1	1	0	1	0	0	р	р	1	0	0	1	15	2		-	U		0	X
	IY, rp3	IY ← IY + rp3	1	1	1	1	1	1	0	1	0	0	r	r	1	0	0	1	15	2			U		0	х
Sixteen-Bit In	crement / Decreme	ent Instructions																	···							
INC	rp1	rp1 ← rp1 + 1	0	0	s	s	0	0	1	1									6	1						_
	IX	IX ← IX + 1	1	1	0	1	1	1	0	1	0	0	1	0	0	0	1	1	10	2						
	ΙΥ	IY ← IY + 1	1	1	1	1	1	1	0	1	0	0	1	0	0	0	1	1	10	2						
DEC	rp1	rp1 ← rp1 – 1	0	0	s	s	1	0	1	1	<u> </u>								6	 1						
	IX	IX ← IX − 1	1	1	0	1	1	1	0	1	0	0	1	0	1	0	1	1	10	2	-					_
	IY		1	1	1	<u> </u>	1					0		0	1	0	1	1	10	2						

									Op	erati	on Co	ode							No. of	No. of			Fla	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	PIV	N	C
Accumulator	Operation Instruct	ions																								
DAA		Decimal adjust accumulator	0	0	1	0	0	1	1	1									4	1	Х	X	Х	Р		Х
CPL	· · · · · ·	$A \leftarrow \overline{A}$	0	0	1	0	1	1	1	1									4	1			1		1	
NEG		A ← Ā + 1	1	1	1	0	1	1	0	1	0	1	0	0	0	1	0	0	8	2	X	Х	Х	٧	1	х
CCF		CY ← CY	0	0	1	1	1	1	1	1									4	1			U		0	Х
SCF		CY ← 1	0	0	1	1	0	1	1	1									4	1			0		0	1
Rotate Instru	ctions																									
RLCA			. 0	0	0	0	0	1	1	1		•							4	1			0		0	х
RLA			0	0	0	1	0	1	1	1									4	1			0		0	x
RRCA			0	0	0	0	1	1	1	1									4	1			0		0	Х
RRA			0	0	0	1	1	. 1	1	1							-		4	1		-	0	0	Х	
RLC	r		1	1	0	0	1	0	1	1	. 0	0	0	0	0		r		8	2	х	х	0	P	0	x
	(HL)		1	1	0	0	1	0	1	1	0	0	0	0	0	1	1	0	15	2	Х	Х	0	Р	0	X
	(IX + d)		1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	Х	Х	0	Р	0	х
						di	isp				0	0,	0	0	0	1	1	0								
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	Х	Х	0	Р	0	х
						d	isp				0	0	0	. 0	0	1	. 1	0								
RL	r		1	1	0	0	1	0	1	1	0	0	0	1	0		r		8	2	Х	х	0	Р	0	Х
	(HL)		1	- 1	0	0	1	0	1	1	0	0	0	1	0	1	1	0	15	2	Х	Х	0	Р	0	х
	(IX + d)		1	1	0	1	1	1	0	1	1	1	0	1	1	0	1	1	23	4	X	Х	0	Р	0	Х
						d	isp				0	0	0	1	0	1	1	0								
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	X	Х	0	Р	0	X
						di	isp				0	0	0	1	0	1	1	0								
RRC	r		1	1	0	0	1	0	1	1	0	0	0	0	1		r		8	2	Х	Х	0	Р	0	х
	(HL)		1	1	0	0	1	0	.1	1	0	0	0	0	1	.1	1	0	15	2	х	х	0	Р	0	х
	(IX + d)		1	1	0	1	. 1	1	0	1	1	1	0	0	1	0	1	1	23	4	Х	х	0	Р	0	Х
						d	isp				0	0	0	0	1	1	1	0								
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	_1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	Х	х	0	Р	0	х
						d	isp				0	0	0	0	1	1	1	0								

					_				0	perat	on C	ode							No. of	No. of			F	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	P/V	N	C
Rotate Instru	ictions (cont)																									
RR	r		1.	1	0	0	. 1	0	1	1	0	0	0	1	1		r		8	2	χ	Х	0	Р	0	>
	(HL)		1	1	. 0	0	1	0	1	1	0	0	0	1	1	- 1	1	0	15	2	Х	Х	0	Р	0	×
	(IX + d)		1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	Х	Х	0	Р	0	х
			-			d	isp		-		0	0	0	1	1	1	1	0	•							
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	Х	Х	0	P	0	Х
						d	isp		- /		0	0	0	1	1	- 1	1	0								
RLD			1	1	1	0	1	1	0	1	0	1	1	0	1	1	1	1	18	2	X	X	0	P	0	
														-						_					-	
RRD			1	1	1	0	1	1	0	1	0	1	1	0	0	1	1	1	18	2	Х	Х	0	Р	0	
Shift Instruct	tions																									
SLA	<u>r</u> .		1	1	0	0	1	0	1	1	0	0	1	0	0		r		8	2	Х	Х	0	Р	0	x
	(HL)		_ 1	1	0	0	1	0	1	1	0	0	1	0	0	1	1	0	15	2	Х	Х	0	Р	0	X
	(IX + d)		1	1	0	1	1	1	0	1	1	1	0	0	1_	0	1	1	23	4	X	X	0	Р	0	Х
						d	isp				0	0	1	0	0	1	1	0								
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1,	23	4	Х	Х	0	Р	0	х
						d	isp				0	0	1	0	0	1	1	0								
SRA	r .		1	1	0	0	1	0	1	1	0	0	1	0	1		r		8	2	Х	Х	0	Р	0	x
	(HL)		1	1	0	0	1	0	1	- 1	0	0	1	0	1	1	1	0	15	2	х	Х	0	Р	0	x
	(IX + d)		1	1	0	1	1	1	0	1	1	- 1	0	0	1	0	1	1	23	4	Х	Х	0	Р	0	X
						d	isp				0	0	1	0	1	1	1	0								
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	X	X	0	Р	0	x
						d	isp				0	0	1	0	1	1	1	0								
SRL	r		1	1	0	0	1	0	1	1	0	0	1	1	1		r		8	2	X	X	0	P	0	X
	(HL)		1	1	0	0	1	0	1	1	0	0	1	1	1	1	1	0	15	2	- X	X	0	P	0	×
	(IX + d)		1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4		X	0		0	<u>^</u>
	···· -,						isp				0	0	1	1	<u> </u>	1	<u> </u>	0		•			·	•	٠	^
	(IY + d)	r, (HL), (IX + disp), (IY + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	×	X	0	P		X
	, . ,	, (), (1 diop)					isp	<u> </u>		•	0	0	1	1	1	1	1	- <u>-</u>		•	^	^	Ü	•	Ü	^

instruction Set (CONt)

									Op	erati	on Co	ode							No. of	No. of			F	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	P/V	N	C
Bit Operation	Instructions																									
BIT	bit, r	Z ← r̄_b	1	1	0	0	1	0	1	1	0	1		b			ŗ		8	2	U	X	1	Ü	0	
	bit, (HL)	Z ← (HL) _b	1	1	0	0	1	0	1	1	0	1		b		1	1	0	12	2	U	Х	1	U	0	
	bit, (IX + d)	$Z \leftarrow (\overline{IX + disp})_b$	1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	20	4	U	Х	1	U	0	
						d	isp				0	1		b		1	1	0								
	bit, (IY + d)	$Z \leftarrow (\overline{IY + disp})_b$	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	20	4	U	Х	1	U	0	
						d	isp				0	1		b		1	1	0								
SET	bit, r	.r _b ← 1.	1	1	0	0	1	0	1	1	1	1		b			r		8	2						
	bit, (HL)	(HL) _b ← 1	1	1	0	0	1	0	1	1	1	1		b		1	1	0	15	2						
	bit (IX + d)	(IX + disp) _b ← 1	1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4						
						d	isp				1	1		b		1	1	0								
	bit (IY + d)	(IY + disp) _b ← 1	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	,					
						d	isp				1	1		b		1	1	0	-							
RES	bit, r	r _b ← 0	1	1	0	0	1	0	1	1	1	0		b			r		8	2						
	bit, (HL)	(HL) _b ← 0	1	1	0	0	1	0	1	1	1	0		b		1	1	0	15	2						
	bit (IX + d)	(IX + disp) _b ← 0	1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4						
						d	isp				1	0		b		1	i	0	•							
	bit (IY + d)	(IY + disp) _b ← 0	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4						
						d	isp				1	0		b		1	1	0	•							
Jump Instruc	ctions					-							-							_		•				
JP	addr	PC ← addr	1	1	0	0	0	0	1	1									10	3						
	NZ, addr	If Z = 0, PC ← addr	1	.1	0	0	0	0	1	0									10	3	,					
	Z, addr	If Z = 1, PC ← addr	1	1	0	0	1	0	1	0									10	3						
	NC, addr	If C = 0, PC ← addr	1	1	0	1	0	0	1	0									10	3						
JP	C, addr	If C = 1, PC ← addr	1	1	0	1	1	0	1	0									10	3			-			
	PO, addr	If P = 0, PC ← addr	1	1	1	0	0	0	1	0									10	3						_
	PE, addr	If P = 1, PC ← addr	1	1	1	0	1	0	1	0									10	3						
	P, addr	If S = 0, PC ← addr	1	1	1	1	0	0	1	0									10	3						
	M, addr	If S = 1, PC ← addr	1	1	1	1	1	0	1	0								_	10	3						

									0	perati	ion C	ode							No. of	No. of			Fla	gs		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes		Z	Н	PIV	N	C
Jump Instruc	ctions (cont)																						-			
JR	е	PC ← PC + e	0	0	0	1	1	0	0	0									12	2						
	NZ, e	If Z = 0, PC ← PC + e	0	0	1	0	0	0	0	0									12 / 7(3)	2						
	Z, e	If Z = 1, PC	0	0	1	0	1	0	0	0									12 / 7(3)	2						
	NC, e	If C = 0, PC ← PC + e	0	0	1	1	0	0	0	0									12 / 7(3)	2	-		•			
	C, e	If C = 1, PC ← PC + e	0	0	1	1	1	0	0	0									12 / 7(3)	2						
JP	(HL)	PC ← HL	1	1	1	0	1	0	0	1									4 -	1						_
	(IX)	PC ← IX	1	1	0	1	1	1	0	1	1	1	1	0	1	0	0	1	8	2						
	(IY)	PC ← IY	1	1	1	1	1	1	0	1	1	1	1	0	1	0	0	1	8	2						
DJNZ	е	$B \leftarrow B - 1$; if $B \neq 0$, $PC \leftarrow PC + e$	0	0	0	1	0	0	0	0									8/13(4)	2						
Call Instruction	ons																									
CALL	addr	$(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	0	0	1	. 1	0	1								-	17	3				-		
	NZ, addr	If conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	0	0	0	1	0	0									17 / 10(5)	3						
	Z, addr	If conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	0	0	1	1	0	0									17 / 10(5)	3						
	NC, addr	If conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	0	1	0	1	0	0									17 / 10(5)	3				-		
	C, addr	if conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	0	1	1	1	0	0			-				_		17 / 10(5)	3		*****				
	PO, addr	If conditions met, (SP $-$ 1) \leftarrow PC _H , (SP $-$ 2) \leftarrow PC _L , SP \leftarrow SP $-$ 2, PC \leftarrow addr	1	1	1	0	0	1	0	0	-								17 / 10(5)	3						

									O	erati	on Co	ode							No. of	No. of			Fla	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	S	Z	Н	PIV	N	C
Call Instructio	ns (cont)																									
CALL	PE, addr	If conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	1	0	1	1	0.	0									17 / 10(5)	3						
	P, addr	If conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	1	1	0	1	0	0						-			17 / 10(5)	3						
	M, addr	If conditions met, $(SP - 1) \leftarrow PC_H$, $(SP - 2) \leftarrow PC_L$, $SP \leftarrow SP - 2$, $PC \leftarrow addr$	1	1	1	1	1	1	0	0									17 / 10(5)	3						
RST	faddr	$(SP - 1) \leftarrow PC_H, (SP - 2) \leftarrow PC_L, SP \leftarrow SP - 2, PC_H \leftarrow 0, PC_L - faddr$	1	1		t		1	1	1									11	1						
Return Instru	ctions																									_
RET		$PC_L \leftarrow (SP), PC_H \leftarrow (SP + 1),$ $SP \leftarrow SP + 2$	1	1	0	0	1	0	0	1									10	1						
	NZ	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	0	0	- 0	0	0	0									11/5(6)	1						
	Z	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	0	0	1	0	0	0									11/5(6)	1						
	NC	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	0	1	0	0	0	0									11/5(6)	1						
	С	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	0	1	1	0	0	0									11/5(6)	1						
	PO	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	1	0	0	0	0	0									11/5(6)	1						
	PE	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	1	0	1	0	0	0									11/5(6)	1						
	P	If conditions met, $PC_{L} \leftarrow (SP)$, $PC_{H} \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	1	1	0	0	0	0									11/5(6)	1						
	M	If conditions met, $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP + 1)$, $SP \leftarrow SP + 2$	1	1	1	1	1	0	0	0									11/5(6)	1						
RETI		Return from interrupt	1	1	1	0	1	1	0	1	0	1	0	0	1	1	0	1	14	2						
RETN		Return from interrupt, nonmaskable	1	1	1	0	- 1	1	0	1	0	1	0	0	0	1	0	1	14	2						

-									Oi	erati	on C	ode							No. of	No. of		_	FI	ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	. 7	6	5	4	3	2	1	0		Bytes	S	Z	Н	PIV	N	C
Return Instru	ictions (cont)																									
IN	A, byte	A ← (byte), A ₇ -A ₀ ← byte, A ₁₅ -A ₈ ← byte	1	1	0	. 1	1	0	1	1			-						11	2						
	r, (C)	r ← (C), A ₇ -A ₀ ← C, A ₁₅ -A ₈ ← B	1	1	1	0	1	1	0	1	0	1		r		0	0	0	12	2	х	X	Х	Р	0	
INI		$(HL) \leftarrow (C), B \leftarrow B - 1,$ $HL \leftarrow HL + 1, A_7 - A_0 \leftarrow C,$ $A_{15} - A_8 \leftarrow B$	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	0	16	2	U	х	U	U	1	
IND		$(HL) \leftarrow (C), B \leftarrow B - 1,$ $HL \leftarrow HL - 1, A_7 - A_0 \leftarrow C,$ $A_{15} - A_8 \leftarrow B$	1	1	1	0	1	1	0	1	1	0	1	0	1	0	1	0	16	2	U	X	U	U	1	
INIR		$(HL) \leftarrow (C), B \leftarrow B - 1,$ $HL \leftarrow HL + 1, A_7 - A_0 \leftarrow C,$ $A_{15} - A_8 \leftarrow B, End if B = 0$	1	1	1	0	1	1	0	1	1	0	1	1	0	0	1	0	21 / 16(7)	2	U	1	U	U	1	
INDR		$(HL) \leftarrow (C), B \leftarrow B - 1,$ $HL \leftarrow HL - 1, A_7 - A_0 \leftarrow C,$ $A_{15} - A_8 \leftarrow B, End if B = 0$	1	1	1	0	1	1	0	1	1	0	1	1	1	0	.1	0	21 / 16(7)	2	Ü	1	U	U	1	
OUT	byte, A	(byte) ← A, A ₇ -A ₀ ← byte, A ₁₅ -A ₈ ← B	1	1	0	1	. 0	0	1	1									11	2						
	(C), r	(C) ← r, A ₇ -A ₀ ← C, A ₁₅ -A ₈ ← B	1	1	1	0	1	1	. 0	1	0	1		r		0	0	1	12	2						
OUTI		(C) \leftarrow (HL), B \leftarrow B - 1, HL \leftarrow HL + 1, A ₇ -A ₀ \leftarrow C, A ₁₅ -A ₈ \leftarrow B	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	1	16	2	U	x	U	U	1	
OUTD		(C) \leftarrow (HL), B \leftarrow B - 1, HL \leftarrow HL - 1, A ₇ -A ₀ \leftarrow C, A ₁₅ -A ₈ \leftarrow B	. 1	1	1	0	1	1	0	1	1	0	1	0	1	0	1	1	16	2	U	х	U	U	1	
OUTIR		(C) \leftarrow (HL), B \leftarrow B - 1, HL \leftarrow HL + 1, A ₇ -A ₀ \leftarrow C, A ₁₅ -A ₈ \leftarrow B, End if B = 0	1	1	1	0	1	1	0	1	1	0	1	1	0	0	1	1	21/16(7)	2	U	1	U	U	1	
OUTDR		(C) \leftarrow (HL), B \leftarrow B - 1, HL \leftarrow HL - 1, A ₇ -A ₀ \leftarrow C, A ₁₅ -A ₈ \leftarrow B, End if B = 0	1	1	1	0	1	1	0	1	1	0	1	1	1	0	1	1	16	2	U	1	U	U	1	
																			_							

Operands

μ**PD70008/A**

Flags

Bytes S Z H P/V N C

No. of

Clocks

4

4

4

4

8

8

8

0

0

0

1 0

0

0

No. of

1

1

1

1

2

2

2

Note:	_	_	

Mnemonic

NOP

HALT

DI

ΕI

IM

CPU Control Instructions

- (1) $21 \text{ if BC} \neq 0$, 16 if BC = 0
- (2) 21 if BC \neq 0 and A \neq (HL), 16 if BC = 0 or A = (HL)

Operation

No operation

(IFF ← 0)

(IFF ← 1)

Disable interrupts

Enable interrupts

Set interrupt mode 0

Set interrupt mode 1

Set interrupt mode 2

Halt

0 0

1 1 1

1 1 1

0 0 0 0 0

0 1 1 1 0 1 1 0

1 1 1 1 0 0 1 1

1 1 1 1 1 0 1 1

0 1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 0

(3) 12 if condition is met, 7 if not

0

2

- (4) $8 \text{ if } B = 0, 13 \text{ if } B \neq 0$
- (5) 17 if condition is met, 10 if not
- (6) 11 if condition is met, 5 if not
- (7) $21 \text{ if B} = 0, 16 \text{ if B} \neq 0$

Operation Code

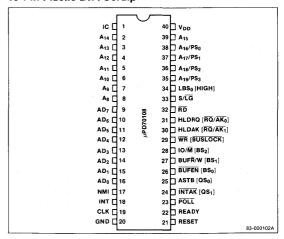
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

µPD70108 (V20™) 8/16-BIT HIGH-PERFORMANCE CMOS MICROPROCESSOR

Description

The μ PD70108 (V20) is a CMOS 16-bit microprocessor with internal 16-bit architecture and an 8-bit external data bus. The μ PD70108 instruction set is a superset of the μ PD8086/8088; however, mnemonics and execution times are different. The μ PD70108 additionally has a powerful instruction set including bit processing, packed BCD operations, and high-speed multiplication/division operations. The μ PD70108 can also execute the entire 8080 instruction set and comes with a standby mode that significantly reduces power consumption. It is software-compatible with the μ PD70116 16-bit microprocessor.

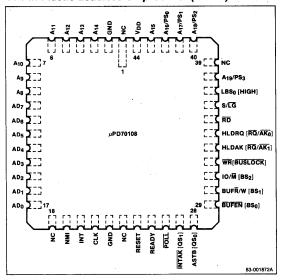
Features

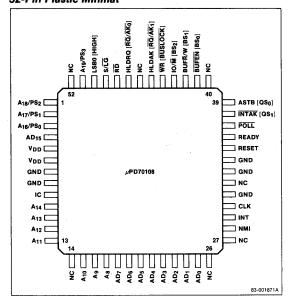

- ☐ Minimum instruction execution time: 250 ns
 (at 8 MHz)
- ☐ Maximum addressable memory: 1 Mbyte☐ Abundant memory addressing modes
- ☐ 14 x 16-bit register set
- ☐ 101 instructions
- □ Instruction set is a superset of µPD8086/8088 instruction set
- ☐ Bit, byte, word, and block operations
- ☐ Bit field operation instructions
- ☐ Packed BCD instructions
- □ Multiplication/division instruction execution time: $4 \mu s$ to $6 \mu s$ (at 8 MHz)
- ☐ High-speed block transfer instructions:
 - 1 Mbyte/s (at 8 MHz)
- ☐ High-speed calculation of effective addresses:
 - 2 clock cycles in any addressing mode
- ☐ Maskable (INT) and nonmaskable (NMI) interrupt inputs
- ☐ IEEE-796 bus compatible interface
- ∃ 8080 emulation mode
- ☐ CMOS technology
- ☐ Low-power consumption
- ☐ Low-power standby mode
- ☐ Single power supply
- ☐ 5 MHz, 8 MHz or 10 MHz clock

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD70108C-5	40-pin plastic DIP	5 MHz
μPD70108C-8	40-pin plastic DIP	8 MHz
μPD70108D-5	40-pin ceramic DIP	5 MHz
μPD70108D-8	40-pin ceramic DIP	8 MHz
μPD70108D-10	40-pin ceramic DIP	10 MHz
μPD70108G-5	52-pin miniflat	5 MHz
μPD70108G-8	52-pin miniflat	8 MHz
μPD70108L-5	44-pin PLCC	5 MHz
μPD70108L-8	44-pin PLCC	8 MHz

Pin Configurations


40-Pin Plastic DIP/Cerdip



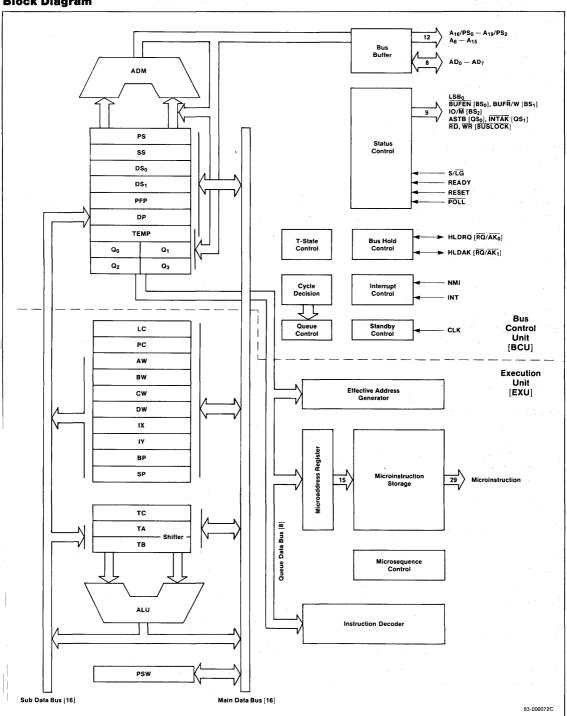
Pin Configurations (cont)

44-Pin Plastic Leadless Chip Carrier (PLCC)

52-Pin Plastic Miniflat

Pin Identification

Symbol	Direction	Function
IC*		Internally connected
A ₁₄ - A ₈	Out	Address bus, middle bits
AD ₇ - AD ₀	In/Out	Address/data bus
NMI	In	Nonmaskable interrupt input
INT	ln .	Maskable interrupt input
CLK	In	Clock input
GND		Ground potential
RESET	ln	Reset input
READY	In	Ready input
POLL	ln	Poll input
INTAK (QS ₁)	Out	Interrupt acknowledge output (queue status bit 1 output)
ASTB (QS ₀)	Out	Address strobe output (queue status bit 0 output)
BUFEN (BS ₀)	Out	Buffer enable output (bus status bit 0 output)
BUFR/W (BS ₁)	Out	Buffer read/write output (bus status bit 1 output)
10/M (BS ₂)	Out	Access is I/O or memory (bus status bit 2 output)
WR (BUSLOCK)	Out	Write strobe output (bus lock output)
HLDAK (RQ/AK ₁)	Out (In/Out)	Holdacknowledgeoutput, (bus hold request input/acknowledge output 1)
HLDRQ (RQ/AK ₀)	In (In/Out)	Hold request input (bus hold request input/acknowledge output 0)
RD	Out	Read strobe output
S/LG	In	Small-scale/large-scale system input
LBS ₀ (HIGH)	Out	Latched bus status output 0 (always high in large-scale systems)
A ₁₉ /PS ₃ - A ₁₆ /PS ₀	Out	Address bus, high bits or processor status output
A ₁₅	Out	Address bus, bit 15
V _{DD}		Power supply


Notes: * IC should be connected to ground.

Where pins have different functions in small- and large-scale systems, the large-scale system pin symbol and function are in parentheses.

Unused input pins should be tied to ground or V_{DD} to minimize power dissipation and prevent the flow of potentially harmful currents.

Pin Functions

Some pins of the μ PD70108 have different functions according to whether the microprocessor is used in a small- or large-scale system. Other pins function the same way in either type of system.

A₁₅ - A₈ [Address Bus]

For small- and large-scale systems.

The CPU uses these pins to output the middle 8 bits of the 20-bit address data. They are three-state outputs and become high impedance during hold acknowledge.

AD7 - AD0 [Address/Data Bus]

For small- and large-scale systems.

The CPU uses these pins as the time-multiplexed address and data bus. When high, an AD bit is a one; when low, an AD bit is a zero. This bus contains the lower 8 bits of the 20-bit address during T1 of the bus cycle and is used as an 8-bit data bus during T2, T3, and T4 of the bus cycle.

Sixteen-bit data I/O is performed in two steps. The low byte is sent first, followed by the high byte. The address/data bus is a three-state bus and can be at a high or low level during standby mode. The bus will be high impedance during hold and interrupt acknowledge.

NMi [Nonmaskable Interrupt]

For small- and large-scale systems.

This pin is used to input nonmaskable interrupt requests. NMI cannot be masked by software. This input is positive edge triggered and must be held high for five clocks to guarantee recognition. Actual interrupt processing begins, however, after completion of the instruction in progress.

The contents of interrupt vector 2 determine the starting address for the interrupt-servicing routine. Note that a hold request will be accepted even during NMI acknowledge.

This interrupt will cause the μ PD70108 to exit the standby mode.

INT [Maskable Interrupt]

For small- and large-scale systems.

This pin is an interrupt request that can be masked by software.

INT is active high level and is sensed during the last clock of the instruction. The interrupt will be accepted if the interrupt enable flag IE is set. The CPU outputs the INTAK signal to inform external devices that the interrupt request has been granted. INT must be asserted until the interrupt acknowledge is returned.

If NMI and INT interrupts occur at the same time, NMI has higher priority than INT and INT cannot be

accepted. A hold request will be accepted during INT acknowledge.

This interrupt causes the μ PD70108 to exit the standby mode.

CLK [Clock]

For small- and large-scale systems.

This pin is used for external clock input.

RESET [Reset]

For small- and large-scale systems.

This pin is used for the CPU reset signal. It is an active high level. Input of this signal has priority over all other operations. After the reset signal input returns to a low level, the CPU begins execution of the program starting at address FFFF0H.

In addition to causing normal CPU start, RESET input will cause the μ PD70108 to exit the standby mode.

READY [Ready]

For small- and large-scale systems.

When the memory or I/O device being accessed cannot complete data read or write within the CPU basic access time, it can generate a CPU wait state (Tw) by setting this signal to inactive (low level) and requesting a read/write cycle delay.

If the READY signal is active (high level) during either the T3 or Tw state, the CPU will not generate a wait state.

POLL [Poll]

For small- and large-scale systems.

The CPU checks this input upon execution of the POLL instruction. If the input is low, then execution continues. If the input is high, the CPU will check the POLL input every five clock cycles until the input becomes low again.

The POLL and READY functions are used to synchronize CPU program execution with the operation of external devices.

RD [Read Strobe]

For small- and large-scale systems.

The CPU outputs this strobe signal during data read from an I/O device or memory. The IO/\overline{M} signal is used to select between I/O and memory.

The three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

S/LG [Small/Large]

For small- and large-scale systems.

This signal determines the operation mode of the CPU. This signal is fixed at either a high or low level. When

this signal is a high level, the CPU will operate in small-scale system mode, and when low, in the large-scale system mode. A small-scale system will have at most one bus master such as a DMA controller device on the bus. A large-scale system can have more than one bus master accessing the bus as well as the CPU.

INTAK [Interrupt Acknowledge]

For small-scale systems.

The CPU generates the INTAK signal low when it accepts an INT signal.

The interrupting device synchronizes with this signal and outputs the interrupt vector to the CPU via the data bus $(AD_7 - AD_0)$.

ASTB [Address Strobe]

For small-scale systems.

The CPU outputs this strobe signal to latch address information at an external latch.

ASTB is held at a low level during standby mode and hold acknowledge.

BUFEN [Buffer Enable]

For small-scale systems.

This is used as the output enable signal for an external bidirectional buffer. The CPU generates this signal during data transfer operations with external memory or I/O devices or during input of an interrupt vector.

This three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

BUFR/W [Buffer Read/Write]

For small-scale systems.

The output of this signal determines the direction of data transfer with an external bidirectional buffer. A high output causes transmission from the CPU to the external device; a low signal causes data transfer from the external device to the CPU.

BUFR/W is a three-state output and becomes high impedance during hold acknowledge.

O/M [IO/Memory]

For small-scale systems.

The CPU generates this signal to specify either I/O access or memory access. A high-level output specifies /O and a low-level signal specifies memory.

O/M's output is three state and becomes high mpedance during hold acknowledge.

WR [Write Strobe]

For small-scale systems.

The CPU generates this strobe signal during data write to an I/O device or memory. Selection of either I/O or memory is performed by the IO/M signal.

This three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

HLDAK [Hold Acknowledge]

For small-scale systems.

The HLDAK signal is used to indicate that the CPU accepts the hold request signal (HLDRQ). When this signal is a high level, the address bus, address/data bus, and the control lines become high impedance.

HLDRQ [Hold Request]

For small-scale systems.

This input signal is used by external devices to request the CPU to release the address bus, address/data bus, and the control bus.

LBS₀ [Latched Bus Status 0]

For small-scale systems.

The CPU uses this signal along with the IO/\overline{M} and $BUF\overline{R}/W$ signals to inform an external device what the current bus cycle is.

10/ M	BUFR/₩	LBS ₀	Bus Cycle
0	0	0	Program fetch
0	0	1	Memory read
0	1	0	Memory write
0	1	1	Passive state
1	0	0	Interrupt acknowledge
1	0	1	I/O read
1	. 1	0	I/O write
1	1	1	Halt

A₁₉/PS₃ - A₁₆/PS₀ [Address Bus/Processor Status] For small- and large-scale systems.

These pins are time multiplexed to operate as an address bus and as processor status signals.

When used as the address bus, these pins are the high 4 bits of the 20-bit memory address. During I/O access, all 4 bits output data 0.

The processor status signals are provided for both memory and I/O use. PS₃ is always 0 in the native mode and 1 in 8080 emulation mode. The interrupt enable flag (IE) is pin on pin PS₂. Pins PS₁ and PS₀ indicate which memory segment is being accessed.

A ₁₇ /PS ₁	A ₁₆ /PS ₀	Segment
0	0	Data segment 1
0	1	Stack segment
1	0	Program segment
1.	1	Data segment 0

The output of these pins is three state and becomes high impedance during hold acknowledge.

QS₁, QS₀ [Queue Status]

For large-scale systems.

The CPU uses these signals to allow external devices, such as the floating-point arithmetic processor chip, (μ PD72091) to monitor the status of the internal CPU instruction queue.

QS ₁	QS ₀	Instruction Queue Status
0	.0	NOP (queue does not change)
0	1	First byte of instruction
1	0	Flush queue
1	. 1	Subsequent bytes of instruction

The instruction queue status indicated by these signals is the status when the execution unit (EXU) accesses the instruction queue. The data output from these pins is therefore valid only for one clock cycle immediately following queue access. These status signals are provided so that the floating-point processor chip can monitor the CPU's program execution status and synchronize its operation with the CPU when control is passed to it by the FPO (Floating Point Operation) instructions.

BS₂ - BS₀ [Bus Status]

For large-scale systems.

The CPU uses these status signals to allow an external bus controller to monitor what the current bus cycle is.

The external bus controller decodes these signals and generates the control signals required to perform access of the memory or I/O device.

BS ₂	BS ₁	BS ₀	Bus Cycle
0	0	0	Interrupt acknowledge
0	. 0	1 .	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Program fetch
1	0	1	Memory read
1	1 '	0	Memory write
1	1	1	Passive state

The output of these signals is three state and becomes high impedance during hold acknowledge.

BUSLOCK [Bus Lock]

For large-scale systems.

The CPU uses this signal to secure the bus while executing the instruction immediately following the BUSLOCK prefix instruction, or during an interrupt acknowledge cycle. It is a status signal to the other bus masters in a multiprocessor system, inhibiting them from using the system bus during this time.

The output of this signal is three state and becomes high impedance during hold acknowledge. BUSLOCK is high during standby mode except if the HALT instruction has a BUSLOCK prefix.

RQ/AK₁, RQ/AK₀ [Hold Request/Acknowledge]

For large-scale systems.

These pins function as bus hold request inputs (\overline{RQ}) and as bus hold acknowledge outputs (\overline{AK}) . $\overline{RQ}/\overline{AK}_0$ has a higher priority than $\overline{RQ}/\overline{AK}_1$.

These pins have three-state outputs with on-chip pullup resistors which keep the pin at a high level when the output is high impedance.

VDD [Power Supply]

For small- and large-scale systems.

This pin is used for the +5 V power supply.

GND [Ground]

For small- and large-scale systems.

This pin is used for ground.

IC [Internally Connected]

This pin is used for tests performed at the factory by NEC. The μ PD70108 is used with this pin at ground potential.

Absolute Maximum Ratings

 $T_A = +25$ °C

Power supply voltage, V _{DD}	-0.5 V to +7.0 V
Power dissipation, PD _{MAX}	0.5 W
Input voltage, V _I	$-0.5 \text{ V to V}_{DD} + 0.3 \text{ V}$
CLK input voltage, V _K	-0.5 V to V _{DD} + 1.0 V
Output voltage, V ₀	-0.5 V to $V_{DD}+0.3$ V
Operating temperature, T _{OPT}	-40°C to +85°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = +25$ °C, $V_{DD} = 0$ V

		Lit	mits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	Cı		15	pF	fc = 1 MHz Unmeasured pins
I/O capacitance	C _{IO}		15	pF	returned to 0 V

DC Characteristics

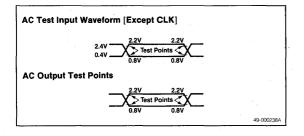
μPD70108-5, $γ_A = -40$ °C to +85 °C, $V_{DD} = +5$ V ± 10% μPD70108-8, μPD70108-10, $γ_A = -10$ °C to +70 °C, $γ_{DD} = +5$ V ± 5%

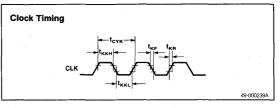
			Limits		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage high	V _{IH}	2.2		V _{DD} + 0.3	V	
input voltage low	V _{IL}	-0.5		0.8	٧	
CLK input voltage high	V _{KH}	3.9		V _{DD} + 1.0	٧	
CLK input voltage low	V _{KL}	-0.5		0.6	V	
Output voltage high	V _{OH}	0.7 x V _{DD}			٧	$I_{OH} = -400 \mu A$
Output voltage low	V _{OL}	*		0.4	٧	$I_{OL} = 2.5 \text{ mA}$
Input leakage current high	I _{LIH}			10	μΑ	$V_I = V_{DD}$
Input leakage current low	ILIL			-10	μΑ	V _I = 0 V
Output leakage current high	1 _{LOH}			10	μΑ	$V_0 = V_{DD}$
Output leakage current low	ILOL			-10	μΑ	V ₀ = 0 V
		70108-5	30	60	mA	Normal operation
		5 MHz	5	10	mA	Standby mode
Supply current	I _{DD}	70108-8	45	80	mA	Normal operation
		8 MHz	6	12	mA	Standby mode
		70108-10	60	100	. mA	Normal operation
		10 MHz	7	14	mA	Standby mode

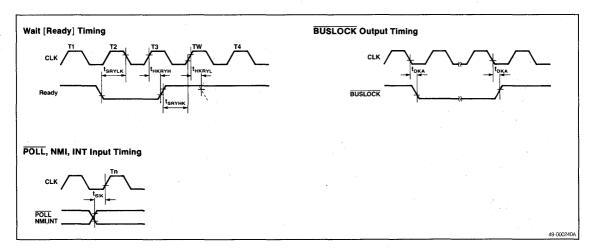
AC Characteristics

μPD70108-5, T_A = -40 °C to +85 °C, V_{DD} = +5 V ± 10% μPD70108-8, μPD70108-10,T_A = -10 °C to +70 °C, V_{DD} = +5 V ± 5%

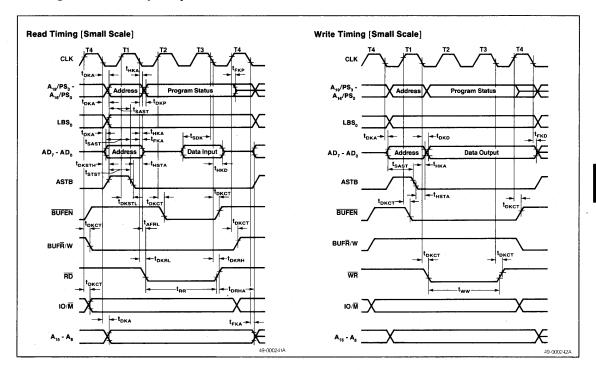
		μ PD70 1	08-5	μ PD 701	08-8	μ PD701 (08-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions	
Small/Large Scale										
Clock cycle	tcyk	200	500	125	500	100	500	ns		
Clock pulse width high	tkkh	69		44		41		ns	V _{KH} = 3.0 V	
Clock pulse width low	tKKL	90		60		49		ns	V _{KL} = 1.5 V	
Clock rise time	t _{KR}		10		8		5	ns	1.5 V to 3.0 V	
Clock fall time	t _{KF}		10		7		5	ns	3.0 V to 1.5 V	
READY inactive setup to CLK↓	tsrylk	-8		8		-10		ns		
READY inactive hold after CLK1	thkryh	30		20		20		ns		
READY active setup to CLK1	^t sryhk	t _{KKL} — 8		t _{KKL} – 8		t _{KKL} -10		ns		
READY active hold after CLK†	^t HKRYL	30		20	1	20		ns	-	
Data setup time to CLK ↓	tsdk	30		20		10		ns		
Data hold time after CLK ↓	^t HKD	10		10		10	*,	ns		* -
NMI, INT, POLL setup time to CLK †	t _{SIK}	30		15		15		ns		ā
Input rise time (except CLK)	t _{IR}		20		20		20	ns	0.8 V to 2.2 V	
Input fall time (except CLK)	t _{IF}		12	,	12		12	ns	2.2 V to 0.8 V	
Output rise time	tor		20		20		20	ns	0.8 V to 2.2 V	
Output fall time	toF		12		12		12	ns	2.2 V to 0.8 V	
Small Scale										
Address delay time from CLK	t _{DKA}	10	90	10	60	10	48	ns		
Address hold time from CLK	thka	10		10		10		ns		
PS delay time from CLK ↓	t _{DKP}	10	90	10	60	10	50	ns		
PS float delay time from CLK 1	t _{FKP}	10	80	10	60	10	50	ns		
Address setup time to ASTB ↓	†SAST	t _{KKL} 60		t _{KKL} — 30		t _{KKL} – 30		ns		
Address float delay time from CLK ↓	† _{FKA}	[‡] HKA	80	thka	60	tHKA	50	ns	$C_L = 100 pF$	
ASTB ↑ delay time from CLK ↓	tdksth		80		50		40	ns		
ASTB ↓ delay time from CLK ↑	t _{DKSTL}		85		55	-	45	ns		
ASTB width high	tstst	t _{KKL} — 20		t _{KKL} — 10		t _{KKL} – 10		ns		
Address hold time from ASTB ↓	t _{HSTA}	t _{KKH} - 10		t _{KKH} — 10		t _{KKH} -10		ns		

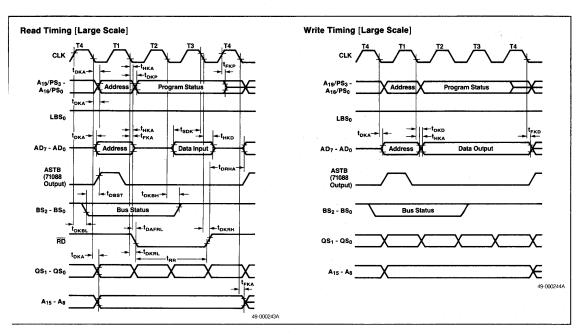


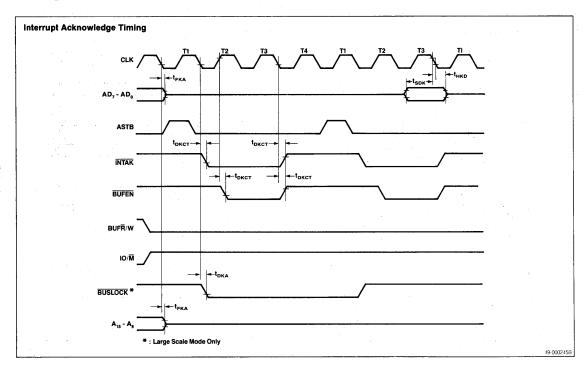

AC Characteristics (cont) $\mu\text{PD70108-5}$, $T_{A}=-40\,^{\circ}\text{C}$ to +85 °C, V $_{DD}=+5$ V \pm 10% $\mu\text{PD70108-8}$, $\mu\text{PD70108-10}$, $T_{A}=-10\,^{\circ}\text{C}$ to +70 °C, V $_{DD}=+5$ V \pm 5%

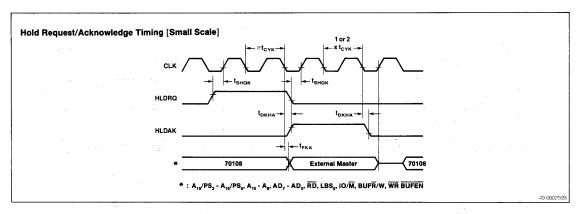

		μ PD70108-5		μ PD70108-8		μ PD70108-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Small Scale (cont)									
Control delay time from CLK	† _{DKCT}	10	110	10	65	10	55	ns	
Address float to RD↓	tAFRL	0		0		0		ns	
RD ↓ delay time from CLK ↓	t _{DKRL}	10	165	10	80	10	.70	ns	
RD ↑ delay time from CLK ↓	tDKRH	10	150	10	80	10	60	ns	
Address delay time from RD 1	tDRHA	t _{CYK} - 45		t _{CYK} - 40		t _{CYK} - 35		ns	
RD width low	t _{RR}	2t _{CYK} -75		2t _{CYK} -50		2t _{CYK} -40		ns	$C_L = 100 \text{ pF}$
Data output delay time from CLK ↓	t _{DKD}	10	90	10	60	10	50	ns	
Data float delay time from CLK ↓	t _{FKD}	10	80	10	60	10	50	ns	
WR width low	t _{WW}	2t _{CYK} -60		2t _{CYK} -40		2t _{CYK} -35		ns	
HLDRQ setup time to CLK †	^t shqk	35		20		20		ns	
HLDAK delay time from CLK↓	t _{DKHA}	10	160	10	100	10	60	ns	
Large Scale									
Address delay time from CLK	t _{DKA}	10	90	10	60	10	48	ns	
Address hold time from CLK	tHKA	. 10		10		10		ns	
S delay time from CLK ↓	t _{DKP}	10	90	10	60	10	50	ns	
S float delay time from CLK 1	t _{FKP}	10	80	10	60	10	50	ns	
Address float delay time from CLK ↓	t _{FKA}	t _{HKA}	80	t _{HKA}	60	t _{HKA}	50	ns	
Address delay time from RD ↑	tDRHA	t _{CYK} - 45		t _{CYK} - 40		t _{CYK} -35		ns	
ASTB delay time from BS ↓	t _{DBST}		15		15		15	ns	
3S ↓ delay time from CLK ↑	t _{DKBL}	10	110	10	60	10	50	ns	
3S ↑ delay time from CLK ↓	†DKBH	10	130	10	65	10	50	ns	
RD ↓ delay time from address loat	†DAFRL	0		0		0		ns	$C_L = 100 \text{ pF}$
RD ↓ delay time from CLK ↓	t _{DKRL}	10	165	10	80	10	70	ns	
RD ↑ delay time from CLK ↓	t _{DKRH}	10	150	10	80	10	60	ns	
RD width low	t _{RR}	2t _{CYK} -75		2t _{CYK} 50		2t _{CYK} -40		ns	
Date output delay time from	† _{DKD}	10	90	10	60	10	50	ns	
Data float delay time from CLK 1	t _{FKD}	10	80	10	60	10	50	ns	
AK delay time from CLK ↓	† _{DKAK}		70		50		40	ns	
RQ setup time to CLK 1	tsrok	20		10		9		ns	
RQ hold time after CLK 1	thkrq	40		30		20		ns	

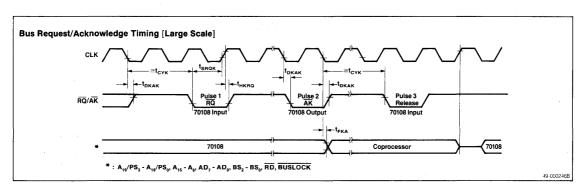
Timing Waveforms






Timing Waveforms (cont)




Timing Waveforms (cont)

Timing Waveforms (cont)

Register Configuration

Program Counter [PC]

The program counter is a 16-bit binary counter that contains the segment offset address of the next instruction which the EXU is to execute.

The PC increments each time the microprogram fetches an instruction from the instruction queue. A new location value is loaded into the PC each time a branch, call, return, or break instruction is executed. At this time, the contents of the PC are the same as the Prefetch Pointer (PFP).

Prefetch Pointer [PFP]

The prefetch pointer (PFP) is a 16-bit binary counter which contains a segment offset which is used to calculate a program memory address that the bus control unit (BCU) uses to prefetch the next byte for the instruction queue. The contents of PFP are an offset from the PS (Program Segment) register.

The PFP is incremented each time the BCU prefetches an instruction from the program memory. A new location will be loaded into the PFP whenever a branch, call, return, or break instruction is executed. At that time the contents of the PFP will be the same as those of the PC (Program Counter).

Segment Registers [PS, SS, DS₀, and DS₁]

The memory addresses accessed by the μ PD70108 are divided into 64K-byte logical segments. The starting (base) address of each segment is specified by a 16-bit segment register, and the offset from this starting address is specified by the contents of another register or by the effective address.

These are the four types of segment registers used.

Segment Register	Default Offset
PS (Program Segment)	PFP
SS (Stack Segment)	SP, effective address
DS ₀ (Data Segment 0)	IX, effective address
DS ₁ (Data Segment 1)	IY

General-Purpose Registers [AW, BW, CW, and DW]

There are four 16-bit general-purpose registers. Each one can be used as one 16-bit register or as two 8-bit registers by dividing them into their high and low bytes (AH, AL, BH, BL, CH, CL, DH, DL).

Each register is also used as a default register for processing specific instructions. The default assignments are:

AW: Word multiplication/division, word I/O, data conversion

AL: Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation

AH: Byte multiplication/division

BW: Translation

CW: Loop control branch, repeat prefix

CL: Shift instructions, rototation instructions, BCD operations

DW: Word multiplication/division, indirect addressing I/O

Pointers [SP, BP] and Index Registers [IX, IY]

These registers serve as base pointers or index registers when accessing the memory using based addressing, indexed addressing, or based indexed addressing.

These registers can also be used for data transfer and arithmetic and logical operations in the same manner as the general-purpose registers. They cannot be used as 8-bit registers.

Also, each of these registers acts as a default register for specific operations. The default assignments are:

SP: Stack operations

IX: Block transfer (source), BCD string operations

IY: Block transfer (destination), BCD string operations

Program Status Word [PSW]

The program status word consists of the following six status and four control flags.

Status Flags

- V (Overflow)
- S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)
- P (Parity)
- CY (Carry)

Control Flags

- MD (Mode)
- DIR (Direction)
- IE (Interrupt Enable)
- BRK (Break)

When the PSW is pushed on the stack, the word images of the various flags are as shown here.

PSW

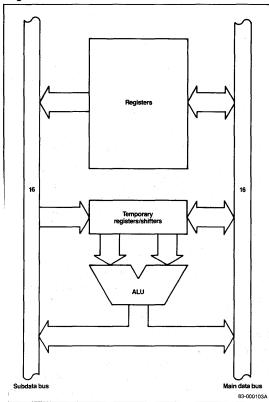
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
M D	1	1	1	٧	D		-	-				-				
					R		K									

The status flags are set and reset depending upon the result of each type of instruction executed.

Instructions are provided to set, reset, and complemen the CY flag directly.

Other instructions set and reset the control flags and control the operation of the CPU.

High-Speed Execution of Instructions


This section highlights the major architectural features that enhance the performance of the μ PD70108.

- Dual data bus in EXU
- · Effective address generator
- 16/32-bit temporary registers/shifters (TA, TB)
- 16-bit loop counter
- PC and PFP

Dual Data Bus Method

To reduce the number of processing steps for instruction execution, the dual data bus method has been adopted for the μ PD70108 (figure 1). The two data buses (the main data bus and the subdata bus) are both 16 bits wide. For addition/subtraction and logical and comparison operations, processing time has been speeded up some 30% over single-bus systems.

Figure 1. Dual Data Buses

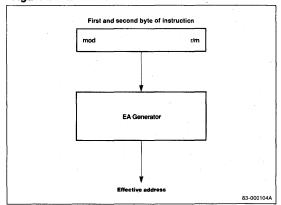
Example

 ADD
 AW, BW
 ; AW ← AW + BW

 Single Bus
 Dual Bus

 Step 1 TA ← AW
 TA ← AW, TB ← BW

 Step 2 TB ← BW
 AW ← TA + TB


 Step 3 AW ← TA + TB

Effective Address Generator

This circuit (figure 2) performs high-speed processing to calculate effective addresses for accessing memory.

Calculating an effective address by the microprogramming method normally requires 5 to 12 clock cycles. This circuit requires only two clock cycles for addresses to be generated for any addressing mode. Thus, processing is several times faster.

Figure 2. Effective Address Generator

16/32-Bit Temporary Registers/Shifters [TA, TB]

These 16-bit temporary registers/shifters (TA, TB) are provided for multiplication/division and shift/rotation instructions.

These circuits have decreased the execution time of multiplication/division instructions. In fact, these instructions can be executed about four times faster than with the microprogramming method.

TA + TB: 32-bit temporary register/shifter for multiplication and division instructions.

TB: 16-bit temporary register/shifter for shift/rotation instructions.

Loop Counter [LC]

This counter is used to count the number of loops for a primitive block transfer instruction controlled by a repeat prefix instruction and the number of shifts that will be performed for a multiple bit shift/rotation instruction.

The processing performed for a multiple bit rotation of a register is shown below. The average speed is approximately doubled over the microprogram method.

Example

RORC AW, CL ; CL = 5

Microprogram method LC method

 $8 + (4 \times 5) = 28 \text{ clocks}$ 7 + 5 = 12 clocks

Program Counter and Prefetch Pointer [PC and PFP]

The µPD70108 microprocessor has a program counter, (PC) which addresses the program memory location of the instruction to be executed next, and a prefetch pointer(PFP), which addresses the program memory location to be accessed next. Both functions are provided in hardware. A time saving of several clocks is realized for branch, call, return, and break instruction execution, compared with microprocessors that have only one instruction pointer.

Enhanced Instructions

In addition to the μ PD8088/86 instructions, the μ PD70108 has the following enhanced instructions.

Instruction	Function
PUSH imm	Pushes immediate data onto stack
PUSH R	Pushes 8 general registers onto stack
POP R	Pops 8 general registers from stack
MUL imm	Executes 16-bit multiply of register or memory contents by immediate data
SHL imm8 SHR imm8 SHRA imm8	Shifts/rotates register or memory by immediate value
ROL imm8 ROR imm8	
ROLC imm8 RORC imm8	
CHKIND	Checks array index against designated boundaries
INM	Moves a string from an I/O port to memory
OUTM	Moves a string from memory to an I/O port
PREPARE	Allocates an area for a stack frame and copies previous frame pointers
DISPOSE	Frees the current stack frame on a procedure exit

Enhanced Stack Operation Instructions PUSH imm

This instruction allows immediate data to be pushed onto the stack.

PUSH R/POP R

These instructions allow the contents of the eight general registers to be pushed onto or popped from the stack with a single instruction.

Enhanced Multiplication Instructions MUL reg16, imm16/MUL mem16, imm16

These instructions allow the contents of a register or memory location to be 16-bit multiplied by immediate data

Enhanced Shift and Rotate Instructions SHL reg, imm8/SHR reg, imm8/SHRA reg, imm8

These instructions allow the contents of a register to be shifted by the number of bits defined by the immediate data.

ROL reg, imm8/ROR reg, imm8/ROLC reg, imm8/RORC reg, imm8

These instructions allow the contents of a register to be rotated by the number of bits defined by the immediate data.

Check Array Boundary Instruction CHKIND reg16, mem32

This instruction is used to verify that index values pointing to the elements of an array data structure are within the defined range. The lower limit of the array should be in memory location mem32, the upper limit in mem32 + 2. If the index value in reg16 is not between these limits when CHKIND is executed, a BRK 5 will occur. This causes a jump to the location in interrupt vector 5.

Block I/O Instructions

OUTM DW, src-block/INM dst-block, DW

These instructions are used to output or input a string to or from memory, when preceded by a repeat prefix.

Stack Frame Instructions

PREPARE imm16, imm8

This instruction is used to generate the stack frames required by block-structured languages, such as PASCAL and Ada. The stack frame consists of two areas. One area has a pointer that points to another frame which has variables that the current frame can access. The other is a local variable area for the current procedure.

DISPOSE

This instruction releases the last stack frame generated by the PREPARE instruction. It returns the stack and base pointers to the values they had before the PREPARE instruction was used to call a procedure.

Unique Instructions

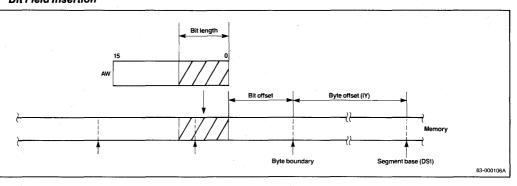
In addition to the μ PD8088/86 instructions and the enhanced instructions, the μ PD70108 has the following unique instructions.

Instruction	Function
INS	Insert bit field
EXT	Extract bit field
ADD4S	Adds packed decimal strings
SUB4S	Subtracts one packed decimal string from another
CMP4S	Compares two packed decimal strings
R0L4	Rotates one BCD digit left through AL lower 4 bits
ROR4	Rotates one BCD digit right through AL lower 4 bits
TEST1	Tests a specified bit and sets/resets Z flag
NOT1	Inverts a specified bit
CLR1	Clears a specified bit
SET1	Sets a specified bit
REPC	Repeats next instruction until CY flag is cleared
REPNC	Repeats next instruction until CY flag is set
FP02	Additional floating point processor call

Variable Length Bit Field Operation Instructions

This category has two instructions: INS (Insert Bit Field) and EXT (Extract Bit Field). These instructions are highly effective for computer graphics and highlevel languages. They can, for example, be used for data structures such as packed arrays and record type data used in PASCAL.

INS reg8, reg8/INS reg8, imm4


This instruction (figure 3) transfers low bits from the 16-bit AW register (the number of bits is specified by the second operand) to the memory location specified by the segment base (DS₁ register) plus the byte offset (IY register). The starting bit position within this byte is specified as an offset by the lower 4-bits of the first operand.

After each complete data transfer, the IY register and the register specified by the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may specify the number of bits transferred (second operand). Because the maximum transferable bit length is 16-bits, only the lower 4-bits of the specified register (00H to 0FH) will be valid.

Bit field data may overlap the byte boundary of memory.

Figure 3. Bit Field Insertion

EXT reg8, reg8/EXT reg8, imm4

This instruction (figure 4) loads to the AW register the bit field data whose bit length is specified by the second operand of the instruction from the memory location that is specified by the DS0 segment register (segment base), the IX index register (byte offset), and the lower 4-bits of the first operand (bit offset).

After the transfer is complete, the IX register and the lower 4-bits of the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may be specified for the second operand. Because the maximum transferrable bit length is 16 bits, however, only the lower 4-bits of the specified register (0H to 0FH) will be valid.

Bit field data may overlap the byte boundary of memory.

Packed BCD Operation Instructions

The instructions described here process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte-format operands (ROR4, ROL4). Packed BCD strings may be from 1 to 254 digits in length.

When the number of digits is even, the zero and carry flags will be set according to the result of the operation. When the number of digits is odd, the zero and carry flags may not be set correctly in this case, (CL = odd), the zero flag will not be set unless the upper 4 bits of the highest byte are all zero. The carry flag will not be set unless there is a carry out of the upper 4 bits of the highest byte. When CL is odd, the contents of the upper 4 bits of the highest byte of the result are undefined.

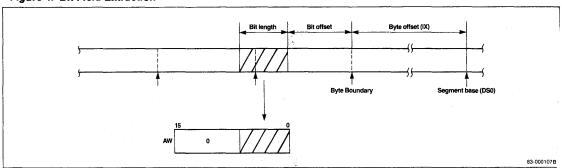
ADD4S

This instruction adds the packed BCD string addressed by the IX index register to the packed BCD string addressed by the IY index register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).

BCD string (IY, CL) \leftarrow BCD string (IY, CL) + BCD string (IX, CL)

SUB4S

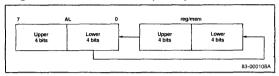
This instruction subtracts the packed BCD string addressed by the IX index register from the packed BCD string addressed by the IY register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).


BCD string (IY, CL) \leftarrow BCD string (IY, CL) - BCD String (IX, CL)

CMP4S

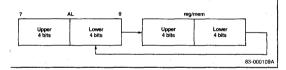
This instruction performs the same operation as SUB4S except that the result is not stored and only the overflow (V), carry flags (CY) and zero flag (Z) are affected.

BCD string (IY, CL) - BCD string (IX, CL)



ROL4

This instruction (figure 5) treats the byte data of the register or memory directly specified by the instruction byte as BCD data and uses the lower 4-bits of the AL register (ALL) to rotate that data one BCD digit to the left.


Figure 5. BCD Rotate Left (ROL4)

ROR4

This instruction (figure 6) treats the byte data of the register or memory directly specified by the instruction byte as BCD data and uses the lower 4-bits of the AL register (AL_L) to rotate that data one BCD digit to the right.

Figure 6. BCD Rotate Right (ROR4)

3it Manipulation Instructions

TEST1

his instruction tests a specific bit in a register or nemory location. If the bit is 1, the Z flag is reset to 0. If he bit is 0, the Z flag is set to 1.

IOT1

his instruction inverts a specific bit in a register or nemory location.

LR1

his instruction clears a specific bit in a register or nemory location.

ET1

his instruction sets a specific bit in a register or emory location.

epeat Prefix Instructions

EPC

his instruction causes the μ PD70108 to repeat the llowing primitive block transfer instruction until the Y flag becomes cleared or the CW register becomes ro.

REPNC

3

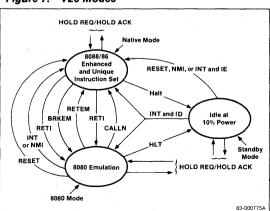
This instruction causes the μ PD70108 to repeat the following primitive block transfer instruction until the CY flag becomes set or the CW register is decremented to zero.

Floating Point Instruction

FPO2

This instruction is in addition to the μ PD8088/86 floating point instruction, FPO1. These instructions are covered in a later section.

Mode Operation Instructions


The μ PD70108 has two operating modes (figure 7). One is the native mode which executes μ PD8088/86, enhanced and unique instructions. The other is the 8080 emulation mode in which the instruction set of the μ PD8080AF is emulated. A mode flag (MD) is provided to select between these two modes. Native mode is selected when MD is 1 and emulation mode when MD is 0. MD is set and reset, directly and indirectly, by executing the mode manipulation instructions.

Two instructions are provided to switch operation from the native mode to the emulation mode and back: BRKEM (Break for Emulation), and RETEM (Return from Emulation).

Two instructions are used to switch from the emulation mode to the native mode and back: CALLN (Call Native Routine), and RETI (Return from Interrupt).

The system will return from the 8080 emulation mode to the native mode when the RESET signal is present, or when an external interrupt (NMI or INT) is present.

Figure 7. V20 Modes

BRKEM imm8

This is the basic instruction used to start the 8080 emulation mode. This instruction operates exactly the same as the BRK instruction, except that BRKEM resets the mode flag (MD) to 0. PSW, PS, and PC are saved to the stack. MD is then reset and the interrupt vector specified by the operand imm8 of this command is loaded into PS and PC.

The instruction codes of the interrupt processing routine jumped to are then fetched. Then the CPU executes these codes as μ PD8080AF instructions.

In 8080 emulation mode, registers and flags of the μ PD8080AF are performed by the following registers and flags of the μ PD70108.

	μ PD8080AF	μ PD70108
Registers:	Α	AL
	В	СН
	С	CL
	D	DH
	E	DL
	Н	ВН
	L	BL
	SP	ВР
	PC	PC
Flags:	С	CY
	Z	Z
	S	S
	Р	Р
	AC	AC

In the native mode, SP is used for the stack pointer. In the 8080 emulation mode this function is performed by BP.

This use of independent stack pointers allows independent stack areas to be secured for each mode and keeps the stack of one of the modes from being destroyed by an erroneous stack operation in the other mode.

The SP, IX, IY and AH registers and the four segment registers (PS, SS, DS₀, and DS₁) used in the native mode are not affected by operations in 8080 emulation mode.

In the 8080 emulation mode, the segment register for instructions is determined by the PS register (set automatically by the interrupt vector) and the segment register for data is the DS_0 register (set by the programmer immediately before the 8080 emulation mode is entered).

It is prohibited to nest BRKEM instructions.

RETEM [no operand]

When RETEM is executed in 8080 emulation mode (interpreted by the CPU as a μ PD8080AF instruction), the CPU restores PS, PC, and PSW (as it would when returning from an interrupt processing routine), and returns to the native mode. At the same time, the contents of the mode flag (MD) which was saved to the stack by the BRKEM instruction, is restored to MD = 1. The CPU is set to the native mode.

CALLN imm8

This instruction makes it possible to call the native mode subroutines from the 8080 emulation mode. To return from subroutine to the emulation mode, the RETI instruction is used.

The processing performed when this instruction is executed in the 8080 emulation mode (it is interpreted by the CPU as $\mu\text{PD8080AF}$ instruction), is similar to that performed when a BRK instruction is executed in the native mode. The imm8 operand specifies an interrupt vector type. The contents of PS, PC, and PSW are pushed on the stack and an MD flag value of 0 is saved. The mode flag is set to 1 and the interrupt vector specified by the operand is loaded into PS and PC.

RETI [no operand]

This is a general-purpose instruction used to return from interrupt routines entered by the BRK instruction or by an external interrupt in the native mode. Wher this instruction is executed at the end of a subroutine entered by the execution of the CALLN instruction, the operation that restores PS, PC, and PSW is exactly the same as the native mode execution. When PSW is restored, however, the 8080 emulation mode value of the mode flag (MD) is restored, the CPU is set in emulation mode, and all subsequent instructions are interpreted and executed as μ PD8080AF instructions

RETI is also used to return from an interrupt procedur initiated by an NMI or INT interrupt in the emulatio mode.

Floating Point Operation Chip Instructions

FPO1 fp-op, mem/FPO2 fp-op, mem

These instructions are used for the external floating point processor. The floating point operation is passed to the floating point processor when the CPU fetch one of these instructions. From this point the CPI performs only the necessary auxiliary processing (effective address calculation, generation of physic addresses, and start-up of the memory read cycle).

The floating point processor always monitors the instructions fetched by the CPU. When it interprets one as an instruction to itself, it performs the appropriate processing. At this time, the floating point processor chip uses either the address alone or both the address and read data of the memory read cycle executed by the CPU. This difference in the data used depends on which of these instructions is executed.

Note: During the memory read cycle initiated by the CPU for FPO1 or FPO2 execution, the CPU does not accept any read data on the data bus from memory. Although the CPU generates the memory address, the data is used by the floating point processor.

Interrupt Operation

The interrupts used in the μ PD70108 can be divided into two types: interrupts generated by external interrupt requests and interrupts generated by software processing. These are the classifications.

External Interrupts

- (a) NMI input (nonmaskable)
- (b) INT input (maskable)

Software Processing

As the result of instruction execution

- When a divide error occurs during execution of the DIV or DIVU instruction
- When a memory-boundary-over error is detected by the CHKIND instruction

Conditional break instruction

When V = 1 during execution of the BRKV instruction

Unconditional break instructions

- 1-byte break instruction: BRK3
- 2-byte break instruction: BRK imm8

Flag processing

 When stack operations are used to set the BRK flag

080 Emulation mode instructions

- BRKEM imm8
- CALLN imm8

nterrupt Vectors

tarting addresses for interrupt processing routines re either determined automatically by a single location f the interrupt vector table or selected each time interrupt processing is entered.

The interrupt vector table is shown in figure 8. The table uses 1K bytes of memory addresses 000H to 3FFH and can store starting address data for a maximum of 256 vectors (4 bytes per vector).

The corresponding interrupt sources for vectors 0 to 5 are predetermined and vectors 6 to 31 are reserved. These vectors consequently cannot be used for general applications.

The BRKEM instruction and CALLN instruction (in the emulation mode) and the INT input are available for general applications for vectors 32 to 255.

A single interrupt vector is made up of 4 bytes (figure 9). The 2 bytes in the low addresses of memory are loaded into PC as the offset, and the high 2 bytes are loaded into PS as the base address. The bytes are combined in reverse order. The lower-order bytes in the vector become the most significant bytes in the PC and PS, and the higher-order bytes become the least significant bytes.

Figure 8. Interrupt Vector Table

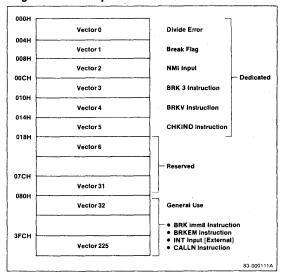
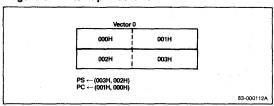



Figure 9. Interrupt Vector 0

Based on this format, the contents of each vector should be initialized at the beginning of the program.

The basic steps to jump to an interrupt processing routine are now shown.

 $(SP-1, SP-2) \leftarrow PSW$ $(SP-3, SP-4) \leftarrow PS$ $(SP-5, SP-6) \leftarrow PC$ $SP \leftarrow SP-6$ $IE \leftarrow 0$, BRK $\leftarrow 0$, MD $\leftarrow 1$ $PS \leftarrow vector\ high\ bytes$ $PC \leftarrow vector\ low\ bytes$

Standby Function

The µPD70108 has a standby mode to reduce power consumption during program wait states. This mode is set by the HALT instruction in both the native and the emulation mode.

In the standby mode, the internal clock is supplied only to those circuits related to functions required to release this mode and bus hold control functions. As a result, power consumption can be reduced to 1/10 the level of normal operation in either native or emulation mode.

The standby mode is released by inputting a RESET signal or an external interrupt (NMI, INT).

The bus hold function is effective during standby mode. The CPU returns to standby mode when the bus hold request is removed.

During standby mode, all control outputs are disabled and the addres/data bus will be at either high or low levels.

Instruction Set

Symbols

Preceding the instruction set, several tables explain symbols, abbreviations, and codes.

Clocks

In the Clocks column of the instruction set, the numbers cover these operations: instruction decoding, effective address calculation, operand fetch, and instruction execution.

Clock timings assume the instruction has been prefetched and is present in the four-byte instruction queue. Otherwise, add four clocks for each byte not present.

For instructions that reference memory operands, the number on the left side of the slash (/) is for byte operands and the number on the right side is for word operands.

For conditional control transfer or branch instructions, the number on the left side of the slash is applicable if the transfer or branch takes place. The number on the right side is applicable if it does not take place.

If a range of numbers is given, the execution time depends on the operands involved.

Meaning

Symbols

Symbol	Meaning
acc	Accumulator (AW or AL)
disp	Displacement (8 or 16 bits)
dmem	Direct memory address
dst	Destination operand or address
ext-disp8	16-bit displacement (sign-extension byte + 8-bit displacement)
far_label	Label within a different program segment
far_proc	Procedure within a different program segment
fp_op	Floating point instruction operation
imm	8- or 16-bit immediate operand
imm3/4	3/4-bit immediate bit offset
imm8	8-bit immediate operand
imm16	16-bit immediate operand
mem	Memory field (000 to 111); 8- or 16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
memptr16	Word containing the destination address within the current segment
memptr32	Double word containing a destination address in another segment
mod	Mode field (00 to 10)
near_label	Label within the current segment
near_proc	Procedure within the current segment
offset	Immediate offset data (16 bits)
pop_value	Number of bytes to discard from the stack
reg	Register field (000 to 111); 8- or 16-bit general-purpose register
reg8	8-bit general-purpose register
reg16	16-bit general-purpose register
regptr	16-bit register containing a destination address within the current segment
regptr16	Register containing a destination address within the current segment
seg	Immediate segment data (16 bits)
short_label	Label between -128 and +127 bytes from the end of the current instruction

Symbols (cont)

Symbol	Meaning
sr	Segment register
src	Source operand or address
temp .	Temporary register (8/16/32 bits)
tmpcy	Temporary carry flag (1 bit)
AC	Auxiliary carry flag
AH	Accumulator (high byte)
AL	Accumulator (low byte)
AND	Logical product
AW	Accumulator (16 bits)
BH	BW register (high byte)
BL	BW register (low byte)
BP	BP register
BRK	Break flag
BW	BW register (16 bits)
СН	CW register (high byte)
CL	CW register (low byte)
CW	CW register (16 bits)
CY	Carry flag
ЭН	DW register (high byte)
JIR	Direction flag
)L	DW register (low byte)
ISO	Data segment 0 register (16 bits)
·S1	Data segment 1 register (16 bits)
W	DW register (16 bits)
:	Interrupt enable flag
(Index register (source) (16 bits)

Symbols

Symbol	Meaning
ÍΥ	Index register (destination) (16 bits)
MD	Mode flag
OR	Logical sum
P	Parity flag
PC	Program counter (16 bits)
PS	Program segment register (16 bits)
PSW	Program status word (16 bits)
R	Register set
S	Sign extend operand field S = 0 No sign extension S = 1 Sign extend immediate byte operand
S	Sign flag
SP .	Stack pointer (16 bits)
SS	Stack segment register (16 bits)
V	Overflow flag
W	Word/byte field (0 to 1)
X, XXX, YYY, ZZZ	Data to identify the instruction code of the external floating point arithmetic chip
XOR	Exclusive logical sum
XXH	Two-digit hexadecimal value
XXXXH	Four-digit hexadecimal value
Z	Zero flag
()	Values in parentheses are memory contents
-	Transfer direction
+	Addition
_	Subtraction
X	Multiplication
÷	Division
%	Modulo

μ**PD7**0108 (**V**20)

Flag Operations

Symbol	Meaning
(blank)	No change
0	Cleared to 0
1	Set to 1
X	Set or cleared according to result
u	Undefined
R	Restored to previous state

Memory Addressing Modes

mem	mod = 00	mod == 01	mod = 10					
000	BW + IX	BW + IX + disp8	BW + IX + disp16					
001	BW + IY	BW + IY + disp8	BW + IY + disp16					
010	BP + IX	BP + IX + disp8	BP + IX + disp16					
011	BP + IY	BP + IY + disp8	BP + IY + disp16					
100	IX	IX + disp8	IX + disp16					
101	IY	IY + disp8	IY + disp16					
110	Direct	BP + disp8	BP + disp16					
111	BW	BW + disp8	BW + disp16					

Register Selection (mod = 11)

reg	W = 0	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	АН	SP
101	СН	ВР
110	DH	iX
111	ВН	ΙΥ

Segment Register Selection

sr	Segment Register								
00	DS1								
01	PS								
10	. SS								
11	DSO								

Anemonic	Operand	- 7	6	5	4	3	2	1		pcode 7 6	5	4 3	2 1 0	Clocks	Bytes	,	C C		Flags V P		s z
Data Trai	nsfer Instructions		_	-												-					
VOV	reg, reg	1	0	0	0	1	0	1	W	1 1	- 1	reg	reg	2	2						
	mem, reg	1	0	0	0	1	0	0	W	mod	ı	eg	mem	9/13	2-4	-					
	reg, mem	1	0	0	0	1	0	1	W	mod		eg	mem	11/15	2-4		-				
	mem, imm	1	1	0	0	0	1	1	W	mod	- 1	eg	mem	11/15	3-6		-				
	reg, imm	1	0	1	1	W		reç	1					4	2-3						
	acc, dmem	1	0	1	0	0	0	0	W					10/14	3						
	dmem, acc	1	0	1	0	0	0	1	W					9/13	3						
	sr, reg16	1	0	0	0	1	1	1	0	1 1	0	sr	reg	2	2						
	sr, mem16	1	0	0	0	1	1	1	0	mod	0	sr	mem	11/15	2-4						
	reg16, sr	1	0	0	0	1	.1	0	0	1 1	0	sr	reg	2	2						
	mem16, sr	1	0	0	0	1	1	0	0	mod	0	sr	mem	10/14	2-4						
	DS0, reg16, mem32	1	1	0	0	0	1	0	1	mod	. 1	eg	mem	18/26	2-4						
	DS1, reg16, mem32	1	1	0	0	0	1	0	0	mod	-	eg	mem	18/26	2-4						
	AH, PSW	1	0	0	1	1	1	1	1					2	1.						
	PSW, AH	1	0	0	1	1	1	1	0					3	1		Х	Х		Х	x >
.DEA	reg16, mem16	1	0	0	0	1	1		1	mod		reg	mem	4	2-4		4. 1				
RANS	src_table	1	1	0	1	0	1	1	1					9	1						
CH	reg, reg	1	0	0	0	0	1	1	W	1 1	1	eg	reg	3	2						
	mem, reg	1	0	0	0	0	1	1	W	mod	1	eg	mem	16/26	2-4						
	AW, reg16	_1	0	0	1	0		reç	J					3	1						
Repeat P	refixes																				
REPC		0	1	1	0	0	1	0	1					2	1						
REPNC		0	1	1	0	0	1	0	0					2	1						
REP REPE REPZ		1	1	1	1	0	0	1	1					2	1						
EPNE EPNZ		1	1	1	1	0	0	1	0					2	1						
3lock Tra	nsfer Instructions							_													
10VBK	dst, src	1	0	1	0	0	1		W					11 + 8n	1						
MPBK	dst, src	1	0	1	0	0	1	1	W					7 + 14n	1		Х	Х	Х	x	x - >
MPM	dst	1	0	1	0	1	1	1	W					7 + 10n	1		X	х	х	X	x >
DM	src	1	0	_1	0	1	1	0	W					7 + 9n	1						
ΓM	dst	1	0	1	. 0	1	0	1	W					7 + 4n	1						
O Instru	uotions									<u>n</u> =	nun	nber o	of transfers					_			
O man		- 1	1	1		_	1	0	14/					0/12	2						
	acc, imm8 acc, DW													9/13	2	-					
IT				1			1		W					8/12	1				_		
ļΤ	imm8, acc		_		0		_		W				· · · · · · · · · · · · · · · · · · ·	8/12	2						
	DW, acc								W					8/12	1		-				
M	dst, DW			1		1	1		W					9 + 8n	1.						_
TM	DW, src	- 0	1	1	0	_1	1	1	W					9 + 8n	1						

nsi	ruct	ion	Set	(cont)

Mnemonic	Operand	7 6 5 4	3	2		code 7 6	· ;	5 4	3	2 1	0	Clocks	Bytes	AC		ags V		S	z
BCD Inst	ructions															-	-	-	
ADJBA		0 0 1 1	0	1	1 1							3	1	х	х	u	u.	u	u
ADJ4A		0 0 1 0	0	1	1 1		-					3	1	Х	X	u	х	Х	х
ADJBS		0 0 1 1	1	1	1 1				_			7	1	х	х	u	u	u	u
ADJ4S		0 0 1 0	1	1	1 1							7	1	X	Х	u	х	х	х
ADD4S	dst, src	0 0 0 0	1	1	1 1	0 0		1 0	0	0 0	0	7 + 19n	2	u	х	u	u	u	х
SUB4S	dst, src	0 0 0 0	1	1	1 1	0 0		1 0	0	0 1	0	7 + 19n	2	u	х	u	u	u	Х
CMP4S	dst, src	0 0 0 0	1	1	1 1	0 0		1 0	0	1 1	0	7 + 19n	2	u	Х	u	u	u	x
R0L4	reg8	0 0 0 0			1 1 eg	0 0		1 0	1	0 0	0	25	3						
	mem8	0 0 0 0 mod 0 0			1 1 em	0 0		1 0	1	0 0	0	28	3-5						
ROR4	reg8	0 0 0 0	-	- 7	1 1 eg	0 0		1 0	1	0 1	0	29	3						
	mem8	0 0 0 0 mod 0 0		m	1 1 em	0 0		1 0	1		0	33	3-5						
Data Typ	a Conversion Instruct	lone		n =	num	ber of B	CD	digi	s d	vided	by 2								
CVTBD	e Conversion Instruct	1 1 0 1	0	1	0 0	0 0	_	0 0	1	0 1	0	15	2	u	u		_	X	X
CVTDB		1 1 0 1			0 1	0 0	_	0 0	1	0 1	0	7	2			u	X	<u>^</u>	
CVTBW		1 0 0 1			0 0							2	1		<u>u</u>	<u> </u>			
CVTWL		1 0 0 1			0 1		-		_			4-5	1						
	ic Instructions			_				_	_		_		<u> </u>		:		_		_
ADD	reg, reg	0 0 0 0	0	0	1 W	1 1	_	reç		reg		2	2	x	×			×	
	mem, reg	0 0 0 0			0 W	mod		reg		mer		16/24	2-4		x	X	×	×	
•	reg, mem	0 0 0 0			1 W	mod		reg		mei		11/15	2-4	X	x	<u> </u>	x	x	
	reg, imm	1 0 0 0			s w	1 1			0	reg		4	3-4		х		х	X	
	mem, imm	1 0 0 0	0		S W	mod	_		-0	mei		18/26	3-6	X	х	х		X	x
	acc, imm	0 0 0 0			0 W							4	2-3	X		x	x	x	
ADDC	reg, reg	0 0 0 1	0	0	1 W	1. 1		reç	,	reg		2	2	X	х	Х	X	X	X
	mem, reg	0 0 0 1	0	0	0 W	mod		reg	 I	mei	n	16/24	2-4	Х	Х	х	х	х	х
	reg, mem	0 0 0 1	0	0	1 W	mod		reç]	mei	n .	11/15	2-4	Х	х	X	X	х	X
	reg, imm	1 0 0 0	0	0	S W	1 1	- (0 1	0	reç		4	3-4	х	х	х	х	х	x
	mem, imm	1 0 0 0	0	0	s w	mod	ĺ	0 1	0	mei	n	18/26	3-6	х	х	X	х	х	х
	acc, imm	0 0 0 1	0	1	0 W			•				4	2-3	Х	x	х	х	х	X
SUB	reg, reg	0 0 1 0	1	0	1 W	1 1		reç]	reç	1	2	2	Х	х	х	х	х	х
	mem, reg	0 0 1 0	1	0	0 W	mod		reç]	mei	n·	16/24	2-4	×	X	X	Х	х	х
	reg, mem	0 0 1 0	1	0	1 W	mod		reç]	mei	n	11/15	2-4	Х	Х	X	х	х	х
	reg, imm	1 0 0 0	0	0	S W	1 1		1 0	1	reç		4	3-4	Х	х	х	Х	х	x

									Opc	ode							Flags		
Mnemonic	Operand	7	6	5	4	3	2	1			5	4	3	2 1 0	Clocks	Bytes	AC CY V P	S	Z
Arithmet	ic Instructions (cont)															1			
	mem, imm	1	0	0	0	0	0	S	W	mod	1	0	1	mem	18/26	3-6	x x x x	х	Х
	acc, imm	0	0	1	0	1	1	0	W						4	2-3	x x x x	х	Х
SUBC	reg, reg	0	0	0	1	1	0	1	W	1 1		reg	ı	reg	2	2	x x x x	х	х
	mem, reg	0	0	0	1	1	0	0	W	mod		reg	1	mem	16/24	2-4	x x x x	х	х
	reg, mem	0	0	0	1	1	0	1	W	mod		reg	1	mem	11/15	2-4	x x x x	х	х
	reg, imm	1	0	0	0	0	0	S	W	1 1	0	1	1	reg	4	3-4	x x x x	х	х
	mem, imm	1	0	0	0	0	0	S	W	mod	0	1	1	mem	18/26	3-6	x x x x	Х	х
	acc, imm	0	0	0	1	1	1	0	W						4	2-3	x x x x	Х	х
NC	reg8	1	1	1	1	1	1	1	0	1 1	0	0	0	reg	2	2	х х х	х	х
	mem	1	1.	1	1	1	1	1	W	mod	0	0	0	mem	16/24	2-4	х х х	х	х
	reg16	0	1	0	0	0		reg							2	1	х хх	Х	x
DEC	reg8	1	1	1	1	1	1	1	0	1 1	0	0	1	reg	2	2	х х х	х	X
	mem	1	1	1	1	1	1	1	W	mod	0	0	1	mem	16/24	2-4	х хх	х	х
	reg16	0	1	0	0	1	_	reg							2	1	х хх	х	x
MULU	reg	1	1	1	1	0	1	1	W	1 1	1	0	0	reg	21-30	2	u x x u	u	u
	mem	1	1	1	1	0	1	1	W	mod	1	0	0	mem	27-36	2-4	u x x u	и	u
MUL	reg	1	1	1	1	0	1	1	W	1 1	1	0	1	reg	33-47	2	u x x u	u	u
	mem	1	1	1	1	0	1	1	W	mod	1	0	1		39-57	2-4	u x x u	u	u
	reg16,reg16,imm8	0	1	1	0	1	0	1	1	1 1		reg		reg	28-34	3	u x x u	и	u
	reg16,mem16,imm8	0	1	1	0	1	0	1	1	mod	_	reg		mem	34-44	3-5	u x x u	u	u
	reg16,reg16,imm16	0	1	1	0	1	0	0	1	1 1	_	reg		reg	36-42	4	u x x u	u	u
	reg16,mem16,imm16	0	1	1	0	1	0	0	1	mod		reg		mem	46-52	4-6	u x x u	u	u
NVU	reg	1	1	1	1	0	1	1	W	1 1	1	1	0	reg	19-25	2	uuuu	u	u
	mem	1	1	1	1	0	1	1	W	mod	1	1	0	mem	25-35	2-4	i u u u	u	u
IV	reg	. 1	1	1	1	0	1	1	W	1 1	1	1	1	reg	29-43	2	uuuu	u	u
	mem	1	1	1	1	0	1	1	W	mod	1	1	1	mem	35-53	2-4	uuuu	u	u
ompari	son Instructions										_								
MP	reg, reg	0	0	1	1	1.	0	1	W	1 1		reg	1	reg	2	2	x x x x	х	x
	mem, reg	0	0	1	1	1	0	0	W	mod		reg	1	mem	11/15	2-4	x x x x	х	X
	reg, mem	0	0	1	1	1.	0	1	W	mod		reg		mem	11/15	2-4	x x x x	х	X
	reg, imm	1	0	0	0	0	0	s	W	1 1	1		1	reg	4	3-4	x x x x	x	
	mem, imm	1	0	0	0	0	0	S	W	mod	1	1	1	mem	13/17	3-6	x x x x	х	х
	acc, imm	0	0	1	1	1	1	_	W		_				4	2-3		х	
paical I	nstructions		_	-	-						_		_						_
)T	reg	1	1	-1	1	0	1	1	W	1 1	0	1	0	reg	2	2			
	mem					0			w	mod	_		0		16/24	2-4			
G	reg					0				1 1	_				2	2	x x x x	x	
	mem					0	_			mod					16/24	2-4	x x x x		
ST	reg, reg	1				0				1 1	_	reg		reg	2	2	u 0 0 x		
	mem, reg					0	_			mod		reg		mem	10/14	2-4	u 0 0 x		
1	reg, imm		_	1					_	1 1	_				4	3-4	u 0 0 x		

	0	_	_	_		_			Opc		-									ags	_	_
Mnemonic	Operand (a.m.)		D	- 5	4	3	2	1	U	/ 6	- 5	4	3	2 1 0	Clocks	Bytes	AU	UY	<u> </u>	Р	-8	
Logicai II	nstructions (cont)					_			144		_		_		44.445	2.0						
	mem, imm	1		1	1	0	1	1		mod	0	0	0	mem	11/15	3-6	u	0	0	X	X	X
	acc, imm	1		1	0	1	0	0	W						4	2-3	u	0	0		X	
AND	reg, reg	- 0		1	0	0	0	1	W	1 1		reg		reg	2	2	u	0	0		X	
	mem, reg	0		1	0	0	0	0	W	mod		reg		mem	16/20	2-4	u	0		X		
	reg, mem	0		1	0	0	0	1	W	mod		reg		mem	11/15	2-4	u	0	0	X		X
	reg, imm	1		0	0	0	0	0		1 1	_		0		4	3-4	u	0	0		Х	
	mem, imm	1		0	0	0	0		W	mod	1	0	0	mem	18/26	3-6	u	0	0	Х		-X
	acc, imm	0		1	0	0	1	0	W						4	2-3	u	0	0	X	_X	
OR	reg, reg	0			0	1	0	1	W	1 1		reg		reg	2	2	u	0	0			X
	mem, reg	0	_	0	0	1	0	0	W	mod		reg		mem	16/24	2-4	u	0	0	X	X	Х
	reg, mem	0		0	0	1	0	1	W	mod		reg		mem	11/15	2-4	u	0	0	X	Х	X
	reg, imm	1		0	0	0	0	0	W	1 1	0		1		4	3-4	u	0	0	X	<u> </u>	
	mem, imm	1		_	0	0	0	0	W	mod	0	0	1	mem	18/26	3-6	u	0	0	X		X
	acc, imm	0		1	0	0	1	0	W						4	2-3	u	0	0	X	X	X
X0R	reg, reg	0			1	0	0	1	W	1 1		reg		reg	2	2	u	0	0		Х	X
	mem, reg	0			1	0	0	0	W	mod		reg		mem	16/24	2-4	u	0	0	X	Х	Х
	reg, mem	0				0	0	1	W	mod		reg		mem	11/15	2-4	u	0	0			
	reg, imm	1		_0	0	0	0	0	W	1 1	1				4	3-4	u	0	0	X	X	X
	mem, imm	1	_	0		0	0	0	W	mod	1		0	mem	18/26	3-6	u	0	0	X	X	X
	acc, imm	0	0	_1	0	0	1	0	W						4	2-3	u	0	0	X	Х	<u> </u>
	pulation Instructions																					
INS	reg8, reg8	1	-	0	0 reg		1	1 reg	1	0 0	1	1	0	0 0 1	35-133	3						
	reg8, imm8	0	-	0	0	1 0	1	1 reg	1	0 0	1	1	1	0 0 1	35-133	4						
EXT	reg8, reg8	0		0	0 reg	1	1	1 reg	1	0 0	1	1	0	0 1 1	34-59	3						
	reg8, imm8	0		0	0	1	1	1 reg	1	0 0	1	1	1	0 1 1	34-59	4						
TEST1	reg, CL	0		0	0	1	1	1 reg	1	0 0	0	1	0	0 0 W	3	3	u	0	0	u	u	X
	mem, CL	0 r	0 nod	0	0	1	1	1 ner	1 n	0 0	0	1	.0	0 0 W	12/16	3-5	u	0	0	u	u	х
	reg, imm3/4	0			0	1	1	1 reg	1	0 0	0	1	1	0 0 W	4	4	u	0	0	u	u	х
	mem, imm3/4	0	0 nod	0	0	1	1	1 ner	1 n	0 0	0	1	1	0 0 W	13/21	4-6	u	0	0	u	u	X
SET1	reg, CL	0		-	0	1	1	1 reg		0 0	0	1	0	1 0 W	. 4	3 .						
	mem, CL	C	0 nod		0	1	1,	1 ner	1	0 0	0	1	0	1 0 W	13/21	3-5						

								pcode												Flag	js .		
Vinemonic	Operands			4	3	2	1 0	7	6	_ 5	4	3	2	1	0	Clocks	Bytes	AC	CY	<u>v</u>	P :	8_	Z
3it Manip	oulation Instruction	ns (con	t)																			_	_
	reg, imm3/4		0 0 1 0	0	1		1 1 reg	C	0	0	1	1	1	0	W	5	4						
	mem, imm3/4	0 mo	0 0 d 0	0	1		1 1 nem	C	0	0	1	1	1	0	W	14/22	4-6						
	CY	1	1 1	1	1	0	0 1									2	1		1			_	
	DIR	1	1 1	1	1	1	0 1							••••		2	1					_	
CLR1	reg, CL	-	0 0	0	1	1	1 1 reg	C	0	0	1	0	0	1	W	5	3						_
	mem, CL	0 mo	0 0 d 0	0	1		1 1 nem	C	0	0	1	0	0	1	W	14/22	3-5						_
	reg, imm3/4		0 0	0	1		1 1 reg	C	0	0	1	1	0	1	W	6	4						
	mem, imm3/4	0 mo	0 0 d 0	0	1		1 1 nem	C	0	0	1	1	0	1	W	15/27	4-6						
	CY	1	1 1	1	1	0	0 0									2	1		0				
	DIR	1	1 1	1	1	1	0 0									2	1					_	_
IOT1	reg, CL		0 0 1 0	0	1		1 1 reg	C	0	0	1	0	1	.1	W	4	3			-			_
	mem, CL	0 mo	0 0 d 0	0	1		1 1 nem	C	0	0	1	0	1	1	W	18/26	3-5						_
	reg, imm3/4		0 0	0	1	1	1 1 reg	C	0	0	1	1	1	1	W	5	4		•				
	mem, imm3/4	0 mo	0 0 d 0	0	1	1 n	1 1 nem	C	0	0	1	1	1	1	W	19/27	4-6						
	CY	1	1 1	1	0	1	0 1									2	1		X				
hift/Rot	ate Instructions																-						
HL	reg, 1	1	1 0	1	0	0	0 W	1	1	1	0	0		reg		2	2	U	х	Х	x >	κ	х
	mem, 1	1	1 0	1	0	0	0 W	r	nod	1	0	0		men	n	16/24	2-4	u	Х	х	x >	K	х
	reg, CL	1	1 0	1	0	0	1 W	1 1	1	1	0	0		reg		7 + n	2	u	Х	u	x >	x	x
	mem, CL	1	1 0	1	0	0	1 W	r	nod	1	0	0	- 1	men	n	19/27 + n	2-4	u,	х	u	x >	ĸ	х
	reg, imm8	1	1 0	0	0	0	0 W	1	1	1	0	0		reg		7 + n	3	u	Х	u	x >	<u></u>	X
	mem, imm8	1	1 0	0	0	0	0 W	r	nod	1	0	0	-	men	n	19/27 + n	3-5	u	х	u	x >	<u> </u>	x
HR	reg, 1	1	1 0	1.	0	0	0 W	1 1	1	1	0	1		reg		2	2	u	х	Х	x >	ĸ	x
	mem, 1	1	1 0	1	0	0	0 W	r	nod	1	0	1	- 1	men	n	16/24	2-4	u	х	х	x X	ĸ	X
	reg, CL	1	1 0	1	0	0	1. W	1 1	1	1	0	1		reg		7 + n	2	u	х	ü.	X		x
	mem, CL	1	1 0	1	0	0	1 W	' r	nod	1	0	1	-	men	n	19/27 + n	2-4	u	х	u ·	x >	ĸ	X
	reg, imm8	1	1 0	0	0	0	0 W	1	1	1	0	1		reg		7 + n	3	u	х	u	x :	x	×
	mem, imm8	1	1 0	0	0	0	0 W	r	nod	1	0	1		men		19/27 + n	3-5				x >		-
										n =	: n:	mh	er o	f sh	ifte								-

μ**PD**70108 (**V**20)

Mnemonic	Operands	7	6	5	Δ	3	2	1		code 7 fi	5		3	2 1 0	Clocks	Bytes	A	C C		Flags V F			7
	ate Instructions (-							_		_ 1 0	310000	Dytos		-	-	- '			-
SHRA	reg, 1	·	1	0	1	0	0	_	W	1 1	1	1	1	reg	2	2			_	0 x			
Olillo C	mem, 1			0	1	0	0		W	mod	1	1		mem	16/24	2-4	u			0 x		()	
	reg, CL		<u> </u>	0	<u>.</u>			1		1 1	<u> </u>	_	<u></u>	reg	7 + n	2	u			u x		()	
	mem, CL			0	<u>.</u>			<u>'</u>		mod	1	1		mem	19/27 + n	2-4	u			u x		()	
	reg, imm8	1		0	0	0	0		w	1 1	1	1		reg	7 + n	3	u u			u x		()	
	mem, imm8	<u>.</u>		0	0	0	0		w	mod		1		mem	19/27 + n	3-5		^		u x			
ROL	reg, 1	<u>.</u>		0	1				w	1 1	<u>.</u>			reg	2	2	u	X					_
,,,,,	mem, 1		<u>.</u> 1	0	<u>.</u> 1	0		0		mod	0	0		mem	16/24	2-4			(
	reg, CL	<u>·</u> 1		0	1	0		1		1 1	0			reg	7 + n	2				u u			
	mem, CL	<u>.</u>		0	<u> </u>	0	0	1		mod	0			mem	19/27 + n	2-4				u			
	reg, imm	1		0	0	0		0		1 1	0	0		reg	7 + n	3			·				
	mem, imm		<u>.</u> 1	0	0	0			W	mod	0			mem	19/27 + n	3-5			<u>`</u> _				
ROR	reg, 1		1	0	1	0	0	0		1 1	0	0		reg	2	2			·				
	mem, 1	<u>·</u> 1		0	1	0	0		W	mod	0			mem	16/24	2-4			<u>`</u> _				
	reg, CL	<u></u>		0	<u> </u>		0	1		1 1	0			reg	7 + n	2		-	· (_		
	mem, CL	1		0	1	0	0		w	mod		0		mem	19/27 + n	2-4	_		<u>. </u>				
	reg, imm8	1		0	0	0			W	1 1	0			reg	7 + n	3			· ·				
	mem, imm8	1	1	0	0	0		0	——	mod	0			mem	19/27 + n	3-5			·				_
ROLC	reg, 1	1	1	0	1	0	0	0	W	1 1	0	1	0	reg	2	2		×	(X			
	mem, 1	1	1	0	1	0	0	0	W	mod	0	1	0	mem	16/28	2-4		х	(X			
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	1	0	reg	7 + n	2		×	<u> </u>	u		_	
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	0	mem	19/27 + n	2-4		- х	(u			_
	reg, imm8	1	1	0	0	0	0	0		1 1	0	1	0	reg	7 + n	3	-	Х	(u	_		
	mem, imm8	, 1	1	0	0	0	0	0	W	mod	0	1	0	mem	19/27 + n	3-5		Х	(u			
RORC	reg, 1	1	1	0	1	0	0	0	W	1 1	0	1	1	reg	2	2		Х	·	x		_	
	mem, 1	. 1	1	0	1	0	0	0	W	mod	0	1	1	mem	16/24	2-4		Х	<u> </u>	x			-
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	1	1	reg	7 + n	2		Х	(u		-	
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	1	mem	19/27 + n	2-4		Х	<u> </u>	u			
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	1	1	reg	7 + n	3 .		Х	(u			
	mem, imm8	1	1	0	0	0	0		W	mod	0	1	1	mem	19/27 + n	3-5		x	(u	_		
			,								n =	ะทเ	ımb	er of shifts									_
Stack Ma	nipulation Instru	ctions																			_		
PUSH	mem16	1	1	1	1	1	. 1	1	1	mod	1	1	0	mem	26	2-4							
	reg16	0	1	0	1	0		re	g						12	. 1							_
	sr	0	0	0		sr	1	1	0					-	12	1			-				-
	PSW	1	0	0	1	1	1	0	0						12	1			_				_
	R	0	1	1	0	0	0	0	0						67	1	-						_
	imm	0	1	1	0	1	0	S	0						11/12	2-3					_	_	

									Ope											ags		
Mnemonic	Operands	7	6	5	4	3	2	1	0	7 6	5	4	3	2 1 0	Clocks	Bytes	AC	C	Y V	P	S	
Stack Ma	nipulation Instructions	(con	t)													- 1. T					• •	_
POP	mem16	1	0	0	0	1	1	1	1	mod	0	0	0	mem	25	2-4						
	reg16	0	1	0	1	1	1	reg							12	1						
	sr	0	0	0	sr		1	1	1						12	1						
	PSW	1	0	0	1	1	1	0	1						12	1	R	R	R	R	R	R
	R	0	1	1	0	0	0	0	1	-					75	1						
PREPARE	imm16, imm8	1	1	0	0	1	0	0				40			*	4						
										mm8 = m8 > 1			8 (ii	mm8 — 1)								
DISPOSE		1	1	0	0	1	0	0							10	1						
Control 7	Transfer Instructions		_																			
CALL	near_proc	1	1	1	0	1	0	0	0		_				20	3					_	
	regptr	1	1	1		1	1	1	1.	1. 1	0	1	0	reg	18	1						-
	memptr16	1	1	1	1	1	1	1	1	mod	0	1	0	mem	31	2-4						
	far_proc	1	0	0			0	1	0						29	5						-
	memptr32	1	1	1	1	1	1	1	1 .	mod	0	1	1	mem	47	2-4		_				
RET	,	1	1	0	0	0	0	1	1						19	1						
	pop_value	1	1	0		_	0	1	0						24	3						
		1	1	0	0	1	0	1	1						29	. 1		-	7			
	pop_value	1	1	0	0	1	0	1	0						32	3	-	-				
3R	near_label	1	1	1	0	1	0	0	1	-					13	3						
	short_label	1	1	1	0	1	0	0	1						12	2				-		
	reg	1	1	1	1	1	1	1	1	1 1	1	0	0	reg	11	2						
	memptr16	1	1	1	1	1	1	1	1	mod	1	0	0	mem	24	2-4						-
	far_label	1	1	1	0	1	0	1	0						15	5				-		-
	memptr32	1	1	1	1	1	1	1	1	mod	1	0	1	mem	35	2-4					-	
V	near_label	0	1	1	1	0	0	0	0						14/4	2						
NV	near_label	0	1	1	1	0	0	0	1						14/4	2	1.		•••			
C, BL	near_label	0	1	1	1	0	0	1	0						14/4	2			7.			
NC, BNL	near_label	0	1	1	1	0	0	1	1						14/4	2						
E, BZ	near_label	0	1	1	1	0	1	0	0						14/4	2						
NE, BNZ	near_label	0	1	1	1	0	1	0	1						14/4	2						-
VН	near_label	0	1	1	1	0	1	1	0						14/4	2						
+	near_label	0	1	1	1	0	1	1	1						14/4	2				-		
١	near_label	0	1	1	1	1	0	0	0						14/4	2						
)	near_label	0	1	1	1	1	0	0	1						14/4	2	***					
Έ	near_label	0	1	1	1	1	0	1	0						14/4	2		-				
0,	near_label	0	1	1	1	1	0	1	1					,	14/4	2						
Ţ	near_label	0	1	1	1	1	1	0	0					***************************************	14/4	2						
E	near_label	0	1	1	1	1	1	0	1						14/4	2						

μ**PD7**,0108 (**V**20)

Instruction Set (cont)

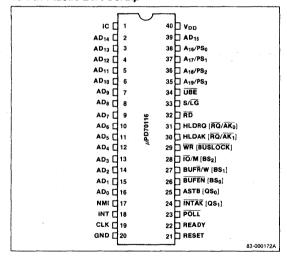
Mnemonic	Operand		7	6	5	4	3	2	1	Opc O		6	5	4	3		2	1	0	Clocks	Bytes	A	C		ags P	8	z
Control '	Transfer Instruction	ons (con	t)															-	_								-
BLE	near_label		0	1	1	1	1	1	1	0		-								14/4	2						
BGT	near_label	- 1	0	1	1	1	1	1	1	1										14/4	2						
DBNZNE	near_label		1	1	1	0	0	0	0	0										14/5	2						
DBNZE	near_label		1	1	1	0	0	0	0	1										14/5	2						
DBNZ	near_label		1	1	1	0	0	0	1	0	-									13/5	2						
BCWZ	near_label		1	1	1	0	0	0	1	1										13/5	2						
Interrupt	Instructions																	_									
BRK	3		1	1	0	0	1	1	0	0										50	1						
	imm8		1	1	0	0	1	1	0	1										50	2						
BRKV	imm8		1	1	0	0	1	1	1	1										52/3	1						
RETI			1	1	0	0	1	1	1	0										39	1	R	R	R	R	R	R
CHKIND	reg16, mem32		0	1	1	0	0	0	1	0	n	nod		re		-	m	em	1	73-76/26	2-4						
BRKEM	imm8		0	0	0	0	1	1	1	1	1	1	1	1	1		1	1	1	50	3						
CPU Coi	ntrol Instructions	7 10 000											:							****			-				
HALT			1	1	1	1	0	1	0	0										2	1						
BUSLOCK			1	-1	1	1	0	0	0	0	-									2	1						
FPO1	fp_op	***************************************	1	1	0	1	1	Х	Х	Χ	1	1	Υ	Υ	Υ		Z	Z	Z	2	2				_		
	fp_op, mem		1	1	0	1	1	Х	Χ	Х	n	nod	Υ	Υ	Y	•	m	em	1	15	2-4						
FP02	fp_op		0	1	1	0	0	1	1	Χ	1	1	Υ	Υ	Υ	. ;	z	Z	Z	2	2						
	fp_op, mem		0	1	1	0	0	1	1	Χ	n	nod	Υ	Υ	Y	,	m	em	1	15	2-4						
P0LL			1	0	0	1		0 = r	-	1 ber o	f tir	nes	POI	Lŗ	oin	is	sar	npl	ed.	2 + 5n	1						
NOP			1	0	0	1	0	0	0	0		_								3	1						
DI			1	1	1	1	1		1	0										2	1				_		
El			1	1	1	1	1	0	1	1										2	1						
8080 Ins	truction Set Enha	ncemen	ts				-						-		_	_											
RETEM			1	1	1	0	1	1	0	1	1	1	1	1	1		1	0	1	39	2	R	R	R	. R	R	R
CALLN	imm8		1	.1	1	0	1	1	0	1	1	1	. 1	0	. 1		1	0	1	58	3	(2)					

µPD70116 (V30™) 16-BIT HIGH-PERFORMANCE CMOS MICROPROCESSOR

Description

The μ PD70116 (V30) is a CMOS 16-bit microprocessor with an internal 16-bit architecture and a 16-bit external data bus. The μ PD70116 instruction set is a superset of the μ PD8086/8088; however, mnemonics and execution times are different. The μ PD70116 additionally has a powerful instruction set including bit processing, packed BCD operations, and high-speed multiplication/division operations. The μ PD70116 can also execute the entire 8080 instruction set and comes with a standby mode that significantly reduces power consumption. It is software-compatible with the μ PD70108 microprocessor.

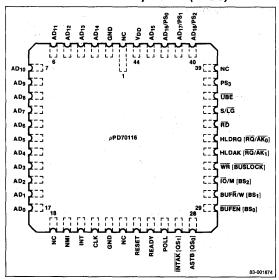
Features

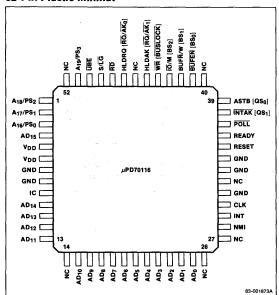

- ☐ Minimum instruction execution time: 250 ns (at 8 MHz)
- ☐ Maximum addressable memory: 1 Mbyte
- $\hfill \square$ Abundant memory addressing modes
- ☐ 14 x 16-bit register set
- ☐ 101 instructions
- Instruction set is a superset of μPD8086/8088 instruction set
- ☐ Bit, byte, word, and block operations
- ☐ Bit field operation instructions
- ☐ Packed BCD instructions
- ☐ Multiplication/division instruction execution time: 4 µs to 6 µs (at 8 MHz)
- ☐ High-speed block transfer instructions:
 - 2 Mbyte/s (at 8 MHz)
- ☐ High-speed calculation of effective addresses: 2 clock cycles in any addressing mode
- ☐ Maskable (INT) and nonmaskable (NMI) interrupt inputs
- ☐ IEEE-796 bus compatible interface
- 3 8080 emulation mode
- CMOS technology
-] Low-power consumption
- Low-power standby mode
- Single power supply
- 3 5-MHz, 8-MHz or 10-MHz clock

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD70116C-5	40-pin plastic DIP	5 MHz
μPD70116C-8	40-pin plastic DIP	8 MHz
μPD70116D-5	40-pin ceramic DIP	5 MHz
μPD70116D-8	40-pin ceramic DIP	8 MHz
μPD70116D-10	40-pin ceramic DIP	10 MHz
μPD70116G-5	52-pin plastic miniflat	5 MHz
μPD70116G-8	52-pin plastic miniflat	8 MHz
μPD70116L-5	44-pin PLCC	5 MHz
μPD70116L-8	44-pin PLCC	8 MHz

Pin Configurations


40-Pin Plastic DIP/Cerdip



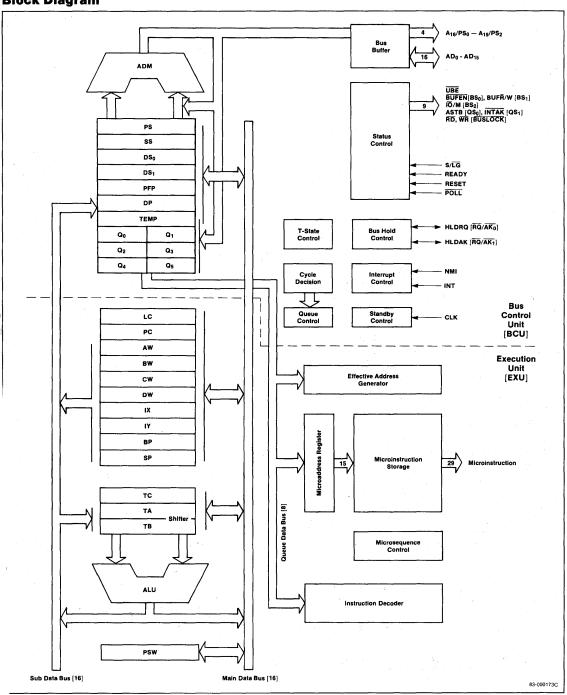
Pin Configurations (cont)

44-Pin Plastic Leadless Chip Carrier (PLCC)

52-Pin Plastic Miniflat

Pin Identification

Symbol	Direction	Function
IC*		Internally connected
AD ₁₄ - AD ₀	In/Out	Address/data bus
NMI	ln .	Nonmaskable interrupt input
INT	In	Maskable interrupt input
CLK	ln	Clock input
GND		Ground potential
RESET	In	Reset input
READY	ln	Ready input
POLL	In	Poll input
INTAK (QS ₁)	Out	Interrupt acknowledge output (queue status bit 1 output)
ASTB (QS ₀)	Out	Address strobe output (queue status bit 0 output)
BUFEN (BS ₀)	Out	Buffer enable output (bus status bit 0 output)
BUFR/W (BS ₁)	Out	Buffer read/write output (bus status bit 1 output)
10/M (BS ₂)	Out	Access is I/O or memory (bus status bit 2 output)
WR (BUSLOCK)	Out	Write strobe output (bus lock output)
HLDAK (RQ/AK ₁)	Out (In/Out)	Holdacknowledge output, (bus hold request input/ acknowledge output 1)
HLDRQ (RQ/AK ₀)	In (In/Out)	Hold request input (bus hold request input/ acknowledge output 0)
RD	Out	Read strobe output
S/ LG	In	Small-scale/large-scale system input
UBE	Out	Upper byte enable
A ₁₉ /PS ₃ - A ₁₆ /PS ₀	Out	Address bus, high bits or processor status output
AD ₁₅	In/Out	Address/data bus, bit 15


Notes: * IC should be connected to ground.

Where pins have different functions in small- and large-sce systems, the large-scale system pin symbol and function $\epsilon \frac{1}{\pi}$ in parentheses.

Unused input pins should be tied to ground or V_{DD} minimize power dissipation and prevent the flow of pote tially harmful currents.

Block Diagram

Pin Functions

Some pins of the µPD70116 have different functions according to whether the microprocessor is used in a small- or large-scale system. Other pins function the same way in either type of system.

AD₁₅ - AD₀ [Address/Data Bus]

For small- and large-scale systems.

 AD_{15} - AD_0 is a time-multiplexed address and data bus. When high, an AD bit is a one; when low, an AD bit is a zero. This bus contains the lower 16 bits of the 20-bit address during T1 of the bus cycle. It is used as a 16-bit data bus during T2, T3, and T4 of the bus cycle.

The address/data bus is a three-state bus and can be at a high or low level during standby mode. The bus will be high impedance during hold and interrupt acknowledge.

NMI [Nonmaskable Interrupt]

For small- and large-scale systems.

This pin is used to input nonmaskable interrupt requests. NMI cannot be masked by software. This input is positive edge triggered and must be held high for five clocks to guarantee recognition. Actual interrupt processing begins, however, after completion of the instruction in progress.

The contents of interrupt vector 2 determine the starting address for the interrupt-servicing routine. Note that a hold request will be accepted even during NMI acknowledge.

This interrupt will cause the μ PD70116 to exit the standby mode.

INT [Maskable Interrupt]

For small- and large-scale systems.

This pin is an interrupt request that can be masked by software.

INT is active high level and is sensed during the last clock of the instruction. The interrupt will be accepted if the interrupt enable flag IE is set. The CPU outputs the INTAK signal to inform external devices that the interrupt request has been granted. INT must be asserted until the interrupt acknowledge signal is returned.

If NMI and INT interrupts occur at the same time, NMI has higher priority than INT and INT cannot be accepted. A hold request will be accepted during INT acknowledge.

This interrupt causes the μ PD70116 to exit the standby mode.

CLK [Clock]

For small- and large-scale systems.

This pin is used for external clock input.

RESET [Reset]

For small- and large-scale systems.

This pin is used for the CPU reset signal. It is an active high level. Input of this signal has priority over all other operations. After the reset signal input returns to a low level, the CPU begins execution of the program starting at address FFFF0H.

In addition to causing normal CPU start, RESET input will cause the μ PD70116 to exit the standby mode.

READY [Ready]

For small- and large-scale systems.

When the memory or I/O device being accessed cannot complete data read or write within the CPU basic access time, it can generate a CPU wait state (Tw) by setting this signal to inactive (low level) and requesting a read/write cycle delay.

If the READY signal is active (high level) during either the T3 or Tw state, the CPU will not generate a wait state.

POLL [Poll]

For small- and large-scale systems.

The CPU checks this input upon execution of the POLL instruction. If the input is low, then execution continues. If the input is high, the CPU will check the POLL input every five clock cycles until the input becomes low again.

The POLL and READY functions are used to synchronize CPU program execution with the operation of external devices.

RD [Read Strobe]

For small- and large-scale systems.

The CPU outputs this strobe signal during data reac from an I/O device or memory. The $\overline{\text{IO}}/\text{M}$ signal is used to select between I/O and memory.

This three-state output is held high during standby mode and enters the high-impedance state during hole acknowledge.

S/LG [Small/Large]

For small- and large-scale systems.

This signal determines the operation mode of the CPL This signal is fixed at either a high or low level. Whe this signal is a high level, the CPU will operate in small scale system mode, and when low, in the large-scal system mode. A small-scale system will have at most one bus master such as a DMA controller device on the bus. A large-scale system can have more than one but master accessing the bus as well as the CPU.

INTAK [Interrupt Acknowledge]

For small-scale systems.

The CPU generates the INTAK signal low when it accepts an INT signal.

The interrupting device synchronizes with this signal and outputs the interrupt vector to the CPU via the data bus $(AD_7 - AD_0)$.

ASTB [Address Strobe]

For small-scale systems.

The CPU outputs this strobe signal to latch address information at an external latch.

ASTB is held at a low level during standby mode and hold acknowledge.

BUFEN [Buffer Enable]

For small-scale systems.

This is used as the output enable signal for an external bidirectional buffer. The CPU generates this signal during data transfer operations with external memory or I/O devices or during input of an interrupt vector.

This three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

BUFR/W [Buffer Read/Write]

For small-scale systems.

The output of this signal determines the direction of data transfer with an external bidirectional buffer. A high output causes transmission from the CPU to the external device; a low signal causes data transfer from the external device to the CPU.

BUFR/W is a three-state output and enters the high-mpedance state during hold acknowledge.

O/M [IO/Memory]

For small-scale systems.

The CPU generates this signal to specify either I/O access or memory access. A low-level output specifies /O and a high-level signal specifies memory.

O/M's output is three state and becomes high npedance during hold acknowledge.

VR [Write Strobe]

or small-scale systems.

he CPU generates this strobe signal during data write an I/O device or memory. Selection of either I/O or nemory is performed by the $\overline{\text{IO}}/\text{M}$ signal.

his three-state output is held high during standby lode and enters the high-impedance state during hold oknowledge.

HLDAK [Hold Acknowledge]

For small-scale systems.

The HLDAK signal is used to indicate that the CPU accepts the hold request signal (HLDRQ). When this signal is a high level, the address bus, address/data bus, the control lines become high impedance.

HLDRQ [Hold Request]

For small-scale systems.

This input signal is used by external devices to request the CPU to release the address bus, address/data bus, and the control bus.

UBE [Upper Byte Enable]

For small- and large-scale systems.

UBE indicates the use of the upper eight bits (AD₁₆-AD₈) of the address/data bus during a bus cycle. This signal is active low during T1 for read, write, and interrupt acknowledge cycles when AD₁₅ - AD₈ are to be used. Bus cycles in which UBE is active are shown in the following table.

Type of Bus Operation	UBE	AD _O	Number of Bus Cycles
Word at even address	0	0	1
Word at odd address	0	1* 0**	2
Byte at even address	1	. 0	1
Byte at odd address	0	1	1

Notes: * First bus cycle

** Second bus cycle

UBE is low continuously during the interrupt acknowledge state.

The three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

A₁₉/PS₃ - A₁₆/PS₀ [Address Bus/Processor Status] For small- and large-scale systems.

These pins are time multiplexed to operate as an address bus and as processor status signals.

When used as the address bus, these pins are the high 4 bits of the 20-bit memory address. During I/O access, all 4 bits output data 0.

The processor status signals are provided for both memory and I/O use. PS₃ is always 0 in the native mode and 1 in 8080 emulation mode. The interrupt enable flag (IE) is output on pin PS₂. Pins PS₁ and PS₀ indicate which memory segment is being accessed.

A ₁₇ /PS ₁	A ₁₆ /PS ₀	Segment	
0	0	Data segment 1	
0	1	Stack segment	
1	0	Program segment	
1	1	Data segment 0	

The output of these pins is three state and becomes high impedance during hold acknowledge.

QS₁, QS₀ [Queue Status]

For large-scale systems.

The CPU uses these signals to allow external devices, such as the floating-point arithmetic processor chip (μ PD72091), to monitor the status of the internal CPU instruction queue.

)S ₁	QS _O	Instruction Queue Status
0	0	NOP (queue does not change)
0	1	First byte of instruction
1	0	Flush queue
1	1	Subsequent bytes of instruction

The instruction queue status indicated by these signals is the status when the execution unit (EXU) accesses the instruction queue. The data output from these pins is therefore valid only for one clock cycle immediately following queue access. These status signals are provided so that the floating-point processor chip can monitor the CPU's program execution status and synchronize its operation with the CPU when control is passed to it by the FPO (Floating Point Operation) instructions.

BS2 - BS0 [Bus Status]

For large-scale systems.

The CPU uses these status signals to allow an external bus controller to monitor what the current bus cycle is.

The external bus controller decodes these signals and generates the control signals required to perform access of the memory or I/O device.

BS ₂	BS ₁	BS ₀	Bus Cycle
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	1/0 write
0	1	1	Halt
1	0	0	Program fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive state

The output of these signals is three state and becomes high impedance during hold acknowledge.

BUSLOCK [Bus Lock]

For large-scale systems.

The CPU uses this signal to secure the bus while executing the instruction immediately following the BUSLOCK prefix instruction and during interrupt acknowledge cycles. It is a status signal to the other bus masters in a multiprocessor system inhibiting them from using the system bus during this time.

The output of this signal is three state and becomes high impedance during hold acknowledge. BUSLOCK is high during standby mode except if the HALT instruction has a BUSLOCK prefix.

RQ/AK₁, RQ/AK₀ [Hold Request/Acknowledge] For large-scale systems.

These pins function as bus hold request inputs $(\overline{\overline{RQ}})$ and as bus hold acknowledge outputs (\overline{AK}) . $\overline{\overline{RQ}}/\overline{\overline{AK}}$ has a higher priority than $\overline{\overline{RQ}}/\overline{\overline{AK}}$.

These pins have three-state outputs with on-chip pull up resistors which keep the pin at a high level when the output is high impedance.

V_{DD} [Power Supply]

For small- and large-scale systems.

This pin is used for the +5 V power supply.

GND [Ground]

For small- and large-scale systems.

This pin is used for ground.

IC [Internally Connected]

This pin is used for tests performed at the factory b NEC. The μ PD70116 is used with this pin at groun potential.

Absolute Maximum Ratings

 $T_{\Delta} = +25$ °C

'A '	
Power supply voltage, V _{DD}	−0.5 V to +7.0 V
Power dissipation, PD _{MAX}	0.5 W
Input voltage, V _I	-0.5 V to V _{DD} $+0.3$ V
CLK input voltage, V _K	-0.5 V to V _{DD} + 1.0 V
Output voltage, V ₀	-0.5 V to V _{DD} + 0.3 V
Operating temperature, T _{OPT}	-40°C to +85°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = +25$ °C, $V_{DD} = 0$ V

Parameter		Liı	nits		Test		
	Symbol	Min	Max	Unit	Conditions		
Input capacitance	Cı		15	pF	fc = 1 MHz Unmeasured pins		
I/O capacitance	C _{IO}		15		returned to 0 V		

DC Characteristics

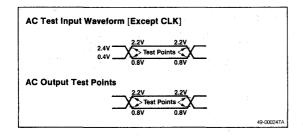
μPD70116-5, T_A = -40 °C to +85 °C, V_{DD} = +5 V \pm 10% μPD70116-8, μPD70116-10, T_A = -10 °C to +70 °C, V_{DD} = +5 V \pm 5%

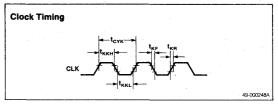
Parameter			Limits			Test
	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage high	V _{IH}	2.2		V _{DD} + 0.3	٧	*
Input voltage low	V _{IL}	-0.5		0.8	V	
CLK input voltage high	V _{KH}	3.9		V _{DD} + 1.0	٧	
CLK input voltage low	V _{KL}	-0.5		0.6	. V	
Output voltage high	V _{OH}	0.7 x V _{DD}			V	$I_{0H} = -400 \mu\text{A}$
Output voltage low	V _{OL}			0.4	V	$I_{0L} = 2.5 \text{ mA}$
Input leakage current high	ILIH			10	μΑ	$V_I = V_{DD}$
Input leakage current low	l _{LIL}			-10	μΑ	V _I = 0 V
Output leakage current high	lloh			10	μΑ	$V_0 = V_{DD}$
Output leakage current low	ILOL			-10	μΑ	V ₀ = 0 V
		70116-5	30	60	mA	Normal operation
		5 MHz	5	10	mA	Standby mode
Supply current	I _{DD}	70116-8	45	80	mA	Normal operation
		8 MHz	6	12	mA	Standby mode
		70116-10	60	100	mA	Normal operation
		10 MHz	7	14	mA	Standby mode

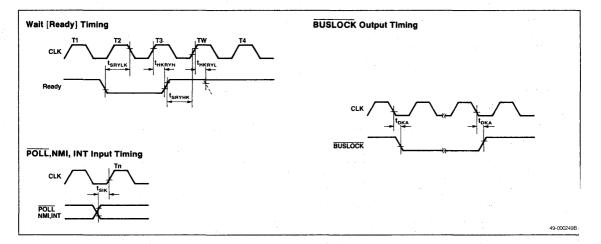
AC Characteristics

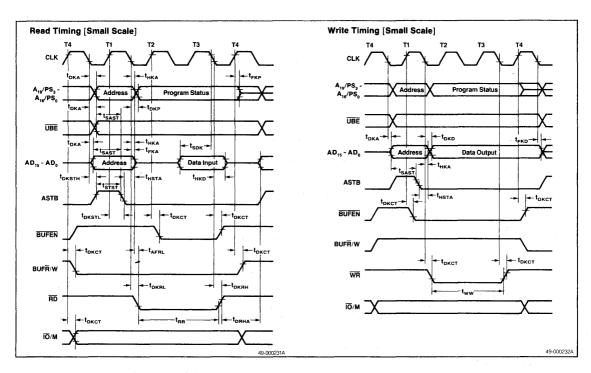
μPD70116-5, $T_A = -40$ °C to +85 °C, $V_{DD} = +5$ V ± 10% μPD70116-8, μPD70116-10 $T_A = -10$ °C to +70 °C, $V_{DD} = +5$ V ± 5%

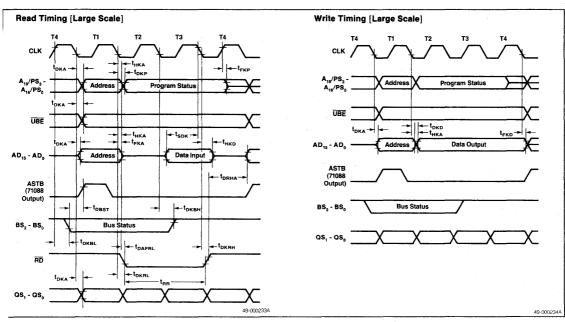
Parameter		μ PD70116-5		μ PD70116-8		μ PD70116-10			
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Small/Large Scale			-						
Clock cycle	tcyk	200	500	125	500	100	500	ns	
Clock pulse width high	tĸĸн	69		44		41		ns	$V_{KH} = 3.0 V$
Clock pulse width low	tKKL	90		60		49		ns	V _{KL} = 1.5 V
Clock rise time	t _{KR}		10		8		5	ns	1.5 V to 3.0 V
Clock fall time	t _{KF}		10		7		5	ns	3.0 V to 1.5 V
READY inactive setup to CLK	†SRYLK	8		-8	-	-10	:	ns	
READY inactive hold after CLK1	thkryh	30		20		20		ns	
READY active setup to CLK1	tsryhk	t _{KKL} – 8		t _{KKL} — 8		t _{KKL} -10		ns	
READY active hold after CLK1	tHKRYL	30		20		20		ns	
Data setup time to CLK ↓	t _{SDK}	30		20		10		ns	
Data hold time after CLK ↓	^t HKD	10		10		10	**************************************	ns	
NMI, INT, POLL setup time to CLK †	t _{SIK}	30		15		15		ns	
Input rise time (except CLK)	t _{IR}		20		20		20	ns	0.8 V to 2.2 V
Input fall time (except CLK)	tıF		12		12	7011	12	ns	2.2 V to 0.8 V
Output rise time	toR		20		20		20	ns	0.8 V to 2.2 V
Output fall time	toF		12	-	12		12	ns	2.2 V to 0.8 V
Small Scale									
Address delay time from CLK	t _{DKA}	10	90	10	60	10	48	ns	
Address hold time from CLK	t _{HKA}	10		10		10		ns	
PS delay time from CLK ↓	t _{DKP}	10	90	10	60	10	50	ns	
PS float delay time from CLK 1	t _{FKP}	10	80	10	60	10	50	ns	
Address setup time to ASTB ↓	tSAST	t _{KKL} - 60		t _{KKL} — 30		t _{KKL} - 30		ns	
Address float delay time from CLK ↓	t _{FKA}	t _{HKA}	80	t _{HKA}	60	t _{HKA}	50	ns	$C_L = 100 \text{ pF}$
ASTB ↑ delay time from CLK ↓	t _{DKSTH}		80		50		40	ns	
ASTB ↓ delay time from CLK ↑	†DKSTL		85		55		45	ns	
ASTB width high	tstst	t _{KKL} – 20	-	t _{KKL} — 10		t _{KKL} — 10		ns	
Address hold time from ASTB ↓	tHSTA	t _{KKH} — 10		t _{KKH} — 10		t _{KKH} -10		ns	

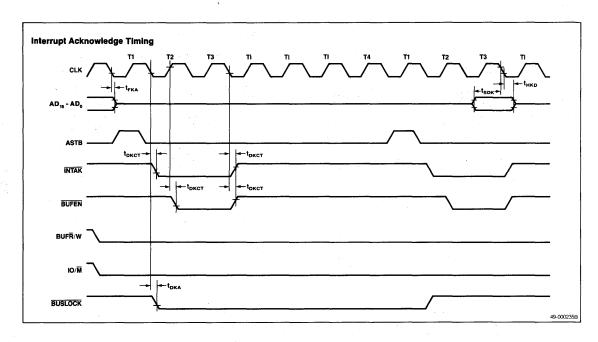


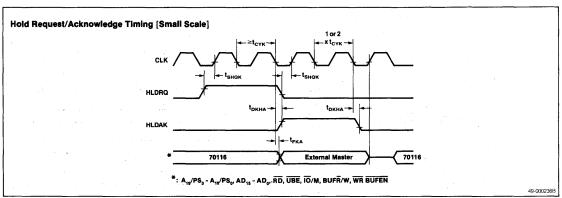

AC Characteristics (cont) $_{\mu PD70116\text{--}5,\ T_{A}} = -40\,^{\circ}\text{C}$ to $+85\,^{\circ}\text{C},\ V_{DD} = +5\ \text{V} \pm 10\%$ $_{\mu PD70116\text{--}8,\ \mu PD70116\text{--}10,\ T_{A}} = -10\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C},\ V_{DD} = +5\ \text{V} \pm 5\%$

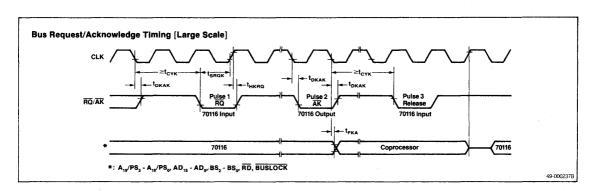

		μPD70116-5		μ PD70116-8		μ PD70 116-10			. 8 1
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Small Scale (cont)									
Control delay time from CLK	t _{DKCT}	10	110	10	65	10	55	ns	
Address float to RD↓	tAFRL	0		0		0		ns	
RD ↓ delay time from CLK ↓	tDKRL	10	165	10	80	10	70	ns	
RD ↑ delay time from CLK ↓	t _{DKRH}	10	150	10	80	10	60	ns	
Address delay time from RD ↑	t _{DRHA}	t _{CYK} 45		t _{CYK} - 40		t _{CYK} - 35		ns	
RD width low	t _{RR}	2t _{CYK} -75		2t _{CYK} -50		2t _{CYK} -40		ns	$C_{L} = 100 \; pF$
Data output delay time from CLK ↓	t _{DKD}	10	90	10	60	10	50	ns	
Data float delay time from CLK ↓	t _{FKD}	10	80	10	- 60	10	50	ns	
WR width low	t _{WW}	2t _{CYK} -60		2t _{CYK} -40		2t _{CYK} -35		ns	
HLDRQ setup time to CLK †	tshqk	35		20		- 20		ns	
HLDAK delay time from CLK ↓	t _{DKHA}	10	160	10	100	10	60	ns	
Large Scale									
Address delay time from CLK	t _{DKA}	10	90	10	60	10	48	ns	
Address hold time from CLK	t _{HKA}	10		10		10	·	ns	
PS delay time from CLK ↓	t _{DKP}	10	90	10	60	10	50	ns	
PS float delay time from CLK 1	t _{FKP}	10	80	10	60	10	50	ns	
Address float delay time from CLK ↓	t _{FKA}	t _{HKA}	80	[†] HKA	60	t _{HKA}	50	ns	
Address delay time from RD 1	t _{DRHA}	t _{CYK} 45		t _{CYK} - 40		t _{CYK} -35		ns	
ASTB delay time from BS ↓	t _{DBST}		15		15		15	ns	
BS ↓ delay time from CLK ↑	†DKBL	10	110	10	60	10	50	ns	
BS ↑ delay time from CLK ↓	tDKBH	10	130	10	65	10	50	ns	
RD ↓ delay time from address float	[†] DAFRL	0		0	-	0		ns	$\mathrm{C_L} = 100~\mathrm{pF}$
RD ↓ delay time from CLK ↓	†DKRL	10	165	10	80	10	70	ns	
RD ↑ delay time from CLK ↓	t _{DKRH}	10	150	10	80	10	60	ns	
RD width low	t _{RR}	2t _{CYK} -75		2t _{CYK} -50		2t _{CYK} -40		ns	
Date output delay time from CLK ↓	t _{DKD}	10	90	10	60	10	50	ns	
Data float delay time from CLK 1	t _{FKD}	10	80	10	60	10	50	ns	
AK delay time from CLK ↓	tDKAK		70		50		40	ns	
RQ setup time to CLK 1	tsrok	20		10		9		ns	
RQ hold time after CLK 1	tHKRQ	40		30		20		ns	


Timing Waveforms









Register Configuration

Program Counter [PC]

The program counter is a 16-bit binary counter that contains the segment offset address of the next instruction which the EXU is to execute.

The PC increments each time the microprogram fetches an instruction from the instruction queue. A new location value is loaded into the PC each time a branch. call, return, or break instruction is executed. At this time, the contents of the PC are the same as the Prefetch Pointer (PFP).

Prefetch Pointer [PFP]

The prefetch pointer (PFP) is a 16-bit binary counter which contains a segment offset which is used to calculate a program memory address that the bus control unit (BCU) uses to prefetch the next word for the instruction queue. The contents of PFP are an offset from the PS (Program Segment) register.

The PFP is incremented each time the BCU prefetches an instruction from the program memory. A new location will be loaded into the PFP whenever a branch. call, return, or break instruction is executed. At that time the contents of the PFP will be the same as those of the PC (Program Counter).

Segment Registers [PS, SS, DS₀, and DS₁]

The memory addresses accessed by the μ PD70116 are divided into 64K-byte logical segments. The starting (base) address of each segment is specified by a 16-bit segment register, and the offset from this starting address is specified by the contents of another register or by the effective address.

These are the four types of segment registers used.

Segment Register	Default Offset
PS (Program Segment)	PFP
SS (Stack Segment)	SP, effective address
DS ₀ (Data Segment 0)	IX, effective address
DS ₁ (Data Segment 1)	IY

General-Purpose Registers [AW, BW, CW, and DW]

There are four 16-bit general-purpose registers. Each one can be used as one 16-bit register or as two 8-bit registers by dividing them into their high and low bytes (AH, AL, BH, BL, CH, CL, DH, DL).

Each register is also used as a default register for processing specific instructions. The default assignments are:

AW: Word multiplication/division, word I/O, data conversion

AL: Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation

AH: Byte multiplication/division

BW: Translation

CW: Loop control branch, repeat prefix

CL: Shift instructions, rototation instructions, BCD operations

DW: Word multiplication/division, indirect addressing I/O

Pointers [SP, BP] and Index Registers [IX, IY]

These registers serve as base pointers or index registers when accessing the memory using based addressing, indexed addressing, or based indexed addressing.

These registers can also be used for data transfer and arithmetic and logical operations in the same manner as the general-purpose registers. They cannot be used as 8-bit registers.

Also, each of these registers acts as a default register for specific operations. The default assignments are:

SP: Stack operations

IX: Block transfer (source), BCD string operations

IY: Block transfer (destination), BCD string operations

Program Status Word [PSW]

The program status word consists of the following six status and four control flags.

Status Flags

- V (Overflow)
- S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)
- P (Parity)
- CY (Carry)

- **Control Flags**
- MD (Mode)
- DIR (Direction)
- IE (Interrupt Enable)
- BRK (Break)

When the PSW is pushed on the stack, the word images of the various flags are as shown here.

PSW

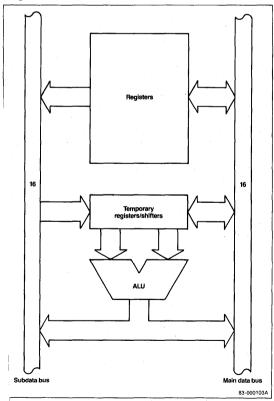
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M	1	1	1	٧	D			-				-			-
					R		Κ								

The status flags are set and reset depending upon the result of each type of instruction executed.

Instructions are provided to set, reset, and complement the CY flag directly.

Other instructions set and reset the control flags and control the operation of the CPU.

High-Speed Execution of Instructions


This section highlights the major architectural features that enhance the performance of the μ PD70116.

- Dual data bus in EXU
- Effective address generator
- 16/32-bit temporary registers/shifters (TA, TB)
- 16-bit loop counter
- PC and PFP

Dual Data Bus Method

To reduce the number of processing steps for instruction execution, the dual data bus method has been adopted for the μ PD70116 (figure 1). The two data buses (the main data bus and the subdata bus) are both 16 bits wide. For addition/subtraction and logical and comparison operations, processing time has been speeded up some 30% over single-bus systems.

Figure 1. Dual Data Buses

Example

ADD AW, BW; AW \leftarrow AW + BW

Single Bus

Dual Bus

Step 1 TA \leftarrow AW

TA \leftarrow AW, TB \leftarrow BW

Step 2 TB \leftarrow BW

AW \leftarrow TA + TB

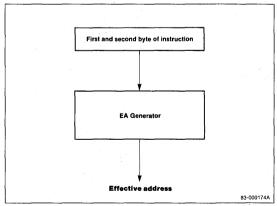
Step 3 AW \leftarrow TA + TB

Effective Address Generator

This circuit (figure 2) performs high-speed processing to calculate effective addresses for accessing memory.

Calculating an effective address by the microprogramming method normally requires 5 to 12 clock cycles. This circuit requires only two clock cycles for addresses to be generated for any addressing mode. Thus, processing is several times faster.

16/32-Bit Temporary Registers/Shifters [TA, TB]


These 16-bit temporary registers/shifters (TA, TB) are provided for multiplication/division and shift/rotation instructions.

These circuits have decreased the execution time of multiplication/division instructions. In fact, these instructions can be executed about four times faster than with the microprogramming method.

 $\mbox{TA} + \mbox{TB: 32-bit temporary register/shifter for multiplication and division instructions.}$

TB: 16-bit temporary register/shifter for shift/rotation instructions.

Figure 2. Effective Address Generator

Loop Counter [LC]

This counter is used to count the number of loops for a primitive block transfer instruction controlled by a repeat prefix instruction and the number of shifts that will be performed for a multiple bit shift/rotation instruction.

The processing performed for a multiple bit rotation of a register is shown below. The average speed is approximately doubled over the microprogram method.

Example

RORC AW, CL ; CL = 5

Microprogram method LC method

 $8 + (4 \times 5) = 28 \text{ clocks}$ 7 + 5 = 12 clocks

Program Counter and Prefetch Pointer [PC and PFP]

The μ PD70116 microprocessor has a program counter, (PC) which addresses the program memory location of the instruction to be executed next, and a prefetch pointer(PFP), which addresses the program memory location to be accessed next. Both functions are provided in hardware. A time saving of several clocks is realized for branch, call, return, and break instruction execution, compared with microprocessors that have only one instruction pointer.

Enhanced Instructions

In addition to the μ PD8088/86 instructions, the μ PD70116 has the following enhanced instructions.

Instruction	Function
PUSH imm	Pushes immediate data onto stack
PUSH R	Pushes 8 general registers onto stack
POP R	Pops 8 general registers from stack
MUL imm	Executes 16-bit multiply of register or memory contents by immediate data
SHL imm8 SHR imm8 SHRA imm8 ROL imm8 ROR imm8 ROLC imm8 RORC imm8	Shifts/rotates register or memory by immediate value
CHKIND	Checks array index against designated boundaries
INM	Moves a string from an I/O port to memory
0UTM	Moves a string from memory to an I/O port
PREPARE	Allocates an area for a stack frame and copies previous frame pointers
DISPOSE	Frees the current stack frame on a procedure exit

Enhanced Stack Operation Instructions PUSH imm

This instruction allows immediate data to be pushed onto the stack.

PUSH R/POP R

These instructions allow the contents of the eight general registers to be pushed onto or popped from the stack with a single instruction.

Enhanced Multiplication Instructions MUL reg16, imm16/MUL mem16, imm16

These instructions allow the contents of a register or memory location to be multiplied by immediate data.

Enhanced Shift and Rotate Instructions

SHL reg, imm8/SHR reg, imm8/SHRA reg, imm8

These instructions allow the contents of a register to be shifted by the number of bits defined by the immediate data

ROL reg, imm8/ROR reg, imm8/ROLC reg, imm8/RORC reg, imm8

These instructions allow the contents of a register to be rotated by the number of bits defined by the immediate data.

Check Array Boundary Instruction CHKIND reg16, mem32

This instruction is used to verify that index values pointing to the elements of an array data structure are within the defined range. The lower limit of the array should be in memory location mem32, the upper limit in mem32 + 2. If the index value in reg16 is not between these limits when CHKIND is executed, a BRK 5 will occur. This causes a jump to the location in interrupt vector 5.

Block I/O Instructions

OUTM DW. src-block/INM dst-block. DW

These instructions are used to output or input a string to or from memory, when preceded by a repeat prefix.

Stack Frame Instructions

PREPARE imm16, imm8

This instruction is used to generate the stack frames required by block-structured languages, such as PASCAL and Ada. The stack frame consists of two areas. One area has a pointer that points to another frame which has variables that the current frame can access. The other is a local variable area for the current procedure.

DISPOSE

This instruction releases the last stack frame generated by the PREPARE instruction. It returns the stack and base pointers to the values they had before the PREPARE instruction was used to call a procedure.

Unique Instructions

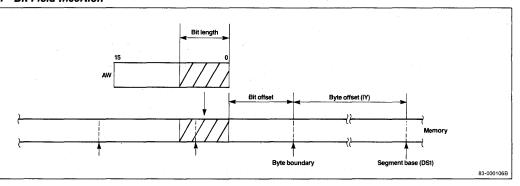
In addition to the μ PD8088/86 instructions and the enhanced instructions, the μ PD70116 has the following unique instructions.

instruction	Function
INS	Insert bit field
EXT	Extract bit field
ADD4S	Adds packed decimal strings
SUB4S	Subtracts one packed decimal string from another
CMP4S	Compares two packed decimal strings
ROL4	Rotates one BCD digit left through AL lower 4 bits
ROR4	Rotates one BCD digit right through AL lower 4 bits
TEST1	Tests a specified bit and sets/resets Z flag
NOT1	Inverts a specified bit
CLR1	Clears a specified bit
SET1	Sets a specified bit
REPC	Repeats next instruction until CY flag is cleared
REPNC	Repeats next instruction until CY flag is set
FP02	Additional floating point processor call

Variable Length Bit Field Operation Instructions

This category has two instructions. INS (Insert Bit Field) and EXT (Extract Bit Field). These instructions are highly effective for computer graphics and highlevel languages. They can, for example, be used for data structures such as packed arrays and record type data used in PASCAL.

INS reg8, reg8/INS reg8, imm4


This instruction (figure 3) transfers low bits from the 16-bit AW register (the number of bits is specified by the second operand) to the memory location specified by the segment base (DS₁ register) plus the byte offset (IY register). The starting bit position within this byte is specified as an offset by the lower 4-bits of the first operand.

After each complete data transfer, the IY register and the register specified by the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may specify the number of bits transferred (second operand). Because the maximum transferable bit length is 16-bits, only the lower 4-bits of the specified register (00H to 0FH) will be valid.

Bit field data may overlap the byte boundary of memory.

Figure 3. Bit Field Insertion

EXT reg8, reg8/EXT reg8, imm4

This instruction (figure 4) loads to the AW register the bit field data whose bit length is specified by the second operand of the instruction from the memory location that is specified by the DS0 segment register (segment base), the IX index register (byte offset), and the lower 4-bits of the first operand (bit offset).

After the transfer is complete, the IX register and the lower 4-bits of the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may be specified for the second operand. Because the maximum transferrable bit length is 16 bits, however, only the lower 4-bits of the specified register (0H to 0FH) will be valid.

Bit field data may overlap the byte boundary of memory.

Packed BCD Operation Instructions

The instructions described here process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte-format operands (ROR4, ROL4). Packed BCD strings may be from 1 to 254 digits in length.

When the number of digits is even, the zero and carry flags will be set according to the result of the operation. When the number of digits is odd, the zero and carry flags may not be set correctly in this case, (CL = odd), the zero flag will not be set unless the upper 4 bits of the highest byte are all zero. The carry flag will not be set unless there is a carry out of the upper 4 bits of the highest byte. When CL is odd, the contents of the upper 4 bits of the highest byte of the result are undefined.

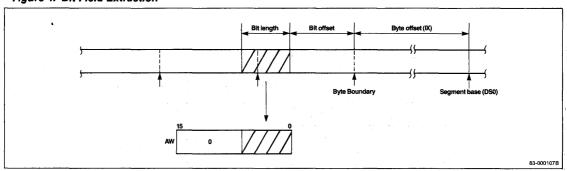
ADD4S

This instruction adds the packed BCD string addressed by the IX index register to the packed BCD string addressed by the IY index register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).

BCD string (IY, CL) \leftarrow BCD string (IY, CL) + BCD string (IX, CL)

SUB4S

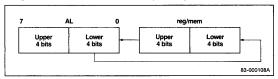
This instruction subtracts the packed BCD string addressed by the IX index register from the packed BCD string addressed by the IY register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).


BCD string (IY, CL) \leftarrow BCD string (IY, CL) - BCD String (IX, CL)

CMP4S

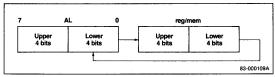
This instruction performs the same operation as SUB4S except that the result is not stored and only the overflow (V), carry flags (CY) and zero flag (Z) are affected.

BCD string (IY, CL) - BCD string (IX, CL)



ROL4

This instruction (figure 5) treats the byte data of the register or memory operand specified by the instruction as BCD data and uses the lower 4 bits of the AL register (AL_1) to rotate that data one BCD digit to the left.


Figure 5. BCD Rotate Left (ROL4)

ROR4

This instruction (figure 6) treats the byte data of the register or memory specified by the instruction as BCD data and uses the lower 4 bits of the AL register (AL_L) to rotate that data one BCD digit to the right.

Figure 6. BCD Rotate Right (ROR4)

Bit Manipulation Instructions

TEST1

This instruction tests a specific bit in a register or memory location. If the bit is 1, the Z flag is reset to 0. If the bit is 0, the Z flag is set to 1.

NOT1

This instruction inverts a specific bit in a register or nemory location.

CLR1

This instruction clears a specific bit in a register or nemory location.

ET1

his instruction sets a specific bit in a register or nemory location.

Repeat Prefix Instructions

EPC

his instruction causes the µPD70116 to repeat the bllowing primitive block transfer instruction until the Y flag becomes cleared or the CW register becomes ero.

REPNC

This instruction causes the µPD70116 to repeat the following primitive block transfer instruction until the CY flag becomes set or the CW register becomes zero.

Floating Point Instruction

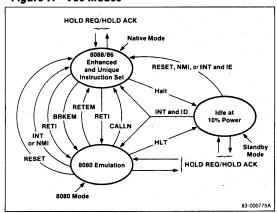
FPO₂

This instruction is in addition to the μ PD8088/86 floating point instruction, FPO1. These instructions are covered in a later section.

Mode Operation Instruction

The μ PD70116 has two operating modes (figure 7). One is the native mode which executes μ PD8088/86, enhanced and unique instructions. The other is the 8080 emulation mode in which the instruction set of the μ PD8080AF is emulated. A mode flag (MD) is provided to select between these two modes. Native mode is selected when MD is 1 and emulation mode when MD is 0. MD is set and reset, directly and indirectly, by executing the mode manipulation instructions.

Two instructions are provided to switch operation from the native mode to the emulation mode and back.


BRKEM (Break for Emulation) RETEM (Return from Emulation)

Two instructions are used to switch from the emulation mode to the native mode and back.

CALLN (Call Native Routine) RETI (Return from Interrupt)

The system will return from the 8080 emulation mode to the native mode when the RESET signal is present, or when an external interrupt (NMI or INT) is present.

Figure 7. V30 Modes

BRKEM imm8

This is the basic instruction used to start the 8080 emulation mode. This instruction operates exactly the same as the BRK instruction, except that BRKEM resets the mode flag (MD) to 0. PSW, PS, and PC are saved to the stack. MD is then reset and the interrupt vector specified by the operand imm8 of this command is loaded into PS and PC.

The instruction codes of the interrupt processing routine jumped to are then fetched. Then the CPU executes these codes as μ PD8080AF instructions.

In 8080 emulation mode, registers and flags of the μ PD8080AF are performed by the following registers and flags of the μ PD70116.

	μ PD8080A F	μ PD70116
Registers:	A	AL
	В	СН
	C	CL
	D	DH
	E .	DL
	н	ВН
	L ,	BL
	SP	ВР
	PC	PC
lags:	1. 121 C 14 1	CY
	Z	Z
	S	S
	P	P
	AC	AC

In the native mode, SP is used for the stack pointer. In the 8080 emulation mode this function is performed by BP.

This use of independent stack pointers allows independent stack areas to be secured for each mode and keeps the stack of one of the modes from being destroyed by an erroneous stack operation in the other mode.

The SP, IX, IY and AH registers and the four segment registers (PS, SS, DS $_0$, and DS $_1$) used in the native mode are not affected by operations in 8080 emulation mode.

In the 8080 emulation mode, the segment register for instructions is determined by the PS register (set automatically by the interrupt vector) and the segment register for data is the DS_0 register (set by the programmer immediately before the 8080 emulation mode is entered).

It is prohibited to nest BRKEM instructions.

RETEM [no operand]

When RETEM is executed in 8080 emulation mode (interpreted by the CPU as a μ PD8080AF instruction), the CPU restores PS, PC, and PSW (as it would when returning from an interrupt processing routine), and returns to the native mode. At the same time, the contents of the mode flag (MD) which was saved to the stack by the BRKEM instruction, is restored to MD = 1. The CPU is set to the native mode.

CALLN imm8

This instruction makes it possible to call the native mode subroutines from the 8080 emulation mode. To return from subroutine to the 8080 emulation mode, the RETI instruction is used.

The processing performed when this instruction is executed in the 8080 emulation mode (it is interpreted by the CPU as μ PD8080AF instruction), is similar to that performed when a BRK instruction is executed in the native mode. The imm8 operand specifies an interrupt vector type. The contents of PS, PC, and PSW are pushed on the stack and an MD flag value of 0 is saved. The mode flag is set to 1 and the interrupt vector specified by the operand is loaded into PS and PC.

RETI [no operand]

This is a general-purpose instruction used to return from interrupt routines entered by the BRK instruction or by an external interrupt in the native mode. When this instruction is executed at the end of a subroutine entered by the execution of the CALLN instruction, the operation that restores PS, PC, and PSW is exactly the same as the native mode execution. When PSW is restored, however, the 8080 emulation mode value of the mode flag (MD) is restored, the CPU is set in emulation mode, and all subsequent instructions are interpreted and executed as μ PD8080AF instructions.

RETI is also used to return from an interrupt procedure initiated by an NMI or INT interrupt in the emulation mode.

Floating Point Operation Chip Instructions

FPO1 fp-op, mem FPO2 fp-op, mem

These instructions are used for the external floating point processor. The floating point operation is passed to the floating point processor when the CPU fetches one of these instructions. From this point the CPU performs only the necessary auxiliary processing (effective address calculation, generation of physical addresses, and start-up of the memory read cycle).

The floating point processor always monitors the instructions fetched by the CPU. When it interprets one as an instruction to itself, it performs the appropriate processing. At this time, the floating point processor chip uses either the address alone or both the address and read data of the memory read cycle executed by the CPU. This difference in the data used depends on which of these instructions is executed.

Note: During the memory read cycle initiated by the CPU for FPO1 or FPO2 execution, the CPU does not accept any read data on the data bus from memory. Although the CPU generates the memory address, the data is used by the floating point processor.

Interrupt Operation

The interrupts used in the μ PD70116 can be divided into two types: interrupts generated by external interrupt requests and interrupts generated by software processing. These are the classifications.

External interrupts

- (a) NMI input (nonmaskable)
- (b) INT input (maskable)

Software processing

As the result of instruction execution

- When a divide error occurs during execution
- of the DIV or DIVU instruction
- When a memory-boundary-over error is detected by the CHKIND instruction

Conditional break instruction

When V = 1 during execution of the BRKV instruction

Unconditional break instructions

- 1-byte break instruction: BRK3
- 2-byte break instruction: BRK imm8

Flag processing

 When stack operations are used to set the BRK flag

3080 Emulation mode instructions

- BRKEM imm8
- CALLN imm8

Starting addresses for interrupt processing routines are either determined automatically by a single location of the interrupt vector table or selected each time interrupt processing is entered.

The interrupt vector table is shown in figure 8. The table uses 1K bytes of memory addresses 000H to 3FFH and can store starting address data for a maximum of 256 vectors (4 bytes per vector).

The corresponding interrupt sources for vectors 0 to 5 are predetermined and vectors 6 to 31 are reserved. These vectors consequently cannot be used for general applications.

The BRKEM instruction and CALLN instruction (in the emulation mode) and the INT input are available for general applications for vectors 32 to 255.

A single interrupt vector is made up of 4 bytes (figure 9). The 2 bytes in the low addresses of memory are loaded into PC as the offset, and the high 2 bytes are loaded into PS as the base address. The bytes are combined in reverse order. The lower-order bytes in the vector become the most significant bytes in the PC and PS, and the higher-order bytes become the least significant bytes.

Figure 8. Interrupt Vector Table

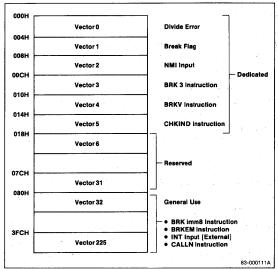
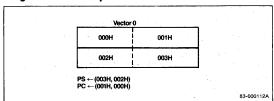



Figure 9. Interrupt Vector 0

Based on this format, the contents of each vector should be initialized at the beginning of the program.

The basic steps to jump to an interrupt processing routine are now shown.

 $(SP-1, SP-2) \leftarrow PSW$ $(SP-3, SP-4) \leftarrow PS$ $(SP-5, SP-6) \leftarrow PC$ $SP \leftarrow SP-6$ $IE \leftarrow 0, BRK \leftarrow 0, MD \leftarrow 1$ $PS \leftarrow vector high bytes$ $PC \leftarrow vector low bytes$

Standby Function

The µPD70116 has a standby mode to reduce power consumption during program wait states. This mode is set by the HALT instruction in both the native and the emulation mode.

In the standby mode, the internal clock is supplied only to those circuits related to functions required to release this mode and bus hold control functions. As a result, power consumption can be reduced to 1/10 the level of normal operation in either native or emulation mode.

The standby mode is released by inputting a RESET signal or an external interrupt (NMI, INT).

The bus hold function is effective during standby mode. The CPU returns to standby mode when the bus hold request is removed.

During standby mode, all control outputs are disabled and the addres/data bus will be at either high or low levels.

Instruction Set

Symbols

Preceding the instruction set, several tables explain symbols, abbreviations, and codes.

Clocks

In the Clocks column of the instruction set, the numbers cover these operations: instruction decoding, effective address calculation, operand fetch, and instruction execution.

Clock timings assume the instruction has been prefetched and is present in the six-byte instruction queue. Otherwise, add four clocks for each pair of bytes not present.

Add four clocks to the numbers given for each word transfer to an odd address.

For instructions that reference memory operands, the number on the left side of the slash (/) is for byte operands and the number on the right side is for word operands.

For conditional control transfer or branch instructions, the number on the left side of the slash is applicable if the transfer or branch takes place. The number on the right side is applicable if it does not take place.

If a range of numbers is given, the execution time depends on the operands involved.

Symbols

Symbol	Meaning
acc	Accumulator (AW or AL)
disp	Displacement (8 or 16 bits)
dmem	Direct memory address
dst	Destination operand or address
ext-disp8	16-bit displacement (sign-extension byte + 8-bit displacement)
far_label	Label within a different program segment
far_proc	Procedure within a different program segment
fp_op	Floating point instruction operation
imm	8- or 16-bit immediate operand

Symbols (cont)

Symbol	Meaning
imm3/4	3/4-bit immediate bit offset
imm8	8-bit immediate operand
imm16	16-bit immediate operand
mem	Memory field (000 to 111); 8- or 16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
memptr16	Word containing the destination address within the current segment
memptr32	Double word containing a destination address in another segment
mod	Mode field (00 to 10)
near_label	Label within the current segment
near_proc	Procedure within the current segment
offset	Immediate offset data (16 bits)
pop_value	Number of bytes to discard from the stack
reg	Register field (000 to 111); 8- or 16-bit general-purpose register
reg8	8-bit general-purpose register
reg16	16-bit general-purpose register
regptr	16-bit register containing a destination address within the current segment
regptr16	Register containing a destination address within the current segment
seg	Immediate segment data (16 bits)
short_label	Label between -128 and $+127$ bytes from the end of the current instruction
sr	Segment register
src	Source operand or address
temp	Temporary register (8/16/32 bits)
tmpcy	Temporary carry flag (1 bit)
AC	Auxiliary carry flag
AH	Accumulator (high byte)
AL	Accumulator (low byte)
AND	Logical product
AW	Accumulator (16 bits)
ВН	BW register (high byte)
BL	BW register (low byte)
ВР	BP register
BRK	Break flag
BW	BW register (16 bits)
СН	CW register (high byte)
CL	CW register (low byte)

Symbol	Meaning
CW	CW register (16 bits)
CY	Carry flag
DH	DW register (high byte)
DIR	Direction flag
DL .	DW register (low byte)
DS0	Data segment 0 register (16 bits)
DS1	Data segment 1 register (16 bits)
DW	DW register (16 bits)
IE	Interrupt enable flag
IX	Index register (source) (16 bits)
IY ·	Index register (destination) (16 bits)
MD	Mode flag
OR	Logical sum
P	Parity flag
PC	Program counter (16 bits)
PS	Program segment register (16 bits)
PSW	Program status word (16 bits)
R	Register set
S	Sign extend operand field S = 0 No sign extension S = 1 Sign extend immediate byte operand
S	Sign flag
SP	Stack pointer (16 bits)
SS	Stack segment register (16 bits)
V .	Overflow flag
W	Word/byte field (0 to 1)
X, XXX, YYY, ZZZ	Data to identify the instruction code of the external floating point arithmetic chip
XOR	Exclusive logical sum
XXH	Two-digit hexadecimal value
XXXXH	Four-digit hexadecimal value
Z	Zero flag
(1)	Values in parentheses are memory contents
	Transfer direction
+	Addition
	Subtraction
x	Multiplication
÷ '.	Division
%	Modulo

Flag Operations

Symbol	Meaning
(blank)	No change
0	Cleared to 0
1	Set to 1
X	Set or cleared according to result
u	Undefined
R	Restored to previous state

Memory Addressing Modes

BW + IX	BW + IX + disp8	BW + IX + disp16
BW + IY	BW + IY + disp8	BW + IY + disp16
BP + IX	BP + IX + disp8	BP + IX + disp16
BP + IY	BP + IY + disp8	BP + IY + disp16
IX	IX + disp8	IX + disp16
IY	IY + disp8	IY + disp16
Direct	BP + disp8	BP + disp16
BW	BW + disp8	BW + disp16
	BP + IX BP + IY IX IY Direct	BW + IY BW + IY + disp8 BP + IX BP + IX + disp8 BP + IY BP + IY + disp8 IX IX + disp8 IY IY + disp8 Direct BP + disp8

Register Selection (mod = 11)

reg	W = 0	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	СН	ВР
110	DH	IX
111	ВН	IY

Segment Register Selection

sr	Segment Register	
00	DS1	
01	PS	
10	SS	
11	DS0	

Instruction Set

	***									Opc	ode								F	lags		
Mnemonic	Operand	7	6	5	4	3	2	1	0		76	5 4	3	2 1 0	Clecks	Bytes	AC	C	YV	P	S	Z
Data Tra	nsfer Instructions																					
MOV	reg, reg	1	0	0	0	1	0	1	W	٠.	1 1	re	g	reg	2	2						
	mem, reg	1	0	0	0	1	0	0	W		mod	re	g	mem	9	2-4						
	reg, mem	. 1	0	0	0	1	0	1	W	,	mod	re	g	mem	11	2-4						
	mem, imm	1	1	0	0	0	1	1	W		mod	re	g	mem	11	3-6	******					
	reg, imm	1	0	1	1	W		reg	ı						4	2-3						
	acc, dmem	. 1	0	-1	0	0	0	0	W					2.2	10	3						
	dmem, acc	. 1	0	1	0	0	0	1	W						9	3						
	sr, reg16	1	0	0	0	1	1	1	0		1 1	0	sr	reg	2	2						
	sr, mem16	1	0	0	0	1	1	1	0		mod	0	sr	mem	11	2-4					•	
	reg16, sr	1	0	0	0	1	1	0	0		1 1	0	sr	reg	2	2						
	mem16, sr	1	0	0	0	1	1	0	0		mod	0	sr	mem	10	2-4						
	DS0, reg16, mem32	1	1	0	0	0	1	0	1		mod	re	g	mem	18	2-4						
	DS1, reg16, mem32	1	1	0	0	0	1	0	0		mod	re	g	mem	18	2-4						
	AH, PSW	1	0	0	1	1	1	1	1				-		2	1						
	PSW, AH	. 1	0	0	1	1	1	1	0						3	1	Х	:	Х		x >	(X
LDEA	reg16, mem16	1	0	0	0	1	1	0	1		mod	r	eg	mem	4	2-4						
TRANS	src_table	1	1	0	1	0	1	1	1		-				9	1			_			
XCH	reg, reg	1	0	0	0	0	1	1	W		1 1	re	g	reg	3	2						
	mem, reg	1	0	0	0	0	1	1	W		mod	re	g	mem	16	2-4						
	AW, reg16	1	0	0	1	0		reg							3	1						

Mnemonic	Operand	7	6 4	5	4	3	2	1		ocode 7	6	5	4	3	2	! 1	0	0	locks	Bytes	AC	CY		lag:		S	z
Repeat P							-					_															_
REPC		0	1	1	0	0	1	0	1						-			2		1							
REPNC		0	1	1	0	0	1	0	0									2		1							
rep Repe Repz	-	1	1	1	1	0	0	1	1									2		1		-		**********			
REPNE REPNZ		1	1	1	1	0	0	1	0									2		1							
Block Tra	nsfer Instructions																										
MOVBK	dst, src	1	0	1	0	0	1	0	W									1	1 + 8n	1							
СМРВК	dst, src	1	0	1	0	0	1	1	W									7	+ 14n	1	×	;)	(X	x	х	Х
СМРМ	dst	1	0	1	0	1	1	1	W									7	+ 10n	1	×	•	(.	X	X	х	Х
LDM	src	1	0	1	0	1	1	0	W									7	+ 9n	1					_	_	
STM	dst	1	0	1	0	1	0	1	W									7	+ 4n	1							
											n =	nu	mb	er (of t	ran	sfer	s									
I/O Instru	ictions											_															
IN	acc, imm8	1	1	1	0	0	1	0	W									9	1	2							
	acc, DW	1	1	1	0	1	1	0	W									8		1							
OUT	imm8, acc	1	1	1	0	0	1	1	W			•						8		2							
	DW, acc	1	1	1	0	1	1	1	W							,		8		1							
INM	dst, DW	0	1	1	0	1	1	0	W									9	+ 8n	1							
OUTM	DW, src	0	1	1	0	1	1	1	W									9	+ 8n	1							
											n =	: nu	mb	er (of t	ran	sfer	s									
BCD Inst	ructions																										
ADJBA		0	0	1	1	0	1	1	1									3	ı	1	X	х	u	U		u	u
ADJ4A		0	0	1	0	0	1	1	1									3		1	Х	X	u	×	: ;	X	Х
ADJBS		0	0	1	1	1	1	1	1									7		1	Х	х	u	U		ü	u
ADJ4S		0	0	1	0	1	1	1	1									7	'	1	Х	X	u	Х		X	X
ADD4S	dst, src	0	0 ()	0	1	1	1	1	0	0	1	0	0	() (0	7	+ 19n	2	u	х	u	u	ı	J	х
SUB4S	dst, src	0	0 ()	0	1	1	1	1	0	0	1	0	0	C) 1	0	7	+ 19n	2	u ·	х	u	u	(J	Х
CMP4S	dst, src	0	0	0	0	1	1	1	1	0	0	1	0	0	1	1	0	7	+ 19n	2	u	х	u	U	. 1	Ц	X
ROL4	reg8			0	0	1	1	1 reg	1	0	0	1	0	1	() (0	2	5	3							
	mem8	0 mo		0	0	1	1	1 nen		0	0	1	0	1	() (0	2	8	3-5							
ROR4	reg8				0	1		1 reg		0	0	1	0	1	() 1	0	2	9	3							
,	mem8	0 mo			0	1	1	1 nen		0	0	1	0	1	C) 1	0	3	3	3-5							_

Instructio	n Set ((cont)
------------	---------	--------

Mnemonic	Operand	7	6	5	4	3	2	1		ode 7 6	5				, 1	n	Clocks	Bytes	Aſ	. C		lags P	2	7
•——	e Conversion Instru		U	J	-	<u>. </u>	-	_		1 0		4	_				CIUGRS	Dytes						
CVTBD	e conversion manu		1	0	1	0	1	0	0	0 0	0	0	1	(1 1	0	15	2	u	u	- 11	х		_
CVTDB	THE RESERVE OF THE PERSON OF T	<u>'</u>						0	1	0 0) 1		7	2	u	u u		x		
CVTBW						_	<u> </u>		0	0 0		-			, ,	-	2	1	u	u	_ u	^	_	
CVTWL		1		-		_		_	1								4-5	1					—	
	c Instructions	<u>_</u>		<u> </u>	<u>'</u>	_			<u>'</u>		_			_										
ADD	reg, reg	0	0	0	0	0	0	1	w	1 1		re	n		re	n	2	2				x		
7,00	mem, reg	0	<u> </u>	_				_	w	mod		re	<u> </u>		me		16	2-4		X				
	reg, mem	0							w	mod	_	re	_		me		11	2-4				×		
	reg, imm	1						s		1 1	0			 1	re		4	3-4		_				x
	mem, imm	1						S		mod	0				me		18	3-6			_		×	
	acc, imm	· · ·		_				0			<u> </u>	_		_			4	2-3		<u>^</u>	_			
ADDC	reg, reg	0							w	1 1		re	n		re	<u></u>	2	2						
ADDO	mem, reg	0						_	w	mod		re			me		16	2-4		^ x				x
	reg, mem	0		_					w	mod	_	re			me		11	2-4	x	×				
	reg, imm	1		0		_			w	1 1	0		9 0		re		4	3-4	x		x			x
	mem, imm	<u>·</u>				_		s		mod			_		me		18	3-6	-	_				
	acc, imm			_					 W		_						4	2-3				×		
SUB	reg, reg	0		_		-			w	1 1		re	n	-	re	n	2	2	<u>^</u>	X			-	×
005	mem, reg	0						0		mod		re	_		me		16	2-4	x	_				×
	reg, mem	0							w	mod		re	<u> </u>		me		11	2-4		<u>^</u>		×		
	reg, imm	1						<u>.</u> S		1 1	1		_		re		4	3-4	x					×
	mem, imm	<u>:</u>		0				s S		mod					me		18	3-6						x
	acc, imm	0	_	_				0									4	2-3		_	_	×		
SUBC	reg, reg	0		_					w	1 1		re	a		re	n	2	2	X	<u>^</u>				×
0050	mem, reg	0							w	mod		re	_		me		16	2-4			<u>^</u>			×
	reg, mem	0		_				_	w	mod		re			me		11	2-4		<u>^</u>				
	reg, imm	1		_					w	1 1	0		1		re		4	3-4		×	×			
	mem, imm	<u>·</u>		0				s		mod			1	_	me	<u> </u>	18	3-6	x			x		x
	acc, imm	0				_		0			_						4	2-3		<u>~</u>				
INC	reg8	1		1				1	0	1 1	0	0	0)	re	a	2	2			_	x		
	mem	<u>·</u>		_				_	W	mod					me		16	2-4	x		_	×		x
	reg16	0		<u>.</u>		0		eg									2	_ 	x	_				
DEC	reg8	<u>_</u> 1		1				1	0	1 1	0	0) 1		re	a	2	2	x			×		
	mem	1			_			1		mod		0			me		16	2-4	x					
	reg16			0		1		eg									2	1				X		x
MULU	reg	1		1				1	W	1 1	1	0) ()	re	a	21-30	2	u	х	×			
	mem	<u> </u>		_				<u>.</u> 1		mod					me		27-36	2-4			x		u	_

		_		_		_	_		Opc		_		_							igs	_	_
Mnemonic	Operand	7	6	5	4	3	2	1	0	7 6	5	4	3	2 1 0	Clocks	Bytes	A	C C	<u> </u>	P	8	
	c Instructions (cont)										_											
MUL	reg	1	1_	1	1	0	_	1		1 1	1			reg	33-47	2	u	X	X	u	u	U
	mem	1	1	1	1	0	1		W	mod	1	0	1	mem	39-53	2-4	и	Х	Х	u	u	L
	reg16,reg16,imm8	0	1	1	0	1		1	1	1 1		reg		reg	28-34	3	u	Х	Х	U	u	Į
	reg16,mem16,imm8	0	1_	1	0	1	0	1	1	mod		reg		mem	34-40	3-5	u	Х	Х	u	u _.	L
	reg16,reg16,imm16	0	1	1	0	1	0	0	1	1 1		reg		reg	36-42	4	u	Х	Х	u	u	l
	reg16,mem16,imm16	0	1	1	0	1	0	0	1	mod		reg		mem	46-48	4-6	u	Х	Х	u	u	ι
DIVU	reg	1	1_	1	1	0	1	1	W	1 1.	1	1	0	reg	19-25	2	u	u	u	u	u	ι
	mem	1	1	1	1	0	1	1	W	mod	1	1	0	mem	25-31	2-4	u	u	u	u	u	ι
DIV	reg	1	1	1	1	0	1,	1	W	1 1	1	1	1	reg	29-43	2	u	u	u	u	u	ι
	mem	1_	1	1	1	0	1	1	W	mod	1	1	1	mem	35-49	2-4	u	u	ú	u	u	L
Comparis	on Instructions																					_
CMP	reg, reg	0	0	1	1	1	0	1	W	1 1		reg		reg	2	2	х	х	х	Х	х	>
	mem, reg	0	0	1	1	1	0	0	W	mod		reg		mem	11	2-4	Х	Х	Х	Х	х	>
	reg, mem	0	0	1	1	1	0	1	W	mod		reg		mem	11	2-4	Х	Х	х	Х	х	- ;
	reg, imm	1	0	0	0	0	0	S	W	1 1	1	1	1	reg	4	3-4	· X	Х	х	Х	Х)
	mem, imm	1	0	0	0	0	0	S	W	mod	1	1	1	mem	13	3-6	Х	Х	Х	Х	Х	7
	acc, imm	0	0	1	1	1	1	0	W						4	2-3	Х	Х	х	х	Х	7
Logical In	structions																					
TON	reg	1	1	1	1	0	1	1	W	1 1	0	1	0	reg	2	2						_
	mem	1	1	1	1	0	1	1	W	mod	0	1	0	mem	16	2-4	,					_
NEG	reg	1	1	1	1	0	1	1	W	1 1	0	1	1	reg	2	2	Х	X	X	Х	х	,
	mem	1	1	1	1	0	1	1	W	mod	0	1	1	mem	16	2-4	Х	Х	Х	Х	х	-,
TEST	reg, reg	1	0	0	0	0	1	0	W	1 1		reg		reg	2	2	u	0	0	х	х	`
	mem, reg	1	0	0	0	0	1	0	W	mod		reg		mem	10	2-4	u	0	0	X	х	>
	reg, imm	1	1	1	1	0	1	1	W	1 - 1	0	0	0	reg	4	3-4	u	0	0	х	х	_
	mem, imm	1	1	1	1	0	1	1	W	mod	0	0	0	mem	11	3-6	u	0	0	х	х	x
	acc, imm	1	0	1	0	1	0	0	W		_		-		4	2-3	u	0	0	х	x	x
AND	reg, reg	0	0	1	0	0	0	1	W	1 1	_	reg		reg	2	2	u	0	0	X	х	x
	mem, reg	0	0	1	0	0	0	0	W	mod		reg		mem	16	2-4	u	0	0	X	х	x
	reg, mem	0	0	1	0	0	0	1	W	mod	_	reg	-	mem	11	2-4	u	0	0	х	х	x
	reg, imm	1	0	0	0	0	0	0	W	1 1	1	0	0	reg	4	3-4	u	-		х		
	mem, imm	1	0	0	0	0	0	0	W	mod		0		mem	18	3-6	u		0		X	
	acc, imm	0	_	1		0		0				-	_		4	2-3		0				
DR .	reg, reg				_		0			1 1	_	reg		reg	2	2		0			-	
•	mem, reg		0					0		mod		reg		mem	16	2-4		0				
	reg, mem						0			mod	_	reg		mem	- 11	2-4		0				-
	reg, imm						0			1 1		0	1	reg	4	3-4		0				
	mem, imm		0					0		mod		0		mem	18	3-6	_	0				
	acc, imm		0				1		W	mou			'	moni	4	2-3		_	0			

	2.4	_			_	_		Opc		_	_	_	_	_	_	_						igs	_	_
Mnemonic	Operand	7	6 5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	AC	CY	V	P	S	Z
Logical II	nstructions (cont)																							
XOR	reg, reg	0	0 1	1	0	0	1	W	1	1		reg			reg		2	2	u	0	0	Х	х	Х
	mem, reg	0	0 1	1	0	0	0	W	mo	d		reg		_!	men	n	16	2-4	u	0	0	Х	Х	Х
	reg, mem	0	0 1	1	0	0.	1	W	mo	d		reg		ı	men	n	11	2-4	u	0	0	х	х	х
	reg, imm	1	0 0	0	0	0	0	W	1	1	1	1	0		reg		4	3-4	u	0	0	х	X	Х
	mem, imm	1	0 0	0	0	0	0	W	mo	d	1	1	0	- 1	men	n	18	3-6	· u	0	0	X	х	Х
	acc, imm	0	0 1	0	0	1	0	W									4	2-3	u	0	0	Х	Х	Х
Bit Manip	oulation Instructions																							
NS	reg8, reg8		0 0 1	0 reg	1	1	1 reg	1	0	0	1	1	0	0	0	1	31-117	3						
	reg8, imm8		0 0 1 0		1	1	1 reg	1	0	0	1	1	1	0	0	1	31-117	4			-			
EXT	reg8, reg8		0 0 1	0 reg	1	1	1 reg	1	0	0	1	1	0	0	1	1	26-55	3						
	reg8, imm8		0 0 1 0		1	1	1 reg		0	0	1	1	1	0	1	1	26-55	4						
TEST1	reg, CL		0 0 1 0		1	1	1 reg		0	0	0	1	0	0	0	W	3	3	u	0	0	u	u	х
	mem, CL	0 mo	0 0 d 0		1 0	1	1 men		0	0	0	1	0	0	0	W	12	3-5	u	0	0	u	u	х
	reg, imm3/4	-	0 0	_	1	1	1 reg		0	0	0	1	1	0	0	W	4	4	u	0	0	u	u	Х
	mem, imm3/4	0 mo	0 0 d 0		1	1	1 mer		0	0	0	1	1	0	0	W	13	4-6	u	0	0	u	u	X
SET1	reg, CL	-	0 0 1 0	-	1 0	1	1 reg		0	0	0	1	0	1	0	W	4	3						
	mem, CL	0 mo	0 0 d 0		1	1	1 mer		0	0	0	1	0	1	0	W	13	3-5						
	reg, imm3/4		0 0 1 0		1 0	1	1 reg		0	0	0	1	1	1	0	W	5	4						
	mem, imm3/4	0 mo	0 0 d 0		1 0	1	1 mer	1 - n	0	0	0	1	1	1	0	W	14	4-6						
	CY	1	1 1	1	1	0	0	1					:				2	1		1				
	DIR	1	1 1	1	1	1	0	1									2	1						
CLR1	reg, CL		0 0		1 0	1	1 reg	1	0	0	0	1	0	0	1	W	5	3						
	mem, CL	0 mo	0 0 d 0		1	1	1 mer		0	0	0	1	0	0	1	W	14	3-5						
	reg, imm3/4		0 0		1 0	- 1	1 reg		0	0	0	1	1	0	1	W	6	4						
	mem, imm3/4	0 mo	0 0 d 0		- 1	1	1 mer		0	0	0	1	1	0	1	W	15	4-6						
	CY	1	1 1	1	1	0	0	0									2	1		0				
	DIR	1	1 1	1	1	1	0	0									2	1						_

Mnemonic	Operands	7	65	4	3	2	1	Opco:	le 76	5	4	3	2	1 0	Clocks	Bytes	۵r		Flag V	gs P {	
	oulation Instructions		0 0	_			<u>'</u>		, ,		_				CIUCKS	Dytes	AU.	<u> </u>	<u> </u>		
NOT1	reg, CL	0	0 0	0	1	1	_	1	0 0	_	-	_		1 \A/	4	3			_		
WOTT	reg, or		1 0				eg	1	0 0	U	'	U		1 44	7	J					
	mem, CL	0	0 0			1	1	1	0 0	0	1	0	1	1 W	18	3-5				-	
		mo		-	0	n	nem														
	reg, imm3/4		0 0		1 0		1 eg	1	0 0	0	1.	1	1	1 W	5	4 .					
	mem, imm3/4		0 0				1	1	0 0	n	1	1	1	1 W	19	4-6					
		mo					nem			Ĭ			•								
	CY	1	1 1	1	0	1	0	1							2	1		Х			
Shift/Rot	ate Instructions																				
SHL	reg, 1	1	1 0	1	0	0	0	W	1 - 1	1	0	0	r	eg	2	2	и	х	Х	x >	()
	mem, 1	. 1	1 0	. 1	0	0	0	W	mod	1	0	0	m	em .	16	2-4	и	X	X	x >	()
	reg, CL	. 1	1 0	1	0	0	1	W	1 1	1	0	0	r	eg	7 + n	2	u	х	u	x >	()
	mem, CL	1	1 0	1	0	0	1	W	mod	1	0	0	m	em	19 + n	2-4	u	х	u	x >	()
	reg, imm8	1	1 0	0	0	0	0	W	1 1	1	0	0	r	eg	7 + n	3	. u	Х	u	x >	()
	mem, imm8	1	1 0	0	0	0	0	W	mod	1	0	0	m	em	19 + n	3-5	U	х	u	x >	()
SHR	reg, 1	1	1 0	1	0	0	0	W	1 1	1	0	1	r	eg	2	2	u	х	Х	x x	()
	mem, 1	1	1 0	1	0	0	0	W	mod	1	0	1	m	em	16	2-4	u	Х	х	X X	()
	reg, CL	1	1 0	1	0	0	1	W	1 1	1	0	1	r	eg	7 + n	2	u	х	u	x >	()
	mem, CL	1	1 0	1	0	0	1	W	mod	1	0	1	m	em	19 + n	2-4	u	Х	u	x >	$\langle \cdot \rangle$
	reg, imm8	1	1 0	0	0	0	0	W	1 1	1	0	1	r	eg	7 + n	3	U	х	u	x x	()
	mem, imm8	1	1 0	0	0	0	0	W	mod	1	0	1	m	em	19 + n	3-5	U	х	u	хх	()
									*****	n =	าน	mb	er of	shifts							
SHRA	reg, 1	1	1 0	1	0	0	0	W	1 1	1	1	1	r	eg	2	2	Ü	х	0	x x	()
	mem, 1	1	1 0	1	0	0	0	W	mod	1	1	1	m	em	16	2-4	· u	х	0	X X	()
	reg, CL	1	1 0	1	0	0	1	W	1 1	1	1	1	r	eg	7 + n	2	u	х	u	x >	()
	mem, CL	1	1 0	1	0	0	1	W	mod	1	1	1	m	em	19 + n	2-4	u.	Х	u	x >	()
	reg, imm8	1	1 0	0	0	0	0	W	1 1	1	1	1	r	eg	7 + n	3	u	х	u	x >	()
	mem, imm8	1	1 0	0	0	0	0	W	mod	1	1	1	m	em	19 + n	3-5	u	х	u	x >	$\overline{}$
ROL	reg, 1	1	1 0	1	0	0	0	W	1 1	0	0	0	r	eg	2	2		Х	х		-
	mem, 1	1	1 0	1	0	0	0	W	mod	0	0	0	m	em	16	2-4		Х	X		
	reg, CL	1	1 0	1	0	0	1	W	1 1.	0	0	0	r	eg	7 + n	2		Х	u		
	mem, CL	1	1 0	1	0	0	1	W	mod	0	0	0	m	em	19 + n	2-4		X	u		
	reg, imm	1	1 0	0	0	0	0	W	1 1	0	0	0	r	eg	7 + n	3		х	u		
	mem, imm	1	1 0	0	0	0	0	W	mod	0	0	0	m	em	19 + n	3-5	-	X	u		
ROR	reg, 1	1	1 0	1	0	0	0	W .	1 1	0	0	1	r	eg	2	2		х	u		
	mem, 1	1	1 0	1	0	0	0	W	mod	0	0	.1	m	em	16	2-4		х	х		
	reg, CL	1	1 0	1	0	0	1	W	1 1	0	0	1	r	eg	7 + n	2		X	u		
	mem, CL	1	1 0	1	0	0	1	W	mod	0	0	1	m	em	19 + n	2-4		х	u		-
I	reg, imm8	1	1 0	0	0	0	0	W	1 1	0	0	1	r	eg –	7 + n	3		Х	u		
	mem, imm8		1 0		_				mod		0			em	19 + n	3-5		х			

Instruction Set (cont)

				_		_	_			code			_						Flag			_
Mnemonic	Operands	7	6	5	4	3	2	1	0	7 6	5	4	3	2 1 0	Clocks	Bytes	AC	CY	<u> v</u>	P :	S Z	_
Shift/Rot	ate Instructions (cont)																				-	
ROLC	reg, 1	1	1	0	1	0	0	0	W	1 1	0	1	0	reg	2	2		X	X			
	mem, 1	1	1	0	1	0	0	0	W	mod	0	1	0	mem	16	2-4		X	Х			
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	1	0	reg	7 + n	2		Х	u			_
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	0	mem	19 + n	2-4		X	u			
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	1	0	reg	7 + n	3		Х	u			
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	1	0	mem	19 + n	3-5		Х	u			
RORC	reg, 1	1	1	0	1	0	0	0	W	. 1 1	0	1	1	reg	2	2		X	Х			
	mem, 1	1	1	0	1	0	0	0	W	mod	0	1	1	mem	16	2-4		X	X			
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	1	1	reg	7 + n	2		X	u			
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	1	mem	19 + n	2-4		X	u			
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	1	1	reg	7 + n	3		Х	u			
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	1	1	mem	19 + n	3-5		Х	u			
											n =	- nu	ımb	er of shifts								
Stack Ma	nipulation Instructions																					
PUSH	mem16	1	1	1	1	1	1	1	1	mod	1	1	0	mem	18	2-4						
	reg16	0	1	0	1	0		reg							8	1						-
	sr	0	0	0	5	ir	1	1	0						8	1						_
	PSW	. 1	0	0	. 1	1	1	0	0						8	1						
	R	0	1	1	0	0	0	0	0						35	1 .						_
	imm	0	1	1	0	1	0	S	0	-					7-8	2-3						
POP	mem16	1	0	0	0	1	1	1	1	mod	0	0	0	mem	17	2-4						
	reg16	0	1	0	1	.1		reg							8	. 1						_
	sr	0	0	0	5	sr	1	1	1						8	1						
	PSW	1	0	0	1	1	1	0	1		-				8	1	R	R	R	R	R F	₹
	R	0	1	1	0	0	0	0	1						43	1						
PREPARE	imm16, imm8	1	1	0	0	1	0	0		*imm8 =			•		*	4						
DISPOSE		1	1	0	0	1	0	0		11111110 > 1	. 1	9 +	0 (imm8 — 1)	6	1						_
	Transfer Instructions	<u> </u>	<u> </u>	_	Ť	<u> </u>	-		÷									_	_			_
CALL	near_proc	1	1	1	0	1	0	0	0						16	3						-
OTTEL	regptr	1	1	1	1	1	1	1	1	1 1	0	1	0	reg	14	1						_
	memptr16	_ <u>'</u> 1	1	1	1	1	1	1	- <u>'</u> 1	mod	0	1			23	2-4						
	far_proc	1	0	0	1	1	0	1	0	illou				mem	21	5						
	memptr32	1	1	1	1	1	1	1	1	mod	0	1	1	mem	31	2-4						
RET	mempuoz	1	1	0	0	<u>_</u>	0	1.		illou				IIIGIII	15	1						
HLI	non value	_ <u>'</u>	<u> </u>	0	0	0	0	1.	0			-			20	3						_
	pop_value_	_ <u>'</u> 1	<u> </u> 1	0	0	1	0	1	1						21	1		_				
				_																		
	pop_value	1	1	0	0	1	0	1	0						24	3						_

										code												Fla			
Mnemonic	Operand		6	5	4	3	2	1	0		6	5	4	3	2	1 0	Clocks	Bytes	AC	0	<u>γ</u>	V	P	8	
Control T	ransfer Instructions	(cont)																		-					
BR	near_label	1	1	1	0	1	0	0	1								13	3							
	short_label	1	1	1	0	1	0	0	1								12	2							
	reg	1	1	1	1	1	1	1	1	1	1	1	0	0		reg	11	2		•					
	memptr16	1	1	1	1	1	1	1	1	m	od	1	0	0	r	nem_	20	2-4							
	far_label	1	1	1	0	1	0	1	0								15	5							
	memptr32	1	1	1	1	1	1	1	1	n	od	1	0	1	ı	nem	27	2-4							
BV	near_label	0	1	1	1	0	0	0	0								14/4	2							
BNV	near_label	0	1	1	1	0	0	0	1								14/4	2							-
BC, BL	near_label	0	1	1	1	0	0	1	0								14/4	2							
BNC, BNL	near_label	0	1	1	1	0	0	1	1								14/4	2				_			
BE, BZ	near_label	0	1	1	1	0	1	0	0						-		14/4	2							
BNE, BNZ	near_label	0	1	1	1	0	1	0	1								14/4	2							-
BNH	near_label	0	1	1	1	0	1	1	0								14/4	2							
ВН	near_label	0	1	1	1	0	1	1	1								14/4	2							
BN	near_label	0	1	1	1	1	0	0	0								14/4	2							
ВР	near_label	0	1	1	1	1	0	0	1								14/4	2			-				
BPE	near_label	0	1	1	1	1	0	-1	0								14/4	2							
BP0	near_label	0	1	1	1	1	0	1	1								14/4	2							
BLT	near_label	0	1	1	1	1	1	0	0								14/4	2							
BGE	near_label	0	1	1	1	1	1	0	1								14/4	2						_	_
BLE	near_label	0	1	1	1	1	1	1	0								14/4	2							
BGT	near_label	0	1	1	1	1	1	1	1								14/4	2				-		_	_
DBNZNE	near_label	1	1	1	0	0	0	0	0								14/5	2			_	_			
DBNZE	near_label	1	1	1	0	0	0	0	1								14/5	2			_			_	_
DBNZ	near_label	1	1	1	0	0	0	1	0		-						13/5	2						_	_
BCWZ	near_label	1	1	1	0	0	0	1	1								13/5	2				_			
Interrupt	Instructions							_													_	_			_
3RK	3	1	1	0	0	1	1	0	0								38	1		_			_	_	
	imm8	1	1	0	0	1	1	0	1								38	2			_	_			_
3RKV	imm8	1	1	0	0	1	1		1	-		-		—			40/3	1						_	_
₹ETI		1	1	0	0		1	1	0								27	1	R	F	 } ′	R	R	R	R
HKIND	reg16, mem32	0	1	1	0	0	0	1	0	m	od		reg		r	nem	53-56/18				_				
IRKEM	imm8	0	0	0	0	1			1							1 1	38	3			_				_

Instruction Set (cont)

| | | | | | | | | 01 | ocode | В
 | | |

 | | | |
 | |
 | | F | lags
 | | | |
|----------------------|-----------------------------------|---|---|----|--------|----------|----------|----------|---
--
--|----|---
--
---|---|---|---
---	---
---	---
--	---
Operand	7
 | 5 | , , | 4

 | 3 | 2 | 1 | 0
 | Clocks | Bytes
 | AC | C١ | ľ
 | P | S | Z | | | | | | | |
| trol Instructions | | | | | | | | | |
 | | |

 | | | |
 | |
 | | | | | | | | | | |
 | | | |
| | - 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | |
 | | |

 | | | |
 | 2 | 1
 | | | | | | | | | | |
 | | | |
| | 1 | 1 | 1 | .1 | 0 | 0 | 0 | 0 | |
 | | _ |

 | | | |
 | 2 | 1
 | | |
 | | | |
| fp_op | 1 | 1 | 0 | 1 | 1 | Χ | Χ | Χ | | 1 1
 | γ | , , | Υ

 | Υ | Z | Z | Z
 | 2 | 2
 | | |
 | | | |
| fp_op, mem | 1 | 1 | 0 | 1. | 1 | Х | χ | Χ | | mod
 | γ | ′ ' | Υ

 | Υ | r | nen | n
 | 11 | 2-4
 | | |
 | | | |
| fp_op | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Χ | | 1 1
 | ١ | , | Υ

 | Υ | Z | Z | Z
 | 2 | 2
 | | |
 | | | |
| fp_op, mem | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Χ | | mod
 | Υ | , | Υ

 | γ | r | nen | n
 | 11 | 2-4
 | | |
 | | | |
| | 1 | 0 | 0 | 1 | 1
n | 0
1 = | 1
num | 1
ber | of ti | imes
 | PO | īLL | piı

 | n is | sa | mp | led.
 | 2 + 5n | 1
 | | | | | | | | | | |
 | | | |
| | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
 | | |

 | | | |
 | 3 | 1
 | | | | | | | | | | |
 | | | |
| | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | |
 | | |

 | | | |
 | 2 | 1
 | | | | | | | | | | |
 | | | |
| | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | |
 | | |

 | | | |
 | 2 | 1
 | | | | | | | | | | |
 | | | |
| ruction Set Enhancen | ents | | | | | | | | |
 | | |

 | | | |
 | |
 | | |
 | | | |
| | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | | 1 1
 | 1 | ı | 1

 | 1 | 1 | 0 | 1
 | 27 | 2
 | R | R | R
 | R | R | R |
| imm8 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | | 1 1
 | 1 | 1 | 0

 | 1 | 1 | 0 | 1
 | 38 | 3
 | | |
 | | | |
| | fp_op fp_op, mem fp_op fp_op, mem | 1 | | 1 | 1 | | | | Operand 7 6 5 4 3 2 1 0 Introl Instructions 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 X X X X Y X | Operand 7 6 5 4 3 2 1 0 Introl Instructions 1 1 1 1 1 0 1 1 0 0 1 1 X <td> </td> <td>Operand 7 6 5 4 3 2 1 0 7 6 5 Introl Instructions 1 1 1 1 1 1 0</td> <td>Operand 7 6 5 4 3 2 1 0 7 6 5 Introl Instructions 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0<td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 Introl Instructions 1 1 1 1 1 0 1 0</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 Introl Instructions 1 1 1 1 1 0</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 Interest of interest of</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 Introductions 1 1 1 1 1 0 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Introl Instructions 1 1 1 1 1 0 1 0</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Introl Instructions 1 1 1 1 1 1 0 0 0 0 0 0 0 2 3 3 3 3 3<td> Transfer</td><td>Operand
 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC National Instructions 1 1 1 1 1 0 1 0 0 0 0 2 1 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CN National Instructions 1 1 1 1 0 1 0 0 0 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<></td></t<></td></t<></td></td></t<></td></td> | | Operand 7 6 5 4 3 2 1 0 7 6 5 Introl Instructions 1 1 1 1 1 1 0 | Operand 7 6 5 4 3 2 1 0 7 6 5 Introl Instructions 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 <td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 Introl Instructions 1 1 1 1 1 0 1 0</td> <td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 Introl Instructions 1 1 1 1 1 0</td> <td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 Interest of interest of</td> <td>Operand 7 6 5 4 3 2 1 0
 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 Introductions 1 1 1 1 1 0 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Introl Instructions 1 1 1 1 1 0 1 0</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Introl Instructions 1 1 1 1 1 1 0 0 0 0 0 0 0 2 3 3 3 3 3<td> Transfer</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC National Instructions 1 1 1 1 1 0 1 0 0 0 0 2 1 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CN National Instructions 1 1 1 1 0 1 0 0 0 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<></td></t<></td></t<></td></td></t<></td> | Operand 7 6 5 4 3 2 1 0 7 6 5 4 Introl Instructions 1 1 1 1 1 0 1 0 | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 Introl Instructions 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 Interest of | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 Introductions 1 1 1 1 1 0 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Introl Instructions 1 1 1 1 1 0 1 0</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Introl Instructions 1 1 1 1 1 1 0 0 0 0 0 0 0 2 3 3 3 3 3<td> Transfer</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC National Instructions 1 1 1 1 1 0 1 0 0 0 0 2 1 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CN National Instructions 1 1 1 1 0 1 0 0 0 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<></td></t<></td></t<></td></td></t<> | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Introl Instructions 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Introl Instructions 1 1 1 1 1 1 0 0 0 0 0 0 0 2 3 3 3 3 3 <td> Transfer</td> <td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC National Instructions 1 1 1 1 1 0 1 0 0 0 0 2 1 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CN National Instructions 1 1 1 1 0 1 0 0 0 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<></td></t<></td></t<></td> | Transfer | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC National Instructions 1 1 1 1 1 0 1 0 0 0 0 2 1 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CN National Instructions 1 1 1 1 0 1 0 0 0 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<></td></t<></td></t<> | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CN National Instructions 1 1 1 1 0 1 0 0 0 2 1 <t< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1</td><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<></td></t<> | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V National Instructions 1 1 1 1 1 0 0 0 0 2 1 | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P Introl Instructions 1 1 1 1 1 0 0 0 0 0 2 1 1 0 <td< td=""><td>Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1</td></td<> | Operand 7 6 5 4 3 2 1 0 7 6 5 4 3 2
 1 0 7 6 5 4 3 2 1 0 Clocks Bytes AC CY V P S National Instructions 1 1 1 1 1 0 0 0 0 2 1 |

µPD70208 (V40™) 8/16-BIT, HIGH-INTEGRATION CMOS MICROPROCESSOR

PRELIMINARY INFORMATION

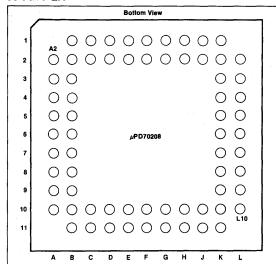
Description

The μ PD70208 (V40 $^{\text{TM}}$) is a high-performance, low-power 16-bit microprocessor integrating a number of commonly used peripherals to dramatically reduce the size of microprocessor systems. The CMOS construction makes the μ PD70208 ideal for the design of portable computers, instrumentation, and process control equipment.

The μ PD70208 contains a powerful instruction set that is compatible with the μ PD70108/ μ PD70116 (V20 $^{\text{TM}}$ / V30 $^{\text{TM}}$) and μ PD8086/ μ PD8088 instruction sets. Instruction set support includes a wide range of arithmetic, logical, and control operations as well as bit manipulation, BCD arithmetic, and high-speed block transfer instructions. The μ PD70208 can also execute the entire μ PD8080AF instruction set using the 8080 emulation mode. Also available is the μ PD70216 (V50 $^{\text{TM}}$), identical to the μ PD70208 but with a 16-bit external data bus.

Features

- ☐ V20/V30 instruction set compatible
- ☐ Minimum instruction execution time: 250 ns (at 8 MHz)
- ☐ Direct addressing of 1M bytes of memory
- ☐ Powerful set of addressing modes
- ☐ 14 16-bit registers
- On-chip peripherals including
 - Clock generator
 - Bus interface
 - Bus arbitration
 - Programmable wait state generator
 - DRAM refresh control
 - Three 16-bit timer/counters
 - Asynchronous serial I/O control
 - Eight-input interrupt control
 - Four-channel DMA control
- 1 Hardware effective address calculation logic
- 1 Maskable and nonmaskable interrupts
- I μPD72191 Floating Point Processor interface
- 1 IEEE 796 compatible bus interface
- I Low-power standby mode
- Low-power CMOS technology

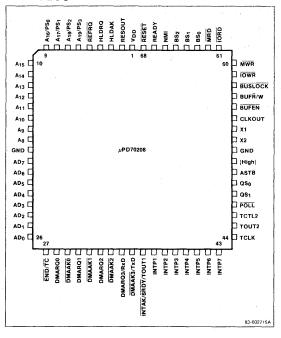

20, V30, V40, and V50 are trademarks of NEC Corporation.

Ordering Information

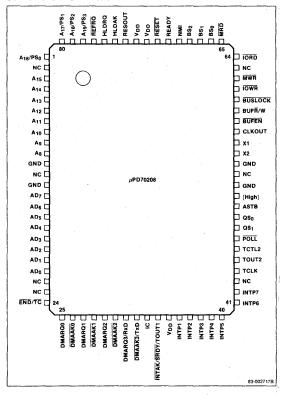
Part Number	Package	Maximum Frequency
μPD70208R-8	68-pin PGA	8 MHz
μPD70208L-8	68-pin PLCC	8 MHz
μPD70208G-8	80-pin plastic miniflat	8 MHz

Pin Configurations

68-Pin PGA


Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
A2	INTP7	B9	DMARQ1	F10	AD7	K4	NMI
A3	INTP5	B10	DMARQ0	F11	GND	K5	RESET
A4	INTP3	B11	AD ₀	G1	X1	K6	RESOUT
A5	INTP1	C1	TCTL2	G2	CLKOUT	K7	HLDRQ
A6	DMAAK3/TxD	C2	POLL	G10	A ₈	K8	A19/PS3
A7	DMAAK2	C10	AD ₁	G11	Ag	К9	A17/PS1
A8	DMAAK1	C11	AD ₂	H1	BUFEN	K10	A14
A9	DMAAK0	D1	QS ₁	H2	BUFR/W	K11	A15
A10	END/TC	D2	QS ₀	H10	A10	L2	IORD
В1	TCLK	D10	AD ₃	H11	A11	L3	BS ₀
B2	TOUT2	D11	AD4	J1	BUSLOCK	L4	BS ₂
В3	INTP6	E1	ASTB	J2	IOWR	L5	READY
B4	INTP4	E2	[High]	J10	A12	L6	VDD
B5 -	INTP2	E10	AD ₅	J11	A ₁₃	L7	HLDAK
B6	INTAK/SRDY/ TOUT1	E11	AD ₆	K1	MWR	L8	REFRQ
B7	DMARQ3/RxD	F1	GND	K2	MRD	L9	A18/PS2
B8	DMARQ2	F2	X2	КЗ	BS ₁	L10	A ₁₆ /PS ₀

83-00271



Pin Configurations (cont)

68-Pin PLCC

80-Pin Plastic Miniflat

Pin Identification

Symbol	Function					
A ₁₉ -A ₁₆ /PS ₃ -PS ₀	Multiplexed address/processor status outputs					
A ₁₅ -A ₈	Address bus outputs					
AD ₇ -AD ₀	Multiplexed address/data bus					
ASTB	Address strobe output					
BÜFEN	Data bus transceiver enable output					
BUFR/W	Data bus transceiver direction output					
BUSLOCK	Buslock output					
BS ₂ -BS ₀	Bus status outputs					
CLKOUT	System clock output					
DMAAKO	DMA channel 0 acknowledge output					
DMAAK1	DMA channel 1 acknowledge output					
DMAAK2	DMA channel 2 acknowledge output					
DMAAK3/TxD	DMA channel 3 acknowledge output/Serial transmit data output					
DMARQ0	DMA channel 0 request input					
DMARQ1	DMA channel 1 request input					
DMARQ2	DMA channel 2 request input					
DMARQ3/RxD	DMA channel 3 request input/Serial receive data input					
END/TC	End input/Terminal count output					
GND	Ground					
ligh	High-level output except during hold acknowledge when it is placed in the high-impedance state					
ILDAK	Hold acknowledge output					
ILDRQ	Hold request input					
)	Internal connection; leave unconnected					
VTAK/TOUT1/SRDY	Interrupt acknowledge output/Timer/counter 1 output/Serial ready output					
ITP1-INTP7	Interrupt request inputs					
RD	I/O read strobe output					
WR	I/O write strobe output					
RD	Memory read strobe output					
WR	Memory write strobe output					
7	No connection					
ΛI	Nonmaskable interrupt input					
IL	Poll input					
1-QS ₀	CPU queue status outputs					
ADY	Ready input					
FRQ	Refresh request output					
SET	Reset input					
SOUT	Synchronized reset output					
_K	Timer/counter external clock input					
ΓL2	Timer/counter 2 control input					

Symbol	Function	
TOUT2	Timer/counter 2 output	
V _{DD}	+5 V power supply input	
X1, X2	Crystal/external clock inputs	

Pin Functions

A₁₉-A₁₆/PS₃-PS₀ [Address/Status Bus]

These three-state output pins contain the upper 4 bits of the 20-bit address during T1 and processor status information during T2, T3, Tw, and T4. During T1 of a memory read or write cycle, these pins contain the upper 4 bits of the 20-bit address. These pins are forced low during T1 of an I/O bus cycle.

Processor status is output during T2, T3, Tw, and T4 of both memory and I/O bus cycles. PS $_3$ is zero during any CPU native mode bus cycle. During any DMA, refresh, or 8080 emulation mode bus cycle, PS $_3$ outputs a high level. PS $_2$ outputs the contents of the interrupt enable (IE) flag in the CPU PSW register. PS $_1$ and PS $_0$ indicate the segment register used to form the physical address of a CPU bus cycle as follows:

PS ₁	PS ₀	Segment			
 0	0	Data segment 1 (DS1)			
0	1	Stack segment (SS)			
 1	0	Program segment (PS)			
1	1	Data segment 0 (DS0)			

These pins are in the high-impedance state during hold acknowledge.

A₁₅-A₈ [Address Bus]

These three-state pins form the active-high address bus. During any CPU, DMA, or refresh bus cycle, $A_{15}\text{-}A_8$ output the middle 8 bits of the 20-bit memory or I/O address. The $A_{15}\text{-}A_8$ pins enter the high-impedance state during hold acknowledge or an internal interrupt acknowledge bus cycle. During a slave interrupt acknowledge bus cycle, $A_{10}\text{-}A_8$ contain the address of the slave interrupt controller.

AD7-AD0 [Address/Data Bus]

These three-state pins form the active-high, time-multiplexed address/data bus. During T1 of a bus cycle, AD_7 - AD_0 output the lower 8 bits of the 20-bit memory or I/O address. During the T2, T3, Tw, and T4 states, AD_7 - AD_0 form the 8-bit bidirectional data bus.

The AD₇-AD₀ pins enter the high-impedance state during hold acknowledge or internal interrupt acknowledge bus cycles or while RESET is asserted.

ASTB [Address Strobe]

This active-high output is used to latch the address from the multiplexed address bus in an external address latch during T1 of a bus cycle. ASTB is held at a low level during hold acknowledge.

BUFEN [Buffer Enable]

BUFEN is an active-low output for enabling an external data bus transceiver during a bus cycle. BUFEN is asserted during T2 through T4 of a read cycle, T2 through T3 of a slave interrupt acknowledge cycle, and T1 through T4 of a write cycle. BUFEN is not asserted when the bus cycle corresponds to an internal peripheral, DMA, refresh, or internal interrupt acknowledge cycle. BUFEN enters the high-impedance state during hold acknowledge.

BUFR/W [Buffer Read/Write]

BUFĀ/W is a three-state, active-low output used to control the direction of an external data bus transceiver. A high level indicates the µPD70208 will perform a write cycle and a low level indicates a read cycle. BUFĀ/W enters the high-impedance state during hold acknowledge.

BUSLOCK

This active-low output provides a means for the CPU to indicate to an external bus arbiter that the bus cycles of the next instruction are to be kept contiguous. BUSLOCK is asserted for the duration of the instruction following the BUSLOCK prefix. BUSLOCK is also asserted during interrupt acknowledge cycles and enters the high-impedance state during hold acknowledge. While BUSLOCK is asserted, DMAU, RCU, and external bus requests are disabled.

BS₂-BS₀ [Bus Status]

Outputs BS_2 - BS_0 indicate the type of bus cycle being performed as follows.

BS ₂	BS ₁	BS _O	Bus Cycle
0	0	0	Interrupt acknowledge
0	0	. 1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Instruction fetch
1	0	1	Memory read (1)
1	1	0	Memory write (2)
1	1	1	Passive state

Note:

- Memory read bus cycles include CPU, DMA read, DMA verify, and refresh bus cycles.
- (2) Memory write bus cycles include CPU and DMA write bus cycles.

BS₂-BS₀ are three-state outputs and are high impedance during hold acknowledge.

CLKOUT

The CLKOUT output is used to generate all internal timing for the μ PD70208. CLKOUT has a 50-percent duty cycle at half the frequency of the input clock source.

DMAAK0-DMAAK2 [DMA Acknowledge]

This set of outputs contains the DMA acknowledge signals for channels 0-2 from the internal DMA controller and indicate that the peripheral can perform the requested transfer.

DMAAK3/TxD [DMA Acknowledge 3]/[Serial Transmit Data]

Two output signals multiplexed on this pin are selected by the PF field of the on-chip peripheral connection register.

- DMAAK3 is an active-low output and enables a external DMA peripheral to perform the requeste DMA transfer for channel 3.
- TxD is the serial output from the serial control uni

DMARQ0-DMARQ2 [DMA Request]

These synchronized inputs are used by external pillipherals to request DMA service for channels 0-2 froughthe internal DMA controller.

DMARQ3/RxD [DMA Request 3]/[Serial Receive Data]

Two input signals multiplexed on this pin are selected by the PF field of the on-chip peripheral connection register.

- DMARQ3 is used by an external peripheral to request a DMA transfer cycle for channel 3.
- · RxD is the serial input to the serial control unit.

END/TC [End/Terminal Count]

This active-low bidirectional pin controls the termination of a DMA service. Assertion of $\overline{\text{END}}$ by external hardware during DMA service causes the service to terminate. When a DMA channel reaches its terminal count, the DMAU asserts $\overline{\text{TC}}$, indicating the programmed operation has completed.

 $\overline{\text{END}}/\overline{\text{TC}}$ is an open-drain I/O pin, and requires an external 2.2-k Ω pull-up resistor.

HLDAK [Hold Acknowledge]

When an external bus requester has become the highest priority requester, the internal bus arbiter will assert the HLDAK output indicating the address, data, and control buses have entered a high-impedance state and are available for use by the external bus master.

Should the internal DMAU or RCU (demand mode) request the bus, the bus arbiter will drive HLDAK low. When this occurs, the external bus master should complete the current bus cycle and negate the HLDRQ signal. This allows the bus arbiter to reassign the bus to he higher priority requester.

ILDRQ [Hold Request]

his active-high signal is asserted by an external bus naster requesting to use the local address, data, and ontrol buses. The HLDRQ input is used by the internal us arbiter, which gives control of the buses to the lighest priority bus requester in the following order.

ıs Master	Priority				
CU	Highest (demand mode)				
MAU	•				
LDRQ	•				
γŲ .	•				
UC	Lowest (normal operation)				

INTAK/TOUT1/SRDY [Interrupt Acknowledge]/ [Timer 1 Output]/[Serial Ready]

Three output signals multiplexed on this pin are selected by the PF field of the on-chip peripheral connection register.

- INTAK is an interrupt acknowledge signal used to cascade external slave μPD71059 Interrupt Controllers. INTAK is asserted during T2, T3, and Tw states of an interrupt acknowledge cycle.
- TOUT1 is the output of timer/counter 1.
- SRDY is an active-low output and indicates that the serial control unit is ready to receive the next character.

INTP1-INTP7 [Peripheral Interrupts]

INTP1-INTP7 accept either rising-edge or high-level triggered asynchronous interrupt requests from external peripherals. These INTP1-INTP7 inputs are internally synchronized and prioritized by the interrupt control unit, which requests the CPU to perform an interrupt acknowledge bus cycle. External interrupt controllers such as the μ PD71059 can be cascaded to increase the number c^{*} vectored interrupts.

These interrupt inputs cause the CPU to exit both the standby and 8080 emulation modes.

INTP1-INTP7 contain internal pull-up resistors and may be left unconnected.

IORD [I/O Read]

This three-state pin outputs an active-low I/O read strobe during T2, T3, and Tw of an I/O read bus cycle. Both CPU I/O read and DMA write bus cycles assert IORD. IORD is not asserted when the bus cycle corresponds to an internal peripheral. It enters the high-impedance state during hold acknowledge.

IOWR [I/O Write]

This three-state pin outputs an active-low I/O write strobe during T2, T3, and Tw of a CPU I/O write or an extended DMA read cycle and during T3 and Tw of a DMA read bus cycle. IOWR is not asserted when the bus cycle corresponds to an internal peripheral. It enters the high-impedance state during hold acknowledge.

MRD [Memory Read Strobe]

This three-state pin outputs an active-low memory read strobe during T2, T3, and Tw of a memory read bus cycle. CPU memory read, DMA read, and refresh bus cycles all assert MRD. MRD enters the high-impedance state during hold acknowledge.

MWR [Memory Write Strobe]

This three-state pin outputs an active-low memory write strobe during T2, T3, and Tw of a CPU memory write or DMA extended write bus cycle and during T3 and Tw of a DMA normal write bus cycle. MWR enters the high-impedance state during hold acknowledge.

NMI [Nonmaskable Interrupt]

The NMI pin is a rising-edge-triggered interrupt input that cannot be masked by software. NMI is sampled by CPU logic each clock cycle and when found valid for five or more CLKOUT cycles, the NMI interrupt is accepted. The CPU will process the NMI interrupt immediately after the current instruction finishes execution by fetching the segment and offset of the NMI handler from interrupt vector 2. The NMI interrupt causes the CPU to exit both the standby and 8080 emulation modes. The NMI input takes precedence over the maskable interrupt inputs.

POLL [Poll]

The active-low POLL input is used to synchronize the operation of external devices with the CPU. During execution of the POLL instruction, the CPU checks the POLL input state every five clocks until POLL is once again asserted.

QS₁-QS₀ [Queue Status]

The QS₁ and QS₀ outputs maintain instruction synchronization between the μ PD70208 CPU and external devices such as the μ PD72191 Floating Point Processor. These outputs are interpreted as follows.

QS ₁	QS _O	Instruction Queue Status				
0	0	No operation				
0	1	First byte of instruction fetched				
~ 1	0	Flush queue contents				
1	1	Subsequent byte of instruction fetched				

Queue status is valid for one clock cycle after the CPU has accessed the instruction queue.

READY [Ready]

This active-high input synchronizes external memory and peripheral devices with the μ PD70208. Slow memory and I/O devices can lengthen a bus cycle by negating the READY input and forcing the BIU to insert Tw states. READY must be negated prior to the rising edge of CLKOUT during the T2 state to guarantee recognition. When READY is once again asserted and recognized by the BIU, the BIU will proceed to the T4 state.

The READY input operates in parallel with the internal μ PD70208 wait control unit and can be used to insert more than three wait states into a bus cycle.

REFRQ [Refresh Request]

 $\overline{\text{REFRQ}}$ is an active-low output indicating the current bus cycle is a memory refresh operation. $\overline{\text{REFRQ}}$ is used to disable memory address decode logic and refresh dynamic memories. The 9-bit refresh row address is placed on A_8 - A_0 during a refresh bus cycle.

RESET [Reset]

The RESET input is used to force the μ PD70208 to a known state by resetting the CPU and on-chip peripherals. RESET must be asserted for a minimum of four clocks to guarantee recognition. After RESET has been released, the CPU will start program execution from address FFFF0H.

RESET will release the CPU from the low-powe standby mode and force it to the native mode.

RESOUT [Reset Output]

This active-high output is available to perform a system wide reset function. Reset is internally synchronize with CLKOUT and output on the RESOUT pin.

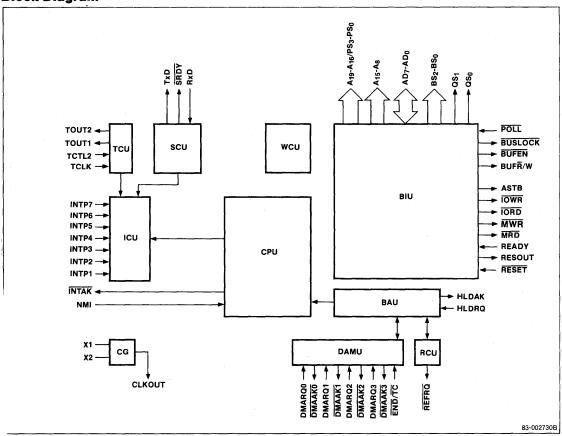
TCLK

TCLK is an external clock source for the timer contrunit. The three timer/counters can be programmed operate with either the TCLK input or a prescale CLKOUT input.

TCTL2

TCTL2 is the control input for timer/counter 2.

TOUT2


TOUT2 is the output of timer/counter 2.

X1, X2 [Clock Inputs]

These pins accept either a parallel resonant, fundamental mode crystal or an external oscillator input with a frequency twice the desired operating frequency.

Block Diagram

Absolute Maximum Ratings

 $T_A = +25$ °C

	
Power supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, V _I	-0.5 to $V_{DD} + 0.3 V$
CLK input voltage, V _K	-0.5 to V _{DD} + 1.0 V
Output voltage, V ₀	-0.5 to V _{DD} + 0.3 V
Operating temperature, T _{OPT}	−10 to +70 °C
Storage temperature, T _{STG}	-65 to +150°C

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_{A} = -10$ to +70 °C; $V_{DD} = +5 \ V \pm 10\%$

		Limi	ts		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input voltage, high	V _{IH}	2.2	V _{DD} + 0.3	٧	
Input voltage, low	V _{IL}	-0.5	0.8	٧	
X1, X2 input voltage, high	V _{KH}	3.9	V _{DD} + 1.0	٧	
X1, X2 input voltage, low	V _{KL}	-0.5	0.6	٧	
Output voltage, high	ı V _{OH}	0.7 V _{DD}		٧	$I_{OH} = -400 \mu$
Output voltage, low	V _{OL}		0.4	٧	$I_{0L} = 2.5 \text{ mA}$
Input leakage current, high	LiH		10	μΑ	$V_I = V_{DD}$
Input leakage current, low	LIPL		-300	μΑ	V ₁ = 0 V, INTP input pins
	I _{LIL}		-10	μΑ	V _I = 0 V, other input pins
Output leakage current, high	I _{LOH}		10	μΑ	$v_0 = v_{DD}$
Output leakage current, low	l _{LOL}		-10	μΑ	$V_0 = 0 V$
Supply current	IDD		90 20	mA mA	Normal mode Standby mode

Capacitance

 $T_A = +25$ °C, $V_{DD} = 0$ V

	Limits				Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
Input capacitance	CI		15	pF	f _C = 1 MHz;	
Output capacitance	C ₀		15	pF	unmeasured pins are returned to 0 V.	

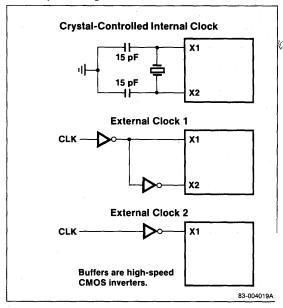
AC Characteristics

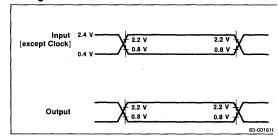
 $T_A = -10 \text{ to } +70\,^{\circ}\text{C}; V_{DD} = +5 \text{ V } \pm 10\%; C_L = 100 \text{ pF}$

		Limi		Test	
Parameter	Symbol	Min	Max	Unit	Conditions
External clock input cycle time	t _{CYX}	62	250	ns	
External clock pulse width, high	t _{XXH}	20		ns	$V_{KH} = 3.0 V$
External clock pulse width, low	t _{XXL}	20		ns	$V_{KL} = 1.5 V$
External clock rise time	txR		10	ns	1.5 → 3.0 V
External clock fall time	t _{XF}		10	ns	3.0 → 1.5 V
CLKOUT cycle time	t _{CYK}	124	500	ns	
CLKOUT pulse width, high	tkkh	0.5 t _{CYK} - 7		ns	$V_{KH} = 3.0 V$
CLKOUT pulse width, low	tKKL	0.5 t _{CYK} - 7		ns	$V_{KL} = 1.5 V$
CLKOUT rise time	t _{KR}		7	ns	1.5 → 3.0 V
CLKOUT fall time	t _{KF}		7	ns	3.0 → 1.5 V
CLKOUT delay time from external clock	t _{DXK}		55	ns	
Input rise time (except external clock)	t _{IR}		20	ns	0.8 → 2.2 V
Input fall time (except external clock)	t _{IF}		12	ns	2.2 → 0.8 V
Output rise time (except CLKOUT)	t _{OR}		20	ns	0.8 → 2.2 V
Output fall time (except CLKOUT)	t _{OF}		12	ns	2.2 → 0.8 V
RESET setup time to CLKOUT↓	tsresk	25		ns	
RESET hold time after CLKOUT↓	thkres	35		ns	
RESOUT delay time from CLKOUT↓	†DKRES	5	60	ns	
READY inactive setup time to CLKOUT 1	tsrylk	15		ns	
READY inactive hold time after CLKOUT1	[†] HKRYL	25		ns	
READY active setup time to CLKOUT1	tsryhk	15		ns	
READY active hold time after CLKOUT1	thkryh	25		пѕ	
NMI, POLL setup time to CLKOUT1	tsik	15		ns	

AC Characteristics (cont)

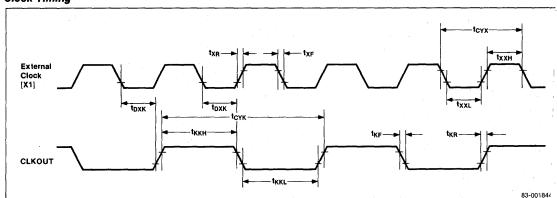
		Limit		Test	
Parameter	Symbol	Min	Max	Unit	Conditions
Data setup time to CLKOUT↓	tsdk	20		ns	
Data hold time after CLKOUT↓	t _{HKD}	15		ns	
Address delay time from CLKOUT↓	t _{DKA}	10	60	ns	
Address hold time after CLKOUT↓	t _{HKA}	10		ns	
PS delay time from CLKOUT↓	tDKP	10	60	ns	
PS float delay time from CLKOUT	t _{FKP}	10	60	ns	
Address setup time to ASTB	^t SAST	t _{KKL} – 30		ns	
Address float delay time from CLKOUT↓	t _{FKA}	thka	60	ns	
ASTB† delay time from CLKOUT↓	†DKSTH		50	ns	
ASTB↓ delay time from CLKOUT↑	tdkstl		55	ns	
ASTB pulse width, high	tstst	t _{KKL} — 10		ns	
Address hold time after ASTB↓	thsta	t _{KKH} — 10		ns	
Control delay time rom CLKOUT	t _{DKCT}	15	60	ns	
रिD↓ delay time rom address float	tDAFRL	0		ns	
रिD↓ delay time rom CLKOUT↓	†DKRL	10	70	ns	
D↑ delay time rom CLKOUT↓	tdkrh	15	60	ns	
ddress delay time om CLKOUT	t _{DRHA}	t _{CYK} - 40		ns	
D pulse width, low	t _{RR}	2t _{CYK} — 50		ns	
UFR/W delay from UFEN1	tobect	t _{KKL} – 20		ns	Read cycle
	t _{DWCT}	t _{KKL} — 20		ns	Write cycle
ne from CLKOUT↓	t _{DKD}	10	60	ns	
ita float delay ne from CLKOUT↓	t _{FKD}	10	60	ns	
ই pulse width, low	t _{WW}	2t _{CYK} — 40		ns	
delay time	t _{DKBL}	10	60	ns	
↑ delay time m CLKOUT↓	t _{DKBH}	10	65	ns	


		Limi	Limits		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
HLDRQ setup time to CLKOUT	tshak	20	· .	ns		
HLDAK delay time from CLKOUT↓	†DKHA	10	100	ns		
Address drive delay time from CLKOUT	t _{DKA2}	tcyk		ns		
DMAAK delay time from CLKOUT	tokdal	10	70	ns		
DMAAK delay time from CLKOUT↓	†DKDAH	10	115	ns	Cascade mode	
WR pulse width, low (DMA cycle)	t _{WW1}	2t _{CYK} 40		ns	DMA extended write cycle	
WR pulse width, low (DMA cycle)	t _{WW2}	t _{CYK} – 40		ns	DMA normal write cycle	
TC output delay time from CLKOUT	†DKTCL		60	ns		
TC off delay time from CLKOUT†	†DKTCF		60	ns		
TC pulse width, low	t _{TCTCL}	t _{CYK} — 15		ns		
TC pullup delay time from CLKOUT	^t DKTCH		t _{KKH} + t _{CYK} - 10	ns		
END setup time to CLKOUT	tsedk	35		ns		
END pulse width, low	tededl	100		ns		
DMARQ setup time to CLKOUT1	tsdok	35		ns		
INTPn pulse width, low	tiPIPL	100		ns		
RxD setup time to SCU internal clock↓	t _{SRX}	1		μS		
RxD hold time after SCU internal clock	t _{HRX}	1		μS		
SRDY delay time from CLKOUT↓	t _{DKSR}		150	ns		
TxD delay time from TOUT1↓	t _{DTX}		500	ns		
TCTL2 setup time from CLKOUT↓	t _{SGX}	50		ns		
TCTL setup time to TCLK1	tsgtk	50		ns		
TCTL2 hold time after CLKOUT↓	t _{HKG}	100		ns		
TCTL2 hold time after TCLK1	thtkg	50		ns		
TCTL2 pulse width,	t _{GGH}	50		ns		

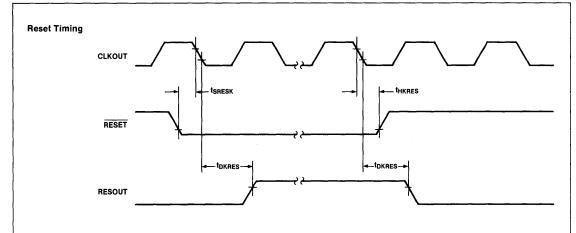

AC Characteristics (cont)

					
Parameter		Limits			Test
	Symbol	Min	Max	Unit	Conditions
TCTL2 pulse width, low	t _{GGL}	50		ns	
TOUT output delay time from CLKOUT↓	t _{DKTO}		200	ns	
TOUT output delay time from TOUT↓	t _{DTKTO}		150	ns	
TOUT output delay time from TCTL2↓	t _{DGTO}		120	ns	
TCLK rise time	t _{TKR}		25	ns	
TCLK fall time	t _{TKF}		25	ns	
TCLK pulse width, high	tткткн	50		ns	: :
TCLK pulse width, low	^t TKTKL	50		ns	
TCLK cycle time	tCYTK	124	Dc	ns	
RD↓, WR↓ delay from DMAAK↓	t _{DDARW}	^t ккн — 30	7.	ns	
DMAAK† delay from RD†	tDRHDAH	t _{KKL} – 30		ns	
RD† delay from WR†	t _{DWHRH}	5		ns	

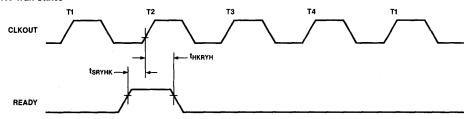
Clock Input Configurations

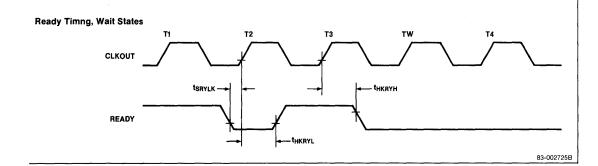


Timing Measurement Points

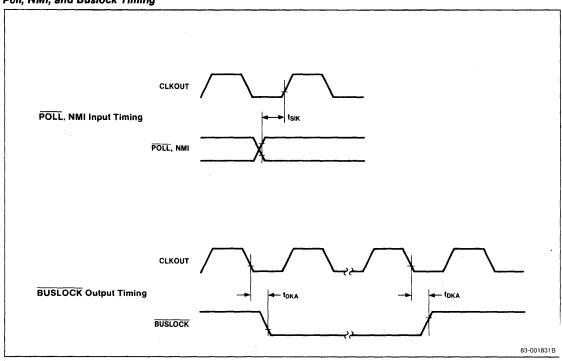

Timing Waveforms

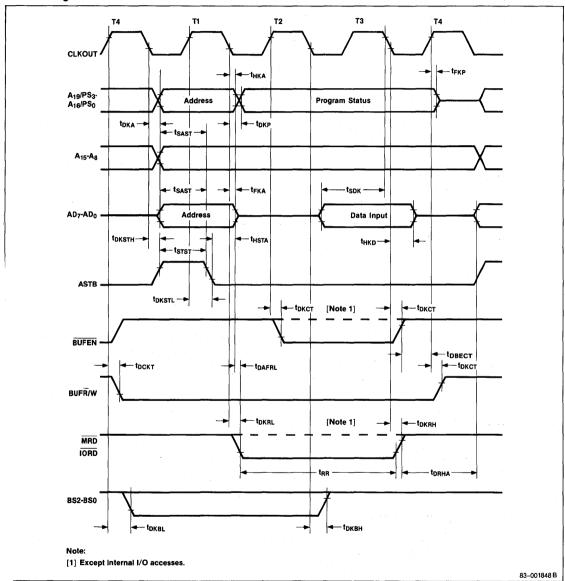
Clock Timing



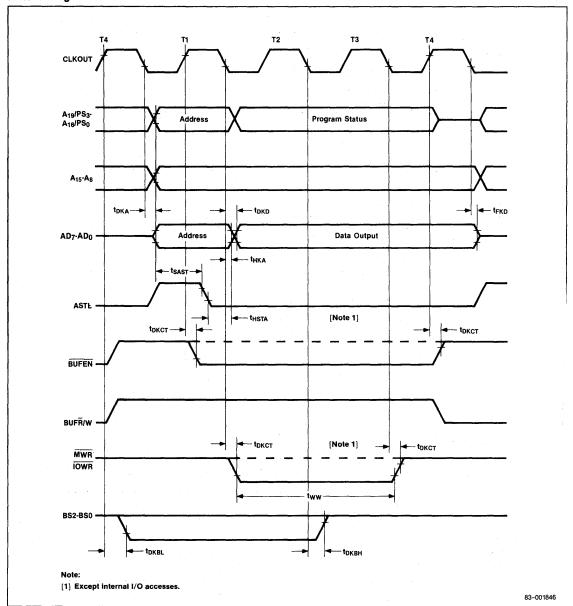


Reset and Ready Timing

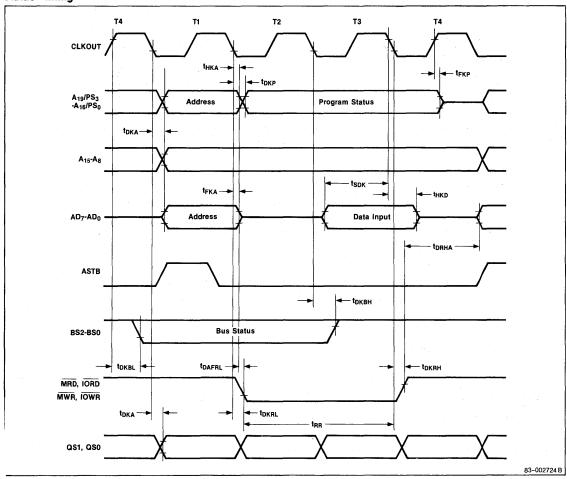

Ready Timing, No Wait States



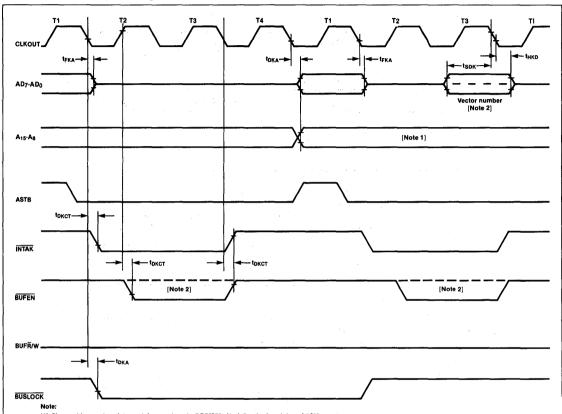
Poll, NMI, and Buslock Timing



Read Timing

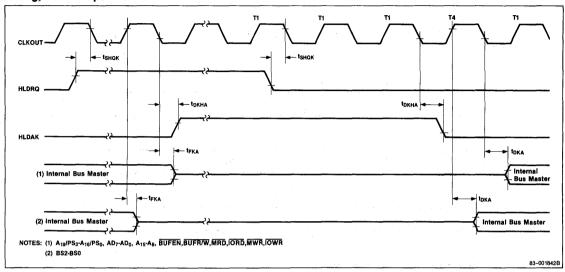

Write Timing

3-108

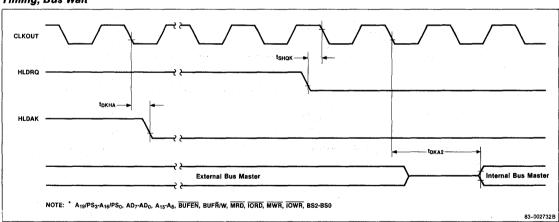


Status Timing

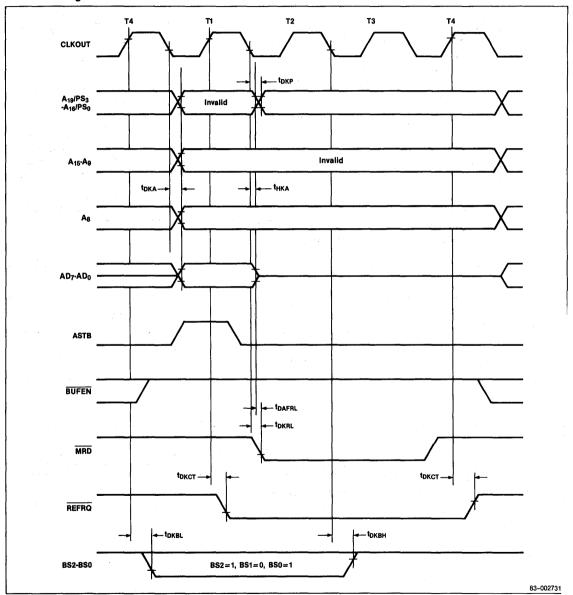
Interrupt Acknowledge Timing


[1] Slave address when interrupt from external μPD71059. Undefined when internal ICU interrupt.

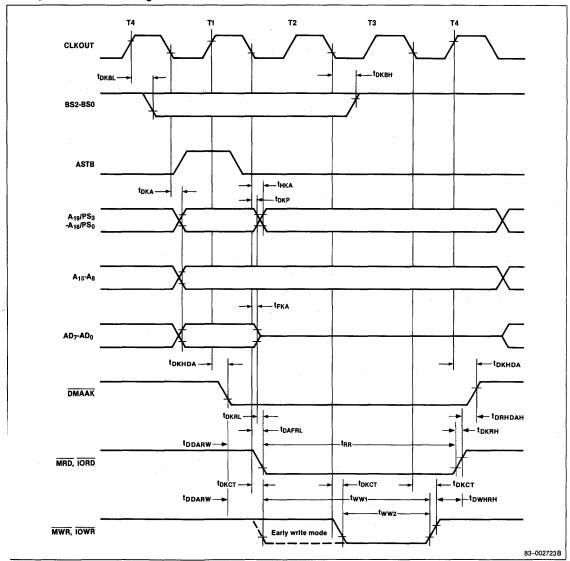
[2] Solid line when interrupt from external μ PD71059. Dash line when internal ICU interrupt.


92 001840

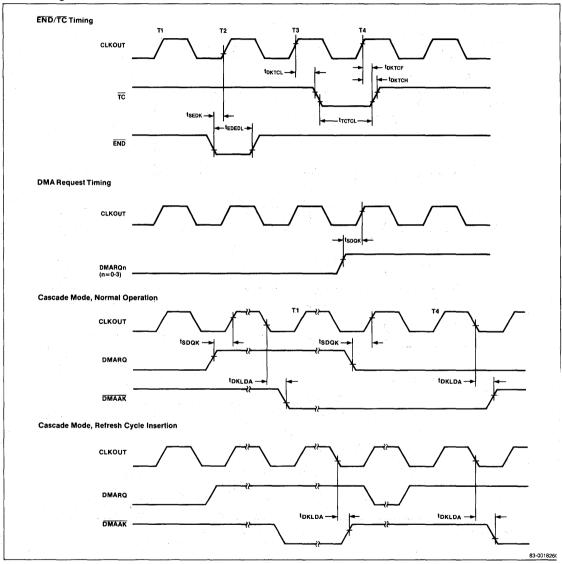
Timing, Normal Operation



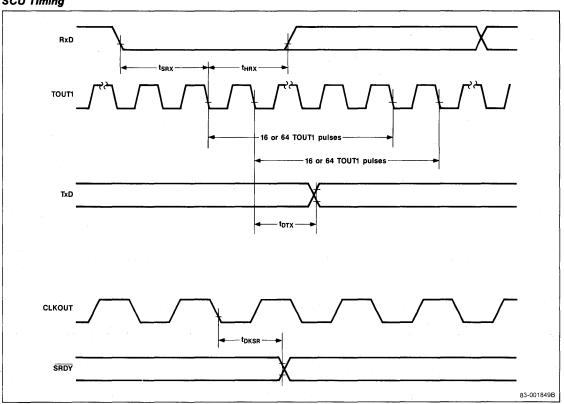
Timing, Bus Wait

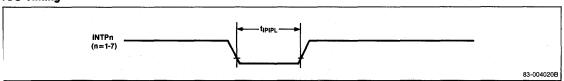


Refresh Timing

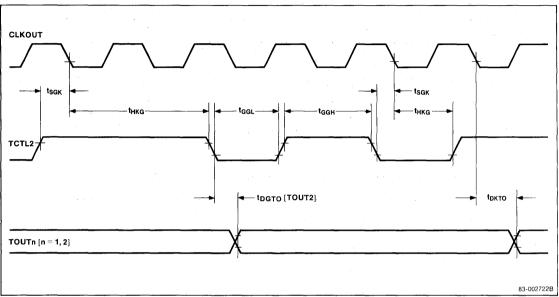


DMAU, DMA Transfer Timing

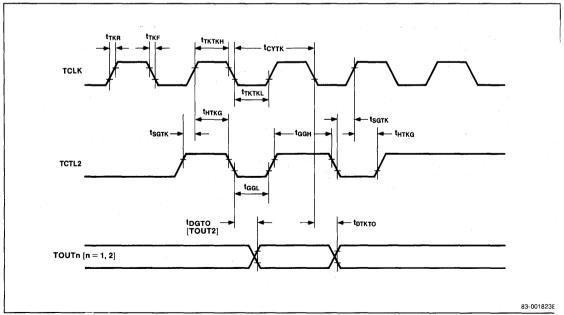




SCU Timing



ICU Timing

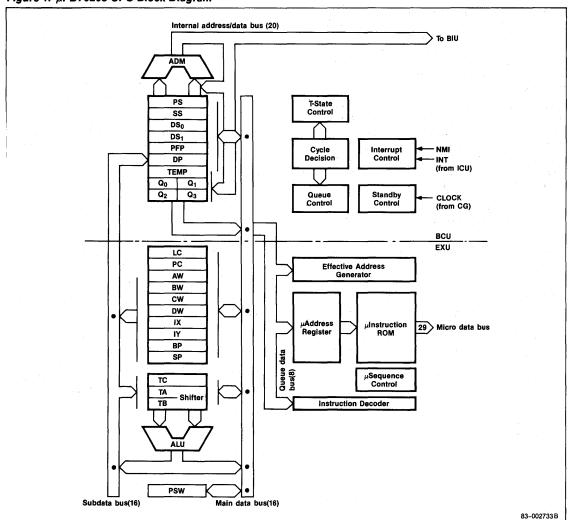


TCU, Internal Clock Source

TCU Timing, TCLK Source

Functional Description

Refer to the μ PD70208 block diagram for an overview of the ten major functional blocks listed below.


- Central processing unit (CPU)
- Clock generator (CG)
- Bus interface unit (BIU)
- Bus arbitration unit (BAU)
- Refresh control unit (RCU)
- Wait control unit (WCU)
- Timer/counter unit (TCU)
- Serial control unit (SCU)
- Interrupt control unit (ICU)
- DMA control unit (DMAU)

Central Processing Unit

The μ PD70208 CPU functions similarly to the CPU of the μ PD70108 CMOS microprocessor. However, because the μ PD70208 has internal peripheral devices, its bus architecture has been modified to permit sharing the bus with internal peripherals. The μ PD70208 CPU is object code compatible with both the μ PD70108/ μ PD70116 and the μ PD8086/ μ PD8088 microprocessors.

Figure 1 is the μ PD70208 CPU block diagram. A listing of the μ PD70208 instruction set is at the end of this data sheet.

Figure 1. μPD70208 CPU Block Diagram

Register Configuration

Program Counter [PC]. The program counter is a 16-bit binary counter that contains the program segment offset of the next instruction to be executed. The PC is incremented each time the microprogram fetches an instruction from the instruction queue. The contents of the PC are replaced whenever a branch, call, return, or break instruction is executed and during interrupt processing. At this time, the contents of the PC are the same as the prefetch pointer (PFP).

Prefetch Pointer [PFP]. The prefetch pointer is a 16-bit binary counter that contains the program segment offset of the next instruction to be fetched for the instruction queue. Because instruction queue prefetch is independent of instruction execution, the contents of the PFP and PC are not always identical. The PFP is updated each time the bus interface unit (BIU) fetches an instruction for the instruction queue. The contents of the PFP are replaced whenever a branch, call, return or break instruction is executed and during interrupt processing. At this time, the contents of the PFP and PC are the same.

Segment Registers [PS, SS, DS₀, DS₁]. The μ PD70208 memory address space is divided into 64K-byte logical segments. A memory address is determined by the sum of a 20-bit base address (obtained from a segment register) and a 16-bit offset known as the effective address (EA). I/O address space is not segmented and no segment register is used. The four segment registers are program segment (PS), stack segment (SS), data segment 0 (DS₀), and data segment 1 (DS₁). The following table lists their offsets and overrides.

Default Segment Register	Offset	Override
PS	PFP register	Invalid
SS	SP register	Invalid
SS	Effective address (BP-based)	PS, DS ₀ , DS ₁
DS ₀	Effective address (non BP-based)	PS, SS, DS ₁
DS ₀	IX register (1)	PS, SS, DS ₁
DS ₁	IY register (2)	Invalid

Note:

- Includes source block transfer, output, BCD string, and bit field extraction.
- (2) Includes destination block transfer, input, BCD string, and bit field insertion

General-Purpose Registers. The μ PD70208 CPU contains four 16-bit general-purpose registers (AW, BW, CW, DW), each of which can be used as a pair of 8-bit registers by dividing into upper and lower bytes (AH, AL, BH, BL, CH, CL, DH, DL). General-purpose registers may also be specified implicitly in an instruction. The implicit assignments are:

AW	Word multiplication/division,	word	1/0,
	data conversion	2	

AL Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation

AH Byte multiplication/division

BW Translation

CW Loop control, repeat prefix

CL Shift/rotate bit counts, BCD operations

DW Word multiplication/division, indirect I/O addressing

Pointer [SP, BP] and Index Registers [IX, IY]. These registers serve as base pointers or index registers when accessing memory using one of the base, indexed, or base indexed addressing modes. Pointer and index registers can also be used as operands for word data transfer, arithmetic, and logical instructions. These registers are implicitly selected by certain instructions as follows.

SP Stack operations, interrupts

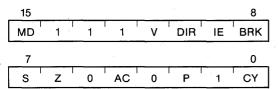
IX Source block transfer, BCD string operations, bit field extraction

IY Destination block transfer, BCD string operations, bit field insertion

Program Status Word [PSW]

The program status word consists of six status flag and four control flags.

Status Flags


- V (Overflow)
- S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)
- P (Parity)
- CY (Carry)

Control Flags

- MD (Mode)
- DIR (Direction)
- IE (Interrupt Enable)
- BRK (Break)

When pushed onto the stack, the word image of the PSW is as follows:

The status flags are set and cleared automatically depending upon the result of the previous instruction execution. Instructions are provided to set, clear, and complement certain status and control flags. Other flags can be manipulated by using the POP PSW instruction.

Between execution of the BRKEM and RETEM instructions, the native mode RETI and POP PSW instructions can modify the MD bit. Care must be exercised by emulation mode programs to prevent inadvertent alteration of this bit.

CPU Architectural Features

The major architectural features of the μ PD70208 CPU are:

- Dual data buses
- · Effective address generator
- Loop counter
- PC and PFP

Dual Data Buses. To increase performance, dual data buses (figure 2) have been employed in the CPU to fetch operands in parallel and avoid the bottleneck of a single bus. For two-operand instructions and effective address calculations, the dual data bus approach is 30 percent faster than single-bus systems.

Effective Address Generator. Effective address (EA) calculation requires only two clocks regardless of the addressing mode complexity due to the hardware effective address generator (figure 3). When compared with microprogrammed methods, the hardware approach saves between 3 and 10 clock cycles during effective address calculation.

Figure 2. Dual Data Buses

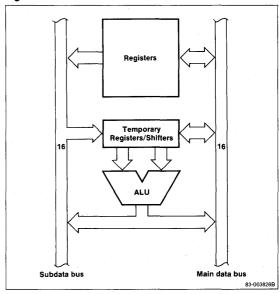
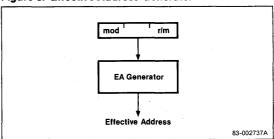



Figure 3. Effective Address Generator

Loop Counter and Shifters. A dedicated loop counter is used to count the iterations of block transfer and multiple shift instructions. This logic offers a significant performance advantage over architectures that control block transfers and multiple shifts using microprogramming. Dedicated shift registers also speed up the execution of the multiply and divide instructions. Compared with microprogrammed methods, multiply and divide instructions execute approximately four times faster.

Program Counter and Prefetch Pointer. The functions of instruction execution and queue prefetch are decoupled in the μ PD70208. By avoiding a single-instruction pointer and providing separate PC and PFP registers, the execution time of control transfers and the interrupt response latency can be minimized. Several clocks are saved by avoiding the need to readjust an instruction pointer to account for prefetching before computing the new destination address.

Enhanced Instruction Set

In addition to the μ PD8086/88 instruction set, the μ PD70208 has added the following enhanced instructions.

Instruction	Function
PUSH imm	Push immediate data onto stack
PUSH R	Push all general registers onto stack
POP R	Pop all general registers from stack
MUL imm	Multiply register/memory by immediate data
SHL imm8 SHR imm8 SHRA imm8 ROL imm8 ROR imm8 ROLC imm8 RORC imm8	Shift/rotate by immediate count
CHKIND	Check array index
INM	Input multiple
OUTM	Output multiple
PREPARE	Prepare new stack frame
DISPOSE	Dispose current stack frame

Unique Instruction Set

In addition to the μ PD70208 enhanced instruction set, the following unique instructions are supported.

Instruction	Function
INS EXT ADD4S	Insert bit field Extract bit field BCD string addition
SUB4S	BCD string subtraction
CMP4S	BCD string comparison
ROL4	Rotate BCD digit left
ROR4	Rotate BCD digit right
TEST1	Test bit
SET1	Set bit
CLR1	Clear bit
NOT1	Complement bit
REPC	Repeat while carry set
REPNC FP02	Repeat while carry cleared Floating point operation 2

Bit Fields. Bit fields are data structures that range in length from 1 to 16 bits. Two separate operations on bit fields, insertion and extraction, with no restrictions on the position of the bit field in memory are supported. Separate segment, byte offset, and bit offset registers are used for bit field insertion and extraction. Because of their power and flexibility, these instructions are highly effective for graphics, high-level languages, and data packing/unpacking applications.

Insert bit field (INS) copies the bit field of specified length (0 = 1 bit, 15 = 16 bits) from the AW register to the bit field addressed by DS1:IY:reg8 (figure 4). The bit field length can be located in any byte register or supplied as an immediate value. The value in reg8 is a bit field offset. A content of 0 selects bit 0 and 15 selects bit 15 of the word DS0:IX points to. Following execution, the IY and bit offset register are updated to point to the start of the next bit field.

Bit field extraction (EXT) copies the bit field of specified length (0 = 1 bit, 15 = 16 bits) from the bit field addressed by DS0:IX:reg8 to the AW register (figure 5). If the bit field is less than 16 bits, it is right justified with a zero fill. The bit field length can be located in any byte register or supplied as immediate data. The value in reg8 is a bit field offset. A content of 0 selects bit 0 and 15 selects bit 15 of the word DS0:IX points to. Following execution, the IX and bit offset register are updated to point to the start of the next bit field.

Packed BCD Strings. These instructions are provided to efficiently manipulate packed BCD data as strings (length from 1 to 254 digits) or as a byte data type with a single instruction.

BCD string arithmetic is supported by the ADD4S SUB4S, and CMP4S instructions. These instructions allow the source string (addressed by DS0:IX) and the destination string (addressed by DS1:IY) to be manipulated with a single instruction. When the number of BCD digits is even, the Z and CY flags are set according to the result of the operation. If the number of digits is odd, the Z flag will not be correctly set unless the upper 4 bits of the result are zero. The CY flag will not be correctly set unless there is a carry out of the upper 4 bits of the result.

The two BCD rotate instructions (ROR4, ROL4) perforn rotation of a single BCD digit in the lower half of the Al register through the register or memory operand.

Bit Manipulation. Four bit manipulation instruction have been added to the μ PD70208 instruction set. Th ability to test, set, clear, or complement a single bit in register or memory operand increases code readabilit as well as performance over the logical operation traditionally used to manipulate bit data.

Figure 4. Bit Field Insertion

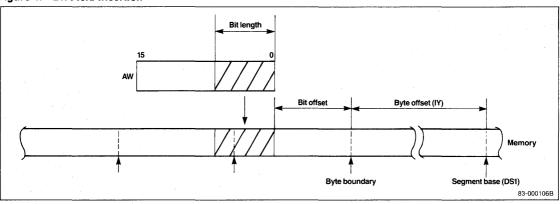
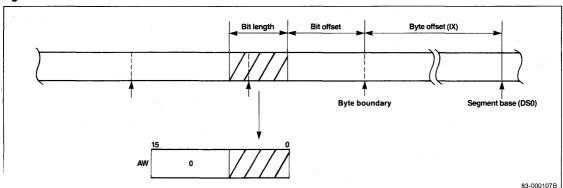



Figure 5. Bit Field Extraction

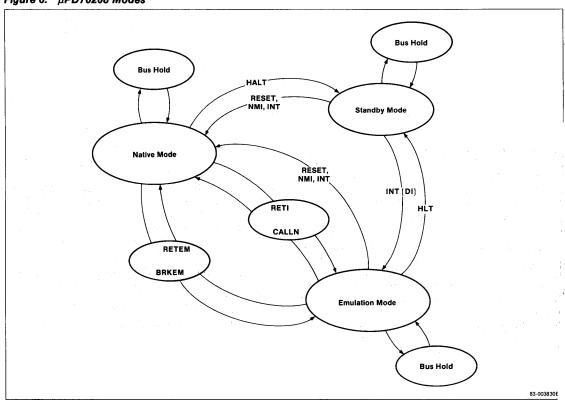
Repeat Prefixes. Two repeat prefixes (REPC, REPNC) allow conditional block transfer instructions to use the state of the CY flag as a terminating condition. The use of these prefixes allows inequalities to be used when vorking on ordered data, increasing the performance of searching and sorting algorithms.

loating Point Operation Instructions. Two floating point operation (FPO) instruction types are recognized by the μ PD70208 CPU. These instructions are detected by the CPU, which performs any auxiliary processing uch as effective address calculation and the initial bus cycle if specified by the instruction. It is the responsibility of the external coprocessor to latch the address aformation and data (if a read cycle) from the bus and omplete the execution of the instruction.

8080 Emulation Mode. The μ PD70208 CPU can operate in either of two modes; see figure 6. Native mode allows the execution of the μ PD8086/88, enhanced and unique instructions. The other operating mode is 8080 emulation mode, which allows the entire μ PD8080AF instruction set to be executed. A mode (MD) flag is provided to distinguish between the two operating modes. Native mode is active when MD is 1 and 8080 emulation mode is active when MD is 0.

Two instructions are provided to switch from native to 8080 emulation mode and return back. Break for emulation (BRKEM) operates similarly to a BRK instruction, except that after the PSW has been pushed on the native mode stack, the MD flag is cleared.

During 8080 emulation mode, the registers and flags of the 8080 are mapped onto the native mode registers and flags as shown below. Note that PS, SS, DS₀, DS₁, IX, IY, AH, and the upper half of the PSW registers are inaccessible to 8080 programs.


	μ PD8080AF	μPD70208
Registers	Α	AL
•	В	CH
	С	CL
	D	DH
	E	DL
	Н	ВН
	L	BL
	SP	BP
	PC	PC
Flags	C	CY
	Z	Z
	S	S
	Р	Р
	AC	AC

During 8080 emulation mode, the BP register functions as the 8080 stack pointer. The use of separate stack pointers prevents inadvertent damage to the native stack pointer by emulation mode programs.

The 8080 emulation mode PC is combined with the PS register to form the 20-bit physical address. All emulation mode data references use DS0 as the segment register. For compatibility with older 8080 software these registers must be equal. By using different segment register contents, separate 64K-byte code and data spaces are possible.

Either an NMI or maskable interrupt will cause the 8080 emulation mode to be suspended. The CPU pushes the PS, PC, and PSW registers on the native mode stack, sets the MD bit (indicating native mode), and enters the specified interrupt handler. When the return from interrupt (RETI) instruction is executed, the PS, PC, and PSW (containing MD=0) are popped from the native stack and execution in 8080 emulation mode continues. Reset will also force a return to native mode.

Figure 6. µPD70208 Modes

The 8080 emulation mode programs also have the capability to invoke native mode interrupt handlers by means of the call native (CALLN) instruction. This instruction operates the same as the BRK instruction except that the saved PSW indicates 8080 emulation mode.

To exit 8080 emulation mode, the return from emulation (RETEM) instruction pops the PS, PC, and PSW from the native mode stack and execution continues with the instruction following the BRKEM instruction. Nesting of 8080 emulation modes is prohibited.

Interrupt Operation

The µPD70208 supports a number of external interrupts and software exceptions. External interrupts are events asynchronous to program execution. On the other hand, exceptions always occur as a result of program execution.

The two types of external interrupts are:

- Nonmaskable interrupt (NMI)
- Maskable interrupt (INT)

The six software exceptions are:

- Divide error (DIV, DIVU instructions)
- Array bound error (CHKIND instruction)
- Break on overflow (BRKV instruction)
- Break (BRK, BRK3 instructions)
- Single step (BRK bit in PSW set)
- Mode switch (BRKEM, CALLN instructions)

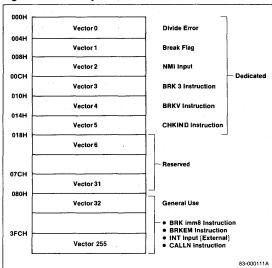
nterrupt vectors are determined automatically for exceptions and the NMI interrupt or supplied by lardware for maskable interrupts. The 256 interrupt ectors are stored in a table (figure 7) located at ddress 00000H. Vectors 0 to 5 are predetermined and ectors 6 to 31 are reserved. Interrupt vectors 32 to 255 re available for use by application software.

the lower address contains the new PC for the sterrupt handler. The word at the next-higher address the new PS value for the interrupt handler. These ust be initialized by software at the start of a program.

tandby Mode

he µPD70208 CPU has a low-power standby mode, hich can dramatically reduce power consumption uring idle periods. Standby mode is entered by simply cecuting a native or 8080 emulation HALT instruction; p external hardware is required. All other peripherals ich as the timer/counter unit, refresh control unit, and DMA control unit continue to operate as programmed.

During standby mode, the clock is distributed only to the circuits required to release the standby mode. When a RESET, NMI, or INT event is detected, the standby mode is released. Both NMI and unmaskable interrupts are processed before control returns to the instruction following the HALT. In the case of the INT input being masked, execution will begin with the instruction immediately following the HALT instruction without an intervening interrupt acknowledge bus cycle. When maskable interrupts are again enabled, the interrupt will be serviced.


Output signal states in the standby mode are listed below.

Output Signal	Status in Standby Mode
INTAK, BUFEN, MRD, MWR, IOWR, IORD	High level
BS ₂ -BS ₀ (Note 2)	High level
QS ₁ -QS ₀ , ASTB	Low level
BUSLOCK	High level (low level if the HALT instruction follows the BUSLOCK prefix)
BUFR/W, A ₁₉ -A ₁₆ /PS ₃ -PS ₀ , A ₁₅ -A ₈ , AD ₇ -AD ₀	High or low level

Note:

- Output pin states during refresh and DMA bus cycles will be as defined for those operations.
- (2) Halt status is presented prior to entering the passive state.

Figure 7. Interrupt Vector Table

Clock Generator

The clock generator (CG) generates a clock signal half the frequency of a parallel-resonant, fundamental mode crystal connected to pins X1 and X2. Figure 8 shows the recommended circuit configuration. Capacitors C1 and C2 are required for frequency stability. Their values can be calculated from the load capacitance (CL) specified by the crystal manufacturer.

$$C1 = C2 = 2 (CL - CS)$$

CS is any stray capacitance in parallel with the crystal, such as the µPD70208 input capacitance.

External clock sources (figure 9) are also accommodated by applying the external clock to the X1 pin and its complement to the X2 pin. The CG distributes the clock to the CLKOUT pin and to each functional block of the µPD70208. The generated clock signal has a 50-percent duty cycle.

Bus Interface Unit

The bus interface unit (BIU) controls the external address, data, and control buses for the three internal bus masters: CPU, DMA control unit (DMAU), and refresh control unit (RCU). The BIU is also responsible for synchronization of the RESET and READY inputs with the clock. The synchronized reset signal is used internally by the μ PD70208 and provided externally at the RESOUT pin as a system-wide reset. The synchronized READY signal is combined with the output of the wait control unit (WCU) and is distributed internally to the CPU, DMAU, and RCU. Figure 10 shows the synchronization of RESET and READY.

Figure 8. Crystal Configuration

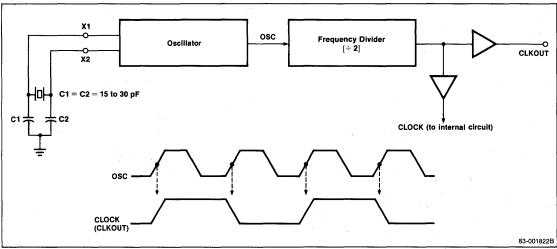
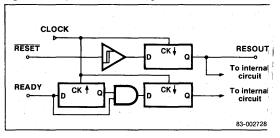



Figure 9. External Oscillator Configuration

Figure 10. RESET/READY Synchronization

Bus Arbitration Unit

The bus arbitration unit (BAU) arbitrates the local bus between the internal CPU, DMAU, and RCU bus requesters and an external bus master. The BAU bus priorities from the highest priority requester to the lowest are:

RCU (Demand mode) DMAU HLDRQ CPU RCU (Normal mode)

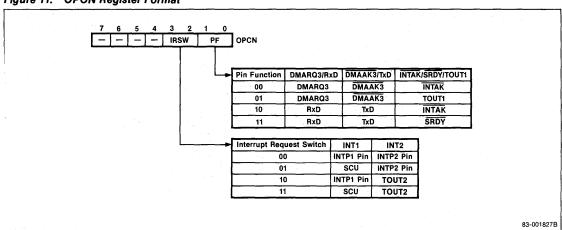
Note that RCU requests the bus at either the highest or lowest priority depending on the status of the refresh request queue. Bus masters other than the CPU are prohibited from using the bus when the CPU is executing an instruction containing a BUSLOCK prefix. Therefore, caution should be exercised when using the BUSLOCK prefix with instructions having a long execution time.

If a bus master with higher priority than the current bus master requests the bus, the BAU inactivates the current bus master's acknowledge signal. When the BAU sees the bus request from the current master go inactive, the BAU gives control of the bus to the higher priority bus master. The BAU performs bus switching between internal bus masters without the introduction of idle bus cycles, enhancing system throughput.

System I/O Area

The I/O address space from addresses FF00H to FFFFH is reserved for use as the system I/O area. Located in this area are the 12 μ PD70208 registers that

determine the I/O addressing, enable/disable peripherals, and control pin multiplexing.

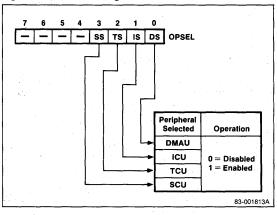

I/O Address	Register	Operation
FFFFH	Reserved	
FFFEH	OPCN	Read/Write
FFFDH	OPSEL	Read/Write
FFFCH	OPHA	Read/Write
FFFBH	DULA	Read/Write
FFFAH	IULA	Read/Write
FFF9H	TULAL	Read/Write
FFF8H	SULA	Read/Write
FFF7H	Reserved	_
FFF6H	WCY2	Read/Write
FFF5H	WCY1	Read/Write
FFF4H	WMB	Read/Write
FFF3H	Reserved	·-
FFF2H	RFC	Read/Write
FFF1H	Reserved	-
FFF0H	TCKS	Read/Write

On-Chip Peripheral Connection Register

The on-chip peripheral connection (OPCN) register controls multiplexing of the μ PD70208 multiplexed pins. Figure 11 shows the format of the OPCN register. The interrupt request switch (IRSW) field controls multiplexing of ICU interrupt inputs INT1 and INT2. The output of an internal peripheral or an external interrupt source can be selected as the INT1 and INT2 inputs to the ICU.

The pin function (PF) field in the OPCN selects one of four possible states for the DMARQ3/RxD, DMAAK3/TxD, and INTAK/SRDY/TOUT1 pins. Bit 0 of the

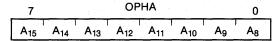
Figure 11. OPCN Register Format



OPCN controls the function of the INTAK/SRDY/ TOUT1 pin. If cleared, INTAK will appear on this output pin. If bit 0 is set, either TOUT1 or SRDY will appear at the output depending on the state of bit 1. If bit 1 is cleared, DMA channel 3 I/O signals will appear on the DMARQ3/RxD and DMAAK3/TxD pins. If the SCU is to be used, bit 1 of the PF field must be set.

On-Chip Peripheral Selection Register

The on-chip peripheral selection (OPSEL) register is used to enable or disable the µPD70208 internal peripherals. Figure 12 shows the format of the OPSEL register. Any of the four (DMAU, TCU, ICU, SCU) peripherals can be independently enabled or disabled by setting or clearing the appropriate OPSEL bit.


Figure 12. OPSEL Register Format

Internal Peripheral Relocation Registers

The five internal peripheral relocation registers (figure 13) are used to fix the I/O addresses of the DMAU, ICU, TCU, and SCU. The on-chip peripheral high-address (OPHA) register is common to all four internal peripherals and fixes the high-order byte of the 16-bit I/O address. The individual DMAU low-address (DULA) register, ICU low-address (IULA) register, TCU lowaddress (TULA) register, and the SCU low-address (SULA) register select the low-order byte of the I/O addresses for the DMAU, ICU, TCU, and SCU peripherals.

The contents of the OPHA register are:

The formats for the individual internal peripheral registers appear below. Since address checking is not performed, do not overlap two peripheral I/O address spaces.

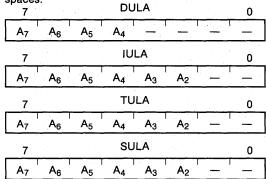
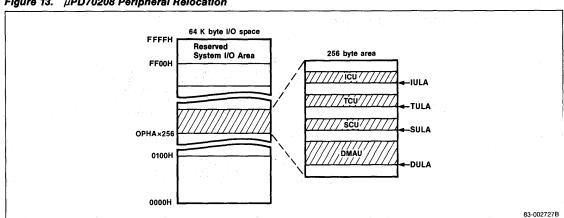
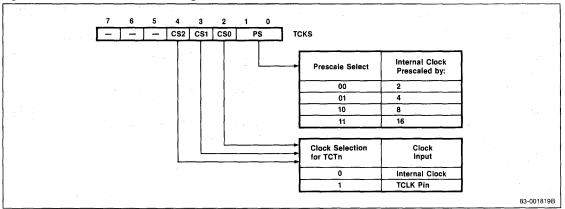



Figure 13. μPD70208 Peripheral Relocation



Timer Clock Selection Register

The timer clock selection (TCKS) register selects the clock source for each of the timer/counters as well as the divisor for the internal clock prescaler. Figure 14 shows the format of the TCKS register. The clock

source for each timer/counter is independently selected from either the prescaled CLKOUT signal or from an external clock source (TCLK). The internal clock is derived from the CLKOUT signal and can be divided by 2, 4, 8, or 16 before being presented to the clock select logic.

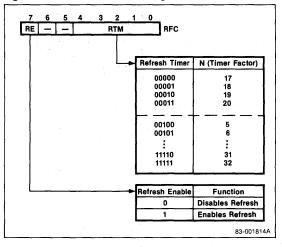
Figure 14. Timer Clock Selection Register

Refresh Control Unit

The refresh control unit (RCU) refreshes external dynamic RAM devices by outputting a 9-bit row address on address lines A₈-A₀ and performing a memory read bus cycle. External logic can distinguish a refresh bus cycle by monitoring the refresh request (REFRQ) pin. Following each refresh bus cycle, the refresh row counter is incremented.

The refresh control (RFC) register in the system I/O area contains two fields. The refresh enable field enables or disables the refreshing function. The refresh timer (RTM) field selects a refresh interval to match the dynamic memory refresh requirements. Figure 15 shows the format for the RFC register.

To minimize the impact of refresh on the system bus bandwidth, the μ PD70208 utilizes a refresh request queue to store refresh requests and perform refresh bus cycles in otherwise idle bus cycles.


The RCU normally requests the bus as the lowestpriority bus requester (normal mode). However, if seven refresh requests are allowed to accumulate in the RCU refresh request queue, the RCU will change to the highest-priority bus requester (demand mode). The RCU will then perform back-to-back refresh cycles until three requests remain in the queue. This guarantees the integrity of the DRAM system while maximizng performance. The refresh count interval can be calculated as follows:

Refresh interval = $8 \times N \times t_{CYK}$

where N is the timer factor selected by the RTM field.

When the μ PD70208 is reset, the RE field in the RFC register is unaffected and the RTM field is set to 01000 (N = 9). No refresh bus cycles occur while RESET is asserted.

Figure 15. Refresh Control Register

Wait Control Unit

The wait control unit (WCU) inserts from zero to three wait states into a bus cycle in order to compensate for the varying access times of memory and I/O devices. The number of wait states for CPU, DMAU, and RCU bus cycles is separately programmable. In addition, the memory address space is divided into three independent partitions to accommodate a wide range of system designs. RESET initializes the WCU to insert three wait states in all bus cycles. This allows operation with slow memory and peripheral devices before the initialization of the WCU registers.

The three system I/O area registers that control the WCU are wait cycle 1 (WCY1), wait cycle 2 (WCY2), and wait state memory boundary (WMB). The WCU always inserts wait states corresponding to the wait count programmed in WCY1 or WCY2 registers into a bus cycle, regardless of the state of the external READY input. After the programmed number of wait states occurs, the WCU will insert Tw states as long as

the READY pin remains inactive. When READY is again asserted, the bus cycle continues with T4 as the next cycle. The µPD70208 internal peripherals never require wait states; four clock cycles will terminate an internal peripheral bus cycle.

CPU Wait States

The WMB register divides the 1M-byte memory address space into three independent partitions: lower, middle, and upper. Figure 16 shows the WMB register format.

Initialization software can then set the number of wait states for each memory partition and the I/O partition via the WCY1 register (figure 17).

DMA and Refresh Wait States

The WCY2 register (figure 18) specifies the number of wait states to be automatically inserted in DMA and refresh bus cycles.

Figure 16. Wait State Memory Boundary Register

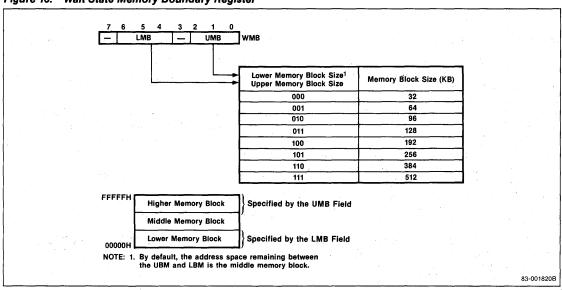


Figure 17. Wait Cycle 1 Register

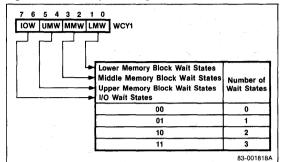
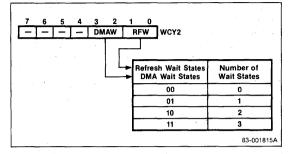
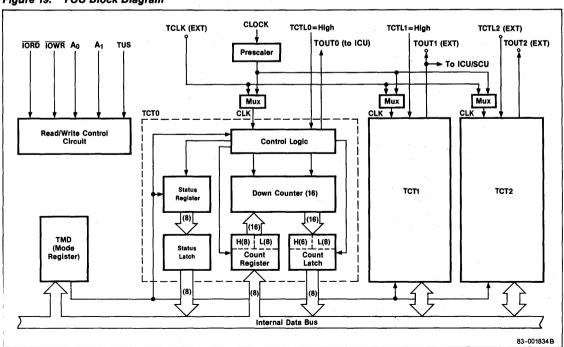



Figure 18. Wait Cycle 2 Register

Timer/Counter Unit


The timer/counter unit (TCU) provides a set of three independent 16-bit timer/counters. The output signal of timer/counter 0 is hardwired internally as an interrupt source. The output of timer/counter 1 is available internally as an interrupt source, used as a baud rate generator, or used as an external output. The timer/counter 2 output is available as an external output. Due to mode restrictions, the TCU is a subset of the

 μ PD71054 Programmable Timer/Counter. Figure 19 shows the internal block diagram of the TCU.

The TCU has the following features:

- Three 16-bit timer/counters
- Six programmable count modes
- Binary/BCD counting
- · Multiple latch command
- · Choice of two clock sources

Figure 19. TCU Block Diagram

Because RESET leaves the TCU in an uninitialized state, each timer/counter must be initialized by specifying an operating mode and a count. Once programmed, a timer/counter will continue to operate in that mode until another mode is selected. When the count has been written to the counter and transferred to the down counter, a new count operation starts. Both the current count and the counter status can be read while count operations are in progress.

TCU Commands

The TCU is programmed by issuing I/O instructions to the I/O port addresses programmed in the OPHA and TULA registers. The individual TCU registers are selected by address bits A_1 and A_0 as follows.

A ₁	A ₀	Register	Operation
0	0	TCT0 TST0	Read/Write Read
0	1	TCT1 TST1	Read/Write Read
1	0	TCT2 TST2	Read/Write Read
1	1	TMD	Write

The timer mode (TMD) register selects the operating mode for each timer/counter and issues the latch command for one or more timer/counters. Figure 20 shows the format for the TMD register.

Writes to the timer/counter 2-0 (TCT2-TCT0) registers stores the new count in the appropriate timer/counter. The count latch command is used before reading count data in order to latch the current count and prevent inaccuracies.

The timer status 2-0 (TST2-TST0) registers contain status information for the specified counter (figure 21). The latch command is used to latch the appropriate counter status before reading status information. If both status and counter data are latched for a counter, the first read operation returns the status data and subsequent read operations obtain the count data.

Count Modes

There are six programmable timer/counter modes. The timing waveforms for these modes are in figure 22.

Mode 0 [Interrupt on End of Count]. In this mode, TOUT changes from the low to high level when the specified count is reached. This mode is available on all timer/counters.

Mode 1 [Retriggerable One-Shot]. In mode 1, a low-level one-shot pulse, triggered by TCTL2 is output from the TOUT2 pin. This mode is available only on timer/counter 2.

Mode 2 [Rate Generator]. In mode 2, TOUT cyclically goes low for one clock period when the counter reaches the 0001H count. A counter in this mode operates as a frequency divider. All timer/counters can operate using mode 2.

Mode 3 [Square-Wave Generator]. Mode 3 is a frequency divider similar to mode 2, but the output has a symmetrical duty cycle. This mode is available on all three timer/counters. For counts of N=2, use mode 2.

Mode 4 [Software-Triggered Strobe]. In mode 4, when the specified count is reached, TOUT goes low for the duration of one clock pulse. Mode 4 is available on all timer/counters.

Mode 5 [Hardware-Triggered Strobe]. Mode 5 is similar to mode 4 except that operation is triggered by the TCTL2 input and can be retriggered. This mode is available only on timer/counter 2.

Serial Control Unit

The serial control unit (SCU) is a single asynchronous serial channel that performs serial communication between the μ PD70208 and an external serial device. The SCU is similar to the μ PD71051 Serial Control Unit except for the lack of synchronous communication protocols. Figure 23 is the block diagram of the SCU.

The SCU has the following features.

- · Full-duplex asynchronous serial controller
- Clock rate divisor (x16, x64)
- Baud rates to 38.4 kb/s supported
- 7-, 8-bit character lengths
- 1-, 2-bit stop bit lengths
- Break transmission and detection
- Full-duplex, double-buffered transmitter/receiver
- · Even, odd, or no parity
- Parity, overrun, and framing error detection
- Receiver full and transmitter empty interrupts

The SCU contains four separately addressable registers for reading/writing data, reading status, and controlling operation of the SCU. The serial receive buffer (SRB) and the serial transmit buffer (STB) store the incoming and outgoing character data. The serial status (SST) register allows software to determine the current state of both the transmitter and receiver. The serial command (SCM) and serial mode (SMD) registers determine the operating mode of the SCU while the serial interrupt mask (SIMK) register allows software control of the SCU receive and transmit interrupts.

Figure 20. Timer Mode Register

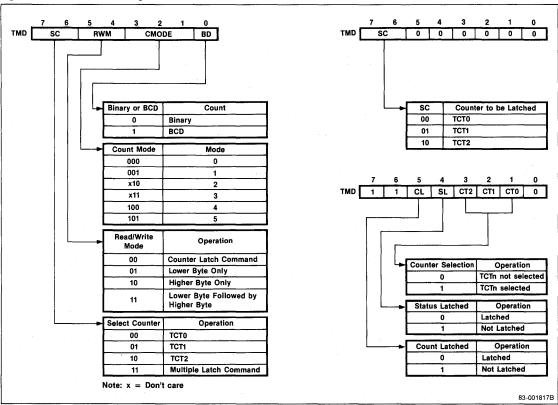
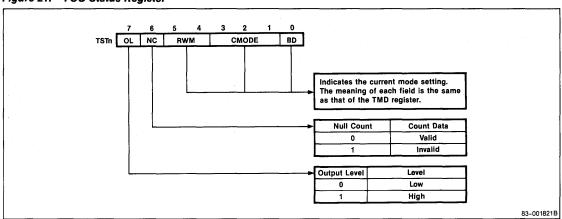
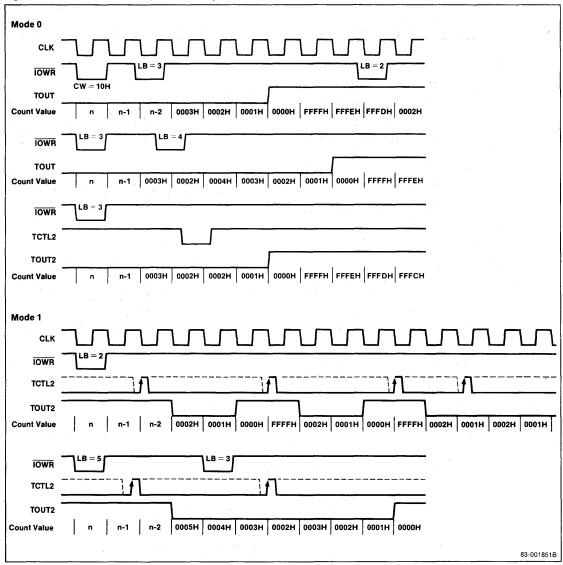
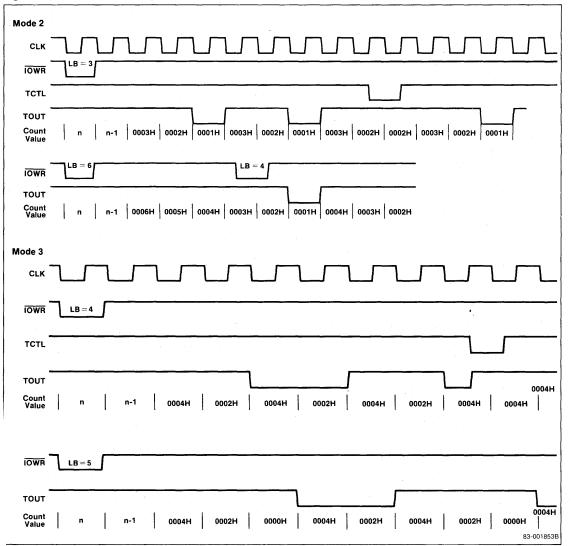




Figure 21. TCU Status Register



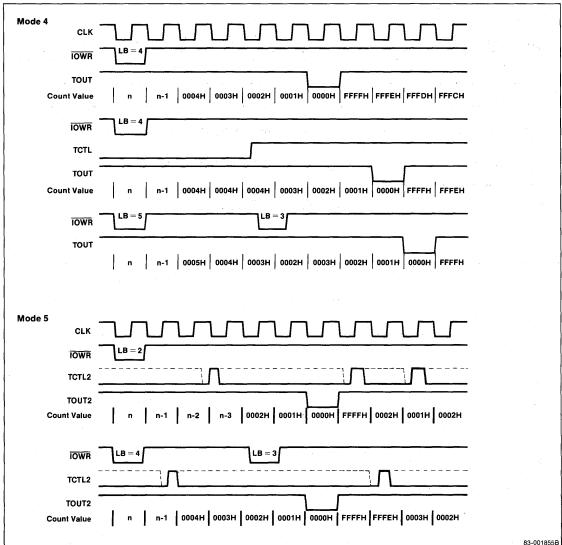
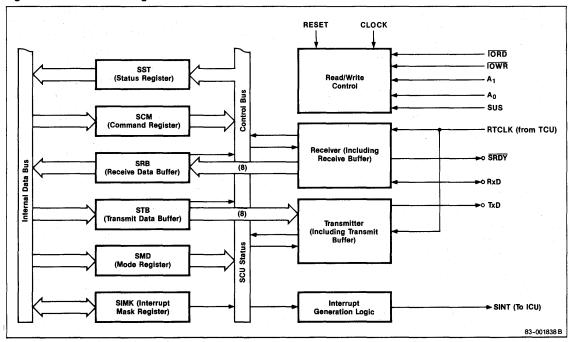



Figure 23. SCU Block Diagram

Receiver Operation

While the RxD pin is high, the SCU is in an idle state. A transition on RxD from high to low indicates the start of a new serial data reception. When a complete character has been received, it is transferred to the SRB; the receive buffer ready (RBRDY) bit in the SST register is set and (if unmasked) an interrupt is generated. The SST also latches any parity, overrun, or framing errors at this time.

The receiver detects a break condition when a null character with zero parity is received. The BRK bit is set for as long as the subsequent receive data is low and resets when RxD returns to a high level. The MRDY oit (SCM) and RBRDY (SST) are gated to form the output SRDY. SRDY prevents overruns from occurring when the program is unable to process the input data. Software can control MRDY to prevent data from being sent from the remote transmitter while RBRDY can prevent the immediate overrun of a received character.

Fransmitter Operation

TxD is kept high while the STB register is empty. When he transmitter is enabled and a character is written to he STB register, the data is converted to serial format and output on the TxD pin. The start bit indicates the tart of the transmission and is followed by the character

stream (LSB to MSB) and an optional parity bit. One or two stop bits are then appended, depending on the programmed mode. When the character has been transferred from the STB, the TRBDY bit in the SST is set and if unmasked, a transmit buffer empty interrupt is generated.

Serial data can be transmitted and received by polling the SST register and checking the TBRDY or RBRDY flags. Data can also be transmitted and received by SCU-generated interrupts to the interrupt control unit. The SCU generates an interrupt in either of these conditions:

- (1) The receiver is enabled, the SRB is full, and receive interrupts are unmasked.
- (2) The transmitter is enabled, the STB is empty, and transmit interrupts are unmasked.

SCU Registers and Commands

I/O instructions to the I/O addresses selected by the OPHA and SULA registers are used to read/write the SCU registers. Address bits A_1 and A_0 and the read/write lines select one of the six internal registers as follows:

A ₁	Ao	Register	Operation
0	0	SRB STB	Read Write
0	1	SST SCM	Read Write
1	0	SMD .	Write
1	1	SIMK	Read/Write

The SRB and STB are 8-bit registers. When the character length is 7 bits, the lower 7 bits of the SRB register are valid and bit 7 is cleared to 0. If programmed for 7-bit characters, bit 7 of the STB is ignored.

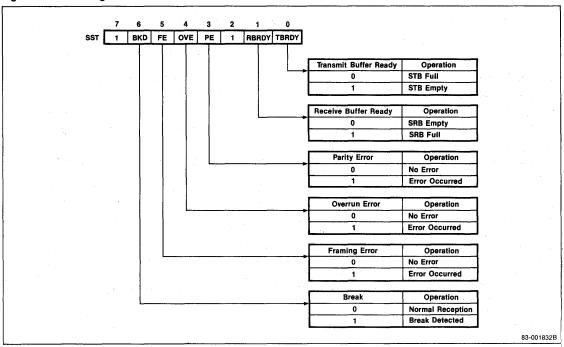
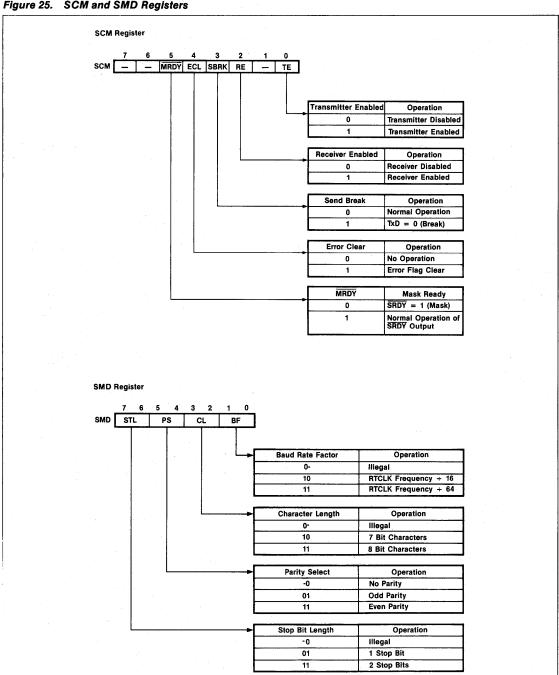
The SST register (figure 24) contains the status of the transmit and receive data buffers and the error flags. Error flags are persistent. Once an error flag is set, it remains set until a clear error flags command is issued.

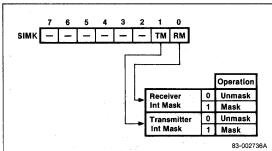
Figure 25 shows the SCM and SMD registers. The SCM register stores the command word that controls transmission, reception, error flag reset, break transmission, and the state of the SRDY pin. The SMD register stores the mode word that determines serial characteristics such as baud rate divisor, parity, character length, and stop bit length.

Initialization software should first program the SMD register followed by the SCM register. Unlike the μ PD71051, the SMD register can be modified at any time without resetting the SCU.

The SIMK register (figure 26) controls the occurrence of RBRDY and TBRDY interrupts. When an interrupt is masked, it is prevented from propagating to the interrupt control unit.

Figure 24. SST Register


Figure 25. SCM and SMD Registers

83-001836B

Figure 26. SIMK Register

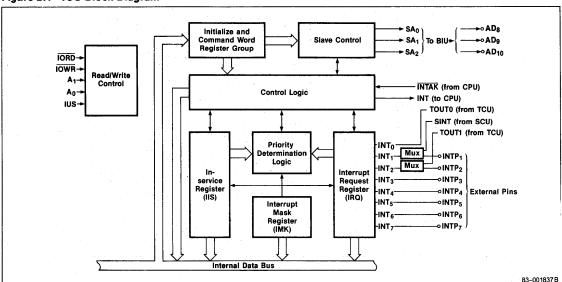
Interrupt Control Unit

The interrupt control unit (ICU) is a programmable interrupt controller equivalent to the μ PD71059. The ICU arbitrates up to eight interrupt inputs, generates a CPU interrupt request, and outputs the interrupt vector number on the internal data bus during an interrupt acknowledge cycle. Cascading up to seven external slave μ PD71059s permits the μ PD70208 to support up to 56 interrupt sources. Figure 27 is the block diagram for the ICU.

The ICU has the following features.

- · Eight interrupt request inputs
- Cascadable with μPD71059 Interrupt Controllers
- Programmable edge- or level-triggered interrupts (TCU, edge-triggered interrupts only)
- Individually maskable interrupt requests
- Programmable interrupt request priority
- · Polling mode

ICU Registers


Use I/O instructions to the I/O addresses selected by the OPHA and IULA registers to read from and write to the ICU registers. Address bit A_0 and the command word selects an ICU internal register.

	Ag	Other Condition	Operation
Read	0	IMD selects IRQ	CPU ← IRQ data
	0	IMD selects IIS	CPU ← IIS data
	0	Polling phase	CPU ← Polling data
	1		CPU ← IMKW
Write	0	D4 = 1	CPU → IIW1
	0	D4 = 0 and $D3 = 0$	CPU → IPFW
-	0	D4 = 0 and $D3 = 1$	$CPU \rightarrow IMDW$
	1	During initialization	CPU → IIW2
	1	•	CPU → IIW3
	1		CPU → IIW4
	1	After initialization	CPU → IMKW

Note:

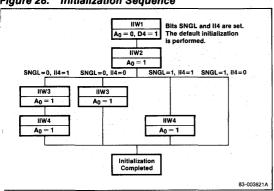
 In polling phase, polling data has priority over the contents of the IRQ or IIS register when read.

Figure 27. ICU Block Diagram

Initializing the ICU

The ICU is always used to service maskable interrupts in a μ PD70208 system. Prior to accepting maskable interrupts, the ICU must first be initialized (figure 28). Following initialization, command words from the CPU can change the interrupt request priorities, mask/unmask interrupt requests, and select the polling mode. Figures 29 and 30 list the ICU initialization and command words.

Interrupt initialization words 1-4 (IIW1-IIW4) initialize the ICU, indicate whether external μ PD71059s are connected as slaves, select the base interrupt vector, and select edge- or level-triggered inputs for INT1-INT7. Interrupt sources from the TCU are fixed as edge-triggering. INTO is internally connected to TOUT0, and INT2 may be connected to TOUT1 by the IRSW field in the OPCN.


The interrupt mask word (IMKW) contains programmable mask bits for each of the eight interrupt inputs. The interrupt priority and finish word (IPFW) is used by the interrupt handler to terminate processing of an interrupt or change interrupt priorities. The interrupt mode word (IMDW) selects the polling register, interrupt request (IRQ) or interrupt in service (IIS) register, and the nesting mode.

The initialization words are written in consecutive order starting with HW1. HW2 sets the interrupt vector. IIW3 specifies which interrupts are connected to slaves. IIW3 is only required in extended systems. The ICU will only expect to receive IIW3 if SNGL = 0 (bit D_1 of IIW1). IIW4 is only written if II4 = 1 (bit D_0 of IIW1).

μPD71059 Cascade Connection

To increase the number of maskable interrupts, up to seven slave µPD71059 Interrupt Controllers can be cascaded. During cascade operation (figure 31), each

Figure 28. Initialization Sequence

slave μ PD71059 INT output is routed to one of the μPD70208 INTP inputs. During the second interrupt acknowledge bus cycle, the ICU places the slave address on address lines A₁₀-A₈. Each slave compares this address with the slave address programmed using interrupt initialization word 3 (IIW3). If the same, the slave will place the interrupt vector on pins AD₇-AD₀ during the second interrupt acknowledge bus cycle.

Figure 29. Interrupt Initialization Words 1-4

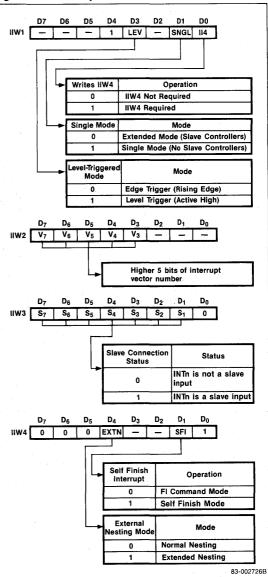


Figure 30. Command Words

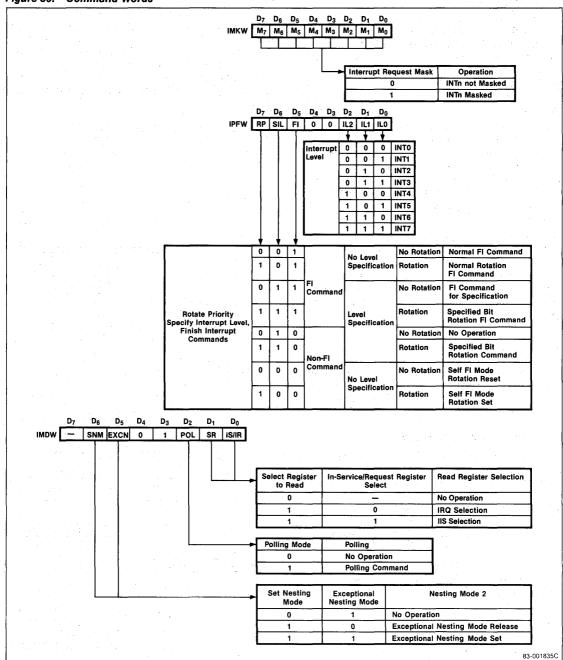



Figure 31. µPD71059 Cascade Connection

DMA Control Unit

The DMA Control Unit (DMAU) is a high-speed DMA controller compatible with the μ PD71071 DMA Controller. The DMAU has four independent DMA channels and performs high-speed data transfers between memory and external peripheral devices at speeds as high as 2 megabytes/second in an 8-MHz system. Figure 32 is the block diagram for the DMAU.

The DMAU has the following features.

- · Four independent DMA channels
- Cascade mode for slave μPD71071 DMA controllers
- · 20-bit address registers
- 16-bit transfer count register
- Single, demand, and block transfer modes
- · Bus release and bus hold modes
- Autoinitialization
- Address increment/decrement
- · Fixed/rotating channel priorities
- · TC output at transfer end
- Forced termination of service by END input

DMAU Basic Operation

The DMAU operates in either a slave or master mode. In the slave mode, the DMAU samples the four DMARQ input pins every clock. If one or more inputs are active, the corresponding DMA request bits are set and the DMAU sends a bus request to the BAU while continuing to sample the DMA request inputs. After the BAU returns the DMA bus acknowledge signal, the DMAU stops DMA request sampling, selects the DMA channel with the highest priority, and enters the bus master mode to perform the DMA transfer. While in the bus master mode, the DMAU controls the external bus and performs DMA transfers based on the preprogrammed channel information.

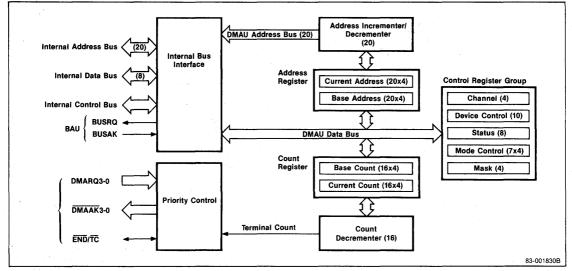
Terminal Count

The DMAU ends DMA service when the terminal count condition is generated or when the $\overline{\text{END}}$ input is asserted. A terminal count (TC) is produced when the contents of the current count register becomes zero. If autoinitialization is not enabled when DMA service terminates, the mask bit of the channel is set and the DMARQ input of that channel is masked. Otherwise, the current count and address registers are reloaded from the base registers and new DMA transfers are again enabled.

DMA Transfer Type

The type of transfer the DMAU performs depends on the following conditions.

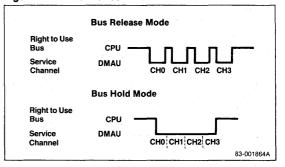
- Direction of the transfer (each channel)
- Transfer mode (each channel)
- Bus mode


Transfer Direction

All DMA transfers use memory as a reference point. Therefore, a DMA read operation transfers data from memory to an I/O port. A DMA write reads an I/O port and writes the data to memory. During memory-to-I/O transfer, the DMA mode (DMD) register is used to select the transfer directions for each channel and activate the appropriate control signals.

Operation	Transfer Direction	Activated Signals
DMA read	Memory → I/O	IOWR, MRD
DMA write	I/O → Memory	IORD, MWR
DMA verify		Addresses only; no transfer performed

Figure 32. DMAU Block Diagram



Bus Mode

The DMA device control (DDC) register selects operation in either the bus release or bus hold mode. The selected bus mode determines the DMAU conditions for return of the bus to the BAU. Figure 33 shows that in bus release mode, only one channel is serviced after the DMAU obtains the bus. When DMA service ends (termination conditions depend on the transfer mode), the DMAU returns the bus to the BAU regardless of the state of other DMA requests, and the DMAU reenters the slave mode. When the DMAU regains use of the bus, a new DMA operation can begin.

In bus hold mode, several channels can receive contiguous service without releasing the bus. If there is another valid DMA request when a channel's DMA service is finished, the new DMA service can begin immediately after the previous service without returning the bus to the BAU.

Figure 33. Bus Modes

Transfer Modes

The DMD register also selects either single, demand, or block transfer mode for each channel. The conditions for the termination of each transfer characterize each transfer mode. The following table shows the various transfer modes and termination conditions.

Transfer Mode	Termination Conditions	
Single	After each byte/word transfer	- 1
Demand	END input	
	Terminal count	
	Inactive DMARQ	
	DMARQ of a higher priority channel	
	becomes active (bus hold mode)	
Block	END input	
	Terminal count	

The operation of single, demand, and block mode transfers depends on whether the DMAU is in bus release or bus hold mode. Figure 34 shows the operation flow for the six possible transfer and bus mode operations in DMA transfer.

Single-Mode Transfer. In bus release mode, when a channel completes transfer of a single byte, the DMAU enters the slave mode regardless of the state of DMA request inputs. In this manner, other lower-priority bus masters will be able to access the bus.

In bus hold mode, when a channel completes transfer of a single byte, the DMAU terminates the channel's service even if the DMARQ request signal is asserted. The DMAU will then service any other requesting channel. If there are no requests from any other DMA channels, the DMAU releases the bus and enters the slave state.

Demand-Mode Transfer. In bus release mode, the currently active channel continues to transfer data as long as the DMA request of that channel is active, even though other DMA channels are issuing higher-priority requests. When the DMA request of the serviced channel becomes inactive, the DMAU releases the bus and enters the slave state.

In bus hold mode, when the active channel completes a single transfer, the DMAU checks the other DMA request lines without ending the current service. If there is a higher-priority DMA request, the DMAU stops the service of the current channel and starts servicing the highest-priority channel requesting service. If there is no higher request than the current one, the DMAU continues to service the currently active channel. Lower-priority DMA requests are honored without releasing the bus after the current channel service is complete.

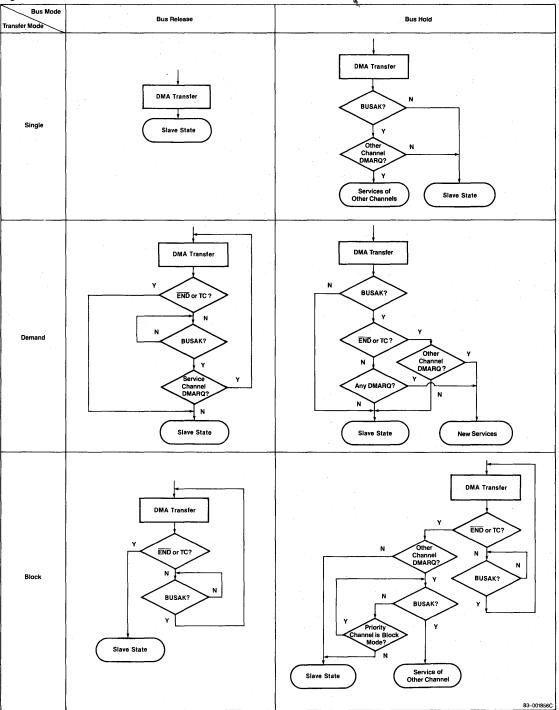
Block-Mode Transfer. In bus release mode, the current channel continues DMA transfers until a terminal count or the external END input becomes active. During this time, the DMAU ignores all other DMA requests. After completion of the block transfer, the DMAU releases the bus and enters the slave state, even if DMA requests from other channels are active.

In bus hold mode, the current channel transfers data until an internal or external END signal becomes active. When the service is complete, the DMAU checks all DMA requests without releasing the bus. If there is an active request, the DMAU immediately begins servicing the request. The DMAU releases the bus after it honors all DMA requests or a higher-priority bus master requests the bus.

Byte Transfer

The DMD register can specify only byte DMA transfers for each channel. Depending on the mode selected, the address register can either increment or decrement whereas the count register is always decremented.

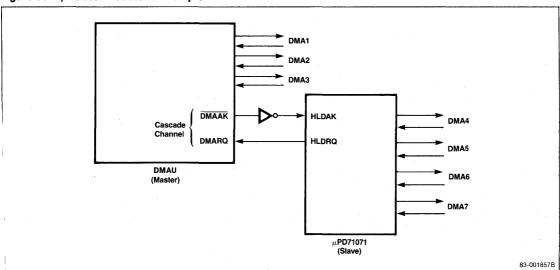
Autoinitialize


When the DMD register selects autoinitialize for a channel, the DMAU automatically reinitializes the address and count registers when $\overline{\text{END}}$ is asserted or the terminal count condition is reached. The contents of the base address and base count registers are transferred to the current address and current count registers, and the applicable bit of the mask register remains cleared.

Channel Priority

Each of the four DMAU channels is assigned a priority. When multiple DMA requests from several channels occur simultaneously, the channel with the highest priority will be serviced first. The DDC register selects one of two priority schemes: fixed or rotating (figure 35). In fixed priority, channel 0 is assigned the highest priority and channel 3, the lowest. In rotating priority, priority order is rotated after each service so that the channel last serviced receives the lowest priority. This method prevents the exclusive servicing of higher-priority channels and the lockout of lower-priority DMA channels.

Cascade Connection


Slave μ PD71071 DMA Controllers can be cascaded to easily expand the system DMA channel capacity to 16 DMA channels. Figure 36 shows an example of cascade connection. During cascade operation, the DMAU acts as a mediator between the BAU and the slave μ PD71071s. All other bus outputs are disabled while a slave DMA controller is active.

The DMAU always operates in the bus hold mode while a cascade channel is in service, even when the bus release mode is programmed. Other DMA requests are held pending while a slave μ PD71071 channel is in service. When the cascaded μ PD71071 ends service and moves into the slave state, the DMAU also moves to the slave state and releases the bus. At this time, all bits of the DMAU request register are cleared. The DMAU continues to operate normally with the other noncascaded channels.

Figure 35. Priority Order

Figure 36. μPD71071 Cascade Example

Bus Waiting Operation

The DMAU will automatically perform a bus waiting operation (figure 37) whenever the RCU refresh request queue fills. When the DMA bus acknowledge goes inactive, the DMAU enters the bus waiting mode and inactivates the DMA bus request signal. Control of the bus is then transferred to the higher-priority RCU by the BAU.

Two clocks later, the DMAU reasserts its internal DMA bus request. The bus waiting mode is continued until the DMA bus acknowledge signal again becomes active and the interrupted DMA service is immediately restarted.

Programming the DMAU

To prepare a channel for DMA transfer, the following characteristics must be programmed.

- Starting address for the transfer
- Transfer count
- DMA operating mode
- Transfer size (byte/word)

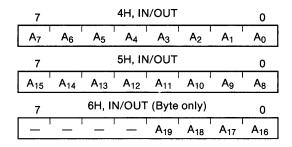
The contents of the OPHA and DULA registers determine the base I/O port address of the DMAU. Addresses A₃-A₀ are used to select a particular register as follow:

A ₃	A ₂	A ₁	A _O	Register	Operation
0	0	0	0	DICM	Write
0	0	0	1	DCH	Read/Write
0	0	1	0	DBC/DCC (low)	Read/Write
0	0	1	1	DBC/DCC (high)	Read/Write
0	1	0	0	DBA/DCA (low)	Read/Write
0	1	0	1	DBA/DCA (high)	Read/Write
0	1	1	0	DBA/DCA (upper)	Read/Write
0	1	1	1	Reserved	
1	0	0	0	DDC (low)	Read/Write
1	0	0	1	DDC (high)	Read/Write
1	0	1	0	DMD	Read/Write
1	0	1	1	DST	Read
1	1	0	0	Reserved	_
1	1	0	1	Reserved	
1	1	1	0	Reserved	
1.	1	1	1	DMK	Read/Write

Word I/O instructions can be used to read/write the register pairs listed below. All other registers are accessed via byte I/O instructions.

DBC/DCC
DBA/DCA (higher/lower only)
DDC

DMAU Registers


Initialize. The DMA initialize command (DICM) register (figure 38) is used to perform a software reset of the DMAU. The DICM is accessed using the byte OUT instruction.

Channel Register. Writes to the DMA channel (DCH) register (figure 39) select one of the four DMA channels for programming and also the base/current registers. Reads of the DCH register return the currently-selected channel and the register access mode.

Count Registers. When bit 2 of the DCH register is cleared, a write to the DMA count register updates both the DMA base count (DBC) and the DMA current count (DCC) registers with a new count. If bit 2 of the DCH register is set, a write to the DMA count register affects only the DBC register. The DBC register holds the initial count value until a new count is specified. If autoinitialization is enabled, this value is transferred to the DCC register when a terminal count or END condition occurs. For each DMA transfer, the current count register is decremented by one. The format of the DMA count register is shown below. The count value loaded into the DBC/DCC registers is one less than the desired transfer count.

	7		2H, IN/OUT					0
	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co
٠	7 3H, IN/OUT					0		
	C ₁₅	C ₁₄	C ₁₃	C ₁₂	C ₁₁	C ₁₀	C ₉	C ₈

Address Register. Use either byte or word I/O instructions with the lower two bytes (4H and 5H) of the DMA address register. However, byte I/O instructions must be used to access the high-order byte (6H) of this register. When bit 2 of the channel register is cleared, a write to the DMA address register updates both the DMA base address (DBA) and the DMA current address (DCA) registers with the new address. If bit 2 of the DCH register is set, a write to the DMA address register affects only the DBA register.

The DBA register holds the starting address value until a new address is specified. This value is transferred to the DCA register automatically if autoinitialization is selected. For each DMA transfer, the current address register is incremented/decremented by one.

Device Control Register. The DMA device control (DDC) register (figure 40) is used to to program the DMA transfer characteristics common to all DMA channels. It controls the bus mode, write timing, priority logic, and enable/disable of the DMAU.

Status Register. The DMA status (DST) register (figure 41) contains information about the current state of each DMA channel. Software can determine if a termination condition has been reached (TC₃-TC₀) or if a DMA service request is present (RQ₃-RQ₀). The byte IN instruction must be used to read this register.

Figure 37. Bus Waiting Operation

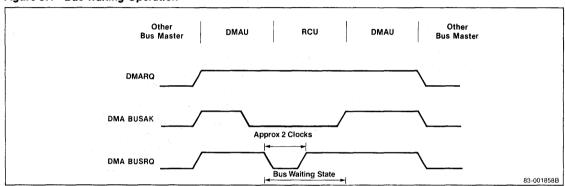


Figure 38. DMA Initialize Command Register

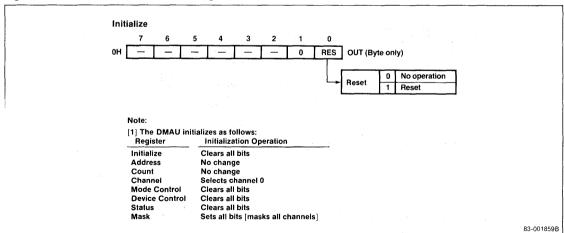


Figure 39. DMA Channel Register

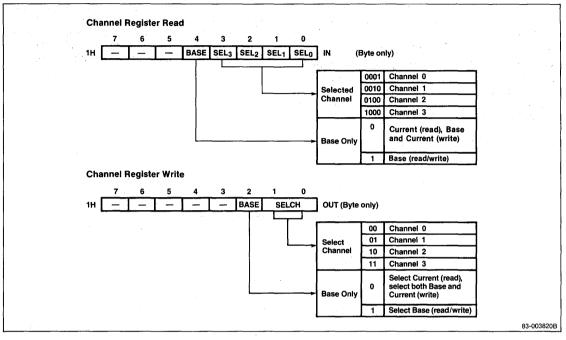


Figure 40. DMA Device Control Register

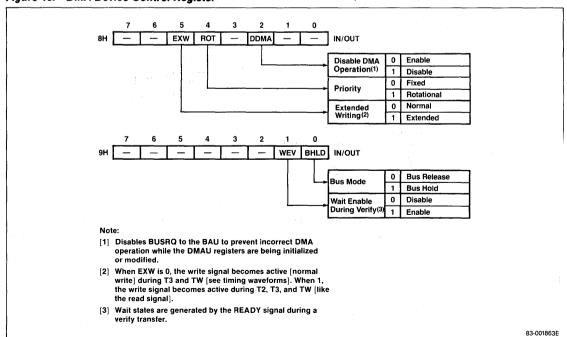
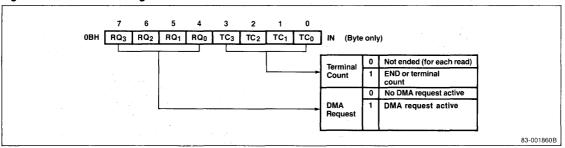



Figure 41. DMA Status Register

Mode Control Register. The DMA mode (DMD) register (figure 42) selects the operating mode for each DMA channel. The DCH register selects which DMD register will be accessed. A byte IN/OUT instruction must be used to access this register.

Mask Register Read/Write. The DMA mask (DMK) register (figure 43) allows software to individually enable and disable DMA channels. The DMK register can only be accessed via byte I/O instructions.

Reset

The falling edge of the RESET signal resets the uPD70208. The signal must be held low for at least four clock cycles to be recognized as valid.

PU Reset State legister	Reset Value
PFP	0000H
C	H0000
rs	FFFFH
S	0000H
S0	0000H
\$1	0000H
SW	F002H
W, BW, CW, DW,	Undefined
(, IY, BP, SP	-
struction queue	Cleared

Vhen RESET returns to the high level, the CPU will tart fetching instructions from physical address FFF0H.

nternal Peripheral Devices

ternal peripheral devices initialized on reset are sted in the following table. I/O devices not listed are of initialized on reset and must be initialized by oftware.

	Register	Reset Value	
System	OPCN	0000	
I/O area	OPSEL	0000	
	WCY1	11111111	
	WCY2	1111	
	TCKS	00000	
	RFC	x01000	
SCU	SMD	01001011	
	SCM	0000-0	
	SIMK	11	
	SST	10000100	
	DCH	00001	
	DMD	000000-0	
DMAU	DDC (low)	00-0	
	DDC (high)	00	
	DST	xxxx0000	
	DMK	1111	

Symbols: x = unaffected; 0 = cleared; 1 = set; (-) = unused.

Output Pin Status

The following table lists output pin status during reset.

Status	
High level	
Low level	
High or low level	
High impedance	
Continues to supply clock	

Figure 42. DMA Mode Register

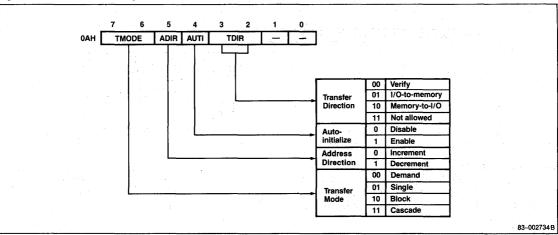
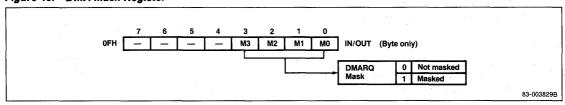



Figure 43. DMA Mask Register

Instruction Set

Symbols

Preceding the instruction set, several tables explain symbols, abbreviations, and codes.

Clocks

In the Clocks column of the instruction set, the numbers cover these operations: instruction decoding, effective address calculation, operand fetch, and instruction execution.

Clock timings assume the instruction has been prefetched and is present in the four-byte instruction queue. Otherwise, add four clocks for each byte not present.

For instructions that reference memory operands, the number on the left side of the slash (/) is for byte operands and the number on the right side is for word operands.

For conditional control transfer or branch instructions, the number on the left side of the slash is applicable if the transfer or branch takes place. The number on the right side is applicable if it does not take place.

If a range of numbers is given, the execution time depends on the operands involved.

Symbols

Symbol	Meaning	
ICC	Accumulator (AW or AL)	
lisp	Displacement (8 or 16 bits)	
lmem	Direct memory address	
st	Destination operand or address	
xt-disp8	16-bit displacement (sign-extension byte + 8-bit displacement)	
ar_label	Label within a different program segment	
ır_proc	Procedure within a different program segment	
_ор	Floating point instruction operation	
ım	8- or 16-bit immediate operand	
1m3/4	3/4-bit immediate bit offset	
ım8	8-bit immediate operand	
ım16	16-bit immediate operand	
em	Memory field (000 to 111); 8- or 16-bit memory location	

Symbols

Symbol	Meaning		
mem8	8-bit memory location		
mem16	16-bit memory location		
mem32	32-bit memory location		
memptr16	Word containing the destination address within the current segment		
memptr32	Double word containing a destination address in another segment		
mod	Mode field (00 to 10)		
near_label	Label within the current segment		
near_proc	Procedure within the current segment		
offset	Immediate offset data (16 bits)		
pop_value	Number of bytes to discard from the stack		
reg	Register field (000 to 111); 8- or 16-bit general-purpose register		
reg8	8-bit general-purpose register		
reg16	16-bit general-purpose register		
regptr	16-bit register containing a destination address within the current segment		
regptr16	Register containing a destination address within the current segment		
seg	Immediate segment data (16 bits)		
short_label	Label between -128 and +127 bytes from the end of the current instruction		
sr	Segment register		
src Source operand or address			
temp	Temporary register (8/16/32 bits)		
tmpcy	Temporary carry flag (1 bit)		
AC	Auxiliary carry flag		
AH	Accumulator (high byte)		
AL ,	Accumulator (low byte)		
AND	Logical product		
AW	Accumulator (16 bits)		
ВН	BW register (high byte)		
BL	BW register (low byte)		
ВР	BP register		
BRK	Break flag		
BW	BW register (16 bits)		
СН	CW register (high byte)		
CL	CW register (low byte)		
CW	CW register (16 bits)		
CY	Carry flag		
DH DW register (high byte)			
DIR	Direction flag		
DL	DW register (low byte)		

μ**PD7**0208 (**V**40)

Symbols (cont)

Symbol	Meaning	
DS0	Data segment 0 register (16 bits)	
DS1	Data segment 1 register (16 bits)	
DW	DW register (16 bits)	
IE	Interrupt enable flag	
IX	Index register (source) (16 bits)	
IY	Index register (destination) (16 bits)	
MD	Mode flag	
OR	Logical sum	
P	Parity flag	
PC	Program counter (16 bits)	
PS	Program segment register (16 bits)	
PSW	Program status word (16 bits)	
R	Register set	
S	Sign extend operand field S = 0 No sign extension S = 1 Sign extend immediate byte operand	
S	Sign flag	
SP	Stack pointer (16 bits)	
SS	Stack segment register (16 bits)	
V .	Overflow flag	
W	Word/byte field (0 to 1)	
X, XXX, YYY, ZZZ	Data to identify the instruction code of the external floating point arithmetic chip	
X0R	Exclusive logical sum	
XXH	Two-digit hexadecimal value	
XXXXH	Four-digit hexadecimal value	
Z	Zero flag	
()	Values in parentheses are memory contents	
-	Transfer direction	
+	Addition	
_ :	Subtraction	
x	Multiplication	
÷	Division	
%	Modulo	

Flag Operations

Symbol	Meaning
(blank)	No change
0	Cleared to 0
1	Set to 1
X	Set or cleared according to result
u	Undefined
R	Restored to previous state

Memory Addressing Modes

mem	mod = OO	mod = 01	mod = 10
000	BW + IX	BW + IX + disp8	BW + IX + disp16
001	BW + IY	BW + IY + disp8	BW + IY + disp16
010	BP + IX	BP + IX + disp8	BP + IX + disp16
011	BP + IY	BP + IY + disp8	BP + IY + disp16
100	IX	IX + disp8	IX + disp16
101	IY	IY + disp8	IY + disp16
110	Direct	BP + disp8	BP + disp16
111	BW	BW + disp8	BW + disp16

Register Selection (mod = 11)

reg	W = 0	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	СН	BP
110	DH	IX
111	ВН	IY

Segment Register Selection

sr	Segment Register	
00	DS1	
01	PS	
10	SS	
11	DS0	

		_	_	_			_			code	_							!	Flags	_	_
Inemonic	Operand	7	6	_5	4	3	2	1	0	7 6	5	_4	3	2 1 0	Clocks	Bytes	AC	CY	V P	8	Z
	sfer Instructions																				
10V	reg, reg			0	0	1	0	1	W	1 1		reç]	reg	2	2					
	mem, reg	1	0	0	0	1	0	0	W	mod		reg]	mem	7/11	2-4					
	reg, mem	1	0	0	0	1	0	1	W	mod		reg]	mem	10/14	2-4					
	mem, imm	1	1	0	0	0	1	1	W	mod		reg)	mem	9/13	3-6					
	reg, imm	1	0	1	1	W		reç	1						4	2-3					
	acc, dmem	1	0	1	0	0	0	0	W						10/14	3					
	dmem, acc	1	0	1	0	0			W						9/13	3					
	sr, reg16	1	0	0	0	1	1	1	0	1 1	0		sr	reg	2	2					
	sr, mem16	1	0	0	0	1	1	1	0	mod	0		sr	mem	14	2-4					
	reg16, sr	1	0	0	0	1	1	0	0	1 1	0	,	sr	reg	2	2					
	mem16, sr	1	0	0	0	1	1	0	0	mod	0		sr	mem	12	2-4		- 4			
	DS0, reg16, mem32	1	1	0	0	0	1	0	1	mod		reç]	mem	25	2-4					
	DS1, reg16, mem32	1	1	0	0	0	1	0	0	mod		reg]	mem	25	2-4					
	AH, PSW	1	0	0	1	1	1	1	1						2	1					
	PSW, AH	1	0	0	1	1	1	1	0						3	1	х	х	×	: x	<i>(</i>)
DEA	reg16, mem16	1	0	0	0	1	1	0	1	mod		re	eg	mem	4	2-4					
RANS	src_table	1	1	0	1	0	1	1	1						9	1					_
СН	reg, reg	1	0	0	0	0	1	1	W	1 1		reg]	reg	3	2	-				
	mem, reg	1	0	0	0	0	1	1	W	mod		reg	1	mem	13/21	2-4					_
	AW, reg16	1	0	0	1	0		reg	 I		-				3	1				-	
Repeat P	refixes																-				_
EPC		0	1	1	0	0	1	0	1						2	1					
EPNC		0	1	1	0	0	1	0	0			_			2	1					_
EP EPE EPZ		1	1	1	1	0	0	1	1	•					2	1					
EPNE EPNZ	**************************************	. 1	1	1.	1	0	0	1	0						2	1			:	-	
lock Tra	nsfer Instructions															-,					
OVBK	dst, src	1	0	1	0	0	1	. 0	W							1 Bn (W = 0) 16n (W = 1))				
ИРВК	dst, src	1	0	1	0	0	1	1	W							1 14n (W = 0) 22n (W = 1))	Х	х	X	
ЛРМ	dst	1	0	1	0	1	1	1	W							1 10n (W = 0) 14n (W = 1)		X	хх	×	()
M	src	1	0	1	0	1	1	0	W							1 9n (W = 0) 13n (W = 1))				
iM	dst	1	0	1	0	1	0	1	W			**************************************	~			1 In (W = 0) In (W = 1)	-	***************************************			

			_	_			_				Opco		_	_										lags			
Mnemonic	Operand	· · · · · · · · · · · · · · · · · · ·	7	6	5	4	3	2	_1		0	7	6	5	4		3 2	! 1	0	Clocks	Bytes	AC	CY	(V.	P	<u> </u>	
I/O Instru										_															. :		
IN	acc, imm8			1	1	_	0				-					- '			·	9/13	2			_			
	acc, DW		1	1	1	0	1	1	0	1	W									8/12	1						
OUT	imm8, acc		1	1	1	0	0	1	1	١	W	- '								8/12	2						
	DW, acc		1	1	1	0	1	1			W									8/12	1						
ìNM	dst, DW		0	1	1	0	1	1	0	١	W										1 8n (W = 0 16n (W =						
OUTM	DW, src		0	1	1	0	1	1	1	1	W										1 8n (W = 0 16n (W =			*********			
		String ins	tru	cti	on e	exe	cut	ion	clo	ck	cs fo								sfers	ion are in	parenthes	es.					
BCD Inst	ructions	29 1110		J-41						-													_				
ADJBA			0	0	1	-1	0	1	1		1							-		7	1		х.	u		u	11
ADJ4A				0	1	0	Ó	_	 1							-				3	1			u			
ADJBS			_	0	1	1	1						_							7	1		X				
ADJ4S			0	0	1	0	1			_	1									3	1		X	u		-	X
ADD4S	dst, src		0	0	0	0	1	_			<u>.</u> 1	0	0	1	0	_	0 () () 0	7 + 19n	2	u	X	u	u		
SUB4S	dst, src		 0	0	0	0	1	_			1	0	0	1		_	0 (7 + 19n	2		x	u	u		x
CMP4S	dst, src		0	0	0	0	1	_		_	1	0	0	1			0			7 + 19n	2		x	u			_
R0L4	reg8		0	0	0	0	1 0	1		_	1	0	0	1						13	3						
	mem8		0 mo	0 od	0	0	1	1	1 me		1	0	0	1	0		1 () (0	25	3-5						
R0R4	reg8		0	0	0	0 0	1	1	1 re		1	0	0	1	0		1 ()	I 0	17	3	-					
	mem8		0 mo	0 od	0	0	1 0	1	1 me		1	0	0	1	0		1 ()	l Ó	29	3-5						
								١	า =	nι	ımbe	er o	ВС	D	digi	ts	divi	dec	by 2	·							
Data Typ	e Conversion In	structions																									
CVTBD			1	1	0	1	0	_ 1	0		0	0	0	0	0		1 () .	0	15	2	u	u	· u	Х	Х	. X
CVTDB		· · · · · · · · · · · · · · · · · · ·	1	1	0	1	0	1	0	ı	1	0	0	0	0		1 () .	0	7	2	u	u	u	Х	Х	Х
CVTBW			1	0	0	1	1	0	0		0									2	1						
CVTWL	11		1	0	0	1	1	0	0		1									4/5	1						
Arithmet	ic Instructions																										
ADD	reg, reg	44 Turk	0	0	0	0	0	0	1		W .	1	1		re	g		re	g	2	2 .	X	Х	Х	х	х	χ.
	mem, reg		0	0	0	0	0	0	0	'	w	m	od		re	g		me	em	13/21	2-4	Х	х	Х	х	Х	х
	reg, mem		0	0	0	0	0	0	1	,	W	m	od		re	g		me	em	10/14	2-4	х	х	Х	х	X	Х
	reg, imm		1,	0	0	0	0	0	S	,	W	1	1	0	0	(0	re	g	4	3-4	х	X	Х	х	Х	х
	mem, imm		1	0	0	0	0	0	S	;	W	m	od	0	0	-	0	m	em	15/23	3-6	х	х	х	х	х	х
				0		_			_						_	_				4	2-3					х	Х

	_	_	_	_		_		_		code	_		_							ags	_	_
Mnemonic	Operand		6	5	4	3	2	1	0	7 6	5	4	3	2 1 0	Clocks	Bytes	AC		V	P	_ <u>s</u>	Z
	ic Instructions (cont)																					
ADDC	reg, reg	0	0	0	1	0	0	1	W	1 1		reg		reg	2	2	Х	X	X	Х	Х	Х
	mem, reg	0	0	0	1	0	0	0	W	mod		reg		mem	13/21	2-4	· X	X	X	Х	X	Х
	reg, mem	0	0	0	1	0	0	1	W	mod		reg		mem	10/14	2-4	X	X	X	X	X	Х
	reg, imm	1	0	0	0	0	0	S	W	1 1	0	1	0	reg	4	3-4	Х	Х	Х	Х	Х	X
	mem, imm	1	0	0	0	0	0	S	W	mod	0	1	0	mem	15/23	3-6	Х	Х	Х	X	X	Х
	acc, imm	0	0	0	1	0	1	0	W						4	2-3	Х	Х	Х	Х	Х	Х
SUB	reg, reg	0	0	1	0	1	0	1	W	1 1		reg		reg	2	2	Х	х	х	X	Х	Х
	mem, reg	0	0	1	0	1	0	0	W	mod		reg		mem	13/21	2-4	Х	х	х	Х	х	х
	reg, mem	0	0	1	0	1	0	1	W	mod		reg		mem	10/14	2-4	Х	X.	х	Х	_x	Х
	reg, imm ,	1	0	0	0	0	0	S	W	1 1	1	0	1	reg	4	3-4	Х	X,	Х	Х	х	X
	mem, imm	1	0	0	0	0	0	S	W	mod	1	0	1	mem	15/23	3-6	Х	X	Х	X	Х	X
	acc, imm	0	0	1	0	1	1	0	W						4	2-3	X	Х	х	х	Х	Х
SUBC	reg, reg	0	0	0	1	1	0	1	W	1 1		reg		reg	2	2	Х	х	х	Х	х	Х
	mem, reg	0	0	0	1	1	0	0	W	mod		reg		mem	13/21	2-4	Х	х	x	Х	х	х
	reg, mem	0	0	0	1	1	0	1	W	mod		reg		mem	10/14	2-4	Х	Х	Х	Х	х	х
	reg, imm	1	0	0	0	0	0	S	W	1 1	0	1	1	reg	4	3-4	Х	х	Х	х	X	Х
	mem, imm	1	0	0	0	0	0	S	W	mod	0	- 1	1	mem	15/23	3-6	Х	Х	х	Х	Х	Х
	acc, imm	0	0	0	1	1	1	0	W						4	2-3	Х	. X	х	х	Х	Х
NC	reg8	1	1	1	1	1	1	1	0	1 1	0	0	0	reg	2	2	Х		х	Х	X	Х
	mem	1	1	1	1	1	.1	1	W	mod	0	0	0	mem	13/21	2-4	Х		Х	Х	Х	Х
	reg16	0	1	0	0	0		reg	J .						2	1	Х		Х	Х	х	х
)EC	reg8	1	1	1	1	1	1	1	0	1 1	0	0	.1	reg	2	2	Х	_	х	х	х	х
	mem	1	1	1	1	1	1	1	W	mod	0	0	1	mem	13/21	2-4	Х		х	Х	×	Х
	reg16	0	1	0	0	1		reg	J						2	1	X		х	Х	х	Х
1ULU	reg	1	1	1	1	0	1	1	W	1 1	1	0	0	reg	21-30	2	u	х	Х	u	u	u
	mem	1	1	1	1	0	1	1	W	mod	1	0	0	mem	26/39	2-4	U	Х	х	u	u	u
IUL	reg	1	1	1	1	0	1	1	W	1 1	1	0	1	reg	33-47	2	u	х	х	u	u	и
	mem	1	1	1	1	0	1	1	W	mod	1	0	1	mem	38-56	2-4	u	Х	X	u	u	u
	reg16,reg16,imm8	0	1	1	0	1	0	1	1	1 1		reg		reg	28-34	3	u	Х	Х	u	u	u
	reg16,mem16,imm8	0	1	1	0	1	0	1	1	mod		reg		mem	37-43	3-5	U	х	х	u	u	u
	reg16,reg16,imm16	0	1	1	0	1	0	0	1	1 1		reg		reg	36-42	4	и	х	х	u	u	u
	reg16,mem16,imm16	0	1	1	0	1	0	0	1	mod		reg		mem	45-51	4-6	u	X	X	u	u	u
VU	reg	1.	1	1	1	0	1	1	W	1 1	1	1	0	reg	19/25	2	u	u	u	u	u	u
*	mem	1	1	1	1	0	1	1	W	mod	1	1	0	mem	24/34	2-4	u	ų	u	u	u	u
V	reg	1	1	1	1	0	1	1	W	1 1	1	1	1	reg	29-43	2	u	u	u	u	u	u
	mem	1	1	1	1	0	1	1		mod	1		1	mem	34-52	2-4	u	u			u	

nstruct	ion Set	(cont)
---------	---------	--------

Mnemonic	Operand	7	6	5	4	3	2	1		code 7 6	5	4	3	2 1 0	Clocks	Bytes	Flags AC CY V P	s	Z
Compari	son Instructions																		
СМР	reg, reg	0	0	1	1	1	0	1	W	1 1		reg		reg	2	2	x x x x	х	х
	mem, reg	0	0	1	1	1	0	0	W	mod	-	reg		mem	10/14	2-4	x x x x	х	х
	reg, mem	0	0	1	1	1	0	1	W	mod		reg		mem	10/14	2-4	x x x x	х	х
	reg, imm	1	0	0	0	0	0	S	W	1 1	1	1	1	reg	4	3-4	x x x x	х	х
	mem, imm	1	0	0	0	0	0	S	W	mod	1	1	1	mem	12/16	3-6	x x x x	х	х
	acc, imm	0	0	1	1	1	1	0	W	-					4	2-3	x x x x	Х	Х
Logical I	nstructions																		
NOT	reg	1	1	1	1	0	1	1	W	1 1	0	1	0	reg	2	2			
	mem	1	1	1	1	0	1	1	W	mod	0	1	0	mem	13/21	2-4			
NEG	reg	1	1	1	1	0	-1	1	W	1 1	0	1	1	reg	2 .	2	x x x x	х	Х
	mem	1	1	1	1	0	-1	1	W	mod	0	1	1	mem	13/21	2-4	x x x x	Х	Х
TEST	reg, reg	1	0	0	0	0	1	0	W	1 1		reg		reg	2	2	u 0 0 x	х	х
	mem, reg	1	0	0	0	0	1	0	W	mod		reg		mem	9/13	2-4	u 0 0 x	х	Х
	reg, imm	1	1	1	1	0	1	1	W	1 1	0	0	0	reg	4	3-4	u 0 0 x	Х	х
	mem, imm	1	1	1	1	0	1	1	W	mod	0	0	0	mem	10/14	3-6	u 0 0 x	х	Х
	acc, imm	1	0	1	0	1	0	0	W						4	2-3	u 0 0 x	х	Х
AND	reg, reg	0	0	1	0	0	0	1	W	1 1		reg		reg	2	2	u 0 0 x	х	х
	mem, reg	0	0	1	0	0	0	0	W	mod		reg		mem	13/21	2-4	u 0 0 x	х	х
	reg, mem	0	0	1	0	0	0	1	W	mod		reg		mem	10/14	2-4	u 0 0 x	х	Х
	reg, imm	1	0	0	0	0	0	0	W	1 1	1	0	0	reg	4	3-4	u 0 0 x	х	х
	mem, imm	1	0	0	0	0	0	0	W	mod	1	0	0	mem	15/23	3-6	u 0 0 x	х	Х
	acc, imm	0	0	1	0	0	1	0	W						4	2-3	u 0 0 x	х	Х
OR	reg, reg	0	0	0	0	1	0	1	W	1 1		reg		reg	2	2	u 0 0 x	х	Х
	mem, reg	0	0	0	0	1	0	0	W	mod		reg		mem	13/21	2-4	u 0 0 x	х	Х
	reg, mem	0	0	0	0	1	0	1	W	mod		reg		mem	10/14	2-4	u 0 0 x	х	Х
	reg, imm	1	0	0	0	0	0	0	W	1 1	0	0	1	reg	4	3-4	u 0 0 x	х	Х
	mem, imm	1	0	0	0	0	0	0	W	mod	0	0	1	mem	15/23	3-6	и 0 0 x	Х	Х
	acc, imm	0	0	1	0	0	1	0	W			-			4	2-3	u 0 0 x	х	х
XOR	reg, reg	0	0	1	1	0	0	1	W	1 1		reg		reg	2	2	u 0 0 x	х	х
	mem, reg	0	0	1	1	0	0	0	W	mod		reg		mem	13/21	2-4	u 0 0 x	х	х
	reg, mem	0	0	1	1	0	0	1	W	mod		reg		mem	10/14	2-4	u 0 0 x	х	Х
	reg, imm	1	0	0	0	0	0	0	W	1 1	1	1	0	reg	4	3-4	u 0 0 x	Х	Х
	mem, imm	1	0	0	0	0	0	0	W	mod	1	- 1	0	mem	15/23	3-6	u 0 0 x	х	X
	acc, imm	0	0	1	0	0	1	0	W						4	2-3	u 0 0 x	х	

	4.		_			_		Opcode			_			_				ъ.		•		ags		_
Mnemonic	Operand	7 6	5	4	3	2	1	0	7 6	i -	5	4.	3	2		0	Clocks	Bytes	AC	CY	٧	P		
	oulation Instructions	0 0		_	_	_	_				_	_		_	_	_	05 400			_				_
INS	reg8, reg8	0 0 1 1	_	u reg		1	1 reg	1 () ()	1	1	0	0	U	1	35-133	3						
	reg8, imm8	0 0		0	1 0		1 reg	1 () ()	1	1	1	0	0	1	35-133	4						
EXT	reg8, reg8	0 0	0	0 reg	1	1	1 reg	1 () ()	1	1	0	0	1	1	34-59	3						
	reg8, imm8	0 0		0	1	1	1 reg	1 () ()	1	1	1	0	1	1	34-59	4						
TEST1	reg, CL	0 0	-	. 0	1	1	1 reg	1 () ()	0	1	0	0	0	W	3	3	u	0	0	u	u	х
	mem, CL	0 0 mod		0	1	1 n	1 nem) ()	0	1	0	0	0	W	7/11	3-5	u	0	0	u	u	х
	reg, imm3/4	0 0		0	1		1 reg	1 () ()	0	1	1	0	0	W	4	4	u	0	0	u	u	х
	mem, imm3/4	0 0 mod	-	0	1		1 nem) ()	0	1	1.	0	0	W	8/12	4-6	u	0	0	u	u	x
SET1	reg, CL	0 0		0	1		1 reg	1 () ()	0	1	0	1	0	W	4	3						
	mem, CL	0 0 mod		0	1 0		1 nem) ()	0	1	0	1	0	W	10/18	3-5						
	reg, imm3/4	0 0		0	1		1 reg	1 () ()	0	1	1	1	0	W	5	4						
	mem, imm3/4	0 0 mod	-	0	1	1 ·	1 nem) ()	0	1	1	1	0	W	11/19	4-6		_			_	
	CY	1 1	1	1	1	0	0	1		_						,	2	1		1	-			
	DIR	1 1	1	1	1	1	0	1		_							2	. 1		_				_
CLR1	reg, CL	0 0		0	1 0		1 reg	1) ()	0	1	0	0	1	W	5	3	- 1					
	mem, CL	0 0 mod		0	1	1	1 nem	1. () ()	0	1	0	0	1	W	11/19	3-5						
	reg, imm3/4	0 0		0	1		1 reg	1 () ()	0	1	1	0	1	W	6	4		_				
	mem, imm3/4	0 0 mod		0	1		1 nem) ()	0	1	1	0	1	W	12/20	4-6	-					
	CY	1 1	1	1	1	0	0	0									2	1		0.				
	DIR	1 1	1	1	1	1	0	0								-: "	2	1		_				
IOT:1	reg, CL	0 0		0	1		1 reg	1 () ()	0	1	0	1	1	W	4	3						
	mem, CL	0 0 mod		0	10	1	1 nem) ()	0	1	0	1	1	W	10/18	3-5						
	reg, imm3/4	0 0		0	1		1 reg	1 () () .	0	1	1	1	1	W	5	4						
	mem, imm3/4	0 0 mod		0	1		1 nem) ()	0	1	1	1	1	W	11/19	4-6						
	CY	1 1				1					_						2	1		X				

μ**PD7**0208 (V40)

Instruction Set (cont)

									Op	code						-			F	lags		
Mnemonic	Operands	7	6	5	4	3	2	1	0	7 6	5	4	3	2 1 0	Clocks	Bytes	Al	C	۲ ۱	/ P	8	Z
Shift/Rot	ate Instructions														<u> </u>							
SHL	reg, 1	1	1	0	1	0	0	0	W	1 1	1	0	0	reg	2	2	· u	х	×	×	х	Х
	mem, 1	1	1	0	1	0	0	0	W	mod	1	0	0	mem	13/21	2-4	u	Х	×	(X	х	Х
	reg, CL	1	1	0	1	0	0	1	W	1 1	1	0	0	reg	7 + n	2	u	х	U	ı x	х	X
	mem, CL	1	1	0	1	0	0	1	W	mod	1	0	0	mem	16/24 + n	2-4	u	X	ι	ı x	Х	X
	reg, imm8	1	1	0	0	0	0	0	W	1 1	1	0	0	reg	7 + n	3	u	х	ι	ı x	х	X
	mem, imm8	1	1	0	0	0	0	0	W	mod	1	0	0	mem	16/24 + n	3-5	u	Х	ι	ı x	Х	X
SHR	reg, 1	. 1	1	0	1	0	0	0	W	1 1	1	0	1	reg	2	2	u	х	×	X	Х	Х
	mem, 1	1	1	0	1	0	0	0	W	mod	1	0	1	mem	13/21	2-4	u	X	×	×	Х	Х
	reg, CL	1	1	0	1	0	0	1	W	1 1	1	0	1	reg	7 + n	2	u	х	ι	ı x	Х	Х
	mem, CL	1	1	0	1	0	0	1	W	mod	1	0	_1	mem	16/24 + n	2-4	u	Х	ι	ı x	Х	Х
	reg, imm8	1	1	0	0	0	0	0	W	1 1	1	0	1	reg	7 + n	3	u	х	ι	ı x	Х	Х
	mem, imm8	1	1	0	0	0	0	0	W	mod	1	0	1	mem	16/24 + n	3-5	u	Х	ι	ı x	Х	х
SHRA	reg, 1	1	1	0	1	0	0	0	W	1 1	1	1	1	reg	2	2	u	Х	C) x	Х	х_
	mem, 1	1	1,	0	1	0	0	0	W	mod	1	1	1	mem	13/21	2-4	u	X	. () x	Х	х
	reg, CL	1	1	0	1	0	0	1	W	1 1	1	1	1	reg	7 + n	2	u	х	ι	ı x	х	х
	mem, CL	1	1	0	1	0	0	1	W	mod	1	1	1	mem	16/24 + n	2-4	u	Х	ι	X	Х	X
	reg, imm8	. 1	1	0	0	0	0	0	W	1 1	1	1	1	reg	7 + n	3	u	х	ι	ı x	х	х
	mem, imm8	1	1	0	0	0	0	0	W	mod	1	1	1	mem	16/24 + n	3-5	u	х	ι	ı x	х	х
ROL	reg, 1	. 1	1	0	1	0	0	. 0	W	1 1	0	0	0	reg	2	2		х	Х			
	mem, 1	1	1	0	1	0	0	0	W	mod	0	0	0	mem	13/21	2-4		х	•	(
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	0	0	reg	7 + n	2		Х	. (J		
	mem, CL	1	1	0	1	0	0	1	W	mod	0	0	0	mem	16/24 + n	2-4		х	ι	J		
	reg, imm	1	1	0	0	0	0	0	W	1 1	0	0	0	reg	7 + n	3		х	ι	ı		
	mem, imm	1	1	0	0	0	0	0	W	mod	0	0	0	mem	16/24 + n	3-5		х		J		
ROR	reg, 1	1	1	0	1	0	0	0	W	1 1	0	0	1	reg	2	2	_	X		ı		
	mem, 1	1	1	0	1	0	0	0	W.	mod	0	0	1	mem	13/21	2-4		Х	•	(
	reg, CL	- 1	1	0	1	0	0	1	W	1 1	0	.0	1	reg	7 + n	2		х	·	J		
	mem, CL	1	1	0	1	0	0	1	W	mod	0	0	1	mem	16/24 + n	2-4		х	·	J		
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	0	1	reg	7 + n	3		Х	: 1	<u>ا</u>		
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	0	_ 1	mem	16/24 + n	3-5		х	ι	ı		
ROLC	reg, 1	1	1	0	1	0	0	0	W	1 1	0	1	0	reg	2	2		х	•	(
	mem, 1	1	1	0	1	0	0	0	W	mod	0	1	0	mem	13/21	2-4		х	.)	(
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	. 1	0	reg	7 + n	2		х	ι	1		
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	0	mem	16/24 + n	2-4		х		u		
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	1	0	reg	7 + n	3	_	Х		J		
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	1	0	mem	16/24 + n	3-5	_	Х		J		
			-							n =	nur	nbe	er o	fshifts								

									Ope	code									Flag	S	
Mnemonic	Operands	7	6	5	4	3	2	1			5	4	3	2 1 0	Clocks	Bytes	AC	CY	V		S Z
Shift Rot	ate Instructions (cont)																				
RORC	reg, 1	1	1	0	1	0	0	0	W	1 1	0	1	1	reg	2	2		Х	X		
	mem, 1	1	1	0	1	0		0	W	mod	0	1	1	mem	13/21	2-4		Х	X		
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	1	1	reg	7 + n	2		х	u		
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	1	mem	16/24 + n	2-4		Х	u		
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	1	1	reg	7 + n	3		Х	u		
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	1	1	mem	16/24 + n	3-5		Х	u		
											n =	nu	mbe	er of shifts							
Stack Ma	nipulation Instructions										-										
PUSH	mem16	1	1	1	1	1	1	1	1	mod	1	1	0	mem	23	2-4					- 53
	reg16	0	1	0	1	0	r	eg							10	1	-				
	sr	0	0	0	sr		1	1	0	_					10	1	-				
	PSW	1	0	0	1	1	1 (0	0						10	1					
	R	0	1	1	0	0	0	0	0						65	1				_	
	imm	0	1	1	0	1	0 :	S	0						9-10	2-3					
POP	mem16	1	0	0	0	1	1	1	1	mod	0	0	0	mem	25	2-4					
	reg16	0	1	0	1	1	re	eg							12	1					
	sr	0	0	0	sr	_	1	1	1						12	1					
	PSW	- 1	0	0	1	1	1 (0	1						12	1	R	R	R F		R P
	R	0	1	1	0	0	0 (0	1						75	1	_	10.0			
PREPARE	imm16, imm8	1	1	0				0	0	·			-	· · · · · · · · · · · · · · · · · · ·	*	4					-
										imm8 =			40.								
2100005	· .		_	_		_		_		nm8 > 1	: 2	1+	16 (imm8 — 1)							
DISPOSE		- 1		U	0	_	0 1	<u> </u>	1	·					10	1					
	ransfer Instructions			_				_										-			
CALL	near_proc	1			0			0					_		20	3					
	regptr		1			1		1		1 1			-	reg	18	1	_				,
	memptr16		1.			1			1	mod	0		0 -	mem	31	2-4					
	far_proc		0			1 .		1				-			29	5					
	memptr32		_	1		_	1			mod	0	_1	1	mem	47	2-4					
≀ET			1	0		0		1		<u> </u>					19	1					
	pop_value		1	0	0			1				-			24	3					
			1	0		1		1							29	1					
	pop_value		_	0		1		1			-				32	3					
R	near_label	1	1	. 1	0	1	0 (0	1						13	3					
	short_label				0					-	:		-		12	2					
	reg				1					1 1				reg	11	2					
	memptr16				1					mod	1	0	0	mem	23	2-4					
	far_label				0										15	5				:	
	memptr32				1	_				mod	1	0	1	mem	34	2-4					
1.	near_label			<u> </u>	1			_							14/4	2					
NV .	near_label	0	1	1	1 (0	0 (0	1 -						14/4	2					

Inst	ructi	on S	et (c	ont)
------	-------	------	-------	------

Mnemonic	Operands	7	6	5	4	3	2	1		ode 7 6	j (5	4	3	2	1 0	Clocks	Bytes	A	C		Flag V		S Z	!
Control 7	ransfer Instructions (cont)								•							×.				- 1				_
BC, BL	near_label	0	1	1	1	0	0	1	0								14/4	2							
BNC, BNL	near_label	0	1	1	1	0	0	1	1								14/4	2							
BE, BZ	near_label	0	1	1	1	0	1	0	0								14/4	2							
BNE, BNZ	near_label	0	1.	1	1	:0	1	0	1		-					-	14/4	2							
BNH	near_label	0	1	1	1	0	1	1	Ó								14/4	2							
ВН	near_label	0	1	1	1	0	1	1	1							-	14/4	2							
BN	near_label	0	1	1.	1	1	0	0	0								14/4	2							
BP	near_label	0	1	1		1	0	0	1								14/4	2							
BPE	near_label	0	_1	1	1	1	0	1	0					-			14/4	2							_
BPO .	near_label	0	1	1	1	1	0	1	1								14/4	2							
BLT	near_label	0	1	1	1	1	1	0	0								14/4	2							_
BGE	near_label	0	1	1	1	1	1	0	1								14/4	2					_		
BLE	near_label	0	1	1	1	1	1	1	0								14/4	2							_
BGT	near_label	0	1	1	1	1	1	1	1	-							14/4	2					-		
DBNZNE	near_label	1	1	1	0	0	0	0	0				_				14/5	2							
DBNZE	near_label	1	1	1	0	0	0	0	1				_				14/5	2				_			_
DBNZ	near_label	1	1	1	0	0	0	1	0	-							13/5	2		_					_
BCWZ	near_label		1	1	0	0	0		1				_		-		13/5	2		-					
	Instructions	·	·	÷	<u> </u>	Ť	Ť	÷						-			1070			_					_
BRK	3	1	1	Ó	0	1	1	0	0					-			50	1		_					_
Dini	imm8	<u>·</u> 1	1	0	0	<u> </u>	<u> </u>	0	1				_				50	2		_					
BRKV	imm8	1	1	0	0	1	1	1	1								52/3	1							_
RETI		1	1	0	0	<u> </u>	1	1	0								39	1			R	R	R	R F	R
CHKIND	reg16, mem32	0	1	1	0	0	0	- <u>-</u> -	0	mod			eg	_	- m	em	72-75/25			<u> </u>	-				÷
BRKEM	imm8	0	<u>'</u>	0	0	1	1	1	1	1	1 .	-		1		1 1	50	3				+			_
	trol Instructions							<u>'</u>	<u> </u>		<u>'</u>	<u>'</u>	<u>.</u>	<u>.</u>	_	<u> </u>									_
HALT		1	1	1	1	0	1	0	0								2	1							_
BUSLOCK		<u>_</u>	1	1	1	0	0	0			-				<u> </u>			1							_
FP01	fo on		1	0	_ <u>_</u>	1	X		X	1	1 1	Υ	Y	v	7	Z Z	2	2							_
FFUI	fp_op	1	1			<u> </u>								<u>.'</u> Ү			14	2-4							
	fp_op, mem	1	_	0	1	1	X		X	mod			_			em				_					
FP02	fp_op	0	1	1	0	0	1	1	X	1 .	_	-			_	Z Z	2	2							_
	fp_op, mem		1	1	0	0	1	1	X	mod	1	Y	Y	Y	m	em	14	2-4							
POLL		. 1	0	0	1	1 n	0 = n	1 um	1 ber o	of times	s PO	OLL	pir	ı is	sar	noled	2 + 5n	1							
NOP		1	0	0	1		0						_				3	1							_
DI		·		1			0	1	0				_			-	2	1							
El				1				1									2	<u>·</u> 		_					_
DS0:, DS1:,	PS:, and SS: verride prefixes)			1				1		-							2	1							_
	ruction Set Enhancer	nents			_													-							_
RETEM		1	1	1		0	1	1	0	1	1	1	1	1	1	1 0	1 39	2	1		R	R	R	R F	R.
CALLN	imm8	1		1		0		1	0		1 -		_				1 58	3		7					

µPD70216 (V50™) 16-BIT, HIGH-INTEGRATION CMOS MICROPROCESSOR

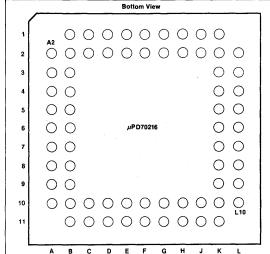
PRELIMINARY INFORMATION

Description

The μ PD70216 (V50TM) is a high-performance, low-power 16-bit microprocessor integrating a number of commonly-used peripherals to dramatically reduce the size of microprocessor systems. The CMOS construction makes the μ PD70216 ideal for the design of portable computers, instrumentation, and process control equipment.

The μ PD70216 contains a powerful instruction set that is compatible with the μ PD70108/ μ PD70116 (V20 $^{\text{TM}}$ / V30 $^{\text{TM}}$) and μ PD8086/ μ PD8088 instruction sets. Instruction set support includes a wide range of arithmetic, logical, and control operations as well as bit manipulation, BCD arithmetic, and high-speed block transfer instructions. The μ PD70216 can also execute the entire μ PD8080AF instruction set using the 8080 emulation mode. Also available is the μ PD70208 (V40 $^{\text{TM}}$), identical to the μ PD70216 but with an 8-bit external data bus.

Features

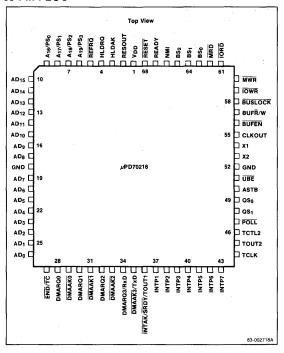

- ☐ V20/V30 instruction set compatible
- ☐ Minimum instruction execution time: 250 ns (at 8 MHz)
- ☐ Direct addressing of 1M bytes of memory
- ☐ Powerful set of addressing modes
- □ 14 16-bit registers
- On-chip peripherals including
 - Clock generator
 - Bus interface
 - Bus arbitration
 - Programmable wait state generator
 - DRAM refresh control
 - Three 16-bit timer/counters
 - Asynchronous serial I/O control
 - Eight-input interrupt control
 - Four-channel DMA control
- 1 Hardware effective address calculation logic
- I Maskable and nonmaskable interrupts
- μPD72191 Floating Point Processor interface
- I IEEE 796 compatible bus interface
- Low-power standby mode
- Low-power CMOS technology
- 10, V30, V40, and V50 are trademarks of NEC Corporation.

Ordering Information

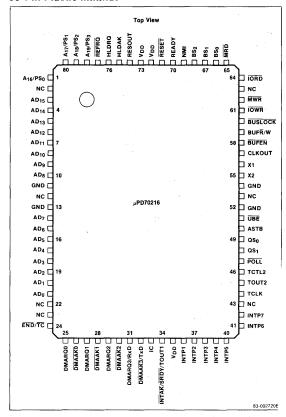
Part Number	Package	Maximum Frequency
μPD70216R-8	68-pin PGA	8 MHz
μPD70216L-8	68-pin PLCC	8 MHz
μPD70216G-8	80-pin plastic miniflat	8 MHz

Pin Configurations

68-Pin PGA


Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
A2	INTP7	B9	DMARQ1	F10	AD7	K4	NMI
A3	INTP5	B10	DMARQ0	F11	GND	K5	RESET
A4	INTP3	B11	AD ₀	G1	X1	K6	RESOUT
A5	INTP1	C1	TCTL2	G2	CLKOUT	K7	HLDRQ
A6	DMAAK3/TxD	C2	POLL	G10	AD ₈	K8	A19/PS3
A7	DMAAK2	C10	AD ₁	G11	AD ₉	K9	A ₁₇ /PS ₁
A8	DMAAK1	C11	AD ₂	H1	BUFEN	K10	AD ₁₄
A9	DMAAK0	D1	QS ₁	H2	BUFR/W	K11	AD ₁₅
A10	END/TC	D2	QS ₀	H10	AD ₁₀	L2	IORD
B1	TCLK	D10	AD ₃	H11	AD ₁₁	L3	BS ₀
B2	TOUT2	D11	AD4	J1	BUSLOCK	L4	BS ₂
B3	INTP6	E1	ASTB	J2	IOWR	L5	READY
В4	INTP4	E2	UBE	J10	AD ₁₂	L6	VDD
B 5	INTP2	E10	AD ₅	J11	AD ₁₃	L7	HLDAK
B6	INTAK/SRDY/ TOUT1	E11	AD ₆	K1	MWR	L8	REFRQ
B7	DMARQ3/RxD	F1	GND	K2	MRD	L9	A ₁₈ /PS ₂
B8	DMARQ2	F2	X2	кз	BS ₁	L10	A16/PS0

83-002719B



Pin Configurations (cont)

68-Pin PLCC

80-Pin Plastic Miniflat

Pin Identification

Symbol	Function					
A ₁₉ -A ₁₆ /PS ₃ -PS ₀	Multiplexed address/processor status outputs					
AD ₁₅ -AD ₀	Multiplexed address/data bus					
ASTB	Address strobe output					
BUFEN	Data bus transceiver enable output					
BUFR/W	Data bus transceiver direction output					
BUSLOCK	Buslock output					
BS ₂ -BS ₀	Bus status outputs					
CLKOUT	System clock output					
DMAAK0	DMA channel 0 acknowledge output					
DMAAK1	DMA channel 1 acknowledge output					
DMAAK2	DMA channel 2 acknowledge output					
DMAAK3/TxD	DMA channel 3 acknowledge output/Serial transmit data output					
DMARQ0	DMA channel 0 request input					
DMARQ1	DMA channel 1 request input					
DMARQ2	DMA channel 2 request input					
DMARQ3/RxD	DMA channel 3 request input/Serial receive data input					
END/TC	End input/Terminal count output					
GND	Ground					
HLDAK	Hold acknowledge output					
HLDRQ	Hold request input					
IC	Internal connection; leave unconnected					
INTAK/TOUT1/SRDY	Interrupt acknowledge output/Timer/counter output/Serial ready output					
INTP1-INTP7	Interrupt request inputs					
ORD	I/O read strobe output					
OWR	I/O write strobe output					
WRD	Memory read strobe output					
<u>ww</u> R	Memory write strobe output					
1C	No connection					
1MI	Nonmaskable interrupt input					
OLL	Poll input					
1S ₁ -QS ₀	CPU queue status outputs					
READY	Ready input					
EFRQ	Refresh request output					
ESET	Reset input					
ESOUT	Synchronized reset output					

Symbol	Function				
TCLK	Timer/counter external clock input				
TCTL2	Timer/counter 2 control input				
TOUT2	Timer/counter 2 output				
ÜBE	Upper byte enable output				
$\overline{v_{DD}}$	+5 V power supply input				
X1, X2	Crystal/external clock inputs				

Pin Functions

A₁₉-A₁₆/PS₃-PS₀ [Address/Status Bus]

These three-state output pins contain the upper 4 bits of the 20-bit address during T1 and processor status information during T2, T3, Tw, and T4. During T1 of a memory read or write cycle, these pins contain the upper 4 bits of the 20-bit address. These pins are forced low during T1 of an I/O bus cycle.

Processor status is output during T2, T3, Tw, and T4 of both memory and I/O bus cycles. PS $_3$ is zero during any CPU native mode bus cycle. During any DMA, refresh, or 8080 emulation mode bus cycle, PS $_3$ outputs a high level. PS $_2$ outputs the contents of the interrupt enable (IE) flag in the CPU PSW register. PS $_1$ and PS $_0$ indicate the segment register used to form the physical address of a CPU bus cycle as follows:

	PS ₁ PS ₀		Segment			
,	0	0	Data segment 1 (DS1)			
	0	1.	Stack segment (SS)			
-	1	0	Program segment (PS)			
	1 .	. 1	Data segment 0 (DS0)			

These pins are in the high-impedance state during hold acknowledge.

AD₁₅-AD₀ [Address/Data Bus]

These three-state pins form the active-high, time-multiplexed address/data bus. During T1 of a bus cycle, AD_{15} - AD_0 output the lower 16 bits of the 20-bit memory or I/O address. During the T2, T3, Tw, and T4 states, AD_{15} - AD_0 form the 16-bit bidirectional data bus.

The memory and I/O address spaces are organized into a pair of byte-wide banks. The even bank is accessed whenever $AD_0 = 0$ during T1 of a bus cycle. Access to the odd bank is controlled by the \overline{UBE} pin.

The AD_{15} - AD_0 pins enter the high-impedance state during hold acknowledge or internal interrupt acknowledge bus cycles or while \overline{RESET} is asserted. Pins AD_{10} - AD_{8} contain the slave address of an external interrupt controller during the second interrupt acknowledge bus cycle.

ASTB [Address Strobe]

This active-high output is used to latch the address from the multiplexed address bus in an external address latch during T1 of a bus cycle. ASTB is held at a low level during hold acknowledge.

BUFEN [Buffer Enable]

BUFEN is an active-low output for enabling an external data bus transceiver during a bus cycle. BUFEN is asserted during T2 through T4 of a read cycle, T2 through T3 of a slave interrupt acknowledge cycle, and T1 through T4 of a write cycle. BUFEN is not asserted when the bus cycle corresponds to an internal peripheral, DMA, refresh, or internal interrupt acknowledge cycle. BUFEN enters the high-impedance state during hold acknowledge.

BUFR/W [Buffer Read/Write]

BUFR/W is a three-state, active-low output used to control the direction of an external data bus transceiver. A high level indicates the µPD70216 will perform a write cycle and a low level indicates a read cycle. BUFR/W enters the high-impedance state during hold acknowledge.

BUSLOCK

This active-low output provides a means for the CPU to indicate to an external bus arbiter that the bus cycles of the next instruction are to be kept contiguous. BUSLOCK is asserted for the duration of the instruction following the BUSLOCK prefix. BUSLOCK is also asserted during interrupt acknowledge cycles and enters the high-impedance state during hold acknowledge. While BUSLOCK is asserted, DMAU, RCU, and external bus requests are disabled.

BS₂-BS₀ [Bus Status]

Outputs BS_2 - BS_0 indicate the type of bus cycle being performed as follows.

BS ₂	BS ₁	BS ₀	Bus Cycle	
0	0	0	Interrupt acknowledge I/O read	
0	· 1	0	I/O write Halt	
1	0	0	Instruction fetch Memory read (1)	1,1,1
1	1 1	0	Memory write (2) Passive state	- 1 · 1

Note:

- Memory read bus cycles include CPU, DMA read, DMA verify, and refresh bus cycles.
- (2) Memory write bus cycles include CPU and DMA write bus cycles.

BS₂-BS₀ are three-state outputs and are high impedance during hold acknowledge.

CLKOUT

The CLKOUT output is used to generate all internal timing for the μ PD70216. CLKOUT has a 50-percent duty cycle at half the frequency of the input clock source.

DMAAK0-DMAAK2 [DMA Acknowledge]

This set of outputs contains the DMA acknowledge signals for channels 0-2 from the internal DMA controller and indicate that the peripheral can perform the requested transfer.

DMAAK3/TxD [DMA Acknowledge 3]/[Serial Transmit Data]

Two output signals multiplexed on this pin are selected by the PF field of the on-chip peripheral connection register.

- DMAAK3 is an active-low output and enables ar external DMA peripheral to perform the requested DMA transfer for channel 3.
- TxD is the serial output from the serial control unit

DMARQ0-DMARQ2 [DMA Request]

These synchronized inputs are used by external peripherals to request DMA service for channels 0-2 from the internal DMA controller.

DMARQ3/RxD [DMA Request 3]/[Serial Receive Data]

Two input signals multiplexed on this pin are selected by the PF field of the on-chip peripheral connection register.

- DMARQ3 is used by an external peripheral to request a DMA transfer cycle for channel 3.
- RxD is the serial input to the serial control unit.

END/TC [End/Terminal Count]

This active-low bidirectional pin controls the termination of a DMA service. Assertion of END by external hardware during DMA service causes the service to terminate. When a DMA channel reaches its terminal count, the DMAU asserts TC, indicating the programmed operation has completed.

 $\overline{\text{END}}/\overline{\text{TC}}$ is an open-drain I/O pin, and requires an external 2.2-k Ω pull-up resistor.

HLDAK [Hold Acknowledge]

When an external bus requester has become the highest priority requester, the internal bus arbiter will assert the HLDAK output indicating the address, data, and control buses have entered a high-impedance state and are available for use by the external bus master.

Should the internal DMAU or RCU (demand mode) request the bus, the bus arbiter will drive HLDAK low. When this occurs, the external bus master should complete the current bus cycle and negate the HLDRQ signal. This allows the bus arbiter to reassign the bus to the higher priority requester.

HLDRQ [Hold Request]

This active-high signal is asserted by an external bus master requesting to use the local address, data, and control buses. The HLDRQ input is used by the internal bus arbiter, which gives control of the buses to the highest priority bus requester in the following order.

Bus Master	Priority				
RCU	Highest (demand mode)				
DMAU	•				
HLDRQ	•				
CPU	gers Color				
RCU	Lowest (normal operation)				

INTAK/TOUT1/SRDY [Interrupt Acknowledge]/ [Timer 1 Output]/[Serial Ready]

Three output signals multiplexed on this pin are selected by the PF field of the on-chip peripheral connection register.

- INTAK is an interrupt acknowledge signal used to cascade external slave µPD71059 Interrupt Controllers. INTAK is asserted during T2, T3, and Tw states of an interrupt acknowledge cycle.
- TOUT1 is the output of timer/counter 1.
- SRDY is an active-low output and indicates that the serial control unit is ready to receive the next character.

INTP1-INTP7 [Peripheral Interrupts]

INTP1-INTP7 accept either rising-edge or high-level triggered asynchronous interrupt requests from external peripherals. These INTP1-INTP7 inputs are internally synchronized and prioritized by the interrupt control unit, which requests the CPU to perform an interrupt acknowledge bus cycle. External interrupt controllers such as the μ PD71059 can be cascaded to increase the number of vectored interrupts.

These interrupt inputs cause the CPU to exit both the standby and 8080 emulation modes.

INTP1-INTP7 contain internal pull-up resistors and may be left unconnected.

IORD [I/O Read]

This three-state pin outputs an active-low I/O read strobe during T2, T3, and Tw of an I/O read bus cycle. Both CPU I/O read and DMA write bus cycles assert IORD. IORD is not asserted when the bus cycle corresponds to an internal peripheral. It enters the high-impedance state during hold acknowledge.

IOWR [I/O Write]

This three-state pin outputs an active-low I/O write strobe during T2, T3, and Tw of a CPU I/O write or an extended DMA read cycle and during T3 and Tw of a DMA read bus cycle. IOWR is not asserted when the bus cycle corresponds to an internal peripheral. It enters the high-impedance state during hold acknowledge.

MRD [Memory Read Strobe]

This three-state pin outputs an active-low memory read strobe during T2, T3, and Tw of a memory read bus cycle. CPU memory read, DMA read, and refresh bus cycles all assert MRD. MRD enters the high-impedance state during hold acknowledge.

MWR [Memory Write Strobe]

This three-state pin outputs an active-low memory write strobe during T2, T3, and Tw of a CPU memory write or DMA extended write bus cycle and during T3 and Tw of a DMA normal write bus cycle. MWR enters the high-impedance state during hold acknowledge.

NMI [Nonmaskable Interrupt]

The NMI pin is a rising-edge-triggered interrupt input that cannot be masked by software. NMI is sampled by CPU logic each clock cycle and when found valid for five or more CLKOUT cycles, the NMI interrupt is accepted. The CPU will process the NMI interrupt immediately after the current instruction finishes execution by fetching the segment and offset of the NMI handler from interrupt vector 2. The NMI interrupt causes the CPU to exit both the standby and 8080 emulation modes. The NMI input takes precedence over the maskable interrupt inputs.

POLL [Poll]

The active-low POLL input is used to synchronize the operation of external devices with the CPU. During execution of the POLL instruction, the CPU checks the POLL input state every five clocks until POLL is once again asserted.

QS₁-QS₀ [Queue Status]

The QS₁ and QS₀ outputs maintain instruction synchronization between the μ PD70216 CPU and external devices such as the μ PD72191 Floating Point Processor. These outputs are interpreted as follows.

QS ₁	QS _O	Instruction Queue Status				
0	0	No operation				
0	1	First byte of instruction fetched				
1	0	Flush queue contents				
1	1	Subsequent byte of instruction fetched				

Queue status is valid for one clock cycle after the CPU has accessed the instruction queue.

READY [Ready]

This active-high input synchronizes external memory and peripheral devices with the μ PD70216. Slow memory and I/O devices can lengthen a bus cycle by negating the READY input and forcing the BIU to insert Tw states. READY must be negated prior to the rising edge of CLKOUT during the T2 state to guarantee recognition. When READY is once again asserted and recognized by the BIU, the BIU will proceed to the T4 state.

The READY input operates in parallel with the internal μ PD70216 wait control unit and can be used to insert more than three wait states into a bus cycle.

REFRQ [Refresh Request]

REFRQ is an active-low output indicating the current bus cycle is a memory refresh operation. REFRQ is used to disable memory address decode logic and refresh dynamic memories. The 8-bit refresh row address is placed on A_8 - A_1 during a refresh bus cycle.

RESET [Reset]

The RESET input is used to force the μ PD70216 to a known state by resetting the CPU and on-chip peripherals. RESET must be asserted for a minimum of four clocks to guarantee recognition. After RESET has been released, the CPU will start program execution from address FFFF0H.

RESET will release the CPU from the low-power standby mode and force it to the native mode.

RESOUT [Reset Output]

This active-high output is available to perform a systemwide reset function. Reset is internally synchronized with CLKOUT and output on the RESOUT pin.

TCLK

TCLK is an external clock source for the timer contro unit. The three timer/counters can be programmed to operate with either the TCLK input or a prescaler CLKOUT input.

TCTL2

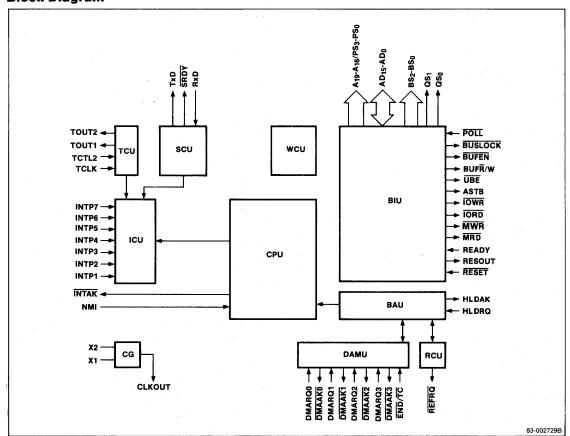
TCTL2 is the control input for timer/counter 2.

TOUT2

TOUT2 is the output of timer/counter 2.

UBE Upper Byte Enable

UBE is an active-low output, asserted when the upper byte of the 16-bit data bus contains valid data. UBE is used along with A₀ by the memory decoding logic to select the even/odd banks as follows.


Operation	UBE	A _O	Bus Cycles
Word, even address	0	0	1
Word, odd address	0	1 (1st bus cycle) 0 (2nd bus cycle)	2
Byte, even address	1	0	1
Byte, odd address	0	1	1

UBE is a three-state output and enters the high-impedance state during hold acknowledge.

X1, X2 [Clock Inputs]

These pins accept either a parallel resonant, fundamental mode crystal or an external oscillator input with a frequency twice the desired operating frequency.

Block Diagram

Absolute Maximum Ratings

 $T_A = +25$ °C

-0.5 to +7.0 V
-0.5 to V _{DD} + 0.3 V
-0.5 to V _{DD} + 1.0 V
-0.5 to V _{DD} + 0.3 V
-10 to +70°C
−65 to +150°C

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = +25$ °C, $V_{DD} = 0$ V

		Limits			Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
Input capacitance	Cl		15		f _C = 1 MHz;	
Output capacitance	C ₀		15	pF	unmeasured pins are returned to 0 V.	

DC Characteristics

 $\rm T_A = -10~to~+70\,^{\circ}C,\,V_{DD} = +5~V~\pm 10\%$

	Limits		ts		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
Input voltage, high	V _{IH}	2.2	V _{DD} + 0.3	٧		
Input voltage, low	V _{IL}	-0.5	0.8	٧		
X1, X2 input voltage, high	V _{KH}	3.9	V _{DD} + 1.0	٧		
X1, X2 input voltage, low	V _{KL}	-0.5	0.6	٧		
Output voltage, high	V _{OH}	0.7 V _{DD}		٧	$I_{OH} = -400 \mu A$	
Output voltage, low	V _{0L}		0.4	V ,	$I_{OL} = 2.5 \text{ mA}$	
Input leakage current, high	ILIH		10	μΑ	$V_I = V_{DD}$	
Input leakage current, low	ILIPL		-300	μΑ	V _I = 0 V, INTP input pins	
	ILIL		-10	μΑ	V _I = 0 V, other input pins	
Output leakage current, high	ILOH	1	10	μΑ	$V_0 = V_{DD}$	
Output leakage current, low	ILOL		-10	μΑ	V ₀ = 0 V	
Supply current	I _{DD}		90 20	mA mA	Normal mode Standby mode	

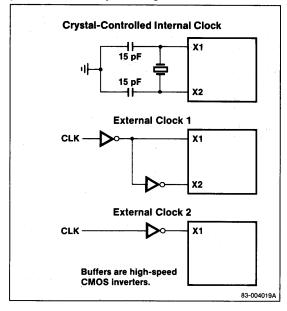
AC Characteristics

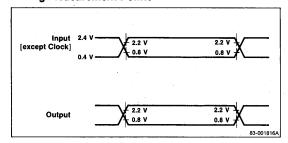
 $T_{\mbox{\scriptsize A}} = -10$ to +70 °C; $V_{\mbox{\scriptsize DD}} = +5$ V $\pm 10\%;$ $C_{\mbox{\scriptsize L}} = 100$ pF

		Limit	S		Test
Parameter	Symbol	Min	Max	Unit	Conditions
External clock input cycle time	tcyx	62	250	ns	
External clock pulse width, high	txxH	20		ns	V _{KH} = 3.0 V
External clock pulse width, low	t _{XXL}	20		ns	V _{KL} = 1.5 V
External clock rise time	t _{XR}		10	ns	1.5 → 3.0 V
External clock fall time	t _{XF}	-	10	ns	3.0 → 1.5 V
CLKOUT cycle time	t _{CYK}	124	500	ns	
CLKOUT pulse width, high	tKKH	0.5 t _{CYK} - 7		ns	V _{KH} = 3.0 V
CLKOUT pulse width, low	t _{KKL}	0.5 t _{CYK} - 7		ns	$V_{KL} = 1.5 V$
CLKOUT rise time	t _{KR}		7	ns	1.5 → 3.0 V
CLKOUT fall time	t _{KF}		7.	ns	3.0 → 1.5 V
CLKOUT delay time from external clock	t _{DXK}		55	ns	
Input rise time (except external clock)	t _{IR}		20	ns	0.8 → 2.2 V
Input fall time (except external clock)	tıF		12	ns	2.2 → 0.8 V
Output rise time (except CLKOUT)	t _{OR}		20	ns	0.8 → 2.2 V
Output fall time (except CLKOUT)	t _{OF}	.**	12	ns	2.2 → 0.8 V
RESET setup time to CLKOUT↓	tsresk	25		ns	
RESET hold time after CLKOUT↓	thkres	35		ns	
RESOUT delay time from CLKOUT↓	tdkres	5	60	ns	
READY inactive setup time to CLKOUT 1	tsrylk	15		ns	
READY inactive hold time after CLKOUT1	thkryl	25		ns	
READY active setup time to CLKOUT	^t SRYHK	15		ns	
READY active hold time after CLKOUT	thkryh	25		ns	
NMI, POLL setup time to CLKOUT	^t SIK	15		ns	

AC Characteristics (cont)

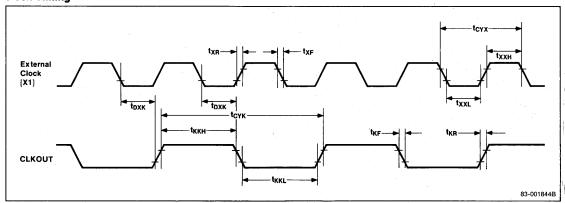
		Limit			
Parameter	Symbol	Min	Max	Unit	Test Conditions
Data setup time to CLKOUT↓	t _{SDK}	20		ns	
Data hold time after	t _{HKD}	15		ns	
Address delay time from CLKOUT↓	t _{DKA}	10	60	ns	
Address hold time after CLKOUT↓	t _{HKA}	10		ns	
PS delay time from CLKOUT↓	t _{DKP}	10	60	ns	
PS float delay time from CLKOUT	t _{FKP}	10	60	ns	
Address setup time to ASTB↓	t _{SAST}	t _{KKL} — 30		ns	
Address float delay time from CLKOUT↓	t _{FKA}	^t HKA	60	ns	
ASTB† delay time from CLKOUT↓	t _{DKSTH}		50	ns	
ASTB↓ delay time from CLKOUT↑	t _{DKSTL}		55	ns	-
ASTB pulse width, high	t _{STST}	t _{KKL} — 10		ns	
Address hold time after ASTB↓	^t HSTA	t _{KKH} — 10		ns	
Control delay time from CLKOUT	tDKCT	15	60	ns	
RD↓ delay time from address float	tDAFRL	0		ns	-
RD↓ delay time from CLKOUT↓	†DKRL	10	70	ns	
RD↑ delay time from CLKOUT↓	t _{DKRH}	15	60	ns	
Address delay time from RD1	t _{DRHA}	t _{CYK} - 40		ns	
RD pulse width, low	t _{RR}	2t _{CYK} — 50		ns	
BUFR/W delay from BUFEN†	t _{DBECT}	t _{KKL} — 20		ns	Read cycle
	t _{DWCT}	t _{KKL} – 20		ns	Write cycle
Data output delay time from CLKOUT	t _{DKD}	10	60	ns	**
Data float delay time from CLKOUT↓	t _{FKD}	10	60	ns	
WR pulse width, low	t _{WW}	2t _{CYK} - 40		ns	
3S↓ delay time rom CLKOUT↑	t _{DKBL}	10	60	ns	
S↑ delay time rom CLKOUT↓	t _{DKBH}	10	65	ns	


Parameter	Symbol	Limit	8		Test
		Min	Max	Unit	Conditions
HLDRQ setup time to CLKOUT	tshak	20		ns	
HLDAK delay time from CLKOUT↓	t _{DKHA}	10	100	ns	
Address drive delay time from CLKOUT↓	t _{DKA2}	tcyk		ns	
DMAAK delay time from CLKOUT1	t _{DKHDA}	10	70	ns	
DMAAK delay time from CLKOUT↓	t _{DKLDA}	10	115	ns	Cascade mode
WR pulse width, low (DMA cycle)	t _{WW1}	2t _{CYK} — 40		ns	DMA extended write cycle
WR pulse width, low (DMA cycle)	t _{WW2}	t _{CYK} - 40		ns	DMA normal write cycle
TC output delay time from CLKOUT	†DKTCL		60	ns	
TC off delay time from CLKOUT	†DKTCF		60	ns	,
TC pulse width, low	t _{TCTCL}	t _{CYK} - 15		ns	
TC pullup delay time from CLKOUT	tDKTCH		t _{KKH} + t _{CYK} - 10	ns	
END setup time to CLKOUT	t _{SEDK}	35		ns	
END pulse width, low	tededl	100		ns	
DMARQ setup time to CLKOUT	tsdak	35		ns	
INTPn pulse width, low	t _{IPIPL}	100		ns	
RxD setup time to SCU internal clock↓	t _{SRX}	1		μS	
RxD hold time after SCU internal clock↓	tHRX	1		μS	
SRDY delay time from CLKOUT↓	t _{DKSR}		150	ns	1000
TxD delay time from TOUT1↓	t _{DTX}		500	ns	:
TCTL2 setup time from CLKOUT↓	t _{SGX}	50		ns	
TCTL setup time to TCLK1	^t sgtk	50		ns	
TCTL2 hold time after CLKOUT↓	t _{HKG}	100		ns	
TCTL2 hold time after TCLK1	thtkg	50		ns	
TCTL2 pulse width,	t _{GGH}	50		ns	

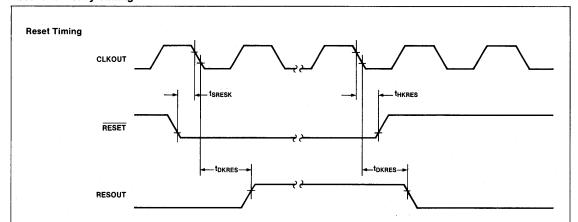

AC Characteristics (cont)

-		Limits			Test
Parameter	Symbol	Min	Max	Unit	Conditions
TCTL2 pulse width, low	t _{GGL}	50		ns	
TOUT output delay time from CLKOUT↓	t _{DKT0}		200	ns	
TOUT output delay time from TOUT↓	^t DTKT0		150	ns	
TOUT output delay time from TCTL2↓	t _{DGTO}		120	ns	
TCLK rise time	t _{TKR}		25	ns	
TCLK fall time	t _{TKF}		25	ns	
TCLK pulse width, high	^t TKTKH	50		ns	
TCLK pulse width, low	t _{TKTKL}	50		ns	
TCLK cycle time	tcytk	124	Dc	ns	
RD↓, WR↓ delay from DMAAK↓	tddarw	†KKH - 30		ns	
DMAAK† delay from RD†	[†] DRHDAH	t _{KKL} – 30		ns	
RD† delay from WR†	tDWHRH	5		ns	

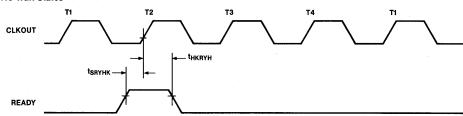
μPD70216 Clock Input Configurations

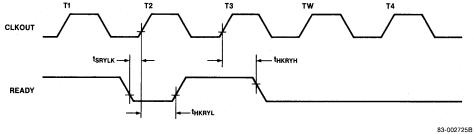


Timing Measurement Points

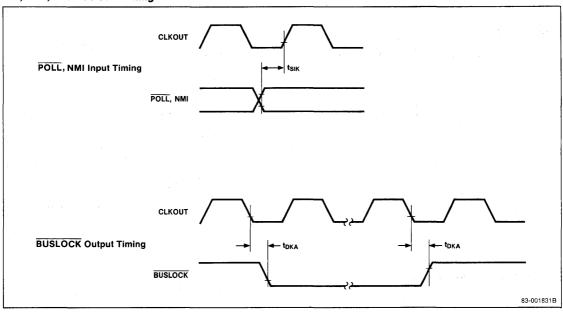

Timing Waveforms

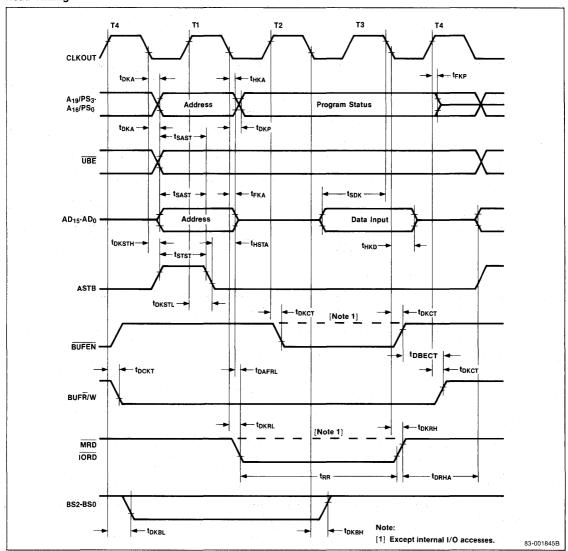
Clock Timing



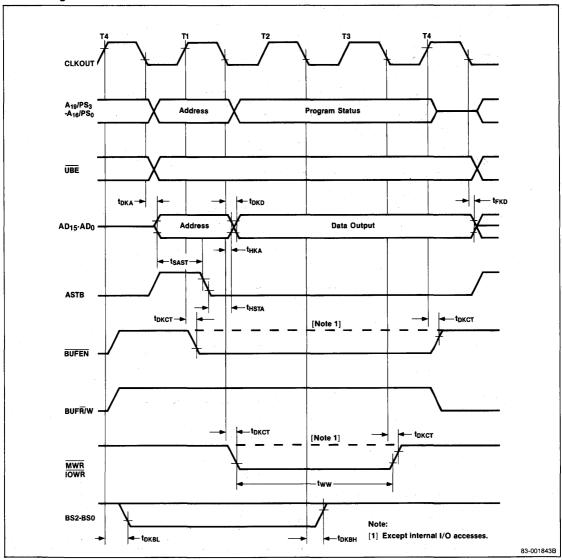

Reset and Ready Timing

Ready Timing, No Wait States

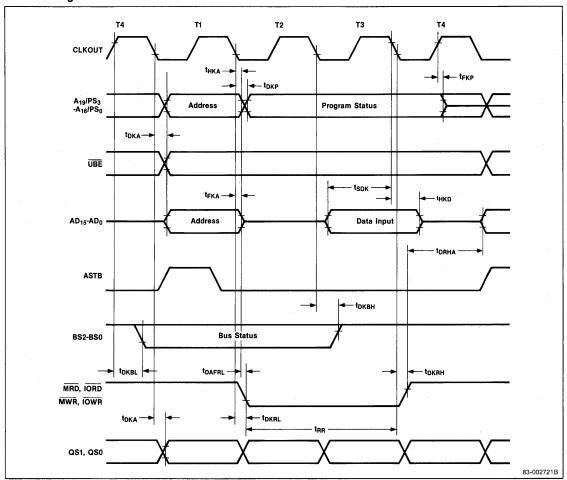




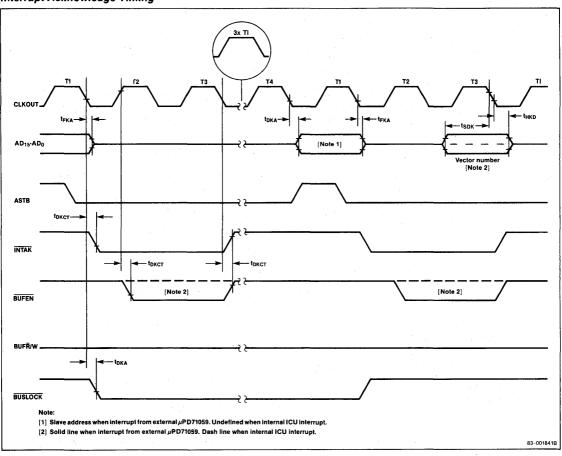
Poll, NMI, and Buslock Timing



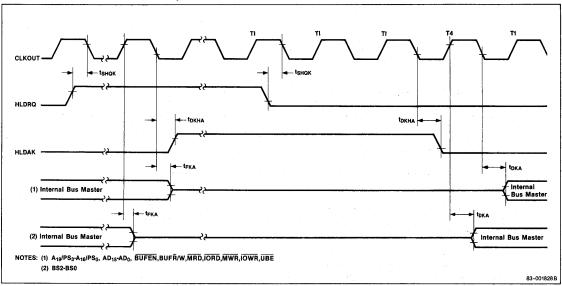
Read Timing



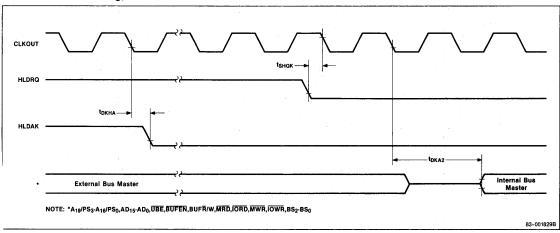
Write Timing



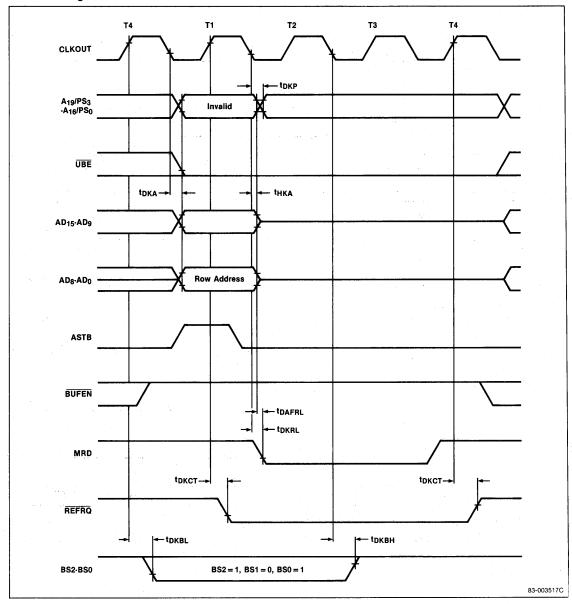
Status Timing



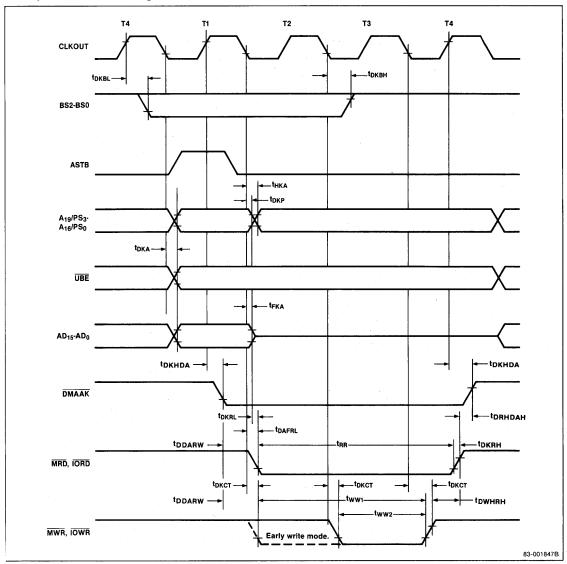
Interrupt Acknowledge Timing



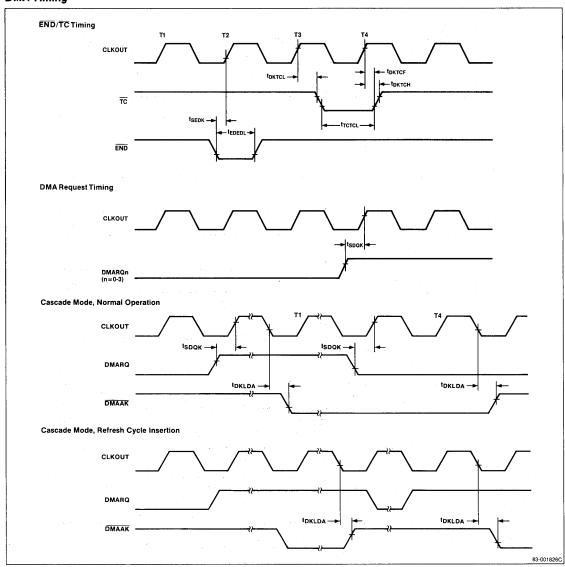
HLDRQ/HLDAK Timing, Normal Operation



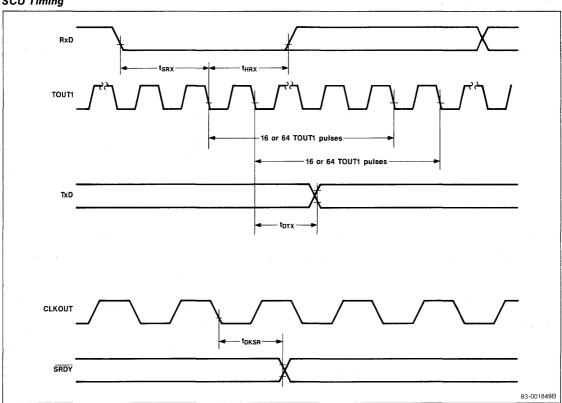
HLDRQ/HLDAK Timing, Bus Wait

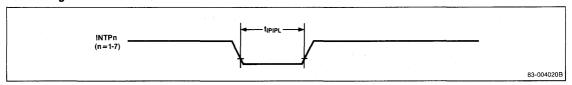


Refresh Timing


DMAU, DMA Transfer Timing

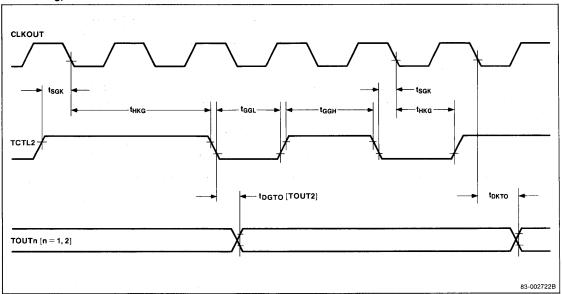
Timing Waveforms (cont)

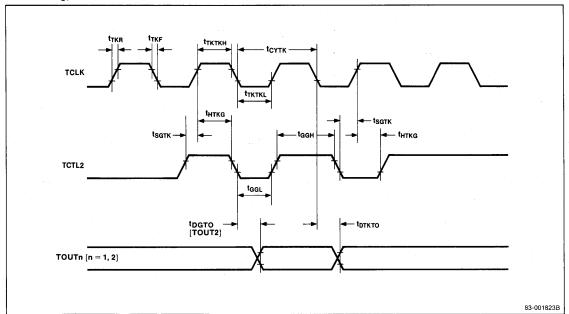

DMA Timing



Timing Waveforms (cont)

SCU Timing


ICU Timing



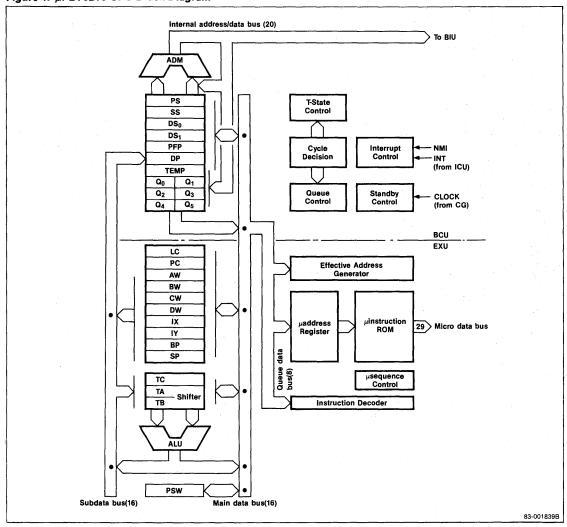
Timing Waveforms (cont)

TCU Timing, Internal Clock Source

TCU Timing, TCLK Source

Functional Description

Refer to the μ PD70216 block diagram for an overview of the ten major functional blocks listed below.


- Central processing unit (CPU)
- Clock generator (CG)
- Bus interface unit (BIU)
- Bus arbitration unit (BAU)
- Refresh control unit (RCU)
- Wait control unit (WCU)
- Timer/counter unit (TCU)
- Serial control unit (SCU)
- Interrupt control unit (ICU)
- DMA control unit (DMAU)

Central Processing Unit

The μ PD70216 CPU functions similarly to the CPU of the μ PD70116 CMOS microprocessor. However, because the μ PD70216 has internal peripheral devices, its bus architecture has been modified to permit sharing the bus with internal peripherals. The μ PD70216 CPU is object code compatible with both the μ PD70108/ μ PD70116 and the μ PD8086/ μ PD8088 microprocessors.

Figure 1 is the μ PD70216 CPU block diagram. A listing of the μ PD70216 instruction set is at the end of this data sheet.

Figure 1. μPD70216 CPU Block Diagram

Register Configuration

Program Counter [PC]. The program counter is a 16-bit binary counter that contains the program segment offset of the next instruction to be executed. The PC is incremented each time the microprogram fetches an instruction from the instruction queue. The contents of the PC are replaced whenever a branch, call, return, or break instruction is executed and during interrupt processing. At this time, the contents of the PC are the same as the prefetch pointer (PFP).

Prefetch Pointer [PFP]. The prefetch pointer is a 16-bit binary counter that contains the program segment offset of the next instruction to be fetched for the instruction queue. Because instruction queue prefetch is independent of instruction execution, the contents of the PFP and PC are not always identical. The PFP is updated each time the bus interface unit (BIU) fetches an instruction for the instruction queue. The contents of the PFP are replaced whenever a branch, call, return or break instruction is executed and during interrupt processing. At this time, the contents of the PFP and PC are the same.

Segment Registers [PS, SS, DS₀, DS₁]. The μ PD70216 memory address space is divided into 64K-byte logical segments. A memory address is determined by the sum of a 20-bit base address (obtained from a segment register) and a 16-bit offset known as the effective address (EA). I/O address space is not segmented and no segment register is used. The four segment registers are program segment (PS), stack segment (SS), data segment 0 (DS₀), and data segment 1 (DS₁). The following table lists their offsets and overrides.

Default Segment Register	Offset	Override
PS	PFP register	Invalid
SS	SP register	Invalid
SS	Effective address (BP-based)	PS, DS ₀ , DS ₁
DS ₀	Effective address (non BP-based)	PS, SS, DS ₁
DS ₀	IX register (1)	PS, SS, DS ₁
DS ₁	IY register (2)	Invalid

Note

- (1) Includes source block transfer, output, BCD string, and bit field extraction.
- (2) Includes destination block transfer, input, BCD string, and bit field insertion.

General-Purpose Registers. The μ PD70216 CPU contains four 16-bit general-purpose registers (AW, BW, CW, DW), each of which can be used as a pair of 8-bit registers by dividing into upper and lower bytes (AH, AL, BH, BL, CH, CL, DH, DL). General purpose registers may also be specified implicitly in an instruction. The implicit assignments are:

- AW Word multiplication/division, word I/O, data conversion
- AL Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation
- AH Byte multiplication/division
- BW Translation
- CW Loop control, repeat prefix
- CL Shift/rotate bit counts, BCD operations
- DW Word multiplication/division, indirect I/O addressing

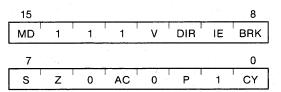
Pointer [SP, BP] and Index Registers [IX, IY]. These registers serve as base pointers or index registers when accessing memory using one of the base, indexed, or base indexed addressing modes. Pointer and index registers can also be used as operands for word data transfer, arithmetic, and logical instructions. These registers are implicitly selected by certain instructions as follows.

- SP Stack operations, interrupts
- IX Source block transfer, BCD string operations, bit field extraction
- IY Destination block transfer, BCD string operations, bit field insertion

Program Status Word [PSW]

The program status word consists of six status flags and four control flags.

Status Flags


- V (Overflow)
- S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)
 - P (Parity)
- CY (Carry)

Control Flags

- MD (Mode)
- DIR (Direction)
- IE (Interrupt Enable)
- BRK (Break)

When pushed onto the stack, the word image of the PSW is as follows:

The status flags are set and cleared automatically depending upon the result of the previous instruction execution. Instructions are provided to set, clear, and complement certain status and control flags. Other flags can be manipulated by using the POP PSW instruction.

Between execution of the BRKEM and RETEM instructions, the native mode RETI and POP PSW instructions can modify the MD bit. Care must be exercised by emulation mode programs to prevent inadvertent alteration of this bit.

CPU Architectural Features

The major architectural features of the μ PD70216 CPU are:

- Dual data buses
- Effective address generator
- · Loop counter
- PC and PFP

Dual Data Buses. To increase performance, dual data buses (figure 2) have been employed in the CPU to fetch operands in parallel and avoid the bottleneck of a single bus. For two-operand instructions and effective address calculations, the dual data bus approach is 30 percent faster than single-bus systems.

Effective Address Generator. Effective address (EA) calculation requires only two clocks regardless of the addressing mode complexity due to the hardware effective address generator (figure 3). When compared with microprogrammed methods, the hardware approach saves between 3 and 10 clock cycles during effective address calculation.

Figure 2. Dual Data Buses

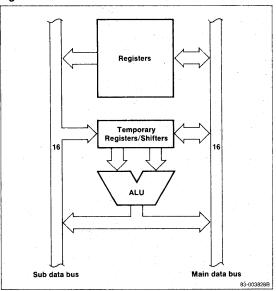
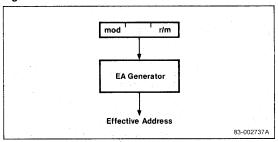



Figure 3. Effective Address Generator

Loop Counter and Shifters. A dedicated loop counter is used to count the iterations of block transfer and multiple shift instructions. This logic offers a significant performance advantage over architectures that control block transfers and multiple shifts using microprogramming. Dedicated shift registers also speed up the execution of the multiply and divide instructions. Compared with microprogrammed methods, multiply and divide instructions execute approximately four times faster.

Program Counter and Prefetch Pointer. The functions of instruction execution and queue prefetch are decoupled in the μ PD70216. By avoiding a single-instruction pointer and providing separate PC and PFP registers, the execution time of control transfers and the interrupt response latency can be minimized. Several clocks are saved by avoiding the need to readjust an instruction pointer to account for prefetching before computing the new destination address.

Enhanced Instruction Set

In addition to the μ PD8086/88 instruction set, the μ PD70216 has added the following enhanced instructions.

Instruction	Function	
PUSH imm	Push immediate data onto stack	
PUSH R	Push all general registers onto stack	
POP R	Pop all general registers from stack	
MUL imm	Multiply register/memory by immediate data	
SHL imm8	Shift/rotate by immediate count	
SHR imm8	•	
SHRA imm8		
ROL imm8		
ROR imm8		
ROLC imm8		
RORC imm8		
CHKIND	Check array index	
INM	Input multiple	
OUTM	Output multiple	
PREPARE	Prepare new stack frame	
DISPOSE	Dispose current stack frame	

Unique Instruction Set

In addition to the $\mu PD70216$ enhanced instruction set, the following unique instructions are supported.

Instruction	Function
INS	Insert bit field
EXT	Extract bit field
ADD4S	BCD string addition
SUB4S	BCD string subtraction
CMP4S	BCD string comparison
ROL4	Rotate BCD digit left
ROR4	Rotate BCD digit right
TEST1	Test bit
SET1	Set bit
CLR1	Clear bit
NOT1	Complement bit
REPC	Repeat while carry set
REPNC	Repeat while carry cleared
FP02	Floating point operation 2

Bit Fields. Bit fields are data structures that range in length from 1 to 16 bits. Two separate operations on bit fields, insertion and extraction, with no restrictions on the position of the bit field in memory are supported. Separate segment, byte offset, and bit offset registers are used for bit field insertion and extraction. Because of their power and flexibility, these instructions are highly effective for graphics, high-level languages, and data packing/unpacking applications.

Insert bit field (INS) copies the bit field of specified length (0 = 1 bit, 15 = 16 bits) from the AW register to the bit field addressed by DS1:IY:reg8 (figure 4). The bit field length can be located in any byte register or supplied as an immediate value. The value in reg8 is a bit field offset. A content of 0 selects bit 0 and 15 selects bit 15 of the word DS0:IX points to. Following execution, the IY and bit offset register are updated to point to the start of the next bit field.

Bit field extraction (EXT) copies the bit field of specified length (0 = 1 bit, 15 = 16 bits) from the bit field addressed by DS0:IX:reg8 to the AW register (figure 5). If the bit field is less than 16 bits, it is right justified with a zero fill. The bit field length can be located in any byte register or supplied as immediate data. The value in reg8 is a bit field offset. A content of 0 selects bit 0 and 15 selects bit 15 of the word DS0:IX points to. Following execution, the IX and bit offset register are updated to point to the start of the next bit field.

Packed BCD Strings. These instructions are provided to efficiently manipulate packed BCD data as strings (length from 1 to 254 digits) or as a byte data type with a single instruction.

BCD string arithmetic is supported by the ADD4S, SUB4S, and CMP4S instructions. These instructions allow the source string (addressed by DS0:IX) and the destination string (addressed by DS1:IY) to be manipulated with a single instruction. When the number of BCD digits is even, the Z and CY flags are set according to the result of the operation. If the number of digits is odd, the Z flag will not be correctly set unless the upper 4 bits of the result are zero. The CY flag will not be correctly set unless there is a carry out of the upper 4 bits of the result.

The two BCD rotate instructions (ROR4, ROL4) perform rotation of a single BCD digit in the lower half of the AL register through the register or memory operand.

Bit Manipulation. Four bit manipulation instructions have been added to the μ PD70216 instruction set. The ability to test, set, clear, or complement a single bit in a register or memory operand increases code readability as well as performance over the logical operations traditionally used to manipulate bit data.

Figure 4. Bit Field Insertion

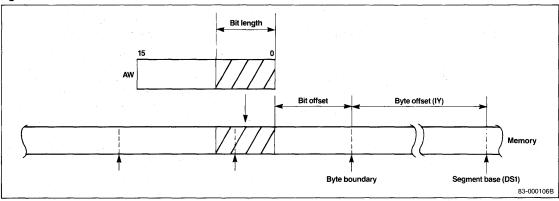
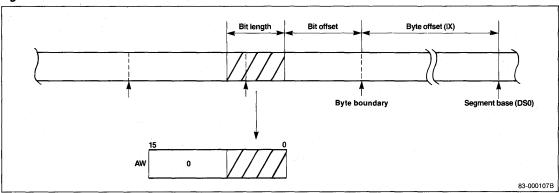



Figure 5. Bit Field Extraction.

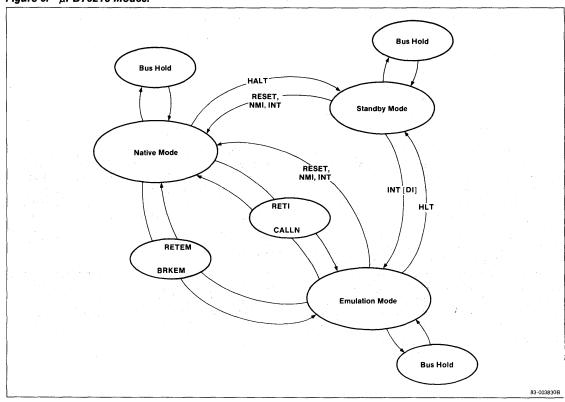
Repeat Prefixes. Two repeat prefixes (REPC, REPNC) allow conditional block transfer instructions to use the state of the CY flag as a terminating condition. The use of these prefixes allows inequalities to be used when working on ordered data, increasing the performance of searching and sorting algorithms.

Floating Point Operation Instructions. Two floating point operation (FPO) instruction types are recognized by the μ PD70216 CPU. These instructions are detected by the CPU, which performs any auxiliary processing such as effective address calculation and the initial bus cycle if specified by the instruction. It is the responsibility of the external coprocessor to latch the address information and data (if a read cycle) from the bus and complete the execution of the instruction.

8080 Emulation Mode. The μ PD70216 CPU can operate in either of two modes; see figure 6. Native mode allows the execution of the μ PD8086/88, enhanced and unique instructions. The other operating mode is 8080 emulation mode, which allows the entire μ PD8080AF instruction set to be executed. A mode (MD) flag is provided to distinguish between the two operating modes. Native mode is active when MD is 1 and 8080 emulation mode is active when MD is 0.

Two instructions are provided to switch from native to 8080 emulation mode and return back. Break for emulation (BRKEM) operates similarly to a BRK instruction, except that after the PSW has been pushed on the native mode stack, the MD flag is cleared.

During 8080 emulation mode, the registers and flags of the 8080 are mapped onto the native mode registers and flags as shown below. Note that PS, SS, DS₀, DS₁, IX, IY, AH and the upper half of the PSW registers are inaccessible to 8080 programs.


	μ PD8080AF	μ PD702 16
Registers	A	AL
	A B	CH
	C	CL
•	D	DH
	E	DL
	. Н	ВН
,	Ĺ	BL
	SP	BP "
	PC	PC
Flags	С	CY
·	Z	Z
	Z S	S
•	P	Р
	AC	AC

During 8080 emulation mode, the BP register functions as the 8080 stack pointer. The use of separate stack pointers prevents inadvertent damage to the native stack pointer by emulation mode programs.

The 8080 emulation mode PC is combined with the PS register to form the 20-bit physical address. All emulation mode data references use DS0 as the segment register. For compatibility with older 8080 software these registers must be equal. By using different segment register contents, separate 64K-byte code and data spaces are possible.

Either an NMI or maskable interrupt will cause the 8080 emulation mode to be suspended. The CPU pushes the PS, PC, and PSW registers on the native mode stack, sets the MD bit (indicating native mode), and enters the specified interrupt handler. When the return from interrupt (RETI) instruction is executed, the PS, PC, and PSW (containing MD=0) are popped from the native stack and execution in 8080 emulation mode continues. Reset will also force a return to native mode.

Figure 6. µPD70216 Modes.

The 8080 emulation mode programs also have the capability to invoke native mode interrupt handlers by means of the call native (CALLN) instruction. This instruction operates the same as the BRK instruction except that the saved PSW indicates 8080 emulation mode.

To exit 8080 emulation mode, the return from emulation (RETEM) instruction pops the PS, PC, and PSW from the native mode stack and execution continues with the instruction following the BRKEM instruction. Nesting of 8080 emulation modes is prohibited.

Interrupt Operation

The μ PD70216 supports a number of external interrupts and software exceptions. External interrupts are events asynchronous to program execution. On the other hand, exceptions always occur as a result of program execution.

The two types of external interrupts are:

- Nonmaskable interrupt (NMI)
- Maskable interrupt (INT)

The six software exceptions are:

- Divide error (DIV. DIVU instructions)
- Array bound error (CHKIND instruction)
- Break on overflow (BRKV instruction)
- Break (BRK, BRK3 instructions)
- Single step (BRK bit in PSW set)
- Mode switch (BRKEM, CALLN instructions)

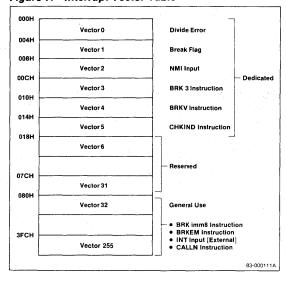
Interrupt vectors are determined automatically for exceptions and the NMI interrupt or supplied by hardware for maskable interrupts. The 256 interrupt vectors are stored in a table (figure 7) located at address 00000H. Vectors 0 to 5 are predetermined and vectors 6 to 31 are reserved. Interrupt vectors 32 to 255 are available for use by application software.

Each vector is made up of two words. The word located at the lower address contains the new PC for the interrupt handler. The word at the next-higher address is the new PS value for the interrupt handler. These must be initialized by software at the start of a program.

Standby Mode

The μ PD70216 CPU has a low-power standby mode, which can dramatically reduce power consumption during idle periods. Standby mode is entered by simply executing a native or 8080 emulation HALT instruction; no external hardware is required. All other peripherals such as the timer/counter unit, refresh control unit, and DMA control unit continue to operate as programmed.

During standby mode, the clock is distributed only to the circuits required to release the standby mode. When a RESET, NMI, or INT event is detected, the standby mode is released. Both NMI and unmasked interrupts are processed before control returns to the instruction following the HALT. In the case of the INT input being masked, execution will begin with the instruction immediately following the HALT instruction without an intervening interrupt acknowledge bus cycle. When maskable interrupts are again enabled, the interrupt will be serviced.


Output signal states in the standby mode are listed below.

Output Signal	Status in Standby Mode	
INTAK, BUFEN, MRD, MWR, IOWR, IORD UBE	High level	
BS ₂ -BS ₀ (Note 2)	Sends halt status (011), then remains high (111)	
QS ₁ -QS ₀ , ASTB	Low level	
BUSLOCK	High level (low level if the HALT instruction follows the BUSLOCK prefix)	
BUFR/W, A ₁₉ -A ₁₆ /PS ₃ -PS ₀ , AD ₁₅ -AD ₀	High or low level	

Note:

- Output pin states during refresh and DMA bus cycles will be as defined for those operations.
- (2) Halt status is presented prior to entering the passive state.

Figure 7. Interrupt Vector Table

Clock Generator

The clock generator (CG) generates a clock signal half the frequency of a parallel-resonant, fundamental mode crystal connected to pins X1 and X2. Figure 8 shows the recommended circuit configuration. Capacitors C1 and C2 are required for frequency stability. Their values can be calculated from the load capacitance (CL) specified by the crystal manufacturer.

$$C1 = C2 = 2 (CL - CS)$$

CS is any stray capacitance in parallel with the crystal, such as the µPD70216 input capacitance.

External clock sources (figure 9) are also accommodated by applying the external clock to the X1 pin and its complement to the X2 pin. The CG distributes the clock to the CLKOUT pin and to each functional block of the μ PD70216. The generated clock signal has a 50-percent duty cycle.

Bus Interface Unit

The bus interface unit (BIU) controls the external address, data, and control buses for the three internal bus masters: CPU, DMA control unit (DMAU), and refresh control unit (RCU). The BIU is also responsible for synchronization of the RESET and READY inputs with the clock. The synchronized reset signal is used internally by the μ PD70216 and provided externally at the RESOUT pin as a system-wide reset. The synchronized READY signal is combined with the output of the wait control unit (WCU) and is distributed internally to the CPU, DMAU, and RCU. Figure 10 shows the synchronization of RESET and READY.

Figure 8. Crystal Configuration

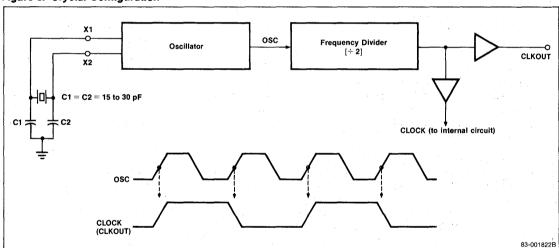


Figure 9. External Oscillator Configuration

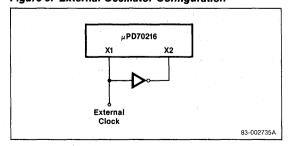
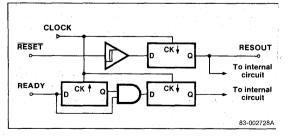



Figure 10. RESET/READY Synchronization

Bus Arbitration Unit

The bus arbitration unit (BAU) arbitrates the local bus between the internal CPU, DMAU, and RCU bus requesters and an external bus master. The BAU bus priorities from the highest priority requester to the lowest are:

RCU (Demand mode) DMAU HLDRQ CPU RCU (Normal mode)

Note that RCU requests the bus at either the highest or lowest priority depending on the status of the refresh request queue. Bus masters other than the CPU are prohibited from using the bus when the CPU is executing an instruction containing a BUSLOCK prefix. Therefore, caution should be exercised when using the BUSLOCK prefix with instructions having a long execution time.

If a bus master with higher priority than the current bus master requests the bus, the BAU inactivates the current bus master's acknowledge signal. When the BAU sees the bus request from the current master go inactive, the BAU gives control of the bus to the higher priority bus master. The BAU performs bus switching between internal bus masters without the introduction of idle bus cycles, enhancing system throughput.

System I/O Area

The I/O address space from addresses FF00H to FFFFH is reserved for use as the system I/O area. Located in this area are the 12 µPD70216 registers that

determine the I/O addressing, enable/disable peripherals, and control pin multiplexing.

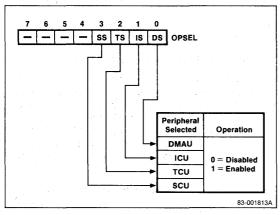

I/O Address	Register	Operation
FFFFH	Reserved	_
FFFEH	OPCN	Read/Write
FFFDH	OPSEL	Read/Write
FFFCH	OPHA	Read/Write
FFFBH	DULA	Read/Write
FFFAH	IULA	Read/Write
FFF9H	TULAL	Read/Write
FFF8H	SULA	Read/Write
FFF7H	Reserved	
FFF6H	WCY2	Read/Write
FFF5H	WCY1	Read/Write
FFF4H	WMB	Read/Write
FFF3H	Reserved	
FFF2H	RFC	Read/Write
FFF1H	Reserved	_
FFF0H	TCKS	Read/Write

On-Chip Peripheral Connection Register

The on-chip peripheral connection (OPCN) register controls multiplexing of the $\mu\text{PD70216}$ multiplexed pins. Figure 11 shows the format of the OPCN register. The interrupt request switch (IRSW) field controls multiplexing of ICU interrupt inputs INT1 and INT2. The output of an internal peripheral or an external interrupt source can be selected as the INT1 and INT2 inputs to the ICU.

The pin function (PF) field in the OPCN selects one of four possible states for the DMARQ3/RxD, DMAAK3/TxD, and INTAK/SRDY/TOUT1 pins. Bit 0 of the

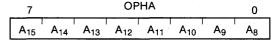
Figure 11. OPCN Register Format



OPCN controls the function of the INTAK/SRDY/TOUT1 pin. If cleared, INTAK will appear on this output pin. If bit 0 is set, either TOUT1 or SRDY will appear at the output depending on the state of bit 1. If bit 1 is cleared, DMA channel 3 I/O signals will appear on the DMARQ3/RxD and DMAKA3/TxD pins. If the SCU is to be used, bit 1 of the PF field must be set.

On-Chip Peripheral Selection Register

The on-chip peripheral selection (OPSEL) register is used to enable or disable the μ PD70216 internal peripherals. Figure 12 shows the format of the OPSEL register. Any of the four (DMAU, TCU, ICU, SCU) peripherals can be independently enabled or disabled by setting or clearing the appropriate OPSEL bit.


Figure 12. OPSEL Register Format

Internal Peripheral Relocation Registers

The five internal peripheral relocation registers (figure 13) are used to fix the I/O addresses of the DMAU, ICU, TCU, and SCU. The on-chip peripheral high-address (OPHA) register is common to all four internal peripherals and fixes the high-order byte of the 16-bit I/O address. The individual DMAU low-address (DULA) register, ICU low-address (IULA) register, TCU low-address (TULA) register, and the SCU low-address (SULA) register select the low-order byte of the I/O addresses for the DMAU, ICU, TCU, and SCU peripherals.

The contents of the OPHA register are:

The formats for the individual internal peripheral registers appear below. Since address checking is not performed, do not overlap two peripheral I/O address spaces.

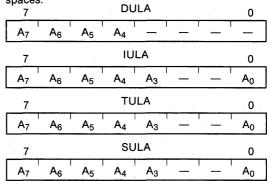


Figure 13. μPD70216 Peripheral Relocation

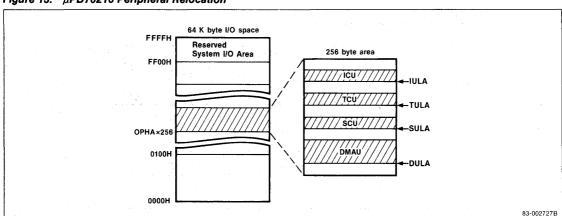
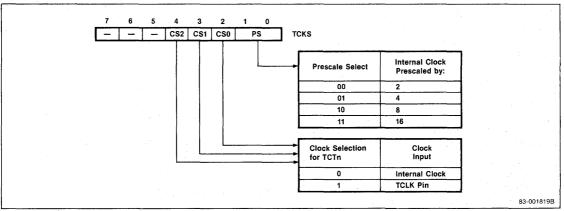



Figure 14. Timer Clock Selection Register

Timer Clock Selection Register

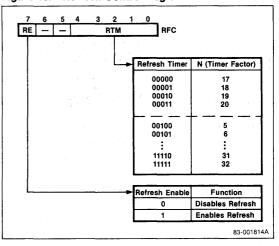
The timer clock selection (TCKS) register selects the clock source for each of the timer/counters as well as the divisor for the internal clock prescaler. Figure 14 shows the format of the TCKS register. The clock source for each timer/counter is independently selected from either the prescaled CLKOUT signal or from an external clock source (TCLK). The internal clock is derived from the CLKOUT signal and can be divided by 2, 4, 8, or 16 before being presented to the clock select logic.

Refresh Control Unit

The refresh control unit (RCU) refreshes external dynamic RAM devices by outputting an 8-bit row address on address lines $A_8\text{-}A_1$ and performing a word-aligned memory read bus cycle. Both $\overline{\text{UBE}}$ and A_0 are asserted to allow the refresh of both the even and odd memory banks. External logic can distinguish a refresh bus cycle by monitoring the refresh request (REFRQ) pin. Following each refresh bus cycle, the refresh row counter is incremented. The refresh control (RFC) register in the system I/O area contains two fields. The refresh enable field enables or disables the refreshing function. The refresh timer (RTM) field selects a refresh interval to match the dynamic memory efresh requirements. Figure 15 shows the format for he RFC register.

To minimize the impact of refresh on the system bus andwidth, the μ PD70216 utilizes a refresh request queue to store refresh requests and perform refresh us cycles in otherwise idle bus cycles.

he RCU normally requests the bus as the lowestriority bus requester (normal mode). However, if even refresh requests are allowed to accumulate in he RCU refresh request queue, the RCU will change to the highest-priority bus requester (demand mode). The RCU will then perform back-to-back refresh cycles until three requests remain in the queue. This guarantees the integrity of the DRAM system while maximizing performance.


The refresh count interval can be calculated as follows:

Refresh interval = $8 \times N \times t_{CYK}$

where N is the timer factor selected by the RTM field.

When the μ PD70216 is reset, the RE field in the RFC register is unaffected and the RTM field is set to 01000 (N = 9). No refresh bus cycles occur while $\overline{\text{RESET}}$ is asserted.

Figure 15. Refresh Control Register

83-001820B

Wait Control Unit

The wait control unit (WCU) inserts from zero to three wait states into a bus cycle in order to compensate for the varying access times of memory and I/O devices. The number of wait states for CPU, DMAU, and RCU bus cycles is separately programmable. In addition, the memory address space is divided into three independent partitions to accommodate a wide range of system designs. RESET initializes the WCU to insert three wait states in all bus cycles. This allows operation with slow memory and peripheral devices before the initialization of the WCU registers.

The three system I/O area registers that control the WCU are wait cycle 1 (WCY1), wait cycle 2 (WCY2), and wait state memory boundary (WMB). The WCU always inserts wait states corresponding to the wait count programmed in WCY1 or WCY2 registers into a bus cycle, regardless of the state of the external READY input. After the programmed number of wait states occurs, the WCU will insert Tw states as long as

the READY pin remains inactive. When READY is again asserted, the bus cycle continues with T4 as the next cycle. The μ PD70216 internal peripherals never require wait states; four clock cycles will terminate an internal peripheral bus cycle.

CPU Wait States

The WMB register divides the 1M-byte memory address space into three independent partitions: lower, middle, and upper. Figure 16 shows the WMB register format.

Initialization software can then set the number of wait states for each memory partition and the I/O partition via the WCY1 register (figure 17).

DMA and Refresh Wait States

The WCY2 register (figure 18) specifies the number of wait states to be automatically inserted in DMA and refresh bus cycles.

LMB UMB Lower Memory Block Size¹ Memory Block Size (KB) Upper Memory Block Size 000 32 001 64 010 96 011 128 192 100 256 101 110 384 512 111 **FEFFFH Higher Memory Block** Specified by the UMB Field Middle Memory Block Lower Memory Block Specified by the LMB Field 00000H

NOTE: 1. By default, the address space remaining between the UBM and LBM is the middle memory block.

Figure 16. Wait State Memory Boundary Register

Figure 17. Wait Cycle 1 Register

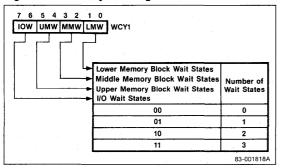
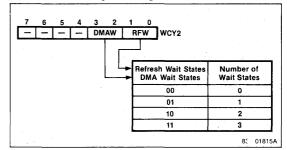
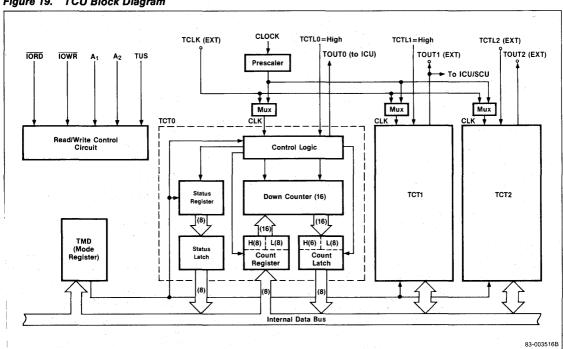



Figure 18. Wait Cycle 2 Register

Timer/Counter Unit


The timer/counter unit (TCU) provides a set of three independent 16-bit timer/counters. The output signal of timer/counter 0 is hardwired internally as an interrupt source. The output of timer/counter 1 is available internally as an interrupt source, used as a baud rate generator, or used as an external output. The timer/ counter 2 output is available as an external output. Due to mode restrictions, the TCU is a subset of the

μPD71054 Programmable Timer/Counter. Figure 19 shows the internal block diagram of the TCU.

The TCU has the following features:

- Three 16-bit timer/counters
- Six programmable count modes
- Binary/BCD counting
- Multiple latch command
- Choice of two clock sources

Figure 19. TCU Block Diagram

Because RESET leaves the TCU in an uninitialized state, each timer/counter must be initialized by specifying an operating mode and a count. Once programmed, a timer/counter will continue to operate in that mode until another mode is selected. When the count has been written to the counter and transferred to the down counter, a new count operation starts. Both the current count and the counter status can be read while count operations are in progress.

TCU Commands

The TCU is programmed by issuing I/O instructions to the I/O port addresses programmed in the OPHA and TULA registers. The individual TCU registers are selected by address bits A_2 and A_1 as follows.

A ₂	A ₁	Register	Operation
0	0	TCT0 TST0	Read/Write Read
0	1	TCT1 TST1	Read/Write Read
1,	0	TCT2 TST2	Read/Write Read
1	1	TMD	Write

The timer mode (TMD) register selects the operating mode for each timer/counter and issues the latch command for one or more timer/counters. Figure 20 shows the format for the TMD register.

Writes to the timer/counter 2-0 (TCT2-TCT0) registers stores the new count in the appropriate timer/counter. The count latch command is used before reading count data in order to latch the current count and prevent inaccuracies.

The timer status 2-0 (TST2-TST0) registers contain status information for the specified counter (figure 21). The latch command is used to latch the appropriate counter status before reading status information. If both status and counter data are latched for a counter, the first read operation returns the status data and subsequent read operations obtain the count data.

Count Modes

There are six programmable timer/counter modes. The timing waveforms for these modes are in figure 22.

Mode 0 [Interrupt on End of Count]. In this mode, TOUT changes from the low to high level when the specified count is reached. This mode is available on all timer/counters.

Mode 1 [Retriggerable One-shot]. In mode 1, a low-level one-shot pulse, triggered by TCTL2 is output from the TOUT2 pin. This mode is available only on timer/counter 2.

Mode 2 [Rate Generator]. In mode 2, TOUT cyclically goes low for one clock period when the counter reaches the 0001H count. A counter in this mode operates as a frequency divider. All timer/counters can operate using mode 2.

Mode 3 [Square Wave Generator]. Mode 3 is a frequency divider similar to mode 2, but the output has a symmetrical duty cycle. This mode is available on all three timer/counters. For counts of N = 2, use mode 2.

Mode 4 [Software Triggered Strobe]. In mode 4, when the specified count is reached, TOUT goes low for the duration of one clock pulse. Mode 4 is available on all timer/counters.

Mode 5 [Hardware Triggered Strobe]. Mode 5 is similar to mode 4 except that operation is triggered by the TCTL2 input and can be retriggered. This mode is available only on timer/counter 2.

Serial Control Unit

The serial control unit (SCU) is a single asynchronous serial channel that performs serial communication between the μ PD70216 and an external serial device. The SCU is similar to the μ PD71051 Serial Control Unit except for the lack of synchronous communication protocols. Figure 23 is the block diagram of the SCU.

The SCU has the following features.

- · Full-duplex asynchronous serial controller
- Clock rate divisor (x16, x64)
- Baud rates to 38.4 kb/s supported
- 7-, 8-bit character lengths
- 1-, 2-bit stop bit lengths
- Break transmission and detection
- Full-duplex, double-buffered transmitter/receiver
- · Even, odd, or no parity
- · Parity, overrun, and framing error detection
- · Receiver full and transmitter empty interrupts

The SCU contains four separately addressable register for reading/writing data, reading status, and control ling operation of the SCU. The serial receive buffe (SRB) and the serial transmit buffer (STB) store th incoming and outgoing character data. The serial status (SST) register allows software to determine th current state of both the transmitter and receiver. Th serial command (SCM) and serial mode (SMD) register determine the operating mode of the SCU while th serial interrupt mask (SIMK) register allows software control of the SCU receive and transmit interrupts.

Figure 20. Timer Mode Register

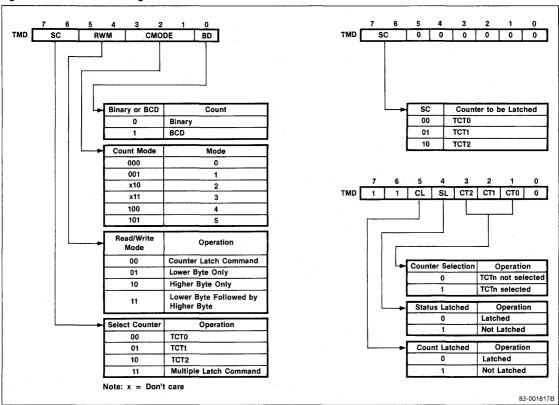
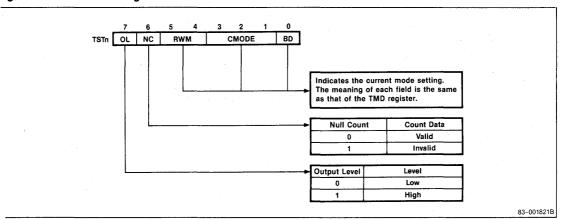
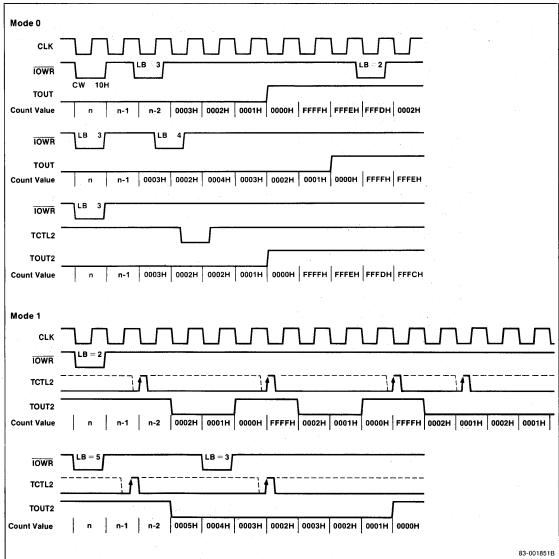
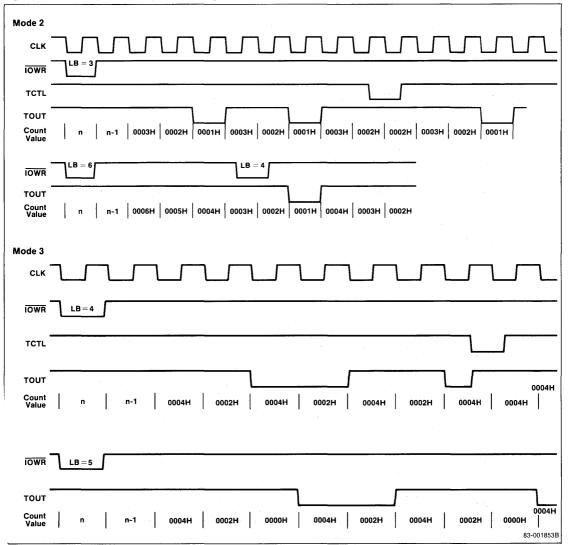




Figure 21. TCU Status Register



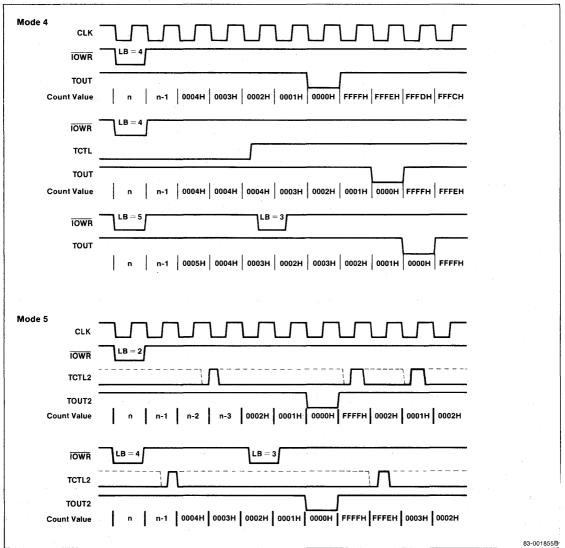
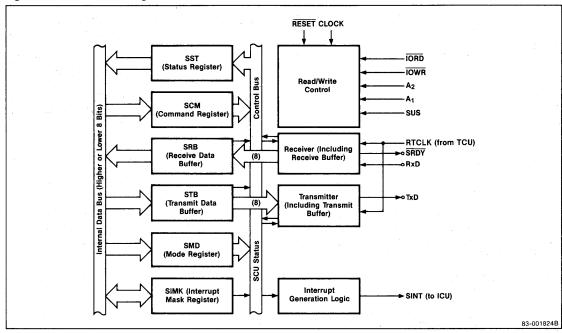



Figure 23. SCU Block Diagram

Receiver Operation

While the RxD pin is high, the SCU is in an idle state. A transition on RxD from high to low indicates the start of a new serial data reception. When a complete character has been received, it is transferred to the SRB; the receive buffer ready (RBRDY) bit in the SST register is set and (if unmasked) an interrupt is generated. The SST also latches any parity, overrun, or framing errors at this time.

The receiver detects a break condition when a null character with zero parity is received. The BRK bit is set for as long as the subsequent receive data is low and resets when RxD returns to a high level. The MRDY bit (SCM) and RBRDY (SST) are gated to form the output SRDY. SRDY prevents overruns from occurring when the program is unable to process the input data. Software can control MRDY to prevent data from being sent from the remote transmitter while RBRDY can prevent the immediate overrun of a received character.

Fransmitter Operation

TxD is kept high while the STB register is empty. When he transmitter is enabled and a character is written to he STB register, the data is converted to serial format and output on the TxD pin. The start bit indicates the tart of the transmission and is followed by the character

stream (LSB to MSB) and an optional parity bit. One or two stop bits are then appended, depending on the programmed mode. When the character has been transferred from the STB, the TRBDY bit in the SST is set and if unmasked, a transmit buffer empty interrupt is generated.

Serial data can be transmitted and received by polling the SST register and checking the TBRDY or RBRDY flags. Data can also be transmitted and received by SCU-generated interrupts to the interrupt control unit. The SCU generates an interrupt in either of these conditions:

- (1) The receiver is enabled, the SRB is full, and receive interrupts are unmasked.
- (2) The transmitter is enabled, the STB is empty, and transmit interrupts are unmasked.

SCU Registers and Commands

I/O instructions to the I/O addresses selected by the OPHA and SULA registers are used to read/write the SCU registers. Address bits A_1 and A_2 and the read/write lines select one of the six internal registers as follows:

A ₂	A ₁	Register	Operation
0	0	SRB STB	Read Write
0	1	SST	Read Write
1	0	SMD	Write
1	1	SIMK	Read/write

The SRB and STB are 8-bit registers. When the character length is 7 bits, the lower 7 bits of the SRB register are valid and bit 7 is cleared to 0. If programmed for 7-bit characters, bit 7 of the STB is ignored.

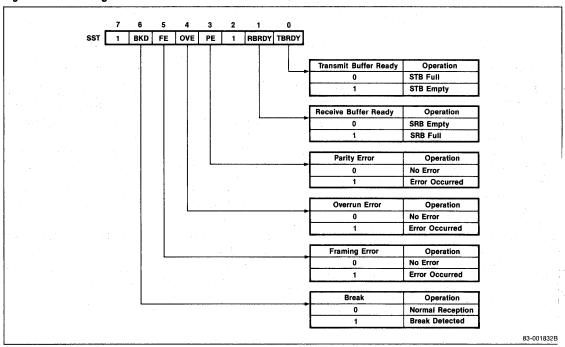

The SST register (figure 24) contains the status of the transmit and receive data buffers and the error flags. Error flags are persistent. Once an error flag is set, it remains set until a clear error flags command is issued.

Figure 25 shows the SCM and SMD registers. The SCM register stores the command word that controls transmission, reception, error flag reset, break transmission, and the state of the SRDY pin. The SMD register stores the mode word that determines serial characteristics such as baud rate divisor, parity, character length, and stop bit length.

Initialization software should first program the SMD register followed by the SCM register. Unlike the μ PD71051, the SMD register can be modified at any time without resetting the SCU.

The SIMK register (figure 26) controls the occurrence of RBRDY and TBRDY interrupts. When an interrupt is masked, it is prevented from propagating to the interrupt control unit.

Figure 24. SST Register

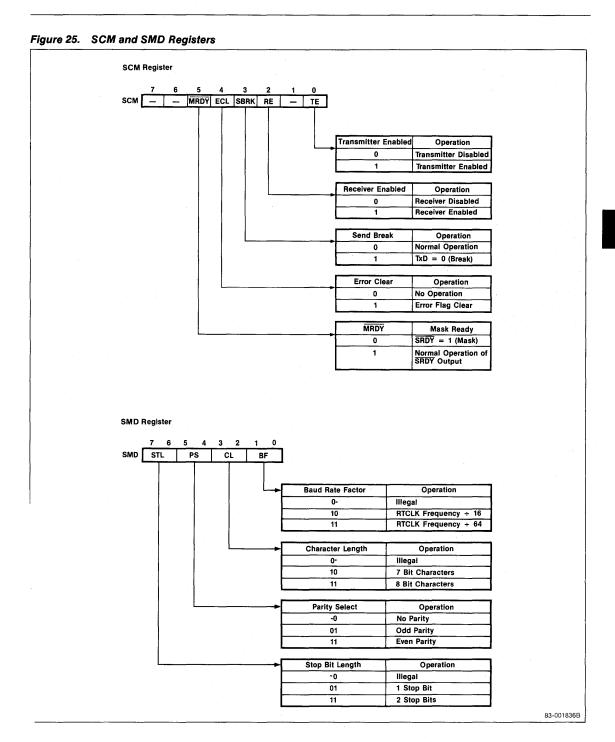
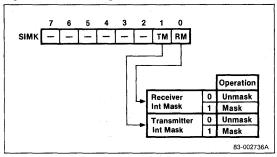



Figure 26. SIMK Register

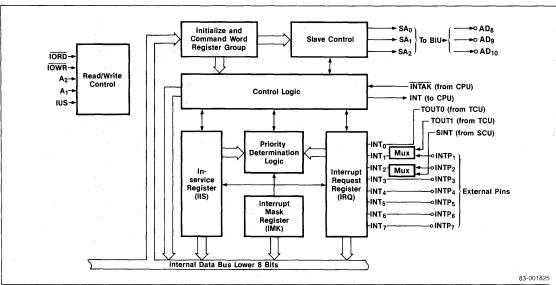
Interrupt Control Unit

The interrupt control unit (ICU) is a programmable interrupt controller equivalent to the μ PD71059. The ICU arbitrates up to eight interrupt inputs, generates a CPU interrupt request, and outputs the interrupt vector number on the internal data bus during an interrupt acknowledge cycle. Cascading up to seven external slave μ PD71059s permits the μ PD70216 to support up to 56 interrupt sources. Figure 27 is the block diagram for the ICU.

The ICU has the following features.

- · Eight interrupt request inputs
- Cascadable with μPD71059 Interrupt Controllers
- Programmable edge- or level-triggered interrupts (TCU, edge-triggered interrupts only)
- Individually maskable interrupt requests
- · Programmable interrupt request priority
- Polling mode

ICU Registers


Use I/O instructions to the I/O addresses selected by the OPHA and IULA registers to read from and write to the ICU registers. Address bit A_1 and the command word selects an ICU internal register.

	A ₁	Other Condition	Operation
Read	0	IMD selects IRQ	CPU ← IRQ data
	0	IMD selects IIS	CPU ← IIS data
	. 0	Polling phase	CPU ← Polling data
	1		CPU ← IMKW
Write	. 0	D4 = 1	CPU → IIW1
	0	D4 = 0 and $D3 = 0$	CPU → IPFW
	0	D4 = 0 and $D3 = 1$	$CPU \rightarrow IMDW$
	1	During initialization	CPU → IIW2
	1		CPU → IIW3
	1		CPU → IIW4
	1	After initialization	CPU → IMKW

Note:

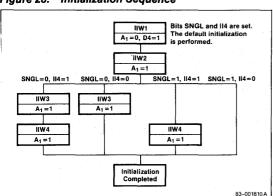
 In polling phase, polling data has priority over the contents of the IRQ or IIS register when read.

Figure 27. ICU Block Diagram

Initializing the ICU

The ICU is always used to service maskable interrupts in a μ PD70216 system. Prior to accepting maskable interrupts, the ICU must first be initialized (figure 28). Following initialization, command words from the CPU can change the interrupt request priorities, mask/unmask interrupt requests, and select the polling mode. Figures 29 and 30 list the ICU initialization and command words.

Interrupt initialization words 1-4 (IIW1-IIW4) initialize the ICU, indicate whether external μ PD71059s are connected as slaves, select the base interrupt vector, and select edge- or level-triggered inputs for INT1-INT7. Interrupt sources from the TCU are fixed as edge-triggering. INT0 is internally connected to TOUT0, and INT2 may be connected to TOUT1 by the IRSW field in the OPCN.


The interrupt mask word (IMKW) contains programmable mask bits for each of the eight interrupt inputs. The interrupt priority and finish word (IPFW) is used by the interrupt handler to terminate processing of an interrupt or change interrupt priorities. The interrupt mode word (IMDW) selects the polling register, interrupt request (IRQ) or interrupt in service (IIS) register, and the nesting mode.

The initialization words are written in consecutive order starting with IIW1. IIW2 sets the interrupt vector. IIW3 specifies which interrupts are connected to slaves. IIW3 is only required in extended systems. The ICU will only expect to receive IIW3 if SNGL = 0 (bit D_1 of IIW1). IIW4 is only written if II4 = 1 (bit D_0 of IIW1).

μPD71059 Cascade Connection

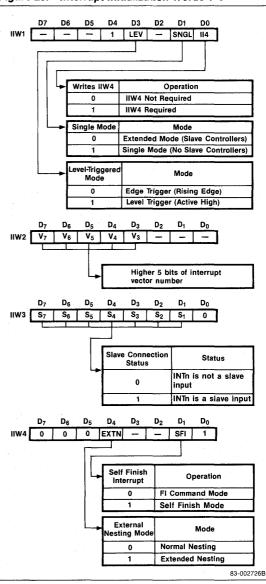

To increase the number of maskable interrupts, up to seven slave μ PD71059 Interrupt Controllers can be cascaded. During cascade operation (figure 31), each

Figure 28. Initialization Sequence

slave μ PD71059 INT output is routed to one of the μ PD70216 INTP inputs. During the second interrupt acknowledge bus cycle, the ICU places the slave address on address lines AD₁₀-AD₈. Each slave compares this address with the slave address programmed using interrupt initialization word 3 (IIW3). If the same, the slave will place the interrupt vector on pins AD₇-AD₀ during the second interrupt acknowledge bus cycle.

Figure 29. Interrupt Initialization Words 1-4

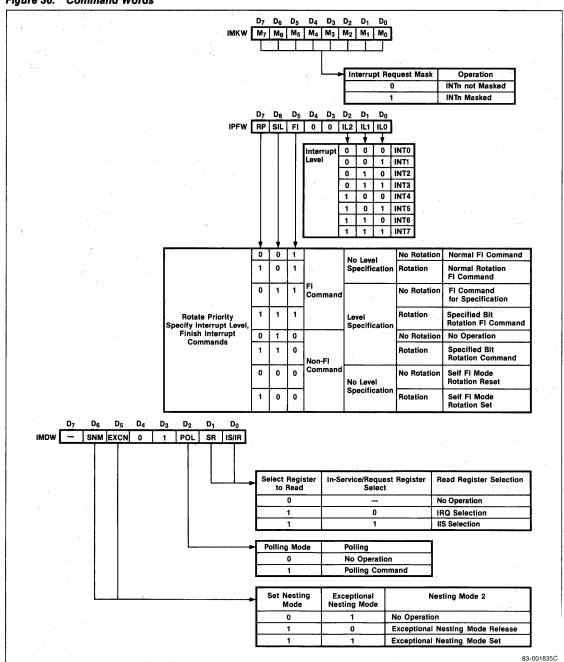
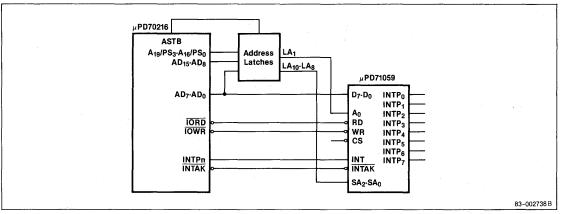



Figure 31. μPD71059 Cascade Connection

DMA Control Unit

The DMA Control Unit (DMAU) is a high-speed DMA controller compatible with the μ PD71071 DMA Controller. The DMAU has four independent DMA channels and performs high-speed data transfers between memory and external peripheral devices at speeds as high as 4 megabytes/second in an 8-MHz system. Figure 32 is the block diagram for the DMAU.

The DMAU has the following features.

- Four independent DMA channels
- Cascade mode for slave μPD71071 DMA controllers
- · 20-bit address registers
- 16-bit transfer count register
- · Single, demand, and block transfer modes
- · Bus release and bus hold modes
- Autoinitialization
- · Address increment/decrement
- Fixed/rotating channel priorities
- TC output at transfer end
- Forced termination of service by END input

DMAU Basic Operation

The DMAU operates in either a slave or master mode. In the slave mode, the DMAU samples the four DMARQ input pins every clock. If one or more inputs are active, the corresponding DMA request bits are set and the DMAU sends a bus request to the BAU while continuing of sample the DMA request inputs. After the BAU eturns the DMA bus acknowledge signal, the DMAU tops DMA request sampling, selects the DMA channel with the highest priority, and enters the bus master mode to perform the DMA transfer. While in the bus master mode, the DMAU controls the external bus and performs DMA transfers based on the preprogrammed thannel information.

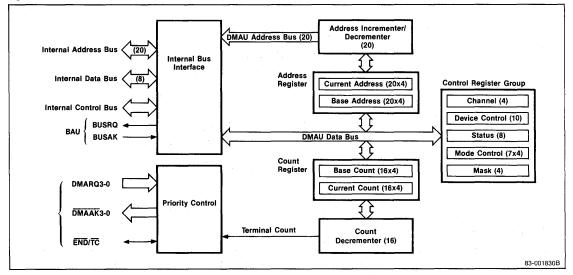
Terminal Count

The DMAU ends DMA service when the terminal count condition is generated or when the $\overline{\text{END}}$ input is asserted. A terminal count (TC) is produced when the contents of the current count register becomes zero. If autoinitialization is not enabled when DMA service terminates, the mask bit of the channel is set and the DMARQ input of that channel is masked. Otherwise, the current count and address registers are reloaded from the base registers and new DMA transfers are again enabled.

DMA Transfer Type

The type of transfer the DMAU performs depends on the following conditions.

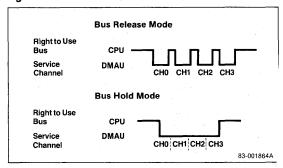
- Direction of the transfer (each channel)
- Transfer mode (each channel)
- Bus mode


Transfer Direction

All DMA transfers use memory as a reference point. Therefore, a DMA read operation transfers data from memory to an I/O port. A DMA write reads an I/O port and writes the data to memory. During memory-to-I/O transfer, the DMA mode (DMD) register is used to select the transfer directions for each channel and activate the appropriate control signals.

Operation	Transfer Direction	Activated Signals	
DMA read	Memory → I/0	IOWR, MRD	
DMA write	I/O → Memory	IORD, MWR	
DMA verify		Addresses only; no transfer performed	

Figure 32. DMAU Block Diagram



Bus Mode

The DMA device control (DDC) register selects operation in either the bus release or bus hold mode. The selected bus mode determines the DMAU conditions for return of the bus to the BAU. Figure 33 shows that in bus release mode, only one channel is serviced after the DMAU obtains the bus. When DMA service ends (termination conditions depend on the transfer mode), the DMAU returns the bus to the BAU regardless of the state of other DMA requests, and the DMAU reenters the slave mode. When the DMAU regains use of the bus, a new DMA operation can begin.

In bus hold mode, several channels can receive contiguous service without releasing the bus. If there is another valid DMA request when a channel's DMA service is finished, the new DMA service can begin immediately after the previous service without returning the bus to the BAU.

Figure 33. Bus Modes

Transfer Modes

The DMD register also selects either single, demand, or block transfer mode for each channel. The conditions for the termination of each transfer characterize each transfer mode. The following table shows the various transfer modes and termination conditions.

Transfer Mode	Termination Conditions After each byte/word transfer	
Single		
Demand	END input	
	Terminal count	
	Inactive DMARQ	
	DMARQ of a higher priority channel	
	becomes active (bus hold mode)	
Block	END input	
	Terminal count	

The operation of single, demand, and block mode transfers depends on whether the DMAU is in bus release or bus hold mode. Figure 34 shows the operation flow for the six possible transfer and bus mode operations in DMA transfer.

Single Mode Transfer. In bus release mode, when a channel completes transfer of a single byte or word, the DMAU enters the slave mode regardless of the state of DMA request inputs. In this manner, other lower-priority bus masters will be able to access the bus.

In bus hold mode, when a channel completes transfer of a single byte or word, the DMAU terminates the channel's service even if the DMARQ request signal is asserted. The DMAU will then service any other requesting channel. If there are no requests from any other DMA channels, the DMAU releases the bus and enters the slave state.

Demand Mode Transfer. In bus release mode, the currently active channel continues to transfer data as long as the DMA request of that channel is active, even though other DMA channels are issuing higher-priority requests. When the DMA request of the serviced channel becomes inactive, the DMAU releases the bus and enters the slave state.

In bus hold mode, when the active channel completes a single transfer, the DMAU checks the other DMA request lines without ending the current service. If there is a higher-priority DMA request, the DMAU stops the service of the current channel and starts servicing the highest-priority channel requesting service. If there is no higher request than the current one, the DMAU continues to service the currently active channel. Lower-priority DMA requests are honored without releasing the bus after the current channel service is complete.

Block Mode Transfer. In bus release mode, the current channel continues DMA transfers until a terminal count or the external END input becomes active. During this time, the DMAU ignores all other DMA requests. After completion of the block transfer, the DMAU releases the bus and enters the slave state, even if DMA requests from other channels are active.

In bus hold mode, the current channel transfers data until an internal or external END signal becomes active. When the service is complete, the DMAU phecks all DMA requests without releasing the bus. If here is an active request, the DMAU immediately begins servicing the request. The DMAU releases the pus after it honors all DMA requests or a higher-priority pus master requests the bus.

Byte/Word Transfer

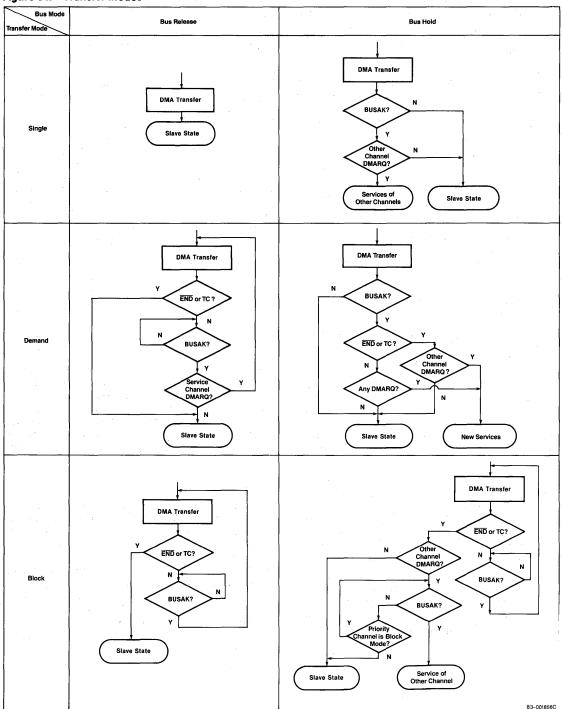
The DMD register can specify DMA transfers in byte or word units for each channel. Addresses and count registers are updated as follows during byte/word transfers.

	Byte Transfer	Word Transfer
Address register	±1	±2
Count register	-1	-1

During word transfers, two bytes starting at an even address are handled as a single word. If the starting address is odd, a DMA transfer is started after first decrementing the address by 1. For this reason, always select even addresses. The AD_0 and \overline{UBE} outputs control byte and word DMA transfers. The following shows the relationship between the data bus width, AD_0 and \overline{UBE} signals, and data bus status.

A ₀	UBE	Data Bus Status	
0	1	D ₇ -D ₀ valid	
1	0	D ₁₅ -D ₈ valid	
0	0	D ₁₅ -D ₀ valid	

Autoinitialize


When the DMD register selects autoinitialize for a channel, the DMAU automatically reinitializes the address and count registers when END is asserted or the terminal count condition is reached. The contents of the base address and base count registers are transferred to the current address and current count registers, and the applicable bit of the mask register remains cleared.

Channel Priority

Each of the four DMAU channels is assigned a priority. When multiple DMA requests from several channels occur simultaneously, the channel with the highest priority will be serviced first. The DDC register selects one of two priority schemes: fixed or rotating (figure 35). In fixed priority, channel 0 is assigned the highest priority and channel 3, the lowest. In rotating priority, priority order is rotated after each service so that the channel last serviced receives the lowest priority. This method prevents the exclusive servicing of higher-priority channels and the lockout of lower-priority DMA channels.

Figure 34. Transfer Modes

Cascade Connection

Slave μ PD71071 DMA Controllers can be cascaded to easily expand the system DMA channel capacity to 16 DMA channels. Figure 36 shows an example of cascade connection. During cascade operation, the DMAU acts as a mediator between the BAU and the slave μ PD71071s. All other bus outputs are disabled while a slave DMA controller is active.

The DMAU always operates in the bus hold mode while a cascade channel is in service, even when the bus release mode is programmed. Other DMA requests are held pending while a slave μ PD71071 channel is in service. When the cascaded μ PD71071 ends service and moves into the slave state, the DMAU also moves to the slave state and releases the bus. At this time, all bits of the DMAU request register are cleared. The DMAU continues to operate normally with the other noncascaded channels.

Figure 35. Priority Order

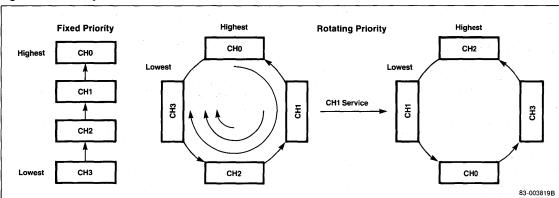
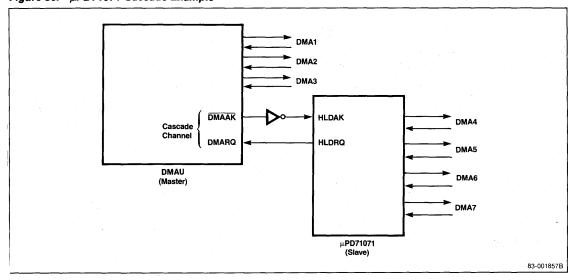



Figure 36. μPD71071 Cascade Example

Bus Waiting Operation

The DMAU will automatically perform a bus waiting operation (figure 37) whenever the RCU refresh request queue fills. When the DMA bus acknowledge goes inactive, the DMAU enters the bus waiting mode and inactivates the DMA bus request signal. Control of the bus is then transferred to the higher-priority RCU by the BAU.

Two clocks later, the DMAU reasserts its internal DMA bus request. The bus waiting mode is continued until the DMA bus acknowledge signal again becomes active and the interrupted DMA service is immediately restarted.

Programming the DMAU

To prepare a channel for DMA transfer, the following characteristics must be programmed.

- Starting address for the transfer
- Transfer count
- DMA operating mode
- Transfer size (byte/word)

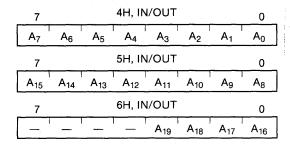
The contents of the OPHA and DULA registers determine the base I/O port address of the DMAU. Addresses A₃-A₀ are used to select a particular register as follow:

A ₃	A ₂	A ₁	A ₀	Register	Operation
0	0	0	0	DICM	Write
0	0	0	1	DCH	Read/Write
0	0	1	0	DBC/DCC (low)	Read/Write
0	0	1	1	DBC/DCC (high)	Read/Write
0	1	0	0	DBA/DCA (low)	Read/Write
0	1	0	1	DBA/DCA (high)	Read/Write
0	1	1	0	DBA/DCA (upper)	Read/Write
0	1	1	1	Reserved	
1	0	0	0	DDC (low)	Read/Write
1	0	0	1	DDC (high)	Read/Write
1	0	1	0	DMD	Read/Write
1	0	1	1	DST	Read
1	1	0	0	Reserved	
1	1	0	1	Reserved	_
1	1	1	0	Reserved	
1	1	. 1	1	DMK	Read/Write

Word I/O instructions can be used to read/write the register pairs listed below. All other registers are accessed via byte I/O instructions.

DBC/DCC
DBA/DCA (higher/lower only)
DDC

DMAU Registers


Initialize. The DMA initialize command (DICM) register (figure 38) is used to perform a software reset of the DMAU. The DICM is accessed using the byte OUT instruction.

Channel Register. Writes to the DMA channel (DCH) register (figure 39) select one of the four DMA channels for programming and also the base/current registers. Reads of the DCH register return the currently-selected channel and the register access mode.

Count Registers. When bit 2 of the DCH register is cleared, a write to the DMA count register updates both the DMA base count (DBC) and the DMA current count (DCC) registers with a new count. If bit 2 of the DCH register is set, a write to the DMA count register affects only the DBC register. The DBC register holds the initial count value until a new count is specified. If autoinitialization is enabled, this value is transferred to the DCC register when a terminal count or END condition occurs. For each DMA transfer, the current count register is decremented by one. The format of the DMA count register is shown below. The count value loaded into the DBC/DCC registers is one less than the desired transfer count.

	7	2H, IN/OUT				0		
	C ₇	C ₆	C ₅	C ₄	С3	C ₂	C ₁	C ₀
-								
	7			3H, IN	I/OUT			0

Address Register. Use either byte or word I/O instructions with the lower two bytes (4H and 5H) of the DMA address register. However, byte I/O instructions must be used to access the high-order byte (6H) of this register. When bit 2 of the channel register is cleared, a write to the DMA address register updates both the DMA base address (DBA) and the DMA current address (DCA) registers with the new address. If bit 2 of the DCH register is set, a write to the DMA address register affects only the DBA register.

The DBA register holds the starting address value until a new address is specified. This value is transferred to the DCA register automatically if autoinitialization is selected. For each DMA transfer, the current address register is updated by two during word transfers and by one during byte transfers.

Device Control Register. The DMA device control (DDC) register (figure 40) is used to to program the DMA transfer characteristics common to all DMA channels. It controls the bus mode, write timing, priority logic, and enable/disable of the DMAU.

Status Register. The DMA status (DST) register (figure 41) contains information about the current state of each DMA channel. Software can determine if a termination condition has been reached (TC₃-TC₀) or if a DMA service request is present (RQ₃-RQ₀). The byte IN instruction must be used to read this register.

Figure 37. Bus Waiting Operation

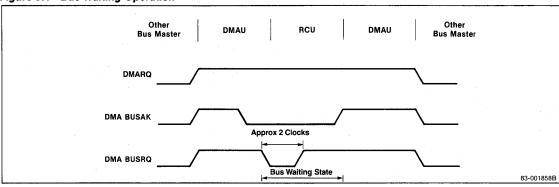


Figure 38. DMA Initialize Command Register

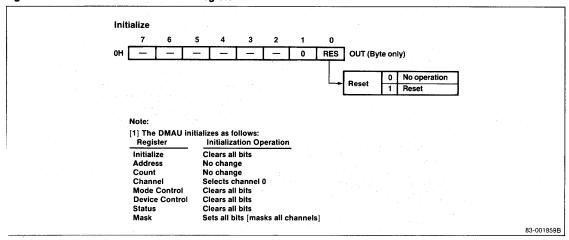


Figure 39. DMA Channel Register

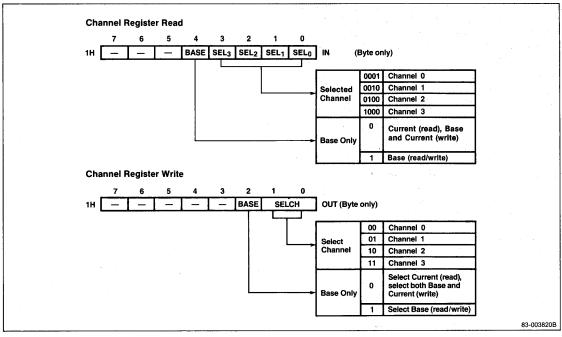


Figure 40. DMA Device Control Register

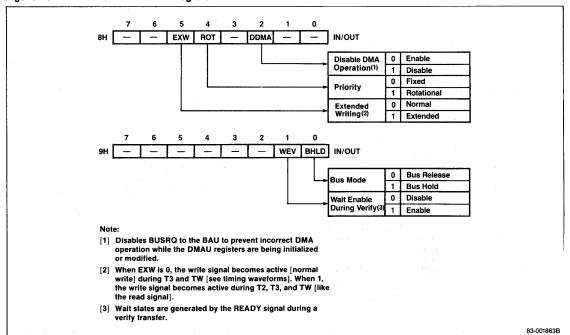
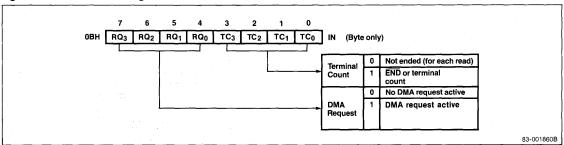



Figure 41. DMA Status Register

Mode Control Register. The DMA mode (DMD) register (figure 42) selects the operating mode for each DMA channel. The DCH register selects which DMD register will be accessed. A byte IN/OUT instruction must be used to access this register.

Mask Register Read/Write. The DMA mask (DMK) register (figure 43) allows software to individually enable and disable DMA channels. The DMK register can only be accessed via byte I/O instructions.

Reset

The falling edge of the $\overline{\text{RESET}}$ signal resets the $\mu\text{PD70216}$. The signal must be held low for at least four clock cycles to be recognized as valid.

CPU Reset State Register	Reset Value	
PFP	0000H	
PC	0000H	
PS	FFFFH	
SS	0000H	
DS0	0000H	
DS1	0000H	
PSW	F002H	
AW, BW, CW, DW,	Undefined	
IX, IY, BP, SP		
Instruction queue	Cleared	

When RESET returns to the high level, the CPU will start fetching instructions from physical address FFFF0H.

Internal Peripheral Devices

Internal peripheral devices initialized on reset are listed in the following table. I/O devices not listed are not initialized on reset and must be initialized by software.

	Register	Reset Value
System	OPCN	0000
I/O area	0PSEL	0000
	WCY1	11111111
	WCY2	1111
	TCKS	00000
	RFC	x 01000
SCU	SMD	01001011
	SCM	0000-0
	SIMK	11
	SST	10000100
	DCH	00001
	DMD	000000-0
DMAU	DDC (low)	00-0
	DDC (high)	00
	DST	xxxx0000
	DMK	1111

Symbols: x = unaffected; 0 = cleared; 1 = set; (-) = unused.

Output Pin Status

The following table lists output pin status during reset.

Signal	Status
INTAK, BUFEN, BUFE/W, MRD, MWR, END/TC, IOWR, IORD, REFRO, UBE, BS ₂ -BS ₀ , BUSLOCK, RESOUT, DMAAK3-DMAAKO	High level
QS ₁ -QS ₀ , ASTB, HLDAK	Low level
A ₁₉ -A ₁₆ /PS ₃ -PS ₀ , TOUT2	High or low level
AD ₁₅ -AD ₀	High impedance
CLKOUT	Continues to supply clock

Figure 42. DMA Mode Register

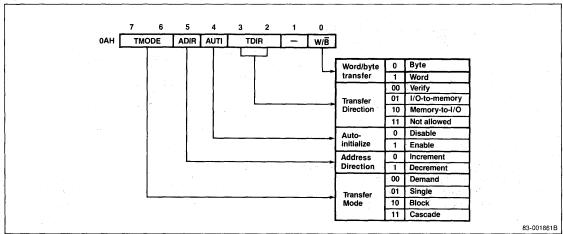
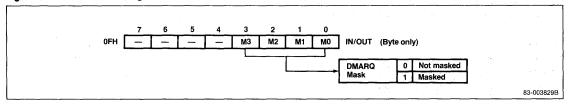



Figure 43. DMA Mask Register

Instruction Set

Symbols

Preceding the instruction set, several tables explain symbols, abbreviations, and codes.

Clocks

In the Clocks column of the instruction set, the numbers cover these operations: instruction decoding, effective address calculation, operand fetch, and instruction execution.

Clock timings assume the instruction has been prefetched and is present in the six-byte instruction queue. Otherwise, add four clocks for each pair of bytes not present.

Word operands require four additional clocks for each transfer to an unaligned (odd-addressed) memory operand. These times are shown on the right-hand side of the slash (/).

For conditional control transfer or branch instructions, the number on the left side of the slash is applicable if the transfer or branch takes place. The number on the right side is applicable if it does not take place.

If a range of numbers is given, the execution time depends on the operands involved.

Symbols

Symbol	Meaning
acc	Accumulator (AW or AL)
disp	Displacement (8 or 16 bits)
dmem	Direct memory address
dst	Destination operand or address
ext-disp8	16-bit displacement (sign-extension byte + 8-bit displacement)
far_label	Label within a different program segment
far_proc	Procedure within a different program segment
fp_op	Floating point instruction operation
imm	8- or 16-bit immediate operand

Symbol	Meaning
imm3/4	3/4-bit immediate bit offset
imm8	8-bit immediate operand
imm16	16-bit immediate operand
mem	Memory field (000 to 111); 8- or 16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
memptr16	Word containing the destination address within the current segment
memptr32	Double word containing a destination address in another segment
mod	Mode field (00 to 10)
near_label	Label within the current segment
near_proc	Procedure within the current segment
offset	Immediate offset data (16 bits)
pop_value	Number of bytes to discard from the stack
reg	Register field (000 to 111); 8- or 16-bit general-purpose register
reg8	8-bit general-purpose register
reg16	16-bit general-purpose register
regptr	16-bit register containing a destination address within the current segment
regptr16	Register containing a destination address within the current segment
seg	Immediate segment data (16 bits)
short_label	Label between -128 and $+127$ bytes from the end of the current instruction
sr .	Segment register
src	Source operand or address
temp	Temporary register (8/16/32 bits)
tmpcy	Temporary carry flag (1 bit)
AC	Auxiliary carry flag
AH	Accumulator (high byte)
AL	Accumulator (low byte)
AND	Logical product
AW	Accumulator (16 bits)
ВН	BW register (high byte)
BL	BW register (low byte)
BP	BP register
BRK	Break flag
BW	BW register (16 bits)
СН	CW register (high byte)
CL	CW register (low byte)

μPD70216 (V50)

Symbols (cont)

Symbol	Meaning											
CW	CW register (16 bits)											
CY	Carry flag											
DH	DW register (high byte)											
DIR .	Direction flag											
DL	DW register (low byte)											
DS0	Data segment 0 register (16 bits)											
DS1	Data segment 1 register (16 bits)											
DW	DW register (16 bits)											
IE	Interrupt enable flag											
IX	Index register (source) (16 bits)											
IY	Index register (destination) (16 bits)											
MD	Mode flag											
OR	Logical sum											
P	Parity flag											
PC	Program counter (16 bits)											
PS	Program segment register (16 bits)											
PSW	Program status word (16 bits)											
R	Register set											
S	Sign extend operand field S = 0 No sign extension S = 1 Sign extend immediate byte operand											
S	Sign flag											
SP	Stack pointer (16 bits)											
SS	Stack segment register (16 bits)											
V .	Overflow flag											
W	Word/byte field (0 to 1)											
X, XXX, YYY, ZZZ	Data to identify the instruction code of the external floating point arithmetic chip											
XOR	Exclusive logical sum											
XXH	Two-digit hexadecimal value											
XXXXH	Four-digit hexadecimal value											
Z	Zero flag											
()	Values in parentheses are memory contents											
	Transfer direction											
+	Addition											
+	Subtraction											
x	Multiplication											
<u>x</u>	Division											
%	Modulo											

Flag Operations

Symbol	Meaning
(blank)	No change
0	Cleared to 0
1	Set to 1
x	Set or cleared according to result
u	Undefined
R	Restored to previous state

Memory Addressing Modes

mem	mod = 00	mod = 01	mod = 10
000	BW + IX	BW + IX + disp8	BW + IX + disp16
001	BW + IY	BW + IY + disp8	BW + IY + disp16
010	BP + IX	BP + IX + disp8	BP + IX + disp16
011	BP + IY	BP + IY + disp8	BP + IY + disp16
100	IX	IX + disp8	IX + disp16
101	IY	IY + disp8	IY + disp16
110	Direct	BP + disp8	BP + disp16
111	BW	BW + disp8	BW + disp16

Register Selection (mod = 11)

reg	W = 0	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	СН	BP
110	DH	IX
111	ВН	· IY

Segment Register Selection

sr	Segment Register	
00	DS1	
01	PS	
10	SS	
11	DSO	****

									0	ocode							Flags		
Mnemonic	Operand	. 7	6	5	4	3	2	1	0	7 6	5	4 3	3 2 1 0	Clocks	Bytes	AC CY	V P	S	Z
Data Trai	nsfer Instructions														<u> </u>				
MOV	reg, reg	1	0	0	0	1	0	1	W	1 1	r	eg	reg	2	2				
	mem, reg	. 1	0	0	0	1	0	0	W	mod	r	eg	mem	7/11	2-4				
	reg, mem	1	0	0	0	1	0	1	W	mod	r	eg	mem	10/14	2-4				
	mem, imm	1	1	0	0	0	1	1	W	mod	r	eg	mem	9/13	3-6				
	reg, imm	1	0	1	1	W		reg						4	2-3				
	acc, dmem	1	0	1	0	0	0	0	W					10/14	3				
	dmem, acc	1	0	1	0	0	0	1	W					9/13	3				
	sr, reg16	. 1	0	0	0	1	1	1	0	1 1	0	sr	reg	2	2				
	sr, mem16	. 1	0	0	0	1	- 1	1	0	mod	0	sr	mem	10/14	2-4				
	reg16, sr	1	0	0	0	1	1	0	0	1 1	0	sr	reg	2	2				
	mem16, sr	1	0	0	0	1	1	0	0	mod	0	sr	mem	8/12	2-4				
	DS0, reg16, mem32	1	1	0	0	0	1	0	1	mod	r	eg	mem	17/25	2-4				
	DS1, reg16, mem32	1	1	0	0	0	1	0	0	mod	r	eg	mem	17/25	2-4			_	
	AH, PSW	1	0	0	1	1	1	1	1					2	1				
	PSW, AH	1	0	0	1	1	1	1	0					3	1	X X	х	х	х
LDEA	reg16, mem16	1	0	0	0	1	1	0	1	mod		reg	mem	4	2-4				
TRANS	src_table	1	1	0	1	0	1,	1	1					9	1				-
XCH	reg, reg	1	0	0	0	0	1	1	W	1 1	r	eg	reg	3	2				
	mem, reg	1	0	0	0	0	1	1	W	mod	r	eg	mem	13/21	2-4				
	AW, reg16	1	0	0	1	0		reg						3	1				_
Repeat P	refixes	i						_											
REPC		0	1	1	0	0	1	0	1		-			2	1				
REPNC		0	1	1	0	0	1	0	0				4.	2	1				
REP REPE		1	1	1	1	0	0	1	1					2	1				
REPZ REPNE REPNZ		1	- 1	1	1	0	0	1	0					2	1	<u> </u>			
Block Tra	nsfer Instructions	:	_					-											
MOVBK	dst, src	1	0	1	0	0	1	0	W				· · · · · · · · · · · · · · · · · · ·	9(9) + 8	1 Bn (W = 0) Bn (W = 1,	even add			
															16n (W = 12n (W =				ses
СМРВК	dst, src	1	0	1	0	0	1	1	W					7 (13) + 7 (21) +	1 14n (W = 14n (W = 22n (W = 18n (W =	0) 1, even a 1, odd ac	dress	ses) es)	
СМРМ	dst	1	0	1-	0	1	1	1	W					7(7) +	1 10n (W = 0 10n (W = 1 14n (W =)) I, even ac		es)	x

Instruct	ion S	et (coi	ıt)
----------	-------	---------	-----

Mnemonic	Operand		7	6	5	4	3	2	1		pcod		6	5	4	3	2	1	0	Clocks	Bytes	AC	CY		ags P	8	Z
Block Tran	sfer Instruc	tions (cor	nt)	_										_				_				-	-	1	÷		
LDM	src			0	1	0	1	1	0	W		-								7(7) + 9	1 n (W = 0) n (W = 1, 13n (W =	ever					
STM	dst		1	0	1	0	1	0	1	W										5 (5) + 4 5 (5) + 4	1 n (W = 0) n (W = 1, n (W = 1,	ever	ad	dre	sse	s)	
		Ctring i	notruot	ion	0 1/		lion	ole	oko	for									rns	are in par	onthocoo						
I/O Instruc	tions	String ii	iisti üüt	1011	GA	Ju	1011	CIC	CKS		as	iliy	6-1	1151	Tuc	1101	- GA	ccu	tion	are in par	CIILIICSES.						
IN IN	acc, imm8		1	1	1	0	0	1	0	w		÷			_					9/13	2			-			
	acc, DW						1		0			-	-		_				_	8/12	1		-				
OUT	imm8, acc			1		0		1		W	_		_							8/12	2						
	DW, acc		1	1	1	0	1	1	1	W	-			_	-			_		8/12	1					_	
INM	dst, DW		0	1	1	0	1	1	0	W										9 (10) +	1 8n (W = 0 8n (W = 1 16n (W =	i, eve					
OUTM	DW, src	-	0	1	1	0	1	1	1	W				-	-					9 (10) +	1 8n (W = 0 8n (W = 1 16n (W = 1	í, eve					
		n = number String instr Use the righ	uction	exe	cut											ex	ecu	tion	are	in parenth	neses.						
BCD Instr	uctions											_							•								
ADJBA			0	0	1	1	0	1	1	1										7	1	х	х	u	u	u	u
ADJ4A			. 0	0	_1	0	0	1	1	1										3	1	х	х	u	X	Х	х
ADJBS			0	0	1	1	1	1	1	1										7	1	х	Х	u	u	u	u
ADJ4S		· ·	0	0	1	0	1	1	1	1										3	1	Х	X	u	X	х	X.
ADD4S	dst, src		0	0	0	0	1	1	1	1		0	0	1	0	0	0	0	0	7 + 19n	2	u	х	u	u	u	Х
SUB4S	dst, src		0	0	0	0	1	_ 1	1	1		0	0	1	0	0	0	1	0	7 + 19n	2	u	х	u	· u	u	х
CMP4S	dst, src		0	0	0	0	1	1	1	1		0	0	1	0	0	1	1	0	7 + 19n	2	u	х	· u	u	u	X
ROL4	reg8		0 1	0	-	0	1	1	1 reg	1		0	0	1	0	1	0	0	0	13	3						
	mem8		0 m	0 od	0	0	- 1	1	1 me			0	0	1	0	1	0	0	0	25	3-5						
ROR4	reg8		0	0		0		1	1 reg	1		0	0	1	0	1	0	1	0	17	3						
	mem8		. 0 m	0 od	0	0	1		mei			0				1		1	0	29	3-5						
								n	=	nun	nber	of l	3CI	D di	igit	s di	vid	ed t)y 2								

INC

DEC

MULU

reg8

mem

reg16

reg8

mem

reg16

reg

mem

		_	_	_					Opco			_					_					lags			_
Mnemonic	Operand		6	5	4	3	2	1_	0	7	j	5	4	3		1	0	Clocks	Bytes	AC	CI	V	P	8	
	Conversion Instru																							_	
CVTBD		1	1	0	1	0	1	0	0	0 (1	0	15	2	u	u	u	Х	Х	×
CVTDB		1	1	0	1	0	1	0	1	0 ()	0	0	1	0	1	0	7	2	u	u	u	Х	X	×
CVTBW		1	0	0	1	1	0	0	0									2	1						
CVTWL		1	0	0	1	1	0	0	1									4/5	1						
Arithmetic	c Instructions										_														
ADD	reg, reg	0	0	0	0	0	0	1	W	1	1		reg	- 1		reg		2	2	_ X	X	Х	Х	X	Х
	mem, reg	0	0	0	0	0	0	0	W	mod	t		reg		r	nem	1	13/21	2-4	Х	Х	Х	Х	Х	Х
	reg, mem	0	0	0	0	0	0	1	W	mod	i		reg		r	nem	1	10/14	2-4	Х	Х	Х	Х	Х	×
	reg, imm	1	0	0	0	0	0	S	W	1	1	0	0	0		reg		4	3-4	Х	х	Х	х	Х	Х
	mem, imm	1	0	0	0	0	0	S	W	mod	1	0	0	0	ŗ	nem	1	15/23	3-6	Х	X	х	Х	X	x
	acc, imm	0	0	0	0	0	1	0	W									4	2-3	х	х	Х	Х	Х	· >
ADDC	reg, reg	0	0	0	1	0	0	1	W	1	1		reg			reg		2	2	x	X	Х	Х	Х	x
	mem, reg	0	0	0	1	0	0	0	W	mod	1		reg			nem	١.	13/21	2-4	X	х	х	Х	Х	×
	reg, mem	0	0	0	1	0	0	1	W	mod	1		reg		r	nem	1	10/14	2-4	Х	х	Х	X	×	X
	reg, imm	. 1	0	0	0	0	0	S	W	1	1	0	1	0		reg		4	3-4	Х	Х	х	Х	Х	×
	mem, imm	1	0	0	0	0	0	S	W	mod	ı	0	1	0	r	nem	1	15/23	3-6	Х	х	X	Х	Х	Х
,	acc, imm	0	0	0	1	0	1	0	W									4	2-3	X	х	Х	х	х	×
SUB	reg, reg	0	0	1	0	1	0	1	W	1	1		reg			reg	-	2	2	X	Х	X	Х	Х	x
	mem, reg	0	0	1	0	1	0	0	W	mod	j		reg		r	nem	1	13/21	2-4	Х	х	х	х	х	×
	reg, mem	0	0	1.	0	1	0	1	W	mod	1		reg		ı	nem	1	10/14	2-4	Х	X	·x	Х	Х	Х
	reg, imm	1	0	0	0	0	0	S	W	1	1	1	0	1	-	reg		4	3-4	X	Х	Х	Х	х	X
	mem, imm	1	0	0	0	0	0	S	W	mod	1	1	0	1	r	nem	1	15/23	3-6	Х	Х	х	Х	Х	X
	acc, imm	. 0	0	1	0	1	1	0	W		-							4	2-3	Х	X	х	х	Х	X
SUBC	reg, reg	0	0	0	1	1	0	1	W	1	1	_	reg			reg		2	2	X	X	x	Х	x	×
	mem, reg	0	0	0	1	1	0	0	W	mod	1		reg		r	nem	1 2	13/21	2-4	x	Х	Х	Х	x	->
	reg, mem	0	0	0	1	1	0	1	W	mod	i		reg		1	nem	1	10/14	2-4	Х	Х	X	Х	Х	· >
	reg, imm	1	0	0	0	0	0	S	W	1	1	0	1	1		reg	_	4	3-4	Х	Х	X	Х	X	`
	mem, imm	1	0	0	0	0	0	S	W	mo	1	0	1	1	Г	nem	1	15/23	3-6	X.	Х	х	Х	х	_,
							_					_													

1 1 1 1 1 1 1 0

1 1 1 1 1 1 W

1 1 1 1 1 1 0

1 1 1 1 1 1 W

1 1 1 1 0 1 1 W

1 1 1 1 0 1 1 W

reg

0 1 0 0 0

0 1 0 0 1

1 1 0 0 0

mod 0 0 0

1 1 0 0 1

mod 0 0 1

0 0

0 0

1 1 1

mod 1

2

2

2

2

13/21

13/21

21-30

26-35

reg

mem

reg

mem

reg

mem

2

2-4

1

2

2-4

1

2

2-4

Х

х

Х

Х

Х

x x x x

x x x

 \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}

· x x x x

 $x \quad x \quad x \quad x$

 \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}

 $\mathbf{u}\cdot\mathbf{x}\cdot\mathbf{x}\cdot\mathbf{u}\cdot\mathbf{u}\cdot\mathbf{u}$

 $\mathbf{u} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u}$

Instruction Set (cont)

Manmonic	Onerend	7 8 5	,	9	•	1	Opc		_		2	2 1 0	Clasks	Duton	Flags		,
Mnemonic	Operand	7 6 5	4	3			U	1 0	ð	4	J	2 1 0	Clocks	Bytes	AC CY V P	8 2	
	ic Instructions (cont)								_		_						_
MUL	reg	1 1 1	1	0	1		W	1 1	1	0		reg	33-47	2		u L	_
	mem	1 1 1	1	0	1	1	W	mod	1	0	1	mem	38-52	2-4		u L	_
	reg16,reg16,imm8	0 1 1	0	1	0	1	1	1 1		reg		reg	28-34	3		u L	
	reg16,mem16,imm8	0 1 1	0	1_	0	1	1	mod		reg		mem	33-39	3-5	u x x u	U L	<u></u>
	reg16,reg16,imm16	0 1 1	0	1	0	0	1	1 1		reg		reg	36-42	4	u x x u	uι	1
	reg16,mem16,imm16	0 1 1	0	1	0	0	1	mod		reg		mem	41-47	4-6	u x x u	uι	1
DIVU	reg	1 1 1	1	0	1	1	W	1 1	1		0	reg	19-25	2	uuuu	U L	1
	mem	1 1 1	1	0	1	1	W	mod	1	1	0	mem	24-30	2-4	u u u u	uι	1
DIV	reg	1 1 1	1	0	1	1	W	1 1	1	1	1	reg	29-43	2	uuuu	u ı	1
	mem	1 1 1	1	0	1	1.	W	mod	1	1_	1	mem	34-48	2-4	uuu	uι	ı
Compari	son Instructions																
CMP	reg, reg	0 0 1	1	1	0	1	W	111		reg		reg	2	2	x x x x	X X	ĸ
	mem, reg	0 0 1	1	1	0	0	W	mod		reg		mem	10/14	2-4	-x x x x	X X	Κ
	reg, mem	0 0 1	1	1	0	1	W	mod		reg		mem	10/14	2-4	x x x x	x >	κ
	reg, imm	1 0 0	0	0	0	S	W	1 1	1	1	1	reg	4	3-4	x x x x	X X	K
	mem, imm	1 0 0	0	0	0	S	W	mod	1	1	1	mem	12/16	3-6	x x x x	хх	ĸ
	acc, imm	0 0 1	1	1	1	0	W						4	2-3	x x x x	x >	ĸ
Logical I	nstructions											:					
NOT	reg	1 1 1	1	0	1	1	W	1 1	0	1	0	reg	2	2			Τ
	mem	1 1 1	1	0	1	1	W	mod	0	1	0	mem	13/21	2-4			_
NEG	reg	1 1 1	1	0	1	1	W	1 1	0	1	1	reg	2	2	x x x x	x >	ĸ
	mem	1 1 1	1	0	1	1	W	mod	0	1	1	mem	13/21	2-4	x x x x	X X	ĸ
TEST	reg, reg	1 0 0	0	0	1	0	W	1 1		reg		reg	2	2	u 0 0 x	ХХ	Κ
	mem, reg	1 0 0	0	0	1	0	W	mod		reg		mem	9/13	2-4	u 0 0 x	ХХ	K
	reg, imm	1 1.1	1	0	1	1	W	1 1	0	0	0	reg	4	3-4	u 0 0 x	хх	ς_
	mem, imm	1 1 1	1	0	1	1	W	mod	0	0	0	mem	10/14	3-6	u 0 0 x	хх	Κ
	acc, imm	1 0 1	0	1	0	0	W						4	2-3	и 0 0 х	X X	<u> </u>
AND	reg, reg	0 0 1	0	0	0	1	W	1 1		reg		reg	2	2	u 0 0 x	хх	ζ.
	mem, reg	0 0 1	0	0	0	0	W	mod		reg		mem	13/21	2-4	u 0 0 x	хх	χ
	reg, mem	0 0 1	0	0	0	1	W	mod		reg		mem	10/14	2-4	и 0 0 х	X X	 K
	reg, imm	1 0 0	0	0	0	0	W	1 1	1	0	0	reg	4	3-4	u 0 0 x	хх	 K
	mem, imm	1 0 0	0	0	0	0	W	mod	1	0	0	mem	15/23	3-6	и 0 0 х	X X	_ K
	acc, imm	0 0 1	0	0	1	0	W						4	2-3		x >	X
OR	reg, reg	0 0 0	0	1.	0	1	W	1 1	-	reg		reg	2	2		ХХ	_
	mem, reg	0 0 0	0	1	0	0		mod		reg		mem	13/21	2-4		x x	
	reg, mem	0 0 0	0	1.	0	1	w	mod	_	reg		mem	10/14	2-4		x >	_
	reg, imm	1 0 0	0	0	0	0		1 1	0		1	reg	4	3-4		x x	
	mem, imm	1 0 0	0	0	0		·W	mod	0		1	mem	15/23	3-6		XX	
	acc, imm	0 0 1	0	0	1		w		_		÷		4	2-3		x >	_

	on Set (cont)																						
Mnemonic	Operand	76	5	4	3	2	1	0pc 0		6	5	4	3	2	1 0	Clocks	Bytes	AC	CY		igs P	s	z
Logical I	nstructions (cont)		_							_													
XOR	reg, reg	0 0	1	1	0	0	1	W	1	1	-	reg		r	eg	2	2	u	0	0	х	х	x
	mem, reg	0 0	1	1	0	0	0	W	mo	d		reg		m	em	13/21	2-4	ù	0	0	х	х	Х
	reg, mem	0 0	1	1	0	0	1	W	mo	d		reg		m	em	10/14	2-4	и	0	0	х	х	X
	reg, imm	1 0	0	0	0	0	0	W	1	1	1	1	0	r	eg	4	3-4	u	0	0	Х	х	X
	mem, imm	1 0	0	0	0	0	0	W	mo	d	1	1	0	m	em	15/23	3-6	u	0	0	Х	х	Х
	acc, imm	0 0	1	0	0	1	0	W								4	2-3	u	0	0	Х	х	X
Bit Manip	pulation Instructions																						
INS	reg8, reg8	0 0 1 1	0	0 reg		1	1 reg	1	0	0	1	1	0	0	0 1	31-117/ 35-133	3						
	reg8, imm8	0 0 1 1	0	0	1 0	1	1 reg	1	0	0	1	1	1	0	0 1	31-117/ 35-133	4						
EXT	reg8, reg8	0 0	0	0 reg		1	1 reg	1	0	0	1	1	0	0	1 1	26-55/ 34-59	3						
	reg8, imm8	0 0	0	0	1	1	1 reg	1	0	0	1	1	1	0	1 1	26-55/ 34-59	4						
TEST1	reg, CL	0 0 1 1	0	0	1	1	1 reg	1	0	0	0	1	0	0	0 W	3	3	u	0	0	u	u	X
	mem, CL	0 0 mod	0	0	1		1 men		0	0	0	1	0	0	0 W	7/11	3-5	u	0	0	u	u	х
	reg, imm3/4	0 0	0	0	1		1 reg	1	0	0	0	1	1	0	0 W	4	4	u	0	0	U	u	X
	mem, imm3/4	0 0 mod	0	0	1		1 men		0	0	0	1	1	0	0 W	8/12	4-6	u	0	0	u	u	х
SET1	reg, CL	0 0 1 1	0	0	1		1 reg	1	0	0	0	1	0	1	0 W	4	3						
	mem, CL	0 0 mod	0	0	1		1 men		0	0	0	1	0	1	0 W	10/18	3-5						
	reg, imm3/4	0 0 1 1	0	0	1		1 reg	1	0	0	0	1	1	1 (0 W	5	4						
	mem, imm3/4	0 0 mod	0	0	1		1 men		0	0	0	1	1	1	0 W	11/19	4-6						
	CY	1 1	1	1	1	0	0	1								2	1		1				
	DIR	1 1	1	1	1	1	0	1		•••						2	1						
CLR1	reg, CL	0 0 1 1	0	0	1	1	1 reg	1	0	0	0	1	0	0	1 W	5	3		-	-			
	mem, CL	0 0 mod	0	0	1	1	1 men		0	0	0	1	0	0	1 W	11/19	3-5						
	reg, imm3/4	0 0	0	0	1	1	1 reg	1	0	0	0	1	1	0	1 W	6	4						
	mem, imm3/4	0 0 mod	0	0	1	1	1 men		0	0	0	1	1	0	1 W	12/20	4-6						
	CY	1 1	1	1	1	0	0	0								2	1		0				
	DIR	1 1	1	1	1	1	0	0								2	1				_		

Instruction Set (cont)

Mnemonic	Operands	7 6	5	4	3	2		pcode 7	6	5	4	3	2	. 0	Clocks	Bytes	AC I		lags P	s	Z
Bit Manip	oulation Instructions	(cont)																			
NOT1	reg, CL	0 0 1 1		0	1		1 1 eg	0	0	0	1	0	1.	1 W	4	3					
	mem, CL	0 0 mod	0	0	1	-	1 1 em	0	0	0	1	0	1	1 W	10/18	3-5					
	reg, imm3/4	0 0 1 1	0	0	1		1 1 eg	0	0	0	1	1.	.1	i W	5	4					*
	mem, imm3/4	0 0 mod	0	0	1		1 1 em	0	0	0	1	1	1	1 W	11/19	4-6					
	CY	1 1	1	1	0	1	0 1								2	1		X			
Shift/Rot	ate Instructions																				
SHL	reg, 1	1 1	0	1	0	0	0 W	1	1	1	0	0 -	r	eg	2	2	u :	х х	х	х	х
	mem, 1	1 1	0	1	0	0	0 W	mo	d	1.	0	0	m	em	13/21	2-4	u	X)	X	Х	Х
	reg, CL	1 1	0	1	0	0	1 W	1	1	1	0	0	re	eg .	7 + n	2	u :	x u	Х	х	Х
	mem, CL	1 1	0	1	0	0	1 W	mo	d	1	0	0	m	em	16/24 + n	2-4	u :	x u	х	Х	Х
	reg, imm8	1 1	0	0	0	0	0 W	1	1	1	0	0	r	eg	7 + n	3	u :	x u	х	х	Х
	mem, imm8	1 1	0	0	0	0	0 W	mo	d	1	0	0	m	em	16/24 + n	3-5	u :	x u	х	Х	Х
HR	reg, 1	1 1	0	1	0	0	0 W	1	1	1	0	1	re	eg .	2	2	u	х х	х	х	Х
	mem, 1	1 1	0	1	0	0	0 W	mo	d	1	0	1	m	em	13/21	2-4	u :	х х	Х	х	Х
	reg, CL	1 1	0	1	0	0	1 W	1,	1	1	0	1	r	eg	7 + n	2	u :	x u	х	х	Х
	mem, CL	1 1	0	1	0	0	1 W	mo	d	1	0	1	m	em	16/24 + n	2-4	u :	x u	Х	х	Х
	reg, imm8	1 1	0	0	0	0	0 W	1	1	1	0	1	r	eg	7 + n	3	u	x u	Х	х	Х
	mem, imm8	1 1	0	0	0	0	0 W	mo	d	1	0	1	m	em	16/24 + n	3-5	u .	x u	х	х	Х
SHRA	reg, 1	1 1	0	1	0	0	0 W	1	1	1	1	1		reg	2	2	u	x 0	х	х	х
	mem, 1	. 1 1	0	1	0	0	0 W	mo	d	1	1	1	m	em	13/21	2-4	u	x 0	х	х	Х
	reg, CL	1 1	0	1	0	0	1 W	1	1	1	1	1	r	eg	7 + n	2	u	X U	X	Х	Х
	mem, CL	1 1	0	1	0	0	1 W	mo	d	1	1	1	m	em	16/24 + n	2-4	u	ΧU	х	Х	Х
	reg, imm8	1 1	0	0	0	0	0 W	. 1	1	1	1	1	r	eg	7 + n	3	u	x u	х	х	Х
	mem, imm8	1 1	0	0	0	0	0 W	mo	d	1	1	1	m	em	16/24 + n	3-5	u	ΧU	Х	х	Х
ROL	reg, 1	1 1	0	1	0	0	0 W	1	1	0	0	0	r	eg	2	2		X X	:		
	mem, 1	1 1	0	1	0	0	0 W	mo	d.	0	0	0	m	em	13/21	2-4		X X			
	reg, CL	1 1	0	1	0	0	1 W	1	1	0	0	0	r	eg e	7 + n	2		Χl	1		
	mem, CL	1 1	0	1	0	0	1 W	mo	d	0	0	0	m	em	16/24 + n	2-4		Χι	1		
	reg, imm	1:1	0	0	0	0	0 W	1	1	0	0	0	r	eg .	7 + n	3		Χι	1		
	mem, imm	1 1	0	0	0	0	0 W	mo	d	0	0	0	m	em	16/24 + n	3-5		Χι	1		
OR	reg, 1	1 1	0	1	0	0	0 W	1	1	0	0	1	r	eg	2	2	-	ΧL	1		
	mem, 1	1 1	0	1	0	0	0 W	mo	d	0	0	1	m	em	13/21	2-4		x >			
	reg, CL	1 1	0	1	0	0	1 W	1	1	0	0	1	r	eg	7 + n	2		Χι			
	mem, CL	1 1	0	1	0	0	1 W	mo	d	0	0	1	m	em	16/24 + n	2-4	-	Χι			
	reg, imm8	1 1	0	0	0	0	0 W	1	1	0	0	1	r	eg	7 + n	3		Χ·ι	ı		
	mem, imm8	1 1	0	0	0	0	0 W	mo	d	0	0	1	m	em	16/24 + n	3-5		Χl	ı		_
									n	1 =	ינות	mh:	er of	shifts		***************************************					

										ode									Flags		
Mnemonic	Operands		6	5	4	3	_2	1	0	7 6	5	4	3	2 1 0	Clocks	Bytes	AC	CY	V P	<u> </u>	Z
	ate Instructions (co																				
ROLC	reg, 1	1	1	0	1		0		W	1 1		1		reg	2	2		X	X		
	mem, 1		1	0	1		0	0	W	mod	0	1	0	mem	13/21	2-4		Х	X		
	reg, CL	1	1	0	1		0	1	W	1 1	_0	1	0	reg	7 + n	2		X	u		
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	0	mem	16/24 + n			Х	u		
	reg, imm8	1	1	0	0		0	0		1 1	0	1	0	reg	7 + n	3		X	u		
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	1	0	mem	16/24 + n	3-5		X	u		
RORC	reg, 1	. 1	1	0	1	0	0	0	W	1 1	0	1	1	reg	2	2		X	Х		
	mem, 1	1	1	0	1	0	0	0	W	mod	0	1	1	mem	13/21	2-4		Х	<u> </u>		
	reg, CL	1	1	0	1	0	0	1	W	1 1	0	1	1	reg	7 + n	2		Х	u		
	mem, CL	1	1	0	1	0	0	1	W	mod	0	1	1	mem	16/24 + n	2-4		_X	u		
	reg, imm8	1	1	0	0	0	0	0	W	1 1	0	1	1	reg	7 + n	3		Х	u		
	mem, imm8	1	1	0	0	0	0	0	W	mod	0	1	1,	mem	16/24 + n	3-5		Х	u	_	
											n =	nu	mbe	r of shifts	<u> </u>						
Stack Ma	nipulation Instruction	ons																			
PUSH	mem16	1	1	1	1	1	1	1	1	mod	1	1	0	mem	15/23	2-4					
	reg16	0	1	0	1	0		reg							6/10	1					
	sr	- 0	0	0		sr	1	1	0						6/10	1					
	PSW	1	0	0	1	1	1	0	0		-				6/10	1					
	R	0	1	1	0	0	0	0	0						33/65	1		-			
	imm	0	1	1	0	1	0	S	0						5-6/9-10	2-3	-				
POP	mem16	1	0	0	0	1	1	1	1	mod	0	0	0	mem	16/24	2-4					
	reg16	0	1	0	1	1		reg							8/12	1					
	sr	0	0	0		sr	1	1	1						8/12	1 .					
	PSW	1	0	0	1	1	1	0	1						8/12	1	R	R	R R	R	R
	R	0	1	1	0	0	0	0	1						43/75	1					
PREPARE	imm16, imm8	1	1	0	0	1	0	0	0						*	4			٠.		
										mm8 =			Q (in	nm8 — 1)							
DISPOSE		1	1	0	0	1	0	0		11110 / 1	- 17		0 (11	17	6/10	1		-			
	ransfer Instructions			-											0/10		<u> </u>				
CALL	near_proc		1	1	0	1	0	0	0						16/20	3					
UALL	regptr	1	1	1			. 1			. 1 1	n	1	n	reg	14/18	1				_	
	memptr16	1	1	1	_ <u>'</u> 1		1	1	1	mod	0		_ 0	mem	23/31	2-4					
	far_proc	1	0	0	1		0	1	0	mou			U	1110111	21/29	5				_	
					_				1	mad		_	1	mom		2-4					
	memptr32		1	1	1	1	1	_1	1	mod	0	1	1	mem	31/47	Z-4					

1 1 0 0 1 0 1 1

1 1 0 0 1 0 1 0

pop_value

1

3

21/29

24/32

Instruction Set (cont)

Mnemonic	Operands	7	6	5	4	3	2	1	Opci O		5	4	3	2 1 0	Clocks	Bytes	AC	; CY		lags P	s	Z
Control 1	Transfer Instructions	(cont)																				
BR	near_label	1	1	1	0	1	0	0	1						13	3						
	short_label	1	1	1	0	1	0	0	1						12	2						
	reg	1	1	1	1	1	1	1	1	1: 1	1	0	0	reg	11	2						
	memptr16	1	1.	1	1	1	1	1	1	mod	1	0	0	mem	19/23	2-4						
	far_label	1	1	1	0	1	0	1	0						15	5						
	memptr32	1	1	1	1	1	1	1	1	mod	1	0	1	mem	26/34	2-4						
BV	near_label	0	1	1	1	0	0	0	0						14/4	2					_	
BNV	near_label	0	1	1	1	0	0	0	1						14/4	2						
BC, BL	near_label	0	1	1	1	0	0	1	0						14/4	2						
BNC, BNL	near_label	0	1	1	1	0	0	1	1						14/4	2						
BE, BZ	near_label	0	1	1	1	0	1	0	0						14/4	2						
BNE, BNZ	near_label	0	1	1	1	0	1	0	1						14/4	2						
BNH	near_label	0	1	1	1	0	1	1	0						14/4	2						
ВН	near_label	0	1	1	1	0	1	1	1						14/4	2 .	- 1					
BN	near_label	0	1	1	1	1	0	0	0						14/4	2						
BP	near_label	0	1	1	1	1	0	0	1						14/4	2						
ВРЕ	near_label	0	1	1	1	1	0	1	0						14/4	2						
BP0	near_label	0	1	1	1	1	0	1	1						14/4	2						
BLT	near_label	0	1	1	1	1	1	0	0						14/4	2						
BGE	near_label	0	1	1	1	1	1	0	1						14/4	2						
BLE	near_label	0	1	1	1	1	1	1.	0						14/4	2						
BGT	near_label	0	1	1	1	1	1	1	1						14/4	2						
DBNZNE	near_label	. 1	1	1	0	0	0	0	0						14/5	2						
DBNZE	near_label	1	1	1	0	0	0	0	1						14/5	2						
DBNZ	near_label	1	1	1	0	0	0	1	0						13/5	2						
BCWZ	near_label	1	1	1	0	0	0	1	1						13/5	2						-
Interrupt	Instructions																					
BRK	3	1	1.	0	0	1	1	0	0						38/50	1						
	imm8	1	1	0	0	1	1	0	1						38/50	2					-	
BRKV	imm8	1	1	0	0	1	1	1	1.		,				40/3	1						
RETI		1	1	0	0	1	1	1	0					-	27/39	1	R	R	R	R	R	R
CHKIND	reg16, mem32	0	1	1	0	0	0	1	0	mod		reg	j	mem	52-55/ 17-25	2-4	-					
BRKEM	imm8	0	0	0	0	1	1	1	1	. 1 1	1	1	1	1 1 1	38/50	3						
CPU Con	trol Instructions																					
HALT		1	1	1	1	0	1	0	0		7				2	1		-			_	
BUSLOCK		1	1	1	1	0	0	0	0		, 1				2	1					_	
FP01	fp_op	1	1	0	1	1	Х	Χ	Χ	1 1	Υ	. Y	. Y	ZZZ	2	2			_			
	fp_op, mem	1	1	0	1	1.	Χ	Х	Χ	mod	Υ	Υ	Υ	mem	10/.14	2-4						
FP02	fp_op	0	1	1	0	0	1	1	Χ	1 1	Υ	Υ	Υ	ZZZ	2	2		_	_			
	fp_op, mem	0	1	1	0	0	1	1	Х	mod	Υ	Υ	Υ	mem	10/14	2-4			_			

Instruction Set (cont)

					_	_		0	pcod	ie												_	Flag	gs	_	
Mnemonic Operand	7	6	5	4	3	2	1	0	•	7	6	5	4	3	2	1	0	Clocks	Bytes	AC	; (Y:			8	Z
CPU Control Instructions (cont)																							_			
POLL	1	0	0	1	1	0	1	1										2 + 5n	1		_					
					n	= r	num	ber	of t	time	es F	OL.	L p	in i	S S	amı	oled.									
NOP	1	0	0	1	0	0	0	0										3	1							
DI	1	1	1	1	1	0	1	0										2	1		_					
El	1	1	1	1	1	0	1	1										2	1							
DS0:, DS1:, PS:, SS: (segment override prefixes)	0	0	1	s	eg	1	1	0										2	1							
8080 Instruction Set Enhancemen	ts																									
RETEM	1	1	1	0	1	1	0	1		1	1	1	1	1	1	0	1	27/39	2	R	P	₹ F	1	R	R	R
CALLN imm8	1	1	1	0	1	1	0	1		1	1	1	0	1	1	0	1	38/58	3			_				

μPD70616 (V60™) 32-BIT VIRTUAL MEMORY CMOS MICROPROCESSOR

PRELIMINARY INFORMATION

Description

The μ PD70616 (V60) is a high-performance, secondgeneration 32-bit microprocessor designed for a wide range of applications including personal computers. engineering workstations, and industrial controllers. The V60 includes advanced features such as thirty-two 32-bit general-purpose registers and a powerful instruction set optimized for high-level languages and operating systems such as UNIX™ and MS-DOS®. The on-chip demand-paged memory management and floating point units further increase performance and design flexibility.

Performance in the µPD70616 is enhanced by pipelining internal operations such as instruction prefetch, instruction decode, address translation, and instruction execution. Software development and debugging is fully supported by instruction breakpoints, single-step traps, and address traps. Emulation mode allows porting of μ PD70108/ μ PD70116 application software to run without modification and with the full protection of the demand-paged virtual memory system. The ability to execute software from the large established base of μ PD70108/ μ PD70116 applications under a host operating system such as UNIX provides an upgrade path from 16-bit architectures yet preserves existing software investments.

Features

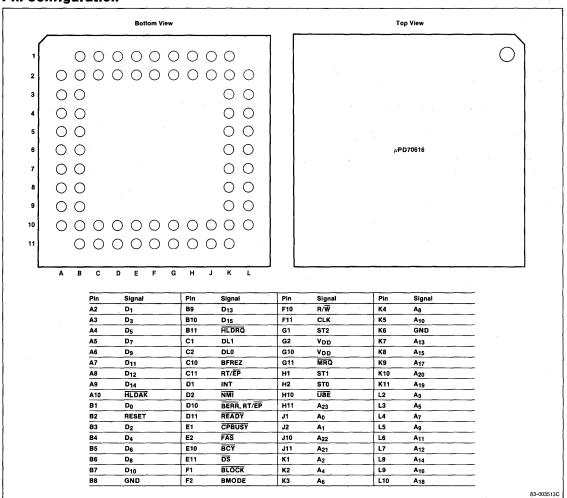
- ☐ 32-bit high-performance CMOS microprocessor ☐ Thirty-two 32-bit general-purpose registers
- ☐ On-chip demand-paged memory management unit
- - 4-gigabyte virtual address space
 - 2-level translation scheme (area/page)
 - 4 levels of protection
 - 16-megabyte physical address space
 - 16 entry translation lookaside buffer (TLB)
- ☐ Supported data types include
 - 8-, 16-, 32-, 64-bit integers
 - 32-, 64-bit floating point
 - 8-, 16-bit characters
 - Bit, bit field and bit string
- ☐ 21 powerful addressing modes plus bit addressing
- ☐ Context switching and operating system support
- ☐ V20[™]/V30[™] emulation mode
- ☐ Flexible hardware debugging support
 - Breakpoints
 - Instruction trace
 - Address traps
- ☐ Functional redundancy monitor (FRM)

Ordering Information

Part Number	Package	Maximum Frequency
μPD70616R	68-pin PGA	16 MHz

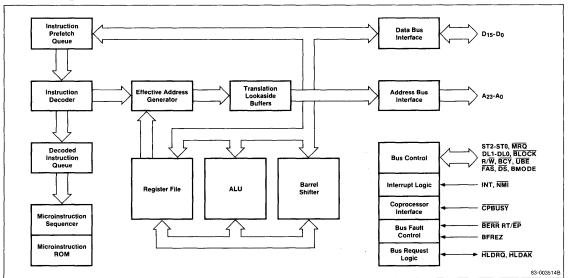
Pin Identification

Symbol	Function
A ₂₃ -A ₀	24-bit address bus output
D ₁₅ -D ₀	16-bit data bus I/0
ST2-ST0	Bus status output
MRQ	Memory request output
R/W	Read/write output
DS	Data strobe output
BCY	Bus cycle output
DL1-DL0	Data length output
FAS	First data access output
UBE	Upper byte enable output
READY	Ready input
BMODE (FRM)	Bus mode input Functional redundancy monitor
BLOCK (MSMAT)	Bus lock output Mismatch
BERR	Bus error input
BFREZ	Bus freeze input
RT/EP	Retry/exception input
NMI	Non-maskable interrupt input
INT	Interrupt input
HLDRQ	Hold request input
HLDAK	Hold acknowledge output
CPBUSY	Coprocessor busy input
RESET	Reset input
CLK	Clock input
V _{DD}	Power
GND	Ground

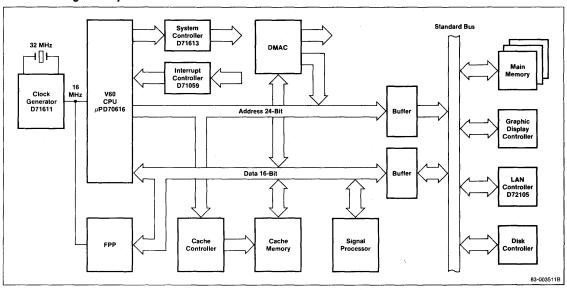

UNIX is a trademark of AT&T Bell Labs.

MS-DOS is a registered trademark of Microsoft Inc.

V20, V30, and V60 are trademarks of NEC Corporation.



Pin Configuration



Block Diagram

Applications

V60 CPU Design Example 1

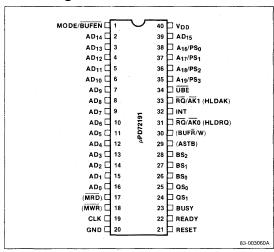
PRELIMINARY INFORMATION

Description

The μ PD72191 is a high-performance, low-power CMOS floating point processor (FPP) for the NEC V20-V50 microprocessors. The μ PD72191 uses innovative architecture and a powerful instruction set to enhance the performance of V20-V50 microprocessors in computationally-intensive applications such as graphics and scientific data processing. A powerful set of arithmetic, transcendental, and processor control instructions increases performance and decreases code size, yet maintains code compatibility.

Hardware features such as dual data buses, barrel shifter, and normalization logic contribute significantly to the μ PD72191 throughput. The μ PD72191 can operate in either the V20/V30 or V40/V50 mode, eliminating the need for external logic.

The µPD72191's low-power CMOS technology makes high-performance numeric calculation in portable scientific applications realizable for the first time.


Features

- ☐ High-performance floating point processor for V20-V50 microprocessors
- ☐ Conforms to the IEEE 754 floating point standard
- □ Seven hardware-supported data types
 16-, 32-, and 64-bit binary integer
 - 32-, 64-, and 80-bit binary floating point
 - Packed decimal
- ☐ Complete set of transcendental functions
 - Exponential
 - Logarithmic
 - Trigonometric and inverse trigonometric
 - Hyperbolic
- ☐ High-speed exponent and mantissa ALUs
- ☐ Barrel shifter and normalization logic
- □ Built-in exception handling
- ☐ MODE pin selects V20/V30 or V40/V50 systems
- □ Low-power CMOS technology

Ordering Information

Part	Package	Maximum Frequency
Number	Туре	of Operation
μPD72191D	40-pin ceramic DIP	8 MHz

Pin Configuration

Pin Identification

Symbol	Direction	Function
A ₁₉ -A ₁₆ / PS ₃ -PS ₀	In/Out	Multiplexed address/processor status bus
A ₁₅ -AD ₀	In/Out	Multiplexed address/data bus
AD ₁₅ -A ₈	Out	Address bus
ASTB	Out	Address strobe
BS ₂ -BS ₀	In/out	Bus status
BUFR/W	Out	Buffer read/write
BUSY	Out	Execution unit busy
RQ/AKO, RQ/AK1	In/Out	Request/acknowledge 0, 1
HLDAK	In	Hold acknowledge
HLDRQ	Out	Hold request
READY	ln -	Ready
RESET	In	Reset
CLK	In	CPU clock
GND		Ground
V_{DD}		+5 V power supply
MWR	Out	Memory write strobe
MRD	Out	Memory read strobe
UBE	In/Out	Upper byte enable
INT	Out ·	Interrupt request
QS ₁ -QS ₀	In	CPU queue status
MODE/BUFEN	In/Out	Mode select/external data buffer enable
NC		Not connected

Operating Mode Pin Configurations

The μ PD72191 assumes one of four possible pin configurations depending on the processor used within the system. When used in the V20/V30 mode, the μ PD72191 uses the bus status outputs and an external μ PD71088 bus controller to generate the memory read/write and address strobe signals. This mode also selects the same bus request protocol as the maximum mode V20/V30 microprocessors.

Figure 1. Pin Configuration for V20 Mode (µPD70108 Microprocessor)

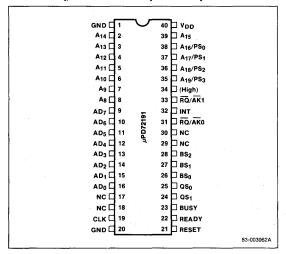
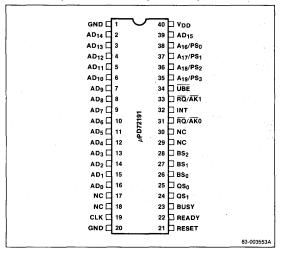



Figure 2. Pin Configuration for V30 Mode (μPD70116 Microprocessor)

When used in the V40/V50 mode, the μ PD72191 will directly generate the control signals for external bus transceivers, memory read/write, and address strobe outputs. In addition, the μ PD72191 will select the HLDRQ/HLDAK protocol used by the V40/V50 microprocessors.

Pin 34 is used to select operation with either an 8- or 16-bit bus system. Figures 1 through 4 show the pin configurations for the μ PD72191 floating point processor.

Figure 3. Pin Configuration for V40 Mode (μPD70208 Microprocessor)

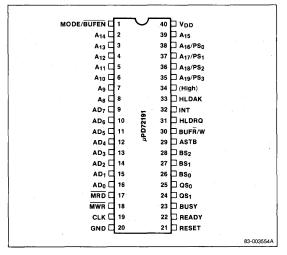
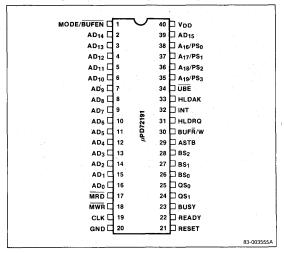
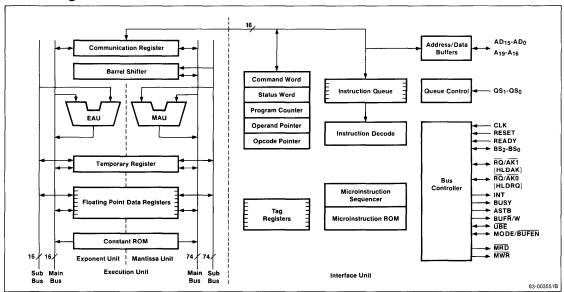




Figure 4. Pin Configuration for V50 Mode (μPD70216 Microprocessor)

Block Diagram

NMOS MICROPROCESSORS

Section 4 — NMOS Microprocessors

μPD780	High-Performance CP/M® - Compatible 8-Bit	
•	Microprocessor 4	1-3
μPD8085A/AH	8-Bit, Single-Chip Microprocessors 4-	27
μPD8086	16-Bit Microprocessor 4-	47
μPD8088	High-Performance 8-Bit Microprocessor 4-	59
CD/M is a registered tra	domark of Digital Research Inc	

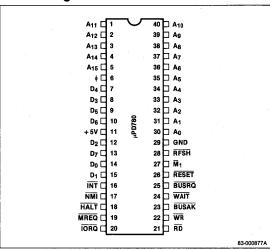
μPD780 HIGH-PERFORMANCE CP/M[®]-COMPATIBLE NMOS 8-BIT MICROPROCESSOR

Description

The μ PD780 is a microprocessor that utilizes a highly consistent architectural organization, a comprehensive instruction set that is a superset of the industry-standard 8080A instruction set, and third-generation technology, to provide a flexible, high-performance, efficient CPU easily adaptable to a very broad range of industrial and commercial applications.

All software developed on 8080A-based systems may be run on 780-based systems as a subset of the full 780 instruction set. In addition, the NEC μ PD780 is fully pin-compatible and software-compatible with the Z80® microprocessor and is therefore perfectly suited for CP/M® designs. The NEC μ PD780 provides system designers with powerful, wide-range logic capability that requires minimal additional circuitry to complete a microcomputer system.

The output signals of the μ PD780 are fully decoded and signal timing is fully compatible with industry-standard memory and peripheral devices. Two faster versions of the basic μ PD780 (2.5 MHz master clock rate) are offered by the μ PD780-1 (4 MHz master clock rate) and the μ PD780-2 (6 MHz master clock rate). Other than clock rates, all three versions are identical.


Features

☐ Powerful, wide-range logic capability requiring minimal support circuitry ☐ Fully Z80® -compatible ☐ Industry-standard 8080A software compatibility □ CP/M® -compatible ☐ Comprehensive, powerful instruction set featuring 158 instruction types □ Vectored, multilevel interrupt structure ☐ Highly consistent architectural structure featuring dual register set □ Foreground/background programming Automatic refreshing of external dynamic memory ☐ Signal timing compatible with industry-standard memory and peripheral devices ☐ TTL-compatible signals ☐ Single-phase +5 V clock and +5 V DC power supply

P CP/M is a registered trademark of Digital Research Corporation.

Discussion 2015 280 is a registered trademark of Zilog, Inc.

Pin Configuration

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD780C	40-pin plastic DIP	2.5 MHz
μPD780C-1	40-pin plastic DIP	4 MHz
μPD780C-2	40-pin plastic DIP	6 MHz

Pin Identification

No.	Symbol	Function
1-5, 30-40	A ₀ -A ₁₅	Three-state address bus (output)
6	ф	Clock input
7-10, 12-15	D ₀ -D ₇	Three-state, I/O data bus
11	+5 V	Power supply
16	INT	Interrupt request input
17	NMI	Non-maskable interrupt input
18	HALT	Halt state input
19	MREQ	Memory request output
20	IORQ	I/O request output
21	RD	Read output
22	WR	Write output
23	BUSAK	Bus acknowledge output
24	WAIT	Wait state input
25	BUSRQ	Bus request input
26	RESET	Reset input
27	M ₁	Machine cycle 1
28	RFSH	Refresh output
29	GND	Ground

Pin Functions

A₀-A₁₅ (Address Bus)

16-bit, three-state output address bus. During refresh operations, lines A_0 - A_6 output the external memory address.

D₀·D₇ (Data Bus)

8-bit, three-state I/O data bus.

NMI (Non-Maskable Interrupt)

This active low input line is used for non-maskable interrupts. A non-maskable interrupt is always acknowledged at the end of the current instruction, regardless of whether the interrupt enable flip flop has been turned on, except when the BUSRQ signal is asserted. Because of the higher priority of the BUSRQ signal, it is acknowledged before the NMI signal. When NMI is acknowledged, program execution automatically restarts from location 0066H.

INT (Interrupt Request)

This active low input line is used for interrupt requests by external I/O devices. Interrupts are serviced upon completion of the current instruction if the interrupt enable flip flop has been turned on by the software. There are three interrupt response modes: the mode 0 response is equivalent to an 8080 interrupt response; mode 1 uses location 0038H as a restart address; and mode 2 is a simple vectoring to an interrupt service routine that can be located anywhere in memory.

BUSRQ (Bus Request)

This active low input signal is used to place the data bus, address bus, and all three-state bus control signals (WR, RD, IORQ, and MREQ) in a high-impedance state to allow a requesting device to assume bus control. The BUSRQ signal has a higher priority than the NMI signal and is always honored at the end of the current machine cycle.

Excessive DMA operations resulting in long periods in which BUSRQ is asserted can impair the CPU's ability to adequately refresh the dynamic RAMs. Also, BUSRQ does not have an internal pull-up resistor. For input signals to this pin in a wire-OR'ed configuration, an external pull-up resistor should be used.

BUSAK (Bus Acknowledge)

This active low output line is used to inform the device requesting bus control that the data bus, address bus, and all three-state bus controls (WR, RD, IORQ, and MREQ) are in a high-impedance state and the requesting device can now assume control.

WR (Write)

This three-state active low output is used to strobe data from the data bus to external memory or I/O devices. \overline{WR} is asserted to indicate the data bus holds valid data. This line is three-stated during halt or reset conditions.

IORQ (I/O Request)

This three-state active low output is used to indicate the lower half of the address bus holds a valid address for an I/O read or write. During interrupt acknowledge cycles, \overline{IORQ} and \overline{M}_1 are asserted together to indicate that a vector address can be sent to the data bus.

RD (Read)

This three-state active low output is used to strobe data from external memory or I/O devices onto the data bus. \overline{RD} is asserted to indicate the CPU is requesting data from external memory or I/O devices. This line is three-stated during halt or reset conditions.

MREQ (Memory Request)

This three-state active low output is used to indicate that the address specified for the memory read or write is valid.

M₁ (Machine Cycle 1)

This active low output is used to indicate that the current machine cycle is the opcode fetch phase of an instruction execution.

HALT (Halt State)

This active low input is used with the HALT instruction to initiate a halt state. When HALT is asserted, program execution stops and does not resume until an interrupt is generated. During the halt state, NOPs are executed in order to continue memory refresh operations.

WAIT (Wait State)

This active low input is used to indicate that the external memory or I/O devices addressed by the CPU are not ready to transfer data. When $\overline{\text{WAIT}}$ is asserted, the CPU is placed in a wait condition.

RESET

This active <u>low input signal</u> is used to initialize the CPU. When RESET is asserted, the interrupt enable flip flop is reset, the program counter and the I and R registers are cleared, and interrupt response mode 0 is enabled. In a reset condition, the address and data busses are three-stated and all output control signals are inactive, after which program execution begins from address 0000.

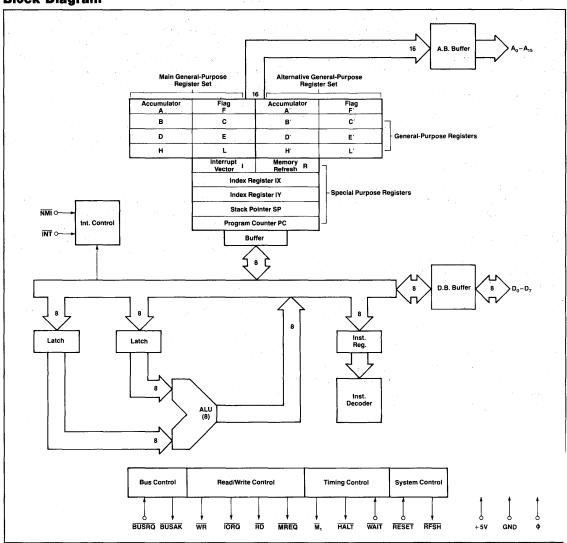
The pulse width of $\overline{\text{RESET}}$ must be a minimum of 3 clock cycles in length to reinitialize the CPU and stabilize operation.

RFSH (Refresh)

This active low output is used in conjunction with the MREQ signal to initiate a refresh read of all external dynamic memory. RFSH and MREQ are both asserted when the least significant 7 bits of the address on the address bus hold a valid external dynamic memory address.

This line is an input for external clock sources.

+5 V


Single +5 V power supply.

GND

Ground.

Block Diagram

Architecture

The architecture includes a dual set of six 8-bit generalpurpose registers and two 8-bit accumulators and flag registers. A flexible vectored interrupt structure is supported by an 8-bit interrupt vector register that provides the most-significant 8 bits of a pointer to a table of vector addresses, while the requesting device generates the least-significant 8 bits of the pointer. Two 16-bit index registers enable the manipulation of tabular data as well as facilitating code relocation.

Multilevel interrupts as well as virtually unlimited subroutine nesting are supported by a 16-bit stack pointer and complimentary 16-bit program counter, enhancing the speed and efficiency of a wide variety of datahandling operations. Processing efficiency is additionally supported by a special memory refresh register that enables automatic refreshing of all external dynamic memory with minimal processor overhead.

The dual set of general-purpose registers may be used as individual 8-bit registers or paired as 16-bit registers. The dual register set (including a dual accumulator and flag register) not only allows more powerful addressing and data transfer operations, but also permits programming in foreground/background mode for vastly improved throughput.

Standard Test Conditions

The standard test conditions reference all voltages to ground (0 V) and follow the convention that positive current flows into the referenced pin. The listing of AC parameters is based on a load capacitance of 50 pF unless explicitly stated otherwise. For every 50 pF increase in load capacitance there is a 10 ns delay, up to a maximum increase of 200 pF for the data bus and 100 pF for the address bus and the bus control lines.

The operating temperature range is: 0°C to +70°C; +4.75 V \leq V_{CC} \leq +5.25 V.

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

0°C to +70°C
-65°C to +150°C
-0.3 to +7 V (1)
1.5 W

Note:

(1) With respect to ground.

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25^{\circ}C$

Parameter Symbol Min	imits		Test		
	Symbol	Min	Max	Unit	Conditions
Clock capacitance	Сф		35	ρF	f _c =1 MHz
Input capacitance	CIN		5	pF	Unmeasured pins
Output capacitance	COUT		10	pF	returned to ground.

DC Characteristics

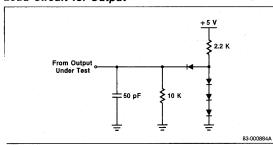
 $T_A = 0$ °C to +70°C; $V_{CC} = +5$ V \pm 5% unless otherwise specified

					Test		
Parameter		Symbol	Min	Тур	Max	Unit	
Clock input low voltage		V _{ILC}	-0.3		0.45	V	
Clock input high voltage		V _{IHC}	V _{CC} -0.6		V _{CC} +0.3	٧	
Input low volt	age	V _{IL}	-0.3		0.8	٧	
Input high vol	Itage	V _{IH}	2.0		V _{CC}	٧	
Output low voltage Output high voltage		V _{OL}			0.4	٧	l_{OL} =1.8 mA
Output high v	oltage	v_{OH}	2.4			٧	$I_{OH} = -250 \mu A$
Power supply	μPD780	1 _{CC}			150	mΑ	t _C =400 ns
Current	μPD780-1	Icc		90	200	mΑ	$t_C = 250 \text{ ns}$
Input leakage	current	ել			10	μΑ	$V_{IN} = 0$ to V_{CC}
Three-state ou leakage curren		ILOH			10	μΑ	V _{OUT} =2.4 to V _{CC}
Three-state ou leakage curren		lLOL			10	μΑ	V _{OUT} =0.4 V
Data bus leak current in inp		ILD			±10	μΑ	0≤V _{IN} ≤V _{CC}

AC Characteristics $T_A = 0^{\circ}C$ to +70°C; $V_{CC} = +5 \text{ V} \pm 5\%$; unless otherwise specified

				nits				
	μPD780	(2.5 MHz)	μ PD780 -	1(4 MHz)	μ PD780-2	(6 MHz)		Test
Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
tc	0.4	- (1)	0.25	(1)	0.165	(1)	μS	
t _W (∳H)	180	(2)	110	(2)	65	(2)	ns	
t _W (φL)	180	2000	110	2000	72	2000	ns	
t _R f		30		30		20	ns	
t _{D(AD)}		145		110		90	ns	
t _{F(AD)}		110		90		80	ns	
t _{ACM}	(3)		(3)		(3)		ns	$C_L = 50 pF$
t _{ACI}	(4)		(4)		(4)		ns	
^t CA	(5)		(5)		(5)		ns	
tCAF	(6)		(6)		(6)		ns	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
t _{D(D)}		230		150		130	ns	
t _{F(D)}		90	-	90		80	ns	
tsø(D)	50		35		30		ns	
t _{Sϕ(D)}	60		50		40		ns	$C_L = 200 pF$
tDCM	(7)		(7)		(7)		ns	
t _{DCI}	(8)		(8)		(8)		ns	
t _{CDF}	(9)		(9)		(9)		ns	
t _{S(BQ)}	80		50		50		ns	
t _{DL(BA)}		120		100		90	ns	
t _{DH(BA)}		110		100		90	ns	$C_L = 50 pF$
t _{F(C)}		100		- 80	: .	70	ns	
t _{MR}	(10)		(10)		(10)		ns	
t _H	0		0		0		ns	
t _{D(HT)}		300		300	****	260	ns	$C_L = 50 pF$
t _{S(IT)}	80		80		70		ns	
t _{DL} (IR)		90		75		65	ns	
t _{DL} (IR)		110		85		70	ns	
		100		85		70	ns	
t _{DH} ∳(IR)		110		85		- 70	ns	$C_L = 50 pF$
t _{DL(M1)}		130		100		80	ns	
		130		100		80	ns	
		100		85		70	ns	
	,	100		85		70	ns	
tDH∳(MR)		100	,	85		70	ns	
t _{w(MRL)}	(11)		(11)		(11)		ns	
tw(MRH)	(12)		(12)		(12)	····	ns	
t _{W(NML)}	80		80		70		ns	
t _{S(RS)}	90		60		60 .		ns	
		100		85		70	ns	
		130		95		80	ns	
t _{DH} (RD)		100	·	85	*	70	ns	
	tc tw(\$\psi H) tw(\$\psi H) tw(\$\psi H) tw(\$\psi L) tref tD(AD) tF(AD) tACM tACI tCA tCAF tD(D) tF(D) e tS\$\psi(D) tDCM tDCI tCDF tS(BQ) tDL(BA) tDH(BA) tF(C) tMR tH tD(HT) tS(IT) tDL\$\psi(IR) tDH\$\psi(IR)	Symbol Min tc	tc 0.4 (1) tw(♦H) 180 (2) tw(♦L) 180 2000 tRf 30 tD(AD) 145 tF(AD) 110 tACM (3) tACI (4) tCA (5) tCAF (6) tD(D) 230 tF(D) 90 e t\$♦(D) 50 t\$\$\forall (BA) 120 tD(BA) 110 tF(C) 100 tMR (10) tH 0 0 tD(HBA) 110 tF(C) 100 tMR (10) tH 0 0 tD(HT) 300 tD(HT) 30	Symbol Min Max Min tC 0.4 (1) 0.25 tW(♦H) 180 (2) 110 tW(♦L) 180 2000 110 tRf 30 30 30 tDADD 145 44 44 tF(ADD) 110 44 44 tACI (4) (4) (4) tCAF (6) (6) (6) tD(D) 230 44 44 44 tCAF (6) (6) (6) 60 60 60 50 tF(D) 90	Symbol Min Max Min Max t _C 0.4 (1) 0.25 (1) t _W (φH) 180 (2) 110 (2) t _W (φL) 180 2000 110 2000 t _R f 30 30 30 t _D (AD) 145 110 10 90 t _C AD (3) (3) (3) (3) t _{ACM} (3) (3) (3) (3) t _{AC} M (3) (3) (3) (3) t _{AC} M (4)	Symbol Min Max Min Max Min t _C 0.4 (1) 0.25 (1) 0.165 t _W (♦H) 180 (2) 110 (2) 65 t _W (♠L) 180 2000 110 2000 72 t _R 30 30 30 11 10<	Symbol Min Max Min Max Min Max t _C 0.4 (1) 0.25 (1) 0.165 (1) t _W (∳L) 180 (2) 110 (2) 65 (2) t _W (♠L) 180 2000 110 2000 72 2000 t _R f 30 30 30 20 t _D (AD) 145 110 90 80 t _E (AD) 110 90 80 t _{ACM} (3) (3) (3) (3) t _{ACM} (4) (4) (4) (4) t _{CAF} (6) (6) (6) (6) t _{CAF} (6) (6) (6) (6) t _{D(D)} 230 150 130 t _{ECDF} (9) 90 90 80 t S _S (D) 50 35 30 150 t _{DC} (7) (7) (7) (7)	Symbol Min Max Min Max Min Max Unit t _C 0.4 (1) 0.25 (1) 0.165 (1) μS t _W (ψL) 180 (2) 110 (2) 65 (2) ns t _W (ψL) 180 2000 110 2000 72 2000 ns t _M (ψL) 180 2000 110 2000 72 2000 ns t _M (ψL) 180 2000 110 2000 72 2000 ns t _M (DD) 145 110 90 80 ns ns t _{ACI} (3) (3) (3) (3) ns ns t _{ACA} (5) (5) (5) (5) (5) (5) ns t _{CAF} (6) (6) (6) (6) (6) ns ns ns t _D (O) 230 150 30 30 ns ns

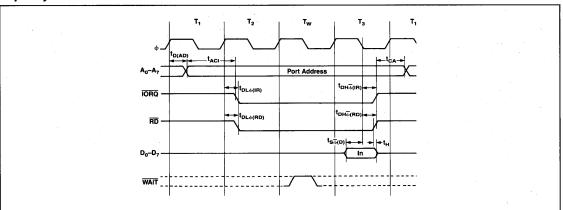
AC Characteristics (cont)

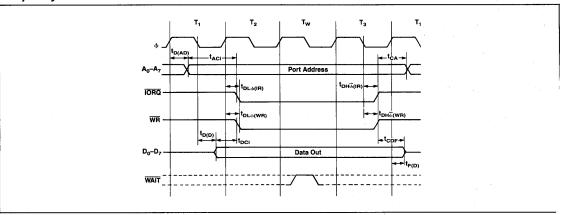

 $T_A = 0$ °C to +70°C; $V_{CC} = +5$ V \pm 5%; unless otherwise specified

				Lin	nits				
		μPD780 ((2.5 MHz)	μPD780-	i(4 MHz)	μPD780-2	(6 MHz)		Test
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
RFSH delay from rising edge of clock to RFSH low	t _{DL(RF)}		180		130		110	ns	$C_L = 30 pF$
RFSH delay from rising edge of clock to RFSH high	^t DH(RF)		150		120		100	ns	
WAIT setup time to falling edge of clock	t _{S(WT)}	70		70		60		ns	
WR delay from rising edge of clock to WR low	t _{DL}		80		65		60	ns	
WR delay from falling edge of clock WR low	t _{DL} √(WR)		90		80		70	ns	
WR delay from falling edge of clock to WR high	t _{DH} (WR)		100		80		70	ns	
Pulse width to WR low	t _{W(WRL)}	(13)	-	(13)		(13)		ns	

Notes:

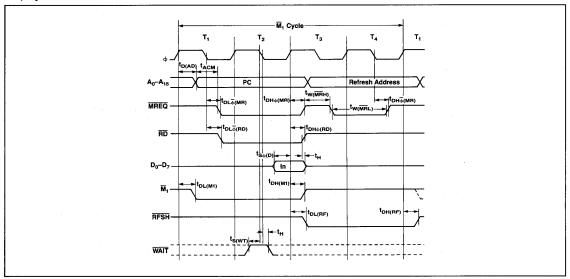
- (1) $t_C = t_W(\phi H) + t_W(\phi L) + t_R + t_F$
- (2) Though the structure of the 780 is static, 200µs is guaranteed maximum.
- (3) $t_{ACM} = t_{W}(\phi H) + t_{F} 65 (75)^{*} (50)^{**}$
- (4) $t_{ACI} = t_{C} 70 (80)^{*} (55)^{**}$
- (5) $t_{CA} = t_W(\phi L) + t_R 50 (40)^* (50)^{**}$ (6) $t_{CAF} = t_W(\phi L) + t_R 45 (60)^* (40)^{**}$
- (7) $t_{DCM} = t_C 170 (210)^* (140)^{**}$
- (8) $t_{DCI} = t_W(\phi L) + t_R 170 (210)^* (140)^{**}$
- (9) $t_{CDF} = t_W(\phi L) + t_R 70 (80)^* (55)^{**}$
- (10) $t_{MR} = 2t_{C} + t_{W}(\phi H) + t_{F} 65 (80)^{*} (50)^{**}$
- (11) $t_W(MRL) = t_C 30 (40)^* (30)^{**}$
- (12) $t_W(MRH) = t_W(\phi H) + t_F 20 (30)^* (20)^{**}$ (13) $t_W(WR) = t_C 30 (40)^* (30)^{**}$
- * These values apply to the μ PD780.
- ** These values apply to the μ PD780-2.

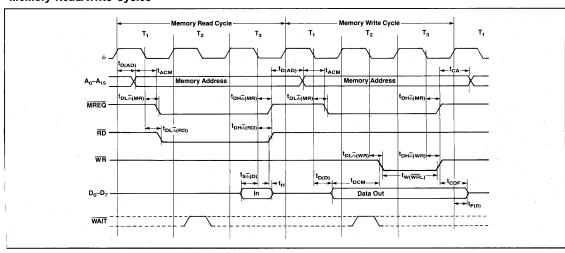

Load Circuit for Output



Timing Waveforms

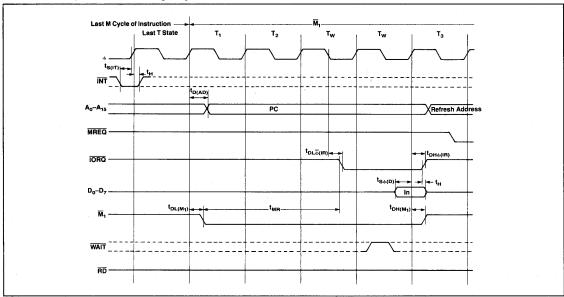
Input Cycle


Output Cycle



Timing Waveforms (cont)

M₁ Cycle


Memory Read/Write Cycles

Timing Waveforms (cont)

Interrupt Request/Acknowledge Cycle

Input and Output Cycles

In I/O operations, a single wait state (T_W) is automatically included to provide adequate time for an I/O port to decode the address from the port address lines and initiate a wait condition if needed.

Opcode Fetch Instruction Cycle

At the beginning of the cycle, the contents of the program counter are placed on the address bus. After approximately one-half cycle, $\overline{\text{MREQ}}$ is asserted and its falling edge can be used directly by the external memory as a chip enable signal. The data from the external memory can be gated onto the data bus when $\overline{\text{RD}}$ is asserted. The CPU reads the data at the rising edge of T_3 . During T_3 and T_4 , external dynamic memory is refreshed while the instruction is decoded and executed. The assertion of $\overline{\text{RFSH}}$ indicates that the external dynamic memory requires a refresh read.

Memory Read or Write Cycles

In read and write operations, the $\overline{\text{MREQ}}$ and $\overline{\text{RD}}$ signals function the same as they do in opcode fetch operations. In a write operation $\overline{\text{MREQ}}$ is asserted and can be used directly by external memory as a chip enable signal when information on the address bus is stable. The $\overline{\text{WR}}$ signal is used as a write strobe to almost any type of semiconductor memory, and is asserted when data on the data bus is stable.

Interrupt Request/Acknowledge Cycle

The interrupt signal is sampled at the rising edge of the final clock pulse at the end of an instruction. When an interrupt is accepted, an M_1 cycle is begun. Instead of $\overline{\text{MREQ}}$, $\overline{\text{IORQ}}$ is asserted during this cycle to indicate that an 8-bit vector address can be placed on the data bus by the interrupting device. This cycle includes the automatic addition of two wait states to facilitate the implementation of a daisy-chain priority interrupt protocol.

Instruction Set

The instruction set of the $\mu PD780$ consists of 158 types of instructions divided into 16 categories as follows:

8-bit load operations register exchanges memory block searches 16-bit arithmetic operations rotate and shift operations I/O operations jump operations restart operations miscellaneous operations 16-bit load operations memory block transfers

8-bit arithmetic and logic operations bit set, reset, and test operations call operations return operations general-purpose accumulator and flag operations

This comprehensive instruction set is made more powerful by the array of addressing modes implemented by the architecture, as follows:

bit addressing register-indirect addressing immediate-extended immediate addressing extended addressing implied addressing register addressing

relative addressing addressing indexed addressing modified page zero addressing

Instruction Set Symbol Definitions

Symbol	Description
•	Flag not affected
0	Flag set
Х	Flag
‡	Flag affected according to result of operation
V	Overflow set
Р	Parity set
IFF	Interrupt flip-flop set
C	Carry/Link
Z	Zero
P/V	Parity/Overflow
S	Sign
N	Add/Subtract
Н	Half Carry

Instruction Set

Mnemonic	Operation	Description	Operation Code 7 6 5 4 3 2 1 0	No. of Clocks	No. of Bytes	C	Z	Fla P/V	ags S	N	Н
ADC HL, ss	HL ← HL + ss + CY	Add with carry reg. pair ss to HL	1 1 1 0 1 1 0 1 (A) 0 1 s s 1 0 1 0	15	1	‡	\$	٧	‡	0	X
ADC A, r	A ← A + r + CY	Add with carry Reg. r to ACC	1 0 0 0 1 r r r ^(B)	4	1	‡	\$	٧	‡	0 -	\$
ADC A, n	A ← A + n + CY	Add with carrry value n to ACC	1 1 0 0 1 1 1 0 n n n n n n n	7	2	\$	\$	٧	‡	0	\$
ADC A, (HL)	A ← A + (HL) + CY	Add with carry loc. (HL) to ACC	1 0 0 0 1 1 1 0	7	1	\$	\$	٧	\$	0	\$
ADC A, (IX + d)	A ← A + (IX + d) + CY	Add with carry loc. (IX + d) to ACC	1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 d d d d d d d	19	3	\$	‡	V	\$	0	\$
ADC A, (IY + d)	A ← A + (IY + d) + CY	Add with carry loc. (IY + d) to ACC	1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 d d d d d d d	19	3	\$	\$	V	\$	0	‡
ADD A, n	A ← A + n	Add value n to ACC	1 1 0 0 0 1 1 0 n n n n n n n	7	2	‡	\$	٧	\$	0	\$
ADD A, r	A ← A + r	Add Reg. r to ACC	10000rrr ^(B)	4	1	‡	‡	٧	\$	0	\$
ADD A, (HL)	A ← A + (HL)	Add location (HL) to ACC	1 0 0 0 0 1 1 0	7	1	\$	\$	٧	\$	0	\$
ADD A, (IX + d)	A ← A + (IX + d)	Add location (IX + d) to ACC	1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 d d d d d d d	19	3	\$	\$	٧	\$	0	\$
ADD A, (IY + d)	A ← A + (IY + d)	Add location (IY + d) to ACC	1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 d d d d d d d	19	3	‡	\$	٧	‡	0	\$
ADD HL, ss	HL ← HL + SS	Add Reg. pair ss to HL	0 0 s s 1 0 0 1 ^(A)	11	1	‡	•	•	•	0.	X
ADD IX, pp	IX ← IX + pp	Add Reg. pair pp to IX	1 1 0 1 1 1 0 1 ^(C) 0 0 p p 1 0 0 1	15	2	‡	•	•	•	0	X
ADD IY, rr	IY ← IY + rr	Add Reg. pair rr to IY	1 1 1 1 1 1 0 1 ^(D) 0 0 r r 1 0 0 1	15	2	‡	•	•	•	0	X
AND r	A ← A ∧ r	Logical 'AND' of Reg. r A ACC	10100rrr ^(B)	4	1	0	\$	Р	\$. 0	‡
AND n	A ← A ∧ n	Logical 'AND' of value n A ACC	1 1 1 0 0 1 1 0 n n n n n n n	7	2	0	\$	Р	\$	0	\$
AND (HL)	A ← A Λ (HL)	Logical 'AND' of loc. (HL) Λ ACC	1 0 1 0 0 1 1 0	7	1	0	\$	Р	\$	0	\$
AND (IX + d)	A ← A ∧ (IX + d)	Logical 'AND' of loc. (IX + d) Λ ACC	1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 d d d d d d d	19	3	0	. \$	Р	\$	0	‡
AND (IY + d)	A ← A ∧ (IY + d)	Logical 'AND' of loc. (IY + d) A ACC	1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 d d d d d d d	19	3	0	\$	Р	\$	0	\$

menachon set (cont)

			_					Cod		_	No. of	No. of		_		ags_		
Mnemonic	Operation	Description	7	- 6	5	4		2	1		Clocks	Bytes			P/V		N	
CPIR	A – (HL)	Compare location (HL) and ACC,						. 1			21 if BC = 0	2	•	‡ (2)	‡ ⁽¹⁾	\$	1	\$
	HL ← HL + 1 BC ← BC − 1	increment HL, decrement BC Repeat until BC = C	1	0	1	1	0	0	0	1 .	and $A \neq (HL)$ 16 if BC = 0							
	until A = (HL) or BC = 0	nepeat ann bo = 0									or A = (HL)							
CPL	A← A	Complement ACC (1's comp.)	0	0	1	0	1	1	1	1	4	1	•	•	•	•	1	1
DAA		Decimal adjust ACC	0	0	1	0	0	1	1	1	4	1	‡	\$	Р	\$	•	\$
DEC r	r ← r – 1	Decrement Reg. r	0	0	r	r	ŗ	1	0	1 (B)	4	1	•	‡	٧	‡	1	\$
DEC (HL)	(HL) ← (HL) – 1	Decrement loc. (HL)	0	0	1	_1	0	1	0	1	11	1	•	\$	Ý	\$	1	\$
DEC (IX + d)	$(IX + d) \leftarrow (IX + d) - 1$	Decrement loc. (iX + d)	- :		-			1		1	23	3	•	‡	٧	‡	1	\$
			0 d					1 d		1 d								
DEC (IY + d)	$(IY + d) \leftarrow (IY + d) -1$	Decrement loc. (IY + d)	1	1	1	1	1	1	0	1	23	3	•	\$	٧	*	1	\$
			0			1				1								
					_			d										
DEC IX	IX ← IX – 1	Decrement IX						1 0		1 1	10	2	•	•	•	•		•
DEC IY	IY ← IY – 1	Decrement IY						1			10	2	•	•	•	•	•	•
	· · · · · · · · · · · · · · · · · · ·							0										
DEC ss	ss ← ss – 1	Decrement Reg. pair ss	0	.0	S	S	1	0	1	1 ^(A)	6	1	•	•	•	•	•	
DI	IFF ← 0	Disable interrupts	1	1	1	1	0	0	1	_1	4	1	•	•	•	•	•	•
DJNZ, e	B \leftarrow B - 1 if B = 0 continue if B \neq 0, PC \leftarrow PC + e	Decrement B and jump relative if $B = 0$	0	0		1 ← e		0 → 1	0	0 ,	8	2	•	•	•	•	•	•
EI	IFF ← 1	Enable interrupts	1	1	1	1	1	0	1	1	4	1	•	•	•	•	•	•
EX (SP), HL	H ↔ (SP + 1), L ↔ (SP)	Exchange the location (SP) and HL	1	1	1	0	0	0	1	1	19	1	•	•	•	•	•	•
EX (SP), IX	IX _H ↔ (SP + 1) IX _L ↔ (SP)	Exchange the location (SP) and IX						1			23	2	•	•	•	٠	•	•
EX (SP), IY	IY _H ↔ (SP + 1)	Exchange the location (SP) and IY						1			23	2	•	•	•	•	•	•
	IY _L ↔ (SP)		1	_1	1	0	0	0	1	_1								
EX AF, AF'	AF ↔ AF′	Exchange the contents of AF, AF'	0	0	0	0	1	. 0	0	0	4	1	•	•	•	•	•	•
EX DE, HL	DE ↔ HL	Exchange the contents of DE and HL	1	1	1	0	_1	0	1	_1	4	1	•	•	•	. •	•	•
EXX	BC ↔ BC' DE ↔ DE', HL ↔ HL'	Exchange the contents of BC, DE, HL with contents of BC', DE', HL', respectively	1	1	0	1	1	0	0	1	4	1	•	•	•	•	•	•
HALT	Processor Halted	HALT (wait for interrupt or reset)	n	1	1	1	_	1	1	n	4	1	-	•	•	•	•	•

Mnemonic	Operation	Description	7			era					0	No. of Clocks	No. of Bytes	C	Z		igs S	N	Н
BIT b, (HL)	Z ← (HL) _b	Test BIT b of location (HL)	1	1	C) (0	1	0	1	1 (E)	12 .	2	•	\$	Х	Χ	0	1
			0	_1) t							-						
BIT b, (IX + d)	$Z \leftarrow (\overline{IX + d})_b$	Test BIT b at location (IX + d)	1	1	0		1		1	0	1 ^(E)	20	4	•	\$	Χ	X	0	1
			d 0	d 1	C	1 (ď	d	d	d	ď								
BIT b, (IY + d)	$Z \leftarrow (\overline{ Y + d })_b$	Test BIT b at location (IY + d)	1	1	1				1	0	1 (E)	20	4	•	\$	Х	X	0	1
					c	d (d	d	d .	d	d	· · · · · · · · · · · · · · · · · · ·						-	
BIT b, r	$Z \leftarrow \bar{r}_b$	Test BIT of Reg. r	1	1	C) (0 b	1 b	0 r	1 r	1 r (B) (E)	8	2	•	\$	Χ	X	0	1
CALL cc, nn	If condition cc false continues, else same as CALL nn	Call subroutine at location nn if condition cc is true	n	n	ń	- c	n	n	n	ń		10	3	•	•	•	•	•	•
CALL nn	$ \begin{array}{l} (SP - 1) \leftarrow PC_H \\ (SP - 2) \leftarrow PC_L \\ PC \leftarrow nn \end{array} $	Unconditional call subroutine at location nn	n	n	n) (n r	n	n	n	n	n	17	3	•	•	•	•	•	•
CCF	CY ← CY	Complement carry flag	0	0	1	1	1	1	1	1	1	4	1	\$	•	•	•	0	Х
CP r	A - r -	Compare Reg. r with ACC	1	0	1	1	1	1	r	r	r (B)	4	1	‡	\$	٧	\$	1	\$
CP n	A – n	Compare value n with ACC) 1						7	2	\$	\$	٧	\$. 1	\$
CP (HL)	A - (HL)	Compare loc. (HL) with ACC	1	0	1	1	1	1	1	1	0	7	1	‡	‡	٧	‡	1	\$
CP (IX + d)	A - (IX + d)	Compare loc. (IX + d) with ACC	1 1 d	1 0 d	1 d		1 d	1 d	1 d	0 1 d	0 d	19	4	\$		V	\$	1	‡
CP (IY + d)		Compare loc. (IY + d) with ACC	1.	0	1	1	1	1	1	1	0	19	2	‡		٧	‡	1	‡
CPD	A - (HL) HL ← HL - 1 BC ← BC - 1	Compare location (HL) and ACC, decrement HL and BC				(16	2	•	\$ (2)	¢ ⁽¹⁾	\$	1.	\$
CPDR	A - (HL) HL ← HL - 1 BC ← BC - 1 until A = (HL) or BC = 0	Compare location (HL) and ACC, decrement HL and BC, repeat until BC = 0				1						21 if BC = 0 and A≠(HL) 16 if BC = 0 or A = (HL)	2	•	\$ (2)	\$ (1)	\$	1	. \$
CPI	A - (HL) HL ← HL + 1, BC ← BC - 1	Compare location (HL) and ACC, increment HL and decrement BC				(16	2	•	‡ (2)	\$ (1)	\$	1	\$

mstruction Set (CONT)

Mnemonic	Operation	Description	7			rati 4			le 1	0	No. of Clocks	No. of Bytes	C	z	Fla P/V	igs S	N	H
1M 0		Set interrupt mode 0		1	1		1 0		0	1 0	8	2	•	•	•	•	•	•
IM 1		Set interrupt mode 1							0		8	2	•	•	•	•	•	•
IM 2		Set interrupt mode 2				0			0	1	8	2	•	•	٠	•	•	•
IN A, (n)	A ← (n)	Load ACC with input from device n							1 n		11	2	•	•	•	•	•	•
IN r, (C)	r ← (C)	Load Reg. r with input from device (C)							0	1 ^(l) 0	12	2	•	\$	Р	‡	0	‡
INC (HL)	(HL) ← (HL) + 1	Increment location (HL)	0	0	1	1	0	1	0	0	11	1	•	‡	٧	‡	0	\$
INC IX	X ← X + 1	Increment IX							0		10	2	•	•	•	•	•	•
INC (IX + d)	$(X + d) \leftarrow (X + d) + 1$	Increment location (IX + d)	0	0	0 1 d	1		1		1 0 d	23	3	•	\$	٧	\$	0	\$
INC IY	Y ← Y + 1	Increment IY			1	1			0	1	10	2	•	•	•	•	•	•
INC (IY + d)	$(Y + d) \leftarrow (Y + d) + 1$	Increment location (IY + d)	0	0	1	1 1 d	0	1	0	1 0 d	23	3	•	‡	V	‡	0	\$
INC r	r←r+1	Increment Reg. r	0	0	r	r	r	1	0	0 (B)	4	1	•	\$	٧	\$	0	\$
INC ss	ss ← ss + 1	Increment Reg. pair ss	0	0	s	s	0	0	1	1 (A)	6	1	•	•	•	•	•	•
IND	(HL) ← (C) B ← B' − 1, HL ← HL − 1	Load location (HL) with input from port (C), decrement HL and B							0	1	16	2	•	\$ (3)	Х	X	1	X
INDR	$(HL) \leftarrow (C)$ $B \leftarrow B - 1$ $HL \leftarrow HL - 1 \text{ until } B = 0$	Load location (HL) with input from port (C), decrement HL and decrement B, repeat until $B=0$			1	0	1		-	1	21	2	•	1	Х	Х	1	X
INI · · ·	(HL) ← (C) B ← B − 1, HL ← HL + 1	Load location (HL) with input from port (C), and increment HL and decrement B				0			0	1	16	2	•	‡ ⁽³⁾	Χ	Χ	1	Х
INIR	$(HL) \leftarrow (C)$ $B \leftarrow B - 1$ $HL \leftarrow HL + 1 \text{ until } B = 0$	Load location (HL) with input from port (C), increment HL and decrement B, repeat until B $= 0$				0			0	1 0	21	2	•	1	X	Х	1	Х
JP (HL)	PC ← HL	Unconditional jump to (HL)	1	1	1	0	1	0	0	1	4	1	•	•	•	•	•	•
JP (IX)	PC ← IX	Unconditional jump to (IX)				1 0				1	8	2	•	•	•	•	•	•
JP (IY)	PC ← IY	Unconditional jump to (IY)				1			0	1	8	2	•	•	•	•	•	•

Mnemonic	Operation	Description	Operation Code 7 6 5 4 3 2 1 0	No. of Clocks	No. of Bytes	C	z	Fla P/V		N	H
JP cc, nn	If cc true PC ← nn else continue	Jump to location nn if continue cc	1 1 ← cc → 0 1 0 ^(H)								
				10	3	•	•	• ,	•	•	•
JP nn	PC ← nn	Unconditional jump to location nn	1 1 0 0 0 0 1 1	10	3	•	•	•	•	•	•
			n n n n n n n n n n n n n n								
JR C, e	If $C = 0$ continue If $C = 1$ PC \leftarrow PC + e	Jump relative to PC + e, if carry = 1	0 0 1 1 1 0 0 0	7 if condition met, 12 if no		•	•	•	•	•	•
JR e	PC ← PC + e	Unconditional jump relative to PC + e	0 0 0 1 1 0 0 0 ← e-2 →	12	2	•	•	•	•	•	•
JR NC, e	If C = 1 continue If C = 0 PC ← PC + e	Jump relative to PC + e if carry = 0	0 0 1 1 0 0 0 0 ← e-2 →	7	2	•	•	•	•	•	•
JR NZ, e	If Z = 1 continue	Jump relative to PC $+$ e if non-zero (Z = 0)	0 0 1 0 0 0 0 0 ← e-2 →	7	2	•	•	•	•	•	•
JR Z, e	if Z = 0 continue	Jump relative to PC $+$ e if zero (Z = 1)	0 0 1 0 1 0 0 0 ← e-2 →	7	2	••	•	•	•	•	•
LD A, (BC)	A ← (BC)	Load ACC with location (BC)	0 0 0 0 1 0 1 0	7	1	•	•	•	•	•	•
LD A, (DE)	A ← (DE)	Load ACC with location (DE)	0 0 0 1 1 0 1 0	7	1	•	•	•	•	•	•
LD A, I	A ← 1	Load ACC with I	1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1	9	2	•	\$.	IFF	\$	0	0
LD A, (nn)	A ← (nn)	Load ACC with location nn	0 0 1 1 1 0 1 0 n n n n n n n n n n n n n n n	13	3	•	•	•	•	•	•
LD A, R	A ← R	Load ACC with Reg. R	1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1	9	2	•	\$	IFF	‡	0	0
LD (BC), A	(BC) ← A	Load location (BC) with ACC	0 0 0 0 0 0 1 0	7	1	•	•	•	•	•	•
LD (DE), A	(DE) ← A	Load location (DE) with ACC	0 0 0 1 0 0 1 0	. 7	1	• .	•	•	•,	•	•
LD (HL), n	(HL) ← n	Load location (HL) with value n	0 0 1 1 0 1 1 0 n n n n n n n n	10	2	•	•	•	•	•	•
LD ss, nn	ss ← nn	Load Reg. pair ss with value nn	0 0 s s 0 0 0 1 ^(A) n n n n n n n n n n n n n n n	20	4	•	•	•	•	•	•
LD HL, (nn)	H ← (nn + 1)	Load HL with location (nn)	0 0 1 0 1 0 1 0 n n n n n n n n n n n n n n n n	16	3	•	•	•	•	•	•
LD (HL), r	(HL) ← r	Load location (HL) with Reg. r	0 1 1 1 0 r r r (B)	7	1	•	•	•	•	•	•
LD I, A	I ← A	Load I with ACC	1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1	9	2	•	•	•	•	•	•

Mnemonic	Operation	Description	Operation Code 7 6 5 4 3 2 1 0	No. of Clocks	No. of Bytes	C	z	Fla P/V	igs S	N.	Н
LD 1X, nn	IX ← nn	Load IX with value nn	1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 n n n n n n n n n n n n n n	19	. 4	•	•	•	•	•	•
LD IX, (nn)	$ X_H \leftarrow (nn + 1)$ $ X_L \leftarrow (nn)$	Load IX with location (nn)	1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 n n n n n n n n n n n n n n	20	4	•	•	•	•	•	•
LD (IX + d), n	(IX + d) ← n	Load location (IX + d) with value n	1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 d d d d d d d n n n n n n n n	19	4	•	•	•	•	•	•
LD (IX + d), r	(IX + d) ← r	Load location (IX + d) with Reg. r	1 1 0 1 1 1 0 1 ^(B) 0 1 1 1 0 r r r d d d d d d d d	19	3	•	. • .	•	•	•	•
LD IY, nn	IY ← nn	Load IY with value nn	1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 n n n n n n n n n n n n n n n	14	4	•	•	•	•	•	•
LD IY, (nn)	Y _H ← (nn + 1) Y _L ← (nn)	Load IY with location (nn)	1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 n n n n n n n n n n n n n n n	20	4	•	•	•	•	•	•
LD ss, (nn)	$ss_H \leftarrow (nn + 1)$ $ss_L \leftarrow (nn)$	Load Reg. pair dd with location (nn)	1 1 1 0 1 1 0 1 ^(A) 0 1 s s 1 0 1 1 n n n n n n n n n n n n n n n	20	4	•	•	•	•	•	•
LD (IY + d), n	(IY + d) ← n	Load (IY + d) with value n	1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 d d d d d d d n n n n n n n n	19	4	•	•	•	•	•	•
LD (IY + d), r	(IY + d) ← r	Load location (IY + d) with Reg. r	1 1 1 1 1 1 0 1 ^(B) 0 1 1 1 0 r r r d d d d d d d d	19	3	•	•	•	•	•	•
LD (nn), A	(nn) ← A	Load location (nn) with ACC	0 0 1 1 0 0 1 0 n n n n n n n n n n n n n n n n	13	3	•	•	•	•	•	•
LD (nn), ss	(nn + 1) ← ss _H (nn) ← ss _L	Load location (nn) with Reg. pair dd	1 1 1 0 1 1 0 1 (A) 0 1 s s 0 0 1 1 n n n n n n n n n n n n n n n n	20	4		•	•	•	•	•

Mnemonic	Operation	Description	,					Co	de 1		No. of Clocks	No. of Bytes	C	7	FI P/V	ags S	N	ш
				-	. 5	4		3 4		<u> </u>					P/ V	-	N	
LD (nn), HL	(nn + 1) ← H	Load location (nn) with HL						0 (0	16	3	•	•	•	• ,	•	•
	(nn) ← L								n									
LD (nn), IX	(nn +1) ← IX _H	Load location (nn) with IX		1	_	1	-			1	20			_	_		_	
LD (IIII), IX	(nn) ← IX _L	Load location (IIII) with 1A				0		0 (-	•	20	4	٠	·	•	•	•	•
	()								n	-								
			n	n	n	ņ	-	n r	n	n .								
LD(nn), 1Y	(nn +1) ← IY _H	Load location (nn) with 1Y	1	1	. 1	- 1	-	1 1	0	1	20	4	•	•	•	•		•
	(nn) ← IY _L		-	0		•		0 (0								
									n									
									n							- 7		
LD R, A	R ← A	Load R with ACC							0		9	2	•	•	•	•	•	•
I.D (111.)																		
LD r, (HL)	r ← (HL)	Load Reg. r with location (HL)								0 (B)	7	1	•	•	•	•	_•	
LD r, $(IX + d)$	$r \leftarrow (IX + d)$	Load Reg. r with location (IX + d)								1 (B)	19	3	. •	•	•	•	•	•
			0			r			1 d									
ID = (IV , d)	, (IV , al)	Load Don a with location (IV , d)								1 (B)	19	3						
LD r, (IY +d)	r ← (IY +d)	Load Reg. r with location (IY + d)	•	1		1 r		1 1 r 1	-		19	3	•	•	•	•	•	•
									d									
LD r, n	r ←n	Load Reg. r with value n	0	0	r	r	_	r 1	1	0 (B)	7	2	•	•	•	•	•	•
,									n		•	_						
LD, r, r'	r ← r′	Load Reg. r with Reg. r'	0	1	r	r	-	r r'	r'	r' (F)	. 4	1	•	•	•	•	•	•
LD SP, HL	SP ← HL	Load SP with HL	1	1	1	1	1	1 0	0	1	6	1	•	•	•	•	•	•
LD SP. IX	SP ← IX	Load SP with IX	1	1	0	1	1	1 1	0	1	10	2	•	•	•	•	•	•
			1	1	1	1	1	1 0	0	1								
LD SP, IY	SP ← IY	Load SP with IY	1	1	1	1.	. 1	1 1	0	1	10	2	•	•	•	•	•	•
			1	1	1	1	1	1 0	0	1								
LDD	(DE) ← (HL)	Load location (DE) with location (HL),	1	1	1	0	1	1 1	0	1	16	2	•	•	‡	•	0	0
	DE ← DE − 1	decrement DE, HL and BC	1	0	1	0	1	0	0	0								
	HL ← HL − 1, BC ← BC − 1																	
LDDR	(DE) ← (HL)	Load location (DE) with location (HL)							0		21	2	•	•	0	•	. 0	0
	DE \leftarrow DE $-$ 1 HL \leftarrow HL $-$ 1, BC \leftarrow BC $-$ 1 until		1	0	1	1	1	0	0	0								
	BC = 0																	

Mnemonic	Operation	Description	7				ion 3		le 1	0		No. of Clocks	No. of Bytes	C	z	Fla P/V	igs S	N	Н
LDI	(DE) ← (HL) DE ← DE + 1 HL ← HL + 1 BC ← BC - 1	Load location (DE) with location (HL), increment DE, HL; decrement BC							0			16	2	•	•	\$ (T)	•	0	0
LDIR	(DE) ← (HL) DE ← DE + 1 HL ← HL + 1 BC ← BC − 1 until BC = 0	Load location (DE) with location (HL); increment DE, HL, decrement BC and repeat until BC = 0							0			21 if BC ≠ 0 16 if BC = 0	2	•	•	0	•	0	0
NEG	A ← 0 − A	Negate ACC (2's complement)							0			8	2	\$	\$	٧	\$	1	\$
NOP		No operation	0	0	0	0	0) (0	0		4	1	•	•	•	•	•	•
OR r	A ← AV r	Logical 'OR' of Reg. r and ACC	1	0	1	1	0) г	r	r	(B)	4	1	0	\$	P	\$	0	\$
OR n	A ← AV n	Logical 'OR' of value n and ACC							1 n			7	2	•	‡	Р	‡	0	\$
OR (HL)	A ← AV (HL)	Logical 'OR' of loc. (HL) and ACC	1	0	1	1	0) 1	1	0		7.	1	•	\$	Р	\$	0	\$
OR (IX + d)	A ← (IX + d)	Logical 'OR' of loc. (IX + d) A ACC	1	0	1	1	0) 1	0 1 d	0		19	3	•	‡	Р	‡	0	\$
OR (IY +d)	A ← AV (IY + d)	Logical 'OR' of loc. (IY + d) A ACC	1	0	1	1	0) 1	0 1 d	0		19	3	•	\$	Р	\$	0	\$
OTDR	(C) ← (HL) B ← B − 1 HL ← HL − 1 until B = 0	Load output port (C) with contents of location (HL), decrement HL and B, repeat until B $= 0$	1									21 if B ≠ 0 16 if B = C	2	•	1	Х	Х	1	X
OTIR	(C) ← (HL) B ← B − 1 HI ← HL + 1 until B = 0	Load output port (C) with location (HL), increment HL, decrement B, repeat until $B = 0$	1	1	1	0	1	1	0	1		21 if B ≠ 0 16 if B = C	2	•	,1	Х	Х	1	Х
OUT (C), r	(C) ← r	Load output port (C) with Reg. r							0		(B)	12	2	•	•	•	•	•	•
OUT (n), A	(n) ← A	Load output port (n) with ACC) 1			11	2	•	•	•	•	•	•
OUTD	(C) ← (HL) B ← B − 1, HL ← HL − 1	Load output port (C) with location (HL), increment HL and decrement B							0			16	2		\$ (3)				
OUTI	(C) ← (HL) B ← B − 1, HL ← HL + 1	Load output port (C) with location (HL), increment HL and decrement B							0			16	2	•	¢(3)	X	X	1	X

Mnemonic	Operation	Description	7					Code 2			No. of Clocks	No. of Bytes	C	7	Fl: P/V	ags e	N	н
	-					_	_						-		F/¶		- N	_
POP IX	$ X_H \leftarrow (SP + 1)$ $ X_L \leftarrow (SP)$	Load IX with top of stack						0			14	2	•	•	•	•	•	•
POP IY	Y _H ← (SP +1) Y _L ← (SP)	Load IY with top of stack						1 0			14	2	•	•	•	, •	•	•
POP qq	qq _H ← (SP + 1) qq _L ← (SP)	Load Reg. pair qq with top of stack	1	1	q	q	0	0	0	1 ^(G)	10	1	•	•	•	•	•	•
PUSH IX	(SP - 2) ← IX _L (SP - 1) ← IX _H	Load IX onto stack	1					1			. 15	2	•	•	•	•	•	•
PUSH IY	$ (SP - 2) \leftarrow IY_L $ $ (SP - 1) \leftarrow IY_H $	Load IY onto stack	1								15	2	•	•	•	•	•	•
PUSH qq	$ (SP - 2) \leftarrow qq_L $ $ (SP - 1) \leftarrow qq_H $	Load Reg. pair qq onto stack	1	1	q	q	0	1	0	1 (G)	. 11	1	•	•	•	٠	•	•
RES b,r	S _b ← 0	Reset Bit b of Reg. r	1	1 0	0 b	0 b	1 b	0 r	1 r	1 (B) r (E)	8	2	•	•	•	•	•	•
RES b, (HL)	$S_b \leftarrow 0$, (HL)	Reset Bit b of loc. (HL)	1					0			15	2	•	•	•	•	٠	•
RES b, (IX + d)	$S_b \leftarrow 0 (IX + d)$	Reset Bit b of loc. (IX + d)	đ	1 d	0 d	0 d	1 d	1 0 d	1 d	1	23	4	•	•	•	•	•	•
RES b, (IY + d)	$S_b \leftarrow 0$, (IY + d)	Reset Bit b of loc. (IY + d)	1 1 d	1 1 d	1 0 d	1 0 d	1 1 d		0 1 d	1 . d	23	4	•	•	•	•	•	•
RET	$PC_L \leftarrow (SP)$ $PC_H \leftarrow (SP + 1)$	Return from subroutine	1	1	0	0	1	0	0	1	10	1	•	•	•	•	•	•
RET CC	If condition cc is false cont. else (PC _L ← (SP) PC _H ← (SP + 1)	Return from subroutine if condition cc is true	1	1	-	cc	→	0	0	0 (H)	5 if CC false 11 if CC true	1	•	•	•	•	•	•
RETI		Return from interrupt	1								14	2	•	•	•	•	•	•
RETN		Return from non-maskable interrupt	1								14	2	•	•	•	•	•	•
RL r		Rotate left through carry Reg. r	1 0							1 ^(B) r	2	2	\$	\$	Р	\$	0	0
RL (HL)		Rotate left through carry loc. (HL)	1	_	_	_	_	_	1		4	2	‡	‡	_	‡	0	0

Mnemonic	Operation	Description	7				n Co 3	ode 2 1	()	No. of Clocks	No. of Bytes	C	z	Fla P/V	igs S	N	Н
RL (IX + d)		Rotate left through carry loc. (IX + d)	- 1	1	-			1 (6	4	\$	\$	P	‡	0	0
	CY - 7 ← 0		1 d	1 d	d d	0 d	1 d	d (1 (
	m r, (HL)		0	0	Ö	1	0	1	i									
RL (IY + d)	(IX + d),	Rotate left through carry loc. (IY + d)	1	1	1	1	1	1 (·	1	6	4	\$	‡	Р	‡	0	(
	(iY + d), A		1	1	0					1								
			d 0			d 1		d (
RLA		Rotate left ACC through carry	. 0	0	0	1	0	1	·	1	4	1	\$	•	•	•	0	- (
RLC (HL)		Rotate location (HL) left circular	1	1	0	0	1	0		1	15	2	\$	\$	P	‡	0	_
			0	0	0	0	0	1 -	_)								
RLC (IX + d)		Rotate location (IX + d) left circular	1	1	0	1	1)	•	23	4	‡	\$	P	‡	0	C
			l d	1 d	0 d	0 d	1 d	0 ·	. (-								
			Ö	Õ				1										
RLC (IY + d)		Rotate location (IY + d) left circular	1	1	1	1	1	1 () .	1	23	4	‡	\$	P	\$	0	(
	$\begin{array}{c c} CY & \downarrow & \uparrow & \uparrow & \downarrow \\ \hline m = r, (HL), \end{array}$		1 d	1	0 d	0		0 ·		•								
	(IX + d), (IY + d), A		0	d 0		d O		1										
RLC r		Rotate Reg. r left circular	1	1	0	0	1	0		1 (B)	8	2	\$	\$	Р	‡	0	
								rı										
RLCA		Rotate left circular ACC	0	0	0	0	0	1 .	<u> </u>	1	4	1	‡	•	•	•	0	_(
		Rotate digit left and right between ACC and						1 (18	2	•	\$	P	‡	0	(
RLD	A 7430 7430 (HL)	location (HL)	0	1	1	U	1	1 -		1								
RR r		Rotate right through carry Reg. r								1 ^(B)	2	2	\$	\$	Р	‡	0	(
							·	r										
RR (HL)		Rotate right through carry loc. (HL)						0			4	2	\$	\$	Р	‡	0	(
D (IV . 4)		Datata visita abrassab sarra (as. (IV., d)					1	1	<u>'</u>		6	4	_	•	P	±		_
RR (IX + d)		Rotate right through carry loc. (IX + d)	1	1	0	0	1) 1.	1	0	. 4	*	*	г	*	U	
			d	-		d		d (d								
			0	0		1	1_		1									_
R (IY + d)	→ 7 → 0 → CY	Rotate right through carry loc. (IY + d)	1	1	1	0	1) 	1	6	4	\$	\$	Р	‡	0	
	m = r, (HL),	네 밝물이 그렇게 하는데 그림을 받	d	d				d (•								
	(IX + d), (IY + d), A				خنند		-	1						•				
RA		Rotate right ACC through carry						1			4	1		•	•	•	0	
RRC r		Rotate Reg. r right circular								1 ^(B)	2	2	\$	\$	P	‡	0	
			0	0	0	0	1	r	<u> </u>	r						<u> </u>		_

Mnemonic	Operation	Description	7					ode 2	B 1	0	No. of Clocks	No. of Bytes	C	Z	Fla P/V		N	н
RRC (HL)		Rotate loc. (HL) right circular	-	1					1		4	2	‡	‡	Р	‡	0	0
RRC (IX + d)	- 7 → 0 - CY	Rotate loc (IX + d) right circular	1 d	1 1 d 0	d	0 d	1 d	1 0 d	1	1 d	6	4	\$	‡	Р	\$	0	0
RRC (IY + d)	m = r, (HL), (IX + d), (IY + d), A	Rotate loc. (IY + d) right circular	1 d	1 1 d 0	0 d	0 d		d	1	1 d	6	4	‡	‡	P	\$	0	0
RRCA		Rotate right circular ACC	0	0	0	0	1	1	1	1	4	1	\$	•	•	•	0	0
RRD A	7 4 3 0 7 4 3 0 (HL)	Rotate digit right and then left between ACC and location (HL)							0		18	2	•	\$	P	\$	0	0
RST _t	$ \begin{aligned} & (SP - 1) \leftarrow PC_H \\ & (SP - 2) \leftarrow PC_L \\ & PC_H \leftarrow 0, \ PC_L \leftarrow T \end{aligned} $	Restart to location T	1	1	t	t	t	1	1	1	11	1	•	•		•	•	•
SBC A, r	A ← A − r CY	Subtract Reg. r from ACC w/carry	1	0	0	1	1	r	Г	r (B)	4	1	\$. \$	٧	\$	1	\$
SBC A, n	A ← A − n − CY	Subtract value n from ACC with carry							1 n		7	2	\$	\$	٧	\$	1	\$
SBC A, (HL)	A ← A − (HL) − CY	Sub. loc. (HL) from ACC w/carry	1	0	0	1	1	1	1	0	7	1	\$	\$	٧	‡	1	\$
SBC A, (IX + d)	A ← A − (IX + d) − CY	Subtract loc. (IX + d) from ACC with carry	1		0	1	1		0 1 d	0	19	3	‡	\$	٧	‡	1	‡
SBC A, (IY + d)	$A \leftarrow A - (IY + d) - CY$	Subtract loc. (IY + d) from ACC with carry	1	1 0 d	0	1	1	1	0 1 d	0	19	3	\$	‡	V	. \$	1	\$
SBC HL, ss	HL ← HL - ss - CY	Subtract Reg. pair ss from HL with carry							0	1 ^(A)	15	2	\$	\$	٧	\$	1	Х
SCF	CY ← 1	Set carry flag (C = 1)	0	0	1	1	0	1	1	1	4	1	1	•	•	•	0	0
SET b, (HL)	(HL) _b ← 1	Set Bit b of location (HL)		1					1	1 ^(E)	15	2	•	•	•	•	•	•
SET b, (IX + d)	(IX + d) _b ← 1	Set Bit b of location (IX + d)	d	1 1 d		d	1 1 d	d	1	d	23	4	•	•	•	•	•	•

μ**τυ / ο**Ο

Mnemonic	Operation	Description	Operation Code 7 6 5 4 3 2 1 0	No. of Clocks	No. of Bytes	C	z	Fla P/V		N	Н
SET b, (IY + d)	(IY + d) _b ← 1	Set Bit b of location (IY + d)	1 1 1 1 1 1 0 1 ^(E) 1 1 0 0 1 0 1 1	23	4	•	•	•	•	•	•
			d d d d d d d 1 1 b b b 1 1 0								
SET b, r	r _b ← 1	Set Bit b of Reg. r	1 1 0 0 1 0 1 1 (^{B)} 1 1 b b b r r r	8	2	. •	•	•	•	•	
SLA r		Shift Reg. r left arithmetic	1 1 0 0 1 0 1 1 (B) 0 0 1 0 0 r r r	8	2	\$	\$	Р	\$	0	0
SLA (HL)	CY - 7 ← 0 - 0	Shift loc. (HL) left arithmetic	1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0	15	2	\$	‡	Р	‡	0	0
SLA (IX + d)	m = r, (HL), (IX + d), (IY + d)	Shift loc. (IX + d) left arithmetic	1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 d d d d d d d 0 0 1 0 0 1 1 0	23	4	\$	‡	Р	\$	0	0
SLA (IY + d)		Shift loc. (IY + d) left arithmetic	1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 d d d d d d d 0 0 1 0 0 1 1 0	23	4	\$	\$	·P	‡	0	0
SRA r		Shift Reg. r right arithmetic	1 1 0 0 1 0 1 1 (B) 0 0 1 0 1 r r r	8	2	\$	\$	Р	\$	0	0
SRA (HL)	7 → 0 CY	Shift loc. (HL) right arithmetic	1 1 0 0 1 0 1 1 0 0 1 0 1 1 0	15	2	\$	\$	P	‡	0	0
SRA (IX + d)	m = r, (HL), (IX + d), (IY + d)	Shift loc. (IX + d) right arithmetic	1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 d d d d d d d 0 0 1 0 1 1 1 0	23	4	‡	\$	Р	‡	0	0
SRA (IY + d)		Shift loc. (IY + d) right arithmetic	1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 d d d d d d d 0 0 1 0 1 1 1 0	23	4	‡	\$	P	‡	0	0
SRL r	· · · · · · · · · · · · · · · · · · ·	Shift Reg. r right logical	1 1 0 0 1 0 1 1 (B) 0 0 1 1 1 r r r	8	2	‡	‡	Р	\$	0	0
SRL (HL) 0-	→ 7 → 0 → CY	Shift loc. (HL) right logical	1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0	15	2	ŧ	\$	Р	‡	0	0
SRL (IX + d)	m = r, (HL), (IX + d), (IY + d)	Shift loc. (IX + d) right logical	1 1 0 1 1 1 0 1 1 1 0 0 1 1	23	4	‡	\$	P	\$	0	0
			d d d d d d d 0 0 1 1 1 1 1 0								

Mnemonic	Operation	Description	7			ratio 4			e 1	0	No. of Clocks	No. of Bytes	C	z	Fla P/V	ags S	N	H
SRL (IY + d)		Shift loc. (IY + d) right logical	1	1	1 0	1 0	1	1 0	0	1	23	4	‡	‡	Р	‡	0	0
			d 0	d 0	-	d 1	d 1	d 1	d 1	d 0								
SUB r	A ← A – r	Subtract Reg. r from ACC	1	0	0	1	0	r	r	r (B)	4	1	‡	‡	٧	\$	1	\$
SUB n	A ← A − n	Subtract value n from ACC			0 n	1 n		1 n		-	7	. 2	‡	\$	٧	\$	1	\$
SUB (HL)	A ← A − (HL)	Subtract loc. (HL) from ACC	1	0	0	1	0	1	1	0	7	1	\$. \$	٧	\$	1	\$
SUB (IX + d)	A ← A − (IX + d)	Subtract loc. (IX + d) from ACC	1 1 d	1 0 d	•	1 1 d	1 0 d	1 1 d	0 1 d	. 0	19	3	‡	\$	٧	\$	1	‡
SUB (IY + d)	$A \leftarrow A - (IY + d)$	Subtract loc. (IY + d) from ACC	1 1 d	1 0 d	•	1 1 d	1 0 d	1 1 d	0 1 d	0	19	3	‡	‡	٧	‡	1	‡
XOR r	A ← A ¥ r	Exclusive 'OR' Reg. r and ACC	1	0	1	0	1	r	r	r ^(B)	4	1	\$	‡	Р	\$	1	\$
XOR n	A ← A ¥ n	Exclusive 'OR' value n and ACC		1 n	1 n	0 n		1 n		-	7	2	\$	\$	Р	\$	1	\$
XOR (HL)	A ← A ¥ (HL)	Exclusive 'OR' loc. (HL) and ACC	1	0	1	0	1	1	1	0	7	1	‡	\$	Р	\$	1	‡
XOR (IX + d)	A ← A ¥ (IX + d)	Exclusive 'OR' loc. (IX + d) and ACC	1 1 d	1 0 d		-		1 1 d		0	19	3	\$	\$	Р	\$	1	‡
XOR (IY + d)	A ← A ¥ (IY + d)	Exclusive 'OR' loc. (IY + d) and ACC	1 1 d				1 1 d	1 1 d	0 1 d		19	3	\$	\$	Р	\$	1	‡

Note:

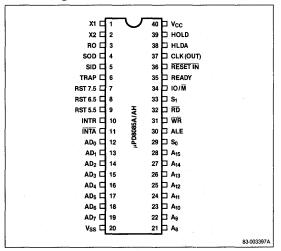
- (1) P/V flag is 0 if B = 0, else P/V = 1 (2) Z = 1 if A = (HL), else Z = 0 (3) If B = 0, Z flag set, else reset

	١		В	, (G		D		E		F	(G			· H			1
Reg	SS	R	eg r	Reg	pp	Reg	g rr	-	Bit b	Re	g r, r'	Reg	qq	CC	Con	dition	Relevant Flag	R	eg r
ВС	00	Α	111	ВС	00	вс	00	0	000	Α	111	ВС	00	000	NZ	Non zero	Z	В	000
DE	. 01	В	000	DE	01	DE	01	1	001	В	000	DE	01	001	Z	Zero	Z	С	001
HL	10	C	001	IX	10	ΙY	10	2	010	С	001	HL	10	010	NC	Non carry	С	D	010
SP	11	D	010	SP	11	SP	11	3	011	D	010	AF	11	011	С	Carry	С	Ε	011
		E	011					4	100	E	011			100	PO	Parity odd	P/V	Н	100
		Н	100	-				5	101	Н	100			101	PE	Parity even	P/V	L	101
	_	L	101					6	110	L	101			110	Р	Sign positive	S	F	110
						-		7	111					111	М	Sign negativ	e S	Α	111

μPD8085A/AH 8-BIT, SINGLE-CHIP N-CHANNEL MICROPROCESSORS

Description

The μ PD8085A-2, μ PD8085AH, and μ PD8085AH-2 8-bit, single-chip microprocessors are 100 percent software compatible with the industry standard 8080A. They have the ability of increasing system performance of the 8080A by operating at a higher speed. Using the μ PD8085A in conjunction with its family of ICs allows the designer complete flexibility with minimum chip count. The H (HMOS) versions have lower power consumptions than the non-H versions.


Features

- □ Single power supply, +5 V, $\pm 10\%$
- ☐ Internal clock generation and system control
- ☐ Internal serial in/out port
- ☐ Fully TTL-compatible
- ☐ Internal four-level interrupt structure
- Multiplexed address/data bus for increased system performance
- ☐ Complete family of components for design flexibility
- ☐ Software compatible with industry standard 8080A
- ☐ Higher throughput
 - $-\mu$ PD8085A-2 5 MHz
 - uPD8085AH 3 MHz
 - μPD8085AH-2 5 MHz

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD8085AC-2	40-pin plastic DIP	5 MHz
µPD8085AHC	40-pin plastic DIP	3 MHz
μPD8085AHC-2	40-pin plastic DIP	5 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function				
1, 2	X1, X2	Crystal in				
3	RO	Reset out				
SOD SOD		Serial out data				
5	SID	Serial in data				
6	TRAP	Trap interrupt input				
7	RST 7.5	Restart interrupts				
8	RST 6.5	Restart interrupts				
9	RST 5.5	Restart interrupts				
10	INTR	Interrupt request in				
11	ĪÑTĀ	Interrupt acknowledge				
12-19	AD ₀ -AD ₇	Low address / data bus				
20	V _{SS}	Ground				
21-28	A ₈ -A ₁₅	High address bus				
29, 33	S ₀ , S ₁	Status outputs				
30	ALE	Address latch enable out				
31, 32	WR, RD	Write / read strobes out				
34	10 / M	I / O or memory indicator				
35	READY	Ready input				
36	RESET IN	Reset input				
37	CLK	Clock out				
38, 39	HLDA, HOLD	Hold acknowledge out and hold inpurequest				
40	V _{CC}	+5 V supply				

Pin Functions

Crystal In

Crystal, RC, or external clock input.

Reset Out

Acknowledges that the processor is being reset to be used as a system reset.

Serial Out Data

1-bit data out by the SIM instruction.

Serial In Data

1-bit data into ACC bit 7 by the RIM instruction.

Trap Interrupt Input

Highest priority nonmaskable restart interrupt.

Restart Interrupts

Priority restart interrupt inputs, of which 7.5 is the highest and 5.5 the lowest priority.

Interrupt Request In

A general interrupt input which stops the PC from incrementing, generates INTA, and samples the data bus for a restart or call instruction.

Interrupt Acknowledge

An output which indicates that the processor has responded to INTR.

Low Address/Data Bus

Multiplexed low address and data bus.

Ground

Ground Reference.

High Address Bus

Nonmultiplexed high 8 bits of the address bus.

Status Outputs

Outputs which indicate data bus status: Halt, Write, Read. Fetch.

Address Latch Enable Out

A signal which indicates that the lower 8 bits of address are valid on the AD lines.

Write/Read Strobes Out

Signals out which are used as write and read strobes for memory and I/O devices.

I/O or Memory Indicator

A signal out which indicates whether \overline{RD} or \overline{WR} strobes are for I/O or memory devices.

Ready Input

An input which is used to increase the data and address bus access times (can be used for slow memory).

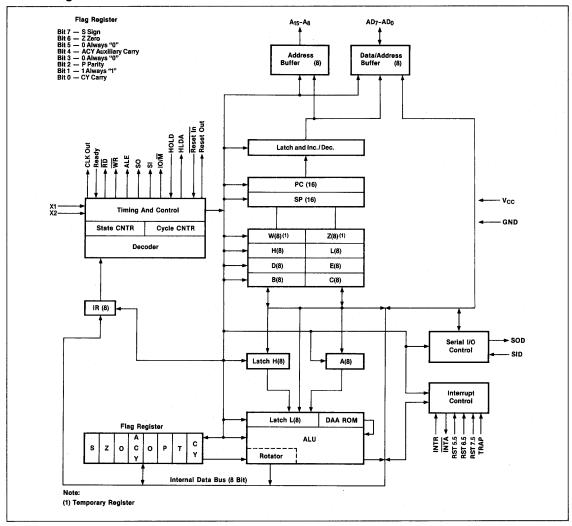
Reset Input

An input which is used to start the processor activity at address 0, resetting IE and HLDA flip-flops.

Clock Out

System clock output.

Hold Acknowledge Out and Hold Input Request


Used to request and indicate that the processor should relinquish the bus for DMA activity. When hold is acknowledged, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{IO}}/\overline{\text{M}}$, address and data buses are all three-stated.

+5 V Supply

Power supply input.

Block Diagram

Absolute Maximum Ratings

 μ PD8085A-2: $T_A = 25$ °C; $V_{CC} = +5 V \pm 5$ %

-0.5 V to +7 V
-0.5 V to +7 V
-0.5 V to +7 V
0°C to +70°C
-65°C to +150°C
1.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $\begin{array}{l} \mu PD8085AH, \, \mu PD8085AH\text{-}2\text{: } T_A = 0 ^{\circ}\text{C to } +70 ^{\circ}\text{C}, \, V_{CC} = +5 \, \text{V} \pm 10 \%, \\ V_{SS} = GND \\ \mu PD8085A\text{-}2\text{: } T_A = 0 ^{\circ}\text{C to } +70 ^{\circ}\text{C}, \, V_{CC} = +5 \, \text{V} \pm 5 \%, \, V_{SS} = GND \end{array}$

			Limit	5		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL}	V _{SS} -0.5	5	V _{SS} +0.8	٧	
Input voltage high	. V _{IH}	2.0		V _{CC} +0.5	٧	
Output voltage low	V _{OL}			+0.45	٧	$l_{0L} = 2.0 \text{ mA},$ $l_{0H} = -400 \mu\text{A},$ (Notes 1 & 2)
Output voltage high	V _{OH}	2.4			V	$I_{OH} = -400 \mu\text{A},$ $I_{OL} = 2 \text{mA},$ (Notes 1 & 2)
Input leakage current	1 _{LI}			±10(1)	μΑ	0 V ≤ V _{IN} ≤ V _{CC}
Output leakage current	lLO			±10(1)	μΑ	0.45 V ≤ V _{OUT} ≤ V _{CC}
Input level low, reset	V _{ILR}	-0.5		+0.8	٧	
Input level high, reset	V _{IHR}	2.4		V _{CC} +0.5	V	
Hysteresis, reset	V _{HY}	0.25			٧	
X1, X2 input voltage high	V _{IHX}	4.0		V _{CC} +0.5	٧	
Power supply current (V _{CC}) µPD8085A-2	I _{CC} (AV)			170	mA	t _{CY} min
μPD8085AH, μPD8085AH-2				135	mA	t _{CY} min, (Note 3)

Note:

- (1) Minus (-) designates current flow out of the device.
- (2) On all outputs.
- (3) Maximum unit test.

AC Characteristics

μPD8085A-2: T_A = 0°C to +70°C, V_{CC} = 5 V ±5% μPD8085AH, μPD8085AH-2: T_A = 0°C to +70°C, V_{CC} = 5 V ±10%

	and the same of th	Limits					
		μ PD8 (085AH	μPD8085AH-2	2, µPD8085A-2	-	Test
Parameter	Symbol	Min	Max	. Min	Max	Unit	Conditions
CLK cycle period	t _{CYC}	320	2000	200	2000	ns	
CLK low time	t ₁	80		40		ns	
CLK high time	t ₂	120	, :	70		ns	
CLK rise time	t _r		30		30	ns	
CLK fall time	t _f		30		30	ns	
X1 rising to CLK rising	t _{XKR}	30	120	30	100	ns	
X1 rising to CLK falling	t _{XKF}	30	150	30	110	ns	
A ₈ -A ₁₅ valid to leading edge of CONTROL	t _{AC}	270		115		ns	(Note 1)
A ₀ –A ₇ valid to leading edge of CONTROL	tACL	240		115		ns	
A ₀ -A ₁₅ valid to data input	t _{AD}		575		350	ns	
Address float after leading edge of RD (INTA)	t _{AFR}		0		0	ns	
A ₈ -A ₁₅ valid before trailing edge of ALE	t _{AL}	115		50		ns	(Note 1)
A _O -A ₇ valid before trailing edge of ALE	t _{ALL}	90		50		ns	
READY valid from address valid	tary		220		100	ns	
A ₈ -A ₁₅ valid after CONTROL	t _{CA}	120		60		ns	
Width of control low (RD, WR, INTA)	t _{CC}	400		230		ns	
Trailing edge of CONTROL to leading edge of ALE	t _{CL}	50		25		ns	
Data valid to trailing edge of WR	t _{DW}	420		230		ns	
HLDA to bus enable	tHABE	101000000	210		150	ns	
Bus float after HLDA	t _{HABF}		210		150	ns	
HLDA valid to trailing edge of CLK	tHACK	110		40		ns	
HOLD hold time	t _{HDH}	0 .		0		ns	
HOLD setup time to trailing edge of CLK	t _{HDS}	170		120		ns	-
NTR hold time	t _{INH}	0		.0		ns	
NTR, RST, TRAP setup time to railing edge of CLK	tins	160	·	150		ns	
Address hold time after ALE	t _{LA}	100		50		ns	
Trailing edge of ALE to leading edge of CONTROL	t _{LC}	130		60		ns	
ALE low time during CLK high	t _{LCK}	100		50		ns	
ALE to valid data input during read	t _{LDR}		460		270	ns	
ALE to valid data during write	t _{LDW}		200		120	ns	
ALE pulse width	t _{LL}	140		80		ns	
ALE to READY stable	t _{LRY}		110		30	ns	

μPD8085A/AH

AC Characteristics (cont)

 μ PD8085A-2: T_A = 0°C to +70°C, V_{CC} = 5 V ±5% μ PD8085AH, μ PD8085AH, μ PD8085AH-2: T_A = 0°C to +70°C, V_{CC} = 5 V ±10%

		Limits					
		μ PD 80	85AH	μPD8085#	H-2 , μ PD 8085 A- 2		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Trailing edge of $\overline{\text{RD}}$ to re-enabling of address	t _{RAE}	150		90		ns	
RD (or INTA) to valid data	t _{RD}		300		150	ns	
Trailing edge of CONTROL to leading edge of next CONTROL	t _{RV}	400		220		ns	
Data hold time after RD (INTA)	t _{RDH}	0		0		ns	(Note 7)
READY hold time	t _{RYH}	0		0		ns	
READY setup time to leading edge of CLK	t _{RYS}	110		100		ns	
Leading edge data valid after trailing edge of WR	t _{WD}	100		60		ns	
Leading edge of WR to data valid	t _{WDL}		40		20	ns	

Note:

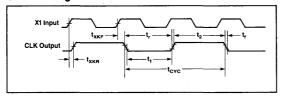
- (1) A_8-A_{15} address specs apply to IO/\overline{M} . S_0 and S_1 except A_8-A_{15} are undefined during T_4-T_6 of OF cycle whereas IO/\overline{M} , S_0 and S_1 are stable.
- (2) Test conditions: $t_{CYC} = 320 \text{ ns} (8085 \text{AH})/200 \text{ ns} (8085 \text{A-2}) C_L = 150 \text{ pF}$
- (3) For all output timing except where C_L = 150 pF use the following correction factors: 25 pF, C_L = 150 pF: -0.10 ns/pF 150 pF, C_L = 300 pF: +0.3 ns/pF
- (4) Output timings are measured with purely capacitive load.
- (5) All timings are measured as the following: Output voltage: $V_L = 0.8 \text{ V}, V_H = 2.0 \text{ V}$ Input voltage: 1.5 V; t_p $t_f = 20 \text{ ns}$
- (6) To calculate timing specifications at other values of t_{CYC} use Bus Timing Specifications.
- (7) Data hold time is guaranteed under all loading conditions.

Bus Timing Specifications

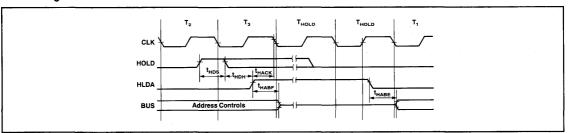
tcyc as a Dependent

Timi			
μ PD8085AH	μ PD 8085 A-2, μ PD 8085 AH- 2	Min/Max	
(1/2) t _{CY} -45	(1/2) t _{CY} - 50	Min	
(1/2) t _{CY} -60	(1/2) t _{CY} - 50	Min	
(1/2) t _{CY} - 20	(1/2) t _{CY} - 20	Min	
(1/2) t _{CY} -60	(1/2) t _{CY} - 50	Min	
(1/2) t _{CY} - 30	(1/2) t _{CY} - 40	Min	
(5/2+N) t _{CY} - 225	(5/2+N) t _{CY} - 150	Max	
(3/2+N) t _{CY} -180	(3/2+N) t _{CY} - 150	Max	
(1/2) t _{CY} - 10	(1/2) t _{CY} - 10	Min	
(1/2) t _{CY} -40	(1/2) t _{CY} - 40	Min	
(3/2+N) t _{CY} -60	(3/2+N) t _{CY} -70	Min	
(1/2) t _{CY} - 60	(1/2) t _{CY} - 40	Min	
	μ PD8085AH $(1/2) t_{CY} - 45$ $(1/2) t_{CY} - 60$ $(1/2) t_{CY} - 60$ $(1/2) t_{CY} - 60$ $(1/2) t_{CY} - 30$ $(5/2+N) t_{CY} - 225$ $(3/2+N) t_{CY} - 180$ $(1/2) t_{CY} - 10$ $(1/2) t_{CY} - 40$ $(3/2+N) t_{CY} - 60$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

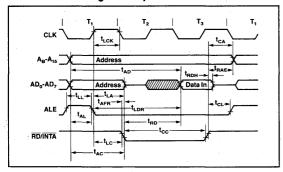
	Timi	ng Formula	
Symbol	μ PD 8085 A H	Min/Max	
t _{CC}	(3/2+N) t _{CY} -80	(3/2+N)t _{CY} -70	Min
t _{CL}	(1/2) t _{CY} - 110	(1/2) t _{CY} - 75	Min
t _{ARY}	(3/2) t _{CY} - 260	(3/2) t _{CY} - 200	Max
thack	(1/2) t _{CY} - 50	(1/2) t _{CY} -60	Min
t _{HABF}	(1/2) t _{CY} +50	(1/2) t _{CY} - 50	Max
t _{HABE}	(1/2) t _{CY} +50	(1/2) t _{CY} - 50	Max
t _{AC}	(2/2) t _{CY} -50	(2/2) t _{CY} - 85	Min
t ₁	(1/2) t _{CY} -80	(1/2) t _{CY} - 60	Min
 t ₂	(1/2) t _{CY} - 40	(1/2) t _{CY} - 30	Min
t _{RV}	(3/2) t _{CY} -80	(3/2) t _{CY} - 80	Min
t _{LDR}	(4/2+N) t _{CY} - 180	(4/2+N) t _{CY} -130	Max

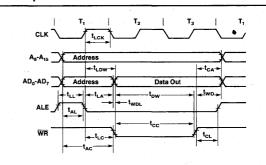

Note:

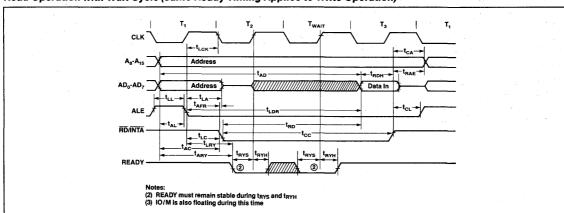
(1) N = Number of WAIT state.



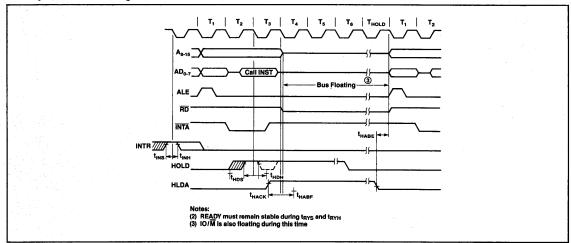
Timing Waveforms


Clock Timing Waveform


Hold Timing


8085AH Bus Timing Read Operation

Write Operation


Read Operation with Wait Cycle (same Ready Timing Applies to Write Operation)

Timing Waveforms (cont)

Interrupt and Hold Timing

Functional Description

The μ PD8085A contains six 8-bit data registers, an 8-bit accumulator, four testable flag bits, and an 8-bit parallel binary arithmetic unit. The μ PD8085A also provides decimal arithmetic capability and it includes 16-bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

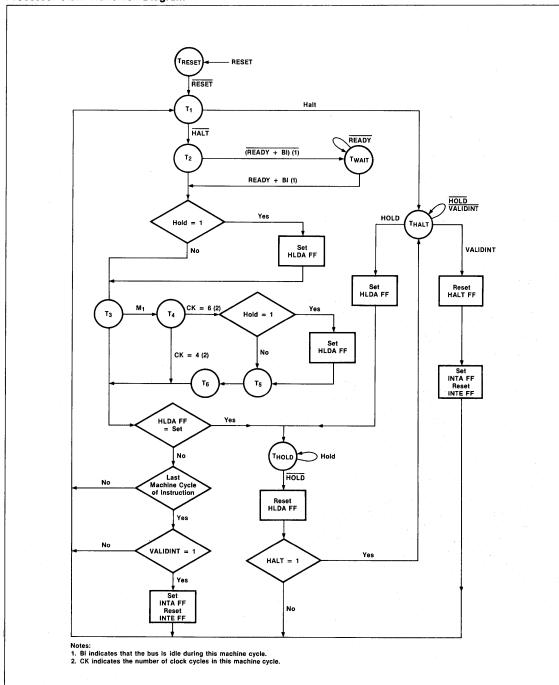
The µPD8085A has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.

The μ PD8085A also contains a 16-bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.

The µPD8085A was designed with speed and simplicity of the overall system in mind. The multiplexed address/data bus increases available pins for advanced functions in the processor and peripheral

chips while providing increased system speed and less critical timing functions. All signals to and from the μ PD8085A are fully TTL-compatible.

The internal interrupt structure of the $\mu PD8085A$ features 4 levels of prioritized interrupt with three levels internally maskable.


Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the hold acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address, data and control lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data buses.

The µPD8085A features internal clock generation with status outputs available for advanced read/write timing and memory/IO instruction indications. The clock may be crystal controlled, RC controlled, or driven by an external signal.

On-chip serial in/out port is available and controlled by the newly added RIM and SIM instructions.

Processor State Transition Diagram

83-003840C

Clock Inputs

As stated, the timing for the μ PD8085A may be generated in one of two ways: crystal, or external clock. Recommendations for these methods are shown below. Note the input frequency must be twice the internal operating frequency.

Status Outputs

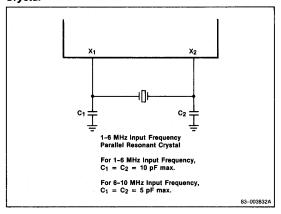
The status outputs are valid during ALE time and have the following meaning:

	S ₁	S ₀
Halt	0	0
Write	0	1
Read	. 1	0
Fetch	1 .	1

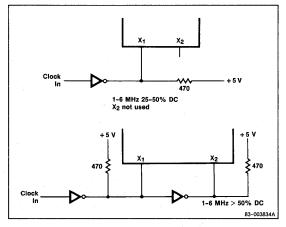
These pins may be decoded to portray the processor's data bus status.


Interrupts

The μ PD8085A has five interrupt pins available to the user. INTR is operationally the same as the 8080 interrupt request, three (3) internally maskable restart interrupts: RESTART 5.5, 6.5, and 7.5, and TRAP, a non-maskable restart.

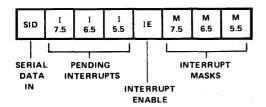

Priority	Interrupt	Restart Address
Highest	TRAP	24 ₁₆
	RST 7.5	3C ₁₆
	RST 6.5	34 ₁₆
	RST 5.5	2C ₁₆
Lowest	INTR	

INTR, RST 5.5 and RST 6.5 are all level sensing inputs while RST 7.5 is set on a rising-edge. TRAP, the highest priority interrupt, is non-maskable and is set on the rising-edge or positive level. It must make a low-to-high transition and remain high to be seen, but it will not be generated again until it makes another low-to-high transition.


RC

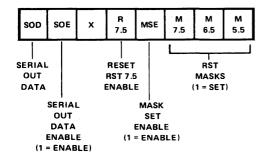
Crystal

External



Serial I/O

Serial input and output is accomplished with two new instructions not included in the 8080: RIM and SIM. These instructions serve several purposes: serial I/O, and reading or setting the interrupt mask.


The RIM (Read Interrupt Mask) instruction is used for reading the interrupt mask and for reading serial data. After execution of the RIM instruction the ACC content is as follows:

Note:

 After the TRAP interrupt, the RIM instruction must be executed to preserve the status of IE.

The SIM (Set Interrupt Mask) instruction is used to program the interrupt mask and to output serial data. Presetting the ACC for the SIM instruction has the following meaning:

Instruction Set

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also, the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (sign, zero, parity and carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table)

The sign flag is set (high) if bit 7 of the result is a "1"; otherwise it is reset (low). The zero flag is set if the result is "0"; otherwise it is reset. The parity flag is set if the modulo 2 sum of the bits of the result is "0" (even parity); otherwise (odd parity) it is reset. The carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the μ PD8085A has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The auxiliary carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the μ PD8085A. The ability to increment and decrement memory, the six general registers, and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the μ PD8085A instruction set.

Two instructions, RIM and SIM, are used for reading and setting the internal interrupt mask as well as input and output to the serial I/O port.

The special instruction group completes the $\mu PD8085A$ instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16-bit register pairs directly.

Data and Instruction Formats

Data in the μ PD8085A is stored as 8-bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
MSB			LSB				

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

	sed as t	_		e instru					
One By	te Instru	ictions			,	T		 1	Typical Instructions
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	OP CODE	Register to register, memory
\$									referance, arithmetic or logical, rotate, return, push, pop, enable, or diable interrupt instructions
Two By	te Instru	uctions	No. of the	.3				_	
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	OP CODE	Immediate mode or I/O instructions
	<u> </u>						_	1	
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	OPERAND	
Three E	Byte Inst	ructions	3						
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	OP CODE	Jump, call or direct load and store instructions
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	LOW ADDRE	SS OR OPERAND 1
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	HIGH ADDRI	ESS OR OPERAND 2

Instruction Cycle Times

One to five machine cycles (M_1-M_5) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times (T1-T5).

Machine cycles and clock states used for each type of instruction are shown below.

Instruction Type	Machine Cycles Executed Min/Max	Clock Status Min/Max		
ALU R	1	4		
СМС	1	4		
CMÁ	1	4		
DAA	1	4		
DCR R	1	4		
DI	1	. 4		
El	1	4		
INR R	1	4 .		
MOV R, R	. 1	4		
NOP	1	4		
ROTATE	1	4		
RIM	1	4		
SIM	. 1	4		
STC	1	4		
XCHG	1	4		
HLT	. 1	5		
DCX	1	6		
INX	1	6		
PCHL	- 1	- 6,		

Instruction Type	Machine Cycles Executed Min/Max	Clock Status Min/Max		
RET COND.	1/3	6/12		
SPHL	1 1	. 6		
ALU I	2	7		
ALU M	2	7		
JNC	2/3	7/10		
LDAX	2	7		
MVI	2	7		
MOV M, R	2	. 7		
MOV R, M	2	7		
STAX	2	7		
CALL COND.	2/5	9/18		
DAD	3	10		
DCR M	3	10		
IN	3	10		
INR M	3	10		
JMP	3	10		
LOAD PAIR	3	10		
MVI M	3	10		
OUT	3	10		
POP	3	10		
RET	3	10		
PUSH	3	12		
RST	3	12		
LDA	4	13		
STA	4	13		
LHLD	5	16		
SHLD	5	16		
XTHL	5	16		
CALL	5	18		

Instruction Set

		Operation Code(2)									Flags(4)			
Mnemonic(1)	Description	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	Cycles(3)	Sign	Zero	Parity	Carry
Move														
MOV d, s	Move register to register	0	1	d	d	d	S	S	S	4				
MOV M, s	Move register to memory	0	1	1	1	0	S	s	s	7				
MOV d, M	Move memory to register	0	1	d	đ	d	1	1	0	7				
MVI d, D8	Move immediate to register	0	0	d	d	d	1	1	0	7				
MVI M, D8	Move immediate to memory	0	0	1	1	0	1	1	0	10				
Increment / Decr	ement													
INR d	Increment register	0	0	d	d	d	1	0	0	4	•	•	•.	
DCR d	Decrement register	0	. 0	d	d	d	1	0	1	4	• .	•	•	
INR M	Increment memory	0	0	1	1	0	1	0	0	10	•	•	•	
DCR M	Decrement memory	0	0	1	1	0	1	0	1	10	•	•	•	
ALU — Register t														
ADD s	Add register to A	1	0	0	0	0	S	S	S	4	•	•	•	•
ADC s	Add register to A with carry	. 1	0	0	0	1	S	S	. S	4	•	• ,	•	•
SUB s	Subtract register from A	.1	0	0	1	0	s	s	s	4	•	•	•	•
SUBB s	Subtract register from A with borrow	1	0	0	1	1	s	s	s	4	•	•	•	•
ANA s	AND register with A	1	0	1	0	0	s	S	s	4	•	• . •	•	0
XRA s	Exclusive OR register with A	1	0	1	0	1	s	s	S	4	•	•	•	. 0
ORA s	OR register with A	1.	0	1	1	0	S	s	s	4	•	•	•	0
CMPs	Compare register with A	1	0	1	1	1	s	s	S	4	•	•	• .	•
ALU — Memory t	o Accumulator													
ADD M	Add memory to A	1	0	0	0	0	1	1	0	7	•	•	• .	•
ADC M	Add memory to A with carry	1	0	0	0	1	1	1	0	7	•	•	•	•
SUB M	Subtract memory from A	1	0	0	1	0	1	1	0	7	•	. •	•	•
SBB M	Subtract memory from A with borrow	1	0	0	1	1	1	1	0	7	•	•	•	•
ANA M	AND memory with A	1	0	1	0	0	1	1	0	7	•	•	•	0
XRA M	Exclusive OR memory with A	1	0	1	0	1	1	1	0	7	•	•	•	0
ORA M	OR memory with A	1	0	1	1	0	1	1	0	7	•	•	•	0
СМР М	Compare memory with A	1	0	1	1	1	1	1	0	7	•	•	•	• 1
ALU — Immediate	e to Accumulator													
ADI D8	Add immediate to A	1	-1	0	0	0	1	1	0	7 .	. •	•	•	•
ACI D8	Add immediate to A with carry	1	1	0	0	1	1	1	0	7	•	•	•	•

μ**PD**8085**A**/**A**H

		Operation Code(2)								-				
Mnemonic(1)	Description	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Cycles(3)	Sign	Zero	Parity	Carry
ALU — Immediate	to Accumulator (cont)													
SUI D8	Subtract immediate from A	1	1	0	1	0	1	1	0	7	•	•	•	•
SBI D8	Subtract immediate from A with borrow	1	1	0	1	1	1	1	0	7	•	•	•	•
ANI D8	AND immediate with A	1	1	1	0	0	1	1	0	7	•	•	•	0
XRI D8	Exclusive OR immediate with A	1	1	1	0	1	1	1	0	7	•	•	•	0
ORI D8	OR immediate with A	1	1	1	1	0	1	1	0	7	•	•	•	0
CPI D8	Compare immediate with A	1	1	1	1	1	1	1	0	7	•	•	•	•
ALU — Rotate													-	
RLC	Rotate A left, MSB to carry (8-bit)	0	0	0	0	0	1	1	1	4				•
RRC	Rotate A right, LSB to carry (8-bit)	0	0	0	0	1	1	1	1	4				•
RAL	Rotate A left through carry (9-bit)	0	0	0	1	0	1	1	1	4				•
RAR	Rotate A right through carry (9-bit)	0	0	0	1	1	1	1	1	4				•
Jump														
JMP ADDR	Jump unconditional	1	1	0	0	0	0	1	1	10				
JNZ ADDR	Jump on not zero	. 1	1	0	0	0	0	1	0	7/10				
JZ ADDR	Jump on zero	1	1	0	0	1	0	1	0	7/10				
JNC ADDR	Jump on no carry	1	1	0	1	0	0	1	0	7/10				
JC ADDR	Jump on carry	1	1	0	1	1	0	1	0	7/10				
JPO ADDR	Jump on parity odd	1	1	1	0	0	0	1	0	7/10				
JPE ADDR	Jump on parity even	. 1	1	1	0	1	0	1	0	7/10				
JP ADDR	Jump on positive	1	1	1	1	0	0	1	0	7/10				
JM ADDR	Jump on minus	. 1	1	1	1	1	0	1	0	7/10				
Call	-7													
CALL ADDR	Call unconditional	. 1	1	0	0	1	1	0	1	18				
CNZ ADDR	Call on not zero	1	1	0	0	0	1	0	0	9/18				
CZ ADDR	Call on zero	1	1	0	0	1	1	0	0	9/18				
CNC ADDR	Call on no carry	1	1	0	1	0	1	0	0	9/18				
CC ADDR	Call on carry	1	1	0	1	1	1	0	0	9/18				
CPO ADDR	CAll on parity odd	1	1	1	0	0	1	0	0	9 / 18				
CPE ADDR	Call on parity even	1	1	1	0	1	1	0	0	9/18				
CP ADDR	Call on positive	1	1	1	1	0	1	0	0	9/18				
CM ADDR	Call on minus	1	1	1	1	1	1	0	0	9/18				

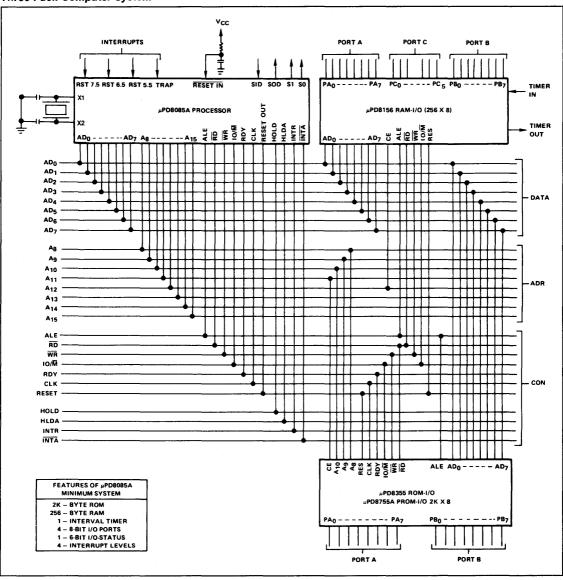
				0	peratio	n Code	(2)				Flags(4)			
Mnemonic(1)	Description	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Cycles(3)	Sign	Zero	Parity	Carry
Call (cont)														
Return														
RET	Return	1	1	0	0	1	0	0	1	10				
RNZ	Return on not zero	1	1	0	0	0	0	0	0	6/12				
RZ	Return on zero	1	1	0	0	1	0	0	0	6/12				
RNC	Return on no carry	1	1	0	1	0	0	0	0	6/12				
RC	Return on carry	1	1	0	1	1	0	0	0	6/12				
RP0	Return on parity odd	1	1	1	0	0	0	0	0	6/12				
RPE	Return on parity even	1	1	1	0	1	0	0	0	6/12				
RP	Return on positive	1	1	1	1	0	0	0	0	6/12				
RM	Return on minus	1	1	1	1	1	0	0	0	6/12				
Load Register Pai														
LXI B, D16	Load immediate register pair BC	0	0	0	0	0	0	0	1	.10				
LXI D, D16	Load immediate register pair DE	0	0	0	1	0	0	0	1 .	10				
LXI H, D16	Load immediate register pair HL	0	0	1	0	0	0	0	1	10				
LXI SP, D16	Load immediate stack pointer	0	0	1	1	0	0	0	1	10				
Push														
PUSH B	Push register pair BC on stack	1	1	0	0	0	1	0	1	12				
PUSH D	Push register pair DE on stack	1	1	0	1	0	1	0	1	12				
PUSH H	Push register pair HL on stack	1	1	1	0	0	1	. 0	1	12				
PUSH PSW	Push A and flags on stack	1	1	1	1	0	1	0	1	12				
Pop														
POP B	Pop register pair BC off stack	1	1	0	0	0	0	. 0	1	10				
POP D	Pop register pair DE off stack	1	1	0	1	0	0	0	1	10				
POP H	Pop register pair HL off stack	1	-1	1	0	,0	0	0	1	10				
POP PSW	Pop A and flags off stack	1	1	1	1	0	0	0	1	10	•	•	•	•
Double Add			-											
DAD R	Add BC to HL	0	0	0	0	1	0	0	1	10				•
DAD D	Add DE to HL	0	0	0	1	1	0	0	1	10				•
DAD H	Add HI to HL	0	0	1	0	1	0	0	1	10				•
DAD SP	Add stack pointer to HL	0	0	1	1	1	0	0	1	10				•

					Operation Code(2)						Flags(4)			
Mnemonic(1)	Description	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _Q	Cycles(3)	Sign	Zero	Parity	Carry
Increment Registe	er Pair													
INX B	Increment BC	0	0	0	0	0	0	1	1	6				
INX D	Increment DE	0	0	0	1	0	0	1	1	6				
INX H	Increment HL	0	0	1	0	0	0	1	1	6				
INX SP	Increment stack pointer	0	0	1	1	0	0	1	1	6				
Decrement Regist	er Pair													
DCX B	Decrement BC	0	0	0	0	1	0	1	1	6				
DCX D	Decrement DE	0	0	0	1	1	0	1	1	6				
DCX H	Decrement HL	0	0	1	0	1	0	1	1	6				
DCX SP	Decrement stack pointer	0	0	1	1	1	0	1	1	6				
Register Indirect														
STAX B	Store A at ADDR in BC	0	0	0	0	0	0	1	0	7				
STAX D	Store A at ADDR in DE	0	0	0	1	0	0	1	0	7				
LDAX B	Load A at ADDR in BC	0	0	0	0	1	0	1	0	7				
LDAX D	Load A at ADDR in DE	0	0	0	1	1	0	1	0	7				
Direct											·			
STA ADDR	Store A direct	0	0	1	1	0	0	1	0	13				
LDA ADDR	Load A direct	0	0	1	1	1	0	1	0	13				
SHLD ADDR	Store HL direct	0	0	1	0	0	0	1	0	16				
LHLD ADDR	Load HL direct	0	0	1	0	1	0	1	0	16				
Move Register Pai	ir													
XCHG	Exchange DE and HL register pairs	1	1	1	0	1	0	1	1	4				
XTHL	Exchange top of stack and HL	1	1	1	0	0	0	1	1	16				
SPHL	HL to stack pointer	1	1	1	1	1	0	0	1	6				
PCHL	HL to program counter	1	1	1	0	1	0	0	1	6				
Input / Output														
IN A	Input	1	1	0	1	1	0	1	1	10				
OUT A	Output	1.	1	0	1	0	0	1	. 1	10				
EI	Enable interrupts	1	1	-1	1	1	0	1	1	4				
DI ··	Disable interrupts	1	1	- 1	1	0	0	1	1	4				
RIM	Read interrupt mask	0	0	1	0	0	0	0	0	4			,	
SIM	Set interrupt mask	. 0	0	1	1	0	0	0	0	4				
RST A	Restart	1	1	Α	Α	Α	1	1	1	12				
			<u> </u>							 				

							Operation Code(2)								Flags(4)			
Mnemonic(1)	Description				D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Cycles(3)	Sign	Zero	Parity	Carry	
Miscellaneous				-														
CMA	Complement A		-		0	0	1	0	1	1	1	1	4					
STC	Set carry				0	0	1	1	0	1	1	1	4					
СМС	Complement carry				0	0	1	1	1	1	- 1	. 1	4				1/Cy	
DAA	Decimal adjust A				0	0	1	0	0	1	1	· 1	4	•	•	• · ·	•	
NOP	No operation		-		0	0	0	0	0	0	0	0	4					
HLT	Halt				0	1	1	1	0	1	1	0	5					

Note

- (1) Operand symbols used
 - A = 8-bit address or expression
 - s = source register
 - d = destination register
 - PSW = Processor status word
 - SP = Stack pointer
 - D8 = 8-bit data quantity, expression, or constant, always B_2 of instruction
 - D16 = 16-bit data quantity, expression, or constant, always B_3B_2 of instruction
 - ADDR = 16-bit memory address expression
- (2) ddd or sss = 000-B, 001-C, 010-D, 011-E, 100-H, 101-L, 110-Memory, 111-A
- (3) Two possible cycle times (7/10) indicate instruction cycles dependent on condition flags.
- (4) = flag affected
 - = flag not affected
 - 0 = flag reset
 - 1 = flag set



μPD8085A Family Minimum System Configuration

A minimum computer system consisting of a processor, ROM, RAM, and I/O can be built with only 3 40-pin

packs. This system is shown below with its address, data, control buses and I/O ports.

Three Pack Computer System

μ PD8086 16-BIT MICROPROCESSOR

Description

The μ PD8086 is a 16-bit microprocessor that has both 8-bit and 16-bit attributes. It has a 16-bit wide physical path to memory for high performance. Its architecture allows higher throughput than the 5 MHz μ PD8085A-2.

The maximum operating frequency of the μ PD8086 is 5 MHz. The μ PD8086-2 is an 8-MHz version.

Features

- Can directly address 1 megabyte of memory
 Fourteen 16-bit registers with symmetrical operations
 Bit, byte, word, and block operations
 8- and 16-bit signed and unsigned binary or decimal arithmetic operations
- ☐ Multiply and divide instructions
- ☐ 24 operand addressing modes
- Assembly language compatible with the μPD8080/ 8085
- ☐ Complete family of components for design flexibility

Ordering Information

Package Type	Max Frequency of Operation
40-pin ceramic DIP	5 MHz
40-pin cerdip	5 MHz
40-pin cerdip	8 MHz
	40-pin ceramic DIP 40-pin cerdip

Pin Configuration

AD ₁₄ □ 2 39 □ AD ₁₅ AD ₁₃ □ 3 38 □ A ₁₆ /S ₃ AD ₁₂ □ 4 37 □ A ₁₇ /S ₄ AD ₁₁ □ 5 38 □ A ₁₈ /S ₅ AD ₁₀ □ 6 35 □ A ₁₈ /S ₆ AD ₉ □ 7 34 □ BħE/S ₇ AD ₈ □ 8 33 □ MN/MX AD ₇ □ 9 32 □ R̄D AD ₈ □ 10 30 □ HLDA (R̄Q/ḠT ₀) AD ₈ □ 11 AD ₄ □ 12 29 □ W̄R (LOC̄K) AD ₃ □ 13 28 □ M/IO (S̄ ₂) AD ₁ □ 15 26 □ DĒN (S̄ ₀) AD ₁ □ 15 27 □ DT/R̄ (S̄ ₁) AD ₁ □ 15 28 □ ALE (QS ₀) NMI □ 17 24 □ INTĀ (QS ₁) INTĀ □ 18	GND 🗖	1	٦π	40	□ v _{cc}		
AD ₁₃		١	$\mathbf{\mathcal{C}}$		l .		
AD ₁₂		_					
AD ₁₁ 5 36 A ₁₈ /S ₅ AD ₁₀ 6 35 A ₁₉ /S ₆ AD ₉ 7 34 BHE/S ₇ AD ₈ 8 33 MN/MX AD ₇ 9 32 RD AD ₆ 10 98 31 HOLD (RQ/GT ₀) AD ₅ 11 22 29 WR (LOCK) AD ₃ 13 28 M/IO (S ₂) AD ₁ 14 27 DT/R (S ₁) AD ₁ 15 26 DEN (S ₀) AD ₀ 16 25 ALE (QS ₀) NMI 17 24 INTA (QS ₁)					,		
AD ₁₀ 6 35 A ₁₉ /S ₆ AD ₉ 7 34 BHE/S ₇ AD ₈ 8 33 MN/MX AD ₇ 9 32 RD AD ₈ 10 80 31 HOLD (RQ/GT ₀) AD ₅ 11 2 29 WR (LOCK) AD ₃ 13 28 M/IO (S ₂) AD ₄ 14 27 DT/R (S ₁) AD ₁ 15 26 DEN (S ₀) AD ₀ 16 25 ALE (QS ₀) NMI 17 24 INTA (QS ₁)							
AD ₉ 7				36	□ A ₁₈ /S ₅		
AD ₈ 8 33 MN/MX AD ₇ 9 32 RD AD ₆ 10 38 31 HOLD (RQ/GT ₀) AD ₅ 111 Q 30 HLDA (RQ/GT ₁) AD ₄ 12 29 WR (LOCK) AD ₃ 13 28 M/IO (S ₂) AD ₂ 14 27 DT/R (S ₁) AD ₁ 15 26 DEN (S ₀) AD ₀ 16 25 ALE (QS ₀) NMI 17 24 INTA (QS ₁)	AD ₁₀ □	6		35	□ A ₁₉ /S ₆		
AD ₇ 9 32 RD AD ₆ 10 \$\frac{9}{8} 31 HOLD (R\bar{Q}/\text{GT}_0) AD ₅ 11 \$\frac{1}{4} 30 HLDA (R\bar{Q}/\text{GT}_1) AD ₄ 12 29 \text{WR} (L\bar{CCK}) AD ₃ 13 28 M/I\bar{O} (\bar{S}_2) AD ₂ 14 27 DT/\bar{R} (\bar{S}_1) AD ₁ 15 26 D\bar{EN} (\bar{S}_0) AD ₀ 16 25 ALE (QS ₀) NMI 17 24 INTA (QS ₁)	AD ₉ □	7		34	BHE/S7		
AD ₆ 10 88 31 HOLD (R\(\bar{Q}\)(G\(\bar{G}\)(o) AD ₅ 11 \(\bar{Q}\) \(\bar{Q}\) \(\bar{Q}\)(\(\bar{G}\)(o) AD ₄ 12 29 \(\bar{W}\)R (\(\bar{G}\)(o)\)(o) (\(\bar{S}\)) AD ₃ 13 28 \(\bar{M}\)/[o] (\(\bar{S}\)) AD ₂ 14 27 \(\bar{D}\)/[r] (\(\bar{S}\)) AD ₁ 15 26 \(\bar{D}\) \(\bar{E}\)N (\(\bar{S}\)_0) AD ₀ 16 25 \(\bar{A}\) \(\bar{E}\) (\(\bar{Q}\)(o) NMI 17 24 \(\bar{INTA}\) (\(\bar{Q}\)(o)	AD ₈ □	8		33	□ MN/MX		
AD ₆ 10 88 31 HOLD (R\(\bar{Q}\)(G\(\bar{G}\)(0) AD ₅ 11 \(\bar{Q}\) 20 WR (\(\bar{Q}\)(G\(\bar{G}\)) AD ₄ 12 29 WR (\(\bar{Q}\)(G\(\bar{G}\)) AD ₃ 13 28 M/I\(\bar{G}\) (\(\bar{S}_2\)) AD ₂ 14 27 DT/\(\bar{R}\) (\(\bar{S}_3\)) AD ₁ 15 26 D\(\bar{G}\)(N (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AD ₇	9		32	□ RD :		
AD₄ ☐ 12 29 ☐ WR (LŌCK) AD₃ ☐ 13 28 ☐ M/IŌ (S₂) AD₂ ☐ 14 27 ☐ DT/R (S₃) AD₁ ☐ 15 26 ☐ DĒN (S₀) AD₀ ☐ 16 25 ☐ ALE (QS₀) NMI ☐ 17 24 ☐ INTA (QS₁)	AD ₆	10	8	31	P HOLD	(RQ/GT ₀)	
AD₄ ☐ 12 29 ☐ WR (LŌCK) AD₃ ☐ 13 28 ☐ M/IŌ (S₂) AD₂ ☐ 14 27 ☐ DT/R (S₃) AD₁ ☐ 15 26 ☐ DĒN (S₀) AD₀ ☐ 16 25 ☐ ALE (QS₀) NMI ☐ 17 24 ☐ INTA (QS₁)		11	8	30			
AD ₃ 13			3		1		
AD_2 14 27 DT/ \bar{R} (\bar{S}_1) AD_1 15 26 $D\bar{E}N$ (\bar{S}_0) AD_0 16 25 ALE (QS ₀) NMI 17 24 $\bar{I}NTA$ (QS ₁)					1		
AD₁ □ 15 26 □ DĒN (Š) AD₀ □ 16 25 □ ALE (QS₀) NMI □ 17 24 □ INTĀ (QS₁)					1		
AD ₀ □ 16 25 □ ALE (QS ₀) NMI □ 17 24 □ INTA (QS ₁)	_				1		
NMI □ 17 24 □ ĪNTĀ (QS ₁)					ı		
INTR 🔲 18 23 🗀 TEST						(QS ₁)	
	INTR 🗆	18		23			
CLK 🖂 19 22 🗀 READY	CLK 🗆	19		22	READY		
GND 🗖 20 21 🗖 RESET	GND 🗆	20		21	RESET		

Pin Identification

No.	Symbol	Function
1, 20	GND	Ground
2-16, 39	AD ₀ -AD ₁₅	Address / data bus
17	NMI	Non-maskable interrupt
18	INTR	Interrupt request
19	CLK	Clock
21	RESET	Reset
22	READY	Ready
23	TEST	Test
24	ĪNTĀ	Interrupt acknowledge
25	ALE	Address latch enable
26	DEN	Data enable
27	DT/R	Data transmit / receive
28	M / 10	Memory / IO status
29	WR	Write
30	HLDA	Hold acknowledge
31	HOLD	Hold
32	RD	Read
33	MN/MX	Minimum / maximum
34	BHE/S ₇	Bus / high enable
35-38	A ₁₆ -A ₁₉	Most significant address bits
26-28, 34-38	S ₀ -S ₇	Status outputs
24, 25	QS ₁ , QS ₀	Queue status
29	LOCK	Lock
30, 31	$\frac{\overline{RQ}}{\overline{RQ}}/\overline{GT}_0$	Request / grant
40	V _{CC}	Power supply

Pin Functions

Ground

Ground.

Address/Data Bus

Multiplexed address (T1) and data (T2, T3, TW, T4) bus. 8-bit peripherals tied to the lower 8 bits use A_0 to condition chip select functions. These lines are three-state during interrupt acknowledge and hold states.

Non-Maskable Interrupt

This is an edge-triggered input causing a type 2 interrupt. A look-up table is used by the processor for vectoring information.

Interrupt Request

A level-triggered input sampled on the last clock cycle of each instruction. Vectoring is via an interrupt look-up table. INTR can mask in software by resetting the interrupt enable bit.

Clock

The clock input is a $\frac{1}{3}$ duty cycle input basic timing for the processor and bus controller.

Reset

This active high signal must be high for 4 clock cycles. When it returns low, the processor restarts execution.

Ready

An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the μ PD8284 clock generator.

Test

This input is examined by the WAIT instruction, and if low, execution continues. Otherwise the processor waits in an idle state. Synchronized by the processor on the leading edge of CLK.

Interrupt Acknowledge

This is a read strobe for reading vectoring information. During T2, T3, and TW of each interrupt acknowledge cycle it is low.

Address Latch Enable

This is used in conjunction with the μ PD8282/8283 latches to latch the address, during T1 of any bus cycle.

Data Enable

This is the output enable for the μ PD8282/8287 transceivers. It is active low during each memory and I/O access and $\overline{\text{INTA}}$ cycles.

Data Transmit/Receive

Used to control the direction of data flow through the transceivers.

Memory/IO Status

This is used to separate memory access from I/O access.

Write

Depending on the state of the M/IO line, the processor is either writing to I/O or memory.

Hold Acknowledge

A response to the HOLD input, causing the processor to three-state the local bus. The bus becomes active one cycle after HOLD goes low again.

Hold

When another device requests the local bus, driving HOLD high will cause the μ PD8086 to issue a HLDA.

Read

Depending on the state of the M/\overline{IO} line, the processor is reading from either memory or I/O.

Minimum/Maximum

This input is to tell the processor which mode it is to be used in. This effects some of the pin descriptions.

Bus/High Enable

This is used in conjunction with the most significant half of the data bus. Peripheral devices on this half of the bus use BHE to condition chip select functions.

Most Significant Address Bits

These are the four most significant address bits for memory operations. Low during I/O operations.

Status Outputs

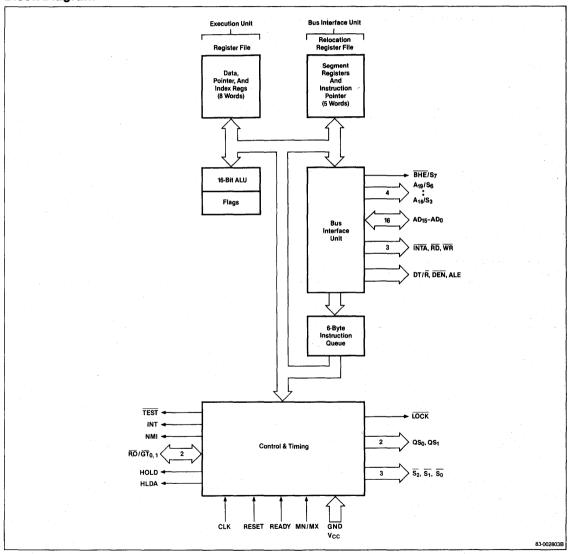
These are the status outputs from the processor. They are used by the $\mu PD8288$ to generate bus control signals.

Queue Status

Used to track the internal µPD8086 instruction queue.

Lock

This output is set by the LOCK instruction to prevent other system bus masters from gaining control.


Request/Grant

Other local bus masters can force the processor to rebase the local bus at the end of the current bus cycle.

Vcc

This is the +5 V power supply.

Block Diagram

Absolute Maximum Ratings

 $T_A = 25$ °C

Power supply voltage, V _{CC}			-1.0 V to +7 V
Operating temperature, T _{OPT}			0°C to +70°C
Storage temperature, T _{STG}	-		-65°C to +150°C
Power dissipation, P _D		3 3 5 5	2.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $f_c = 1.0 \text{ MHz}$

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C ₁			15	pF	(Note 1)
I/O capacitance	C _{IO}			15	pF	(Note 2)

Note:

- (1) All input pins except AD₀-AD₁₅ and $\overline{RQ}/\overline{GT}$.
- (2) Only input pins AD_0 - AD_{15} and $\overline{RQ}/\overline{GT}$.

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5 V \pm 10$ %

Parameter			Limit	5	Unit	Test
	Symbol	Min	Тур	Max		Conditions
Input voltage low	V _{IL}	-0.5		+0.8	٧	
Input voltage high	V _{IH}	2		V _{CC} +0.5	٧	. 0.
Output voltage low	V _{OL}			+0.45	V	$l_{OL} = 2.5 \text{mA}$
Output voltage high	V _{OH}	2.4			٧	$I_{OH} = -400 \mu\text{A}$
Input clock voltage low	V _{CL}	-0.5		+0.6	V	
Output clock voltage high	V _{CH}	3.9		V _{CC} +1.0	V	
Input leakage current	LI			± 10	μΑ	0 V < VIN < VCC
Output leakage current	I _{LO}		-	±10	μΑ	0.45 V ≤ V _{OUT} ≤ V _{CC}
Power supply current	lcc					
μPD8086/				340	mΑ	$T_A = 25$ °C
μPD8086-2				350	mA	T _A = 25°C

AC Characteristics

Minimum Complexity System

 μ PD8086: $T_A = 0$ °C to +70 °C, $V_{CC} = 5 \text{ V} \pm 10\%$

Parameter	Symbol	Limits						
		μ PD 8086			μ PD 8086-2		_	Test
		Min		Max	Min	Max	Unit	Conditions
CLK cycle period	tCLCL	200	113 150	500	125	500	ns	
CLK low time	t _{CLCH}	(2/3 t _{CLCL})	– 15		(2/3 t _{CLCL}) - 15		ns	
CLK high time	tchcl	(1/3 t _{CLCL})	+2		(1/3 t _{CLCL})+2		ns	
CLK rise time	t _{CH1CH2}			10		10	ns	From 1.0 V to 3.5 V
CLK fall time	t _{CL2CL1}			10		10	ns	From 3.5 V to 1.0 V
Data in setup time	t _{DVCL}	30			20		ns	
Data in hold time	t _{CLDX}	10			10		ns	
READY setup time into µPD8284	t _{R1VCL}	35			35		ns	(Notes 1 & 2)
READY hold time into µPD8284	t _{CLR1X}	0			0		ns	(Notes 1 & 2)
READY setup time into µPD8086	t _{RYHCH}	(2/3 t _{CLCL})	– 1 5		(2/3 t _{CLCL}) - 15		ns	
READY hold time into µPD8086	tCHRYX	30	11.		20		ns	
READY inactive to CLK	t _{RYLCL}	-8			-8		ns	(Note 3)
HOLD setup time	thvch	35			20		ns	
INTR, NMI, TEST setup time	tINVCH	30			15		ns	(Note 2)
Input rise time	t _{ILIH}			20		20	ns	From 0.8 V to 2.0 V
Input fall time	t _{IHIL}			12		12	ns	From 2.0 V to 0.8 V

AC Characteristics (cont)

Timing Responses

 μ PD8086: T_A = 0 °C to +70 °C, V_{CC} = 5 V ± 10%

Parameter	Symbol		L		Test		
		μ PD 8086				μ PD8086-2	
		Min	Max	Min	Max	Unit	Conditions
Address valid delay	† _{CLAV}	10	110	10	60	ns	(Note 4)
Address hold time	t _{CLAX}	10		10		ns	(Note 4)
Address float delay	t _{CLAZ}	t _{CLAX}	80	†CLAX	50	ns	(Note 4)
ALE width	tLHLL	t _{CLCH} – 20		t _{CLCH} - 10		ns	(Note 4)
ALE active delay	t _{CLLH}		80	-	50	ns	(Note 4)
ALE inactive delay	tCHLL		85		55	ns	(Note 4)
Address hold time to ALE inactive	t _{LLAX}	t _{CHCL} 10		t _{CHCL} - 10		ns	(Note 4)
Data valid delay	t _{CLDV}	10	110	10	60	ns	(Note 4)
Data hold time	t _{CHDX}	10		10		ns	(Note 4)
Data hold time after WR	t _{WHDX}	t _{CLCH} - 30		t _{CLCH} -30		ns	(Note 4)
Control active delay 1	tcvctv	10	110	10	70	ns	(Note 4)
Control active delay 2	tchctv	10	110	10	60	ns	(Note 4)
Control active delay	tcvctx	10	110	10	70	ns	(Note 4)
Address float to READ active	t _{AZRL}	0	*	0		ns	(Note 4)
RD active delay	t _{CLRL}	10	165	10	80	ns	(Note 4)
RD inactive delay	tCLRH	10	150	10	80	ns	(Note 4)
RD inactive to next address active	t _{RHAV}	t _{CLCL} – 45		t _{CLCL} - 40		ns	(Note 4)
HLDA valid delay	t _{CLHAV}	10	160	10	100	ns	(Note 4)
RD width	t _{RLRH}	2t _{CLCL} - 75		2t _{CLCL} - 50		ns	(Note 4)
WR width	t _{WLWH}	2t _{CLCL} - 60		2t _{CLCL} - 40		ns	(Note 4)
Address valid to ALE low	t _{AVAL}	t _{CLCH} -60		t _{CLCH} -40		ns	(Note 4)
Output rise time	toloh		20		20	ns	From 0.8 V to 2.0
Output fall time	tohol		12		12	ns	From 2.0 V to 0.8

Note:

⁽¹⁾ Signal at $\mu PD8284$ shown for reference only.

⁽²⁾ Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

⁽³⁾ Applies only to T2 state. (8 ns into T3)

⁽⁴⁾ $C_L = 20-100 \, pF$ for all $\mu PD8086$ outputs (in addition to $\mu PD8086$ self-load).

AC Characteristics (cont)

Maximum Mode System with $\mu PB8288$ Bus Controller $\mu PD8086$: $T_A=0\,^{\circ}C$ to $+70\,^{\circ}C,\,V_{CC}=5\,V\pm10\,^{\circ}$

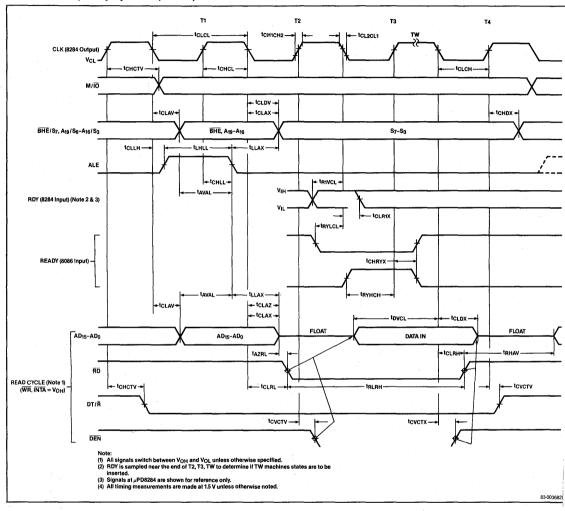
-				Limits			
Parameter		μ PD 8086		μ PD 808	μ PD 8086-2		Test
	Symbol	Min	Max	Min	Max	Unit	Conditions
CLK cycle period	†CLCL	200	500	125	500	ns	
CLK low time	tclch	(2/3 t _{CLCL}) - 15		(2/3 t _{CLCL}) – 15		ns	
CLK high time	t _{CHCL}	(1/3 t _{CLCL})+2	-	(1/3 t _{CLCL})+2		ns	
CLK rise time	t _{CH1CH2}		10		10	ns	From 1.0 V to 3.5 V
CLK fall time	t _{CL2CL1}		10		10	ns	From 3.5 V to 1.0 V
Data in setup time	t _{DVCL}	30		20		ns	
Data in hold time	t _{CLDX}	10		10		ns	
READY setup time into µPD8284	t _{R1VCL}	35		35		ns	(Notes 1 & 2)
READY hold time into µPD8284	t _{CLR1X}	0		0		ns	(Notes 1 & 2)
READY setup time into µPD8086	tryhch	(2/3 t _{CLCL})-15		(2/3 t _{CLCL})-15		ns	
READY hold time into µPD8086	t _{CHRYX}	30		20		ns	
READY inactive to CLK	tRYLCL	-8		-8		ns	(Note 5)
INTR, NMI, TEST setup time	tinvch	30		15		ns	(Note 2)
RQ / GT setup time	tgvch	30		15		ns	
RQ hold time into µPD8086	t _{CHGX}	40		30		ns	
Input rise time	t _{ILIH}		20		20	ns	From 0.8 V to 2.0 V
Input fall time	t _{IHIL}		12		12	ns	From 2.0 V to 0.8 V

AC Characteristics (cont)

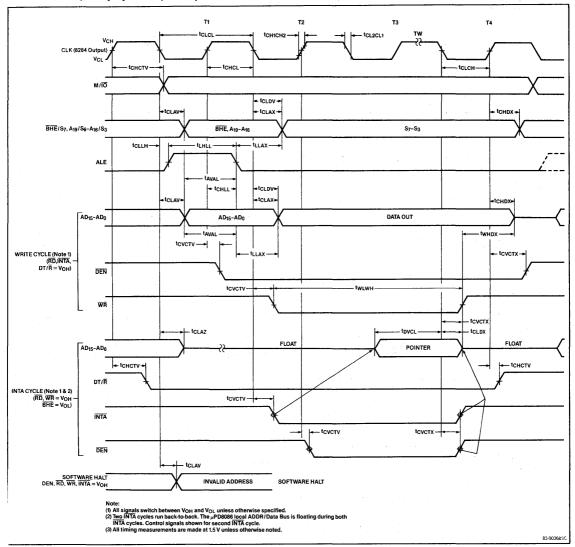
Timing Responses

 μ PD8086: $T_A = 0$ °C to +70 °C, $V_{CC} = 5$ V ± 10 %

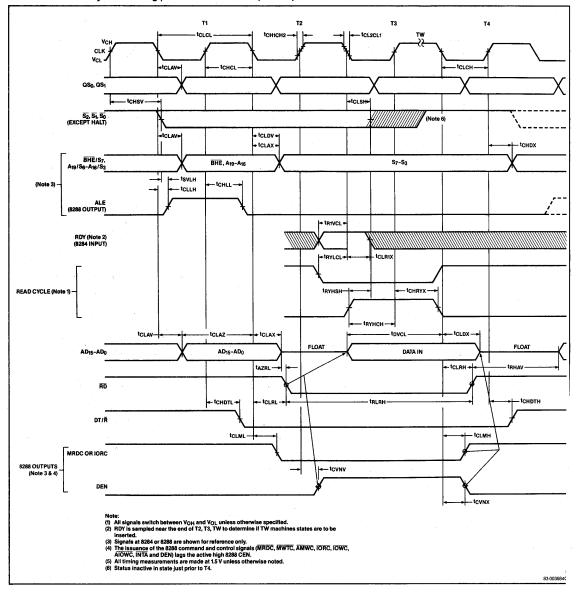
			L	imits			
	Symbol	μ PD 80)86	μ PD 80	86-2		Test
Parameter		Min	Max	Min	Max	Unit	Conditions
Command active delay	t _{CLML}	10	35	10	35	ns	(Notes 1 & 4)
Command inactive delay	^t CLMH	10	35	10	35	ns	(Notes 1 & 4)
READY active to status passive	t _{RYHSH}		110		65	ns	(Notes 3 & 4)
Status active delay	t _{CHSV}	10	110	10	60	ns	(Note 4)
Status inactive delay	tclsh	10	130	10	70	ns	(Note 4)
Address valid delay	t _{CLAV}	10	110	10	60	ns	(Note 4)
Address hold time	t _{CLAX}	10		10		ns	(Note 4)
Address float delay	t _{CLAZ}	t _{CLAX}	. 80	t _{CLAX}	50	ns	(Note 4)
Status valid to ALE high	tsvlh		15		15	ns	(Notes 1 & 4)
Status valid to MCE high	tsvmch		15		15	ns	(Notes 1 & 4)
CLK low to ALE valid	t _{CLLH}		15		15	ns	(Notes 1 & 4)
CLK low to MCE high	t _{CLMCH}		15		15	ns	(Notes 1 & 4)
ALE inactive delay	tCHLL		15		15	ns	(Notes 1 & 4)
MCE inactive delay	tCLMCL		15		15	ns	(Notes 1 & 4)
Data valid delay	t _{CLDV}	10	110	10	60	ns	(Note 4)
Data hold time	tchdx	10		10		ns	(Note 4)
Control active delay	tcvnv	5	45	5	45	ns	(Notes 1 & 4)
Control inactive delay	t _{CVNX}	10	45	10	45	ns	(Notes 1 & 4)
Address float to READ active	t _{AZRL}	0	****	0		ns	(Note 4)
RD active delay	t _{CLRL}	10	165	10	100	ns	(Note 4)
RD inactive delay	tCLRH	10	150	10	80	ns	(Note 4)
RD inactive to next address active	t _{RHAV}	t _{CLCL} -45		t _{CLCL} - 40		ns	(Note 4)
Direction control active delay	tCHDTL		50		50	ns	(Notes 1 & 4)
Direction control inactive delay	†CHDTH		30		30	ns	(Notes 1 & 4)
GT active delay	t _{CLGL}	0	85	0	50	ns	(Note 4)
T inactive delay	tclgh	0	85	0	50	ns	(Note 4)
RD width	trlrh	2t _{CLCL} - 50		2t _{CLCL} - 50		ns	(Note 4)
Output rise time	toloh		20		20	ns	From 0.8 V to 2.0
Output fall time	tohol		12		12	ns	From 2.0 V to 0.8


Vote:

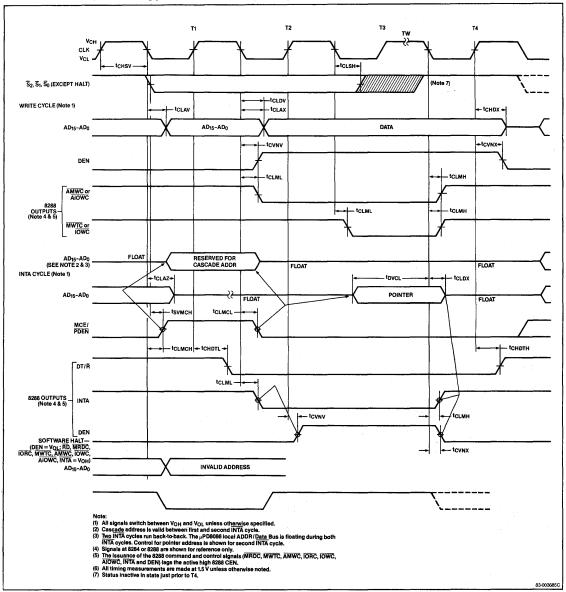
- 1) Signal at $\mu PB8284$ or $\mu PB8288$ shown for reference only.
- 2) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
- 3) Applies only to T3 and wait states.
- 4) $C_L = 20-100 \text{ pF}$ for all μPD8086 outputs (in addition to μPD8086 self-load).
- 5) Applies only to T2 state. (8 ns into T3).


AC Timing Waveforms

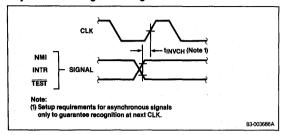
Minimum Complexity Systems (Note 4)

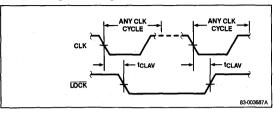


Minimum Complexity Systems (Note 3)

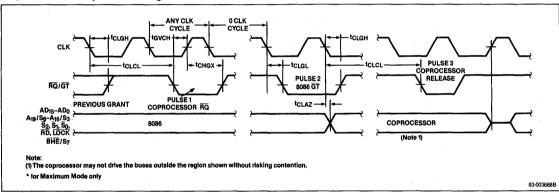


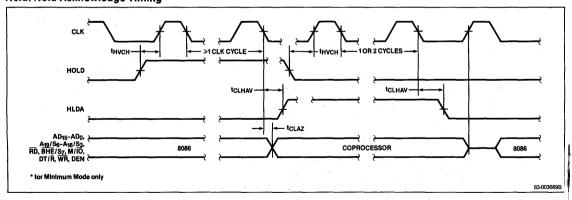
Maximum Mode System Using µPB8288 Controller (Note 5)


Maximum Mode System Using µPB8288 Controller (Note 6)



Timing Waveforms


Asynchronous Signal Recognition


Bus Lock Signal Timing

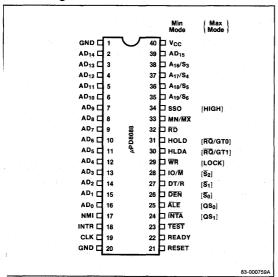
Request/Grant Sequence Timing*

Hold/Hold Acknowledge Timing*

μPD8088 HIGH-PERFORMANCE 8-BIT MICROPROCESSOR

Description

The μ PD8088 and μ PD8088-2 are powerful 8-bit microprocessors that are software-compatible with the μ PD8086. They have the same bus interface signals as μ PD8085A, allowing them to interface directly with multiplexed bus peripherals. Both having a 20-bit address space which can be divided into four segments of up to 64K bytes each.


Features

- ☐ 8-bit data bus interface
- ☐ 16-bit internal architecture
- ☐ Addresses 1 Mbyte of memory
- ☐ Software-compatible with the 8086
- ☐ Provides byte, word, and block operations
- ☐ Performs 8- and 16-bit signed and unsigned arithmetic in binary and decimal
- ☐ Multiply and divide instruction
- □ Directly interfaces to 8155, 8355, and 8755A multiplexed peripherals

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD8088D	40-pin ceramic DIP	5 MHz
μPD8088D-2	40-pin ceramic DIP	8 MHz

Pin Configuration

No.	Symbol	Function
1, 20	GND	Ground
2-8, 35-39	A ₁₉ -A ₈	Most significant address bits
9-16	AD ₇ -AD ₀	Address/data bus
17	NMI	Non-maskable interrupt
18	INTR	Interrupt request
19	CLK	Clock
21	RESET	Reset
22	READY	Ready
23	TEST	Test
24	INTA	Interrupt acknowledge
25	ĀLĒ	Address latch enable
24, 25	QS ₁ , QS ₀	Queue status
26	DEN	Data enable
27	DT/R	Data transmit/receive
28	10/M	10 status/memory
29	WR	Write
29	L0CK	Lock
30	HLDA	Hold acknowledge
31	HOLD	Hold
30, 31	RQ/GT ₀ RQ/GT ₁	Request/grant
32	RD	Read
33	MN/MX	Minimum/maximum
34	SS0	Status line
26-28	$\bar{S}_0 - \bar{S}_2$	Status outputs
35-38	S ₃ -S ₆	Status outputs
40	V _{CC}	Power supply

Pin Function

Ground

Ground.

Most Significant Address Bits

Most significant bits for memory operations.

Address/Data Bus

Multiplexed address and data bus. 8-bit peripherals tied to these bits use A_0 to condition chip select functions. These lines are three-state during interrupt acknowledge and hold states.

Non-Maskable Interrupt

This edge-triggered input causes a type 2 interrupt. The processor uses a look-up table for vectoring information.

Interrupt Request

This is a level-triggered interrupt sampled on the last clock cycle of each instruction. A look-up table is used for vectoring. INTR can be masked in software by resetting the interrupt enable bit.

Clock

The clock input is a 1/3 duty cycle input providing basic timing for the processor and bus controller.

Reset

This active high signal must be high for 4 clock cycles. When it returns low, the processor restarts execution.

Ready

An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the μ PD8284 clock generator.

Test

This input is examined by the "WAIT" instruction, and if low, execution continues. Otherwise the processor waits in an "Idle" state. Synchronized by the processor on the leading edge of CLK.

Interrupt Acknowledge

This is a read strobe for reading vectoring information. During T2, T3, and TW of each interrupt acknowledge cycle it is low.

Address Latch Enable

This is used in conjunction with the μ PD8282/8283 latches to latch the address, during T1 of any bus cycle.

Queue Status

(Max mode) tracks the internal μ PD8088 instruction queue.

Data Enable

This is the output enable for the μ PD8286/8287 transceivers. It is active low during memory and I/O access and $\overline{\text{INTA}}$ cycles.

Data Transmit/Receive

Controls the direction of data flow through the transceivers.

IO Status / Memory

Separates memory access from I/O access.

Write

Depending on the state of the IO/\overline{M} line, the processor is either writing to I/O or memory.

Lock

(Max mode) this output is set by the "LOCK" instruction to prevent other system bus masters from gaining control.

Hold Acknowledge

A response to the HOLD input, causing the processor to three-state the local bus. The bus becomes active one cycle after HOLD returns low.

Hold

When another device requests the local bus, HOLD is driven high, causing the μ PD8088 to issue a HLDA.

Request/Grant

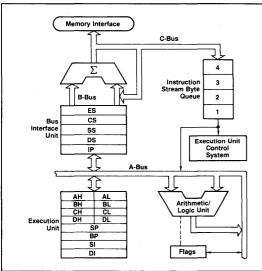
(Max mode) other local bus masters can force the processor to rebase the local bus at the end of the current bus cycle.

Read

Depending on the state of the IO/\overline{M} line, the processo is reading from either memory or I/O.

Minimum/Maximum

This input tells the processor in which mode it is to be used. This affects some of the pin descriptions.


Status Outputs

(Max mode) These are the status outputs from the processor. They are used by the $\mu PD8288$ to generate bus control signals.

Vcc

5 V power supply input.

Block Diagram

Absolute Maximum Ratings

T_A = 25°C, Tentative

Power supply voltage, V _{DD}	-0.5 V to +7 V
Input voltage, V _I	-0.5 V to +7 V
Output voltage, V ₀	-0.5 V to +7 V
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Power dissipation, P _D	2.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0$ °C to +70°C, $V_{CC} = +5 \text{ V} \pm 10\%$

			Limit	3		Test Conditions	
Parameter	Symbol	Min	Тур	Max	Unit		
Input voltage low	V _{IL}	-0.5		+0.8	٧		
Input voltage high	V _{IH}	2.0		V _{CC} +0.5	٧		
Output voltage low	V _{OL}			+0.45	٧	$I_{OL} = 2.0 \text{mA}$	
Output voltage high	V _{OH}	2.4			٧	$I_{OH} = -400 \mu\text{A}$	
Input clock voltage low	V _{CL}	-0.5		+0.6	٧		
Input clock voltage high	V _{CH}	3.9		V _{CC} +1.0	٧	-	
Input leakage current	I _{LI}	-		±10	μΑ	0 V < V < V _{CC}	
Output leakage current	I _{LO}			± 10	μΑ	0.45 V ≤ V ₀ ≤ V _{CC}	
Power supply current	lcc						
μPD8088/				340	mA	T _A = 25°C	
μPD8088-2				350	mΑ	$T_A = 25$ °C	

Capacitance

			Limits		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C ₁			15	pF	(Note 1)
1/0 capacitance	C _{IO}			15	pF	(Note 2)

Note

- (1) All input pins except AD₀-AD₇ and RQ/GT.
- (2) Only input pins AD₀-AD₇ and RQ/GT.

AC Characteristics

Minimum Complexity Systems $T_A = 0$ °C to +70°C, $V_{CC} = 5$ V ± 10 %

				Limits			
		μ PD 80	88	μ PD 808	8-2		Test Conditions
Parameter	Symbol	Min	Max	Min	Max	Unit	
CLK cycle period	t _{CLCL}	200	500	125	500	ns	
CLK low time	tclch	(2/3 t _{CLCL}) - 15		(2/3 t _{CLCL}) - 15		ns	
CLK high time	tCHCL	(1/3 t _{CLCL})+2		(1/3 t _{CLCL})+2		ns	
CLK rise time	t _{CH1CH2}		10		10	ns	From 1.0 V to 3.5 V
CLK fall time	t _{CL2CL1}		10		10	ns	From 3.5 V to 1.0 V
Data in setup time	t _{DVCL}	30		20		ns	
Data in hold time	t _{CLDX}	10		10		ns	
READY setup time into µPD8284	t _{R1VCL}	35		35		ns	(Notes 1 & 2)
READY hold time into µPD8284	t _{CLR1X}	0		0		ns	(Notes 1 & 2)
READY setup time into µPD8088	t _{RYHCH}	(2/3 t _{CLCL}) - 15		(2/3 t _{CLCL}) - 15		ns	
READY hold time into µPD8088	t _{CHRYX}	30		20		ns	
READY inactive to CLK	t _{RYLCL}	-8		-8		ns	(Note 3)
HOLD setup time	t _{HVCH}	35		20		ns	
INTR, NMI, TEST setup time	tinvch	30		15		ns	(Note 2)
Input rise time	ticiH		20		20	ns	From 0.8 V to 2.0 V, except clock
Input fall time	†IHIL		12	-	12	ns	From 2.0 V to 0.8 V, except clock

Timing Responses $T_A = 0$ °C to +70°C, $V_{CC} = 5$ V ±10%

			L	mits			
Parameter		μ PD 8088		μ PD80	88-2		Test
	Symbol	Min	Max	Min	Max	Unit	Conditions
Address valid delay	t _{CLAV}	10	110	10	60	ns	(Note 4)
Address hold time	t _{CLAX}	10		10		ns	(Note 4)
Address float delay	t _{CLAZ}	tCLAX	80	t _{CLAX}	50	ns	(Note 4)
ALE width	t _{LHLL}	t _{CLCH} - 20		t _{CLCH} - 10		ns	(Note 4)
ALE active delay	tcllh		80		50	ns	(Note 4)
ALE inactive delay	t _{CHLL}		85		55	ns	(Note 4)
Address hold time to ALE inactive	t _{LLAX}	t _{CHCL} - 10		t _{CHCL} - 10		ns	(Note 4)
Data valid delay	t _{CLDV}	10	110	10	60	ns	(Note 4)
Data hold time	t _{CHDX}	10		10		ns	(Note 4)
Data hold time after WR	t _{WHDX}	t _{CLCH} - 30		t _{CLCH} - 30		ns	(Note 4)
Control active delay 1	tcvctv	10	110	10	70	ns	(Note 4)
Control active delay 2	tchctv	10	110	10	70	ns	(Note 4)
Control inactive delay	tcvctx	10	110	10	70	ns	(Note 4)
Address float to READ active	t _{AZRL}	0		. 0		ns	(Note 4)
RD active delay	t _{CLRL}	10	165	10	80	ns	(Note 4)

AC Characteristics (cont)

Timing Responses (cont)

 $T_A = 0$ °C to +70°C, $V_{CC} = 5 V \pm 10$ %

			Ī				
Parameter		μ PD8088		μ PD80	μ PD8088-2		Test
	Symbol	Min	Max	Min	Max	Unit	Conditions
RD inactive delay	t _{CLRH}	10	150	10	80	ns	(Note 4)
RD inactive to next address active	t _{RHAV}	t _{CLCL} – 45		t _{CLCL} - 40		ns	(Note 4)
HLDA valid delay	t _{CLHAV}	10	160	10	100	ns	(Note 4)
RD width	t _{RLRH}	2t _{CLCL} - 75		2t _{CLCL} - 50		ns	(Note 4)
WR width	twLwH	2t _{CLCL} - 60	-	2t _{CLCL} - 40		ns	(Note 4)
Address valid to ALE low	t _{AVAL}	t _{CLCH} - 60		t _{CLCH} -40		ns	(Note 4)
Output rise time	t _{OLOH}		20		20	ns	From 0.8 V to 2.0 V
Output fall time	toHOL		12		12	ns	From 2.0 V to 0.8 V

Note:

- (1) Signal at $\mu PD8284$ shown for reference only.
- (2) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
- (3) Applies only to T2 state. (8 ns into T3)
- (4) $C_L = 20-100 \, pF$ for all $\mu PD8088$ outputs (in addition to $\mu PD8088$ self-load).

Maximum Mode System with µPB8288 Bus Controller

 $T_A = 0$ °C to +70 °C, $V_{CC} = 5 \text{ V} \pm 10\%$

			ı				
Parameter		μ PD 8088		μ PD 808	8-2	_	Test
	Symbol	Min	Max	Min	Max	Unit	Conditions
CLK cycle period	tclcl	200	500	125	500	ns	
CLK low time	t _{CLCH}	(2/3 t _{CLCL}) - 15		(2/3 t _{CLCL}) - 15		ns	
CLK high time	tCHCL	(1/3 t _{CLCL}) +2		(1/3 t _{CLCL})+2		ns	
CLK rise time	t _{CH1CH2}		10		10	ns	From 1.0 V to 3.5 V
CLK fall time	t _{CL2CL1}		10		10	ns	From 3.5 V to 1.0 V
Data in setup time	t _{DVCL}	30		20		ns	
Data in hold time	t _{CLDX}	10		10		ns	- 7
READY setup time into µPD8284	t _{R1VCL}	35		35		ns	(Notes 1 & 2)
READY hold time into µPD8284	t _{CLR1X}	0		0		ns	(Notes 1 & 2)
READY setup time into µPD8088	tryhch	(2/3 t _{CLCL}) - 15		(2/3 t _{CLCL}) - 15		ns	
READY hold time into µPD8088	t _{CHRYX}	30		20		ns	
READY inactive to CLK	t _{RYLCL}	-8		-8		ns	(Note 5)
INTR, NMI, TEST setup time	tinvch	30		15		ns	(Note 2)
RQ / GT setup time	tgvch	30		15		ns	
RQ hold time into µPD8088	t _{CHGX}	40		30		ns	
nput rise time	[†] ILIH		20		20	ns	From 0.8 V to 2.0 V except clock
nput fall time	tiHIL		12		12	ns	From 2.0 V to 0.8 V except clock

AC Characteristics (cont)

Timing Responses

 μ PD8088: T_A = 0 °C to +70 °C, V_{CC} = 5 V ± 10%

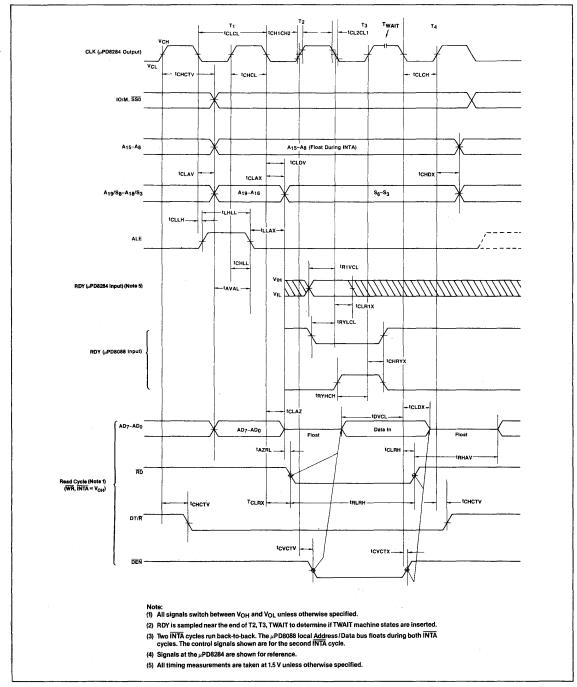
			L	imits			Test
		μPD80	88	μ PD 808	8-2		
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Command active delay	t _{CLML}	10	35	10	35	ns	(Notes 1 & 4)
Command inactive delay	t _{CLMH}	10	35	10	35	ns	(Notes 1 & 4)
READY active to status passive	t _{RYHSH}		110		65	ns	(Notes 3 & 4)
Status active delay	t _{CHSV}	10	110	10	60	ns	(Note 4)
Status inactive delay	tclsh	10	130	10	70	ns	(Note 4)
Address valid delay	t _{CLAV}	10	110	10	60	ns	(Note 4)
Address hold time	t _{CLAX}	10		10		ns	(Note 4)
Address float delay	t _{CLAZ}	t _{CLAX}	80	t _{CLAX}	50	ns	(Note 4)
Status valid to ALE high	t _{SVLH}		15		15	ns	(Notes 1 & 4)
Status valid to MCE high	tsvmch		15		15	ns	(Notes 1 & 4)
CLK low to ALE valid	t _{CLLH}		15		15	ns	(Notes 1 & 4)
CLK low to MCE high	tclmch		15		15	ns	(Notes 1 & 4)
ALE inactive delay	tchll		15		15	ns	(Notes 1 & 4)
MCE inactive delay	tCLMCL		15		15	ns	(Notes 1 & 4)
Data valid delay	t _{CLDV}	10	110	10	60	ns	(Note 4)
Data hold time	t _{CHDX}	10		10		ns	(Note 4)
Control active delay	t _{CVNV}	5	45	5	45	ns	(Notes 1 & 4)
Control inactive delay	t _{CVNX}	10	45	10	45	ns	(Notes 1 & 4)
Address float to READ active	t _{AZRL}	0		0		ns	(Note 4)
RD active delay	t _{CLRL}	10	165	10	100	ns	(Note 4)
RD inactive delay	tCLRH	10	150	10	80	ns	(Note 4)
RD inactive to next address active	t _{RHAV}	t _{CLCL} -45		t _{CLCL} - 40		ns	(Note 4)
Direction control active delay	tCHDTL		50		50	ns	(Notes 1 & 4)
Direction control inactive delay	tCHDTH		30		30	ns	(Notes 1 & 4)
GT active delay	tclgl	0	85	0	50	ns	(Note 4)
T inactive delay	tclgh	0	85	0	50	ns	(Note 4)
RD width	t _{RLRH}	2t _{CLCL} - 75		2t _{CLCL} - 50		ns	(Note 4)
Output rise time	toloh		20		20	ns	From 0.8 V to 2.0
Output fall time	tohol		12		12	ns	From 2.0 V to 0.8

Note:

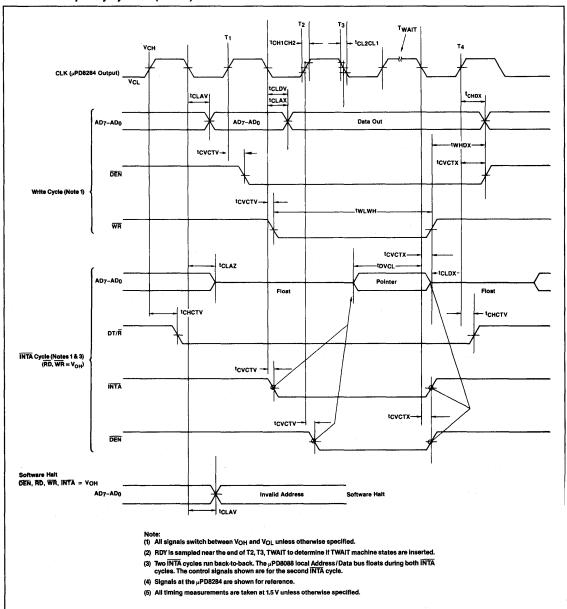
⁽¹⁾ Signal at μ PB8284 or μ PB8288 shown for reference only.

⁽²⁾ Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

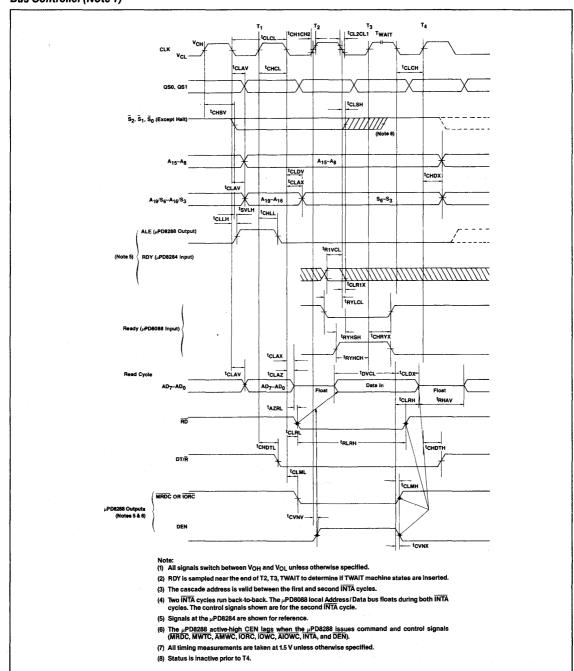
⁽³⁾ Applies only to T3 and wait states.


⁽⁴⁾ $C_L = 20-100 \text{ pF}$ for all μPD8088 outputs (in addition to μPD8088 self-load).

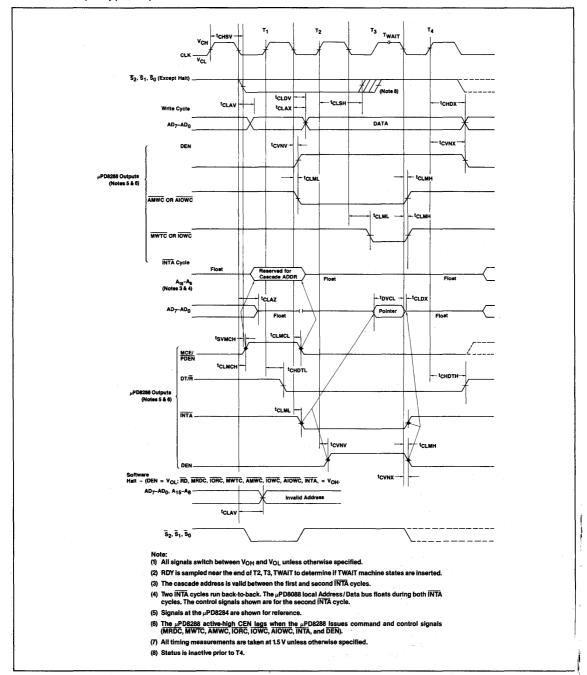
⁽⁵⁾ Applies only to T2 state. (8 ns into T3).


Timing Waveforms

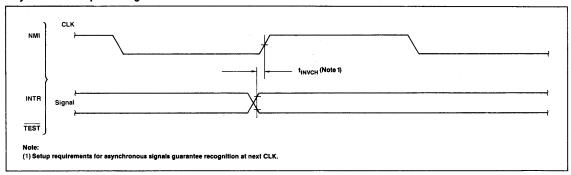
Minimum Complexity Systems (Note 5)



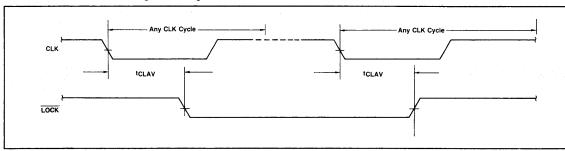
Minimum Complexity Systems (Note 5)

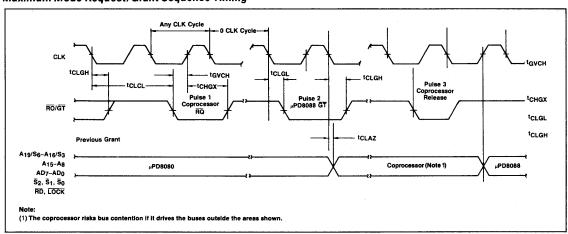


Maximum Mode System Bus Timing Using μ PB8288 Bus Controller (Note 7)

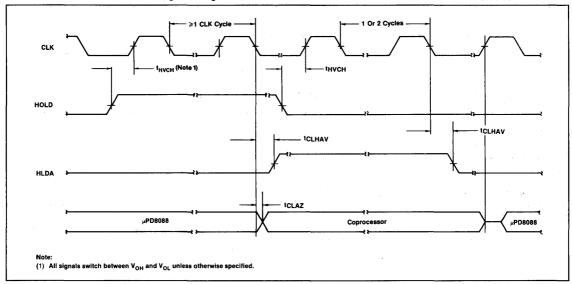


Maximum Mode System Bus Timing Using μPB8288 Bus Controller (cont) (Note 7)




Asynchronous Input Recognition

Maximum Mode Bus Lock Signal Timing



Maximum Mode Request/Grant Sequence Timing

Mimimum Mode Hold Acknowledge Timing

DIGITAL SIGNAL PROCESSING AND SPEECH

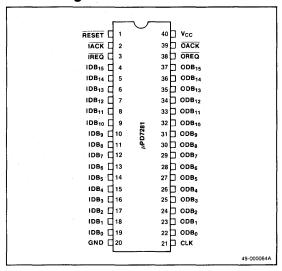
Section 5 — Digital Signal Processing and Speech

5-3
5-45
5-77
5-99
5-101
5-117
5-127
5-133

PRELIMINARY INFORMATION

Description

The NEC µPD7281 Image Pipelined Processor is a high-speed digital signal processor specifically designed for digital image processing such as restoration, enhancement, compression, and pattern recognition. The µPD7281 employs token-based dataflow and pipelined architecture to achieve a very high throughput rate. A high-speed on-chip multiplier speeds calculations. More than one µPD7281 can easily be cascaded with a minimum amount of interface hardware to increase the throughput rate even further. The μ PD7281 is designed to be used as a peripheral processor for minicomputers or microcomputers, thereby relieving the host processor from the burden of time-intensive computations. The μ PD7281 has a very powerful instruction set designed specifically for digital image processing algorithms. The Image Pipelined Processor can also be used as either a general purpose digital signal processor or a numeric processor.


Features

- ☐ Token-based data-flow architecture
- ☐ Internal pipelined ring architecture
- $\hfill\square$ Powerful instruction set for image processing
- 17 x 17-bit (including sign bits) fast multiplier:
 200 ns (target spec)
- ☐ High-speed data I/O handling
 - Asynchronous two-wire handshaking protocols
 - Separate data input and output pins
- ☐ Easy multiple-processor configuration
- □ Rewritable program stores
- □ On-chip memories:
 - Link Table (LT): 128 x 16 bits
 - Function Table (FT): 64 x 40 bits
 - Data Memory (DM): 512 x 18 bits
 - Data Queue (DQ): 32 x 60 bits
 - Generator Queue (GQ): 16 x 60 bits
 - Output Queue (OQ): 8 x 32 bits
- ☐ NMOS technology
- ☐ Single +5 V power supply
- ☐ 40-pin DIP

Applications

- ☐ Digital image restoration
- ☐ Digital image enhancement
- ☐ Pattern recognition
- ☐ Digital image data compression
- ☐ Radar and sonar processing
- ☐ Fast Fourier Transforms (FFT)
- □ Digital filtering
- □ Speech processing
- □ Numeric processing

Pin Configuration

Performance Benchmarks

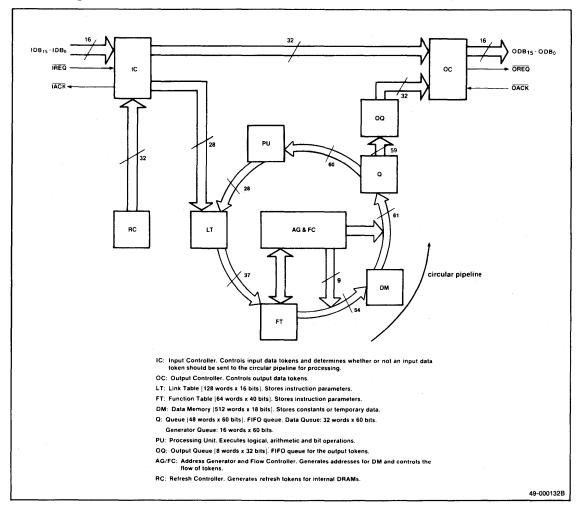
Operation	1 μPD7281	3 μ PD728 1s	Note
Rotation	1.5 sec	0.6 sec	512 x 512 binary image
1/2 Shrinking	80 ms	30 ms	512 x 512 binary image
Smoothing	1.1 sec	0.4 sec	512 x 512 binary image
3x3 Convolution	3.0 sec	1.1 sec	512 x 512 grey scale image
64-stage FIR Filter	50 μs	18 <i>µ</i> s	17-bit fixed point
cos(x)	40 μs	15 μs	33-bit fixed point

Ordering Information

Part Number	Package Type
μPD7281D	40-pin ceramic DIP

Pin Identification

No.	Signal	1/0	At RESET	Description
1	RESET	ln		System Reset: A low signal on this pin initializes µPD7281. During the reset, a 4-bit module number should be placed on IDB ₁₅ - IDB ₁₂ .
2	IACK	Out	High	Input Acknowledge: This acknowledge signal is output by the μ PD7281 to notify the external data source that a 16-bit data transfer has been completed.
3	ĪREQ	.ln		Input Request: This input signal requests a data transfer from an external device to μ PD7281.
4-19	IDB ₁₅ - IDB ₀	İn		16-bit input data bus: 32-bit input data tokens are input to the Input Controller as two 16-bit words.
20	GND			Power ground
21	CLK	in		System clock input (10 MHz: target spec)
22-37	ODB ₁₅ - ODB ₀	Out	High Impedance	16-bit output data bus: 32-bit output data tokens are output by the Output Controller as two 16-bit words.
38	OREQ	Out	High	Output Request: This signal informs an external device that a 16-bit data word is ready to be transferred out of µPD7281.
39	ŌACK	ln		Output Acknowledge: This acknowledge signal input by the external data destination notifies µPD7281 that a 16-bit data transfer may occur.
40	V _{CC}			+5 V power supply


Architecture

The μ PD7281 utilizes a token-based, data-flow architecture. This novel architecture not only provides multiprocessing capability without complex external hardware, but also offers high computational efficiency within each processor. Taking advantage of the multiprocessing capability of data-flow architecture, almost any processing speed requirements can be satisfied by using as many μ PD7281s as needed in the system. Within each µPD7281, the data-flow architecture provides high computational efficiency through concurrent operations. For example, while the Processing Unit (or ALU) spends its time for actual computations only, the internal memory address calculations, internal memory read and write operations and input/output operations are all being done concurrently. Furthermore, in contrast to conventional von Neumann processors, a data-flow processor doesn't fetch instructions, perform subroutine stack operations or do data transfers between registers. Therefore, it does not spend the time required for these operations.

The μ PD7281 also utilizes an internally pipelined architecture. As shown in the block diagram, a circular pipeline is formed by five functional blocks: the Link Table (LT), the Function Table (FT), the Data Memory (DM), the Queue (Q), and the Processing Unit (PU). A token entered through the Input Controller (IC) is passed on to the Link Table to be processed around the pipelined ring as many times as needed. When a token is finished being processed, it is queued into Output Queue (OQ) and then output via the Output Controller (OC).

Block Diagram

Absolute Maximum Ratings

IA = +25°C	
Supply voltage, V _{DD}	−0.5 V to +7.0 V
Input voltage, V _I	−0.5 V to +7.0 V
Output voltage, V ₀	−0.5 V to +7.0 V
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = +25$ °C

-		Liı	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
CLK capacitance	CK		20	pF	fc = 1 MHz
Input capacitance	Cı		10	pF	(All other pins
Output capacitance	c ₀		20	pF	at 0 V)

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{DD} = 5$ V ± 10 %

	-7 00					
			Lim	its		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage 1 (RESET, IDB ₁₅₋₀)	V _{IL1}	-0.5		0.8	٧	
Input high voltage 1 (RESET, IDB ₁₅₋₀)	V _{IH1}	2.0		V _{DD} + 0.5	٧	
Input low voltage 2 (IREQ, OACK, CLK)	V _{IL2}	-0.5		0.45	٧	
Input high voltage 2 (IREQ, OACK, CLK)	V _{IH2}	3.5		V _{DD} + 0.5	٧	
Output low voltage	V _{OL}			0.45	٧	$I_{OL} = 2.0 \text{ mA}$
Output high voltage	V _{OH}	2.4			٧	$I_{OH} = -400 \mu\text{A}$
Input leakage current	lLI			±10	μΑ	$0 \ V \leq V_{I} \leq V_{DD}$
Output leakage current	ILO		±10		μΑ	$0 \text{ V} \leq \text{V}_0 \leq \text{V}_{DD}$
Supply current	I _{DD}		300	500	mA	

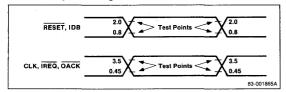
AC Characteristics

 $\rm T_{\mbox{\scriptsize A}} = 0\,^{\circ}\mbox{\scriptsize C}$ to +70 $^{\circ}\mbox{\scriptsize C},\, \rm V_{\mbox{\scriptsize DD}} = 5~\rm V~\pm 10\%$

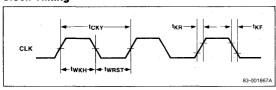
			Limits	3		Test	
Parameter	Symbol	Min Typ		Max	Unit	Conditions	
CLK cycle time	t _{CYK}	100		200	ns	Measured at 2 V	
CLK pulse width high	twkh	48			ns	-	
CLK pulse width low	t _{WKL}	48			ns	-	
CLK rise time	t _{KR}			10	ns		
CLK fall time	t _{KF}			10	ns		
IACK delay time 1 (from IREQ down) (Note 1)	t _{DIAL1}			40	ns		
IACK delay time 1 (from IREQ up) (Note 2)	[†] DIAH1			40	ns		
IACK delay time 2 (from IREQ down)	t _{DIAL2}			60	ns		
IACK delay time 2 (from IREQ up)	t _{DIAH2}			- 60	ns		
Min time between transitions on IREQ and IACK	t _{HIQ}	45			ns		
IREQ rise time	tign			10	ns		

AC Characteristics (cont) $T_A = 0$ °C to +70 °C, $V_{DD} = 5$ V ±10%

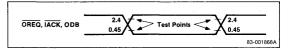
			Limits	s		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
IREQ fall time	t _{IQF}			10	ns	
Data set up time (before IREQ up)	tsid	50			ns	
Data h <u>old</u> time (after IREQ up)	t _{HID}	0			ns	
OREQ delay time 1 (from OACK down)	t _{DOQH1}			40	ns	
OREQ delay time 1 (from OACK up)	t _{DOQL1}			40	ns	
OREQ delay time 2 (from OACK down)	t _{DOQH2}			60	ns	
OREQ delay time 2 (from OACK up)	t _{DOQL2}			60	ns	
Min time between transitions on OREQ and OACK	t _{DOA}	45			ns	
OACK rise time	t _{OAR}			10	ns	
OACK fall time	t _{OAF}			10	ns	
Data access time (after OREQ down)	t _{DOD}			20	ns	
Data f <u>loat time</u> (after OREQ up)	t _{FOD}	10		100	ns	
Pre RESET high time	t _{RVRST}	2t _{CYK}			ns	-
RESET low time	twrst	4t _{CYK}			ns	
Module number data setup time (after RESET down)	t _{DMD}			2t _{CYK}	ns	
Module number data hold time (after RESET up)	t _{HMD}	0			ns	

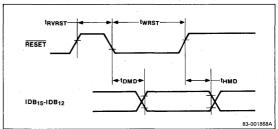

Notes:

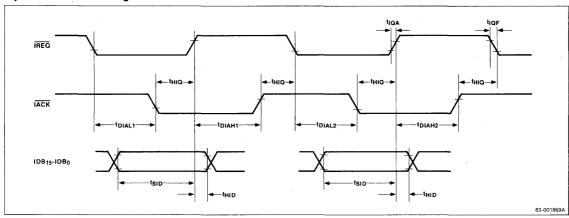
- (1) "Down" = on falling edge
- (2) "Up" = on rising edge
- (3) Output load capacitance: \overline{IACK} , $\overline{OREQ} = 50 \text{ pF}$; $ODB_{15-0} =$ 100 pF

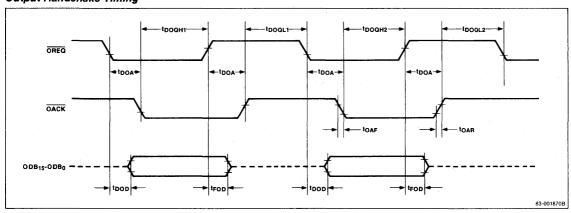


Timing Waveforms


AC Test Input Voltage


Clock Timing


AC Test Output Voltage


Module Number and RESET Timing

Input Handshake Timing

Output Handshake Timing

Functional Description

As shown in the block diagram, the µPD7281 consists of 10 functional blocks. Before any processing occurs, the host processor down-loads the object code into the Link Table and the Function Table of the µPD7281 by using specially formatted input tokens. At this time, constants may also be sent to the Data Memory to be stored. The contents of the Link Table and the Function Table are closely related to a computational graph. When a computational process is represented graphically, it usually forms a directed data-flow graph. In such a graph, the arcs (or edges, links, etc.) represent the entries in the Link Table and the nodes represent the entries in the Function Table. An arc between any two nodes has a data value, called a "token". and is identified by a corresponding entry in the Link Table. A node in the directed data-flow graph signifies an operation, and the type of operation is logged into the Function Table along with the identification information about the outgoing arc.

A minimal amount of interface hardware is required to configure μ PD7281s in a multiprocessor system. As many as 14 μ PD7281s can be cascaded together, as

shown in figure 1. Each μ PD7281 must be assigned a Module Number (MN) during reset. Figure 2 shows the timing diagram for assigning the module number.

When any token enters a μ PD7281, regardless of the total number of μ PD7281s used in the system, the Input Controller of that μ PD7281 discerns whether or not the entering token is to be processed by checking the Module Number (MN) field of the token. If the Module Number is not the same as the Module Number assigned during reset, the token is passed to the Output Controller so that it can be sent out via the Output Data Bus. However, if the token has the same Module Number, then the Input Controller strips off the MN field and sends the remaining part of the token to the Link Table for processing.

Once a token enters the circular pipeline by accessing the Link Table, it requires seven pipeline clock cycles for the token to fully circulate around the ring. One pipeline clock cycle is needed for the Link Table, the Function Table, or the Data Memory to process an incoming token, and two pipeline clock cycles are needed for the Queue or the Processing Unit to process a token. The Queue requires one pipeline

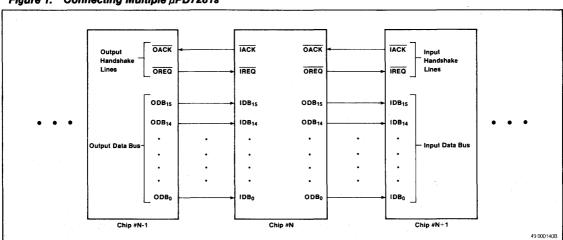
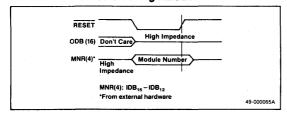
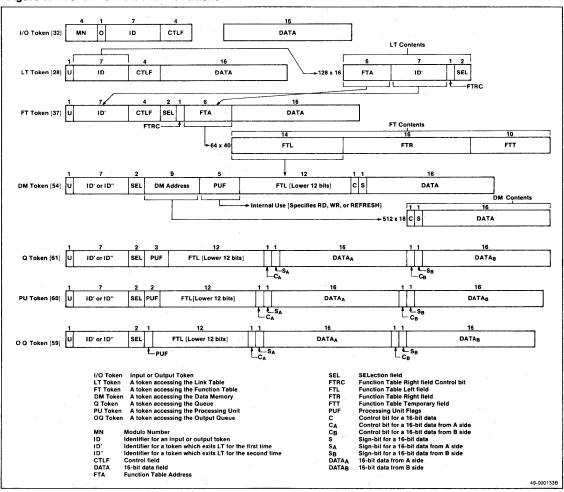



Figure 1. Connecting Multiple µPD7281s

Figure 2. Timing Diagram for Assigning Module
Numbers During RESET

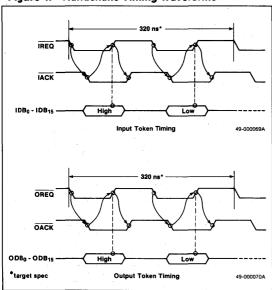


clock cycle to write and one cycle to read. Similarly, the Processing Unit requires one pipeline clock cycle to execute and one clock cycle to output the result. In other words, both the Processing Unit and the Queue are made of two-stage pipelines. Therefore, when seven tokens exist simultaneously in the circular pipeline, the pipeline is full and full parallel processing is achieved.

When a data token flows through each functional block in a given μ PD7281, the format of the token changes significantly. The actual transitions of a token format through different functional blocks are shown

in figure 3. A data token flowing within the circular pipeline must have at least a 7-bit Identifier (ID) field and an 18-bit data field. The ID field is used as an address to access the Link Table memory. When a token accesses the LT memory, the ID field of the token is replaced by a new ID (shown as ID' in figure 3) previously stored in the LT memory. As a result, every time a data token accesses LT memory, its ID field is renewed. The data field of a token consists of a control bit, a sign bit and a 16-bit data. A token may have up to two data fields, as well as other fields (OP code, control, etc.) if necessary.

Figure 3. Token Formats and Transitions



Input Controller [IC]

A 32-bit token is entered into a µPD7281 in two 16-bit halves using a two-signal request/acknowledge handshake method, as shown in figure 4. The input/output token format is shown in figure 7. After a token is accepted by the IC, the MN field of the token is compared to the Module Number of µPD7281 which was assigned at reset. If the Module Number of the accepted token is not the same, the IC passes the token directly to the Output Controller. If the MN field of the accepted token is the same, then the IC strips off the Module Number and sends the remaining part of the token to the Link Table. The IC also monitors the status of the Processing Unit. If it is busy, the IC delays accepting another token until it is no longer busy. The IC also accepts the refresh tokens from the Refresh Controller (RC) and sends them to the Link Table.

Output Controller [OC]

The OC outputs 32-bit tokens in two 16-bit halves using a two-signal request/acknowledge handshake method, as shown in figure 4. The types of tokens output by the OC are as follows: output data tokens from the Output Queue, error status data tokens generated internally by OC, DUMP tokens, and passing data tokens from the Input Controller.

Link Table [LT]

The LT is a 128 x 16-bit dynamic RAM. The ID field of an incoming LT token is used to access the LT memory. The contents of an LT memory location consist of a 6-bit Function Table Address (FTA), a 7-bit ID, a 1-bit Function Table Right Field Control (FTRC), and a 2-bit Selection (SEL) field. When a token accesses LT memory, its ID field is replaced by the new ID field contained in the memory location being accessed. Therefore, every time a token accesses LT memory, it is given a new ID. The FTA field is used to access FT memory locations. The FTRC bit and the SEL field are used to specify the type of instruction. By using specially formatted tokens, the contents of the LT can either be set during a program download or be read during a diagnosis.

Function Table [FT]

The FT is a 64 x 40-bit dynamic RAM. As for the case of the Link Table, the contents can either be set during a program download or be read during a diagnosis by using specially formatted tokens.

Each FT memory location consists of a 14-bit Function Table Left field (FTL), a 16-bit Function Table Right field (FTR), and a 10-bit Function Table Temporary field (FTT). These fields contain control information for different types of instructions.

Address Generator and Flow Controller [AG/FC]

The AG/FC generates the addresses to access the Data Memory (DM) and controls the writing of data to and the reading of data from the Data Memory. AG/FC determines whether the incoming token contains a one-operand instruction or a two-operand instruction. One-operand instruction tokens can be sent directly to the Queue. However, if the token contains a twooperand instruction, then both operands must be available before they can be sent to the Queue. For a two-operand instruction, the token which arrives at the Data Memory first is temporarily stored until the second operand token arrives. When the second operand token exits the Function Table, the AG/FC generates the Data Memory address which contains the first operand. Then, the second operand token and the first operand data read out from the Data Memory are sent to the Queue together.

Data Memory [DM]

The DM is a 512 x 18-bit dynamic RAM which is used to queue the first operand for a two-operand instruction until the second operand arrives. DM can also be used as a temporary memory or as a buffer memory for I/O data.

Queue [Q]

The Q is a FIFO memory configured with a 48 x 60-bit dynamic RAM. The Q is used to temporarily store the Processing Unit-bound and the Output Queue-bound tokens. The Q is further divided into two different FIFO memories: a 32 x 60-bit Data Queue (DQ) and a 16 x 60-bit Generator Queue (GQ). The DQ is used for the

PU, OUT and AG/FC instructions. The DQ temporarily stores the PU and AG/FC tokens before they are sent to the Processing Unit for processing. The DQ also temporarily stores the Output Queue tokens before they are sent to the Output Queue. The GQ is used for Generate (GE) instructions only. The DQ will not output tokens to the Output Queue if it is full, and the DQ or GQ will not output tokens to the Processing Unit if the Processing Unit is busy.

In order to control the number of tokens in the circular pipeline to prevent Q overflow, the Q is further restricted by the following two situation rules: when the DQ has eight or more tokens stored, the read from the GQ is inhibited, and when the DQ has fewer than eight tokens stored, the read from the GQ has a higher priority than the read from the DQ. Since instructions stored in the GQ generate tokens, restricting the number of GQ tokens is important in order to keep the Q from overflowing. In case the internal processing speed is slower than the rate of incoming data tokens, the DQ posseses a potential overflow condition. To prevent overflow, the processor is put into restrict/inhibit mode when the DQ reaches a level greater than 23.

Output Queue [OQ]

The OQ is a first-in first-out (FIFO) memory configured in an 8 x 32-bit static RAM. The OQ is used to temporarily store the output data tokens from the Data Queue so that they can be output by the Output Controller via the output data bus. When OQ is full, it sends a signal to the Data Queue to delay accepting further tokens.

Processing Unit [PU]

The PU executes two types of instructions: PU and GE. PU instructions include logical, arithmetic (add, subtract and multiply), barrel-shift, compare, data-exchange, bit-manipulation, bit-checking, data-conversion, double-precision adjust, and other operations. The control information for a PU instruction is contained in the Function Table Left field of the PU token. The GE instructions are used to generate a new token, multiple copies of a token, or block copies of a token. They can also be used to set the Control field (CTLF) of a token and to generate external memory addresses. If the current PU operation cannot be completed within a pipeline clock cycle, the PU sends a signal to the

Queue and the Input Controller to prevent them from releasing any more tokens.

Refresh Controller [RC]

The RC automatically generates refresh tokens for the dynamic RAMs used in the circular pipeline, i.e. the LT, FT, DM, and Q. Each RC token, generated periodically, is sent to the Input Controller and is propagated through the LT, FT, DM and Q, in that order. The RC tokens are deleted after reaching the Q.

Operation Modes

There are three different modes in which the μ PD7281 can operate: Normal, Test, and Break (see figure 5). After an external hardware reset, the μ PD7281 is in the Normal mode of operation. The μ PD7281 can enter the Test mode for program debugging by inputting a SETBRK token (see figure 6) while the processor is in the Normal mode. If an overflow occurs in the Data Queue or the Generator Queue, the processor enters into the Break mode so that the internal contents of the processor can be examined; see table 1. Table 2 describes the effects of software and hardware resets.

Table 1. DUMPD Output Token Format

MN	Z , ,	ID	CTLF	DATA (16-bit field)
0000	0	0000 000	0111	xxxxx(5) GQ Size(5 bits) DQ Size(6 bits)
0000	0	0000 001	0111	xxxx(4) u(1) ID(7) CTLF(4)
0000	0	0000 010	0111	DATA(16)
0000	0	0000 011	0111	xxx (3) u(1) ID(7) x(1) C _B , S _B , C _A , S _A
0000	0	0000 100	0111	xx(2) FTL (Lower 12 bits) xx(2)
0000	0	0000 101	0111	DATA _A (16)
0000	0	0000 110	0111	DATA _B (16)
0000	0	0000 111	0111	xxxxxxxxx(9) ID(7)

Table 2. Effects of Reset Operation

x: Don't care u: Unused

	Hardware Reset	Software Reset
MN	μPD7281 reads in MN	No Change
High/Low Word Flip-flop	Reset	No Change
Input Inhibit Control	Reset (No constraint)	No Change
LT Break State	Reset	Reset
Internal Operation	Stopped	Stopped
DQ, GQ, and OQ Pointers	Set to 0	Set to 0

Figure 5. μPD7281 Operation Modes

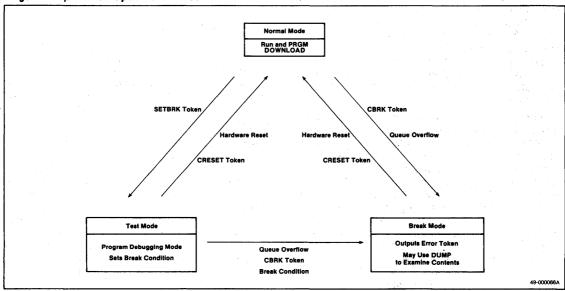
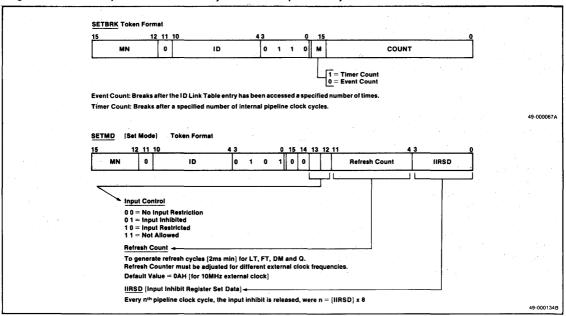



Figure 6. SETBRK (Set Break Condition) and SETMD (Set Mode) Token Formats

input/Output Tokens

The only way any external device can communicate with the μ PD7281 is by using the I/O tokens (see figure 7). Both the input and the output tokens have the same format so that a token may flow through a series of multiple processors without a format change. A 32-bit I/O token is divided into upper and lower 16-bit words and input to or output from the μ PD7281 a 16-bit word at a time. Object code is down-loaded into the Link

Table and the Function Table using SETLT, SETFTR, SETFTL and SETFTT input tokens. The contents of the Function Table and the Link Table can also be read using RDLT, RDFTR, RDFTL and RDFTT tokens. In order to write or read a value to and from the Data Memory, a program must be down-loaded and executed. Once object code is down-loaded into the μ PD7281, data tokens are input to the processor, thereby initiating the processing. For a description of the input and output tokens, see tables 3 and 4.

Figure 7. Input/Output Token Format

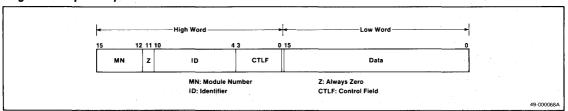


Table 3. Input Token Format

Input Token		High W	ord (16)		Low Word (16)	Remarks
	MN (4) 15 12	Z (1) 11	ID (7) 10 4	CTLF (4) 3 0	DATA (16) 15 O	
SETLT	MN	. 0	LT address	1100	Data to be set in LT	Set LT
SETFTR	MN	0	FT address	1101	Data to be set in FTR	Set FT Right Field
SETFTL	MN	0	FT address	1110	Data to be set in FTL	Set FT Left Field
SETFTT	MN	0	FT address	1111	Data to be set in FTT	Set FT Temporary Field
RDLT	MN	0	LT address	1000		Read LT
RDFTR	MN	0	FT address	1001		Read FT Right Field
RDFTL	MN	0	FT address	1010		Read FT Left Field
RDFTT	MN	0	FT address	1011		Read FT Temporary Field
CRESET	MN	0		0 1 0 0		Command Reset
SETMD	MN	0		0 1 0 1	Mode set data	Set Operation Mode
SETBRK	MN	0	ID	0 1 1 0	M (1) Count (15)	Set Break Condition
DUMP	MN	0	xxxx(4) DUMP (3)	0 1 1 1		Dump
CBRK	0 0 0 0	0		0 1 0 0		Command Break
VAN	1111	0				Vanish Data
PASS	MN*	0				Pass Data
EXEC	MN	0	ID	0 0 C S	Data	Normal Execution Data

^{*} When MN is not the current module number

x: Don't care

Table 4. Output Token Format

Output Token	U	pper-Ord	ler Word (16)				Lower-Order Word (16)	Remarks
	MN (4) 15 12	Z (1)	ID (7) 10 4	3	CTLF (4)	0	DATA (16) 15	0	
LTRDD	0 0 0 0	0	LT address		1000		Data read from LT		FT Read Data
FTRRDD	0 0 0 0	0 .	FT address		1001		Data read from FTR		FT Right Field Read Data
FTLRDD	0000	0	FT address		1010		Data read from FTL		FT Left Field Read Data
FTTRDD	0000	0 -	FT address		1011		Data read from FTT		FT Temporary Field Read Data
PASSD	MN	0	ID		CTLFD		Data		Pass Data
ERR	0000	0	0 0 0 0 0 0 0		0 1 0 0		MN(4)MODE(4) 0 0 0 ST	ATUS(5)	Error Data
DUMPD	0000	0	0 0 0 0 DUMP(3)		0 1 1 1		Dump data		Dumped Data
OUTD	MN	0	ID		0 0 C S		Data		Output Data

Instruction Set Summary

Tables 5 through 8 summarize the instruction set.

Table 5. AG/FC Instructions

Mnemonic	Instruction	
QUEUE	Queue	
RDCYCS	Read cyclic short	
RDCYCL	Read cyclic long	
WRCYCS	Write cyclic short	
WRCYCL	Write cyclic long	
RDWR	Read/Write Data Memory	
RDIDX	Read Data Memory with index	
PICKUP	Pickup data stream	
COUNT	Count data stream	
CONVO	Convolve	
CNTGE	Count generation	
DIVCYC	Divide cyclic	
DIV	Divide	
DIST	Distribute	
SAVE	Save ID	
CUT	Cut data stream	

Table 6. PU Instructions

Mnemonic	Instruction		
OR	Logical OR		
AND	Logical AND		
XOR	Logical EXCLUSIVE-OR		
ANDNOT	Logical INVERT an operand then AND: (•B)		
NOT	Invert		
ADD	Add		
SUB	Subtract		

Table 6. PU instructions (cont)

Mnemonic	Instruction	
MUL	Multiply	
NOP	No operation	
ADDSC	Add and shift count	
SUBSC	Subtract and shift count	
MULSC	Multiply and shift count	
NOPSC	NOP and shift count	
INC	Increment	
DEC	Decrement	
SHR	Shift right	
SHL	Shift left	
SHRBRV	Shift right with bit reverse	
SHLBRV	Shift left with bit reverse	
CMPNOM	Compare and normalize	
CMP	Compare	
СМРХСН	Compare and exchange	
GET1	Get one bit	
SET1	Set one bit	
CLR1	Clear one bit	
ANDMSK	Mask a word with logical AND	
ORMSK	Mask a word with logical OR	
CVT2AB	Convert 2's complement to sign-magnitude	
CVTAB2	Convert sign-magnitude to 2's complement	
ADJL	Adjust long (for double precision numbers)	
ACC	Accumulate	
COPYC	Copy control bit	

Table 7. GE Instructions

Mnemonic	Instruction	
СОРҮВК	Copy block	
СОРҮМ	Copy multiple	
SETCTL	Set control field	

Table 8. OUT Instructions

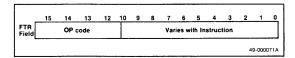
Mnemonic	Instruction	
OUT1	Output 1 token	
OUT2	Output 2 tokens	

There are four different types of instructions which can be specified by the SEL field of an FT token. See table 9.

Table 9. SEL Field of an FT Token

i abit 3.		SELTIGIO OF ATT TORET					
SEL	Туре	Description					
11	AG/FC	Executes instructions specified by the Function Table Right field while monitoring the Function Table Temporary field.					
01	PU	Performs arithmetic, logical, barrel-shift, bit- manipulation, data-conversion, etc.					
10	GE	Generates a block or multiple new tokens from a token. Sets the control field of a token. Increments or decrements the data field of a token.					
00	OUT	Outputs data tokens from the circular pipeline to the Output Queue after the tokens are finished being processed.					

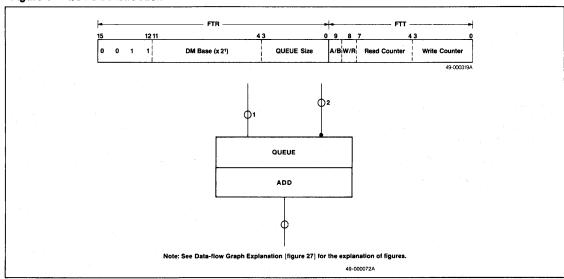
AG/FC Instructions


There are 16 AG/FC instructions (see table 10). They can be grouped into three types: Address Generator (AG), Flow Controller (FC), and AG/FC type.

AG type: RDCYCS, RDCYCL, WRCYCS, WRCYCL, RDWR, RDIDX

FC type: PICKUP, COUNT, CUT, DIVCYC, DIV, DIST, CONVO, SAVE, CNTGE

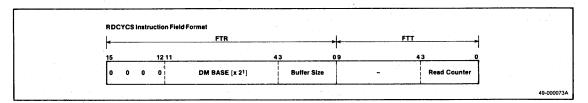
AG/FC type: QUEUE


A 4-bit OP code in the Function Table right field specifies the instruction to be executed.

QUEUE

For a two-operand instruction, a QUEUE instruction is used to temporarily store the first operand token in the Data Memory until the second operand token arrives. The maximum Queue size is 16. See figure 8.

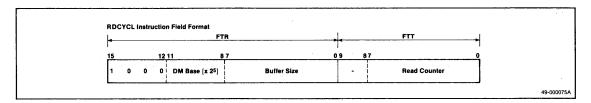




RDCYCS [Read Cyclic Short]

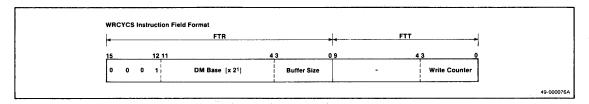
RDCYCS reads 18-bit data words from the Data Memory cyclically (see figure 9). The first data to be read is specified by the DM Base address. The last data to be read is specified by the buffer size. The Read Counter (RC) contains the offset address from Data Memory Base (DMB) address. It is incremented each time the Data Memory is accessed. The maximum buffer size is 16.

Figure 9. RDCYCS Instruction Operation



RDCYCL [Read Cyclic Long]

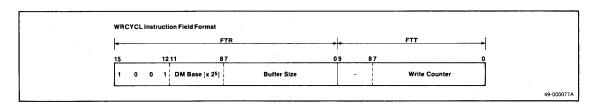
RDCYCL reads 18-bit data words from the Data Memory in a cyclic manner like RDCYCS but has a longer cyclic


range. The first data to be read is specified by the DM Base address. The last data to be read is specified by the buffer size. The maximum buffer size is 256.

WRCYCS [Write Cyclic Short]

WRCYCS writes 18-bit data words into the Data Memory cyclically. The first the Data Memory address

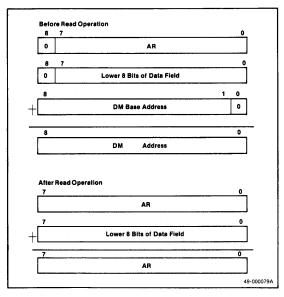
is specified by the DM Base address. The last address is specified by the buffer size. The maximum buffer size is 16.



WRCYCL [Write Cyclic Long]

WRCYCL writes 18-bit data words into the data memory in a cyclic manner similar to WRCYCS but has a longer

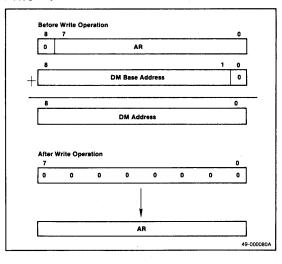
cyclic range. The first DM address is specified by the DM Base address. The last address is specified by the buffer size. The maximum buffer size is 256.

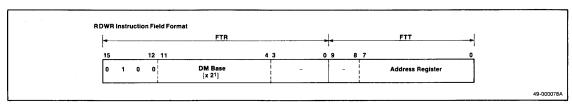

RDWR [Read/Write Data Memory]

RDWR is used to write or read data to and from the Data Memory. This instruction reads/modifies/writes the Data Memory with the Address Register as index.

If a token arriving at the instruction has FTRC bit = 0, then the instruction performs a DM read operation. If it has FTRC bit = 1, then the instruction performs a DM write operation.

For a token with the FTRC bit = 0, the actual DM address location to be read is determined by the sum of the following three values: 8-bit Address Register (AR),

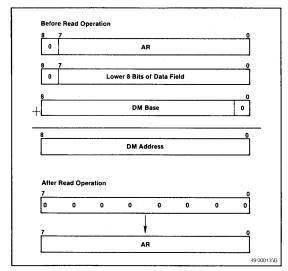

FTRC = 0



the lower eight bits of the data field of the token, and the DM Base address. After the read operation, the lower eight bits of the token's data field is added to the value of AR. Additionally, the data field of the token is replaced by the contents read from the Data Memory location.

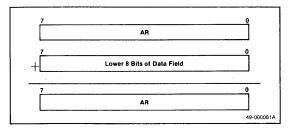
If a token with FTRC bit = 1 is used along with RDWR, a write operation is performed. The Data Memory address location is determined by the sum of 8-bit AR and DM Base address. The 18-bit data from the token is written into the DM address calculated. After the write operation, AR is reset to 00H.

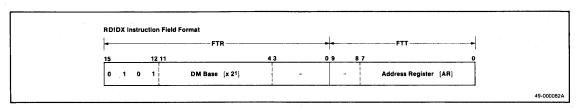
FTRC = 1



RDIDX [Read Data Memory with Index]

RDIDX is used to read the contents of the Data Memory. This instruction is most useful when a part of the Data Memory is used as a look-up table. The RDIDX instruction performs different operations depending upon the FTRC bit of the token using the instruction. If the FTRC bit = 0, then the instruction reads a Data Memory location. The DM address location to be read is determined by the sum of the following three values: the 8-bit AR, the lower eight bits


FTRC = 0



of the token's data field, and the DM Base address. After the read operation, the data field of the token is replaced by the contents of the Data Memory location read. The value of AR is reset to zero after the operation.

If the FTRC bit = 1, no operation is performed on the Data Memory. However, the token's AR contents are replaced by the modulo-256 sum of the lower eight bits of data field and the current contents of AR.

FTRC = 1

PICKUP [Pickup Data Stream]

This instruction picks up every $(n+1)^{th}$ token from a stream of incoming tokens and increments the $(n+1)^{th}$ token's ID field by one. The number n is specified by the Count

Size (CS) of the Function Table Right field.

Figure 10 illustrates the PICKUP instruction with CS = 3.

Note: These figures use the data-flow graph convention. See figure 27, Data-flow Graph Explanation for the explanation of figures.

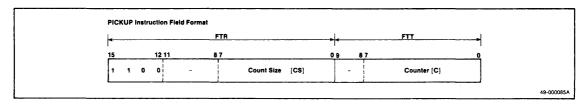
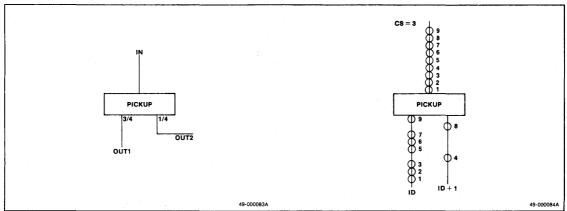



Figure 10. Pickup Instruction

COUNT [Count Data Stream]

COUNT copies every (n+1)th token from a stream of incoming tokens and increments the copied token's ID

field by one. The number n is specified by CS of the Function Table Right field. Figure 11 illustrates the COUNT instruction with CS = 3.

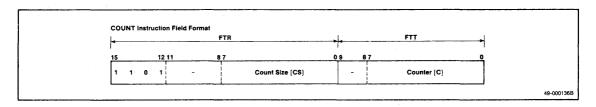
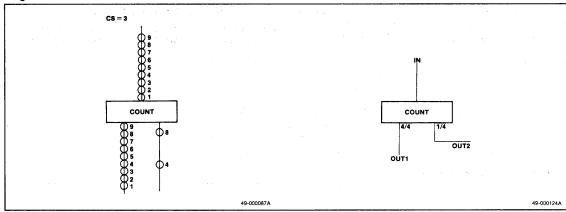
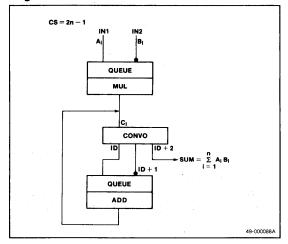
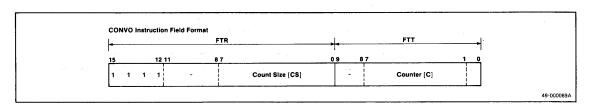



Figure 11. COUNT Instruction

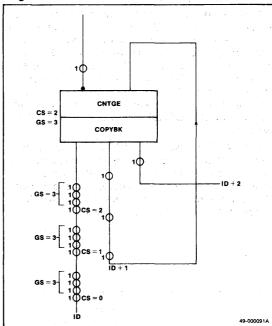

CONVO [Convolve]

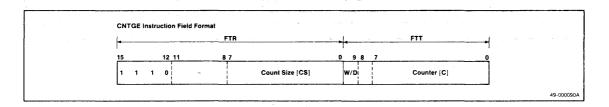

CONVO instruction is used to perform cumulative operations such as ΣA_i or ΠA_i . The CONVO instruction is best suited for convolving two sequences of the same length. Figure 12 illustrates the CONVO instruction by computing

$$SUM = \sum_{i=1}^{n} A_i B_i.$$

The A_i sequence is input to IN1 while the B_i sequence is input to IN2. Together they are queued and multiplied to form the C_i sequence. The C_i 's arriving at CONVO instruction are queued and added together to form the final answer SUM. The length of the summation, n, is specified by the CS.

Figure 12. CONVO instruction

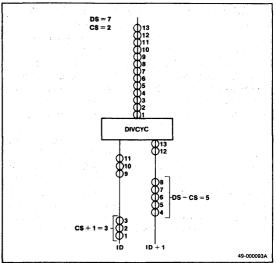


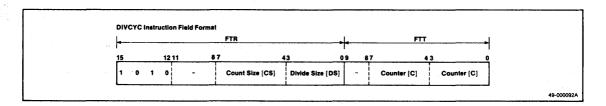


CNTGE [Count Generation]

CNTGE is normally used with COPYBK (Copy Block) to generate more than 16 copies of a single token (see figure 13). This instruction has both the dead (inactive) state and the wait (active) state. The instruction starts in the dead state. The FTRC bit = 0 tokens that arrive during the dead state of instruction are output to the ID + 2 token stream. It enters the wait state when a token with FTRC bit = 1 arrives and the token is output to ID token stream. Once the instruction is in the wait state, it counts the number of tokens arriving with FTRC bit = 0, outputting them to the ID token stream, until the number exceeds the number specified by CS. If Counter (C) reaches the number specified by Count Size (CS). the instruction automatically enters the dead state. Tokens with the FTRC bit = 1 arriving at CNTGE while the instruction is in the wait state are deleted by the instruction. Once the instruction enters the dead state, it can be reactivated by the arrival of a token with FTRC bit = 1.

Figure 13. CNTGE instruction

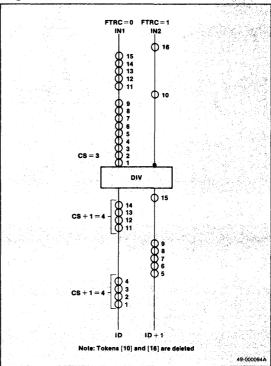


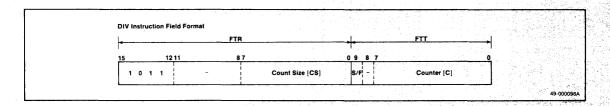

DIVCYC [Divide Cyclic]

DIVCYC divides an incoming stream of tokens into two streams of tokens: an ID token stream and an ID \pm 1 token stream. The pattern in which the incoming tokens are divided is specified by the Divide Size (DS) and Count Size (CS). The DS specifies cycle size whereas CS specifies the number of consecutive tokens to be in the ID stream. The first CS \pm 1 tokens are output to the ID token stream. The following consecutive (DS - CS) tokens are output to the ID \pm 1 token stream.

Figure 14 illustrates the DIVCYC instruction with DS=7 and CS=2. Note that an incoming stream of tokens is divided into a stream of ID tokens and a stream of ID+1 tokens with a cycle of 8 tokens. Since CS=2, the number of ID tokens in one cycle is 3, the number of ID+1 tokens in a cycle is 5.

Figure 14. DIVCYC Instruction

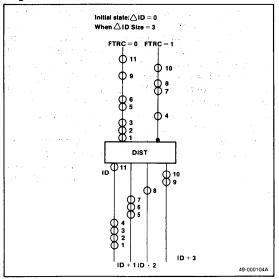


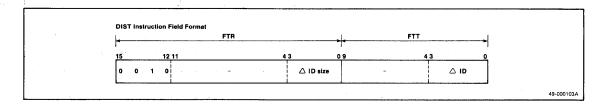


DIV [Divide]

DIV with CS=n divides an incoming stream of tokens with FTRC bit = 0 into two streams of tokens: ID tokens and ID+1 tokens. The first (n+1) incoming tokens with FTRC bit=0 are output as the ID tokens, and the rest of the incoming tokens with FTRC bit=0 are output as ID+1 tokens. An incoming token with FTRC bit=1 is used to reinitialize the DIV instruction. The stream of input tokens with FTRC bit=0 after the reinitialization is again divided into a stream of (n+1) ID tokens followed by ID+1 tokens. A token with FTRC bit=1 which reinitializes the DIV instruction is deleted from the output token stream. A DIV instruction with CS=3 is illustrated in figure 15. The 10th and 16th input tokens have FTRC bit=1, so they reinitialize the DIV instruction.

Figure 15. DIV instruction

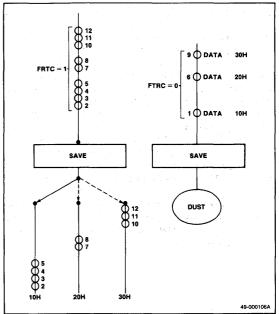


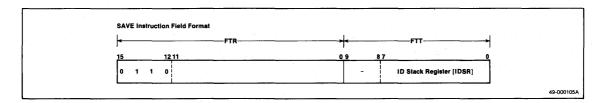


DIST [Distribute]

DIST is used to divide a stream of incoming tokens with the same ID into more than one stream of tokens with different IDs (see figure 16). The ΔID size determines the maximum number of output token streams the instruction can have. ΔID is the value added to an incoming token's ID field to form the ID field of the output token. The ΔID field is initially set to zero, and it is incremented by one after a token with FTRC bit = 1 passes through the instruction. However, a token with FTRC bit = 0 has no effect on the value of ΔID field. If the value of ΔID before being incremented by a token with the FTRC bit = 1 is equal to the contents of the ΔID size field, the ΔID field will be reset to zero.

Figure 16. DIST Instruction




SAVE [Save ID]

SAVE is used to set the value of the ID field of a token. The instruction performs two different operations depending on whether the token's FTRC bit is 1 or 0. If the token's FTRC bit = 0, the instruction copies the lower eight bits of the data field into the Identifier Stack Register (IDSR) field. However, if the token's FTRC bit is 1, the instruction replaces the token's ID field with the contents of IDSR.

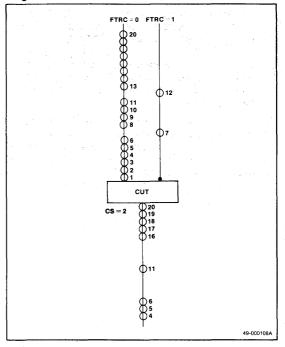
Figure 17 illustrates the use of the SAVE instruction. Token 1 assigns an ID field value of 10H to tokens 2, 3, 4 and 5, token 6 assigns an ID field value of 20H to tokens 7 and 8, and token 9 assigns an ID field value of 30H to tokens 10, 11 and 12. In this example, tokens 1, 6 and 9 are deleted after SAVE instruction.

Figure 17. SAVE Instruction

CUT [Cut Data Stream]

CUT is used to delete unnecessary tokens from a series of incoming tokens. The first n tokens arriving at the instruction are deleted, where n is the value contained in the CS field of the instruction. Initially the S/F bit and the Counter (C) are set to zero. When a token with its FTRC bit = 0 enters the instruction while S/F bit is zero, the token increments the Counter by one and the token itself is deleted. As the first (n + 1)tokens are deleted by the instruction, the Counter has the same value as n, the contents of CS field. This condition sets the S/F bit to 1. When the S/F bit is 1, a token with its FTRC bit = 0 can pass through the instruction without being deleted. However, if a token with its FTRC bit = 1 passes through the instruction, it resets the S/F bit to 0, thereby reinitializing the instruction. The token with its FTRC bit = 1 is also deleted after reinitializing the instruction. Figure 18 illustrates the use of CUT to delete tokens 7 and 12 and the three tokens following them.

Figure 18. CUT Instruction



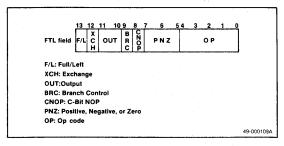
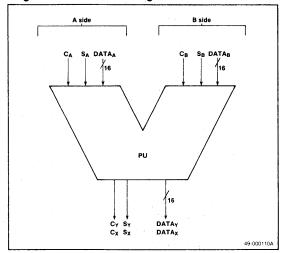


Table 10. AG and FC Instructions

Mnemonic		514	13		TR (16) 11 10 9 8	7654	3210	9	8	FTT (1)		FTRC (1)	Operation
QUEUE	0	0	1	1	DM Base (x 2 ¹) (8)		Queue Size (4)	A / B	W / R	Read Counter (4)	Write Counter (4)		Synchronize two tokens
					DM Base		Buffer				Read	0	DATA \leftarrow (DMB + RC), RC \leftarrow RC + 1
RDCYCS	0	.0	0	0	(x 2 ¹) (DMB) (8)		Size (BS) (4)		R	(6)	Counter (RC) (4)	1	DATA \leftarrow (DMB $+$ RC), RC \leftarrow RC $+$ 1, when BS $=$ RC, copy with ID $+$ 1
					DM Base		•			Read	•	0	DATA \leftarrow (DMB + RC), RC \leftarrow RC + 1
RDCYCL	1	0	0	0	(x2 ⁵) (4)	Buf	fer Size (8)	(2)		Counter (8)		1	DATA \leftarrow (DMB + RC), RC \leftarrow RC + 1, when BS = RC, copy with ID + 1
					Base		Buffer				Write	0	(DMB $+$ WC) \leftarrow DATA, WC \leftarrow WC $+$ 1, delete token
WRCYCS	0	0	0	1	(x 2 ¹) (8)		Size (4)			(6)	Counter (WC) (4)	1	(DMB + WC) \leftarrow DATA, WC \leftarrow WC + 1, when BS = WC, token not deleted
					DM Base					Write		0	(DMB + WC) - DATA, WC - WC + 1, delete token
WRCYCL	1	0	0	1	(x 2 ⁵) (4)	Buf	fer Size (8)	(2)	-	Counter (8)		1	(DMB + WC) \leftarrow DATA, WC \leftarrow WC + 1, when BS = WC, token not deleted
RDWR	0	1	0	0	DM Base		(4)	(2)		Addres	s Register	0	DATA \leftarrow (DMB + AR + DATA), AR \leftarrow AR + DATA
	Ĺ		_	_	(x 2 ¹) (8)		· ·	<u> </u>		(AF	1) (8)	1	$(DMB + AR) \leftarrow DATA, AR \leftarrow 0$
RDIDX	0	1	0	1	DM Base		(4)	(2)		Address	Register	0	DATA \leftarrow (DMB + AR + DATA), AR \leftarrow 0
	Ľ				(x 2 ¹) (8)		(4)	(2)			(8)	1	AR ← AR + DATA
PICKUP	1	1	0	0	(4)	Count	Size	(2)		-	Counter (C)	0	When CS≠C, C←C+1; when CS=C, distribute, C←0
						(CS) (Ľ			(8)	1	C ← C + DATA, token deleted
COUNT	1	1	0	1	(4)	Count (8)	Size	(2)		e de la companya de l	Counter (8)	0	When $CS \neq C$, $C \leftarrow C + 1$; when $CS = C$, copy token, $C \leftarrow 0$
												1	C ← C + DATA, token deleted
CUT	0	1	1	1	(4)	Count (8)	Size	S / F	(1)		Counter (8)	0	When $S/F=0$ and $C \le CS$, $C \leftarrow C+1$, delete token; when $S/F=0$ and $C > CS$, or when $S/F=1$, $C \leftarrow C+1$, token not deleted
												1	S/F ← 0, C ← 0, token deleted
						Count	1	1		Counter	Counter	0	When $C \le CS$, $C \leftarrow C + 1$; when $C > CS$, distribute,
DIVCYC	1	0	1	0	(4)	Size	Size	(2)		(4)	(4)		$C \leftarrow C + 1$; $C \leftarrow C$. When $C = DS$, $C \leftarrow 0$
	-		-			(4)	(4)		Г			1	C - C + DATA, token deleted
DIV	1	0	1.	1	(4)	Count	Size	S /	(1)		Counter	0	When S/F=0 and $C \le CS$, $C \leftarrow C+1$; when S/F = 0 and $C > CS$, or when S/F = 1, distribute, $C \leftarrow C+1$;
						(8)		F			(8)	1	S/F ← 0, C ← 0, token deleted
							ΔID					0	ID ← (ID + ΔID) modulo ΔID size
DIST	0	0	1	0	(8)		Size (4)			(6)	ΔID (4)	1	When $\triangle ID \neq \triangle ID$ size, $ID \leftarrow (ID + \triangle ID)$ modulo $\triangle ID$ size, $\triangle ID \leftarrow \triangle ID + 1$. When $\triangle ID = \triangle ID$ size, $\triangle ID \leftarrow 0$
CONVO	1	1	1	1	(4)	Count (8)	Size	(2)			Counter (7) (1)		When $CS \neq C$, $ID \leftarrow ID + C$ (modulo 2), $C \leftarrow C + 1$; when $CS = C$, $ID \leftarrow ID + 2$, $C \leftarrow 0$
SAVE	0	1	1	0		(12)		(2)		ID Stac	k Register	0	IDSR — Lower 8-bit of DATA
J. 17L	Ľ	. '		Ĭ		(12)		L			(8) (IDSR)	1	ID IDSR
CNTGE	1	1	1	0	(4)	Count Size		W /	(1)		Counter (8)	0	When dead, ID \leftarrow ID $+$ 2; when wait, if C $=$ CS, C \leftarrow 0, W/D $=$ 0; when wait, if C \neq CS, C \leftarrow C $+$ 1
						(8)		D		1.		1	When dead, initialization; when wait, delete token



PU Instructions

PU instructions (see table 20) are stored in the Function Table Left field of the Function Table memory. The bits 0 through 11 are used as control information for the Processing Unit. The bits 12 and 13 are deleted before the token arrives at the Processing Unit. Two operands from the A and B sides are operated on by the Processing Unit and the result is output to the X and Y sides (see figure 19).

Figure 19. The Processing Unit

Bit Assignments

F/L [Full/Left]: F/L bit = 0 indicates that the PU instruction is a one-operand instruction, and only the Function Table Left field is meaningful. F/L bit = 1 indicates that the PU instruction is a two-operand instruction, and both the Function Table Left field and the Function Table Right field are meaningful. Therefore, when F/L bit = 1, the PU instruction is used in conjunction with an AG/FC instruction.

XCH [Exchange]: This bit controls the exchange operation. Operands will be exchanged just before the two tokens enter the QUEUE when XCH = 1.

OUT [**Output**]: There are four different PU output token formats. The two OUT bits specify the output token format. See table 11.

Table 11. OUT Bits

-			Fi	irst Output	Sec	ond Output
	OUT Bits	No. of Outputs	ID	DATA, C, S	ID	DATA, C, S
-	00	1	ID	χ1		
-	0 1	. 1	ID	γ2		
	10	2	ID	Х	ID + 1	X
-	11	2	ID	X	ID + 1	Y

Notes: 1. This is the 18-bit result of the operation output to the X side. It includes the C_X and S_X bits.

 This is the 18-bit result of the operation output to the Y side. It includes the C_Y and S_Y bits.

BRC [Branch Control]: The BRC bit controls the flow of the PU output data token. The output data token may be output to either the ID token stream or the ID + 1 token stream. When the BRC bit is set to 1 and the C bit of the PU output data token is also 1, the output data token is sent to the ID + 1 token stream. But when the BRC bit is set to 1 and the C bit of the output data token is 0, the token is sent to the ID token stream. Therefore, using the BRC bit implements a conditional branch on C.

CNOP Bit: This bit informs the Processing Unit whether or not the incoming token should be processed. If the CNOP bit is set, and the C_A bit is not equal to the C_B bit, then the token passes through the Processing Unit with no operation performed. See table 12.

Table 12. CNOP Bit

CA	C _B	PU Operation
0	0	Processing specified by the OP code is performed.
0	1	Token passes through the Processing Unit as NOP.
1	0	Token passes through the Processing Unit as NOP.
1	1	Processing specified by the OP code is performed.

PNZ [Positive, Negative, Zero] Field: The PNZ field is used to test the resulting condition of the PU operation. If the resulting condition matches the condition set by the PNZ field, then the C bit of the output data token is set to 1. See table 13.

Table 13. PNZ Field

P	N	z	Condition	CX	Cy		embler ription
0	0	0	No condition set	CA	СВ		
0	0	1	Result of operation = 0	1	1	EQ	True
			Result of operation ≠ 0	0	0		False
0	1	0	Result of operation < 0	1	1	LT	True
			Result of operation ≥ 0	0	0		False
0	1	1	Result of operation ≤ 0	1	1	LE	True
			Result of operation > 0	0	0		False
1	0	0	Result of operation > 0	1	1	GT	True
			Result of operation ≤ 0	0	0		False
1	0	1	Result of operation ≥ 0	1	1	GE	True
			Result of operation < 0	0	0		False
1	1	0	Result of operation ≠ 0	1	1	NE	True
			Result of operation = 0	0	0		False
1	1	1	Overflow generated	1	1	0VF	True
			No overflow generated	0	0		False

 $\mbox{\bf OP}$ $\mbox{\bf Code}$ $\mbox{\bf Field:}$ This 5-bit OP code field specifies the PU operations to be performed. See table 14

Table 14. OP Code Field

Instruction	Mnemonic	Opcode
Logical	0R	00000
	AND	00001
	XOR	00010
	ANDNOT	00011
	NOT	01100
Arithmetic	ADD	11000
	ADDSC	11100
	SUB	11001
	SUBSC	11101
	MUL	11010
	MULSC	11110
	NOP	11011
	NOPSC	11111
	INC	01010
	DEC	01011
Shift	SHL	00100
	SHLBRV	00101
	SHR	00110
	SHRBRV	00111
Compare	CMPNOM	01000
	СМР	01001
	CMPXCH	10001
lit manipulation	GET1	10101
	SET1	10110
	CLR1	10111
Bit check	ANDMSK	01101
	ORMSK	10000
ata conversion	CVT2AB	01110
	CVTAB2	01111
Oouble precision adjust	ADJL	10100
Accumulative addition	ACC	10010
C bit copy	COPYC	10011

Logical Instructions

These instructions perform 16-bit logical operations on DATA_A and DATA_B. Usually there are no changes in C and S bits between the input token and the output token, however C bits can be affected by PNZ condition when specified.

OR, AND, XOR: These instructions perform 16-bit logical OR, AND, and XOR operations using input data tokens from the A and B sides of the Processing Unit. The 16 bit result is output to the X side.

ANDNOT: This instruction first complements DATA_A and then performs logical AND operation with DATA_B. The 16-bit result is output to the X side.

NOT: This is a one-operand instruction which requires 16-bit data input from the A side only. The B side input is ignored. This instruction complements the 16-bit input data from the A side. The 16-bit result is output to the X side.

Arithmetic Instructions

These instructions perform 17-bit (including the sign bit) arithmetic operations on DATA_A and DATA_B. When a PNZ condition is specified, the C bits of output data, C_X and C_Y , reflect the setting. However, if no PNZ condition is specified (i.e., PNZ = 000), then $C_X \leftarrow C_A$ and $C_Y \leftarrow C_B$.

ADD, SUB: These instructions perform addition or subtraction on DATA_A and DATA_B along with the sign bits, S_A and S_B . The result is output to the X side. DATA_Y is normally 0000H. However, if an overflow occurs, then DATA_Y is equal to +0001H ($S_Y=0$). If an underflow occcurs, then the DATA_Y is equal to -0001H ($S_Y=1$).

MUL: This instruction multiplies DATA_A and DATA_B. The correct sign bit for the product is determined from S_A and S_B . The 33-bit result including a sign bit is output as two 17-bit words, S_X and DATA_X, followed by S_Y and DATA_Y. DATA_X is the upper 16-bit word and DATA_Y is the lower 16-bit word. S_X holds the resulting sign bit, and S_Y is a mere duplicate of S_X .

NOP: This instruction performs no operation on the input token. The input data from A and B sides are output to the X and Y sides, respectively, without any change in their contents. If any control other than the OP code (such as PNZ control, BRC control, etc.) has been specified, the output complies with the control.

Shift Count Instructions

These four Shift Count (SC) instructions first perform the normal operations, then count the number of leading zeros in DATA_X of the result, and finally output the number of zeros as $DATA_{\gamma}$ (see table 15). These instructions are provided for easy floating point processing.

ADDSC, SUBSC, NOPSC: These instructions perform addition, subtraction, or no operation. The number of preceding zeros in DATA $_{\rm X}$ of the result is output as DATA $_{\rm Y}$. If an overflow or an underflow occurs as a result of an operation, DATA $_{\rm Y}$ contains + 0001H (S $_{\rm Y}=0$) or -0001H (S $_{\rm Y}=1$), respectively.

MULSC: This instruction performs a normal multiplication operation using the two 17-bit data. The upper order 16-bit data and its sign bit are output as DATA $_X$ and S_X , but the lower 16-bit data is not output as DATA $_Y$. Instead, the number of preceding zeros in DATA $_X$ are counted and output as DATA $_Y$. The S_Y bit is always zero.

Table 15. Shift Count Operation

DA	ATA _X After Operation													S	C 0	utp	ut ((Y)			
15	1	4	13	12	11	10	9	8	7	6	5	4 :	3 2	1	0	Sγ	Y	Da	ta		
0	0	0	0	0	0	0	0	0	0	0	0	0	,0	0	0	0	0	0	1	0	Н
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	F	Н
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Х	0	0	0	0	Ε	Н
0	0	0	0	0	0	0	0	0	0	0	0	0	1	х	Х	0	0	0	0	D	Н
0	0	0	0	0	0	0	0	0	0	0	0	1	Х	х	Х	0	0	0	0	С	Н
0	0	0	0	0	0	0	0	0	0	0	1	Х	Х	X	Х	0	0	0	0	В	Н
0	0	0	0	0	0	0	0	0	0	1	х	Х	Χ	Х	Х	0	0	0	0	Α	Н
0	0	0	0	0	0	0	0	0	1	Х	Х	Х	Х	х	Х	0	0	0	0	9	Н
0	0	0	0	0	0	0	0	1	х	х	Х	Х	Х	х	Х	0	0	0	0	8	Н
0	0	0	0	0	0	0	1	х	х	Х	Х	Х	Х	х	Х	0	0	0	0	7	Н
0	0	0	0	0	0	1	х	х	х	Х	х	Х	Х	х	Х	0	0	0	0	6	Н
0	0	0	0	0	1	х	х	х	Х	Х	х	Х	Х	Х	Х	0	0	0	0	5	Н
0	0	0	0	1	х	х	х	х	Х	Х	Х	Х	Х	х	х	0	0	0	0	4	Н
0	0	0	1	х	Х	х	X.	х	Х	Х	х	Х	Х	Х	Х	0	0	0	0	3	Н
0	0	1	Х	Х	Х	х	X	х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	2	Н
0	1	х	х	х	х	х	х	х	Χ	Х	х	х	Х	Х	х	0	0	0	0	1	Н
1	X	X	Х	X	Х	Х	X	X	X	X	Х	X	X	X	Х	0	0	0	0	0	H*

Notes: * When an overflow or underflow has occurred x don't care

Increment and Decrement Instructions

INC, DEC: These instructions increment or decrement the 17-bit data from the A side (S_A and DATA_A), and outputs the result to X side as S_X and DATA_X. The S_Y and DATA_Y are normally zero. However, if an overflow or an underflow occurs, then the Y side outputs + 0001H ($S_Y = 0$) or - 0001H ($S_Y = 1$), respectively.

Shift Instructions

SHR [Shift Right], SHL [Shift Left]: SHR or SHL instructions perform a barrel-shifting operation on the 16-bit data, DATA_A. The actual number of shifts and the direction is further specified by the lower five bits of DATA_B and S_B, respectively. See figure 20 for detailed operation explanations.

Figure 20. SHR and SHL

Right Shift [SHR execution]

	Lower 5 bits		I		
SB	of DATAB [No. of shifts]	DATAX	DATAY		
0	00000	A ₁₅ A ₁₄ A ₁ A ₀	00		
0	00001	0 A ₁₅ A ₁₄ A ₁	0 00		
0	00010	0 0 A ₁₅ A ₂	AA 1 0 00		
0	00011	00 A ₁₅ A ₃	A2 A0 00		
0	00100	00 A ₁₅ A ₄	A ₃ A ₀ 00		
0	00101	00 A ₁₅ A ₅	A ₄ A ₀ 00		
0	00110	00 A ₁₅ A ₆	A ₅ A ₀ 00		
0	00111	00 A ₁₅ A ₇	A ₆ A ₀ 00		
0	01000	00 A ₁₅ A ₈	A ₇ A ₀ 00		
0	01001	00 A ₁₅ A ₉	A ₈ A ₀ 00		
0	01010	00 A ₁₅ A ₁₀	A ₉ A ₀ 00		
0	01011	00 A ₁₅ A ₁₁	A ₁₀ A ₀ 00		
0	01100	00 A ₁₅ -A ₁₂	A ₁₁ A ₀ 00		
0	01101	00 AA	A ₁₂ A ₀ 00		
0	01110	00 A A	A ₁₃ A ₀ 0 0		
0	01111	00 A	A ₁₄ A ₀ 0		
٥	1 X X X X	00	A ₁₅ A ₁ A ₀		
1	00000	A ₁₅ A ₁₄ A ₁ A ₀	00		
1	00001	A ₁₄ A ₀ 0	00 A		
1					
	00010	A ₁₃ A ₀ 0 0	00 AA		
1	00010	A ₁₃ A ₀ 0 0 0 A ₁₂ A ₀ 0 00	00 AA 1514 00 A.A 15 13		
1					
	00011	A ₁₂ A ₀ 00	00 AA		
1	00011	A ₁₂ A ₀ 00 A ₁₁ A ₀ 00	00 A ₁₅ -A ₁₂		
1	00011	A12A0 00 A11A0 00 A10A0 00	00 AA. 00 AA. 00 AA. 00 AA.		
1	00011 00100 00101 00110	A12A0 00 A11A0 00 A10A0 00 A9A0 00	00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₁ 00 A ₁₅ A ₁₁		
1 1 1	00011 00100 00101 00110	A12A0 00 A11A0 00 A10A0 00 A3A0 00 A6A0 00	00 A _{1.5} A _{1.5} 00 A _{1.5} A _{1.2} 00 A _{1.5} A _{1.1} 00 A _{1.5} A _{1.0} 00 A _{1.5} A _{1.0}		
1 1 1	00011 00100 00101 00110 00111	A12A0 00 A11A0 00 A10A0 00 A9A0 00 A8A0 00 A7A0 00	00 A ₁₅ ·A ₁₂ 00 A ₁₅ ·A ₁₂ 00 A ₁₅ A ₁₁ 00 A ₁₅ A ₁₀ 00 A ₁₅ A ₉ 00 A ₁₅ A ₈		
1 1 1	00011 00100 00101 00110 00111 01000 01001	A12A0 00 A11A0 00 A10A0 00 A9A0 00 A8A0 00 A7A0 00 A6A0 00	00 A ₁₅ ·A ₁ A ₁₅ ·3 00 A ₁₅ ·A ₁₂ 00 A ₁₅ A ₁₁ 00 A ₁₅ A ₁₀ 00 A ₁₅ A ₉ 00 A ₁₅ A ₈ 00 A ₁₅ A ₇		
1 1 1 1 1	00011 00100 00101 00110 00111 01000 01001 01010	A12A0 00 A11A0 00 A10A0 00 A9A0 00 A6A0 00 A7A0 00 A8A0 00	00 A ₁₅ A ₁ 00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₁ 00 A ₁₅ A ₁₀ 00 A ₁₅ A ₉ 00 A ₁₅ A ₈ 00 A ₁₅ A ₆		
1 1 1 1 1	00011 00100 00101 00110 00111 01000 01001 01010	A12A0 00 A11A0 00 A10A0 00 A9A0 00 A6A0 00 A6A0 00 A5A0 00 A4A0 00 A3A0 00 A2.A0 00	00 A ₅ . A ₁₅ A ₁₂ 00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₁ 00 A ₁₅ A ₁₀ 00 A ₁₅ A ₉ 00 A ₁₅ A ₈ 00 A ₁₅ A ₅ 00 A ₁₅ A ₅		
1 1 1 1 1	00011 00100 00101 00110 00111 01000 01001 01010 01011 01100	A12A0 00 A11A0 00 A10A0 00 A3A0 00 A6A0 00 A6A0 00 A5A0 00 A4A0 00 A3A0 00	00 A ₁₅ A ₁ A ₁ A ₁₅ A ₁₂		
1 1 1 1 1 1	00011 00100 00101 00110 00111 01000 01001 01010 01011 01100	A12A0 00 A11A0 00 A10A0 00 A9A0 00 A6A0 00 A6A0 00 A5A0 00 A4A0 00 A3A0 00 A2.A0 00	00 A ₁₅ A ₁ 00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₂ 00 A ₁₅ A ₁₁ 00 A ₁₅ A ₁ 00 A ₁₅ A ₉ 00 A ₁₅ A ₈ 00 A ₁₅ A ₇ 00 A ₁₅ A ₆ 00 A ₁₅ A ₅ 00 A ₁₅ A ₅		

49-000137C

Left Shift [SHL execution]

SB	Lower 5 bits of DATA _B [No. of shifts]	DATAX	DATAY
0	00000	A ₁₅ A ₁₄ A ₁ A ₀	00
0	00001	A ₁₄ A ₀ 0	00 A
0	00010	A ₁₃ A ₀ 0 0	00 A A
0	00011	A ₁₂ A ₀ 00	00 AA
0	00100	A ₁₁ A ₀ 00	00 A ₁₅ A ₁₂
0	00101	A ₁₀ A ₀ 00	00 A ₁₅ A ₁₁
0	00110	A ₉ A ₀ 00	00 A ₁₅ A ₁₀
0	00111	A ₈ A ₀ 00	00 A ₁₅ A ₉
٥	01000	A ₇ A ₀ 00	00 A ₁₅ A ₈
0	01001	A ₆ A ₀ 00	00 A ₁₅ A ₇
0	01010	A ₅ A ₀ 00	00 A ₁₅ A ₆
0	01011	A ₄ A ₀ 00	00 A ₁₅ A ₅
0	01100	A ₃ A ₀ 00	00 A ₁₅ A ₄
0	01101	A ₂ A ₀ 00	00 A ₁₅ A ₃
0	01110	A A 00	0 0 A ₁₅ A ₂
0	01111	OO	0 A ₁₅ A ₁
0	1 X X X X	00	A ₁₅ A ₀
1	00000	A ₁₅ A ₁₄ A ₁ A ₀	00
1	00001	0 A ₁₅ A ₁₄ A ₁	A 00
1	00010	0 0 A ₁₅ A ₂	AA 1 0 00
1	00011	00 A ₁₅ A ₃	A2'A0 00
1	00100	00 A ₁₅ A ₄	A ₃ A ₀ 00
1	00101	00 A ₁₅ A ₅	A4A0 00
1	00110	00 A ₁₅ A ₆	A ₅ A ₀ 00
1	00111	00 A ₁₅ A ₇	A ₆ A ₀ 00
1	01000	00 A ₁₅ A ₈	A ₇ A ₀ 00
1	01001	00 A ₁₅ A ₉	A ₈ A ₀ 00
1	01010	00 A ₁₅ A ₁₀	A ₉ A ₀ 00
1	01011	00 A ₁₅ A ₁₁	A ₁₀ A ₀ 00
1	01100	00 A ₁₅ -A ₁₂	A ₁₁ A ₀ 00
1	01101	00 AA	A ₁₂ A ₀ 00
1	01110	00 A A	A ₁₃ A ₀ 0 0
1	01111	00 A	A ₁₄ A ₀ 0
111	1 X X X X	00	A ₁₅ A ₁ A ₀

SHRBRV [Shift Right with Bit Reverse], SHLBRV [Shift Left with Bit Reverse]: SHRBRV or SHLBRV first reverses the order of the bits in DATA_A and then performs a normal SHR or SHL operation, respectively. See figure 21.

Compare Instructions

The Compare instructions (see table 16) are different from other PU instructions in that PNZ conditions must be specified along with the instructions. When a compare instruction is used along with a specified PNZ field, the Processing Unit performs a subtract operation. This subtract operation produces a set of PNZ flags, which are compared against the PNZ field specified by the instruction. When these two PNZ fields coincide, the specified PNZ conditions are said to be true. When they do not coincide, the specified PNZ conditions are said to be false (see table 17). The output data from the Processing Unit differs significantly depending on the PNZ conditions. The following three instructions compare the 17-bit data (SA and DATA_A) from the A side against the 17-bit data (S_B and DATA_B) from the B side.

CMPNOM [Compare and normalize]: If the specified PNZ conditions are false, then the control bits, sign bits and data for both the X and Y sides are set to zero. If the PNZ conditions are true, then C_X and C_Y are set to one, S_X and S_X are set to zero, DATA $_X$ is set to 0001H, and DATA $_Y$ is set to 0000H.

CMP [Compare]: This instruction outputs the 17-bit data words from the A and B sides to the X and Y sides without any change in their contents. It only alters the control bits. If the specified PNZ conditions are true, then C_X and C_Y are set to one. If the PNZ conditions are false, then C_X is set to one and C_Y is set to zero.

CMPXCH [Compare and exchange]: If the specified PNZ conditions are true, then both the input data from the A side and B side are unchanged and output to the X side and Y side, respectively, including their sign bits and the control bits. However, if the PNZ conditions are false, then the input data from the A side is exchanged with the input data from the B side, including the control and sign bits.

Figure 21. Bit Reversal Operations in SHRBRV and SHLBRV

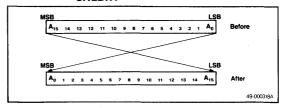


Table 17. PNZ Field Conditions for Compare Instructions

P	N	Z	Condition	True/ False	Function	Mnemonic
0	0	1	$S_ADATA_A = S_BDATA_B$	True	Equal	EQ
			$S_A DATA_A \neq S_B DATA_B$	False	Not equal	
0	1	0	$S_A DATA_A < S_B DATA_B$	True	Less than	LT
			$S_A DATA_A \ge S_B DATA_B$	False	Greater or equal	.
0	1	1	$S_A DATA_A \le S_B DATA_B$	True	Less or equal	LE
			$S_A DATA_A > S_B DATA_B$	False	Greater than	•
1	0	0	$S_A DATA_A > S_B DATA_B$	True	Greater than	GT
			$S_A DATA_A \le S_B DATA_B$	False	Less or equal	-
1	0	1	$S_A DATA_A \ge S_B DATA_B$	True	Greater or equal	GE
			$S_A DATA_A < S_B DATA_B$	False	Less than	-
1	1	0	$S_A DATA_A \neq S_B DATA_B$	True	Not equal	NE
			$S_A DATA_A = S_B DATA_B$	False	Equal	-

Note: The significance of the PNZ bits when Compare instructions are executed differs from that of other instructions. Here, the use of PNZ = 111 or 000 is prohibited.

Table 16. Compare Instructions

Mnemonic			Inj	put .					Output				Notes
MIIGIIIONIC	CA	SA	DATAA	CB	SB	DATAB	CX	SX	DATAX	Cy	Sy	DATAY	Hotes
CMPNOM	CA	SA	Α	CB	S _B	В	0	0	0000H	0	0	0000H	When PNZ is False
CINIFINOIN	CA	SA	Α	CB	SB	В	1	0	0001H	1	0	0000H	When PNZ is true
CMP	CA	SA	Α	СВ	S _B	В	0	SA	Α	0	S _B	В	When PNZ is false
CIVIT	CA	SA	Α	СВ	SB	В	1	SA	Α	1	SB	В	When PNZ is true
CMPXCH	CA	SA	Α	СВ	S _B	В	CA	SA	Α	СВ	SB	В	When PNZ is true
UNIFAUT	CA	SA	Α	C _B	S _B	В	CB	SB	Α	CA	SB	Α	When PNZ is false

Bit Manipulation Instructions

GET1 [**Get one bit**]: This instruction is used to read a particular bit from DATA_A (see table 18). A bit of DATA_A specified by the lower 4 bits of DATA_B is output as the least significant bit of DATA_X. All other bits of DATA_X are set to zero. DATA_Y is also set to zero. The control bits and the sign bits of DATA_X and DATA_Y are as follows: $C_X \leftarrow C_A$, $C_Y \leftarrow C_B$, $S_X \leftarrow S_A$, $S_Y \leftarrow 0$.

SET1 [Set one bit]: This instruction is used to set a particular bit of DATA_A. The bit of DATA_A to be set is specified by the lower 4 bits of DATA_B. After the bit is set, the 16-bit result is output as DATA_X. DATA_Y is always output as zero. The control bits and the sign bits of DATA_X and DATA_Y are as follows: $C_X \leftarrow C_A$, $C_Y \leftarrow C_B$, $S_X \leftarrow S_A$, $S_Y \leftarrow 0$.

CLR1 [Clear one bit]: This instruction is used to reset a particular bit of DATA_A. The bit of DATA_A to be reset is specified by the lower 4 bits of DATA_B. After the bit is reset (cleared), the 16-bit result is output as DATA_X. DATA_Y is always output as zero. The control bits and the sign bits of DATA_X and DATA_Y are as follows: $C_X \leftarrow C_A$, $C_Y \leftarrow C_B$, $S_X \leftarrow S_A$, $S_Y \leftarrow 0$.

Table 18. Bit Addressing

DATA 2	B Bit	0	
			DATA Dis Donision
Ω			DATA _A Bit Position
	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7
0	0	0	8
0	0	1	9
0	1	0	10
0	1	1	11
1	0	0	12
1	0	1	13
1	1	0	14
1	1	1	15
	0 0 1 1 1 1 0 0 0 0	0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1	0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0

Bit Check Instructions

ANDMSK [Mask a word with logical AND]: This instruction tests certain bits in DATA_A. The bits in DATA_A to be tested are first masked with a bit pattern in DATA_B. Only those bits in DATA_A corresponding to the one bits of DATA_B are considered. Then only those masked bits

of DATA_A are ANDed together to set or reset the control bits, C_X and C_Y . If the result of the AND operation is 1, then both the C_X and C_Y are set to 1. If the result of the operation is 0, then the both C_X and C_Y are set to 0. The rest of the output data fields are the following: $S_X \leftarrow S_A$, $S_Y \leftarrow S_B$, DATA_X \leftarrow DATA_B.

ORMSK [Mask a word with logical OR]: This instruction tests certain bits in DATA_A. The bits in DATA_A to be tested are first masked with a bit pattern in DATA_B. Only those bits in DATA_A corresponding to the one bits of DATA_B are considered. Then only those masked bits of DATA_A are ORed together to set or reset the control bits, C_X and C_Y . If the result of the OR operation is 1, then both C_X and C_Y are set to 1. If the result of the operation is 0, then the both C_X and C_Y are set to 0. The rest of the output data fields are the following: $S_X \leftarrow S_A$, $S_Y \leftarrow S_B$, DATA $_X \leftarrow$ DATA $_X \leftarrow$ DATA $_Y \leftarrow$ DATA $_Z \leftarrow$ DAT

Data Conversion Instructions

CVT2AB [Convert two's complement to sign-magnitude]: This instruction converts a 16-bit number in two's complement form to a 17-bit number in sign-magnitude form. The sign of the two's complement number is output as the S_X bit.

CVTAB2 [Convert sign-magnitude to two's complement]: This instruction converts a 17-bit number in sign-magnitude form to a 16-bit number in two's complement form. This operation has the potential danger of an overflow or an underflow. If an overflow or an underflow occurs, the C_X bit is set to 1.

Double Precision Adjustment Instruction

ADJL [Adjust long]: This instruction is used to adjust a double precision number, in which the sign bits of the upper and lower words are different. This situation may occur after a double precision arithmetic operation. The examples in table 19 illustrate the adjustments of double precision numbers.

Table 19. Double Precision Adjustment Examples

			•
	Input/Output	Sign	Data
Input	High (A data)	0	1234H
	Low (B data)	0	5678H
Output	High (X data)	0	1234H
	Low (Y data)	0	5678H
Input	High (A data)	0	1234H
	Low (B data)	1	5678H
Output	High (X data)	0	1233H
	Low (Y data)	0	A988H
Input	High (A data)	1	1234H
	Low (B data)	0	5678H
Output	High (X data)	1	1233H
	Low (Y data)	1	A988H

Accumulative Addition Instruction

ACC [Accumulate]: This instruction (see figure 22) performs cumulative additions of incoming tokens' data fields. The incoming tokens are classified into type 1 and type 2 tokens. A type 1 token is deleted after the ACC operation, but a type 2 token is not. Moreover, a type 2 token reads the contents of the ACC register, which contains the accumulated sum of tokens. When a type 2 token reads the contents of the ACC register, the ID field of the token is unchanged. However, if an overflow has occurred prior to the arrival of a type 2 token, the ID field is incremented by one. Only the following three tokens qualify as type 2 tokens.

- If the ACC instruction is used along with RDCYCS instruction, and the token's FTRC bit = 1, and the Buffer Size and Read Counter of RDCYCS instruction are equal.
- If the ACC instruction is used along with RDCYCL instruction, and the token's FTRC bit = 1, and the Buffer size and Read Counter of RDCYCL instruction are equal.
- If the ACC instruction is used along with COUNT instruction, and the token's FTRC bit = 0, and the Count Size and Counter of COUNT instruction are equal.

C Bit Copy Instruction

COPYC [Copy control bit]: This instruction copies the control bit of the A side and outputs it as C_Y .

Figure 22. ACC Instruction

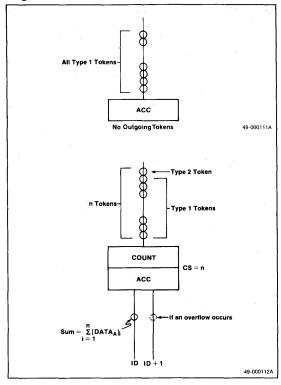


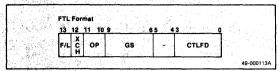
Table 20. PU Instruction (Sheet 1 of 3)

		Input						Output						
Mnemonic	OP Code	CA	SA	DATAA	CB	SB	DATAB	CX	SX	DATA _X	Cy	SY	DATA _Y	Notes
ogical Op	erations													
OR	00000	CA	S _A	Α	C _B	S _B	В	CX	SA	A OR B	Сү	0	0000H	
AND	00001	CA	SA	Α	CB	SB	В	CX	SA	A AND B	Сү	0	0000H	
XOR	00010	CA	SA	Α	СВ	S _B	В	CX	SA	A XOR B	Сγ	0	0000H	
ANDNOT	00011	CA	SA	Α	CB	S _B	В	CX	SA	A AND B	Сү	0	0000H	
NOT	01100	CA	SA	Α				CX	SA	Ā	Су	0	0000H	
rithmetic	Operations	1												
		CA	. 0	Α	CB	0	В	CX	0	A + B	Су	0	*	
		CA	0	Α	СВ	1	В	CX	0	A - B	Сү	0	0000H	When $A \ge B$, $S_X = 0$
ADD	11000							CX	1	B – A	Сү	1	0000H	When A $<$ B, S _X = 1
		CA	1	Α	CB	0	В	CX	0	B - A	Cy	.0	0000H	When A $<$ B, S _{χ} = 0
								CX	1	A — B	Сү	1	0000H	When $A \ge B$, $S_X = 1$
		CA	1	Α	CB	. 1	В	CX	1	A + B	Cy	1.	*	
		CA	0	Α	СВ	0	В	CX	0	A + B	CY	S _S	No. of shifts †	
		C _A	0	Α	СВ	1	В	CX	0	A — B	Cy	SS	*	When $A \ge B$, $S_X = 0$
ADDSC	11100							CX	1	B — A	Сү	S _S	No. of shifts †	When A $<$ B, S _{χ} $=$ 1
		CA	1	Α	CB	0	В	CX	0	B — A	Сү	SS	*	When A $<$ B, S _{χ} = 0
								CX	1	A — B	Сү	S _S	No. of shifts †	When $A \ge B$, $S_X = 1$
		CA	1	Α	CB	1	В	CX	. 1	A + B	Cy	SS	No. of shifts†	
		CA	0	Α	СВ	0	В	CX	0	A — B	Сү	0	0000H	When $A > B$, $S_X = 0$
								CX	1	В — А	Сү	1	0000H	When A $<$ B, S _X $=$ 1
SUB	11001	CA	0	Α	СВ	1	В	CX	0	A + B	Сү	0	*	
		CA	1	Α	CB	0	В	CX	. 1	A + B	Сү	1	*	
		CA	1	Α	CB	1	В	CX	0	B — A	Cy.	0	0000H	When $A < B$, $S_X = 0$
								CX	1	A — B	Сү	1	0000H	When $A \ge B$, $S_X = 1$
		CA	0	Α	CB	0	В	CX	0	A — B	CY	S _S	No. of shifts †	When $A \ge B$, $S_X = 0$
					ŧ			CX	1	B — A	CY	S _S	No. of shifts †	When A $<$ B, S $\chi = 1$
SUBSC	11101	CA	0	Α	СВ	1	В	CX	0	A + B	Cy	S _S	No. of shifts †	
		CA	1	Α	СВ	0	В	CX	1	A + B	Cy	S _S	No. of shifts †	
		CA	1	Α	СВ	1	В	CX	0	B — A	Cy	S _S	No. of shifts †	When A $<$ B, S $\chi = 0$
								CX	1	A — B	Сү	S _S	No of shifts †	When $A \ge B$, $S_X = 1$
MUL	11010	CA	SA	Α	СВ	S _B	В	CX	S _X	A x B High	Cy	S _X	A x B Low	$S_X = S_A \text{ OR } S_B$ (logical OR)
MULSC	11110	CA	SA	Α	СВ	S _B	В	CX	S _X	A x B High	Cy	S _S	No. of shifts †	$S_X = S_A \text{ OR } S_B$ (logical OR)

Table 20. PU Instruction (Sheet 2 of 3)

		nstruction (Sheet 2 of 3)						Output						
Mnemonic	OP code	C _A					DATAR	CX	S _X	DATAX		SY	DATAy	Notes
Arithmetic			SA	DATAA	CB	SB	DATAB	ОХ	- 3 <u>X</u>	DATAX	<u>υγ</u>		DATAY	
	·			Λ.			D				<u>C</u>		В	
NOP	11011	CA	SA	A .	CB	SB	В	C _X	SA	A	CY	S _B		
NOPSC	11111	CA	S _A	Α	CB	S _B	В		S _A	A	Сү	S _S	No. of shifts †	
		CA	0	Α				CX	0	A + 1	Сү	0	*	
INC	01010	CA	, 1	Α				CX	0	1	Сү	0	0000H	When $A = 0$, $S_X = 0$
								CX	1	A — 1	Сү	1	0000H	When $A \ge 1$, $S_X = 1$
DEC	01011	CA	0	Α				CX	0	A — 1	CY	0	0000H	When $A \ge 0$, $S_X = 0$
								CX	1	1	CY	1	0000H	When $A = 0$, $S_X = 1$
		CA	1	Α				CX	1	A + 1	C_{Y}	1	*	
Shift					:		-							
SHL	00100	CA	SA	Α	СВ	0	No. of shifts	CX	SA	Shift A left	Сү	SA	Shift A	
		CA	S _A	Α	СВ	1	No. of shifts	CX	SA	Shift A right	Сү	SA	Shift A right	
SHLBRV	00101	CA	S _A	A	СВ	0	No. of shifts	CX	S _A	Reverse A and shift left	Сү	SA	Reverse A and shift left	·
		CA	S _A	A	СВ	1.	No. of shifts	C _X	S _A	Reverse A and shift right	Сү	S _A	Reverse A and shift right	
SHR	00110	CA	SA	Α	СВ	0	No. of shifts	CX	SA	Shift A right	Cy	S _A	Shift A right	
		CA	S _A	Α	СВ	1	No. of shifts	CX	SA	Shift A left	Сү	S _A	Shift A left	
SHRBRV	00111	CA	S _A	A	СВ	0	No. of shifts	CX	SA	Reverse A and shift right	Сү	S _A	Reverse A and shift right	
		CA	S _A	A	СВ	1	No. of shifts	CX	S _A	Reverse A and shift left	C _Y	S _A	Reverse A and shift left	
Compariso	n .		-											
CMPNOM	01000	CA	SA	Α	C _B	S _B	В	0	0	0000H	0	0	0000H	When PNZ is false
		CA	SA	Α	C _B	S _B	В	1	0	0001H	1	0	0000H	When PNZ is true
CMP	01001	CA	SA	Α	CB	S _B	В	0	SA	Α	0	S _B	В	When PNZ is false
		CA	SA	Α	C _B	S _B	В	1	SA	Α	1	S _B	В	When PNZ is true
CMPXCH	10001	CA	SA	A	CB	SB	В	CA	SA	Α	CB	S _B	В	When PNZ is true
		CA	SA	Α	C _B	S _B	В	C _B	S _B	В	CA	SA	Α	When PNZ is false
Accumulat	ive Additio						<u>-</u>							
ACC	10010	CA	S _A	A	СВ	SB	В	CX	S _X	ΣΑ				Used as a pair with AG & FC instruction COUNT
C Bit Copy														
COPYC	10011	CA	SA	Α	CB	S _B	В	CA	SA	Α	CA	S _B	В	

Table 20. PU Instruction (Sheet 3 of 3)


		Input					Output							
Mnemonic	OP code	CA	SA	DATAA	CB	SB	DATAB	CX	SX	DATAX	Cy	SY	DATAY	Notes
Bit Operatio	ons					. 5					***			
GET1	10101	CA	S _A	Α	СВ	SB	Bit position	CX	SA	0000H	Сү	0	0000H	When the bit specified by the lower 4 bits of DATA _B is 0
·		CA	S _A	Α	СВ	S _B	Bit position	CX	SA	0001H	Сү	0	0000H	When the bit specified by the lower 4 bits of DATA _B is 1
SET1	10110	CA	SA	Α	СВ	SB	Bit position	СХ	SA	A bit in DATA _A is set	Сү	0	0000H	Bit specification by the lower 4 bits of DATA _B
CLR1	10111	CA	S _A	Α	СВ	SB	Bit position	CX	S _A	A bit in DATA _A is cleared	CY	0.	0000Н	Bit specification by the lower 4 bits of DATA _B
Bit Check													. 7	
ANDMSK	01101	CA	SA	Α	СВ	SB	В	0	SA	Α	0	S _B	В	If ANDMSK = 0
		CA	SA	Α	СВ	S _B	В	1	SA	Α	1	S _B	В	If ANDMSK = 1
ORMSK	10000	CA	SA	Α	CB	S _B	В	0	SA	Α	0	SB	В	If ORMSK = 0
1.3		CA	SA	Α	C _B	S _B	В	1	SA	Α	1	S _B	В	If ORMSK = 1
)ata Conve	rsion													
CVT2AB	01110	CA	SA	Α	СВ	S _B	В	CX	S _X	Conver- ted A data	Сү	0	H0000	Absolute value twos complement
CVTAB2	01111	CA	SA	A	СВ	S _B	В	CX	S _X	Conver- ted A data	Сү	0	0000Н	Twos complement ← absolute value
Adjustment	of Double I	Precisio	on Nun	bers						-		107,414		
ADJL	10100	CA	0	Α	CB	1	В	CX	0	A — 1	Сү	0	0000H-B	$A \neq 0$ AND $B \neq 0$
		CA	1	Α	СВ	0	В	СХ	1	A — 1	CY	1	0000H-B	$A \neq 0$ AND $B \neq 0$
		CA	0	Α	CB	1	0000H	CX	0	Α	CY	. 0	0000H	
		CA	0	0000H	СВ	1	В	Сх	1	0000H	Сү	1	В	B ≠ 0
		CA	1	Α	CB	0	0000H	CX	1	Α	CY	1	H0000	
		CA	1	0000H	СВ	0	В	СХ	0	0000H	Сү	0	В	B ≠ 0
		CA	0	Α	CB	0	В	CX	0	Α	Сү	0	В	
		CA	1	Α	CB	1	В	CX	1	A	Cy	1	В	

Notes: * If an overflow occurs as the result of A + B, $DATA_Y = 0001H$ and if no overflow, $DATA_Y = 0000H$.

[†] This indicates the number of consecutive zeros from the MSB of DATA_X. This number is used to calculate the number of shifts to be performed by subsequent processing.

GE Instructions

Bit Assignments

F/L [**Full/Left**]: F/L bit = 0 indicates that the GE instruction is used alone, whereas F/L bit = 1 indicates that the GE instruction is used in conjunction with an AG/FC instruction.

XCH [Exchange]: XCH bit = 1 indicates that the data from A side and B side are to be exchanged before the two data tokens enter the Queue.

OP [OP code]: These two bits select an operation to be performed. See table 21.

Table 21. OP Bits

and the second second	
W.	Operation
00	COPYBK (Copy block)
01	COPYM (Copy multiple)
11	SETCTL (Set control field)

GS [Generation Size]: These four bits determine the number of copies of a token to be made. A minimum of 2 and a maximum of 17 copies can be made using a GE instruction.

CTLFD [Control Field]: This field is used with Set Control Field (SETCTL) instruction. The data in CTLFD field further specifies the types of operations to be performed by the SETCTL instruction.

COPYBK [Copy Block]

COPYBK is used to duplicate a block of tokens from a single token. These duplicated tokens have exactly the same ID as the original token except the token copied last which has the original token's ID plus one. The number of tokens to be generated is specified by the GS field, and the COPYBK instruction generates exactly GS + 2 tokens. The data fields of the tokens being duplicated can also be incremented or decremented in a systematic manner. The incremental (or decremental) step value is contained in DATA_B. The tokens generated are sent to the Link Table. The series of LT tokens output by the instruction is shown in figure 23.

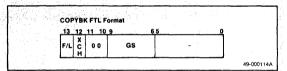
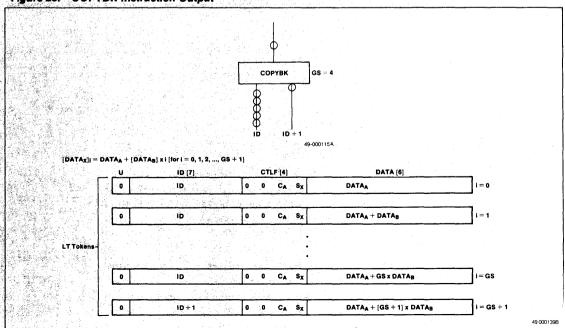



Figure 23. COPYBK Instruction Output

COPYM [Copy Multiple]

COPYM is used to generate multiple tokens from a single token. Each generated token has a different ID value. The number of tokens generated from the original token is GS+2. The data field of the tokens being generated can also be incremented or decremented in a systematic manner. The incremental (or decremental) step value is contained in DATAB. The

generated tokens are sent to the Link Table as LT tokens. The series of LT tokens output by the COPYM instruction is shown in figure 24.

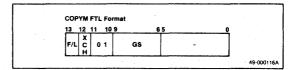
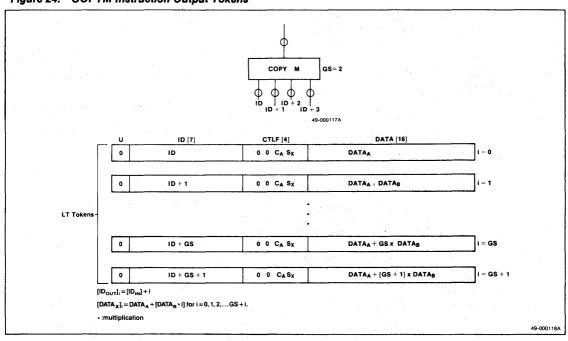
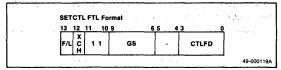




Figure 24. COPYM Instruction Output Tokens

SETCTL [Set Control Field]

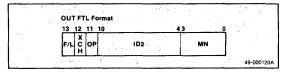

SETCTL is used to read and rewrite the contents of the Link Table and the Function Table. Since it can change the contents of the Link Table and the Function Table, this instruction can be used to write a self-modifying code. The type of operation to be performed is further specified by the contents of CTLFD field, as shown in table 22.

Table 22. SETCTL Instruction Control Field Operation

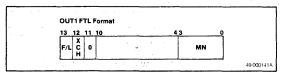
	C	TLFD		Operation
0	0	С	S	Normal data. Operation is exactly the same as COPYM.
1	1	0	0	The data field of this token is used to set a location in the Link Table memory (C and S bits are not included.) After the data is set, the token is deleted.
1	1	0	1	The data field of this token is used to set a location in the Function Table Right field. After the data is set, the token is deleted.
1	1	1	0	The lower 14 bits of the data field of this token are used to set a location in the Function Table Left field (higher bits are ignored.) After the data is set, the token is deleted.
1	1	1	1	The lower 10 bits of the data field of this token are used to set a location in the Function Table Temporary field (higher bits are ignored.) After the data is set, the token is deleted.
1	0	0	0	This token reads the LT address indicated by the ID field and outputs the contents.
1	0	0	1	This token reads the Function Table Right field address indicated by the ID field and outputs the contents.
1	0	1	0	This token reads the Function Table Left field address indicated by the ID field and outputs the contents.
1	0	1	1	This token reads the Function Table Temporary field address indicated by the ID field and outputs the contents.
0	1	0	0	These tokens should not be generated by the Processing
0	1	0	1	Unit. They are operating-mode-related tokens.
0	1	1	0	
0	1	1	1	

Note: The set or write operation is performed at the address indicated by the ID field of the token.

OUT Instructions

Bit Assignments

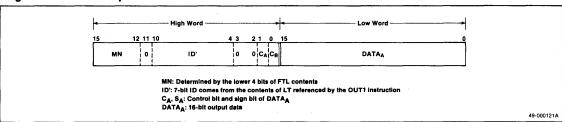
F/L [Full/Left]: F/L bit = 0 indicates that the OUT instruction is to be used alone. F/L bit = 1 indicates that the OUT instruction is to be used in conjunction with an AG/FC instruction.


XCH [Exchange]: If XCH bit = 1, the output data tokens from the A side are exchanged with those from the B side before they go to the Output Queue. If XCH bit = 0, no exchange operation is performed.

OP [**OP** Code]: This bit is used to further specify the OUT instruction. If OP = 0, then OUT1 instruction is performed, whereas if OP = 1, OUT2 instruction is performed.

ID2 [Second ID]: This field is used only by the OUT2 instruction. ID2 is the ID of the second output data token.

MN [Module Number]: This field indicates the destination module of the output data token.


OUT1

This instruction outputs a 32-bit data token via the Output Data Bus (ODB). Since the size of the ODB is 16 bits, a 32-bit output data token is divided into two 16-bit words and output one 16-bit word at a time. The format of an output data token is shown in figure 24.

Figure 25. OUT1 Output Token Format

OUT2

This instruction outputs two 32-bit data tokens via ODB. Since the ODB is 16 bits wide, each 32-bit token is divided into two 16-bit words and output one 16-bit word at a time. This instruction is useful when a double precision number is to be output. The formats of two output data tokens are shown in figure 25.

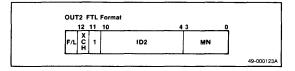


Figure 26. OUT2 Output Tokens Format

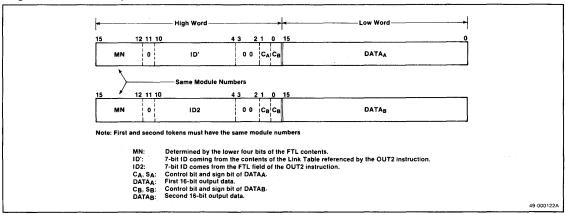


Figure 27. Data-Flow Graph Explanation

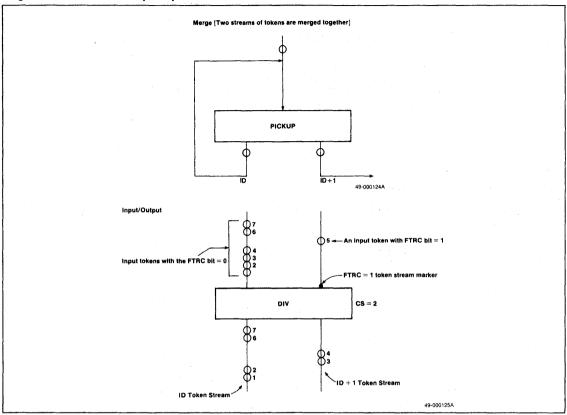
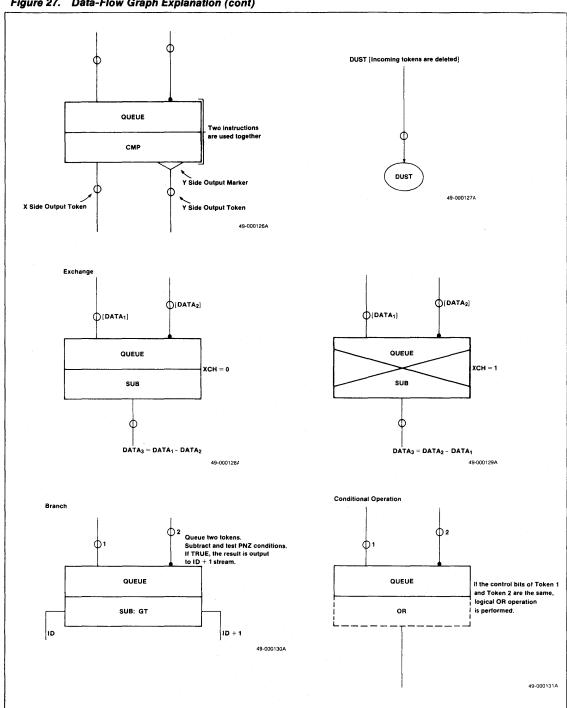



Figure 27. Data-Flow Graph Explanation (cont)

μ PD9305 MEMORY ACCESS AND GENERAL BUS INTERFACE FOR THE μ PD7281

PRELIMINARY INFORMATION

Description

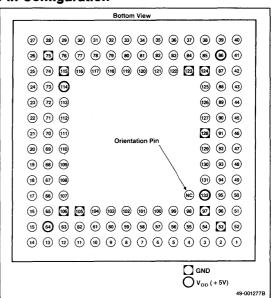
The NEC μ PD9305 memory access and general bus interface chip (MAGIC) is a peripheral LSI support device for the μ PD7281 image pipelined processor (ImPP). The μ PD7281 is a data flow architecture processor that supports high speed image and signal processing applications. The μ PD9305 chip can support from one to eight μ PD7281s and also interfaces to both 8-bit and 16-bit host processors.

The μ PD9305's powerful interface capabilities allow it to support basic interface operations, object program load, read/write/modify operations on image memory, and multiple μ PD7281 image memory accesses.

Since the μ PD7281 ImPP does not use direct addressing, the memories in a μ PD7281 processor system can be seen as processing modules with unique module numbers. These separate modules must output memory access tokens containing their own unique address, data, and control signals. The modules must perform the necessary processing, and then output the result of the access as another memory access token. To do this, the multiple μ PD7281 modules require external circuitry to process the memory access tokens that they output. In addition, this same circuitry is required to organize the data output from the memory into token format.

Circuitry is also needed between the host processor and the μ PD7281s to organize the data from the host into token format and to return the data output from the μ PD7281s into the form required by the host processor. Finally, tokens may have to be returned to other μ PD7281s in token form for further processing.

The μ PD9305 simplifies the above operations by keeping the data in the most convenient form. The μ PD9305 replaces approximately 80 medium/small scale integrated devices with a single integrated circuit.


Features

☐ High performance image memory interface ☐ Reduces external circuits required for ImPP system
☐ Simplifies host interface
☐ Up to 24-bit image memory addressing
☐ Up to 18-bit image memory data
☐ Register file for memory access
☐ Refresh control of image memory
☐ Functions with separate DMA controller
☐ Single +5 V power supply
☐ CMOS technology for lower power consumption

Ordering Information

Part Number		Package Type				
μPD9305R		132-pin ceramic grid array				

Pin Configuration

Pin Identification

No.	Symbol	Function
1	CLK	Clock input
2-4	D ₁₀ ,D ₁₂ , D ₁₅	Bidirectional data bus bits
5	OACK	Output acknowledge input
6	OREQ	Output request output
7	IDB ₁₄	Input data bus bit
8	ODB ₁₄	Output data bus bit
9	IDB ₁₁	Input data bus bit
10, 11	ODB ₁₁ , ODB ₈	Output data bus bits
12	IDB ₉	Input data bus bit
13	ODB ₅	Output data bus bit
14	IDB ₈	Input data bus bit
15	ODB ₄	Output data bus bit
16	IDB ₇	Input data bus bit
17	ODB ₂	Output data bus bit

Pin Identification (Cont)

No.	Symbol	Function
18	IDB ₆	Input data bus bit
19	MN ₂	Module number output
20	IDB ₄	Input data bus bit
21	IMA ₂₂	Image memory address output bit
22	IDB ₂	Input data bus bit
23, 24	IMA ₁₈ , IMA ₁₅	Image memory address output bits
25	IDB ₀	Input data bus bit
26-28	IMA ₁₂ -IMA ₁₀	Image memory address output bits
29	SOLBSY	Self object load busy output
30	CPURQ	CPU request output
31	DMAAEN	DMA address enable input
32-34	IMA ₅ ,IMA ₂ , IMA ₀	Image memory address output bits
35	DMAAK1	DMA / 1 acknowledge input
36	DMARQ1	DMA / 1 request output
37	IMD ₁₃	Bidirectional image memory data bus bit
38	ĪMAK	lmage memory acknowledge input
39-42	IMD ₁₀ -IMD ₇	Bidirectional image memory data bus bits
43	A ₀	Address select input
44,45	IMD ₃ ,IMD ₁	Bidirectional image memory data bus bits
46	IMWR	Image memory write output
47	WR	Write input
48,49	D_2,D_5	Bidirectional data bus bits
50	CS	Chip select input
51,52	D_8,D_9	Bidirectional data bus bits
53	GND	Ground
54,55	D ₁₁ ,D ₁₄	Bidirectional data bus bits
56	IREQ	Input request input
57	IACK	Input acknowledge output
58	IDB ₁₃	Input data bus bit
59	ODB ₁₃	Output data bus bit
60	IDB ₁₀	Input data bus bit
61-63	ODB ₁₀ ,ODB ₇ , ODB ₆	Output data bus bits
64	V _{DD}	+5 V power supply
65,66	ODB ₃ ,ODB ₁	Output data bus bits
67	IDB ₅	Input data bus bit
68	MN ₁	Module number output bit

Pin Indentification (Cont)

No.	Symbol	Function
69,70 IMA ₂₃ ,IMA ₂₁		Image memory address output bits
71	IDB ₁	Input data bus bit
72-74 IMA ₁₇ ,IMA ₁₄ , IMA ₁₃		Image memory address output bits
75	GND	Ground
76,77	IMA ₉ ,IMA ₈	Image memory address output bits
78	INBUSY	Input to ImPP busy output
79, 80	IMA ₄ ,IMA ₁	Image memory address output bits
81	IMD ₁₇	Bidirectional image memory data bus bit
82	DMAAK2	DMA / 2 acknowledge input
83	DMARQ2	DMA / 2 request output
84, 85	IMD ₁₂ ,IMD ₁₁	Bidirectional image memory data bus bits
86	V _{DD}	+5 V power supply
87,88	IMD_6, IMD_5	Bidirectional image memory data bus bits
89	A ₁	Address select input
90	IMD ₀	Bidirectional image memory data bus bit
91	IMRF	Image memory refresh output
92	D ₀	Bidirectional data bus bit
93	RD	Read input
94-96	D ₄ ,D ₆ ,D ₇	Bidirectional data bus bits
97	GND	Ground
98	D ₁₃	Bidirectional data bus bit
99	IPPRST	Image pipelined processor reset output
100	IDB ₁₅	Input data bus bit
101	ODB ₁₅	Output data bus bit
102	IDB ₁₂	Input data bus bit
103,104	ODB ₁₂ ,ODB ₉	Output data bus bits
105,106	GND	Ground
107	ODB ₀	Output data bus bit
108,109	MN_3,MN_0	Module number output bits
110	IDB ₃	Input data bus bit
111-113	IMA ₂₀ ,IMA ₁₉ , IMA ₁₆	Image memory address outputs
114	V_{DD}	+5 V power supply
115	GND	Ground
116-118	IMA ₇ ,IMA ₆ , IMA ₃	Image memory address outputs

Pin Identification (Cont)

No.	Symbol	Function
119	RESET	Reset input
120-122	IMD ₁₆ -IMD ₁₄	Bidirectional image memory data bus bits
123,124	GND	Ground
125,126	IMD ₄ ,IMD ₂	Bidirectional image memory data bus bits
127	IMRD	Image memory read output
128	GND	Ground
129	ERR	Error output
130,131	D ₁ ,D ₃	Bidirectional data bus bits
132	V _{DD}	+5 V power supply

Pin Functions

Table 1 shows the μ PD9305 pins in their particular functional groups. The paragraphs that follow table 1 describe the operation of the pins in each group.

All unused input or output pins should be pulled up to V_{DD} or down to GND through a 2K-3K ohm resistor.

Table 1. μPD9305 Pins by Function

1/0	Signal	No.
1	CLK	1
	RESET	119
	Status	
	ERR	129
0	SOLBSY	29
	CPURQ	30
	INBUSY	78
	Host Interface	
	WR	47
	RD	93
1	CS	50
	A ₀	43
	A ₁	89
	D ₀	92
	D ₁	130
	D ₂	48
	D_3	131
	D ₄	94
	$\overline{D_5}$	49
	D_6	95
	D ₇	96
1/0	D ₈	51
	$\overline{D_9}$	52
	D ₁₀	2
	D ₁₁	54
	D ₁₂	3
	D ₁₃	98
	D ₁₄	55
	D ₁₅	4
	DMA	
0	DMARQ1	36
-	DMARQ2	83
	DMAAK1	35
1	DMAAK2	82
	DMAAEN	31

Table 1. µPD9305 Pins by Function (Cont)

0	Signal	109 68 19
0	MN ₀ MN ₁ MN ₂ MN ₃ OREQ OACK	68 19 108
	MN ₁ MN ₂ MN ₃ OREQ OACK	68 19 108
	MN ₂ MN ₃ OREQ OACK	19 108
	MN ₃ OREQ OACK	108
0	OREQ OACK	
0	OACK	^
		6
ı	ĪREŌ	5
		56
0	IACK	57
	IPPRST	99
	ODB ₀	107
4	ODB ₁	66
	ODB ₂	17
	ODB ₃	65
	ODB ₄	15
	ODB ₅	13
	ODB ₆	63
0	ODB ₇	62
	ODB ₈	11
	ODB ₉	104
	ODB ₁₀	61
	ODB ₁₁	10
	ODB ₁₂	103
	ODB ₁₃	59
	ODB ₁₄	8
	ODB ₁₅	101
	IDB ₀	25
	IDB ₁	71
	IDB ₂	22
	IDB ₃	110
	IDB ₄	20
	IDB ₅	67
	IDB ₆	18
1	IDB ₇	16
	IDB ₈	11
	IDB ₉	12
	IDB ₁₀	60
	IDB ₁₁	9
	IDB ₁₂	102
	IDB ₁₄	7
	IDB ₁₅	100

Table 1. μ PD9305 Pins by Function (Cont)

1/0	Signal	No.
	Image Memory Interface	
l	IMAK	38
	IMRD	127
0	IMWR	46
	IMRF	91
	IMD ₀	90
	IMD ₁	45
	IMD ₂	126
	IMD ₃	44
	IMD ₄	125
	IMD ₅	88
	IMD ₆	87
	IMD ₇	42
1/0	IMD ₈	41
	IMD ₉	40
	IMD ₁₀	39
	IMD ₁₁	85
	IMD ₁₂	84
	IMD ₁₃	37
	IMD ₁₄	122
	IMD ₁₅	121
	IMD ₁₆	120
	IMD ₁₇	81

Table 1. µPD9305 Pins by Function (Cont)

1/0	Signal	No
	Image Memory Interface	· _
	IMA ₀	. 34
	IMA ₁	80
	IMA ₂	33
	IMA ₃	118
	IMA ₄	79
	IMA ₅	32
	IMA ₆	117
	IMA ₇	116
	IMA ₈	77
	IMA ₉	76
	IMA ₁₀	28
0	IMA ₁₁	27
	IMA ₁₂	26
	IMA ₁₃	74
	IMA ₁₄	73
	IMA ₁₅	24
	IMA ₁₆	113
	IMA ₁₇	72
	IMA ₁₈	23
	IMA ₁₉	112
	IMA ₂₀	111
	IMA ₂₁	70
	IMA ₂₂	21
	IMA ₂₃	69

CLK (Clock)

CLK is the single phase master clock input. The μ PD9305 clock frequency can be independent of ImPP clock frequency.

RESET (Reset)

RESET initializes the μ PD9305. A reset places $\overline{\text{OREQ}}$, $\overline{\text{IACK}}$, the token I/O flip-flop, and IM access request signals at an inactive level. $\overline{\text{RESET}}$ resets the refresh address counter, refresh timer counter, and mode register to 0. $\overline{\text{RESET}}$ must be held low for a minimum of four μ PD9305 or μ PD7281 clock cycles, whichever is slower.

V_{DD} (Power)

V_{DD} is the single +5 volt power supply.

GND (Ground)

GND is the ground signal.

Status Signal Pin Functions

CPURQ (CPU Request)

CPURQ indicates to the host processor that the μ PD9305 is ready to transfer a token to the host.

INBUSY (Input Busy)

INBUSY indicates that tokens are being input to the first ImPP from the μ PD9305.

SOLBSY (Self Object Load Busy)

SOLBSY indicates that a self object load is being executed.

ERR (Error)

ERROR indicates that an error was output from the ImPPs, the host has read an invalid output token, or that the host has input a token while INBUSY was active.

Host Interface Signal Pin Functions

RD (Read)

RD reads the contents of the internal registers specified by A_1 and A_0 .

WR (Write)

 \overline{WR} writes an input from the data bus to the internal register specified by A_1 and A_0 .

CS (Chip Select)

CS enables the RD or WR control signals.

A₀, A₁ (Address)

 A_0 and A_1 select the internal register for a read or write operation.

D₀-D₁₅ (Data Bus)

The contents of the internal registers are read from or written to via data bus bits $D_0\text{-}D_{15}$.

DMA Signal Pin Functions

DMAAEN (Direct Memory Access Address Enable)

DMAAEN is used to indicate to the μ PD9305 that an external DMA controller is putting DMA addresses on the address bus. During a DMA operation, DMA addresses (system memory addresses) are input to A₀ and A₁. However, these addresses have no meaning for the μ PD9305 and might alter register contents. For this reason, the μ PD9305 operates as if A₀ and A₁ are both reset to 0 when DMAAEN is active (high).

DMARQ1 (Direct Memory Access Request 1)

 $\overline{\text{DMARQ1}}$ issues a request to an external DMA controller to transfer data from the host system memory to the μPD9305 .

DMARQ2 (Direct Memory Access Request 2)

DMARQ2 issues a request to an external DMA controller to transfer data from the μ PD9305 to the host system memory.

DMAAK1 (Direct Memory Access Acknowledge 1)

 $\overline{\text{DMAAK1}}$ is issued by the external DMA controller to indicate to the μPD9305 that $\overline{\text{DMARQ1}}$ has been received.

DMAAK2 (Direct Memory Access Acknowledge 2)

 $\overline{\text{DMAAK2}}$ is issued by the external DMA controller to indicate to the μPD9305 that $\overline{\text{DMARQ2}}$ has been received.

μ PD7281 Interface Signal Pin Functions

MN₀-MN₃ (Module Number)

 MN_0 - MN_3 specify the module number of one ImPP. During a reset, one module number is output via MN_0 - MN_3 , the other via IDB_{12} - IDB_{15} . MN_0 - MN_3 are three-state pins.

OREQ (Output Request)

 $\overline{\text{OREQ}}$ signals to the first ImPP that the μ PD9305 is ready to transfer half a token.

OACK (Output Acknowledge)

 \overline{OACK} signals to the μ PD9305 that a half token has been accepted by the first ImPP.

IREQ (Input Request)

IREQ signals from the last ImPP that a half token is ready to be transferred from the ImPP to the μ PD9305.

IACK (Input Acknowledge)

 $\overline{\text{IACK}}$ indicates to the last ImPP that the μ PD9305 has accepted the half token.

IPPRST (Image Pipelined Processor Reset)

IPPRST resets the ImPPs during RESET or a command reset.

ODB₀-ODB₁₅ (Output Data Bus)

ODB₀-ODB₁₅ transfer tokens from the μ PD9305 to the first ImPP.

IDB₀-IDB₁₅ (Input Data Bus)

 ${\rm IDB_0\text{-}IDB_{15}}$ transfer tokens between the output of the last ImPP and the $\mu{\rm PD9305}$.

Image Memory Interface Signal Pin Functions

IMRD (image Memory Read)

IMRD requests a read of the contents of the image memory addressed by IMA₀-IMA₂₃.

IMWR (Image Memory Write)

IMWR requests a write to the image memory location addressed by IMA₀-IMA₂₃.

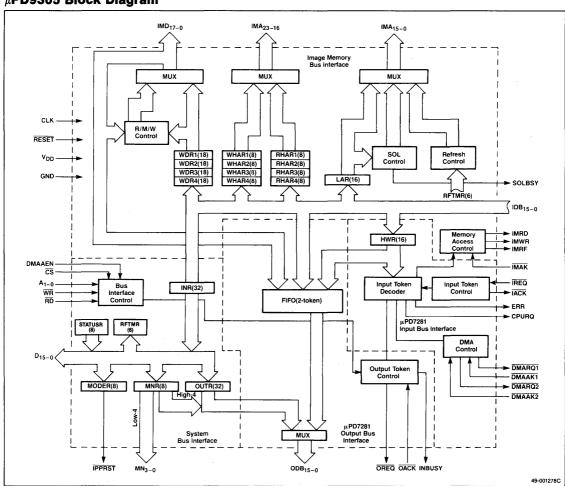
IMRF (Image Memory Refresh)

IMRF indicates an image memory refresh cycle.

IMAK (Image Memory Acknowledge)

 $\overline{\text{IMAK}}$ indicates to the μ PD9305 that an image memory read, write or refresh has been completed.

IMA₀-IMA₂₃ (Image Memory Address)


IMA₀-IMA₂₃ supplies the image memory address for a read or write operation or for DRAM refresh (IMA₀-IMA₉ only).

IMD₀-IMD₁₇ (Image Memory Data)

 IMD_0 - IMD_{17} is the bidirectional data bus for transferring data to and from the image memory.

μPD9305 Block Diagram

Functional Description

The μ PD9305 has the following functional units:

- μPD7281 input bus interface
- μPD7281 output bus interface
- · System bus interface
- · Image memory bus interface
 - -Register file
 - -R/M/W control
 - -Self object load control
 - -Image memory refresh control

μPD7281 Input Bus Interface

After the last ImPP outputs a token, the input bus interface determines whether the token should be an output token to the host CPU, to the image memory, or to the output bus interface block. The high order 16 bits of the token output from the last ImPP are latched into in the high word register (HWR) and then decoded by the input token decoder to determine the token type.

μPD7281 Output Bus Interface

The output bus interface logic transmits tokens through the multiplexer (MUX) to the first ImPP. The transmitted tokens come from the system bus interface, the μ PD7281 input bus interface, or the image memory bus interface. The output bus interface uses a priority control mechanism to prevent collisions between the tokens coming from the different blocks.

System Bus Interface

The system bus interface receives a token from the host CPU for the ImPPs, sends it to the output register (OUTR), and signals the output bus interface. Conversely, it sends a token, which is output from the last ImPP, through the input register (INR) to the host CPU according to instructions from the host CPU. The host CPU can set input or output modes (MODER register), read the status register (STATUSR), set image memory refresh timing (RFTMR register), and set module numbers (MNR) for two μ PD7281s.

Image Memory Bus Interface

The image memory bus interface accepts the following five types of tokens:

Token	Description	
WHA	Write high address	
WLA	Write low address	
WD	Write data	
RHA	Read high address	
RLA	Read low address	

Tokens have a 16-bit data value, so the address is transferred in two tokens to form the 24-bit image memory address. The lower 16-bits of the image memory address are latched in the lower address register.

The image memory bus interface also performs read/ modify/write functions with the R/M/W control logic and provides a register file.

Register File. The register file is used for storing write high addresses (WHAR/four 8-bit registers), write data (WDR/four 18-bit registers), and read high addresses (RHAR/four 8-bit registers).

Read/Modify/Write (R/M/W) Control. The R/M/W control reads a word from the image memory, performs a logical operation (AND, OR, or XOR) between it and the contents of a write data register (WDR), and then writes it back to a location referenced by the WHAR (the same lower 16-bit address, but a different upper eight bits).

Self Object Load (SOL). The self object load control loads ImPP object programs stored in image memory into the ImPPs. When the SOL is given a starting address, the SOL control automatically generates the appropriate addresses to read the image memory.

Image Memory Refresh Control. The μ PD9305 generates a 10-bit address and the timing for refreshing dynamic image memories. The timing is set by the RFTMR register.

Figure 1 shows the input/output token format and table 2 shows how the image memory access tokens function.

Figure 1. Input/output Token Format

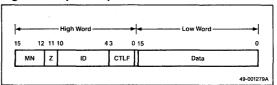


Table 2. Image Memory Access Tokens(1)

MN	· · Z	ID		CTLF	Data	Function	Operation
0001	-	MN'	ID'		Image memory read low address	Image memory read (RHAR1 reference)	R
		111			Image memory read high address	Read high address register (RHAR1) set (Note 2)	S
0010 -	-	MN'	ID'		Image memory read low address	Image memory read (RHAR2 reference)	R
		111			Image memory read high address	Read high address register (RHAR2) set (Note 2)	S
0011	-	MN'	ID'		Image memory read low address	Image memory read (RHAR3 reference)	R
		111			Image memory read high address	Read high address register (RHAR3) set (Note 2)	S
0100 -	-	MN'	ID'		Image memory read low address	Image memory read (RHAR4 reference)	R
		111			Image memory read high address	Read high address register (RHAR4) set (Note 2)	S
		00000	DIR		Image memory write low address	Image memory write (referencing WHAR and WDR selected by DIR)	W
		001	DIR		Image memory write high address	Set write high address register (WHAR) selected by DIR	S
0101 -	-	010	DIR	C,S	Image memory write data register	Set write data register (WDR) selected by DIR	S
		011	DIR		Image memory read high address	Set read high address register (RHAR) selected by DIR	S
		1 0 0 MAS	K DIR		Read/write low address	Read/modify/write	RW
		101	DIR		Read/write low address	Read / modify / write (write CS bits selects mask)	RW
		00	DIR		Load starting low address	Self object load	R
0110 -	-	01	DIR		Load starting low address	Self object load MN of output token is SOLMN)	R
		1			SOLMN	Set SOLMN for self object load	S

Notes:

(1) The following definitions refer to the above table:

MN: Module number

Z: Always 0

ID: Identifier

CTLF: Control field

ID': ID used for next circulation

MN': MN used for next circulation (MN ≠ 111) DIR: Specifies registers for memory image access

MASK: Specifies the modify mode

-: Do not care

S: Set

R: Read

W: Write

(2) When RHASEL of the mode register is 1, the tokens become image memory read (request) tokens

Table 3 shows module number (MN) values and the five token types (refer to figure 12).

The five token types are:

- (1) Output request data to the host
- (2) Image memory access data
- (3) DMA request data
- (4) Pass data
- (5) Delete data

Table 3. MN Values and Token Types

Token Type	MN	ID	Function	Abbreviation
(1)	0000	x x x	μPD7281 output data to host	CPU
(2)	0 0 0 1	MN' ID' x x x x x x x	Image memory read1 (RHAR1 select)	IMR
		111 xxxx	RHAR1 set (Note 2)	-
	0 0 1 0	MN' ID'	Image memory read2 (RHAR2 select)	
		111 xxxx	RHAR2 set (Note 2)	_
	0 0 1 1	MN' ID'	Image memory read3 (RHAR3 select)	
		111 xxxx	RHAR3 set (Note 2)	
	0 1 0 0	MN' ID'	Image memory read4 (RHAR4 select)	
		111 xxxx	RHAR4 set (Note 2)	
	0 1 0 1	0 0 0 0 0 DIR	Image memory write	IMW
		0 0 1 x x DIR	High address set for write (selected register file is DIR +1)	IMWHA
		0 1 0 x x DIR	Write data set (selected register file is DIR +1)	IMWD
		0 1 1 x x DIR ↔	High address set for read (selected register file is DIR +1)	IMREA
		1 0 0 Mask DIR	Read/modify/write1	RMW1
		1 0 1 x x DIR	Read / modify / write2 (mask selected by CS bits of image memory write data)	RMW2
(3)	0101	1 1 0 x x x x	DMA1 (host — μPD7281)	DMA1
		1 1 1 x x x x	DMA2 (μPD7281 → host)	DMA2
(2)	0 1 1 0	0 0 x x x DIR ↔	Self object load1	SOL1
		0 1 x x x DIR ↔	Self object load2 (rewrite MN)	SOL2
		1 x x x x x x	MN set for self object load	SOLMN
(4)	0 1 1 1		μ PD7281 module number (when RHASEL=1)	PASS
	1000			
	1001			
			μ PD7281 module numbers	
	1 1 0 0 1 1 0 1			
	1110			
(5)	1111		Deleted	VANISH

Notes:

- (1) The following definitions refer to the above table:
 - MN: Module number
 - ID: Identifier
 - MN': MN used for next circulation (MN ≠ 111)
 - ID': ID used for next circulation
- (2) When RHASEL of the mode register is 1, the tokens become image memory read tokens.

Absolute Maximum Ratings T_A = 25°C

Power supply voltage, V _{DD}	-0.5 V to 7.0 V
Input voltage, V _I	-0.5 V to 7.0 V
Output current, I ₀	10 mA
Operating temperature, T _{OPT}	0°C to 70°C
Storage temperature, T _{STG}	-65°C to 150°C

*Comment: Exposing the device to stresses above those listed in absolute maximum ratings could cause permanent damage. Do not operate the device under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25^{\circ}C$

		Limits			Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	Cı		10	pF	f _c = 1 MHz Unmeasured pins are at 0 V.
Output capacitance	C ₀		15	pF	
Input/output capacitance	C _{IO}		15	pF	

DC Characteristics

 $T_A = 0$ °C to +70°C, $V_{DD} = 5 \text{ V } \pm 10\%$

	Li			3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	V _{IL}	-0.5		0.8	V	
Input high voltage	V _{IH}	2.0		V _{DD} +0.5	V	
Output low voltage	V _{OL}			0.4	V	$I_{OL} = 2 \text{ mA}$
Output high voltage	V _{OH}	V _{DD} -0.4			V	$I_{OL} = -400 \mu A$
Input leakage current	ILI		-	±10	μΑ	$0 \le V_1 \le V_{DD}$
Output leakage current	l _{LO}			±10	μΑ	$0 \le V_1 \le V_{DD}$
Supply current	I _{DD}		10	100	mA	10 MHz

AC Characteristics

 T_A = 0°C to +70°C, V_{DD} = 5 V ±10%

Clock Timing

		Limits			Test
Parameter	Symbol	Min	Max	Unit	Conditions
CLK cycle time	t _{CYK}	80		ns	-
Clock pulse width high	t _{WKH}	30		ns	
Clock pulse width low	t _{WKL}	30		ns	
Clock rise time	t _{KR}		10	ns	
Clock fall time	t _{KF}		10	ns	

Input Timing

Parameter		Limits			Test
	Symbol	Min	Max	Unit	Conditions
Input rise time	t _{IR}	0	10	μS	
Input fall time	t _{lF}	0	10	μS	-

RESET Timing

		Li	mits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
RESET pulse width	t _{RST}	t _{CYK}		ns	μPD9305 only
RESET setup time to IPPRST	tDRSPRL		40	ns	
IPPRST hold time after RESET 1	t _{DRSPRH}		50	ns	
IPPRST setup to MN ₀ -MN ₃	t _{DMN}		60	ns	
MN ₀ -MN ₃ float time after IPPRST t	t _{FMN}		50	ns	
IPPRST low until OBD ₁₅ -OBD ₁₂ active	t _{DPROD}		60	ns	
OBD ₁₅ -OBD ₁₂ float time after IPPRST †	t _{FPROD}		50	ns	

Host CPU ↔ µPD9305 Read/Write Timing

	Limits				Test
Parameter	Symbol	Min	Max	Unit	Conditions
Address setup to WR ↓, RD ↓	t _{SARW}	20		ns	
Address hold time after WR 1,	t _{HRWA}	20		ns	
CS setup to WR ↓ RD ↓	t _{SCRW}	0		ns	
CS hold time after WR 1, RD 1	t _{HRWC}	0 .		ns	
WR, RD pulse width	t _{WRWL}	100		ns	
RD setup to data	t _{DRD}		80	ns	
Data float time after RD 1	t _{FRD}	30		ns	
Data setup to WR †	t _{SDW}	20		ns	
Data hold after WR t	t _{HWD}	20		ns	

DMA Request Timing(1)

		Limits			Test
Parameter	Symbol	Min	Max	Unit	Conditions
DMARQ ↓ setup time to DMAAK ↓	t _{DDQDA}	20		ns	
DMARQ ↑ time from DMAAK ↓	t _{DDADQ}		50	ns	
DMARQ ↓ time from DMAAK ↑	t _{RVDQ}	50		ns	
DMAAEN † setup time to (RD,WR) ↓	t _{SDERW}	30		ns	
DMAAEN hold time after (RD,WR) 1	t _{HRWDE}	30		ns	
DMAAK low setup time to (RD,WR) 1	t _{SDARW}	0		ns	
DMAAK hold time after (RD,WR) †	t _{HRWDA}	0		ns	
DMAAK pulse width	t _{WDAL}	t _{CYK}		ns	

Note:

I/O Request/Acknowledge Timing

	Limits		mits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
IREQ ↓ setup time to IACK ↓	[‡] DIQIALI	15	60	ns	
IACK ↓ setup time to IREQ †	tDIAIQHI	. 10		ns	
IREQ 1 setup time to IACK 1	t _{diqiahi}	20	70	ns	
IACK ↑ setup to IREQ ↓	t _{DIAIQL}	10		ns	
ID bus setup time to IREQ †	t _{sidiq}	20		ns	
ID bus hold time from IREQ †	t _{HIQID}	10		ns	
OREQ ↓ setup time to OACK ↓	t _{DOQOAL}	10		ns	
OACK setup time to OREQ †	t _{DOAOQH}	20	70	ns	
OREQ 1_setup time to OACK 1	t _{DOQOAH}	10		ns	
OACK † setup time to OREQ ↓	t _{DOAOQL}	15	60	ns	
OREQ ↓ setup time to ODB valid	t _{DOQOD}		10	ns	
ODB float time after OREQ †	t _{FOQOD}	10		ns	

Note:

Pull-up resistors required on $\mu\text{PD9305 IDB}_{15}\text{-IDB}_{0}$ to meet $t_{\mbox{\scriptsize HIQID}}$ timing.

⁽¹⁾ DMAAK = DMAAK1 or DMAAK2 DMARQ = DMARQ1 or DMARQ2

Image Memory Read, Write, Refresh Timing

	Limits		its		Test
Parameter	Symbol	Min	Max	Unit	Conditions
IMA ⁽¹⁾ ↑ active time from CLK ↓	†DKMARF		100	ns	IM refresh
IMA active time from CLK ↓	t _{DKMAMC}		60	ns	IM read or IM write
IMA float time from IMC ↓	[†] FMCMA	10		ns	
IMC recovery time	t _{RVMC}	1.5t _{CYK}		ns	
IMC ↑ delay time from CLK ↓	[†] DKMCH		35	ns	
IMC ↓ delay time from CLK ↓	t _{DKMCL}		40	ns	
IMAK recovery time	t _{RVMK}	1.5t _{CYK}		ns	
IMAK setup time to CLK †	tsmkk	10		ns	
IMAK hold time from IMC ↓	^t HMCMK	0		ns	
IMD setup time to CLK †	tsmdk	20		ns	Image memory read timing
IMD hold time from IMRD ↓	thmrmd	0		ns	Image memory read timing
IMD delay time from CLK ↓	t _{DKMD}		30	ns	Image memory write timing
IMD float time from IMWR ↓	t _{FMWMD}	20		ns	Image memory write timing

Note:

- (1) $IMA = IMA_{23}-IMA_0$
- (2) IMC + IMRD, IMWR or IMRF
- (3) To maximize IM access time use $\overline{\text{IMAK}} = \overline{\text{IMC}}$. Then IM cycle time will be 3.k_{CYK}

SOLBSY Timing

	Limits				Test
Parameter	Symbol	Min	Max	Unit	Conditions
SOLBSY delay time from IACK 1	t _{DIASB}		30	ns	
SOLBSY delay time from CLK ↓	t _{DKSB}		60	ns	

CPURQ Timing

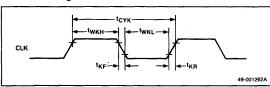
		Li	mits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
CPURQ delay time from IACK 1	t _{DIAPQ}		30	ns	
CPURQ delay time from RD †	t _{DPRQ}		60	ns	

INBUSY Timing

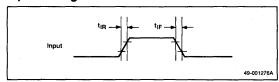
		Li	mits		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
INBUSY 1 delay time from WR 1	t _{DWIB}		70	ns		
INBUSY ↓ delay time from OREQ ↑	t _{DOQIB}		40	ns		

ERR Timing

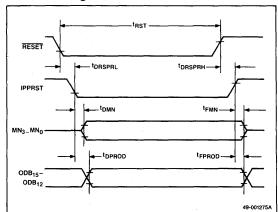
-	Li	mits		Test		
Symbol	Min	Max	Unit	Conditions		
t _{DIAE}		30	ns	Error token output		
t _{DWE}		60	ns	INBUSY = 1		
t _{DRE}		60	ns	CPURQ = 0		
t _{HWIB}		10	ns			
tspar		10	ns			
	t _{DIAE} t _{DWE} t _{DRE}	Symbol Min t _{DIAE} t _{DWE} t _{DRE} t _{HWIB}	t _{DIAE} 30 t _{DWE} 60 t _{DRE} 60 t _{HWIB} 10	Symbol Min Max Unit tDIAE 30 ns tDWE 60 ns tDRE 60 ns tHWIB 10 ns		

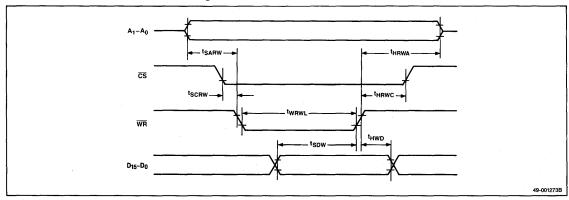

Note:

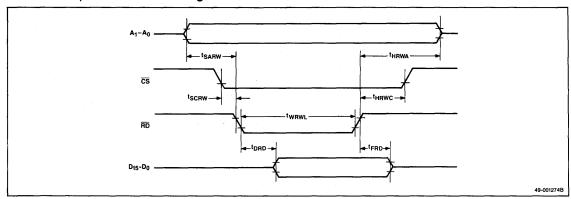
All unused input or output pins should be pulled up to $\rm V_{\rm DD}$ or down to GND through a 2K-3K ohm resistor.



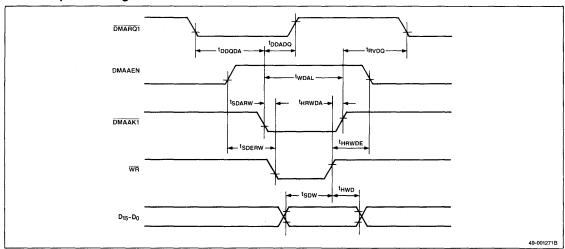
Timing Waveforms


Clock Timing

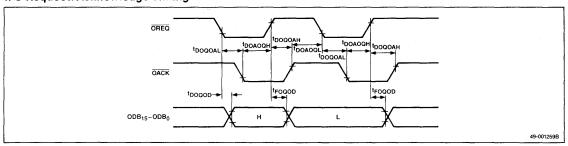

Input Timing


RESET Timing

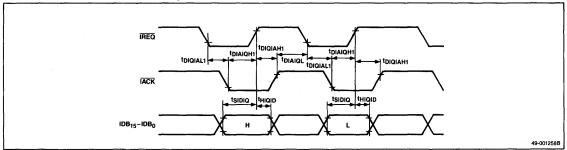
HOST CPU → µPD9305 Write Timing



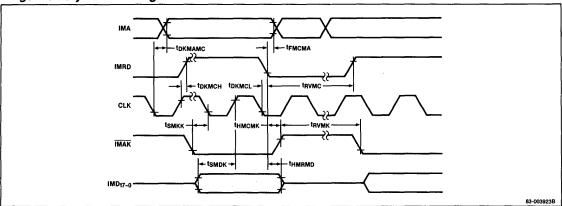
Host CPU - µPD9305 Read Timing


DMA1 Request Timing

DMA2 Request Timing



I/O Request/Acknowledge Timing



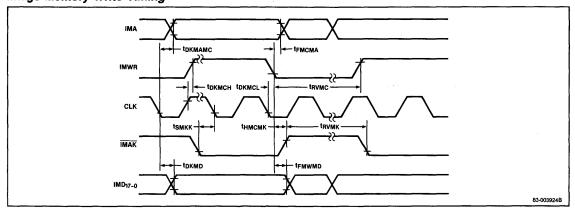

I/O Data Bus Handshake Timing

Image Memory Read Timing

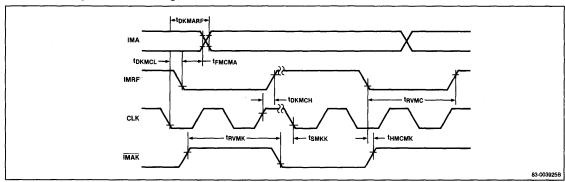
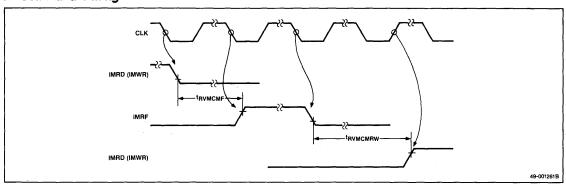
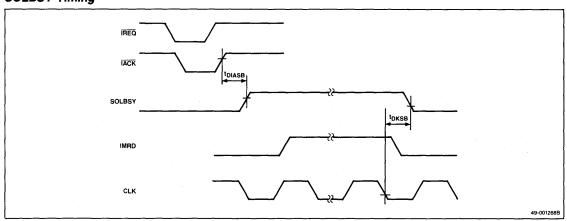
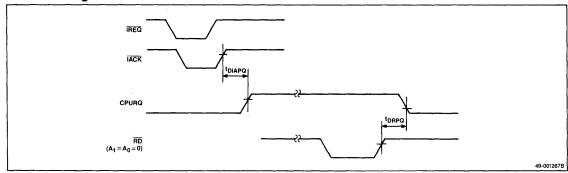


Image Memory Write Timing

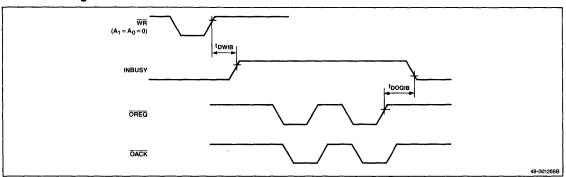


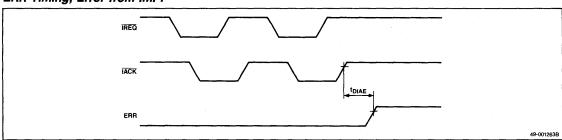

Image Memory Refresh Timing

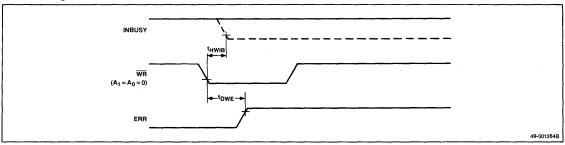
IM Command Timing



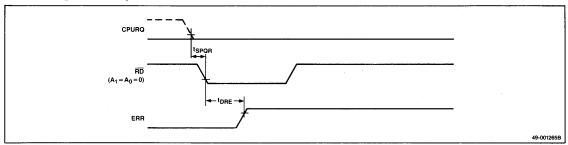
SOLBSY Timing




CPURQ Timing


INBUSY Timing

ERR Timing, Error from ImPP



ERR Timing, INBUSY

ERR Timing, CPU Request

μPD9305 Operation

Table 4 shows how the μ PD9305 uses signals \overline{CS} , \overline{RD} , \overline{WR} , and A_1 , A_0 to read or write to I/O ports.

Table 4. I/O Ports

CS	RD	WR	A ₁	A ₀	Internal I/O Ports
0	0	1	0	0	Read ImPP input data register (from ImPP)
0	0	1	0	1	Read status register
0	0	1	1	0	Command RESET; data read has no meaning
0	0	1	1	1	Not used
0	1	0	0	0	Write ImPP output data register (to ImPP)
0	1	0	0	1	Write mode register
0	1	0	1	0	Write module number register
0	1	0	1	1	Write refresh timing register

Figure 2 shows the status register format.

Figure 2. Status Register Format

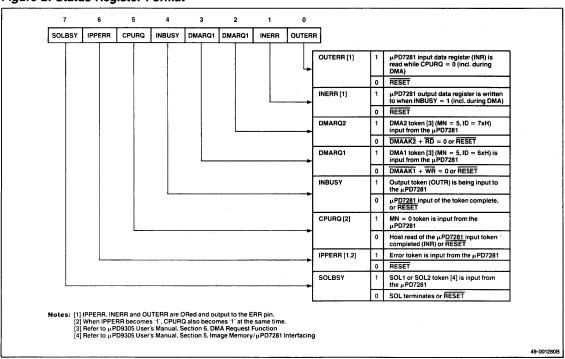
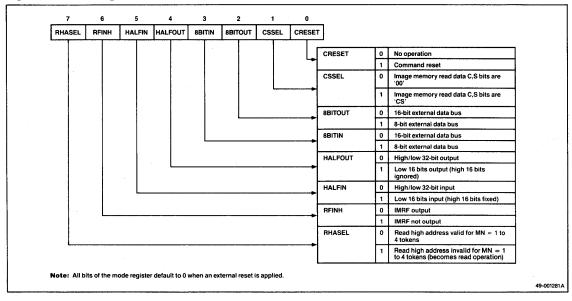



Figure 3 shows the mode register format.

Figure 3. Mode Register Format

Figures 4-20 graphically show μ PD9305 operation. For a detailed description of μ PD9305 operation, refer to the μ PD9305 User's Manual.

Figure 4. Setting Write Method for Input Data

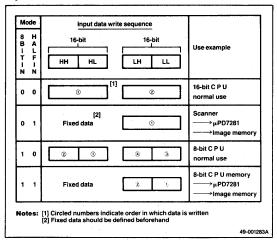


Figure 5. Setting Read Method for Output Data

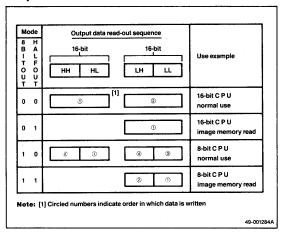


Figure 6. Setting Fixed (16-Bit) Data

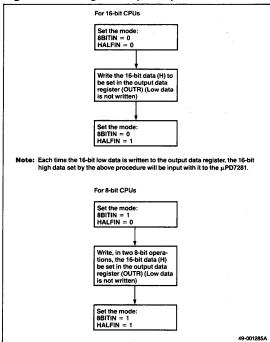


Figure 7. MN Register

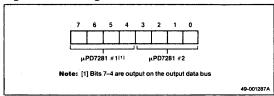
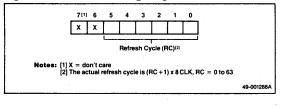



Figure 8. Refresh Timing Register

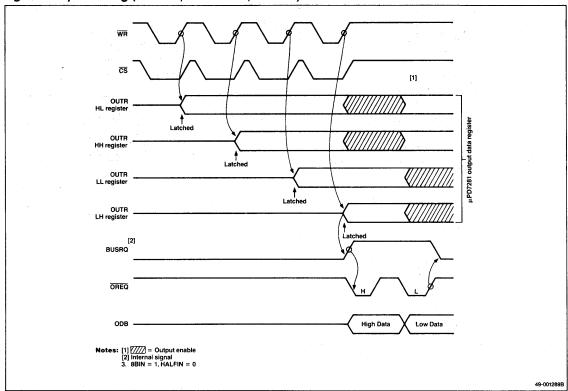


Figure 10. Output Timing (μPD7281 to μPD9305 to Host)

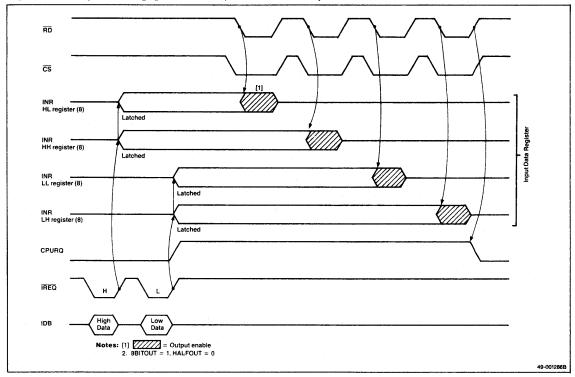


Figure 11. Output to μ PD7281, Control Data Paths

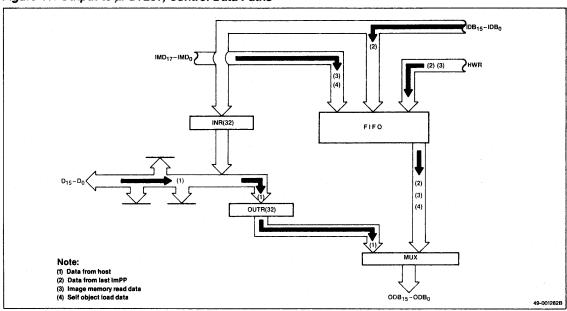


Figure 12. μPD7281, Input Control Data Flow

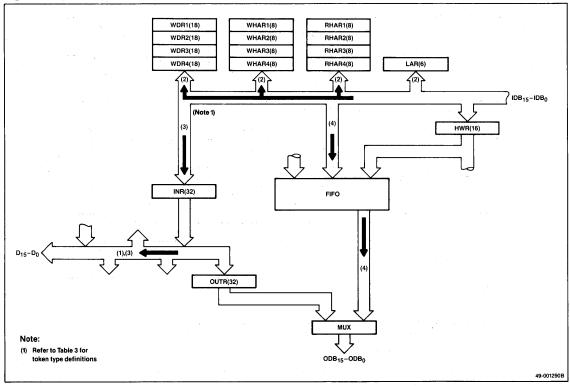
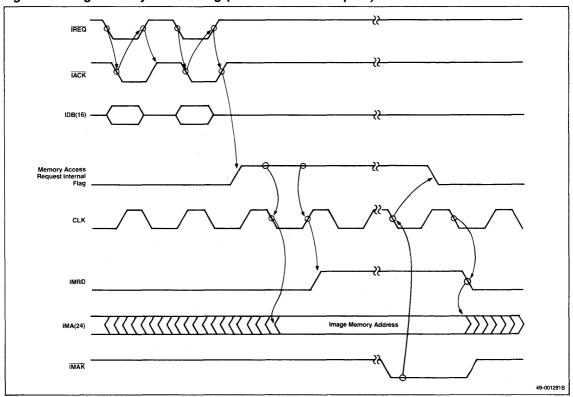



Figure 13. Image Memory Read Timing (Without Refresh Request)

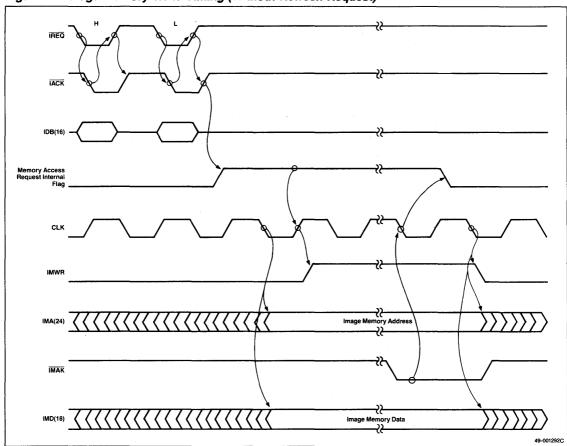
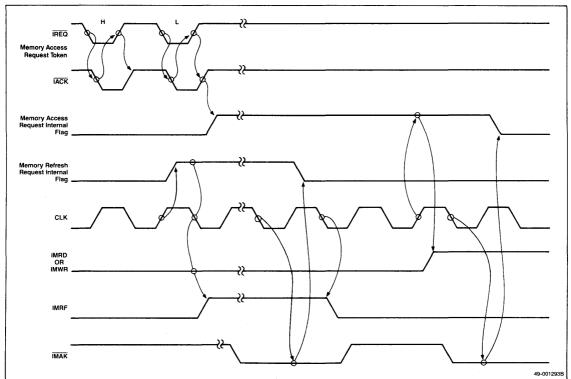
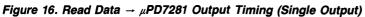




Figure 15. Image Memory Access Request Priority Control

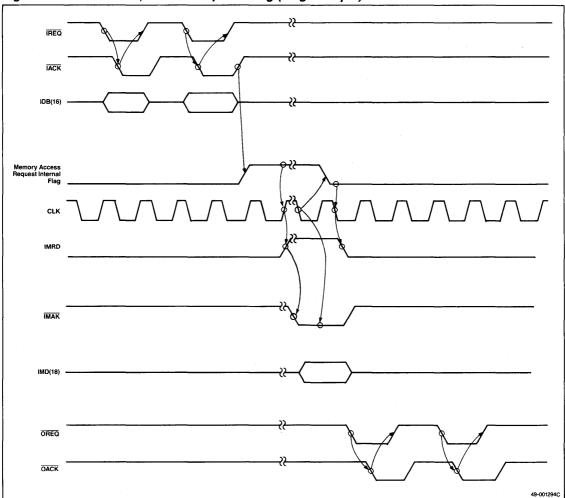


Figure 17. Read Data → µPD7281 Output Timing (Continuous Output)

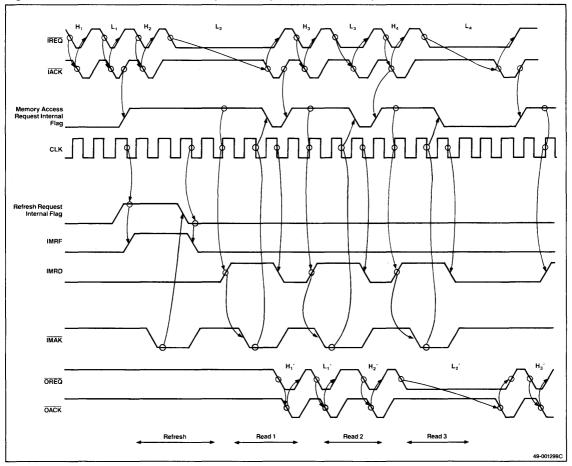


Figure 18. Self Object Load Timing

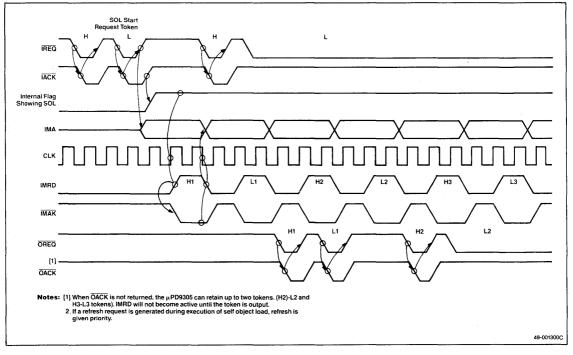


Figure 21. Typical System Configuration

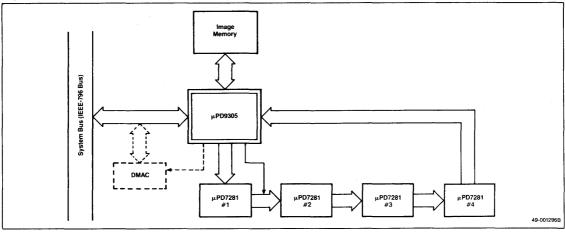
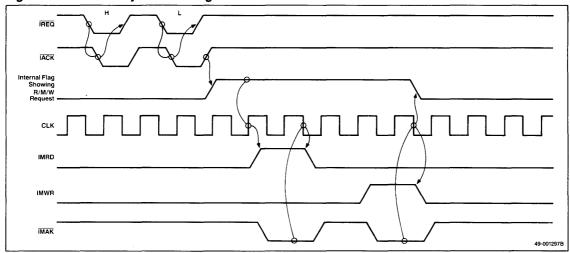


Figure 20. Read/Modify/Write Timing



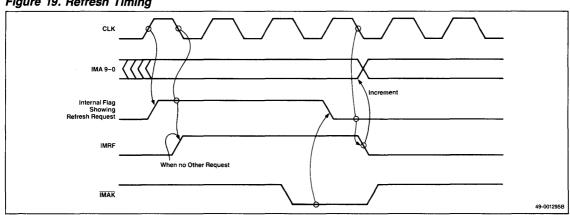

Table 5 shows the differences between command and external resets.

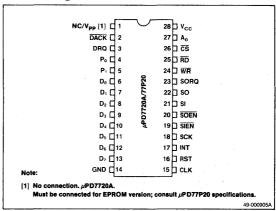
Figure 21 shows a typical system configuration using the μPD9305 with several ImPPs.

Table 5. Command and External Reset Differences

Item	RESET	Command Reset
I/O data counter Tokens in the μPD9305 Image memory access requests (except refresh) OREO, IACK DMA request	Cleared	Cleared
Refresh timer Refresh request Refresh address Mode register	Default values	No change
IPPRST pin	0 (active)	0 (active)

Figure 19. Refresh Timing

Description


The μ PD7720A and μ PD77P20, two signal processing interface (SPI) chips that are functionally the same, are advanced architecture microcomputers optimized for signal processing algorithms. Their speed and flexibility allow these SPIs to efficiently implement signal processing functions in a wide range of environments and applications.

The μ PD7720A, a revision of the μ PD7720, the original mask ROM chip, uses a third less power than the μ PD7720. The μ PD77P20 is an ultraviolet erasable and electrically programmable (EPROM) version of the μ PD7720A. Program and data ROM, masked for the μ PD7720A, are implemented in EPROM for the μ PD77P20. The μ PD77P20 is useful in prototype applications or in systems where product quantities are insufficient for masked ROM development. Since the inception of μ PD7720 and its companion EPROM version, µPD77P20, there have been several mask revisions to improve either/both manufacturability and/or function. A μ PD77P20 must always be used to verify function of a user's system before submitting ROM code for µPD7720A, but certain early versions of μ PD77P20 must not be used for final verification. Please refer to the section on μ PD77P20 for details.

Features

- ☐ Fast instruction execution—250 ns ☐ 16-bit data word ☐ Multi-operation instructions for optimizing program execution ☐ Large memory capabilities: - Program ROM (512 x 23 bits)
- Data ROM (510 x 13 bits)
 - Data RAM (128 x 16 bits)
- ☐ Fast (250 ns) 16-bit multiplier (31 bits)
- □ Dual accumulators
- ☐ Four-level subroutine stack for program efficiency
- ☐ Multiple I/O capabilities:
 - Serial
 - Parallel
 - DMA
- ☐ Compatible with most microprocessors, including:
 - $-\mu PD8080$
 - $-\mu PD8085$
 - $-\mu PD8086$
 - μPD780 (Z80®)
- ☐ Power supply +5 V
- □ NMOS technology
- ☐ Extended temperature versions available.
- ® Z80 is a registered trademark of Zilog Corporation.

Pin Configuration

Applications

- □ Digital filtering
- ☐ High-speed data modems
- ☐ Fast Fourier transforms (FFT)
- ☐ Speech synthesis and analysis
- ☐ Dual-tone multi-frequency (DTMF) transmitters/receivers
- □ Equalizers
- □ Adaptive control
- □ Numerical processing

Performance Benchmarks

- \square Second order digital filter (biguad): 2.25 μ s
- \square Sin/cos of angles: 5.25 μ s
- \square μ /A law to linear conversion: 0.50 μ s
- ☐ FFT, 32-point complex: 0.7 ms 64-point complex: 1.6 ms

Ordering Information

Part Number	Package Type	Max Frequency of Operation	Normal Temperature Range
μPD7720AD	28-Pin ceramic DIP	8.33 MHz	-10°C to 70°C
μPD7720AC	28-Pin plastic DIP	8.33 MHz	-10°C to 70°C
μPD77P20D	28-Pin cerdip	8.196 MHz	-10°C to 70°C

Pin Identification

No.	Symbol	Function
1	NC (V _{PP} or V _{CC})	No connection (μPD7720A). Programming voltage or V _{CC} (μPD77P20)
2	DACK	DMA request acknowledge input
3	DRQ	DMA request output
4, 5	P ₀ , P ₁	General purpose output control lines
6-13	D ₀ -D ₇	Three-state I/O data bus
14	GND	Ground
15	CLK	Single phase master clock input
16	RST	Reset input
17	1NT	Interrupt input
18	SCK	Serial data I/O clock input
19	SIEN	Serial input enable input
20	SOEN	Serial output enable input
21	SI	Serial data input
22	S0	Three-state serial data output
23	SORQ	Serial data output request
24	WR	Write control signal input
25	RD	Read control signal input
26	CS	Chip select input
27	Α ₀	Status/data register select input
28	V _{CC}	+5 V power supply

Pin Functions

NC/Vpp

This pin is not internally connected in the μ PD7720A. In the μ PD77P20, this pin inputs the programming voltage (V_{PP}) when the part is being programmed.

This pin must be connected to V_{CC} for proper $\mu PD77P20$ operation. Consult the section on the $\mu PD77P20$ for details.

DACK [DMA Request Acknowledge]

This input indicates to the μ PD7720A that the data bus is ready for a DMA transfer ($\overline{DACK} = \overline{CS}$ AND A₀ = 0)

DRQ [DMA Request]

This output signals that the μ PD7720A is requesting a data transfer on the data bus.

Po, P1

These pins are general purpose output control lines.

D₀-D₇ [Data Bus]

This three-state I/O data bus transfers data between the data register or status register and the external data bus.

GND

This is the connection to ground.

CLK

This is the single-phase master clock input.

RST [Reset]

This input initializes the μ PD7720 internal logic and sets the PC to 0.

INT [Interrupt]

A low to high transition on this pin executes a call instruction to location 100H, if interrupts were previously enabled.

SCK [Serial Data I/O Clock]

When this input is high, a serial data bit is transferred.

SIEN [Serial Input Enable]

This input enables the shift clock to the serial input register.

SOEN [Serial Output Enable]

This input enables the shift clock to the serial output register.

SI [Serial Data Input]

This pin inputs 8- or 16-bit serial data words from an external device such as an A/D converter.

SO [Serial Data Output]

This three-state port outputs 8- or 16-bit data words to an external device such as a D/A converter.

SORQ [Serial Data Output Request]

This output specifies to an external device that the serial data register has been loaded and is ready for output. SORQ is reset when the entire 8- or 16-bit word has been transferred.

WR [Write Control Signal]

This input writes data from the data port into the data register.

RD [Read Control Signal]

This input latches data from the data or status register to the data port where it is read by an external device.

CS [Chip Select]

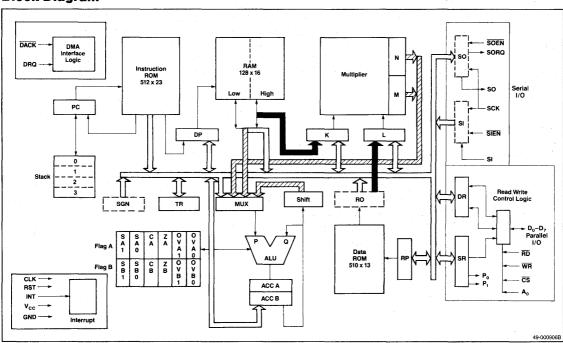
This input enables data transfer through the data port with RD or WR.

A₀ [Status Data Register Select]

This input selects data register for read/write (low) or status register for read (high).

V_{CC} [Power Supply]

This pin is the +5 V power supply.


Functional Description

The primary bus (which is unshaded in the block diagram) makes a data path between all of the registers (including I/O), memory, and processing sections. This bus is referred to as the IDB (internal data bus). The multiplier input registers K and L can be loaded not only from the IDB but alternatively (via buses which are

darkened in the block diagram) directly from RAM to the K register and directly from data ROM to the L register. Output from the multiplier in the M and N registers is typically added (via buses that are shaded in the block diagram) to either accumulator A or B as part of a multi-operation instruction.

Fabricated in high speed NMOS, the μ PD7720A SPI is a complete 16-bit microcomputer on a single chip. ROM space provides program and coefficient storage; the on-chip RAM may be used for temporary data, coefficients, and results. A 16-bit arithmetic/logic unit (ALU) and a separate 16 x 16-bit fully parallel multiplier provide computational power. This combination allows the implementation of a "sum of products" operation in a single 250 ns instruction cycle. In addition, each arithmetic instruction allows a number of data movement operations to further increase throughput. Two serial I/O ports interface to codecs and other serially-oriented devices, while a parallel port provides both data and status information to conventional microprocessors. Handshaking signals, including DMA controls, allow the SPI to act as a sophisticated programmable peripheral as well as a stand-alone microcomputer.

Block Diagram

Memory

Memory is divided into three types: instruction ROM, data ROM, and data RAM. The 512 x 23-bit words of instruction ROM are addressed by a 9-bit program counter which can be modified by an external reset, interrupt, call, jump, or return instruction.

The data ROM is organized in 510 x 13-bit words which are addressed through a 9-bit ROM pointer (RP register). The RP may be modified simultaneously with arithmetic instructions so that the next value is available for the next instruction. The data ROM is ideal for storing the necessary coefficients, conversion tables, and other constants for your processing needs. Do not use data ROM locations 0 and 1 in the μ PD7720A, where these locations are reserved for storage of test pattern data. (When submitting code for μ PD7720A, these locations should be set to 0). Note that μ PD77P20 allows use of these locations, but using them is not advised.

The data RAM is 128 x 16-bit words and is addressed through a 7-bit data pointer (DP register). The DP has extensive addressing features that operate simultaneously with arithmetic instructions, eliminating additional time for addressing or address modification.

Arithmetic Capabilities

One of the unique features of the SPI's architecture is its arithmetic facilities. With a separate multiplier, ALU, and multiple internal data paths, the SPI is capable of carrying out a multiply, an add or other arithmetic operation, and a data move between internal registers in a single instruction cycle.

ALU

The ALU is a 16-bit two's complement unit capable of executing 16 distinct operations on virtually any of the SPI's internal registers, thus giving the SPI both speed and versatility for efficient data management.

Accumulators [ACCA/ACCB]

Associated with the ALU are two 16-bit accumulators, each with its own set of flags, which are updated at the

end of each arithmetic instruction (except NOP). Table 1 shows the ACC A/B flag registers. In addition to zero result, sign, carry, and overflow flags, the SPI incorporates auxiliary overflow and sign flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as three successive additions or subtractions.

Table 1. ACC A/B Flag Registers

Flag A	SA1	SA0	CA	ZA	OVA1	0VA0
Flag B	SB1	SB0	СВ	ZB	OVB1	OVB0

Sign Register [SGN]

When OVA1 is set, the SA1 bit will hold the corrected sign of the overflow. The SGN register will use SA1 to automatically generate saturation constants 7FFFH(+) or 8000H(-) to permit efficient limiting of a calculated value. The SGN register is not affected by arithmetic operations on accumulator B, but flags SB1, SB0, CB, ZB, OVB1 and OVB0 are affected by accumulator B arithmetic operations.

Multiplier

Thirty-one bit results are developed by a 16 x 16-bit two's complement multiplier in 250 ns. The result is automatically latched to two 16-bit register M&N (sign and 15 higher bits in M, 15 lower bits in N; LSB in N is zero) at the end of each instruction cycle. A new product is available for use after every instruction cycle, providing significant advantages in maximizing processing speed for real-time signal processing.

Stack

The SPI contains a 4-level program stack for efficient program usage and interrupt handling.

Interrupt

The SPI supports a single-level interrupt. Upon sensing a high level on the INT terminal, a subroutine call to location 100H is executed. The EI bit of the status register automatically resets to 0, disabling the interrupt facility until it is reenabled under program control.

Input/Output

General

The NEC SPI has three communication ports, as shown in figure 1: two serial and one 8-bit parallel, each with its own control lines for interface handshaking. Parallel port operation is software-configurable to be in either polled mode or DMA mode. A general purpose 2-line output port rounds out a full complement of interface capability.

Serial I/O

The two shift registers (SI, SO) are software-configurable to single or double byte transfers. The shift registers are externally clocked (SCK) to provide a simple interface between the SPI and serial peripherals such as A/D and D/A converters, codecs, or other SPIs. Figure 2 shows serial I/O timing

Figure 1. μPD7720A/μPD7720 Communication Ports

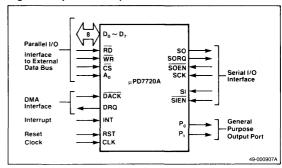
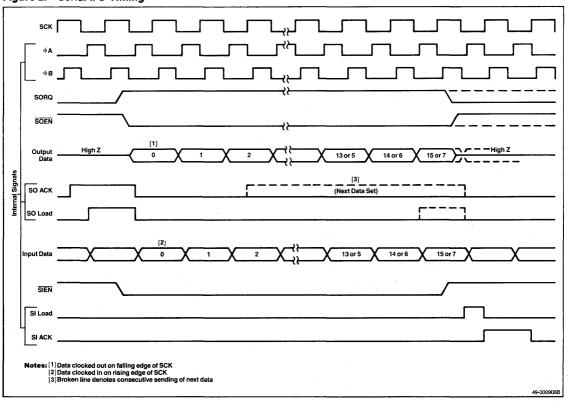



Figure 2. Serial I/O Timing

Parallel I/O

The 8-bit parallel I/O port may be used for transferring data or reading the SPI's status, as shown in table 2. Data transfer is handled through a 16-bit data register (DR) that is software-configurable for double or single byte data transfers. The port is ideally suited for operating with 8080, 8085, and 8086 processor buses and may be used with other processors and computer systems.

Table 2. Parallel R/W Operation

CS	A ₀	WR	RD	Operation
1 X	X	X 1	X 1}	No effect on internal operation. D ₀ -D ₇ are at high impedance levels.
0	0	0	1	Data from D ₀ -D ₇ is latched to DR (Note 1)
0	0	1	0	Contents of DR are output to D ₀ -D ₇ (Note 1)
0	1	0	1	Illegal (SR is read only)
0	1	1	0	Eight MSBs of SR are output to D ₀ -D ₇
0	Х	0	0	Illegal (May not read and write simultaneously)

Note:

(1) Eight MSBs or 8 LSBs of data register (DR) are used, depending on DR status bit (DRS). The condition of $\overline{DACK} = 0$ is equivalent to $A_0 = CS = 0$.

DMA Mode Option

Parallel data transfers may be controlled (optionally) via DMA control lines DRQ and DACK. DMA mode allows high speed transfers and reduced processor overhead. When in DMA mode, DACK input resets DRQ output when data transfer is completed. DACK does not affect any status register bit or flag bit.

Status Register

The status register, shown in figure 3, is a 16-bit register in which the eight most significant bits may be read by the system's microprocessor for the latest parallel data I/O status. The RQM and DRS bits can only be affected by parallel data moves. The other bits can be written to (or read) by the SPI's load immediate (LDI) or move (MOV) instructions. The EI bit is automatically reset when an interrupt is serviced.

Figure 3. Status Register (SR)

MSB															LS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1_	0
RQM	USF1	USF0	DRS	ОМА	DRC	SOC	SIC	FI	n	0	0	0	n	P1	P

Table 3. Status Register Flags

Flag	Description
RQM (Request for Master)	A read or write from DR to IDB sets RQM = 1. An external read (write) resets RQM = 0.
USF1 and USF0 (User Flags 1 and 0)	General purpose flags which may be read by an external processor for user-defined signaling
DRS (DR Status)	For 16-bit DR transfers (DRC = 0). DRS = 1 after first 8 bits have been transferred. DRS = 0 after all 16 bits have been transferred.
DMA (DMA Enable)	DMA = 0 (Non-DMA transfer mode) DMA = 1 (DMA transfer mode)
DRC (DR control)	DRC = 0 (16-bit mode) DRC = 1 (8-bit mode)
SOC (SO Control)	SOC = 0 (16-bit mode) SOC = 1 (8-bit mode)
SIC (SI Control)	SIC = 0 (16-bit mode) SIC = 1 (8-bit mode)
El (Enable Interrupt)	EI = 0 (interrupts disabled) EI = 1 (interrupts enabled)
P1, P0 (Ports 0 and 1)	PO and P1 directly control the state of output pins P ₀ and P ₁

Instructions

The SPI has three types of instructions. Each of the three types take the form of a 23-bit word, and each executes in 250 ns.

Instruction Timing

To control the execution of instructions, the external 8 MHz clock is divided into four phases for internal execution. The various elements of the 23-bit instruction word are executed in a set order. Multiplication automatically begins first. Also, data moves from source to destination before other elements of the instruction. Data being moved on the internal data bus (IDB) is available for use in ALU operations (if P-select field of the instruction specifies IDB). However, if the accumulator specified in the ASL field is also specified as the destination of the data move, the ALU operation becomes a NOP, as the data move supersedes the ALU operation.

Pointer modifications occur at the end of the instruction cycle — after their values have been used for data moves. The result of multiplication is available at the end of the instruction cycle for possible use in the next instruction. If a return is specified as part of an OP instruction, it is executed last.

An assembly language 'OP' instruction may consist of what looks like one to six lines of assembly code, but all of these lines are assembled together into one 23-bit instruction word. Therefore, the order of the six lines makes no difference in the order of execution described above. However, for understanding the SPI's operation and to eliminate confusion, write assembly code in the order described; that is: data move, ALU operations, data pointer modifications, then return.

OP/RT Instruction Field Specification

Figure 4 illustrates the OP/RT instruction field specification. There are two instructions of this type, both of which are capable of executing all ALU functions listed in table 5. The ALU functions operate on the value specified by the P-select field (see table 4).

Besides the arithmetic functions, these instructions can also (1) modify the RAM data pointer DP, (2) modify the data ROM pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register (the possible source and destination registers are listed in tables 10 and 11, respectively). The difference in the two instructions of this type is that RT executes a subroutine or interrupt return at the end of the instruction cycle, but the OP does not. Tables 6, 7, 8, and 9 show the ASL, DPL, DPH and RPDCR fields, respectively.

Figure 4. OP/RT Instruction Field

	22	21	20 19	18 17 16 15	14	13 12	11 10 .9	8 -R-	7654	3 2 1 0
ОР	0	0	P- Select	ALU	A S L	DP∟	DP _H -M	PDC	SRC	DST
RT	0	1				49-000910A				

Table 4. P-Select Field

Mnemonic	D ₂₀	D ₁₉	ALU Input		
RAM	0	0	RAM		
IDB	0	1	Internal Data Bus (Note 1)		
М	1	0	M Register		
N	1	1	N Register		

Note:

(1) Any value on the on-chip data bus. Value may be selected from any of the registers listed in table 6 source register selections.

Table 5. ALU Field

Mnemonic	D ₁₈	D ₁₇	D ₁₆	D ₁₅	ALU Function	SA1 SB1	SAO SBO	CA CB	ZA ZB	OVA1 OVB1	OVAO OVBO
NOP	0	0	0 .	0	No operation		_		_	-	
OR	0	0	0	1	OR	Х	Δ	0	Δ	0	0
AND	0	0	1	0	AND	Х	Δ	0	Δ	0	0
XOR	0	0	1	1	Exclusive OR	Х	Δ	0	Δ	0	0
SUB	0	1	0	0	Subtract	Δ	Δ	Δ	Δ	Δ	Δ
ADD	0	1	0	1	ADD	Δ	Δ	Δ	Δ	Δ	Δ
SBB	0	1	1	0	Subtract with borrow	Δ	Δ	Δ	Δ	Δ	Δ
ADC	0	1	1	1	Add with carry	Δ	Δ	Δ	. Δ	Δ	Δ
DEC	1	0	0	0	Decrement ACC	Δ	Δ	Δ	Δ	Δ	Δ
INC	1	0	0	1	Increment ACC	Δ	Δ	Δ	Δ	Δ	Δ
CMP	1	0	1	0	Complement ACC (one's complement)	X	Δ	0	Δ	0	0
SHR1	1	0	1	1	1-Bit right shift	Х	Δ	Δ	Δ	0	0
SHL1	1	1	0	0	1-Bit left shift	X	Δ	Δ	Δ	0	0
SHL2	1	. 1	0	1	2-Bit left shift	Х	Δ	0	Δ	0	0
SHL4	1	1	1	0	4-Bit left shift	Х	Δ	0	Δ	0	0
XCHG	-1	1	1	1	8-Bit exchange	Х	Δ	0	Δ	0	0

Note:

- $\boldsymbol{\triangle}$ May be affected, depending on the results
- Previous status can be held
- 0 Reset
- x Indefinite

μPD7720A/77P20

Table 6. ASL Field

Mnemonic	D ₁₄	ACC Selection
ACCA	0	ACCA
ACCB	1	ACCB

Table 7. DPL Field

Mnemonic	D ₁₃	D ₁₂	Low DP Modify (DP ₃ -DP ₀)
DPNOP	0	0	No operation
DPINC	0	1	Increment DPL
DPDEC	1	0	Decrement DPL
DPCLR	1	1	Clear DPL

Table 8. DPH Field

Mnemonic	D ₁₁	D ₁₀	D ₉	High DP Modify
M0	0	0	0	Exclusive OR of DPH (DP ₆ -DP ₄) with
M1	0	0	1	the mask defined by the three bits (D ₁₁ -D ₉) of the DPH field
M2	0	1	0	
M3	0	1	1	-
M4	1	0	0	-
M5	1	0	1	_
M6	1	1	0	_
M7	1	1	1	-

Table 9. RPDCR Field

Mnemonic	D ₈	RP Operation
RPNOP	0	No operation
RPDEC	1	Decrement RP

Table 10. SRC Field

Mnemonic	07	D ₆	D ₅	D ₄	Source Register		
NON	0	0	0	0	No register		
A	0	0	0	1	ACCA (Accumulator A		
В	0	0	1	0	ACCB (Accumulator E		
TR	0	0	1	1	TR temporary register		
DP	0	1	0	0	DP data pointer		
RP	0	1 .	0	1	RP ROM pointer		
R0	0	1	1	0	RO ROM output data		
SGN	0	1	1	1	SGN sign register		

Table 10. SRC Field (cont)

Mnemonic	D ₇	D ₆	D ₅	D ₄	Source Register
DR	1	0	0	0	DR data register
DRNF	1	0	0 0 1 DR no flag (Note		DR no flag (Note 1)
SR	1	0	1 0 SR status registe		SR status register
SIM	1	0	1	1	SI serial in MSB (Note 2)
SIL	1	1	0	0	SI serial in LSB (Note 3)
K	1	1	0	1	K register
L	1	1	1	0	L register
MEM	1	1	1	1	RAM

Note:

- (1) DR to IDB, RQM not set. In DMA, DRQ not set.
- (2) First bit in goes to MSB, last bit to LSB.
- (3) First bit goes to LSB, last bit to MSB (bit reversed).

Table 11. DST Field

Mnemonic	03	D ₂	D ₁	D _O	Destination Register
@NON	0	.0	0	0	No register
@A	0	0	0	1	ACCA (Accumulator A)
@B	0	0	1	0	ACCB (Accumulator B)
@TR	0	0	1	1	TR temporary register
@DP	0	1	0	0	DP data pointer
@RP	0	1	0	1	RP ROM pointer
@DR	0	1	1	0	DR data register
@SR	0	1	1	1	SR status register
@S0L	1	0	0	0	S0 serial out LSB (Note 1)
@SOM	1	0	0	1	S0 serial out MSB (Note 2)
@K	1	0	1	0	K (Mult)
@KLR	1	0	1	1	IDB → K, ROM → L (Note 3)
@KLM	1	1	0	0	Hi RAM → K, IDB →L (Note 4)
@L	1	1	0	1	L (Mult)
@NON	1	1	1	0	No register
@MEM	1	1	1	1	RAM

Note:

- (1) LSB is first bit out.
- (2) MSB is first bit out.
- (3) Internal data bus to K, and ROM to L register.
- (4) Contents of RAM address specified by $DP_6 = 1$, is placed in K register, IDB is placed in L (that is, 1, DP_5 , DP_4 DP_3 - DP_0).

Jump/Call/Branch

Figure 5 shows the JP instruction field specification.

Three types of program counter modifications are accommodated by the processor and are listed in table 12. All the instructions, if unconditional or if the specified condition is true, take their next program execution address from the next address field (NA); otherwise PC = PC + 1.

Table 12. BRCH Field

D ₂₀	D ₁₉	D ₁₈	Branch Instruction
1	0	0	Unconditional jump
1	0	1	Subroutine call
0	1	0	Conditional jump

For the conditional jump instruction, the condition field specifies the jump condition. Table 13 lists all the instruction mnemonics of the jump/call/branch codes.

Load Data [LDI]

Figure 6 shows the LD instruction field specification.

The load data instruction will take the 16-bit value contained in the immediate data field (ID) and place it in the location specified by the destination field (DST) (see table 11).

Figure 5. JP Instruction Field Specification

	22 21	20 19 18	17 16 15 14 13	12 11 10 9 8 7 6 5 4	3210
JP	10	BRCH	CND	NA.	

Figure 6. LD Instruction Field Specification

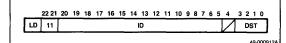


Table 13. BRCH/CND Fields

Mnemonic	D ₂₀	D ₁₉	D ₁₈	D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	Conditions (Note 1)
JMP	1	0	0	0	0	0	0	0	No condition
CALL	1	0	1	0	0	0	0	0	No condition
JNCA	0	1	0	0	0	0	0	0	CA = 0
JCA	0	1	0	0	0	0	0	1	CA = 1
JNCB	0	1	0	0	0	0	1	0	CB = 1
JCB	0	1	0	0	0	0	1	1	CB = 1
JNZA	0	1	0	0	0	1	0	0	ZA = 0
JZA	0	1	0	0	0	1	0	1	ZA = 1
JNZB	0	1	0	0	0	1	1	0	ZB = 0
JZB	0	1	0	0	0	1	1	1	ZB = 1
JNOVA0	0	1	0	0	1	0	0	0	0VA0 = 0
JOVA0	0	1.	0	0	1	0	0	1	0VA0 = 1
JNOVB0	0	1	0	0	1	0	1	0	0VB0 = 0
JOVB0	0	1	0	0	1	0	1	1	0VB0 = 1
JN0VA1	0	1	0	0	1	1	0	0	0VA1 = 0
J0VA1	0	1	0	0	1	1.	. 0	1	0VA1 = 1
JNOVB1	0	1	0	0	1	1	1	.0	0VB1 = 0
J0VB1	0	1	0	0	1	1	1	1	0VB1 = 1
JNSA0	0	1	0	1	0	0	0	0	SA0 = 0
JSA0	0	1	0	1	0	0	0	1	SA0 = 1
JNSB0	0	1	0	1	0	0	1	0	SB0 = 0
JSB0	0	1	0	1	0	0	1	1	SB0 = 1
JNSA1	0	1	0	1	0	1	0	0	SA1 = 0
JSA1	0	1	0	1	0	1	0	1	SA1 = 1
JNSB1	0	1	0	1	0	1	1 -	0	SB1 = 0
JSB1	0	1	0	1	0	1	1	1	SB1 = 1
JDPL0	0	1	0	1	1	0	0	0	DPL = 0
JDPLF	0	1	0	1	1	0	0	1	DPL = FH
JNSIAK	0	1	0	1	1	0	1	0	SI ACK = 0
JSIAK	0	1	0	1	1	0	1	1	SI ACK = 1
JNS0AK	0	1	0	1	1	1	0	0	SO ACK = 0
JS0AK	0	1	0	1	1	1	0	1	SO ACK = 1
JNRQM	0	1	0	1	1	1	1	0	RQM = 0
JRQM	0	1	0	1	1	1	1	1	RQM = 1

Note:

(1) BRCH or CND values not in this table are prohibited.

Absolute Maximum Ratings

Supply voltage, V _{CC} (7720A)	−0.5 to +7.0 V
Supply voltage, V _{CC} (77P20)	-0.3 to +7.0 V
Programming voltage, V _{PP} (77P20 only)	-0.3 to +22 V
Input voltage, V _I (7720A)	−0.5 to +7.0 V
Input voltage, V _I (77P20)	−0.3 to +7.0 V
Output voltage, V ₀ (7720A)	−0.5 to +7.0 V
Output voltage, V ₀ (77P20)	−0.3 V to +7.0 V
Operating temperature, T _{OPT}	-10°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_{\mbox{\scriptsize A}} = -10\,\mbox{°C}$ to +70 °C, $V_{\mbox{\scriptsize CC}} = +5$ V $\pm 5\%$

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	
Input low voltage	V _{IL}	-0.5		8.0	٧	
Input high voltage	V _{IH}	2.0		$V_{CC} + 0.5$	٧	
CLK low voltage	$V_{m{\phi}}$ L	-0.5		0.45	٧	
CLK high voltage	$V_{\phi H}$	3.5		$V_{CC} + 0.5$	٧	
Output low voltage	V _{OL}			0.45	٧	$l_{OL} = 2.0 \text{ mA}$
Output high voltage	V _{OH}	2.4			٧	$I_{OH} = -400 \mu\text{A}$
Input load current	fLIL			10	μΑ	V _{IN} = 0 V
Input load current	llih			10	μΑ	$V_{IN} = V_{CC}$
Output float leakage	LOL			10	μΑ	$V_{OUT} = 0.47 \text{ V}$
Output float leakage	ILOH			10	μΑ	$v_{\text{OUT}} = v_{\text{CC}}$
Power supply current (7720A)	Icc	-	120	170	mΑ	
Power supply current (77P20)	Icc		270	350	mΑ	-
V _{PP} current (77P20 only)	Ірр			70	mA	Program mode max pulse current (Note 1)
		0.5		3.0	mΑ	Program verify, inhibit (Note 2)

Note:

(2) For K-level parts, V_{PP} max = $(V_{CC} - 0.6 \text{ V}) + 0.25 \text{ V}$ V_{PP} min = $(V_{CC} - 0.6 \text{ V}) - 0.25 \text{ V}$ For all other step levels: V_{PP} max = $V_{CC} + 0.25 \text{ V}$ V_{PP} min = $V_{CC} - 0.85 \text{ V}$

Capacitance

		Lin	nits		Test Conditions
Parameter	Symbol	Min	Max	Unit	
CLK, SCK capacitance	C φ		20	pF	f _c = 1 MHz
Input pin capacitance	C _{IN}		10	pF	
Output pin capacitance	C _{OUT}		20	pF	

AC Characteristics

 $T_{\mbox{\scriptsize A}} = -10\,\mbox{°C}$ to +70°C, $V_{\mbox{\scriptsize CC}} = +5$ V $\pm 5\%$

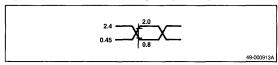
Limits Test							
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
CLK cycle time µPD7720A	Ф СҮ	120		2000	ns	(Note 1)	
CLK cycle time µPD77P20	ФСҮ	122		2000	ns	(Note 1)	
CLK pulse width	φ D	60			ns	(Note 4)	
CLK rise time	Φ R			10	ns	(Note 1)	
CLK fall time	Φ F			10	ns	(Note 1)	
Address setup time for RD	t _{AR}	0			ns		
Address hold time for RD	t _{RA}	0	-		ns		
RD pulse width	t _{RR}	250			ns		
Data delay from RD	t _{RD}			150	ns	$C_L = 100 \text{ pF}$	
Read to data floating	t _{DF}	10		100	ns	$C_L = 100 pF$	
Address setup time for WR	t _{AW}	0			ns		
Address <u>hold</u> time for WR	twA	0			ns		
WR pulse width	t _{WW}	250			ns		
Data setup time for WR	t _{DW}	150			ns		
Data hold time for WR	t _{WD}	0			ns		
RD, WR, recovery time	t _{RV}	250			ns	(Note 2)	
DRQ delay	t _{AM}			150	ns		
DACK delay time	tDACK	1			φD	(Note 2)	
DACK pulse width	t _{DD}	250		2000	ns	μP7720A	
		250		50000	ns	μPD77P20	
SCK cycle time	tscy	480		DC	ns		
SCK pulse width	t _{SCK}	230			ns		
SCK rise/fall time	t _{RSC} /t _{FSC}			20	ns		
SORQ delay	t _{DRQ}	30		150	ns	$C_L = 100 \text{ pF}$	
SOEN setup time	t _{SOC}	50			ns	······································	
SOEN hold time	t _{CSO}	30			ns		

⁽¹⁾ $V_{PP} = 21 \pm 0.5 \text{ V}$

AC Characteristics (cont) $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V ±5%

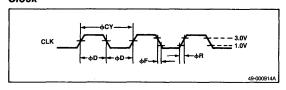
Parameter	Symbol	Limits				Test
		Min	Тур	Max	Unit	Conditions
SO delay from SCK = low	t _{DCK}			150	ns	
SO delay from SCK before 1st bit (Note 3)	t _{DZRQ}	20		300	ns	(Note 2)
SO delay from SCK	t _{DZSC}	20		300	ns	(Note 2)
SO delay for SOEN	t _{DZE}	20		180	ns	(Note 2)
SOEN to SO floating	t _{HZE}	20		200	ns	(Note 2)
SCK to SO floating with SORQ high	t _{HZSC}	20		300	ns	(Note 2)
SO delay from SCK for last bit	t _{HZRQ}	70		300	ns	(Note 2)
SIEN, SI setup time	t _{DC}	55			ns	(Note 2)
SIEN, SI hold time	t _{CD}	30			ns	
P ₀ , P ₁ delay	t _{DP}			ΦCY +150	ns	
RST pulse width	t _{RST}	4			 p CY	
INT pulse width	t _{INT}	8		-	ФСҮ	

Notes:


- (1) Voltage at timing measuring point: 1.0 V and 3.0 V.
- (2) Voltage at AC timing measuring point:

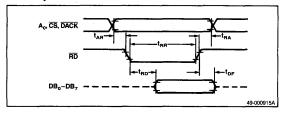
$$V_{IL} = V_{OL} = 0.8 \text{ V}$$

 $V_{IH} = V_{OH} = 2.0 \text{ V}$

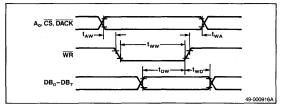

- (3) SO goes out of tristate, but data is not valid yet.
- (4) Pulse width includes CLK rise and fall times. Refer to Clock Timing Waveform.

Timing Waveforms

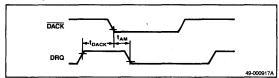
Input Waveform of AC Test (except CLK)

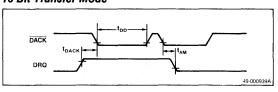


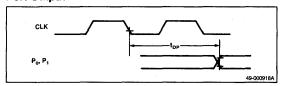
Clock

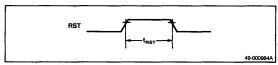


Timing Waveforms (cont)

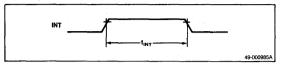

Read Operation


Write Operation


DMA Operation


16 Bit Transfer Mode

Port Output


Reset

Timing Waveforms (cont)

Interrupt

Serial Timing

Figure 7 shows serial output timing when SOEN is asserted in response to SORQ when SCK is low. If SOEN is held inactive until after SORQ is asserted, and then SOEN is asserted while SCK is low (SOEN should be held inactive until the period of t_{CSO}, after the falling edge of SCK), SO will become active but not valid t_{DZSC} after the next rising edge of SCK. SO will become valid with the first bit tDCK after the next falling edge of SCK, for use by an external device at the subsequent rising edge of SCK. Subsequent bits will be shifted out t_{DCK} after subsequent falling edges of SCK, for use at subsequent rising edges of SCK. The last bit to be shifted out will also follow this pattern, and will be held valid t_{HZRO} after the corresponding rising edge of SCK at which it is to be used. SORQ will be held took after this same rising edge of SCK, then removed. SOEN should be released at least t_{SOC} before the next falling edge of SCK.

Figure 8 shows timing for serial output when \$\overline{SOEN}\$ is asserted in response to SORQ when SCK is high. If \$\overline{SOEN}\$ is held inactive until after SORQ is asserted, and then \$\overline{SOEN}\$ is asserted while SCK is high (at least \$t_{SOC}\$ before the falling edge of SCK), SO will become active but not valid \$t_{DZE}\$ after the falling edge of \$\overline{SOEN}\$. SO will become valid \$t_{DCK}\$ after the falling edge of SCK, for use by an external device at the subsequent rising edge of SCK. Note that, although figure 8 shows \$\overline{SOEN}\$ being asserted during a different SCK pulse than the one in which SORQ is asserted, it is permissible for these to occur during the same pulse of SCK, as long as \$\overline{SOEN}\$ is still asserted \$t_{SOC}\$ before the falling edge of SCK. The timing for the second through the last bits is identical to the timing shown in figure 7.

Figure 9 shows output timing when SOEN is active before SORQ is high. If SOEN is held active before SORQ is high, data will be shifted out whenever it

becomes available in the serial output register (assuming previous data is already shifted out). In this case, SORQ will rise t_{DRQ} after a rising edge of SCK. SO will become active (but not valid yet) t_{DZRQ} after the same rising edge of SCK. The first valid SO bit occur t_{DCK} after the next falling edge of SCK, for use by an external device at the subsequent rising edge of SCK. Subsequent bits will be shifted out t_{DCK} after subsequent falling edges of SCK, for use at subsequent rising edges of SCK. The last bit to be shifted out will also follow this pattern, and will be held valid t_{HZRQ} after the corresponding rising edge of SCK at which it is to be used. SORQ will be held t_{DRQ} after this same rising edge of SCK, then removed.

Avoid releasing \overline{SOEN} in the middle of a transfer (that is, before the last bit is shifted out), since this will stop the output shift operation, and, when \overline{SOEN} is again asserted, the remainder of the transfer will be shifted out before the next transfer can begin. The next transfer will begin immediately without any indication of the byte/word boundary. If \overline{SOEN} is released while SCK is high, as shown in figure 10, at least t_{SOC} before the falling edge of SCK, then SO will go inactive t_{HZE} after \overline{SOEN} is released (which may be before or after the falling edge of SCK).

If SOEN is released while SCK is low, as in figure 11, at least t_{CSO} after the falling edge of SCK, then the next bit will be shifted out t_{DCK} after the falling edge of SCK, for use at the subsequent rising edge of SCK. SO will then go inactive t_{HZSC} after this rising edge of SCK.

Note.

For all its uses, $\overline{\text{SOEN}}$ must not change state within t_{SOC} before or t_{CSO} after the falling edge of SCK; otherwise, the results will be indeterminate.

Serial input timing, shown in figure 12, is much simpler than serial output timing. Data bits are shifted in on the rising edge of SCK if \overline{SIEN} is asserted. Both \overline{SIEN} and SI must be stable at least t_{DC} before and t_{CD} after the rising edge of SCK; otherwise the results will be indeterminate.

Figure 13 shows serial timing of cascaded SPIs with a common SCK. SO from the first SPI equals SI of the second, and the first SPI's SORQ inverts to become SIEN of the second. SOEN of the first SPI is always asserted.

Figure 7. Serial Output Case #1: SOEN Asserted in Response to SORQ when SCK is Low

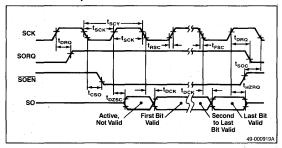


Figure 8. Serial Output Case #2: SOEN Asserted in Response to SORQ when SCK is High

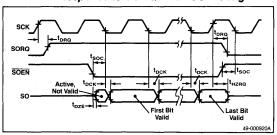


Figure 9. Serial Output Case #3: SOEN Active before SORQ is High

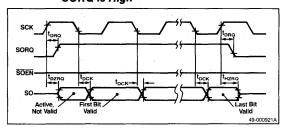


Figure 10. Serial Output Case #4A: If SOEN is Released in the Middle of a Transfer During SCK High

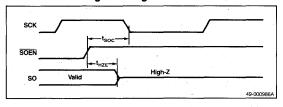


Figure 11. Serial Output Case #4B: If SOEN is Released in the Middle of a Transfer During SCK Low.

Figure 12. Serial Input

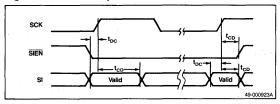
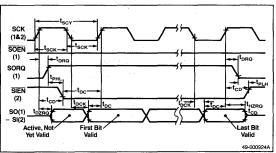



Figure 13. Serial Timing Example

When cascading two SPIs in the described configuration, most of the timing involved is directly copied from the case of serial output with SOEN always enabled (figure 13). It must be shown that the results will be suitable for the serial input timing of the second SPI.

(1) SORQ (1) rises t_{DRQ} after a rising edge of SCK, and it is inverted (inverter has t_{PHL} delay time) to become SIEN (2), which must be stable t_{DC} before the next rising edge of SCK. It also must not change until t_{CD} after this first rising edge of SCK, as shown by case 2 in figure 8.

```
\begin{split} t_{DRQ}(\text{max}) + t_{PHL} + t_{DC}(\text{min}) &\leq t_{SCY}(\text{min}) \\ t_{PHL}(\text{max}) &\leq t_{SCY}(\text{min}) - t_{DC}(\text{min}) - t_{DRQ}(\text{max}) \\ &\leq 480 - 55 - 150 \\ &\leq 275 \text{ nsec} - \text{readily achieved by 74LS14,} \\ &\qquad \qquad \text{for example} \end{split}
```

(2) SORQ (1) is released t_{DRQ} after the last useful rising edge of SCK, and is inverted (inverter has t_{PHL} delay time) to become SIEN (2), which must remain stable t_{CD} after the rising edge of SCK.

$$\begin{split} t_{DRQ}(\text{min}) + t_{PLH}(\text{min}) &\geq t_{CD}(\text{min}) \\ t_{PLH}(\text{min}) &\geq t_{CD}(\text{min}) - t_{DRQ}(\text{min}) \\ &\geq 30 - 30 \\ &\geq 0 - \text{no problem, assuming} \\ &\text{causality} \end{split}$$

Note:

This also shows $t_{PHL}(min) \ge 0$ for the rising edge of SORQ.

(3) SO (1) is valid t_{DCK} after a falling edge of SCK; since it becomes SI (2), it must be valid t_{DC} before the next rising edge of SCK.

$$t_{DCK}(max) + t_{DC}(min) \le t_{SCK}(min)$$

150 + 55 \le 230
205 \le 230—this condition is satisfied

(4) SO (1) remains valid t_{HZRQ} after the last useful rising edge of SCK; since it becomes SI (2), it must remain valid t_{CD} after this rising edge of SCK.

$$t_{HZRQ}(min) \ge t_{CD}(min)$$

 $70 \ge 30$ —this condition is satisfied

Note:

The above calculations may need to be adjusted for rise and fall times, since t_{SCY} and t_{SCK} are measured for midpoints of wave slopes.

μPD77P20 UV Erasable EPROM Version

Function

The μ PD77P20 operates from a single +5 V power supply and can accordingly be used in any μ PD7720A masked ROM application.

Use of Evakit-7720

The following sections describe electrical conditions that are required for programming the μ PD77P20. However, the Evakit-7720, NEC's hardware emulator development tool for the μ PD7720A/ μ PD77P20, meets the electrical and timing specifications presented below. When the Evakit-7720 is used for programming μ PD77P20, all data transfers and formatting are handled automatically by Evakit's monitor program. Please refer to the Evakit-7720(B) User's Manual for programing procedures.

The information presented below in the sections on Configuration, Operation, and Programming (and the various subsections) is required only for users who do NOT intend to use an Evakit to program the μ PD77P20.

Configuration

Data transfer for programming and reading the internal ROM is partitioned into three bytes for each 23-bit wide instruction location and into two bytes for each 13-bit wide data location. Partitioning of data transfer into and out of the data port is shown in figure 14.

Instruction ROM

The instruction ROM data is transferred through the data port as a high byte, middle byte, and low byte as shown in figure 15. Bit 7 of the middle byte should be assigned a value of zero. Data is presented to the data port in a bit-reversed format. The LSB through the MSB of an instruction ROM byte is applied to the MSB through the LSB of the data port, respectively.

Data ROM

Figure 16 shows the data ROM format. The data ROM data is transferred through the data port as a low byte and a high byte as shown in figure 17. Bits 0, 1, and 2 of the low byte should be assigned a value of zero. Data is presented to the data port in corresponding order. The MSB through the LSB of a data ROM byte is applied to the MSB through the LSB of the data port, respectively.

Initially and after each erasure, all bits of the μ PD77P20 are in the zero state.

Figure 14. Instruction ROM Format

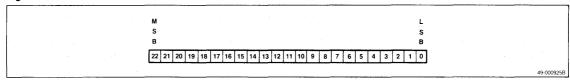


Figure 15. Transfer of Instruction ROM Data

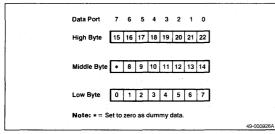


Figure 16. Data ROM Format

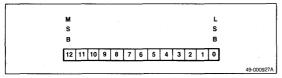
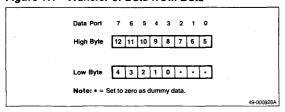



Figure 17. Transfer of Data ROM Data

Operating Modes

In order to read or write the instruction or data ROMs, the mode of operation of the μ PD77P20 must be initially set. At the RST trailing edge, the \overline{RD} , \overline{WR} , and \overline{CS} should be logical zero and the \overline{DACK} , A_0 , and SI signals should be set to determine the mode of operation accordingly, as set out in table 14.

Table 14. μPD77P20 Operation Mode

	•		•
DACK	A _O	SI	
0	0	0	Write mode instruction and data ROM
0	0	1	Read the instruction ROM
0	1	0	Read the data ROM

Once set, the μ PD77P20 will remain in the selected mode. A reset is required to transfer to another mode.

Write Mode

The individual instruction ROM and data ROM bytes are specified by control signals \overline{RD} , A_0 , SI, and INT as set out in table 15. Before writing the EPROM location, the bytes should be loaded accordingly.

Table 15. Write Mode Specification of ROM bytes

RD	A ₀	SI	INT	
1	0	0	1	Write instruction byte, high
1	0	1	0	Write instruction byte, middle
1	0	1	1	Write instruction byte, low
1	1	0	0	Write data byte, low
1	1	0	1 -	Write data byte, high

Read Mode

The instruction ROM and data ROM bytes are specified by the control signals \overline{RD} , A_0 , SI, and INT as set out in table 16. Reading is accomplished by setting the control signals accordingly.

Table 16. Read Mode Specification of ROM Bytes

RD	AO	SI	INT	
0	0	0	1	Read instruction byte, high
0	0	1	0	Read instruction byte, middle
0	0	1	1	Read instruction byte, low
1	0	0	0	Read data byte, high and low

The instruction ROM and data ROM are addressed by the 9-bit program counter and the 9-bit ROM pointer respectively. The PC is reset to 000H and is automatically incremented to the end address 1FFH. The RP is reset to 1FFH and is automatically decremented to 000H.

Erasing

Programming can only occur when all data bits are in an erased or low (0) level state. Erase μ PD77P20 programmed data by exposing it to light with wavelengths shorter than approximately 4,000 angstroms. Note that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD77P20. Consequently, if the μ PD77P20 will be exposed to these types of lighting conditions for long periods of time, mask its window to prevent unintentional erasure.

The recommended erasure procedure for the μ PD77P20 is exposure to ultraviolet light with wavelengths of 2,537 angstroms. The integrated dose (i.e., UV intensity x exposure time) for erasure should not be less than 15 W-sec/cm². The erasure time is approximately 20 minutes using an ultraviolet lamp with a power rating of 12,000 μ W/cm².

During erasure, place the μ PD77P20 within one inch of the lamp tubes. If the lamp tubes have filters, remove the filters before erasure.

Programming

Programming of the µPD77P20 is achieved with a single 50 ms TTL pulse. Total programming time for the 11,776 bits of instruction EPROM and also for the 6,630 bits of data EPROM is 26 seconds. Data is entered by programming a high (1) level in the chosen bit locations. Both instruction ROM and data ROM should be programmed since they cannot be erased independently. Both instruction ROM and data ROM programming modes are entered in the same manner. The device must be reset initially before it can be placed into the programming mode. After being reset, the WR signal and all other inputs (RD, CS/PROG, DACK, A₀, SI, and INT) should be a TTL low (0) signal t_{RS} prior to the falling edge of RST. WR is then held for t_{RH} before being set to a TTL high (1) level signal. The device is now in a programming mode and will stay in this mode, allowing ROM locations to be sequentially programmed.

Programming Mode—Instruction ROM. Instruction ROM locations are sequentially programmed from address 000H to address 1FFH. The location address is incremented by the application of CLK for a duration of t_{CV} . Data bytes for each location as specified by control signals \overline{RD} , A_0 , SI, and INT (table 15) are clocked into the device by the falling edge of \overline{RD} . After the three bytes have been loaded into the device, V_{PP} is raised to 21 V ± 0.5 V, t_{VS} prior to $\overline{CS}/PROG$ transitioning to a TTL high (1) level signal. V_{PP} is held for the duration of t_{PRPR} plus t_{PRV} before returning to the V_{CC} level. After t_{PRCL} the instruction ROM address can be incremented to program the next location. Figure 18 shows the programming mode of instruction ROM timing.

Programming Mode—**Data ROM.** Data ROM locations are sequentially programmed from address 1FFH to address 000H. The location address is decremented by the application of CLK for t_{CY} . The data bytes for each location as specified by control signals \overline{RD} , A_0 , SI, and INT are clocked into the device by the falling edge of \overline{RD} . After the two bytes have been loaded into the device, V_{PP} is raised to 21 V ± 0.5 V, t_{VPR} prior to $\overline{CS}/PROG$ transitioning to a TTL high (1) level signal. V_{PP} is held for the duration of t_{PRPR} plus t_{PRV} before returning to the V_{CC} level. After t_{PRCL} the data ROM address can be decremented to program the next location. Figure 19 shows programming mode of data ROM timing.

Read Mode. A read should be performed to verify that the data was programmed correctly. Prior to entering read mode the device must be reset.

Figure 18. Programming Mode of Instruction ROM

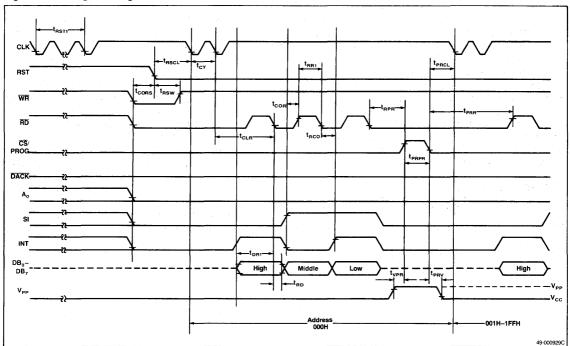
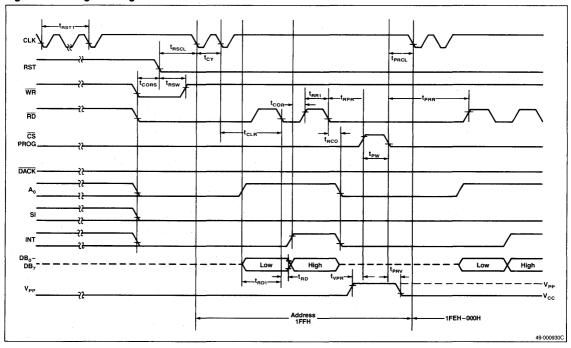



Figure 19. Programming Mode of Data ROM

Read Mode—Instruction ROM. This mode is entered by holding the \overline{WR} signal at a TTL low (0) level with the SI signal at a TTL high (1) level and all other specified inputs (\overline{RD} , $\overline{CS}/PROG$, \overline{DACK} , A_0 , INT) at TTL low (0) levels for t_{CORS} prior to the falling edge of RST. \overline{WR} is then held for t_{RSW} before being set to a TTL high (1) level. The device is now in the instruction ROM read mode and will stay in this mode until reset. Instruction ROM locations are sequentially read from address 000H through 1FFH. Application of CLK for t_{CY} will increment the location address. The three data bytes will be read as specified by the control signals \overline{RD} , A_0 , SI and INT (table 16). Figure 20 shows read mode of instruction ROM timing.

uPD77P20 Mode Selection

Mode	CS/PROG	V _{PP}	V _{CC}	Outputs
Instruction ROM program	V _{IH}	V _{PP}	+5 V	D _{IN}
Data ROM program	V _{IH}	V _{PP}	+5 V	D _{IN}
Instruction ROM read	VIL	V _{CC}	+5 V	D _{OUT}
Data ROM read	V _{IL}	V _{CC}	+5 V	D _{OUT} ,
operation	VIH	V _{CC}	+5 V	D _{IN} , High Z

Read Mode—Data ROM. Figure 21 shows read mode of data ROM timing. This mode is entered by holding the $\overline{\text{WR}}$ signal at a TTL low (0) level with the A₀ signal at a TTL high (1) level and all other specified inputs (RD, CS/PROG, DACK, SI, INT) at TTL low (0) levels for t_{COBS} prior to the falling edge of RST. WR and A₀ are then held for t_{RSW} prior to the falling edge of RST. WR and Ao are then held for tRSW before being set to a TTL high (1) level and TTL low (0) level, respectively. The device is now in the data ROM read mode and will stay in this mode until it is reset. Data ROM locations are sequentially read from address 1FFH through 000H. Application of CLK for t_{CY} will decrement the location address. After decrementing the location address, the low byte of the current location will be available at the data port subsequent to a t_{CLD} delay. Application of RD will present the high byte t_{BD1} from the falling edge of the RD pulse. RD is then applied for type to complete reading of the current location.

Figure 20. Read Mode of Instruction ROM

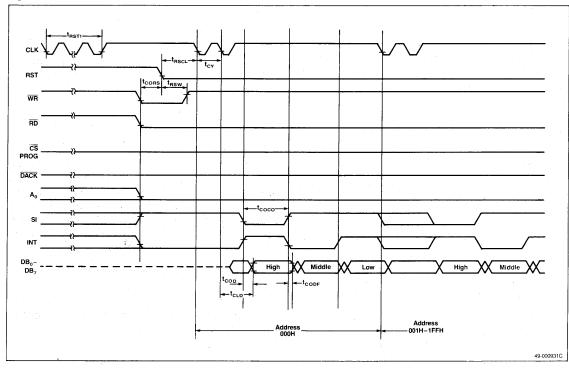
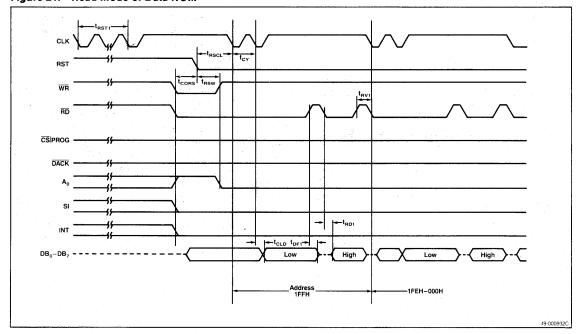



Figure 21. Read Mode of Data ROM

Programming Operation, AC Characteristics

 $T_A = 25 \,^{\circ}\text{C} + 5 \,^{\circ}\text{C}, V_{CC} = 5 \,^{\circ}\text{V} \pm 5\%, V_{PP} = 21 \,^{\circ}\text{V} \pm 0.5 \,^{\circ}\text{V}$

		ļ	Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CLK cycle time	t _{CY}	240			ns	:
CLK setup time to RD↓	tCLR	2			μS	
CLK hold time From RST↓	trscl	6			μS	
CLK hold time from PROG↓	tPRCL	200			ns	
Control signal set-up time to RST↓	t _{CORS}	1			μS	
WR hold time from RST↓	t _{RSW}	6		-	μS	
Data <u>set</u> -up time from RD↓	t _{DRIO}	.1			μS	
Data hold time from RD↓	t _{RD}	100			ns	
RD pulse width	t _{RR1}	1			μS	
SI, INT set-up time from RD1	t _{COR}	100			ns	
SI, INT hold time from RD↓	t _{RCO}	100			ns	
RD set-up time To PROG1	t _{RPR}	100			ns	
RD hold time from PROG↓	t _{PRR}	2			μS	
V _{PP} set-up time To PROG1	t _{VPR}	2			μS	
V _{PP} hold time from PROG↓	t _{PRV}	2			μS	
RST pulse width	t _{RST1}	4			t _{CY}	
RST setup time	t _{RS}	1			μS	
PROG pulse width	tprpr	45	50	55	ms	

Read Operation, AC Characteristics

 T_A = 25 °C +5 °C; V_{CC} = 5 V ±5%; V_{PP} = V_{CC} + 0.25 V max V_{PP} = V_{CC} – 0.85 V min

			imits			Test
Parameter	Symbol	Min	Тур	Typ Max		Conditions
Data access time from CLK	[†] CLD			1	μS	
Data delay time from SI, IN1	t _{COD}			1	μS	
Data float time from SI, IN	t _{CODF}	0 .		-	ns	
SI, INT pulse width	tcoco	1			μS	
RD recovery time	t _{RV1}	500			ns	

Read Operation, AC Characteristics (cont)

 $\rm T_A = 25\,^{\circ}C + 5\,^{\circ}C; \, V_{CC} = 5$ V $\pm 5\%; \, V_{PP} = V_{CC} + 0.25$ V max $\rm V_{PP} = V_{CC} - 0.85$ V min

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Data access time From RD↓	t _{RD1}			150	ns	
Data float time from RD1	t _{DF1}	10			ns	

Operation Mode

The μ PD77P20 may be utilized in an operation mode after the instruction ROM and data ROM have been programmed. Since it was first introduced in 1982, the μ PD77P20 has undergone several mask revisions to improve manufacturability and/or function. And since the purpose of the μ PD77P20 is to run any program that may be programmed in the masked ROM μ PD7720A, it is important to know how to determine the step level, and the differences between them.

Date Code

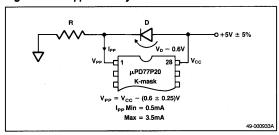
The markings on the μ PD77P20 package consist of three lines, as follows:

NEC JAPAN ← Manufacturer
D77P20D ← Part number
nnnnXnnnn ← Date code

The letter in the middle (e.g. 'X') of the date code identifies the step level of the part. Parts marked with step level K, E, or P should not be used for final system test by customers who are planning to submit code for the masked ROM µPD7720A.

On all other μ PD77P20 stepping versions, a slight functional change was made, and the change is incorporated in the μ PD7720A. The change allows the serial clock (SCK) to run asynchronously with CLK. Specified versions of μ PD77P20 (i.e. K, E, P) and all Evakit-7720s and Evakit-7720Bs (Evaluation Systems for μ PD77P20A/ μ PD77P20) require that SCK run synchronously with CLK.

Because this functional change results in a slight change in internal serial timing, it is mandatory that code to be submitted for μ PD7720A be verified in customer's system using versions of μ PD77P20 other than those listed above (i.e. K, E, & P).



Pin 1 Connection

The K mask version requires that the programming voltage V_{PP} be supplied in a different manner than for all later versions, as shown in Figure 22. A silicon junction diode of 0.6 V forward voltage (V_F) should be used. R should be 800 to 1.8K Ω to satisfy the V_{PP} and I_{PP} requirements.

In all mask versions other than K, pin 1 must be connected directly to $V_{\rm CC}$.

Figure 22. VPP Circuitry for K Mask Version

μ PD7720A and μ PD77P20 Development Tools

For software development, assembly into object code, and debugging, an absolute assembler and simulator are available. The ASM77 Absolute Assembler and SIM77 Simulator for analyzing development code and I/O timing characteristics are available for systems supporting CP/M® and CP/M-86® (1), ISIS-II® (2), or MS-DOS® (3) operating systems. Additionally, the ASM77 Absolute Assembler is offered in Fortran source code for mini and main frame computer systems.

Once software development is complete, the code can be completely evaluated and debugged in hardware with the Evakit-7720 Evaluation System. The Evakit provides true in-circuit real-time emulation of the SPI for debugging and demonstrating your final system design. Code may be down-loaded to the Evakit from a development system via an RS232 port using the EVA communications program. This program is available in executable form for ISIS-II systems and many CP/M, CP/M-86, and MS-DOS systems. The EVA communications source code is also available for adapting the program to other systems.

The Evakit also serves to program the μ PD77P20, a full-speed EPROM version of the SPI. A demonstration mask ROM chip, containing some common digital filtering routines, including N-stage IIR (biquadratic) and FIR (transversal filters), is available to test hardware interfaces to the SPI.

Further operational details of the SPI can be found in the μ PD7720A Signal Processing Interface Technical Manual. Operation of the SPI development tools is described in the Absolute Assembler User Manual, the Simulator Operating Manual, and the Evakit-7720 User's Manual.

Note:

- CP/M and CP/M-86 are registered trademarks of Digital Research Corp.
- (2) ISIS-II is a registered trademark of Intel Corp.
- (3) MS-DOS is a registered trademark of Microsoft Corp.

System Configuration

Figures 23, 24, 25 and 26 show typical system applications for the μ PD7720A and μ PD77P20.

Figure 23. Spectrum Analysis System

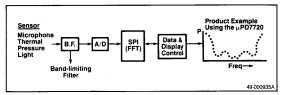


Figure 24. An Analog-to-Analog Digital Processing System Using a Single SPI

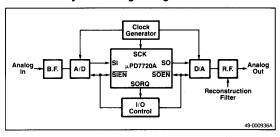


Figure 25. A Signal Processing System Using Cascaded SPIs & Serial Communication

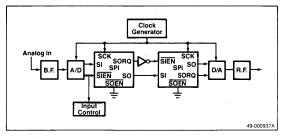
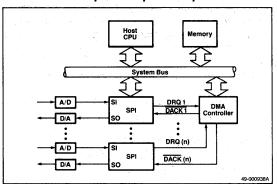



Figure 26. A Signal Processing System Using SPIs as a Complex Computer Peripheral

PRELIMINARY INFORMATION

Description

The μ PD77C20 signal processsing interface (SPI) chip is a CMOS pin-for-pin compatible version of the existing μ PD7720. This advanced architecture microcomputer, optimized for signal processing algorithms, is functionally the same as the NMOS μ PD7720, but with CMOS technology. Its power requirements are typically 80% less than the μ PD7720. The μ PD77C20 operates at the same clock rate as the μ PD7720 and hence will execute any design developed for the NMOS version. The low-power feature of μ PD77C20 makes it appropriate for portable applications and other designs requiring low-power and low heat dissipation.

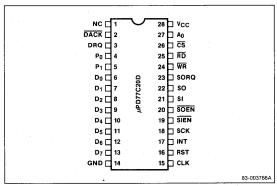
Features

- ☐ Low-power CMOS
 - 24 mA typical current use
- ☐ Fast instruction execution
 - 250 ns with 8.196-MHz clock
- ☐ 16-bit data word
- ☐ Multi-operation instructions for fast program execution: multiply, accumulate, move data, adjust memory pointers—all in one instruction cycle
- ☐ Modified Harvard architecture with three separate memory areas:
 - Program ROM (512 x 23 bits)
 - Data ROM (510 x 13 bits)
 - Data RAM (128 x 16 bits)
- ☐ 16 x 16 multiplier, 31-bit product with every instruction
- □ Dual accumulators
- ☐ External maskable interrupt
- ☐ Four-level stack for subroutines and/or interrupt
- ☐ Multiple I/O capabilities:
 - Serial: 8 or 16 bit
 - Parallel: 8 or 16 bit
 - DMA
- ☐ Compatible with most microprocessors, including:
 - $-\mu PD8080$
 - $-\mu PD8085$
 - $-\mu$ PD8086/88
 - μPD780 (Z80®)
- ☐ Power supply +5 V
- ® Z80 is a registered trademark of Zilog, Inc.

Applications

- ☐ Portable telecommunications equipment
- ☐ Digital filtering
- ☐ High-speed data modems
- ☐ Fast Fourier transforms (FFT)
- □ Speech synthesis and analysis□ Dual-tone multifrequency (DTMF)
- transmitters/receivers
- ☐ Equalizers
- □ Adaptive control
- □ Numerical processing

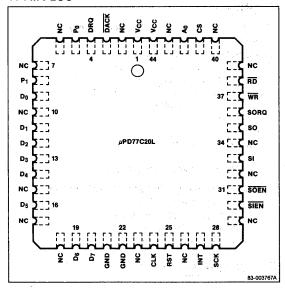
Performance Benchmarks


- \square Second-order digital filter (biquad): 2.25 μ s
- \square Sin/cos of angles: 5.25 μ s
- \square μ /A law to linear conversion: 0.50 μ s
- ☐ FFT, 32-point complex: 0.7 ms
 - 64-point complex: 1.6 ms

Ordering Information

Part Number	Package Type	Max Frequency of Operation	Normal Temperature Range
μPD77C20D	28-Pin ceramic DIP	8.196 MHz	−10 to 70°C
μPD77C20L	44-Pin PLCC	8.196 MHz	−10 to 70°C

Pin Configuration


28-Pin Ceramic DIP

Pin Configuration (cont)

44-Pin PLCC

Pin Identification

Symbol	Function				
NC	No connection				
DACK	DMA request acknowledge input				
DRQ	DMA request output				
P ₀ , P ₁	General purpose output control lines				
D ₀ -D ₇	Three-state I/O data bus				
GND	Ground				
CLK	Single-phase master clock input				
RST	Reset input				
INT	Interrupt input				
SCK	Serial data I/O clock input				
SIEN	Serial input enable input				
SOEN	Serial output enable input				
SI	Serial data input				
S0	Three-state serial data output				
SORQ	Serial data output request				
WR	Write control signal input				
RD	Read control signal input				
CS	Chip select input				
A ₀	Status/data register select input				
V _{CC}	+5 V power supply				

PRELIMINARY INFORMATION

Description

The μ PD77230 Advanced Signal Processor (ASP) is the high-end member of a new third-generation family of 32-bit digital signal processors. This CMOS chip implements 32-bit full floating-point arithmetic, and is intended for digital signal processing and other applications requiring high speed and high precision.

All instructions execute in one instruction cycle. The μ PD77230 executes a 32-bit by 32-bit floating point multiply with 55-bit product, sum of products, data move, and multiple data pointer manipulations—all in one 150-ns instruction cycle.

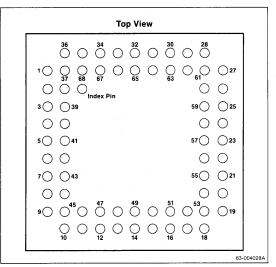
Features

- □ Fast instruction cycle: 150 ns using 13.3-MHz clock
 □ All instructions execute in one cycle
 □ 32- x 32-bit floating point arithmetic
 □ Large on-chip memory (32-bit words)
 1K data RAM (two 512-word blocks)
 1K data coefficient ROM
 2K instruction ROM
 □ 8K- x 32-bit external memory; 4K may be instruction memory
 □ 1.5-μm CMOS technology
- ☐ 32-bit internal bus
- ☐ 32-bit internal bus
- ☐ 55-bit ALU bus
- ☐ Dedicated internal buses for RAM, multiplier, and ALU
- ☐ Eight accumulators/working registers (55 bits)
- ☐ 47-bit bidirectional barrel shifter
- ☐ Two independent data RAM pointers
- ☐ Modulo 2ⁿ incrementing for circular RAM buffers
- ☐ Base and index addressing of internal RAM
- ☐ Data ROM capable of 2ⁿ incrementing
- ☐ Loop counter for repetitive processing
- □ Eight-level stack accessible to internal bus
 □ Two interrupts: maskable and nonmaskable (NMI)
- ☐ Serial I/O (5 MHz)
- ☐ Master/slave mode operation
- ☐ Three-stage instruction pipeline
- ☐ Single +5-volt power supply
- ☐ Approximately 1.2 watts

Ordering Information

Part Number	Package Type	
μPD77230R	68-pin PGA	

Applications


- ☐ General-purpose digital filtering (FIR, IIR, FFT)
- ☐ High-speed data modems
- □ Adaptive equalization (CCITT)
- □ Echo cancelling
- ☐ High-speed controls
- ☐ Image processing
- ☐ Graphic transformations
- ☐ Instrumentation electronics
- $\hfill\square$ Numerical processing
- ☐ Speech processing
- □ Sonar/radar signal processing
- ☐ Waveform generation

Floating-Point Performance Benchmarks

Second-order digital filter (biquad)	0.9 μs
32-tap finite impulse response filter	5.25 <i>μ</i> s
Fast Fourier transform (FFT) 32-point complex (radix 2)	0.15 ms
512-point complex FFT	4.7 ms
1024-point complex FFT	10.75 ms
Square root	6.0 µs

Pin Configuration

68-Pin PGA

Pin Identification**

No.	Master	*Slave	No.	Master	*Slave
1	D ₀		35	D ₂	
2	A ₁		36	D ₁	
3	A ₃		37	A ₀	
4	A ₅		38	A ₂	
5	A ₆		39	A ₄	
6	A ₈	***************************************	40	V _{DD}	
7	A ₁₀		41	A ₇	
8	A _X	***************************************	42	.A9	
9	WR		43	A ₁₁	
10	RD		44	GND	**
11	SORQ		45	S0	
12	SOCK		46	SICK	
13	SOEN		47	SIEN	
14	INT		48	NC (No co	nnection)
15	INTM		49	RESET	
16	M/S		50	SI	
17	CLKOUT		51	X2	
18	X1		52	V _{DD}	
19	D ₃₁	P3	53	D ₃₀	P2
20	D ₂₉	. P1	54	D ₂₈	Р0
21	D ₂₇	RQM	55	D ₂₆	ĈŜ
22	D ₂₅	HWR	56	GND	
23	D ₂₄	HRD	57	D ₂₃	1/0 ₁₅
24	D ₂₂	1/0 ₁₄	58	D ₂₁	1/0 ₁₃
25	D ₂₀	1/0 ₁₂	59	D ₁₉	1/0 ₁₁
26	D ₁₈	1/0 ₁₀	60	V _{DD}	
27	D ₁₇ .	1/09	61	D ₁₅	1/07
28	D ₁₆	1/08	62	D ₁₃	1/05
29	D ₁₄	1/06	63	D ₁₁	1/03
30	D ₁₂	1/04	64	D ₉	1/01
31	D ₁₀	1/02	65	D ₇	
32	D ₈	1/00	66	D ₅	
33	D ₆		67	D ₃	
34	D ₄		68	GND	

^{*}If slave-mode pin identification is not specified, it is the same as master-mode.

Pin Function Summary

Symbol	i/0	Function
A ₀ -A ₁₁	0	Address bus to external memory
A _X	0	Highest bit of memory address
CLKOUT	0	Internal system clock
CS	1	Chip select
D ₀ -D ₇	1/0*	Data bus for access to external memory in slave mode.
D ₀ -D ₃₁	1/0*	Data bus for access to external memory (data or instruction) in master mode.
GND		Ground (Connect ground to all GND pins.)
HRD	ı	Host CPU read
HWR	I	Host CPU write
1/0 ₀ -1/0 ₁₅	1/0*	Port to host CPU data bus
INT	ı	Nonmaskable interrupt
INTM	1	Maskable interrupt
M/S	.1	Operation mode select
P0, P1	I	General-purpose input port
P2, P3	0	General-purpose output port
RD	0	Controls data read from external memory
RESET	ı	System reset
RQM	0	Data read/write request
SI	1	Serial input data
SICK	1/0	Clock for serial input data
SIEN	I	Serial input data enable
S0	0*	Serial output data
SOCK	1/0	Clock for serial output data
SOEN	1	Serial output data enable
SORQ	0	Serial output request
V _{DD}		+5-volt power (Connect +5 V to all V _{DD} pins.)
WR	0	Controls data write to external memory
X1, X2	1	External clock (X1) or crystal (X1, X2)
+		

^{*}These pins have a high-impedance inactive state.

^{**}Pin numbers are preliminary and may change.

Pin Functions

Paragraphs below supplement the brief descriptions in the preceding table. Pin symbols are in alphabetical order within several master and slave mode categories.

Master and Slave Modes

CLKOUT [System Clock]. Outputs internal system clock. Output signal frequency is half the oscillation frequency of crystal connected across X1 and X2 pins.

INT [Nonmaskable Interrupt]. Inputs nonmaskable interrupt signal, which is active-low and must be at least three system clock pulses wide. Interrupt signal is detected at falling edge. Interrupt address is 10H.

INTM [Maskable Interrupt]. Inputs maskable interrupt signal, which is active-low and must be at least three system clock pulses wide. Interrupt signal is detected at falling edge. Interrupt address is 100H.

M/S [Mode Select]. Selects operation mode. Operation mode must not be switched during operation, however. Master = 0; slave = 1.

RESET [System Reset]. Inputs internal system reset signal, which is active-low and must be at least three system clock pulses wide.

SI [Serial Input Data]. Inputs serial data synchronized with falling edge of SICK.

SICK [Serial Input Clock]. Inputs or outputs clock for serial input data. Serial data is internally latched at the falling edge of the clock that is input to or output from this pin. Whether the clock is to be input from an external source or the internal clock is to be output is determined by the status register setting.

SIEN [Serial Input Enable]. Enables SI pin to input serial data. This pin is active-low.

SO [Serial Output Data]. Outputs serial data synchronized with rising edge of SOCK pin.

SOCK [Serial Output Clock]. Inputs or outputs clock for serial output data. The serial output data is synchronized with the clock that is input to or output from this pin. Whether the clock is to be input from an external source or the internal clock is to be output is determined by the status register setting.

SOEN [Serial Output Enable]. Enables SO pin to output serial data. This pin is active-low.

SORQ [Serial Output Request]. Outputs serial output request signal, which is active-high. When data is ready in the serial output register, this signal becomes 1. It will become 0 after data has been output.

X1, X2 [External Clock]. Connection to external oscillator crystal (X1, X2) or external clock (X1).

Master Mode, External Memory Interface

A₀-A₁₁ [Address Bus]. Address bus for access to external memory. When accessing external instruction memory, the lower 12 bits of the program counter are output to these pins. When accessing external data memory, the lower 12 bits of the external address register are output to these pins.

 A_X [Highest Address Bit]. Outputs the highest bit of the memory address. When accessing external instruction memory, the highest bit of the program counter (PC₁₂) is output to this pin. When accessing external data memory, the highest bit of the external address register is output to this pin. High-speed memory area = 0; low-speed memory area = 1.

 D_0 - D_{31} [Data Bus]. These pins form a 32-bit data bus for external memory (data or instruction).

 \overline{RD} [Data Read]. Controls data read from external memory. This signal becomes 0 after the output address is valid, and data is input at the rising edge to the data port formed by pins D_0 to D_{31} .

WR [Data Write]. Controls data write to external memory. This signal becomes 0 after the output address is valid and data is output to the data port formed by pins D_0 to D_{31} .

Slave Mode, External Memory Interface

A₀-A₁₁ [Address Bus]. Address bus for accessing external memory. When accessing external data memory, the lower 12 bits of the external address register are output to these pins.

 A_X [Highest Address Bit]. When accessing external data memory, the highest bit of the external address register is output to this pin. High-speed memory area = 0; low-speed memory area = 1.

D₀-D₇ [**Data Bus**]. These pins form an eight-bit data bus for external data memory access. Data may be transferred in one of four formats (1-, 2-, 3-, or 4-byte words), depending on the status register setting.

RD [Data Read]. Controls data read from external memory. This signal becomes 0 after the output address is valid, and data is input at the rising edge to the data port formed by pins D_0 to D_7 .

WR [Data Write]. Controls data write to external memory. This signal becomes 0 after the output address is valid and data is output to the data port formed by pins D_0 to D_7 .

Slave Mode, Host CPU Interface

CS [Chip Select]. Active-low chip select input signal. When this pin becomes 0, the host CPU may perform read/write operations on the 16-bit port formed by pins I/O_0 through I/O_{15} .

HRD [Host CPU Read]. Active-low host read input signal. In conjunction with \overline{CS} , this signal allows the host CPU to read data from the DRS register via the 16-bit port formed by pins I/O₀ to I/O₁₅.

HWR [Host CPU Write]. Active-low host write input signal. In conjunction with \overline{CS} , this signal allows the host CPU to write data into the DRS register via the 16-bit port formed by pins I/O₀ to I/O₁₅.

I/O₀-I/O₁₅ [**Data Port**]. These pins form an I/O port to the host CPU bidirectional data bus. It is used for input to or output from the DRA register under control of host CPU signals $\overline{\text{CS}}$, $\overline{\text{HWR}}$, and $\overline{\text{HRD}}$. Data transfer format can be specified in the status register as either a 16-bit or a 32-bit transfer.

RQM [Read/Write Request]. Requests host CPU to read or write data via the host CPU data bus.

Slave Mode, I/O Port

P0, P1 [Input Port]. These pins form a general-purpose input port. Status of either of these pins may be tested by a conditional branch instruction.

P2, **P3** [Output Port]. These pins form a general-purpose output port. Data output by these pins can be set directly by an instruction and will be retained until explicitly changed.

Functional Description

Figure 1 is the functional block diagram of the μ PD77230 in its master mode configuration. The main internal bus (32 bits) ties together all the functional blocks of the μ PD77230, including the ALU area. The 55-bit processing unit (PU) bus links the ALU input to the 55-bit multiplier output register and the eight 55-bit working registers. Thus, the full 55 bits of precision can be maintained during extensive calculations.

In addition to the main bus and the PU bus, there is a sub-bus linking each of the two RAM areas to both the ALU input and the multiplier input registers. This allows simultaneous loading of the multiplier input registers in parallel with ALU operations and in parallel with data transfer operations, which make use of the main bus. There is a sub-bus connecting the ALU input to the 55-bit multiplier output and another sub-bus that can route the working registers' contents back to the ALU input.

Architecture

The µPD77230 has a Harvard-type architecture, with separate memory areas for program storage and data storage as well as separate, multiple buses. A multiple-stage instruction execution pipelining scheme performs instruction fetch and execution in parallel. All instructions are executed in a single cycle, even if the instruction is stored in the external instruction memory expansion area.

Instruction Memory

The μPD77230 has an internal instruction ROM that holds 2K 32-bit instruction words. An additional 4K word external memory expansion is also available. A 13-bit program counter (PC) contains the current instruction address; the most significant bit of the PC determines whether on-chip or external instructions are to be fetched. An eight-level stack holds subroutine and interrupt return addresses, and it is accessible to/from the main internal bus.

Data Memory

The data ROM area on the μ PD77230 holds 1K 32-bit words. The ROM pointer (RP) contains the current ROM address, which can also be specified within an instruction field. The ROM pointer has auto-increment and auto-decrement features and an add 2^n to the RP option.

There are two separate and independently addressable data RAM areas, each 512 words by 32 bits. Each RAM area can be addressed by a base register, an index register, or the sum of the two. The base register and/or the index register may be incremented, decremented, or cleared. In addition, the base pointer can operate in a modulo count mode, and the index register contents may be replaced by the sum of the index and base registers.

Data memory may be expanded by the addition of 8K words of external memory. External data memory is divided into a high-speed half, which is accessed in a single instruction cycle, and a low-speed half, which is accessed in three instruction cycles. Both high-speed and low-speed memory accesses occur in parallel with normal program execution.

Multiplier and ALU

The floating-point multiplier has two 32-bit input registers, called the K and L registers, which are accessible both to and from the main bus. The multiplier produces the 55-bit product of the K and L register contents automatically in a single instruction cycle (there is no multiply instruction). The 55-bit result is

stored in the M register in 8-bit exponent, 47-bit mantissa format. The contents of the M register can be transferred to the main bus (32 bits) or to the ALU via the processing unit bus (55 bits). The multiplier consists of a 24- by 24-bit fixed-point multiplier and an exponent adder, so that it can also be used for fixed-point multiplications.

The 55-bit floating-point ALU is capable of a full set of arithmetic and logical operations (see Instruction Set section). There is a 47-bit bidirectional barrel shifter, which can perform general-purpose shifting in addition to the mantissa alignments required for floating-point arithmetic. A separate exponent ALU (EALU) determines shift values in floating-point work. The ALU status is reflected in one of two identical processor status words (PSW) that contain carry, zero, sign, and overflow flags. The results of the ALU operation are stored in one of eight 55-bit accumulators or "working registers."

There are two 55-bit input registers to the ALU called the P register and the Q register. The Q register input is selected from one of the eight working registers, while the P register input is selected from among the 32-bit main bus, data RAM 0, data RAM 1, and the 55-bit M register.

A loop counter is included in the design of the μ PD77230. This loop counter is a 10-bit register, attached to the main bus, which can be decremented by a control bit built into an ordinary ALU instruction. When the loop counter is decremented to zero, the instruction following the one that decremented it will be skipped.

System Control

The master system clock may be provided to the μ PD77230 via either an external crystal or an already available clock signal. The internal clock of the μ PD77230 contains two phases, and is obtained by dividing the master clock frequency by 2. If desired, the serial input and output clocks can be derived from the master clock by dividing it by 8.

Both a maskable and nonmaskable interrupt are available in the μ PD77230. The maskable interrupt can be "memorized," so that if an interrupt occurs while it is in the interrupt disabled condition, then it may be acted upon (or disregarded) at a later time. The status of the interrupts and other aspects of the μ PD77230 are determined by or reflected in the 20-bit status register.

Serial I/O

The serial input and output circuitry in the μ PD77230 is designed for easy interfacing to codecs and other μ PD77230s. The input and output circuits are independently clocked by either an internal clock or an external clock up to 5 MHz. The length of the serial input and output data words can be independently programmed to be 8, 16, 24, or 32 bits.

The parallel I/O capabilities in the μ PD77230 can be used for external instruction and data memory expansion and for interaction with a host processor. The difference between master mode and slave mode operation must be defined to further discuss the nature of the parallel interface in the μ PD77230.

Master/Slave Modes

The master mode parallel interface is shown in figure 1. In this mode, the μ PD77230 is intended to act as a standalone processor with the parallel interface allowing access to external memory, memory-mapped I/O devices, and/or a system-level bus. Master mode operation allows for external instruction memory expansion and external data memory expansion. There is an 8K external memory space. The lower 4K can be shared between instructions and data, while the upper 4K can be used for data only.

The slave mode parallel interface is shown in figure 2. In this mode, the μ PD77230 is a "peripheral" to a host processor. The full 8K external memory space is available for data memory expansion, but instruction memory expansion is not allowed in slave mode. The 8-bit external data bus is used to assemble words in the data register (DR), which can be 8, 16, 24 or 32 bits wide. Communication with the host occurs across the 16-bit host data bus. Word lengths of 16 or 32 bits can be transferred between the μ PD77230 and the host. Four pins can be used in slave mode as general-purpose I/O ports: two input pins and two output pins.

Figure 3 shows the functional pin groups in master mode and slave mode.

Figure 1. Master Mode Block Diagram

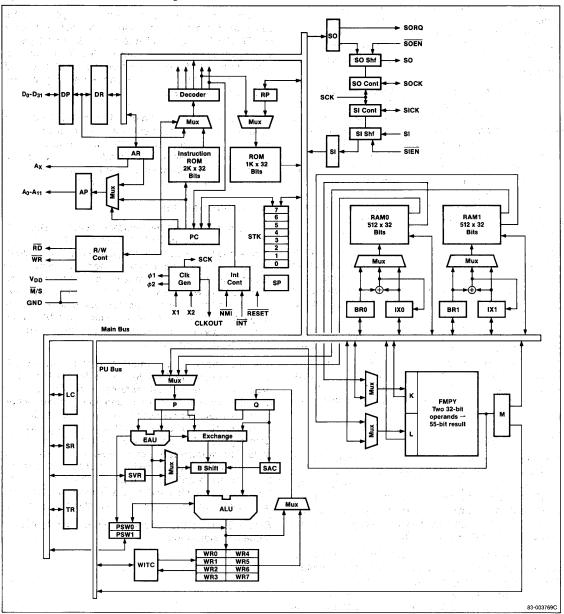


Figure 2. Slave Mode Block Diagram

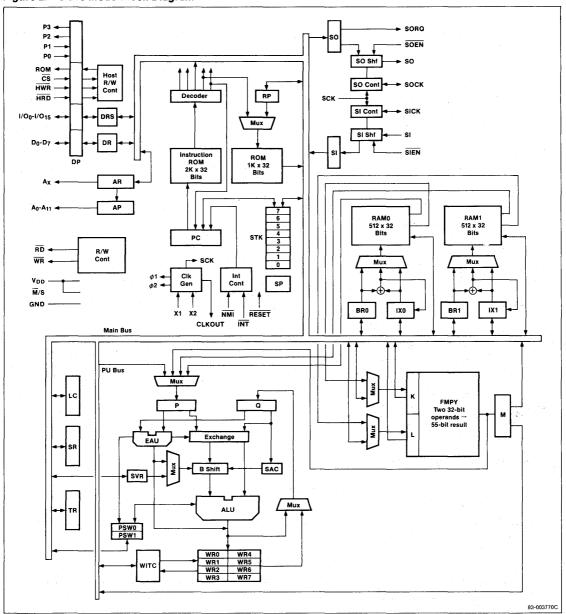
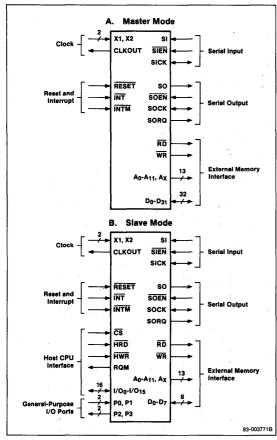



Figure 3. Functional Pin Groups

Instruction Set

All μ PD77230 instructions consist of a single 32-bit word. Figure 4 shows the bit format for the three basic types of instructions.

OP Type Instruction

This is an ALU operation instruction where 26 different operations may be specified in the upper five bits (figure 4). Pointer modifications may be specified in the CNT field. Transfers may also be specified within an OP instruction by use of the SRC and DST fields. When all fields are specified in an OP instruction, several different tasks are performed at once. The high five bits make up the OP field, summarized in table 1.

Table 2 summarizes the effect on bits in the PSW resulting from ALU operations.

Control Field [CNT]

This 12-bit field contains specifications for control modes and pointer modifications. Figure 5 summarizes the bit field format, table 3 summarizes the function of CNT field groups, and table 4 summarizes the function of each mnemonic within the 23 groups.

P Field

The two-bit P field specifies the source of input to the P register, which is used as an input to the ALU for operations requiring two operands. See table 5.

Figure 4. Instruction Type Formats

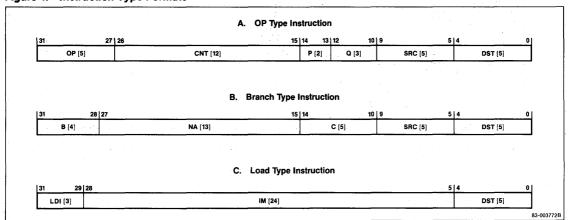


Table 1. OP Field Specifications

NOP 00000 No operation INC 00001 Increment DEC 00010 Decrement ABS 00011 Absolute value NOT 00100 Not-one's complement NEG 00101 Negate-two's complement SHLC 00110 Shift left with carry SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Shift left multiple SHLM 01010 Shift right multiple SHRAM 01101 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 <	Mnemonic	OP Fleid (31-27)	Operation
DEC 00010 Decrement ABS 00011 Absolute value NOT 00100 Not-one's complement NEG 00101 Negate-two's complement SHLC 00110 Shift left with carry SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	NOP	00000	No operation
ABS 00011 Absolute value NOT 00100 Not-one's complement NEG 00101 Negate-two's complement SHLC 00110 Shift left with carry SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right multiple SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	INC	00001	Increment
NOT 00100 Not-one's complement NEG 00101 Negate-two's complement SHLC 00110 Shift left with carry SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	DEC	00010	Decrement
NEG 00101 Negate-two's complement SHLC 00110 Shift left with carry SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	ABS	00011	Absolute value
SHLC 00110 Shift left with carry SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	NOT	00100	Not-one's complement
SHRC 00111 Shift right with carry ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right multiple SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	NEG	00101	Negate-two's complement
ROL 01000 Rotate left ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right multiple SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	SHLC	00110	Shift left with carry
ROR 01001 Rotate right SHLM 01010 Shift left multiple SHRM 01011 Shift right multiple SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical exclusive OR ADDF 11000 Floating-point add	SHRC	00111	Shift right with carry
SHLM 01010 Shift left multiple SHRM 01011 Shift right multiple SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	ROL	01000	Rotate left
SHRM 0101 Shift right multiple SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	ROR	01001	Rotate right
SHRAM 01100 Shift right arithmetic multiple CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	SHLM	01010	Shift left multiple
CLR 01101 Clear NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	SHRM	01011	Shift right multiple
NORM 01110 Normalize CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	SHRAM	01100	Shift right arithmetic multiple
CVT 01111 Convert floating point format ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	CLR	01101	Clear
ADD 10000 Fixed-point add SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	NORM	01110	Normalize
SUB 10001 Fixed-point subtract ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	CVT	01111	Convert floating point format
ADDC 10010 Fixed-point add with carry SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	ADD	10000	Fixed-point add
SUBC 10011 Fixed-point subtract with borrow CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	SUB	10001	Fixed-point subtract
CMP 10100 Compare (floating point) AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	ADDC	10010	Fixed-point add with carry
AND 10101 Logical AND OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	SUBC	10011	Fixed-point subtract with borrow
OR 10110 Logical OR XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	СМР	10100	Compare (floating point)
XOR 10111 Logical exclusive OR ADDF 11000 Floating-point add	AND	10101	Logical AND
ADDF 11000 Floating-point add	OR	10110	Logical OR
	X0R	10111	Logical exclusive OR
SUBF 11001 Floating-point subtract	ADDF	11000	Floating-point add
	SUBF	11001	Floating-point subtract

Table 2. Effects of ALU Operations on PSW Flags

ALU	Contents of PSW							
Operation	OVFE	C	Z ,-	S	OVFM			
NOP .	*	*	*	*	*			
INC	*	\$	\$	\$	\$			
DEC	*	\$	\$	\$	\$			
ABS	*	\$	\$	0	\$+			
NOT	*	0	\$	\$	0			
NEG	*	\$	\$	\$	\$+			
SHLC	*	\$	\$	\$	0			
SHRC	*	\$	\$	\$	0			
ROL	*	0	*	\$	0			
ROR	*	0	*	\$	0			
SHLM	*	0 .	\$	\$	0			
SHRM	*	0	\$	\$	0			

Table 2. Effects of ALU Operations on PSW Flags (cont)

ALU	Contents of PSW						
Operation .	OVFE	C .	Z	8	OVFM		
SHRAM	*	0	\$	\$	0		
CLR	0	0	1	0	0		
NORM (NORM.)	\$	0	\$	\$	0		
(ROUNDING)	\$	\$	\$	\$	\$		
(FLT-FIX)	*	0	\$	\$	\$		
(FIX M.A.)	*	0	\$	\$	\$		
CVT	Х	0	\$	\$	0,		
ADD	*	\$	\$	\$	\$		
SUB	*	\$	\$	\$	\$		
ADDC	**	\$	\$	\$	\$		
SUBC	*	\$	\$	\$	\$		
СМР	\$	\$	\$	\$	\$		
AND	*	0	\$	\$	0		
OR	*	0	\$	\$	0		
XOR	*	0	\$	\$	0		
ADDF	\$	\$	\$	\$	\$		
SUBF	\$	\$	\$	\$	\$		

- \$ Flag will be affected by result of operation.
- 0 Flag will be reset to 0.
- 1 Flag will be reset to 1.
- Previous condition of flag will be preserved.
- + If the original data in the mantissa was 80---0H, OVFM = 1 after operation.

Figure 5. Control Field Bit Format

		31	27 2	6	CNT	[12]		15 14			
26	25	24	23	22	21	20	19	18	17	16	15
0	0		10	N			DP0			DP1	
0	1	0	0	E	A		DP0		<u> </u>	DP1	
0	1	0	1	R	P	. · N	10		DP0		FC
0	1	1	0	R	P	M	11		DP1		FC
0	1	1	1	R	P	M	10	N	11	L	FC
1	0	0	0	0		BAS0			BAS1		FC
1	0	0	0	1		RPC				L	FC
1	0	0	1	0	P3	P2	EM	В	M	L	FC
1	0	0	1	1	R	w				L	FC
1	0	1	0	0	-	WT				L	FC
1	0	1	0	1		NF		٧	/1	L	FC
1	0	1	1	0	,	FIS		F	D	L	
1	0	1	1	1				SHV			
1	1	0					RPS				
1	1	1					NAL.				
										83	-003773

Code

Mnemonic

Table 3. Control Field Function Summary

Group	Field	Function	Effective
Interrupt	EM, BM	Enable and disable maskable interrupt, and control interrupt memorization.	→
PSW	FIS	PSW control (select and clear)	*
	FC	Select other PSW	*
Data ROM	RP	Controls ROM pointer operation	-
pointer	RPC	Specifies n value for special manipulation of ROM pointer	→
	RPS	Specifies 9 lower bits of data ROM address	-
Data RAMO	M0	Specifies RAM0 addressing mode	→
and RAM1 pointers	M1	Specifies RAM1 addressing mode	→
pomoro	DP0	Controls modification of base pointer 0 and index register 0	→
	DP1	Controls modification of base pointer 1 and index register 1	-
	BASE0	Specifies counter length of modulo count operation of base pointer 0	
	BASE1	Specifies counter length of modulo count operation of base pointer 1	→
Data format conversion	FD	Controls conversion mode for floating point CVT.	*
	WI	Controls transfer format when working register is specified in DST field.	→
	WT	Controls transfer format when working register is specified in SRC field.	→
Normalization specification	NF	Specifies normalization, normalization with rounding, floating-point to fixed-point conversion, or digit alignment.	
Shift specification	SHV	Controls amount of shift for 47-bit mantissa	*
Data memory access	RW	Specifies read/write operation for external memory.	*
	EA	Increments or decrements external address register	*
General-	P2	Controls state of P2 pin	
purpose output port	P3	Controls state of P3 pin	→
Loop counter	Ĺ	Decrements loop counter	→
Jump	NAL	Specifies unconditional local jump address	*

^{*} Effective starting with current instruction.

Table 4. Control Field Mnemonic Summary

Operation

EM, BM Field (19-17)			
Maskable interrupt	EM	BM	
No operation	(NOP)	(NOP)	000
Clear booking flag	(NOP)	CLRBM	001
Set booking flag	(NOP)	SETBM	010
Interrupt disabled	DI	(NOP)	011
Interrupt enabled	El	(NOP)	100
Interrupt enabled and clear booking flag	El	CLRM	101
Interrupt enabled and set booking flag	El	SETBM	110
Use prohibited	_	_	111
Default: interrupt disabled and clear b	ooking	lag.	
Writing (NOP) is not necessary, just u available combinations and their effect		rememb	ering th
FIS Field (21-19)			
Flag initialize and select			
No operation	(NOP)		000
Specify PSW 0 for operation (default)	SPCPSW	/0	001
Specify PSW 1 for operation	SPCPSV	/1	010
Clear PSW 0	CLRPSV	/0	100
Clear PSW 1	CLRPSV	/1	101
Clear PSW 0 and PSW 1	CLRPSV	1	110
FC Bit (15)			
Flag change operation		. 1.	_
No operation	(NOP)		0
Exchange PSW for operation	XCHPSV	٧	1
RP Field (22, 21)			
ROM pointer modification			
No operation	(NOP)		00
Increment ROM pointer	INCRP		01
Decrement ROM pointer	DECRP		10
Increment specified bit of ROM pointer (that is, add 2 ^N)	INCBRP		11
RPC Field (21-18)			
Specify N for adding 2 ^N to ROM pointer	BITRP i	mm	(imm)E

SPCRA imm

Specify immediate ROM address

 $^{\star}0 \leq imm \leq 511$

(imm)B

[→] Effective starting with next instruction.

Table 4	Control	Field	Mnemonic	Summary	(cont)
labie 4.	Control	rieia	winemonic	Summarv	(CONL)

Operation	Mnemonic	Code
M0 Field		
Specify RAM pointer		<u> </u>
No change in specification	(NON)	00
Base pointer 0	SPCBP0	01
Index register 0	SPCIX0	10
Base pointer 0 + index register 0 (default)	SPCBI0	11
M1 Field		
Specify RAM pointer		
No change in specification	(NON)	00
Base pointer 1	SPCBP1	01
Index register 1	SPCIX1	10
Base pointer 1 + index register 1 (default)	SPCBI1	11
DP0 Field		
Pointer modification operation		
No operation	(NOP)	000
Increment base pointer 0	INCBP0	001
Decrement base pointer 0	DECBP0	010
Clear base pointer 0	CLRBP0	011
Store base + index to index register 0	STIX0	100
Increment index register 0	INCIX0	101
Decrement index register 0	DECIX0	110
Clear index register 0	CLRIX0	111
DP1 Field		
Pointer modification operation		
No operation	(NOP)	000
Increment base pointer 1	INCBP1	001
Decrement base pointer 1	DECBP1	010
Clear base pointer 1	CLRBP1	011
Store base + index to index register 1	STIX1	100
Increment index register 1	INCIX1	101
Decrement index register 1	DECIX1	110
Clear index register 1	CLRIX1	111
BASE0 Field (21-19)		
Specify modulo count number (2N) for incrementing base pointer 0	MCNBP0 imm	(imm)B
*imm (=n) is 1 through 7; 0 specifies ordin	ary count	
BASE1 Field (18-16)		
Specify modulo count number (2 ^N) for incrementing base pointer 1	MCNBP1 imm	(imm)B
•		

*imm (=n) is 1 through 7; 0 specifies ordinary count

Operation	Mnemonic	Code
FD Field		
Data conversion format specification		
No change of specification	(NON)	00
Conversion of ASP format to IEEE format (default)	SPIE	01
Conversion of IEEE format to ASP format	IESP	10
Use prohibited		- 11
WI Field (18, 17)		
Specification of transfer format when data is moved from IB to WR		÷
No change of specification	(NON)	00
Transfer low 24 bits of mantissa to high 24 bits	BWRL24	01
Ordinary transfer (default)	BWRORD	10
Use prohibited		11
WT Field (21-19)		
Specification of transfer format when data is moved from WR to IB		
No change of specification	(NON)	000
Ordinary transfer (default)	WRBORD	001
Low 24 bits of mantissa to high 24	WRBL24	010
Low 23 bits (bit 23 = 0) to high 24	WRBL23	011
Exponent part to mantissa low 8 bits	WRBEL8	100
Mantissa low 8 bits to exponent part	WRBL8E	101
Exchange high 8 bits of mantissa with low 8 bits of mantissa	WRBXCH	110
Bit reverse entire mantissa	WRBBRV	111
NF Field (21-19)		
Normalization format specification		
No change of specification	(NON)	000
Truncating normalization (default)	TRNORM	010
Rounding normalization	RDNORM	100
Convert floating to fixed point	FLTFIX	110
Fixed point multiple alignment (multiple value is in SVR)	FIXMA	111
SHV Field (21-15)		
Set shift value to SVR		
imm bits left shift (default)	SETSVL imm	0 (imm)
imm bits right shift	SETSVR imm	1 (imm)
*0 ≤ imm ≤ 46		

Table 4.	Control	Field	Mnemonic	Summary	(cont)
----------	---------	-------	----------	---------	-------	---

Operation	Mnemonic	Code
RW Field (21, 20)		
Operation for external data memory		
No operation	(NOP)	00
Read	RD	01
Write	WR	10
Use prohibited		11
EA Field (22, 21)		
Operation for external address register		
No operation	(NOP)	00
Increment external address register	INCAR	01
Decrement external address register	DECAR	10
Use prohibited		11
P2 Bit (20)		
P2 pin control (slave mode only)		
Clear output port pin 2	CLRP2	0
Set output port pin 2	SETP2	1
P3 Bit (21)		
P3 pin control (slave mode only)		
Clear output port pin 3	CLRP3	0
Set output port pin 3	SETP3	1
L Bit (16)	.*	
Loop counter operation		1 1
No operation	(NOP)	0
Decrement loop counter	DECLC	1
NAL Bit (23-15)		
Local branch; jump to imm address in local block	JBLK imm	(imm)E
$^*0 \le imm \le 511$		

Table 5. P Field Specifications

Mnemonic	P Field (14, 13)	Input of P Register
IB	00	Internal bus
М	01	Multiplier output register
RAM0	10	RAM block 0
RAM1	11	RAM block 1

Q Field

The three-bit Q field specifies the source of input to the Q register, which is the other of two ALU input registers. See table 6.

Table 6. Q Field Specifications

000			
000	Working register 0		
001	Working register 1		
010	Working register 2		
011	Working register 3		
100	Working register 4		
101	Working register 5		
110	Working register 6		
111	Working register 7		
(001 010 011 100 101	Working register 1 D10 Working register 2 D11 Working register 3 D10 Working register 3 D10 Working register 4 D11 Working register 5 D10 Working register 6	Working register 1 Working register 2 Working register 2 Working register 3 Working register 4 Working register 5 Working register 6

Source Field

Table 7 lists 32 source registers that may be specified in the source field.

Destination Field

Table 8 lists 32 destinations that may be specified in the DST field. Note that the LKR0 and KLR1 specifications will simultaneously load, as destinations, both the K and L registers.

Branch Instruction

The branch instruction type is used for a jump, conditional jump, call, or return. The format of the branch instruction is shown in figure 4. The destination address of the branch is contained in the 13-bit NA field. Note that the most significant bit of the NA field is used to determine whether the destination address is in internal or external instruction memory. The five-bit C field summarized in table 9 determines the nature of the branch.

Note also that an SRC and DST may be included as part of the branch instruction. This data transfer will take place regardless of any condition upon which a jump may be dependent.

LDI Instruction

Figure 4 shows the format of the LDI instruction type. The 24-bit IM (immediate) field contains the data that will be loaded into the register specified by the DST field. It is also possible to load a 32-bit floating-point number using this instruction in conjunction with the TRE destination field specification.

Table 7.	SRC Field Specifications						
Mnemonic	SRC Field (9-5)	Selected Source Register					
NON	00000	No source selected					
RP	00001	ROM pointer					
PSW0	00010	Program status word 0					
PSW1	00011	Program status word 1					
SVR	00100	SVR (shift value register)					
SR	00101	Status register					
LC	00110	Loop counter					
STK	00111	Top of stack					
М	01000	M register (multiplier output)					
ML	01001	Low 24 bits of M register					
ROM	01010	Data ROM output					
TR	01011	Temporary register					
AR	01100	External address register					
SI	01101	Serial input register					
DR	01110	Data register					
DRS	01111	Data register for slave					
WR0	10000	Working register 0					
WR1	10001	Working register 1					
WR2	10010	Working register 2					
WR3	10011	Working register 3					
WR4	10100	Working register 4					
WR5	10101	Working register 5					
WR6	10110	Working register 6					
WR7	10111	Working register 7					
RAM0	11000	RAM block 0					
RAM1	11001	RAM block 1					
BP0	11010	Base pointer 0					
BP1	11011	Base pointer 1					
iX0	11100	Index register 0					
IX1	11101	Index register 1					
K	11110	K register					
L	11111	L register					

Mnemonic	DST Field (4-0)	Selected Destination Register				
NON	00000	No destination selected				
RP	00001	ROM pointer				
PSW0	00010	Program status word 0				
PSW1	00011	Program status word 1				
SVR	00100	SVR (shift value register)				
SR	00101	Status register				
LC	00110	Loop counter				
STK	00111	Top of stack				
LKR0	01000	L register (RAM 0 to K register)				
KLR1	01001	K register (RAM 1 to L register)				
TRE	01010	Exponent part of temporary register				
TR	01011	Temporary register				
AR	01100	External address register				
S0	01101	Serial output register				
DR	01110	Data register				
DRS	01111	Data register for slave				
WR0	10000	Working register 0				
WR1	10001	Working register 1				
WR2	10010	Working register 2				
WR3	10011	Working register 3				
WR4	10100	Working register 4				
WR5	10101	Working register 5				
WR6	10110	Working register 6				
WR7	10111	Working register 7				
RAM0	11000	RAM block 0				
RAM1	11001	RAM block 1				
BP0	11010	Base pointer 0				
BP1	11011	Base pointer 1				
IX0	11100	Index register 0				
IX1	11101	Index register 1				
						

K register

L register

K

11110

11111

Table 9. Branch Condition Summary (C Field)

C Field (14-10)	Jump with Condition
	Jump unconditionally
	Subroutine call
	Return from interrupt or subroutine
	
	Jump if ROM pointer not zero
	Jump if zero flag 0 is set
	Jump if zero flag 0 is reset
	Jump if zero flag 1 is set
00111	Jump if zero flag 1 is reset
01000	Jump if carry flag 0 is set
01001	Jump if carry flag 0 is reset
01010	Jump if carry flag 1 is set
01011	Jump if carry flag 1 is reset
01100	Jump if sign flag 0 is set
01101	Jump if sign flag 0 is reset
01110	Jump if sign flag 1 is set
01111	Jump if sign flag 1 is reset
10000	Jump if overflow flag 0 is set
10001	Jump if overflow flag 0 is reset
10010	Jump if overflow flag 1 is set
10011	Jump if overflow flag 1 is reset
10100	Jump if exponent overflow flag 0 is set
10101	Jump if exponent overflow flag 1 is set
10110	Jump if SI register is not full
10111	Jump if SO register is not empty
11000	Jump if input port 0 is on
11001	Jump if input port 1 is on
11010	Jump if index register 0 nonzero
11011	Jump if index register 1 nonzero
11100	Jump if base pointer 0 nonzero
11101	Jump if base pointer 1 nonzero
11110	Jump if ready is on
11111	Jump if request for master is on
	01001 01010 01011 01100 01101 01101 01111 10000 10001 10010 10010 10101 10110 10111 11000 11001 11010 11010 11010 11010 11010 11010 11010 11010 11010 11010 11010 11010 11010 11010 11010 111100 111100 111100 111100 111100

System Configurations

The μ PD77230 may be configured in a variety of ways, from simple systems to complex. Figure 6 is the simplest example showing the μ PD77230 as a standalone processor performing a preset filtering function. The only other devices needed are A/D and D/A converters, which can be a single-chip combo device as shown in the figure plus necessary clock and timing circuitry. Figure 7 shows the same stand-alone operation with external memory and memory-mapped I/O to implement various control functions along with processing the signal itself.

Figure 6. Stand-Alone μPD77230 with Codec

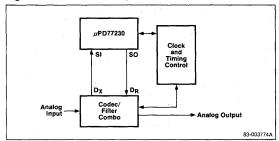


Figure 7. Stand-Alone μPD77230 with Codec, External Memory, and I/O

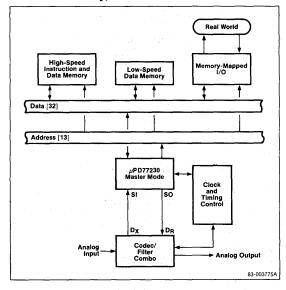


Figure 8 shows a μ PD77230 in a slave mode as a peripheral to a host processor. Note that in slave mode, the μ PD77230 can still be the "master" of its local bus with the four general purpose I/O pins available for use.

Figure 9 shows how to cascade multiple μ PD77230s to increase system throughput. The cascading is done by using only the serial ports so that the μ PD77230s themselves can be in any mode of operation desired. For example, they may all be in master mode, they may all be slaves to the same host processor, they may all be slaves to different hosts, or one may be the master with the others as slaves to it.

Figure 10 shows an arbitrarily large system with cascading master mode and slave mode μ PD77230s. In this example, the master μ PD77230 might do little actual signal processing. Instead, it will be an overall system controller gathering information from inputs in

the I/O block, from the slave μ PD77230 I/O ports, and from its own processing of the signal. It will then control the other μ PD77230s and the system outputs of the I/O block.

Support Tools

The µPD77230 has a wide variety of development and software support tools. Both absolute and relocatable assemblers, with powerful pre-assembler options, are available. In addition, a software simulator and incircuit emulator will aid the designer in performance evaluation and hardware integration. The software tools options are as follows:

• Assembler: CP/M-86, VAX VMS, VAX UNIX

• Simulator: VAX VMS, VAX UNIX

Figure 8. Slave μPD77230 as Peripheral to Host Processor

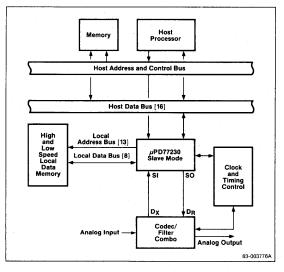


Figure 9. µPD77230s Cascaded Through Serial I/O Ports

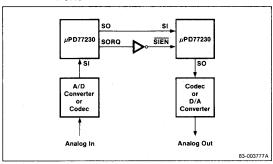
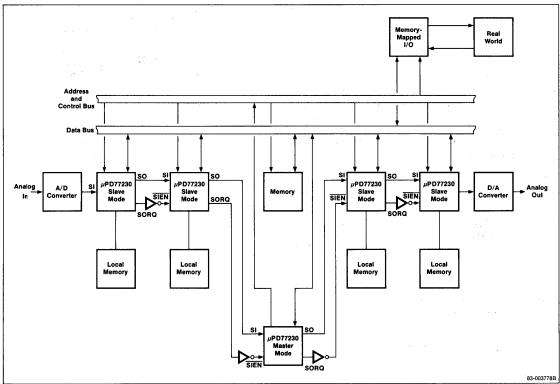



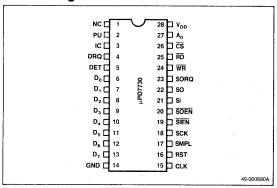
Figure 10. Large System with Many Options

Description

The μ PD7730 speech encoder/decoder (SED) is a dedicated processor that encodes pulse coded modulation (PCM) data into adaptive differential pulse coded modulation (ADPCM) data, and decodes ADPCM data into PCM data. By using the ADPCM coding technique, the μ PD7730 effectively reduces the bandwidth of a speech signal to less than half that of the conventional PCM method without sacrificing speech quality.

The μ PD7730 accepts PCM data through its serial interface. The serial interface can be connected directly to a single-chip coder/decoder (CODEC) for digital μ -law PCM I/O or to a general purpose A/D-D/A converter for linear PCM code. The μ PD7730 interfaces to the host CPU through a standard microprocessor bus interface. The μ PD7730 acts as a complex peripheral device and is controlled and programmed from the host processor. ADPCM data is transferred between the μ PD7730 and the host processor through the parallel bus.

The μ PD7730 encodes/decodes toll quality speech at 32 kbps. It integrates NEC's speech coding expertise with a high-performance signal processor. It is ideal for office automation applications, such as voice store and forward systems, and for various telecommunication applications. It reduces voice transmission bandwidth and voice storage requirements by half (from 64 kbps to 32 kbps).


Features

Toll quality speech at 32 kbps (meets CCITT recommendation G.712)
 Program selectable bit rate: 32 kbps or 24 kbps
 Program selectable PCM data format: μ-law or linear
 Standard microprocessor interface to the host CPU
 Direct serial interface to a CODEC
 Speech detection interface capability
 NMOS technology
 Single +5 V power supply

Ordering Information

Part	Package	Max Frequency		
Number	Type	of Operation		
μPD7730C	28-pin plastic DIP	8.192		

Pin Configuration

Pin Identification

No.	Symbol	Function				
1	NC	No connection				
2	PU	Pull up to V _{DD}				
3	IC	Internal connection				
4	DRQ	Data request output				
5	DET	Signal detect output				
6-13	D ₀ -D ₇	I/O data bus				
14	GND	Ground				
15	CLK	Clock input				
16	RST	Reset input				
17	SMPL	Sample input				
18	SCK	Serial clock input				
19	SIEN	Inputs serial input enable				
20	SOEN	Inputs serial output enable				
21	SI	Serial input				
22	S0	Serial output				
23	SORQ	Serial output request				
24	WR	Write signal input				
25	RD	Read signal input				
26	CS	Chip select input				
27	A ₀ .	Register select input				
28	V_{DD}	Power supply				

Pin Functions

D₀-D₇ (Data Bus)

Three-state I/O lines that interface with the host CPU data bus.

CS (Chip Select)

This input enables the RD and WR signals.

A₀ (Register Select)

This input selects the $\mu PD7730$ internal registers. A high input selects the status register. A low input selects the data register.

DRQ (Data Request)

This output requests data transfer between the μ PD7730 and host CPU. In encoder mode, an ADPCM data read is requested. In decoder mode, an ADPCM data write is requested. (DRQ will not work unless encoder or decoder mode is specified.) The data request status can also be checked by polling the RQM bit of the status register.

DET (Signal Detect)

This output is asserted when the input audio signal level exceeds the threshold level specified.

WR (Write Signal)

This input controls data transfer from the host CPU to the µPD7730.

RD (Read Signal)

This input controls data transfer from the $\mu PD7730$ to the host CPU.

SMPL (Sample)

This input determines the rate at which the μ PD7730 processes ADPCM data. This rate must equal the sampling clock of the A/D-D/A converter. SMPL must be active for the μ PD7730 to recognize an operation command.

SCK (Serial Clock)

This input provides timing for transfer of serial data to/from the A/D-D/A converter.

SI (Serial Input)

Serial data input.

SIEN (Serial Input Enable)

This input enables data transfer on the SI pin. If not used, tie to $\overline{\text{SOEN}}$. $\overline{\text{SIEN}}$ must be asserted for the μPD7730 to recognize an operation command.

SO (Serial Output)

Serial data output.

SORQ (Serial Output Request)

This output indicates that serial request output data is ready for transfer at the SO pin.

SOEN (Serial Output Enable)

This input enables data transfer on the SO pin. If not used, tie to SIEN.

CLK (Clock)

8.192 MHz TTL clock input.

RST (Reset)

A high input to this pin initializes the μ PD7730.

V_{DD}

+5 V power supply.

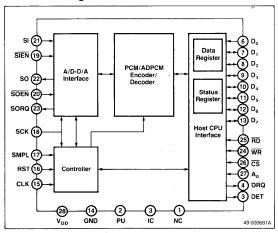
PU (Pull up)

Pull this pin up to V_{DD}.

GND (Ground)

Connection to ground.

IC (Internal Connection)

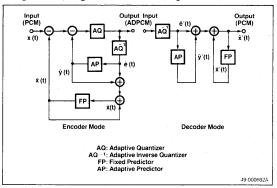

This pin is connected internally and should be left open.

NC (No Connection)

This pin is not connected.

Block Diagram

Functional Description


The μ PD7730 has the following functional units:

- A/D-D/A interface
- PCM/ADPCM encoder/decoder
- Controller
- Data register
- Status register
- Host CPU interface

The ADPCM method is a medium bandwidth coding technique that represents speech waveforms. The specific ADPCM used employs a robust adaptation scheme for a quantizer and predictor to withstand transmission bit errors. Figure 1 shows the block diagram of the algorithm. The algorithm uses a backward adaptive quantizer and a fixed predictor so it never generates unstable poles in a decoder transfer function. This approach guarantees the stability of the decoder even with transmission errors.

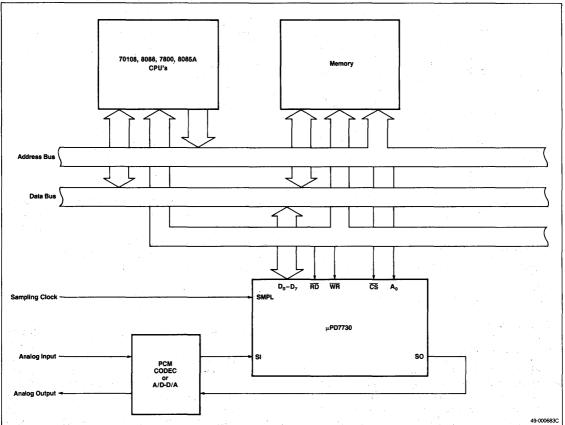
The μ PD7730 can operate in either encoder or decoder mode, and can only be set to one of the two modes at a time; it cannot handle simultaneous encoding and decoding. In encoder mode, the μ PD7730 accepts either linear or μ -law PCM data from its serial voice interface, encodes it to ADPCM data format, and passes the ADPCM data through the parallel data bus to the host system. In decoder mode, the μ PD7730 receives ADPCM data from the host CPU, decodes it to either linear or μ -law format, and sends it to the output port of the serial interface.

Figure 1. Algorithm Block Diagram

The μ PD7730 has serial interfaces that can connect directly to a single-chip PCM CODEC. It interfaces easily to a host CPU through its parallel bus. With its standard microprocessor bus interface, the μ PD7730 can be viewed as a complex peripheral circuit. Figure 2 shows a typical system configuration.

Operational Description

Power-on and Reset


The μ PD7730 operates on a single-phase, 50-50 duty cycle clock at 8 MHz. At power-on, asserting the RST pin for at least 3 clock cycles initializes the device, making it ready for an operation command from the host CPU. After the μ PD7730 receives the command, it stays in the specified operational mode until the next hardware reset (high level on RST). Thus, to change the μ PD7730 into different modes, reset it before writing an operation command.

Host CPU Interface

In order to transfer ADPCM data, commands, and status, the μ PD7730 interfaces with the host CPU via D₀-D₇. Further communication is through control lines \overline{CS} , A₀, \overline{WR} , and \overline{RD} . \overline{CS} enables \overline{RD} and \overline{WR} . A₀ selects either the data or status register. A low input to A₀ selects the data register. This read/write register handles both commands and ADPCM data transfer. A high input to A₀ selects the status register, a read-only register that the CPU reads to determine the state of the μ PD7730.

Figure 2. Typical System Configuration

Parallel I/O Operation

Table 1 shows the status of the \overline{CS} , A_0 , \overline{WR} , and \overline{RD} pins during parallel I/O operation.

Status Register

Figure 3 shows the format of the status register.

Operation Command

Following a power-on reset, the host CPU polls the RQM bit in the status register. When the RQM bit is set, the host CPU can send an operation command to the data register, as shown in figure 4.

Table 1. Control Line States

iabio		Commo		o olulos
CŠ	A ₀	WR	RD	Function
1 X	X	X 1	X 1	No effects on internal operation. D ₀ -D ₇ are high impedance.
0	0	. 0	1	Data from D_0 – D_7 is latched to the data register.
0	0	1	0	Contents of the data register are output to D_0 - D_7 .
0	× 15.	0	- 1	Illegal operation.
0	1	1	0	Contents of the status register are output to D_0 - D_7 .

Note:

X = don't care

Figure 3. Status Register Format

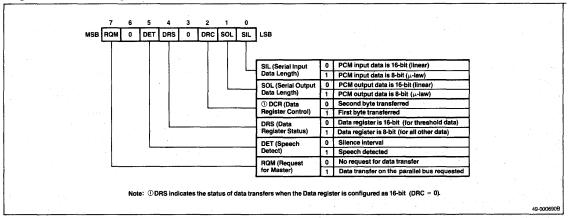
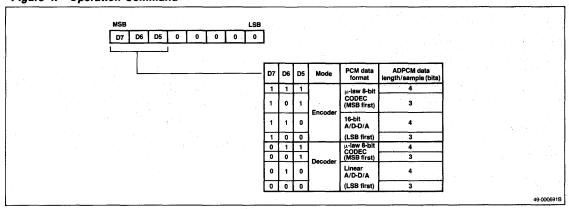
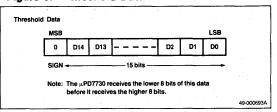



Figure 4. Operation Command



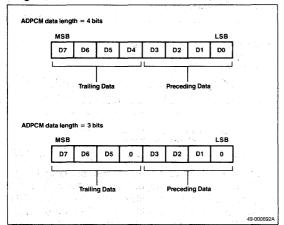
Threshold Data

If the operation command places the $\mu PD7730$ in encoder mode, the next two bytes sent to the data register are the threshold data. The RQM bit establishes the data transfer signaling. In decoder mode, no threshold data is expected. The threshold data sets the level of the audio signal at which the DET pin is asserted. Figure 5 shows the format for the threshold data.

The μ PD7730 asserts DET when the serial input audio signal exceeds the threshold level specified by the threshold data. Many silent segments exist in normal speech signals; memory storage can be used more efficiently if these segments are omitted. The host

Figure 5. Threshold Data

CPU can perform silent segment compression by using DET. The energy levels of 16 previous audio samples determine the state of DET. Thus DET changes at a 2 ms (16 x 8 kHz sampling) time frame. Bit 5 of the status register reflects the state of DET.


ADPCM Data

In encoder mode, the μ PD7730 generates one ADPCM sample (3 or 4 bits long) for each PCM sample input (8 or 16 bits long). In decoder mode, the reverse operation is performed: the μ PD7730 generates one PCM sample for each ADPCM sample input. To allow efficient data transfer to and from the host CPU, two ADPCM samples are packed into one byte and transferred at the rate of 1 byte per every 2 samples. Figure 6 illustrates the ADPCM data formats for 3 bits/sample and 4 bits/samples.

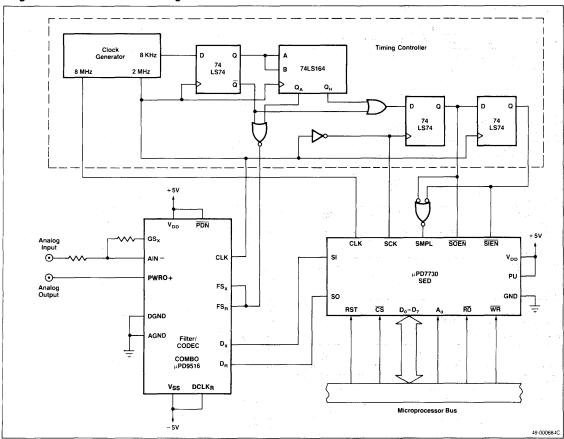
The DRQ pin initiates ADPCM data transfer. In encoder mode, this pin is asserted when ADPCM data in the data register is ready to be read by the CPU. This pin is cleared after the host CPU reads the data, and is reasserted when the next byte of ADPCM data becomes available. In decoder mode, this pin serves as the data request to the host for the next byte of ADPCM data to be sent to the data register. After the host CPU writes the ADPCM data, this pin is cleared. The host CPU cannot send another byte to the $\mu PD7730$ until this pin is set again. (Note that the DRQ pin will not work until the $\mu PD7730$ is placed in encoder or decoder mode.)

An alternate way to establish the ADPCM data transfer handshake is to poll the RQM bit in the status register. The RQM bit is set when transfer to the host is requested for ADPCM data, and in using the operation command. When the host read/write is complete, RQM is reset.

Figure 6. ADPCM Data Format

Serial PCM Interface

The serial PCM interface can be connected directly to a CODEC. SMPL, SCK, SIEN, SI, SORQ, SOEN, and SO control the PCM interface.


SMPL is the sampling clock input. This signal must equal the frequency of the sampling clock of the CODEC or the A/D-D/A interface. SMPL is asserted after the completion of serial data transfers. Thus SMPL signals the $\mu PD7730$ firmware to initiate processing of the next byte of ADPCM data. SMPL is rising-edge triggered, but must be held high for at least 8 clock cycles. Since it is edge-triggered, SMPL does not need to be released until the next sampling cycle.

SCK determines the timing of the serial input and output. When the μ PD7730 has data to send to the serial interface, SORQ goes high. The data is then clocked out to the SO pin serially at the falling edge of SCK, to be valid for the next rising edge. When serial data is ready to be sent to the μ PD7730, SIEN is asserted externally, and data at the SI pin is clocked in at the rising edge of SCK.

Figure 7 illustrates an example of the serial interface using a combined filter and CODEC (COMBO) chip, the μ PD9516. This chip provides both the low pass filtering function and the conversion from an analog signal to digital PCM μ -law representation. The timing controller provides the proper timing relationship between the COMBO and the μ PD7730.

Figure 7. Serial Interface Using a COMBO

Absolute Maximum Ratings*

 $T_A = 25^{\circ}C$

-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-10°C to +70°C
-65°C to +150°C

*Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25$ °C, $V_{DD} = 0 \text{ V}$

	Limits					Test	
Parameter	Symbol	bol Min	Тур	Max	Ųnit	Conditions	
CLK, SCK capacitance	Сф			20	ρF		
Input capacitance	CI			10	pF	fc = 1 MHz	
Output capacitance	Co			20	pF		

DC Characteristics

 $T_A = -10^{\circ}C \text{ to } +70^{\circ}C; V_{DD} = +5 \text{ V } \pm 5\%$

			Limits		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL}	-0.5		0.8	٧	
Input voltage high	V _{IH}	2.0		V _{CC} +0.5	٧	
CLK input voltage low	V _φ L	-0.5		0.45	V	
CLK input voltage high	۷фН	3.5	5- -	V _{CC} +0.5	٧	e e e
Output voltage low	V _{OL}			0.45	٧	$l_{OL} = 2.0 \text{ mA}$
Output voltage high	V _{OH}	2.4			٧	I _{OH} = -400 μA
Input leakage current low	LIL			- 10	μΑ	$V_i = 0 V$
Input leakage current high	ILIH		1 :	10	μΑ	$V_I = V_{DD}$
Output leakage current low	ILOL	4457	4: .	- 10	μΑ	$V_0 = 0.47 \text{ V}$
Output leakage current high	LOH			10	μΑ	$V_0 = V_{DD}$
Supply current	I _{DD}		180	280	mΑ	

AC Characteristics

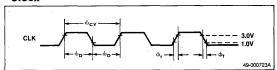
 $T_A = -10$ °C to +70°C; $V_{DD} = 5 \text{ V } \pm 5\%$

Limits				Test	
Symbol	Min	Тур	Max	Unit	Conditions
фСУ	122		2000	ns	:
φD	60			ns	
φr		W 2	10	ns	(1)
φf			10	ns	(1)
†AR	0			ns	
t _{RA}	0		ų.	ns	
t _{RR}	250	ar to t		ns	
t _{AW}	0		T by	ns	
t _{WA}	0			ns	
tww	250			ns	
t _{DW}	150			ns	
t _{WD}	0			ns	
t _{RV}	250			ns	
tscy	480		DC	ns	
tsck	230			ns	
t _{rSC}			20	ns	
tfSC			20	ns	
	PCY PD Pr	Symbol Min \$\phiCY\$ 122 \$\phiD\$ 60 \$\psir* 60 \$\psir* 60 \$\psir* 60 \$\psir* 0 \$\psir* 250 \$\psir* 250 \$\psir* 250 \$\psir* 150 \$\psir* 250 \$\psir* 250 \$\psir* 250 \$\psir* 480 \$\psir* 230 \$\psir* 230	Symbol Min Typ PCY 122	Symbol Min Typ Max \$\phi_{CY}\$ 122 2000 \$\phi_{D}\$ 60	Symbol MIn Typ Max Unit ∳CY 122 2000 ns ∳D 60 ns ns ∳r 10 ns †AR 0 ns ns tRA 0 ns ns tRR 250 ns ns tWA 0 ns ns tWW 250 ns ns tWD 0 ns ns tWD 0 ns ns tSCY 480 DC ns tSCK 230 ns ns

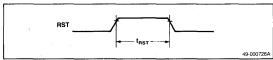
AC Characteristics (cont)

 $T_A = -10^{\circ}\text{C to } + 70^{\circ}\text{C}; V_{DD} = 5 \text{ V } \pm 5\%$

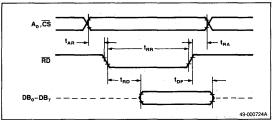
		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
SOEN set time for SCK	tsoc	50		t _{SCY} -30	ns	
SOEN hold time for SCK	t _{CSO}	30		t _{SCY} -50	ns	
SIEN, SI set time for SCK	t _{DC}	55		t _{SCY}	ns	
SIEN, SI hold time for SCK	t _{CD}	30		t _{SCY} -55	ns	
SIEN, SOEN pulse width high	t _{HS}	122		фСҮ		
RST pulse width	t _{RST}	4		фСҮ		
SMPL pulse width	1 t _{SMPL}	8		фСY		
Delay time between SMPL and SIEN (SOEN)	t _{DX}	-1	0	1	μS	
Data access time for RD	t _{RD}			150	ns	C _L = 100 pF
Data float time for RD	t _{DF}	10	2	100	ns	C _L = 100 pF
SORQ delay	t _{DRQ}	30		150	ns	C _L = 50 pF
S0 delay time	tDCK			150	ns	
SO delay time for SORQ	t _{DZRQ}	20		300	ns	
SO delay time for SCK	T _{DZSC}	20		300	ns	
SO delay time for SOEN	t _{DZE}	20		180	ns	
SO float time for SOEN	tHZE	20		200	ns	
SO float time for SCK	t _{HZSC}	20		300	ns	
SO float time for SORQ	t _{HZRQ}	70	4	300	ns	*


Note

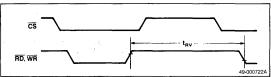
(1) AC timing measuring point voltage = 1.0 V and 3.0 V

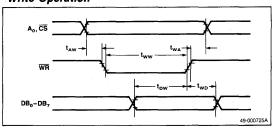


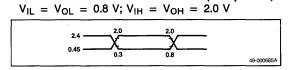
Timing Waveforms


Clock

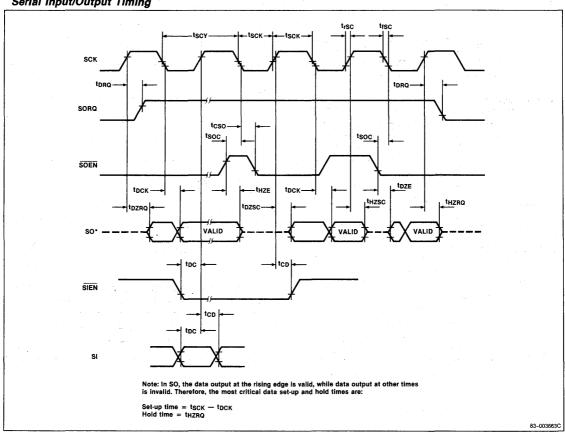
Reset

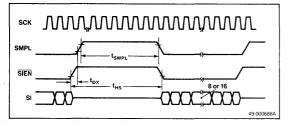

Read Operation


Sample

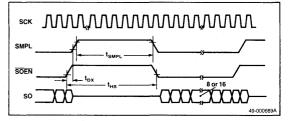

Read/Write Cycle Timing

Write Operation


AC Waveform Measurement Points (except CLK)



Timing Waveforms (cont)

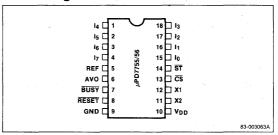

Serial Input/Output Timing

Serial Input Timing

Serial Output Timing

Description

The μ PD7755 and μ PD7756 are speech synthesis LSI devices that utilize the adaptive differential pulse coded modulation (ADPCM) coding method to produce high-quality, natural speech synthesis. By combining phoneme classification with the ADPCM method, the device achieves a compressed bit rate that can synthesize sound effects and melodies in addition to speech sound. A built-in speech data ROM allows synthesis of messages up to 12 seconds (μ PD7755) or 30 seconds (μ PD7756) long. A wide range of operating voltages, a compact package, and a standby function permit application of the μ PD7755/56 in a variety of speech synthesis systems, including battery-driven systems.


Features

- ☐ High quality speech synthesis using ADPCM method
 ☐ Low bit rates (8K to 32K bps) realized by combined use of ADPCM and phoneme methods
- ☐ D/A converter with 9-bit resolution, unipolar current waveform output
- ☐ Built-in speech data ROM,
 - μPD7755: 96K bits
 - $-\mu$ PD7756: 256K bits
- ☐ Standby function
- \Box Current consumption in standby mode: 1 μ A typ (V_{DD} = 3 V)
- ☐ Circuit to eliminate popcorn noise when entering or releasing standby mode
- ☐ Wide operating voltage range: 2.7 to 5.5 V
- ☐ CMOS technology
- ☐ 18-pin plastic DIP

Ordering Information

Part Number	Package Type	ROM Capacity	Max Frequency of Operation
μPD7755C	18-Pin plastic DIP	96K bits	650 kHz
μPD7756C	18-Pin plastic DIP	256K bits	650 kHz

Pin Configuration

Pin Identification

No.	Symbol	Name
15-18, 1-4	l ₀ -l ₇	Message select code input
5	REF	D/A converter reference current input
6	AV0	Analog voice output
7	BUSY	Busy output
8	RESET	Reset input
9	GND	Ground
10	V _{DD}	Power
11, 12	X2, X1	Clock
13	CS	Chip select input
14	ŜŦ	Start input

Pin Functions

In-I7 [Message Select Code]

 I_0 – I_7 input the message number of the message to be synthesized. The inputs are latched at the rising edge of the \overline{ST} input. Unused pins should be grounded. In standby mode, these pins should be set high or low. If they are biased at or near typical CMOS switch input, they will drain excess current.

CS [Chip Select]

When the CS input goes low, ST is enabled.

ST [Start]

Setting the \overline{ST} input low while \overline{CS} is low will start speech synthesis of the message in the speech ROM locations addressed by the contents of I₀-I₇. If the device is in standby mode, standby mode will be released.

BUSY [Busy]

BUSY outputs the status of the µPD7755/56. It goes low during speech decode and output operations. When ST is received, BUSY goes low. While BUSY is low, another ST will not be accepted. In standby mode, BUSY becomes high impedance. This is an active low output.

AVO [Analog Voice Output]

AVO outputs synthesized speech from the D/A converter. This is a unipolar sink-load current.

RESET [Reset]

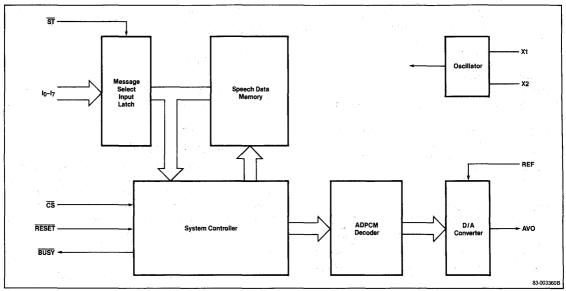
The RESET input initializes the chip. Use RESET following power-up to abort speech synthesis or to release standby mode. RESET must remain low at least 12 oscillator clocks. At power-up or when recovering from standby mode, RESET must remain low at least 12 more clocks after clock oscillation stabilizes.

X1, X2 [Clock]

Pins X1 and X2 should be connected to a 640 kHz ceramic oscillator. In standby mode, X1 goes low, and X2 goes high.

REF [D/A Converter Reference Current]

REF inputs the sink-load current that controls the D/A converter output. REF should be connected to V_{DD} via a resistor. In standby mode, REF becomes high impedance.


GND [Ground]

Ground.

V_{DD} [Power]

+5 V power supply.

Block Diagram

AND THE RESERVE

Operational Description

The clock pins should be connected to a ceramic oscillator at 640 kHz.

The $\overline{\text{RESET}}$ input pin is used to initialize the μ PD7755/56. To reset, assert the pin for a minimum of 12 oscillator clock cycles.

The μ PD7755/56 can operate with a wide range of supply voltages: 2.7 to 5.5 V. It also has a standby function; it goes to a standby mode when it has been idle (that is, when $\overline{\text{CS}}$, $\overline{\text{ST}}$, or $\overline{\text{RESET}}$ have not been asserted) for more than 3 seconds. The μ PD7755/56 will automatically release from standby mode when $\overline{\text{CS}}$ and $\overline{\text{ST}}$ are asserted again, or when $\overline{\text{RESET}}$ is asserted.

The μ PD7755/56 has a very simple message selection interface. A μ PD7755/56 can store a maximum of 256 different messages and up to 12 (μ PD7755) or 30 (μ PD7756) seconds of speech. The message is selected by using the input pins I₀-I₇. The input selection is latched at the rising edge of \overline{ST} when \overline{CS} is asserted. When \overline{ST} is asserted, \overline{BUSY} will go low until the selected audio speech output is completed. While \overline{BUSY} is low, a new \overline{ST} will not be accepted.

The μ PD7755/56 has an internal D/A converter that is a unipolar, current-output type with 9-bit resolution. The output current of the D/A can be controlled by the voltage applied at the REF pin.

Absolute Maximum Ratings

$T_A = 25$ °C	
Supply voltage, V _{DD}	-0.3 to +7.0 V
Input voltage, V _I	-0.3 to $V_{DD} + 0.3$ V
Output voltage, V ₀	-0.3 to V _{DD} + 0.3 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-40 to +125°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25\,^{\circ}C$

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input pin capacitance	Cl			10	ρF	fc = 1 MHz
Output pin capacitance	C ₀			20	pF	

DC Characteristics

 $T_A = -10 \text{ to } +70 \,^{\circ}\text{C}; V_{DD} = 2.7 \text{ to } 5.5 \text{ V}; f_{osc} = 640 \text{ kHz}$

			Limits			Test
Parameter :	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage high	V _{IH}	0.7 V _{DD}		V _{DD}	٧	Common to I_0 - I_7 , \overline{ST} , \overline{CS} , \overline{RESET}
Input voltage low	V _{IL}	0	-	0.3 V _{DD}	٧	Common to I ₀ -I ₇ , \overline{ST} , \overline{CS} , \overline{RESET}
Output voltage high	V _{OH}	∨ _{DD} -0.5		V _{DD}	٧	BUSY. I _{0H} = -100 μA
Output voltage low	v _{OL}	0		0.5	٧	$\overline{\text{BUSY}}$ $I_{\text{OL}} = 200 \mu\text{A}$
Input leakage current	l _U			±3	μΑ	$\begin{array}{l} \text{Common to} \\ I_0\text{-}I_7, \overline{ST}, \\ \overline{CS}. 0 \leq V_{IN} \\ \leq V_{DD} (\text{in} \\ \text{standby mode}) \end{array}$
Output leakage current	l _{L0}			±3	μΑ	$\begin{array}{l} \overline{\text{BUSY.}} \ 0 \leq \\ \text{V}_0 \leq \text{V}_{DD} \\ \text{(in standby mode)} \end{array}$
Supply current	I _{DD1}		8.0	2	mΑ	-
	I _{DD2}		1	20	μΑ	Standby mode
and the second	I _{DD3}		250	600	μΑ	$2.7 \leq V_{DD} \leq 3.3$
Section 5	I _{DD4}		1	10	μΑ	$2.7 \le V_{DD} \le 3.3$ in standby mode
Reference input high current	I _{REF1}	140	250	440	μΑ	$V_{DD}=2.7,$ $R_{REF}=0~\Omega$
area (1)	I _{REF2}	500	760	1200	μΑ	$V_{DD} = 5.5$, $R_{REF} = 0 \Omega$
Referenceinput low current area (1)	I _{REF3}	21	35	37	μΑ	$V_{DD} = 2.7$, $R_{REF} = 50 \text{ k}\Omega$
	I _{REF4}	68	78	88	μΑ	$V_{DD} - 5.5 V$, $R_{REF} = 50 k\Omega$
D/A converter output current (1)	l _{AV0}	32I _{REF}	34I _{REF}	36I _{REF}	μΑ	$\begin{array}{l} 2.7 \leq V_{DD} \leq 5.5 \\ V_{AVO} = 2.0, \\ D/A \ input = \\ 1FFH \end{array}$
D/A converter output leakage current	I _{LA}			±5	μΑ	$\begin{array}{l} 0 \leq V_{AVO} \leq \\ V_{DD} \end{array}$

Note:

(1) See figure 1.

AC Characteristics and reduce the second 2000

 $T_A = -10^{\circ} \text{ to } +70^{\circ}\text{C}; V_{DD} = 2.7 \text{ to } 5.5 \text{ V}; f_{osc} = 640 \text{ kHz}$

. a 2			Limits			Test Conditions
Parameter .	Symbol	Min	Тур	Max	Unit	
ST pulse	t _{CC1}	. 2	,,,,,		μS	1.00
width	t _{CC2}	350			ns	$4.5 < V_{DD} < 5.5$
Data set	t _{DW1}	2			μS	
time	t _{DW2}	350		4	ns	$4.5{<}V_{DD}{<}5.5$
Data hold time	t _{WD}	0			ns	
CS set-up time	t _{CS}	0			ns	
CS hold time	t _{SC}	0			ns	
CLK frequency	fosc	630	640	650	kHz	,
BUSY	t _{SB0}		6.25	10	μS	Operation mode
output time (from ST and/or CS)	t _{SBS}	v. v.	4	80	ms	Standby mode, including oscillation start time(1)
Speech output	t _{SS0}		2.1	2.2	ms	Operation mode (from BUSY)
start time	tsss		2.1	2.2	ms	Standby mode
D/A converter set-up time	t _{DA}	-	46.5	47	ms	Entering/ releasing standby mode
BUSY float time	t _{BF}			15	μS	From end of speech output
Standby transition time	t _{STB}		2.9	3	S	From end of speech output

Note:

(1) Ceramic resonators: Kyocera Corp. KBR-640B (C1 = C2 = 150 pF). See figure 2.

AC Waveform Measurement Points

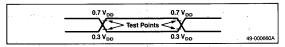
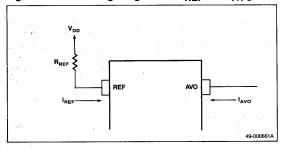
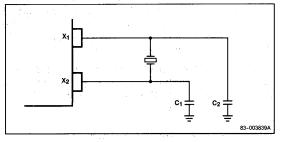
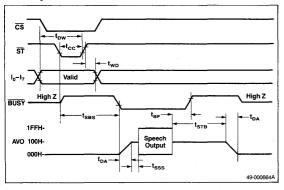
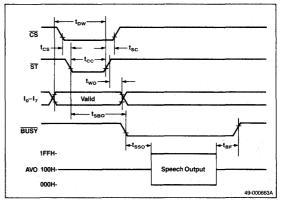


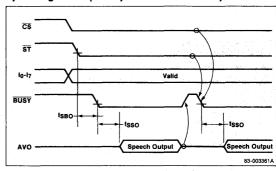
Figure 1. Measuring Diagram for IREF and IAVO


Figure 2. External Oscillator



Timing Waveforms


Standby Mode

Operating Mode (ST Input Pulse Mode)

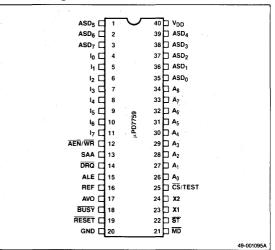
Operating Mode (ST Input Hold Low Mode)

dia.

PRELIMINARY INFORMATION

Description

The μ PD7759 is a speech synthesis device that utilizes the adaptive differential pulse coded modulation (ADPCM) coding method to produce high-quality, natural speech synthesis. By combining phoneme classification with the ADPCM method, the device achieves a compressed bit rate that can synthesize sound effects and melodies in addition to speech sound. The μ PD7759 can directly address up to 1M bits of external data ROM, or the host CPU can control the speech data transfer. The μ PD7759 is also suitable for applications requiring small production quantities, long synthesized messages, and for emulating the μ PD7755/7756.

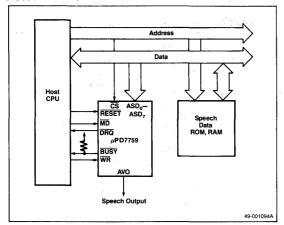

Features

- ☐ High-quality speech synthesis using ADPCM method
- ☐ Low bit-rates (8 to 32 kb/s) realized by combined use of ADPCM and phoneme methods
- ☐ D/A converter with 9-bit resolution, unipolar current waveform output
- $\hfill\square$ Up to 1M bits addressing for external data ROM
- ☐ Standby function
- ☐ Circuit to eliminate popcorn noise when entering or releasing standby mode
- \Box Wide operating voltage range: 2.7 to 5.5 V
- ☐ CMOS technology

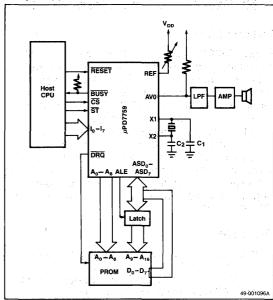
Ordering Information

		Max Frequency
Part Number	Package Type	of Operation
μPD7759C	40-pin plastic DIP	650 kHz

Pin Configuration



Pin Identification


No.	Symbol	Function
35-39 and 1-3	ASD ₀ -ASD ₇	Higher 8 bits of address output/ speech data input (multiplexed)
4-11	l ₀ -l ₇	Specifies message number; input
12	AEN/WR	Address valid output
13	SAA	Directory data output address valid
14	DRQ	Data request output signal
15	ALE	High address latch enable output signal
16	REF	Input reference current for DAC
17	AV0	Speech output (analog)
18	BUSY	Chip busy output
19	RESET	Initializes device; input
20	GND	Ground
21	MD	Mode select input (standalone/slave)
22	ST	Start synthesis strobe; input
23, 24	X1, X2	Ceramic resonator clock terminals
25	CS	Chip select input
26-34	A ₀ -A ₈	Lower 9 bits of address output for speech data
40	V _{DD}	Power supply, +5 V (typical)

Sample Circuit: CPU and the µPD7759 Directly Accessed PROM

Sample Application Circuit for the µPD7759

INTELLIGENT PERIPHERAL CONTROLLERS

Section 6 — Intelligent Peripheral Controllers

Magnetic Media C	ontrollers
μPD765A/7265	Single/Double Density Floppy Disk Controllers 6-3
μPD72065/66	Single/Double Density Floppy Disk Controllers 6-27
μPB9201	Floppy Disk Interface 6-55
μPD71065/66	Floppy-Disk Interface 6-63
μPD7260	Hard and Floppy Disk Controller 6-85
μPD7261A/B	Hard-Disk Controllers 6-87
μPD9306/A	CMOS Hard-Disk Interface 6-12
μPD7262	Enhanced Small Device Interface Controller 6-129
Communications	Controllers
μPD7201A	Multiprotocol Serial Communications Controller 6-13
μPD72001	CMOS Multiprotocol Serial Communications Controller 6-149
μPD72105	OMNINET Local Area Network Controller 6-15
μPD7210	Intelligent GPIB Controller 6-153
Graphics Controll	er
μPD7220A	High-Performance Graphics Display Controller 6-165

μPD765A/7265 SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLERS

Description

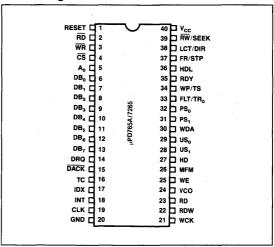
The μ PD765A is an LSI floppy disk controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to 4 floppy disk drives. It is capable of either IBM 3740 single density format (FM), or IBM System 34 double density format (MFM) including double-sided recording. The μ PD765A provides control signals which simplify the design of an external phase-locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy disk interface.

The μ PD7265 is an addition to the FDC family that has been designed specifically for the Sony Micro Floppydisk® drive. The μ PD7265 is pin-compatible and electrically equivalent to the 765A but utilizes the Sony recording format. The μ PD7265 can read a diskette that has been formatted by the μ PD765A.

Each of these devices is also available in a -2 version. The -2 versions represent a reduction from 4-micron to 3-micron design rule. Functionality is the same. Minor differences between the two versions are detailed in the AC Characteristics table. The -2 versions are only available in the plastic package at this time.

Hand-shaking signals are provided in the μ PD765A/ μ PD7265 which make DMA operation easy to incorporate with the aid of an external DMA controller chip, such as the μ PD8257. The FDC will operate in either the DMA or non-DMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.

There are 15 commands which the μ PD765A/ μ PD7265 will execute. Each of these commands requires multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:


Read Data
Read ID
Specify
Read Track
Scan Equal
Scan Low or Equal
Scan Data
Write Data
Format Track
Write Deleted Data
Seek
Recalibrate
Sense Interrupt Status
Sense Drive Status.

Features

Address mark detection circuitry is internal to the FDC which simplifies the phase-locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable. The μ PD765A/ μ PD7265 offers additional features such as multi-track and multi-side read and write commands and single and double density capabilities.

- Sony (EMCA)-compatible recording format (μPD7265)
- IBM-compatible format (single and double density) (μPD765A)
- ☐ Multi-sector and multi-track transfer capability
- ☐ Drive Up to 4 floppy or micro floppydisk drives
- Data scan capability will scan a single sector or an entire cylinder comparing byte-for-byte host memory and disk data
- □ Data transfers in DMA or non-DMA mode
- ☐ Parallel seek operations on up to four drives
- Compatible with μPD8080/85, μPD8086/88 and μPD780 (Z80®) microprocessors
- ☐ Single-phase clock (8 MHz)

Pin Configuration

Z80 is a registered trademark of the Zilog Corporation.

Ordering Information

Part Number	Package Type	Max Freq. of Operation
μPD765AC, μPD765AC-2	40-pin plastic DIP	8 MHz
μPD7265C, μPD7265C-2	40-pin plastic DIP	8 MHz

Pin Identification

No.	Symbol	Function
1	RESET	Reset input
2	RD	Read control input
3	WR	Write control input
4	CS	Chip select input
5	A ₀	Data or status select inpu
6-13	DB ₀ -DB ₇	Bidirectional data bus
14	DRQ	DMA request output
15	DACK	DMA acknowledge input
16	TC	Terminal count input
17	IDX .	Index input
18	INT	Interrupt request output
19	CLK	Clock input
20	GND	Ground
21	WCK	Write clock input
22	RDW	Read data window input
23	RDD	Read data input
24	VCO	VCO sync output
25	WE	Write enable output
26	MFM	MFM output
27	HD	Head select output
28, 29	US ₀ , US ₁	FDD unit select output
30	WDA	Write data output
31, 32	PS ₀ , PS ₁	Preshift output
33 ,	FLT / TR ₀	Fault / track zero input
34	WP/TS	Write protect / two side input
35	RDY	Ready input
36	HDL	Head load output
37	FR/STP	Fault reset / step output
38	LCT/DIR	Low current direction output
39	RW / SEEK	Read / write / seek output
40	V _{CC}	DC power

Pin Functions

RESET (Reset)

The RESET input places the FDC in the idle state. It resets the output lines to the FDD to 0 (low). It does not affect SRT, HUT, or HLT in the Specify command. If the RDY input is held high during reset, the FDC will generate an interrupt within 1.024 ms. To clear this interrupt, use the Sense Interrupt Status command.

RD (Read Strobe)

The \overline{RD} input allows the transfer of data from the FDC to the data bus when low. Disabled when \overline{CS} is high.

WR (Write Strobe)

The WR input allows the transfer of data to the FDC from the data bus when low. Disabled when \overline{CS} is high.

A₀ (Data/Status Select)

The A_0 input selects the data register ($A_0 = 1$) or status register ($A_0 = 0$) contents to be sent to the data bus.

CS (Chip Select)

The FDC is selected when \overline{CS} is low, enabling \overline{RD} , \overline{WR} , and A_0 .

DB₀-DB₇ (Data Bus)

 DB_0-DB_7 are a bidirectional 8-bit data bus. Disabled when \overline{CS} is high.

DRQ (DMA Request)

The FDC asserts the DRQ output high to request a DMA transfer.

DACK (DMA Acknowledge)

When the DACK input is low, a DMA cycle is active and the controller is performing a DMA transfer.

TC (Terminal Count)

When the TC input is high, it indicates the termination of a DMA transfer. It terminates data transfer during Read/ Write/Scan commands in DMA or interrupt mode.

IDX (Index)

The IDX input goes high at the beginning of a disk track.

INT (Interrupt)

The INT output is FDC's interrupt request.

CLK (Clock)

CLK is the input for the FDC's single-phase, 8 MHz squarewave clock.

WCK (Write Clock)

The WCK input sets the data write rate to the FDD. It is 500 kHz for FM, 1 MHz for MFM drives, with a 250 ns pulse for both FM and MFM.

RDW (Read Data Window)

The RDW input is generated by the phase-locked loop (PLL). It is used to sample data from the FDD.

RDD (Read Data)

The RDD input is the read data from the FDD, containing clock and data bits.

WDA (Write Data)

WDA is the serial clock and data output to the FDD.

WE (Write Enable)

The WE output enables write data into the FDD.

VCO (VCO Sync)

The VCO output inhibits the VCO in the PLL when low, enables it when high.

MFM (MFM Mode)

The MFM output shows the FDD's mode. It is high for MFM, low for FM.

HD (Head Select)

Head 1 is selected when the HD output is 1 (high), head 0 is selected when HD is 0 (low).

US₀, US₁ (Unit Select 0, 1)

The \mbox{US}_0 and \mbox{US}_1 outputs select the floppy disk drive unit.

PS₀, PS₁ (Preshift 0, 1)

The PS₀ and PS₁ outputs are the write precompensation status for MFM mode. They determine early, late, and normal times.

RDY (Ready)

The RDY input indicates that the FDD is ready to receive data.

HDL (Head Load)

The HDL output is the command which causes the read/write head in the FDD to contact the diskette.

FLT/TR0 (Fault/Track 0)

In the read/write mode, the FLT input detects FDD fault conditions. In the seek mode, TR0 detects track 0.

WP/TS (Write Protect/Two Side)

In the read/write mode, the WP input senses write protected status. In the seek mode, TS senses two-sided media.

FR/STP (Fault Reset/Step)

In the read/write mode, the FR output resets the fault flip-flop in the FDD. In the seek mode, STP outputs step pulses to move the head to another cylinder. A fault reset pulse (FR) is issued at the beginning or each Read or Write command prior to the HDL signal.

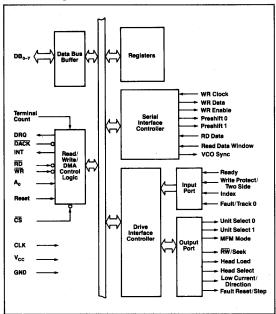
LCT/DIR (Low Current/Direction)

In the read/write mode, the LCT output lowers the write current on the inner tracks. In the seek mode, the DIR output determines the direction the head will move in when it receives a step pulse.

RW/SEEK (Read/Write/Seek)

The RW/SEEK output specifies the read/write mode when low, and the seek mode when high.

GND (Ground)


Ground.

$V_{CC}(+5V)$

+5 V power supply.

Block Diagram

Absolute Maximum Ratings

 $T_{\Delta} = 25$ °C

Power supply voltage, V _{CC}	-0.5 to +7 V
Input voltage, V _I	-0.5 to +7 V
Output voltage, V ₀	-0.5 to +7 V
Operating temperature, T _{OPT}	-10°C to +70°C
Storage temperature, T _{STG}	-40°C to +125°C
Power dissipation, P _D	1W

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device should not be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $\rm T_A = -10\,^{\circ}C$ to +70 $^{\circ}C$, $\rm V_{CC} = +5~V~\pm5\%$ (µPD765A/7265A) and $\rm V_{CC} = +5V~\pm10\%$ (µPD765A-2/7265A-2)

			Limits	3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL}	-0.5		+0.8	۷	
Input voltage high	V _{IH}	2.0		V _{CC} +0.	5 V	
Output voltage low	V _{OL}			0.45	٧	$I_{OL} = 2.0 \text{mA}$
Output voltage high	V _{OH}	2.4	•	V _{CC}	٧	$I_{OH} = -200 \mu\text{A}$
Input voltage low (CLK + WR clock)	V _{IL} (Φ)	-0.5		0.65	V	
Input voltage high (CLK + WR clock)	V _{IH} (Φ)	2.4		V _{CC} +0.	5 V	
Supply current (V _{CC})	Icc			150	mA	
Input load current high	ILIH			10	μΑ	$V_{IN} = V_{CC}$
Input load current low	I _{LIL}			- 10	μΑ	V _{IN} = 0 V
Output leakage current high	ILOH			10	μΑ	V _{OUT} = V _{CC}
Output leakage current low	ILOL			-10	μΑ	$V_{OUT} = +0.45 \text{ V}$

Capacitance

 $T_A = 25$ °C, $f_C = 1$ MHz, $V_{CC} = 0$ V

			Limits			Test Conditions
Parameter	Symbol	Min	Тур	Max	Unit	
Input clock capacitance	C _{IN} (Φ)			20	pF	(Note 1)
Input capacitance	C _{IN}			10	pF	(Note 1)
Output capacitance	C _{OUT}			20	pF	(Note 1)

(1) All pins except pin under test tied to AC ground

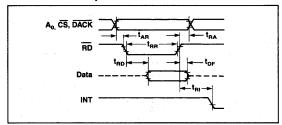
AC Characteristics

 $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V $\pm 5\%$ (μ PD765A/7265A) and $V_{CC} = +5$ V $\pm 10\%$ (μ PD765A-2/7265A-2)

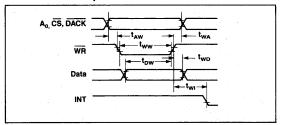
			765A, 7265		nits 76	5A-2, 7265			_
Parameter	Symbol	Min	705A, 7205 Typ(1)	Max	Min	Typ (1)	-z Max	Unit	Test Conditions
Clock period	ФСА	120	125	500	120	125	500	ns	(Note 4)
Older period	ΨCY	120	125		120	125	300	ns	8" FDD
			250			250		ns	51/4" FDD
			125			125		ns	31/2" Sony (3)
Clock active (high, low)	Φ ₀	40		-	40			ns	
Clock rise time	Φr	_		20	_		20	ns	
Clock fall time	Φf			20			20	ns	
A ₀ , CS , DACK setup time to RD ↓	t _{AR}	0			0			ns	
A ₀ , CS, DACK hold time from RD↑	t _{RA}	0			0			ns	
RD width	t _{RR}	250			200			ns	
Data access time from RD↓	t _{RD}			200			140	ns	C _L = 100 pF
DB to float delay time from RD↑	t _{DF}	20		100	10		85	ns	C _L = 100 pF
A ₀ , CS , DACK setup time to WR ↓	t _{AW}	0			0			ns	
A ₀ , CS , DACK hold time to WR ↑	t _{WA}	0			0			ns	-
WR width	t _{WW}	250			200			ns	
Data setup time to WR↑	t _{DW}	150			100			ns	
Data hold time from WR↑	t _{WD}	5			0			ns	
INT delay time from RD↑	t _{RI}			500			400	ns .	
INT delay time from WR↑	t _{WI}			500			400	ns	
DRQ cycle time	t _{MCY}	13			13			μS	$\Phi_{CY} = 125 \text{ ns } (4)$
DACK ↓ → DRQ ↓ delay	t _{AM}			200			140	ns	
DRQ↑ → DACK ↓ delay	t _{MA}	200			200			ns	$\Phi_{CY} = 125 \text{ ns } (4)$
DACK width	t _{AA}	2			2			ФСҮ	
TC width	t _{TC}	1			.1			ФСҮ	
Reset width	t _{RST}	14			14			ФСҮ	
WCK cycle time	tcy		4			16		ФСҮ	MFM = 0, 51/4"
			2			8		ФСА	MFM = 1, 51/4"
			2			8		ФСҮ	MFM=0,8"
			1 .			4		ФСҮ	MFM=1, 8"
			2			8		ФСҮ	MFM = 0, 31/2'' (3)
· · · · · · · · · · · · · · · · · · ·			1		_	4		ФСҮ	MFM = 1, 31/2''(3)
WCK active time (high)	t ₀		2			2		ФСҮ	
CLK↑ → WCK↑ delay	tcwн	0		40	0		40	ns	· · · · · · · · · · · · · · · · · · ·
CLK↑ → WCK↓ delay	t _{CWL}	0		40	0		40	ns	1
WCK rise time	t _r			20	_		20	ns	
WCK fall time	tf		1000000	20			20	ns	
Preshift delay time from WCK1	t _{CP}	20		100	20		100	ns	
WCK↑ → WE↑ delay	t _{CWE}	20		100	20		100	ns	
WDA delay time from WCK†	t _{CD}	20		100	20		100	ns	
RDD active time (high)	t _{RDD}	40			40			ns	

AC Characteristics (cont)

 $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V $\pm 5\%$ (μ PD765A/7265A) and $V_{CC} = +5$ V $\pm 10\%$ (μ PD765A-2/7265A-2)

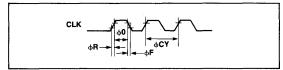

		Limits							
		765A, 7265		5	76	5A-2, 7265	5-2		Test
Parameter	Symbol	Min	Typ (1)	Max	Min	Typ (1)	Max	Unit	Conditions
Window cycle time	twcy		4			4		μS	MFM = 0, 51/4"
			2			2		μS	$MFM = 1, 5^{1/4}$ "
			2			2		μS	MFM=0,8"
			1			1		μS	MFM = 1, 8"
			2			2		μS	MFM = 0, 31/2''(3)
			1			1		μS	MFM = 1, 31/2"(3)
Window hold time to RDD	t _{RDW}	15			15			ns	
Window hold time from RDD	t _{WRD}	15			15			ns	100
US _{0, 1} hold time to RW / seek↑	t _{US}	12			12			μS	8 MHz clock period(4)
RW / seek hold time to low current / direction 1	t _{SD}	7			7			μs	8 MHz clock period(4)
Low current / direction hold time to fault reset / step 1	t _{DST}	1.0			1.0			μS	8 MHz clock period(4)
US _{0, 1} hold time from fault reset / step 1	t _{STU}	5.0			5.0			μS	8 MHz clock period(4)
Step active time (high)	t _{STP}	6	7	8	6	7	8	μS	(Note 4)
Step cycle time	t _{SC}	33	(Note 2)	(Note 2)	33	(Note 2)	(Note 2)	μS	(Note 4)
Fault reset active time (high)	t _{FR}	8.0		10	8.0		10	μS	(Note 4)
Write data width	twdd	t ₀ -50			t ₀ -50			ns	- '
US _{0, 1} hold time after seek	t _{SU}	15			15			μS	8 MHz clock period(4)
Seek hold time from DIR	t _{DS}	30			30			μS	8 MHz clock period(4)
DIR hold time after step	t _{STD}	24			24			μS	8 MHz clock period(4)
Index pulse width	t _{IDX}	4			4			ФСҮ	
RD I delay from DRQ	t _{MR}	800			800			ns	8 MHz clock period(4)
WR↓ delay from DRQ	t _{MW}	250			250			ns	8 MHz clock period(4)
WE or RD response time from DRQ↑	t _{MRW}		-	12		-	12	μS	8 MHz clock period(4)

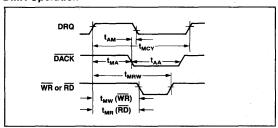
Note:


- (1) Typical values for $T_A = 25$ °C and nominal supply voltage.
- (2) Under software control. The range is from 1 ms to 16 ms at 8 MHz clock period, and 2 ms to 32 ms at 4 MHz clock period.
- (3) Sony Micro Floppydisk 31/2" drive.
- (4) Double these values for a 4 MHz clock period.

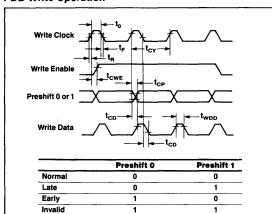
Timing Waveforms

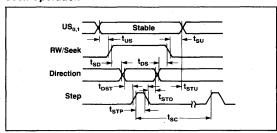
Processor Read Operation

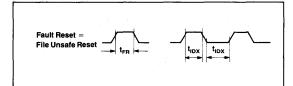

Processor Write Operation

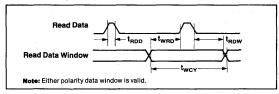


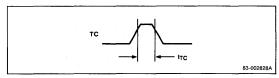
Timing Waveforms (cont)

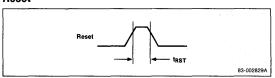

Clock

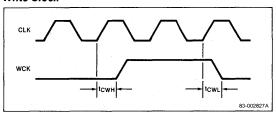

DMA Operation


FDD Write Operation


Seek Operation


FLT Reset


FDD Read Operation


Terminal Count

Reset

Write Clock

Internal Registers

The μ PD765A/ μ PD7265 contains two registers which may be accessed by the main system processor: a status register and a data register. The 8-bit main status register contains the status information of the FDC, and may be accessed at any time. The 8-bit data register (which actually consists of four registers, ST0–ST3, in a stack with only one register presented to the data bus at a time), stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the data register in order to program or obtain the results after a particular command (table 3). Only the status register may be read and used to facilitate the transfer of data between the processor and μ PD765A/ μ PD7265.

The relationship between the status/data registers and the signals \overline{RD} , \overline{WR} , and A_0 is shown in table 1.

Table 1. Status/Data Register Addressing

A _O	RD	WR	Function
0	0	1	Read main status register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from data register
1	1	0	Write into data register

The bits in the main status register are defined in table 2.

Table 2. Main Status Register

	Pin	
No.	Name	Function
DB ₀	D _O B (FDD 0 Busy)	FDD number 0 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.
DB ₁	D ₁ B (FDD 1 Busy)	FDD number 1 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.
DB ₂	D ₂ B (FDD 2 Busy)	FDD number 2 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.
DB ₃	D ₃ B (FDD 3 Busy)	FDD number 3 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.
DB ₄	CB (FDC Busy)	A Read or Write command is in process. FDC will not accept any other command.
DB ₅	EXM (Execution Mode)	This bit is set only during execution phase in non-DMA mode. When DB ₅ goes low, execution phase has ended and result phase has started. It operates only during non-DMA mode of operation.

Table 2. Main Status Register (cont)

Pin		
No.	Name	Function
DB ₆	DiO (Data Input / Output)	Indicates direction of data transfer between FDC and data register. If DIO=1, then transfer is from data register to the processor. If DIO=0, then transfer is from the processor to data register.
DB ₇	RQM (Request for Master)	Indicates data register is ready to send or receive data to or from the processor. Both bits DIO and RQM should be used to per- form the hand-shaking functions of "ready" and "direction" to the processor.

The DIO and RQM bits in the status register indicate when data is ready and in which direction data will be transferred on the data bus. The maximum time between the last $\overline{\text{RD}}$ or $\overline{\text{WR}}$ during a command or result phase and DIO and RQM getting set or reset is 12 μ s. For this reason every time the main status register is read the CPU should wait 12 μ s. The maximum time from the trailing edge of the last $\overline{\text{RD}}$ in the result phase to when DB₄ (FDC busy) goes low is 12 μ s. See figure 1.

Figure 1. DIO and RQM

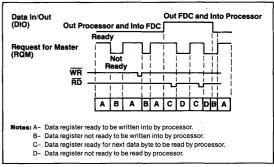


Table 3. Status Register Identification

	Pin	
No.	Name	Function
Status Reg	gister O	
D ₇ , D ₆	IC (Interrupt Code)	$D_7 = 0$ and $D_6 = 0$ Normal termination of command, (NT). Command was completed and properly executed.
		D ₇ =0 and D ₆ =1 Abnormal termination of command, (AT). Execution of command was started but was not successfully completed.
		D ₇ =1 and D ₆ =0 Invalid command issue, (IC). Command which was issued was never started.
		${\sf D}_7\!=\!1$ and ${\sf D}_6\!=\!1$ Abnormal termination because during command execution the ready signal from FDD changed state.
D ₅	SE (Seek End)	When the FDC completes the Seek command, this flag is set to 1 (high).
D ₄	EC (Equipment Check)	If a fault signal is received from the FDD, or if the track 0 signal fails to occur after 77 step pulses (Recalibrate Command) then this flag is set.
D ₃	NR (Not Ready)	When the FDD is in the not-ready state and a Read or Write command is issued, this flag is set. If a Read or Write command is issued to side 1 of a single-sided drive, then this flag is set.
D ₂	HD (Head Address)	This flag is used to indicate the state of the head at interrupt.
D ₁	US ₁ (Unit Select 1)	This flag is used to indicate a drive unit number at interrupt.
D ₀	US ₀ (Unit Select 0)	This flag is used to indicate a drive unit number at interrupt.
Status Reg	jister 1	-
D ₇	EN (End of Cylinder)	When the FDC tries to access a sector be- yond the final sector of a cylinder, this flag is set.
D ₆		Not used. This bit is always 0 (low).
D ₅	DE (Data Error)	When the FDC detects a CRC(1) error in either the ID field or the data field, this flag is set.
D ₄	OR (Overrun)	If the FDC is not serviced by the host sys- tem during data transfers within a certain time interval, this flag is set.
		timo mtorvar, timo mag io sot.

Table 3. Status Register Identification (cont)

	Pin	
No.	Name	Function
Status Reg	gister 1 (cont)	
D ₂	ND (No Data)	During execution of Read Data, Write De- leted Data or Scan command, if the FDC cannot find the sector specified in the IDR(2) Register, this flag is set.
		During execution of the Read ID command, if the FDC cannot read the ID field without an error, then this flag is set.
		During execution of the Read A Cylinder command, if the starting sector cannot be found, then this flag is set.
D ₁	NW (Not Writable)	During execution of Write Data, Write De- leted Data or Format A Cylinder command, if the FDC detects a write protect signal from the FDD, then this flag is set.
D ₀	MA (Missing Address Mark)	If the FDC cannot detect the data address mark or deleted data address mark, this flag is set. Also at the same time, the MD (missing address mark in data field) of status register 2 is set.
Status Reg	gister 2	
D ₇		Not used. This bit is always 0 (low).
D ₆	CM (Control Mark)	During execution of the Read Data or Scan command, if the FDC encounters a sector which contains a deleted data address mark, this flag is set.
D ₅	DD (Data Error in Data Field)	If the FDC detects a CRC error in the data field then this flag is set.
D ₄	WC (Wrong Cylinder)	This bit is related to the ND bit, and when the contents of C(3) on the medium is different from that stored in the IDR, this flag is set.
D ₃	SH (Scan Equal Hit)	During execution of the Scan command, if the condition of "equal" is satisfied, this flag is set.
D ₂	SN (Scan Not Satisfied)	During execution of the Scan command, if the FDC cannot find a sector on the cylin- der which meets the condition, then this flag is set.
D ₁	BC (Bad Cylinder)	This bit is related to the ND bit, and when the contents of C on the medium is differ- ent from that stored in the IDR and the con- tents of C is FFH, then this flag is set.
D ₀	MD (Missing Address Mark in Data Field)	When data is read from the medium, if the FDC cannot find a data address mark or deleted data address mark, then this flag is set.

Table 3. Status Register Identification (cont)

	Pin	
No.	Name	Function
Status Re	gister 3	
D ₇	FT (Fault)	This bit is used to indicate the status of the fault signal from the FDD.
D ₆	WP (Write Protected)	This bit is used to indicate the status of the write protected signal from the FDD.
D ₅	RY (Ready)	This bit is used to indicate the status of the ready signal from the FDD.
D ₄	T0 (Track 0)	This bit is used to indicate the status of the track 0 signal from the FDD.
D ₃	TS (Two-Side)	This bit is used to indicate the status of the two-side signal from the FDD.
D ₂	HD (Head Address)	This bit is used to indicate the status of the side select signal to the FDD.
D ₁	US ₁ (Unit Select 1)	This bit is used to indicate the status of the unit select 1 signal to the FDD.
D _O	US ₀ (Unit Select 0)	This bit is used to indicate the status of th unit select 0 signal to the FDD.

Note:

- (1) CRC = Cyclic Redundancy Check
- (2) IDR = Internal Data Register
- (3) Cylinder (C) is described more fully in the Command Symbol Description.

Command Sequence

The μ PD765A/ μ PD7265 is capable of performing 15 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the μ PD765A/ μ PD7265 and the processor, it is convenient to consider each command as consisting of three phases:

Command Phase:	The FDC receives all information required to perform a particular operation from the processor.
Execution Phase:	The FDC performs the operation it was instructed to do.
Result Phase:	After completion of the operation, status and other housekeeping information are made available to the processor.

Table 4 shows the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase. The "W" to the left of each byte indicates a command phase byte to be written, and an "R" indicates a result byte. The definitions of other abbriviations used in table are given in the Command Symbol Description table.

Command Symbol Description

Name	Function
A ₀ (Address Line 0)	A_0 controls selection of main status register $(A_0\!=\!0)$ or data register $(A_0\!=\!1)$.
C (Cylinder Number)	C stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
D (Data)	D stands for the data pattern which is going to be written into a sector.
D ₇ -D ₀ (Data Bus)	8-bit data bus, where D_7 stands for a most significant bit, and D_0 stands for a least significant bit.
DTL (Data Length)	When N is defined as 00, DTL stands for the data length which users are going to read out or write into the sector.
EOT (End of Track)	EOT stands for the final sector number on a cylinder. During read or write operations, FDC will stop data transfer after a sector number equal to EOT.
GPL (Gap Length)	GPL stands for the length of gap 3. During Read / Write commands this value determines the number of bytes that VCO sync will stay low after two CRC bytes. During Format command it determines the size of gap 3.
H (Head Address)	H stands for head number 0 or 1, as specified in ID field.
HD (Head)	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. (H = HD in all command words.)
HLT (Head Load Time)	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT (Head Unload Time)	HUT stands for the head unload time after a Read or Write operation has occurred (16 to 240 ms in 16 ms increments).
MF (FM or MFM Mode)	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT (Multitrack)	IF MT is high, a multitrack operation is per- formed. If MT=1 after finishing read / write oper- ation on side 0, FDC will automatically start searching for sector 1 on side 1.
N (Number)	N stands for the number of data bytes written in a sector.
NCN (New Cylinder Number)	NCN stands for a new cylinder number which is going to be reached as a result of the seek operation; desired position of head.
ND (Non-DMA Mode)	ND stands for operation in the non-DMA mode.
PCN (Present Cylinder Number)	PCN stands for the cylinder number at the completion of Sense Interrupt Status command, position of head at present time.
R (Record)	R stands for the sector number which will be read or written.
R / W (Read / Write)	R/W stands for either Read (R) or Write (W) signal.
SC (Sector)	SC indicates the number of sectors per cylinder.
SK (Skip)	SK stands for skip deleted data address mark.

Command Symbol Description (cont)

Name	Function
SRT (Step Rate Time)	SRT stands for the stepping rate for the FDD (1 to 16 ms in 1 ms increments). Stepping rate applies to all drives (FH=1 ms, EH=2 ms, etc.).
STO-ST3 (Status 0-3)	ST0–ST3 stands for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_0\!=\!0)$. ST0–ST3 may be read only after a command has been executed and contains information relevant to that particular command.

Command Symbol Description (cont)

Name	Function						
STP	During a scan operation, if STP=1, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP=2, then alternate sectors are read and compared.						
US ₀ , US ₁ (Unit Select)	US stands for a selected drive number 0 or 1.						

Table 4. Instruction Set (Notes 1, 2)

					nstructi	on Cod	le				
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks	
Read Data											
Command	W	MT	MF	SK	0	0	1	1	0	Command codes	
	W	, X	Χ	Χ	Χ	Χ	HD	US_1	US_0	(Note 3)	
	W	-			(;				Sector ID information prior to command execution. The 4 bytes	
	W				—— F					are compared against header on floppy disk.	
	W				F	l					
	W	-		-	I				→		
	W				— E0						
	W				—— GF —— DT						
	W				— u	L					
Execution										Data transfer between the FDD and main system	
Result	R								-	Status information after command execution	
	R				S7						
	R				ST						
	R	←	_		(: —				Sector ID information after command execution	
	R	<			— Ì	l			→		
	R				F						
	R				N	l —					
Read Deleted Dat	a								-		
Command	W	MT	MF	SK		1	1	0	. 0	Command codes	
	W	Х	X	Χ	Χ	Χ	ΗĐ	US ₁	US_0		
	W	•			(Sector ID information prior to command execution. The 4 bytes	
	W				F					are compared against header on floppy disk.	
	W				F						
	W				N						
	W				E0						
	W				GF						
	W	*			D1	L				·	
Execution										Data transfer between the FDD and main system	
Result	R				ST					Status information after command execution	
	R			-	S1	1					
	R	←			ST	2		<u>'. </u>			
	R				— c					Sector ID information after command execution	
	R				`						
	R	-			— F						
	R	<			N						

Note:

- (1) Symbols used in this table are described at the end of this section.
- (2) A_0 should equal 1 for all operations.
- (3) X = Don't care, usually made to equal 0.

Table 4. Instruction Set (Notes 1, 2) (cont)

					nstructi	on Cod				
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks
Write Data										
Command	W	MT	MF	0	0	0	1	0	1	Command codes
	W W	X	X	X	c	X	HD	US ₁	US ₀	Sector ID information prior to command execution. The 4 bytes
	w	-			ū	ı				are compared against header on floppy disk.
	W				—— R					F
	W				N					
	W	-			EC GP)T				
	W W	-			DT	`L —				
Execution										Data transfer between the main system and FDD
Result	R				ST	0 —				Status information after command execution
	R	-			ST	1				
	R	◄		-	ST	2 —				
	R	•			— С — н					Sector ID information after command execution
	R R	-								
	R	-			N	i —				
Write Deleted Data										
Command	W	MT	MF	0	0	1	0	0	1	Command codes
	W	X	Χ	Χ	Х	X	HD	US_1		
	W W				C					Sector ID information prior to command execution. The 4 bytes
	W									are compared against header on floppy disk.
	w	-			N					
	W				EC	т —			-	
	W	, 4		-	GF	L				
	W	•			DT	L				
Execution				-						Data transfer between the FDD and main system
Result	R				ST					Status information after command execution
	R R	-			— st — st	0			_	
	R	-			c	-				Sector ID information after command execution
	R	-								Social is information arter commune execution
	R				P	· —				
	R	-			N	_		-		
Read A Track										
Command	W W	0 X	MF X	SK	0 X	0	0 HD	1 US ₁	0	Command codes
	W	^							US ₀	Sector ID information prior to command execution
	w	· ·	· · · · ·							Cooler 15 information prior to command checketon
	W	-								
	W				N	ı —				
	W	-			—— FC —— GF)T				
	W					L				
Execution								<u> </u>		Data transfer between the FDD and main system. FDC reads all data fields from index hole to EOT.
Result	R	-			ST	0 —				Status Information after command execution
	R	-			ST ST	1				
	R	-			— st — с					Costor ID information after command avacution
	R R	-								Sector ID information after command execution
	R	4			—— F	i —				
	R				i					

Table 4.	Instruction	Set	(Notes 1	. 2)	(cont)

					nstruct	ion Co				
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks
Read ID										
Command	W	0	MF	0	0	1	0	1	0	Command codes
	W	Χ	Х	Х	Х	Х	HD	US ₁	US_0	
Execution										The first correct ID information on the cylinder is stored in data register.
Result	R									Status information after command execution
	R	-			— S	T1 —				
	R	*			— s	[2 —				
	R									Sector ID information read during execution phase from floppy
	R	-				1				disk.
	R R	-				v				
Format A Track						•				
Command	W	0	MF	0	0	1	1	0	1	Command codes
	W	X	Х	X	X		HD	US ₁	US _O	Stimilaria obaso
	W	-			I	۱ —			`	Bytes / sector
	W				— s	c —				Sectors / track
	W	-								Gap 3
	W)				Filler byte
Execution										FDC formats an entire track.
Result	R	*			— s	ro —				Status information after command execution
	R	-		<u> </u>	— S	T1 —				
	R	-			S	Г2 —				
	R									In this case, the ID information has no meaning
	R	←				•				
	R	-				₹	-			
	R					I —				
Scan Equal										
Command	. W	MT X	MF X	SK X	1 X	0 X	0 HD	0 US ₁	1 US ₀	Command codes
	w		^			; ^ _	110	001		Sector ID information prior to command execution
	w	-			`					Cooler 15 illionnation prior to communia oxicoation
	W					3				
	W				[۰			-	
	W.	-			— E)T —				
	W	◄			GI	PL —				
· · · · · · · · · · · · · · · · · · ·	W				s	ГР				Company of the Compan
Execution										Data compared between the FDD and main system
Result	R	-		-	Sī	[0				Status information after command execution
	R	-			S	[1 —			>	
	R	-			Sī	Z —	-			October 10 information office and according
	R	-			(;				Sector ID information after command execution
	R R)				
	n R					\				
	n					١ -				

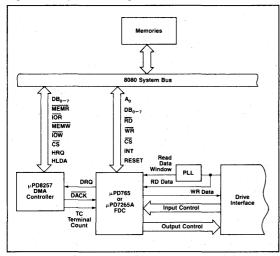
⁽¹⁾ Symbols used in this table are described at the end of this section.
(2) A₀ should equal 1 for all operations.
(3) X = Don't care, usually made to equal 0.

Table 4. Instruction Set (Notes 1, 2) (cont)

					Instructi	ion Coc	ie			
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _O	Remarks
Scan Low or Equal										
Command	W	MT	MF	SK	1	1	0	0	1	Command codes
	W W	X	Χ	Х	X	: _ _	HD	US ₁	US ₀	Sector ID information prior to command execution
	W									Sector 10 information prior to command execution
	w	-			F					
	W	-			N					
	W	-			—— EC					
	W W	-			GF	7L	-			
Execution										Data compared between the FDD and main system
Result	R				ST	0				Status information after command execution
1100411	R				ST			-		States information and commune should
	R				ST					•
	R				C					Sector ID information after command execution
	R	-				l ——				
	R R	-			F					
Scan High or Equal						·				
Command	W	MT	MF	SK	1	1	1	0	1	Command codes
	W	X	Χ	Χ	Χ	X	HD	US ₁	US_0	
	W	◄	·		— C					Sector ID information prior to command execution
	W					· —				
	W W				F	•				
	W	-			EC	•				
	W				GF					
	W	-			ST	ΓP —				
Execution										Data compared between the FDD and main system
Result	R	-			ST					Status information after command execution
	R	-				[1 				
	R	-		-	ST					Ocates ID to form of the control of
	R R	-			—— (; I				Sector ID information after command execution
	R	-								
	R					i				
Recalibrate										
Command	W	0	0	0	0	0	1	1	1	Command codes
	W	X	Х	X	X	X	0	US ₁	US ₀	· .
Execution						-				Head retracted to track 0
Sense Interrupt State										
Command	W	0	0	0	0	. 1	0	0	0	Command codes
Result	R R	-			ST PC					Status information about the FDC at the end of seek operation
Specify										
Command	w	0	0	0	0	0	0	1	1	Command codes
	W	<u> </u>	SI	RT —		•	Н	IUT		
	W				- HLT -				- ND	
Sense Drive Status										
Command	W W	0 X	0 X	0 X	0 X	0 X	1 HD	0 US ₁	0 US ₀	Command codes
Result	R				ST		110	001		Status information about FDD
1100uit	- 11				- 31	<u> </u>				Grando information about 1 DD

Table 4. Instruction Set (Notes 1, 2) (cont)

				nstruct	ion Cod	e			
R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks
						1411			
W	0	0	0	0	1	1	1	1	Command codes
W	X	Χ	Х	Χ	Χ	HD	US ₁	US_0	
W	4			NO	ON —				
									Head is positioned over proper cylinder on diskette
W	-			Invalid	Codes				Invalid Command codes (No op - FDC goes into standby state)
R	-			S1	0 —				ST0=80H
	W W W	W 0 X W X	W 0 0 W X X W	W 0 0 0 0 W X X X W W	N	N	W 0 0 0 0 1 1 W X X X X X HD W NCN	N	N


Note:

- (1) Symbols used in this table are described at the end of this section.
- (2) A₀ should equal 1 for all operations.
- (3) X = Don't care, usually made to equal 0.

System Configuration

Figure 2 shows an example of a system using a $\mu PD765A/\mu PD7265$.

Figure 2. System Configuration

Processor Interface

During command or result phases the main status register (described earlier) must be read by the processor before each byte of information is written into or read from the data register. After each byte of data read or written to the data register, CPU should wait for $12\,\mu s$ before reading main status register, bits D_6 and D_7 in the main status register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the $\mu PD765A/\mu PD7265$. Many of the commands require multiple bytes and, as a result, the main status register must be read prior to each byte transfer

to the \$\mu\$PD765A/\$\mu\$PD7265. On the other hand, during the result phase, D₆ and D₇ in the main status register must both be 1's (D₆ = 1 and D₇ = 1) before reading each byte from the data register. Note that this reading of the main status register before each byte transfer to the \$\mu\$PD765A/\$\mu\$PD7265 is required only in the command and result phases, and not during the execution phase.

During the execution phase, the main status register need not be read. If the $\mu PD765A/\mu PD7265$ is in the non-DMA mode, then the receipt of each data byte (if $\mu PD765A/\mu PD7265$ is reading data from FDD) is indicated by an interrupt signal on pin 18 (INT = 1). The generation of a read signal ($\overline{RD}=0$) or write signal ($\overline{WR}=0$) will clear the interrupt as well as output the data onto the data bus. If the processor cannot handle interrupts fast enough (every 13 μs for the MFM mode and 27 μs for the FM mode), then it may poll the main status register and bit D7 (RQM) functions as the interrupt signal. If a write command is in process then the \overline{WR} signal negates the reset to the interrupt signal.

Note that in the non-DMA mode it is necessary to examine the main status register to determine the cause of the interrupt, since it could be a data interrupt or a command termination interrupt, either normal or abnormal.

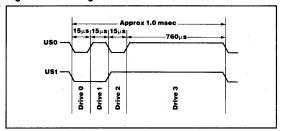
If the μ PD765A/ μ PD7265 is in the DMA mode, no interrupts are generated during the execution phase. The μ PD765A/ μ PD7265 generates DRQs (DMA requests) when each byte of data is available. The DMA controller responds to this request with both a DACK = 0 (DMA acknowledge) and an RD = 0 (read signal). When the DMA acknowledge signal goes low (DACK = 0), then the DMA request is cleared (DRQ = 0). If a write command has been issued then a WR signal will appear instead of RD. After the execution phase has been completed (terminal count has occurred) or the EOT sector read/written, then an interrupt will occur (INT = 1). This signifies the beginning of the result phase. When the first byte of

data is read during the result phase, the interrupt is automatically cleared (INT = 0).

The $\overline{\text{RD}}$ or $\overline{\text{WR}}$ signals should be asserted while $\overline{\text{DACK}}$ is true. The $\overline{\text{CS}}$ signal is used in conjunction with $\overline{\text{RD}}$ and $\overline{\text{WR}}$ as a gating function during programmed I/O operations. $\overline{\text{CS}}$ has no effect during $\overline{\text{DMA}}$ operations. If the non-DMA mode is chosen, the $\overline{\text{DACK}}$ signal should be pulled up to $V_{\overline{\text{CC}}}$.

It is important to note that during the result phase all bytes shown in the command table (table 4) must be read. The read data command, for example, has seven bytes of data in the result phase. All seven bytes must be read in order to successfully complete the Read Data command. The $\mu PD765A/\mu PD7265$ will not accept a new comand until all seven bytes have been read. Other commands may require fewer bytes to be read during the result phase.

The μ PD765A/ μ PD7265 contains five status registers. The main status register mentioned above may be read by the processor at any time. The other four status registers (ST0, ST1, ST2, and ST3) are available only during the result phase and may be read only after completing a command. The particular command that has been executed determines how many of the status registers will be read.


The bytes of data which are sent to the μ PD765A/ μ PD7265 to form the command phase and are read out of the μ PD765A/ μ PD7265 in the result phase must occur in the order shown in table 4. That is, the command code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the command or result phases is allowed. After the last byte of data in the command phase is sent to the μ PD765A/ μ PD7265, the execution phase automatically starts. In a similar fashion, when the last byte of data is read out in the result phase, the command is automatically ended and the μ PD765A/ μ PD7265 is ready for a new command.

Polling

After reset has been sent to the μ PD765A/ μ PD7265, the unit select lines US₀ and US₁ will automatically go into a polling mode. In between commands (and between step pulses in the Seek command) the μ PD765A/ μ PD7265 polls all four FDDs looking for a change in the ready line from any of the drives. If the ready line changes state (usually due to a door opening or closing), then the μ PD765A/ μ PD7265 will generate an interrupt. When status register 0 (ST0) is read (after Sense Interrupt Status is issued), not ready (NR) will be indicated. The polling of the ready line by the μ PD765A/ μ PD7265 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write com-

mands. When used with a 4 MHz clock for interfacing to minifloppies, the polling rate is 2.048 ms. See figure 3.

Figure 3. Polling Feature

Read Data

A set of nine (9) byte words are required to place the FDC into the read data mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID address marks and ID fields. When the current sector number (R) stored in the ID register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.

After completion of the read operation from the current sector, the sector number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a multi-sector read operation. The Read Data command may be terminated by the receipt of a terminal count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (cyclic redundancy count) bytes, and then at the end of the sector terminate the Read Data command. The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MF (MFM/FM), and N (number of bytes/ sector). Table 5 shows the transfer capacity.

The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at sector 1, side 0 and completing at sector L, side 1 (sector L = last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.

When N=0, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a sector, the data beyond DTL in the sector is not sent to the data bus. The FDC reads (internally) the complete sector performing the CRC check and, depending upon the manner of command

termination, may perform a multi-sector read operation. When N is non-zero, then DTL has no meaning and should be set to FFH.

Table 5. Transfer Capacity

Multi- Track MT	MFM/ FM MF	Bytes/ Sector N	Maximum Transfer Capacity (Bytes / Sector) (Number of Sectors)	Final Sector Read from Diskettes
0	0	00	(128)(26) = 3,328	26 at side 0
0	1	01	(256)(26) = 6,656	or 26 at side 1
1	0	00	(128)(52) = 6,656	26 at side 1
1	1	01	(256)(52) = 13,312	
0	. 0	01	(256)(15) = 3,840	15 at side 0
0	1	02	(512)(15) = 7,680	or 15 at side 1
1	0	01	(256)(30) = 7,680	15 at side 1
1	1	02	(512)(30) = 15,360	
0	0	02	(512)(8) = 4,096	8 at side 0
0	1	03	(1024)(8) = 8,192	or 8 at side 1
1	0	02	(512)(16) = 8,192	8 at side 1
1	1	03	(1024)(16) = 16,384	

At the completion of the Read Data command, the head is not unloaded until after head unload time interval (specified in the Specify command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.

If the FDC detects the index hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No data) flag in status register 1 to a 1 (high), and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

After reading the ID and data fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (data error) flag in status register 1 to a 1 (high), and if a CRC error occurs in the data field, the FDC also sets the DD (data error in data field) flag in status register 2 to a 1 (high), and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

If the FDC reads a deleted data address mark off the diskette, and the SK bit (bit D_5 in the first command word) is not set (SK = 0), then the FDC sets the CM (control mark) flag in status register 2 to a 1 (high), and terminates the Read Data command, after reading all the data in the sector. If SK = 1, the FDC skips the sector with the deleted data address mark and reads the next sector. The CRC bits in the deleted data field are not checked when SK = 1.

During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu s$ in the FM mode, and every $13 \mu s$ in the MFM mode, or the FDC sets the OR (Overrun)

flag in status register 1 to a 1 (high), and terminates the Read Data command.

If the processor terminates a read (or write) operation in the FDC, then the ID information in the result phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the values for C, H, R, and N, when the processor terminates the command.

Functional Description of Commands

Write Data

A set of nine (9) bytes is required to set the FDC into the write data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID fields. When all four bytes loaded during the command (C, H, R, N) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-bybyte via the data bus and outputs it to the FDD. See table 6.

Table 6. Command Description

		Final Sector Transferred	ID Information at Result Phase						
MT	HD	to Processor	C	Н	R	N			
0	0	Less than EOT	NC	NC	R+1	NC			
0	0	Equal to EOT	C+1	NC	R = 01	NC			
0	1	Less than EOT	NC	NC	R+1	NC			
0	1	Equal to EOT	C+1	NC	R = 01	NC			
. 1	0	Less than EOT	NC	NC	R+1	NC			
1	0	Equal to EOT	NC	LSB	R = 01	NC .			
_ 1	1	Less than EOT	NC	NC	R+1	NC			
1	- 1	Equal to EOT	C+1	LSB	R=01	NC			

Note:

- NC (No Change): The same value as the one at the beginning of command execution.
- (2) LSB (Least Significant Bit): The least significant bit of H is complemented.

After writing data into the current sector, the sector number stored in R is incremented by one, and the next data field is written into. The FDC continues this multisector write operation until the issuance of a terminal count signal. If a terminal count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the terminal count signal is received while a data field is being written then the remainder of the data field is filled with zeros.

The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (CRC error) in one of the ID fields, it sets the DE (Data Error) flag of status register 1 to a 1 (high) and terminates the Write

Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

The Write command operates in much the same manner as the Read command. The following items are the same, and one should refer to the Read Data command for details:

- · Transfer capacity
- . EN (end of cylinder) flag
- · ND (no data) flag
- · Head unload time interval
- ID Information when the processor terminates command
- Definition of DTL when N = 0 and when N≠0

In the write data mode, data transfers between the processor and FDC, via the data bus, must occur every $27\,\mu s$ in the FM mode and every $13\,\mu s$ in the MFM mode. If the time interval between data transfers is longer than this, the FDC sets the OR (overrun) flag in status register 1 to a 1 (high) and terminates the Write Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

Write Deleted Data

This command is the same as the Write Data command except a deleted data address mark is written at the beginning of the data field instead of the normal data address mark.

Read Deleted Data

This command is the same as the Read Data command except that when the FDC detects a data address mark at the beginning of a data field (and SK=0 (low)), it will read all the data in the sector and set the CM flag in status register 2 to a 1 (high), and then terminate the command. If SK=1, then the FDC skips the sector with the data address mark and reads the next sector.

Read a Track

This command is similar to the Read Data command except that this is a continuous read operation where the entire data field from each of the sectors is read. Immediately after sensing the index hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or data CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR and sets the ND flag of status register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when the number of sectors read is equal to EOT. If the FDC does not find an ID ad-

dress mark on the diskette after it senses the index hole for the second time, it sets the MA (missing address mark) flag in status register 1 to a 1 (high) and terminates the command. (Status register 0 has bits 7 and 6 set to 0 and 1, respectively.)

Read ID

The Read ID command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read. If no proper ID address mark is found on the diskette before the index hole is encountered for the second time, then the MA (missing address mark) flag in status register 1 is set to a 1 (high), and if no data is found then the ND (No data) flag is also set in status register 1 to a 1 (high). The command is then terminated with bits 7 and 6 in status register 0 set to 0 and 1, respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

Format a Track

The Format a Track command allows an entire track to be formatted. After the index hole is detected, data is written on the diskette; gaps, address marks, ID fields, and data fields, all per the IBM System 34 (double density) or System 3740 (single density) format, are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/cylinder), GPL (gap length), and D (data pattern) which are supplied by the processor during the command phase. The data field is filled with the byte of data stored in D. The ID field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (cylinder number), H (head number), R (sector number), and N (number of bytes/sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.

The processor must send new values for C, H, R, and N to the $\mu PD765A/\mu PD7265$ for each sector on the track. If FDC is set for the DMA mode, it will issue four DMA requests per sector. If it is set for the interrupt mode, it will issue four interrupts per sector and the processor must supply C, H, R, and N loads for each sector. The contents of the R register are incremented by 1 after each sector is formatted; thus, the R register contains a value of R when it is read during the result phase. This incrementing and formatting continues for the whole track until the FDC detects the index hole for the second time, whereupon it terminates the command.

If a fault signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of status register 0 to a 1 (high) and terminates the command after setting bits 7 and 6 of status register 0 to 0 and 1, respec-

tively. Also, the loss of a ready signal at the beginning of a command execution phase causes bits 7 and 6 of status register 0 to be set to 0 and 1, respectively.

Table 7 shows the relationship between N, SC, and GPL for various sector sizes.

Table 7. Sector Size

Format	Sector Size	N	SC	GPL (1)	GPL(2, 3)
8" Standard Flopp	у				
FM Mode	128 Bytes / Sector	00	1A	07	1B
	256	01	0F	0E	2A
	512	02	08	1B	3A
	1024	03	04	47.	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode(4)	256	01	1A	0E	36
	512	02	0F	1B	54
	1024	03	08	35	- 74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					
FM Mode	128 Bytes / Sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM Mode(4)	256	01	12	0A	0C
	256	01	10	20	32
	512	02	08	2A	50
	1024	03	04	80	F0
	2048	04	02	C8	FF
	4096	05	01	C8	FF
31/2" Sony Micro I	Floppydisk				
FM Mode	128 Bytes / Sector	0 -	0F	07	1B
	256	1	09	0E	2A
	512	2	05	1B	3A
MFM Mode(4)	256	1	0F	0E	36
	512	2	09	1B	54

Note:

- Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections.
- (2) Suggested values of GPL in format command.
- (3) All values except sector size are hexidecimal.
- (4) In MFM mode FDC cannot perform a Read/Write/Format operation with 128 bytes/sector. (N = 00).

Scan Commands

The Scan commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis and looks for a sector of data which meets the conditions of D_{FDD} = D_{Processor}, D_{FDD} < D_{Processor}, or D_{FDD} > D_{Processor}. The hexidecimal byte of FF either from memory or from FDD can be used as a mask byte because it always meets the condition of the comparison. One's complement arithmetic is used for comparison (FF = largest number, 00 = smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented (R + STP → R), and the scan operation is continued. The scan operation continues until one of the following conditions occur: the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

If the conditions for scan are met, then the FDC sets the SH (scan hit) flag of status register 2 to a 1 (high) and terminates the Scan command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (scan not satisfied) flag of status register 2 to a 1 (high) and terminates the Scan command. The receipt of a terminal count signal from the processor or DMA controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process and then to terminate the command. Table 8 shows the status of bits SH and SN under various conditions of Scan.

Table 8. Scan Conditions

	Status R	egister 2	
Command	Bit 2 = SN	Bit 3 = SH	Comments
Scan Equal	0	1	D _{FDD} = D _{Processor}
	1	0	D _{FDD} ≠D _{Processor}
Scan Low or	0	1	D _{FDD} = D _{Processor}
Equal	0	0	D _{FDD} < D _{Processor}
	. 1	0	D _{FDD} > D _{Processor}
Scan High or	0	1	D _{FDD} = D _{Processor}
Equal	0	0	D _{FDD} > D _{Processor}
	1	0	D _{FDD} < D _{Processor}

If the FDC encounters a deleted data address mark on one of the sectors (and SK=0), then it regards the sector as the last sector on the cylinder, sets the CM (control mark) flag of status register 2 to a 1 (high) and terminates the command. If SK=1, the FDC skips the sector with the deleted address mark and reads the next sector. In the second case (SK=1), the FDC sets the CM

(control mark) flag of status register 2 to a 1 (high) in order to show that a deleted sector has been encountered.

When either the STP (contiguous sectors = 01, or alternate sectors = 02) sectors are read or the MT (multitrack) is programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP = 02, MT = 0, the sectors are numbered sequentially 1 through 26 and the Scan command is started at sector 21, the following will happen: sectors 21, 23, and 25 will be read, then the next sector (26) will be skipped and the index hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan command would be completed in a normal manner.

During the Scan command, data is supplied by either the processor or DMA controller for comparison against the data read from the diskette. In order to avoid having the OR (overrun) flag set in status register 1, it is necessary to have the data available in less than $27 \,\mu s$ (FM mode) or $13 \,\mu s$ (MFM mode). If an overrun occurs, the FDC ends the command with bits 7 and 6 of status register 0 set to 0 and 1, respectively.

Seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek command. FDC has four independent present cylinder registers for each drive. They are cleared only after the Recalibrate command. The FDC compares the PCN (present cylinder number) which is the current head position with the NCN (new cylinder number), and if there is a difference, performs the following operations:

PCN < NCN: Direction signal to FDD set to a 1 (high), and step pulses are issued. (Step in)

PCN > NCN: Direction signal to FDD set to a 0 (low), and step pulses are issued. (Step out)

The rate at which step pulses are issued is controlled by SRT (stepping rate time) in the Specify command. After each step pulse is issued NCN is compared against PCN, and when NCN = PCN, the SE (seek end) flag is set in status register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits D_0B-D_3B in the main status register are set during the seek operation and are cleared by the Sense Interrupt Status command.

During the command phase of the seek operation the FDC is in the FDC busy state, but during the execution phase it is in the non-busy state. While the FDC is in the non-busy state, another Seek command may be issued, and in this manner parallel seek operations may be done on up to four drives at once. No other command

can be issued for as long as the FDC is in the process of sending step pulses to any drive.

If an FDD is in a not ready state at the beginning of the command execution phase or during the seek operation, then the NR (not ready) flag is set in status register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of status register 0 are set to 0 and 1, respectively.

If the time to write three bytes of Seek command exceeds 150 μ s, the timing between the first two step pulses may be shorter than set in the Specify command by as much as 1 ms.

Recalibrate

The function of this command is to retract the read/write head within the FDD to the track 0 position. The FDC clears the contents of the PCN counter and checks the status of the track 0 signal from the FDD. As long as the track 0 signal is low, the direction signal remains 0 (low) and step pulses are issued. When the track 0 signal goes high, the SE (seek end) flag in status register 0 is set to a 1 (high) and the command is terminated. If the track 0 signal is still low after 77 step pulses have been issued, the FDC sets the SE (seek end) and EC (equipment check) flags of status register 0 to both 1s (highs) and terminates the command after bits 7 and 6 of status register 0 are set to 0 and 1, respectively.

The ability to do overlapping Recalibrate commands to multiple FDDs and the loss of the ready signal, as described in the Seek command, also applies to the Recalibrate command. If the diskette has more than 77 tracks, then Recalibrate command should be issued twice, in order to position the read/write head to the track 0.

Sense Interrupt Status

An interrupt signal is generated by the FDC for one of the following reasons:

- (1) Upon entering the result phase of:
 - (a) Read Data command
 - (b) Read a Track command
 - (c) Read ID command
 - (d) Read Deleted Data command
 - (e) Write Data command
 - (f) Format a Cylinder command
 - (g) Write Deleted Data command
 - (h) Scan commands
- (2) Ready line of FDD changes state
- (3) End of Seek or Recalibrate command
- (4) During execution phase in the non-DMA mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in non-

DMA mode, DB₅ in the main status register is high. Upon entering the result phase this bit gets cleared. Reasons 1 and 4 do not require Sense Interrupt Status commands. The interrupt is cleared by reading/writing data to the FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status command. This command, when issued, resets the Interrupt signal and, via bits 5, 6, and 7 of status register 0, identifies the cause of the interrupt. See table 9.

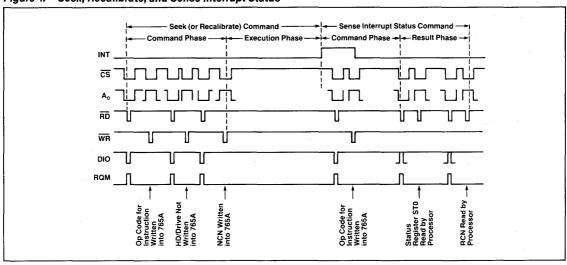
Table 9. Interrupt Status

Seek End Bit 5	Interrupt Code		
	Bit 6	Bit 7	Cause
0	1	1	Ready line changed state, either polarity
1	0	0	Normal termination of Seek or Recalibrate command
1	1	0	Abnormal termination of Seek or Recalibrate command

The Sense Interrupt Status command is used in conjunction with the Seek and Recalibrate commands which have no result phase. When the disk drive has reached the desired head position the $\mu\text{PD765A}/\mu\text{PD7265}$ will set the interrupt line true. The host CPU must then issue a Sense Interrupt Status command to determine the actual cause of the interrupt, which could be seek end or a change in ready status from one of the drives. A graphic example is shown in figure 4.

Specify

The Specify command sets the initial values for each of the three internal timers. The HUT (head unload time) defines the time from the end of the execution phase of one of the Read/Write commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of $16 \, \text{ms}$ (01 = $16 \, \text{ms}$, $02 = 32 \, \text{ms...}$ 0FH = 240 ms). The SRT (step rate time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms (F = 1 ms, E = 2 ms, D = 3 ms, etc.). The HLT (head load time) defines the time between when the head load signal goes high and the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of 2 ms (01 = 2 ms, 02 = 4 ms, 03 = 6 ms... $7F = 254 \, \text{ms}$).


The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock; if the clock was reduced to 4 MHz (minifloppy application), then all time intervals are increased by a factor of 2.

The choice of a DMA or non-DMA operation is made by the ND (non-DMA) bit. When this bit is high (ND = 1) the non-DMA mode is selected, and when ND = 0 the DMA mode is selected.

Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status regis-

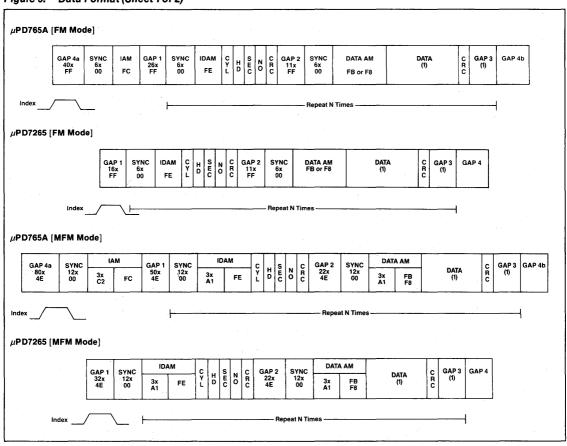
Figure 4. Seek, Recalibrate, and Sense Interrupt Status

ter 3 contains the drive status information stored internally in FDC registers.

Invalid

If an Invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of status register 0 are set to 1 and 0, respectively. No interrupt is generated by the $\mu PD765A/\mu PD7265$ during this condition. Bits 6 and 7 (DIO and RQM) in the main status register are both 1 (high), indicating to the processor that the $\mu PD765A/\mu PD7265$ is in the result phase and the contents of status register 0 (ST0) must be read. When the processor

reads status register 0 it will find an 80H, indicating an Invalid command was received.

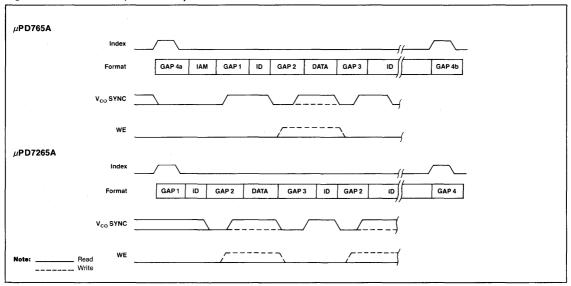

A Sense Interrupt Status command must be sent after a seek or recalibrate interrupt, otherwise the FDC will consider the next command to be an Invalid command.

In some applications the user may wish to use this command as a No-Op command to place the FDC in a standby or no operation state.

Data Format

Figure 5 shows the data transfer format for the μ PD765A and μ PD7265 in various modes.

Figure 5. Data Format (Sheet 1 of 2)



e: It is suggested that the user refer to the following application notes:

(1) #8 — for an example of an actual interface, as well as a "theoretical" data separator. (2) #10 — for a well documented example of a working phase-locked loop.

μPD72065/66 SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLERS

Description

The μ PD72065 is an LSI floppy disk controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to 4 floppy disk drives. It is capable of either IBM 3740 single density format (FM), or IBM System 34 double density format (MFM) including double-sided recording. The μ PD72065 provides control signals which simplify the design of an external phase-locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy disk interface.

The μ PD72066 is an addition to the FDC family that has been designed specifically for the Sony Micro Floppydisk® drive. The μ PD72066 is pin-compatible and electrically equivalent to the 72065 but utilizes the Sony recording format. The μ PD72066 can read a diskette that has been formatted by the μ PD72065.

Hand-shaking signals are provided in the μ PD72065/ μ PD72066 which make DMA operation easy to incorporate with the aid of an external DMA controller chip, such as the μ PD8257. The FDC will operate in either the DMA or non-DMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.

The FDC is designed using CMOS technology. In addition to a low normal operating current, a standby mode can be software-enabled to provide minimal current drain when the FDC is not in use.

There are 18 commands which the μ PD72065/ μ PD72066 will execute. Each of these commands requires multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data Read Deleted Data
Read ID Write Data
Specify Format Track
Read Track Write Deleted Data
Scan Equal Seek
Scan High or Equal Recalibrate

Scan Low or Equal Sense Interrupt Status
Set Standby Sense Drive Status
Reset Standby Software Reset

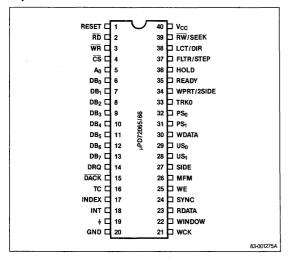
Features

Address mark detection circuitry is internal to the FDC which simplifies the phase-locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable. The μ PD72065/ μ PD72066 offers additional features such as multi-track and multi-side read and write commands and single and double density capabilities.

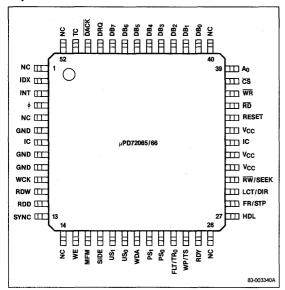
- Sony (EMCA)-compatible recording format (μPD72066)
- IBM-compatible format (single and double density) (μPD72065)
- ☐ Multi-sector and multi-track transfer capability
- ☐ Drive Up to 4 floppy or micro floppydisk drives
- Data scan capability will scan a single sector or an entire cylinder comparing byte-for-byte host memory and disk data
- ☐ Data transfers in DMA or non-DMA mode
- Programmable stepping rate, head load and head unload times
- Parallel seek operations on up to four drives
 Compatible with μPD8080/85, μPD8086/88 and μPD780 (Z80®) microprocessors
- ☐ Single-phase clock (8 MHz (standard floppy) or 4 MHz (minifloppy)
- □ CMOS technology
- □ Single +5 V \pm 10% power supply.

Ordering Information

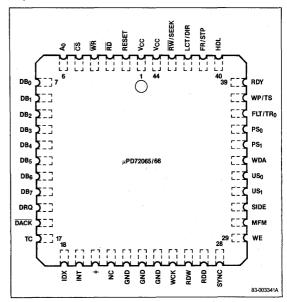
Device Number	Package Type	Max Freq. of Operation
μPD72065C	40-pin plastic DIP	8 MHz
μPD72065G	52-pin plastic miniflat	8 MHz
μPD72066C	40-pin plastic DIP	8 MHz
μPD72066G	52-pin plastic miniflat	8 MHz
μPD72065L	44-pin PLCC	8 MHz
μPD72066L	44-pin PLCC	8 MHz


^{*}Sony Micro Floppydisk is a registered trademark of Sony.

^{*}Z80 is a registered trademark of the Zilog Corporation.



Pin Configurations


40-pin DIP

52-pin Miniflat

44-pin PLCC

Pin Identification

40-pin DIP

No.	Symbol	Function					
1	RESET	Reset input					
2	RD	Read control input					
3	WR	Write control input					
4	<u>cs</u>	Chip select input					
5	Α ₀	Data or status select input					
6-13	DB ₀ -DB ₇	Bidirectional data bus					
14	DRQ	DMA request output					
15	DACK	DMA acknowledge input					
16	TC	Terminal count input					
17	IDX	Index input					
18	INT	Interrupt request output					
19	ф	Clock input					
20	GND	Ground					
21	WCK	Write clock input					
22	RDW	Read data window input					
23	RDD	Read data input					
24	SYNC	VC0 sync output					
25	WE	Write enable output					
26	MFM	MFM output					

Pin Identification (cont)

40-pin DIP

No.	Symbol	Function Side select output					
27	SIDE						
28, 29	US ₀ , US ₁	FDD unit select output					
30	WDA	Write data output					
31, 32	PS ₀ , PS ₁	Preshift output					
33	FLT / TR ₀	Fault / track zero input					
34	WP/TS	Write protect / two side input					
35	RDY	Ready input					
36	HDL	Head load output					
37	FR/STP	Fault reset / step output					
38	LCT / DIR	Low current direction output					
39	RW / SEEK	Read / write / seek output					
40	V _{CC}	DC power					

52-pin Miniflat

No.	Symbol	Function					
1, 5, 14, 26, 40, 52	NC	No connection					
2	IDX	Index input					
3	INT	Interrupt request input					
4	ф	Clock input					
6, 8, 9	GND	Ground					
7, 33	IC	Internal connection					
10	WCK	Write clock input					
11	RDW	Read data window input					
12	RDD	Read data input					
13	SYNC	VFO sync output					
15	WE	Write enable output					
16	MFM	MFM output					
17	SIDE	Side select output					
18, 19	US ₀ , US ₁	FDD unit select output					
20	WDA	Write data output					
21, 22	PS ₀ , PS ₁	Preshift output					
23	FLT / TR ₀	Fault / track 0 input					
24	WP/TS	Write protect / two side input					
25	RDY	Ready input					
27	HDL	Head load output					
28	FR/STP	Fault reset / step output					
29	LCT / DIR	Low current / direction output					
30	RW / SEEK	Read / write / seek output					
31, 32, 34	V _{CC}	DC power					
35	RESET	Reset input					

52-pin Miniflat (cont)

No.	Symbol	Function					
36	RD	Read control input					
37	WR	Write control input					
38	CS	Chip select input					
39	Α ₀	Data or status select input					
41–48	DB ₀ -DB ₇	Bidirectional data bus					
49	DRQ	DMA request output					
50	DACK	DMA acknowledge input					
51	TC	Terminal count input					

44-pin PLCC

H4-PIN P	Symbol	Function			
1, 44	V _{CC}	DC power			
2	RESET	Reset input			
3	RD	Read control input			
4	WR	Write control input			
5	CS	Chip select input			
6	A ₀	Data or status select input			
7–14	DB _O -DB ₇	Bidirectional data bus			
15	DRQ	DMA request output			
16	DACK	DMA acknowledge input			
17	TC	Terminal count input			
18	IDX	Index input			
19	INT	Interrupt request input			
20	ф	Clock input			
21	NC	No connection			
22-24	GND	Ground			
25	WCK	Write clock input			
26	RDW	Read data window input			
27	RDD	Read data input			
28	SYNC	VFO sync output			
29	WE	Write enable output			
30	MFM	MFM output			
31	SIDE	Side select output			
32, 33	US ₀ , US ₁	FDD unit select output			
34	WDA	Write data output			
35, 36	PS ₀ , PS ₁	Preshift output			
37	FLT / TR ₀	Fault / track 0 input			
38	WP/TS	Write protect / two side input			

Pin Identification (cont)

44-pin PLCC (cont)

No.	Symbol	Function				
39	RDY	Ready input				
40	HDL	Head load output				
41	FR/STP	Fault reset / step output				
42	LCT/DIR	Low current / direction output				
43	RW/SEEK	Read / write / seek output				

Pin Functions

RESET (Reset)

A high input places the μ PD72065/72066 in standby mode and sets drive interface outputs to low level (except PS₀, PS₁, and WDATA). In the main system, INT and DRQ are set to low level, and DB₀-DB₇ are set as inputs.

RD (Read Strobe)

The $\overline{\text{RD}}$ input allows the transfer of data from the FDC to the data bus when low. Disabled when $\overline{\text{CS}}$ is high.

WR (Write Strobe)

The WR input allows the transfer of data to the FDC from the data bus when low. Disabled when \overline{CS} is high.

A₀ (Data/Status Select)

The A_0 input selects the data register ($A_0 = 1$) or status register ($A_0 = 0$) contents to be sent to the data bus.

CS (Chip Select)

The FDC is selected when \overline{CS} is low, enabling \overline{RD} , \overline{WR} , and A_0 .

DB₀-DB₇ (Data Bus)

 DB_0 - DB_7 are a bidirectional three-state 8-bit data bus. Disabled when \overline{CS} is high.

DRQ (DMA Request)

The FDC asserts the DRQ output high to request a DMA transfer.

DACK (DMA Acknowledge)

When the DACK input is low, a DMA cycle is active and the controller is performing a DMA transfer.

TC (Terminal Count)

When the TC input is high, it indicates the termination of a DMA transfer. It terminates data transfer during Read/ Write/Scan commands in DMA or interrupt mode.

IDX (Index)

The IDX input goes high at the beginning of a disk track.

INT (Interrupt)

The INT output is FDC's interrupt request.

is the input for the FDC's single-phase, 8 MHz (standard floppy) or 4 MHz (mini floppy) clock.

WCK (Write Clock)

The WCK input sets the data read and write rate. Synchronize the rising edge of WCK with the rising edge of ϕ . FM = 16 ϕ cycles; MFM = 8 ϕ cycles.

RDW (Read Data Window)

The RDW input is generated by the VFO circuit. It is used to sample clock and data bits of RDD.

RDD (Read Data)

The RDD input is the read data from the FDD, containing clock and data bits. Input RDD and RDW during a data read, or the FDD will enter a deadlock state.

WDA (Write Data)

WDA is the serial clock and data output to the FDD.

WE (Write Enable)

The WE output enables write data into the FDD.

SYNC (VFO Sync)

SYNC outputs the functional mode of the FDD. A high output indicates read and a low output inhibits read.

MFM (MFM Mode)

The MFM output shows the FDD's mode. It is high for MFM, low for FM.

SIDE (Side Select)

Head 1 is selected when the SIDE output is 1 (high), head 0 is selected when SIDE is 0 (low).

Pin Functions (cont)

US₀, US₁ (Unit Select 0, 1)

The US₀ and US₁ outputs select the floppy disk drive unit.

PS₀, PS₁ (Preshift 0, 1)

The PS_0 and PS_1 outputs are the write precompensation status for MFM mode. They determine early, late, and normal times.

RDY (Ready)

The RDY input indicates that the FDD is ready to receive data.

HDL (Head Load)

The HDL output is the command which causes the read/write head in the FDD to contact the diskette.

FLT/TR₀ (Fault/Track 0)

In the read/write mode, the FLT input detects FDD fault conditions. In the seek mode, TR₀ detects track 0.

WP/TS (Write Protect/Two Side)

In the read/write mode, the WP input senses write protected status. In the seek mode, TS senses two-sided media.

FR/STP (Fault Reset/Step)

In the read/write mode, the FR output resets the fault flip-flop in the FDD. In the seek mode, STP outputs step pulses to move the head to another cylinder. A fault reset pulse (FR) is issued at the beginning or each Read or Write command prior to the HDL signal.

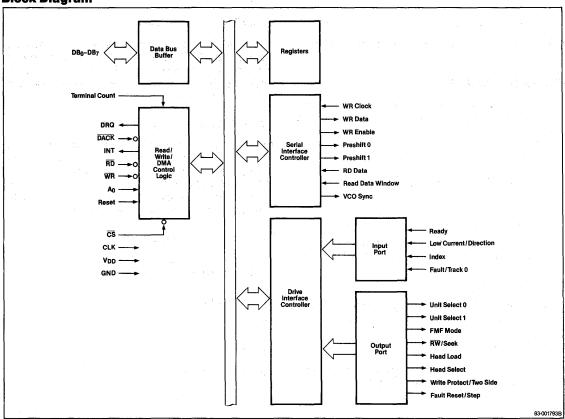
LCT/DIR (Low Current/Direction)

When RW/SEEK specifies RW, this output becomes LCT, indicating the read/write head of the drive is selecting a cylinder beyond the 43rd cylinder. When RW/SEEK specifies SEEK, this pin becomes DIR, specifying the direction of the seek operation. A low signal indicates output and a high signal indicates input.

RW/SEEK (Read/Write/Seek)

The RW/SEEK output specifies the read/write mode when low, and the seek mode when high.

GND (Ground)


Ground.

$V_{CC}(+5V)$

+5 V power supply.

Block Diagram

Absolute Maximum Ratings

 $T_{\Delta} = 25$ °C

-0.5 to +7 V
-0.5 to V _{DD} +0.3 V
-0.5 to V _{DD} +0.3 V
-10°C to +70°C
-65°C to +125°C
50 mW

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25$ °C, $f_C = 1$ MHz, $V_{CC} = 0$ V

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input clock capacitance	C _{IN} (¢)			20	pF	(Note 1)
Input capacitance	C _{IN}			10	pF	(Note 1)
Output capacitance	C _{OUT}			20	pF	(Note 1)

Note:

(1) All pins except pin under test tied to AC ground

DC Characteristics

 $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V ± 10 % unless otherwise specified

			Limit	8		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL}	-0.5		+0.8	٧	
Input voltage high	V _{IH}	2.2		V _{CC} +0.5	V	
Output voltage low	V _{OL}			0.45	V	$I_{OL} = 2.0 \text{mA}$
Output voltage high	V _{OH}	2.4		V _{CC}	٧	$I_{OH} = -200 \mu\text{A}$
Supply current	IDD		3	10	mA	
(V _{CC})	I _{DD1}		0.7	2	mA	
Input load current high	LIH			10	μΑ	$V_{IN} = V_{CC}$
Input load current low	ILIL			-10	μΑ	V _{IN} = 0 V
Output leakage current high	I _{LOH}			10	μΑ	V _{OUT} =V _{CC}
Output leakage current low	I _{LOL}			-10	μΑ	$V_{OUT} = +0.45 \text{ V}$

AC Characteristics

 $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V ±10% unless otherwise specified

		Limits				Test
Parameter :	Symbol	Min	Тур	Max	Unit	Conditions
Clock period	фсү	120	125	500	ns	(Note 4)
			125		ns	8" FDD
			250		ns	51/4" FDD
			125		ns	31/2" Sony (Note 3)
Clock active (high, low)	φ ₀	40			ns	
Clock rise time	φr			20	ns	
Clock fall time	φf			20	ns	
A ₀ , CS, DACK setup time to RD↓	t _{AR}	0			ns	
A ₀ , CS, DACK hold time from RD↑	t _{RA}	0			ns	
RD width	t _{RR}	200			ns	
Data access time from RD↓	t _{RD}			140	ns	C _L = 100 pF
DB to float delay time from RD 1	t _{DF}	10		85	ns	C _L = 100 pF
A ₀ , CS, DACK setup time to WR↓	t _{AW}	0			ns	

AC Characteristics (cont)

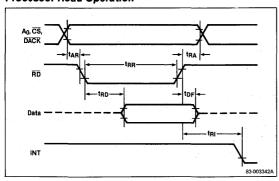
 $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V ± 10 % unless otherwise specified

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
A ₀ , CS , DACK hold time to WR↑	t _{WA}	0			ns	
WR width	t _{WW}	200			ns	
Data setup time to WR1	t _{DW}	100			ns	
Data hold time from WR↑	t _{WD}	0			ns	-
INT delay time from RD↑	t _{RI}			400	ns	
INT delay time from WR↑	t _{WI}			400	ns	
DRQ cycle time	t _{MCY}	13			μS	φ _{CY} = 125 ns (Note 4)
DACK↓→ DRQ↓delay	t _{AM}			140	ns	
DRQ↑→ DACK↓delay	t _{MA}	200			ns	φ _{CY} = 125 ns (Note 4)
DACK width	t _{AA}	2			фсү	
TC width	t _{TC}	1			фсү	
Reset width	t _{RST}	14			фсү	
WCK cycle time	t _{CY}		16		фсү	MFM = 0, 51/4"
			8		фсү	MFM = 1, 51/4"
		-	8		фсү	MFM=0, 8"
			4		· ¢cy	MFM = 1, 8"
			8	٠.	фсү	MFM = 0, 31/2" (Note 3)
			4		фсү	MFM = 1, $3^{1/2}$ " (Note 3)
WCK active time (high)	t ₀	-	2		фсу	
CLK↑→ WCK↑ delay	tcwH	0		40	ns	
CLK↑→ WCK↓delay	t _{CWL}	0		40	ns	
WCK rise time	t _r			20	ns	
WCK fall time	t _f			20	ns	
Preshift delay time from WCK1	t _{CP}	10		80	ns	
WCK↑→ WE↑ delay	tcwe	10		80	ns	
WDA delay time from WCK↑	t _{CD}	10		80	ns	-
RDD active time (high)	t _{RDD}	40			ns	
RDD active time	t _{RDD}	40	*.		ns	

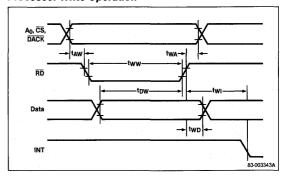
AC Characteristics (cont)

 $T_A = -10$ °C to +70 °C, $V_{CC} = +5$ V ± 10 % unless otherwise specified

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Window cycle	t _{WCY}		4		μS	MFM = 0, 51/4''
time			2		μs	$MFM = 1, 5^{1/4}"$
			2		μs	MFM=0,8"
			1		μS	MFM = 1, 8"
			2		μS	MEM = 0, 31/2'' (Note 3)
			1		μS	MFM = 1, 31/2" (Note 3)
Window hold time to RDD	t _{RDW}	15			ns	
Window hold time from RDD	t _{WRD}	15			ns	
US _{O, 1} hold time to RW / seek t	tus	12			μS	8 MHz clock period (Note 4)
RW / seek hold time to low current / direction	t _{SD} on↑	7			μS	8 MHz clock period (Note 4)
Low current / direction hold time to fault reset / step f	t _{DST}	1.0			μS	8 MHz clock period (Note 4)
US _{0, 1} hold time from fault reset / step 1	t _{STU}	5.0			μS	8 MHz clock period (Note 4)
Step active time (high)	t _{STP}	6	7	8	μS	(Note 4)

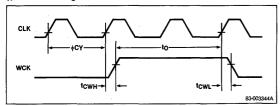

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Step cycle time	t _{SC}	33	(2)	(2)	μS	(Note 4)
Fault reset active time (high)	t _{FR}	8.0		10	μS	(Note 4)
Write data width	t _{WDD}	t ₀ -50			ns	
US _{0, 1} hold time after seek	t _{SU}	15			μS	8 MHz clock period (Note 4)
Seek hold time from DIR	t _{DS}	30			μS	8 MHz clock period (Note 4)
DIR hold time after step	tstd	24	-		μS	8 MHz clock period (Note 4)
Index pulse width	t _{IDX}	10			фсү	
RD ↓ delay from DRQ	t _{MR}	1			фсү	8 MHz clock period (Note 4)
WR↓ delay from DRQ	t _{MW}	250			ns	8 MHz clock period (Note 4)
WE or RD response time from DRQ↑	t _{MRW}			12	μs	8 MHz clock period (Note 4)

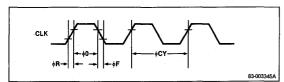
Note:


- (1) Typical values for $T_A = 25$ °C and nominal supply voltage.
- (2) Under software control. The range is from 1 ms to 16 ms at 8 MHz clock period, and 2 ms to 32 ms at 4 MHz clock period.
- (3) Sony Micro Floppydisk 31/2" drive.
- (4) Double these values for a 4 MHz clock period.

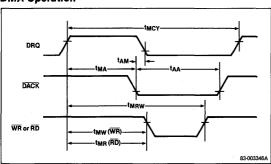
Timing Waveforms

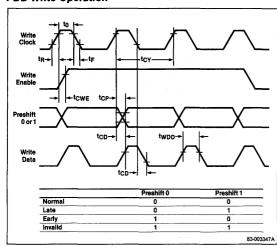
Processor Read Operation

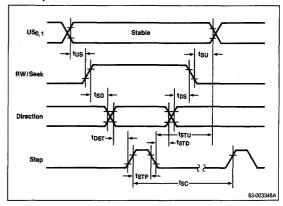

Processor Write Operation

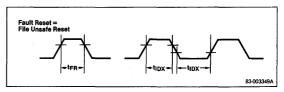


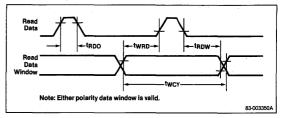
Timing Waveforms (cont)

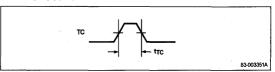

φ, WCK Timing

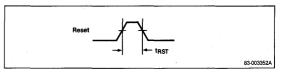

Clock


DMA Operation


FDD Write Operation


Seek Operation


FLT Reset


FDD Read Operation

Terminal Count

Reset

Internal Registers

The μ PD72065/ μ PD72066 contains two registers which may be accessed by the main system processor: a status register and a data register. The 8-bit main status register contains the status information of the FDC, and may be accessed at any time. The 8-bit data register (which actually consists of four registers, ST0–ST3, in a stack with only one register presented to the data bus at a time), stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the data register in order to program or obtain the results after a particular command (table 3). Only the status register may be read and used to facilitate the transfer of data between the processor and μ PD72065/ μ PD72066.

The relationship between the status/data registers and the signals \overline{RD} , \overline{WR} , and A_0 is shown in table 1.

Table 1. Status/Data Register Addressing

A ₀ RD		WR	Function	
0	0	1	Read main status register	
0	1	0	Reset commands	
0	0	0	Illegal	
1	0	0	0 Illegal	
1	0	1	Read from data register	
1	1	0	Write into data register	

The bits in the main status register are defined in table 2.

Table 2. Main Status Register

	Pin						
No.	Name	Function					
DB ₀	D ₀ B (FDD 0 Busy)	FDD number 0 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.					
DB ₁	D ₁ B (FDD 1 Busy)	FDD number 1 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.					
DB ₂	D ₂ B (FDD 2 Busy)	FDD number 2 is in the seek mode. If any of the D _n B bits is set FDC will not accep read or write command.					
DB ₃	D ₃ B (FDD 3 Busy)	FDD number 3 is in the seek mode. If any of the D _n B bits is set FDC will not accept read or write command.					
DB ₄	CB (FDC Busy)	A Read or Write command is in process. FDC will not accept any other command.					
DB ₅	EXM (Execution Mode)	This bit is set only during execution phase in non-DMA mode. When DB ₅ goes low, execution phase has ended and result phase has started. It operates only during non-DMA mode of operation.					

Table 2. Main Status Register (cont)

	Pin	
No.	Name	Function
DB ₆	DIO (Data Input / Output)	Indicates direction of data transfer between FDC and data register. If DIO=1, then transfer is from data register to the processor. If DIO=0, then transfer is from the processor to data register.
DB ₇	RQM (Request for Master)	Indicates data register is ready to send or receive data to or from the processor. Both bits DIO and RQM should be used to perform the hand-shaking functions of "ready" and "direction" to the processor.

The DIO and RQM bits in the status register indicate when data is ready and in which direction data will be transferred on the data bus. The maximum time between the last $\overline{\text{RD}}$ or $\overline{\text{WR}}$ during a command or result phase and DIO and RQM getting set or reset is 12 μ s. For this reason every time the main status register is read the CPU should wait 12 μ s. The maximum time from the trailing edge of the last $\overline{\text{RD}}$ in the result phase to when DB₄ (FDC busy) goes low is 12 μ s. See figure 1.

Figure 1. DIO and RQM

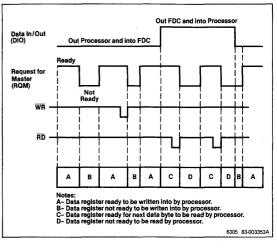


Table 3. Status Register Identification

	Pin				
No.	Name	Function			
Status Regis	ster O				
D ₇ , D ₆	IC (Interrupt Code)	D ₇ =0 and D ₆ =0 Normal termination of command, (NT). Command was completed and properly executed.			
		D ₇ =0 and D ₆ =1 Abnormal termination of command, (AT). Execution of command was started but was not successfully completed.			
		$D_7 = 1$ and $D_6 = 0$ Invalid command issue, (IC). Command which was issued was never started.			
		${ m D_7}$ = 1 and ${ m D_6}$ = 1 Abnormal termination because during command execution the ready signal from FDD changed state.			
D ₅	SE (Seek End)	When the FDC completes the Seek command, this flag is set to 1 (high).			
D ₄	EC (Equipment Check)	If a fault signal is received from the FDD, or if the track 0 signal fails to occur after 77 step pulses (Recalibrate Command) then this flag is set.			
D ₃	NR (Not Ready)	When the FDD is in the not-ready state and a Read or Write command is issued, this flag is set. If a Read or Write command is issued to side 1 of a single-sided drive, then this flag is set.			
D ₂	HD (Head Address)	This flag is used to indicate the state of the head at interrupt.			
D ₁	US ₁ (Unit Select 1)	This flag is used to indicate a drive unit number at interrupt.			
- D ₀	US ₀ (Unit Select 0)	This flag is used to indicate a drive unit number at interrupt.			
Status Regis	ster 1				
D ₇	EN (End of Cylinder)	When the FDC tries to access a sector beyond the final sector of a cylinder, this flag is set.			
D ₆		Not used. This bit is always 0 (low).			
D ₅	DE (Data Error)	When the FDC detects a CRC(1) error in either the ID field or the data field, this flag is set.			
D ₄	OR (Overrun)	If the FDC is not serviced by the host system during data transfers within a certain time interval, this flag is set.			

	Pin	
No.	Name	Function
Status Regis	ster 1 (cont)	
D ₂	ND (No Data)	During execution of Read Data, Write Deleted Data or Scan command, if the FDC cannot find the sector specified in the IDR(2) Register, this flag is set.
		During execution of the Read ID com- mand, if the FDC cannot read the ID field without an error, then this flag is set.
		During execution of the Read A Cylinder command, if the starting sector cannot be found, then this flag is set.
D ₁	NW (Not Writable)	During execution of Write Data, Write Deleted Data or Format A Cylinder com- mand, if the FDC detects a write protect signal from the FDD, then this flag is set.
D ₀	MA (Missing Address Mark)	If the FDC cannot detect the data address mark or deleted data address mark, this flag is set. Also at the same time, the MD (missing address mark in data field) of status register 2 is set.
Status Regis	ster 2	
D ₇		Not used. This bit is always 0 (low).
D ₆	CM (Control Mark)	During execution of the Read Data or Scan command, if the FDC encounters a sector which contains a deleted data address mark, this flag is set.
D ₅	DD (Data Error in Data Field)	If the FDC detects a CRC error in the data field then this flag is set.
D ₄	WC (Wrong Cylinder)	This bit is related to the ND bit, and when the contents of C(3) on the medium is different from that stored in the IDR, this flag is set.
D ₃	SH (Scan Equal Hit)	During execution of the Scan command, if the condition of "equal" is satisfied, this flag is set.
D ₂	SN (Scan Not Satisfied)	During execution of the Scan command, if the FDC cannot find a sector on the cylinder which meets the condition, then this flag is set.
D ₁	BC (Bad Cylinder)	This bit is related to the ND bit, and when the contents of C on the medium is different from that stored in the IDR and the contents of C is FFH, then this flag is set.
D ₀	MD (Missing Address Mark in Data Field)	When data is read from the medium, if the FDC cannot find a data address mark or deleted data address mark, then this flag is set.

Table 3. Status Register Identification (cont)

	Pin				
No.	Name	Function			
Status Reg	ister 3				
D ₇	FT (Fault)	This bit is used to indicate the status of the fault signal from the FDD.			
D ₆	WP (Write Protected)	This bit is used to indicate the status of the write protected signal from the FDD.			
D ₅	RY (Ready)	This bit is used to indicate the status of the ready signal from the FDD.			
D ₄	T0 (Track 0)	This bit is used to indicate the status of the track 0 signal from the FDD.			
D ₃	TS (Two-Side)	This bit is used to indicate the status of the two-side signal from the FDD.			
D ₂	HD (Head Address)	This bit is used to indicate the status of the side select signal to the FDD.			
D ₁	US ₁ (Unit Select 1)	This bit is used to indicate the status of the unit select 1 signal to the FDD.			
D ₀	US ₀ (Unit Select 0)	This bit is used to indicate the status of the unit select 0 signal to the FDD.			

Note:

- (1) CRC = Cyclic Redundancy Check
- (2) IDR = Internal Data Register
- (3) Cylinder (C) is described more fully in the Command Symbol Description.

Standby Mode

The μ PD72065/ μ PD72066 can be placed in a low-power standby mode by issuing the SET STANDBY command. During standby mode, the main status register will contain all zeros. After standby mode is disabled, RQM (Request for Master) in the main status register will be set to 1, indicating that the μ PD72065/72066 is available for use. During standby mode, it is only necessary to maintain clock on pin 19. All disk control signals will be inactive.

To further reduce system power dissipation, it is possible to stop the clock on pin 19 as well by the following procedure.

- (1) Issue SET STANDBY command.
- (2) Wait for 32 clock periods, minimum.
- (3) The clock may then be stopped.

To resume normal operation, the clock must be restarted. After 24 clock periods, the RESET STANDBY command may be issued.

All internal registers and I/O ports are held constant. V_{DD} must be maintained at normal levels.

Command Sequence

The μ PD72065/ μ PD72066 is capable of performing 18 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the μ PD72065/ μ PD72066 and the processor, it is convenient to consider each command as consisting of three phases:

	•
Command Phase:	The FDC receives all information required to perform a particular operation from the processor.
Execution Phase:	The FDC performs the operation it was instructed to do.
Result Phase:	After completion of the operation, status and other housekeeping information are made available to the processor.

table 4 shows the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase. The "W" to the left of each byte indicates a command phase byte to be written, and an "R" indicates a result byte. The definitions of other abbreviations used in table are given in the Command Symbol Description table.

Command Symbol Description

Name	Function
A ₀ (Address Line 0)	A_0 controls selection of main status register $(A_0=0)$ or data register $(A_0=1)$.
C (Cylinder Number)	C stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
D (Data)	D stands for the data pattern which is going to be written into a sector.
D ₇ -D ₀ (Data Bus)	8-bit data bus, where D_7 stands for a most significant bit, and D_0 stands for a least significant bit.
DTL (Data Length)	When N is defined as 00, DTL stands for the data length which users are going to read out or write into the sector.
EOT (End of Track)	EOT stands for the final sector number on a cylin- der. During read or write operations, FDC will stop data transfer after a sector number equal to EOT.
GPL (Gap Length)	GPL stands for the length of gap 3. During Read / Write commands this value determines the number of bytes that VCO sync will stay low after two CRC bytes. During Format command it determines the size of gap 3.

Command Symbol Description (cont)

Name	Function
H (Head Address)	H stands for head number 0 or 1, as specified in ID field.
HD (Head)	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. (H = HD in all command words.)
HLT (Head Load Time)	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT (Head Unload Time)	HUT stands for the head unload time after a Read or Write operation has occurred (16 to 240 ms in 16 ms increments).
MF (FM or MFM Mode)	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT (Multitrack)	IF MT is high, a multitrack operation is per- formed. If MT=1 after finishing read / write oper- ation on side 0, FDC will automatically start searching for sector 1 on side 1.
N (Number)	N stands for the number of data bytes written in a sector.
NCN (New Cylinder Number)	NCN stands for a new cylinder number which is going to be reached as a result of the seek operation; desired position of head.
ND (Non-DMA Mode)	ND stands for operation in the non-DMA mode.
PCN (Present Cylinder Number)	PCN stands for the cylinder number at the completion of Sense Interrupt Status command, position of head at present time.

Name	Function
R (Record)	R stands for the sector number which will be read or written.
R/W (Read/Write)	R/W stands for either Read (R) or Write (W) signal.
SC (Sector)	SC indicates the number of sectors per cylinder.
SK (Skip)	SK stands for skip deleted data address mark.
SRT (Step Rate Time)	SRT stands for the stepping rate for the FDD (1 to 16 ms in 1 ms increments). Stepping rate applies to all drives (FH = 1 ms, EH = 2 ms, etc.).
ST0-ST3 (Status 0-3)	ST0-ST3 stands for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_0\!=\!0)$. ST0-ST3 may be read only after a command has been executed and contains information relevant to that particular command.
STP	During a scan operation, if STP=1, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP=2, then alternate sectors are read and compared.
US ₀ , US ₁ (Unit Select)	US stands for a selected drive number 0 or 1.

Table 4. Instruction Set

		Instruction Code								
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks
Read Data										
Command	W	MT	MF	SK	0	0	1	1	0	Command codes
	W	Χ	Χ	Х	Х	Χ	HD	US₁	USo	
	W					c —			`	Sector ID information prior to command execution. The 4 bytes
	W	-				н				are compared against header on floppy disk.
	W	-				R				
	W	-				N				
	W	-			E	OT				
	. W	-			—— G	PL				
	W	-			D	TL				
Execution										Data transfer between the FDD and main system
Result	R	-			s	T0				Status information after command execution
	R	-			s	T1				
	R	-			s	T2				
	R					c —				Sector ID information after command execution
	R	•				н —				
	R	-				R				
	. R	4								

Note

- (1) In the Instruction Code, X = don't care (usually set to 0).
- (2) A_0 should be 0 for SET STANDBY, RESET STANDBY, and SOFTWARE RESET commands and 1 for all other commands.

Table 4. Instruction Set (cont)

					nstructio					
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _O	Remarks
lead Deleted Data										
Command	W	MT	MF	SK	0	1	1	0	0	Command codes
	W	Х	X	Χ	Х	Χ	HD	US_1	US_0	
	. W W	-			—— С —— Н					Sector ID information prior to command execution. The 4 bytes are compared against header on floppy disk.
	w	-			D					are compared against neader on noppy disk.
	w				N					
	W	4			EO	т —				
	W	-			GP					
	W				DT	L —			-	
Execution										Data transfer between the FDD and main system
Result	R	-			ST	0				Status information after command execution
	R	+			ST	1				
	R R	-	<u> </u>		ST C					Control ID information often command according
	R R	-			— н					Sector ID information after command execution
	R	-			R					
	R				N					
Vrite Data										
Command	W	MT	MF	0	0	0	1	0	1	Command codes
o o minaria	w	X	X	X	X	X	HD	US ₁	US _O	
	W	4			—— с				-	Sector ID information prior to command execution. The 4 bytes
	W	4			—— й					are compared against header on floppy disk.
	W W				K					
	w	-			EO	т —				
	w	~			GP	L —				
	, W	4			DT	L				
Execution										Data transfer between the main system and FDD
Result	R				ST	n —				Status information after command execution
nosan	R	-			ST					Status mornation and commune execution
	R	4			ST					
	R	-			— c					Sector ID information after command execution
	R	4			—— Н —— R					
	R R	-			N					
Write Deleted Data			<u> </u>							
	14/	MT	ME							Command andra
Command	W	MT X	MF X	0 X	0 X	1 X	0 HD	0 US ₁	1 US ₀	Command codes
	w				r					Sector ID information prior to command execution. The 4 bytes
	W	-			—— Н					are compared against header on floppy disk.
	W				N					
	· W				N E0					
	W	-		100	EU GP					
	W	-			DT					
Execution										Data transfer between the FDD and main system
		<u>_</u>	<u> </u>		OT.					
Result	R R	-			ST ST					Status information after command execution
	R	-			— зі — sт	2				
	R	4			C					Sector ID information after command execution
	R	•								
	R		•		R					
	R	-			N					

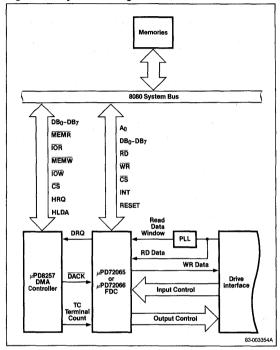
Table 4. Instruction Set (cont)

Phase	R/W			_	_	_	_	Instruction Code										
	117 10	D ₇	D ₆	D ₅	D ₄	D ₃	3 D ₂	D ₁	D ₀	Remarks								
Scan Low or Equal																		
Command	W	MT	MF	SK	1	1	0	0	1	Command codes								
	W	Х	Χ	Χ	X	Χ	HD	US_1										
	W	-			— с					Sector ID information prior to command execution								
	W	-			—— н —— R													
	W W				N													
	W				E0-	-												
	w	*			001													
	W				STI	· —												
Execution										Data compared between the FDD and main system								
Result	R				ST				-	Status information after command execution								
	R				ST				→									
	R	-			— ST : — C	2												
	R	-			—— С —— Н					Sector ID information after command execution								
	R R	-			— Н				-									
	R	-			N													
Scan High or Equal																		
Command	W	MT	MF	SK	1	1	1	0	1	Command codes								
	W	Х	Χ	Χ	X	Χ	HD	US_1	US ₀									
	W				—— С					Sector ID information prior to command execution								
	W W	-			—— Н —— R													
	W	-			41													
	W					-				•								
	w	-	-		GPI													
	W	-			STI	·												
Execution										Data compared between the FDD and main system								
Result	R				ST)				Status information after command execution								
	R				ST													
	R	-			ST					0.1.1017								
	R R	-			—— С —— Н					Sector ID information after command execution								
	R	_			—— п —— R													
	R	-			N													
ecalibrate																		
Command	W	0	0	0	0	0	1	1	1	Command codes								
	W	X	X	Χ	X	X	0	US ₁	US ₀									
Execution ense Interrupt Status										Head retracted to track 0								
Command		0	0	0	0	1	0	0	0	Command codes								
Result	R				ST					Status information about the FDC at the end of seek operation								
ngodil	R	-			SIN					סנמנטס ווווסוווומנוטוו מטטנו נוופ רטס מנ נוופ פווט טו ספפא טויפומנונ								
pecify																		
						^	^	4		^								
Command	W	0	SF	_ 0	0	•	_0 — н	_ 1	1	Command codes								

Table 4. Instruction Set (cont)

					Instruct	ion Cod	e				
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks	
Sense Drive Status											
Command	W	0	0	0	0	0	1	0	0	Command codes	
	W	X	Х	Х	Х	X	HD	US ₁	US ₀		
Result	R				S	ГЗ —				Status information about FDD	
Seek											
Command	W	0	0	0	0	1	1	1	1	Command codes	
	W W	Х	X	X	X	X ON	HD	US ₁	US ₀		
					IN	JIV					
Execution										Head is positioned over proper cylinder on diskette	
Invalid											
Command	W	*			Invalid	Codes				Invalid Command codes (No op — FDC goes into standby state)	
Result	R	-			s	ro —				ST0=80H	
Set Standby											
Command	W	0	0	1	1	0	1	0	1	Command codes	
Execution										Enter standby mode	
Reset Standby											
Command	W	0	0	1	1	. 0	1	0	0	Command codes	
Execution										Disable standby mode	
Software Reset											
Command	W	0	0	1	1	0	1	1	0	Command codes	
Execution										Same as hardware reset	
Read a Track										- Anna Maria de Caracteria de	
Command	W W	0 X	MF X	SK X	0 X	0 X	0 HD	1 ÚS₁	0 US ₀	Command codes	
	w	-				`				Sector ID information prior to command execution	
	W	-								F	
	W	•—									
	W W	-				V ——					
	W	-			G	JI					
	w	-			D	TL			<u>.</u>		
Execution										Data transfer between the FDD and main system. FDC reads all data fields from index hole to EOT.	
Result	R				s	Γ0 —				Status information after command execution	
	R	◄			<u> </u>	T1 —					
	R				— s	Γ2					
	R	-		<u> </u>		; —				Sector ID information after command execution	
	R	-									
	R	4				1					
	R					N					

Table 4. Instruction Set (cont)


				1	nstructi	on Coc	le			
Phase	R/W	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Remarks
Read ID										
Command	W	0	MF	0	0	1	. 0	1	0	Command codes
	W	Х	Х	X	Χ	Χ	HD	US ₁	US ₀	
Execution	-									The first correct ID information on the cylinder is stored in data register.
Result	R	-			ST	0 —				Status information after command execution
	R				st					
	R	-			ST C	2				Contact Distance the second decision was also also also also also also also al
	R R	-			(; ——				Sector ID information read during execution phase from flopp disk.
	R	-				i				disk.
	R	-			i	i				
ormat a Track						.,				
Command	W	0	MF	0	0	1	1	0	1	Command codes
	W	Χ	Χ	X	Χ	Χ	HD	US_1		
	W	4	-		N					Bytes / sector
	W W	*			Si GF	: —				Sectors / track
	· W	-			— GF	`L —				Gap 3 Filler byte
Execution										FDC formats an entire track.
Result	R				ST	n —				Status information after command execution
Hosan	R	-			ST	1				Status information arter commune exception
	R				— st					
	R				<u> —</u> с	:				In this case, the ID information has no meaning
	, R				— н					
	R R	-			P					
Scan Equal	n									
Command	w	MT	MF	SK	1	0	0	0	1	Command codes
Command	w	X	X	X		X		US ₁		Command codes
	W	-			(c —				Sector ID information prior to command execution
	W	•			ì	4				
	W	•			i	R				
	W	-				V			-	
	W	-			E	וט				
	w	-	-			TP —				
Execution	· · · · · · · · · · · · · · · · · · ·									Data compared between the FDD and main system
Result	R	-			s	TO —				Status information after command execution
	Ř	4			s	T1 —				
	R	←			s	Г2 —				
	R	-								Sector ID information after command execution
	R				I	!				
	. R	-								
	R					v				

System Configuration

Figure 2 shows an example of a system using a μ PD72065/ μ PD72066.

Figure 2. System Configuration

Processor Interface

During command or result phases the main status register (described earlier) must be read by the processor before each byte of information is written into or read from the data register. After each byte of data read or written to the data register, CPU should wait for 12 µs before reading main status register, bits D6 and D7 in the main status register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the µPD72065/µPD72066. Many of the commands require multiple bytes and, as a result, the main status register must be read prior to each byte transfer to the $\mu PD72065/\mu PD72066$. On the other hand, during the result phase, D₆ and D₇ in the main status register must both be 1's ($D_6 = 1$ and $D_7 = 1$) before reading each byte from the data register. Note that this reading of the main status register before each byte transfer to the μPD72065/μPD72066 is required only in the command and result phases, and not during the execution phase.

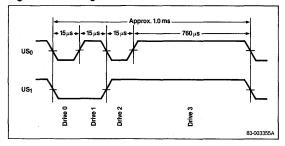
During the execution phase, the main status register need not be read. If the $\mu PD72065/\mu PD72066$ is in the non-DMA mode, then the receipt of each data byte (if $\mu PD72065/\mu PD72066$ is reading data from FDD) is indicated by an interrupt signal on pin 18 (INT = 1). The generation of a read signal (RD = 0) or write signal (WR = 0) will clear the interrupt as well as output the data onto the data bus. If the processor cannot handle interrupts fast enough (every $13\,\mu s$ for the MFM mode and $27\,\mu s$ for the FM mode), then it may poll the main status register and bit D7 (RQM) functions as the interrupt signal. If a write command is in process then the WR signal negates the reset to the interrupt signal.

Note that in the non-DMA mode it is necessary to examine the main status register to determine the cause of the interrupt, since it could be a data interrupt or a command termination interrupt, either normal or abnormal.

If the μ PD72065/ μ PD72066 is in the DMA mode, no interrupts are generated during the execution phase. The μ PD72065/ μ PD72066 generates DRQs (DMA requests) when each byte of data is available. The DMA controller responds to this request with both a $\overline{DACK}=0$ (DMA acknowledge) and an RD = 0 (read signal). When the DMA acknowledge signal goes low ($\overline{DACK}=0$), then the DMA request is cleared (DRQ = 0). If a write command has been issued then a \overline{WR} signal will appear instead of \overline{RD} . After the execution phase has been completed (terminal count has occurred) or the EOT sector read/written, then an interrupt will occur (INT = 1). This signifies the beginning of the result phase. When the first byte of data is read during the result phase, the interrupt is automatically cleared (INT = 0).

The \overline{RD} or \overline{WR} signals should be asserted while \overline{DACK} is true. The \overline{CS} signal is used in conjunction with \overline{RD} and \overline{WR} as a gating function during programmed I/O operations. \overline{CS} has no effect during \overline{DMA} operations. If the non-DMA mode is chosen, the \overline{DACK} signal should be pulled up to V_{CC} .

It is important to note that during the result phase all bytes shown in the instruction set (table 4) must be read. The read data command, for example, has seven bytes of data in the result phase. All seven bytes must be read in order to successfully complete the Read Data command. The $\mu\text{PD72065}/\mu\text{PD72066}$ will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the result phase.


The μ PD72065/ μ PD72066 contains five status registers. The main status register mentioned above may be read by the processor at any time. The other four status registers (ST0, ST1, ST2, and ST3) are available only during the result phase and may be read only after completing a command. The particular command that has been executed determines how many of the status registers will be read.

The bytes of data which are sent to the μ PD72065/ μ PD72066 to form the command phase and are read out of the μ PD72065/ μ PD72066 in the result phase must occur in the order shown in table 4. That is, the command code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the command or result phases is allowed. After the last byte of data in the command phase is sent to the μ PD72065/ μ PD72066, the execution phase automatically starts. In a similar fashion, when the last byte of data is read out in the result phase, the command is automatically ended and the μ PD72065/ μ PD72066 is ready for a new command.

Polling

After reset has been sent to the uPD72065/uPD72066. the unit select lines USo and US1 will automatically go into a polling mode. In between commands (and between step pulses in the Seek command) the µPD72065/ μ PD72066 polls all four FDDs looking for a change in the ready line from any of the drives. If the ready line changes state (usually due to a door opening or closing), then the µPD72065/µPD72066 will generate an interrupt. When status register 0 (ST0) is read (after Sense Interrupt Status is issued), not ready (NR) will be indicated. The polling of the ready line by the µPD72065/ μPD72066 occurs continuously between commands. thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands. When used with a 4 MHz clock for interfacing to minifloppies, the polling rate is 2.048 ms. See figure 3.

Figure 3. Polling Feature

Read Data

A set of nine (9) byte words are required to place the FDC into the read data mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID address marks and ID fields. When the current sector number (R) stored in the ID register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.

After completion of the read operation from the current sector, the sector number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a multi-sector read operation. The Read Data command may be terminated by the receipt of a terminal count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (cyclic redundancy count) bytes, and then at the end of the sector terminate the Read Data command. The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MF (MFM/FM), and N (number of bytes/ sector). Table 5 shows the transfer capacity.

The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at sector 1, side 0 and completing at sector L, side 1 (sector L = last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.

When N = 0, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a sector, the data beyond DTL in the sector is not sent to the data bus. The FDC reads (internally) the complete sector performing the CRC check and, depending upon the manner of command termination, may perform a multi-sector read operation. When N is non-zero, then DTL has no meaning and should be set to FFH.

Table 5. Transfer Capacity

Multi- Track MT	MFM / FM MF	Bytes/ Sector N	Maximum Transfer Capacity (Bytes / Sector) (Number of Sectors)	Final Sector Read from Diskettes
0	0	00 01	(128) (26) = 3,328 (256) (26) = 6,656	26 at side 0 or 26 at side 1
 	0 1	00 01	(128) (52) = 6,656 (256) (52) = 13,312	26 at side 1
0	0	01 02	(256) (15) = 3,840 (512) (15) = 7,680	15 at side 0 or 15 at side 1
1	0 1	01 02	(256) (30) = 7,680 (512) (30) = 15,360	15 at side 1
0	0	02 03	(512) (8) = 4,096 (1024) (8) = 8,192	8 at side 0 or 8 at side 1
1	0	02 03	(512) (16) = 8,192 (1024) (16) = 16,384	8 at side 1

At the completion of the Read Data command, the head is not unloaded until after head unload time interval (specified in the Specify command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.

If the FDC detects the index hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No data) flag in status register 1 to a 1 (high), and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

After reading the ID and data fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (data error) flag in status register 1 to a 1 (high), and if a CRC error occurs in the data field, the FDC also sets the DD (data error in data field) flag in status register 2 to a 1 (high), and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

If the FDC reads a deleted data address mark off the diskette, and the SK bit (bit D_5 in the first command word) is not set (SK = 0), then the FDC sets the CM (control mark) flag in status register 2 to a 1(high), and terminates the Read Data command, after reading all the data in the sector. If SK = 1, the FDC skips the sector with the deleted data address mark and reads the next sector. The CRC bits in the deleted data field are not checked when SK = 1.

During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \,\mu s$ in the FM mode, and every $13 \,\mu s$ in the MFM mode, or the FDC sets the OR (Overrun) flag in status register 1 to a 1 (high), and terminates the Read Data command.

If the processor terminates a read (or write) operation in the FDC, then the ID information in the result phase is dependent upon the state of the MT bit and EOT byte. Table 6 shows the values for C, H, R, and N, when the processor terminates the command.

Table 6. Command Description

		Final Sector Transferred		ID Inform	nation at Result Phas	•
MT	HD	to Processor	C	Н	R	N
0 -	0	Less than EOT	NC	NC	R+1	NC
0	0	Equal to EOT	C+1	NC	R=01	NC
0	1	Less than E0T	NC	NC	R+1	NC
0	1	Equal to EOT	C+1	NC	R=01	NC
1	0	Less than EOT	NC	NC	R+1	NC
1	0	Equal to EOT	NC	LSB	R=01	, NC
1	1	Less than EOT	NC	NC	R+1	NC
1	1	Equal to EOT	C+1	LSB	R=01	NC

Note:

- (1) NC (No Change): The same value as the one at the beginning of command execution.
- (2) LSB (Least Significant Bit): The least significant bit of H is complemented.

Functional Description of Commands

Write Data

A set of nine (9) bytes is required to set the FDC into the write data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID fields. When all four bytes loaded during the command (C, H, R, N) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-bybyte via the data bus and outputs it to the FDD. See table 6.

After writing data into the current sector, the sector number stored in R is incremented by one, and the next data field is written into. The FDC continues this multisector write operation until the issuance of a terminal count signal. If a terminal count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the terminal count signal is received while a data field is being written then the remainder of the data field is filled with zeros.

The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (CRC error) in one of the ID fields, it sets the DE (Data Error) flag of status register 1 to a 1 (high) and terminates the Write Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

The Write command operates in much the same manner as the Read command. The following items are the same, and one should refer to the Read Data command for details:

- Transfer capacity
- . EN (end of cylinder) flag
- . ND (no data) flag
- Head unload time interval
- ID Information when the processor terminates command
- Definition of DTL when N = 0 and when N≠0

In the write data mode, data transfers between the processor and FDC, via the data bus, must occur every 27 μs in the FM mode and every 13 μs in the MFM mode. If the time interval between data transfers is longer than this, the FDC sets the OR (overrun) flag in status register 1 to a 1 (high) and terminates the Write Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

Write Deleted Data

This command is the same as the Write Data command except a deleted data address mark is written at the beginning of the data field instead of the normal data address mark.

Read Deleted Data

This command is the same as the Read Data command except that when the FDC detects a data address mark at the beginning of a data field (and SK = 0 (low)), it will read all the data in the sector and set the CM flag in status register 2 to a 1 (high), and then terminate the command. If SK = 1, then the FDC skips the sector with the data address mark and reads the next sector.

Read a Track

This command is similar to the Read Data command except that this is a continuous read operation where the entire data field from each of the sectors is read. Immediately after sensing the index hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or data CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR and sets the ND flag of status register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when the number of sectors read is equal to EOT. If the FDC does not find an ID address mark on the diskette after it senses the index hole for the second time, it sets the MA (missing address mark) flag in status register 1 to a 1 (high) and terminates the command. (Status register 0 has bits 7 and 6 set to 0 and 1, respectively.)

Read ID

The Read ID command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read. If no proper ID address mark is found on the diskette before the index hole is encountered for the second time, then the MA (missing address mark) flag in status register 1 is set to a 1 (high), and if no data is found then the ND (No data) flag is also set in status register 1 to a 1 (high). The command is then terminated with bits 7 and 6 in status register 0 set to 0 and 1, respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

Format a Track

The Format a Track command allows an entire track to be formatted. After the index hole is detected, data is written on the diskette; gaps, address marks, ID fields, and data fields, all per the IBM System 34 (double density) or System 3740 (single density) format, are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/cylinder), GPL (gap length),

and D (data pattern) which are supplied by the processor during the command phase. The data field is filled with the byte of data stored in D. The ID field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (cylinder number), H (head number), R (sector number), and N (number of bytes/sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.

The processor must send new values for C, H, R, and N to the μ PD72065/ μ PD72066 for each sector on the track. If FDC is set for the DMA mode, it will issue four DMA requests per sector. If it is set for the interrupt mode, it will issue four interrupts per sector and the processor must supply C, H, R, and N loads for each sector. The contents of the R register are incremented by 1 after each sector is formatted; thus, the R register contains a value of R when it is read during the result phase. This incrementing and formatting continues for the whole track until the FDC detects the index hole for the second time, whereupon it terminates the command.

If a fault signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of status register 0 to a 1 (high) and terminates the command after setting bits 7 and 6 of status register 0 to 0 and 1, respectively. Also, the loss of a ready signal at the beginning of a command execution phase causes bits 7 and 6 of status register 0 to be set to 0 and 1, respectively.

Table 7 shows the relationship between N, SC, and GPL for various sector sizes.

Scan Commands

The Scan commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis and looks for a sector of data which meets the conditions of D_{FDD} = D_{Processor}, D_{FDD} ≤ D_{Processor}, or D_{FDD} ≥ D_{Processor}. The hexidecimal byte of FF either from memory or from FDD can be used as a mask byte because it always meets the condition of the comparison. One's complement arithmetic is used for comparison (FF = largest number, 00 = smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented (R + STP → R), and the scan operation is continued. The scan operation continues until one of the following conditions occur: the conditions for scan are met (equal, low, or high). the last sector on the track is reached (EOT), or the terminal count signal is received.

Table 7. Sector Size

Format	Sector Size	N	SC	GPL(1)	GPL (2, 3
8" Standard Floppy				* .	
FM Mode	128 Bytes / Sector	. 00	1A	07	1B
	256	01	0F	0E	2A
	512	02	08	1B	3A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode (Note 4)	256	.01	1A	0E	36
	512	02	0F	1B	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					1.7
FM Mode	128 Bytes / Sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM Mode (Note 4)	256	01	12	0A	0C
	256	01	10	20	32
	512	02	- 08	2A	50
	1024	03	04	80	F0
	2048	04	02	C8	FF
	4096	05	01	C8	FF
31/2" Sony Micro Floppydisk					
FM Mode	128 Bytes / Sector	0	0F	07	1B
	256	1	09	0E	2A
	512	2	05	1B	3A
MFM Mode (Note 4)	256	1 .	0F	0E	36
	512	2	09	1B	54
	1024	3	05	35	74

Note:

- (1) Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections.
- (2) Suggested values of GPL in format command.
- (3) All values except sector size are hexidecimal.
- (4) In MFM mode FDC cannot perform a Read/Write/Format operation with 128 bytes/sector. (N = 00).

If the conditions for scan are met, then the FDC sets the SH (scan hit) flag of status register 2 to a 1 (high) and terminates the Scan command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (scan not satisfied) flag of status register 2 to a 1 (high) and terminates the Scan command. The receipt of a terminal count signal from the processor or DMA controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process and then to terminate the command. Table 8 shows the status of bits SH and SN under various conditions of Scan.

Table 8. Scan Conditions

4	Status R	egister 2			
Command	Bit 2 = \$N	Bit 3 = SH	Comments		
Scan Equal	0	1	D _{FDD} = D _{Processor}		
	1 ,	0	D _{FDD} ≠D _{Processor}		
Scan Low or	0 ,	1	D _{FDD} = D _{Processor}		
Equal	0 .	0	D _{FDD} < D _{Processor}		
	1	0	D _{FDD} >D _{Processor}		
Scan High or	0	1	D _{FDD} = D _{Processor}		
Equal	0	0	D _{FDD} > D _{Processor}		
	1	0	D _{FDD} < D _{Processor}		

If the FDC encounters a deleted data address mark on one of the sectors (and SK=0), then it regards the sector as the last sector on the cylinder, sets the CM (control mark) flag of status register 2 to a 1 (high) and terminates the command. If SK=1, the FDC skips the sector with the deleted address mark and reads the next sector. In the second case (SK=1), the FDC sets the CM (control mark) flag of status register 2 to a 1 (high) in order to show that a deleted sector has been encountered.

When either the STP (contiguous sectors = 01, or alternate sectors = 02) sectors are read or the MT (multitrack) is programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP=02, MT=0, the sectors are numbered sequentially 1 through 26 and the Scan command is started at sector 21, the following will happen: sectors 21, 23, and 25 will be read, then the next sector (26) will be skipped and the index hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan command would be completed in a normal manner.

During the Scan command, data is supplied by either the processor or DMA controller for comparison against the data read from the diskette. In order to avoid having

the OR (overrun) flag set in status register 1, it is necessary to have the data available in less than $27\,\mu s$ (FM mode) or $13\,\mu s$ (MFM mode). If an overrun occurs, the FDC ends the command with bits 7 and 6 of status register 0 set to 0 and 1, respectively.

Seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek command. FDC has four independent present cylinder registers for each drive. They are cleared only after the Recalibrate command. The FDC compares the PCN (present cylinder number) which is the current head position with the NCN (new cylinder number), and if there is a difference, performs the following operations:

PCN < NCN: Direction signal to FDD set to a 1 (high), and step pulses are issued. (Step in)

PCN > NCN: Direction signal to FDD set to a 0 (low), and step pulses are issued. (Step out)

The rate at which step pulses are issued is controlled by SRT (stepping rate time) in the Specify command. After each step pulse is issued NCN is compared against PCN, and when NCN = PCN, the SE (seek end) flag is set in status register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits D_0B-D_3B in the main status register are set during the seek operation and are cleared by the Sense Interrupt Status command.

During the command phase of the seek operation the FDC is in the FDC busy state, but during the execution phase it is in the non-busy state. While the FDC is in the non-busy state, another Seek command may be issued, and in this manner parallel seek operations may be done on up to four drives at once. No other command can be issued for as long as the FDC is in the process of sending step pulses to any drive.

If an FDD is in a not ready state at the beginning of the command execution phase or during the seek operation, then the NR (not ready) flag is set in status register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of status register 0 are set to 0 and 1, respectively.

If the time to write three bytes of Seek command exceeds $150\,\mu s$, the timing between the first two step pulses may be shorter than set in the Specify command by as much as 1 ms.

Recalibrate

The function of this command is to retract the read/write head within the FDD to the track 0 position. The FDC clears the contents of the PCN counter and checks the status of the track 0 signal from the FDD. As long as the track 0 signal is low, the direction signal remains 0 (low) and step pulses are issued. When the track 0 signal goes high, the SE (seek end) flag in status register 0 is set to a 1 (high) and the command is terminated. If the track 0 signal is still low after 256 step pulses have been issued, the FDC sets the SE (seek end) and EC (equipment check) flags of status register 0 to both 1s (highs) and terminates the command after bits 7 and 6 of status register 0 are set to 0 and 1, respectively.

The ability to do overlapping Recalibrate commands to multiple FDDs and the loss of the ready signal, as described in the Seek command, also applies to the Recalibrate command. If the diskette has more than 77 tracks, then Recalibrate command should be issued twice, in order to position the read/write head to the track 0.

Sense Interrupt Status

An interrupt signal is generated by the FDC for one of the following reasons:

- (1) Upon entering the result phase of:
 - (a) Read Data command
 - (b) Read a Track command
 - (c) Read ID command
 - (d) Read Deleted Data command
 - (e) Write Data command
 - (f) Format a Cylinder command
 - (a) Write Deleted Data command
 - (h) Scan commands
- (2) Ready line of FDD changes state
- (3) End of Seek or Recalibrate command
- (4) During execution phase in the non-DMA mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in non-DMA mode, DB5 in the main status register is high. Upon entering the result phase this bit gets cleared. Reasons 1 and 4 do not require Sense Interrupt Status commands. The interrupt is cleared by reading/writing data to the FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status command. This command, when issued, resets the Interrupt signal and, via bits 5, 6, and 7 of status register 0, identifies the cause of the interrupt. See table 9.

Table 9. Interrupt Status

Seek End	Interru	pt Code	
Bit 5	Bit 6	Bit 7	Cause
0	1	1	Ready line changed state, either polarity
1	0	0	Normal termination of Seek or Recalibrate command
1	1	0	Abnormal termination of Seek or Recalibrate command

The Sense Interrupt Status command is used in conjunction with the Seek and Recalibrate commands which have no result phase. When the disk drive has reached the desired head position the μ PD72065/ μ PD72066 will set the interrupt line true. The host CPU must then issue a Sense Interrupt Status command to determine the actual cause of the interrupt, which could be seek end or a change in ready status from one of the drives. A graphic example is shown in figure 4.

Specify

The Specify command sets the initial values for each of the three internal timers. The HUT (head unload time) defines the time from the end of the execution phase of one of the Read/Write commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms (01 = 16 ms, 02 = 32 ms...0FH = 240 ms). The SRT (step rate time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms (F=1 ms, E=2 ms, D=3 ms, etc.). The HLT (head load time) defines the time between when the head load signal goes high and the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of 2 ms $(01 = 2 \text{ ms}, 02 = 4 \text{ ms}, 03 = 6 \text{ ms}, \dots)$ $7F = 254 \, \text{ms}$).

The time intervals mentioned above are a direct function of the clock (\$\phi\$ on pin 19). Times indicated above are for an 8 MHz clock; if the clock was reduced to 4 MHz (minifloppy application), then all time intervals are increased by a factor of 2.

The choice of a DMA or non-DMA operation is made by the ND (non-DMA) bit. When this bit is high (ND = 1) the non-DMA mode is selected, and when ND = 0 the DMA mode is selected.

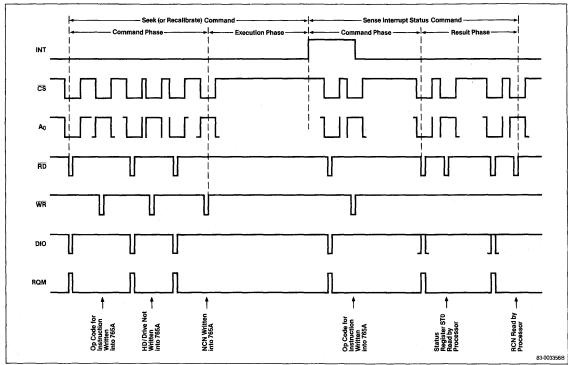


Figure 4. Seek, Recalibrate, and Sense Interrupt Status

Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status register 3 contains the drive status information stored internally in FDC registers.

Invalid

If an Invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of status register 0 are set to 1 and 0, respectively. No interrupt is generated by the $\mu PD72065/\mu PD72066$ during this condition. Bits 6 and 7 (DIO and RQM) in the main status register are both 1 (high), indicating to the processor that the $\mu PD72065/\mu PD72066$ is in the result phase and the contents of status register 0 (ST0) must be read. When the processor reads status register 0 it will find an 80H, indicating an Invalid command was received.

A Sense Interrupt Status command must be sent after a seek or recalibrate interrupt, otherwise the FDC will consider the next command to be an Invalid command.

In some applications the user may wish to use this command as a No-Op command to place the FDC in a standby or no operation state.

CMOS Reset Commands

Commands that are available in the $\mu PD72065/72066$ which are enhancements over the $\mu PD765A/7265$ are the CMOS reset commands. They are initiated as follows:

	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Set standby	0	1	0	0	0	1	1	0	1	0	1
Reset standby	0	1	0	0	0	1	1	0	1	0	0
Software reset	0	1	0	0	0	. 1	1	0	1	1	0

The software reset command is identical to the hardware reset described previously.

The set standby command reduces power consumption (PD) from 10 mW to 10 μ W. Pin 19 (CLK) must be active when setting or resetting standby mode. All other clocks (i.e. WCK, etc.) can be inactive. The supply voltage must be maintained at 5 V during standby. The clock to pin 19 may be disabled during standby provided the following set-up and hold conditions are met:

Standby Mode (Issuing command) 32 ¢CY → ← 24 ¢CY CLK enabled (0 = disabled) Note: Standby mode will maintain internal status registers and I/O lines.

Data Format

Figure 5 shows the data transfer format for the μ PD72065 and μ PD72066 in various modes.

Figure 5. Data Format (Sheet 1 of 2)

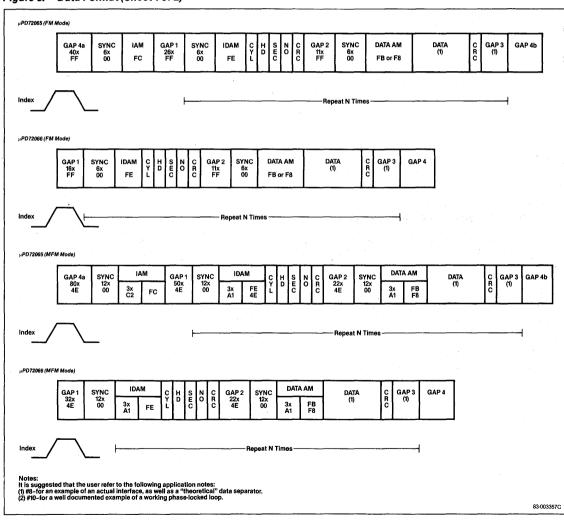
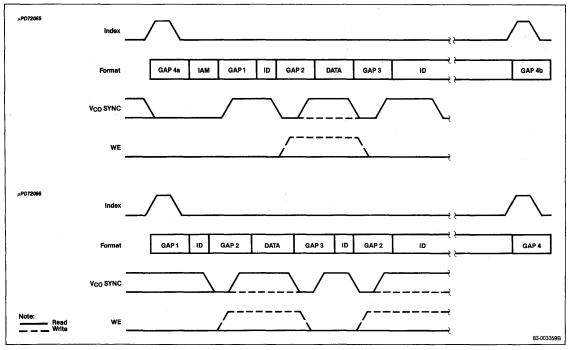



Figure 5. Data Format (Sheet 2 of 2)

Differences Between the $\mu\text{PD}72065 \textit{I}\, 72066$ and $\mu\text{PD}765 \text{A}\textit{I}\, 7265$

μ PD72065	μ PD72066	μ PD765A	μ PD7265
IBM	ECMA/ISO	IBM	EMCA/ISO
2	55	77	255
0.2 ms (at 4 MHz)	about 1.2 ms (at 4 MHz)	about 0.2 ms (at 4 MHz)
			βμs βμs
	0.2 ms (<u> </u>	IBM ECMA/ISO IBM

Parameter	μ PD72065	μ PD72066	μ PD765A	μ PD7265
FDD response latency after unit select signal output		CY = 125 ns) CY = 250 ns)		0.5 μs 1.0 μs
Multitrack write by tunnel erase head	Y	'es	N	0
Standby function (standby command)	`	⁄es	N	lo
Software reset command	١	⁄es		lo

PRELIMINARY INFORMATION

Description

The μ PB9201 floppy disk interface (FDI) is an LSI device that provides a wide range of functions commonly needed in a floppy disk controller design. A floppy disk controller design using the μ PD765A and the μ PB9201 requires only four to five chips, depending on individual requirements.

The digital phase lock loop implemented in the FDI simulates the function of an analog PLL. If higher resolution is required, the device provides for the addition of an external VCO chip. This essentially converts the digital PLL to an analog one. The external VCO is seldom required, however, due to the excellent performance of the digital PLL.

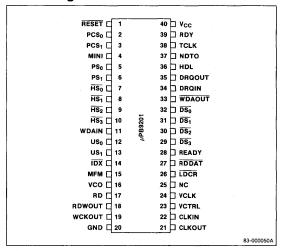
The FDI generates the write clock and processor clock for the μ PD765A. The clocks are automatically switched in frequency when the 8" or 5-1/4" mode is selected. These clocks are changed synchronously so that random clock edges are not generated.

The FDI includes a precompensation circuit that allows delays of 0 ns. 125 ns. 187.5 ns. and 250 ns.

The on-chip drive select logic combined with the head load (HDL) signal eliminates the normally required selection logic. The on-chip buffers allow direct connections from $\overline{DS_0}$ - $\overline{DS_3}$ and $\overline{HS_0}$ - $\overline{HS_3}$ to the FDD.

The FDI provides the designer with the ability to delay the DRQ signal that normally goes from the FDC to the host DMA controller. The minimum delay is either 0.75 μ s or 1.5 μ s, depending on the selection of 8" or 5-1/4" mode. This allows the use of fast DMA controllers such as the μ PD8237A-5.

Features


□ Programmable digital write precompensation
 □ Write clock generation for 5-1/4" and 8" drives
 □ Data separation
 □ 5-1/4" and 8" drives select
 □ External VCO hook-up provision (optional)
 □ Processor clock generation
 □ Internal buffers capable of sinking 24 mA
 □ TTL-compatible
 □ Drive select logic
 □ Head select logic
 □ DRQ delay

Ordering Information

□ No data time out

Part Number	Package Type
μPB9201C	40-pin plastic DIP

Pin Configuration

Pin Identification

FIII IG	entincation	
No.	Symbol	Function
1	RESET	Reset input
2, 3	PCS ₀ , PCS ₁	Precompensation select input
4	MINI	Mode select
5, 6	PS ₀ , PS ₁	Precompensation input
7-10	HS ₀ -HS ₃	Head select
11	WDAIN	Write data input
12, 13	US ₀ , US ₁	Unit select input
14	IDX	Index output
15	MFM	MFM mode input
16	VC0	VCO sync input
17	RD	Read data output
18	RDWOUT	Read data window output
19	WCKOUT	Write clock output
20	GND	Ground
21	CLKOUT	Clock output
22	CLKIN	Clock input
23	VCTRL	VCO control
24	VCLK	VCO clock input
25	NC	No connect
26	LDCR	Load control register input
27	RDDAT	Read data input
28	READY	Ready input
29-32	DS ₃ -DS ₀	Drive select outputs

Pin Identification (cont)

No.	Symbol	Function
33	WDAOUT	Write data output
34	DRQIN	DMA request input
35	DRQOUT	DMA request output
36	HDL	Head load input
37	NDTO	No data time out input/output
38	TCLK	Test clock output
39	RDY	Ready output
40	V _{CC}	Power supply

Pin Functions

RESET

When RESET is low, the FDI internal logic is reset. This feature is used mainly for text purposes. Normally this pin is pulled high.

HS₀-HS₃

These head select outputs are derived from the head load and the US $_0$ - US $_1$ signals from the μ PD765A. Each of these open collector output sinks 24 mA.

PCS₀, PCS₁

These inputs select the precompensation delay according to the following table:

PCS ₁	PCS ₀	Delay
0	0	0 ns
0	1	125 ns
1	0	187.5 ns
1	1	250 ns

PSn. PS1

These are the precompensation input signals from the μ PD765A.

WDAIN

Write data from the μ PD765A is input at this pin. It passes through the circuitry which is controlled by PS₀, PS₁ and the FDI control register to provide various precompensation levels.

MINI

When this input is high, 5-1/4" mode is selected. When it is low, 8" mode is selected.

US₀, US₁

These are the unit select input pins. The μ PD765A uses them to select up to four double-sided drives.

IDX

The FDI uses this signal to generate index pulses to the μ PD765A when there is no data coming from the disk drive.

MFM

This signal controls the read data window to conform to MFM (double density) or FM (single density) recording modes. It also controls the frequency of the WCKOUT signal. MFM is input from the μ PD765A.

VCO

This is the VCO sync input from the μ PD765A. It is used for internal control.

RD

The read data output signal is the same as the data coming from the FDD but it has been shaped and synchronized to the 16 MHz clock. RD is directly connected to the RD signal of the µPD765A.

RDWOUT

This signal is generated by the FDI PLL circuitry. It is controlled by the MFM signal from the μ PD765A and by the selection of 5-1/4" or 8" mode.

WCKOUT

This write clock output signal is output to the WCK pin of the μ PD765A.

CLKOUT

This signal provides the processor clock for the μ PD765A and is programmable via the FDI control register for an 8 MHz or 4 MHz square wave output. The switching between 4 MHz and 8 MHz is synchronous.

CLKIN

This input signal should be a 16 MHz TTL-compatible square wave. All timing for the FDI is derived from this signal.

VCLK

If an external VCO chip is used, this pin should be connected to the output of the VCO. If an external VCO is not used, then this pin should be connected to the 16 MHz clock input.

VCTRL

This three-state signal controls the external VCO frequency. It is the equivalent of combined pump-up and pump-down signals.

TCLK

This signal is used to test different modes of the FDI. Depending upon the mode, this pin outputs a 4 MHz, 8 MHz or 16 MHz square wave. It is not used in controller design.

LDCR

This input signal is level triggered. When LDCR is low, PSC₀, PSC₁, and MINI are transferred to the internal control register. When LDCR goes high, the data on pins 6-8 will remain latched. Pins 6-8 may be connected to a data bus and LDCR may be used as a strobe, or they may be driven from external latches by connecting LDCR to GND.

RDDAT

This input is directly connected to the read data signal from the floppy disk interface.

READY

This input signal is connected through an inverter to the FDD. The RDY output signal is generated by this signal.

RDY

This output signal is directly connected to the RDY pin of the μ PD765A. When the 8" mode is selected, the READY signals from the floppy disk drive is sent directly to the μ PD765A. When the FDI is in the 5-1/4" mode, RDY is set to 1 at all times.

DRQIN

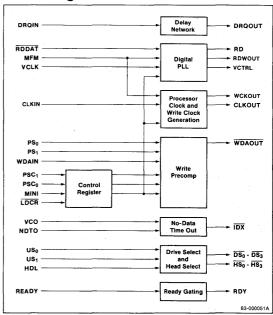
This is an input from the μ PD765A. DRQIN is delayed 3 to 4 clock pulses before being output (DRQOUT). This achieves the DRQ to RD delay that is required by the μ PD765A.

DRQOUT

This is the output of the delayed DRQIN signal.

WDAOUT

This open collector output is directly connected to the floppy disk drive and writes data to it. WDAOUT sinks 24 mA.


NDTO

The FDI uses this pin to generate a time out when there is no data coming from the floppy disk drive. External RC components are required for the timing.

HDL

The head load input is used in conjunction with the US₁ and US₀ signals from the μ PD765A to generate the drive and head select signals.

Block Diagram

Absolute Maximum Ratings

 $\frac{T_A = +25 \,^{\circ}C}{\text{Operating temperation}}$

Operating temperature, T _{OPT}	0 to +70°C
Storage temperature, T _{STG}	-65 to +150°C
All output voltages, V ₀	−5 to +5.5 V
All input voltages, V _I	 −5 to +7 V
Power supply voltage, V _{CC}	 −5 to +7 V
Power dissipation, P _D	1.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damange. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $\rm T_A=0$ to +70 °C; $\rm V_{CC}=+5~V~\pm10\%$ unless otherwise specified

	Limits					Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Low level input voltage	V _{IL}			0.8	٧	
High level input voltage	V _{IH}	2.0			٧	
Input clamp voltage	V _{IC}	1.5			٧	$V_{CC} = 4.5 \text{ V}$ $I_{IL} = -18 \text{ mA}$
Low level output voltage	V _{OL}		0.3	0.5	V	$V_{CC} = 4.5 \text{ V}$ $I_{OL} = 12 \text{ mA}$
High level output voltage	V _{OH}	2.5	3.4		٧	$V_{CC} = 4.5 \text{ V}$ $I_{OH} = 1 \text{ mA (1)}$
Short circuit output current	los	-100		-25	mA	$V_{CC} = 5.5 \text{ V} V_0 = 0 \text{ V}$
Low level input current	I _{IL}	-100			μΑ	$V_{CC} = 5.5 \text{ V}$ $V_I = 0.4 \text{ V}$
High level input current	IH			20	μΑ	$V_{CC} = 5.5 \text{ V}$ $V_{I} = 2.7 \text{ V}$
High level output current	I _{OH}			100	μΑ	$V_{CC} = 4.5 \text{ V}$ $V_0 = 4.5 \text{ V} (2)$
Off state output		:				
Three state output	I _{OZ1}	-20			μΑ	$V_{CC} = 5.5 \text{ V}$ $V_0 = 0.4 \text{ V}/2.7 \text{ V}$
Bidirectional	l _{OZ2}	-100		+40	μΑ	(VCO CNTRL pin)
V _{CC} supply current	Icc		170	296	mA	$T_A = +25$ °C

Note:

- (1) Does not apply to open collector outputs.
- (2) For open collector outputs only.

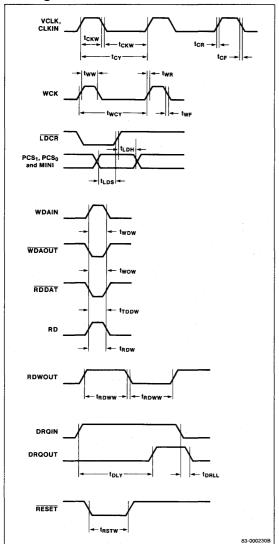
Capacitance

 $T_A = +25$ °C; $f_C = 1$ MHz

		Limits				Test
Parameter Symi	Symbol	Min	Тур	Max	Unit	Conditions
Clock input	C _{IN} (ϕ)			20	ρF	All pins except
Input	C _{IN}			10	pF	those under test tied to AC GND
Output	C _{OUT}	-		15	pF	1100 10710 0115

AC Characteristics

 $T_{\mbox{\scriptsize A}}=0$ to +70 °C; $V_{\mbox{\scriptsize CC}}=+5$ V $\pm10\%$ unless otherwise specified


			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CLKIN high and low width	t _{CKW}	20			ns	
CLKIN period	t _{CY}	55	62.5		ns	
CLKIN rise time	t _{CR}			10	ns	
CLKIN fall time	t _{CF}			10	ns	
WCK cycle time	twcy		1 2 2 4		μs μs μs μs	MFM, 8" FM, 8" MFM, 5-1/4" FM, 5-1/4" CLKIN = 16 MHz
WCK high width	tww		250		ns	
WCK rise time	twR			20	ns	
WCK fall time	twF			20	ns	
PCS ₀ , PCS ₁ , MINI set up time to LDCR	t _{LDS}	10			ns	
PCS ₀ , PCS ₁ , MINI hold time from LDCR	^t ldh	10			ns	
WDAIN high width	t _{WDW}	25	-		ns	
WDAOUT low width	t _{WOW}		4t _{CY}			t _{WOW} = 250 ns where CLKIN = 6 MHz
RDDAT high width	t _{RDDW}	25			ns	
RD high width	t _{RDW}		2t _{CY} 4t _{CY}			MINI = 0 MINI = 1
RDWOUT width	t _{RDWW}		1 2 2 4		μs μs μs μs	MFM, 8" FM, 8" MFM, 5-1/4" FM, 5-1/4" CLKIN = 16 MHz
DRQOUT delay time from DRQIN	t _{DLY}	0.75 1.5		1 2	μ\$ μ\$	MINI = 0 MINI = 1
DRQOUT low from DRQIN low	t _{DRLL}			30	ns	
RESET low width	trstw	250			ns	
VCLK period	t _{CY}	55	62.5		ns	
VCLK high and low width	t _{CKW}	20			ns	

Note:

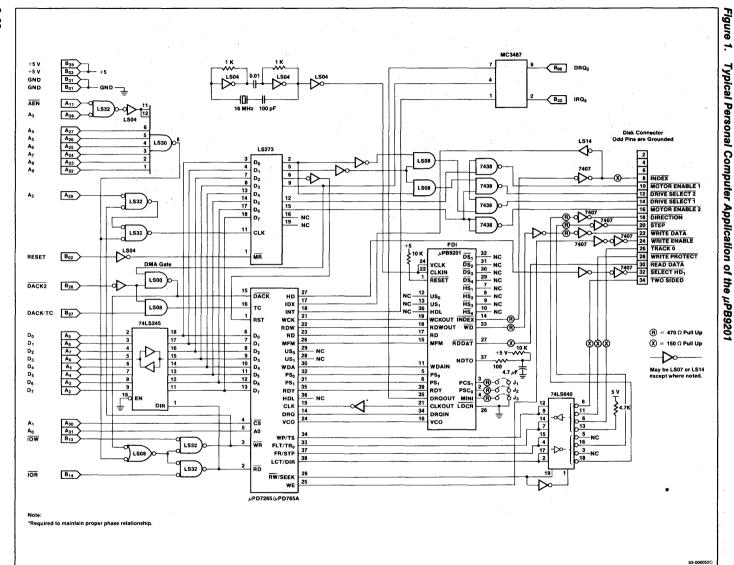
The FDI is designed to run at 16 MHz, and all of the test conditions for signals generated by the FDI are at 16 MHz.

Timing Waveforms

Interfacing

Figure 1 shows all the required interconnections between the FDI and a typical FDC chip such as the μ PD765A. An external 16 MHz clock input to the CLKIN pin is required. The FDI generates all the internal timing from this input clock.

An alternate method of utilizing the μ PB9201 is shown in figure 2. This method minimizes the parts count and fully utilizes all of the FDI features.


The type of the drive can be selected by setting the value of the MINI pin; ie, MINI = 0: 8" and MINI = 1: 5-1/4". This can be achieved by either a jumper or a peripheral port.

The PCS₀ and PCS₁ pins are used to program the device for a desired amount of precompensation. The PS₀ and PS₁ signals from the μ PD765A inform the FDI whether the bit shift is late, normal, or early.

The \overline{LDCR} (load control register) pin can be used as a strobe to latch the values of MINI, PCS₁, and PCS₀ into the control register of the FDI. Whenever \overline{LDCR} is low, the control register is updated. If the strobing of \overline{LCRC} is not preferred, then \overline{LDCR} should be connected to ground and MINI, PCS₁, and PCS₀ should be connected either to logic 1 or 0, depending upon the desired mode of operation.

The FDI uses the US₁, US₀, and HDSL signals from the μ PD765A to generate the $\overline{DS_0}$ - $\overline{DS_3}$ (drive select) and the HS₀-HS₃ (head select) signals. All these output signals are capable of sinking 24 mA and can be directly connected to the corresponding FDD signals. (This assumes that the FDD contains 220/330 termination resistors. Some drives contain 150-ohm pull-up resistors, which will require the use of a buffer external to the μ PB9201.) The designer has two options available when using the head select signals. The first option is to connect all the head select signals together to the HEAD LOAD 0 signal of the FDD interface. This method generates one common "head load" signal for all drives. The second option is to add external delay circuits to each head select signal. This causes the head for the particular drive to stay loaded for the amount of specified time delay when the drive is deselected. The advantage of this method, as compared to the former one, is that it eliminates redundant head loading and unloading when copying diskettes from one to another.

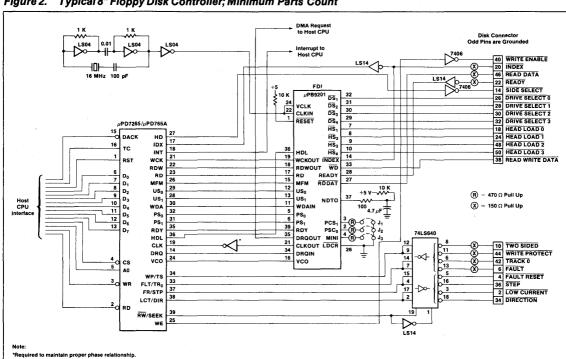
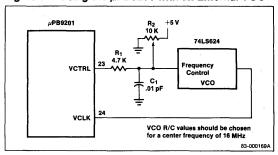


Figure 2. Typical 8" Floppy Disk Controller; Minimum Parts Count

Optionally, an external VCO chip can be added to achieve better performance. As an example, figure 3 illustrates the necessary interconnections between the 74LS624 VCO chip and the FDI. The input frequency control of the VCO is connected to the VCTRL pin of the FDI through an integrator (a simple RC circuit). The VCTRL signal is the output of the internal digital phase comparator. When there is no data bit coming in, this pin stays at approximately 2.0 volts (high impedance state). Since the frequency control pin of 74LS624 is also at 2.0 volts (adjusted by R2), the voltage across R1 will be 0 volts. As a result of this, C1 is neither charged nor discharged and the VCO will be running at its nominal frequency (16 MHz).

When a data bit occurs, the VCTRL pin goes first to a high state, then to a low state, and finally back to the high impedance state. The high and low states correspond to ramp-up and ramp-down respectively. The duration of ramp-up and ramp-down are determined by the position of the data bit in the read window.


If the data always arrives early, then ramp-up will have a longer period than ramp-down, causing an increase in VCO frequency. If the data arrives late, the converse is true. The integrator averages the frequency changes of the signal coming from the VCTRL pin. The values of R1 and C1 determine the time constant for the intergrator. These values can be selected so that the VCO follows the slow speed variations of the disk drive. The VCLK pin should be connected to the output of the VCO when using the external VCO. If the VCO is not used, then the VCLK pin should be connected to the 16 MHz input clock.

The μ PD765A requires a fairly long delay from DRQ going high to the issuance of a READ pulse to the chip. It is usually necessary to delay the DRQ signal going to the host DMA controller so that the READ pulse does not arrive early. The FDI is capable of delaying the DRQ from the μ PD765A controller for approximately 1 μ s (8" drive), or 2 μ s for a 5-1/4" drive. In figure 1, the DRQ from the μ PD765A is connected to the DRQIN pin of the FDI and the DRQOUT is connected to the host DMA controller. DRQOUT is automatically reset when DRQIN goes low.

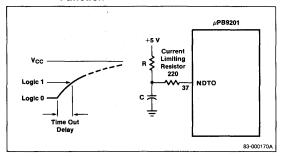

The FDI provides the necessary logic for the READY signal when the μ PD765A is in mini-floppy mode. When the 8" mode is selected, the FDI passes the READY signal from the FDD interface directly to the μ PD765A. When 5-1/4" mode is selected, it sets the RDY pin of the μ PD765A high. If you have 5" drives that have a ready signal, it is not necessary to use this signal.

Figure 3. Using the µPB9201 with an External VCO

The FDI is capable of correcting a rare hang-up condition that occurs when there is no data coming from the disk drive to the μ PD765A. When no data is coming from the FDD, the FDI waits for the time determined by the RC circuit connected to the NDTO pin. Once the time-out signal occurs, the FDI generates index pulses to the μ PD765A. This causes the controller to leave the hang-up condition (see figure 4).

Figure 4. Implementing the No-Data Time Out Function

Additional Application Information

The logic diagram, shown in figure 1, illustrates a floppy disk controller as implemented on a personal computer. It is compatible with the existing controllers, but has the ability to control 8" drives and single and double density as well.

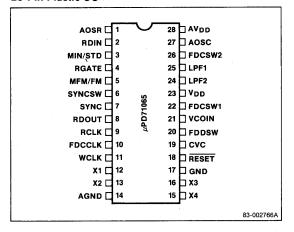
μ PD71065/66 FLOPPY-DISK INTERFACE

Description

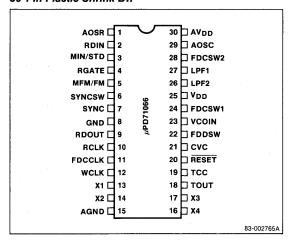
The μ PD71065 and μ PD71066 are CMOS devices that interface a floppy-disk drive (FDD) with a floppy-disk controller (FDC). The controller can be μ PD765A, μ PD7265, μ PD72065, μ PD72066, μ PD7260, or one of the FD179X series.

The floppy-disk interface can operate at various data rates, including the 300-kb/s rate that results from using high-density 5-inch drives with media formatted at the standard 250-kb/s rate. Also, the μ PD71065/66 generates the write clock needed by the selected controller and provides synchronous switching when changing data rates.

Features


- □ Compatible with all industry-standard controllers
 □ Multiple data rates: 500/300/250/150/125 kb/s
 □ Internal or external sync field detection logic
 □ Head-loading timer for FD179X-series controllers
 □ No analog adjustments required
 □ CMOS, low power consumption
- **Ordering Information**

☐ 5-volt power supply


Part Number Package		Internal Timer		
μPD71065G	28-pin plastic S0	Not included		
μPD71066CT	30-pin plastic shrink DIP	Implemented to FD179X-series controllers as head-loading timer.		

Pin Configurations

28-Pin Plastic SO

30-Pin Plastic Shrink DIP

Pin Identification

Symbol	Input/Output	Function
ACOS	,	Capacitor connection pin for analog one-shot
AGND		Ground for analog circuits
AOSR		Resistor connection pin for analog one-shot
AV _{DD}		Power supply for analog circuits
CVC		Capacitor connection pin for VCO
FDCCLK	Output	Clock to FDC
FDCSW1	Input*	FDC selection pin or timer trigger input
FDCSW2	Input*	FDC selection pin
FDDSW	Input*	Data transfer rate selection pin
GND	.`	Ground
LPF1, LPF2	Output	Connection pins to external lowpass filter
MFM/FM	Input*	Recording density selection pin
MIN/STD	Input*	5- or 8-inch FDD selection pin
RCLK	Output	Read data sampling clock
RDOUT	Output	Read data to FDC
RGATE	Input*	Read enable/disable
RDIN	Input*	Read data from FDD
RESET	Input*	System reset
SYNC	Input*	External PLL gain selection
SYNCSW	Input*	Determines whether gain selection is internal or external
TCC		External RC time constant connection to internal timer (µPD71066)
TOUT	Output	Timer signal (µPD71066)
VCOIN	Input	External lowpass filter output to internal VCO
$\overline{V_{DD}}$		+5-volt power supply
WCLK	Output	Write clock to FDC
X1, X2		Connection pins for 16-MHz crystal (X1, X2) or external clock input (X1)
X3, X4		Connection pins for 19.2-MHz crystal (X3, X4) or external clock input (X3)

^{*}Input pin has an on-chip pull-up resistor

Pin Functions

The following paragraphs supplement the brief descriptions of certain pins in the preceding table. Pin symbols are in alphabetical order.

FDCSW1 and FDCSW2. The μ PD71065/66 is configured for the applicable FDC by applying logic levels L and H (or open) to these pins.

FDCSW1	FDCSW2	Floppy-Disk Controlle	
Open or H	Open or H	μPD765A/7265	
L	Open or H	μPD7260	
*	L	FD179X series	

^{*} FDCSW1 is the trigger input to the timer circuit when FDCSW2 is low.

FDDSW. The logic level applied to this pin selects the data transfer rate of the FDD.

FDDSW	Data Transfer Rate	
Open or H	500/250/125 kb/s	
L'	500/250/300/150 kb/s	

MFM/FM Pin. The logic level applied to this pin and the FDCSW2 pin selects the modulation type. Double-density and single-density recording use MFM (modified FM) and FM modulation, respectively.

FDCSW2	MFM/FM	Modulation
H ·	Н	MFM
Н	L	FM
L	Н	FM
L	L	MFM

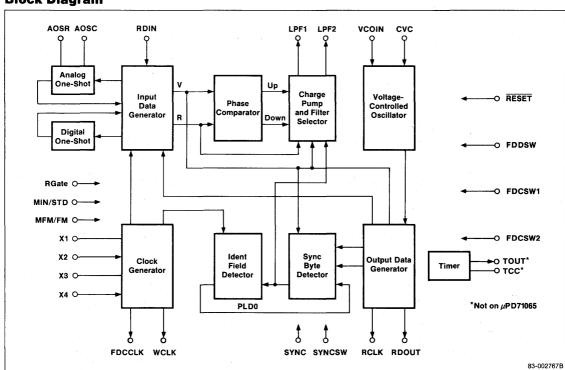
MIN/STD. Logic level L on this pin selects a 5-inch FDD. An open or H selects an 8-inch FDD.

RDIN. This is a composite read data and clock signal input from the FDD.

RDOUT. The read data output from this pin is synchronized with the read clock (RCLK) derived from the RDIN composite signal.

RGATE. In conjuction with FDCSW2, RGATE enables or disables the read operation that is sent from the FDC.

FDCSW2	RGATE	Read Operation
Н	Н	Enable
Н	L	Disable
L	Н	Disable
L	L	Enable


SYNC and SYNCSW. The PLL gain is determined by the intput signal at the SYNC pin and the logic levels at the FDCSW1 and SYNCSW pins.

FDCSW1	SYNCSW	SYNC	PLL Gain
Open or H	Open or H	H (1)	Low
		L (1)	High
	L	H (2)	Low
		L (2)	High

Note:

- Input signal at SYNC is the PLL gain selection signal between the ID and DATA fields.
- (2) Input signal at SYNC is the SYNC field detection signal from the FDC.

Block Diagram

Functions of the block diagram components are explained below.

Clock Generator. Using both 16-MHz and 19.2-MHz oscillators, outputs clock signals corresponding to the mode used to the FDCCLK and WCLK pins.

Input Data Generator. According to the input data, generates the R and V signals to be input to the phase comparator. In addition to this, the input data generator determines whether the analog one-shot circuit or the digital one-shot circuit is used.

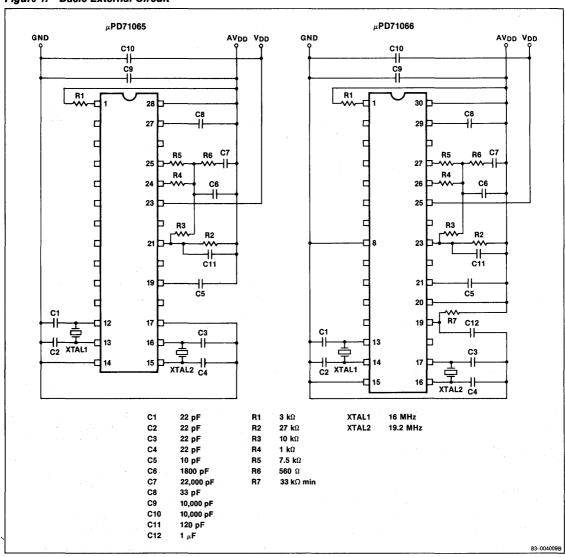
Charge Pump and Filter Selector. According to the PLL (phase-locked loop) gain selection signal, enables or disables the LPF2 side charge pump to control the PLL gain.

Output Data Generator. Generates the window signal (RCLK) and read data signal (RDOUT) depending on the mode and FDC to be used.

Sync Byte Detector. Detects the sync field within 16 to 20 pulses regardless of FM or MFM mode.

Ident Field Detector. Determines whether the sync field detected by the sync byte detector is ID or DATA field and sets the PLL gain.

Basic External Circuit


Figure 1 shows the basic external circuit including the lowpass filter and crystals. The data transfer rate is selected by strapping pins FDDSW, MIN/STD, and MFM/FM to L (low) or open (high). See table 1.

The VCO frequency and the phase delay between RDIN and RDOUT can be optimized by adjusting resistors R2 and R1, respectively.

VCO Frequency

For this procedure, the data transfer rate is undefined. Strap RGATE to H and RDIN to L. Adjust resistor R2 to set the VCO frequency at the RCLK pin to the same numerical value as the data transfer rate; for example, 500 kHz and 500 kb/s.

Figure 1. Basic External Circuit

Data Read Phase Delay

For this procedure, set the data transfer rate to 500 kb/s, set the RDIN signal to a $2-\mu s$ cycle time, and strap RGATE to H. Adjust resistor R1 to set the value of t_{STW} (figure 2) to 950 ns.

Figure 2. Read Data Timing Diagram

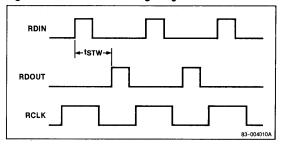


Table 1. Data Transfer Rate Selection

	Data Transfer Rate	Clock Output Fre	equencies from μ	PD71065/71066	S	election Pins (Note	1)
Floppy-Disk Controllers	(kb/s)	FDCCLK (MHz)	RCLK (kHz)	WCLK (kHz)	FDDSW	MIN/STD	MFM/FM
μPD765A, μPD7265,	250	4	250	500	Open	Open	Open
μPD72065, μPD72066	125	4	125	250	Open	Open	L
(Note 2)	500	8	500	1 MHz	Open	L	Open
	250	8	250	500	Open	L	L
	300	4.8	300	600	L	Open	Open
	150	4.8	150	300	L	Open	L
	500	8	500	1 MHz	L	L	0pen
	250	8	250	500	L	L	L
μPD7260 (Note 3)	250	4	500	500	Open	Open	Open
	125	4	250	250	Open	Open	L
	500	8	1 MHz	1 MHz	Open	L	Open
	250	8	500	500	Open	L	L
	300	4.8	600	600	L	Open	Open
	150	4.8	300	300	L	Open	L
	500	8	1 MHz	1 MHz	L	L	Open
	250	8	500	500	L	L	L
FD179X Series (Note 4)	250	1	250	500	Open	Open	L
	125	1	125	250	Open	Open	Open
	500	2	500	1 MHz	Open	L	L
	250	2	250	500	Open	L	Open
	300	1.2	300	600	L	Open	L
	150	1.2	150	300	L	Open	Open
	500	2	500	1 MHz	L	L	L
	250	2	250	500	L	L	Open

Note:

FDCSW1 = Don't care and FDCSW2 = L. WCLK clock is not used.

FDCSW1 = L and FDCSW2 = Open. FDCLK clock is not used

⁽¹⁾ Selection pin states: L = low; Open = open or H (high) (4) FD179X Series:

⁽²⁾ $\mu PD765A/7265/72065/72066$: FDCSW1 and FDCSW2 = Open

⁽³⁾ μPD7260:

Electrical Characteristics

Figures 3 through 8 are test circuits for verifying certain parameters in the dc and ac characteristics tables.

Absolute Maximum Ratings

 $\begin{array}{lll} T_A = +25\,^{\circ}\text{C} \\ & \\ \text{Power supply voltage, V}_{DD} & -0.3\,\,\text{to}\,\,+6\,\,\text{V} \\ \text{Input voltage, V}_1 & -0.3\,\,\text{to}\,\,\text{V}_{DD} + \,\,0.3\,\,\text{V} \\ \text{Output voltage, V}_0 & -0.3\,\,\text{to}\,\,\text{V}_{DD} + \,\,0.3\,\,\text{V} \\ \text{Operation temperature, T}_{OPT} & -10\,\,\text{to}\,\,+70\,^{\circ}\text{C} \\ \text{Storage temperature, T}_{STG} & -40\,\,\text{to}\,\,+125\,^{\circ}\text{C} \end{array}$

DC Characteristics

 $T_A = -10 \text{ to } +70 \,^{\circ}\text{C}; \, V_{DD} = +5 \text{ V} \pm 10\%$

	,	Limits					
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	Test Circuit
Input voltage, low	V _{IL}	-0.3		0.8	٧		
Input voltage, high	V _{IH}	2.2		$V_{DD} + 0.3$	٧		
Output voltage, low	V _{OL}			0.45	٧	$I_{OL} = 2 \text{ mA}$	
Output voltage, high	V _{OH}	0.7 V _{DD}		V _{DD}	٧	$I_{OH} = -200 \mu A$	
Clock input level	V _{Kp-p}	1		V _{DD}	٧		Figure 5
Input leakage current, low	ILIL	-150		50	μΑ	V _i = 0 V	
Input leakage current, high	l _{LiH}	-10		+10	μΑ	$V_I = V_{DD}$	
Output leakage current, low	LOL	-10			μΑ	$V_0 = 0.45 \text{ V}$	
Output leakage current, high	l _{LOH}			+10	μΑ	$V_0 = V_{DD}$	
Power supply current	I _{DD}			25	mA	XTAL: 16 MHz, 19.2 MHz	Figure 3
				20	mA	XTAL: 16 MHz	Figure 4

AC Characteristics

 $T_{\mbox{\scriptsize A}} = -10$ to +70°C; $V_{\mbox{\scriptsize DD}} = +5$ V $\pm 10\%$

			Limits				
Parameter	Symbol	el Min		Max	Unit	Test Conditions	Test Circuit
Rise time	t _R	0		20	ns		
Fall time	t _F	0		20	ns		
RDOUT setup time to RCLK †	t _{SRR}	40			ns	For µPD7260	Figure 6
CLK high/low level width	t _{KK}	20			ns		
VCO oscillation frequency	f ₀	-		- 8	MHz	$V_F = V_{DD}$	Figure 7
VCO free-run frequency	f _i	3.6	4	4.4	MHz	FDDSW = H, V _F = open	
	- -	2.1	2.4	2.7	MHz	$FDDSW = L, V_F = open$	
VCO control voltage sensitivity	K _V	2.5	3.5	4.6	MHz/V	$ (V_{DD}/2) - V_F \le 0.5 \text{ V}$	
K _V voltage coefficient	ΔK _V /V _{DD}	-1	-19	-22	%/V		
f _i power supply voltage coefficient	Δf _i /V _{DD}	0		5	%/V		
f _i temperature coefficient	Δf _i /T _A	0	-500	-1000	ppm/°C		-
Phase detect sensitivity	K _P	0.7	0.8	0.9	V/rad		
RCLK jitter	tj	0	30	50	ns	500-kb/s mode	Figure 8
RDIN † to RDOUT † delay time	t _{DRR}	900	950	1000	ns		
Capture range (Note 1)	f _{CAP}	537		427	kHz	500-kb/s mode	
	_	286		213	kHz	250-kb/s mode	_
	-	143		107	kHz	125-kb/s mode	
	_	343		256	kHz	300-kb/s mode	
	-	172		128	kHz	150-kb/s mode	_

Note:

⁽¹⁾ The frequencies in the Max and Min columns are the lower and upper limits, respectively, of the capture range. For example, in the 500-kb/s mode, the capture range is from 427 kHz (or lower) to 537 kHz (or higher).

Figure 3. Test Circuit 1

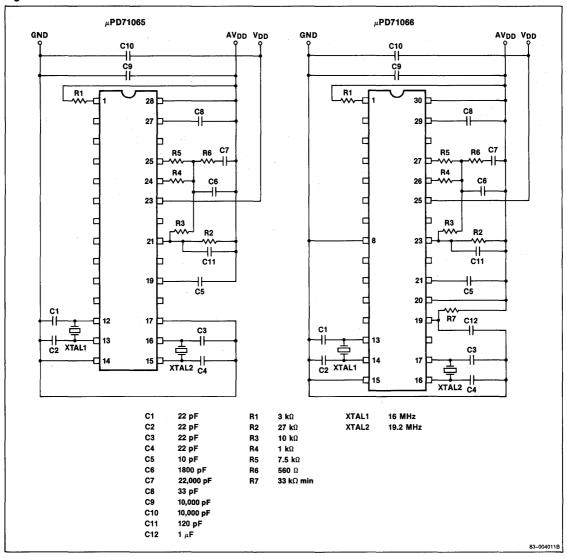


Figure 4. Test Circuit 2

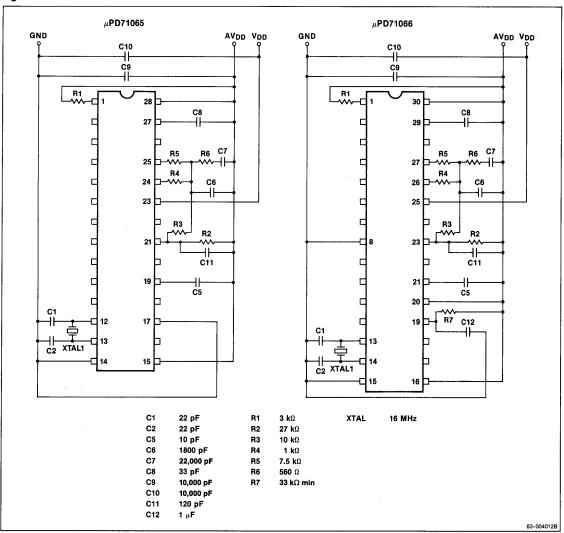


Figure 5. Test Circuit 3

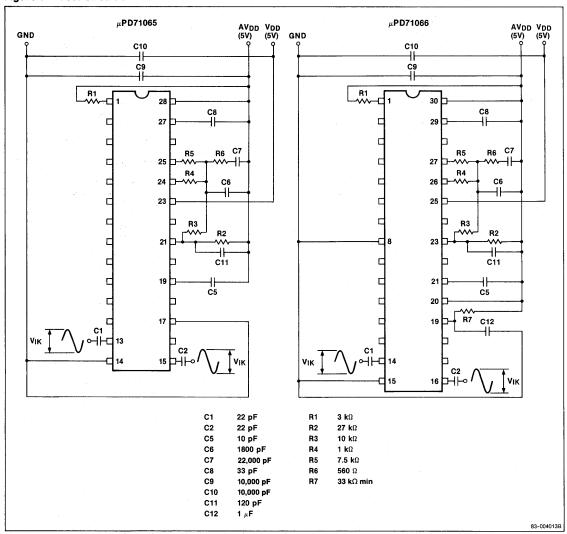


Figure 6. Test Circuit 4

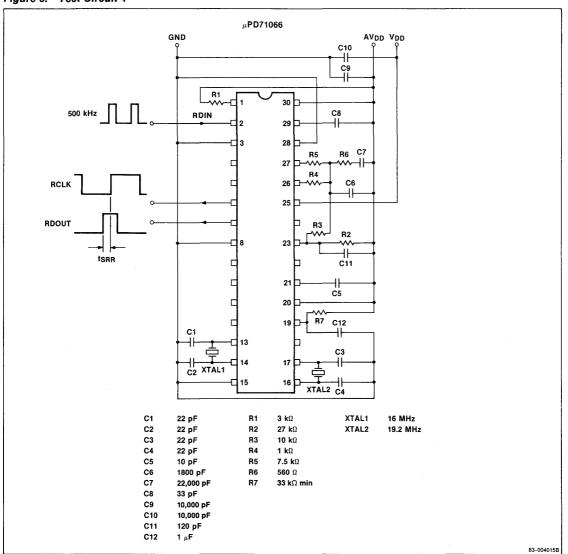


Figure 7. Test Circuit 5

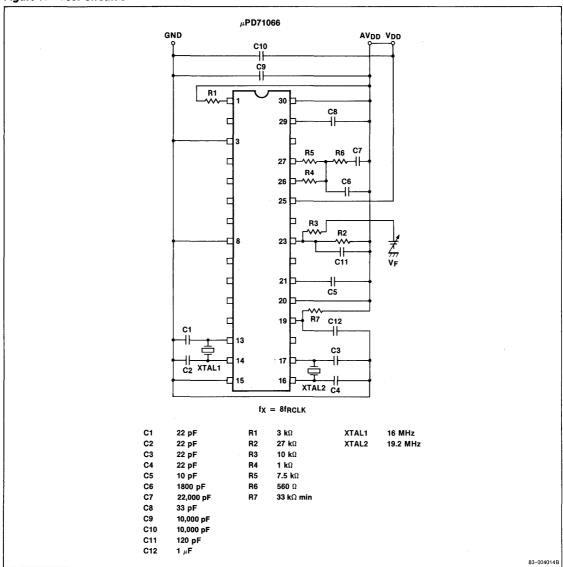
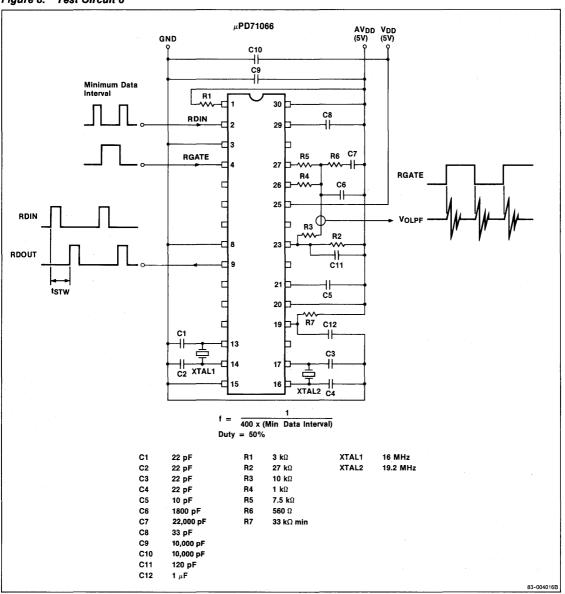



Figure 8. Test Circuit 6

System Configurations

Figures 9 through 23 are system configuration examples of the μ PD71065 and μ PD71066 with various floppy-disk controllers and data transfer rates. See table 2.

For additional details and the values of resistors and capacitors, see figure 1.

Table 2. System Configuration Examples

Floppy-Disk Interface	Floppy-Disk Controllers	Data Transfer Rates (kb/s)	Figure
μPD71065	μPD765A, μPD7265,	500/250/125	9
	μPD72065, μPD72066	300/150	10
		500/250/125 and 300/150	11
-	μPD7260	500/250/125	12
		300/150	13
		500/250/125 and 300/150	14
μPD71066	μPD765A, μPD7265,	500/250/125	15
-	μPD72065, μPD72066	300/150	16
		500/250/125 and 300/150	17
	μPD7260	500/250/125	18
		300/150	19
_		500/250/125 and 300/150	20
	FD179X	500/250/125	21
		300/150	22
		500/250/125 and 300/150	23

Figure 9. System Example 1: μPD71065 FDI and μPD765A FDC

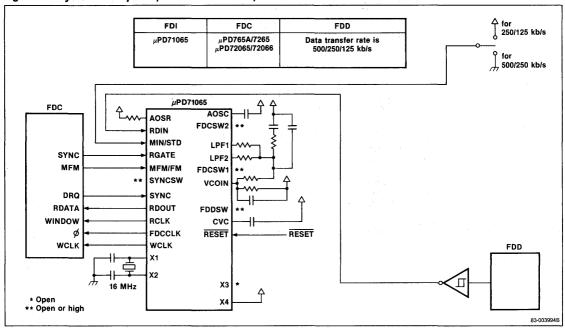


Figure 10. System Example 2: μPD71065 FDI and μPD765A FDC

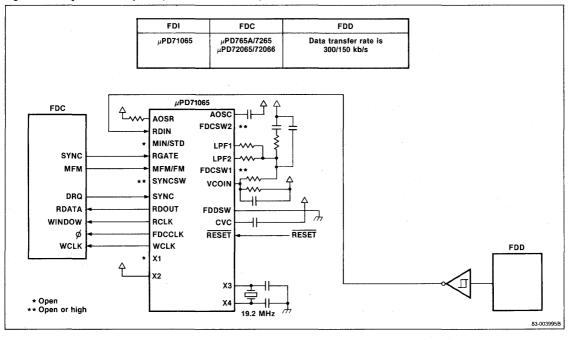


Figure 11. System Example 3: μPD71065 FDI and μPD765A FDC

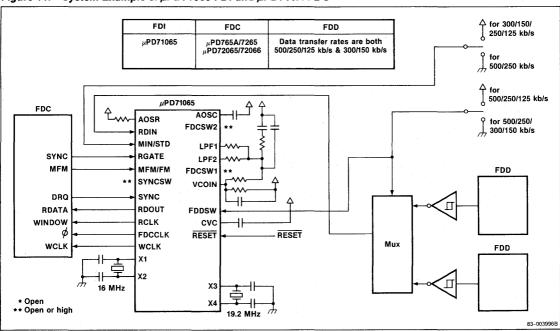


Figure 12. System Example 4: μ PD71065 FDI and μ PD7260 FDC

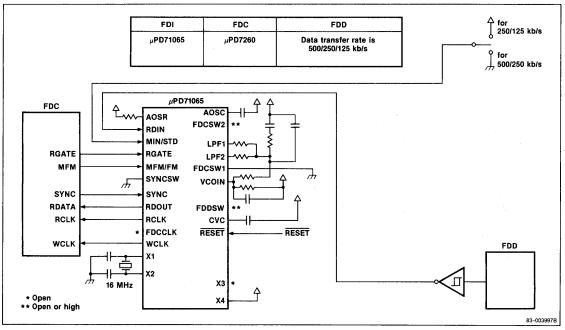


Figure 13. System Example 5: μPD71065 FDI and μPD7260 FDC

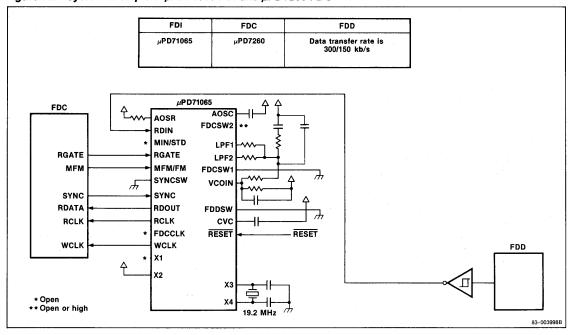


Figure 14. System Example 6: μPD71065 FDI and μPD7260 FDC

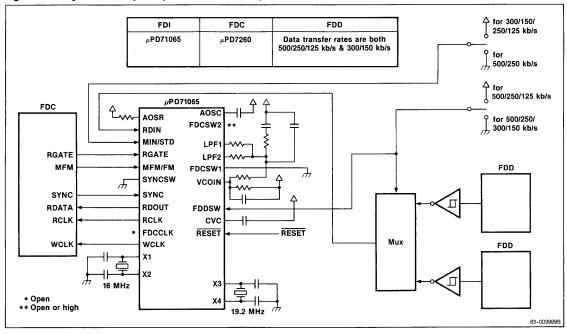


Figure 15. System Example 7: μPD71066 FDI and μPD765A FDC

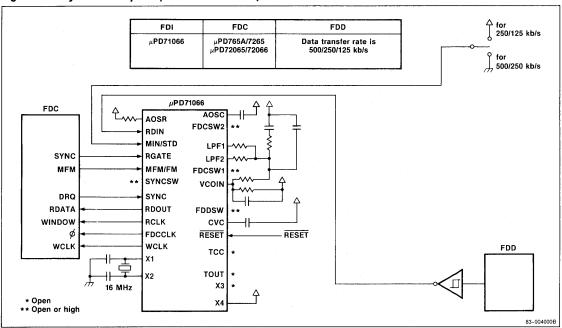


Figure 16. System Example 8: μPD71066 FDI and μPD765A FDC

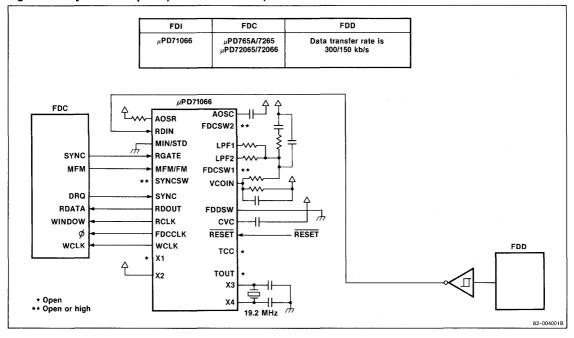


Figure 17. System Example 9: μPD71066 FDI and μPD765A FDC

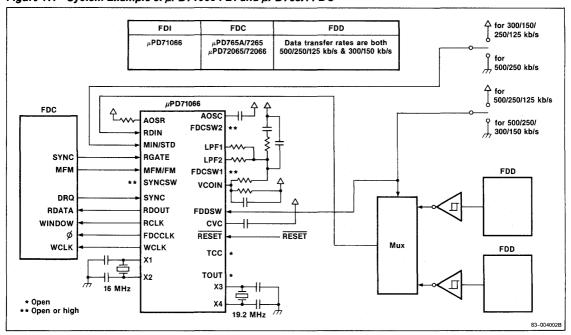


Figure 18. System Example 10: μPD71066 FDI and μPD7260 FDC

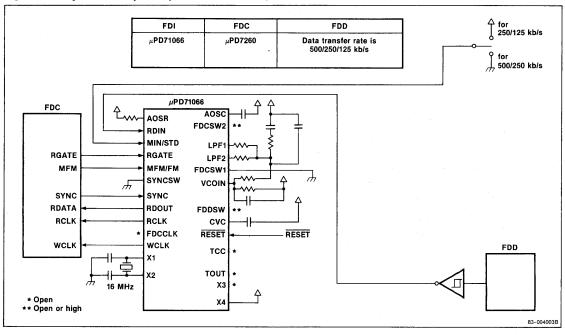


Figure 19. System Example 11: μPD71066 FDI and μPD7260 FDC

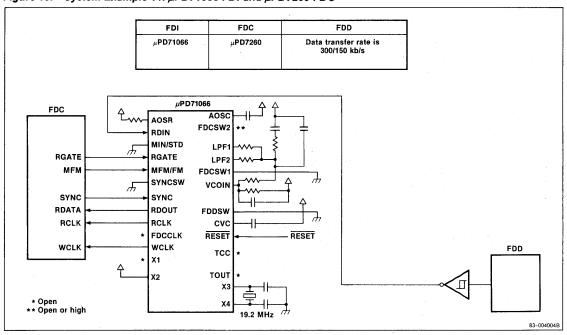


Figure 20. System Example 12: μPD71066 FDI and μPD7260 FDC

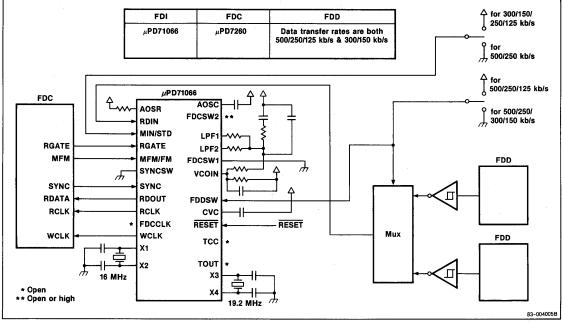


Figure 21. System Example 13: μPD71066 FDI and FD179X FDC

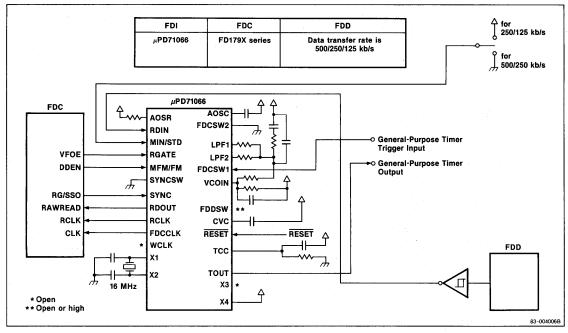


Figure 22. System Example 14: µPD71066 FDI and FD179X FDC

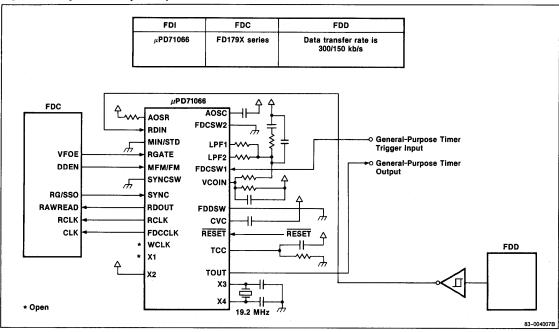
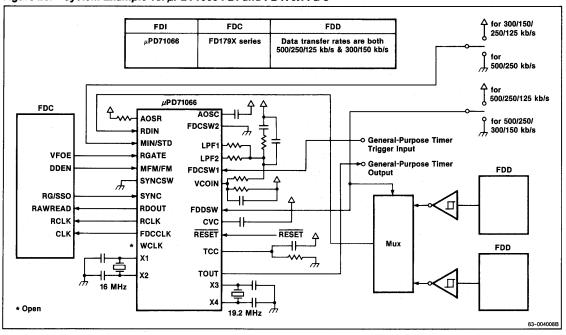



Figure 23. System Example 15: μPD71066 FDI and FD179X FDC

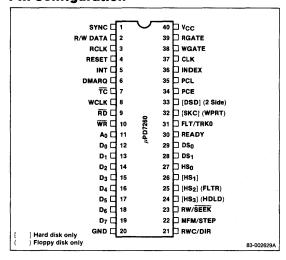
PRELIMINARY INFORMATION

Description

The μ PD7260 is a single-chip disk controller that is capable of interfacing to a maximum of four floppy or hard disks in any combination. The chip utilizes the ST-506 defacto standard for the Winchester disks and is compatible with 8-inch, 5-1/4-inch and 3-1/2-inch floppy disks. The μ PD7260 is based on the μ PD7261A architecture, but with changes to enhance performance and flexibility. The μ PD7260 can generate both IBM-and ECMA-compatible floppy disks and hard disks with the standard format. ECC and CRC capabilities along with many high-level commands provide excellent system throughput, and the single-chip design provides for efficient board space utilization.

Features

- ☐ Hard and floppy disk interface
- ☐ Controls four drives (any combination) simultaneously
- ☐ Programmable track format
- ☐ Transfer rate 6 MHz maximum
- ☐ 16 high-level disk commands
- ☐ Parallel seek capability
- ☐ Multi-sector, -track, -cylinder read/write capability
- ☐ Implied seek function
- ☐ CRC error detection
- ☐ ECC error detection and correction
- ☐ DMA data transfer
- ☐ Single +5 volt supply
- ☐ NMOS 40-pin ceramic DIP


μPD7260 Commands

Check Sense Intr. Status Detect Error Sense Status Read Data Specify1 Read Diagnostic Specify2 Read ID Verify Data Recalibrate Verify ID Scan Write Data Seek Write Format

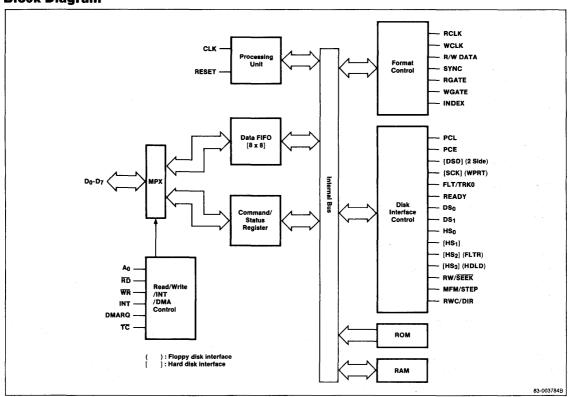
Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD7260D	40-pin ceramic DIP	12 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function
1	SYNC	PLL synchronization output
2	R/W DATA	Read data input or write data output
3	RCLK	Read clock input
4	RESET	System reset input from host computer
5	INT	Interrupt request output
6	DMARQ	DMA request output
7	TC	Terminal count input from DMA
8	WCLK	Write clock input
9	RD	Host computer read control input
10	WR	Host computer write control input
11	Α ₀	Status/command register or FIFO select pin
12-19	D ₀ -D ₇	System data bus connections
20	GND	System ground
21	RWC/DIR	If RW/SEEK = 1, outputs read/write current decrease signal. If RW/SEEK = 0, outputs the direction RW head is to move.
22	MFM/STEP	If RW/SEEK = 1, outputs MFM signal to VCO circuit. If RW/SEEK = 0, outputs STEP signal to move RW head.
23	RW/SEEK	Output signal that specifies function of some multiplexed signals

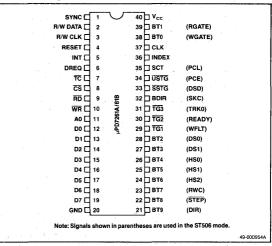


Pin Identification (cont)

No.	Symbol	Function
24	(HS ₃) (HDLD)	For hard disk, head select 3 output. For floppy disk, head load output.
25	[HS ₂] (FLTR)	For hard disk, head select 2 output. For floppy disk, output to clear drive fault state.
26	[HS ₁]	Head select output to disk drive.
27	HS ₀	Head select output to disk drive.
28-29	DS ₁ -DS ₀	Drive select outputs.
30	READY	Ready input from disk drive.
31	FLT/TRK0	If RW/SEEK = 1, inputs a fault flag from the disk drive. If RW/SEEK = 0, inputs a signal indicating R/W head is over cylinder zero.
32	[SKC] (WPRT)	Seek complete input from hard disk drive, or write protected input from floppy disk drive.

No.	Symbol	Function					
33	[DSD] (2 Side)	Drive selected input from hard disk drive, or double-sided disk input from floppy disk drive.					
34-35	PCE, PCL	Precompensation early/late output to disk drive					
36	INDEX	Index hole detect input from disk drive					
37	CLK	System clock input from host computer					
38	WGATE	Write gate output to disk drive					
39	RGATE	Read gate output to disk drive					
40	V _{CC}	+5 V (typical)					

Block Diagram


μPD7261A/B HARD-DISK CONTROLLERS

Description

The µPD7261A and µPD7261B hard-disk controllers are intelligent microprocessor peripherals designed to control a number of different types of disk drives. They are capable of supporting either hard-sector or soft-sector disks and provide all control signals that interface the controller with either SMD disk interfaces or ST506-type drives. The sophisticated instruction set minimizes the software overhead for the host microprocessor. By using the DMA controller, the microprocessor needs only to load a few command bytes into the µPD7261A/7261B and all the data transfers associated with read, write, or format operations are done by the µPD7261A/7261B and the DMA controller. Extensive error reporting, verify commands, ECC, and CRC data error checking assure reliable controller operation. The μPD7261A/7261B provides internal address mark detection, ID verification, and CRC or ECC checking and verification. An eightbyte FIFO is used for loading command parameters and obtaining command results. This makes the structuring of software drivers a simple task. The FIFO is also used for buffering data during DMA read/write operations.

Features

Pin Configuration

Ordering Information

Device Number	Package Type	Max Freq. of Operation		
μPD7261AD	40-pin ceramic DIP	12 MHz		
μPD7261BD-18	40-pin ceramic DIP	18 MHz		

Pin Identification

Pin identific			
No.	Symbol		Function
Host Interface			
4	RESET		Reset input
5	INT	,	Interrupt request output
6	DREQ	200	DMA request output
. 7	TC .		Terminal count input
8	CS	1 41	Chip select input
9	RD	1	Read strobe input
10	WR		Write strobe input
11	A ₀	14. fee	Register select input
12-19	D ₀ -D ₇		Data I / O bus
20	GND		Ground
37	CLOCK		External clock input
40	V _{CC}	1.54	+5 V power supply
SMD Interface			1 1
1	SYNC		PLL synchronization output
2	R / W DATA		Read / write data I / 0
3	R/W CLK		Read / write clock input
21–28, 38, 39	BT9-BT0		Bit 9-0 outputs / Status inputs
21–28, 38, 39	R18-R10		

Pin Identification (cont)

No.	Symbol	Function
SMD Interface (cont)		
29-31	TG1-TG3	Tag 1-3 output
32	BDIR	Bit direction output
33	SSTG	SR select tag output
34	USTG	Unit select tag output
35	SCT	Sector input
36	INDEX	Sector zero input
ST506-Type Interface		
1	SYNC	PLL lock / Read clock enable output
2	R / W DATA	Read / write data I / 0
3	R/W CLK	Read / write clock input
21	DIR	Direction in output
22	STEP	Step pulse output
23	RWC	Reduced write current output
24-26	HS2-HS0	Head select outputs 2-0
27, 28	DS1, DS0	Drive select outputs 1, 0
29	WFLT	Write fault input
30	READY	Ready input
31	TRK0	Track zero input
32	SKC	Seek complete input
33	DSD	Drive selected input
34	PCE	Precomp early output
35	PCL	Precomp late output
36	INDEX	Index input
38	WGATE	Write gate output
39	RGATE	Read gate output

Pin Functions — Host Interface

RESET (Reset)

When the RESET input is pulled high, it forces the device into an idle state. The device remains idle until a command is issued to the system.

INT (Interrupt Request)

The μ PD7261A/7261B pulls the INT output high to request an interrupt.

DREQ (DMA Request)

The μ PD7261A/7261B pulls the DREQ output high to request a DMA transfer between the disk controller and the memory.

TC (Terminal Count)

The TC input goes low to signal the final DMA transfer.

CS (Chip Select)

When the \overline{CS} input is low, it enables reading from or writing to the register selected by A_0 .

RD (Read Strobe)

When the \overline{RD} strobe is low, data is read from the selected register.

WR (Write Strobe)

When the WR input is low, data is written to the selected register.

A₀ (Register Select)

The A_0 input is connected to a non-multiplexed address bus line. When A_0 is high, it selects the command or status register. When it is low, it selects the data buffer.

D₀-D₇ (Data Bus)

D₀-D₇ are connected to the system data bus.

CLOCK (Clock)

The CLOCK input is the timing clock for the on-chip processor.

Pin Functions — SMD Interface

SYNC (PLL Synchronization)

This output goes high after the read gate signal (BT1 when $\overline{TG3} = 0$) is high and a given number of bytes (GPL2-2) has elapsed.

R/W DATA (Read/Write Data)

The R/W DATA pin outputs the write data to the drive, and inputs the read data from the drive.

R/W CLK (Read/Write Clock)

R/W CLK is the input for the read and write clocks.

BT9-BT0 (Bit 9-0)

BT9-BT0 output the bit signals, bit 9-0. The bit 9-0 outputs send cylinder and unit addresses to the drives. BT9-BT2 also act as inputs for status signals from the drives as shown in table 1.

Table 1. Bit and Control Information

No.	Bit	Control	
21	BT9	Unit Selected	
22	BT8	Seek End	
23	BT7	Write Protected	
24	BT6		
25	BT5	Unit Ready	
26	BT4	On Cylinder	
27	BT3	Seek Error	
28	BT2	Fault	

BT7-BT2 also read the device status 2 (SR7-SR2) and device type (DT7-DT2). The index and SCT pins read SR0, SR1 and DT0, DT1.

BDIR (Bit Direction)

The BDIR output determines whether pins 28-21 will output BT2-BT9 or input drive status signals.

TG3-TG1 (Tag 3-1)

The \overline{TG} outputs define the use of the BT pins. When $\overline{TG1}$ is low, BT9-BT0 output the cylinder address. When $\overline{TG2}$ is low, BT7-BT0 select a head address. When $\overline{TG3}$ is low, BT9-BT0 output control signals for the disk drive.

SSTG (SR Select Tag)

When the SSTG output is low, BT7-BT2, INDEX and SCT will be inputting SR7-SR0 or DT7-DT0.

USTG (Unit Select Tag)

When the USTG output is low, BT4-BT2 will be outputting a unit address.

INDEX (Index)

The INDEX input goes high when the drive detects an index mark. INDEX also acts as the SR0 and DT0 input pin.

SCT (Sector)

The SCT input goes high when the drive detects a sector mark. SCT also acts as the SR1 and DT1 input pin.

Pin Functions — ST506-Type Interface

SYNC (Read Clock Enable)

SYNC indicates that a sync pattern has been detected and that synchronization has been achieved.

R/W DATA (Read/Write Data)

The R/W DATA pin outputs the write data to the drive, and inputs the read data from the drive.

R/W CLK (Read/Write Clock)

R/W CLK is the input for the read and write clocks.

DIR (Direction In)

The DIR output determines the direction the read/write head will move in when it receives a step pulse. DIR high will cause the head to move inward, DIR low will move the head outward.

STEP (Step Pulse)

STEP outputs the head step pulses.

RWC (Reduced Write Current)

The RWC output signals that the read/write head of the disk drive has selected a cylinder address larger than that specified in the SPECIFY command. This signal is used to reduce the write current.

HS2-HS0 (Head Select 2-0)

The HS2-HS0 outputs select the head. Up to 8 read/write heads can be selected per drive.

DS1, DS0 (Drive Select 1,0)

The DS1 and DS0 outputs select one of up to 4 drives.

WFLT (Write Fault)

The WFLT input detects write faults.

READY (Ready)

The READY input detects the drive's ready state.

TRK0 (Track 0)

The TRK0 input signals that the head is at track 0.

SKC (Seek Complete)

The SKC input signals that a seek is complete.

DSD (Drive Selected)

The DSD input signals that the drive is selected.

PCE (Precomp Early)

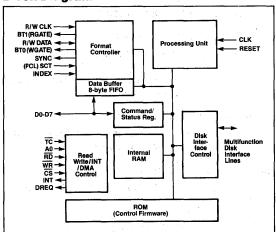
When the PCE output is high, early write precompensation is required.

PCL (Precomp Late)

When the PCL output is high, late write precompensation is required.

INDEX (Index)

The INDEX input goes high when the drive detects the index mark.


WGATE (Write Gate)

WGATE output goes high when the $\mu PD7261A/7261B$ is writing data.

RGATE (Read Gate)

The RGATE output goes high when the μ PD7261A/7261B is reading from the disk.

Block Diagram

Absolute Maximum Ratings

Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Voltage on any pin with respect to ground, V _{CC}	-0.5 to +7.0 V
Input voltage, V _I	-0.5 to +7.0 V
Output voltage, V _O	-0.5 to +7.0 V

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device should not be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

* μ PD7261B specifications are preliminary $T_A = 0$ to $+70^{\circ}$ C, $V_{CC} = +5.0 V \pm 10^{\circ}$ unless otherwise specified

		-	Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL1}	0.5		+0.8	٧	All except CLK, R/WCLK
Input voltage low	V _{IL2}	-0.5		+0.6	٧	CLK, R/WCLK
Input voltage high	V _{IH1}	+2.0		V _{CC} +0.	5 V	All except CLK, R/WCLK
Input voltage high	V _{IH2}	+3.3		V _{CC} +0.	5 V	CLK, R/WCLK
Output voltage low	V _{OL}			+0.45	٧	$I_{OL} = +2.0 \text{mA}$
Output voltage high	V _{OH1}	+2.4			V	$I_{OH} = -100 \mu\text{A}$, all except pins 21–34
Output voltage high	V _{0H2}	+2.4			٧	$I_{0H} = -50 \mu\text{A},$ pins 21–34
Input leakage current	l _{Li1}			±10	μΑ	$V_{IN} = V_{CC}$ to 0.45 V, all except pins 21–34
Input leakage current	I _{LI2}			- 500	μΑ	V _{IN} = V _{CC} to 0.45 V, pins 21–34
Output leakage current	ILO			±10	μΑ	V _{OUT} = V _{CC} to 0.45 V
Supply current	lcc		250	320	mA	

Capacitance

 $T_A = 25$ °C, $V_{CC} = 0$ V

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C _{IN}			15	pF	(Note 1)
Output capacitance	C _{OUT}			15	pF	(Note 1)
Input / Output capacitance	C _{1/0}			20	pF	(Note 1)

Note:

(1) f = 1 MHz, All unmeasured pins tied to GND.

AC Characteristics

 $\mu PD7261B$ specifications are preliminary. $T_A=0\,^{\circ}C$ to $+70\,^{\circ}C$, $V_{CC}=+5\,V$ $\pm\,10\%$ unless otherwise specified

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Processor Interfa	ce					
Clock cycle	t_{CY}	83			ns	7261A only
		55			ns	7261B only
Clock time, low	t _{CL}	30			ns	
Clock time, high	t _{CH}	30			ns	
Clock rise time	t _{CR}			10	ns	
Clock fall time	t _{CF}			10	ns	
A _O , CS setup to RD	t _{AR}	0			ns	
A _O , CS hold from RD	t _{RA}	0			ns	
RD pulse width	t _{RR}	200			ns	
Data delay from RD	t _{RD}			150	ns	
Output float delay	t _{RDF}	0		100	ns	
Data delay from A ₀ , CS	t _{AD}			150	ns	
A ₀ , CS setup to WR	t _{AW}	0			ns	
A ₀ , CS hold from WR	t _{WA}	0			ns	
WR pulse width	t _{WW}	200			ns	
Data setup to WR	t _{DW}	100			ns	
Data hold from WR	t _{WD}	5			ns	
Recovery time from RD, WR	t _{RV}	200			ns	
Reset pulse width	t _{RES}	100			t _{CY}	
TC pulse width	t _{TC}	100			ns	
NT delay from WR↑	t _{WI}			200	ns	
OREQ delay from WR †	t _{WRQ}			250	ns	
OREQ delay from	t _{RRQ1}			250	ns	
OREQ delay from RD ↓	t _{RRQ2}		-	150	ns	
ST506-Type inter	face					
R/W CLK cycle	t _{RWCY}	83			ns	7261A
period		55			ns	7261B
R/W CLK time,	t _{RWCL}	30			ns	7261A
0W	•	20			ns	7261B
R/W CLK time,	t _{RWCH}	30			ns	7261A
nigh		20			ns	7261B

			Limits		_	Test
	Symbol	Min	Тур	Max	Unit	Conditions
ST506-Type Inte	rface (con	t)				
R/W CLK rise time	trwcr			10	ns	
R/W CLK fall time	tRWCF			10	ns	
R/W DATA setup to R/W CLK	t _{RDRC}	40			ns	
R/W DATA hold	t _{RCRD}	5			ns	7261A
from R/W CLK	•	0			ns	7261B
R/W DATA delay	twcwd	35		90	ns	7261A
from R/W CLK	•	0		55	ns	7261B
RGATE delay rom R/W CLK	t _{RCRG}			300	ns	
WGATE delay from R/W CLK	twcwg			150	ns	
PCE / PCL delay	tRWCPC	35		110	ns	7261A
from R/W CLK		0		55	ns	7261B
SYNC delay from R/W CLK	t _{RWCSY}	,		150	ns	
DSO, DS1 setup to STEP	t _{DSST}	250			t _{CY}	Normal seek mode
DIR setup to STEP	t _{DIST}	200			t _{CY}	Normal seek mode
STEP pulse width	tSTEP	69		85	t _{CY}	Normal seek mode
DS0, <u>DS1</u> hold from STEP	t _{STDS}	750			t _{CY} (1)	Normal seek mode
DIR hold from STEP	t _{STDI}	750			t _{CY} (1)	Normal seek mode
DS0, DS1 hold from SKC	tskds	100			t _{CY} (2)	Normal seek mode
DIR hold from SKC	[†] SKDI	100			t _{CY} (2)	Normal seek mode
DSO, DS1 setup to STEP	t _{DSSTB}	250			t _{CY}	Buffered seek mode
DIR setup to STEP	t _{DISTB}	200			t _{CY}	Buffered seek mode
STEP pulse width	t _{STEPB}	69		85	t _{CY}	Buffered seek mode
STEP cycle period	tstcy	570		660	t _{CY}	Buffered seek mode
DS0, <u>DS1</u> hold from STEP	tstdsb	200			t _{CY} (1)	Buffered seek mode
DIR hold from STEP	t _{STDIB}	200			t _{CY} (1)	Buffered seek mode

Note:

⁽¹⁾ Polling mode

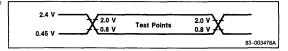
⁽²⁾ Nonpolling

⁽³⁾ AC Characteristics are tested with $C_L = 100 \, pF$.

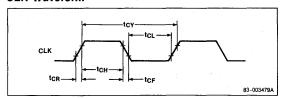
AC Characteristics (cont) $T_A = 0$ °C to +70 °C, $V_{CC} = +5V \pm 10\%$; $V_{SS} = 0V$

			Limits			Test
	Symbol	Min	Тур	Max	Unit	Conditions
ST506-Type Inter						
OSO, DS1 hold rom SKC	tskdsb	100				Buffered seek mode
DIR hold from SKC	tskdib	100			t _{CY} (2)	Buffered seek mode
ndex pulse width	nt _{iDXF}	8			t _{RWCY}	
SMD Interface						
R/W CLK cycle	t _{RWCY}	83			ns	7261A
period		55			ns	7261B
R/W CLK time,	t _{RWCL}	30			ns	7261A
0W		20			ns	7261B
R/W CLK time,	trwch	30			ns	7261A
nigh		20			ns	7261B
R/W CLK rise time	t _{RWCR}			10	ns	
R/W CLK fall time	tRWCF			10	ns	
R/W DATA setup to R/W CLK	t _{RDRC}	40			ns	
R/W DATA hold	t _{RCRD}	5			ns	7261A
irom R/W CLK	•	0			ns	7261B
R/W DATA delay	twcwp	35		90	ns	7261A
from R/W CLK		0		55	ns	7261B
BT1 delay from R/W CLK	t _{RCRG}			300	ns	
BTO delay from R/W CLK	twcwg			150	ns	
SYNC delay from R/W CLK	t _{RWCSY}			150	ns	
BDIR setup to USTG	t _{BDUT}	60			t _{CY}	Unit select operation
BDIR hold from USTG	t _{UTBD}	15			t _{CY}	Unit select operation
Unit ADR setup	tuaut	20		40	t _{CY}	Unit select operation
Unit ADR hold from USTG	t _{UTUA}	15			t _{CY}	Unit select operation
BDIR setup to	t _{BDT1}	27		48	t _{CY}	Cylinder select operation
BDIR hold from	t _{T1BD}	60			t _{CY}	Cylinder select operation

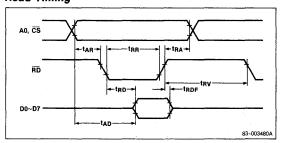
	Limits				Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CY <u>L. A</u> DR setup to TG1	t _{CAT1}	27		48	t _{CY}	Cylinder select operation
CYL. <u>AD</u> R hold from TG1	t _{T1CA}	60			t _{CY}	Cylinder select operation
TG1 pulse width	t _{TG1}	24		36	t _{CY}	Cylinder select operation
BDIR setup to TG2	t _{BDT2}	15			t _{CY}	Head select operation
BDIR hold from TG2	t _{T2BD}	70			t _{CY}	Head select operation
HEAD ADR setup TG2	t _{HAT2}	15		70	t _{CY}	Head select operation
HEAD ADR hold from TG2	t _{T2HA}	70			t _{CY}	Head select operation
TG2, pulse width	t _{TG2}	24		36	t _{CY}	Head select operation
BDIR setup to TG3	t _{BDT3}	24			t _{CY}	(Note 4)
BDIR hold from TG3	t _{T3BD}	24		36	t _{CY}	(Note 4)
TG3, pulse width	t _{TG3}	56		66	t _{CY}	(Note 4)
BT2, 3, 4, 6, 7, 8 setup from TG3	t _{BTT3}			56	tcy	(Note 4)
BT4, 6 hold from TG3	t _{T3BT1}	24			t _{CY}	(Note 4)
BT2, 3, 7, 8 hold from TG3	t _{T3BT2}	75			t _{CY}	(Note 4)
BDIR delay from SSTG	t _{STBD}	24			t _{CY}	(Note 5)
BDIR high time	t _{BDIR}	54		66	t _{CY}	(Note 5)
BT9 setup to BDIR	t _{BTBD}	24		36	t _{CY}	(Note 5)
BT9 hold from BDIR	t _{BDBT}	24		33	t _{CY}	(Note 5)
SSTG pulse width	tsstg			200	t _{CY}	(Note 5)
Index pulse width	t _{IDXH}	8			t _{RWCY}	
SCT pulse width	t _{SCT}	8			tRWCY	

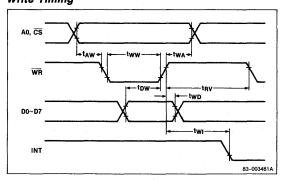

(4) RTZ, FAULT CLR, SERVO, DATA STB, control timing.

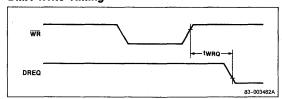
(5) Sense unit status timing.

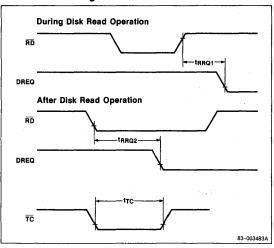


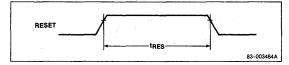
Timing Waveforms — Host System Interface

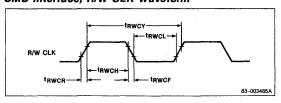

AC Test Points (Except R/W CLK, CLK)

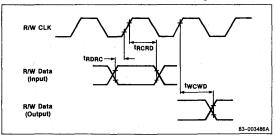

CLK Waveform


Read Timing

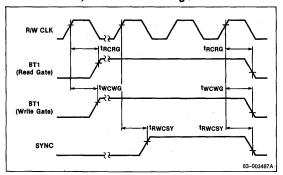

Write Timing

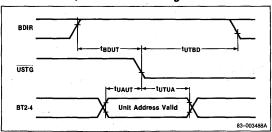

DMA Write Timing


DMA Read Timing

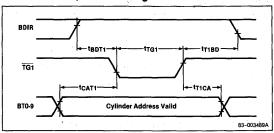

Reset Waveform

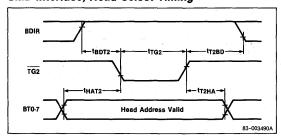
SMD Interface, R/W CLK Waveform

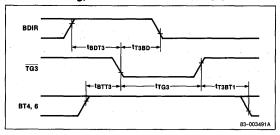

SMD Interface, Data Read/Write Timing

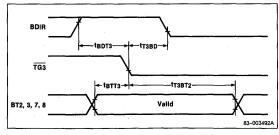


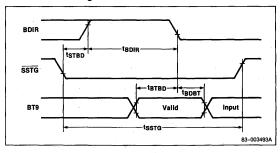
Timing Waveforms — Host System Interface (cont)

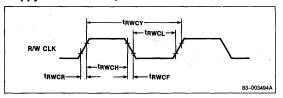

SMD Interface, Read/Write Timing


SMD Interface, Unit Select Timing

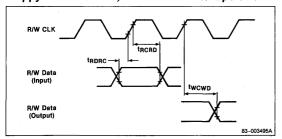

SMD Interface, Seek Timing

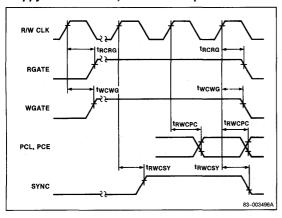

SMD Interface, Head Select Timing


Bit Bus Timing, Fault Clear/Return-to-Zero

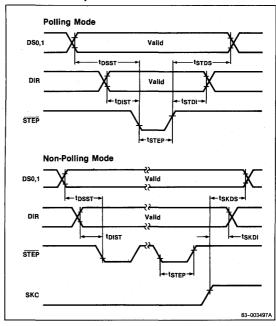

Bit Bus Timing, Servo Offset/Data Strobe

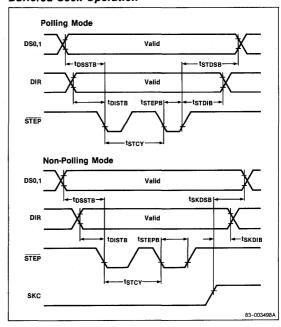
Bit Bus 9 Timing


Floppy-Like Interface, R/W CLK Waveform

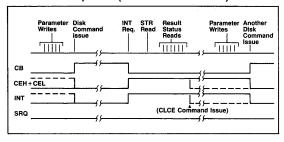

NEC

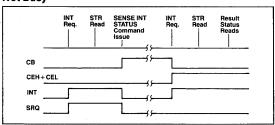
Timing Waveforms — Host System Interface (cont)


Floppy-Like Interface, Data Read/Write Operation

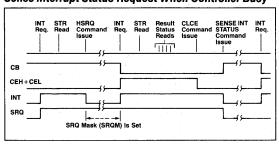

Floppy-Like Interface, Read/Write Operation

Normal Seek Operation


Buffered Seek Operation



Timing Waveforms — Host System Interface (cont)


Read/Write Sequence (Disk Command Issue)

Sense Interrupt Status Request When Controller Not Busy

Sense Interrupt Status Request When Controller Busy

High-Level Commands

Specify

Allows user to select SMD or ST506-type mode data block length, ending track number, end sector number, gap length, track at which write current is reduced, ECC or CRC function, choice of polynomial, and polling mode enable.

Sense Interrupt Status

When a change of disk status occurs, the HDC will interrupt the host CPU. This command will reveal the cause of interrupt, such as seek end, disk ready change, seek error, or equipment check. The disk unit address is also supplied.

Sense Unit Status

The host CPU specifies the drive numbers and the HDC will return information such as write fault, ready, track 000, seek complete and drive selected, or for SMD units fault, seek error, on cylinder, unit ready, AM found, write protected, seek end, and unit selected.

Detect Error

Used after a read operation where ECC has been employed. The detect error command supplies the information needed to allow the host CPU to execute an error correction routine. (Only allowed when an actual correctable error is detected by the HDC.)

Recalibrate

Returns the disk drive heads to the home position or track 000 position. Has four modes of operation: SMD, normal, buffered, or nonpolling.

Seek

Moves the disk drive heads to the specified cylinder. As in recalibrate, seek has four modes of operation.

Format

This command is used to initialize the medium with the desired format which includes various gap lengths, data patterns, and CRC codes. This command is used in conjunction with the specify command.

Verify ID

Used to verify the ID bytes with data from memory. Performs the operation over a specified number of sectors.

Read ID

Used to verify the position of the read/write heads.

Read Diagnostic

Used in SMD mode only, the command allows the programmer to read a sector of data even if the ID portion of the sector is defective. Only one sector at a time can be read.

Read Data

Reads and transfers to the system memory the number of sectors specified. The HDC can read multiple sectors and multiple tracks with one instruction.

Scan

Compares a specified block of memory with specified sectors on the disk. The 7261A/7261B continues until a sector with matching data is found, until the sector count reaches zero, or the end of the cylinder is reached.

Verify Data

Makes a sector-by-sector comparison of data in the system memory by DMA transfer. As in read operation, multiple sectors and tracks may be verified with this command.

Write Data

Data from the system memory, transferred by DMA, is written onto the specified disk unit. As in the read command, data may be written onto successive sectors and tracks.

Auxiliary Command

Allows four additional functions to be executed: software reset, clear data buffer, mask interrupt request bit (masks interrupts caused by change of status of drives), and reset interrupt caused by command termination (used when no further disk commands will be issued, which would normally reset the interrupt).

Command Operation

There are three phases for most of the instructions that the $\mu PD7261A/7261B$ can execute: command phase, execution phase, and result phase. During the command phase the host CPU loads preset parameters into the $\mu PD7261A/7261B$ FIFO via the data bus and by successive write pulses to the part with A_0 and CS true low. Once the required parameter bytes are loaded the appropriate command is initiated by issuing a write pulse with A_0 high and CS low and the command code on the data bus.

The μ PD7261A/7261B is now in the execution phase. This can be verified by examining the status register bit 7 (the controller busy bit). The execution phase is ended when a normal termination or an abnormal termination occurs. An abnormal termination can occur due to a read or write error, or a change of status in the addressed disk drive. A normal termination occurs when the command given is correctly completed. (This is indicated by bits in the status register.) The result phase is then entered. The host CPU may read various result parameters from the FIFO. These result parameters may be useful in determining the cause of an interrupt, or the location of a sector causing a read error, for example.

The chart shown in table 2 illustrates the preset parameters and result parameters that are associated with each command. The abbreviations are defined at the end of table 2.

Table 2. Preset Parameters and Result Status Byte

Disk	Command	Preset Parameters / Result Status							
Command	Code	1st	2nd	3rd	4th	5th	6th	7th	8th
Detect error	0100X								
		EADH	EADL	EPT1	EPT2	EPT3			
Recalibrate	0101[B]								
		IST*							
Seek	0110[B]	PCNH	PCNL						
		IST*							
Format	0111(S)	PHN	(PSN)	SCNT	DPAT	GPL1	[GPL3]		
		EST	SCNT						
Verify ID	1000(S)	PHN	(PSN)	SCNT					
		EST	SCNT						
Read ID	1001(S)	PHN	(PSN)	SCNT		<u>-</u> -			
		EST	SCNT						
(Read diagnostic)	1010X	PHN	PSN						
		EST							
Read data	1011X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
Check	1100X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
		EST	. PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
Scan	1101X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
Verify data	1110X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
Write data	1111X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
Sense interrupt status	0001X	IST							
Specify .	0010X	MODE	DTLH	DTLL	ETN	ESN	GPL2	(MGPL1) [RWCH]	[RWCL]
Consequent states	0044V								
Sense unit status	0011X	HCT							
		UST							

Note:

- (): These are omitted for soft-sector disks.
- []: These are omitted for hard-sector disks.
- *: IST available as a result byte only when in nonpolling mode.

Physical cylinder number, high byte

- B: Indicates buffered mode when set.
- S: Indicates Skewed mode (SMD only) when set.
- X: Indicates don't care.

Mnemonic Definitions

EADH	Error address, high byte
EADL	Error address, low byte
EPT1	Error pattern, byte one
EPT2	Error pattern, byte two
EPT3	Error pattern, byte three

Mnemonic Definitions (cont)

	no Bonninono (oone)
PCNL	Physical cylinder number, low byte
PHN	Physical head number
PSN	Physical sector number
SCNT	Sector count
DPAT	Data pattern
GPL1	Gap length one
GPL3	Gap length three
EST	Error status byte
FLAG	Flag byte
LCNH	Logical cylinder number, high byte

PCNH

	20
LCNL	Logical cylinder number, low byte
LHN	Logical head number
LSN	Logical sector number
IST	Interrupt status byte
MODE	Mode
DTLH	Data length, high byte
DTLL	Data length, low byte
ETN	Ending track number
ESN	Ending sector number
GPL2	Gap length two
RWCL	Write current cylinder, low byte
RWCH	Write current cylinder, high byte
UST	Unit status byte
MGPL1	Modified gap length 1

Status Register

This register is a read only register and may be read by asserting \overline{RD} and \overline{CS} with A_0 high. The status register may be read at any time. It is used to determine controller status and partial result status. See table 3.

Table 3. Status Register Bits

	Pin	
No.	Name	Function
D ₇	CB (Controller busy)	Set by a disk command issue. Cleared when the command is completed. (This bit is also set by an external reset signal or an RST command, but will be cleared at the completion of the reset function.) When this bit is set, a new disk command will not be accepted.
D ₆ , D ₅	CEH, CEL (Command end)	CEH=0 and CEL=0 A disk command is in process, or no disk command is issued after the last reset signal or the last CLCE auxiliary command. Both the CEH and CEL bits are cleared by a disk command, a CLCE auxiliary command, or a reset signal.
		CEH = 0 and CEL = 1 Abnormal termination of a disk command. Execution of a disk command was started, but was not successfully completed.
		CEH=1 and CEL=0 Normal termination of a disk command. The execution of a disk command was completed and properly executed.
		CEH=1 and CEL=1 Invalid command issue.

Table 3. Status Register Bits (cont)

	Pin	
No.	Name	Function
D ₄	SRQ (Sense interrupt status request)	When a seek end, an equipmer check condition, or a ready signal state change is detected, this bit is se requesting a sense interrupt statu command be issued to take the de tailed information. This bit is cleare by an issue of that command or by reset signal.
D ₃	RRQ (Reset request)	Set when controller has lost control of the format controller (missing addres mark, for example). An auxiliary RS command or RESET signal will cleathis bit.
D ₂	IER (ID error)	Set when a CRC error is detected i the ID field. An auxiliary RST or an other disk command will reset this bit
D ₁	NCI (Not coincident)	Set if the controller cannot find a sector on the cylinder which meets the comparison condition during the execution of a scan command. This bit is also set if data from the disk does no coincide with the data from the system during a verify ID or a verify dat command. This bit is cleared by a disk command or a reset signal.
D ₀	DRQ (Data request)	During execution of write ID, verify ID scan, verify data, or a write data command, this bit is set to request the data be written into the data buffer During execution of read ID, read diagnostic, or read data command, this bit is set to request that data be reafrom the data buffer.

Error Status Byte

This byte is available to the host at the termination of a read, write, or data verification command and provides additional error information to the host CPU. If the status register indicates a normal command termination, it can be assumed that the command was executed without error and it is not necessary to read this byte. When it is necessary to determine the cause of an error this byte may be read by issuing an $\overline{\text{RD}}$ pulse with $\overline{\text{CS}}$ and A_0 low. The remaining result bytes associated with a particular command may be read by issuing additional $\overline{\text{RD}}$ pulses. Data transfer from or to the FIFO is asynchronous and may occur at rates up to 2.5 Mbytes per second. See table 4.

Table 4. Error Status Bits

	Pin	, , , , , , , , , , , , , , , , , , , ,
No.	Name	Function
D ₇	ENC (End of cylinder)	Set when the controller tries to access a sector beyond the final sector of a cylinder. Cleared by a disk command or an auxiliary RST command.
D ₆	OVR (Overrun)	When set, indicates that the FIFO became full during a read operation, or empty during a write operation.
D ₅	DER (Data error)	A CRC or an ECC error was detected in the data field.
D ₄	EQC (Equipment check)	A fault signal from the drive has been detected or a track 0 signal has not been returned within a certain time interval after the recalibrate command was issued.
D ₃	NR (Not ready)	The drive is not in ready state.
D ₂	ND (No data)	The sector specified by ID parameters was not found on the track.
D ₁	NWR (Not writable)	Set if write protect signal is detected when the controller tries to write on the disk. It is cleared by a disk command or by an auxiliary RST command.
D ₀	MAM (Missing address mark)	This bit is set if during execution of read data, check, scan, or verify data commands, no address mark was found in the data field or if during execution of a read ID or verify ID command, no address mark was detected in the ID field.

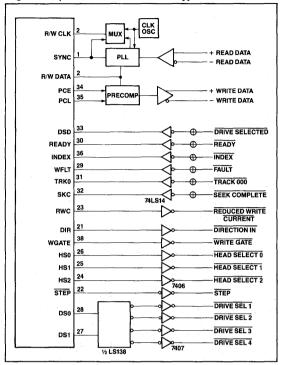
Interrupt Status Byte

This byte is made available to the host CPU by executing the Sense Interrupt Status command. This command should be issued only when the μ PD7261A/7261B requests it, as indicated by bit D₄ of the status register. This byte reveals changes in disk drive status that have occurred. See table 5.

Table 5. Interrupt Status Bits

	Pin					
No.	Name	Function				
D ₇	SEN (Seek end)	A seek end or seek complete signal has been returned after a seek or a recalibrate command was issued.				
D ₆	RC (Ready change)	The state of the ready signal from the drives has changed. The state itself is indicated by the NR bit.				
D ₅	SER (Seek error)	Seek error has been detected on seek end.				
D ₄	EQC (Equipment check)	Identical to bit 4 of the error status byte.				
D ₃ .	NR (Not ready)	Identical to bit 3 of the error status byte.				
D ₂ -D ₀	UA ₂ -UA ₀ (Unit address)	The unit address of the drive which caused an interrupt request on any of the above conditions.				

Drive Interface


The μ PD7261A/7261B has been designed to implement two of the more popular types of interfaces: the SMD (Storage Module Drive) and the floppy-like Winchester drive which has come to be known as the ST506 interface. The desired interface mode is selected by the Specify command.

ST506-Type Interface

In the ST506 mode the μ PD7261A/7261B performs MFM encoding and decoding at data rates to 6 MHz and provides all necessary drive interface signals. Included internally is circuitry for address mark detection, sync area recognition, serial-to-parallel-to-serial conversion, an 8-byte FIFO for data buffering, and circuitry for logical addressing of the drives. External circuitry required consists of control signal buffering, a delay network for precompensation, a phase-lock loop, a write clock oscillator and a differential transceiver for drive data. The floppy-like interface can be implemented with as few as 7 IC's using NEC's hard-disk interface chip, the μ PD9306A, or with 12 to 14 SSI ICs. See figure 1.

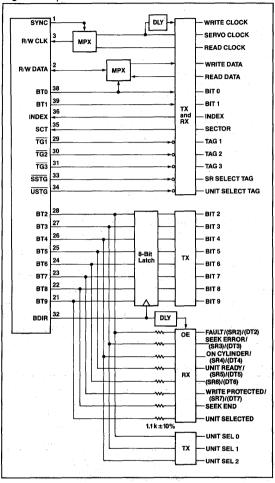
Figure 1. µPD7261A/7261B ST506-Type Interface

SMD Interface

In the SMD mode the μ PD7261A/7261B will support data rates to 10 MHz/15 MHz in the NRZ format. All control functions necessary for an SMD interface are implemented on-chip with de-multiplexing of 8 data lines performed externally by a single 8-bit latch. A small amount of logic is required to multiplex the data and clock lines, and differential drivers and receivers are required to implement the actual interface. Depending on individual logic design and the number of drives used, the SMD interface may be implemented with as few as 12 ICs. See figure 2.

Note:

CLK (pin 37) frequency must be a minimum of 1.1 × NRZ data rate.


Internal Architecture

The µPD7261A/7261B can be divided into three major internal logic blocks: command processor; format controller; microprocessor interface.

Command Processor

The command processor is an 8-bit microprocessor with its own instruction set, program ROM, scratchpad RAM, ALU, and I/O interface. Its major functions are:

Figure 2. µPD7261A/7261B SMD Interface

- To decode the commands from the host microcomputer that are received through the 8-bit data bus
- ☐ To execute seek and recalibrate commands☐ To interface to the drives and read the drive statu
- ☐ To interface to the drives and read the drive status lines
- To load the format controller with the appropriate microcode, enabling it to execute the various read/ write data commands.

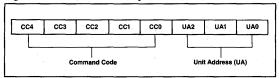
The command processor microprocessor is idle until it receives the command from the host microcomputer. It then reads the parameter bytes from the FIFO, and loads them into its RAM. The command byte is decoded and, depending on its opcode, the appropriate subroutine from the 2.6K internal ROM is selected and executed. Some of these commands are executed by the command processor without involvement of the format

controller. When data transfers to and from the disk are made, the command processor loads the appropriate microcode into the format controller, then relinquishes control. When the data transfer is complete, the command processor again takes control. One other important function that the command processor performs is managing the interface to the disk drives. The command processor contains an I/O port structure similar to many single-chip microcomputers in that the ports may be configured as input or output pins. Depending on the mode of operation selected by the Specify command, the command processor will use the bidirectional I/O lines for different functions.

Command Register

This register is a write only register. It is selected when the A₀ input is high and the CS input is low. There are two kinds of commands: disk commands and auxiliary commands. Each command format is shown in figure 3.

An auxiliary command is accepted at any time and is immediately executed, while a disk command is ignored if the on-chip processor is busy processing another disk command. A valid disk command causes the processor to begin execution using the parameters previously loaded into the data buffer. Disk commands and the parameters needed are described in the Microprocessor Interface section.

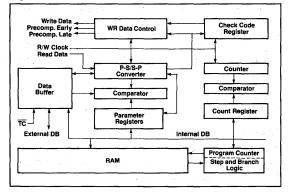

Command Codes

		CC4-CC0			
0	0	0	0	Х	(Auxiliary Command)
0	0	0	1	Х	Sense int. status (Note 1)
0	0	1	0	Х	Specify (Note 1)
0	0	1	1	Х	Sense unit status
0	1	. 0	. 0	Х	Detect error (Note 1)
0	1	0	1	[B]	Recalibrate
0	1	1	0	[B]	Seek
0	1	1	11	[S]	Format
1	0	0	0	[S]	Verify ID
1	0	0	1	[S]	Read ID
1	0	1	0	Х	Read diagnostic
1	0	1 .	1.	Х	Read data
1.	1 :::	0	0	Х	Check
1	1	0	1	X	Scan
1	1	€ 1 .	0	Χ	Verify data
1	1	1	1	Χ	Write data

Note:

- (1) The UA field is 000.
- [B] Indicates buffered mode when set.
- [S] Indicates skewed mode when set.

Figure 3. Disk Command Byte


Format Controller

The format controller is built with logic that enables it to execute instructions at very high speed: one instruction per single clock cycle. The major functions it performs are:

- ☐ Serial-to-parallel and parallel-to-serial data conversion
- $\ \square$ CRC and ECC generation and checking
- ☐ MFM data decoding and encoding
- ☐ Write precompensation
- ☐ Address mark detection and generation
- ☐ ID field search in soft-sector format
- DMA data transfer control during read/write operations.

The major blocks in the format controller are the sequencer and the serial/parallel data handler. The sequencer consists of a writable control store (32 words by 16 bits), a program counter, branch logic, and the parameter register. The serial/parallel logic consists of a parallel-to-serial converter for disk write operations, a serial-to-parallel converter for disk read operations, precompensation logic for writing MFM data, comparator logic that locates sync fields, address marks, and ID fields. There is also comparator logic that is used during Verify Data commands. See figure 4.

Figure 4. Block Diagram of the Format Controller

Microprocessor Interface

Read/Write Control. The internal registers are selected as shown in truth table 6.

Table 6. Register Selection Table

	•						
CS	A ₀	RD	WR	Selection			
0	0	0	1	Data buffer register (Note 1)			
0	0	1	0	Data buffer register (Note 1			
0	1	0	1	Status register			
0	1	1	0	Command register			
0	X	1	1	Don't care			
1	X	Х	Χ	Don't care			
0	Х	0	0	Inhibited			

Note

(1) Preset parameters and result status information are written and read from the result status register in the HDC through this data buffer register.

Interrupt. The interrupt request line is activated or inactivated according to the following equation:

This means that if either of the command end bits is set or if the sense interrupt status request bit is set (and the SRQM mask is not set), then an interrupt will be generated. The command end bits, CEH and CEL, are set by command termination.

The SRQ bit is set when an equipment check condition or a state change of the ready signal from the disk drives is detected. It is also set when a seek operation is completed. Under these conditions the INT line is activated unless the SRQM mask is set.

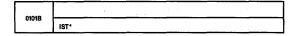
Both of the CEH and CEL bits are cleared by a disk command, but both bits may be cleared before the next disk command by issuing a CLCE auxiliary command.

The interrupt caused by the SRQ bit indicates that a sense interrupt status command should be issued by the host microprocessor so that it can determine the exact cause of the interrupt. However, the μ PD7261A/7261B may be processing a disk command when the interrupt occurs. Since it is not possible to issue a disk command while the μ PD7261A/7261B is busy, an HSRQ auxiliary command can be issued to set the SRQM (sense interrupt request mask) and mask the interrupt. The SRQM is reset upon completion of the disk command in progress.

DMA Control. When true, the DREQ pin and the DRQ (data request) bit of the status register indicate a request for data transfer between the disk controller and external memory. These are activated during execution of the following disk commands:

HDC ← memory: Format, Verify ID, Scan, Verify Data, Write Data

HDC → memory: Read ID, Read Diagnostic, Read Data


Data being read from a disk or external memory is temporarily stored in the data buffer (8 bytes maximum), and is transferred to external memory or a disk, respectively.

Data transfers are terminated externally by a reset signal or by a read or a write data operation coinciding with an active terminal count (TC) signal. They are also terminated internally when an abnormal condition is detected or all the data specified by the sector count parameter (SCNT) has been transferred.

Data transfers are accomplished by \overline{RD} or \overline{WR} signals to the $\mu PD7261A/7261B$ when DREQ is active. During read operations, DREQ goes active when the FIFO contains three or more bytes. If the FIFO contains three bytes and an \overline{RD} pulse is issued, DREQ goes low within transparent of the final sector until the final byte is extracted. In this case, DREQ goes low within transparent operations DREQ is asserted as soon as a Write Data command is accepted. DREQ remains high until the FIFO contains six bytes, at which time it goes low within transparent to FIFO almost-full and FIFO almost-empty as implemented in the $\mu PD7261A/7261B$. This has been done so that a fast DMA controller may actually overrun the FIFO by one or two bytes without harm.

Commands

Recalibrate

The read/write heads of the specified drive are retracted to the cylinder 0 position. IST is available as a result byte only if polling mode is disabled. See Specify.

Hard-Sector. An RTZ (Return to Zero) signal is asserted on the bit-6 line with the TAG-3 bit being set. Then the CEH bit of the status register is set indicating a normal termination of the command.

After this command is given, the HDC checks the seek end, unit ready, and fault lines of the drive continually until an active signal is detected on these lines. Then the SRQ bit of the status register is set indicating that a sense interrupt status command should be performed. Each bit of the IST (interrupt status) byte is set according to the result, in anticipation of the sense interrupt status command.

Soft-Sector. There are four different ways to implement the Recalibrate command when the ST506 interface mode has been specified. Both polling and nonpolling modes of operation are provided, with both normal or buffered Recalibrate commands available in either mode.

Normal Mode with Polling. The CEH bit of EST is set to 1 immediately after the Recalibrate command is issued (a Recalibrate command may now be issued to another drive). The HDC now begins generating step pulses at the specified rate. The PCN for the drive is cleared and the TRK0 signal is checked while stepping pulses are sent to one or more drives. When TRKO is asserted, the SEN (seek end) bit of the IST (interrupt status) byte is set and the SRQ bit of the status register is set. This causes an interrupt and requests that a sense interrupt status command be issued. If 1023 pulses have been sent and TRK0 is not asserted, then the SRQ bit is again set, but with the SER (seek error) and EQC (equipment check) bits of the IST byte set. The ready signal of each drive is checked before each step pulse is sent, and the Recalibrate command is terminated if the drive enters a notready state, whereby the NR bit of the IST byte is set to 1.

Normal Mode with Polling Disabled. Operation is similar to that in "Normal Mode with Polling", but the CEH and CEL bits of the status register are not set until either the SEN (seek end) or the SER (seek error) condition occurs. The SRQ bit is not set when polling is disabled, and the IST byte is now available as a result byte when the Recalibrate command is terminated (see "Preset Parameters and Result Status Bytes"). It is not possible to overlap Recalibrate operations in this mode.

Buffered Mode with Polling. This mode operates in a manner similar to that described as "Normal Mode with Polling", but with the following differences:

- (1) 1023 step pulses are sent at a high rate of speed (approximately 50 µs between pulses)
- (2) After the required number of pulses are sent, the CEH bit is set, and then additional Recalibrate or Seek commands will be accepted for other drives
- (3) The SRQ bit is set when the drive asserts SKC, which causes the SEN bit of the IST byte to be set
- (4) If SEN is not set within the time it takes to send 1023 "normal" pulses (i.e., when in normal stepping mode), then SER and EQC of the IST byte are set.

Buffered Mode with Polling Disabled. 1023 stepping pulses are immediately sent after the Recalibrate command is issued. CEH and/or CEL is set when SEN or SER occurs. SEN is set when TRK0 from the addressed drive is asserted. SER is set if TRK0 is not asserted within the time required to send 1023 "normal" pulses. The Recalibrate command will be terminated abnormally if a not-ready condition occurs prior to SEN being

set. The SRQ bit of the status register is not set. The IST byte (interrupt status) is available as a result byte when either CEH or CEL is set.

Seek

0110B	PCNH	PCNL			
UTIUB	IST*				

PCNH = Physical Cylinder Number, High Byte PCNL = Physical Cylinder Number, Low Byte

The read/write heads of the specified drive are moved to the cylinder specified by PCNH and PCNL. IST is available as a result byte only if polling mode is disabled. See Specify.

Hard-Sector. The contents of PCNH and PCNL are asserted on the BIT0 through BIT9 output lines of the SMD interface with the TAG1 control line being set. (The most significant six bits of PCNH are not used.) The CEH bit of the status register is then set, and the command is terminated normally.

The HDC then checks the seek end, unit ready and fault lines of the drive continually until an active signal is detected on these lines. The SRQ bit of the status register is then set requesting that a Sense Interrupt Status command be performed. Each bit of the IST (interrupt status) byte is set appropriately in anticipation of the Sense Interrupt Status command.

Soft-Sector (Normal Stepping, Polling Enabled). In this mode, the CEH bit of the status register is set to 1 as soon as the Seek command is issued. This allows a Seek or Recalibrate command to be issued to another drive. The HDC now sends stepping pulses at the specified rate and monitors the ready signal. Should the drive enter a not-ready state, the SER bit of the IST byte is set and the SRQ bit of the status register is set, causing an interrupt and requesting a Sense Interrupt Status command. When the drive asserts the seek complete (SKC) signal, the SEN bit of the IST byte is set and the SRQ bit of the status register is set, again requesting service.

Soft-Sector (Normal Stepping, Polling Disabled). Stepping pulses to the drive begin as soon as the Seek command is accepted. The ready signal is checked prior to each step pulse. If the drive enters a not-ready state the seek command is terminated abnormally (CEL = 1), and SER of the IST byte is set. If the seek operation is successful, the seek command will be terminated normally (CEH = 1) when the drive asserts SKC (seek complete). The SEN (seek end) bit of the IST byte is set and the IST (interrupt status) byte is available as a result byte. The Sense Interrupt Status command is not allowed (SRQ is not set), nor can seek operations be overlapped in this mode.

Soft-Sector (Buffered Stepping, Polling Enabled). As soon as the Seek command is accepted by the HDC. high-speed stepping pulses are generated. As soon as the required number of pulses are sent, CEH is set to 1. indicating a normal termination. Another Seek command in the same mode may now be issued. The drive is now controlling its own head positioner and asserts SKC when the target cyclinder is reached.) If the drive has not asserted SKC (seek complete) within the time it takes to send the required number of pulses in normal stepping mode, or if the drive enters a not-ready state, then the SER bit of the IST byte and the SRQ bit of the status register are set. Otherwise, the SEN bit of the IST byte is set, along with SRQ of the status register.

Soft-Sector (Buffered Stepping, Polling Disabled). In this mode, the appropriate number of high-speed stepping pulses are sent as soon as the Seek command is issued. If the drive enters a not-ready state, or if SKC (seek complete) is not asserted within the time it takes to send the required number of pulses in normal stepping mode, then the Seek command is terminated normally (generating an interrupt). The IST byte is available as a result byte and the appropriate bit is set; i.e., SER and EQC or NR (not ready). If the seek operation is successful, the Seek command is terminated normally (CEH = 1) and the SEN bit of the IST byte is set. The IST byte is available as a result byte. The Sense Interrupt Status command is not allowed (SRQ is not set), nor can seek operations be overlapped in this mode.

Format

01115	PHN	(PSN)	SCNT	DPAT	GPL1	(GPL3)	
UIIIS	EST	SCNT					
PSN = PI SCNT = Sc DPAT = D: GPL1 = G: GPL3 = G:	nysical He nysical Se ector Cou ata Patter ap Length ap Length ror Status	n 11 13	er ber				

This command is used to write the desired ID and data format on the disk.

(1) When using hard-sector drives, this command will begin format-writing at the sector specified by PHN and PSN, which are loaded during command phase.

When soft-sector drives are specified, this command will begin format-writing at the sector immediately following the index pulse on the track specified by PHN.

In either case, data transmitted from the local memory by DMA operation is written into the ID field, and the data field is filled with the data constant specified by DPAT until DTL (data length) is zero. DTL is established during the specify command with DTLH and DTTL. The sector count, SCNT, is decremented by one at the end of the Format operation on each sector. The following

bytes are required by the HDC for each sector: (FLAG), LCNH, LCNL, LHN, and LSN. FLAG is omitted on softsector drives. These bytes are transferred by DMA.

The format operation produces the various gaps with length as specified by GPL1, GPL2 (See Specify), and GPL3 (For soft-sector only.)

Note:

GPL3 may not exceed decimal value of 44.

(2) The above operation is repeated until SCNT is equal to zero. The execution of the command is terminated normally, when the content of SCNT is equal to zero and the second index pulse has occurred.

(3) When using a hard-sector drive, it is possible to write the ID field displaced from the normal position by 64 bytes by setting the skew bit of the command byte ((S) = 1). This is useful when defective media prevent writing in the normal area of the sector.

(4) Items 4, 5, and 8 of the Read Data and item 4 of the Write Data command are identical for this command. Refer to these items (which appear later in this section) for remaining format operation details.

Verify ID

1000S	PHN	(PSN)	SCNT			
10005	EST	SCNT				

Physical Head Number
 Physical Sector Number
 Sector Count

ID bytes of specified sectors are read and compared with the data that are accessed from local memory via DMA control. The first sector that is verified is specified by PHN and PSN when a hard-sector disk is used. For soft-sector disks, only PHN is given and the Verify ID command begins comparisons with the first physical sector on the track.

Byte comparisons continue as long as successful or until the sector count is zero or a CRC error is found.

When using a hard-sector drive, it is possible to have the HDC verify a skewed ID field by setting the skew bit of the command byte. Refer to the Format section, given earlier, for details.

Read ID

1001S	PHN	PSN	SCNT
10015	EST	SCNT	

ID bytes of specified sectors are read and transferred to local memory by DMA.

Hard-sector disks: Beginning with the sector specified by PHN and PSN, the ID bytes of each sector are read until an error is found or the SCNT has reached zero.

It is also possible to perform the above operation with skewed ID fields by setting the skew bit of the command byte. This will allow reading ID fields that have been shifted by 64 bytes by the Skewed Format command.

Soft-sector disks: This command will begin checking ID fields immediately following the index pulse and will continue until one valid ID field is read, or until the second index pulse is detected or SCNT = 0, whichever occurs first.

Read Diagnostic

1010X	PHN	PSN .		
IUIUX	EST			

This command is implemented only for hard-sector disks. The desired physical sector is specified, and the data field will be read even if the ID bytes of that sector contain a CRC error. Only one sector at a time may be read by this command.

Read Data

1011X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
1011X	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

= Flag Byte, Hard-Sector ID Field Only = Logical Cylinder Number, High Byte = Logical Cylinder Number, Low Byte = Logical Head Number

This command is used to read and transfer data via DMA from the disk to the local memory.

- (1) The HDC reads data from the specified sector which is determined by the following preset parameters: FLAG (for hard-sector only), LCNH, LCNL, LHN, and LSN. The drive is selected by UA (unit address) in the command byte. The HDC then transfers the read data to the local memory via DMA operation.
- (2) After reading each sector, the HDC updates the SCNT and LSN to point to the next sector, and repeats the above described operation until SCNT is equal to zero. During the above read operations, if LSN is equal to ESN, the HDC updates LSN, and continues the read operations after relocating the head (track) specified by LHN.

- (3) The HDC abnormally terminates the execution of this command if SCNT is not equal to zero when the HDC reads out the data from the last sector (LSN = ESN and LHN = ETN). The ENC (end of cylinder) bit of EST (error status) is set to one in this situation.
- (4) The HDC will terminate this command if a fault signal is detected while reading data. The HDC will set the EQC (equipment check) of the EST (error status) byte when this occurs.
- (5) The HDC will terminate this command abnormally if the ready signal from the drive is not active or becomes not active while a Read Data command is being performed. The NR (not ready) bit of the EST (error status) register will be set to one in this case.
- (6) The HDC will end this command abnormally if it cannot find an AM (address mark) (soft-sector mode) or a SYNC byte (hard-sector mode) of the ID field before four index pulses occur. Under these conditions, the RRQ (reset request) bit of the STR (status register) will be set. In order to perform further disk commands the HDC will have to be reset because the format controller is hung up looking for an AM or SYNC byte.
- (7) ECC mode: If the HDC detects an ECC error during a read operation, it will execute the following operations: First, the HDC decides whether or not the error is correctable by checking the syndrome of the error pattern. If the error is correctable, the HDC terminates the command in the normal mode after setting the DER (data error) bit of EST register to one. The host system can input the error address and the error pattern information by issuing the Detect Error command. If it is not a correctable error, the HDC will terminate the command in the abnormal mode after setting the DER bit of the EST register to one.

CRC mode: If the HDC detects a CRC error on a sector during the read operation, the HDC will terminate the command in the abnormal mode after setting the DER bit of the EST register to one.

- (8) If the HDC detects an overrun condition during a Read Data operation, the OVR (overrun) bit of the EST register is set. (An overrun condition occurs when the internal data FIFO is full, another data byte has been received from the disk drive, and a DMA service does not occur.) The command is then terminated in the abnormal mode.
- (9) If the HDC cannot find the desired sector within the occurrence of three index pulses, the ND (no data) bit of the EST register is set to one and the command is terminated in the abnormal mode.
- (10) If TC (terminal count) occurs during a Read Data command the DMA transfers to the local memory will stop. However, the HDC does continue the read operation until the end of the sector, if SCNT = 1.

If SCNT is 2 or more, DMA transfers restart when SCNT is updated to the next sector, and will continue until SCNT is zero.

(11) If the Read Data command has been successfully completed, the result status will be set indicating such. and the result status bytes will be updated according to the number of sectors that have been read. The logical disk parameters - LSN, LHN, and LCN - are incremented as follows:

LSN is incremented at the end of each sector until the value of ESN is reached. LSN is then set to 0 and LHN is incremented. If LHN reaches the value of ETN, then LHN is cleared and LCN is incremented.

In other words, if a Read or Write operation is terminated normally, the various parameters will point to the next logical sector.

If the command is terminated in the abnormal mode, the result status bytes will indicate on which sector, cylinder, and head the error occurred.

(12) If the HDC cannot detect the address mark (softsector) or SYNC bytes (hard-sector) immediately following the VFO sync in the data field, the HDC will set the MAM (missing address mark) bit of the EST register to one, and will terminate the command in the abnormal mode.

Check

1100X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
1100	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

Physical Head Number Flag Byte, Hard-Sector ID Field Only Logical Cylinder Number, High Byte Logical Head Number Logical Head Number Logical Sector Number Sector Number

PHN = FLAG = LCNH = LCNL = LHN = LSN = SCNT =

This command is used to confirm that the data previously written to the medium by the Write Data command contains the correct CRC or ECC.

(1) The HDC reads the data in the sector specified by FLAG (hard-sector only), LCNH, LCNL, LHN, and LSN. The Check command differs from the Read Data command in that no DMA transfers occur.

With the exception of the ECC mode, the Check command is the same as the Read Data command. Please refer to items 2, 3, 4, 5, 6, 7, 8, 11, and 12 of Read Data command for details.

(2) If in the ECC mode, the HDC detects only ECC errors and does not execute any error correction operation even if the ECC errors are correctable. No data transfers have been made, and there is no data to correct.

Scan

1101X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
TIUIX	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

Physical Head Number Flag Byte, Hard-Sector ID Field Only Logical Cylinder Number, High Byte Logical Cylinder Number, Low Byte Logical Head Number Logical Sector Number

FLAG LCNH LCNL LHN LSN

Sector Numbe

(1) In executing the Scan command, the HDC reads the data from the sector specified by the preset parameters of the command phase. The HDC then compares this data with the data transmitted from the local memory. (The purpose of this command is to locate a sector that contains the same data as the local memory.)

This command will terminate successfully if the data from the disk and the data from the local memory are the same. If they are not, the HDC updates SCNT and LSN, and executes the abovementioned operation again.

If the HDC cannot locate a sector that satisfies the scan conditions, the NCI bit of the STR will be set. The HDC tries to compare data until the end of the cylinder has been reached, or until SCNT is zero.

(2) If the value of the LSN (logical sector number) is equal to that of ESN (ending sector number) after updating LSN, the HDC updates the contents of LHN (increasing by 1) and that of LSN (LSN = 0), and repeats the operation described in item 1 after selecting the next head.

(3) After comparing the data transferred from the host CPU with the data in the specified sectors, the result bytes (FLAG, which is only for hard-sector disks, LCNH, LCNL, LHN, and LSN) will be set equal to the sector location that satisfies the Scan command.

(4) The descriptions in 4, 5, 6, 8, and 9 of Read Data command, and items 3 and 4 of Verify Data command are identical for this command. Refer to these descriptions for additional details.

Verify Data

1110X	PHN	(FLAG)	LCNH	LÇNL	LHN	LSN	SCNT	
11102	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

= Physical Head Number

Physical Head Number
 Flag Byte, Hard-Sector ID Field Only
 Logical Cylinder Number, High Byte
 Logical Cylinder Number, Low Byte
 Logical Head Number
 Logical Head Number
 Logical Sector Number
 Sector Number

LCNL

This command is used to verify data on the disk.

(1) The HDC reads the data from the specified sector. and compares the data transmitted from the local memory via DMA with the data from the disk.

The sector is specified by FLAG (hard-sector only), LCNH, LCNL, LHN, and LSN, and the drive is selected by UA. If the data transmitted from the local memory is the same as that read from the sector, the HDC updates the contents of LSN and SCNT, and continues the abovementioned operation. After updating SCNT, if the value of SCNT is equal to zero, the HDC ends the execution of the command in the normal mode. If the value of LSN is equal to that of ESN after updating LSN, the HDC updates the contents of LHN and LSN, and the HDC continues the verify data operation after selecting the head (track) specified by LHN.

If the data transmitted from the local memory is not the same as that read from the sector, the HDC ends the execution of the command in the abnormal mode after setting the NCI (not coincident) bit of STR to one.

- (2) If, after verifying the data on the last sector, the contents of SCNT are not equal to zero, the HDC terminates execution of the command abnormally after setting the ENC (end of cylinder) bit of the EST register to one.
- (3) After verifying the data read from a sector, the HDC checks the CRC bytes (CRC mode) or the ECC bytes (ECC mode).

If the HDC detects a CRC or an ECC error on a sector. the HDC terminates execution of the command abnormally after setting the DER bit of the EST register to a one.

(4) After detecting an active \overline{TC} signal ($\overline{TC} = 0$), the HDC executes the above operation by comparing the read data from the disk drive with the data 00 instead of the data from the main system until the end of the sector.

In the case of SCNT greater than one, when SCNT is updated, DMA transfers restart and disk data is compared against host data until SCNT is zero.

- (5) After verification of the data on all the sectors, FLAG (hard-sector only), LCNH, LCNL, LHN, and LSN are set to the values of FLAG, LCNH, LCNL, LHN, and LSN of the last verified sector.
- (6) The descriptions in items 4, 5, 6, 8, 9, and 12 of the Read Data command are valid in this command. Please refer to these items for additional detail.

Write Data

1111X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
11111	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN FLAG LCNH LCNL = Physical Head Number
= Flag Byte, Hard-Sector ID Field Only
= Logical Cylinder Number, High Byte
= Logical Cylinder Number, Low Byte
= Logical Head Number
= Logical Sector Number

LUNE LUNE LSN SCNT

- (1) This command is used to write data into the data field of the sectors specifed by FLAG (hard disks only), LCNH, LCNL, LHN, and LSN, and to write CRC bytes or ECC bytes according to each internally specified mode (CRC or ECC). The data is written to the disk via DMA transfer from the local memory.
- (2) After writing data on a sector, the HDC updates the contents of SCNT and LSN, and repeats the above described Write Data operation until SCNT is equal to

During the above Write Data operations, if LSN is equal to ESN, the HDC updates LHN and LSN, and continues the Write Data operations after selecting the new head (track) specified by LHN.

As described above, the HDC has the capability of multi-sector and multi-track write operations.

- (3) The HDC abnormally terminates the execution of this command if the SCNT is not equal to zero when the HDC writes the data to the last sector (LSN = ESN and LHN = ETN). The ENC (end of cylinder) bit of EST (error status) register is set to one in this situation.
- (4) If the write protected signal is active (high) at the beginning of the execution of this command, the HDC ends the execution of this command in the abnormal mode after setting the NWR (not writable) bit of the EST register to one.
- (5) After detecting an active \overline{TC} signal ($\overline{TC} = 0$), the HDC writes the data 00 to the sector, instead of the data from the host system.

In the case of SCNT of two or more, when SCNT is updated, the DMA transfers will restart and writing of host data will continue until SCNT = 0.

(6) In the ST506-type mode, the HDC will set the reduced write current output bit to a one when the cylinder number becomes greater than that specified by RWCH and RWCL. These parameters are loaded during execution of the Specify command.

The descriptions in items 4, 5, 6, 8, 9, and 11 of the Read Data command are applicable here also. Refer to these items for further detail.

Sense Interrupt Status

0001X		 	
00012	IST		

= Interrupt Status

- (1) The HDC transfers the new disk status to the host CPU at the end of a Seek or Recalibrate operation or the new disk status resulting from a change of state of the ready signal, which may occur at any time.
- (2) If the Seek or Recalibrate command in progress is completed when this command is issued or if there has been no change of state of the ready signal from the drive, this command will be terminated abnormally.

Specify

anay	MODE	DTLH	DTLL	ETN	ESN	GPL2	(MGPL1) [RWCH] [RWCL]
0010X							

MODE = Mode Byte; Selects Operation Mode
DTLH = Data Length, High Byte
DTLL = Data Length, Low Byte
ETN = Ending Track Number
ESN = Ending Strack Number
GPL2 = Gap Length 12
MGPL1 = Gap Length 1(used in SMD mode only); Controls Read Gate Timing
RWCH = Reduced Write Current (Cylinder No.), Livy Byte
RWCL = Reduced Write Current (Cylinder No.), Low Byte

The Specify command is used to set the operational mode of the HDC by presetting various parameters. Parameters such as MODE (figure 5, table 7), DTLH (figure 6), DTLL, ETN, ESN, GPL2, MGPL1/RWCH, and RWCL may be programmed into the HDC. This allows for a high degree of versatility. Data record length is programmable from 128 to 4095 bytes in soft-sector mode and 256 to 4095 bytes in hard-sector mode.

Figure 5. Mode Byte

: ""					_		
0	ECC	CRCS	SSEC	DSL/ STP3	DSE/ STP2	SOM/ STP1	SOP/ STP0
				-			

Figure 6. DTLH Byte

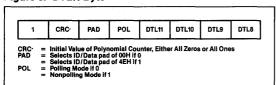
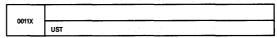
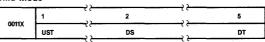


Table 7. Mode Byte Bits


Bit Name		Specified Mode					
	1 ECC is appended in da	1 ECC is appended in data field: (x ²¹ +1) (x ¹¹ +x ² +1)					
ECC	0 CRC is appended in da	ta field					
CRCS	1 Generator polynomial:	(x ¹⁶ +1)					
	0 Generator polynomial:	0 Generator polynomial: (x ¹⁶ +x ¹² +x ⁵ +1)					
	1 Soft-sector disk (floppy-like interface), MFM data						
SSEC	0 Hard-sector disk (SMI) interface), NRZ da	ıta				
	SSEC = 0		SSEC = 1				
DSL	Data strobe late	STP3	(Note 1)				
DSE	Data strobe early	STP2	(Note 1)				
SOM	Servo offset minus	STP1	(Note 1)				
SOP	Servo offset plus	STP0	(Note 1)				

Note:


(1) Stepping rate for ST506 mode = $(16-STP) \times 2110 \times t_{CY}$ Assuming a 10 MHz processor clock: $F_H = 2.11 \text{ ms...} O_H = 33.76 \text{ ms}$

Sense Unit Status

Soft-Sector Mode

SMD Mode

The Sense Unit Status (SUS) command is used to transfer the Unit Status (UST) to the host. In the case of SMD mode the SUS command may also be used to transfer the Detail Status (DS) and Device Type (DT) by using the appropriate preset parameter value as shown above. No preset parameters are used in the soft-sector mode, although one is required in the SMD mode. Values other than 1, 2, or 5 do not produce valid results.

After result bytes are placed in FIFO, HDC generates a FAULT CLEAR when in SMD mode.

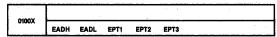
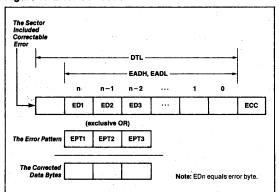

The DS and DT bytes are defined by the type of drives used. The UST is shown in table 8.

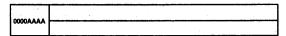
Table 8. Unit Status Byte

anic c.	Onn Otatus Dyto				
		Interface Type			
Bit	No. SMD	ST506			
D ₇	Unit selected	0			
D ₆	Seek end	. 0			
D ₅	Write protected	0			
D ₄	0	Drive selected			
D ₃	Unit ready	Seek complete			
D ₂	On cylinder	Track 000			
D ₁	Seek error	Ready			
D ₀	Fault	Write fault			

Detect Error


EADH = Error Address, High Byte
EADL = Error Address, Low Byte
EPT1 = Error Pattern, Byte 1
EPT2 = Error Pattern, Byte 2

This command is used to transfer the error pattern and the error address to the host CPU, when correctable errors have occurred during the execution of a Read Data command with the ECC mode enabled.


The error address (EADH and EADL) is calculated from the last data byte of the sector that contained a correctable error which was indicated by the status bit of the previous Read Data command with the ECC mode enabled. The error pattern is used for correcting the error data at the location where the error occurred. After receiving the error address and the error pattern, the host CPU can correct the error data by performing an exclusive-OR of the error pattern and the error data. See figure 7.

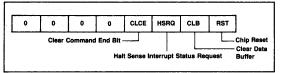
The result bytes are available to the host CPU within $100\mu s$.

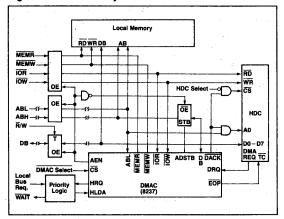
Figure 7. Error Correction

Auxiliary Command

There are no preset parameters or result bytes associated with this command. The definitions of the 4 LSBs (AAAA) are given in figure 8 and table 9. The auxiliary command is accepted at any time and is immediately executed. The auxiliary command may be used to recover from certain types of error conditions, or to mask and clear interrupts.

Figure 8. Auxiliary Command




Table 9. Auxiliary Command Bits

iabio oi	Haxinary Communication
Bit Name	Operation
CLCE	Clears the CE bits of the status register, inactivating the interrupt request output caused by Command End condition. This is used when no disk commands are going to be issued and it is desired to clear the interrupt.
HSRQ	Deactivates the interrupt request output caused by Sense Interrupt Status Request condition until a Command End occurs. However, this command has no effect on the SRQ bit of the status register.
CLB	Clears the data buffer.
RST	This has the same effect as a reset signal on the Reset in- put. This function is used whenever the RRQ bit in the sta- tus register is set (indicating the format controller is hung up), or when a software reset is needed.

System Example

Figure 9 shows an example of a local bus system.

Figure 9. Local Bus System

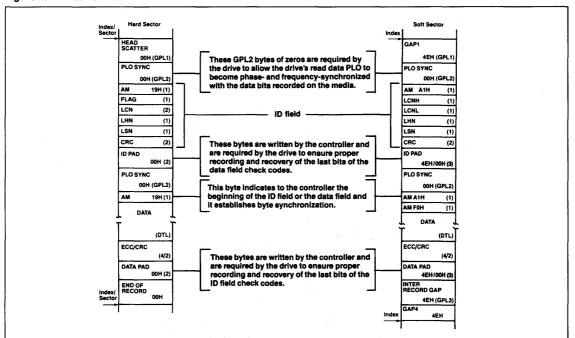

Track Format

Figure 10 shows track format for hard- and soft-sectored disks.

System Example Timing Diagrams

Figures 11 through 22 show the interface timing (soft-sector and hard-sector) required to interface the hard disk drive.

Figure 10. Track Format

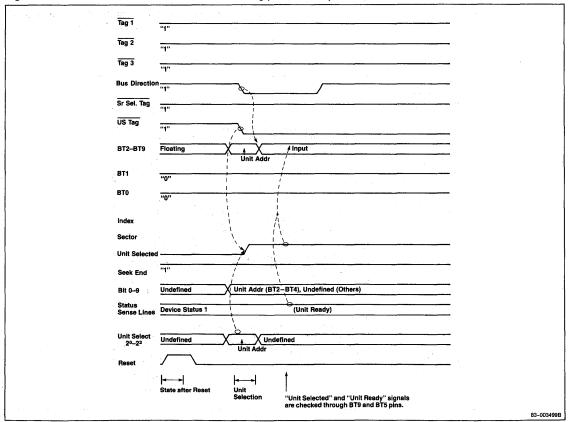


Figure 12. Return to Zero Timing (Hard Sector)

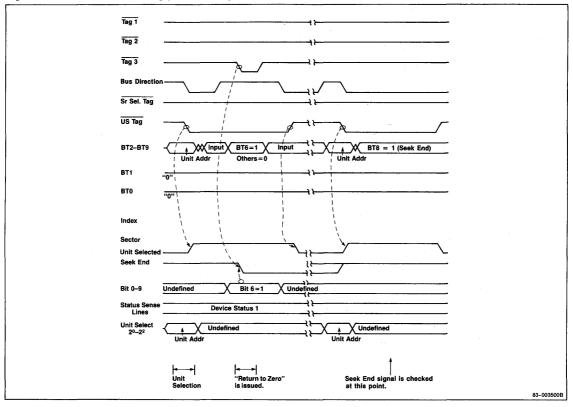


Figure 13. "Seek" Timing (Hard Sector)

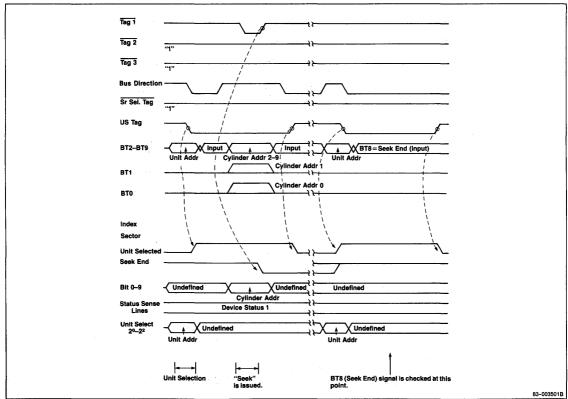
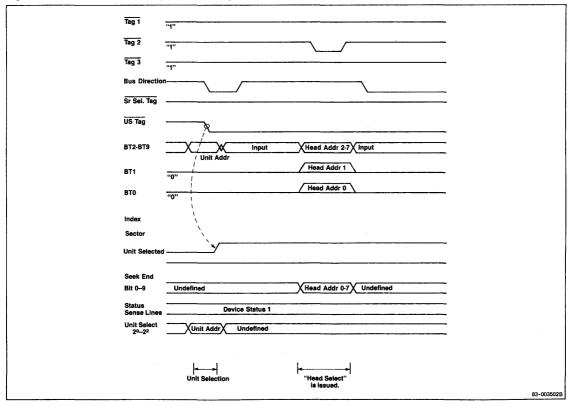



Figure 14. "Head Select" Timing (Hard Sector)

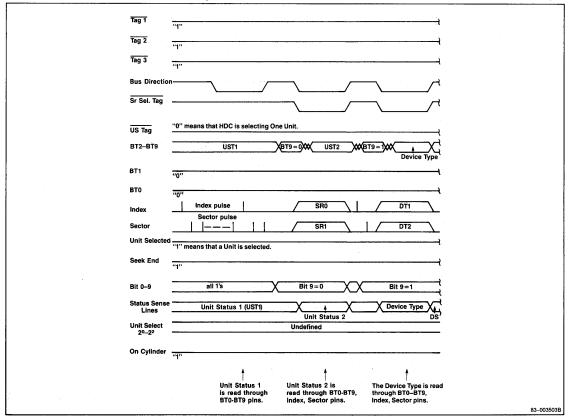


Figure 16. "Data Read" Timing (Hard Sector)

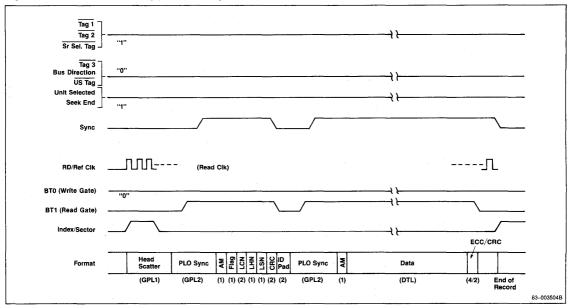


Figure 17. "Data Write" Timing (Hard Sector)

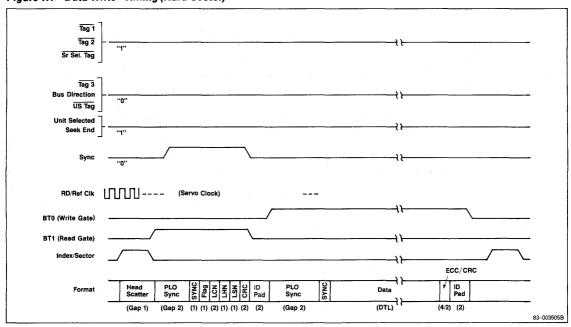


Figure 18. "Drive Select" and "Unit Status Sense" Timing (Soft Sector)

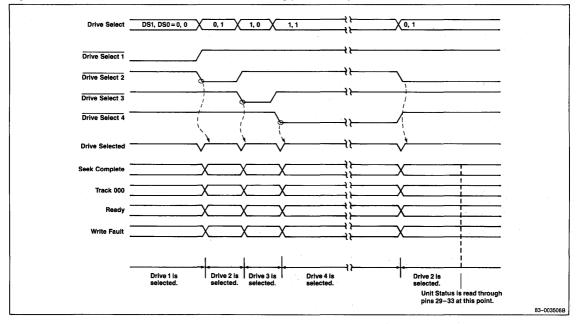


Figure 19. "Normal Seek" Timing (Soft Sector)

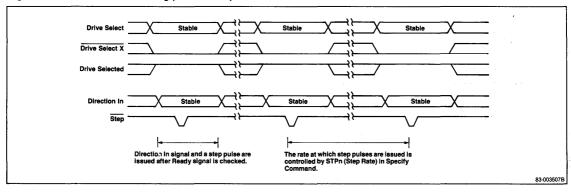


Figure 20. "Buffered Seek" Timing (Soft Sector)

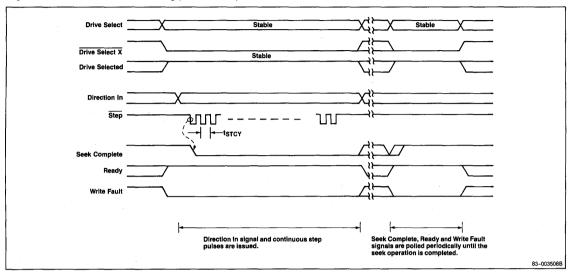


Figure 21. "Data Read" Timing (Soft Sector)

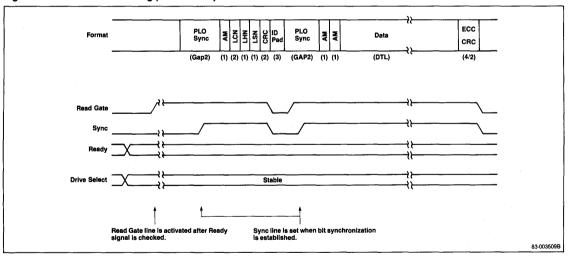
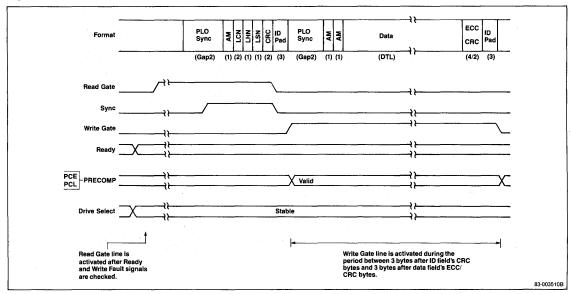
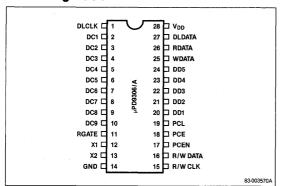



Figure 22. "Data Write" Timing (Soft Sector)

Description

The µPD9306 and µPD9306A hard-disk interface (HDI) chips are unique CMOS single-chip support devices intended for use with the µPD7261A hard-disk controller. The µPD9306/A includes a high-performance, digital phase-locked loop (DPLL), write precompensation logic, and µPD7261A CLK and R/W CLK generation. The μ PD9306/A requires only two inexpensive passive delay lines and a crystal for the self-contained oscillator. It provides a simple but effective solution to the design of support circuitry for typical hard-disk controllers utilizing the ST-506 type interface. Due to its fast acquisition time, the µPD9306/A can actually provide increased storage by allowing for a size reduction in the sync field areas. The HDI also significantly reduces board area requirements and overall design time. The schematic examples included in this data sheet can be used to reduce the ST-506 interface design time to a few hours.


Features

- ☐ Unique digital phase-locked loop (no adjustments)
- ☐ Precompensation logic
- □ 5-MHz MFM data rate□ Internal crystal oscillator
- ☐ CMOS technology
- ☐ Single +5 V power supply

Ordering Information

Part Number	Package Type
μPD9306C / μPD9306AC	28-pin plastic DIP

Pin Configuration

Pin Identification

No.	Symbol	Function				
1	DLCLK	Delay line clock output				
2-10	DC1-DC9	Delay clock inputs				
11	RGATE	Read gate input				
12	X1	Crystal clock input				
13	X2	Crystal clock output				
14	GND	Ground				
15	R/W CLK	Read / write clock output				
16	R/W DATA	Read / write data input / output				
17	PCEN	Precompensation enable input				
18	PCE	Precompensation early input				
19	PCL	Precompensation late input				
20-24	DD1-DD5	Delayed data inputs				
25	WDATA	Write data output				
26	RDATA	Read data input				
27	DLDATA	Delay line data output				
28	V _{DD}	+5 V power supply				

Pin Functions

DC1-DC9 (Delayed Clock)

These nine inputs receive clock signals delayed relative to DLCLK. The delays for pins DC1-DC9 are 10 ns to 90 ns in 10 ns increments.

DD1-DD5 (Delayed Data)

These five inputs receive the input data signals, delayed relative to DLDATA. The delays for pins DD1-DD5 are 40, 60, 80, 90, and 100 ns respectively. As an option, DD1 and DD2 may be connected to the 30-ns and 70-ns taps, respectively, of delay line 1. Comparative performance data is shown in table 1.

DLDATA (Delay Line Data)

This output supplies the external delay line with processed read data from the disk or processed write data from the host.

DLCLK (Delay Line Clock)

This pin is used for the output clock of the on-chip oscillator and to supply clocks for both the delay line and the $\mu PD7261A$.

RGATE (Read Gate)

When this input is active, the digital phase-locked loop (DPLL) circuit generates a read/write clock that is synchronized to the phase of the read data from the disk.

R/W CLK (Read/Write Clock)

When RGATE is active, the DPLL selects one clock input from DLCLK or DC1-DC9. The clock input is synchronized with the read data at the R/W DATA pin and output via R/W CLK. When RGATE is inactive, the DPLL outputs the previously selected clock.

R/W DATA (Read/Write Data)

This pin outputs read data that has been synchronized with R/W CLK when RGATE is high. This pin inputs write data when RGATE is low.

RDATA (Read Data)

Input for read data from the hard-disk drive.

WDATA (Write Data)

Output for write data to the hard-disk drive. Precompensation is according to PCE, PCL, and PCEN states.

PCEN (Precompensation Enable)

Write precompensation is performed when this input signal is active.

PCE (Precompensation Early)

When PCE and PCEN are active, write data is advanced in phase from its nominal position and output on the WDATA pin. External delay lines determine the amount of time advance.

PCL (Precompensation Late)

When PCL and PCEN are active, write data is delayed in phase from its nominal position and output on the WDATA pin. External delay lines determine the amount of time delay.

X1, X2 (Crystal)

These two pins connect the crystal to the on-chip oscillator and clock generator.

V_{DD} (Power Supply)

+5 V power supply input.

GND (Ground)

Ground.

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

-A - 20 0	
Power supply voltage, V _{DD}	-0.5 to +7.0 V (Note 1)
Input voltage, V _I	-0.5 to +7.0 V (Note 1)
Output current, I ₀	10 mA
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Note:

(1) With respect to ground.

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{DD} = +5.0 \text{ V} \pm 10\%$ unless otherwise specified

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage	V _{IH}	2.0		V _{DD} +0.5	٧	9306 only
high	V _{IH1}	2.0		V _{DD} +0.5	٧	(Note 3)
	V _{IH2}	0.7V _{DD}		V _{DD} +0.5	٧	(Note 4)
Input voltage	V _{IL}	-0.5		+0.8	٧	9306 only
low	V _{IL1}	-0.5		+0.8	٧	(Note 3)
	V _{IL2}	0		0.3 V _{DD}	٧	(Note 4)
Output voltage high	V _{OH1}	V _{DD} -0.4			٧	$I_{OH} = -1.0 \text{ mA}$ (Note 1)
	V _{OH2}	V _{DD} – 0.4		1.	٧	$l_{OH} = -2.0 \text{ mA}$ (Note 2)
Output voltage low	V _{OL1}			+0.4	٧	I _{OL} = 3.2 mA (Note 1)
	V _{0L2}	-		+0.4	٧	l _{OL} = 6.4 mA (Note 2)
Input leakage current	ILI			± 10	μΑ	0 V ≤ V ₁ ≤ V _{DD}
Output leakage current	I _{OL}			±10	μΑ	0 V ≤ V ₀ ≤ V _{DD}
Supply current	IDD		10	30	mΑ	

Note:

- (1) All pins except DLCLK, DLDATA and R/W CLK.
- (2) DLCLK, DLDATA, and R/W CLK pins only.
- (3) 9306A only: all inputs except X1.
- (4) 9306A only: X1 input.

Capacitance

 $T_A = 25$ °C, $f_C = 1$ MHz

		Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	Cl			10	pF	(Note 1)
Output capacitance	C ₀			15	рF	(Note 1)
I/O capacitance	C ₁₀			15	pF	(Note 1)

Note:

(1) All unmeasured pins returned to ground.

AC Characteristics

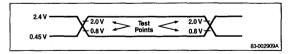
 $T_A = 0$ °C to +70 °C, $V_{DD} = +5.0 \text{ V} \pm 10\%$ (Note 1)

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
DLCLK, DLDATA rise time	t _{DLR}			20	ns	(Note 2)
DLCLK, DLDATA fall time	t _{DLF}			20	ns	(Note 2)
DLCLK cycle time	tcydlk		100		ns	
DLCLK high level width	t _{WDLKH}	40	50	60	ns	
DLCLK low level width	twdlkl	40	50	60	ns	
DLDATA high level width	t _{WDLH}	55	70	100	ns	
DC1-DC9, DD1-DD5 rise time	t _{DR}			30	ns	
DC1-DC9, DD1-DD5 fall time	t _{DF}			30	ns	
DC1-DC9 cycle time	tcydc		100		ns	
DC1-DC9 high level width	twdch	40	50	60	ns	
DC1-DC9 low level width	twdcl	40	50	60	ns	
DD1-DD5 high level width	t _{WDH}	55	70	100	ns	
R/W CLK rise time	t _{RWR}			10	ns	
R / W CLK fall time	t _{RWF}			10	ns	
R / W CLK cycle time	t _{CYRW}	83	100		ns	
R / W CLK high level width	twrwh	30			ns	
R / W CLK low level width	twrwL	30			ns	

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Crystal frequency	fXTAL		10	10.5	MHz	
DLCLK 1 to DC9 1 delay time	t _{DDC1}	85	90	95	ns	(Note 3)
DCn 1 to DCn+1 1 delay time (n=1, 2,, 8)	t _{DDC2}	8	10	12	ns	(Note 3)
DLDATA † to DD5 † delay time	t _{DDD1}	95	100	105	ns	(Note 3)
DDn ↑ to DDn +1 ↑ delay time (n=2, 3, 4)	t _{DDD2}	8	10	12	ns	(Note 3)
R / W CLK 1 to R / W DATA delay time	t _{DRW}	10	20	45	ns	RGATE=1

Note:

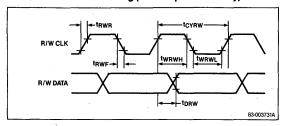
- (1) $C_{LOAD} = 30 pF$
- (2) When delay line is driven
- (3) Delay line specs used: Delay time step = 10 ± 2 ns; total delay time = 100 ± 5 ns

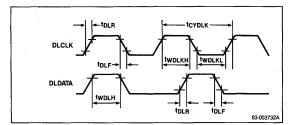

Table 1. µPD9306/A Performance

Connection (Note 1)	Bit Jitter Margin	Speed Variation Tolerance
DD1 to 40-ns delay line tap and DD2 to 60-ns delay line tap	±30 ns	±2% (Note 2)
DD1 to 30-ns delay line tap and DD2 to 70-ns delay line tap	±35 ns	±1.5% (Note 2)

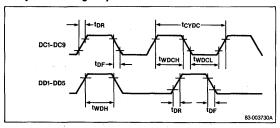
Note:

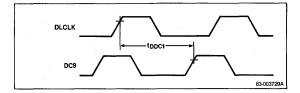
- (1) Performance depends on precision of externally connected delay
- (2) Modern Winchester drives seldom exceed 0.5% speed variation.

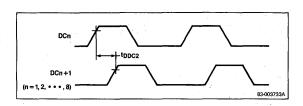

AC Test Points

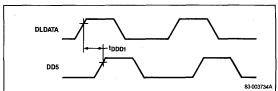


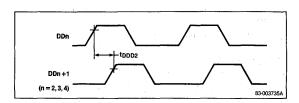
Timing Waveforms

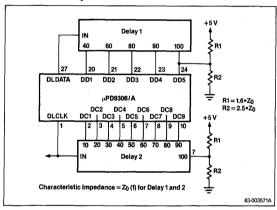

Controller Interface Timing (Read Operation Only)




Delay Line Inputs




Delay Line Timing Requirements



Functional Description

System Configuration

The schematic diagram in figure 1 illustrates the use of the μ PD9306/A in conjunction with active delay lines. Active delay lines are the easiest to use in any application, but generally cost twice as much as the passive type. The μ PD9306/A is capable of driving passive delay lines with 200 Ω or higher impedance. A circuit example is shown in figure 2. Passive delay lines will perform very well when provided with good grounds and proper termination.

Figure 1. System Configuration with Passive Delay Lines

Note:

(1) An internal terminating resistor provided with the delay line should not be used. The delay line should be terminated at the last stage output (100 ns) as shown.

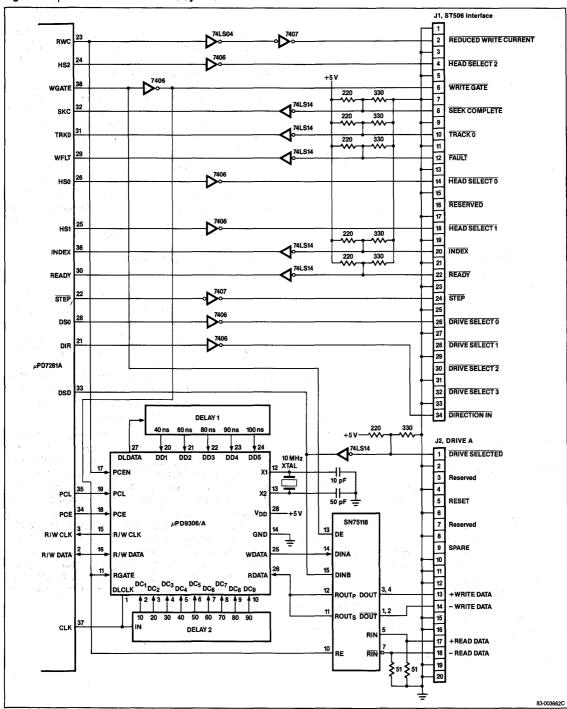
Precompensation Circuit

Write precompensation is a technique that reduces the bit jitter present in read data, thereby increasing reliability. It is typically used only on the inner cylinders. When data is written to the disk, pulse crowding takes place on the higher-numbered inner cylinders where the same amount of data is compressed into less space than on the outer cylinders. A high percentage of the bit jitter present in the read data is due to magnetic effects causing flux transitions to occur displaced from their nomial position. These effects are predictable based on the pattern of data being recorded. Precompensation reduces bit jitter by writing the data slightly before or slightly after the nominal pulse transition time in a direction opposite to the expected jitter.

Various manufacturers of many ST-506 style Winchester disk drives use delay values of 10–12 ns. The μ PD7261A generates the two precompensation control signals, precompensation early (PCE) and precompensation late (PCL), to direct the write data through one of three delay pathways. There is circuitry within the μ PD9306/A allowing it to operate with PCE/L and R/W DATA skewed from each other by as much as 50 ns. This eliminates the need for synchronizing the precompensation and write data signals externally.

The μ PD9306/A utilizes the data path delay line for both the precompensation and the phase-comparator circuit. When RGATE is low, data appearing on the R/W DATA line is written to the drive. The write data is passed through delay line 1, and the 80-, 90- and 100-ns taps are used for the early, nominal and late signals.

Digital Phase-Locked Loop


The μ PD9306/A employs unique circuitry to accomplish the phase-locked loop (PLL) function, which simplifies the overall design and provides very low error rate data recovery.

The raw read data from the ST-506 Winchester is MFM encoded and consists of clock and data pulses. The data format on the disk is broken into sectors with each sector containing sync fields, address marks, ID fields, and data fields. The different fields each have specific functions. For an in-depth explanation of each of these, refer to the μ PD7261A user's manual.

Typically, a Winchester controller will have a data separator that recovers data from the MFM data stream. Within the data separator are several functional blocks that include a sync field detector, phase-locked loop (consisting of a phase comparator, error amplifier, low-pass filter, voltage-controlled oscillator, and pulse synchronizing logic), reference oscillator, and address mark detector. The μ PD9306/A eliminates the need for many of these functional blocks. It acquires "lock" within 4 bit times in a sync field, yet it is incapable of locking to a harmonic, as analog PLL circuits are prone to do. The μ PD9306/A is also immune to the high-frequency bursts that may occur during the write splice areas of the disk.

Figure 2. µPD9306 with Passive Delay Line

The μ PD9306/A simulates the function of an analog VCO by using a digital phase-shift network. One of the external delay lines is used to generate ten phase-shifted reference clocks. These clocks have a frequency of 10 MHz and are phase shifted in equal degree increments. The total delay line time is 100 ns, which is the same as the period of the clock, providing a complete 360° phase shift. The μ PD9306/A synthesizes the VCO signal by internally selecting one of the phase-shifted clock signals. The rate at which the clock is phase-shifted in one direction or the other corresponds to an increase or decrease in the resulting frequency.

The internal phase comparator uses the data delay line (Delay 1) to divide the data window into ten slices. Depending on where the sampling edge of the recovery clock falls within the data window, a proprietary algorithm changes the phase of the recovery clock. The $\mu\text{PD9306/A}$ has the same jitter rejection abilities that you would expect from a well-designed analog PLL. It can accept disk data with jitter in excess of plus or minus 30 ns. As an option, delay line 1 taps DD1 and DD2 may be connected to the 30-ns and the 70-ns tap respectively. Due to this option, the $\mu\text{PD9306/A}$ performance is affected by its immunity to bit jitter and its tolerance to speed variation as shown in table 1.

μPD7262 ENHANCED SMALL DEVICE INTERFACE CONTROLLER

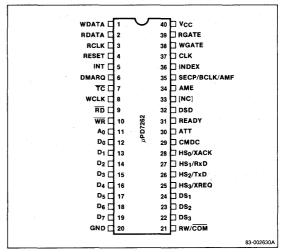
PRELIMINARY INFORMATION

Description

The μ PD7262 is a highly-integrated, single-chip controller for ESDI Winchester Disks. While conforming to the complete revision E of the ESDI specification, this device executes 22 high-level commands that provide flexibility and ease of usage. The μ PD7262 is based on the proven μ PD7261A/ μ PD7260 architecture but adapted to the special requirements of this disk interface. It eliminates numerous ICs and gives complete access to all of the features implemented by the ESDI disk drive manufacturers.

Features

□ Controls ESDI serial mode disks
 □ Controls up to seven disk drives
 □ Programmable soft and hard sector formats
 □ 18-MHz data transfer rate
 □ Multi-sector, -track, and -cylinder transfer capability
 □ Implied seek and parallel seek capability
 □ 22 high level disk commands and 4 auxiliary commands
 □ CRC error detection
 □ ECC error detection and correction
 □ Single +5 volt supply
 □ NMOS 40-pin DIP


Disk Commands

Check	Read Diagnostic
Chip Reset	Read ID
Clear Command End Bit	Recalibrate
Clear Data FIFO	Scan
Detect Error	Send
Format Sector	Send Extended
Format Track	Sense Seek Status
Get Internal Information	Sense Unit Status
Group Assign	Specify1
Logical Seek	Specify2
Mask SRQ Interrupt	Verify Data
Physical Seek	Verify ID
Read Data	Write Data

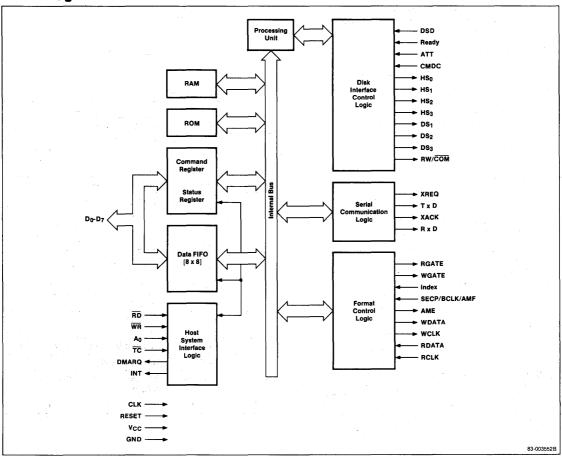
Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD7262D	40-pin ceramic DIP	18 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function
1	WDATA	NRZ write data output to ESDI drive
2	RDATA	NRZ read data input from ESDI drive
3	RCLK	Read/reference clock input from ESDI drive
4	RESET	System reset input
5	INT	Interrupt request output
6	DMARQ	DMA request output
7	TC	Terminal count input from DMAC
8	WCLK	Write clock output to ESDI drive
9	RD	Read control input signal from host computer
10	WR	Write control input signal from host computer
11	A ₀	Address select input from host computer
12-19	D ₀ -D ₇	Data bus from host computer
20	GND	System ground
21	RW/COM	This output specifies the status of pins 25-28
22-24	DS ₃ -DS ₁	Drive select outputs to ESDI drive



Pin Identification (cont)

No.	Symbol	Function
25 26	HS ₃ /XREQ HS ₂ /TxD	If RW/COM = 1: head select (HS) outputs to ESDI drive.
27 28	HS ₁ /RxD HS ₀ /XACK	If RW/COM = 0 for serial data transfer to ESDI drive: transfer request (XREQ) output, transmit data (TXD) output, receive data (RXD) input, and transfer acknowledge (XACK) input.
29	CMDC	Command complete input from ESDI drive
30	ATT	Attention input from ESDI drive
31	READY	Ready input from ESDI drive
32	DSD	Drive selected input from ESDI drive

No.	Symbol	Function
33	NC	Not connected; leave open
34	AME	Address mark enable output from ESDI drive
35	SECP/BCLK/ AMF	Sector pulse or byte clock or address mark found; input from ESDI drive (mutually exclusive)
36	INDEX	Index detected input from ESDI drive
37	CLK	System clock input to µPD7262
38	WGATE	Write gate output to ESDI drive
39	RGATE	Read gate output to ESDI drive
40	V _{CC}	+5 V (Typical) input

Block Diagram

μPD7201A MULTIPROTOCOL SERIAL COMMUNICATIONS CONTROLLER

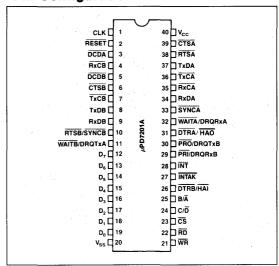
Description

The $\mu PD7201A$ is a dual-channel multifunction peripheral communication controller (MPSCC) that satisfies a wide variety of serial data communication requirements in computer systems. Its basic function is as a serial-to-parallel, parallel-to-serial converter/controller, and it is software configurable for serial data communications applications.

The μ PD7201A can handle asynchronous and synchronous byte-oriented protocols, such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. It also supports virtually any other serial protocol for applications other than data communications.

The μ PD7201A can generate and check cyclic redundancy check (CRC) codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where modem controls are not needed, they can be used for general-purpose I/O.

Features


- □ Two fully independent duplex serial channels
 □ Four independent DMA channels for send/receive data for both serial inputs/outputs
 □ Programmable interrupt vectors and interrupt priorities
 □ Modem control signals
 □ Variable software programmable data rate, up to 1 Mbaud at 5 MHz clock
 □ Double buffered transmitter data and quadruply buffered receive data
 □ Programmble CRC algorithm
- □ Selection of interrupt, DMA or polling mode of operation
 □ Asynchronous operation
 - Character length: x1, x16, x32, or x64 lock frequency
 - Parity: odd, even, or disable
 - Break generation and detection
 - Interrupt on parity, overrun, or framing errors

- ☐ Monosync, bisync, and external sync operations
 - Software selectable sync characters
 - Automatic sync insertion
 - CRC generation and checking
- ☐ HDLC and SDLC operations
 - Abort sequence generation and detection
 - Automatic zero insertion and detection
 - Address field recognition
 - CRC generation and checking
 - I-field residue handling
- ☐ N-channel MOS technology
- ☐ Single +5V power supply; interface to most microprocessors including 8080, 8085, 8086, and others.
- ☐ Single-phase TTL clock
- ☐ Plastic and ceramic dual-in-line packages

Ordering Information

Part Number	Package Type
μPD7201AC	40-pin plastic DIP
μPD7201AD	40-pin ceramic DIP

Pin Configuration

Pin Identification

No.	Symbol	Function
1	CLK	System clock input
2	RESET	Reset input
3	DCDA	Data carrier detect input A
4	RxCB	Receiver clock input B
5	DCDB	Data carrier detect input B
6	CTSB	Clear to send input B
7	TxCB	Transmitter clock input B
8	TxDB	Transmit data output B
9	RxDB	Receive data input B
10	RTSB/SYNCB	Request to send output B/Synchro- nization input/output B
11	WAITB/DRQTxA	Wait output B/Transmit DMA request output A
12-19	D ₇ -D ₀	Data Bus
20	V _{SS}	Ground
21	WR	Write strobe input
22	RD	Read strobe input
23	CS	Chip select input
24	C/D	Control/data input
25	B/Ā	Channel select input
26	DTRB/HAI	Data terminal output B/Hold acknowledge input
27	INTAK	Interrupt acknowledge input
28	ĪNT	Interrupt request output
29	PRI/DRQRxB	Interrupt priority input/Receive DMA request output B
30	PRO/DRQTxB	Interrupt priority output/Transmit DMA request output B
31	DTRA/HAO	Data terminal output A/Hold acknowledge output
32	WAITA/DRQRxA	Wait output A/Receive DMA request output A
33	SYNCA	Synchronization input/output A
34	RxDA	Receive data input A
35	RxCA	Receiver clock input A
36	TxCA	Transmitter clock input A
37	TxDA	Transmit data output A
38	RTSA	Request to send output A
39	CTSA	Clear to send input A
40	V _{CC}	+5 V

Pin Functions

CLK [System Clock]

A TTL-level clock signal is applied to the CLK input. The system clock frequency must be at least 4.5 times the clock frequency applied to any of the data clock inputs (TxCA, TxCB, RxCA, RxCB).

RESET [Reset]

A low on the RESET input (one complete CLK cycle minimum) initializes the MPSCC to the following conditions: receivers and transmitters disabled, TxDA and TxDB set to marking (high), and modem controls (DTRA, DTRB, RTSA, RTSB) set high.

In addition, all interrupts are disabled and all interrupt and DMA requests are cleared. All control registers must be rewritten after a reset before transmission or reception can be restarted.

DCDA, DCDB [Data Carrier Detect]

The DCDA and DCDB inputs go low to indicate the presence of valid serial data at RxD. The MPSCC may be programmed so that the receiver is enabled only when DCD is low, and so that any change in state that lasts longer than the minium specified pulse width causes an interrupt and latches the DCD status bit to the new state.

RxCA, RxCB [Receiver Clock]

The RxCA and RxCB inputs control sampling and shifting serial data at RxDA and RxDB. The MPSCC can be programmed so that the clock rate is 1, 16, 32, or 64 times the data rate. RxD is sampled on the rising edge of RxC. RxC features a Schmitt-trigger input for relaxed rise and fall time requirements.

TxCA, TxCB [Transmitter Clock]

The TxCA and TxCB inputs control the rate at which data is shifted out at TxDA and TxDB. The MPSCC can be programmed so that the clock rate is 1, 16, 32, or 64 times the data rate. Data changes on the falling edge of TxC. TxC features a Schmitt-trigger input for relaxed rise and fall time requirements.

TxDA, TxDB [Transmit Data]

TxDA and TxDB output serial data from the MPSCC. (Marking high).

RxDA, RxDB [Receive Data]

RxDA and RxDB input serial data to the MPSCC. (Marking high.)

CTSA, CTSB [Clear to Send]

The CTSA and CTSB inputs go low to indicate that the receiving modem or peripheral is ready to receive data from the MPSCC. The MPSCC can be programmed so that the transmitter is enabled only when CTS is low. As with DCD, the MPSCC can be programmed to cause an interrupt and latch the new state when CTS changes state for longer than the minimum specified pulse width.

RTSA, RTSB [Request to Send]

When the MPSCC is in one of the synchronous modes, RTSA and RTSB are general-purpose outputs that can be set or reset with commands to the MPSCC. In asynchronous mode, RTS is active (low) as soon as it is programmed on. However, when programmed off, RTS remains active until the transmitter is completely empty. This feature simplifies the programming required to perform modem control.

SYNCA, SYNCB [Synchronization]

The function of the SYNCA and SYNCB pins depends on the MPSCC operating mode. In asynchronous mode, SYNC is used as an input that the processor can read. It can be programmed to generate an interrupt in the same manner as DCD or CTS.

In external sync mode, SYNC is an active-low input that notifies the MPSCC that synchronization has been achieved (see timing waveforms for details). Once synchronization is achieved, SYNC should be held low until synchronization is lost or a new message is about to start.

In internal synchronization modes (monosync, bisync, SDLC), SYNC is an output which is active (low) whenever a SYNC character match is made. There is no qualifying logic associated with this function. Regardless of character boundaries, SYNC is active on any match.

DRQTxA, DRQTxB, DRQRxA, DRQRxB [DMA Request]

When a DRQTxA, DRQTxB, DRQRxA, or DRQRxB output is active (low), it indicates to a DMA controller that a transmitter or receiver is requesting a DMA data transfer.

WAITA, WAITB [Wait]

The WAITA and WAITB outputs synchronize the processor with the MPSCC when block transfer mode is used. It can be programmed to operate with either the receiver or transmitter, but not both simutaneously. WAIT is normally inactive (high). If the processor tries, for example, to perform an inappropriate data transfer such as a write to the transmitter when the transmitter buffer is full, the WAIT output for the channel will go active (low) until the MPSCC is ready to accept the data. The $\overline{\text{CS}}$, $C/\overline{\text{D}}$, $\overline{\text{RD}}$, and $\overline{\text{WR}}$ inputs must remain stable while wait is active. (Open drain.)

D₀-D₇ [Data Bus]

The three-state data bus lines are connected to the system data bus. Data or <u>status</u> from the MPSCC is output on these lines when CS and RD are active (low). Data and commands are latched into the MPSCC on the rising edge of WR when CS is active.

WR [Write Strobe]

A low on the WR input (with either CS during the read cycle or HAI during a DMA cycle) notifies the MPSCC to write data or control information to the device.

RD [Read Strobe]

A low on the $\overline{\text{RD}}$ input (with either $\overline{\text{CS}}$ during a read cycle or $\overline{\text{HAI}}$ during a DMA cycle) notifies the MPSCC to read data or status from the device.

CS [Chip Select]

A low on the $\overline{\text{CS}}$ input allows the MPSCC to transfer data or commands during a read or write cycle.

C/D [Control/Data]

The C/\overline{D} input, with \overline{RD} , \overline{WR} , \overline{CS} , and B/\overline{A} selects the data register (C/D=0) or the control and status registers (C/D=1) for access over the data bus.

B/A [Channel Select]

B/A input low selects channel A and B/A high selects channel B for access during a read or write cycle.

DTRA, DTRB [Data Terminal]

The DTRA and DTRB outputs are general-purpose, active-low outputs which may be set or reset with commands to the MPSCC.

INTAK [Interrupt Acknowledge]

The processor generates two or three INTAK low pulses (depending on the processor type) to signal all peripheral devices that an interrupt acknowledge sequence is taking place. During the interrupt acknowledge sequence, the MPSCC, if so programmed, places information on the data bus to vector the processor to the appropriate interrupt service location.

INT [Interrupt Request]

The INT output is pulled low when an internal interrupt request is accepted. (Open drain.)

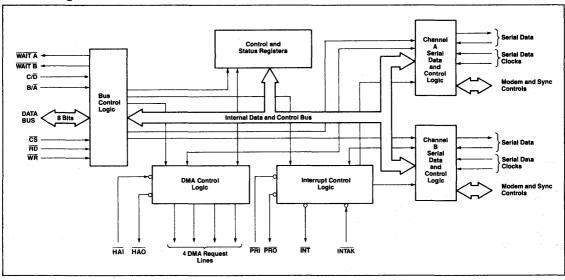
PRI [Interrupt Priority In]

The PRI input informs the MPSCC that the highest priority device is requesting an interrupt. It is used with PRO to implement a priority-resolution daisychain when there is more than one interrupting device. The state of PRI and the programmed interrupt mode determine the MPSCC's response to an interrupt acknowledge sequence.

PRO [Interrupt Priority Out]

The PRO output is active (low) when PRI is active (low) and the MPSCC is not requesting an interrupt (INT is not active).

The active state informs the next lower priority device that there are no higher priority interrupt requests pending during an acknowledge sequence.


HAI [Hold Acknowledge In]

The HAI input goes low to notify the MPSCC that the host processor has acknowledged the DMA request and has placed itself in the hold state. The MPSCC then performs a DMA cycle for the highest priority outstanding DMA request, if any.

HAO [Hold Acknowledge Out]

The HAO output, with HAI, implements a priority-resolution daisychain for multiple DMA devices. HAO is active (low) when HAI is active and there are no DMA requests pending in the MPSCC.

Block Diagram

Absolute Maximum Ratings

 $T_A = 25$ °C

Power Supply, V _{CC}	-0.5 to + 7.0 V
Input Voltage, V _I	-0.5 to + 7.0 V
Output Voltage, V ₀	-0.5 to + 7.0 V
Operating temperature, T _{OPT}	0°C to + 70°C
Storage Temperature, T _{STG}	-65°C to + 150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25^{\circ}C; V_{CC} = GND = OV$

	Limits		nits			
Parameter	Symbol	Min	Max	Unit	Test Conditions	
Input Capacitance	C _{IN}		10	pF	fc = 1MHz	
Output Capacitance	C _{OUT}	_	15	pF	Unmeasured pins	
I/O Capacitance	C _{1/0}		20	pF	returned to GND.	

DC Characteristics

 $T_A = 0$ °C to + 70°C; $V_{CC} = +5 \text{ V} \pm 10\%$

		Limits			
Parameter	Symbol	Min	Max	Unit	Test Conditions
Input low voltage	V _{IL}	-0.5	+0.8	V	
Input high voltage	V _{IH}	+2.0	V _{CC} +0.5	٧	
Output low voltage	V _{OL}		+0.45	V	$I_{OL} = +2.0 \text{ mA}$
Output high Voltage	V _{OH}	+2.4		V	$1_{OH} = 200 \mu A$
Input leakage current	lIL		±10	μΑ	V _{IN} =V _{CC} to 0 V
Output leakage current	[[] OL		±10	μΑ	V _{OUT} =V _{CC} to 0 V
V _{CC} supply current	Icc		230	mA	

AC Characteristics

 T_A = 0°C to + 70°C; V_{CC} = +5 V ± 10%

		Limits				
Parameter	Symbol	Min	Max	Unit	Test Conditions	
Clock cycle	t _{CY}	200	4000	ns		
Clock high width	tсн	70	2000	ns		
Clock low width	t _{CL}	70	2000	ns		•

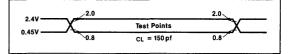
AC Characteristics (cont)

 $T_A = 0$ °C to + 70°C; $V_{CC} = +5 \text{ V} \pm 10\%$

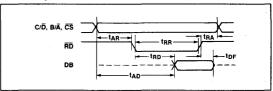
	Limits				
Parameter	Symbol	Min	Max	Unit	Test Conditions
Clock rise time	t _r	0	30	ns	
Clock fall time	t _f	0	30	ns	
Address setup to RD	t _{AR}	0		ns	
Address hold from RD	t _{RA}	0		ns	
RD pulse width	t _{RR}	200		ns	
Data output delay from address	t _{AD}	•	200	ns	
Data output delay from RD	t _{RD}		200	ns	
Data <u>float</u> delay from RD	t _{DF}	10	100	ns	
Address setup from WR	t _{AW}	0		ns	
Address hold from WR	t _{WA}	0		ns	
WR pulse width	tww	200		ns	
Da <u>ta</u> setup to WR	t _{DW}	130		ns	
Data <u>hold</u> from WR	t _{WD}	0		ns	
PRO delay from PRI	t _{PIPO}		100	ns	
PRO delay from INTAK	t _{IAPO}		200	ns	
PRI setup to INTAK	t _{PHA}	0		ns	
PRI hold from INTAK	t _{iAPi}	20		ns	
INTAK pulse width	t _{iAIA}	200		ns	
Data output delay from INTAK	t _{IAD}		200	ns	
Data <u>float d</u> elay from INTAK	t _{DF}	10	100	ns	
Request hold from RD/WR	tca		150	ns	
HAI setup to	t _{HIC}	300		ns	
HAI hold from RD/WR	t _{CHI}	0		ns	-
HAO delay from HAI	t _{HIH0}	-	100	ns	
Data clock cycle	t _{DCY}	400		ns	RxC, TxC

AC Characteristics (cont)

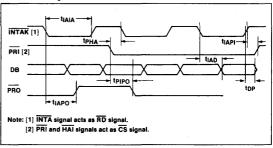
 $T_A = 0$ °C to + 70°C; $V_{CC} = +5 \text{ V} \pm 10\%$

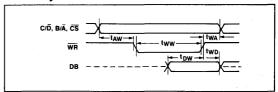

		L	mits		
Parameter	Symbol	Min	Max	Unit	Test Conditions
Data clock high width	tDCH	180		ns	RxC, TxC
Data clock low width	t _{DCL}	180		ns	RxC, TxC
Tx data delay	t _{TCTD}		300	ns	x1 Mode
from TxC			1000	ns	x16, x32, x64 Mode
Rx <u>dat</u> a setup to RxC	t _{RDRC}	0		ns	
Rx Da <u>ta</u> hold from RxC	t _{RCRD}	140		ns	
INT delay Time from Tx Data	t _{iDI}		4-6	t _{CY}	
INT delay Time from RxC	[†] RCI		7-11	t _{CY}	
CTS, DCD, SYNC high pulse width	t _{MH}	200		ns	
CTS, DCD, SYNC low pulse width	t _{ML}	200		ns	
External INT from CTS, DCD, SYNC	t _{MF}		500	ns	
Recovery time between controls	t _{RV}	300		ns	
WAIT delay time from Address	t _{AWT}		120	ns	
SYNC setup to RxC	t _{RCS}		100	ns	

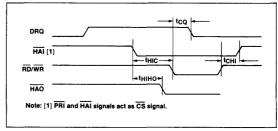
Note: 1. RESET must be active for a minimum of one complete CLK cycle.


2. In all modes system clock rate must be 4.5 times data rate.

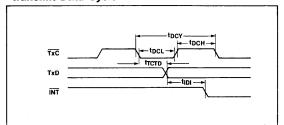
Timing Waveforms

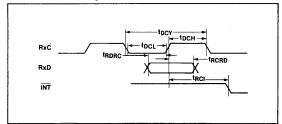

AC Waveform Measurement Points


Read Cycle

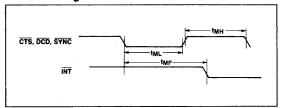

INTAK Cycle

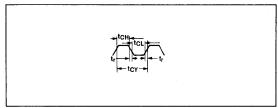
Write Cycle

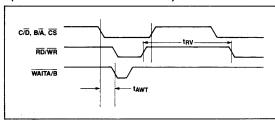

DMA Cycle

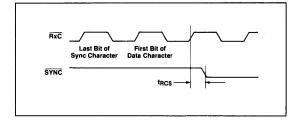


Timing Waveforms (cont)


Transmit Data Cycle


Receive Data Cycle


Other Timing


Clock

Read/Write Cycle (Software Block Transfer Mode)

Sync Pulse Generation (External Sync Mode)

Programming the MPSCC

Software operation of the MPSCC includes consistent register organization and high-level command structure to help minimize the number of operations required to implement complex protocol designs. The MPSCC also has extensive interrupt and status reporting capabilities to simplify programming.

The MPSCC Registers

The MPSCC interfaces to the system software with a number of control and status registers associated with each channel (see tables 1 and 2). Commonly used commands and status bits are accessed directly through control and status register 0. Other functions are accessed indirectly with a register pointer to minimize the address space that must be dedicated to the MPSCC.

All control and status registers except CR2 are separately maintained for each channel. Control and status register 2 are linked with the overall operation of the MPSCC and have different meanings when addressed through different channels.

Before intializing the MPSCC, first program control register 2A (2B if desired) to establish the MPSCC processor/bus interface mode. Each channel may then be programmed for separate use beginning with control register 4 to set the protocol mode for that channel. The remaining registers may then be programmed in any order.

Table 1. Control Registers

Control Register	Function
0	Frequently used commands and register pointer control
1	Interrupt control
2	Processor/bus interface control
3	Receiver control
4	Mode control
5	Transmitter control
6	Sync/address character
7	Sync character

Control Register 0

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
	Control nmand		Command		Reç	gister Poir	nter

Register Pointer [D₀-D₂]

The register pointer specifies which register number is accessed at the next control register write or status register read. After a hardware or software reset, the register pointer is set to zero. Therefore, the first control byte goes to control register 0. When the register pointer is set to a value other than zero the next control or status $(C/\overline{D}=1)$ access is to the specified register. The pointer is then reset to 0 by setting the register pointer.

Commands [D₃-D₅]

Commands commonly used during the operation of the MPSCC are grouped in control register 0. They include the following:

Null [000]: This command has no effect and is used only to set the register pointer or issue a CRC command.

Send Abort [001]: When operating in the SDLC mode, this command causes the MPSCC to transmit the SDLC abort code by issuing 8 to 13 consecutive 1s. Any data currently in the transmitter or the transmitter buffer is destroyed. After sending the abort, the transmitter reverts to the idle phase (flags). When using the Tx byte count mode enable (D₆ of CR1), the send abort command is automatically issued when an underrun condition occurs.

Table 2. Status Registers

Status Register	Function
0	Buffer and "external/status" status
1	Received character error and special condition status
2 (Channel B only)	Interrupt Vector
3	Tx byte count register, low byte
4	Tx byte count register, high byte

Reset External Status Interrupt [010]: When the external/status change flag is set, the condition of bits D₃-D₇ of status register 0 are latched to capture the short pulses that may occur. The reset external/status interrupts command reenables the latches so that new interrupts may be sensed.

Channel Reset [001]: This command has the same effect on a single channel as an external reset at pin 2. A channel reset command to channel A rests the internal interrupt prioritization logic. This does not occur when a channel reset command is issued to channel B. All control registers associated with the channel to be reset must be reinitialized. After a channel reset, wait at least four system clock cycles before writing new commands or controls to that channel.

Enable Interrupt on Next Character [100]: Issue this command at any time when operating the MPSCC in an interrupt on first received character mode. This command must be issued at the end of a message to reenable the interrupt logic for the next received character (first character of the next message).

Reset Pending Transmitter Interrupt/DMA Request [101]: A pending transmitter buffer empty interrupt or DMA request can be reset without sending another character by issuing this command (typically at the end of a message). A new transmitter buffer empty interrupt or DMA request is not made until another character has been loaded and transferred to the transmitter shift register or when, if operating in the synchronous or SDLC modes, the first CRC character has been sent.

Error Reset [110]: This command resets a special receive condition interrupt. It also reenables the parity and overrun error latches that allow error checking at the end of a message.

End of Interrupt [111] [Channel A Only]: Once an interrupt request has been issued by the MPSCC, all lower priority internal and external interrupts in the daisy chain are held off to permit the current interrupt to be serviced while allowing higher priority interrupts to occur. At some point in the interrupt service routine (generally at the end), the end of the interrupt command must be issued to channel A to reenable the daisy chain and allow any pending lower priority internal interrupt requests to occur. The EOI command must be sent to channel A for interrupts that occured on either channel.

CRC Control Commands [D₆-D₇]

The following commands control the operation of the CRC generator/checker logic:

Null [00]: This command has no effect and is used when issuing other commands or setting the register pointer.

Reset Receiver CRC Checker [01]: This command resets the CRC checker to zero when the channel is in a synchronous mode. It resets to all 1s when in an SDLC mode.

Reset Transmitter CRC Generator [01]: This command resets the CRC generator to zero when the channel is in a synchronous mode. It resets to all 1s when in an SDLC mode.

Reset Idle/CRC Latch [11]: This command resets the idle/CRC latch so that when a transmitter underrun condition occurs (transmitter has no more characters to send), the transmitter enters the CRC phase of operation and begins to send the 16-bit CRC character calculated up to that point. The latch is then set so that if the underrun condition persists, idle characters are sent following the CRC. After a hardware or software reset, the latch is in the set state. This latch is automatically reset after the first character has been loaded into the Tx buffer in the SDLC mode.

Control Register 1

		_					
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
Wait Func- tion Enable	Tx Byte Count Mode Enable	Wait on Receive Trans- mitter	Rece Inter Mo	rupt	Condi- tion Affects Vector	Trans- mitter Interrupt Enable	Ext/ Status INT Enable
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
			Low	Byte			
	D ₆	D ₅	D ₄	03	D ₂	D ₁	D ₀
D ₇	P6	25	-4	-3	1 -2		-0

External/Status Interrupt Enable [D₀]

When this bit is set to one, the MPSCC issues an interrupt whenever any of the following conditions occur:

- Transition of the DCD, CTS or SYNC input pin
- Entering or leaving synchronous hunt phase, break detection or termination
- SDLC abort detection or termination
- Idle/CRC latch set (CRC being sent)
- After ending flag is sent in the SDLC mode

Transmitter Interrupt Enable [D₁]

When this bit is set to one, the MPSCC issues an interrupt when the following conditions occur:

- A character currently in the transmitter buffer is transferred to the shift register (transmitter buffer becomes empty), or
- The transmitter enters the idle phase and begins transmitting sync or flag characters.
- The Tx byte mode enable bit is set (D₆ of CR1 = 1). The 7201A will automatically issue a Tx interrupt or DMA request when the transmitter becomes enabled (D₃ of CR5 = 1).

Condition Affects Vector [D₂]

When this bit is set to zero, the fixed vector programmed in CR2B during MPSCC initialization is returned in an interrupt acknowledge sequence. When this bit is set to one, the vector is modified to reflect the condition that caused the interrupt. (Programmed in channel B for both channels).

Receiver Interrupt Mode [D₃ - D₄]

This field controls how the MPSCC interrupt/DMA logic handles the character received condition.

Receiver Interrupts/DMA Request Disabled [00]: The MPSCC does not issue an interrupt or a DMA request when a character has been received.

Interrupt/DMA on First Received Character Only [01]: In this mode the MPSCC issues an interrupt only for the first character received after an enable interrupt/DMA on first character command (CR0) has been given. If the channel is in a DMA mode, a DMA request is issued for each character received, including the first. In general, use this mode whenever the MPSCC is in a DMA or block transfer mode. This will signal the processor that the beginning of an incoming message has been received.

Interrupt [and Issue a DMA Request] on All Received Characters [10]: In this mode an interrupt (and DMA request if the DMA mode is selected) is issued whenever there is a character present in the receiver buffer. A parity error is considered a special receive condition.

Interrupt [and Issue a DMA Request] on All Received Characters [11]: This mode is the same as the one above, except that a parity error is not considered a special receive condition. The following are considered special receive conditions:

- Receive overrun error
- Asynchronous framing error
- Parity error (if specified)
- SDLC end of message (final flag received)

Wait on Receiver/Transmitter [D₅]

If the wait function is enabled for block mode transfers, setting this bit to zero causes the MPSCC to issue a wait (WAIT output goes low) when the processor attempts to write a character to the transmitter while the transmitter buffer is full. Setting this bit to one causes the MPSCC to issue a wait when the processor attempts to read a character from the receiver while the receiver buffer is empty.

Tx Byte Count Enable [D₆]

Each channel has a 16-bit Tx byte count register used for automatic transmit termination. When this bit is set to one, the next two consecutive command cycle writes will be to the byte count register. The first byte is loaded into the lower 8 bits and the second to the upper 8 bits of the byte count register. The byte count register holds the number of transfers to be performed by the transmitter. A byte counter is incremented each time a transfer is performed until the value of the byte counter is equal to the value in the byte count register. When equal, interrupts or DMA requests will be stopped until the byte count enable bit is issued and a new byte count is loaded into the byte count register. If a transmit underrun occurs in the SDLC mode, and the byte count is not equal to the byte count register, an abort sequence will be sent automatically.

Also, when using the Tx byte count mode, a transmit interrupt or DMA request will automatically become active after issuing the TX enable command to CR5.

The Tx byte count mode can be cleared by either a channel reset command or a hardware reset.

Wait Function Enable [D₇]

Setting this bit to one enables the wait function selected by D_5 of CR1.

Control Register 2 (Channel A)

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
Pin 10	Rx				Delocity	DMA	Mada
S <u>YNCB</u> / RTSB	INT Mask	Into	errupt Vec	tor	Priority		Mode lect

DMA Mode Select [D₀ - D₁]

Setting this field determines whether channel A or B is used in a DMA mode [data transfers are performed by a DMA controller], or in a non-DMA mode where transfers are performed by the processor in either a polled, interrupt, or block transfer mode. The functions of some MPSCC pins are also controlled by this field. See table 3.

Priority [D₂]

This bit selects the relative priorities of the various interrupt and DMA conditions according to the application requirements. See table 4.

Interrupt Vector Mode [D₃ - D₅]

This field determines how the MPSCC responds to an interrupt acknowledge sequence from the processor. See table 5.

Rx INT Mask [D₆]

This option is generally used in the DMA modes. Enabling this bit inhibits the interrupt from occuring when the interrupt/DMA request on first received character mode is selected. In other words, only a DMA request will be generated when the first character is received.

Table 3. DMA Mode Selection

	Channel								
D ₁	Do	A	В	11	26	29	30	31	32
0	0	Non-DMA	Non-DMA	WAITB	DTRB	PRI	PR0	DTRA	WAITA
0	1	DMA	Non-DMA	DRQTxA	HAI	PRI	PR0	HA0	DRQRxA
1	0	DMA	DMA	DRQTXA	HAI	DRQRxB	DRQTxB	HA0	DRQRxA
1	1	DMA	DMA	DRQTxA	DRTB	DRQRxB	DRQTxB	DTRA	DRQRxA

Table 4. DMA/Interrupt Priorities

			DMA Priority				
D ₂			•				
0	INT	INT		SRxA, RxA>TxA>SRxB, RxB>TxB>ExTA>ExTB			
1	INT	INT		SRxA, RxA>SRxB, RxB>TxA, TxB>ExTA>ExTB			
0	DMA	INT	RxA >Tx	SRxA, RxA>SRxB, RxB>ExTA>ExTB			
1	DMA	INT	RxA > TxA	SRxA, RxA>SRxB, RxB>TxB, ExTA>ExTB			
0	DMA	DMA	RxA > TxA > RxB > TxB	SRxA, RxA>SRxB, RxB>TxB>ExTB			
. 1	DMA	DMA	RxA > RxB > TxA > TxB	SRxA, RxA>SRxB, RxB>ExTA, ExTB	5		

Table 5. Interrupt Acknowledge Sequence Response

D ₅	DĄ	D ₃	Mode	Status Register 2B and Inter- rupt Vector Bits Affected When Condition Affects Vector is Enabled
0	0	0	Nonvectored	$D_4D_3D_2$
0	0	1	Nonvectored	$D_4D_3D_2$
0	1	0	Nonvectored	$D_2D_1D_0$
0	1	1	illegal	
1	0	0	8085 Master	$D_4D_3D_2$
1	0	1	8085 Slave	$D_4D_3D_2$
1	1	0	8086	$D_2D_1D_0$
1	1	1	8085/8259A Slave	D ₄ D ₃ D ₂

Pin 10 SYNCB/RTSB Select [D7]

Programming a zero into this bit selects RTSB as the function of pin 10. A one selects SYNCB as the function.

Control Register 2 (Channel B)

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
			Interrup	t Vector			

Interrupt Vector [D₀ - D₇]

When using the MPSCC in the vectored interrupt mode, the contents of this register are placed on the bus during the appropriate portion of the interrupt acknowledge sequence. Its value is modified if status affects vector is enabled. The value of SR2B can be read at anytime. This feature is useful in determining the cause of an interrupt when using the MPSCC in a nonvectored interrupt mode.

Control Register 3

D ₇	Đ ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
Receive		Auto	Enter Hunt	CRC	Address Search	Sync Char- acter Load	Re- ceiver
per Ch	aracter	Enables	Phase	Enable	Mode	Inhibit	Enable

Receiver Enable [D₀]

Setting this bit to one after the channel has been completely initialized allows the receiver to begin operation. This bit may be set to zero at any time to disable the receiver.

Sync Character Load Inhibit [D₁]

In the character synchronous modes, this bit inhibits the transfer of sync characters to the receiver buffer, thus performing a "sync-stripping" operation. When using the MPSCC's CRC checking ability, use this feature only to strip leading sync characters preceding a message, since the load inhibit does not exclude sync characters embedded in the message from the CRC calculation. Synchronous protocols using other types of block checking such as checksum or LRC are free to strip embedded sync characters.

Address Search Mode [D₂]

In the SDLC mode, setting this bit places the MPSCC in an address search mode. Character assembly does not begin until the 8-bit character (secondary address field) following the starting flag of a message matches either the address programmed into CR6 or the global address 11111111.

Receiver CRC Enable [D₃]

This bit enables and disables [1 = enable) the CRC checker in the character oriented protocol mode, allowing characters from the CRC calculation to be selectively included or excluded. The MPSCC has a one-character delay between the receiver shift register and the CRC checker so that the enabling or disabling takes affect with the last character transferred from the shift register to the receiver buffer. Therefore, there is one full character time in which to read the character and decide whether or not it should be included in the CRC calculation. In the SDLC mode, there is no 8-bit delay.

Enter Hunt Phase [D4]

Although the MPSCC receiver automatically enters the sync hunt phase after a reset, there are other times when reentry is appropriate. This may occur when synchronization has been lost or, in an SDLC mode, to ignore the current incoming message. A one in this bit position at any time after initialization causes the MPSCC to reenter the hunt phase.

Auto Enables [D₅]

Setting this bit to one causes the DCD and CTS inputs to act as enable inputs to the receiver and transmitter, respectively.

Number of Received Bits per Character [D₆ - D₇]

This field specifies the number of data bits assembled to make each character. The value may be changed while a character is being assembled and, if the change is made before the new number of bits has been reached, it affects that character. Otherwise, the new specifications take effect on the next character received. See table 6.

Control Register 4

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _O
Cloc	k Rate	Sync	Mode	Num of Sto per Syn	p Bits	Parity Even/ Odd	Parity Enable

Parity Enable [D₀]

Setting this bit to one adds an extra data bit containing parity information to each transmitted character. Each received character is expected to contain this extra bit, and the receiver parity checker is enabled.

Table 6. Received Bits per Character

D ₇	D ₆	Bits pe	r Charac	cter
0	0		5	
. 0	1		7	and the same
.1 .	0		6	
1	1	 	8	

Table 7. Stop Bits

D ₃	D ₂	Mode
0	0	Synchronous modes
0	1	Asynchronous 1 bit time (1 stop bit)
1	0	Asynchronous 11/2 bit times (11/2 stop bits)
1	1	Asynchronous 2 bit times (2 stop bits)

Parity Even/Odd [D₁]

Programming a zero into this bit when parity is enabled selects odd parity for the received character. Conversely, a one in this bit selects even parity generation and checking.

Number of Stop Bits per Sync Mode [D₂ - D₃]

This field specifies whether the channel is used in a synchronous (SDLC) or an asynchronous mode. In an asynchronous mode, this field also specifies the number of bit times used as the stop bit length by the transmitter. The receiver always checks for one stop bit. See table 7.

Sync Mode [D₄ - D₅]

When the stop bits/sync mode field is programmed for synchronous modes (D_2 , $D_3=00$), this field specifies the particular synchronous format to be used. This field is ignored in an asynchronous mode. See table 8.

Clock Rate [D₆ - D₇]

This field specifies the relationship between the transmitter and receiver clock inputs (TxC, RxC) and the actual data rates at TxD and RxD. When operating in a synchronous mode, a 1x clock rate must be specified. In asynchronous modes, any of the rates may be specified. However, with a 1x clock rate, the receiver cannot determine the center of the start bit. In this mode, the sampling (rising) edge of RxC must be externally synchronized with the data. See table 9.

Table 8. Synchronous Formats

Sync Mode 1 D ₅	Sync Mode 2 Mode D ₄			
0	0	8-bit internal synchronization character (monosync)		
0	1	16-bit internal synchronization character (bisync)		
1 1	0	SDLC		
1	1	External synchronization (SYNC pin becomes an input)		

Table 9. Clock Rates

Clock Rate 1 D ₇	Clock Rate 2 D ₆	Clock Rate
0	0	Clock Rate = 1x Data Rate
0	1	Clock Rate = 16x Data Rate
1	0	Clock Rate = 32x Data Rate
- 1	1	Clock Rate = 64x Data Rate

Control Register 5

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
	Number of Transmitted Bits		Send	Trans- mitter	CRC Poly- nomial		Trans- mitter CRC
DTR	per Ch		Break	Enable	Select	RTS	Enable

Transmitter CRC Enable [D₀]

A one or a zero enables or disables (respectively) the CRC generator calculation. The enable or disable does not take effect until the next character is transferred from the transmitter buffer to the shift register, thus allowing specific characters to be included or excluded from the CRC calculation. By setting or resetting this bit just before loading the next character, it and subsequent characters are included or excluded from the calculation. If this bit is zero when the transmitter becomes empty, the MPSCC goes to the idle phase regardless of the state of the idle/CRC latch.

RTS [D₁]

In synchronous and SDLC modes, setting this bit to one causes the RTS pin to go low, while a zero causes it to go high. In an asynchronous mode, setting this bit to zero causes the RTS pin to go high when the transmitter is completely empty. This feature facilitates programming the MPSCC for use with asynchronous modems.

CRC Polynomial Select [D₂]

This bit selects the polynomial used by the transmitter and receiver for CRC generation and checking. A one selects the CRC-16 polynomial ($X^{16} + X^{15} + X^2 + 1$). A zero selects the CRC-CCITT polynomial ($X^{16} + X^{12} + X^5 + 1$). In an SDLC mode CRC-CCITT must be selected. Either polynomial may be used in other synchronous modes.

Transmitter Enable [D₃]

After a reset, the transmitted data output (TxD) is held high (marking) and the transmitter is disabled until this bit is set.

In an asynchronous mode TxD remains high until data is loaded for transmission.

When the transmitter is disabled in an asynchronous mode, any character currently being sent is completed before TxD returns to the marking state.

If the transmitter is disabled during the data phase in a synchronous mode, the current character is sent. TxD then goes high (marking). In an SDLC mode, the current character is sent, but the following marking

line is zero-inserted. That is, the line goes low for one bit time out of every five.

Never disable the transmitter during the SDLC data phase unless a reset follows immediately. In either case, any character in the buffer register is held.

Disabling the transmitter during the CRC phase causes the remainder of the CRC character to be bitsubstituted with the sync (or flag). The total number of bits transmitted is correct and TxD goes high after they are sent.

If the transmitter is disabled during the idle phase, the remainder of the sync (flag) character is sent. TxD then goes high.

Send Break [D₄]

Setting this bit to one immediately forces the transmitter output (TxD) low (spacing). This function overrides the normal transmitter output and destroys any data being transmitted, although the transmitter is still in operation. Resetting this bit releases the transmitter output.

Transmitted Bits per Character [D₅ - D₆]

This field controls the number of data bits transmitted in each character. The number of bits per character may be changed by rewriting this field just before the first character is loaded. See table 10.

Normally each character is sent to the MPSCC rightjustified and the unused bits are ignored. However, when sending five bits or less, the data should be formatted as shown below to inform the MPSCC of the precise number of bits to be sent. See table 11.

Table 10. Transmitted Bits per Character

Transmitted Bits per Character 1 D ₆	Transmitted Bits per Character D ₅	Bits per Character
0	0	5 or less (see below)
0	1	7
1	0	6
1	1	8

Table 11. Transmitted Bits per Character for 5 Characters or Less

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	Number of Bits per Charater
1	1	-1	1	0	0	0	D ₀	1
1	1	1	0	0	0	D ₁	D ₀	2
. 1	1	0	0	0	D ₂	D ₁	D ₀	3
. 1	0	0	0	D ₃	D ₂	D ₁	D ₀	4
0	0	0	D ₄	D ₃	D_2	D_1	D ₀	5

DTR [Data Terminal Ready] [D₇]

When this bit is one, the DTR output is low factive]. When this bit is zero, DTR is high.

Control Register 6

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
			Sync I	Byte 1			

Sync Byte 1 $[D_0 \cdot D_7]$

Sync byte 1 is used in the following modes:

Monosync

8-bit sync character transmitted

during the idle phase

Bisync

Least significant (first) 8 bits of the

16-bit transmit and receive sync

character

External Sync Sync character transmitted during the

idle phase

SDLC

Secondary address value matched to secondary address field of the SDLC frame when the MPSCC is in the ad-

dress search mode

Control Register 7

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
			Sync E	Byte 2	•		

Sync Byte 2 [D₀ · D₇]

Sync byte 2 is used in the following modes:

Monosync

8-bit sync character matched by

the receiver

Bisync

Most significant (second) 8 bits of the 16-bit transmit and receive sync

characters

SDLC

The flag character 01111110 must

be programmed into control register 7 for flag matching by the

MPSCC receiver

Status Register 0

D ₇	D ₆	D ₅	DĄ	D ₃	D ₂	D ₁	D _O
Break/ Abort	idle/ CRC	стѕ	Sync Status	DCD	Tx Buffer Empty	INT Pend- ing	Rec'd Char Avail- able

Received Character Available [D₀]

When this bit is set, it indicates that one or more characters in the receiver buffer are available for the processor to read. Once the processor has read all the available characters, the MPSCC resets this bit until a new character is received.

Interrupt Pending [D₁ · Channel A Only]

The interrupt pending bit is used with the interrupt vector register (status register 2) to make it easier to determine the MPSCC's interrupt status. This is useful in a nonvectored interrupt mode where the processor must poll each device to determine the interrupt source. In this mode, interrupt pending is set when status register 2B is read, the PRI input is active (low), and the MPSCC requests interrupt service.

It is not necessary to read the status registers of both channels to determine if an interrupt is pending. If the status affects vector is enabled and the interrupt pending is set, the vector read from SR2 contains valid condition information.

In a vectored interrupt mode, interrupt pending is set during the interrupt acknowledge cycle (on the leading edge of the second INTAK pulse) when the MPSCC is the highest priority device requesting interrupt service (PRI is active). In either mode, if there are no other pending interrupt requests, interrupt pending is reset when the end of the interrupt command is issued.

Transmitter Buffer Empty [D₂]

This bit is set whenever the transmitter buffer is empty - except during the transmission of CRC. The MPSCC uses the buffer to facilitate this function. After a reset, the buffer is considered empty and transmit buffer empty is set.

External/Status Flags [D₃ - D₇]

The following status bits reflect the state of the various conditions that cause an external/status interrupt. The MPSCC latches all external/status bits whenever a change occurs that would cause an external/status interrupt, regardless of whether this interrupt is enabled. This allows transient status changes on these lines to be latched more quickly.

When operating the MPSCC in an interrupt-driven mode for external/status interrupts, read status register 0 when this interrupt occurs and issue a resetexternal/status interrupt command to reenable the interrupt and the latches. To poll these bits without interrupts, issue the reset external/status interrupt command to first update the status to reflect the current values.

DCD [D₃]: This bit reflects the inverted state of the DCD input. When DCD is low the DCD status bit is high. Any transition on this bit causes an external/status interrupt request.

Sync Status [D₄]: The meaning of this bit depends on the operating mode of the MPSCC.

Asynchronous <u>mode</u>: Sync status <u>reflects</u> the inverted state of the <u>SYNC</u> input. When <u>SYNC</u> is low, sync status is high. Any transition on this bit causes an external/status interrupt request.

External synchronization mode: Sync status operates in the same manner as in asynchronous mode. The MPSCC's receiver synchronization logic is also tied to the sync status bit in an external synchronization mode. A low-to-high transition (SYNC input going low) informs the receiver that synchronization has started and character assembly begins.

A low-to-high transition on the SYNC input indicates that synchronization has been lost. The sync status becomes zero and an external/status is generated. The receiver remains in the receive data phase until the enter hunt phase bit in control register 3 is set.

Monosync, bisync, SDLC modes: In these modes, sync status indicates whether the MPSCC receiver is in the sync hunt or receive data phase of operation. A zero indicates that the MPSCC is in the receive data phase, and a one indicates that the MPSCC is in the sync hunt phase (as in after a reset or when the enter sync hunt bit sets to 1). As in the other modes, a transition on this bit causes an external/status interrupt. Note that entering a sync hunt phase (when programmed) or a reset causes an external/status interrupt request which may be cleared immediately with a reset external/status interrupt command.

CTS [D₅]: This bit reflects the inverted state of the CTS input. When CTS is low, the CTS status bit is high. Any transition on this bit causes an external/ status interrupt request.

Idle/CRC [D₆] [Tx Underrun/EOM]: This bit indicates the state of the idle/CRC latch used in the synchronous and SDLC modes. After a hardware reset, this bit is set to one, indicating that the transmitter is completely empty. When the MPSCC enters idle phase, it automatically transmits sync or flag characters.

In the SDLC mode, the MPSCC automatically resets this latch after the first byte of a frame is written to the Tx buffer.

When the transmitter is completely empty, the MPSCC sends the 16-bit CRC character and sets the latch again. An external/status interrupt is issued when the latch is set, indicating that CRC is being sent. No interrupt is issued when the latch is reset.

Break/Abort [D₇]: In the asynchronous mode, this bit indicates the detection of a break sequence (a null character plus framing error that occurs when the RxD input is held low, spacing, for more than one character time). Break/abort is reset when RxD returns high (marking).

In the SDLC mode, break/abort indicates the detection of an abort sequence when seven or more ones are received in sequence. It is reset when a zero is received.

Any transition of the break/abort bit causes an external/status interrupt.

Status Register 1

I	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
	End of SDLC Frame	CRC Framing Error	Over- run Error	Parity Error	SDLC	Residue	Code	All Sent

All Sent [Do]

This bit is set when the transmitter is empty and reset when a character is present in the transmitter buffer or shift register. This feature simplifies the mode control software routines. In the bit synchronous mode, this bit sets when the ending flag pattern is sent.

SDLC Residue Code [D₁ · D₃]

Since the data portion of an SDLC message can consist of any number of bits and not necessarily an integral number of characters, the MPSCC has special logic to determine and report when the end of frame flag has been received (that is, the boundary between the data field and the CRC character in the last few data characters that were just read).

When the end of frame condition is indicated (D_7 of status register 1 = 1) and there is a special receive condition interrupt (if enabled), the last bits of the CRC character are in the receiver buffer. The residue code for the frame is valid in the status register 1 byte associated with that data character. (SR1 tracks the received data in its own buffer).

The meaning of the residue code depends upon the number of bits per character specified for the receiver. The previous character refers to the last character read before the end of frame, and so on. See table 12.

Table 12. Residue Codes

8 Bits per Character								
D ₃	D ₂	D ₁	Previous Character	2nd Previous Character				
1	0	0	CCCCCCCC	CCCCCDDD				
0	1	0	CCCCCCCC	CCCCDDDD				
1.	1 .	0	CCCCCCCC	CCCDDDDD				
0	0	1	CCCCCCCC	$\tt CCDDDDDD$				
1	0	1	CCCCCCCC	CDDDDDDD				
0	1	1	C C C C C C C C*	D D D D D D D*				
1	1	1	CCCCCCCD	D D D D D D D				
0	0	0	CCCCCCDD	DDDDDDDD				

			/ Bits per Unaracter			
D ₃	D ₂	D ₁	Previous Character	2nd Previous Character		
1	0	0	CCCCCCC	CCCCCDD		
0	1	0	CCCCCCC	CCCCDDD		
1	1	0	CCCCCCC	CCCDDDD		
0	0	1	CCCCCCC	CCDDDDD		
1	0	1	CCCCCCC	CDDDDDD		
0	1	1	C C C C C C C*	D D D D D D*		
0	0	0	CCCCCCD	DDDDDDD		

o bits per citatacter				
D ₃	D ₂	D ₁	Previous Character	2nd Previous
1	0	0	CCCCCC	CCCCCD
0	1	0	CCCCCC	CCCCCD
1	1	0	CCCCCC	CCCDDD
0 -	0	1	CCCCCC	CCDDDD
1	0	1	CCCCCC	CDDDDD
0	0	0	CCCCCC	DDDDDD
			Dite nor Character	

6 Rite nor Character

		5 Bits per Character		
D ₃	D ₂	D ₁	Previous Character	2nd Previous
1	0	0	C C C C C*	D D D D D*
0	1	. 0	CCCCD	DDDDD
1	1	0	CCCDD	DDDDD
0	0	1	CCDDD	DDDDD
0	0	0	CDDDD	DDDDD

Notes: C = CRC bit D = Valid data * = No residue

Special Receive Condition Flags

The status bits described below—parity error (if parity as a special receive condition is enabled), receiver overrun error, CRC/framing error, and end of SDLC frame—all represent special receive conditions.

When any of these conditions occur and interrupts are enabled, the MPSCC issues an interrupt request. In addition, if a condition affect vector mode is enabled, the vector generated (and the contents of SR2B for nonvectored interrupts) is different from that of a received character available condition. Therefore, it is not necessary to analyze SR1 with each character to determine if an error has occurred.

Also, the parity error and receiver overrun error flags are latched. That is, once one of these errors occurs, the flag remains set for all subsequent characters until reset by the error reset command. Therefore read SR1 only at the end of a message to determine if either of these errors occurred anywhere in the message. The other flags are not latched and follow each character available in the receiver buffer.

Parity Error [D₄]: This bit is set and latched when parity is enabled and the received parity bit does not match the sense (odd or even) calculated from the data bits.

Receiver Overrun Error $[D_5]$: This error occurs and is latched when the receiver buffer already contains three characters and a fourth character is completely received, overwriting the last character in the buffer.

CRC/Framing Error [D₆]: In the asynchronous mode a framing error is flagged (but not latched) when no stop bit is detected at the end of a character (RxD is low one bit time after the center of the last data or parity bit). When this condition occurs, the MPSCC waits an additional one-half bit time before sampling again so that the framing error is not interpreted as a new start bit.

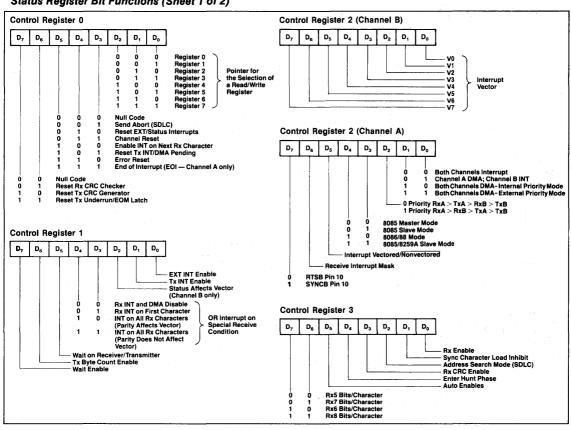
In the synchronous and SDLC modes, this bit indicates the result of the comparison between the current CRC result and the appropriate check value. It is usually set to one, since a message rarely indicates a correct CRC result until correctly completed with the CRC check character. Note that a CRC error does not result in a special receive condition interrupt.

End of SDLC Frame [EOF] [D7]: This status bit is used only in the bit synchronous mode to indicate that the end of frame flag has been received and that the CRC error flag and residue code are valid. This flag can be reset at any time by issuing an error reset command. The MPSCC also automatically resets this bit when the first character of the next message is sent.

Status Register 2B

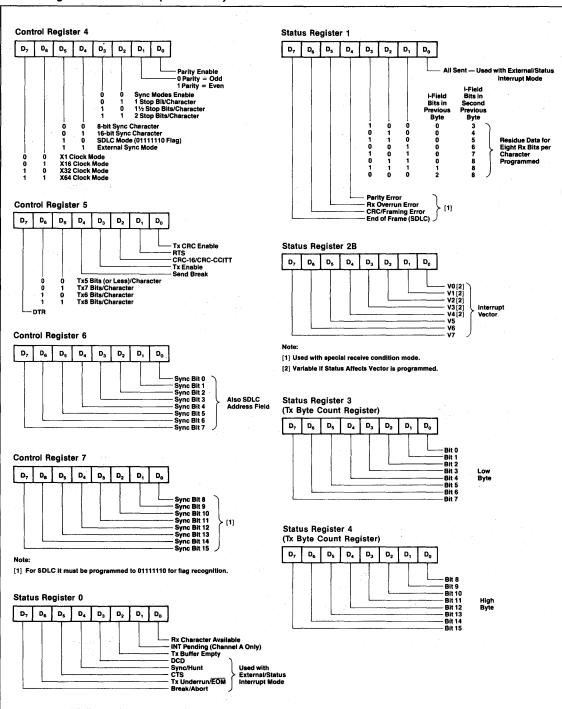
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
			Interrup	t Vector			

Interrupt Vector [D₀ - D₇ - Channel B Only]


Reading status register 2B returns the interrupt vector that is programmed into control register 2B. If a condition affects vector mode is enabled, the value of the vector is modified as shown in table 13.

Code 111 can mean either channel A special receive condition or no interrupt pending. Examine the interrupt pending bit (D₁ of status register 0, channel A), to distinguish which it means. In a nonvectored interrupt mode, the vector register must be read first for the interrupt pending to be valid.

Condition Affects Vector Modifications Table 13.


Interrupt Pending	8085 Modes	D ₄	D ₃	D ₂	<u></u>
(SRO, D ₁ Channel A)	8086 Modes	D ₂	D ₁	Do	Condition
0		1	1	1	No interrupt pending
1		0	0	0	Channel B transmitter buffer empty
1		0.	0	1	Channel B external/status Change
1		0	1	0	Channel B received character available
1		0	1	1	Channel B special receive condition
1		1	0	0	Channel A transmitter buffer empty
1		1	0	1	Channel A external/status change
1		1	1	0	Channel A received Character available
1		1	1	1	Channel A special receive condition

Status Register Bit Functions (Sheet 1 of 2)

Status Register Bit Functions (Sheet 2 of 2)

µPD72001 CMOS MULTIPROTOCOL SERIAL COMMUNICATIONS CONTROLLER

PRELIMINARY INFORMATION

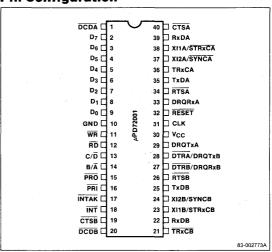
Description

The μ PD72001 is an advanced multiprotocol serial controller (AMPSC) designed to meet a wide variety of communications needs. This 40-pin device contains two independent full-duplex channels which can be configured to transmit and receive data in either asynchronous character-oriented (BISYNC) or bit-oriented (SDLC/HDLC) protocols, including CRC generation and checking-in synchronous modes.

The AMPSC can handle several modes of interrupt operation including vectored and non-vectored modes. Separate DMA requests are available for the transmitter and receiver on each channel, allowing operation at speeds up to 1.6 Mb/s in synchronous modes. The AMPSC is easily interfaced to most microprocessors with a minimum of logic.

The AMPSC is an upgraded CMOS version of the μ PD7201A, adding internal baud rate generators, a digital phase lock loop (DPLL), and a crystal oscillator. The μ PD72001 also adds the capability of SDLC loop operation. These added features further simplify the design requirements while maintaining the flexible architecture of the μ PD7201A.

Features


□ CMOS technology

 \square Upgraded version of the μ PD7201A ☐ Multiprotocol: Asynchronous, character-oriented (BISYNC) Bit-oriented (SDLC/HDLC) ☐ Two independent full-duplex channels □ Versatile host-system interface: Software polling — Wait - Interrupt --- DMA ☐ DC to 1.6-Mb/s data rate ☐ Modem control signals □ NRZ, NRZI, and FM encoding/decoding ☐ Digital phase lock loop ☐ Two baud rate generators per channel (receive and transmit) ☐ Crystal oscillator ☐ Test loop mode ☐ SDLC loop mode ☐ Mark idle detection ☐ Short frame detection ☐ Single +5 V power supply

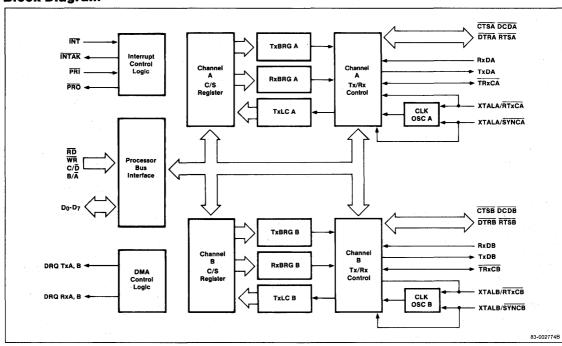
Ordering Information

Part No.	Package Type
μPD72001C	40-pin plastic DIP
μPD72001L	44-pin PLCC (Available 4Q86)

Pin Configuration

Pin Identification

No.	Symbol	Function
1	DCDA	Data carrier detect input for channel A
2-9	D ₇ -D ₀	System data bus
10	GND	System ground
11	WR	Write control input from host computer
12	RD	Read control input from host computer
13	C/D	Control/data input select from host computer
14	B/A	Channel B or channel A select input from host computer
15	PRO	Priority output, interrupt daisy chain control
16	PRI	Priority input, interrupt daisy chain control
17	INTAK	Interrupt acknowledge input from host computer
18	ĪNT	Interrupt request output to host computer



Pin Identification (cont)

No.	Symbol	Function
19	CTSB	Clear to send input for channel B
20	DCDB	Data carrier detect input for channel B
21	TRxCB	Transmit/receive clock input/output for channel B
22	RxDB	Receive data input for channel B
23 24	XI1B/STRxCB XI2B/SYNCB	Crystal inputs for channel B; or synchronization and source of transmit/receive clock for channel B. Function depends on control register 15.
25	TxDB	Transmit data output for channel B
26	RTSB	Request to send output for channel B
27	DTRB/ DRQRxB	Data terminal ready output for channel B or DMA request output for receive channel B; determined by control register 2A.
28	DTRA/ DRQTxB	Data terminal ready output for channel A or DMA request output for transmit channel B; determined by control register 2A.

No.	Symbol	Function
29	DRQTxA	DMA request for transmit channel A.
30	V _{CC}	+5 V (typical)
31	CLK	System clock input from host computer
32.	RESET	System reset input from host computer
33	DRQRxA -	DMA request output for receive channel A
34	RTSA	Request-to-send output for channel A
35	TxDA	Transmit data output for channel A
36	TRxCA	Transmit/receive clock input for channel A
37 38	XI2A/ <u>SYNCA</u> XI1A/STRxCA	Crystal inputs for channel A; or synchronization input and source of transmit/receive clock for channel A. Functions depend on control register 15.
39	RxDA	Receive data input for channel A
40	CTSA	Clear-to-send input for channel A

Block Diagram

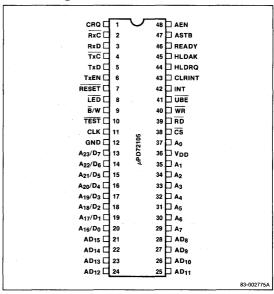
PRELIMINARY INFORMATION

Description

The μ PD72105 provides local area network (LAN) communications implementing the OMNINET® I and II protocols in a single CMOS 48-pin DIP. The device can transmit data at a rate of up to 4 Mb/s using RS-422 bus transmitters and receivers. The controller responds to 17 OMNINET commands using the on-chip CPU.

The chip also contains a DMA controller with four independent channels for use with an 8- or 16-bit data bus, and can address a 16M-byte address space. The transmit section contains a 12-byte FIFO and the receiver contains a 20-byte FIFO to accommodate the high data rate. The OMNINET controller provides network diagnostics capability as well as CRC generation and checking using a 16- or 32-bit CRC for data reliability.

The μ PD72105 provides a single chip solution to LAN implementation. The excellent memory addressing and data handling capability of this controller can significantly reduce the overhead on the system CPU. OMNINET is a registered trademark of Corvus Systems.


Features

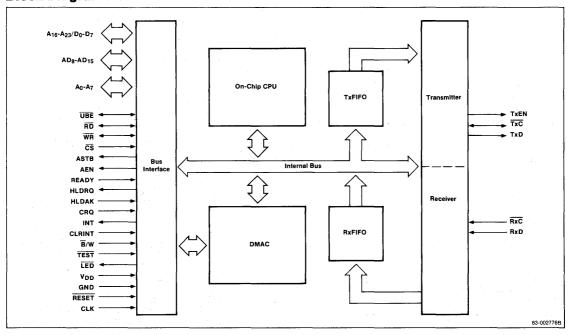
- $\hfill \square$ Fully implements OMNINET I and II protocols
- ☐ Data rates up to 4 Mbps
- ☐ 17 OMNINET commands☐ On-chip CPU
- ☐ On-chip DMAC with four independent channels
- ☐ 8- or 16-bit data bus
- ☐ 16M-byte (2²⁴) address space for dual-ported local or global memory
- ☐ 12-byte transmitter FIFO
- ☐ 20-byte receiver FIFO
- □ 16- or 32-bit CRC
- ☐ On-chip 40-MHz DPLL
- □ Network diagnostics
- 8-MHz system clock input, independent of serial clock
- □ CMOS technology

Ordering Information

Part No.	Package Type
μPD72105C	48-pin plastic DIP
μPD72105L	52-pin PLCC (Available 4Q86)

Pin Configuration

Pin Identification


No.	Symbol	Function
1	CRQ	Command request input
2	RxC	Receive clock input
3	RxD	Receive data input
4	TxC	Transmit clock input/output
5	TxD	Transmit data output
6	TxEN	Transmit enable output
7	RESET	System reset from host computer
8	LED	LED drive output, general purpose output
9	B/W	Byte/word mode select input
10	TEST	Test input, must be held high for normal operation
11	CLK	System clock input
12	GND	System ground
13-20	A ₂₃ /D ₇ to A ₁₆ /D ₀	Multiplexed address bits 16-23 and data bus bits 0-7. These signals are bidirectional.
21-28	AD ₁₅ /AD ₈	Multiplexed address bits 8-15 and data bus bits 8-15. These signals are bidirectional.
29-35	A ₇ -A ₁	Address bits 1 to 7; bit 1 is an input/output, bits 2-7 are output only.

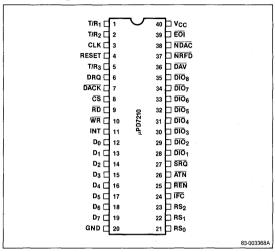
Pin Identification (cont)

No.	Symbol	Function
36	V _{DD}	+5 V (typical)
37	A ₀	Address bit 0, input/output
38	CS	Chip select input from host computer; input
39	RD	Read control signal from host computer; input
40	WR	Write control signal from host computer; input
41	UBE	Upper byte enable input/output
42	INT	Interrupt request output
43	CLRINT	Clear interrupt request input
44	HLDRQ	Hold request output
45	HLDAK	Hold acknowledge input
46	READY	Ready input
47	ASTB	Address strobe output
48	AEN	Address enable output

Block Diagram

Description

The μ PD7210 is an intelligent, general purpose interface bus (GPIB) controller designed to meet all of the functional requirements for talker, listener, and controller (TLC) as specified by IEEE Standard 488-1978. Connected between a processor bus and the GPIB, the controller provides high-level management of the GPIB to unburden the processor and to simplify both hardware and software design. The μ PD7210 is fully compatible with most processor architectures and requires only the addition of bus driver/receiver components to implement any type of GPIB.


Features

- □ All-functional interface capability meeting IEEE Standard 488-1978
 - -SH1 (source handshake)
 - -AH1 (acceptor handshake)
 - -L3 or LE3 (listener or extended listener)
 - -T5 or TE5 (talker or extended talker)
 - —SR1 (service request)
 - -RL1 (remote local)
 - —PP1 or PP2 (parallel poll, remote or local configuration)
 - -DC1 (device clear)
 - -DT1 (device trigger)
 - -C1-C5 (controller, all functions)
- ☐ Programmable data transfer rate
- $\hfill\Box$ 16 MPU accessible registers: 8 read and 8 write
- □ 2 address registers
 - Detection of MTA, MLA, MSA (my talk/my listen/my secondary addresses)
 - —2 device addresses
- ☐ EOS message automatic detection
- Command (IEEE Standard 488-1978) automatic processing and undefined command read capability
- □ DMA capability
- ☐ Programmable bus transceiver I/O specification (works with T.I./Motorola/Intel)
- ☐ 1-MHz to 8-MHz clock range
- ☐ TTL-compatible
- □ NMOS
- \square +5 V single power supply
- ☐ 8080/85/86-compatible

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD7210C	40-pin plastic DIP	8 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function
1, 2, 5	T/R ₁ -T/R ₃	Transmit/receive control outputs
3	CLK	Clock input
4	RESET	Reset input
6	DRQ	DMA request output
7	DACK	DMA acknowledge input
8	CS	Chip select input
9	RD	Read input
10	WR	Write input
11	INT	Interrupt request output
12-19	D ₀ -D ₇	Bidirectional data bus
20	GND	Ground
21-23	RS ₀ -RS ₂	Register select input
24	IFC	Interface clear I/O
25	REN	Remote enable I/O
26	ĀTN	Attention control line 1/0
27	SRQ	Service request I/0
28-35	DIO ₁ -DIO ₈	8-bit bidirectional data bus
36	DAV	Data valid I/O
37	NRFD	Ready for data I/O
38	NDAC	Data accepted I/O
39	EOI	End or identify I/O
40	V _{CC}	+5 V power supply

Pin Functions

T/R₁-T/R₃ [Transmit/Receive Control]

This is the input/output control signal for the GPIB transceivers. The values of TRM1 and TRM0 of the address mode register determine the functions of T/R_2 and T/R_3 .

CLK [Clock]

This 1-MHz to 8-MHz reference clock generates the state change prohibit times T_1 , T_6 , T_7 , and T_9 specified in IEEE Standard 488-1978.

RESET

When high, the RESET signal places the μ PD7210 in an idle state.

DRQ [DMA Request]

DRQ becomes low on input of the DMA acknowledge signal DACK.

DACK [DMA Acknowledge]

This signal connects the computer system data bus to the data register of the μ PD7210.

CS [Chip Select]

The chip select input enables access to the register selected by the read or write operation (RS₀-RS₂).

RD [Read]

The read input places the contents of the read register specified by RS₀-RS₂ on the computer bus (D₀-D₇).

WR [Write]

This input writes data on D₀-D₇ into the write register specified by RS₀-RS₂.

INT, INT [Interrupt Request]

This output is active high/low. It becomes active due to any one of 13 internal interrupt factors (unmasked). Its active state is software configurable, and it is active high on chip reset.

D₀-D₇ [Data Bus]

The 8-bit bidirectional data bus interfaces to the computer system.

GND [Ground]

This is the ground.

RS₀-RS₂ [Register Select]

These lines select one of eight read (write) registers during a read (write) operation.

IFC [Interface Clear]

This bidirectional control line is used for clearing the interface functions.

REN [Remote Enable]

This bidirectional control line is used to select remote or local control of the devices.

ATN [Attention]

This bidirectional control line indicates whether data on the DIO lines is an interface message or a device-dependent message.

SRQ [Service Request]

This bidirectional control line is used to request service from the controller.

DIO₁-DIO₈ [Data Input/Output]

This 8-bit bidirectional bus transfers messages on the GPIB.

DAV [Data Valid]

This handshake line indicates that data on the DIO line is valid.

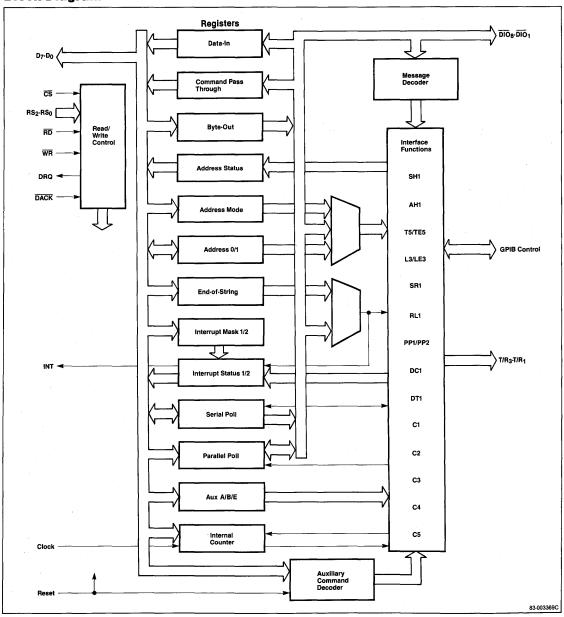
NRFD [Ready for Data]

This handshake line indicates that the device is ready for data.

NDAC [Data Accepted]

This handshake line indicates the completion of message reception.

EOI [End or Identify]


This control line is used to indicate the end of a multiple byte transfer sequence or to execute parallel polling in conjunction with \overline{ATN} .

V_{CC} [Power Supply]

+5 V power supply.

Block Diagram

Absolute Maximum Ratings

 $T_A = +25$ °C

Supply voltage, V _{CC}	-0.5 to +7.0 V
Input voltage, V _I	-0.5 to +7.0 V
Output voltage, V ₀	-0.5 to +7.0 V
Operating temperature, T _{OPR}	0 to +70°C
Storage temperature, T _{STG}	-65 to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_{\mbox{\scriptsize A}}=0$ to +70 °C; $V_{\mbox{\scriptsize CC}}=5$ V $\pm 10\%$

·			Limits	3		Test
Parameter ,	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	V _{IL}	-0.5		+0.8	٧	
Input high voltage	V _{IH}	+2.0		V _{CC} +0.5	٧	
Low-level output voltage	V _{OL}			+0.45	٧	I _{OL} = 2 mA (4 mA: T/R ₁ pin)
High-level output voltage (except INT)	V _{OH1}	+2.4			٧	$I_{OH} = -400 \mu\text{A}$
High-level output voltage	V _{0H2}	+2.4			٧	$I_{0H} = -400 \mu A$
(INT)		+3.5				$I_{ m OH}=-50~\mu{ m A}$
Input leakage current	I _{IL}	-10		+10	μΑ	$V_{I} = 0 V to V_{CC}$
Output leakage current	l _{OL}	-10		+10	μΑ	$V_0 = 0.45 \text{ V to}$ V_{CC}
Supply current	Icc			+180	mA	

Capacitance

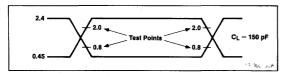
 $T_A = +25$ °C; $V_{CC} = GND = 0$ V

		Limits				Test	
Parameter	Symbol	Min Ty		Max	Unit		
Input capacitance	CIN		-	10	pF	f = 1 MHz	
Output capacitance	C _{OUT}		-	15	pF	All pins except pin under test tied to ac ground.	
I/O capacitance	C _{I/O}			20	pF	-	

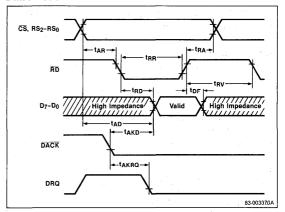
AC Characteristics

 $T_A = 0 \text{ to } +70 \text{ °C}; V_{CC} = 5 \text{ V } \pm 10\%$

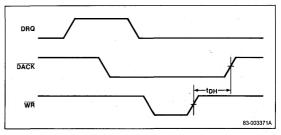
	Limits					Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
<u>EOI↑ → DIO</u>	t _{EODI}			250	ns	PPSS → PPAS, ATN = true	
$\overline{EOI} \rightarrow T/R_1^{\dagger}$	t _{EOT11}			155	ns	PPSS → PPAS, ATN = true	
$\overline{EOI} \rightarrow T/R_1 \downarrow$	t _{EOT12}			200	ns	PPAS → PPSS, ATN = false	
$\overline{ATN}\downarrow \longrightarrow \overline{NDAC}\downarrow$	t _{ATND}			155	ns	AIDS → ANRS, LIDS	
$\overline{ATN}\downarrow \longrightarrow T/R_1\downarrow$	t _{ATT1}			155	ns	TACS + SPAS → TADS, CIDS	
$\overline{ATN}\downarrow \rightarrow T/R_2\downarrow$	t _{ATT2}			200	ns	TACS + SPAS → TADS, CIDS	
DAV↓ → DRQ	tdvrq		,	600	ns	ACRS → ACDS, LACS	
DAV↓ → NRFD↓	t _{DVNR1}			350	ns	ACRS → ACDS	
DAV↓ → NDAC↑	t _{DVND1}			650	ns	ACRS → ACDS → AWNS	
$\overline{\text{DAV}}\uparrow \rightarrow \overline{\text{NDAC}}\downarrow$	t _{DVND2}			350	ns	AWNS → ANRS	
DAV1 → NRFD1	t _{DVNR2}			350	ns	AWNS → ACRS	
RD↓ → NRFD1	t _{RNR}			500	ns	ANRS → ACRS	
						LACS, DI register selected	
NDAC↑ → DRQ↑	t _{NDRQ}			400	ns	STRS → SWNS → SGNS, TACS	
NDAC↑ → DAV↑	^t NDDV			350	ns	STRS → SWNS → SGNS	
WR† → DIO	t _{WDI}	-		250	ns	SGNS → SDYS, B0 register selected	
NRFD↑ → DAV↓	t _{NRDV}			350	ns	$SDYS \rightarrow STRS,$ $T_1 = true$	
$\overline{WR}\uparrow \rightarrow \overline{DAV}\downarrow$	twpy			830 + t _{SYNC}	ns	SGNS → SDYS → STRS; BO	
						register selected; RFD = true; N _F = fc = 8 MHz; T ₁ (high speed)	
TRIG pulse width	tTRIG	50			ns	/	
	11,,,4						

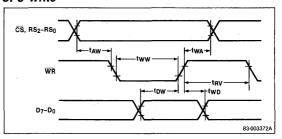


AC Characteristics (cont)


			Limit	3		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Address setup	t _{AR}	85			ns	RS ₀ to RS ₂	
to RD		0			ns	CS	
Address hold from RD	t _{RA}	0			ns		
RD pulse width	t _{RR}	170			ns		
Data delay from address	t _{AD}			250	ns		
Data delay from RD↓	t _{RD}			150	ns		
Output float delay from RD1	t _{DF}	0		80	ns		
RD recovery time	t _{RV}	250			ns		
Address setup to WR	t _{AW}	0			ns		
Address hold from WR	twA	O			ns		
WR pulse width	t _{WW}	170			ns		
Data setup to WR	t _{DW}	150	-		ns		
Data hold from WR	t _{WD}	. 0			ns		
WR recovery time	t _{RV}	250			ns		
DRQ↓ delay from selected DACK	t _{AKRQ}			130	ns		
Data delay from DACK	t _{AKD}			200	ns		
DACK hold time from WR1	t _{DH}	200		* .	ns	r	

Timing Waveforms


Test Waveform


DMA Read

DMA Write

CPU Write

History

The IEEE Standard 488 describes a "Standard Digital Interface for Programmable Instrumentation" which, since its introduction in 1975, has become the most popular means of interconnecting instruments and controllers in laboratory, automatic test, and even industrial applications. Refined over several years, the 488-1978 Standard, also known as the General Purpose Interface Bus (GPIB), is a highly sophisticated standard providing a high degree of flexibility to meet virtually all instrumentation requirements. The μ PD7210 implements all of the functions that are required to interface to the GPIB. While it is beyond the scope of this document to provide a complete explanation of the IEEE 488 Standard, a basic description follows:

The GPIB interconnects up to 15 devices over a common set of data control lines. Three types of devices are defined by the standard: talker, listener, and controller, although some devices may combine functions such as talker/listener or talker/controller.

Data on the GPIB is transferred in a bit-parallel, byte-serial fashion over eight data I/O lines $(\overline{DIO}_1-\overline{DIO}_8)$. A three-wire handshake is used to ensure synchronization of transmission and reception. In order to permit more than one device to receive data at the same time, these control lines are "open collector" so that the slowest device controls the data rate. A number of other control lines perform a variety of functions such as device addressing, interrupt generation, and so forth.

The μ PD7210 implements all functional aspects of talker, listener, and controller functions as defined by the 488-1978 Standard on a single chip.

General

The μ PD7210 is an intelligent controller designed to provide high-level protocol management of the GPIB, freeing the host processor for other tasks. Control of the μ PD7210 is accomplished via 16 internal registers. Data may be transferred either under program control or via DMA using the μ PD7210's DMA control facilities to further reduce processor overhead. The processor interface of the μ PD7210 is general in nature and may be readily interfaced to most processor lines.

In addition to providing all control and data lines necessary for a complete GPIB implementation, the μ PD7210 also provides a unique set of bus transceiver controls permitting a variety of transceiver configurations for maximum flexibility.

Internal Registers

The μ PD7210 has eight read registers (0R-7R) and eight write registers (0W-7W). The register number is selected via the RS₂, RS₁, and RS₀ lines; read or write is selected via WR, RD, and CS.

Register Addressing

	-	Addressing					
Register		RS ₂	RS ₁	RSO	WR	RD	CS
Data-In	0R	0	0	0	1	0	0
Interrupt Status 1	1R	0	0	1	1	0	0
Interrupt Status 2	2R	0	1	0	1	0	0
Serial Poll Status	3R	0	1	1	1	0	0
Address Status	4R	1	0	0	1 -	0	0
Command Pass Through	5R	1	0	1	1	0	0
Address 0	6R	- 1	1	0	1	0	0
Address 1	7R	1	1	1	1	0	0
Byte Out	0W	0	0	0	0	1	0
Interrupt Mask 1	1W	0	0	1	0	1	0
Interrupt Mask 2	2W	0	- 1	0	0	1	0
Serial Poll Mode	3W	0	1	1	0	1	0
Address Mode	4W	1	0	0	0	1	0
Auxiliary Mode	5W	1	0	1	0	1	0
Address 0/1	6W	- 1	1	0	0	1	0
End of String	7W	1	1	. 1	0	1	0

Data Registers

Data-In (0R)

DI ₇	DI ₆	DI ₅	DI ₄	DI ₃	DI ₂	DI ₁	DIo
			Byte-0	Out (0\	N)		
BO ₇	BO ₆	BO ₅	BO ₄	BO ₃	BO ₂	BO ₁	BO ₀

The data registers are used for data and command transfers between the GPIB and the microcomputer system. The Data-In register holds data sent from the GPIB to the computer; the Byte-Out register holds information written into it for transfer to the GPIB.

Interrupt Registers

SRQI

DMAO

DMAI

Interrunt	Status	1	(1R)

CPT	APT	DET	END	DEC	ERR	DO	DI
		Inte	errupt S	Status	2 (2R)		
INT	SRQI	LOK	REM	co	LOKC	REMC	ADSC
		Inte	errupt	Mask 1	l (1W)		
CPT	APT	DET	END	DEC	ERR	DO	DI
	Interrupt Mask 2 (2W)						

CO

LOKC

REMC ADSC

The interrupt registers are composed of interrupt status bits, interrupt mask bits, and some other non-interrupt related bits.

There are 13 factors that can generate an interrupt from the μ PD7210, each with its own status bit and mask bit.

The interrupt status bits are always set to 1 if the interrupt condition is met. The interrupt mask bits decide whether or not the INT bit and the interrupt pin will be active for that condition.

Interrupt Status Bits

INT	OR of all unmasked interrupt status bits
CPT	Command pass through
APT	Address pass through
DET	Device trigger
END	End (END or EOS message received)
DEC	Device clear
ERR	Error
DO	Data out
DI	Data in
SRQI	Service request input
LOKC	Lockout change
REMC	Remote change
ADSC	Address status change
CO	Command output

Noninterrupt Related Bits

LOK	Lockout
REM	Remote/local
DMAO	Enable/disable DMA out
DMAI	Enable/disable DMA in

Serial Poll Registers

Serial Poll Status (3R)

S ₈	PEND	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁
		Ser	ial Pol	l Mode	e (3W)		
Sa	rsv	Se	S ₅	S ₄	S ₃	S ₂	S ₁

The serial poll mode register holds the STB (status byte: S_8 , S_6 - S_1) sent over the GPIB and the local message rsv (request service). The serial poll mode register may be read through the serial poll status register. The PEND is set by rsv = 1 and cleared by NPRS $\cdot \overline{rsv} = 1$ (NPRS means negative poll response state).

Address Mode/Address Status Registers

Address Status (4R)

	CIC	ATN	SPMS	LPAS	TPAS	LA	TA	MJMN
			Ac	dress	Mode	(4W)		
Γ	ton	Ion	TRM1	TRM0	0	0	AMD1	AMD0

The address mode register selects the address mode of the device and also sets the mode for the transceiver control lines, T/R_3 and T/R_2 .

The functions of T/R_2 (pin 2) and T/R_3 (pin 5) are determined by the TRM1, TRM0 values of the address mode register.

Function of T/R2 and T/R3

T/R ₂	T/R ₃	TRM1	TRMO
E0I0E	TRIG	0	0
CIC	TRIG	0	1
CIC	E0I0E	1	0
CIC	PE	1	1

EOIOE = TACS + SPAS + CIC · CSBS

This denotes the input/output of the EOI terminal.

When 1: output When 0: input

 $CIC = \overline{CIDS + CADS}$

This denotes whether or not the controller interface function is active.

When 1: $\overline{ATN} = \text{output}$, $\overline{SRQ} = \text{input}$ When 0: $\overline{ATN} = \text{input}$, $\overline{SRQ} = \text{output}$

 $PE = CIC + \overline{PPAS}$

This indicates the type of bus driver connected to the $\overline{\text{DIO}_8}$ to $\overline{\text{DIO}_1}$ and $\overline{\text{DAV}}$ lines.

When 1: three-state When 0: open-collector

TRIG: When DTAS state is initiated or when a trigger auxiliary command is issued, a high pulse is generated.

Upon reset, TRM0 and TRM1 become 0 (TRM0 = TRM1 = 0) and a local message port is provided so that T/R_2 and T/R_3 both become low.

Address Modes

t _{on}	l _{on}	ADM1	ADMO	Address Mode	Contents of Address O Register	Contents of Address 1 Register
1	0	0	0	Talk only mode	Address identi necessary (No the GPIB)	
0	1	0	0.	Listen only mode	Not used	
0	0	0	1	Address mode 1 (Note 1)	Major talk address or major listen address	Minor talk address or minor listen address
0	0	1	0	Address mode 2 (Note 2)	Primary address (talk or listen)	Secondary address (talk or listen)
0	0	1	1	Address mode 3 (Note 3)	Primary address (major talk or major listen)	Primary address (minor talk or minor listen)

Note:

- Either MTA or MLA reception is indicated by coincidence of either address with the received address, interface function T or L.
- (2) Address register 0 = primary; address register 1 = secondary; interface function TE or LE.
- (3) CPU must read secondary address via Command Pass Through register interface function (TE or LE).
- (4) Combinations other than those indicated are prohibited.

Address Status Bits

ĀTN	Data transfer cycle (device in CSBS)
LPAS	Listener primary addressed state
TPAS	Talker primary addressed state
CIC	Controller active
LA	Listener addressed
TA	Talker addressed
MJMN	Sets minor T/L address, reset = major T/L address
SPMS	Serial poll mode state

Address Registers

Address 0 (6R)									
Х	DT0	DL0	AD5-0	AD4-0	AD3-0	AD2-0	AD-1		
Address 1 (7R)									
					,				
EOI	DT1	DL1				AD2-1	AD1-1		

Address 0/1 (6W)								
ARS	DT	DL	AD ₅	AD ₄	AD ₃	AD ₂	AD ₁	

The μ PD7210 is able to detect automatically two types of addresses that are held in address registers 0 and 1. The addressing modes are outlined below.

Address settings are made by writing into the address 0/1 register. The function of each bit is described below.

Address 0/1 Register Bit Selections

ARS	Selects either address register 0 or 1					
DT	Permits or prohibits address to be detected as Talk					
DL	Permits or prohibits address to be detected as Lister					
AD ₅ -AD ₁	Device address value					
EOI	Holds the value of EOI line when data is received					

Command Pass Through Register [5R]

	\neg							
CF	T7	CPT ₆	CPT ₅	CPT₄	CPT ₃	CPT ₂	CPT ₁	CPTo

The CPT register is used such that the CPU may read the DIO lines in the cases of undefined command, secondary address, or parallel poll response.

End-of-String Register [7W]

EC ₇	FC	FC.		EC.	EC	FC₁	EC .
EU7	E C6	EU5	EU4	EC ₃	EU2	EU1	ECO

This register holds either a 7- or 8-bit EOS message byte used in the GPIB system to detect the end of a data block. Auxiliary register A controls the specific use of this register.

Auxiliary Mode Register [5W]

CNT ₂	CNT ₁	CNT ₀	COM ₄	COM ₃	COM ₂	COM ₁	СОМО	l

This is a multipurpose register. A write to this register generates one of the following operations according to the values of the CNT bits.

Auxiliary Mode Operations

2	CNT	0	4	3	COM 2	1	8	Operation
0	0	0	C ₄	C ₃	C ₂	C ₁	C ₀	Issues an auxiliary command specified by C ₄ to C ₀ .
0	0	1	0	F ₃	F ₂	F ₁	F ₀	The reference clock frequency is specified and T ₁ , T ₆ , T ₇ , and T ₉ are determined as a result.
0	1	1	U	S	P ₃	P ₂	P ₁	Makes a write operation to the parallel poll register.
1	0	0	A ₄	А3	A ₂	A ₁	A ₀	Makes a write operation to the auxiliary A register.
1	0	1	В4	В3	B ₂	B ₁	B ₀	Makes a write operation to the auxiliary B register.
1	1	0	0	0	0	E ₁	E ₀	Makes a write operation to the auxiliary E register.

Commands and Other Registers

Auxiliary Commands

0	0	0	C ₄	C ₃	C ₂	C ₁	Co

Auxiliary Command Descriptions

	-				•		
C₄	C ₃	omma C ₂	nd C ₁	Cn	Auxiliary Command	Description	
0	0	0	0	0	iepon	Immediate execute pon; generate local pon message.	
0	0	0	1	0	crst	Chip reset (same as external reset)	
0	0	0	1	1	rrfd	Release RFD	
0	0	1	0	0	trig	Trigger	
0	0	1	0	1	rtl	Return to local message generation	
0	0	1	1	0	seoi	Send EOI message	
0	0	1	1	1	nvid	Nonvalid (OSA reception); release DAC holdoff	
0	1	1	1	1	vid	Valid (MSA Reception, CPT, DEC, DET); release DAC holdoff	
0	Χ	0	0	1	sppf	Set/reset parallel poll flag	
1	0	0	0	0	gts	Go to standby	
1	0	0	0	1	tca	Take control asynch- ronously	

Auxiliary Command Descriptions (cont)

	Command				Auxiliary		
C ₄	C3	C ₂	G ₁	CO	Command	Description	
1	0	0	1	0	tcs	Take control synch- ronously	
1	1	0	1	0	tcse	Take control synch- ronously on end	
1	0	0	1	1	Itn	Listen	
1	1	0	1	1	Itnc	Listen with continuous mode	
1	1	1	0	0	lun	Local unlisten	
1	1	1	0	1	ерр	Execute parallel poll	
1	Χ	1	1	0	sifc	Set/reset IFC	
1	X	1	1	1	sren	Set/reset REN	
1	0	1	0	0.	dsc	Disable system control	

Internal Counter

				:			
0	0	1	0	F ₃	F ₂	F ₁	F ₀

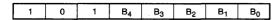
The internal counter generates the state change prohibit times (T_1, T_6, T_7, T_9) specified in IEEE Standard 488-1978 with reference to the clock frequency.

Auxiliary A Register

1	0	0	A ₄	A ₃	A ₂	A ₁	Ao

Of the five bits that may be specified as part of the access word, two bits control the GPIB data receiving modes of the μ PD7210 and three bits control how the end-of-string (EOS) message is used.

Data Receiving Modes


A ₁	A ₀ 0	Data Receiving Mode			
0	0	Normal handshake mode			
0	1	RFD holdoff on all data modes			
1	0	RFD holdoff on end mode			
1	1	Continuous mode			

EOS Message

Bit Name			Function
A ₂	0	Prohibit	Permits (prohibits) the setting of the END
	1	Permit	bit by reception of the EOS message.
A ₃	0	Prohibit	Permits (prohibits) automatic
	1	Permit	transmission of END message simultaneously with the transmission of EOS message TACS.
A ₄	0	7-bit EOS	Makes the 8 bits (7 bits) of the
	1	8-bit EOS	EOS register the valid EOS message.

Auxiliary B Register

The auxiliary B register is much like the A register in that it controls the special operating features of the device.

Special Features

Bit Name			Function
B ₀	1	Permit	Permits (prohibits) the detection of an un-
	0	Prohibit	defined command. In other words, it permits (prohibits) the setting of the CPT bit on receipt of an undefined command.
B ₁	1	Permit	Permits (prohibits) the transmission of
	0	Prohibit	the END message when in serial poll active state (SPAS).
B ₂	1	T ₁ (high- speed)	T ₁ (high speed) as T ₁ in source handshake function after transmission of second byte following data transmission.
	0	T ₁ (low- speed)	Sets T_1 (low speed) as T_1 in all cases.
В3	1	INT	Specifies the active level of the INT pin.
	0	INT	
B ₄	1	ist = SRQS	SRQS indicates the value of the ist level local message (the value of the parallel poll flag is ignored). SRQS = 1 ist = 1 SRQS = 0 ist = 0
	0	ist = Parallel Poll Flag	The value of the parallel poll flag is taken as the ist local message.

Auxiliary E Register

1	1.	0	0 -	0	0	E ₁	Eo

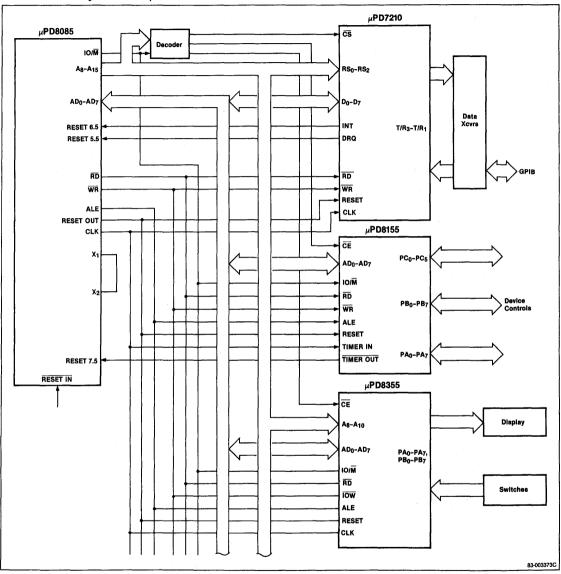
This register controls the Data Acceptance modes of the μ PD7210.

Data Acceptance Modes

Bit Name			Function
E ₀	1	Enable	DAC holdoff by initialization of DCAS
	0	Disable	
E ₁	1	Enable	DAC holdoff by initialization of DTAS
	0	Disable	

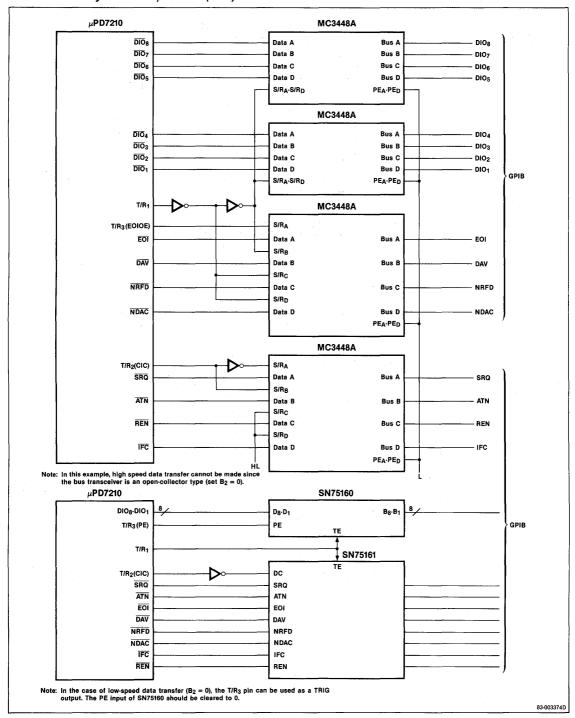
Parallel Poll Register

0	1	. 1	U	S	P ₃	P ₂	P ₁


The parallel poll register defines the parallel poll response of the μ PD7210.

Parallel Poli Response

Bit Name		Function
U	1	No response to parallel poll
	0	Response to parallel poll
S	1	In phase
	0	Reverse phase
P3-P1	000-111	Status bit output line DIO ₁ to DIO ₈



Minimum 8085 System with µPD7210

Minimum 8085 System with µPD7210 (cont)

μPD7220A HIGH-PERFORMANCE GRAPHICS DISPLAY CONTROLLER

Description

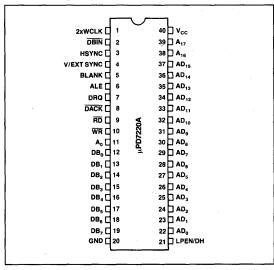
The μ PD7220A high-performance graphics display controller (HGDC) is an intelligent microprocessor peripheral designed to be the heart of a high-performance raster scan computer graphics and character display system. Positioned between the video display memory and the microprocessor bus, the HGDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the HGDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capabilities. The display memory supported by the HGDC can be configured in any number of formats and sizes up to 256K 16-bit words. The display can be zoomed and panned, while partitioned screen areas can be independently scrolled. With its light pen input and multiple controller capability, the HGDC is ideal for advanced computer graphics applications.

For a more detailed description of the HGDC's operation, please refer to the 7220/7220A design manuals.

System Considerations

The HGDC is designed to work with a general purpose microprocessor to implement a high-performance computer graphics system. Through the division of labor established by the HGDC's design, each of the system components is used to the maximum extent through a six-level hierarchy of simultaneous tasks. At the lowest level, the HGDC generates the basic video raster timing, including sync and blanking signals. Partitioning areas on the screen and zooming are also accomplished at this level. At the next level, video display memory is modified during the figure drawing operations and data moves. Third, display memory addresses are calculated pixel by pixel as drawing progresses. Outside the HGDC at the next level, preliminary calculations are done to prepare drawing parameters. At the fifth level, the picture must be represented as a list of graphics figures drawable by the HGDC. Finally, this representation must be manipulated, stored, and communicated. By handling the first three levels, the HGDC takes care of the highspeed and repetitive tasks required to implement a graphics system.

Features


- ☐ Microprocessor interface
 - DMA transfers with 8257- or 8237-type controllers
 - FIFO command buffering
- ☐ Display memory interface
 - Up to 256K words of 16-bits
 - Read-modify-write (RMW) display memory cycles as fast as 500 ns
 - Dynamic RAM refresh cycles for nonaccessed memory
- ☐ Light pen input
- ☐ Drawing hold input
- ☐ External video synchronization mode
- ☐ Graphic mode
 - Four megabit, bit-mapped display memory
- ☐ Character mode
 - 8K character code and attributes display memory
- ☐ Mixed graphics and character mode
 - 64K if all characters
 - 1 megapixel if all graphics
- ☐ Graphics capabilities
 - Figure drawing of lines, arc/circles, rectangles, and graphics characters in 500 ns per pixel
 - Display 1024-by-1024 pixels with 4 planes of color or grayscale
 - Two independently scrollable areas
- □ Character capabilities
 - Auto cursor advanced
 - Four independently scrollable areas
 - Programmable cursor height
 - Characters per row: up to 256
 - Character rows per screen: up to 100
- ☐ Video display format
 - Zoom magnification factors of 1 to 16
 - Panning
 - Command-settable video raster parameters
- □ NMOS technology
- ☐ Single +5 V power supply
- ☐ DMA capability
 - Bytes or word transfers
- 4 clock periods per byte transferred
- On-chip pull-up resistor for VSYNC/EXT, HSYNC and DACK, and a pull-down resistor for LPEN/DH

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD7220AD	40-pin ceramic DIP	6 MHz
μPD7220AD-1	40-pin ceramic DIP	7 MHz
μPD7220AD-2	40-pin ceramic DIP	8 MHz

Pin Configuration

Character Mode Pin Utilization

Pin		
No.	Symbol	Function
35-37	AD ₁₃ -AD ₁₅	Line counter bits 0 to 2 outputs
38	AD ₁₆	Line counter bit 3 output
39	AD ₁₇	Cursor output and line counter bit 4

Mixed Mode Pin Utilization

Pin		
No.	Symbol	Function
35-37	AD ₁₃ -AD ₁₅	Address and data bits 13 to 15
38	A ₁₆	Attribute blink and clear line counter output
39	A ₁₇	Cursor and bit-map area flag output

Pin Identification

Pin		
No.	Symbol	Function
1	2xWCLK	Clock input
2	DBIN	Display memory read input flag
3	HSYNC	Horizontal video sync output
4	V/EXT SYNC	Vertical video sync output or external VSYNC input
5	BLANK	CRT blanking output
6	ALE	Address latch enable output
7	DRQ	DMA request output
8	DACK	DMA acknowledge input
9	RD	Read strobe input for microprocessor interface
10	WR	Write stobe input for microprocessor interface
11	A ₀	Address select input for microprocessor interface
12-19	DB ₀ -DB ₇	Bidirectional data bus to host micro- processor
20	GND	Ground
21	LPEN/DH	Light pen detect input drawing hold input
22-34	AD ₀ -AD ₁₂	Address data lines to display memory
35-37	AD ₁₃ -AD ₁₅	Utilization varies with mode of operation
38	A ₁₆	Utilization varies with mode of operation
39	A ₁₇	Utilization varies with mode of operation
40	V _{CC}	+5 V ±10% power supply

Graphics Mode Pin Utilization

Pin	*
Symbol	Function
AD ₁₃ -AD ₁₅	Address and data bits 13 to 15
A ₁₆	Address bit 16 output
A ₁₇	Address bit 17 output
	Symbol AD ₁₃ -AD ₁₅ A ₁₆

Pin Functions

2xWCLK [Clock Input]

2xWCLK is the clock input.

DBIN [Data Bus Input Enable]

The DBIN output indicates the time the AGDC will accept data read from display RAM during read-modify-write (RMW) cycles.

HSYNC [Horizontal Sync]

The HSYNC output indicates the time the CRT's beam is to start its retrace back to the left side of the screen.

V/EXT SYNC [Vertical SYNC Output/External Sync Input]

The AGDC can be programmed to output a vertical sync signal at the start of the return of the CRT's beam from the lower right of the screen to the upper left during vertical retrace. The AGDC may also be programmed to accept an external sync input when used in slave mode.

BLANK [Blank]

BLANK is output during inactive display times (horizontal and vertical retrace) of the CRT and during a read-modify-write memory cycle when in flash mode.

ALE [Address Latch Enable]

The falling edge of ALE indicates the first clock cycle of a display memory cycle and the availability of the memory address on pins AD_0 - AD_{17} . ALE and external logic can generate display memory control signals.

An [Address Bit 0]

 \mathbf{A}_0 is the address select input for the microprocessor interface.

A₁ [Address Bit 1]

The A_1 input selects registers when reading or writing to the AGDC.

DACK [DMA Acknowledge]

DACK is the DMA acknowledge input handshake line that directly interfaces to the μ PD8257 or μ PD8237 DMA controller.

DRQ [DMA Request]

DRQ is the DMA request output handshake line that directly interfaces to the μ PD8257 or μ PD8237 DMA controller.

RD [Read Strobe]

The host CPU clears the $\overline{\text{RD}}$ input to 0 when reading the internal status and FIFO registers.

WR [Write Strobe]

The host CPU clears WR to 0 when writing to the internal command and parameter registers.

DB₀-DB₇ [Data Bus]

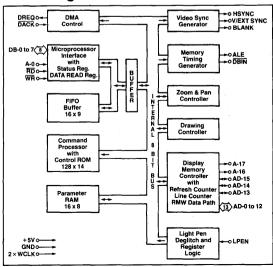
 $\mathsf{DB}_0\text{-}\mathsf{DB}_7$, the 8-bit, three-state bidirectional data bus transfers data to and from the host CPU via the system bus.

LPEN/DH [Light Pen/Drawing Hold]

The LPEN/DH input can be programmed as either a light pen input or drawing hold input. The drawing hold input halts all read-modify-write operations.

AD₀-AD₁₇ [Address and Data Lines]

 AD_0 - AD_{17} are address and data lines to display memory. AD_{13} - AD_{17} functions vary with the mode of operation of the ADGC. The μ PD7220/7220A Graphics Display Controller User's Manual describes these functions and modes of operation.


VCC [Power Supply]

 V_{CC} is the +5 V power supply input.

GND [Ground]

GND is ground potential.

Block Diagram

HGDC Components

Microprocessor Bus Interface

Control of the HGDC by the system microprocessor is achieved through an 8-bit bidirectional interface. The status register is readable at any time. Access to the FIFO buffer is coordinated through flags in the status register and operates independently of the various internal HGDC operations, due to the separate data bus connecting the interface and the FIFO buffer.

Applications

NEC Electronics Inc. recently learned that application of the μ PD7220 or μ PD7220A Graphics Display Controller in conjunction with other non-NEC Electronics Inc. equipment to achieve panning and zooming capabilities may infringe U.S. Patents 4,197,590 and RE 31,200 held by CADTRAK CORPORATION of Sunnyvale, Ca. Neither the μ PD7220 nor the μ PD7220A Graphics Display Controllers by themselves infringe CADTRAK's patents. CUSTOMERS OF NEC ELECTRONICS INC. ARE HEREBY GIVEN NOTICE OF THE EXISTENCE OF THE CADTRAK PATENTS. USER'S ARE RESPONSIBLE FOR INSURING THAT THEIR SYSTEM DESIGN, MANUFACTURE AND RESULTING PRODUCT DO NOT VIOLATE ANY APPLICABLE PATENTS.

Command Processor

The contents of the FIFO are interpreted by the command processor. The command bytes are decoded, and the succeeding parameters are distributed to their proper destinations within the HGDC. The command processor yields to the bus interface when both access the FIFO simultaneously.

DMA Control

The DMA control circuitry in the HGDC coordinates transfers over the microprocessor interface when using an external DMA controller. The DMA Request and Acknowledge handshake lines directly interface with a μ PD8257 or μ PD8237 DMA controller, so that display data can be moved between the microprocessor memory and the display memory.

Parameter RAM

The 16-byte RAM stores parameters that are used repetitively during the display and drawing processes. In character mode, this RAM holds four sets of partitioned display area parameters; in graphics mode, the drawing pattern and graphics character take the place of two of the sets of parameters.

Video Sync Generator

Based on the clock input, the sync logic generates the raster timing signals for almost interlaced, non-interlaced, or "repeat field" interlaced video format. The generator is programmed during the idle period following a reset. In video sync slave mode, it coordinates timing between multiple HGDCs.

Memory Timing Generator

The memory timing circuitry provides two memory cycle types: a two-clock period refresh cycle and the read-modify-write (RMW) cycle, which takes four clock periods. The memory control signals needed to drive the display memory devices are easily generated from the HGDC's ALE and DBIN outputs.

Zoom & Pan Controller

Based on the programmable zoom display factor and the display area entries in the parameter RAM, the zoom and pan controller determines when to advance to the next memory address for display refresh and when to go on to the next display area. A horizontal zoom is produced by slowing down the display refresh rate while maintaining the video sync rates. Vertical zoom is accomplished by repeatedly accessing each line a number of times equal to the horizontal repeat. Once the line count for a display area is exhausted, the controller accesses the starting address and line count of the next display area from the parameter RAM. The system microprocessor, by modifying a display area starting address, can pan in any direction, independently of the other display areas.

Drawing Controller

The drawing processor contains the logic necessary to calculate the addresses and positions of the pixels of the various graphics figures. Given a starting point and the appropriate drawing parameters, the drawing controller needs no further assistance to complete the figure drawing.

Display Memory Controller

The display memory contoller's tasks are numerous. Its primary purpose is to multiplex the address and data information in and out of the display memory. It also contains the 16-bit logic unit used to modify the display memory contents during RMW cycles, the character mode line counter, and the refresh counter for dynamic RAMs. The memory controller apportions the video field time between the various types of cycles.

Light Pen Deglitcher/Drawing Hold

Only if two rising edges on the light pen input occur at the same point during successive video fields are the pulses accepted as a valid light pen detection. A status bit indicates to the system microprocessor that the light pen register contains a valid address. If this input is held high for a period greater than four 2xWCLK cycles, drawing execution is halted when bit 7 of P5 of the SYNC command is set.

Programmer's View of HGDC

The HGDC occupies two addresses on the system microprocessor bus through which the HGDC's status register and FIFO are accessed. Commands and parameters are written into the HGDC's FIFO and are differentiated based on address bit A₀. The status register or the FIFO can be read as selected by the address line.

Commands to the HGDC take the form of a command byte followed by a series of parameter bytes as needed for specifying the details of the command. The command processor decodes the commands, unpacks the parameters, loads them into the appropriate registers within the HGDC, and initiates the required operations.

The commands available in the HGDC can be organized into five categories as described in the following section.

HGDC Microprocessor Bus Interface Registers

A0	READ	WRITE
	Status Register	Parameter into FIFO
0		
	FIFO Read	Command Into FIFO
1		

HGDC Commands Summary

Video Control Commands

1. RESET1	Resets the GDC to its idle state. Resychronizes video timing. Blanks the display.
2. RESET2	Resets the HGDC to its idle state. Does not resynchronize video timing. Blanks the display.
3. RESET3	Resets the HGDC to its idle state. Does not resynchronize video timing. Does not blank the display.
4. SYNC	Specifies the video display format.
5. VSYNC	Selects master or slave video synchronization mode.

row heights.

Specifies the cursor and character

Ends idle mode and unblanks the

Display Control Commands

6. CCHAR

1. START

		display.
2.	BLANK1	Controls the blanking and unblanking of the display, along with video resynchronization.
3.	BLANK2	Controls the blanking and unblanking of the display. Does not blank the display.
4.	ZOOM	Specifies zoom factors for the display and graphics characters writing.
5.	CURS	Sets the position of the cursor in display memory.
6.	PRAM	Defines starting addresses and lengths of the display areas and specifies the eight bytes for the graphics character.
7.	PITCH	Specifies the width of the X dimension of display memory.

Drawing Control Commands

1. WDAT	Writes data words or bytes into display memory.
2. MASK	Sets the mask register contents.
3. FIGS	Specifies the parameters for the drawing controller.
4. FIGD	Draws the figure as specified above.
5. GCHRD	Draws the graphics character into display memory.

Data Read Commands

1. RDAT

Reads data words or bytes from

display memory.

2. CURD

Reads the cursor position.

3. LPRD

Reads the light pen address.

DMA Control Commands

1. DMAR

Requests a DMA read transfer.

2. DMAW

Requests a DMA write transfer.

Status Register Flags

SR-7: Light Pen Detect

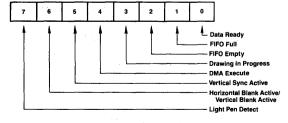
When this bit is set to 1, the light pen address (LAD) register contains a deglitched value that the system microprocessor may read. This flag is reset after the 3-byte LAD is moved into the FIFO in response to the light pen read command.

SR-6: Horizontal Blank Active/Vertical Blank Active

A 1 value for this flag signifies that horizontal retrace blanking or vertical retrace blanking is currently underway dependent on the status of the VH bit in SYNC or the RESETx parameter 6.

SR-5: Vertical Sync

Vertical retrace sync occurs while this flag is a 1. The vertical sync flag coordinates display format modifying commands to the blanked interval surrounding vertical sync. This eliminates display disturbances.


SR-4: DMA Execute

This bit is a 1 during DMA data tranfers.

SR-3: Drawing in Progress

While the HGDC is drawing a graphics figure, this status bit is a 1.

Status Register (SR)

SR-2: FIFO Empty

This bit and the FIFO-full flag coordinate system microprocessor accesses with the HGDC FIFO. When it is 1, the Empty flag ensures that all the commands and parameters previously sent to the HGDC have been interpreted.

SR-1: FIFO Full

A 1 at this flag indicates a full FIFO in the HGDC. A 0 ensures that there is room for at least one byte. This flag needs to be checked before each write into the HGDC.

SR-0: Data Ready

When this flag is a 1, it indicates that a byte is available to be read by the system microprocessor. This bit must be tested before each read operation. It drops to a 0 while the data is transferred from the FIFO into the microprocessor interface data register.

FIFO Operation & Command Protocol

The first-in, first-out buffer (FIFO) in the HGDC handles the command dialogue with the system microprocessor. This flow of information uses a half-duplex technique, in which the single 16-location FIFO is used for both directions of data movement, one direction at a time. The FIFO's direction is controlled by the system microprocessor through the HGDC's command set. The host microprocessor coordinates these transfers by checking the appropriate status register bits.

The command protocol used by the HGDC requires differentiation of the first byte of a command sequence from the succeeding bytes. The first byte contains the operation code and the remaining bytes carry parameters. Writing into the HGDC causes the FIFO to store a flag value alongside the data byte to signify whether the byte was written into the command or the parameter address. The command processor in the HGDC tests this bit as it interprets the entries in the FIFO.

The receipt of a command byte by the command processor marks the end of any previous operation. The number of parameter bytes supplied with a command is cut short by the receipt of the next command byte. A read operation from the HGDC to the microprocessor can be terminated at any time by the next command.

The FIFO changes direction under the control of the system microprocessor. Commands written into the HGDC always put the FIFO into write mode if it was not in it already. If it was in read mode, any read data in the FIFO at the time of the turnaround is lost. Commands which require an HGDC response, such as RDAT, CURD and LPRD, put the FIFO into read mode after the command is interpreted by the HGDC's command processor. Any commands and parameters behind the read-evoking command are discarded when the FIFO direction is reversed.

Read-Modify-Write Cycle

Data transfers between the HGDC and the display memory are accomplished using a read-modify-write (RMW) memory cycle. The four-clock period timing of the RMW cycle is used to 1. output the address, 2. read data rom the memory, 3. modify the data, and 4. write the modified data back into the initially selected memory address. This type of memory cycle is used for all interactions with display memory including DMA transfers, except for the two-clock period display and RAM refresh cycles.

The operations performed during the modify portion of the RMW cycle merit additional explanation. The circuitry in the HGDC uses three main elements: the Pattern register, the Mask register, and the 16-bit Logic unit. The Pattern register holds the data pattern to be moved into memory. It is loaded by the WDAT parameters or, during drawing, from the parameter RAM. The Mask register contents determine which bits of the read data will be modified. Based on the contents of these registers, the Logic unit performs the selected operations of REPLACE, COMPLEMENT, SET, or CLEAR on the data read from display memory.

The Pattern register contents are ANDed with the Mask register contents to enable the actual modification of the memory read data, on a bit-by-bit basis. For graphics drawing, one bit at a time from the Pattern register is combined with the Mask. When ANDed with the bit set to a 1 in the Mask register, the proper single pixel is modified by the Logic unit. For the next pixel in the figure, the next bit in the Pattern register is selected and the Mask register bit is moved to identify the pixel's location within the word. The Execution word address pointer register, EAD, is also adjusted as required to address the word containing the next pixel.

In character mode, all of the bits in the Pattern register are used in parallel to form the respective bits of the modify data word. Since the bits of the character code word are used in parallel, unlike the one-bit-at-a-time graphics drawing process, this facility allows any or all of the bits in a memory word to be modified in one RMW memory cycle. The Mask register must be loaded with ones in the positions where modification is to be permitted.

The Mask register can be loaded in either of two ways. In graphics mode, the CURS command contains a 4-bit dAD field to specify the dot address. The command processor converts this parameter into the 1-of-16 format used in the Mask register for figure drawing. A full 16-bits can be loaded into the Mask register using the MASK command. In addition to the character mode use mentioned above, the 16-bit MASK load is convenient in graphics mode when all of the pixels of a word are to be set to the same value.

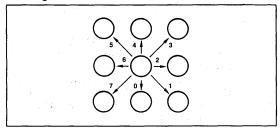
The Logic unit combines the data read from display memory, the Pattern register, and the Mask register to generate the data to be written back into display memory. Any one of four operations can be selected: REPLACE, COMPLEMENT, CLEAR or SET. In each case, if the respective Mask bit is 0, that particular bit of the read data is returned to memory unmodified. If the Mask bit is 1, the modification is enabled. With the REPLACE operation, the Pattern register data simply takes the place of the read data for modification enabled bits. For the other three operations, a 0 in the modify data allows the read data bit to be returned to memory. A 1 value causes the specified operation to be performed in the bit positions with set Mask bits.

Figure Drawing

The HGDC draws graphics figures at the rate of one pixel per read-modify-write (RMW) display memory cycle. These cycles take four clock periods to complete. At a clock frequency of 8 MHz, this is equal to 500 ns. During the RMW cycle the HGDC simultaneously calculates the address and position of the next pixel to be drawn.

The graphics figure drawing process depends on the display memory addressing structure. Groups of 16 horizontally adjacent pixels form the 16-bit words which are handled by the HGDC. Display memory is organized as a linearly addressed space of these words. Addressing of individual pixels is handled by the HGDC's internal RMW logic.

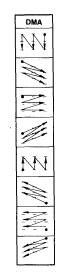
During the drawing process, the HGDC finds the next pixel of the figure which is one of the eight nearest neighbors of the last pixel drawn. The HGDC assigns each of these eight directions a number from 0 to 7, starting with straight down and proceeding counterclockwise.


Figure drawing requires the proper manipulation of the address and the pixel bit position according to the drawing direction to determine the next pixel of the figure. To move to the word above or below the current one, it is necessary to subtract or add the number of words per line in display memory. This parameter is called the pitch. To move to the word to either side, the Execute word address cursor, EAD, must be incremented or decremented as the dot address pointer bit reaches the LSB or the MSB of the Mask register. To move to a pixel within the same word, it is necessary to rotate the dot address pointer to the right or left. The table below summarizes these operations for each direction.

Dir	Operations to Address the Next Pixel
000	EAD — P → EAD
001	$EAD - P \rightarrow EAD$ $dAD (MSB) = 1:EAD - 1 \rightarrow EAD dAD \rightarrow LR$
010	$dAD (MSB) = 1:EAD - 1 \rightarrow EAD dAD \rightarrow LR$
011	$EAD - P \rightarrow EAD$ $dAD (MSB) = 1:EAD - 1 \rightarrow EAD dAD \rightarrow LR$
100	EAD — P → EAD
101	EAD $-$ P → EAD dAD (LSB) = 1:EAD $-$ 1 → EAD dAD → RR
110	$dAD (LSB) = 1:EAD - 1 \rightarrow EAD dAD \rightarrow RR$
111	EAD $-$ P \rightarrow EAD dAD (LSB) = 1:EAD $-$ 1 \rightarrow EAD dAD \rightarrow RR

Note:

P=Pitch, LR = Left Rotate, RR = Right Rotate, EAD = Execute Word Address, and dAD = Dot Address stored in the Mask register.


Drawing Directions

Whole word drawing is useful for filling areas in memory with a single value. By setting the Mask register to all 1s with the MASK command, both the LSB and MSB of the dAD will always be 1, so that the EAD value will be incremented or decremented for each cycle regardless of direction. One RMW cycle will be able to affect all 16 bits of the word for any drawing type. One bit in the Pattern register is used per RMW cycle to write all the bits of the word to the same value. The next Pattern bit is used for the word, etc.

For the various figures, the effect of the initial direction upon the resulting drawing is shown below:

Dir	Line	Arc	Character	Slant Char	Rectangle
000			inni	ww	
001	WIII.		1	ana	\Diamond
010	<u> 1</u>				
011	Y//	\triangle	11/1/		\Diamond
100	***************************************		MM	MM	
101				Man.	\Diamond
110	مرا الألالد			E	
111	Mix	V	11/1/	TOTAL S	\Diamond

Note that during line drawing, the angle of the line may be anywhere within the shaded octant defined by the DIR value. Arc drawing starts in the direction initially specified by the DIR value and veers into an arc as drawing proceeds. An arc may be up to 45° in length. DMA transfers are done on word boundaries only, and follow the arrows indicated in the table to find successive word addresses. The slanted paths for DMA transfers indicate the HGDC changing both the X and Y components of the word address when moving to the next word. It does not follow a 45° diagonal path by pixels.

Drawing Parameters

In preparation for graphics figure drawing, the HGDC's Drawing processor needs the figure type, direction and drawing parameters, the starting pixel address, and the pattern from the microprocessor. Once these are in place within the HGDC, the Figure Draw command, FIGD, initiates the drawing operation. From that point on, the system microprocessor is not involved in the drawing process. The HGDC Drawing controller coordinates the RMW circuitry and address registers to draw the specified figure pixel by pixel.

The algorithms used by the processor for figure drawing are designed to optimize its drawing speed. To this end, the specific details about the figure to be drawn are reduced by the microprocessor to form conducive to high-speed address calculations within the HGDC. In this way the repetitive, pixel-by-pixel calculations can be done quickly, thereby minimizing the overall figure drawing time. The table below summarizes the parameters.

Drawing	nc	0	no ·	D1	
Туре	DC	0	02	D1	DM
Initial Value (1)	0.	8	8	-1	-1
Line	Δ	$2 \Delta D - \Delta I $	2(\D - \D)	2 D	
Arc (2)	rsin 	r-1	2(r-1)	-1	rsin θ↓
Rectangle	3	A-1	B-1	1	A-1
Area fill	B-1	Α	Α	_	
Graphic character (3)	B-1	А	А	_	_
Read & write data	W-1		_	_	
DMAW	D-1	C1	_	-	_
DMAR	D-1	C-1	(C-1)/2/†	_	_

Note:

All numbers are shown in base 10 for convenience. The HGDC accepts base 2 numbers (2's complement notation) where appropriate.

- Initial values for the various parameters remain as each drawing process ends.
- (2) Circles are drawn with 8 arcs, each of which span 45°, so that $\sin \phi = 1/\sqrt{2}$ and $\sin \theta = 0$.
- (3) Graphic characters are a special case of bit-map area filling in which B and A \leq 8. If A = 8 there is no need to load D and D2.

Symbol Definitions

- -1 = All ONES value.
- No parameter bytes sent to HGDC for this parameter.
- $\Delta I =$ The larger at Δx or Δy .
- $\Delta D =$ The smaller at Δx or Δy .
 - r = Radius of curvature, in pixels.
 - ϕ = Angle from major axis to end of the arc. $\phi \le 45^{\circ}$.
 - $\theta =$ Angle from major axis to start of the arc. $\theta \le 45^{\circ}$.
 - † = Round up to the next higher integer.
 - ↓ = Round down to the next lower integer.
 - A = Number of pixels in the initially specified direction.
 - B = Number of pixels in the direction at right angles to the initially specified direction.
- W = Number of words to be accessed.
- C = Number of bytes to be transferred in the initially specified direction. (Two bytes per word if word transfer mode is selected.)
- D = Number of words to be accessed in the direction at right angles to the initially specified direction.
- DC = Drawing count parameter which is one less than the number of RMW cycles to be executed.
- DM = Dots masked from drawing during arc drawing.
 - † = Needed only for word reads.

Graphics Character Drawing

Graphics characters can be drawn into display memory pixel by pixel. The up to 8-by-8 character display is loaded into the HGDC's parameter RAM by the system microprocessor. Consequently, there are no limitations on the character set used. By varying the drawing parameters and drawing direction, numerous drawing options are available. In area fill applications, a character can be written into display memory as many times as desired without reloading the parameter RAM.

Once the parameter RAM has been loaded with up to eight graphics character bytes by the appropriate PRAM command, the GCHRD command can be used to draw the bytes into display memory starting at the cursor. The zoom magnification factor for writing, set by the ZOOM command, controls the size of the character written into the display memory in integer multiples of 1 through 16. The bit values in the PRAM are repeated horizontally and vertically the number of times specified by the zoom factor.

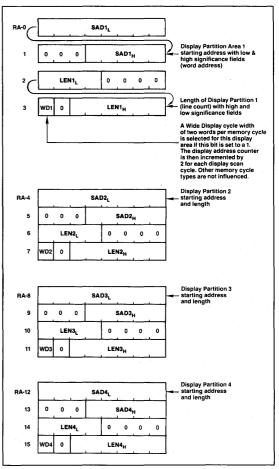
The movement of these PRAM bytes to the display memory is controlled by the parameters of the FIGS command.

Based on the specified height and width of the area to be drawn, the parameter RAM is scanned to fill the required area.

For an 8-by-8 graphics character, the first pixel drawn uses the LSB of RA-15, the second pixel uses bit 1 of RA-15, and so on, until the MSB of RA-15 is reached.

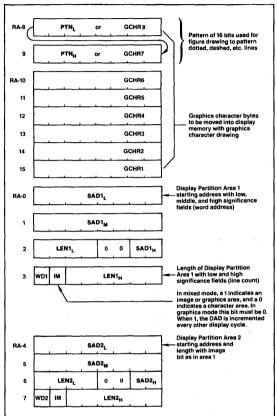
The HGDC jumps to the corresponding bit in RA-14 to continue the drawing. The progression then advances toward the LSB of RA-14. This snaking sequence is continued for the other 6 PRAM bytes. This progression matches the sequence of display memory addresses calculated by the drawing processor as shown above. If the area is narrower than 8 pixels wide, the snaking will advance to the next PRAM byte before the MSB is reached. If the area is less than 8 lines high, fewer bytes in the parameter RAM will be scanned. If the area is larger than 8 by 8, the HGDC will repeat the contents of the parameter RAM in two dimensions, as required to fill the area with the 8-by-8 mosaic. (Fractions of the 8-by-8 pattern will be used to fill areas which are not multiples of 8 by 8.)

Parameter RAM Contents: RAM Address RA-0 to RA-15

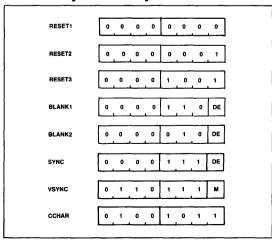

The parameters stored in the parameter RAM, PRAM, are available for the HGDC to refer to repeatedly during figure drawing and raster-scanning. In each mode of operation the values in the PRAM are interpreted by the HGDC in a predetermined fashion. The host microprocessor must load the appropriate parameters into the proper PRAM locations. PRAM loading command allows the host to write into any location of the PRAM and transfer as many bytes as desired. In this way any stored parameter byte or bytes may be changed without influencing the other bytes.

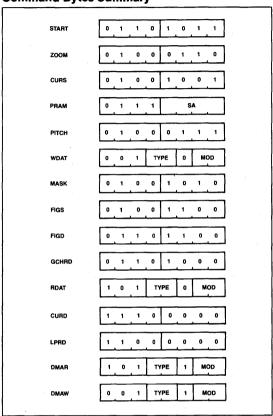
The PRAM stores two types of information. For specifying the details of the display area partitions, blocks of four bytes are used. The four parameters stored in each block include the starting address in display memory of each display area, and its length. In addition, there are two mode bits for each area which specify whether the area is a bit-mapped graphics area or a coded-character area, and whether a 16-bit or a 32-bit wide display cycle is to be used for that area.

The other use for the PRAM contents is to supply the pattern for figure drawing when in a bit-mapped graphics area or mode. In these situations, PRAM bytes 8 through 16 are reserved for this patterning information. For line, arc, and rectangle drawing (linear figures) locations 8 and 9 are loaded into the Pattern register to allow the HGDC to draw dotted, dashed, etc. lines. For area filling and graphics bit-mapped character drawing, locations 8 through 15 are referenced for the pattern or character to be drawn.

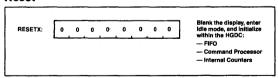

Details of the bit assignments are shown for the various modes of operation.

Character Mode




Graphics and Mixed Graphics and Character Modes

Command Bytes Summary



Command Bytes Summary

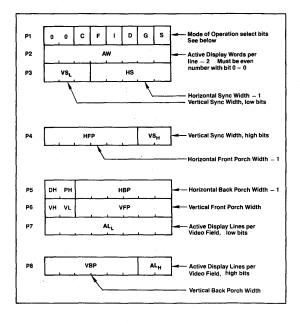
Video Control Commands

Reset

This command can be executed at any time and does not modify any of the parameters already loaded into the HGDC.

If followed by the parameter bytes, this command also sets the sync generator parameters as described below. Idle mode is exited with the START command.

RESET1: Resync video timing in slave mode.


RESET2: Blank the display and so not resync. RESET3: Unblank the display and do not resync.

In graphics mode, a word is a group of 16 pixels. In character mode, a word is one character code and its attributes, if any. The number of active words per line must be an even number from 2 to 256. An all-zero parameter value selects a count equal to 2^n where n = number of bits in the parameter field for vertical parameters. All horizontal widths are counted in display words. All vertical invervals are counted in lines.

If the Drawing Hold (DH) is set to one, pin 21 (LPEN/DH) is used as the drawing hold control pin. When the input to LPEN/DH is held high for over four 2 x WCLK clocks, the drawing address output is temporarily held and the display address is output.

The HGDC allows an even or odd number of lines per frame. Selection is via the VL flag, the seventh bit of the sixth parameter byte following a RESET or SYNC command. When VL is 0, an odd number of display lines is generated.

VL	Number of lines in interfaced mode		
0	Odd, as in 7220		
1	Even		

When VH = 0, status operation is as in μ PD7220.

VH	Blank Status Bit Definition
0	Status register bit 6 indicates horizontal blank
1	Status register bit 6 indicates vertical blank

PH is the most significant bit (9) of the display pitch parameter. Use the PITCH command to set the lower eight bits.

SYNC Generator Period Constraints

Horizontal Back Porch Constraints

- 1. In general:
 - $HBP \ge 3$ Display Word Cycles (6 clock cycles).
- If the Image bit or WD mode changes within one video field:
 - HBP ≥ 5 Display Word Cycles (10 clock cycles).
- If interlaced, mixed mode, or split screen is used: HBP ≥ 5 Display Word Cycles (10 clock cycles).

Horizontal Front Porch Constraints

- 1. In general:
- HFP ≥ 2 Display Word Cycles (4 clock cycles).
- If the GDC is used in video sync Slave mode: HFP ≥ 4 Display Word Cycles (8 clock cycles).
- 3. If the Light Pen is used:
- HFP ≥ 6 Display Word Cycles (12 clock cycles).
- If interlaced mode, DMA, or ZOOM is used: HFP ≥ 3 Display Word Cycles (6 clock cycles).

Horizontal Sync Constraints

- If interlaced display mode is used:
 HS ≥ 5 Display Word Cycles (6 clock cycles).
- If DRAM Refresh is enabled:
 HS ≥ 2 Display Word Cycles (4 clock cycles).

Modes of Operation Bits

C	G	Display Mode		
0	0	Mixed graphics and character		
0	1	Graphics mode		
1	0	Character mode		
1	1	Invalid		

ı	S	Video Framing
0	0	Non-interlaced
0	1	Invalid
1	0	Interlaced repeat field for character displays
1	1	Interlaced

Repeat Field Framing:

2 field sequence with 1/2

line offset between

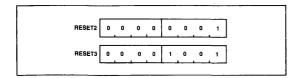
Interlaced Framing:

otherwise identical fields. 2 field sequence with 1/2

line offset. Each field displays alternate lines.

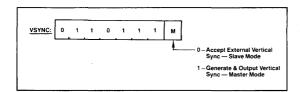
Non-Interlaced Framing: 1 field brings all the

information to the screen.

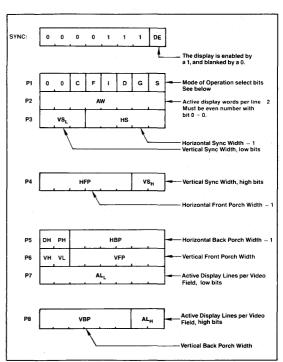

D	Dynamic RAM Refresh Cycles Enable
0	No refresh—static RAM
1	Refresh—dynamic RAM

Dynamic RAM refresh is important when high display zoom factors or DMA are used in such a way that not all of the rows in the RAMs are regularly accessed during display raster generation and for otherwise inactive display memory.

F	Drawing Time Window					
0	Drawing during active display time and retrace blanking					
1 -	Drawing only during retrace blanking					


Access to display memory can be limited to retrace blanking intervals only, so that no disruptions of the image are seen on the screen.

Both commands allow a reset while preventing reinitialization of the internal sync generator by an external sync source (slave mode).


Vertical Sync Mode

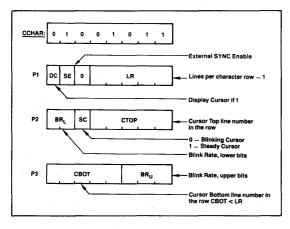
When using two or more HGDCs to contribute to one image, one HGDC is defined as the master sync generator, and the others operate as its slaves. The VSYNC pins of all HGDCs are connected together.

SYNC Format Specify

This command also loads parameters into the sync generator. The various parameter fields and bits are identical to those at the RESET command. The HDGC is not reset nor does it enter idle mode.

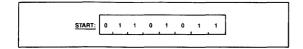
Slave Mode Operation

A few considerations should be observed when synchronizing two or more HGDCs to generate overlayed video via the V/EXT SYNC pin. As mentioned above, the Horizontal Front Porch (HFP) must be four or more display cycles wide. This is equivalent to eight or more clock cycles. This gives the slave HGDCs time to initialize their internal video sync generators to the proper point in the video field to match the incoming vertical sync pulse (VSYNC). This resetting of the generator occurs just after the end of the incoming VSYNC pulse, during the HFP interval. Enough time during HFP is required to allow the slave HGDC to complete the operation before the start of the HSYNC interval.

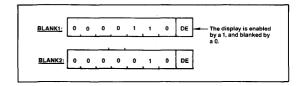


Once the HGDCs are initialized and set up as master and slaves, they must be given time to synchronize. It is a good idea to watch the VSYNC status bit of the master HGDC and wait until after one or more VSYNC pulses have been generated before the display progess is started. The START command will begin the active display of data and will end the video synchronization process, so be sure there has been at least one VSYNC pulse generated to which the slaves can synchronize.

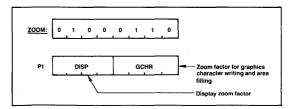
Cursor and Character Characteristics


In graphics mode, LR should be set to 0. The blink rate parameter controls both the cursor and attribute blink rates. The cursor blink-on time = blink-off time = $2 \times BR$ (video frames). The attribute blink rate is always one-half the cursor rate but with a 3/4-on-1/4-off duty cycle. All three parameter bytes must be output for interlaced displays, regardless of mode. For interlaced displays in graphics mode, the parameter $BR_L = 3$.

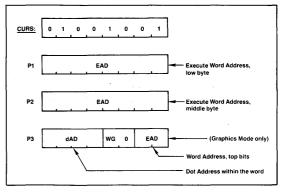
When SE = 0, the HGDC, in slave mode, detects the falling edge of EX. SYNC on the first frame. When SE = 1, the HGDC, in slave mode, detects the falling edge of EX. SYNC on every frame.


Display Control CommandsStart Display and End Idle Mode

The START command generates the video signals as specified by the RESETX or SYNC command.


Display Blanking Control

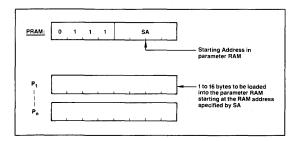
BLANK2 does not cause the resyncing of an HGDC in slave mode. BLANK1 does cause the resyncing of an HGDC in slave mode.


Zoom Factors Specify

Zoom magnification factors of 1 through 16 are available using codes 0 through 15, respectively.

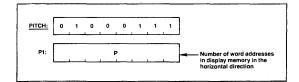
Cursor Position Specify

In character mode, the third parameter byte is not needed. The cursor is displayed for the word time in which the display scan address (DAD) equals the cursor address. In graphics mode, the cursor word address specifies the word containing the starting pixel of the drawing; the dot address value specifies the pixel within that word.



When the WG bit is set to one, any data following the WDAT command is written as is. When the WG bit is set to zero, the 7220A performs as the 7220 does: The pattern written is determined by the least significant bit of each parameter byte following the WDAT command. This bit is expanded into 16 identical bits which form the pattern.

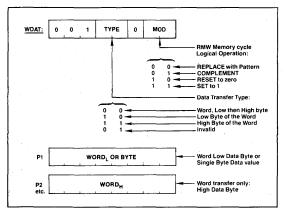
Parameter RAM Load


From the starting address, SA, any number of bytes may be loaded into the parameter RAM at incrementing addresses, up to location 15. The sequence of parameter bytes is determined by the next command byte entered into the FIFO. The parameter RAM stores 16 bytes of information in predefined locations which differ for graphics and character modes. See the parameter RAM discussion for bit assignments.

Pitch Specification

This value is used during drawing by the drawing processor to find the word directly above or below the current word, and during display to find the start of the next line.

The Pitch parameter (width of display memory) is set by two different commands. In addition to the PITCH command, the RESET (or SYNC) command also sets the pitch value. The "active-words-per-line" parameter, which specifies the width of the raster-scan display, also sets the pitch of the display memory. Note that the AW value is two less than the display window width. The PITCH command must be used to set the proper memory width larger than the window width.

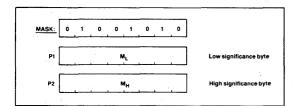

Drawing Control CommandsWrite Data into Display Memory

Upon receiving a set of parameters (two bytes for a word transfer, one for a byte transfer), one RMW cycle into video memory is done at the address pointed to by the cursor EAD. The EAD pointer is advanced to the next word, according to the previously specified direction. More parameters can then be accepted.

For byte writes, the unspecified byte is treated as all zeros during the RMW memory cycle.

In graphics bit-map situations, only the LSB of the WDAT parameter bytes is used as the pattern in the RMW operations. Therefore it is possible to have only an all ones or all zeros pattern. If the WG bit of the third parameter of the CURS command is set to one, any byte following the WDAT command is written as is. In coded character applications all the bits of the WDAT parameters are used to establish the drawing pattern.

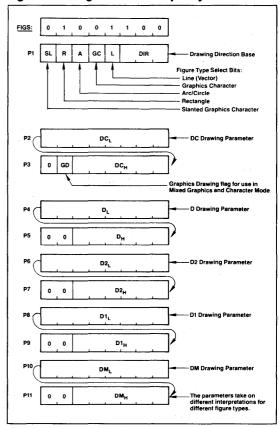
The WDAT command operates differently from the other commands which initiate RMW cycle activity. It requires parameters to set up the Pattern register while the other commands use the stored values in the parameter RAM. Like all of these commands, the WDAT command must be preceded by a FIGS command and its parameters. Only the first three parameters need be given following the FIGS opcode to set up the type of drawing, the DIR direction, and DC value. The DC parameter +1 will be the number of RMW cycles done by the HGDC with the first set of WDAT parameters. Additional sets of WDAT parameters will see a DC value of 0 which will cause only one RMW cycle to be executed per set of parameters.



Mask Register Load

This command sets the value of the 16-bit Mask register of the figure drawing processor. The Mask register controls which bits can be modified in the display memory during a read-modify-write cycle.

The Mask register is loaded both by the MASK command and the third parameter byte of the CURS command. The MASK command accepts two parameter bytes to load a 16-bit value into the Mask register. All 16-bits can be individually one or zero, under program control. The CURS command, on the other hand, puts a 1-of-16 pattern into the Mask register based on the value of the Dot Address value. dAD. If normal single-pixel-at-a-time graphics figure drawing is desired, there is no need to do a MASK command at all since the CURS command will set up the proper pattern to address the proper pixels as drawing progresses. For coded character DMA, and screen setting and clearing operations using the WDAT command, the MASK command should be used after the CURS command if its third parameter byte has been output. The Mask register should be set to all ones for any "word-at-a-time" operation.



Valid Figure Type Select Combinations

SL	R	A	GC	L	Operation
0	0	0	0	0	Character display mode drawing, individual dot drawing, DMA, WDAT, and RDAT
0	0	0	0	1	Straight line drawing
0	0	0	1	0	Graphics character drawing and area filling with graphics character pattern
0	0	1.	0	0	Arc and circle drawing
0	1	0	0	0	Rectangle drawing
1	0	0	. 1	0	Slanted graphics character drawing and slanted area filling

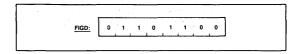
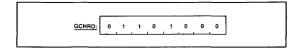

Only these bit combinations assure correct drawing operation.

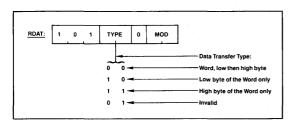
Figure Drawing Parameters Specify

Figure Draw Start

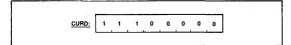

On execution of this instruction, the HGDC loads the parameters from the parameter RAM into the drawing processor and starts the drawing process at the pixel pointed to by the cursor, EAD, and the dot address, dAD.

Graphics Character Draw and Area Filling Start

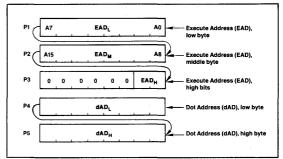
Based on parameters loaded with the FIGS command, this command initiates the drawing of the graphics character or area filling pattern stored in parameter RAM. Drawing begins at the address in display memory pointed to by the EAD and dAD values.



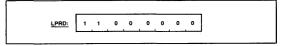
Data Read Commands

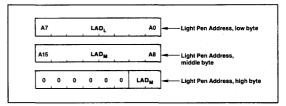

Read Data from Display Memory

Using the DIR and DC parameters of the FIGS command to establish direction and transfer count, multiple RMW cycles can be executed without specification of the cursor address after the initial load (DC = number of words or bytes).


As this instruction begins to execute, the FIFO buffer direction is reversed so that the data read from display memory can pass to the microprocessor. Any commands or parameters in the FIFO at this time will be lost. A command byte sent to the HGDC will immediately reverse the buffer direction back to write mode, and all RDAT information not yet read from the FIFO will be lost. MOD should be set to 00 if no modification to video buffer is desired.

Cursor Address Read

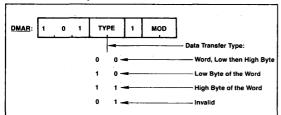

The following bytes are returned by the HGDC through the FIFO:


The execute address, EAD, points to the display memory word containing the pixel to be addressed.

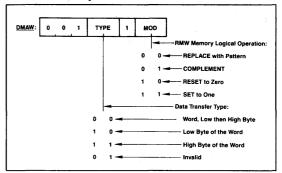
The dot address, dAD, within the word is represented as a 1-of-16 code for graphics drawing operations.

Light Pen Address Read

The following bytes are returned by the HGDC through the FIFO:


The light pen address, LAD, corresponds to the display word address, DAD, at which the light pen input signal is detected and deglitched.

The light pen may be used in graphics, character, or mixed modes but only indicates the word address of light pen position.



DMA Control Commands

DMA Read Request

DMA Write Request

AC Characteristics

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; \ V_{CC} = 5.0 \text{ V} \pm 10\%; \ \text{GND} = 0 \text{ V}$

		7220)AD Limits	7220	AD-1 Limits	7220	AD-2 Limits	Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max		Test Conditions
Read Cycle (GDC ←→	CPU)								
Address setup to	t _{AR}	0		0		0		ns	
Address hold from	t _{RA}	0		0		0		ns	
RD pulse width	t _{RH1}	t _{RD1} + 20	t _{RCY} - 1/2 t _{CLK}	t _{RD1} + 20	t _{RCY} - 1/2 t _{CLK}	t _{RD1} + 20	t _{RCY} - 1/2 t _{CLK}	ns	
Data delay from RD↓	t _{RD1}		75		65	-	55	ns	C _L = 50 pF
Data floating from	t _{DF}	0	75	0	65	0	55	ns	
RD pulse cycle	t _{RCY}	4 t _{CLK}		4 t _{CLK}		4 t _{CLK}		ns	
Write Cycle (GDC ←	CPU)								
Address setup to WR↓	t _{AW}	0		0		0		ns	
Address hold from WR1	t _{WA}	10		10		10		ns	
WR pulse width	tww	80	twcy - tclk	70	twcy - tclk	60	twcy - tclk	ns	. ,,,,,,,,,,,
Data setup to WRT	t _{DW}	65		55		45		ns	
Data hold from WRT	t _{WD}	0		10		10		ns	
WR pulse cycle	twcy	4 t _{CLK}		4 t _{CLK}		4 t _{CLK}		ns	. 18970.

AC Characteristics (cont) $T_A=0~to~+70\,^{\circ}\text{C};~V_{CC}=5.0~V~\pm10\%;~GND=0~V$

		7220/	ND Limits	7220A	D-1 Limits	7220A	D-2 Limits		Test Conditions
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
DMA Read Cycle (GDC	· CPU)							
DACK setup to RD↓	t _{KR}	0		0		0		ns	-
DACK hold from RD1	t _{RK}	0		0		0		ns	
RD pulse width	t _{RR2}	t _{RD2} + 20		t _{RD2} + 20		t _{RD2} + 20		ns	
Data delay from RD↓	t _{RD2}		1.5 t _{CLK} + 80		1.5 t _{CLK} + 70		1.5 t _{CLK} + 60	ns	$C_L = 50 \text{ pF}$
DREQ delay from 2xWCLK1	t _{REQ}		100		85		75	ns	$C_L = 50 \text{ pF}$
DREQ setup to	tQK	0		0	-	0		ns	
DACK high-level width	t _{DK}	tclk		t _{CLK}		t _{CLK}		ns	
DACK pulse cycle	t _E	4 t _{CLK} (1)		4 t _{CLK} (1)		4 t _{CLK} (1)		ns	
DREQ↓ delay from DACK↓	t _{KQ(R)}	-	t _{CLK} + 100		t _{CLK} + 90		t _{CLK} + 80	ns	$C_L = 50 \text{ pF}$
DACK low-level width	t _{LK}	2 t _{CLK}		2 t _{CLK}		2 t _{CLK}			
DMA Write Cycle (GDC	←→ CPU)		,					
DACK setup to WR↓	t _{KW}	. 0		0		0		ns	
DACK hold from WR1	twĸ	0		0		0		ns	
RMW Cycle (GDC ←	Display N	lemory)		· · · · · · · · · · · · · · · · · · ·					
Address/data display from 2xWCLK1	t _{AD}	20	105	20	90	15	80	ns	C _L = 50 pF
Address/data floating from 2xWCLK1	toff	20	105	20	90	15	80	ns	$C_L = 50 \text{ pF}$
Input data setup to 2xWCLK↓	t _{DIS}	0	· · · · · · · · · · · · · · · · · · ·	0		0		ns	
Input data hold from 2xWCLK↓	t _{DIH}	t _{DE}	:	t _{DE}		t _{DE}		ns	
DBIN delay from 2xWCLK↓	t _{DE}	20	80	20	70	15	60	ns	$C_L = 50 pF$
ALET delay from 2xWCLKT	t _{RR}	20	80	20	70	15	60	ns	$C_L = 50 \text{ pF}$
ALE↓ delay from 2xWCLK↓	t _{RF}	20	65	₂ 20	55	15	50	ns	$C_L = 50 \text{ pF}$
ALE high width	t _{RW}	1/3 t _{CLK}		1/3 t _{CLK}		1/3 t _{CLK}		ns	$C_L = 50 pF$
ALE low width	t _{RL}	1.5 t _{CLK} - 30		1.5 t _{CLK} - 30		1.5 t _{CLK} - 30		ns	
Address setup to ALE↓	t _{AA}	30		30		30			

⁽¹⁾ For high-byte and low-byte transfers: $t_E = 5 t_{CLK}$.

AC Characteristics (cont)

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = 5.0 \text{ V} \pm 10\%; \text{ GND} = 0 \text{ V}$

		7220A	D Limits	7220AD-1 Limits		7220A	D-2 Limits		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Display Cycle (GDC ←	→ Display	Memory)							
Video signal display from 2xWCLK1	t _{VD}		90		80		70	ns	C _L = 50 pF
Input Cycle (GDC ←→	Display M	emory)							
Input signal setup to 2xWCLK1	t _{PS}	10		10		10		ns	
Input signal width	t _{PW}	t _{CLK}		t _{CLK}		t _{CLK}		ns	
Clock (2xWCLK)									
Clock rise time	t _{CR}		15		15		15	ns	
Clock fall time	t _{CF}	**	15		15		15	ns	
Clock high pulse width	t _{CH}	70	-	61		52		ns	
Clock low pulse width	t _{CL}	70		61		52		ns	
Clock cycle	t _{CLK}	165	10000	145	10000	125	10000	ns	

Capacitance

 $T_A = 25$ °C; $V_{CC} = GND = 0$ V

			Limits			Test	
Parameter	Symbol	Min Typ		Max	Unit	Conditions	
Input capacitance IO capacitance	C _{IN} C _{IO}			10 20	pF pF	f _C = 1 MHz V ₁ (unmeasured)	
Output capacitance Clock input capacitance	С _{ОИТ} С <i>ф</i>			20 20	pF pF	= 0 V	

Absolute Maximum Ratings (Tentative)

Ambient temperature under bias	0 to +70°C
Storage temperature	65 to +150°C
Voltage on any pin with respect to ground	−0.5 to +7 V
Power dissipation	1.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

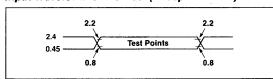
 $T_{\mbox{\scriptsize A}}=0$ to +70 °C; $V_{\mbox{\scriptsize CC}}=5$ V ±10%; GND =0 V

		Limits				Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input low voltage	VIL	-0.5		0.8	٧	(Note 1)	
Input high voltage	VIH	2.2		V _{CC} + 0.5	٧	(Notes 2, 3)	
Output low voltage	VOL			0.45	٧	$I_{OL} = 2.2 \text{ mA}$	
Output high voltage	V _{OH}	2.4			٧	$I_{OH} = -400 \mu A$	

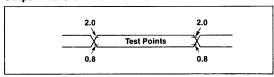
DC Characteristics (cont)

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = 5 \text{ V} \pm 10\%; \text{ GND} = 0 \text{ V}$

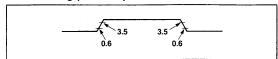
			Lir	nits		Test	
Parameter	Symbol	Min Typ		Max	Unit	Conditions	
Input Iow leak current (except VSYNC, DACK)	I _{IL}			-10	μΑ	$V_I = 0 V$	
Input low leak current (VSYNC, DACK)	Iμ			-500	μΑ	$V_i = 0 V$	
Input high leak current (except LPEN/DH)	I _{IH}			+10	μΑ	$V_i = V_{CC}$	
Input high leak current (LPEN/DH)	liH			+500	μΑ	$V_I = V_{CC}$	
Output low leak current	loL			-10	μΑ	V ₀ = 0 V	
Output high leak current	I _{ОН}			+10	μΑ	$V_0 = V_{CC}$	
Clock input low voltage	V _{CL}	-0.5		0.6	٧		
Clock input high voltage	V _{CH}	3.5	٠.	V _{CC} + 1.0	٧		
V _{CC} supply current	Icc			270	mΑ		


Note

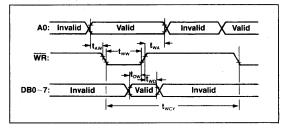
- (1) For 2xWCLK, $V_{IL} = -0.5$ to +0.6 V.
- (2) For 2xWCLK, $V_{IH} = +3.9 \text{ V}$ to $V_{CC} +1.0 \text{ V}$.
- (3) For \overline{WR} , $V_{IH} = 2.5 \text{ V}$ to $V_{CC} + 0.5 \text{ V}$.



AC Testing Conditions


Input Waveform for AC Test (Except 2xCCLK)

Output Waveform for AC Test

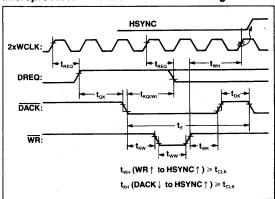


Clock Timing (2xCCLK)

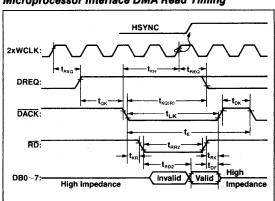


Timing Waveforms

Microprocessor Interface Write Timing

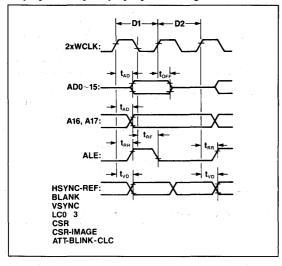


Microprocessor Interface Read Timing

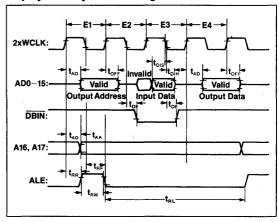


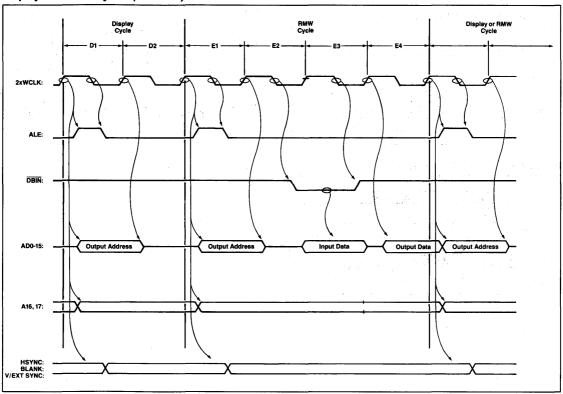
Timing Waveforms (cont)

Microprocessor Interface DMA Write Timing

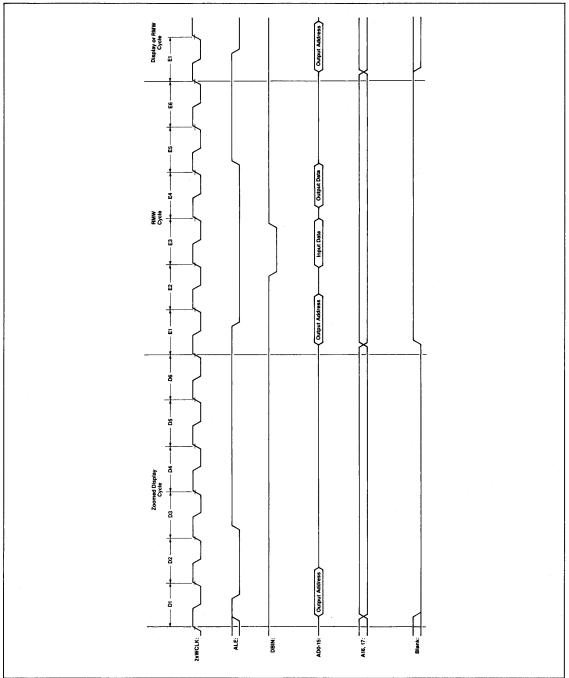


Microprocessor Interface DMA Read Timing

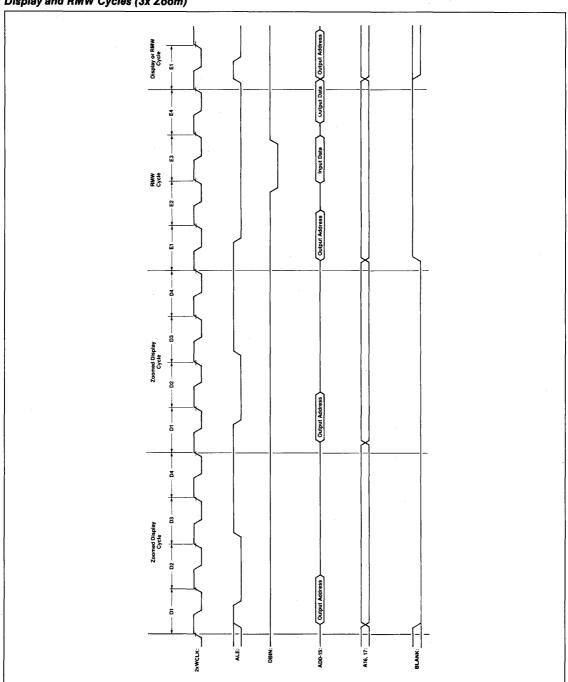



Display Memory Display Cycle Timing

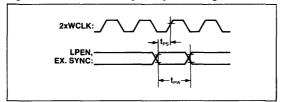
Display Memory RMW Timing



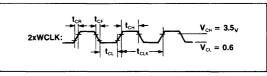
Display and RMW Cycles (1x Zoom)

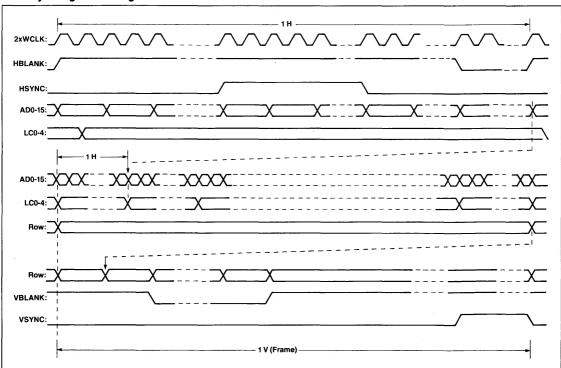


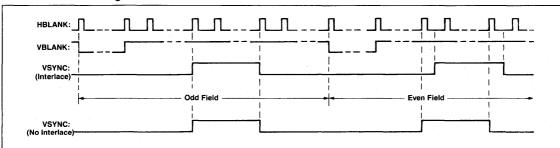
Display and RMW Cycles (2x Zoom)



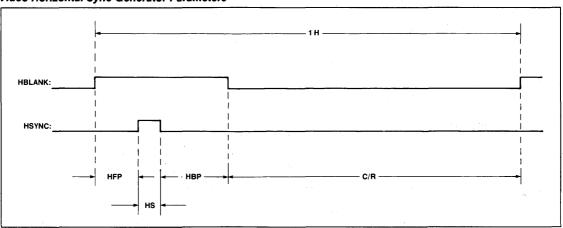
Display and RMW Cycles (3x Zoom)



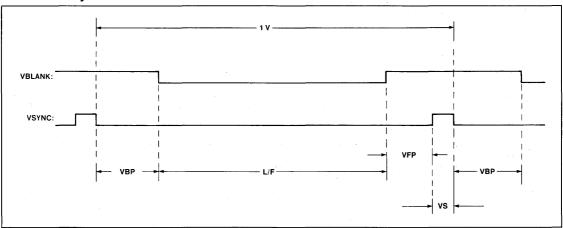

Light Pen and External Sync Input Timing

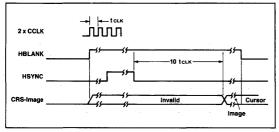

Clock Timing (2xWCLK)

Video Sync Signals Timing

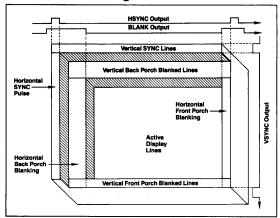


Interlaced Video Timing

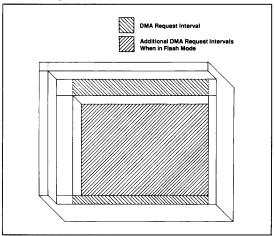


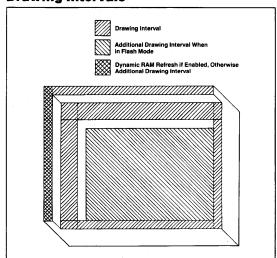

Video Horizontal Sync Generator Parameters

Video Vertical Sync Generator Parameters

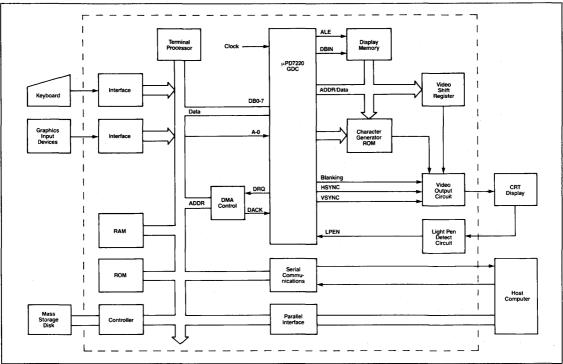


Cursor—Image Bit Flag

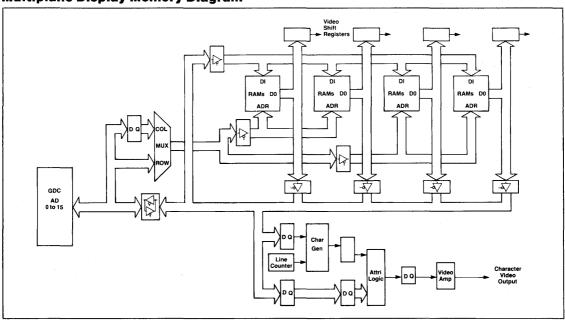



Video Field Timing

DMA Request Intervals



Drawing Intervals



Block Diagram of a Graphics Terminal

Multiplane Display Memory Diagram

CMOS SYSTEM SUPPORT PRODUCTS

7

Section 7 — CMOS System Support Products

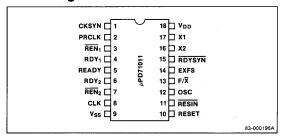
μPD71011	Clock Pulse Generator/Driver	7-3
μPD71051	Serial Control Unit 7	7-11
μPD71054	Programmable Timer/Counter 7	'-31
μPD71055	Parallel Interface Unit	'-47
μPD71059	Interrupt Control Unit 7	'-67
μPD71071	DMA Controller 7	'-91
μPD71082/83	8-Bit Latches 7-	127
μPD71084	Clock Pulse Generator/Driver 7-	-131
μPD71086/87	8-Bit Bus Buffer/Drivers 7-	139
μPD71088	System Bus Controller 7-	143
μPD82C43	CMOS Input/Output Expander for µPD8048/C48 Family 7-	149

Description

The μ PD71011 is a clock pulse generator/driver for microprocessors and their peripherals using NEC's high-speed CMOS technology.

Features

- ☐ CMOS technology
- ☐ Clock pulse generator/driver for µPD70108/70116 or other CMOS or NMOS CPUs and their peripherals
- ☐ 50% duty cycle
- ☐ Frequency source can be crystal or external clock input
- ☐ Reset signal with Schmitt-trigger circuit for CPU or peripherals
- ☐ Bus ready signal with two-bus system synchronization
- \Box Clock synchronization with other μ PD71011s
- ☐ Single +5 V ±10% power supply
- ☐ Industrial temperature range: -40 to +85 °C


Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD71011C	18-pin plastic DIP	20 MHz
μPD71011G	20-pin plastic SO (available 3Q86)	20 MHz

Pin Identification

No.	Symbol	Function
1	CKSYN	Clock synchronization input
2	PRCLK	Peripheral clock output
3	REN ₁	Bus ready enable input 1
4	RDY ₁	Bus ready input 1
5	READY	Ready output
6	RDY ₂	Bus ready input 2
7	REN ₂	Bus ready enable input 2
8	CLK	Processor clock output
9	V _{SS}	Ground potential
10	RESET	Reset output
11	RESIN	Reset input
12	OSC	Oscillator output
13	F/X	External frequency source/crystal select input
14	EXFS	External frequency source input
15	RDYSYN	Ready synchronization select input
16	X2	Crystal input
17	X1	Crystal input
18	V _{DD}	+5 V Power supply

Pin Configuration

Pin Functions

X1, X2 [Crystal]

When F/\overline{X} is low, a crystal connected to X1 and X2 will be the frequency source for a CPU and its peripherals. The crystal frequency should be two times the frequency of CLK.

EXFS [External Frequency Source]

EXFS input is the external frequency input in the external TTL-frequency source mode (F/\overline{X} high). A square TTL-level clock signal two times the frequency of CLK's output should be used for the source.

F/X [Frequency/Crystal Select]

 F/\overline{X} input selects whether an external TTL-type input or an external crystal input is the frequency source of the CLK output. When F/\overline{X} is low, CLK is generated from the crystal connected to X1 and X2. When F/\overline{X} is high, CLK is generated from an external TTL-level frequency input on the EXFS pin. At the same time, the internal oscillator circuit will go into stop mode and the OSC output will be high.

CLK [Processor Clock]

The CLK output supplies the CPU and its local bus peripherals' clocks. CLK is a 50% duty cycle clock of one-half the frequency of the external frequency source. The CLK output is ± 0.4 V higher than the other outputs.

PRCLK [Peripheral Clock]

The PRCLK output supplies a 50% duty cycle clock at one-half the frequency of CLK to drive peripheral devices.

OSC [Oscillator]

OSC outputs a signal at the same frequency as the crystal input. When EXFS is selected, the OSC output is powered down, and its output will be high.

CKSYN [Clock Synchronization]

CKSYN synchronizes one μ PD71011 to other μ PD71011s. A high level at CKSYN resets the internal counter, and a low level enables it to count.

RESIN [Reset]

This Schmitt-trigger input generates the RESET output. It is used as a power-on reset.

RESET [Reset]

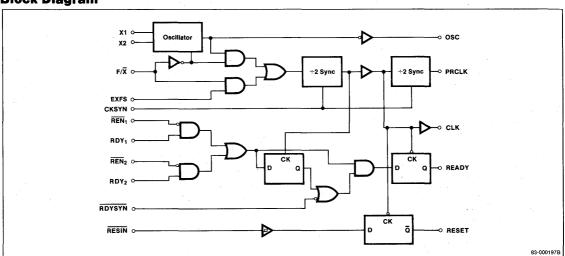
This output is a reset signal for the CPU. Reset timing is provided by the RESIN input to a Schmitt-trigger input gate and a flip-flop which will synchronize the reset timing to the falling edge of CLK. Power-on reset can be provided by a simple RC circuit on the RESIN input.

RDY₁, RDY₂ [Bus Ready]

A peripheral device sends RDY_1 or RDY_2 to signal that the data on the system bus has been received or is ready to be sent. \overline{REN}_1 and \overline{REN}_2 enable the RDY_1 or RDY_2 signals.

REN₁, REN₂ [Bus Ready Enable]

REN₁ and REN₂ qualify their respective RDY inputs.


RDYSYN [Ready Sychronization Select]

 $\overline{\text{RDYSYN}}$ selects the mode of READY signal synchronization. A low-level signal makes the synchronization a two-step process. This is used when RDY1 and RDY2 inputs are not synchronized to CLK. A high-level signal makes synchronization a one-step process. This is used when RDY1 and RDY2 are synchronized to CLK. See Block Diagram.

READY [Ready]

The READY signal to the processor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the RDY signal goes low and the guaranteed hold time of the processor has been met.

Block Diagram

Crystal

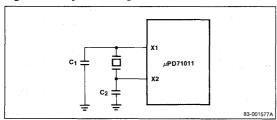

The oscillator circuit of the μ PD71011 works with a parallel-resonant, fundamental mode, "AT cut" crystal connected to pins X1 and X2.

Figure 1 shows the recommended circuit configuration. Capacitors C1 and C2 are required for frequency stability. The values of C1 and C2 (C1 = C2) can be calculated from the load capacitance (C_L) specified by the crystal manufacturer.

$$C_L = \frac{C1 \times C2}{C1 + C2} + C_S$$

Where CS is any stray capacitance in parallel with the crystal, such as the μ PD71011 input capacitance C_{in}.

Figure 1. Crystal Configuration Circuit

Absolute Maximum Ratings

 $(T_{\mbox{\scriptsize A}}=25\,{}^{\circ}_{\mbox{\scriptsize I}}\mbox{\scriptsize C},\, \mbox{\scriptsize V}_{\mbox{\scriptsize SS}}=0\,\,\mbox{\scriptsize V})$

(1A 20.0, 155 0 1)	
Power supply voltage, V _{DD}	- 0.5 to + 7.0 V
Input voltage, V _I	- 1.0 V to V _{DD} + 1.0 V
Output voltage, V ₀	- 0.5 V to V _{DD} + 0.5 V
Power dissipation, P _{DMAX}	500 mW
Operating temperature, Topt	- 40 °C to + 85 °C
Storage temperature, T _{stg}	- 65°C to + 150°C

Comment: Exposing the device to stresses above those listed in the absolute maximum ratings could cause permament damage. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC Characteristics

 $(T_A - 40 \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \text{ V} \pm 10\%)$

		Limit	t i		Test Conditions	
Parameter	Symbol	Min	Max	Units		
Input voltage high	V _{IH}	2.2		V		
Input voltage high	V _{IH}	2.6		٧	RESIN only	
Input voltage low	V _{IL}		8.0	٧		
Output voltage high	V _{OH}	$V_{DD} - 0.8$		٧		
Output voltage high	V _{OH}	V _{DD} — 0.4	:	٧	CLK , $I_{OH} = -4 \text{ mA}$	
Output voltage low	V _{OL}		0.45	٧	$I_{0L} = 4 \text{ mA}$	
Input current leakage	IIL	- 1.0	1.0	μΑ		
RDYSYN input current	lı	- 400	1.0	μΑ		
RESIN input hysteresis	V _H	0.25		V		
Power supply current (dynamic)	I _{DDdyn}		30	mA	F _{in} = 20 MHz	
Power supply current (static)	IDD		200	μΑ		

Capacitance

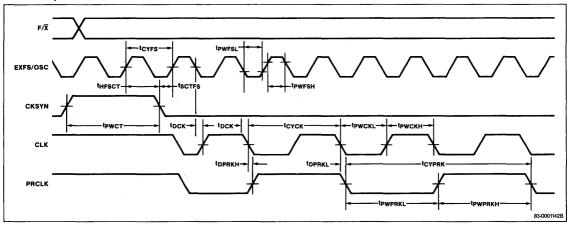
 $(T_A = 25 \,^{\circ}C, V_{DD} = +5 \, V)$

1 2		Lin	nit		Test	
Parameter	Symbol	Min	Max	Units	Conditions	
Input capacitance	C _{in}		12	pF	F = 1 MHz	

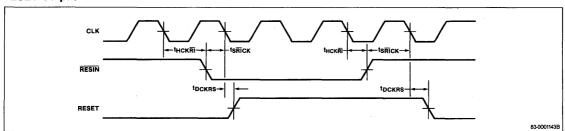
AC Characteristics

(@ f_{OSC} = 10 MHz, V_{DD} = 5 V \pm 10%, T_A = -40 to +85°C) (@ f_{OSC} = 16 MHz, V_{DD} = 5 V \pm 5%, T_A = -10 to +70°C)

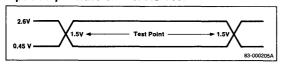
		Lim	Limit		Test	
Parameter	Symbol	Min	Min Max		Conditions	
EXFS cycle time	tcyfs	50		ns		
EXFS high	t _{FSH}	20		ns	From 90% to 90% V _{in}	
EXFS low	t _{FSL}	20		ns	From 10% to 10% of V _{in}	
OSC frequency	fosc	8	20	MHz		
CKSYN width	tpwcT	2t _{CYFS}		ns		
CKSYN hold for EXFS (active)	thesct	20		ns		
CKSYN setup (inactive)	tsctfs	20		ns		
CLK cycle time	tcyck	125		ns	:	
CLK high	tpwckh	50		ns	Test point 3.0 V f _{OSC} = 16 MHz	
		80		ns	Test point 3.0 V f _{OSC} = 10 MHz	
CLK low	tpwckl	60		ns	Test point 1.5 V f _{OSC} = 16 MHz	
		90		ns	Test point 1.5 V f _{OSC} = 10 MHz	
CLK rise time	t _{LHCK}		8	ns	Test point 1.5 V to 3.0 V, f _{OSC} = 16 MHz	
).		10	ns	Test point 1.5 V to 3.0 V, f _{OSC} = 10 MHz	
CLK fall time	thlck		7	ns	Test point 3.0 V to 1.5 V, f _{OSC} = 16 MHz	
			10	ns	Test point 3.0 V to 1.5 V, f _{OSC} = 10 MHz	
OSC to CLK † delay	tDCK	2	30	ns		


AC Characteristics (cont) (@ $f_{OSC} = 10$ MHz, $V_{DD} = 5$ V \pm 10%, $T_A = -40$ to +85°C) (@ $f_{OSC} = 16$ MHz, $V_{DD} = 5$ V \pm 5%, $T_A = -10$ to +70°C)

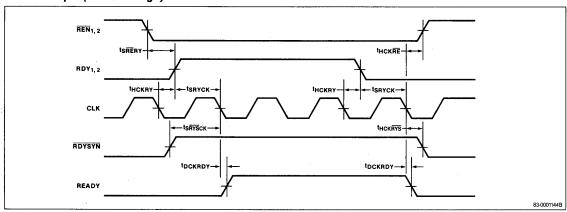
					<u> </u>
		Limit		_	Test
Parameter	Symbol	Min	Max	Units	Conditions
OSC to CLK ↓ delay	tDCK	-6	28	ns	
PRCLK cycle time	tCYPRK	250		ns	
PRCLK high	t _{PWPRKH}	t _{CYCK} -20		ns	
PRCLK low	tpwprkl	t _{CYCK} -20		ns	
CLK ↓ to PRCLK ↑ delay	^t dprkh		22	ns	
CLK ↓ to PRCLK ↓ delay	t _{DPRKL}		22	ns	
RESIN to CLK ↓ setup	ts ri ck	65		ns	
CLK ↓ to RESIN hold	t _{HCKRI}	20		ns	
CLK ↓ to RESET delay	t _{DCKRS}		40	ns	
REN _{1, 2} to RDY _{1, 2} setup	tsrery	15		ns	
CLK ↓ to REN _{1, 2} hold	t _{HCKRE}	0		ns	
RDY _{1, 2} to CLK ↓ setup	^t SRYCK	35		ns	RDYSYN high
RDY _{1, 2} to CLK † setup	tsryck	35		ns	RDYSYN low
CLK ↓ to RDY _{1, 2} hold	^t HCKRY	0		ns	
RDYSYN ↑ to CLK ↓ setup	ts rys ck	50		ns	
CLK 1 to RDYSYN ↓ hold	t _{HCKRYS}	0		ns	
CLK ↓ to READY ↑ output delay	TDCKRDY		8	ns	
CLK ↓ to READY ↓ output delay	tdckrdy		8	ns	
Rise time	t _{LH}		20	ns	0.8 V to 2.0 V
Fall time	t _{HL}		12	ns	2.0 V to 0.8 V



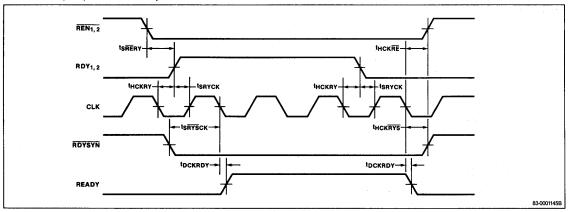
Timing Waveforms


Clock Output

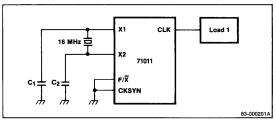
RESET Output



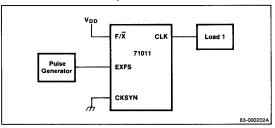
Input/Output Waveform for AC Test

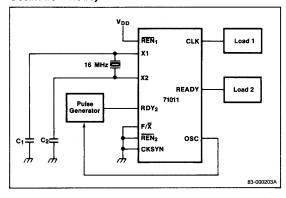


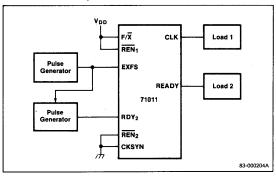
READY Output (RDYSYN High)

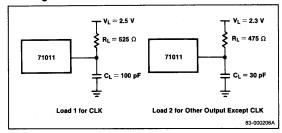


READY Output (RDYSYN Low)




Test Circuit for CLK High or Low Time (in Crystal Oscillation Mode)


Test Circuit for CLK High or Low Time (in EXFS Oscillation Mode)


Test Circuit for CLK to READY (in Crystal Oscillation Mode)

Test Circuit for CLK to READY (in EXFS Oscillation Mode)

Loading Circuits

Description

The μ PD71051 serial control unit is a CMOS USART designed to provide serial data communications in microcomputer systems. The CPU uses it as a peripheral I/O device and programs it to communicate in synchronous or asynchronous serial data transmission protocols, including IBM bisync.

The USART receives serial data streams and converts them into parallel data characters for the CPU. While receiving serial data, the USART can also accept parallel data from the CPU, convert it to serial, and transmit the data. The USART signals the CPU when it has received or transmitted a character and requires service. The CPU may read complete USART status data at any time.

Features

- ☐ Synchronous operation One or two SYNC characters
 - Internal/external synchronization
- Automatic SYNC character insertion
- ☐ Asynchronous operation Clock rate: (baud rate)

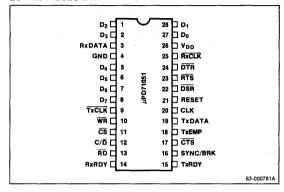
x1, x16, or x64

Send stop bits: 1, 1.5, or 2 bits

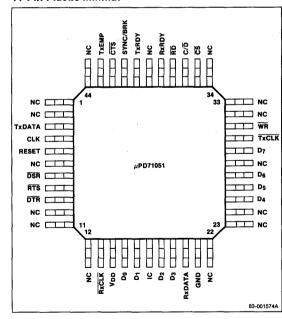
Break transmission

Automatic break detection

Valid start bit detection


- ☐ Baud rate: DC 240 kbit/s at x1 clock
- ☐ Full duplex, double-buffered transmitter/receiver
- ☐ Error detection: parity, overrun, and framing
- ☐ Five- to eight-bit characters
- ☐ Low-power standby mode
- ☐ Compatible with standard microcomputers
- ☐ Functionally equivalent to (except standby mode) and can replace the µPD8251AF
- ☐ CMOS technology
- \square Single +5 V \pm 10% power supply
- ☐ Industrial temperature range -40 to +85°C
- ☐ 28-pin plastic DIP or 44-pin plastic miniflat

Ordering Information


Part Number	Package Type	Max. Frequency of Operation
μPD71051C	28-pin plastic DIP	8 MHz
μPD71051G	44-pin plastic miniflat	8 MHz
μPD71051L	28-pin PLCC (available 3Q86)	8 MHz

Pin Configurations

28-Pin Plastic DIP

44-Pin Plastic Miniflat

Pin Identification

Plastic DIP

No	Symbol	Function
1, 2	D ₂ , D ₃	Data bus, bits 2 and 3
3	RxDATA	Receive data input
4	GND	Ground
5-8	D ₄ -D ₇	Data bus, bits 4-7
9	TxCLK	Transmitter clock input
10	WR	Write strobe input
11	cs	Chip select input
12	C/D̄	Control or data input
13	RD	Read strobe input
14	RxRDY	Receiver ready output
15	TxRDY	Transmitter ready output
16	SYNC/BRK	Synchronization/Break input/output
17	CTS	Clear to send input
18	TxEMP	Transmitter empty output
19	TxDATA	Transmit data output
20	CLK	Clock input
21	RESET	Reset input
22	DSR	Data set ready input
23	RTS	Request to send output
24	DTR	Data terminal ready output
25	RxCLK	Receiver clock input
26	V _{DD}	+5 V power supply
27, 28	D ₀ , D ₁	Data bus, bits 0 and 1

Plastic Flatpack

No	Symbol	Function
1, 2	NC	Not connected
3	TxDATA	Transmit data output
4	CLK	Clock input
5	RESET	Reset input
7	DSR	Data set ready input
8	RTS	Request to send output
9	DTR	Data terminal ready output
10-12	NC	Not connected
13	RxCLK	Receiver clock input
14	V _{DD}	+5 V power supply
15, 16	D ₀ , D ₁	Data bus, bits 0 and 1
17	IC	Internally connected (Do not connect any signal to pin 17)
18, 19	D ₂ , D ₃	Data bus, bits 2 and 3
20	RxDATA	Receive data input
21	GND	Ground
22-24	NC	Not connected
25-27	D ₄ -D ₆	Data bus, bits 4-6
28	NC	Not connected
29	D ₇	Data bus, bit 7
30	TxCLK	Transmitter clock input
31	WR	Write strobe input
32-34	NC	Not connected
35	CS	Chip select input
36	C/D	Control or data input
37	RD	Read strobe input
38	RxRDY	Receiver ready output
39	NC	Not connected
40	TxRDY	Transmitter ready output
41	SYNC/BRK	Synchronization/Break input/output
42	CTS	Clear to send input
43	TxEMP	Transmitter empty output
44	NC	Not connected

Pin Functions

D₇-D₀ [Data Bus]

D₇-D₀ are an 8-bit, 3-state, bidirectional data bus. The bus transfers data by connecting to the CPU data bus.

RESET [Reset]

A high level to the RESET input resets the μ PD71051 and puts it in an idle state. It performs no operations in the idle state. The μ PD71051 enters standby mode when this signal falls from a high level to a low level. Standby mode is released when the CPU writes a mode byte to the μ PD71051. The reset pulse width must be at least 6 t_{CYK} cycles and the clock must be enabled.

CLK [Clock]

This clock input produces internal timing for the μ PD71051. The clock frequency should be at least 30 times the transmitter or receiver clock input frequency (TxCLK, RxCLK) in sync or async mode with the X1 clock. This assures stable operation. The clock frequency must be more than 4.5 times the TxCLK or RxCLK in async mode using x16 or x64 clock mode.

CS [Chip Select]

The \overline{CS} input selects the μ PD71051. The μ PD71051 is selected by setting $\overline{CS}=0$. When $\overline{CS}=1$, the μ PD71051 is not selected, the data bus (D_7-D_0) is in the high impedance state, and the \overline{RD} and \overline{WR} signals are ignored.

RD [Read Strobe]

The \overline{RD} input is low when reading data or status information from the μ PD71051.

WR [Write Strobe]

The \overline{WR} input is low when writing data or a control byte to the μ PD71051.

C/D [Control or Data]

The C/\overline{D} input determines the data type when accessing the μ PD71051. When $C/\overline{D}=1$, the data is a control byte (table 1) or status. When $C/\overline{D}=0$, the data is character data. This pin is normally connected to the least significant bit (A_0) of the CPU address bus.

DSR [Data Set Ready]

DSR is a general-purpose input pin that can be used for modem control. The status of this pin can be determined by reading bit 7 of the status byte.

DTR [Data Terminal Ready]

 $\overline{\text{DTR}}$ is a general-purpose output pin that can be used for modem control. The state of this pin can be controlled by writing bit 1 of the command byte. If bit 1 = 0, then $\overline{\text{DTR}}$ = 1. If bit 1 = 1, then $\overline{\text{DTR}}$ = 0.

RTS [Request to Send]

 $\overline{\text{RTS}}$ is a general-purpose output pin that can be used for modem control. The status of this pin can be controlled by writing bit 5 of the command byte. If bit 5 = 1, then $\overline{\text{RTS}} = 0$. If bit 5 = 0, then $\overline{\text{RTS}} = 1$.

CTS [Clear to Send]

The $\overline{\text{CTS}}$ input controls data transmission. The $\mu\text{PD71051}$ is able to transmit serial data when $\overline{\text{CTS}}=0$ and the command byte sets TxEN = 1. If $\overline{\text{CTS}}$ is set equal to 1 during transmission, the sending operation stops after sending all currently written data and the TxDATA pin goes high.

TxDATA [Transmit Data]

The $\mu PD71051$ sends serial data over the TxDATA output.

TxRDY [Transmitter Ready]

The TxRDY output tells the CPU that the transmit data buffer in the μ PD71051 is empty; that is, that new transmit data can be written. This signal is masked by the TxEN bit of the command byte and by the $\overline{\text{CTS}}$ input. It can be used as an interrupt signal to request data from the CPU.

The status of TxRDY can be determined by reading bit 0 of the status byte. This allows the μ PD71051 to be polled. Note that TxRDY of the status byte is not masked by $\overline{\text{CTS}}$ or TxEN.

TxRDY is cleared to 0 by the falling edge of $\overline{\text{WR}}$ when the CPU writes transmit data to the μ PD71051. Data in the transmit data buffer that has not been sent is destroyed if transmit data is written while TxRDY = 0.

TxEMP [Transmitter Empty]

The μ PD71051 reduces CPU overhead by using a double buffer; the transmit data buffer (second buffer) and the transmit buffer (first buffer) in the transmitter. When the CPU writes transmit data to the transmit data buffer (second buffer), the μ PD71051 sends data by transferring the contents of the second buffer to the first buffer, after transmitting the contents of the first buffer.

This empties the second buffer and TxRDY is set to 1. The TxEMP output becomes 1 when the contents of the first buffer are sent and the second buffer is empty. Thus, TxEMP = 1 shows that both buffers are empty. In half-duplex operation, you can determine when to change from sending to receiving by testing TxEMP = 1.

When TxEMP = 1 occurs in async mode, the TxDATA pin goes high. When the CPU writes transmit data, TxEMP is set to 0 and data transmission resumes.

When TxEMP = 1 occurs in sync mode, the μ PD71051 loads SYNC characters from the SYNC character register and sends them through the TxDATA pin. TxEMP is set to 0 and resumes sending data after sending (one or two) SYNC characters and the CPU writes new transmit data to the μ PD71051.

TxCLK [Transmitter Clock]

The TxCLK input is the reference clock input that determines the transmission rate. Data is transmitted at the same rate as TxCLK in sync mode. In async mode, set TxCLK to 1, 16, or 64 times the transmission rate. Serial data from TxDATA is sent at the falling edge of TxCLK.

For example, a rate of 19200 baud in sync mode means that TxCLK is 19.2 kHz. A rate of 2400 baud in async mode can represent a TxCLK of:

x1 clock = 2.4 kHz x16 clock = 38.4 kHz x64 clock = 153.6 kHz

RxDATA [Receive Data]

The μ PD71051 receives serial data through the RxDATA input.

RxRDY [Receiver Ready]

The RxRDY output becomes 1 when the μ PD71051 receives one character of data and transfers that data to the receive data buffer; that is, when the receive data can be read. This signal can be used as an interrupt signal for a data read request to the CPU. You can determine the status of RxRDY by reading bit 1 of the status byte and use the μ PD71051 in a polling application. RxRDY becomes 0 when the CPU reads the receive data.

Unless the CPU reads the receive data (after RxRDY = 1 is set) before the next single character is received and transferred to the receive buffer, an overrun error occurs, and the OVE status bit is set. The unread data in the receive data buffer is overwritten by newly transferred data and lost.

RxRDY is set to 0 in the receive disable state. This state is set by changing the RxEN bit to 0 through the command byte. After RxEN is set to 1 (making receiving possible), RxRDY becomes 1 whenever new characters are received and transferred to the receive data buffer.

SYNC/BRK [Synchronization/Break]

The SYNC pin detects synchronization characters in sync mode. The SYNC mode byte selects internal or external SYNC detection. The SYNC pin becomes an output when internal synchronization is set, and an input when external synchronization is set.

The SYNC output goes high when the μ PD71051 detects a SYNC character in internal synchronization. When two SYNC characters are used, SYNC goes high when the last bit of the two consecutive SYNC characters is detected. You can read the status of the SYNC signal in bit 6 of the status byte. Both the SYNC pin and status are set to 0 by a read status operation.

In external synchronization, in order for the external circuit to detect synchronization, a high level of at least one period of RxCLK must be input to the SYNC pin. When the µPD71051 detects the high level, it begins to receive data, starting at the rising edge of the next RxCLK. The high level input may be removed when synchronization is released.

The BRK output is used only in async mode and shows the detection of a break state. BRK goes high when a low level signal is input to the RxDATA pin for two character bit lengths (including the start, stop, and parity bits). As with SYNC, you can read the status of BRK in bit 6 of the status byte. BRK is not cleared by the read operation.

The set BRK signal is cleared when the RxDATA pin returns to high level, or when the μ PD71051 is reset by hardware or software. The SYNC/BRK pin goes low on reset, regardless of previous mode. Figure 1 shows the break state and BRK signal.

RxCLK [Receiver Clock]

RXCLK is a reference clock input that controls the receive data rate. In sync mode, the receiving rate is the same as RXCLK. In async mode, RXCLK can be 1, 16, or 64 times the receive rate. Serial data from RXDATA is input by the rising edge of RXCLK.

V_{DD} [Power]

+5 V power supply.

GND [Ground]

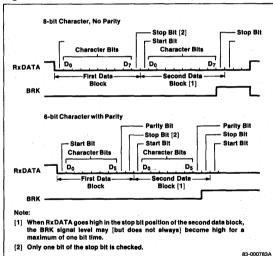

Ground.

Table 1. Control Signals and Operations

CS	RD	WR	C/O	μ P 071051	CPU Operation
0	0	1	0	Receive data buffer Data bus	Read receive data
0	0	1	1	Status register Data bus	Read status
0	1	0	0	Data bus Transmit data buffer	Write transmit data
0	1	0	1	Data bus Control byte register	Write control byte
Ö	1	. 1	х	Data bus: High impedance	None
1	x	х	х	Data bus: High impedance	None

Figure 1. Break Status and Break Signal

Block Diagram

μ PD71051 Functions

The μ PD71051 is a CMOS serial control (USART) unit that provides serial communications in microcomputer systems. The CPU handles the μ PD71051 as an ordinary I/O device.

The μ PD71051 can operate in synchronous or asynchronous systems. In sync mode, the character bit length, number of sync characters, and sync detection mode must be designated. In async mode, the communication rate, character bit length, stop bit length, etc., must be designated. The parity bit may be designated in either mode.

The µPD71051 converts parallel data received from the CPU into serial transmitted data (from the TxDATA pin), and converts serial input data (from the RxDATA pin) into parallel data so that the CPU can read it (receiving operation).

The CPU can read the current status of the μ PD71051 and can process data after checking the status, after checking for transfer errors, and μ PD71051 data buffer status.

The μ PD71051 can be reset under hardware or software control to a standby mode that consumes less power and removes the device from system operation. In this mode, the μ PD71051's previous operating mode is released and it waits for a mode byte to set the mode. The μ PD71051 leaves standby mode and shifts to a designated operating mode when the CPU writes a mode byte to it.

Status Register

The status register allows the CPU to read the status of the μ PD71051 except in standby mode. This register indicates status and allows the CPU to manage data reading, writing, and error handling during operations.

Receive Data Buffer

When the receiver has converted the serial data input from the RxDATA pin into parallel data, the converted data is stored in the receive data buffer. The CPU can then read it. Data for one character entering the receive buffer is transferred to the receive data buffer and RxRDY becomes 1, requesting that the CPU read the data.

Transmit Data Buffer

The transmit data buffer holds the parallel data from the CPU that the transmitter will convert to serial data and output from the TxDATA pin. When the CPU writes transmit data to the μ PD71051, the μ PD71051 stores data in the transmit data buffer. The transmit data buffer transfers the data to the transmitter, which sends the data from the TxDATA pin.

Control Register

This register stores the mode and the command bytes.

Control Logic

The control logic sends control signals to the internal blocks and controls the operation of the μ PD71051 based on internal and external signals.

Synchronous Character Register

This register stores one or two SYNC characters used in sync mode. During transmission, the SYNC characters stored in this register are output from the TxDATA pin when the CPU does not send a new character and TxEMP status is set. During receiving, synchronization is established when the characters received and the SYNC characters stored in this register are the same.

Transmitter

The contents of the transmit data buffer are transferred to the transmitter, converted from parallel to serial, and output from the TxDATA pin. The transmitter adds start, stop, and parity bits.

Receiver

The receiver converts serial data input from the RxDATA pin into parallel data and transfers the parallel data to the receive data buffer, allowing the CPU to read it.

The receiver detects SYNC characters and checks parity bits in sync mode. It detects the start and stop bits, and checks parity in the async mode.

In async mode, receiving does not begin (the start bit is not detected) until one effective stop bit (high level) is input to the RxDATA pin and Receive Enable (RxEN = 1) is set after setting up the mode.

Modem Control

This block controls the \overline{CTS} , \overline{RTS} , \overline{DSR} , and \overline{DTR} modem interface pins. The \overline{RTS} , \overline{DSR} , and \overline{DTR} pins can also be used as general-purpose I/O pins.

Absolute Maximum Ratings

 $T_{\Delta} = +25$ °C

A	The second secon
Power supply voltage, V _{DD}	−0.5 to +7.0 V
Input voltage, V _I	-0.5 to V _{DD} + 0.3 V
Output voltage, V ₀	-0.5 to V _{DD} + 0.3 V
Operating temperature, T _{OPT}	-40°C to +85°C
Storage temperature, T _{STG}	-65°C to +150°C
Power dissipation, PD _{MAX}	1.0 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = +25$ °C, $V_{DD} = 0$ V

	- 121 s a	Liı	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	CI		10	рF	fc = 1MHz Unmeasured pins
I/O capacitance	C _{IO}		20	pF	returned to 0 V

AC Characteristics

 $T_{A}=-40\,^{\circ}\text{C}$ to +85 °C, $V_{DD}=+5$ V, $\pm10\%$

		Lin	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Read Cycle					· · · · · · · · · · · · · · · · · · ·
Address set-up to RD ↓	t _{SAR}	0		ns	CS, C∕D
Address hold from RD 1	t _{HRA}	0		ns	ŌS, C/Ō
RD low level width	t _{RRL}	150		ns	
Data delay from RD ↓	t _{DRD}		120	ns	$C_L = 150 \text{ pF}$
Data float from RD 1	t _{FRD}	10	80	ns	
Port (DSR, CTS) set-up to RD ↓	t _{SPR}	20		tcyk	
Write Cycle					
Address set-up to WR ↓	t _{SAW}	0		ns	CS, C/D
Address hold from WR 1	t _{HWA}	0		ns	CS, C/D
WR low level width	t _{WWL}	150		ns	
Data set-up to WR 1	tsdw	80		ns	
Data hold from WR 1	t _{HWD}	0		tCYK	
Port (DTR, RTS), delay from WR	t _{DWP}		8	t _{CYK}	
Write recovery	t _{RV}	6		tcyk	Mode Initialize
time		8		t _{CYK}	Async Mode
		16		t _{CYK}	Sync Mode
Serial Transfer Tin	ing				
CLK cycle time	t _{CYK}	125	DC	ns	
CLK high level width	t _{KKH}	50		ns	
CLK low Level width	t _{KKL}	35		ns	
CLK rise time	t _{KR}	5	20	ns	
CLK fall time	t _{KF}	5	20	ns	
TxDATA delay from TxCLK	t _{DTKTD}		0.5	μS	

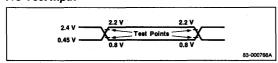
AC Characteristics

 $T_{\mbox{\scriptsize A}} = -40\,\mbox{\rm °C}$ to $+85\,\mbox{\rm °C},\, V_{\mbox{\scriptsize DD}} = +5$ V, $\pm 10\%$

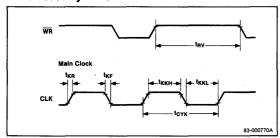
		Lim	its		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Serial Transfer Timin	g (cont)				
Transmitter input	t _{TKTKL}	12		t _{CYK}	1xBR (1)
width low level		1		t _{CYK}	16x, 64xBR
Transmitter input clock pulse	† _{TKTKH}	15		tcyk	1xBR
width high level		3		t _{CYK}	16x, 64xBR
Transmitter input	f _{TK} (2)	DC	240	kHZ	1xBR
clock frequency		DC	1536	kHz	16xBR
		DC	1536	kHz	64xBR
Receiver input	t _{RKRKL}	12		tcyk	1xBR
clock pulse width low level		1		t _{CYK}	16x, 64xBR
Receiver input	trkrkh	15		t _{CYK}	1xBR
clock pulse width high level		3		t _{CYK}	16x, 64xBR
Receiver input clock frequency	f _{RK} (2)	DC	240	kHz	1xBR
		DC	1536	kHz	16xBR
		DC	1536	kHz	64xBR
RxDATA set-up to sampling pulse	tSRDSP	1		μS	
RxDATA hold from sampling pulse	thsprd	1		μS	
TxEMP delay time (TxDATA)	t _{DTXEP}		20	tcyk	
TxRDY delay time (TxRDY1)	t _{DTXR}		8	tCYK	-
TxRDY delay time (TxRDY↓)	t _{DWTXR}		200	ns	N. A.
RxRDY delay time (RxRDY1)	t _{DRXR}		26	tCYK	
RxRDY delay time (RxRDY↓)	t _{DRRXR}		200	ns	
SYNC output delay time (for internal sync)	t _{DRKSY}	4 - 2	26	tcyk	· .
SYNC input set-up time (for external sync)	^t SSYRK	18	-	tCYK	
RESET pulse width		6		tcyk	

Note:

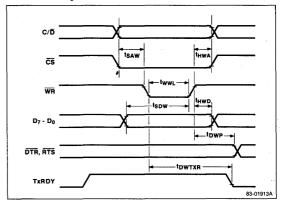
- (1) BR = Baud rate
- (2) 1xBR: f_{TK} or $f_{RK} \le 1/30 t_{CLK}$, 16x, 64xBR: f_{TK} or $f_{RK} \le 1/4.5 t_{CLK}$
- (3) System CLK is needed during reset operation
- (4) Status update can have a maximum delay of 28 $\rm t_{CYK}$ from the event effecting the status.

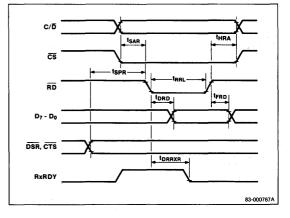

DC Characteristics

 $\rm T_A = -40\,^{\circ}C$ to +85 $^{\circ}C,\, V_{DD} = +5~V \pm 10\%$

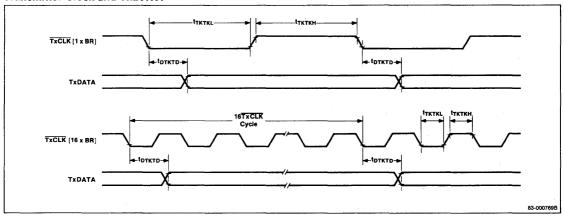

		Lim	its		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input voltage high	V _{IH}	2.2	V _{DD} +0.3	V	
Input voltage low	V _{IL}	0.5	0.8	٧	
Output voltage high	V _{OH}	.7 x V _{DD}		٧	$I_{OH} = -400 \mu\text{A}$
Output voltage low	V _{OL}		0.4	V	$I_{OL} = 2.5 \text{ mA}$
Input leakage current high	luh		10	μΑ	$V_{!} = V_{DD}$
Input leakage current low	ILIL		-10	μΑ	V _I = 0 V
Output leakage current high	I _{LOH}		10	μΑ	$v_0 = v_{DD}$
Output leakage current low	I _{LOL}		-10	μΑ	V ₀ = 0 V
Cupply ourrent	I _{DD1}		10	mA	8 MHz operation
Supply current	I _{DD2}		50	μΑ	Stand-by mode

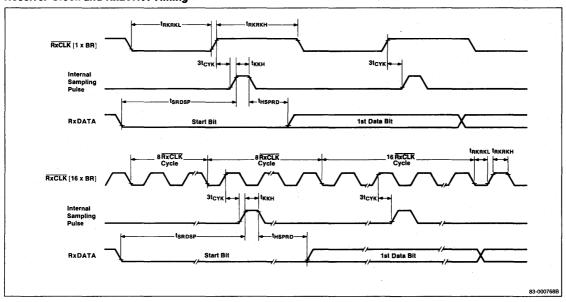
Timing Waveforms


AC Test Input


Write Recovery Time

Write Data Cycle


Read Data Cycle



Timing Waveforms (cont)

Transmitter Clock and TxDATA

Receiver Clock and RxDATA Timing

Connecting the μ PD71051 to the System

The CPU uses the μ PD71051 as an I/O device by allocating two I/O addresses, set by the value of C/ \overline{D} . One I/O address is allocated when the level of C/ \overline{D} is low and becomes a port to the transmit and receive data register. The other I/O address is allocated when C/ \overline{D} is high and becomes a port to the mode, command, and status registers. Generally, the least significant bit (A₀) of the CPU address bus is connected to C/ \overline{D} to get a continuous I/O address. This is shown in figure 2.

Pins TxRDY and RxRDY are connected to the CPU or, when interrupts are used, to the interrupt pin of the interrupt controller.

Operating the μ PD71051

Start with a hardware reset (set the RESET pin high) after powering on the μ PD71051. This puts the μ PD71051 into standby mode and it waits for a mode byte. In async mode, the μ PD71051 is ready for a command byte after the mode byte; the mode byte sets the communication protocol to the async mode. In sync mode, the μ PD71051 waits for one or two SYNC characters to be sent after the mode byte; set C/ \overline{D} = 1. A command byte may be sent after the SYNC characters are written. Figure 3 shows this operation sequence.

In both modes, it is possible to write transmit data, read receive data, read status, and write more command bytes after the first command byte is written. The μ PD71051 performs a reset, enters standby mode, and returns to a state where it waits for a mode byte when the command byte performs a software reset.

Figure 2. System Connection

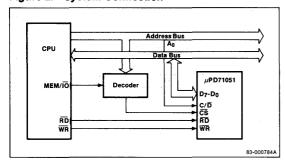
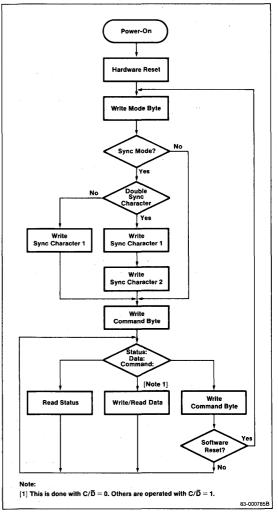



Figure 3. μPD71051 Operating Procedure

Mode Register

When the μ PD71051 is in standby mode, writing a mode byte to it will release standby mode. Figure 4 shows the mode byte format for designating async mode. Figure 5 shows the mode byte format for designating sync mode. Bits 0 and 1 must be 00 to designate sync mode. Async mode is designated by all other combinations of bits 0 and 1.

The P1, P0 and L1, L0 bits are common to both modes. Bits P1 and P0 (parity) control the generation and checking (sending and receiving) functions. These parity bit functions do not operate when P0 = 0. When P1, P0 = 01, the μ PD71051 generates and checks odd parity. When P1, P0 = 11, it generates and checks even parity.

Bits L1 and L0 set the number of bits per character (n). Additional bits such as parity bits are not included in this number. Given n bits, the μ PD71051 receives the lower n bits of the 8-bit data written by the CPU. The upper bits (8 -n) of data that the CPU reads from the μ PD71051 are set to zero.

The ST1, ST0 and B1, B0 bits are used in async mode. The ST1 and ST0 bits determine the number of stop bits added by the μ PD71051 during transmission.

The B1 and B0 bits determine the relationship between the baud rates for sending and receiving, and the clocks TxCLK and RxCLK. B1 and B0 select a multiplication rate of 1, 16, or 64 for the frequency of the sending and receiving clock relative to the baud rate. Multiplication by 1 is not normally used in async mode. Note that the data and clock must be synchronized on the sending and receiving sides when multiplication by 1 is used.

The SSC and EXSYNC bits are used in sync mode. The SSC bit determines the number of SYNC characters. SSC = 1 designates one SYNC character. SSC = 0 designates two SYNC characters. The number of SYNC characters determined by the SSC bit are written to the μ PD71051 immediately after writing the mode byte.

The EXSYNC bit determines whether sync detection during receiving operations is internal or external. EXSYNC = 1 selects external sync detection and EXSYNC = 0 selects internal sync detection.

Figure 4. Mode Byte for Setting Asynchronous Mode

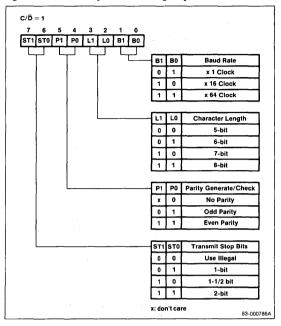
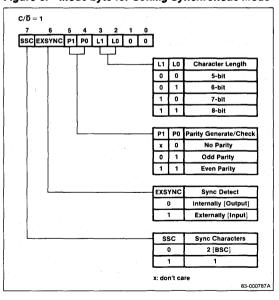



Figure 5. Mode byte for Setting Synchronous Mode

Command Register

Commands are issued to the μ PD71051 by the CPU by command bytes that control the sending and receiving operations of the μ PD71051. A command byte is sent after the mode byte (in sync mode, a command byte may only be sent after writing SYNC characters) and the CPU must set C/ $\overline{D}=1$. Figure 6 shows the command byte format.

Bit EH is set to 1 when entering hunt phase to synchronize in sync mode. Bit RxEN should also be set to 1 at that time. Data reception begins when SYNC characters are detected and synchronization is achieved, thus releasing hunt phase.

When bit SRES is set to 1, a software reset is executed, and the μ PD71051 goes into standby mode and waits for a mode byte.

Bit RTS controls the \overline{RTS} output pin. \overline{RTS} is low when the RTS bit = 1, and goes high when RTS = 0.

Setting bit ECL to 1 clears the error flags (PE, OVE, and FE) in the status register. Set ECL to 1 when entering the hunt phase or enabling the receiver.

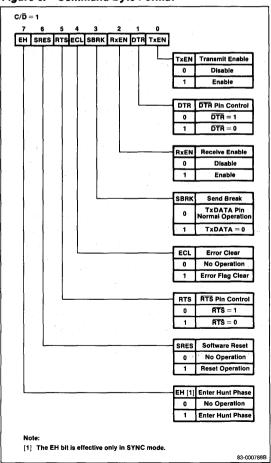
Bit SBRK sends a break. When SBRK = 1, the data currently being sent is destroyed and the TxDATA pin goes low. Set SBRK = 0 to release a break. Break also works when TxEN = 0 (send disable).

Bit RxEN enables and disables the receiver. RxEN=1 enables the receiver and RxEN=0 disables the receiver. Synchronization is lost if RxEN=0 during sync mode.

Bit DTR controls the \overline{DTR} output pin. \overline{DTR} goes low when the DTR bit = 1 and goes high when the DTR bit = 0.

The TxEN bit enables and disables the transmitter. TxEN = 1 enables the transmitter and TxEN = 0 disables the transmitter. When TxEN = 0, sending stops and the TxDATA pin goes high (mark status) after all the currently written data is sent.

Status Register

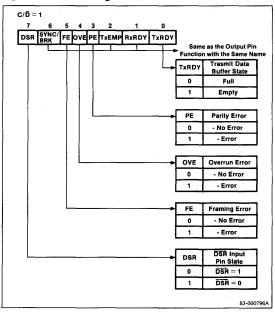

The CPU can read the status of the μ PD71051 at any time except when the μ PD71051 is in standby mode. Status can be read after setting C/ \overline{D} = 1 and \overline{RD} = 0. Status is not updated while being read. Status updating is delayed at least 28 clock periods after an event that affects the status. Figure 7 shows the format of the status register.

The TxEMP and RxRDY bits have the same meaning as the pins of the same name. The SYNC/BRK bit generally has the same meaning as the SYNC/BRK pin. In external synchronization mode, the status of this bit does not always coincide with the pin. In this case, the SYNC pin becomes an input and the status bit goes to 1 when a rising edge is detected at the input. The status bit remains at 1 until it is read, even when the input level at the SYNC pin goes low. The status bit becomes 1 when a SYNC character is input with the RxDATA input, even when the pin is at a low level.

The DSR bit shows the status of the $\overline{\rm DSR}$ input pin. The status bit is 1 when the $\overline{\rm DSR}$ pin is low.

The FE bit (framing error) becomes 1 when less than one stop bit is detected at the end of each data block during asynchronous receiving. Figure 8 shows how a framing error can happen.

Figure 6. Command Byte Format



The OVE bit (overrun error) becomes 1 when the CPU delays reading the received data and two new data bytes have been received. In this case, the first data byte received is overwritten and lost in the receive data buffer. Figure 9 shows how an overrun can happen.

The PE bit (parity error) becomes 1 when a parity error occurs in a receive state.

Figure 7. Status Register Format

Framing, overrun, and parity errors do not disable the μ PD71051's operations. All three error flags are cleared to 0 by a command byte that sets the ECL bit to 1.

The TxRDY bit becomes 1 when the transmit data buffer is empty. The TxRDY output pin becomes 1 when the transmit data buffer is empty, the \overline{CTS} pin is low, and TxEN=1. That is, bit TxRDY = Transmit Data Buffer Empty, pin TxRDY = (Transmit Data Buffer Empty)•(\overline{CTS} = 0)•(TxEN = 1).

Figure 8. Framing Error

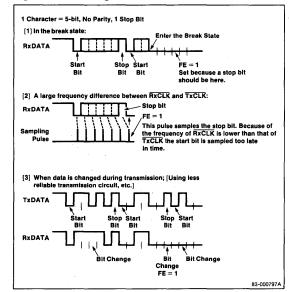
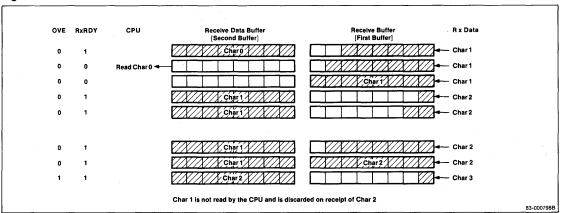



Figure 9. Overrun Error

Sending in Asynchronous Mode

The TxDATA pin is typically in the high state (marking) when data is not being sent. When the CPU writes transmit data to the μ PD71051, the μ PD71051 transfers the transmit data from the transmit data buffer to the send buffer and sends the data from the TxDATA pin after adding one start bit (low level) and a programmed stop bit. If parity is used, a parity bit is inserted between the character and the stop bit. Figure 10 shows the data format for async mode characters. Serial data is sent by the falling edge of the signal that divided $\overline{\text{TxCLK}}$ (1/1, 1/16, or 1/64).

When bit SBRK is set to 1, the TxDATA pin goes low (break status), regardless of whether data is being sent. Figure 11 is a fragment of a typical program to send data in the async mode. Figure 12 shows the output from pin TxDATA.

Figure 10. Asynchronous Mode Data Format

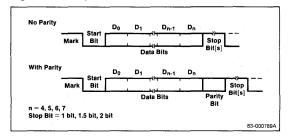
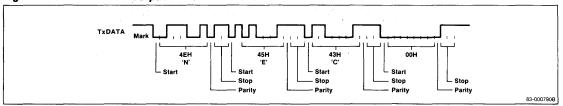
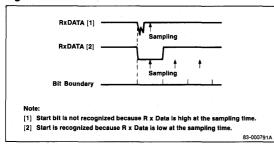



Figure 11. Asynchronous Transmitter Example

ASYNTX:	CALL	ASYNMOD AL, 00010001B	;Set async mode ;Command: clear error flag, transmit enable
	OUT	PCTRL,AL	· ·
	MOV	BW, OFFSET TXDADR	;Transmit data area
TXSTART:	IN	AL, PCTRL	
*	AND	AL, 01H	
	TEST	AL, 01H	;Read status
	BNE	TXSTART	;Wait until TxRDY = 1
	MOV	AL, [BW]	;Write transmit data
	OUT	PDATA, AL	
	INC	BW	;Set next data address
	CMP	AL, 00H	
	BNE	TXSTART	;End if data = 0
	RET		
TXDADR	DB	'NEC'	;Transmit data 4EH, 45H, 43H, 00
	DB	0	the state of the s
ASYNMOD:	MOV	AL, 0	;Writes control bytes three times
	OUT	PCTRL, AL	;with 00H to unconditionally
	OUT	PCTRL, AL	;accept the new command byte
	OUT	PCTRL, AL	
	MOV	AL, 01000000B	;Software reset
	OUT	PCTRL, AL	
	MOV	AL, 11111010B	;Write mode byte
	OUT	PCTRL, AL	;Stop bit = 2 bits, even parity
	RET		;7 bits/character, x16 clock
L			

Figure 12. TxDATA Pin Output


Receiving in Asynchronous Mode

The RxDATA pin is normally in the high state when data is not being received, as shown in figure 13. The μ PD71051 detects the falling edge of a low level signal when a low level signal enters it.

The μ PD71051 samples the level of the RxDATA input (only when x16 or x64 clock is selected) in a position 1/2 bit time after the falling edge of the RxDATA input to check whether this low level is a valid start bit. It is considered a valid start bit if a low level is detected at that time. If a low level is not detected, it is not regarded as a start bit and the μ PD71051 continues testing for a valid start bit.

When a start bit is detected, the sampling points of the data bits, parity bit (when used), and stop bit are decided by a bit counter. The sampling is performed by the rising edge of the RXCLK when an X1 clock is used. When a x16 or x64 clock is used, it is sampled at the nominal middle of RXCLK.

Figure 13. Start Bit Detection

Data for one character entering the receive buffer is transferred to the receive data buffer and causes RxRDY = 1, requesting that the CPU read the data. When the CPU reads the data, RxRDY becomes 0.

When a valid stop bit is detected, the μ PD71051 waits for the start bit of the next data. If a low level is detected in the stop bit, a framing error flag is set; however, the receiving operation continues as if the correct high level had been detected. A parity error flag is set if a parity error is detected. An overrun error flag is set when the CPU does not read the data in time, and the next receiving data is transferred to the receive data buffer, overwriting the unread data. The μ PD71051's sending and receiving operations are not affected by these errors.

If a low level is input to the RxDATA pin for more than two data blocks during a receive operation, the μ PD71051 considers it a break state and the SYNC/BRK pin status becomes 1.

In async mode, the start bit is not detected until a high level of more than one bit is input to the RxDATA pin and the receiver is enabled. Figure 14 is a fragment of a typical program to receive the data sent in the previous async transmit example.

Figure 14. Asynchronous Receiver Example

ASYNRX:	CALL	ASYNMOD	;Set ASYNC mode
	MOV	AL, 00010100B	;Command: clear error flag, receive ;enable
	OUT	PCTRL,AL	
	MOV	BW, OFFSET RXDADR	;Data store area
RXSTART:	IN	AL, PCTRL	
	AND	AL, 02H	
	TEST	AL, 02H	;Read status
	BNE	RXSTART	;Wait until RxRDY = 1
	IN	AL, PDATA	;Read and store the receive data
	MOV	[BW], AL	
	INC	BW	;Set next store address
	CMP	AL, 00H	;End if data $= 0$
	BNE	RXSTART	
	RET		
RXDADR	DB	256 DUP	;Reserve receive data area

Sending in Synchronous Mode

Following the establishment of sync mode and the enabling of the transmitter, the TxDATA pin stays high until the CPU writes the first character (normally, SYNC characters). When data is written, the TxDATA pin sends one bit for each falling edge of TxCLK if the CTS pin is low. Unlike async mode, start and stop bits are not used. However, a parity bit may be set. Figure 15 shows these data formats.

Once sending begins, the CPU must write data to the μ PD71051 at the same rate as that of \overline{TxCLK} . If TxEMP goes to 1 because of a delay in writing by the CPU, the μ PD71051 sends SYNC characters until the CPU writes data. TxEMP goes to 0 when data is written, and the data is sent as soon as transmission of SYNC characters stops.

Figure 15. Synchronous Mode Data Format

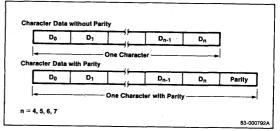


Figure 16. Synchronous Mode Transmit Timing

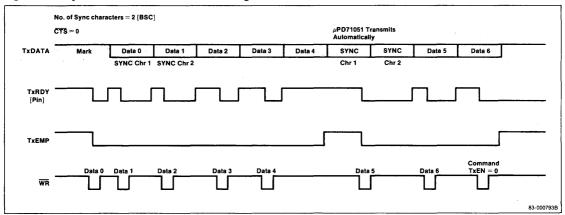
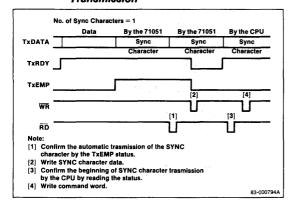



Figure 17. Issuing a Command During SYNC Character Transmission

Automatic transmission of SYNC characters begins after the CPU sends new data. SYNC characters are not automatically sent by enabling the transmitter. Figure 16 shows these timing sequences.

If a command is sent to the μ PD71051 while SYNC characters are automatically being sent and TxEMP = 1, the μ PD71051 may interpret the command as a data

byte and transmit it as data. If a command must be sent under these conditions, the CPU should send a SYNC character to the μ PD71051 and send the command while the SYNC character is being transmitted. This is shown in figure 17.

Figure 18 is a fragment of a typical program for sending in sync mode.

Figure 18. Synchronous Transmitter Example

CALL	SYNMOD	;Set sync mode
1101/		,oer synt mode
MOV	AL, 00010001B	;Command; clear error
OUT	PCTRL, AL	;flags, transmit enable
MOV	BW, OFFSET TXDADR	Start location of data area TxDADR
MOV	CL, LDLEN	;Set number of bytes (LDLEN) to be transmitted
MOV	CH, 00H	
IN	AL, PCTRL	;Transmit the length byte
AND	AL, 01H	· · · · · · · · · · · · · · · · · · ·
BNE	TXLEN	
MOV	AL, LDLEN	
OUT	PDATA, AL	
IN	AL, PCTRL	
AND	AL, 01H	
BNE	TXDATA	;Transmit the number of
MOV	AL, (BW)	;bytes specified by LDLEN
OUT	PDATA, AL	
INC	BW	
DBNZ	TXDATA	'
MOV	AL, 00010000B	;Command; clear error
	PCTRL, AL	;flags, transmit disable
		;SYNC character 1
	•	;SYNC character 2
		;Write control bytes
		;three times with 00H to
OUT	PCTRL, AL	;unconditionally accept the new ;command byte
MOV	AL, 01000000B	;Software reset
OUT	PCTRL, AL	
MOV	AL, 00111100B	;Write mode byte: 2 SYNC
OUT	PCTRL, AL	;characters, internal sync detect,
		even parity, 8 bits/character
MOV	AL, SYNC1	
OUT	PCTRL, AL	;Write SYNC characters
MOV	AL, SYNC2	
OUT	PCTRL, AL	
RET		
	MOV MOV IN AND BNE MOV OUT IN AND BNE MOV OUT INC DBNZ MOV OUT RET DB MOV OUT OUT OUT MOV OUT MOV OUT MOV OUT OUT	MOV CL, LDLEN MOV CH, 00H IN AL, PCTRL AND AL, 01H BNE TXLEN MOV AL, LDLEN OUT PDATA, AL IN AL, PCTRL AND AL, 01H BNE TXDATA MOV AL, (BW) OUT PDATA, AL INC BW DBNZ TXDATA MOV AL, 00010000B OUT PCTRL, AL RET DB ? DB ? MOV AL, 00H OUT PCTRL, AL MOV AL, 01000000B OUT PCTRL, AL OUT PCTRL, AL OUT PCTRL, AL MOV AL, 0111100B OUT PCTRL, AL MOV AL, SYNC1 OUT PCTRL, AL MOV AL, SYNC1 OUT PCTRL, AL MOV AL, SYNC1 OUT PCTRL, AL MOV AL, SYNC2 OUT PCTRL, AL

Receiving in Synchronous Mode

In order to receive in sync mode, synchronization must be established with the sending side. The first command after setting sync mode and writing the SYNC character must be EH = 1, ECL = 1, and RxEN = 1. When hunt phase is entered all the bits in the receive buffer are set to 1. In internal synchronization, data on the RxDATA pin is input to the receive buffer for each rising edge of RxCLK and is compared with the SYNC character at the same time. Figure 19 shows this internal sync detection.

When the receive buffer and the SYNC character coincide, and parity is not used, the µPD71051 ends hunt phase and SYNC is set to 1 in the center of the last SYNC bit. When parity is used, SYNC becomes 1 in the center of the parity bit. Receiving starts with the bit which follows the bit when SYNC is set to 1.

In external sync detection, synchronization is achieved by setting the SYNC pin high from an external circuit for at least one period of RxCLK. Hunt phase ends, and data reception can start. At this time, the SYNC status bit becomes 1, and goes to 0 when the status is read. The SYNC status bit is set to 1 when the SYNC input has a rising edge followed by a high level of more than one period of RxCLK, even after synchronization is achieved.

The µPD71051 can regain lost synchronization anytime by issuing an enter hunt phase command.

After synchronization, the SYNC character is compared with each character regardless of whether internal or external synchronization is used. When the characters coincide, SYNC becomes 1, indicating that a SYNC character has been received. SYNC (SYNC status bit only in external detection) becomes 0 when the status is read.

Overrun and parity errors are checked the same way as in async mode, affecting only the status flag. Parity checking is not performed in the hunt phase. Figure 20 is a fragment of a typical program that receives the data sent by the previous sync transmit program example. Note that the frequencies of TxCLK on the transmitter and RxCLK on the receiver must be the same.

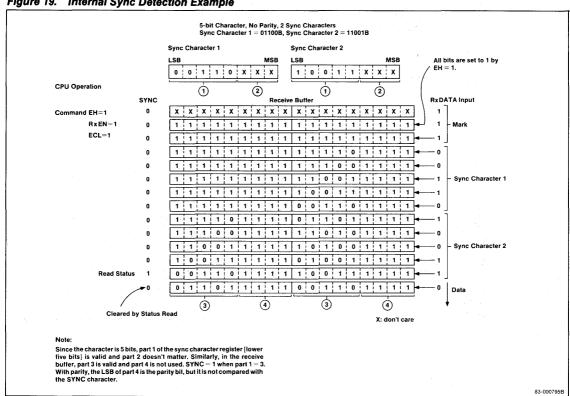
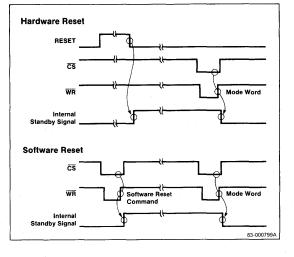


Figure 19. Internal Sync Detection Example

Figure 20. Synchronous Receiver Example

SYNRX:	CALL MOV OUT MOV	SYNMOD AL, 10010100B PCTRL, AL BW, OFFSET RXDADR	;Set sync mode ;Command: enter hunt ;phase, clear error flags, receive enable ;Set receive data store address
RXLEN:	IN AND TEST	AL, PCTRL AL, 02H AL, 02H	
	BNE	RXLEN	;Receive the number of
]	IN	AL, DATA	;receive data
	MOV	STLEN, AL	;Set the number of
	MOV	CL, AL	;receive data to both variable and ;counter
	MOV	CH, 00H	
RXDATA:	IN	AL, PCTRL	
	AND	AL, 02H	
1	TEST	AL, 02H	
	BNE	RXDATA	;Receive and store the
	IN	AL, PDATA	number of data bytes;
	MOV INC	(BW),AL BW	stated by the counter
	DBNZ	RXDATA	
]	MOV	AL, 00000000B	;Command: receive disable
	OUT	PCTRL, AL	
	RET		
	STLEN	DB?	;Set number of receiver data
RXDADR	DB	256 DUP (0)	;Reserve receive data area

Standby Mode


The µPD71051 is a low-power CMOS device. In standby mode, it disables the external input clocks to the inside circuitry (CLK, TxCLK, and RxCLK), thereby consuming less power.

A hardware reset is one way to enter standby mode. The input of a high level to the RESET pin causes the μ PD71051 to enter standby mode at the falling edge of the high level. A software reset command is the other way to enter standby mode. The only way to take the μ PD71051 out of standby mode is to write a mode byte.

In standby mode, the TxRDY, TxEMP, RxRDY, and SYNC/BRK pins are at low level and the TxDATA, DTS, and RTS pins are at high level.

Figure 21 shows the timing for standby mode. While the internal standby signal is high, the external clocks to the μ PD71051 are ignored. If data (C/ \overline{D} = 0) is written to the μ PD71051 in standby mode, the operations are undefined and unpredictable operation may result.

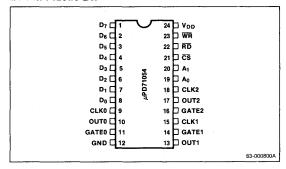
Figure 21. Standby Mode Timing

Description

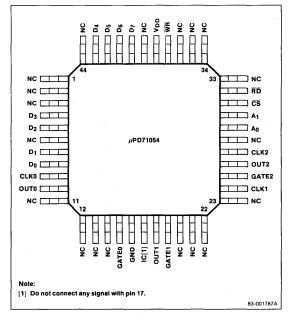
The µPD71054 is a high-performance, programmable counter for microcomputer system timing control. Three 16-bit counters, each with its own clock input, gate input, and OUT pin, can be clocked from DC to 8 MHz. Under software control, the µPD71054 can generate accurate time delays. Initialize the counter, and the µPD71054 counts the delay, and interrupts the CPU when the task is complete. This eliminates the need for software timing loops.

The $\mu PD71054$ contains three counters capable of binary or BCD operation. There are six programmable count modes. The counters operate independently and each can be set to a different mode. Use address lines A_1 , A_0 to select a counter and perform a read/write operation.

Features


- ☐ Three independent 16-bit counters
- ☐ Six programmable counter modes
- ☐ Binary or BCD count
- ☐ Multiple latch command
- ☐ Clock rate DC (standby mode) to 8 MHz
- ☐ Low-power standby mode
- ☐ CMOS technology
- \square Single power supply, 5 V $\pm 10\%$
- ☐ Industrial temperature range -40 to +85°C

Ordering Information


Part Number	Package Type	Max Frequency of Operation	
μPD71054C	24-pin plastic DIP	8 MHz	
μPD71054G	44-pin plastic miniflat	8 MHz	
μPD71054L	28-pin PLCC (available 3Q86)	8 MHz	

Pin Configurations

24-Pin Plastic DIP

44-Pin Plastic Miniflat

Pin Identification

Plastic DIP

No.	Symbol	Function
1-8	D ₇ -D ₀	Three-state, bidirectional data bus
9, 15, 18	CLKn	Counter n clock input (n = 0-2)
10, 13, 17	0UTn	Counter n output (n = 0-2)
11, 14, 16	GATEn	Output to inhibit or trigger counter $(n = 0.2)$
12	GND	Ground
19-20	A ₀ -A ₁	Select counter input 0, 1, or 2
21	CS	Chip select
22	RD	Read strobe
23	WR	Write strobe
24	V _{DD}	+5 V

Plastic Flatpack

No.	Symbol	Function
1-3, 6, 11-14, 20-23, 28, 33-36, 39, 44	NC	Not connected
40-43, 4, 5, 7, 8	D ₇ -D ₀	Three-state, bidirectional data bus
9, 24, 27	CLKn	Counter n clock output (n $=$ 0-2)
10, 18, 26	0UTn	Counter n output (n = 0-2)
15, 19, 25	GATEn	Output to inhibit or trigger counter n $(n = 0-2)$
16	GND	Ground
17	IC	Internally connected
29, 30	A ₀ -A ₁	Select counter input 0, 1, or 2
31	CS	Chip select
32	RD	Read strobe
37	WR	Write strobe
38	V _{DD}	+5 V

Pin Functions

D₇-D₀ [Data Bus]

These pins are an 8-bit three-state bidirectional data bus. This bus is used to program counter modes and to read status and count values. The data bus is active when $\overline{\text{CS}} = 0$, and is high impedance when $\overline{\text{CS}} = 1$.

CLKn [Counter Clock, n = 0-2]

These pins are the clock input that determine the count rate for counter n. The clock rate may be DC (standby mode) to 8 MHz.

OUTn [Counter Output, n = 0-2]

These are the output pins for counter n. A variety of outputs is available depending on the count mode. When the μ PD71054 is used as an interrupt source, these pins can output an interrupt request signal.

GATEn [Counter Gate, n = 0-2]

These output pins inhibit or trigger countern according to the mode selected.

A₁, A₀ [Address]

These input pins select the counter. A_1 , A_0 equal to 00, 01, or 10 selects counter 0, 1, or 2, respectively. The control register is selected when A_1 , A_0 equals 11. These pins are normally connected to the address bus.

CS [Chip Select]

When the \overline{CS} input = 1, all the bits of the data bus become high impedance. \overline{CS} must be low to access the $\mu PD71054$.

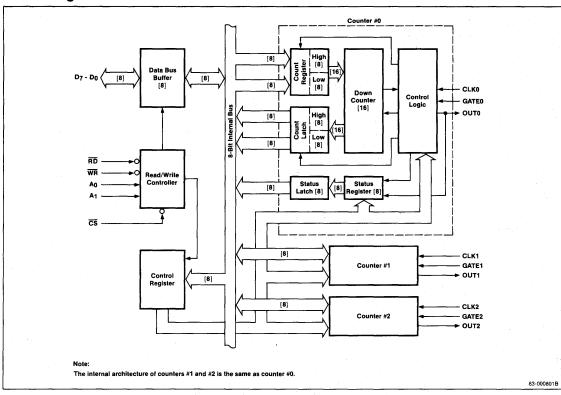
RD [Read Strobe]

The $\overline{\text{RD}}$ input must be low to read data from the $\mu\text{PD71054}.$

WR [Write Strobe]

The \overline{WR} input must be low to write data to the μ PD71054. The contents of the data bus are written to the μ PD71054 at the rising edge of \overline{WR} .

V_{DD} [Power]


+5 V.

GND [Ground]

Ground.

Block Diagram

Block Functions

Data Bus Buffer

This is an 8-bit three-state bidirectional buffer that acts as an interface between the μ PD71054 and the system data bus. The data bus buffer handles control commands, the count to be written to the count register, count data read from the count latch, and status data read from the status latch.

Read/Write Control

This circuit decodes signals from the system bus and sends control signals to other blocks of the $\mu PD71054$. A_1 and A_0 select one of the counters or the control register. A low signal on \overline{RD} or \overline{WR} selects a read or write operation. \overline{CS} must be low to enable these operations.

Control Register

This is an 8-bit register into which is written the control command that determines the operating mode of the counter. Data is written to this register when the CPU executes an OUT command when A_1 , $A_0 = 11$. The contents of this register cannot be read if the CPU executes an IN command when A_1 , $A_0 = 11$. However, the multiple latch command allows you to read the mode and status of each counter.

Counter n [n = 0-2]

A 16-bit synchronous down counter performs the actual count operation within the counter. You can preset this counter and select binary or BCD operation.

The count register is a 16-bit register that stores the count when it is first written to the counter. The count is transferred to the down counter and a count operation for a specified number of counts begins.

The 8-bit width of the internal data bus permits the transfer of only eight bits at a time when the count is written to the count register. However, when data is written from the count register to the down counter, all 16 bits can be written at once. When the count is written to the count register while the counter is in read/write one byte mode, a 00H is written to the remaining byte of the register.

The count latch normally holds the current value of the down counter. If the contents of the down counter change, the contents of the count latch also change so that the two values are the same. When the μ PD71054 receives a count latch command, the count latch latches the value of the down counter and holds it until the CPU can read it. When the data is read, the count latch returns to tracking the value of the down counter.

When the mode specified is written to the counter, the lower six bits of the control register are copied to the lower six bits of the 8-bit status register. The remaining two bits show the status of the OUT pin and the null count flag. When the multiple latch command is sent to the counter, the current value of the status register is latched into the status latch. This data is held in the latch until the CPU can read it.

The control logic controls each internal block according to the mode and the state of the CLK and GATE pins. The result is output to and sets the state of the OUT pin.

Absolute Maximum Ratings

 $T_{\Lambda} = +25$ °C

^	
Power supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, V _I	$-0.5 \text{ to V}_{DD} + 0.3 \text{ V}$
Output voltage, V ₀	-0.5 to $V_{DD} + 0.3 V$
Operating temperature, T _{OPT}	-40°C to 85°C
Storage temperature, T _{STG}	-65°C to +150°C
Power dissipation, PD _{Max}	1.0 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = +25$ °C, $V_{DD} = 0$ V

	Limits				Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	CIN		10	pF:	fc = 1 MHz
I/O capacitance	C _{1/0}		20	pF	Unmeasured pins returned to 0 V

DC Characteristics

 $T_A = -40\,^{\circ}\text{C}$ to $+85\,^{\circ}\text{C}$, $V_{DD} = +5$ V $\pm 10\%$

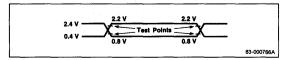
			Lim	nits		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage high	V _{IH}	2.2		V _{DD} + 0.3	٧	
Input voltage low	V _{IL}	-0.5		0.8	٧	
Output voltage high	V _{OH}	0.7 xV _{DD}			٧	$I_{0H} = -400 \mu A$
Output voltage low	V _{OL}			0.4	٧	$I_{OL} = 2.5 \text{ mA}$
Input leakage current high	lriH			10	μΑ	$V_I = V_{DD}$
Input leakage current low	ILIL			-10	μΑ	$V_I = 0 V$
Output leakage current high	ILOH			10	μΑ	$v_0 = v_{DD}$
Output leakage current low	ILOL			-10	μΑ	$V_0 = 0 \text{ V}$
Supply current	I _{DD1}			30	mΑ	8 MHz
	I _{DD2}	-	2	50	μΑ	Stand-by mode

AC Characteristics

 $T_A = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$, $V_{DD} = 5 \,^{\circ}\text{V} \pm 10\%$

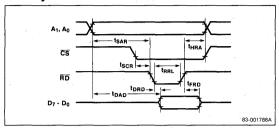
		Lia	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Read Cycle					
Address set-up to RD ↓	t _{SAR}	30		ns	
Address hold from RD 1	t _{HRA}	10		ns	,
CS set-up to RD ↓	tscr	0		ns	
RD low level width	t _{RRL}	150		ns	
Data delay from RD ↓	t _{DRD}		120	ns	C _L = 150 pF
Data float from RD 1	t _{FRD}	10	85	ns	$C_L = 20 \text{ pF}$ $R_L = 2 \text{ k}\Omega$
Data delay from address	t _{DAD}		220	ns	C _L = 150 pF
Read recovery time	t _{RV}	200	1000	ns	
Write Cycle					
Address set-up to WR ↓	tsaw	0		ns	
Address hold from WR 1	thwa	0		ns	
CS set-up to WR ↓	tscw	0		ns	
WR low level width	t _{WWL}	160		ns	

AC Characteristics (cont) $T_A = -40$ °C to +85 °C, $V_{DD} = 5$ V ± 10 %

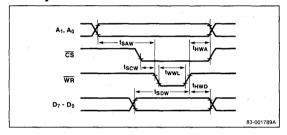

	Limits				
Parameter	Symbol	Min	Max	Unit	Test Conditions
Write Cycle (cont)					
Data hold to WR 1	t _{SDW}	120		ns	
Data hold from WR 1	thwD	0		ns	
Write recovery time	t _{RV}	200		ns	
CLK and Gate Timing					
CLK cycle time	t _{CYK}	125	DC	ns	
CLK high level width	tkkh	60		ns	
CLK low level width	tKKL	60		ns	
CLK rise time	t _{KR}		25 .	ns	
CLK fall time	t _{KF}		25	ns	
GATE high level width	t _{GGH}	50		ns	
GATE low level width	t _{GGL}	50		ns	
GATE set-up to CLK †	tsgk	50		ns	
GATE hold from CLK 1	tHKG	50		ns	·.
Clock delay from	t _{DWK}	100		ns	t _{KKH} ≥ 125 ns
WR 1 (count transfer)		225 — ¹ KKH		ns	t _{KKH} ≤ 125 ns
Clock set-up to WR 1 (latch)	tskw	85		ns	
GATE delay from WR 1	t _{DWG}	0		ns	
OUT delay from GATE ↓	t _{DGO}		120	ns	C _L = 150 pF
OUT delay from CLK ↓	t _{DKO}		150	ns	C _L = 150 pF
OUT delay from WR 1 (initial out)	t _{DWO}	295		ns	C _L = 150 pF

Note:

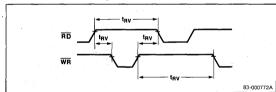
AC timing test points for output $V_{OH} = 2.2 \text{ V}$, $V_{OL} = 0.8 \text{ V}$

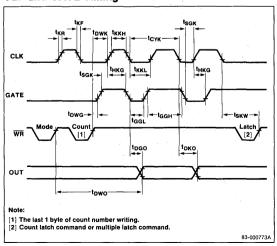

Timing Waveforms

AC Test Input



Timing Waveforms (cont)


Read Cycle


Write Cycle

Read/Write Recovery

CLK and GATE Timing

Functional Description

μPD71054 System Configuration Example

The CPU views the three counters and the control register as four I/O ports. A_1 and A_0 are connected to the A_1 and A_0 pins of the system address bus. \overline{CS} is generated by decoding the address and \overline{IO}/MEM signals so that \overline{CS} goes low when the address bus is set to the target I/O address and I/O is selected. These connections are shown in figure 1.

You can use the μ PD71054 in memory-mapped I/O configurations. However, the decoding should be such that \overline{CS} goes low when memory is selected.

Programming and Reading the Counter

The counter must be programmed and the operating mode specified before you can use the μ PD71054. Once a mode has been selected for a counter, it operates in that mode until another mode is set. The count is written to the count register and when that data is transferred to the down counter, a new count operation begins. The current count and status can be read while the counter is in operation. Figure 2 outlines the steps of operation.

Programming the Counter

The μ PD71054 is controlled by a microcomputer program. The program must write a control command to set the counter mode and write the count data that determines the length of the count operation. Table 1 shows the values for A₁ and A₀ that determine the target counter for write operations.

Table 1. Write Operations ($\overline{CS} = 0$, $\overline{RD} = 1$, $\overline{WR} = 0$)

A ₁	A ₀	Write Target
0	0	Counter 0
0	1	Counter 1
1	0	Counter 2
1	1	Control word register

Control and Mode Setting

The control command must be written to set the counter mode before operating the counter. If a write operation is performed when A_1 , $A_0 = 11$, a control command is written to the control register. Figure 3 shows the format of the 8-bit control command.

Bits SC1 and SC0 specify a counter or the multiple latch command. When a counter is chosen, the specifications described below apply to the counter.

Bits RMW1 and RMW2 specify the read/write operation to the counter or select the count latch command.

Bits CM2, CM1, and CM0 set the counter mode (0 to 5).

Bit BCD selects binary or BCD operation. The count may be 0 to FFFFH in binary mode or 0 to 9999 in BCD.

If a control command written to the counter specifies a mode, the lower six bits of the control command are copied to the lower six bits of the status register of the counter selected by SC1 and SC0. The mode selected remains in effect until a new mode is set. This is not true if the control command specifies the count latch or multiple latch command.

Writing the Count

The count is written to the counter after the mode is set. Set A_1 , A_0 to specify the target counter as shown in table 1. A new count can be written to a counter at any time, but the read/write mode selected (when the mode was written) must be used when writing the count.

In high 1-byte and low 1-byte modes only, the higher or lower byte of the count register is written by the first write. The write operation ends and 00H is automatically written to the remaining byte by the μ PD71054. In the 2-byte modes, the lower byte is written by the first write and the higher byte by the second.

For example, if the 2-byte count 8801H is written to a counter set in lower 1-byte mode, the lower byte (01H) is written first, followed by the higher byte (88H). Therefore, the data written to the count register is 0001H for the first write and 0088H for the second. This is shown in Table 2.

Table 2. Read/Write Mode and Count Write

	No. of	Count Register		
Read/Write Mode	Writes	Higher Byte	Lower Byte	
Low 1-byte	1	00H	nnH	
High 1-byte	1 .	nnH	00H	
Low/High 2-byte	2	nnH (2nd write)	nnH (1st write)	

 $nnH = Two-digit\ hexadecimal\ value$

Reading the Counter

The following three methods allow you to read the contents of the down counter during operation. In particular, the multiple latch command reads the current count data and the counter mode or the state of the OUT pin. Table 3 shows the values of A_1 , A_0 used to select the counter to be read.

Figure 1. Typical System Configuration

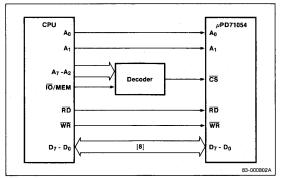


Figure 2. Basic Operating Procedure

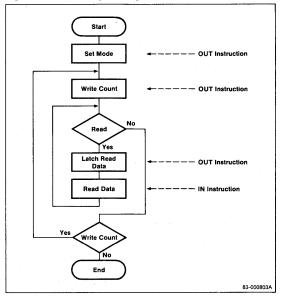


Figure 3. Control Register Format

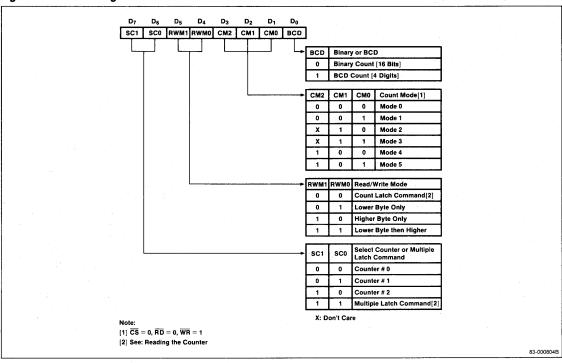


Table 3. Read Operations ($\overline{CS} = 0$, $\overline{RD} = 0$, $\overline{WR} = 1$)

A ₁	Ag	Read Target
0	0	Counter 0
0	1	Counter 1
1	0	Counter 2

Directly Reading the Counter

You can read the current value of the counter by reading the counter selected by A_1 , A_0 as shown in table 3. This involves reading the count latch; since the value of the down counter may change while the the count latch is read, this method may not provide an accurate reading. You must control the CLK or GATE input to stop the counter and read it for a correct reading.

Using the Count Latch Command

When the count latch command is executed, the current counter value is latched into the counter latch. This value is held by the latch until it is read or until a new mode is set. This provides an accurate reading of the counter value when the command is executed without affecting counter operation. Figure 4 shows the format for the count latch command.

If the counter value that was latched into the count latch is not read before a second count latch command is executed, the second command is ignored. This is because the counter value latched by the first command is held until it is read or until a new mode is set. When the data in the count latch is read, the latch is released and continues tracking the value of the down counter.

Using the Multiple Latch Command

When the multiple latch command is received, the counter value and status register for any counter may be selectively latched into the count latch and status latch. Bits D_1 – D_5 of the multiple latch command specify the counter latching. The CPU can then read the status and counter value for the selected counter. Figure 5 shows the format for this command.

Bits CNT2, CNT1, and CNT0 correspond to counters 2, 1, and 0. The command is executed for all counters whose corresponding bit is 1. This allows the data for more than one counter to be latched by a single count latch command.

When the count bit is 0, the counter value of the selected counters is latched into the count latches.

When the status bit is 0, the status of the selected counters is latched into the status latches. Bits $D_5\text{-}D_0$ of the status register show the mode status of the counter. The output bit (D_7) shows the state of the OUT pin of that counter. These bits are shown in figure 6. The null count bit (D_6) indicates whether the count data is valid. When the count is transferred from the count register to the down counter, this bit changes to 0 to show that the data is valid. Table 4 shows how the null count flag operates.

Table 4. Null Count Flag Operation

Operation	Null Count Flag
Write control word for mode set	1
Write count to count register(1)	1
Transfer count from count register to down counter	0

Note:

(1) When 2-byte mode is selected, the flag becomes 1 when the second byte is written.

Figure 4. Control Register Format for Count Latch
Command

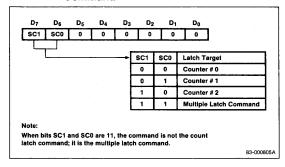
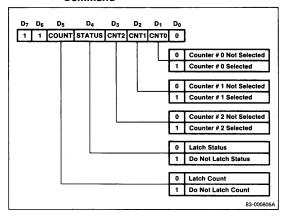
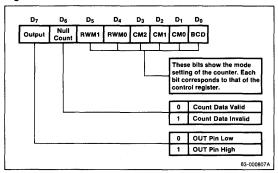



Figure 5. Control Register Format for Multiple Latch Command

If the data that was latched is not read before a second multiple latch command is executed, the second command is ignored for those latches whose contents have not been read. This is because the data latched by the first command is held until it is read or until a new mode is set. When the data in the latch is read, the latch is released. See figure 7.

It is possible to latch both the count and status using two multiple latch commands. However, regardless of which data is latched first, the status is always read first. The count data is read by the next read operation (1- or 2-step read as determined by read/write mode). If additional read commands are received, the count data that has not been latched (the contents of the down counter as reflected by the current counter value) is read.

Read operations must be performed in accordance with read/write mode. In 2-byte mode, two bytes of data must always be read. This does not imply that the second byte must be read immediately after the first; other counter operations may be performed between the two reads. For example, you could read the lower byte, write a new lower byte, read the higher byte, and write a new higher byte.


Definitions

CLK pulse refers to the time from the rising to the falling edge of the CLKn input.

Trigger refers to the rising edge of the GATEn input.

The GATEn input is sampled at each rising edge of the CLKn input. The GATE input can be level or rising edge sensitive. In the latter case, counter n's internal flip-flop is set at the rising edge of the GATE signal, sensed at the rising edge of the next CLK pulse, and reset immediately. This allows edge-triggering to be sensed whenever it occurs.

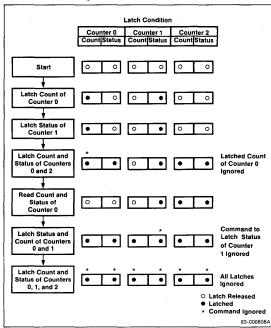
Figure 6. Status Data

Initial OUT refers to the state of the OUT pin immediately after the mode is set.

Count transfer refers to the transfer from the count register to the down counter. The down counter is decremented at the falling edge of the CLK pulse.

Count zero is the state of the down counter when the counter is decremented to zero.

PCNT0, PCNT1, and PCNT2 are the I/O ports for counters 0, 1, and 2, respectively. PCTRL is the I/O port for the control command.


CW is the control command.

HB is the higher byte of the count.

LB is the lower byte of the count.

In the timing charts for each counter mode, counter 0 is in the read/write 1-byte and binary count mode. When no GATE signal appears in the charts, assume a high level signal. The value shown below the OUT signal is the counter value. The maximum value that can be set for the count in each mode is 0. When this value is set, a maximum value of 10000H (hexadecimal count) or 10000 (BCD count) is obtained.

Figure 7. Multiple Latch Command Execution Example

Counter Modes

Mode 0: Interrupt on End of Count. In this mode, the OUT output changes from low to high level when the end of the specified count is reached. See table 5 and figure 8.

Table 5. Mode 0 Operation

Function	Result
Initial OUT	Low level
GATE High	Count enable
GATE Low	Count disable
Count Write	The OUT pin goes low independent of the CLK pulse. In 2-byte mode, the count is disabled when the first byte is written. The OUT pin goes low. OUT goes low when a new mode or new count is written.
Count Transfer and Operation	When the count is written with GATE high: Transfer is performed at the first CLK pulse after the count value is written. The down counter is decremented beginning at the first CLK pulse after data transfer. If a count of n is set, the OUT pin goes high after n + 1 CLK pulses. When the count is written with GATE low: Transfer is performed at the first CLK pulse after the count is written. The down counter is decremented beginning at the first CLK pulse after the GATE signal goes high. If a count of n is set, OUT is low for a period of n CLK pulses after GATE goes high.
Count Zero	The signal at the OUT pin goes high. The count operation does not stop and counts down to FFFFH (hexadecimal) or 9999 (BCD) and continues to count down.
Minimum Count	1

Mode 0 Program Example. This subroutine causes a delay of 10004 (decimal, or 2710H) CLK pulses. In this program, counter 2 is set to 2-byte mode and binary count. See figure 9.

SUBRO:	MOV	AL,10110000B	;set mode: counter 2, ;2-byte mode,
	0UT	PCTRL,AL	count mode 0, binary
	MOV	AL,10H	
	OUT	PCNT2,AL	
	MOV	AL,27H	;write count 10000 (decimal)
	0UT	PCNT2,AL	
	RET		

Mode 1: GATE Retriggerable One-Shot. In mode 1, the μ PD71054 functions as a retriggerable one-shot. A low-level pulse triggered by the GATE input is output from the OUT pin. See table 6 and figure 10.

Table 6. Mode 1 Operation

Function	Result
Initial OUT	High level
GATE Trigger(1)	Count data is transferred at the CLK pulse after the trigger.
Count Write	The count is written without affecting the current operation.
Count Transfer and Operation	Transfer is performed at the first CLK pulse after the trigger. At the same time, the signal at the OUT pin goes low to start the one-shot pulse operation. The count is decremented beginning at the next CLK pulse. If a count of n is set, the one-shot output from the OUT pin continues for n CLK pulses.
Count Zero	The signal at the OUT pin becomes high. Count operation does not stop and wraps to FFFFH (hexadecimal) or 9999 (BCD) and continues to count.
Minimum Count	1

Note:

(1) The trigger is ignored when the count has not been written after the mode is set, or when only one byte of the count has been written in 2-byte count mode.

Figure 8. Mode 0 Timing Chart

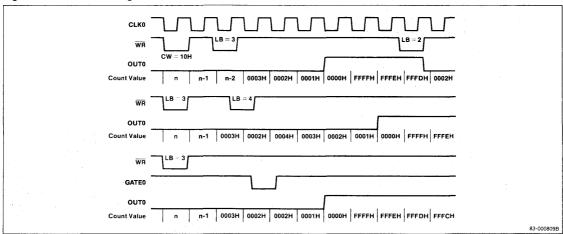


Figure 9. Mode 0 Program Example Timing Chart

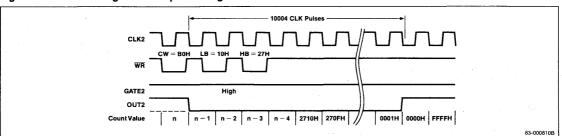
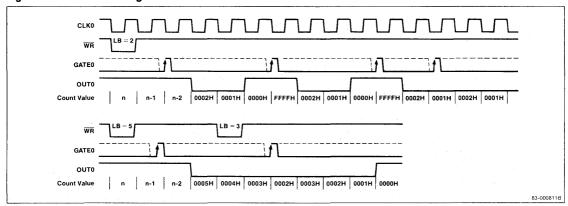



Figure 10. Mode 1 Timing Chart

Mode 1 Program Example. This subroutine waits until no trigger is generated for an interval of 200 or more CLK pulses after the first gate trigger and returns to the main program. Counter 1 is set to low-byte read/write mode and binary count. See figure 11.

SUBR1:	MOV OUT MOV OUT	AL,01010010B PCTRL,AL AL,200 PCNT1,AL	;set mode: counter 1, low-byte ;read/write mode, count mode 1, ;binary ;write low byte of count
FSTTRG:	MOV OUT	AL,11100100B PCNT1.AL	;multiple latch command: ;counter 1, :status
	IN	AL.PCNT1	,status
	AND TEST BNZ	AL,40H AL,40H FSTTRG	;zero all bits except null count (D6) ;wait for first trigger
WAIT:	MOV	AL,11100100B	;multiple latch command: :counter 1.
	OUT IN	PCTRL,AL AL,PCNT1	;status
	AND TEST BZ RET	AL,80H AL,80H WAIT	;zero all bits except output (D ₇) ;wait until output goes high

Mode 2: Rate Generator. In mode 2, the signal from the OUT pin cyclically goes low for one clock period when the counter reaches 0001H. The counter operates as a frequency divider. See table 7 and figure 12.

Table 7. Mode 2 Operation

Function	Result
Initial OUT	High level
GATE High	Count enable
GATE Low	Count disabled. If GATE goes low when OUT is low, OUT will go high (independent of the CLK pulse).
GATE Trigger(1)	Transfer is performed at the first CLK pulse after the trigger.
Count Write	Count is written without affecting the current operation.
Count Transfer and Operation	Trensfer is performed at the CLK pulse after the count is written following the mode setting. The counter is then decremented. Transfer is again performed at the first CLK pulse after the count becomes 1. When the trigger is used, transfer is performed at the next CLK pulse. When the contents of the down counter becomes 1, OUT goes low for one CLK pulse and returns to high. If a count of n is set, OUT repeats this sequence every n CLK pulses.
Count Zero	Never occurs in this mode.
Minimum Count	2

(1) The trigger is ignored when the count has not been written or when only one byte of the count has been written in 2-byte mode.

Figure 11. Mode 1 Program Example Timing Chart

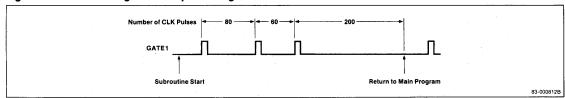
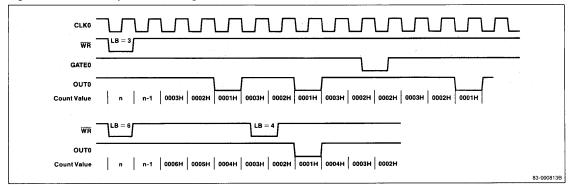



Figure 12. Mode 2 Operation Timing Chart

Mode 2 Program Example. This subroutine generates an interrupt to the CPU each time 10000 (decimal) clock pulses elapse. Counter 0 is in 2-byte mode and binary counting. See figure 13.

SUBR3:		AL,00110100B	;mode setting: counter 0, 2-byte
	OUT	PCTRL,AL	mode, count mode 2, binary
	MOV	AL,10H	
	OUT	PCNT0,AL	
	MOV	AL,27H	;write count 10000 (decimal)
	0UT	PCNTO,AL	
	RET		

Mode 3: Square Wave Generator. Mode 3 is a frequency divider similar to mode 2, but with a different duty cycle. See table 8 and figure 14.

Figure 13. Mode 2 Configuration

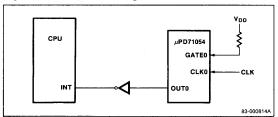
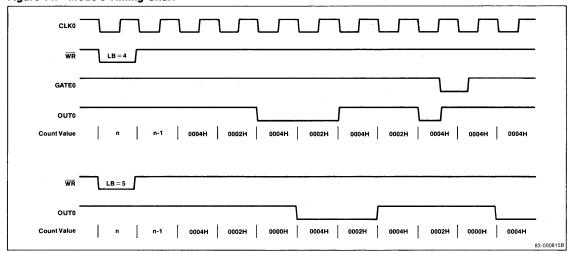
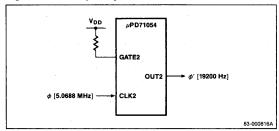



Table 8. Mode 3 Operation

Function	Result	
Initial OUT	High level	
GATE High	Count enable	
GATE Low	Count disable. If GATE goes low when OUT is low OUT will go high (independent of the CLK pulse).	
GATE Trigger(1)	Transfer is performed at the first CLK pulse after the trigger.	
Count Write	Current operation is not affected. The count is transferred at the end of the half-period of the current square wave and the OUT pin goes high.	
Count Transfer and Operation	Count data is transferred at the first CLK pulse afte the count write following the mode setting. Transfer is performed at the end of the current half-cycle and the OUT pin is inverted. Transfer is also performed at the CLK pulse after the trigger. The operation performed depends on whether count n is even oud. When n is even, the count is decremented by two on each following clock pulse. At the end of the count of two, the count is again transferred and the OUT pin is inverted. This is taken as a half-cycle and repeated. When n is odd, n — 1 is transferred and the count is decremented by two on each following clock pulse. The half-cycle when the OUT pin is high continues until the end of count 0 and n — 1 is transferred again at the next CLK pulse The half-cycle while OUT is low continues until the end of count 2. Thus, the half-cycle while OUT is high is one CLK longer than the half-	
Count Zero	Occurs only when the count is odd.	
Minimum Count	2	
Note:		

(1) The trigger is ignored when the count has not been written after the mode is set or when only one byte of count has been written in 2-byte mode.

Figure 14. Mode 3 Timing Chart



Mode 3 Program Example. This subroutine divides the input CLK frequency (5.0688 MHz) by 264 to get a 19,200 Hz clock. Counter 2 is in 2-byte binary mode. See figure 15.

SUBR4:	MOV OUT	AL,10110110B PCTRL,AL	;mode setting: counter 2, 2-byte ;mode, count mode 3, binary
	MOV OUT	AL,08H PCNT2.AL	
	MOV	A,01H	;264 frequency division
	OUT RET	PCNT2,AL	
	ne i		

Figure 15. Frequency Division

Mode 4: Software-Triggered Strobe. In mode 4, when the specified count is reached, OUT goes low for one CLK pulse. See table 9 and figure 16.

Table 9. Mode 4 Operation

Function	Result
Initial OUT	High level
GATE High	Count enable
GATE Low	Count disable
Count Write	Count is transferred at the next CLK pulse when the count is written. In 2-byte mode, data is transferred after the second byte is written.
Count Transfer and Operation	Count is transferred at the first CLK following the count write. If GATE is high, the down counter begins to decrement from the next CLK. If GATE is low, decrement begins at the first CLK after GATE goes high.
Count Zero	OUT is low for one CLK pulse and returns to high. The down counter wraps to FFFFH (hexadecimal) or 9999 (BCD) without stopping counter operation.
Minimum Count	1

Figure 16. Mode 4 Timing Chart

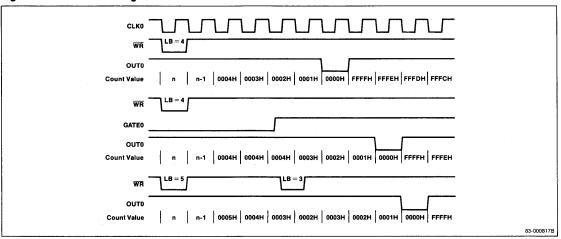
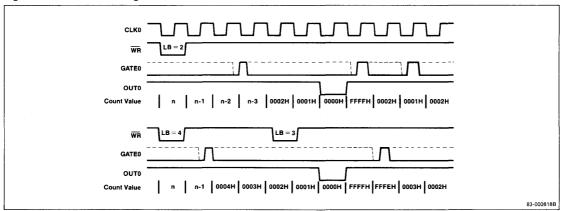
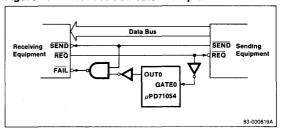



Figure 17. Mode 5 Timing Chart

Mode 5: Hardware-Triggered Strobe [Retriggerable]. Mode 5 is similar to mode 4 except that operation is triggered by the GATE input and can be retriggered. See table 10 and figure 17.

Table 10. Mode 5 Operation


Function	Result		
Initial OUT	High level		
GATE Trigger(1)	The count is transferred at the CLK pulse after the trigger. The GATE has no effect on the OUT signal.		
Count Write	The count is written without affecting the current operation.		
Count Transfer and Operation	Count is transferred at the first CLK pulse after a trigger, providing that the mode and count have been written. Decrement begins from the first CLK pulse after a data transfer. If a count of n is set, OUT goes low for n $+$ 1 CLK pulses after the trigger.		
Count Zero	OUT is low for one CLK and goes high again. The down counter counts to FFFFH (hexadecimal) or 9999 (BCD) without stopping the counter operation.		
Minimum Count	1		

Note:

(1) The trigger is ignored when the count has not been written after the mode is set or when only one byte has been written in 2-byte mode. Mode 5 Program Example. Use mode 5 to add a fail-safe function to an interface. For example, the receiving equipment requests data by issuing a REQ signal to the sending equipment. The sending equipment responds by outputting data to the data bus and returning a SEND signal to the receiving equipment. In this type of system, if a malfunction exists in the sending equipment and no SEND signal is sent, the receiving equipment waits indefinitely for the SEND signal and system operation stops. The following subroutine remedies this situation. If no SEND signal is output within a given period (50 CLK cycles in this example) after the REQ signal is output, the system assumes the sending equipment is malfunctioning and a FAIL signal is sent to the receiving equipment.

SUBR5:	MOV	AL,00011010B	;mode setting: counter 0, low :1-byte
	OUT MOV OUT RET	PCTRL,AL AL,50 PCNT0,AL	;mode, count mode 5, binary ;set interval: 50 CLK pulses

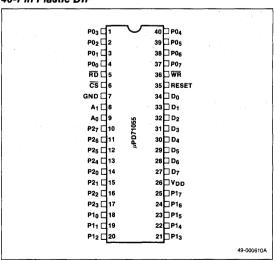
Figure 18. Interface Fail-safe Example

μPD71055 PARALLEL INTERFACE UNIT

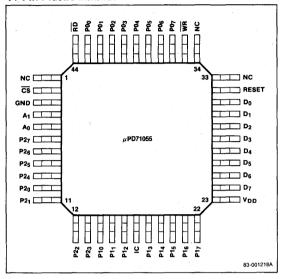
Description

The μ PD71055 is a low-power CMOS programmable parallel interface unit for use in microcomputer systems. The μ PD71055 has three I/O ports and is typically used to interface peripheral devices to a microcomputer system bus.

Features


- ☐ Three 8-bit I/O ports
- ☐ Three programmable operation modes
- ☐ Bit manipulation command
- □ Microcomputer compatible
- □ 8 MHz operation
- □ CMOS technology
- \square Single +5 V ±10% power supply
- ☐ Industrial temperature range: -40 to +85°C

Ordering Information


Part Number	Package Type		
μPD71055C	40-pin plastic DIP		
μPD71055G	44-pin plastic miniflat		
μPD71055L	44-pin PLCC (available 3Q86)		

Pin Configurations

40-Pin Plastic DIP

44-Pin Plastic Miniflat

Pin Identification

Plastic DIP

No.	Symbol	Function 1/0 port 0, bits 3-0		
1-4	P0 ₃ -P0 ₀			
5	RD	Read strobe input		
6	CS	Chip select input		
7	GND	Ground		
8, 9	A ₁ , A ₀	Address inputs 1 and 0		
10-13	P2 ₇ -P2 ₄	1/0 port 2, bits 7-4		
14-17	P2 ₀ -P2 ₃	1/0 port 2, bits 0-3		
18-25	P1 ₀ -P1 ₇ I/O port 1, bits 0			
26	V _{DD} +5 V			
27-34	D ₇ -D ₀	I/O data bus		
35	RESET	Reset input		
36	WR	Write strobe input		
37-40	P07-P04	1/0 port 0, bits 7-4		

Pin Identification (cont)

Plastic Flatpack

No.	Symbol	Function No connection		
1	NC			
2	CS	Chip select input		
3	GND	Ground		
4,5	A ₁ , A ₀	Address inputs 1 and 0		
6-9	P2 ₇ -P2 ₄	1/0 port 2, bits 7-4		
10-13	P2 ₀ -P2 ₃	1/0 port 2, bits 0-3		
14-16	P1 ₀ -P1 ₂	1/0 port 1, bits 0-2		
17	1C	Internally connected		
18-22	P1 ₃ -P1 ₇	I/O port 1, bits 3-7		
23	V _{DD}	+5 V		
24-31	D ₇ -D ₀	I/O data bus		
32	RESET	Reset input		
33, 34	NC	No connection		
35	WR	Write strobe input		
36-43	P0 ₇ -P0 ₀	1/0 port 0, bits 7-0		
44	RD	Read strobe input		

Pin Functions

D₇-D₀ [Data Bus]

 D_7 - D_0 make up an 8-bit, three-state, bidirectional data bus. The bus is connected to the system data bus. It is used to send commands to the μ PD71055 and to send data to and from the μ PD71055.

CS [Chip Select]

The \overline{CS} input is used to select the μ PD71055. When $\overline{CS}=0$, the μ PD71055 is selected. When $\overline{CS}=1$, the μ PD71055 is not selected and its data bus is high-impedance.

RD [Read Strobe]

The $\overline{\text{RD}}$ input is set low when data is being read from the $\mu\text{PD71055}$ data bus.

WR [Write Strobe]

The $\overline{\rm WR}$ input should be set low when data is to be written to the $\mu \rm PD71055$ data bus. The contents of the data bus are written to the $\mu \rm PD71055$ at the rising edge (low to high) of the $\overline{\rm WR}$ signal.

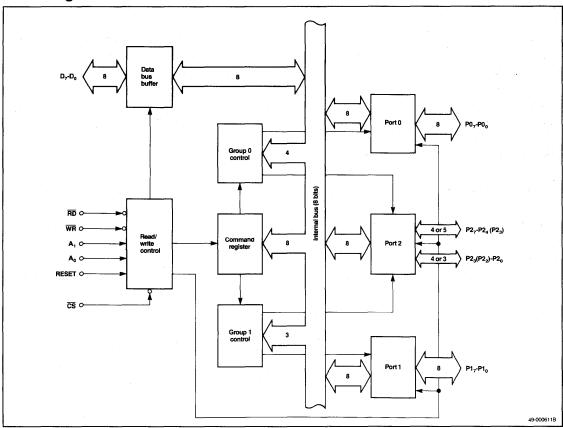
A₁, A₀ [Address]

The A_1 and A_0 inputs are used in combination with the \overline{RD} and \overline{WR} signals to select one of the three ports or the command register. A_1 and A_0 are usually connected to the lower two bits of the system address bus (table 1).

Table 1. Control Signals and Operation

cs	RD	WR	A ₁	A _O	Operation	μPD71055 Operation
0	0	1	0	0	Port 0 to data bus	Input
0	0	1	0	1	Port 1 to data bus	Input
0	0	1	1	0	Port 2 to data bus	Input
0	0	1 0	1 x	1 x	Use prohibited	
0	1	0	0.	0	Data bus to port 0	Output
0	1	0	0	1	Data bus to port 1	Output
0	1	0	1	0	Data bus to port 2	Output
0	1	0	1	1	Data bus to command register	Output
0	1	1	х	х	Data bus high impedance	
1	X	X	Х	X		

RESET [Reset]


When the RESET input is high, the μ PD71055 is reset. The group 0 and the group 1 ports are set to mode 0 (basic I/O port mode). All port bits are cleared to zero and all ports are set for input.

P07-P00, P17-P10, P27-P20 [Ports 0, 1, 2]

Pins $P0_7$ - $P0_0$, $P1_7$ - $P1_0$, and $P2_7$ - $P2_0$ are the port 0, 1, and 2 I/O pins, bits 7-0, respectively.

Block Diagram

Functional Description

Ports 0, 1, 2

The μ PD71055 has three 8-bit I/O ports, referred to as port 0, port 1, and port 2. These ports are divided into two groups, group 0 and group 1. The groups can be in one of three modes, mode 0, mode 1, and mode 2. Modes can be set independently for each group.

When port 0 is in mode 0, port 0 and the four upper bits of port 2 belong to group 0, and port 1 and the four lower bits of port 2 belong to group 1. When port 0 is in mode 1 or 2, port 0 and the 5 upper bits of port 2 belong to group 0 and port 1 and the three lower bits of port 2 belong to group 1.

Command Register

The host writes command words to the μ PD71055 in this register. These commands control group 0 and group 1. Note that the contents of this register cannot be read.

Group 0 Control and Group 1 Control

These blocks control the operation of group 0 and group 1.

Read/Write Control

The read/write control controls the read/write operations for the ports and the data bus in response to the \overline{RD} , \overline{WR} , \overline{CS} , and address signals. It also handles RESET signals and the A_0 , A_1 address inputs.

Data Bus Buffer

The data bus buffer latches information going to or from the system data bus.

Absolute Maximum Ratings

 $(T_A = 25$ °C)

Power supply voltage, V _{DD}	−0.5 to +7.0 V		
Input voltage, V _I	-0.5 to V _{DD} + 0.3 V		
Output voltage, V ₀	-0.5 to V _{DD} + 0.3 V		
Power dissipation, P _{DMAX}	500 mW		
Operating temperature, T _{opt}	-40 to +85°C		
Storage temperature, T _{stg}	−65 to +150°C		

Comment: These devices are not meant to be operated outside the limits specified above. Exposure to stresses beyond those listed in Absolute Maximum Ratings could cause damage. Exposure to an absolute maximum rating for extended periods may affect reliability.

Capacitance

 $(T_A = 25^{\circ}C, V_{DD} = GND = 0 V)$

			Limits	}		Test Conditions
Parameter	Symbol	Min	Тур	Max	Units	
Input capacitance	Cl			10	pF.	fc = 1 MHz Unmeasured
I/O capacitance	CIO			20	ρF	pins returned to 0 V

DC Characteristics

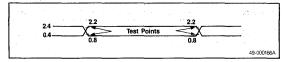
(T_A = -40 to +85 °C, V_{DD} = 5 V \pm 10%)

Parameter			Lim	its		Test Conditions
	Symbol	Min	Тур	Max	Units	
Input voltage high	V _{IH}	2.2		V _{DD} + 0.3	٧	
Input voltage low	VIL	-0.5		0.8	٧	
Output voltage high	V _{OH}	0.7 x V _{DD}			V	$I_{OH} = -400 \mu A$
Output voltage low	V _{OL}			0.4	٧	$I_{OL} = 2.5 \text{ mA}$
Input leakage current high	luh			10	μΑ	$v_I = v_{DD}$
Input leakage current low	ILIL			-10	μΑ	$V_{\parallel} = 0 V$
Output leakage current high	I _{LOH}			10	μΑ	$v_0 = v_{DD}$
Output leakage current low	I _{LOL}			-10	μΑ	$V_0 = 0 V$
Supply current (dynamic)	I _{DD1}			15	mA	
Supply current (standby)	I _{DD2}		2	50	μΑ	-

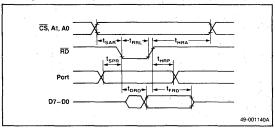
AC Characteristics

 $(T_A = -40 \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \text{ V} \pm 10\%)$

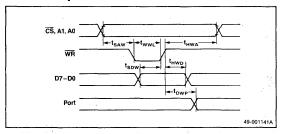
		Limits				Test
Parameter	Symbol	Min	Тур	Max	Units	Conditions
Read Timing						
A ₁ , A ₀ , CS set-up to	tSAR	0			ns	
A ₁ , A ₀ , CS hold from RD 1	tHRA	0			ns	
RD pulse width	t _{RRL}	160			ns	
Data delay from RD ↓	t _{DRD}			120	ns	$C_L = 150 pF$
Data float from RD 1	t _{FRD}	10		85	ns	$C_L = 20 \text{ pF}$ $R_L = 2 \text{ k}\Omega$
Read recovery time	t _{RV}	200			ns	
Write Timing						
A ₁ , A ₀ , CS set-up to WR ↓	tsaw	0			ns	
A ₁ , A ₀ , $\overline{\text{CS}}$ hold from WR 1	t _{HWA}	0			ns	
WR pulse width	twwL	120			ns	
Data set-up to WR 1	t _{SDW}	100			ns	
Data hold from WR 1	t _{HWD}	0			ns	
Write recovery time	t _{RV}	200			ns	
Other Timing						
Port set-up time to	t _{SPR}	0			ns	
Port hold time from	t _{HRP}	0			ns	
Port set-up time to STB ↓	t _{SPS}	0			ns	
Port hold time from STB 1	thsp	150			ns	

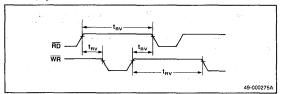

AC Characteristics (cont) ($T_A = -40$ to =85 °C, $V_{DD} = 5$ V $\pm 10\%$)

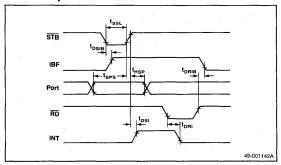
		Limits				Test
Parameter	Symbol	Min	Typ	Max	Units	Conditions
Other Timing (cont)						
Port delay time from WR 1	t _{DWP}			350	ns	C _L = 150 pF
STB pulse width	tSSL	350			ns	
DAK pulse width	tDADAL	300			ns	
Port delay time from DAK ↓ (mode 2)	t _{DDAP}			300	ns	CL = 150 pF
Port float time from DAK 1 (mode 2)	t _{FDAP}	20		250	ns	$\begin{array}{l} C_L = 20 \; pF \\ R_L = 2 \; k\Omega \end{array}$
OBF set delay from WR 1	t _{DWOB}			300	ns	C _L = 150 pF
OBF clear delay from DAK ↓	†DDA0B			350	ns	
IBF set delay from STB↓	t _{DSIB}			300	ns	
IBF clear delay from	t _{DRIB}			300	ns	
INT set delay from DAK 1	t _{DDAI}			350	ns	
INT clear delay from WR ↓	t _{DWI}			450	ns	
INT set delay from STB 1	t _{DSI}			300	ns	
INT clear delay from RD ↓	[†] DRI			400	ns	
RESET pulse width	^t reset1	50			μS	During right afterpower- on
	t _{RESET2}	500			ns	During operation

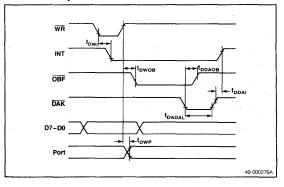


Timing Waveforms

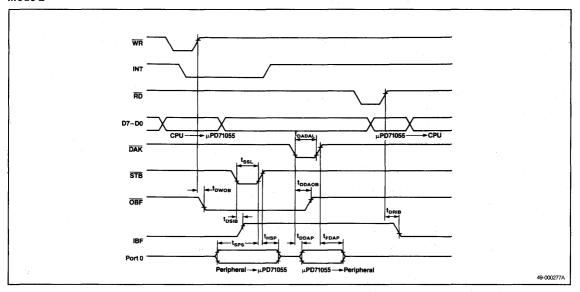

AC Test Waveform


Timing Mode 0: Input


Mode 0: Output


Recovery Time

Mode 1: Input


Mode 1: Output

Timing Waveforms (cont)

Mode 2

μ PD71055 Commands

Two commands control μ PD71055 operation. The mode select command determines the operation of group 0 and group 1 ports. The bit manipulation command sets or resets the bits of port 2. These commands are executed by writing an 8-bit command word to the command register ($A_1A_0 = 11$).

Mode Select

The μ PD71055 port groups have three modes. Modes 0 and 1 can be specified for groups 0 and 1, but mode 2 can only be specified for group 0. The bits of all ports are cleared when a mode is selected or when the μ PD71055 is reset.

Mode 0. Basic input/output port operation.

Mode 1. Strobed input/output operation controlled by three or four bits of port 2 used as control/status signals.

Mode 2. (Only available for group 0). Port 0 is the bidirectional I/O port and the higher 5 bits of port 2 are used for status and control signals.

To specify the mode, set the command word as shown in figure 1 and write it to the command register.

Bit Manipulation Command

This command (figure 2) affects only port 2. It is mainly used in mode 1 and mode 2 to control the port 2 bits which are used as control/status signals. It is also used to enable and disable μ PD71055-generated interrupts and to set and reset port 2 general input/output pins.

For example, to set bit 2 of port 2 to 1 ($P2_2 = 1$), set the command word as shown in figure 3 (05H) in the command register.

Operation in Each Mode

The operation mode for each group in the μ PD71055 can be set according to the application. Group 0 can be in modes 0, 1, or 2, while group 1 is in mode 0 or 1. Group 1 cannot be used in mode 2.

The \overline{RD} and \overline{WR} signals that appear in the descriptions of each mode refer to the port in question as addressed by A_1 and A_0 . These signals only affect the port addressed by A_1 and A_0 .

Where the port addressed may not be clear, 0 or 1 is appended to the signal name to indicate the port.

Mode 0

In this mode the ports of the μ PD71055 are used to perform basic I/O operations. Each port operates with a buffered input and a buffered latched output. See figure 4.

Depending on the control word sent to the μ PD71055 from the system bus, ports 0, 1, and 2 can be independently specified for input or output.

Input Port Operation

While the \overline{RD} signal is low, data from the port selected by the A_1A_0 signals is put on the data bus. See figure 5.

Output Port Operation

When the μ PD71055 is written to $(\overline{WR}=0)$, the data on the data bus will be latched in the port selected by the A_1A_0 signals at the rising edge of \overline{WR} and output to the port pins. See figure 6.

By reading a port which is set for output, the output value of the port can be obtained.

Note: When group 0 is in mode 1 or mode 2, only bits P2₂-P2₀ of port 2 can be used by group 1. Bit P2₃ belongs to group 0.

Mode 0 Example

This is an example of a CPU connected to an A/D converter via a μ PD71055 (figure 7). Here both group 0 and group 1 are set to mode 0 and port 2 is used to start conversion and detect the end of the conversion process.

Figure 8 is a subroutine that reads the converted data from an A/D converter.

Figure 1. Mode Select Command Word

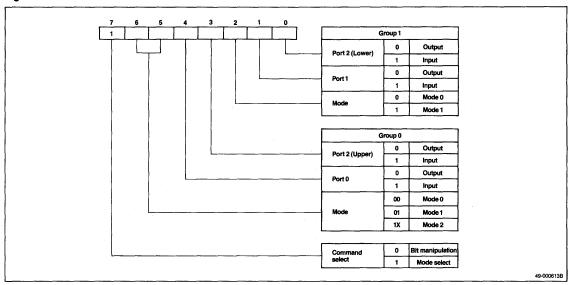


Figure 2. Bit Manipulation Command Word

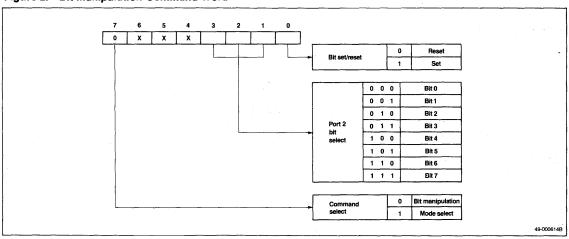


Figure 3. Bit Manipulation Command Example

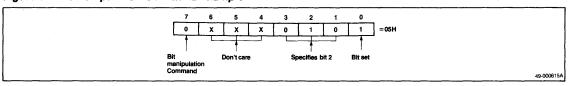


Figure 4. Mode 0

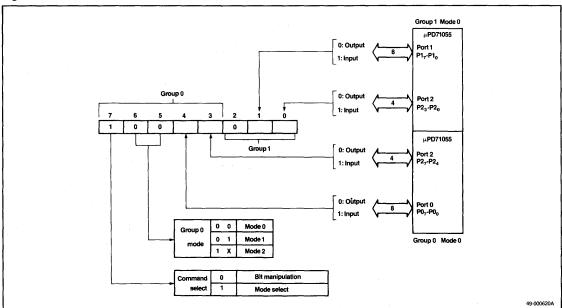


Figure 5. Mode 0 Input Timing

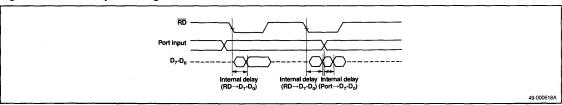


Figure 6. Mode 0 Output Timing

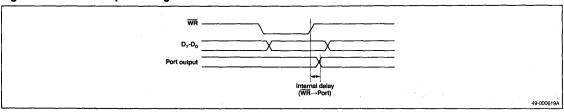


Figure 7. A/D Converter Connection Example

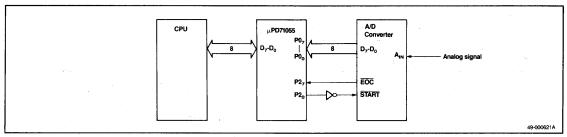


Figure 8. A/D Converter Example

READ_A/D:	MOV	AL,10011000B	μPD71055 Mode Setting:
	OUT	CTRLPORT,AL	;Group 0, group 1 in mode 0
			;Port 0 & port 2 (upper) are inputs
			;Port 1 & port 2 (lower) are outputs
	MOV	AL,0000001B	
	OUT	CTRLPORT,AL	;Conversion starts by setting P2 ₀ high
WAIT_EOC:	IN	AL,PORT2	;End of conversion wait loop
	AND	AL,80H	
	TEST	AL,80H	;Conversion ends when $P2_7 = 0$
	BNZ	WAIT_EOC	
	IN	AL,PORT0	;Read A/D converted values
	RET		

Mode 1

In this mode, the control and status signals control the I/O data. In group 0, port 0 functions as the data port and the upper five bits of port 2 function as control/status. In group 1, port 1 functions as the data port and the lower three bits of port 2 function as control/status.

In mode 1, the bit manipulation command is used to write the bits of port 2.

Group 0 Mode 1

When group 0 is used in mode 1, the upper five bits of port 2 become part of group 0. Of these five bits, three are used for control/status and the remaining two can be used for I/O (using the bit manipulation command). See figure 9.

Group 1 Mode 1

When group 1 is used in mode 1, the lower three or four bits of port 2 become part of group 1. Of these four bits, three are used for control/status. The remaining bit, P2 $_3$, can be used for I/O only if group 0 is in mode 0. Otherwise, P2 $_3$ belongs to group 0 as a control/status bit. See figure 9 and table 4.

Mode 1 Input Operation

In mode 1, port 0 is the data port for group 0, and port 1 for group 1. The control/status bits (port 2) are used as listed below. Figure 10 shows the signal timing.

STB [Strobe]. The data input at port 0 is latched in port 0 when the STB0 input is brought low. The data input at port 1 is latched in port 1 by STB1.

IBF [Input Buffer Full F/F]. The IBF output goes high to indicate that the input buffer has become full. IBF goes high when the \overline{STB} signal goes low. IBF goes low at the rising edge of the \overline{RD} signal when $\overline{STB} = 1$.

INT [Interrupt Request]. INT goes high when the data is latched in the input port, when RIE is 1 and \overline{STB} , IBF and \overline{RD} are all high. INT goes low at the falling edge of the \overline{RD} signal. It can function as a data read request interrupt signal to a CPU.

Figure 9. Mode 1 Input

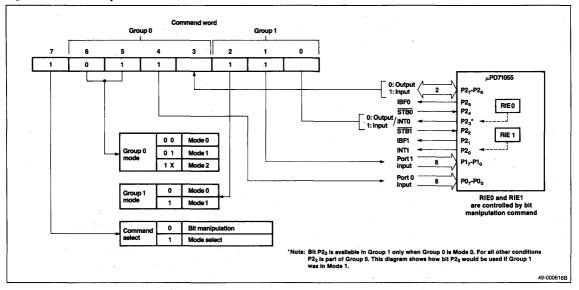
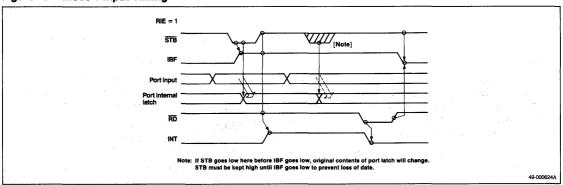



Figure 10. Mode 1 Input Timing

RIE [Read Interrupt Enable Flag]. RIE controls the interrupt output. Interrupts can be enabled by using the bit manipulation command to set this bit to 1, and disabled by resetting it to 0. This signal is internal to the μ PD71055 and is not an output. The state of RIE does not affect the function of $\overline{\text{STB0}}$ or $\overline{\text{STB1}}$, which are inputs to the same bits (P2₄ and P2₂) of port 2.

When input is specified in mode 1, the status of IBF, INT and RIE can be read by reading the contents of port 2.

Mode 1 Output Operation

In mode 1 output operation (figure 11), the status/control bits (port 2) are used as listed below. Figure 12 shows the signal timing.

 $\overline{\text{OBF}}$ [Output Buffer Full F/F]. $\overline{\text{OBF}}$ goes low when data is received by the μ PD71055 and is latched in output ports 1 or 0. $\overline{\text{OBF}}$ functions as a data receive flag. $\overline{\text{OBF}}$ goes low at the rising edge of $\overline{\text{WR}}$ when $\overline{\text{DAK}} = 1$ (write complete). It goes high when the $\overline{\text{DAK}}$ signal goes low.

Figure 11. Mode 1 Output

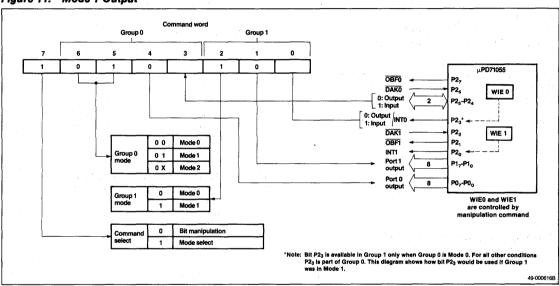
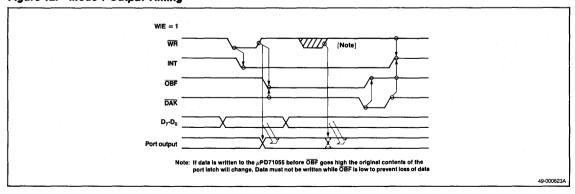



Figure 12. Mode 1 Output Timina

 $\overline{\text{DAK}}$ [Data Acknowledge]. When this input is low, it signals the μ PD71055 that output port data has been taken from the 71055.

INT [Interrupt Request]. INT goes high when the output data is taken when WIE is set to 1 and \overline{WR} , \overline{OBF} and \overline{DAK} are all high. It goes low at the falling edge of the \overline{WR} signal. INT therefore functions as a write request signal, indicating that new data should be sent to the $\mu PD71055$.

WIE [Write Interrupt Enable Flag]. WIE controls the interrupt output. Interrupts can be enabled by using the bit manipulation command to set this bit to 1 and disabled by resetting it to 0. This signal is internal to the μ PD71055 and is not an output. The state of WIE does not affect the function of \overline{DAK} addressed to the same bits of port 2.

When output is specified in mode 1, the status of \overline{OBF} , INT and WIE can be obtained by reading the contents of port 2.

Table 2 shows a summary of these signals.

Table 2. Functions of Port 2 Bits in Mode 1

Group	Bit	Data Input	Data Output
1	P2 ₀	INT1 (Interrupt request)	INT1 (Interrupt request)
	P2 ₁	IBF1 (Input buffer full f/f)	OBF1 (Output buffer full f/f)
34	P2 ₂	STB1 (Strobe input) RIE1 (Read interrupt enable flag)	DAK1 (Data acknowledge input) WIE1 (Write interrupt enable flag)
	P2 ₃	I/O (Note)	I/O (Note)
0	P2 ₃	INTO (Interrupt request)	INTO (Interrupt request)
	P2 ₄	STB0 (Strobe input) RIE0 (Read interrupt enable flag)	1/0
	P2 ₅	IBFO (Input buffer full f/f)	1/0
	P2 ₆	1/0	DAKO (Data acknowledge input) WIEO (Write interrupt enable flag)
	P2 ₇	1/0	OBFO (Output buffer full f/f)

Note: Can be used with group 1 only when group 0 is set to mode 0. In other modes, $P2_3$ belongs to group 0.

Mode 1 Example

This example (figure 13) demonstrates connecting a printer to the μ PD71055. Group 0 is used in mode 1 output. Group 1 can operate in mode 0 or 1; in this example it is set to mode 0.

Figure 13. Connection to Printer

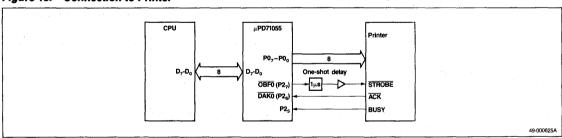


Figure 14. Printer Example Subroutine

	;This subrout	ine sends ch	aracter strings to the pr	inter
	INIT:	MOV	AL,10101000B	;μPD71055 Mode Setting: ;Group 0: mode 1 output ;Group 1: mode 0
		OUT RET	CTRLPORT,AL	, 5.1.5.
	SENDPRN: PRNLOOP:	MOV MOV	BW,DATA AL,[BW]	;Output data address
		CMP BNZ RET	AL,0FFH WAIT	;End if data = 0FFH
· ·	WAIT:	IN MOV AND	AL,PORT2 CL,AL AL,80H	
		TEST BZ MOV	AL,80H WAIT AL,CL	;Wait until output buffer is empty
		AND TEST BNZ	AL,20H AL,20H WAIT	;Wait until printer can accept data
		MOV	AL,[BW] PORT0,AL	;Send data to printer
		INC BR	BW PRNLOOP	

Mode 2

Mode 2 can only be used by group 0. In this mode, port 0 functions as a bidirectional 8-bit data port operating under the control of the upper five bits of port 2 as control/status signals. In this mode, port 0 combines the input and output operations of mode 1. See figures 15 and 16.

In mode 2, the status of the following signals can be determined by reading port 2: OBF0, IBF0, INT0, WIE0, and RIE0.

The $\overline{\text{DAK0}}$ and $\overline{\text{STB0}}$ signals are used to select input or output for port 0. By using these signals, bidirectional operation between the $\mu\text{PD71055}$ and peripheral can be realized.

In mode 2, the bit manipulation command is used to write to port 2.

Control/Status Port Operation

The following control/status signals are used for output:

OBF0 [Output Buffer Full]. OBF0 goes low when data is received from the D₀-D₇ data bus and is latched in the port 0 output buffer. It therefore functions as a receive request signal to the peripheral. OBF0 goes low

at the rising edge of the $\overline{WR0}$ signal (end of data write). It goes high when $\overline{DAK0}$ is low (output data from port 0 received).

 $\overline{\text{DAK0}}$ [Data Acknowledge]. $\overline{\text{DAK0}}$ is sent to the $\mu\text{PD71055}$ in response to the $\overline{\text{OBF0}}$ signal. It should be set low when data is received from port 0 of the $\mu\text{PD71055}$.

WIE0 [Write Interrupt Enable Flag]. WIE0 controls the write interrupt request output. Interrupts are enabled by using the bit manipulation command to set this bit to 1 and disabled by setting it to 0. The state of WIE does not affect the DAK function of this pin.

The following control/status signals are used for input:

 $\overline{\text{STB0}}$ [Strobe Input]. When $\overline{\text{STB0}}$ goes low, the data being sent to the μ PD71055 is latched in port 0.

IBF0 [Input Buffer Full F/F]. When IBF0 goes high, it indicates that the input buffer is full. It functions as a signal which can be used to prohibit further data transfer. IBF0 goes high when $\overline{\text{STB0}}$ goes low. It goes low at the rising edge of $\overline{\text{RD0}}$ when $\overline{\text{STB0}} = 1$ (read complete).

Figure 15. Mode 2

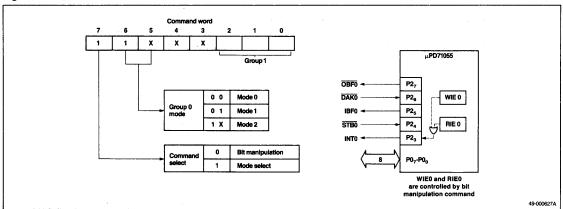
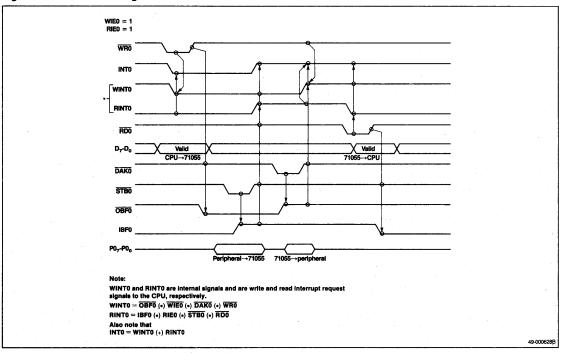



Figure 16. Mode 2 Timing

RIEO [Read Interrupt Enable Flag]. RIEO controls the read interrupt request output. Interrupts are enabled by using the bit manipulation command to set this bit to 1 and disabled by setting it to 0. The state of RIEO does not affect the STBO function of this pin.

This control/status signal is used for both input and output:

INTO [Interrupt Request]. During input operations, INTO functions as a read request interrupt signal. During output, it functions as a write request interrupt signal. This signal is the logical OR of the INT signal for data read (RINTO) and the INT signal for write (WINTO) in mode 1 (RINTO OR WINTO).

In mode 2, the status of OBF0, IBF0, INT0, WIE0, and RIE0 can be determined by reading port 2.

Table 3 is a summary of these signals.

Table 3. Functions of Port 2 in Mode 2

Bit	Function	
P2 ₃	INTO (Interrupt request)	
P2 ₄	STB0 (Strobe input) RIE0 (Read interrupt enable flag)	
P2 ₅	IBFO (Input buffer full f/f)	
P2 ₆	DAKO (Data acknowledge input) WIEO (Write interrupt enable flag)	
P2 ₇	OBFO (Output buffer full f/f)	

Mode 2 Example

Figures 17, 18, and 19 show data transfer between two CPUs.

Figure 17. Connecting Two CPUs

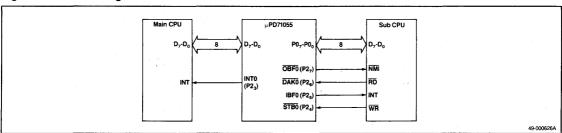


Figure 18. Main CPU Flowchart

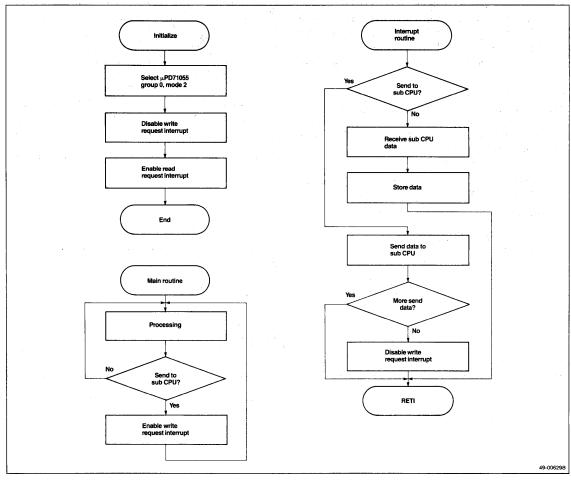
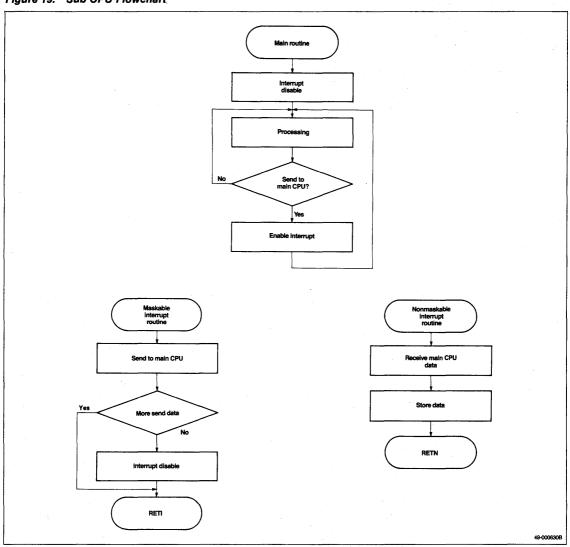



Figure 19. Sub CPU Flowchart

Mode Combinations

Table 4 is a complete list of all the combinations of modes and groups, and the function of the port 2 bits in each mode.

Table 4. Mode Combinations and Port 2 Bit Functions

	Group O						Group 1						
Mode	PO ₇ -PO ₀	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	Mode	P17-P10	P2 ₃	P2 ₂	P2 ₁	P2 ₀	
0	In	D	D	D	D	NΑ	0	In	D	D	D	D	
0	· In	D	D	D	D	NA	0	Out	D	D	D	D	
0	ln	D	D	D	D	NA	1	In	В	STB1 (RIE1)	IBF1	INT1	
0	In	D	D	D	D	NA	1	Out	В	DAK1 (WIE1)	OBF1	INT1	
0	Out	D	D	D	D	NA	0	In	D	D	D	D	
0	Out	D	D	D	D .	NA	0	Out	D	D	D	D	
0	Out	D	D	D	D	NA	1	In	В	STB1 (RIE1)	IBF1	INT1	
0	Out	D	D	D	D	NA	1	Out	В	DAK1 (WIE1)	0BF1	INT1	
1	ln	В	В	IBF0	STB0 (RIE0)	INT0	0	In	NA	D	D	D	
1	ln	В	В	IBF0	STB0 (RIE0)	INT0	0	Out	NA	D	D	D	
1	ln .	В	В	IBF0	STB0 (RIE0)	INT0	1	In	NA	STB1 (RIE1)	IBF1	INT1	
1	In	В	В	IBF0	STB0 (RIE0)	INTO	1	Out	NA	DAK1 (WIE1)	0BF1	INT1	
1	Out	0BF0	DAKO (WIEO)	В	В	INT0	0	In	NA	D	D	D	
1	Out	0BF0	DAKO (WIEO)	В	В	INT0	0	Out	NA	D	D	D	
1	Out	0BF0	DAKO (WIEO)	В	В	INT0	1	In	NA	STB1 (RIE1)	IBF1	INT1	
1	Out	0BF0	DAK0 (WIE0)	В	В	INT0	1	Out	NA	DAK1 (WIE1)	0BF1	INT1	
2	1/0	0BF0	DAKO (WIEO)	IBF0	STB0 (RIE0)	INTO	0	In	NA	D	. D	D	
2	1/0	OBF0	DAKO (WIEO)	IBF0	STB0 (RIE0)	INT0	0	Out	NA	- D -	D	D	
2	1/0	0BF0	DAKO (WIEO)	IBF0	STB0 (RIE0)	INT0	1	In	NA	STB1 (RIE1)	IBF1	INT1	
2	1/0	0BF0	DAKO (WIEO)	IBF0	STB0 (RIE0)	INT0	1	Out	NA	DAK1 (WIE1)	ÖBF1	INT1	

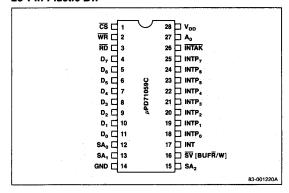
Note:

- (1) In this chart, "NA" indicates that the bit cannot be used by this group.
- (2) The symbol "B" indicates bits that can only be rewritten by the bit manipulation command.
- (3) In this chart, "D" indicates that is used by the user.
- (4) Symbols in parentheses are internal flags. They are not output to port 2 pins and they cannot be read by the host.
- (5) In indicates Input, Out indicates Output, and I/O indicates Input/Output.

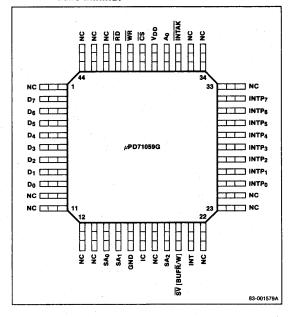
Description

The μ PD71059 is a low-power CMOS programmable interrupt control unit for microcomputer systems. It can process eight interrupt request inputs, allocating a priority level to each one. It transfers the interrupt with the highest priority to the CPU, along with interrupt address information. By cascading up to eight slave μ PD71059s to a master μ PD71059, a system can process up to 64 interrupt requests. System scale, interrupt routine address, interrupt request priority and masking are all under complete program control.

Features


- \square μ PD8085A compatible (CALL mode)
- \square μ PD70108/70116 compatible (vector mode)
- ☐ Eight interrupt request inputs per chip
- ☐ Up to 64 interrupt requests inputs per system (extended mode)
- ☐ Edge- or level-triggered interrupt request inputs
- ☐ Each interrupt maskable
- ☐ Programmable priority level
- ☐ Polling operation
- ☐ Single +5 V ±10% power supply
- ☐ Industrial temperature range: -40 to +85°C
- ☐ CMOS technology

Ordering Information


Order Code	Package Type
μPD71059C	28-pin plastic DIP
μPD71059G	44-pin plastic miniflat
μPD71059L	28-pin PLCC (available 3Q86)

Pin Configurations

28-Pin Plastic DIP

44-Pin Plastic Miniflat

Pin Identification

Plastic DIP

No.	Symbol	Function				
1	CS	Chip select input				
2 .	WR	Write strobe input				
3	RD	Read strobe input				
4-11	D ₇ -D ₀	Data bus I/O				
12-13	SA ₀ , SA ₁	Slave address I/O, bits 0, 1				
14	GND	Ground potential				
15	SA ₂	Slave address I/O, bit 2				
16	SV (BUFR⊄W)	Slave (Buffer read write) I/				
17	INT	Interrupt output				
18-25	INTP ₀ -INTP ₇	Interrupt inputs				
26	INTAK	Interrupt acknowledge inpu				
27	Α ₀	Address input				
28	V _{DD}	Power supply				

Plastic Flatpack

7 700170 7 70	sipuok				
No.	Symbol	Function			
1	NC	Not connected			
2-9	D ₇ -D ₀	Data bus I/O			
10-13	NC	Not connected			
14, 15	SA ₀ , SA ₁	Slave address 1/0, bits 0, 1			
16	GND	Ground potential			
17	IC	Internally connected			
18	NC	Not connected			
19	SA ₂	Slave address I/O, bit 2			
20	SV (BUFR/W)	Slave (Buffer read write) I/O			
21	INT	Interrupt output			
22-24	NC	Not connected			
25-32	INTP ₀ -INTP ₇	Interrupt inputs			
33-35	NC	Not connected			
36	INTAK	Interrupt acknowledge input			
37	Α ₀	Address input			
38	V _{DD}	Power supply			
39	CS	Chip select input			
40	WR	Write strobe input			
41	RD	Read strobe input			
42-44	NC	Not connected			

Pin Functions

D₇-D₀ [Data Bus]

The 8-bit 3-state bidirectional bus transfers data to and from the CPU through the system bus. The data bus becomes active when data is sent to the CPU in the INTAK sequence. Otherwise, the data bus is high impedance.

CS [Chip Select]

The CPU uses the μ PD71059's \overline{CS} input to select a μ PD71059 to read from (IN instructions) or write to (OUT instructions). The \overline{RD} and \overline{WR} signals to the μ PD71059 are enabled when \overline{CS} is low. \overline{CS} is not used for the INTAK sequence.

RD [Read Strobe]

The CPU sets the \overline{RD} input to 0 when reading the internal registers IMR, IRR and ISR, and during polling operations to read polling data.

WR [Write Strobe]

The CPU sets the \overline{WR} input to 0 when writing initializing words IW1-IW4 and command words IMW, PFCW and MCW.

A₀ [Address]

The A_0 input is used with \overline{CS} , \overline{RD} , and \overline{WR} to read or write to the $\mu PD71059$. Normally, A_0 is connected to A_0 of the address bus. Table 1 shows the relationship between read/write operations and the control signals (\overline{CS} , \overline{WR} , \overline{RD} , and A_0).

INTP₇-INTP₀ [Interrupt Request from Peripheral]

 $INTP_7-INTP_0$ are eight asynchronous interrupt request inputs. They can be set to be either edge-or level-triggered. These pins are pulled up by an internal resistance. Their power consumption is lower at high-level input than at low-level input.

INT [Interrupt]

INT is the interrupt request output from a μ PD71059 to the CPU or master μ PD71059. When an interrupt from a peripheral is input to an INTP pin and acknowledged, the μ PD71059 asserts INT high to generate an interrupt request at the CPU or master μ PD71059.

INTAK [Interrupt Acknowledge]

The INTAK input from the CPU acknowledges an interrupt from the μ PD71059. After acknowledging the interrupt request, the CPU returns three low-level pulses (μ PD8085) or two low-level pulses (μ PD70108/70116). Synchronizing to these pulses, the μ PD71059 sends a CALL instruction in three bytes, or an interrupt vector number in one byte through the data bus.

SV [BUFR/W] [Slave, Buffer Read/Write]

This pin has two functions. When no external buffer is used in the data bus, it is the \overline{SV} input. When \overline{SV} is low, the μ PD71059 acts as a slave. It operates as a master when \overline{SV} is high. \overline{SV} has no master/slave meaning when the μ PD71059 is set to single mode.

As the BUFR/W output, this pin can allow a bus transceiver to be controlled by the μ PD71059, if one is required. When the μ PD71059 changes its data bus to output, it sets BUFR/W low. It sets BUFR/W high when the data bus changes to input.

SA₂-SA₀ [Slave Address]

These pins are only used in systems with cascaded μ PD71059s. The master μ PD71059 uses these pins to address up to eight slave μ PD71059s. These pins are output pins for masters, and input pins for slaves.

Note: In the single mode, SA₂-SA₀ are output pins, but the output data has no meaning.

V_{DD} [Power Supply]

This is the positive power supply.

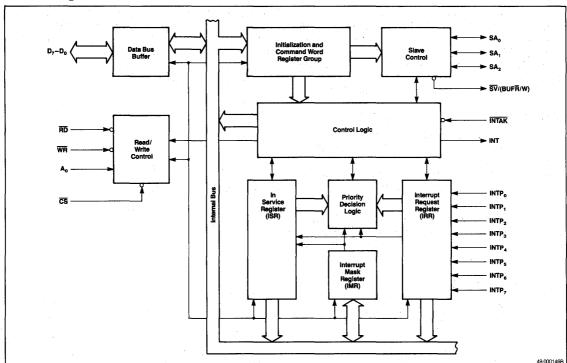
GND [Ground]

This is the ground potential.

IC [Internally Connected]

This pin must be left unconnected.

Table 1. Read/Write Operations


CS	RD	WR	A _O	Other Conditions	μ PD71059 Operation	CPU Operation
0	0	1	0	IRR set by MCW	IRR to Data bus	IRR read
				ISR set by MCW	ISR to Data bus	ISR read
				Polling phase (Note 1)	Polling data to Data bus	Polling
0	0	1	1		IMR to Data bus	IMR read
0	1	0	0	D ₄ = 1	Data bus to IW1 register	IW1 write
				$D_4, D_3 = 0$	Data bus to PFCW register	PFCW write
				$D_4 = 0, D_3 = 1$	Data bus to MCW register	MCW write
0	1	0	1	(Note 2)	Data bus to IW2 register	IW2 write
					Data bus to IW3 register	IW3 write
					Data bus to IW4 register	IW4 write
				After initializing	Data bus to IMR	IMW write
0	1	1	X		Data bus high impedance	
1	Х	X	Х			
0	0	0	Х		Illegal	

Note:

- (1) In the polling phase, polling data is read instead of IRR and ISR.
- (2) Refer to Control Words section for IW2-IW4 writing procedure.

Block Diagram

Block Diagram Functions

Data Bus Buffer

The data bus buffer is a buffer between D_7 - D_0 and the μ PD71059's internal bus.

Read/Write Control

The read/write control controls the CPU's reading and writing to and from the μ PD71059 registers.

Initialization and Command Word Registers

These registers store initializing words IW1-IW4 and command words PFCW (priority and finish control word) and MCW (mode control word). The CPU cannot read these registers.

Interrupt Mask Register [IMR]

The interrupt mask register stores the interrupt mask word (IMW) command word. Each bit masks an interrupt. If bit n of this register is 1, the interrupt request INTP_n is masked and cannot be accepted by the μ PD71059. The CPU can read this register by performing an IN instruction with $A_0=1$.

Interrupt Request Register [IRR]

The interrupt request register shows which interrupt levels are currently being requested. If bit n of the IRR is 1, $INTP_n$ is requesting an interrupt. The CPU can read this register.

In-Service Register [ISR]

The in-service register shows all interrupt levels currently in service. If bit n of this register is 1, the interrupt routine corresponding to $INTP_n$ is currently being executed. The CPU can read this register.

Slave Control

Slave control is used in systems with cascaded μ PD71059s. A master μ PD71059 uses it to control slave μ PD71059s, and a slave uses it to interface with the master μ PD71059.

Control Logic

The control logic receives and generates the signals that control the sequence of events in an interrupt.

Priority Decision Logic

The priority decision logic determines which interrupt request from the IRR will be serviced next. The decision is made based upon the current interrupt mask, interrupt service status, mode status, and current priority.

Absolute Maximum Ratings

 $T_A = 25$ °C

Power supply voltage, V _{DD}	−0.5 to +7.0 V
Input voltage, V _I	-0.5 to V _{DD} + 0.3 V
Output voltage, V ₀	-0.5 to V _{DD} + 0.3 V
Power dissipation, P _{DMAX}	500 mW
Operating temperature, Topt	-40 to +85°C
Storage temperature, T _{sto}	-65 to +150°C

Comment: Exposing the device to stresses above those listed in the absolute maximum ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Capacitance

 $T_A = 25 \,^{\circ}C; V_{DD} = GND = 0 \,^{\circ}V$

		Limits				Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input capacitance	Cl			10	pF	f _C = 1 MHz	
I/O capacitance	C _{IO}			20	pF	Unmeasured pins returned to 0 V	

DC Characteristics

 $T_A = -40$ °C to +85 °C; $V_{DD} = 5 \text{ V} \pm 10\%$

			Limits	3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage high	V _{IH}	2.2		V _{DD} + 0.3	٧	
Input voltage low	V _{IL}	-0.5		0.8	٧	
Output voltage high	V _{OH}	0.7 (V _{DD})			٧	$I_{OH} = -400 \mu\text{A}$
Output voltage low	V _{OL}			0.4	٧	$I_{OL} = 2.5 \text{ mA}$
Input leakage current high	ILIH			10	μΑ	$V_I = V_{DD}$
Input leakage current low	ILIL			-10	μΑ	$V_I = 0 V$
Output leakage current high	ILOH			10	μΑ	$V_0 = V_{DD}$
Output leakage current low	I _{LOL}			-10	μΑ	$V_0 = 0 V$
INTP input leakage current high	I _{LIPH}			10	μΑ	$V_I = V_{DD}$
INTP input leakage current low	I _{LIPL}	-		-300 °	μΑ	$V_I = 0 V$
Supply current (dynamic)	I _{DD1}		3.5	9	mA	
Supply current (power down mode)	I _{DD2}		2	50	μΑ	Input Pins: V _{IH} = V _{DD} - 0.1 V V _{IL} = 0.1 V Output Pins: Open (Note 1)

Note:

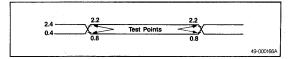
⁽¹⁾ In power down mode, INTP7 to INTP0, $\overline{\text{INTAK}}$ and $\overline{\text{CS}}$ must be at high level (V_{IH} = V_{DD} - 0.1 V).

AC Characteristics

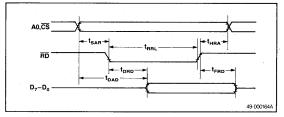
 $T_{\mbox{\scriptsize A}} = -40$ to +85 °C; $V_{\mbox{\scriptsize DD}} \pm 5~V + 10\%$

			Limits	100		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Read Timing							
A ₀ , CS set- up to RD ↓	t _{SAR}	0			ns		
A ₀ , CS hold from RD 1	^t HRA	0			ns		
RD pulse width low	trrl	160			ns		
RD pulse width high	t _{RRH}	120			ns	4	
Data <u>de</u> lay from RD ↓	t _{DRD}			120	ns	C _L = 150 pF	
Data float from RD 1	t _{FRD}	10		85	ns	C _L = 100 pF	
Data delay from A ₀ , CS	t _{DAD}			200	ns	C _L = 150 pF	
BUFR/W delay_ from RD ↓	t _{DRBL}			-100	ns		
BUFR/W delay from RD 1	t _{DRBH}			150	ns		
Write Timing							
A ₀ , CS set- up to WR ↓	t _{SAW}	0			ns		
A ₀ , <u>CS</u> hold from WR 1	t _{HWA}	0			ns		
WR pulse width low	twwL	120			ns		
WR pulse width high	twwH	120			ns		
Data <u>set-</u> up from WR 1	t _{SDW}	120	-		ns		
Data <u>hold</u> from WR 1	t _{HWD}	0			ns		

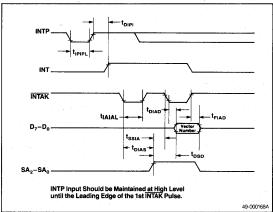
Notes:

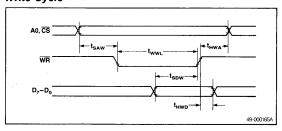

- (1) The time to clear the input latch in edge-trigger mode.
- (2) The time to move from read to write operation.
- (3) The time to move to the next INTAK operation.
- (4) The time to move INTAK to/from command (read/write).

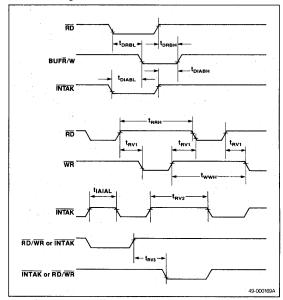
			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Interrupt Timing		******				
INTP pulse width	t _{IPIPL}	100			ns	(Note 1)
SA set-up to second, third	tssia	40			ns	Slave
INTAK pulse width low	†IAIAL	160			ns	
INTAK pulse width high	tIAIAH	120			ns	INTAK Sequence
INT delay from INTP 1	t _{DIPI}		- ",	300	ns	C _L = 150 pF
SA delay from first INTAK ↓	^t DIAS			360	ns	Master, C _L = 150 pF
Data delay from INTAK ↓	t _{DIAD}			120	ns	C _L = 150 pF
Data <u>float</u> from INTAK †	t _{FIAD}	10		85	ns`	
Data delay from SA	toso			200	ns	Slave, C _L = 150 pF
BUFR/W delay from INTAK↓	†DIABL			100	ns	C _L = 150 pF
BUFR/W delay from INTAK 1	†DIABH			150	ns	
Other Timing						
Command recovery time	t _{RV1}	120			ns	(Note 2)
INTAK recovery time	t _{RV2}	250			ns	(Note 3)
INTAK/ command recovery time	t _{RV3}	250			ns	(Note 4)

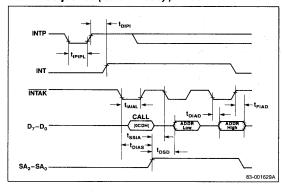


Timing Waveforms


AC Test Input/Output Waveform


Read Cycle


$\overline{\textit{INTAK}}$ Sequence (Vector Mode) μ PD70108/70116


Write Cycle

Other Timing

INTAK Sequence (CALL Mode) µPD8085

Interrupt Operation

Almost all microcomputer systems use interrupts to reduce software overhead when controlling peripherals. However, the number of interrupt pins on a CPU is limited. When the number of interrupt lines increases beyond that limit, external circuits like the μ PD71059 become necessary.

The μ PD71059 can process eight interrupt request according to an allocated priority order and transmit the signal with the highest priority to the CPU. It also supplies the CPU with information to ascertain the interrupt routine start address. Cascading μ PD71059s by connecting up to eight "slave" μ PD71059s to a single "master" μ PD71059 permits expansion to up to a maximum of 64 interrupt request signals.

Interrupt system scale (master/slave), interrupt routine addresses, interrupt request priority, and interrupt request masking are all programmable, and can be set by the CPU.

Normal interrupt operation for a single μ PD71059 is as follows. First, the initialization registers are set with a sequence of initialization words. When the μ PD71059 detects an interrupt request from a peripheral to an INTP pin it sets the corresponding bit of the interrupt request register (IRR). The interrupt is checked against the interrupt mask register (IMR) and the interrupt service register (ISR). If the interrupt is not masked and there is no other interrupt with a higher priority in service or requesting service, it generates an INT signal to the CPU.

The CPU acknowledges the interrupt by bringing the INTAK line low. The $\mu\text{PD71059}$ then outputs interrupt CALL or vector data onto the data bus in response to INTAK pulses. During the last INTAK pulse, the $\mu\text{PD71059}$ sets the corresponding bit in its ISR to indicate that this interrupt is in service and to disable interrupts with lower priority. It resets the bit in the IRR at this point. When the CPU has finished processing the interrupt, it will inform the $\mu\text{PD71059}$ by sending a finish interrupt (FI) command. This resets the bit in the ISR and allows the $\mu\text{PD71059}$ to accept interrupts with lower priorities. If the $\mu\text{PD71059}$ is in the self-FI mode, the ISR bit is reset automatically and this step is not necessary.

Software Features

The μ PD71059 has the following software features:

• Interrupt types: CA

CALL/vector

Interrupt masking:End of interrupt:

Normal/extended nesting Self-FI/normal FI/

specific FI

Priority rotation:

Normal nested/extended nested/exceptional nested Automatic priority rotation

Rotate to specific priority

Polled mode

• CPU-readable registers

Hardware Configurations

The μ PD71059 has the following hardware configurations:

Interrupt input:

Edge/level sensitive

Cascading μPD71059s:

Single/extended (master/slave)

Output driver control:

Buffered/non-buffered

Mode Control

These features and configurations are selected and controlled by the four initialization words (IW1-IW4) and the three command words (IMW, PFCW, and MCW). The format of these words are shown in figures 2 and 3, respectively.

Control Words

There are two types of μ PD71059 control words: initialization words and command words.

There are four initialization words: IW1-IW4. These words must be written to the μ PD71059 at least once to initialize it. They must be written in sequence.

There are three types of command words: interrupt mask word (IMW), priority and finish control word (PFCW), and the mode control word (MCW). These words can be written freely after initialization.

Initialization Words

Initialization sequence. When data is written to a μ PD71059 after setting $A_0=0$ and $D_4=1$, data is always accepted as IW1. This results in a default initialization as shown below. See figure 1.

- The edge-trigger circuit of the INTP input is reset. IRR is cleared in the edge-trigger mode.
- (2) ISR and IMR are cleared.
- (3) INTP₇ receives the lowest priority; INTP₀ receives the highest.
- (4) The exceptional nesting mode is released. IRR is set as the register to be read.
- (5) Register IW4 is cleared. The normal nesting mode, non-buffer mode, FI command mode, and CALL mode are set.

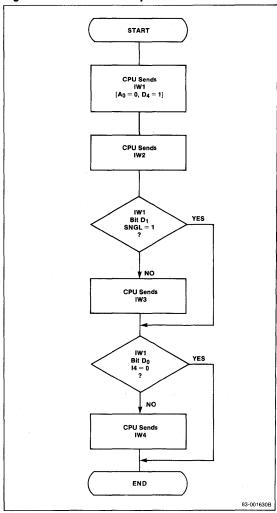
Initialization Words. The initialization words are written consecutively, and in order. The first two, IW1 and IW2, set the interrupt address or vector. IW3 specifies which interrupts are slaves for master systems, and defines the slave number of a slave system. Therefore, IW3 is only required in extended systems. The μ PD71059 will only expect it if bit D₁ of IW1, SNGL = 0. IW4 is only written if bit D₀ of IW1, I4 = 1. See figure 2 for the format of the initialization words.

Command Words

The command words give various commands to a μ PD71059 during its operation to change interrupt masks and priorities, to end interrupt processing, etc. See figure 3.

IMW [Interrupt Mask Word]. This word masks the IRR and disables the corresponding INTP interrupt requests. It also masks the ISR in the exceptional nesting mode. Bits M_7 - M_0 correspond to the interrupt levels of INTP₇-INTP₀, respectively.

In the exceptional nesting mode, interrupts corresponding to the bits of IRR and ISR are masked if the $M_{\rm p}$ bit is set to 1.


PFCW [**Priority and Finish Control Word**]. This word sets the FI (finish interrupt) command that defines the way that interrupts are ended, and the commands that change interrupt request priorities.

When RP (rotate priority) is set to 1, the priorities of the interrupt requests change (rotate). The priority order of the 8 INTP pins is as shown in figure 4. Setting a level as the lowest priority sets all the other levels correspondingly. For example, if INTP₃ is the lowest priority, INTP₄ will be the highest. (INTP₇ has the lowest priority after initialization).

SIL (specify interrupt level) is set to 1 to change the priority order or designate an interrupt level. It is used with the RP and FI bits (bits D_7 and D_5). When SIL = 1 and RP or FI = 1, the level identified by IL₂-IL₀ is designated as the lowest priority level. The other priorities will be set correspondingly. When used with FI = 1, it resets the ISR bit corresponding to the interrupt level IL₂-IL₀.

MCW [Mode Control Word]. This word is used to set the exceptional nesting mode, to poll the μ PD71059, and to read the ISR and IRR registers.

Figure 1. Initialization Sequence

Bits SR and IS/ $\overline{\text{IR}}$ are used to read the contents of the IRR and ISR registers. When SR = 0, no operation is performed. To read IRR or ISR, set $A_0=0$ and select the IRR or ISR register by writing to MCW. To select the IRR register, write MCW with SR = 1 and IS/ $\overline{\text{IR}}=0$. To select the ISR, write MCW with SR = 1 and IS/ $\overline{\text{IR}}=1$. The selection is retained, and MCW does not have to be rewritten to read the same register again. IRR and ISR are not masked by the IMR.

Figure 2. Initialization Word Formats (Sheet 1 of 2)

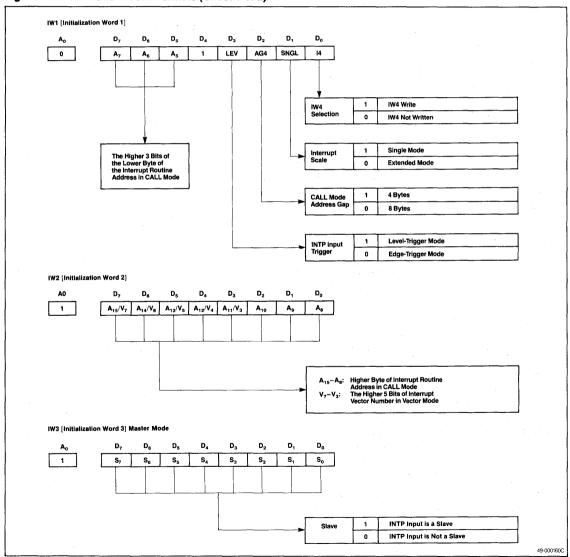


Figure 2. Initialization Word Formats (Sheet 2 of 2)

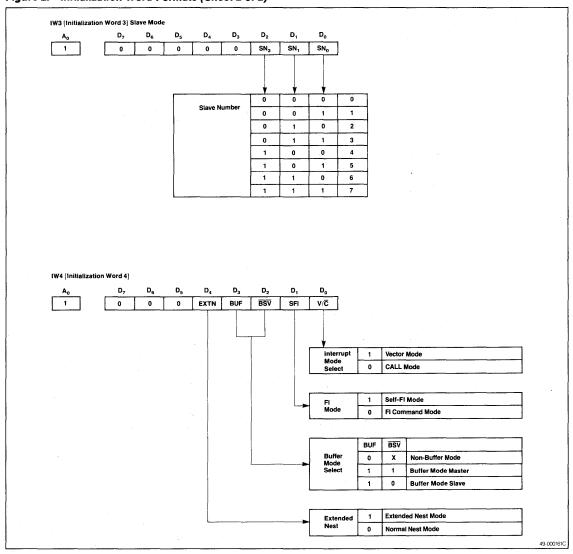


Figure 3. Command Word Format

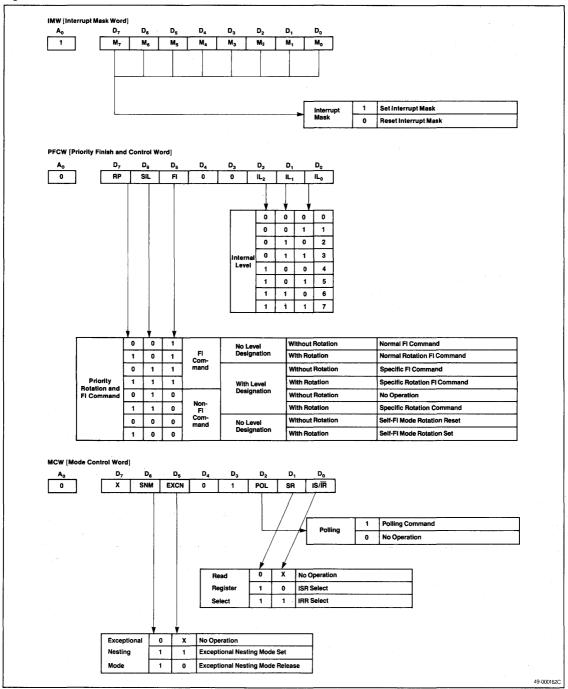
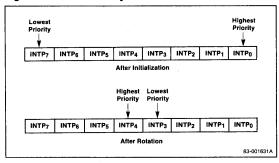



Figure 4. INTP Priority Order

CALL or Vector Modes

The μ PD71059 passes interrupt routine address data to the CPU in two modes, depending on the CPU type. This mode is set by bit V/ \overline{C} in initialization word IW4. V/ \overline{C} is set to one to to select the vector mode for μ PD70108/70116 CPUs, and reset to zero to select the CALL mode for μ PD8085A CPUs.

CALL Mode [µPD8085A CPUs]

In this mode, when an interrupt is acknowledged by the CPU, the μ PD71059 outputs three bytes of interrupt data to the data bus in its INTAK sequence. During the first INTAK pulse from the CPU, the μ PD71059 outputs the CALL opcode 0CDH. During the next INTAK pulse, it outputs the lower byte of a two-byte interrupt routine address. During the third INTAK pulse, it outputs the upper byte of the address. The CPU interprets these three bytes as a CALL instruction and executes the CALL interrupt routine. See figure 5 and the INTAK sequence (CALL mode) μ PD8085 diagram in the AC Timing Waveforms.

Interrupt routine addresses are set using words IW1 and IW2 during initialization. However, only the higher ten or eleven bits of the interrupt addresses are set, $A_{15}\text{-}A_6$ or $A_{15}\text{-}A_5$. The $\mu\text{PD71059}$ sets the remaining low bits $(D_5\text{-}D_0$ or $D_4\text{-}D_0)$ to get the address of INTPn's interrupt routine. The addresses for INTP1-INTP7 are set in order of interrupt level. The space between interrupt addresses is determined by setting the AG4 bit (address gap 4 bytes) of IW1. When AG4 = 1, the interrupt routine starting addresses are 4 bytes apart. Therefore, the starting address for INTPn is the starting address for INTP0 plus four times n. When AG4 = 0, starting addresses are eight bytes apart, so the starting address for INTPn is the starting address for INTPn plus eight times n. See figure 6.

Vector Mode [µPD70108/70116 CPUs]

In the vector mode, the μ PD71059 outputs a one-byte interrupt vector number to the data bus in the $\overline{\text{INTAK}}$ sequence. The CPU uses that vector number to generate an interrupt routine address. See figure 7.

The higher five bits of the vector number, V_7 - V_3 , are set by IW2 during initialization. The μ PD71059 sets the remaining three bits to the number of the interrupt input (0 for INTP₀, 1 for INTP₁, etc). See figure 8.

The CPU generates an interrupt vector by multiplying the vector number by four, and using the result as the address of a location in an interrupt vector table located at addresses 000H-3FFH. See figure 9.

System Scale Modes

The μ PD71059 can operate in either single mode, with up to eight interrupt lines or extended mode, with more than one μ PD71059 and more than eight interrupt lines. In extended mode a μ PD71059 is in either master or slave mode.

Bit D₁, SNGL (single mode), of the first initialization word IW1 designates the scale of the interrupt system. SNGL = 1 designates that only one μ PD71059 is being used (single mode system). SNGL = 0 designates an extended mode system with a master and slave μ PD71059s. In the single mode (SNGL = 1), the SV input and IW4 buffer mode bits D₃ and D₂ do not indicate a master/slave relation for the μ PD71059.

Single Mode

This mode is the normal mode of μ PD71059 operation. It has been described in the Interrupt Operation description. See figure 10 for a system example.

Extended Mode

In this mode, up to 64 interrupt requests can be processed using a master (μ PD71059 in master mode) connected to a maximum of eight slaves (μ PD71059s in slave mode). See figure 11 for a system example.

Figure 5. CALL Mode Interrupt Sequence

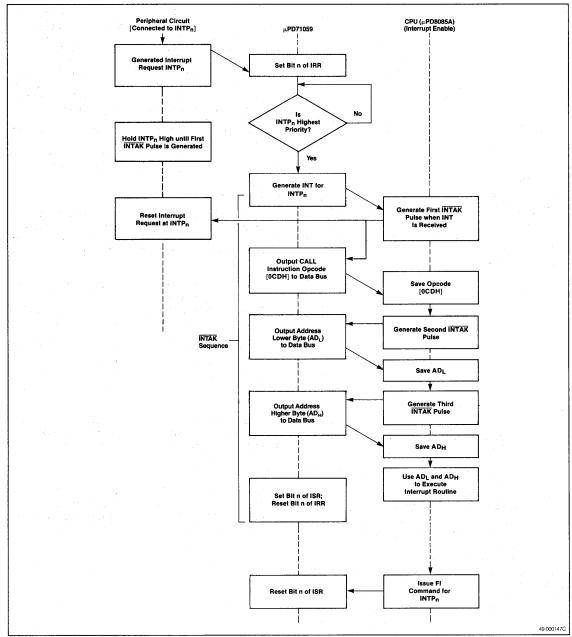


Figure 6. CALL Mode Interrupt Address Sequence

Address Lower Byte [ADL] During Second INTAK

AG4 = 1 (4-Byte Spacing Address)

Interrupt Level	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dı	Do
INTP ₀	A ₇	A ₆	A ₅	0	0	0	0	0
INTP ₁	A ₇	A ₆	A ₅	0	0	1	0	0
INTP ₂	A ₇	A ₆	A ₅	0	1	0	0	0
INTP ₃	A ₇	A ₆	A ₅	0	1	1	0	0
INTP ₄	A,	A ₆	A ₅	1	0	0	0	0
INTP ₅	A ₇	A ₆	A ₅	1	0	1	0	0
INTP ₆	A,	A ₆	A ₅	1	1	0	0	0
INTP,	A,	A ₆	A ₅	1	1	1	0	0

AG4 = 0 (8-Byte Spacing Address)

Interrupt Level	D ₇	D ₆	Ds	D ₄	D ₃	D ₂	D,	D _o
INTP _o	A ₇	A ₆	0	0	0	0	0	0
INTP,	A,	A ₆	0	0	1	0	0	0
INTP ₂	A,	A ₆	0	1	0	0	0	0
INTP ₃	A ₇	A ₆	0	1	1	0	0	0
INTP ₄	A ₇	A ₆	1	.0	0	0	0	0
INTPs	A ₇	A ₆	1	0	1	0	0	0
INTP ₆	A ₇	A ₆	1	1	0	0	0	0
INTP,	A ₇	A ₆	1	1	1	0	0	0

Note: When AG4 = 0, bit A₅ is ignored.

Address Higher Byte [ADH] During Third INTAK

D ₇	D ₆	D ₅	D₄	D ₃	D ₂	D,	Do	
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	

3-001632A

Figure 7. Vector Mode Interrupt Sequence

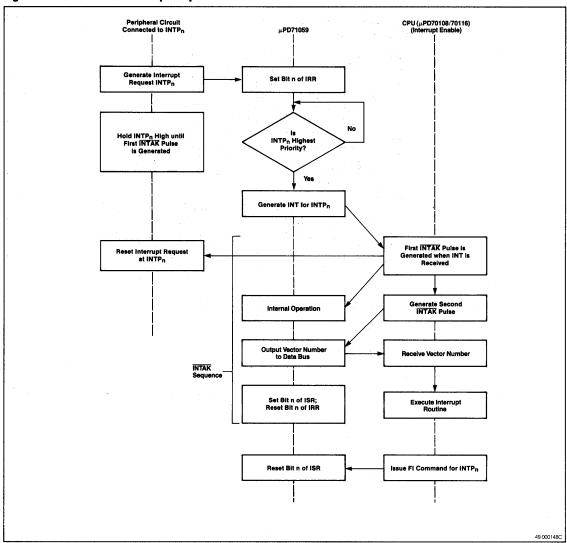


Figure 8. Vector Numbers Output in Vector Mode

		•	Output Du	ring the S	Second IN	TAK			
Interrupt Levels	D _{7.}	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	
INTP ₀	٧,	V ₆	V ₅	V ₄	V ₃	0 .	0	0	
INTP ₁	V ₇	V ₆	V ₅	V ₄	V ₃	0	0	1	1
INTP ₂	٧,	V ₆	V ₅	V ₄	V ₃	0.:	1	0	
INTP ₃	V,	V ₆	V ₅	V ₄	V ₃	0	1	1	
INTP₄	V,	٧6	V ₅	V ₄	V ₃	1	0	0	and the second second
INTP ₅	V,	V ₆	V ₅	V ₄	V ₃	1	0	1	
INTP ₆	V ₇	V ₆	V ₅	V ₄	V ₃	1	1	0	
INTP ₇	V ₇	V ₆	V ₅	. V ₄	V ₃	1.	1	1	
•									83-001

Figure 9. Interrupt Vectors for the μ PD70108/70116

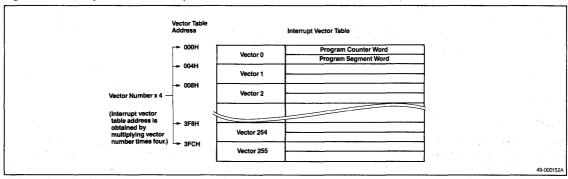
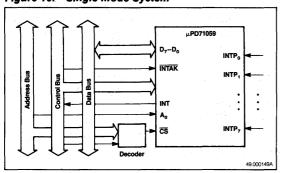



Figure 10. Single Mode System

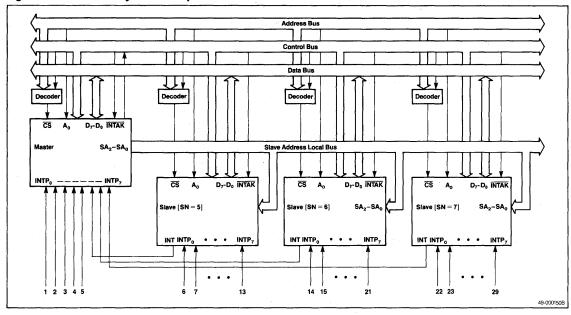


Figure 11. Extended System Example with Three Slaves

Master Mode

When a μ PD71059 is a master in an extended mode system, S₇-S₀ of IW3 (master mode) define which of INTP₇-INTP₀ are inputs from slave μ PD71059s or peripheral interrupts.

Consider an interrupt request from INTP_n. If $S_n = 0$, the interrupt is from a peripheral (for example, INTP₀ of the master μ PD71059 in Figure 11), and the μ PD71059 treats it the same way it would if it were in the single mode. SA_2 - SA_0 outputs are low level and the master provides the interrupt address or vector number.

If $S_n=1$, the interrupt is from a slave (for example, INTP₇ of the master). The master sends an interrupt to the CPU if the slave requesting the interrupt has priority. The master then outputs slave address n to pins SA_2 - SA_0 on the first \overline{INTAK} pulse by the CPU. It lets slave n perform the rest of the \overline{INTAK} sequence.

Slave Mode

When a slave receives an interrupt request from a peripheral, and the slave has no interrupts with higher priority in service, it sends an interrupt request to the master through its INT output. When the interrupt is accepted by the CPU through the master, the master outputs the slave's address on pins SA₂-SA₀. Each slave compares the address on SA₂-SA₀ to its own address. The slave that sent the interrupt will find a match. It completes the $\overline{\text{INTAK}}$ sequence the same way as a single $\mu\text{PD71059}$ would.

The master outputs slave address 0 when it is processing a non-slave interrupt. Therefore, do not use 0 as a slave address if there are less than eight slaves connected to the master.

Figures 12 and 13 show the interrupt operating sequences for slaves in the extended mode.

Figure 12. Interrupt from Slave (CALL Mode)

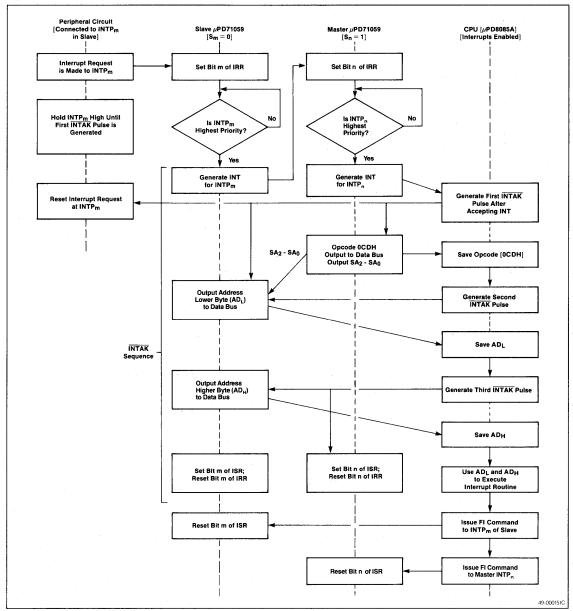
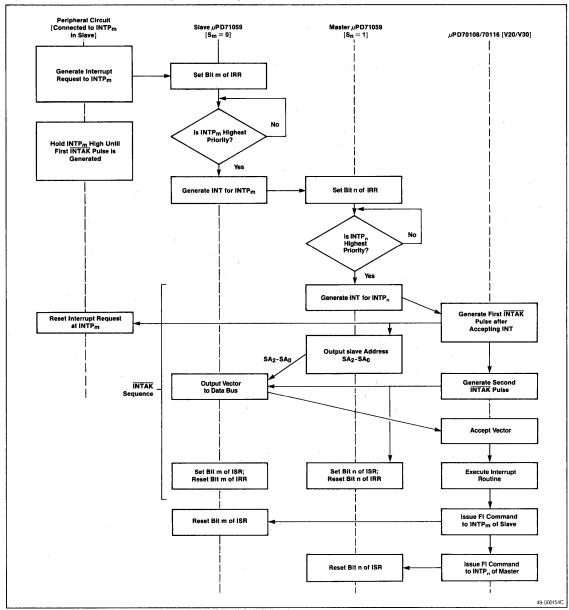



Figure 13. Interrupt from Slave (Vector Mode)

Buffer and Non-Buffer Modes

In a large system, a buffer may be needed by the μ PD71059 to drive the data bus. A buffer mode is supplied, with a signal to specify the buffer direction. In the buffer mode, \overline{SV} (BUF \overline{R} /W) is used to select the buffer direction and \overline{SV} cannot be used to specify the master/slave mode. The master/slave selection must be set by IW4. IW4 bit D₃, BUF (buffer) and D₂, B \overline{SV} (buffered slave) are used together to set the buffer mode and master/slave relation. When BUF = 0, the non-buffer mode is set and B \overline{SV} has no meaning. When BUF = 1, the buffer mode is set. In buffer mode, the μ PD71059 is a master when B \overline{SV} = 1, a slave when BSV = 0. See figure 14.

Nesting Modes

The way a μ PD71059 handles interrupts when there is already an interrupt in service depends on the nesting mode.

Normal Nesting Mode

This mode is set when IW4 is not written or when IW4 has EXTN = 0. It is the most common nesting mode. See figure 15.

When an interrupt is being executed in this mode (corresponding bit of ISR = 1), only interrupt requests with higher priority can be accepted.

Extended Nesting Mode

This mode is only applicable to a master in the extended mode. A slave's eight interrupt priority levels become only one priority level when viewed by the master. Therefore, a request made by a slave with a higher priority than a previous request from the same slave will not be accepted. This cannot be called complete nesting since priority ranking within slaves loses its significance.

The extended nesting mode is set by setting bit D4 of IW4 in both the master and the slave. Interrupt requests of a higher level than the one currently being serviced can be accepted in the master from the same slave in the extended nesting mode.

Care should be exercised when issuing an FI (finish interrupt) command in the extended nesting mode. In an interrupt by a slave, the CPU first issues an FI command to the slave. Then, the CPU reads the slave's in-service register (ISR) to see if that slave still has interrupts in service. If there are no interrupts in service, (ISR = 00H) an FI command is issued to the master, as in the single mode when an interrupt is made by a peripheral.

Figure 14. Buffer Mode

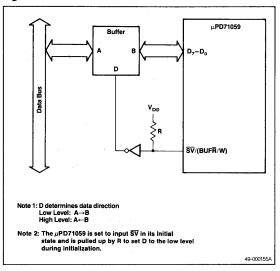
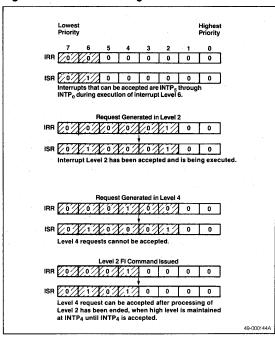



Figure 15. Normal Nesting Mode

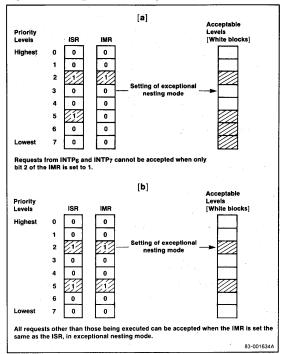
Exceptional Nesting Mode

A μ PD71059 in the normal or extended nesting mode cannot accept interrupts of a lower priority than the interrupts in service. Sometimes, however, it is desirable that requests with lower priority be accepted while higher-priority interrupts are being serviced. Setting the exceptional nesting mode allows this. After releasing the exceptional mode, the previous mode is resumed.

The exceptional nesting mode is controlled by the SNM (set nesting mode) and EXCN (exceptional nesting mode) bits (D_6 and D_5) of MCW. They set and release the exceptional nesting mode. The mode doesn't change when SNM = 0. Exceptional nesting is set if SNM and EXCN = 1 and released when SNM = 1 and EXCN = 0.

Setting a bit in the IMW in the exceptional nesting mode, inhibits interrupts of that level and allows unmasked interrupts to all other levels, higher or lower priority.

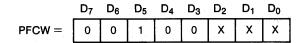
The procedure for setting the exceptional nesting (EN) mode is as follows:


- (1) Read the ISR.
- (2) Write the ISR data to the IMR.
- (3) Set the exceptional nesting mode.

In this way, all interrupt requests not currently in service will be enabled.

Figure 16 (a) shows what happens if IMR is not set to ISR. When the exceptional nesting is set, bit 2 of ISR will be ignored, and bit 5 will be serviced. Servicing bit 5 will mask the lower priority interrupts 6 and 7. When the ISR is set equal to the IMR as in (b), all interrupts except 2 and 5 can be serviced when the exceptional nesting mode is set.

Issuing an FI command to a level masked by the exceptional nesting mode requires caution. Since the ISR bit is masked, the normal FI command will not work. For this reason, a specific FI command specifying the ISR bit must be issued. After the exceptional mode is released, the normal FI command may be used.


Figure 16. Exceptional Nesting Mode

Finishing Interrupts (FI) and Changing the Priority Levels

The priority and finish control word (PFCW) issues FI commands and changes interrupt priorities.

Normal FI Command

When a normal FI command is issued, the μ PD71059 resets the ISR bit corresponding to the highest priority level selected from the interrupts in service. This operation assumes that the interrupt accepted last has ended.

When an interrupt routine changes the priority level or the exceptional nesting mode is set, this command will not operate correctly because the highest priority interrupt is not necessarily the last interrupt in service.

Specific FI Command

	_			D ₄					
PFCW =	0	1	1	0	0	IL ₂	IL ₁	IL ₀	

When the specific FI command is issued, the μ PD71059 resets the ISR bit designated by bits IL₂-IL₀ of the PFCW. This command is used when the normal nesting mode isn't being used.

Self-FI Mode

When SFI of IW4 = 1, the μ PD71059 is set to the self-FI mode. In this mode, the ISR bit corresponding to the interrupt is set and reset during the third $\overline{\text{INTAK}}$ pulse. Therefore, the CPU does not have to issue an FI command when the interrupt routine ends. In this mode, however, the ISR does not store the routine in service. Unless interrupts are disabled by the interrupt routine, newly generated interrupt requests are generated without priority limitation by the ISR. This can cause a stack overflow when frequent interrupt requests occur, or when the interrupt is level triggered.

Self-FI Rotation

Rotation of interrupt priorities can be added to the self-FI mode. In this case, the corresponding interrupt is set to the lowest priority level when a bit is reset in the ISR at the end of the INTAK sequence.

Self-FI Rotation Set:

Self-FI Rotation Reset:

Normal Rotation FI Command

	D ₇	D_6	D ₅	D_4	D_3	D_2	D ₁	D ₀
PFCW =	1	0	1	0	0	Х	Х	Х

When the normal rotation FI command is issued, the μ PD71059 resets the ISR bit corresponding to the highest priority level selected from the interrupts in service, then rotates the priority levels so that the interrupt just completed has the lowest priority.

Specific Rotation FI Command

When the specific rotation FI command is issued, the μ PD71059 resets the ISR bit designated by bits IL₂-IL₀ of the PFCW and rotates the interrupt priorities so that the interrupt just reset becomes the lowest priority. This change in priority levels is different from the normal nesting mode, therefore, it is the user's responsibility to manage nesting.

Specific Rotation Command

When the specific rotation command is issued, the μ PD71059 sets the interrupt priority specified by IL₂-IL₀ to the lowest priority. In this case also, the user must manage nesting.

Triggering Mode

Bit D_3 of the first initialization word, IW1, is LEV (level-trigger mode bit). LEV sets the trigger mode of the INTP inputs. The level-trigger mode is set when LEV = 1. The rising-edge-triggered mode is set when LEV = 0.

Edge-Trigger Mode

In the edge-trigger mode, an interrupt is detected by the rising edge of the signal on an INTP input. Although an IRR bit goes high when INTP is high, the IRR bit is not latched until the CPU returns an INTAK pulse. Therefore, the INTP input should be maintained high until INTAK is received. This filters out noise spikes on the INT lines. To send the next interrupt request, temporarily lower the INTP input, then raise it.

Level-Trigger Mode

In the level-trigger mode, an IRR bit is set by the INTP input being at a high level. As in the edge-trigger mode, the INTP must be maintained high until the INTAK is received. Interrupts are requested as long as the INTP input remains high. Care should be taken so as not to cause a stack overflow in the CPU. See figure 17.

Note: The μPD71059 operates as if the INTP₇ interrupt had occurred if the INTAK pulse is sent to the μPD71059 by the CPU when the μPD71059 INT output level is low. Bit 7 of ISR is not set. Accordingly, if it is expected that this will occur, the INTP₇ interrupt should be reserved for servicing incomplete interrupts. The FI should not be issued for incomplete interrupts. See figure 18.

Figure 17. INTP input

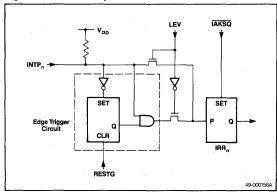
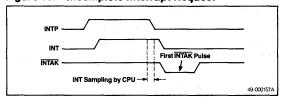



Figure 18. Incomplete Interrupt Request

Polling Operation

When polling, the CPU should disable its INT input. Next, it issues a polling command to the μ PD71059 using MCW with POL = 1. This command sets the μ PD71059 in polling mode until the CPU reads one of the μ PD71059's registers.

When the CPU performs a read operation with $A_0=0$ in the polling mode, polling data as shown in figure 19 is read instead of ISR or IRR. The μ PD71059 then ends the polling mode.

Figure 19. Polling Data

MCW =	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
mow - [1141					FL ₂	FE4	83-001635A

The INT bit has the same meaning as the INT pin. When it is set to 1, it means that the μ PD71059 has accepted an INTP input.

The PL_2 - PL_0 (permitted level) bits show which INTP input requested an interrupt when INT = 1.

If INT in the polling data is 1, the μ PD71059 sets the ISR bit corresponding to the interrupt level shown by bits PL₂-PL₀ of the polling data and considers that interrupt as being executed. The CPU then processes the interrupt accordingly, based on the polling data read. An FI command should be issued when this processing ends.

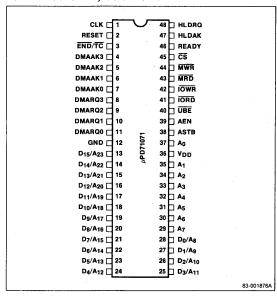
Note: When a read is performed with A0=1 after the polling command is sent to the μ PD71059, the IMR will be read instead of polling data. However, when the polling command is sent, the μ PD71059 operates in the same manner when $A_0=0$ as it does when $A_0=1$. This means that although A_0 was set to 1, the μ PD71059 will send the contents of the IMR, but it will also set an ISR bit just as it would if A0 had been set to zero. This may disturb the nesting. Therefore, performing a read operation with $A_0=1$ immediately after sending the polling command should be avoided.

Description

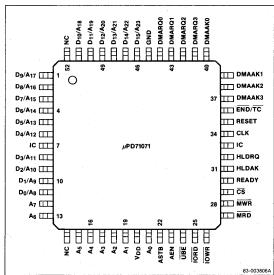
The μ PD71071 is a high-speed, high-performance direct memory access (DMA) controller that provides high-speed data transfers between peripheral devices and memory. A programmable bus width allows bidirectional data transfer in both 8- and 16-bit systems. In addition, the μ PD71071 uses CMOS technology to reduce power consumption.

The μ PD71071 can perform a variety of transfer functions including byte/word, memory-to-memory, and transfers between memory and I/O. The μ PD71071 also utilizes single, demand, and block mode transfers; release and bus hold modes; and normal and compressed timing.

Features


- ☐ Four independent DMA channels
- □ 16M-byte addressing
- ☐ 64K-byte/word transfer count
- ☐ 8- or 16-bit programmable data bus width
- ☐ Enable/disable of individual DMA requests
- ☐ Software DMA requests
- ☐ Enable/disable of autoinitialize
- ☐ Address increment/decrement
- ☐ Fixed/rotational DMA channel priority
- ☐ Terminal count output signal
- ☐ Forced transfer termination input
- ☐ Cascade capability
- Programmable DMA request and acknowledge signal polarities
- ☐ High performance: transfers to 5.33 Mbytes/s
- ☐ 8-MHz operation
- \square μ PD70108/70116-compatible
- □ CMOS technology
- ☐ Low-power standby mode
- \square Single power supply, 5 V $\pm 10\%$
- ☐ Industrial temperature range, -40 to +85°C

Ordering Information


Part Number	Package Type	Maximum Frequency of Operation
μPD71071C	48-pin plastic DIP	8 MHz
μPD71071D	48-pin ceramic DIP	8 MHz
μPD71071G	52-pin plastic miniflat	8 MHz
μPD71071L	52-pin PLCC (available 3Q86)	8 MHz

Pin Configurations

48-Pin Plastic DIP, Ceramic DIP

52-Pin Plastic Miniflat

Pin Identification

Symbol	Function
A ₂₃ -A ₈ / D ₁₅ -D ₀	Bidirectional address/data bus
IC	Internally connected; leave open
A ₇ -A ₄	Address bus output
NC	Not connected
A ₃ -A ₀	Bidirectional address bus
V_{DD}	Power supply
ASTB	Address strobe output
AEN	Address enable output
UBE	Upper byte enable input/output
IORD	I/O read input/output
10WR	I/O write input/output
MRD	Memory read output
MWR	Memory write output
CS	Chip select input
READY	Ready input
HLDAK	Hold acknowledge input
HLDRQ	Hold request output
CLK	Clock input
RESET	Reset input
END/TC	End DMA transfer input/terminal count output
DMAAK3- DMAAK0	DMA acknowledge output
DMARQ3- DMARQ0	DMA request input
GND	Ground

Pin Functions

CLK [Clock]

CLK controls the internal operation and data transfer speed of the μ PD71071.

RESET [Reset]

RESET initializes the controller's internal registers and leaves the controller in the idle cycle (CPU controls the bus). Active high.

END/TC [End/Terminal Count]

This is a bidirectional pin. The END input is used to terminate the current DMA transfer. TC indicates the designated cycles of the DMA count transfer have finished. END/TC is open drain and requires an external pull-up resistor. Active low.

DMAAK3-DMAAK0 [DMA Acknowledge]

DMAAK3-DMAAK0 indicates to peripheral devices that DMA service has been granted. DMAAK3-DMAAK0 respond respectively to DMA channels 3-0 and the polarities are user programmable.

DMARQ3-DMARQ0 [DMA Request]

DMARQ3-DMARQ0 accept DMA service requests from peripheral devices. DMARQ3-DMARQ0 respond respectively to DMA channels 3-0 and the polarities are user programmable. DMARQ must remain asserted until DMAAK is asserted.

GND [Ground]

GND connects to the power supply ground terminal.

A₂₃-A₈/D₁₅-D₀ [Address/Data Bus]

 $A_{23}\text{-}A_8/D_{15}\text{-}D_0$ function as a 16-bit, multiplexed address/data bus when the $\mu PD71071$ is in the 16-bit data mode. In the 8-bit data mode, $A_{23}\text{-}A_{16}$ (pins 13-20) become address bits only and $A_{15}\text{-}A_8/D_7\text{-}D_0$ (pins 21-28) remain an 8-bit multiplexed address/data bus. $A_{23}\text{-}A_8/D_{15}\text{-}D_0$ are three-state.

A₇-A₄, A₃-A₀ [Address Bus]

 A_7 - A_4 , A_3 - A_0 function as the lower eight bits of the address bus. A_7 - A_4 output memory addresses during the DMA cycle and become high impedance in the idle cycle. A_3 - A_0 function as the lower four bits of the address bus. In the idle cycle, A_3 - A_0 become address inputs to select internal registers for the CPU to read or write. In the DMA cycle, A_3 - A_0 output memory addresses.

V_{DD} [Power Supply]

V_{DD} connects to the +5-V power supply.

ASTB [Address Strobe]

ASTB latches address A_{23} - A_8 (16-bit mode)/ A_{15} - A_8 (8-bit mode) from the address/data bus into an external address latch at the falling edge of ASTB during a DMA cycle. Active high.

AEN [Address Enable]

AEN enables the output of an external latch that holds DMA addresses. AEN becomes high during the DMA cycle.

UBE [Upper Byte Enable]

 $\overline{\text{UBE}}$ indicates the upper byte of the data bus is valid during 16-bit mode. In the idle cycle during data transfer, the $\mu\text{PD71071}$ acknowledges data on D₁₅-D₈ when $\overline{\text{UBE}}$ is asserted. During a DMA cycle, UBE goes low to signify the presence of valid data on D₁₅-D₈. $\overline{\text{UBE}}$ has no meaning in 8-bit mode and becomes high impedance in the idle cycle and high level in the DMA cycle. Three-state, active low.

IORD [I/O Read]

In the idle cycle, IORD inputs a read signal from the CPU. In the DMA cycle, IORD outputs a read signal to an I/O device. Three-state, active low.

IOWR [I/O Write]

In the idle cycle, IOWR inputs a write signal from the CPU. In the DMA cycle, IOWR outputs a write signal to an I/O device. Three-state, active low.

MRD [Memory Read]

During the DMA cycle, MRD outputs a read signal to memory. MRD is high impedance during the idle cycle. Three-state, active low.

MWR [Memory Write]

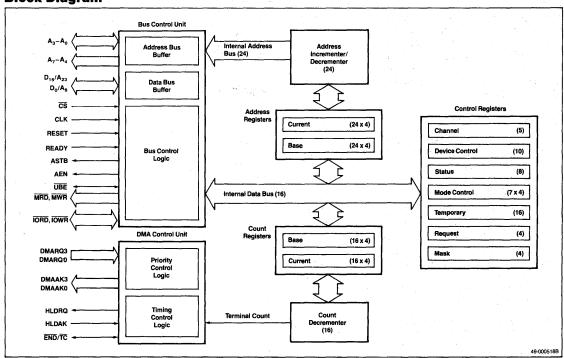
During the DMA cycle, MWR outputs a write signal to memory. MWR is high impedance during the idle cycle. Three-state, active low.

CS [Chip Select]

During the idle cycle, \overline{CS} selects the μ PD71071 as an I/O device. Active low.

READY [Ready]

During a DMA operation, READY indicates that a data transfer for one cycle has been completed and may be terminated. To meet the requirements of low-speed I/O devices or memory, READY may be negated to insert wait states to extend the bus cycle until READY is again asserted.


HLDAK [Hold Acknowledge]

When active, HLDAK indicates that the CPU has granted the μ PD71071 the use of the system bus. Active high.

HLDRQ [Hold Request]

HLDRQ outputs a bus hold request to the CPU. Active high.

Block Diagram

7

Block Diagram Description

The μ PD71071 has the following functional units.

- Bus control unit
- DMA control unit
- Address registers
- Address incrementer/decrementer
- Count registers
- Count decrementer
- Control registers

Bus Control Unit

The bus control unit consists of the address and data buffers, and bus control logic. The bus control unit generates and receives signals that control addresses and data on the internal address and data buses.

DMA Control Unit

The DMA control unit contains the priority and timing control logic. The priority control logic determines the priority level of DMA requests and arbitrates the use of the bus in accordance with this priority level. The DMA control unit also provides internal timing and controls DMA operations.

Address Registers

Each of the four DMA channels has one 24-bit base address register and one 24-bit current address register. The base address register holds a value determined by the CPU and transfers this value to the current address register during autoinitialization (address and count are automatically initialized). The channel's current address register is incremented/decremented for each transfer and always contains the address of the data to be transferred next.

Address Incrementer/Decrementer

The address incrementer/decrementer updates the contents of the current address register whenever a DMA transfer completes.

Count Registers

Each of the four DMA channels has one 16-bit base count register and one 16-bit current count register. The base count register holds a value written by the CPU and transfers the value to the current count register during autoinitialization. A channel's current count register is decremented for each transfer and generates a terminal count when the count register is decremented to FFFFH.

Note: The number of DMA transfer cycles is actually the value of the current count register + 1. Therefore, when programming the count register, specify the number of DMA transfers minus one.

Count Decrementer

The count decrementer decrements the contents of the current count register by one when each DMA transfer cycle ends.

Control Registers

The μ PD71071 contains the following control registers.

- Channel
- Device
- Status
- Mode
- Temporary
- Request
- Mask

These registers control bus mode, pin active levels, DMA operation mode, mask bits, and other μ PD71071 operating functions.

Absolute Maximum Ratings

Power supply voltage, V _{DD}		−0.5 to +7.0 V
Input voltage, V _I		-0.5 to $V_{DD} + 0.3$ V
Output voltage, V ₀		-0.5 to V _{DD} + 0.3 V
Operating temperature, T _{OPT}	4	-40 to +85°C
Storage temperature, T _{STG} (D/G)		-65 to +150°C
Storage temperature, T _{STG} (C)		-40 to +125°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25\,^{\circ}C$

		Liı	nits	-	Test
Parameter	Symbol	Тур	Max	Unit	Conditions
Output capacitance	C ₀	4	8	pF	f _c =1.0 MHz Unmeasured
Input capacitance	Cı	8	15	pF	pins returned to 0 V
I/O capacitance	C ₁₀	10	18	pF	

DC Characteristics

 $T_A = -40 \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \text{ V} \pm 10\%$

Parameter			Limits	3		Test
	Symbol	Min	Тур	Max	Unit	Conditions
Input high voltage	V _{IH}	3.3		V _{DD} + 0.3	٧	CLK input pin
		2.2		V _{DD} + 0.3	٧	Other inputs
Input low voltage	V _{IL}	-0.5		8.0	٧	
Output high voltage	V _{OH}	0.7 V _{DD}			V	$I_{OH} = -400 \mu\text{A}$
Output low voltage	V _{OL}			0.4	٧	I _{OL} = 2.5 mA; 2.7 mA (TC)
Input leakage current	lLI		7	±10	μΑ	$0 \ V \leq V_{ } \leq V_{DD}$
Output leakage current	lLO		-	±10	μΑ	$0 \ V \le V_0 \le V_{DD}$
Supply current (dynamic)	I _{DD1}		15	30	mA	
Supply current (static)	I _{DD2}		10		μΑ	Inputs stable, outputs open

AC Characteristics

 $T_A = -40$ to +85 °C, $V_{DD} = 5$ V $\pm 10\%$

		Limit	8		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
DMA Mode						
Clock cycle	t _{CYK}	125		ns		
Clock pulse width high	t _{KKH}	44		ns		
Clock pulse width low	t _{KKL}	55		ns		
Clock rise time	t _{KR}		10	ns	1.5 V → 3.0 V	
Clock fall time	t _{KF}		10	ns	3.0 V → 1.5 V	
Input rise time	t _{IR}		20	ns		
Input fall time	t _{IF}		12	ns		
Output rise time	tor		20	ns		
Output fall time	t _{OF}		12	ns		
DMARQ setup time to CLK high	t _{SDQ}	35		ns	S1, S0, S3, SW S4w	
HLDRQ high delay from CLK low	^t DHQH		100	ns	S1, S4w	
HLDRQ low delay from CLK low	t _{DHQL}		100	ns	S1, S0, S4w	
HLDRQ low level period	t _{HQHQL}	2t _{CYK} -50		ns	S4w	

		Limit	§		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
HLDAK high setup time to CLK low	^t SHA	35		ns	S0, S4, S4w	
AEN high delay from CLK low	[†] DAEH		90	ns	S1, S2	
AEN low delay time from CLK low	t _{DAEL}		90	ns	SI, S4w	
ASTB high delay time from CLK low	t _{DSTH}		70	ns	S 1	
ASTB low delay time from CLK high	†DSTL		70	ns	S 1	
ASTB high level period	^t sTSTH	t _{KKL} - 15		ns		
ADR/UBE/RD/ WR (1) active delay from CLK low	t _{DA}		100	ns	\$1, S2	
ADR/UBE/RD/ WR float time from CLK low	t _{FA}		70	ns	SI, S4w	
ADR setup time to ASTB low	tsast	t _{KKL} - 50		ns		_
ADR hold time from ASTB low	t _{HSTA}	†KKH 20		ns		_
ADR/UBE off delay time from CLK low	t _{DAF}	0	70	ns	S1, S2	
RD low delay time from ADR float	t _{DAR}	-10		ns		
Input data delay time from MRD low	t _{DMRID}		2t _{CYK} -100	ns	S12	,
Input data hold time from MRD high	thmrid	0		ns	S14	_
Output data delay time from CLK low	t _{DOD}	10	100	ns	S22	_
Output data hold time from CLK high	t _{HOD}	10		ns	S24	_
Output data hold time from MWR high	thmwod	t _{KKL} — 50		ns		

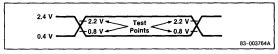
AC Characteristics (cont)

		Limits			Test		
Parameter	Symbol	Min	Max	Unit	Conditions		
DMA Mode (d	ont)						
RD low delay time from CLK low	t _{DKLR}		70	ns	S2 normal timing		
RD low delay time from CLK high	^t DKHR		70	ns	S2 compressed timing		
RD low level	t _{RRL1}	2t _{CYK} - 50		ns	Normal timing		
period	t _{RRL2}	t _{CYK} + t _{KKH} - 50		ns	Compressed timing		
RD high delay time from CLK low	t _{DRH}	15	100	ns	S4		
ADR delay time from RD high	t _{DRA}	t _{CYK} 40		ns			
WR low delay time from CLK low	t _{DWL1}	10	70	ns	S3 normal write		
WR low delay time from CLK low	t _{DWL2}	10	70	ns	S2 extended write, normal timing		
WR low delay time from CLK high	t _{DWL3}	10	70	ns	S2 extended write, compressed timing		
WR low level	t _{WWL1}	t _{CYK} — 50		ns	Normal write		
period	t _{WWL2}	2t _{CYK} — 50		ns	Extended write, normal timing		
	t _{WWL3}	t _{CYK} + t _{KKH} - 50		ns	Extended write, compressed timing		
WR high delay from CLK low	t _{DWH}	10	80	ns	S4		
RD, WR low delay from DMAAK active	^t ddarw	0		ns	S1, S2		
RD high delay time from WR high	^t DWHRH	5		ns			
DMAAK delay time from CLK high	^t dkhda	10	70	ns	S1 I/O memory timing		
DMAAK delay time from CLK low	[†] DKLDA	10	115	ns	S1 cascade mode		
DMAAK inactive delay time from CLK high	t _{DDAI1}	10	70	ns	\$4		

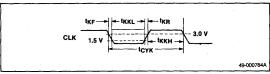
		Lic	mits		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
DMAAK inactive delay time from HLDAK low	t _{DDAI2}	5	t _{KKL} + 80	ns	S4 cascade mode, HLDAK low in S4	
	t _{DDAI3}	t _{KKL} + 80	4 t _{CYK} + 80	ns	S4 cascade mode, HLDAK low except in S4	
DMAAK active level period	t _{DADA}	2 t _{CYK}		ns	Cascade mode	
TC low delay time from CLK high	[†] DTCL		100	ns	S3	
TC off delay time from CLK high	t _{DTCF}		40	ns	S4	
TC high delay time from CLK high	^t отсн		t _{KKH} + t _{CYK} – 10	ns	0 to 2.2 V (2)	
TC low level period	†TCTCL	t _{CYK} -15		ns		
END low setup time to CLK high	t _{SED}	35		ns	S2	
END low level period	tededl	100		ns		
READY setup time to CLK high	t _{SRY}	35		ns	S3, SW	
READY hold time from CLK high	t _{HRY}	20		ns	\$3, \$W	
NI-4						

Note:

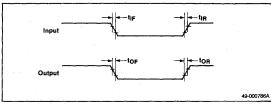
- (1) RD/WR refers to IORD or MRD and IOWR or MWR, respectively.
- (2) For END/TC, output load capacitance = 75 pF maximum. To meet the t_{DTCH} parameter use a 2.2-kΩ pull-up resistor with a load capacitance of 75 pF. For other than END/TC, output load capacitance = 100 pF maximum.

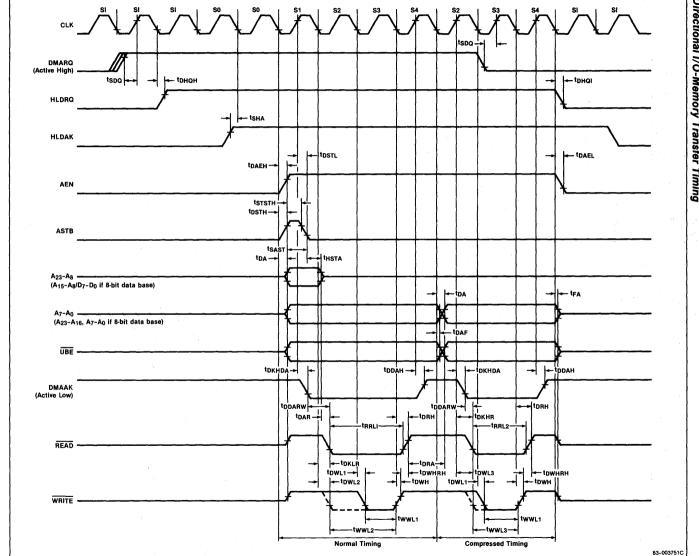


AC Characteristics (cont)

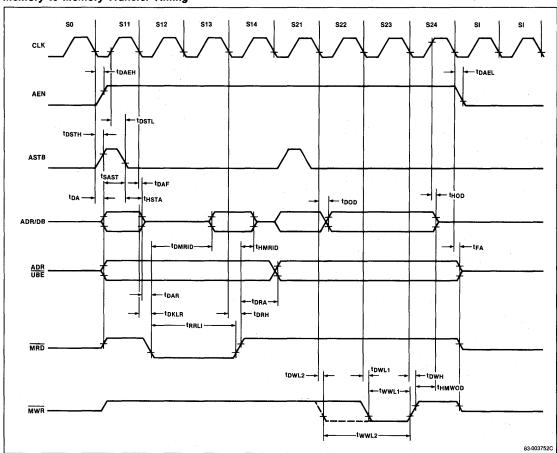

		Lin	mits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Programming	Mode a	nd RESI	ET		
IOWR low level period	tiWIWL	100		ns	
CS low setup time to IOWR high	t _{SCSIW}	100		ns	
CS ho <u>ld ti</u> me from IOWR high	t _{HIWCS}	0		ns	
ADR/UBE setup time to IOWR high	t _{SAIW}	100	-	ns	¥
ADR/UBE hold time from IOWR high	t _{HIWA}	0		ns	·
Input data setup time to IOWR high	t _{SIDIW}	100		ns	
Input data <u>hold</u> time from IOWR high	t _{HIWID}	0,		ns	
IORD low level period	tirirl	150		ns	
ADR/CS setup time to IORD low	t _{SAIR}	35		ns	:
ADR/CS hold time from IORD high	t _{HIRA}	0		ns	
Output data delay time from IORD low	t _{DIROD}		120	ns	
Output data float time from IORD high	t _{FIROD}		100	ns	
RESET high level period	t _{RESET}	2t _{CYK}		ns	
I _{DD} setup time	t _{SVDD}	500		ns	
OWR/IORD wait time from RESET low	tsylwr	2t _{CYK}		ns	RESET low to first read/write
OWR/IORD recovery time	t _{RVIWR}	200		ns	

Timing Waveforms

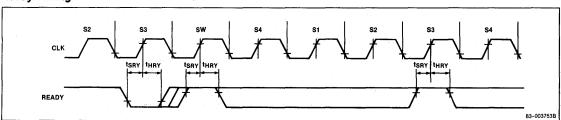

Timing Measurement Points


Clock Timing

Input/Output Edge Timing

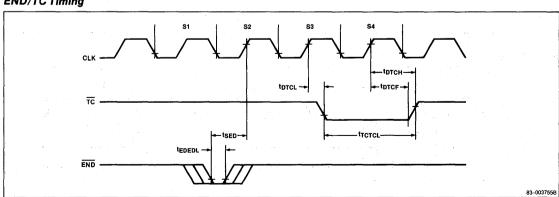


Directional I/O-Memory Transfer Timing

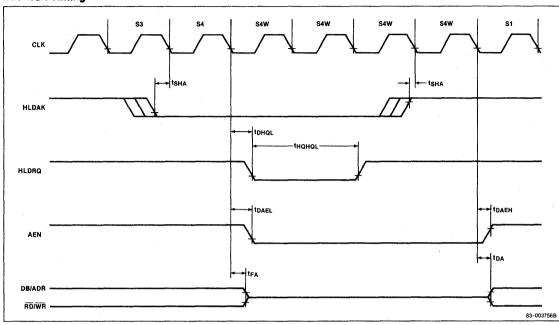


Memory-to-Memory Transfer Timing

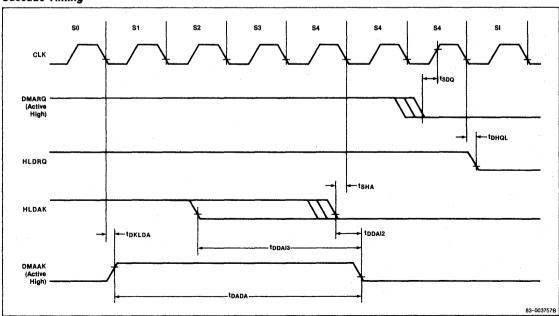
Ready Timing



Programming Mode and RESET Timing



END/TC Timing



Bus Wait Timing

Cascade Timing

Functional Description

DMA Operation

The μ PD71071 functions in three cycles: idle, DMA, and standby. In an idle or standby cycle, the CPU uses the bus, while in a DMA cycle, the μ PD71071 uses it.

Idle Cycle. In an idle cycle, there are no DMA cycles active, but there may be one or more active DMA requests; however, the CPU has not released the bus. The μ PD71071 will sample the four DMARQ input pins at every clock. If one or more inputs are active, the corresponding DMA request bits (RQ) are set in the status register and the μ PD71071 sends a bus hold request to the CPU. The μ PD71071 continues to sample DMA requests until it obtains the bus.

After the CPU returns a HLDAK signal and the μ PD71071 obtains the bus, the μ PD71071 stops DMA sampling and selects the DMA channel with the highest priority from the valid DMA request signals. Programming of the μ PD71071 is done when the μ PD71071 is in the idle cycle or the standby mode.

DMA Cycle. In a DMA cycle, the µPD71071 controls the bus and performs DMA transfer operations based on programmed information. Figure 1 outlines the sequentialflow of a DMA operation.

Standby Mode. The μ PD71071 can also be used in standby mode. It is in standby mode and consumes the static supply current (I_{DD2}) when the clock is turned off and no I/O read or write operations are being performed. All internal registers will retain their contents.

The μ PD71071 can be programmed (using \overline{IOWR}) and read (using \overline{IORD}) with the clock off. The μ PD71071 only uses the clock for the DMA data transfer cycles. The clock may be turned off without altering the internal registers when the μ PD71071 is in the idle cycle. If the clock is turned off during a DMA transfer, the μ PD71071 will not operate correctly. When the clock is off, the DMARQ inputs will not be recognized. The DMARQ inputs could be externally logically ORed and cause an interrupt to the CPU. The CPU could then turn on the clock, thus activating the μ PD71071. If the previously programmed mode of operation is still valid, the μ PD71071 does not have to be reprogrammed.

Data Bus Width

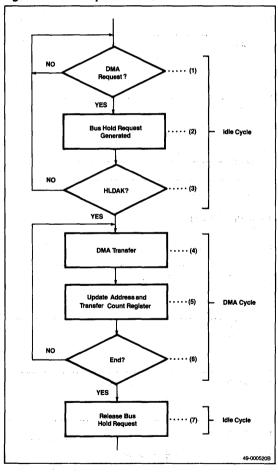

In order to allow an easy interface with an 8- or 16-bit CPU, the data bus width of the μ PD71071 is user programmable for 8 or 16 bits. A 16-bit data bus allows 16-bit memory-to-memory DMA transfers and also provides a one-I/O bus cycle access to the 16-bit internal registers.

Table 1 shows the relationship of the data bus width, A_0 , \overline{UBE} , and the internal registers.

Table 1. Data Bus Width

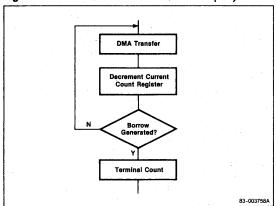
Bus Width		A ₀	UBE	Internal Read/Write Registers
8 bits	7	- X	Х	D ₇ -D ₀ ←→ 8-bit internal register
16 bits		0	1	D ₇ -D ₀ ←→ 8-bit internal register
		1	0	D ₁₅ -D ₈ ←→ 8-bit internal register
		0	0	D ₁₅ -D ₀ ← → 16-bit internal register

Figure 1. DMA Operation Flow

Terminal Count

The μ PD71071 ends DMA service when it generates a terminal count (\overline{TC}) or when the \overline{END} input becomes active. A terminal count is produced when a borrow is generated by the current count register and a low-level pulse is output to the \overline{TC} pin. Figure 2 shows that the current count register is tested after each DMA operation.

If autoinitialize is not set when DMA service ends, the mask register bit applicable to the channel where service ended is set, and the DMARQ input of that channel is masked.


DMA Transfer Type

The type of transfer the μ PD71071 performs depends on the following conditions.

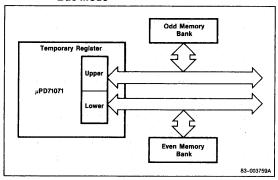
- Memory-to-memory transfer enable
- Direction of memory-to-I/O transfer (each channel)
- Transfer mode (each channel)
- Bus mode

Memory-to-Memory Transfer Enable. The μ PD71071 can perform memory-to-I/O transfers (one transfer cycle in one bus cycle) and memory-to-memory transfers (one transfer in two bus cycles). To select memory-to-memory transfer, set bit 0 of the device control register to 1. The DMA channels used in memory-to-memory transfers are fixed, with channel 0 as the source channel and channel 1 as the destination channel. Channels 2 and 3 cannot be used in memory-to-memory transfers. The contents of the count registers and word/byte transfer modes of channels 0 and 1 should be the same when performing memory-to-memory transfer.

Figure 2. Generation of Terminal Count (\overline{TC})

For memory-to-memory byte transfer in 16-bit data bus mode, a read data from upper data bus is to be written to upper data bus, while a read data from lower data bus is to be written to lower data bus. Therefore, start addresses for source and destination must be the even-even or odd-odd. For word transfer, only even-even addresses are to be set for source and destination. (See Byte/Word Transfer paragraphs below.) When DMARQ0 (channel 0) becomes active, the transfer is initiated.

During memory-to-memory bus cycles in the 16-bit mode, data read from the DMAC's upper (lower) data bus is written to the upper (lower) data bus of the destination device. Thus, for word transfers, only even source and destination addresses should be used.


The DMA request input pin or a software DMA request to channel 0 may initiate memory-to-memory transfers. The µPD71071 performs the following operations until a channel 1 terminal count or END input is present:

- During the first bus cycle, the memory data pointed to by the current address register of channel 0 is read into the temporary register of the μPD71071 and the address and count of channel 0 are updated.
- During the second bus cycle, the temporary register data is written to the memory location shown by the current address register of channel 1, and the address and count of channel 1 are updated.

Note: If DMARQ1 (channel 1) becomes active, the µPD71071 will perform memory-to-I/O transfer even though memory-to-memory transfer is selected. Since this may cause erroneous memory-to-memory transfers, mask out channel 1 (DMARQ1) by setting bit 1 of the mask register to 1 before starting memory-to-memory transfers.

During memory-to-memory transfers, the addresses on the source side (channel 0) can be fixed by setting bit 1 of the device control register to 1. In this manner, a

Figure 3. Memory-to-Memory Transfer in 16-Bit Data Bus Mode

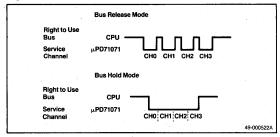
range of memory can be initialized with the same value since the contents of the source address never change. During memory-to-memory transfer, the DMAAK signal and channel 0's terminal count (TC) pulse are not output. (See figure 3.)

Direction of Memory-to-I/O Transfers. All DMA transfers use memory as a reference point. Therefore, a DMA read reads a memory location and writes to an I/O port. A DMA write reads an I/O port and writes the data to a memory location. In memory-to-I/O transfer, use the mode control register to set one of the transfer directions in table 2 for each channel and activate the appropriate control signals.

Table 2. Transfer Direction

Transfer Direction	Activated Signals TOWR, MRD TORD, MWR	
Memory → I/O (DMA read)		
I/O → memory (DMA write)		
Verify (Outputs addresses only. Does not perform a transfer.)	- , ,	

Transfer Modes. In memory-to-I/O transfer, the mode control register selects the single, demand, or block mode of DMA transfer for each channel. The conditions for the termination of each transfer characterize each transfer mode. Memory-to-memory transfers have no relationship to single, demand, or block mode. Memory-to-memory transfers are a separate and distinct type of transfer mode. Table 3 shows the various transfer modes and termination conditions.


Table 3. Transfer Termination

Transfer Mode	End of Transfer Conditions After each byte/word END input Generation of terminal count When DMA request of the channel in service becomes inactive When DMA request of a channel in higher priority becomes active (bus hold mode)		
Single			
Demand			
Block	END input Generation of terminal count		
Memory-to- memory	END input Generation of terminal count		

Bus Modes. The device control register selects either the bus release or bus hold mode. The bus mode determines when the μ PD71071 returns the system bus to the CPU. The μ PD71071 can be in either the release or hold modes for the single, demand, or block mode transfers. Therefore, there are six possible mode combinations.

Figure 4 shows that in bus release mode, only one channel can receive service after obtaining the bus. When DMA service ends (end of transfer conditions depend on the transfer mode), the channel returns the bus to the CPU (regardless of the state of other DMA requests) and the μ PD71071 enters the idle cycle. When the μ PD71071 regains use of the bus, a new DMA operation begins.

Figure 4. Bus Modes

In bus hold mode, several channels can receive service without releasing the bus after obtaining it. If there is another valid DMA request when a channel's DMA service is finished, the new DMA service can begin after the previous service without returning the bus to the CPU. End of transfer conditions depend on the transfer mode. A channel cannot terminate (end count) a transfer mode and immediately start on its next set of transfers. There must be another DMA channel service interleaved or the μ PD71071 will put in an idle cycle. The following shows an example of the possible sequences for Channel 2.

CHAN2
$$\rightarrow$$
 CHANn (n = 0,1,3) \rightarrow CHAN2 or, CHAN2 \rightarrow idle \rightarrow CHAN2

The operation of single, demand, and block mode transfers depends on whether the μ PD71071 is in bus release or bus hold mode. In bus release mode, only one type of bus mode (single, demand, or block) is used each time the μ PD71071 has the bus. In bus hold mode, multiple types of transfers are possible. Channel 0 might operate in the demand mode, and channel 1, which could get the bus immediately after channel 0, could operate in block mode.

Single Mode Transfer

In bus release mode, when a channel completes the transfer of a single byte or word, the μ PD71071 enters the idle cycle regardless of the state of the DMA request inputs. In this manner, other devices will be able to access the bus on alternate bus cycles.

In bus hold mode, when a channel completes the transfer of a single byte or word, the μ PD71071 terminates the channel's service even if it is still asserting a DMA request signal. The μ PD71071 will then service the highest priority channel requesting the bus. If there are no requests from any other channel, the μ PD71071 releases the bus and enters the idle cycle.

Demand Mode Transfer

In bus release mode, the currently active channel continues its data transfer as long as the DMA request of that channel is active, even though other DMA channels are issuing higher priority requests. When the DMA request of the serviced channel becomes inactive, the µPD71071 releases the bus and enters the idle state, even if the DMA request lines of other channels are active.

In bus hold mode, when the active channel completes a single transfer, the μ PD71071 checks DMA request lines (other request lines when $\overline{\text{END}}$ or TC, all request lines including the last serviced channel when there is no $\overline{\text{END}}$ or TC). If there are active requests, the μ PD71071 starts servicing the highest priority channel requesting service. If there is no request, the μ PD71071 releases the bus and enters the idle state.

Block Mode Transfer

In bus release mode, the current channel continues data transfer until a terminal count or the external $\overline{\text{END}}$ signal becomes active. During this time, the $\mu\text{PD71071}$ ignores all other DMA requests. After completion of the block transfer, the $\mu\text{PD71071}$ releases the bus and enters the idle cycle even if DMA requests from other channels are active.

In bus hold mode, the current channel transfers data until a terminal count or the external $\overline{\text{END}}$ signal becomes active. When the service is complete, the $\mu\text{PD71071}$ checks all DMA requests without releasing the bus. If there is an active request, the $\mu\text{PD71071}$ immediately begins servicing the request. The $\mu\text{PD71071}$ releases the bus after it honors all DMA requests or a higher priority bus master requests the bus.

Figure 5 shows the operation flow for the six possible transfer and bus mode operations in DMA transfer.

Byte/Word Transfer

If the initialize command selects a 16-bit data bus width, the mode control register can specify DMA transfer in byte or word units for each channel. Table 4 shows the update of the address and count registers during byte/word transfer.

Table 4. Address and Count Registers

Register	Byte Transfer	Word Transfer
Address	±1	± 2
Count	-1	-1

During word transfers, two bytes starting at an even address are handled as one word. If word transfer is selected and the initial value of the set address is odd, the μ PD71071 will always decrement that address by 1, thus making the address even for the data transfer. For this reason, it is best to select even addresses when transferring words, to avoid destroying data. A₀ and $\overline{\text{UBE}}$ control byte and word transfers.

Table 5 shows the relationship between the data bus width, A_0 and UBE signals, and data bus status.

Table 5. Data Bus Status

Data Bus Width	A ₀	UBE	Data Bus Status
8 bits	Х	1 (1)	D ₇ -D ₀ valid byte
16 bits	0	1	D ₇ -D ₀ valid byte
	1	0	D ₁₅ -D ₈ valid byte
	0	0	D ₁₅ -D ₀ valid word

Note:

(1) Always 1 for an 8-bit bus.

Compressed Timing

In transfers between I/O and memory, a DMA transfer cycle is normally executed in four clocks. However, when the device control register selects compressed timing, one DMA cycle can be executed in a three-clock bus cycle. Compressed timing may be used in the release or hold modes when doing block transfers between I/O and memory. In the demand mode, only use compressed timing in the bus release mode. Compressed timing mode increases data transfer rates by 33%.

The µPD71071 is able to omit one clock period during compressed timing by not updating the upper 16 bits of the latched address. In block mode and demand bus release mode, addresses are output sequentially and the upper 16 bits of addresses latched in external latches need not be updated except after a carry or borrow from A₇ to A₈. For this reason, during compressed timing, the S1 state (output of upper 16 bits of an address for external latching) is omitted in the bus cycles except during the first bus cycle when the upper 16 bits of an address are changed. Figure 6 shows one word waveforms for normal and compressed timing.

Figure 5. Transfer and Bus Modes Operations

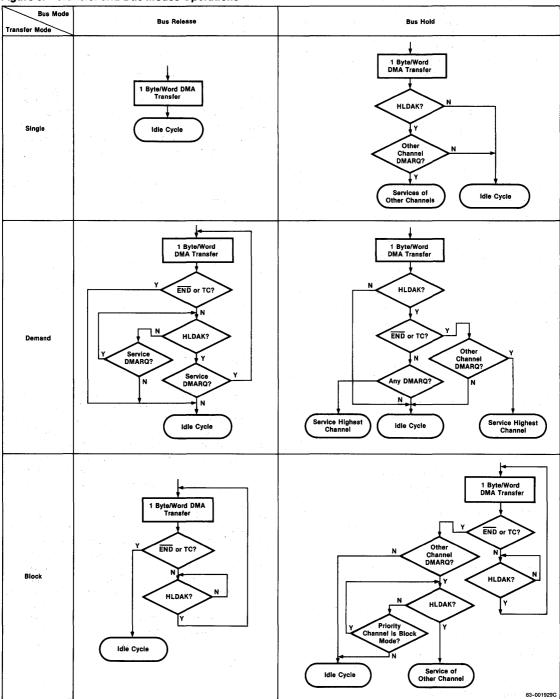
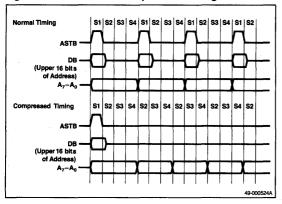



Figure 6. Normal and Compressed Timing Waveforms

Software DMA Requests

The µPD71071 can accept software DMA requests in addition to DMA requests from the four DMARQ pins. Setting the appropriate bit in the request register generates a software DMA request. The mask register does not mask software DMA requests. Software DMA requests operate differently depending on which bus or transfer mode is used.

Bus Mode. When bus release mode is set, the highest priority channel among software DMA requests and DMARQ pins is serviced, and all bits of the request register are cleared when the service is over. Therefore, there is a chance that other software DMA requests will be cancelled.

When bus hold mode is set, only the corresponding bit of the request register is cleared after a DMA service is over. Therefore, all software DMA requests will be serviced in the sequence of their priority level.

Software DMA requests for cascade channels (see Cascade Connection) must be performed in bus hold mode. When a cascade channel is serviced, the master μ PD71071 operational mode is changed to bus release mode temporarily and all bits of the request register are cleared when the cascade channel service is over. To avoid this, it is necessary to mask any cascade channels before issuing a software DMA request. After confirming that all DMA software services are complete and all bits of the request register are cleared, the cascade channel masks can be cleared.

Transfer Mode. When single or demand mode is set, the applicable request bits are cleared and software DMA service ends with the transfer of one byte/word. When block mode or memory-to-memory modes are set, service continues until END is input or a terminal count is generated. Applicable request bits are cleared when service ends.

Autoinitialize

When the mode control register is set to autoinitialize a channel, the μ PD71071 automatically initializes the address and count registers when END is input or a terminal count is generated. The contents of the base address and base count registers are transferred to the current address and current count registers, respectively. The applicable bit of the mask register is unaffected. The applicable bit of the mask register is set for channels not programmed for autoinitialize.

The autoinitialize function is useful for the following types of transfers.

Repetitive Input/Output of Memory Area. Figure 7 shows an example of DMA transfer between a CRT controller and memory. After setting the value in the base and current registers, autoinitialize allows repetitive DMA transfer between the CRT controller and the video memory area without CPU involvement.

Continuous Transfer of Several Memory Areas. The CPU can indirectly write to the address or count registers by writing to the base registers. New values can be written to the base registers. In the autoinitialize mode, the value in the base register will be transferred to the address/count registers when termination is reached in the address/count registers. Because of this, the autoinitialize function can perform continuous transfer of several contiguous or noncontiguous memory areas during single or demand bus release modes in the following manner.

During the transfer of data in area 1 (the first area being transferred), the CPU can write address and count information about area 2 (the second area to be transferred). Generation of a terminal count for area 1 results in the transfer of information of area 2 to the address and count registers. This will cause area 2 to be transferred. Figure 8 illustrates this procedure.

Channel Priority

Each of the μ PD71071's four channels has its own priority. When there are DMA requests from several channels simultaneously, the channel with the highest priority will be serviced. The device control register selects one of two channel priority methods: fixed and rotational priority. In fixed priority, the priority (starting with the highest) is channel 0, 1, 2, and 3, respectively. In rotational priority, priority order is rotated so that the channel that has just been given service receives the lowest priority and the next highest channel number is given the highest priority. This method prevents exclusive servicing of some channel(s). Figure 9 shows the two priority order methods.

Figure 7. Autoinitialize Application 1

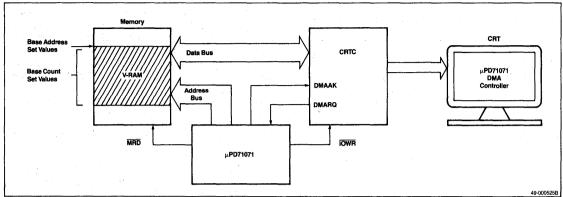


Figure 8. Autoinitialize Application 2

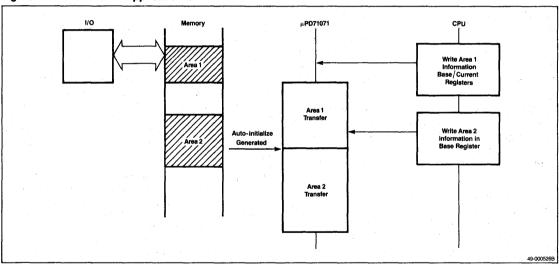
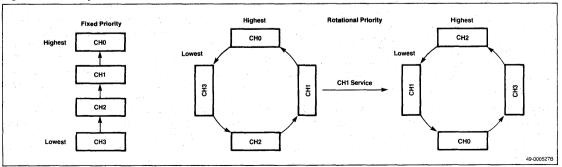



Figure 9. Priority Order

Cascade Connection

The µPD71071 can be cascaded to expand the system DMA channel capacity. To connect a µPD71071 for cascading (figure 10), perform the following operations.

- (1) Connect pins HLDRQ and HLDAK of the secondstage (slave) μPD71071 to pins DMARQ and DMAAK of any channel of the first-stage (master) μPD71071.
- (2) To select the cascade mode of a particular channel of a master μ PD71071, set bits 7 and 6 of that channel's mode control register to 11.

When a channel is set to the cascade mode in a master μ PD71071, DMARQ, DMAAK, HLDRQ, HLDAK, and RESET are the only valid signals in the master μ PD71071. The other signals are disabled. The master cascade channel only intermediates hold request/hold acknowledge between the slave and CPU.

The master μ PD71071 always operates in the bus release mode when a cascade channel is in service (even when the bus hold mode is set). Other DMA requests are ignored while a cascade channel is in service. When the slave μ PD71071 ends DMA service and moves into an idle cycle, the master also moves to an idle cycle and releases the bus. At this time, all bits of the master's request register are cleared. The master operates its non-cascaded channels normally.

Bus Wait Operation

In systems using a μ PD70208/70216 (V40/V50) as the CPU, the refresh control unit in the CPU changes the HLDAK signal to inactive (even during a DMA cycle) and uses the bus. Here, the μ PD71071 automatically performs a bus wait operation. This system has a bus master (V40/V50) whose priority level is higher than that of the μ PD71071.

The µPD71071 executes the bus wait operation when the HLDAK signal becomes inactive in an operating mode where transfer is executed continuously in block mode, during demand bus release mode, or during memory-to-memory transfer.

When HLDAK becomes inactive during service in other operating modes, the operation returns to the idle cycle and transfers control of the bus to the higher bus master.

Figure 11 shows that when the HLDAK signal becomes inactive during a continuous transfer, the μ PD71071 is set up in an S4w state (bus wait). Operation moves to the idle cycle if DMARQ is inactive in the demand mode. The HLDRQ signal is made inactive for a period of about two clocks and the bus is released. The S4w state is repeated until the HLDAK signal again becomes active and the interrupted service is immediately restarted.

Figure 10. Cascade Connection Example

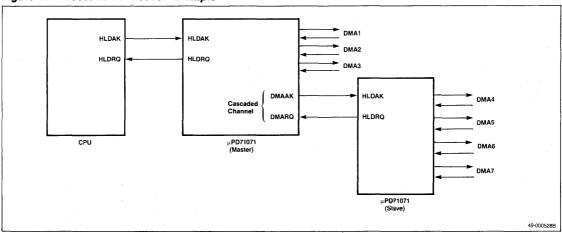
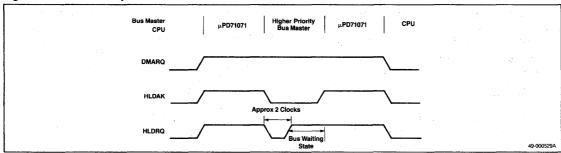



Figure 11. Bus Wait Operation

Programming the µPD71071

To prepare a channel for DMA transfer, you must select the following characteristics.

- Starting address for the transfer
- Number of byte/word transfers
- DMA operating modes
- Data bus widths
- Active levels of the DMARQ and DMAAK signals

When reading from or writing to a $\mu PD71071$ internal register, address lines A_3 - A_0 select the register, \overline{IORD} or \overline{IOWR} select the data transfer direction, and \overline{CS} enables the transfer. Table 6 shows the register and command configurations.

Table 6. Register Configuration

Register	Bit size
Channel	5
Base address	24 (4)
Current address	24 (4)
Base count	16 (4)
Current count	16 (4)
Mode control	7 (4)
Device control	10
Status	8
Request	4
Mask	4
Temporary	16

Note:

When using a 16-bit CPU and selecting a 16-bit data bus, the word IN/OUT instruction can be used to read/write information two bytes at a time. However, commands in table 7 suffixed with B must be issued with the byte IN/OUT instruction.

Initialize

Use the initialize command as a software initialize to the μ PD71071 or to set the width of the data bus. When using a 16-bit CPU, set the data bus width to 16 bits first. Figure 12 shows the initialize command format.

Bit 0. When the RES bit is set, the internal state of the μ PD71071 is initialized and will be the same as when a hardware reset is used (except for data bus width selection). A software reset leaves bit 16B intact whereas a hardware reset selects the 8-bit data bus. After initialization, the registers are as in table 8 and the RES bit is cleared automatically.

Table 8. Register Initialization

Register	Initialization Operation	
Initialize	Clears bit 0 only	
Address	No change	
Count	No change	
Channel	Selects channel 0, current and base	
Mode control	trol Clears all bits	
Device control	Clears all bits	
Status	Clears bits 3-0 only	
Request	Clears all bits	
Mask	Sets all bits (masks all channels)	
Temporary	Clears all bits	

Bit 1. The 16B bit determines the data bus width. When using the μ PD71071 in a 16-bit system, set this bit immediately after a hardware reset since a hardware reset always initializes it to the 8-bit data bus mode.

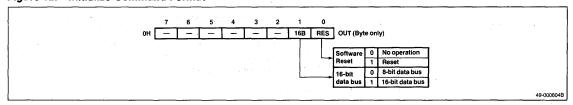

49-000603B

Table 7. Command Configuration

Address	R/W	Command Name	MSB Format LSB
ОН	W(B)	Initialize	16B RES
	R(B)	Channel Register Read	BASE SEL3 SEL2 SEL1 SEL0
1H	W(B)	Channel Register Write	BASE SELCH
2H	R/W	Count Register	C7 C6 C5 C4 C3 C2 C1 C0
3H	R/W	Read/Write	C15 C14 C13 C12 C11 C10 C9 C8
4H	R/W		A7 A6 A5 A4 A3 A2 A1 A0
5H	R/W	Address Register Read/Write	A15 A14 A13 A12 A11 A10 A9 A8
6H	R/W(B)		A23 A22 A21 A20 A19 A18 A17 A16
8H	R/W	Device Control	AKL RQL EXW ROT CMP DDMA AHLD MTM
9H	R/W	Reg. Read/Write	WEV BHLD
ОАН	R/W(B)	Mode Control Reg. Read/Write	TMODE ADIR AUTI TDIR - W/B
овн	R(B)	Status Register Read	RQ3 RQ2 RQ1 RQ0 TC3 TC2 TC1 TC0
осн	R	Temporary Reg. (lower) Read	T7 T6 T5 T4 T3 T2 T1 T0
0DH	R	Temporary Reg. (higher) Read	T15 T14 T13 T12 T11 T10 T9 T8
0EH	R/W(B)	Request Reg. Read/Write	SRQ3 SRQ2 SRQ1 SRQ0
0FH	R/W(B)	Mask Reg. Read/Write	M3 M2 M1 M0

Figure 12. Initialize Command Format

Channel Register

This command reads and writes the channel register that selects one of four DMA channels for programming the address, count, and mode control registers. Figure 13 shows the channel register read/write format.

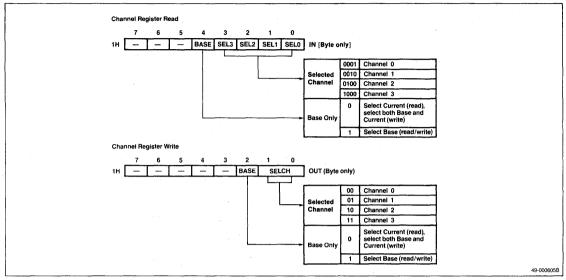
Channel Register Read

SEL3-SEL0. These mutually exclusive bits show which of the four channels is currently selected for programming.

BASE. Base = 0. The current register may be read. During a write, the base and current registers will be written to simultaneously.

Base = 1. Only the base registers may be read or written to.

Channel Register Write


SELCH. This bit selects the channel to be programmed.

BASE. Base = 0. The current register may be read. During a write, the base and current registers will be written to simultaneously.

Base = 1. Only the base registers may be read or written to.

Count Register Read/Write

When the 16-bit bus mode is selected, the IN/OUT instruction can directly transfer 16-bit data. The channel register selects one of the count registers. When bit 2 of the channel register write is cleared, a write to the count register updates both the base and current count registers with the new data. If bit 2 of the channel register write is set, a write to the count register only affects the base count register.

The base count registers hold the initial count value until a new count is specified. If autoinitialize is enabled, this value is transferred to the current count register when an END or TC is generated. For each DMA transfer, the current count register is decremented by one. Figure 14 shows the count register read/write format.

Address Register Read/Write

When a 16-bit data bus width is selected, the IN/OUT instruction can directly transfer the lower two bytes (4H and 5H) of the register. You must use the byte IN/OUT instruction with the upper byte (6H) of the register. The channel register selects one of the address registers. When bit 2 of the channel register is cleared, a write to the address register updates both the base and current address registers with the new data. If bit 2 of the channel register is set, a write to the address register only affects the base address register.

The base register holds the starting address value until a new setting is made and this value is transferred to the current address register during autoinitialization. For each DMA transfer, the current address register is updated ± 2 during word transfer and ± 1 during byte transfer. Figure 15 shows the address register read/write format.

Device Control Register Read/Write

The device control command reads from and writes to the device control register. When using a 16-bit data bus, use the word IN/OUT instruction to read and write 16-bit data. Figure 16 shows the device control register read/write format.

Figure 14. Count Register Read/Write Format

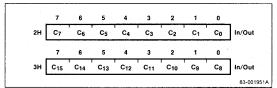


Figure 15. Address Register Read/Write Format

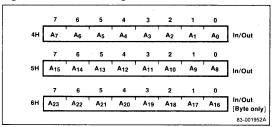
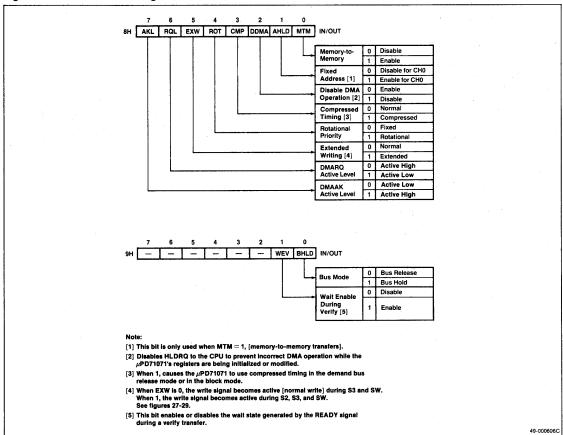



Figure 16. Device Control Register Read/Write Format

Mode Control Register Read/Write

This command reads from and writes to the mode control register to specify the operating mode for each channel. The channel register selects the mode control register to be programmed. This command must be issued by the byte IN/OUT instruction. Figure 17 shows the mode control register read/write format.

Status Register Read

This command reads the status register for the individual DMA channels. The register has DMA request states and terminal count or END information. This command must be issued by the byte IN instruction. Figure 18 shows the status register read format.

Temporary Register Read

When a 16-bit data bus is selected, the IN instruction will read 16-bit data with this command. The last data transferred in memory-to-memory transfer is stored in the temporary register. Figure 19 shows the temporary register read format.

Request Register Read/Write

This command reads from and writes to the request register to generate DMA requests by software for the four corresponding DMA channels. This command may be issued by the byte IN/OUT instruction. Figure 20 shows the reguest register read/write format.

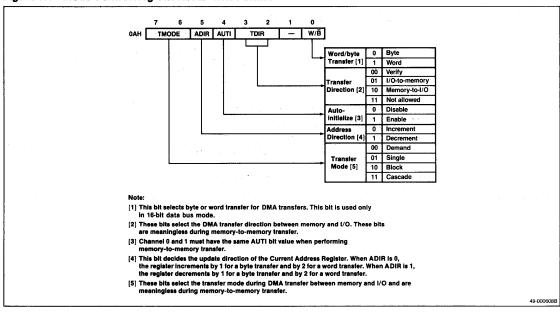
Mask Register Read/Write

This command reads from and writes to the mask register to mask or unmask external DMA requests for the corresponding four DMA channels (DMARQ3-DMARQ0). This command may be issued by the byte IN/OUT instruction. Figure 21 shows the mask register read/write format.

DMA Transfer Modes

Figures 22-27 show state transition diagrams for the different modes of DMA transfer.

Figure 23 shows the state of a master μ PD71071 when an input from a slave μ PD71071 (cascaded μ PD71071) is using the system bus.


Transfer Timing

Figures 28-30 show μ PD71071 timing waveforms.

Examples of System Configuration

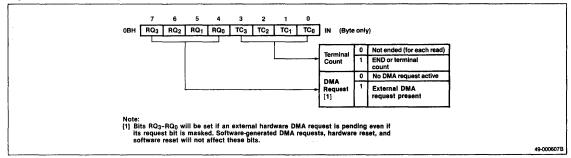

Figures 31-32 show system configuration examples using the 8- bit μ PD70108 CPU and the 16-bit μ PD70116 CPU. The μ PD71082 externally latches addresses and data.

Figure 18. Status Register Read Format

Figure 19. Temporary Register Read Format

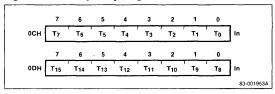


Figure 20. Request Register Read/Write Format

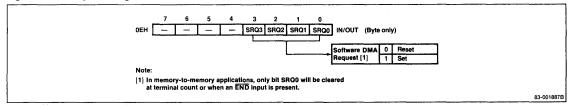


Figure 21. Mask Register Read/Write Format

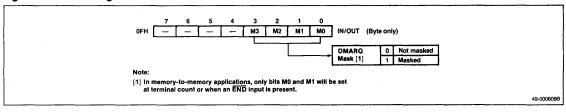


Figure 22. Idle Cycle

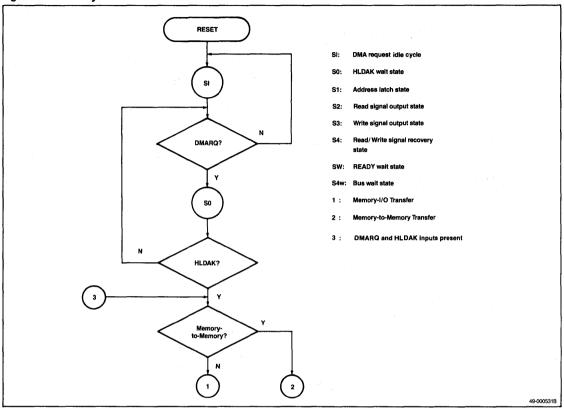


Figure 23. DMA Cycle, Cascade Mode

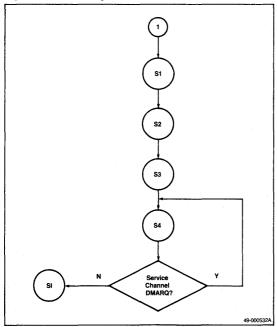


Figure 24. DMA Cycle, Single Mode

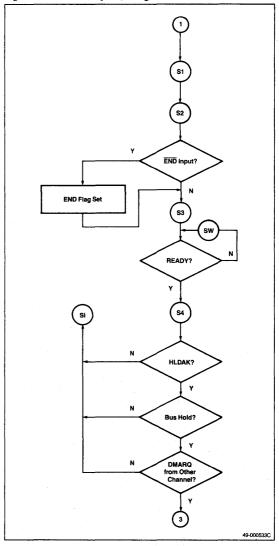


Figure 25. DMA Cycle, Demand Mode

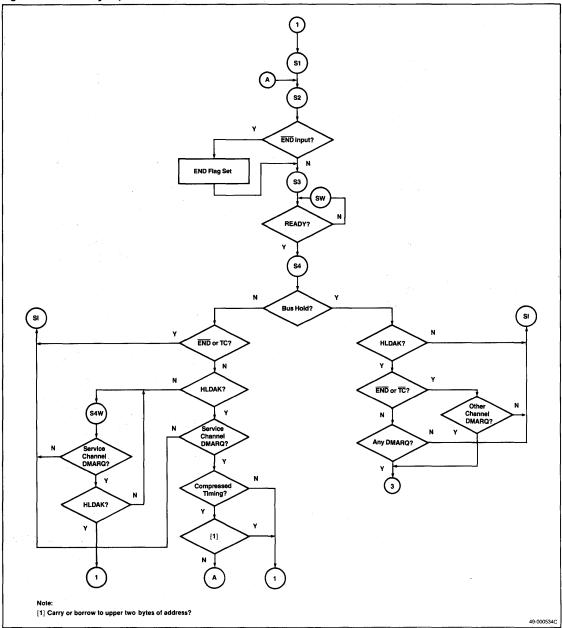


Figure 26. DMA Cycle, Block Mode

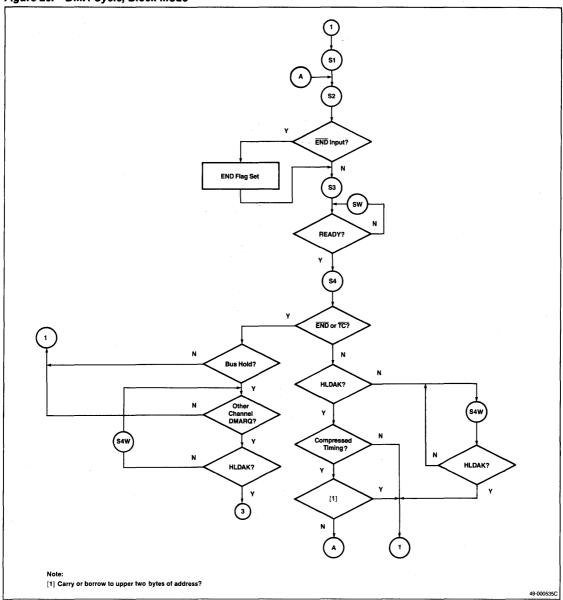


Figure 27. DMA Cycle, Memory-to-Memory Transfer

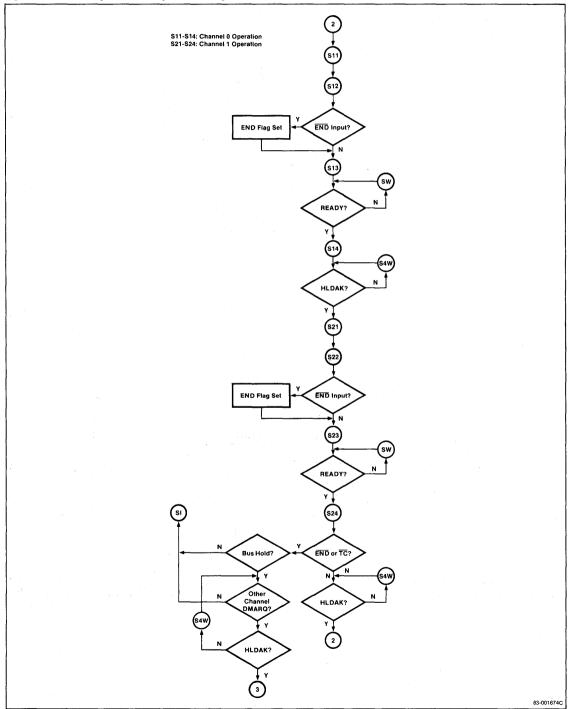
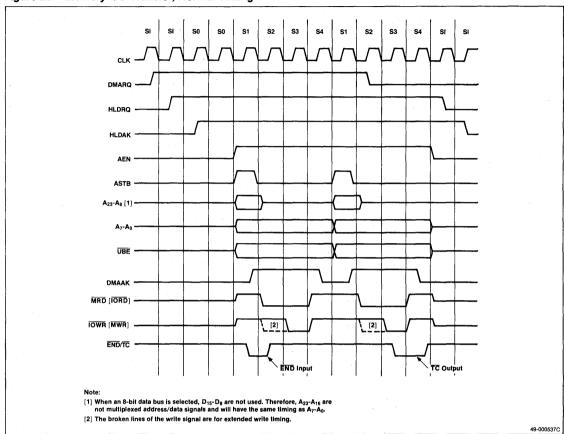



Figure 28. Memory-I/O Transfer, Normal Timing

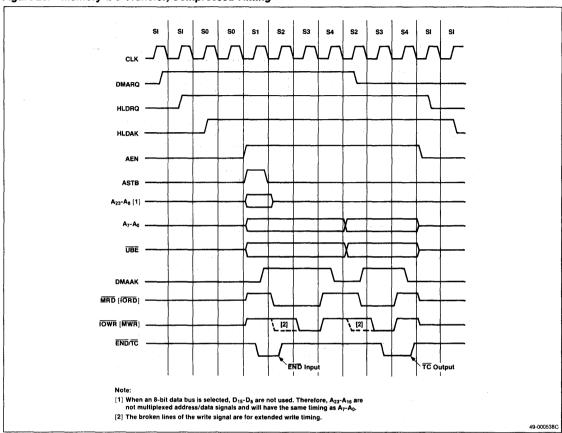


Figure 30. Memory-to-Memory Transfer

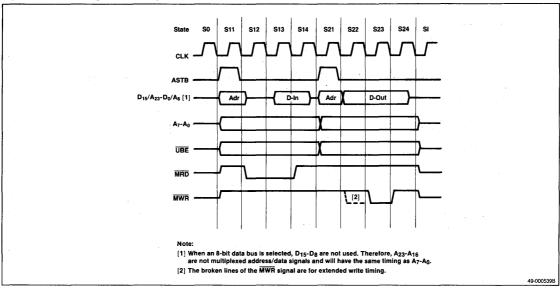


Figure 31. END/TC Input/Output

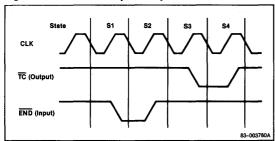


Figure 32. System Configuration with μ PD70108

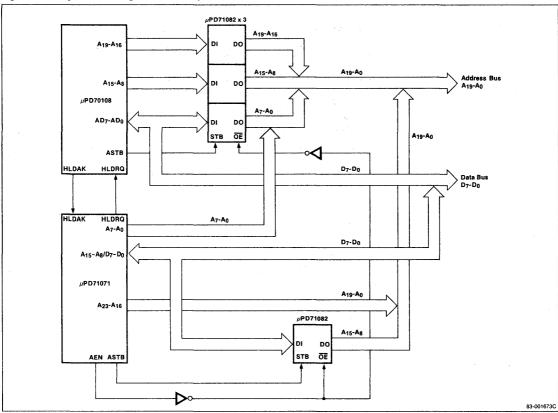
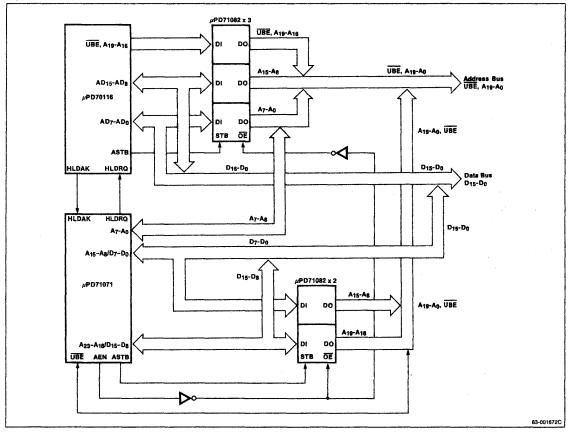
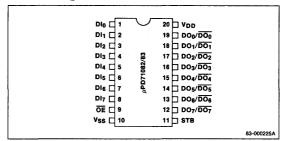



Figure 33. System Configuration with μPD70116

Description

 μ PD71082 and μ PD71083 are CMOS 8-bit transparent latches with three-state output buffers. They are used as bus buffers or bus multiplexers in microprocessor systems. Their high-drive capability makes them suitable for data latch, buffer, or I/O port applications.


Features

- ☐ CMOS technology
- ☐ 8-bit parallel data register
- ☐ Three-state output buffer
- \Box High drive capability output buffer ($I_{OL} = 12 \text{ mA}$)
- μPD8085A, 8048, 8086, 8088, 70108, and 70116 CPU system compatible
- μPD71082 non-inverted output; μPD71083 inverted output
- \square Single +5 V ±10% power supply
- ☐ 20-pin plastic DIP (300 mil)
- □ Transparent operation
- ☐ Industrial temperature range: -40 to +85°C

Pin Identification

Pin Identification							
No.	Symbol	Function					
1 .	DI _O	Data input, bit 0					
2	DI ₁	Data input, bit 1					
3	DI ₂	Data input, bit 2					
4	DI ₃	Data input, bit 3					
5	DI ₄	Data input, bit 4					
6	DI ₅	Data input, bit 5					
7	DI ₆	Data input, bit 6					
8	DI ₇	Data input, bit 7					
9	ŌĒ	Output enable input					
10	V _{SS}	Ground					
11	STB	Strobe input					
12	DO ₇ /DO ₇	Data output, bit 7					
13	DO ₆ /DO ₆	Data output, bit 6					
14	DO ₅ /DO ₅	Data output, bit 5					
15	DO ₄ / DO₄	Data output, bit 4					
16	DO ₃ /DO ₃	Data output, bit 3					
17	DO ₂ /DO ₂	Data output, bit 2					
18	DO ₁ /DO ₁	Data output, bit 1					
19	$DO_0/\overline{DO_0}$	Data output, bit 0					
20	V _{DD}	+5 V Power supply					

Pin Configuration

Ordering Information

Part Number	Package Type	Output
μPD71082C	20-pin plastic DIP	Non-inverted
μPD71083C	20-pin plastic DIP	Inverted
μPD71082G	20-pin plastic SO (available 3Q86)	
μPD71083G	20-pin plastic SO (available 3Q86)	

Pin Functions

Di₇-Di₀ [Data Input]

 DI_7 - DI_0 are data input lines to the 8-bit data latch. Data on DI lines passes through the latch while STB is high. The data is latched to DO/\overline{DO} with the trailing edge of STB (high to low).

DO_7 - $DO_0/\overline{DO_7}$ - $\overline{DO_0}$ [Data Output]

 DO_7 - $DO_0/\overline{DO_7}$ - $\overline{DO_0}$ are the three-state data output lines from the 8-bit data latch. When \overline{OE} is high, these lines go into the high-impedance state. When \overline{OE} is low, data from the latch is output, either non-inverted (μ PD71082) or inverted (μ PD71083).

STB [Strobe]

STB is the input strobe signal for the 8-bit latch. When STB is high, data on the DI lines passes through the 8-bit latch. Data is latched on the trailing edge of STB (high to low). When STB is low, latched data does not change.

OE [Output Enable]

 $\overline{\text{OE}}$ input is the output enable signal for the DO/ $\overline{\text{DO}}$ lines. When $\overline{\text{OE}}$ is high, DO/ $\overline{\text{DO}}$ lines are high impedance. When $\overline{\text{OE}}$ is low, data from the 8-bit latch is output to DO₇-DO₀/ $\overline{\text{DO}}$ 7- $\overline{\text{DO}}$ 0. See table 1.

Block Diagram

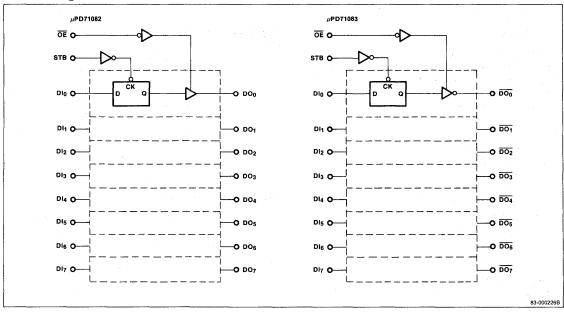


Table 1. Latch Operation

STB ÖE		DO7-DO0/DO7-DO0	8-Bit Data Latch		
Low Low		Latched data from 8-bit data latch is enabled	DI line data has been latched with trailing		
	High	High impedance	edge of STB (high to low)		
High	Low	Data on DI ₇ -DI ₀	DI passes through to		
	High	High impedance	D0/D0		

Functional Description

The μ PD71082 and μ PD71083 are 8-bit data latches strobed by the STB signal. They have high-drive capability output buffers controlled by the \overline{OE} signal. Data on the DI lines is latched by the trailing edge of STB (high to low). When STB is high, data passes through the latch. When \overline{OE} is high, DO lines are high impedance. When \overline{OE} is low, the contents of the latches are output on DO₇-DO₀. The DO lines are isolated from \overline{OE} switching noise.

Absolute Maximum Ratings $T_A = 25$ °C, $V_{SS} = 0$ V

Power dissipation, P_{DMAX} 500 mW

Operating temperature, T_{opt} $-40\,^{\circ}\text{C}$ to $+85\,^{\circ}\text{C}$ Storage temperature, T_{sto} $-65\,^{\circ}\text{C}$ to $+150\,^{\circ}\text{C}$

Comment: Exposing the device to stresses above those listed in the absolute maximum ratings could cause permanent damage. Exposure to absolute maximum ratings for extended periods may affect device reliability.

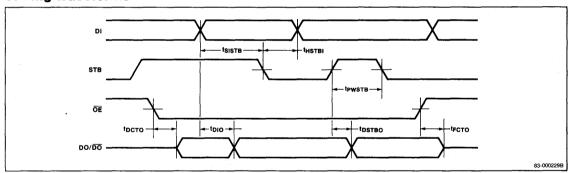
Capacitance

 $T_A = 25$ °C, $V_{DD} = +5$ V

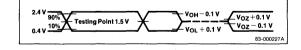
		Lin	nits		Test Conditions
Parameter	Symbol	Min	Max	Units	
Input capacitance	C _{in}		12	pF.	F = 1 MHz

DC Characteristics

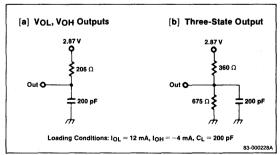
 $T_{\mbox{\scriptsize A}} = -40$ to $+85\,^{\circ}\mbox{\scriptsize C}$, $V_{\mbox{\scriptsize DD}} = 5$ V $\pm 10\%$


		Limi	ts		Test Conditions
Parameter	Symbol	Min	Max	Units	
Input voltage high	V _{IH}	2.2		٧	
Input voltage low	V _{IL}		0.8	٧	
Output voltage high	V _{OH}	$V_{DD} - 0.8$		٧	$I_{OH} = -4 \text{ mA}$
Output voltage low	V _{OL}		0.45	٧	$I_{OL} = 12 \text{ mA}$
Input current	lı	-1.0	1.0	μΑ	$V_I = V_{DD}, V_{SS}$
Leakage current, high impedance	I _{OFF}	-10	10	μΑ	$\overline{OE} = V_{DD}$
Power supply current (static)	lop		80	μΑ	$V_1 = V_{DD}, V_{SS}$
Power supply current (dynamic)	I _{DDdyr}	1	20	mA	F _{in} = 10 MHz C = 200 pF

AC Characteristics


 $T_A = -40 \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \text{ V} \pm 10\%$

		Limits			Test
Paramete <i>r</i>	Symbol	Min	Max	Units	Conditions
Input to output delay	t _{DIO}	5	40	ns	Load circuit a
STB to output delay	t _{DSTB0}	10	60	ns	Load circuit a
Data float time from OE high	t _{FCT0}	5	30	ns	Load circuit b
Data output delay from OE low	t _{DCTO}	10	40	ns	Load circuit b
Input to STB setup time	t _{SISTB}	0		ns	Load circuit a
Input to STB hold time	t _{HSTBI}	25		ns	Load circuit a
STB high pulse width	tpwstb	20		ns	Load circuit a
Signal rise time	t _{LH}		20	ns	0.8 V to 2.0 V
Signal fall time	t _{HL}		12	ns	2.0 V to 0.8 V


Timing Waveforms

AC Testing

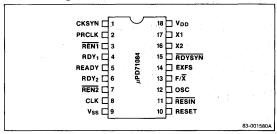
Loading Circuits for AC Testing

Description

The μ PD71084 is a clock pulse generator/driver for microprocessors and their peripherals using NEC's high-speed CMOS technology.

Features

- □ CMOS technology
- ☐ Clock pulse generator/driver for µPD70108/70116 or other CMOS or NMOS CPUs and their peripherals
- ☐ Frequency source can be crystal or external clock input
- ☐ Reset signal with Schmitt-trigger circuit for CPU or peripherals
- ☐ Bus ready signal with two-bus system synchronization
- □ Clock synchronization with other µPD71084s
- \square Single +5 V ±10% power supply
- ☐ Industrial temperature range: -40 to +85°C


Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD71084C	18-pin plastic DIP	25 MHz
μPD71084G	20-pin plastic SO (available 3Q86)	25 MHz

Pin Identification

No.	Symbol	Function
1	CKSYN	Clock synchronization input
2	PRCLK	Peripheral clock output
3	REN1	Bus ready enable input 1
4	RDY ₁	Bus ready input 1
5	READY	Ready output
6	RDY ₂	Bus ready input 2
7	REN2	Bus ready enable input 2
8	CLK	Processor clock output
9	V _{SS}	Ground potential
10	RESET	Reset output
11	RESIN	Reset input
12	OSC	Oscillator output
13	F/X	External frequency source/crystal select
14	EXFS	External frequency source input
15	RDYSYN	Ready synchronization select input
16	X2	Crystal input
17	X1	Crystal input
18	V _{DD}	+5 V Power supply

Pin Configuration

Pin Functions

X1, X2 [Crystal]

When the F/\overline{X} input is low, a crystal connected to X1 and X2 will be the frequency source to generate clocks for a CPU and its peripherals. The crystal frequency should be three times the frequency of CLK.

EXFS [External Frequency]

EXFS is the external frequency input in the external TTL frequency source mode (F/\overline{X} high). A TTL-level clock signal three times the frequency of CLK's output should be used for the source.

F/X [Frequency/Crystal Select]

 F/\overline{X} input selects whether an external TTL-level input or an external crystal input is the frequency source of the CLK output. When F/\overline{X} is low, CLK is generated from the crystal connected to X1 and X2. When F/\overline{X} is high, CLK is generated from an external TTL-level frequency input on the EXFS pin. At the same time, the internal oscillator circuit will stop and the OSC output will be high.

CLK [Processor Clock]

CLK output supplies the CPU and its local bus peripherals. CLK is a 33% duty cycle clock of one-third the frequency of the frequency source. The CLK output is +0.4 V higher than the other outputs.

PRCLK [Peripheral Clock]

PRCLK output supplies a 50% duty cycle clock at onehalf the frequency of CLK to drive peripheral devices.

OSC [Oscillator]

OSC outputs a signal at the same frequency as the crystal input. When EXFS is selected, the OSC output is powered down, and its output will be high.

CKSYN [Clock Synchronization]

CKSYN input synchronizes one μ PD71084 to other μ PD71084s. A high level at CKSYN resets the internal counter, and a low level enables it to count.

RESIN [Reset]

This Schmitt-trigger input generates the RESET output. It is used as a power-on reset.

RESET [Reset]

This output is a reset signal for the CPU. Reset timing is provided by the RESIN input to a Schmitt-trigger input gate and a flip-flop which will synchronize the reset timing to the falling edge of CLK. Power-on reset can be provided by a simple RC circuit on the RESIN input.

RDY₁, RDY₂ [Bus Ready]

A peripheral device drives the RDY₁ or RDY₂ inputs to signal that the data on the <u>system bus has been</u> received or is ready to be sent. REN1 and REN2 enable the RDY₁ and RDY₂ signals.

REN1, REN2 [Address Enable]

REN1 and REN2 inputs qualify their respective RDY inputs.

RDYSYN [Ready Synchronization Select]

RDYSYN input selects the mode of READY signal synchronization. A low-level signal makes the synchronization a two-step process. Two-step synchronization is used when RDY₁ or RDY₂ are not synchronized to the microprocessor clock and therefore cannot be guaranteed to meet the READY setup time. A high-level signal makes synchronization a one-step process. One-step synchronization is used when RDY₁ and RDY₂ are synchronized to the processor clock. See Block Diagram.

READY [Ready]

The READY output signal to the processor is synchronized by the RDY inputs to the processor CLK. READY is cleared after RDY goes low and the guaranteed hold time of the processor has been met.

Crystal

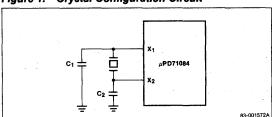

The oscillator circuit of the μ PD71084 works with a parallel-resonant, fundamental mode, "AT cut" crystal connected to pins X1 and X2.

Figure 1 shows the recommended circuit configuration. Capacitors C1 and C2 are required for frequency stability. The values of C1 and C2 (C1 = C2) can be calculated from the load capacitance (C_L) specified by the crystal manufacturer.

$$C_L = \frac{C1 \times C2}{C1 + C2} + C_S$$

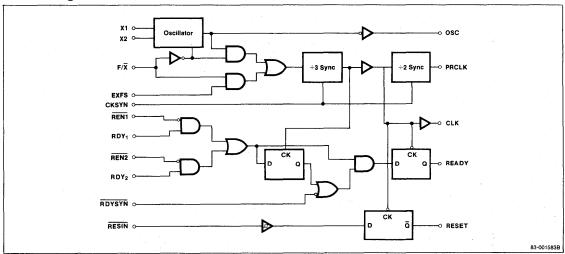

Where C_S is any stray capacitance in parallel with the crystal, such as the $\mu PD71084$ input capacitance C_{in} .

Figure 1. Crystal Configuration Circuit

Block Diagram

Absolute Maximum Ratings $(T_A = 25 \, ^{\circ}\text{C}, \, V_{SS} = 0 \, \text{V})$

(·A == -/ · 33 - · /	
Power supply voltage, V _{DD}	−0.5 to +7.0 V
Input voltage, V _I	-1.0 to V _{DD} + 1.0 V
Output voltage, V ₀	-0.5 to $V_{DD} + 0.5$ V
Power dissipation, P _{DMAX}	500 mW
Operating temperature, Topt	-40 to +85°C
Storage temperature, T _{stg}	−60 to +125°C

Comment: Exposing the device to stresses above those listed in the absolute maximum ratings could cause permanent damage. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Capacitance $(T_A = 25 \,^{\circ}\text{C}, V_{DD} = +5 \,\text{V})$

	Limits				Test
Parameter	Symbol	Min	Max	Units	Conditions
Input capacitance	C _{in}		12	pF	F = 1 MHz

DC Characteristics

 $(T_A = -40 \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \text{ V} \pm 10\%)$

	Limits		its		Test
Parameter	Symbol	Min	Max	Units	Conditions
Input voltage high	V _{IH}	2.2		٧	
Input voltage low	V _{IL}		0.8	٧	
Input voltage high	V _{IH}	2.6		٧	RESIN
Output voltage high	V _{OH}	V _{DD} - 0.4		٧	I _{OH} = -4 mA CLK
Output voltage high	V _{OH}	V _{DD} - 0.8		٧	$I_{OH} = -4 \text{ mA}$
Output voltage low	V _{OL}		0.45	٧	$I_{OL} = 4 \text{ mA}$
Input current	I _I	-1.0	1.0	μΑ	
Input current	l _l	-400	1.0	μΑ	RDYSYN
RESIN input hysteresis	V	0.25	•	٧	
Power supply current (static)	I _{DD}		200	μΑ	• .
Power supply current (dynamic)	IDDdyn		30	mA	F _{in} = 24 MHz

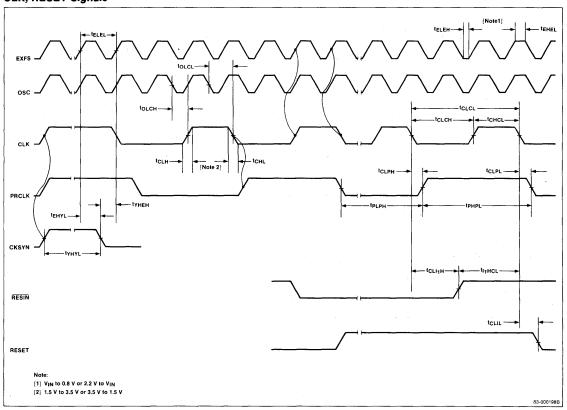
AC Characteristics

(T_A = -40 to +85 °C, V_{DD} = 5 V $\pm 10\%$)

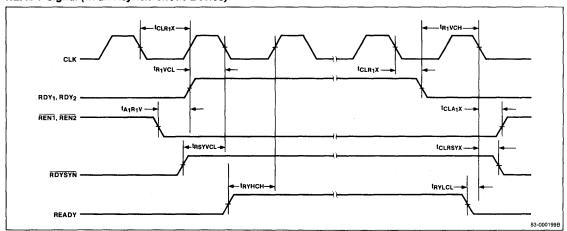
		Lir	nits		Test
Parameter	Symbol	Min	Max	Units	Conditions
EXFS high	t _{EHEL}	16		ns	At 2.2 V
EXFS low	t _{ELEH}	16		ns	At 0.8 V
EXFS period	telel	40		ns	
XTAL frequency		12	25	MHz	
RDY _{1, 2} setup to CLK	t _{R1} vcl, t _{R1} vch	35		ns	
RDY _{1, 2} hold to CLK	t _{CLR1} X	0		ns	
RDYSYN setup to CLK	trsyvcl	50		ns	
RDYSYN hold to CLK	[†] CLRSYX	0		ns	
REN1, 2 setup to RDY _{1, 2}	t _{A1R1} V	15		ns	
REN1, 2 hold to CLK	t _{CLA1} X	0		ns	Maria 11.
CKSYN setup to EXFS	tyHEH	20	`	ns	
CKSYN hold to EXFS	tEHYL	20	2-4-5	ns	
CKSYN width	tyHYL	2t _{ELEL}		ns	
RESIN setup to CLK	t _{I1} HCL	65		ns	A.

AC Characteristics (cont) $(T_A = -40 \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \text{ V } \pm 10\%)$

		Limit	S		Test
Parameter	Symbol	Min	Max	Units	
RESIN hold to CLK	t _{CLI1} H	20		ns	
CLK cycle period	tCLCL	125		ns	
CLK high	tCHCL	41		ns	3 V, f _{OSC} = 24 MHz (Note 1)
		1/3t _{CLCL} +2		ns	1.5 V, f _{OSC} ≦ 24 MHz (Note 2)
CLK low	tCLCH	68	_	ns	1.5 V, f _{OSC} = 24 MHz (Note 1)
		2/3t _{CLCL} -15		ns	1.5 V, f _{OSC} ≦ 24 MHz (Note 2)
CLK rise and fall time	t _{CLH} , t _{CHL}		10	ns	1.5 V to 3.5 V, 3.5 V to 1.5 V
PRCLK high	t _{PHPL}	t _{CLCL} -20		ns	
PRCLK low	t _{PLPH}	t _{CLCL} -20		ns	-
READY inactive to CLK	^t RYLCL		8	ns	
READY active to CLK	tryhch		8	ns	
CLK to RESET delay	t _{CLIL}		40	ns	
CLK to PRCLK delay	t _{CLPH}	-	22	ns	
CLK to PRCLK delay	[†] CLPL		22	ns	
OSC to CLK 1 delay	^t olch	-5	22	ns	
OSC to CLK ↓ delay	tolcl	2	35	ns	
Signal rise time (except CLK)	t _{LH}		20	ns	0.8 V to 2.0 V
Signal fall time (except CLK)	t _{HL}		12	ns	2.0 V to 0.8 V

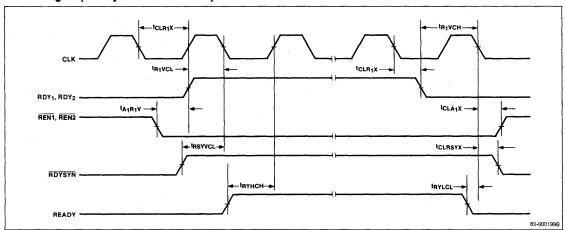

Note:

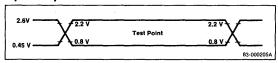
- (1) Test points are specified in accordance with V-Series CMOS peripherals.
- (2) Test points are specified in accordance with the μ PD8284.



Timing Waveforms

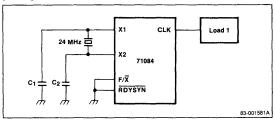
CLK, RESET Signals


READY Signal (In an Asynchronous Device)

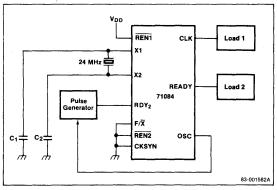


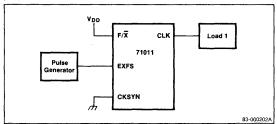
Timing Waveforms (cont)

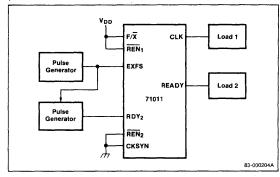
READY Signal (In a Synchronous Device)

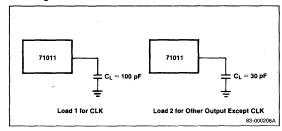


Input/Output Waveform for AC Test




Test Circuit for CLK High or Low Time (in Crystal Oscillation Mode)


Test Circuit for CLK to READY (In Crystal Oscillation Mode)

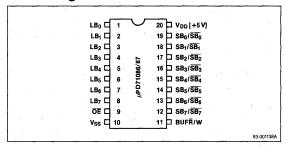

Test Circuit for CLK High or Low Time (in EXFS Oscillation Mode)

Test Circuit for CLK to READY (in EXFS Oscillation Mode)

Loading Circuits

Description

 μ PD71086 and μ PD71087 are 8-bit, bidirectional bus buffer/drivers with three-state outputs. The μ PD71086 provides a non-inverted system bus. The μ PD71087 provides an inverted system bus. These devices are used to expand CPU bus drive capability. The input/output lines are isolated from \overline{OE} and BUFR/W switching noise.


Features

- ☐ CMOS technology
- ☐ Bidirectional 8-bit parallel bus buffer
- ☐ Three-state output
- \Box High drive capability system bus output ($I_{OL} = 12 \text{ mA}$)
- Compatible with μPD70108C, μPD70116C and other CMOS or NMOS designs
- μPD71086 non-inverted system bus output μPD71087 inverted system bus output
- \square Single +5 V ±10% power supply
- ☐ 20 Pin plastic DIP (300 mil)
- ☐ Industrial temperature range: -40 to +85°C

Ordering Information

Part Number	Package Type	Output
μPD71086C	20-pin plastic DIP	Non-inverted
μPD71087C	20-pin plastic DIP	Inverted
μPD71086G	20-pin SO plastic (available 3Q86)	-
μPD71087G	20-pin S0 plastic (available 3Q86)	

Pin Configuration

Pin Identification

No.	Symbol Function			
1.	LB ₀	CPU local data bus, bit 0		
2	LB ₁	CPU local data bus, bit 1		
3	LB ₂	CPU local data bus, bit 2		
4	LB ₃	CPU local data bus, bit 3		
5	LB ₄	CPU local data bus, bit 4		
6	LB ₅	CPU local data bus, bit 5		
7	LB ₆	CPU local data bus, bit 6		
8	LB ₇	CPU local data bus, bit 7		
9	ŌĒ	Output enable input		
10	V _{SS}	Ground		
11	BUFR/W	Buffer read/write input		
12	SB ₇ /SB ₇	System data bus, bit 7		
13	SB ₆ /SB ₆	System data bus, bit 6		
14	SB ₅ /SB ₅	System data bus, bit 5		
15	SB ₄ /SB ₄	System data bus, bit 4		
16	SB ₃ /SB ₃	System data bus, bit 3		
17	SB ₂ /SB ₂	System data bus, bit 2		
18	SB ₁ /SB ₁	System data bus, bit 1		
19	SB ₀ /SB ₀	System data bus, bit 0		
20	V_{DD}	+5 V power supply		

Pin Functions

LB7-LB0 [Local Data Bus]

LB₇-LB₀ are three state Inputs/Outputs which connect to the CPU local data bus. They input and output data between the CPU and memory, I/O, or other peripherals. Data read/write mode is controlled by the BUFR/W signal input.

SB₇-SB₀/SB₇-SB₀ [System Data Bus]

 $SB_7-SB_0/\overline{SB}_7-\overline{SB}_0$ are three state Inputs/Outputs which connect to the system bus, along with the memory. I/O, or other peripherals. μ PD71086 outputs non-inverted signals, SB_7-SB_0 . μ PD71087 outputs inverted signals, $\overline{SB}_7-\overline{SB}_0$.

OE [Output Enable]

 \overline{OE} input controls the output buffers. When \overline{OE} is high, all output buffers go to the high-impedance state. When \overline{OE} is low, data is output from the buffers specified by the BUFR/W signal.

BUFR/W [Buffer Read/Write]

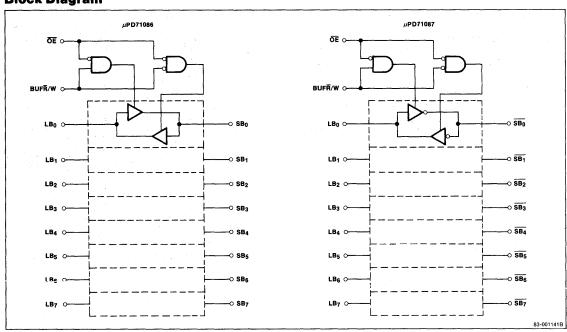

The data read/write mode is controlled by the BUFR/W signal input. When BUFR/W is high, LB lines are in input mode and SB lines are in output mode. When BUFR/W is low, SB lines are in input mode, and LB lines are output. See table 1.

Table 1. Data Read/Write Mode

ŌĒ	BUFR/W	LB Pins	SB/SB Pins	Mode
Low	Low	Output	Input	System bus to local bus
Low	High	Input	Output	Local bus to system bus
High	Low			High impedance
High	High	_		High impedance

Note: When \overrightarrow{OE} is high, all local and system bus pins go to high-impedance state.

Block Diagram

Absolute Maximum Ratings

 $(T_A = 25 \,^{\circ}C, V_{SS} = 0 \, V)$

Power supply voltage, V _{DD}	−0.5 to +7.0 V
Input voltage, V _I	-1.0 to V _{DD} + 1 V
Output voltage, V ₀	-0.5 to V _{DD} + 0.5 V
Power dissipation, P _D	500 mW
Operating temperature, Topt	-40°C to +85°C
Storage temperature, T _{stg}	-65°C to +150 °C

Comment: Exposing the device to stresses above those listed in the absolute maximum ratings could cause permanent damage. Exposure to absolute maximum ratings for extended periods may affect device reliability.

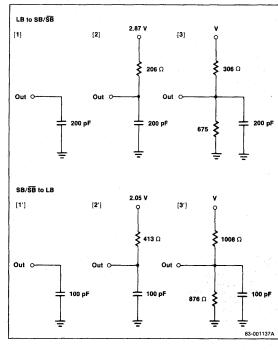
Capacitance

 $(T_A = 25 \,^{\circ}C, V_{DD} = +5 \, V)$

	Test				
Parameter	Symbol	Min	Max	Units	Conditions
Input Capacitance	Ci		24	pF	f _c = 1 MHz

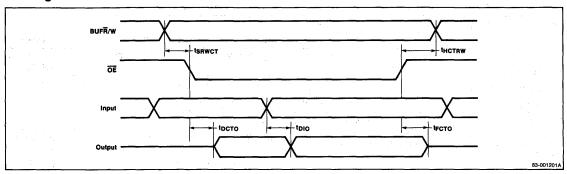
DC Characteristics

 $(T_A = -45 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C}, V_{DD} = 5 \,\text{V} \pm 10\%)$

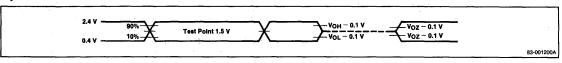

		Lin	iits		Test	
Parameter	Symbol	Min	Max	Units	Conditions	
Input voltage high	V _{IH}	2.2		V		
Input voltage low	V _{IL}		0.8	٧		
Output voltage high	V _{OH}	V _{DD} - 0.8		٧	$I_{OH} = -4 \text{ mA}$	
Output voltage low	V _{OL}		0.45	٧	LB, $I_{OL} = 4 \text{ mA}$	
Output voltage low	V _{OL}		0.45	٧	SB, $I_{OL} = 12 \text{ mA}$	
Input leakage current	l _{IL}	- 1.0	1.0	μΑ	$V_i = V_{DD}, V_{SS}$	
Leakage current, high impedance	I _{OFF}	-1.0	1.0	μΑ	$\overline{OE} = V_{DD}$	
Power supply current (static)	DD		80	μΑ	$V_i = V_{DD}, V_{SS}$	
Power supply current (dynamic)	IDDdyn		40	mA	f _{in} = 2 MHz	

AC Characteristics

(T_A = -40 °C to +85 °C, V_{DD} = 5 V \pm 10%)


	· .	Limits			Test
Parameter	Symbol	Min	Max	Units	Conditions
Input to output delay	t _{DIO}	5	40	ns	Load (1), (1') and (2), (2')
BUFR/W hold time from OE	tHCTRW	5		ns	
BUFR/W setup time to OE	tsrwct	10		ns	
Data <u>flo</u> at time from OE	t _{FCT0}	5	30	ns	Load (3) and (3')
Data output delay from OE	t _{DCT0}	10	40	ns	Load (3) and (3')
Signal rise time	t _R		20	ns	0.8 to 2.0 V
Signal fall time	t _F		12	ns	2.0 to 0.8 V

Loading Circuit for AC Test



Timing Waveforms

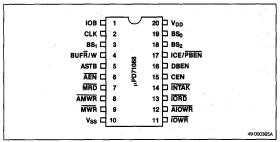
Input Waveform for AC Test

Description

The μ PD71088 is a CMOS system bus controller for a μ PD70108 or μ PD70116 CPU processor system. It controls the memory or I/O system bus.

Features

- ☐ CMOS technology
- ☐ Bus controller for microcomputer system expansion
- ☐ Command outputs for system bus control
- ☐ Control outputs for I/O peripheral bus control
 ☐ High drive capability for command and control
- ☐ High drive capability for command and control outputs (I_{OL} = 12 mA)
- ☐ Three-state outputs for command outputs
- ☐ Advanced I/O and memory write command outputs
- \square μ PD70108, μ PD70116 compatible
- \Box +5 V ±10% single power supply
- ☐ 20-pin plastic DIP (300 mil)
- ☐ Industrial temperature range: -40 to +85°C


Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD71088C	20-pin plastic DIP	8 MHz
μPD71088G	20-pin plastic SO (available 3086)	8 MHz

Pin Identification

No.	Symbol	Function
1	IOB	Input/output bus mode input
2	CLK	Clock input
3	BS ₁	Bus status input 1
4	BUFR/W	Buffer read/write output
5	ASTB	Address strobe output
6	ĀĒN	Address enable input
7	MRD	Memory read output
8	AMWR	Advanced memory write output
9	MWR	Memory write command output
10	V _{SS}	Ground
11	IOWR	I/O write command output
12	AIOWR	Advanced I/O write command output
13	IORD	I/O read command output
14	INTAK	Interrupt acknowledge output
15	CEN	Command enable input
16	DBEN	Data buffer enable output
17	ICE/PBEN	Interrupt cascade enable/Peripheral data bus enable output
18	BS ₂	Bus status input 2
19	BS ₀	Bus status input 0
20	V _{DD}	Power supply

Pin Configuration

Pin Functions

BS₀-BS₂ [Bus Status Inputs 0 - 2]

The BS $_0$ -BS $_2$ inputs are connected to the encoded CPU status outputs. The μ PD71088 decodes these status outputs into command and control outputs for timing control. See table 1 for an explanation of these inputs.

CLK [Clock]

The CLK input is connected to the same clock output that drives the CPU clock, usually the CLK output of a μ PD71084 or a μ PD71011. It is the internal system clock of the μ PD71088.

AEN [Address Enable]

The AEN input controls the command output buffers. When IOB is low, a low-level AEN causes the command buffers to output command output signals. A high-level AEN makes all command lines go to high impedance. When IOB is high, the µPD71088 is in I/O bus mode, and the command lines are not affected by AEN.

CEN [Command Enable]

The CEN input controls DBEN, PBEN and all command outputs. When CEN is high, all these outputs are active. When CEN is low, they are inactive.

IOB [I/O Bus Mode]

When the IOB input is high, the bus control mode is I/O bus mode. When IOB is low, the bus control mode is system bus mode.

MRD [Memory Read Command]

The MRD output is the signal to read data from a memory device. MRD is three-state, active low.

MWR [Memory Write Command]

The MWR output is the signal to write data to a memory device. MWR is three-state, active low.

AMWR [Advanced Memory Write Command]

This command output is the same as MWR, except that it is generated one state (clock cycle) earlier than MWR.

IORD [I/O Read Command]

The IORD output is the signal to read data from an I/O device. IORD is three-state, active low.

IOWR [I/O Write Command]

The IOWR output is the signal to write data to an I/O device. IOWR is three-state, active low.

AIOWR [Advanced I/O Write Command]

This command output is the same as IOWR, except that it is generated one state (clock cycle) earlier than IOWR.

INTAK [Interrupt Acknowledge]

The INTAK output acknowledges interrupt requests. Requesting devices output an interrupt vector address in response to INTAK. INTAK is three-state, active low.

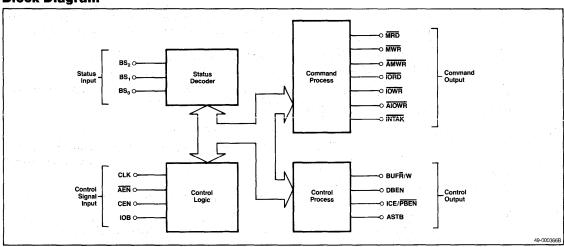
ASTB [Address Strobe]

The ASTB output control signal latches the address outputs from the CPU into an external address latch, such as a μ PD71082 or μ PD71083. Address data should be strobed with the trailing edge (high to low) of ASTB.

DBEN [Data Buffer Enable]

The DBEN output activates a data bus buffer/driver such as a μ PD71086 or μ PD71087 to input or output data between the CPU local bus and the memory or I/O system bus.

BUFR/W [Buffer Read/Write]


The BUFĀ/W output controls the direction in which data moves through a transceiver between the CPU and the memory or I/O peripherals. When BUFĀ/W is high, data is transferred from the CPU local bus to the memory or I/O system bus. When BUFĀ/W is low, data is transferred from the memory or I/O system bus to the CPU local bus.

ICE/PBEN [Interrupt Cascade Enable/Peripheral Data Bus Enable]

The meaning of this output signal depends on IOB. If IOB is low (system bus mode), it is the ICE output. ICE controls the cascade address transfer from a master priority interrupt controller to slave priority interrupt controllers. The slave reads the address from the master when ICE goes high.

When IOB is high, it becomes PBEN. PBEN controls the I/O bus the same way that DBEN controls the system bus. In this case, however, the output is active low.

Block Diagram

Absolute Maximum Ratings

 $(T_A = 25 \,{}^{\circ}\text{C}, V_{SS} = 0 \, V)$

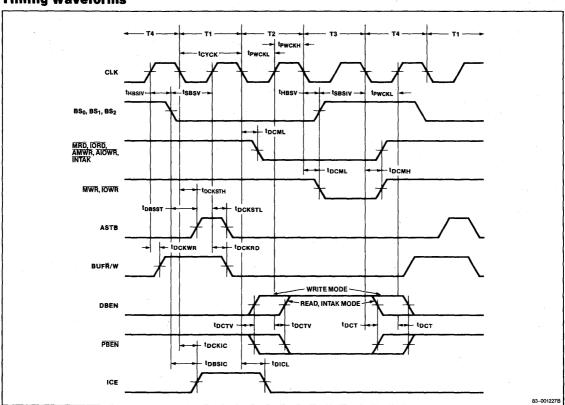
Power supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, V _I	-1.0 to V _{DD} + 1.0 V
Output voltage, V ₀	-0.5 to V _{DD} + 0.5 V
Power dissipation, P _D	500 mW
Operating temperature, Topt	-40 to +85°C
Storage temperature, T _{stg}	-65 to +150°C

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. Exposure to absolute maximum ratings for extended periods may affect device reliability.

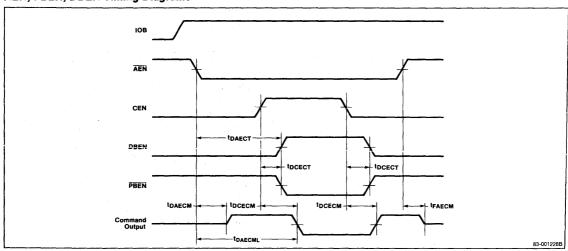
DC Characteristics

(T_A = $-40\,^{\circ}$ C to $+85\,^{\circ}$ C, V_{DD} = 5 V $\pm 10\%$)

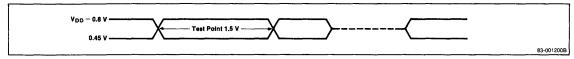
	Limits		ts		Test	
Parameter	Symbol	Min	Max	Units	Conditions	
Input voltage high	V _{IH}	2.2		٧		
Input voltage low	V _{IL}		0.8	٧		
Output voltage high	V _{OH}	$V_{DD} - 0.8$		٧	$I_{OH} = -4 \text{ mA}$	
Output voltage low command	V _{OL}		0.45	٧	$I_{OL} = 12 \text{ mA},$	
Output voltage low control	V _{OL}		0.45	٧	$I_{OL} = 4 \text{ mA},$	
Input current leakage	ի կլ	-1.0	1.0	μΑ	$V_{I} = V_{DD}, V_{SS}$	
Leakage current at high impedance	l _{OFF}	-10	10	μΑ		
Power supply current (static)	: I _{DD}		80	μΑ	$V_I = V_{DD}, V_{SS}$	
Power supply current (dynamic)	DDdyn		20	mA	F _{in} = 10 MHz	

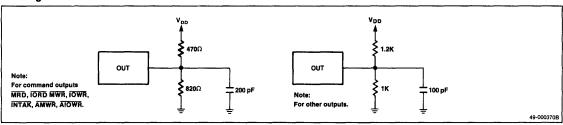

AC Characteristics

(T_A = -40 °C to +85 °C, V_{DD} = 5 ±10%)


		Lir	nits		Test	
Parameter	Symbol	Min	Max	Units	Conditions	
CLK cycle period	tcyck	125		ns		
CLK pulse with low	t _{PWCKL}	60		ns		
CLK pulse width high	t _{PWCKH}	40		ns		
Setup time for bus status active to CLK†	t _{SBSV}	40		ns		
Hold time for bus status inactive from CLK↓	t _{HBSV}	10		ns		
Setup time for bus status inactive to CLK↓	tsbsiv	35		ns		
Hold time for bus status inactive from CLK†	thbsiv	10		ns		
DBEN, PBEN active	tDCTV	10	50	ns	$l_{OL} = 4 \text{ mA}$	
DBEN, PBEN inactive delay	t _{DCT}	10	50	ns	$I_{OH} = -4 \text{ m}$ $C_L = 100 \text{ pf}$	
ASTB active delay from CLK↓	tdcksth		30	ns		
ASTB active delay from status	t _{DBSST}		25	ns		
ASTB inactive delay from CLK1	t _{DCKSTL}	7	25	ns		
CE active delay from CLK↓	tDCKIC		30	ns		
ICE inactive delay from CLK↓	tDICL	10	50	ns		
ICE active delay from status	t _{DBSIC}		25	ns		
BUFR/W ↓ output delay	tdckrd		60	ns		
BUFR/W↑output	t _{DCKWR}		40	ns		
AEN to DBEN delay	tDAECT		30	ns		
CEN to DBEN, PBEN	TDCECT		30	ns		
CEN to command delay	tDCECM		tCLML	ns		
Command active delay	tDCML	10	40	ns		
Command inactive delay	t _{DCMH}	10	40	ns		
Command output delay from AEN	tDAECML		40	ns		
Command a <u>ctive</u> output delay from AEN	†DAECML	100	295	ns		
Command disable delay from AEN 1	t _{FAECM}		50	ns	4.	
Input/output rise time	t_R		20	ns	0.8 V to 2.0	

Timing Waveforms


AEN, PBEN, DBEN Timing Diagrams



Timing Waveforms (cont)

AC Test Points

Loading Circuit

Bus Controller Funtional Description

Command Logic

The μ PD71088 decodes the CPU bus status outputs into command outputs. The bus status outputs (BS₀-BS₂) and their decoded commands are shown in table 1.

Bus Control Mode

The CEN, IOB, and \overline{AEN} signals control the bus controller mode as shown in table 2.

Table 1. Command Logic

B\$ ₂	BS ₁	BS ₀	CPU Status	μPD71088 Command Output
Low	Low	Low	Interrupt acknowledge	INTAK
Low	Low	High	I/O read mode	IORD
Low	High	Low	I/O write mode	IOWR, AIOWR
Low	High	High	Halt mode	None
High	Low	Low	Instruction fetch mode	MRD
High	Low	High	Memory read mode	MRD
High	High	Low	Memory write mode	MWR, AMWR
High	High	High	No bus cycle mode	None

Table 2. Bus Control Mode

Control Input			Co	mmand Output	Control Output		
GEN	IOB	AEÑ	Memory MRD, MWR, AMWR	I/O IOWR, AIOWR, IORD, INTAK	IGE/PBEN	ASTB, BUFR/W, DBEN	
Н	H (I/O bus mode)		High impedance	Outputs enabled (NC)	PBEN (NC)	Outputs enabled (NC)	
	(17 0 000 111000)	L	Outputs enabled			()	
	L (System bus	Н	High impedance	High impedance	ICE (NC)	Outputs enabled (NC)	
	mode)	L	Outputs enabled	Outputs enabled		(NC)	
L (Command disable mode)	X	x	н	Н	PBEN = H	Outputs enabled (DBEN = L: ASTB, BUFR/W are NC)	

Note:

x = Don't care, NC = No change, H = High, L = Low

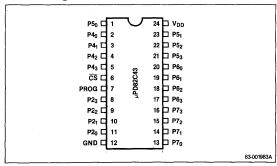
μ PD82C43 CMOS INPUT/OUTPUT EXPANDER FOR μ PD8048/C48 FAMILY

Description

The μ PD82C43 input/output expander is directly compatible with the μ PD8048/C48 family of single-chip microcomputers. Using CMOS technology, the μ PD82C43 provides high drive capabilities while requiring only a single +5 V supply voltage.

The μ PD82C43 interfaces to the μ PD8048/C48 family through a 4-bit I/O port and offers four 4-bit bidirectional static I/O ports. The ease of expansion allows for multiple μ PD82C43s to be added using the bus port.

The bidirectional I/O ports of the μ PD82C43 act as an extension of the I/O capabilities of the μ PD8048/C48 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.


Features

Four 4-bit I/O ports
High output drive
Logical AND and OR directly to ports
Compatible with industry standard 8243
Direct extension of resident µPD8048/C48 I/O ports
Fully compatible with µPD8048/C48
microcomputer family
CMOS technology
Single +5 V supply

Ordering Information

Part	
Number	Package Type
μPD82C43C	24-pin plastic DIP
μPD82C43CX	24-pin plastic skinny DIP

Pin Configuration

Pin Identification

No.	Symbol	Function
1, 23–21	P5 ₀ -P5 ₃	4-bit I / 0 port 5
2-5	P4 ₀ -P4 ₃	4-bit I / 0 port 4
6	CS	Chip select input
7	PROG	Clock input
8-11	P23-P20	4-bit I / O CPU interface port 2
12	GND	Ground
13-16	P7 ₀ -P7 ₃	4-bit I / 0 port 7
17-20	P6 ₃ -P6 ₀	4-bit I / 0 port 6
24	V _{DD}	+5 V power supply

Pin Functions

P20-P23 (Port 2)

A 4-bit bidirectional port which contains the I/O port address and instruction code on a high to low transition of PROG. During a low to high transition of PROG, port 2 contains either the data for a selected output port if a write operation, or the data from a selected output port (before a low to high transition) if a read operation. Data on port 2 may be directly written, read, ANDed or ORed with previous data.

P40-P43 (Port 4)

A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

P50-P53 (Port 5)

A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

P60-P63 (Port 6)

A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

P70-P73 (Port 7)

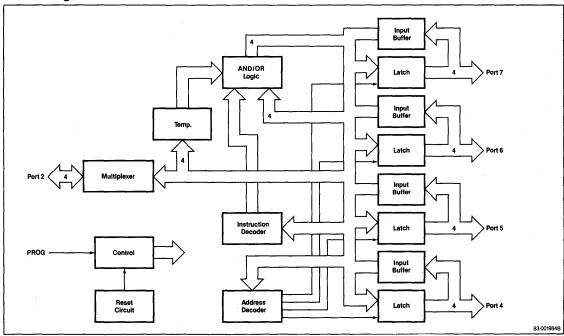
A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

CS (Chip Select)

A chip select input. A high on $\overline{\mbox{CS}}$ inhibits any change of output or internal status.

PROG (Clock Input)

A high to low transition on PROG indicates that the opcode and the addressed port information are available on port 2. A low to high transition indicates that data is available on port 2.


Ground

Ground.

VDD (Power Supply)

+5 V power supply input.

Block Diagram

Absolute Maximum Ratings

 $T_A = 25$ °C

- 0.5 V to +7 V(1)
-0.3 V to V _{DD} +0.3 V
$-0.3 \text{ V to V}_{DD} +0.3 \text{ V}$
-40°C to +85°C
-65°C to +150°C
1.0 W

Note:

(1) With respect to ground.

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = -40$ °C to +85 °C; $V_{DD} = +5 \text{ V} \pm 10\%$

			Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input voltage high	V _{IH}	V _{DD} – 2.0)	V _{DD}	٧		
Input voltage low	V _{IL}	-0.3		+0.8	٧		
Output voltage high (port 4-7)	V _{OH1}	V _{DD} -0.5	5		V	$I_{OH} = -240 \mu\text{A}$	
Output voltage high (port 2)	V _{OH2}	V _{DD} - 0.5	5		V	$I_{OH} = -100 \mu\text{A}$	
Output voltage low (port 4-7)	V _{OL1}			+0.45	٧	$I_{OL} = 5 \text{ mA}$, (Note 1)	
Output voltage low (port 7)	V _{OL2}			+1	V	$I_{0L} = +20 \text{mA}$	
Output voltage low (port 2)	V _{0L3}			+0.45	V	$I_{OL} = 0.6 \text{ mA}$	
Sum of all I _{OL} from 16 outputs	loL			80	mA	5 mA each pin	
Input leakage current (port 4-7)	l _{IL1}			±1	μΑ	$V_{IN} = V_{DD}$ to 0 V	
Input leakage current (port 2, CS, PROG)	I _{IL2}			±1	μΑ	$V_{IN} = V_{DD}$ to 0 V	
V _{DD} supply current	I _{DD1}		100	300	μΑ		
Power down supply current	I _{DD2}		1	10	μΑ		

Note

(1) Refer to graph of additional sink current drive.

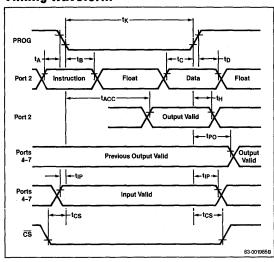
DC Characteristics (cont)

 $T_A = -40$ °C to +85 °C; $V_{DD} = +2.5$ V to +6 V

			Limits	3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage high	V _{IH}	0.7 V _{DD}		V _{DD}	٧	
Input voltage low	VIL	-0.3		+0.18 V _[DD V	
Output voltage high (port 4–7)	V _{OH1}	0.75 V _{DD}			V	$I_{OH} = -120 \mu\text{A}$
Output voltage high (port 2)	V _{OH2}	0.75 V _{DD}			٧	$I_{OH} = -50 \mu\text{A}$
Output voltage low (port 4-7)	V _{OL1}			+0.45	٧	$I_{OL} = +2.5 \text{mA}$
Output voltage low (port 7)	V _{OL2}			+1	٧	$I_{OL} = +7 \text{mA}$
Output voltage low (port 2)	V _{0L3}			+0.45	V	$I_{OL} = +0.3 \text{mA}$
Output current low (port 4-7)	loL			40	mA	+2.5 mA each pin
Input leakage current (port 4-7)	l _{IL1}			±1	μΑ	$V_{IN} = V_{DD}$ to 0 V
Input leakage current (port 2, CS, PROG)	lL2			±1	μΑ	$V_{IN} = V_{DD}$ to 0 V
V _{DD} supply current	I _{DD1}		100	300	μΑ	Operation mode, (Note 1)
Power down supply current	I _{DD2}		1	10	μΑ	Standby mode

Note:

(1) $I_{OH} = 0 \mu A$, PROG pulse cycle = $5 \mu s$ min.

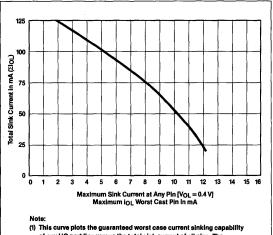


AC Characteristics

 $T_A = -40$ °C to +85°C, $V_{DD} = +5 \text{ V} \pm 10\%$

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Code valid before PROG	t _A	100			ns	80 pF load
Code valid after PROG	t _B	0			ns	20 pF load
Data valid before PROG	t _C	200			ns	80 pF load
Data valid after PROG	t _D	20			ns	20 pF load
Port 2 floating after PROG	t _H	0		150	ns	20 pF load
PROG negative pulse width	t _K	700			ns	
Ports 4–7 valid after PROG	t _{PO}			700	ns	100 pF load
Ports 4-7 valid before / after PROG	t _{IP}	100			ns	
Port 2 valid after PROG	t _{ACC}	90		650	ns	80 pF load
CS valid before / after PROG	t _{CS}	50			ns	

Timing Waveform


AC Characteristics

 $T_A = -40$ °C to +85 °C, $V_{DD} = +2.5$ V to +6 V

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Command input setup time to PROG ↓	t _A	300			ns	Port 2 (control, port, address); 80 pF load
Command input setup time after PROG ↓	t _B	0			ns	Port 2 (control, port, address); 20 pF load
Data input setup time to PROG ↑	t _C	600			ns	Port 2 (write mode); 80 pF load
Data input hold time after PROG ↑	t _D	80		.*	ns	Port 2 (write mode); 20 pF load
Data float delay time from PROG ↑	t _H	0		400	ns	Port 2 (read mode); 20 pF load
PROG pulse width	t _K	2			μS	
CS input setup time to PROG ↓ CS input hold time after PROG ↑	t _{CS}	200			ns	
Data output delay time from PROG ↑	t _{PO}			2	ns	Port 4-7; 100 pF load
Data input setup time to PROG ↓ Data input hold time after PROG ↑	t _{IP}	100			ns	Port 4-7
Data output delay time from PROG ↓	tacc			3.5	μS	Port 2; 80 pF load

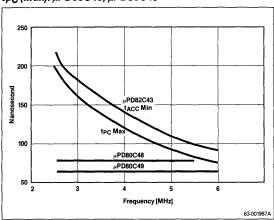


Figure 1. Current Sinking Capability (Note 1)

(f) This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pins. The $\mu PD82C43$ is capable of sinking 5 mA (for $V_{OL}=0.4$ V) through each of the 16 I/O lines simultaneously. The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded.

Figure 2. t_{ACC} (Min)/ μ PD82C43 vs t_{PC} (Max)/ μ PD80C48, μ PD80C49

Functional Description

The I/O capabilities of the μ PD8048/C48 family can be enhanced in four I/O port increments of 4 bits each using one or more μ PD82C43s. These additional I/O lines are addressed as ports 4–7. The following lists the operations which can be performed on ports 4–7.

- · Logical AND accumulator to port
- · Logical OR accumulator to port
- Transfer port to accumulator
- · Transfer accumulator to port

Port 2 (P2₀–P2₃) forms the 4-bit bus through which the μ PD82C43 communicates with the host processor. The PROG output from the μ PD8048/C48 family provides the necessary timing to the μ PD82C43. There are two 4-bit nibbles involved in each data transfer. The first nibble contains the opcode and port address followed by the second nibble containing the 4-bit data. Multiple μ PD82C43s can be used for additional I/O. The output lines from the μ PD8048/C48 family can be used to form the chip selects for additional μ PD82C43s.

Power On Initialization

Applying power to the $\mu PD82C43$ sets ports 4–7 to the high impedance mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high to low transition in order to exit from the power on mode. The power on sequence is initiated any time V_{DD} drops below 1V. Table 1 following shows how the first 4-bit nibble of a data transfer instruction is decoded.

Table 1. Port 2 Instruction Decoding

P23	P2 ₂	Instruction Code	P2 ₁	P2 ₀	Address Code
0	0	Read	0	0	Port 4
0	1	Write	0	1	Port 5
1	0	ORLD	1	0	Port 6
1	1	ANLD	1	1	Port 7

For example, a 0010 appearing on P2₃-P2₀, respectively, would result in a read of port 6.

Read Mode

There is one read mode in the μ PD82C43. A falling edge on the PROG pin latches the op code and port address from input port 2. The port address and read operation are then decoded, causing the appropriate outputs to be high impedance and the input buffers switched on. The rising edge of PROG terminates the read operation. The port (4, 5, 6, or 7) that was selected by the port address (P2₁–P2₀) is returned to the high impedance mode, and port 2 is switched to the input mode.

Generally, in the read mode a port will be an input and in the write mode it will be an output. If during program operation the μ PD82C43's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the $\mu PD82C43$. The MOVD P_p, A instruction from the $\mu PD8048/C48$ family writes the new data directly to the specified port (4, 5, 6,

or 7). The old data previously latched at that port is lost. The ORLD P_p , A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD P_p , A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.

The data remains latched at the selected port following the logical manipulation until new data is written to that port.

NMOS SYSTEM SUPPORT PRODUCTS

8

Section 8 — NMOS System Support Products

μPD8155/56	2048-Bit Static MOS RAM with I/O Ports and Timer	. 8-3
μPB8216/26	4-Bit Parallel Bidirectional Bus Drivers	8-11
μPD8237A	High-Performance Programmable DMA Controller	8-15
μPD8243/H	Input/Output Expander for μ PD8048 Family	8-33
μPD8251A/AF	Programmable Communications Interface (USART)	8-39
μPD8253	Programmable Interval Timer	8-57
μPD8255A	Programmable Peripheral Interface	8-69
μPD8257	Programmable DMA Controller	8-79
μPD8259A	Programmable Interrupt Controller	8-91
μPD8279	Programmable Keyboard/Display Interface	8-109
μPB8282/83	8-Bit Latches	8-117
μPB8284A	Clock Generator and Driver for	
	8086/8088 Microprocessors	8-121
μPB8286/87	8-Bit Bus Transceivers	8-127
μPB8288	CPU System Bus Controller	8-131
μPB8289	Bus Arbiter	

μ PD8155/56 2048-BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

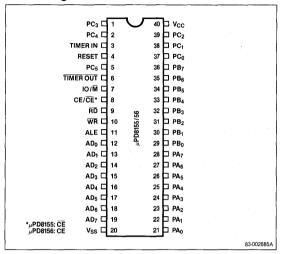
Description

The μ PD8155 and μ PD8156 are μ PD8085A family components having 256 \times 8-bit static RAM, 3 programmable I/O ports, and a programmable timer. They directly interface to the multiplexed μ PD8085A bus with no external logic. The μ PD8155 has an active low chip enable while the μ PD8156 is active high.

The μ PD8155 and μ PD8156 contain 2048 bits (256 \times 8) of static RAM. The 256 words of memory may be selected anywhere within the system's 64K memory space by coding the upper 8 bits of address from the μ PD8085A as a chip select.

The two general purpose 8-bit ports (PA and PB) may be programmed for input or output either in interrupt or status mode. The single 6-bit port (PC) may be used as a control for PA and PB or as a general purpose I/O port. The μ PD8155 and μ PD8156 are programmed for their system personalities by writing into their command/status (C/S) registers upon system initialization.

The timer is a single 14-bit down counter which is programmable for 4 modes of output operation; see table 3.


Features

- ☐ 256 × 8-bit static RAM
- ☐ Two programmable 8-bit I/O ports
- ☐ One programmable 6-bit I/O port
- □ Single +5 V \pm 10% power supply
- Directly interfaces to the μ PD8085A and μ PD8085A-2
- ☐ Programmable 14-bit binary counter/timer

Ordering Information

Part Number	Package Type	Max Frequency of Operation	
μPD8155C / 55HC	40-pin plastic DIP	3 MHz	
μPD8155C-2 / 55HC-2	40-pin plastic DIP	5 MHz	
μPD8156C / 56HC	40-pin plastic DIP	3 MHz	
μPD8156C-2 / 56HC-2	40-pin plastic DIP	5 MHz	

Pin Configuration

Pin Identification

No.	Symbol	Function	
1, 2, 5, 37-39	PC ₀ -PC ₅	6-bit I / 0 port or control lines	
3	TIMER IN	Timer clock input	
4	RESET	Reset input	
6	TIMER OUT	Timer counter output	
7	10 / M	I/O or memory select input	
8	CE/CE	Chip enable input	
9	RD	Read strobe input	
10	WR	Write strobe input	
11	ALE	Address low enable input	
12-19	AD ₀ -AD ₇	Low address / data bus I / 0	
20	V _{SS}	Ground	
21-28	PA ₀ -PA ₇	8-bit I / 0 port A	
29-36	PB ₀ -PB ₇	8-bit I / 0 port B	
40	V _{CC}	+5 V power supply	

Pin Functions

AD₀-AD₇ (Low Address/Data Bus)

Three-state address/data (AD) lines that interface with the CPU lower 8-bit address/data bus. The 8-bit address is loaded into the internal address latch on the falling edge of ALE. The 8-bit data is then written to or read from the chip, based on WR and RD strobe inputs.

PAn-PA7 (Port A)

8-bit general purpose I/O port. Data direction is selected by programming the command status register.

PB₀-PB₇ (Port B)

8-bit general purpose I/O port. Data direction is selected by programming the command status register.

PC₀-PC₅ (Port C)

6-bit general purpose I/O port or control signals for PA and PB. Port C function is selected by programming the command status register.

ALE (Address Low Enable)

This input control signal latches the address on the AD_0 - AD_7 lines and the states of CE/CE and IO/M into the chip on the falling edge of ALE.

CE/CE (Chip Enable)

The chip enable input is active low for μ PD8155 and active high for μ PD8156.

IO/M (I/O or Memory Select)

This input selects either internal RAM memory if low or I/O and command status registers if high.

RESET (Reset)

The reset input from $\mu PD8085A$ initializes ports A, B, and C to the input mode.

TIMER IN (Timer Clock In)

Clock input to the 14-bit binary down counter.

TIMER OUT (Timer Counter Output)

The timer output is programmable for 4 output waveform modes. The selected output waveform can be a single pulse or a continuous pulse train, or it can be a single square wave or a continuous square wave.

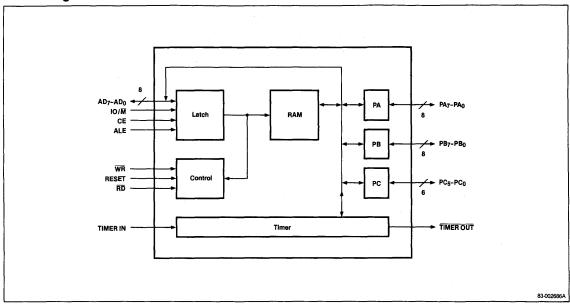
RD (Read Strobe)

The $\overline{\text{RD}}$ input will strobe the addressed RAM data onto the AD bus if the IO/ $\overline{\text{M}}$ pin is low; otherwise the content of the selected I/O port or command status registers will be strobed onto the AD bus.

WR (Write Strobe)

The WR input will strobe the available data on the AD bus into addressed RAM location or I/O ports and command status registers depending on IO/M.

V_{CC} (Power Supply)


+5 V power supply input.

VSS (Ground)

Ground.

Block Diagram

Absolute Maximum Ratings

 $T_A = 25$ °C

'A		
Power supply voltage, V _{CC}	-0.5 V to +7 V	
Operating temperature, T _{OPT}	0°C to +70°C	
Storage temperature, T _{STG}	-65°C to +150°C	
Power dissipation, P _D	1.5 W	

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

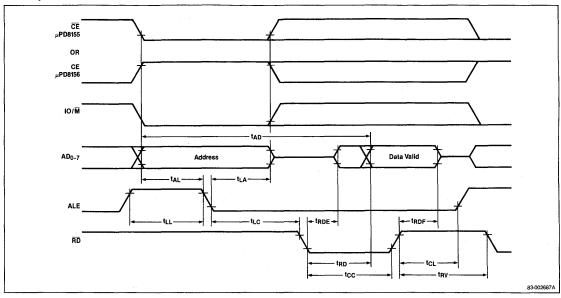
 $T_A = 0$ °C to +70 °C, $V_{CC} = +5 V \pm 10$ %

		Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
input voltage low	V _{IL}	0.5		0.8	٧	
Input voltage high	V _{IH}	2.0		V _{CC} +0.5	٧	
Output voltage low	V _{OL}			0.45	٧	$I_{OL} = 2.0 \text{mA}$
Output voltage high	V _{OH}	2.4	_		٧	$I_{OH} = 400 \mu\text{A}$
Input leakage current	lu			±10	μΑ	$V_1 = V_{CC}$ to 0 V
Output leakage current	I _{LO}			±10	μΑ	0.45 V ≤ V _{OUT} ≤ V _{CC}
Power supply current (V _{CC})	Icc			180	mA	8155 / 56, 8155-2 / 56-2
				125	mA	8155H / 56H, 8155H-2 / 56H-2
	5 I _{IL} (CE)			+100	μΑ	V _I =V _{CC} to 0 V
enable _µ PD815 leakage	6			-100	μΑ	$V_1 = V_{CC}$ to 0 V

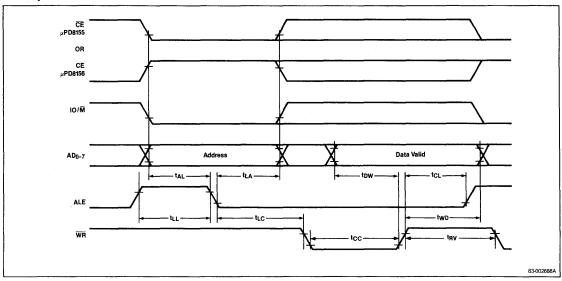
AC Characteristics

 $T_A = 0$ °C to +70°C, $V_{CC} = 5 V \pm 10\%$

			ı	imits.			
	_	μPD8155/5	6/55H/56H	μ PD 8155-2 <i>l</i> 56	-2/55H-2/56H-2	•	Test Conditions(1)
Parameter	Symbol	Min	Max	Min	Max	Unit	
Address to latch setup time	t _{AL}	50		30		ns	
Address hold time after latch	t _{LA}	80		30		ns	
Latch to READ / WRITE control	t _{LC}	100		40		ns	-
Valid data out delay from READ control	t _{RD}		170		140	ns	
Address stable to data out valid	t _{AD}		400		330	ns	
atch enable width	t _{LL}	100		70		ns	
Data bus float after READ	t _{RDF}	0	100	0	80	ns	
READ / WRITE control to latch enable	t _{CL}	20		10		ns	
READ / WRITE control width	t _{CC} .	250		200		ns	
Data in to WRITE setup time	t _{DW}	150		100		ns	
Data in hold time after WRITE	t _{WD}	0		0		ns	
Recovery time between controls	t _{RV}	300		200		ns	
VRITE to port output	t _{WP}		400		300	ns	
ort input setup time	t _{PR}	70		50		ns	
Port input hold time	t _{RP}	50		10		ns	
Strobe to buffer full	t _{SBF}	· · · · · · · · · · · · · · · · · · ·	400		300	ns	
Strobe width	t _{SS}	200		150		ns	
READ to buffer empty	t _{RBE}		400		300	ns	
Strobe to INTR on	t _{SI}		400		300	ns	
READ to INTR off	t _{RDI}		400		300	ns	
Port setup time to strobe	tpss	50		0		ns	
Port hold time after strobe	t _{PHS}	120		100	e sa a	ns	
Strobe to buffer empty	t _{SBE}		400		300	ns	
NRITE to buffer full	t _{WBE}		400		300	ns	
WRITE to INTR off	t _{WI}	****	400		300	ns	
FIMER IN to TIMER OUT low	t _{TL}		400		300	ns	
IMER IN to TIMER OUT high	t _{TH}		400		300	ns	
Data bus enable from READ control	t _{RDE}	10	·	10	·····	ns	
Clock TIMER IN	t _{CYC}	320	· · · · · · · · · · · · · · · · · · ·	200		ns	
CLK rise and fall time	t _r , t _f		30	L COMPANY	30	ns	
CLK pulse width	t ₁	80		40		ns	
	t ₂	120		70		ns	

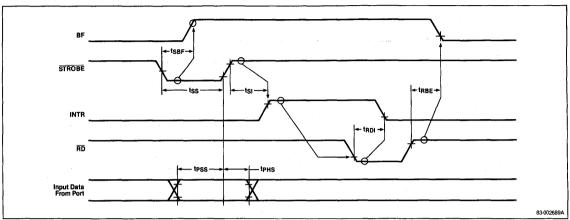

Note:

(1) 150 pF load

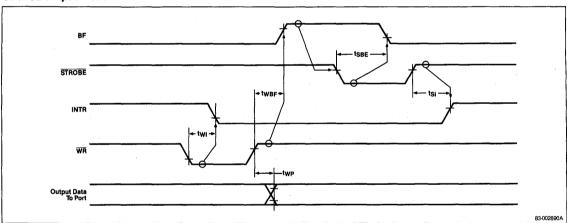


Timing Waveforms

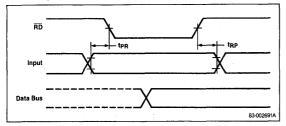
Read Cycle



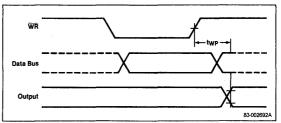
Write Cycle

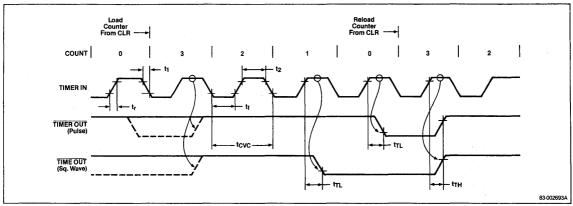


Strobed Input Mode



Strobed Output Mode




Basic Input Mode

Basic Output Mode

Time Output

Functional Description

Command Status Register

The command status register is an 8-bit register which must be programmed before the μ PD8155/56 can perform any useful functions. Its purpose is to define the mode of operation of the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXX000 (X = don't care) with a specific bit pattern. Reading of the command status register can be accomplished by performing an I/O read operation at address XXXXX000. The pattern returned will be a 7-bit status report of PA, PB and the timer. The bit patterns for the command status register read and write are shown in tables 1 and 2.

Table 1. Command Status Write

TM2	TM1	IEB	IEA	PC ₂	PC ₁	РВ	PA
-----	-----	-----	-----	-----------------	-----------------	----	----

= Define port B/A as in or out(1)

where:

PB/PA

TM2-TM1 = Define timer mode
IEB = Enable port B interrupt
IEA = Enable port A interrupt
PC2-PC1 = Define port C mode

The timer mode of operation is programmed as follows during command status write:

TM2 TM1 Timer Mode

TM2	TM1	Timer Mode
0	0	Don't affect timer operation
0	1	Stop timer counting
1	0	Stop counting after TC
1	1	Start timer operation

Interrupt enable status is programmed as follows:

EB/IEA	Interrupt Enable Port B/A
0	No
 1	Yes

Port C may be placed in four possible (Alt) modes of operation as outlined below. The modes are selected during command status write as follows:

PC ₂	PC ₁	Port C Mode
0.	0	Alt 1
0	1	Alt 3
1	0	Alt 4
1	1	Alt 2

The function of each pin of port C in the four possible modes is outlined as follows:

Pin	Alt 1	Alt 2	Alt 3(2)	Alt 4(2)
PC ₀	In	Out	A INTR	A INTR
PC ₁	- In	Out	A BF	A BF
PC ₂	· In	Out	A STB	A STB
PC ₃	· In	Out	Out	B INTR
PC ₄	in .	Out	Out	B BF
PC ₅	In	Out	Out	B STB

Note:

- (1) PB/PA sets port B/A mode: 0 = input; 1 = output
- (2) In Alt 3 and Alt 4 modes, the control signals are initialized as follows:

Control	Input	Output
STB (Input strobe)	Input control	Output control
INTR (Interrupt request)	Low	High
BF (Buffer full)	Low	Low

Table 2. Command Status Read

TI INTI	B	INTR	INTE	A	INTR.
	BF	B	A	BF	A

where:

ΤI

= Indicates a timer interrupt. This bit is set when terminal count is reached. It is reset when starting a new count, or a hardware reset occurs, or after reading the CS register.

INTE B/A B/A BF

- = Port B/A interrupt. High = active.
- = Indicates whether port B/A is full if in input mode or empty if in output mode. High = active.

INTR B/A = Port B/A interrupt request. High = active.

The programming address summary for the status, ports, and timer are as follows:

I/O Address	Number of Bits	Function
XXXXX000	8	Command status
XXXXX001	8	PA
XXXXX010	8	PB
XXXXX011	- 6	PC
XXXXX100	8	Timer low
XXXXX101	8	Timer high

Timer Operation

The internal timer is a 14-bit binary down counter capable of operating in 4 output modes which are programmable at any time during operation. Any TTL clock meeting timer in requirements (see AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or may be used as I/O control. The output modes are defined in table 3 and programmed as the two MSBs of the higher order byte of the timer count register.

Table 3. Timer Output Modes

M ₂	M ₁	Operation
0	0	Single square wave cycle from start to terminal count
0	1	Continuous square wave (period = count length)
1	0	Single pulse at terminal count
1	1	Continuous single pulse occurring at terminal count

Programming the timer requries two words to be written to the $\mu\text{PD}8155/56$ at I/O address XXXXX100 and XXXXX101 for the low and high order bytes, respectively. Valid count length must be between 0002H and 3FFFH. The bit assignments for the high and low programming words of the timer count register are as follows:

Word		Timer Count Register							I/O Address
High byte	M ₂	M ₁	T ₁₃	T ₁₂	T ₁₁	T ₁₀	T ₉	T ₈	XXXXX101
Low byte	T ₇	T ₆	T ₅	T ₄	T ₃	T ₂	T ₁		XXXXX100

The control of the timer is performed by TM2 and TM1 of the command status word.

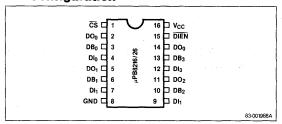
Note that counting will be stopped by a hardware reset. A start command must be issued via the command status register to begin counting. A new mode and/or count length can be loaded while the counter is counting, but will not be used until a start command is issued.

When an external nonsynchronous event is used as the timer input, the signal must first be synchronized to the system clock. A D-type flip-flop can be used for this purpose.

μPB8216/26 4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

Description

The μ PB8216 and μ PB8226 are 4-bit parallel bidirectional bus drivers specifically designed to buffer microcomputer system components. All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high 3.65 volts (V_{OH}); for high-capacitance terminated bus structures, the DB outputs provide a high 55 mA (I_{OL}) capability. The noninverting μ PB8216 and the inverting μ PB8226 bus drivers are available to meet a wide variety of applications for buffering in microcomputer systems.


Features

- ☐ Low input load current; 0.25 mA maximum
- High output drive capability for driving system data bus
- ☐ 3.65 V output high voltage for direct interface to CPLI
- ☐ Three-state outputs
- ☐ Reduces system package count

Ordering Information

Part Number	Package Type
μPB8216C	16-pin plastic DIP
μPB8226C	16-pin plastic DIP

Pin Configuration

Pin Identification

No.	Symbol	Function	
1	ĈŜ	Chip select input	
2	DO ₀	Data output, bit 0	
3	DB ₀	Data bus, bit 0	
4	DIO	Data input, bit 0	
5	DO ₁	Data output, bit 1	
6	DB ₁	Data bus, bit 1	
7	DI ₁	Data input, bit 1	
8	GND	Ground	
9	DI ₂	Data input, bit 2	
10	DB ₂	Data bus, bit 2	
11	DO ₂	Data output, bit 2	
12	DI ₃	Data input, bit 3	
13	DB ₃	Data bus, bit 3	*
14	D03	Data output, bit 3	
15	DIEN	Data in enable	
16	V _{CC}	+5 V power supply	

Pin Functions

DB₀-DB₃ (Bidirectional Data Bus)

Three-state data lines that interface with the system data bus. Data direction and high impedance output are functions of the CS and DIEN control signals.

DI₀-DI₃ (Data Input)

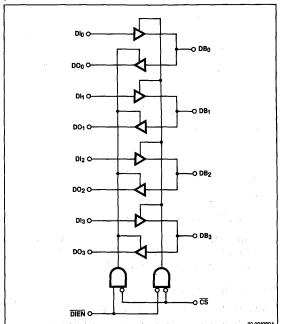
The four data input lines receive data from the CPU and make it available to the system data bus when both CS and DIEN are active low.

DO₀-DO₃ (Data Output)

The four data output lines make data available to the CPU from the system data bus when $\overline{\text{CS}}$ is active low and $\overline{\text{DIEN}}$ is active high.

CS (Chip Select)

Chip select enables the chip's I/O capability when active low. When \overline{CS} is high, the output drivers go to a high impedance state.

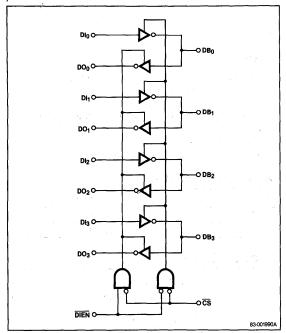


DIEN (Data In Enable)

DIEN is the data flow direction control signal. When low, data on the chip's input lines (DI₀-DI₃) from the CPU is made available to the system data bus (DB₀-DB₃). When high, data on the chip's data bus lines (DB₀-DB₃) is output to the CPU (providing \overline{CS} is active low enabled).

Block Diagrams

μ**PB8216**


V_{CC} (Power Supply)

+5 V power supply input.

GND (Ground)

Ground.

μ**PB8226**

Functional Description

Microprocessors like the μ PD8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multiboard system.

Bidirectional Driver

Each buffered line of the µPB8216/26 4-bit driver consists of two separate buffers. They are three-state in nature to achieve direct bus interface and bidirectional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB). This is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL-compatible and it has a high drive (55 mA). For maximum flexibility on the other side of the driver, the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bidirectional bus such as the 8080A data bus. The DO outputs on this side of the driver have a special high voltage output drive capability (3.65 V) so that direct interface to the 8080A processor is achieved with a maximum noise level of 650 mV.

Control Gating CS, DIEN

The $\overline{\text{CS}}$ input is used for device selection. When $\overline{\text{CS}}$ is high, the output drivers are all forced to their high impedance state. When it is low, the device is selected (enabled) and the data flow direction is determined by the $\overline{\text{DIEN}}$ input.

The DIEN input controls the data flow direction (see block diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two-gate circuit.

The μ PB8216/26 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.

Absolute Maximum Ratings

 $T_{\Delta} = 25$ °C

Power supply voltage, V _{CC}	-0.5 V to +7.0 V
Input voltage, V _I	-1.0 V to +5.5 V
Output voltage, V ₀	-1.0 V to +5.5 V
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Output current, I ₀	125 mA

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance (Note 1)

 $T_A = 25$ °C, $V_{CC} = 5$ V

			Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input capacitance	CI			8	pF	f=1.0 MHz	
Output capacitance	C ₀₁			10(2)	pF	$V_{BIAS} = 2.5 V$	
Output capacitance	C ₀₂			18(3)	pF		

Note

- (1) This parameter is not 100% tested.
- (2) DO output.
- (3) DB output.



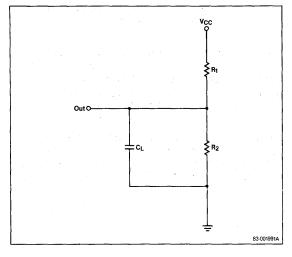
DC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = +5 V \pm 5\%$

			Limits			Test	
Parameter	Symbol	Min Typ		Max	Unit	Conditions	
Input voltage low	V _{IL}			0.95	V		
Input voltage high	VIH	2.0			٧		
Output voltage low	V _{OL1}			0.48	٧	DO outputs; I _{OL} =15 mA	
				0.48	٧	DB outputs I _{OL} = 25 mA	
	V _{0L2}		_	0.7	V	8216; DB outputs; I _{OL} = 55 mA	
				0.7	٧	8226; DB outputs $I_{OL} = 50 \text{ mA}$	
Output voltage high	V _{OH1}	3.65			V	DO outputs; I _{OH} = -1mA	
	V _{OH2}	2.4			٧	DB outputs; I _{OH} = - 10 mA	
Input forward voltage clamp	V _C			-1.0	V	$I_C = -5 \text{mA}$	
Input load current	I _{F1}			-0.5	mA	(DIEN, CS); V _F = 0.45 V	
	I _{F2}			-0.25	mA	(All other inputs); V _F =0.45 V	
Input leakage current	I _{R1}			20	μA	(DIEN, CS); V _R =5.25 V	
	I _{R2}			10	μΑ	(DI inputs); V _R =5.25 V	
Output leakage current (3-state)	10			20	μΑ	D0 outputs; V ₀ =0.45/5.25 V	
				100	μΑ	DB outputs	
Output short circuit current	los	- 15		65	mA	DO outputs; V ₀ = 0 V	
		-30		- 120	mA	DB outputs V _{CC} =5.0 V	
Power supply	Icc			130	mA	8216	
current				120	mA	8226	

Timing Waveform

AC Characteristics


 $T_A = 0$ °C to +70°C, $V_{CC} = +5 V \pm 5\%$ (Note 1)

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input to output delay D0 outputs	t _{PD1}			25	ns :	$C_L = 30 \text{ pF},$ $R_1 = 300 \Omega,$ $R_2 = 600 \Omega,$ (Note 4)
Input to output delay DB outputs	t _{PD2}			30	ns	8216; $C_L = 300 pF$, $R_1 = 90 \Omega$, $R_2 = 180 \Omega$, (Note 4)
				25	ns	8226; $C_L = 300 \text{ pF}$, $R_1 = 90 \Omega$, $R_2 = 180 \Omega$, (Note 4)
Output enable	t _E			65	ns	8216; (Notes 2 & 4)
time				54	ns	8226; (Notes 2 & 4)
Output disable time	t _D			35	ns	(Notes 3 & 4)

Note:

- (1) Typical values are for $T_A = 25$ °C, $V_{CC} = +5.0$ V.
- (2) DO outputs, $C_L = 30 \, pF$, $R_1 = 300/10 \, k\Omega$, $R_2 = 600/1 \, k\Omega$ DB outputs, $C_L = 300 \, pF$, $R_1 = 90/10 \, k\Omega$, $R_2 = 180/1 \, k\Omega$.
- (3) DO outputs, $C_L = 5 \, pF$, $R_1 = 300/10 \, k\Omega$, $R_2 = 600/1 \, k\Omega$ DB outputs, $C_L = 5 \, pF$, $R_1 = 90/10 \, k\Omega$, $R_2 = 180/1 \, k\Omega$.
- (4) Input pulse amplitude: 2.5 V input rise and fall times of 5 ns between 1 and 2 V. Output loading is 5 mA and 10 pF. Speed measurements are made at 1.5 V levels.

Test Load Circuit

μPD8237A HIGH-PERFORMANCE PROGRAMMABLE DMA CONTROLLER

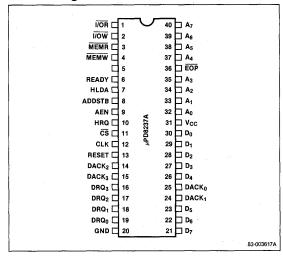
Description

The μ PD8237A high performance DMA controller is a peripheral interface circuit for microprocessor systems. It is designed to improve system performance by allowing external devices to directly transfer information to or from the system memory. Memory-to-memory transfer capability is also provided. The μ PD8237A offers a wide variety of programmable control features to enhance data throughput and allow dynamic reconfiguration under program control.

The μ PD8237A is designed to be used with an external 8-bit address register such as the 8282. It contains four independent channels and may be expanded to any number of channels by cascading additional controller chips.

The three basic transfer modes allow the user to program the types of DMA service. Each channel can be individually programmed to autoinitialize to its original condition following an end of process (EOP).

Each channel has a full 64K-byte address and word count capability.


Features

- $\hfill\square$ Memory-to-memory transfers
- ☐ Memory block initialization☐ Address increment or decrement
- ☐ Four independent DMA channels
- ☐ Multiple transfer modes: block, demand,
- single word, cascade
- □ Independent autoinitialization of all channels
 □ Enable/disable control of individual DMA requests
- ☐ Independent polarity control of DREQ and DACK signals
- ☐ End of process input for terminating transfers
- ☐ Software DMA requests
 ☐ High performance: transfers up to 1.6 Mbs
- ☐ Directly expandable to any number of channels

Ordering Information

Part Number	Package Type	Max Frequency of Operation	
μPD8237AC-5	40-pin plastic DIP	5 MHz	

Pin Configuration

Pin Identification

No.	Symbol	Function					
1	I/OR	1/0 read control signal					
2	i/0W	I/O write control signal					
3	MEMR	Memory read output					
4	MEMW	Memory write output					
5	_	Fixed, high level input					
6	READY	Ready input					
7	HLDA	Hold acknowledge input					
8	ADDSTB	Address strobe output					
9	AEN	Address enable output					
10	HRQ	Hold request output					
11	CS	Chip select input					
12	CLK	Clock input					
13	RESET	Reset input					
14, 15 24, 25	DACK ₂ , DACK ₃ DACK ₁ , DACK ₀	DMA acknowledge output					
16-19	DRQ3-DRQ0	DMA request input					
20	GND	Ground					
21-23, 26-30	D ₇ -D ₅ D ₄ -D ₀	I/O data bus					
31	V _{CC}	Power supply					
32-35	A ₀ -A ₃	I/O address bus					
36	EOP	I/O end of process					
37-40	A ₄ -A ₇	Output address bus					

Pin Functions

D₀-D₇ (I/O Data Bus)

During an I/O read, the CPU enables these lines as outputs, allowing it to read an address register, a word count register, or the status or temporary register. During an I/O write, these lines are enabled as inputs, allowing the CPU to program the μ PD8237A control registers. During DMA cycles, the eight MSBs of the address are output to the data bus to be strobed to an external latch via ADDSTB.

A₄-A₇ (Output Address Bus)

These lines, active only during DMA service, are outputs that provide the four MSBs of the address.

A₀-A₃ (I/O Address Bus)

During DMA active states, these lines are outputs that provide the 4 LSBs of the output address bus. During DMA idle states, these lines are inputs, allowing the CPU to load or examine control registers.

DRQ₀-DRQ₃ (DMA Request Input)

These are asynchronous channel request inputs used by peripherals to request DMA service. In a fixed priority scheme, DRQ₃ has the lowest. The polarity of these lines is programmable; however, reset initializes them to active high.

HLDA (Hold Acknowledge)

Indicates that the CPU has relinquished control of the system buses.

HRQ (Hold Request)

Requests control of the system bus. The μ PD8237A issues this signal in response to software requests or DRQ inputs from peripherals.

DACK₀-DACK₃ (DMA Acknowledge Output)

These lines indicate an active channel. They are sometimes used to select a peripheral. Only one DACK may be active at any time. All DACK lines are inactive unless DMA has control of the bus. The polarity of these lines is programmable; however, reset initializes them to active low.

EOP (End of Process)

 $\overline{\text{EOP}}$ signals that DMA service has been completed. When the word count of a channel becomes zero, the μPD8237A pulses $\overline{\text{EOP}}$ low to notify the peripheral that DMA service is complete. The peripheral may pull $\overline{\text{EOP}}$ low to prematurely end DMA service. Internal or external receipt of $\overline{\text{EOP}}$ causes the currently active channel to end service, set its TC bit in the status register, and reset its request bit. If the channel is programmed for autoinitialization, the current registers are updated from the base registers. Otherwise, the channel's mask bit is set and the contents of the register are unaltered.

EOP is output when TC for channel 1 occurs during memory-to-memory transfers. EOP applies to the channel with an active DACK. When DACK₀-DACK₃ are inactive, external EOPs are ignored.

Use of an external pull-up resistor of 3.3 k Ω or 4.7 k Ω is recommended. This pin (EOP) cannot sink the current passed by a 1 k Ω or 4.7 k Ω pull-up.

RESET

Clears the command, status, request, and temporary registers, the first/last flip flop, and sets the mask register. The µPD8237A is in idle state after a reset.

CS (Chip Select)

The CPU uses $\overline{\text{CS}}$ to select the $\mu\text{PD8237A}$ as an I/O device during an I/O read or write by the CPU. This provides CPU communication on the data bus. $\overline{\text{CS}}$ may be held low during multiple transfers to or from the $\mu\text{PD8237A}$ as long as $\overline{\text{I/OR}}$ or $\overline{\text{I/OW}}$ is toggled following each transfer.

READY

This signal can extend memory read and write pulses for slow memories or I/O peripherals.

CLK (Clock)

Controls internal operations and data transfer rate.

AEN (Address Enable)

This signal allows the external latch to output the upper address byte by disabling the system bus during DMA cycles. Use HLDA and AEN to deselect I/O peripherals that may be erroneously accessed during DMA transfers. The μ PD8237A deselects itself during DMA transfers.

ADDSTB (Address Strobe)

This signal strobes the upper address byte form D_0 - D_7 into an external latch.

MEMR (Memory Read)

This signal accesses data from a specified memory location during memory-to-peripheral or memory-to-memory transfers.

MEMW (Memory Write)

This signal writes data to a specified memory location during peripheral-to-memory or memory-to memory transfers.

I/OR (I/O Read)

In the idle state, this signal is an input control line used by the CPU to read control registers. In the active state, the $\mu\text{PD8237A}$ uses $\overline{\text{I/OR}}$ as an output control signal to access data from a peripheral during a DMA write.

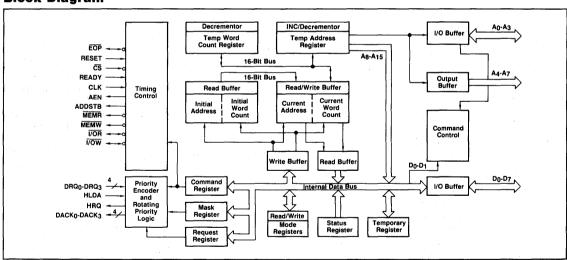
I/OW (I/O Write)

In the idle state, the CPU uses $\overline{I/OW}$, as an input control signal to load information to the $\mu PD8237A$. In the active state, the $\mu PD8237A$ uses $\overline{I/OW}$ as an output control signal to load data to a peripheral during a DMA read.

The rising edge of \overline{WR} must follow each data byte transfer in order for the CPU to write to the μ PD8237A. Holding $\overline{I/OW}$ low while toggling \overline{CS} does not produce the same effect.

Pin 5

Pin 5 is always tied high.


Vcc

Power supply.

GND

Ground.

Block Diagram

Functional Description

The μ PD8237A has three basic control logic blocks, as shown in the block diagram. The command control block decodes commands issued by the CPU to the μ PD8237A before DMA requests are serviced. It also decodes the mode control word of each channel. The timing control block generates the external control signals and the internal timing. The priority encoder block settles priority contentions among channels simultaneously requesting service.

DMA Operation

The μ PD8237A operates in two states: idle and active. Each of these is made up of several smaller states equal to one clock cycle. The inactive state, S1, is entered when there are no pending DMA requests. The controller is inactive in S1, but the CPU may program it. S0 is the initial state for DMA service; the μ PD8237A requests a hold, but the CPU has not acknowledged. Transfers may begin upon acknowledgement from the CPU. The normal working states of DMA service are S1, S2, S3, and S4. If more time is needed for a transfer, a wait state, SW, can be inserted using the READY line.

A memory-to-memory transfer requires read-frommemory and write-to-memory operations. The states S11, S12, S13, and S14 provide the read-from operation. S21, S22, S23, and S24 provide the write-to part of the transfer. The byte is stored in the temporary register between operations.

Idle State

When there are no pending service requests, the $\mu\text{PD8237A}$ is in the idle state; more specifically, in S1, DRQ lines and $\overline{\text{CS}}$ are sampled to determine requests for DMA service and CPU attempts to inspect or modify the registers of the $\mu\text{PD8237A}$, respectively. The CPU can read or write to the registers when $\overline{\text{CS}}$ and HLDA are low. $A_0\text{-}A_3$ are used as inputs to the $\mu\text{PD8237A}$ and select the registers affected. The $\overline{I/\text{OR}}$ and $\overline{I/\text{OW}}$ lines select and time the reads and writes. An internal flip-flop generates an additional address bit which determines the upper or lower byte of the address and word count registers. This flip-flop can be reset by master clear, reset, or a software command.

When $\overline{\text{CS}}$ and HLDA are low (program phase), the $\mu\text{PD8237A}$ can execute special software commands. When $\overline{\text{CS}}$ and $\overline{\text{I/OW}}$ are active, the commands are decoded as addresses and do not use the data bus.

Active State

When a channel requests service while the μ PD8237A is in idle state, the μ PD8237A outputs an HRQ to the CPU and enters the active state. DMA service takes place in the active state, in one of the four modes described below.

DRQ is held active only until the corresponding DACK goes active when a single transfer is performed. If DRQ is held active for a longer period, HRQ will become inactive after each transfer, become active again, and a one-byte transfer will be made after each rising edge of HLDA. This assures a full machine cycle between DMA transfers in 8080A/8085A systems. Timing between the µPD8237A and other bus control protocols depends on the CPU being used.

Block Transfer Mode

In this mode, the μ PD8237A makes transfers until it encounters a TC or an external EOP. Hold DRQ active only until DACK goes active. The channel will autoinitialize at the end of the DMA service if it has been programmed to do so.

Demand Transfer Mode

In this mode, the $\mu PD8237A$ makes transfers until it encounters a TC or an external \overline{EOP} , or until DRQ becomes inactive. This allows the device requesting service to stop the transfers by sending DRQ inactive. The device can resume service by making DRQ active. The current address and current word count registers may be examined during the time between services when the CPU is allowed to operate. Autoinitialization can occur only after a TC or \overline{EOP} at the end of the DMA service. After an autoinitialization, there must be an active-going DRQ edge to begin new DMA service.

Cascade Mode

In this mode, you can expand your system by cascading several $\mu PD8237As$ together. Connect the HLDA and HRQ signals from the additional $\mu PD8237As$ to the DRQ and DACK signals of a channel of the initial $\mu PD8237A$. This scheme allows the additional devices to send the DMA requests through the priority resolution circuitry of the preceding device, preserving the priority chain and forcing the device to wait its turn to acknowledge requests. The cascade channel in the initial device does not output any address or control signals because its only function is that of assigning priorities. The $\mu PD8237A$ responds to DRQ with DACK, but all outputs except HRQ are disabled.

Figure 1 shows two $\mu PD8237As$ cascaded into two channels of another one, forming a two-level DMA system. You could add more devices at the second level by using the leftover channels of the first level; likewise, you could add more devices to form a third level by cascading into the channels of the second level.

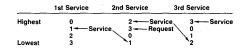
Transfers

There are three types of transfers that can be performed by the three active transfer modes: read, write, and verify. Read transfers activate $\overline{\text{MEMR}}$ and $\overline{\text{I/OW}}$ to move memory data to an I/O device. Write transfers activate $\overline{\text{I/OR}}$ and $\overline{\text{MEMW}}$ to move data from an I/O device to memory. Verify transfers are not really transfers; the μ PD8237A goes through the motions of a transfer but the memory and I/O lines are not active.

Figure 1. Two-Level DMA System

Memory-to-Memory Transfers

Use block transfer mode for memory-to-memory transfers. Mask out channels 0 and 1, and initialize the channel 0 word count to the same value as channel 1. Setting bit C0 of the command register to 1 makes channels 0 and 1 operate as memory-tomemory transfer channels. Channel 0 is the source address, channel 1 is the destination address, and the channel 1 word count is used. Initiate the memory-tomemory transfer by setting a DMA request for channel 0. You can write a single source word to a block of memory when channel 0 is programmed for a fixed source address. The µPD8237A responds to external EOP signals during these transfers, but no DACK outputs are active. The EOP input may be used by data comparators doing block searches to end service when a match is found.


Autoinitialization

A channel may be set for autoinitialize by programming a bit in the mode register. Autoinitialize restores the original values of the current address and current word count registers from the initial address and initial word count registers of that channel. The CPU loads the current and initial registers simultaneously and they are unchanged through DMA service. EOP does not set the mask bit when the channel is in autoinitialize. The channel can repeat its service following autoinitialize without CPU intervention.

Priority Resolution

Two software-selectable priority resolution schemes are available on the μ PD8237A: fixed priority and rotating priority. In the fixed priority scheme, priority is assigned by the value of the channel number. Channel 3 is the lowest priority and channel 0 is the highest priority.

In the rotating priority scheme, the channel that was just serviced assumes the lowest priority and the other channels move up accordingly. This guarantees that a device requesting service can be adcknowledged after no more than three other devices have been serviced, preventing any channel from monopolizing the system.

The highest priority channel is selected on each active-going HLDA edge. Once service to a channel begins, it cannot be interrupted by a request from a higher priority channel. A higher priority channel gets control only when the lower priority channel releases HRQ. The CPU gets bus control when control passes from channel to channel, ensuring that a rising HLDA edge can be generated to select the new highest priority request.

Transfer Timing

If, you can cut transfer timing, by compressing the transfer time to two clock periods. Since state 3 (S3) extends the access time for the read pulse, you can eliminate S3, making the width of the read pulse equal to the write pulse. A transfer is then made up of S2 to change the address and S4 to perform the read or write. When the address lines A_8 - A_{15} need to be updated, S1 states occur.

Generating Addresses

The eight MSBs of the address are multiplexed on the data lines. These bits are output to an external latch during S1, after which they can be placed on the address bus. The falling edge of ADDSTB loads the bits from the data lines to the latch. AEN places the bits on the address bus. The eight LSBs of the address are directly output on lines $A_0 \cdot A_7$ to the address bus.

Sequential addresses are generated during block and demand transfer mode operations because they include several transfers. Often, data in the external address latch does not change; it changes only when a carry or borrow from A_7 to A_8 occurs in the sequence of addresses. S1 states are executed only when $A_8\text{-}A_{15}$ need to be updated. In the course of lengthy transfers, S1 states may be executed only once every 256 transfers.

Registers

Table 1 summarizes the registers of the μ PD8237A.

Table 1. Register Summary

No.	Bits
4	16
4	16
4	16
4	16
1	8
4	6
1	4
1	4
1	8
1	8
1	16
1	16
	4 4 4 4 1

Current Address Register. There is a current address register for each channel. This register holds the address used for DMA transfers; the address is incremented or decremented after each transfer and the intermediate values are stored here during the transfer. The CPU writes or reads this register in 8-bit bytes. An autoinitialize restores this register to its initial value.

Current Word Count Register. There is a current word count register for each channel. Program this register with the value of the number of words to be transferred, minus one. The word count is decremented after each transfer and intermediate values are stored in this register during the transfer. A TC is generated when the word count is zero. The CPU writes or reads this register in 8-bit bytes during program phase. An autoinitialize restores this register to its initial value. After an internally generated EOP, the contents of this register with be FFFFH.

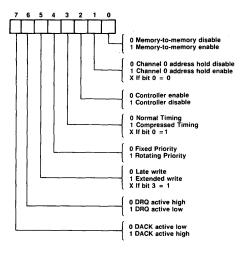
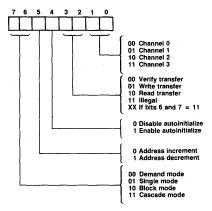
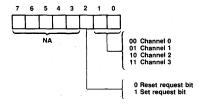

Initial Address and Initial Word Count Registers. There is an initial register and an initial word count register for each channel. The initial values of the associated current registers are stored in these registers. The values in these registers are used to restore the current registers at autoinitialize. During DMA programming, the CPU writes the initial registers and the corresponding current registers at the same time, in 8-bit bytes. Intermediate values in the current registers are overwritten if you write to the initial registers while the current registers contain intermediate values. The CPU cannot read the initial registers.

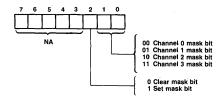
Table 2. Word Count and Address Register Command Codes


	Operation			Internal						
Channel		CS	I/OR	I/OW	A ₃	A ₂	A ₁	A ₀	Flip-Flop	D ₀ -D ₇
)	Initial & current	0	1	0	0	0	0	0	0	A ₀ -A ₇
	address write	0	1	00	0	0	0	0	1	A ₈ -A ₁₅
	Current	0	0	1	0	0	0	0	0	A ₀ -A ₇
	address read	. 0	0	1	0	0	0	0	1	A ₈ -A ₁₅
	Initial & current	0	1	0	0	0	0	1	0	W ₀ -W ₇
	word count write	0	1	0	0	0	0	1	1	W ₈ -W ₁
	Current	0	0	1	0	0	0	1	0	W_0-W_7
	word count read	0	0	1	0	0	0	1	1	W ₈ -W ₁
	Initial & current	0	1	0	0	0	1	0	0	A ₀ -A ₇
	address write	00	1	0	0	0	1	0	1	A ₈ -A ₁₅
	Current	0	0	1	0	0	1 1	0	0	A_0-A_7
	address read	0	0	1	0	0	1	0	1	A ₈ -A ₁₅
	Initial & current	0	1	0	0	0	1	1	0	W_0-W_7
	word count write	0	1	0	0	0	1	1	1	W ₈ -W ₁
	Current	0	0	1	0	0	1	1	0	W ₀ -W ₇
	word count read	0	0	1	0	0	1	1	1	W ₈ -W ₁
	Initial & current	0	1	0	0	1	0	0	0	A ₀ -A ₇
	address write	0	1	0	0	1	0	0	, 1	A ₈ -A ₁₅
	Current	0	. 0	1	0	1	0	0	0	A ₀ -A ₇
	address read	0	0	1	0	1	0	0	1	A ₈ -A ₁₅
	Initial & current	0	1	0	0	1	0	1	0	Wn-W7
	word count write	0	.1	0	0	1	0	1	1	W8-W15
	Current	0	0	1	0	1	0	1	0	W ₀ -W ₇
	word count read	0	0	1	0	1	0	1 ·	1	W8-W1
	Initial & current	0	1	0	0	1	1	0	0	A ₀ -A ₇
	address write	0	1	0	0	1	1	0 -	1	A ₈ -A ₁₅
	Current	0	0	1	0	1	1	0	0	A ₀ -A ₇
	address read	0	0	1	0	.1	1	Ô	1	A ₈ -A ₁₅
	Initial & current	0	1	0	0	1 .	1	1	0	W ₀ -W ₇
	word count write	0	1	Ô	0	1	1	1	1	W ₈ -W ₁
	Current	0	0	1	0	1	1	1	0	W ₀ -W ₇
	word count read	Ö	0	i	Ö	1	1	i	1	W ₀ -W ₁

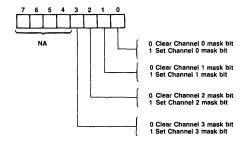
Command Register. The CPU programs this register during program phase. The register can be cleared with reset.

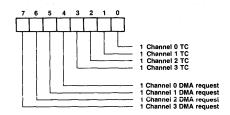


Mode Register. There is a mode register associated with each channel. When the CPU writes to this register during the program phase, bits 0 and 1 determine on which channel mode register the operation is performed.



Request Register. This register allows the μ PD8237A to respond to DMA requests from software as well as hardware. There is a bit pattern for each channel in the request register. These bits can be prioritized by the priority resolving circuitry and are not maskable. Each bit is set or reset under software control or cleared when TC or an external $\overline{\text{EOP}}$ is generated. A reset clears the entire register. The correct data word is loaded by software to set or reset a bit.


Software requests receive service only when the channel is in block mode. The software request for channel 0 should be set at the beginning of a memory-tomemory transfer.


Mask Register. There is a mask bit for each channel which can disable an incoming DRQ. If the channel is not set for autoinitialize, each mask bit is set when its channel produces an $\overline{\text{EOP}}$. Each bit can be set or cleared under software control. Reset clears the register. This disallows DMA requests until they are permitted by a clear mask register instruction.

You may also write all four bits of the mask register with a single command.

Status Register. The status register indicates which channels have made DMA requests and which channels have reached TC. Each time a channel reaches TC, including after autoinitialization, bits 0-3 are set. Status read and reset clear these bits. Bits 4-7 are set when a channel is requesting service. The CPU can read the status register.

Temporary Register. The temporary register holds data during memory-to-memory transfers. The CPU can read the last word moved when the transfer is complete. This register always contains the last byte transferred in a memory-to-memory transfer unless cleared by a reset.

Software Commands

There are two software commands that can be executed in the program phase. These commands are independent of data on the data bus.

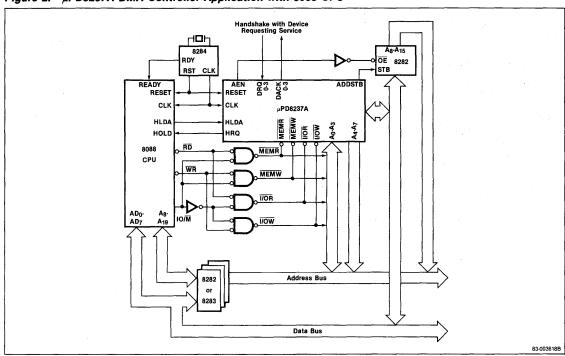
Clear First/Last Flip-Flop. You may issue this command before reading or writing any word count or address information. It allows the CPU to access registers, addressing upper and lower bytes correctly by initializing the flip-flop to an identifiable state.

Master Clear. This command produces the same effect as reset. It clears the command, status, request, temporary, and internal first/last flip-flop registers, sets the mask register, and causes the μ PD8237A to enter idle state.

Table 3 illustrates address codes for the software commands.

Table 3. Software Command Codes

A ₃	A ₂	A ₁	Ao	I/OR	I/OW	(1) Operation
1	0	0	0	0	1	Read status register
1	0	0	0	1	0	Write to command register
1	0	0	1	1	0	Write to request register
1	0	1	0	1	0	Write a mask register bit
1	0	1	1	1	0	Write to mode register
1	1	. 0	0	1	0	Clear byte pointer flip-flop
1	1	0	1	0	1	Read temporary register
1	1	0	1	1	0	Master clear
1	1	1.	1	1	0	Write all mask register bits
1	1	1	0	0	1	Clear Mask register


Note:

(1) All other bit combinations are illegal.

Application Example

Figure 2 shows an application using the μ PD8237A with an 8088. The μ PD8237A sends a hold request to the CPU whenever there is a valid DMA request from a peripheral device. The μ PD8237A takes control of the address, data, and control buses when the CPU

Figure 2. µPD8237A DMA Controller Application with 8088 CPU

replies with an HLDA signal. The address for the first transfer appears in two bytes: the eight LSBs are output on A_0 - A_7 and the eight MSBs are output on the data bus pins. The contents of the data bus pins are latched to the 8282 to make up the 16 bits of the address bus. Once the address is latched, the data bus transfers data to or from a memory location or I/O device, using the control bus signals generated by the μ PD8237A.

AC Characteristics Supplementary Information

All AC timing measurement points are 2.0 V for high and 0.8 V for low, for both inputs and outputs. The loading on the outputs is one TTL gate plus 100 pF of capacitance for the data bus pins, and one TTL gate plus 50 pF for all other outputs.

Recovery time between successive read and write inputs must be at least 400 ns. I/O or memory write pulse widths will be $T_{CY}\text{-}100$ ns for normal DMA transfers and 2 $T_{CY}\text{-}100$ ns for extended cycles. I/O or memory reads will be 2 $T_{CY}\text{-}50$ ns for normal reads and $T_{CY}\text{-}50$ ns for compressed cycles. T_{DQ1} and T_{DQ2} are measured on two different levels: T_{DQ1} at 2.0 V, T_{DQ2} at 3.3 V with a 3.3 k Ω pull-up resistor. DREQ and DACK are both active high and low. DREQ must be held in the active state (user defined) until DACK is returned from the $\mu PD8237A$. The AC waveforms assume these are programmed to the active high state.

Absolute Maximum Ratings

Power dissipation, Pn

$T_A = 25^{\circ}C$	
Ambient temperature under bias, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Voltage on any pin with respect to Ground, V _{CC}	-0.5V to +7V

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25^{\circ}C$

•			Limits			Test Conditions	
Parameter	Symbol	Min	Typ ⁽¹⁾	Max	Unit		
Output capacitance	C ₀		4	8	pF	fc = 1.0 MHz,	
Input capacitance	Cı		8	15	pF	inputs = 0 V	
I/O capacitance	C ₁₀		10	18	pF	447	

Note:

 Typical values measured at T_A = 25°C, nominal processing parameters, and nominal V_{CC}.

DC Characteristics

 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = +5 \text{ V } \pm 5\%$

		Limits				Test
Parameter	Symbol	Min	Typ(1)	Max	Unit	Conditions
Output high	V _{OH}	2.4			٧	$I_{OH} = -200 \mu A$
voltage		3.3			٧	$I_{OH} = -100 \mu A$ (HRQ only)
Output low voltage	V _{OL}	-		0.45		$l_{OL} = 2.0 \text{ mA}$ (Data bus)
					V	I _{OL} = 3.2 mA (Other outputs)
Input high voltage	VIH	2.0		V _{CC} + 0.5	٧	*****
Input low voltage	V _{IL}	-0.5		0.8	٧	
Input load current	14			±10	μA	OV ≤ V _{IN} ≤ V _{CC}
Output leakage current	I _{LO}			±10	μΑ	0.45 ≤ V _{OUT} ≤ V _{CC}
V _{CC} supply	lcc		65	130	mA	$T_A = +25$ °C
current			75	150	mΑ	T _A = 0°C

Note:

 Typical values measured at T_A = 25°C, nominal processing parameters, and nominal V_{CC}.

AC Characteristics

DMA (Master) Mode $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = 5V \pm 5\%; V_{SS} = 0 \text{ V}$

Parameter	Symbol	Min	Тур	Max	Unit	
AEN high from CLK low (S1) delay time	t _{AEL}	:		200	ns	
AEN low from CLK high (S1) delay time	†AET			130	ns	
ADR active to float delay from CLK high	t _{AFAB}			90	ns	
READ or WRITE float from CLK high	t _{AFC}			120	ns	
DB active to float delay from CLK high	t _{AFDB}			170	ns	
ADR from READ high hold time	t _{AHR}	t _{CY} -100			ns	
DB from ADDSTB low hold time	t _{AHS}	30			ns	
ADR from WRITE high hold time	t _{AHW}	t _{CY} -50			ns	
DACK valid from CLK low delay time	t _{AK}			170	ns	
EOP high from CLK high delay time	t _{AK}			170	ns	
EOP low to CLK high delay time	t _{AK}			100	ns	
ADR stable from CLK high	tasm			170	ns	
Data bus to ADDSTB low setup time	tass	100			ns	
Clock high time (transitions ≤ 10 ns)	t _{CH}	80			ns	
Clock low time (transitions ≤ 10 ns)	t _{CL}	68			ns	
CLK cycle time	t _{CY}	200			ns	
CLK high to READ or WRITE low delay (1)	tDCL			190	ns	
READ high from CLK high (S-4) delay time (1)	t _{DCTR}			190	ns	
WRITE high from CLK high (S-4) delay time ⁽¹⁾	t _{DCTW}			130	ns	
HRQ valid from CLK high delay	t _{DQ1}			120	ns	
time (2)	t _{DQ2}			120	ns	
EOP low from CLK low setup	t _{EPS}	40				
EOP pulse width	t _{EPW}	220			ns	
ADR float to active delay from CLK high	t _{FAAB}			170	ns	
READ or WRITE active from CLK high	t _{FAC}			150	ns	

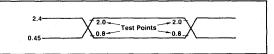
			Limits			
Parameter	Symbol	Min Typ		Max	Unit	
Data bus float to active delay from CLK high	tFADB		:	200	ns	
HLDA valid to CLK high setup time	t _{HS}	75			ns	
Input data from MEMR high hold time	t _{IDH}	0	: '		ns	
Input data to MEMR high setup time	t _{IDS}	170			ns	
Output data from MEMW high hold time	t _{ODH}	10			ns	
Output data valid to MEMW high	t _{ODV}	125			ns	
DRQ to CLK low (S1, S4) setup time	tos	0			ns	
CLK to READY low hold time	t _{RH}	20			ns	
READY to CLK low setup time	t _{RS}	60			ns	
ADDSTB high from CLK high delay time	tSTL			130	ns	
ADDSTB low from CLK high delay time	tstt			90	ns	

Note:

(1) Net $\overline{I/OW}$ or \overline{MEMW} pulse width for normal write is t_{CY} —100 ns and t_{CY} —100 ns for extended write. Net $\overline{I/OR}$ or \overline{MEMR} pulse width for normal read to $2t_{CY}$ —50 ns and t_{CY} —50 ns for compress-

(2) T_{DQ1} is measured at 2.0 V. t_{DQ2} is measured at 3.3 V. An external pullup resistor of 3.3Ω connected from HRQ to V_{CC} is assumed for t_{DQ2}.

AC Characteristics (cont) Peripheral Mode

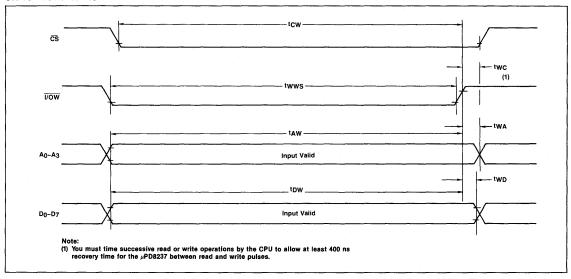

 $T_A = 0$ °C to +70°C; $V_{CC} = 5 \text{ V } \pm 5\%$; $V_{SS} = 0 \text{ V}$

			Limits		
Parameter	Symbol	Min	Тур	Max	Unit
ADR valid or CS low to READ low	t _{AR}	50			ns
ADR valid to WRITE high setup time	t _{AW}	150			ns
CS low to WRITE high setup time	t _{CW}	150			ns
Data valid to WRITE high setup time	t _{DW}	150			ns
ADR or CS hold from READ high	t _{RA}	0			ns
Data access from READ low(1)	t _{RDE}			140	ns
Data bus float delay from READ high	t _{RDF}	0		70	ns
Power supply high to RESET low setup time	trstd	500			ns
RESET to first I/OR or I/OW	tRSTS	2t _{CY}			ns
RESET pulse width	t _{RSTW}	300			ns
READ width	t _{RW}	200			ns
ADR from WRITE high hold time	t _{WA}	20			ns
CS high from WRITE high hold time	twc	20			ns
Data from WRITE high hold time	t _{WD}	30			ns
Write width	twws	160			ns

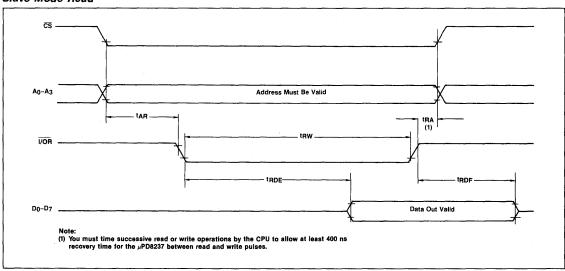
Note:

(1) Data bus output loading is 1 TTL gate plus 100 pF capacitance.

AC Testing Input/Output Waveform

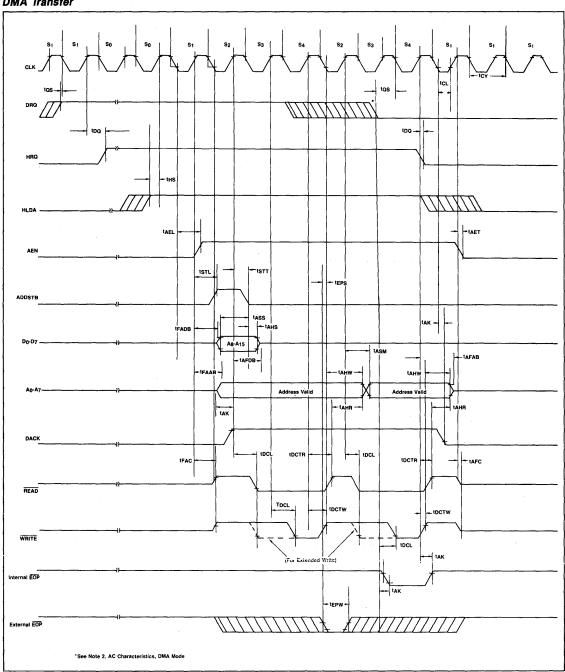


Inputs are driven at 2.4V for logic 1 and 0.45V for logic 0. These timing measurements are made at 2.0V for logic 1 and 0.8V for logic 0. A transition time of 20 ns or less is assumed for input timing parameters. Unless noted, output loading is 1 TTL gate plus 50 pF capacitance.

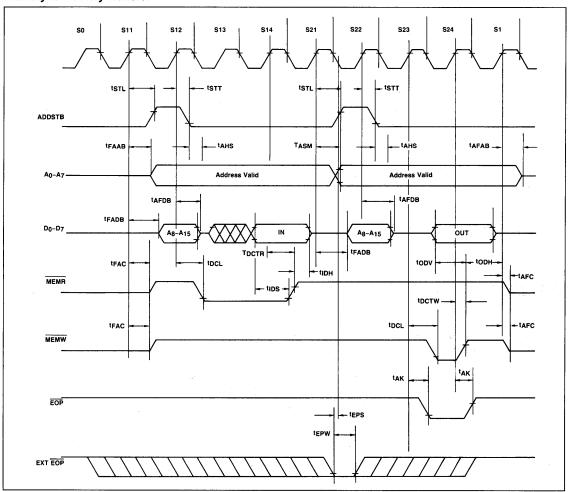


Timing Waveforms

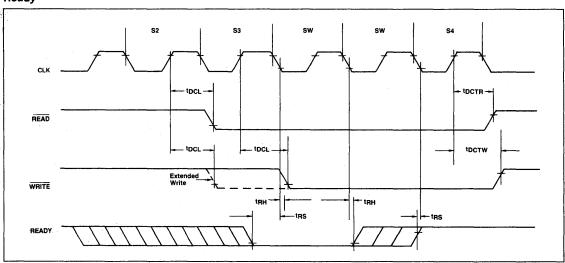
Slave Mode Write



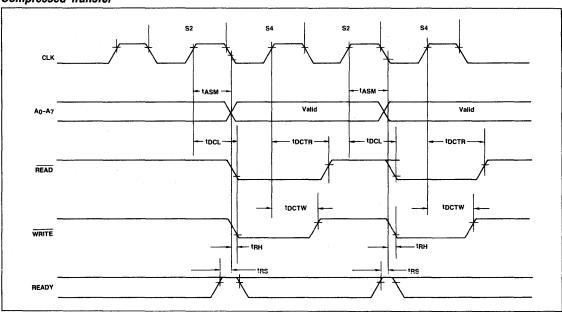
Slave Mode Read



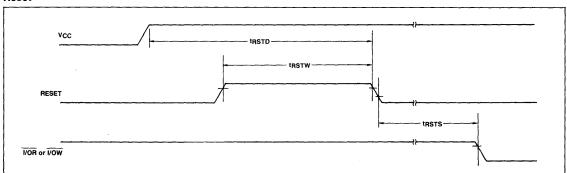
DMA Transfer



Memory-to-Memory Transfer



Ready



Compressed Transfer

Reset

μ PD8243/H INPUT/OUTPUT EXPANDER FOR μ PD8048 FAMILY

Description

The μ PD8243 and μ PD8243H input/output expander is directly compatible with the μ PD8048 family of single-chip microcomputers. Using NMOS technology the μ PD8243 provides high drive capabilities while requiring only a single +5 V supply voltage.

The μ PD8243 interfaces to the μ PD8048 family through a 4-bit I/O port and offers four 4-bit bidirectional static I/O ports. The ease of expansion allows for multiple μ PD8243s to be added using the bus port.

The bidirectional I/O ports of the μ PD8243 act as an extension of the I/O capabilities of the μ PD8048 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

Another version, $\mu PD8243H$, has less total output current sinking capability than $\mu PD8243$ but is otherwise identical.

Features

- ☐ Four 4-bit I/O ports
- ☐ High output drive
- □ Logical AND and OR directly to ports
- ☐ Compatible with industry standard 8243
- ☐ Direct extension of resident µPD8048 I/O ports
- ☐ Fully compatible with µPD8048 microcomputer family
- □ NMOS technology
- ☐ Single +5 V supply

Ordering Information

Part	
Number	Package Type
μPD8243C	24-pin plastic DIP
μPD8243HC	24-pin plastic DIP

Pin Configuration

Pin Identification

No.	Symbol	Function	
1, 21-23	P5 ₀ -P5 ₃	4-bit I / 0 port 5	
2-5	P4 ₀ -P4 ₃	4-bit 1/0 port 4	
6	cs	Chip select input	
7	PROG	Clock input	
8-11	P2 ₀ -P2 ₃	4-bit I / 0 CPU interface port 2	
12	GND	Ground	
13-16	P7 ₀ -P7 ₃	4-bit 1 / 0 port 7	
17-20	P6 ₀ -P6 ₃	4-bit I / 0 port 6	
24	V _{DD}	+5 V power supply	

Absolute Maximum Ratings

 $T_A = 25$ °C

Power supply voltage, V _{DD} (to ground)	-0.5 to +7 V
Operating temperature, T _{OPT}	0 to +70°C
Storage temperature, T _{STG}	-65 to +150°C
Power dissipation, PD	1.0 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Functions

P20-P23 (Port 2)

A 4-bit bidirectional port which contains the I/O port address and instruction code on a high to low transition of PROG. During a low to high transition of PROG, port 2 contains either the data for a selected output port if a write operation, or the data from a selected output port (before a low to high transition) if a read operation. Data on port 2 may be directly written, read, ANDed, or ORed with previous data.

P40-P43 (Port 4)

A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

P5₀-P5₃ (Port 5)

A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

P6₀-P6₃ (Port 6)

A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

P70-P73 (Port 7)

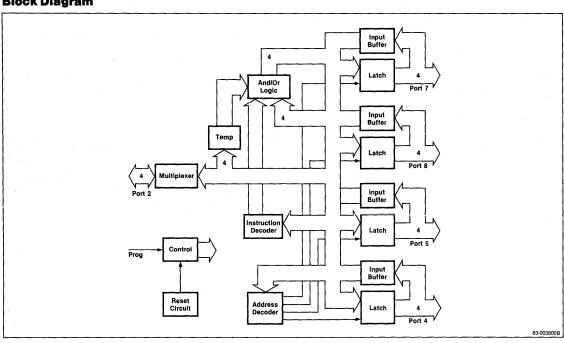
A 4-bit I/O port. May be programmed for input (during read), low impedance latched output (after write), or high impedance (after read).

CS (Chip Select)

Chip select input. A high on $\overline{\text{CS}}$ inhibits any change of output or internal status.

PROG (Clock Input)

A high to low transition on PROG indicates that the opcode and the addressed port information are available on port 2. A low to high transition indicates that data is available on port 2.


Ground

Ground.

V_{DD} (Power Supply)

+5 V power supply input.

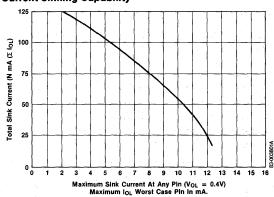
Block Diagram

DC Characteristics

 $T_A = 0$ °C to +70°C; $V_{DD} = +5 V \pm 10\%$

		Limits		Test	
Symbol	Min	Тур	Max	Unit	Conditions
V _{IH}	2		V _{DD} +0.5	V	
V _{IL}	-0.5		+0.8	V	
V _{OH1}	2.4			٧	$I_{OH} = -240 \mu\text{A}$
V _{OH2}	2.4			٧	$I_{OH} = -100 \mu\text{A}$
V _{OL1}			0.45	٧	$I_{OL} = 5 \text{ mA},$ (Note 1)
V _{0L2}			1	٧	I _{OL} = 20 mA
V _{0L3}			0.45	V	$I_{OL} = 0.6 \text{mA}$
l _{OL}			100	mA	(8243) 5 mA each pin
			80	mA	(8243H) 5 mA each pin
I _{IL1}	10		20	μА	$V_{IN} = V_{DD}$ to 0 V
l _{IL2}	-10		10	μΑ	$V_{IN} = V_{DD}$ to 0 V
IDD		10	16	mA	
	V _{IH} V _{IL} V _{OH1} V _{OH2} V _{OL1} V _{OL2} V _{OL3} I _{OL} I _{IL1}	V _{IH} 2 V _{IL} -0.5 V _{OH1} 2.4 V _{OH2} 2.4 V _{OL1} V _{OL2} V _{OL3} I _{IL1} -10 I _{IL2} -10	Symbol Min Typ V _{IH} 2 V _{IL} -0.5 V _{OH1} 2.4 V _{OH2} 2.4 V _{OL1} V _{OL2} V _{OL3} V _{OL3} I _{IL1} -10 I _{IL2} -10	V _{IH} 2 V _{DD} +0.5 V _{IL} -0.5 +0.8 V _{OH1} 2.4 V _{OH2} 2.4 V _{OL1} 0.45 V _{OL2} 1 V _{OL3} 0.45 I _{OL} 100 I _{IL1} -10 20 I _{IL2} -10 10	Number Min Typ Max Unit VIH 2 VDD+0.5 V VIL -0.5 +0.8 V VOH1 2.4 V VOH2 2.4 V VOL1 0.45 V VOL2 1 V VOL3 0.45 V IOL 100 mA IIL1 -10 20 μA IIL2 -10 10 μA

Note

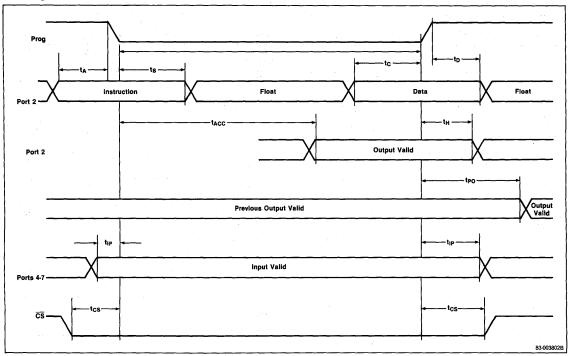

(1) Refer to graph of current sinking capability.

AC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{DD} = +5 V \pm 10$ %

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Code valid before PROG	t _A	100			ns	80 pF load
Code valid after PROG	tB	60			ns	20 pF load
Data valid before PROG	tc	200			ns	80 pF load
Data valid after PROG	t _D	20			ns	20 pF load
Port 2 floating after PROG	t _H	0		150	ns	20 pF load
PROG negative pulse width	t _K	700			ns	
Ports 4-7 valid after PROG	t _{PO}			700	ns	100 pF load
Ports 4–7 valid before / after PROG	t _{IP}	100		-	ns	
Port 2 valid after PROG	tACC			650	ns	80 pF load
CS valid before / after PROG	tcs	50			ns	

Current Sinking Capability



Note:

This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pins. The μPD8243 is capable of sinking 5 mA (for $V_{OL}=0.4$ V) through each of the 16 I/O lines simultaneously. The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded.

Timing Waveform

Functional Description

The I/O capabilities of the μ PD8048 family can be enhanced in four I/O port increments of 4-bits each using one or more μ PD8243's. These additional I/O lines are addressed as ports 4–7. The following lists the operations which can be performed on ports 4–7.

- · Logical AND accumulator to port
- Logical OR accumulator to port
- Transfer port to accumulator
- Transfer accumulator to port

Port 2 (P2₀-P2₃) forms the 4-bit bus through which the μ PD8243 communicates with the host processor. The PROG output from the μ PD8048 family provides the necessary timing to the μ PD8243. There are two 4-bit nibbles involved in each data transfer. The first nibble contains the opcode and port address followed by the second nibble containing the 4-bit data. Multiple μ PD8243's can be used for additional I/O. The output lines from the μ PD8048 family can be used to form the chip selects for additional μ PD8243's.

Power On Initialization

Applying power to the μ PD8243 sets ports 4–7 to the high impedance mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high to low transition in order to exit from the power on mode. The power on sequence is initiated any time V_{DD} drops below 1V. Table 1 following shows how the first 4-bit nibble of a data transfer instruction is decoded.

Table 1. Port 2 Instruction Decoding

P2 ₃	P2 ₂	Instruction Code	P2 ₁	P2 ₀	Address Code
0	0	Read	0	0	Port 4
0	1	Write	0	1	Port 5
i	0	ORLD	1	0	Port 6
1	1	ANLD	1	1	Port 7

For example, an 0010 appearing on $P2_3-P2_0$ respectively would result in a read of port 6.

Read Mode

There is one read mode in the μ PD8243. A falling edge on the PROG pin latches the opcode and port address from input port 2. The port address and read operation are then decoded causing the appropriate outputs to be high impedance and the input buffers switched on. The rising edge of PROG terminates the read operation. The port (4, 5, 6, or 7) that was selected by the port address (P2₁–P2₀) is returned to the high impedance mode, and port 2 is switched to the input mode.

Generally, in the read mode a port will be an input and in the write mode it will be an output. If during program operation, the μ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD8243. The MOVD P_p , A instruction from the μ PD8048 family writes the new data directly to the specified port (4, 5, 6, or 7). The old data previously latched at that port is lost. The ORLD P_p , A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD P_p , A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.

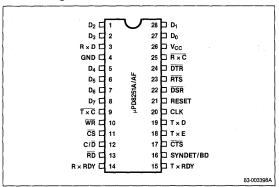
The data remains latched at the selected port following the logical manipulation until new data is written to that port.

μPD8251A/AF PROGRAMMABLE COMMUNICATIONS INTERFACE (USART)

Description

The μPD8251A and μPD8251AF Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the 8085A or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format, and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TxE and SYNDET, is available to the processor at any time.

Features


- ☐ Asynchronous or synchronous operation
 - Asynchronous:
 - -Five 8-bit characters
 - -Clock rate 1, 16, or 64 x baud rate
 - -Break character generation
 - -Select 1, 11/2, or 2 stop bits
 - -False start bit detector
 - -Automatic break detect and handling
 - Synchronous:
 - -Five 8-bit characters
 - -Internal or external character synchronization
 - -Automatic sync insertion
 - -Single or double sync characters
- ☐ Baud rate (1x mode) DC to 64K baud
- ☐ Full-duplex, double buffered transmitter and receiver
- ☐ Parity, overrun and framing flags
- □ Fully compatible with 8085A/μPD780 (Z80®), etc.
- ☐ All inputs and outputs are TTL-compatible
- □ Single +5 V supply, $\pm 10\%$
- ☐ Separate device receive and transmit TTL clocks
- □ NMOS technology

Ordering Information

Part Number	Package Type	Max Frequency of Operation	
μPD8251AC	28-Pin plastic DIP	3/5MHz	
μPD8251AFC	28-Pin plastic DIP	3/5MHz	

Z80 is a registered trademark of Zilog, Inc.

Pin Configuration

Pin Identification

No.	Symbol	Function
1, 2, 27, 28, 5–8	D ₇ -D ₀	Data bus buffer
26	V _{DD}	V _{DD} supply voltage
4	GND	Ground
21	RESET	Reset
20	CLK	Clock pulse
10	WR	Write data
13	RD	Read data
12	C/D	Control / data
11	ĊS	Chip select
22	DSR	Data set ready
24	DTR	Data terminal ready
23	RTS	Request to send
17	CTS	Clear to send
15	TxRDY	Transmitter ready
18	TxE	Transmitter empty
9	TxC	Transmitter clock
19	TxD	Transmitter data
14	RxRDY	Receiver ready
25	RxC	Receiver clock
3	RxD	Receiver data
16	SYNDET/BD	Sync detect / break detect

Pin Functions

Data Bus Buffer

An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or read/write instructions from the processor. The data bus buffer also transfers control words, command words, and status.

V_{DD} Supply Voltage

+5 V supply

Ground

Ground

Read/Write Control Logic

This logic block accepts inputs from the processor control bus and generates control signals for overall USART operation. The mode instruction and command instruction registers that store the control formats for device functional definition are located in the read/write control logic.

Reset

A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitialized with a new set of control words. Minimum RESET pulse width is 6 toy.

Clock Pulse

The CLK input provides for internal device timing and is usually connected to the phase 2 (TTL) output of the $\mu\text{PB}8224$ clock generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the receiver or transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.

Write Data

A "zero" on this input instructs the USART to accept the data or control word which the processor is writing out on the data bus.

Read Data

A "zero" on this input instructs the USART to place the data or status information onto the data bus for the processor to read.

Control/Data

The control/data input, in conjunction with the \overline{WR} and \overline{RD} inputs, informs the USART to accept or provide either a data character, control word, or status information via the data bus. 0 = Data; 1 = Control.

Chip Select

A "zero" on this input enables the USART to read from or write to the processor.

Modem Control

The μ PD8251A/51AF have a set of control inputs and outputs which may be used to simplify the interface to a modem.

Data Set Ready

The data set ready input can be tested by the processor via status information. The DSR input is normally used to test the modem data set ready condition.

Data Terminal Ready

The data terminal ready output can be controlled via the command word. The DTR output is normally used to drive modern data terminal ready or rate select lines.

Request to Send

The request to send output can be controlled via the command word. The RTS output is normally used to drive the modern request to send line.

Clear to Send

A "zero" on the clear to send input enables the USART to transmit serial data if the TxEN bit in the command instruction register is enabled (one).

Transmit Control Logic

The transmit control logic accepts and outputs all external and internal signals necessary for serial data transmission.

Transmitter Ready

Transmitter ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the status information for polled operation. Loading a character from the processor automatically resets TxRDY, on the leading edge.

Transmitter Empty

The transmitter empty output signals the processor that the USART has no further characters to transmit. TxE is automatically reset upon receiving a data character from the processor. In half-duplex, TxE can be used to signal the end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TxE.

In the synchronous mode, a "one" on this output indicates that a sync character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.

Transmitter Clock

The transmitter clock controls the serial character transmission rate. In the asynchronous mode, the $\overline{\mbox{lxC}}$ frequency is a multiple of the actual baud rate. Two bits of the mode instruction select the multiple to be 1x, 16x, or 64x the baud rate. In the synchronous mode, the $\overline{\mbox{lxC}}$ frequency is automatically selected to equal the actual baud rate.

Note that for both synchronous and asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{\text{IxC}}$.

Transmitter Data

The transmit control logic outputs the composite serial data stream on this pin.

Receiver Control Logic

This block manages all activities related to incoming data.

Receiver Ready

The receiver ready output indicates that the receiver buffer is ready with an "assembled" character for input to the processor. For polled operation, the processor can check RxRDY using a status read or RxRDY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets RxRDY.

Receiver Clock

The receiver clock determines the rate at which the incoming character is received. In the asynchronous mode, the $\overline{\text{RxC}}$ frequency may be 1, 16 or 64 times the actual baud rate, but in the synchronous mode the $\overline{\text{RxC}}$ frequency must equal the baud rate. Two bits in the mode instruction select asynchronous at 1x, 16x, or 64x or synchronous operation at 1x the baud rate.

Unlike $\overline{\text{TxC}}$, data is sampled by the $\mu\text{PD8251A/51AF}$ on the rising edge of $\overline{\text{RxC}}$. (Note 1)

Receiver Data

A composite serial data stream is received by the receiver control logic on this pin.

Sync Detect/Break Detect

The µPD8251A/51AF may be programmed through the mode instruction to operate in either the internal or external sync mode; the SYNDET/BD pin then functions as an output or input respectively. In the internal sync mode, the SYNDET output will go to a "one" when the μPD8251A/51AF has located the SYNC character in the receive mode. If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a status read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the μPD8251A/51AF to start assembling data character on the next falling edge of RxC. The length of the SYNDET input should be at least one RxC period, but may be removed once the μ PD8251A/51AF is in SYNC.

In the asynchronous mode, the SYNDET/BD pin functions as a break detect. The BD output will go high when a word of all zeros is received. This word consists of: start bit, data bits, parity bit, and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of break detect can be read as a status bit.

Note:

(1) Since the µPD8251A/51AF will frequently be handling both the reception and transmission for a given link, the receive and transmit baud rates will be the same. RXC and TXC then require the same frequency and may be tied together and connected to a single clock source or baud rate generator.

Examples:

 $\begin{array}{l} \underline{\text{If the baud}} \ \text{rate equals 110 (Async):} \\ \underline{\overline{\text{RxC}}} \ \text{or} \ \overline{\overline{\text{IxC}}} \ \text{equals 110 Hz (1x)} \\ \underline{\overline{\text{RxC}}} \ \text{or} \ \overline{\overline{\text{IxC}}} \ \text{equals 1.76 kHz (16x)} \\ \overline{\overline{\text{RxC}}} \ \text{or} \ \overline{\overline{\text{IxC}}} \ \text{equals 7.04 kHz (64x)} \\ \underline{\text{If the baud}} \ \text{rate equals 300:} \end{array}$

RxC or TxC equals 300 Hz (1x) A or S RxC or TxC equals 4800 Hz (16x) A only

RxC or TxC equals 19.2 kHz (64x) A only

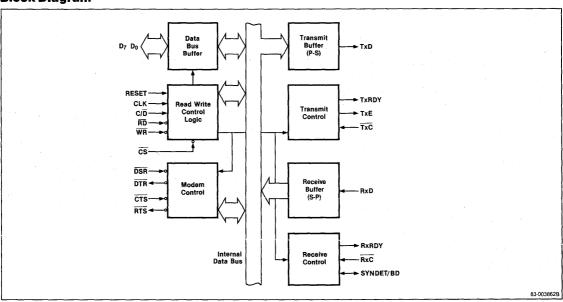
Absolute Maximum Ratings

T_A = 25 °C

Power supply voltage, V _{DD}	- 0.5 V to +7 V
Input voltage, V _I	-0.5 V to +7 V
Output voltage, V ₀	-0.5 V to +7 V
Operating temperature, T _{OPT}	-0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance


 $T_A = 25$ °C, $V_{CC} = GND = 0$ V, $f_C = 1.0$ MHz

		Limits				Test
Parameter	eter Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C _{IN}			10	pF	(Note 1)
I/O capacitance	C _{IO}			20	pF	(Note 1)

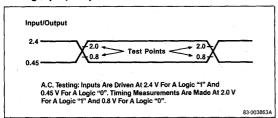
Note:

(1) All unmeasured pins returned to GND.

Block Diagram

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5 V \pm 10$ %, GND = 0 V


			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL}	-0.5		+0.8	V	
Input voltage high	V _{IH}	2		V _{CC}	V	
Output voltage low	V _{OL}	-		+0.45	V	μPD8251: I _{OL} = 1.7 mA μPD8251A: I _{OL} = 2.2 mA
Output voltage high	V _{OH}	2.4			V	μ PD8251: $I_{OH} = -100 \mu$ A μ PD8251A: $I_{OH} = -400 \text{mA}$
Output float leakage current	l _{OFL}			±10	μΑ	V _{OUT} = 0.45 V
		-		10	μΑ	0.45 V ≤ V _{OUT} ≤ V _{CC}
Input load current	JIL			10	μΑ	0.45 V ≤ V _{IN} ≤ V _{CC}
Power supply current	lcc			100	mA	All outputs = logic 1

AC Characteristics

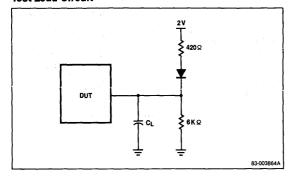
 $T_A = 0$ °C to +70 °C, $V_{CC} = 5 V \pm 10$ %; GND = 0 V

			Lin				
		μPD8	251A	µPD8	251AF	-	Test
Parameter	Symbol	Min	Max	Min	Max	Unit	
Read							
Address stable before RD, (CS, CD)	t _{AR}	50		0		ns	(Note 7)
Address hold time for RD, (CS, CD)	t _{RA}	50		0		ns	(Note 7)
RD pulse width	t _{RR}	250		200		ns	
Data delay from RD	t _{RD}		250		140	ns	μ PD8251A; C _L = 150 pF, (Note 8)
RD to data floating	t _{DF}	10	100	10	80	ns	

Testing Input, Output Waveform

		Limits					
		μPD8251A μPD8251AF		251AF		Test	
Parameter	Symbol	Min	Max	Min	Max	Unit	
Write							
Address stable before WR	t _{AW}	50		0		ns	
Address hold time for WR	t _{WA}	50		0		ns	
WR pulse width	tww	250		200		ns	
Data set-up time for WR	t _{DW}	150		100		ns	
Data hold time for WR	t _{WD}	30		0		ns	
Recovery time between WR's	t _{RV}	6		6		t _{CY}	(Note 2)
Other Timing							
Clock period	t _{CY}	0.32	1.35	0.20	1.35	μS	(Note 3)
Clock pulse width high	t _{∳W}	140	t _{CY} -90	70	t _{CY} - 40	ns	
Clock pulse width low	t _{∳W}	90		40		ns	
Clock rise and fall time	t _R , t _F	5	20	5	20	ns	
TxD delay from falling edge of TxC	t _{DTx}		1		1	μS	
Rx data set-up time to sampling pulse	t _{SRx}	2				μS	
Rx data hold time to sampling pulse	t _{HRx}	2				μS	
Transmitter input clock frequency	t f _{TX}		64	DC	64	kHz	1x baud rate
			310	DC	310	kHz	16x baud rate
			615	DC	615	kHz	64x baud rate
Transmitter input	t t _{TPW}	12		12	t _{CY}		1x baud rate
clock pulse width		1		1	t _{CY}		16x and 64x baud rate
Transmitter input	t t _{TPD}	15		15	t _{CY}		1x baud rate
clock pulse delay		3		3	t _{CY}		16x and 64x baud rate

AC Characteristics (cont)

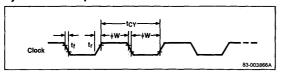

	-	µPD8	251A	µPD8251AF		-	Test
Parameter	Symbol	Min	Max	Min	Max	Unit	
Other Timing (co	nt)	3	7 .	4			
Receiver input	f _{Rx}		64	DC	64	kHz	1x baud rate
clock frequency			310	DC	310	kHz	16x baud rate
			615	DC	615	kHz	64x baud rate
Receiver input	t _{RPW}	12		12		t _{CY}	1x baud rate
clock pulse width	•	1		1		t _{CY}	16x and 64x baud rate
Receiver input	t _{RPD}	15		15		t _{CY}	1x baud rate
clock pulse delay		3		3		tcy	16x and 64x baud rate
TxRDY delay from center of data bit	t _{Tx}		8		8	t _{CY}	(Note 9)
TxRDY ↓ from leading edge of WR	t _{TXRDY} CLEAR				300	ns	(Note 9)
RxRDY delay from center of data bit	t _{RX}		24		20	t _{CY}	
Internal SYNDET delay from center of data bit		-	24			t _{CY}	(Note 9)
RxRDY ↓ from leading edge of RD	t _{RxRDY} CLEAR				300	ns	(Note 9)
External SYNDET set-up time before falling edge of RXC	t _{ES}	16		18		t _{CY}	(Note 9)

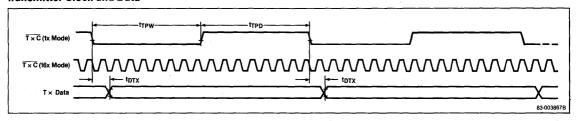
		Limits					
	•	μ PD8251A		μPD8251AF		•	Test
Parameter	Symbol	Min	Max	Min	Max	Unit	
Other Timing (co	nt)			-			
TxEMPTY delay from center of data bit	tixE		20		20	t _{CY}	(Note 9)
Control delay from rising edge of WR (TxE, DTR, RTS)	t _{WC}		8		8	tcy	(Note 9)
Control to RD set-up time (DSR, CTS)	tcr	20		20		tcy	(Note 9)

Note:

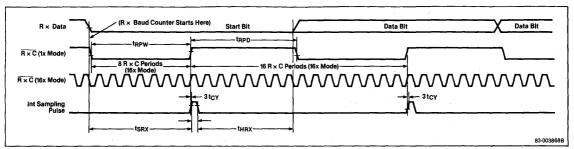
- (1) AC timing measured at $V_{OH} = 2.0 \, \text{V}$, $V_{OL} = 0.8 \, \text{V}$, and with test load circuit below.
- (2) This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY = 1.
- (3) The TxC and RxC frequencies have the following limitations with respect to CLK: For 1x baud rate, f_{Tx} or f_{Rx}≤1 (30 t_{CY}) For 16x and 64x baud rate, f_{Tx} or f_{Rx}≤1 (4.5 t_{CY})
- (4) Reset pulse width = $6 t_{CY}$ minimum.
- (5) $t_{TXRDYCCR} 2t_{CY} + t_{\phi} + t_{R} + 200 \text{ ns}$
- (6) $t_{RxRDYCCR} 2t_{CY} + t_{\phi} + t_{R} + 170 \text{ ns}$
- (7) Chip Select (CS) and Command/Data (C/D) are considered as addresses.
- (8) Assumes that address is valid before R_O ↓.
- (9) Status update can have a miximum delay of 28 clock periods from the event affecting the status.

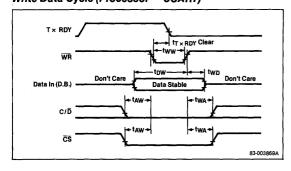
Test Load Circuit

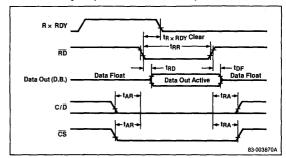

Typical ∆ Output Delay Versus ∆ Capacitance



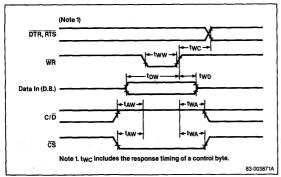
Timing Waveforms


System Clock Input

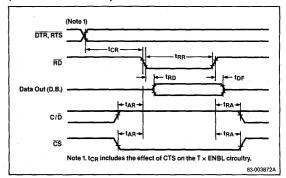

Transmitter Clock and Data

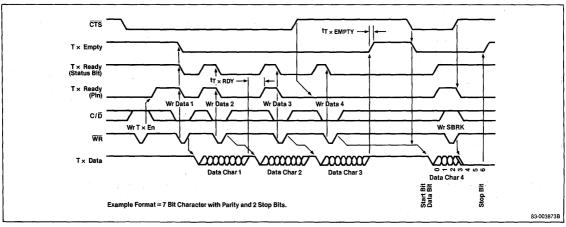

Receiver Clock and Data

Write Data Cycle (Processor → USART)

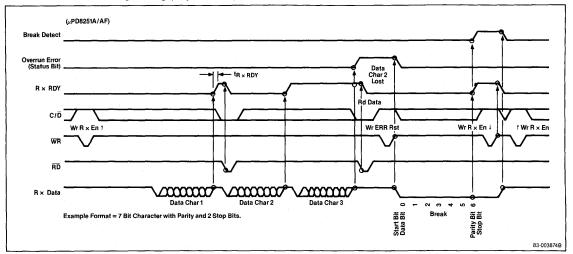


Read Data Cycle (Processor ← USART)

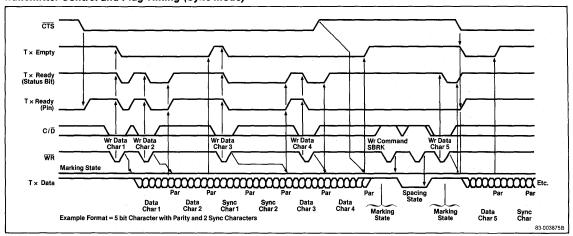



Write Control or Output Port Cycle (Processor → USART)

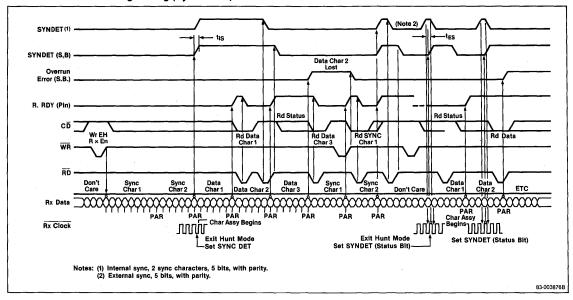
Read Control or Input Port Cycle (Processor ← USART)



Transmitter Control and Flag Timing (Async Mode)



Receiver Control and Flag Timing (Async Mode)



Transmitter Control and Flag Timing (Sync Mode)

Receiver Control and Flag Timing (Sync Mode)

μPD8251AF Enhancements

μ PD8251A	μ PD8251AF
A previously loaded data character will be retransmitted if Tx was disabled before TxEMPTY by TxEnable ↓ or CTS ↑, and is re-enabled by TxEnable ↑ or CTS ↓ before a new data character is sent to µPD8251A by the CPU.	A previously loaded character will be flushed out and not transmitted on CTS or TxEnable 1.
Break detect does not always reset upon RxData returning to a '1' during the last bit of the character following the break. Break detect will latch up, and the device must be cleared by device reset.	Break detect will reset on RxData going to '1'.
On TxEnable ↓ or CTS ↑ during the first character of a double-character sync output, the second sync character will not be output.	Will output both sync characters on TxEnable ↓ or CTS ↑.
If the status register is read during a status update, an erroneous status read may result.	Some valid status (either new or old) will always be available.
In Rx mode, a hardware or software reset does not force asynchronous mode, clear hunt condition, or require a proper line initialization (1 to 0 transition) before receiving. This may cause reception of garbage characters.	Reset will clear Rx hunt condition, force asynchronous operation (64x clock), and require a proper line initialization before receiving anything.
Break detect will occur on the first complete (start bit to stop bit) break. This situation could be confused with a null frame (all zeros) that also has a framing error.	Will give a framing error at the end of the first complete or partial break and will give a break detect at the stop bit position of the second contiguous break character.
Sync detect does not reset on status read.	Sync detect will reset on status read.
RxRDY clears within 2 t _{CY} 's of RD leading edge.	RxRDY will clear on RD leading edge.
TxEMPTY oscillates with internal clock when TxEnable ↓ or CTS ↑.	TxEMPTY will not oscillate this way.
TxRDY and TxEMPTY clear on WR trailing edge (data).	TxRDY, TxEMPTY will clear on WR leading edge.
Enter hunt command affects asynchronous Rx by loss of data characters.	Enter hunt will not affect asynchronous operation.
Writing a command will sometimes clear TxRDY or TxEMPTY if C/\overline{D} set up or hold is marginal. Reading status will sometimes clear RxRDY if C/\overline{D} set up or hold is marginal.	C/\overline{D} set up and hold margin will be improved.

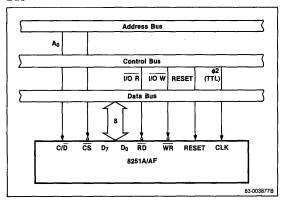
μPD8251AF Enhancements (cont)

μ PD8251A	μPD8251AF		
Rx data overrun error will not occur and garbage data may result if $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are active during an internal data update.	Will indicate an overrun error properly.		
In asynchronous mode, <u>after</u> a reset, the first TxD bit may be shifted out on either the first or second TxC ↓ edge.	The first TxD bit will be shifted out on the first TxC ↓ edge.		
RxRDY can glitch when CLK does not have a fixed phase relationship to RxC.	RxRDY will not glitch.		
The receiver occasionally gives an extra character following the end of break condition.	No extra characters will occur.		

Functional Description

The μ PD8251A/51AF Universal Synchronous/ Asynchronous Receiver/Transmitters are designed specifically for 8085A microcomputer systems but work with most 8-bit processors. Operations of the μ PD8251A/51AF, like other I/O devices in the 8085A family, are programmed by system software for maximum flexibility.

In the receive mode, the μ PD8251A/51AF converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.


Truth Table

RD	WR	cs	MODE
0	1	0	μPD8251A / 51AF → Data bus
1	0	0	Data bus → µPD8251A / 51AF
0	1	0	Status → Data bus
1	0	0	Data bus → Control
X	Х	1	Data bus → 3-state
1	1	0	Data bus → 3-state
	0 1 X 1	0 1 1 0 0 1 1 0 X X X 1 1 1	0 1 0 1 0 0 1 0 1 0 0 X X 1 1 0 0

Transmit Buffer

The transmit buffer receives parallel data from the data bus buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

μPD8251A/51AF Interface to 8085A Standard System Bus

Receive Buffer

The receive buffer accepts serial data input at the RxD pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require fewer than eight bits, the μ PD8251A/51AF set the extra bits to "zero".

Operation

A set of control words must be sent to the μ PD8251A/51AF to define the desired mode and communications format. The control words will specifiy the baud rate factor (1x, 16x, 64x), character length (5 to 8), number of STOP bits (1, 1½, 2) asynchronous or synchronous mode, SYNDET (IN or OUT), parity, etc.

After receiving the control words, the μ PD8251A/51AF are ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the μ PD8251A/51AF may receive serial data; and after receiving an entire character, the RxRDY

output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset RxRDY.

Note:

The μ PD8251A/51AF may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction (RxE). A dummy read is recommended to clear faulty RxRDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

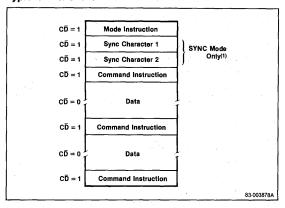
The μ PD8251A/51AF cannot transmit until the TxEN (transmitter enable) bit has been set by a command instruction and until the $\overline{\text{CTS}}$ (clear to send) input is a "zero". TxD is held in the "marking" state after reset awaiting new control words.

USART Programming

The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A RESET (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C/\overline{D}=1$) followed by a software reset command instruction (40 Hex) can be used to initialize the $\mu PD8251A/51AF$.

There are two control word formats:

- 1. Mode Instruction
- 2. Command Instruction


Mode Instruction

This control word specifies the general characteristics of the interface regarding the synchronous or asynchronous mode, baud rate factor, character length, parity, and number of stop bits. Once the mode instruction has been received, SYNC characters or command instructions may be inserted depending on the mode instruction content.

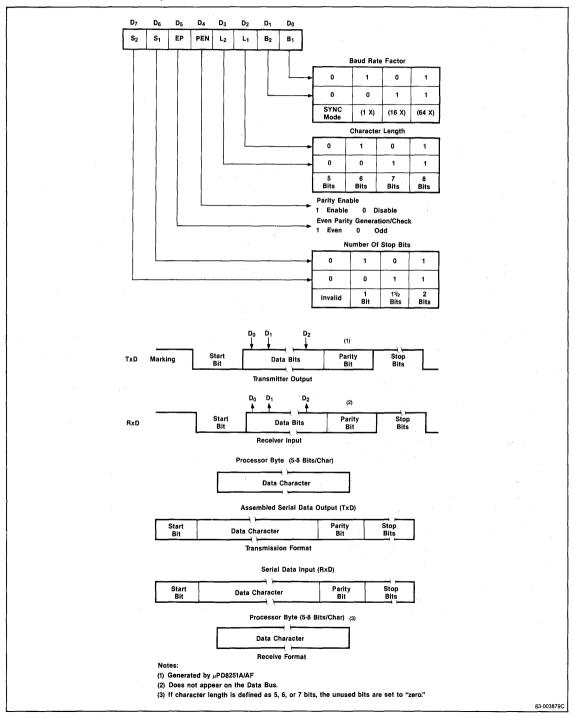
Command Instruction

This control word will be interpreted as a SYNC character definition if immediately preceded by a mode instruction which specified a synchronous format. After the SYNC character(s) are specified or after an asynchronous mode instruction, all subsequent control words will be interpreted as an update to the command instruction. Command instruction updates may occur at any time during the data block. To modify the mode instruction, a bit may be set in the command instruction which causes an internal reset which allows a new mode instruction to be accepted.

Typical Data Block

Mode Instruction Definition

The μ PD8251A/51AF can operate in either asynchronous or synchronous communication modes. Understanding how the mode instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components (one asynchronous and the other synchronous) which share the same support circuits and package. Although the format definition can be changed at will or "on the fly," the two modes will be explained separately for clarity.


Asynchronous Transmission

When a data character is written into $\mu PD8251A/51AF$, the USART automatically adds a start bit (low level or "space") and the number of stop bits (high level or "mark") specified by the mode instruction. If parity has been enabled, an odd or even parity bit is inserted just before the stop bit(s), as specified by the mode instruction. Then, depending on \overline{CTS} and \overline{TxEN} , the character may be transmitted as a serial data stream at the \overline{TxD} output. Data is shifted out by the falling edge of \overline{TxC} at $\overline{TxC}/\overline{TxC}/\overline{16}$ or $\overline{TxC}/\overline{64}$, as defined by the mode instruction.

If no data characters have been loaded into the μ PD8251A/51AF, or if all available characters have been transmitted, the TxD output remains "high" (marking) in preparation for sending the start bit of the next character provided by the processor TxD may be forced to send a break (continuously low) by setting the correct bit in the command instruction.

Mode Instruction Format for Asynchronous Mode

Asynchronous Receive

The RxD input line is normally held "high" (marking) by the transmitting device. A falling edge at RxD signals the possible beginning of a start bit and a new character. The start bit is checked by testing for a "low" at its nominal center as specified by the baud rate. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and stop bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the RxD pin with the rising edge of RxC. If a high is not detected for the stop bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid stop bit, the input character is loaded into the parallel data bus buffer of the µPD8251A/51AF and the RxRDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the command instruction. Error flag conditions will not stop subsequent USART operation.

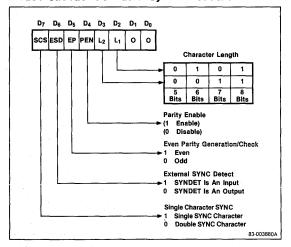
Synchronous Transmission

As in asynchronous transmission, the TxD output remains "high" (marking) until the μ PD8251A/51AF receive the first character (usually a SYNC character) from the processor. After a command instruction has set TxEN and after clear to send (CTS) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{\text{TxC}}$ and the same rate as $\overline{\text{TxC}}$.

Once transmission has started, synchronous mode format requires that the serial data stream at TxD continue at the $\overline{\text{TxC}}$ rate or SYNC will be lost. If a data character is not provided by the processor before the $\mu\text{PD8251A}/51\text{AF}$ transmit buffer becomes empty, the SYNC character(s) loaded directly following the mode instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the $\mu\text{PD8251A}/51\text{AF}$ become empty, and must send the SYNC character(s), the Tx-EMPTY output is raised to signal the processor that the transmitter buffer is empty and SYNC characters are begin transmitted. TxEMPTY is automatically reset by the next character from the processor.

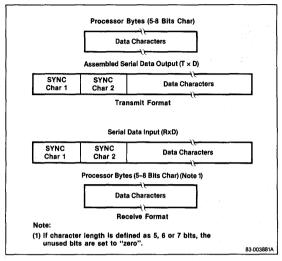
Synchronous Receive

In synchronous receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the enter hunt (EH) bit has been set by a command instruction, the receiver goes into the HUNT mode.


Incoming data on the RxD input is sampled on the rising edge of $\overline{\text{RxC}},$ and the receive buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the $\mu\text{PD8251A/51AF}$ leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a status read.

If external SYNC has been specified in the mode instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\text{RxC}}$ cycle will synchronize the USART.

Parity and overrun errors are treated the same in the synchronous as in the asynchronous mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the synchronous format.


The processor may command the receiver to enter the HUNT mode with a command instruction which sets enter hunt (EH) if synchronization is lost.

Mode Instruction Format for Synchronous Mode

Transmit/Receive Format Synchronous Mode

Command Instruction Format

After the functional definition of the μ PD8251A/51AF has been specified by the mode instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive command instructions and begin communication. A command instruction is used to control the specific operation of the format selected by the mode instruction. Enable transmit, enable receive, error reset and modem controls are controlled by the command instruction.

After the mode instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" ($C/\overline{D}=1$) will load or overwrite the command instruction register. A reset operation (internal via CMD IR or external via the RESET input) will cause the μ PD8251A/51AF to interpret the next "control write", which must immediately follow the reset, as a mode instruction.

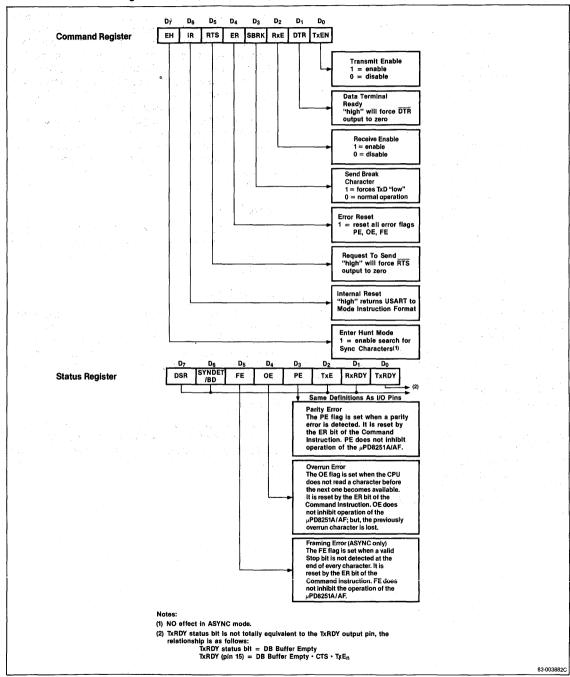
Status Read Format

It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The $\mu\text{PD8251A/51AF}$ have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the C/\overline{D} input "high" to obtain device status information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the $\mu\text{PD8251A/51AF}$ to be used in both polled and interrupt driven environments. Status update can have a maximum delay of 28 clock periods in the $\mu\text{PD8251A/51AF}$.

Parity Error

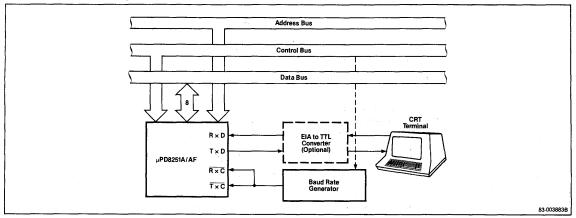
When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent command instruction. PE begin set does not inhibit USART operation.

Overrun Error

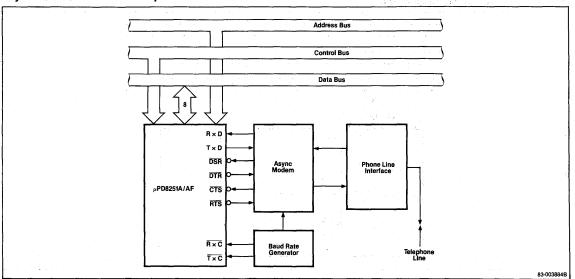

If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent command instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

Framing Error

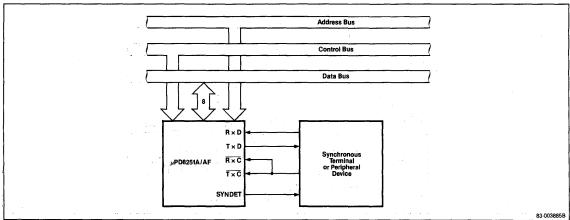
If a valid STOP bit is not detected at the end of a character, the FE flag is set (ASYUNC mode only). It is cleared by setting the ER bit in a subsequent command instruction. FE being set does not inhibit USART operation.



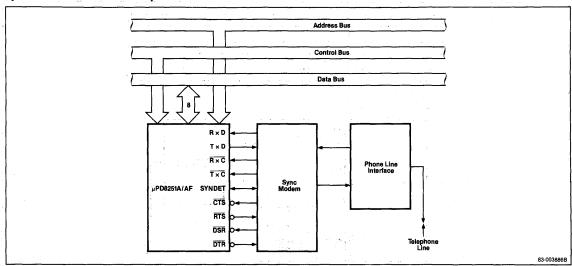
Command and Status Register Formats



Asynchronous Serial Interface to CRT Terminal, DC to 9600 Baud



Asynchronous Interface to Telephone Lines



Synchronous Interface to Terminal or Peripheral Device

Synchronous Interface to Telephone Lines

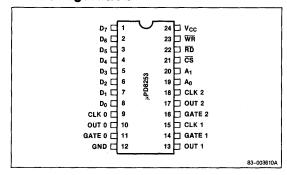
Description

The NEC μ PD8253 contains three independent, programmable, multi-model 16-bit counter/timers. It is designed as a general purpose device, fully compatible with the 8080 family. The μ PD8253 interfaces directly to the buses of the processor as an array of I/O ports.

The μ PD8253 can generate accurate time delays under the control of system software. The three independent 16-bit counters can be clocked at rates from DC to 5 MHz. The system software controls the loading and starting of the counters to provide accurate multiple time delays. The counter output flags the processor at the completion of the time-out cycles.

System overhead is greatly improved by relieving the software from the maintenance of timing loops. Some other common uses for the μ PD8253 in microprocessor based systems are:

- · Programmable baud rate generator
- Event counter
- Binary rate multiplier
- · Real time clock
- Digital one-shot
- Complex motor controller


Features

- ☐ Three independent 16-bit counters
- ☐ Clock rate: DC to 5 MHz
 - ☐ Binary count or BCD
- □ Single +5 V power supply, $\pm 10\%$

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD8253C-2	24-pin plastic DIP	5 MHz
μPD8253C-5	24-pin plastic DIP	4 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function
1-8	D ₇ -D ₀	Three-state data bus
9,15,18	CLK 0,1,2	Counter clock inputs 0-2
10,13,17	OUT 0,1,2	Counter outputs 0-2
11,14,16	GATE 0,1,2	Counter gate inputs 0-2
12	GND	Ground
19,20	A0,A1	Counter select
21	CS	Chip select
22	RD	Read counter
23	WR	Write command or data
24	V _{CC}	+5 V power supply

Pin Functions

D₇-D₀ (Data Bus)

These pins form a three-state, bidirectional data bus that interfaces with the 8080AF/8085 microprocessor system.

CLK 0.1,2 (Counter Clock Inputs 0-2)

CLK 0, CLK 1, and CLK 2 input the clock signal for counter 0, counter 1, and counter 2, respectively.

OUT 0,1,2 (Counter Outputs 0-2)

OUT 1, OUT 2, and OUT 3 are outputs signals for counter 0, counter 1, and counter 2, respectively.

GATE 0,1,2 (Counter Gate Inputs 0-2)

The GATE 0, GATE 1, and GATE 2 inputs gate counter 0, counter 1, and counter 2, respectively.

GND (Ground)

Connection to ground.

A₀, A₁ (Counter Select)

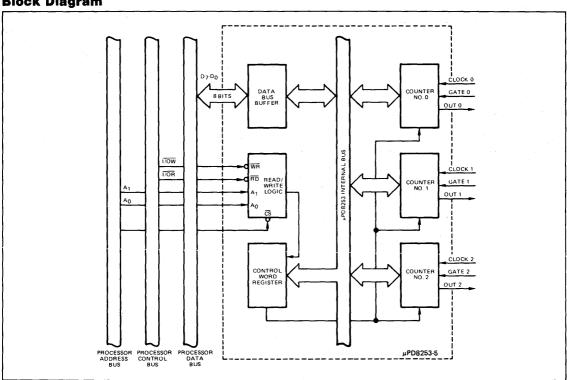
These inputs are normally connected to the processor's address bus. Their function is to select which of the three counters will be operated on, and to address the control word register for mode selection.

CS (Chip Select)

A low level input to this pin enables the μ PD8253. Reading and writing will not occur unless the device is selected. This input has no effect on the actual operation of the counters.

RD (Read Counter)

A low level input to this pin instructs the µPD8253 to send the selected counter value to the processor.


WR (Write Command or Data)

A low level input to this pin instructs the µPD8253 to receive mode information or counter input data from the processor.

Vcc

+5 V power supply.

Block Diagram

Functional Description

The three-state, bidirectional data bus buffer interfaces the μ PD8253 to the 8080AF/8085A microprocessor system. Data transfer is according to the input or output instructions executed by the processor. The data bus buffer has three basic functions:

- Programming the μPD8253 modes
- Loading the count registers
- · Reading the count values

The read/write logic controls the overall operation of the μ PD8253 and is governed by inputs received from the processor system bus.

When A_0 and A_1 are high level, data from the data bus buffer is stored in the control word register. This data controls the operational mode of the counters, the selection of BCD or binary counting, and the loading of the count registers.

Counters 0, 1, and 2 are identical 16-bit down counters that are functionally independent, allowing for separate mode configurations and counting operations. Each counter can operate in either binary or BCD. Gate, input, and output line configurations are determined by the operational mode data stored in the control word register. System software overhead can be reduced by allowing the control word to govern the loading of the count data.

It is possible to read the contents of a counter when it is operating, without disturbing its operation. The following table shows how the counters are manipulated by input signals to the read/write logic.

		_			
<u>cs</u>	RD	WR	A ₁	A ₀	Function
0	1	0	0	0	Load counter no. 0
0	1	0	0	1	Load counter no. 1
0	1	0	1	0	Load counter no. 2
0	1	0	1	1	Write mode word
0	0	1 .	0	0	Read counter no. 0
0	0	1	0	1	Read counter no. 1
0	0	1	1	0	Read counter no. 2
0	0	1.	1	1	No-operation, 3-state
1	Χ	Х	Χ	Х	Disable, 3-state
0	1	1	Х	X	No-operation, 3-state

Absolute Maximum Ratings

Operating temperature	0°C to +70°C
Storage temperature	-65°C to +150°C
Voltage on any pin	-0.5 to +7 volts (1)

Note:

(1) With respect to ground.

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25$ °C; $V_{CC} = GND = 0 V$

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	CIN			10	pF	f _C = 1 MHz
Input/Output capacitance	C _{1/0}			20	pF	Unmeasured pins returned to V _{SS}

DC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = +5 \text{ V} \pm 10\%$

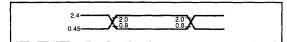
			Limit	s	* 1	Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	VIL	-0.5		0.8	٧	
Input high voltage	V _{IH} (1)	2.0	-	V _{CC} + 0.5	٧	
Output low voltage	V _{OL}			0.45	٧	$I_{0L} = 2.2 \text{ mA}$
Output high voltage	V _{OH}	2.4			٧	$I_{OH} = -400 \mu A$
Input load current	ΗL			±10	μΑ	$0 \le V_{IN} \le V_{CC}$
Output float leakage current	I _{OFL}			±10	μΑ	0.45 ≤ V _{OUT} ≤ V _{CC}
V _{CC} supply current	Icc			140	mΑ	

Note:

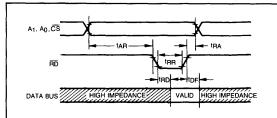
(1) V_{IH} 2.2 min for μPD8253-2.

AC Characteristics

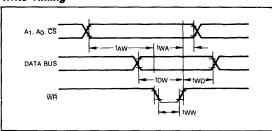
 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5 \text{ V } \pm 10\%; \text{ GND } = 0 \text{ V}$

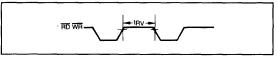

			nits 253-2	Lin µPD8			Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Read							
Address stable before READ	t _{AR}	30		0		ns	
Address hold time for READ	t _{RA}	0		0		ns	
READ pulse width	t _{RR}	200		250		ns	
Data delay from READ	t _{RD}		140		170	ns	$C_L = 150 \text{ pF}$
READ to data floating	t _{DF}	10	85	25	100	ns	C _L = 150 pF
Recovery time between READS	t _{RV}	200		1000		ns	· · · · · · · · · · · · · · · · · · ·
Write							
Address stable before WRITE	t _{AW}	0		0		ns	
Address hold time for WRITE	t _{WA}	0		0		ns	
WRITE pulse width	t _{WW}	160		250		ns	
Data set up time for WRITE	t _{DW}	130		150		ns	
Data hold time for WRITE	t _{WD}	0		0		ns	
Recovery time between WRITES	t _{RV}	200		1000		ns	
Clock and Gate Timing							
Clock period	t _{CLK}	200		250	DC	ns	
High pulse width	t _{PWH}	80		160		ns	
Low pulse width	tpWL	80		90	,	ns	
Gate pulse width high	t _{GW}	120		150		ns	
Gate set up time to clock †	t _{GS}	70		100		ns	
Gate hold time after clock †	t _{GH}	50		50		ns	
Low gate width	t _{GL}	120		100		ns	
Output delay from Clock ↓	t _{OD}		250		300	ns	C _L = 150 pF
Output delay from gate	topg		250		300	ns	$C_{L} = 150 \text{ pF}$

Note:

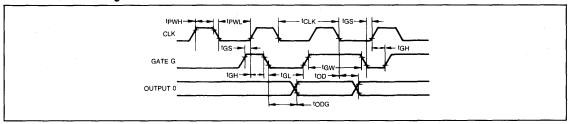

(1) AC timing measured at $V_{OH}\,=\,2.0$ V; $V_{OL}\,=\,0.8$ V.

Timing Waveforms


AC Test Conditions


Read Timing

Write Timing



Read and Write Timing

Clock and Gate Timing

Programming the μ PD8253

The programmer can select any of the six operational MODES for the counters using system software. Individual counter programming is accomplished by loading the CONTROL WORD REGISTER with the appropriate control word data $(A_0, A_1 = 11)$.

Control Word Format

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _O
SC ₁	SC ₀	RL ₁	RL ₀	M ₂	M ₁	M ₀	BCD

RL - Read/Load

RL ₁	RL ₀	
0	0	Counter latching operation
1	0	Read/Load most significant byte only
0	1	Read/Load least significant byte only
1	1	Read/Load least significant byte first, then most significant byte

SC - Select Counter

SC ₁	SC ₀	
0	0	Select counter 0
0	1	Select counter 1
1	0	Select counter 2
1	1	Invalid

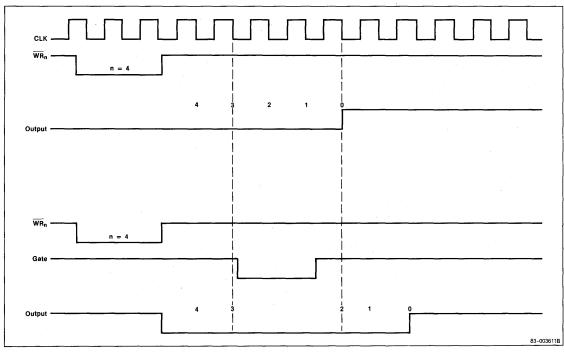
BCD

0	Binary counter, 16-bits
1	BCD counter, 4-decades

M-Mode

M ₂	M ₁	Mo		
0	0	. 0	Mode 0	
0	0	1	Mode 1	
Х	1	0	Mode 2	
Х	1	1	Mode 3	
1	0	0	Mode 4	
1	0	1	Mode 5	

Operational Modes

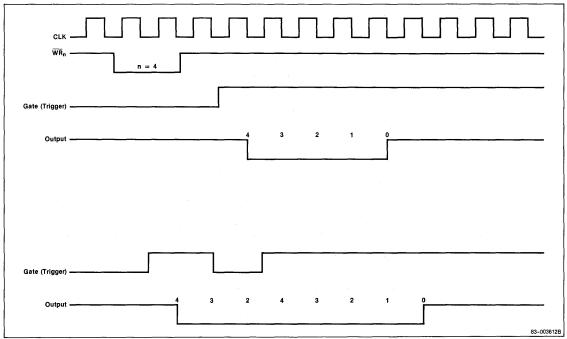

Each of the three counters can be individually programmed with different operating MODES by appropriately formatted control words. The following is a summary of the MODE operations.

Mode O: Interrupt on Terminal Count

The initial MODE set operation forces the OUTPUT low. When the specified counter is loaded with the count value, it will begin counting. The OUTPUT will

remain low until the terminal count sets it high. It will remain in the high state until the trailing edge of the second WR pulse loads in COUNT data. If data is loaded during the counting process, the first WR stops the count. Counting starts with the new count data triggered by the falling clock edge after the second WR. If a GATE pulse is asserted while counting, the count is terminated for the duration of GATE. The falling edge of CLK following the removal of GATE restarts counting from the terminated point.

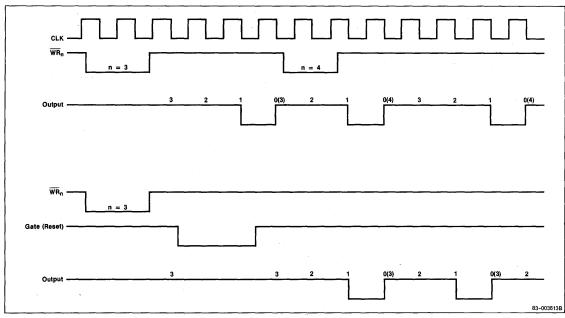
Mode 0: Interrupt on Terminal Count



Mode 1: Programmable One-Shot

The OUTPUT is set low by the falling edge of CLOCK following the trailing edge of GATE. The OUTPUT is set high again at the terminal count. The output pulse is not affected if new count data is loaded while the OUTPUT is low. The new data will be loaded on the rising edge of the next trigger pulse. The assertion of a trigger pulse while OUTPUT is low, resets and retriggers the one-shot. The OUTPUT will remain low for the full count value after the rising edge of TRIGGER.

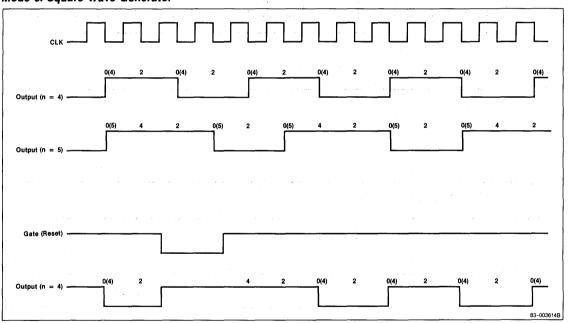
Mode 1: Programmable One-Shot



Mode 2: Rate Generator

The RATE GENERATOR is a variable modulus counter. The OUTPUT goes low for one full CLOCK period as shown in the following timing diagram. The count data sets the time between OUTPUT pulses. If the count register is reloaded between output pulses the present period will not be affected. The subsequent period will reflect the new value. The OUTPUT will remain high for the duration of the asserted GATE input. Normal operation resumes on the falling CLOCK edge following the rising edge of GATE.

Mode 2: Rate Generator

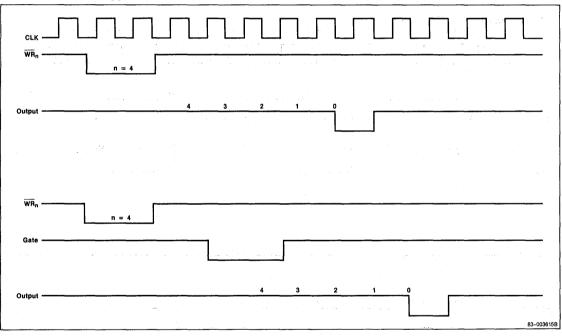


Mode 3: Square Wave Generator

MODE 3 resembles MODE 2 except the OUTPUT will be high for half of the count and low for the other half (for even values of data). For odd values of count data the OUTPUT. Put will be high one clock cycle longer than when it is low (High Period $\rightarrow \frac{N+1}{2}$ clock cycles; Low Period $\rightarrow \frac{N-1}{2}$ clock periods, where N is the decimal value of count data). If the count register is reloaded with a new value during counting, the new value will be reflected immediately after the output transition of the current count.

The OUTPUT will be held in the high state while GATE is asserted. Counting will start from the full count data after the GATE has been removed.

Mode 3: Square Wave Generator

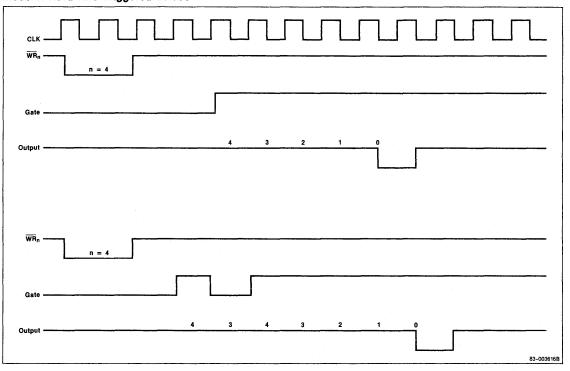


Mode 4: Software Triggered Strobe

The OUTPUT goes high when MODE 4 is set, and counting begins after the second byte of data has been loaded. When the terminal count is reached, the OUTPUT will pulse low for one clock period. Changes in count data are reflected in the OUTPUT as soon as the new data has been loaded into the count registers. During the loading of new data, the OUTPUT is held high and counting is inhibited.

The OUTPUT is held high for the duration of GATE. The counters are reset and counting begins from the full data value after GATE is removed.

Mode 4: Software Triggered Strobe



Mode 5: Hardware Triggered Strobe

Loading MODE 5 sets OUTPUT high. Counting begins when count data is loaded and GATE goes high. After terminal count is reached, the OUTPUT will pulse low for one clock period. Subsequent trigger pulses will restart the counting sequence with the OUTPUT pulsing low on terminal count following the last rising edge of the trigger input. (Reference the bottom half of the timing diagram.)

Mode 5: Hardware Triggered Strobe

and the state of the state of the state of

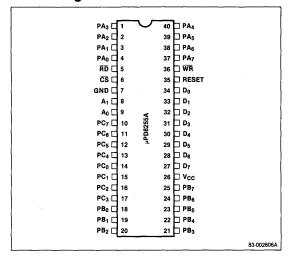
The second secon

and the engine of the control of the

8-68

Description

The μ PD8255A-2 and μ PD8255A-5 are general purpose programmable input/output devices designed for use with the 8080A/8085A microprocessors. Twenty-four I/O lines may be programmed in two groups of twelve (group I and group II) and used in three modes of operation. In the basic mode, (Mode 0), each group of twelve I/O pins may be programmed in sets of 4 to input or output. In the strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or output. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The bidirectional bus mode, (MODE 2), uses the 8 lines of port A for a bi-directional bus, and five lines from port C for bus control signals.


Features

- ☐ Fully compatible with the 8080A/8085 microprocessor families
- ☐ All inputs and outputs TTL compatible
- ☐ 24 programmable I/O pins
- ☐ Direct bit set/reset eases control application interfaces
- ☐ Eight Darlington drive outputs for printers and displays
- ☐ LSI drastically reduces system package count

Ordering Information

Part Number	Package Type	Max System Clock Frequency
μPD8255AC-2	40-pin plastic DIP	5 MHz
μPD8255AC-5	40-pin plastic DIP	4 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function	
1-4, 37-40	PA ₇ -PA ₀	Port A (I/O)	
5	RD	Read input	
6	CS	Chip select input	
7	GND	Ground	
8,9	A ₁ ,A ₀	Port address inputs	
10-17	PC ₇ -PC ₀	Port C (I/O)	
18-25	PB ₇ -PB ₀	Port B (1/0)	
26	V _{CC}	+5 V power supply	
27-34	D ₇ -D ₀	Bidirectional data bus	
35	RESET	Reset input	
36	WR	Write input	

Pin Functions

D₇-D₀ (Data Bus Buffer)

These pins form a three-state, bidirectional data bus buffer that is controlled by input and output instructions executed by the processor. Control words and status information are also transmitted via D₇-D₀.

CS (Chip Select)

A low input to this pin enables the μ PD8255A for communication with the 8080A/8085A.

RD (Read)

A low input to this pin enables the $\mu PD8255A$ for communication with the 8080A/8085A.

WR (Write)

A low input to this pin enables the data bus buffer to receive data or control words from the processor.

A₁, A₀ (Port Address)

These inputs are used in conjunction with \overline{CS} , \overline{RD} , and \overline{WR} to control the selection of one of the three ports on the control word register. A_0 and A_1 are usually connected to A_0 and A_1 of the processor address bus.

RESET (Reset)

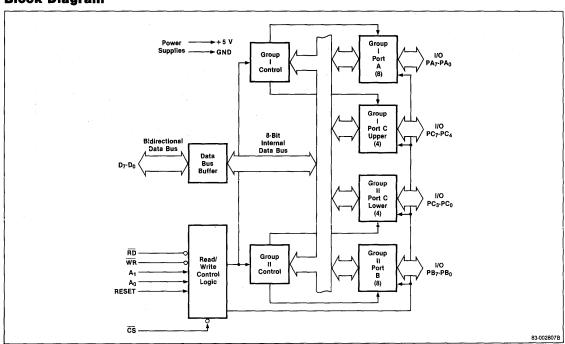
A high level input to this pin clears the control register and places ports A, B, and C in input mode. The input latches in ports A, B, and C are not cleared.

PA₇-PA₀, PB₇-PB₀, PC₇-PC₀ (Ports A, B, and C)

These three 8-bit I/O ports can be configured to meet a variety of functional requirements through system software. The effectiveness and flexibility of the μ PD8255A are further enhanced by special features unique to each of the ports, as follows:

- Port A has an 8-bit data output latch/buffer, data input latch/buffer, and data input latch.
- Port B has an 8-bit data I/O latch/buffer and an 8-bit data input buffer.
- Port C has an 8-bit output latch/buffer and a data input buffer (input not latched).

Port C may be divided into two independent 4-bit control and status ports for use with ports A and B.


Vcc

+5 V power supply.

GND (Ground)

Connection to ground.

Block Diagram

Functional Description

The read/write and control logic manages all internal and external transfers of data, control, and status. It is through this block that the processor address and control buses control the peripheral interfaces.

Through an OUT instruction in system software from the processor, a control word is transmitted to the μ PD8255A. Information such as the mode, bit set, and bit reset is used to initialize the functional configuration of each I/O port.

Both group I and group II accept commands from the read/write control logic and control words from the internal data bus and in turn controls its associated I/O ports, as follows:

- Group I: port A and upper port C (PC7-PC4)
- Group II: port B and lower port C (PC3-PC0)

While the control word register can be written to, the contents cannot be read back to the processor.

Absolute Maximum Ratings

 $T_A = 25$ °C

Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Voltage on any pin with respect to V _{SS}	-0.5 to +7 V

Comment: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = +5 \text{ V} \pm 10\%; V_{SS} = 0 \text{ V}$

		Limits			
Parameter	Symbol	Min	Max	Unit	Test Conditions
Input low voltage	V _{IL}	-0.5	0.8	V	
Input high voltage	V _{IH}	2	V _{CC}	٧	
Output low voltage	V _{OL}		0.45	٧	(2)
Output high voltage	V _{OH}	2.4		V	(3)
Darlington drive current	I _{OH} (1)	-1	-4	mA	$V_{EXT} = 1.5 \text{ V}$ $R_{EXT} = 750\Omega$
Power supply current	lcc		120	mA	$V_{CC} = +5 \text{ V},$ output open
Input leakage current	lLIH		10	μΑ	$V_{IN} = V = V_{CC}$
Input leakage current	ILIL		-10	μΑ	$V_{JN} = 0.4 \text{ V}$
Output leakage current	ILOH		±10	μΑ	$V_{OUT} = V_{CC};$ CS = 2.0 V
Output leakage current	ILOL		-10	μΑ	$V_{OUT} = 0.4 \text{ V};$ CS = 2.0 V

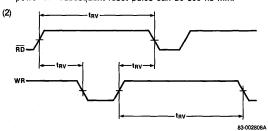
Note:

- Any set of eight outputs from either port A, B, C can source 4 mA into 1.5 V.
- (2) I_{OL} = 2.5 mA for DB port; 1.7 mA for peripheral ports.
- (3) $I_{OH} = -400\mu A$ for DB port; $-200 \mu A$ for peripheral ports.

Capacitance

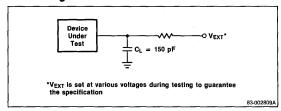
 $T_A = 25$ °C; $V_{CC} = 0$ V

		Li		Test	
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	CI		10	pF	f _C = 1 MHz
I/O capacitance	C _{IO}		20	pF	Unmeasured pins returned to V _{SS}


AC Characteristics

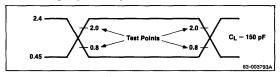
 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5 \text{ V } \pm 5\%; V_{SS} = 0 \text{ V}$

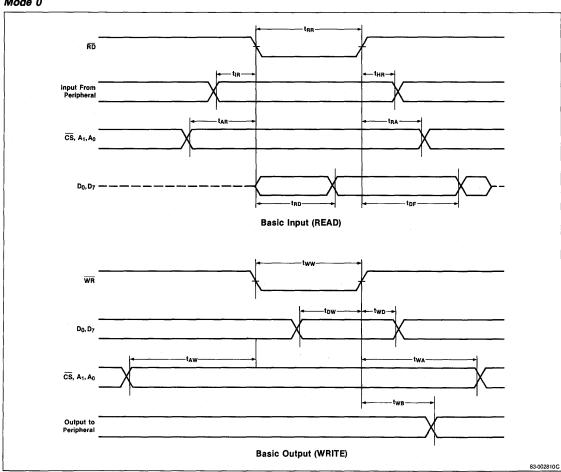
Parameter	Symbol	8255A-2 Limits		8255A-5 Limits			Test
		Min	Max	Min	Max	Unit	Conditions
Address stable before READ	tAR	0		0		ns	
Address stable after READ	t _{RA}	0		0		ns	
READ pulse width	t _{RR}	200		250		ns	
Data valid from READ	t _{RD}		140	-	170	ns	C _L = 150 pF
Data float after READ	t _{DF}	10	100	10	100	ns ns	$C_{L} = 100 \text{ pF}$ $C_{L} = 15 \text{ pF}$
Time between READS and /WRITES	t _{RV}	200		850		ns	(Note 2)
Write							
Address stable before WRITE	t _{AW}	0		0		ns	
Address stable after WRITE	t _{WA}	20		20		ns	
WRITE pulse width	tww	200		250		ns	
Data valid to WRITE (T.E.)	t _{DW}	100		100		ns	
Data valid after WRITE	t _{WD}	0		0		ns	
Other Timing							
WR = 0 to output	t _{WB}		350		350	ns	C _L = 150 pF
Peripheral data before RD	t _{IR}	0		0		ns	
Peripheral data after RD	t _{HR}	0		0		ns	
ACK pulse width	t _{AK}	300		300		ns	
STB pulse width	t _{ST}	350		350		ns	
Per. data before T.E. of STB	tps	0		0		ns	
Per. data after T.E. of STB	t _{PH}	150		150		ns	
ACK = 0 to output	t _{AD}		300		300	ns	$C_L = 150 pF$
ACK = 0 to output float	t _{KD}	20	250	20	250	ns	$C_L = 50 \text{ pF}$ $C_L = 15 \text{ pF}$
WR = 1 to OBF = 0	t _{WOB}		300		650	ns	
ACK = 0 to OBF = 1	t _{AOB}		350		350	ns	
STB = 0 to IBF = 1	t _{SIB}		300		300	ns	
$\overrightarrow{RD} = 1$ to $IBF = 0$	t _{RIB}	-	300		300	ns	
$\overline{RD} = 0$ to INTR = 0	t _{RIT}		400		400	ns	···
STB = 1 to INTR = 1	tsiT		300		300	ns	C _L = 150 pF
ACK = 1 to INTR = 1	t _{AlT}		350		350	ns	
$\overline{NR} = 0$ to INTR = 0	t _{WIT}		450		850	ns	C ₁ = 150 pF (Note


Note:

(1) Period of reset pulse must be at least 50 μs during or after power on. Subsequent reset pulse can be 500 ns min.

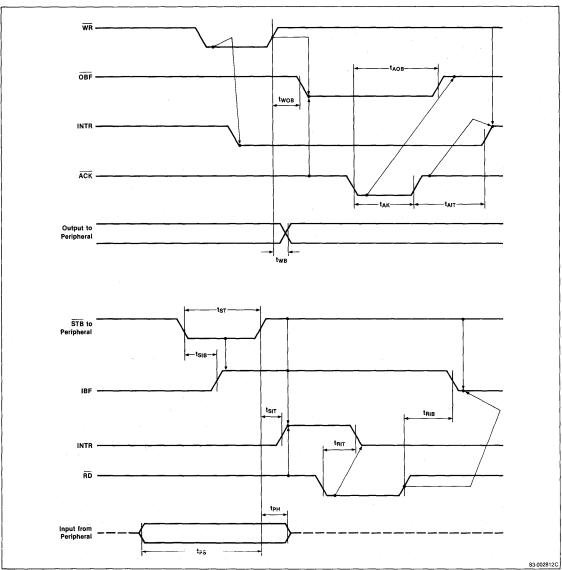
(3) INTR1 may occur as early as WR↓.


AC Testing Load Circuit

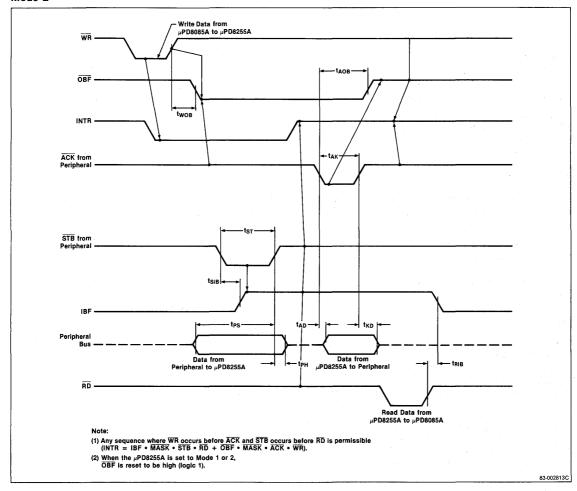


Timing Waveforms

AC Testing Input, Output Waveform



Mode 0



Mode 1

Mode 2

Modes

The μ PD8255A can be operated in modes 0, 1 or 2 which are selected by appropriate control words and are detailed below.

Mode 0

Mode 0 provides basic input and output operations through each of the ports A, B, and C. Output data is latched and input data follows the peripheral. No "handshaking" strobes are needed.

- 16 different configurations in mode 0
- Two 8-bit ports and two 4-bit ports
- Inputs are not latched
- Outputs are latched

Mode 1

Mode 1 provides for strobed input and output operations with data transferred through port A or B and handshaking through port C.

- Two I/O groups (I and II)
- Both groups contain an 8-bit data port and a 4-bit control/data port
- Both 8-bit data ports can be either latched input or latched output

Mode 2

Mode 2 provides for strobed bidirectional operation using PA_0PA_{-7} as the bidirectional latched data bus. PC_3PC_7 is used for interrupts and "handshaking" bus flow control similar to mode 1. Note that PB_0PB_7 and PC_0PC_2 may be defined as mode 0 or 1, input or output in conjunction with port A in mode 2.

- An 8-bit latched bidirectional bus port (PA₀-PA₇) and a 5-bit control port (PC₃PC₇)
- Both inputs and outputs are latched
- An additional 8-bit input or output port with a 3-bit control port.

Basic Operation

Input Operation (Read)

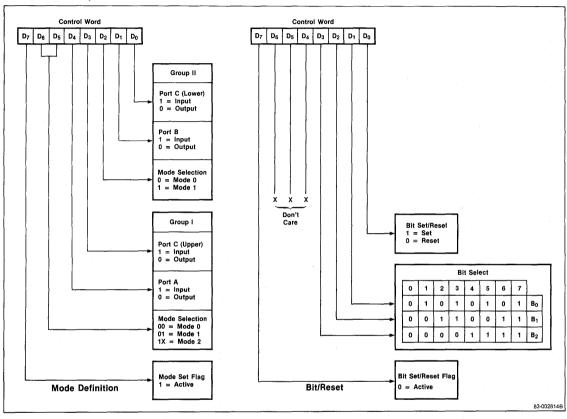
A ₁	A ₀	RD	WR	CS	
0	0	0	1	0	PORT A → DATA BUS
0	1	0	. 1	0	PORT B → DATA BUS
1	0	0	1	0	PORT C → DATA BUS

Output Operation (Write)

A ₁	A ₀	RD	WR	CS	
0	0	1	0	0	DATA BUS → PORT A
0	1	1	0	0	DATA BUS → PORT B
1	0	1	0	0	DATA BUS → PORT C
1	1	1	0	0	DATA BUS -> CONTROL

Disable Function

A ₁	A ₀	RD	WR	CS	
Х	Х	Х	Х	1	DATA BUS → HIGH Z STATE
X	X	1	1	0	DATA BUS → HIGH Z STATE


Note:

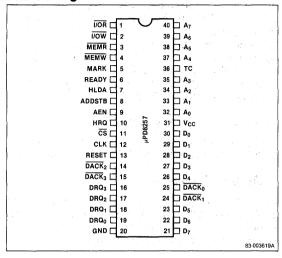
- (1) X means "DO NOT CARE"
- (2) All conditions not listed are illegal and should be avoided.

Formats

Mode Definition, Bit/Rest Format

Description

The uPD8257 is a programmable four-channel direct memory access (DMA) controller. It is designed to simplify high-speed transfers between peripheral devices and memories. Upon a peripheral request, the μPD8257 generates a sequential memory address. thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the µPD8257 so that the system bus may be acquired by the generation of a single HOLD command to the 8080A. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other uPD8257 devices for systems requiring more than four DMA channels.


Features

- ☐ Four-channel DMA controller
- ☐ Priority DMA request logic
- ☐ Channel inhibit logic
- ☐ Terminal count and modulo 128 outputs
- ☐ Automatic load mode
- ☐ Single TTL clock
- \square Single +5 V ± 10% power supply
- ☐ Expandable
- ☐ Available in extended temperature range

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD8257C-2	40-pin plastic DIP	5 MHz
μPD8257C-5	40-pin plastic DIP	3 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function
×1	I/OR	I/O read, control signal
2	I/OW	I/O write, control signal
3	MEMR	Memory read output
4	MEMW	Memory write output
5	MARK	Modulo 128 mark
6	READY	Ready input
7	HLDA	Hold acknowledge input (from 8080A)
8	ADDSTB	Address strobe output
9	AEN	Address enable output
10	HRQ	Hold request (to 8080A)
11	CS	Chip select input
12	CLK	Clock input
13	RESET	Reset input
14, 15, 24, 25	DACK ₂ , DACK ₃ , DACK ₁ , DACK ₀	DMA acknowledge output
16-19	DRQ3-DRQ0	DMA request input
20	GND	Ground
21-23, 26-30	D ₇ -D ₅ , D ₄ -D ₀	I/O data bus
31	V _{CC}	+5 V power supply
32-35	A ₀ -A ₃	I/O address bus
36	TC	Terminal count output
37-40	A ₄ -A ₇	Output address bus

Pin Functions

D₀-D₇ (I/O Data Bus)

During an I/O read, the CPU enables these lines as inputs, allowing it to read an address register, a word count register, or the status or temporary register. During an I/O write, these lines are enabled as outputs, allowing the CPU to program the μ PD8257-2/-5 control registers. During DMA cycles, the eight MSBs of the address are output to the data bus to be strobed to an external latch via ADDSTB.

A₄-A₇ (Output Address Bus)

These lines, active only during DMA service, are outputs that provide the four MSBs of the address.

A₀-A₃ (I/O Address Bus)

During DMA active states, these lines are outputs that provide the 4 LSBs of the output address bus. During DMA idle states, these lines are inputs, allowing the CPU to load or examine control registers.

DRQ₀-DRQ₃ (DMA Request Input)

These are asynchronous channel request inputs used by peripherals to request $\dot{D}MA$ service. In a fixed priority scheme, DRQ_0 has the highest priority and DRQ_3 has the lowest. The polarity of these lines is programmable; however, reset initializes them to active high.

HLDA (Hold Acknowledge)

Indicates that the CPU has relinquished control of the system busses.

HRQ (Hold Request)

Requests control of the system bus. The μ PD8257-2/-5 issues this signal in response to software requests or DRQ inputs from peripherals.

DACK₀-DACK₃ (DMA Acknowledge Output)

These lines indicate an active channel. They are sometimes used to select a peripheral. Only one DACK may be active at any time. All DACK lines are inactive unless DMA has control of the bus. The polarity of these lines is programmable; however, reset initializes them to active low.

TC (Terminal Count)

When the terminal count occurs, TC goes high, informing the CPU that the data transfer is complete.

RESET

Clears the command, status, request, and temporary registers, the first/last flip flop, and sets the mask register. The μ PD8257-2/-5 is in idle state after a reset.

CS (Chip Select)

The CPU uses $\overline{\text{CS}}$ to select the $\mu\text{PD8257-2/-5}$ as an I/O device during an I/O read or write by the CPU. This provides CPU communication on the data bus. $\overline{\text{CS}}$ may be held low during multiple transfers to or from the $\mu\text{PD8257-2/-5}$ as long as $\overline{\text{I/OR}}$ or $\overline{\text{I/OW}}$ is toggled following each transfer.

READY

This signal can extend memory read and write pulses for slow memories or I/O peripherals.

CLK (Clock)

Controls internal operations and data transfer rate.

AEN (Address Enable)

This signal allows the external latch to output the upper address byte by disabling the system bus during DMA cycles. Use HLDA and AEN to deselect I/O peripherals that may be erroneously accessed during DMA transfers. The μ PD8257-2/-5 deselects itself during DMA transfers.

ADDSTB (Address Strobe)

This signal strobes the upper address byte form $D_0\text{-}D_7$ into an external latch.

MEMR (Memory Read)

This signal accesses data from a specified memory location during memory-to-peripheral or memory-to-memory transfers.

MEMW (Memory Write)

This signal writes data to a specified memory location during peripheral-to-memory or memory-to-memory transfers.

I/OR (I/O Read)

In the idle state, this signal is an input control line used by the CPU to read control registers. In the active state, the μ PD8257-2/-5 uses I/OR as an output control signal to access data from a peripheral during a DMA write.

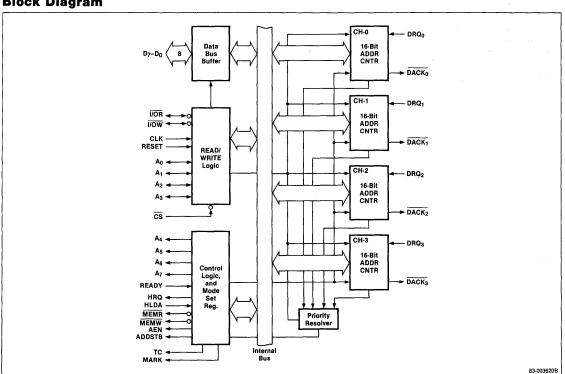
I/OW (I/O Write)

In the idle state, the CPU uses I/OW as an input control signal to load information to the μ PD8257-2/-5. In the active state, the µPD8257-2/-5 uses I/OW as an output control signal to load data to a peripheral during a DMA read.

The rising edge of WR must follow each data byte transfer in order for the CPU to write to the μPD8257-2/-5. Holding I/OW low while toggling CS does not produce the same effect.

MARK (Modulo 128 Mark)

This output notifies the selected peripheral that the current DMA cycle is the 128th cycle since the previous MARK output. MARK always occurs at 128 (and all multiples of 128) cycles from the end of the data block.


Vcc

Power supply.

GND

Ground.

Block Diagram

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

Operating temperature, T _{OPT}	0°C to 70°C
Storage temperature, T _{STG}	-65°C to +150°C
Power supply voltage, V _{CC}	-0.5 V to +7 V (1)
Power dissipation	1 Watt

Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

(1) With respect to Ground

DC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = +5 \text{ V } \pm 10\% \text{ GND} = 0 \text{ V}$

		Lir	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input low voltage	V _{IL}	-0.5	0.8	٧	
Input high voltage	V _{IH}	2.0	V _{CC} +0.5	٧	
Output low voltage	V _{OL}		0.45	٧	$I_{OL} = 1.6 \text{ mA}$
Output high voltage	V _{OH}	2.4	V _{CC}	V	$l_{OH} = -150 \mu A$ for AB, DB and AEN $l_{OH} = -80 \mu A$ for others
HRQ output high voltage	V _{HH}	3.3	V _{CC}	V	$I_{OH} = -80 \mu A$
Power supply	Icc		100	mA	8257-2
current		-	120	mA	8257-5
Input leakage	IIL	-10	10	μΑ	$0 \le V_{IN} \le V_{CC}$
Output leakage during float	l _{OFL}	- 10	10	μΑ	0.45 ≤ V _{OUT} ≤V _{CC}

Capacitance

 $T_A = 25$ °C; $V_{CC} = GND = 0 V$

			Limits			Test
Parameter.	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C _f :			10	pF	f _c = 1 MHz
1/0 capacitance	C _{1/0}	-		20	pF	Unmeasured pins returned to GND

AC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = 5 \text{ V} \pm 10$ %; GND = 0 V

			Lin	nits			
		μ PD8257-2		μ PD8257-5			Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Read							
ADR or CS↓ Setup to RD↓	t _{AR}	0				ns	
ADR or CS → hold from RDt	t _{RA}	0				ns	
Data Access from RD↓	t _{RDE}	0	140	0	170	ns	C _L = 100 pF
DB → float delay from RD↑	t _{RDF}	10	85	20	100	ns	$C_{L} = 100 \text{ pF}$
RD width	t _{RW}	200		250		ns	
Write	:						
ADR setup to WR↓	t _{AW}	20				ns	
ADR hold from WRt	t _{WA}	0				ns	
Data setup to WR↓	t _{DW}	100		200		ns	
Data hold from WRt	twD	0				ns	
WR width	twws	100		200		ns	
Other timing				<u> </u>			
Reset pulse width	trstw	300		300		ns	4-
Power supply ↑(V _{CC}) setup to reset↓	t _{RSTD}	500		500		μS	
Signal rise & fall times	t _r , t _f		20		20		
Reset to first IOWR	t _{RSTS}	2		2		t _{CY}	

Note:

(1) All timing measurements are made at the following reference voltages unless specified otherwise: input "1" at 2.0 V, "0" at 0.8 V, output "1" at 2.0 V, "0" at 0.8 V.

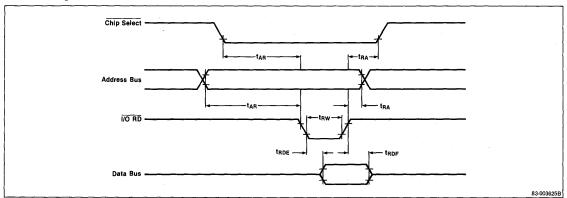
AC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = +5 \text{ V} \pm 10\%$; GND = 0 V

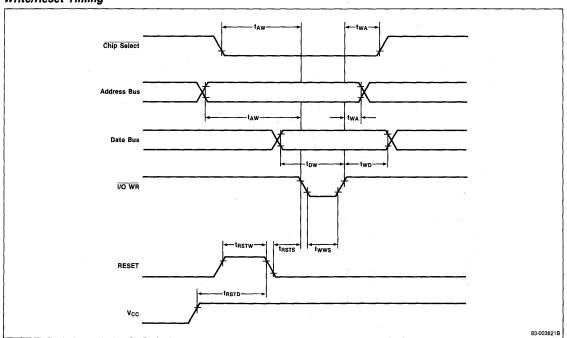
			Limi	ts			
		μ PD825 7	μ PD8257-2		7-5		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Cycle time (period)	t _{CY}	0.200	4	0.320	4	μS	
Clock active (high)	tθ	80		80	.8t _{CY}	ns	
DRQ↑ setup to θ↓ (SI, S4)	tas	50		120			
DRQ↓ hold from HLDA↑	tah	0		0			(4)
HRQ↑ or ↓ delay from <i>θ</i> ↑ (SI, S4) measured at 2.0 V)	t _{DQ}		160		160	ns	
HRQ↑ or ↓delay from θ↑ (SI, S4)	t _{HS}		200	100	250	ns	(3)
HLDA↑ or √setup to θ√ (SI, S4)	t _{HS}	50		100		ns	
AEN↑ delay from θ↓ (S1)	t _{AEL}		150		300	ns	
AEN↓ delay from θ↑ (SI)	t _{AET}		150		200	ns	
ADR (AB) (active) delay from AEN† (S1)	t _{AEA}	20		20		ns	(4)
ADR (AB) (active) delay from θ † (S1)	t _{FAAB}		200		250	ns	(2)
ADR (AB) (float) delay from 6↑ (SI)	t _{AFAB}		150		150	ns	(2)
ADR (AB) (stable) delay from $\theta\uparrow$ (S1)	tasm		200		250	ns	(2)
DR (AB) (stable) hold from θ [†] (S1)	t _{AH}	t _{ASM} -50		t _{ASM} 50			(2)
ADR (AB) (valid) hold from RDt (S2, SI)	t _{AHR}	60		60		ns	(4)

AC Characteristics (cont)

			Lin	ilts			
		μ PD825 7	1-2	μ PD825 7	-5		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
ADR (AB) (valid) hold from WR† (S1, SI)	t _{AHW}	100		300		ns	(4)
ADR (DB) (active) delay from θ1 (S1)	t _{FADB}		150		300	ns	(2)
ADR (DB) (float) delay from $\theta \uparrow$ (S2)	t _{AFDB}	tstt	140	t _{STT} + 20	170	ns	(2)
ADR (DB) setup to ADR STB↓ (S1-S2)	t _{ASS}	100		100		ns	(4)
ADR (DB) (valid) hold from ADR STB4 (S2)	t _{AHS}	20		50		ns	(4)
ADR STB† delay from 0† (S1)	t _{STL}		150		200	ns	
ADR STB↓ delay from 01 (S2)	tstt		140		140	ns	
ADR STB width (S1-S2)	T _{SW}	t _{CY} -100		t _{CY} -100		ns	(4)
RD↓ or WR (ext)↓ delay from ADR STB↓ (S2)	tasc	20		70		ns	(4)
RD↓ or WR (ext)↓ delay from ADR (DB) (float) (S2)	t _{DBC}	0		20		ns	(4)
DACK† or ↓delay from θ ↓ (S2, S1) and TC/Mark† delay from θ ↑ (S3) and TC/Mark↓ delay from θ ↑ (S4)	t _{AK}		200		250	ns	(5)
RD↓ or WR (ext) ↓ delay from 01 (S2) and WR↓ delay from 01 (S3)	t _{DCL}		150		200	ns	(2) (6)
RDt delay from θ↓ (S1, SI) and WRt delay from θt (S4)	t _{DCT}		150		200	ns	(2) (7)
RD or WR (active) from $\theta \uparrow$ (S1)	t _{FAC}		200		300	ns	(2)
RD or WR (float) from ⊕↑ (SI)	t _{AFC}		150		150	ns	(2)
RD width (S2-S1 or SI)	T _{RWM}	2t _{CY} + t ₀ -50		2t _{CY} + t _θ -50		ns	(4)
WR width (S3-S4)	twwm	t _{CY} -50		t _{CY} -50		ns	(4)
WR (ext) width (S2-S4)	twwme	2t _{CY} -50		2t _{CY} -50		ns	(4)
READY set up time to 6↑ (S3, Sw)	t _{RS}	30		30		ns	
READY hold time from 01 (S3, Sw)	t _{RH}	30		30		ns	

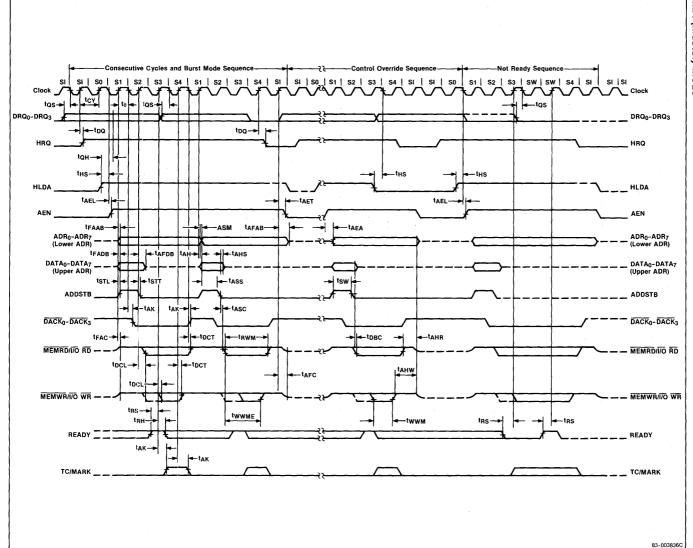

Note:

- (1) Load = 1 TTL (2) Load = 50 pF (3) Load = V_{OH} = 3.3 V (4) Tracking specification (5) $\triangle^{\dagger}_{TAK} \le 50$ ns (6) $\triangle^{\dagger}_{DCL} \le 50$ ns (7) $\triangle^{\dagger}_{DCT} \le 50$ ns



Timing Waveforms

Read Timing


Write/Reset Timing

NEC

Timing Waveforms (cont)

DMA (Master) Mode

Functional Description

The μ PD8257 is a programmable, direct memory Access (DMA) device. When used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080A/8085A based systems. Once initialized by an 8080A/8085A CPU, the μ PD8257 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU. It will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occurs within the μ PD8257.

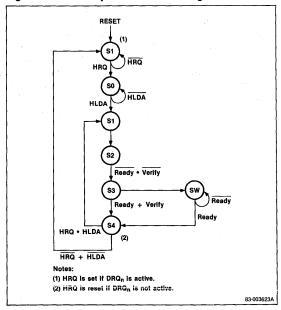
- It acquires control of the system bus (placing 8080A/8085A in hold mode).
- (2) Resolves priority conflicts if multiple DMA requests are made.
- (3) A 16-bit memory address word is generated with the aid of an 8212 in the following manner:
 - (a) The μ PD8257 outputs the least significant eight bits (A₀-A₇) which go directly onto the address bus.
 - (b) The μPD8257 outputs the most significant eight bits (A₈-A₁₅) onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.
- (4) The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.

Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA request (DRQ $_{\rm n}$). The μ PD8257 retains control of the system bus as long as DRQ $_{\rm n}$ remains high or until the terminal count (TC) is reached. When the terminal count occurs, TC goes high, informing the CPU that the operation is complete.

There are three different modes of operation:

- (1) DMA read, which causes data to be transferred from memory to a peripheral;
- (2) DMA write, which causes data to be transferred from a peripheral to memory; and
- (3) DMA verify, which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the $\mu PD8257$. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control signals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (cycle redundancy code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.



DMA Operation

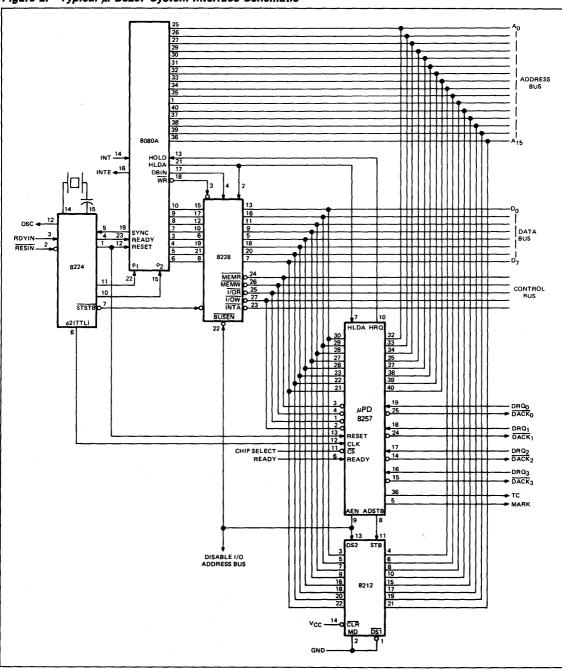
As shown in figure 1, internally the μ PD8257 contains six different states (S0, S1, S2, S3, S4 and SW). The duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA requests (DRQ_n). Then the μ PD8257 enters the S0 state, during which a hold request (HRQ) is sent to the 8080A/8085A and the μ PD8257 waits in S0 until the 8080A/8085A issues a hold acknowledge (HLDA) back. During S0, DMA requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme).

After receipt of HLDA, the DMA acknowledge line $(DACK_n)$ with the highest priority is driven low, selecting that particular peripheral for the DMA cycle. The DMA request line (DRQ_n) must remain high until either a DMA acknowledge $(DACK_n)$ or both $DACK_n$ and TC (terminal count) occur, indicating the end of a block or sector transfer (burst model).

Figure 1. DMA Operation State Diagram

The DMA cycle consists of four internal states; S1, S2, S3, and S4. If the access time of the memory or I/O device is not fast enough to return a ready command to the μ PD8257 after it reaches state S3, then a wait state is initiated (SW). One or more than one wait state occurs until a ready signal is received, and the μ PD8257 is allowed to go into state S4. Either the extended write option or the DMA verify mode may eliminate any wait state.

If the μ PD8257 should lose control of the system bus, (i.e., HLDA goes low) then the current DMA cycle is completed; the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (t_{RS}), write setup time (t_{DW}), read data access time (t_{RD}), and HLDA setup time (t_{QS}) should all be carefully observed during the handshaking mode between the μ PD8257 and the 8080A/8085A.


During DMA write cycles, the I/O Read (I/O R) output is generated at the beginning of state S2 and the memory write (MEMW) output is generated at the beginning of S3. During DMA read cycles, the memory read (MEMR) output is generated at the beginning of state S2 and the I/O write (I/O W) goes low at the beginning of state S3. No read or write control signals are generated during DMA verify cycles.

System Interface

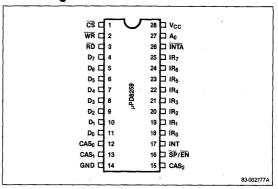
Figure 2 is the schematic diagram of a μ PD8257 system interface with the 8080A CPU, 8212 I/O Port, 8224 Clock Generator, and 8228 System Controller and Bus Driver.

Figure 2. Typical µPD8257 System Interface Schematic

μPD8259A PROGRAMMABLE INTERRUPT CONTROLLER

Description

The μ PD8259A is a programmable interrupt controller directly compatible with the 8080A/8085A/8086/8088 microprocessors. It can service eight levels of interrupts and contains on-chip logic to expand interrupt capabilities up to 64 levels with the addition of other μ PD8259A's. The user can choose a selection of priority algorithms to tailor the priority processing to meet his system requirements. These algorithms can be dynamically modified during operation, which expands the versatility of the system. The μ PD8259A is completely upward compatible with the μ PD8259A, allowing software written for the μ PD8259-5 to run on the μ PD8259A/-2.


Features

☐ Eight-level priority controller
☐ Programmable base vector address
☐ Expandable to 64 levels
☐ Programmable interrupt modes (algorithms)
☐ Individual request mask capability
☐ Single +5 V power supply (no clocks)
☐ Full compatibility with 8080A/8085A/8086/8088

Ordering Information

Part	
Number	Package Type
μPD8259AC	28-pin plastic DIF
μPD8259AC-2	28-pin plastic DIF

Pin Configuration

Pin Identification

No.	Symbol	Function
1	CS	Chip select input
2	WR	Write input
3	RD	Read input
4-11	D ₇ -D ₀	Bidirectional data bus
12, 13, 15	CAS ₀ -CAS ₂	Cascade lines
14	GND	Ground
16	SP/EN	Slave program input / enable buffer output
17	INT	Interrupt output
18-25	IR ₀ -IR ₇	Interrupt request inputs
26	INTA	Interrupt acknowledge input
27	A ₀	Command select address input
28	V _{CC}	+5 V power supply

Pin Functions

Bidirectional Data Bus (D7-D0)

Three-state data bus used for interfacing to the system data bus. This bus carries control words, status information, and interrupt vector information.

Interrupt Request Inputs (IR₀-IR₇)

These are eight asynchronous inputs that operate in two modes. In the edge-triggered mode, the IR input must be raised from low to high and held high until it is acknowledged. In the level-triggered mode, the IR input requires only a high.

Cascade Lines (CAS₀-CAS₂)

These lines are used as a bus which controls multiple μ PD8259As in a master/slave configuration. When an μ PD8259A is a master, these lines are outputs. When a μ PD8259A is used as a slave, the lines are inputs.

Chip Select (CS)

When $\overline{\text{CS}}$ is low, the CPU can read and write to the $\mu\text{PD8259A}$. The INTA input operates independently of $\overline{\text{CS}}$

Command Select Address Input (A₀)

The μ PD8259A uses this input with \overline{CS} and \overline{WR} to decode command words written by the CPU. A_0 is used with \overline{CS} and \overline{RD} to decode controller status information for the CPU to read. Typically, A_0 is connected to the A_0 address lines on the CPU.

Interrupt (INT)

When the μ PD8259A receives a valid interrupt request, the INT output goes high to interrupt the CPU. This pin should be connected directly to the interrupt pin on the CPU.

Interrupt Acknowledge (INTA)

This input line goes active low to indicate that the CPU has received an interrupt request from the μ PD8259A. INTA enables interrupt vector data onto the data bus.

Read Input (RD)

When both $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are low, the $\mu\text{PD8259A}$ sends its status information to the data bus so the CPU can read it.

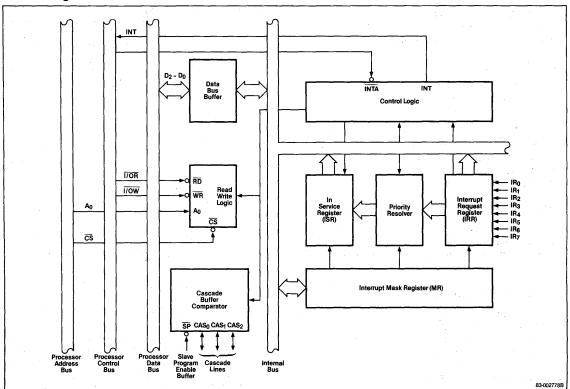
Write Input (WR)

The μ PD8259A <u>can</u> receive command words from the CPU when both WR and $\overline{\text{CS}}$ are low.

Slave Program Input/Enable Buffer Output (SP/EN)

This is a dual function pin. In the buffered mode, the enable buffer output is used to enable the buffer transceivers. In the non-buffered mode, when the \overline{SP} input is high, the μ PD8259A operates as a master and when the \overline{SP} input is low, the μ PD8259A operates as a slave.

Ground (GND)


Ground

Power Supply (V_{CC})

Power supply input, +5 volts.

Block Diagram

Block Diagram Description

Interrupt Request Register (IRR) and In-Service Register (ISR)

The interrupt request and in-service registers store the incoming interrupt request signals appearing on the IR0-IR7 lines. The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR. Refer to functional block diagram.

A positive transition on an IR input sets the corresponding bit in the interrupt request register. At the same time, the INT output of the μ PD8259A is set high. The IR input line must remain high until the first INTA input has been received. Multiple non-masked interrupts occurring simultaneously can be stored in the IRR. The incoming INTA sets the appropriate ISR bit, which is determined by the programmed interrupt algorithm, and resets the corresponding IRR bit. The ISR bit stays active high during the interrupt service subroutine until it is reset by the programmed end of interrupt command (EOI).

Priority Resolver

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined, it is loaded into the appropriate bit of the ISR by the first INTA pulse.

Data Bus Buffer

The three state 8-bit bidirectional data bus buffer interfaces the μ PD8259A to the systems data bus. It buffers the control word and status information being transferred between the μ PD8259A and the processor.

Read/Write Logic

The read/write logic accepts processor commands and stores them in its initialization command word (ICW) and operation command word (OCW) registers. This logic also controls the transfer of status information to the processor.

Chip Select (CS)

The µPD8259A is enabled when this input receives an active low signal. When the \overline{CS} input is high, reading or writing of the µPD8259A is inhibited.

Write (WR)

This active low signal instructs the µPD8259A to receive command data from the processor.

Read (RD)

When the RD input receives an active low signal, the status of the interrupt request register, in-service register, interrupt mask register or binary code of the interrupt level is placed on the data bus.

Interrupt (INT)

The interrupt output from the μ PD8259A is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080A/8085A/8086/8088.

Interrupt Mask Register (IMR)

The interrupt mask register stores the bits which will mask the individual interrupt lines. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

Interrupt Acknowledge (INTA)

 $\overline{\text{INTA}}$ pulses cause the $\mu\text{PD8259A}$ to put vectoring information on the bus. The number of pulses depend upon whether the $\mu\text{PD8259A}$ is in the $\mu\text{PD8085A}$ mode or 8086/8088 mode.

Command Select Address Input (A₀)

 A_0 is usually connected to the processor's data bus. Together with \overline{RD} and $\overline{WR},$ it signals the loading of data into the command register or the reading of status data. Table 1 illustrates the basic operations performed. Note that it is divided into three functions: input, output, and bus disable distinguished by the $\overline{RD}, \overline{WR},$ and \overline{CS} inputs.

Table 1. µPD8259A Basic Operation

A ₀	D ₄	D ₃	RD	WR	ĈŜ	Operation
						Processor Input (Read)
0			0	1	0	IRR, ISR or IR → data bus (Note 1)
1			0	1	0	IMR → data bus
						Processor Output (Write)
0	0	0	1	0	0	Data bus → OCW2
0	0	1	1	0	0	Data bus → OCW3
0	1	X	1	0	. 0	Data bus → ICW1
1	Х	X	1	0	0	Data bus → OCW1, ICW2, ICW3, ICW4 (Note 2)
						Disable Function
X	Х	Х	1	1	0	Data bus → high impedance state
Χ	Χ	Χ	Х	Х	1	Data bus → high impedance state

Note:

- (1) The contents of OCW3 written prior to the read operation governs the selection of IRR, ISR or the interrupt level.
- (2) The sequencer logic on the μPD8259A aligns these commands in the proper order.

Cascade Buffer/Comparator

The IDs of all μ PD8259As are buffered and compared in the cascade buffer/comparator. See figure 4. The master μ PD8259A sends the ID of the interrupting slave device along the CAS₀, CAS₁ and CAS₂ lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CAS₀, CAS₁ and CAS₂ lines. The next two INTA pulses strobe the preprogrammed, 2 byte call routine address onto the data bus from the slave whose ID matches the code on the CAS₀, CAS₁ and CAS₂ lines.

Slave Program (SP)

The interrupt capability can be expanded to 64 levels by cascading multiple μ PD8259As in a master plus slaves array. See figure 4. The master controls the slaves through the CAS₀, CAS₁ and CAS₂ lines. The \overline{SP} input to the device selects the CAS₀, CAS₁ and CAS₂ lines as either outputs (\overline{SP} = 1) for the master or as inputs (\overline{SP} = 0) for the slaves. If only one μ PD8259A is used, the SP input must be set to a logic 1, since it is functioning as a master.

Absolute Maximum Ratings

 $T_A = 25$ °C

Power supply voltage, V _{CC}	-0.5 to +7.0 V(Note 1)
Input voltage, V _I	-1.0 V to V _{CC} + 1.0 V
Output voltage, V ₀	-0.5V to $ \text{V}_{\text{CC}} + 0.5 \text{V}$
Operating temperature, T _{OPT}	0 to +70°C
Storage temperature, T _{STG}	-65 to +150°C
Power dissipation, PD	1.0 W

Note:

(1) With respect to ground.

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}, V_{CC} = +5 \,\text{V} \pm 10 \,^{\circ}\text{C}$

			Limits	3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	VIL	-0.5		0.8	٧	
Input voltage high	V _{IH}	2.0	-	V _{CC} +0.5	V	
Output voltage low	V _{OL}			0.45	V	$I_{OL} = 2.2 \text{mA}$
Output voltage high	V _{OH}	2.4			٧	$l_{OH} = -400 \mu\text{A}$
Interrupt output	V _{OH-INT}	2.4			٧	$I_{OH} = -400 \mu A$
High voltage		3.5			٧	$I_{OH} = -100 \mu A$
Input leakage current (Note 1)	ΙLΙ	-10		10	μΑ	0 V ≤ V ₁ ≤ V _{CC}
Output leakage current	ILO	-10		10	μΑ	0.45 V ≤ V ₀ ≤ V _{CC}
V _{CC} power supply current	Icc			85	mA	

Note:

(1) For other inputs.

AC Characteristics

Timing Requirements

 $T_A = 0$ °C to +70°C, $V_{CC} = +5 V \pm 10$ %

		Limits					
en de la companya de La companya de la co	· · · · · ·	μ P	D8259A	μ PD 8259 A -2		-	Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
A0 / CS setup to RD / INTA ↓	t _{AHRL}	0		0		ns	
AO / CS hold after RD / INTA ↑	t _{RHAX}	0		0		ns	
RD pulse width	trlrh	235		160		ns	
A0 / CS setup to WR ↓	t _{AHWL}	0		0		ns	
A0 / CS hold after WR ↑	twhax	0		0		ns	A 11 A
WR pulse width	twLwH	290		190		ns	
Data setup to WR ↑	t _{DVWH}	240		160		ns	
Data hold after WR ↑	t _{WHDX}	0		0		ns	
Interrupt request width low	tлглн	100		100		ns	(Note 1)
Cascade setup to second or third INTA ↓ (slave only)	tCVIAL	55		40		ns	
End of RD to next command	trhrl	160		160		ns	
End of WR to next command	t _{WHRL}	190		190		ns	
End of command to next command (different type)	tCHCL	500		500		ns	(Note 2)
End of INTA sequence to next INTA sequence	t _{CHCL}	500		500	-	ns	(Note 2)

Note:

- (1) This is the low time required to clear the input latch in the edge-triggered mode.
- (2) Worst case timing for t_{CHCL} in an actual microprocessor system is typically much greater than 500 ns (8085A = 1 μ s, 8085-2 = 1 μ s, 8086-2 = 625 ns).

AC Characteristics (cont)

Timing Responses

 $T_A = 0$ °C to +70°C, $V_{CC} = +5 V \pm 10$ %

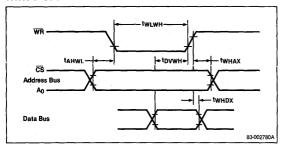
			Limits				
	_	μ PD8259A		μ PD8259A-2		-	Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Data valid from RD / INTA ↓	t _{RLDV}		200		120	ns	(Notes 1-5)
Data float after RD/INTA t	t _{RHDZ}	10	100	10	85	ns	(Notes 1-5)
Interrupt output delay	тунін		350		300	ns	(Notes 1-5)
Cascade valid from first INTA ↓ (master only)	†IALCV		565		360	ns	(Notes 1-5)
Enable active from RD ↓ or INTA ↑	tRLEL		125		100	ns	(Notes 1-5)
Enable inactive from RD ↑ or INTA ↑	tRHEH		150		150	ns	(Notes 1-5)
Data valid from stable address	t _{AHDV}		200		200	ns	(Notes 1-5)
Cascade valid to valid data	t _{CVDV}		300		200	ns	(Notes 1-5)

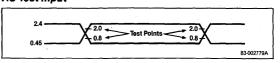
Note:

- (1) C of data bus = 100 pF
- (2) Max test C = 100 pF
- (3) Min test C = 15 pF
- (4) $C_{INT} = 100 pF$
- (5) C_{CASCADE} = 100 pF

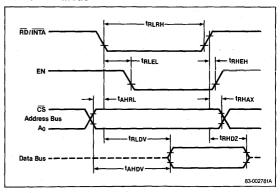
Capacitance

 $T_A = 25$ °C, $V_{CC} = GND = 0$ V, fc = 1.0 MHz

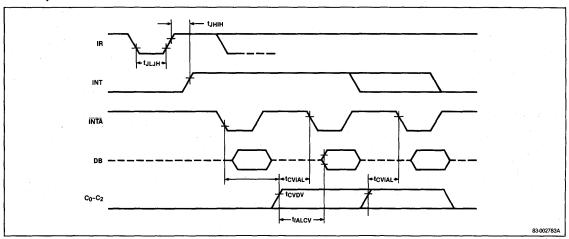

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C ₁			10	pF	(Note 1)
I/O capacitance	C _{1/0}			20	pF	(Note 1)

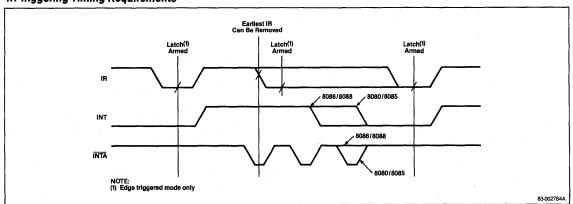

(1) Unmeasured pins returned to V_{SS}

Timing Waveforms

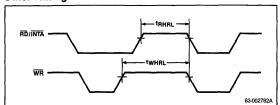

Write Mode

AC Test Input


Read/INTA Mode



Timing Waveforms (cont)


INTA Sequence

IR Triggering Timing Requirements

Other Timing

Functional Description

The μ PD8259A functions are described in following paragraphs under these major headings:

- Interrupt Sequence
- 8080/8085A Mode
- 8086/8088 Mode
- Initialization Command Words
- Operational Command Words
- Reading μPD8259A Status

Interrupt Sequence

The $\mu PD8259A$ derives its versatility from programmable interrupt modes and the ability to jump to any memory address through programmable CALL instructions.

The sequence used by the μ PD8259A to handle an interrupt depends upon whether an 8080A/8085A or 8080/8088 CPU is being used.

The following sequence demonstrates how the μ PD8259A interacts with the 8080A/8085A systems.

- An interrupt(s) appearing on IR₀-IR₇ sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
- (2) Once the IRR bit(s) has been set, the μPD8259A will resolve priorities according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
- (3) When the processor receives an INT, it issues an INTA to the μPD8259A.
- (4) The INTA input to the μPD8259A from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The INTA also signals the μPD8259A to place an 8-bit CALL instruction opcode (11001101) onto its data bus lines.
- (5) The CALL instruction code instructs the processor group to issue two more $\overline{\text{INTA}}$ pulses to the $\mu\text{PD8259A}$.

- (6) The two NTA pulses signal the μPD8259A to place its preprogrammed interrupt vector address onto the data bus. The first NTA releases the low order 8 bits of the address and the second NTA releases the high order 8 bits.
- (7) The μ PD8259As CALL instruction sequence is complete. A preprogrammed EOI command is issued to the μ PD8259A at the end of the interrupt service routine. This resets the ISR bit and allows the μ PD8259A to service the next interrupt.

The following sequence demonstrates how the $\mu PD8259A$ interacts with the 8086/8088 systems.

- (1), (2), (3) Same as for 8080A/8085A.
- (4) During the first INTA from the processor, the μPD8259A does not drive the data bus. The highest priority ISR bit is set and the corresponding IRR bit is reset.
- (5) The μPD8259A puts vector information onto the data bus on the second INTA pulse from the 8086/8088.
- (6) There is no third INTA pulse in this mode. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse, or it remains set until an EOI command is issued.

8080/8085A Mode

For these processors, the μ PD8259A is controlled by three $\overline{\text{INTA}}$ pulses. The first $\overline{\text{INTA}}$ pulse will cause the μ PD8259A to put the CALL opcode onto the data bus. See table 2. The second and third $\overline{\text{INTA}}$ pulses will cause the upper and lower address of the interrupt vector to be released on the bus. See tables 3 and 4.

Table 2. Contents of First Interrupt Vector Byte

	0011			,		,		
D ₇	D_6	D ₅	D ₄	D ₃	D ₂	D ₁	D _O	
1	1	0	0	1	1	0	1	

Table 3. Contents of Second Interrupt Vector Byte

IR				Inter	ral = 4			-
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
7	A ₇	A ₆	A ₅	1	1	1	0	0
6	A ₇	A ₆	A ₅	1	1	0	0	0
5	A ₇	A ₆	A ₅	1	0	1	0	0
4	A ₇	A ₆	A ₅	. 1	0	0	.0	0
3	A ₇	A ₆	A ₅	0	1	1	0	0
2	A ₇	. A ₆	A ₅	0	1	0	0	0
-1	A ₇	A ₆	A ₅	0	0	1	0	0
0	A ₇	A ₆	A ₅	0	0	0	0	0

IR				Inter	/al = 8			
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
7	A ₇	A ₆	1.	1	1	0	0	0
6	A ₇	A ₆	1	1	0	0	0	0
5	A ₇	A ₆	.1	0	1	0	0	0
4	A ₇	A ₆	1	0	0	0	0	0
3	A ₇	A ₆	0	1	1	0	0	0
2	A ₇	A ₆	0	1	0	0	. 0	0
1	A ₇	A ₆	0	0	1	0	0	0
0	A ₇	A ₆	0	0	0	0	0	0

Table 4. Contents of Third Interrupt Vector Byte

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _O
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈

Table 5. Contents of Interrupt Vector Byte, 8086/8088
Mode

íR				Interv	/al = 4			
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _O
7	T ₇	T ₆	T ₅	T ₄	T ₃	1	1	1
6	T ₇	T ₆	T ₅	T ₄	Т3	1	1	0
5	T ₇	Т ₆	T ₅	T ₄	T ₃	1	0	1
4	T ₇	T ₆	T ₅	T ₄	Т3	1	0	0
3	T ₇	Т ₆	T ₅	T ₄	T ₃	0	1	1
2	T ₇	T ₆	T ₅	T ₄	T ₃	0	1	0
1	T ₇	Т ₆	T ₅	T ₄	T ₃	0	0	1
0	T ₇	T ₆	T ₅	T ₄	Т3	0	0	0

8086/8088 Mode

In this mode only two $\overline{\text{INTA}}$ pulses are sent to the $\mu\text{PD8259A}$. After the first $\overline{\text{INTA}}$ pulse, the $\mu\text{PD8259A}$ does not output a CALL but internally sets priority resolution. If it is a master, it sets the cascade lines. The interrupt vector is output to the data bus on the second $\overline{\text{INTA}}$ pulse. See table 5.

Initialization Command Words ICW1 and ICW2

LTIM If LTIM = 1, then the μ PD8259A operates in the level interrupt mode. Edge detect logic on the interrupt inputs is disabled.

ADI CALL address interval. If ADI = 1 then the interval is four; if ADI = 0 then the interval is eight.

(Single) Indicates that there is only one μ PD8259A in the system. If SNGL=1, no

ICW3 is issued.

SNGL

IC4 If this bit is set, ICW4 has to be read. If ICW4 is not needed, set IC4 to logic 0.

A₅-A₁₅ Defines the page starting address of the service routines. In an 8085A system, the

eight request levels generate CALLs to eight locations equally spaced in memory. These can be programmed to be spaced at intervals of four or eight memory locations, allowing eight routines to occupy a page of

32 or 64 bytes, respectively.

The address form is two bytes long (A $_0$ –A $_1$ 5). When the routine interval is four, A $_0$ –A $_4$ are automatically inserted by the μ PD8259A, while A $_5$ –A $_1$ 5 are programmed externally. When the routine interval is eight, A $_0$ –A $_5$ are automatically inserted by the μ PD8259A, while A $_6$ –A $_1$ 5 are programmed externally.

The eight-byte interval maintains compatibility with current software, while the four-byte interval is best for a compact jump table.

In an 8086/8088 system, T_7 – T_3 are inserted in the five most significant bits of the vectoring byte. The μ PD8259A sets the three least significant bits according to the interrupt level.

ICW3

This word is read only when there is more than one μ PD8259A in the system and cascading will be used. SNGL of ICW1 is programmed for logic 0. ICW3 will load the 8-bit slave register. The functions of this register are, in the master mode, when $\overline{SP} = 1$ or BUF = 1 and M/S = 1 in ICW4, a 1 is set for each slave in the system. The master then releases byte 1 of the call sequence (for 8080A/ 8085A system) and enables the corresponding slave via the cascade lines to release vector bytes 2 and 3 (byte 2 only for 8086/8088).

In the slave mode, when $\overline{SP} = 0$ or BUF = 1 and M/S = 0 in ICW4, bits ID2-ID0 identify the slave. The slave compares its cascade input with these bits and if they are equal, vector bytes 2 and 3 of the call sequence (byte 2 only for 8086/8088) are released by the slave on the data bus.

ICW4

BUF

SNFM If SNFM = 1, the special fully nested mode

is programmed.

If BUF = 1, the buffered mode is programmed. In the buffered mode, SP/EN becomes an enable output and the

master/slave determination is by M/S.

M/S If the buffered mode is selected, M/S=1means the µPD8259A is programmed to be a master, M/S = 0 means the $\mu PD8259A$ is

programmed to be a slave. If BUF = 0, M/S

has no function.

AEOI If AEOI = 1, the automatic end of interrupt

mode is programmed.

μPM Microprocessor mode: $\mu PM = 0$ sets the

μPD8259A for 8085A system operation; μ PM = 1 sets the μ PD8259A for 8086 system

operation.

Figure 1 illustrates the command word initialization sequence.

Figure 1. Initialization Sequence

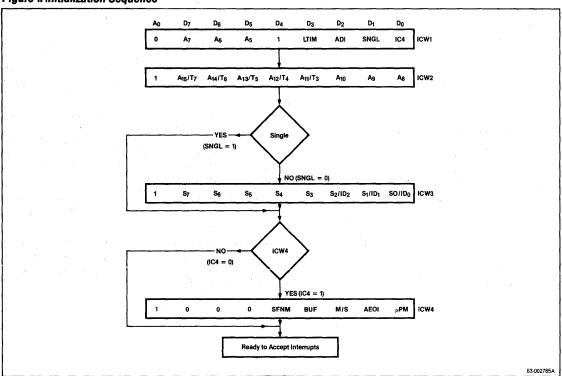
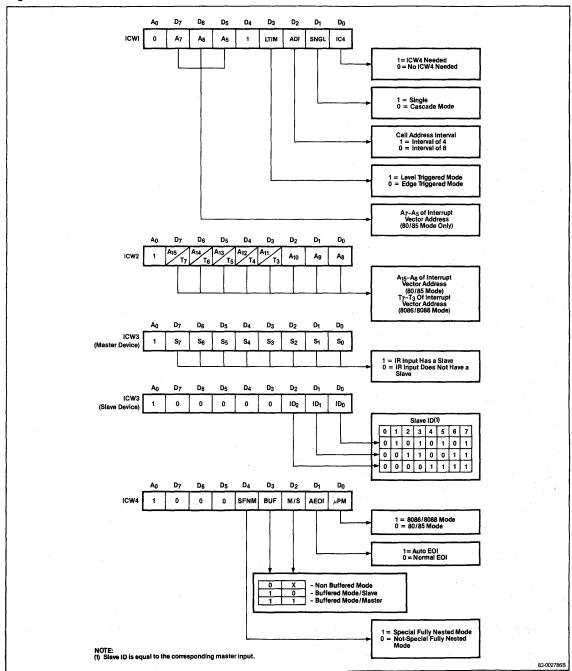



Figure 2 illustrates the initialization command word format.

Figure 2. Initialization Command Word Format

Operational Command Words

Once the μ PD8259A has been programmed with initialization command words, it can be programmed for the appropriate interrupt algorithm by the operation command words (OCW). See figure 3. Interrupt algorithms in the μ PD8259A can be changed at any time during program operation by issuing another set of operation command words. The following sections describe the various algorithms available and their associated OCWs.

Interrupt Masks

The individual interrupt request input lines are maskable by setting the corresponding bits in the interrupt mask register to a logic 1 through OCW1. The actual masking is performed upon the contents of the inservice register. For example, if interrupt request line 3 is to be masked, then only bit 3 of the IMR is set to logic 1. The IMR in turn acts upon the contents of the ISR to mask bit 3.

Once the μ PD8259A has acknowledged an interrrupt, the masked interrupt input inhibits lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an end of interrupt (EOI) through operation command word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the special mask mode through OCW3. The special mask mode (SMM) and end of interrupt (EOI) are described later.

Fully Nested Mode

The fully nested mode is the μ PD8259A's basic operating mode. It will operate in this mode after the initialization sequence without requiring operation command words for formatting. The order of priority is determined by IR0–IR7. IR0 has the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determines the priority of the interrupt, sets the corresponding IR bit, and outputs the vector address to the data bus. The EOI command resets the corresponding ISR bits at the end of its service routines.

Rotating Priority Mode Commands

The two variations of rotating priorities are the auto rotate and specific rotate modes. These two modes are typically used to service interrupting devices of equivalent priorities.

Auto Rotate Mode. Programming the auto rotate mode through OCW2 assigns priorities 0–7 to the interrupt request inputs. Interrupt line IR_0 is set to the highest priority and IR_7 to the lowest. Once an interrupt has been

serviced, it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The auto rotate mode is selected by programming OCW2 in the following way: set rotate priority bit R to a logic 1, program EOI to a logic 1 and SECOI to a logic 0. The EOI and SEOI commands are discussed later. The following is an example of the auto rotate mode with devices requesting interrupts on line IR2 and IR5.

(1) Before interrupts are serviced:

In-service register

IS ₇	IS ₆	IS ₅	IS ₄	IS ₃	IS ₂	IS ₁	IS ₀
0	0	1	0	0	1	0	0

Priority status register

highest priority

	,						
ın.		l .n					
IK7	IR ₆	IR ₅	IK4	IR ₃	IR ₂	IR ₁	IR _O
						L	نسسا

According to the priority status register, IR $_2$ has a higher priority than IR $_5$ and will be serviced first.

(2) After interrupts are serviced:

In-service register

IS ₇	IS ₆	IS ₅	IS ₄	IS ₃	IS ₂	IS ₁	IS ₀
0	0	1	0	0	0	0	0

Priority status register

highest priority

IR ₂	IR ₁	IR ₀	IR ₇	IR ₆	IR ₅	IR ₄	IR ₃

At the completion of IR2's service routine, the corresponding in-service register bit (IS2) is reset to logic 0 by the preprogrammed EOI command. IR2 is then assigned the lowest priority level in the priority status register. The μ PD8259A is now ready to service the next highest interrupt, which, in this case, happens to be IR5.

Specific Rotate Mode. The priorities are set by programming the lowest level via OCW2. Then, the $\mu PD8259A$ automatically assigns the highest priority. If, for example, IR3 is set to the lowest priority (bits L2, L1, L0 form the binary code of the bottom priority level), then IR4 will be set to the highest priority. The specific rotate mode is selected by programming OCW2 in the following manner: set rotate priority bit R to a logic 1, program EOI to a logic 0, SEOI to a logic 1 and L2, L1, L0 to the lowest priority level. If EOI is set to a logic 1, the ISR bit defined by L2, L1, L0 is reset.

End of Interrupt (EOI) and Specific End of Interrupt (SEOI)

The end of interrupt (EOI) or specific end of interrupt (SEOI) command must be issued to reset the appropriate in-service register bit before the completion of a service routine. Once the ISR bit has been reset to logic 0, the μ PD8259A is ready to service the next interrupt.

Two types of EOI's are available to clear the appropriate ISR bit depending on the μ PD8259A's operating mode.

Non-Specific End of Interrupt (EOI). When operating in interrupt modes where the priority order of the interrupt inputs is preserved, such as the fully nested mode, the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command automatically resets the highest priority ISR bit of those set. The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.

Specific End of Interrupt (SEOI). When operating in interrupt modes where the priority order of the interrupt inputs is not preserved, such as the rotating priority mode, the last serviced interrupt level may not be known. In these modes, a specific end of interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW2 to logic 1's. See figure 3. Both the EOI and SEOI bits of OCW2 must be set to a logic 1 with L_2 , L_1 , L_0 forming the binary code of the ISR bit to be reset.

Special Mask Mode

Setting up an interrupt mask through the interrupt mask register by setting the appropriate bits in OCW1 to a logic 1 inhibits lower priority interrupts being acknowledged. In applications requiring that the lower priorities be enabled while the IMR is set, the special mask mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic 1. Once the SMM is set, the μ PD8259A remains in this mode until it is reset. The special mask mode does not affect the higher priority interrupts.

Poll Mode

In poll mode, the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a poll command. Poll mode is programmed by setting the poll mode bit in OCW3 to logic 1 during a WR Pulse. The following RD pulse is then considered as an interrupt acknowledge. If an interrupt input is present, the RD pulse sets the appropriate ISR bit and reads the interrupt priority level. Poll mode is a one time operation and must be programmed through OCW3 before every read. The

word format which is strobed onto the data bus during the poll mode follows:

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do
I	х	X	Х	Х	W ₂	W ₁	W ₀

where:

I = 1 if there is an interrupt requesting service

I = 0 if there are no interrupts

 W_2 - W_0 forms the binary code of the highest priority level of the interrupts requesting service.

Poll mode can be used when an interrupt service routine is common to several interrupt inputs. The INTA sequence is no longer required; this saves ROM space. Poll mode can also be used to expand the number of interrupts beyond 64.

Reading µPD8259A Status

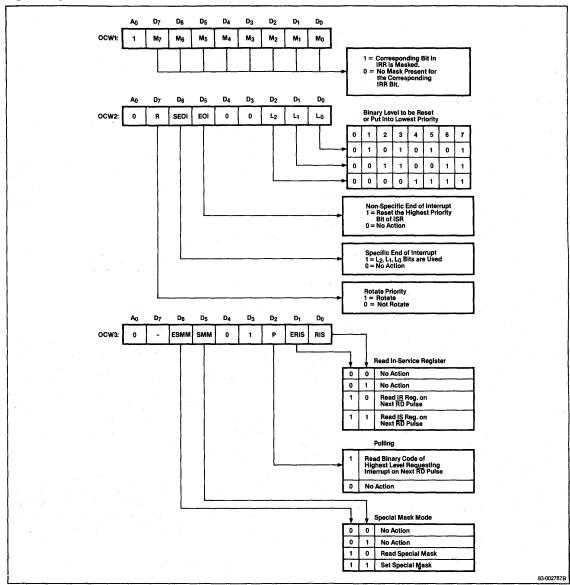
The following major registers' status is available to the processor by appropriately formatting OCW3 and issuing RD command.

Interrupt Request Register

The 8-bit interrupt request register stores the interrupt levels awaiting acknowledgement. The highest priority in-service bit is reset once it has been acknowledged. Note that the interrupt mask register has no effect on the IRR. Prior to the issuing of the $\overline{\text{RD}}$ command, a $\overline{\text{WR}}$ command must be issued with OCW3. Programmable logic bits RIS and ERIS of OCW3 determine whether the IRR or ISR register is to be read. To read the contents of the IRR, ERIS must be a logic 1, and RIS a logic 0.

In-Service Register

The 8-bit in-service register stores the priorities of the interrupt levels being serviced. Assertion of an end of interrupt (EOI) updates the ISR to the next priority level. A $\overline{\text{WR}}$ command must be issued with OCW3 prior to issuing the $\overline{\text{RD}}$ command. both ERIS and RIS should be set to logic 1.


Interrupt Mask Register

The 8-bit interrupt mask register holds mask data modifying interrupt levels. A \overline{WR} pulse preceding the \overline{RD} is not necessary to read the IMR status. The IMR data is available to the data bus when \overline{RD} is asserted with A_0 at logic 1.

A single OCW3 is sufficient to enable succesive status reads providing it is of the same register. A status read is overridden by the poll mode when bits P and ERIS of OCW3 are set to logic 1.

Figure 3. Operation Command Word Format

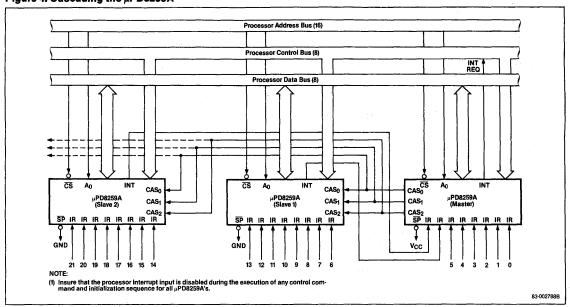


Table 6. Summary of Operation Command Word Programming

	A ₀	D ₄	D ₃				
0CW1	1	Χ	Х		M7-M0		IMR (interrupt mask register) WR loads IMR data while RD reads status
OCW2	0	0	0	R	SE0I	E0I	
				0	0	0	No action
				0	0	1	Non-specific end of interrupt
				0	1	0	No action
				0	1	1	Specific end of interrupt L ₂ , L ₁ L ₀ forms binary representation of level to be reset
				1	0	0	No action
				1	0	1	Rotate priority at end of inter- rupt (auto mode)
				1	1	0	Rotate priority, L ₂ , L ₁ , L ₀ specifies bottom priority with- out end of interrupt
				1	1	1	Rotate priority at end of inter- rupt (specific mode). L ₂ , L ₁ , L ₀ specifies bottom priority, and it is in-service register bit is reset.

	A ₀	D ₄	D ₃				
ocw3	0	0	1	ESMM	SMM		
				0	0	}	Special mask not affected
				0	1		Special mask not affected
				1	0		Reset special mask
				1	1		Set special mask
				ERIS	RIS		
				0	0	}	No action
				0	1		No action
				1	0		Read IR register status
				1	1		Read IS register status

Figure 4. Cascading the µPD8259A

Instruction Set

			Operation Code									
#	Mnemonic	Operation Description	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₀	Format
(Byte	1 Initialization, I	No ICW4 Required)										
1	ICW1 A	Single, edge triggered	A ₇	A ₆	A ₅	1	0	1	1	0	0	4
2	ICW1 B	Single, level triggered	A ₇	A ₆	A ₅	1	1	1	1	0	0	4
3	ICW1 C	Not single, edge triggered	Α7	A ₆	A ₅	1	0	1	0	0	0	4
4	ICW1 D	Not single, level triggered	A ₇	A ₆	A ₅	. 1	1	1	0	0	0	4
5	ICW1 E	Single, edge triggered	A ₇	A ₆	0	1	0	0	1	0	0	8
6	ICW1 F	Single, level triggered	A ₇	A ₆	0	1	1	0	1	0	0	8
7	ICW1 G	Not single, edge triggered	A ₇	A ₆	0	1	0	0	0	0	0	8
8	ICW1 H	Not single, level triggered	A ₇	A ₆	0	1	1	0	0	0	0	8
(Byte	a 1 Initialization, I	ICW4 Required)										
9	ICW11	Single, edge triggered	A ₇	A ₆	. A ₅	1	0	1	1	1	0	4
10	ICW1 J	Single, level triggered	A ₇	A ₆	A ₅	1	1	1	1	1	0	4
11	ICW1 K	Not single, edge triggered	A ₇	A ₆	A ₅	1	0	1	0	1	0	4
12	ICW1 L	Not single, level triggered	A ₇	A ₆	A ₅	1	1	1	0	1	0	4
13	ICW1 M	Single, edge triggered	A ₇	A ₆	0	1	0	0	1	1	0	8
14	ICW1 N	Single, level triggered	A ₇	A ₆	0	1	1	0	1	1	0	8
15	ICW1 0	Not single, edge triggered	A ₇	A ₆	0	1	0	0	0	1	0	8
16	ICW1 P	Not single, level triggered	A ₇	A ₆	0	1	1	0	0	1	0	8
(Byte	2 Initialization)											
17	ICW2	Initialize byte 2	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	Ag	A ₈	1	
(Byte	3 Initialization)											
18	ICW3 M	Initialize byte 3 (master)	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀	1	
19	ICW3 S	Initialize byte 3 (slave)	0	0	0	0	0	S2	S ₁	S ₀	1	
(Byte	e 4 Initialization)											
20	ICW4 A	No action, redundant	0	0	0	0	0	0	0	0	1	
21	ICW4 B	Non-buffered, no AEOI, 8086 / 8088	0	0	0	0	0	0	0	1	1	
22	ICW4 C	Non-buffered, AEOI, 80 / 85	0	0	0	0	0	0	1	0	1	
23	ICW4 D	Non-buffered, AEOI, 8086 / 8088	0	0	0	0	0	0	1	1	1	
24	ICW4 E	No action, redundant	0	0	0	0	0	1	0	0	1	
25	ICW4 F	Non-buffered, no AEOI, 8086 / 8088	0	0	0	0	0	1	0	1	1	
26	ICW4 G	Non-buffered AEOI, 80 / 85	0	0	0	. 0	0	1	1.	0	1	
27	ICW4 H	Non-buffered, AEOI, 8086 / 8088	0	. 0	0	0	0	1	1	1	1	
28	ICW4 I	Buffered, slave, no AEOI, 80 / 85	0	0	0	0	1	0	0	0	1	
29	ICW4 J	Buffered, slave, no AEOI, 8086 / 8088	0	0	0	0	1	0	0	1	1 -	
30	ICW4 K	Buffered, slave, AEOI, 80 / 85	0	0	0	0	1	0	1	0	1	
31	ICW4 L	Buffered, slave, AEOI, 8086 / 8088	0	0	0	0	1	. 0	- 1	1	1	
32	ICW4 M	Buffered, master, no AEOI, 80 / 85	0	0	0	0	1	1	0	0	1	

Instruction Set (cont)

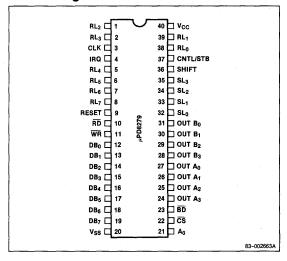
					0	perati	on Co	de				
#	Mnemonic	Operation Description	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	A ₀	Format
(Byt	e 4 Initialization)	(cont)										
34	ICW4 0	Buffered, master, AEOI, 80 / 85	0	0	0	0	1	1	1	0	1	
35	ICW4 P	Buffered, master, AEOI, 8086 / 8088	0	0	0	0	1	1	1	1	1	
36	ICW4 NA	Fully nested, non-buffered, no AEOI, 8085A	0	0	0	1	0	0	0	0	1	
37	ICW4 NB	ICW4 NB-ICW4 ND are identical to ICW4 B-ICW4 D with the addition of fully nested mode	0	0	0	1	0	0	0	1	1	
38	ICW4 NC	ICW4 NB-ICW4 ND are identical to ICW4 B-ICW4 D with the addition of fully nested mode	0	0	0	1	0	0	1	0	1	
39	ICW4 ND	ICW4 NB-ICW4 ND are identical to ICW4 B-ICW4 D with the addition of fully nested mode	0	0	0	1	0	0	1	1	1	
40	ICW4 NE	Fully nested, non-buffered, no AEOI, 80 / 85	0	0	0	1	0	1	0	0	1	
41	ICW4 NF	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	0	1	0	1 -	1	
42	ICW4 NG	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	0	1	1	0	1	
43	ICW4 NH [®]	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	0	1	1	1	1	
44	ICW4 NI	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	0	0	0	1	
45	ICW4 NJ	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	0	0	1	1	
46	ICW4 NK	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	0	1	0	1	
47	ICW4 NL	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	0	1	1	1	
48	ICW4 NM	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	1	0	0	1	
49	ICW4 NN	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	1	0	1	1	
50	ICW4 NO	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	1	1	0	1	
51	ICW4 NP	ICW4 NF-ICW4 NP are identical to ICW4 F-ICW4 P with the addition of fully nested mode	0	0	0	1	1	1	1	1	1	
52	OCW1	Load mask and read mark registers	M ₇	M ₆	M ₅	M ₄	М3	M ₂	M ₁	M_0	1	
53	0CW2 E	Non-specific EOI	0	0	1	0	0	0	0	0	0	
54	OCW2 SE	Specific EOI, L ₀ -L ₂ code of IS FF to be reset	0	1	1	0	0	L ₂	L ₁	L ₀	0	
55	OCW2 RE	Rotate on non-specific E01	1	0	1	0	0	0	0	0	0	
56	0CW2 RSE	Rotate on specific EOI L ₀ -L ₂ code of line	1	1	1	0	0	L ₂	L ₁	L ₀	0	
57	OCW2 R	Rotate in auto EOI (set)	1	0	0	0	0	0	0	0	0	
58	0CW2 CR	Rotate in auto EOI (clear)	0	0	0	0	0	0	0	0	0	
59	OCW2 RS	Set priority command	1	1	0	0	0	L ₂	L ₁	L ₀	0	
60	OCW3 P	Poll mode	0	0	0	0	1	1	0	0	0	
61	OCW3 RIS	Read IS register	0	0	0	0	1	0	1	1	0	

μPD8279 PROGRAMMABLE KEYBOARDI DISPLAY INTERFACE

Description

The μ PD8279 is a programmable keyboard and display input/output device providing the user with the ability to display data on alphanumeric segment displays or simple indicators. The display RAM can be programmed to function as a 16 x 8-bit or dual 16 x 4-bit memory and can be loaded or read by the host processor. The display can be loaded with right or left entry with an auto-increment of the display RAM address.

The keyboard interface provides a scanned signal to a 64 contact key matrix expandable to 128. General sensors or strobed keys may also be used. Keystrokes are stored in an 8 character FIFO and can be either 2 key lockout or N key rollover. Keyboard entries generate an interrupt to the processor.


Features

- ☐ Programmable by processor
- ☐ 32 hex or 16 alphanumeric displays
- ☐ 64 expandable to 128 keyboard
- ☐ Simultaneous keyboard and display
- ☐ 8 character keyboard—FIFO
- ☐ 2 key lockout or N key rollover
- ☐ Contact debounce
- ☐ Programmable scan timer
- ☐ Interrupt on key entry
- \square Single +5 V ± 10% power supply
- \Box Fully compatible with 8080A, 8085A, μ PD780 (Z80 $^{\circ}$)

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD8279C-2	40-pin plastic DIP	5 MHz
μPD8279C-5	40-pin plastic DIP	3 MHz

Pin Configuration

Pin Identification

No.	Symbol	Function
1,2,5,6,7,8,38,39	RL ₀ -RL ₇	Return lines
3	CLK	Clock input
4	IRQ	Interrupt request
9	RESET	Reset input
10	RD	Read input
11	WR	Write input
12-19	DB ₀ -DB ₇	Data bus
20	V _{SS}	Ground reference
21	Α ₀	Buffer address
22	CS	Chip select
23	BD	Blank display output
24-27	OUT A ₀ -OUT A ₃	Display A outputs
28-31	OUT B ₀ -OUT B ₃	Display B outputs
32-35	SL ₀ -SL ₃	Scan lines
36	Shift	Shift input
37	CNTL/STB	Control/strobe input
40	V _{CC}	+5 V input

[®] Z80 is a registered trademark of Zilog, Inc.

Pin Functions

RL₀-RL₇ (Return Lines)

Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high until a switch closure pulls one low. They also serve as an 8-bit input in the strobed input mode.

CLK (Clock)

Clock from system used to generate internal timing.

IRQ (Interrupt Request)

In a keyboard mode, the interrupt line is high when there is data in the FIFO/sensor RAM. The interrupt line goes low with each FIFO/sensor RAM read and returns high if there is still information in the RAM. In the sensor mode, the interrupt line goes high whenever a change in a sensor is detected.

RESET (Reset)

A high signal on this pin resets the μ PD8279.

RD (Read Input)

Input read allows the data buffers to send data to the external bus.

WR (Write Input)

Input write allows the data buffers to receive data from the external bus.

DB₀-DB₇ (Data Bus)

Bidirectional data bus. All data and commands between the processor and the $\mu PD8279$ are transmitted on these lines.

OUT A₀-OUT A₃ (Display A Outputs)

Output port for the 16 x 4 display refresh registers. The output data is synchronized to the scan lines (SL_0-SL_3) for multiplexed digit displays. Ports A and B may be blanked independently and may also be considered as one 8-bit port.

OUT B₀-OUT B₃ (Display B Outputs)

Output port for the 16 x 4 display refresh registers. The output data is synchronized to the scan lines (SL_0 - SL_3) for multiplexed digit displays. Ports A and B may be blanked independently and may also be considered as one 8-bit port.

SL₀-SL₃ (Scan Lines)

Scan lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded (1 of 16) or decoded (1 of 4).

A₀ (Buffer Address)

A high on this line indicates the signals in or out are interpreted as a command or status. A low indicates that they are data.

CS (Chip Select)

A low on this pin enables the interface functions to receive or transmit.

BD (Blank Display Output)

This output is used to blank the display during digit switching or by a display blanking command.

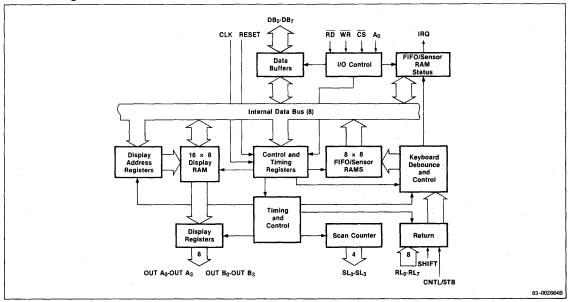
SHIFT (Shift)

The shift input status is stored along with the key position on key closure in the scanned keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low.

CNTL/STB (Control/Strobe Input)

For keyboard modes this line is used as a control input and stored like status on a key closure. The line is also the strobe line that enters the data into the FIFO in strobed input mode (rising edge). It has an active internal pullup to keep it high until a switch closure pulls it low.

V_{SS} (Ground Reference)


Ground.

V_{CC} (Power Supply)

+5 V power supply input.

Block Diagram

Functional Description

The μ PD8279 has two basic functions: 1) to control displays to output and 2) to control a keyboard for input. Its specific purpose is to unburden the host processor from monitoring keys and refreshing displays. The μ PD8279 is designed to directly interface with the microprocessor bus. The microprocessor must program the operating mode to the μ PD8279 as follows:

Output Modes

- 8 or 16 character display
- Right or left entry display formats

Input Modes

- Scanned keyboard with encoded (8 x 8 key keyboard) or decoded (4 x 8 key keyboard) scan lines.
- Scanned sensor matrix with encoded (8 x 8 matrix switches) or decoded (4 x 8 matrix switches) scan lines.
- Strobed input with data on return lines during control line strobe being transferred to FIFO.

Block Diagram

Following is a description of each section of the μ PD8279. See the block diagram for functional reference.

I/O Control and Data Buffers

Communication to and from the $\mu PD8279$ is performed by selecting \overline{CS} , A_0 , \overline{RD} and \overline{WR} . The type of information written or read by the processor is selected by A_0 . A logic 0 states that information is data while a 1 selects command or status. \overline{RD} and \overline{WR} select the direction by which the transfer occurs through the data buffers. When the chip is deselected ($\overline{CS}=1$) the bidirectional data buffers are in a high impedance state. This enables the $\mu PD8279$ to be tied directly to the processor bus.

Timing Registers and Timing Control

The timing registers store the display and keyboard modes and other conditions programmed by the processor. The timing control contains the timing counter chain. One counter is a divide-by-N scaler, which may be programmed to match the processor cycle time. The scaler is programmed with a value between 2 and 31 to divide the external clock input by N to yield the internal clock frequency. A value which scales the internal frequency to 100 kHz gives a 5.1 ms scan time and 10.3 ms switch debounce. The other counters divide down to make key, row matrix, and display scans.

Scan Counter

The scan counter can operate in either the encoded or decoded mode. In the encoded mode, the counter provides a count which must be decoded to provide the scan lines. In the decoded mode, the counter provides a 1 out of 4 decoded scan. In the encoded mode, the scan lines are active high, and in the decoded mode, they are active low.

Return Buffers, Keyboard Debounce and Control

The eight return lines are buffered and latched by the return buffers. In the keyboard mode these lines are scanned to sample for key closures in each row. If the debounce circuit senses a closure, about 10 ms are timed out and a check is performed again. If the switch is still pressed, the address of the switch matrix plus the status of shift and control are written into the FIFO. In the scanned sensor mode, the contents of return lines are sent directly to the sensor RAM (FIFO) each key scan. In the strobed mode, the transfer takes place on the rising edge of CNTL/STB.

FIFO/Sensor RAM and Status

This section is a dual purpose 8 x 8 RAM. In strobe or keyboard mode it is a FIFO. Each entry is pushed into the FIFO and read in order. Status keeps track of the number of entries in the FIFO. Too many reads or writes to the FIFO will be treated as an error condition. The status logic generates an IRQ whenever the FIFO has an entry. In the sensor mode the memory is a sensor RAM which detects changes in the status of a sensor. If a change occurs, the IRQ is generated until the change is acknowledged.

Display Address Registers and Display RAM

The display address register contains the address of the word being read or written by the processor, as well as the word being displayed. This address may be programmed to autoincrement after each read or write. The display RAM may be read by the processor any time after the mode and address is set. Data entry to the display RAM may be set to either right or left entry.

Command Operation

The commands programmable to the μ PD8279 via the data bus with \overline{CS} active (0) and A_0 high are as follows:

Keyboard/Display Mode Set

1									i
	_ ^ !	Λ .		n -	n 1	v	· //	l 1/	ı
	U	U	U	עו	ן ט ן		N .		i

Display Mode:

D	D	
0	0	Eight 8-bit character display—left entry
0	1 (1)	Sixteen 8-bit character display—left entry
1	0	Eight 8-bit character display—right entry
1	1	Sixteen 8-bit character display-right entry

Note:

(1) Power on default condition.

Keyboard Mode:

K	K	K	
0	0	0	Encoded scan-2 key lockout
0	0	0	Decoded scan-2 key lockout
0	1	0	Encoded scan—N key rollover
0	1	1	Decoded scan-N key rollover
1	0	0	Encoded scan—sensor matrix
1	0	1	Decoded scan—sensor matrix
1	1	0	Strobed input, encoded display scan
1	1	1	Strobed input, decoded display scan

Program Clock

5		••••					
0	0	1	Р	Р	Р	Р	Р

Where PPPPP is the prescaler value between 2 and 31. This prescaler divides the external clock by PPPPP to develop its internal frequency. After reset, a default value of 31 is generated.

Read FIFO/Sensor RAM

n	1	l n	lA₄	l x	Δ	Α	Δ	$A_{\alpha} = 0$
·				_ ^			L ^`_!	710 - 0

 A_1 is the autoincrement flag. AAA is the row to be read by the processor. The read command is accomplished with $(\overline{CS} \bullet RD \bullet \overline{A0})$ by the processor. If A_1 is 1, the row select counter will be incremented after each read. Note that autoincrementing has no effect on the display.

Read Display RAM

0 1 1 A ₁ X A A A A ₀ = 0									
	0	1	1	A ₁	Х	Α	Α	Α	$A_0 = 0$

Where A_1 is the autoincrement flagg and AAAA is the character which the processor is about to read.

Write Display RAM

		. ,					
1	0	0	A ₁	. A	Α	Α	Α

Where AAAA is the character the processor is about to write.

Display Write Inhibit Blanking

1	0	1	Х	IW	IW	BL	BL
				Α	В	Α	В

Where IWA and IWB are inhibit writing nibble A and B respectively, while BLA and BLB are used for blanking. When using the display as a dual 4-bit, it is necessary to mask one of the 4-bit halves to eliminate interaction between the two halves. This in accomplished with the IW flags. The BL flags allow the programmer to blank either half of the display independently. To blank a display formatted as a single 8-bit, it is necessary to set both BLA and BLB. Default after a reset is all zeros. All signals are active high (logic 1).

Clear

1_	1	0	CD	CD	CD	C _F	CA]
Where:								
CD	C _D	C						_
1	0	Х	-	All z	eros			7
1	1	0		AB =	= 20H			7
1	1	1		All o	nes			_
0	X	X		Disal	ole clear	display		_

This command is used to clear the display RAM, the FIFO, or both. The C_D options allow the user the ability to clear the display RAM to either all zeros or all ones. Clearing the display takes one complete display scan. During this time the processor can't write to the display RAM.

If the C_F bit is set to logic 1, the FIFO status is cleared, the FIFO empty flag is set, and IRQ is cleared. The sensor matrix mode RAM pointer will then be set to row 0.

 C_A , the clear all bit, has the combined effect of C_F and C_D ; it uses the C_D clearing code on the display RAM and also clears FIFO status. It also resynchronizes the internal timing chain.

End Interrupt/Error Mode Set

1 1	1 1	l 1	! F	l y	Y	Y	l y l
' '	'	'		ı ^	l ^	l ^ .	^ 1

In the sensor matrix mode, this instruction clears IRQ and allows writing into RAM. In N key rollover, setting the E bit to 1 allow for operating in the special error mode. See description of FIFO status.

FIFO Status

Ì	DU	S/E	0	U	F	N	N	N

Where:

- DU = Display unavailable because a clear display or clear all command is in progress.
- S/E = Sense error flag due to multiple closure of switch matrix.
- O = FIFO overrun since an attempt was made to push too many characters into the FIFO.
- U = FIFO underrun. An indication that the processor tried to read an empty FIFO.
- F = FIFO full flag.
- NNN = The number of characters presently in FIFO

The FIFO status is read with A_0 high and \overline{CS} , \overline{RD} active low.

If the C_D or C_A command has not completed its clearing, the display is not available. The S/E flags are used to show an error in multiple closures has occurred. The O or U, overrun or underrun, flags occur when too many characters are written into the FIFO or the processor tries to read an empty FIFO. F is an indication that the FIFO is full and NNN is the number of characters in the FIFO.

Data Read

Data can be read during $A_0=0$ and when \overline{CS} , \overline{RD} are active low. The source of data is determined by the read display or read FIFO commands.

Data Write

Data is written to the chip when A_0 , \overline{CS} , and \overline{WR} are active low. Data will be written into the display RAM with its address selected by the latest read or write display command.

Data Format

CNTL	SH	SCAN	RET
			<u> </u>

In the scanned key mode, the characters in the FIFO correspond to the above format where CNTL and SH are the most significant bits and the SCAN and return lines are the scan and column counters.

				1)
RL ₇	RLe	RL ₅ i	RLa	RLa	RL ₂	RL₁	I DI I
nL7	I DLE	I NLS I	nla I	เก∟จ	I NLO	I NL1	I NLN I

In the sensor matrix mode, the data corresponds directly to the row of the sensor RAM being scanned. Shift and control (SH, CNTL) are not used in this mode.

Command Word Summary

0	0	0	D	D	K	К	K	Keyboard display mode set
0	0	1	Р	Р	Р	Р	P	Load program clock
0	1	0	A ₁	Χ	Α	Α	Α	Read FIFO/sensor RAM
0	1	1	A ₁	Α	Α	Α	A	Read display RAM
.1	0	0	Α ₁	Ą	Α	Α	Α	Write display RAM
1	0	1	Х	IW A	IW B	BL A	BL B	Display write inhibit/blanking
1	1	0	CD	CD	CD	CF	CA	Clear
1.	- 1	1	E	Χ	Χ	Χ	Χ	End interrupt/error mode set
DU	S/E	0	U	F	N	N	N	FIFO status

Absolute Maximum Ratings

-0.5 V to +7.0 V(1)
1.0 W
0°C to +70°C
-65°C to +150°C

Note:

(1) With respect to V_{SS} .

Comment: Exposing the device to stresses above those listed in the absolute maximum ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Capacitance

			Limits		Test		
Parameter	Symbol	Min Ty		Max	Unit	Conditions	
Input capacitance	CI	5		10	pF	$V_{I} = V_{CC}$	
Output capacitance	C ₀	10		20	pF	$V_0 = V_{CC}$	

DC Characteristics

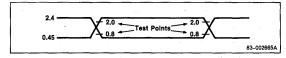
 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = 5 \text{ V } \pm 10\%; V_{SS} = 0 \text{ V}$

^	- 00					
		Lin	nits		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
Input high voltage for return lines	V _{IH1}	2.2		٧		
Input high voltage for other lines	V _{IH2}	2.0		٧		
Input low voltage for return lines	V _{IL1}	-0.5	1.4	٧		
Input low voltage for other lines	V _{IL2}	-0.5	0.8	٧	4.	
Output high voltage on interrupt line	IRQ pin	+3.5		٧	$l_{OH} = -50 \mu A$	
•,	others	+2.4		٧	$I_{OH} = -400 \mu A$	
Output low voltage	V _{OL}		0.45	٧	$l_{OL} = 2.2 \text{ mA}$	
Input current on shift,	l _{IL1}		+10	μΑ	$V_1 = V_{CC}$	
control and return lines			-100	μΑ	$V_l = 0 V$	
Input leakage current for other lines	I _{IL2}		±10	μΑ	$V_1 = V_{CC}$ to 0 V	
Output float leakage	I _{OFL}		±10	μΑ	$V_0 = V_{CC}$ to 0 V	
Power supply current	Icc		120	mΑ		

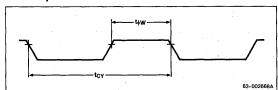
AC Characteristics

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = 5 \text{ V } \pm 10\%; V_{SS} = 0 \text{ V}$

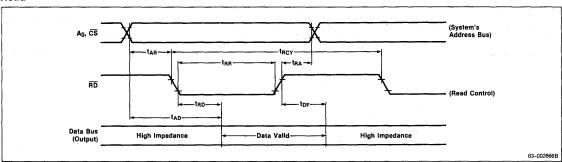
		μ PD8279-5 Limits		μ PD8279-2 Limits			Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Read							
Address stable before read	t _{AR}	0		. 0		ns	
Address hold time for read	t _{RA}	0		0	,	ns	
Read pulse width	t _{RR}	250		200		ns	
Data delay from read	t _{RD}		150		140	ns	C _L = 150 pF
Address to data valid	t _{AD}		250		250	ns	C _L = 150 pF
Read to data floating	t _{DF}	10	100	10	100	ns	,
Read cycle time	t _{RCY}	1000		200		ns	· .
Write							
Address stable before write	t _{AW}	0		0		ns	
Address hold time for write	t _{WA}	0		0		ns	
Write pulse width	t _{WW}	250		200		ns	
Data set up time for write	t _{DW}	150		150		ns	
Data hold time for write	t _{WD}	0		0		ns	
Write cycle time	twcy	1000		200		ns	
Other							
Clock pulse width	t _{øW}	120		70		ns	
Clock period	tcy	320	17.5	200		ns	

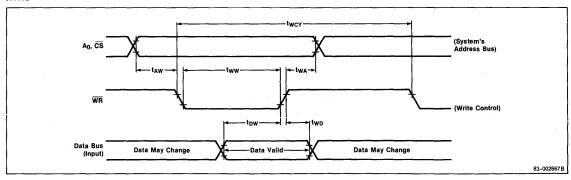


General Timing


Keyboard scan time	5.1 ms
Keyboard debounce time	10.3 ms
Key scan time	80 µs
Display scan time	10.3 ms
Digit-on time	480 µs
Blanking time	160 µs
Internal clock cycle	10 µs

Timing Waveforms


AC Test Input


Clock Input

Read

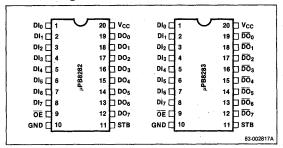
Write

Description

The μ PB8282 and μ PB8283 are 8-bit latches with three-state output buffers. The μ PB8282 is non-inverting and the μ PB8283 inverts the input data. These devices are ideal for demultiplexing the address/data buses on the 8085A/8086 microprocessors. The μ PB8282/83 are fabricated using NEC's Schottky bipolar process.

Features

- Support μPB8080, 8085A, 8048, 8086 family systems
- ☐ Transparent during active strobe
- ☐ Fully parallel 8-bit data register and buffer
- High output drive capability (32 mA) for driving the system data bus
- ☐ Three-state outputs


Ordering Information

Part Number	Package Type	Output Drive Capability 32 mA		
μPB8282C	20-pin plastic DIP			
μPB8283C	20-pin plastic DIP	32 mA		

Pin Identification

Symbol	Function
DI ₀ -DI ₇	Data in
ŌĒ	Output enable
GND	Ground
STB	Strobe
(μPB8282) <u>DO₇-DO₀</u> (μPB8283) <u>DO₇-DO₀</u>	Data out
V _{CC}	Power supply
	DI ₀ -DI ₇ ŌĒ GND STB (μPB8282) DO ₇ -DO ₀ (μPB8283) DO ₇ -DO ₀

Pin Configurations

Pin Functions

OE (Output Enable)

This active low input control signal enables the contents of the data latches onto the data output pins (B₀-B₇). When \overline{OE} goes high, the output buffers become high impedance.

STB (Strobe)

This input control pulse strobes data at input A_0 - A_7 into the data latches. Data is latched at STB's high to low transition. When active high, STB admits input data.

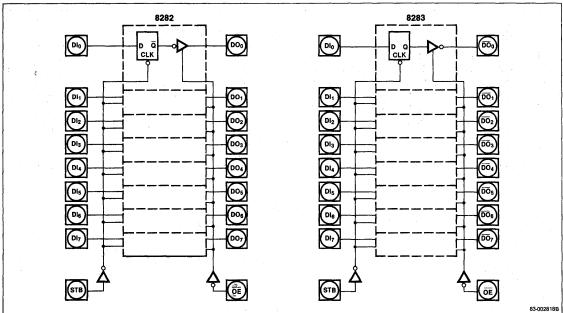
Dl₀-Dl₇ (Data In)

When data that satisfies the STB strobe setup time requirements is input to these pins, it is latched into the data latches.

<u>DO</u>₀-DO₇ (μPB8282) (Data Out) DO₀-DO₇ (μPB8283)

When \overline{OE} is active (low), it outputs data to the DO₀-DO₇ pins. When \overline{OE} is inactive high, DO₀-DO₇ are high impedance. Enabling or disabling the output buffers will not cause negative-going transients to appear on the data output bus.

GND (Ground)


This is the ground.

V_{CC} (Power Supply)

This is the +5 V power supply.

Block Diagrams

Functional Description

The μ PB8282/83 are 8-bit latches with three-state output buffers. Data on the inputs is latched into the data latches on a high-to-low transition of the STB line. When STB is high, the latches appear transparent. The \overline{OE} input enables the latched data to be transferred to the output pins. When \overline{OE} is high, the outputs are put in the three-state condition. \overline{OE} will not cause transients to appear on the data outputs.

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

Operating temperature	0°C to +70°C
Storage temperature	-65°C to +150°C
All output and supply voltages	-0.5 to +7 V
All input voltages	-1.0 V to 5.5 V

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

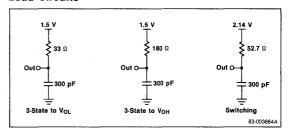
DC Characteristics

 $T_A = 0$ °C to +70 °C; $V_{CC} = +5$ V ±10%

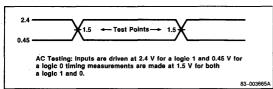
		Li	mits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input clamp voltage	V _C		-1	٧	$I_C = -5 \text{ mA}$
Power supply current	Icc		160	mΑ	
Forward input current	lF		-0.2	mA	$V_F = 0.45 \text{ V}$
Reverse input current	I _R		50	μΑ	$V_R = 5.25 \text{ V}$
Output low voltage	V _{OL}		0.45	٧	$I_{OL} = 32 \text{ mA}$
Output high voltage	V _{OH}	2.4		٧	$I_{OH} = -5 \text{ mA}$
Output off current	l _{OFF}		±50	μА	$V_{OFF} = 0.45 \text{ to } 5.25 \text{ V}$
Input low voltage	V _{IL}		0.8	٧	$V_{CC} = 5.0 \text{ V (1)}$
Input high voltage	V _{IH}	2.0		٧	$V_{CC} = 5.0 \text{ V (1)}$
Input capacitance	C _{IN}		12	pF	V _{BIAS} = 2.5 V, V _{CC} = 5 V, T _A = 25°C F = 1 MHz

Note:

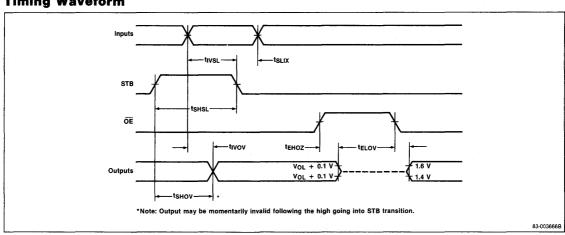
(1) Output loading $I_{OL} = 32$ mA, $I_{OH} = -5$ mA, $C_L = 300$ pF



AC Characteristics


 T_A = 0°C to +70°C; V_{CC} = 5 V \pm 10% I_{OL} = 32 mA, I_{OH} = -5 mA, C_L = 300 pF

		Lin	nits	
Parameter	Symbol	Min	Max	Unit
Input to output delay —Inverting —Non-inverting	^t ıvov	5 5	22	ns
		5	30	ns
STB to output delay —Inverting —Non-inverting	tsноv	10 10	40 45	ns ns
Output disable time	t _{EHOZ}	5	22	ns
Output enable time	t _{ELOV}	10	30	ns
Input to STB setup time	tıvsl	0		ns
Input to STB hold time	t _{SLIX}	25		ns
STB high time	t _{SHSL}	15		ns
Input, output rise time	t _{ILIH} , t _{OLOH}		20	ns
Input, output fall time	t _{IHIL} , t _{OHOL}		12	ns


Load Circuits

AC Test Points

Timing Waveform

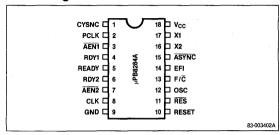
μPB8284A CLOCK GENERATOR AND DRIVER FOR 8086/8088 MICROPROCESSORS

Description

The μ PB8284 is a clock generator and driver for the 8086 and 8088 microprocessors. This bipolar driver provides the microprocessor with a reset signal and also provides properly synchronized READY timing. A TTL clock is also provided for peripheral devices.

Features

Generates system clock for the 8086 and 8088
Frequency source can be a crystal or a TTL signal
MOS level output for the processor
TTL level output for the peripheral devices
Power-up reset for the processor
READY synchronization
+5 V supply


Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPB8284AD	18-Pin cerdip	25 MHz÷3

Pin Identification

No.	Symbol	Function
1	CSYNC	Clock synchronization
2	PCLK	Peripheral clock
3, 7	AEN1, AEN2	Address enable
4, 6	RDY1, RDY2	Bus ready
5	READY	Ready
8	CLK	Processor clock
9	GND	Ground
10	RESET	Reset
11	RES	Reset in
12	OSC	Oscillator output
13	F/C	Frequency crystal select
14	EFI	External frequency in
15	ASYNC	Asynchronous input
16, 17	X1, X2	Crystal in
18	V _{CC}	Vcc

Pin Configuration

Pin Functions

Clock Synchronization

An active high signal which allows multiple 8284s to be synchronized. When CYSNC is low, the internal counters count, and when high, the counters are reset. CYSNC should be grounded when the internal oscillator is used.

Peripheral Clock

A TTL level clock for use with peripheral devices. This clock is one-half the frequency of CLK.

Address Enable

This active low signal is used to qualify its respective RDY inputs. If there is only one bus to interface to, $\overline{\text{AEN}}$ inputs are to be grounded.

Bus Ready

This signal is sent to the 8284 from a peripheral device on the bus to indicate that data has been received or data is available to be read.

Ready

The READY signal to the microprocessor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the guaranteed hold time to the processor has been met.

Processor Clock

This is the MOS level clock output of 33% duty cycle to drive the microprocessor and bipolar support devices (8288) connected to the processor. The frequency of CLK is one third of the crystal or EFI frequency.

Ground

Ground.

Reset

This is used to initialize the processor. Its input is derived from an RC connection to a Schmitt trigger input for power up operation.

Reset In

The Schmitt trigger input is used to determine the timing of RESET out via an RC circuit.

Oscillator Output

This TTL level clock is the output of the oscillator circuit running at the crystal frequency.

Frequency Crystal Select

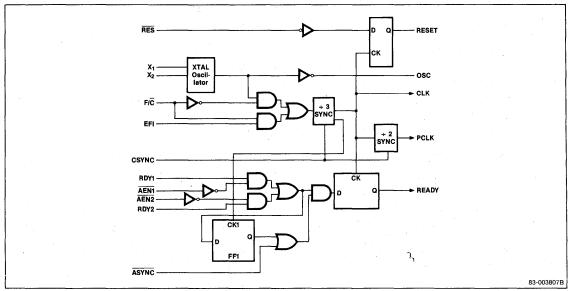
 F/\overline{C} is a strapping option used to determine where CLK is generated. A high is for the EFI input, and a low is for the crystal.

External Frequency In

A square wave in at three times the CLK output. A TTL level clock to generate CLK.

Asynchronous Input

Ready Synchronization Select. ASYNC is an input which defines the synchronization mode of the READY logic. When ASYNC is low, two stages of READY synchronization are provided. When ASYNC is left open or HIGH, a single stage of READY synchronization is provided.


Crystal In

A crystal is connected to these inputs to generate the processor clock. The crystal frequency is three times the desired CLK output.

V_{CC} Supply Voltage

+5 V supply.

Block Diagram

Functional Description

The clock generator can provide the system clock from either a crystal or an external TTL source. There is an internal divide-by-three counter which receives its input from either the crystal or TTL source (EFI pin) depending on the state of the F/ \bar{C} input strapping. There is also a clear input (C SYNC) which is used for

either inhibiting the clock, or synchronizing it with an external event (or perhaps another clock generator chip). Note that if the TTL input is used, the crystal oscillator section can still be used for an independent clock source, using the OSC output.

For driving the MOS output level, there is a 33% duty cycle MOS output (CLK) for the microprocessor, and a TTL output (PCLK) with a 50% duty cycle for use as a peripheral clock signal. This clock is at one-half of the processor clock speed.

Reset timing is provided by a Schmitt trigger input (RES) and a flip-flop to synchronize the reset timing to the falling edge of CLK. Power-on reset is provided by a simple RC circuit on the RES input.

Absolute Maximum Ratings

 $T_A = 25$ °C

Power supply voltage, V _{DD}	-0.5 V to +7 V
Input voltage, V _I	-1.0 V to +5.5 V
Output supply voltage, V ₀	-0.5 V to +7 V
Operating temperature, T _{OPT}	-0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5$ V ±10%

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL}			+0.8	V	$V_{CC} = 5.0 \text{ V}$
Input voltage high	V _{IH}	2			٧	$V_{CC} = 5.0 \text{ V}$
Output voltage low	V _{OL}			+0.45	V	$5 \text{ mA} = I_{0L}$
Output voltage high (CLK)	V _{OH}	4			V	-1mA=I _{OH}
(Other outputs)		2.4			V	$-1 \text{ mA} = I_{OH}$
Forward input current (ASYNC)	lF			-1.3	mA	$V_F = 0.45 \text{ V}$
(Other inputs)				-0.5	mΑ	$V_F = 0.45 V$
Reverse input current	IR			50	μΑ	$V_R = 5.25 V$
Input forward clamp voltage	V _C			-1.0	V	$I_C = -5 \text{ mA}$
Reset input high voltage	V _{IHR}	2.6			V	$V_{CC} = 5.0 \text{ V}$
RES input hysteresis	V _{IHR} - V _{ILR}	0.25			V	$V_{CC} = 5.0 \text{ V}$
Power supply current	lcc			140	mA	

There are two READY inputs, each with its own qualifier (AEN1, AEN2). The unused AEN signal should be tied low.

The READY logic in the 8284A synchronizes the RDY1 and RDY2 asynchronous inputs to the processor clock to insure proper set up time, and to guarantee proper hold time before clearing the ready signal.

AC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = 5$ V ± 10 %

			Limits			Test
Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Timing Requiren	ents					
External frequency time high	^t EHEL	- 13			ns	90%-90% V _{IN}
External frequency time low	teleh	13			ns	10%-10% V _{IN}
EFI period	t _{ELEL}	(5)			ns	(Note 1)
XTAL frequency		12		25	MHz	
RDY1, RDY2 set-up to CLK	t _{R1VCL}	35			ns	
RDY1, RDY2 hold to CLK	t _{CLR1X}	0			ns	
AEN1, AEN2 set-up to RDY1, RDY2	t _{A1VR1V}	15			ns	
AEN1, AEN2 hold to CLK	tCLA1X	0			ns	
CSYNC set-up to EFI	t _{YHEH}	20			ns	
CSYNC hold to EFI	t _{EHYL}	10			ns	
CSYNC width	tyHYL	2 t _{ELEL}			ns	
RES set-up to CLK	t _{I1HCL}	65			ns	(Note 2)
RES hold to CLK	t _{CLI1H}	20			ns	(Note 2)
RDY1, RDY2 active set-up to CLK	t _{R1VCH}	35			ns	ASYNC = Low
RDY1, RDY2 inactive set-up to CLK	^t R1VCL	35			ns	
ASYNC set-up to CLK	tayvcl	50			ns	
ASYNC hold to CLK	[†] CLAYX	0			ns	
Input rise time	t _{ILIH}			20	ns	From 0.8 V to 2.0 V
Input fall time	t _{ILIL}			12	ns	From 2.0 V to 0.8 V

AC Characteristics (cont)

 $T_A = 0$ °C to +70 °C, $V_{CC} = 5 V \pm 10$ %

			Limits			Test
Parameter -	Symbol	Min	Тур	Max	Unit	Conditions
Timing Response	8	:				
CLK cycle period	tCLCL	125			ns	
CLK time high	tCHCL	(6)			ns	Figure 1 and figure 2
CLK time low	tCLCH	(7)			ns	Figure 1 and figure 2
CLK rise and fall time	t _{CH1CH2} , t _{CL2CL1}			10	ns	1.0 V to 3.5 V
PCLK time high	t _{PHPL}	(8)			ns	
PCLK time low	t _{PLPH}	(8)			ns	
Ready inactive to CLK	tRYLCL	-8			ns	Figure 3 and figure 4, (Note 4)
Ready active to CLK	t _{RYHCH}	(7)			ns	Figure 3 and figure 4, (Note 3)
CLK to reset delay	tclil			40	ns	
CLK to PCLK high delay	tCLPH			22	ns	
CLK to PCLK low delay	tCLPL			22	ns	
OSC to CLK high delay	tolch	-5		12	ns	
OSC to CLK low delay	tolcl	2		22	ns	
Output rise time (except CLK)	tогон			20	ns	From 0.8 V to 2.0 V
Output fall time (except CLK)	t _{OHOL}			12	ns	From 2.0 V to 0.8 V

Note:

- (1) $\delta = EFI \text{ rise } (5 \text{ ns max}) + EFI \text{ fall } (5 \text{ ns max}).$
- (2) Set-up and hold only necessary to guarantee recognition at next clock.
- (3) Applies only to T3 and TW states.
- (4) Applies only to T2 states.
- (5) tehel+telen+6
- (6) (1/3 t_{CLCL}) +2.0
- (7) (2/3 t_{CLCL}) 15.0
- (8) t_{CLCL} 20

AC Test Circuits

Figure 1. Clock High and Low Time

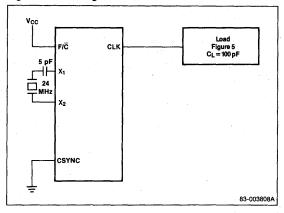


Figure 2. Clock High and Low Time

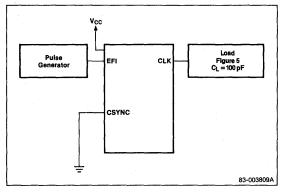


Figure 3. Ready to CLK

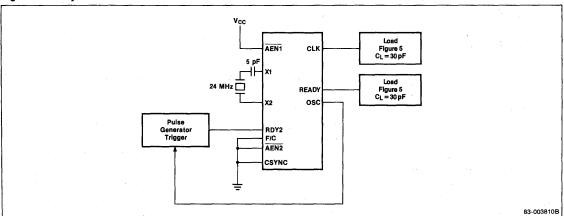


Figure 4. Ready to CLK Output

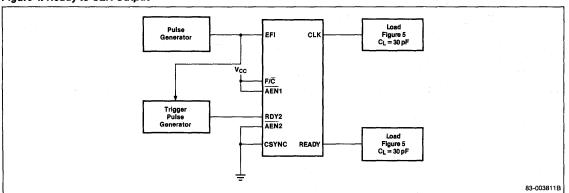


Figure 5. AC Load

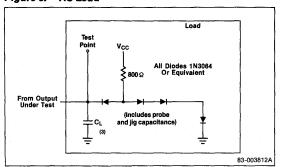
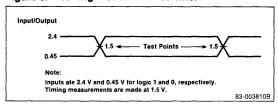
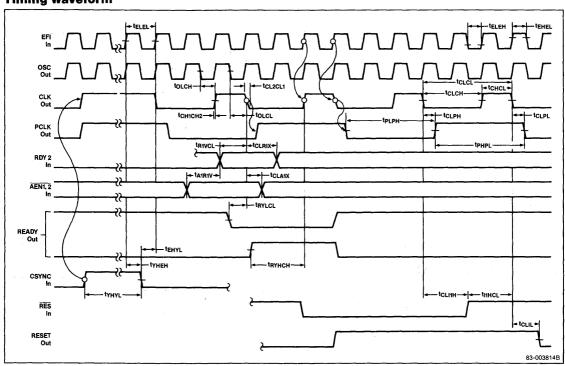




Figure 6. Timing Measurement Points

Timing Waveform

μPB8286/87 8-BIT BUS TRANSCEIVERS

Description

The µPB8286 and µPB8287 are octal bus transceivers used for buffering microprocessor bus lines. Being bidirectional, they are ideal for buffering the data bus lines on 8- or 16-bit microprocessors. Each B output is capable of driving 32 mA low or 5 mA high.

Features

- Data bus buffer driver for μ COM-8 (8080, 8085A, 780) and μ COM-16 (8086) families
- ☐ Low input load current 0.2 mA max
- High output drive capability for driving system data bus
- ☐ Three-state outputs

Ordering Information

Part Number	Package Type	i/O Delay, Max	
μPB8286C	20-pin plastic DIP	22 ns	
μPB8287C	20-pin plastic DIP	30 ns	

Pin Configurations

					
A ₀ □ 1	J	20 □ V _{CC}	A₀ C		20 □ V _{CC}
A1 🗖 2		19 🗀 B₀	A1 []	2	19 🗖 🗟
A ₂ □ 3		18 🗇 B ₁	A2 C	3	18 🗗 🖺
A ₃ □ 4		17 🗗 B ₂	A₃ ⊏	4	17 🗖 🖺
A, C 5	8	16 🔁 B ₃	44 🗖	ь е с	16 □ B̄ ₃
A ₅ □ 6	μ PB 8286	15 🗗 B₄	A ₅ C	6 👸	15 🗆 🛱 4
A ₆ C 7	ď	14 🗗 B ₅	A6 🗖	7	14 🗖 B̄₅
A7 🗆 8		13 🗀 B ₆	A7 C	8	13 🗖 🗟
OE C 9		12 🗗 B ₇	ᅊᄓ	9	12 🗖 🖪
GND 🗆 10		11 D T	GND I	10	11 D T
			•		83-002804A

Pin Identification

No.	Symbol	Function
1-8	A ₀ -A ₇	Local data bus
9	ŌĒ	Output enable
10	GND	Ground
11	T _.	Transmit
12-19	(μPB8286) <u>B</u> ₇ – <u>B</u> ₀ (μPB8287) <u>B</u> ₇ – <u>B</u> ₀	System data bus
20	V _{CC}	Power supply

Pin Functions

OE (Output Enable)

This active low input control signal enables the output drivers selected by T.

T (Transmit)

This input controls the direction of data through the transceivers. When high, data is transferred from the A_0 - A_7 inputs to the B_0 - B_7 outputs. When low, data is transferred from the B_0 - B_7 inputs to the A_0 - A_7 outputs.

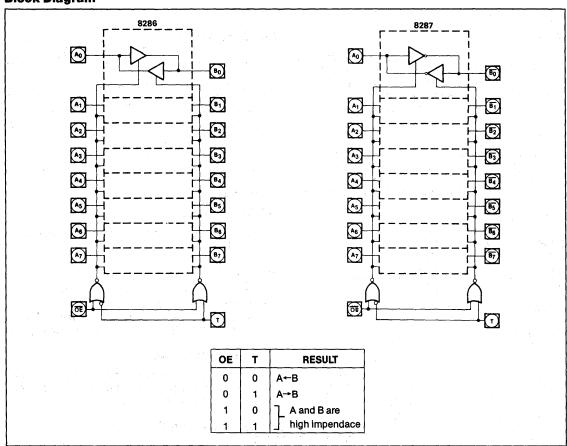
A₀-A₇ (Local Data Bus)

A₀-A₇ are bidirectional drivers that, depending on the state of the transmit pin, accept data from or transfer data to the processor's local bus.

B₀-B₇ (System Data Bus)

B₀-B₇ are bidirectional drivers that, depending on the state of the transmit pin, accept data from or transfer data to the system bus.

GND (Ground)


This is the ground.

V_{CC} (Power Supply)

This is the +5 V power supply.

Block Diagram

Functional Description

MOS microprocessors like the 8080/8085A/8086 are generally capable of driving a single TTL load. This also applies to MOS memory devices. While sufficient for minimum type small systems on a single PC board, it is usually necessary to buffer the microprocessor and memory signals when a system is expanded or signals go to other PC boards.

These octal bus transceivers are designed to do the necessary buffering.

Bidirectional Driver

Each buffered line of the octal driver consists of two separate three-state buffers. The B side of the driver is designed to drive 32 mA and interface the system side of the bus to I/O, memory, etc. The A side is connected to the microprocessor.

Control Gating, OE, T

The $\overline{\text{OE}}$ (output enable) input is an active low signal used to enable the drivers selected by T on to the respective bus.

T is an input control signal used to select the direction of data through the transceivers. When T is high, data is transferred from the A_0 - A_7 inputs to the B_0 - B_7 outputs, and when low, data is transferred from B_0 - B_7 to the A_0 - A_7 outputs.

Absolute Maximum Ratings

 $T_A = 25$ °C

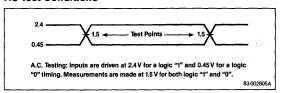
Power supply voltage, V _{CC}	-0.5 V to +7 V
Input voltage, V _I	-1.0 V to +5.5 V
Output voltage, V ₀	-0.5 V to +7 V
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5 V \pm 10$ %

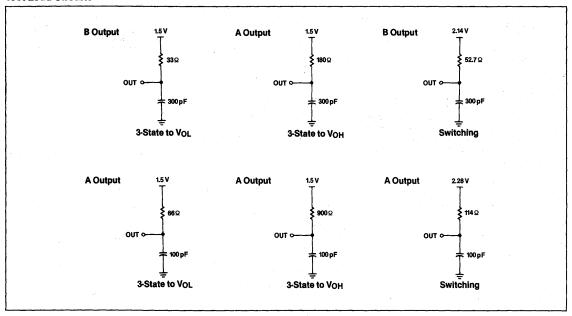
			Limite	3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low — A side	V _{IL}		-	+0.8	٧	V _{CC} = 5.0 V, (Note 1)
— B side				+0.9	٧	V _{CC} = 5.0 V, (Note 1)
Input voltage high	V _{IH}			2	V	V _{CC} +5.0 V, (Note 1), F=1 MHz
Output voltage low — B outputs	V _{OL}			+0.45	٧	I _{OL} = 32 mA
— A outputs			1	+0.45	٧.	$I_{OL} = 16 \text{mA}$
Output voltage high — B outputs	V _{OH}	2.4			٧	$l_{OH} = -5 \text{mA}$
— A outputs		2.4			٧	$I_{OH} = -1 \text{mA}$
Input clamp voltage	V _C			-1	٧	$I_C = -5 \text{mA}$
Input forward current	lF			-0.2	μΑ	V _F =0.45 V
Input reverse current	IR			50	μΑ	V _R =5.25 V
Power supply current	Icc					٠.
μPB8287				130	mA	
μPB8286				160	mA	
Output off current	I _{OFF}			l _F		V _{0FF} =0.45 V
Output off current	l _{OFF}			l _R		V _{OFF} =5.25 V

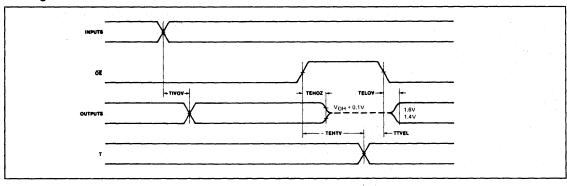

Note:

AC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = 5 V \pm 10$ %

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input to output delay	t _{IVOV}					
Inverting		5		22	ns	
Non-inverting	l	5		30	ns	
Transmit / receive	e t _{EHTV}	tEHOZ			ns	
Transmit / receiv	ve t _{TVEL}	10			ns	
Output disable time	t _{EHOZ}	5		22	ns	-
Output enable time	t _{ELOV}	10		30	ns	
I / O rise time	t _{ILIH} t _{OLOH}			20	ns	
1 / 0 fall time	t _{IHIL} t _{OHOL}			12	ns	


AC Test Conditions


⁽¹⁾ B outputs — $I_{OL}=32$ mA, $I_{OH}=-5$ mA, $C_L=300$ pF A outputs — $I_{OL}=16$ mA, $I_{OH}=-1$ mA, $C_L=100$ pF

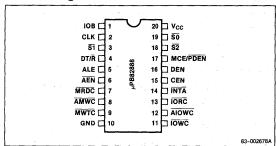
Test Load Circuits

Timing Waveform

Description

The μ PB8288 bus controller is used in medium to large μ PD8086/ μ PD8088 systems. This 20-pin bipolar component provides command and control timing generation, as well as bipolar drive capability and optimal system performance. It provides both Multibus® command signals and control outputs for the microprocessor system. There is an option to use the controller with a multimaster system bus and separate I/O bus.

Features


- System controller for μPD8086/μPD8088 systems
- ☐ Bipolar drive capability
- ☐ Provides advanced commands
- ☐ Three state output drivers
- ☐ Can be used with an I/O bus
- ☐ Enables interface to one or two multimaster buses

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPB8288D	20-pin cerdip	10 MHz

Multibus is a registered trademark of Intel Corp.

Pin Configuration

Pin Identification

No.	Symbol	Function
1	IOB	I/O bus mode selector input
2	CLK	Clock input
3	Sī	Status input
4	DT/Ř	Data transmit/receive
5	ALE	Address latch enable output
6	ĀĒÑ	Address enable input
7	MRDC	Memory read command output
8	AMWC	Advanced memory write command output
9	MWTC	Memory write command output
10	GND	Ground
11	IOWC	I/O write command output
12	AIOWC	Advanced I/O write command output
13	IORC	I/O read command output
14	ĪNTĀ	Interrupt acknowledge output
15	CEN	Command enable input
16	DEN	Data enable output
17	MCE/PDEN	Master cascade enable/peripheral data enable output
18	<u>\$2</u>	Status input
19	<u>\$0</u>	Status input
20	V _{CC}	+5 V power supply

Pin Functions

AEN (Address Enable)

In the I/O system bus mode, $\overline{\text{AEN}}$ enables the command outputs of the μPB8288 105 ns after it becomes active. If $\overline{\text{AEN}}$ is inactive, the command outputs become high impedance outputs.

AIOWC (Advanced I/O Write Command)

This write command occurs earlier in the machine cycle than the IOWC command.

ALE (Address Latch Enable)

This signal is used for controlling transparent D-type latches (μ PB8282/ μ PB8283). It will strobe in the address on a high to low transition.

AMWC (Advanced Memory Write Command)

This is an advanced write command which occurs early in the machine cycle, with timing the same as the read command.

CEN (Command Enable)

This signal enables all command and control outputs. If CEN is low, these outputs are inactive.

CLK (Clock)

The clock signal from the μ PB8284 clock generator synchronizes the generation of command and control signals.

DEN (Data Enable)

This signal enables the data transceivers onto the bus.

DT/R (Data Transmit/Receive)

This signal is used to control the bus transceivers in a system; high for writing to I/O or memory and low for reading data.

INTA (Interrupt Acknowledge)

INTA is used to signal an interrupting device to put the vector information on the data bus.

IOB (I/O Bus Mode)

Sets mode of μ PB8288; high for the I/O bus mode and low for the system bus mode.

IORC (I/O Read Command)

This signal enables the CPU to read data from an I/O device.

IOWC (I/O Write Command)

This command is for transferring information to I/O devices.

MCE/PDEN (Master Cascade Enable/ Peripheral Data Enable)

Dual function pin system. (MCE) In the bus mode, this signal is active during an interrupt sequence to read the cascade address from the master interrupt controller onto the data bus. (PDEN) In the I/O bus mode, it enables the transceivers for the I/O bus just as DEN enables bus transceivers in the system bus mode.

MRDC (Memory Read Command)

This active low signal is for switching the data from memory to the data bus.

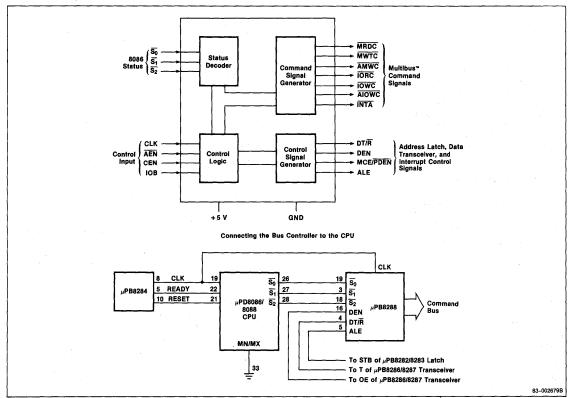
MWTC (Memory Write Command)

This signal is used to transfer the data bus to memory, but not as early as $\overline{\text{AMWC}}$. (See timing waveforms).

GND (Ground)

Ground.

So, S1, S2 (Status Input Pins)


The μ PB8288 decodes these status lines from the μ PD8086 to generate command and control signals. When not in use, these pins are high.

V_{CC} (Power Supply)

+5 V power supply.

Block Diagram

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

· A	
Power supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, V _I	-1.0 to +5.5 V
Output voltage, V ₀	-0.5 to +7.0 V
Operating temperature, T _{OPT}	0 to +70°C
Storage temperature, T _{STG}	-65 to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC Characteristics

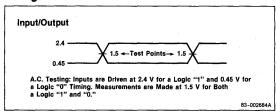
 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = 5 \text{ V } \pm 10\%$

		Lin	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input high voltage	V _{1H}	2.0		٧	
Input low voltage	V _{IL}		0.8	٧	
Input clamp voltage	V _C		-1	V	$l_C = -5 \text{ mA}$
Output high voltage	V _{OH}	2.4		٧	$l_{OH} = -5 \text{ mA}$
(command) (control)		2.4		V	$l_{OH} = -1 \text{ mA}$
Output low voltage	V _{OL}		0.5	٧	$l_{OL} = 32 \text{ mA}$
(command) (control)			0.5	٧	$I_{OL} = 16 \text{ mA}$
Forward input current	ΙF		-0.7	mA	$V_F = 0.45 \text{ V}$
Reverse input current	IR	100	50	μΑ	$V_R = V_{CC}$
Output off current	loff		100	μΑ	V _{OFF} = 0.4 V to 5.25 V
Power supply current	lcc		230	mA	

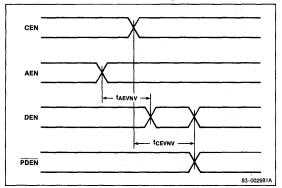
AC Characteristics $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = 5 \text{ V } \pm 10\%$

Timing Requirements

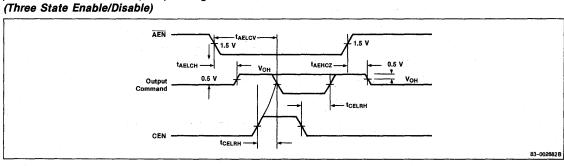
		Lir	nits		
Parameter	Symbol	Min	Max	Unit	Loading
CLK cycle period	t _{CLCL}	100		ns	
CLK low time	tCLCH	50		ns	
CLK high time	t _{CHCL}	30		ns	
Status active setup time	tsvch	35		ns	
Status active hold time	t _{CHSV}	10		ns	
Status inactive setup time	tSHCL	35		ns	
Status inactive hold time	t _{CLSH}	10		ns	
Input rise time	t _{ILIH}		20	ns	
Input fall time	t _{IHIL}		12	ns	

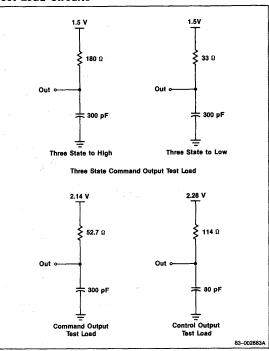

Timing Responses

		Li	mits			
Parameter	Symbol	Min	Max	Unit		Loading
Control active delay	t _{CVNV}	- 5	45	ns		
Control inactive delay	t _{CVNX}	10	45	ns		
ALE MCE active delay (from CLK)	t _{CLLH/}		20	ns	MRDC	
ALE MCE active delay (from status)	t _{SVLH} t _{SVMCH}		20	ns		$l_{0L} = 32 \text{ mA}$
ALE inactive delay	tCHLL	4	15	ns	IOWC	$I_{OH} = -5 \text{ mA}$
Command active delay	t _{CLML}	10	35	ns	INTA	$C_L = 300 pF$
Command inactive delay	t _{CLMH}	10	35	ns	AMWC	
Direction control active delay	tCHDTL		50	ns	AIOWC	
Direction control inactive delay	tchdth		30	ns		
Command enable time	taelch		40	ns		
Command disable time	^t AEHCZ		40	ns		
Enable delay time	t _{AELCV}	115	200	ns		$l_{0L} = 16 \text{ mA}$
AEN to DEN	^t AEVNV		20	ns	$0 ther \} \\$	$i_{OH} = -1 \text{ mA}$
CEN to DEN, PDEN	t CEVNV		25	ns		$C_L = 80 pF$
CEN to command	tCELRH		tCLML	ns		
Output rise time	toloh		20	ns		
Output fall time	toHOL		12	ns		

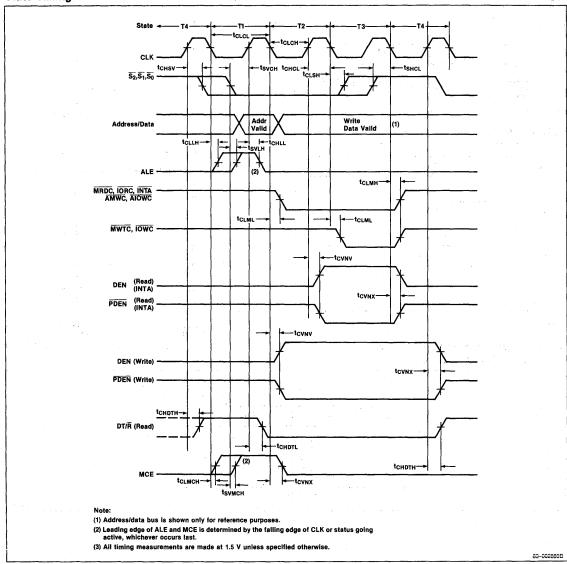


Timing Waveforms


Timing Measurement Points


DEN, PDEN Qualification Timing

μΡD8288 Address Enable (AEN) Timing


Test Load Circuits

Timing Waveforms (cont)

State Timing

8-136

Functional Description

The three status lines ($\overline{S0}$, $\overline{S1}$, $\overline{S2}$) from the μ PD8086 CPU are decoded by command logic within the μ PB8288 to determine which command is to be issued. Table 1 below illustrates the decoding and command generation of the status lines.

Table 1. Status Line Decoding

S2	S1	ŜŌ	μPD8086 State	μPB8288 Command
0	0	0	Interrupt acknowledge	ĪNTĀ
0	0	1	Read I/O port	ĪORC
0	1	0	Write I/O port	<u>IOWC,</u> AIOWC
0	1	1	Halt	None
1	0	0	Code access	MRDC
1	0	1	Read memory	MRDC
1	1	0	Write memory	MWTC, AMWC
1	1	1	Passive	None

There are two ways the command is issued depending on the mode of the μ PB8288.

The I/O bus mode is enabled if the IOB pin is pulled high. In this mode, all I/O command lines are always enabled and not dependent upon AEN. When the processor sends out an I/O command, the μ PB8288 activates the command lines using $\overline{\text{PDEN}}$ and $\overline{\text{DT/R}}$ to control any bus transceivers.

This mode is advantageous if I/O or peripherals dedicated to one microprocessor are in a multiprocessor system, allowing the μ PB8288 to control two external buses. No waiting is required when the CPU needs to access the I/O bus, as an $\overline{\text{AEN}}$ low signal is needed to gain normal memory access.

If the IOB pin is tied to ground, the μ PB8288 is in the system bus mode. In this mode, command signals are dependent upon the \overline{AEN} line. Thus the command lines are activated 105 ns after the \overline{AEN} line goes low. In this mode, there must be some bus arbitration logic to toggle the \overline{AEN} line when the bus is free for use. Here, both memory and I/O are shared by more than one processor, over one bus, with both memory and I/O commands waiting for bus arbitration.

Among the command outputs are some advanced write commands which are initiated early in the machine cycle and can be used to prevent the CPU from entering unnecessary wait states.

The INTA signal acts as an I/O read during an interrupt cycle. This is to signal the interrupting device that its interrupt is being acknowledged, and to place the interrupt vector on the data bus.

The control outputs of the $\mu PB8288$ are used to control the bus transceivers in a system. DT/ \bar{R} determines the direction of the data transfer, and DEN is used to enable the outputs of the transceiver. In the IOB mode the MCE/ \bar{PDEN} pin acts as a dedicated data enable signal for the I/O bus.

The MCE signal is used in conjunction with an interrupt acknowledge cycle to control the cascade address when more than one interrupt controller (such as a $\mu\text{PD8259A}$) is used. If there is only one interrupt controller in a system, MCE is not used because the INTA signal gates the interrupt vector onto the processor bus. In multiple interrupt controller systems, MCE is used to gate the $\mu\text{PD8259A}$'s cascade address onto the processor's local bus, where ALE strobes it into the address latches. This occurs during the first INTA cycle. During the second INTA cycle the addressed slave $\mu\text{PD8259A}$ gates its interrupt vector onto the processor bus.

The ALE signal occurs during each machine cycle and is used to strobe data into the address latches and to strobe the status $(\overline{S0}, \overline{S1}, \overline{S2})$ into the μ PB8288. ALE also occurs during a halt state to accomplish this.

The CEN (Command Enable) is used to control the command lines. If pulled high, the μ PB8288 functions normally, and if grounded, all command lines are inactive.

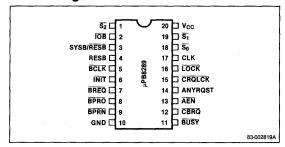
Description

The μ PB8289 bus arbiter is used with the μ PB8288 bus controller to interface 8086 and 8088 microprocessors to a multimaster system bus. The μ PB8289 controls the μ PB8288 bus controller and the bus transceivers and address latches, preventing them from accessing the system bus if the processor does not have use of the bus.

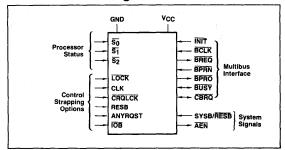
An external command sequence will cause the associated microprocessor to enter a wait state until the bus is ready. The processor remains in the wait state until the bus arbiter acquires use of the multimaster system bus. Then, the arbiter allows the bus controller, data transceivers, and address latches to access the system.

Once use of the bus has been acquired and data has been transferred, transfer acknowledge (XACK) is returned to the processor to indicate that the accessed slave device is ready. The processor may then complete its transfer cycle.

Features


- ☐ Multimaster system bus protocol
- □ 8086 and 8088 processor synchronization with multimaster bus
- ☐ Simple interface with the 8288 bus controller and 8283/8282 address latches to a system bus
- ☐ Four operating modes for flexible system configuration
- ☐ Simplified interface to Multibus® systems
- ☐ Parallel, serial, and rotating priority resolution
- ☐ Bipolar buffering and drive capability

Ordering Information


Part Number	Package Type	Max Frequency of Operation
μPB8289D	20-Pin Cerdip	8 MHz

Multibus is a registered trademark of Intel Corporation.

Pin Configuration

Functional Configuration

Pin Identification

No.	Symbol	Function
1, 18, 19	$\bar{S}_0 - \bar{S}_2$	Status inputs
2	IOB	I/O bus input
3	SYSB/RESB	System bus/resident bus inputs
4	RESB	Resident bus input
5	BCLK	System bus clock input
6	INIT	Initialize input
7	BREQ	Bus request output
8	BPRO	Bus priority output
9	BPRN	Bus priority input
10	GND	Ground
11	BUSY	Bus interface signal I/O
12	CBRQ	Common bus request I/O
13	AEN	Address enable output
14	ANYROST	Any request input
15	CRQLCK	Common request lock input
16	LOCK	Lock input
17	CLK	Clock input
20	V _{CC}	+5 V power supply

Pin Functions

So-S2 (Status Inputs)

The μ PB8289 decodes these status inputs from the 8086 or 8088 processor to begin bus requests and surrenders.

IOB (I/O Bus)

This input signal tells the μ PB8289 that there is an I/O peripheral bus and a multimaster system bus.

SYSB/RESB (System Bus/Resident Bus)

This input determines when bus requests and surrenders are permitted in SR mode.

RESB (Resident Bus Input)

RESB tells the μ PB8289 that there is a multimaster and resident bus. When the signal is high, the SYSB/RESB pin handles bus arbitration.

BLCK (System Bus Clock)

This clock input synchronize all system bus interface signals.

INIT (Initialize)

This active low-input resets all bus arbiters on the multimaster bus. No arbiters have use of the bus following INIT.

BREQ (Bus Request)

An arbiter uses this output to request use of the multimaster system bus.

BPRO (Bus Priority Output)

In serial priority resolving schemes, this output daisychains to BPRN of the next lower priority arbiter.

BPRN (Bus Priority Input)

This input tells the arbiter it may acquire the bus on the next falling edge at BCLK.

BUSY (Bus Interface Signal)

When the bus is available, this I/O signal notifies all arbiters on the bus. The highest requesting arbiter seizes the bus and pulls BUSY low to keep other arbiters off the bus.

CBRQ (Common Bus Request)

This signal is an input from a lower priority arbiter requesting the bus. It is an output from arbiters that surrender the multimaster bus upon request.

AEN (Address Enable)

This output tells the 8288 bus controller, 8284 clock driver, and the processor's address latches when to tri-state their output drivers.

ANYRQST (Any Request)

This signal allows the multimaster bus to be surrendered to a lower priority arbiter.

CRQLCK (Common Request Lock)

This input prevents the µPB8289 from surrendering the bus in response to a request on the CBRQ input.

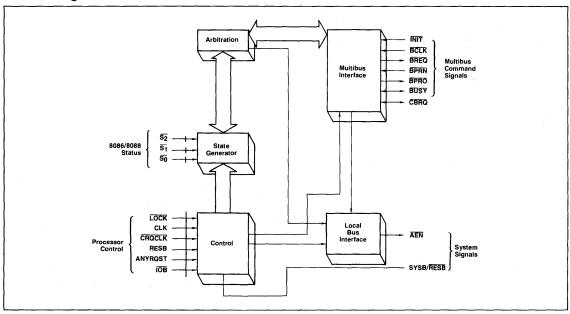
LOCK (Lock)

This input prevents the arbiter from surrendering the multimaster system bus to any other bus arbiter, regardless of its priority.

CLK (Clock)

This is the clock signal from the 8284 clock generator.

GND (Ground)


This is the ground.

V_{CC} (Power Supply)

This is the +5 V power supply.

Block Diagram

Functional Description

Bus Master Arbitration

Higher priority masters generally acquire use of the bus when a lower priority master completes its present transfer cycle. Lower priority masters acquire the bus when no higher priority master is accessing the system bus. The ANYRQST strapping option allows the arbiter to surrender the bus to a lower priority master as if it were a higher priority master. The arbiter maintains the bus as long as no other bus masters are requesting the bus and its processor has not entered the halt state. The arbiter does not voluntarily surrender the bus and must be forced off by a request from another bus master, unless the arbiter's processor has entered the halt state. Additional strapping options allow for other sets of conditions.

Priority Resolving Techniques

The μ PB8289 provides several techniques for resolving priority between the many possible bus masters of a multimaster system bus. All of these techniques assume that one bus master will have priority over all others at any given time. You may use parallel, serial, or rotating priority resolving.

Parallel Priority Resolving

This technique (figures 1, 2) uses a bus request line (BREQ) for each arbiter on the multimaster system bus. Each BREQ line goes to a priority encoder that generates the address of the highest priority active BREQ line. This binary address is decoded to select the bus priority in line (BPRN) that is returned to the highest priority arbiter. The arbiter that receives priority (BPRN true) allows its bus master onto the multimaster system bus as soon as the bus becomes available. An arbiter that gets priority over another arbiter cannot immediately seize the bus, but must wait until the current bus transaction is complete. When the transaction is complete, the current occupant of the bus surrenders the bus by releasing BUSY. BUSY is an active low OR tied line which goes to every arbiter on the system bus. When BUSY goes high (inactive), the priority arbiter seizes the bus and brings BUSY low to keep other arbiters off the bus. Note that all multimaster system bus transactions are synchronized to the bus clock (BCLK).

Figure 1. Parallel Priority Resolving

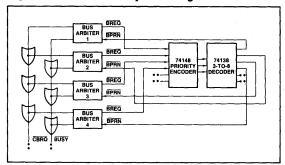
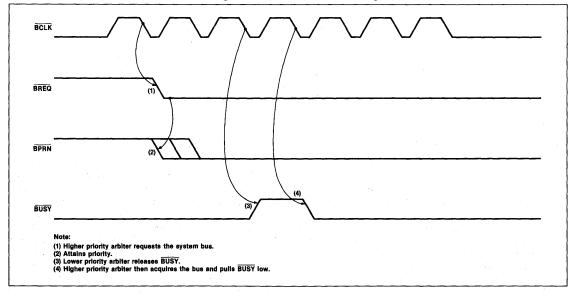
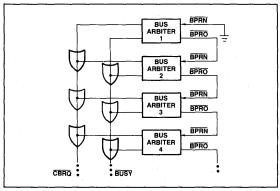



Figure 2. Higher Priority Arbiter Obtaining the Bus from a Lower Priority Arbiter



Serial Priority Resolving

The serial priority resolving technique (figure 3) daisychains the bus arbiters together by connecting the higher priority arbiter's \overline{BPRQ} output to the \overline{BPRN} of the next lowest priority arbiter. This eliminates the need for the priority encoder-decoder arrangement. The number of arbiters that may be daisy-chained together is a function of \overline{BCLK} and the propagation delay from arbiter to arbiter. At 10 MHz, only 3 arbiters may be daisy-chained.

Figure 3. Serial Priority Resolving

Rotating Priority Resolving

This technique resembles the parallel priority resolving technique except that priority is dynamically reassigned. The priority encoder is replaced by a circuit that rotates priority between arbiters to allow each arbiter an equal chance to use the system bus.

Modes of Operation

The μ PB8289 has two basic operating modes: I/O peripheral bus mode (\overline{IOB} mode), and resident bus mode (RESB mode). The \overline{IOB} strapping option configures the μ PB8289 into \overline{IOB} mode and the RESB strapping option configures it to RESB mode. If both options are strapped false, the arbiter interfaces the processor to a multimaster system bus only. If both options are strapped true, the arbiter interfaces the processor to a multimaster system bus, a resident bus, and an I/O bus. Figure 4 shows the μ PB8289 in a typical CPU system.

IOB Mode

 $\overline{\text{IOB}}$ mode allows the processor to access both an I/O peripheral bus and a multimaster system bus. On an I/O peripheral bus, all devices on the bus, including memory, are treated as I/O devices and addressed by I/O commands. All memory commands are directed to the multimaster system bus. In $\overline{\text{IOB}}$ mode, the processor communicates with and controls peripherals over the peripheral bus and communicates with system memory over the system memory bus. Figure 5 shows the μ PB8289 in this mode.

RESB Mode

RESB mode allows the processor to communicate over both a resident bus and a multimaster system bus. A resident bus can issue memory and I/O commands, but it is separate from the multimaster system bus. The resident bus has one master and is dedicated to only that master. The 8086 and 8088 can communicate with a resident bus and a multimaster system bus. The processor can access the memory and peripherals of both buses. Memory mapping selects which bus is accessed. The SYSB/RESB input on the arbiter instructs the arbiter on which bus to access. The signal connected to SYSB/RESB also enables and disables commands from one of the bus controllers. Figure 6 shows the µPB8289 in this mode.

Mode Summary

	Fi	tatus Line rom 8086 (088 or 808	or	IOB Mode Only	RESB (M 108 = High	ode) Only RESB = High	<u> 10</u> B Mode I 10B = Low F		Single Bus Mode 10B = High RESB = Low
	<u>\$2</u>	S 1	<u>\$0</u>	IOB = Low	SYSB/RESB = High	SYSB/RESB = Low	SYSB/RESB = High	SYSB/RESB = Low	
	0	0	0	x	~	x	Х	Х	~
1/0 commands	. 0	0	1	X	₽	X	x	· x	~
	0	1	0	Χ .		X	Χ -	X	~
Halt	0	1	11	х	X	X	X	X	х
Memory commands	1	0	0	~	~	x	~	x	
	1	0	1	~	_	X	∠ .	Х	~
	1	1	0	~	-	x	~	X	~
Idle	1	1	1	Х	x	х	x	Х	Х

Notes:

(1) x = Multimaster system bus is allowed to be surrendered.

(2) ightharpoonup = Multimaster system bus is requested.

Multimaster System Bus

Mode	Pin Strapping	Requested (1)	Surrendered (2)
Single bus multimaster mode	IOB = high RESB = low	When the pro- cessor's status lines go active	HLT + TI • HPBRQ†
RESB mode only	10B = high RESB = high	SYSB/RESB = High 2 active	(SYSB/RESB = low + TI) CBRQ + HLT + HPBRQ
IOB mode only	$\overline{IOB} = low$ RESB = low	Memory commands	(I/O status + TI) ● CBRQ + HLT + HPBRQ
IOB mode • RESB mode	IOB = low RESB = high	(Memory command) • (SYSB/RESB = high)	(1/0 status commands) + (TI) (SYSB/RESB = low) • CBRQ + HPBRQ† + HLT)

Note:

- (1) Except for HALT and idle status.
- (2) LOCK prevents surrender of bus to any other arbiter. CRQLCK prevents surrender of bus to a lower priority arbiter.
- (3) HLT = processor halt; $\overline{S}_2 \overline{S}_0 = 011$.
- (4) T1 = processor idle; $\overline{S}_2 \cdot \overline{S}_0 = 111$.
- (5) + means OR.
- (6) means AND.
 - † HPBRQ = higher priority bus request or BPRN = 1.

Absolute Maximum Ratings

 $T_{\Lambda} = 25^{\circ}C$

Operating temperature	0°C to 70°C
Storage temperature	-65°C to +150°C
Voltage on any pin	-0.5 V to +7 V
All input voltages	-1.0 V to +5.5 V
Power dissipation	1.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = 5 \text{ V} \pm 10\%$

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	۷ _{ĮL}			0.8	V	74.
Input high voltage	VIH	2.0		-	٧	A-1
Input clamp voltage	VC			-1.0	٧	$V_{CC} = 4.50 \text{ V},$ $I_{C} = -5 \text{ mA}$
Input forward current	lF			-0.5	mA	$V_{CC} = 5.50 \text{ V},$ $V_{F} = 0.45 \text{ V}$
Reverse input leakage current	1 _R			60	μΑ	$V_{CC} = 5.50 \text{ V}$ $V_{R} = 5.50 \text{ V}$
Output low voitage	V _{OL}					
BUSY, CBRQ AEN BPRO, BREQ				0.45 0.45 0.45	V V V	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 16 \text{ mA}$ $I_{OL} = 10 \text{ mA}$
Output high voltage BUSY, CBRQ	V _{OH}	Ope	n colle			- OL
	VII	2.4			٧	I _{OH} = 400 μA
All other outputs						
Power supply current	Icc	-		165	mA	

Capacitance

		I	Limits			Test
Parameter	Symbol	Min Typ		Max	Unit	Conditions
Input capacitance	C _{IN} status			25	pF	
Input capacitance	C _{IN} (others)	_		12	pF	
Note:						
1) BUSY, CBRQ	2) AEN			3)	BPRO,	BREQ
ຶ 2.3 V		2.3	v			2.3 V
§ 92.5 Ω		≱ 110	Ω			≸ 170 Ω
	·					 ,
±250 pF		±100) pF			±60 pF
<u> </u>		Ť				Ť

Figure 4. Typical CPU System Using the μPD8289 Bus Arbiter

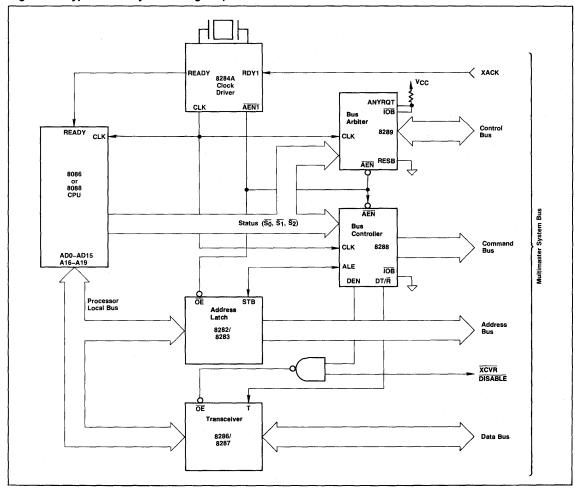


Figure 5. Typical Medium-Complexity IOB System

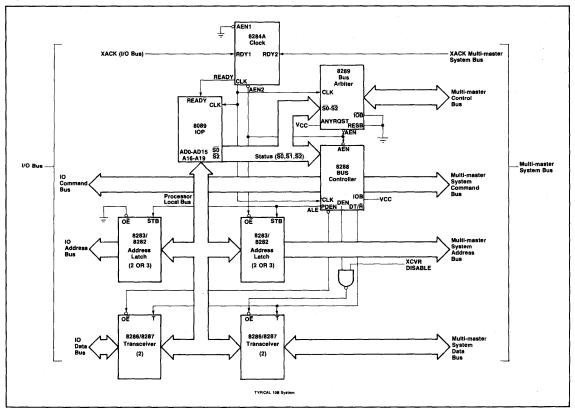
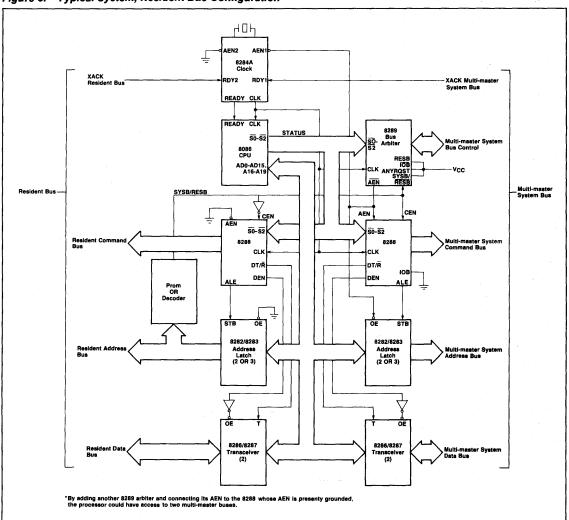
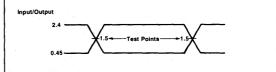



Figure 6. Typical System, Resident Bus Configuration

AC Characteristics

 $T_A = 0$ °C to +70°C; $V_{CC} = 5V \pm 10\%$

			Test			
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CLK cycle period	t _{CLCL}	125			ns	
CLK low time	tCLCH	65			ns	
CLK high time	tCHCL	35			ns	
Status active setup	tsvch	65	tolo	_L -10	ns	
Status inactive setup	tshcl	50	t _{CLC}	_L – 10	ns	
Status active nold	thvch	10			ns	
Status inactive nold	tHVCL	10			ns	
BUSY†↓ setup to BCLK↓	t _{BYSBL}	20			ns	
CBRQ↑↓ setup to BCLK↓	tCBSBL	20			ns	
BCLK cycle time	t _{BLBL}	100			ns	
BCLK high time	tBHCL	30	0.65	(t _{BLBL})	ns	
LOCK inactive hold	t _{CLLL1}	10			ns	
LOCK active setup	t _{CLLL2}	40			ns	
BPRN↓↑ to BCLK setup time	t _{PNBL}	15			ns	
SYSB/RESB setup	t _{CLSR1}	0			ns	
SYSB/RESB hold	t _{CLSR2}	20			ns	
Initialization pulse width	t _{IVIH}	3 t _{BLBL} 3 t _{CLCL}	+		ns	
Input rise time	t _{ILIH}			20	ns	From 0.8 V to 2.0 V
Input fall time	t _{iHiL}			12	ns	From 2.0 V to 0.8 V


Timing Response

	Limits					Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
BCLK to BREQ delay (1)	t _{BLBRL}			35	ns	
BCLK to BPRO (1)(2)	t _{BLPOH}			40	ns	
BPRN↓↑ to BPRO↓↑ delay ₍₁₎₍₂₎	t _{PNPO}			25	ns	
BCLK to BUSY low	t _{BLBYL}			60	ns	
BCLK to BUSY float (3)	t _{BLBYH}			35	ns	
CLK to AEN high	tCLAEH			65	ns	
BCLK to AEN low	t _{BLAEL}			40	ns	
BCLK to CBRQ low	tBLCBL			60	ns	
BCLK to CBRQ float (3)	trlcrh			35	ns	
Output rise time	t _{OLOH}			20	ns	From 0.8 V to 2.0 V
Output fall time	t _{OHOL}			12	ns	From 2.0 V to 0.8 V

Note:

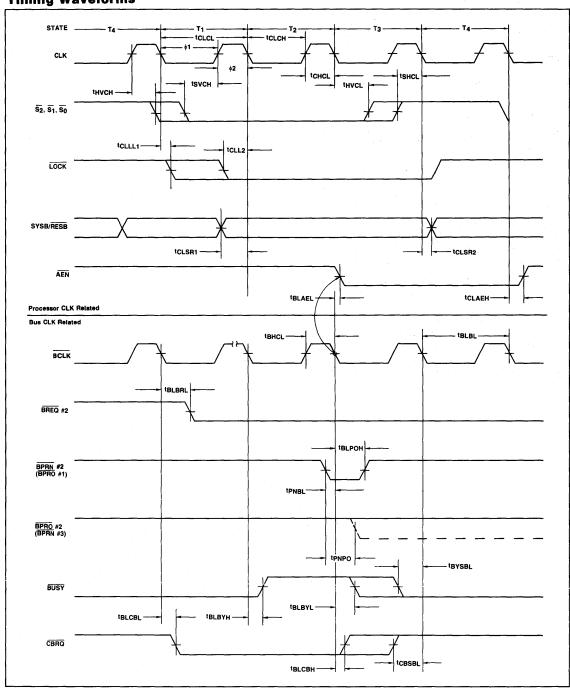
- (1) Denotes that the spec applies to both transitions of the signal.
- (2) BCLK generates the first BPRO. Subsequent changes of BPRO are generated through BPRON.
- (3) Measured at 0.5 V above GND.

AC Test Condition

AC Testing inputs are driven at 2.4V for LOGIC 1 and 0.45V for LOGIC 0. The clock is driven at 4.3V and 0.25. Timing measurements are made at 1.5V for LOGIC 1 and 0.

Timing Waveforms

The signals related to CLK are typical processor signals and do not relate to the depicted sequence of events of the signals referenced to BCLK. The signals shown related to the BCLK represent a hypothetical sequence of events for illustration. Assume three bus arbiters of priorities 1, 2, and 3 configured in the serial priority resolving scheme.


Assume arbiter 1 has the bus and is holding BUSY low. Arbiter 2 detects its processor wants the bus and pulls BREQ #2 low. If BPRN #2 is high (as shown), arbiter 2 pulls CBRQ low. CBRQ signals to higher-priority arbiter 1 that a lower-priority arbiter wants the bus. A higher-priority arbiter would be given BPRN when it makes the bus request rather than having to wait for another arbiter to release the bus through CBRQ.

Arbiter 1 relinquishes the multimaster system bus when it enters a state of not requiring it, by lowering its BPRO #1 (tied to BPRN #2) and releasing BUSY. Arbiter 2 now sees that it has priority from BPRN #2 being low and releases CBRQ. As soon as BUSY signifies the bus is available (high), arbiter 2 pulls BUSY low on the next falling edge of BCLK.

Note that if arbiter 2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority by lowering its BPRO #2 (TPNPO). Note also that even a higher-priority arbiter which is aquiring the bus through BPRN will momentarily drop CBRQ until it has acquired the bus.

Timing Waveforms

DEVELOPMENT TOOLS

9

Section 9 — Development Tools

μPD7720 Hardware Development Tools)-3
EVAKIT-7720B 9	
μPD70208/216 Hardware Development Tools)-5
IE-70208/70216 9)-5
μPD7281 Software Development Tools	1-7
SW7281 9	
μPD7720 Software Development Tools 9	
ASM77 9	
SIM77 9	1-9
μ PD70108/116/208/216 Software Relocatable Assembler Development Tools 9-	·11
RA70116 9-	
μ PD70108/116/208/216 Software C Compiler Development Tools 9-	
CC70116 9-	
EVAKIT Communication Program 9-	
MD-086 Series Microcomputer Development System 9-	
MD-086 Floppy and Hard Disk Drive System 9-	
MD-910TM Character Display Terminal Development Tool 9-	
PG1000 PROM Programmer 9-	23

μPD7720 HARDWARE DEVELOPMENT TOOL

EVAKIT-7720B

Description

The EVAKIT-7720B is a stand-alone Evakit for NEC's μ PD7720 digital signal processor. The EVAKIT-7720B provides complete hardware emulation and software debug capabilites for the μ PD7720. Real-time and single-step emulation capability, coupled with an onboard system monitor create a powerful debug environment.

A serial line from a terminal or host computer system controls the EVAKIT-7720B. User programs are downloaded into the instruction RAM and data RAM through a serial line or read from a PROM. An on-board programmer for μ PD2732 and μ PD2732A EPROMs provides an easy means for submitting your final code for production. You can also use the EVAKIT-7720B to program the μ PD77P20 EPROM version of the part for final system test and evaluation.

Features

77P20)

☐ Real-time and single-step emulation capability ☐ On-board instruction, data/coefficient and internal RAM ☐ Powerful system monitor Display/modify instruction RAM Display/modify data/coefficient RAM Display/modify internal RAM - Display/modify internal registers Load/verify/display PROM device Upload/download/verify instruction and data RAM Test Evakit ☐ User-specified address breakpoint Break loop counter: up to 256 loops ☐ Program trace feature 256 steps Trace display: address, instruction, registers, flags ☐ Supports two operating modes External terminal controlled Host computer system controlled ☐ Serial interface: RS-232C, TTL, or 20 mA current

☐ EPROM programming capability (2732, 2732A,

μPD70208/70216 HARDWARE DEVELOPMENT TOOLS

IE-70208/70216

☐ Stand-alone in-circuit emulator

Description

The IE-70208 and IE-70216 are stand-alone in-circuit emulators that provide both hardware emulation and software debug capabilities for the NEC μ PD70208 (V40 $^{\text{\tiny M}}$) and μ PD70216 (V50 $^{\text{\tiny M}}$) respectively. Each system consists of a standard IE-70K chassis with interchangeable emulator pods for either the V40 or V50 microprocessor. The IE-70208/70216 provides real-time and single-step emulation in both native and 8080 emulation mode. User programs can be uploaded and downloaded from a variety of host systems via a serial link, or loaded directly from a CP/M-86® format 8" disk.

Features

 Interchangeable emulator pods for V40/V50 Conversion kit available for IE-70108/70116-S ☐ Precise real-time and single-step emulation ☐ Sophisticated memory mapping in 1K blocks of: - 64K bytes of no wait state internal RAM 127K bytes of one wait state internal RAM (expandable to 610K bytes) Up to 1M byte of user system memory ☐ User programmable breakpoints and trace control ☐ 1K trace buffer — mnemonic and cyclic display ☐ Full symbolic debug capabilities 128K memory disk for rapid symbol search ☐ Symbolic line assembler and disassembler ☐ Full on-line help facility ☐ Macro command file capability ☐ External probes for tracing user system signals ☐ 1M byte 8" floppy disk drive

V40 and V50 are registered trademarks of NEC Electronics Inc.

Part Number Description		
IE-70208-S008	In-circuit emulator for µPD70208 (with V40 pod	
IE-70216-S008	In-circuit emulator for µPD70216 (with V50 pod)	
IE-70208-1008	Optional pod unit for µPD70208 emulation	
IE-70216-1008	Optional pod unit for µPD70216 emulation	
IE-70216-1508	Converts IE-70108/116-S to IE-70208/70216-S008	

μPD7281 SOFTWARE DEVELOPMENT TOOLS

SW7281

Description

The SW7281 software package is used to develop application software for the NEC μ PD7281 image pipeline processor (ImPP). SW7281 consists of the following three separate programs: an assembler (AS7281), a software simulator (SM7281), and an object code conversion program (OH7281). The μ PD7281 software package runs on all NEC development systems, and many other manufacturers' personal computers and minicomputers.

Features

- □ Complete software development system for μPD7281
 □ Assembler for generating μPD7281 tokens
- ☐ Software simulator provides
 - Program debugging capabilities
 - System simulation and evaluation
- ☐ Runs on a variety of operating systems
 - CP/M-86®
 - MS-DOS®
 - VAX/VMS® and VAX/UNIX®

AS7281 Assembler

AS7281 translates symbolic source programs for the μ PD7281 into object modules which serve as input to either the software simulator or the object code conversion program. Features are as follows.

- ☐ Automatic generation of all required tokens
- ☐ Extensive error reporting
- ☐ Command line controls
- ☐ User-selectable and directable output files

OH7281 Object Code Converter

OH7281 converts object modules produced by the assembler into hexadecimal format object module files for input to a HEX-loader or into ASCII data format object module files for use as data within a source module. A symbol table file may be produced for use with the software simulator.

SM7281 Software Simulator

SM7281 accepts object code modules produced by the assembler and simulates the user program under specified system parameters. The simulator can fully simulate an entire image processing subsystem, providing the user the tools to fully debug his program and to evaluate system performance without having to actually build the hardware. Features are as follows.

- ☐ Supports simulation of three system models
 - One or more cascaded μPD7281s, μPD9305 and image memory
 - One or more cascaded μPD7281s and image memory
 - One or more cascaded μPD7281s only
- $\hfill\square$ Continuous/single-step execution
- ☐ Set/display input data timing
- Display/modify contents of memory, latch, or registers
- ☐ Sophisticated breakpoint capabilities
- ☐ Sophisticated trace capabilities
 - Define/display items to be traced
 - Define/display trace start/stop conditions
- ☐ Supports full symbolic debug
 - Define/delete/modify symbols
 - Display symbols
- ☐ On-line assembler and disassembler
- ☐ Macro command file capability
- ☐ Save/load simulator setup to/from disk
- ☐ Save console input commands and execution results
- ☐ Display LT, PU, IM operating ratios for program evaluation

Ordering Information

Part Number	Description	
SW7281-D52	MS-DOS, 5-1/4" double-density floppy diskette	
SW7281-M52	CP/M-86, 5-1/4" double-density floppy diskette	
SW7281-M81	CP/M-86, 8" single-density floppy diskette	
SW7281-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape	
SW7281-VXT1	VAX/UNIX, 9-track 1600 BPI magnetic tape	

Note:

CP/M-86 is a registered trademark of Digital Research Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

VAX and VMS are registered trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T.

ASM77

Description

The μ PD7720 absolute assembler (ASM77) converts symbolic source code for the NEC μ PD7720 signal processing interface (SPI) into executable absolute address object code. Two separate assemblers are provided: one assembles the source program for the instruction ROM; the other assembles the source program for the data ROM. An object code file is produced in ASCII hexadecimal format and may be downloaded to a PROM programmer or hardware debugger.

The NEC ASM77 is available for use on all NEC development systems and many other manufacturers' microcomputer development systems, personal computers, minicomputers, and mainframes.

Features

- $\hfill \square$ Absolute address object code output
- ☐ Free format statements
- ☐ Separate assemblers for instruction and data ROMs
- ☐ User-selectable and directable output files
- ☐ Runs under a variety of operating systems
 - -- CP/M-80®
 - -- CP/M-86®
 - MS-DOS®
 - ISIS-II
- ☐ Fortran IV ANSI X3.9-1966 source program available

CP/M-80 and CP/M-86 are registered trademarks of Digital Research Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

Ordering Information

Part Number	Description	
ASM77-C81	CP/M-80, 8" single-density floppy diskette	
ASM77-D52	MS-DOS, 5-1/4" double-density floppy diskette	
ASM77-I81	ISIS-II, 8" single-density floppy diskette	
ASM77-I82	ISIS-II, 8" double-density floppy diskette	
ASM77-M52	CP/M-86, 5-1/4" double-density floppy diskette	
ASM77-M81	CP/M-86, 8" single-density floppy diskette	
ASM77-F9T1	Fortran IV ANSI X3.9-1966 source program 9-track 1600 BPI magnetic tape	

SIM77

Description

The μ PD7720 simulator (SIM77) is a software tool for analyzing program code and I/O timing for the NEC μ PD7720 signal processing interface (SPI). SIM77 simulates the operation of the SPI using your instruction and data ROM codes in conjunction with specially prepared serial input, parallel input, and simulation timing files. The system console of the host system controls simulation. SIM77 can create serial and parallel output files, display the latest trace steps, and send all console input/output to a disk file or system printer.

SIM77 runs on all NEC microcomputer development systems and many other manufacturers' microcomputer development systems and personal computers.

Features

- ☐ Continuous/single-step execution
- ☐ Display/modify instruction ROM, data ROM, RAM, stack, registers or flags
- ☐ User-controllable parallel data transfer direction
- ☐ User generated interrupt capability
- ☐ Sophisticated breakpoint capabilities
- Up to eight breakpoints with loop counter
- ☐ Trace capability with start/stop conditions
- ☐ Instruction ROM disassembler
- Output all console inputs and outputs to disk
- ☐ Runs under a variety of operating systems
 - CP/M-80®
 - CP/M-86®
 - MS-DOS®
 - ISIS-II

Note:

CP/M-80 and CP/M-86 are registered trademarks of Digital Research Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

Part Number	Description CP/M-80, 8" single-density floppy diskette	
SIM77-C81		
SIM77-D52	MS-DOS, 5-1/4" double-density floppy diskette	
SIM77-181	ISIS-II, 8" single-density floppy diskette	
SIM77-182	ISIS-II, 8" double-density floppy diskette	
SIM77-M52	CP/M-86, 5-1/4" double-density floppy diskette	
SIM77-M81	CP/M-86, 8" single-density floppy diskette	

μPD70108/116/208/216 SOFTWARE RELOCATABLE ASSEMBLER DEVELOPMENT TOOLS

RA70116

Description

The RA70116 relocatable assembler package converts symbolic source code for the V20™/V30™ (μPD70108/μPD70116) microprocessors as well as the V40/V50 (μPD70208/μPD70216) microprocessors into executable absolute address object code. The V20/V30 relocatable assembler package consists of four separate programs: a relocatable assembler (RA70116), a linker (LK70116), a hexadecimal format object code converter (OC70116), and a librarian (LB70116).

RA70116 translates a symbolic source module into a relocatable object module. LK70116 combines relocatable object modules and absolute load modules and converts them into an absolute load module. OC70116 converts an absolute load or object module to an ASCII hexadecimal format object file. LB70116 creates and maintains files containing relocatable object modules. When the library file is included as input to LK70116, the linker only extracts those modules required to resolve external references, relocates, and links them into the relocatable object module.

RA70116 runs on all NEC microcomputer development systems and many other manufacturers' microcomputer development systems, personal computers, and minicomputers.

Features

- ☐ Absolute address object code output
 ☐ User-selectable and directable output files
 ☐ Extensive error reporting
 ☐ Powerful librarian
 ☐ Runs under a variety of operating systems
 - -- CP/M-86®
 - MS-DOS®
 - ISIS/UDI
 - VAX/VMS® and VAX/UNIX®

Note:

CP/M-86 is a registered trademark of Digital Research Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

VAX and VMS are registered trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T.

V20 and V30 are registered trademarks of NEC Electronics Inc.

Part Number	Description	
RA70116-D52	MS-DOS, 5-1/4" double-density floppy diskette	
RA70116-I81	ISIS-II, 8" single-density floppy diskette	
RA70116-I82	ISIS-II, 8" double-density floppy diskette	
RA70116-M52	CP/M-86, 5-1/4" double-density floppy diskette	
RA70116-M81	CP/M-86, 8" single-density floppy diskette	
RA70116-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape	
RA70116-VXT1	VAX/UNIX, 9-track 1600 BPI magnetic tape	

μ**PD7**0108/116/208/216 **SOFTWARE C COMPILER DEVELOPMENT TOOLS**

CC70116

Description

The CC70116 C Compiler Package converts standard C source code into relocatable object modules for the V20/V30 (μ PD70108/70116) microprocessors as well as the V40/V50 (µPD70208/70216) microprocessors. These modules are compatible with the ones produced by the RA70116 Relocatable Assembler package and may be linked with other modules using LK70116, the linker provided with the RA70116 package.

The CC70116 C Compiler Package is available for use on all NEC development systems and many other manufacturers' microcomputer development systems. personal computers, and minicomputers.

Features

- ☐ Standard Kernighan and Ritchie C
 - Defined in UNIX™ System III
- □ NEC enhancements
 - Small and medium memory model support
 - Enumeration data type support
 - Assignment of all members by a structure name
 - Ability to use identical names in identifiers of different types in different structures
 - Addition of a void type to declare functions with no return value
 - Addition of char as a data type for which unsigned can be specified
 - Ability to initialize structures with bit fields
- ☐ CC70116 library contains 76 of the UNIX System III library functions
- ☐ User-selectable object code optimizer
- ☐ Runs under a variety of operating systems
 - CP/M-86™
 - MS-DOS™
 - ISIS/UDI
 - VAX/VMS™ and VAX/UNIX™

UNIX is a trademark of AT&T.

CP/M-86 is a trademark of Digital Research Corporation.

MS-DOS is a trademark of Microsoft Corporation.

VAX and VMS are trademarks of Digital Equipment Corporation.

Part Number	Description MS-DOS, 5" double-density floppy diskette	
CC70116-D52		
CC70116-I81	ISIS-II, 8" single-density floppy diskette	
CC70116-I82	ISIS-II, 8" double-density floppy diskette	
CC70116-M52	CP/M-86, 5" double-density floppy diskette	
CC70116-M81	CP/M-86, 8" single-density floppy diskette	
CC70116-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape	
CC70116-VXT1	VAX/UNIX, 9-track 1600 BPI magnetic tape	

Description

The Evakit communication program (EVA) allows a variety of microcomputer development systems and personal computers to control NEC's Evakits and incircuit emulators directly from the console of the host system. Once a particular emulator is selected from the EVA program's menu, EVA recognizes all legal commands for that emulator. In addition to the emulator standard commands, the EVA program provides commands to upload, download, and display disk files and directories, to save debug session on disk, to display command help files, and to exit from the program to the operating system.

You can download to the emulator object code program files produced by a cross assembler on the host system and upload patched copies of the program from the emulator to the disk for use in later debugging sessions. The disk display commands allow you to examine directories and files on the screen without having to exit the EVA program. This is extremely useful for checking a file before it is downloaded to the emulator or erased during an upload. The help command displays a complete list of all legal commands for the chosen emulator with their proper syntax. There is a command to exit from the EVA program and to return to the operating system. The emulator is not affected, and emulation can be continued by invoking the EVA program again.

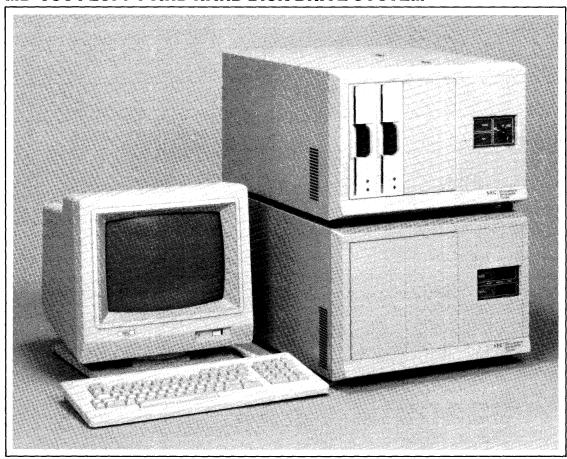
The EVA program is supplied in executable format and is included with each NEC assembler. Executable versions are available for the following host systems:

Intel MDS-220/330 under ISIS-II NEC APC under CP/M-86® IBM PC or PC/XT® under CP/M-86 or PC-DOS® IBM PC/AT® under PC-DOS

Source code is available and may be modified to support other CP/M-80®, CP/M-86, MS-DOS®, and ISIS-II based systems.

The EVA program supports all current Evakits and incircuit emulators and is periodically updated as new emulators are introduced.

CP/M-80 and CP/M-86 are registered trademarks of Digital Research Corporation.


PC/XT, PC-DOS, and PC/AT are registered trademarks of International Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

MD-086 FLOPPY AND HARD DISK DRIVE SYSTEM

Description

The MD-086 series microcomputer development systems are a series of disk based, multi-user, multi-tasking systems supporting the development of products using NEC's microcomputers and microprocessors. Available in either a floppy disk-based or floppy/hard disk-based configuration, the MD-086 may be coupled with NEC's stand-alone evaluation kits (Evakits) or in-circuit emulators (IEs) to provide a complete integrated software and hardware development system.

Based on NEC's μ PD8086 16-bit microprocessor, running Digital Research's MP/M-86® operating system, the MD-086 gives you access to all NEC's assemblers,

simulators, high level language compilers, and all other CP/M-86® application software.

The MD-086FD-10 (floppy disk-based) consists of two units: the system chassis (housing all the electronics) and the system console (an ANSI standard X3.64 terminal.) The MD-086HD-10 (floppy/hard disk based) consists of three units: the system chassis, the hard disk chassis and the system console, and an ANSI standard terminal. Additional terminals may be added to the system as required, thereby lowering the system cost per user.

MP/M-86 and CP/M-86 are registered trademarks of Digital Research Corporation.

Features

- ☐ MP/M-86 multi-user/multi-tasking operating system
 - Supports up to three users
 - Supports multi-tasking at each user terminal
- ☐ 512K bytes of system memory
 - Optional expansion to 1M byte total
- ☐ Two 1M byte 8" double-sided floppy disk drives
- ☐ Optional 35M byte hard disk
- ☐ 64K byte memory disk
- ☐ Two parallel printer ports
- ☐ IEEE-796 bus-based with 5 vacant slots for future expansion
- ☐ Separate ANSI standard X3.64 system console

Ordering Information

Part Number	Description	
MD-086FD-10	0 MD-086 series, floppy disk-based system	
MD-086HD-10	MD-086 series, floppy/hard disk-based system	
MD-086DK	Hard disk upgrade for MD-086FD-10	
MD-910TM	Character display terminal	
		

Hardware Description

System Chassis

The system chassis of the MD-086 series houses a multiprocessor system, two 8" doubled-sided floppy disk drives, an IEEE-796 cardcage, power supply, and fans. Utilizing the industry standard IEEE-796 bus as its internal system bus, NEC's MD-086 series with several vacant slots, can easily be expanded to meet tommorrow's technological advances.

The multiprocessor architecture of the MD-086 series permits the master CPU to offload the time consuming tasks of data storage/retrieval and system I/O processing to its intelligent peripheral boards, significantly increasing the multi-user/ multi-tasking capabilities of the operating system. This multiprocessor system is composed of a μ PD8086 master CPU board, a 512K-byte memory board, a μ PD780-based intelligent floppy disk controller (FDC) board, a μ PD8088-based intelligent system controller board (SCB), and an optional μ PD780-based intelligent hard disk controller (HDC) board.

System Boards

The master CPU board is the heart of the system. Utilizing a μ PD8086 microprocessor running at 5 MHz, it controls the operation of the multi-user/multi-pro-

gramming operating system. The CPU board also contains the bootstrap loader PROM and the system work RAM, interrupt controller, and timer.

A single 512K-byte memory board provides the system memory and is accessed by either the master CPU board, the floppy disk controller board, or the optional hard disk controller board. System memory can be expanded to 1M byte by adding additional IEEE-796 bus memory boards.

The FDC board is an intelligent floppy disk controller board using NEC's μ PD765A floppy disk controller chip to control up to four 8" double-sided floppy disk drives in either single or double-density format. Containing an NEC μ PD780-1 microprocessor with 8K of PROM, 64K of RAM, and a DMA controller, the FDC board controls the transfer of data between the system memory and the floppy disk.

The HDC board is an intelligent hard disk controller board using NEC's μ PD7261A hard disk controller chip to control up to two SMD interface hard disk drives. Containing an NEC μ PD780-1 microprocessor with 8K PROM, 18K of RAM, and a DMA controller, the HDC board controls the transfer of data between the system memory and the hard disk.

The SCB is an intelligent I/O controller board using an NEC μ PD8088 microprocessor with up to 16K bytes of PROM and 64K bytes of RAM to control the system console, the serial communication channels, the printer ports, and the paper tape interfaces.

The master CPU writes commands into the dualported memories on the FDC, HDC, and SCB boards. Each board executes its command with no further intervention by the master CPU. This increases the system performance of the MD-086 series.

The two 8" doubled-sided floppy disk drives provide approximately 2M bytes of data storage capacity. Single-sided diskettes are recorded in single-density to provide compatibility with other CP/M-86 and MP/M-86 systems. Double-sided diskettes are recorded in double-density providing a maximum storage capacity of 972K bytes per diskette.

Hard Disk Chassis

The optional hard disk chassis houses one 8" SMD interface hard disk drive capable of storing 32M bytes of formatted data, the power supply, and fans. A ready indicator, along with a write protect switch/indicator, and a fault switch/indicator are also provided.

System Console

The MD-910TM, an ANSI standard X3.64 CRT terminal. is provided as the system console for the MD-086 series microcomputer development systems. To take advantage of the multi-user features of the MD-086 series, additional ANSI standard terminals may be purchased separately from NEC Electronics Inc. or other manufacturers.

Software Description

The MD-086 series incorporates Digital Research's MP/M-86 operating system providing you a compact multi-user, multitasking operating system. Each user has complete access to all of the MP/M-86 facilities and may execute multiple programs simultaneously.

The powerful MP/M-86 file system manages all files and file directories, dynamically allocating, and releasing disk space as required. Designed for the multiuser environment, it enhances file integrity by permitting files to be opened in one of three modes: locked, unlocked, and read only modes. In locked mode, only one user may open a specific file at a given time, while in unlocked mode multiple users/programs may open the same file. Read only mode, permits a file to be opened by more than one process but it cannot be changed.

Optional password protection is available at both the file and disk level, providing protection for a particular user's files. MP/M-86's extended directories allow files to be dated and time stamped. Each file may have up to two date and time stamps: one reflects the date and time of the last update and the other the date of the last access or file creation.

All files generated on CP/M® 8" diskette systems may be read under MP/M-86, allowing you to easily transport existing software routines to the MD-086 series. Hardware-independent CP/M-86 application programs can be run, giving you access to a wide variety of third party software.

A 64K-byte memory disk residing in system memory is available for high speed file processing, significantly improving the overall performance of the MD-086 series microcomputer development systems.

The MD-086 series contains a PROM-resident monitor program which may be used for μ PD8086 program development/debugging. This monitor program is entered automatically if there is no MP/M-86 system disk in drive A when the reset switch is pressed. Some of the main features of the MD-086 monitor are:

☐ Display, fill, substitute, compare, transmit, or test the contents of memory.

 □ Display and modify user registers. □ Read and write to the floppy disks and paper tape □ Set breakpoints and execute user's program. □ Single-step and trace executing user's program.
Note:

CP/M is a registered trademark of Digital Research Corporation.

MD-086 Series Utilities

The following MD-086 series	utility programs are supplied with the :
ABORT	Stops the specified process
ASM86	Absolute assembler for μ PD8086/8088
ATTACH	Attaches program to its console
BACKUP	Makes a complete backup copy of a disk
CLEAR	Clears the system console screen
CONSOLE	Displays console number
DDT86	Dynamic debugging tool for
	μPD8086/8088
DIR	Displays disk directory of filenames
DSKRESET	Resets drives
ED	Line-oriented editor
ERA	Erases a file
ERAQ	Erases a file only after confirmation
FORMAT	Formats floppy disks
GENCMD	Converts H86 file to CMD file
GENSYS	Generates MP/M-86 operating system
HDBACKUP	Makes backup of hard disk logical drive
HDDUMP	Displays and changes contents of hard disk
HDFORMAT	Initializes hard disk logical drives
MPMSTAT	Displays MP/M-86 internal status
PHFORMAT	Physically formats hard disk

Copies files PIP

PRINTER Displays and sets the printer number

REN Renames files SDIR Displays disk directory with options SET

Sets disk and file protection levels, file attributes, and file time stamping SHOW Displays disk status and protection

SPOOL Spools files to the list device STAT Displays, set files, and disk status STOPSPLR Stops the spooler SUBMIT Executes batch processing

Copies system loader and MPM.SYS SYSCPY TOD Displays and sets time of day TYPE

Displays ASCII file contents at

console Displays and sets user number

YEAR Sets the year

USER

Five of these utilities have been incorporated into the operating system as resident system processes (RSPs) and reside in system memory. They can be executed without disk accesses, increasing the performance of the system. The RSPs in the MD-086 series include: ABORT. DSKRESET. MPMSTAT. PRINTER, and USER.

MD-086 Series Development Environment

The MD-086 series microcomputer development systems have been designed to provide a integrated software and hardware development environment for all NEC proprietary microcomputers, microprocessors, and digital signal and image processing components. For software development, a complete family of absolute and relocatable assemblers, high level language compilers, and digital signal and image processor simulators are available for the MD-086 Series. For software and hardware debug, NEC in-circuit emulators and Evakits can be controlled directly from the MD-086 series consoles.

Evakit communication programs are available for controlling all stand-alone Evakits via a serial link directly from any console of the development system. These programs provide program upload and download capability plus a full line assembler and disassembler.

Up to three in-circuit emulators can be plugged directly in the IEEE-796 backplane of the MD-086 series and controlled by the appropriate IE control program. In this bus-coupled configuration, your program debugging capabilities are greatly enhanced with the addition of symbolic debug, macro command file capability, and improved file upload/download times.

With the MD-086 series microcomputer development systems, you will always have access to development tools for NEC's newest components at the earliest possible time.

Documentation

The following documentation is supplied with the system. Additional copies may be obtained from NEC Electronics Inc.

- MD-086FD-10 Installation Manual
- MD-086FD-10 MP/M-86 Implementation Manual
- MD-910TM Terminal User Manual
- MP/M-86 Multi-Process Monitor User's Guide*
- MP/M-86 Operating System Guide*
- MP/M-86 Multi-Process Monitor Programmer's Guide*

Equipment

The following equipment is supplied with the system:

MD-086FD-10

- 1 System chassis
- 2 RS-232C serial cables
- 1 Centronics printer cable
- · 1 Line cord and ground adapter
- 1 Spare fuse
- 2 On-off keys
- 2 Male DB-25 solder type connectors/shells
- 1 Set of disk drive labels
- 2 8" floppy diskettes
 - MP/M-86 system disk
 - MP/M-86 gensys disk
- 1 MD-910TM system console
 - 1 RS-232C cable
 - 1 TTL level cable
 - 1 Line cord and ground adapter
- 1 Set of documentation

MD-086HD-10

- 1 MD-086FD-10 system
- 1 MD-086DK

MD-086DK hard disk upgrade

- 1 Hard disk chassis
- 1 HDC board
- 1 Set of interconnecting cables
- 1 Line cord and ground adapter

Specifications

Processors

Main Slave μPD8086C, 5 MHz, CPU Board μPD780C-1, 4 MHz, FDC Board μPD8088C-2, 6.5536 MHz, SCB Board μPD780C-1, 4 MHz, HDC Board

System Memory

512K-bytes of dynamic RAM (1M byte total — optional)

Operating system area

64K bytes 64K bytes

Memory Disk User's Area

384K byte

/000K byte

(896K bytes optional)

External Memory

Two double-sided 8" floppy disk drives

— 2M-byte maximum capacity

Optional SMD Interface 8" hard disk drive

32M-byte formatted capacity

^{*}Additional copies may be obtained from Digital Research.

Bus Structure

IEEE-796 Bus

- 5 spare slots in MD-086FD-10

- 4 spare slots in MD-086HD-10

Serial Interfaces

System console Serial interfaces RS-232C/TTL RS-232C

RS-232C/TTL

1 channel 4 channel

1 channel

Parallel Interfaces

Centronics printer interface 2 channel

Operating System

MP/M-86, version 2.0 with NEC proprietary enhancements.

Environmental Specifications

Temperature: -20 to +40 °C, non-operating

+10 to +40 °C, operating 10 to 90% relative humidity,

non-operating

30 to 80% relative humidity, operating

(without condensation)

Electrical Characteristics

FCC: Class A

Humidity:

AC Requirements:

System chassis: 90-132 V, 50/60 Hz \pm 2%, 5A System console: 90-132 V, 50/60 Hz \pm 2%, 2A

Physical Characteristics

	System Chassis	System Console	
		CRT	Keyboard
Width	16.75 in (425 mm)	14.25 in (362 mm)	18.5 in (470 mm)
Height	11.77 in (299 mm)	14.29 in (363 mm)	1.50 in (38 mm)
Depth	24.21 in (615 mm)	13.46 in (342 mm)	7.44 in (189 mm)
Weight	59.40 lb (27 kg)	19.95 lb (9 kg)	4.41 lb (2 kg)

MD-910TM CHARACTER DISPLAY TERMINAL DEVELOPMENT TOOL

Description

The MD-910TM character display terminal is an ANSI standard CRT terminal used as the system console of the MD-086 series microcomputer development system. The MD-910TM can also be used as an additional console for this system, or as an external terminal for any stand-alone Evakit or in-circuit emulator.

Features

- ☐ Multiple emulation modes
 ANSI standard X3.64 (V
 - ANSI standard X3.64 (VT100 compatible)
 - VT52 (Digital Equipment Corporation)
- ☐ Amber 12" nonglare screen
- ☐ Tilt/swivel display
- Detached low-profile keyboard conforming to DIN standard
 - ASCII keys, numeric keypad, four function keys
- ☐ Total software set-up feature
- $\hfill \square$ Smooth, jump, or partial scrolling
- ☐ 80/132 columns by 24-line display
- ☐ Standard, double width, or double height/width characters
- \square Blinking block, blinking underline, or invisible cursor
- □ Display attributes
 - Normal, bold, blinking, reverse, underscore, overline, and vertical line
- ☐ Display status LEDs on keyboard
- $\hfill \square$ Software selectable serial interface
 - RS-232C, TTL, 20 mA current loop
 - 7- or 8-bit character with odd, even, or no parity
 - Full or half-duplex operation
 - Transfer rate: 50 to 19200 BPS
- Power-on, self-diagnostic function and data analyzer mode
- ☐ Centronics printer port

Equipment

The following equipment is supplied with the MD-910TM terminal:

- 1 Display terminal
- 1 Keyboard with attached cable
- 1 RS-232C serial interface cable
- 1 TTL serial interface cable
- 1 AC power cord and ground adapter
- 1 Spare fuse
- 1 MD-910TM user's manual

Physical Characteristics

Dimension	Display	Keyboard
Width	14.25 in (362 mm)	18.05 in (470 mm)
Height	14.49 in (363 mm)	1.50 in (38 mm)
Depth	13.46 in (342 mm)	7.44 in (189 mm)
Weight	19.95 lb (9 Kg)	4.41 lb (2 Kg)

Environmental Specifications

Temperature: 0 to 40°C

Relative Humidity: 30 to 80%, non-condensing

Electrical Characteristics

FCC: Class A

Power: 90-132 V AC, 50/60 Hz ±2%, 2A

Part Number	Description
MD-910TM	Character display terminal

Description

The PG1000 is NEC's PROM Programmer for use with the MD-086 Series Development Systems and certain NEC Emulators. With the use of interchangeable personality modules, the user can tailor the PG1000 to support various NEC single-chip microcomputers. The user controls the PG1000 via the serial interface from either a host computer or an external terminal, or directly from the on-board keypad in stand-alone mode.

Features

☐ Interchangeable personality modules
 ☐ 16K of data RAM
 ☐ Address/data display and mode specification LEDs
 ☐ Flexible membrane keypad
 ☐ Three modes of operation
 — Host computer controlled
 — External terminal controlled
 — Stand-alone operation
 ☐ Serial interface: RS-232C, TTL, or 20-mA current loop
 ☐ Parallel interface: TTL (two-wire handshake)

PG1000 Personality Modules

PG1003

The PG1003 is a plug-in personality module for the PG1000 PROM Programmer. This module is required to program the μ PD78P09R, the EPROM version for the μ PD7808 and μ PD7809 8-bit, single-chip microcomputers. The PG1003 supports two programming modes: high-speed writing mode and normal writing mode.

PG1005

The PG1005 is a plug-in personality module for the PG1000 PROM Programmer. This module is required to program the μ PD75P108, the EPROM version for the μ PD75104, μ PD75106, and μ PD75108 4-bit, single-chip microcomputers. Interchangeable socket adapters are provided with the PG1005 to allow programming both shrink dip and flat packages.

PACKAGING INFORMATION

Section 10 — Packaging Information

Package/Device Cross Reference	10-3
16-Pin Plastic DIP (300 mil)	10-5
18-Pin Plastic DIP (300 mil)	
18-Pin Cerdip (300 mil)	
20-Pin Plastic DIP (300 mil)	10-6
20-Pin Cerdip (300 mil)	
20-Pin Plastic SO (Small Outline)	
24-Pin Plastic DIP (600 mil)	10-8
24-Pin Plastic Skinny DIP (400 mil)	10-8
28-Pin Plastic DIP (600 mil)	
28-Pin Ceramic DIP (600 mil)	
28-Pin Cerdip (600 mil)	
28-Pin Plastic SO (Small Outline) (375 mil)	10-10
28-Pin PLCC (Plastic Leaded Chip Carrier)	10-11
30-Pin Plastic Shrink DIP (400 mil)	
40-Pin Plastic DIP (600 mil)	
40-Pin Ceramic DIP (600 mil)	10-12
40-Pin Cerdip (600 mil)	10-13
44-Pin Plastic Miniflat	10-13
44-Pin PLCC (Plastic Leaded Chip Carrier)	10-14
48-Pin Plastic DIP (600 mil)	10-14
48-Pin Ceramic DIP (600 mil)	
52-Pin Plastic Miniflat	10-15
52-Pin PLCC (Plastic Leaded Chip Carrier)	10-16
68-Pin Plastic Leaded Chip Carrier (PLCC)	10-17
68-Pin Ceramic PGA	10-17
80-Pin Plastic Miniflat	10-18
132-Pin Ceramic PGA	10-18

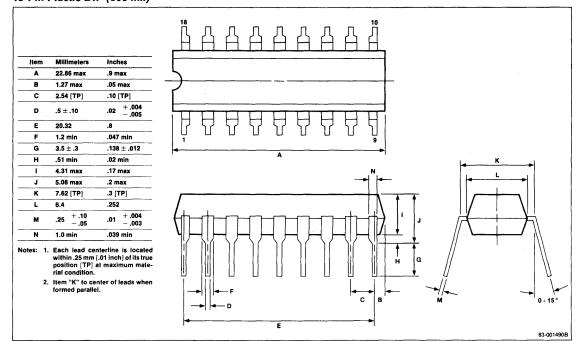
Package/Device Cross Reference

Package/Device Cross Refe	Package/Device Cross Reference		
Package	Device		
16-Pin Plastic DIP (300 mil)	μΡΒ8216C μΡΒ8226C		
18-Pin Plastic DIP (300 mil)	μPD7755C μPD7756C μPD71011C μPD71084C		
18-Pin Cerdip (300 mil)	μPB8284AD		
20-Pin Plastic DIP (300 mil)	μPB8282C μPB8283C μPB8286C μPB8287C μPD71082C		
	μPD71083C μPD71086C μPD71087C μPD71088C		
20-Pin Cerdip (300 mil)	μPB8288D μPB8289D		
20-Pin Plastic SO (Small Outline) (300 mil)	μPD71011G μPD71082G μPD71083G μPD71084G μPD71086G		
	μPD71087G μPD71088G		
24-Pin Plastic DIP (600 mil)	μPD71054C μPD8243C μPD8243HC μPD82C43C μPD8253C-2 μPD8253C-5		
24-Pin Plastic Skinny DIP (400 mil)	μPD82C43CX		
28-Pin Plastic DIP (600 mil)	μPD7720AC μPD7730C μPD8251AC μPD8251AFC μPD8259AC		
	μPD8259AC-2 μPD9306AC μPD71051C μPD71059C		
28-Pin Ceramic DIP (600 mil)	μPD7220AD μPD7720AD μPD77C20D		
28-Pin Cerdip (600 mil)	μPD77P20D		
28-Pin Plastic SO (Small Outline) (375 mil)	μPD71065G		

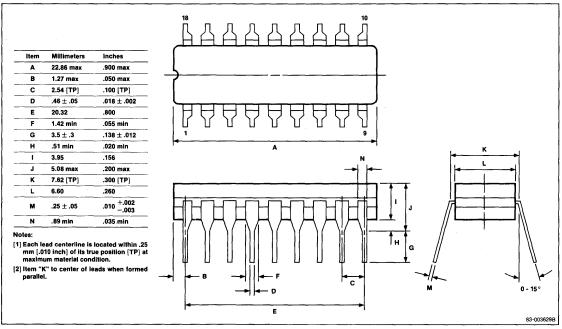
Package	Device
28-Pin Plastic Leaded Chip Carrier (PLCC)	μPD71051L μPD71054L μPD71059L
30-Pin Plastic Shrink DIP (400 mil)	μPD71066CT
40-Pin Plastic DIP (600 mil)	μPD765AC μPD765AC-2 μPD780C μPD780C-1 μPD780C-2
	μPD7201AC μPD7210C μPD7265C μPD7265AC-2 μPD7759C
	μPD8085AC-2 μPD8085AHC μPD8085AHC-2 μPD8155C μPD8155C-2
	μPD8155HC μPD8155HC-2 μPD8156C μPD8156C-2 μPD8156HC
	μPD8156HC-2 μPD8237AC-5 μPD8255AC-2 μPD8255AC-5 μPD8257C-2
	μPD8257C-5 μPD8279C-2 μPD8279C-5 μPB9201C μPD70008C
	μPD70008AC-4 μPD70008AC-6 μPD70108C-5 μPD70108C-8 μPD70116C-5
	μPD70116C-8 μPD71055C μPD72001C μPD72065C μPD72066C

Package/Device Cross Reference

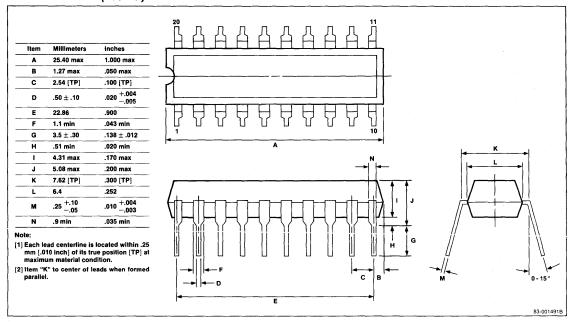
Package	Device
40-Pin Ceramic DIP (600 mil)	μPD7201AD μPD7220AD μPD7220AD-1 μPD7220AD-2 μPD7260D
	μPD7261AD μPD7261BD-18 μPD7262D μPD7281D μPD8086D
	μPD8088D μPD8088D-2 μPD70108D-5 μPD70108D-8 μPD70108D-10
	μPD70116D-5 μPD70116D-8 μPD70116D-10 μPD72191D
40-Pin Cerdip (600 mil)	μPD8086D μPD8086D-2
44-Pin Plastic Miniflat	μPD70008AG-4 μPD70008AG-6 μPD71051G μPD71054G μPD71055G μPD71059G
44-Pin Plastic Leaded Chip Carrier (PLCC)	μPD77C20L μPD70008AL-6 μPD70108L-5


Package	Device
44-Pin Plastic Leaded Chip Carrier (PLCC) (cont)	μPD70108L-8 μPD70116L-5 μPD70116L-8 μPD71055L μPD72001L
	μPD72065L μPD72066L
48-Pin Plastic DIP (600 mil)	μPD71071C μPD72105C
48-Pin Ceramic DIP (600 mil)	μPD71071D
52-Pin Plastic Miniflat	μPD70108G-5 μPD70108G-8 μPD70116G-5 μPD70116G-8 μPD71071G μPD72065G μPD72066G
52-Pin Plastic Leaded Chip Carrier (PLCC)	μPD71071L μPD72105L
68-Pin Plastic Leaded Chip Carrier (PLCC)	μPD70208L μPD70216L
68-Pin Ceramic PGA	μPD70208R μPD70216R μPD70616R μPD77230R
80-Pin Plastic Miniflat	μPD70208G μPD70216G
132-Pin Ceramic PGA	μPD9305R

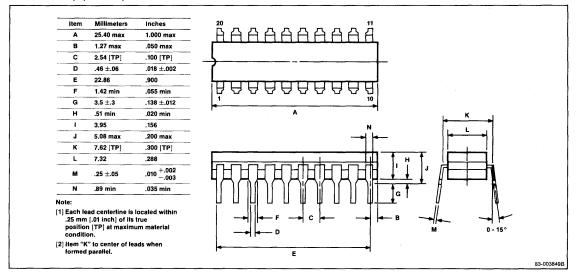
16-Pin Plastic DIP (300 mil)



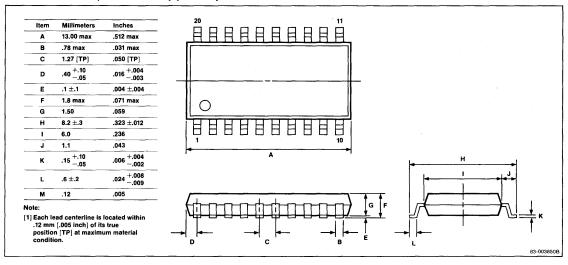
18-Pin Plastic DIP (300 mll)



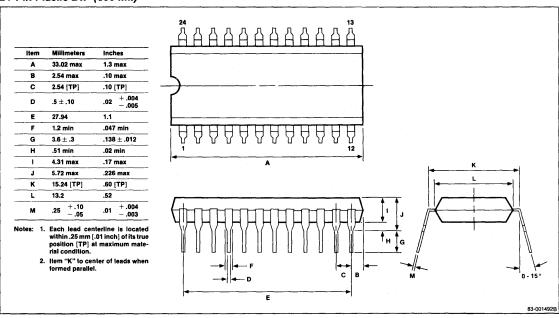
18-Pin Cerdip (300 mil)



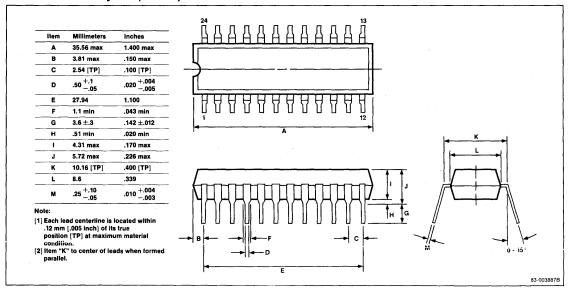
20-Pin Plastic DIP (300 mil)



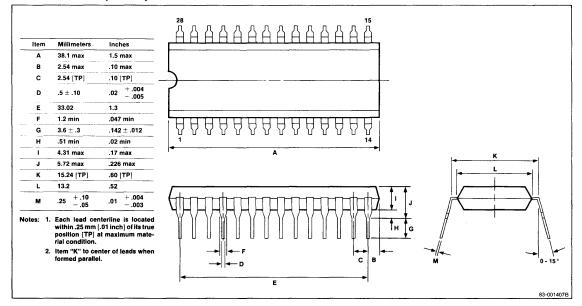
20-Pin Cerdip (300 mil)

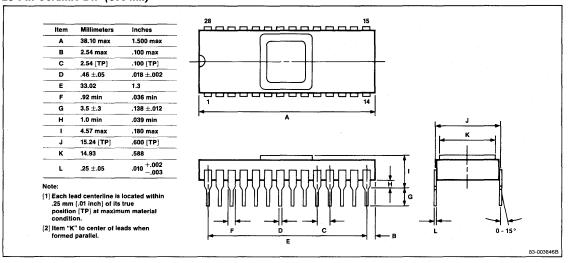


20-Pin Plastic SO (Small Outline) (300 mil)



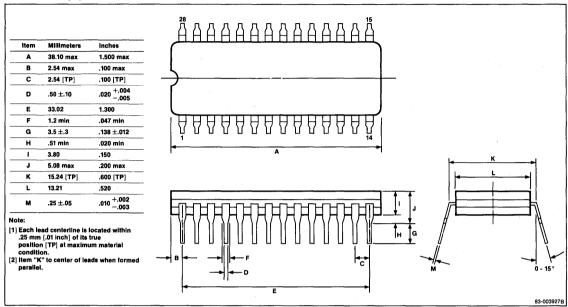
24-Pin Plastic DIP (600 mil)


24-Pin Plastic Skinny DIP (400 mil)

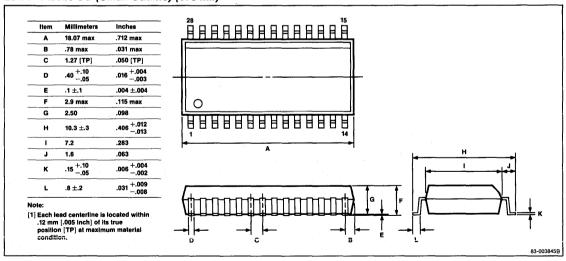


28-Pin Plastic DIP (600 mil)

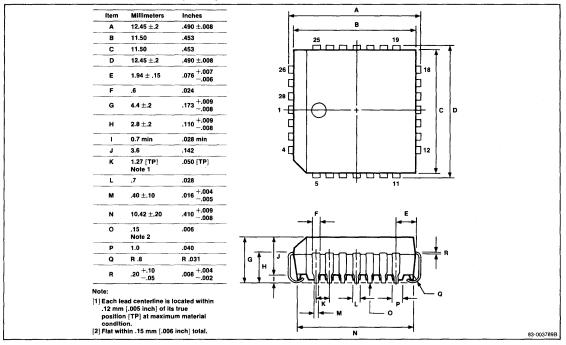
28-Pin Ceramic DIP (600 mil)



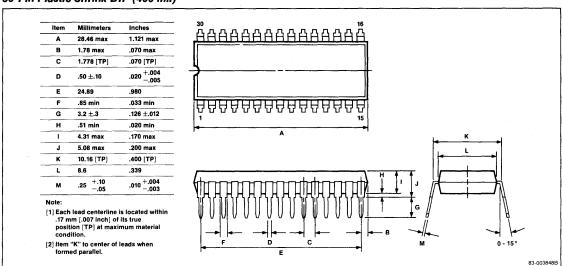
10


PACKAGING INFORMATION

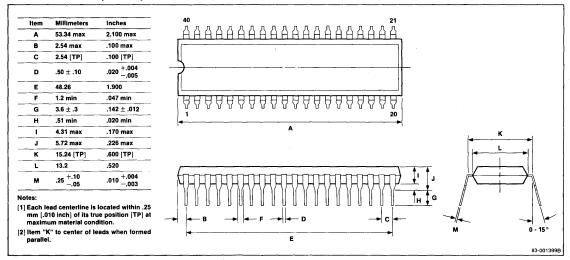
28-Pin Cerdip (600 mil)



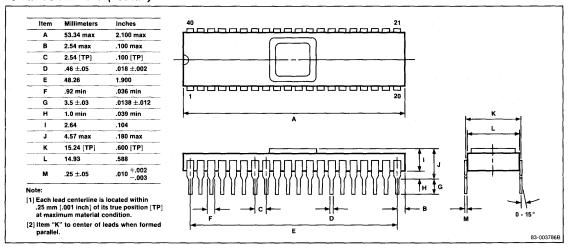
28-Pin Plastic SO (Small Outline) (375 mil)



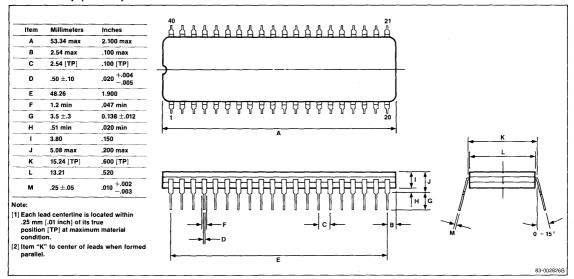
28-Pin Plastic Leaded Chip Carrier (PLCC)



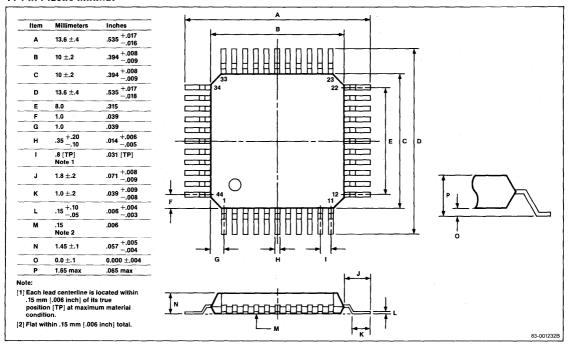
30-Pin Plastic Shrink DIP (400 mil)



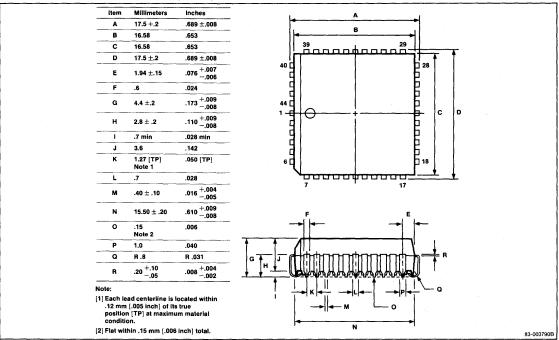
40-Pin Plastic DIP (600 mil)



40-Pin Ceramic DIP (600 mil)

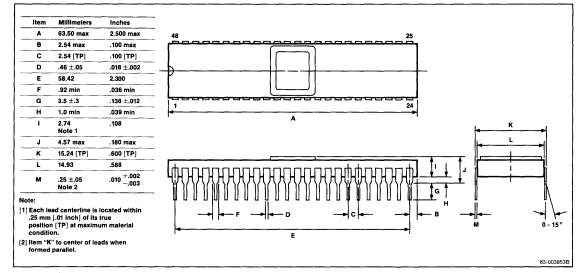


40-Pin Cerdip (600 mil)

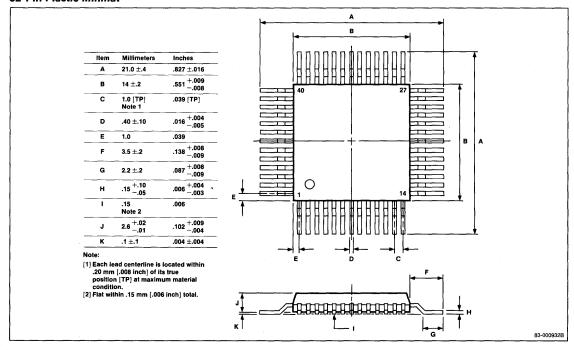

44-Pin Plastic Miniflat

10

44-Pin Plastic Leaded Chip Carrier (PLCC)

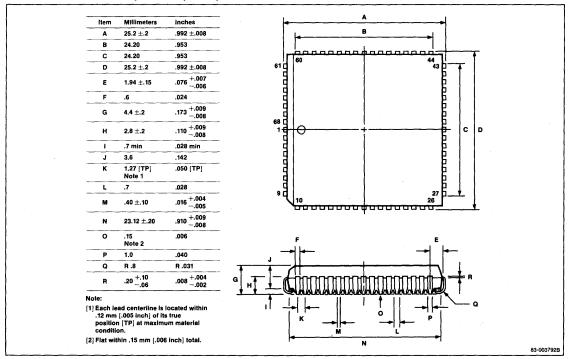


48-Pin Plastic DIP (600 mil)

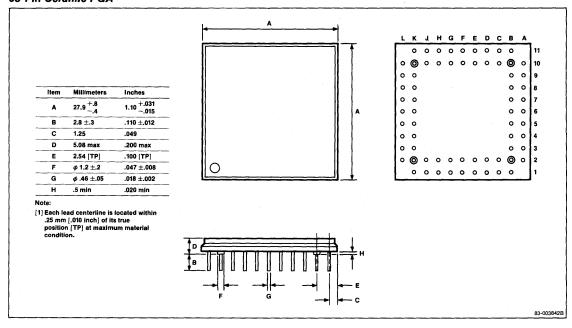

item	Millimeters	Inches	48 25	İ
Α	63.50 max	2.5 max	_	1
В	2.54 max	.10 max		1
С	2.54 [TP]	.10 [TP]		
D	.5 ± .10	.02 + .004 005		
Ε	58.42	2.3		1
F	1.1 min	.043 min	\\ \tau \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
G	3.6 ± .3	.142 ± .012		
н	.51 min	.02 min	4	1
1	4.31 max	.17 max	A	
J	5.72 max	.226 max		
K	15.24 [TP]	.60 [TP]		
L	13.8	.543		-√ !
М	.25 + .10 05	.01 + .004 003		7
Notes:				1/
mm [.0		located within .25 e position [TP] at dition.	D	0-15°
2. Item "K parallel		ads when formed	E	
				83-001493B

48-Pin Ceramic DIP (600 mil)

52-Pin Plastic Miniflat

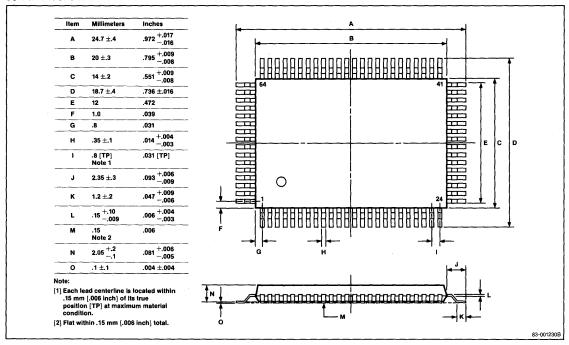


52-Pin Plastic Leaded Chip Carrier (PLCC)

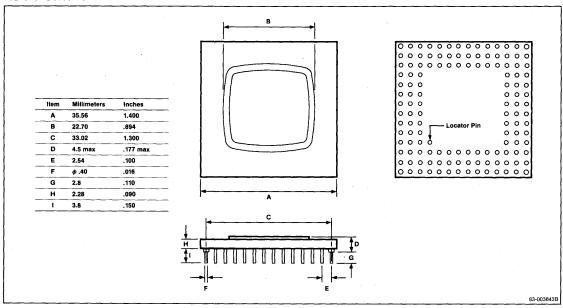

	Item	Millimeters	Inches	
	A	20.1 ±.2	.791 ^{+.009} 008	
	8	19.12	.753	B
	С	19.12	.753	46 34
	D	20.1 ± .2	.791 ^{+.009} 008	47.1
	E	1.94 ±.15	.076 ^{+.007} 006	- 47 D D D 33 D D 34 D D 34 D D 35 D D 35 D D 36 D D 36 D D 37 D
	F	.6	.024	- 41 (61)
/ Manage	G	4.4 ±.2	.173 ^{+.009} 008	_ 52 0 6 7
	н	2.8 ±.2	.110 ^{+.009} 008	
	Ī	.7 min	.028 min	- H H H H H
	J	3.6	.142	- d
	к	1.27 [TP] Note 1	.050 [TP]	
	L	.7	.028	7 🗖
	M	.40 ±.10	.016 ^{+.004} 005	**************************************
	N	18.04 ±.20	.710 ^{+.009} 008	- · · · · · · · · · · · · · · · · · · ·
	0	.15 Note 2	.006	╾ ╒ ┈╶──╪╽ ╘ ──
	Р	1.0	.040	7 - 7
	Q	R .8	R .031	
	R	.20 ^{+.10} 05	.008 ^{+.004} 002	
No	e:			- +
	12 mm	ad centerline is [.005 inch] of it [TP] at maxim	s true	

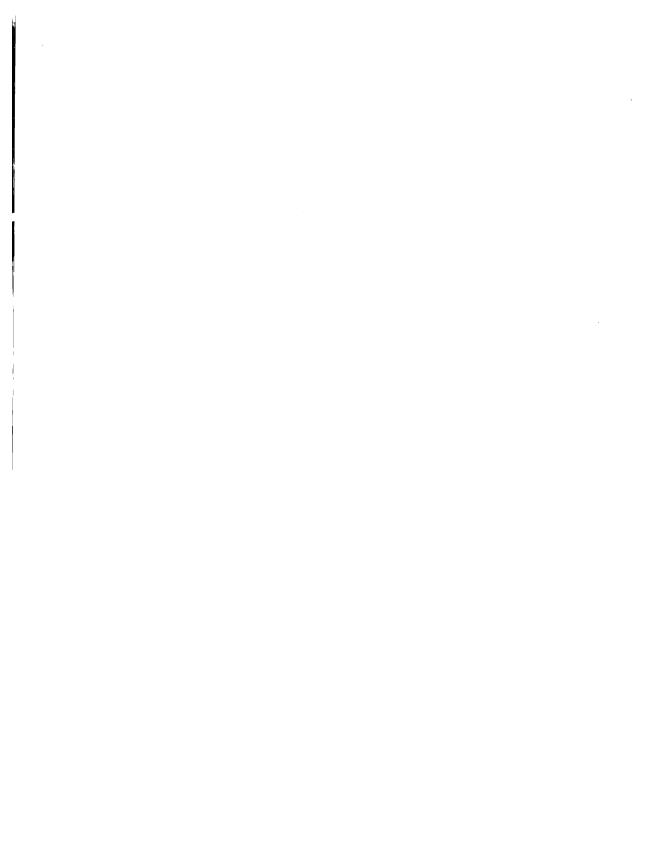
NEC

68-Pin Plastic Leaded Chip Carrier (PLCC)



68-Pin Ceramic PGA





80-Pin Plastic Miniflat

132-Pin Ceramic PGA

401 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL 415-960-6000 TWX 910-379-6985